FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Vazquez, AE Jimenez, AM Martin, GK Luebke, AE Lonsbury-Martin, BL AF Vazquez, AE Jimenez, AM Martin, GK Luebke, AE Lonsbury-Martin, BL TI Evaluating cochlear function and the effects of noise exposure in the B6.CAST plus Ahl mouse with distortion product otoacoustic emissions SO HEARING RESEARCH LA English DT Article DE distortion product otoaccustic emissions; noise exposure; age-related hearing loss; Ahl gene; C57BL/6J; CAST/Ei; B6.CAST inbred mouse strains ID INDUCED HEARING-LOSS; C57BL/6 MICE; SUSCEPTIBILITY; DEGENERATION; STRAINS; INJURY; CELL; L(2) AB Cochlear function and susceptibility to noise over-exposure were examined in the congenic mouse strain B6.CAST+Ahl (B6.CAST) and compared to these same features in the CAST/Ei (CAST) and C57BL/6J (C57) parental strains. For both types of comparisons, the primary measure was the distortion-product otoacoustic emissions (DPOAE) at 2f(1) - f(2). Our assumption was that the B6.CAST mouse was corrected for the early onset age-related hearing loss (AHL) exhibited by one of its parental strains (C57) by the age-resistant properties of its other parental strain (CAST), and thus would exhibit neither AHL nor susceptibility to noise overstimulation effects. With respect to cochlear function, for 2.5-month mice, there was a tendency for DPOAEs to be slightly lower for mid-frequency primary tones for both C57 and B6.CAST mice, while the former mice showed clear AHL effects at the highest test frequency. However, by 5 months of age, the B6.CAST mice, like the CAST mice, displayed robust DPOAE levels that were significantly larger than DPOAE levels for the C57 mice, which were essentially absent for frequencies above about 30 kHz. To investigate the role of the AN gene in the susceptibility of the cochlea to the effects of noise over-exposure, two distinct paradigms consisting of temporary (TTS: 1-min, 105-dB SPL, 10-kHz pure tone) and permanent (PTS: 1-h, 105-dB SPL, 10-kHz octave band noise) threshold-shift protocols were used. The brief TTS exposure produced reversible reductions in DPOAEs that for both the B6.CAST and CAST mice recovered to within a few dB of their baseline levels by 3 min post-exposure. In contrast, the C57 mice recovered somewhat slower and, by 5 min post-exposure, emission levels were still 5 dB or more below their corresponding pre-exposure values. At 3 months of age, the TTS mice along with another group of naive subjects representing the same three mouse strains were exposed to the PTS paradigm. By 4 days post-exposure, for B6.CAST and CAST mice, DPOAE levels had recovered to their pre-exposure control levels. However, DPOAEs for the C57 mice at most of the measurable frequencies were at least 10-30 dB lower than their counterpart baseline levels. Together these data suggest that the AN allele in the C57 strain contributes to both the early onset AHL exhibited by these mice as well as their susceptibility to both TTS and PTS over-exposures. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Calif Davis, Dept Otolaryngol, Ctr Neurosci, Davis, CA 95616 USA. Barry Univ, Sch Nat & Hlth Sci, Miami Shores, FL 33161 USA. Univ Colorado, Hlth Sci Ctr, Dept Otolaryngol, Denver, CO 80262 USA. Univ Rochester, Dept Biomed Engn, Rochester, NY 14642 USA. Univ Rochester, Dept Neurobiol & Anat, Rochester, NY 14642 USA. RP Vazquez, AE (reprint author), Univ Calif Davis, Dept Otolaryngol, Ctr Neurosci, 1515 Newton Court,Room 213, Davis, CA 95616 USA. EM avazquez@ucdavis.edu CR Davis RR, 2001, HEARING RES, V155, P82, DOI 10.1016/S0378-5955(01)00250-7 Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X HENRY KR, 1980, AUDIOLOGY, V19, P369 Hequembourg S, 2001, JARO, V2, P118 Holme RH, 2004, JARO-J ASSOC RES OTO, V5, P66, DOI 10.1007/s10162-003-4021-2 Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1 Jimenez AM, 2001, JARO, V2, P233 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X MARTIN GK, 2001, COMPARISON DISTORTIO Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X Ou HC, 2000, HEARING RES, V145, P111, DOI 10.1016/S0378-5955(00)00081-2 Shnerson A, 1981, Brain Res, V254, P77 Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 SUTTON LA, 1994, HEARING RES, V75, P161, DOI 10.1016/0378-5955(94)90067-1 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 White JA, 2000, HEARING RES, V141, P12, DOI 10.1016/S0378-5955(99)00204-X WHITEHEAD ML, 1995, J ACOUST SOC AM, V97, P2346, DOI 10.1121/1.411959 Yoshida N, 2000, HEARING RES, V141, P97, DOI 10.1016/S0378-5955(99)00210-5 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 20 TC 16 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2004 VL 194 IS 1-2 BP 87 EP 96 DI 10.1016/j.heares.2004.03.017 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 846HL UT WOS:000223306400010 PM 15276680 ER PT J AU Khanna, SM AF Khanna, SM TI The response of the apical turn of cochlea modeled with a tuned amplifier with negative feedback SO HEARING RESEARCH LA English DT Article ID GUINEA-PIG COCHLEA; OUTER HAIR-CELLS; BASILAR-MEMBRANE; MECHANICAL RESPONSES; MOSSBAUER TECHNIQUE; ORGAN; CORTI; VIBRATIONS; MOTION AB In an earlier study [Hear. Res. 149 (2000) 55] velocity amplitudes of the outer Hensen's cell (HC) and basilar membrane (BM) were measured before, and at different times, after, sacrificing the animal. The velocity amplitude changed in a way that was characteristic of a negative feedback amplifier. A simple negative feedback amplifier model was proposed to explain the magnitude of the HC and BM velocity changes at CF. In the experiment tuning changed as well, both at the HC and BM. The model has now been extended to include tuning changes. The model response is compared with the experimental observations. The model is able to account quantitatively for the following experimental observations: (i) At the HC the tuning broadens and velocity decreases slowly after sacrifice. (ii) At the BM tuning sharpens and velocity increases at a faster rate. (iii) The velocity increase at BM is much larger than the decrease at HC. (C) 2004 Elsevier B.V. All rights reserved. C1 Columbia Univ, Coll Phys & Surg, Dept Otolaryngol, New York, NY 10032 USA. Columbia Univ, Coll Phys & Surg, Dept Head & Neck Surg, New York, NY 10032 USA. RP Khanna, SM (reprint author), Columbia Univ, Coll Phys & Surg, Dept Otolaryngol, New York, NY 10032 USA. EM smk3@columbia.edu CR Bendat J. S., 1993, ENG APPL CORRELATION Bode H. W., 1945, NETWORK ANAL FEEDBAC BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 BRUNDIN L, 1989, NATURE, V342, P814, DOI 10.1038/342814a0 Cooper NP, 1998, J PHYSIOL-LONDON, V509, P277, DOI 10.1111/j.1469-7793.1998.277bo.x DALLOS P, 1986, HEARING RES, V22, P185, DOI 10.1016/0378-5955(86)90095-X Flock A, 1989, Acta Otolaryngol Suppl, V467, P209 Hao LF, 2000, HEARING RES, V148, P31, DOI 10.1016/S0378-5955(00)00112-X Hemmert W, 2000, BIOPHYS J, V78, P2285 Jung HW, 2000, PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON RECENT DEVELOPMENTS IN AUDITORY MECHANICS, P476 KHANNA SM, 1988, COCHLEAR MECH STRUCT, P387 Khanna SM, 1999, HEARING RES, V132, P15, DOI 10.1016/S0378-5955(99)00027-1 Khanna SM, 2000, PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON RECENT DEVELOPMENTS IN AUDITORY MECHANICS, P130 Khanna SM, 1998, ACUSTICA, V84, P1175 Khanna SM, 2000, HEARING RES, V149, P55, DOI 10.1016/S0378-5955(00)00162-3 Khanna S M, 1989, Acta Otolaryngol Suppl, V467, P151 Khanna SM, 2001, INT J SOLIDS STRUCT, V38, P1919, DOI 10.1016/S0020-7683(00)00143-8 LAURELL G, 1991, ACTA OTO-LARYNGOL, V111, P891, DOI 10.3109/00016489109138427 MITTLEMAN J, 1964, CIRCUIT THEORY ANAL RHODE WS, 1980, J ACOUST SOC AM, V67, P1696, DOI 10.1121/1.384296 RHODE WS, 1978, J ACOUST SOC AM, V64, P158, DOI 10.1121/1.381981 RHODE WS, 1971, J ACOUST SOC AM, V49, P1218, DOI 10.1121/1.1912485 RHODE WS, 1984, ANNU REV PHYSIOL, V46, P2231 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 SCANLON MW, 1999, ARO MIDW M SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 ULFENDAHL M, 1989, ACTA OTOLARYNGOL S S, V407, P145 Ulfendahl M, 1997, PROG NEUROBIOL, V53, P331, DOI 10.1016/S0301-0082(97)00040-3 VOLDRICH L, 1987, ACTA OTO-LARYNGOL, V103, P661 ZWICKER E, 1986, J ACOUST SOC AM, V80, P146, DOI 10.1121/1.394175 NR 30 TC 4 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2004 VL 194 IS 1-2 BP 97 EP 108 DI 10.1016/j.heares.2004.04.003 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 846HL UT WOS:000223306400011 PM 15276681 ER PT J AU Candreia, C Martin, GK Stagner, BB Lonsbury-Martin, BL AF Candreia, C Martin, GK Stagner, BB Lonsbury-Martin, BL TI Distortion product otoacoustic emissions show exceptional resistance to noise exposure in MOLF/Ei mice SO HEARING RESEARCH LA English DT Article DE MOLF/Ei; CBA/CaJ; resistance; noise exposure; distortion-product otoacoustic emissions; inbred mouse strains ID INDUCED HEARING-LOSS; AGE-RELATED LOSS; ACOUSTIC TRAUMA; INBRED STRAINS; C57BL/6J MICE; MOUSE COCHLEA; SUSCEPTIBILITY; SENSITIVITY; CADHERIN-23; GENOTYPES AB Baseline distortion-product otoacoustic emissions (DPOAEs) at several primary-tone levels were compared between naive 2- to 3-month old inbred CBA/CaJ (CBA) and wild-derived MOLF/Ei (MOLF) mice. Only minor DPOAE differences were noted between the two strains and these differences were not systematic across frequency or test levels. These emission findings were consistent with earlier results on auditory brainstem response thresholds reported by others [Zheng et al., Hear. Res. 130 (1999) 94-107] thus suggesting that both CBA and MOLF strains have normal hearing. Subsequent episodes of over-exposure to a 105-dB SPL, octave-band noise centered at 10 kHz for 8 It revealed that MOLF DPOAEs were exceptionally resistant to the adverse aftereffects of excessive noise exposure as compared to CBA mice. Unlike the noise-exposure resistant inbred 129/SvEvTac strain, which has reduced baseline DPOAE levels especially at high frequencies, MOLF mice have normal DPOAEs making the interpretation of noise-exposure effects more straightforward. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Basel, HNO Klin, Basel, Switzerland. Univ Colorado, Hlth Sci Ctr, Dept Otolaryngol, Denver, CO 80262 USA. RP Candreia, C (reprint author), Univ Basel, HNO Klin, Basel, Switzerland. EM glen.martin@uchsc.edu CR Beck JA, 2000, NAT GENET, V24, P23, DOI 10.1038/71641 Boeda B, 2002, EMBO J, V21, P6689, DOI 10.1093/emboj/cdf689 Bryda EC, 2001, GENOMICS, V73, P338, DOI 10.1006/geno.2001.6538 CANDREIA CM, 2002, ASS RES OTOLARYNGOL, V25, P169 CANDREIA CM, 2001, ABSTR C BIOL NOIS IN, P6 CANDREIA CM, 2001, ASS RES OTOLARYNGOL, V24, P11 CODY AR, 1983, HEARING RES, V9, P55, DOI 10.1016/0378-5955(83)90134-X Davis RR, 1999, HEARING RES, V134, P9, DOI 10.1016/S0378-5955(99)00060-X Di Palma F, 2001, NAT GENET, V27, P103 HENRY KR, 1982, HEARING RES, V8, P285, DOI 10.1016/0378-5955(82)90020-X Holme RH, 2004, JARO-J ASSOC RES OTO, V5, P66, DOI 10.1007/s10162-003-4021-2 Jimenez AM, 2001, JARO, V2, P233 Jimenez AM, 1999, HEARING RES, V138, P91, DOI 10.1016/S0378-5955(99)00154-9 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 Li H S, 1992, Scand Audiol Suppl, V36, P1 LI HS, 1993, AUDIOLOGY, V32, P195 LI HS, 1993, HEARING RES, V68, P19, DOI 10.1016/0378-5955(93)90060-E LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418 LI HS, 1992, ACTA OTO-LARYNGOL, V112, P956, DOI 10.3109/00016489209137496 LONSBURYMARTIN BL, 1990, ANN OTO RHINOL LARYN, V99, P15 MARTIN GK, 2001, ASS RES OTOLARYNGOL, V24, P16 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 Ou HC, 2000, HEARING RES, V145, P111, DOI 10.1016/S0378-5955(00)00081-2 SHONE G, 1991, HEARING RES, V56, P173, DOI 10.1016/0378-5955(91)90167-8 TAYLOR W, 1965, J ACOUST SOC AM, V38, P113, DOI 10.1121/1.1909580 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 WHITEHEAD ML, 1996, SPRINGER SERIES AUDI, V6, P199 Yoshida N, 2000, HEARING RES, V141, P97, DOI 10.1016/S0378-5955(99)00210-5 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 30 TC 13 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2004 VL 194 IS 1-2 BP 109 EP 117 DI 10.1016/j.heares.2004.04.007 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 846HL UT WOS:000223306400012 PM 15276682 ER PT J AU Kluk, K Moore, BCJ AF Kluk, K Moore, BCJ TI Factors affecting psychophysical tuning curves for normally hearing subjects SO HEARING RESEARCH LA English DT Article DE psychophysical tuning curves; frequency selectivity; beats; combination tones ID NARROW-BAND NOISE; COMBINATION TONES; MASKING PATTERNS; DEAD REGIONS; FREQUENCY-SELECTIVITY; AMPLITUDE-MODULATION; AUDITORY MASKING; PURE-TONE; ENVELOPE FLUCTUATIONS; SINUSOIDAL CARRIERS AB These experiments were conducted to clarify the influence of beats and combination products on psychophysical tuning curves (PTCs) for normally hearing subjects. PTCs for 1- and 4-kHz sinusoidal signals were determined using as maskers a sinusoidal tone and 80-, 160-, and 320-Hz wide bands of noise. PTCs obtained using the sinusoidal masker showed distinct irregularities, particularly for masker frequencies close to the signal frequency. The PTCs determined for the noise maskers were more regular. The broader the masker, the more regular were the shapes of the PTCs. To reduce the detectability of beats produced by the interaction of the signal and masker, a pair of low-frequency tones, called "Modulation detection interference (MDI) tones", was used to introduce beats at the same rate. The MDI tones reduced the threshold level of the sinusoidal masker by up to 20 dB for frequencies within 300 Hz of the signal frequency; a similar but smaller effect was found when an 80-Hz wide masker was used. Adding a lowpass filtered (LF) noise to the sinusoidal or narrowband noise masker did not affect the low-frequency sides of the PTCs, suggesting no influence of combination products. The LF noise did affect the high-frequency sides of the PTCs, but this can be attributed to it reducing off-frequency listening. To achieve a PTC whose shape around the tip is minimally affected by beats, we propose using a noise masker with a bandwidth approximately equal to the bandwidth of the auditory filter for which the PTC is measured. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England. RP Kluk, K (reprint author), Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England. EM kk278@cam.ac.uk RI Moore, Brian/I-5541-2012 CR Alcantara JI, 2002, HEARING RES, V165, P103, DOI 10.1016/S0378-5955(02)00291-5 Alcantara JI, 2000, HEARING RES, V148, P63, DOI 10.1016/S0378-5955(00)00114-3 BACON SP, 1989, J ACOUST SOC AM, V85, P2575, DOI 10.1121/1.397751 BOS CE, 1966, J ACOUST SOC AM, V39, P708, DOI 10.1121/1.1909945 BUUS S, 1985, J ACOUST SOC AM, V78, P1958, DOI 10.1121/1.392652 Chistovich L.A., 1957, BIOPHYSICS-USSR, V2, P743 Dau T, 1997, J ACOUST SOC AM, V102, P2892, DOI 10.1121/1.420344 EGAN JP, 1950, J ACOUST SOC AM, V22, P622, DOI 10.1121/1.1906661 EHMER RH, 1959, J ACOUST SOC AM, V31, P1253, DOI 10.1121/1.1907853 EHMER RH, 1959, J ACOUST SOC AM, V31, P1115, DOI 10.1121/1.1907836 Ewert SD, 2000, J ACOUST SOC AM, V108, P1181, DOI 10.1121/1.1288665 FASTL H, 1975, ACUSTICA, V33, P266 FLORENTINE M, 1983, J ACOUST SOC AM, V73, P961, DOI 10.1121/1.389021 FLORENTINE M, 1980, J SPEECH HEAR RES, V23, P643 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T GOLDSTEI.JL, 1967, J ACOUST SOC AM, V41, P676, DOI 10.1121/1.1910396 GREENWOOD D, 1961, J ACOUST SOC AM, V33, P484, DOI 10.1121/1.1908699 GREENWOO.DD, 1972, J ACOUST SOC AM, V52, P1144, DOI 10.1121/1.1913227 GREENWOO.DD, 1971, J ACOUST SOC AM, V50, P502, DOI 10.1121/1.1912668 HARTMANN WM, 1987, AUDITORY PROCESSING, P126 HOUTGAST T, 1989, J ACOUST SOC AM, V85, P1676, DOI 10.1121/1.397956 Huss M, 2003, J ACOUST SOC AM, V114, P3283, DOI 10.1121/1.162400 JOHNSONDAVIES D, 1979, J ACOUST SOC AM, V65, P765, DOI 10.1121/1.382490 Kiang NY-s, 1965, DISCHARGE PATTERNS S KLUK K, 2004, UNPUB HEAR RES Kohlrausch A, 2000, J ACOUST SOC AM, V108, P723, DOI 10.1121/1.429605 LAWSON JL, 1950, RAD LAB SERIES THRES, V24 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Moore B., 1998, COCHLEAR HEARING LOS Moore B C, 2001, Trends Amplif, V5, P1, DOI 10.1177/108471380100500102 Moore BCJ, 1998, J ACOUST SOC AM, V104, P1023, DOI 10.1121/1.423321 MOORE BCJ, 1978, J ACOUST SOC AM, V63, P524, DOI 10.1121/1.381752 MOORE BCJ, 1987, J ACOUST SOC AM, V82, P69, DOI 10.1121/1.395439 MOORE BCJ, 1987, HEARING RES, V28, P209, DOI 10.1016/0378-5955(87)90050-5 Moore BCJ, 2001, J ACOUST SOC AM, V110, P1067, DOI 10.1121/1.1385177 Moore BCJ, 2000, BRIT J AUDIOL, V34, P205 Moore BCJ, 2001, EAR HEARING, V22, P268, DOI 10.1097/00003446-200108000-00002 Mott J. B., 1986, AUDITORY FREQUENCY S, P381 NELSON DA, 1991, J SPEECH HEAR RES, V34, P360 OLOUGHLIN BJ, 1981, J ACOUST SOC AM, V69, P1119, DOI 10.1121/1.385691 Oxenham AJ, 2003, JARO-J ASSOC RES OTO, V4, P541, DOI 10.1007/s10162-002-3058-y Patterson RD, 1986, FREQUENCY SELECTIVIT, P123 PLOMP R, 1965, J ACOUST SOC AM, V37, P1110, DOI 10.1121/1.1909532 Riesz RR, 1928, PHYS REV, V31, P0867, DOI 10.1103/PhysRev.31.867 SCHOONEVELDT GP, 1989, J ACOUST SOC AM, V85, P273, DOI 10.1121/1.397734 Shera CA, 2002, P NATL ACAD SCI USA, V99, P3318, DOI 10.1073/pnas.032675099 SMALL AM, 1959, J ACOUST SOC AM, V31, P1619, DOI 10.1121/1.1907670 SMOORENB.GF, 1972, J ACOUST SOC AM, V52, P615, DOI 10.1121/1.1913152 SMOORENB.GF, 1972, J ACOUST SOC AM, V52, P603, DOI 10.1121/1.1913151 Summers V, 2003, EAR HEARING, V24, P133, DOI 10.1097/01.AUD.0000058148.27540.D9 THORNTON AR, 1980, J ACOUST SOC AM, V67, P638, DOI 10.1121/1.383888 TURNER C, 1983, J ACOUST SOC AM, V73, P966, DOI 10.1121/1.389022 VERSCHUURE J, 1981, ACUSTICA, V49, P288 VERSCHUURE J, 1981, ACUSTICA, V49, P296 Vogten LL, 1974, FACTS MODELS HEARING, P142 Wegel RL, 1924, PHYS REV, V23, P266, DOI 10.1103/PhysRev.23.266 YOST WA, 1989, J ACOUST SOC AM, V86, P2138, DOI 10.1121/1.398474 YOST WA, 1988, J ACOUST SOC AM, V83, pS35, DOI 10.1121/1.2025320 YOST WA, 1989, J ACOUST SOC AM, V85, P848, DOI 10.1121/1.397556 ZWICKER E, 1973, ACUSTICA, V29, P336 Zwicker E, 1999, PSYCHOACOUSTICS FACT ZWICKER E, 1981, J ACOUST SOC AM, V70, P1277, DOI 10.1121/1.387141 ZWICKER E, 1973, ACUSTICA, V29, P343 ZWICKER E, 1978, AUDIOLOGY, V17, P120 ZWICKER E, 1980, AUDIOLOGY, V19, P330 NR 65 TC 31 Z9 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2004 VL 194 IS 1-2 BP 118 EP 134 DI 10.1016/j.heares.2004.04.012 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 846HL UT WOS:000223306400013 PM 15276683 ER PT J AU Drexl, M Henke, J Kossl, M AF Drexl, M Henke, J Kossl, M TI Isoflurane increases amplitude and incidence of evoked and spontaneous otoacoustic emissions SO HEARING RESEARCH LA English DT Article DE isoflurane; otoacoustic emissions; mustached bat; olivocochlear bundle; cochlea ID ACETYLCHOLINE-RECEPTOR CHANNELS; OUTER HAIR-CELLS; COCHLEAR MECHANICS; MOUSTACHED BAT; SMOOTH-MUSCLE; ACOUSTIC EMISSIONS; TYMPANIC MEMBRANE; ANNULUS FIBROSUS; INNER-EAR; DISTORTION AB The volatile anesthetic isoffurane was tested for its effect on cochlear function by means of measuring distortion product otoacoustic emissions (DPOAE) and spontaneous otoacoustic emissions (SOAE) in the mustached bat (Pteronotus parnellii parnellii). Averaged growth functions of DPOAE and spontaneous otoacoustic emissions were assessed and compared between the control group (no isoflurane application) and the isoffurane group (application of isoflurane at vaporizer settings sof about 1.5-2%). Isoflurane significantly increases the DPOAE amplitude, e.g. at a primary tone level 12 of 40 dB SPL by 10.7 dB. Additionally, the incidence of SOAEs was highly increased during application of isoflurane. The sound-evoked efferent effect on the generation of otoacoustic emissions was significantly reduced in the isoffurane group. We suggest that isoffurane might affect the postsynaptic action of acetylcholine (ACh) released by the efferent terminals of outer hair cells (OHCs). This could lead to the observed decrease of efferent suppression and to a disinhibition of cochlear amplification. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Munich, Dept Biol 2, D-80333 Munich, Germany. Tech Univ Munich, Lehrstuhl Expt Onkol & Therapieforsch, D-81675 Munich, Germany. Univ Frankfurt, Inst Zool, D-60323 Frankfurt, Germany. RP Drexl, M (reprint author), Univ Munich, Dept Biol 2, Luisenstr 14, D-80333 Munich, Germany. EM markus.drexl@stud.uni-muenchen.de CR Albera R, 2003, ACTA OTO-LARYNGOL, V123, P812, DOI 10.1080/00016480310002230 Albera R, 1995, Acta Otorhinolaryngol Ital, V15, P289 Bissinger U, 2000, EUR ARCH OTO-RHINO-L, V257, P349, DOI 10.1007/s004050000234 Boege P, 2002, J ACOUST SOC AM, V111, P1810, DOI 10.1121/1.1460923 Boyev KP, 2002, JARO, V3, P362, DOI 10.1007/s101620020044 BROWN AM, 1987, HEARING RES, V31, P25, DOI 10.1016/0378-5955(87)90211-5 BROWN JN, 1994, AM J PHYSIOL, V266, P458 BUFLER J, 1994, NEUROSCI LETT, V168, P135, DOI 10.1016/0304-3940(94)90434-0 Camalet S, 2000, P NATL ACAD SCI USA, V97, P3183, DOI 10.1073/pnas.97.7.3183 Cazals Y, 2000, PROG NEUROBIOL, V62, P583, DOI 10.1016/S0301-0082(00)00027-7 Clarke M, 1984, Health Trends, V16, P3 Coro F, 1998, J COMP PHYSIOL A, V183, P525, DOI 10.1007/s003590050278 DAVIDSON RS, 1983, ADV PHYSICAL ORGANIC, V9, P1 DILGER JP, 1992, MOL PHARMACOL, V41, P127 DILGER JP, 1993, MOL PHARMACOL, V44, P1056 Drexl M, 2003, HEARING RES, V184, P61, DOI 10.1016/S0378-5955(03)00235-1 Elgoyhen AB, 2001, P NATL ACAD SCI USA, V98, P3501, DOI 10.1073/pnas.051622798 Faulstich M., 2000, Hearing Research, V140, P99, DOI 10.1016/S0378-5955(99)00189-6 Faulstich M, 1996, HEARING RES, V94, P47, DOI 10.1016/0378-5955(95)00232-4 Foeller E, 2000, J COMP PHYSIOL A, V186, P859, DOI 10.1007/s003590000139 Fukazawa T, 1996, HEARING RES, V95, P135, DOI 10.1016/0378-5955(96)00039-1 GEISLER CD, 1993, HEARING RES, V68, P253, DOI 10.1016/0378-5955(93)90129-O GEISLER CD, 1991, HEARING RES, V54, P105, DOI 10.1016/0378-5955(91)90140-5 Goldberg RL, 1998, HEARING RES, V122, P71, DOI 10.1016/S0378-5955(98)00078-1 Hatzopoulos S, 2002, HEARING RES, V170, P12, DOI 10.1016/S0378-5955(02)00448-3 HENKE J, 2004, ANASTHESIS ANALGESIE Henson OW, 2000, JARO, V1, P25, DOI 10.1007/s101620010003 HENSON OW, 1995, HEARING RES, V86, P111, DOI 10.1016/0378-5955(95)00061-8 JENSEN NF, 1992, ANESTHESIOLOGY, V76, P624, DOI 10.1097/00000542-199204000-00021 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KETTEMBEIL S, 1995, HEARING RES, V86, P47, DOI 10.1016/0378-5955(95)00053-7 Koppl C, 1995, ADV HEARING RES, P207 KOSSL M, 1992, HEARING RES, V60, P156, DOI 10.1016/0378-5955(92)90018-I KOSSL M, 1994, HEARING RES, V72, P59, DOI 10.1016/0378-5955(94)90206-2 Kossl M, 1999, J COMP PHYSIOL A, V185, P217, DOI 10.1007/s003590050381 Kossl M, 2000, JARO, V1, P300, DOI 10.1007/s101620010046 LIBERMAN MC, 1989, HEARING RES, V38, P47, DOI 10.1016/0378-5955(89)90127-5 Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 Lukashkin AN, 2002, J ACOUST SOC AM, V111, P2740, DOI 10.1121/1.1479151 MARTIN GK, 1988, HEARING RES, V33, P49, DOI 10.1016/0378-5955(88)90020-2 Martin P, 2001, P NATL ACAD SCI USA, V98, P14386, DOI 10.1073/pnas.251530498 McFadden D, 1999, J ACOUST SOC AM, V105, P2403, DOI 10.1121/1.426845 Morand N, 1998, HEARING RES, V121, P71, DOI 10.1016/S0378-5955(98)00068-9 OHYAMA K, 1991, HEARING RES, V56, P111, DOI 10.1016/0378-5955(91)90160-B Ren TY, 1995, HEARING RES, V92, P30, DOI 10.1016/0378-5955(95)00192-1 Russell IJ, 1999, J NEUROPHYSIOL, V82, P676 SCHLOTH E, 1983, HEARING RES, V11, P285, DOI 10.1016/0378-5955(83)90063-1 Shera CA, 2003, J ACOUST SOC AM, V114, P244, DOI 10.1121/1.1575750 SIEGEL JH, 1982, HEARING RES, V6, P171, DOI 10.1016/0378-5955(82)90052-1 SILL JC, 1993, J PHARMACOL EXP THER, V265, P74 TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V Taschenberger G, 1995, HEARING RES, V91, P87, DOI 10.1016/0378-5955(95)00174-3 van Dijk P, 2002, HEARING RES, V173, P100, DOI 10.1016/S0378-5955(02)00605-6 vanDijk P, 1996, HEARING RES, V101, P102 WITTEKINDT A, 2003, P 29 GOTT NEUR C, P427 Yang XM, 2002, HEARING RES, V164, P105, DOI 10.1016/S0378-5955(01)00416-6 Zheng YL, 1997, HEARING RES, V112, P167, DOI 10.1016/S0378-5955(97)00118-4 ZWICKER E, 1986, J ACOUST SOC AM, V80, P154, DOI 10.1121/1.394176 NR 58 TC 10 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2004 VL 194 IS 1-2 BP 135 EP 142 DI 10.1016/j.heares.2004.04.006 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 846HL UT WOS:000223306400014 PM 15276684 ER PT J AU Zhong, SX Liu, ZH AF Zhong, SX Liu, ZH TI Immunohistochemical localization of the epithelial sodium channel in the rat inner ear SO HEARING RESEARCH LA English DT Article DE endolymph; cochlea; vestibule; immunohistochemistry; epithelial sodium channel ID BETA-SUBUNIT; ALPHA-SUBUNITS; GAMMA-SUBUNITS; ION CHANNELS; EXPRESSION; NA,K-ATPASE; MECHANISMS; MUTATIONS; COCHLEAR; CLONING AB Endolymph in membranous labyrinth is a K+-rich and Na+-poor fluid, and perilymph is conversely Na+-rich and K+-poor. Electrolyte transport between endolymph and perilymph is important for regulation of volume and osmotic pressure of the labyrinth. The epithelial sodium channel (ENaC) is a good candidate protein for Na+ transport in the tight epithelia, which has been well demonstrated in other tissues such as kidney, colon and lung. The purpose of the present study was to investigate the cellular localization of ENaC subunits in the rat inner ear immunohistochemically with the specific polyclonal rabbit antibodies against the rat alpha- beta- and gamma-ENaC. All three subunits of ENaC were extensively labeled in the cochlea including the stria vascularis, spiral ligament, organ of Corti, spiral limbus, Reissner's membrane and spiral ganglion, and in the vestibule including the sensory epithelia and stroma cells of the macula utriculi, macula sacculi and ampullary crest. In conclusion, our results suggest that functional ENaC in the labyrinth may work in concert with other Na+ and K+ transport molecules to regulate endolymph and to maintain homeostasis in the inner ear. (C) 2004 Elsevier B.V. All rights reserved. C1 Third Mil Med Univ, Daping Hosp, Dept Otolaryngol & Head Neck Surg, Chongqing 400042, Peoples R China. RP Zhong, SX (reprint author), Third Mil Med Univ, Daping Hosp, Dept Otolaryngol & Head Neck Surg, 10 Daping Branch Rd, Chongqing 400042, Peoples R China. EM zhongsx@online.cq.cn CR de la Rosa DA, 2000, ANNU REV PHYSIOL, V62, P573, DOI 10.1146/annurev.physiol.62.1.573 Barbry P, 1997, AM J PHYSIOL-GASTR L, V273, pG571 BOSHER SK, 1971, J PHYSIOL-LONDON, V212, P739 CANESSA CM, 1994, NATURE, V266, pL728 Chang SS, 1996, NAT GENET, V12, P248, DOI 10.1038/ng0396-248 Couloigner V, 2001, AM J PHYSIOL-RENAL, V280, pF214 Crouch JJ, 1997, J HISTOCHEM CYTOCHEM, V45, P773 DUC C, 1994, J CELL BIOL, V127, P1907, DOI 10.1083/jcb.127.6.1907 Epple HJ, 2000, AM J PHYSIOL-GASTR L, V278, pG718 FINA M, 1994, MOL CELL NEUROSCI, V5, P604, DOI 10.1006/mcne.1994.1074 Fricke B, 2000, CELL TISSUE RES, V299, P327 Fyfe GK, 1998, SEMIN NEPHROL, V18, P138 Garty H, 1997, PHYSIOL REV, V77, P359 Grunder S, 2001, EUR J NEUROSCI, V13, P641, DOI 10.1046/j.1460-9568.2001.01426.x HANSSON JH, 1995, NAT GENET, V11, P76, DOI 10.1038/ng0995-76 HGER H, 2001, AM J PHYSIOL-RENAL, V280, pF1093 Hummler E, 1999, AM J PHYSIOL-GASTR L, V276, pG567 Kellenberger S, 2002, PHYSIOL REV, V82, P735, DOI 10.1152/physrev.00007.2002 Mauro T, 2002, J INVEST DERMATOL, V118, P589, DOI 10.1046/j.1523-1747.2002.01721.x MCDONALD FJ, 1995, AM J PHYSIOL-CELL PH, V268, pC1157 Ottaviani E, 2002, DEV COMP IMMUNOL, V26, P395, DOI 10.1016/S0145-305X(01)00097-0 Palmer LG, 1997, J GEN PHYSIOL, V109, P675, DOI 10.1085/jgp.109.6.675 Pitovski DZ, 2002, HEARING RES, V171, P51, DOI 10.1016/S0378-5955(02)00352-0 RUSH A, 1999, HEARING RES, V131, P170 SALT AN, 1987, LARYNGOSCOPE, V97, P984 SHIMKETS RA, 1994, CELL, V79, P407, DOI 10.1016/0092-8674(94)90250-X Talbot CL, 1999, AM J RESP CELL MOL, V20, P398 TENCATE WJF, 1994, HEARING RES, V75, P151 WALDMANN R, 1995, J BIOL CHEM, V270, P27411 Wangemann P., 1996, SPRINGER HDB AUDITOR, P130 WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 NR 31 TC 15 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2004 VL 193 IS 1-2 BP 1 EP 8 DI 10.1016/j.heares.2004.03.001 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 837UI UT WOS:000222666000001 PM 15219314 ER PT J AU Gehr, DD Janssen, T Michaelis, CE Deingruber, K Lamm, K AF Gehr, DD Janssen, T Michaelis, CE Deingruber, K Lamm, K TI Middle ear and cochlear disorders result in different DPOAE growth behaviour: implications for the differentiation of sound conductive and cochlear hearing loss SO HEARING RESEARCH LA English DT Article DE DPOAE input/output-function; guinea pig; cochlear dysfunction; transitory middle ear dysfunction; noise induced hearing loss; tinnitus model ID PRODUCT OTOACOUSTIC EMISSIONS; INPUT/OUTPUT FUNCTIONS; THRESHOLD ESTIMATION; OTITIS-MEDIA; GUINEA-PIGS; EFFUSION; LEVEL; NOISE; TRANSMISSION; FREQUENCY AB Input/output functions of distortion product otoacoustic emissions (DPOAE I/O-functions) give an insight into the compressive, non-linear sound processing of the cochlea. With an inner ear dysfunction a steeper I/O-function is observed. Due to the linear sound processing of the middle car, one can assume that the DPOAE growth behaviour remains unaltered with a sound conduction dysfunction. If that is true, a differentiation between middle and inner ear dysfunction will be possible by using the slope of DPOAE I/O-functions as a means for assessing cochlear compression. In order to test that hypothesis, DPOAE I/O-functions were recorded in a wide primary tone level range at up to 8 f(2) frequencies between 2.0 and 8.0 kHz (15 dB SPL < L-2 < 60 dB SPL; L-1 = 0.46 L-2 + 41 dB SPL; f(2)/f(1) = 1.2) in guinea pigs in which middle (saline solution in the bulla) and inner ear (exposure to loud broadband noise) disorders were induced. Middle ear dysfunction resulted in a reduction of the DPOAE amplitude independent of the primary tone level. Consequently, DPOAE growth behaviour was not affected. In contrast to that, during cochlear impairment, steepened DPOAE I/O-functions were observed reflecting loss of compression of the cochlear amplifier. Accordingly, DPOAE I/O-functions allow a differentiation between middle and inner ear dysfunction. Further studies will have to show the usability of this method for clinical diagnostics, e.g. for detecting sound conduction disturbances in newborn hearing screening due to amniotic fluid or Eustachian tube dysfunctions during the early postnatal period. (C) 2004 Elsevier B.V. All rights reserved. C1 Tech Univ Munich, Clin Rechts Isar, ENT Dept, D-81675 Munich, Germany. Tech Univ Munich, Clin Rechts Isar, Inst Expt Oncol & Therapy Res, D-81675 Munich, Germany. RP Janssen, T (reprint author), Tech Univ Munich, Clin Rechts Isar, ENT Dept, Ismaninger Str 22, D-81675 Munich, Germany. EM t.janssen@lrz.tum.de CR Avan P, 2000, HEARING RES, V140, P189, DOI 10.1016/S0378-5955(99)00201-4 Boege P, 2002, J ACOUST SOC AM, V111, P1810, DOI 10.1121/1.1460923 CHANG KW, 1993, ARCH OTOLARYNGOL, V119, P276 DALLOS P, 1992, J NEUROSCI, V12, P4575 DALLOS P, 1973, ADITORY PERIPHERY BI Dorn PA, 2001, J ACOUST SOC AM, V110, P3119, DOI 10.1121/1.1417524 Gorga MP, 2003, J ACOUST SOC AM, V113, P3275, DOI 10.1121/1.1570433 Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6 HAUSER R, 1993, HEARING RES, V69, P133, DOI 10.1016/0378-5955(93)90101-6 HENKE J, 2002, NARKOSE NOTFALLE, P196 JANSSEN T, UNPUB HEARING THRESH Janssen T, 1998, J ACOUST SOC AM, V103, P3418, DOI 10.1121/1.423053 Janssen T, 2003, HNO, V51, P971, DOI 10.1007/s00106-003-0856-4 Janssen T, 2000, J ACOUST SOC AM, V107, P1790, DOI 10.1121/1.428578 JANSSEN T, 1995, OTO RHINO LARYN NOVA, V5, P34 Job A, 2002, HEARING RES, V167, P28, DOI 10.1016/S0378-5955(02)00330-1 Keefe DH, 2002, J ACOUST SOC AM, V111, P249, DOI 10.1121/1.1423931 Kummer P, 1998, J ACOUST SOC AM, V103, P3431, DOI 10.1121/1.423054 Kummer P, 2000, HEARING RES, V146, P47, DOI 10.1016/S0378-5955(00)00097-6 MICHAELIS CE, 2003, HEARING RES, V189, P58 Mills DM, 1996, J ACOUST SOC AM, V100, P428, DOI 10.1121/1.415857 Neely ST, 2003, J ACOUST SOC AM, V114, P1499, DOI 10.1121/1.1604122 OSTERHAMMEL PA, 1993, SCAND AUDIOL, V22, P111, DOI 10.3109/01050399309046026 Oswald Johann A, 2003, Z Med Phys, V13, P93 Pourbakht A, 2003, HEARING RES, V178, P70, DOI 10.1016/S0378-5955(03)00039-X Priner R, 2003, AUDIOL NEURO-OTOL, V8, P100, DOI 10.1159/000068997 Robles L, 2001, PHYSIOL REV, V81, P1305 SIEGEL JH, 1994, J ACOUST SOC AM, V95, P2589, DOI 10.1121/1.409829 SYKA J, 1980, HEARING RES, V3, P205, DOI 10.1016/0378-5955(80)90047-7 Topolska MM, 2000, CLIN OTOLARYNGOL, V25, P315, DOI 10.1046/j.1365-2273.2000.00377.x Ueda H, 1998, HEARING RES, V122, P41, DOI 10.1016/S0378-5955(98)00084-7 Yeo SW, 2003, OTOLARYNG HEAD NECK, V129, P136, DOI 10.1016/S0194-5998(03)00474-1 Zheng YL, 1997, HEARING RES, V112, P167, DOI 10.1016/S0378-5955(97)00118-4 NR 33 TC 24 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2004 VL 193 IS 1-2 BP 9 EP 19 DI 10.1016/j.heares.2004.03.018 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 837UI UT WOS:000222666000002 PM 15219315 ER PT J AU Kumagami, H Tanaka, F Dotsu, M Yoshida, H Ohsato, Y Katsura, M Oku, R Shigeno, K Takahashi, H AF Kumagami, H Tanaka, F Dotsu, M Yoshida, H Ohsato, Y Katsura, M Oku, R Shigeno, K Takahashi, H TI Measurement of the endolymphatic sac potential in human SO HEARING RESEARCH LA English DT Article DE endolymphatic sac potential; human; Meniere's disease; endolymphatic sac; vestibular schwannoma ID MENIERES-DISEASE; ENDOCOCHLEAR AB In this study, we measured human endolymphatic sac potential (ESP) in 8 patients with vestibular schwannoma and in five patients with Meniere's disease during surgery. ESP was measured with a glass electrode filled with 154 mM NaCl and with an outside tip diameter ranging from 2 to 3 mum. The mean value of human ESP in patients with vestibular schwannoma was +13.3 +/- 1.9 mV. Since electron microscopy showed that the endolymphatic sacs of the eight patients with vestibular schwannoma were normal in the ultrastructures the value can be close to normal human ESP. While in Meniere's disease, three cases showed low potentials and two cases showed almost the same values observed as in the eight patients with vestibular schwannoma. In the two cases with Meniere's disease, the epithelial cells of the endolymphatic sac were preserved. Our study can be considered as the first successful measurement of human ESP and revealed the existence of Meniere's disease having normal endolymphatic sac in function as well as morphology. (C) 2004 Elsevier B.V. All rights reserved. C1 Nagasaki Univ, Grad Sch Biomed Sci, Dept Translat Med Sci, Div Otorhinolaryngol, Nagasaki 8528501, Japan. RP Kumagami, H (reprint author), Nagasaki Univ, Grad Sch Biomed Sci, Dept Translat Med Sci, Div Otorhinolaryngol, 1-7-1 Sakamoto, Nagasaki 8528501, Japan. EM h-kumagami@bun.bbiq.jp CR AMANO H, 1983, ARCH OTO-RHINO-LARYN, V237, P273, DOI 10.1007/BF00453732 Arenberg I K, 1970, Acta Otolaryngol Suppl, V275, P1 Couloigner V, 1998, LARYNGOSCOPE, V108, P592, DOI 10.1097/00005537-199804000-00024 DanckwardtLilliestrom N, 1997, ANN OTO RHINOL LARYN, V106, P190 Danckwardt-Lillieström N, 2000, Auris Nasus Larynx, V27, P311, DOI 10.1016/S0385-8146(00)00073-0 GULYA AJ, 1982, AM J OTOLARYNG, V3, P319, DOI 10.1016/S0196-0709(82)80003-3 HUY PTB, 1984, ACTA OTO-LARYNGOL, V97, P571, DOI 10.3109/00016488409132935 IKEDA K, 1991, HEARING RES, V54, P118, DOI 10.1016/0378-5955(91)90141-U Kobayashi T, 1996, ACTA OTO-LARYNGOL, V116, P791, DOI 10.3109/00016489609137927 MATSUNAMI H, 1992, ACTA OTOLARYNGOL STO, V112, P479 MORI N, 1990, EUR ARCH OTO-RHINO-L, V247, P371 MORI N, 1991, ACTA OTO-LARYNGOL, V111, P70, DOI 10.3109/00016489109137356 Salt AN, 2000, HEARING RES, V149, P46, DOI 10.1016/S0378-5955(00)00160-X SCHINDLER RA, 1976, LARYNGOSCOPE, V89, P95 SHAMBAUG.GE, 1969, ARCH OTOLARYNGOL, V89, P816 TSUJIKAWA S, 1992, ACTA OTOLARYNGOL STO, V112, P78 NR 16 TC 1 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2004 VL 193 IS 1-2 BP 20 EP 24 DI 10.1016/j.heares.2004.03.003 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 837UI UT WOS:000222666000003 PM 15219316 ER PT J AU Dickey, DT Muldoon, LL Kraemer, DF Neuwelt, EA AF Dickey, DT Muldoon, LL Kraemer, DF Neuwelt, EA TI Protection against cisplatin-induced ototoxicity by N-acetylcysteine in a rat model SO HEARING RESEARCH LA English DT Article DE cisplatin; N-acetylcysteine; ototoxicity; chemoprotection; blood-brain barrier; animal model ID INDUCED HEARING-LOSS; OUTER HAIR-CELLS; SODIUM THIOSULFATE; PLATINUM OTOTOXICITY; D-METHIONINE; GUINEA-PIG; IN-VITRO; TOXICITY; DEATH; DIETHYLDITHIOCARBAMATE AB Cisplatin (CDDP) is a widely used chemotherapeutic agent that is highly ototoxic. Animal studies and clinical trials have shown that thiosulfates can protect against platinum-induced ototoxicity. This study investigated a new model for CDDP ototoxicity in the rat, and tested the potential chemoprotective effect of administering N-acetylcysteine (NAC) before giving CDDP. Long Evans rats were treated with CDDP 6 mg/kg delivered to the aorta via a retrograde right external carotid artery infusion, 15 min after intravenous (IV) infusion of saline (n = 8) or NAC 400 mg/kg (n = 8), such that the vertebral arteries were perfused. Subsequent groups were similarly treated with NAC 30 min before (n = 7) and 4 h after (n = 7) CDDP. Auditory brainstem response (ABR) thresholds were tested at 4-20 kHz, 7 days after treatment and compared to baseline ABR values. The NAC-treated rats exhibited no significant change from baseline values at all time intervals, while the saline-treated rats showed marked ototoxicity, especially at higher frequencies. Furthermore, the rats treated with NAC 15 min before CDDP exhibited less overall toxicity to CDDP, as evidenced in weight loss 7 days post-treatment (mean for saline = -39.63 g; mean for NAC = -21.13 g; p = 0.0084). These data show that treatment with NAC can prevent CDDP-induced ototoxicity in rats. (C) 2004 Elsevier B.V. All rights reserved. C1 Oregon Hlth & Sci Univ, Dept Neurol, Portland, OR 97201 USA. Oregon Hlth & Sci Univ, Dept Neurosurg, Portland, OR 97201 USA. Oregon Hlth & Sci Univ, Dept Cell & Dev Biol, Portland, OR 97201 USA. Oregon Hlth & Sci Univ, Dept Med Informat & Clin Epidemiol, Portland, OR 97201 USA. Vet Adm Med Ctr, Portland, OR 97201 USA. RP Neuwelt, EA (reprint author), Oregon Hlth & Sci Univ, Dept Neurol, Portland, OR 97201 USA. EM neuwelte@ohsu.edu CR Blakley BW, 2002, LARYNGOSCOPE, V112, P1997, DOI 10.1097/00005537-200211000-00016 BLUMENREICH MS, 1985, CANCER, V55, P1118, DOI 10.1002/1097-0142(19850301)55:5<1118::AID-CNCR2820550529>3.0.CO;2-5 BOHEIM K, 1985, OTORHINOLARYNGOLOGY, P2421 Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9 CHURCH MW, 1995, HEARING RES, V86, P195, DOI 10.1016/0378-5955(95)00066-D DOOLITTLE ND, 2003, SOC NEUR 8 ANN M Doolittle ND, 2001, CLIN CANCER RES, V7, P493 Eddins AC, 1999, HEARING RES, V127, P119 Ekborn A, 2002, HEARING RES, V165, P53, DOI 10.1016/S0378-5955(02)00277-0 Feghali JG, 2001, LARYNGOSCOPE, V111, P1147, DOI 10.1097/00005537-200107000-00005 Fuertes MA, 2003, CURR MED CHEM, V10, P257 GANDARA DR, 1990, CRIT REV ONCOL HEMAT, V10, P353, DOI 10.1016/1040-8428(90)90010-P HCER M, 1991, TOXICITY ANTICANCER, P82 Henderson D, 1999, ANN NY ACAD SCI, V884, P368, DOI 10.1111/j.1749-6632.1999.tb08655.x HOWELL SB, 1982, ANN INTERN MED, V97, P845 JONES MM, 1989, ANTICANCER RES, V9, P1937 LITTELL RC, 1996, SASQ SYSTEM MIXED MO MOROSO MJ, 1983, J OTOLARYNGOL, V12, P365 Muldoon LL, 2000, CLIN CANCER RES, V6, P309 Muldoon LL, 2001, J PHARMACOL EXP THER, V296, P797 NEUWELT EA, 2004, IN PRESS JPET Neuwelt EA, 2001, CANCER RES, V61, P7868 Neuwelt EA, 1998, J PHARMACOL EXP THER, V286, P77 Neuwelt EA, 1996, CANCER RES, V56, P706 RAVI R, 1995, PHARMACOL TOXICOL, V76, P386 Robbins KT, 2000, HEAD NECK-J SCI SPEC, V22, P687, DOI 10.1002/1097-0347(200010)22:7<687::AID-HED8>3.0.CO;2-W Saito T, 1996, ACTA OTO-LARYNGOL, V116, P561, DOI 10.3109/00016489609137889 *SAS I, 1999, SASQ SYST WIND VERS SCHWEITZER VG, 1993, OTOLARYNG CLIN N AM, V26, P759 VILLARET DB, 2001, CONTROVERSIES OTOLAR, P39 Waters C, 1999, ANN NY ACAD SCI, V884, P41, DOI 10.1111/j.1749-6632.1999.tb08634.x YAMAMOTO T, 1994, BRAIN RES, V648, P296, DOI 10.1016/0006-8993(94)91130-4 NR 32 TC 48 Z9 50 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUL PY 2004 VL 193 IS 1-2 BP 25 EP 30 DI 10.1016/j.heares.2004.02.007 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 837UI UT WOS:000222666000004 ER PT J AU Job, A Cian, C Esquivie, D Leifflen, D Trousselard, M Charles, C Nottet, JB AF Job, A Cian, C Esquivie, D Leifflen, D Trousselard, M Charles, C Nottet, JB TI Moderate variations of mood/emotional states related to alterations in cochlear otoacoustic emissions and tinnitus onset in young normal hearing subjects exposed to gun impulse noise SO HEARING RESEARCH LA English DT Article DE tinnitus; DPOAEs; mood; acoustic trauma; NIHL; anxiety ID ACOUSTIC TRAUMA; SUFFERERS; GENERATION; MANAGEMENT; ANXIETY; SYSTEM AB This study was designed to test whether under impulse noise exposure mood and emotional states could play a role in the onset of tinnitus and/or could modify cochlear sensitivity objectively measured with distortion product otoacoustic emissions (DPOAEs). The experimental design consisted in a short follow-up study of 54 Young military subjects (20 2 years old), psychologically normal, with normal hearing, during two consecutive days of target practice rounds. Data collection included an abbreviated version of the profile of mood states (POMSs) inventory [Profile of Mood States, Educational and Industrial Testing Service, San Diego. 1971], questionnaires on tinnitus perception (previous history and after shooting) and DPOAEs measurements before and after shooting. Higher scores of tension-anxiety were found in subjects having previous history of tinnitus. Association between tinnitus previous history and tinnitus after shooting was found significant. Perception of tinnitus after target practice rounds was associated with significantly lower DPOAEs at 3 kHz. The most tense-anxious subjects were found to have DPOAEs decreases of 3.35 +/- 6 dB at 3 kHz after shooting. This study clearly shows that, in young healthy population, psychologically normal and with normal hearing, moderate variations in mood and emotional states were related to tinnitus onset and DPOAEs alterations. It is possible that stronger variations in mood and/or emotional condition would increase risks of tinnitus and alterations of cochlear sensitivity. (C) 2004 Elsevier B.V. All rights reserved. C1 CRSSA, F-38702 La Tronche, France. Hop Instruct Armees Desgenettes, Serv ORL, F-69275 Lyon 03, France. RP Job, A (reprint author), CRSSA, 24 Ave Maquis Gresivaudan,POB 87, F-38702 La Tronche, France. EM ajob@crssa.net RI JOB, Agnes/L-3158-2014 OI JOB, Agnes/0000-0001-6764-284X CR Andersson G, 2000, J SPEECH LANG HEAR R, V43, P1168 Attias J, 1996, EAR HEARING, V17, P327, DOI 10.1097/00003446-199608000-00004 Attias J, 2002, INT J AUDIOL, V41, P301, DOI 10.3109/14992020209077190 AVAN P, 2001, NOISE HLTH, V3, P1 BRUSIS T, 1993, HNO, V21, P55 CARSON SS, 1989, ARCH OTOLARYNGOL, V115, P1070 Castello E, 1997, Boll Soc Ital Biol Sper, V73, P93 CHEN G, 1999, HEARING RES, V132, P181 CHERYCROZE S, 1994, BRIT J AUDIOL, V28, P13, DOI 10.3109/03005369409077909 Dineen R, 1997, BRIT J AUDIOL, V31, P27, DOI 10.3109/03005364000000006 Eggermont JJ, 2003, AURIS NASUS LARYNX S, V30, P7, DOI 10.1016/S0385-8146(02)00122-0 ERLANDSSON S I, 1991, British Journal of Audiology, V25, P15, DOI 10.3109/03005369109077860 Fechter L. D., 2002, NOISE HEALTH, V4, P49 Folmer RL, 2001, OTOLARYNG HEAD NECK, V124, P394, DOI 10.1067/mhn.2001.114673 Gates GA, 2002, J AM GERIATR SOC, V50, P482, DOI 10.1046/j.1532-5415.2002.50114.x STEPHENS S D G, 1985, British Journal of Audiology, V19, P151, DOI 10.3109/03005368509078968 HALFORD JBS, 1991, J PSYCHOSOM RES, V35, P383, DOI 10.1016/0022-3999(91)90033-K HORNER KC, 2003, NOISE HLTH, V20, P29 Horner KC, 2002, NEUROPSYCHOPHARMACOL, V26, P135, DOI 10.1016/S0893-133X(01)00356-6 Horner KC, 2001, EUR J NEUROSCI, V13, P405, DOI 10.1046/j.0953-816X.2000.01386.x JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 Job A, 1999, LANCET, V353, P35, DOI 10.1016/S0140-6736(98)04216-0 Kadner A, 2002, NEUROREPORT, V13, P443, DOI 10.1097/00001756-200203250-00016 Kaltenbach JA, 2002, J NEUROPHYSIOL, V88, P699, DOI 10.1152/jn00893.2001 Kawamura S, 1971, Nihon Jibiinkoka Gakkai Kaiho, V74, P1007 Kowalska Sylwia, 2001, Medycyna Pracy, V52, P305 Lataye R, 2000, HEARING RES, V139, P86, DOI 10.1016/S0378-5955(99)00174-4 LIU B, 1996, CHUNG HUA PI YEN HOU, V31, P231 Marshall L, 2001, NOISE HEALTH, V3, P43 McNair D.M., 1971, PROFILE MOOD STATES Melcher JR, 2000, J NEUROPHYSIOL, V83, P1058 Meric C, 1998, AUDIOL NEURO-OTOL, V3, P240, DOI 10.1159/000013796 Metternich FU, 1999, LARYNGO RHINO OTOL, V78, P614 Mrena R, 2002, AUDIOL NEURO-OTOL, V7, P122, DOI 10.1159/000057660 Puel JL, 2002, AUDIOL NEURO-OTOL, V7, P49, DOI 10.1159/000046864 Ried E, 1993, Acta Otorrinolaringol Esp, V44, P253 ROSENHALL U, 2003, HEAR HEARING, V24, P206 Sachman SA., 1983, J PERS ASSESS, V47, P305 SALMIVALLI A, 1977, ACTA OTOLARYNGOL, V222, P1 SAUNDERS JC, 1991, J ACOUST SOC AM, V90, P136, DOI 10.1121/1.401307 SCHNEIDER WR, 1994, HNO, V42, P22 SENKOWSKI D, 2003, BIOL PSYCHIAT, V116, P179 Shiomi Y, 1997, HEARING RES, V108, P83, DOI 10.1016/S0378-5955(97)00043-9 TAYLOR GD, 1966, LARYNGOSCOPE, V76, P863 Tyler Richard S., 1993, Seminars in Hearing, V14, P377, DOI 10.1055/s-0028-1085135 Vetter DE, 2002, NAT GENET, V31, P363, DOI 10.1038/ng914 WILSON PH, 1991, J SPEECH HEAR RES, V34, P197 NR 47 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2004 VL 193 IS 1-2 BP 31 EP 38 DI 10.1016/j.heares.2004.02.010 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 837UI UT WOS:000222666000005 PM 15219318 ER PT J AU Tomita, M Norena, AJ Eggermont, JJ AF Tomita, M Norena, AJ Eggermont, JJ TI Effects of an acute acoustic trauma on the representation of a voice onset time continuum in cat primary auditory cortex SO HEARING RESEARCH LA English DT Article DE noise trauma; hearing loss; voice onset time; speech perception; temporal resolution ID CHINCHILLA INFERIOR COLLICULUS; DISCHARGE RATE REPRESENTATION; GAP-DETECTION THRESHOLDS; RECEPTOR ORGAN DAMAGE; SPEECH RECOGNITION; WORD RECOGNITION; AWAKE MONKEY; AGE; RESPONSES; LISTENERS AB Here we show that hearing loss associated with an impairment of speech recognition causes a decrease in neural temporal resolution. In order to assess central auditory system changes in temporal resolution, we investigated the effect of an acute hearing loss on the representation of a voice onset time (VOT) and gap-duration continuum in primary auditory cortex (AI) of the ketamine-anesthetized cat. Multiple single-unit activity related to the presentation of a /ba/-/pa/ continuum - in which VOT was varied in 5-ms step from 0 to 70 ms - was recorded from the same sites before and after an acoustic trauma using two 8-electrode arrays. We also obtained data for gaps, of duration equal to the VOT, embedded in noise 5 ms after the onset. We specifically analyzed the maximum firing rate (FRmax), related to the presentation of the vowel or trailing noise burst, as a function of VOT and gap duration. The changes in FRmax for /ba/-/pa/ continuum as a function of VOT match the psychometric function for categorical perception of /ba/-/pa/ modeled by a sigmoid function. An acoustic trauma made the sigmoid fitting functions shallower, and shifted them toward higher values of VOT. The less steep fitting function may be a neural correlate of an impaired psychoacoustic temporal resolution, because the ambiguity between /ba/ and /pa/ should consequently be increased. The present study is the first one in showing an impairment of the temporal resolution of neurons in AI caused by an acute acoustic trauma. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Calgary, Neurosci Res Grp, Dept Physiol, Calgary, AB T2N 1N4, Canada. Univ Calgary, Neurosci Res Grp, Dept Psychol, Calgary, AB T2N 1N4, Canada. RP Eggermont, JJ (reprint author), Univ Calgary, Neurosci Res Grp, Dept Physiol, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. EM eggermon@ucalgary.ca CR ABEL SM, 1990, SCAND AUDIOL, V19, P43, DOI 10.3109/01050399009070751 Abramson A. S., 1970, P 6 INT C PHON SCI P, P569 BREGMAN AS, 1990, PERCEPT PSYCHOPHYS, V47, P68, DOI 10.3758/BF03208166 *CHABA COMM HEAR B, 1998, J ACOUST SOC AM, V83, P859 Chen GD, 1996, AUDIT NEUROSCI, V3, P179 Eggermont JJ, 1990, CORRELATIVE BRAIN TH EGGERMONT JJ, 1995, J ACOUST SOC AM, V98, P911, DOI 10.1121/1.413517 EGGERMONT JJ, 1991, HEARING RES, V56, P153, DOI 10.1016/0378-5955(91)90165-6 EGGERMONT JJ, 1995, NEUROREPORT, V6, P1645, DOI 10.1097/00001756-199508000-00014 Eggermont JJ, 2000, J NEUROPHYSIOL, V84, P1453 Eggermont JJ, 2002, AUDIOL NEURO-OTOL, V7, P71, DOI 10.1159/000057656 EGGERMONT JJ, 1996, AUDIT NEUROSCI, V2, P76 Eggermont JJ, 1999, J NEUROPHYSIOL, V81, P2570 GLASBERG BR, 1987, J ACOUST SOC AM, V81, P1546, DOI 10.1121/1.394507 GORDONSALANT S, 1993, J SPEECH HEAR RES, V36, P1276 Humes L E, 1991, J Am Acad Audiol, V2, P59 KUHL PK, 1978, J ACOUST SOC AM, V63, P905, DOI 10.1121/1.381770 Mazelova J, 2003, EXP GERONTOL, V38, P87, DOI 10.1016/S0531-5565(02)00155-9 MOORE B C J, 1985, British Journal of Audiology, V19, P189, DOI 10.3109/03005368509078973 MOORE BCJ, 1993, ANN NY ACAD SCI, V682, P119, DOI 10.1111/j.1749-6632.1993.tb22964.x MORSE PA, 1975, PERCEPT PSYCHOPHYS, V17, P9, DOI 10.3758/BF03203991 Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9 Norena AJ, 2003, J NEUROPHYSIOL, V90, P2387, DOI 10.1152/jn.00139.2003 Phillips DP, 1997, J ACOUST SOC AM, V101, P3694, DOI 10.1121/1.419376 Rajan R, 1998, NAT NEUROSCI, V1, P138, DOI 10.1038/388 Rajan R, 2001, CEREB CORTEX, V11, P171, DOI 10.1093/cercor/11.2.171 REMBLAY KL, 2003, CLIN NEUROPHYSIOL, V114, P1332 Schneider BA, 1999, J ACOUST SOC AM, V106, P371, DOI 10.1121/1.427062 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 SINEX DG, 1989, J ACOUST SOC AM, V85, P1995, DOI 10.1121/1.397852 SINEX DG, 1988, J ACOUST SOC AM, V83, P1817, DOI 10.1121/1.396516 SINNOTT JM, 1987, J ACOUST SOC AM, V82, P1539, DOI 10.1121/1.395144 Snell KB, 2002, J ACOUST SOC AM, V112, P720, DOI 10.1121/1.1487841 Snell KB, 1997, J ACOUST SOC AM, V101, P2214, DOI 10.1121/1.418205 Snell KB, 2000, J ACOUST SOC AM, V107, P1615, DOI 10.1121/1.428446 Steinschneider M, 1999, J NEUROPHYSIOL, V82, P2346 Steinschneider M, 2003, J ACOUST SOC AM, V114, P307, DOI 10.1121/1.1582449 STEINSCHNEIDER M, 1995, BRAIN LANG, V48, P326, DOI 10.1006/brln.1995.1015 Strouse A, 1998, J ACOUST SOC AM, V104, P2385, DOI 10.1121/1.423748 Walton JP, 1998, J NEUROSCI, V18, P2764 Wang JA, 2002, HEARING RES, V168, P238, DOI 10.1016/S0378-5955(02)00360-X NR 41 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2004 VL 193 IS 1-2 BP 39 EP 50 DI 10.1016/j.heares.2004.03.002 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 837UI UT WOS:000222666000006 PM 15219319 ER PT J AU Bhagat, SP Champlin, CA AF Bhagat, SP Champlin, CA TI Evaluation of distortion products produced by the human auditory system SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Annual Meeting of the Association-for-Research-in-Otolaryngology CY FEB, 2004 CL Daytona Beach, FL SP Assoc Res Otolaryngol DE distortion products; auditory evoked potentials; otoacoustic emissions; cubic difference tone; quadratic difference tone ID ANTEROVENTRAL COCHLEAR NUCLEUS; FREQUENCY-FOLLOWING RESPONSE; AMPLITUDE-MODULATED TONES; CUBIC DIFFERENCE TONES; BINAURAL-BEAT STIMULI; BROAD-BAND NOISE; OTOACOUSTIC EMISSIONS; INFERIOR COLLICULUS; CONTRALATERAL SOUND; EVOKED-POTENTIALS AB During the simultaneous monaural presentation of two primary tones, distortion products can be measured acoustically in the ear canal (DPOAEs) and electrically as auditory evoked potentials (DPAEPs). The purpose of this investigation was to elucidate the sources of nonlinearity within the human auditory system responsible for generating quadratic (QDT) and cubic (CDT) difference tones. Measurements of DPOAEs and DPAEPs were obtained from 24 normal-hearing adults (12 male) in conditions with and without presentation of a 60 dB SPL contralateral noise. The effects of primary-tone signal duration and mode of presentation on measurements of DPAEPs were also examined. Results indicated that overall, both acoustic and electric distortion products were suppressed during presentation of a contralateral noise. Increases in the duration of the primary tones caused increases in DPAEP amplitudes. A greater proportion of individuals exhibited DPAEPs with monotic compared to dichotic presentation of the primary tones. The findings of the investigation supported the conjecture that a cochlear nonlinearity produced CDT acoustic and electric distortion products. Evidence concerning the origin of the QDT DPAEP was inconclusive, and contributions from both cochlear and neural nonlinear sources could not be ruled out. (C) 2004 Elsevier B.V. All rights reserved. C1 Louisiana State Univ, Dept Commun Sci & Disorders, Baton Rouge, LA 70803 USA. Univ Texas, Inst Neurosci, Dept Commun Sci & Disorders, Austin, TX 78712 USA. RP Bhagat, SP (reprint author), Louisiana State Univ, Dept Commun Sci & Disorders, 163 Music & Dramat Arts Bldg, Baton Rouge, LA 70803 USA. EM sbhagat@lsu.edu CR Abdala C, 1996, J ACOUST SOC AM, V100, P3726, DOI 10.1121/1.417234 Abdala C, 1999, J ACOUST SOC AM, V105, P2392, DOI 10.1121/1.426844 Alain C, 1997, EVOKED POTENTIAL, V104, P531, DOI 10.1016/S0168-5597(97)00057-9 Arnold S, 2002, J ACOUST SOC AM, V112, P590, DOI 10.1121/1.1494991 Arnold S, 1998, J ACOUST SOC AM, V104, P1565, DOI 10.1121/1.424368 Arnold S, 2000, J ACOUST SOC AM, V107, P1541, DOI 10.1121/1.428439 BATRA R, 1986, HEARING RES, V21, P167, DOI 10.1016/0378-5955(86)90037-7 BHAGAT SP, 2000, J ACOUST SOC AM, V108, P2596 BRAND A, 2000, J NEUROPHYSIOL, V84, P1475 BROWN MC, 1984, J PHYSIOL-LONDON, V354, P625 BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 BUUNEN TJF, 1978, J ACOUST SOC AM, V64, P772, DOI 10.1121/1.382042 Casseday JH, 2000, J NEUROPHYSIOL, V84, P1475 Chang KW, 1997, J ACOUST SOC AM, V102, P1719, DOI 10.1121/1.420082 CHERTOFF ME, 1992, J SPEECH HEAR RES, V35, P157 CHERYCROZE S, 1993, HEARING RES, V68, P53, DOI 10.1016/0378-5955(93)90064-8 CHERYCROZE S, 1994, BRIT J AUDIOL, V28, P13, DOI 10.3109/03005369409077909 Eddins AC, 1998, HEARING RES, V119, P135, DOI 10.1016/S0378-5955(98)00035-5 CLOCK AE, 1993, HEARING RES, V71, P37, DOI 10.1016/0378-5955(93)90019-W DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 DOLPHIN WF, 1994, J ACOUST SOC AM, V96, P2225, DOI 10.1121/1.411382 Durante AS, 2002, INT J AUDIOL, V41, P211, DOI 10.3109/14992020209078333 Eddins AC, 1999, J SPEECH LANG HEAR R, V42, P516 Ehrlich D, 1997, J NEUROPHYSIOL, V77, P2360 ELKINDHIRSCH KE, 1992, HEARING RES, V60, P143, DOI 10.1016/0378-5955(92)90016-G FAHEY PF, 1985, J ACOUST SOC AM, V77, P599, DOI 10.1121/1.391878 Faulstich M, 1999, J ACOUST SOC AM, V105, P491, DOI 10.1121/1.424586 FEX J, 1959, Acta Otolaryngol, V50, P540, DOI 10.3109/00016485909129230 FRAK G, 1997, HEARING RES, V113, P57 Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4 GASKILL SA, 1990, J ACOUST SOC AM, V88, P139 GOLDSTEI.JL, 1967, J ACOUST SOC AM, V41, P676, DOI 10.1121/1.1910396 GOLDSTEN R, 1999, EVOKED POTENTIAL AUD Hall J, 1992, HDB AUDITORY EVOKED He JF, 1997, J NEUROSCI, V17, P2615 Henry KR, 1996, HEARING RES, V99, P151, DOI 10.1016/S0378-5955(96)00096-2 HINK RF, 1980, AUDIOLOGY, V19, P36 HORNER K, 1983, HEARING RES, V11, P343, DOI 10.1016/0378-5955(83)90066-7 Jasper H. H., 1958, ELECTROENCEPHALOGRAP, V10, P371, DOI DOI 10.1016/0013-4694(58)90053-1 Khalfa S, 1998, EUR J NEUROSCI, V10, P2731, DOI 10.1046/j.1460-9568.1998.00286.x KIM DO, 1980, J ACOUST SOC AM, V67, P1704, DOI 10.1121/1.384297 Kim SH, 2002, AUDIOL NEURO-OTOL, V7, P348, DOI 10.1159/000066159 KUJAWA SG, 1994, HEARING RES, V74, P122, DOI 10.1016/0378-5955(94)90181-3 KUJAWA SG, 1995, HEARING RES, V85, P142, DOI 10.1016/0378-5955(95)00041-2 KUJAWA SG, 1993, HEARING RES, V68, P97, DOI 10.1016/0378-5955(93)90068-C KUWADA S, 1986, HEARING RES, V21, P179, DOI 10.1016/0378-5955(86)90038-9 KUWADA S, 1979, SCIENCE, V206, P586, DOI 10.1126/science.493964 LICKLIDER JCR, 1950, J ACOUST SOC AM, V22, P468, DOI 10.1121/1.1906629 LIM DJ, 1986, HEARING RES, V22, P117, DOI 10.1016/0378-5955(86)90089-4 Lisowska G, 2002, ACTA OTO-LARYNGOL, V122, P613, DOI 10.1080/000164802320396286 Lonsbury-Martin B L, 1990, Ann Otol Rhinol Laryngol Suppl, V147, P3 LONSBURYMARTIN BL, 1993, EAR HEARING, V14, P11, DOI 10.1097/00003446-199302000-00003 McFadden D, 1999, J ACOUST SOC AM, V105, P2403, DOI 10.1121/1.426845 McFadden D, 1998, P NATL ACAD SCI USA, V95, P2709, DOI 10.1073/pnas.95.5.2709 McFadden D, 2000, JARO, V1, P89, DOI 10.1007/s101620010008 McFadden D, 2000, HEARING RES, V142, P23, DOI 10.1016/S0378-5955(00)00002-2 MCFADDEN D, 1993, HEARING RES, V68, P143, DOI 10.1016/0378-5955(93)90118-K MOULIN A, 1993, HEARING RES, V65, P193, DOI 10.1016/0378-5955(93)90213-K NEELY ST, 1986, J ACOUST SOC AM, V79, P1472, DOI 10.1121/1.393674 NEELY ST, 1993, J ACOUST SOC AM, V94, P137, DOI 10.1121/1.407091 OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4 ONISHI S, 1968, J ACOUST SOC AM, V44, P582, DOI 10.1121/1.1911124 PERROTT DR, 1977, J ACOUST SOC AM, V61, P1288, DOI 10.1121/1.381430 PICTON TW, 1987, J ACOUST SOC AM, V82, P165, DOI 10.1121/1.395560 REES A, 1986, HEARING RES, V23, P123, DOI 10.1016/0378-5955(86)90009-2 RICKMAN MD, 1991, J ACOUST SOC AM, V89, P2818, DOI 10.1121/1.400720 Rose J. E., 1980, NEURAL MECH BEHAV, P1 Sahley TL, 1997, EFFERENT AUDITORY SY Sliwinska-Kowalska M, 2002, INT J AUDIOL, V41, P113 SMOORENBURG GF, 1976, J ACOUST SOC AM, V59, P945, DOI 10.1121/1.380954 SZIKLAI I, 1993, ACTA OTO-LARYNGOL, V113, P326, DOI 10.3109/00016489309135818 Tubach M, 1996, LARYNGOSCOPE, V106, P822, DOI 10.1097/00005537-199607000-00007 WERNICK JS, 1968, J NEUROPHYSIOL, V31, P428 WILLIAMS DM, 1995, J ACOUST SOC AM, V97, P1130, DOI 10.1121/1.412226 Williams DM, 1997, HEARING RES, V104, P127, DOI 10.1016/S0378-5955(96)00189-X YIN TCT, 1983, J NEUROPHYSIOL, V50, P1000 ZWICKER E, 1979, HEARING RES, V1, P283, DOI 10.1016/0378-5955(79)90001-7 NR 77 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2004 VL 193 IS 1-2 BP 51 EP 67 DI 10.1016/j.heares.2004.04.005 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 837UI UT WOS:000222666000007 PM 15219320 ER PT J AU Liu, YX Li, XP AF Liu, YX Li, XP TI Effects of salicylate on voltage-gated sodium channels in rat interior colliculus neurons SO HEARING RESEARCH LA English DT Article DE salicylate; sodium currents; inferior colliculus; tinnitus; patch clamp ID INFERIOR COLLICULUS; AUDITORY PATHWAY; GUINEA-PIG; TINNITUS; MODEL; MECHANISMS; EXPRESSION; LIDOCAINE; SYSTEM AB To investigate the effects of the tinnitus inducer, sodium salicylate, on voltage-gated sodium channels, we studied freshly dissociated inferior colliculus neurons of rats by the whole-cell voltage clamp method. Salicylate blocked sodium channels in concentration-dependent manner (0.1-10 mM), and the IC50 value of salicylate was estimated to be 1.43 mM after application. The sodium conductance-voltage curve did not shift along the voltage axis with salicylate application. In contrast, the steady-state sodium channel inactivation curve was shifted by about 9 mV in the hyperpolarizing direction. In addition, salicylate delayed the sodium channel recovery from inactivation by increasing the slow time constant. It was concluded that salicylate bound to the resting and inactivated sodium channels to cause blocking, with a higher affinity for the latter state. Our results suggest that salicylate causes a concentration-dependent blockade of voltage-gated sodium channels and shifts the inactivation curve to more hyperpolarized potentials, which could be related to the mechanism of salicylate-induced tinnitus. (C) 2004 Elsevier B.V. All rights reserved. C1 Peking Univ, Hosp 3, Dept Otorhinolaryngol, Beijing 100083, Peoples R China. RP Liu, YX (reprint author), Peking Univ, Hosp 3, Dept Otorhinolaryngol, 49 Huayuan Rd, Beijing 100083, Peoples R China. EM liuyanxing75@sohu.com; drlixuepei@sohu.com CR AITIN LM, 1986, AUDITORY MIDBRAIN Bauer CA, 2000, HEARING RES, V147, P175, DOI 10.1016/S0378-5955(00)00130-1 Bauer CA, 1999, OTOLARYNG HEAD NECK, V121, P457, DOI 10.1016/S0194-5998(99)70237-8 BLAYNEY AW, 1985, CLIN OTOLARYNGOL, V10, P97, DOI 10.1111/j.1365-2273.1985.tb01175.x WallhausserFranke E, 1996, NEUROREPORT, V7, P1585, DOI 10.1097/00001756-199607080-00010 Brown R D, 1981, Ciba Found Symp, V85, P151 Brugge JF, 1992, MAMMALIAN AUDITORY P, P1 Catterall WA, 1997, ADV SEC MESS PHOSPH, V31, P159 Catterall WA, 2000, NEURON, V26, P13, DOI 10.1016/S0896-6273(00)81133-2 Cazals Y, 2000, PROG NEUROBIOL, V62, P583, DOI 10.1016/S0301-0082(00)00027-7 EGGERMONT JJ, 1990, HEARING RES, V48, P111, DOI 10.1016/0378-5955(90)90202-Z Ehret G., 1997, CENTRAL AUDITORY SYS, P259 EHRET G, 1991, BRAIN RES, V567, P350, DOI 10.1016/0006-8993(91)90819-H GRAHAM JDP, 1945, Q J MED, V17, P153 HAZELL JWP, 1990, J OTOLARYNGOL, V19, P1 Helfert RH, 1991, NEUROBIOLOGY HEARING, P1 HILLE B, 1977, J GEN PHYSIOL, V69, P497, DOI 10.1085/jgp.69.4.497 Hille B., 1992, IONIC CHANNELS EXCIT, V2nd HODGKIN AL, 1952, J PHYSL, V116, P176 HONDEGHEM LM, 1984, ANNU REV PHARMACOL, V24, P387 JAGER BV, 1946, AM J MED SCI, V211, P273, DOI 10.1097/00000441-194603000-00004 JASTREBOFF PJ, 1986, J ACOUST SOC AM, V80, P1384, DOI 10.1121/1.394391 JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 JASTREBOFF PJ, 1988, LARYNGOSCOPE, V98, P280 JASTREBOFF PJ, 1986, ARCH OTOLARYNGOL, V112, P1050 KANZENGILLESPIE KA, 2000, J BIOL CHEM, V275, P1079 Liu SQJ, 1998, J NEUROSCI, V18, P8758 LUKASRUTTIGER, 2003, HEAR RES, V180, P39 Manabe Y, 1997, HEARING RES, V103, P192, DOI 10.1016/S0378-5955(96)00181-5 MCCABE PA, 1965, ANN OTO RHINOL LARYN, V74, P312 MCCORMICK MS, 1980, CLIN OTOLARYNGOL, V6, P255 MOLLER AR, 1992, LARYNGOSCOPE, V102, P1165 MOLLER AR, 1992, TINNITUS 91, P165 MYERS EN, 1965, ARCHIV OTOLARYNGOL, V82, P483 Oliver DL, 1992, MAMMALIAN AUDITORY P, P168 Rudack C, 1997, HNO, V45, P69, DOI 10.1007/s001060050091 SASAKI CT, 1980, BRAIN RES, V194, P511, DOI 10.1016/0006-8993(80)91233-0 Shrager P, 1998, J NEUROPHYSIOL, V79, P529 Webster DB, 1992, MAMMALIAN AUDITORY P, P1 NR 39 TC 15 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2004 VL 193 IS 1-2 BP 68 EP 74 DI 10.1016/j.heares.2004.03.006 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 837UI UT WOS:000222666000008 PM 15219321 ER PT J AU van Looij, MAJ Liem, SS van der Burg, H van der Wees, J De Zeeuw, CI van Zanten, BGA AF van Looij, MAJ Liem, SS van der Burg, H van der Wees, J De Zeeuw, CI van Zanten, BGA TI Impact of conventional anesthesia on auditory brainstem responses in mice SO HEARING RESEARCH LA English DT Article DE ABR; anesthesia; awake; mouse ID HEARING; MOUSE; DEAFNESS; ABR; ADAPTATION; STRAINS AB Anesthesia is known to affect the auditory brainstem response (ABR) in animals often used in hearing research. This study describes the differences in ABRs between awake and anesthetized FVB/N mice. Intracranial electrodes connected to a head fixation pedestal were used for click-evoked ABR recordings. This pedestal served to immobilize mice, either awake or under anesthesia, in a 'free' sound field. The presence of myogenic noise in the awake condition obviously increases recording time. However it is demonstrated that recording times can be significantly reduced by increasing the stimulus repetition rate from 23 up to 80 impulses per second. This causes only a small but significant increase in absolute peak latencies in the awake condition, but has no significant effect on the overall ABR-waveform. nor on the ABR-threshold, nor on the ABR interpeak latencies, nor on the absolute peak latencies in the anesthetized condition. Anesthesia with ketamine/xylazine caused a significant prolongation of ABR-peak latencies and interpeak latencies as well as a significant upward shift (8.0 +/- 1.8 dB) of ABR-thresholds as compared to the awake condition. Under anesthesia the measurement accuracy of peak latencies, interpeak latencies and thresholds decreases. In conclusion, the awake condition is preferable for more accurate measurements of ABR characteristics, in spite of the myogenic noise concomitant with this condition. (C) 2004 Elsevier B.V. All rights reserved. C1 Erasmus MC, Dept ENT Audiol, Rotterdam, Netherlands. Erasmus Univ, Dept Neurosci, Ee129, NL-3000 DR Rotterdam, Netherlands. Erasmus MC, Dept Cell Biol & Genet, Rotterdam, Netherlands. Univ Utrecht, Ctr Med, Dept ENT Audiol, Utrecht, Netherlands. RP van Looij, MAJ (reprint author), Erasmus MC, Dept ENT Audiol, Rotterdam, Netherlands. EM m.vanlooij@erasmusmc.ml CR BROWN SDM, 1994, HUM MOL GENET, V3, P1453 Call LM, 2002, CURR OPIN GENET DEV, V12, P343, DOI 10.1016/S0959-437X(02)00308-8 CHURCH MW, 1987, ELECTROEN CLIN NEURO, V67, P570, DOI 10.1016/0013-4694(87)90060-5 Henry KR, 2002, HEARING RES, V170, P107, DOI 10.1016/S0378-5955(02)00391-X HENRY KR, 1979, J AM AUDITORY SOC, V4, P173 HUANG JM, 1995, HEARING RES, V88, P61, DOI 10.1016/0378-5955(95)00099-P Jero J, 2001, ACTA OTO-LARYNGOL, V121, P585, DOI 10.1080/000164801316878863 Lasky RE, 1997, HEARING RES, V111, P165, DOI 10.1016/S0378-5955(97)00106-8 Le Calvez S, 1998, HEARING RES, V120, P37, DOI 10.1016/S0378-5955(98)00050-1 Miller J M, 1998, Scand Audiol Suppl, V48, P53 Ou HC, 2000, HEARING RES, V145, P111, DOI 10.1016/S0378-5955(00)00081-2 PALUDETTI G, 1983, AM J OTOL, V4, P226 Rusch A, 2001, J NEUROSCI, V21, P9792 SHRIVASTAV BB, 1977, J PHARMACOL EXP THER, V201, P162 SININGER YS, 1993, EAR HEARING, V14, P23, DOI 10.1097/00003446-199302000-00004 SMITH DI, 1991, HEARING RES, V54, P1, DOI 10.1016/0378-5955(91)90130-2 SMITH DI, 1989, ELECTROEN CLIN NEURO, V72, P422, DOI 10.1016/0013-4694(89)90047-3 SOUCEK S, 1992, SCAND AUDIOL, V21, P149, DOI 10.3109/01050399209045995 Steel KP, 1995, ANNU REV GENET, V29, P675 STEEL KP, 1983, ARCH OTOLARYNGOL, V109, P22 Tekin M, 2001, LANCET, V358, P1082, DOI 10.1016/S0140-6736(01)06186-4 TERKILDSEN K, 1975, SCAND AUDIOL, V4, P167, DOI 10.3109/01050397509043078 Trune DR, 1996, HEARING RES, V96, P41, DOI 10.1016/0378-5955(96)00017-2 WATSON DR, 1996, INT J PEDIATR OTORHI, V29, P235 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 25 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2004 VL 193 IS 1-2 BP 75 EP 82 DI 10.1016/j.heares.2004.02.009 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 837UI UT WOS:000222666000009 PM 15219322 ER PT J AU Pratt, H Polyakov, A Bleich, N Mittelman, N AF Pratt, H Polyakov, A Bleich, N Mittelman, N TI The combined effects of forward masking by noise and high click rate on monaural and binaural human auditory nerve and brainstem potentials SO HEARING RESEARCH LA English DT Article DE auditory brainstem evoked potentials; binaural interaction; forward masking; stimulus rate; equivalent dipole ID MAXIMUM LENGTH SEQUENCES; SUPERIOR OLIVARY COMPLEX; BROAD-BAND NOISE; EVOKED-POTENTIALS; INTERSTIMULUS-INTERVAL; INTERACTION COMPONENTS; FORWARD-MASKING; HUMAN NEWBORNS; STIMULUS RATE; RESPONSES AB Objective: To study effects of forward masking and rapid stimulation on human monaurally- and binaurally-evoked brainstem potentials and suggest their relation to synaptic fatigue and recovery and to neuronal action potential refractoriness. Methods: Auditory brainstem evoked potentials (ABEPs) were recorded from 12 normally- and symmetrically hearing adults, in response to each click (50 dB nHL, condensation and rarefaction) in a train of nine, with an inter-click interval of 11 ms, that followed a white noise burst of 100 ms duration (50 dB nHL). Sequences of white noise and click train were repeated at a rate of 2.89 s(-1). The interval between noise and first click in the train was 2, 11, 22, 44 66 or 88 ms in different runs. ABEPs were averaged (8000 repetitions) using a dwell time of 25 ps/address/channel. The binaural interaction components (BICs) of ABEPs were derived and the single. centrally located equivalent dipoles of ABEP waves I and V and of the BIC major wave were estimated. Results: The latencies of dipoles I and V of ABEP, their inter-dipole interval and the dipole magnitude of component V were significantly affected by the interval between noise and clicks and by the serial position of the click in the train. The latency and dipole magnitude of the major BIC component were significantly affected by the interval between noise and clicks. Interval from noise and the click's serial position in the train interacted to affect dipole V latency, dipole V magnitude, BIC latencies and the V-I inter-dipole latency difference. Most of the effects were fully apparent by the first few clicks in the train, and the trend (increase or decrease) was affected by the interval between noise and clicks. Conclusions: The changes in latency and magnitude of ABEP and BIC components with advancing position in the click train and the interactions of click position in the train with the intervals from noise indicate an interaction of fatigue and recovery, compatible with synaptic depletion and replenishing, respectively. With the 2 ms interval between noise and the first click in the train, neuronal action potential refractoriness may also be involved. (C) 2004 Elsevier B.V. All rights reserved. C1 Technion Israel Inst Technol, Evoked Potentials Lab, IL-32000 Haifa, Israel. RP Pratt, H (reprint author), Technion Israel Inst Technol, Evoked Potentials Lab, IL-32000 Haifa, Israel. EM hillel@tx.technion.ac.il CR ANANTHANARAYAN AK, 1987, ELECTROEN CLIN NEURO, V66, P427 BURKARD R, 1994, J ACOUST SOC AM, V95, P2126, DOI 10.1121/1.408674 BURKARD R, 1990, J ACOUST SOC AM, V87, P1656, DOI 10.1121/1.399413 BURKARD R, 1990, AUDIOLOGY, V29, P146 BURKARD R, 1983, J ACOUST SOC AM, V74, P1204, DOI 10.1121/1.390024 BURKARD R, 1987, J ACOUST SOC AM, V81, P1064, DOI 10.1121/1.394678 CAIRD D, 1983, EXP BRAIN RES, V52, P385 CHIAPPA KH, 1979, ARCH NEUROL-CHICAGO, V36, P81 DESPLAND PA, 1980, PEDIATR RES, V14, P154, DOI 10.1203/00006450-198002000-00018 DOBIE RA, 1979, ARCH OTOLARYNGOL, V105, P391 DOBIE RA, 1980, ELECTROEN CLIN NEURO, V49, P303, DOI 10.1016/0013-4694(80)90224-2 DON M, 1977, ANN OTO RHINOL LARYN, V86, P186 EGGERMON.JJ, 1974, AUDIOLOGY, V13, P1 EGGERMONT JJ, 1985, HEARING RES, V18, P57, DOI 10.1016/0378-5955(85)90110-8 ELIDAN J, 1982, ACTA NEUROL SCAND, V65, P570 EYSHOLDT U, 1982, AUDIOLOGY, V21, P242 Fitzpatrick DC, 2002, HEARING RES, V168, P79, DOI 10.1016/S0378-5955(02)00359-3 FURST M, 1985, J ACOUST SOC AM, V78, P1644, DOI 10.1121/1.392802 GALAMBOS R, 1959, AM J PHYSIOL, V197, P527 GARDI JN, 1981, ARCH OTOLARYNGOL, V107, P164 GERLING IJ, 1983, ANN OTO RHINOL LARYN, V92, P119 GROTHE B, 1993, J NEUROPHYSIOL, V69, P1192 Grothe B, 2000, J COMP PHYSIOL A, V186, P413, DOI 10.1007/s003590050441 GROTHE B, 1994, J NEUROSCI, V14, P1701 HAREL Z, 1984, MATH BIOSCI, V69, P1, DOI 10.1016/0025-5564(84)90011-7 HARKINS SW, 1979, INT J NEUROSCI, V10, P7 HYDE ML, 1976, BRIT J AUDIOL, V10, P41, DOI 10.3109/03005367609078806 IRVING R, 1967, J COMP NEUROL, V130, P77, DOI 10.1002/cne.901300105 JEWETT D, 1972, BRAIN RES, V36, P89 JONES SJ, 1990, ELECTROEN CLIN NEURO, V77, P214, DOI 10.1016/0168-5597(90)90040-K KENDROR A, 1987, ELECTROEN CLIN NEURO, V68, P209, DOI 10.1016/0168-5597(87)90028-1 LASKY RE, 1991, DEV PSYCHOBIOL, V24, P51, DOI 10.1002/dev.420240105 Lasky RE, 1997, HEARING RES, V111, P165, DOI 10.1016/S0378-5955(97)00106-8 Lasky RE, 1996, EAR HEARING, V17, P544, DOI 10.1097/00003446-199612000-00010 LASKY RE, 1994, J ACOUST SOC AM, V93, P2077 LASKY RE, 1982, HEARING RES, V6, P315, DOI 10.1016/0378-5955(82)90063-6 LASKY RE, 1984, ELECTROEN CLIN NEURO, V59, P411, DOI 10.1016/0168-5597(84)90042-X LEVINE RA, 1981, ANN NEUROL, V9, P384, DOI 10.1002/ana.410090412 LIGHTFOOT G, 1991, THESIS MAIR IWS, 1979, AUDIOLOGY, V18, P265 MARSH RR, 1992, EAR HEARING, V13, P396, DOI 10.1097/00003446-199212000-00004 MARTIN JI, 1976, THESIS BAYLOR U MCPHERSON DL, 1989, ELECTROEN CLIN NEURO, V74, P124, DOI 10.1016/0168-5597(89)90017-8 MOUSHEGIAN G, 1975, J NEUROPHYSIOL, V38, P1037 Oertel D, 1999, ANNU REV PHYSIOL, V61, P497, DOI 10.1146/annurev.physiol.61.1.497 PICTON TW, 1992, ELECTROEN CLIN NEURO, V84, P90, DOI 10.1016/0168-5597(92)90071-I POLYAKOV A, 1994, ELECTROEN CLIN NEURO, V92, P396, DOI 10.1016/0168-5597(94)90016-7 Polyakov A, 2003, CLIN NEUROPHYSIOL, V114, P366, DOI 10.1016/S1388-2457(02)00372-3 PRATT H, 1976, ARCH OTO-RHINO-LARYN, V212, P85, DOI 10.1007/BF00454268 PRATT H, 1981, ELECTROEN CLIN NEURO, V51, P80, DOI 10.1016/0013-4694(81)91511-X PRATT H, 1990, ADV AUDIOL, P331 PRATT H, 1984, ELECTROEN CLIN NEURO, V58, P83, DOI 10.1016/0013-4694(84)90204-9 PRATT H, 1986, ELECTROEN CLIN NEURO, V63, P438, DOI 10.1016/0013-4694(86)90126-4 PRATT H, 1983, ELECTROEN CLIN NEURO, V56, P682, DOI 10.1016/0013-4694(83)90036-6 SALAMY A, 1978, PSYCHOPHYSIOLOGY, V15, P214, DOI 10.1111/j.1469-8986.1978.tb01367.x SCOTT ML, 1978, INT J NEUROSCI, V8, P147, DOI 10.3109/00207457809150392 SHIPLEY C, 1980, BRAIN RES, V182, P313, DOI 10.1016/0006-8993(80)91191-9 SPOOR A, 1971, AUDIOLOGY, V10, P340 Starr A., 2000, Journal of Basic and Clinical Physiology and Pharmacology, V11, P215 STOCKARD JE, 1979, ARCH NEUROL-CHICAGO, V36, P823 THORNTON ARD, 1993, BRIT J AUDIOL, V27, P205, DOI 10.3109/03005369309076694 THORNTON ARD, 1975, ELECTROEN CLIN NEURO, V39, P399, DOI 10.1016/0013-4694(75)90103-0 WEATHERBY L, 1982, J ACOUST SOC AM S1, V71, P599 WEBER BA, 1977, J AM AUDITORY SOC, V3, P59 WILLISTON JS, 1981, BRAIN RES, V23, P181 WREGE KS, 1981, ARCH NEUROL-CHICAGO, V38, P572 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 ZOLLNER C, 1976, ARCH OTO-RHINO-LARYN, V212, P23, DOI 10.1007/BF00456360 NR 68 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2004 VL 193 IS 1-2 BP 83 EP 94 DI 10.1016/j.heares.2004.03.004 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 837UI UT WOS:000222666000010 PM 15219323 ER PT J AU Cusack, R Roberts, B AF Cusack, R Roberts, B TI Effects of differences in the pattern of amplitude envelopes across harmonics on auditory stream segregation SO HEARING RESEARCH LA English DT Article DE auditory stream segregation; timbre; complex sounds ID UNKNOWN DISTANCE FUNCTION; COMPLEX-TONE SEQUENCES; FUNDAMENTAL-FREQUENCY; MUSICAL TIMBRES; ATTRIBUTES; PROXIMITIES AB When a mixture of sound from many sources arrives at the ear, the auditory system attempts to segregate it into different perceptual streams. For sequences of sounds, the effects of basic acoustic properties (e.g., frequency separation, rate) on streaming are well understood, but much less is known about the effects of more complex acoustic attributes. Dynamic variations in frequency spectrum are known to have an important effect on the timbre of sounds. We investigated whether dynamic variations also affect stream segregation. Periodic tones were used, comprising harmonics 1-6, and presented in long sequences (ABA-ABA-...). Tones A and B always differed in fundamental frequency, a factor known to influence streaming, and had either the same or different patterns of spectral variation. The total amount of variation (spectral flux) was held constant. Listeners judged moment-by-moment the grouping of these sequences, and the measure used was the proportion of time a sequence was heard as segregated. We found that sequences of complex tones with different patterns of spectral variation are more likely to segregate when this results in different patterns of change in the frequency centroid over time (Experiments 1 and 2), but not when it does not (Experiment 3). (C) 2004 Published by Elsevier B.V. C1 Univ Birmingham, Sch Psychol, Birmingham B15 2TT, W Midlands, England. MRC, Cognit & Brain Sci Unit, Cambridge CB2 2EF, England. RP Cusack, R (reprint author), Univ Birmingham, Sch Psychol, Birmingham B15 2TT, W Midlands, England. EM rhodri.cusack@mrc-ebu.cam.ac.uk RI Cusack, Rhodri/A-2231-2010 OI Cusack, Rhodri/0000-0002-5234-7415 CR ANSTIS S, 1985, J EXP PSYCHOL HUMAN, V11, P257, DOI 10.1037/0096-1523.11.3.257 BEAUVOIS MW, 1991, Q J EXP PSYCHOL-A, V43, P517 BREGMAN AS, 1990, CAN J PSYCHOL, V44, P400, DOI 10.1037/h0084255 BREGMAN AS, 1971, J EXP PSYCHOL, V89, P244, DOI 10.1037/h0031163 Bregman AS., 1990, AUDITORY SCENE ANAL Carlyon RP, 2001, J EXP PSYCHOL HUMAN, V27, P115, DOI 10.1037//0096-1523.27.1.115 CUSACK R, 1998, ROLE DIFFERENCES TEM Cusack R, 2000, PERCEPT PSYCHOPHYS, V62, P1112, DOI 10.3758/BF03212092 Cusack R, 1999, PERCEPTION, V28, P1281, DOI 10.1068/p2804 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T GREY JM, 1977, J ACOUST SOC AM, V61, P1270, DOI 10.1121/1.381428 GREY JM, 1978, J ACOUST SOC AM, V63, P1493, DOI 10.1121/1.381843 Grimault N, 2002, J ACOUST SOC AM, V111, P1340, DOI 10.1121/1.1452740 Handel S, 1989, LISTENING INTRO PERC HARTMANN WM, 1991, MUSIC PERCEPT, V9, P155 IVERSON P, 1995, J EXP PSYCHOL HUMAN, V21, P751, DOI 10.1037//0096-1523.21.4.751 IVERSON P, 1993, J ACOUST SOC AM, V94, P2595, DOI 10.1121/1.407371 Krumhansl CL, 1989, STRUCTURE PERCEPTION KRUSKAL JB, 1964, PSYCHOMETRIKA, V29, P1, DOI 10.1007/BF02289565 KRUSKAL JB, 1964, PSYCHOMETRIKA, V29, P115, DOI 10.1007/BF02289694 McAdams S., 1979, Computer Music Journal, V3 Moore BCJ, 2002, ACTA ACUST UNITED AC, V88, P320 PLOMP R, 1964, J ACOUST SOC AM, V36, P1628, DOI 10.1121/1.1919256 Risset J.-C., 1999, PSYCHOL MUSIC Roberts B, 2002, J ACOUST SOC AM, V112, P2074, DOI 10.1121/1.1508784 Scheffers M. T. M., 1983, THESIS GRONINGEN U N SERAFINI S, 1993, THESIS U BRIT COLUMB SHEPARD RN, 1962, PSYCHOMETRIKA, V27, P125, DOI 10.1007/BF02289630 SHEPARD RN, 1962, PSYCHOMETRIKA, V27, P219, DOI 10.1007/BF02289621 SINGH PG, 1987, J ACOUST SOC AM, V82, P886, DOI 10.1121/1.395287 Singh PG, 1997, J ACOUST SOC AM, V102, P1943, DOI 10.1121/1.419688 STEIGER H, 1981, PERCEPT PSYCHOPHYS, V30, P425 VANNORDEN LPA, 1975, THESIS EINDHOVEN U T Vliegen J, 1999, J ACOUST SOC AM, V106, P938, DOI 10.1121/1.427140 Wang DL, 1996, COGNITIVE SCI, V20, P409 Wessel D. L., 1979, Computer Music Journal, V3, DOI 10.2307/3680283 NR 36 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2004 VL 193 IS 1-2 BP 95 EP 104 DI 10.1016/j.heares.2004.03.009 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 837UI UT WOS:000222666000011 PM 15219324 ER PT J AU Sohmer, H Freeman, S AF Sohmer, H Freeman, S TI Further evidence for a fluid pathway during bone conduction auditory stimulation SO HEARING RESEARCH LA English DT Article DE bone conduction; pressure; fluid pathway ID EAR AB This study was designed to evaluate the suggestion that during bone vibrator stimulation on skull bone (bone conduction auditory stimulation), a major connection between the site of the bone vibrator and the inner ear is a fluid pathway. A series of experiments were conducted on pairs of animals (rats or guinea pigs). The cranial cavities of each pair of animals were coupled by means of a saline filled plastic tube sealed into a craniotomy in the skull of each animal. In response to bone conduction click stimulation to the skull bone of animal I, auditory nerve-brainstem evoked responses could be recorded in animal II. Various procedures showed that these responses were initiated in animal II in response to audio-frequency sound pressures generated within the cranial cavity of animal I by the bone conduction stimulation and transferred to the cranial cavity of animal II through the fluid in the plastic tube: they were not responses to air conducted sounds generated by the bone vibrator, were not induced in animal II by vibrations conveyed to it by the plastic tube and were not electrically conducted activity from animal I. Exposing the fluid in the tube to air was not accompanied by any change in threshold. These experiments confirm that during bone conduction stimulation on the skull, audio-frequency sound pressures (alternating condensations and rarefactions) can be conveyed by a fluid pathway to the cochlea and stimulate it. (C) 2004 Elsevier B.V. All rights reserved. C1 Hadassah Med Sch, Dept Physiol, IL-91120 Jerusalem, Israel. RP Sohmer, H (reprint author), Hadassah Med Sch, Dept Physiol, POB 12272, IL-91120 Jerusalem, Israel. EM soluner@md.huji.ac.il CR Barany E, 1938, ACTA OTO-LARYNGOL, V26, P1 Bekesy G., 1960, EXPT HEARING Freeman S, 2000, HEARING RES, V146, P72, DOI 10.1016/S0378-5955(00)00098-8 KIRIKAE I, 1959, Acta Otolaryngol Suppl, V145, P1 Seaman RL, 2002, HEARING RES, V166, P214, DOI 10.1016/S0378-5955(02)00282-4 Sohmer H, 2000, HEARING RES, V146, P81, DOI 10.1016/S0378-5955(00)00099-X Sohmer H, 2004, HEARING RES, V187, P105, DOI 10.1016/S0378-5955(03)00335-6 Tonndorf J., 1966, ACTA OTO-LARYNGOL, V213, P1 TONNDORF J, 1968, ARCH OTOLARYNGOL, V87, P595 von Bekesy G, 1932, ANN PHYS-BERLIN, V13, P111 Wever EG, 1954, PHYSL ACOUSTICS YAMADA T, 1985, ELECTROEN CLIN NEURO, V60, P509, DOI 10.1016/0013-4694(85)91112-5 NR 12 TC 23 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2004 VL 193 IS 1-2 BP 105 EP 110 DI 10.1016/j.heares.2004.03.015 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 837UI UT WOS:000222666000012 PM 15219325 ER PT J AU McFarland, DJ Cacace, AT AF McFarland, DJ Cacace, AT TI Separating stimulus-locked and unlocked components of the auditory event-related potential SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Lake Ontario Hearing Meeting CY JUN, 2003 CL Rochester, NY HO Univ Rochester DE event-related potentials; event-related synchronization; event-related desynchronization; phase; spectral dynamics ID TIME-FREQUENCY ANALYSIS; EVOKED-RESPONSES; ADAPTIVE FILTER; BRAIN DYNAMICS; ODDBALL TASK; P300; DESYNCHRONIZATION; EEG; OSCILLATIONS; VARIABILITY AB A new method is evaluated for separating stimulus-locked and unlocked components of auditory event-related EEG activity. The new method uses a regression based subtraction procedure as a way to account for latency and amplitude variability within individual trials. It was applied using the oddball paradigm under conditions of active and passive listening and analyzed as spectral correlations (normalized differences) between post-stimulus epochs of standard, target or deviant stimulus conditions and silent prestimulus baseline activity. The regression-subtraction procedure accounted for a greater amount of variance than a method that uses linear subtraction alone. The major component of the response to auditory stimulation was an event-related synchronization in the delta and theta (24 Hz) frequency range. Event-related desynchronizations were also observed in the 10 Hz (alpha/mu) and in the 20-30 Hz (beta) frequency range. The regression based subtraction procedure provides better separation of stimulus-locked and unlocked components of event-related EEG activity then linear subtraction alone. Stimulus-locked and unlocked components show different patterns and topographies of effects related to attention and active discrimination. Studying both stimulus-locked and unlocked components of event-related EEG reactivity in the frequency domain provides a more comprehensive account of dynamic brain activity subserving auditory information processing. (C) 2004 Elsevier B.V. All rights reserved. C1 NYS Dept Hlth, Wadsworth Ctr, Lab Nervous Syst Disorders, Albany, NY 12201 USA. Albany Med Coll, Neurosci Inst, Dept Neurol, Albany, NY USA. RP McFarland, DJ (reprint author), NYS Dept Hlth, Wadsworth Ctr, Lab Nervous Syst Disorders, POB 509,Empire State Plaza, Albany, NY 12201 USA. EM mcfarlan@wadsworth.org CR Basar E., 1992, INDUCED RHYTHMS BRAI BASTIAANSEN H, 2003, CORTEX, V39, P967 BOGACZ R, 2002, 5069 SOC NEUR Buckner R. L., 1999, FUNCTIONAL MRI, P441 Bullock TH, 1992, INDUCED RHYTHMS BRAI, P1 Cacace AT, 2003, HEARING RES, V176, P25, DOI 10.1016/S0378-5955(02)00715-3 DAWSON GD, 1954, ELECTROEN CLIN NEURO, V6, P65, DOI 10.1016/0013-4694(54)90007-3 Dawsons GD., 1951, J PHYSL, V115, P2 Demiralp T, 1999, BRAIN LANG, V66, P129, DOI 10.1006/brln.1998.2028 DONCHIN E, 1988, BEHAV BRAIN SCI, V11, P357 Friston KJ, 2000, PHILOS T R SOC B, V355, P215, DOI 10.1098/rstb.2000.0560 Goncharova II, 2003, CLIN NEUROPHYSIOL, V114, P1580, DOI 10.1016/S1388-2457(03)00093-2 Grossberg S, 2000, TRENDS COGN SCI, V4, P233, DOI 10.1016/S1364-6613(00)01464-9 KALCHER J, 1995, ELECTROEN CLIN NEURO, V94, P381, DOI 10.1016/0013-4694(95)00040-6 Klimesch W, 1998, EVOKED POTENTIAL, V108, P123, DOI 10.1016/S0168-5597(97)00078-6 Klimesch W, 1999, BRAIN RES REV, V29, P169, DOI 10.1016/S0165-0173(98)00056-3 Kolev V, 1997, NEUROREPORT, V8, P2061, DOI 10.1097/00001756-199705260-00050 Lange DH, 1997, IEEE T BIO-MED ENG, V44, P791, DOI 10.1109/10.623048 Luck SJ, 2000, TRENDS COGN SCI, V4, P432, DOI 10.1016/S1364-6613(00)01545-X Makeig S, 2002, SCIENCE, V295, P690, DOI 10.1126/science.1066168 MELCHER JR, 1999, FUNCTIONAL MRI, P393 Naatanen R., 1992, ATTENTION BRAIN FUNC Naatanen R, 2003, INT J PSYCHOPHYSIOL, V48, P179, DOI 10.1016/S0167-8760(03)00053-9 Neuper C, 2001, INT J PSYCHOPHYSIOL, V43, P41, DOI 10.1016/S0167-8760(01)00178-7 Nishida S, 1997, EVOKED POTENTIAL, V104, P431, DOI 10.1016/S0168-5597(97)00048-8 Ohl FW, 2003, REV NEUROSCIENCE, V14, P35 Penny WD, 2002, TRENDS NEUROSCI, V25, P387, DOI 10.1016/S0166-2236(02)02202-6 Pfurtscheller G, 1999, CLIN NEUROPHYSIOL, V110, P1842, DOI 10.1016/S1388-2457(99)00141-8 Polich J, 2000, INT J PSYCHOPHYSIOL, V38, P3, DOI 10.1016/S0167-8760(00)00127-6 Press WH, 1988, NUMERICAL RECIPES C SERGEANT J, 1987, PSYCHOPHYSIOLOGY, V24, P272, DOI 10.1111/j.1469-8986.1987.tb00294.x Spencer KM, 1999, PSYCHOPHYSIOLOGY, V36, P220, DOI 10.1017/S0048577299971615 Sutoh T, 2000, CLIN NEUROPHYSIOL, V111, P858, DOI 10.1016/S1388-2457(99)00321-1 Truccolo WA, 2002, CLIN NEUROPHYSIOL, V113, P206, DOI 10.1016/S1388-2457(01)00739-8 WASTELL DG, 1977, ELECTROEN CLIN NEURO, V42, P835, DOI 10.1016/0013-4694(77)90238-3 WOODY CD, 1967, MED BIOL ENG, V5, P539, DOI 10.1007/BF02474247 Yordanova J, 2000, NEUROREPORT, V11, P1097, DOI 10.1097/00001756-200004070-00038 Yordanova J, 2001, PSYCHOPHYSIOLOGY, V38, P143, DOI 10.1017/S0048577201990079 Yordanova J, 2003, CLIN NEUROPHYSIOL, V114, P529, DOI 10.1016/S1388-2457(02)00415-7 NR 39 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2004 VL 193 IS 1-2 BP 111 EP 120 DI 10.1016/j.heares.2004.03.014 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 837UI UT WOS:000222666000013 PM 15219326 ER PT J AU Farris, HE Mason, AC Hoy, RR AF Farris, HE Mason, AC Hoy, RR TI Identified auditory neurons in the cricket Gryllus rubens: temporal processing in calling song sensitive units SO HEARING RESEARCH LA English DT Article DE sinusoidal amplitude modulation; temporal modulation transfer function; ornega cells; afferents; INT-1; AN2; ultrasound; Gryllus bimaculatus; teleogryllus oceanicus; calling song ID MODULATION TRANSFER-FUNCTIONS; PURE-TONE STIMULI; TELEOGRYLLUS-OCEANICUS; NERVE FIBERS; PHONOTACTIC BEHAVIOR; PROTHORACIC GANGLION; FLYING CRICKETS; INTENSITY DISCRIMINATION; ACOUSTIC COMMUNICATION; AMPLITUDE-MODULATION AB This study characterizes aspects of the anatomy and physiology of auditory receptors and certain interneurons in the cricket Gryllus rubens. We identified all U-shaped ascending interneuron tuned to frequencies > 15 kHz (57 dB SPL threshold at 20 kHz). Also identified were two intrasegmental 'omega'-shaped interneurons that were broadly tuned to 3-65 kHz, with best sensitivity to frequencies of the male calling song (5 kHz, 52 dB SPL). The temporal sensitivity of units excited by calling song frequencies were measured using sinusoidally amplitude modulated stimuli that varied in both modulation rate and depth, parameters that vary with song propagation distance and the number of singing males. Omega cells responded like low-pass filters with a time constant of 42 ms. In contrast, receptors significantly coded modulation rates up to the maximum rate presented (85 Hz). Whereas omegas required similar to65% modulation depth at 45 Hz (calling song AM) to elicit significant synchrony coding, receptors tolerated a similar to50% reduction in modulation depth up to 85 Hz. These results suggest that omega cells in G. rubens might not play a role in detecting song modulation per se at increased distances from a singing male. (C) 2004 Elsevier B.V. All rights reserved. C1 Cornell Univ, Sect Neurobiol & Behav, Ithaca, NY 14850 USA. RP Farris, HE (reprint author), Louisiana State Univ, Hlth Sci Ctr, Neurosci Ctr, 2020 Gravier St, New Orleans, LA 70112 USA. EM hfarri@lsuhse.edu; amason@utsc.utoronto.ca CR ALEXANDER R.D., 1960, AM I BIOL SCI, V7, P38 BENTLEY DR, 1972, ANIM BEHAV, V20, P478, DOI 10.1016/S0003-3472(72)80012-5 CASADAY GB, 1977, J COMP PHYSIOL, V121, P1 DOHERTY JA, 1985, J COMP PHYSIOL A, V156, P787, DOI 10.1007/BF00610831 DOHERTY JA, 1991, J INSECT BEHAV, V4, P67, DOI 10.1007/BF01092552 DOOLAN JM, 1985, J COMP PHYSIOL A, V157, P223, DOI 10.1007/BF01350029 EPPING WJM, 1990, HEARING RES, V45, P1, DOI 10.1016/0378-5955(90)90178-R ESCH H, 1980, J COMP PHYSIOL, V137, P27 Farris HE, 1997, J INSECT BEHAV, V10, P639, DOI 10.1007/BF02765384 Farris HE, 1998, PHYSIOL ENTOMOL, V23, P322, DOI 10.1046/j.1365-3032.1998.00093.x Farris HE, 2000, J ACOUST SOC AM, V107, P1727, DOI 10.1121/1.428398 FORREST TG, 1994, AM ZOOL, V34, P644 Frisina RD, 2001, HEARING RES, V158, P1, DOI 10.1016/S0378-5955(01)00296-9 FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y Givois V, 2000, J EXP BIOL, V203, P2529 GLEICH O, 1995, HEARING RES, V82, P81 Gollisch T, 2002, J NEUROSCI, V22, P10434 Heil P, 2001, J NEUROSCI, V21, P7404 HENNIG RM, 1988, J COMP PHYSIOL A, V163, P135, DOI 10.1007/BF00612003 HORSEMAN G, 1994, J COMP PHYSIOL A, V175, P389, DOI 10.1007/BF00199247 HUTCHINGS M, 1981, J COMP PHYSIOL, V143, P129 Imaizumi K, 1999, J NEUROSCI, V19, P1508 KAVANAGH MW, 1987, J EXP BIOL, V130, P107 KIM DO, 1990, HEARING RES, V45, P95, DOI 10.1016/0378-5955(90)90186-S KOHLRAUSCH A, 1993, J ACOUST SOC AM, V93, P1649, DOI 10.1121/1.406826 LONG GR, 1985, J ACOUST SOC AM, V78, P507, DOI 10.1121/1.392472 Machens CK, 2001, J NEUROSCI, V21, P3215 Mason AC, 1998, J EXP BIOL, V201, P1967 MCGILL WJ, 1968, J ACOUST SOC AM, V44, P576, DOI 10.1121/1.1911123 MOISEFF A, 1983, J COMP PHYSIOL, V152, P155 NOCKE H, 1971, Z VERGL PHYSIOL, V74, P272, DOI 10.1007/BF00297730 NOCKE H, 1972, J COMP PHYSIOL, V80, P141, DOI 10.1007/BF00696487 NOLEN TG, 1984, SCIENCE, V226, P992, DOI 10.1126/science.6505681 NOLEN TG, 1986, J COMP PHYSIOL A, V159, P423, DOI 10.1007/BF00604163 NOLEN TG, 1986, J COMP PHYSIOL A, V159, P441, DOI 10.1007/BF00604164 Palmer Alan R., 1995, P75, DOI 10.1016/B978-012505626-7/50005-4 Pollack G. S., 1998, COMP HEARING INSECTS, P139, DOI 10.1007/978-1-4612-0585-2_5 POLLACK GS, 1986, J COMP PHYSIOL A, V158, P549, DOI 10.1007/BF00603799 POLLACK GS, 1993, J COMP PHYSIOL A, V171, P759, DOI 10.1007/BF00213072 POPOV AV, 1977, J COMP PHYSIOL, V119, P111 POPOV AV, 1978, J COMP PHYSIOL, V126, P183 Prinz P, 2002, J COMP PHYSIOL A, V188, P577, DOI 10.1007/s00359-002-0333-7 REES A, 1989, J ACOUST SOC AM, V85, P1978, DOI 10.1121/1.397851 Romer H, 1998, COMP HEARING INSECTS, P63 ROMER H, 1986, J COMP PHYSIOL A, V159, P627, DOI 10.1007/BF00612036 Romer H, 2000, J COMP PHYSIOL A, V186, P181, DOI 10.1007/s003590050018 ROMER H, 1988, J COMP NEUROL, V275, P201, DOI 10.1002/cne.902750204 ROSE GJ, 1985, J NEUROPHYSIOL, V53, P446 Schildberger K., 1989, P423 SCHILDBERGER K, 1984, J COMP PHYSIOL, V155, P171, DOI 10.1007/BF00612635 Shaw KL, 2000, P ROY SOC B-BIOL SCI, V267, P577, DOI 10.1098/rspb.2000.1040 SIMMONS LW, 1988, ANIM BEHAV, V36, P380, DOI 10.1016/S0003-3472(88)80009-5 SMITH RL, 1985, J ACOUST SOC AM, V78, P1310, DOI 10.1121/1.392900 SMITH RL, 1980, PSYCHOPHYSICAL PHYSL, P312 SOBEL EC, 1994, SCIENCE, V263, P823, DOI 10.1126/science.263.5148.823 Stiedl O, 1997, J EXP ZOOL, V279, P43, DOI 10.1002/(SICI)1097-010X(19970901)279:1<43::AID-JEZ4>3.3.CO;2-4 Tougaard J, 1998, J COMP PHYSIOL A, V183, P563, DOI 10.1007/s003590050282 ULAGARAJ SM, 1975, NATURE, V253, P1278 VIEMEISTER NF, 1979, J ACOUST SOC AM, V66, P1364, DOI 10.1121/1.383531 Viemeister N.F., 1977, PSYCHOPHYSICS PHYSL, P419 WALKER THOMAS J., 1957, ANN ENT SOC AMER, V50, P626 WALKER TJ, 1962, EVOLUTION, V16, P407, DOI 10.2307/2406176 WALKER TJ, 1974, AM ZOOL, V14, P1137 WOHLERS DW, 1982, J COMP PHYSIOL, V146, P161 Wojtczak M, 1999, J ACOUST SOC AM, V106, P1917, DOI 10.1121/1.427940 Yost WA, 1997, AUDIT NEUROSCI, V3, P401 Zar J. H., 1999, BIOSTATISTICAL ANAL, V4th NR 67 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2004 VL 193 IS 1-2 BP 121 EP 133 DI 10.1016/j.heares.2004.02.008 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 837UI UT WOS:000222666000014 PM 15219327 ER PT J AU Duan, ML Qin, JX Laurell, G Olofsson, A Counter, SA Borg, E AF Duan, ML Qin, JX Laurell, G Olofsson, A Counter, SA Borg, E TI Dose and time-dependent protection of the antioxidant N-L-acetylcysteine against impulse noise trauma SO HEARING RESEARCH LA English DT Article DE antioxidant; impulse noise; cochlea; N-L-acetylcysteine; inner ear; rat; reactive oxygen species ID INDUCED HEARING-LOSS; OXYGEN SPECIES GENERATION; SUPEROXIDE-DISMUTASE; GUINEA-PIG; LIPID-PEROXIDATION; ACOUSTIC TRAUMA; IN-VITRO; GLUTATHIONE; COCHLEA; ELEVATION AB Noise-induced hearing loss is one of the most common causes of hearing disability, and at present there is no effective biological protection or cure. Firearms and some industrial equipment can generate very high levels of impulse noise, which is known to cause sensorineural hearing loss. It has been shown that antioxidants such as N-L-acetylcysteine (NAC) can protect the inner ear from oxidative damage. The present study investigates whether NAC (i.p.) can protect the cochlea from impulse noise trauma. Rats were exposed to 50 noise pulses at 160 dB SPL peak value. Electrophysiological hearing thresholds were assessed with auditory brainstem response (ABR) up to 4 weeks after noise exposure. Animals exposed to impulse noise, without treatment of NAC, had larger threshold shifts in the frequency range 4-40 kHz than animals injected with NAC. Hair cell loss was significantly reduced using a schedule of three NAC injections in the rats. These results suggest that NAC can partially protect the cochlea against impulse noise trauma. (C) 2004 Elsevier B.V. All rights reserved. C1 Karolinska Hosp, Ctr Hearing & Commun Res, SE-17176 Stockholm, Sweden. Karolinska Hosp, Dept Otolaryngol, SE-17176 Stockholm, Sweden. Karolinska Hosp, Dept Clin Neurosci, SE-17176 Stockholm, Sweden. Harvard Univ, Biol Labs, Dept Neurol, Cambridge, MA 02138 USA. Orebro Univ Hosp, Ahlsen Res Inst, S-70185 Orebro, Sweden. RP Duan, ML (reprint author), Karolinska Hosp, Ctr Hearing & Commun Res, Bldg M1, SE-17176 Stockholm, Sweden. EM maoli.duan@cfh.ki.se CR Borg E, 1995, SCAND AUDIOL S40, V24, P1 CHEN ZQ, 2003, IN PRESS ACTA OTOLAR Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 Clerici WJ, 1996, TOXICOL APPL PHARM, V136, P236, DOI 10.1006/taap.1996.0030 Clerici WJ, 1996, HEARING RES, V101, P14, DOI 10.1016/S0378-5955(96)00126-8 CLERICI WJ, 1995, HEARING RES, V84, P30, DOI 10.1016/0378-5955(95)00010-2 Duan ML, 2000, P NATL ACAD SCI USA, V97, P7597, DOI 10.1073/pnas.97.13.7597 DUAN ML, 1999, THESIS KAROLINSKA I Duan ML, 2001, ACTA OTO-LARYNGOL, V121, P21 Duan ML, 2002, HEARING RES, V169, P169, DOI 10.1016/S0378-5955(02)00484-7 ENGSTROM H, 1966, STRUCTURAL PATTERN O, P1 HABERMAN J, 1890, ARCH KLIN EXP OHR, V123, P905 Henderson D, 1999, ANN NY ACAD SCI, V884, P368, DOI 10.1111/j.1749-6632.1999.tb08655.x Hsu CJ, 1998, ORL J OTO-RHINO-LARY, V60, P314, DOI 10.1159/000027616 Kaygusuz I, 2001, HEARING RES, V162, P43, DOI 10.1016/S0378-5955(01)00365-3 Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3 Kopke RD, 2002, LARYNGOSCOPE, V112, P1515, DOI 10.1097/00005537-200209000-00001 LUZ GA, 1971, J ACOUST SOC AM, V49, P1770, DOI 10.1121/1.1912580 MCLELLAN LI, 1995, CARCINOGENESIS, V16, P2099, DOI 10.1093/carcin/16.9.2099 MELVIK JE, 1987, INORG CHIM A-BIOINOR, V137, P115, DOI 10.1016/S0020-1693(00)87128-5 Mu MY, 1997, DEV BRAIN RES, V99, P29, DOI 10.1016/S0165-3806(96)00194-0 Neuwelt EA, 2001, CANCER RES, V61, P7868 Ohinata H, 1998, JPN J PHYSIOL, V48, P189, DOI 10.2170/jjphysiol.48.189 Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5 Ohinata Y, 2003, BRAIN RES, V966, P265, DOI 10.1016/S0006-8993(02)04205-1 Ohinata Y, 2000, HEARING RES, V146, P28, DOI 10.1016/S0378-5955(00)00096-4 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P219, DOI 10.1159/000013845 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847 Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037 ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X SAUNDERS JC, 1985, J ACOUST SOC AM, V78, P833, DOI 10.1121/1.392915 SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 SPOENDLIN H, 1985, J OTOLARYNGOL, V14, P282 SPOENDLI.H, 1971, ACTA OTO-LARYNGOL, V71, P166, DOI 10.3109/00016487109125346 Sprong RC, 1998, AM J RESP CRIT CARE, V157, P1283 Usami S, 1996, BRAIN RES, V743, P337, DOI 10.1016/S0006-8993(96)01090-6 Wang J, 2002, NEUROSCIENCE, V111, P635 Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6 NR 39 TC 52 Z9 55 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2004 VL 192 IS 1-2 BP 1 EP 9 DI 10.1016/j.heares.2004.02.005 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 827IV UT WOS:000221893900001 PM 15157958 ER PT J AU Gopal, KV Gross, GW AF Gopal, KV Gross, GW TI Unique responses of auditory cortex networks in vitro to low concentrations of quinine SO HEARING RESEARCH LA English DT Article DE quinine; auditory cortex; inferior colliculus; frontal cortex; networks in vitro; multielectrode array; electrophysiologic activity ID OUTER HAIR-CELLS; NEURONAL NETWORKS; MICROELECTRODE ARRAYS; COCHLEAR POTENTIALS; SPINAL-CORD; TINNITUS; SALICYLATE; CULTURE; SYSTEM; OTOTOXICITY AB The anti-malarial drug quinine has several side effects including tinnitus. The aim of the study was to determine if cultured auditory networks growing on microelectrode arrays exhibited unique dynamic states when exposed to quinine. Eight auditory cortex networks (ACN), eight frontal cortex networks (FCN), and five inferior colliculus networks (ICN) were used in this study. Response of ACNs to quinine was biphasic, with an excitatory phase followed by inhibition. FCNs and ICNs revealed only inhibitory responses. The concentrations at which the spike rate was inhibited by 50% (IC50 mean +/-SE) were 42.5 +/- 13.9, 28.7 +/- 4.8 and 23.9 +/- 2.1 muM for ACNs, FCNs, and ICNs, respectively. Quinine increased the regularity and coordination of bursting in all three tissues. The increased burst pattern regularity of ICNs coupled with the excitatory responses seen only in ACNs between I and 10 muM show a unique susceptibility of auditory tissues to quinine that may be related to the underlying mechanism that triggers tinnitus-like activity. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ N Texas, Dept Speech & Hearing Sci, Denton, TX 76203 USA. Univ N Texas, Ctr Network Neurosci, Denton, TX 76203 USA. Univ N Texas, Dept Biol Sci, Denton, TX 76203 USA. RP Gopal, KV (reprint author), Univ N Texas, Dept Speech & Hearing Sci, POB 305010, Denton, TX 76203 USA. EM gopal@unt.edu CR Arnold W, 1996, ORL J OTO-RHINO-LARY, V58, P195 Baguley DM, 2002, BRIT MED BULL, V63, P195, DOI 10.1093/bmb/63.1.195 Chmurzynski L, 1997, J CHROMATOGR B, V693, P423, DOI 10.1016/S0378-4347(97)00074-1 Denk DM, 1997, ACTA OTO-LARYNGOL, V117, P825, DOI 10.3109/00016489709114208 Eggermont J. J., 1984, J LARYNGOL OTOL S, V9, P31 EGGERMONT JJ, 1990, HEARING RES, V48, P111, DOI 10.1016/0378-5955(90)90202-Z Eggermont JJ, 1995, MECH TINNITUS, P21 Eggermont JJ, 1998, HEARING RES, V117, P149, DOI 10.1016/S0378-5955(98)00008-2 Eggermont JJ, 2003, AURIS NASUS LARYNX, V30, pS7 Gopal KV, 2003, NEUROTOXICOL TERATOL, V25, P69, DOI 10.1016/S0892-0362(02)00321-5 Gopal KV, 1996, ACTA OTO-LARYNGOL, V116, P690, DOI 10.3109/00016489609137908 Gross G. W., 1997, Cellular Engineering, V2 GROSS GW, 1995, BIOSENS BIOELECTRON, V10, P553, DOI 10.1016/0956-5663(95)96931-N Gross GW, 1994, ENABLING TECHNOLOGIE, P277 GROSS GW, 1985, J NEUROSCI METH, V15, P243, DOI 10.1016/0165-0270(85)90105-0 GROSS GW, 1994, J NEUROSCI METH, V52, P73, DOI 10.1016/0165-0270(94)90059-0 Gross GW, 1991, NEURAL NETWORKS CONC, P47 HAZELL JWP, 1995, MECH TINNITUS House J W, 1981, Ciba Found Symp, V85, P204 Jarboe JK, 1999, HEARING RES, V132, P43, DOI 10.1016/S0378-5955(99)00031-3 JASTREBOFF PJ, 1993, BRIT J AUDIOL, V27, P7, DOI 10.3109/03005369309077884 JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 JASTREBOFF PJ, 1991, ARCH OTOLARYNGOL, V117, P1162 JUNG TTK, 1993, OTOLARYNG CLIN N AM, V26, P791 Kaltenbach J A, 2000, J Am Acad Audiol, V11, P125 KARLSSON KK, 1990, NEUROSCI LETT, V116, P101, DOI 10.1016/0304-3940(90)90393-N KARLSSON KK, 1991, ACTA OTO-LARYNGOL, V111, P500, DOI 10.3109/00016489109138375 KARLSSON KK, 1991, HEARING RES, V53, P95, DOI 10.1016/0378-5955(91)90216-V KAY IS, 1993, EUR ARCH OTO-RHINO-L, V250, P51 Keefer EW, 2001, NEUROTOXICOLOGY, V22, P3, DOI 10.1016/S0161-813X(00)00014-0 Keefer EW, 2001, BIOSENS BIOELECTRON, V16, P513, DOI 10.1016/S0956-5663(01)00165-8 Keefer EW, 2001, J NEUROPHYSIOL, V86, P3030 Kenmochi M, 1997, HEARING RES, V113, P110, DOI 10.1016/S0378-5955(97)00137-8 Lin X, 1998, J NEUROPHYSIOL, V79, P2503 Lockwood AH, 2002, NEW ENGL J MED, V347, P904, DOI 10.1056/NEJMra013395 Lockwood AH, 1998, NEUROLOGY, V50, P114 MIEKLE MB, 1995, MECH TINNITUS, P181 MOLLER AR, 1984, ANN OTO RHINOL LARYN, V93, P39 MOLLER AR, 1995, MECH TINNITUS, P207 MOLLER AR, 1992, LARYNGOSCOPE, V102, P1165 Morefield SI, 2000, BIOSENS BIOELECTRON, V15, P383, DOI 10.1016/S0956-5663(00)00095-6 Ochi K, 1997, HEARING RES, V105, P105, DOI 10.1016/S0378-5955(96)00201-8 Pancrazio JJ, 2003, BIOSENS BIOELECTRON, V18, P1339, DOI 10.1016/S0956-5663(03)00092-7 PUEL JL, 1990, OTOLARYNG HEAD NECK, V102, P66 RANSOM BR, 1977, J NEUROPHYSIOL, V40, P1132 SMITH DI, 1985, AM J OTOLARYNG, V6, P280, DOI 10.1016/S0196-0709(85)80056-9 TONNDORF J, 1981, ACTA OTO-LARYNGOL, V91, P469, DOI 10.3109/00016488109138530 WOLF L R, 1992, Journal of Emergency Medicine, V10, P295, DOI 10.1016/0736-4679(92)90336-R XIAO Y, 2003, BRAIN RES, V973, P151 XIAO Y, 2003, ALCOHOL, V30, P167 Zheng JF, 2001, HEARING RES, V154, P124, DOI 10.1016/S0378-5955(01)00229-5 NR 51 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2004 VL 192 IS 1-2 BP 10 EP 22 DI 10.1016/j.heares.2004.01.016 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 827IV UT WOS:000221893900002 PM 15157959 ER PT J AU Searchfield, GD Munoz, DJB Thorne, PR AF Searchfield, GD Munoz, DJB Thorne, PR TI Ensemble spontaneous activity in the guinea-pig cochlear nerve SO HEARING RESEARCH LA English DT Article DE cochlea; guinea-pig; round window; spontaneous activity; tinnitus ID LOW-SIDE SUPPRESSORS; INNER HAIR CELL; ROUND-WINDOW; 2-TONE SUPPRESSION; AVERAGE SPECTRUM; UNIT RESPONSE; FIBERS; INHIBITION; RECEPTORS; AFFERENT AB Spectral analysis of electrical noise recorded from the round window (RW) of the cochlea is referred to as the ensemble spontaneous activity (ESA) of the cochlear nerve. The ESA is considered to represent the summed spontaneous activity of single fibers of the auditory nerve and changes in the spectral characteristics of the ESA have been observed in humans with tinnitus. Experiments were undertaken to determine the relationship of the ESA to auditory neurotransmission. The ESA consisted of energy centered at approximately 900 Hz, similar to the spectral peak of single auditory neuron discharges. The amplitude of the ESA was correlated with good auditory sensitivity in the 12-30 kHz region of the cochlea. Constant pure tones of 12-22 kHz suppressed the ESA reducing its amplitude in a frequency and intensity dependent manner implying that the ESA recorded at the RW is generated or dominated by neurons in the basal region of the cochlea. The ESA was significantly suppressed by round window perfusion of the P2X receptor agonist adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS) (10 mM) the glutamate receptor antagonist 6-7-dinitroquinoxaline-2,3-dione (DNQX) (1 mM), and the sodium channel antagonist tetrodotoxin (TTX) (20 muM). Following intravenous furosemide injection (40 mg/kg) reduction and recovery of the ESA correlated with similar changes in the endocochlear potential (EP). Following DNQX and ATPgammaS an additional spectral peak at 200 Hz was often observed. This peak has been postulated to be a correlate of tinnitus in humans but had not previously been observed in a guinea-pig model of tinnitus. These data confirm the spectral characteristics of the ESA in guinea-pigs and show it is dependent on the sensitivity of the auditory nerve and intact auditory neurotransmission. In addition these experiments support the view that the ESA represents summed spontaneous neural activity in the cochlea and provide a platform for studies of the influence of ototoxic compounds on the spontaneous neural outflow of the cochlea as a model of tinnitus. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Auckland, Discipline Audiol, Fac Med & Hlth Sci, Auckland 1, New Zealand. Univ Auckland, Div Physiol, Fac Med & Hlth Sci, Auckland 1, New Zealand. RP Searchfield, GD (reprint author), Univ Auckland, Discipline Audiol, Fac Med & Hlth Sci, Private Bag 92019, Auckland 1, New Zealand. EM gsearchfield@auckland.ac.nz CR ARTHUR RM, 1971, J PHYSIOL-LONDON, V212, P593 BROWN MC, 1983, J ACOUST SOC AM, V73, P1662, DOI 10.1121/1.389387 Cai YD, 1996, HEARING RES, V96, P94, DOI 10.1016/0378-5955(96)00034-2 Cai YD, 1996, HEARING RES, V96, P126, DOI 10.1016/0378-5955(96)00036-6 Cai YD, 1996, HEARING RES, V96, P113, DOI 10.1016/0378-5955(96)00035-4 Cazals Y, 1998, J NEUROPHYSIOL, V80, P2113 Cazals Y, 1996, HEARING RES, V101, P81, DOI 10.1016/S0378-5955(96)00135-9 CHEATHAM MA, 1990, HEARING RES, V50, P193, DOI 10.1016/0378-5955(90)90045-Q CHUNG A, 1999, THESIS U AUCKLAND AU DACOSTA DL, 1997, EXP BRAIN RES, V116, P249 DOLAN DF, 1990, J ACOUST SOC AM, V87, P2621, DOI 10.1121/1.399054 EYBALIN M, 1993, PHYSIOL REV, V73, P309 Geisler CD, 1997, J ACOUST SOC AM, V102, P430, DOI 10.1121/1.419765 Ghiz AF, 2001, HEARING RES, V162, P105, DOI 10.1016/S0378-5955(01)00375-6 HENRY KR, 1992, HEARING RES, V63, P1, DOI 10.1016/0378-5955(92)90066-V HILL KG, 1989, HEARING RES, V39, P75, DOI 10.1016/0378-5955(89)90083-X Hill KG, 1998, HEARING RES, V115, P129, DOI 10.1016/S0378-5955(97)00187-1 Housley GD, 1999, J NEUROSCI, V19, P8377 JUHN SK, 1988, ACTA OTOLARYNGOL S S, V457, P43 KIANG NYS, 1976, ELECTROCOCHLEOGRAPHY Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 Martin W.H., 1995, MECH TINNITUS, P163 MARTIN WH, 1993, LARYNGOSCOPE, V103, P600 MARTIN WH, 1996, 5 INT TINN SEM AM TI, P127 McMahon CM, 2002, HEARING RES, V173, P134, DOI 10.1016/S0378-5955(02)00281-2 MEIKLE MB, 1994, ASS RES OT ST PET MUNOZ DJB, 1995, HEARING RES, V90, P106, DOI 10.1016/0378-5955(95)00152-3 POWERS NL, 1995, NATURE, V375, P585, DOI 10.1038/375585a0 PRIJS VF, 1986, HEARING RES, V21, P127, DOI 10.1016/0378-5955(86)90034-1 Robertson D, 2002, AUDIOL NEURO-OTOL, V7, P62, DOI 10.1159/000046866 ROBERTSON D, 1984, HEARING RES, V15, P113, DOI 10.1016/0378-5955(84)90042-X Ruel J, 1999, J PHYSIOL-LONDON, V518, P667, DOI 10.1111/j.1469-7793.1999.0667p.x SACHS MB, 1968, J ACOUST SOC AM, V43, P1120, DOI 10.1121/1.1910947 SCHREINER CE, 1987, 3 INT TINN SEM HARSC, P100 SEWELL WF, 1984, J PHYSIOL-LONDON, V347, P685 VERSNEL H, 1992, HEARING RES, V59, P157, DOI 10.1016/0378-5955(92)90112-Z Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4 NR 37 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2004 VL 192 IS 1-2 BP 23 EP 35 DI 10.1016/j.heares.2004.02.006 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 827IV UT WOS:000221893900003 PM 15157960 ER PT J AU Zenner, HP Freitag, HG Linti, C Steinhardt, U Jorge, JR Preyer, S Mauz, PS Surth, M Planck, H Baumann, I Lehner, R Eiber, A AF Zenner, HP Freitag, HG Linti, C Steinhardt, U Jorge, JR Preyer, S Mauz, PS Surth, M Planck, H Baumann, I Lehner, R Eiber, A TI Acoustomechanical properties of open TTP (R) titanium middle ear prostheses SO HEARING RESEARCH LA English DT Article DE passive middle ear prosthesis; middle ear model; titanium prosthesis ID OSSICULAR REPLACEMENT PROSTHESES; COMPOSITE PROSTHESES; OSSICULOPLASTY; RECONSTRUCTION; SURGERY; TYMPANOPLASTY; IMPLANTATION; CEMENT; RABBIT; CHAIN AB Objective: The purpose of the Study was to identify acoustcomechanical properties of various biostable and biocompatible materials to create a middle ear prosthesis with the following properties: (i) improved handling including a good view of the head of the stapes or footplate and adjustable length, (ii) improved acoustical characteristics that are adequate for ossiculoplastic. The identified material should serve to build CE and FDA approved prostheses for clinical use in patients. Methods: Test models made of Teflon, polyetheretherketone, polyethylenterephtalate, polysulfone, gold, Al2O3 ceramics, carbon and titanium were investigated for their potential to fulfill the requirements. Acoustical properties were investigated by laser Doppler velocimetry (LDV) in mechanical middle ear models (MMM). Measured data were fed in to a recently created computer model of the middle ear (multibody systems approach, MBS). Using computer-aided design (CAD) measured and computed data allowed creation and fine precision of titanium prostheses (Tubingen Titanium Protheses, TTP(R)). Their handling was tested in temporal bones. Acoustomechanical properties were investigated using the MBS and mechanical middle ear models. Main outcome measures: Input impedance, mass, stiffness, and geometry of test models and prostheses were determined. Furthermore, their influence on the intraprosthetic transfer functions and on coupling to either tympanic membrane or stapes was investigated. Results: Final results were FDA- and CE-approved filigreed titanium prostheses with an open head that fulfilled the four requirements detailed above. The prostheses (TTP(R)) were developed in defined lengths of between 1.75 and 3.5 mm (partial) and 3.0 and 6.5 mm (total) as well as in adjustable lengths (TTP-Vario((R))). Conclusions: The results suggest acoustomechanical advantages of TTPs((R)) because they combine a significantly low mass with high stiffness. In contrast to closed prostheses, the open head and filigreed design allow an excellent view of the prosthesis foot during coupling to the head or footplate of stapes, contributing to an improved intraoperative reliability of prosthesis coupling. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Tubingen, Dept Otolaryngol, Tubingen, Germany. Univ Stuttgart, Inst B Mech, D-7000 Stuttgart, Germany. Univ Stuttgart, Inst Text Technol & Engn, D-7000 Stuttgart, Germany. RP Zenner, HP (reprint author), HNO Klin, D-72076 Tubingen, Germany. EM zenner@uni-tuebingen.de CR APPLEBAUM EL, 1993, LARYNGOSCOPE, V103, P330 BOJRAB DI, 1994, OTOLARYNG CLIN N AM, V27, P759 EIBER A, 2000, FUNCTION MECH NORMAL Eiber A, 1997, HNO, V45, P538, DOI 10.1007/s001060050128 Eiber A, 1999, AUDIOL NEURO-OTOL, V4, P178, DOI 10.1159/000013838 EIBER A, 1999, P EUROMECH C 404 LIS, P729 FISCH U, 1994, OTOLARYNG CLIN N AM, V27, P785 GEYER G, 1993, EUR ARCH OTO-RHINO-L, V250, P253 GOLDENBERG RA, 1992, LARYNGOSCOPE, V102, P1091, DOI 10.1288/00005537-199210000-00001 GOLDENBERG RA, 1994, OTOLARYNG CLIN N AM, V27, P727 GOODE L, 1994, AM J OTOL, V17, P813 HELMS J, 1995, LARYNGO RHINO OTOL, V74, P465, DOI 10.1055/s-2007-997782 Hudde H, 1997, ACUSTICA, V83, P535 HUTTENBRINK KB, 1994, HNO, V42, P49 JAHNKE K, 1987, HNO, V35, P1 JAHNKE K, 1992, LARYNGO RHINO OTOL, V71, P1, DOI 10.1055/s-2007-997234 KESSLER A, 1994, OTOLARYNG HEAD NECK, V110, P302, DOI 10.1016/S0194-5998(94)70773-1 Kinney SE, 1997, OTOLARYNG HEAD NECK, V117, P431 Maassen MM, 1998, AM J OTOL, V19, P693 MACIAS JD, 1995, AM J OTOL, V16, P718 MANLEY GA, 1995, J ROY SOC MED, V88, P367 MCELVEEN JT, 1994, OTOLARYNG CLIN N AM, V27, P777 MCELVEEN JT, 1995, OTOLARYNG HEAD NECK, V113, P420, DOI 10.1016/S0194-5998(95)70079-X Meister H, 1997, HNO, V45, P81, DOI 10.1007/s001060050093 Mitchell Glenn W., 1994, Emergency Medicine Clinics of North America, V12, P787 PUSALKAR A, 1996, KNOCHENERSATZ MITTEL, V1, P55 Rodriguez Jorge J, 1997, HNO, V45, P997, DOI 10.1007/s001060050185 Rust KR, 1996, AM J OTOL, V17, P371 Schiehlen W., 1993, ADV MULTIBODY SYSTEM SCHURING AG, 1994, OTOLARYNG CLIN N AM, V27, P747 Schwager K, 1998, ORL J OTO-RHINO-LARY, V60, P322, DOI 10.1159/000027618 Schwager K, 1998, AM J OTOL, V19, P569 SILVERSTEIN H, 1993, LARYNGOSCOPE, V103, P94 TREACE HT, 1994, OTOLARYNG CLIN N AM, V27, P655 WEHRS RE, 1994, OTOLARYNG CLIN N AM, V27, P677 Zenner HP, 2001, OTOL NEUROTOL, V22, P582, DOI 10.1097/00129492-200109000-00004 NR 36 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2004 VL 192 IS 1-2 BP 36 EP 46 DI 10.1016/j.heares.2004.02.004 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 827IV UT WOS:000221893900004 PM 15157961 ER PT J AU Valk, WL Wit, HP Albers, FWJ AF Valk, WL Wit, HP Albers, FWJ TI Evaluation of cochlear function in an acute endolymphatic hydrops model in the guinea pig by measuring low-level DPOAEs SO HEARING RESEARCH LA English DT Article DE endolymph; injection; hydrops; Menier's disease; Basilar membrane; compliance ID PRODUCT OTOACOUSTIC EMISSIONS; OUTER-HAIR-CELL; INNER-EAR; MENIERES-DISEASE; ARTIFICIAL ENDOLYMPH; AUDITORY-SYSTEM; PRESSURE; COMPARTMENTS; MECHANICS; STIFFNESS AB During and after microinjection of artificial endolymph into scala media of the guinea pig, the 2f(1) - f(2)-DPOAE at 4.5 kHz generated by low-level primaries was recorded. Reproducible changes were measured when 1.1 mul of artificial endolymph was injected at a rate of 1.65 nl/s (1.53-1.83). This volume corresponds with an acute endolymphatic hydrops of 23%. After the onset of injection the inner ear pressure immediately increased to a mean higher level of 22 Pa, whereas the 2f(1) - f(2)-amplitude and -phase did not change for about 1 min. Thereafter, the amplitude decreased 2.6 dB (+/-0.7) on average and slowly regained almost its initial value, with recovery frequently starting within the period of injection. In an attempt to explain the observed changes in 2f(1) - f(2)-amplitude the basilar membrane displacement towards scala tympani at the 2f(1) - f(2) generation site is estimated to be 19 nm for a 1.1 mul increase of endolymph volume. A small deflection of the outer hair cell stereocilia and as a consequence a change in cell conductance may explain the 2f(1) - f(2)-amplitude changes. However, the precise mechanism of cochlear function change caused by endolymph volume increase (hydrops) remains to be elucidated. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Groningen Hosp, Dept Otorhinolaryngol, NL-9700 RB Groningen, Netherlands. RP Valk, WL (reprint author), Univ Groningen Hosp, Dept Otorhinolaryngol, POB 30-001, NL-9700 RB Groningen, Netherlands. EM w.l.valk@kno.azg.nl CR Alam SA, 1998, TOHOKU J EXP MED, V186, P79, DOI 10.1620/tjem.186.79 Avan P, 1998, EUR J NEUROSCI, V10, P1764, DOI 10.1046/j.1460-9568.1998.00188.x Bekesy G., 1960, EXPT HEARING Bian L, 2002, J ACOUST SOC AM, V112, P198, DOI 10.1121/1.1488943 BOHMER A, 1993, ACTA OTO-LARYNGOL, P3 Brownell WE, 2001, ANNU REV BIOMED ENG, V3, P169, DOI 10.1146/annurev.bioeng.3.1.169 Cianfrone G, 2000, SCAND AUDIOL, V29, P111, DOI 10.1080/010503900424525 DALLOS P, 2003, J ASS RES OTOLARYNGO de Boer E., 1996, COCHLEA, P258 DECORY L, 1990, LECT NOTES BIOMATH, V87, P270 Emmerich E, 2000, HEARING RES, V148, P9, DOI 10.1016/S0378-5955(00)00101-5 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 GUMMER AW, 1981, J ACOUST SOC AM, V70, P1298, DOI 10.1121/1.387144 Hallpike C. S., 1938, J LARYNG, V53, P625, DOI 10.1017/S0022215100003947 HORNER KC, 1985, J ACOUST SOC AM, V78, P1603, DOI 10.1121/1.392798 HORNER KC, 1991, EUR ARCH OTO-RHINO-L, V248, P302 JIN XM, 1990, ACTA OTO-LARYNGOL, V110, P334 Kakigi A, 1998, HEARING RES, V116, P113, DOI 10.1016/S0378-5955(97)00209-8 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KIM DO, 1986, HEARING RES, V22, P105, DOI 10.1016/0378-5955(86)90088-2 KIMURA RS, 1965, PRACT-OTO-RHINO-LARY, V27, P343 Kusuki M, 1998, ACTA OTO-LARYNGOL, P78 LEWIS FR, 1985, VERTEBRATE INNER, P75 Magliulo G, 1996, Acta Otorhinolaryngol Ital, V16, P261 Magliulo G, 2001, LARYNGOSCOPE, V111, P102, DOI 10.1097/00005537-200101000-00018 MARTIN GK, 1989, MENIERES DIS PATHOGE, P205 Meniere P, 1861, GAZ MED PARIS, V16, P597 MILLS DM, 1993, J ACOUST SOC AM, V94, P2108, DOI 10.1121/1.407483 Mills DM, 1997, J ACOUST SOC AM, V102, P413, DOI 10.1121/1.419763 Naidu RC, 1998, HEARING RES, V124, P124, DOI 10.1016/S0378-5955(98)00133-6 Okubo H, 1997, ACTA OTO-LARYNGOL, P59 Perez N, 1997, EUR ARCH OTO-RHINO-L, V254, P329, DOI 10.1007/BF02630725 Rask-Andersen H, 1999, HEARING RES, V138, P81, DOI 10.1016/S0378-5955(99)00153-7 Robles L, 2001, PHYSIOL REV, V81, P1305 RUGGERO MA, 1990, J ACOUST SOC AM, V87, P1612, DOI 10.1121/1.399409 Salt AN, 1997, HEARING RES, V107, P29, DOI 10.1016/S0378-5955(97)00018-X Shi Yong-Bing, 1997, Journal of Basic and Clinical Physiology and Pharmacology, V8, P141 Shinomori Y, 2001, ANN OTO RHINOL LARYN, V110, P91 SIRJANI DB, 2003, COCHLEAR RESPONSES A, P57 TONNDORF J, 1976, ARCH OTO-RHINO-LARYN, V212, P293, DOI 10.1007/BF00453677 TONNDORF J., 1957, ANN OTOL RHINOL AND LARYNGOL, V66, P766 vanEmst MG, 1997, HEARING RES, V114, P93, DOI 10.1016/S0378-5955(97)00156-1 Wit HP, 2000, HEARING RES, V145, P82, DOI 10.1016/S0378-5955(00)00078-2 Wit HP, 1999, HEARING RES, V132, P131, DOI 10.1016/S0378-5955(99)00048-9 Withnell RH, 2003, HEARING RES, V178, P106, DOI 10.1016/S0378-5955(03)00064-9 Zhang M, 1997, J ACOUST SOC AM, V102, P1032, DOI 10.1121/1.419856 NR 46 TC 15 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2004 VL 192 IS 1-2 BP 47 EP 56 DI 10.1016/j.heares.2003.12.021 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 827IV UT WOS:000221893900005 PM 15157962 ER PT J AU Sugawara, M Ishida, Y Wada, H AF Sugawara, M Ishida, Y Wada, H TI Mechanical properties of sensory and supporting cells in the organ of Corti of the guinea pig cochlea - study by atomic force microscopy SO HEARING RESEARCH LA English DT Article DE Hensen's cells; Deiters' cells; inner hair cells; mechanical properties; atomic force microscopy ID OUTER HAIR-CELLS; INNER-EAR; ACTIN; LATTICE AB Mammalian hearing is refined by amplification of the motion of the cochlear partition. To understand the cochlear amplification, mechanical models of the cochlea have been used. When the dynamic behavior of the cochlea is analyzed by a model, elastic properties of the cells in the organ of Corti must be determined in advance. Recently, elastic properties of outer hair cells (OHCs) and pillar cells have been elucidated. However, those of other cells have not yet been clarified. Therefore, in this study, using an atomic force microscope (AFM), elastic properties of Hensen's cells, Deiters' cells and inner hair cells (IHCs) in the apical turn and those in the basal and second turns were estimated. As a result, slopes indicative of cell elastic properties were (8.9 +/- 5.8) x 10(3) m(-1) for Hensen's cells (n = 30) (5.5 +/- 15.3) x 10(3) m(-1) for Deiters' cells (n = 20) and (3.8 +/- 2.6) x 10(3) m(-1) for IHCs (n = 20), and Young's modulus were 0.69 +/- 0.45 kPa for Hensen's cells and 0.29 +/- 0.20 kPa for IHCs. There was no significant difference between elastic properties of each type of cell in the apical turn and those in the basal and second turns. However, it was found that there is a significant difference between Young's moduli of cells estimated in this study and those of the OHCs and pillar cells reported previously. (C) 2004 Elsevier B.V. All rights reserved. C1 Tohoku Univ, Dept Bioengn & Robot, Sendai, Miyagi 9808579, Japan. RP Wada, H (reprint author), Tohoku Univ, Dept Bioengn & Robot, Aoba Yama 01, Sendai, Miyagi 9808579, Japan. EM wada@cc.mech.tohoku.ac.jp CR BONKE F, 1999, ORL, V61, P305 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 DAVID ZZH, 2000, HEARING RES, V145, P156 Dimitriadis EK, 2002, BIOPHYS J, V82, P2798 HOLLEY MC, 1990, J CELL SCI, V96, P283 HOLLEY MC, 1992, J CELL SCI, V102, P569 HOLLEY MC, 1988, NATURE, V335, P635, DOI 10.1038/335635a0 KACHAR B, 1986, NATURE, V322, P365, DOI 10.1038/322365a0 Kolston PJ, 1999, P NATL ACAD SCI USA, V96, P3676, DOI 10.1073/pnas.96.7.3676 Kolston PJ, 1996, J ACOUST SOC AM, V99, P455, DOI 10.1121/1.414557 MAHENDRASINGAM S, 1998, HEARING RES, P151 NISHIDA Y, 1993, HEARING RES, V65, P274, DOI 10.1016/0378-5955(93)90220-U Radmacher M, 1996, BIOPHYS J, V70, P556 Radmacher M, 1997, IEEE ENG MED BIOL, V16, P47, DOI 10.1109/51.582176 SANTI PA, 1988, PHYSL EAR, P173 SLEPECKY N, 1987, CELL TISSUE RES, V248, P63, DOI 10.1007/BF01239963 SLEPECKY N, 1983, HEARING RES, V10, P359, DOI 10.1016/0378-5955(83)90098-9 SLEPECKY NB, 1992, HEARING RES, V57, P201, DOI 10.1016/0378-5955(92)90152-D Sneddon I. N., 1965, INT J ENG SCI, V3, P47, DOI DOI 10.1016/0020-7225(65)90019-4 Steele CR, 1999, ORL J OTO-RHINO-LARY, V61, P238, DOI 10.1159/000027681 Sugawara M, 2002, HEARING RES, V174, P222, DOI 10.1016/S0378-5955(02)00696-2 Tolomeo JA, 1997, BIOPHYS J, V73, P2241 Wada H, 2003, HEARING RES, V177, P61, DOI 10.1016/S0378-5955(02)00798-0 Wu HW, 1998, SCANNING, V20, P389 NR 24 TC 17 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2004 VL 192 IS 1-2 BP 57 EP 64 DI 10.1016/j.heares.2004.01.014 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 827IV UT WOS:000221893900006 PM 15157963 ER PT J AU Heydt, JL Cunningham, LL Rubel, EW Coltrera, MD AF Heydt, JL Cunningham, LL Rubel, EW Coltrera, MD TI Round window gentamicin application: an inner ear hair cell damage protocol for the mouse SO HEARING RESEARCH LA English DT Article DE aminoalycoside; ototoxicity; hair cell; damage protocol ID AMINOGLYCOSIDE OTOTOXICITY; GUINEA-PIG; REGENERATION; RECOVERY; COCHLEA; MICE; ANTIBIOTICS; TOXICITY; STRAINS AB It is important to develop an inner ear damage protocol for mice that avoids systemic toxicity and produces damage in a relatively rapid fashion, allowing for study of early cellular and molecular mechanisms responsible for hair cell death and those that underlie the lack of hair cell regeneration in mammals. Ideally, this damage protocol would reliably produce both partial and complete lesions of the sensory epithelium. We present a method for in vivo induction of hair cell damage in the mouse via placement of gentamicin-soaked Gelfoam in the round window niche of the inner ear, an adaptation of a method developed to study hair cell regeneration in chicks. A total of 82 subjects underwent the procedure. Variable doses of gentamicin were used (25, 50, 100 and 200 mug). Saline-soaked Gelfoam, sham-operations and the contralateral, non-operated cochlea were used as controls. Survival periods were 1, 3 and 14 days. Damage was assessed on scanning electron microscopy. We found that this method produces relatively rapid hair cell damage that varies with dose and can extend the entire length of the sensory epithelium. In addition, this protocol produces no systemic toxicity and preserves the contralateral ear as a control. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Washington, Dept Otolaryngol Head & Neck Surg, Seattle, WA 98195 USA. RP Coltrera, MD (reprint author), Univ Washington, Dept Otolaryngol Head & Neck Surg, Box 356515, Seattle, WA 98195 USA. EM coltrera@u.washington.edu CR BHAVE SA, 1995, J NEUROSCI, V15, P4618 CRUZ RM, 1987, ARCH OTOLARYNGOL, V113, P1058 Cunningham LL, 2002, J NEUROSCI, V22, P8532 Dodson HC, 1997, J NEUROCYTOL, V26, P541, DOI 10.1023/A:1015434524040 DUMAS G, 1982, ACTA OTO-LARYNGOL, V94, P203, DOI 10.3109/00016488209128906 FLINT P, 1988, OTOLARYNG HEAD NECK, V99, P380 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X GIROD DA, 1991, LARYNGOSCOPE, V101, P1139 HARVEY D, 1989, THESIS U NOTTINGHAM HAWKINS JE, 1969, J INFECT DIS, V119, P417 HAWKINS JE, 1981, HISTOPATHOLOGY COCHL Hequembourg S, 2001, JARO, V2, P118 Husmann KR, 1998, HEARING RES, V125, P109, DOI 10.1016/S0378-5955(98)00137-3 Janas JD, 1995, HEARING RES, V92, P17, DOI 10.1016/0378-5955(95)00190-5 KIMURA RS, 1988, ANN OTO RHINOL LARYN, V97, P577 LEE KS, 1991, ANN OTO RHINOL LARYN, V100, P355 Lenoir M, 1983, Acta Otolaryngol Suppl, V405, P1 LIPPE WR, 1991, HEARING RES, V56, P203, DOI 10.1016/0378-5955(91)90171-5 MATZ GJ, 1980, AM J OTOL, V1, P169 Muller M, 1998, HEARING RES, V120, P25, DOI 10.1016/S0378-5955(98)00049-5 O'Leary SJ, 1998, ANN OTO RHINOL LARYN, V107, P220 SCHACHT J, 1993, OTOLARYNG CLIN N AM, V26, P845 SULLIVAN MJ, 1987, HEARING RES, V31, P161, DOI 10.1016/0378-5955(87)90122-5 Wanamaker HH, 1998, AM J OTOL, V19, P170 Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3 Zheng JY, 1999, IEEE COMPUT GRAPH, V19, P6, DOI 10.1109/38.761541 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 28 TC 20 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2004 VL 192 IS 1-2 BP 65 EP 74 DI 10.1016/j.heares.2004.01.006 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 827IV UT WOS:000221893900007 PM 15157964 ER PT J AU Santi, PA Blair, A Bohne, BA Lukkes, J Nietfeld, J AF Santi, PA Blair, A Bohne, BA Lukkes, J Nietfeld, J TI The digital cytocochleogram SO HEARING RESEARCH LA English DT Article ID ORGAN; CORTI AB The Mouse Cochlea Database (MCD) is a collection of resources that include digital images and bibliographic information on the mouse cochlea and is available at: http://mousecochlea.ccgb.uinn.edu. The purpose of this communication is to report oil the development of one MCD resource: the Digital Cytocochleogram. A cytocochleogram is a graphic representation of the anatomical state of the hair cells along the complete width and length of the organ of Corti. The Digital Cytocochleogram provides Internet users with a complete collection of digital images of one or more surface preparations of the mouse organ of Corti from which morphometric information can be obtained. By moving a mouse driven, screen cursor over a digital image, the location and approximate frequency region of the anatomical structure is displayed. Users can also measure the straight-line distance between any two structures on the image. The Digital Cytocochleogram resource uses two software programs, the Coordinate Finder and Viewer, which are written as CGI scripts. The Coordinate Finder program maps each digital image to an X,Y coordinate system. The total length of the organ of Corti from all tissue segments is computed using an are-distance approximation formula, with the lateral border of the inner pillar cell headplates serving as a trace line or reference location. After all of the digital images of the tissue segments are mapped, they are placed oil the MCD Website where users can use the Viewer program to view and morphometrically assess structures using a web browser. A single, complete surface preparation from a normal mouse is presently available oil the MCD website. As the MCD grows, additional images of surface preparations at different magnifications from normal, mutant, and experimentally altered mouse cochleas will become available. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Minnesota, Dept Otolaryngol, Minneapolis, MN 55455 USA. Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. RP Santi, PA (reprint author), Univ Minnesota, Dept Otolaryngol, Rm 121,Lions Res Bld,2001 6th St SE, Minneapolis, MN 55455 USA. EM p.santi@amn.edu RI Bohne, Barbara/A-9113-2008 OI Bohne, Barbara/0000-0003-3874-7620 CR BOHNE BA, 1972, LARYNGOSCOPE, V82, P1 Bohne BA, 1997, HEARING RES, V109, P34, DOI 10.1016/S0378-5955(97)00019-1 CLARK WW, 1978, ANN OTOL RHINOL LA S, V51, P1 Engstrom H, 1966, STRUCTURAL PATTERN O Hunter-Duvar I M, 1978, Acta Otolaryngol Suppl, V351, P3 Ou HC, 2000, HEARING RES, V145, P123, DOI 10.1016/S0378-5955(00)00082-4 SANTI PA, 1986, HEARING RES, V24, P179, DOI 10.1016/0378-5955(86)90017-1 SANTI PA, 1979, J HISTOCHEM CYTOCHEM, V11, P1539 SANTI PA, 1986, HEARING RES, V24, P189, DOI 10.1016/0378-5955(86)90018-3 NR 9 TC 9 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2004 VL 192 IS 1-2 BP 75 EP 82 DI 10.1016/j.heares.2004.01.017 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 827IV UT WOS:000221893900008 PM 15157965 ER PT J AU Guimaraes, P Zhu, XX Cannon, T Kim, SH Frisina, RD AF Guimaraes, P Zhu, XX Cannon, T Kim, SH Frisina, RD TI Sex differences in distortion product otoacoustic emissions as a function of age in CBA mice SO HEARING RESEARCH LA English DT Article DE mouse; aging; presbycusis; menopause; hearing loss ID INFERIOR COLLICULUS; GENDER-DIFFERENCES; AUDITORY-SYSTEM; C57BL/6 MICE; HEARING-LOSS; MOUSE; CBA/CAJ; HETEROSEXUALS; HOMOSEXUALS; ESTROGEN AB Age-related hearing loss - presbycusis - is the number one communication problem of the aged. A major contributor to presbycusis is the progressive degeneration of cochlear outer hair cells (OHCs). Distortion product otoacoustic emissions (DPOAEs) are. physiological measures of hearing, assessing the health and functioning of the OHCs in mammals. We and others effective in vivo. have previously demonstrated that DPOAE amplitudes decline with age in humans and mice. The present study's objective was to measure age-related declines in the OHCs in CBA mice (slow, progressive age-related hearing loss) by comparing DPOAEs and auditory brainstem responses (ABRs) generated from females and males. Young adult (2.1-2.9 months) and middle-aged CBA (14.0-16.4 months) mice were tested, as well as old CBAs (24.3-29.0 months). DPOAE-grams were obtained with L1 = 65 and L2 = 50 dB SPL: f1/f2 = 1.25, using eight points per octave covering a frequency range from 5.6 to 44.8 kHz (geometric mean frequency). ABRs ranged from 3 to 48 kHz. Analyses revealed that DPOAE levels decreased with age for middle-aged and old male CBAs. but for female CBAs, declines did not occur until old age - after menopause. In contrast, ABR amplitudes for female and male young adult and middle-aged CBAs were the same. Female ABR thresholds were lower than males for old CBAs. In conclusion. we discovered that pre-menopausal CBA female mice have healthier OHCs relative to middle-aged males, but much of this relative advantage is lost post-menopause. Understanding sex differences in age-related sensory disorders will be quite helpful for the goals of preventing.. slowing or curing sensory problems in old age for both women and men. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Rochester, Sch Med & Dent, Otolaryngol Div, Dept Surg, Rochester, NY 14642 USA. Natl Tech Inst Deaf, Int Ctr Hearing & Speech Res, Rochester, NY 14623 USA. Univ Rochester, Sch Med & Dent, Dept Biomed Engn, Rochester, NY 14642 USA. Univ Rochester, Sch Med & Dent, Dept Anat & Neurobiol, Rochester, NY 14642 USA. Rochester Inst Technol, Dept Biol Sci, Rochester, NY 14623 USA. RP Frisina, RD (reprint author), Univ Rochester, Sch Med & Dent, Otolaryngol Div, Dept Surg, Rochester, NY 14642 USA. EM rdf@q.ent.rochester.edu CR Bowman DM, 2000, HEARING RES, V142, P1, DOI 10.1016/S0378-5955(99)00212-9 Frisina D. R., 2001, FUNCTIONAL NEUROBIOL, P565 Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3 Frisina Robert D., 2001, Seminars in Hearing, V22, P213, DOI 10.1055/s-2001-15627 Frisina R. D., 2001, FUNCTIONAL NEUROBIOL, P531, DOI 10.1016/B978-012351830-9/50039-1 Frisina RD, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P339, DOI 10.1201/9781420038736.ch24 Hultcrantz M, 2000, HEARING RES, V143, P182, DOI 10.1016/S0378-5955(00)00042-3 Jacobson M, 2003, LARYNGOSCOPE, V113, P1707, DOI 10.1097/00005537-200310000-00009 Jimenez AM, 1999, HEARING RES, V138, P91, DOI 10.1016/S0378-5955(99)00154-9 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KIMBERLEY BP, 1993, J ACOUST SOC AM, V94, P1343, DOI 10.1121/1.408162 McFadden D, 1999, J ACOUST SOC AM, V105, P2403, DOI 10.1121/1.426845 McFadden D, 1998, P NATL ACAD SCI USA, V95, P2709, DOI 10.1073/pnas.95.5.2709 McFadden D, 1998, J ACOUST SOC AM, V104, P1555, DOI 10.1121/1.424366 McFadden D, 2002, ARCH SEX BEHAV, V31, P99, DOI 10.1023/A:1014087319682 McFadden D, 2000, HEARING RES, V142, P23, DOI 10.1016/S0378-5955(00)00002-2 Parham K, 1997, HEARING RES, V112, P216, DOI 10.1016/S0378-5955(97)00124-X PEARSON JD, 1995, J ACOUST SOC AM, V97, P1196, DOI 10.1121/1.412231 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 ROMNEY J, 2003, ASS RES OTOLARYNGOL, V197, P51 SATO H, 1991, ACTA OTO-LARYNGOL, V111, P1037, DOI 10.3109/00016489109138447 Silver L. M., 1995, MOUSE GENETICS CONCE Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 Stenberg AE, 1999, HEARING RES, V136, P29, DOI 10.1016/S0378-5955(99)00098-2 Walton JP, 1998, J NEUROSCI, V18, P2764 WALTON JP, 2001, FUNCTIONAL NEUROBIOL, P581, DOI 10.1016/B978-012351830-9/50042-1 Zettel ML, 2001, HEARING RES, V158, P131, DOI 10.1016/S0378-5955(01)00305-7 Zettel ML, 2003, HEARING RES, V183, P57, DOI 10.1016/S0378-5955(03)00216-8 Zettel ML, 1997, J COMP NEUROL, V386, P92, DOI 10.1002/(SICI)1096-9861(19970915)386:1<92::AID-CNE9>3.0.CO;2-8 NR 29 TC 55 Z9 55 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2004 VL 192 IS 1-2 BP 83 EP 89 DI 10.1016/j.heares.2004.01.013 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 827IV UT WOS:000221893900009 PM 15157966 ER PT J AU Moore, BCJ Stainsby, TH Tarasewiez, E AF Moore, BCJ Stainsby, TH Tarasewiez, E TI Effects of masker component phase on the forward masking produced by complex tones in normally hearing and hearing-impaired subjects SO HEARING RESEARCH LA English DT Article DE phase effects in masking; forward masking; hearing impairment ID BASILAR-MEMBRANE RESPONSES; CHINCHILLA COCHLEA; FREQUENCY-SELECTIVITY; HARMONIC COMPLEXES; TEMPORAL WINDOW; AUDITORY-SYSTEM; INNER-EAR; NOISE; COMPRESSION; DISPERSION AB For normally hearing subjects, harmonic complex tones that give "peaky" waveforms on the basilar membrane (Schroeder-positive phase, sine phase or cosine phase) lead to less forward masking than complex tones that give less peaky waveforms (Schroeder-negative phase or random phase), but have the same power spectrum. This difference has been attributed mainly to the combined effects of peripheral compression and suppression, both of which depend on the operation of the active mechanism in the cochlea. If this explanation is correct, the phase effect should be reduced or absent for subjects with moderate cochlear hearing loss. We measured growth-of-masking functions for forward maskers containing the first 40 harmonics of a 100-Hz fundamental, with components added either in cosine phase or random phase, using both normally hearing subjects and subjects with moderate cochlear hearing loss. The signal frequency was 1 or 2 kHz. For the normally hearing subjects, the mean slopes of the growth-of-masking functions at I and 2 kHz, respectively, were 0.53 and 0.44 for the random-phase masker and 0.31 and 0.26 for the cosine-phase masker. For high masker levels, the former produced considerably more masking than the latter. The phase effect was smaller for the hearing-impaired than for the normally hearing subjects, which is consistent with the idea that it is partly caused by peripheral compression and suppression. However, three of the five hearing-impaired subjects showed a significant effect of masker phase for at least one signal frequency. In one case, this occurred when the hearing loss at the signal frequency was 65 dB. The slopes of the growth-of-masking functions were consistently less than one for the hearing-impaired subjects. Further testing suggested that the efferent system was not involved in producing the phase effect. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England. RP Moore, BCJ (reprint author), Univ Cambridge, Dept Expt Psychol, Downing St, Cambridge CB2 3EB, England. EM bcjm@cus.cam.ac.uk RI Moore, Brian/I-5541-2012 CR Alcantara JI, 2003, J ACOUST SOC AM, V114, P2158, DOI 10.1121/1.1608959 Carlyon RP, 1997, J ACOUST SOC AM, V101, P3636, DOI 10.1121/1.418324 Dau T, 2000, J ACOUST SOC AM, V107, P1530, DOI 10.1121/1.428438 Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Gockel H, 2002, J ACOUST SOC AM, V111, P2759, DOI 10.1121/1.1480422 Gockel H, 2003, J ACOUST SOC AM, V114, P349, DOI 10.1121/1.1582447 Gockel H, 2003, J ACOUST SOC AM, V114, P978, DOI 10.1121/1.1593065 HOUTGAST T, 1974, ACUSTICA, V30, P214 Howell D. C., 1997, STAT METHODS PSYCHOL JAVEL E, 1988, AUDITORY FUNCTION NE JAVEL E, 1981, J ACOUST SOC AM, V69, P1735, DOI 10.1121/1.385953 JESTEADT W, 1982, J ACOUST SOC AM, V71, P950, DOI 10.1121/1.387576 Kemp DT, 2002, BRIT MED BULL, V63, P223, DOI 10.1093/bmb/63.1.223 KIDD G, 1984, J ACOUST SOC AM, V75, P937, DOI 10.1121/1.390558 KOHLRAUSCH A, 1995, J ACOUST SOC AM, V97, P1817, DOI 10.1121/1.413097 Lentz JJ, 2001, JARO, V2, P408, DOI 10.1007/s101620010045 LESHOWITZ B, 1977, PSYCHOPHYSICS PHYSL, P283 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 MEHRGARDT S, 1983, HEARING PHYSL BASES, P289 MILLS JH, 1983, HEARING RES THEORY, V2, P233 Moore BCJ, 1997, AUDIT NEUROSCI, V3, P289 Moore BC., 2003, INTRO PSYCHOL HEARIN MOORE BCJ, 1986, J ACOUST SOC AM, V80, P93, DOI 10.1121/1.394087 MOORE BCJ, 1983, J ACOUST SOC AM, V73, P906, DOI 10.1121/1.389015 Moore B.C.J., 1995, PERCEPTUAL CONSEQUEN Moore BCJ, 2003, J ACOUST SOC AM, V114, P408, DOI 10.1121/1.1577552 Moore BCJ, 1998, PSYCHOL REV, V105, P108, DOI 10.1037/0033-295X.105.1.108 MOORE BCJ, 1988, J ACOUST SOC AM, V83, P1102, DOI 10.1121/1.396055 Moore BCJ, 1999, J ACOUST SOC AM, V106, P2761, DOI 10.1121/1.428133 MUNSON WA, 1950, J ACOUST SOC AM, V22, P177, DOI 10.1121/1.1906586 Oxenham AJ, 2001, J ACOUST SOC AM, V109, P732, DOI 10.1121/1.1336501 Oxenham AJ, 1997, MODELING SENSORINEURAL HEARING LOSS, P273 OXENHAM AJ, 1995, J ACOUST SOC AM, V98, P1921, DOI 10.1121/1.413376 Oxenham AJ, 2001, J ACOUST SOC AM, V110, P1525, DOI 10.1121/1.1394740 Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3666, DOI 10.1121/1.418327 OXENHAM AJ, 1994, HEARING RES, V80, P105, DOI 10.1016/0378-5955(94)90014-0 Patterson RD, 1986, FREQUENCY SELECTIVIT, P123 PENNER MJ, 1980, J SPEECH HEAR RES, V23, P779 Plack CJ, 1998, J ACOUST SOC AM, V103, P1598, DOI 10.1121/1.421294 PLACK CJ, 1990, J ACOUST SOC AM, V87, P2178, DOI 10.1121/1.399185 PLOMP R, 1964, J ACOUST SOC AM, V36, P1628, DOI 10.1121/1.1919256 Puel JL, 2002, ADV OTO-RHINO-LARYNG, V59, P124 Recio A, 2000, J ACOUST SOC AM, V108, P2281, DOI 10.1121/1.1318898 Recio A, 1998, J ACOUST SOC AM, V103, P1972, DOI 10.1121/1.421377 Rhode WS, 2001, J ACOUST SOC AM, V110, P981, DOI 10.1121/1.1377050 ROBLES L, 1986, J ACOUST SOC AM, V80, P1364, DOI 10.1121/1.394389 Ruggero M A, 1992, Curr Opin Neurobiol, V2, P449, DOI 10.1016/0959-4388(92)90179-O Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 RUGGERO MA, 1991, J NEUROSCI, V11, P1057 Ruggero MA, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P23 SCHROEDE.MR, 1970, IEEE T INFORM THEORY, V16, P85, DOI 10.1109/TIT.1970.1054411 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 SMITH BK, 1986, J ACOUST SOC AM, V80, P1631, DOI 10.1121/1.394327 Snedecor G. W., 1967, STAT METHODS Summers V, 2003, J ACOUST SOC AM, V114, P294, DOI 10.1121/1.1580813 Summers V, 1998, HEARING RES, V118, P139, DOI 10.1016/S0378-5955(98)00030-6 Uppenkamp S, 2001, HEARING RES, V158, P71, DOI 10.1016/S0378-5955(01)00299-4 WIDIN GP, 1979, J ACOUST SOC AM, V66, P388, DOI 10.1121/1.383673 Wightman F., 1977, PSYCHOPHYSICS PHYSL, P295 ZWISLOCKI J, 1959, J ACOUST SOC AM, V31, P9, DOI 10.1121/1.1907619 NR 61 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2004 VL 192 IS 1-2 BP 90 EP 100 DI 10.1016/j.heares.2004.02.001 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 827IV UT WOS:000221893900010 PM 15157967 ER PT J AU Perez, R Freeman, S Sohmer, H AF Perez, R Freeman, S Sohmer, H TI Effect of an initial noise induced hearing loss on subsequent noise induced hearing loss SO HEARING RESEARCH LA English DT Article DE noise induced hearing loss; permanent threshold shift; rat; susceptibility ID TEMPORARY THRESHOLD SHIFT; OCCUPATIONAL NOISE; EXPOSURE; SUSCEPTIBILITY; CHINCHILLAS; EMISSIONS; COCHLEA; SOUND; RISK AB The effect of previous noise induced hearing loss (NIHL) on subsequent NIHL was studied in rats. Three groups of animals were initially exposed to different durations of 113 dB SPL broad band noise (21 days, 3 days or 0 days - unexposed). Their permanent threshold shifts (PTS) from this exposure (PTSI) were evaluated using auditory nerve-brainstem evoked responses (ABR). All the animals were then noise-exposed for an additional 12 days, and the incremental PTS following this exposure (PTS2) was also assessed. The 21 day group showed the greater PTS1 [mean +/-SD: 27.03 +/- 6.78 dB, compared with 11.67 +/- 10.47 dB (3 day group)] and the lowest PTS2 [9.84 +/- 8.19 dB, compared with 13.33 +/- 14.60 dB (3 day group) and 24.04 +/- 12.4 dB (0 day group)]. This group also showed the highest total PTS and lowest SD following the two noise exposures [36.88 +/- 6.29 dB, compared with 25.00 +/- 12.68 dB (3 day group) and 26.35 +/- 11.93 dB (0 day group)]. The results may be explained by the lower effective intensity of the second noise exposure for the animals with a large PTSI compared to those with little or no NIHL from the first noise exposure. (C) 2004 Elsevier B.V. All rights reserved. C1 Hebrew Univ Jerusalem, Dept Physiol, Hadassah Med Sch, IL-91120 Jerusalem, Israel. Shaare Zedek Med Ctr, Dept Otolaryngol Head & Neck Surg, IL-91031 Jerusalem, Israel. RP Sohmer, H (reprint author), Hebrew Univ Jerusalem, Dept Physiol, Hadassah Med Sch, POB 12272, IL-91120 Jerusalem, Israel. EM sohmer@md.huji.ac.il RI Legarth, Jonas/A-9156-2012 CR Ahroon WA, 2000, HEARING RES, V143, P103, DOI 10.1016/S0378-5955(00)00030-7 Ahroon WA, 1999, HEARING RES, V129, P101, DOI 10.1016/S0378-5955(98)00227-5 BARRENAS M-L, 1991, British Journal of Audiology, V25, P303, DOI 10.3109/03005369109076602 Davis RR, 2001, HEARING RES, V155, P82, DOI 10.1016/S0378-5955(01)00250-7 Elberling C, 1976, ELECTROCOCHLEOGRAPHY, P151 Fraenkel R, 2001, AUDIOL NEURO-OTOL, V6, P40, DOI 10.1159/000046807 Freeman S, 1999, AUDIOL NEURO-OTOL, V4, P207, DOI 10.1159/000013844 HENDERSON D, 1993, EAR HEARING, V14, P152, DOI 10.1097/00003446-199306000-00002 Jacono AA, 1998, HEARING RES, V117, P31, DOI 10.1016/S0378-5955(97)00214-1 Johnson A C, 1993, Scand Audiol Suppl, V39, P1 LIERLE D M, 1955, Ann Otol Rhinol Laryngol, V64, P263 McFadden SL, 1997, HEARING RES, V103, P142, DOI 10.1016/S0378-5955(96)00170-0 MENSH BD, 1993, HEARING RES, V70, P50, DOI 10.1016/0378-5955(93)90051-2 Mills JH, 1997, J ACOUST SOC AM, V101, P1681, DOI 10.1121/1.418152 MILLS JH, 1973, J SPEECH HEAR RES, V16, P700 Ou HC, 2000, HEARING RES, V145, P111, DOI 10.1016/S0378-5955(00)00081-2 Patuzzi R, 1998, HEARING RES, V125, P17, DOI 10.1016/S0378-5955(98)00126-9 PEARSON JD, 1995, J ACOUST SOC AM, V97, P1196, DOI 10.1121/1.412231 PEKKARINEN J, 1993, BRIT J AUDIOL, V27, P175, DOI 10.3109/03005369309076691 Quaranta A, 2003, ACTA OTO-LARYNGOL, V123, P164, DOI 10.1080/00016480310001024 RAJAN R, 1992, HEARING RES, V60, P216, DOI 10.1016/0378-5955(92)90023-G Ruys T., 1991, HDB FACILITIES PLANN, V2 Sliwinska-Kowalska M, 2003, J OCCUP ENVIRON MED, V45, P15, DOI 10.1097/01.jom.0000048169.87707.c2 Starck J, 1999, ACTA OTO-LARYNGOL, V119, P302 Tan CT, 2001, HEARING RES, V161, P72, DOI 10.1016/S0378-5955(01)00359-8 Ward W. D., 1973, MODERN DEV AUDIOLOGY, P301 NR 26 TC 7 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2004 VL 192 IS 1-2 BP 101 EP 106 DI 10.1016/j.heares.2004.01.018 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 827IV UT WOS:000221893900011 PM 15157968 ER PT J AU Meenderink, SWF van Dijk, P AF Meenderink, SWF van Dijk, P TI Level dependence of distortion product otoacoustic emissions in the leopard frog, Rana pipiens pipiens SO HEARING RESEARCH LA English DT Article DE distortion product otoacoustic emissions; input-output curves; amphibia; frog ID CELL MECHANOELECTRICAL TRANSDUCER; COCHLEAR HAIR-CELLS; ACOUSTIC DISTORTION; PHYSIOLOGICAL VULNERABILITY; GENERAL-CHARACTERISTICS; AMPHIBIAN PAPILLA; AUDITORY ORGAN; SINGLE UNITS; INNER-EAR; BULLFROG AB The inner ear of frogs holds two papillae specialized in detecting airborne sound, the amphibian papilla (AP) and the basilar papilla (BP). We measured input-output (I/O) curves of distortion product otoacoustic emissions (DPOAEs) from both papillae, and compared their properties. As in other vertebrates, DPOAE I/O curves showed two distinct segments, separated by a notch or kneepoint. The slope of the low-level segment was conspicuously different between the AP and the BP. For DPOAE I/O curves from the AP, slopes were less than or equal to1 dB/dB, similar to what is found in mammals, birds and some lizards. For DPOAE I/O curves from the BP these slopes were much steeper ( 2 dB/dB). Slopes found at high stimulus levels were similar in the AP and the BP (approximate to2 dB/dB). This quantitative difference between the low-level slopes for DPOAEs from the AP and the BP may signify the involvement of different mechanisms in low-level DPOAE generation for the two papillae, respectively. (C) 2004 Elsevier B.V. All rights reserved. C1 Maastricht Univ, Inst Brain & Behav, Maastricht, Netherlands. Univ Hosp Maastricht, Dept Otorhinolaryngol Head & Neck Surg, NL-6202 AZ Maastricht, Netherlands. RP Meenderink, SWF (reprint author), Maastricht Univ, Inst Brain & Behav, Maastricht, Netherlands. EM b.meenderink@kno.unimaas.nl RI Van Dijk, Pim/E-8019-2010 OI Van Dijk, Pim/0000-0002-8023-7571 CR Abdala C, 2000, J ACOUST SOC AM, V107, P446, DOI 10.1121/1.428315 BROWN AM, 1987, HEARING RES, V31, P25, DOI 10.1016/0378-5955(87)90211-5 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Coro F, 2001, HEARING RES, V162, P126, DOI 10.1016/S0378-5955(01)00381-1 CRAWFORD AC, 1985, J PHYSIOL-LONDON, V364, P359 Dorn PA, 2001, J ACOUST SOC AM, V110, P3119, DOI 10.1121/1.1417524 Dreisbach LE, 2001, J ACOUST SOC AM, V110, P2456, DOI 10.1121/1.1406497 FENG AS, 1975, J COMP PHYSIOL, V100, P221 FRISHKOP.LS, 1968, PR INST ELECTR ELECT, V56, P969, DOI 10.1109/PROC.1968.6448 FRISHKOPF LS, 1963, J ACOUST SOC AM, V35, P1219, DOI 10.1121/1.1918676 FRISHKOP.LS, 1974, ACTA OTO-LARYNGOL, V77, P176, DOI 10.3109/00016487409124615 FROYMOVICH O, 1995, J ACOUST SOC AM, V97, P3021, DOI 10.1121/1.411867 GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732 HE DZ, 2002, J PHYSL, V546, P511 HILLERY CM, 1984, SCIENCE, V225, P1037, DOI 10.1126/science.6474164 HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0 Hudspeth AJ, 1997, CURR OPIN NEUROBIOL, V7, P480, DOI 10.1016/S0959-4388(97)80026-8 KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222 Kennedy HJ, 2003, NAT NEUROSCI, V6, P832, DOI 10.1038/nn1089 KETTEMBEIL S, 1995, HEARING RES, V86, P47, DOI 10.1016/0378-5955(95)00053-7 KIM DO, 1980, HEARING RES, V2, P297, DOI 10.1016/0378-5955(80)90064-7 LEWIS ER, 1982, J COMP PHYSIOL, V145, P437 LEWIS ER, 1978, SCANNING ELECTRON MI, V2, P633 Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 Lonsbury-Martin B L, 1990, Ann Otol Rhinol Laryngol Suppl, V147, P3 LONSBURYMARTIN BL, 1987, HEARING RES, V28, P173, DOI 10.1016/0378-5955(87)90048-7 Lukashkin AN, 1999, J ACOUST SOC AM, V106, P2661, DOI 10.1121/1.428096 Lukashkin AN, 1998, J ACOUST SOC AM, V103, P973, DOI 10.1121/1.421214 Manley GA, 2002, J NEUROBIOL, V53, P202, DOI 10.1002/neu.10115 Manley GA, 2001, J NEUROPHYSIOL, V86, P541 Manley Geoffrey A., 2000, P93, DOI 10.1002/9783527609734.ch5 MANLEY GA, 1993, J ACOUST SOC AM, V93, P2820, DOI 10.1121/1.405803 MILLS DM, 1993, J ACOUST SOC AM, V94, P2108, DOI 10.1121/1.407483 Mills DM, 1997, J ACOUST SOC AM, V102, P413, DOI 10.1121/1.419763 Mills DM, 1996, J ACOUST SOC AM, V100, P428, DOI 10.1121/1.415857 RONKEN DA, 1991, J ACOUST SOC AM, V90, P2428, DOI 10.1121/1.402047 ROSOWSKI JJ, 1984, HEARING RES, V13, P141, DOI 10.1016/0378-5955(84)90105-9 Smotherman MS, 1999, J NEUROSCI, V19, P5275 Sun H, 2000, J ACOUST SOC AM, V107, P2136, DOI 10.1121/1.428495 Talmadge CL, 1998, J ACOUST SOC AM, V104, P1517, DOI 10.1121/1.424364 Taschenberger G, 1998, HEARING RES, V123, P183, DOI 10.1016/S0378-5955(98)00120-8 van Dijk P, 2003, J ACOUST SOC AM, V114, P2044, DOI 10.1121/1.1608957 van Dijk P, 2002, HEARING RES, V173, P100, DOI 10.1016/S0378-5955(02)00605-6 van Dijk P, 2001, HEARING RES, V153, P14, DOI 10.1016/S0378-5955(00)00251-3 White S. D., 1992, Waltham International Focus, V2, P2 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 ZUREK PM, 1982, J ACOUST SOC AM, V72, P774, DOI 10.1121/1.388258 NR 47 TC 14 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2004 VL 192 IS 1-2 BP 107 EP 118 DI 10.1016/j.heares.2004.01.015 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 827IV UT WOS:000221893900012 PM 15157969 ER PT J AU Stainsby, TH Moore, BCJ Glasberg, BR AF Stainsby, TH Moore, BCJ Glasberg, BR TI Auditory streaming based on temporal structure in hearing-impaired listeners SO HEARING RESEARCH LA English DT Article DE stream segregation; hearing impairment; phase effects; complex tones ID TONE SEQUENCES; FILTER SHAPES; FREQUENCY-SELECTIVITY; FUNDAMENTAL-FREQUENCY; UNRESOLVED HARMONICS; COMPLEX TONES; SEGREGATION; PERCEPTION; PHASE; DISCRIMINATION AB The influence of temporal cues on sequential stream segregation was investigated using five elderly hearing-impaired listeners. In experiment 1, an alternating pattern of A and B tones was used. Each tone was a harmonic complex with a 100-Hz fundamental, with one of three passbands (1250-2500, 1768-3636, or 2500-5000 Hz) and one of three component-phase relationships (cosine, alternating, or random). The complexes had an overall level of 96 dB SPL. The detection of a change in relative timing of the A and B tones was measured in a two-interval-forced-choice paradigm. The sequence in one interval remained isochronous while the sequence in the other started isochronously but became increasingly irregular with the addition of a cumulative delay between the A and B tones. Component phase relationship and passband difference both had significant effects on the minimum detectable delay, indicating that temporal structure produced obligatory stream segregation. In experiment 2, subjects continuously reported whether tones presented in a 30-s ABA-ABA- sequence were perceived as segregated or integrated. Differences in component phase between A and B significantly increased perceived segregation, but passband did not. In conclusion, stream segregation due to differences in temporal structure is robust in elderly subjects with cochlear hearing loss and comparable to that found previously in young normally hearing subjects. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England. RP Stainsby, TH (reprint author), Univ Cambridge, Dept Expt Psychol, Downing St, Cambridge CB2 3EB, England. EM ths22@cam.ac.uk RI Moore, Brian/I-5541-2012 CR Alcantara JI, 2003, J ACOUST SOC AM, V114, P2158, DOI 10.1121/1.1608959 ANSTIS S, 1985, J EXP PSYCHOL HUMAN, V11, P257, DOI 10.1037/0096-1523.11.3.257 Beauvois MW, 1996, J ACOUST SOC AM, V99, P2270, DOI 10.1121/1.415414 BILSEN FA, 1973, ACUSTICA, V28, P60 BREGMAN AS, 1978, J EXP PSYCHOL HUMAN, V4, P380, DOI 10.1037//0096-1523.4.3.380 BREGMAN AS, 1971, J EXP PSYCHOL, V89, P244, DOI 10.1037/h0031163 Bregman AS., 1990, AUDITORY SCENE ANAL CARLYON RP, 1994, J ACOUST SOC AM, V95, P3541, DOI 10.1121/1.409971 Carlyon RP, 1997, J ACOUST SOC AM, V101, P3636, DOI 10.1121/1.418324 Cusack R, 2000, PERCEPT PSYCHOPHYS, V62, P1112, DOI 10.3758/BF03212092 DOWLING WJ, 1973, COGNITIVE PSYCHOL, V5, P322, DOI 10.1016/0010-0285(73)90040-6 FITZGIBBONS PJ, 1994, J SPEECH HEAR RES, V37, P662 FLORENTINE M, 1984, J SPEECH HEAR RES, V27, P449 FLORENTINE M, 1988, J ACOUST SOC AM, V84, P195, DOI 10.1121/1.396964 FOZARD JL, 2001, PSYCHOL AGING, P241 GLASBERG BR, 1986, J ACOUST SOC AM, V79, P1020, DOI 10.1121/1.393374 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Gockel H, 2003, J ACOUST SOC AM, V114, P978, DOI 10.1121/1.1593065 GORDONSALANT S, 1993, J SPEECH HEAR RES, V36, P1276 Grimault N, 2002, J ACOUST SOC AM, V111, P1340, DOI 10.1121/1.1452740 Grimault N, 2001, BRIT J AUDIOL, V35, P173 Grimault N, 2000, J ACOUST SOC AM, V108, P263, DOI 10.1121/1.429462 HARTMANN WM, 1991, MUSIC PERCEPT, V9, P155 LESHOWITZ B, 1977, PSYCHOPHYSICS PHYSL, P283 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Mackersie CL, 2001, J SPEECH LANG HEAR R, V44, P19, DOI 10.1044/1092-4388(2001/002) McCabe SL, 1997, J ACOUST SOC AM, V101, P1611, DOI 10.1121/1.418176 MILLER GA, 1950, J ACOUST SOC AM, V22, P637, DOI 10.1121/1.1906663 Moore B., 1998, COCHLEAR HEARING LOS Moore BCJ, 1997, AUDIT NEUROSCI, V3, P289 MOORE BCJ, 2004, IN PRESS HEAR RES Moore BCJ, 2004, HEARING RES, V188, P70, DOI 10.1016/S0378-5955(03)00347-2 Moore BCJ, 2002, ACTA ACUST UNITED AC, V88, P320 MOORE BCJ, 1992, J ACOUST SOC AM, V92, P1923, DOI 10.1121/1.405240 Moore B.C.J., 1995, PERCEPTUAL CONSEQUEN PATTERSON RD, 1976, J ACOUST SOC AM, V59, P640, DOI 10.1121/1.380914 PATTERSON RD, 1982, J ACOUST SOC AM, V72, P1788, DOI 10.1121/1.388652 PLOMP R, 1964, J ACOUST SOC AM, V36, P1628, DOI 10.1121/1.1919256 Roberts B, 2002, J ACOUST SOC AM, V112, P2074, DOI 10.1121/1.1508784 Robles L, 2001, PHYSIOL REV, V81, P1305 Rose MM, 1997, J ACOUST SOC AM, V102, P1768, DOI 10.1121/1.420108 Rose MM, 2000, J ACOUST SOC AM, V108, P1209, DOI 10.1121/1.1287708 SHACKLETON TM, 1994, J ACOUST SOC AM, V95, P3529, DOI 10.1121/1.409970 STAINSBY TH, 2004, IN PRESS J ACOUST SO STUDEBAKER GA, 1985, J SPEECH HEAR RES, V28, P455 THURLOW W, 1957, AM J PSYCHOL, V70, P653, DOI 10.2307/1419466 van Noorden L. P. A. S., 1975, THESIS EINDHOVEN U T Vliegen J, 1999, J ACOUST SOC AM, V106, P938, DOI 10.1121/1.427140 Vliegen J, 1999, J ACOUST SOC AM, V105, P339, DOI 10.1121/1.424503 WARREN RM, 1969, SCIENCE, V164, P586, DOI 10.1126/science.164.3879.586 NR 50 TC 18 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2004 VL 192 IS 1-2 BP 119 EP 130 DI 10.1016/j.heares.2004.02.003 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 827IV UT WOS:000221893900013 PM 15157970 ER PT J AU Saberi, K Antonio, JV Petrosyan, A AF Saberi, K Antonio, JV Petrosyan, A TI A population study of the precedence effect SO HEARING RESEARCH LA English DT Article DE discrimination suppression; echo; precedence; population ID HIGH-FREQUENCY CLICKS; AMBIENT SOUND FIELD; INTERAURAL DIFFERENCES; INTERCLICK INTERVAL; BINAURAL INTERACTION; ECHO SUPPRESSION; LATERALIZATION; LOCALIZATION; MODEL; LEVEL AB Data are reported from a population of untrained individuals under lag- and single-click conditions in a discrimination suppression precedence-effect task. The cue to be discriminated was an interaural level-difference (ILD). Each of 91 observers completed 10 runs in a two-interval forced-choice design under a lag-click condition and three runs under a single-click condition. Stimuli were 125-mus rectangular pulses and the interclick interval was 2 ins. Observers were randomly assigned to three groups of approximately 30. Each group was then tested at one stimulus intensity (43, 58, or 73 dB). Mean threshold within each group was greater than 15 dB for the lag-click condition and 6 dB for the single-click condition, although there was substantial interobserver variability. In contrast to [J. Acoust. Soc. Am. H 4 (2003) 420] who reported a strong effect of intensity on lag-click ITD discrimination, no effect of intensity was observed on lag-click ILD thresholds. Analysis of over 50,000 near-threshold trials from 302 observers pooled across studies showed a spatial asymmetry in response patterns and a small, but statistically significant effect of gender. A model is proposed which shows that decay of sensory memory and increases in auditory filter bandwidths with intensity may predict the different findings for ILD versus ITD lag-click thresholds. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Calif Irvine, Dept Cognit Sci, Irvine, CA 92697 USA. Calif State Univ Los Angeles, Dept Psychol, Los Angeles, CA 90032 USA. RP Saberi, K (reprint author), Univ Calif Irvine, Dept Cognit Sci, Irvine, CA 92697 USA. EM kourosh@uci.edu CR Ashmead DH, 1999, J REHABIL RES DEV, V36, P313 Ashmead DH, 1998, J VISUAL IMPAIR BLIN, V92, P615 Ashmead DH, 1998, PERCEPTION, V27, P105, DOI 10.1068/p270105 BLAUERT J, 1971, J ACOUST SOC AM, V50, P466, DOI 10.1121/1.1912663 Blauert J., 1997, SPATIAL HEARING BLAUERT J, 1991, AUDITORY PHYSL PERCE, P531 BLAUERT JP, 1989, J ACOUST SOC AM, V86, pS66, DOI 10.1121/1.2027602 CAIRD D, 1983, EXP BRAIN RES, V52, P385 CHERRY SE, 1961, SENS COMMUN, P99 Chiang YC, 1998, J ACOUST SOC AM, V104, P3039, DOI 10.1121/1.423885 CLIFTON RK, 1989, PERCEPT PSYCHOPHYS, V46, P139, DOI 10.3758/BF03204973 CLIFTON RK, 1987, J ACOUST SOC AM, V82, P1834, DOI 10.1121/1.395802 Clifton RK, 2002, PERCEPT PSYCHOPHYS, V64, P180, DOI 10.3758/BF03195784 COLBURN HS, 1995, SPRINGER HDB AUDITOR, P332 CRANFORD JL, 1976, BRAIN RES, V111, P225, DOI 10.1016/0006-8993(76)90768-X Djelani T, 2001, ACUSTICA, V87, P253 Franssen N.V., 1960, THESIS TH DELFT NETH Freyman RL, 1997, J ACOUST SOC AM, V101, P1649, DOI 10.1121/1.418149 FREYMAN RL, 1991, J ACOUST SOC AM, V90, P874, DOI 10.1121/1.401955 Freyman RL, 1998, J ACOUST SOC AM, V103, P2031, DOI 10.1121/1.421350 GARDNER MB, 1968, J ACOUST SOC AM, V43, P1243, DOI 10.1121/1.1910974 GASKELL H, 1983, HEARING RES, V11, P277 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Goverts ST, 2000, HEARING RES, V148, P88, DOI 10.1016/S0378-5955(00)00143-X Goverts ST, 2002, HEARING RES, V163, P82 Grantham DW, 1996, J ACOUST SOC AM, V99, P1118, DOI 10.1121/1.414596 HAAS H, 1949, J AUDIOL ENG SOC, V20, P145 HAFTER ER, 1988, AUDITORY FUNCTION HAFTER ER, 1990, J ACOUST SOC AM, V88, P806, DOI 10.1121/1.399730 HAFTER ER, 1983, J ACOUST SOC AM, V73, P1708, DOI 10.1121/1.389394 HAFTER ER, 1983, J ACOUST SOC AM, V73, P644, DOI 10.1121/1.388956 Hartung K, 2001, J ACOUST SOC AM, V110, P1505, DOI 10.1121/1.1390339 Hays W. L., 1981, STATISTICS HOCHSTER ME, 1981, NEUROPSYCHOLOGIA, V19, P49, DOI 10.1016/0028-3932(81)90043-9 HOLDSWORTH J, 1988, 2341 U CAMBR MRC APU JEFFRESS LA, 1971, J ACOUST SOC AM, V49, P1169, DOI 10.1121/1.1912479 Langford T.L., 1994, J ACOUST SOC AM, V96, P3256, DOI 10.1121/1.411025 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LINDEMANN W, 1986, J ACOUST SOC AM, V80, P1608, DOI 10.1121/1.394325 Litovsky RY, 1999, J ACOUST SOC AM, V106, P1633, DOI 10.1121/1.427914 MCFADDEN D, 1973, PERCEPT MOTOR SKILL, V37, P755 MCFADDEN D, 1972, J ACOUST SOC AM, V52, P1197, DOI 10.1121/1.1913232 MCFADDEN D, 1972, J ACOUST SOC AM, V52, P574, DOI 10.1121/1.1913147 MCFADDEN D, 1971, J ACOUST SOC AM, V50, P1484, DOI 10.1121/1.1912802 Mickey BJ, 2001, J NEUROPHYSIOL, V86, P1333 MUNCEY RW, 1953, ACUSTICA, V3, P168 PERROTT DR, 1989, J ACOUST SOC AM, V85, P282, DOI 10.1121/1.397735 Pitman J., 1993, PROBABILITY ROSEN S, 1994, HEARING RES, V73, P231, DOI 10.1016/0378-5955(94)90239-9 Rosen S, 1998, J ACOUST SOC AM, V103, P2539, DOI 10.1121/1.422775 Saberi K, 1996, PERCEPT PSYCHOPHYS, V58, P1037, DOI 10.3758/BF03206831 Saberi K, 2003, J ACOUST SOC AM, V114, P420, DOI 10.1121/1.1578079 Saberi K, 2002, JARO, V3, P80, DOI 10.1007/s101620020006 SABERI K, 1990, J ACOUST SOC AM, V87, P1732, DOI 10.1121/1.399422 SABERI K, 1995, ACUSTICA, V81, P272 Saberi K, 2004, PSYCHOL REV, V111, P52, DOI 10.1037/0033-295X.111.1.52 SHACKLETON TM, 1992, J ACOUST SOC AM, V91, P2276, DOI 10.1121/1.403663 SHEAR GD, 1987, THESIS CARNEGIEMELLO SHIMCUNNINGHAM BG, 1993, J ACOUST SOC AM, V93, P2923 STERN RM, 1978, J ACOUST SOC AM, V64, P127, DOI 10.1121/1.381978 STERN RM, 1988, J ACOUST SOC AM, V84, P156, DOI 10.1121/1.396982 STERN RM, 1997, BINAURAL SPATIAL HEA, P499 Tollin DJ, 1999, J ACOUST SOC AM, V105, P838, DOI 10.1121/1.426273 TOLLIN DJ, 1998, P NATO ADV STUD I CO, P77 Tollin DJ, 1998, J ACOUST SOC AM, V104, P3030, DOI 10.1121/1.423884 WALLACH H, 1949, AM J PSYCHOL, V62, P315, DOI 10.2307/1418275 WETHERILL GB, 1965, BRIT J MATH STAT PSY, V18, P1 YIN TCT, 1995, ADV HEARING RES YIN TCT, 1994, J NEUROSCI, V14, P5170 YOST WA, 1984, J ACOUST SOC AM, V76, P1377, DOI 10.1121/1.391454 Yost WA, 1996, CURR DIR PSYCHOL SCI, V5, P125, DOI 10.1111/1467-8721.ep11452783 Yost WA, 1997, J ACOUST SOC AM, V101, P2994, DOI 10.1121/1.418528 Zurek P. M., 1987, DIRECTIONAL HEARING, P85, DOI 10.1007/978-1-4612-4738-8_4 ZUREK PM, 1980, J ACOUST SOC AM, V67, P952, DOI 10.1121/1.383974 Zurek PM, 2003, PERCEPT PSYCHOPHYS, V65, P95, DOI 10.3758/BF03194786 NR 75 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2004 VL 191 IS 1-2 BP 1 EP 13 DI 10.1016/j.heares.2004.01.003 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 819MI UT WOS:000221318600001 PM 15109699 ER PT J AU Getzmann, S AF Getzmann, S TI Spatial discrimination of sound sources in the horizontal plane following an adapter sound SO HEARING RESEARCH LA English DT Article DE sound localization; spatial discrimination; auditory adaptation ID INTERAURAL TIME DIFFERENCES; AUDITORY LOCALIZATION; ADAPTATION; ATTENTION; DISPARITY AB The effect of a preceding (adapter) sound on the spatial discrimination of two subsequent, successively presented (target) sounds was tested in the horizontal plane. The adapter and the first target were located in front of the subject or 30degrees to the right of the midline; both sounds were presented either at the same location or at different locations. The second target was located to the right or the left of the first. Sound spectra of the 3-s adapter and the 100-ms targets were either high (4.5-18 kHz) or low (1-4 kHz) in frequency. Fifteen subjects judged the position of the second target relative to the first in a two-alternative forced-choice paradigm. In comparison with a no-adapter control condition, in which no sound preceded, discrimination performance was increased when adapter and first target were presented at the same location and when both sounds consisted of the same frequency spectrum. No improvement occurred when adapter and targets differed in location or frequency. The results are consistent with previous results on post-adaptation discrimination of interaural time differences. Possibly, spatial adaptation of the underlying mechanisms of auditory localization may explain the discrimination aftereffect. (C) 2004 Elsevier B.V. All rights reserved. C1 Ruhr Univ Bochum, Fac Psychol, D-44780 Bochum, Germany. RP Getzmann, S (reprint author), Ruhr Univ Bochum, Fac Psychol, D-44780 Bochum, Germany. EM stephan.getzmann@ruhr-uni-bochum.de CR Braasch J, 2002, ACTA ACUST UNITED AC, V88, P942 Canevet G, 1996, ACUSTICA, V82, P149 CANEVET G, 1994, ACUSTICA, V80, P311 Carlile S, 2001, J ACOUST SOC AM, V110, P416, DOI 10.1121/1.1375843 Cox D. R., 1970, ANAL BINARY DATA Getzmann S, 2003, EXP PSYCHOL, V50, P131, DOI 10.1027//1618-3169.50.2.131 Hofman PM, 1998, J ACOUST SOC AM, V103, P2634, DOI 10.1121/1.422784 Kashino M, 1998, PSYCHOL PHYSL ADV HE, P322 Kashino M, 1998, J ACOUST SOC AM, V103, P3597, DOI 10.1121/1.423064 Lewald J, 2002, LEARN MEMORY, V9, P268, DOI 10.1101/lm.51402 Malone BJ, 2002, J NEUROSCI, V22, P4625 Meunier S, 1996, ACUSTICA, V82, pS215 MILLS AW, 1958, J ACOUST SOC AM, V30, P237, DOI 10.1121/1.1909553 MONDOR TA, 1995, J EXP PSYCHOL HUMAN, V21, P387, DOI 10.1037//0096-1523.21.2.387 RADEAU M, 1994, CAH PSYCHOL COGN, V13, P3 Recanzone GH, 1998, P NATL ACAD SCI USA, V95, P869, DOI 10.1073/pnas.95.3.869 Sach AJ, 2000, J EXP PSYCHOL HUMAN, V26, P717, DOI 10.1037/0096-1523.26.2.717 Schmitt M, 2000, Q J EXP PSYCHOL-A, V53, P105, DOI 10.1080/027249800390691 SPENCE CJ, 1994, J EXP PSYCHOL HUMAN, V20, P555, DOI 10.1037//0096-1523.20.3.555 THURLOW WR, 1973, J ACOUST SOC AM, V53, P1573, DOI 10.1121/1.1913505 NR 20 TC 13 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2004 VL 191 IS 1-2 BP 14 EP 20 DI 10.1016/j.heares.2003.12.020 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 819MI UT WOS:000221318600002 PM 15109700 ER PT J AU Mendelson, JR Lui, B AF Mendelson, JR Lui, B TI The effects of aging in the medial geniculate nucleus: a comparison with the inferior colliculus and auditory cortex SO HEARING RESEARCH LA English DT Article DE aging; frequency modulated sweeps; auditory cortex; inferior colliculus; medial geniculate; nucleus ID AGE-RELATED-CHANGES; FREQUENCY-MODULATED SOUNDS; TEMPORAL PROCESSING SPEED; IMMUNOREACTIVE NEURONS; FUNCTIONAL TOPOGRAPHY; RESPONSE PROPERTIES; RECEPTIVE-FIELDS; FISCHER-344 RATS; CAT; BODY AB A common problem among the elderly is a difficulty in discriminating speech. One factor that may contribute to this is deterioration in the ability to process the dynamic components of speech such as formant transitions. The frequency-modulated (FM) sweep is a useful stimulus for investigating the neural basis of temporal processing speed since it has features in common with formant transitions. Previously, we showed that when cells in the auditory cortex of aged animals were presented with FM sweeps, they exhibited a decrease in temporal processing speed when compared to cells recorded from young animals. However, this was not the case for cells in the inferior colliculus (IC) where neural responses did not appear to be affected by aging. One question that remains is how the auditory thalamus is affected by aging: Is it similar to that of the auditory cortex or of the IC. To this end, single units were recorded from the ventral division of the medial geniculate nucleus (MGNv) of young and aged anaesthetized rats in response to FM sweeps. Results showed that there were no age-related differences in speed or direction selectivity of FM sweep responses in the MGNv. When compared with units recorded from the IC and AI, the responses of MGNv neurons were similar to those of the IC. This suggests that temporal processing speed is affected by aging in the cortex, but not in the auditory thalamus or midbrain. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Toronto, Dept Speech Language Pathol, Toronto, ON M5G 1V7, Canada. RP Mendelson, JR (reprint author), Univ Toronto, Dept Speech Language Pathol, 500 Univ Ave, Toronto, ON M5G 1V7, Canada. CR AITKIN LM, 1985, AUDITORY MIDBRAIN ST AITKIN LM, 1972, J NEUROPHYSIOL, V35, P365 BACKOFF PM, 1994, HEARING RES, V73, P163, DOI 10.1016/0378-5955(94)90231-3 BAIMBRIDGE KG, 1992, TRENDS NEUROSCI, V15, P303, DOI 10.1016/0166-2236(92)90081-I BANAYSCHWARTZ M, 1989, NEUROCHEM RES, V14, P555, DOI 10.1007/BF00964918 Boettcher FA, 1996, HEARING RES, V102, P167, DOI 10.1016/S0378-5955(96)90016-7 BORDI F, 1994, EXP BRAIN RES, V98, P261, DOI 10.1007/BF00228414 Caird D, 1991, NEUROBIOLOGY HEARING, P253 CASPARY DM, 1990, J NEUROSCI, V10, P2363 Caspary DM, 1999, NEUROSCIENCE, V93, P307, DOI 10.1016/S0306-4522(99)00121-9 CASPARY DM, 1995, EXP GERONTOL, V30, P349, DOI 10.1016/0531-5565(94)00052-5 Cha CI, 1997, BRAIN RES, V753, P235, DOI 10.1016/S0006-8993(97)00009-7 CREUTZFELDT O, 1980, EXP BRAIN RES, V39, P87 FELDMAN ML, 1979, SPECIAL SENSES AGING, P143 Felsheim C, 1996, HEARING RES, V98, P137, DOI 10.1016/0378-5955(96)00078-0 Finlayson PG, 2002, JARO, V3, P321, DOI 10.1007/s101620020038 Fuzessery ZM, 1996, J NEUROPHYSIOL, V76, P1059 Gordon M, 1998, HEARING RES, V122, P97, DOI 10.1016/S0378-5955(98)00087-2 GRASSE KL, 1990, VISUAL NEUROSCI, V6, P604 Helfert RH, 1999, J COMP NEUROL, V406, P285 IMIG TJ, 1985, J NEUROPHYSIOL, V53, P309 Jucker M, 1997, BEHAV BRAIN RES, V85, P1, DOI 10.1016/S0166-4328(96)02243-7 KALTWASSER MT, 1990, J COMP PSYCHOL, V104, P227, DOI 10.1037/0735-7036.104.3.227 KHATCHATURIAN Z, 1982, HDB STUDIES PSYCHIAT, P139 KONKLE DF, 1977, J SPEECH HEAR RES, V20, P108 KUWADA S, 1989, J NEUROPHYSIOL, V61, P269 LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799 Lee HJ, 2002, HEARING RES, V174, P64, DOI 10.1016/S0378-5955(02)00639-1 LEVITAN ES, 1988, NEURON, V1, P773, DOI 10.1016/0896-6273(88)90125-0 LIANO DA, 1999, J COMP PHYSIOL A, V184, P371 LUI B, 2003, EXP BRAIN RES, V221, P550 MENDELSON JR, 1985, BRAIN RES, V327, P331, DOI 10.1016/0006-8993(85)91530-6 Mendelson JR, 2001, HEARING RES, V158, P84, DOI 10.1016/S0378-5955(01)00294-5 MENDELSON JR, 1992, EXP BRAIN RES, V91, P435 Mendelson JR, 2002, VISION RES, V42, P695, DOI 10.1016/S0042-6989(01)00307-8 MENDELSON JR, 1993, EXP BRAIN RES, V94, P65 Milbrandt JC, 1997, J COMP NEUROL, V379, P455, DOI 10.1002/(SICI)1096-9861(19970317)379:3<455::AID-CNE10>3.0.CO;2-F Miller LM, 2002, J NEUROPHYSIOL, V87, P516 MULLER CM, 1987, BRAIN RES, V414, P376, DOI 10.1016/0006-8993(87)90019-9 Nelken I, 2000, EUR J NEUROSCI, V12, P549, DOI 10.1046/j.1460-9568.2000.00935.x Orduna I, 2001, HEARING RES, V160, P47, DOI 10.1016/S0378-5955(01)00339-2 Palombi PS, 1996, J NEUROPHYSIOL, V76, P3114 Paxinos G, 1986, RAT BRAIN STEREOTAXI, V2nd Peruzzi D, 1997, J NEUROSCI, V17, P3766 PETERS A, 1981, AGING CELL STRUCTURE, P1 POON PWF, 1991, EXP BRAIN RES, V83, P598 POON PWF, 1992, EXP BRAIN RES, V91, P94 REES A, 1983, HEARING RES, V10, P301, DOI 10.1016/0378-5955(83)90095-3 Ricketts C, 1998, HEARING RES, V123, P27, DOI 10.1016/S0378-5955(98)00086-0 ROUILLER E, 1981, HEARING RES, V5, P81, DOI 10.1016/0378-5955(81)90028-9 SCHMOLESKY MT, 2000, NAT NEUROSCI, V3, P385 SCHNEIDER BA, 1994, J ACOUST SOC AM, V95, P980, DOI 10.1121/1.408403 SCHREINER CE, 1988, HEARING RES, V32, P49, DOI 10.1016/0378-5955(88)90146-3 SCHREINER CE, 1990, J NEUROPHYSIOL, V64, P1442 Palombi PS, 2001, HEARING RES, V153, P174, DOI 10.1016/S0378-5955(00)00264-1 Sillito A. M., 1984, CEREB CORTEX, P91 SPEAR PD, 1994, J NEUROPHYSIOL, V72, P402 TIAN B, 1994, J NEUROPHYSIOL, V71, P1959 Tian B, 1998, J NEUROPHYSIOL, V79, P2629 VARTANIAN IA, 1974, ACUSTICA, V31, P305 Walton JP, 2002, J NEUROPHYSIOL, V88, P565, DOI 10.1152/jn.00945.2001 Walton JP, 1998, J NEUROSCI, V18, P2764 Wang XJ, 1998, J NEUROPHYSIOL, V79, P1549 Wenstrup JJ, 1999, J NEUROPHYSIOL, V82, P2528 Willott J. F., 1991, AGING AUDITORY SYSTE Winer JA, 1996, P NATL ACAD SCI USA, V93, P8005, DOI 10.1073/pnas.93.15.8005 WINER JA, 1988, J COMP NEUROL, V278, P47, DOI 10.1002/cne.902780104 Winer JA, 1996, P NATL ACAD SCI USA, V93, P3083, DOI 10.1073/pnas.93.7.3083 WINER JA, 1985, ADV ANAT EMBRYOL CEL, V86, P1 WINGFIELD A, 1985, J GERONTOL, V40, P579 ZURITA P, 1994, NEUROSCI RES, V19, P303, DOI 10.1016/0168-0102(94)90043-4 NR 71 TC 13 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2004 VL 191 IS 1-2 BP 21 EP 33 DI 10.1016/j.heares.2004.01.010 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 819MI UT WOS:000221318600003 PM 15109701 ER PT J AU Jones, SM Erway, LC Johnson, KR Yu, HP Jones, TA AF Jones, SM Erway, LC Johnson, KR Yu, HP Jones, TA TI Gravity receptor function in mice with graded otoconial deficiencies SO HEARING RESEARCH LA English DT Article DE otolith organs; lethal milk; tilted; pallid; muted; mocha; vestibular compound action potentials ID VESTIBULAR EVOKED-POTENTIALS; STORAGE POOL DEFICIENCY; MUTANT MICE; INNER-EAR; MOUSE; OTOLITH; MANGANESE; MUTATION; MOCHA; GENE AB The purpose of the present study was to examine gravity receptor function in mutant mouse strains with variable deficits in otoconia: lethal milk (lm), pallid (pa), tilted (tlt), mocha (mh), and muted (mu). Control animals were either age-matched heterozygotes or C57BL/6J (abbr. 136) mice. Gravity receptor function was measured using linear vestibular evoked potentials (VsEPs). Cage and swimming behaviors were also documented. Temporal bones were cleared to assess the overall otoconial deficit and to correlate structure and function for lm mice. Results confirmed the absence of VsEPs for mice that lacked otoconia completely. VsEP thresholds and amplitudes varied in mouse strains with variable loss of otoconia. Some heterozygotes also showed elevated VsEP thresholds in comparison to B6 mice. In lm mice, which have absent otoconia in the utricle and a variable loss of otoconia in the saccule, VsEPs were present and average P1/N1 amplitudes were highly correlated with the average loss of saccular otoconia (R = 0.77, p < 0.001). Cage and swimming behavior were not adversely affected in those animals with recordable VsEPs. Most, but not all, mice with absent VsEPs were unable to swim. Some animals were able to swim despite having no measurable gravity receptor response. The latter finding underscores the remarkable adaptive potential exhibited by neurobehavioral systems following profound sensory loss. It also shows that behavior alone may be an unreliable indicator of the extent of gravity receptor deficits. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Missouri, Sch Med, Columbia, MO 65212 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Jackson Lab, Bar Harbor, ME 04009 USA. RP Jones, SM (reprint author), E Carolina Univ, Dept Commun Sci & Disorders, Belk Annex, Greenville, NC 27858 USA. EM jonessh@mail.ecu.edu CR Bergstrom RA, 1998, GENETICS, V150, P815 DOUGLAS RJ, 1979, J COMP PHYSIOL PSYCH, V93, P467, DOI 10.1037/h0077566 ERWAY LC, 1984, J HERED, V75, P159 ERWAY L, 1971, GENETICS, V67, P97 HOFFMAN LF, 2000, IN PRESS J ASS RES O HUANG L, 1997, ASS RES OT ABSTR, V23, P168 Huang LP, 1999, NAT GENET, V23, P329 Hurle B, 2003, HUM MOL GENET, V12, P777, DOI 10.1093/hmg/ddg087 Jones SM, 1997, J COMP PHYSIOL A, V180, P631, DOI 10.1007/s003590050079 Jones SM, 1999, HEARING RES, V135, P56, DOI 10.1016/S0378-5955(99)00090-8 Jones SM, 2002, J NEUROSCI METH, V118, P23, DOI 10.1016/S0165-0270(02)00125-5 JONES SM, 2001, ASS RES OT ABST, V24, P140 Jones TA, 1999, HEARING RES, V136, P75, DOI 10.1016/S0378-5955(99)00110-0 Kantheti P, 2003, MAMM GENOME, V14, P157, DOI 10.1007/s00335-002-2238-8 LANE PW, 1974, J HERED, V65, P362 LIM DJ, 1974, ANN OTO RHINOL LARYN, V83, P565 LYON MF, 1953, J GENET, V51, P638, DOI 10.1007/BF02982950 LYON MF, 1969, GENET RES, V14, P163 Nazareth AM, 1998, J VESTIBUL RES-EQUIL, V8, P233 Ornitz DM, 1998, HEARING RES, V122, P60, DOI 10.1016/S0378-5955(98)00080-X PILETZ JE, 1978, SCIENCE, V199, P181, DOI 10.1126/science.619449 PURICHIA N, 1972, DEV BIOL, V27, P395, DOI 10.1016/0012-1606(72)90178-9 ROLFSEN RM, 1984, J HERED, V75, P158 SWANK RT, 1991, BLOOD, V78, P2036 TRUNE DR, 1983, AM J OTOLARYNG, V4, P261, DOI 10.1016/S0196-0709(83)80070-2 Zhang Q, 2002, HUM MOL GENET, V11, P697, DOI 10.1093/hmg/11.6.697 NR 26 TC 37 Z9 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2004 VL 191 IS 1-2 BP 34 EP 40 DI 10.1016/j.heares.2004.01.008 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 819MI UT WOS:000221318600004 PM 15109702 ER PT J AU Rudack, C Langer, C Junker, R AF Rudack, C Langer, C Junker, R TI Platelet GPIaC807T polymorphism is associated with negative outcome of sudden hearing loss SO HEARING RESEARCH LA English DT Article DE sudden sensorineural hearing loss; thrombophilia; GPIa C807T; GPIIIa PIA1/A2 PAI-1; risk factor ID CEREBRAL VENOUS THROMBOSIS; FACTOR-V LEIDEN; MYOCARDIAL-INFARCTION; RISK-FACTOR; METHYLENETETRAHYDROFOLATE-REDUCTASE; INNER-EAR; PROTHROMBIN G20210A; GLYCOPROTEIN-IIIA; GENE; DEAFNESS AB To determine the relevance of inherited prothrombotic risk factors in sudden hearing loss, we investigated 85 patients with sudden hearing loss of greater than or equal to 60 dB for the presence of inherited prothrombotic risk factors. The FV G1691A, FII G20210A, GPIa C807T, GPIIIa PIA1/A2, PAI-1 4G/5G, t-PA Alu repeat ID, MTHFR C677T and CBS 844ins68 genotypes were investigated. Allele frequencies found in patients were compared to those of 85 healthy control subjects of the same ethnic background using chi(2) and odds-ratio analysis. The frequency of the GPIa807T allele was significantly elevated in patients compared to controls. In addition, allele frequency and genotype distribution of GPIa was significantly elevated in the patient group without recovery after 3 months of sudden hearing loss onset. Allele frequencies of all other prothrombotic risk factors investigated here did not differ from those of the control subjects. The single-nucleotide polymorphism of GPIa C807T seems to play a role as a prognostic factor in recovery from sudden hearing loss. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Munster, Dept Otorhinolaryngol Head & Neck Surg, D-48149 Munster, Germany. Univ Munster, Inst Clin Chem & Lab Med, D-48149 Munster, Germany. RP Rudack, C (reprint author), Univ Munster, Dept Otorhinolaryngol Head & Neck Surg, Kardinal Von Galen Ring 10, D-48149 Munster, Germany. EM rudack@uni-muenster.de RI Junker, Ralf/M-2358-2013 CR ASSMANN G, 1992, AM J CARDIOL, V70, P733, DOI 10.1016/0002-9149(92)90550-I Benze G, 2002, EUR HEART J, V23, P325, DOI 10.1053/euhj.2001.2776 Berrocal JRG, 2002, ANN OTO RHINOL LARYN, V111, P989 BERTINA RM, 1994, NATURE, V369, P64, DOI 10.1038/369064a0 Boulassel MR, 2001, ACTA OTO-LARYNGOL, V121, P28 Cadoni G, 2003, LARYNGOSCOPE, V113, P797, DOI 10.1097/00005537-200305000-00006 CIUFFETTI G, 1991, LARYNGOSCOPE, V101, P65 Deschiens MA, 1996, STROKE, V27, P1724 ERIKSSON P, 1995, P NATL ACAD SCI USA, V92, P1851, DOI 10.1073/pnas.92.6.1851 FALK G, 1995, FIBRINOLYSIS, V9, P170, DOI 10.1016/S0268-9499(95)80007-7 FROSST P, 1995, NAT GENET, V10, P111, DOI 10.1038/ng0595-111 *GERM SOC OT HEAD, 2002, SCI GUID DIAGN THER GOYETTE P, 1995, AM J HUM GENET, V56, P1052 HAMSTEN A, 1987, LANCET, V2, P3 Heller U, 1998, HNO, V46, P583, DOI 10.1007/s001060050275 JIN Y, 1993, BLOOD, V82, P2281 Kim CE, 1997, HUM MOL GENET, V6, P2213, DOI 10.1093/hmg/6.13.2213 KLEMM E, 1991, LARYNGO RHINO OTOL, V70, P359, DOI 10.1055/s-2007-998053 Kunicki TJ, 1997, BLOOD, V89, P1939 Lepantalo A, 2001, THROMB RES, V103, P123, DOI 10.1016/S0049-3848(01)00283-3 Mercier E, 1999, BLOOD, V93, P3150 NAGAHARA K, 1983, ACTA OTO-LARYNGOL, V96, P57, DOI 10.3109/00016488309132875 Nakashima T, 2000, OTOLARYNG HEAD NECK, V123, P593, DOI 10.1067/mhn.2000.109486 Ottaviani F, 1999, LARYNGOSCOPE, V109, P1084, DOI 10.1097/00005537-199907000-00014 Patscheke JH, 2001, THROMB HAEMOSTASIS, V86, P1118 PHILLIPS DR, 1991, CELL, V65, P359, DOI 10.1016/0092-8674(91)90451-4 Poort SR, 1996, BLOOD, V88, P3698 Ridker PM, 1997, ARTERIOSCL THROM VAS, V17, P1687 RUST S, 1993, NUCLEIC ACIDS RES, V21, P3623, DOI 10.1093/nar/21.16.3623 Santoso S, 1999, BLOOD, V93, P2449 Scheibe F, 1997, EUR ARCH OTO-RHINO-L, V254, P91, DOI 10.1007/BF01526187 SCHUKNEC.HF, 1973, ACTA OTO-LARYNGOL, V76, P75, DOI 10.3109/00016487309121486 STAATZ WD, 1990, J BIOL CHEM, V265, P4778 STAINDL O, 1979, HORSTURZ WIENER MED, V29, P648 Stein JH, 1998, ARCH INTERN MED, V158, P1301, DOI 10.1001/archinte.158.12.1301 Stokroos RJ, 1998, AM J OTOL, V19, P447 Suckfull M, 2002, LANCET, V360, P1811, DOI 10.1016/S0140-6736(02)11768-5 Suckfull M, 2002, OTOL NEUROTOL, V23, P309, DOI 10.1097/00129492-200205000-00013 Tran Ba HP, 2002, ORL J OTORHINOLARYNG, V64, P120 UNKELBACH K, 1994, TRANSFUSION, V34, P592, DOI 10.1046/j.1537-2995.1994.34794330013.x Vasama JP, 2000, ANN OTO RHINOL LARYN, V109, P527 Veldman Jan, 1998, Auris Nasus Larynx, V25, P309, DOI 10.1016/S0385-8146(98)00033-9 von Ahsen N, 1999, CLIN CHEM, V45, P694 Welch GN, 1998, NEW ENGL J MED, V338, P1042 WILSON WR, 1983, OTOLARYNG HEAD NECK, V91, P653 Yanagita N, 1994, Acta Otolaryngol Suppl, V514, P9 Zuber M, 1996, STROKE, V27, P1721 NR 47 TC 17 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2004 VL 191 IS 1-2 BP 41 EP 48 DI 10.1016/j.heares.2004.01.002 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 819MI UT WOS:000221318600005 PM 15109703 ER PT J AU Weisz, N Wienbruch, C Hoffmeister, S Elbert, T AF Weisz, N Wienbruch, C Hoffmeister, S Elbert, T TI Tonotopic organization of the human auditory cortex probed with frequency-modulated tones SO HEARING RESEARCH LA English DT Article DE tonotopy; MEG; high-resolution; LME ID STEADY-STATE RESPONSES; HUMAN-BRAIN; MAGNETIC-FIELDS; STIMULI; NEURONS; SENSITIVITY; SOUNDS; AREAS; SELECTIVITY; TOPOGRAPHY AB Using neuromagnetic source imaging, we investigated tonotopic representation and direction sensitivity in the auditory cortex of humans (N = 15). For this purpose, source analysis was undertaken at every single sampling point during the presentation of a frequency-modulated tone (FM) sweeping slowly downward or upward across periods of 3 s duration. Stimuli were selected to target response properties of the central part of the primary auditory cortical field, which has been shown to exhibit. sensitivity to distinct FM-sound features as compared to the ventral and dorsal part. Linear mixed-effects model statistics confirm tonotopic gradients in medial-lateral and anterior posterior directions. The high resolution provided by this method revealed that the relationship between frequency and spatial location of the responding neural tissue is nonlinear. The idea that neurons specifically sensitive to the employed sound characteristics (slow, downward modulation) were activated is supported by the fact that the upward sweep of identical duration produced a different pattern of functional organisation. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Konstanz, Dept Psychol, D-78457 Constance, Germany. RP Weisz, N (reprint author), Univ Konstanz, Dept Psychol, Box D25, D-78457 Constance, Germany. EM Nathan.Weisz@uni-konstanz.de RI Elbert, Thomas/C-8556-2009 CR Cohen J., 1988, STAT POWER ANAL BEHA, V2nd deCharms RC, 1998, SCIENCE, V280, P1439, DOI 10.1126/science.280.5368.1439 deRibaupierre F, 1997, CENTRAL AUDITORY SYS, P317 Eggermont JJ, 2001, HEARING RES, V157, P1, DOI 10.1016/S0378-5955(01)00259-3 Ehret G, 1997, J COMP PHYSIOL A, V181, P547, DOI 10.1007/s003590050139 ELBERLING C, 1982, SCAND AUDIOL, V11, P61, DOI 10.3109/01050398209076201 Elbert T, 2002, J NEUROSCI, V22, P9941 ELBERT T, 1998, MAGNETISM MED, P190 Engelien A, 2000, HEARING RES, V148, P153, DOI 10.1016/S0378-5955(00)00148-9 Godey B, 2001, CLIN NEUROPHYSIOL, V112, P1850, DOI 10.1016/S1388-2457(01)00636-8 Goldstein H., 2003, MULTILEVEL STAT MODE, V3rd Gordon M, 1998, HEARING RES, V122, P97, DOI 10.1016/S0378-5955(98)00087-2 HAMALAINEN M, 1993, REV MOD PHYS, V65, P413, DOI 10.1103/RevModPhys.65.413 Hartmann W. M., 1998, SIGNALS SOUND SENSAT HEIL P, 1992, J COMP PHYSIOL A, V171, P583 Heil P, 1998, J NEUROPHYSIOL, V79, P3041 HEIL P, 1992, HEARING RES, V63, P135, DOI 10.1016/0378-5955(92)90081-W HEIL P, 1992, HEARING RES, V63, P108, DOI 10.1016/0378-5955(92)90080-7 Horikawa J, 1998, NEUROREPORT, V9, P799, DOI 10.1097/00001756-199803300-00006 Horikawa J, 2001, NEUROREPORT, V12, P3335, DOI 10.1097/00001756-200110290-00038 Kaas JH, 1999, CURR OPIN NEUROBIOL, V9, P164, DOI 10.1016/S0959-4388(99)80022-1 LAUTER JL, 1985, HEARING RES, V20, P199, DOI 10.1016/0378-5955(85)90024-3 Lockwood AH, 1999, CEREB CORTEX, V9, P65, DOI 10.1093/cercor/9.1.65 Lutkenhoner B, 2003, NEUROIMAGE, V19, P935, DOI 10.1016/S1053-8119(03)00172-1 Lutkenhoner B, 1998, AUDIOL NEURO-OTOL, V3, P191, DOI 10.1159/000013790 MENDELSON JR, 1985, BRAIN RES, V327, P331, DOI 10.1016/0006-8993(85)91530-6 MENDELSON JR, 1993, EXP BRAIN RES, V94, P65 Nelken I, 2000, EUR J NEUROSCI, V12, P549, DOI 10.1046/j.1460-9568.2000.00935.x NELKEN I, 1994, HEARING RES, V72, P237, DOI 10.1016/0378-5955(94)90222-4 Orduna I, 2001, HEARING RES, V160, P47, DOI 10.1016/S0378-5955(01)00339-2 PANTEV C, 1995, ELECTROEN CLIN NEURO, V94, P26, DOI 10.1016/0013-4694(94)00209-4 PANTEV C, 1988, ELECTROEN CLIN NEURO, V69, P160, DOI 10.1016/0013-4694(88)90211-8 PANTEV C, 2003, PERCEPTUAL COMPLETIO PANTEV C, 1989, SCIENCE, V246, P486, DOI 10.1126/science.2814476 PANTEV C, 1994, ELECTROEN CLIN NEURO, V90, P82, DOI 10.1016/0013-4694(94)90115-5 Pantev C, 1996, HEARING RES, V101, P62, DOI 10.1016/S0378-5955(96)00133-5 Pinheiro J. C., 2000, MIXED EFFECTS MODELS ROMANI GL, 1982, EXP BRAIN RES, V47, P381 Ross B, 2000, J ACOUST SOC AM, V108, P679, DOI 10.1121/1.429600 Ross I., 1996, J COMPUTATIONAL GRAP, V5, P299 Schreiner CE, 2000, ANNU REV NEUROSCI, V23, P501, DOI 10.1146/annurev.neuro.23.1.501 SHAMMA SA, 1993, J NEUROPHYSIOL, V69, P367 Talavage TM, 2000, HEARING RES, V150, P225, DOI 10.1016/S0378-5955(00)00203-3 TIAN B, 1994, J NEUROPHYSIOL, V71, P1959 Tian B, 1998, J NEUROPHYSIOL, V79, P2629 Wallace MN, 2002, EXP BRAIN RES, V143, P499, DOI 10.1007/s00221-002-1014-z Wessinger CM, 2001, J COGNITIVE NEUROSCI, V13, P1, DOI 10.1162/089892901564108 Zhang LI, 2003, NATURE, V424, P201, DOI 10.1038/nature01796 NR 48 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2004 VL 191 IS 1-2 BP 49 EP 58 DI 10.1016/j.heares.2004.01.012 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 819MI UT WOS:000221318600006 PM 15109704 ER PT J AU Wang, CT Young, YH AF Wang, CT Young, YH TI Earlier and later components of tone burst evoked myogenic potentials SO HEARING RESEARCH LA English DT Article DE earlier component; later component; monaural acoustic stimulation; binaural acoustic stimulation; vestibular evoked myogenic potential; tone burst ID GUINEA-PIG; NEURONS; CATS; RESPONSES; REFLEX; CLICKS; NERVE; TIME AB The aim of this study was to further investigate the response rates, thresholds, latencies and amplitudes of the earlier and later components of tone burst evoked myogenic potentials (TEMPs) in conditions of binaural and monaural stimulation and recordings in a group of normal subjects in response to a 500-Hz tone burst. Each subject underwent simultaneous binaural acoustic stimulation with bilateral recording (B-TEMP) initially, then monaural acoustic stimulation with ipsilateral recording (M-TEMP) on another day. The results showed 100%, 100%, 54%, and 23% response rates for the earlier components of B-TEMPs, when using 105, 95, 85, and 75 dB acoustic stimulation, respectively. It exhibited a significant decrease in the response rate when the stimulus intensity was attenuated from 95 to 75 dB. In addition, no significant difference in the response rate of the earlier components existed between B-TEMPs and M-TEMPs. For the later components of B-TEMPs obtained from 105, 95, 85, and 75 dB acoustic stimulation, the response rates were 85%, 85%, 62%, and 42%, respectively, higher than those of M-TEMPs significantly. Nevertheless, there were no statistical differences in the mean latencies of each peak (p13, n23, n34, and p44) between B-TEMPs and M-TEMPs under similar stimulus intensity. Meanwhile, no significant relationship existed between the stimulus intensity and the latency, regardless of B-TEMPs or M-TEMPs. Comparing the relative amplitudes between B-TEMPs and M-TEMPs, the former displayed significant smaller p13-n23 amplitude, but larger n34-p44 amplitude. However, the mean thresholds for the earlier and later components between B-TEMPs and M-TEMPs did not differ significantly. In conclusion, monaural acoustic stimulation with ipsilateral recording may elicit larger amplitude of the earlier components, whereas binaural acoustic stimulation with bilateral recording evokes higher response rate and larger amplitude of the later components. Although the nerve pathways for both components are different, the thresholds for these potentials do not differ significantly, indicating that both components may, at least in part, share a common origin, but different pathways. (C) 2004 Elsevier B.V. All rights reserved. C1 Natl Taiwan Univ, Coll Med, Natl Taiwan Univ Hosp, Dept Otolaryngol, Taipei 10018, Taiwan. RP Young, YH (reprint author), Natl Taiwan Univ, Coll Med, Natl Taiwan Univ Hosp, Dept Otolaryngol, 1 Chang Te St, Taipei 10018, Taiwan. EM youngyh@ha.mc.ntu.edu.tw CR BICKFORD RG, 1964, ANN NY ACAD SCI, V112, P204, DOI 10.1111/j.1749-6632.1964.tb26749.x Cheng PW, 2001, ACTA OTO-LARYNGOL, V121, P696, DOI 10.1080/00016480152583638 Cheng PW, 2001, ACTA OTO-LARYNGOL, V121, P935, DOI 10.1080/000164801317166817 COLEBATCH JG, 1992, NEUROLOGY, V42, P1635 COLEBATCH JG, 1994, J NEUROL NEUROSUR PS, V57, P190, DOI 10.1136/jnnp.57.2.190 DIDIER A, 1989, HEARING RES, V37, P123, DOI 10.1016/0378-5955(89)90034-8 Kushiro K, 1999, EXP BRAIN RES, V126, P410, DOI 10.1007/s002210050747 LIM CL, 1995, MUSCLE NERVE, V18, P1210 Murofushi T, 1996, EXP BRAIN RES, V111, P149 Murofushi T, 1999, ARCH OTOLARYNGOL, V125, P660 Murofushi T, 2001, ARCH OTOLARYNGOL, V127, P1069 MUROFUSHI T, 1995, EXP BRAIN RES, V103, P174 Sato H, 1997, EXP BRAIN RES, V116, P381, DOI 10.1007/PL00005766 Takegoshi H, 2003, HEARING RES, V176, P59, DOI 10.1016/S0378-5955(02)00741-4 Uchino Y, 1997, J NEUROPHYSIOL, V77, P3003 Wang SJ, 2003, HEARING RES, V185, P43, DOI 10.1016/S0378-5955(03)00256-9 Wu CC, 2002, EAR HEARING, V23, P235, DOI 10.1097/00003446-200206000-00007 Wu CC, 2003, HEAD NECK-J SCI SPEC, V25, P482, DOI 10.1002/hed.10215 Wu CH, 1999, ACTA OTO-LARYNGOL, V119, P741 Young YH, 2003, ARCH OTOLARYNGOL, V129, P815, DOI 10.1001/archotol.129.8.815 NR 20 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2004 VL 191 IS 1-2 BP 59 EP 66 DI 10.1016/j.heares.2004.01.004 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 819MI UT WOS:000221318600007 PM 15109705 ER PT J AU Coomes, DL Schofield, BR AF Coomes, DL Schofield, BR TI Separate projections from the inferior colliculus to the cochlear nucleus and thalamus in guinea pigs SO HEARING RESEARCH LA English DT Article DE auditory system; neuroanatomy; collateral; efferent; medial geniculate body ID MEDIAL GENICULATE-BODY; SUPERIOR OLIVARY COMPLEX; DESCENDING PROJECTIONS; BRAIN-STEM; EFFERENT PROJECTIONS; NEURONAL ORGANIZATION; PERICENTRAL NUCLEUS; RETROGRADE TRACERS; AUDITORY PATHWAYS; TUPAIA-GLIS AB We used multiple-labeling techniques with retrograde fluorescent tracers to determine whether individual cells in the inferior colliculus project to the medial geniculate body (MG) and the cochlear nucleus (CN) in guinea pigs. Four possible projection patterns were examined: (1) to ipsilateral MG and ipsilateral CN; (2) to ipsilateral MG and contralateral CN; (3) to contralateral MG and ipsilateral CN; and, (4) to contralateral MG and contralateral CN. Following injections of different tracers into two or more sites, no inferior collicular cells were double-labeled from the two contralateral targets and only a few cells were double-labeled from each of the other pairs of targets. The double-labeled cells always totaled <1% of the single-labeled populations. We conclude that collateral projections from the inferior colliculus to the MG and CN are virtually non-existent. Therefore, the ascending and descending projections to these targets arise from different cells. These cells could potentially receive different inputs and send different information to higher or lower centers of the auditory pathway. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Louisville, Dept Anatom Sci & Neurobiol, Louisville, KY 40202 USA. RP Schofield, BR (reprint author), Univ Louisville, Dept Anatom Sci & Neurobiol, 500 S Preston St, Louisville, KY 40202 USA. EM brscho01@gwise.louisville.edu CR ANDERSEN RA, 1980, J COMP NEUROL, V194, P649, DOI 10.1002/cne.901940311 ASCHOFF A, 1982, J NEUROSCI METH, V6, P179, DOI 10.1016/0165-0270(82)90083-8 ASCHOFF A, 1988, EXP BRAIN RES, V71, P241 Bal R, 2002, NEUROSCI LETT, V317, P42, DOI 10.1016/S0304-3940(01)02425-9 CASSEDAY JH, 1976, J COMP NEUROL, V166, P303, DOI 10.1002/cne.901660304 Choi D, 2002, J NEUROSCI METH, V117, P167, DOI 10.1016/S0165-0270(02)00098-5 Ehret G., 1997, CENTRAL AUDITORY SYS, P259 FAYELUND H, 1985, ANAT EMBRYOL, V171, P1, DOI 10.1007/BF00319050 FAYELUND H, 1988, UPSALA J MED SCI, V93, P1 FITZPATRICK KA, 1975, J COMP NEUROL, V164, P185, DOI 10.1002/cne.901640204 Geniec P, 1971, Acta Otolaryngol Suppl, V295, P1 GLENDENNING KK, 1983, J NEUROSCI, V3, P1521 GONZALEZHERNANDEZ TH, 1991, HEARING RES, V52, P17, DOI 10.1016/0378-5955(91)90184-B HALLMAN LE, 1988, J COMP NEUROL, V272, P149, DOI 10.1002/cne.902720111 HASHIKAWA T, 1983, EXP BRAIN RES, V49, P457 HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 KUDO M, 1978, BRAIN RES, V155, P113, DOI 10.1016/0006-8993(78)90310-4 Malmierca MS, 1996, HEARING RES, V93, P167, DOI 10.1016/0378-5955(95)00227-8 MALMIERCA MS, 1995, J COMP NEUROL, V357, P124, DOI 10.1002/cne.903570112 MOREST DK, 1965, J ANAT, V99, P611 MOREST DK, 1984, J COMP NEUROL, V222, P209, DOI 10.1002/cne.902220206 OLIVER DL, 1978, J COMP NEUROL, V182, P423, DOI 10.1002/cne.901820305 OLIVER DL, 1984, NEUROSCIENCE, V11, P409, DOI 10.1016/0306-4522(84)90033-2 Oliver DL, 2000, MICROSC RES TECHNIQ, V51, P355, DOI 10.1002/1097-0029(20001115)51:4<355::AID-JEMT5>3.0.CO;2-J OLIVER DL, 1991, J COMP NEUROL, V303, P75, DOI 10.1002/cne.903030108 Oliver DL, 1992, MAMMALIAN AUDITORY P, P168 Peruzzi D, 2000, NEUROSCIENCE, V101, P403, DOI 10.1016/S0306-4522(00)00382-1 Reetz G, 1999, BRAIN RES, V816, P527, DOI 10.1016/S0006-8993(98)01230-X RICHMOND FJR, 1994, J NEUROSCI METH, V53, P35, DOI 10.1016/0165-0270(94)90142-2 ROBERTSON D, 1987, HEARING RES, V27, P177, DOI 10.1016/0378-5955(87)90018-9 ROCKEL AJ, 1973, J COMP NEUROL, V149, P301, DOI 10.1002/cne.901490303 ROCKEL AJ, 1973, J COMP NEUROL, V147, P11, DOI 10.1002/cne.901470103 SALDANA E, 1993, NATO ADV SCI INST SE, V239, P153 SCHOFIELD BR, 1991, J COMP NEUROL, V312, P68, DOI 10.1002/cne.903120106 SCHOFIELD BR, 1999, ASS RES OTOLARYNGOL, V19, P221 Schofield BR, 2002, J COMP NEUROL, V453, P217, DOI 10.1002/cne.10402 SCHOFIELD BR, 1992, J COMP NEUROL, V317, P438, DOI 10.1002/cne.903170409 Schofield BR, 2001, J COMP NEUROL, V429, P206, DOI 10.1002/1096-9861(20000108)429:2<206::AID-CNE3>3.0.CO;2-X Schofield BR, 1996, HEARING RES, V102, P1, DOI 10.1016/S0378-5955(96)00121-9 Schofield BR, 1999, J COMP NEUROL, V409, P210, DOI 10.1002/(SICI)1096-9861(19990628)409:2<210::AID-CNE3>3.0.CO;2-A SCHOFIELD BR, 1994, J COMP NEUROL, V344, P83, DOI 10.1002/cne.903440107 SHORE SE, 1991, HEARING RES, V52, P255, DOI 10.1016/0378-5955(91)90205-N Sivaramakrishnan S, 2001, J NEUROSCI, V21, P2861 SMITH PH, 1992, J NEUROSCI, V12, P3700 SMITH PH, 2002, INTEGRATIVE FUNCTION, P6 SYKA J, 1988, AUDITORY PATHWAY STR, P279 TARLOV EC, 1966, J COMP NEUROL, V126, P403, DOI 10.1002/cne.901260304 WENSTRUP JJ, 1994, J COMP NEUROL, V346, P207, DOI 10.1002/cne.903460204 WILLARD FH, 1984, BRAIN RES, V303, P171, DOI 10.1016/0006-8993(84)90225-7 Winer JA, 1992, MAMMALIAN AUDITORY P, P222 WINTER IM, 1989, J COMP NEUROL, V280, P143, DOI 10.1002/cne.902800110 NR 51 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2004 VL 191 IS 1-2 BP 67 EP 78 DI 10.1016/j.heares.2004.01.009 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 819MI UT WOS:000221318600008 PM 15109706 ER PT J AU Tang, YZ Carr, CE AF Tang, YZ Carr, CE TI Development of NMDA R1 expression in chicken auditory brainstem SO HEARING RESEARCH LA English DT Article DE cochlear nuclei; nucleus angularis; nucleus magnocellularis; nucleus laminaris; superior olive; tonotopic gradient ID KV3.1 POTASSIUM CHANNEL; SUBUNIT MESSENGER-RNAS; D-ASPARTATE RECEPTOR; COCHLEAR NUCLEUS; GLUTAMATE RECEPTORS; SYNAPTIC TRANSMISSION; BARN OWL; AMPA RECEPTORS; N-LAMINARIS; IMMUNOCYTOCHEMICAL LOCALIZATION AB NMDA receptor subunit 1 (NR1) expression in the chicken cochlear nuclei was examined using immunohistochemistry and quantitative Western blots. An antibody raised in mouse against a highly conserved domain of NR1 recognized the same 115 kDa protein band in chicken brain. Quantitative Western blotting of cochlear nucleus protein showed no significant change in NR1 expression from E18 to adult. The nucleus angularis (NA) initiated NR1 expression before E12 that became more prominent after hatching. NR1-ir first appeared in the nucleus magnocellularis (NM) and nucleus laminaris (NL) at E10. From E12 to E19, NM exhibited a gradient in NR1 expression with medial, higher best frequency cell bodies being more immunoreactive than lateral, lower best frequency cell bodies. This gradient disappeared by E20. The distribution of NR1 in NL also changed during development. NR1 label was present in NL cell bodies between E10 and E13. From E14 onwards, NR1-ir characterized both cell bodies and neuropil. After hatching, NR1-ir levels were higher in NL than NM. The superior olive first expressed NR1 at E12. Neuropil staining was more intense than cell bodies until after hatching. In contrast to the functional decrease observed in mammals and chick, NR1-ir expression remained high in the chicken auditory brainstem into adulthood. Both chickens and rodents retain high levels of NR-1. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Maryland, Dept Biol, College Pk, MD 20742 USA. RP Tang, YZ (reprint author), Univ Maryland, Dept Biol, College Pk, MD 20742 USA. EM tangyz@wam.umd.edu CR Bellingham MC, 1998, J PHYSIOL-LONDON, V511, P861, DOI 10.1111/j.1469-7793.1998.861bg.x Bilak MM, 1996, NEUROSCIENCE, V75, P1075, DOI 10.1016/0306-4522(96)00197-2 BOOK KJ, 1990, J COMP NEUROL, V297, P55, DOI 10.1002/cne.902970105 Brenowitz S, 2001, J NEUROSCI, V21, P9487 BROSE N, 1993, J BIOL CHEM, V268, P22663 Bruckner S, 1998, EUR J NEUROSCI, V10, P3438, DOI 10.1046/j.1460-9568.1998.00353.x CAICEDO A, 1999, EUR J NEUROSCI, V11, P55 CARR CE, 1989, J COMP NEUROL, V286, P190, DOI 10.1002/cne.902860205 CARR CE, 1993, ANNU REV NEUROSCI, V16, P223, DOI 10.1146/annurev.ne.16.030193.001255 CARR EC, 1990, J NEUROSCI, V10, P3246 Chazot PL, 1997, J NEUROCHEM, V68, P507 CODE RA, 1989, HEARING RES, V40, P167, DOI 10.1016/0378-5955(89)90109-3 CONLEE JW, 1986, BRAIN RES, V367, P96, DOI 10.1016/0006-8993(86)91583-0 Cornil C, 2000, J COMP NEUROL, V428, P577 FEANY MB, 1993, NATURE, V364, P537, DOI 10.1038/364537a0 Fukui I, 2003, J PHYSIOL-LONDON, V548, P219 Futai K, 2001, J NEUROSCI, V21, P3342 ISAACSON JS, 1995, J NEUROPHYSIOL, V73, P964 JACKSON H, 1978, J COMP PHYSIOL PSYCH, V92, P682, DOI 10.1037/h0077496 JACKSON H, 1982, J COMP NEUROL, V210, P80, DOI 10.1002/cne.902100109 JHAVERI S, 1982, NEUROSCIENCE, V7, P837, DOI 10.1016/0306-4522(82)90046-X JHAVERI S, 1982, NEUROSCIENCE, V7, P855, DOI 10.1016/0306-4522(82)90047-1 Joelson D, 1998, MICROSC RES TECHNIQ, V41, P246, DOI 10.1002/(SICI)1097-0029(19980501)41:3<246::AID-JEMT8>3.3.CO;2-P Joshi I, 2002, J PHYSIOL-LONDON, V540, P861 Kuba H, 2002, J PHYSIOL-LONDON, V540, P529, DOI 10.1113/jphysiol.2001.013365 Kubke MF, 1998, MICROSC RES TECHNIQ, V41, P176 Kubke MF, 1999, J COMP NEUROL, V415, P189, DOI 10.1002/(SICI)1096-9861(19991213)415:2<189::AID-CNE4>3.0.CO;2-E Kubke MF, 2000, HEARING RES, V147, P1, DOI 10.1016/S0378-5955(00)00116-7 Kuenzel WJ, 1988, STEREOTAXIC ATLAS BR LACHICA EA, 1994, J COMP NEUROL, V348, P403, DOI 10.1002/cne.903480307 Lawrence JJ, 2000, J NEUROSCI, V20, P4864 Liao WH, 2000, HEARING RES, V150, P12, DOI 10.1016/S0378-5955(00)00167-2 Lippe WR, 1995, BRAIN RES, V703, P205, DOI 10.1016/0006-8993(95)01096-3 LU T, 2002, NEUR M ABSTR 2002 Parameshwaran S, 2001, J NEUROSCI, V21, P485 Parameshwaran-Iyer S, 2003, J NEUROBIOL, V55, P165, DOI 10.1002/neu.10198 Parks TN, 2000, HEARING RES, V147, P77, DOI 10.1016/S0378-5955(00)00122-2 PARKS TN, 1987, J COMP NEUROL, V260, P312, DOI 10.1002/cne.902600211 PARKS TN, 1984, J COMP NEUROL, V227, P459, DOI 10.1002/cne.902270315 Petralia RS, 2000, HEARING RES, V147, P59, DOI 10.1016/S0378-5955(00)00120-9 PREBYLOWSKI K, 2002, J NEUROSCI, V22, P8902 RAMAN IM, 1994, J NEUROSCI, V14, P4998 Rubel EW, 1988, AUDITORY FUNCTION NE, P3 RUBEL EW, 1976, J COMP NEUROL, V166, P469, DOI 10.1002/cne.901660408 Sato K, 2003, J NEUROPHYSIOL, V89, P3215, DOI 10.1152/jn.01169.2002 Sato K, 1998, MICROSC RES TECHNIQ, V41, P217 SAUNDERS JC, 1973, BRAIN RES, V63, P59, DOI 10.1016/0006-8993(73)90076-0 SMITH ZDJ, 1981, J COMP NEUROL, V203, P309, DOI 10.1002/cne.902030302 Soares D, 2002, J NEUROPHYSIOL, V88, P152, DOI 10.1152/jn.00674.2001 Sugden SG, 2002, J NEUROBIOL, V52, P189, DOI 10.1002/neu.10078 TAKAHASHI TT, 1988, J COMP NEUROL, V274, P212, DOI 10.1002/cne.902740207 Taschenberger H, 2000, J NEUROSCI, V20, P9162 Trussell LO, 1997, CURR OPIN NEUROBIOL, V7, P487, DOI 10.1016/S0959-4388(97)80027-X VONBARTHELD CS, 1989, J COMP NEUROL, V287, P470, DOI 10.1002/cne.902870406 WADA K, 2002, SPECIALIZED MOL BASE WALSH EJ, 1993, J NEUROPHYSIOL, V69, P1 WARCHOL ME, 1990, J COMP PHYSIOL A, V166, P721 WATANABE M, 1994, J COMP NEUROL, V343, P520, DOI 10.1002/cne.903430403 YOUNG SR, 1983, J NEUROSCI, V3, P1373 YOUNG SR, 1986, J COMP NEUROL, V254, P425, DOI 10.1002/cne.902540402 ZHOU N, 1991, HEARING RES, V52, P195, DOI 10.1016/0378-5955(91)90199-J ZHOU N, 1993, BRAIN RES, V628, P149, DOI 10.1016/0006-8993(93)90950-R ZHOU N, 1992, DEV BRAIN RES, V67, P145, DOI 10.1016/0165-3806(92)90215-I NR 63 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2004 VL 191 IS 1-2 BP 79 EP 89 DI 10.1016/j.heares.2004.01.007 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 819MI UT WOS:000221318600009 PM 15109707 ER PT J AU Salt, AN Rask-Andersen, H AF Salt, AN Rask-Andersen, H TI Responses of the endolymphatic sac to perilymphatic injections and withdrawals: evidence for the presence of a one-way valve SO HEARING RESEARCH LA English DT Article DE endolymphatic hydrops; endolymphatic sinus; saccule; Meniere's disease ID MENIERES-DISEASE; GUINEA-PIG; COCHLEAR AQUEDUCT; INNER-EAR; PRESSURE RELATIONSHIP; POTENTIAL CHANGES; HYDROPS; GLYCEROL; OVERPRESSURE; TRANSPORT AB Although the endolymphatic sac (ES) is thought to be a primary site for endolymph volume regulation, we have limited knowledge of how it responds to volume and pressure changes. In a prior publication, we demonstrated changes of K+, Na+ and endolymphatic sac potential (ESP) resulting from volume injections into, and withdrawals from, scala media of the cochlea. In the present study, we compared the influence of injections into and withdrawals from scala tympani of the cochlea on the endolymphatic sac. It is assumed that similar pressure changes are induced in endolymph and perilymph of both the cochlear and vestibular compartments of the ear. Pressure changes induced by the perilymphatic injections and withdrawals did not induce similar K+ changes in the ES. The majority of perilymph withdrawals caused K+ and ESP reductions in the sac, but few injections caused any measurable changes in the sac. Pressure measurements from the ES demonstrated that transmission of labyrinthine pressures to the lumen was directionally sensitive, with negative pressure transmitted more effectively than positive. In other experiments, application of infrasonic stimulation to the ear canal resulted in K+ increase in the ES. These physiological measurements suggest that the endolymphatic duct may be closed by sustained positive pressure in the vestibule but open during pressure fluctuations. Study of the anatomy where the endolymphatic duct enters the vestibule suggests that the membranous sinus of the endolymphatic duct could act as a mechanical valve, limiting the flow of endolymph from the saccule to the endolymphatic sac when pressure is applied. This structure could therefore play an important role in endolymph volume regulation. (C) 2004 Elsevier B.V. All rights reserved. C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. Univ Uppsala Hosp, Akad Sjukhuset, Dept Otolaryngol, S-75185 Uppsala, Sweden. RP Salt, AN (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, Box 8115,660 S Euclid Ave, St Louis, MO 63110 USA. EM salta@wustl.edu CR ANDREWS JC, 1991, LARYNGOSCOPE, V101, P661 Axelsson A, 2001, PHYSL EAR, P301 Barbara M, 2001, ACTA OTO-LARYNGOL, V121, P939, DOI 10.1080/000164801317166826 BAST TH, 1949, TEMPORAL BONE EAR, P30 Böhmer A, 1993, Acta Otolaryngol Suppl, V507, P3 CARLBORG BIR, 1983, AM J OTOLARYNG, V4, P273, DOI 10.1016/S0196-0709(83)80071-4 Couloigner V, 1999, ACTA OTO-LARYNGOL, V119, P200 DENSERT B, 1987, ACTA OTO-LARYNGOL, V103, P32, DOI 10.3109/00016488709134695 Densert B, 1997, AM J OTOL, V18, P726 ERWALL C, 1988, HEARING RES, V35, P109, DOI 10.1016/0378-5955(88)90045-7 ERWALL C, 1988, HEARING RES, V36, P277, DOI 10.1016/0378-5955(88)90068-8 Gates GA, 2002, LARYNGOSCOPE, V112, P1489, DOI 10.1097/00005537-200208000-00029 Gopen Q, 1997, HEARING RES, V107, P9, DOI 10.1016/S0378-5955(97)00017-8 INGELSTEDT S, 1976, ACTA OTO-LARYNGOL, V82, P368, DOI 10.3109/00016487609120921 JANSSON B, 1993, ORL J OTO-RHINO-LARY, V55, P185 JANSSON B, 1992, ORL J OTO-RHINO-LARY, V54, P201 KIMURA RS, 1967, ANN OTO RHINOL LARYN, V76, P664 KIMURA RS, 1965, PRACT-OTO-RHINO-LARY, V27, P343 Konradsson KS, 1999, LARYNGOSCOPE, V109, P59, DOI 10.1097/00005537-199901000-00013 LIMDJ, 1999, MENIERES DIS, P175 MONTANDON P, 1989, MENIERES DIS, P503 MORGENSTERN C, 1982, AM J OTOLARYNG, V3, P323, DOI 10.1016/S0196-0709(82)80004-5 MORI N, 1987, ARCH OTO-RHINO-LARYN, V244, P61, DOI 10.1007/BF00453493 Mori N, 1998, Acta Otolaryngol Suppl, V533, P12 Odkvist L M, 2000, Acta Otolaryngol Suppl, V543, P99 RASKANDERSEN H, 2000, MENIERES DIS, P59 Rask-Andersen H, 1999, HEARING RES, V138, P81, DOI 10.1016/S0378-5955(99)00153-7 RASKANDERSEN H, 1981, MENIERES DIS PATHOGE, P99 Sakikawa Y, 1997, ORL J OTO-RHINO-LARY, V59, P84 Salt AN, 1999, J ACOUST SOC AM, V106, P847, DOI 10.1121/1.427101 SALT AN, 1995, ANN OTO RHINOL LARYN, V105, P886 Salt AN, 1998, HEARING RES, V123, P137, DOI 10.1016/S0378-5955(98)00106-3 Salt AN, 2000, HEARING RES, V149, P46, DOI 10.1016/S0378-5955(00)00160-X TAKEDA T, 1990, ACTA OTO-LARYNGOL, V110, P68, DOI 10.3109/00016489009122516 TAKEUCHI S, 1990, ACTA OTO-LARYNGOL, V109, P93, DOI 10.3109/00016489009107419 TAKEUCHI S, 1991, ANN OTO RHINOL LARYN, V100, P244 Takumida M, 1991, Acta Otolaryngol Suppl, V481, P129 VANDEELEN GW, 1987, J LARYNGOL OTOL, V101, P229, DOI 10.1017/S0022215100101586 Wit HP, 2000, HEARING RES, V145, P82, DOI 10.1016/S0378-5955(00)00078-2 Wit HP, 2003, HEARING RES, V175, P190, DOI 10.1016/S0378-5955(02)00738-4 YAMAUCHI A, 2001, JARO-J ASSOC RES OTO, V3, DOI UNSP 026 NR 41 TC 22 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2004 VL 191 IS 1-2 BP 90 EP 100 DI 10.1016/j.heares.2003.12.018 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 819MI UT WOS:000221318600010 PM 15109708 ER PT J AU Henzl, MT Thalmann, I Larson, JD Ignatova, EG Thalmann, R AF Henzl, MT Thalmann, I Larson, JD Ignatova, EG Thalmann, R TI The cochlear F-box protein OCP1 associates with OCP2 and connexin 26 SO HEARING RESEARCH LA English DT Article ID HEARING IMPAIRMENT; GAP-JUNCTIONS; RAT COCHLEA; UBIQUITIN LIGASES; PLACE-FREQUENCY; INNER-EAR; DEAFNESS; CORTI; ORGAN; MUTATIONS AB OCP1 and OCP2 are the most abundant proteins in the organ of Corti. Their distributions map identically to the epithelial gap-junction system, which unites the supporting cell population. Sequence data imply that OCP1 and OCP2 are subunits of an SCF E3 ubiquitin ligase. Consistent with that hypothesis, electrophoretic mobility-shift assays and pull-down assays with immobilized OCP1 demonstrate the formation of an OCP1-OCP2 complex. Sedimentation equilibrium data indicate that the complex is heterodimeric. The coincidence of the OCP1-OCP2 distribution and the epithelial gap-junction system suggests that one or more connexin isoforms may be targets of an SCFOCP1 complex. Significantly, immobilized OCP1 binds S-35-labeled connexin 26 (Cx26) produced by in vitro transcription-translation. Moreover, Cx26 can be co-immunoprecipitated from extracts of the organ of Corti by immobilized anti-OCP1, implying that OCP1 and Cx26 may associate in vivo. Given that lesions in the Cx26 gene (GJB2) are the most common cause of hereditary deafness, the OCP1-Cx26 interaction has substantial biomedical relevance. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Missouri, Dept Biochem, Columbia, MO 65211 USA. Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. RP Henzl, MT (reprint author), Univ Missouri, Dept Biochem, 117 Schweitzer Hall, Columbia, MO 65211 USA. EM henzlm@missouri.edu CR Cenciarelli C, 1999, CURR BIOL, V9, P1177, DOI 10.1016/S0960-9822(00)80020-2 CHEN H, 1995, GENOMICS, V27, P389, DOI 10.1006/geno.1995.1068 Cohen-Salmon M, 2002, CURR BIOL, V12, P1106, DOI 10.1016/S0960-9822(02)00904-1 Dallos P., 1996, COCHLEA del Castillo I, 2002, NEW ENGL J MED, V346, P243, DOI 10.1056/NEJMoa012052 DeMartino GN, 1999, J BIOL CHEM, V274, P22123, DOI 10.1074/jbc.274.32.22123 Denoyelle F, 1997, HUM MOL GENET, V6, P2173, DOI 10.1093/hmg/6.12.2173 Evans WH, 2002, MOL MEMBR BIOL, V19, P121, DOI 10.1080/09687680210139839 Forge A, 2002, AUDIOL NEURO-OTOL, V7, P141, DOI 10.1159/000058299 Grifa A, 1999, NAT GENET, V23, P16 HAPAK RC, 1989, J BIOL CHEM, V264, P18751 Henzl MT, 2001, HEARING RES, V157, P100, DOI 10.1016/S0378-5955(01)00285-4 Henzl MT, 1998, HEARING RES, V126, P37, DOI 10.1016/S0378-5955(98)00148-8 Jackson PK, 2000, TRENDS CELL BIOL, V10, P429, DOI 10.1016/S0962-8924(00)01834-1 Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 Kikuchi T, 2000, BRAIN RES REV, V32, P163, DOI 10.1016/S0165-0173(99)00076-4 Kuraoka Akio, 2002, Fukuoka Acta Medica, V93, P178 Lautermann J, 1999, DEV GENET, V25, P306, DOI 10.1002/(SICI)1520-6408(1999)25:4<306::AID-DVG4>3.0.CO;2-R Lautermann J, 1998, CELL TISSUE RES, V294, P415, DOI 10.1007/s004410051192 Lerer I, 2001, Hum Mutat, V18, P460, DOI 10.1002/humu.1222 Liu XZ, 2001, HUM MOL GENET, V10, P2945, DOI 10.1093/hmg/10.25.2945 Martin PEM, 1999, HUM MOL GENET, V8, P2369, DOI 10.1093/hmg/8.13.2369 Marx J, 2002, SCIENCE, V297, P1792, DOI 10.1126/science.297.5588.1792 MCRORIE DK, 1993, SELF ASSSYSTEMS ANAL Pallares-Ruiz N, 2002, EUR J HUM GENET, V10, P72, DOI 10.1038/sj/ejhg/5200762 Saffitz JE, 2000, CIRC RES, V86, P723 Schulman BA, 2000, NATURE, V408, P381 Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 SPICER SS, 1994, HEARING RES, V79, P161, DOI 10.1016/0378-5955(94)90137-6 Steel KP, 1999, SCIENCE, V285, P1363, DOI 10.1126/science.285.5432.1363 Teubner B, 2003, HUM MOL GENET, V12, P13, DOI 10.1093/hmg/ddg001 THALMANN I, 1980, ARCH OTO-RHINO-LARYN, V226, P123, DOI 10.1007/BF00455126 THALMANN I, 1990, LARYNGOSCOPE, V100, P99 Thalmann R, 2003, ACTA OTO-LARYNGOL, V123, P203, DOI 10.1080/0036554021000028100 THALMANN R, 1976, HDB AUDITORY VESTIBU, P359 Thalmann R, 1997, ACTA OTO-LARYNGOL, V117, P265, DOI 10.3109/00016489709117784 Weissman AM, 2001, NAT REV MOL CELL BIO, V2, P169, DOI 10.1038/35056563 WILCOX ER, 1992, HEARING RES, V62, P124, DOI 10.1016/0378-5955(92)90208-5 Winston JT, 1999, CURR BIOL, V9, P1180, DOI 10.1016/S0960-9822(00)80021-4 NR 40 TC 27 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2004 VL 191 IS 1-2 BP 101 EP 109 DI 10.1016/j.heares.2004.01.005 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 819MI UT WOS:000221318600011 PM 15109709 ER PT J AU Husain, K Scott, B Whitworth, C Rybak, LP AF Husain, K Scott, B Whitworth, C Rybak, LP TI Time response of carboplatin-induced hearing loss in rat SO HEARING RESEARCH LA English DT Article DE carboplatin; oxidative injury; hearing loss; cochlea; rat ID SUPEROXIDE-DISMUTASE ACTIVITY; CELL LUNG-CANCER; OVARIAN-CANCER; GUINEA-PIGS; CISPLATIN OTOTOXICITY; LIPID-PEROXIDATION; DOSE CARBOPLATIN; HAIR CELL; ANTIOXIDANT; PROTECTION AB Carboplatin is currently being used as an anticancer drug against human cancers. However, high dose of carboplatin chemotherapy resulted in hearing loss in cancer patients. We have shown that carboplatin-induced hearing loss was related to dose-dependent oxidative injury to the cochlea in rat model. However, the time response of ototoxic dose of carboplatin on hearing loss and oxidative injury to cochlea has not been explored. The aim of the study was to evaluate the time response of carboplatin-induced hearing loss and oxidative injury to the cochlea of the rat. Male Wistar rats were divided into two groups of 30 animals each and treated as follows: (1) control (normal saline, i.p.) and (2) carboplatin (256 mg/kg, a single i.p. bolus injection). Auditory brain-evoked responses (ABRs) were recorded before and 1-5 days after treatments. The animals (n = 6) from each group were sacrificed on day 1, 2, 3, 4, and 5 and cochleae were isolated and analyzed. Carboplatin significantly elevated the hearing thresholds to clicks and to 2, 4, 8, 16, and 32 kHz tone burst stimuli only 3-5 days post-treatment. Carboplatin significantly increased nitric oxide (NO), malondialdebyde (MDA) levels and manganese superoxide dismutase (Mn-SOD) activity in the cochlea 4-5 and 3-5 days post-treatment, respectively, indicating enhanced influx of free radicals and oxidative injury to the cochlea. Carboplatin significantly depressed the reduced to oxidized glutathione (GSH/GSSG) ratio, antioxidant enzyme activities such as copper/zinc-superoxide dismutase (CuZn-SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) as well as enzyme protein expressions in the cochlea 3-5 days after treatment. The data suggest that carboplatin-induced hearing loss involves oxidative injury to the cochlea of the rat in a time-dependent manner. (C) 2004 Elsevier B.V. All rights reserved. C1 So Illinois Univ, Sch Med, Dept Surg, Springfield, IL 62794 USA. RP Husain, K (reprint author), Ponce Sch Med, Dept Pharmacol & Toxicol, POB 7004, Ponce, PR 00732 USA. EM khusain@psm.edu CR AEBI H, 1984, METHOD ENZYMOL, V105, P121 ALBERTS DS, 1995, SEMIN ONCOL, V22, P88 ANDERSON ME, 1990, FASEB J, V4, P3251 BAUER FP, 1992, LARYNGO RHINO OTOL, V71, P412, DOI 10.1055/s-2007-997325 Bohm S, 1999, ONCOLOGY-BASEL, V57, P115, DOI 10.1159/000012017 Cavaletti G, 1998, ANTICANCER RES, V18, P3797 Chamberlain MC, 2002, CANCER, V95, P243, DOI 10.1002/cncr.10679 De Lauretis A, 1999, SCAND AUDIOL, V28, P139 Ding DL, 2002, JARO, V3, P68, DOI 10.1007/s101620020004 Ettinger DS, 1998, ONCOLOGY-NY, V12, P36 FARISS MW, 1987, METHOD ENZYMOL, V143, P101 FARMS WB, 1993, HEARING RES, V67, P45, DOI 10.1016/0378-5955(93)90230-X FLOHE L, 1984, METHOD ENZYMOL, V105, P114 Fujiwara K, 2003, GYNECOL ONCOL, V90, P637, DOI 10.1016/S0090-8258(03)00377-9 HAMERS FPT, 1993, CANCER RES, V53, P544 Harper P, 2003, SEMIN ONCOL, V30, P2, DOI 10.1016/S0093-7754(03)00279-3 Hatzopoulos S, 2003, HEARING RES, V182, P48, DOI 10.1016/S0378-5955(03)00141-2 Hofstetter P, 2000, HEARING RES, V150, P132, DOI 10.1016/S0378-5955(00)00201-X Hu BH, 1999, HEARING RES, V128, P125, DOI 10.1016/S0378-5955(98)00210-X Husain K, 2003, INT J TOXICOL, V22, P335, DOI 10.1080/10915810390233357 Husain K, 2001, HEARING RES, V151, P71, DOI 10.1016/S0300-2977(00)00081-4 Husain K, 1998, PROG NEURO-PSYCHOPH, V22, P411, DOI 10.1016/S0278-5846(98)00013-X HUSAIN K, 2001, HEARING RES, V158, P14 IKEDA K, 1993, ACTA OTO-LARYNGOL, V113, P137, DOI 10.3109/00016489309135781 Kelly TC, 2003, HEARING RES, V186, P10, DOI 10.1016/S0378-5955(03)00303-4 KENNEDY ICS, 1990, CANCER CHEMOTH PHARM, V26, P232, DOI 10.1007/BF02897206 Lautermann J, 1997, HEARING RES, V114, P75, DOI 10.1016/S0378-5955(97)00154-8 LOS G, 1993, BIOCHEM PHARMACOL, V46, P1229, DOI 10.1016/0006-2952(93)90472-9 MARKLUND SL, 1992, J BIOL CHEM, V267, P6696 Meyer WH, 2001, J CLIN ONCOL, V19, P171 MISRA HP, 1972, J BIOL CHEM, V247, P3170 MONTAGUTI M, 2003, ACTA OTORHINOLARYNGO, V22, P14 Mount R J, 1995, Acta Otolaryngol Suppl, V519, P60 Neuwelt EA, 1998, J PHARMACOL EXP THER, V286, P77 Obermair A, 1998, INT J ONCOL, V13, P1023 OHKAWA H, 1979, ANAL BIOCHEM, V95, P351, DOI 10.1016/0003-2697(79)90738-3 PERERA CS, 1995, ARCH BIOCHEM BIOPHYS, V323, P471, DOI 10.1006/abbi.1995.0069 PIERSON MG, 1982, HEARING RES, V6, P141, DOI 10.1016/0378-5955(82)90050-8 PIGEOLET E, 1981, ANAL BIOCHEM, V116, P53 READ SM, 1981, ANAL BIOCHEM, V116, P53, DOI 10.1016/0003-2697(81)90321-3 Ruan RS, 1997, HEARING RES, V114, P169, DOI 10.1016/S0378-5955(97)00159-7 Rybak LP, 1997, PHARMACOL TOXICOL, V81, P173 Sen CK, 1996, FASEB J, V10, P709 SIDDIK ZH, 1987, BIOCHEM PHARMACOL, V36, P1925, DOI 10.1016/0006-2952(87)90490-4 Steiner H, 2002, UROLOGY, V60, P324, DOI 10.1016/S0090-4295(02)01708-9 TAUDY M, 1992, AUDIOLOGY, V31, P293 Wang J, 2003, HEARING RES, V181, P65, DOI 10.1016/S0378-5955(03)00176-X Watanabe K, 2002, CHEMOTHERAPY, V48, P82, DOI 10.1159/000057667 Watanabe K, 2000, ANTI-CANCER DRUG, V11, P401, DOI 10.1097/00001813-200006000-00011 YOUNES M, 1981, CHEM-BIOL INTERACT, V34, P257, DOI 10.1016/0009-2797(81)90098-3 NR 50 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2004 VL 191 IS 1-2 BP 110 EP 118 DI 10.1016/j.heares.2004.01.011 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 819MI UT WOS:000221318600012 PM 15109710 ER PT J AU Ito, T Tokuriki, M Shibamori, Y Saito, T Nojyo, Y AF Ito, T Tokuriki, M Shibamori, Y Saito, T Nojyo, Y TI Cochlear nerve demyelination causes prolongation of wave I latency in ABR of the myelin deficient (md) rat SO HEARING RESEARCH LA English DT Article DE myelin deficient; auditory brainstem responses; distortion product of otoacoustic emission; ultrastructure; cochlea; CNS-PNS junction ID OTOACOUSTIC EMISSIONS; PERIPHERAL MYELIN; TRANSITIONAL ZONE; AUDITORY-SYSTEM; HAMSTER AB In this study, we examined the auditory brainstem responses (ABRs), distortion product of otoacoustic emissions (DPOAEs) and cochlear morphology of the myelin deficient (md) rat, which completely lacks central myelin but not peripheral myelin. ABRs showed a marked prolongation not only wave II-IV latencies but also wave I latency. Cochlear nerve fibers near the modiolus lost their myelin halfway into the internal auditory canal. DPOAEs also decreased at a lower frequency of the combined tone. Since nerve fibers ending at the apical turn of the cochlea passed through central portion of the cochlear nerve, wave I prolongation of ABRs and decrease of DPOAEs at a lower frequency might originate mainly from the demyelinated CNS part of the cochlear nerve and efferent olivocochlear bundle in the internal auditory canal. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Fukui, Fac Med Sci, Dept Anat, Fukui 910, Japan. Univ Fukui, Fac Med Sci, Dept Otolaryngol Head & Neck Surg, Fukui 910, Japan. Matsunami Gen Hosp, Dept Otolaryngol, Gifu, Japan. RP Ito, T (reprint author), Univ Fukui, Fac Med Sci, Dept Anat, Fukui 910, Japan. EM itot@fmsrsa.fukui-med.ac.jp CR BOISON D, 1989, EMBO J, V8, P3295 BUCHWALD JS, 1983, BASES AUDITORY BRAIN, P157 Buki B, 2000, BRAIN RES, V852, P140, DOI 10.1016/S0006-8993(99)02227-1 Cuddon PA, 1998, ANN NEUROL, V44, P771, DOI 10.1002/ana.410440511 DENTINGER P, 1982, J NEUROCYTOL, V11, P671 FRAHER JP, 1992, PROG NEUROBIOL, V38, P261, DOI 10.1016/0301-0082(92)90022-7 FRAHER JP, 1987, J ANAT, V155, P109 JEWETT DL, 1972, BRAIN RES, V36, P101, DOI 10.1016/0006-8993(72)90769-X Naito R, 1999, HEARING RES, V136, P44, DOI 10.1016/S0378-5955(99)00107-0 NAITO R, 2003, HEARING RES, V136, P17 NUNOYA T, 1985, ACTA NEUROPATHOL, V65, P305 Sando I, 1965, ACTA OTOLARYNG STOCK, V59, P417, DOI 10.3109/00016486509124577 SPOENDLIN H, 1989, HEARING RES, V43, P25, DOI 10.1016/0378-5955(89)90056-7 SPOENDLIN H, 1985, AM J OTOLARYNG, V6, P453, DOI 10.1016/S0196-0709(85)80026-0 Toesca A, 1996, NEUROSCI LETT, V221, P21, DOI 10.1016/S0304-3940(96)13273-0 WILLIAMS EA, 1994, ACTA OTO-LARYNGOL, V114, P121, DOI 10.3109/00016489409126029 Withnell RH, 2000, HEARING RES, V139, P1, DOI 10.1016/S0378-5955(99)00132-X ZHOU RZ, 1995, HEARING RES, V88, P87, DOI 10.1016/0378-5955(95)00104-C NR 18 TC 9 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2004 VL 191 IS 1-2 BP 119 EP 124 DI 10.1016/j.heares.2003.12.019 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 819MI UT WOS:000221318600013 PM 15109711 ER PT J AU Hadjab, S Maurel, D Cazals, Y Siaud, P AF Hadjab, S Maurel, D Cazals, Y Siaud, P TI Hexachlorobenzene, a dioxin-like compound, disrupts auditory function in rat SO HEARING RESEARCH LA English DT Article DE hexachlorobenzene; hearing loss; ototoxicity; cochlea; thyroid hormone; rat ID FREQUENCY HEARING-LOSS; THYROID-HORMONE; POLYCHLORINATED-BIPHENYLS; INDUCED OTOTOXICITY; ETHYL BENZENE; HAIR-CELLS; EXPOSURE; STYRENE; TOLUENE; METABOLISM AB Hexachlorobenzene (HCB) is a dioxin-like compound widely distributed in the environment. In this study, we investigated the effects of HCB on the cochlea. Conscious free-moving rats were given HCB per os daily for 4 weeks at doses of 0.16, 4 or 16 mg/kg in olive oil, whereas the control group received olive oil only. The effects of HCB were evaluated at various time intervals, by measuring auditory nerve acoustic thresholds and plasma thyroid hormone concentration by radioimmunoassay. Histological evaluation involved surface preparation and scanning electron microscopy observations of cochlear hair cells. At a dose of 0.16 mg/kg, HCB induced no loss of acoustic sensitivity, whereas at 4 mg/kg, it induced cochlear sensitivity deficits at the mid-frequencies (2-16 kHz) with complete recovery once treatment was stopped. At a dose of 16 mg/kg, permanent threshold shifts were observed at all frequencies tested (from 1 to 32 kHz). Morphological studies showed no cochlear hair cell loss or alteration of stereocilia. HCB treatment reduced circulating thyroxine concentrations. Thyroidectomy had no effect on cochlear sensitivity in control animals. Thus, HCB is a potent oto-toxicant, and its ototoxicity may be independent of its thyroidal effects. (C) 2004 Published by Elsevier B.V. C1 Univ Mediterranee, Fac Med Secteur Nord, INSERM, Lab Otol Neurootol,EMI 9902, F-13916 Marseille 20, France. RP Siaud, P (reprint author), Univ Mediterranee, Fac Med Secteur Nord, INSERM, Lab Otol Neurootol,EMI 9902, Blvd Pierre Dramard, F-13916 Marseille 20, France. EM siaud.p@jean-roche.univ-mrs.fr CR Ahmad S, 2003, BIOCHEM BIOPH RES CO, V307, P362, DOI 10.1016/S0006-291X(03)01166-5 ANDREWS JE, 1988, J TOXICOL ENV HEALTH, V23, P311 Arnold D L, 1986, IARC Sci Publ, P405 BLEAVINS MR, 1984, ARCH ENVIRON CON TOX, V13, P357 BURNS JE, 1975, ARCH ENVIRON HEALTH, V30, P44 BYRNE JJ, 1987, ENDOCRINOLOGY, V121, P520 Campo P, 1997, NEUROTOXICOL TERATOL, V19, P129, DOI 10.1016/S0892-0362(96)00214-0 Campo P, 1999, NEUROTOXICOL TERATOL, V21, P427, DOI 10.1016/S0892-0362(99)00010-0 Cappaert NLM, 1999, HEARING RES, V137, P91, DOI 10.1016/S0378-5955(99)00141-0 Cappaert NLM, 2000, JARO, V1, P292 Cazals Y, 1996, HEARING RES, V101, P81, DOI 10.1016/S0378-5955(96)00135-9 COURTNEY KD, 1979, ENVIRON RES, V20, P225, DOI 10.1016/0013-9351(79)90001-X Crofton KM, 2000, TOXICOL SCI, V57, P131, DOI 10.1093/toxsci/57.1.131 CROFTON KM, 1994, HEARING RES, V80, P25, DOI 10.1016/0378-5955(94)90005-1 Crofton KM, 1999, NEUROTOXICOL TERATOL, V21, P299, DOI 10.1016/S0892-0362(98)00065-8 Crofton KM, 2000, HEARING RES, V144, P196, DOI 10.1016/S0378-5955(00)00062-9 CURRIER MF, 1980, J TOXICOL ENV HEALTH, V6, P367 D'Andrea P, 2002, BIOCHEM BIOPH RES CO, V296, P685, DOI 10.1016/S0006-291X(02)00891-4 DEMATTEIS F, 1991, BIOCHEM J, V280, P813 DEPISAREV DLK, 1989, J ENDOCRINOL INVEST, V12, P767 ENGSTROM B, 1984, SCAND AUDIOL, V13, P87, DOI 10.3109/01050398409043045 ERTURK E, 1986, IARC SCI PUBL, V77, P417 Fechter LD, 1998, TOXICOL SCI, V42, P28 FOSTER WG, 1993, J APPL TOXICOL, V13, P79, DOI 10.1002/jat.2550130203 Goldey ES, 1998, TOXICOL SCI, V45, P94, DOI 10.1093/toxsci/45.1.94 GOLDEY ES, 1992, NEUROTOXICOL TERATOL, V14, P15, DOI 10.1016/0892-0362(92)90024-5 GRANT DL, 1977, ARCH ENVIRON CON TOX, V5, P207 HAHN ME, 1989, ARCH BIOCHEM BIOPHYS, V270, P344, DOI 10.1016/0003-9861(89)90037-4 Hallgren S, 2002, TOXICOLOGY, V177, P227, DOI 10.1016/S0300-483X(02)00222-6 JASPERS RMA, 1993, NEUROTOXICOL TERATOL, V15, P407, DOI 10.1016/0892-0362(93)90058-V JOHNSON AC, 1994, HEARING RES, V72, P189, DOI 10.1016/0378-5955(94)90218-6 Kuczyńska-Sekieta K, 1966, Wiad Lek, V19, P1275 Langer P, 2003, J OCCUP ENVIRON MED, V45, P526, DOI 10.1097/01.jom.0000058346.05741.b0 Loaiza-Perez AI, 1999, ENDOCRINOLOGY, V140, P4142, DOI 10.1210/en.140.9.4142 Makitie AA, 2003, HEARING RES, V179, P9, DOI 10.1016/S0378-5955(03)00066-2 MANSOUR M, 1986, IARC SCI PUBL, V77, P53 Mra Z, 1999, LARYNGOSCOPE, V109, P343, DOI 10.1097/00005537-199903000-00001 Paxinos G., 1982, RAT BRAIN STEREOTAXI PETERS HA, 1986, IARC SCI PUBL, V77, P575 Plante I, 2002, CARCINOGENESIS, V23, P1243, DOI 10.1093/carcin/23.7.1243 POON R, 1994, TOXICOL IND HEALTH, V10, P231 PRYOR GT, 1987, J APPL TOXICOL, V7, P55, DOI 10.1002/jat.2550070110 Rabionet R, 2002, TRENDS MOL MED, V8, P205, DOI 10.1016/S1471-4914(02)02327-4 Rebert CS, 1995, TOXICOLOGY, V105, P345, DOI 10.1016/0300-483X(95)03232-5 REBERT CS, 1994, CRIT REV TOXICOL, V24, pS57 ROZMAN K, 1986, TOXICOL LETT, V30, P71, DOI 10.1016/0378-4274(86)90181-5 SCHIELEN P, 1995, TOXICOL APPL PHARM, V131, P37, DOI 10.1006/taap.1995.1044 Shiraishi F, 2003, CHEMOSPHERE, V52, P33, DOI 10.1016/S0045-6535(03)00261-3 SULLIVAN MJ, 1988, NEUROTOXICOL TERATOL, V10, P525, DOI 10.1016/0892-0362(88)90088-8 TOBIN P, 1986, IARC SCI PUBL, V77, P3 TUTTLE JR, 1979, SURVEY SOURCES USES UHNAK J, 1986, IARC SCI PUBLIC, V77, P109 VANRAIJ JAGM, 1993, BIOCHEM PHARMACOL, V46, P1385, DOI 10.1016/0006-2952(93)90103-4 van Birgelen APJM, 1998, ENVIRON HEALTH PERSP, V106, P683, DOI 10.2307/3434256 VANRAAIJ JAGM, 1993, BIOCHEM PHARMACOL, V45, P627, DOI 10.1016/0006-2952(93)90136-K VANRAAIJ JAGM, 1991, TOXICOL LETT, V59, P101, DOI 10.1016/0378-4274(91)90060-J VISSER TJ, 1993, ENDOCRINOLOGY, V133, P2177, DOI 10.1210/en.133.5.2177 Wingren GB, 1997, INT J OCCUP ENV HEAL, V3, P89 YANO BL, 1992, TOXICOL PATHOL, V20, P1 NR 59 TC 10 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2004 VL 191 IS 1-2 BP 125 EP 134 DI 10.1016/j.heares.2003.12.017 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 819MI UT WOS:000221318600014 PM 15109712 ER PT J AU Hebert, S Paiement, P Lupien, SJ AF Hebert, S Paiement, P Lupien, SJ TI A physiological correlate for the intolerance to both internal and external sounds SO HEARING RESEARCH LA English DT Article DE tinnitus; stress; distress; cortisol; hyperacusis; glucocorticoid ID TINNITUS REACTION QUESTIONNAIRE; CORTISOL-LEVELS; DISTRESS; STRESS; NOISE; SUFFERERS; EXPOSURE; DEFICITS; URINARY; SYSTEM AB The notion that stress can induce chronic tinnitus, or increase its intensity, is predominant in the literature on tinnitus. However, there is little empirical support for this claim, since previous studies rely merely on subjective reports. In the present study, we used an objective physiological measure of stress (i.e., basal secretion of the stress hormone cortisol), in order to assess the relationship between tinnitus and stress. We hypothesized that tinnitus, a permanent internal sound, should behave as a stressor and should be accompanied by chronically elevated cortisol levels in individuals with severe tinnitus. In addition, we hypothesized that suffering from severe tinnitus should generalize to an intolerance towards external sounds. Two groups each comprised of 18 participants (with and without tinnitus) matched on education and health status participated in the study. Tinnitus severity, as assessed by tinnitus-related distress, was high in half of the tinnitus participants, and low in the other half. Basal cortisol levels were measured using saliva samples (five saliva samples per day for 3 days within a week) taken in the participant's natural environment. Intolerance to external sounds was assessed psychometrically. The high tinnitus-related distress group had chronic cortisol levels greater than both the low tinnitus-related distress and control groups, and also displayed greater intolerance to external sounds. The low tinnitus-related distress and control groups did not differ from each other on either of these measures. Our study thus provides the first physiological and empirical evidence of a link between intolerance to both internal (tinnitus) and external sounds in persons with tinnitus, and is compatible with the clinical observation that severe tinnitus is associated with high stress levels. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Montreal, Ecole Orthophonie & Audiol, Montreal, PQ H3W 1W5, Canada. Inst Univ Geriatrie Montreal, Ctr Rech, Montreal, PQ H3W 1W5, Canada. Univ Montreal, GRENEC, Montreal, PQ, Canada. McGill Univ, Douglas Hosp, Lab Human Stress Res, Montreal, PQ, Canada. RP Hebert, S (reprint author), Univ Montreal, Ecole Orthophonie & Audiol, 4565 Queen Mary, Montreal, PQ H3W 1W5, Canada. EM sylvie.hebert@umontreal.ca CR AXELSSON A, 1989, British Journal of Audiology, V23, P53, DOI 10.3109/03005368909077819 Beck A. T., 1996, BECK DEPRESSION INVE, V2nd BECK AT, 1997, BECK DEPRESSION INVE, V2 Budd RJ, 1996, J PSYCHOSOM RES, V41, P327, DOI 10.1016/S0022-3999(96)00171-7 HAZELL J W P, 1985, British Journal of Audiology, V19, P65, DOI 10.3109/03005368509078966 Walpurger V, 2003, HEARING RES, V181, P57, DOI 10.1016/S0378-5955(03)00172-2 Henry J. L., 2001, PSYCHOL MANAGEMENT C Henry J.L, 1995, INT TINNITUS J, V1, P85 Horner KC, 2003, NEUROSCI BIOBEHAV R, V27, P437, DOI 10.1016/S0149-7634(03)00071-X JAKES SC, 1985, AUDIOLOGY, V24, P195 Johnston M, 1996, GEN HOSP PSYCHIAT, V18, P257, DOI 10.1016/0163-8343(96)00039-4 Kadner A, 2002, NEUROREPORT, V13, P443, DOI 10.1097/00001756-200203250-00016 Khalfa S, 2002, ORL J OTO-RHINO-LARY, V64, P436, DOI 10.1159/000067570 KIRSCH CA, 1989, PSYCHOSOM MED, V51, P209 KIRSCHBAUM C, 1994, PSYCHONEUROENDOCRINO, V19, P313, DOI 10.1016/0306-4530(94)90013-2 Lockwood AH, 1998, NEUROLOGY, V50, P114 LUPIEN S, 1994, J NEUROSCI, V14, P2893 Lupien SJ, 1998, NAT NEUROSCI, V1, P69, DOI 10.1038/271 LUPIEN SJ, 1997, BRAIN RES REV, V82, P1 Lupien SJ, 1999, REV NEUROSCIENCE, V10, P117 Lupien SJ, 1997, J CLIN ENDOCR METAB, V82, P2070, DOI 10.1210/jc.82.7.2070 MASON JW, 1968, PSYCHOSOM MED, V30, P576 Melamed S, 1996, J OCCUP ENVIRON MED, V38, P252, DOI 10.1097/00043764-199603000-00009 Meric C, 2000, J SPEECH LANG HEAR R, V43, P184 Miki K, 1998, IND HEALTH, V36, P66, DOI 10.2486/indhealth.36.66 MUHNICKEL W, 1998, P NATL ACAD SCI USA, V95, P10340 Nodar RH, 1996, INT TINNITUS J, V2, P111 OHSTROM E, 1988, PSYCHOL MED, V18, P605 PIM HD, 2000, SOC NEUR ABSTR, V26, P2005 RAI RM, 1981, INT ARCH OCC ENV HEA, V48, P331, DOI 10.1007/BF00378681 Rizzardo R, 1998, J OTOLARYNGOL, V27, P21 Scott B, 2000, PSYCHOSOMATICS, V41, P347, DOI 10.1176/appi.psy.41.4.347 Smyth JM, 1997, PSYCHONEUROENDOCRINO, V22, P89, DOI 10.1016/S0306-4530(96)00039-X Spielberger C. D., 1970, MANUAL STATE TRAIT Tyler R. S., 1999, P 6 INT TINN SEM LON, P3 TYLER RS, 1983, J SPEECH HEAR DISORD, V48, P150 Tyler RS, 2000, TINNITUS HDB Waye KP, 2002, LIFE SCI, V70, P745, DOI 10.1016/S0024-3205(01)01450-3 Weber C, 2002, J PSYCHOSOM RES, V52, P29, DOI 10.1016/S0022-3999(01)00281-1 WILSON PH, 1991, J SPEECH HEAR RES, V34, P197 NR 40 TC 28 Z9 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2004 VL 190 IS 1-2 BP 1 EP 9 DI 10.1016/S037-5955(04)00021-8 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 810EH UT WOS:000220687100001 PM 15051125 ER PT J AU Rowe, MH Peterson, EH AF Rowe, MH Peterson, EH TI Quantitative analysis of stereociliary arrays on vestibular hair cells SO HEARING RESEARCH LA English DT Article DE hair cell; stereocilium; otolith organ; utricle; saccule; semicircular canal; turtle; frog; autocorrelation ID TIP LINKS; GUINEA-PIG; MECHANOELECTRICAL TRANSDUCTION; MECHANICAL TRANSDUCTION; INNER-EAR; CHANNELS; BUNDLES; MORPHOLOGY; TURTLE; CORTI AB We have developed a method for quantifying the number, spacing, and distribution of stereocilia, on the apical surface of hair cells using spatial autocorrelation analysis and statistics for directional data. Here, we illustrate the method using idealized hair bundles, and we apply it to scanning micrographs of turtle hair cells from the utricle and posterior canal, and to freeze-fracture preparations of bullfrog saccule. The analysis suggests three common features of stereociliary bundles. First, bundle geometries form a continuum from 'loose' to 'tight' (Acta Otolaryngol. 106 (1988) 393) rather than two distinct groups. Second, interciliary spacing along the three hexagon axes is not equal; spacing is usually widest along the hexagon axis closest to the bundle's axis of bilateral symmetry (the presumptive excitatory axis). Third, spacing between stereocilia changes with distance from the kinocilium. All three features will influence predictions of the tip link tensions that accompany bundle deflection. (C) 2004 Elsevier B.V. All rights reserved. C1 Ohio Univ, Program Neurosci, Athens, OH 45701 USA. Ohio Univ, Dept Biol Sci, Athens, OH 45701 USA. RP Rowe, MH (reprint author), Ohio Univ, Program Neurosci, Athens, OH 45701 USA. EM rowe@ohiou.edu CR ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X BAGGERSJOBACK D, 1988, ACTA OTO-LARYNGOL, V106, P393, DOI 10.3109/00016488809122262 Batschelet E, 1981, CIRCULAR STAT BIOL BRICHTA AM, 1994, J COMP NEUROL, V344, P481, DOI 10.1002/cne.903440402 Cook JE, 1996, VISUAL NEUROSCI, V13, P15 COREY D P, 1989, Society for Neuroscience Abstracts, V15, P208 Denk W, 1995, NEURON, V15, P1311, DOI 10.1016/0896-6273(95)90010-1 Fettiplace R, 1999, ANNU REV PHYSIOL, V61, P809, DOI 10.1146/annurev.physiol.61.1.809 FLOCK A, 1964, J CELL BIOL, V22, P413, DOI 10.1083/jcb.22.2.413 Fontilla MF, 2000, HEARING RES, V145, P8, DOI 10.1016/S0378-5955(00)00068-X Furness DN, 1997, P ROY SOC B-BIOL SCI, V264, P45 GarciaAnoveros J, 1997, ANNU REV NEUROSCI, V20, P567, DOI 10.1146/annurev.neuro.20.1.567 GOODYEAR R, 1992, J COMP NEUROL, V325, P243, DOI 10.1002/cne.903250208 HOWARD J, 1988, ANNU REV BIOPHYS BIO, V17, P99 HUDSPETH AJ, 1992, SENSORY TRANSDUCTION, P358 Hunter-Duvar IM, 1984, ULTRASTRUCTURAL ATLA, P211 JACOBS RA, 1990, COLD SH Q B, V55, P547 Kachar B, 2000, P NATL ACAD SCI USA, V97, P13336, DOI 10.1073/pnas.97.24.13336 Ladhams A, 1996, J COMP NEUROL, V366, P335, DOI 10.1002/(SICI)1096-9861(19960304)366:2<335::AID-CNE11>3.0.CO;2-O LAPEYRE P, 1992, ACTA OTO-LARYNGOL, V112, P635, DOI 10.3109/00016489209137453 Lewis ER, 1985, VERTEBRATE INNER EAR, P66 LEWIS ER, 1982, SCIENCE, V215, P1641, DOI 10.1126/science.6978525 LIM DJ, 1977, P SHAMB 5 INT WORKSH, P16 LIM DJ, 1976, SCAN ELEC MICRO, V5, P269 Lindeman H H, 1969, J Laryngol Otol, V83, P1 LINDEMAN HH, 1973, 5 S ROL VEST ORG SPA, P145 LOWENSTEIN OE, 1974, VETIBULAR SYSTEM 1, P75 MORAVEC WJ, 2003, ABSTR ASS RES OT, V26, P33 PETERSON EH, 2001, SOC NEUR ABSTR, V27 Peterson EH, 1996, ANN NY ACAD SCI, V781, P85, DOI 10.1111/j.1749-6632.1996.tb15695.x PICKLES JO, 1984, HEARING RES, V15, P103, DOI 10.1016/0378-5955(84)90041-8 PICKLES JO, 1993, HEARING RES, V68, P159, DOI 10.1016/0378-5955(93)90120-P PICKLES JO, 1989, HEARING RES, V41, P31, DOI 10.1016/0378-5955(89)90176-7 PICKLES JO, 1987, HEARING RES, V25, P173, DOI 10.1016/0378-5955(87)90089-X Platt C., 1983, P89 Ricci AJ, 1997, J PHYSIOL-LONDON, V501, P111, DOI 10.1111/j.1469-7793.1997.111bo.x Ricci AJ, 1997, J VESTIBUL RES-EQUIL, V7, P407 ROBERTS WM, 1990, J NEUROSCI, V10, P3664 RODIECK RW, 1991, VISUAL NEUROSCI, V6, P95 ROWE MH, 2001, SOC NEUR ABSTR, V27 Rusch A, 1998, J NEUROSCI, V18, P7487 Slepecky N. B., 1996, COCHLEA, P44 Smith C.A., 1971, Contributions sens Physiol, V5, P129 Smotherman MS, 2000, J EXP BIOL, V203, P2237 Sokal R, 1995, BIOMETRY, V3rd Tsuprun V, 2000, JARO, V1, P224, DOI 10.1007/s101620010010 Zar J. H., 1999, BIOSTATISTICAL ANAL, V4th Zhao YD, 1996, P NATL ACAD SCI USA, V93, P15469, DOI 10.1073/pnas.93.26.15469 NR 48 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2004 VL 190 IS 1-2 BP 10 EP 24 DI 10.1016/S0378-5955(03)00395-2 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 810EH UT WOS:000220687100002 PM 15051126 ER PT J AU Han, DM Yu, ZL Fan, EZ Liu, C Liu, S Li, Y Liu, ZY AF Han, DM Yu, ZL Fan, EZ Liu, C Liu, S Li, Y Liu, ZY TI Morphology of auditory hair cells in guinea pig cochlea after transgene expression SO HEARING RESEARCH LA English DT Article DE cochlea; transgene; adenovirus; ultrastructure ID SUPPORTING CELLS; GENE-TRANSFER; IN-VIVO AB It is very important to determine if recombinant adenoviral vector (Ad) can damage the auditory hair cells in guinea pig cochlea after transgene expression. In this study, the scanning electron microscope was used to determine if there was loss of the auditory hair cells after Ad.LacZ (Ad5 containing Escherichia coli galactosidase) was inoculated into the cochlea through the round window membrane. Seven days later all inner and outer hair cells were found to express the LacZ gene. Except for the sparse loss of outer hair cells in the basal turn and the second turn, there was insignificant loss in the other turns. All inner hair cells were present. The damage to auditory hair cells resulting from intracochlear inoculation of Ad is limited, and this vector can be used as one of the ideal delivery tools in gene therapy of the cochlea. (C) 2004 Elsevier B.V. All rights reserved. C1 Capital Univ Med Sci, Tongren Hosp, Dept Otorhinolaryngol, Beijing 100730, Peoples R China. Beijing Inst Otorhinolaryngol, Beijing 100005, Peoples R China. RP Yu, ZL (reprint author), Capital Univ Med Sci, Tongren Hosp, Dept Otorhinolaryngol, 2 Chongnei St, Beijing 100730, Peoples R China. EM zilongyu88@yahoo.com CR Dazert S, 2001, HEARING RES, V151, P30, DOI 10.1016/S0378-5955(00)00189-1 Flock A, 1999, J NEUROSCI, V19, P4498 FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2 Leonova EV, 1999, HEARING RES, V130, P137, DOI 10.1016/S0378-5955(99)00004-0 Luebke AE, 2001, HUM GENE THER, V12, P773, DOI 10.1089/104303401750148702 RAPHAEL Y, 1991, HEARING RES, V51, P173, DOI 10.1016/0378-5955(91)90034-7 Raphael Y, 1996, NEUROSCI LETT, V207, P137, DOI 10.1016/0304-3940(96)12499-X Staecker H, 2001, ACTA OTO-LARYNGOL, V121, P157 Suzuki M, 2000, GENE THER, V7, P1046, DOI 10.1038/sj.gt.3301180 NR 9 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2004 VL 190 IS 1-2 BP 25 EP 30 DI 10.1016/S0378-5955(04)00020-6 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 810EH UT WOS:000220687100003 PM 15051127 ER PT J AU Hanner, P Jennische, E Lange, S Lonnroth, I Wahlstrom, B AF Hanner, P Jennische, E Lange, S Lonnroth, I Wahlstrom, B TI Increased antisecretory factor reduces vertigo in patients with Meniere's disease: a pilot study SO HEARING RESEARCH LA English DT Article DE antisecretory factor; Meniere's disease; immunohistochemistry ID ENDOLYMPHATIC DUCT; PROTEIN; FLUID; FLOW; SAC AB It has been hypothesized that the symptoms of vertigo in patients with Meniere's disease somehow are related to impaired production and/or transport of endolymph. Antisecretory factor (AF) is a protein known to affect transport processes in the intestine and it has been shown that intake of specially processed cereals (SPC) can increase endogenous AF synthesis. In a prospective open pilot study, 24 patients with severe Meniere's disease (functional level scale 5-6 according to the criteria of AAO-HNS) received SPC for 14-30 days. AF levels in plasma increased by 83% in 20 of the 24 patients studied. The attacks of rotatory vertigo were reduced, to final AAO-HNS functional level scale 1-3, in 12 patients and in three of these hearing was normalized. Twelve patients, had no or minor effects of the treatment. The correlation between AF activity after treatment and the final AAO-HNS functional level scale was -0.65, P<0.001. Studies in rats using inummohistochemistry methods showed that AF was localized to the cochlea and the vestibule of the inner ear. The present results suggest that AF might be a new regulator of the endolymph. (C) 2004 Elsevier B.V. All rights reserved. C1 Gothenburg Univ, Sahlgrens Hosp, Dept Audiol, S-41345 Gothenburg, Sweden. Univ Gothenburg, Dept Anat & Cell Biol, Gothenburg, Sweden. Univ Gothenburg, Sahlgrens Univ Hosp, Dept Clin Bacteriol, Gothenburg, Sweden. Univ Gothenburg, Dept Med Microbiol & Immunol, Gothenburg, Sweden. RP Hanner, P (reprint author), Gothenburg Univ, Sahlgrens Hosp, Dept Audiol, S-41345 Gothenburg, Sweden. EM per.hanner@vgregion.se CR BAGGERSJOBACK D, 1986, AM J OTOL, V7, P134 Bjorck S, 2000, GUT, V46, P824, DOI 10.1136/gut.46.6.824 Committee on Hearing and Equilibirum, 1995, OTOLARYNGOL HEAD NEC, V113, P181 GORANSSON L, 1995, PIG NEWS INFORMATION, V16, P89 Hallpike C. S., 1938, J LARYNG, V53, P625, DOI 10.1017/S0022215100003947 IKEDA M, 1984, ANN OTO RHINOL LARYN, V93, P540 JOHANSSON E, 1995, J BIOL CHEM, V270, P20615 Johansson E, 1997, BBA-MOL BASIS DIS, V1362, P177, DOI 10.1016/S0925-4439(97)00066-5 KIMURA RS, 1976, ANN OTO RHINOL LARYN, V85, P791 Lange S, 2001, INT REV CYTOL, V210, P39 Nadol J B Jr, 1995, Acta Otolaryngol Suppl, V519, P47 Paparella M M, 1991, Acta Otolaryngol Suppl, V485, P108 Quaranta A, 1998, AUDIOL NEURO-OTOL, V3, P54, DOI 10.1159/000013781 RASKANDERSEN H, 1981, ANN NY ACAD SCI, V374, P11, DOI 10.1111/j.1749-6632.1981.tb30855.x SALT AN, 1986, HEARING RES, V23, P141, DOI 10.1016/0378-5955(86)90011-0 SALT AN, 1988, HEARING RES, V33, P279, DOI 10.1016/0378-5955(88)90158-X STERKERS O, 1988, PHYSIOL REV, V68, P1083 Yamakawa K, 1938, J OTORHINOLARYNGOL S, V4, P2310 NR 18 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2004 VL 190 IS 1-2 BP 31 EP 36 DI 10.1016/S0378-5955(03)00368-X PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 810EH UT WOS:000220687100004 PM 15051128 ER PT J AU Clarey, JC Paolini, AG Grayden, DB Burkitt, AN Clark, GM AF Clarey, JC Paolini, AG Grayden, DB Burkitt, AN Clark, GM TI Ventral cochlear nucleus coding of voice onset time in naturally spoken syllables SO HEARING RESEARCH LA English DT Article DE cochlear nucleus; voice onset time; electrophysiology; speech; rat ID AUDITORY-NERVE FIBERS; CONSONANT-VOWEL SYLLABLES; INITIAL STOP CONSONANTS; SPEECH-EVOKED ACTIVITY; DISCHARGE RATE REPRESENTATION; SINGLE-FORMANT STIMULI; GUINEA-PIG; AMPLITUDE-MODULATION; RESPONSE PROPERTIES; AWAKE MONKEY AB These experiments examined the coding of the voice onset time (VOT) of six naturally spoken syllables, presented at a number of intensities, by ventral cochlear nucleus (VCN) neurons in rats anesthetized with urethane. VOT is one of the cues for the identification of a stop consonant, and is defined by the interval between stop release and the first glottal pulse that marks the onset of voicing associated with a vowel. The syllables presented (/bot/, /dot/, /got/, /pot/, /tot/, kot/) each had a different VOT, ranging between 10 and 108 ms. Extracellular recordings were made from single neurons (N=202) with a wide range of best frequencies (BFs; 0.66-10 kHz) that represented the major VCN response types - primary-like (67.8% of sample), chopper (19.8%), and onset (12.4%) neurons. The different VOTs of the syllables were accurately reflected in sharp, precisely timed, and statistically significant changes in average discharge rate in all cell types, as well as the entire VCN sample. The prominence of the response to stop release and voice onset, and the level of activity prior to the VOT, were influenced by syllable intensity and the spectrum of stop release, as well as cell BF and type. Our results suggest that the responses of VCN cells with BFs above the first formant frequency are dominated by their sensitivity to the onsets of broadband events in speech, and allows them to convey accurate information about a syllable's VOT. (C) 2004 Elsevier B.V. All rights reserved. C1 Bion Ear Inst, Melbourne, Vic 3002, Australia. Univ Melbourne, Dept Otolaryngol, Royal Victorian Eye & Ear Hosp, Melbourne, Vic, Australia. RP Clarey, JC (reprint author), Bion Ear Inst, 384-388 Albert St, Melbourne, Vic 3002, Australia. EM jclarey@bionicear.org RI Burkitt, Anthony/N-9077-2013 OI Burkitt, Anthony/0000-0001-5672-2772 CR Abramson A. S., 1985, PHONETIC LINGUISTICS, P25 BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303 BLUMSTEIN SE, 1979, J ACOUST SOC AM, V66, P1001, DOI 10.1121/1.383319 BLUMSTEIN SE, 1982, J ACOUST SOC AM, V72, P43, DOI 10.1121/1.388023 BLUMSTEIN SE, 1980, J ACOUST SOC AM, V67, P648, DOI 10.1121/1.383890 CANT NB, 1979, NEUROSCIENCE, V4, P1909, DOI 10.1016/0306-4522(79)90065-4 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698 CARNEY LH, 1986, J ACOUST SOC AM, V79, P1896, DOI 10.1121/1.393197 CASPARY DM, 1994, J NEUROPHYSIOL, V72, P2124 Chen GD, 1996, AUDIT NEUROSCI, V3, P179 DELATTRE PC, 1955, J ACOUST SOC AM, V27, P769, DOI 10.1121/1.1908024 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P897, DOI 10.1121/1.390599 DELGUTTE B, 1980, J ACOUST SOC AM, V68, P843, DOI 10.1121/1.384824 EGGERMONT JJ, 1995, J ACOUST SOC AM, V98, P911, DOI 10.1121/1.413517 Fay R. R., 1988, HEARING VERTEBRATES FRISINA RD, 1985, EXP BRAIN RES, V60, P417 Frisina RD, 2001, HEARING RES, V158, P1, DOI 10.1016/S0378-5955(01)00296-9 FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y FRISINA RD, 1990, HEARING RES, V44, P123, DOI 10.1016/0378-5955(90)90075-Z GEISLER CD, 1991, J ACOUST SOC AM, V90, P3140, DOI 10.1121/1.401422 GODFREY DA, 1975, J COMP NEUROL, V162, P247, DOI 10.1002/cne.901620206 HALLE M, 1957, J ACOUST SOC AM, V29, P107, DOI 10.1121/1.1908634 HEFFNER HE, 1994, HEARING RES, V73, P244, DOI 10.1016/0378-5955(94)90240-2 HEFFNER RS, 1991, HEARING RES, V52, P13, DOI 10.1016/0378-5955(91)90183-A HILLENBRAND J, 1993, J SPEECH HEAR RES, V36, P694 Irvine D.R.F., 1986, Progress in Sensory Physiology, V7, P1 Jiang D, 1996, J NEUROPHYSIOL, V75, P380 KEWLEYPORT D, 1983, J ACOUST SOC AM, V73, P322, DOI 10.1121/1.388813 KIM DO, 1988, BASIC ISSUES HEARING, P252 KIM DO, 1990, HEARING RES, V45, P95, DOI 10.1016/0378-5955(90)90186-S KIM DO, 1986, AUDITORY FREQUENCY S, P281 KLATT DH, 1975, J SPEECH HEAR RES, V18, P686 KUHL PK, 1982, PERCEPT PSYCHOPHYS, V32, P542, DOI 10.3758/BF03204208 KUHL PK, 1975, SCIENCE, V190, P69, DOI 10.1126/science.1166301 KUHL PK, 1986, EXP BIOL, V45, P233 KUHL PK, 1978, J ACOUST SOC AM, V63, P905, DOI 10.1121/1.381770 LIBERMAN AM, 1967, PSYCHOL REV, V74, P431, DOI 10.1037/h0020279 LIBERMAN AM, 1958, LANG SPEECH, V1, P153 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 LISKER L, 1964, WORD, V20, P384 MILLER MI, 1983, J ACOUST SOC AM, V74, P502, DOI 10.1121/1.389816 MOLLER AR, 1976, ACTA PHYSIOL SCAND, V98, P157, DOI 10.1111/j.1748-1716.1976.tb00235.x MOORE TJ, 1976, J ACOUST SOC AM, V59, P1443, DOI 10.1121/1.381033 OERTEL D, 1990, J COMP NEUROL, V295, P136, DOI 10.1002/cne.902950112 OSTAPOFF EM, 1994, J COMP NEUROL, V346, P19, DOI 10.1002/cne.903460103 PALMER AR, 1986, J ACOUST SOC AM, V79, P100, DOI 10.1121/1.393633 PALMER AR, 1990, J ACOUST SOC AM, V88, P1412, DOI 10.1121/1.400329 PALMER AR, 1993, NATO ADV SCI INST SE, V239, P373 Palmer AR, 1996, J NEUROPHYSIOL, V75, P780 Paolini AG, 2001, HEARING RES, V159, P101, DOI 10.1016/S0378-5955(01)00327-6 PAOLINI AG, 2003, P AUST NEUROSCI SOC Paolini AG, 1999, J NEUROPHYSIOL, V81, P2347 PETERSON GE, 1952, J ACOUST SOC AM, V24, P175, DOI 10.1121/1.1906875 PFEIFFER RR, 1966, EXP BRAIN RES, V1, P220 Pressnitzer D, 2000, HEARING RES, V149, P155, DOI 10.1016/S0378-5955(00)00175-1 Recio A, 2000, HEARING RES, V146, P167, DOI 10.1016/S0378-5955(00)00111-8 REPP BH, 1979, LANG SPEECH, V22, P173 RHODE WS, 1994, J NEUROPHYSIOL, V71, P493 RHODE WS, 1994, HEARING RES, V77, P43, DOI 10.1016/0378-5955(94)90252-6 Rhode WS, 1992, MAMMALIAN AUDITORY P, P94 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 RHODE WS, 1983, J COMP NEUROL, V213, P448, DOI 10.1002/cne.902130408 Rhode WS, 1998, HEARING RES, V117, P39, DOI 10.1016/S0378-5955(98)00002-1 RHODE WS, 1994, J NEUROPHYSIOL, V71, P1797 Romand R, 1997, CENTRAL AUDITORY SYS, P97 ROUILLER EM, 1984, J COMP NEUROL, V225, P167, DOI 10.1002/cne.902250203 Ruggero M A, 1992, Curr Opin Neurobiol, V2, P449, DOI 10.1016/0959-4388(92)90179-O Ruggero M. A., 1992, MAMMALIAN AUDITORY P, P34 SHAMMA SA, 1985, J ACOUST SOC AM, V78, P1612, DOI 10.1121/1.392799 SINEX DG, 1983, J ACOUST SOC AM, V73, P602, DOI 10.1121/1.389007 SINEX DG, 1991, J ACOUST SOC AM, V90, P2441, DOI 10.1121/1.402048 Sinex DG, 2000, J ACOUST SOC AM, V107, P486, DOI 10.1121/1.428316 SINEX DG, 1989, J ACOUST SOC AM, V85, P1995, DOI 10.1121/1.397852 SINEX DG, 1988, J ACOUST SOC AM, V83, P1817, DOI 10.1121/1.396516 SINNOTT JM, 1987, J ACOUST SOC AM, V82, P1539, DOI 10.1121/1.395144 SMITH PH, 1989, J COMP NEUROL, V282, P595, DOI 10.1002/cne.902820410 SMITH RL, 1983, ANN NY ACAD SCI, V405, P79, DOI 10.1111/j.1749-6632.1983.tb31621.x STEINSCHNEIDER M, 1994, ELECTROEN CLIN NEURO, V92, P30, DOI 10.1016/0168-5597(94)90005-1 STEINSCHNEIDER M, 1990, BRAIN RES, V519, P158, DOI 10.1016/0006-8993(90)90074-L Steinschneider M, 1999, J NEUROPHYSIOL, V82, P2346 STEINSCHNEIDER M, 1995, BRAIN RES, V674, P147, DOI 10.1016/0006-8993(95)00008-E STEINSCHNEIDER M, 1982, BRAIN RES, V252, P353, DOI 10.1016/0006-8993(82)90403-6 STEINSCHNEIDER M, 1995, BRAIN LANG, V48, P326, DOI 10.1006/brln.1995.1015 Stevens HE, 1999, HEARING RES, V131, P47, DOI 10.1016/S0378-5955(99)00014-3 STEVENS KN, 1974, J ACOUST SOC AM, V55, P653, DOI 10.1121/1.1914578 STEVENS KN, 1978, J ACOUST SOC AM, V64, P1358, DOI 10.1121/1.382102 SUMMERFIELD Q, 1977, J ACOUST SOC AM, V62, P435, DOI 10.1121/1.381544 WANG XQ, 1994, J NEUROPHYSIOL, V71, P59 WESTERMAN LA, 1984, HEARING RES, V15, P249, DOI 10.1016/0378-5955(84)90032-7 WINTER IM, 1990, HEARING RES, V44, P161, DOI 10.1016/0378-5955(90)90078-4 WINTER IM, 1995, J NEUROPHYSIOL, V73, P141 YOUNG ED, 1988, J NEUROPHYSIOL, V60, P1 Zue V., 1980, ACOUSTIC CHARACTERIS NR 93 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2004 VL 190 IS 1-2 BP 37 EP 59 DI 10.1016/S0378-5955(04)00017-6 PG 23 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 810EH UT WOS:000220687100005 PM 15051129 ER PT J AU Brown, DJ McMahon, CM Patuzzi, RB AF Brown, DJ McMahon, CM Patuzzi, RB TI K+ currents produce P-1 in the RW CAP: evidence from DC current bias, K+ channel blockade and recordings from cochlea and brainstem SO HEARING RESEARCH LA English DT Article DE round window; compound action potential; current injection; 4-aminopyridine ID AUDITORY-NERVE ACTIVITY; SUMMATING POTENTIALS; POTASSIUM CHANNELS; ROUND-WINDOW; GUINEA-PIG; NEURONS; NUCLEUS; FIBERS; SODIUM; ORIGIN AB Tone-burst-evoked compound action potentials (CAP) from the guinea pig round window (RW) are altered by DC current injection through the RW. The CAP waveform consists of a series of interleaved negative and positive peaks (N-1, P-1, N-2, P-2 etc.) of decreasing amplitude. During positive DC current injection (around +50 muA) the positive peaks are depressed substantially and there is an overall negative baseline shift of the waveform following the N-1. Negative current injection (around -50 muA) increased the positive peaks, in particular P-1, and produced an overall positive baseline shift following the N-1 peak. Results support our hypothesis that the first and dominant N-1 peak in the RW CAP is due to depolarising Na+ currents into the primary afferent dendrites and axons within the cochlea, and that the P-1 potential is largely due to the exit of the hyperpolarising K+ currents in the same cells. We have reached this conclusion on the basis of the sign and latency of the N-1 and P-1 components at the RW, beneath the myelin layers around the spiral ganglion cells, at the internal auditory meatus (IAM) within the brain case, and on the basis of the differential susceptibility of the various peaks to perfusion of lidocaine in the cochlear nucleus, sectioning of the cochlear nerve at the IAM, application of the K+ channel blockers 4-amino-pyridine and tetraethylammonium within the cochlea, and DC current biasing at the RW. (C) 2004 Published by Elsevier B.V. C1 Univ Western Australia, Auditory Lab, Discipline Physiol, Perth, WA 6009, Australia. RP Brown, DJ (reprint author), Univ Western Australia, Auditory Lab, Discipline Physiol, Perth, WA 6009, Australia. EM djbrown@cyllene.uwa.edu.au CR CHIU SY, 1991, GLIA, V4, P541, DOI 10.1002/glia.440040602 CONNOR JA, 1971, J PHYSIOL-LONDON, V213, P21 DALLOS P, 1972, ACTA OTO-LARYNGOL, P1 DAVIS H, 1958, AM J PHYSIOL, V195, P251 DIAGNEAULT EA, 1974, ACTA OTOLARYNGOL, V77, P405 DOLAN DF, 1989, J ACOUST SOC AM, V86, P2167, DOI 10.1121/1.398477 DOUCET JR, 1995, AUDIT NEUROSCI, V1, P151 ENG DL, 1988, J NEUROPHYSIOL, V60, P2168 FURUKAWA T, 1978, J PHYSIOL-LONDON, V276, P193 Hills M, 2001, NEW MEDIA SOC, V3, P115, DOI 10.1177/1461444801003001009 HODGKIN AL, 1952, J PHYSIOL-LONDON, V116, P449 Jagger DJ, 2002, NEUROSCIENCE, V109, P169, DOI 10.1016/S0306-4522(01)00454-7 Kiang NYS, 1976, ELECTROCOCHLEOGRAPHY, P95 LEGOUIX JP, 1978, ACTA OTO-LARYNGOL, V85, P177 McMahon CM, 2002, HEARING RES, V173, P134, DOI 10.1016/S0378-5955(02)00281-2 MOLLER AR, 1983, EXP NEUROL, V80, P633, DOI 10.1016/0014-4886(83)90313-8 MOUSHEGIAN G, 1962, J NEUROPHYSIOL, V25, P515 ROBERTSON D, 1975, THESIS MCGILL U MONT Ruel J, 2001, EUR J NEUROSCI, V14, P977, DOI 10.1046/j.0953-816x.2001.01721.x SCHREINER CE, 1986, HEARING RES, V21, P213, DOI 10.1016/0378-5955(86)90220-0 Sellick P, 2003, HEARING RES, V176, P42, DOI 10.1016/S0378-5955(02)00716-5 SIEGEL JH, 1986, HEARING RES, V22, P245, DOI 10.1016/0378-5955(86)90101-2 Sun W, 2001, NEUROREPORT, V12, P803, DOI 10.1097/00001756-200103260-00037 THOMPSON SH, 1977, J PHYSIOL-LONDON, V265, P465 vanEmst MG, 1996, HEARING RES, V102, P70, DOI 10.1016/S0378-5955(96)00149-9 VANEMST MG, 1995, HEARING RES, V88, P27, DOI 10.1016/0378-5955(95)00095-L NR 26 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2004 VL 190 IS 1-2 BP 60 EP 74 DI 10.1016/S0378-5955(03)00404-0 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 810EH UT WOS:000220687100006 PM 15051130 ER PT J AU McMahon, CM Brown, DJ Patuzzi, RB AF McMahon, CM Brown, DJ Patuzzi, RB TI Transient focal cooling at the round window and cochlear nucleus shows round window CAP originates from cochlear neurones alone SO HEARING RESEARCH LA English DT Article DE compound action potential; lateral olivo-cochlear efferent neuron; cochlear nucleus; spectrum of the averaged waveform; cochlea; guinea pig ID SQUID GIANT AXON; GUINEA-PIG; NERVE; POTENTIALS; TEMPERATURE; ADAPTATION; AFFERENT AB We have measured the compound action potential (CAP) evoked by very brief high-frequency tone-bursts (20 kHz, 1/4 ms) at the round window (RW) and at the surface of the cochlear nucleus (CN) in guinea pigs before, during and after a localised chilling of either the cochlea or CN, with a non-toxic 'freeze spray'. CN chilling almost abolished the negative-going component of the CAP measured in the CN (generated by the CN and here called the cochlear nucleus response or CNR), leaving a positive-going localised response from the cochlear neurotics as they leave the internal auditory meatus. Within 3 min, the CNR recovered to control values. During that time, the N-1 component of the RW CAP was slightly increased and the P-1 was larger, even though the CNR was abolished, indicating that the P-1 was not due to electrotonic spread of current from the CN. The N-2 and successive peaks at the RW were also abolished, but returned after 30 s. When the cochlea was chilled, the RW CAP was initially reduced in amplitude, presumably due to a drop in the number of cochlear neurotics spiking in response to sound, but recovered within 3 min to be larger than the control waveform, with a more prominent N-1 peak which was delayed slightly, making the CAP more monophasic. At the same time, the CNR was smaller, presumably due to fewer cochlear neurotics responding, but overall the CN CAP was altered little in waveshape. These experiments indicate that that RW CAP is generated almost solely by cochlear neurotics. We also suggest that some of the changes in the RW CAP during the chills were due to changes in the firing of the lateral olivo-cochlear system of efferent neurons. (C) 2004 Published by Elsevier B.V. C1 Univ Western Australia, Auditory Lab, Discipline Phsyiol, Perth, WA 6009, Australia. RP Patuzzi, RB (reprint author), Univ Western Australia, Auditory Lab, Discipline Phsyiol, Perth, WA 6009, Australia. EM rpatuzzi@cyllene.uwa.edu.au CR BROWN MC, 1983, J ACOUST SOC AM, V73, P1662, DOI 10.1121/1.389387 DAIGNEAU.EA, 1974, ACTA OTO-LARYNGOL, V77, P405, DOI 10.3109/00016487409124642 DALLOS P, 1973, AUDITORY PERIPHERY, P329 DAVIS H, 1950, P NATL ACAD SCI USA, V36, P580, DOI 10.1073/pnas.36.10.580 DAVIS H, 1952, COLD SPRING HARB SYM, V17, P143 deSauvage RC, 1996, HEARING RES, V102, P15, DOI 10.1016/S0378-5955(96)00137-2 FISCH U P, 1962, Acta Otolaryngol, V54, P532, DOI 10.3109/00016486209126971 GUINAN JJ, 1988, HEARING RES, V33, P15 HILDESHEIMER M, 1987, HEARING RES, V31, P193, DOI 10.1016/0378-5955(87)90126-2 HODGKIN AL, 1952, J PHYSIOL-LONDON, V117, P500 HODGKIN AL, 1946, PROC R SOC SER B-BIO, V133, P444, DOI 10.1098/rspb.1946.0024 Kiang NYS, 1976, ELECTROCOCHLEOGRAPHY, P95 KUPPERMA.R, 1972, ACTA OTO-LARYNGOL, V73, P130, DOI 10.3109/00016487209138922 LEGOUIX JP, 1978, ACTA OTO-LARYNGOL, V85, P177 LEGOUIX JP, 1974, J ACOUST SOC AM, V56, P1222, DOI 10.1121/1.1903411 LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309 LUTKENHONER B, 1986, HEARING RES, V24, P289, DOI 10.1016/0378-5955(86)90028-6 MARTIN WH, 1995, EVOKED POTENTIAL, V96, P357, DOI 10.1016/0168-5597(94)00326-A MAURO A, 1970, J GEN PHYSIOL, V55, P497, DOI 10.1085/jgp.55.4.497 MAURO A, 1972, BIOPHYSIK, V8, P118, DOI 10.1007/BF01188562 McMahon CM, 2002, HEARING RES, V173, P134, DOI 10.1016/S0378-5955(02)00281-2 MOLLER AR, 1983, EXP NEUROL, V80, P633, DOI 10.1016/0014-4886(83)90313-8 Patuzzi R, 2002, P 7 INT TINN SEM PER, P16 ROBERTSON D, 1975, THESIS MCGILL U MONT ROBERTSO.D, 1974, J COMP PHYSIOL, V91, P363, DOI 10.1007/BF00694467 Sellick P, 2003, HEARING RES, V176, P42, DOI 10.1016/S0378-5955(02)00716-5 SORENSEN H, 1959, ACTA OTOLARYNGOL STO, V50, P428 TASAKI I, 1954, J NEUROPHYSIOL, V17, P97 TEAS DONALD C, 1962, JOUR ACOUSTICAL SOC AMER, V34, P1438, DOI 10.1121/1.1918366 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 Zheng XY, 1999, J COMP NEUROL, V406, P72 NR 31 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2004 VL 190 IS 1-2 BP 75 EP 86 DI 10.1016/S0378-5955(03)00403-9 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 810EH UT WOS:000220687100007 PM 15051131 ER PT J AU Patuzzi, RB Brown, DJ McMahon, CM Halliday, AF AF Patuzzi, RB Brown, DJ McMahon, CM Halliday, AF TI Determinants of the spectrum of the neural electrical activity at the round window: transmitter release and neural depolarisation SO HEARING RESEARCH LA English DT Article DE round window compound action potential; lateral olivo-cochlear efferent neuron; cochlear nucleus; spectrum of the averaged waveform; cochlea; guinea pig ID GUINEA-PIG COCHLEA; AUDITORY-NERVE FIBERS; INNER HAIR-CELLS; SPIRAL GANGLION; AVERAGE SPECTRUM; RESPONSES; POTENTIALS; NEURONS; SALICYLATE; TINNITUS AB In this paper we summarise the changes we have observed in the electrical activity at the round window (RW) of guinea pigs during transient cooling of the RW or cochlear nucleus (CN), transient hypoxia, low frequency acoustic biasing, ablation of the CN, and DC current injection into the basal cochlear turn. We have measured the compound action potential (CAP), the spectrum of the average CAP waveform, (SAW) evoked by brief tone-bursts, and the spectrum of the neural noise (SNN). We discuss how the changes we have observed can be understood in terms of changes in transmitter release from inner hair cells (that controls stochastic neural firing), or changes in the membrane potential of the primary afferent neurones (that controls the neural firing waveshape and the spectral content of the SAW and SNN). We note that changes in sound intensity produce a simple increase in the stochastic release of transmitter from inner hair cells, without much change in the waveform of the neural response, but manipulations of the auditory brainstem, cooling and current injection all appear to alter neural firing rate and the neural response waveform, producing a baseline shift in the CAP and changes in 1000 Hz peak and low frequency content of the SAW and SNN. We also discuss the use of the CAP, SAW and SNN as an indication of cochlear and auditory brainstem neural activity. (C) 2004 Published by Elsevier B.V. C1 Univ Western Australia, Auditory Lab, Dept Physiol, Perth, WA 6009, Australia. RP Patuzzi, RB (reprint author), Univ Western Australia, Auditory Lab, Dept Physiol, Perth, WA 6009, Australia. EM rpatuzzi@cyllene.uwa.edu.au CR ABBAS PJ, 1976, J ACOUST SOC AM, V59, P112, DOI 10.1121/1.380841 ARAN JM, 1981, CIBA FOUND S, V8, P217 ARTHUR RM, 1971, J PHYSIOL-LONDON, V212, P593 BAGULEY DM, 2001, SEMIN HEAR, V2, P77 BAGULEY DM, 2002, CLIN OTOLARYNGOL ALL, V2, P219 Barrs DM, 1984, J LARYNGOL OTOL S, V9, P287 BROWN DJ, 2004, IN PRESS HEAR RES BROWN MC, 1983, HEARING RES, V9, P131, DOI 10.1016/0378-5955(83)90023-0 BROWN MC, 1983, J ACOUST SOC AM, V73, P1662, DOI 10.1121/1.389387 Cazals Y, 1998, J NEUROPHYSIOL, V80, P2113 Cazals Y, 2000, PROG NEUROBIOL, V62, P583, DOI 10.1016/S0301-0082(00)00027-7 Cazals Y, 1996, HEARING RES, V101, P81, DOI 10.1016/S0378-5955(96)00135-9 COUSILLAS H, 1988, HEARING RES, V3, P21 DALDIN C, 1995, HEARING RES, V90, P202, DOI 10.1016/0378-5955(95)00167-5 DALLOS P, 1972, SCIENCE, V177, P356, DOI 10.1126/science.177.4046.356 DALLOS P, 1973, AUDITORY PERIPHERY, P329 DESAUVAGE RC, 1996, HEARING RES, V10, P15 DOLAN DF, 1990, J ACOUST SOC AM, V87, P2621, DOI 10.1121/1.399054 DOLAN DF, 1989, J ACOUST SOC AM, V86, P2167, DOI 10.1121/1.398477 EGGERMONT JJ, 1990, HEARING RES, V48, P111, DOI 10.1016/0378-5955(90)90202-Z EVANS EF, 1979, AUDITORY INVESTIGATI, P324 GOODWIN PE, 1980, ACTA OTOLARYNGOL, V9, P353 GUINAN JJ, 1988, HEARING RES, V33, P115, DOI 10.1016/0378-5955(88)90024-X Jagger DJ, 2002, NEUROSCIENCE, V109, P169, DOI 10.1016/S0306-4522(01)00454-7 JOHNSTONE JR, 1979, J ACOUST SOC AM, V65, P254, DOI 10.1121/1.382244 Kiang NYS, 1976, ELECTROCOCHLEOGRAPHY, P95 MANLEY GA, 1976, J PHYSIOL-LONDON, V258, P323 Martin W.H., 1995, MECH TINNITUS, P163 MARTIN WH, 1993, LARYNGOSCOPE, V103, P600 Martin W.H., 1996, P 5 INT TINN SEM 199, P127 McMahon CM, 2002, HEARING RES, V173, P134, DOI 10.1016/S0378-5955(02)00281-2 MCMAHON CM, 2004, IN PRESS HEAR RES Meikle M, 1984, J Laryngol Otol Suppl, V9, P17 MOUNTAIN DC, 1980, HEARING RES, V3, P215, DOI 10.1016/0378-5955(80)90048-9 NUTTALL AL, 1981, BRAIN RES, V211, P171, DOI 10.1016/0006-8993(81)90078-0 OZDAMAR O, 1978, BRAIN RES, V155, P169, DOI 10.1016/0006-8993(78)90320-7 Patuzzi R, 2002, P 7 INT TINN SEM PER, P16 PATUZZI RB, 1987, HEARING RES, V30, P83, DOI 10.1016/0378-5955(87)90186-9 PRIJS VF, 1986, HEARING RES, V21, P127, DOI 10.1016/0378-5955(86)90034-1 RAJAN R, 1989, HEARING RES, V39, P299, DOI 10.1016/0378-5955(89)90049-X Ruel J, 2001, EUR J NEUROSCI, V14, P977, DOI 10.1046/j.0953-816x.2001.01721.x RUSSELL IJ, 1983, J PHYSIOL-LONDON, V338, P179 SALVI RJ, 1983, J SPEECH HEAR RES, V26, P629 SCHREINER CE, 1986, HEARING RES, V2, P213 SEARCHFIELD G, 2002, P 7 INT TINN SEM PER, P53 Sellick P, 2003, HEARING RES, V176, P42, DOI 10.1016/S0378-5955(02)00716-5 SELLICK PM, 1980, HEARING RES, V2, P439, DOI 10.1016/0378-5955(80)90080-5 SELLICK PM, 1982, HEARING RES, V7, P199, DOI 10.1016/0378-5955(82)90014-4 SEWELL WF, 1984, J PHYSIOL-LONDON, V347, P685 SNYDER RL, 1984, HEARING RES, V1, P261 Sun W, 2001, NEUROREPORT, V12, P803, DOI 10.1097/00001756-200103260-00037 TEAS DONALD C, 1962, JOUR ACOUSTICAL SOC AMER, V34, P1438, DOI 10.1121/1.1918366 WEINBERGER MM, 1969, EXPERIENTIA, V26, P46 NR 53 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2004 VL 190 IS 1-2 BP 87 EP 108 DI 10.1016/S0378-5955(03)00405-2 PG 22 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 810EH UT WOS:000220687100008 PM 15051132 ER PT J AU Lobarinas, E Sun, W Cushing, R Salvi, R AF Lobarinas, E Sun, W Cushing, R Salvi, R TI A novel behavioral paradigm for assessing tinnitus using schedule-induced polydipsia avoidance conditioning (SIP-AC) SO HEARING RESEARCH LA English DT Article DE tinnitus; salicylate; schedule-induced polydipsia; rat; conditioning ID ANIMAL-MODEL; RATS; SOUND AB A behavioral technique was developed that allowed the onset and recovery of tinnitus to be measured in individual rats treated with different doses of salicylate. Food-restricted rats were self-trained to lick for water during the time between scheduled delivery of food pellets, i.e., schedule-induced polydipsia (SIP). SIP-induced licking was placed under stimulus control by administering foot shock if licks occurred when sound (one of six stimuli, 40 dB SPL) was present; rats were allowed to lick during quiet. After the number of licks-in-quiet (correct response) exceeded 90% of total licks, rats were treated with saline and four different doses of salicylate (50,.100, 150 and 350 mg/kg, intraperitoneally (i.p.); 2 days). Performance was assessed before, during and after treatment. Licks-in-sound remained extremely low with saline and all four salicylate doses indicating that the sounds were audible under all treatment conditions. Licks-in-quiet remained high during the saline control and 50 mg/kg dose of salicylate, behavior consistent with the absence of tinnitus. However, licks-in-quiet showed a statistically significant decline with the 150 and 350 mg/kg dose, behavior consistent with the presence of tinnitus. Licks-in-quiet gradually recovered to baseline level 2-3 days following high-dose salicylate treatments, behavior consistent with the gradual disappearance of tinnitus. The salicylate dose needed to induce tinnitus and the length of recovery are consistent with previous reports, providing support for the method. The ability to obtain sequential estimates of tinnitus-like behavior in an animal after administering a tinnitus-inducing agent could aid in understanding the underlying neural mechanisms and assessing potential treatments. (C) 2004 Elsevier B.V. All rights reserved. C1 SUNY Buffalo, Ctr Hearing & Deafness, Hearing Res Lab, Buffalo, NY 14214 USA. RP Lobarinas, E (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, Hearing Res Lab, 215 Parker Hall, Buffalo, NY 14214 USA. EM el24@buffalo.edu CR Bauer CA, 1999, OTOLARYNG HEAD NECK, V121, P457, DOI 10.1016/S0194-5998(99)70237-8 ERLANDSSON SI, 1992, AUDIOLOGY, V31, P168 FALK JL, 1972, PHYSIOL BEHAV, V9, P259, DOI 10.1016/0031-9384(72)90245-4 Guitton MJ, 2003, J NEUROSCI, V23, P3944 Heffner HE, 2002, HEARING RES, V170, P83, DOI 10.1016/S0378-5955(02)00343-X JASTREBOFF PJ, 1988, BEHAV NEUROSCI, V102, P811, DOI 10.1037/0735-7044.102.6.811 JASTREBOFF PJ, 1994, AUDIOLOGY, V33, P202 JASTREBOFF PJ, 1994, AM J OTOL, V15, P19 JASTREBOFF PJ, 1991, ARCH OTOLARYNGOL, V117, P1162 Lobarinas E, 1998, PHYSIOL BEHAV, V63, P419, DOI 10.1016/S0031-9384(97)00461-7 Meikle MB, 1997, OTOLARYNG HEAD NECK, V117, P698, DOI 10.1016/S0194-5998(97)70055-X Ruttiger L, 2003, HEARING RES, V180, P39, DOI 10.1016/S0378-5955(03)00075-3 NR 12 TC 60 Z9 63 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2004 VL 190 IS 1-2 BP 109 EP 114 DI 10.1016/S0378-5955(04)00019-X PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 810EH UT WOS:000220687100009 PM 15051133 ER PT J AU Spreadbury, IC Kros, CJ Meech, RW AF Spreadbury, IC Kros, CJ Meech, RW TI Effects of trypsin on large-conductance Ca2+-activated K+ channels of guinea-pig outer hair cells SO HEARING RESEARCH LA English DT Article DE Ca2+-activated K+ channel; cochlea; outer hair cell ID ACTIVATED POTASSIUM CHANNELS; ALLOSTERIC GATING MECHANISM; MOLECULAR-BASIS; BETA-SUBUNIT; RAPID INACTIVATION; BK CHANNELS; RAT MUSCLE; CALCIUM; VOLTAGE; CURRENTS AB High-conductance Ca2+-activated K+ (BKCa) channels from isolated adult guinea-pig outer hair cells were studied in inside-out membrane patches. They had a 300 pS unitary conductance and were inhibited by tetraethyl ammonium (1 mM), iberiotoxin (33 nM) and charybdotoxin (50 nM). In symmetrical 144 mM KCl their K+ permeability (P-K) was 5.4 X 10(-13) cm(3)/s; this was reduced to around 4.5 X 10(-13) cm(3)/S with 160 mM Na+ in place of K+ on either internal or external membrane surface. BKCa channels from trypsin-isolated hair cells had a high open probability, that depended on both membrane voltage (16 mV/e-fold change) and the concentration of calcium ions at their intracellular surface ([Ca2+](i)). The Hill coefficient was 3-4. About 50% of BKCa channels from mechanically isolated outer hair cells had similar characteristics; the remainder had the same high conductance but a low open probability. Trypsin ( < 0.5 mg/ml) applied to the intracellular face of these 'inactive' channels markedly increased their open probability. It is possible that exposure to trypsin during cell isolation removes an inactivating beta subunit. This would account for the absence of 'inactive' BKCa channels in trypsin-isolated cells. (C) 2004 Elsevier B.V. All rights reserved. C1 John Radcliffe Hosp, Weatherall Inst Mol Med, Neurosci Grp, Oxford, England. Univ Sussex, Sch Life Sci, Brighton BN1 9QG, E Sussex, England. Sch Med Sci Bristol, Dept Physiol, Bristol BS8 1TD, Avon, England. RP Spreadbury, IC (reprint author), John Radcliffe Hosp, Weatherall Inst Mol Med, Neurosci Grp, Oxford, England. EM iancs@hammer.imm.ox.ac.uk CR Adrian R H, 1969, Prog Biophys Mol Biol, V19, P339 Armstrong CE, 2001, J PHYSIOL-LONDON, V536, P49, DOI 10.1111/j.1469-7793.2001.00049.x ASHMORE JF, 1986, NATURE, V322, P368, DOI 10.1038/322368a0 BLATZ AL, 1984, J GEN PHYSIOL, V84, P1, DOI 10.1085/jgp.84.1.1 Brenner R, 2000, J BIOL CHEM, V275, P6453, DOI 10.1074/jbc.275.9.6453 CANDIA S, 1992, BIOPHYS J, V63, P583 Doyle DA, 1998, SCIENCE, V280, P69, DOI 10.1126/science.280.5360.69 GITTER AH, 1992, HEARING RES, V60, P13, DOI 10.1016/0378-5955(92)90053-P Hicks GA, 1998, J PHYSIOL-LONDON, V508, P721, DOI 10.1111/j.1469-7793.1998.721bp.x HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73 Jiang YX, 2000, J GEN PHYSIOL, V115, P269, DOI 10.1085/jgp.115.3.269 Jones EMC, 1999, J PHYSIOL-LONDON, V518, P653, DOI 10.1111/j.1469-7793.1999.0653p.x Langer P, 2003, J COMP NEUROL, V455, P198, DOI 10.1002/cne.10471 Lara J, 1999, J NEUROPHYSIOL, V82, P1317 LEMONS R, 1988, ANAL BIOCHEM, V172, P219, DOI 10.1016/0003-2697(88)90435-6 Mammano F, 1996, J PHYSIOL-LONDON, V496, P639 MAMMANO F, 1995, PFLUG ARCH EUR J PHY, V430, P745, DOI 10.1007/BF00386170 MCMANUS OB, 1988, J PHYSIOL-LONDON, V402, P79 MCMANUS OB, 1991, J BIOENERG BIOMEMBR, V23, P537, DOI 10.1007/BF00785810 Meera P, 2000, P NATL ACAD SCI USA, V97, P5562, DOI 10.1073/pnas.100118597 Miller C, 2001, NATURE, V414, P23, DOI 10.1038/35102126 MOCZYDLOWSKI E, 1983, J GEN PHYSIOL, V82, P511, DOI 10.1085/jgp.82.4.511 Nenov AP, 1997, HEARING RES, V105, P146, DOI 10.1016/S0378-5955(96)00207-9 Piskorowski R, 2002, NATURE, V420, P499, DOI 10.1038/nature01199 Ramanathan K, 1999, SCIENCE, V283, P215, DOI 10.1126/science.283.5399.215 ROBERTS WM, 1990, J NEUROSCI, V10, P3664 Rothberg BS, 1999, J GEN PHYSIOL, V114, P93, DOI 10.1085/jgp.114.1.93 Rothberg BS, 2000, J GEN PHYSIOL, V116, P75, DOI 10.1085/jgp.116.1.75 SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X Smith MA, 2000, NEUROSCIENCE, V95, P33 SMITH MA, 1998, J PHYSL, V513, P739 SOLARO CR, 1992, SCIENCE, V257, P1694, DOI 10.1126/science.1529355 Sun XP, 1999, J PHYSIOL-LONDON, V518, P639, DOI 10.1111/j.1469-7793.1999.0639p.x TANG JM, 1992, METHOD ENZYMOL, V207, P176 TSENGCRANK J, 1994, NEURON, V13, P1315, DOI 10.1016/0896-6273(94)90418-9 Uebele VN, 2000, J BIOL CHEM, V275, P23211, DOI 10.1074/jbc.M910187199 Van den Abbeele T, 1999, AM J PHYSIOL-CELL PH, V277, pC913 Vergara C, 1999, J GEN PHYSIOL, V114, P365, DOI 10.1085/jgp.114.3.365 Wallner M, 1999, P NATL ACAD SCI USA, V96, P4137, DOI 10.1073/pnas.96.7.4137 WEI A, 1994, NEURON, V13, P671, DOI 10.1016/0896-6273(94)90034-5 Xia XM, 1999, J NEUROSCI, V19, P5255 Xia XM, 2000, J NEUROSCI, V20, P4890 NR 42 TC 6 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2004 VL 190 IS 1-2 BP 115 EP 127 DI 10.1016/S0378-5955(03)00376-9 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 810EH UT WOS:000220687100010 PM 15051134 ER PT J AU Sussman, E Kujala, T Halmetoja, J Lyytinen, H Alku, P Naatanen, R AF Sussman, E Kujala, T Halmetoja, J Lyytinen, H Alku, P Naatanen, R TI Automatic and controlled processing of acoustic and phonetic contrasts SO HEARING RESEARCH LA English DT Article DE speech processing; event-related potentials; mismatch negativity; N2b; P3b ID MISMATCH NEGATIVITY MMN; MAGNETIC BRAIN RESPONSES; HUMAN AUDITORY-CORTEX; SPEECH-PERCEPTION; SELECTIVE-ATTENTION; STIMULUS DEVIANCE; READ WORDS; CHILDREN; REPRESENTATION; POTENTIALS AB Changes in the temporal properties of the speech signal provide important cues for phoneme identification. An impairment or inability to detect such changes may adversely affect one's ability to understand spoken speech. The difference in meaning between the Finnish words tuli (fire) and tuuli (wind), for example, lies in the difference between the duration of the vowel /u/. Detecting changes in the temporal properties of the speech signal, therefore, is critical for distinguishing between phonemes and identifying words. In the current study, we tested whether detection of changes in speech sounds, in native Finnish speakers, would vary as a function of the position within the word that the informational changes occurred (beginning, middle, or end) by evaluating how length contrasts in segments of three-syllable Finnish pseudo-words and their acoustic correlates were discriminated. We recorded a combination of cortical components of event-related brain potentials (MMN, N2b, P3b) along with behavioral measures of the perception of the same sounds. It was found that speech sounds were not processed differently than non-speech sounds in the early stages of auditory processing indexed by MMN. Differences occurred only in later stages associated with controlled processes. The effects of position and attention on speech and non-speech stimuli are discussed. (C) 2004 Elsevier B.V. All-rights reserved. C1 Albert Einstein Coll Med, Dept Neurosci, Bronx, NY 10467 USA. Albert Einstein Coll Med, Dept Otolaryngol, Bronx, NY 10467 USA. Univ Helsinki, Helsinki Coll Adv Sci, Helsinki, Finland. Univ Helsinki, Cognit Brain Res Unit, Helsinki, Finland. Univ Jyvaskyla, Dept Psychol, SF-40351 Jyvaskyla, Finland. Univ Helsinki, Acoust Lab, FIN-02015 Helsinki, Finland. Helsinki Brain Res Ctr, Helsinki 00014, Finland. RP Sussman, E (reprint author), Albert Einstein Coll Med, Dept Neurosci, 1410 Pelham Pkwy S, Bronx, NY 10467 USA. EM esussman@aecom.yu.edu RI Alku, Paavo/E-2400-2012 CR AALTONEN O, 1994, J ACOUST SOC AM, V96, P1489, DOI 10.1121/1.410291 Ahissar M, 2000, P NATL ACAD SCI USA, V97, P6832, DOI 10.1073/pnas.97.12.6832 Alain C, 1997, PSYCHOPHYSIOLOGY, V34, P534, DOI 10.1111/j.1469-8986.1997.tb01740.x Alho K, 1996, PSYCHOPHYSIOLOGY, V33, P369, DOI 10.1111/j.1469-8986.1996.tb01061.x ALHO K, 1986, PSYCHOPHYSIOLOGY, V23, P613, DOI 10.1111/j.1469-8986.1986.tb00680.x ALHO K, 1995, EAR HEARING, V16, P38, DOI 10.1097/00003446-199502000-00004 Alku P, 1999, CLIN NEUROPHYSIOL, V110, P1329, DOI 10.1016/S1388-2457(99)00088-7 Dalebout S D, 1999, J Am Acad Audiol, V10, P388 Dehaene-Lambertz G, 2000, J COGNITIVE NEUROSCI, V12, P635, DOI 10.1162/089892900562390 DONCHIN E, 1988, BEHAV BRAIN SCI, V11, P357 GIARD MH, 1990, PSYCHOPHYSIOLOGY, V27, P627, DOI 10.1111/j.1469-8986.1990.tb03184.x Gomes H, 2000, PSYCHOPHYSIOLOGY, V37, P807, DOI 10.1017/S0048577200990632 Jaramillo M, 2001, COGNITIVE BRAIN RES, V12, P459, DOI 10.1016/S0926-6410(01)00081-7 Kraus N, 2000, AUDIOL NEURO-OTOL, V5, P140, DOI 10.1159/000013876 Laing E, 1999, J EXP CHILD PSYCHOL, V73, P183, DOI 10.1006/jecp.1999.2500 Lubert N, 1981, J Speech Hear Disord, V46, P1 LYYTINEN H, 2003, BRAIN FUNCTIONS SPEE LYYTINEN H, 2004, IN PRESS CHILDRENS L MAISTE AC, 1995, EAR HEARING, V16, P68, DOI 10.1097/00003446-199502000-00006 McAnally KI, 1996, P ROY SOC B-BIOL SCI, V263, P961, DOI 10.1098/rspb.1996.0142 Mody M, 1997, J EXP CHILD PSYCHOL, V64, P199, DOI 10.1006/jecp.1996.2343 NAATANEN R, 1982, BIOL PSYCHOL, V14, P53, DOI 10.1016/0301-0511(82)90017-5 Naatanen R, 1997, NATURE, V385, P432, DOI 10.1038/385432a0 NAATANEN R, 1993, PSYCHOPHYSIOLOGY, V30, P436, DOI 10.1111/j.1469-8986.1993.tb02067.x Naatanen R, 1999, PSYCHOL BULL, V125, P826, DOI 10.1037/0033-2909.125.6.826 NAATANEN R, 1979, BIOL PSYCHOL, V8, P81, DOI 10.1016/0301-0511(79)90053-X Nenonen S, 2003, COGNITIVE BRAIN RES, V16, P492, DOI 10.1016/S0926-6410(03)00055-7 Nittrouer S, 1999, J SPEECH LANG HEAR R, V42, P925 NOVAK G, 1992, PSYCHOPHYSIOLOGY, V29, P412, DOI 10.1111/j.1469-8986.1992.tb01714.x NOVAK G, 1992, PSYCHOPHYSIOLOGY, V29, P398, DOI 10.1111/j.1469-8986.1992.tb01713.x Opitz B, 2002, NEUROIMAGE, V15, P167, DOI 10.1006/nimg.2001.0970 Picton TW, 2000, AUDIOL NEURO-OTOL, V5, P111, DOI 10.1159/000013875 RACK J, 1994, J EXP CHILD PSYCHOL, V57, P42, DOI 10.1006/jecp.1994.1003 REED MA, 1989, J EXP CHILD PSYCHOL, V48, P270, DOI 10.1016/0022-0965(89)90006-4 RENAULT B, 1979, HUMAN EVOKED POTENTI Rinne T, 2000, NEUROIMAGE, V12, P14, DOI 10.1006/nimg.2000.0591 Scherg M, 1989, J Cogn Neurosci, V1, P336, DOI 10.1162/jocn.1989.1.4.336 Schulte-Korne G, 1999, EUR CHILD ADOLES PSY, V8, P28 Schulte-Korne G, 2001, INT J PSYCHOPHYSIOL, V40, P77, DOI 10.1016/S0167-8760(00)00152-5 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 SHARMA A, 1993, ELECTROEN CLIN NEURO, V88, P64, DOI 10.1016/0168-5597(93)90029-O Sharma A, 2000, J ACOUST SOC AM, V107, P2697, DOI 10.1121/1.428655 Sussman E, 1998, BRAIN RES, V789, P130, DOI 10.1016/S0006-8993(97)01443-1 Sussman E, 2003, PSYCHOPHYSIOLOGY, V40, P430, DOI 10.1111/1469-8986.00045 Sussman E., 2002, CLIN NEUROPHYSIOL, V113, P909 Sussman E, 2001, COGNITIVE BRAIN RES, V12, P431, DOI 10.1016/S0926-6410(01)00067-2 SUTTON S, 1965, SCIENCE, V150, P1187, DOI 10.1126/science.150.3700.1187 Szymanski MD, 1999, J ACOUST SOC AM, V106, P3492, DOI 10.1121/1.428202 TALLAL P, 1980, Journal of Pediatric Psychology, V5, P127, DOI 10.1093/jpepsy/5.2.127 TALLAL P, 1993, ANN NY ACAD SCI, V682, P27, DOI 10.1111/j.1749-6632.1993.tb22957.x TIITINEN H, 1994, NATURE, V372, P901 Treijo L. J., 1995, PSYCHOPHYSIOLOGY, V32, P319 Uwer R, 2002, DEV MED CHILD NEUROL, V44, P527 Winkler I, 1999, COGNITIVE BRAIN RES, V7, P357, DOI 10.1016/S0926-6410(98)00039-1 Winkler I, 1999, PSYCHOPHYSIOLOGY, V36, P638, DOI 10.1017/S0048577299981908 Woldorff MG, 1998, PSYCHOPHYSIOLOGY, V35, P283, DOI 10.1017/S0048577298961601 WOLDORFF MG, 1991, PSYCHOPHYSIOLOGY, V28, P30, DOI 10.1111/j.1469-8986.1991.tb03384.x NR 57 TC 22 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2004 VL 190 IS 1-2 BP 128 EP 140 DI 10.1016/S0378-5955(04)00016-4 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 810EH UT WOS:000220687100011 PM 15051135 ER PT J AU Henry, KR AF Henry, KR TI Males lose hearing earlier in mouse models of late-onset age-related hearing loss; females lose hearing earlier in mouse models of early-onset hearing loss SO HEARING RESEARCH LA English DT Article DE presbycusis; presbyacusis; sex; gender; age-related hearing loss; Ahl ID NERVE ENVELOPE RESPONSE; DIETARY RESTRICTION; AUDITORY-NERVE; C57BL/6 MICE; ACTION-POTENTIALS; COCHLEAR NUCLEUS; LABORATORY MOUSE; C57-B16 MOUSE; YOUNG-ADULT; THRESHOLDS AB Gender-related differences in human hearing have been attributed to genetic, environmental, and/or genetic X environmental interactive factors. These differences tend to increase with age, with males showing greater high frequency threshold elevations. An appropriate animal model could aid in prediction, treatment, and prevention of some of these losses. This paper examines inbred strains of mice that are widely used as models of late- (CBA/J and CBA/CaJ) and early- (C57BL/6J) onset age-related hearing loss. In the former two genotypes, the thresholds to high frequency stimuli of the auditory brainstem response (ABR) are higher in the male than in the female. This gender difference was less pronounced in thresholds to the cochlear nerve envelope response of the CBA/CaJ, although this response was more sensitive to the influence of age than was the ABR. In contrast, the male C57BL/6J had more sensitive thresholds than the female, with both measures showing massive loss of sensitivity with increasing age. The data are discussed in terms of the applicability of these animals as tools for examining factors that degrade cochlear function. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Calif Davis, Dept Psychol, Davis, CA 95616 USA. RP Henry, KR (reprint author), Univ Calif Davis, Dept Psychol, Davis, CA 95616 USA. EM krhenry@ucdavis.edu CR ALFORD BR, 1963, ANN OTO RHINOL LARYN, V72, P237 AREHART KH, 1994, J ACOUST SOC AM, V95, P3574, DOI 10.1121/1.409975 BERLIN CI, 1963, J SPEECH HEAR RES, V6, P359 BIRCH LM, 1968, J AUD RES, V8, P459 BROWN JN, 1995, HEARING RES, V86, P189 Canlon B, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P118 CORSO JF, 1963, ARCH ENVIRON HEALTH, V6, P350 DiMauro S, 2003, NEW ENGL J MED, V348, P2656, DOI 10.1056/NEJMra022567 Ding DL, 1999, AUDIOL NEURO-OTOL, V4, P55, DOI 10.1159/000013822 Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X Fischel-Ghodsian N, 2003, EAR HEARING, V24, P303, DOI 10.1097/01.AUD.0000079802.82344.B5 GATES GA, 1990, EAR HEARING, V11, P247, DOI 10.1097/00003446-199008000-00001 Gates GA, 1999, ARCH OTOLARYNGOL, V125, P654 HENRY KR, 1980, AUDIOLOGY, V19, P369 Henry KR, 1996, HEARING RES, V99, P151, DOI 10.1016/S0378-5955(96)00096-2 Henry KR, 2002, HEARING RES, V170, P107, DOI 10.1016/S0378-5955(02)00391-X Henry KR, 2003, HEARING RES, V179, P88, DOI 10.1016/S0378-5955(03)00097-2 HENRY KR, 1979, ELECTROEN CLIN NEURO, V46, P452 Henry KR, 1996, HEARING RES, V99, P160, DOI 10.1016/S0378-5955(96)00097-4 HENRY KR, 1978, ACTA OTO-LARYNGOL, V86, P366, DOI 10.3109/00016487809107515 HENRY KR, 1984, DEV PSYCHOBIOL, V17, P493, DOI 10.1002/dev.420170507 HENRY KR, 1988, J ACOUST SOC AM, V84, P1354, DOI 10.1121/1.396634 Jimenez AM, 1999, HEARING RES, V138, P91, DOI 10.1016/S0378-5955(99)00154-9 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Lang H, 2002, HEARING RES, V172, P118, DOI 10.1016/S0378-5955(02)00552-X Lee FS, 1998, OTOLARYNG HEAD NECK, V118, P221, DOI 10.1016/S0194-5998(98)80020-X LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418 LI HS, 1994, ORL J OTO-RHINO-LARY, V56, P61 MCGINN MD, 1992, HEARING RES, V59, P1, DOI 10.1016/0378-5955(92)90094-4 MIKAELIA.D, 1965, ANN OTO RHINOL LARYN, V74, P146 MIKAELIA.DO, 1974, ACTA OTO-LARYNGOL, V77, P327, DOI 10.3109/00016487409124632 MIKAELIAN DO, 1979, LARYNGOSCOPE, V89, P1 Miller J M, 1998, Scand Audiol Suppl, V48, P53 Mills CD, 1999, HEARING RES, V128, P75, DOI 10.1016/S0378-5955(98)00190-7 MITCHELL C, 1976, Journal of Auditory Research, V16, P247 NORTHERN JL, 1972, J ACOUST SOC AM, V52, P585, DOI 10.1121/1.1913149 Ohlemiller KK, 2000, HEARING RES, V149, P239, DOI 10.1016/S0378-5955(00)00191-X ONeill WE, 1997, HEARING RES, V112, P158, DOI 10.1016/S0378-5955(97)00116-0 PARK JC, 1990, HEARING RES, V48, P275, DOI 10.1016/0378-5955(90)90067-Y PEARSON JD, 1995, J ACOUST SOC AM, V97, P1196, DOI 10.1121/1.412231 PEDERSEN KE, 1989, AUDIOLOGY, V28, P194 REARDON W, 1990, J MED GENET, V27, P376, DOI 10.1136/jmg.27.6.376 Rosen S, 1964, ARCH OTOLARYNGOL, V79, P34 Seidman MD, 2000, LARYNGOSCOPE, V110, P727, DOI 10.1097/00005537-200005000-00003 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Shnerson A, 1981, Brain Res, V254, P65 SHONE G, 1991, HEARING RES, V57, P153, DOI 10.1016/0378-5955(91)90084-M Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 Staecker H, 2001, ACTA OTO-LARYNGOL, V121, P666, DOI 10.1080/00016480152583593 Sun XM, 1999, J ACOUST SOC AM, V105, P3399, DOI 10.1121/1.424668 SWEET RJ, 1988, AUDIOLOGY, V27, P305 Tambs K, 2003, INT J AUDIOL, V42, P89, DOI 10.3109/14992020309078340 Walton JP, 2002, J NEUROPHYSIOL, V88, P565, DOI 10.1152/jn.00945.2001 WILLOTT JF, 1999, HEARING RES, P78 WILLOTT JF, 1986, J NEUROPHYSIOL, V57, P391 WILLOTT JF, 1987, J COMP NEUROL, V260, P472, DOI 10.1002/cne.902600312 WILLOTT JF, 1995, HEARING RES, V88, P143, DOI 10.1016/0378-5955(95)00107-F Yoshida N, 1999, J NEUROSCI, V19, P10116 NR 58 TC 26 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2004 VL 190 IS 1-2 BP 141 EP 148 DI 10.1016/S0378-5955(03)00401-5 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 810EH UT WOS:000220687100012 PM 15051136 ER PT J AU Hildebrand, MS de Silva, MG Klockars, T Rose, E Price, M Smith, RJH McGuirt, WT Christopoulos, H Petit, C Dahl, HHM AF Hildebrand, MS de Silva, MG Klockars, T Rose, E Price, M Smith, RJH McGuirt, WT Christopoulos, H Petit, C Dahl, HHM TI Characterisation of DRASIC in the mouse inner ear SO HEARING RESEARCH LA English DT Article DE inner ear; DRASIC; mechanoelectrical transduction; hair cell; spiral ganglion ID HEARING-LOSS; F1-HYBRID STRAINS; INBRED STRAINS; ION CHANNELS; NA+ CHANNEL; HAIR-CELLS; MICE; TRANSDUCTION; AMILORIDE; GENETICS AB Within the cochlea, the hair cells detect sound waves and transduce them into receptor potential. The molecular architecture of the highly specialised cochlea is complex and until recently little was known about the molecular interactions which underlie its function. It is now clear that the coordinated expression and interplay of hundreds of genes and the integrity of cochlear cells regulate this function. It was hypothesised that transcripts expressed highly or specifically in the cochlea are likely to have important roles in normal hearing. Microarray analyses of the Scares NMIE library, consisting of 1536 cDNA clones isolated from the mouse inner ear, suggested that the expression of the mechanoreceptor DRASIC was enriched in the cochlea compared to other tissues. This amiloride-sensitive ion channel is a member of the DEG/ENaC superfamily and a potential candidate for the unidentified mechanoelectrical transduction channel of the sensory hair cells of the cochlea. The cochlear-enriched expression of amiloride-sensitive cation channel 3 (ACCN3) was confirmed by quantitative real-time polymerase chain reaction. Using in situ hybridisation and immunofluorescence, DRASIC expression was localised to the cells and neural fibre region of the spiral ganglion. DRASIC protein was also detected in cells of the organ of Corti. DRASIC may be present in cochlear hair cells as the ACCN3 transcript was shown to be expressed in immortalised cell lines that exhibit characteristics of hair cells. The normal mouse ACCN3 cDNA and an alternatively spliced transcript were elucidated by reverse transcription polymerase chain reaction from mouse inner ear RNA. This transcript may represent a new protein isoform with an as yet unknown function. A DRASIC knockout mouse model was tested for a hearing loss phenotype and was found to have normal hearing at 2 months of age but appeared to develop hearing loss early in life. The human homologue of ACCN3, acid-sensing ion channel 3, maps to the same chromosomal region as the autosomal recessive hearing loss locus DFNB13. However, we did not detect mutations in this gene in a family with DFNB13 hearing loss. (C) 2004 Elsevier B.V. All rights reserved. C1 Royal Childrens Hosp, Murdoch Childrens Res Inst, Dept Gene Identif & Express, Parkville, Vic 3052, Australia. Univ Melbourne, Dept Biochem & Mol Biol, Melbourne, Vic, Australia. Univ Melbourne, Royal Childrens Hosp, Dept Otolaryngol, Melbourne, Vic, Australia. Univ Iowa, Coll Med, Dept Internal Med, Howard Hughes Med Inst, Iowa City, IA 52242 USA. Univ Iowa, Dept Otolaryngol, Interdept Genet PhD Program, Iowa City, IA 52242 USA. Inst Pasteur, Unite Genet Deficits Sensoriels, CNRS, URA 1968, Paris, France. Univ Melbourne, Royal Childrens Hosp, Dept Paediat, Melbourne, Vic, Australia. RP Dahl, HHM (reprint author), Royal Childrens Hosp, Murdoch Childrens Res Inst, Dept Gene Identif & Express, Flemington Rd, Parkville, Vic 3052, Australia. EM henrik.dahl@mcri.edu.au RI de Silva, Michelle/E-5848-2011 CR Askwith CC, 2001, P NATL ACAD SCI USA, V98, P6459, DOI 10.1073/pnas.111155398 Bancroft JD, 1982, THEORY PRACTICE HIST, V2nd Chen CC, 1998, P NATL ACAD SCI USA, V95, P10240, DOI 10.1073/pnas.95.17.10240 Darboux I, 1998, J BIOL CHEM, V273, P9424, DOI 10.1074/jbc.273.16.9424 Dunwoodie SL, 1997, DEVELOPMENT, V124, P3065 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X Furness DN, 1996, HEARING RES, V93, P136, DOI 10.1016/0378-5955(95)00224-3 HEIL O, 2003, UNPUB MOUSE UNIGENES HUANG MX, 1994, NATURE, V367, P467, DOI 10.1038/367467a0 JORGENSEN F, 1988, J PHYSIOL-LONDON, V403, P577 Lingueglia E, 1997, J BIOL CHEM, V272, P29778, DOI 10.1074/jbc.272.47.29778 Mano I, 1999, BIOESSAYS, V21, P568, DOI 10.1002/(SICI)1521-1878(199907)21:7<568::AID-BIES5>3.0.CO;2-L Mustapha M, 1998, EUR J HUM GENET, V6, P245, DOI 10.1038/sj.ejhg.5200177 Price MP, 2000, NATURE, V407, P1007 Price MP, 2001, NEURON, V32, P1071, DOI 10.1016/S0896-6273(01)00547-5 Rivolta MN, 2002, GENOME RES, V12, P1091, DOI 10.1101/gr.225602 Rivolta MN, 1998, P ROY SOC B-BIOL SCI, V265, P1595 RUSCH A, 1994, J PHYSIOL-LONDON, V474, P75 SPOENDLIN H, 1985, AM J OTOLARYNG, V6, P453, DOI 10.1016/S0196-0709(85)80026-0 STEEN KH, 1993, NEUROSCI LETT, V154, P113, DOI 10.1016/0304-3940(93)90184-M Tavernarakis N, 1997, NEURON, V18, P107, DOI 10.1016/S0896-6273(01)80050-7 Waldmann R, 1997, J BIOL CHEM, V272, P20975, DOI 10.1074/jbc.272.34.20975 Whitlon DS, 2001, BRAIN RES PROTOC, V6, P159, DOI 10.1016/S1385-299X(00)00048-9 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 Zheng QY, 2001, HEARING RES, V154, P45, DOI 10.1016/S0378-5955(01)00215-5 NR 26 TC 41 Z9 46 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2004 VL 190 IS 1-2 BP 149 EP 160 DI 10.1016/S0378-5955(04)00015-2 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 810EH UT WOS:000220687100013 PM 15051137 ER PT J AU Sheykholeslami, K Schmerber, S Kermany, MH Kaga, K AF Sheykholeslami, K Schmerber, S Kermany, MH Kaga, K TI Vestibular-evoked myogenic potentials in three patients with large vestibular aqueduct SO HEARING RESEARCH LA English DT Article DE large vestibular aqueduct; vestibular-evoked myogenic potential; vestibular; myogenic potential; sacculus end-organ hypersensitivity; vestibulocollic reflex ID SOUND; RESPONSES; VIBRATION; SACCULE; SENSITIVITY; STIMULI; NERVE; HEAD AB An enlarged vestibular aqueduct (LVA) is a common congenital inner ear anomaly responsible for some unusual vestibular and audiological symptoms. Most of the cases show bilateral early onset and progressive hearing loss in children. The gross appearance on CT scan of the inner ear is generally normal. However, precise measurements of the inner ear components reveal abnormal dimensions, which may account for the accompanying auditory and vestibular dysfunction. Despite extensive studies on hearing and the vestibular apparatus, saccular function is not studied. To our knowledge this is the first report of saccular malfunction in three patients with LVA by means of vestibular evoked myogenic potentials. Conventional audiograms revealed bilateral severe sensorineural hearing loss in two patients and mixed type hearing loss in one patient. Two of the patients complained about vertigo and dizziness but vestibular assessments of the patients showed normal results. The diagnosis had been made by high-resolution CT scans and MR images of the skull that showed LVA in the absence of other anomalies. The VEMP threshold measured from the ear with LVA in two patients with unilateral enlargement of the vestibular aqueduct was 75-80 dB nHL whereas the threshold from normal ears was 95 dB nHL. The third patient with mixed type hearing loss and bilateral LVA had VEMP responses despite a big air-bone gap in the low frequency range. The VEMP in this patient was greater in amplitude and lower in threshold in the operated ear (the patient had a tympanoplasty which did not improve her hearing). These findings and results of other patients with Tullio phenomenon and superior semicircular canal dehiscence, who also showed lower VEMP threshold, confirmed the theory of a 'third window' that allows volume and pressure displacements, and thus larger deflection of the vestibular sensors, which would cause the vestibular organ to be more responsive to sound and pressure changes. (C) 2004 Published by Elsevier B.V. C1 Univ Tokyo, Fac Med, Dept Otolaryngol, Bunkyo Ku, Tokyo 1130033, Japan. RP Sheykholeslami, K (reprint author), NE Ohio Univ, Coll Med, Dept Neurobiol & Pharmacol, 4209 State Route 44,POB 95, Rootstown, OH 44272 USA. EM ksheykho@neoucom.edu CR ALLEN GW, 1983, OTOLARYNG CLIN N AM, V16, P3 ARCAND P, 1991, J OTOLARYNGOL, V20, P247 BAUMAN NM, 1994, J PEDIATR-US, V124, P71, DOI 10.1016/S0022-3476(94)70256-X BICKFORD RG, 1964, ANN NY ACAD SCI, V112, P204, DOI 10.1111/j.1749-6632.1964.tb26749.x Brantberg K, 1999, ACTA OTO-LARYNGOL, V119, P633 CAZALS Y, 1983, HEARING RES, V10, P263, DOI 10.1016/0378-5955(83)90091-6 Colebatch JG, 1998, J NEUROL NEUROSUR PS, V65, P670, DOI 10.1136/jnnp.65.5.670 COLEBATCH JG, 1994, J NEUROL NEUROSUR PS, V57, P190, DOI 10.1136/jnnp.57.2.190 COLEBATCH JG, 1992, NEUROLOGY, V42, P1935 ELVERLAND HH, 1983, ACTA OTO-LARYNGOL, V95, P147, DOI 10.3109/00016488309130928 GUSSEN R, 1985, ARCH OTO-RHINO-LARYN, V242, P71, DOI 10.1007/BF00464410 JACKLER RK, 1989, LARYNGOSCOPE, V99, P1238 LACKNER JR, 1974, AEROSPACE MED, V45, P1267 LOWENSTEIN O, 1951, J PHYSIOL-LONDON, V114, P471 MACCUE MP, 1995, J NEUROPHYSIOL, V47, P1563 MOFFAT AJM, 1976, J COMP PHYSIOL, V105, P1 Okumura T, 1995, Acta Otolaryngol Suppl, V520 Pt 2, P323 PARKER DE, 1975, EFFECTS SOUND VESTIB, P75 POPPER AN, 1973, J ACOUST SOC AM, V53, P1515, DOI 10.1121/1.1913496 SCHUKNECHT H F, 1980, Annals of Otology Rhinology and Laryngology, V89, P1 Sheykholeslami K, 2001, HEARING RES, V160, P58, DOI 10.1016/S0378-5955(01)00333-1 Sheykholeslami K, 2001, AURIS NASUS LARYNX, V28, P41, DOI 10.1016/S0385-8146(00)00091-2 Streubel S O, 2001, Acta Otolaryngol Suppl, V545, P41 TOWNSEND GL, 1971, ANN OTO RHINOL LARYN, V80, P121 VALVASSORI GE, 1978, LARYNGOSCOPE, V88, P723 von Bekesy G, 1935, ARCH GES PHYSL, V236, P59 WIT HP, 1984, J ACOUST SOC AM, V75, P202, DOI 10.1121/1.390396 Yetiser S, 1999, ACTA OTO-LARYNGOL, V119, P641 YOUNG ED, 1977, ACTA OTO-LARYNGOL, V84, P352, DOI 10.3109/00016487709123977 NR 29 TC 32 Z9 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2004 VL 190 IS 1-2 BP 161 EP 168 DI 10.1016/S0378-5955(04)00018-8 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 810EH UT WOS:000220687100014 PM 15051138 ER PT J AU Krishnan, A Xu, YS Gandour, JT Cariani, PA AF Krishnan, A Xu, YS Gandour, JT Cariani, PA TI Human frequency-following response: representation of pitch contours in Chinese tones SO HEARING RESEARCH LA English DT Article DE time-variant pitch; voice pitch; phase-locking; autocorrelation; speech prosody; Chinese tones ID VENTRAL COCHLEAR NUCLEUS; AUDITORY-NERVE FIBERS; STEADY-STATE VOWELS; DISCHARGE PATTERNS; COMPLEX TONES; 2-TONE APPROXIMATIONS; PERIODIC PULSES; PERCEPTION; SPEECH; SOUNDS AB Auditory nerve single-unit population studies have demonstrated that phase-locking plays a dominant role in the neural encoding of both the spectrum and voice pitch of speech sounds. Phase-locked neural activity underlying the scalp-recorded human frequency-following response (FFR) has also been shown to encode certain spectral features of steady-state and time-variant speech sounds as well as pitch of several complex sounds that produce time-invariant pitch percepts. By extension, it was hypothesized that the human FFR may preserve pitch-relevant information for speech sounds that elicit time-variant as well as steady-state pitch percepts. FFRs were elicited in response to the four lexical tones of Mandarin Chinese as well as to a complex auditory stimulus which was spectrally different but equivalent in fundamental frequency (f(0)) contour to one of the Chinese tones. Autocorrelation-based pitch extraction measures revealed that the FFR does indeed preserve pitch-relevant information for all stimuli. Phase-locked interpeak intervals closely followed f(0). Spectrally different stimuli that were equivalent in F-0 similarly showed robust interpeak intervals that followed f(0). These FFR findings support the viability of early, population-based 'predominant interval' representations of pitch in the auditory brainstem that are based on temporal patterns of phase-locked neural activity. (C) 2004 Elsevier B.V. All rights reserved. C1 Purdue Univ, Dept Audiol & Speech Sci, Auditory Electrophysiol Lab, W Lafayette, IN 47907 USA. Massachusetts Eye & Ear Infirm, Eaton Peabody Lab Auditory Physiol, Boston, MA 02114 USA. RP Krishnan, A (reprint author), Purdue Univ, Dept Audiol & Speech Sci, Auditory Electrophysiol Lab, 1353 Heavilon Hall,500 Oval Dr, W Lafayette, IN 47907 USA. EM rkrish@purdue.edu CR ANANTHANARAYAN AK, 1992, EAR HEARING, V13, P228, DOI 10.1097/00003446-199208000-00003 BLACKBURN CC, 1990, J NEUROPHYSIOL, V63, P1191 BLEDSOE SC, 1980, ELECTROEN CLIN NEURO, V48, P654, DOI 10.1016/0013-4694(80)90422-8 Boersma P., 1993, P I PHONETIC SCI, V17, P97 BURNS EM, 1976, J ACOUST SOC AM, V60, P863, DOI 10.1121/1.381166 CARIANI P, 1998, ARO MIDW M Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698 COLLINS MJ, 1978, J ACOUST SOC AM, V63, P469, DOI 10.1121/1.381738 CULLEN JK, 1979, J ACOUST SOC AM, V65, pS38, DOI 10.1121/1.2017228 de Boer E., 1976, HDB SENSORY PHYSL, P479 DELGUTTE B, 1980, J ACOUST SOC AM, V68, P843, DOI 10.1121/1.384824 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P879, DOI 10.1121/1.390597 EVANS EF, 1978, AUDIOLOGY, V17, P369 EVANS EF, 1983, HEARING PHYSL BASES, P140 FLANAGAN JL, 1960, J ACOUST SOC AM, V32, P1319, DOI 10.1121/1.1907901 FLANAGAN JL, 1960, J ACOUST SOC AM, V32, P1308, DOI 10.1121/1.1907900 GANDOUR JT, 1978, LANG SPEECH, V21, P1 GANDOUR J, 1983, J PHONETICS, V11, P149 GARDI J, 1979, AUDIOLOGY, V18, P494 GHITZA O, 1988, J PHONETICS, V16, P109 GLASER EM, 1976, ELECTROEN CLIN NEURO, V40, P25, DOI 10.1016/0013-4694(76)90176-0 GOLDSTEI.JL, 1973, J ACOUST SOC AM, V54, P1496, DOI 10.1121/1.1914448 GREENBERG S, 1986, AUDITORY FREQUENCY S, P241 Greenberg S., 1980, UCLA WORKING PAPERS, V52 GREENBERG S, 1988, J PHONETICS, V16, P139 Greenberg S, 1996, PRINCIPLES EXPT PHON, P362 GREENBERG S, 1987, HEARING RES, V25, P91, DOI 10.1016/0378-5955(87)90083-9 GREENBERG S, 1994, ENCY LANGUAGE LINGUI, P4206 HALL JW, 1979, SCIENCE, V205, P1297, DOI 10.1126/science.472748 Hart J., 1974, I PERCEPT RES ANN PR, P56 Howie John M., 1976, ACOUSTICAL STUDIES M Keilson SE, 1997, J ACOUST SOC AM, V102, P1056, DOI 10.1121/1.419859 KLATT DH, 1980, J ACOUST SOC AM, V67, P971, DOI 10.1121/1.383940 KLATT DH, 1973, J ACOUST SOC AM, V53, P8, DOI 10.1121/1.1913333 Krishnan A, 2000, AUDIOL NEURO-OTOL, V5, P312, DOI 10.1159/000013897 Krishnan A, 1999, AUDIOL NEURO-OTOL, V4, P95, DOI 10.1159/000013826 Krishnan A, 2002, HEARING RES, V166, P192, DOI 10.1016/S0378-5955(02)00327-1 LICKLIDER JCR, 1951, EXPERIENTIA, V7, P128, DOI 10.1007/BF02156143 Marsh J.T., 1974, ELECTROENCEPHALOGR C, V38, P415 Meddis R, 1997, J ACOUST SOC AM, V102, P1811, DOI 10.1121/1.420088 MEDDIS R, 1991, J ACOUST SOC AM, V89, P2866, DOI 10.1121/1.400725 MILLER MI, 1983, J ACOUST SOC AM, V74, P502, DOI 10.1121/1.389816 MILLER MI, 1984, HEARING RES, V14, P257, DOI 10.1016/0378-5955(84)90054-6 Moore B. C. J., 1986, FREQUENCY SELECTIVIT, P251 Moore B. C. J., 1989, INTRO PSYCHOL HEARIN MOORE BCJ, 1980, AUDIOLOGY, V19, P363 MOUSHEGI.G, 1973, ELECTROEN CLIN NEURO, V35, P665, DOI 10.1016/0013-4694(73)90223-X NABELEK IV, 1978, J ACOUST SOC AM, V64, P751 PALMER AR, 1986, J ACOUST SOC AM, V79, P100, DOI 10.1121/1.393633 PLOMP R, 1967, J ACOUST SOC AM, V41, P1526, DOI 10.1121/1.1910515 PLYLER PN, 2001, J AM ACAD AUDIOL, V12, P423 REALE RA, 1980, J ACOUST SOC AM, V67, P891, DOI 10.1121/1.383969 Recio A, 2000, HEARING RES, V146, P167, DOI 10.1016/S0378-5955(00)00111-8 RHODE WS, 1994, HEARING RES, V77, P43, DOI 10.1016/0378-5955(94)90252-6 Rhode WS, 1998, HEARING RES, V117, P39, DOI 10.1016/S0378-5955(98)00002-1 RITSMA RJ, 1967, J ACOUST SOC AM, V42, P191, DOI 10.1121/1.1910550 Rose J. E., 1980, NEURAL MECH BEHAV, P1 SACHS MB, 1983, J NEUROPHYSIOL, V50, P27 SCHOUTEN MEH, 1985, PERCEPT PSYCHOPHYS, V37, P369, DOI 10.3758/BF03211361 SHORE SE, 1987, J ACOUST SOC AM, V82, P471, DOI 10.1121/1.395448 SHORE SE, 1985, J ACOUST SOC AM, V78, P1286, DOI 10.1121/1.392898 SHORE SE, 1984, AM J OTOLARYNG, V5, P34, DOI 10.1016/S0196-0709(84)80018-6 SMITH JC, 1975, ELECTROEN CLIN NEURO, V39, P465, DOI 10.1016/0013-4694(75)90047-4 SRULOVICZ P, 1983, J ACOUST SOC AM, V73, P1266, DOI 10.1121/1.389275 TERHARDT E, 1974, J ACOUST SOC AM, V55, P1061, DOI 10.1121/1.1914648 Van Lancker D., 1973, J PHONETICS, V1, P101 VOIGT HF, 1982, HEARING RES, V8, P49, DOI 10.1016/0378-5955(82)90033-8 Wang Y, 2001, BRAIN LANG, V78, P332, DOI 10.1006/brln.2001.2474 WHITFIELD IC, 1970, EXCITATORY SYNAPTIC, P277 WORDEN F. G., 1968, ELECTROENCEPHALOGR C, V25, P45 Xu Y, 1997, J PHONETICS, V25, P61, DOI 10.1006/jpho.1996.0034 YOUNG ED, 1979, J ACOUST SOC AM, V66, P1381, DOI 10.1121/1.383532 NR 72 TC 65 Z9 69 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2004 VL 189 IS 1-2 BP 1 EP 12 DI 10.1016/S0378-5955(03)00402-7 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 801VP UT WOS:000220123700001 PM 14987747 ER PT J AU Apoux, F Tribut, N Debruille, X Lorenzi, C AF Apoux, F Tribut, N Debruille, X Lorenzi, C TI Identification of envelope-expanded sentences in normal-hearing and hearing-impaired listeners SO HEARING RESEARCH LA English DT Article DE temporal envelope; expansion; noise; speech identification; hearing loss ID MODULATION TRANSFER-FUNCTIONS; SPEECH RECOGNITION; TEMPORAL ENVELOPE; GAP DETECTION; PHONEME RECOGNITION; SPECTRAL CONTRAST; FLUCTUATING NOISE; WORD RECOGNITION; RESPONSE-TIMES; INTELLIGIBILITY AB The present study examined the effects of temporal-envelope expansion on speech perception. Sentence identification performance was measured in normal-hearing and hearing-impaired listeners for stationary and fluctuating noise. Two expansion schemes were used to increase the depth of the slow ( < 16 Hz) and fast ( < 256 Hz) amplitude fluctuations of the stimuli. In the first scheme, the envelope of the stimuli was raised to the power 2. In the second scheme, the high- and low-level segments of the envelope were compressed and expanded, respectively. When envelope processing was applied to speech before the addition of noise, the first form of expansion generally degraded identification, while the second form generally improved identification. When envelope processing was applied to speech after the addition of noise, both forms of expansion improved or did not affect identification scores in both groups of listeners when applied to the slowest fluctuations. When applied to the broadest range of fluctuations, both forms of expansion degraded identification. However, in hearing-impaired listeners, the second form of expansion yielded an increase in performance for fluctuating noise. This complex pattern of results will be discussed in light of previous studies on envelope expansion. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Paris 05, UMR CNRS 8581, Inst Psychol, LPE, F-92774 Boulogne Billancourt, France. INTRASON FRANCE, F-94607 Choisy Le Roi, France. Lab Xavier Debruille, F-51000 Reims, France. RP Apoux, F (reprint author), Arizona State Univ, Dept Speech & Hearing Sci, POB 870102, Tempe, AZ 85287 USA. EM frederic.apoux@asu.edu RI Apoux, Frederic/C-4991-2009; Lorenzi, Christian/F-5310-2012 CR Apoux F, 2001, HEARING RES, V153, P123, DOI 10.1016/S0378-5955(00)00265-3 BACON SP, 1992, J SPEECH HEAR RES, V35, P642 Bacon SP, 1998, J SPEECH LANG HEAR R, V41, P549 BACON SP, 1985, AUDIOLOGY, V24, P117 BAER T, 1993, J REHABIL RES DEV, V30, P49 Barsz K, 2002, NEUROBIOL AGING, V23, P565, DOI 10.1016/S0197-4580(02)00008-8 BRONKHORST AW, 1992, J ACOUST SOC AM, V92, P3132, DOI 10.1121/1.404209 BUNNELL HT, 1990, J ACOUST SOC AM, V88, P2546, DOI 10.1121/1.399976 CLARKSON PM, 1991, J ACOUST SOC AM, V89, P1378, DOI 10.1121/1.400538 Combescure P, 1981, REV ACOUSTIQUE, V56, P34 DRULLMAN R, 1994, J ACOUST SOC AM, V95, P1053, DOI 10.1121/1.408467 DRULLMAN R, 1994, J ACOUST SOC AM, V95, P2670, DOI 10.1121/1.409836 EISENBERG LS, 1995, J SPEECH HEAR RES, V38, P222 FESTEN JM, 1990, J ACOUST SOC AM, V88, P1725, DOI 10.1121/1.400247 FORMBY C, 1987, AUDIOLOGY, V26, P89 Freyman RL, 1996, J SPEECH HEAR RES, V39, P1124 Fu QJ, 2000, J ACOUST SOC AM, V107, P589, DOI 10.1121/1.428325 Fu QJ, 1998, J ACOUST SOC AM, V104, P2570, DOI 10.1121/1.423912 FU QJ, 1999, P IEEE ICASSP 1999, P369 Ghitza O, 2001, J ACOUST SOC AM, V110, P1628, DOI 10.1121/1.1396325 HOUTGAST T, 1985, J ACOUST SOC AM, V77, P1069, DOI 10.1121/1.392224 HOWARDJONES PA, 1993, ACUSTICA, V78, P258 Langhans T., 1982, Proceedings of ICASSP 82. IEEE International Conference on Acoustics, Speech and Signal Processing Lorenzi C, 1999, HEARING RES, V136, P131, DOI 10.1016/S0378-5955(99)00117-3 MOORE BCJ, 1992, J ACOUST SOC AM, V92, P1923, DOI 10.1121/1.405240 Moore B.C.J., 1995, PERCEPTUAL CONSEQUEN MOORE BCJ, 1992, BRIT J AUDIOL, V26, P229, DOI 10.3109/03005369209076641 PLOMP R, 1988, J ACOUST SOC AM, V83, P2322, DOI 10.1121/1.396363 SCHNEIDER BA, 1994, J ACOUST SOC AM, V95, P980, DOI 10.1121/1.408403 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Simpson A M, 1990, Acta Otolaryngol Suppl, V469, P101 Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a Snell KB, 2002, J ACOUST SOC AM, V112, P720, DOI 10.1121/1.1487841 Snell KB, 1997, J ACOUST SOC AM, V101, P2214, DOI 10.1121/1.418205 Snell KB, 2000, J ACOUST SOC AM, V107, P1615, DOI 10.1121/1.428446 STEENEKEN HJM, 1980, J ACOUST SOC AM, V67, P318, DOI 10.1121/1.384464 STONE MA, 1992, J REHABIL RES DEV, V29, P39, DOI 10.1682/JRRD.1992.04.0039 TAKAHASHI GA, 1992, J SPEECH HEAR RES, V35, P1410 TURNER CW, 1995, J ACOUST SOC AM, V97, P2568, DOI 10.1121/1.411911 van Buuren RA, 1999, J ACOUST SOC AM, V105, P2903, DOI 10.1121/1.426943 VANTASELL DJ, 1987, J ACOUST SOC AM, V77, P1069 NR 41 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2004 VL 189 IS 1-2 BP 13 EP 24 DI 10.1016/S0378-5955(03)00397-6 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 801VP UT WOS:000220123700002 PM 14987748 ER PT J AU El-Kashlan, HK Shore, SE AF El-Kashlan, HK Shore, SE TI Effects of trigeminal ganglion stimulation on the central auditory system SO HEARING RESEARCH LA English DT Article DE trigeminal ganglion; autoradiography; central auditory structure; tinnitus ID DORSAL COCHLEAR NUCLEUS; GAZE-EVOKED TINNITUS; INFERIOR COLLICULUS; SUPERIOR COLLICULUS; ELECTRICAL-STIMULATION; SOMATOSENSORY SYSTEMS; EXTERNAL NUCLEUS; COLUMN NUCLEI; NEURONS; PROJECTIONS AB A projection from the trigeminal ganglion to the ventral cochlear, nucleus (VCN) of the guinea pig was recently described. The synaptic terminals of this projection terminate in the granule and magnocellular regions of the VCN. Stimulation of this projection has been shown to result in activation of neurons of the ventral cochlear nucleus. We investigated the effect of electrically stimulating the trigeminal ganglion on the central auditory system activity using 2-deoxyglucose (2-DG) antoradiographic techniques. Electrical stimuli were applied to the left trigeminal ganglion as bipolar pulses, 100 mus per phase, at intervals of 200 ms and an amplitude of 100 muA. Negative control animals were not stimulated. A positive control animal was stimulated in the left ear using a 1 kHz tone burst with 200 ms duration and an amplitude of 80 dB SPL. 2-DG was administered by intramuscular injection. Following a 1 h incorporation period, animals were sacrificed, the brains rapidly harvested, and prepared for autoradiography using standard techniques. Autoradiographs were analyzed using computer-assisted video densitometry to determine film optical density in the central auditory regions of interest. The cerebellum was also sampled as a gray matter indifferent intra-brain control region. Results showed systematic and significant differences between 2-DG uptake in the cochlear nucleus and higher auditory centers between control and stimulated animals. Trigeminally stimulated animals showed significantly higher uptake than unstimulated animals in all auditory centers examined, especially ipsilateral to the stimulation site. The activation pattern differs qualitatively from that seen with sound stimulation in that mainly contralateral pathways are activated with sound stimulation. These results demonstrate that a projection from the predominantly somatosensory trigeminal ganglion can influence the activity of central auditory neurons in a manner distinct from acoustic stimulation, suggesting activation of non-classical auditory pathways. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Michigan, Dept Otolaryngol, Ann Arbor, MI 48109 USA. Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP El-Kashlan, HK (reprint author), Univ Michigan, Dept Otolaryngol, 1500 E Med Ctr Dr,TC 1904, Ann Arbor, MI 48109 USA. EM hussam@umich.edu CR AITKEN L, 1986, AUDITORY MIDBRAIN ST AITKIN LM, 1978, J NEUROPHYSIOL, V41, P837 AITKIN LM, 1981, J COMP NEUROL, V196, P25, DOI 10.1002/cne.901960104 Cacace AT, 2003, HEARING RES, V175, P112, DOI 10.1016/S0378-5955(02)00717-7 CACACE AT, 1994, HEARING RES, V81, P22, DOI 10.1016/0378-5955(94)90149-X CHALUPA LM, 1977, J PHYSIOL-LONDON, V270, P595 DRAGER UC, 1976, J NEUROPHYSIOL, V39, P91 ELKASHLAN HK, 1991, OTOLARYNG HEAD NECK, V105, P533 EVANS DA, 1990, LARYNGOSCOPE, V100, P128 HANEGGELI CA, 2002, ARO ABSTR, V25, P7 ITOH K, 1987, BRAIN RES, V400, P145, DOI 10.1016/0006-8993(87)90662-7 Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57 KILLACKEY HP, 1981, J COMP NEUROL, V201, P221, DOI 10.1002/cne.902010207 Levine RA, 1999, AM J OTOLARYNG, V20, P351, DOI 10.1016/S0196-0709(99)90074-1 Li H, 1997, NEUROSCI RES, V29, P135, DOI 10.1016/S0168-0102(97)00082-5 Lockwood AH, 1998, NEUROLOGY, V50, P114 MOLLER AR, 1992, LARYNGOSCOPE, V102, P1165 Moller AR, 2002, NEUROSCI LETT, V319, P41, DOI 10.1016/S0304-3940(01)02516-2 Moller AR, 1997, AM J OTOL, V18, P577 Pinchoff RJ, 1998, AM J OTOL, V19, P785 SAADE NE, 1989, BRAIN RES, V486, P399, DOI 10.1016/0006-8993(89)90532-5 SCHWARTZ DR, 1993, HEARING RES, V70, P243, DOI 10.1016/0378-5955(93)90162-T Shore SE, 2003, NEUROSCIENCE, V119, P1085, DOI 10.1016/S0306-4522(03)00207-0 Shore SE, 2000, J COMP NEUROL, V419, P271, DOI 10.1002/(SICI)1096-9861(20000410)419:3<271::AID-CNE1>3.0.CO;2-M SHORE SE, 2002, ARO ABSTR, V22 SHORE SE, 2000, SOC NEUR ABSTR PROGR SZCZEPANIAK WS, 1993, ELECTROEN CLIN NEURO, V88, P508, DOI 10.1016/0168-5597(93)90039-R WALL M, 1987, NEUROLOGY, V37, P1034 YOUNG ED, 1995, J NEUROPHYSIOL, V73, P743 NR 29 TC 13 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2004 VL 189 IS 1-2 BP 25 EP 30 DI 10.1016/S0378-5955(03)00393-9 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 801VP UT WOS:000220123700003 PM 14987749 ER PT J AU Wolters, FLC Klis, SFL Hamers, FPT de Groot, JCMJ Smoorenburg, GF AF Wolters, FLC Klis, SFL Hamers, FPT de Groot, JCMJ Smoorenburg, GF TI Perilymphatic application of alpha-melanocyte stimulating hormone ameliorates hearing loss caused by systemic administration of cisplatin SO HEARING RESEARCH LA English DT Article DE cisplatin; ototoxicity; compound action potential; cochlea; osmotic pump; protection; deafness ID ALBINO GUINEA-PIG; NEUROTROPHIC ACTH((4-9)) ANALOG; STRIA VASCULARIS; CIS-PLATINUM; POTENT MELANOCORTIN; INDUCED OTOTOXICITY; ACTH(4-9) ANALOG; SPIRAL GANGLION; GERBIL COCHLEA; MELANOTAN-II AB It has previously been demonstrated that ototoxicity induced by systemic administration of cisplatin is reduced by concomitant systemic administration of a-melanocyte stimulating hormone (alpha-MSH). In this study we investigated the effects of cochlear, perilymphatic application of alpha-MSH during intraperitoneal administration of cisplatin. Guinea pigs, implanted with a roundwindow electrode, allowing daily monitoring of the compound action potential (CAP), and also implanted with a mini-osmotic pump, pumping at a rate of 0.25 mul/h either physiological saline or alpha-MSH solution (0.02, 2, and 20 mug/ml), were treated daily with a bolus injection of cisplatin (2 mg/kg) until the electrocochleogram showed a persistent decrease in CAP amplitude ( greater than or equal to 40 dB threshold shift at 8 kHz). Then, cisplatin treatment was stopped, but intracochlear perfusion of alpha-MSH or physiological saline was continued for 10 days to evaluate possible effects of oc-MSH on the expected recovery. On day 10, the animals were killed and the cochleas were fixed and processed for histological analysis. All groups required 6-7 days of cisplatin to reach the criterion CAP threshold shift. Ten days after cessation of the cisplatin treatment, recovery of the CAP was observed in all groups and at all frequencies, although it was more pronounced at the lower frequencies. With respect to recovery, small statistically significant differences were found between the saline and the alpha-MSH co-treated groups. Histological results showed significantly less outer hair cell (OHC) loss in the group co-treated with 2 mug/ml alpha-MSH as compared to the group co-treated with saline. Since alpha-MSH was directly delivered to the cochlea, the ameliorating effect of alpha-MSH on OHC survival is likely to involve a cochlear target. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Utrecht, Med Ctr, Dept Otorhinolaryngol, Hearing Res Labs, NL-3508 GA Utrecht, Netherlands. RP Klis, SFL (reprint author), Univ Utrecht, Med Ctr, Dept Otorhinolaryngol, Hearing Res Labs, Room G02-531,POB 85-500, NL-3508 GA Utrecht, Netherlands. EM s.kiis@kmb.azu.nl CR Alam SA, 2000, HEARING RES, V141, P28, DOI 10.1016/S0378-5955(99)00211-7 Cardinaal RM, 2000, HEARING RES, V144, P147, DOI 10.1016/S0378-5955(00)00060-5 Cardinaal RM, 2000, HEARING RES, V144, P157, DOI 10.1016/S0378-5955(00)00061-7 Cardinaal RM, 2000, HEARING RES, V144, P135, DOI 10.1016/S0378-5955(00)00059-9 DEKONING P, 1987, EXP NEUROL, V97, P746, DOI 10.1016/0014-4886(87)90132-4 DEGROOT JCMJ, 1987, ACTA OTO-LARYNGOL, V104, P234, DOI 10.3109/00016488709107323 deGroot JCMJ, 1997, HEARING RES, V106, P9, DOI 10.1016/S0378-5955(96)00213-4 DEKONING P, 1986, J NEUROL SCI, V74, P237, DOI 10.1016/0022-510X(86)90109-7 Ekborn A, 2003, HEARING RES, V181, P109, DOI 10.1016/S0378-5955(03)00181-3 Ekborn A, 2002, HEARING RES, V165, P53, DOI 10.1016/S0378-5955(02)00277-0 GISPEN WH, 1990, TRENDS PHARMACOL SCI, V11, P221, DOI 10.1016/0165-6147(90)90244-3 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HALL RD, 1990, HEARING RES, V49, P155, DOI 10.1016/0378-5955(90)90102-U Hamers FPT, 2003, AUDIOL NEURO-OTOL, V8, P305, DOI 10.1159/000073515 HAMERS FPT, 1993, CANCER CHEMOTH PHARM, V32, P162, DOI 10.1007/BF00685621 HAMERS FPT, 1994, EUR ARCH OTO-RHINO-L, V251, P23 Heijmen PS, 1999, HEARING RES, V128, P27, DOI 10.1016/S0378-5955(98)00194-4 HOEVE LJ, 1988, ARCH OTO-RHINO-LARYN, V245, P98, DOI 10.1007/BF00481444 HOL EM, 1994, BRAIN RES, V662, P109, DOI 10.1016/0006-8993(94)90802-8 Klis SFL, 2000, NEUROREPORT, V11, P623, DOI 10.1097/00001756-200002280-00037 Klis SFL, 2002, HEARING RES, V164, P138, DOI 10.1016/S0378-5955(01)00425-7 KOHN S, 1988, LARYNGOSCOPE, V98, P865 Kohn S, 1997, ULTRASTRUCT PATHOL, V21, P289 Meech RP, 1998, HEARING RES, V124, P44, DOI 10.1016/S0378-5955(98)00116-6 MOTOHASHI H, 1994, HEARING RES, V80, P10, DOI 10.1016/0378-5955(94)90003-5 O'Leary SJ, 2002, ANTICANCER RES, V22, P1525 Prieskorn DM, 2000, HEARING RES, V140, P212, DOI 10.1016/S0378-5955(99)00193-8 Roberson DW, 2000, HEARING RES, V141, P155, DOI 10.1016/S0378-5955(99)00218-X SAITO T, 1994, ORL J OTO-RHINO-LARY, V56, P315 Schmiedt RA, 2002, JARO, V3, P223, DOI 10.1007/s1016200220017 SCHWEITZER VG, 1993, LARYNGOSCOPE, V103, P1, DOI 10.1288/00005537-199304000-00001 Smoorenburg GF, 1999, ANN NY ACAD SCI, V884, P192, DOI 10.1111/j.1749-6632.1999.tb08642.x Stengs CHM, 1998, HEARING RES, V124, P108, DOI 10.1016/S0378-5955(98)00130-0 TANGE RA, 1984, ARCH OTO-RHINO-LARYN, V239, P41, DOI 10.1007/BF00454261 TANGE RA, 1984, CLIN OTOLARYNGOL, V9, P323, DOI 10.1111/j.1365-2273.1984.tb01515.x Ter Laak MP, 2003, EUR J PHARMACOL, V462, P179, DOI 10.1016/S0014-2999(02)02945-X Wolters FLC, 2003, HEARING RES, V179, P53, DOI 10.1016/S0378-5955(03)00080-7 Wolters FLC, 2002, HEARING RES, V172, P110, DOI 10.1016/S0378-5955(02)00551-8 Zheng JL, 1996, EUR J NEUROSCI, V8, P1897, DOI 10.1111/j.1460-9568.1996.tb01333.x ZUMGOTTESBERGE AMM, 2000, MENIERES DIS 1999 UP, P49 NR 40 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2004 VL 189 IS 1-2 BP 31 EP 40 DI 10.1016/S0378-5955(03)00396-4 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 801VP UT WOS:000220123700004 PM 14987750 ER PT J AU Manley, GA AF Manley, GA TI Spontaneous otoacoustic emissions in monitor lizards SO HEARING RESEARCH LA English DT Article DE hearing; otoacoustic emission; monitor lizard; spontaneous otoacoustic emission ID OTO-ACOUSTIC EMISSIONS; NERVE-FIBER ACTIVITY; OUTER HAIR-CELLS; BOBTAIL LIZARD; TOKAY-GECKO; TONOTOPIC ORGANIZATION; TEMPERATURE-DEPENDENCE; COCHLEAR AMPLIFIER; ALLIGATOR LIZARD; EXTERNAL TONES AB Monitors (all of which belong to the genus Varanus) make up a very uniform family of often large lizards. They have a large auditory papilla that is not highly specialized, but is divided into two unequal sub-papillae. All hair cells are covered by a tectorial membrane. Spontaneous otoacoustic emissions (SOAE) were examined in Cape monitor lizards (Varanus exanthematicus) and found between 1.08 and 2.91 kHz (at 32degreesC) and with levels between -2.8 and 25.8 dB SPL. The frequency of SOAE was temperature dependent, with a maximal shift of 0.07 octaves/degreesC. All SOAE could be suppressed by external tones, most easily by tones near the center frequency and thus suppression tuning curves were V-shaped. In addition, SOAE could be facilitated by external tones, the amplitude increasing up to 10 dB. The most effective tones were generally those between 0.33 and 0.75 octaves above the respective center frequency of the SOAE. External tones could also change the center frequency of SOAE by up to several hundred Hz, most tones causing frequency 'pushing'. Compared to SOAE of other lizards, Varanus SOAE have larger amplitudes and show larger frequency shifts with temperature. Both of these features may be the result of the coupling of large numbers of hair cells via the continuous tectorial membrane. (C) 2004 Elsevier B.V. All rights reserved. C1 Tech Univ Munich, Lehrstuhl Zool, D-85747 Garching, Germany. RP Manley, GA (reprint author), Tech Univ Munich, Lehrstuhl Zool, Lichtenbergstr 4, D-85747 Garching, Germany. EM geoffrey.manley@bio.tum.de CR AUTHIER S, 1995, HEARING RES, V82, P1 Baker R. J., 1989, COCHLEAR MECHANISMS, P349 BARGONES JY, 1988, J ACOUST SOC AM, V83, P1809, DOI 10.1121/1.396515 BRIX J, 1994, HEARING RES, V76, P147, DOI 10.1016/0378-5955(94)90096-5 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 CLARK WW, 1984, HEARING RES, V16, P299, DOI 10.1016/0378-5955(84)90119-9 DALLOS P, 1992, J NEUROSCI, V12, P4575 EATOCK RA, 1981, J COMP PHYSIOL, V142, P219 EATOCK RA, 1981, J COMP PHYSIOL, V142, P203 FRANK G, 2000, RECENT DEV AUDITORY, P151, DOI 10.1142/9789812793980_0022 FRISHKOPF LS, 1983, HEARING RES, V12, P393, DOI 10.1016/0378-5955(83)90008-4 GENOSSA TJ, 1989, J ACOUST SOC AM, V85, pS35 GUMMER AW, 1983, HEARING RES, V12, P367, DOI 10.1016/0378-5955(83)90006-0 He DZZ, 2003, J PHYSIOL-LONDON, V546, P511, DOI 10.1113/jphysiol.2002.026070 HOLTON T, 1983, SCIENCE, V222, P508, DOI 10.1126/science.6623089 HOLTON T, 1978, BRAIN RES, V159, P219, DOI 10.1016/0006-8993(78)90123-3 KOOPL C, 2003, BIOPHYSICS COCHLEA M, P185 KOPPL C, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P489 KOPPL C, 1994, HEARING RES, V72, P159, DOI 10.1016/0378-5955(94)90215-1 KOPPL C, 1993, HEARING RES, V71, P157, DOI 10.1016/0378-5955(93)90031-U Koppl C., 1995, ADV HEARING RES, P200 KOPPL C, 1990, J COMP PHYSIOL A, V167, P113 Lim D J, 1986, Scand Audiol Suppl, V25, P17 LONG GR, 1991, J ACOUST SOC AM, V89, P1201, DOI 10.1121/1.400651 LONG GR, 1988, HEARING RES, V36, P125, DOI 10.1016/0378-5955(88)90055-X Manley G. A., 1990, PERIPHERAL HEARING M MANLEY GA, 1988, HEARING RES, V33, P181, DOI 10.1016/0378-5955(88)90031-7 Manley GA, 1998, CURR OPIN NEUROBIOL, V8, P468, DOI 10.1016/S0959-4388(98)80033-0 MANLEY GA, 1994, HEARING RES, V72, P171, DOI 10.1016/0378-5955(94)90216-X Manley GA, 2003, BIOPHYSICS OF THE COCHLEA: FROM MOLECULES TO MODELS, P480, DOI 10.1142/9789812704931_0066 Manley GA, 1997, J ACOUST SOC AM, V102, P1049, DOI 10.1121/1.419858 Manley GA, 2001, P NATL ACAD SCI USA, V98, P2826, DOI 10.1073/pnas.041604998 MANLEY GA, 1990, J COMP PHYSIOL A, V167, P89, DOI 10.1007/BF00192409 MANLEY GA, 1993, BIOPHYSICS HAIR CELL, P33 MANLEY GA, 1977, J COMP PHYSIOL, V118, P249 Manley GA, 2002, J NEUROBIOL, V53, P202, DOI 10.1002/neu.10115 MANLEY GA, 1992, ADV BIOSCI, V83, P151 Manley GA, 2001, J NEUROPHYSIOL, V86, P541 Manley Geoffrey A., 2000, P93, DOI 10.1002/9783527609734.ch5 Manley Geoffrey A., 2000, V13, P139 Manley GA, 1997, DIVERSITY AUDITORY M, P32 MANLEY GA, 2000, RECENT DEV AUDITORY, P499, DOI 10.1142/9789812793980_0070 Manley GA, 1996, J ACOUST SOC AM, V99, P1588, DOI 10.1121/1.414680 MARTIN M, 1988, PSYCHOLOGIST, V1, P33 Miller M.R., 1980, P169 MILLER MR, 1985, J COMP NEUROL, V232, P1, DOI 10.1002/cne.902320102 MILLER MR, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P463 MOUNTAIN DC, 1989, HEARING RES, V42, P195, DOI 10.1016/0378-5955(89)90144-5 OBRIEN AJ, 1994, BRIT J AUDIOL, V28, P281, DOI 10.3109/03005369409086578 OHYAMA K, 1992, ASS RES OT ABSTR, V15, P150 OHYAMA K, 1991, HEARING RES, V56, P111, DOI 10.1016/0378-5955(91)90160-B Palmer AR, 1982, J PHYSL, V324, P66 PEAKE WT, 1980, J ACOUST SOC AM, V67, P1736, DOI 10.1121/1.384300 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 RABINOWITZ WM, 1984, J ACOUST SOC AM, V76, P1713, DOI 10.1121/1.391618 SAMSDODD F, 1994, HEARING RES, V76, P16, DOI 10.1016/0378-5955(94)90083-3 SCHERMULY L, 1985, J COMP PHYSIOL A, V156, P209, DOI 10.1007/BF00610863 SCHLOTH E, 1983, HEARING RES, V11, P285, DOI 10.1016/0378-5955(83)90063-1 SMOLDERS JWT, 1984, J COMP PHYSIOL, V155, P19, DOI 10.1007/BF00610927 vanDijk P, 1997, HEARING RES, V114, P243, DOI 10.1016/S0378-5955(97)00169-X VANDIJK P, 1990, HEARING RES, V44, P231, DOI 10.1016/0378-5955(90)90083-2 vanDijk P, 1996, HEARING RES, V101, P102 VANDIJK P, 1989, HEARING RES, V42, P273, DOI 10.1016/0378-5955(89)90151-2 van Dijk P, 1998, J ACOUST SOC AM, V104, P1559, DOI 10.1121/1.424367 VONDALLMAYR C, 1985, ACUSTICA, V59, P67 WEVER EG, 1978, REPTILE EAR WHITEHEAD ML, 1993, SCAND AUDIOL, V22, P3, DOI 10.3109/01050399309046012 WILSON JP, 1990, ADV AUDIOL, V7, P47 ZENNER HP, 1992, ACTA OTO-LARYNGOL, V112, P248 ZIZZ CA, 1988, J SPEECH HEAR RES, V31, P616 ZUREK PM, 1981, J ACOUST SOC AM, V69, P514, DOI 10.1121/1.385481 ZUREK PM, 1985, J ACOUST SOC AM, V78, P340, DOI 10.1121/1.392496 ZUREK PM, 1981, J ACOUST SOC AM, V70, P446, DOI 10.1121/1.386787 ZWICKER E, 1984, J ACOUST SOC AM, V75, P1148, DOI 10.1121/1.390763 NR 74 TC 9 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2004 VL 189 IS 1-2 BP 41 EP 57 DI 10.1016/S0378-5955(03)00367-8 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 801VP UT WOS:000220123700005 PM 14987751 ER PT J AU Michaelis, CE Gehr, DD Deingruber, K Arnold, W Lamm, K AF Michaelis, CE Gehr, DD Deingruber, K Arnold, W Lamm, K TI Optimum primary tone level setting for measuring high amplitude DPOAEs in guinea pigs SO HEARING RESEARCH LA English DT Article DE distortion product otoacoustic emission input/output function; guinea pig; otoacoustic emission ID PRODUCT OTOACOUSTIC EMISSIONS; COCHLEAR HEARING-LOSS; GROWTH-BEHAVIOR; DEPENDENCE; EARS AB A special stimulus paradigm needs to be applied when distortion product otoacoustic emission (DPOAE) input/output functions are used to investigate the loss of sensitivity and loss of compression of outer hair cell cochlear amplifiers during noise exposure, drug treatment, etc. This stimulus paradigm should be able to reflect cochlear non-linear compressive sound processing known from direct basilar membrane measurements. Such a paradigm has already been established for humans that accounts for the different compression of the primary tones at the DPOAE generation site at f(2) with L-1 = 0.4 L-2 + 39 dB SPL ('scissor paradigm'). The purpose of the present study was to develop an equivalent parameter setting for guinea pigs. Ninety-six different L-1-L-2 combinations were presented to 24 ears in 18 pigmented guinea pigs at seven f2 frequencies between 2 and 16 kHz. L-2 ranged from 20 to 60 dB SPL, L-1 from 20 to 65 dB SPL. An extreme value analysis was performed to achieve the maximum DPOAE level for L-1 in relation to L-2. Linear regression analysis yielded a scissor paradigm specific to guinea pigs (L-1 = 0.46 L-2+41 dB SPL) which is similar to that of humans. (C) 2003 Elsevier B.V. All rights reserved. C1 Tech Univ Munich, Klinikum Rechts Isar, Otorhinolaryngol Clin, D-81675 Munich, Germany. Tech Univ Munich, Klinikum Rechts Isar, Inst Expt Oncol & Therapy Res, D-81675 Munich, Germany. RP Lamm, K (reprint author), Tech Univ Munich, Klinikum Rechts Isar, Otorhinolaryngol Clin, Ismaninger Str 22, D-81675 Munich, Germany. EM k.lamm@lrz.tum.de CR Bekesy G., 1960, EXPT HEARING Boege P, 2002, J ACOUST SOC AM, V111, P1810, DOI 10.1121/1.1460923 BROWN AM, 1990, J ACOUST SOC AM, V88, P840, DOI 10.1121/1.399733 Brown AM, 1996, J ACOUST SOC AM, V100, P3260, DOI 10.1121/1.417209 Fay R. R., 1988, HEARING VERTEBRATES Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6 HENKE J, 2002, NARKOSE NOTFALLE, P196 Hoshino M, 1999, ORL J OTO-RHINO-LARY, V61, P175, DOI 10.1159/000027667 Janssen T, 1998, J ACOUST SOC AM, V103, P3418, DOI 10.1121/1.423053 JANSSEN T, 1995, OTO RHINO LARYN NOVA, V5, P34 Kummer P, 1998, J ACOUST SOC AM, V103, P3431, DOI 10.1121/1.423054 Kummer P, 2000, HEARING RES, V146, P47, DOI 10.1016/S0378-5955(00)00097-6 Pibal I, 2002, HEARING RES, V174, P260, DOI 10.1016/S0378-5955(02)00700-1 Ueda H, 1998, HEARING RES, V122, P41, DOI 10.1016/S0378-5955(98)00084-7 WHITEHEAD ML, 1995, J ACOUST SOC AM, V97, P2359, DOI 10.1121/1.411960 WHITHNELL RH, 2003, HEARING RES, V178, P106 NR 16 TC 5 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2004 VL 189 IS 1-2 BP 58 EP 62 DI 10.1016/S0378-5955(03)00373-3 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 801VP UT WOS:000220123700006 PM 14987752 ER PT J AU Zhao, J Lurie, DI AF Zhao, J Lurie, DI TI Cochlear ablation in mice lacking SHP-1 results in an extended period of cell death of anteroventral cochlear nucleus neurons SO HEARING RESEARCH LA English DT Article DE deafferentation; microglial activation; neuronal death; motheaten; phosphatase ID NECROSIS-FACTOR-ALPHA; NITRIC-OXIDE SYNTHASE; TYROSINE-PHOSPHATASE; BRAIN-STEM; SIGNAL-TRANSDUCTION; NEGATIVE REGULATION; SYSTEM-DEVELOPMENT; AUDITORY NEURONS; MOTH-EATEN; MOUSE AB Cochlear ablation results in the death of anteroventral cochlear nucleus (AVCN) neurons from birth to approximately postnatal day 14 (P14) in the murine brainstem. It is not known whether microglial activation contributes to AVCN neuronal death following deafferentation. In order to determine whether microglial activation helps to define the period of neuronal susceptibility within AVCN, we performed unilateral cochlear ablation on mice lacking the protein tyrosine phosphatase SHP-1 (me/me). These mice have been shown to have an exaggerated microglial response following ischemic injury. In the present study, the glial and neuronal response to deafferentation within AVCN was examined in wild-type and me/me mice at P5, P14, and P21. Lack of SHP-1 results in robust microglial but not astrocyte activation within, the ablated P14 me/me AVCN. These mice also exhibit approximately 28% neuronal death at P14, a time when normal wild-type littermate controls show little cell death. Glial activation and neuronal loss at P5 and P21 were similar between the two phenotypes, suggesting a role of activated microglia in inducing neuronal death beyond P14 but not P21. These results indicate that activated microglia may participate in determining whether neurons in AVCN live or die following deafferentation. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Montana, Sch Pharm & Allied Hlth Sci, Dept Biomed & Pharmaceut Sci, Missoula, MT 59812 USA. RP Lurie, DI (reprint author), Univ Montana, Sch Pharm & Allied Hlth Sci, Dept Biomed & Pharmaceut Sci, Skaggs Bldg,Room 304, Missoula, MT 59812 USA. EM lurie@selway.umt.edu CR Bal-Price A, 2001, J NEUROSCI, V21, P6480 Barger SW, 2001, J NEUROCHEM, V76, P846, DOI 10.1046/j.1471-4159.2001.00075.x BECKMAN JS, 1994, PROG BRAIN RES, V103, P371 Bhat NR, 1998, J NEUROSCI, V18, P1633 Bhat NR, 2002, BRAIN RES, V948, P93, DOI 10.1016/S0006-8993(02)02953-0 BORN DE, 1985, J COMP NEUROL, V231, P435, DOI 10.1002/cne.902310403 Bousquet C, 1999, J CLIN INVEST, V104, P1277, DOI 10.1172/JCI7924 BRUNJES PC, 1994, BRAIN RES REV, V19, P146 CHAO CC, 1995, J LEUKOCYTE BIOL, V58, P65 Chao CC, 1995, BRAIN BEHAV IMMUN, V9, P355, DOI 10.1006/brbi.1995.1033 Ehret G, 1976, J Am Audiol Soc, V1, P179 FINBLOOM DS, 1995, CELL SIGNAL, V7, P739, DOI 10.1016/0898-6568(95)02004-7 Hanisch UK, 2002, GLIA, V40, P140, DOI 10.1002/glia.10161 Hashisaki G T, 1989, J Comp Neurol, V283, P5 He BP, 2002, J NEUROIMMUNOL, V128, P31, DOI 10.1016/S0165-5728(02)00141-8 Hilton DJ, 1999, CELL MOL LIFE SCI, V55, P1568, DOI 10.1007/s000180050396 HUBEL DH, 1970, J PHYSIOL-LONDON, V206, P419 KITZES LM, 1995, J COMP NEUROL, V353, P341, DOI 10.1002/cne.903530303 Klegeris A, 2000, J LEUKOCYTE BIOL, V67, P127 Kumar S, 1999, J BIOL CHEM, V274, P30657, DOI 10.1074/jbc.274.43.30657 Liberatore GT, 1999, NAT MED, V5, P1403 Loihl AK, 1998, PROG BRAIN RES, V118, P253 Lurie DI, 2000, HEARING RES, V149, P178, DOI 10.1016/S0378-5955(00)00181-7 Lurie DI, 2000, J COMP NEUROL, V421, P199 Mikaelian D, 1965, ACTA OTO-LARYNGOL, V59, P451, DOI DOI 10.3109/00016486509124579 Mostafapour SP, 2002, J NEUROSCI, V22, P4670 Mostafapour SP, 2000, J COMP NEUROL, V426, P561, DOI 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G NORDEEN KW, 1983, J COMP NEUROL, V214, P144, DOI 10.1002/cne.902140204 Park SY, 2002, MOL BRAIN RES, V107, P9, DOI 10.1016/S0169-328X(02)00421-7 Priller J, 2001, NAT MED, V7, P1356, DOI 10.1038/nm1201-1356 Raivich G, 2003, J NEUROSCI RES, V72, P726, DOI 10.1002/jnr.10621 Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849 Shibasaki Y, 2001, HYPERTENSION, V38, P367 Shultz LD, 1997, TRENDS BIOTECHNOL, V15, P302, DOI 10.1016/S0167-7799(97)01060-3 SHULTZ LD, 1976, J IMMUNOL, V116, P936 Sorbel JD, 2002, J NEUROSCI RES, V68, P703, DOI 10.1002/jnr.10262 Starr R, 1999, BIOESSAYS, V21, P47, DOI 10.1002/(SICI)1521-1878(199901)21:1<47::AID-BIES6>3.0.CO;2-N Tierney TS, 1997, J COMP NEUROL, V378, P295, DOI 10.1002/(SICI)1096-9861(19970210)378:2<295::AID-CNE11>3.0.CO;2-R TRUNE DR, 1982, J COMP NEUROL, V209, P409, DOI 10.1002/cne.902090410 Viviani B, 1998, TOXICOL APPL PHARM, V150, P271, DOI 10.1006/taap.1998.8406 WEBSTER DB, 1983, INT J PEDIATR OTORHI, V6, P107 WEBSTER DB, 1988, HEARING RES, V32, P193, DOI 10.1016/0378-5955(88)90091-3 Wishcamper CA, 2001, J COMP NEUROL, V441, P118 Wishcamper CA, 2003, BRAIN RES, V974, P88, DOI 10.1016/S0006-8993(03)02564-2 NR 44 TC 8 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2004 VL 189 IS 1-2 BP 63 EP 75 DI 10.1016/S0378-5955(03)00370-8 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 801VP UT WOS:000220123700007 PM 14987753 ER PT J AU Piscopo, M Avallone, B D'Angelo, L Fascio, U Balsamo, G Marmo, F AF Piscopo, M Avallone, B D'Angelo, L Fascio, U Balsamo, G Marmo, F TI Localization of calbindin D-28K in the otoconia of lizard Podarcis sicula SO HEARING RESEARCH LA English DT Article DE calbindin D-28K; otoconia; inner ear; aragonite; Podarcis sicula ID CALCIUM-BINDING PROTEINS; FROG RANA-ESCULENTA; OTOLITHIC MEMBRANES; INNER-EAR; CHICK; ORGAN; STATOCONIA; CELLS AB The membranous labyrinth of lizard Podarcis sicula contains calcite and aragonite crystals. Saccule, utricle and lagena contain calcite crystals while aragonite crystals are present only in the saccule where they are very abundant. We have recently demonstrated the presence of calbindin D-28K in the organic matrix of lizard P. sicula otoconia. In order to define its localization, since calbindin modulates cellular Ca2+ level, otoconia from utricle and lagena were collected separately from those from saccule and then otoconial proteins, were extracted. Immunoblot assay on proteins extracted from the otoconia and confocal laser scanning microscope analyses of otoconia using monoclonal anti-calbindin D-28K antibodies indicated that calbindin D-28K is a protein typical of aragonite crystals. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Naples Federico II, Dept Genet Gen & Mol Biol, Naples, Italy. Univ Milan, CIMA, I-20122 Milan, Italy. RP Marmo, F (reprint author), Univ Naples Federico II, Dept Genet Gen & Mol Biol, Naples, Italy. EM marmo@biol.dgbm.unina.it CR Balsamo G, 2000, HEARING RES, V148, P1, DOI 10.1016/S0378-5955(00)00094-0 BELANGER LF, 1960, CALCIFICATION BIOL S, P151 CARLSTROM D, 1963, BIOL BULL, V125, P421 DECHESNE CJ, 1988, HEARING RES, V33, P273, DOI 10.1016/0378-5955(88)90157-8 DEVINCEN.M, 1966, J EMBRYOL EXP MORPH, V15, P349 ERWAY L, 1986, SCANNING ELECTRON MI, V4, P1681 Fermin CD, 1998, HISTOL HISTOPATHOL, V13, P1103 FERMIN CD, 1987, HEARING RES, V28, P23, DOI 10.1016/0378-5955(87)90150-X GILLOYZAGA P, 1985, HEARING RES, V18, P269, DOI 10.1016/0378-5955(85)90043-7 GUARDABASSI ANTOINETTE, 1953, ARCH ANAT MICROSC ET MORPHOL EXPTL, V42, P143 GUARDABASSI A, 1952, Arch Ital Anat Embriol, V57, P241 Karita K, 1999, Acta Otolaryngol Suppl, V540, P16 LAEMMLI UK, 1970, NATURE, V227, P680, DOI 10.1038/227680a0 Lim D J, 1980, Birth Defects Orig Artic Ser, V16, P111 LOWENSTAM HA, 1975, SCIENCE, V188, P363, DOI 10.1126/science.1118730 Lowenstam HA, 1989, BIOMINERALIZATION MARMO F, 1964, RIV ISTOCH, V10, P733 MARMO F, 1981, CELL TISSUE RES, V218, P265 MARMO F, 1971, EXPERIENTIA, V27, P1326, DOI 10.1007/BF02136718 MARMO F, 1983, Acta Embryologiae et Morphologiae Experimentalis New Series, V4, P202 MARMO F, 1986, ACTA ZOOL-STOCKHOLM, V67, P53 MARMO F, 1983, CELL TISSUE RES, V233, P35 MERRIL CR, 1984, METHOD ENZYMOL, V104, P441 MEYER HG, 1965, Z KRISTALLOGR KRISTA, V66, P220 OBERHOLTZER JC, 1988, P NATL ACAD SCI USA, V85, P3387, DOI 10.1073/pnas.85.10.3387 Piscopo M, 2003, HEARING RES, V178, P89, DOI 10.1016/S0378-5955(03)00053-4 PRESTON RE, 1975, ACTA OTO-LARYNGOL, V80, P269, DOI 10.3109/00016487509121327 ROSS M, 1985, PHYSIOLOGIST S, V28, P219 ROSS MD, 1984, AUDITORY BIOCH, P351 Ross M D, 1979, Adv Otorhinolaryngol, V25, P26 ROSS MD, 1984, PHILOS T R SOC LON B ROSS MD, 1980, PHYSIOLOGIST S6, V23, P129 RUDINGER, 1973, MANUAL HUMAN COMP HI, V3, P122 SANS A, 1986, BRAIN RES, V364, P190, DOI 10.1016/0006-8993(86)91003-6 SLEPECKY NB, 1993, HEARING RES, V70, P73, DOI 10.1016/0378-5955(93)90053-4 USAMI S, 1995, ORL J OTO-RHINO-LARY, V57, P94 VEENHOFF VB, 1969, DEV STATOCONIA MICE WISLOCKI GB, 1955, J ANAT, V89, P3 NR 38 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2004 VL 189 IS 1-2 BP 76 EP 82 DI 10.1016/S0378-5955(03)00366-6 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 801VP UT WOS:000220123700008 PM 14987754 ER PT J AU Pouyatos, B Morel, G Lambert-Xolin, AM Maguin, K Campo, P AF Pouyatos, B Morel, G Lambert-Xolin, AM Maguin, K Campo, P TI Consequences of noise- or styrene-induced cochlear damages on glutamate decarboxylase levels in the rat inferior colliculus SO HEARING RESEARCH LA English DT Article DE noise; styrene; inferior colliculus; glutamate decarboxylase; plasticity ID STEM AUDITORY NUCLEI; INDUCED HEARING-LOSS; ADULT GUINEA-PIG; ACOUSTIC TRAUMA; EVOKED-POTENTIALS; PLASTIC CHANGES; EXPOSURE; BRAIN; PATHOLOGY; RESPONSES AB Both noise and styrene can injure the cochlea, resulting in a reduction of incoming inputs from the cochlea to the central nervous system. In addition, styrene is known to have neurotoxic properties at high doses. The loss of inputs caused by noise has been shown to be compensated by a new equilibrium between excitatory and inhibitory influences within the inferior colliculus (IC). The main goal of this study was to determine whether styrene-induced hearing loss could also be counterbalanced by a GABAergic adjustment in the IC. For this purpose, rats were exposed to noise (97 dB SPL octave band noise centered at 8 kHz), or to a non-neurotoxic dose of styrene for 4 weeks (700 ppm, 6 h/day, 5 days/week). Auditory sensitivity was tested by evoked potentials, and cochlear damage was assessed by hair cell counts. Glutamate decarboxylase (GAD) was dosed in the IC by indirect competitive enzyme-linked immunosorbent assay. Both noise and styrene caused PTSs that reached 27.0 and 14.6 dB respectively. Outer hair cell (OHC) loss caused by noise did not exceed 9% in the first row, on the other hand OHC loss induced by styrene reached 63% in the third row. Only the noise caused a decrease of GAD of 37% compared to that measured in the controls. No significant modification of GAD concentration has been shown after styrene exposure. Thus, central compensation for cochlear damage may depend on the nature of the ototoxic agent. Unless styrene directly affects IC function, it is reasonable to assume that noise causes a modification of inhibitory neurotransmission within the structure because of impairment of afferent supply to the auditory brainstem. The present findings suggest that central compensation for cochlear damage can preferably occur when afferent fibers are altered. (C) 2003 Elsevier B.V. All rights reserved. C1 Inst Natl Rech & Secur, Lab Neurotoxicol, F-54501 Vandoeuvre Les Nancy, France. RP Campo, P (reprint author), Inst Natl Rech & Secur, Lab Neurotoxicol, Ave Bourgogne,BP 27, F-54501 Vandoeuvre Les Nancy, France. EM benoit.pouyatos@med.va.gov; campo@inrs.fr CR Abbott SD, 1999, NEUROSCIENCE, V93, P1375, DOI 10.1016/S0306-4522(99)00300-0 Bledsoe SC, 1995, NEUROREPORT, V7, P225, DOI 10.1097/00001756-199512000-00054 BORG E, 1995, SCAND AUDIOL S40, V24, P9 CALEBRESE G, 1996, INT ARCH OCC ENV HEA, V68, P219 Campo P, 2001, HEARING RES, V154, P170, DOI 10.1016/S0378-5955(01)00218-0 CASPARY DM, 1990, J NEUROSCI, V10, P2363 CHERRY N, 1990, BRIT J IND MED, V47, P29 CROFTON KM, 1994, HEARING RES, V80, P25, DOI 10.1016/0378-5955(94)90005-1 DANNHOF BJ, 1993, HEARING RES, V66, P8, DOI 10.1016/0378-5955(93)90255-Y Feldblum S, 1995, J NEUROSCI RES, V42, P742, DOI 10.1002/jnr.490420603 KAUFMAN DL, 1991, J NEUROCHEM, V56, P720, DOI 10.1111/j.1471-4159.1991.tb08211.x Lataye R, 1997, NEUROTOXICOL TERATOL, V19, P373, DOI 10.1016/S0892-0362(97)00049-4 Lataye R, 2000, HEARING RES, V139, P86, DOI 10.1016/S0378-5955(99)00174-4 Lataye R, 2001, NEUROTOXICOL TERATOL, V23, P71, DOI 10.1016/S0892-0362(00)00114-8 LIBERMAN MC, 1987, HEARING RES, V26, P45, DOI 10.1016/0378-5955(87)90035-9 LOF A, 1983, SCAND J WORK ENV HEA, V9, P419 MARTIN DL, 1991, J NEUROSCI, V11, P2725 MCFADDEN D, 1986, NATO ASI A, V111, P295 Milbrandt JC, 1997, J COMP NEUROL, V379, P455, DOI 10.1002/(SICI)1096-9861(19970317)379:3<455::AID-CNE10>3.0.CO;2-F Milbrandt JC, 2000, HEARING RES, V147, P251, DOI 10.1016/S0378-5955(00)00135-0 Milbrandt JC, 1996, NEUROSCIENCE, V73, P449, DOI 10.1016/0306-4522(96)00050-4 MILLER RR, 1994, CRIT REV TOXICOL S, V24 MOLLER C, 1990, SCAND J WORK ENV HEA, V16, P189 Morata T, 2001, NOISE INDUCED HEARIN, P293 Morest DK, 1998, MICROSC RES TECHNIQ, V41, P205 MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7 Nylander-French LA, 1999, ANN OCCUP HYG, V43, P99, DOI 10.1016/S0003-4878(98)00080-5 Palombi PS, 1996, J NEUROPHYSIOL, V76, P3114 POPELAR J, 1994, HEARING RES, V72, P125, DOI 10.1016/0378-5955(94)90212-7 RIMVALL K, 1994, J NEUROCHEM, V62, P1375 ROSENGREN LE, 1989, BRIT J IND MED, V46, P316 Salvi RJ, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P477, DOI 10.1007/978-1-4419-8712-9_44 Salvi R., 1982, NEW PERSPECTIVES NOI, P165 SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U SAUNDERS JC, 1985, J ACOUST SOC AM, V78, P833, DOI 10.1121/1.392915 Sliwinska-Kowalska M, 2003, J OCCUP ENVIRON MED, V45, P15, DOI 10.1097/01.jom.0000048169.87707.c2 Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812 Suneja SK, 1998, EXP NEUROL, V154, P473, DOI 10.1006/exnr.1998.6946 Szczepaniak WS, 1996, EVOKED POTENTIAL, V100, P158, DOI 10.1016/0013-4694(95)00234-0 WILLOTT JF, 1988, HEARING RES, V37, P1, DOI 10.1016/0378-5955(88)90073-1 WILLOTT JF, 1982, SCIENCE, V216, P1331, DOI 10.1126/science.7079767 YANO BL, 1992, TOXICOL PATHOL, V20, P1 Zhang JS, 2003, HEARING RES, V185, P13, DOI 10.1016/S0378-5955(03)00276-4 NR 43 TC 5 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2004 VL 189 IS 1-2 BP 83 EP 91 DI 10.1016/S0378-5955(03)00394-0 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 801VP UT WOS:000220123700009 PM 14987755 ER PT J AU Jiang, ZG Shi, XR Zhao, H Si, JQ Nuttall, AL AF Jiang, ZG Shi, XR Zhao, H Si, JQ Nuttall, AL TI Basal nitric oxide production contributes to membrane potential and vasotone regulation of guinea pig in vitro spiral modiolar artery SO HEARING RESEARCH LA English DT Article DE nitric oxide synthase; potassium channel; cochlea; arteriole; NO release ID RABBIT BASILAR ARTERY; SMOOTH-MUSCLE-CELLS; POTASSIUM CHANNELS; CAROTID-ARTERY; SYNTHASE; COCHLEA; RELAXATION; RAT; HYPERPOLARIZATION; ACETYLCHOLINE AB Nitric oxide (NO) is a potent vasodilating agent implicated in cochlear blood flow regulation. We recently demonstrated that exogenously applied NO donor DPTA-NONOate hyperpolarizes both endothelial and smooth muscle cells of in vitro spiral modiolar artery (SMA) via activation of ATP-sensitive K+ channels (K-ATP). Also, NO was detected in the SMA cells by NO indicator dye in the in vitro basal condition. Using intracellular recording techniques, electrochemical NO-sensing measurement, and a vaso-diameter video tracking method, we investigated the basal release of NO from the in vitro SMA and its role in the vascular function. We found that (1) 300 muM L-NAME, a NO synthase inhibitor, and 3 muM glipizide caused: a depolarization of similar to 4.5 and similar to 3.2 mV, respectively, in cells with a resting potential less negative than -60 mV; (2) NO sensor in the close vicinity of the SMA detected : a NO concentration of similar to 50 nM that was suppressed by L-NAME and enhanced by L-arginine (1-1000 muM); (3) NO donor DPTA-NONOate (0.1-30 muM) applications produced about 8-245 nM of NO in the recording bath. These data indicate a NO concentration-hyperpolarization relation, with an EC50 of 22 nM. (4) Finally, L-NAME but not glipizide produced a 4.8% reduction in SMA diameter (similar to 50 mum) in the majority of SMAs, whereas NONOate (10 muM) always caused a dilation. Both the induced constriction and dilation were not significantly affected by 3 muM glipizide. We conclude that a significant amount of NO ( > 50 nM) is tonically released from the in vitro SMA, which is above the EC50 for activation of K-ATP, and thus contributes to the membrane polarization. The basal release of NO also contributes to vasotone relaxation, but the KATP activation appears to play little role in the relaxation of the in vitro SMA. (C) 2004 Elsevier B.V. All rights reserved. C1 Oregon Hlth Sci Univ, Oregon Hearing Res Ctr, Portland, OR 97201 USA. Shanghai Chinese Tradit & Western Med Integrated, Dept Otolaryngol, Shanghai, Peoples R China. Shihezi Univ, Coll Med, Dept Physiol, Xinjiang, Peoples R China. Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Jiang, ZG (reprint author), Oregon Hlth Sci Univ, Oregon Hearing Res Ctr, NRC-04, Portland, OR 97201 USA. EM jiangz@ohsu.edu CR BOLOTINA VM, 1994, NATURE, V368, P850, DOI 10.1038/368850a0 BRECHTELSBAUER PB, 1994, HEARING RES, V77, P38, DOI 10.1016/0378-5955(94)90251-8 Brovkovych V, 1999, J PHARMACEUT BIOMED, V19, P135, DOI 10.1016/S0731-7085(98)00090-9 BROWN GC, 1995, FEBS LETT, V369, P136, DOI 10.1016/0014-5793(95)00763-Y BUXTON ILO, 1993, CIRC RES, V72, P387 CHESTER AH, 1990, LANCET, V336, P897, DOI 10.1016/0140-6736(90)92269-N Cohen RA, 1997, P NATL ACAD SCI USA, V94, P4193, DOI 10.1073/pnas.94.8.4193 Dawson TM, 1998, PROG BRAIN RES, V118, P3 Feletou M, 1999, J MOL CELL CARDIOL, V31, P15, DOI 10.1006/jmcc.1998.0840 FERON O, 2000, NITRIC OXIDE CARDIOV, P11 Fessenden JD, 1999, J COMP NEUROL, V404, P52 FORSTERMANN U, 1994, HYPERTENSION, V23, P1121 FORSTERMANN U, 1995, N-S ARCH PHARMACOL, V352, P351 Ganong W., 2003, REV MED PHYSL Gosepath K, 2000, EUR ARCH OTO-RHINO-L, V257, P418, DOI 10.1007/s004050000261 HEYDRICK S, 2000, NITRIC OXIDE CARDIOV, P33 JIANG ZG, 2003, ARO MIDW RES M ABSTR, V26, P70 Jiang ZG, 2001, J PHYSIOL-LONDON, V537, P829 JIANG ZG, 2003, ARO MIDW RES M ABSTR Jiang ZG, 1999, HEARING RES, V138, P171, DOI 10.1016/S0378-5955(99)00166-5 KNOWLES RG, 1990, BIOCHEM J, V269, P207 Liu ZG, 2001, ANN THORAC SURG, V71, P133, DOI 10.1016/S0003-4975(00)02231-1 MAXWELL AJ, 2000, NITRIC OXIDE CARDIOV, P547 Michel O, 1999, HEARING RES, V133, P1, DOI 10.1016/S0378-5955(99)00049-0 MOORE PK, 1990, BRIT J PHARMACOL, V99, P408 MURPHY ME, 1995, J PHYSIOL-LONDON, V486, P47 Nelson MT, 1990, AM J PHYSIOL, V259, P3 Nelson M.T., 1995, AM J PHYSIOL, V268, P799 Plane F, 1998, BRIT J PHARMACOL, V123, P1351, DOI 10.1038/sj.bjp.0701746 PLANE F, 1993, BRIT J PHARMACOL, V110, P651 PLANE F, 1994, J AUTONOM NERV SYST, V49, pS15 REES DD, 1990, BRIT J PHARMACOL, V101, P746 Reuss S, 2000, MECH AGEING DEV, V112, P125, DOI 10.1016/S0047-6374(99)00082-2 Shi XR, 2002, HEARING RES, V164, P49 Shi XR, 2001, HEARING RES, V153, P23, DOI 10.1016/S0378-5955(00)00254-9 Shi XR, 2002, HEARING RES, V172, P73, DOI 10.1016/S0378-5955(02)00513-0 Shi XR, 2003, HEARING RES, V177, P43, DOI 10.1016/S0378-5955(02)00796-7 Si JQ, 2002, HEARING RES, V171, P167, DOI 10.1016/S0378-5955(02)00497-5 Simonsen U, 1999, J PHYSIOL-LONDON, V516, P271, DOI 10.1111/j.1469-7793.1999.271aa.x Tsikas D, 2000, FEBS LETT, V478, P1, DOI 10.1016/S0014-5793(00)01686-0 Vanheel B, 2000, CARDIOVASC RES, V46, P370, DOI 10.1016/S0008-6363(00)00059-6 Wangemann P, 1998, HEARING RES, V118, P90, DOI 10.1016/S0378-5955(98)00017-3 Weidelt T, 1997, J PHYSIOL-LONDON, V500, P617 NR 43 TC 17 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2004 VL 189 IS 1-2 BP 92 EP 100 DI 10.1016/S0378-5955(03)00398-8 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 801VP UT WOS:000220123700010 PM 14987756 ER PT J AU Atzori, M Hernandez, JF Pineda, JC AF Atzori, M Hernandez, JF Pineda, JC TI Interlaminar differences of spike activation threshold in the auditory cortex of the rat SO HEARING RESEARCH LA English DT Article DE cortical circuitry; signal processing; synaptic summation; layer II/III; layer V; AI; patch-clamp ID PYRAMIDAL NEURONS; LAYER-III; AI; NEOCORTEX; COLUMNAR AB The neural circuits of the auditory cortex are a substrate for the dual purpose of representing and storing the auditory signal on one hand, and sending its relevant features to other cortical and subcortical areas on the other hand. The ability to process and transform the signal crucially depends on achievement of the neuronal spike threshold following spatiotemporal summation of the synaptic signals. We used patch-clamp recording in a thin slice preparation to compare neuronal responses to current injection of layer II/III and layer V neurons. We found that while the two classes of neurons do not differ in passive neuronal properties, layer II/III neurons possess a lower firing threshold relative to layer V neurons (-44.8 +/- 2.4 mV vs. -34.3 +/- 4.0 mV). We speculate that a lower spiking threshold in layer II/III neurons might favor local intracolumnar activation for representation and storage of the auditory information whereas a more positive spiking threshold for layer V neurons may prevent unnecessary cortical spread of a scarcely processed signal. (C) 2003 Published by Elsevier B.V. C1 BRNI, Lab Cellular & Synapt Physiol, Rockville, MD 20850 USA. BUAP, Inst Fisiol, Puebla 72570, Mexico. UADY, Dpt Neurociencias, Merida 47000, Yucatan, Mexico. RP Atzori, M (reprint author), BRNI, Lab Cellular & Synapt Physiol, Rockville, MD 20850 USA. CR Atzori M, 2001, NAT NEUROSCI, V4, P1230, DOI 10.1038/nn760 Beierlein M, 2002, J NEUROSCI, V22, P9885 CONNORS BW, 1990, TRENDS NEUROSCI, V13, P99, DOI 10.1016/0166-2236(90)90185-D Foeller E, 2001, JARO, V2, P279 Linden JF, 2003, CEREB CORTEX, V13, P83, DOI 10.1093/cercor/13.1.83 MCCORMICK DA, 1985, J NEUROPHYSIOL, V54, P782 Ojima H, 2002, CEREB CORTEX, V12, P1079, DOI 10.1093/cercor/12.10.1079 Shen JX, 1999, HEARING RES, V137, P174, DOI 10.1016/S0378-5955(99)00149-5 Smith PH, 2001, J COMP NEUROL, V436, P508, DOI 10.1002/cne.1084 Sugimoto S, 1997, HEARING RES, V112, P175, DOI 10.1016/S0378-5955(97)00119-6 Thomson AM, 1998, NEUROSCIENCE, V84, P669, DOI 10.1016/S0306-4522(97)00557-5 WALLACE MN, 1991, EXP BRAIN RES, V86, P527 WINER JA, 1985, J COMP NEUROL, V238, P10, DOI 10.1002/cne.902380103 Winer JA, 2001, J COMP NEUROL, V434, P379, DOI 10.1002/cne.1183 WINER JA, 1984, J COMP NEUROL, V229, P476, DOI 10.1002/cne.902290404 NR 15 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2004 VL 189 IS 1-2 BP 101 EP 106 DI 10.1016/S0378-5955(03)00301-0 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 801VP UT WOS:000220123700011 PM 14987757 ER PT J AU Ofek, E Pratt, H AF Ofek, E Pratt, H TI Ear advantage and attention: an ERP study of auditory cued attention SO HEARING RESEARCH LA English DT Article DE ear advantage; hemispheric asymmetry; handedness; functional brain imaging ID EVENT-RELATED POTENTIALS; ELECTROMAGNETIC TOMOGRAPHY LORETA; SPATIAL ATTENTION; PITCH; BRAIN; ASYMMETRIES; PERCEPTION; LATERALITY; AMYGDALA; STIMULI AB The neurophysiological manifestations of left ear advantage to tonal stimuli and its interaction with attention have rarely been studied. Cued attention is a behavioral paradigm to assess the behavioral benefits and costs of allocating attention. In this task a cue predicts the location of a subsequent target to which the subject responds. In most cases the cue correctly predicts the target (valid cues) but at times it does not (invalid cues). Cued attention is a spatial paradigm with stimuli presented to either side. The objectives of this study were: (1) to find the neurophysiological correlates of the ear advantage phenomenon and (2) to assess the interaction of the stimulated side (right vs. left car advantage) with attention, in a cued attention task. Significant effects on event-related potentials (ERPs) in the cued attention task indicated left ear and right hemisphere advantage. Effects were mostly confined to the right hemisphere. The results indicate interactions among left ear advantage, attention and dominant hand utilization. Ear advantage and attention may involve the same neural mechanisms. In spite of the left ear advantage effect on ERP components, hand dominance determines the final behavioral results (reaction times). (C) 2003 Elsevier B.V. All rights reserved. C1 Technion Israel Inst Technol, Evoked Potentials lab, IL-32000 Haifa, Israel. RP Pratt, H (reprint author), Technion Israel Inst Technol, Evoked Potentials lab, IL-32000 Haifa, Israel. EM hillel@tx.technion.ac.il CR AHONNISKA J, 1993, BRAIN LANG, V45, P127, DOI 10.1006/brln.1993.1039 ATTIAS J, 1993, HEARING RES, V71, P106, DOI 10.1016/0378-5955(93)90026-W Balaban MT, 1998, DEV PSYCHOL, V34, P39 Berman SM, 2003, NEUROIMAGE, V19, P319, DOI 10.1016/S1053-8119(03)00120-4 Brancucci A, 1999, NEUROPSYCHOLOGIA, V37, P1445, DOI 10.1016/S0028-3932(99)00065-2 BRYDEN MP, 1983, BRAIN LANG, V18, P236, DOI 10.1016/0093-934X(83)90018-4 Corbetta M, 2002, J COGNITIVE NEUROSCI, V14, P508, DOI 10.1162/089892902317362029 Dane S, 2002, PERCEPT MOTOR SKILL, V95, P416, DOI 10.2466/PMS.95.5.416-422 DAVIDOFF JB, 1982, CORTEX, V18, P301 DEAN RS, 1982, NEUROPSYCHOLOGIA, V20, P685, DOI 10.1016/0028-3932(82)90068-9 GALLAGHER M, 1994, P NATL ACAD SCI USA, V91, P11771, DOI 10.1073/pnas.91.25.11771 Golob EJ, 2002, CLIN NEUROPHYSIOL, V113, P1544, DOI 10.1016/S1388-2457(02)00220-1 Herrmann CS, 2001, NEUROSCI BIOBEHAV R, V25, P465, DOI 10.1016/S0149-7634(01)00027-6 Hiscock M, 1999, NEUROPSYCHOLOGY, V13, P404, DOI 10.1037/0894-4105.13.3.404 HISCOCK M, 1993, J CLIN EXP NEUROPSYC, V15, P754, DOI 10.1080/01688639308402594 HOHNSBEIN J, 1995, BIOL PSYCHOL, V40, P73, DOI 10.1016/0301-0511(95)05109-0 Holland PC, 2000, J NEUROSCI, V20, P6701 Hoshiyama M, 1999, BRAIN RES, V833, P10, DOI 10.1016/S0006-8993(99)01443-2 HUGDAHL K, 1994, BEHAV NEURAL BIOL, V62, P21, DOI 10.1016/S0163-1047(05)80055-X James W, 1890, PRINCIPLES PSYCHOL Jemel B, 2003, BRAIN TOPOGR, V15, P249, DOI 10.1023/A:1023915730566 Johnsrude IS, 2000, BRAIN, V123, P155, DOI 10.1093/brain/123.1.155 Kok A, 2001, PSYCHOPHYSIOLOGY, V38, P557, DOI 10.1017/S0048577201990559 LANDIS T, 1982, NEUROPSYCHOLOGIA, V20, P501, DOI 10.1016/0028-3932(82)90049-5 Mathiak K, 2002, NEUROPSYCHOLOGIA, V40, P585, DOI 10.1016/S0028-3932(01)00159-2 McKinnon MC, 1997, CAN J EXP PSYCHOL, V51, P171, DOI 10.1037/1196-1961.51.2.171 MONDOR TA, 1994, J CLIN EXP NEUROPSYC, V16, P377, DOI 10.1080/01688639408402648 MONDOR TA, 1992, NEUROPSYCHOLOGIA, V30, P743, DOI 10.1016/0028-3932(92)90043-L MORAIS J, 1975, PERCEPT MOTOR SKILL, V41, P829 PASCUALMARQUI RD, 1994, INT J PSYCHOPHYSIOL, V18, P49, DOI 10.1016/0167-8760(84)90014-X Pascual-Marqui RD, 1999, PSYCHIAT RES-NEUROIM, V90, P169, DOI 10.1016/S0925-4927(99)00013-X Pascual-Marqui RD, 2002, METHOD FIND EXP CLIN, V24, P91 PENDSE SG, 1977, PERCEPT MOTOR SKILL, V44, P923 POSNER MI, 1980, J EXP PSYCHOL GEN, V109, P160, DOI 10.1037//0096-3445.109.2.160 RUGG MD, 1995, ELECTROPHYSIOLOGY MI Schroger E, 1996, BIOL PSYCHOL, V43, P203, DOI 10.1016/0301-0511(96)05192-7 SUTTON S, 1965, SCIENCE, V150, P1187, DOI 10.1126/science.150.3700.1187 Teder-Salejarvi WA, 1999, COGNITIVE BRAIN RES, V8, P213, DOI 10.1016/S0926-6410(99)00023-3 TENKE CE, 1993, PSYCHOPHYSIOLOGY, V30, P62 Verleger R, 1997, PSYCHOPHYSIOLOGY, V34, P131, DOI 10.1111/j.1469-8986.1997.tb02125.x Wioland N, 1999, CLIN NEUROPHYSIOL, V110, P516, DOI 10.1016/S1388-2457(98)00051-0 WOLDORFF MG, 1991, ELECTROEN CLIN NEURO, V79, P170, DOI 10.1016/0013-4694(91)90136-R Zald DH, 2003, BRAIN RES REV, V41, P88, DOI 10.1016/S0165-0173(02)00248-5 Zatorre RJ, 2001, ANN NY ACAD SCI, V930, P193 Zatorre RJ, 2002, TRENDS COGN SCI, V6, P37, DOI 10.1016/S1364-6613(00)01816-7 ZATORRE RJ, 1988, J ACOUST SOC AM, V84, P566, DOI 10.1121/1.396834 ZATORRE RJ, 1991, BRAIN, V114, P2403, DOI 10.1093/brain/114.6.2403 Zatorre RJ, 2001, CEREB CORTEX, V11, P946, DOI 10.1093/cercor/11.10.946 NR 48 TC 17 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2004 VL 189 IS 1-2 BP 107 EP 118 DI 10.1016/S0378-5955(03)00392-7 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 801VP UT WOS:000220123700012 PM 14987758 ER PT J AU Fairfield, DA Kanicki, AC Lomax, MI Altschuler, RA AF Fairfield, DA Kanicki, AC Lomax, MI Altschuler, RA TI Induction of heat shock protein 32 (Hsp32) in the rat cochlea following hyperthermia SO HEARING RESEARCH LA English DT Article DE auditory; hair cells; stress; stress pathways; stria vascularis; organ of Corti ID HEME OXYGENASE-1 GENE; NITRIC-OXIDE SYNTHASE; ISCHEMIA-REPERFUSION INJURY; PROTEIN-KINASE PATHWAY; HEAT-SHOCK PROTEINS; FACTOR-KAPPA-B; CARBON-MONOXIDE; OXIDATIVE STRESS; MESSENGER-RNA; LUNG INJURY AB The genes for heat shock proteins (Hsps) can be upregulated in response to cellular trauma, resulting in enhanced cell survival and protection. Hsp32, also known as heme oxygenase 1, catalyzes the degradation of heme to produce carbon monoxide and bilirubin, which play a variety of cytoprotective functions at physiological concentrations, and iron, which is rapidly sequestered by the iron-binding protein ferritin. In the present study we examined the expression and localization of Hsp32 in the rat cochlea after heat shock using semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), Western blot, and immunocytochemistry. Low levels of constitutive Hsp32 expression were observed in the normal rat cochlea by RT-PCR and Western blot. Hsp32 mRNA (messenger RNA) was present at higher levels in a subfraction containing sensorineural epithelium and lateral wall than in a subfraction containing modiolus. Western blot revealed that Hsp32 protein levels increase in the rat cochlea following heat shock. Immunocytochemistry showed scattered staining of outer hair cells in the organ of Corti of normal untreated rats. Following heat shock Hsp32 is upregulated in outer hair cells and the cells of the stria vascularis. These results suggest a potential role for Hsp32 as a component of the oxidative stress response pathway in the rat cochlea. (C) 2003 Published by Elsevier B.V. C1 Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol Head Neck Surg, Ann Arbor, MI 48109 USA. Univ Michigan, Dept Cell & Dev Biol, Ann Arbor, MI 48109 USA. RP Altschuler, RA (reprint author), Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol Head Neck Surg, 1301 E Ann St, Ann Arbor, MI 48109 USA. EM shuler@umich.edu CR Alam J, 1999, J BIOL CHEM, V274, P26071, DOI 10.1074/jbc.274.37.26071 Amaee FR, 1997, ACTA OTO-LARYNGOL, V117, P329, DOI 10.3109/00016489709113403 Amersi F, 2002, HEPATOLOGY, V35, P815, DOI 10.1053/jhep.2002.32467 Bechtold DA, 2000, MOL BRAIN RES, V75, P309, DOI 10.1016/S0169-328X(99)00323-X Bergeron M, 1998, DEV BRAIN RES, V105, P181, DOI 10.1016/S0165-3806(97)00169-7 Brouard S, 2000, J EXP MED, V192, P1015, DOI 10.1084/jem.192.7.1015 Camhi SL, 1998, AM J RESP CELL MOL, V18, P226 Ceran C, 2001, J PEDIATR SURG, V36, P1764, DOI 10.1053/jpsu.2001.28816 CHEN C, 1995, HEARING RES, V87, P1, DOI 10.1016/0378-5955(95)00071-B CHEN G, 2001, ASS RES OTOLARYNGOL, P20842 CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1006/abio.1987.9999 Clark JE, 2000, AM J PHYSIOL-HEART C, V278, pH643 Coito AJ, 2002, TRANSPLANTATION, V74, P96, DOI 10.1097/00007890-200207150-00017 CONTAG CH, 2001, J PERINATOL, V21, pS125 Contag C H, 2001, J Perinatol, V21 Suppl 1, pS119, DOI 10.1038/sj.jp.7210647 Dore S, 1999, ANN NY ACAD SCI, V890, P167, DOI 10.1111/j.1749-6632.1999.tb07991.x EWING JF, 1994, J PHARMACOL EXP THER, V271, P408 EWING JF, 1992, J NEUROCHEM, V58, P1140, DOI 10.1111/j.1471-4159.1992.tb09373.x EWING JF, 1993, J NEUROCHEM, V61, P1015, DOI 10.1111/j.1471-4159.1993.tb03615.x EWING JF, 1991, P NATL ACAD SCI USA, V88, P5364, DOI 10.1073/pnas.88.12.5364 Fairfield DA, 2002, HEARING RES, V173, P109, DOI 10.1016/S0378-5955(02)00607-X Fessenden JD, 1998, HEARING RES, V118, P168, DOI 10.1016/S0378-5955(98)00027-6 Foresti R, 2001, AM J PHYSIOL-HEART C, V281, pH1976 Giraudet F, 2002, HEARING RES, V174, P239, DOI 10.1016/S0378-5955(02)00698-6 Hammerman C, 2002, J PEDIATR GASTR NUTR, V35, P344, DOI 10.1097/01.MPG.0000025385.13337.00 HAWKINS JE, 1971, ANN OTO RHINOL LARYN, V80, P903 Hayashi S, 1999, CIRC RES, V85, P663 Inoue S, 2001, HUM GENE THER, V12, P967, DOI 10.1089/104303401750195926 Kitamura Y, 1999, NEUROSCI LETT, V262, P129, DOI 10.1016/S0304-3940(99)00055-5 Kong WJ, 1996, HEARING RES, V99, P22, DOI 10.1016/S0378-5955(96)00076-7 Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x Kurata SI, 1996, EUR J BIOCHEM, V239, P566, DOI 10.1111/j.1432-1033.1996.0566u.x Lee PJ, 2000, AM J PHYSIOL-LUNG C, V279, pL175 Lee PJ, 1997, J BIOL CHEM, V272, P5375 Leonova EV, 2002, HEARING RES, V163, P61, DOI 10.1016/S0378-5955(01)00379-3 LIM HH, 1993, HEARING RES, V69, P146 MAINES MD, 1995, J NEUROCHEM, V64, P1769 Maines MD, 1997, ANNU REV PHARMACOL, V37, P517, DOI 10.1146/annurev.pharmtox.37.1.517 MATSUNOBU T, 2002, ASS RES OTOLARYNGOL, P402 Melo LG, 2002, CIRCULATION, V105, P602, DOI 10.1161/hc0502.103363 Minamino T, 2001, P NATL ACAD SCI USA, V98, P8798, DOI 10.1073/pnas.161272598 Morimoto RI, 1997, ESSAYS BIOCHEM, V32, P17 MYERS MW, 1992, LARYNGOSCOPE, V102, P981 Nath KA, 2000, AM J PATHOL, V156, P1527, DOI 10.1016/S0002-9440(10)65024-9 Ogita K, 2000, NEUROREPORT, V11, P859, DOI 10.1097/00001756-200003200-00040 Oh SH, 2000, ACTA OTO-LARYNGOL, V120, P146 OKINAGA S, 1993, EUR J BIOCHEM, V212, P167, DOI 10.1111/j.1432-1033.1993.tb17647.x Okinaga S, 1996, BLOOD, V87, P5074 Otterbein LE, 2000, AM J PHYSIOL-LUNG C, V279, pL1029 Otterbein LE, 1999, J CLIN INVEST, V103, P1047, DOI 10.1172/JCI5342 Otterbein LE, 1999, AM J PHYSIOL-LUNG C, V276, pL688 Otterbein LE, 2000, NAT MED, V6, P422 Panahian N, 1999, J NEUROCHEM, V72, P1187 Pirvola U, 2000, J NEUROSCI, V20, P43 POGLIAGHI G, 1995, FEBS LETT, V372, P181, DOI 10.1016/0014-5793(95)00973-D Poss KD, 1997, P NATL ACAD SCI USA, V94, P10925, DOI 10.1073/pnas.94.20.10925 Poss KD, 1997, P NATL ACAD SCI USA, V94, P10919, DOI 10.1073/pnas.94.20.10919 PTOK M, 1993, HEARING RES, V66, P245, DOI 10.1016/0378-5955(93)90144-P QUIRK WS, 1991, HEARING RES, V52, P217, DOI 10.1016/0378-5955(91)90201-J RAJU VS, 1994, BBA-GENE STRUCT EXPR, V1217, P273, DOI 10.1016/0167-4781(94)90286-0 Redaelli CA, 2001, TRANSPLANT INT, V14, P351, DOI 10.1007/s001470100000 Ruan RS, 1997, HEARING RES, V114, P169, DOI 10.1016/S0378-5955(97)00159-7 Shi XR, 2002, HEARING RES, V164, P49 Shiraishi F, 2000, AM J PHYSIOL-RENAL, V278, pF726 Szonyi M, 1999, HEARING RES, V137, P29, DOI 10.1016/S0378-5955(99)00127-6 Tabuchi K, 2002, ANN OTO RHINOL LARYN, V111, P44 Tacchini L, 1997, HEPATOLOGY, V26, P186 Tacchini L, 1999, J CELL PHYSIOL, V180, P255, DOI 10.1002/(SICI)1097-4652(199908)180:2<255::AID-JCP13>3.3.CO;2-C Takumida M, 2000, HEARING RES, V140, P91, DOI 10.1016/S0378-5955(99)00188-4 Vulapalli SR, 2002, AM J PHYSIOL-HEART C, V283, pH688, DOI 10.1152/ajpheart.00133.2002 Watanabe K, 2000, HEARING RES, V145, P149, DOI 10.1016/S0378-5955(00)00086-1 WEISS G, 1994, J EXP MED, V180, P969, DOI 10.1084/jem.180.3.969 Yachie A, 1999, J CLIN INVEST, V103, P129, DOI 10.1172/JCI4165 Yet SF, 2001, CIRC RES, V89, P168, DOI 10.1161/hh1401.093314 Yet SF, 1999, J CLIN INVEST, V103, P23 Zhang XC, 2003, J BIOL CHEM, V278, P1248, DOI 10.1074/jbc.M208419200 NR 76 TC 10 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2004 VL 188 IS 1-2 BP 1 EP 11 DI 10.1016/S0378-5955(03)00369-1 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 772VU UT WOS:000188863200001 PM 14759565 ER PT J AU Chernock, ML Larue, DT Winer, JA AF Chernock, ML Larue, DT Winer, JA TI A periodic network of neurochemical modules in the inferior colliculus SO HEARING RESEARCH LA English DT Article DE GABAergic organization; glutamic acid decarboxylase; parvalbumin; module; external cortex; rat auditory system ID MEDIAL GENICULATE-BODY; PRIMARY AUDITORY-CORTEX; RAT SUPERIOR COLLICULUS; PRIMATE VISUAL-CORTEX; NITRIC-OXIDE SYNTHASE; EXTERNAL NUCLEUS; BRAIN-STEM; GABAERGIC NEURONS; NADPH-DIAPHORASE; MICROSCOPIC IMMUNOCYTOCHEMISTRY AB A new organization has been found in shell nuclei of rat inferior colliculus. Chemically specific modules with a periodic distribution fill about half of layer 2 of external cortex and dorsal cortex. Modules contain clusters of small glutamic acid decarboxylase-positive neurons and large boutons at higher density than in other inferior colliculus subdivisions. The modules are also present in tissue stained for parvalbumin, cytochrome oxidase, nicotinamide adenine dinucleotide phosphate-diaphorase, and acetylcholinesterase. Six to seven bilaterally symmetrical modules extend from the caudal extremity of the external cortex of the inferior colliculus to its rostral pole. Modules are from similar to800 to 2200 pin long and have areas between 5000 and 40 000 mum(2). Modules alternate with immunonegative regions. Similar modules are found in inbred and outbred strains of rat, and in both males and females. They are absent in mouse, squirrel, cat, bat, macaque monkey, and barn owl. Modules are immunonegative for glycine, calbindin, serotonin, and choline acetyltransferase. The auditory cortex and ipsi- and contralateral inferior colliculi project to the external cortex. Somatic sensory influences from the dorsal column nuclei and spinal trigeminal nucleus are the primary ascending sensory input to the external cortex; ascending auditory input to layer 2 is sparse. If the immunopositive modular neurons receive this input, the external cortex could participate in spatial orientation and somatic motor control through its intrinsic and extrinsic projections. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Dept Mol & Cell Biol, Div Neurobiol, Berkeley, CA 94720 USA. RP Chernock, ML (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Div Neurobiol, 285 LSA Mail Code 3200, Berkeley, CA 94720 USA. EM chernock@uclink.berkeley.edu CR AITKIN LM, 1978, J NEUROPHYSIOL, V41, P837 AITKIN LM, 1981, J COMP NEUROL, V196, P25, DOI 10.1002/cne.901960104 Beitel RE, 1999, J ACOUST SOC AM, V105, P3449, DOI 10.1121/1.424671 BURNE RA, 1981, J COMP NEUROL, V202, P287, DOI 10.1002/cne.902020212 Buzas P, 2001, J COMP NEUROL, V437, P259, DOI 10.1002/cne.1282 CAICEDO A, 1993, J COMP NEUROL, V328, P377, DOI 10.1002/cne.903280305 CAMPBELL MJ, 1987, J COMP NEUROL, V261, P209, DOI 10.1002/cne.902610204 CHERNOCK ML, 2003, P SOC NEUROSCI NEW O, V33 CHERNOCK ML, 2003, INTRINSIC COMMISSURA, V26, P787 Chevalier G, 2000, J COMP NEUROL, V419, P137, DOI 10.1002/(SICI)1096-9861(20000403)419:2<137::AID-CNE1>3.0.CO;2-6 COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204 DRUGA R, 1993, NEUROREPORT, V4, P999 Druga R, 1997, PHYSIOL RES, V46, P215 FELICIANO M, 1995, J NEUROCHEM, V65, P1348 GonzalezHernandez T, 1996, J COMP NEUROL, V372, P309, DOI 10.1002/(SICI)1096-9861(19960819)372:2<309::AID-CNE11>3.0.CO;2-E GONZALEZHERNANDEZ TH, 1991, HEARING RES, V52, P17, DOI 10.1016/0378-5955(91)90184-B Graf W, 2002, EUR J NEUROSCI, V15, P1557, DOI 10.1046/j.1460-9568.2002.01994.x Harting JK, 2000, BRAIN RES, V881, P244 HERRERA M, 1994, ARCH ITAL BIOL, V132, P147 Illing RB, 1996, PROG BRAIN RES, V112, P17 IVRY RB, 1988, EXP BRAIN RES, V73, P167, DOI 10.1007/BF00279670 JANE JA, 1965, J COMP NEUROL, V125, P165, DOI 10.1002/cne.901250203 Jen PHS, 2000, BRAIN RES, V862, P127, DOI 10.1016/S0006-8993(00)02098-9 Johnson BA, 2002, J COMP NEUROL, V449, P180, DOI 10.1002/cne.10284 KLUG A, 1995, J NEUROPHYSIOL, V74, P1701 KNUDSEN EI, 1983, J COMP NEUROL, V218, P187, DOI 10.1002/cne.902180206 KNUDSEN EI, 1978, SCIENCE, V200, P795, DOI 10.1126/science.644324 KOELLE GB, 1949, P SOC EXP BIOL MED, V70, P617 LEDOUX JE, 1987, J COMP NEUROL, V264, P123, DOI 10.1002/cne.902640110 LEITNER DS, 1985, PHYSIOL BEHAV, V34, P65, DOI 10.1016/0031-9384(85)90079-4 Li H, 1997, NEUROSCI LETT, V222, P87, DOI 10.1016/S0304-3940(97)13354-7 LINDEN R, 1983, BRAIN RES, V272, P145, DOI 10.1016/0006-8993(83)90371-2 LIVINGSTONE MS, 1984, J NEUROSCI, V4, P309 Lorente de No R., 1938, PHYSL NERVOUS SYSTEM, P291 Mana S, 2001, NEUROSCIENCE, V106, P357, DOI 10.1016/S0306-4522(01)00283-4 Meister M, 2001, J NEUROSCI, V21, P1351 MITANI A, 1983, NEUROSCI LETT, V42, P185, DOI 10.1016/0304-3940(83)90404-4 MOORE JK, 1987, J COMP NEUROL, V260, P157, DOI 10.1002/cne.902600202 MOREST DK, 1965, J ANAT, V99, P143 MUGNAINI E, 1985, J COMP NEUROL, V235, P61, DOI 10.1002/cne.902350106 Mugnaini E, 1985, HDB CHEM NEUROANAT 1, V4, P436 MUGNAINI E, 1983, J HISTOCHEM CYTOCHEM, V31, P1435 Mulders WHAM, 2000, HEARING RES, V144, P65, DOI 10.1016/S0378-5955(00)00046-0 OLAZABAL UE, 1989, J COMP NEUROL, V282, P98, DOI 10.1002/cne.902820108 OLIVER DL, 1994, J COMP NEUROL, V340, P27, DOI 10.1002/cne.903400104 PARK TJ, 1993, J NEUROSCI, V13, P2050 Paxinos G., 1998, RAT BRAIN STEREOTAXI Peruzzi D, 1997, J NEUROSCI, V17, P3766 POLGAR E, 1995, EXP BRAIN RES, V103, P402 PRIETO JJ, 1994, J COMP NEUROL, V344, P349, DOI 10.1002/cne.903440304 RAINEY WT, 1983, EXP BRAIN RES, V49, P229 ROBARDS MJ, 1979, J COMP NEUROL, V184, P547, DOI 10.1002/cne.901840308 Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O ShammahLagnado SJ, 1996, J COMP NEUROL, V376, P489, DOI 10.1002/(SICI)1096-9861(19961216)376:3<489::AID-CNE10>3.0.CO;2-H Soares-Mota M, 2001, J NEUROSCI RES, V64, P501, DOI 10.1002/jnr.1102 SUGITANI M, 1990, EXP BRAIN RES, V81, P346 Tanaka T, 2001, ERGONOMICS, V44, P1403, DOI 10.1080/00140130110110601 Thornton SK, 1996, NEUROSCI RES, V25, P239 TOOTELL RBH, 1983, SCIENCE, V220, P737, DOI 10.1126/science.6301017 Ueyama T, 1999, BRAIN RES, V849, P220, DOI 10.1016/S0006-8993(99)02079-X VATER M, 1992, J COMP NEUROL, V325, P183, DOI 10.1002/cne.903250205 WAGNER H, 1990, EUR J NEUROSCI, V2, P949, DOI 10.1111/j.1460-9568.1990.tb00007.x WALLACE MN, 1988, NEUROSCIENCE, V25, P569, DOI 10.1016/0306-4522(88)90259-X WEBSTER WR, 1990, NEUROSCI LETT, V111, P252, DOI 10.1016/0304-3940(90)90270-J Wiencken AE, 2000, CEREB CORTEX, V10, P499, DOI 10.1093/cercor/10.5.499 WINER JA, 1988, J COMP NEUROL, V278, P47, DOI 10.1002/cne.902780104 WINER JA, 1989, NEUROSCIENCE, V33, P499, DOI 10.1016/0306-4522(89)90402-8 WINER JA, 1992, J COMP NEUROL, V319, P172, DOI 10.1002/cne.903190114 WINER JA, 1995, J COMP NEUROL, V355, P317, DOI 10.1002/cne.903550302 WINER JA, 1996, P SOC NEUROSCI, V22, P1069 Wong-Riley M, 1998, NEUROSCIENCE, V83, P1025, DOI 10.1016/S0306-4522(97)00432-6 WRIGHT CG, 1971, BRAIN RES, V36, P307 YASUI Y, 1993, NEUROSCI LETT, V159, P39, DOI 10.1016/0304-3940(93)90793-K ZETTEL ML, 1991, J COMP NEUROL, V313, P1, DOI 10.1002/cne.903130102 NR 74 TC 21 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2004 VL 188 IS 1-2 BP 12 EP 20 DI 10.1016/S0378-5955(03)00340-X PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 772VU UT WOS:000188863200002 PM 14759566 ER PT J AU Keithley, EM Canto, C Zheng, QY Fischel-Ghodsian, N Johnson, KR AF Keithley, EM Canto, C Zheng, QY Fischel-Ghodsian, N Johnson, KR TI Age-related hearing loss and the ahl locus in mice SO HEARING RESEARCH LA English DT Article DE ahl; presbycusis; aging; cochlea; mice; hearing ID SPIRAL GANGLION-CELL; INBRED STRAINS; C57BL/6J MICE; MOUSE; DEGENERATION; PRESBYCUSIS; SUSCEPTIBILITY; PATHOLOGY; NOISE AB C5713L/6 (136) mice experience hearing loss and cochlear degeneration beginning about mid-life, whereas CAST/Ei (CAST) mice retain normal hearing until old age. A locus contributing to the hearing loss of B6 mice, named age-related hearing loss (ahl), was mapped to Chromosome 10. A homozygous, congenic strain of mice (B6.CAST-+(ahl)), generated by crossing B6 ((ahl)/(ahl)) and CAST (+(ahl)/+(ahl)) mice has the same genomic material as the 136 mice except in the region of the ahl locus, which is derived from CAST. In this study, we have determined the extent of the CAST-derived region of Chromosome 10 in the congenic strain and have examined mice of all three strains for hearing loss and cochlear morphology between 9 and 25 months of age. Results for B6 mice were similar to those described previously. CAST mice showed no detectable hearing loss even at 24 months of age; however, they. had a small amount of ganglion cell degeneration. B6.CAST-+(ahl) mice were protected from early onset hearing loss and basal turn degeneration. but older animals did show some hearing loss and ganglion cell degeneration. We conclude that loci in addition to ahl contribute to the differences in hearing loss between B6 and CAST mice. These results illustrate the complex inheritance of age-related hearing loss in mice and may have implications for the study of human presbycusis. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Calif San Diego, Dept Surg, Div Otolaryngol Head & Neck Surg, La Jolla, CA 92093 USA. Jackson Lab, Bar Harbor, ME 04609 USA. Cedars Sinai Res Inst, Ctr Med Genet Birth Defects, Steven Spieldberg Pediat Res Ctr, Ahmanson Dept Pediat, Los Angeles, CA 90048 USA. Univ Calif Los Angeles, Sch Med, Los Angeles, CA 90048 USA. RP Keithley, EM (reprint author), Univ Calif San Diego, Dept Surg, Div Otolaryngol Head & Neck Surg, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM ekeithley@ucsd.edu RI Zheng, Qing/C-1731-2012 CR Bartolome MV, 2001, NEUROREPORT, V12, P3107, DOI 10.1097/00001756-200110080-00025 Davis RR, 2001, HEARING RES, V155, P82, DOI 10.1016/S0378-5955(01)00250-7 Dazert S, 1996, HEARING RES, V100, P101, DOI 10.1016/0378-5955(96)00100-1 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H FischelGhodsian N, 1997, HEARING RES, V110, P147, DOI 10.1016/S0378-5955(97)00077-4 Fransen E, 2003, EXP GERONTOL, V38, P353, DOI 10.1016/S0531-5565(03)00032-9 HENRY KR, 1980, AUDIOLOGY, V19, P369 Hequembourg S, 2001, JARO, V2, P118 Herndon LA, 2002, NATURE, V419, P808, DOI 10.1038/nature01135 HULTCRANTZ M, 1993, EUR ARCH OTO-RHINO-L, V250, P257 Jimenez AM, 2001, JARO, V2, P233 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Johnson KR, 2002, GENOMICS, V80, P461, DOI [10.1006/geno.2002.6858, 10.1016/S0888-7543(02)96858-8] Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 KEITHLEY EM, 1979, J COMP NEUROL, V188, P429, DOI 10.1002/cne.901880306 LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418 McFadden SL, 2001, AUDIOLOGY, V40, P313 MIKAELIAN DO, 1979, LARYNGOSCOPE, V89, P1 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 Prosen CA, 2003, HEARING RES, V183, P44, DOI 10.1016/S0378-5955(03)00211-9 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 Seidman MD, 2002, AGEING RES REV, V1, P331, DOI 10.1016/S1568-1637(02)00004-1 White JA, 2000, HEARING RES, V141, P12, DOI 10.1016/S0378-5955(99)00204-X Willott J. F., 1991, AGING AUDITORY SYSTE WILLOTT JF, 1988, EXP NEUROL, V99, P615, DOI 10.1016/0014-4886(88)90178-1 WILLOTT JF, 1986, J NEUROPHYSIOL, V57, P391 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 Zheng QY, 2001, HEARING RES, V154, P45, DOI 10.1016/S0378-5955(01)00215-5 NR 28 TC 58 Z9 61 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2004 VL 188 IS 1-2 BP 21 EP 28 DI 10.1016/S0378-5955(03)00365-4 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 772VU UT WOS:000188863200003 PM 14759567 ER PT J AU Anderson, MJ Young, ED AF Anderson, MJ Young, ED TI Isoflurane/N2O anesthesia suppresses narrowband but not wideband inhibition in dorsal cochlear nucleus SO HEARING RESEARCH LA English DT Article DE isoflurane; dorsal cochlear nucleus; inhibition ID AUDITORY-NERVE FIBERS; RESPONSE PROPERTIES; THALAMOCORTICAL NEURONS; DISCHARGE PATTERNS; SINGLE UNITS; III UNITS; IV UNITS; CAT; CELLS; GERBIL AB Anesthesia alters the response properties of neurons in the dorsal cochlear nucleus (DCN). Barbiturates decrease spontaneous activity and the prevalence of inhibitory responses, so that DCN principal cells show less inhibition by narrowband stimuli (e.g. tones at best frequency). Here we present the effects on cat DCN of anesthesia using isoflurane plus nitrous oxide (N2O). Because the cellular anesthetic mechanisms of isoflurane differ from those of pentobarbital, the effects of the two anesthetics in DCN might be different. The strength of two inhibitory circuits in the DCN, the narrowband and wideband inhibitor, were studied and compared with results in unanesthetized decerebrate animals. The primary effects of isoflurane/N2O anesthesia were to lower spontaneous activity and increase the thresholds of units. All the response types seen in the decerebrate preparation were also seen with isoflurane/N2O, but the prevalence of predominantly inhibitory responses to narrowband stimuli (type IV units) decreased (from similar to31% to similar to11%). However, responses to band-reject noise were similar to those seen in unanesthetized animals. Together, these results suggest that the effects of isoflurane/N2O are primarily on the narrowband inhibitory circuit, rather than the wideband inhibitor. (C) 2003 Elsevier B.V. All rights reserved. C1 Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21205 USA. Johns Hopkins Univ, Ctr Hearing Sci, Baltimore, MD 21205 USA. RP Anderson, MJ (reprint author), Johns Hopkins Univ, Dept Biomed Engn, 505 Traylor Bldg,720 Rutland Ave, Baltimore, MD 21205 USA. EM anderson@bme.jhu.edu CR Blum JJ, 1998, J ACOUST SOC AM, V103, P2000, DOI 10.1121/1.421349 CASPARY DM, 1987, BRAIN RES, V417, P273, DOI 10.1016/0006-8993(87)90452-5 Cheng G, 2002, BRIT J PHARMACOL, V136, P673, DOI 10.1038/sj.bjp.0704760 Cheung SW, 2001, HEARING RES, V156, P115, DOI 10.1016/S0378-5955(01)00272-6 Davis KA, 2000, J NEUROPHYSIOL, V83, P926 Davis KA, 1996, J NEUROPHYSIOL, V75, P1411 EVANS EF, 1973, EXP BRAIN RES, V17, P402 Gaese BH, 2001, J NEUROPHYSIOL, V86, P1062 Gdowski GT, 1997, HEARING RES, V105, P85, DOI 10.1016/S0378-5955(96)00196-7 Hancock KE, 1999, ANN BIOMED ENG, V27, P73, DOI 10.1114/1.150 Joris PX, 1998, J NEUROSCI, V18, P3955 KUWADA S, 1989, J NEUROPHYSIOL, V61, P269 LANGMOEN IA, 1995, EUR J ANAESTH, V12, P51 Mennerick S, 1998, J NEUROSCI, V18, P9716 Miller RL, 1997, J ACOUST SOC AM, V101, P3602, DOI 10.1121/1.418321 NELKEN I, 1994, J NEUROPHYSIOL, V71, P2446 OERTEL D, 1990, J COMP NEUROL, V295, P136, DOI 10.1002/cne.902950112 Osen K.K., 1990, GLYCINE NEUROTRANSMI, P417 Palmer AR, 1996, J NEUROPHYSIOL, V75, P780 Parham K, 2000, HEARING RES, V148, P137, DOI 10.1016/S0378-5955(00)00147-7 Parsons JE, 2001, ANN BIOMED ENG, V29, P887, DOI 10.1114/1.1408924 Ramani A, 1999, GREEN CHEM, V1, P163, DOI 10.1039/a903173a RHODE WS, 1986, J NEUROPHYSIOL, V56, P287 RHODE WS, 1987, J NEUROPHYSIOL, V57, P414 RHODE WS, 1983, J COMP NEUROL, V213, P426, DOI 10.1002/cne.902130407 Rhode WS, 1999, J NEUROPHYSIOL, V82, P1019 Ries CR, 1999, J NEUROPHYSIOL, V81, P1802 Ries CR, 1999, J NEUROPHYSIOL, V81, P1795 RYUGO DK, 1993, J COMP NEUROL, V329, P20, DOI 10.1002/cne.903290103 SHOFNER WP, 1985, J NEUROPHYSIOL, V54, P917 SMITH PH, 1989, J COMP NEUROL, V282, P595, DOI 10.1002/cne.902820410 Spirou GA, 1999, J NEUROPHYSIOL, V82, P648 SPIROU GA, 1991, J NEUROPHYSIOL, V66, P1750 Stabler SE, 1996, J NEUROPHYSIOL, V76, P1667 TANELIAN DL, 1993, ANESTHESIOLOGY, V78, P757, DOI 10.1097/00000542-199304000-00020 VOIGT HF, 1990, J NEUROPHYSIOL, V64, P1590 WINTER IM, 1995, J NEUROPHYSIOL, V73, P141 WU SH, 1986, J NEUROSCI, V6, P2691 Yost C. Spencer, 2000, Current Drug Targets, V1, P207, DOI 10.2174/1389450003349335 YOUNG ED, 1982, HEARING RES, V6, P153, DOI 10.1016/0378-5955(82)90051-X YOUNG ED, 2001, INTEGRATIVE FUNCTION, P160 YOUNG ED, 1995, J NEUROPHYSIOL, V73, P743 YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282 YOUNG ED, 1980, BRAIN RES, V200, P23, DOI 10.1016/0006-8993(80)91091-4 ZURITA P, 1994, NEUROSCI RES, V19, P303, DOI 10.1016/0168-0102(94)90043-4 NR 45 TC 11 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2004 VL 188 IS 1-2 BP 29 EP 41 DI 10.1016/S0378-5955(03)00348-4 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 772VU UT WOS:000188863200004 PM 14759568 ER PT J AU Bolz, H Schade, G Ehmer, S Kothe, C Hess, M Gal, A AF Bolz, H Schade, G Ehmer, S Kothe, C Hess, M Gal, A TI Phenotypic variability of non-syndromic hearing loss in patients heterozygous for both c.35delG of GJB2 and the 342-kb deletion involving GJB6 SO HEARING RESEARCH LA English DT Article DE GJB2; GJB6; gap junction; deafness; digenic inheritance ID RAT COCHLEA; MUTATIONS; DEAFNESS; CONNEXIN-30; IMPAIRMENT; EXPRESSION AB Mutations in GJB2, encoding the gap junction protein connexin 26, are the most common cause of inherited non-syndromic hearing loss (NSHL), with a broad spectrum of mutations leading to recessive as well as dominant forms. It has been shown that patients who are compound heterozygous for a 342-kb deletion (Delta(GJB6-D13S1830)) involving a large portion of the 5'-part of GJB6, encoding connexin 30, and a GJB2 mutation develop NSHL due to a trait with a digenic pattern of inheritance. We have used a mutation-specific polymerase chain reaction assay to screen NSHL patients for the presence of Delta(GJB6-D13S1830) and identified two families segregating both c.35delG in GJB2 and Delta(GJB6-D13S1830). Remarkably, the severity of hearing loss due to heterozygosity for c.35delG in GJB2 in conjunction with Delta(GJB6-D13S1830) is considerably different in members of the two families, ranging from congenital deafness in one to moderate/severe hearing loss with congenital onset in the other case. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Hamburg, Hosp Eppendorf, Inst Human Genet, D-20246 Hamburg, Germany. Univ Hamburg, Hosp Eppendorf, Dept Phoniatr & Pediat Audiol, D-20246 Hamburg, Germany. RP Bolz, H (reprint author), Univ Hamburg, Hosp Eppendorf, Inst Human Genet, Martinistr 52, D-20246 Hamburg, Germany. EM bolz@uke.uni-hamburg.de CR del Castillo I, 2002, NEW ENGL J MED, V346, P243, DOI 10.1056/NEJMoa012052 Grifa A, 1999, NAT GENET, V23, P16 GUNTHER B, 2003, HUM MUTAT MUTATION B, V638 Janecke AR, 2002, HUM GENET, V111, P145, DOI 10.1007/s00439-002-0762-y Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0 Lautermann J, 1999, DEV GENET, V25, P306, DOI 10.1002/(SICI)1520-6408(1999)25:4<306::AID-DVG4>3.0.CO;2-R Lautermann J, 1998, CELL TISSUE RES, V294, P415, DOI 10.1007/s004410051192 Lerer I, 2001, Hum Mutat, V18, P460, DOI 10.1002/humu.1222 Liu GP, 2000, INT J SYST SCI, V31, P63, DOI 10.1080/002077200291460 Liu XZ, 2001, HUM MOL GENET, V10, P2945, DOI 10.1093/hmg/10.25.2945 Pallares-Ruiz N, 2002, EUR J HUM GENET, V10, P72, DOI 10.1038/sj/ejhg/5200762 Richard G, 1998, HUM GENET, V103, P393, DOI 10.1007/s004390050839 Schade G, 2003, LARYNGO RHINO OTOL, V82, P397 NR 13 TC 16 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2004 VL 188 IS 1-2 BP 42 EP 46 DI 10.1016/S0378-5955(03)00346-0 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 772VU UT WOS:000188863200005 PM 14759569 ER PT J AU Ramkumar, V Whitworth, CA Pingle, SC Hughes, LF Rybak, LP AF Ramkumar, V Whitworth, CA Pingle, SC Hughes, LF Rybak, LP TI Noise induces A(1) adenosine receptor expression in the chinchilla cochlea SO HEARING RESEARCH LA English DT Article DE adenosine; adenosine receptor; cochlea; noise; nuclear factor-kappa B; NADPH oxidase ID INDUCED HEARING-LOSS; PROTEIN-KINASE-C; SIGNALING PATHWAYS; OXIDATIVE STRESS; IMPULSE NOISE; KAPPA-B; SALICYLATE; EXPOSURE; CELLS; MODULATION AB Adenosine plays a major cytoprotective role during ischemia and conditions of oxidative stress. Previous studies in our laboratory indicate that oxidative stress induces expression of the A(1) adenosine receptor (A(1)AR) via activation of nuclear factor (NF)-kappaB. In this study, we tested whether noise exposure could induce oxidative stress and determine whether this induces expression of the A(1)AR in the chinchilla cochlea. Chinchillas were exposed to a 96 dB 4 kHz octave band of noise for 6 h of daily exposure, followed by an 18 h noise-free period. This noise paradigm resulted in threshold shifts of 10-60 dB over the frequency range (1-16 kHz) tested. Radioligand binding studies for the A(1)AR indicate a significant increase in receptor (similar to2-fold) expression soon after the first noise exposure period (usually within similar to8 h of the initiation of noise), which gradually returned to basal levels by day 7. The rise in A(1)AR levels was followed by a significant increase in malondialdehyde levels by day 3, which also recovered by day 7. Assessment of the activity of NADPH oxidase in the cochlea indicates a significant increase in enzyme activity which was evident by similar to8 h following initiation of noise exposure, and which persisted for at least up to day 3. Electrophoretic mobility shift assays indicate that the increase in A(1)AR was associated with a significant increase in NF-kappaB activity following noise exposure. We conclude that noise exposure induces A(1)AR expression, which might be mediated, in part, through generation of reactive oxygen species and activation of NF-kappaB. (C) 2003 Elsevier B.V. All rights reserved. C1 So Illinois Univ, Sch Med, Dept Pharmacol, Springfield, IL 62794 USA. So Illinois Univ, Sch Med, Dept Surg, Springfield, IL 62794 USA. So Illinois Univ, Sch Med, Dept Neurol, Springfield, IL 62794 USA. RP Ramkumar, V (reprint author), So Illinois Univ, Sch Med, Dept Pharmacol, POB 19620, Springfield, IL 62794 USA. EM vramkumar@siumed.edu CR BERNE RM, 1963, AM J PHYSIOL, V204, P213 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1006/abio.1976.9999 BRASS D, 1993, J ACOUST SOC AM, V93, P1502, DOI 10.1121/1.406808 CHEN CS, 1980, EXPERIENTIA, V36, P330, DOI 10.1007/BF01952307 Ford MS, 1997, HEARING RES, V105, P130, DOI 10.1016/S0378-5955(96)00204-3 Golz A, 2001, AM J OTOLARYNG, V22, P190, DOI 10.1053/ajot.2001.23428 Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3 Hu HJ, 2003, J NEUROPHYSIOL, V90, P1680, DOI 10.1152/jn.00341.2003 Keller JN, 1998, REV NEUROSCIENCE, V9, P105 KITANO I, 1995, HEARING RES, V85, P11, DOI 10.1016/0378-5955(95)00027-2 Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3 Kopke RD, 1997, AM J OTOL, V18, P559 KOPP E, 1994, SCIENCE, V265, P956, DOI 10.1126/science.8052854 Lassegue B, 2001, CIRC RES, V88, P888, DOI 10.1161/hh0901.090299 Lassegue B, 2003, AM J PHYSIOL-REG I, V285, pR277, DOI 10.1152/ajpregu.00758.2002 Le Prell CG, 2001, PHYSL EAR, P575 LernerNatoli M, 1997, BRAIN RES, V749, P109, DOI 10.1016/S0006-8993(96)01306-6 Manabe Y, 1995, Acta Otolaryngol Suppl, V519, P262 MATSUMOTO K, 1992, BRAIN RES, V579, P309, DOI 10.1016/0006-8993(92)90066-I Nie ZZ, 1998, MOL PHARMACOL, V53, P663 ODONNELL VB, 1993, BIOCHEM J, V290, P41 OHKAWA H, 1979, ANAL BIOCHEM, V95, P351, DOI 10.1016/0003-2697(79)90738-3 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 OLAH ME, 1992, ANNU REV PHYSIOL, V54, P211, DOI 10.1146/annurev.physiol.54.1.211 Perez R, 2002, LARYNGOSCOPE, V112, P1110, DOI 10.1097/00005537-200206000-00032 RAMKUMAR V, 1994, AM J PHYSIOL, V267, pC731 Ramkumar V, 2001, JPN J PHARMACOL, V86, P265, DOI 10.1254/jjp.86.265 SCHREIBER E, 1989, NUCLEIC ACIDS RES, V17, P6419, DOI 10.1093/nar/17.15.6419 Seidman MD, 1999, ANN NY ACAD SCI, V884, P226, DOI 10.1111/j.1749-6632.1999.tb08644.x Shi XR, 2003, BRAIN RES, V967, P1, DOI 10.1016/S00066-8993(02)04090-8 SPONGR VP, 1992, ARCH OTOLARYNGOL, V118, P157 TUCKER AL, 1993, CARDIOVASC RES, V27, P62, DOI 10.1093/cvr/27.1.62 WHITWORTH CA, 2001, 24 ANN MIDW M ASS RE Wu WJ, 2002, AUDIOL NEURO-OTOL, V7, P171, DOI 10.1159/000058305 XIE QW, 1994, J BIOL CHEM, V269, P4705 YLIKOSKI J, 1988, AM J OTOL, V9, P282 NR 36 TC 35 Z9 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2004 VL 188 IS 1-2 BP 47 EP 56 DI 10.1016/S0378-5955(03)00344-7 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 772VU UT WOS:000188863200006 PM 14759570 ER PT J AU Goodman, SS Withnell, RH De Boer, E Lilly, DJ Nuttall, AL AF Goodman, SS Withnell, RH De Boer, E Lilly, DJ Nuttall, AL TI Cochlear delays measured with amplitude-modulated tone-burst-evoked OAEs SO HEARING RESEARCH LA English DT Article DE cochlea; otoacoustic emission; group delay; amplitude ID PRODUCT OTOACOUSTIC EMISSIONS; BASILAR-MEMBRANE NONLINEARITY; INPUT-OUTPUT FUNCTIONS; MECHANICAL WAVE-FORM; GUINEA-PIG COCHLEA; STIMULUS-FREQUENCY; MOSSBAUER TECHNIQUE; FINE-STRUCTURE; AUDITORY-NERVE; DISTORTION AB Delay times in the mammalian cochlea, whether from measurement of basilar membrane (BM) vibration or otoacoustic emissions (OAEs) have, to date, been largely based on phase-gradient estimates from steady-state responses. Here we report cochlear delays measured directly in the time domain from OAEs evoked by amplitude-modulated tone-burst (AMTB) stimuli. Measurement using OAEs provides a non-invasive estimate of cochlear delay but is confounded by the complexity of generation of such OAEs. At low to moderate stimulus levels, and provided that the stimulus frequency range does not include a region of the cochlea where there is a large change in effective reflectance, AMTB stimuli evoke an OAE with an envelope shape that is similar to the stimulus and allow a direct calculation of cochlear group delay. Such delays are commensurate with BM estimates of delay, estimates of cochlear delay inferred from neural recordings, and previous OAE measures of delay in the guinea pig. However, a nonlinear distortion mechanism, variation in effective reflectance, and intermodulation distortion products generated by the nonlinear interaction in the cochlea of the carrier and sidebands of the AMTB stimulus, may all contribute to OAEs arising with envelope shapes that are not a scaled representation of the stimulus, confounding the estimation of cochlear group delay. (C) 2003 Published by Elsevier B.V. C1 Indiana Univ, Dept Speech & Hearing Sci, Bloomington, IN 47405 USA. Univ Amsterdam, Acad Med Ctr, NL-1105 AZ Amsterdam, Netherlands. Vet Affairs Med Ctr, VA Natl Ctr Rehabilitat Auditory Res, Portland, OR 97207 USA. Oregon Hlth Sci Univ, OHRCOtolaryngol NRC 04, Portland, OR 97207 USA. RP Withnell, RH (reprint author), Indiana Univ, Dept Speech & Hearing Sci, 200 S Jordan Ave, Bloomington, IN 47405 USA. EM goodmans@boystown.org; rwithnel@indiana.edu; e.d.boer@hccnet.nl; lillyd@ohsu.edu; nuttall@ohsu.edu CR ALLEN JB, 1983, J ACOUST SOC AM, V73, P2071, DOI 10.1121/1.389575 AVAN P, 1990, HEARING RES, V44, P151, DOI 10.1016/0378-5955(90)90077-3 BRASS D, 1993, J ACOUST SOC AM, V93, P920, DOI 10.1121/1.405453 BRASS D, 1991, J ACOUST SOC AM, V90, P2415, DOI 10.1121/1.402046 Brown AM, 1996, J ACOUST SOC AM, V100, P3260, DOI 10.1121/1.417209 Chadwick RS, 1998, P NATL ACAD SCI USA, V95, P14594, DOI 10.1073/pnas.95.25.14594 COOPER NP, 1995, HEARING RES, V82, P225, DOI 10.1016/0378-5955(94)00180-X deBoer E, 1997, J ACOUST SOC AM, V101, P3583, DOI 10.1121/1.418319 de Boer E, 2000, J ACOUST SOC AM, V107, P1497, DOI 10.1121/1.428436 DOLPHIN WF, 1992, HEARING RES, V58, P70, DOI 10.1016/0378-5955(92)90010-K Elmore W., 1969, PHYS WAVES GOLD T, 1948, PROC R SOC SER B-BIO, V135, P492, DOI 10.1098/rspb.1948.0025 Goldstein JL, 1971, PHYSL AUDITORY SYSTE, P133 Goodman SS, 2003, HEARING RES, V183, P7, DOI 10.1016/S0378-5955(03)00193-X GUMMER AW, 1984, J ACOUST SOC AM, V76, P1388, DOI 10.1121/1.391456 Heitmann J, 1998, J ACOUST SOC AM, V103, P1527, DOI 10.1121/1.421290 JOHNSTON.BM, 1967, SCIENCE, V158, P389, DOI 10.1126/science.158.3799.389 Kalluri R, 2001, J ACOUST SOC AM, V109, P622, DOI 10.1121/1.1334597 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KEMP DT, 1990, EAR HEARING, V11, P93 KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0 Kim D. O., 1980, PSYCHOPHYSICAL PHYSL, P7 Konrad-Martin D, 2003, J ACOUST SOC AM, V114, P2021, DOI 10.1121/1.1596170 Lim KM, 2002, HEARING RES, V170, P190, DOI 10.1016/S0378-5955(02)00491-4 MARTIN M, 1988, PSYCHOLOGIST, V1, P33 NEELY ST, 1988, J ACOUST SOC AM, V83, P652, DOI 10.1121/1.396542 NEELY ST, 1986, J ACOUST SOC AM, V79, P1472, DOI 10.1121/1.393674 NEELY ST, 1983, HEARING RES, V9, P123, DOI 10.1016/0378-5955(83)90022-9 Nilsen KE, 2000, P NATL ACAD SCI USA, V97, P11751, DOI 10.1073/pnas.97.22.11751 Nuttall AL, 1996, J ACOUST SOC AM, V99, P1556, DOI 10.1121/1.414732 NYQUIST H, 1928, BELL SYST TECH J, P522 Papoulis A., 1962, FOURIER INTEGRAL ITS POWERS NL, 1995, NATURE, V375, P585, DOI 10.1038/375585a0 Ren T, 2000, J NEUROSCI METH, V96, P97, DOI 10.1016/S0165-0270(99)00187-9 RHODE WS, 1971, J ACOUST SOC AM, V49, P1218, DOI 10.1121/1.1912485 ROBLES L, 1986, J ACOUST SOC AM, V80, P1364, DOI 10.1121/1.394389 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 Shera CA, 2003, BIOPHYSICS OF THE COCHLEA: FROM MOLECULES TO MODELS, P439, DOI 10.1142/9789812704931_0062 Shera CA, 2003, J ACOUST SOC AM, V113, P2762, DOI 10.1121/1.1557211 Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 Talmadge CL, 1999, J ACOUST SOC AM, V105, P275, DOI 10.1121/1.424584 Talmadge CL, 2000, J ACOUST SOC AM, V108, P2911, DOI 10.1121/1.1321012 Tsuji J, 1997, J COMP NEUROL, V381, P188 Tubis A, 2000, J ACOUST SOC AM, V108, P1772, DOI 10.1121/1.1310666 Whitehead ML, 1996, J ACOUST SOC AM, V100, P1663, DOI 10.1121/1.416065 Withnell RH, 2002, EAR HEARING, V23, P49, DOI 10.1097/00003446-200202000-00004 Withnell RH, 2000, HEARING RES, V139, P1, DOI 10.1016/S0378-5955(99)00132-X Withnell RH, 1998, J ACOUST SOC AM, V104, P350, DOI 10.1121/1.423292 Withnell RH, 2003, HEARING RES, V178, P106, DOI 10.1016/S0378-5955(03)00064-9 Withnell RH, 1998, HEARING RES, V123, P87, DOI 10.1016/S0378-5955(98)00100-2 Yates GK, 1999, HEARING RES, V136, P49, DOI 10.1016/S0378-5955(99)00108-2 ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320 ZWICKER E, 1986, J ACOUST SOC AM, V80, P146, DOI 10.1121/1.394175 NR 53 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2004 VL 188 IS 1-2 BP 57 EP 69 DI 10.1016/S0378-5955(03)00375-7 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 772VU UT WOS:000188863200007 PM 14759571 ER PT J AU Dickman, JD Huss, D Lowe, M AF Dickman, JD Huss, D Lowe, M TI Morphometry of otoconia in the utricle and saccule of developing Japanese quail SO HEARING RESEARCH LA English DT Article DE otolith; vestibular; development; inner ear; balance; spatial orientation ID PERIPHERAL INNERVATION PATTERNS; UTRICULAR MACULA; AFFERENT INNERVATION; DEVELOPING CHICK; MICROSTRUCTURAL GROWTH; ELECTRON-MICROSCOPY; VESTIBULAR NERVE; INNER-EAR; OTOLITHS; EMBRYO AB The development of otoconia in the utricular and saccular maculae from initial embryonic formation to adult stages was examined in Japanese quails. Both the morphology and size of the otoconia were quantified at different developmental stages. It was observed that the otoconia were initially formed on embryologic stage E5 in the saccule and E6 in the utricle. Otolith mass areas increased in a sigmoidal growth pattern, with saccular otolith areas being smaller than the utricular mass areas. Saccular otolith masses reached adult values at embryonic stage E12 and utricular areas reached adult values at post-hatch day 7. Mature individual otoconia were characterized by a barrel shape with two trihedral faceted ends. However, initial formation of otoconia at E5 (saccular) and E6 (utricular) maculae was characterized by a double fluted morphology that consisted of an hourglass shape with extended fins forming trihedral angles of 120degrees. Double fluted otoconia rapidly filled, so that by embryonic day 8 mature otoconia dominated the maculae for the remainder of development through adulthood. Thus, a progression from double fluted to mature forms was noted. Mature utricular otoconia in adult quails averaged 11 mum in length and 5 mum in width, with length/width ratios of approximately 2.5:1, for all size ranges. Saccular otoconia were smaller, having about 70% the size of utricular otoconia in both length and width. During development, the average size and range of individual otoconia increased nearly linearly for both otolith organs. In the utricular macula, large otoconia were concentrated in the lateral regions of the epithelium. In contrast, otoconia of various sizes were distributed uniformly across the surface of the saccular macula. (C) 2003 Elsevier B.V. All rights reserved. C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. Washington Univ, Dept Anat & Neurobiol, St Louis, MO 63110 USA. RP Dickman, JD (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, 660 S Euclid, St Louis, MO 63110 USA. EM ddickman@cid.wustl.edu CR Anniko M, 1980, Am J Otolaryngol, V1, P400, DOI 10.1016/S0196-0709(80)80021-4 BAIRD RA, 1986, BRAIN RES, V369, P48, DOI 10.1016/0006-8993(86)90512-3 BALLARINO J, 1985, AM J ANAT, V174, P131, DOI 10.1002/aja.1001740204 BALLARINO J, 1982, ANAT REC, V204, P83, DOI 10.1002/ar.1092040111 CAMPANA SE, 1984, CAN J ZOOL, V62, P1507 CARLSTROM D, 1953, LARYNGOSCOPE, V63, P1052, DOI 10.1288/00005537-195311000-00002 FERMIN CD, 1987, HEARING RES, V28, P23, DOI 10.1016/0378-5955(87)90150-X FERMIN CD, 1986, SEM, V4, P1649 FERNANDEZ C, 1990, J NEUROPHYSIOL, V63, P767 FLOCK A, 1964, J CELL BIOL, V22, P413, DOI 10.1083/jcb.22.2.413 Gao WY, 1997, HEARING RES, V109, P125, DOI 10.1016/S0378-5955(97)00059-2 GINZBERG RD, 1980, J NEUROCYTOL, V9, P405, DOI 10.1007/BF01181545 GOLDBERG JM, 1990, J NEUROPHYSIOL, V63, P791 GOODYEAR R, 1995, J COMP NEUROL, V351, P81, DOI 10.1002/cne.903510108 GRANT W, 1987, AVIAT SPACE ENVIR MD, V58, P970 Hurle B, 2003, HUM MOL GENET, V12, P777, DOI 10.1093/hmg/ddg087 Huss D, 2003, J NEUROSCI METH, V125, P129, DOI 10.1016/S0165-0270(03)00048-7 Jones SM, 1999, HEARING RES, V135, P56, DOI 10.1016/S0378-5955(99)00090-8 JORGENSEN J M, 1973, Acta Zoologica (Stockholm), V54, P121 Kido T, 1997, HEARING RES, V105, P191, DOI 10.1016/S0378-5955(96)00210-9 KIDO T, 1993, ACTA OTO-LARYNGOL, V113, P128, DOI 10.3109/00016489309135780 KNOWLTON VY, 1967, J MORPHOL, V121, P179, DOI 10.1002/jmor.1051210302 Lee TW, 1996, MAR BIOL, V125, P259, DOI 10.1007/BF00346306 LIM DJ, 1974, BRAIN BEHAV EVOLUT, V10, P37, DOI 10.1159/000124301 Lim D J, 1973, Ann Otol Rhinol Laryngol, V82, P23 LYON MF, 1955, J EMBRYOL EXP MORPH, V3, P213 MANN S, 1983, PROC R SOC SER B-BIO, V218, P415, DOI 10.1098/rspb.1983.0048 Ornitz DM, 1998, HEARING RES, V122, P60, DOI 10.1016/S0378-5955(98)00080-X Oukda M, 1999, HEARING RES, V137, P114, DOI 10.1016/S0378-5955(99)00143-4 PADGETT CS, 1960, ANAT REC, V137, P1, DOI 10.1002/ar.1091370102 POTE KG, 1991, COMP BIOCHEM PHYS B, V98, P287, DOI 10.1016/0305-0491(91)90181-C ROSENHAL.U, 1970, ARCH KLIN EXP OHR, V197, P154, DOI 10.1007/BF00306164 ROSS MD, 1985, AUDITORY BIOCH, P500 ROSS MD, 1975, ANN OTO RHINOL LARYN, V84, P22 SALAMAT MS, 1980, ANN OTO RHINOL LARYN, V89, P229 SCHRADER RE, 1973, TERATOLOGY, V8, P257 Si XH, 2003, J NEUROPHYSIOL, V89, P1660, DOI 10.1152/jn.00690.2002 WANG DL, 1990, NEURAL COMPUT, V2, P95 WIEDERHOLD ML, 1990, HEARING RES, V49, P63, DOI 10.1016/0378-5955(90)90095-7 Zakir M, 2003, J NEUROPHYSIOL, V89, P534, DOI 10.1152/jn.00817.2001 NR 40 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2004 VL 188 IS 1-2 BP 89 EP 103 DI 10.1016/S0378-5955(03)00377-0 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 772VU UT WOS:000188863200009 PM 14759573 ER PT J AU Polak, M Hodges, AV King, JE Balkany, TJ AF Polak, M Hodges, AV King, JE Balkany, TJ TI Further prospective findings with compound action potentials from Nucleus 24 cochlear implants SO HEARING RESEARCH LA English DT Article DE compound action potential; neural response telemetry; auditory spiral ganglion cell; cochlear implant; electrical stimulation ID ACOUSTIC REFLEX THRESHOLDS; STIMULATED AUDITORY-NERVE; NEURAL RESPONSE TELEMETRY; CONTOUR ELECTRODE ARRAY; SPIRAL GANGLION-CELLS; BRAIN-STEM RESPONSES; STAPEDIUS REFLEX; RETROGRADE DEGENERATION; ELECTRICAL-STIMULATION; SPEECH PROCESSOR AB The purpose of this study was to gain greater understanding of compound action potential (CAP) specific characteristics including: slope of the growth function, P1-N1 amplitude, threshold and latencies of P1 and N1 measured in cochlear implant users. Experienced adult subjects underwent behavioral threshold (T) measurement and electrically elicited stapedial reflex (eSR) recording, followed by CAP measurements on six selected electrodes. Based on the electrically elicited stapedial reflex threshold (eSRT), maximum stimulation level for each measured electrode was set. Relationships among the three thresholds of the above measures and maximum CAP P1-N1 amplitude and slope of the growth function were statistically evaluated for each measured electrode. Threshold of the CAP response showed relationships of similar strength with eSRT and T (r=0.69 and 0.61, respectively). For both slope of the growth function and CAP PI-NI amplitude, a statistically significant relationship with cochlear place was found. Both specific characteristics of CAP measurement for the most apical electrodes were roughly double those for the most basal electrode (alpha=0.05). This may be partially explained by cochlear anatomy and is consistent with prior mammalian and human studies showing increasing density and survival of spiral ganglion cells in the regions corresponding to intracochlear electrode placement from basal to apical electrodes (90-360degrees). (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Miami, Ear Inst, Dept Otolaryngol, Miami, FL 33131 USA. RP Polak, M (reprint author), Univ Miami, Ear Inst, Dept Otolaryngol, 166 NW 10th Ave,ACC East, Miami, FL 33131 USA. EM mpolak@med.miami.edu CR Abbas PJ, 1999, EAR HEARING, V20, P45, DOI 10.1097/00003446-199902000-00005 Balkany TJ, 2002, ACTA OTO-LARYNGOL, V122, P363, DOI 10.1080/00016480260000021 BATTMER RD, 1990, EAR HEARING, V11, P370, DOI 10.1097/00003446-199010000-00008 Brown CJ, 1999, ANN OTO RHINOL LARYN, V108, P50 Brown CJ, 1998, AM J OTOL, V19, P320 Brown CJ, 2000, EAR HEARING, V21, P151, DOI 10.1097/00003446-200004000-00009 BROWN CJ, 1994, EAR HEARING, V15, P168, DOI 10.1097/00003446-199404000-00006 BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716 DESAUVAGE RC, 1983, J ACOUST SOC AM, V73, P616 Echteler SM, 2000, J COMP NEUROL, V425, P436 Franck KH, 2001, EAR HEARING, V22, P289, DOI 10.1097/00003446-200108000-00004 HALL RD, 1990, HEARING RES, V45, P123, DOI 10.1016/0378-5955(90)90188-U HATSUSHIKA S, 1990, ANN OTO RHINOL LARYN, V99, P871 HINOJOSA R, 1985, ACTA OTO-LARYNGOL, V99, P8, DOI 10.3109/00016488509119139 HODGES A, 2003, COCHLEAR IMPLANTS OB, P81 Hodges AV, 1997, OTOLARYNG HEAD NECK, V117, P255, DOI 10.1016/S0194-5998(97)70183-9 HODGES AV, 1994, ARCH OTOLARYNGOL, V120, P1093 ISHII T, 1977, ANN OTO RHINOL LARYN, V86, P541 JERGER J, 1988, EAR HEARING, V9, P4 JERGER J, 1986, ANN OTO RHINOL LARYN, V95, P151 KEITHLEY EM, 1987, J ACOUST SOC AM, V81, P1036, DOI 10.1121/1.394675 KIANG NYS, 1976, ANN OTO RHINOL LARYN, V85, P752 KILENY PR, 1991, AM J OTOL, V12, P37 Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6 LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677 LIBERMAN MC, 1984, J COMP NEUROL, V223, P163, DOI 10.1002/cne.902230203 MULLER M, 1992, J COMP PHYSIOL A, V171, P469 NADOL JB, 1988, AM J OTOLARYNG, V9, P47, DOI 10.1016/S0196-0709(88)80007-3 PAULER M, 1986, ARCH OTO-RHINO-LARYN, V243, P200, DOI 10.1007/BF00470622 PUJOL R, 1977, ACTA OTO-LARYNGOL, V83, P59, DOI 10.3109/00016487709128813 Richter B, 2001, LARYNGOSCOPE, V111, P508, DOI 10.1097/00005537-200103000-00023 SHALLOP JK, 1990, EAR HEARING, V15, P5 SPIVAK LG, 1994, LARYNGOSCOPE, V104, P1225 SPIVAK LG, 1994, EAR HEARING, V15, P184, DOI 10.1097/00003446-199404000-00008 SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683 SPOENDLIN H, 1984, ANN OTO RHINOL LARYN, V93, P76 Stephan K, 2000, AUDIOLOGY, V39, P13 STYPULKOWSKI PH, 1984, HEARING RES, V14, P205, DOI 10.1016/0378-5955(84)90051-0 Tykocinski M, 2001, OTOL NEUROTOL, V22, P33, DOI 10.1097/00129492-200101000-00007 VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5 WILLECKE K, 1991, EUR J CELL BIOL, V56, P1 ZHU X, 2002, LIN CHUANG ER BI YAN, V1, P5 ZIMMERMANN CE, 1995, HEARING RES, V90, P192, DOI 10.1016/0378-5955(95)00165-1 NR 43 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2004 VL 188 IS 1-2 BP 104 EP 116 DI 10.1016/S0378-5955(03)00309-5 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 772VU UT WOS:000188863200010 PM 14759574 ER PT J AU Sueta, T Zhang, SY Sellick, PM Patuzzi, R Robertson, D AF Sueta, T Zhang, SY Sellick, PM Patuzzi, R Robertson, D TI Effects of a calcium channel blocker on spontaneous neural noise and gross action potential waveforms in the guinea pig cochlea SO HEARING RESEARCH LA English DT Article DE cochlea; transmitter; calcium channel; neural noise; compound action potential; nimodipine ID GATED CA2+ CHANNELS; INNER HAIR-CELLS; TRANSMITTER RELEASE; DISTORTION-PRODUCT; ALPHA(1D) SUBUNIT; AVERAGE SPECTRUM; CHICKENS COCHLEA; TUNING CURVES; ROUND-WINDOW; KAINIC ACID AB The effects of the L-type Ca2+ channel blocker nimodipine on the spectrum of the spontaneous neural noise (SNN) and the waveform of the gross sound-evoked compound action potential (CAP) were investigated by perilymphatic perfusion in the guinea pig cochlea. Both the SNN and the CAP were reversibly suppressed by nimodipine. The percentage reduction in SNN was dose-dependent in a manner very similar to the results obtained with the measures of CAP threshold changes. The reduction in the peak SNN caused by 10 muM nimodipine was the same as that caused by 500 muM kainic acid, which totally eliminated any neural responses. For 1 muM nimodipine there was an apparent dissociation between the SNN and CAP changes such that the SNN could be markedly suppressed with only very small changes in CAP thresholds. These results imply that spontaneous release of neurotransmitter from the inner hair cell is more sensitive to block of calcium channels than evoked release. There was no evidence for any marked shift caused by nimodipine, in the position of the main (900 Hz) spectral peak in the SNN. Comparison of the CAP waveform before and after nimodipine perfusion showed that the CAP waveforms were unchanged despite the change in sensitivity. These data do not support the notion of any significant postsynaptic site of action of nimodipine. The data hence provide further support for an exclusively presynaptic role for L-type Ca2+ channels in the regulation of both evoked and spontaneous neurotransmitter release from inner hair cells. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Western Australia, Sch Biomed & Chem Sci, Auditory Lab, Crawley, WA 6009, Australia. Fukuoka Univ, Dept Otolaryngol, Fukuoka 81401, Japan. Guangdong Provincial Peoples Hosp, Dept Otolaryngol, Guangzhou, Peoples R China. RP Robertson, D (reprint author), Univ Western Australia, Sch Biomed & Chem Sci, Auditory Lab, 35 Stirling Hwy, Crawley, WA 6009, Australia. EM drobed@cyllene.uwa.edu.au CR BLEDSOE SC, 1981, HEARING RES, V4, P109, DOI 10.1016/0378-5955(81)90040-X BOBBIN RP, 1990, HEARING RES, V46, P277, DOI 10.1016/0378-5955(90)90009-E Cazals Y, 1998, J NEUROPHYSIOL, V80, P2113 Cazals Y, 1996, HEARING RES, V101, P81, DOI 10.1016/S0378-5955(96)00135-9 CHEATHAM MA, 1984, HEARING RES, V16, P189, DOI 10.1016/0378-5955(84)90009-1 DOLAN DF, 1990, J ACOUST SOC AM, V87, P2621, DOI 10.1121/1.399054 Engel J, 2002, ADV OTO-RHINO-LARYNG, V59, P35 Evans E F, 1982, Br J Audiol, V16, P101, DOI 10.3109/03005368209081454 Evans E F, 1981, Ciba Found Symp, V85, P108 Hisashi K, 1995, HEARING RES, V91, P196, DOI 10.1016/0378-5955(95)00191-3 ISSA NP, 1994, P NATL ACAD SCI USA, V91, P7578, DOI 10.1073/pnas.91.16.7578 JASTREBOFF PJ, 1986, J ACOUST SOC AM, V80, P1384, DOI 10.1121/1.394391 JOHNSTONE JR, 1979, J ACOUST SOC AM, V65, P254, DOI 10.1121/1.382244 Kollmar R, 1997, P NATL ACAD SCI USA, V94, P14889, DOI 10.1073/pnas.94.26.14889 Kollmar R, 1997, P NATL ACAD SCI USA, V94, P14883, DOI 10.1073/pnas.94.26.14883 LOWE M, 1995, HEARING RES, V83, P133, DOI 10.1016/0378-5955(94)00198-Y McMahon CM, 2002, HEARING RES, V173, P134, DOI 10.1016/S0378-5955(02)00281-2 PATUZZI R, 2004, IN PRESS HEAR RES PLATZER J, 2000, CELL, V102, P88 Robertson D, 2002, J NEUROPHYSIOL, V87, P2734, DOI 10.1152/jn.00327.2001 ROBERTSON D, 1979, PFLUGERS ARCH, V380, P1 Sellick P, 2003, HEARING RES, V176, P42, DOI 10.1016/S0378-5955(02)00716-5 SEWELL WF, 1984, HEARING RES, V14, P305, DOI 10.1016/0378-5955(84)90057-1 Shivashankar N, 2003, ACTA NEUROL SCAND, V108, P130, DOI 10.1034/j.1600-0404.2003.00104.x SIEGEL JH, 1987, HEARING RES, V28, P131, DOI 10.1016/0378-5955(87)90044-X Zhang SY, 1999, J NEUROPHYSIOL, V82, P3307 Zheng XY, 1996, HEARING RES, V95, P161, DOI 10.1016/0378-5955(96)00047-0 ZIDANIC M, 1995, BIOPHYS J, V68, P1323 NR 28 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2004 VL 188 IS 1-2 BP 117 EP 125 DI 10.1016/S0378-5955(03)00374-5 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 772VU UT WOS:000188863200011 PM 14759575 ER PT J AU Dai, CF Steyger, PS Wang, ZM Vass, Z Nuttall, AL AF Dai, CF Steyger, PS Wang, ZM Vass, Z Nuttall, AL TI Expression of Trk A receptors in the mammalian inner ear SO HEARING RESEARCH LA English DT Article ID NERVE GROWTH-FACTOR; PRIMARY SENSORY NEURONS; NEUROTROPHIN RECEPTORS; MESSENGER-RNA; SIGNAL-TRANSDUCTION; TARGET INNERVATION; GANGLION NEURONS; AUDITORY-SYSTEM; HAIR-CELLS; COCHLEAR AB Tyrosine kinase receptors, including Trk A, Trk B and Trk C, participate in many different biological processes that are regulated by neurotrophic factors. Nerve growth factor (NGF)-triggered Trk A signaling is involved in growth, survival and differentiation of neurons in the central nervous system and in neural crest-derived cells. Trk A, Trk B and Trk C expression has been reported in the rat ventral cochlear nucleus. In the present study, we explored the immunocytochemical distribution of Trk A in the rodent inner ear. Rat and mouse cochleae were immunolabeled with a rabbit anti-Trk A polyclonal antibody (Chemicon) that has no reported cross-reactivity with Trk B and Trk C. In embryonic day 16 mice, no Trk A immunolabeling could be detected in the developing neuroepithelium. At postnatal day 6, weak Trk A labeling could be observed in both inner and outer hair cells. At postnatal day 12, enhanced punctate Trk A immunoexpression was present in hair cells. In adult mice and rats, intense Trk A labeling was observed in outer and inner hair cell bodies, in supporting cell bodies throughout the cochlea, and in spiral ganglion neurons. Trk A was not observed in stria vascularis, hair cell stereocilia, nor in the Trk B- and Trk C-rich cerebellum. This distribution pattern of Trk A suggests that its ligand, NGF, exerts significant trophic effects in the rodent inner ear. (C) 2003 Elsevier B.V. All rights reserved. C1 Oregon Hlth Sci Univ, Dept Otolaryngol, Oregon Hearing Res Ctr, Portland, OR 97239 USA. Fudan Univ, E&ENT Hosp, Dept Otolaryngol, Shanghai 200031, Peoples R China. Albert Szent Gyorgyi Med Univ, Dept Otolaryngol, H-6725 Szeged, Hungary. Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Nuttall, AL (reprint author), Oregon Hlth Sci Univ, Dept Otolaryngol, Oregon Hearing Res Ctr, NRC04,3181 SW Sam Jackson Pk Rd, Portland, OR 97239 USA. EM nuttall@ohsu.edu CR Agerman K, 1999, ANN NY ACAD SCI, V884, P131 Barker-Gibb AL, 2001, J COMP NEUROL, V430, P182, DOI 10.1002/1096-9861(20010205)430:2<182::AID-CNE1024>3.0.CO;2-Q Bonnington JK, 2003, J PHYSIOL-LONDON, V551, P433, DOI 10.1113/jphysiol.2003.039990 Burette A, 1997, BRAIN RES, V776, P10, DOI 10.1016/S0006-8993(97)00934-7 CARROLL SL, 1992, NEURON, V9, P779, DOI 10.1016/0896-6273(92)90040-K CLARY DO, 1994, MOL BIOL CELL, V5, P549 Cochran SL, 1999, J COMP NEUROL, V413, P271, DOI 10.1002/(SICI)1096-9861(19991018)413:2<271::AID-CNE8>3.0.CO;2-L Courtney MJ, 1997, J NEUROSCI, V17, P4201 ERNFORS P, 1995, NEURON, V14, P1153, DOI 10.1016/0896-6273(95)90263-5 Ernfors P., 1995, NEURON, V15, P739 EVANS BN, 1993, P NATL ACAD SCI USA, V90, P8347, DOI 10.1073/pnas.90.18.8347 Farinas I, 2001, J NEUROSCI, V21, P6170 Fritzsch B, 1997, SEMIN CELL DEV BIOL, V8, P277, DOI 10.1006/scdb.1997.0144 Fritzsch B, 1997, J NEUROSCI, V17, P6213 Hafidi A, 1996, J COMP NEUROL, V367, P454 HuTsai M, 1996, NEUROSCI LETT, V203, P119, DOI 10.1016/0304-3940(95)12277-X Ji RR, 2002, NEURON, V36, P57, DOI 10.1016/S0896-6273(02)00908-X Kaplan DR, 2000, CURR OPIN NEUROBIOL, V10, P381, DOI 10.1016/S0959-4388(00)00092-1 Kaplan DR, 1997, CURR OPIN CELL BIOL, V9, P213, DOI 10.1016/S0955-0674(97)80065-8 Liebl DJ, 1997, J NEUROSCI, V17, P9113 Malgrange B, 1996, NEUROREPORT, V7, P913, DOI 10.1097/00001756-199603220-00016 McMahon SB, 1996, PHILOS T R SOC B, V351, P431, DOI 10.1098/rstb.1996.0039 Miller FD, 2001, NEURON, V32, P767, DOI 10.1016/S0896-6273(01)00529-3 Neet KE, 2001, CELL MOL LIFE SCI, V58, P1021, DOI 10.1007/PL00000917 Patapoutian A, 2001, CURR OPIN NEUROBIOL, V11, P272, DOI 10.1016/S0959-4388(00)00208-7 Pirvola U, 1997, J NEUROBIOL, V33, P1019, DOI 10.1002/(SICI)1097-4695(199712)33:7<1019::AID-NEU11>3.0.CO;2-A PIRVOLA U, 1992, P NATL ACAD SCI USA, V89, P9915, DOI 10.1073/pnas.89.20.9915 PIRVOLA U, 1994, HEARING RES, V75, P131, DOI 10.1016/0378-5955(94)90064-7 Salvinelli F, 2002, J BIOL REG HOMEOS AG, V16, P176 Savaskan E, 2000, EUR NEUROL, V44, P172, DOI 10.1159/000008229 SCHECTERSON LC, 1994, HEARING RES, V73, P92, DOI 10.1016/0378-5955(94)90286-0 Schimmang T, 1997, MECH DEVELOP, V64, P77, DOI 10.1016/S0925-4773(97)00047-6 SCHINDLER RA, 1995, AM J OTOL, V16, P304 SHI XR, 2002, EXP BIOL M NEW ORL L Shi XR, 2003, BRAIN RES, V967, P1, DOI 10.1016/S00066-8993(02)04090-8 SilosSantiago I, 1997, EUR J NEUROSCI, V9, P2045, DOI 10.1111/j.1460-9568.1997.tb01372.x SMEYNE RJ, 1994, NATURE, V368, P246, DOI 10.1038/368246a0 Snider WD, 1998, NEURON, V20, P629, DOI 10.1016/S0896-6273(00)81003-X SNIDER WD, 1994, CELL, V77, P627, DOI 10.1016/0092-8674(94)90048-5 VASS Z, 2001, 22 MIDW RES M ST PET VASS Z, 1995, HEARING RES, V89, P86, DOI 10.1016/0378-5955(95)00127-4 Vass Z, 2001, NEUROSCIENCE, V103, P189, DOI 10.1016/S0306-4522(00)00521-2 VERGE VMK, 1992, J NEUROSCI, V12, P4011 WHEELER EF, 1994, HEARING RES, V73, P46, DOI 10.1016/0378-5955(94)90281-X WINTER J, 1988, NEURON, V1, P973, DOI 10.1016/0896-6273(88)90154-7 WOOLF CJ, 1994, NEUROSCIENCE, V62, P327, DOI 10.1016/0306-4522(94)90366-2 Woolf CJ, 1996, J NEUROSCI, V16, P2716 Yano H, 2000, Pharm Acta Helv, V74, P253, DOI 10.1016/S0031-6865(99)00036-9 YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C Zheng JF, 2003, J NEUROPHYSIOL, V90, P444, DOI 10.1152/jn.00919.2002 NR 50 TC 9 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2004 VL 187 IS 1-2 BP 1 EP 11 DI 10.1016/S0378-5955(03)00277-6 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 762KR UT WOS:000187971300001 PM 14698082 ER PT J AU Davis, B Qiu, W Hamernik, RP AF Davis, B Qiu, W Hamernik, RP TI The use of distortion product otoacoustic emissions in the estimation of hearing and sensory cell loss in noise-damaged cochleas SO HEARING RESEARCH LA English DT Article DE noise-induced hearing loss; otoacoustic emission; sensory cell loss ID PURE-TONE THRESHOLDS; AUDITORY BRAIN-STEM; ACOUSTIC DISTORTION; CHINCHILLA-COCHLEA; TUNING CURVES; GUINEA-PIGS; EXPOSURES; RESPONSES; EARS; AMPLITUDE AB Distortion product otoacoustic emissions (DPOAE), permanent threshold shifts (PTS) and outer hair cell (OHC) losses were analyzed in a population of 187 noise-exposed chinchillas to determine the predictive accuracy (sensitivity and specificity) of the DPOAE for PTS and OHC loss. Auditory evoked potentials (AEP) recorded from the inferior colliculus of the brainstem were used to estimate hearing thresholds and surface preparation histology Was used to determine sensory cell loss. The overlapping cumulative distributions and high variability in emission responses for both PTS and OHC loss made it difficult to predict AEP threshold and OHC loss from DPOAE level measurements alone. Using a strict criterion (i.e. emissions better than the 5th percentile of the preexposure DPOAE level, and PTSless than or equal to5 dB or OHC loss less than or equal to5%), it was found that the postexposure DPOAE level could be used with reasonable confidence to determine if the status of peripheral auditory system was either normal (i.e. PTS:5 5 dB) or abnormal (PTS>30 dB or OHC loss >40%). However, the high variability of individual DPOAE responses resulted in a broad region of 'uncertainty' (i.e. 5Rb(+)much greater thanCs(+)>Na+ (n=5-17). The whole-cell currents were inhibited by extracellular tetraethylammonium and iberiotoxin (IbTx) with IC50 values of 0.07 mM and 0.013 muM, respectively (n=3-7). The membrane potentials of type I SLFs measured with conventional zero-current whole-cell configuration were highly K+-selective and sensitive to IbTx (n=4-9). In addition, the BK channels in these cells exhibited voltage-dependent and incomplete inactivation properties and the recovery time was estimated to be similar to6 s with repetitive voltage pulses from -70 to 80 mV (n=3). These data suggest that BK channels in type I SLFs play a major role in regulating the intracellular electrochemical gradient in the lateral wall syncytium responsible for facilitating the K+ movement from perilymph to the stria vascularis. (C) 2003 Published by Elsevier B.V. C1 Med Univ S Carolina, Dept Pathol & Lab Med, Charleston, SC 29425 USA. Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, Charleston, SC 29425 USA. RP Shen, ZJ (reprint author), Med Univ S Carolina, Dept Pathol & Lab Med, 165 Ashley Ave,POB 250908, Charleston, SC 29425 USA. EM shenz@musc.edu CR Ando M, 1999, CELL TISSUE RES, V298, P179, DOI 10.1007/s004419900066 Boettger T, 2002, NATURE, V416, P874, DOI 10.1038/416874a Brenner R, 2000, J BIOL CHEM, V275, P6453, DOI 10.1074/jbc.275.9.6453 COREY DP, 1979, NATURE, V281, P675, DOI 10.1038/281675a0 Crouch JJ, 1997, J HISTOCHEM CYTOCHEM, V45, P773 Delpire E, 1999, NAT GENET, V22, P192, DOI 10.1038/9713 Dixon MJ, 1999, HUM MOL GENET, V8, P1579, DOI 10.1093/hmg/8.8.1579 Gratton MA, 1996, HEARING RES, V99, P71, DOI 10.1016/S0378-5955(96)00080-9 Hille B., 1991, IONIC CHANNELS EXCIT HU W, 2003, ABSTR ASS RES OT, V26, P1613 IKEDA K, 1989, HEARING RES, V39, P279, DOI 10.1016/0378-5955(89)90047-6 Janecke AR, 2001, HUM GENET, V108, P269, DOI 10.1007/s004390100484 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 Kikuchi T, 2000, BRAIN RES REV, V32, P163, DOI 10.1016/S0165-0173(99)00076-4 KONISHI T, 1978, ACTA OTO-LARYNGOL, V86, P22, DOI 10.3109/00016487809124717 KROS CJ, 1992, P ROY SOC B-BIOL SCI, V249, P185, DOI 10.1098/rspb.1992.0102 Kubisch C, 1999, CELL, V96, P437, DOI 10.1016/S0092-8674(00)80556-5 LIANG F, 2001, ABSTR ASS RES OTOLAR, V24, P842 Liang F, 2003, PFLUG ARCH EUR J PHY, V445, P683, DOI 10.1007/s00424-002-0976-9 LIANG F, 2002, ASS RES OTOLARYNGOL, V25, P616 Liu XZ, 2000, HUM MOL GENET, V9, P63, DOI 10.1093/hmg/9.1.63 Liu XZ, 2001, HUM MOL GENET, V10, P2945, DOI 10.1093/hmg/10.25.2945 Marcus DC, 2002, AM J PHYSIOL-CELL PH, V282, pC403 MCMANUS OB, 1995, NEURON, V14, P645, DOI 10.1016/0896-6273(95)90321-6 MELICHAR I, 1987, HEARING RES, V25, P35, DOI 10.1016/0378-5955(87)90077-3 Minowa O, 1999, SCIENCE, V285, P1408, DOI 10.1126/science.285.5432.1408 Rabionet R, 2000, HUM MUTAT, V16, P190, DOI 10.1002/1098-1004(200009)16:3<190::AID-HUMU2>3.0.CO;2-I Sakaguchi N, 1998, HEARING RES, V118, P114, DOI 10.1016/S0378-5955(98)00022-7 SALT AN, 1987, LARYNGOSCOPE, V97, P984 Santos-Sacchi J, 1997, BIOPHYS J, V73, P1424 SCHLATTER E, 1993, PFLUG ARCH EUR J PHY, V422, P481, DOI 10.1007/BF00375076 SCHOENMAKERS TJM, 1992, BIOTECHNIQUES, V12, P870 SCHULTE BA, 1989, J HISTOCHEM CYTOCHEM, V37, P127 SCHULTE BA, 1994, HEARING RES, V78, P65, DOI 10.1016/0378-5955(94)90045-0 SCHULTE BA, 1993, HEARING RES, V65, P262, DOI 10.1016/0378-5955(93)90219-Q SHEN Z, 2001, ABSTR ASS RES OTOLAR, V24, P843 SHEN Z, 2002, ABSTR ASS RES OTOLAR, V25, P389 Shen ZJ, 1997, AUDIT NEUROSCI, V3, P215 SMITH CA, 1954, LARYNGOSCOPE, V64, P141 Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 Spicer SS, 1998, HEARING RES, V118, P1, DOI 10.1016/S0378-5955(98)00006-9 Spiess AC, 2002, LARYNGOSCOPE, V112, P1635, DOI 10.1097/00005537-200209000-00020 Steel KP, 1999, SCIENCE, V285, P1363, DOI 10.1126/science.285.5432.1363 STERKERS O, 1982, AM J OTOLARYNG, V3, P367, DOI 10.1016/S0196-0709(82)80012-4 Takeuchi S, 2000, BIOPHYS J, V79, P2572 Takeuchi S, 1996, HEARING RES, V95, P18, DOI 10.1016/0378-5955(96)00016-0 Takeuchi S, 1999, AM J PHYSIOL-CELL PH, V277, pC91 Tyson J, 1997, HUM MOL GENET, V6, P2179, DOI 10.1093/hmg/6.12.2179 Vetter DE, 1996, NEURON, V17, P1251, DOI 10.1016/S0896-6273(00)80255-X Wallner M, 1995, RECEPTOR CHANNEL, V3, P185 Wallner M, 1999, P NATL ACAD SCI USA, V96, P4137, DOI 10.1073/pnas.96.7.4137 Wang ZQ, 2002, MOL GENET METAB, V75, P308, DOI 10.1016/S1096-7192(02)00007-0 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4 Zhao HB, 2000, J MEMBRANE BIOL, V175, P17, DOI 10.1007/s002320001051 ZIDANIC M, 1990, BIOPHYS J, V57, P1253 NR 56 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2004 VL 187 IS 1-2 BP 35 EP 43 DI 10.1016/S0378-5955(03)00345-9 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 762KR UT WOS:000187971300004 PM 14698085 ER PT J AU Tanaka, F Whitworth, CA Rybak, LP AF Tanaka, F Whitworth, CA Rybak, LP TI Round window pH manipulation alters the ototoxicity of systemic cisplatin SO HEARING RESEARCH LA English DT Article DE cisplatin; adverse reaction; ototoxicity; pH; rat ID MAMMARY-TUMOR CELLS; GUINEA-PIG; MONOHYDRATED COMPLEX; INTRACELLULAR PH; HEARING-LOSS; CYTOTOXICITY; PLATINUM; ACID; PHARMACOKINETICS; PERMEABILITY AB The effect of manipulation of pH on the ototoxicity of systemic cisplatin was studied in Wistar rats. After control auditory brainstem responses (ABR) were performed, the auditory bullae were opened and acidic (pH 6.0), neutral (pH 7.4) or basic (pH 9.0) phosphate-buffered saline (PBS) was applied to fill the round window niche (RWN). After 30 min, 13 mg/kg cisplatin solution or saline was administered intraperitoneally. After 3 days, follow-up ABRs were performed and cochleae were processed for morphological analysis. Animals that received basic PBS on the RWN and cisplatin intraperitoneally had significantly smaller ABR threshold shifts compared to rats pretreated with neutral pH buffer (P<0.05). Animals that received acidic PBS on the RWN and systemic cisplatin showed significantly greater ABR threshold shifts compared to those pretreated with neutral pH buffer (P<0.05). No significant threshold changes were observed in animals that received buffer of any pH on the RWN, followed by saline intraperitoneally. Semiquantitative analysis of hair cell survival confirmed a protective effect by basic PBS against cisplatin and a synergistic effect by acidic PBS on cisplatin ototoxicity (P<0.05). It appears that changes in cochlear pH can modulate the ototoxic effects of systemically applied cisplatin. (C) 2003 Elsevier B.V. All rights reserved. C1 So Illinois Univ, Sch Med, Dept Surg, Springfield, IL 62794 USA. Nagasaki Univ, Sch Med, Dept Otolaryngol, Nagasaki 8528501, Japan. RP Rybak, LP (reprint author), So Illinois Univ, Sch Med, Dept Surg, POB 19638, Springfield, IL 62794 USA. EM lrybak@siumed.edu CR ANDERSSON A, 1994, J PHARM SCI, V83, P859, DOI 10.1002/jps.2600830620 ATEMA A, 1993, INT J CANCER, V54, P166, DOI 10.1002/ijc.2910540126 Barton J K, 1978, Ann N Y Acad Sci, V313, P686, DOI 10.1111/j.1749-6632.1978.tb39455.x BERTOLERO F, 1982, RES COMMUN CHEM PATH, V36, P273 Chau Q, 1999, CANCER CHEMOTH PHARM, V44, P193, DOI 10.1007/s002800050967 Ekborn A, 2003, CANCER CHEMOTH PHARM, V51, P36, DOI 10.1007/s00280-002-0540-5 Ekborn A, 2000, HEARING RES, V140, P38, DOI 10.1016/S0378-5955(99)00190-2 Fausti SA, 1999, EAR HEARING, V20, P497, DOI 10.1097/00003446-199912000-00005 Goycoolea M V, 1988, Laryngoscope, V98, P1, DOI 10.1288/00005537-198806001-00002 Goycoolea MV, 2001, ACTA OTO-LARYNGOL, V121, P437, DOI 10.1080/000164801300366552 GROOS E, 1986, CANCER, V58, P1199, DOI 10.1002/1097-0142(19860915)58:6<1199::AID-CNCR2820580604>3.0.CO;2-Z IKEDA K, 1989, AM J OTOLARYNG, V10, P382, DOI 10.1016/0196-0709(89)90032-X Juhn S K, 1989, Acta Otolaryngol Suppl, V457, P43 Kamimura T, 1999, HEARING RES, V131, P117, DOI 10.1016/S0378-5955(99)00017-9 Korver KD, 2002, OTOLARYNG HEAD NECK, V126, P683, DOI 10.1067/mhn.2002.125299 LAURELL G, 1995, CANCER CHEMOTH PHARM, V36, P83 LAURENCOT CM, 1995, ONCOL RES, V7, P371 LAURENCOT CM, 1995, ONCOL RES, V7, P363 MILLER M, 1991, HEARING RES, V51, P247 Murakami T, 2001, INT J CANCER, V93, P869, DOI 10.1002/ijc.1418 OKUNO T, 1984, ARCH OTO-RHINO-LARYN, V240, P103 PIEL IJ, 1974, CANCER CHEMOTH REP 1, V58, P871 RYBAK LP, 1981, J LARYNGOL OTOL, V95, P745, DOI 10.1017/S0022215100091374 Saito T, 1997, ACTA OTO-LARYNGOL, V117, P61, DOI 10.3109/00016489709117993 SALT AN, 1988, PHYSL EAR, P341 Sockalingam R, 2002, ANN OTO RHINOL LARYN, V111, P745 Tan CT, 2001, HEARING RES, V154, P81, DOI 10.1016/S0378-5955(01)00222-2 Tanaka F, 2003, HEARING RES, V177, P21, DOI 10.1016/S0378-5955(02)00771-2 TANNOCK IF, 1989, CANCER RES, V49, P4373 Yachnin JR, 1998, CANCER LETT, V132, P175, DOI 10.1016/S0304-3835(98)00175-X NR 30 TC 8 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2004 VL 187 IS 1-2 BP 44 EP 50 DI 10.1016/S0378-5955(03)00330-7 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 762KR UT WOS:000187971300005 PM 14698086 ER PT J AU Wada, H Kimura, K Gomi, T Sugawara, M Katori, Y Kakehata, S Ikeda, K Kobayashi, T AF Wada, H Kimura, K Gomi, T Sugawara, M Katori, Y Kakehata, S Ikeda, K Kobayashi, T TI Imaging of the cortical cytoskeleton of guinea pig outer hair cells using atomic force microscopy SO HEARING RESEARCH LA English DT Article DE outer hair cell; atomic force microscope; cortical lattice; actin filament; spectrin cross-link ID PLASMA-MEMBRANE; COCHLEAR AMPLIFIER; SHAPE CHANGES; PROTEINS; DIAMIDE; ORGAN; ULTRASTRUCTURE; ERYTHROCYTES; STIFFNESS; SPECTRIN AB Mammalian outer hair cells (OHCs) are known to respond to acoustical stimulation with elongation and contraction of the cells' cylindrical soma in vivo, and this motility is related to both the protein motors distributed along the OHC plasma membrane and the cytoskeleton beneath it. Therefore, the cytoskeleton seems to play an important role in the motility of the OHC. Recently, an atomic force microscope (AFM) was used to investigate the OHC cytoskeleton under physiological conditions. However, details were not made clear in that study. In this study, the ultrastructure of the cytoskeleton of fixed OHCs of guinea pigs, which were extracted with Triton X-100, was investigated using the AFM. As a result, the cortical cytoskeleton, which is formed by discrete oriented domains, was imaged, and circumferential filaments and cross-links were observed within the domain. Morphological change of the cytoskeleton of the OHC induced by diamide treatment was then examined using the AFM, and reduction of cross-links was observed. The examination indicates that the cortical cytoskeleton comprises circumferential actin filaments and spectrin cross-links. (C) 2003 Elsevier B.V. All rights reserved. C1 Tohoku Univ, Dept Bioengn & Robot, Sendai, Miyagi 9808579, Japan. Tokyo Inst Technol, Dept Mech & Environm Informat, Tokyo 1528552, Japan. Tohoku Univ, Grad Sch Med, Dept Otorhinolaryngol Head & Neck Surg, Sendai, Miyagi 9808574, Japan. Hirosaki Univ, Sch Med, Dept Otorhinolaryngol, Hirosaki, Aomori 0368562, Japan. RP Wada, H (reprint author), Tohoku Univ, Dept Bioengn & Robot, Sendai, Miyagi 9808579, Japan. EM wada@cc.mech.tohoku.ac.jp CR Adachi M, 1997, BIOPHYS J, V73, P2809 Adachi M, 1999, P NATL ACAD SCI USA, V96, P7244, DOI 10.1073/pnas.96.13.7244 ARIMA T, 1991, CELL TISSUE RES, V263, P91, DOI 10.1007/BF00318403 ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 BECKER PS, 1986, J BIOL CHEM, V261, P4620 BINNIG G, 1986, PHYS REV LETT, V56, P930, DOI 10.1103/PhysRevLett.56.930 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 DRAKE B, 1989, SCIENCE, V243, P1586, DOI 10.1126/science.2928794 FLOCK A, 1986, ARCH OTO-RHINO-LARYN, V243, P83, DOI 10.1007/BF00453755 Frolenkov GI, 1998, MOL BIOL CELL, V9, P1961 HAEST CWM, 1977, BIOCHIM BIOPHYS ACTA, V469, P226, DOI 10.1016/0005-2736(77)90186-9 HOLLEY MC, 1990, J CELL SCI, V96, P283 HOLLEY MC, 1992, J CELL SCI, V102, P569 HOLLEY MC, 1988, NATURE, V335, P635, DOI 10.1038/335635a0 HOLLEY MC, 1990, EUR ARCH OTO-RHINO-L, V247, P4 KIMURA RS, 1975, INT REV CYTOL, V42, P173, DOI 10.1016/S0074-7696(08)60981-X KNIPPER M, 1995, HEARING RES, V86, P100, DOI 10.1016/0378-5955(95)00060-H KOSOWER NS, 1995, METHOD ENZYMOL, V251, P123 Le Grimellec C, 2002, J COMP NEUROL, V451, P62, DOI 10.1002/cne.10338 Le Grimellec C., 2000, Single Molecules, V1 Leonova EV, 1999, HEARING RES, V130, P137, DOI 10.1016/S0378-5955(99)00004-0 Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 LIM DJ, 1971, ARCHIV OTOLARYNGOL, V94, P294 MAEDA N, 1983, BIOCHIM BIOPHYS ACTA, V735, P104, DOI 10.1016/0005-2736(83)90265-1 NISHIDA Y, 1993, HEARING RES, V65, P274, DOI 10.1016/0378-5955(93)90220-U RAPHAEL Y, 1986, J SUBMICR CYTOL PATH, V18, P731 SAITO K, 1983, CELL TISSUE RES, V229, P467 SLEPECKY N, 1988, J SUBMICR CYTOL PATH, V20, P37 Wada H, 2003, HEARING RES, V177, P61, DOI 10.1016/S0378-5955(02)00798-0 Wada H, 2001, HEARING RES, V162, P10, DOI 10.1016/S0378-5955(01)00355-0 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 Zine A, 1997, NEUROSCIENCE, V80, P1247, DOI 10.1016/S0306-4522(97)00163-2 NR 32 TC 11 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2004 VL 187 IS 1-2 BP 51 EP 62 DI 10.1016/S0378-5955(03)00334-4 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 762KR UT WOS:000187971300006 PM 14698087 ER PT J AU Furst, M Bresloff, I Levine, RA Merlob, PL Attias, JJ AF Furst, M Bresloff, I Levine, RA Merlob, PL Attias, JJ TI Interaural time coincidence detectors are present at birth: evidence from binaural interaction SO HEARING RESEARCH LA English DT Article DE binaural interaction; interaural time delay; neonate; binaural difference ID AUDITORY BRAIN-STEM; EVOKED-POTENTIALS; INTERACTION COMPONENT; CLICK LATERALIZATION; SOUND LOCALIZATION; HEARING-LOSS; INFANTS; FREQUENCY; LATENCY; CAT AB Binaural processing of sounds in mammals is presumably initiated within the auditory nuclei of the caudal pons. The binaural difference waveform (BD) can be derived from the sum of the waveforms evoked by right monaural clicks plus left monaural clicks minus the waveform evoked by binaural clicks. In adults, the BD's first positive peak (beta) is large only for stimuli with interaural time differences (ITDs) that produce a fused acoustic percept. Humans at birth can localize and discriminate sound sources, but their head circumference is about two-thirds of an adult head. In order to test whether beta is related to head circumference, we recorded beta in human neonates as a function of ITD. Binaural clicks with ITDs ranging between 0 and 1000 mus were used to derive BD waveforms in 34 neonates. For ITD=0, beta was detectable in 56% of newborns. The incidence of beta detection then decreased as ITD increased. Only 9% of the babies had detectable beta for all ITDs. No correlation was found between the existence of beta and other properties of the monaural or binaural auditory brainstem response. The finding that for some infants beta was present for all ITDs up to 1.0 ms suggests that there is no recalibration of brainstem delay lines with head growth. Our data suggest that the brainstem auditory pathway for detecting interaural time differences in the adult is probably present at birth. Maturational factors such as increased myelination and greater firing synchrony probably improve the detectability of beta with age. The second peak in the BD waveform. (delta) was highly correlated with the existence of wave VI in the binaural and monaural waveforms. (C) 2003 Elsevier B.V. All rights reserved. C1 Tel Aviv Univ, Fac Engn, Dept Elect Engn Syst, IL-69978 Tel Aviv, Israel. Schneider Childrens Hosp, Rabin Med Ctr, Petah Tiqwa, Israel. Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA. Harvard Univ, Sch Med, Boston, MA 02115 USA. Univ Haifa, Dept Commun Disorders, IL-31999 Haifa, Israel. RP Furst, M (reprint author), Tel Aviv Univ, Fac Engn, Dept Elect Engn Syst, IL-69978 Tel Aviv, Israel. EM mira@eng.tau.ac.il CR Aharonson V, 2001, J ACOUST SOC AM, V109, P2840, DOI 10.1121/1.1371756 Attias J, 1995, EAR HEARING, V16, P612, DOI 10.1097/00003446-199512000-00007 BONFILS P, 1988, ARCH OTOLARYNGOL, V114, P887 BONFILS P, 1990, LARYNGOSCOPE, V100, P186 Brantberg K, 1999, AUDIOL NEURO-OTOL, V4, P88, DOI 10.1159/000013825 CLIFTON RK, 1988, DEV PSYCHOL, V24, P477, DOI 10.1037//0012-1649.24.4.477 ConeWesson B, 1997, HEARING RES, V106, P163, DOI 10.1016/S0378-5955(97)00016-6 COX L, 1985, AUDITORY BRAINSTEM R, P298 DOBIE RA, 1979, ARCH OTOLARYNGOL, V105, P391 ELTON M, 1984, ELECTROEN CLIN NEURO, V57, P490, DOI 10.1016/0013-4694(84)90079-8 FULLERTON BC, 1987, ELECTROEN CLIN NEURO, V66, P547, DOI 10.1016/0013-4694(87)90102-7 Furst M, 1995, J Basic Clin Physiol Pharmacol, V6, P149 FURST M, 1985, J ACOUST SOC AM, V78, P1644, DOI 10.1121/1.392802 FURST M, 1990, HEARING RES, V49, P347, DOI 10.1016/0378-5955(90)90113-4 GUNNARSON AD, 1991, J SPEECH HEAR RES, V34, P1207 HECOX K, 1982, ANN NY ACAD SCI, V388, P538, DOI 10.1111/j.1749-6632.1982.tb50815.x HECOX KE, 1981, NEUROLOGY, V31, P832 HOSFORDDUNN H, 1981, AUDIOLOGY, V20, P394 ITO S, 1988, HEARING RES, V35, P9, DOI 10.1016/0378-5955(88)90036-6 JACOBSON JT, 1982, EAR HEARING, V3, P263, DOI 10.1097/00003446-198209000-00006 JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495 Jiang ZD, 1996, PEDIATR RES, V39, P708, DOI 10.1203/00006450-199604000-00024 JONES SJ, 1990, ELECTROEN CLIN NEURO, V77, P214, DOI 10.1016/0168-5597(90)90040-K Kemp David T., 1993, Seminars in Hearing, V14, P30, DOI 10.1055/s-0028-1085103 LEVINE RA, 1981, ANN NEUROL, V9, P384, DOI 10.1002/ana.410090412 LEVINE RA, 1991, HEARING RES, V57, P121, DOI 10.1016/0378-5955(91)90081-J MCPHERSON DL, 1989, ELECTROEN CLIN NEURO, V74, P124, DOI 10.1016/0168-5597(89)90017-8 Melcher JR, 1996, HEARING RES, V95, P144, DOI 10.1016/0378-5955(96)00032-9 Moore JK, 1996, EAR HEARING, V17, P411, DOI 10.1097/00003446-199610000-00007 MOORE RE, 1986, ACTA OTOLARYNGOL S, V429, P51 MORRONGELIO BA, 1984, J EXP CHILD PSYCHOL, V24, P8 MORRONGIELLO BA, 1994, DEV PSYCHOBIOL, V27, P519, DOI 10.1002/dev.420270805 MUIR D, 1979, CHILD DEV, V50, P426 Ponton CW, 1996, EAR HEARING, V17, P402, DOI 10.1097/00003446-199610000-00006 Pratt H, 1998, EVOKED POTENTIAL, V108, P511, DOI 10.1016/S0168-5597(98)00029-X SALAMY A, 1979, DEV PSYCHOBIOL, V12, P519, DOI 10.1002/dev.420120512 SALAMY A, 1976, ELECTROEN CLIN NEURO, V40, P418, DOI 10.1016/0013-4694(76)90193-0 SONTHEIMER D, 1985, ELECTROEN CLIN NEURO, V61, P539, DOI 10.1016/0013-4694(85)90973-3 Stockard J. E., 1981, American Journal of EEG Technology, V21 STOCKARD JE, 1983, EAR HEARING, V4, P11, DOI 10.1097/00003446-198301000-00005 STOCKARD J J, 1978, American Journal of EEG Technology, V18, P177 Stollman MHP, 1996, BRIT J AUDIOL, V30, P227, DOI 10.3109/03005369609079043 NR 42 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2004 VL 187 IS 1-2 BP 63 EP 72 DI 10.1016/S0378-5955(03)00331-9 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 762KR UT WOS:000187971300007 PM 14698088 ER PT J AU Roberts, RA Koehnke, J Besing, J AF Roberts, RA Koehnke, J Besing, J TI Effects of reverberation on fusion of lead and lag noise burst stimuli SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Annual Convention of the American-Academy-of-Audiology CY 2000 CL CHICAGO, ILLINOIS SP Amer Acad Audiol DE precedence effect; fusion; echo threshold; reverberation ID SPEECH-INTELLIGIBILITY; PRECEDENCE; LOCALIZATION; ECHO; DISCRIMINATION; PERCEPTION; LISTENERS; HEARING; SOUND AB The purpose of this investigation was to determine the effects of reverberation on the precedence effect by obtaining thresholds for perception of leading and lagging noise burst stimuli as separate auditory events. In Experiment 1, lag burst thresholds for 4-ms noise bursts were measured in a simulated reverberant and anechoic environment for nine subjects with normal hearing at presentation levels of 10, 20, and 30 dB SL. Results indicated that lag burst thresholds obtained in the reverberant environment were higher than those obtained in the anechoic environment, with no effect of sensation level. In Experiment 2, three new stimulus conditions, two monaural and one binaural control, were employed. For one monaural condition, the stimuli were equal in level and for the other, the leading stimulus was more intense than the lagging stimulus. For the binaural control condition, the stimuli were presented from a perceived spatial location of 0degrees azimuth. In the monaural and binaural control conditions, lag burst thresholds were lower than those obtained in the reverberant environment of Experiment 1. There was no difference between lag burst thresholds obtained in either environment for the monaural and binaural control conditions compared to the anechoic condition of Experiment 1. Results of Experiment 2 indicate that the higher lag burst thresholds observed in Experiment I are not fully explained by a peripheral masking effect. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ S Florida, Dept Commun Sci & Disorders, Tampa, FL 33620 USA. Seton Hall Univ, Sch Grad Med Educ, S Orange, NJ 07079 USA. RP Roberts, RA (reprint author), Univ S Florida, Dept Commun Sci & Disorders, 4202 E Fowler Ave,PCD 1017, Tampa, FL 33620 USA. EM rroberts@chumal.cas.usf.edu CR BESING JM, 1995, EAR HEARING, V16, P220, DOI 10.1097/00003446-199504000-00009 Blauert J., 1997, SPATIAL HEARING PSYC Chiang YC, 1998, J ACOUST SOC AM, V104, P3039, DOI 10.1121/1.423885 EBATA M, 1968, J ACOUST SOC AM, V44, P542, DOI 10.1121/1.1911118 FREYMAN RL, 1991, J ACOUST SOC AM, V90, P874, DOI 10.1121/1.401955 HAAS H, 1951, ACUSTICA, V1, P48 HARTMANN WM, 1983, J ACOUST SOC AM, V74, P1380, DOI 10.1121/1.390163 Koehnke J, 1996, EAR HEARING, V17, P211, DOI 10.1097/00003446-199606000-00004 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Lister JJ, 2000, EAR HEARING, V21, P141, DOI 10.1097/00003446-200004000-00008 Litovsky RY, 2001, J ACOUST SOC AM, V109, P346, DOI 10.1121/1.1328792 Litovsky RY, 1999, J ACOUST SOC AM, V106, P1633, DOI 10.1121/1.427914 Lochner J.P.A., 1958, Acustica, V8 MONCUR JP, 1967, J SPEECH HEAR RES, V10, P186 NABELEK AK, 1982, J ACOUST SOC AM, V71, P1242 Roberts RA, 2002, EAR HEARING, V23, P349, DOI 10.1097/01.AUD.0000027429.24853.FB SCHUBERT ED, 1969, J ACOUST SOC AM, V45, P1525, DOI 10.1121/1.1911633 Thurlow W. R., 1961, PERCEPT MOTOR SKILL, V13, P7 WALLACH H, 1949, AM J PSYCHOL, V62, P315, DOI 10.2307/1418275 Yost WA, 1996, CURR DIR PSYCHOL SCI, V5, P125, DOI 10.1111/1467-8721.ep11452783 NR 20 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2004 VL 187 IS 1-2 BP 73 EP 84 DI 10.1016/S0378-5955(03)00337-X PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 762KR UT WOS:000187971300008 PM 14698089 ER PT J AU Whittemore, KR Merchant, SN Poon, BB Rosowski, JJ AF Whittemore, KR Merchant, SN Poon, BB Rosowski, JJ TI A normative study of tympanic membrane motion in humans using a laser Doppler vibrometer (LDV) SO HEARING RESEARCH LA English DT Article DE middle-ear function; Tympanic membrane velocity; clinical evaluation of hearing function ID HUMAN MIDDLE-EAR; TIME-AVERAGED HOLOGRAPHY; CONDUCTIVE HEARING-LOSS; MONGOLIAN GERBIL; STATIC PRESSURE; VIBRATIONS; MECHANICS; TYMPANOPLASTY; TRANSMISSION; TYMPANOMETRY AB Laser Doppler vibrometry was used to measure the sound-induced tympanic membrane (TM) velocity, assessed near the umbo, in 56 normal hearing human subjects at nine sound frequencies. A second series of measurements was made in 47 subjects with sensorineural hearing loss (SNHL). Each set of measurements has features in common with previously published results. The measured velocity magnitude (normalized by the stimulus sound pressure) at any one frequency ranged among subjects by factors of 3-0.3 (+/-10 dB) from the mean and the phase angle of the normalized velocity ranged from 15degrees around the mean at low frequencies to more than +/-200degrees around the mean at 6 kHz. Measurements repeated after intervals of minutes to months were generally within 40% in magnitude (+/-3 dB) and 20degrees in phase. Sources of variability included the effect of small differences in the location of the measurement on the TM and small static middle-ear pressures. No effects of stimulus level, ear sidedness (right or left), gender, age or the presence or absence of SNHL were found. These results provide a baseline normal response for studies of TM velocity with conductive hearing losses of different etiologies. (C) 2003 Elsevier B.V. All rights reserved. C1 Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02114 USA. Massachusetts Eye & Ear Infirm, Dept Otolaryngol, Boston, MA 02114 USA. Massachusetts Eye & Ear Infirm, Eaton Peabody Lab Auditory Physiol, Boston, MA 02114 USA. Harvard MIT Div Hlth Sci & Technol, Speech & Hearing Biosci & Technol Program, Cambridge, MA 02139 USA. MIT, Elect Res Lab, Cambridge, MA 02139 USA. RP Rosowski, JJ (reprint author), Harvard Univ, Sch Med, Dept Otol & Laryngol, 243 Charles St, Boston, MA 02114 USA. EM jjr@epl.meei.harvard.edu CR Aibara R, 2001, HEARING RES, V152, P100, DOI 10.1016/S0378-5955(00)00240-9 ANSON JB, 1973, SURG ANATOMY TEMPORA BEATTIE RC, 1975, J AM AUDITORY SOC, V1, P21 Bigelow DC, 1996, LARYNGOSCOPE, V106, P71, DOI 10.1097/00005537-199601000-00014 BRACKMANN DE, 1984, OTOLARYNG HEAD NECK, V92, P32 BUUNEN TJF, 1981, J ACOUST SOC AM, V69, P744, DOI 10.1121/1.385574 CORSO JF, 1963, ARCHIV OTOLARYNGOL, V77, P385 DECRAEMER WF, 1989, HEARING RES, V38, P1, DOI 10.1016/0378-5955(89)90123-8 DECRAEMER WF, 1990, HEARING RES, V47, P205, DOI 10.1016/0378-5955(90)90152-F DECRAEMER WF, 1991, HEARING RES, V54, P305, DOI 10.1016/0378-5955(91)90124-R DIRCKX JJJ, 1992, HEARING RES, V62, P99, DOI 10.1016/0378-5955(92)90206-3 DIRCKX JJJ, 1991, HEARING RES, V51, P93, DOI 10.1016/0378-5955(91)90009-X Doan DE, 1996, HEARING RES, V97, P174, DOI 10.1016/0378-5955(96)00060-3 Dyer RK, 2000, FUNCTION AND MECHANICS OF NORMAL, DISEASED AND RECONSTRUCTED MIDDLE EARS, P383 ETHOLM B, 1974, ANN OTO RHINOL LARYN, V83, P49 Gaihede M, 2000, AUDIOL NEURO-OTOL, V5, P53, DOI 10.1159/000013867 GOODE RL, 1996, AM J OTOL, V17, P59 GOODE RL, 1986, ARCH OTOLARYNGOL, V112, P923 GOODE RL, 1993, AM J OTOL, V14, P247 Hall JW, 1994, HDB CLIN AUDIOLOGY, P283 Huber AM, 2001, LARYNGOSCOPE, V111, P501, DOI 10.1097/00005537-200103000-00022 JERGER J, 1974, ARCH OTOLARYNGOL, V99, P165 KHANNA SM, 1972, J ACOUST SOC AM, V51, P1904, DOI 10.1121/1.1913050 KUROKAWA H, 1995, OTOLARYNG HEAD NECK, V113, P349, DOI 10.1016/S0194-5998(95)70067-6 LEE K, 1971, LARYNGOSCOPE, V81, P529, DOI 10.1288/00005537-197104000-00004 MANI C, 2000, SCAND AUDIOL, V29, P225 Margolis RH, 1999, J ACOUST SOC AM, V106, P265, DOI 10.1121/1.427055 Mehta RP, 2003, OTOL NEUROTOL, V24, P176, DOI 10.1097/00129492-200303000-00009 Merchant SN, 2000, FUNCTION AND MECHANICS OF NORMAL, DISEASED AND RECONSTRUCTED MIDDLE EARS, P367 MOLLER A R, 1965, Acta Otolaryngol, V60, P129, DOI 10.3109/00016486509126996 Murakami S, 1997, ACTA OTO-LARYNGOL, V117, P390, DOI 10.3109/00016489709113411 Overstreet EH, 2002, J ACOUST SOC AM, V111, P261, DOI 10.1121/1.1420382 Piskorski P, 1999, J ACOUST SOC AM, V105, P1749, DOI 10.1121/1.426713 Rodriguez Jorge J, 1997, HNO, V45, P997, DOI 10.1007/s001060050185 Rosowski JJ, 2003, OTOL NEUROTOL, V24, P165, DOI 10.1097/00129492-200303000-00008 ROSOWSKI JJ, 2003, IN PRESS J ASS RES O Rosowski JJ, 1999, AUDIOL NEURO-OTOL, V4, P129, DOI 10.1159/000013831 RUAH CB, 1991, ARCH OTOLARYNGOL, V117, P627 Shahnaz N, 1997, EAR HEARING, V18, P326, DOI 10.1097/00003446-199708000-00007 SHANKS JE, 1988, J SPEECH HEAR DISORD, V53, P354 Silman S., 1984, ACOUSTIC REFLEX BASI STASCHE N, 1994, ACTA OTO-LARYNGOL, V114, P59, DOI 10.3109/00016489409126017 SWARTZ JD, 1985, RADIOLOGY, V154, P697 SWARTZ JD, 1986, RADIOLOGY, V159, P187 Swartz Joel D, 2002, Curr Probl Diagn Radiol, V31, P4 SWARTZ JD, 1985, ANN OTO RHINOL LARYN, V94, P263 TONNDORF J, 1972, J ACOUST SOC AM, V52, P1221, DOI 10.1121/1.1913236 VLAMING MSMG, 1986, CLIN OTOLARYNGOL, V11, P353, DOI 10.1111/j.1365-2273.1986.tb00137.x Vorwerk U, 2000, FUNCTION AND MECHANICS OF NORMAL, DISEASED AND RECONSTRUCTED MIDDLE EARS, P167 Voss SE, 2000, HEARING RES, V150, P43, DOI 10.1016/S0378-5955(00)00177-5 Wever EG, 1954, PHYSL ACOUSTICS Wiley T L, 1999, J Am Acad Audiol, V10, P173 Willi UB, 2002, HEARING RES, V174, P32, DOI 10.1016/S0378-5955(02)00632-9 WILSON WR, 2002, CLIN HDB EAR NOSE TH YEE AL, 1987, ACTA OTO-LARYNGOL, V104, P261, DOI 10.3109/00016488709107327 NR 55 TC 57 Z9 58 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2004 VL 187 IS 1-2 BP 85 EP 104 DI 10.1016/S0378-5955(03)00332-0 PG 20 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 762KR UT WOS:000187971300009 PM 14698090 ER PT J AU Sohmer, H Freeman, S Perez, R AF Sohmer, H Freeman, S Perez, R TI Semicircular canal fenestration - improvement of bone- but not air-conducted auditory thresholds SO HEARING RESEARCH LA English DT Article DE bone conduction; air conduction; threshold; pressure; fenestration; traveling wave; hair cell ID OUTER HAIR-CELLS; EVOKED MYOGENIC POTENTIALS; BASILAR-MEMBRANE; GUINEA-PIG; VESTIBULAR HYPERSENSITIVITY; OVERLOAD PROTECTION; DEHISCENCE SYNDROME; TULLIO PHENOMENON; NOISE EXPOSURE; SOUND AB Auditory stimulation can, under certain circumstances, activate the vestibular end organs and this is facilitated by fenestration of a semicircular canal (SCC). Several fenestrated profoundly deaf patients reported improvements in their bone-(BC) but not air-conducted (AC) thresholds. Bone conduction auditory thresholds have been reported to be better than normal in several patients with thinning or absence of bone over a SCC (dehiscence). This phenomenon was carefully studied in the fat sand rat (Psammomys obesus) by recording auditory brainstem evoked responses to BC and AC auditory stimulation, before and after SCC fenestration. Fenestration would be expected to decrease the pressure difference across the cochlear partition, causing a reduction in the amplitude of the classical base to apex input traveling wave, and should therefore lead to an elevation in AC and BC thresholds. Instead, BC thresholds decreased (i.e. improved) following fenestration (by 7.0+/-4.2 dB; P<0.005), while AC thresholds did not change. Thus the cochlea becomes more sensitive to BC, but not AC, stimulation in the presence of a SCC fenestration. This may be due to the removal by the fenestration of a factor impeding BC cochlear responses, or by the addition of a facilitating factor. The result that the SCC fenestration did not affect AC threshold provides support for the concept that at low intensities the outer hair cells are directly activated by components of the fluid pressures surrounding them, which alternate at audio-frequencies. These cochlear fluid audio-frequency pressures are induced by stapes footplate movement and not by a base to apex input traveling wave. The audio-frequency pressures would not be affected by SCC fenestration. The outer hair cell motility thus induced somehow excites the inner hair cells and the auditory nerve fibers. At low intensities the outer hair cell motility causes localized displacement at the appropriate position on the basilar membrane. (C) 2003 Elsevier B.V. All rights reserved. C1 Hebrew Univ Jerusalem, Hadassah Med Sch, Dept Physiol, IL-91120 Jerusalem, Israel. Shaare Zedek Med Ctr, Dept Otolaryngol Head & Neck Surg, Jerusalem, Israel. RP Sohmer, H (reprint author), Hebrew Univ Jerusalem, Hadassah Med Sch, Dept Physiol, POB 12272, IL-91120 Jerusalem, Israel. EM sohmer@md.huji.ac.il CR Bekesy G., 1960, EXPT HEARING Biron A, 2002, ARCH OTOLARYNGOL, V128, P544 Brantberg K, 1999, ACTA OTO-LARYNGOL, V119, P633 BRAUN M, 1994, HEARING RES, V78, P98, DOI 10.1016/0378-5955(94)90048-5 Braun M, 1996, HEARING RES, V97, P1 Brundin L, 1989, Acta Otolaryngol Suppl, V467, P229 BRUNDIN L, 1989, NATURE, V342, P814, DOI 10.1038/342814a0 BRUNDIN L, 1994, HEARING RES, V73, P35, DOI 10.1016/0378-5955(94)90280-1 CANLON B, 1988, P NATL ACAD SCI USA, V85, P7033, DOI 10.1073/pnas.85.18.7033 CANLON B, 1991, HEARING RES, V53, P7, DOI 10.1016/0378-5955(91)90209-R Colebatch JG, 1998, J NEUROL NEUROSUR PS, V65, P670, DOI 10.1136/jnnp.65.5.670 DING JP, 1991, HEARING RES, V56, P19, DOI 10.1016/0378-5955(91)90149-4 Freeman S, 2000, HEARING RES, V146, P72, DOI 10.1016/S0378-5955(00)00098-8 HOLTON T, 1983, J PHYSIOL-LONDON, V345, P241 IWASA KH, 1991, NEUROSCI LETT, V133, P171, DOI 10.1016/0304-3940(91)90562-8 McCABE B F, 1958, Acta Otolaryngol, V49, P147, DOI 10.3109/00016485809134738 MCCUE MP, 1994, J NEUROSCI, V14, P6058 MIKAELIAN D, 1964, Acta Otolaryngol, V58, P409, DOI 10.3109/00016486409121400 Minor LB, 2000, AM J OTOL, V21, P9 Minor LB, 1998, ARCH OTOLARYNGOL, V124, P249 Minor LB, 2003, OTOL NEUROTOL, V24, P270, DOI 10.1097/00129492-200303000-00023 Minor LB, 2001, ANN NY ACAD SCI, V942, P259 Nilsen KE, 2000, P NATL ACAD SCI USA, V97, P11751, DOI 10.1073/pnas.97.22.11751 OFFUT G, 1986, Journal of Auditory Research, V26, P43 PARKER DE, 1978, J ACOUST SOC AM, V63, P1912, DOI 10.1121/1.381894 PARKER DE, 1976, PUBLICATION MIAMI U Perez R, 2002, LARYNGOSCOPE, V112, P1110, DOI 10.1097/00005537-200206000-00032 Ren TY, 2002, P NATL ACAD SCI USA, V99, P17101, DOI 10.1073/pnas.262663699 RIBARIC K, 1992, ACTA OTO-LARYNGOL, V112, P45, DOI 10.3109/00016489209100781 RIBARIC K, 1992, ACTA OTO-LARYNGOL, V112, P221 RONKEN DA, 1990, HEARING RES, V47, P63, DOI 10.1016/0378-5955(90)90167-N ROSOWSKI JJ, 2003, IN PRESS OTOL NEUROT RUGGERO MA, 1991, J NEUROSCI, V11, P1057 Sheykholeslami K, 2002, HEARING RES, V165, P62, DOI 10.1016/S0378-5955(02)00278-2 SICHEL JY, 2002, J BASIC CLIN PHYSL P, V13, P170 Sichel JY, 2002, LARYNGOSCOPE, V112, P542, DOI 10.1097/00005537-200203000-00024 Sichel JY, 1999, J OTOLARYNGOL, V28, P217 Sohmer H, 2000, HEARING RES, V146, P81, DOI 10.1016/S0378-5955(00)00099-X Watson SRD, 2000, NEUROLOGY, V54, P722 Welgampola MS, 2003, J NEUROL NEUROSUR PS, V74, P771, DOI 10.1136/jnnp.74.6.771 WIT HP, 1981, ACTA OTO-LARYNGOL, V92, P409, DOI 10.3109/00016488109133280 YOUNG ED, 1977, ACTA OTO-LARYNGOL, V84, P352, DOI 10.3109/00016487709123977 NR 42 TC 30 Z9 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2004 VL 187 IS 1-2 BP 105 EP 110 DI 10.1016/S0378-5955(03)00335-6 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 762KR UT WOS:000187971300010 PM 14698091 ER PT J AU Aguilar, LA Malmierca, MS Covenas, R Lopez-Poveda, EA Tramu, G Merchan, M AF Aguilar, LA Malmierca, MS Covenas, R Lopez-Poveda, EA Tramu, G Merchan, M TI Immunocytochemical distribution of Met-enkephalin-Arg(6)-Gly(7)-Leu(8) (Met-8) in the auditory system of the rat SO HEARING RESEARCH LA English DT Article DE cochlear nuclear complex; superior olivary complex; inferior colliculus; thalamus; cortex; pro-enkephalin ID MEDIAL GENICULATE-BODY; SUPERIOR OLIVARY COMPLEX; CENTRAL-NERVOUS-SYSTEM; IN-SITU HYBRIDIZATION; CAT BRAIN-STEM; INFERIOR COLLICULUS; OLIVOCOCHLEAR NEURONS; CORTICOTHALAMIC TERMINALS; TOPOGRAPHIC ORGANIZATION; LATERAL LEMNISCUS AB Methionine-enkephalin-Arg(6)-Gly(7)-Leu(8) (Met(8)) is known to act as a neurotransmitter or neuromodulator and it has been implicated in pain, cardiovascular and motor mechanisms, but its role in audition is currently unknown. In the present study we have applied an immunocytochemical technique and describe the distribution of cell bodies and fibers containing Met(8) in the auditory pathway of the rat. The main finding is that we found either Met(8)-immunoreactive fibers or cell bodies or both in virtually all nuclei of the rat auditory system except for the medial superior olive and the ventral division of the medial geniculate body in which we did not find any immunoreactivity for Met8. This suggests that the neuropeptide Met(8) is widely distributed throughout the auditory system of the rat. Our results suggest that Met(8) could play at least two roles in hearing. It seems to be involved in the processing of the descending auditory pathway, and it may be implicated in the multisensory integration of auditory information that takes place in the non-lemniscal auditory pathway. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Salamanca, Dept Pathol & Cell Biol, Salamanca 37007, Spain. Inst Neurosci Castilla & Leon, Salamanca 37007, Spain. Univ Bordeaux 1, CNRS, URA 339, Lab Neurocytochim Fonct, F-33405 Talence, France. RP Merchan, M (reprint author), Univ Salamanca, Dept Pathol & Cell Biol, Campus Unamuno,C Alfonso X El Sabio S-N, Salamanca 37007, Spain. EM merchan@usal.es RI Malmierca, Manuel/K-9285-2014 OI Malmierca, Manuel/0000-0003-0168-7572 CR ABE J, 1987, BRAIN RES BULL, V19, P735, DOI 10.1016/0361-9230(87)90061-X ABOUMADI L, 1987, HEARING RES, V30, P135, DOI 10.1016/0378-5955(87)90131-6 AKIL H, 1984, ANNU REV NEUROSCI, V7, P223, DOI 10.1146/annurev.ne.07.030184.001255 BAJO VM, 1995, HEARING RES, V83, P161, DOI 10.1016/0378-5955(94)00199-Z Bartlett EL, 2000, NEUROSCIENCE, V100, P811, DOI 10.1016/S0306-4522(00)00340-7 BASBAUM AI, 1984, ANNU REV NEUROSCI, V7, P309, DOI 10.1146/annurev.ne.07.030184.001521 Belda M, 2003, ANAT EMBRYOL, V206, P399, DOI 10.1007/s00429-003-0308-7 BURKI C, 1993, ORL J OTO-RHINO-LARY, V55, P3 CAICEDO A, 1993, J COMP NEUROL, V328, P377, DOI 10.1002/cne.903280305 CANT NB, 1993, NATO ADV SCI INST SE, V239, P91 CLERICI WJ, 1990, J COMP NEUROL, V297, P14, DOI 10.1002/cne.902970103 CLERICI WJ, 1990, J COMP NEUROL, V297, P32, DOI 10.1002/cne.902970104 Covenas R, 1999, ANAT EMBRYOL, V199, P161, DOI 10.1007/s004290050217 Doron NN, 2002, J COMP NEUROL, V453, P345, DOI 10.1002/cne.10412 Doron NN, 1999, J COMP NEUROL, V412, P383 DOUGLAS H, 1992, GEN PHARMACOL, V23, P269, DOI 10.1016/0306-3623(92)90023-D FALLON JH, 1986, J COMP NEUROL, V249, P293, DOI 10.1002/cne.902490302 FAYELUND H, 1986, ANAT EMBRYOL, V175, P35, DOI 10.1007/BF00315454 FEX J, 1981, P NATL ACAD SCI-BIOL, V78, P1255, DOI 10.1073/pnas.78.2.1255 GAMES KD, 1988, HEARING RES, V34, P1, DOI 10.1016/0378-5955(88)90047-0 HOFFMAN DW, 1993, HEARING RES, V69, P1, DOI 10.1016/0378-5955(93)90087-H IADAROLA MJ, 1991, LIFE SCI, V48, P1919, DOI 10.1016/0024-3205(91)90224-Y IBUKI T, 1986, J COMP NEUROL, V279, P445 Kulesza RJ, 2000, JARO, V1, P255, DOI 10.1007/s101620010054 LEDOUX JE, 1987, J COMP NEUROL, V264, P123, DOI 10.1002/cne.902640110 LEDOUX JE, 1990, J NEUROSCI, V10, P1043 LEDOUX JE, 1985, J COMP NEUROL, V242, P182, DOI 10.1002/cne.902420204 LEDOUX JE, 1984, J NEUROSCI, V4, P683 Linke R, 2000, EXP BRAIN RES, V134, P520, DOI 10.1007/s002210000475 MALMIERCA MS, 1993, J COMP NEUROL, V333, P1, DOI 10.1002/cne.903330102 Malmierca MS, 2003, INT REV NEUROBIOL, V56, P147, DOI 10.1016/S0074-7742(03)56005-6 MALMIERCA MS, 1995, ANAT EMBRYOL, V191, P343, DOI 10.1007/BF00534687 Malmierca MS, 2004, RAT NERVOUS SYSTEM, P995 Malmierca MS, 2002, J NEUROSCI, V22, P10891 Merchan MA, 1996, J COMP NEUROL, V372, P245 MERCHAN MA, 1994, J COMP NEUROL, V342, P259, DOI 10.1002/cne.903420209 MERCHENTHALER I, 1986, NEUROSCIENCE, V17, P325, DOI 10.1016/0306-4522(86)90250-2 Mitrofanis John, 2002, Anatomy and Embryology, V205, P453, DOI 10.1007/s00429-002-0268-3 Mulders WHAM, 2002, HEARING RES, V167, P206, DOI 10.1016/S0378-5955(02)00395-7 MURAKAMI S, 1987, J COMP NEUROL, V261, P193, DOI 10.1002/cne.902610203 MURAKAMI S, 1989, J COMP NEUROL, V281, P532, DOI 10.1002/cne.902810404 OJIMA H, 1994, CEREB CORTEX, V4, P646, DOI 10.1093/cercor/4.6.646 OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407 OSEN KK, 1984, ARCH ITAL BIOL, V122, P169 PALKOVITS M, 1988, FRONT NEUROENDOCRIN, V10, P1 PASTERNAK GW, 1987, PSYCHOPHARMACOLOGY 3, P281 Paxinos G., 1998, RAT BRAIN STEREOTAXI PITTIUS CW, 1984, BRAIN RES, V304, P127, DOI 10.1016/0006-8993(84)90868-0 Reuss S, 1999, CELL TISSUE RES, V297, P13, DOI 10.1007/s004410051329 Robertson D, 2000, MICROSC RES TECHNIQ, V51, P307, DOI 10.1002/1097-0029(20001115)51:4<307::AID-JEMT2>3.0.CO;2-4 ROUILLER EM, 1991, HEARING RES, V56, P179, DOI 10.1016/0378-5955(91)90168-9 TANAKA M, 1993, BRAIN RES BULL, V30, P561, DOI 10.1016/0361-9230(93)90083-N THOMPSON AM, 1993, J COMP NEUROL, V335, P402, DOI 10.1002/cne.903350309 VETTER DE, 1993, HEARING RES, V70, P173, DOI 10.1016/0378-5955(93)90156-U VETTER DE, 1991, SYNAPSE, V7, P21, DOI 10.1002/syn.890070104 VETTER DE, 1992, ANAT EMBRYOL, V185, P1, DOI 10.1007/BF00213596 Winer JA, 1999, HEARING RES, V130, P42, DOI 10.1016/S0378-5955(98)00217-2 Winer JA, 2001, J COMP NEUROL, V430, P27 Winer JA, 1999, J COMP NEUROL, V413, P181 Wynne B, 1995, J CHEM NEUROANAT, V9, P289, DOI 10.1016/0891-0618(95)00095-X ZAMIR N, 1985, BRAIN RES, V326, P1, DOI 10.1016/0006-8993(85)91378-2 ZILLES K, 1990, CEREBRAL CORTEX RAT, P114 ZILLES K, 1980, ANAT EMBRYOL, V159, P335, DOI 10.1007/BF00317655 NR 63 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2004 VL 187 IS 1-2 BP 111 EP 121 DI 10.1016/S0378-5955(03)00333-2 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 762KR UT WOS:000187971300011 PM 14698092 ER PT J AU Mulders, WHAM Robertson, D AF Mulders, WHAM Robertson, D TI Dopaminergic olivocochlear neurons originate in the high frequency region of the lateral superior olive of guinea pigs SO HEARING RESEARCH LA English DT Article ID TEMPORARY THRESHOLD SHIFTS; COCHLEAR DE-EFFERENTATION; TYROSINE-HYDROXYLASE; CHOLINE-ACETYLTRANSFERASE; ELECTRICAL-STIMULATION; AUDITORY-SENSITIVITY; ENKEPHALIN-LIKE; BUNDLE; RAT; INNERVATION AB Dopaminergic neurons are known to exist within the lateral superior olive (LSO). The LSO is the nucleus of origin of the lateral olivocochlear neurons, which project to the cochlea and synapse onto the primary afferents contacting the inner hair cells. We investigated whether the dopaminergic neurons in the LSO are part of the lateral olivocochlear neuron population. We combined intracochlear injections of a fluorescent retrograde tracer with immunofluorescent staining of tyrosine hydroxylase (TH). TH was used as a marker for dopaminergic neurons. After the injection with retrograde tracer most of the TH-labelled neurons in the LSO also contained the tracer, which directly demonstrates for the first time that the TH-labelled, dopaminergic neurons in the LSO are lateral olivocochlear neurons. TH-labelled neurons were not equally distributed over the LSO as is observed for the lateral olivocochlear neurons in general. TH-labelled neurons were almost exclusively seen in the medial, high frequency, limb of the LSO. Since the projection of the lateral olivocochlear neurons to the cochlea is known to be tonotopic, we investigated the TH-labelling in the cochlea as well. We found that the staining pattern of TH in the cochlea is in broad agreement with the distribution of TH-labelling in the LSO. Cochlear sections showed dense labelling in the basal and second, high frequency, turns and decreasing intensity of staining in the third turn, while the extreme apical, low frequency, turn was almost devoid of any positive TH-labelling. These observations imply that the dopaminergic neurons of the lateral olivocochlear system may play a role in the selective suppression of the high frequency fibers of the auditory system. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Western Australia, Sch Biomed & Chem Sci, Auditory lab, Discipline Physiol, Crawley, WA 6009, Australia. RP Mulders, WHAM (reprint author), Univ Western Australia, Sch Biomed & Chem Sci, Auditory lab, Discipline Physiol, Stirling Highway, Crawley, WA 6009, Australia. EM hmulders@cyllene.uwa.edu.au CR ALTSCHULER RA, 1984, J HISTOCHEM CYTOCHEM, V32, P839 ALTSCHULER RA, 1983, NEUROSCIENCE, V9, P621, DOI 10.1016/0306-4522(83)90178-1 BROWN MC, 1984, J PHYSIOL-LONDON, V354, P625 BROWN MC, 1987, J COMP NEUROL, V260, P605, DOI 10.1002/cne.902600412 DALDIN C, 1995, EUR ARCH OTO-RHINO-L, V252, P270 DALDIN C, 1995, HEARING RES, V90, P202, DOI 10.1016/0378-5955(95)00167-5 DESMEDT J. E., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1478, DOI 10.1121/1.1918374 EYBALIN M, 1993, NEUROSCIENCE, V54, P133, DOI 10.1016/0306-4522(93)90389-W EYBALIN M, 1993, PHYSIOL REV, V73, P309 FELIX D, 1992, HEARING RES, V64, P1, DOI 10.1016/0378-5955(92)90163-H Giraud AL, 1995, BRAIN RES, V705, P15, DOI 10.1016/0006-8993(95)01091-2 JONES N, 1987, HEARING RES, V30, P33, DOI 10.1016/0378-5955(87)90180-8 Le Prell CG, 2003, JARO, V4, P276, DOI 10.1007/s10162-002-3018-6 LIBERMAN MC, 1990, HEARING RES, V49, P209, DOI 10.1016/0378-5955(90)90105-X LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1 Oestreicher E, 1997, HEARING RES, V107, P46, DOI 10.1016/S0378-5955(97)00023-3 Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3 RAJAN R, 1988, J NEUROPHYSIOL, V60, P569 RAJAN R, 1988, J NEUROPHYSIOL, V60, P549 ROBERTSON D, 1985, HEARING RES, V20, P79, DOI 10.1016/0378-5955(85)90060-7 ROBERTSON D, 1980, J ACOUST SOC AM, V67, P1295, DOI 10.1121/1.384182 ROBERTSON D, 1987, HEARING RES, V26, P69 Ruel J, 2001, EUR J NEUROSCI, V14, P977, DOI 10.1046/j.0953-816x.2001.01721.x Safieddine S, 1997, EUR J NEUROSCI, V9, P356, DOI 10.1111/j.1460-9568.1997.tb01405.x TSUCHITA.C, 1966, J NEUROPHYSIOL, V29, P684 Usami S, 1988, Acta Otolaryngol Suppl, V447, P36 VETTER DE, 1991, SYNAPSE, V7, P21, DOI 10.1002/syn.890070104 VETTER DE, 1992, ANAT EMBRYOL, V185, P1, DOI 10.1007/BF00213596 VINCENT SR, 1988, J COMP NEUROL, V268, P584, DOI 10.1002/cne.902680408 Walsh EJ, 1998, J NEUROSCI, V18, P3859 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 WHITE JS, 1983, J COMP NEUROL, V219, P203, DOI 10.1002/cne.902190206 WINTER IM, 1989, J COMP NEUROL, V280, P143, DOI 10.1002/cne.902800110 Wynne B, 1996, Audiol Neurootol, V1, P54 Zheng XY, 1999, J COMP NEUROL, V406, P72 NR 35 TC 15 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2004 VL 187 IS 1-2 BP 122 EP 130 DI 10.1016/S0378-5955(03)00308-3 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 762KR UT WOS:000187971300012 PM 14698093 ER PT J AU Nourski, KV Miller, CA Hu, N Abbas, PJ AF Nourski, KV Miller, CA Hu, N Abbas, PJ TI Co-administration of kanamycin and ethacrynic acid as a deafening method for acute animal experiments SO HEARING RESEARCH LA English DT Article ID AUDITORY-NERVE FIBER; ELECTRICAL-STIMULATION; RESPONSE PROPERTIES; HEARING-LOSS; POTENTIALS; COCHLEA; CAT C1 Univ Iowa, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA. RP Miller, CA (reprint author), Univ Iowa, Dept Otolaryngol Head & Neck Surg, 21210 PFP,200 Hawkins Dr, Iowa City, IA 52242 USA. EM charles-miller@uiowa.edu CR BRUMMETT RE, 1979, ARCH OTOLARYNGOL, V105, P240 Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3 HARTMANN R, 1994, ACTA OTO-LARYNGOL, V114, P495, DOI 10.3109/00016489409126093 Kiang N Y, 1970, Ciba Found Symp, P241 LEAKEJONES PA, 1982, HEARING RES, V8, P225, DOI 10.1016/0378-5955(82)90076-4 Litvak L, 2001, J ACOUST SOC AM, V110, P368, DOI 10.1121/1.1375140 LITVAK LM, 2002, THESIS MIT CAMBRIDGE MATHOG RH, 1969, NEW ENGL J MED, V280, P1223, DOI 10.1056/NEJM196905292802208 Miller CA, 2003, HEARING RES, V175, P200 Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X Miller CA, 2001, JARO, V2, P216 Moore CM, 2002, HEARING RES, V164, P82, DOI 10.1016/S0378-5955(01)00415-4 Moxon E.C., 1971, THESIS MIT CAMBRIDGE RUSSELL NJ, 1979, ACTA OTO-LARYNGOL, V88, P369, DOI 10.3109/00016487909137181 WEST BA, 1973, ARCH OTOLARYNGOL, V98, P32 XU SA, 1993, HEARING RES, V70, P205, DOI 10.1016/0378-5955(93)90159-X NR 16 TC 9 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2004 VL 187 IS 1-2 BP 131 EP 133 DI 10.1016/S0378-5955(03)00336-8 PG 3 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 762KR UT WOS:000187971300013 PM 14698094 ER PT J AU Higashiyama, K Takeuchi, S Azuma, H Sawada, S Yarnakawa, K Kakigi, A Takeda, T AF Higashiyama, K Takeuchi, S Azuma, H Sawada, S Yarnakawa, K Kakigi, A Takeda, T TI Bumetanide-induced enlargement of the intercellular space in the stria vascularis critically depends on Na plus transport SO HEARING RESEARCH LA English DT Article DE loop diuretic; Na+-K+-2Cl(-) cotransporter; amiloride; perilymph; endolymph ID K-CL COTRANSPORTER; GERBIL INNER-EAR; IMMUNOHISTOCHEMICAL LOCALIZATION; BASOLATERAL MEMBRANE; COCHLEAR DUCT; CELLS; CHANNEL; IDENTIFICATION; FUROSEMIDE; MECHANISMS AB The intercellular space in the stria vascularis (intrastrial space) is a closed space and isolated from both the endolymph and the perilymph in normal tissue. Loop diuretics such as bumetanide and furosemide cause an acute enlargement of the intrastrial space in association with a decline in the endocochlear potential. It is known that bumetanide inhibits the Na+-K+-2Cl(-) cotransporter, which is expressed abundantly in the basolateral membrane of marginal cells. We studied ionic mechanisms underlying the bumetanide-induced enlargement of the intrastrial space using perilymphatic perfusion in guinea pigs. Perilymphatic perfusion with artificial perilymph containing 100 muM bumetanide caused marked enlargement of the intrastrial space, as reported previously. Removal of K+ from the perilymph did not affect the bumetanide-induced enlargement, whereas removal of Na+ from the perilymph inhibited it almost completely. Perilymph containing 1 mM amiloride also inhibited the enlargement of the intrastrial space almost completely. These results indicate that perilymphatic Na+, but not K+, and amiloride-sensitive pathways are essential to the bumetanide-induced enlargement of the intrastrial space. Two possible pathways could yield these results. Na+ in the perilymph could enter the endolymph via Reissner's membrane or the basilar membrane; Na+ in the endolymph would then be taken up by marginal cells via the apical membrane and secreted into the intrastrial space by Na+-K+-ATPase in the basolateral membrane of them. Another, less likely possibility is that Na+ in the perilymph is transported into basal cells or fibrocytes in the spiral ligament, then into intermediate cells via gap junctions, and finally secreted into the intrastrial space via Na+-K+-ATPase of intermediate cells. (C) 2003 Elsevier B.V. All rights reserved. C1 Kochi Med Sch, Dept Otolaryngol, Nankoku, Kochi 7838505, Japan. RP Takeuchi, S (reprint author), Kochi Med Sch, Dept Otolaryngol, Nankoku, Kochi 7838505, Japan. CR Ando M, 1999, CELL TISSUE RES, V298, P179, DOI 10.1007/s004419900066 Azuma H, 2002, ACTA OTO-LARYNGOL, V122, P816, DOI 10.1080/003655402/000028051 Bond BR, 1998, HEARING RES, V123, P1, DOI 10.1016/S0378-5955(98)00089-6 Couloigner V, 2001, AM J PHYSIOL-RENAL, V280, pF214 Crouch JJ, 1997, J HISTOCHEM CYTOCHEM, V45, P773 Dallos P, 1996, SPR HDB AUD, P1 KERR TP, 1982, AM J OTOLARYNG, V3, P332, DOI 10.1016/S0196-0709(82)80006-9 KUSAKARI J, 1978, LARYNGOSCOPE, V88, P12 KUSAKARI J, 1978, ACTA OTO-LARYNGOL, V86, P336, DOI 10.3109/00016487809107512 MARCUS DC, 1981, HEARING RES, V4, P149, DOI 10.1016/0378-5955(81)90002-2 MIZUTA K, 1995, HEARING RES, V88, P199, DOI 10.1016/0378-5955(95)00113-I Mizuta K, 1997, HEARING RES, V106, P154, DOI 10.1016/S0378-5955(97)00010-5 PIKE DA, 1980, HEARING RES, V3, P79, DOI 10.1016/0378-5955(80)90009-X SALT AN, 1987, LARYNGOSCOPE, V97, P984 SANTI PA, 1983, HEARING RES, V12, P151, DOI 10.1016/0378-5955(83)90103-X SANTI PA, 1979, ACTA OTO-LARYNGOL, V88, P1, DOI 10.3109/00016487909137133 SCHULTE BA, 1989, J HISTOCHEM CYTOCHEM, V37, P127 Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 Takeuchi S, 2000, BIOPHYS J, V79, P2572 Takeuchi S, 1999, AM J PHYSIOL-CELL PH, V277, pC91 TAKEUCHI S, 1995, HEARING RES, V83, P89, DOI 10.1016/0378-5955(94)00191-R Takeuchi S, 1996, J MEMBRANE BIOL, V150, P47, DOI 10.1007/s002329900029 Wangemann P, 1996, HEARING RES, V94, P94, DOI 10.1016/0378-5955(96)00008-1 WANGEMANN P, 1996, SPR HDB AUD, V8, P130 Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4 Weber PC, 2001, LARYNGOSCOPE, V111, P1156, DOI 10.1097/00005537-200107000-00006 NR 26 TC 14 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2003 VL 186 IS 1-2 BP 1 EP 9 DI 10.1016/S0378-5955(03)00226-0 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 753VE UT WOS:000187250600001 PM 14644454 ER PT J AU Kelly, TC Whitworth, CA Husain, K Rybak, LP AF Kelly, TC Whitworth, CA Husain, K Rybak, LP TI Aminoguanidine reduces cisplatin ototoxicity SO HEARING RESEARCH LA English DT Article DE ototoxicity; cisplatin; aminoguanidine; nitric oxide; inducible nitric oxide synthase; free radical; malondialdehyde ID NITRIC-OXIDE SYNTHASE; GUINEA-PIG COCHLEA; INOS/NOS II; FREE-RADICALS; INNER-EAR; SELECTIVE-INHIBITION; GENTAMICIN EXPOSURE; LIPID-PEROXIDATION; MAMMALIAN COCHLEA; IN-VITRO AB Cisplatin is known to cause high-frequency neurosensory hearing loss. While reactive oxygen species have been shown to play a role, reactive nitrogen species have been implicated, but not proven to be involved, in cisplatin ototoxicity. The purpose of the present study was to investigate the role of nitric oxide ((NO)-N-.) in cisplatin ototoxicity by administering aminoguanidine (AG), a relatively specific inhibitor of inducible nitric oxide synthase (iNOS), in conjunction with cisplatin. Rats were injected with cisplatin, AG, or both. Auditory brainstem evoked responses (ABR) were measured before and 3 days after cisplatin administration. The cochlear tissue was then assayed for (NO)-N-. and malondialdehyde. Cisplatin alone caused significant ABR threshold shifts at all stimuli tested, whereas AG alone caused no shifts. There was a significant reduction in threshold shift for clicks and 16 kHz tone bursts (but not 32 kHz) when AG was given with cisplatin. The malondialdehyde concentration (but not the (NO)-N-. concentration) in the AG/cisplatin group was significantly lower than that of the cisplatin group. This suggests that AG reduces cisplatin ototoxicity by directly scavenging hydroxyl radicals. The iNOS pathway may play a role in the generation of free radicals and hearing loss resulting from cisplatin administration, but this conclusion was not supported by our data. (C) 2003 Elsevier B.V. All rights reserved. C1 So Illinois Univ, Sch Med, Dept Surg, Springfield, IL 62794 USA. RP Rybak, LP (reprint author), So Illinois Univ, Sch Med, Dept Surg, POB 19638, Springfield, IL 62794 USA. CR AMAEE FR, 1995, ACTA OTO-LARYNGOL, V115, P386, DOI 10.3109/00016489509139334 Bowman MA, 1996, J PHARMACOL EXP THER, V279, P790 CHEN C, 1995, HEARING RES, V87, P1, DOI 10.1016/0378-5955(95)00071-B Corbett JA, 1996, METHOD ENZYMOL, V268, P398 CROW JP, 1995, ROLE NITRIC OXIDE PH, P57 FESSENDEN JD, 1994, BRAIN RES, V668, P9, DOI 10.1016/0006-8993(94)90505-3 Giardino I, 1998, DIABETES, V47, P1114, DOI 10.2337/diabetes.47.7.1114 Gosepath K, 1997, BRAIN RES, V747, P26, DOI 10.1016/S0006-8993(96)01149-3 Halliwell B, 1999, METHOD ENZYMOL, V301, P333 HASAN K, 1993, EUR J PHARMACOL, V249, P101, DOI 10.1016/0014-2999(93)90667-7 Heinrich UR, 1997, EUR ARCH OTO-RHINO-L, V254, P396, DOI 10.1007/BF01642558 Hess A, 1999, BRAIN RES, V830, P113, DOI 10.1016/S0006-8993(99)01433-X HUSAIN K, 2001, HEARING RES, V158, P14 Kedziora-Kornatowska K, 1998, BIOCHEM MOL BIOL INT, V46, P577 Koide Y, 1966, Acta Otolaryngol, V61, P332, DOI 10.3109/00016486609127069 Lee JE, 2003, LARYNGOSCOPE, V113, P994, DOI 10.1097/00005537-200306000-00015 Lisfi D, 2000, RADIAT RES, V153, P497, DOI 10.1667/0033-7587(2000)153[0497:POEVEA]2.0.CO;2 Michel O, 2000, HEARING RES, V143, P23, DOI 10.1016/S0378-5955(00)00018-6 MISKO TP, 1993, EUR J PHARMACOL, V233, P119, DOI 10.1016/0014-2999(93)90357-N Mustafa A, 2002, COMP BIOCHEM PHYS C, V132, P391, DOI 10.1016/S1532-0456(02)00095-9 OHKAWA H, 1979, ANAL BIOCHEM, V95, P351, DOI 10.1016/0003-2697(79)90738-3 Popa R, 2000, ACTA OTO-LARYNGOL, V120, P350, DOI 10.1080/000164800750000559 READ SM, 1981, ANAL BIOCHEM, V116, P53, DOI 10.1016/0003-2697(81)90321-3 REN T, 1997, HEARING RES, V112, P287 Ruan RS, 2001, EXP NEUROL, V169, P200, DOI 10.1006/exnr.2001.7632 Ruan RS, 2002, ANN NY ACAD SCI, V962, P260 Rybak LP, 1999, ANN NY ACAD SCI, V884, P143 Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 Shi XR, 2002, HEARING RES, V164, P49 Tabuchi K, 2001, HEARING RES, V160, P31, DOI 10.1016/S0378-5955(01)00315-X Tabuchi K, 2000, ANN OTO RHINOL LARYN, V109, P715 Takumida M, 2001, ACTA OTO-LARYNGOL, V121, P16, DOI 10.1080/000164801300006218 Takumida M, 2001, ACTA OTO-LARYNGOL, V121, P346 Takumida M, 2002, CURR OPIN NEUROL, V15, P11, DOI 10.1097/00019052-200202000-00003 Takumida M, 2000, HEARING RES, V140, P91, DOI 10.1016/S0378-5955(99)00188-4 Takumida M, 2002, ACTA OTO-LARYNGOL, V122, P10, DOI 10.1080/00016480252775661 Takumida M, 1999, ORL J OTO-RHINO-LARY, V61, P63, DOI 10.1159/000027643 Takumida M, 1998, ORL J OTO-RHINO-LARY, V60, P246, DOI 10.1159/000027605 Vass Z, 1996, HEARING RES, V100, P114, DOI 10.1016/0378-5955(96)00102-5 Watanabe K, 2000, HEARING RES, V145, P149, DOI 10.1016/S0378-5955(00)00086-1 Watanabe K, 2000, ANTI-CANCER DRUG, V11, P29, DOI 10.1097/00001813-200001000-00005 Watanabe K, 2000, ANTI-CANCER DRUG, V11, P401, DOI 10.1097/00001813-200006000-00011 Watanabe K, 2000, ANTI-CANCER DRUG, V11, P731, DOI 10.1097/00001813-200010000-00010 Watanabe K, 2001, ORL J OTO-RHINO-LARY, V63, P155, DOI 10.1159/000055732 Zdanski CJ, 1998, OTOLARYNG HEAD NECK, V119, P159, DOI 10.1016/S0194-5998(98)70049-X NR 45 TC 21 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2003 VL 186 IS 1-2 BP 10 EP 16 DI 10.1016/S0378-5955(03)00303-4 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 753VE UT WOS:000187250600002 PM 14644455 ER PT J AU Allen, PD Burkard, RF Ison, JR Walton, JP AF Allen, PD Burkard, RF Ison, JR Walton, JP TI Impaired gap encoding in aged mouse inferior colliculus at moderate but not high stimulus levels SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 22nd Midwinter Meeting of the Association-for-Research-in-Otolaryngology CY FEB 04-07, 2001 CL ST PETERSBURG, FLORIDA SP Assoc Res Otolaryngol DE aging; temporal resolution; recovery ID AUDITORY-EVOKED POTENTIALS; BRAIN-STEM RESPONSES; HEARING-LOSS; COCHLEAR NUCLEUS; TEMPORAL ACUITY; CBA/J MICE; SPEECH RECOGNITION; FISCHER-344 RATS; WORD RECOGNITION; LIFE-SPAN AB Age-related deterioration of auditory temporal acuity has been identified as a contributing factor in presbycusis. In the present study, the effects of aging and stimulus level on gap encoding and gap recovery functions were investigated by measuring near-field auditory evoked potentials in the inferior colliculus of eight 3 month old and eight 24 month old CBA/CaJ mice, in response to gap stimuli embedded in broadband noise (40, 60, and 80 dB SPL). Gap encoding was assessed by measuring latencies and amplitudes of peak features of the near-field response, and also with a procedure that calculated the root mean square of the response within specific time windows. The chief differences in gap encoding between young and old mice were longer gap thresholds, slower recovery functions, and longer response peak latencies for old mice at 60, but not 80 dB SPL, although the latency of the earliest measured peak remained delayed for this condition in the old compared with the young mice. These results demonstrate that age-related changes in temporal acuity may interact with stimulus level, and suggest that adequate amplification may be critically important for maintaining temporal acuity with advancing age. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Rochester, Dept Brain & Cognit Sci, Rochester, NY 14627 USA. Univ Buffalo, Dept Commun Disorders & Sci, Buffalo, NY 14214 USA. Univ Buffalo, Dept Otolaryngol, Buffalo, NY 14214 USA. Univ Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. Univ Rochester, Sch Med & Dent, Dept Surg, Div Otolaryngol, Rochester, NY 14642 USA. RP Allen, PD (reprint author), Univ Rochester, Dept Brain & Cognit Sci, 601 Elmwood Ave, Rochester, NY 14627 USA. RI Allen, Paul/A-1228-2007 CR AREHOLE S, 1987, HEARING RES, V30, P23, DOI 10.1016/0378-5955(87)90179-1 BACKOFF PM, 1994, HEARING RES, V73, P163, DOI 10.1016/0378-5955(94)90231-3 Barrenas ML, 2000, EAR HEARING, V21, P569, DOI 10.1097/00003446-200012000-00004 Barsz K, 2002, NEUROBIOL AGING, V23, P565, DOI 10.1016/S0197-4580(02)00008-8 Barsz K, 1998, HEARING RES, V115, P13, DOI 10.1016/S0378-5955(97)00173-1 BARTH CD, 1993, AUDIOLOGY, V32, P225 Boettcher FA, 1996, HEARING RES, V102, P167, DOI 10.1016/S0378-5955(96)90016-7 BOETTCHER FA, 1993, HEARING RES, V71, P146, DOI 10.1016/0378-5955(93)90030-5 BURKARD R, 1991, J ACOUST SOC AM, V90, P1398, DOI 10.1121/1.401931 BURKARD R, 1987, J ACOUST SOC AM, V81, P1064, DOI 10.1121/1.394678 Buus S, 1985, TIME RESOLUTION AUDI, P159 Caspary DM, 1999, NEUROSCIENCE, V93, P307, DOI 10.1016/S0306-4522(99)00121-9 CASPARY DM, 1995, EXP GERONTOL, V30, P349, DOI 10.1016/0531-5565(94)00052-5 Corso J. F., 1981, AGING SENSORY SYSTEM Cranford J L, 1992, J Am Acad Audiol, V3, P405 DRESCHLER WA, 1980, J ACOUST SOC AM, V68, P1608, DOI 10.1121/1.385215 DRESCHLER WA, 1990, J SPEECH HEAR RES, V33, P181 DUBNO JR, 1984, J ACOUST SOC AM, V76, P87, DOI 10.1121/1.391011 Eggermont JJ, 1999, J NEUROPHYSIOL, V81, P2570 ELBERLING C, 1987, SCAND AUDIOL, V16, P49, DOI 10.3109/01050398709042155 FINDLAYSON PG, 2002, J ASS RES OTOLARYN, V3, P321 Fitzgibbons P J, 1996, J Am Acad Audiol, V7, P183 FLORENTINE M, 1984, J SPEECH HEAR RES, V27, P449 DUQUESNOY AJ, 1983, J ACOUST SOC AM, V74, P739, DOI 10.1121/1.389859 GATES GA, 1990, EAR HEARING, V11, P247, DOI 10.1097/00003446-199008000-00001 GIRAUDI D, 1980, J ACOUST SOC AM, V68, P802, DOI 10.1121/1.384818 GIRAUDIPERRY D, 1992, J ACOUST SOC AM, V68, P802 Glasberg B R, 1989, Scand Audiol Suppl, V32, P1 GLEICH O, 2002, ASS RES OT ABSTR, V25, P954 Guo YQ, 2002, HEARING RES, V171, P158, DOI 10.1016/S0378-5955(02)00496-3 He NJ, 1999, J ACOUST SOC AM, V106, P966, DOI 10.1121/1.427109 Helfert RH, 1999, J COMP NEUROL, V406, P285 HUNTER KP, 1987, HEARING RES, V30, P207, DOI 10.1016/0378-5955(87)90137-7 Ingham NJ, 1998, ACTA OTO-LARYNGOL, V118, P673 IRWIN RJ, 1987, J ACOUST SOC AM, V81, P1557, DOI 10.1121/1.394508 ISON JR, 1982, J COMP PHYSIOL PSYCH, V96, P945, DOI 10.1037/0735-7036.96.6.945 Ison JR, 1998, J ACOUST SOC AM, V104, P1689, DOI 10.1121/1.424381 JERGER J, 1994, EAR HEARING, V15, P274, DOI 10.1097/00003446-199408000-00002 JERGER J, 1988, EAR HEARING, V9, P168, DOI 10.1097/00003446-198808000-00002 KRAMER SJ, 1982, J ACOUST SOC AM, V72, P795, DOI 10.1121/1.388186 LEITNER DS, 1993, PERCEPT PSYCHOPHYS, V54, P395, DOI 10.3758/BF03205275 Nelson PB, 1997, J SPEECH LANG HEAR R, V40, P1387 Phillips D P, 1999, J Am Acad Audiol, V10, P343 Phillips DP, 2001, HEARING RES, V155, P133, DOI 10.1016/S0378-5955(01)00249-0 Poth EA, 2001, HEARING RES, V161, P81, DOI 10.1016/S0378-5955(01)00352-5 Sato T, 2001, NEUROSCIENCE, V103, P695, DOI 10.1016/S0306-4522(01)00022-7 Schneider BA, 1999, J ACOUST SOC AM, V106, P371, DOI 10.1121/1.427062 SCHNEIDER BA, 1994, J ACOUST SOC AM, V95, P980, DOI 10.1121/1.408403 SMITH RL, 1981, J ACOUST SOC AM, V69, pS53, DOI 10.1121/1.386203 Snell KB, 2002, J ACOUST SOC AM, V112, P720, DOI 10.1121/1.1487841 Snell KB, 1997, J ACOUST SOC AM, V101, P2214, DOI 10.1121/1.418205 Snell KB, 2000, J ACOUST SOC AM, V107, P1615, DOI 10.1121/1.428446 Szczepaniak WS, 1996, HEARING RES, V97, P46 TYLER RS, 1982, J ACOUST SOC AM, V72, P740, DOI 10.1121/1.388254 Walton JP, 1998, J NEUROSCI, V18, P2764 Walton JP, 1997, J COMP PHYSIOL A, V181, P161, DOI 10.1007/s003590050103 WILLOTT JF, 1992, J COMP NEUROL, V321, P666, DOI 10.1002/cne.903210412 WILLOTT JF, 1990, J COMP NEUROL, V300, P61, DOI 10.1002/cne.903000106 WILLOTT JF, 1987, J COMP NEUROL, V260, P472, DOI 10.1002/cne.902600312 WILLOTT JF, 1994, NEUROBIOL AGING, V15, P175, DOI 10.1016/0197-4580(94)90109-0 Working Group on Speech Understanding Committee on Hearing Bioacoustics and Biomechanics, 1988, J ACOUST SOC AM, V83, P859 Xu BJ, 2000, NEURON, V26, P233, DOI 10.1016/S0896-6273(00)81153-8 ZHANG W, 1990, HEARING RES, V46, P181, DOI 10.1016/0378-5955(90)90001-6 NR 63 TC 12 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2003 VL 186 IS 1-2 BP 17 EP 29 DI 10.1016/S0378-5955(03)00300-9 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 753VE UT WOS:000187250600003 PM 14644456 ER PT J AU Lewis, ER van Dijk, P AF Lewis, ER van Dijk, P TI New variations on the derivation of spectro-temporal receptive fields for primary auditory afferent axons SO HEARING RESEARCH LA English DT Article DE Wiener kernel; peripheral tuning; suppression; frog; amphibian papilla; basilar papilla ID SPONTANEOUS OTOACOUSTIC EMISSIONS; WIENER-KERNEL ANALYSIS; INNER-EAR FUNCTION; NERVE-FIBERS; TEMPERATURE-DEPENDENCE; RANA-CATESBEIANA; GAUSSIAN-NOISE; SINGLE UNITS; FROG; RESPONSES AB The spectro-temporal receptive field [Hear. Res 5 (1981) 147; IEEE Trans BME 15 (1993) 177] provides an explicit image of the spectral and temporal aspects of the responsiveness of a primary auditory afferent axon. It exhibits the net effects of the competition between excitatory and inhibitory (or suppressive) phenomena. In this paper, we introduce a method for derivation of the spectro-temporal receptive field directly from a second-order Wiener kernel (produced by second-order reverse correlation between spike responses and broad-band white-noise stimulus); and we expand the concept of the spectro-temporal receptive field by applying the new method not only to the second-order kernel itself, but also to its excitatory and inhibitory subkernels. This produces separate spectro-temporal images of the excitatory and inhibitory phenomena putatively underlying the competition. Applied, in simulations, to models with known underlying excitatory and suppressive tuning and timing properties, the method successfully extracted a faithful image of those properties for excitation and one for inhibition. Applied to three auditory axons from the frog, it produced images consistent with previously published physiology. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Dept EECS, Berkeley, CA 94720 USA. Univ Hosp Maastricht, Dept Otolaryngol, PO Box 5800, NL-6202 AZ Maastricht, Netherlands. Univ Hosp Maastricht, Dept Head & Neck Surg, PO Box 5800, NL-6202 AZ Maastricht, Netherlands. RP Lewis, ER (reprint author), Univ Calif Berkeley, Dept EECS, Berkeley, CA 94720 USA. RI Van Dijk, Pim/E-8019-2010 OI Van Dijk, Pim/0000-0002-8023-7571 CR BILLINGS SA, 1978, P I ELECTR ENG, V125, P691 Bracewell RN, 1986, FOURIER TRANSFORM IT Capranica R.R., 1976, P551 CARNEY LH, 1988, J NEUROPHYSIOL, V60, P1653 DEBOER E, 1978, J ACOUST SOC AM, V63, P115, DOI 10.1121/1.381704 DEBOER E, 1968, IEEE T BIO-MED ENG, VBM15, P169, DOI 10.1109/TBME.1968.4502561 EGGERMONT JJ, 1983, Q REV BIOPHYS, V16, P341 EGGERMONT JJ, 1993, HEARING RES, V66, P177, DOI 10.1016/0378-5955(93)90139-R EGGERMONT JJ, 1983, HEARING RES, V10, P167, DOI 10.1016/0378-5955(83)90052-7 EVANS EF, 1989, COCHLEAR MECH STRUCT, P241 FENG AS, 1975, J COMP PHYSIOL, V100, P221 FRISHKOP.LS, 1968, PR INST ELECTR ELECT, V56, P969, DOI 10.1109/PROC.1968.6448 FRISHKOPF LS, 1963, J ACOUST SOC AM, V35, P1219, DOI 10.1121/1.1918676 HERMES DJ, 1981, HEARING RES, V5, P147, DOI 10.1016/0378-5955(81)90043-5 HUNTER IW, 1986, BIOL CYBERN, V55, P135 LEE YW, 1965, INT J CONTROL, V2, P237, DOI 10.1080/00207176508905543 Lewis ER, 1999, COMP HEARING FISH AM, P101 Lewis ER, 2002, HEARING RES, V171, P13, DOI 10.1016/S0378-5955(02)00290-3 MacGregor RJ, 1977, NEURAL MODELING Marmarelis PZ, 1978, ANAL PHYSL SYSTEMS W MEGELA AL, 1981, J NEUROPHYSIOL, V46, P465 MEGELA AL, 1984, J ACOUST SOC AM, V75, P1155, DOI 10.1121/1.390764 MOLLER AR, 1986, COMPUT MATH APPL-A, V12, P803, DOI 10.1016/0898-1221(86)90065-9 Papoulis A., 1977, SIGNAL ANAL RONKEN DA, 1990, HEARING RES, V47, P63, DOI 10.1016/0378-5955(90)90167-N Schetzen M., 1980, VOLTERRA WIENER THEO, Vfirst vanDijk P, 1997, HEARING RES, V114, P229, DOI 10.1016/S0378-5955(97)00168-8 vanDijk P, 1997, HEARING RES, V114, P243, DOI 10.1016/S0378-5955(97)00169-X vanDijk P, 1996, HEARING RES, V101, P102 VANDIJK P, 1989, HEARING RES, V42, P273, DOI 10.1016/0378-5955(89)90151-2 VANDIJK P, 1994, J ACOUST SOC AM, V95, P904, DOI 10.1121/1.410009 VANSTOKKUM IHM, 1986, BIOL CYBERN, V55, P17 VICTOR J, 1980, BIOPHYS J, V29, P459 Yamada WM, 1999, HEARING RES, V130, P155, DOI 10.1016/S0378-5955(99)00005-2 YAMADA WY, 1997, THESIS U CALIFORNIA NR 35 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2003 VL 186 IS 1-2 BP 30 EP 46 DI 10.1016/S0378-5955(03)00257-0 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 753VE UT WOS:000187250600004 PM 14644457 ER PT J AU Murakami, SL Cunningham, LL Werner, LA Bauer, E Pujol, R Raible, DW Rubel, EW AF Murakami, SL Cunningham, LL Werner, LA Bauer, E Pujol, R Raible, DW Rubel, EW TI Developmental differences in susceptibility to neomycin-induced hair cell death in the lateral line neuromasts of zebrafish (Danio rerio) SO HEARING RESEARCH LA English DT Article DE ototoxicity; critical period; apoptosis; hearing loss; aminoglycoside; deafness ID OTOTOXICITY; EAR; ANTIBIOTICS; KANAMYCIN; HEARING; SYSTEM; EMBRYO AB Mechanosensory hair cells of the inner ear are susceptible to death when exposed to a variety of drugs including aminoglycoside antibiotics. During avian and mammalian development, there is a period of relative insensitivity to aminoglycoside-induced hair cell death. This study was designed to test the hypothesis that zebrafish (Danio rerio) have developmental differences in sensitivity to aminoglycoside-induced hair cell death in the lateral line neuromasts. Larval zebrafish of various ages were exposed to several concentrations of neomycin, and their hair cells were examined using the potentiometric vital dye, DASPEL Results indicate that zebrafish larvae aged 4 days post-fertilization are relatively insensitive to aminoglycoside-induced hair cell death compared to older fish. Thus zebrafish hair cells show developmental differences in sensitivity to aminoglycoside-induced death similar to those reported for inner ear hair cells of birds and mammals. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Montpellier, INSERM, Montpellier, France. Univ Washington, Dept Speech & Hearing Sci, Seattle, WA 98195 USA. Univ Washington, Grad Program Audiol, Seattle, WA 98195 USA. Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Seattle, WA 98195 USA. Univ Washington, Dept Otorhinolaryngol Head & Neck Surg, Seattle, WA 98195 USA. Univ Washington, Dept Biol Struct, Seattle, WA 98195 USA. RP Rubel, EW (reprint author), Univ Montpellier, INSERM, Montpellier, France. CR Alexandre D, 1999, P NATL ACAD SCI USA, V96, P7558, DOI 10.1073/pnas.96.13.7558 BALAK KJ, 1990, J NEUROSCI, V10, P2502 BERNARD PA, 1980, ARCH OTO-RHINO-LARYN, V228, P205, DOI 10.1007/BF00454229 BERNARD PA, 1981, LARYNGOSCOPE, V91, P1985 Blaxter J.H.S., 1989, P481 Coombs S, 1999, COMP HEARING FISH AM CORWIN JT, 1981, J COMP NEUROL, V201, P541, DOI 10.1002/cne.902010406 CORWIN JT, 1985, P NATL ACAD SCI USA, V82, P3911, DOI 10.1073/pnas.82.11.3911 DUCKERT LG, 1990, HEARING RES, V48, P161, DOI 10.1016/0378-5955(90)90206-5 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 FRIEDMANN I, 1961, J PATHOL BACTERIOL, V81, P81, DOI 10.1002/path.1700810110 Gates GA, 1999, ARCH OTOLARYNGOL, V125, P654 Haddon C, 1996, J COMP NEUROL, V365, P113, DOI 10.1002/(SICI)1096-9861(19960129)365:1<113::AID-CNE9>3.0.CO;2-6 Harris JA, 2003, JARO, V4, P219, DOI 10.1007/s10162-002-3022-x Hashino E, 1996, BRAIN RES, V720, P172, DOI 10.1016/0006-8993(95)01467-5 Jorgensen J.M., 1989, P115 MAROT M, 1980, HEARING RES, V2, P111, DOI 10.1016/0378-5955(80)90032-5 Metcalfe W.K., 1989, P147 Montgomery J, 2000, PHILOS T ROY SOC B, V355, P1325 Nicolson T, 1998, NEURON, V20, P271, DOI 10.1016/S0896-6273(00)80455-9 Patton EE, 2001, NAT REV GENET, V2, P956, DOI 10.1038/35103567 Popper AN, 2000, PHILOS T ROY SOC B, V355, P1277, DOI 10.1098/rstb.2000.0683 Pujol R, 1986, Acta Otolaryngol Suppl, V429, P29 Raible DW, 2000, J COMP NEUROL, V421, P189, DOI 10.1002/(SICI)1096-9861(20000529)421:2<189::AID-CNE5>3.0.CO;2-K RAPHAEL Y, 1983, ARCH OTO-RHINO-LARYN, V238, P45, DOI 10.1007/BF00453740 RASMUSSE.F, 1969, SCAND J RESPIR DIS, V50, P61 Rubel E. W., 1978, ONTOGENY STRUCTURE F Snedecor GW, 1980, STAT METHODS, V7th Song JK, 1995, HEARING RES, V91, P63, DOI 10.1016/0378-5955(95)00170-0 Westerfield M., 2000, ZEBRAFISH BOOK GUIDE, V4th Williams JA, 2000, HEARING RES, V143, P171, DOI 10.1016/S0378-5955(00)00039-3 NR 31 TC 54 Z9 58 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2003 VL 186 IS 1-2 BP 47 EP 56 DI 10.1016/S0378-5955(03)00259-4 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 753VE UT WOS:000187250600005 PM 14644458 ER PT J AU Ross, B Draganova, R Picton, TW Pantev, C AF Ross, B Draganova, R Picton, TW Pantev, C TI Frequency specificity of 40-Hz auditory steady-state responses SO HEARING RESEARCH LA English DT Article DE auditory steady-state responses; frequency specificity; amplitude modulation; primary auditory cortex; magnetoencephalography ID MIDDLE LATENCY RESPONSES; PURE-TONE MASKING; ENVELOPE FOLLOWING RESPONSE; AMPLITUDE-MODULATED TONES; BRAIN-STEM; TONOTOPIC ORGANIZATION; SUSTAINED POTENTIALS; MONGOLIAN GERBIL; CORTEX; STIMULUS AB Auditory steady-state responses (ASSR) to amplitude modulated (AM) tones with carrier frequencies between 250 and 4000 Hz and modulation frequencies near 40 Hz were recorded using a 37-channel neuro-magnetometer placed above the auditory cortex contralateral to the stimulated right ear. The ASSR sources were likely in the primary auditory cortex, located more anteriorly and more medially than the N1m sources. The ASSR amplitude decreased with increasing carrier frequency, the amplitude at 250 Hz being three times larger than at 4000 Hz. The amplitude of the ASSR to a test sound decreased in the presence of an interfering second AM sound. This suppression of the ASSR to the test stimulus was greater when the carrier frequency of the interfering stimulus was higher than that of the test tone and was greater when the test stimulus had a lower carrier frequency. Similar frequency specificity was observed when the interfering sound was a non-modulated pure tone. These results differ from those found for the ASSR elicited by modulation frequencies above 80 Hz or for the transient brainstem and middle-latency responses and suggest substantial interactions between phase-locked activities at the level of the primary auditory cortex. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Hosp, Inst Biomagnetism & Biosignalanal, D-48129 Munster, Germany. Rotman Res Inst Neursci, Baycrest Ctr Geriat Care, Toronto, ON M6A 2E1, Canada. RP Ross, B (reprint author), Univ Hosp, Inst Biomagnetism & Biosignalanal, Kardinak Von Galen Ring 10, D-48129 Munster, Germany. CR Biebel UW, 2002, HEARING RES, V169, P151, DOI 10.1016/S0378-5955(02)00459-8 BUTLER RA, 1968, J ACOUST SOC AM, V44, P945, DOI 10.1121/1.1911233 DOLPHIN WF, 1994, J ACOUST SOC AM, V96, P2225, DOI 10.1121/1.411382 Dolphin WF, 1997, HEARING RES, V110, P1, DOI 10.1016/S0378-5955(97)00056-7 DOLPHIN WF, 1993, J ACOUST SOC AM, V94, P3215, DOI 10.1121/1.407227 Draganova R, 2002, EAR HEARING, V23, P254, DOI 10.1097/00003446-200206000-00009 Efron B., 1993, INTRO BOOTSTRAP Engelien A, 2000, HEARING RES, V148, P153, DOI 10.1016/S0378-5955(00)00148-9 Fujiki N, 2002, J NEUROSCI, V22 GALAMBOS R, 1981, P NATL ACAD SCI-BIOL, V78, P2643, DOI 10.1073/pnas.78.4.2643 Godey B, 2001, CLIN NEUROPHYSIOL, V112, P1850, DOI 10.1016/S1388-2457(01)00636-8 GRIFFITHS SK, 1991, EAR HEARING, V12, P235, DOI 10.1097/00003446-199108000-00002 Herdman AT, 2002, BRAIN TOPOGR, V15, P69, DOI 10.1023/A:1021470822922 John MS, 2000, COMPUT METH PROG BIO, V61, P125, DOI 10.1016/S0169-2607(99)00035-8 John M Sasha, 2002, J Am Acad Audiol, V13, P246 John MS, 1998, AUDIOLOGY, V37, P59 Krishnan A, 2002, HEARING RES, V166, P192, DOI 10.1016/S0378-5955(02)00327-1 LINS OG, 1995, EVOKED POTENTIAL, V96, P420, DOI 10.1016/0168-5597(95)00048-W MACKERSIE C, 1993, HEARING RES, V65, P61, DOI 10.1016/0378-5955(93)90201-B MAUER G, 1999, PSYCHOPHYSICS PHYSL NAATANEN R, 1988, ELECTROEN CLIN NEURO, V69, P523, DOI 10.1016/0013-4694(88)90164-2 Oates P, 1997, J ACOUST SOC AM, V102, P3597, DOI 10.1121/1.420148 Oates P, 1997, J ACOUST SOC AM, V102, P3609, DOI 10.1121/1.420400 PANTEV C, 1995, ELECTROEN CLIN NEURO, V94, P26, DOI 10.1016/0013-4694(94)00209-4 PANTEV C, 1988, ELECTROEN CLIN NEURO, V69, P160, DOI 10.1016/0013-4694(88)90211-8 PANTEV C, 1982, SCAND AUDIOL, V11, P15, DOI 10.3109/01050398209076195 Pantev C, 1996, HEARING RES, V101, P62, DOI 10.1016/S0378-5955(96)00133-5 PANTEV C, 1985, AUDIOLOGY, V24, P275 Perez-Abalo MC, 2001, EAR HEARING, V22, P200, DOI 10.1097/00003446-200106000-00004 PICTON TW, 1987, J ACOUST SOC AM, V82, P165, DOI 10.1121/1.395560 PICTON TW, 1978, ELECTROEN CLIN NEURO, V45, P198, DOI 10.1016/0013-4694(78)90004-4 PICTON TW, 1978, ELECTROEN CLIN NEURO, V45, P186, DOI 10.1016/0013-4694(78)90003-2 REGAN D, 1989, HUMAN BRAIN ELECTROP, P271 Romani G L, 1986, Acta Otolaryngol Suppl, V432, P33 Ross B, 2002, HEARING RES, V165, P68, DOI 10.1016/S0378-5955(02)00285-X Ross B, 2000, J ACOUST SOC AM, V108, P679, DOI 10.1121/1.429600 SAMS M, 1994, HEARING RES, V75, P67, DOI 10.1016/0378-5955(94)90057-4 STAPELLS DR, 1993, PRINCIPLES APPL AUDI, P251 Wallace MN, 2002, HEARING RES, V172, P160, DOI 10.1016/S0378-5955(02)00580-4 WU CY, 1994, HEARING RES, V78, P169, DOI 10.1016/0378-5955(94)90022-1 WUNDERLICH JL, 2000, J ACOUST SOC AM, V109, P1526 NR 41 TC 35 Z9 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2003 VL 186 IS 1-2 BP 57 EP 68 DI 10.1016/S0378-5955(03)00299-5 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 753VE UT WOS:000187250600006 PM 14644459 ER PT J AU Yamamoto, H Tominaga, M Sone, M Nakashima, T AF Yamamoto, H Tominaga, M Sone, M Nakashima, T TI Contribution of stapedial artery to blood flow in the cochlea and its surrounding bone SO HEARING RESEARCH LA English DT Article DE stapedial artery; anterior inferior cerebellar artery; autoregulation; rebound phenomenon of blood flow; Laser-Doppler flowmetry; Sprague-Dawley rat ID INFERIOR CEREBELLAR ARTERY; MIDDLE-EAR; PERSISTENCE; ANOMALIES AB This study was performed to elucidate the contribution of the stapedial artery (SA) - which has been considered to be independent of the vertebrobasilar system - to blood flow in the ear by observing ear blood flow in Sprague-Dawley rats. A laser-Doppler (LD) probe was positioned on the bony wall of the cochlear basal turn after removal of the middle ear mucosa. The LD output was measured while either or both the SA and the anterior inferior cerebellar artery (AICA) were occluded. The LD output decreased to 70.6 +/- 2.5% (mean +/- S.D.) of the baseline value following SA occlusion, and to 58.0 +/- 7.8% following AICA occlusion in 12 animals. The rebound phenomenon of blood flow, which is a type of autoregulation, was only observed after releasing AICA occlusion. Simultaneous occlusion of the SA and AICA decreased the LD output to 27.0 +/- 5.5% of the baseline value. The role of the contribution of the SA and AICA to the LD output is discussed. (C) 2003 Elsevier B.V. All rights reserved. C1 Nagoya Univ, Sch Med, Dept Otolaryngol, Showa Ku, Nagoya, Aichi 4668550, Japan. RP Yamamoto, H (reprint author), Nagoya Univ, Sch Med, Dept Otolaryngol, Showa Ku, 65 Tsurumai Cho, Nagoya, Aichi 4668550, Japan. RI Nakashima, Tsutomu/B-8259-2012; LUO, holly/G-7671-2012 OI Nakashima, Tsutomu/0000-0003-3930-9120; CR Chang CYJ, 2000, OTOLARYNG HEAD NECK, V122, P154, DOI 10.1016/S0194-5998(00)70169-0 Davies D G, 1967, J Laryngol Otol, V81, P649, DOI 10.1017/S002221510006758X DIAMOND MK, 1987, ANAT REC, V218, P345, DOI 10.1002/ar.1092180316 DIAMOND MK, 1989, J MORPHOL, V200, P71, DOI 10.1002/jmor.1052000109 GOVAERTS PJ, 1993, ANN OTO RHINOL LARYN, V102, P724 HOGG ID, 1972, ANN OTO RHINOL LARYN, V81, P860 KELEMEN G, 1963, ARCHIV OTOLARYNGOL, V77, P491 MARION M, 1985, OTOLARYNG HEAD NECK, V93, P298 Minatogawa T, 1980, Auris Nasus Larynx, V7, P7 MOREANO EH, 1994, LARYNGOSCOPE, V104, P309 Nakashima T, 2003, BRAIN RES REV, V43, P17, DOI 10.1016/S0165-0173(03)00189-9 Nakashima T, 2001, HEARING RES, V162, P85, DOI 10.1016/S0378-5955(01)00372-0 Nario K, 1997, Acta Otolaryngol Suppl, V528, P63 PAHOR AL, 1992, J LARYNGOL OTOL, V106, P254, DOI 10.1017/S0022215100119206 PASCUALCASTROVIEJO I, 1983, CLEFT PALATE J, V20, P146 REN TY, 1993, HEARING RES, V71, P91, DOI 10.1016/0378-5955(93)90024-U SEIDMAN MD, 1992, EUR ARCH OTO-RHINO-L, V249, P322 Silbergleit R, 2000, AM J NEURORADIOL, V21, P572 STEFFEN TN, 1968, LARYNGOSCOPE, V78, P171, DOI 10.1288/00005537-196802000-00001 Tien HC, 2001, OTOL NEUROTOL, V22, P975, DOI 10.1097/00129492-200111000-00044 Yamamoto J, 1997, Nihon Jibiinkoka Gakkai Kaiho, V100, P36 Zanetti D, 2000, OTOLARYNG HEAD NECK, V123, P663, DOI 10.1067/mhn.2000.109931 NR 22 TC 11 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2003 VL 186 IS 1-2 BP 69 EP 74 DI 10.1016/S0378-5955(03)00310-1 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 753VE UT WOS:000187250600007 PM 14644460 ER PT J AU Popelar, J Groh, D Mazelova, J Syka, J AF Popelar, J Groh, D Mazelova, J Syka, J TI Cochlear function in young and adult Fischer 344 rats SO HEARING RESEARCH LA English DT Article DE Fischer 344 rat; auditory brainstem response threshold; low-frequency hearing loss; otoacoustic emission; tympanometry ID AUDITORY BRAIN-STEM; EVOKED OTOACOUSTIC EMISSIONS; PERMANENT THRESHOLD SHIFT; PIGMENTED GUINEA-PIGS; INDUCED HEARING-LOSS; NOISE EXPOSURE; POSTNATAL-DEVELOPMENT; INFERIOR COLLICULUS; ACOUSTIC TRAUMA; SPRAGUE-DAWLEY AB Fischer 344 (F344) rats are often used as an animal model for investigation of the mechanisms underlying age-related hearing loss. The aim of this study was to assess cochlear function in young (1-month-old) and adult (6-month-old) F344 rats using recording of otoacoustic emissions and auditory brainstem responses (ABRs). The results were compared with control groups of Long Evans (LE) rats of the same ages. The results demonstrate a significant increase in the hearing threshold in F344 rats in comparison with LE rats, expressed mainly at low frequencies (1-2 kHz). In F344 rats, transient evoked otoacoustic emissions were not measurable and distortion product otoacoustic emissions could be detected within a frequency range of 2.4-6.3 kHz. Tympanometric measurements did not reveal any differences in middle ear parameters between F344 and LE rats. The amplitudes of click-evoked ABRs were significantly lower in 6-month-old F344 rats than in LE rats, but other parameters of the ABRs were almost identical in both rat strains. The results demonstrate a significant deficit in low-frequency hearing and altered otoacoustic emissions in both young and adult F344 rats, suggesting a defect of the inner ear sensory epithelium at the apical part of the cochlea. (C) 2003 Elsevier B.V. All rights reserved. C1 Acad Sci Czech Republ, Inst Expt Med, CZ-14220 Prague 4, Czech Republic. Charles Univ, Fac Med 2, ENT Clin, Prague, Czech Republic. RP Popelar, J (reprint author), Acad Sci Czech Republ, Inst Expt Med, Videnska 1083, CZ-14220 Prague 4, Czech Republic. RI Popelar, Jiri/H-2558-2014; Syka, Josef/H-3103-2014 CR Avan P, 1997, J ACOUST SOC AM, V101, P2771, DOI 10.1121/1.418564 AVAN P, 1995, J ACOUST SOC AM, V97, P3012, DOI 10.1121/1.411866 BACKOFF PM, 1994, HEARING RES, V73, P163, DOI 10.1016/0378-5955(94)90231-3 Borg E, 1995, Scand Audiol Suppl, V40, P1 BURDA H, 1985, HEARING RES, V17, P201, DOI 10.1016/0378-5955(85)90064-4 Campo P, 1997, NEUROTOXICOL TERATOL, V19, P129, DOI 10.1016/S0892-0362(96)00214-0 CARTER NL, 1980, AUDIOLOGY, V19, P86 CHEN TJ, 1990, ACTA PHYSIOL SCAND, V138, P529, DOI 10.1111/j.1748-1716.1990.tb08881.x COLEMAN GL, 1977, J GERONTOL, V32, P258 CONLEE JW, 1986, HEARING RES, V23, P81, DOI 10.1016/0378-5955(86)90177-2 COOPER WA, 1990, HEARING RES, V43, P171, DOI 10.1016/0378-5955(90)90226-F CRIFO S, 1973, ACTA OTO-LARYNGOL, V75, P38, DOI 10.3109/00016487309139636 DILORETO D, 1994, BRAIN RES, V647, P181, DOI 10.1016/0006-8993(94)91316-1 DUM N, 1983, Z SAUGETIERKD, V48, P95 Engel-Yeger B, 2002, HEARING RES, V163, P93, DOI 10.1016/S0378-5955(01)00386-0 FINLAYSON PG, 1993, NEUROBIOL AGING, V14, P127, DOI 10.1016/0197-4580(93)90088-S Geal-Dor Miriam, 1997, Journal of Basic and Clinical Physiology and Pharmacology, V8, P127 GODFREY DA, 1987, HEARING RES, V31, P203, DOI 10.1016/0378-5955(87)90188-2 GOODMAN DG, 1979, TOXICOL APPL PHARM, V48, P237, DOI 10.1016/0041-008X(79)90029-2 GRENNER J, 1990, ACTA OTO-LARYNGOL, V109, P41, DOI 10.3109/00016489009107413 Hatzopoulos S, 2002, HEARING RES, V170, P12, DOI 10.1016/S0378-5955(02)00448-3 Hatzopoulos S, 2002, HEARING RES, V170, P70, DOI 10.1016/S0378-5955(02)00453-7 HAUSER R, 1993, HEARING RES, V69, P133, DOI 10.1016/0378-5955(93)90101-6 HEFFNER HE, 1994, HEARING RES, V73, P244, DOI 10.1016/0378-5955(94)90240-2 HENLEY CM, 1990, HEARING RES, V43, P141, DOI 10.1016/0378-5955(90)90223-C HENRY KR, 1982, BEHAV GENET, V12, P563, DOI 10.1007/BF01070410 HOEFFDING V, 1988, J ACOUST SOC AM, V84, P2067, DOI 10.1121/1.397051 KARSAI LK, 1972, ARCHIV OTOLARYNGOL, V96, P499 Kawaguchi K, 1992, Nihon Jibiinkoka Gakkai Kaiho, V95, P556 KEITHLEY EM, 1982, HEARING RES, V8, P249, DOI 10.1016/0378-5955(82)90017-X KEITHLEY EM, 1992, HEARING RES, V59, P171, DOI 10.1016/0378-5955(92)90113-2 KELLY JB, 1977, J COMP PHYSIOL PSYCH, V91, P930, DOI 10.1037/h0077356 Kelly J.B., 1970, THESIS VANDERBILT U Khvoles R, 1996, HEARING RES, V97, P120 Khvoles R, 1998, AUDIOL NEURO-OTOL, V3, P349, DOI 10.1159/000013805 LENOIR M, 1987, ANAT EMBRYOL, V175, P477, DOI 10.1007/BF00309683 MARTIN GK, 1990, ANN OTO RHINOL LARYN, V99, P30 Milbrandt JC, 2000, HEARING RES, V147, P251, DOI 10.1016/S0378-5955(00)00135-0 Mills DM, 2003, J ACOUST SOC AM, V113, P914, DOI 10.1121/1.1535942 Morell RJ, 1998, NEW ENGL J MED, V339, P1500, DOI 10.1056/NEJM199811193392103 Ouda L, 2003, NEUROREPORT, V14, P363, DOI 10.1097/01.wnr.0000058243.21747.4d OVERBECK GW, 1992, HEARING RES, V59, P129, DOI 10.1016/0378-5955(92)90110-9 Ozaki Harushige, 1996, Journal of Toxicological Sciences, V21, P167 Palombi PS, 1996, HEARING RES, V100, P41, DOI 10.1016/0378-5955(96)00115-3 Popelar J, 1999, HEARING RES, V135, P61, DOI 10.1016/S0378-5955(99)00091-X Pouyatos B, 2002, HEARING RES, V165, P156, DOI 10.1016/S0378-5955(02)00298-8 Puel J L, 1987, Brain Res, V465, P179 PUJOL R, 1980, HEARING RES, V2, P423, DOI 10.1016/0378-5955(80)90078-7 RYBALKO N, 1998, P 21 MIDW M ASS RES, P78 Rybalko N, 2001, HEARING RES, V155, P32, DOI 10.1016/S0378-5955(01)00245-3 SASS B, 1975, J NATL CANCER I, V54, P1449 Seidman MD, 2002, OTOLARYNG HEAD NECK, V127, P138, DOI 10.1067/mhn.2002.127627 Seidman MD, 2002, AGEING RES REV, V1, P331, DOI 10.1016/S1568-1637(02)00004-1 Seidman MD, 2000, AM J OTOL, V21, P161, DOI 10.1016/S0196-0709(00)80003-4 SIMPSON GV, 1985, BRAIN RES, V348, P28, DOI 10.1016/0006-8993(85)90355-5 Sockalingam R, 2000, AM J OTOL, V21, P521 Syka J, 2000, HEARING RES, V139, P59, DOI 10.1016/S0378-5955(99)00175-6 Syka J, 1996, HEARING RES, V100, P107, DOI 10.1016/0378-5955(96)00101-3 Ueda H, 1998, HEARING RES, V122, P41, DOI 10.1016/S0378-5955(98)00084-7 van Heerbeek N, 2003, OTOL NEUROTOL, V24, P6, DOI 10.1097/00129492-200301000-00003 YANZ JL, 1985, AUDIOLOGY, V24, P260 Zhao F, 2003, INT J AUDIOL, V42, P117, DOI 10.3109/14992020309090421 NR 62 TC 21 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2003 VL 186 IS 1-2 BP 75 EP 84 DI 10.1016/S0378-5955(03)00329-0 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 753VE UT WOS:000187250600008 PM 14644461 ER PT J AU Ladrech, S Lenoir, M Ruel, J Puel, JL AF Ladrech, S Lenoir, M Ruel, J Puel, JL TI Microtubule-associated protein 2 (MAP2) expression during synaptic plasticity in the guinea pig cochlea SO HEARING RESEARCH LA English DT Article DE cochlea; auditory neuron; alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid; regeneration; excitotoxicity ID EXCITOTOXIC INJURY; SYNAPSES; REGENERATION; DENDRITES; RECOVERY; REPAIR AB The expression of different isoforms of microtubule-associated proteins 2 (MAP2), including the low molecular weight form MAP2c present mainly in developing neurons, was investigated in the primary auditory neurons after alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) perfusion in the guinea pig cochlea. MAP2 expression appeared to be tightly regulated in the repairing neurons. Neurite regrowth seems to involve the MAP2c isoform. In cochlear neurons, mechanisms involved in the period of development might be reactivated after excitotoxic injury in the mature cochlea. (C) 2003 Elsevier B.V. All rights reserved. C1 INSERM, U583, F-34090 Montpellier, France. Univ Montpellier 1, F-34090 Montpellier, France. Univ Montpellier 2, F-34090 Montpellier, France. RP Lenoir, M (reprint author), INSERM, U583, 71 Rue Navacelles, F-34090 Montpellier, France. CR Bobbin R.P., 1974, ACTA OTO-LARYNGOL, V77, P55 dAldin CG, 1997, INT J DEV NEUROSCI, V15, P619, DOI 10.1016/S0736-5748(96)00116-5 HAGIWARA H, 1994, J BIOL CHEM, V269, P3581 Hartel R, 1997, NEUROSCIENCE, V78, P1 Kelley MS, 1997, J COMP NEUROL, V389, P469 LernerNatoli M, 1997, BRAIN RES, V749, P109, DOI 10.1016/S0006-8993(96)01306-6 LEWIS SA, 1989, NATURE, V342, P498, DOI 10.1038/342498a0 Miller JM, 2002, AUDIOL NEURO-OTOL, V7, P175, DOI 10.1159/000058306 PAPANDRIKOPOULOU A, 1989, NATURE, V340, P650, DOI 10.1038/340650a0 Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037 Puel JL, 2002, AUDIOL NEURO-OTOL, V7, P49, DOI 10.1159/000046864 PUEL JL, 1995, CR ACAD SCI III-VIE, V318, P67 PUJOL R, 1998, SPRINGER HDB AUDITOR, V12, P146 Sanchez C, 2000, PROG NEUROBIOL, V61, P133, DOI 10.1016/S0301-0082(99)00046-5 SanJose I, 1997, INT J DEV BIOL, V41, P509 TUCKER RP, 1990, BRAIN RES REV, V15, P101, DOI 10.1016/0165-0173(90)90013-E Washbourne P, 2002, NAT NEUROSCI, V5, P751, DOI 10.1038/nn883 Zheng XY, 1997, HEARING RES, V105, P65, DOI 10.1016/S0378-5955(96)00188-8 NR 18 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2003 VL 186 IS 1-2 BP 85 EP 90 DI 10.1016/S0378-5955(03)00302-2 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 753VE UT WOS:000187250600009 PM 14644462 ER PT J AU Behnam, SE Zeng, FG AF Behnam, SE Zeng, FG TI Noise improves suprathreshold discrimination in cochlear-implant listeners SO HEARING RESEARCH LA English DT Article DE noise; stochastic resonance; harmonic complex; cochlear implant ID STOCHASTIC RESONANCE; ENHANCEMENT AB The present study aimed to examine the effect of noise on vowel-like suprathreshold discrimination in cochlear-implant listeners. The task was to detect an increment in level at the middle harmonic (400 Hz) in the background of a seven-harmonic complex from 100 to 700 Hz in 100-Hz steps. The task was performed in the absence (control) and presence of a white noise presented over a 20-35-dB range from inaudible to loud. The present result shows that discrimination of suprathreshold harmonic stimuli was significantly enhanced, particularly at the soft signal level, with suprathreshold noise. This result suggests that tuning of the noise level is required to optimize performance of different tasks in cochlear implants. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Calif Irvine, Dept Otorhinolaryngol Head & Neck Surg, Irvine, CA 92697 USA. Univ Calif Irvine, Dept Biomed Engn, Irvine, CA 92697 USA. RP Zeng, FG (reprint author), Univ Calif Irvine, Dept Otorhinolaryngol Head & Neck Surg, 364 Med Surge 2, Irvine, CA 92697 USA. RI Zeng, Fan-Gang/G-4875-2012 CR Chatterjee M, 2001, JARO, V2, P159, DOI 10.1007/s101620010079 Eddington D K, 1978, Ann Otol Rhinol Laryngol, V87, P1 Hong RS, 2003, OTOL NEUROTOL, V24, P590, DOI 10.1097/00129492-200307000-00010 Morse RP, 1996, NAT MED, V2, P928, DOI 10.1038/nm0896-928 WARD L, 2001, NOISE CAN HELP WELL WIESENFELD K, 1995, NATURE, V373, P33, DOI 10.1038/373033a0 Zeng FG, 2000, BRAIN RES, V869, P251, DOI 10.1016/S0006-8993(00)02475-6 NR 7 TC 7 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2003 VL 186 IS 1-2 BP 91 EP 93 DI 10.1016/S0378-5955(03)00307-1 PG 3 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 753VE UT WOS:000187250600010 PM 14644463 ER PT J AU Supin, AY Popov, VV Milekhina, ON Tarakanov, MB AF Supin, AY Popov, VV Milekhina, ON Tarakanov, MB TI Rippled-spectrum resolution dependence on level SO HEARING RESEARCH LA English DT Article DE spectrum-pattern resolution; rippled noise; dependence on level; masking; human ID AUDITORY-NERVE FIBERS; BASILAR-MEMBRANE MOTION; 2-TONE RATE SUPPRESSION; INTENSITY DISCRIMINATION; PSYCHOPHYSICAL EVIDENCE; FREQUENCY-SELECTIVITY; SIMULTANEOUS MASKING; PITCH STRENGTH; NOTCHED-NOISE; TUNING CURVES AB Rippled-density resolution of a rippled sound spectrum (probe band) in both the presence and absence of another band (masker) was studied as a function of sound level in normal listeners. The resolvable ripple density in the probe band was measured by finding the highest ripple density at which an interchange of ripple peak and valley positions was detectable (the phase-reversal test). Probe bands were 0.5 oct wide with center frequencies of 1, 2, and 4 kHz. In the control condition (no masker), the ripple-density resolution was almost independent of sound level within a range of 40-90 dB SPL. When an on-frequency masker coincided with the probe band (that resulted in reduced ripple depth), resolution decreased slightly relative to the control condition but remained little dependent on level. With an off-frequency low-side masker, the ripple-density resolution was a little less than in the control but almost independent of level within a range of 40-60 dB SPL and progressively decreased with level increase from 70 to 90 dB SPL. The dependence on level was qualitatively similar at all probe frequencies and at various widths and positions of the low-side off-frequency masker band. (C) 2003 Elsevier B.V. All rights reserved. C1 Russian Acad Sci, Inst Ecol & Evolut, Moscow 117071, Russia. RP Supin, AY (reprint author), Russian Acad Sci, Inst Ecol & Evolut, 33 Leninsky Prosp, Moscow 117071, Russia. CR BERNSTEIN LR, 1987, J ACOUST SOC AM, V81, P1888, DOI 10.1121/1.394753 Cooper NP, 1996, J ACOUST SOC AM, V99, P3087, DOI 10.1121/1.414795 DELGUTTE B, 1990, J ACOUST SOC AM, V87, P791, DOI 10.1121/1.398891 DELGUTTE B, 1990, HEARING RES, V49, P225, DOI 10.1016/0378-5955(90)90106-Y Dubno JR, 2001, J ACOUST SOC AM, V110, P1058, DOI 10.1121/1.1381024 EGAN JP, 1950, J ACOUST SOC AM, V22, P622, DOI 10.1121/1.1906661 FASTL H, 1980, PSYCHOPHYSICAL PHYSI, P333 Fletcher H, 1933, J ACOUST SOC AM, V5, P82, DOI 10.1121/1.1915637 FLORENTINE M, 1987, J ACOUST SOC AM, V81, P1528, DOI 10.1121/1.394505 Gifford RH, 2000, J ACOUST SOC AM, V107, P2188, DOI 10.1121/1.428499 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Glasberg BR, 2000, J ACOUST SOC AM, V108, P2318, DOI 10.1121/1.1315291 GLASBERG BR, 1984, J ACOUST SOC AM, V76, P419, DOI 10.1121/1.391584 HARRIS DM, 1979, HEARING RES, V1, P133, DOI 10.1016/0378-5955(79)90024-8 HILLIER DA, 1991, J ACOUST SOC AM, V89, P1938, DOI 10.1121/1.2029587 Houtgast T., 1974, FACTS MODELS HEARING, P258 HOUTGAST T, 1972, J ACOUST SOC AM, V51, P1885, DOI 10.1121/1.1913048 KOHLRAUSCH A, 1992, PHILOS T ROY SOC B, V336, P375, DOI 10.1098/rstb.1992.0071 JESTEADT W, 1977, J ACOUST SOC AM, V61, P169, DOI 10.1121/1.381278 Kaernbach C, 1998, J ACOUST SOC AM, V104, P2298, DOI 10.1121/1.423742 KIANG NYS, 1974, J ACOUST SOC AM, V55, P620, DOI 10.1121/1.1914572 Krumbholz K, 2001, J ACOUST SOC AM, V110, P2096, DOI 10.1121/1.1395583 Moore BCJ, 1998, J ACOUST SOC AM, V104, P1023, DOI 10.1121/1.423321 Moore BCJ, 1997, J ACOUST SOC AM, V102, P2284, DOI 10.1121/1.419638 Oxenham AJ, 1998, J ACOUST SOC AM, V104, P3500, DOI 10.1121/1.423933 Pang XD, 1997, J ACOUST SOC AM, V102, P3564, DOI 10.1121/1.420147 PATTERSON RD, 1982, J ACOUST SOC AM, V72, P1788, DOI 10.1121/1.388652 Patterson RD, 1996, J ACOUST SOC AM, V100, P3286, DOI 10.1121/1.417212 Picklo DM, 2000, CLIN NEUROPSYCHOL, V14, P245 POPOV VV, 1984, DOKL AKAD NAUK, V278, P630 RABINOWITZ WM, 1976, J ACOUST SOC AM, V59, P1506, DOI 10.1121/1.381000 RANKOVIC CM, 1988, J ACOUST SOC AM, V84, P150, DOI 10.1121/1.396981 RHODE WS, 1994, J NEUROPHYSIOL, V71, P493 RHODE WS, 1993, HEARING RES, V66, P31, DOI 10.1016/0378-5955(93)90257-2 RHODE WS, 1974, J ACOUST SOC AM, V55, P588, DOI 10.1121/1.1914569 Rosen S, 1998, J ACOUST SOC AM, V103, P2539, DOI 10.1121/1.422775 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 RUGGERO MA, 1992, J NEUROPHYSIOL, V68, P1087 SACHS MB, 1968, J ACOUST SOC AM, V43, P1120, DOI 10.1121/1.1910947 SCHALK TB, 1980, J ACOUST SOC AM, V67, P903, DOI 10.1121/1.383970 SCHMIEDT RA, 1982, HEARING RES, V7, P335, DOI 10.1016/0378-5955(82)90044-2 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 Shamma S, 1995, AUDIT NEUROSCI, V1, P233 Shamma S. A., 1995, AUDIT NEUROSCI, V1, P255 SHAMMA SA, 1993, J NEUROPHYSIOL, V69, P367 SMALL AM, 1967, J ACOUST SOC AM, V92, P773 SUMMERS V, 1994, J ACOUST SOC AM, V95, P3518, DOI 10.1121/1.409969 SUPIN AY, 1994, HEARING RES, V78, P31, DOI 10.1016/0378-5955(94)90041-8 Supin AY, 1997, HEARING RES, V108, P17, DOI 10.1016/S0378-5955(97)00035-X Supin AY, 1999, J ACOUST SOC AM, V106, P2800, DOI 10.1121/1.428105 Supin AY, 2001, HEARING RES, V151, P157, DOI 10.1016/S0378-5955(00)00223-9 Supin AY, 1998, J ACOUST SOC AM, V103, P2042, DOI 10.1121/1.421351 TURNER CW, 1989, J ACOUST SOC AM, V86, P109, DOI 10.1121/1.398329 Versnel H, 1995, AUDIT NEUROSCI, V1, P271 VIEMEISTER NF, 1988, J ACOUST SOC AM, V84, P172, DOI 10.1121/1.396961 Yost WA, 1996, J ACOUST SOC AM, V99, P1066, DOI 10.1121/1.414593 Yost WA, 1996, J ACOUST SOC AM, V100, P3329, DOI 10.1121/1.416973 ZWICKER E, 1970, FREQUENCY ANAL PERIO NR 58 TC 5 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2003 VL 185 IS 1-2 BP 1 EP 12 DI 10.1016/S0378-5955(03)00215-6 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 743FR UT WOS:000186562200001 PM 14599687 ER PT J AU Zhang, JS Kaltenbach, JA Wang, J Bronchti, G AF Zhang, JS Kaltenbach, JA Wang, J Bronchti, G TI Changes in [C-14]-2-deoxyglucose uptake in the auditory pathway of hamsters previously exposed to intense sound SO HEARING RESEARCH LA English DT Article DE sound exposure; hearing loss; auditory pathway; [C-14]-2-deoxyglucose; hamster ID DORSAL COCHLEAR NUCLEUS; INDUCED HEARING-LOSS; RAT INFERIOR COLLICULUS; ACOUSTIC TRAUMA; NOISE EXPOSURE; 2-DEOXYGLUCOSE UPTAKE; RESPONSE PROPERTIES; SYSTEM ACTIVITY; IN-VITRO; TINNITUS AB The current study evaluated changes in [C-14]-2-deoxyglucose (2-DG) uptake along the auditory pathways of hamsters that were exposed unilaterally to intense sound. The measurement of the acoustically evoked auditory brainstem responses indicated that intense sound exposure caused asymmetrical hearing loss. The 2-DG results revealed some changes in metabolic activity in exposed animals, as compared to unexposed animals. Significant decreases in 2-DG uptake were found in the ipsilateral anteroventral and posteroventral cochlear nucleus, with respect to the exposed left ears. Exposed animals also showed significant increases in the ipsilateral nucleus of the lateral lemniscus, central nucleus of inferior colliculus and medial geniculate body. No significant changes in uptake were observed in the ipsilateral dorsal cochlear nucleus, superior olivary complex, auditory cortex and any contralateral structures. The mechanisms for the observed changes in 2-DG uptake are discussed. (C) 2003 Elsevier B.V. All rights reserved. C1 Wayne State Univ, Dept Otolaryngol Head & Neck Surg, UHC 5E, Detroit, MI 48201 USA. Univ Quebec, Dept Biol & Chem, Trois Rivieres, PQ G9A 5H7, Canada. RP Zhang, JS (reprint author), Wayne State Univ, Dept Otolaryngol Head & Neck Surg, UHC 5E, 4201 St Antoine, Detroit, MI 48201 USA. CR Bilak M, 1997, EXP NEUROL, V147, P256, DOI 10.1006/exnr.1997.6636 Brown M, 1997, HEARING RES, V104, P73, DOI 10.1016/S0378-5955(96)00186-4 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 Chang H, 2002, HEARING RES, V164, P59, DOI 10.1016/S0378-5955(01)00410-5 CHEN KJ, 1994, HEARING RES, V77, P168 GERKEN G, 1986, BASIC APPL ASPECTS N, P195 HALL JG, 1976, ACTA OTO-LARYNGOL, V81, P344, DOI 10.3109/00016487609119972 Heffner HE, 2002, HEARING RES, V170, P83, DOI 10.1016/S0378-5955(02)00343-X HEIL P, 1986, J COMP NEUROL, V252, P279, DOI 10.1002/cne.902520302 HU B, 1995, J PHYSIOL-LONDON, V483, P167 Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57 KEITHLEY EM, 1994, HEARING RES, V80, P79, DOI 10.1016/0378-5955(94)90011-6 KILDUFF TS, 1982, J NEUROSCI, V2, P143 Kimura M, 1999, HEARING RES, V135, P146, DOI 10.1016/S0378-5955(99)00104-5 KOERBER KC, 1966, EXP NEUROL, V16, P119, DOI 10.1016/0014-4886(66)90091-4 Milbrandt JC, 2000, HEARING RES, V147, P251, DOI 10.1016/S0378-5955(00)00135-0 Morest DK, 1998, MICROSC RES TECHNIQ, V41, P205 Morest DK, 1997, HEARING RES, V103, P151, DOI 10.1016/S0378-5955(96)00172-4 MOREST K, 1982, NEW PERSPECTIVES NOI, P87 Morin LP, 2001, STEREOTAXIC ATLAS GO NUDO RJ, 1986, J COMP NEUROL, V136, P453 NUDO RJ, 1984, CONTRIBUTIONS SENSOR, V18, P79 OSEN KK, 1972, J COMP NEUROL, V144, P355, DOI 10.1002/cne.901440307 POPELAR J, 1994, HEARING RES, V72, P125, DOI 10.1016/0378-5955(94)90212-7 RYAN AF, 1992, HEARING RES, V61, P24, DOI 10.1016/0378-5955(92)90032-I RYAN AF, 1982, J COMP NEUROL, V207, P369, DOI 10.1002/cne.902070408 SAINTMARIE RL, 1990, BRAIN RES, V524, P244, DOI 10.1016/0006-8993(90)90698-B SaintMarie RL, 1996, J COMP NEUROL, V373, P255, DOI 10.1002/(SICI)1096-9861(19960916)373:2<255::AID-CNE8>3.0.CO;2-2 SAINTMARIE RL, 1989, J COMP NEUROL, V279, P382 SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U SALVI RJ, 1982, SCIENCE, V216, P331 Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 SALVI RJ, 1978, EXP BRAIN RES, V32, P301 SALVI RJ, 1983, J SPEECH HEAR RES, V26, P629 SASAKI CT, 1981, LARYNGOSCOPE, V91, P2018 SCHEICH H, 1979, CELL TISSUE RES, V204, P17 Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1 SOKOLOFF L, 1977, J NEUROCHEM, V28, P897, DOI 10.1111/j.1471-4159.1977.tb10649.x Syka J, 2000, HEARING RES, V139, P59, DOI 10.1016/S0378-5955(99)00175-6 SYKA J, 1994, HEARING RES, V78, P158, DOI 10.1016/0378-5955(94)90021-3 TANIGUCHI J, 1978, P JPN ACAD, V54, P496 TRUNE DR, 1982, J COMP NEUROL, V209, P409, DOI 10.1002/cne.902090410 Tucci DL, 2001, HEARING RES, V155, P124, DOI 10.1016/S0378-5955(01)00256-8 Tucci DL, 1999, LARYNGOSCOPE, V109, P1359, DOI 10.1097/00005537-199909000-00001 WALLER HJ, 1994, J NEUROPHYSIOL, V71, P467 WANG J, 1997, CHIN J OTORHINOLARYN, V32, P218 Wang J, 1996, J NEUROPHYSIOL, V75, P171 Webster DB, 1992, MAMMALIAN AUDITORY P, P1 WILLOTT JF, 1994, HEARING RES, V74, P1, DOI 10.1016/0378-5955(94)90171-6 WILLOTT JF, 1982, SCIENCE, V216, P1331, DOI 10.1126/science.7079767 WOOLF NK, 1983, BRAIN RES, V274, P119, DOI 10.1016/0006-8993(83)90526-7 WOUTERLOOD FG, 1984, J COMP NEUROL, V227, P136, DOI 10.1002/cne.902270114 Zhang JS, 1998, NEUROSCI LETT, V250, P197, DOI 10.1016/S0304-3940(98)00482-0 NR 53 TC 11 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2003 VL 185 IS 1-2 BP 13 EP 21 DI 10.1016/S0378-5955(03)00276-4 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 743FR UT WOS:000186562200002 PM 14599688 ER PT J AU Rother, T Schrock-Pauli, C Karmody, CS Bachor, E AF Rother, T Schrock-Pauli, C Karmody, CS Bachor, E TI 3-D reconstruction of the vestibular endorgans in pediatric temporal bones SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 39th Workshop oon Inner Ear Biology CY SEP 08-10, 2002 CL LIEGE, BELGIUM DE three-dimensional reconstruction; temporal bone; child; pathology; peripheral vestibular endorgan ID 3-DIMENSIONAL RECONSTRUCTION; APPARATUS; DUCT; EAR AB We investigated the vestibular endorgans in three children using 3-D reconstructions from histological sections. The right temporal bone of a newborn child without peripheral vestibular pathology was used as reference model and the temporal bones from a child with Goldenhar syndrome and a child with Pierre Robin sequence with known peripheral vestibular pathology were studied. All five temporal bones were prepared by the celloidin technique and sectioned at 20 mum. Each available section was digitized with a slide scanner. The imaging data were layered anatomically correctly and rendered in a 3-D software. With this technique all vestibular endorgans were reconstructed and measured. The standard deviations in distances ranged between 0.5 and 1.2% and in angles between 0.1 and 2.9degrees. Both maculae were curved in the longitudinal and transverse axes which described a curve of approximately 35degrees. The angles between the semicircular ducts varied between 97 and 110degrees. The pathological models demonstrated a distorted configuration of the semicircular canals and differed substantially from the reference model in most of the measured distances and angles. The method presented is capable of generating 3-D models of the vestibular system from histological sections with an acceptable precision without previously inserted reference marks. Archival celloidin sections are widely available and will be an important resource in understanding the detailed 3-D geometry of the vestibular system which has not yet been accomplished. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Ulm, Dept Otorhinolaryngol, D-89075 Ulm, Germany. Univ Ulm, Ctr Comp, D-89081 Ulm, Germany. Tufts Univ, Sch Med, Dept Otolaryngol, Boston, MA 02111 USA. Tufts Univ New England Med Ctr, Boston, MA 02111 USA. RP Bachor, E (reprint author), Univ Ulm, Dept Otorhinolaryngol, Prittwitzstr 43, D-89075 Ulm, Germany. CR ANTUNEZ JCM, 1980, ANN OTO RHINOL LARYN, V89, P23 Arnold WH, 2001, ANN ANAT, V183, P61, DOI 10.1016/S0940-9602(01)80014-5 Bast T, 1930, CONTRIB EMBRYOL, V121, P53 BLANKS RHI, 1975, ACTA OTO-LARYNGOL, V80, P185, DOI 10.3109/00016487509121318 Born G, 1883, ARCH MIKROSK ANAT, V22, P584, DOI 10.1007/BF02952679 Chan LL, 2000, LARYNGOSCOPE, V110, P1375, DOI 10.1097/00005537-200008000-00029 Curthoys IS, 1999, ANN NY ACAD SCI, V871, P27, DOI 10.1111/j.1749-6632.1999.tb09173.x CURTHOYS IS, 1987, ACTA OTO-LARYNGOL, V103, P254, DOI 10.3109/00016488709107791 DEBURLET HM, 1916, ARCH ANAT PHYSL, P59 DEBURLET HM, 1930, MORPHOL JB, V64, P377 Fekete DM, 1999, TRENDS NEUROSCI, V22, P263, DOI 10.1016/S0166-2236(98)01366-6 Fujita S, 1996, EUR ARCH OTO-RHINO-L, V253, P122, DOI 10.1007/BF00615107 GREEN JD, 1990, LARYNGOSCOPE, V100, P1 HARADA T, 1988, ARCH OTOLARYNGOL, V114, P1139 HASKINS JE, 1997, 20 MIDW RES M ASS RE, P155 IBSEN I, 1881, ANATOMISKE UNDERSOGE IGARASHI M, 1967, LARYNGOSCOPE, V77, P1806, DOI 10.1288/00005537-196710000-00003 Klingebiel R, 2002, ARCH OTOLARYNGOL, V128, P549 Lindeman H H, 1969, Ergeb Anat Entwicklungsgesch, V42, P1 Mason TP, 2000, OTOLARYNG HEAD NECK, V122, P168, DOI 10.1016/S0194-5998(00)70234-8 MERCHANT SN, 1988, ANN OTO RHINOL LARYN, V97, P565 Minor LB, 2000, AM J OTOL, V21, P9 Naganuma H, 2001, ANN OTO RHINOL LARYN, V110, P1017 NAKASHIMA S, 1993, LARYNGOSCOPE, V103, P1150 PALVA T, 2001, COLOR ATLAS ANATOMY, P1 ROSENHAL.U, 1972, ANN OTO RHINOL LARYN, V81, P339 Sando I, 1984, Ann Otol Rhinol Laryngol Suppl, V112, P110 SATO H, 1992, OTOLARYNG HEAD NECK, V107, P405 Scholtz AW, 2001, OTOL NEUROTOL, V22, P501, DOI 10.1097/00129492-200107000-00016 SCHUKNECHT H F, 1987, Annals of Otology Rhinology and Laryngology, V96, P1 SCHUKNECHT HF, 1993, GOLDENHAR SYNDROME P, P127 SIEBENMANN F, KORROSIONSANATOMIE K, P1 TAKAGI A, 1988, OTOLARYNG HEAD NECK, V98, P195 TAKAGI A, 1989, ACTQ OTALARYNGOL STO, V104, P362 Tomandl BF, 2001, HNO, V49, P618, DOI 10.1007/s001060170057 VYSLONZIL E, 1963, LARYNGORHINOL, V97, P126 NR 36 TC 8 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2003 VL 185 IS 1-2 BP 22 EP 34 DI 10.1016/S0378-5955(03)00255-7 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 743FR UT WOS:000186562200003 PM 14599689 ER PT J AU Khalifa, SAM Friberg, U Illing, RB Rask-Andersen, H AF Khalifa, SAM Friberg, U Illing, RB Rask-Andersen, H TI Synaptophysin immunohistochemistry in the human cochlea SO HEARING RESEARCH LA English DT Article DE cochlea; organ of Corti; synaptophysin; human; noise trauma; outer hair cell; inner hair cell ID OUTER HAIR-CELLS; ACOUSTICALLY EXPOSED RABBITS; HUMAN SPIRAL GANGLION; GUINEA-PIG COCHLEA; ELECTRON-MICROSCOPY; SENSORY CELLS; EAR SURGERY; INNER-EAR; LOCALIZATION; PROTEIN AB Light microscopy and immunohistochemical. analyses of a freshly prepared human cochlea, removed at meningioma skull base surgery, were performed with particular emphasis on synaptophysin (SY) reactivity. Synaptophysin, a 38-kDa glycoprotein, is one of the most abundant integral membrane proteins of small presynaptic vesicles and is a useful marker for sites of synaptic transmission of the efferent olivocochlear system in the cochlea. Following fixation and decalcification, cryosections of 30 Pin were prepared. To introduce immunostaining, free-floating sections were exposed to monoclonal SY antibody. Positive SY immunostaining was solely restricted to the neural and sensory structures and did not include supporting cells of the organ of Corti. Dense reaction products were noted around the hair cells, especially at the basal portion of the inner and outer hair cells and their neural poles, as well as around the inner spiral bundle, tunnel spiral bundle, outer spiral bundle and upper tunnel crossing fibers. The majority of spiral ganglion cells stained positively. An intermingling network of thin unmyelinated nerve fibers stained densely, especially at the basal portions of the cochlea. The spiral limbus, inner and outer sulcus cells, basilar membrane, myelinated nerve fibers, spiral ligament and the stria vascularis were unstained. Human cochlea obtained during surgery offers excellent conditions for immunohistochemical analysis. In the basal cochlea in the organ of Corti, outer hair cell area, there may be alterations due to noise trauma from the drilling procedure. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Uppsala Hosp, Dept Otorhinolaryngol Head & Neck Surg, S-75185 Uppsala, Sweden. Univ Freiburg, Dept Otorhinolaryngol, Neurobiol Res Lab, D-79106 Freiburg, Germany. RP Rask-Andersen, H (reprint author), Univ Uppsala Hosp, Dept Otorhinolaryngol Head & Neck Surg, S-75185 Uppsala, Sweden. CR ANNIKO M, 1995, ORL J OTO-RHINO-LARY, V57, P68 ANNIKO M, 1989, ORL J OTO-RHINO-LARY, V51, P221 Canlon B, 1999, BRAIN RES, V850, P253, DOI 10.1016/S0006-8993(99)02091-0 Chan E, 1998, NEUROSCIENCE, V83, P961, DOI 10.1016/S0306-4522(97)00446-6 Counter SA, 1997, NEUROSCI LETT, V222, P199, DOI 10.1016/S0304-3940(97)13364-X GILLOYZAGA P, 1988, INT J DEV NEUROSCI, V6, P155, DOI 10.1016/0736-5748(88)90040-8 Heinrich UR, 1997, ORL J OTO-RHINO-LARY, V59, P317 HELMS J, 1976, J LARYNGOL OTOL, V90, P1143, DOI 10.1017/S0022215100083225 KNIPPER M, 1995, DEV BRAIN RES, V89, P73, DOI 10.1016/0165-3806(95)00113-R KYLEN P, 1977, ACTA OTO-LARYNGOL, V84, P393, DOI 10.3109/00016487709123982 KYLEN P, 1976, ACTA OTO-LARYNGOL, V82, P402, DOI 10.3109/00016487609120925 LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309 LIM DJ, 1976, ANN OTO RHINOL LARYN, V85, P740 Michler SA, 2002, J COMP NEUROL, V451, P250, DOI 10.1002/cne.10348 NADOL JB, 1994, HEARING RES, V81, P49, DOI 10.1016/0378-5955(94)90152-X NADOL JB, 1993, ACTA OTO-LARYNGOL, V113, P312, DOI 10.3109/00016489309135815 Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X OMATA T, 1984, ARCH OTO-RHINO-LARYN, V240, P175 OMATA T, 1992, EUR ARCH OTO-RHINO-L, V249, P287, DOI 10.1007/BF00714495 Rask-Andersen H, 2000, HEARING RES, V141, P1, DOI 10.1016/S0378-5955(99)00179-3 REHM H, 1986, EMBO J, V5, P535 ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X Simmons DD, 1996, DEV BRAIN RES, V95, P213 SMITT PAES, 1993, ACTA HISTOCHEM, V95, P13 Sokolowski BHA, 1996, NEUROSCI LETT, V216, P89 SPOENDLIN H, 1979, J LARYNGOL OTOL, V93, P853, DOI 10.1017/S002221510008782X NR 26 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2003 VL 185 IS 1-2 BP 35 EP 42 DI 10.1016/S0378-5955(03)00228-4 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 743FR UT WOS:000186562200004 PM 14599690 ER PT J AU Wang, SJ Young, YH AF Wang, SJ Young, YH TI Vestibular evoked myogenic potentials using simultaneous binaural acoustic stimulation SO HEARING RESEARCH LA English DT Article DE vestibular evoked myogenic potential; binaural simultaneous acoustic stimulation; monaural acoustic stimulation; interaural amplitude difference ID HYDROPS; NEURONS; REFLEX AB The aim of this study is to investigate the feasibility of recording vestibular evoked myogenic potential (VEMP) using simultaneous binaural acoustic stimulation (B-VEMP), and compare it with that using monaural acoustic stimulation (M-VEMP). Seven healthy volunteers were evoked by initial B-VEMP test and subsequent M-VEMP test, whereas vice versa in another 7 volunteers. All 14 subjects demonstrated both B-VEMPs and M-VEMPs, without significant difference in the latencies of p13 and n23. When using interaural amplitude difference (IAD) ratio for interpreting amplitude, B-VEMPs did not differ significantly from that of M-VEMPs. Hence, B-VEMPs can produce information equivalent to M-VEMPs in terms of response rate, latencies, and IAD ratio in healthy subjects. Likewise, similar results were also shown in the patients with unilateral Meniere's disease. In conclusion, B-VEMPs provide neither different information nor less variability, as compared with M-VEMPs. In addition, B-VEMPs can offer information on unilateral inner ear (saccular) pathology similar to that by M-VEMPs. Furthermore, recording from binaural stimulation can be used as a possibly more convenient mode compared with two monaural recordings, especially when testing young or old or disabled patients, since a continuous muscular effort is required during recording. (C) 2003 Elsevier B.V. All rights reserved. C1 Natl Taiwan Univ Hosp, Dept Otolaryngol, Taipei, Taiwan. Natl Taiwan Univ, Coll Med, Taipei 10764, Taiwan. RP Young, YH (reprint author), Natl Taiwan Univ Hosp, Dept Otolaryngol, 1 Chang Te St, Taipei, Taiwan. CR Brantberg K, 2001, SCAND AUDIOL, V30, P189, DOI 10.1080/010503901316914566 Chen CW, 2000, ACTA OTO-LARYNGOL, V120, P845 Chen CW, 2002, LARYNGOSCOPE, V112, P267, DOI 10.1097/00005537-200202000-00013 Cheng PW, 2001, ACTA OTO-LARYNGOL, V121, P696, DOI 10.1080/00016480152583638 COLEBATCH JG, 1994, J NEUROL NEUROSUR PS, V57, P190, DOI 10.1136/jnnp.57.2.190 LIM CL, 1995, MUSCLE NERVE, V18, P1210 MATTHEWS PBC, 1986, J PHYSIOL-LONDON, V374, P73 Murofushi T, 1999, ARCH OTOLARYNGOL, V125, P660 MUROFUSHI T, 1995, EXP BRAIN RES, V103, P174 Sato H, 1997, EXP BRAIN RES, V116, P381, DOI 10.1007/PL00005766 Streubel S O, 2001, Acta Otolaryngol Suppl, V545, P41 Takegoshi H, 2003, HEARING RES, V176, P59, DOI 10.1016/S0378-5955(02)00741-4 Welgampola MS, 2001, CLIN NEUROPHYSIOL, V112, P1971, DOI 10.1016/S1388-2457(01)00645-9 Wu CC, 2003, HEAD NECK-J SCI SPEC, V25, P482, DOI 10.1002/hed.10215 Wu CH, 1999, ACTA OTO-LARYNGOL, V119, P741 Young YH, 2002, LARYNGOSCOPE, V112, P509, DOI 10.1097/00005537-200203000-00019 Young YH, 2002, LARYNGOSCOPE, V112, P1623, DOI 10.1097/00005537-200209000-00018 YOUNG YH, 2003, HEAD NECK SURG, V129, P815 NR 18 TC 36 Z9 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2003 VL 185 IS 1-2 BP 43 EP 48 DI 10.1016/S0378-5955(03)00256-9 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 743FR UT WOS:000186562200005 PM 14599691 ER PT J AU Sluyter, S Klis, SFL de Groot, JCMJ Smoorenburg, GF AF Sluyter, S Klis, SFL de Groot, JCMJ Smoorenburg, GF TI Alterations in the stria vascularis in relation to cisplatin ototoxicity and recovery SO HEARING RESEARCH LA English DT Article DE cisplatin; ototoxicity; stria vascularis; endocochlear potential; guinea pig ID ALBINO GUINEA-PIG; HEARING-LOSS; GENTAMICIN; COCHLEA AB We have investigated whether or not cisplatin-induced depression of the endocochlear potential (EP), and its subsequent recovery, possesses a morphological correlate in the stria vascularis. Guinea pigs implanted with round window electrodes were treated daily with cisplatin (1.5 mg/kg/day) until the compound action potential showed a profound hearing loss ( greater than or equal to 40 dB at 8 kHz after 5-18 days). Animals were either sacrificed immediately after the shift in hearing threshold ('SHORT' group) or allowed to recover for greater than or equal to 4 weeks and subsequently sacrificed ('LONG' group). Control animals ('CONTROL' group) were not treated with cisplatin. Using stereological methods we measured the total strial cross-sectional area together with the areas occupied by the different strial components: the marginal, intermediate and basal cells. The total strial cross-sectional area in the basal turn of the LONG group was found to be significantly smaller than that of the SHORT and the CONTROL groups, whereas the EP was normal in the LONG group (in comparison to the CONTROL group) and markedly decreased in the SHORT group. The smaller area in the LONG group was mainly due to a decrease in the area occupied by the intermediate cells and to a lesser extent to a decrease in the marginal cell area. The area occupied by the basal cells did not change. Thus, the marked decrease in EP after 5-18 days of cisplatin administration was not related to shrinkage of the stria vascularis. Moreover, 4 weeks later the EP showed full recovery, whereas the stria vascularis had shrunk markedly. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Utrecht, Med Ctr, Dept Otorhinolaryngol, Hearing Res Lab, NL-3508 GA Utrecht, Netherlands. RP Smoorenburg, GF (reprint author), Univ Utrecht, Med Ctr, Dept Otorhinolaryngol, Hearing Res Lab, Room G-02-531,POB 85-500, NL-3508 GA Utrecht, Netherlands. CR AGUILARMARKULIS NV, 1981, J SURG ONCOL, V16, P111, DOI 10.1002/jso.2930160203 ARAN JM, 1979, AUDITORY INVESTIGATI, P233 Campbell KCM, 1999, HEARING RES, V138, P13, DOI 10.1016/S0378-5955(99)00142-2 Cardinaal RM, 2000, HEARING RES, V144, P135, DOI 10.1016/S0378-5955(00)00059-9 DEGROOT JCMJ, 1987, ACTA OTO-LARYNGOL, V104, P234, DOI 10.3109/00016488709107323 deGroot JCMJ, 1997, HEARING RES, V106, P9, DOI 10.1016/S0378-5955(96)00213-4 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 FORGE A, 1987, HEARING RES, V31, P253, DOI 10.1016/0378-5955(87)90195-X Gill SS, 1997, HEARING RES, V113, P191, DOI 10.1016/S0378-5955(97)00141-X Gratton MA, 1997, HEARING RES, V114, P1, DOI 10.1016/S0378-5955(97)00025-7 Greenwood DD, 1996, HEARING RES, V94, P157, DOI 10.1016/0378-5955(95)00229-4 Klis SFL, 2000, NEUROREPORT, V11, P623, DOI 10.1097/00001756-200002280-00037 Klis SFL, 2002, HEARING RES, V164, P138, DOI 10.1016/S0378-5955(01)00425-7 KOHN S, 1991, LARYNGOSCOPE, V101, P709 LAURELL G, 1990, LARYNGOSCOPE, V100, P724 LOHUIS PJFM, 1990, HEARING RES, V47, P95, DOI 10.1016/0378-5955(90)90169-P Meech RP, 1998, HEARING RES, V124, P44, DOI 10.1016/S0378-5955(98)00116-6 NAKAI Y, 1982, ACTA OTO-LARYNGOL, V93, P227, DOI 10.3109/00016488209130876 SANTI PA, 1983, HEARING RES, V11, P7, DOI 10.1016/0378-5955(83)90041-2 SCHWEITZER VG, 1993, LARYNGOSCOPE, V103, P1, DOI 10.1288/00005537-199304000-00001 Stengs CHM, 1997, HEARING RES, V111, P103, DOI 10.1016/S0378-5955(97)00095-6 TANGE RA, 1984, ARCH OTO-RHINO-LARYN, V239, P41, DOI 10.1007/BF00454261 vanEmst MG, 1997, HEARING RES, V114, P93, DOI 10.1016/S0378-5955(97)00156-1 WANGEMANN P, 1996, SPR HDB AUD, V8, P130 NR 24 TC 17 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2003 VL 185 IS 1-2 BP 49 EP 56 DI 10.1016/S0378-5955(03)00260-0 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 743FR UT WOS:000186562200006 PM 14599692 ER PT J AU Sakakura, K Miyashita, M Chikamatsu, K Takahashi, K Furuya, N AF Sakakura, K Miyashita, M Chikamatsu, K Takahashi, K Furuya, N TI Tone burst-evoked myogenic potentials in rat neck extensor and flexor muscles SO HEARING RESEARCH LA English DT Article DE vestibular evoked myogenic potential; extensor muscle; decerebration; vestibulospinal reflex; muscle relaxant; auditory brainstem response ID REFLEX; SOUND; CATS AB Vestibular evoked myogenic potential (VEMP) has been used to test the vestibulocollic reflex. This study establishes a stable recording of VEMPs of animals, and presents useful parameters for vestibular ability. In an acute experiment, rats were decerebrated, and myogenic potential from neck extensor muscles was recorded. The myogenic potentials elicited by a tone-burst stimulus showed a biphasic response in the ipsilateral muscle, and the mean latency of the response was 3.56 ms, the positive peak appearing at 4.63 ins. The onset latencies of the response lengthen as the stimulus becomes weaker; this is the most suitable parameter of vestibular ability. The latencies of the monophasic response from the spinal cord were shorter than those of muscle. After injection of a muscle relaxant, myogenic potentials disappeared immediately, but the spinal cord response remained. We succeeded in recording responses not only from acute experimental animals but also from free-moving animals for the first time. These myogenic potentials were similar to VEMPs in humans; because the threshold of the response was higher than the auditory brainstem response threshold by 40-45 dB, the response could only be recorded with very high spontaneous muscle activity and the latency was shorter than the startle reflex. (C) 2003 Elsevier B.V. All rights reserved. C1 Gunma Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Maebashi, Gumma 371, Japan. RP Furuya, N (reprint author), Gunma Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, 3-39-22 Showa Machi, Maebashi, Gumma 371, Japan. CR BICKFORD RG, 1964, ANN NY ACAD SCI, V112, P204, DOI 10.1111/j.1749-6632.1964.tb26749.x BROWN P, 1991, BRAIN, V114, P1891, DOI 10.1093/brain/114.4.1891 CODY DTR, 1964, ANN OTO RHINOL LARYN, V73, P763 CODY DTR, 1969, LARYNGOSCOPE, V79, P400, DOI 10.1288/00005537-196903000-00007 COLEBATCH JG, 1992, NEUROLOGY, V42, P1635 COLEBATCH JG, 1994, J NEUROL NEUROSUR PS, V57, P190, DOI 10.1136/jnnp.57.2.190 DAVIS M, 1982, J NEUROSCI, V2, P791 Furuya N, 1998, ACTA OTO-LARYNGOL, V118, P64 Kamemori M, 2002, HEARING RES, V171, P103, DOI 10.1016/S0378-5955(02)00483-5 Kushiro K, 1999, EXP BRAIN RES, V126, P410, DOI 10.1007/s002210050747 Lee YL, 1996, J NEUROSCI, V16, P3775 Matsuzaki M, 2002, HEARING RES, V165, P152, DOI 10.1016/S0378-5955(02)00297-6 MEISEREWERT K, 1974, CLIN NEUROPHYSIOL, V36, P629 Miyazato H, 1996, NEUROSCIENCE, V75, P289, DOI 10.1016/0306-4522(96)00176-5 Miyazato H, 1999, BRAIN RES, V822, P60, DOI 10.1016/S0006-8993(99)01074-4 PELLET J, 1990, PHYSIOL BEHAV, V48, P1 Uchino Y, 1997, J NEUROPHYSIOL, V77, P3003 NR 17 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2003 VL 185 IS 1-2 BP 57 EP 64 DI 10.1016/S0378-5955(03)00232-6 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 743FR UT WOS:000186562200007 PM 14599693 ER PT J AU Sanchez-Gonzalez, MA Warr, WB Lopez, DE AF Sanchez-Gonzalez, MA Warr, WB Lopez, DE TI Anatomy of olivocochlear neurons in the hamster studied with FluoroGold SO HEARING RESEARCH LA English DT Article DE olivocochlear system; olivocochlear bundle; olivocochlear neuron; efferent innervation of the cochlea; shell neuron; hamster ID SUPERIOR OLIVARY COMPLEX; OUTER HAIR-CELLS; GUINEA-PIG COCHLEA; BRAIN-STEM; FLUORESCENT TRACERS; POSTNATAL MATURATION; CONTRALATERAL SOUND; EFFERENT FIBERS; RAT; INNERVATION AB The golden hamster (Mesocricetus auratus) is often used in auditory research, but little is known about the anatomical organization of its olivocochlear (OC) neurons, the source of the efferent innervation of the organ of Corti. Accordingly, we labeled the OC neurons projecting to one cochlea by means of retrograde axonal transport of FluoroGold((R)). In four animals, all labeled OC neurons were counted and digital images of the labeling were captured and analyzed morphometrically. In one case, a 3D computer reconstruction of the bilateral distribution of OC neurons was made. The largest group of OC neurons was comprised by small, intrinsic lateral OC neurons within the ipsilateral lateral superior olivary nucleus (LSO), almost all of which (97%) were located ipsilaterally. The second largest group consisted of medial OC neurons in the ventral nucleus of the trapezoid body, 75% of which were located contralaterally. The smallest group consisted of shell neurons surrounding the LSO, 80% of which projected ipsilaterally. These three types of neurons are generally similar in morphology and distribution to those previously described in the rat and the chinchilla. However, there were several unique findings, including the fact that the hamster possesses the smallest total number of OC neurons (mean 341) of any rodent yet studied. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Salamanca, Fac Med, Dept Biol Celular & Patol, Lab Neurobiol Aud, E-37007 Salamanca, Spain. Inst Neurociencias Castilla & Leon, E-37007 Salamanca, Spain. Boys Town Natl Res Hosp, Omaha, NE 68131 USA. RP Lopez, DE (reprint author), Univ Salamanca, Fac Med, Dept Biol Celular & Patol, Lab Neurobiol Aud, E-37007 Salamanca, Spain. RI Lopez, Dolores/A-2762-2009 OI Lopez, Dolores/0000-0002-1450-7246 CR ANDERSON CR, 1994, J NEUROSCI METH, V53, P137, DOI 10.1016/0165-0270(94)90170-8 ASCHOFF A, 1988, EXP BRAIN RES, V71, P252 ASCHOFF A, 1987, J COMP NEUROL, V264, P56, DOI 10.1002/cne.902640106 ASCHOFF A, 1988, EXP BRAIN RES, V71, P241 Azeredo WJ, 1999, HEARING RES, V134, P57, DOI 10.1016/S0378-5955(99)00069-6 BENSON TE, 1990, J COMP NEUROL, V295, P52, DOI 10.1002/cne.902950106 BISHOP AL, 1987, HEARING RES, V31, P175, DOI 10.1016/0378-5955(87)90124-9 BROWN MC, 1987, J COMP NEUROL, V260, P605, DOI 10.1002/cne.902600412 BROWN MC, 1991, J COMP NEUROL, V303, P300, DOI 10.1002/cne.903030211 CAMPBELL JP, 1988, HEARING RES, V35, P271, DOI 10.1016/0378-5955(88)90124-4 Cantos R., 1996, Society for Neuroscience Abstracts, V22, P1621 DEWSON JH, 1968, J NEUROPHYSIOL, V31, P122 Fuchs P, 2002, AUDIOL NEURO-OTOL, V7, P40, DOI 10.1159/000046862 Guinan Jr J.J., 1996, COCHLEA, P435 Horvath M, 2000, J COMP NEUROL, V422, P95 KIM DO, 1995, ACTIVE HEARING, P31 Le Prell CG, 2001, PHYSL EAR, P575 LIBERMAN MC, 1980, HEARING RES, V3, P189, DOI 10.1016/0378-5955(80)90046-5 LOPEZ DE, 1999, J PHYSL BIOCH, V55, P182 Mulders WHAM, 2003, HEARING RES, V176, P113, DOI 10.1016/S0378-5955(02)00750-5 Mulders WHAM, 2000, HEARING RES, V144, P65, DOI 10.1016/S0378-5955(00)00046-0 OATMAN LC, 1977, EXP NEUROL, V57, P200, DOI 10.1016/0014-4886(77)90057-7 Puel JL, 2002, AUDIOL NEURO-OTOL, V7, P49, DOI 10.1159/000046864 Puria S, 1996, J ACOUST SOC AM, V99, P500, DOI 10.1121/1.414508 Raji-Kubba J, 2002, J CHEM NEUROANAT, V24, P75, DOI 10.1016/S0891-0618(02)00022-4 ROBERTSON D, 1987, EXP BRAIN RES, V66, P449, DOI 10.1007/BF00270677 RYAN AF, 1987, J COMP NEUROL, V255, P606, DOI 10.1002/cne.902550411 SANES DH, 1990, J COMP NEUROL, V294, P443, DOI 10.1002/cne.902940312 Scharf B, 1997, HEARING RES, V103, P101, DOI 10.1016/S0378-5955(96)00168-2 SIMMONS DD, 1993, J CHEM NEUROANAT, V6, P407, DOI 10.1016/0891-0618(93)90015-V Simmons DD, 1996, J COMP NEUROL, V370, P551, DOI 10.1002/(SICI)1096-9861(19960708)370:4<551::AID-CNE10>3.0.CO;2-M Simmons DD, 1999, ANAT EMBRYOL, V200, P585, DOI 10.1007/s004290050306 Simmons DD, 1996, DEV BRAIN RES, V95, P213 SIMMONS DD, 1990, HEARING RES, V49, P127, DOI 10.1016/0378-5955(90)90100-4 SIMMONS DD, 1994, NEUROREPORT, V5, P1309, DOI 10.1097/00001756-199406270-00003 Sobkowicz HM, 1997, J COMP NEUROL, V377, P423, DOI 10.1002/(SICI)1096-9861(19970120)377:3<423::AID-CNE9>3.0.CO;2-4 THOMPSON GC, 1986, J COMP NEUROL, V254, P246, DOI 10.1002/cne.902540208 VETTER DE, 1991, SYNAPSE, V7, P21, DOI 10.1002/syn.890070104 VETTER DE, 1992, ANAT EMBRYOL, V185, P1, DOI 10.1007/BF00213596 Veuillet E, 1999, SCAND AUDIOL, V28, P53 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 WARR WB, 1975, J COMP NEUROL, V161, P159, DOI 10.1002/cne.901610203 Warr WB, 1997, HEARING RES, V108, P89, DOI 10.1016/S0378-5955(97)00044-0 Warr WB, 2002, JARO, V3, P457, DOI 10.1007/s10162-002-2046-6 WARREN EH, 1989, HEARING RES, V37, P89, DOI 10.1016/0378-5955(89)90032-4 WHITE JS, 1983, J COMP NEUROL, V219, P203, DOI 10.1002/cne.902190206 Xiao ZJ, 2002, NAT NEUROSCI, V5, P57, DOI 10.1038/nn786 NR 47 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2003 VL 185 IS 1-2 BP 65 EP 76 DI 10.1016/S0378-5955(03)00213-2 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 743FR UT WOS:000186562200008 PM 14599694 ER PT J AU Hu, N Abbas, PJ Miller, CA Robinson, BK Nourski, KV Jeng, FC Abkes, BA Nichols, JM AF Hu, N Abbas, PJ Miller, CA Robinson, BK Nourski, KV Jeng, FC Abkes, BA Nichols, JM TI Auditory response to intracochlear electric stimuli following furosemide treatment SO HEARING RESEARCH LA English DT Article DE electric stimulation; action potential; auditory nerve; cochlear implant; furosemide; pulse train; alternation; adaptation; refractoriness; guinea pig ID COCHLEAR IMPLANTS; NERVE FIBERS; CAT; NOISE; RATES AB The influence of functional hair cells on electrical stimulation of the auditory nerve is an important issue as individuals with significant residual hearing are now cochlear implant candidates. Previous work has shown that chemical deafening during the course of acute experiments changes the auditory nerve's responses to electrical stimulation [Third Quarterly Progress Report, NIH contract N01-DC-9-2106 (2000), Final Report, NIH Contract N01-DC-9-2106 (2002)]. This study extended that work by investigating the changes and subsequent recovery following furosemide injections which reversibly impair hair-cell function [Hear. Res. (1980) 79-89; Hear. Res. 14 (1984) 305-314, J. Physiol. 347 (1984) 685-696; Hear. Res. 71 (1993) 202-207]. Acoustic sensitivity of guinea pig subjects was repeatedly monitored with the click-evoked compound action potential. Responses to single biphasic electric pulses and biphasic electric pulse trains delivered by a monopolar intracochlear electrode were also repeatedly assessed using the electrically evoked compound action potential (ECAP). Our measures demonstrated a clear relationship between the state of hair-cell function and ECAP responses, as changes in the latter coincided with the loss or recovery of acoustic sensitivity. ECAP growth functions demonstrated increased slope and increased maximum (saturation) amplitude. Both trends were reversible and followed approximately the time course of post-furosemide hearing recovery. Additional changes were observed using electric pulse-train stimulation: (1) the magnitude of ECAP amplitude alternation (observed in response to successive stimulus pulses) increased, (2) the degree of ECAP adaptation (measured 80-100 ms after pulse-train onset) increased, and (3) the degree of refractoriness (measured by the ratio of ECAP amplitudes to the second and first pulses) tended to increase. All these trends are consistent with the hypothesis that functional hair cells desynchronize the population of auditory nerve fibers, thereby changing the electrically evoked responses. Viable hair cells may therefore provide positive effects on auditory response to electric stimuli delivered to implant patients with residual hearing, as they may enhance the random activity of the stimulated nerve. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Iowa, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA. Univ Iowa, Dept Speech Pathol & Audiol, Iowa City, IA 52242 USA. RP Hu, N (reprint author), Oregon Hlth Sci Univ, Oregon Hearing Res Ctr, 3181 SW Sam Jackson Pk Rd, Portland, OR 97239 USA. CR ABBAS PJ, 1997, N01DC6211 ABBAS PJ, 2002, N01DC92106 NIH ABBAS PJ, 1999, DC9811 NIH Gantz B J, 2000, Ann Otol Rhinol Laryngol Suppl, V185, P33 Haenggeli A, 1998, AUDIOLOGY, V37, P353 HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7 Hodges A, 1997, AM J OTOL, V18, P179 HU N, 2002, N01DC92106 NIH Jayel E., 1990, COCHLEAR IMPLANTS MO, P247 KIANG NYS, 1972, ANN OTO RHINOL LARYN, V81, P714 KIEFER J, 2001, C IMPL AUD PROSTH PA LEAKEJONES PA, 1982, HEARING RES, V8, P225, DOI 10.1016/0378-5955(82)90076-4 Matsuoka AJ, 2000, HEARING RES, V149, P115, DOI 10.1016/S0378-5955(00)00172-6 Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X Miller CA, 1995, HEARING RES, V92, P85, DOI 10.1016/0378-5955(95)00204-9 Miller CA, 2001, JARO, V2, P216 Morse RP, 1996, NAT MED, V2, P928, DOI 10.1038/nm0896-928 Moss F, 1996, NAT MED, V2, P860, DOI 10.1038/nm0896-860 National Institutes of Health, 1995, NIH CONSENSUS STATE, V13, P1 Osberger Mary Joe, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P62 PIKE DA, 1980, HEARING RES, V3, P79, DOI 10.1016/0378-5955(80)90009-X Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3 RUGGERO MA, 1991, J NEUROSCI, V11, P1057 Santos-Sacchi J, 2001, HEARING RES, V159, P69, DOI 10.1016/S0378-5955(01)00321-5 SEWELL WF, 1984, J PHYSIOL-LONDON, V347, P685 SEWELL WF, 1984, HEARING RES, V14, P305, DOI 10.1016/0378-5955(84)90057-1 Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 SMITH DW, 1994, HEARING RES, V81, P1, DOI 10.1016/0378-5955(94)90147-3 TURNER C, 2001, C IMPL AUD PROSTH PA VISCHER M, 1997, AM J OTOL S, V18, P27 WHITWORTH C, 1993, HEARING RES, V71, P202, DOI 10.1016/0378-5955(93)90035-Y Wilson BS, 1997, BRIT J AUDIOL, V31, P205 Xu J, 1997, HEARING RES, V105, P1, DOI 10.1016/S0378-5955(96)00193-1 NR 33 TC 19 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2003 VL 185 IS 1-2 BP 77 EP 89 DI 10.1016/S0378-5955(03)00261-2 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 743FR UT WOS:000186562200009 PM 14599695 ER PT J AU Ding, DL McFadden, SL Browne, RW Salvi, RJ AF Ding, DL McFadden, SL Browne, RW Salvi, RJ TI Late dosing with ethacrynic acid can reduce gentamicin concentration in perilymph and protect cochlear hair cells SO HEARING RESEARCH LA English DT Article DE aminoglycoside antibiotic; loop diuretic; hearing loss; ototoxicity; otoprotection; cochlea ID AMINOGLYCOSIDE ANTIBIOTICS; OTOTOXIC INTERACTION; RAT; ENDOLYMPH; KANAMYCIN; PHARMACOKINETICS; TISSUES; FLUIDS AB A key factor in the well-known interaction between ethacrynic acid (EA) and aminoglycoside antibiotics (AABs) is disruption of the blood-labyrinth barrier (BLB), leading to rapid entry of EA and AABs into the cochlear fluids. The idea that the blood-labyrinthine fluid concentration gradient might be utilized in a protective manner was tested in the current experiment. We hypothesized that administering EA when gentamicin (GM) levels are higher in the cochlea than in the blood might actually reduce cochlear damage by permitting efflux of GM from the cochlear fluids into the bloodstream, down a concentration gradient and across a temporarily disrupted BLB. Guinea pigs received 1, 11, 14 or 20 injections of GM (125 mg/kg i.m.). Approximately half of the animals also received a single injection of EA (40 mg/kg i.v.) either concurrently or 12-18 h after the last GM injection. Concurrent injection of EA significantly increased GM concentration in serum and perilymph at all time points sampled (2.5, 5-8, and 12 h post injection). Compared to animals that received GM only, animals that received a delayed injection of EA had a significantly lower GM concentration in perilymph, lower thresholds of the compound action potential, and less outer hair cell loss. Collectively, the evidence suggests that EA can reduce GM ototoxicity if it is administered 12-18 It after GM, but the mechanism remains to be elucidated. The results may have implications for the clinical management of aminoglycoside ototoxicity in humans, as well as for understanding the mechanisms underlying AAB/EA interactions. (C) 2003 Elsevier B.V. All rights reserved. C1 SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. SUNY Buffalo, Clin Sci Lab, Buffalo, NY 14214 USA. RP McFadden, SL (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 215 Parker Hall, Buffalo, NY 14214 USA. CR BRUMMETT RE, 1979, ARCH OTOLARYNGOL, V105, P240 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 Ding DL, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P189, DOI 10.1201/9781420038736.ch13 DING D, 1995, J AUDIOL SPEECH DISO, V3, P76 DULON D, 1986, ANTIMICROB AGENTS CH, V30, P96 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 HENLEY CM, 1988, AUDIOLOGY, V27, P137 HOFFMAN DW, 1987, HEARING RES, V31, P217, DOI 10.1016/0378-5955(87)90190-0 HUY PTB, 1983, ANTIMICROB AGENTS CH, V23, P344 HUY PTB, 1986, J CLIN INVEST, V77, P1492 HUY PTB, 1981, J INFECT DIS, V143, P476 Matsuda K, 2000, BRAIN RES, V852, P492, DOI 10.1016/S0006-8993(99)02265-9 McFadden SL, 2002, HEARING RES, V174, P230, DOI 10.1016/S0378-5955(02)00697-4 MERIWETH.WD, 1971, J AMER MED ASSOC, V216, P795, DOI 10.1001/jama.216.5.795 ORSULAKOVA A, 1982, ACTA OTO-LARYNGOL, V93, P43, DOI 10.3109/00016488209130850 RUSSELL NJ, 1979, ACTA OTO-LARYNGOL, V88, P369, DOI 10.3109/00016487909137181 RYBAK LP, 1988, J LARYNGOL OTOL, V102, P518, DOI 10.1017/S0022215100105523 HUY PTB, 1983, HEARING RES, V11, P191, DOI 10.1016/0378-5955(83)90078-3 XU SA, 1993, HEARING RES, V70, P205, DOI 10.1016/0378-5955(93)90159-X NR 19 TC 22 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2003 VL 185 IS 1-2 BP 90 EP 96 DI 10.1016/S0378-5955(03)00258-2 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 743FR UT WOS:000186562200010 PM 14599696 ER PT J AU Stankovic, KM Corfas, G AF Stankovic, KM Corfas, G TI Real-time quantitative RT-PCR for low-abundance transcripts in the inner ear: analysis of neurotrophic factor expression SO HEARING RESEARCH LA English DT Article DE real-time quantitative reverse transcription-polymerase chain reaction; neurotrophin 3; brain-derived neurotrophic factor; glial cell-line-derived neurotrophic factor; postnatal inner ear ID POLYMERASE CHAIN-REACTION; MATURE RAT COCHLEA; AUDITORY-NERVE; FACTOR GDNF; STRESS; CELL; HYPERGRAVITY; PROTECTION; RECEPTORS; MICE AB Real-time quantitative reverse transcription-PCR is a highly sensitive technology that allows high throughput quantification of gene expression. Application of this technique to the inner ear is potentially very important, but is not straightforward because tissue harvesting can be challenging, RNA yield from individual inner ears is low, and cDNA synthesis from scant RNA can be inefficient. To overcome these challenges, we tested many parameters and reagents, and developed an approach to reliably quantitate small changes in low-abundance transcripts. Using this technique we demonstrate the presence and quantify amounts of the neurotrophic factors neurotrophin 3 (NT-3), brain-derived neurotrophic factor (BDNF) and glial cell-line-derived neurotrophic factor (GDNF),. in the cochlea and vestibular end organs of postnatal murine inner ear (P26). We show that out of the factors tested, BDNF is the only one differentially expressed between the cochlea and vestibular end organs, being 23.4 +/- 0.3 times more abundant in the vestibular end organs. Within the cochlea, GDNF gene expression is 4.9 +/- 0.2 times greater than NT-3 expression. Within the combined vestibular end organs, BDNF expression is 43.0 +/- 1.5 times greater than NT-3 expression. Our results suggest that neurotrophic factors continue to play a role in the postnatal inner ear, in addition to their previously shown essential role during development. (C) 2003 Elsevier B.V. All rights reserved. C1 Childrens Hosp, Div Neurosci, Boston, MA 02115 USA. Massachusetts Eye & Ear Infirm, Dept Otolaryngol, Boston, MA 02114 USA. RP Corfas, G (reprint author), Childrens Hosp, Div Neurosci, 300 Longwood Ave, Boston, MA 02115 USA. CR Altschuler RA, 1999, ANN NY ACAD SCI, V884, P305, DOI 10.1111/j.1749-6632.1999.tb08650.x Altschuler RA, 2002, AUDIOL NEURO-OTOL, V7, P152, DOI 10.1159/000058301 Bustin SA, 2000, J MOL ENDOCRINOL, V25, P169, DOI 10.1677/jme.0.0250169 Efron B., 1993, INTRO BOOTSTRAP Fritzsch B, 1999, CELL TISSUE RES, V295, P369, DOI 10.1007/s004410051244 Gacek RR, 1998, LARYNGOSCOPE, V108, P671, DOI 10.1097/00005537-199805000-00009 Heid CA, 1996, GENOME RES, V6, P986, DOI 10.1101/gr.6.10.986 Hellstrom A, 2001, P NATL ACAD SCI USA, V98, P5804, DOI 10.1073/pnas.101113998 HIGUCHI R, 1993, BIO-TECHNOL, V11, P1026, DOI 10.1038/nbt0993-1026 Kanzaki S, 2002, AUDIOL NEURO-OTOL, V7, P161, DOI 10.1159/000058303 Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Nam YJ, 2000, HEARING RES, V146, P1, DOI 10.1016/S0378-5955(00)00072-1 Nosrat CA, 1996, CELL TISSUE RES, V286, P191, DOI 10.1007/s004410050688 Ririe KM, 1997, ANAL BIOCHEM, V245, P154, DOI 10.1006/abio.1996.9916 Sawada S, 2002, NEUROREPORT, V13, P1127, DOI 10.1097/00001756-200207020-00011 Staecker H, 2001, ACTA OTO-LARYNGOL, V121, P666, DOI 10.1080/00016480152583593 Stankovic JM, 1999, J ACOUST SOC AM, V106, P857 Stover T, 2001, HEARING RES, V155, P143, DOI 10.1016/S0378-5955(01)00227-1 Stover T, 2000, MOL BRAIN RES, V76, P25, DOI 10.1016/S0169-328X(99)00328-9 Uno Y, 2002, J NEUROCHEM, V81, P1308, DOI 10.1046/j.1471-4159.2002.00933.x Uno Y, 2000, J VESTIBUL RES-EQUIL, V10, P283 Yoshida N, 1999, J NEUROSCI, V19, P10116 Zheng JL, 1999, J NEUROCYTOL, V28, P901, DOI 10.1023/A:1007078307638 NR 24 TC 31 Z9 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2003 VL 185 IS 1-2 BP 97 EP 108 DI 10.1016/S0378-5955(03)00298-3 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 743FR UT WOS:000186562200011 PM 14599697 ER PT J AU Phansuwan-Pujito, P Saleema, L Mukda, S Tongjaroenbuangam, W Jutapakdeegul, N Casalotti, SO Forge, A Dodson, H Govitrapong, P AF Phansuwan-Pujito, P Saleema, L Mukda, S Tongjaroenbuangam, W Jutapakdeegul, N Casalotti, SO Forge, A Dodson, H Govitrapong, P TI The opioid receptors in inner ear of different stages of postnatal rats SO HEARING RESEARCH LA English DT Article DE opioid receptor; cochlea; inner ear; hair cell; development; hearing ID IN-SITU HYBRIDIZATION; GENE-EXPRESSION; MESSENGER-RNA; DELTA; SYSTEM; PEPTIDES; KAPPA; BRAIN; MU; ONTOGENY AB There is increasing evidence that the opioid system has a role in hearing. To provide further evidence for such a role, the expression of opioid receptor mRNAs and proteins in the inner ear of rats was studied during development from birth (P0) to postnatal day 16 (P16). A semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was employed to detect changes in the expression of delta- (DOR) kappa- (KOR) and mu- (MOR) opioid receptor mRNAs in rat cochleae at P0, P4, P8 and P16. Expression of DOR mRNA levels steadily increased from PO to P8 with no further increases by P16. KOR mRNA was expressed at a relatively high level at PO and P4 followed by a decrease while MOR mRNA was expressed at a low level at P0 and P4 followed by an increase by P8 and P16. Immunocytochemical labelling of inner ear sections revealed unique developmental and distribution patterns of opioid receptors. In the organ of Corti DOR immunoreactivity (DOR-IR) was detected in hair cells from P4. In contrast MOR-IR was present only in supporting cells at P0-P16. In the spiral ganglion all three receptor subtypes were expressed from P0 on nerve cell soma and qualitatively appeared to increase with age. Also DOR-IR and MOR-IR were detected at P8 and P16 in nerve fibers within the spiral ganglion. In the limbus DOR-IR was detected at P8 and P16 on cells proximal to the tectorial membrane while MOR-IR was detected more distally. In general these findings demonstrate that within the inner ear each receptor subtype follows specific temporal and spatial developmental patterns, some of which may be associated to the onset of hearing. The data provide further evidence that the opioid system may play a role in the development and functioning of the inner ear. (C) 2003 Elsevier B.V. All rights reserved. C1 Mahidol Univ, Inst Sci & Technol Res & Dev, Neurobehav Biol Ctr, Nakhon Pathom, Thailand. Srinakharinwirot Univ, Fac Med, Dept Anat, Bangkok 10110, Thailand. UCL, Inst Laryngol & Otol, London WC1X 8EE, England. RP Govitrapong, P (reprint author), Mahidol Univ, Inst Sci & Technol Res & Dev, Neurobehav Biol Ctr, Salaya Campus, Nakhon Pathom, Thailand. EM grpkk@mahidol.ac.th CR BARTOLOME JV, 1991, NEUROSCIENCE, V40, P289, DOI 10.1016/0306-4522(91)90191-P CHEN L, 1999, MOL MED, V5, P19 COULY GF, 1993, DEVELOPMENT, V117, P409 EYBALIN M, 1993, PHYSIOL REV, V73, P309 Georges F, 1998, DEV BRAIN RES, V109, P187, DOI 10.1016/S0165-3806(98)00082-0 GOLDSTEIN A, 1989, MOL PHARMACOL, V36, P265 HERZ A, 1993, HDB EXPT PHARM, V104 HUNTER C, 1992, OTOLARYNG CLIN N AM, V25, P1027 Jongkamonwiwat N, 2003, HEARING RES, V181, P85, DOI 10.1016/S0378-5955(03)00175-8 Kaewsuk S, 2001, EUR J PHARMACOL, V411, P11, DOI 10.1016/S0014-2999(00)00768-8 Kieffer BL, 1995, CELL MOL NEUROBIOL, V15, P615, DOI 10.1007/BF02071128 LORD JAH, 1977, NATURE, V267, P495, DOI 10.1038/267495a0 LOUGHLIN SE, 1993, RECEPTORS DEV NERVOU, P185 MANSOUR A, 1988, TRENDS NEUROSCI, V11, P308, DOI 10.1016/0166-2236(88)90093-8 MANSOUR A, 1993, J CHEM NEUROANAT, V6, P351, DOI 10.1016/0891-0618(93)90010-2 MANSOUR A, 1994, J COMP NEUROL, V350, P412, DOI 10.1002/cne.903500307 MARTIN WR, 1976, J PHARMACOL EXP THER, V197, P517 Noden DM, 1986, BIOL CHANGE OTOLARYN, P15 PUJOL R, 1973, ACTA OTO-LARYNGOL, V76, P1, DOI 10.3109/00016487309121476 Rius R A, 1991, Brain Res Dev Brain Res, V58, P237 Simmons DD, 2002, J NEUROBIOL, V53, P228, DOI 10.1002/neu.10130 SPAIN JW, 1985, J NEUROSCI, V5, P584 Thorlin T, 1999, GLIA, V25, P370, DOI 10.1002/(SICI)1098-1136(19990215)25:4<370::AID-GLIA6>3.0.CO;2-J ZAGON IS, 1991, BRAIN RES, V542, P318, DOI 10.1016/0006-8993(91)91585-O Zhu YX, 1998, J NEUROSCI, V18, P2538 NR 25 TC 4 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2003 VL 184 IS 1-2 BP 1 EP 10 DI 10.1016/S0378-5955(03)00163-1 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 736EK UT WOS:000186158300001 PM 14553898 ER PT J AU Matsuzaki, M Murofushi, T AF Matsuzaki, M Murofushi, T TI Disappearance of click-evoked potentials on the neck of the guinea pig by pharmacological and surgical destruction of the peripheral vestibular afferent system SO HEARING RESEARCH LA English DT Article DE vestibular; vestibular evoked myogenic potential; otolith organ; guinea pig; gentamicin; click ID BRAIN-STEM RESPONSES; MYOGENIC POTENTIALS; ACOUSTIC STIMULATION; MENIERES-DISEASE; 8TH NERVE; GENTAMICIN; NEURONS AB In order to establish an animal model of acoustically evoked vestibulo-collic reflex, the so-called vestibular evoked myogenic potential in humans, potentials evoked by loud clicks on the neck of the guinea pig were recorded using subjects whose peripheral vestibular endorgans or vestibular afferents had been damaged. Four normal control guinea pigs, four guinea pigs that received an intramuscular injection of gentamicin for 20 days (90 mg/kg/day) and five guinea pigs whose vestibular nerves were surgically sectioned were used in this study. Under general anesthesia with an intraperitoneal injection of pentobarbital sodium (40 mg/kg), auditory brainstem responses (ABRs) were recorded. Then, potentials evoked by loud clicks on the pre-vertebral muscle at the level of the third cervical vertebral bone were recorded using silver ball electrodes. As a result, a distinctive negative peak (NP) with a latency of 6-8 ms was recorded in all animals in the control group. NP was not observed in the gentamicin-administered group while ABR was preserved. After sectioning the vestibular nerve, NP was abolished while ABR was preserved. From these results, NP could be of vestibular origin. These results are in agreement with a previous report of NP using subjects whose cochlea had been damaged pharmacologically. (C) 2003 Elsevier B.V. All rights reserved. C1 Tokyo Postal Serv Agcy Hosp, Dept Otolaryngol, Chiyoda Ku, Tokyo, Japan. Univ Tokyo, Fac Med, Dept Otolaryngol, Bunkyo Ku, Tokyo 113, Japan. RP Matsuzaki, M (reprint author), Tokyo Postal Serv Agcy Hosp, Dept Otolaryngol, Chiyoda Ku, 2-14-23 Fujimi, Tokyo, Japan. CR Aran J M, 1982, Acta Otolaryngol Suppl, V390, P1 Barbara M, 1999, ACTA OTO-LARYNGOL, V119, P171 CAZALS Y, 1987, HEARING RES, V31, P93, DOI 10.1016/0378-5955(87)90216-4 CAZALS Y, 1979, ARCH OTO-RHINO-LARYN, V224, P61, DOI 10.1007/BF00455225 COLEBATCH JG, 1992, NEUROLOGY, V42, P1635 COLEBATCH JG, 1994, J NEUROL NEUROSUR PS, V57, P190, DOI 10.1136/jnnp.57.2.190 CURTHOYS IS, 1975, ACTA OTO-LARYNGOL, V80, P197, DOI 10.3109/00016487509121319 DIDIER A, 1989, HEARING RES, V37, P123, DOI 10.1016/0378-5955(89)90034-8 LANGE G, 1989, ARCH OTO-RHINO-LARYN, V246, P269, DOI 10.1007/BF00463571 Matsuzaki M, 2001, ORL-J OTO-RHIN-LARYN, V63, P349, DOI 10.1159/000055772 Matsuzaki M, 2002, HEARING RES, V165, P152, DOI 10.1016/S0378-5955(02)00297-6 Matsuzaki M, 1999, EUR ARCH OTO-RHINO-L, V256, P1, DOI 10.1007/s004050050112 MCCUE MP, 1994, J NEUROSCI, V14, P6058 Murofushi T, 1997, ACTA OTO-LARYNGOL, V117, P66, DOI 10.3109/00016489709117994 Murofushi T, 1997, AM J OTOL, V18, P52 Murofushi T, 1998, ARCH OTOLARYNGOL, V124, P509 MUROFUSHI T, 1995, EXP BRAIN RES, V103, P174 Murofushi T, 1996, ARCH OTOLARYNGOL, V122, P845 Naito R, 1999, HEARING RES, V136, P44, DOI 10.1016/S0378-5955(99)00107-0 Ohki M, 2002, ORL J OTO-RHINO-LARY, V64, P424, DOI 10.1159/000067566 Shimizu K, 2000, J NEUROL NEUROSUR PS, V69, P276, DOI 10.1136/jnnp.69.2.276 TOWNSEND GL, 1971, ANN OTO RHINOL LARYN, V80, P121 YOUNG ED, 1977, ACTA OTO-LARYNGOL, V84, P352, DOI 10.3109/00016487709123977 NR 23 TC 3 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2003 VL 184 IS 1-2 BP 11 EP 15 DI 10.1016/S0378-5955(03)00227-2 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 736EK UT WOS:000186158300002 PM 14553899 ER PT J AU Bitsche, M Mahata, SK Marksteiner, J Schrott-Fischer, A AF Bitsche, M Mahata, SK Marksteiner, J Schrott-Fischer, A TI Distribution of catestatin-like immunoreactivity in the human auditory system SO HEARING RESEARCH LA English DT Article DE chromogranin A; catestatin; human; auditory system ID INHIBITORY PEPTIDE CATESTATIN; CHROMOGRANIN-A DETERMINATION; DISULFIDE-BONDED LOOP; CATECHOLAMINE RELEASE; COCHLEAR NUCLEUS; SECRETORY GRANULES; CLEAVAGE SITES; HUMAN BRAIN; PROTEINS; FRAGMENT AB Chromogranin A (CgA) belongs to the family of chromogranin peptides which are contained in large dense-core vesicles. The novel CgA fragment catestatin (bovine CgA(344-364); RSMRLSFRARGYGFRGPGLQL) is a potent inhibitor of catecholamine release by acting as a nicotinic cholinergic antagonist. Catestatin is a recently characterized neuropeptide, consisting of 21 amino acids, which might play an autocrine regulatory role in neuroendocrine secretion through its interaction with different nicotinic acetylcholine receptor subtypes. This study investigates for the first time the distribution of this peptide in the human auditory system using immunohistochemistry. A high density of catestatin-like immunoreactivity (catestatin-LI) is located in the spiral ganglion cells. In the dorsal cochlear nucleus, a high density of catestatin-LI consists of varicose fibers, immunoreactive varicosities and immunoreactive neurons. A moderate density is detected in the ventral cochlear and the medial vestibular nucleus. A low density is found in the inferior colliculus and superior olivary complex, The study indicates that catestatin is distinctly distributed in the auditory system, suggesting a role as a neuromodulatory peptide. Further studies should elucidate a possible interaction with other neurotransmitters in the auditory system. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Innsbruck, Dept Otolaryngol, A-6020 Innsbruck, Austria. Univ Calif San Diego, Dept Med & Mol Genet, San Diego, CA 92161 USA. Univ Innsbruck, Dept Psychiat, A-6020 Innsbruck, Austria. RP Schrott-Fischer, A (reprint author), Univ Innsbruck, Dept Otolaryngol, Anichstr 35, A-6020 Innsbruck, Austria. EM annelies.schrott@uibk.ac.at CR AARDAL S, 1993, J NEUROENDOCRINOL, V5, P405, DOI 10.1111/j.1365-2826.1993.tb00501.x ANNIKO M, 1995, ORL J OTO-RHINO-LARY, V57, P68 Behrens EG, 2002, BRAIN RES, V955, P34, DOI 10.1016/S0006-8993(02)03351-6 BLASCHKO H, 1967, N-S ARCH PHARMAKOL, V257, P143, DOI 10.1007/BF00537464 DILLEN L, 1993, NEUROCHEM INT, V22, P315, DOI 10.1016/0197-0186(93)90016-X Franklin KBJ, 1997, MOUSE BRAIN STEREOTA, V1st Glombik MM, 1999, EMBO J, V18, P1059, DOI 10.1093/emboj/18.4.1059 HELLE KB, 1993, J NEUROENDOCRINOL, V5, P413, DOI 10.1111/j.1365-2826.1993.tb00502.x Herrero CJ, 2002, J NEUROSCI, V22, P377 HSU SM, 1981, J HISTOCHEM CYTOCHEM, V29, P577 Huang CM, 2001, MOL BRAIN RES, V92, P181, DOI 10.1016/S0169-328X(01)00118-8 KAGA K, 1985, ANN NEUROL, V18, P360, DOI 10.1002/ana.410180318 Kato A, 2000, BRAIN RES, V852, P444, DOI 10.1016/S0006-8993(99)02229-5 Kennedy BP, 1998, PEPTIDES, V19, P1241, DOI 10.1016/S0196-9781(98)00086-2 Kim T, 2001, CELL, V106, P499, DOI 10.1016/S0092-8674(01)00459-7 Kim T, 2003, TRENDS ENDOCRIN MET, V14, P56, DOI 10.1016/S1043-2760(02)00041-3 Kromer A, 1998, J CELL BIOL, V140, P1331, DOI 10.1083/jcb.140.6.1331 Mahata SK, 1999, J BIOL CHEM, V274, P2920, DOI 10.1074/jbc.274.5.2920 Mahata SK, 1997, J CLIN INVEST, V100, P1623, DOI 10.1172/JCI119686 Mahata SK, 2000, MOL ENDOCRINOL, V14, P1525, DOI 10.1210/me.14.10.1525 METZBOUTIGUE MH, 1993, EUR J BIOCHEM, V217, P247, DOI 10.1111/j.1432-1033.1993.tb18240.x MUNOZ DG, 1990, NEUROSCIENCE, V34, P533, DOI 10.1016/0306-4522(90)90162-W Nieuwenhuys R, 1978, HUMAN CENTRAL NERVOU Nordang L, 2000, ACTA OTO-LARYNGOL, V120, P359, DOI 10.1080/000164800750000568 O'Connor DT, 2002, J HYPERTENS, V20, P1335, DOI 10.1097/00004872-200207000-00020 Oestreicher E, 2002, ADV OTO-RHINO-LARYNG, V59, P18 OLIVER DL, 1984, J COMP NEUROL, V222, P237, DOI 10.1002/cne.902220207 PARMER RJ, 1993, NEUROCHEM INT, V22, P361, DOI 10.1016/0197-0186(93)90018-Z Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3 Rubio ME, 1998, J COMP NEUROL, V399, P341, DOI 10.1002/(SICI)1096-9861(19980928)399:3<341::AID-CNE4>3.0.CO;2-0 RYUGO DK, 1982, J COMP NEUROL, V210, P239, DOI 10.1002/cne.902100304 SCHNEIDE.FH, 1967, BRIT J PHARM CHEMOTH, V31, P94 Shen PJ, 1996, EUR J NEUROSCI, V8, P988, DOI 10.1111/j.1460-9568.1996.tb01586.x SPOENDLIN H, 1985, AM J OTOLARYNG, V6, P453, DOI 10.1016/S0196-0709(85)80026-0 TATEMOTO K, 1986, NATURE, V324, P476, DOI 10.1038/324476a0 Taupenot L, 2000, REGUL PEPTIDES, V95, P9, DOI 10.1016/S0167-0115(00)00135-X Taylor CV, 2000, J BIOL CHEM, V275, P22905, DOI 10.1074/jbc.M001232200 Ulrich G, 2002, ANN NY ACAD SCI, V971, P560 VIDEEN JS, 1992, J BIOL CHEM, V267, P3066 WEBSTER DB, 1992, OVERVIEW MAMMALIAN A, P1 WEBSTER DB, 1982, AM J ANAT, V163, P103, DOI 10.1002/aja.1001630202 WINKLER H, 1992, NEUROSCIENCE, V49, P497, DOI 10.1016/0306-4522(92)90222-N Yoo SH, 1996, J BIOL CHEM, V271, P1558 NR 43 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2003 VL 184 IS 1-2 BP 16 EP 26 DI 10.1016/S0378-5955(03)00223-5 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 736EK UT WOS:000186158300003 PM 14553900 ER PT J AU Adler, HJ Belyantseva, IA Merritt, RC Frolenkov, GI Dougherty, GW Kachar, B AF Adler, HJ Belyantseva, IA Merritt, RC Frolenkov, GI Dougherty, GW Kachar, B TI Expression of prestin, a membrane motor protein, in the mammalian auditory and vestibular periphery SO HEARING RESEARCH LA English DT Article DE sensory transduction; hair cell; electromotility ID OUTER HAIR-CELLS; COCHLEAR AMPLIFIER; INNER-EAR; BUNDLE MOVEMENTS; PENDRED-SYNDROME; IDENTIFICATION; CAPACITANCE; MOTILITY; ELECTROMOTILITY; TRANSDUCTION AB Hair cells are specialized mechanoreceptors common to auditory and vestibular sensory organs of mammalian and nonmammalian species. Different hair cells are believed to share common features related to their mechanosensory function. It has been shown that hair cells possess various forms of motile properties that enhance their receptor function. Membrane-based electromotility is a form of hair cell motility observed in isolated outer hair cells (OHCs) of the cochlea. A novel membrane protein, prestin, recently cloned from gerbil and rat tissues, is presumably responsible for electromotility. We cloned prestin from mouse organ of Corti and confirmed strong homology of this protein among different rodent species. We explored whether or not prestin is present in hair cells of the vestibular system. Using reverse transcription-polymerase chain reaction, we demonstrated that prestin is expressed in mouse and rat auditory and vestibular organs, but not in chicken auditory periphery. In situ hybridization and immunolocalization studies confirmed the presence of prestin in OHCs as well as in vestibular hair cells (VHCs) of rodent saccule, utricle and crista ampullaris. However, in the VHCs, staining of varying intensity with anti-prestin antibodies was observed in the cytoplasm, but not in the lateral plasma membrane or in the stereociliary membrane. Whole-cell patch-clamp recordings showed that VHCs do not possess the voltage-dependent capacitance associated with membrane-based electromotility. We conclude that although prestin is expressed in VHCs, it is unlikely that it supports the form of somatic motility observed in OHCs. (C) 2003 Elsevier B.V. All rights reserved. C1 NIH, Sect Struct Cell Biol, Natl Inst Deafness & Other Commun Disorders, Bethesda, MD 20892 USA. RP Adler, HJ (reprint author), NIH, Sect Struct Cell Biol, Natl Inst Deafness & Other Commun Disorders, Bldg 50,Room 4249, Bethesda, MD 20892 USA. CR Altschul SF, 1997, NUCLEIC ACIDS RES, V25, P3389, DOI 10.1093/nar/25.17.3389 ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 Bateman A, 1999, NUCLEIC ACIDS RES, V27, P260, DOI 10.1093/nar/27.1.260 Belyantseva IA, 2000, J NEUROSCI, V20, part. no. Benser ME, 1996, J NEUROSCI, V16, P5629 Beyer LA, 2000, J NEUROCYTOL, V29, P227, DOI 10.1023/A:1026515619443 BRAISSANT O, 1998, BIOCHEMICA, V1, P10 Braissant O, 1998, ENDOCRINOLOGY, V139, P2748, DOI 10.1210/en.139.6.2748 BRENDEL V, 1992, P NATL ACAD SCI USA, V89, P2002, DOI 10.1073/pnas.89.6.2002 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Chambard J.M., 2003, ABSTR ASS RES OT, V26, P104 CLAROS MG, 1994, COMPUT APPL BIOSCI, V10, P685 CORREIA MJ, 1989, J NEUROPHYSIOL, V62, P924 CRAWFORD AC, 1985, J PHYSIOL-LONDON, V364, P359 Dallos P, 2002, NAT REV MOL CELL BIO, V3, P104, DOI 10.1038/nrm730 DALLOS P, 1995, SCIENCE, V267, P2006, DOI 10.1126/science.7701325 DENK W, 1992, HEARING RES, V60, P89, DOI 10.1016/0378-5955(92)90062-R Eatock RA, 1998, OTOLARYNG HEAD NECK, V119, P172, DOI 10.1016/S0194-5998(98)70052-X Everett LA, 1999, P NATL ACAD SCI USA, V96, P9727, DOI 10.1073/pnas.96.17.9727 Everett LA, 2001, HUM MOL GENET, V10, P153, DOI 10.1093/hmg/10.2.153 Frolenkov GI, 2000, J NEUROSCI, V20, P5940 Frolenkov GI, 1998, MOL BIOL CELL, V9, P1961 Gale JE, 1997, NATURE, V389, P63, DOI 10.1038/37968 GRIGUER C, 1993, HEARING RES, V67, P110, DOI 10.1016/0378-5955(93)90238-V HE D, 2001, ASS RES OTOLARYNGOL, V24, P159 HOFMANN K, 1993, BIOL CHEM HOPPESEYLE, V347, P166 Hofmann K, 1999, NUCLEIC ACIDS RES, V27, P215, DOI 10.1093/nar/27.1.215 Judice TN, 2002, BRAIN RES PROTOC, V9, P65, DOI 10.1016/S1385-299X(01)00138-6 KACHAR B, 1986, NATURE, V322, P365, DOI 10.1038/322365a0 KALINEC F, 1992, P NATL ACAD SCI USA, V89, P8671, DOI 10.1073/pnas.89.18.8671 Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 Ludwig J, 2001, P NATL ACAD SCI USA, V98, P4178, DOI 10.1073/pnas.071613498 Manley GA, 1998, CURR OPIN NEUROBIOL, V8, P468, DOI 10.1016/S0959-4388(98)80033-0 Manley GA, 2001, P NATL ACAD SCI USA, V98, P2826, DOI 10.1073/pnas.041604998 Manley GA, 2000, P NATL ACAD SCI USA, V97, P11736, DOI 10.1073/pnas.97.22.11736 Martin P, 1999, P NATL ACAD SCI USA, V96, P14306, DOI 10.1073/pnas.96.25.14306 Meltzer J, 2001, NEUROSCI LETT, V313, P141, DOI 10.1016/S0304-3940(01)02266-2 Morsli H, 1998, J NEUROSCI, V18, P3327 Oliver D, 2001, SCIENCE, V292, P2340, DOI 10.1126/science.1060939 PICKLES JO, 1992, TRENDS NEUROSCI, V15, P254, DOI 10.1016/0166-2236(92)90066-H Ricci AJ, 2000, J NEUROSCI, V20, P7131 Rusch A, 1998, J NEUROSCI, V18, P7487 RUSCH A, 1990, HEARING RES, V48, P247, DOI 10.1016/0378-5955(90)90065-W SANTOS-SACCHI J, 1991, J NEUROSCI, V11, P3096 Santos-Sacchi J, 2001, J PHYSIOL-LONDON, V531, P661, DOI 10.1111/j.1469-7793.2001.0661h.x Santos-Sacchi J, 2002, PFLUG ARCH EUR J PHY, V444, P99, DOI 10.1007/s00424-002-0804-2 Schultz J, 2000, NUCLEIC ACIDS RES, V28, P231, DOI 10.1093/nar/28.1.231 Schultz J, 1998, P NATL ACAD SCI USA, V95, P5857, DOI 10.1073/pnas.95.11.5857 Scott DA, 1999, NAT GENET, V21, P440 Sonnhammer E L, 1998, Proc Int Conf Intell Syst Mol Biol, V6, P175 Tusnady GE, 1998, J MOL BIOL, V283, P489, DOI 10.1006/jmbi.1998.2107 WERSALL J, 1956, Acta Otolaryngol Suppl, V126, P1 Zenner H P, 1992, J Vestib Res, V2, P181 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 ZHENG J, 2002, AUDIOL NEURO-OTOL, V7, P6 Zheng J, 2002, AUDIOL NEURO-OTOL, V7, P277, DOI 10.1159/000064443 Zheng J, 2001, NEUROREPORT, V12, P1929, DOI 10.1097/00001756-200107030-00032 NR 57 TC 40 Z9 46 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2003 VL 184 IS 1-2 BP 27 EP 40 DI 10.1016/S0378-5955(03)00192-8 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 736EK UT WOS:000186158300004 PM 14553901 ER PT J AU Grimault, N Micheyl, C Carlyon, RP Bacon, SP Collet, L AF Grimault, N Micheyl, C Carlyon, RP Bacon, SP Collet, L TI Learning in discrimination of frequency or modulation rate: generalization to fundamental frequency discrimination SO HEARING RESEARCH LA English DT Article DE pitch; learning; modulation rate discrimination ID COMPLEX TONES; UNRESOLVED HARMONICS; PITCH PERCEPTION; AMPLITUDE-MODULATION; AUDITORY PERIPHERY; PHASE SENSITIVITY; COMPUTER-MODEL; VIRTUAL PITCH; NOISE; IDENTIFICATION AB Fifteen initially inexperienced subjects were trained for 4 weeks (12 2-h sessions) in frequency discrimination with pure tones around 88, 250, or 1605 Hz, or amplitude modulation rate discrimination of noise bands, using modulation rates around 88 or 250 Hz. Before, in the middle of, and after this training period, pure-tone frequency discrimination thresholds (DLFs), harmonic complex tone fundamental frequency discrimination thresholds (DLFOs), and amplitude modulation rate discrimination thresholds (DLFMs) were measured in several conditions including the trained one. Training in pure-tone frequency discrimination resulted in significantly larger improvements in DLF0s when the test complexes contained resolved harmonics than when they were composed of unresolved harmonics. This result supports the hypothesis that the discrimination of the F0 of resolved harmonics shares common underlying mechanisms with the frequency discrimination of pure tones. Training in rate discrimination did not result in larger DLF0 improvements for unresolved than for resolved harmonics. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Lyon 1, CNRS, UMR 5020, F-69366 Lyon 07, France. ENTENDRE Audioprothesists Grp GIPA2, Pontchartrain, France. MRC, Cognit & Brain Sci Unit, Cambridge CB2 2EF, England. Arizona State Univ, Dept Speech & Hearing Sci, Psychoacoust Lab, Tempe, AZ 85287 USA. RP Grimault, N (reprint author), Univ Lyon 1, CNRS, UMR 5020, 50 Ave Tony Gamier, F-69366 Lyon 07, France. RI Carlyon, Robert/A-5387-2010 CR *ANSI, 1969, S361969 ANSI BURNS EM, 1981, J ACOUST SOC AM, V70, P1655, DOI 10.1121/1.387220 BURNS EM, 1976, J ACOUST SOC AM, V60, P863, DOI 10.1121/1.381166 CARLYON RP, 1994, J ACOUST SOC AM, V95, P3541, DOI 10.1121/1.409971 COHEN MA, 1995, J ACOUST SOC AM, V98, P862, DOI 10.1121/1.413512 Demany L, 2002, J ACOUST SOC AM, V111, P1377, DOI 10.1121/1.1445791 FITZGERALD MB, 2000, J ACOUST SOC AM, V107, P2916, DOI 10.1121/1.428864 FORMBY C, 1985, J ACOUST SOC AM, V78, P70, DOI 10.1121/1.392456 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T GOLDSTEI.JL, 1973, J ACOUST SOC AM, V54, P1496, DOI 10.1121/1.1914448 Grimault N, 2002, PERCEPT PSYCHOPHYS, V64, P189, DOI 10.3758/BF03195785 Grimault N, 2000, J ACOUST SOC AM, V108, P263, DOI 10.1121/1.429462 HANNA TE, 1992, J ACOUST SOC AM, V91, P2122, DOI 10.1121/1.403698 Kami A., 1997, CURR OPIN NEUROBIOL, V7, P530 LEE JM, 1994, J ACOUST SOC AM, V96, P2140, DOI 10.1121/1.410156 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 MEDDIS R, 1991, J ACOUST SOC AM, V89, P2883, DOI 10.1121/1.400726 Meddis R, 1997, J ACOUST SOC AM, V102, P1811, DOI 10.1121/1.420088 MEDDIS R, 1991, J ACOUST SOC AM, V89, P2866, DOI 10.1121/1.400725 MOORE BCJ, 1973, J ACOUST SOC AM, V54, P610, DOI 10.1121/1.1913640 MOORE BCJ, 1990, J ACOUST SOC AM, V87, P2163, DOI 10.1121/1.399184 PATTERSON RD, 1992, ADV BIOSCI, V83, P429 PLACK CJ, 1995, J ACOUST SOC AM, V98, P1355, DOI 10.1121/1.413471 Schouten J. F., 1970, FREQUENCY ANAL PERIO, P41 Schouten J. F., 1940, P K NED AKAD WETENSC, V43, P991 SCHULZE H, 1998, PSYCHOPHYSICS PHYSL, P21 SHACKLETON TM, 1994, J ACOUST SOC AM, V95, P3529, DOI 10.1121/1.409970 SRULOVICZ P, 1983, J ACOUST SOC AM, V73, P1266, DOI 10.1121/1.389275 TERHARDT E, 1974, J ACOUST SOC AM, V55, P1061, DOI 10.1121/1.1914648 THURLOW WR, 1963, PSYCHOL REV, V70, P515 Vliegen J, 1999, J ACOUST SOC AM, V105, P339, DOI 10.1121/1.424503 WHITFIELD IC, 1970, FREQUENCY ANAL PERIO WIGHTMAN FL, 1973, J ACOUST SOC AM, V54, P407, DOI 10.1121/1.1913592 NR 33 TC 20 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2003 VL 184 IS 1-2 BP 41 EP 50 DI 10.1016/S0378-5955(03)00214-4 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 736EK UT WOS:000186158300005 PM 14553902 ER PT J AU Bobbin, RP Parker, M Wall, L AF Bobbin, RP Parker, M Wall, L TI Thapsigargin suppresses cochlear potentials and DPOAEs and is toxic to hair cells SO HEARING RESEARCH LA English DT Article DE cochlear microphonic; summating potential; distortion product; endocochlear potential; sarco-endoplasmic reticulum Ca2+ ATPase; SERCA ID GUINEA-PIG COCHLEA; PHARMACOLOGICAL EVIDENCE; INNER-EAR; CALCIUM; MECHANICS; RECEPTORS; ATPASE; CA2+-ATPASES; INHIBITORS AB Thapsigargin, a drug that inhibits sarco-endoplasmic reticulum Ca2+ ATPases (SERCAs), was infused into the perilymph compartment of the guinea pig cochlea in increasing concentrations (0.1-10 muM) while sound evoked cochlear potentials were monitored. Thapsigargin significantly suppressed the compound action potential of the auditory nerve, cochlear microphonics, and increased N-1 latency at low (56 dB SPL) and high intensity (92 dB SPL) levels of sound, suppressed low intensity sound evoked summating potential (SP) and greatly increased the magnitude of the high intensity sound evoked SP. At 10 muM, the drug suppressed the cubic distortion product otoacoustic emissions (2f(1)-f(2) = 8 kHz, f(2) = 12 kHz) evoked by both high and low intensity primaries (45, 60, 70 dB SPL). Thapsigargin (10 muM; 30 min) increased the endocochlear potential slightly (5 mV). In chronic animals, thapsigargin (10 muM; 60 min) destroyed many outer hair cells and some inner hair cells, especially in the basal turns. These effects are consistent with the hypothesis that the inhibition of the SERCAs affects the function of the cochlear amplifier and outer hair cells to a greater degree than it affects other functions of the cochlea. (C) 2003 Elsevier B.V. All rights reserved. C1 Louisiana State Univ, Hlth Sci Ctr, Dept Otorhinolaryngol & Biocommun, Kresge Hearing Res Inst, New Orleans, LA 70112 USA. RP Bobbin, RP (reprint author), Louisiana State Univ, Hlth Sci Ctr, Dept Otorhinolaryngol & Biocommun, Kresge Hearing Res Inst, 533 Bolivar St,5th Floor, New Orleans, LA 70112 USA. CR Benjamins JA, 2003, NEUROCHEM RES, V28, P143, DOI 10.1023/A:1021612615554 Berridge MJ, 1998, NEURON, V21, P13, DOI 10.1016/S0896-6273(00)80510-3 Bobbin RP, 2001, NEUROREPORT, V12, P2923, DOI 10.1097/00001756-200109170-00034 Bobbin RP, 1997, HEARING RES, V113, P155, DOI 10.1016/S0378-5955(97)00140-8 BOBBIN RP, 1981, PHARM HEARING, P19 BOBBIN RP, 1991, HEARING RES, V56, P101, DOI 10.1016/0378-5955(91)90159-7 BOBBIN RP, 2000, GENETICS HEARING LOS, P87 BOBBIN RP, 2001, HAIR CELLS MICROMECH, P129 Bobbin RP, 2002, HAIR CELL MICROMECHANICS AND OTOACOUSTIC EMISSIONS, P91 Bobbin RP, 2002, HEARING RES, V174, P172, DOI 10.1016/S0378-5955(02)00654-8 Chen C, 1998, BRIT J PHARMACOL, V124, P337, DOI 10.1038/sj.bjp.0701848 Chen C, 1998, HEARING RES, V118, P47, DOI 10.1016/S0378-5955(98)00019-7 Cunningham LL, 2002, J NEUROSCI, V22, P8532 Curtis LM, 1997, ACTA OTO-LARYNGOL, V117, P553, DOI 10.3109/00016489709113436 DALLOS P, 1976, ELECTROCOCHLEOGRAPHY, P5 Devarajan P, 2002, HEARING RES, V174, P45, DOI 10.1016/S0378-5955(02)00634-2 Ding DL, 2002, HEARING RES, V164, P115, DOI 10.1016/S0378-5955(01)00417-8 Engstrom H, 1966, STRUCTURAL PATTERN O Haak LL, 2001, J NEUROSCI, V21, P3860 ICHIMIYA I, 1994, ACTA OTO-LARYNGOL, V114, P167, DOI 10.3109/00016489409126037 Kennedy HJ, 2002, CELL CALCIUM, V31, P127, DOI 10.1054/ceca.2001.0267 Kimitsuki T, 2002, NEUROSCI LETT, V323, P211, DOI 10.1016/S0304-3940(02)00161-1 KUJAWA SG, 1992, HEARING RES, V64, P73, DOI 10.1016/0378-5955(92)90169-N Kujawa SG, 1996, HEARING RES, V97, P153 KUJAWA SG, 1994, HEARING RES, V76, P87, DOI 10.1016/0378-5955(94)90091-4 Mandic A, 2003, J BIOL CHEM, V278, P9100, DOI 10.1074/jbc.M210284200 Murugasu E, 1996, AUDIT NEUROSCI, V2, P363 Nario K, 1998, ACTA OTO-LARYNGOL, V118, P198 POU AM, 1991, HEARING RES, V52, P305, DOI 10.1016/0378-5955(91)90020-A Robles L, 2001, PHYSIOL REV, V81, P1305 SANTOSSACCHI J, 2001, PHYSL EAR, P357 Scherer EQ, 2001, J MEMBRANE BIOL, V182, P183, DOI 10.1007/s00232-001-0041-1 SCHULTE BA, 1993, HEARING RES, V65, P262, DOI 10.1016/0378-5955(93)90219-Q SILVERSTEIN FS, 1992, NEUROSCI LETT, V145, P157, DOI 10.1016/0304-3940(92)90010-5 Skellett RA, 1997, HEARING RES, V111, P42, DOI 10.1016/S0378-5955(97)00093-2 Sridhar TS, 1997, J NEUROSCI, V17, P428 Sugasawa M, 1996, J PHYSIOL-LONDON, V491, P707 Take K, 1996, Nihon Jibiinkoka Gakkai Kaiho, V99, P1641 Treiman M, 1998, TRENDS PHARMACOL SCI, V19, P131, DOI 10.1016/S0165-6147(98)01184-5 Wang J, 1999, NEUROREPORT, V10, P811, DOI 10.1097/00001756-199903170-00027 Zucchi R, 1997, PHARMACOL REV, V49, P1 NR 41 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2003 VL 184 IS 1-2 BP 51 EP 60 DI 10.1016/S0378-5955(03)00230-2 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 736EK UT WOS:000186158300006 PM 14553903 ER PT J AU Drexl, M Kossl, M AF Drexl, M Kossl, M TI Sound-evoked efferent effects on cochlear mechanics of the mustached bat SO HEARING RESEARCH LA English DT Article DE mustached bat; crossed medial efferent; cochlear mechanics; otoacoustic emission; cochlear microphonics ID SPONTANEOUS OTOACOUSTIC EMISSIONS; OLIVOCOCHLEAR BUNDLE STIMULATION; CONTRALATERAL SUPPRESSION; PTERONOTUS-PARNELLII; GUINEA-PIGS; ACOUSTIC STIMULATION; DISTORTION-PRODUCT; ECHOLOCATING BATS; RHINOLOPHUS-ROUXI; AUDITORY-SYSTEM AB The influence of the crossed medial efferent system on cochlear mechanics of the mustached bat was tested by measuring delayed evoked otoacoustic emissions (DEOAEs), cochlear microphonics, distortion product otoacoustic emissions (DPOAEs) and stimulus frequency otoacoustic emissions. Contralaterally delivered sinusoids, broadband noise and bat echolocation calls were used for acoustic stimulation of the efferent system. With all four measures we found a level-dependent suppression under stimulation with both broadband noise and echolocation calls. In addition, the sharply tuned cochlear resonance of the mustached bat which is involved in processing echolocation signals at 61 kHz shifted upward in frequency by several 100 Hz. Presentation of sinusoids did not have any significant effect. DEOAEs and DPOAEs were in some cases enhanced during contralateral presentation of the bat calls at moderate intensities. The most important function of the efferent system in the mustached bat might be the control of the extraordinarily fine-tuned resonator of this species, which is close to instability as evident from the very pronounced evoked otoacoustic emissions which sometimes convert into spontaneous otoacoustic emissions of high level. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Munich, Dept Biol 2, D-80333 Munich, Germany. Univ Frankfurt, Inst Zool, D-6000 Frankfurt, Germany. RP Drexl, M (reprint author), Univ Munich, Dept Biol 2, Luisenstr 14, D-80333 Munich, Germany. CR Avan P, 1996, EXP BRAIN RES, V109, P9 BERLIN CI, 1993, HEARING RES, V71, P1, DOI 10.1016/0378-5955(93)90015-S BISHOP AL, 1987, HEARING RES, V31, P175, DOI 10.1016/0378-5955(87)90124-9 BROWN AM, 1984, HEARING RES, V13, P29, DOI 10.1016/0378-5955(84)90092-3 Buki B, 2000, BRAIN RES, V852, P140, DOI 10.1016/S0006-8993(99)02227-1 CHERYCROZE S, 1993, HEARING RES, V43, P251 COLLET L, 1992, AUDIOLOGY, V31, P1 COLLET L, 1990, ADV AUDIOL, P164 Cooper NP, 2003, J PHYSIOL-LONDON, V548, P307, DOI 10.1113/jphysiol.2003.039081 Dallos P, 1997, J NEUROSCI, V17, P2212 Dolan DF, 1997, J ACOUST SOC AM, V102, P3587, DOI 10.1121/1.421008 FEX J, 1959, Acta Otolaryngol, V50, P540, DOI 10.3109/00016485909129230 Guinan Jr J.J., 1996, COCHLEA, P435 HENSON OW, 1965, J PHYSIOL-LONDON, V180, P871 HENSON OW, 1972, PHYSIOL BEHAV, V8, P1185, DOI 10.1016/0031-9384(72)90220-X HENSON OW, 1995, HEARING RES, V86, P111, DOI 10.1016/0378-5955(95)00061-8 HENSON OW, 1985, J COMP PHYSIOL A, V157, P587, DOI 10.1007/BF01351353 HUFFMANN RF, 1992, J COMP PHYSIOL A, V171, P735 Kiang NY, 1970, SENSORINEURAL HEARIN, P241 KOSSL M, 1985, HEARING RES, V19, P157, DOI 10.1016/0378-5955(85)90120-0 KOSSL M, 1994, HEARING RES, V72, P59, DOI 10.1016/0378-5955(94)90206-2 KOSSL M, 1985, NATURWISSENSCHAFTEN, V98, P89 Kossl M, 1995, HEARING BATS, P191 Kujawa SG, 1997, J NEUROPHYSIOL, V78, P3095 KUMMER P, 1995, J ACOUST SOC AM, V98, P197, DOI 10.1121/1.413747 LIBERMAN MC, 1989, HEARING RES, V38, P47, DOI 10.1016/0378-5955(89)90127-5 Maison S, 2000, HEARING RES, V140, P111, DOI 10.1016/S0378-5955(99)00196-3 Maison SF, 2002, J NEUROSCI, V22, P10838 Manley GA, 1999, HEARING RES, V138, P1, DOI 10.1016/S0378-5955(99)00126-4 MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9 Micheyl C, 1999, J ACOUST SOC AM, V105, P293, DOI 10.1121/1.424525 MOTT JB, 1989, HEARING RES, V38, P229, DOI 10.1016/0378-5955(89)90068-3 NEUWEILER G, 1990, PHYSIOL REV, V70, P615 NUTTALL AL, 1974, J ACOUST SOC AM, V56, P1239, DOI 10.1121/1.1903414 PATUZZI RB, 1991, HEARING RES, V54, P45, DOI 10.1016/0378-5955(91)90135-V Pilz PKD, 1997, HEARING RES, V105, P171, DOI 10.1016/S0378-5955(96)00206-7 Popelar J, 1999, HEARING RES, V135, P61, DOI 10.1016/S0378-5955(99)00091-X PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 RODDY J, 1994, HEARING RES, V73, P148, DOI 10.1016/0378-5955(94)90229-1 SIEGEL JH, 1982, HEARING RES, V6, P171, DOI 10.1016/0378-5955(82)90052-1 Silva Taboada G., 1979, MURCIELAGOS CUBA SUGA N, 1977, J EXP BIOL, V69, P207 SUGA N, 1975, J EXP BIOL, V62, P277 Velenovsky DS, 2002, HEARING RES, V164, P39, DOI 10.1016/S0378-5955(01)00393-8 Xie DH, 1998, HEARING RES, V124, P60, DOI 10.1016/S0378-5955(98)00122-1 XIE DH, 1993, HEARING RES, V66, P81, DOI 10.1016/0378-5955(93)90262-Y Yoshida N, 1999, J NEUROPHYSIOL, V82, P3168 NR 47 TC 3 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2003 VL 184 IS 1-2 BP 61 EP 74 DI 10.1016/S0378-5955(03)00235-1 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 736EK UT WOS:000186158300007 PM 14553904 ER PT J AU Nakamura, M Rosahl, SK Alkahlout, E Gharabaghi, A Walter, GF Samii, M AF Nakamura, M Rosahl, SK Alkahlout, E Gharabaghi, A Walter, GF Samii, M TI C-Fos immunoreactivity mapping of the auditory system after electrical stimulation of the cochlear nerve in rats SO HEARING RESEARCH LA English DT Article DE c-Fos; immediate early gene; brainstem auditory system; cochlear nerve; electrical stimulation ID MESSENGER-RNA EXPRESSION; ACOUSTIC STIMULATION; TRANSCRIPTION FACTOR; INFERIOR COLLICULUS; BRAIN-STEM; SOUND STIMULATION; GUINEA-PIG; NUCLEUS; PATHWAY; DEPRIVATION AB The aim of this study was to establish the use of c-Fos immunoreactivity as a marker for functional mapping in the auditory system in response to direct electrical stimulation of the cochlear nerve in the cerebellopontine angle. In rats the cochlear nerve was electrically stimulated with a biphasic current (120-250 muA, 5 Hz) for 30 min using a bipolar concentric Tungsten electrode. Bilateral cochlectomy was performed in a control group in order to investigate basal expression of c-Fos in the auditory brainstem nuclei. The response of auditory brainstem nuclei to electrical stimulation and the completeness of cochlear ablations were electrophysiologically verified. After the experiments, the animals were prepared for cryotomy and c-Fos immunohistochemistry. The results were morphologically analyzed and statistically compared among groups. In anesthetized animals with unilateral electrical stimulation of the cochlear nerve increased expression of c-Fos was detected in the ipsilateral ventral (VCN) and bilateral dorsal cochlear nucleus (DCN), whereas the VCN of the contralateral side revealed only few immunoreactive cells. In animals with bilateral cochlear ablation the number of c-Fos reactive cell nuclei representing basal expression was generally low in the VCN and DCN of both sides. Our data show that electrical stimulation of the cochlear nerve leads to increased expression of c-Fos in the cochlear nucleus. It also confirms bilateral connections between the cochlear nuclei. These experimental results suggest that c-Fos immunoreactivity mapping provides a powerful tool for functional investigations on the cellular level after direct electrical stimulation of the cochlear nerve. Future functional studies analyzing the effect of electrical stimulation of the central auditory system as performed by auditory brainstem implants could be investigated in detail by mapping c-Fos expression on cellular level. (C) 2003 Elsevier B.V. All rights reserved. C1 Nordstadt Hosp, Dept Neurosurg, D-30167 Hannover, Germany. Int Neurosci Inst, Hannover, Germany. Hannover Med Sch, Dept Neurosurg, D-3000 Hannover, Germany. Hannover Med Sch, Dept Neuropathol, D-3000 Hannover, Germany. RP Nakamura, M (reprint author), Nordstadt Hosp, Dept Neurosurg, Haltenhoffstr 41, D-30167 Hannover, Germany. RI Nakamura, Makoto/F-2620-2014 OI Nakamura, Makoto/0000-0001-8597-0193 CR ADAMS JC, 1995, J COMP NEUROL, V361, P645, DOI 10.1002/cne.903610408 BROWN MC, 1995, J COMP NEUROL, V357, P85, DOI 10.1002/cne.903570109 CANT NB, 1982, J COMP NEUROL, V212, P313, DOI 10.1002/cne.902120308 Carretta D, 1999, NEUROSCI LETT, V259, P123, DOI 10.1016/S0304-3940(98)00852-0 Carretta D, 1999, BRAIN RES, V841, P170, DOI 10.1016/S0006-8993(99)01840-5 Cody AR, 1996, BRAIN RES, V728, P72 EDGERTON BJ, 1982, ANN OTO RHINOL LARYN, V91, P117 EHRET G, 1991, BRAIN RES, V567, P350, DOI 10.1016/0006-8993(91)90819-H FRIAUF E, 1995, BEHAV BRAIN RES, V66, P217, DOI 10.1016/0166-4328(94)00147-8 HITSELBERGER WE, 1984, OTOLARYNG HEAD NECK, V92, P52 Hsu WC, 2001, J COMP NEUROL, V438, P226, DOI 10.1002/cne.1311 KEILMANN A, 1995, EUR ARCH OTO-RHINO-L, V252, P287 Keilmann A, 1997, BRAIN RES, V753, P291, DOI 10.1016/S0006-8993(97)00034-6 Keilmann A, 1996, ORL J OTO-RHINO-LARY, V58, P262 Luo L, 1999, J COMP NEUROL, V404, P271, DOI 10.1002/(SICI)1096-9861(19990208)404:2<271::AID-CNE10>3.0.CO;2-4 MCELVEEN JT, 1985, AM J OTOL, P88 MORGAN JI, 1995, TRENDS NEUROSCI, V18, P66 MORGAN JI, 1991, ANNU REV NEUROSCI, V14, P421, DOI 10.1146/annurev.ne.14.030191.002225 Nagase S, 2000, HEARING RES, V147, P242, DOI 10.1016/S0378-5955(00)00134-9 PIERSON M, 1994, BRAIN RES, V636, P55, DOI 10.1016/0006-8993(94)90175-9 QIAN Y, 1994, BRAIN RES, V664, P241, DOI 10.1016/0006-8993(94)91979-8 Riera-Sala C, 2001, HEARING RES, V162, P53, DOI 10.1016/S0378-5955(01)00369-0 ROUILLER EM, 1992, NEUROSCI LETT, V144, P19, DOI 10.1016/0304-3940(92)90706-D Saint Marie RL, 1999, HEARING RES, V128, P70, DOI 10.1016/S0378-5955(98)00188-9 Saito H, 1999, NEUROSCIENCE, V91, P139, DOI 10.1016/S0306-4522(98)00581-8 SATO K, 1992, NEUROSCI LETT, V142, P48, DOI 10.1016/0304-3940(92)90617-G Schofield BR, 1996, HEARING RES, V102, P1, DOI 10.1016/S0378-5955(96)00121-9 SHARP FR, 1993, CRIT REV NEUROBIOL, V7, P205 SHORE SE, 1992, HEARING RES, V62, P16, DOI 10.1016/0378-5955(92)90199-W VISCHER MW, 1994, NEUROSCI RES, V19, P175, DOI 10.1016/0168-0102(94)90141-4 WENTHOLD RJ, 1987, BRAIN RES, V415, P183, DOI 10.1016/0006-8993(87)90285-X Zhang JS, 1996, BRAIN RES BULL, V39, P75, DOI 10.1016/0361-9230(95)02053-5 NR 32 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2003 VL 184 IS 1-2 BP 75 EP 81 DI 10.1016/S0378-5955(03)00236-3 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 736EK UT WOS:000186158300008 PM 14553905 ER PT J AU Nobre, MJ Sandner, G Brandao, ML AF Nobre, MJ Sandner, G Brandao, ML TI Enhancement of acoustic evoked potentials and impairment of startle reflex induced by reduction of GABAergic control of the neural substrates of aversion in the inferior colliculus SO HEARING RESEARCH LA English DT Article DE evoked potential; inferior colliculus; dopamine; gamma-aminobutyric acid; startle; emotion ID DORSAL PERIAQUEDUCTAL GRAY; ELECTRICAL-STIMULATION; NEGATIVE REINFORCEMENT; CONDITIONED-STIMULI; PREPULSE INHIBITION; DEFENSIVE BEHAVIOR; DOPAMINE RELEASE; MIDBRAIN TECTUM; IN-VIVO; FEAR AB The neural network of the inferior colliculus (IC), implicated in the generation of defensive behavior to aversive acoustic stimuli, is under tonic GABAergic control. Dopamine also seems to have a modulatory role in these neural circuits. It is still unclear how such changes in transmission of acoustic information influence the motor expression of the defensive behavior. Startle reaction to a sudden noise has been used as an effective way to measure the motor reactivity of rats to fearful acoustic stimuli. In this work we examined the processing of sensorial information - assessed by the recording of auditory evoked potentials (AEP) - and the behavioral effects - evaluated by the freezing and startle responses - during the reduction of GABA levels caused by microinjections of semicarbazide (SMC, 6 mug/0.2 mul), a glutamic acid decarboxylase inhibitor, into the IC. These data were compared to the effects of the overall arousal elicited by apomorphine (APO, 0.5 mg/kg, i.p.). The results obtained show that IC microinjections of SMC induced freezing behavior, enhanced the AEP and impaired the startle reaction to a loud sound. On the other hand, APO changed neither the AEP nor the startle in the same experimental conditions. These results suggest that the release of GABAeraic control of the neural substrates of aversion in the IC results in an increased processing of auditory information along with an inhibitory influence on the motor pathways responsible for the startle response. (C) 2003 Elsevier B.V. All rights reserved. C1 FFCLRP, Lab Psicobiol, BR-14040901 Ribeirao Preto, SP, Brazil. Univ Strasbourg 1, Fac Med, INSERM, U405, F-67085 Strasbourg, France. RP Brandao, ML (reprint author), FFCLRP, Lab Psicobiol, Campus USP,3900 AV Bandeirantes, BR-14040901 Ribeirao Preto, SP, Brazil. RI Santo, Manoel/B-8408-2013; Brandao, Marcus/C-5657-2012 OI Santo, Manoel/0000-0003-1837-9429; Brandao, Marcus/0000-0001-7437-2382 CR Aguiar MS, 1996, PHYSIOL BEHAV, V60, P1183, DOI 10.1016/0031-9384(96)00156-4 BAGRI A, 1989, EXP NEUROL, V104, P82, DOI 10.1016/0014-4886(89)90012-5 BLANCHAR.DC, 1972, J COMP PHYSIOL PSYCH, V81, P281, DOI 10.1037/h0033521 BLANCHARD DC, 1988, ANNU REV PSYCHOL, V39, P43, DOI 10.1146/annurev.psych.39.1.43 BLANCHAR.RJ, 1969, J COMP PHYSIOL PSYCH, V67, P370, DOI 10.1037/h0026779 Brandao ML, 2001, PHYSIOL BEHAV, V72, P365, DOI 10.1016/S0031-9384(00)00418-2 Brandao ML, 1999, NEUROSCI BIOBEHAV R, V23, P863, DOI 10.1016/S0149-7634(99)00038-X Brandao ML, 2003, EUR J PHARMACOL, V463, P225, DOI 10.1016/S0014-2999(03)01284-6 BRANDAO ML, 1986, PHARMACOL BIOCHEM BE, V24, P497, DOI 10.1016/0091-3057(86)90547-2 Brandao ML, 1997, NEUROPSYCHOBIOLOGY, V35, P30, DOI 10.1159/000119327 BRANDAO ML, 1988, PHYSIOL BEHAV, V44, P361, DOI 10.1016/0031-9384(88)90038-8 BROWN JS, 1951, J EXP PSYCHOL, V41, P317, DOI 10.1037/h0060166 CAESER M, 1989, BEHAV NEUROSCI, V103, P1075, DOI 10.1037/0735-7044.103.5.1075 CAMPEAU S, 1995, J NEUROSCI, V15, P2301 CAMPEAU S, 1992, ANIM LEARN BEHAV, V20, P177, DOI 10.3758/BF03200415 Castilho VM, 2001, PSYCHOPHARMACOLOGY, V155, P154, DOI 10.1007/s002130100697 Cuadra G, 2000, BRAIN RES BULL, V52, P413, DOI 10.1016/S0361-9230(00)00278-1 DAVIS M, 1974, J COMP PHYSIOL PSYCH, V87, P571, DOI 10.1037/h0036985 DAVIS M, 1989, BEHAV NEUROSCI, V103, P495, DOI 10.1037/0735-7044.103.3.495 DAVIS M, 1994, TRENDS NEUROSCI, V17, P208, DOI 10.1016/0166-2236(94)90106-6 DAVIS M, 1976, PSYCHOPHARMACOLOGY, V76, P47 DAVIS M, 1978, J EXP PSYCHOL ANIM B, V4, P95, DOI 10.1037//0097-7403.4.2.95 DAVIS M, 1992, ANNU REV NEUROSCI, V15, P353, DOI 10.1146/annurev.ne.15.030192.002033 DISCALA G, 1989, BRAIN RES, V483, P91, DOI 10.1016/0006-8993(89)90038-3 FAINGOLD CL, 1991, HEARING RES, V52, P201, DOI 10.1016/0378-5955(91)90200-S FAINGOLD CL, 1989, BRAIN RES, V500, P302, DOI 10.1016/0006-8993(89)90326-0 FANSELOW MS, 1994, PSYCHON B REV, V1, P429, DOI 10.3758/BF03210947 FEENSTRA MGP, 1995, NEUROSCI LETT, V189, P81, DOI 10.1016/0304-3940(95)11456-7 FENDT M, 1994, BRAIN RES, V661, P163, DOI 10.1016/0006-8993(94)91193-2 FRANKLAND PW, 1995, BEHAV NEUROSCI, V109, P669, DOI 10.1037/0735-7044.109.4.669 HOFFMAN HS, 1980, PSYCHOL REV, V87, P175, DOI 10.1037/0033-295X.87.2.175 KILLAM KF, 1957, J PHARMACOL EXP THER, V119, P255 Koch M, 1999, PROG NEUROBIOL, V59, P107, DOI 10.1016/S0301-0082(98)00098-7 LeBeau FEN, 1996, J NEUROPHYSIOL, V75, P902 LeBeau FEN, 2001, J NEUROSCI, V21, P7303 LEITNER DS, 1985, PHYSIOL BEHAV, V34, P65, DOI 10.1016/0031-9384(85)90079-4 Li L, 1998, BEHAV NEUROSCI, V112, P1187, DOI 10.1037/0735-7044.112.5.1187 Li Y, 1998, HEARING RES, V121, P1, DOI 10.1016/S0378-5955(98)00066-5 LINGENHOHL K, 1994, J NEUROSCI, V14, P1176 Paxinos G, 1997, RAT BRAIN STEREOTAXI Sandner G, 2002, BEHAV BRAIN RES, V128, P161, DOI 10.1016/S0166-4328(01)00273-X SVENSSON L, 1990, EUR J PHARMACOL, V175, P107, DOI 10.1016/0014-2999(90)90160-8 Swerdlow NR, 2000, J NEUROSCI, V20, P4325 SZCZEPANIAK WS, 1995, NEUROSCI LETT, V196, P77, DOI 10.1016/0304-3940(95)11851-M Troncoso AC, 1998, BRAZ J MED BIOL RES, V31, P391 Vianna DML, 2001, NEUROREPORT, V12, P4109, DOI 10.1097/00001756-200112210-00049 Vianna DML, 2001, NEUROSCI BIOBEHAV R, V25, P711, DOI 10.1016/S0149-7634(01)00052-5 Vianna DML, 2001, LEARN MEMORY, V8, P164, DOI 10.1101/lm.36101 Walker DL, 1997, NEUROSCI BIOBEHAV R, V21, P743, DOI 10.1016/S0149-7634(96)00061-9 WATKINS L, 1993, AM J PHYSIOL, V265, pR1155 WECKER JR, 1986, ANIM LEARN BEHAV, V14, P287, DOI 10.3758/BF03200069 Yeomans JS, 1996, BRAIN RES REV, V21, P301 Zhang DX, 1998, HEARING RES, V117, P1, DOI 10.1016/S0378-5955(97)00202-5 NR 53 TC 31 Z9 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2003 VL 184 IS 1-2 BP 82 EP 90 DI 10.1016/S0378-5955(03)00231-4 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 736EK UT WOS:000186158300009 PM 14553906 ER PT J AU Jen, PHS Zhou, XM AF Jen, PHS Zhou, XM TI Corticofugal modulation of amplitude domain processing in the midbrain of the big brown bat, Eptesicus fuscus SO HEARING RESEARCH LA English DT Article DE amplitude sensitivity; auditory cortex; bat; corticofugal modulation; frequency; inferior colliculus; inhibition ID INFERIOR COLLICULAR NEURONS; PRIMARY AUDITORY-CORTEX; SPACE REPRESENTATION; CORTICAL ACTIVATION; FREQUENCY MAP; GUINEA-PIG; DESCENDING PROJECTIONS; SOUND STIMULATION; FM BAT; RESPONSES AB Recent studies have shown that the corticofugal system systematically modulates and improves subcortical signal processing in the frequency, time and spatial domains. The present study examined corticofugal modulation of amplitude sensitivity of 113 corticofugally inhibited neurons in the central nucleus of the inferior colliculus (IC) of the big brown bat, Eptesicus fuscus. Cortical electrical stimulation decreased the number of impulses and increased the response latency of these neurons. They had an average of 5.9 +/- 4.4 kHz best frequency (BF) differences between collicular and electrically stimulated cortical neurons. Cortical electrical stimulation synchronized with sound stimulation for 30 min compressed the rate-amplitude functions of half (56, 49.6%) of these collicular neurons and shifted their minimum thresholds (MT) and dynamic ranges (DR) toward that of electrically stimulated cortical neurons for as long as 40 min. These collicular neurons had an average of 1.6 +/- 1.4 kHz BF differences. The shift in collicular MT and DR significantly increased with differences in MT and DR between collicular and cortical neurons. Cortical electrical stimulation also shifted the BF and best amplitude (BA) of collicular neurons toward that of cortical neurons. The BF shift increased with BF differences and the BA shift increased with BA differences. These data suggest that the corticofugal system modulates collicular responses on the basis of topographic projections between the IC and auditory cortex. However, corticofugal modulation of collicular amplitude sensitivity is primarily dependent upon the difference but not the absolute amplitude sensitivity between collicular and cortical neurons. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. Univ Missouri, Interdisciplinary Neurosci Program, Columbia, MO 65211 USA. RP Jen, PHS (reprint author), Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. CR ANDERSEN RA, 1980, J COMP NEUROL, V191, P479, DOI 10.1002/cne.901910310 BANCK JB, 1975, BRAIN RES, V98, P417 Chung S, 1998, NEURON, V20, P1177, DOI 10.1016/S0896-6273(00)80498-5 CRUIKSHANK SJ, 1992, BEHAV NEUROSCI, V106, P471, DOI 10.1037/0735-7044.106.3.471 DEAR SP, 1993, J NEUROPHYSIOL, V70, P1988 Druga R, 1997, PHYSIOL RES, V46, P215 EDELINE JM, 1994, EXP BRAIN RES, V97, P373 GAMES KD, 1988, HEARING RES, V34, P1, DOI 10.1016/0378-5955(88)90047-0 Gao E, 1998, P NATL ACAD SCI USA, V95, P12663, DOI 10.1073/pnas.95.21.12663 Gao EQ, 2000, P NATL ACAD SCI USA, V97, P8081, DOI 10.1073/pnas.97.14.8081 He JF, 1997, J NEUROPHYSIOL, V77, P896 He JF, 2003, J NEUROPHYSIOL, V89, P367, DOI 10.1152/jn.00593.2002 He JF, 2002, J NEUROPHYSIOL, V88, P1040, DOI 10.1152/jn00014.2002 HERBERT H, 1991, J COMP NEUROL, V304, P103, DOI 10.1002/cne.903040108 HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 JEN PHS, 1989, J COMP PHYSIOL A, V165, P1, DOI 10.1007/BF00613794 Jen PHS, 1998, J COMP PHYSIOL A, V183, P683, DOI 10.1007/s003590050291 Jen P H, 1997, Acta Otolaryngol Suppl, V532, P61 JEN PHS, 1987, BRAIN RES, V419, P7, DOI 10.1016/0006-8993(87)90563-4 JEN PHS, 2003, ADV STUDY ECHOLOCATI, P196 Jen PHS, 2002, HEARING RES, V168, P196, DOI 10.1016/S0378-5955(02)00358-1 Jen PHS, 2001, EXP BRAIN RES, V137, P292 JEN PHS, 1999, BRAIN RES, V842, P184 Ma XF, 2001, P NATL ACAD SCI USA, V98, P14060, DOI 10.1073/pnas.241517098 Ma XF, 2001, J NEUROPHYSIOL, V85, P1078 MCCORMICK DA, 1992, P NATL ACAD SCI USA, V89, P2774, DOI 10.1073/pnas.89.7.2774 POON PWF, 1990, EXP BRAIN RES, V79, P83 Sakai M, 2001, P NATL ACAD SCI USA, V98, P3507, DOI 10.1073/pnas.061021698 Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O Shen JX, 1997, J COMP PHYSIOL A, V181, P591, DOI 10.1007/s003590050142 Suga N, 2002, NEURON, V36, P9, DOI 10.1016/S0896-6273(02)00933-9 Suga N, 1998, CENTRAL AUDITORY PROCESSING AND NEURAL MODELING, P55 Suga N, 1997, Trends Cogn Sci, V1, P13, DOI 10.1016/S1364-6613(97)01002-4 SUN X, 1989, BRAIN RES, V495, P1, DOI 10.1016/0006-8993(89)91212-2 Sun XD, 1996, NEUROSCI LETT, V212, P131, DOI 10.1016/0304-3940(96)12788-9 Torterolo P, 1998, NEUROSCI LETT, V249, P172, DOI 10.1016/S0304-3940(98)00367-X VILLA AEP, 1991, EXP BRAIN RES, V86, P506 WATANABE T, 1966, EXP BRAIN RES, V2, P302 Winer JA, 1998, J COMP NEUROL, V400, P147 Winer JA, 2002, HEARING RES, V168, P181, DOI 10.1016/S0378-5955(02)00489-6 Yan J, 1996, SCIENCE, V273, P1100, DOI 10.1126/science.273.5278.1100 Yan J, 2001, NEUROREPORT, V12, P3313, DOI 10.1097/00001756-200110290-00033 Yan J, 2002, EUR J NEUROSCI, V16, P119, DOI 10.1046/j.1460-9568.2002.02046.x Yan W, 1998, NAT NEUROSCI, V1, P54, DOI 10.1038/255 Zhang JP, 2000, J COMP PHYSIOL A, V186, P913, DOI 10.1007/s003590000142 Zhang YF, 1997, NATURE, V387, P900 Zhang YF, 1997, J NEUROPHYSIOL, V78, P3489 Zhang YF, 2000, J NEUROPHYSIOL, V84, P325 Zhou XM, 2000, BRAIN RES, V881, P62, DOI 10.1016/S0006-8993(00)02805-5 Zhou XM, 2000, J NEUROPHYSIOL, V84, P3083 NR 50 TC 20 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2003 VL 184 IS 1-2 BP 91 EP 106 DI 10.1016/S0378-5955(03)00237-5 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 736EK UT WOS:000186158300010 PM 14553907 ER PT J AU Akbas, Y Pata, YS Gorur, K Polat, G Polat, A Ozcan, C Unal, M AF Akbas, Y Pata, YS Gorur, K Polat, G Polat, A Ozcan, C Unal, M TI The effect of L-carnitine on the prevention of experimentally induced myringosclerosis in rats SO HEARING RESEARCH LA English DT Article DE tympanic membrane; myringotomy; myringosclerosis; carnitine; reactive oxygene species; apoptosis ID MIDDLE-EAR; LIPID-PEROXIDATION; TYMPANIC MEMBRANE; N-ACETYLCYSTEINE; GAS-COMPOSITION; TYMPANOSCLEROSIS; APOPTOSIS AB The objective of this study was to investigate the possible effect of L-carnitine on the prevention of experimentally induced myringosclerosis. Twenty Sprague-Dawley rats were bilaterally myringotomized. The rats were divided into two groups randomly: group 1 which were intraperitoneally administered saline and group 2 which were intraperitoneally administered L-carnitine. Blood samples were collected for biochemical evaluation and the tympanic membranes were harvested after 28 days. Histopathological and immunohistochemical evaluation were done under light microscopy. The mean malondialdehyde levels were 3.9 +/- 0.9 in group 2, and 7.9 +/- 1.1 in group 1 (P < 0.001), nitric oxide levels were 25.6 +/- 6.4 in group 2 and 30.8 +/- 8.2 in group 1 (P = 0.14) and acetyleholinesterase was 1035 +/- 60 in group 2 and 678 +/- 35 in group 1 (P = 0.001). Myringosclerosis was more frequent and severe in group 1 than group 2 (P < 0.007). Immunoreactivity was seen in 16 of 20 tympanic membranes in group 2 and six of 20 tympanic membranes in group 1 (P = 0.005). We conclude that L-carnitine diminishes the occurrence of myringosclerosis in rats after myringotomy possibly by antioxidant activity and decreasing the formation of reactive oxygen species. (C) 2003 Elsevier B.V. All rights reserved. C1 Mersin Univ, Sch Med, Dept Otorhinolaryngol, Mersin, Turkey. Mersin Univ, Sch Med, Dept Biochem, Mersin, Turkey. Mersin Univ, Sch Med, Dept Pathol, Mersin, Turkey. RP Akbas, Y (reprint author), Mersin Univ, Sch Med, Dept Otorhinolaryngol, Mersin, Turkey. CR Arslan E, 2003, BURNS, V29, P221, DOI 10.1016/S0305-4179(02)00305-4 Asiri S, 1999, J LARYNGOL OTOL, V113, P1076 Brevetti G., 1992, L CARNITINE ITS ROLE, P359 Dursun G, 1997, CLIN OTOLARYNGOL, V22, P62, DOI 10.1046/j.1365-2273.1997.00867.x Efron DT, 1999, J GASTROINTEST SURG, V3, P592, DOI 10.1016/S1091-255X(99)80080-8 FABRIELLO RG, 1988, LIFE SCI, V43, P289 Fabriello RG, 1988, ANN NEUROL, V24, P114 FELDING JU, 1987, SCAND J CLIN LAB INV, V47, P31 GIBB AG, 1976, P ROY SOC MED, V69, P155 Gorur K, 2002, J LARYNGOL OTOL, V116, P426, DOI 10.1258/0022215021911202 Kaygusuz I, 2001, HEARING RES, V162, P43, DOI 10.1016/S0378-5955(01)00365-3 Kelley EE, 1999, ARCH BIOCHEM BIOPHYS, V370, P97, DOI 10.1006/abbi.1999.1386 Kojima H, 1999, ARCH OTOLARYNGOL, V125, P738 LOWITT S, 1995, METABOLISM, V44, P677, DOI 10.1016/0026-0495(95)90128-0 Mattsson C, 1997, ANN OTO RHINOL LARYN, V106, P513 Mayes PA, 2000, HARPERS BIOCH, P160 Mostafapour SP, 1999, ARCH OTOLARYNGOL, V125, P729 MURRAY RK, 2000, HARPERS BIOCH, P829 Okhawa H, 1979, ANAL BIOCHEM, V95, P351 Ozcan C, 2002, INT J PEDIATR OTORHI, V63, P179, DOI 10.1016/S0165-5876(01)00640-1 Ozcan C, 2002, PHARMACOL RES, V45, P5, DOI 10.1006/phrs.2001.0906 Pata YS, 2003, INT J PEDIATR OTORHI, V67, P881, DOI 10.1016/S0165-5876(03)00132-0 SADE J, 1993, ACTA OTO-LARYNGOL, V113, P353, DOI 10.3109/00016489309135824 SCHIFF M, 1985, LARYNGOSCOPE, V95, P256 STUMPF DA, 1985, NEUROLOGY, V35, P1041 Talas DU, 2002, PHARMACOL RES, V46, P265, DOI 10.1016/S1043-6618(02)00130-5 TOS M, 1984, ACTA OTO-LARYNGOL, V414, P171 TOS M, 1983, J LARYNGOL OTOL, V97, P489, DOI 10.1017/S0022215100094445 VISIOLI O, 1992, L CARNITINE ITS ROLE, P237 WIELINGA EWJ, 1993, CLIN OTOLARYNGOL, V18, P341, DOI 10.1111/j.1365-2273.1993.tb00590.x ZOLLNER F, 1956, J Laryngol Otol, V70, P77 NR 31 TC 28 Z9 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2003 VL 184 IS 1-2 BP 107 EP 112 DI 10.1016/S0378-5955(03)00229-6 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 736EK UT WOS:000186158300011 PM 14553908 ER PT J AU Heffner, RS Koay, G Heffner, HE AF Heffner, RS Koay, G Heffner, HE TI Hearing in American leaf-nosed bats. III: Artibeus jamaicensis SO HEARING RESEARCH LA English DT Article DE audiogram; Chiroptera; echolocation; evolution; mammal ID BIG BROWN BAT; SOUND LOCALIZATION; EPTESICUS-FUSCUS; CAROLLIA-PERSPICILLATA; MIDDLE-EAR; SENSITIVITY; MAMMALS; ECHOLOCATION; EVOLUTION; FREQUENCIES AB We determined the audiogram of the Jamaican fruit-eating bat (Phyllostomidae: Artibeus jamaicensis), a relatively large (40-50 g) species that, like other phyllostomids, uses low-intensity echolocation calls. A conditioned suppression/avoidance procedure with a fruit juice reward was used for testing. At 60 dB SPL the hearing range of A. jamaicensis extends from 2.8 to 131 kHz, with an average best sensitivity of 8.5 dB SPL at 16 kHz. Although their echolocation calls are low-intensity, the absolute sensitivity of A. jamaicensis and other 'whispering' bats does not differ from that of other mammals, including other bats. The high-frequency hearing of A. jamaicensis and other Microchiroptera is slightly higher than expected on the basis of selective pressure for passive sound localization. Analysis suggests that the evolution of echolocation may have been accompanied by the extension of their high-frequency hearing by an average of one-half octave. With respect to low-frequency hearing, all bats tested so far belong to the group of mammals with poor low-frequency hearing, i.e., those unable to hear below 500 Hz. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Toledo, Dept Psychol, Toledo, OH 43606 USA. RP Heffner, RS (reprint author), Univ Toledo, Dept Psychol, 2801 W Bancroft St, Toledo, OH 43606 USA. CR Barnard S.M, 1995, BATS IN CAPTIVITY Bohn Kirsten M., 2001, Bat Research News, V42, P144 BONACCORSO FJ, 1987, J ANIM ECOL, V56, P907, DOI 10.2307/4956 DALLAND JI, 1965, SCIENCE, V150, P1185, DOI 10.1126/science.150.3700.1185 Esser KH, 1996, J COMP PHYSIOL A, V178, P779 Fleischer G., 1978, Advances in Anatomy Embryology and Cell Biology, V55, P1 Gardner A. L., 1977, BIOL BATS NEW WORL 2, P293 GOULD E, 1977, BIOL BATS NEW WORL 2, P247 GOULD E, 1975, J MAMMAL, V56, P15, DOI 10.2307/1379603 GRINNELL AD, 1958, BIOL BULL, V114, P10, DOI 10.2307/1538961 Heffner H. E., 1995, METHODS COMP PSYCHOA, P73 HEFFNER HE, 1983, BEHAV NEUROSCI, V97, P310, DOI 10.1037/0735-7044.97.2.310 Heffner H.E., 1998, ENCY COMP PSYCHOL, P290 Heffner RS, 2001, HEARING RES, V157, P138, DOI 10.1016/S0378-5955(01)00298-2 HEFFNER RS, 1992, HEARING RES, V62, P206, DOI 10.1016/0378-5955(92)90188-S HEFFNER RS, 1993, J COMP NEUROL, V331, P418, DOI 10.1002/cne.903310311 HEFFNER RS, 1990, HEARING RES, V46, P239, DOI 10.1016/0378-5955(90)90005-A HEFFNER RS, 1995, HEARING RES, V88, P190, DOI 10.1016/0378-5955(95)00112-H HEFFNER RS, 1983, BEHAV NEUROSCI, V97, P299, DOI 10.1037/0735-7044.97.2.299 HEFFNER RS, 1982, J COMP PHYSIOL PSYCH, V96, P926, DOI 10.1037/0735-7036.96.6.926 HEFFNER RS, 1985, HEARING RES, V19, P85, DOI 10.1016/0378-5955(85)90100-5 HEFFNER RS, 1985, J MAMMAL, V66, P745, DOI 10.2307/1380801 HOWELL DJ, 1974, J MAMMAL, V55, P293, DOI 10.2307/1378999 JEN PHS, 1988, HEARING RES, V34, P101, DOI 10.1016/0378-5955(88)90098-6 Kalko EKV, 1996, J BIOGEOGR, V23, P565, DOI 10.1111/j.1365-2699.1996.tb00018.x Koay G, 2003, HEARING RES, V178, P27, DOI 10.1016/S0378-5955(03)00025-X Koay G, 1997, HEARING RES, V105, P202, DOI 10.1016/S0378-5955(96)00208-0 KOAY G, 2002, HEARING RES, V171, P97 Koay G, 1998, J COMP PSYCHOL, V112, P371, DOI 10.1037/0735-7036.112.4.371 LAY DOUGLAS, 1972, J MORPHOL, V138, P41, DOI 10.1002/jmor.1051380103 LONG GR, 1975, J COMP PHYSIOL, V100, P211 Marshall J, 1999, NATURE, V401, P873, DOI 10.1038/44751 Mason MJ, 2001, J ZOOL, V255, P467 MASTERTO.B, 1969, J ACOUST SOC AM, V45, P966, DOI 10.1121/1.1911574 MORRISON DW, 1978, ECOLOGY, V59, P716, DOI 10.2307/1938775 Nowak R. M., 1999, WALKERS MAMMALS WORL NUMMELA S, 1995, HEARING RES, V85, P18, DOI 10.1016/0378-5955(95)00030-8 Ortega J., 2001, MAMM SPECIES, V622, P1 PYE A, 1967, J MORPHOL, V121, P241, DOI 10.1002/jmor.1051210305 REYMOND L, 1985, VISION RES, V25, P1477, DOI 10.1016/0042-6989(85)90226-3 ROSOWSKI JJ, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P615 Ruggero MA, 2002, P NATL ACAD SCI USA, V99, P13206, DOI 10.1073/pnas.202492699 RYAN MJ, 1983, J COMP PHYSIOL, V150, P413 Springer MS, 2001, P NATL ACAD SCI USA, V98, P6241, DOI 10.1073/pnas.111551998 STERBING SJ, 1994, HEARING RES, V76, P133, DOI 10.1016/0378-5955(94)90095-7 STUDIER EH, 1983, COMP BIOCHEM PHYS A, V74, P199, DOI 10.1016/0300-9629(83)90589-3 von Bekesy G, 1951, HDB EXPT PSYCHOL, P1075 Webster D.B., 1984, CONTRIBUTIONS TO SENSORY PHYSIOLOGY, V8, P161 Wegel RL, 1924, PHYS REV, V23, P266, DOI 10.1103/PhysRev.23.266 WENSTRUP JJ, 1984, J COMP PHYSIOL, V155, P91, DOI 10.1007/BF00610934 WEST CD, 1985, J ACOUST SOC AM, V77, P1091, DOI 10.1121/1.392227 Wotton JM, 1997, J ACOUST SOC AM, V101, P1723, DOI 10.1121/1.418271 WOTTON JM, 1995, J ACOUST SOC AM, V98, P1423, DOI 10.1121/1.413410 NR 53 TC 20 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2003 VL 184 IS 1-2 BP 113 EP 122 DI 10.1016/S0378-5955(03)00233-8 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 736EK UT WOS:000186158300012 PM 14553909 ER PT J AU Thornton, ARD Marotta, N Kennedy, CR AF Thornton, ARD Marotta, N Kennedy, CR TI The order of testing effect in otoacoustic emissions and its consequences for sex and ear differences in neonates SO HEARING RESEARCH LA English DT Article DE otoacoustic emission; sex difference; asymmetry; right/left difference; order effect; neonate ID GENDER DIFFERENCES; HEARING; PREVALENCE; POPULATION; ASYMMETRY; INFANTS AB The amplitude values of transient-evoked otoacoustic emissions, recorded from a large sample of neonates, were used to examine the asymmetry between ears tested and the differences due to the sex of the subject. Whilst the sex difference, with females having larger responses than males, has been a consistent finding in previous reports, the right/left ear difference, with the right ear giving a larger response than the left, has produced variable results that differed between laboratories. In this study, the sex difference was confirmed with females giving a 1.2 dB greater response than males. It was not affected by the age of the neonate. A significant effect of test order was found. The measured right/left difference was enhanced when the right ear was tested first but was diminished when the left ear was tested first. If the left ear is tested first then the measured right/left difference would be about 0.5 dB whereas, if the right ear is tested first, the measured right/left difference would be about 1.5 dB. When male/female comparisons were made for right and left ears separately and for the same ear tested first, the sex differences were the same for all four conditions. The sex and right/left differences have been confirmed as statistically significant effects and the order effect could explain the discrepancies and variability of the right/left differences reported in the literature. (C) 2003 Elsevier B.V. All rights reserved. C1 Royal S Hants Hosp, MRC, Inst Hearing Res, Southampton SO14 0YG, Hants, England. Univ Southampton, Sch Med Boldrewood, Div Clin Neurosci, Southampton SO16 7PX, Hants, England. Southampton Gen Hosp, Dept Child Hlth, Southampton SO16 4XY, Hants, England. RP Thornton, ARD (reprint author), Royal S Hants Hosp, MRC, Inst Hearing Res, Southampton SO14 0YG, Hants, England. CR Aidan D, 1997, ACTA OTO-LARYNGOL, V117, P25, DOI 10.3109/00016489709117986 BILGER RC, 1990, J SPEECH HEAR RES, V33, P418 BURNS EM, 1994, J ACOUST SOC AM, V95, P385, DOI 10.1121/1.408330 BURNS EM, 1992, J ACOUST SOC AM, V91, P1571, DOI 10.1121/1.402438 Cassidy JW, 2001, J MUSIC THER, V38, P28 Driscoll C, 2000, SCAND AUDIOL, V29, P103, DOI 10.1080/010503900424516 Ferguson MA, 2000, AUDIOLOGY, V39, P125 HUNTER MF, 1994, BRIT J AUDIOL, V28, P47, DOI 10.3109/03005369409077912 Kei J, 1997, AUDIOLOGY, V36, P61 KENNEDY CR, 1991, ARCH DIS CHILD, V66, P1124 Khalfa S, 1997, ACTA OTO-LARYNGOL, V117, P192, DOI 10.3109/00016489709117767 Khalfa S, 1998, HEARING RES, V121, P29, DOI 10.1016/S0378-5955(98)00062-8 McFadden D, 1998, DEV NEUROPSYCHOL, V14, P261 McFadden Dennis, 2001, Seminars in Hearing, V22, P347, DOI 10.1055/s-2001-19110 MCFADDEN D, 1995, HEARING RES, V85, P181, DOI 10.1016/0378-5955(95)00045-6 McFadden D, 2000, HEARING RES, V142, P23, DOI 10.1016/S0378-5955(00)00002-2 MCFADDEN D, 1994, J ACOUST SOC AM, V95, P3460, DOI 10.1121/1.410022 MCFADDEN D, 1993, HEARING RES, V68, P143, DOI 10.1016/0378-5955(93)90118-K MORLET T, 1995, HEARING RES, V90, P44, DOI 10.1016/0378-5955(95)00144-4 Newmark M., 1997, Journal of Basic and Clinical Physiology and Pharmacology, V8, P133 ROSEN S, 1962, ANN OTO RHINOL LARYN, V71, P727 TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V Thornton ARD, 2003, HEARING RES, V182, P65, DOI 10.1016/S0378-5955(03)00173-4 THORNTON ARD, 1993, BRIT J AUDIOL, V27, P319, DOI 10.3109/03005369309076710 THORNTON ARD, 1999, SERIES AUDIOLOGY, V1 WHITEHEAD ML, 1991, HEARING RES, V53, P269, DOI 10.1016/0378-5955(91)90060-M NR 26 TC 16 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2003 VL 184 IS 1-2 BP 123 EP 130 DI 10.1016/S0378-5955(03)00234-X PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 736EK UT WOS:000186158300013 PM 14553910 ER PT J AU Kaneko, K Fujiki, N Hari, R AF Kaneko, K Fujiki, N Hari, R TI Binaural interaction in the human auditory cortex revealed by neuromagnetic frequency tagging: no effect of stimulus intensity SO HEARING RESEARCH LA English DT Article DE magnetoencephalography; frequency tagging; steady-state response; binaural interaction; human; auditory cortex ID STEADY-STATE RESPONSES; TONOTOPIC ORGANIZATION; BRAIN-STEM; POTENTIALS; AMPLITUDE AB Frequency tagging of magnetoencephalographic signals was recently introduced as a new tool to study binaural interaction in the human auditory cortex [Fujiki et al., J. Neurosci. 22 (2002) RC205]. As the method has potential value for assessing brain plasticity in patients with unilateral hearing deficits, we studied binaural interaction in 10 healthy adults at different intensity levels. Cortical steady-state fields were measured with a 306-channel whole-scalp neuromagnetometer to amplitude-modulated sounds (carrier frequency 1 kHz), presented monaurally or binaurally at 45, 60 and 75 dB SL. The modulation frequencies were 39.1 Hz for the right ear and 41.1 Hz for the left. During binaural stimulation, the ipsilateral responses were suppressed more than the contralateral ones in both hemispheres, and the hemispheric balance shifted towards the contralateral hemisphere for inputs from both ears. The patterns of binaural interaction were similar at all three stimulus intensities. These data could be useful in examining patients who suffer from auditory disorders as well as in revealing basic mechanism of human auditory processing. (C) 2003 Elsevier B.V. All rights reserved. C1 Helsinki Univ Technol, Low Temp Lab, Brain Res Unit, FIN-02015 Espoo, Finland. Kyoto Univ, Grad Sch Med, Dept Otolaryngol Head & Neck Surg, Sakyo Ku, Kyoto 6068507, Japan. Univ Helsinki, Cent Hosp, Div Clin Neurophysiol, FIN-00290 Helsinki, Finland. RP Kaneko, K (reprint author), Helsinki Univ Technol, Low Temp Lab, Brain Res Unit, POB 2200, FIN-02015 Espoo, Finland. RI Hari, Riitta/J-1880-2012 OI Hari, Riitta/0000-0002-3142-2703 CR CLARKE MRB, 1980, BIOMETRIKA, V67, P441, DOI 10.1093/biomet/67.2.441 DOBIE RA, 1980, ELECTROEN CLIN NEURO, V49, P303, DOI 10.1016/0013-4694(80)90224-2 Draganova R, 2002, EAR HEARING, V23, P254, DOI 10.1097/00003446-200206000-00009 ELBERLING C, 1981, SCAND AUDIOL, V10, P203, DOI 10.3109/01050398109076182 Fujiki N, 2002, J NEUROSCI, V22 HAMALAINEN M, 1993, REV MOD PHYS, V65, P413, DOI 10.1103/RevModPhys.65.413 HARI R, 1989, J ACOUST SOC AM, V86, P1033, DOI 10.1121/1.398093 Jiang ZD, 1996, EVOKED POTENTIAL, V100, P505 John MS, 1998, AUDIOLOGY, V37, P59 Kanno A, 1996, Electroencephalogr Clin Neurophysiol Suppl, V47, P129 LEVINE RA, 1981, ANN NEUROL, V9, P384, DOI 10.1002/ana.410090412 LINS OG, 1995, EVOKED POTENTIAL, V96, P420, DOI 10.1016/0168-5597(95)00048-W Makela J. P., 1993, Human Brain Mapping, V1, P48, DOI 10.1002/hbm.460010106 OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4 Pantev C, 1996, HEARING RES, V101, P62, DOI 10.1016/S0378-5955(96)00133-5 PICTON TW, 1987, J ACOUST SOC AM, V82, P165, DOI 10.1121/1.395560 ROMANI GL, 1982, SCIENCE, V216, P1339, DOI 10.1126/science.7079770 Ross B, 2000, J ACOUST SOC AM, V108, P679, DOI 10.1121/1.429600 Sokal R. R., 1995, BIOMETRY PRINCIPLES, V3rd TIIHONEN J, 1989, AUDIOLOGY, V28, P37 NR 20 TC 19 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2003 VL 183 IS 1-2 BP 1 EP 6 DI 10.1016/S0378-5955(03)00186-2 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 726DH UT WOS:000185582800001 PM 13679132 ER PT J AU Goodman, SS Withnell, RH Shera, CA AF Goodman, SS Withnell, RH Shera, CA TI The origin of SFOAE microstructure in the guinea pig SO HEARING RESEARCH LA English DT Article DE microstructure; otoacoustic emission; SFOAE ID FREQUENCY OTOACOUSTIC EMISSIONS; FINE-STRUCTURE; MODEL; DPOAE; SUPPRESSION; GENERATION; TONE AB Human stimulus-frequency otoacoustic emissions (SFOAEs) evoked by low-level stimuli have previously been shown to have properties consistent with such emissions arising from a linear place-fixed reflection mechanism with SFOAE microstructure thought to be due to a variation in the effective reflectance with position along the cochlea [Zweig and Shera, J. Acoust. Soc. Am. 98 (1995) 2018-2047]. Here we report SFOAEs in the guinea pig obtained using a nonlinear extraction paradigm from the ear-canal recording that show amplitude and phase microstructure akin to that seen in human SFOAEs. Inverse Fourier analysis of the SFOAE spectrum indicates that SFOAEs in the guinea pig are a stimulus level-dependent mix of OAEs arising from linear-reflection and nonlinear-distortion mechanisms. Although the SFOAEs are dominated by OAE generated by a linear-reflection mechanism at low and moderate stimulus levels, nonlinear distortion can dominate some part of, or all of, the emission spectrum at high levels. Amplitude and phase microstructure in the guinea pig SFOAE is evidently a construct of (i) the complex addition of nonlinear-distortion and linear-reflection components; (ii) variation in the effective reflectance with position along the cochlea; and perhaps (iii) the complex addition of multiple intra-cochlear reflections. (C) 2003 Elsevier B.V. All rights reserved. C1 Indiana Univ, Dept Speech & Hearing Sci, Bloomington, IN 47405 USA. Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA. RP Withnell, RH (reprint author), Indiana Univ, Dept Speech & Hearing Sci, 200 S Jordan Ave, Bloomington, IN 47405 USA. CR BRASS D, 1993, J ACOUST SOC AM, V93, P920, DOI 10.1121/1.405453 BRASS D, 1991, J ACOUST SOC AM, V90, P2415, DOI 10.1121/1.402046 Dhar S, 2002, J ACOUST SOC AM, V112, P2882, DOI 10.1121/1.1516757 Fahey PF, 2000, J ACOUST SOC AM, V108, P1786, DOI 10.1121/1.1308048 Heitmann J, 1998, J ACOUST SOC AM, V103, P1527, DOI 10.1121/1.421290 Kalluri R, 2001, J ACOUST SOC AM, V109, P622, DOI 10.1121/1.1334597 KEMP DT, 1980, HEARING RES, V2, P533, DOI 10.1016/0378-5955(80)90091-X KEMP DT, 1990, EAR HEARING, V11, P93 Shera CA, 2003, BIOPHYSICS OF THE COCHLEA: FROM MOLECULES TO MODELS, P439, DOI 10.1142/9789812704931_0062 Shera CA, 2003, J ACOUST SOC AM, V113, P2762, DOI 10.1121/1.1557211 SHERA CA, 1993, J ACOUST SOC AM, V93, P3333, DOI 10.1121/1.405717 Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 SOUTER M, 1995, HEARING RES, V90, P1, DOI 10.1016/0378-5955(95)00124-9 Talmadge CL, 1999, J ACOUST SOC AM, V105, P275, DOI 10.1121/1.424584 Talmadge CL, 2000, J ACOUST SOC AM, V108, P2911, DOI 10.1121/1.1321012 Talmadge CL, 1998, J ACOUST SOC AM, V104, P1517, DOI 10.1121/1.424364 Withnell RH, 1998, J ACOUST SOC AM, V104, P344, DOI 10.1121/1.423243 Withnell RH, 1998, J ACOUST SOC AM, V104, P350, DOI 10.1121/1.423292 Withnell RH, 2003, HEARING RES, V178, P106, DOI 10.1016/S0378-5955(03)00064-9 ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320 ZWICKER E, 1984, J ACOUST SOC AM, V75, P1148, DOI 10.1121/1.390763 NR 21 TC 24 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2003 VL 183 IS 1-2 BP 7 EP 17 DI 10.1016/S0378-5955(03)00193-X PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 726DH UT WOS:000185582800002 PM 13679133 ER PT J AU Helfert, RH Krenning, J Wilson, TS Hughes, LF AF Helfert, RH Krenning, J Wilson, TS Hughes, LF TI Age-related synaptic changes in the anteroventral cochlear nucleus of Fischer-344 rats SO HEARING RESEARCH LA English DT Article DE auditory; dendritic regression; inferior colliculus; presbycusis; ultrastructure ID CNS STRUCTURAL ELEMENTS; BRAIN-STEM RESPONSES; INFERIOR COLLICULUS; CBA/J MICE; GLUCOSE-UTILIZATION; CAPILLARY DENSITY; AGING C57BL/6J; AMINO-ACIDS; OLD ADULTS; YOUNG AB Previous studies have demonstrated age-related decreases in the transmitters glycine and glutamate in the cochlear nucleus (CN) of the Fischer-344 (17344) rat, along with declining levels of binding for glycine receptors. The purpose of this study was to evaluate structural correlates to the transmitter and receptor losses that accompany aging in the anteroventral CN (AVCN). Thin sections were obtained from the middle-frequency area of the right AVCNs from five 3-month-, four 19-month-, and five 28-month-old F344 rats. Montages were constructed from electron micrographs taken of several sites in each AWN section. The presynaptic terminals were classified by vesicle type and postsynaptic target, and their perimeters and synaptic lengths were traced using morphometry software. The calibers of all dendritic profiles were also measured, and cell counts were performed on semi-thin sections. The data were compared among the three age groups using analysis of variance followed by Tukey's Honestly Significant Difference for pairwise comparisons. There were significant age-related decreases in the size of terminals contacting small-caliber (<2 mum) dendrites. Dendrites of this size comprised the largest percentage of dendrites in the AVCN. On these targets, round and pleomorphic-vesicle terminals were reduced in volume by nearly 44% and 24%, respectively, in 28-month olds when compared to the 3-month olds. On the other hand, the densities and numbers of synaptic terminals and dendritic profiles did not differ among age groups, and no neuronal losses were evident in the older animals. Also, there were no detectable changes in synaptic area among groups. The decrease in terminal size may be related to age-associated reductions in neurotransmitter levels previously described in the F344 CN. The observations presented here contrast with those previously described in the inferior colliculus (IC), in which there were significant age-related losses of synaptic terminals and dendrites, but no change in the size of synaptic terminals. The lack of synaptic and dendritic losses suggests that the structural connectivity of the rat AWN remains relatively intact during aging, which is interesting in light of the synaptic and dendritic changes evident in the IC, a major target of its projections. (C) 2003 Elsevier B.V. All rights reserved. C1 So Illinois Univ, Sch Med, Dept Surg, Springfield, IL 62794 USA. So Illinois Univ, Sch Med, Dept Pharmacol, Springfield, IL 62794 USA. So Illinois Univ, Sch Med, Dept Neurol, Springfield, IL 62794 USA. RP Helfert, RH (reprint author), So Illinois Univ, Sch Med, Dept Surg, POB 19638, Springfield, IL 62794 USA. CR BACKOFF PM, 1994, HEARING RES, V73, P63 BANAYSCHWARTZ M, 1989, NEUROCHEM RES, V14, P555, DOI 10.1007/BF00964918 BANAYSCHWARTZ M, 1989, NEUROCHEM RES, V14, P563, DOI 10.1007/BF00964919 Boettcher FA, 1996, HEARING RES, V102, P167, DOI 10.1016/S0378-5955(96)90016-7 Brunso-Bechtold JK, 2000, BRAIN RES, V872, P125, DOI 10.1016/S0006-8993(00)02515-4 CHAMBERS RD, 1992, HEARING RES, V58, P123, DOI 10.1016/0378-5955(92)90122-4 Chen S, 1999, J NEUROCYTOL, V28, P187, DOI 10.1023/A:1007015721754 COBB FE, 1993, AUDIOLOGY, V32, P260 COLONNIER M, 1985, J COMP NEUROL, V231, P175, DOI 10.1002/cne.902310205 COOPER WA, 1990, HEARING RES, V43, P171, DOI 10.1016/0378-5955(90)90226-F DEKOSKY ST, 1990, ANN NEUROL, V27, P457, DOI 10.1002/ana.410270502 Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3 FUJIKAWA SM, 1977, J AM AUDITORY SOC, V3, P147 FUNAI H, 1983, AUDIOLOGY, V22, P9 GIBSON PH, 1983, ACTA NEUROPATHOL, V62, P127 Gordon-Salant S, 2001, J SPEECH LANG HEAR R, V44, P709, DOI 10.1044/1092-4388(2001/056) Gordon-Salant S, 1999, J SPEECH LANG HEAR R, V42, P300 GROSS PM, 1987, J CEREBR BLOOD F MET, V7, P154 Helfert RH, 1999, J COMP NEUROL, V406, P285 HERMAN GE, 1977, J GERONTOL, V32, P187 Juiz JM, 1996, J COMP NEUROL, V373, P11, DOI 10.1002/(SICI)1096-9861(19960909)373:1<11::AID-CNE2>3.0.CO;2-G KEITHLEY EM, 1990, HEARING RES, V49, P169, DOI 10.1016/0378-5955(90)90103-V KEITHLEY EM, 1979, J COMP NEUROL, V188, P429, DOI 10.1002/cne.901880306 KEITHLEY EM, 1992, HEARING RES, V59, P171, DOI 10.1016/0378-5955(92)90113-2 Krenning J, 1998, LARYNGOSCOPE, V108, P26, DOI 10.1097/00005537-199801000-00005 Loudes C, 1999, EUR J NEUROSCI, V11, P617, DOI 10.1046/j.1460-9568.1999.00463.x MATTSON MP, 1995, J NEUROCHEM, V65, P1740 MAURIZI M, 1982, SCAND AUDIOL, V11, P213, DOI 10.3109/01050398209087470 Mei Y, 1999, HEARING RES, V135, P169, DOI 10.1016/S0378-5955(99)00103-3 Mendelson JR, 2001, HEARING RES, V158, P84, DOI 10.1016/S0378-5955(01)00294-5 MERCHAN MA, 1993, MAMMALIAN COCHLEAR N MILBRANDT JC, 1995, NEUROSCIENCE, V67, P713, DOI 10.1016/0306-4522(95)00082-T PICHORAFULLER MK, 1995, J ACOUST SOC AM, V97, P593, DOI 10.1121/1.412282 ROWE MJ, 1978, ELECTROEN CLIN NEURO, V44, P459, DOI 10.1016/0013-4694(78)90030-5 SATO T, 2001, NEUROSCIENCE, V10, P695 SCHNEIDER BA, 1994, J ACOUST SOC AM, V95, P980, DOI 10.1121/1.408403 SHAW NA, 1988, PROG NEUROBIOL, V31, P19, DOI 10.1016/0301-0082(88)90021-4 SIMPSON GV, 1985, BRAIN RES, V348, P28, DOI 10.1016/0006-8993(85)90355-5 Skaper SD, 1998, J NEUROCHEM, V70, P1859 SOKOLOFF L, 1977, J NEUROCHEM, V28, P897, DOI 10.1111/j.1471-4159.1977.tb10649.x Walton JP, 1998, J NEUROSCI, V18, P2764 Weibel E. R., 1979, STEREOLOGICAL METHOD, V1 WILLOTT JF, 1991, HEARING RES, V53, P78, DOI 10.1016/0378-5955(91)90215-U Willott J. F., 1991, AGING AUDITORY SYSTE WILLOTT JF, 1992, J COMP NEUROL, V321, P666, DOI 10.1002/cne.903210412 WILLOTT JF, 1990, J COMP NEUROL, V300, P61, DOI 10.1002/cne.903000106 WILLOTT JF, 1987, J COMP NEUROL, V260, P472, DOI 10.1002/cne.902600312 WINGFIELD A, 1985, J GERONTOL, V40, P579 Xu BJ, 2000, NEURON, V26, P233, DOI 10.1016/S0896-6273(00)81153-8 Yacoubian TA, 2000, NAT NEUROSCI, V3, P342 Zeller K, 1997, J CEREBR BLOOD F MET, V17, P204 NR 51 TC 9 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2003 VL 183 IS 1-2 BP 18 EP 28 DI 10.1016/S0378-5955(03)00194-1 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 726DH UT WOS:000185582800003 PM 13679134 ER PT J AU Francis, HW Ryugo, DK Gorelikow, MJ Prosen, CA May, BJ AF Francis, HW Ryugo, DK Gorelikow, MJ Prosen, CA May, BJ TI The functional age of hearing loss in a mouse model of presbycusis. II. Neuroanatomical correlates SO HEARING RESEARCH LA English DT Article DE outer hair cell; age-related hearing loss; presbycusis; cochlear frequency map ID C57BL/6 MICE; DEGENERATION; PATHOLOGY; GENOTYPES AB This report relates patterns of age-related outer hair cell (OHC) loss to auditory behavioral deficits in C57BL/6J mice. Hair cell counts were made from serial sections of the cochlear partition in three subject groups representing young (2-3 months), middle (8-9 months), and old ages (12-13 months). The cochlear location of OHC counts was determined from three-dimensional computerized reconstructions of the serial sections. Comparisons of the topographic distribution of surviving OHCs across the subject groups confirmed an orderly base-to-apex progression of cochlear degeneration that is well known in this mouse strain. All mice appeared to follow the same progression of OHC loss, although subjects showed considerable variation in the rate at which they advanced through a uniform sequence of structural changes. Behavioral implications of the magnitude and location of OHC loss were investigated by correlating the histological status of individual mice with sound detection thresholds from the same subjects [Hear. Res. 183 (2003) 44-46]. The analysis revealed regionalized patterns of OHC loss that were correlated with frequency-dependent changes in hearing thresholds, and validates the use of 'functional age' as an indicator of age-related cochlear degeneration and dysfunction. In the absence of physiologically defined cochlear frequency maps for C57BL/6J mice, these structure-function correlation techniques offer an alternative approach for linking anatomical results to hearing abilities. (C) 2003 Elsevier B.V. All rights reserved. C1 Johns Hopkins Univ Hosp, Dept Otolaryngol Head & Neck Surg, Baltimore, MD 21287 USA. No Michigan Univ, Dept Psychol, Marquette, MI 49855 USA. RP Francis, HW (reprint author), Johns Hopkins Univ Hosp, Dept Otolaryngol Head & Neck Surg, 601 N Caroline St, Baltimore, MD 21287 USA. CR EHRET G, 1975, J COMP PHYSIOL, V103, P329 Felder E, 1995, HEARING RES, V91, P19, DOI 10.1016/0378-5955(95)00158-1 Gratton M A, 1996, Hear Res, V102, P181, DOI 10.1016/S0378-5955(96)90017-9 HENRY KR, 1980, AUDIOLOGY, V19, P369 Hequembourg S, 2001, JARO, V2, P118 HULTCRANTZ M, 1995, ORL J OTO-RHINO-LARY, V57, P1 LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418 LUTMAN ME, 1991, ACTA OTOLARYNGOLOG S, V476, P239 Lyregaard P E, 1982, Scand Audiol Suppl, V15, P113 MATSCHKE RG, 1991, ACTA OTOLARYNGOL S S, V476, P114 McFadden SL, 2001, AUDIOLOGY, V40, P313 Ou HC, 2000, HEARING RES, V145, P123, DOI 10.1016/S0378-5955(00)00082-4 PROSEN CA, 2003, BEHAV ASSESSMENTS HE, V183 SCHARF B, 1978, SCAND AUDIOL S, V6, P81 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 SCHUKNECHT HF, 1994, OTOLARYNG HEAD NECK, V110, P530 Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 Usami S, 1997, BRAIN RES, V747, P147, DOI 10.1016/S0006-8993(96)01243-7 NR 18 TC 19 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2003 VL 183 IS 1-2 BP 29 EP 36 DI 10.1016/S0378-5955(03)00212-0 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 726DH UT WOS:000185582800004 PM 13679135 ER PT J AU Muller, M Klinke, R Arnold, W Oestreicher, E AF Muller, M Klinke, R Arnold, W Oestreicher, E TI Auditory nerve fibre responses to salicylate revisited SO HEARING RESEARCH LA English DT Article DE auditory nerve; tinnitus; salicylate; response properties ID RATE-INTENSITY FUNCTIONS; GUINEA-PIG; CHARACTERISTIC FREQUENCY; INFERIOR COLLICULUS; MONGOLIAN GERBIL; LEVEL FUNCTIONS; MOTOR PROTEIN; HAIR-CELLS; OTOTOXICITY; TINNITUS AB Ototoxicity of salicylate is accompanied by a temporary hearing loss and tinnitus and has therefore been used to study tinnitus in animal models. Salicylate induced elevated central auditory activity has been interpreted as a correlate of tinnitus. Whether this elevated activity in the central auditory system is due to an increased activity in the auditory nerve is still under discussion. To explore this issue, we recorded the activity of single auditory nerve fibres in anaesthetised gerbils following systemic injection of salicylic acid. Firstly, compound action potential (CAP) thresholds were determined at 5-0 min intervals. Fifteen to 30 min after 200 mg/kg salicylic acid, threshold loss developed in the high frequency range. At 2 It CAP threshold loss reached a plateau amounting to 15-20 dB above 16 kHz, 0-5 dB below 2 kHz. An almost immediate start of threshold loss was observed after 400 mg/kg salicylic acid. A plateau of threshold loss was reached after 1.5 It with values of 25 dB in the high, 5-10 dB in the low frequency range. Secondly, responses of single auditory nerve fibres were studied after administration of 200 mg/kg salicylic acid. Frequency tuning curves and rate intensity (RI) functions at characteristic frequency (CF) were measured. Two hours and more after application, single fibre thresholds were elevated by about 20 dB at all CFs. Sharpness of tuning was reduced. Mean spontaneous rate was significantly reduced at CFs below 5 kHz (mean: 44 vs 28 AP/s). At CFs above 5 kHz mean spontaneous rate remained unchanged. In RI functions no change in maximum discharge rate was observed. The altered response properties can be interpreted by the known effects of salicylate on the prestin mediated active process of the outer hair cells. The elevated activity in the central auditory system after salicylate intoxication thus cannot be caused by cochlear nerve hyperactivity. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Frankfurt, Dept Physiol 2, D-60590 Frankfurt, Germany. Tech Univ Munich, ENT Dept, D-81675 Munich, Germany. RP Muller, M (reprint author), Univ Tubingen, Dept Otorhinolaryngol, Tubingen Hearing Res Ctr, Elfriede Aalhorn Str 5, D-72076 Tubingen, Germany. CR BOETTCHER FA, 1991, AM J OTOLARYNG, V12, P33, DOI 10.1016/0196-0709(91)90071-M WallhausserFranke E, 1996, NEUROREPORT, V7, P1585, DOI 10.1097/00001756-199607080-00010 Cazals Y, 2000, PROG NEUROBIOL, V62, P583, DOI 10.1016/S0301-0082(00)00027-7 CAZALS Y, 1988, HEARING RES, V36, P89, DOI 10.1016/0378-5955(88)90139-6 CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O DAY RO, 1989, BRIT J CLIN PHARMACO, V28, P695 DIDIER A, 1993, HEARING RES, V69, P199, DOI 10.1016/0378-5955(93)90108-D Evans E F, 1982, Br J Audiol, V16, P101, DOI 10.3109/03005368209081454 Goldstein B, 1999, Int Tinnitus J, V5, P16 GUMMER AW, 1987, HEARING RES, V29, P63, DOI 10.1016/0378-5955(87)90206-1 Janssen T, 2000, J ACOUST SOC AM, V107, P1790, DOI 10.1121/1.428578 JASTREBOFF PJ, 1986, J ACOUST SOC AM, V80, P1384, DOI 10.1121/1.394391 JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 JASTREBOFF PJ, 1994, AM J OTOL, V15, P19 Kaltenbach J A, 2000, J Am Acad Audiol, V11, P125 KLINKE R, 1994, HEARING RES, V74, P238, DOI 10.1016/0378-5955(94)90192-9 KUMAGAI M, 1992, Hokkaido Journal of Medical Science, V67, P216 Muller M, 1999, HEARING RES, V131, P153, DOI 10.1016/S0378-5955(99)00029-5 MULLER M, 1991, HEARING RES, V57, P71, DOI 10.1016/0378-5955(91)90076-L Muller M, 1996, HEARING RES, V94, P148, DOI 10.1016/0378-5955(95)00230-8 Ochi K, 1996, HEARING RES, V95, P63, DOI 10.1016/0378-5955(96)00019-6 Ochi K, 2002, ANN OTO RHINOL LARYN, V111, P1092 OHLEMILLER KK, 1990, J COMP PHYSIOL A, V167, P329 OHLEMILLER KK, 1991, J ACOUST SOC AM, V90, P274, DOI 10.1121/1.401298 Oliver D, 2001, SCIENCE, V292, P2340, DOI 10.1126/science.1060939 ROSE JE, 1967, J NEUROPHYSIOL, V30, P769 SACHS MB, 1974, J ACOUST SOC AM, V56, P1835, DOI 10.1121/1.1903521 SAGER M, 1997, EMPFEHLUNGEN SCHMERZ SCHMIEDT RA, 1989, HEARING RES, V42, P23, DOI 10.1016/0378-5955(89)90115-9 SOKOLICH W G, 1973, Journal of the Acoustical Society of America, V54, P283, DOI 10.1121/1.1978024 STYPULKOWSKI PH, 1990, HEARING RES, V46, P113, DOI 10.1016/0378-5955(90)90144-E Wald A., 1947, SEQUENTIAL ANAL WallhausserFranke E, 1997, NEUROREPORT, V8, P725, DOI 10.1097/00001756-199702100-00029 WINTER IM, 1990, HEARING RES, V45, P191, DOI 10.1016/0378-5955(90)90120-E YATES GK, 1990, HEARING RES, V50, P145, DOI 10.1016/0378-5955(90)90041-M ZHENG J, 2000, NATURE, V405, P130 Zheng J, 2002, AUDIOL NEURO-OTOL, V7, P9, DOI 10.1159/000046855 NR 37 TC 40 Z9 44 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2003 VL 183 IS 1-2 BP 37 EP 43 DI 10.1016/S0378-5955(03)00217-X PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 726DH UT WOS:000185582800005 PM 13679136 ER PT J AU Prosen, CA Dore, DJ May, BJ AF Prosen, CA Dore, DJ May, BJ TI The functional age of hearing loss in a mouse model of presbycusis. I. Behavioral assessments SO HEARING RESEARCH LA English DT Article DE presbycusis; animal auditory psychophysics; signal detection in noise ID AUDITORY FILTER SHAPES; COCHLEAR NUCLEUS; C57BL/6 MICE; FREQUENCY-SELECTIVITY; TRANSGENIC MICE; C57-B16 MOUSE; MUS-MUSCULUS; NOISE; SPEECH; SENSITIVITY AB Presbycusis is a common form of hearing loss that progresses from high to low frequencies with advancing age. C57BL/6J mice experience a rapid progression of presbycusis-like hearing deficits and thus provide a convenient animal model for evaluating behavioral, physiological and anatomical correlates of the disorder. Previous studies of C57BL/6J mice have relied on short-term observations of age-matched subject groups to reconstruct a time course for auditory pathologies. Such statistical approaches are weakened by the variability of hearing thresholds in young mice and the inconsistent timing of degenerative effects in older mice. The present study was designed to resolve these ambiguities by tracking the hearing abilities of individual C5713L/W mice from age 16 weeks until the onset of hearing loss in specific listening conditions. Testing at frequencies of 8 and 16 kHz in quiet confirmed the high-to-low frequency progression that is characteristic of presbycusis. Often the hearing loss developed in two phases, one gradual and the other abrupt. Testing in noise revealed deficits that were first manifested as threshold instability and then an increased susceptibility to masking. These changes occurred before hearing loss in quiet. CBA/CaJ mice did not show significant loss during a similar period of observation. Our findings provide a well-ordered chronology for isolating the functional consequences of multiple cochlear pathologies that arise during the time course of presbycusis. This neurobehavioral assessment is termed the functional age of hearing loss. Neuroanatomical assessments of behaviorally characterized C57BL/6J mice are presented in the companion paper [Hear. Res. 183 (2003) 29-36]. (C) 2003 Elsevier B.V. All rights reserved. C1 No Michigan Univ, Dept Psychol, Marquette, MI 49855 USA. Johns Hopkins Univ, Dept Otolaryngol HNS, Baltimore, MD 21205 USA. RP Prosen, CA (reprint author), No Michigan Univ, Dept Psychol, 306 Gries Hall, Marquette, MI 49855 USA. CR BIRCH LM, 1968, J AUD RES, V8, P459 Cohn ES, 1999, CLIN GERIATR MED, V15, P145 EHRET G, 1975, J COMP PHYSIOL, V103, P329 EHRET G, 1976, BIOL CYBERN, V24, P35, DOI 10.1007/BF00365592 Evans EF, 1976, J PHYSIOL-LONDON, V256, P43 FAY RR, 1988, HEARING VERTEBRATES, P367 Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47 FLORENTINE M, 1980, J SPEECH HEAR RES, V23, P643 Francis HW, 2003, HEARING RES, V183, P29, DOI 10.1016/S0378-5955(03)00212-0 Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3 HEFFNER H, 1980, J ACOUST SOC AM, V68, P1585 HENRY KR, 1980, AUDIOLOGY, V19, P369 Henry KR, 2002, HEARING RES, V170, P107, DOI 10.1016/S0378-5955(02)00391-X Hequembourg S, 2001, JARO, V2, P118 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Leek MR, 1996, J ACOUST SOC AM, V100, P1796, DOI 10.1121/1.415999 LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418 LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X May BJ, 2002, HEARING RES, V171, P142, DOI 10.1016/S0378-5955(02)00495-1 MIKAELIA.DO, 1974, ACTA OTO-LARYNGOL, V77, P327, DOI 10.3109/00016487409124632 MIKAELIAN DO, 1979, LARYNGOSCOPE, V89, P1 Miller RL, 1999, J ACOUST SOC AM, V106, P2693, DOI 10.1121/1.428135 MIZUTA K, 1993, SCANNING MICROSCOPY, V7, P889 Moore BCJ, 1997, INTRO PSYCHOL HEARIN NIEMIEC AJ, 1995, METHODS COMP PSYCHOA, P65 Parham K, 1997, HEARING RES, V112, P216, DOI 10.1016/S0378-5955(97)00124-X PATTERSON RD, 1976, J ACOUST SOC AM, V59, P640, DOI 10.1121/1.380914 PATTERSON RD, 1982, J ACOUST SOC AM, V72, P1788, DOI 10.1121/1.388652 PETERS RW, 1992, J ACOUST SOC AM, V91, P256, DOI 10.1121/1.402769 Phillips SL, 2000, J SPEECH LANG HEAR R, V43, P217 PICHORAFULLER MK, 1995, J ACOUST SOC AM, V97, P593, DOI 10.1121/1.412282 Prosen CA, 2000, J NEUROSCI METH, V97, P59, DOI 10.1016/S0165-0270(00)00169-2 SMOORENBURG GF, 1992, J ACOUST SOC AM, V91, P421, DOI 10.1121/1.402729 Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 Trychin Samuel, 1997, Seminars in Hearing, V18, P77, DOI 10.1055/s-0028-1083014 TYLER RS, 1986, BASIC APPL ASPECTS N, P323 WALTON JP, 1995, HEARING RES, V88, P19, DOI 10.1016/0378-5955(95)00093-J WILLOTT JF, 1991, HEARING RES, V53, P78, DOI 10.1016/0378-5955(91)90215-U Willott JF, 1996, DEV BRAIN RES, V91, P218, DOI 10.1016/0165-3806(95)00188-3 Yoshida N, 2000, HEARING RES, V141, P97, DOI 10.1016/S0378-5955(99)00210-5 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 41 TC 22 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2003 VL 183 IS 1-2 BP 44 EP 56 DI 10.1016/S0378-5955(03)00211-9 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 726DH UT WOS:000185582800006 PM 13679137 ER PT J AU Zettel, ML O'Neill, WE Trang, TT Frisina, RD AF Zettel, ML O'Neill, WE Trang, TT Frisina, RD TI The effects of early bilateral deafening on calretinin expression in the dorsal cochlear nucleus of aged CBA/CaJ mice SO HEARING RESEARCH LA English DT Article DE calcium binding protein; presbycusis; auditory midbrain; neural plasticity ID AUDITORY BRAIN-STEM; INFERIOR COLLICULUS; CALBINDIN D-28K; MESSENGER-RNA; IN-VITRO; CORTICAL-NEURONS; GUINEA-PIG; CALCIUM; RAT; IMMUNOREACTIVITY AB The aim of this study was to test the hypothesis that calretinin (CR) levels in the aged mouse auditory brainstem depend upon hearing ability. Old animals with good hearing, and thus higher sound-evoked activity levels, were predicted to have higher levels of CR immunoreactivity than old animals with hearing loss. CR immunoreactivity was analyzed in the deep layer (layer III) of the dorsal cochlear nucleus (DCN) in CBA/CaJ mice that were bilaterally deafened at 3 months of age with kanamycin, and then aged until 24 months. This manipulation partially mimics the lack of sound-evoked auditory activity experienced by old C57BL/6J mice, who are deaf at 24 months of age (but show residual hearing at 15 months) and have lower levels of CR immunoreactivity than old CBA mice with normal hearing [Hear. Res. 158 (2001) 131]. Cell counts revealed that the density of CR+ cells in DCN layer III of the deafened CBA mice was statistically different from old intact CBA mice raised under identical conditions. Old deafened CBAs showed a decline of 47% in the mean density of CR+ cells compared to old hearing CBAs, thus supporting the hypothesis. Interestingly, while there tended to be fewer CR+ cells in the old deaf C57s as compared to young C57s and young and old CBAs with normal hearing, the difference was not statistically significant. It is possible that the residual hearing of C57 mice at 15 months may provide sufficient auditory input to maintain CR at levels higher than CBA mice that are deafened completely at 3 months of age, and are profoundly deaf for a much longer time (21 months). (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Rochester, Sch Med & Dent, Dept Surg, Div Otolaryngol, Rochester, NY 14642 USA. Univ Rochester, Sch Med & Dent, Dept Neurobiol & Anat, Rochester, NY 14642 USA. Univ Hosp Cleveland, Dept Otolaryngol Head & Neck Surg, Cleveland, OH 44106 USA. RP Zettel, ML (reprint author), Univ Rochester, Sch Med & Dent, Dept Surg, Div Otolaryngol, Rochester, NY 14642 USA. CR BATINI C, 1993, NEUROREPORT, V4, P927, DOI 10.1097/00001756-199307000-00022 Billing-Marczak K, 1999, POL J PHARMACOL, V51, P173 BRAUN AK, 1990, ASS RES OTOLARYNGOL, V13, P388 Caicedo A, 1997, J COMP NEUROL, V378, P1, DOI 10.1002/(SICI)1096-9861(19970203)378:1<1::AID-CNE1>3.0.CO;2-8 DURHAM D, 1989, HEARING RES, V43, P39, DOI 10.1016/0378-5955(89)90057-9 DUTAR P, 1991, EUR J NEUROSCI, V3, P839, DOI 10.1111/j.1460-9568.1991.tb00095.x Forster CR, 2000, J COMP NEUROL, V416, P173, DOI 10.1002/(SICI)1096-9861(20000110)416:2<173::AID-CNE4>3.0.CO;2-V Frisina D. R., 2001, FUNCTIONAL NEUROBIOL, P565 Frisina RD, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P339, DOI 10.1201/9781420038736.ch24 GARCIA MM, 1993, NEUROREPORT, V5, P65, DOI 10.1097/00001756-199310000-00016 GERMAN DC, 1992, ANN NY ACAD SCI, V648, P42, DOI 10.1111/j.1749-6632.1992.tb24523.x Hack N.J., 2000, J NEUROSCI, V20, P1 HUANG Q, 1995, NEUROSCIENCE, V65, P397, DOI 10.1016/0306-4522(94)00494-P Hugon J, 1996, BRAIN RES, V707, P288, DOI 10.1016/0006-8993(95)01393-8 IACOPINO A, 1992, MOL BRAIN RES, V13, P251, DOI 10.1016/0169-328X(92)90033-8 IACOPINO AM, 1990, P NATL ACAD SCI USA, V87, P4078, DOI 10.1073/pnas.87.11.4078 Idrizbegovic E, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P321 Idrizbegovic E, 1998, BRAIN RES, V800, P86, DOI 10.1016/S0006-8993(98)00504-6 KOERBER KC, 1966, EXP NEUROL, V16, P119, DOI 10.1016/0014-4886(66)90091-4 KUROBE N, 1992, J NEUROCHEM, V58, P128, DOI 10.1111/j.1471-4159.1992.tb09287.x LOWENSTEIN DH, 1991, NEURON, V6, P627, DOI 10.1016/0896-6273(91)90065-8 LUKAS W, 1994, NEUROSCIENCE, V61, P307, DOI 10.1016/0306-4522(94)90233-X MATTSON MP, 1991, NEURON, V6, P41, DOI 10.1016/0896-6273(91)90120-O MUGNAINI E, 1980, J COMP NEUROL, V191, P581, DOI 10.1002/cne.901910406 ONeill WE, 1997, HEARING RES, V112, P158, DOI 10.1016/S0378-5955(97)00116-0 RUBEL EW, 1990, J NEUROBIOL, V21, P169, DOI 10.1002/neu.480210112 RYUGO DK, 1985, J COMP NEUROL, V242, P381, DOI 10.1002/cne.902420307 SANS N, 1995, MOL BRAIN RES, V28, P1, DOI 10.1016/0169-328X(94)00181-D SANS N, 1995, MOL BRAIN RES, V30, P177, DOI 10.1016/0169-328X(95)00025-N SEFTEL MA, 1986, ASS RES OTOLARYNGOL, V9, P8 VARGHESE G, 2003, ASS RES OTOLARYNGOL, V26, P50 WEBSTER DB, 1982, AM J ANAT, V163, P103, DOI 10.1002/aja.1001630202 Willard FH, 1983, AUDITORY PSYCHOBIOLO, P201 WILLOTT JF, 1988, HEARING RES, V37, P15, DOI 10.1016/0378-5955(88)90074-3 WILLOTT JF, 1992, J COMP NEUROL, V321, P666, DOI 10.1002/cne.903210412 WILLOTT JF, 1994, HEARING RES, V74, P1, DOI 10.1016/0378-5955(94)90171-6 WINSKY L, 1995, J COMP NEUROL, V354, P564, DOI 10.1002/cne.903540407 Zettel ML, 2001, HEARING RES, V158, P131, DOI 10.1016/S0378-5955(01)00305-7 ZETTEL ML, 2001, ASS RES OTOLARYNGOL, P24 Zettel ML, 1997, J COMP NEUROL, V386, P92, DOI 10.1002/(SICI)1096-9861(19970915)386:1<92::AID-CNE9>3.0.CO;2-8 ZIRPEL L, 1995, J NEUROPHYSIOL, V74, P1355 NR 41 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2003 VL 183 IS 1-2 BP 57 EP 66 DI 10.1016/S0378-5955(03)00216-8 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 726DH UT WOS:000185582800007 PM 13679138 ER PT J AU Schaeffer, DF Reuss, MH Riemann, R Reuss, S AF Schaeffer, DF Reuss, MH Riemann, R Reuss, S TI A nitrergic projection from the superior olivary complex to the inferior colliculus of the rat SO HEARING RESEARCH LA English DT Article DE auditory brainstem; retrograde tracing; immunohistochemistry; nitric oxide ID NITRIC-OXIDE SYNTHASE; AUDITORY BRAIN-STEM; GUINEA-PIG; NEURONS; MODULATION; PATHWAY; SYSTEM AB The present study was conducted to test whether the ascending auditory projection from the superior olivary complex (SOC) of the brainstem to the inferior colliculus (IC) may use nitric oxide (NO) as a neuroactive compound. We identified olivo-collicular projection neurons in subnuclei of the SOC by retrograde neuronal tracing with Fluoro-Gold (FG) injected into the central nucleus of the IC. Sections containing retrograde labelled neurons were subjected to immunohistochemical incubation in an antiserum directed against the enzyme responsible for NO production in nerve cells, neuronal NO synthase (nNOS). The analysis showed that FG-containing neurons as well as nNOS-immunoreactive neurons were present in the lateral superior olive (LSO), superior paraolivary nucleus (SPO), ventral nucleus of the trapezoid body (VNTB), medial superior olive (MSO) and in dorsal and ventral periolivary regions to different amounts. However, only in the LSO, SPO and VNTB double-labelled neurons were found. They made up to less than 10% of all nNOS neurons in the SOC. Considering that only about 5% of the nNOS cells in the SOC are olivocochlear neurons [Riemann and Reuss, 1999], it is still open whether the majority of nitrergic neurons of the SOC project to other sites or whether they rather have intrinsic actions in providing NO to the SOC. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Mainz, Sch Med, Dept Anat, D-55099 Mainz, Germany. RP Reuss, S (reprint author), Univ Mainz, Sch Med, Dept Anat, Saarstr 19-21, D-55099 Mainz, Germany. CR Ahern GP, 2002, TRENDS NEUROSCI, V25, P510, DOI 10.1016/S0166-2236(02)02254-3 ALM P, 1993, ACTA PHYSIOL SCAND, V148, P421, DOI 10.1111/j.1748-1716.1993.tb09578.x DRUGA R, 1993, NEUROREPORT, V4, P999 ENDOH M, 1994, NEUROSCIENCE, V63, P679, DOI 10.1016/0306-4522(94)90514-2 Fessenden JD, 1999, J COMP NEUROL, V404, P52 GonzalezHernandez T, 1996, J COMP NEUROL, V372, P309, DOI 10.1002/(SICI)1096-9861(19960819)372:2<309::AID-CNE11>3.0.CO;2-E GRASSI C, 1995, NEUROSCI LETT, V196, P213, DOI 10.1016/0304-3940(95)11872-T Helfert RH, 1991, NEUROBIOLOGY HEARING, P1 Iannone M, 1996, ELECTROEN CLIN NEURO, V99, P57, DOI 10.1016/0921-884X(96)95704-5 Kelly JB, 1998, HEARING RES, V116, P43, DOI 10.1016/S0378-5955(97)00195-0 MCLEAN IW, 1974, J HISTOCHEM CYTOCHEM, V22, P1077 Oliver DL, 2000, MICROSC RES TECHNIQ, V51, P355, DOI 10.1002/1097-0029(20001115)51:4<355::AID-JEMT5>3.0.CO;2-J Paxinos G, 1986, RAT BRAIN STEREOTAXI, V2nd Reuss MH, 2001, J CHEM NEUROANAT, V21, P181, DOI 10.1016/S0891-0618(01)00091-6 Reuss S, 2000, MICROSC RES TECHNIQ, V51, P318, DOI 10.1002/1097-0029(20001115)51:4<318::AID-JEMT3>3.0.CO;2-Y Reuss S, 2000, MECH AGEING DEV, V112, P125, DOI 10.1016/S0047-6374(99)00082-2 Reuss S, 1998, NEUROREPORT, V9, P3643 Reuss S, 1999, CELL TISSUE RES, V297, P13, DOI 10.1007/s004410051329 Riemann R, 1999, HEARING RES, V135, P181, DOI 10.1016/S0378-5955(99)00113-6 SCHOFIELD BR, 1992, J COMP NEUROL, V317, P438, DOI 10.1002/cne.903170409 Schwartz I. R., 1992, MAMMALIAN AUDITORY P, P117 SOUTHAM E, 1993, NEUROPHARMACOLOGY, V32, P1267, DOI 10.1016/0028-3908(93)90021-T VINCENT SR, 1992, NEUROSCIENCE, V46, P755, DOI 10.1016/0306-4522(92)90184-4 Warr WB, 1996, HEARING RES, V93, P83, DOI 10.1016/0378-5955(95)00198-0 Webster William R., 1995, P797 NR 25 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2003 VL 183 IS 1-2 BP 67 EP 72 DI 10.1016/S0378-5955(03)00219-3 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 726DH UT WOS:000185582800008 PM 13679139 ER PT J AU Gross, J Rheinlander, C Fuchs, J Mazurek, B Machulik, A Andreeva, N Kietzmann, T AF Gross, J Rheinlander, C Fuchs, J Mazurek, B Machulik, A Andreeva, N Kietzmann, T TI Expression of hypoxia-inducible factor-1 in the cochlea of newborn rats SO HEARING RESEARCH LA English DT Article DE cochlea; hypoxia; hypoxia-inducible factor; mRNA ID HAIR CELL-DEATH; TRANSCRIPTION FACTORS; GENE-EXPRESSION; MESSENGER-RNA; ALPHA-SUBUNITS; GROWTH-FACTORS; NEONATAL RAT; GUINEA-PIGS; INNER-EAR; PROTEIN AB Hypoxia/ischemia is a major pathogenetic factor in the development of hearing loss. An important transcription factor involved in the signaling and adaptation to hypoxia/ischemia is the hypoxia-inducible factor-1 (HIF-1). To study HIF-1 expression we used an in vitro hypoxia model of explant and dissociated cultures of the stria vascularis, the organ of Corti with limbus and the modiolus from the cochlea of 3-5-day-old Wistar rats. Hypoxia differentially increased HIF-1 activity as measured by a reporter gene. Twenty-four hour hypoxia increased HIF-1 activity 14.1 +/- 3.5-fold in the modiolus, 9.4 +/- 3.0-fold in the organ of Corti with limbus, and 6.4 +/- 1.5-fold in the stria vascularis. The HIF-1alpha mRNA level was measured by quantitative reverse transcription polymerase chain reaction and showed a lower expression in the modiolus (1.3 +/- 0.2 pg/mug RNA) than in both the organ of Corti with limbus and the stria vascularis (2.7-3.2 +/- 1.3, P < 0.01). Hypoxia had no effect on the HIF-1 alpha mRNA levels. The region-specific regulation of HIF-1 expression on the transcriptional and posttranslational levels may expand the possibilities for adaptation of the cochlea to hypoxia. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Hosp Charite, Dept Otorhinolaryngol, Mol Biol Res Lab, D-14050 Berlin, Germany. Russian Acad Med Sci, Brain Res Inst, Moscow, Russia. Univ Gottingen, Inst Biochem & Mol Cellbiol, D-3400 Gottingen, Germany. RP Gross, J (reprint author), Univ Hosp Charite, Dept Otorhinolaryngol, Mol Biol Res Lab, Spandauer Damm 130,Bldg 31, D-14050 Berlin, Germany. CR Altschuler RA, 2002, AUDIOL NEURO-OTOL, V7, P152, DOI 10.1159/000058301 Bernaudin M, 2002, J BIOL CHEM, V277, P39728, DOI 10.1074/jbc.M204619200 BILTON RL, 2003, EUR J BIOCHEM, V270, P291 Bruick RK, 2002, SCIENCE, V295, P807, DOI 10.1126/science.1069825 Catron T, 2001, BIOCHEM BIOPH RES CO, V282, P602, DOI 10.1006/bbrc.2001.4613 Cheng AG, 1999, BRAIN RES, V850, P234, DOI 10.1016/S0006-8993(99)01983-6 Dong Z, 2001, J BIOL CHEM, V276, P18702, DOI 10.1074/jbc.M011774200 Ebert BL, 1998, MOL CELL BIOL, V18, P4089 Epstein ACR, 2001, CELL, V107, P43, DOI 10.1016/S0092-8674(01)00507-4 Freiman RN, 2003, CELL, V112, P11, DOI 10.1016/S0092-8674(02)01278-3 Gao J, 1999, J NEURAL TRANSM, V106, P111, DOI 10.1007/s007020050143 Gorlach A, 2000, BBA-GENE STRUCT EXPR, V1493, P125, DOI 10.1016/S0167-4781(00)00172-X Gross J, 1998, J NEUROSCI METH, V82, P187, DOI 10.1016/S0165-0270(98)00048-X Halterman MW, 1999, EXP NEUROL, V159, P65, DOI 10.1006/exnr.1999.7160 Hess A, 2002, BRAIN RES, V956, P236, DOI 10.1016/S0006-8993(02)03545-X Holley MC, 2002, BRIT MED BULL, V63, P157, DOI 10.1093/bmb/63.1.157 Kietzmann T, 2001, BIOCHEM J, V354, P531, DOI 10.1042/0264-6021:3540531 Kietzmann T, 2003, BLOOD, V101, P907, DOI 10.1182/blood-2002-06-1693 Kress S, 1998, J CANCER RES CLIN, V124, P315, DOI 10.1007/s004320050175 Lando D, 2002, GENE DEV, V16, P1466, DOI 10.1101/gad.991402 LENOIR M, 1995, HEARING RES, V88, P169, DOI 10.1016/0378-5955(95)00110-P Lowenheim H, 1999, HEARING RES, V128, P16, DOI 10.1016/S0378-5955(98)00181-6 Madan A, 2002, MOL GENET METAB, V75, P244, DOI 10.1006/mgme.2001.3293 Malgrange B, 1998, NEUROCHEM RES, V23, P1133, DOI 10.1023/A:1020724506337 Michel O, 2001, HEARING RES, V155, P175, DOI 10.1016/S0378-5955(01)00262-3 Michiels C, 2002, FREE RADICAL BIO MED, V33, P1231, DOI 10.1016/S0891-5849(02)01045-6 Minet E, 1999, BIOCHEM BIOPH RES CO, V261, P534, DOI 10.1006/bbrc.1999.0995 Moritz W, 2002, FASEB J, V16, P745, DOI 10.1096/fj.01-0403fje Oehme F, 2002, BIOCHEM BIOPH RES CO, V296, P343, DOI 10.1016/S0006-291X(02)00862-8 Piret JP, 2002, BIOCHEM PHARMACOL, V64, P889, DOI 10.1016/S0006-2952(02)01155-3 Rajakumar A, 2000, BIOL REPROD, V63, P559, DOI 10.1095/biolreprod63.2.559 Salnikow K, 2002, MOL CELL BIOL, V22, P1734, DOI 10.1128/MCB.22.6.1734-1741.2002 Sanchez-Elsner T, 2001, J BIOL CHEM, V276, P38527, DOI 10.1074/jbc.M104536200 Sawada S, 2001, J OTOLARYNGOL, V30, P106, DOI 10.2310/7070.2001.20818 Semenza GL, 1999, ANNU REV CELL DEV BI, V15, P551, DOI 10.1146/annurev.cellbio.15.1.551 Semenza Gregg L., 2001, Pediatric Research, V49, P614, DOI 10.1203/00006450-200105000-00002 Semenza GL, 2000, J APPL PHYSIOL, V88, P1474 Shizuki K, 2002, NEUROSCI LETT, V320, P73, DOI 10.1016/S0304-3940(02)00059-9 Slepecky N, 1996, STRUCTURE MAMMALIAN, P44 Stiehl DP, 2002, FEBS LETT, V512, P157, DOI 10.1016/S0014-5793(02)02247-0 Stroka DM, 2001, FASEB J, V15, P2445 Talks KL, 2000, AM J PATHOL, V157, P411, DOI 10.1016/S0002-9440(10)64554-3 Taniguchi M, 2002, NEUROREPORT, V13, P2459, DOI 10.1097/01.wnr.0000048006.96487.cb Tian H, 1998, GENE DEV, V12, P3320, DOI 10.1101/gad.12.21.3320 Treins C, 2002, J BIOL CHEM, V277, P27975, DOI 10.1074/jbc.M204152200 WANG GL, 1995, J BIOL CHEM, V270, P1230 Wenger RH, 2002, FASEB J, V16, DOI 10.1096/fj.01-0944rev Wiesener MS, 1998, BLOOD, V92, P2260 Zheng JL, 1997, J NEUROSCI, V17, P216 NR 49 TC 19 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2003 VL 183 IS 1-2 BP 73 EP 83 DI 10.1016/S0378-5955(03)00222-3 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 726DH UT WOS:000185582800009 PM 13679140 ER PT J AU Kwun, YS Yeo, SW Ahn, YH Lim, SW Jung, JY Kim, WY Sands, JM Kim, J AF Kwun, YS Yeo, SW Ahn, YH Lim, SW Jung, JY Kim, WY Sands, JM Kim, J TI Immunohistochemical localization of urea transporters A and B in the rat cochlea SO HEARING RESEARCH LA English DT Article DE renal urea transporter; erythrocyte urea transporter; rat cochlea; immunohistochemistry ID MEDULLARY COLLECTING DUCTS; INNER-EAR FLUIDS; MOLECULAR CHARACTERIZATION; STRIA VASCULARIS; KIDNEY; CLONING; PROTEIN; CELLS; EXPRESSION; PERILYMPH AB Urea is present in the inner ear, and when it is administered, induces rapid changes in the volume and osmolality of the inner ear fluid. However, the regulating mechanisms are unknown. Two groups of urea transporters (UTs), the renal urea transporter (UTA) and the erythrocyte urea transporter (UT-B) have been cloned recently. The aims of the current study were to investigate the cellular localization of UTs in the cochlea of male Sprague-Dawley rats by immunohistochemistry. Both UT-A1 and UT-B were expressed in the inner and outer pillar cells, inner and outer hair cells, Boettcher's cells, and Deiters' cells in the organ of Corti. Immunoreactivity for UT-A3 was localized only in the mesothelial cells underlying the basilar membrane. In the stria vascularis, UT-A1 was expressed only in the marginal cells, whereas UT-B was expressed only in the basal cells. In the spiral ganglion, most cells had strong UT-A1 immunoreactivity whereas UT-B was not expressed. In the spiral limbus, UT-B was expressed in the interdental cells whereas UT-A was not expressed. In the crista ampullaris, UT-A1 was expressed in the dark cells, and UT-B expressed in the apical membrane of supporting cells in the neuroepithelium. The distribution of UT-A and UT-B in the inner ear suggests that the cells that surround the inner ear fluids may be involved in urea transport and thus play an important role in fluid homeostasis in the inner ear. The expression of UT-A and UT-B in the hair cells raises the possibility that UTs may be involved in volume regulation in these cells and mediate hair cell turgor. (C) 2003 Elsevier B.V. All rights reserved. C1 Catholic Univ Korea, Coll Med, Dept Anat, Seoul 137701, South Korea. Catholic Univ Korea, Coll Med, Dept Otolaryngol Head & Neck Surg, Seoul 137701, South Korea. Yonsei Univ, Coll Med, Seoul, South Korea. Emory Univ, Sch Med, Dept Med, Div Renal, Atlanta, GA 30322 USA. RP Kim, J (reprint author), Catholic Univ Korea, Coll Med, Dept Anat, Banpo Dong 505, Seoul 137701, South Korea. CR ANGELBORG C, 1977, Scandinavian Audiology, V6, P143, DOI 10.3109/01050397709043115 Bagnasco SM, 2003, AM J PHYSIOL-RENAL, V284, pF3, DOI 10.1152/ajprenal.00260.2002 Bagnasco SM, 2000, CELL PHYSIOL BIOCHEM, V10, P379, DOI 10.1159/000016377 Berger UV, 1998, ANAT EMBRYOL, V197, P405, DOI 10.1007/s004290050152 Bradford AD, 2001, AM J PHYSIOL-RENAL, V281, pF133 Carlborg B I, 1983, Ann Otol Rhinol Laryngol Suppl, V104, P1 Chertoff M. E., 1994, AM J PHYSIOL, V266, P467 Couriaud C, 1996, BBA-GENE STRUCT EXPR, V1309, P197, DOI 10.1016/S0167-4781(96)00172-8 DALLOS P, 1996, COCHLEA, P44 Duchesne R, 2001, CIRC RES, V89, P139, DOI 10.1161/hh1401.093293 DUVALL AJ, 1980, ANN OTO RHINOL LARYN, V89, P335 Fenton RA, 2000, AM J PHYSIOL-CELL PH, V279, pC1425 Fenton RA, 1999, CYTOGENET CELL GENET, V87, P95, DOI 10.1159/000015401 Fenton RA, 2002, AM J PHYSIOL-RENAL, V282, pF630, DOI 10.1152/ajprenal.00264.2001 Fenton RA, 2002, AM J PHYSIOL-RENAL, V283, pF817, DOI 10.1152/ajprenal.00263.2001 GALLUCCI E, 1971, ARCH INT PHYS BIOCH, V79, P881, DOI 10.3109/13813457109104847 JOHNSTONE BM, 1981, MENIERES DISEASE PAT, P44 JUHN SK, 1979, ARCH OTOLARYNGOL, V105, P538 Kakehata S, 2000, Auris Nasus Larynx, V27, P349, DOI 10.1016/S0385-8146(00)00081-X Karakashian A, 1999, J AM SOC NEPHROL, V10, P230 Klein JD, 1999, J AM SOC NEPHROL, V10, P2076 LUCIANO L, 1995, HEARING RES, V85, P199, DOI 10.1016/0378-5955(95)00047-8 Marcus DC, 2001, AM J PHYSIOL-CELL PH, V281, pC282 Nakayama Y, 2001, BBA-GENE STRUCT EXPR, V1518, P19, DOI 10.1016/S0167-4781(00)00311-0 Naruse M, 1997, J AM SOC NEPHROL, V8, P517 Nielsen S, 1996, P NATL ACAD SCI USA, V93, P5495, DOI 10.1073/pnas.93.11.5495 Olives B, 1996, FEBS LETT, V386, P156, DOI 10.1016/0014-5793(96)00425-5 OLIVES B, 1994, J BIOL CHEM, V269, P31649 OLIVES B, 1995, J BIOL CHEM, V270, P15607 Peters TA, 2001, EUR ARCH OTO-RHINO-L, V258, P67, DOI 10.1007/s004050000304 Sands JM, 1999, J AM SOC NEPHROL, V10, P635 Sands JM, 1997, AM J PHYSIOL-RENAL, V273, pF321 Sands JM, 2002, J AM SOC NEPHROL, V13, P2795, DOI 10.1097/01.ASN.0000035084.94743.7C Shayakul C, 2001, AM J PHYSIOL-RENAL, V280, pF487 Shayakul C, 1996, J CLIN INVEST, V98, P2580, DOI 10.1172/JCI119077 SMITH CP, 1995, J CLIN INVEST, V96, P1556, DOI 10.1172/JCI118194 STERKERS O, 1988, PHYSIOL REV, V68, P1083 STERKERS O, 1987, AM J PHYSIOL, V253, pF50 STERKERS O, 1982, AM J PHYSIOL, V243, pF173 Terris JM, 2001, AM J PHYSIOL-RENAL, V280, pF325 Timmer RT, 2001, AM J PHYSIOL-CELL PH, V281, pC1318 Trinh-Trang-Tan MM, 1998, EXP NEPHROL, V6, P471 Tsukaguchi H, 1997, J CLIN INVEST, V99, P1506, DOI 10.1172/JCI119313 WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 WRIGHT CG, 1988, ANN OTO RHINOL LARYN, V97, P67 YAZAWA Y, 1985, ORL J OTO-RHINO-LARY, V47, P281 YOSHIDA M, 1985, AM J OTOLARYNG, V6, P297, DOI 10.1016/S0196-0709(85)80058-2 Yoshihara T, 1999, ACTA OTO-LARYNGOL, V119, P336 Zhang C, 2002, AM J PHYSIOL-RENAL, V282, pF85 NR 49 TC 10 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2003 VL 183 IS 1-2 BP 84 EP 96 DI 10.1016/S0378-5955(03)00218-1 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 726DH UT WOS:000185582800010 PM 13679141 ER PT J AU Sueta, T Paki, B Everett, AW Robertson, D AF Sueta, T Paki, B Everett, AW Robertson, D TI Purinergic receptors in auditory neurotransmission SO HEARING RESEARCH LA English DT Article DE ATP; ATP analogs; purinergic receptors; cochlea; receptor potentials; auditory nerve fibers; inner hair cell; synapse; endocochlear potential; neurotransmission ID 5'-TRIPHOSPHATE-GATED ION-CHANNEL; GUINEA-PIG COCHLEA; RATE-INTENSITY FUNCTIONS; SPIRAL GANGLION NEURONS; DEVELOPING RAT COCHLEA; P2X RECEPTORS; INNER-EAR; HAIR-CELLS; ADENOSINE 5'-TRIPHOSPHATE; PHARMACOLOGICAL EVIDENCE AB The effects of ATP (adenosine 5' triphosphate) analogs on gross cochlear potentials and single primary afferent discharge properties were studied by intracochlear perfusion in anesthetized guinea pigs. ATP-gamma-S was most potent, with betagammamethylene-ATP and Bz-ATP being significantly less effective. These data are consistent with the notion that purinergic receptors activated by scala tympani perfusion contain subunits of the P2X(2) variant. The relative ineffectiveness of Bz-ATP (a P2X(7) agonist) suggests that while this variant has been reported to be expressed in the cochlea, it may not play a major functional role under normal conditions. Changes in the threshold of the gross DC receptor potential (summating potential, SP) and the compound action potential (CAP) were consistent with a combination of effects on both early and final stages of the transduction process, as reported by previous workers. Effects of ATP-gamma-S on single-neuron spontaneous firing rates varied according to the initial spontaneous rate of each primary afferent. Effects on single-neuron tuning curves were consistent with an action mainly on the outer hair cell transduction with betagammamethylene-ATP (elevation of tuning curve tips), but with ATP-gamma-S changes in sensitivity across the full extent of the tuning curve indicated an additional action on inner hair cell-afferent neurotransmission. In agreement with previous reports on ATP-gamma-S, it was found that all ATP analogs produced significant increases in the DC potential in scala media (endocochlear potential, EP). However, the relationship between changes in EP (a major component of the driving force on ions through hair cells) and the alterations in gross and single unit measures of cochlear activity was not clear. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Western Australia, Sch Biomed & Chem Sci, Auditory Lab, Crawley, WA 6009, Australia. Fukuoka Univ, Sch Med, Dept Otorhinolaryngol, Fukuoka 81401, Japan. RP Robertson, D (reprint author), Univ Western Australia, Sch Biomed & Chem Sci, Auditory Lab, 35 Stirling Highway, Crawley, WA 6009, Australia. CR Brandle U, 1999, NEUROSCI LETT, V273, P105, DOI 10.1016/S0304-3940(99)00648-5 CHEATHAM MA, 1984, HEARING RES, V16, P189, DOI 10.1016/0378-5955(84)90009-1 Chen C, 2000, J NEUROPHYSIOL, V83, P1502 Chen C, 1998, BRIT J PHARMACOL, V124, P337, DOI 10.1038/sj.bjp.0701848 Chen C, 1998, HEARING RES, V118, P47, DOI 10.1016/S0378-5955(98)00019-7 Dunn PM, 2001, PROG NEUROBIOL, V65, P107, DOI 10.1016/S0301-0082(01)00005-3 HALLCHER LM, 1980, J BIOL CHEM, V255, P896 Housley GD, 1998, MOL NEUROBIOL, V16, P21, DOI 10.1007/BF02740601 Housley GD, 1998, HEARING RES, V119, P1, DOI 10.1016/S0378-5955(97)00206-2 Housley GD, 1999, J NEUROSCI, V19, P8377 Housley GD, 1998, J COMP NEUROL, V393, P403 Housley GD, 2000, CLIN EXP PHARMACOL P, V27, P575, DOI 10.1046/j.1440-1681.2000.03314.x Jagger DJ, 2000, J NEUROSCI METH, V104, P77, DOI 10.1016/S0165-0270(00)00322-8 Jarlebark LE, 2000, J COMP NEUROL, V421, P289, DOI 10.1002/(SICI)1096-9861(20000605)421:3<289::AID-CNE1>3.0.CO;2-0 JOHNSTONE JR, 1979, J ACOUST SOC AM, V65, P254, DOI 10.1121/1.382244 King M, 1998, NEUROREPORT, V9, P2467, DOI 10.1097/00001756-199808030-00008 KUJAWA SG, 1994, HEARING RES, V76, P87, DOI 10.1016/0378-5955(94)90091-4 KUJAWA SG, 1994, HEARING RES, V78, P181, DOI 10.1016/0378-5955(94)90024-8 Lambrecht G, 2000, N-S ARCH PHARMACOL, V362, P340, DOI 10.1007/s002100000312 Le Prell CG, 2001, PHYSL EAR, P575 LIU J, 1995, AUDIT NEUROSCI, V1, P331 LOWE M, 1995, HEARING RES, V83, P133, DOI 10.1016/0378-5955(94)00198-Y Marcus DC, 1998, HEARING RES, V115, P82, DOI 10.1016/S0378-5955(97)00180-9 MOCKETT BG, 1994, J NEUROSCI, V14, P6992 MULLER M, 1991, HEARING RES, V57, P63, DOI 10.1016/0378-5955(91)90075-K Munoz DJB, 1999, HEARING RES, V138, P56, DOI 10.1016/S0378-5955(99)00151-3 Nikolic P, 2003, AUDIOL NEURO-OTOL, V8, P28, DOI 10.1159/000067891 Nikolic P, 2001, DEV BRAIN RES, V126, P173, DOI 10.1016/S0165-3806(00)00149-8 PATUZZI RB, 1989, HEARING RES, V39, P177, DOI 10.1016/0378-5955(89)90089-0 Robertson D, 2002, AUDIOL NEURO-OTOL, V7, P62, DOI 10.1159/000046866 ROBERTSON D, 1980, J ACOUST SOC AM, V67, P1295, DOI 10.1121/1.384182 ROBERTSON D, 1984, HEARING RES, V15, P113, DOI 10.1016/0378-5955(84)90042-X Ruel J, 1999, J PHYSIOL-LONDON, V518, P667, DOI 10.1111/j.1469-7793.1999.0667p.x Salih SG, 2002, NEUROPHARMACOLOGY, V42, P386, DOI 10.1016/S0028-3908(01)00184-8 Salih SG, 1999, NEUROREPORT, V10, P2579, DOI 10.1097/00001756-199908200-00026 Salih SG, 1998, NEUROREPORT, V9, P279, DOI 10.1097/00001756-199801260-00019 Skellett RA, 1997, HEARING RES, V111, P42, DOI 10.1016/S0378-5955(97)00093-2 Sugasawa M, 1996, J PHYSIOL-LONDON, V491, P707 Valentin A, 1997, NEUROSCIENCE, V78, P385, DOI 10.1016/S0306-4522(96)00618-5 Vlajkovic SM, 1998, HEARING RES, V117, P71, DOI 10.1016/S0378-5955(98)00004-5 WINTER IM, 1990, HEARING RES, V45, P191, DOI 10.1016/0378-5955(90)90120-E YATES GK, 1990, HEARING RES, V45, P203, DOI 10.1016/0378-5955(90)90121-5 Zhang Y., 1999, CRYST ENG, V2, P1, DOI 10.1016/S1463-0184(99)00002-7 ZIMMERMANN H, 1994, TRENDS NEUROSCI, V17, P420, DOI 10.1016/0166-2236(94)90016-7 NR 44 TC 15 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2003 VL 183 IS 1-2 BP 97 EP 108 DI 10.1016/S0378-5955(03)00221-1 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 726DH UT WOS:000185582800011 PM 13679142 ER PT J AU Valentine, PA Eggermont, JJ AF Valentine, PA Eggermont, JJ TI Intracortical microstimulation induced changes in spectral and temporal response properties in cat auditory cortex SO HEARING RESEARCH LA English DT Article DE cat; auditory cortex; multi-unit; burst firing; cross-correlation; frequency tuning ID PRIMARY SOMATOSENSORY CORTEX; LONG-TERM POTENTIATION; VISUAL-CORTEX; NEURAL INTERACTION; CORTICAL FIELDS; FREQUENCY MAP; CORTICOFUGAL MODULATION; ELECTRICAL-STIMULATION; HORIZONTAL CONNECTIONS; NEURONAL RESPONSES AB Intracortical micro stimulation (ICMS), consisting of a 40 ms burst (rate 300 Hz) of 10 muA pulses, repetitively administered once per second, for a total duration of I h, induced cortical reorganization in the primary auditory cortical field of the anesthetized cat. Multiple single-unit activity was simultaneously recorded from three to nine microelectrodes. Spiking activity was recorded from the same units prior to and following the application of ICMS in conjunction with tone pips at the characteristic frequency (CF) of the stimulus electrode. ICMS produced a significant increase in the mean firing rate, and in the occurrence of burst activity. There was an increase in the cross-correlation coefficient (R) for unit pairs recorded from sites distant from the ICMS site, and a decrease in R for unit pairs that were recorded at the stimulation site. ICMS induced a shift in the CF, dependent on the difference between the baseline CF and the ICMS-paired tone pip frequency. ICMS also resulted in broader tuning curves, increased driven peak tiring rate and reduced response latency. This suggests a lasting reduction in inhibition in a small region surrounding the ICMS site that allows expansion of the frequency range normally represented in the vicinity of the stimulation electrode. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Calgary, Dept Psychol, Dept Physiol & Biophys, Neurosci Res Grp, Calgary, AB T2N 1N4, Canada. RP Eggermont, JJ (reprint author), Univ Calgary, Dept Psychol, Dept Physiol & Biophys, Neurosci Res Grp, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. CR Abeles M., 1991, CORTICONICS NEURAL C ARTOLA A, 1987, NATURE, V330, P649, DOI 10.1038/330649a0 BAIR W, 1994, J NEUROSCI, V14, P2870 Brody CD, 1999, NEURAL COMPUT, V11, P1537, DOI 10.1162/089976699300016133 CALFORD MB, 1993, NEUROSCIENCE, V55, P953, DOI 10.1016/0306-4522(93)90310-C CATTANEO A, 1981, PROC R SOC SER B-BIO, V212, P279, DOI 10.1098/rspb.1981.0039 CHAGNACAMITAI Y, 1989, J NEUROPHYSIOL, V62, P1149 Chowdhury SA, 2000, J NEUROPHYSIOL, V83, P1856 DARIANSMITH C, 1995, J NEUROSCI, V15, P1631 DINSE HR, 1993, NEUROREPORT, V5, P173, DOI 10.1097/00001756-199311180-00020 EDELINE JM, 1993, BEHAV NEUROSCI, V107, P539 EGGERMONT JJ, 1991, HEARING RES, V56, P153, DOI 10.1016/0378-5955(91)90165-6 Eggermont JJ, 2000, HEARING RES, V142, P89, DOI 10.1016/S0378-5955(00)00024-1 Eggermont JJ, 2000, J NEUROPHYSIOL, V83, P2708 EGGERMONT JJ, 1983, BIOL CYBERN, V47, P103, DOI 10.1007/BF00337084 EGGERMONT JJ, 1994, J NEUROPHYSIOL, V71, P246 EGGERMONT JJ, 1993, J NEUROPHYSIOL, V69, P1292 Eggermont JJ, 1998, J NEUROPHYSIOL, V80, P2743 EGGERMONT JJ, 1992, J NEUROPHYSIOL, V68, P1216 EGGERMONT JJ, 1996, AUDIT NEUROSCI, V2, P76 Eggermont JJ, 1996, AUDIT NEUROSCI, V2, P309 Eggermont JJ, 1999, J NEUROPHYSIOL, V81, P2570 Eggermont JJ, 2002, J NEUROPHYSIOL, V87, P305 Eggermont JJ, 1990, CORRELATIVE BRAIN EGGERMONT JJ, 1995, NEUROREPORT, V6, P2125, DOI 10.1097/00001756-199511000-00007 Eggermont JJ, 1996, NEUROREPORT, V7, P753, DOI 10.1097/00001756-199602290-00018 ENGEL AK, 1991, P NATL ACAD SCI USA, V88, P6048, DOI 10.1073/pnas.88.14.6048 Fisher N. I., 1995, STAT ANAL CIRCULAR D Florence SL, 1998, SCIENCE, V282, P1117, DOI 10.1126/science.282.5391.1117 Fox K, 1996, P NATL ACAD SCI USA, V93, P5584, DOI 10.1073/pnas.93.11.5584 Godde B, 2002, P NATL ACAD SCI USA, V99, P6352, DOI 10.1073/pnas.082407499 Harrison RV, 1998, EXP BRAIN RES, V123, P449, DOI 10.1007/s002210050589 HESS G, 1994, J NEUROPHYSIOL, V71, P2543 Heusler P, 2000, EXP BRAIN RES, V135, P300, DOI 10.1007/s002210000530 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 JACOBS KM, 1991, SCIENCE, V251, P944, DOI 10.1126/science.2000496 KOBAYASHI T, 1993, NEUROREPORT, V4, P735, DOI 10.1097/00001756-199306000-00034 Leake PA, 2000, HEARING RES, V147, P221, DOI 10.1016/S0378-5955(00)00133-7 LEGENDY CR, 1985, J NEUROPHYSIOL, V53, P926 LOWEL S, 1992, SCIENCE, V255, P209, DOI 10.1126/science.1372754 Ma XF, 2001, J NEUROPHYSIOL, V85, P1078 Maldonado PE, 1996, EXP BRAIN RES, V112, P431 Maldonado PE, 1996, EXP BRAIN RES, V112, P420 MCCORMICK DA, 1990, NEUROSCIENCE, V39, P103, DOI 10.1016/0306-4522(90)90225-S MERZENICH MM, 1975, J NEUROPHYSIOL, V38, P231 NUDO RJ, 1990, SOMATOSENS MOT RES, V7, P463 Nudo RJ, 1996, J NEUROSCI, V16, P785 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 RAUSCHECKER JP, 1987, NATURE, V326, P183, DOI 10.1038/326183a0 RECANZONE GH, 1993, J NEUROSCI, V13, P87 RECANZONE G H, 1992, Cerebral Cortex, V2, P181, DOI 10.1093/cercor/2.3.181 Rema V, 1998, J NEUROSCI, V18, P10196 RONNER SF, 1983, EXP NEUROL, V81, P376, DOI 10.1016/0014-4886(83)90270-4 Sakai M, 2001, P NATL ACAD SCI USA, V98, P3507, DOI 10.1073/pnas.061021698 Schreiner CE, 1996, J NEUROPHYSIOL, V75, P1283 Schreiner C E, 1997, Acta Otolaryngol Suppl, V532, P54 Sil'kis I G, 1995, Neurosci Behav Physiol, V25, P322, DOI 10.1007/BF02360045 SNOW PJ, 1988, SOMATOSENS MOT RES, V5, P349 SPENGLER F, 1994, NEUROREPORT, V5, P949, DOI 10.1097/00001756-199404000-00024 Talwar SK, 2001, J NEUROPHYSIOL, V86, P1555 TSO DY, 1991, NEURONAL COOPERATIVI, P133 Valentine PA, 2001, HEARING RES, V154, P146, DOI 10.1016/S0378-5955(01)00241-6 Xiao ZJ, 2002, P NATL ACAD SCI USA, V99, P15743, DOI 10.1073/pnas.242606699 Yan W, 1998, NAT NEUROSCI, V1, P54, DOI 10.1038/255 Zhang LI, 2001, NAT NEUROSCI, V4, P1123, DOI 10.1038/nn745 Zhang YF, 1997, NATURE, V387, P900 NR 66 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2003 VL 183 IS 1-2 BP 109 EP 125 DI 10.1016/S0378-5955(03)00220-X PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 726DH UT WOS:000185582800012 PM 13679143 ER PT J AU Shaikh, AG Finlayson, PG AF Shaikh, AG Finlayson, PG TI Hyperpolarization-activated (I-h) conductances affect brainstem auditory neuron excitability SO HEARING RESEARCH LA English DT Article DE hyperpolarization-activated cyclic-nucleotide-sensitive non-selective cation channels; auditory; superior olivary complex; ZD7288; excitability; sound ID SUPERIOR OLIVARY COMPLEX; COCHLEAR NUCLEUS; CATION CHANNELS; CURRENTS CONTRIBUTE; MEMBRANE-PROPERTIES; INWARD RECTIFIER; GANGLION NEURONS; OCTOPUS CELLS; S-SEGMENT; RAT AB Blockade of the hyperpolarization-activated cyclic-nucleotide-gated mixed-cationic conductance (I-h) by ZD7288 markedly reduces excitability of neurons in the superior olivary complex (SOC), in vivo. Following pressure ejection application of 100 muM ZD7288, extracellular recorded single unit responses of 47/47 SOC neurons to monaural or binaural pure tone best frequency (BF) stimuli (30 dB above threshold) decreased by 49.7 +/- 19%, and background activity decreased by 56.3 +/- 18.1%. Pressure ejection of the vehicle did not affect excitability. The dose- and time-dependence of ZD7288 (10-100 muM) effects are consistent with specific blockade of I-h currents. SOC neuron responses to pressure-ejected glutamate were also decreased following application of 100 muM ZD7288 by 76.7 +/- 28.0%, which suggests a predominant direct effect of ZD7288 on auditory cell excitability. The considerable variability in the magnitude of ZD7288 effects between cells was only partially accounted for by greater effects on neurons with BFs greater than 16 kHz. Therefore, I-h channels significantly contribute to auditory brainstem neuron excitability, affecting their response level to acoustic stimuli. The variability in the ZD7288 reduction in excitability and its variation with the BF of units could be an indication of regulation and plasticity in neuronal encoding of sounds. (C) 2003 Elsevier B.V. All rights reserved. C1 Wayne State Univ, Dept Otolaryngol, Detroit, MI 48201 USA. RP Finlayson, PG (reprint author), Wayne State Univ, Dept Otolaryngol, 550 E Canfield Ave,Rm 327, Detroit, MI 48201 USA. CR ADAM T, 1999, EXP BRAIN RES, V12, P489 Adam TJ, 2001, J NEUROPHYSIOL, V86, P922 AKASU T, 1993, PFLUG ARCH EUR J PHY, V425, P109, DOI 10.1007/BF00374510 Bal R, 2000, J NEUROPHYSIOL, V84, P806 BANKS M, 1993, J NEUROPHYSIOL, V71, P119 Bartlett EL, 1999, J NEUROPHYSIOL, V81, P1999 BOBKER DH, 1989, NEURON, V2, P1535, DOI 10.1016/0896-6273(89)90041-X BOUDREAU JC, 1968, J NEUROPHYSIOL, V31, P442 CAIRD D, 1983, EXP BRAIN RES, V52, P385 Chabbert C, 2001, NEUROREPORT, V12, P2701, DOI 10.1097/00001756-200108280-00022 Chen M, 2001, ENVIRON FORENSICS, V2, P117, DOI 10.1006/enfo.2001.0050 Cuttle MF, 2001, J PHYSIOL-LONDON, V534, P733, DOI 10.1111/j.1469-7793.2001.00733.x FINLAYSON PG, 1995, HEARING RES, V87, P84, DOI 10.1016/0378-5955(95)00081-E FINLAYSON PG, 1993, NEUROBIOL AGING, V14, P127, DOI 10.1016/0197-4580(93)90088-S Finlayson PG, 1997, HEARING RES, V103, P1, DOI 10.1016/S0378-5955(96)00158-X Franz O, 2000, EUR J NEUROSCI, V12, P2685, DOI 10.1046/j.1460-9568.2000.00151.x Fu XW, 1997, J NEUROPHYSIOL, V78, P2235 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 Golding NL, 1999, J NEUROSCI, V19, P2897 Harris NC, 1995, J NEUROPHYSIOL, V74, P2366 HENDERSON Z, 1991, J COMP NEUROL, V314, P147, DOI 10.1002/cne.903140114 HU B, 1995, J PHYSIOL-LONDON, V483, P167 KOTAK VC, 1995, J NEUROPHYSIOL, V74, P1611 Ludwig A, 1998, NATURE, V393, P587 Maccaferri G, 1996, J PHYSIOL-LONDON, V497, P119 MANIS PB, 1990, J NEUROSCI, V10, P2338 MCCORMICK DA, 1990, J PHYSIOL-LONDON, V431, P291 Mo ZL, 1997, J NEUROPHYSIOL, V78, P3019 Monteggia LM, 2000, MOL BRAIN RES, V81, P129, DOI 10.1016/S0169-328X(00)00155-8 PAPE HC, 1989, NATURE, V340, P715, DOI 10.1038/340715a0 Paxinos G., 1982, RAT BRAIN STEREOTAXI PEDARZANI P, 1993, NEURON, V11, P1023, DOI 10.1016/0896-6273(93)90216-E Robinson RB, 2003, ANNU REV PHYSIOL, V65, P453, DOI 10.1146/annurev.physiol.65.092101.142734 Saitow F, 2000, J NEUROPHYSIOL, V84, P2026 SCHWARZ DWF, 1998, HEARING RES, V114, P127 Seutin V, 2001, NEUROREPORT, V12, P255, DOI 10.1097/00001756-200102120-00015 SHAIKH A, 2002, ASS RES OTOLARYNGOL, V25, P113 Shin KS, 2001, J GEN PHYSIOL, V117, P91, DOI 10.1085/jgp.117.2.91 SMITH PH, 1995, J NEUROPHYSIOL, V73, P1653 Tennigkeit F, 1996, J NEUROPHYSIOL, V76, P3597 TOKIMASA T, 1990, J PHYSIOL-LONDON, V420, P409 TSUCHITA.C, 1969, J ACOUST SOC AM, V46, P979, DOI 10.1121/1.1911818 Wang Z, 1997, J NEUROPHYSIOL, V78, P177 Wellner-Kienitz MC, 1998, NEUROSCIENCE, V87, P109, DOI 10.1016/S0306-4522(98)00159-6 WOMBLE MD, 1993, J NEUROPHYSIOL, V70, P2056 Wynne B, 1996, Audiol Neurootol, V1, P54 Yao WP, 1998, MICROSC RES TECHNIQ, V41, P270, DOI 10.1002/(SICI)1097-0029(19980501)41:3<270::AID-JEMT10>3.0.CO;2-L NR 47 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2003 VL 183 IS 1-2 BP 126 EP 136 DI 10.1016/S0378-5955(03)00224-7 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 726DH UT WOS:000185582800013 PM 13679144 ER PT J AU Norena, AJ Eggermont, JJ AF Norena, AJ Eggermont, JJ TI Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus SO HEARING RESEARCH LA English DT Article DE noise trauma; spontaneous activity; cross-correlation; burst; Poisson surprise method ID DORSAL COCHLEAR NUCLEUS; PRIMARY AUDITORY-CORTEX; RECEPTIVE-FIELD EXPANSION; INTENSE SOUND EXPOSURE; NOISE-INDUCED TINNITUS; INDUCED HEARING-LOSS; GUINEA-PIG COCHLEA; HAIR CELL LOSS; INFERIOR COLLICULUS; RESPONSE PROPERTIES AB Changes in spontaneous activity, recorded over 15-min periods before, immediately after and within hours after an acute acoustic trauma, were studied in primary auditory cortex of ketamine-anesthetized cats. We focused on the spontaneous firing rate (SFR), the peak cross-correlation coefficient (rho) and burst-firing activity. Multi-units (MUs) were grouped according to characteristic frequency (CF): MUs with a CF below the trauma-tone frequency (TF) were labeled as Be, those with a CF within I octave above the TF were labeled as Ab1 and those with a CF more than I octave above the TF were labeled as Ab2. Immediately after the trauma, the SFR was not significantly changed. The percentage of time that neurons were bursting, the mean burst duration, the number of spikes per burst and the mean inter-spike interval in a burst were enhanced. rho was locally increased in the Ab1-Ab2 and Ab2-Ab2 groups. A few hours post trauma, the SFR was increased in the Be and Ab2 groups, whereas burst-firing returned to pre-exposure levels. Moreover, rho was elevated in the Be-Ab2, Ab1-Ab2 and Ab2-Ab2 groups; this increase was significantly correlated to the changes in SFR. The results are discussed in the context of a neural correlate of tinnitus. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Calgary, Dept Psychol, Neurosci Res Grp, Calgary, AB T2N 1N4, Canada. Univ Calgary, Dept Physiol & Biophys, Neurosci Res Grp, Calgary, AB T2N 1N4, Canada. RP Eggermont, JJ (reprint author), Univ Calgary, Dept Psychol, Neurosci Res Grp, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. CR Abeles M., 1991, CORTICONICS NEURAL C Abeles M., 1982, LOCAL CORTICAL CIRCU Baguley DM, 2002, BRIT MED BULL, V63, P195, DOI 10.1093/bmb/63.1.195 Brody CD, 1999, NEURAL COMPUT, V11, P1537, DOI 10.1162/089976699300016133 Brosch M, 1999, EUR J NEUROSCI, V11, P3517, DOI 10.1046/j.1460-9568.1999.00770.x Brozoski TJ, 2002, J NEUROSCI, V22, P2383 CALFORD MB, 1993, NEUROSCIENCE, V55, P953, DOI 10.1016/0306-4522(93)90310-C Cazals Y, 1998, J NEUROPHYSIOL, V80, P2113 CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O CHERMAK GD, 1987, SCAND AUDIOL, V16, P67, DOI 10.3109/01050398709042158 Cook R. D, 1998, REGRESSION GRAPHICS DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 DAS A, 1995, J NEUROPHYSIOL, V74, P779 deCharms RC, 1996, NATURE, V381, P610, DOI 10.1038/381610a0 DINGLEDINE R, 1986, J PHYSIOL-LONDON, V380, P175 DINSE HR, 1993, NEUROREPORT, V5, P173, DOI 10.1097/00001756-199311180-00020 DOETSCH GS, 1998, NEUROREPORT, V9, P29 Eggermont J. J., 1984, J LARYNGOL OTOL S, V9, P31 Eggermont JJ, 1990, CORRELATIVE BRAIN TH Eggermont JJ, 2000, HEARING RES, V142, P89, DOI 10.1016/S0378-5955(00)00024-1 Eggermont JJ, 1997, NEUROREPORT, V8, P2709, DOI 10.1097/00001756-199708180-00014 EGGERMONT JJ, 1990, HEARING RES, V48, P111, DOI 10.1016/0378-5955(90)90202-Z EGGERMONT JJ, 1993, J NEUROPHYSIOL, V69, P1292 EGGERMONT JJ, 1992, J NEUROPHYSIOL, V68, P1216 Eggermont JJ, 1998, HEARING RES, V117, P149, DOI 10.1016/S0378-5955(98)00008-2 EGGERMONT JJ, 1996, AUDIT NEUROSCI, V2, P76 Eggermont JJ, 1996, NEUROREPORT, V7, P753, DOI 10.1097/00001756-199602290-00018 EGGERMONT JJ, 2000, HDB TINNITUS, P85 Engel AK, 2001, NAT REV NEUROSCI, V2, P704, DOI 10.1038/35094565 ENGSTROM B, 1983, HEARING RES, V12, P251, DOI 10.1016/0378-5955(83)90110-7 Gerken GM, 1996, HEARING RES, V97, P75 Guitton MJ, 2003, J NEUROSCI, V23, P3944 House J W, 1981, Ciba Found Symp, V85, P204 JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 JASTREBOFF PJ, 1994, AM J OTOL, V15, P19 JASTREBOFF PJ, 1988, LARYNGOSCOPE, V98, P280 Jeanmonod D, 1996, BRAIN, V119, P363, DOI 10.1093/brain/119.2.363 JONES EG, 1990, J EXP BIOL, V153, P155 KALTENBACH JA, 1992, HEARING RES, V59, P213, DOI 10.1016/0378-5955(92)90118-7 Kaltenbach J A, 2000, J Am Acad Audiol, V11, P125 Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6 Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5 Kaltenbach JA, 2002, J NEUROPHYSIOL, V88, P699, DOI 10.1152/jn00893.2001 Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57 Kiang NY, 1970, SENSORINEURAL HEARIN, P241 Kimura M, 1999, HEARING RES, V135, P146, DOI 10.1016/S0378-5955(99)00104-5 LEGENDY CR, 1985, J NEUROPHYSIOL, V53, P926 Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 LIBERMAN MC, 1987, HEARING RES, V26, P45, DOI 10.1016/0378-5955(87)90035-9 LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8 LOEB M, 1967, J ACOUST SOC AM, V42, P453, DOI 10.1121/1.1910600 MARTIN WH, 1993, LARYNGOSCOPE, V103, P600 Metternich FU, 1999, LARYNGO RHINO OTOL, V78, P614 Milbrandt JC, 2000, HEARING RES, V147, P251, DOI 10.1016/S0378-5955(00)00135-0 MOLLER AR, 1984, ANN OTO RHINOL LARYN, V93, P39 Mrena R, 2002, AUDIOL NEURO-OTOL, V7, P122, DOI 10.1159/000057660 Muhlnickel W, 1998, P NATL ACAD SCI USA, V95, P10340, DOI 10.1073/pnas.95.17.10340 Norena A, 2002, INT J AUDIOL, V41, P202, DOI 10.3109/14992020209077184 Norena A, 2000, HEARING RES, V149, P24, DOI 10.1016/S0378-5955(00)00158-1 Norena A, 2002, HEARING RES, V166, P202, DOI 10.1016/S0378-5955(02)00329-5 Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156 NORENA AJ, J NEUROPHYSIOL NORENA AJ, 2003, J ASS RES OTOLARYNGO Ochi K, 1997, HEARING RES, V105, P105, DOI 10.1016/S0378-5955(96)00201-8 Ochi K, 1996, HEARING RES, V95, P63, DOI 10.1016/0378-5955(96)00019-6 Pantev C, 1999, BRAIN RES, V842, P192, DOI 10.1016/S0006-8993(99)01835-1 PETTET MW, 1992, P NATL ACAD SCI USA, V89, P8366, DOI 10.1073/pnas.89.17.8366 Phillips Dennis P., 1992, Cerebral Cortex, V2, P425, DOI 10.1093/cercor/2.5.425 Puel JL, 2002, AUDIOL NEURO-OTOL, V7, P49, DOI 10.1159/000046864 Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3 Qiu CX, 2000, HEARING RES, V139, P153, DOI 10.1016/S0378-5955(99)00171-9 Rachel JD, 2002, HEARING RES, V164, P206, DOI 10.1016/S0378-5955(02)00287-3 Rajan R, 1998, NAT NEUROSCI, V1, P138, DOI 10.1038/388 Rajan R, 2001, CEREB CORTEX, V11, P171, DOI 10.1093/cercor/11.2.171 RAMACHANDRAN VS, 1992, NEUROREPORT, V3, P583, DOI 10.1097/00001756-199207000-00009 Ramachandran VS, 1998, BRAIN, V121, P1603, DOI 10.1093/brain/121.9.1603 Rauschecker JP, 1999, TRENDS NEUROSCI, V22, P74, DOI 10.1016/S0166-2236(98)01303-4 ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X ROBERTSON D, 1982, HEARING RES, V7, P55, DOI 10.1016/0378-5955(82)90081-8 SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 SALVI RJ, 1978, EXP BRAIN RES, V32, P301 Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1 Stankiewicz C, 2000, Otolaryngol Pol, V54, P775 Swadlow HA, 2001, NAT NEUROSCI, V4, P402, DOI 10.1038/86054 Temmel AFP, 1999, WIEN KLIN WOCHENSCHR, V111, P891 TONNDORF J, 1987, HEARING RES, V28, P271, DOI 10.1016/0378-5955(87)90054-2 VANHEUSDEN E, 1983, HEARING RES, V11, P295, DOI 10.1016/0378-5955(83)90064-3 VOLCHAN E, 1995, VISION RES, V35, P1, DOI 10.1016/0042-6989(94)E0083-W Wang J, 2000, NEUROREPORT, V11, P1137, DOI 10.1097/00001756-200004070-00045 Wang J, 1996, J NEUROPHYSIOL, V75, P171 Wang JA, 2002, BRAIN RES, V944, P219, DOI 10.1016/S0006-8993(02)02926-8 Zacharek MA, 2002, HEARING RES, V172, P137, DOI 10.1016/S0378-5955(02)00575-0 Zhang JS, 1998, NEUROSCI LETT, V250, P197, DOI 10.1016/S0304-3940(98)00482-0 Zhu Z, 2002, J NEUROSCI METH, V115, P45, DOI 10.1016/S0165-0270(01)00529-5 NR 95 TC 174 Z9 179 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2003 VL 183 IS 1-2 BP 137 EP 153 DI 10.1016/S0378-5955(03)00225-9 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 726DH UT WOS:000185582800014 PM 13679145 ER PT J AU Mazurek, B Winter, E Fuchs, J Haupt, H Gross, J AF Mazurek, B Winter, E Fuchs, J Haupt, H Gross, J TI Susceptibility of the hair cells of the newborn rat cochlea to hypoxia and ischemia SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 39th Meeting of the Inner-Ear-Biology-Society CY SEP 08-10, 2002 CL LIEGE, BELGIUM SP Inner Ear Biol Soc DE hypoxia; ischemia; hair cell damage; rat; in vitro model ID INDUCED HEARING-LOSS; LOUD SOUND EXPOSURE; GUINEA-PIG COCHLEA; INNER-EAR; DIFFERENTIAL VULNERABILITY; ACOUSTIC EXPOSURE; ENERGY-METABOLISM; SENSORY CELLS; BLOOD-FLOW; CA-ATPASE AB Hypoxia and ischemia are thought to be important pathogenetic factors in bringing about hearing loss. In order to study the effect of these determinants on the loss of inner and outer hair cells (IHCs/OHCs), we used an in vitro hypoxia and ischemia model of the newborn rat cochlea. The specimens of the organ of Corti were exposed either to hypoxia (10-20 mm Hg) or to normoxic glucose deprivation or to both (ischemia) in artificial perilymph for different exposure periods. The number of IHCs and OHCs was counted and the hair cell loss was compared to controls. Normoxic aglycemia did not cause significant hair cell loss as compared to controls. Hypoxia and ischemia led to hair cell loss in a dose-dependent manner, with the loss in the ischemia groups found to be markedly higher than that in the hypoxia groups. Hypoxia resulted in a mean loss of 8% OHC and of 14% IHC after an 8-h exposure. Ischemia increased the loss to 19% OHC and 39% IHC after the same exposure period of 8 h. Our findings suggest that IHCs are more susceptible to hypoxia/ischemia than OHCs. (C) 2003 Elsevier B.V. All rights reserved. C1 Humboldt Univ, Charite Hosp, Dept Otorhinolaryngol, Mol Biol Res Lab, D-14050 Berlin, Germany. RP Gross, J (reprint author), Humboldt Univ, Charite Hosp, Dept Otorhinolaryngol, Mol Biol Res Lab, Spandauer Damm 130,Bld 31, D-14050 Berlin, Germany. CR Apicella S, 1997, NEUROSCIENCE, V79, P1145, DOI 10.1016/S0306-4522(97)00035-3 Beneyto M, 1997, J BRAIN RES, V38, P341 Carricondo F, 2002, ADV OTO-RHINO-LARYNG, V59, P91 Chen GD, 1999, HEARING RES, V138, P181, DOI 10.1016/S0378-5955(99)00157-4 Cheng AG, 1999, BRAIN RES, V850, P234, DOI 10.1016/S0006-8993(99)01983-6 CHOI DW, 1988, TRENDS NEUROSCI, V11, P465, DOI 10.1016/0166-2236(88)90200-7 DANCER A, 2001, NOISE INDUCED HEARIN, P269 Edge RM, 1998, HEARING RES, V124, P1, DOI 10.1016/S0378-5955(98)00090-2 EHRENBERGER K, 1991, HEARING RES, V52, P73, DOI 10.1016/0378-5955(91)90188-F Eybalin M, 1996, HEARING RES, V101, P93, DOI 10.1016/S0378-5955(96)00136-0 FADEN AI, 1989, SCIENCE, V244, P798, DOI 10.1126/science.2567056 Falbe-Hansen J, 1967, Acta Otolaryngol, V63, P340, DOI 10.3109/00016486709128768 Fechter LD, 2002, TOXICOL SCI, V66, P131, DOI 10.1093/toxsci/66.1.131 Fredelius L, 2001, ORL J OTO-RHINO-LARY, V63, P12, DOI 10.1159/000055700 Furuta H, 1998, HEARING RES, V123, P10, DOI 10.1016/S0378-5955(98)00091-4 HAUPT H, 1991, EUR ARCH OTO-RHINO-L, V248, P413, DOI 10.1007/BF01463566 HAWKINS JE, 1971, ANN OTO RHINOL LARYN, V80, P903 HILDING DA, 1977, ACTA OTO-LARYNGOL, V84, P12, DOI 10.3109/00016487709123938 Hsu CJ, 2000, HEARING RES, V142, P203, DOI 10.1016/S0378-5955(00)00020-4 HYDE GE, 1995, OTOLARYNG HEAD NECK, V113, P530, DOI 10.1177/019459989511300503 Jager W, 2000, EXP BRAIN RES, V134, P426, DOI 10.1007/s002210000470 Lamm K, 1996, Audiol Neurootol, V1, P148 Lipton P, 1999, PHYSIOL REV, V79, P1431 Lowenheim H, 1999, HEARING RES, V128, P16, DOI 10.1016/S0378-5955(98)00181-6 MAASS B, 1976, ARCH OTO-RHINO-LARYN, V214, P109, DOI 10.1007/BF00453607 Meyer J, 2000, HNO, V48, P383 Niitsu Y, 1999, MOL BRAIN RES, V74, P26, DOI 10.1016/S0169-328X(99)00245-4 Orita Y, 2002, OTOL NEUROTOL, V23, P34, DOI 10.1097/00129492-200201000-00009 PERLMAN H B, 1962, Acta Otolaryngol, V54, P99, DOI 10.3109/00016486209126927 Pujol R, 1990, Acta Otolaryngol Suppl, V476, P32 Puschner B, 1997, HEARING RES, V114, P102, DOI 10.1016/S0378-5955(97)00163-9 Rose CR, 1998, J NEUROSCI, V18, P3554 ROTHMAN SM, 1986, ANN NEUROL, V19, P105, DOI 10.1002/ana.410190202 SAUNDERS JC, 1985, J ACOUST SOC AM, V78, P833, DOI 10.1121/1.392915 Sawada S, 2001, J OTOLARYNGOL, V30, P106, DOI 10.2310/7070.2001.20818 SCHEIBE F, 1993, EUR ARCH OTO-RHINO-L, V250, P281 SCHEIBE F, 1992, HEARING RES, V63, P19, DOI 10.1016/0378-5955(92)90069-Y Scheibe F, 1997, EUR ARCH OTO-RHINO-L, V254, P91, DOI 10.1007/BF01526187 SCHULTE BA, 1993, HEARING RES, V65, P262, DOI 10.1016/0378-5955(93)90219-Q Seidman MD, 1999, ANN NY ACAD SCI, V884, P226, DOI 10.1111/j.1749-6632.1999.tb08644.x Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 SHIRANE M, 1987, SCANNING MICROSCOPY, V1, P1175 Silver IA, 1997, NEUROSCIENCE, V78, P589, DOI 10.1016/S0306-4522(96)00600-8 Staecker H, 2001, ACTA OTO-LARYNGOL, V121, P666, DOI 10.1080/00016480152583593 THALMANN I, 1970, ANN OTO RHINOL LARYN, V79, P12 THORNE PR, 1989, ACTA OTO-LARYNGOL, V107, P71, DOI 10.3109/00016488909127481 THORNE PR, 1987, HEARING RES, V27, P1, DOI 10.1016/0378-5955(87)90021-9 Watanabe F, 2001, NEUROSCIENCE, V102, P639, DOI 10.1016/S0306-4522(00)00510-8 WIELOCH T, 1985, SCIENCE, V230, P681, DOI 10.1126/science.2996146 Yamamoto S, 1997, J NEUROPHYSIOL, V78, P903 NR 50 TC 26 Z9 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2003 VL 182 IS 1-2 BP 2 EP 8 DI 10.1016/S0378-5955(03)00134-5 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 720KR UT WOS:000185260400002 PM 12948595 ER PT J AU Takeda, T Sawada, S Takeda, S Kitano, H Suzuki, M Kakigi, A Takeuchi, S AF Takeda, T Sawada, S Takeda, S Kitano, H Suzuki, M Kakigi, A Takeuchi, S TI The effects of V-2 antagonist (OPC-31260) on endolymphatic hydrops SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 39th Meeting of the Inner-Ear-Biology-Society CY SEP 08-10, 2002 CL LIEGE, BELGIUM SP Inner Ear Biol Soc DE vasopressin type-2 antagonist; OPC-31260; aquaporin-2; endolymphatic hydrops; Meniere's disease; vasopressin ID RAT INNER-EAR; AQUAPORIN WATER CHANNELS; SUBARACHNOID HEMORRHAGE; CEREBRAL EDEMA; VASOPRESSIN; EXPRESSION; COCHLEA; SAC; LOCALIZATION; PREGNANCY AB In the present study, two experiments were performed to investigate the influence of OPC-31260 on experimentally induced endolymphatic hydrops in guinea pigs and the regulation of aquaporin-2 (AQP2) mRNA expression in the rat inner ear. In morphological studies, the increases in the ratios of the length of Reissner's membrane (IR-L) and the cross-sectional area of the scala media (IR-S) were quantitatively assessed among normal guinea pigs (normal ears) and three groups with hydropic ears: hydropic ears with no infusion (non-infusion hydropic ears), hydropic ears with an infusion of physiological saline into the scala tympani (saline-infused hydropic cars) and hydropic ears with infusion of 0.3% OPC-31260 into the scala tympani (OPC-infused hydropic ears). IR-Ls in the experimental groups were markedly larger than in the normal ear group, but there was no significant difference among the groups of non-infusion hydropic cars, saline-infused hydropic ears and OPC-infused hydropic ears. The IR-Ss of non-infusion hydropic ears and saline-infused hydropic ears (48.8-49.3%) were statistically different from that of normal ears (6.5%) (Dunnet multiple comparison test, P < 0.01). However, IR-S of the OPC-infused hydropic ears (- 14.8%) was significantly smaller than those of non-infusion hydropic ears and saline-infused hydropic ears (one-way ANOVA, P < 0.0 1). In the quantitative polymerase chain reaction study, a comparison of the ratio of AQP2 and beta-actin mRNA (M-AQP2/Mbeta-actin) was made between water-injected and OPC-31260-injected rats. An intravenous injection of OPC-31260 resulted in a significant decrease in M-AQP2/ Mbeta-actin both in the cochlea and in the endolymphatic sac (t-test, P < 0.001). These results indicate that water homeostasis in the inner ear is regulated via the vasopressin-AQP2 system, and that the vasopressin type-2 antagonist OPC-31260 is a promising drug in the treatment of Meniere's disease. (C) 2003 Elsevier B.V. All rights reserved. C1 Kochi Med Sch, Dept Otolaryngol, Kochi 78328505, Japan. Tottori Univ, Fac Med, Dept Otolaryngol, Tottori, Japan. Shiga Univ Med Sci, Dept Otolaryngol, Shiga, Japan. RP Takeda, T (reprint author), Kochi Med Sch, Dept Otolaryngol, Kochi 78328505, Japan. CR Beitz E, 1999, HEARING RES, V132, P76, DOI 10.1016/S0378-5955(99)00036-2 Christensen BM, 2000, AM J PHYSIOL-RENAL, V278, pF29 Fukushima M, 2002, ACTA OTO-LARYNGOL, V122, P600, DOI 10.1080/000164802320396268 Furuta H, 1998, HEARING RES, V117, P140, DOI 10.1016/S0378-5955(98)00009-4 Huang DL, 2002, HEARING RES, V165, P85, DOI 10.1016/S0378-5955(02)00288-5 King LS, 1996, ANNU REV PHYSIOL, V58, P619, DOI 10.1146/annurev.physiol.58.1.619 Kitano H, 2001, ACTA HISTOCHEM CYTOC, V34, P229, DOI 10.1267/ahc.34.229 Kitano H, 1999, NEUROREPORT, V10, P1205, DOI 10.1097/00001756-199904260-00009 Kitano H, 1997, NEUROREPORT, V8, P2289, DOI 10.1097/00001756-199707070-00038 Kumagami H, 1998, PFLUG ARCH EUR J PHY, V436, P970, DOI 10.1007/s004240050731 Laszlo FA, 1999, EUR J PHARMACOL, V364, P115, DOI 10.1016/S0014-2999(98)00836-X LASZLO FA, 1995, ACTA NEUROCHIR, V133, P122, DOI 10.1007/BF01420062 LEE KS, 1992, ACTA OTO-LARYNGOL, V112, P658, DOI 10.3109/00016489209137456 Marples D, 1998, AM J PHYSIOL-RENAL, V275, pF400 Merves M, 2000, LARYNGOSCOPE, V110, P1925, DOI 10.1097/00005537-200011000-00030 Mhatre AN, 2002, HEARING RES, V170, P59, DOI 10.1016/S0378-5955(02)00452-5 Mhatre AN, 1999, BIOCHEM BIOPH RES CO, V264, P157, DOI 10.1006/bbrc.1999.1323 Minami Y, 1998, Acta Otolaryngol Suppl, V533, P19 Nielsen S, 2002, PHYSIOL REV, V82, P205 Sawada S, 2002, NEUROREPORT, V13, P1127, DOI 10.1097/00001756-200207020-00011 Schrier RW, 2001, J ROY SOC MED, V94, P265 Schrier RW, 1998, P ASSOC AM PHYSICIAN, V110, P407 SHIMIZU K, 1995, KIDNEY INT, V48, P220, DOI 10.1038/ki.1995.287 Stankovic KM, 1995, AM J PHYSIOL-CELL PH, V269, pC1450 STERKERS O, 1988, PHYSIOL REV, V68, P1083 STERKERS O, 1984, AM J PHYSIOL, V247, pF602 Takeda T, 1993, EQUILIB RES S, V9, P139 Takeda T, 2000, HEARING RES, V140, P1, DOI 10.1016/S0378-5955(99)00180-X Takeda T, 1995, Acta Otolaryngol Suppl, V519, P219 Takumi Y, 1998, EUR J NEUROSCI, V10, P3584, DOI 10.1046/j.1460-9568.1998.00360.x Thibonnier M, 2001, ANNU REV PHARMACOL, V41, P175, DOI 10.1146/annurev.pharmtox.41.1.175 Yamakawa K, 1938, J OTORHINOLARYNGOL S, V4, P2310 YAMAMURA Y, 1992, BRIT J PHARMACOL, V105, P787 NR 33 TC 34 Z9 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2003 VL 182 IS 1-2 BP 9 EP 18 DI 10.1016/S0378-5955(03)00135-7 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 720KR UT WOS:000185260400003 PM 12948596 ER PT J AU Stenberg, AE Simonoska, R Stygar, D Sahlin, L Hultcrantz, M AF Stenberg, AE Simonoska, R Stygar, D Sahlin, L Hultcrantz, M TI Effect of estrogen and antiestrogens on the estrogen receptor content in the cochlea of ovariectomized rats SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 39th Meeting of the Inner-Ear-Biology-Society CY SEP 08-10, 2002 CL LIEGE, BELGIUM SP Inner Ear Biol Soc DE estrogen; antiestrogen; estrogen receptor; inner ear; hearing; ovariectomized rat ID INNER-EAR; HYPOPHYSECTOMIZED RATS; ESTRADIOL SULFAMATE; TURNERS-SYNDROME; MOUSE; BETA; ALPHA; SEX; AGE AB Older women in the normal population tend to develop less severe hearing loss as compared to males in the same age. In Turner syndrome (45,X), estrogen deficiency is one of the predominant problems. Ear and hearing problems are common among these patients. Does estrogen have an impact on the hearing organ? Twenty-four rats were ovariectornized and treated with vehicle (controls), estradiol or selective estrogen receptor modulators such as tamoxifen and IC1182780, in order to study the effects on the estrogen receptor levels and distribution in the inner ear. The cochleas were stained immunohistochemically using antibodies against estrogen receptor alpha and beta. No major difference in estrogen receptor content in the cochleas was observed among groups. There was however a potential down regulation of estrogen receptor a in the marginal cells of stria, vascularis in the rats that were substituted with IC1182780 (pure antiestrogen) as compared to those given estradiol or tamoxifen. When investigating the tissues with light microscopy no change in inner ear anatomy could be observed. (C) 2003 Elsevier B.V. All rights reserved. C1 Karolinska Hosp, Dept Otorhinolaryngol, S-17176 Stockholm, Sweden. Karolinska Hosp, Dept Woman & Child Hlth, Div Reprod Endocrinol, S-17176 Stockholm, Sweden. RP Stenberg, AE (reprint author), Karolinska Hosp, Dept Otorhinolaryngol, S-17176 Stockholm, Sweden. CR ANDREWS JC, 1992, ARCH OTOLARYNGOL, V118, P74 Erichsen S, 2001, HEARING RES, V160, P37, DOI 10.1016/S0378-5955(01)00317-3 Ferrary E, 1996, ACTA OTO-LARYNGOL, V116, P244, DOI 10.3109/00016489609137833 Garcia-Segura LM, 2001, PROG NEUROBIOL, V63, P29, DOI 10.1016/S0301-0082(00)00025-3 Goldfien A, 1991, BASIC CLIN ENDOCRINO, P447 HORNER KC, 1991, HEARING RES, V52, P147, DOI 10.1016/0378-5955(91)90194-E Hultcrantz M, 2000, HEARING RES, V143, P182, DOI 10.1016/S0378-5955(00)00042-3 HULTCRANTZ M, 1994, HEARING RES, V76, P127, DOI 10.1016/0378-5955(94)90094-9 JERGER J, 1980, ARCH OTOLARYNGOL, V106, P387 Jonsson R, 1998, SCAND AUDIOL, V27, P81, DOI 10.1080/010503998420324 Kuiper GGJM, 1998, FRONT NEUROENDOCRIN, V19, P253, DOI 10.1006/frne.1998.0170 KUMAGAMI H, 1994, ACTA OTO-LARYNGOL, V114, P48, DOI 10.3109/00016489409126015 Lee JH, 2001, HEARING RES, V158, P123, DOI 10.1016/S0378-5955(01)00316-1 MALFETANO JH, 1990, GYNECOL ONCOL, V39, P82, DOI 10.1016/0090-8258(90)90404-9 Sahlin L, 2002, J STEROID BIOCHEM, V80, P457, DOI 10.1016/S0960-0760(02)00031-6 Sahlin L, 2000, J STEROID BIOCHEM, V74, P99, DOI 10.1016/S0960-0760(00)00091-1 Stenberg AE, 1999, HEARING RES, V136, P29, DOI 10.1016/S0378-5955(99)00098-2 Stenberg AE, 2001, HEARING RES, V157, P87, DOI 10.1016/S0378-5955(01)00280-5 Stenberg AE, 2002, HEARING RES, V166, P1, DOI 10.1016/S0378-5955(02)00310-6 WAKELING AE, 1991, CANCER RES, V51, P3867 Wang L, 2001, P NATL ACAD SCI USA, V98, P2792, DOI 10.1073/pnas.041617498 NR 21 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2003 VL 182 IS 1-2 BP 19 EP 23 DI 10.1016/S0378-5955(03)00136-9 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 720KR UT WOS:000185260400004 PM 12948597 ER PT J AU Salt, AN Kellner, C Hale, S AF Salt, AN Kellner, C Hale, S TI Contamination of perilymph sampled from the basal cochlear turn with cerebrospinal fluid SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 39th Meeting of the Inner-Ear-Biology-Society CY SEP 08-10, 2002 CL LIEGE, BELGIUM SP Inner Ear Biol Soc DE round window; drug delivery; cochlear aqueduct ID ROUND WINDOW MEMBRANE; SUSTAINED-RELEASE VEHICLE; GUINEA-PIG COCHLEA; INNER-EAR; MENIERES-DISEASE; GENTAMICIN; PRESSURE; OTOTOXICITY; ENDOLYMPH; DELIVERY AB Our understanding of the perilymph kinetics of drugs depends largely on data obtained by the analysis of perilymph samples. Although a number of studies have demonstrated qualitatively that perilymph samples may be contaminated by cerebrospinal fluid (CSF), and some investigations adopt specific methods to minimize CSF contamination of their samples, many other studies fail to consider the influence of this potential artifact on their measurements. In the present study we have attempted to quantify the degree of CSF contamination of perilymph samples taken from the basal turn of the guinea pig cochlea using the ionic marker trimethylphenylammonium (TMPA). TMPA solution was irrigated across the round window membrane while a TMPA-selective electrode sealed into the perilymphatic space continuously monitored perilymph TMPA concentration. After a period of TMPA loading, a perilymph sample was aspirated and its TMPA content determined. Differences between the sample concentration and the measured TMPA time course during perilymph loading and sampling were analyzed using a finite element computer model for simulation of solute movements in the inner ear fluids. The experimental results were consistent with the aspirated fluid sample from the cochlea being replaced by CSF drawn into the perilymphatic space through the cochlear aqueduct. The dependence of perilymph sample purity on the location of sampling and on the volume withdrawn was quantified. These relationships are of value in the design and interpretation of experiments that utilize perilymph sampling. (C) 2003 Elsevier B.V. All rights reserved. C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. RP Salt, AN (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, 660 S Euclid Ave,Box 8115, St Louis, MO 63110 USA. CR Balough BJ, 1998, OTOLARYNG HEAD NECK, V119, P427, DOI 10.1016/S0194-5998(98)70097-X BRUMMETT RE, 1976, LARYNGOSCOPE, V86, P1177, DOI 10.1288/00005537-197608000-00009 Ghiz AF, 2001, HEARING RES, V162, P105, DOI 10.1016/S0378-5955(01)00375-6 HARA A, 1989, HEARING RES, V42, P265 Hoffer ME, 1999, OTOLARYNG HEAD NECK, V120, P643, DOI 10.1053/hn.1999.v120.a91762 Hoffer ME, 1997, OTOLARYNG CLIN N AM, V30, P1159 LANGE G, 1981, MENIERES DIS PATHOGE, P208 Li GM, 2001, NEUROTOXICOLOGY, V22, P163, DOI 10.1016/S0161-813X(00)00010-3 LONG CH, 1987, OTOLARYNG HEAD NECK, V96, P83 MOSCOVIT.DH, 1973, ANN OTO RHINOL LARYN, V82, P53 NEDZELSKI JM, 1992, AM J OTOL, V13, P18 Parnes LS, 1999, LARYNGOSCOPE, V109, P1, DOI 10.1097/00005537-199907001-00001 Plontke SKR, 2002, OTOL NEUROTOL, V23, P967, DOI 10.1097/00129492-200211000-00026 RYBAK LP, 1984, ARCH OTO-RHINO-LARYN, V240, P207 Salt AN, 2001, HEARING RES, V154, P88, DOI 10.1016/S0378-5955(01)00223-4 SALT AN, 1979, ACTA OTO-LARYNGOL, V88, P198, DOI 10.3109/00016487909137160 SALT AN, 1991, ACTA OTO-LARYNGOL, V111, P899, DOI 10.3109/00016489109138428 SCHEIBE F, 1984, ARCH OTO-RHINO-LARYN, V240, P43, DOI 10.1007/BF00464343 Shinomori Y, 2001, ANN OTO RHINOL LARYN, V110, P91 Silverstein H, 1999, OTOLARYNG HEAD NECK, V120, P649, DOI 10.1053/hn.1999.v120.a91763 Silverstein H, 1999, Ear Nose Throat J, V78, P595 Thomsen J, 2000, EUR ARCH OTO-RHINO-L, V257, P362, DOI 10.1007/s004059900219 Thorne M, 1999, LARYNGOSCOPE, V109, P1661, DOI 10.1097/00005537-199910000-00021 YOSHIDA M, 1984, AM J OTOLARYNG, V5, P159, DOI 10.1016/S0196-0709(84)80007-1 NR 24 TC 32 Z9 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2003 VL 182 IS 1-2 BP 24 EP 33 DI 10.1016/S0378-5955(03)00137-0 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 720KR UT WOS:000185260400005 PM 12948598 ER PT J AU Plontke, SKR Salt, AN AF Plontke, SKR Salt, AN TI Quantitative interpretation of corticosteroid pharmacokinetics in inner fluids using computer simulations SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 39th Meeting of the Inner-Ear-Biology-Society CY SEP 08-10, 2002 CL LIEGE, BELGIUM SP Inner Ear Biol Soc DE cochlea; corticosteroid; perilymph; round window; pharmacokinetics; inner ear drug delivery ID ROUND WINDOW MEMBRANE; SENSORINEURAL HEARING-LOSS; COCHLEAR GENE-TRANSFER; MENIERES-DISEASE; GUINEA-PIG; EAR; PERILYMPH; DEXAMETHASONE; GENTAMICIN; INJECTION AB The delivery of drugs to the inner ear by applying them directly onto the round window membrane is a promising way to treat human inner ear disorders. To further develop this strategy, and to design controlled clinical trials, additional preclinical studies are necessary. It is especially important to derive the time course and total dose for the various target regions within the inner ear. Since direct pharmacokinetic measurements in the human cochlea are not possible, simulations provide a valuable tool for the interpretation and planning of animal studies, for evaluating changes of application protocols and drug delivery systems, and for extrapolating the results from animal studies to the human. The present study has analyzed two previously published data sets in which concentration time courses of corticosteroids in the cochlear fluids were reported. Drug movements were simulated with a finite element computer model of the inner ear fluids. The time course of corticosteroid pharmacokinetics could be approximated for,each study by consideration of the specific experimental paradigm. Although the experimental studies reported considerably different drug levels in the fluid samples taken from the cochlea, these differences were largely explained by considering the experimental design of the respective studies. After correction for experimental differences, the calculated perilymph levels of drug were within a factor of two of each other. The simulations demonstrated that an important factor controlling the drug level achieved is the time the drug solution remains in the middle ear. It can be concluded that small differences in delivery protocols may cause large variations in the drug levels achieved in the inner ear fluids. (C) 2003 Elsevier B.V. All rights reserved. C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. RP Salt, AN (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. CR Arriaga MA, 1998, LARYNGOSCOPE, V108, P1682, DOI 10.1097/00005537-199811000-00017 Bachmann G, 2001, HNO, V49, P538, DOI 10.1007/s001060170078 Blakley BW, 1997, AM J OTOL, V18, P520 BROWN JN, 1993, HEARING RES, V70, P167, DOI 10.1016/0378-5955(93)90155-T Buckingham RA, 2001, ANN OTO RHINOL LARYN, V110, P113 Chandrasekhar SS, 2000, OTOLARYNG HEAD NECK, V122, P521, DOI 10.1016/S0194-5998(00)70094-5 Chandrasekhar SS, 2001, OTOL NEUROTOL, V22, P18, DOI 10.1097/00129492-200101000-00005 Ghiz AF, 2001, HEARING RES, V162, P105, DOI 10.1016/S0378-5955(01)00375-6 Gianoli GJ, 2001, OTOLARYNG HEAD NECK, V125, P142, DOI 10.1067/mhn.2001.117162 HARA A, 1989, HEARING RES, V42, P265 Hoffer ME, 1997, OTOLARYNG CLIN N AM, V30, P1159 Hoffer ME, 2001, LARYNGOSCOPE, V111, P1343, DOI 10.1097/00005537-200108000-00007 IGARASHI M, 1986, ACTA OTO-LARYNGOL, V101, P161, DOI 10.3109/00016488609132823 Kopke RD, 2001, OTOL NEUROTOL, V22, P475, DOI 10.1097/00129492-200107000-00011 Korver KD, 2002, OTOLARYNG HEAD NECK, V126, P683, DOI 10.1067/mhn.2002.125299 Lalwani AK, 2002, AUDIOL NEURO-OTOL, V7, P146, DOI 10.1159/000058300 LAMM K, 1999, OTORHINOLARYNGOL NOV, V8, P203 Li GM, 2001, NEUROTOXICOLOGY, V22, P163, DOI 10.1016/S0161-813X(00)00010-3 OHYAMA K, 1988, HEARING RES, V35, P119, DOI 10.1016/0378-5955(88)90111-6 OKUNO H, 1988, ACTA OTO-LARYNGOL, V106, P55, DOI 10.3109/00016488809107371 Parnes LS, 1999, LARYNGOSCOPE, V109, P1, DOI 10.1097/00005537-199907001-00001 Plontke SKR, 2002, OTOL NEUROTOL, V23, P967, DOI 10.1097/00129492-200211000-00026 Sakata E, 1996, INT TINNITUS J, V2, P129 SALT AN, 2003, HEARING RES, DOI UNSP S03785955(03)001370 Salt AN, 2001, HEARING RES, V154, P88, DOI 10.1016/S0378-5955(01)00223-4 SALT AN, 1991, HEARING RES, V56, P37, DOI 10.1016/0378-5955(91)90151-X Salt AN, 2002, ADV OTO-RHINO-LARYNG, V59, P140 SALT AN, 1988, PHYSL EAR, P341 SCHEIBE F, 1984, ARCH OTO-RHINO-LARYN, V240, P43, DOI 10.1007/BF00464343 Shea JJ, 1996, OTOLARYNG CLIN N AM, V29, P353 SHEA JJ, 1999, MENIERES DIS, P395 Shirwany NA, 1998, AM J OTOL, V19, P230 Silverstein H, 1998, AM J OTOL, V19, P196 Silverstein H, 1996, Ear Nose Throat J, V75, P468 Spandow O, 1988, Acta Otolaryngol Suppl, V455, P90, DOI 10.3109/00016488809125066 Stover T, 1999, HEARING RES, V136, P124, DOI 10.1016/S0378-5955(99)00115-X SU WY, 1982, LARYNGOSCOPE, V92, P483 Thorne M, 1999, LARYNGOSCOPE, V109, P1661, DOI 10.1097/00005537-199910000-00021 NR 38 TC 32 Z9 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2003 VL 182 IS 1-2 BP 34 EP 42 DI 10.1016/S0378-5955(03)00138-2 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 720KR UT WOS:000185260400006 PM 12948599 ER PT J AU Vicente-Torres, MA Davila, D Bartolome, MV Carricondo, F Gil-Loyzaga, P AF Vicente-Torres, MA Davila, D Bartolome, MV Carricondo, F Gil-Loyzaga, P TI Biochemical evidence for the presence of serotonin transporters in the rat cochlea SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 39th Meeting of the Inner-Ear-Biology-Society CY SEP 08-10, 2002 CL LIEGE, BELGIUM SP Inner Ear Biol Soc DE serotonergic innervation; auditory receptor; 6-nitroquipazine; uptake inhibition; serotonin transporter ID EXTRACELLULAR SEROTONIN; NEUROTRANSMITTER TRANSPORTERS; H-3 6-NITROQUIPAZINE; NOISE STIMULATION; MAMMALIAN COCHLEA; BRAIN; SYSTEM; DOPAMINE; NOREPINEPHRINE; MICRODIALYSIS AB Cochlear serotonergic innervation is constituted by efferent fibers projecting both to the area below the inner and the outer hair cells. Previous detection of serotonin (5-HT) metabolites and 5-HT receptor mRNAs suggests the existence of serotonergic synaptic activity in the cochlea. The present study explores this possibility through the effect of 6-nitroquipazine (6-NQ), a 5-HT selective reuptake inhibitor, on the basal turnover of 5-HT. The concentrations of 5-HT and its metabolite 5 -hydroxyindole-3-acetic acid (5-HIAA) were quantified by high performance liquid chromatography with electrochemical detection in blood-free cochleae of rats treated with 6-NQ or saline and kept under silent conditions. Treatment with 6-NQ induced a significant increase of the cochlear concentration of 5-HT and a significant reduction of 5-HIAA concentration with respect to saline treatment. These findings could indicate that 6-NQ induced the blockade of the 5-HT selective reuptake to the cochlear serotonergic fibers. This suggests that plasma membrane 5-HT transporters are present in cochlear serotonergic fibers. Even though the role of serotonergic innervation on cochlear physiology remains unknown, the existence of cochlear serotonergic synaptic activity is strongly supported by present contributions. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Complutense Madrid, Fac Med, Dept Surg 2, ORL, Madrid, Spain. RP Gil-Loyzaga, P (reprint author), Apartado Correos 60075, E-28080 Madrid, Spain. CR AUERBACH SB, 1989, BRAIN RES, V499, P281, DOI 10.1016/0006-8993(89)90776-2 Bel N, 1996, J PHARMACOL EXP THER, V278, P1064 BIESALSKI HK, 1988, NEUROSCI LETT, V91, P41, DOI 10.1016/0304-3940(88)90246-7 CLASSEN K, 1984, N-S ARCH PHARMACOL, V326, P198, DOI 10.1007/BF00505318 DRESCHER MJ, 1983, J NEUROCHEM, V41, P309, DOI 10.1111/j.1471-4159.1983.tb04745.x EYBALIN M, 1987, BRAIN RES, V418, P189, DOI 10.1016/0006-8993(87)90979-6 EYBALIN M, 1993, PHYSIOL REV, V73, P309 FULLER RW, 1994, LIFE SCI, V55, P163, DOI 10.1016/0024-3205(94)00876-0 Gil-Loyzaga P, 1998, BRAIN RES, V779, P53, DOI 10.1016/S0006-8993(97)01077-9 Gil Loyzaga P E, 2000, An R Acad Nac Med (Madr), V117, P303 Gil-Loyzaga P, 2000, ACTA OTO-LARYNGOL, V120, P128 GilLoyzaga P, 1997, NEUROREPORT, V8, P3519, DOI 10.1097/00001756-199711100-00020 GILLOYZAGA P, 1994, HEARING RES, V79, P178, DOI 10.1016/0378-5955(94)90138-4 GILLOYZAGA P, 1993, BRAIN RES, V623, P177, DOI 10.1016/0006-8993(93)90027-K GILLOYZAGA PE, 1995, ACTA OTO-LARYNGOL, V115, P222, DOI 10.3109/00016489509139296 GUAN XM, 1988, BRAIN RES BULL, V21, P43, DOI 10.1016/0361-9230(88)90118-9 HASHIMOTO K, 1990, EUR J PHARMACOL, V180, P273, DOI 10.1016/0014-2999(90)90310-3 HASHIMOTO K, 1990, J PHARMACOL EXP THER, V255, P146 HASHIMOTO K, 1992, EUR J PHARM-ENVIRON, V228, P171 Lee BS, 2000, BIOORG MED CHEM LETT, V10, P1559, DOI 10.1016/S0960-894X(00)00290-0 LESTER HA, 1994, ANNU REV PHARMACOL, V34, P219 Masson J, 1999, PHARMACOL REV, V51, P439 Oh CK, 1999, MOL BRAIN RES, V70, P135, DOI 10.1016/S0169-328X(99)00110-2 RUTTER JJ, 1993, J PHARMACOL EXP THER, V265, P1319 SPOENDLIN H, 1984, ULTRASTRUCTURAL ATLA, P133 Stahl SM, 1998, J AFFECT DISORDERS, V51, P215, DOI 10.1016/S0165-0327(98)00221-3 VAATSTRA WJ, 1981, EUR J PHARMACOL, V70, P195, DOI 10.1016/0014-2999(81)90214-4 Vicente-Torres A, 1998, NEUROREPORT, V9, P3699, DOI 10.1097/00001756-199811160-00024 Vicente-Torres MA, 2002, NEUROSCI LETT, V319, P177, DOI 10.1016/S0304-3940(01)02577-0 VICENTETORRES MA, 2002, ACTA OTORHINOLARINGO, V56, P253 Vicente-Torres MA, 2001, BRAIN RES, V917, P112 Vicente-Torres MA, 2002, J NEUROSCI METH, V119, P31, DOI 10.1016/S0165-0270(02)00151-6 Vicente-Torres MA, 1999, NEUROSCI LETT, V266, P217, DOI 10.1016/S0304-3940(99)00305-5 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 NR 34 TC 11 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2003 VL 182 IS 1-2 BP 43 EP 47 DI 10.1016/S0378-5955(03)00140-0 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 720KR UT WOS:000185260400007 PM 12948600 ER PT J AU Hatzopoulos, S Petruccelli, J Laurell, G Previati, M Martini, A AF Hatzopoulos, S Petruccelli, J Laurell, G Previati, M Martini, A TI Electrophysiological findings in the Sprague-Dawley rat induced by moderate-dose carboplatin SO HEARING RESEARCH LA English DT Article DE ototoxicity; carboplatin; cisplatin; otoacoustic emissions; distortion products; DPOAEs; ABR ID HAIR CELL LOSS; EVOKED OTOACOUSTIC EMISSIONS; INDUCED HEARING-LOSS; CISPLATIN OTOTOXICITY; ANIMAL-MODEL; GUINEA-PIGS; POTENTIAL THRESHOLDS; TREATED CHINCHILLAS; INNER; DAMAGE AB Carboplatin is a second generation platinum-containing anti-tumor drug which selectively alters the micromechanical function of the inner hair cells (IHCs) of the organ of Corti in the chinchilla. Data from a recent study [Wake et al., Acta Otolaryngol. 116 (1996) 374-381], using the chinchilla model, have suggested that a moderate dose of carboplatin alters the efferent feedback loop gain of the OHCs. The present study was designed to evaluate the possible 'efferent feedback alteration mechanism' in the Sprague-Dawley rat using distortion product otoacoustic emissions (DPOAEs). A moderate dose of carboplatin (50 mg/kg body weight) was administered by a 30 min i.p. infusion. Pre- and 72-h post-treatment DPOAE and auditory brainstem response (ABR) recordings were acquired from a group of 12 rats. The animals were anesthetized with a ketamine-atropin anesthesia administered in two consecutive phases. The DPOAE responses (cubic distortion products) were recorded with four asymmetrical protocols: P1 = 60-50, P2 = 50-40, P3 = 40-30 and P4 = 30-20 dB SPL (sound pressure level), in the frequency range from 4.0 to 16 kHz. ABR responses were obtained for bipolar clicks and tone pips at the frequencies 8.0, 10.0, 20.0 and 30 kHz using stimuli in the range from 100 to 30 dB SPL. Significant ABR threshold shifts of 15 dB were observed at 30 kHz, and shifts of 10 dB at 20, 16 and 10 kHz. The comparison of pre- and post-treatment DPOAE responses did not reveal any significant changes for protocols P1, P2 and P4. Data from the P3 protocol indicated a decrease of the DPOAE amplitude. The findings from the rat model suggest that (a) moderate doses of carboplatin do not affect the efferent feedback loop OHC function and (b) the cochlear susceptibility to carboplatin across species is different, even at moderate-dose regimes. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Ferrara, Dept Audiol, I-44100 Ferrara, Italy. Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA. Karolinska Hosp, Dept Otolaryngol, Stockholm, Sweden. Univ Ferrara, Sect Human Anat, Dept Morphol & Embryol, Ferrara, Italy. RP Hatzopoulos, S (reprint author), Univ Ferrara, Dept Audiol, 203 Corso Giovecca, I-44100 Ferrara, Italy. CR ALBERTS DS, 1995, SEMIN ONCOL, V22, P88 Bourre JM, 1999, AUDIOLOGY, V38, P13 BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9 Ding DL, 1999, ANN NY ACAD SCI, V884, P152, DOI 10.1111/j.1749-6632.1999.tb08640.x Efron B., 1993, INTRO BOOTSTRAP Ekborn A, 2000, HEARING RES, V140, P38, DOI 10.1016/S0378-5955(99)00190-2 Fausti S A, 1992, J Am Acad Audiol, V3, P397 Hatzopoulos S, 2002, HEARING RES, V170, P70, DOI 10.1016/S0378-5955(02)00453-7 Hatzopoulos S, 1999, ANN NY ACAD SCI, V884, P211, DOI 10.1111/j.1749-6632.1999.tb08643.x Hofstetter P, 1997, HEARING RES, V112, P199, DOI 10.1016/S0378-5955(97)00123-8 Hofstetter P, 1997, AUDIOLOGY, V36, P301 Husain K, 2001, HEARING RES, V151, P71, DOI 10.1016/S0300-2977(00)00081-4 HUSAIN K, 2001, HEARING RES, V158, P14 Jock BM, 1996, HEARING RES, V96, P179, DOI 10.1016/0378-5955(96)00058-5 Khvoles R, 1996, HEARING RES, V97, P120 Khvoles R, 1998, AUDIOL NEURO-OTOL, V3, P40, DOI 10.1159/000013777 LAURELL G, 1989, HEARING RES, V38, P19, DOI 10.1016/0378-5955(89)90124-X LAURELL G, 1989, HEARING RES, V38, P27, DOI 10.1016/0378-5955(89)90125-1 Lockwood DS, 2000, AUDIOL NEURO-OTOL, V5, P263, DOI 10.1159/000013890 LONSBURYMARTIN BL, 1988, HEARING RES, V33, P69, DOI 10.1016/0378-5955(88)90021-4 MCFADDEN D, 1984, J ACOUST SOC AM, V76, P443, DOI 10.1121/1.391585 McFadden SL, 1998, HEARING RES, V120, P121, DOI 10.1016/S0378-5955(98)00052-5 Meyer WH, 2001, J CLIN ONCOL, V19, P171 RAVI R, 1995, ANTIOXID SYST PHARM, V76, P384 Riggs LC, 1996, LARYNGOSCOPE, V106, P401, DOI 10.1097/00005537-199604000-00003 SAITO T, 1995, SCANNING MICROSCOPY, V9, P271 SAITO T, 1994, ORL J OTO-RHINO-LARY, V56, P315 SAITO T, 1989, Auris Nasus Larynx, V16, P13 Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 SOCHALINGAM R, 2000, AM J OTOL, V21, P521 TAUDY M, 1992, AUDIOLOGY, V31, P293 WAKE M, 1993, J LARYNGOL OTOL, V107, P585, DOI 10.1017/S0022215100123771 Wake M, 1996, ACTA OTO-LARYNGOL, V116, P374, DOI 10.3109/00016489609137860 WAKE M, 1994, LARYNGOSCOPE, V104, P488 NR 36 TC 3 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2003 VL 182 IS 1-2 BP 48 EP 55 DI 10.1016/S0378-5955(03)00141-2 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 720KR UT WOS:000185260400008 PM 12948601 ER PT J AU Sergi, B Ferraresi, A Troiani, D Paludetti, G Fetoni, AR AF Sergi, B Ferraresi, A Troiani, D Paludetti, G Fetoni, AR TI Cisplatin ototoxicity in the guinea pig: vestibular and cochlear damage SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 39th Meeting of the Inner-Ear-Biology-Society CY SEP 08-10, 2002 CL LIEGE, BELGIUM SP Inner Ear Biol Soc DE inner ear; cisplatin; ototoxicity; vestibular ocular reflex; compound action potential; vestibular hair cell; cochlear hair cell ID AUDITORY HAIR-CELLS; HIGH-DOSE CISPLATIN; CIS-PLATINUM; AMINOGLYCOSIDE ANTIBIOTICS; ORGANOTYPIC CULTURES; ANTIOXIDANT SYSTEM; HEARING-LOSS; GENTAMICIN; NETILMICIN; VESTIBULOTOXICITY AB The aim of the present study was to investigate both vestibular and cochlear cisplatin toxicity. Twelve albino guinea pigs were divided into an experimental (n = 8) and a control saline group (n = 4) and were treated with cisplatin at a daily dose of 2.5 mg/kg for 6 consecutive days. Vestibular dysfunction was evaluated by computing the gain of the vestibular ocular reflex (VOR) evoked by stimulation in the horizontal (HVOR) and vertical (VVOR) planes. Changes in cochlear function were characterised as compound action potential threshold shifts. After the functional testing, tympanic bullae were removed and processed for morphological examination of the sensorineural epithelium. The onset of vestibular functional impairment was observed on the third day, although the VOR gain decrease was not significant. The impairment of the vestibular function progressed until the sixth day becoming statistically significant particularly at VVOR mid frequencies of stimulation. At these frequencies both macula and crista ampullaris functions are involved. Concomitantly a progressive auditory threshold shift was observed at all stimulus frequencies. The decline of the auditory function was statistically significant from the third day of treatment and it was more evident at high frequencies. Morphological observations showed a massive loss of outer hair cells and a degeneration of the organ of Corti in the basal/middle turns and only a slight loss of hair cells of the cristae ampullares and maculae. In conclusion, functional and morphological data provide evidence that the toxic effect of cisplatin is more pronounced in the organ of Corti than in the vestibular epithelium. (C) 2003 Elsevier B.V. All rights reserved. C1 Catholic Univ Rome, Inst Otolaryngol, I-00168 Rome, Italy. Catholic Univ Rome, Inst Human Physiol, I-00168 Rome, Italy. RP Fetoni, AR (reprint author), Catholic Univ Rome, Inst Otolaryngol, I-00168 Rome, Italy. CR APPENROTH D, 1993, RENAL FAILURE, V15, P135, DOI 10.3109/08860229309046144 ARAN JM, 1982, ACTA OTOLARYNGOL S S, V390 BAMONTE F, 1986, ARCH INT PHARMACOD T, V282, P161 BARMACK NH, 1981, VESTIBULAR SYSTEM FU, P491 BARMACK NH, 1981, J PHYSIOL-LONDON, V314, P547 BLACK FO, 1982, LARYNGOSCOPE, V92, P1363 Black FO, 2001, OTOL NEUROTOL, V22, P662, DOI 10.1097/00129492-200109000-00018 BLAKLEY BW, 1994, ARCH OTOLARYNGOL, V120, P541 Cardinaal RM, 2000, HEARING RES, V144, P135, DOI 10.1016/S0378-5955(00)00059-9 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 ESTREM SA, 1981, OTOLARYNG HEAD NECK, V89, P638 Fetoni AR, 2003, ACTA OTO-LARYNGOL, V123, P192, DOI 10.1080/00016480310001484 FETONI AR, 2001, 38 WORKSH EAR BIOL R Ford MS, 1997, HEARING RES, V111, P143, DOI 10.1016/S0378-5955(97)00103-2 Gabaizadeh R, 1997, ACTA OTO-LARYNGOL, V117, P232, DOI 10.3109/00016489709117778 Huang T, 2000, INT J DEV NEUROSCI, V18, P259, DOI 10.1016/S0736-5748(99)00094-5 IGARASHI M, 1978, J INFECT DIS, V137, P476 KOBAYASHI H, 1987, ORL J OTO-RHINO-LARY, V49, P67 KOPELMAN J, 1988, LARYNGOSCOPE, V98, P858 Kopke RD, 1997, AM J OTOL, V18, P559 Kruman I, 1997, J NEUROSCI, V17, P5089 LAURELL G, 1990, LARYNGOSCOPE, V100, P724 LAURELL G, 1991, J OTOLARYNGOL, V20, P158 MILLER GH, 1976, ANTIMICROB AGENTS CH, V10, P827 MYERS SF, 1993, OTOLARYNG HEAD NECK, V108, P322 Nakayama M, 1996, LARYNGOSCOPE, V106, P162, DOI 10.1097/00005537-199602000-00011 PARRAVICINI L, 1982, TOXICOL APPL PHARM, V65, P222, DOI 10.1016/0041-008X(82)90004-7 PETTOROSSI VE, 1986, ACTA OTO-LARYNGOL, V101, P378, DOI 10.3109/00016488609108622 PETTOROSSI VE, 1990, EUR ARCH OTO-RHINO-L, V247, P277 Prim M P, 2001, Acta Otorrinolaringol Esp, V52, P367 RAVI R, 1995, PHARMACOL TOXICOL, V76, P386 RUBEL EW, 1995, SCIENCE, V267, P701, DOI 10.1126/science.7839150 Rybak LP, 1997, PHARMACOL TOXICOL, V81, P173 SAFIRSTEIN R, 1986, AM J KIDNEY DIS, V8, P356 Sakamoto M, 2000, OTOLARYNG HEAD NECK, V122, P828, DOI 10.1016/S0194-5998(00)70009-X SCHAEFER SD, 1981, CANCER, V47, P857, DOI 10.1002/1097-0142(19810301)47:5<857::AID-CNCR2820470508>3.0.CO;2-M SCHAEFER SD, 1985, CANCER, V56, P1934, DOI 10.1002/1097-0142(19851015)56:8<1934::AID-CNCR2820560807>3.0.CO;2-F SCHWEITZER VG, 1993, OTOLARYNG CLIN N AM, V26, P759 SCHWEITZER VG, 1984, OTOLARYNG HEAD NECK, V92, P38 SCHWEITZER VG, 1993, LARYNGOSCOPE, V103, P1, DOI 10.1288/00005537-199304000-00001 SCHWINK K, 1986, COMP CONT EDUC PRACT, V8, P9 Stengs CHM, 1998, HEARING RES, V124, P99, DOI 10.1016/S0378-5955(98)00129-4 STRAUSS M, 1983, LARYNGOSCOPE, V93, P1554, DOI 10.1288/00005537-198312000-00007 TANGE RA, 1984, ARCH OTO-RHINO-LARYN, V239, P41, DOI 10.1007/BF00454261 Tsukasaki N, 2000, HEARING RES, V149, P189, DOI 10.1016/S0378-5955(00)00182-9 VERMORKEN JB, 1983, EUR J CANCER CLIN ON, V19, P53, DOI 10.1016/0277-5379(83)90398-X Watanabe K, 2000, ANTI-CANCER DRUG, V11, P29, DOI 10.1097/00001813-200001000-00005 Watanabe KL, 2001, ANTICANCER RES, V21, P3929 WRIGHT CG, 1982, LARYNGOSCOPE, V92, P1408 Zheng JL, 1996, EUR J NEUROSCI, V8, P1897, DOI 10.1111/j.1460-9568.1996.tb01333.x NR 50 TC 31 Z9 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2003 VL 182 IS 1-2 BP 56 EP 64 DI 10.1016/S0378-5955(03)00142-4 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 720KR UT WOS:000185260400009 PM 12948602 ER PT J AU Thornton, ARD Kimm, L Kennedy, CR AF Thornton, ARD Kimm, L Kennedy, CR TI Methodological factors involved in neonatal screening using transient-evoked otoacoustic emissions and automated auditory brainstem response testing SO HEARING RESEARCH LA English DT Article DE neonatal screening; hearing loss; otoacoustic emissions; automated ABR; universal screen ID CHILDHOOD HEARING IMPAIRMENT AB The methodological factors involved in screening neonates for hearing loss, using transient-evoked otoacoustic emissions (TEOAEs) and automated auditory brainstem responses, have been evaluated from a large sample of neonates. The risk factors, commonly used to select babies for a targeted screen, have very little correlation with failing TEOAE testing. The parameters used to determine passing or failing the TEOAE test and the false alarm rate change markedly with age in the first few days of life as, of course, did the percentage of babies who failed the test. The stimulus level used was the default setting for the Otodynamics equipment but the stimulus level measured in the ear canal decreased over the first 140 h of life. It is thought that this reflects the impedance changes in outer and middle ears and possible changes in middle ear dynamics. The methodological variables investigated here can illuminate some of the differences in previous reports of neonatal screening, in particular the reported hit and false alarm rates. (C) 2003 Elsevier B.V. All rights reserved. C1 Royal S Hants Hosp, MRC, Inst Hearing Res, Southampton SO14 0YG, Hants, England. Southampton Gen Hosp, Dept Child Hlth, Southampton SO16 4XY, Hants, England. RP Thornton, ARD (reprint author), Royal S Hants Hosp, MRC, Inst Hearing Res, Off St Marys Rd, Southampton SO14 0YG, Hants, England. CR GLATTKE TJ, 1995, AM J AUDIOL, V4, P67 Herrmann BS, 1995, AM J AUDIOLOGY, V4, P6 HUNTER MF, 1994, BRIT J AUDIOL, V28, P47, DOI 10.3109/03005369409077912 Kennedy C, 2000, LANCET, V356, P1903, DOI 10.1016/S0140-6736(00)03267-0 KENNEDY CR, 1991, ARCH DIS CHILD, V66, P1124 Lutman ME, 1997, EAR HEARING, V18, P265, DOI 10.1097/00003446-199708000-00001 Maxon A B, 1995, J Am Acad Audiol, V6, P271 OudesluysMurphy AM, 1996, EUR J PEDIATR, V155, P429, DOI 10.1007/BF01955176 ROBINETTE M, 1994, PEDIATRICS, V94, P252 THORNTON ARD, 1993, BRIT J AUDIOL, V27, P319, DOI 10.3109/03005369309076710 Kennedy CR, 1998, LANCET, V352, P1957 White Karl R., 1993, Seminars in Hearing, V14, P18 NR 12 TC 13 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2003 VL 182 IS 1-2 BP 65 EP 76 DI 10.1016/S0378-5955(03)00173-4 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 720KR UT WOS:000185260400010 PM 12948603 ER PT J AU de Balthasar, C Boex, C Cosendai, G Valentini, G Sigrist, A Pelizzone, M AF de Balthasar, C Boex, C Cosendai, G Valentini, G Sigrist, A Pelizzone, M TI Channel interactions with high-rate biphasic electrical stimulation in cochlear implant subjects SO HEARING RESEARCH LA English DT Article DE cochlear implants; electrical stimulation; channel interactions; psychophysics ID NERVE ACTION-POTENTIALS; BRAIN-STEM RESPONSE; AUDITORY-NERVE; NEURAL MEMBRANE; MASKING; PATTERNS; RECOVERY; MODEL; USERS AB Channel interactions were assessed using high-rate stimulation in cochlear implant subjects using the Ineraid(TM) electrode array. Stimulation currents were applied on one intracochlear electrode and their effects on psychophysical detection thresholds on an adjacent electrode were measured. Stimuli were trains of brief, biphasic, 50-mus/phase pulses presented at a rate of 2000 pulses per second per channel. In experiment 1, we studied how the detection of a probe signal was influenced by a sub-threshold perturbation signal presented either simultaneously or non-simultaneously (with no overlap) on an adjacent electrode. Results showed that simultaneous activation led to strong channel interactions, producing threshold changes consistent with instantaneous electric field summation. Non-simultaneous activation revealed much weaker interactions, producing threshold changes of opposite sign. In experiment 11, we studied how the temporal delay between perturbation and probe pulses, as well as how the level of the perturbation signal influenced non-simultaneous channel interactions. First, threshold changes when reversing the polarity of the perturbation did progressively vanish when increasing the delay between pulses. This suggested that non-overlapping stimulation of adjacent electrodes produced channel interactions that were in part due to residual polarization of the nerve membrane. Second, increasing the perturbation to supra-threshold levels produced threshold elevations that were independent of the interpulse interval. This suggested channel interactions due to neural masking. These results provide insights into the different concurrently active mechanisms of channel interactions in cochlear implant systems using this type of stimuli. (C) 2003 Elsevier B.V. All rights reserved. C1 Cantonal Univ Hosp, Dept Otolaryngol Head & Neck Surg, CH-1211 Geneva 14, Switzerland. RP Pelizzone, M (reprint author), Cantonal Univ Hosp, Dept Otolaryngol Head & Neck Surg, CH-1211 Geneva 14, Switzerland. RI Boex, Colette/A-6200-2008 CR ABBAS PJ, 1991, HEARING RES, V51, P139, DOI 10.1016/0378-5955(91)90012-X ABBAS PJ, 1988, HEARING RES, V36, P153, DOI 10.1016/0378-5955(88)90057-3 BOEX C, UNPUB J ACOUST SOC A Brown CJ, 1996, J SPEECH HEAR RES, V39, P453 BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716 Cartee LA, 2000, HEARING RES, V146, P143, DOI 10.1016/S0378-5955(00)00109-X Cartee LA, 2000, HEARING RES, V146, P153, DOI 10.1016/S0378-5955(00)00110-6 Chatterjee M, 1999, J ACOUST SOC AM, V105, P1853, DOI 10.1121/1.426722 Chatterjee M, 1998, J ACOUST SOC AM, V103, P2565, DOI 10.1121/1.422777 Dynes S.B.C., 1996, THESIS MIT EDDINGTON DK, 2001, C IMPL AUD PROSTH PA EDDINGTON DK, 1978, ANN OTOL RHINOL LA S, V53, P1 Eddington D.K., 1994, SPEECH PROCESSORS AU FAVRE E, 1993, HEARING RES, V66, P150, DOI 10.1016/0378-5955(93)90136-O GANTZ BJ, 1988, LARYNGOSCOPE, V98, P1100 Haenggeli A, 1998, AUDIOLOGY, V37, P353 HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LIM HH, 1989, J ACOUST SOC AM, V86, P971, DOI 10.1121/1.398732 MILLER CA, 1993, HEARING RES, V69, P35, DOI 10.1016/0378-5955(93)90091-E Nelson DA, 2001, J ACOUST SOC AM, V109, P2921, DOI 10.1121/1.1371762 Pelizzone N, 1999, EAR HEARING, V20, P228 Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3 SHANNON RV, 1983, HEARING RES, V12, P1, DOI 10.1016/0378-5955(83)90115-6 SHANNON RV, 1990, J ACOUST SOC AM, V88, P741, DOI 10.1121/1.399777 STYPULKOWSKI PH, 1984, HEARING RES, V14, P205, DOI 10.1016/0378-5955(84)90051-0 Throckmorton CS, 1999, J ACOUST SOC AM, V105, P861, DOI 10.1121/1.426275 TONG YC, 1986, J ACOUST SOC AM, V79, P1958, DOI 10.1121/1.393203 WHITE MW, 1984, ARCH OTOLARYNGOL, V110, P493 ZWICKER E, 1978, AUDIOLOGY, V17, P120 NR 30 TC 31 Z9 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2003 VL 182 IS 1-2 BP 77 EP 87 DI 10.1016/S0378-5955(03)00174-6 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 720KR UT WOS:000185260400011 PM 12948604 ER PT J AU Sugahara, K Inouye, S Izu, H Katoh, Y Katsuki, K Takemoto, T Shimogori, H Yamashita, H Nakai, A AF Sugahara, K Inouye, S Izu, H Katoh, Y Katsuki, K Takemoto, T Shimogori, H Yamashita, H Nakai, A TI Heat shock transcription factor HSF1 is required for survival of sensory hair cells against acoustic overexposure SO HEARING RESEARCH LA English DT Article DE cell death; hair cells; heat shock factor; heat shock protein; hyperthermia; noise injury ID GUINEA-PIG COCHLEA; N-TERMINAL KINASE; FACTOR IN-VIVO; RAT COCHLEA; EMBRYONIC-DEVELOPMENT; MOLECULAR CHAPERONES; NEGATIVE REGULATION; APAF-1 APOPTOSOME; CYTOCHROME-C; PROTEIN AB To analyze the role of heat shock response in the cochleae, we induced major heat shock proteins, Hsp70, Hsp90, and Hsp27 by perfusion of hot saline into the middle ear cavity (called 'local heat shock' in guinea pigs. Hsps were induced in almost all of the cochlear cells including the sensory hair cells in the organ of Corti. We showed that loss of both the sensory hair cells and the auditory function induced by acoustic overexposure was inhibited by pretreatment of the inner ear with local heat shock. To examine the role of heat shock transcription factor I(HSF), which activates heat shock genes in response to heat shock, in the protection of sensory hair cells, we analyzed acoustic injury in HSF1-null mice. We found that the loss of sensory hair cells was more significant in HSF1-null mice compared with that of wild-type mice when mice were subjected to acoustic overexposure. These results indicate that HSF1 is required for survival of the sensory hair cells against acoustic overexposure. (C) 2003 Elsevier B.V. All rights reserved. C1 Yamaguchi Univ, Sch Med, Dept Biochem & Mol Biol, Ube, Yamaguchi 7558505, Japan. Yamaguchi Univ, Sch Med, Dept Otolaryngol, Ube, Yamaguchi 7558505, Japan. RP Nakai, A (reprint author), Yamaguchi Univ, Sch Med, Dept Biochem & Mol Biol, Minami Kogushi 1-1-1, Ube, Yamaguchi 7558505, Japan. CR Agashe VR, 2000, SEMIN CELL DEV BIOL, V11, P15, DOI 10.1006/scdb.1999.0347 Akizuki H, 1995, HEARING RES, V92, P126, DOI 10.1016/0378-5955(95)00210-3 Beere HM, 2000, NAT CELL BIOL, V2, P469 BOHNE BA, 1987, HEARING RES, V29, P251, DOI 10.1016/0378-5955(87)90172-9 BOHNE BA, 1983, HEARING RES, V11, P41, DOI 10.1016/0378-5955(83)90044-8 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1006/abio.1976.9999 BRANDENBERGER C, 1979, J ENDOCRINOL INVEST, V2, P297 Bruey JM, 2000, NAT CELL BIOL, V2, P645 Bukau B, 1998, CELL, V92, P351, DOI 10.1016/S0092-8674(00)80928-9 Christians E, 2000, NATURE, V407, P693, DOI 10.1038/35037669 DECHESNE CJ, 1992, HEARING RES, V59, P195, DOI 10.1016/0378-5955(92)90116-5 DRAGO F, 1984, BRAIN RES BULL, V12, P355, DOI 10.1016/0361-9230(84)90103-5 Gabai VL, 2000, MOL CELL BIOL, V20, P6826, DOI 10.1128/MCB.20.18.6826-6836.2000 Gower VC, 1997, LARYNGOSCOPE, V107, P228, DOI 10.1097/00005537-199702000-00016 Hu BH, 2000, ACTA OTO-LARYNGOL, V120, P19, DOI 10.1080/000164800760370774 Jedlicka P, 1997, EMBO J, V16, P2452, DOI 10.1093/emboj/16.9.2452 Kawazoe Y, 1999, EUR J BIOCHEM, V265, P688, DOI 10.1046/j.1432-1327.1999.00762.x KONITS PH, 1984, CANCER, V54, P2432, DOI 10.1002/1097-0142(19841201)54:11<2432::AID-CNCR2820541120>3.0.CO;2-W LIM HH, 1993, HEARING RES, V69, P146 LINDQUIST S, 1986, ANNU REV BIOCHEM, V55, P1151, DOI 10.1146/annurev.bi.55.070186.005443 McMillan DR, 1998, J BIOL CHEM, V273, P7523, DOI 10.1074/jbc.273.13.7523 Morimoto RI, 1998, GENE DEV, V12, P3788, DOI 10.1101/gad.12.24.3788 Mosser DD, 2000, MOL CELL BIOL, V20, P7146, DOI 10.1128/MCB.20.19.7146-7159.2000 MYERS MW, 1992, LARYNGOSCOPE, V102, P981 Nakagawa T, 1997, ORL J OTO-RHINO-LARY, V59, P303 NEELY JG, 1991, HEARING RES, V52, P403, DOI 10.1016/0378-5955(91)90028-8 Oh SH, 2000, ACTA OTO-LARYNGOL, V120, P146 Pandey P, 2000, EMBO J, V19, P4310, DOI 10.1093/emboj/19.16.4310 Pirvola U, 2000, J NEUROSCI, V20, P43 ROBERTSON D, 1980, HEARING RES, V3, P167, DOI 10.1016/0378-5955(80)90044-1 Saleh A, 2000, NAT CELL BIOL, V2, P476 Sugahara K, 2001, NEUROREPORT, V12, P3299, DOI 10.1097/00001756-200110290-00030 Tanabe M, 1998, EMBO J, V17, P1750, DOI 10.1093/emboj/17.6.1750 THOMPSON AM, 1992, OTOLARYNG HEAD NECK, V107, P769 Torok Z, 2003, P NATL ACAD SCI USA, V100, P3131, DOI 10.1073/pnas.0438003100 Xiao XZ, 1999, EMBO J, V18, P5943, DOI 10.1093/emboj/18.21.5943 Yamasoba T, 1999, BRAIN RES, V815, P317, DOI 10.1016/S0006-8993(98)01100-7 Yoshida N, 1999, J NEUROSCI, V19, P10116 NR 38 TC 25 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2003 VL 182 IS 1-2 BP 88 EP 96 DI 10.1016/S0378-5955(03)00180-1 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 720KR UT WOS:000185260400012 PM 12948605 ER PT J AU Ladich, F Wysocki, LE AF Ladich, F Wysocki, LE TI How does tripus extirpation affect auditory sensitivity in goldfish? SO HEARING RESEARCH LA English DT Article DE auditory sensitivity; Weberian ossicle; hearing loss; accessory hearing structure; auditory evoked potential; noise exposure ID ACOUSTIC COMMUNICATION; SACCULAR AFFERENTS; OPSANUS-TAU; FISHES; HEARING; NOISE; VOCALIZATION; STIMULATION; SWIMBLADDER; GASBLADDER AB Otophysine fishes are characterized by Weberian ossicles connecting the swimbladder to the ear acoustically. In order to determine the degree to which these ossicles contribute to auditory sensitivity, the tripus was unilaterally or bilaterally extirpated in goldfish and hearing thresholds determined. The auditory evoked potential (AEP) recording technique was used to measure auditory sensitivity between 100 and 4000 Hz. Bilateral extirpation resulted in a hearing loss at all frequencies ranging from 7 dB at 100 Hz to 33 dB at 2 kHz; no AEPs were detectable at 4 kHz. In contrast to bilateral extirpation, unilateral tripus removal caused no sensitivity change. Pre-exposure to intense white noise caused different threshold shifts in unilaterally versus bilaterally extirpated goldfish. Thresholds increased at all frequencies in unilaterally extirpated goldfish but only at 100 and 200 Hz after bilateral extirpation. The comparison between the hearing generalist Neolamprologus brichardi (family Cichlidae) and the tripus-extirpated otophysine revealed that the latter is still more sensitive than the cichlid. Higher sensitivity in the goldfish after bilateral extirpation as compared to swimbladder elimination indicates that swimbladder oscillations might partly be transmitted to the inner ear independently of the ossicular chain. This suggests that the auditory system in otophysines improves with increasing frequency due to a more efficient connection between the swimbladder and inner ear ensured by the Weberian ossicles. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Vienna, Inst Zool, A-1090 Vienna, Austria. RP Ladich, F (reprint author), Univ Vienna, Inst Zool, Althanstr 14, A-1090 Vienna, Austria. EM friedrich.ladich@univie.ac.at CR Alexander R. McN., 1962, Proceedings of the Zoological Society of London, V139, P451 Amoser S, 2003, J ACOUST SOC AM, V113, P2170, DOI 10.1121/1.1557212 Bader R, 1937, Z WISS ZOOL ABT A, V149, P323 Blaxter J. H. S., 1981, HEARING SOUND COMMUN, P39 Bridge T. W., 1889, P ROY SOC LONDON, V46, P309, DOI 10.1098/rspl.1889.0038 BRIDGE TW, 1892, P R SOC LOND, V184, P65 CHARTRAN.G, 1968, ISRAEL J MATH, V6, P169, DOI 10.1007/BF02760181 Chranilov N. S., 1927, Zoologische Jahrbuecher Jena Abteilungen Anatomie, V49, P501 Chranilov N. S., 1929, Zoologische Jahrbuecher Jena Anatomie, V51, P323 ENGER PS, 1966, COMP BIOCHEM PHYSIOL, V18, P859, DOI 10.1016/0010-406X(66)90218-0 Fay R. R., 1988, HEARING VERTEBRATES FAY RR, 1974, J EXP BIOL, V61, P243 Fay RR, 1997, HEARING RES, V113, P235, DOI 10.1016/S0378-5955(97)00148-2 FAY RR, 1975, J EXP BIOL, V62, P379 FISH JF, 1972, J ACOUST SOC AM, V51, P1318, DOI 10.1121/1.1912977 Fletcher LB, 2001, J EXP BIOL, V204, P175 von Frisch K, 1938, NATURE, V141, P8, DOI 10.1038/141008a0 FURUKAWA T, 1967, J NEUROPHYSIOL, V30, P1377 Hawkins A.D., 1983, P347 Hawkins AD, 1993, BEHAV TELEOST FISHES, P129 HAWKINS AD, 1978, J FISH BIOL, V13, P655, DOI 10.1111/j.1095-8649.1978.tb03480.x JENKINS DB, 1977, AM J ANAT, V150, P605, DOI 10.1002/aja.1001500407 Kenyon TN, 1998, J COMP PHYSIOL A, V182, P307, DOI 10.1007/s003590050181 KLEEREKOPER H., 1959, CANADIAN JOUR ZOOL, V37, P1 Kratochvil H, 2000, J COMP PHYSIOL A, V186, P279, DOI 10.1007/s003590050428 Ladich F, 2003, CATFISHES, P701 Ladich F, 2000, PHILOS T ROY SOC B, V355, P1285, DOI 10.1098/rstb.2000.0685 Ladich F, 1998, J COMP PHYSIOL A, V182, P737, DOI 10.1007/s003590050218 Ladich F, 1999, BRAIN BEHAV EVOLUT, V53, P288, DOI 10.1159/000006600 LAMING PR, 1981, COMP BIOCHEM PHYS A, V69, P537, DOI 10.1016/0300-9629(81)93016-4 MYRBERG AA, 1980, J COMP PHYSIOL, V140, P135 POGGENDORF D, 1952, Z VERGL PHYSIOL, V34, P222, DOI 10.1007/BF00298202 Popper A.N., 1999, COMP HEARING FISH AM, P43 Rosen D. E, 1970, Am. Mus. Novit., VNo. 2428, P1 SAND O, 1973, J EXP BIOL, V59, P405 Schneider Hiltrude, 1941, ZEITSCHR VERGLEICH PHYSIOL, V29, P172 Scholik AR, 2001, HEARING RES, V152, P17, DOI 10.1016/S0378-5955(00)00213-6 Scholik AR, 2002, COMP BIOCHEM PHYS A, V133, P43, DOI 10.1016/S1095-6433(02)00108-3 STIPETIC E., 1939, ZEITSCHR VERGLEICH PHYSIOL, V26, P740, DOI 10.1007/BF00341099 TAVOLGA WN, 1974, J ACOUST SOC AM, V55, P1323, DOI 10.1121/1.1914704 van Bergeijk W. A., 1967, CONTRIBUTIONS SENSOR, P1 VONFRISCH K, 1932, Z VERGL PHYSIOL, V17, P687 Von Frisch K, 1936, BIOL REV CAMB PHILOS, V11, P210 Weber E. H., 1820, AURE AUDITU HOMINI 1 Weeg MS, 2002, J COMP PHYSIOL A, V188, P631, DOI 10.1007/s00359-002-0338-2 WOLFF DL, 1968, Z VERGL PHYSIOL, V60, P14, DOI 10.1007/BF00737092 Wysocki LE, 2001, J COMP PHYSIOL A, V187, P177, DOI 10.1007/s003590100186 Wysocki LE, 2002, HEARING RES, V169, P36, DOI 10.1016/S0378-5955(02)00336-2 Yan HY, 2000, J COMP PHYSIOL A, V186, P435, DOI 10.1007/s003590050443 Yan HY, 2000, J COMP PHYSIOL A, V186, P595, DOI 10.1007/s003590000114 Yan HY, 1998, J COMP PHYSIOL A, V183, P325, DOI 10.1007/s003590050259 NR 51 TC 21 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2003 VL 182 IS 1-2 BP 119 EP 129 DI 10.1016/S0378-5955(03)00188-6 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 720KR UT WOS:000185260400014 PM 12948607 ER PT J AU Sinex, DG Guzik, H Li, HZ Sabes, JH AF Sinex, DG Guzik, H Li, HZ Sabes, JH TI Responses of auditory nerve fibers to harmonic and mistuned complex tones SO HEARING RESEARCH LA English DT Article DE auditory nerve; complex sounds ID SPECTRAL FINE-STRUCTURE; STEADY-STATE VOWELS; FREQUENCY-SELECTIVITY; INFERIOR COLLICULUS; BASILAR-MEMBRANE; STOP CONSONANTS; REPRESENTATION; NEURONS; THRESHOLDS; POPULATION AB Responses of auditory nerve fibers were obtained to harmonic complex tones in which single components could be mistuned. Human listeners hear the harmonic tones as single sounds, but the same tones with one component mistuned are heard as two separate sounds. Fourier analysis of the temporal discharge patterns indicated that auditory nerve fibers typically responded to one or two stimulus components near the fibers' characteristic frequencies. At low stimulus levels, the discharge patterns could also exhibit low-frequency modulation that was produced by beating of two higher-frequency components. The same components were observed in the response spectra, whether those components were part of the original harmonic series or had been mistuned. The discharge patterns and response spectra were consistent with expectations based on previous studies of auditory nerve fibers with harmonic tones and other complex sounds. However, the discharge patterns differed dramatically from the discharge patterns elicited from inferior colliculus neurons by comparable stimuli [Sinex et al., Hear. Res. 168 (2002) 150-162]. (C) 2003 Elsevier B.V. All rights reserved. C1 Arizona State Univ, Dept Speech & Hearing Sci, Tempe, AZ 85287 USA. RP Sinex, DG (reprint author), Arizona State Univ, Dept Speech & Hearing Sci, Box 871908, Tempe, AZ 85287 USA. CR Bregman AS., 1990, AUDITORY SCENE ANAL BRUGGE JF, 1969, J NEUROPHYSIOL, V32, P386 CARNEY LH, 1988, J NEUROPHYSIOL, V60, P1653 Darwin C. J., 1995, P387, DOI 10.1016/B978-012505626-7/50013-3 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P866, DOI 10.1121/1.390596 DENG L, 1987, J ACOUST SOC AM, V82, P1989, DOI 10.1121/1.395643 EGGERMONT JJ, 1983, Q REV BIOPHYS, V16, P341 EVANS EF, 1981, NEURONAL MECHANISMS, P69 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 GREENBERG S, 1986, J ACOUST SOC AM, V79, P1010, DOI 10.1121/1.393373 HORST JW, 1985, J ACOUST SOC AM, V78, P1898, DOI 10.1121/1.392779 HORST JW, 1986, J ACOUST SOC AM, V79, P398, DOI 10.1121/1.393528 HORST JW, 1990, J ACOUST SOC AM, V88, P2656, DOI 10.1121/1.399986 Kiang NY-s, 1965, DISCHARGE PATTERNS S KIM DO, 1979, J NEUROPHYSIOL, V42, P16 MOLLER AR, 1983, BIOL CYBERN, V47, P95, DOI 10.1007/BF00337083 MOORE BCJ, 1986, J ACOUST SOC AM, V80, P479, DOI 10.1121/1.394043 MOORE BCJ, 1985, J ACOUST SOC AM, V77, P1861, DOI 10.1121/1.391937 Nuding SC, 1999, HEARING RES, V131, P89, DOI 10.1016/S0378-5955(99)00023-4 REALE RA, 1980, J ACOUST SOC AM, V67, P891, DOI 10.1121/1.383969 RHODE WS, 1971, J ACOUST SOC AM, V49, P1218, DOI 10.1121/1.1912485 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 SINEX DG, 1983, J ACOUST SOC AM, V73, P602, DOI 10.1121/1.389007 SINEX DG, 1993, J ACOUST SOC AM, V94, P1351, DOI 10.1121/1.408163 SINEX DG, 1994, J ACOUST SOC AM, V95, P897, DOI 10.1121/1.408400 SINEX DG, 2003, ASS RES OT ABSTR, P174 Sinex DG, 2002, HEARING RES, V168, P150, DOI 10.1016/S0378-5955(02)00366-0 WANG XQ, 1993, J NEUROPHYSIOL, V70, P1054 YOST WA, 1991, HEARING RES, V56, P8, DOI 10.1016/0378-5955(91)90148-3 YOUNG ED, 1979, J ACOUST SOC AM, V66, P1381, DOI 10.1121/1.383532 NR 30 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2003 VL 182 IS 1-2 BP 130 EP 139 DI 10.1016/S0378-5955(03)00189-8 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 720KR UT WOS:000185260400015 PM 12948608 ER PT J AU Bassim, MK Miller, RL Buss, E Smith, DW AF Bassim, MK Miller, RL Buss, E Smith, DW TI Rapid adaptation of the 2f(1)-f(2) DPOAE in humans: Binaural and contralateral stimulation effects SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 25th Mid-Winter Research Meeting of the Association for Research in Otolaryngology CY JAN 27-31, 2002 CL ST PETERSBURG, FLORIDA SP Assoc Res Otolaryngol DE 2f(1)-f(2); distortion-product otoacoustic emission; rapid adaptation; medial olivocochlear efferent system; humans ID CROSSED OLIVOCOCHLEAR BUNDLE; PRODUCT OTOACOUSTIC EMISSION; AUDITORY-NERVE FIBERS; OUTER HAIR-CELLS; SUPERIOR OLIVARY COMPLEX; AWAKE GUINEA-PIGS; ELECTRICAL-STIMULATION; EFFERENT INNERVATION; COCHLEAR MECHANICS; GENTAMICIN BLOCKS AB The present data were collected in humans to characterize the effects of monaural and binaural stimulation and contralateral noise on the 2f(1)-f(2) distortion-product otoacoustic emission (DPOAE) adaptation response. DPOAE levels (f(2)/f(1) = 1.21, L-1 = 70 dB SPL, L-2 = 65 dB SPL) were measured in both ears for a range of f(2) frequencies (1.2 to 10.0 kHz). The f(2) frequency producing the largest amplitude DPOAE was used for further testing employing three different stimulus conditions: the primary tones were presented to only one ear for 4 s; the two tones were presented simultaneously in both ears; and, contralateral broadband noise (60 dB SPL) was presented for 5 s, beginning 4 s after the onset of the monaural primaries in the test ear. Acoustic reflex thresholds were measured to verify that the middle-ear muscles played no systematic role in the measured DPOAE reductions. Estimates of monaural rapid adaptation levels and time constants agreed well with previous human findings. The magnitude of the rapid adaptation under binaural stimulation, as compared with monaural primaries, was 25% greater on average, though adaptation time constants were comparable. With added contralateral noise, the average DPOAE suppression was 1.1 dB (0.3-2.7 dB). The magnitude of the monaural adaptation and the effects of binaural and contralateral stimulation, however, were smaller than those measured previously in experimental animals, though the time constants were in good agreement. (C) 2003 Elsevier B.V. All rights reserved. C1 Duke Univ, Med Ctr, Hearing Res Lab, Div Otolaryngol Head & Neck Surg, Durham, NC 27710 USA. Univ N Carolina, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC 27514 USA. RP Smith, DW (reprint author), Duke Univ, Med Ctr, Hearing Res Lab, Div Otolaryngol Head & Neck Surg, Box 3550, Durham, NC 27710 USA. CR AGRAMA MT, 1998, ABST ASS RES OTOLARY, V21, P152 ART JJ, 1984, J PHYSIOL-LONDON, V356, P525 BISHOP AL, 1987, HEARING RES, V31, P175, DOI 10.1016/0378-5955(87)90124-9 Blanchet C, 2000, J PHYSIOL-LONDON, V525, P641, DOI 10.1111/j.1469-7793.2000.t01-1-00641.x Boyev KP, 2002, JARO, V3, P362, DOI 10.1007/s101620020044 BROWN MC, 1983, SCIENCE, V222, P69, DOI 10.1126/science.6623058 BUNO W, 1978, EXP NEUROL, V59, P62, DOI 10.1016/0014-4886(78)90201-7 CAMPBELL JP, 1988, HEARING RES, V35, P271, DOI 10.1016/0378-5955(88)90124-4 COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E daCosta DL, 1997, J NEUROPHYSIOL, V78, P1826 DIRKS DD, 1965, J ACOUST SOC AM, V37, P631, DOI 10.1121/1.1909383 DOLAN DF, 1988, J ACOUST SOC AM, V83, P1081, DOI 10.1121/1.396052 DULON D, 1990, J NEUROSCI, V10, P1388 FEX J, 1967, J ACOUST SOC AM, V41, P666, DOI 10.1121/1.1910395 FLOCK A, 1976, J PHYSIOL-LONDON, V257, P45 Geisler C. D., 1998, SOUND SYNAPSE PHYSL GIFFORD ML, 1987, HEARING RES, V29, P179, DOI 10.1016/0378-5955(87)90166-3 GUINAN JJ, 1984, J COMP NEUROL, V226, P21, DOI 10.1002/cne.902260103 GUINAN JJ, 1988, HEARING RES, V37, P29, DOI 10.1016/0378-5955(88)90075-5 GUINAN JJ, 2002, ABST ASS RES OT, V25, P226 Guinan JJ, 1996, J ACOUST SOC AM, V100, P1680, DOI 10.1121/1.416066 Guinan Jr J.J., 1996, COCHLEA, P435 HABENER SA, 1977, ARCH OTOLARYNGOL, V100, P294 JERGER J, 1972, ARCHIV OTOLARYNGOL, V96, P513 KAWASE T, 1993, J NEUROPHYSIOL, V70, P2519 KAWASE T, 1993, J NEUROPHYSIOL, V70, P2533 KIM DO, 2002, ABST ASS RES OT, V25, P761 Kim DO, 2001, JARO, V2, P31, DOI 10.1007/s101620010066 KONISHI T, 1970, J ACOUST SOC AM, V49, P1762 KUJAWA SG, 1995, HEARING RES, V85, P142, DOI 10.1016/0378-5955(95)00041-2 Kujawa SG, 2001, JARO, V2, P268, DOI 10.1007/s101620010047 LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309 Liberman MC, 1996, J ACOUST SOC AM, V99, P3572, DOI 10.1121/1.414956 Liberman MC, 1998, J COMMUN DISORD, V31, P471, DOI 10.1016/S0021-9924(98)00019-7 LUEBKE AE, 2001, JARO, V3, P16 Maison S, 2000, HEARING RES, V140, P111, DOI 10.1016/S0378-5955(99)00196-3 MARGOLIS RH, 1991, OTOLARYNG CLIN N AM, V24, P329 MCGEE J, 2000, ASS RES OTOLARYNGOL, V23, P283 MOULIN A, 1993, HEARING RES, V65, P193, DOI 10.1016/0378-5955(93)90213-K MOUNTAIN DC, 1980, SCIENCE, V210, P71, DOI 10.1126/science.7414321 NIEDER PC, 1970, BRAIN RES, V21, P135, DOI 10.1016/0006-8993(70)90029-6 Popelar J, 1997, AUDIT NEUROSCI, V3, P425 RASMUSSEN GL, 1946, J COMP NEUROL, V84, P141, DOI 10.1002/cne.900840204 RELKIN E, 2002, ABST ASS RES OT, V25, P201 Sato M, 1999, HEARING RES, V135, P29, DOI 10.1016/S0378-5955(99)00086-6 SIEGEL JH, 1982, HEARING RES, V6, P171, DOI 10.1016/0378-5955(82)90052-1 SRIDHAR TS, 1995, J NEUROSCI, V15, P3667 Sun XM, 1999, J ACOUST SOC AM, V105, P3399, DOI 10.1121/1.424668 Warr W. B., 1986, NEUROBIOLOGY HEARING, P333 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 WARREN EH, 1989, HEARING RES, V37, P89, DOI 10.1016/0378-5955(89)90032-4 WARREN EH, 1989, HEARING RES, V37, P105, DOI 10.1016/0378-5955(89)90033-6 Whitehead M. L., 1996, CLIN ASPECTS HEARING, P199 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P950, DOI 10.1121/1.1912234 WILSON RH, 1978, J ACOUST SOC AM, V63, P147, DOI 10.1121/1.381706 WINSLOW RL, 1988, HEARING RES, V35, P165, DOI 10.1016/0378-5955(88)90116-5 WINSLOW RL, 1987, J NEUROPHYSIOL, V57, P1002 Yoshida N, 1999, J NEUROPHYSIOL, V82, P3168 NR 59 TC 27 Z9 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2003 VL 182 IS 1-2 BP 140 EP 152 DI 10.1016/S0378-5955(03)00190-4 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 720KR UT WOS:000185260400016 PM 12948609 ER PT J AU Moore, BCJ Moore, GA AF Moore, BCJ Moore, GA TI Discrimination of the fundamental frequency of complex tones with fixed and shifting spectral envelopes by normally hearing and hearing-impaired subjects SO HEARING RESEARCH LA English DT Article DE frequency discrimination; complex tone; fundamental frequency discrimination; pitch of complex tone; hearing impairment ID MODULATION-RATE DISCRIMINATION; AUDITORY FILTER SHAPES; PITCH PERCEPTION; TEMPORAL CUES; NONOVERLAPPING HARMONICS; AMPLITUDE-MODULATION; UNRESOLVED HARMONICS; SINUSOIDAL CARRIERS; PHASE SENSITIVITY; EXISTENCE REGION AB Difference limens for the fundamental frequency (170) of complex tones (DLCs) were measured for four normally hearing subjects and three subjects with cochlear hearing loss. The nominal F0 was 100, 200 or 400 Hz. The two tones to be compared contained either low resolved harmonics (RES), harmonics with intermediate resolvability (INT) or high unresolved harmonics (UNRES). For one set of stimuli (fixed harmonics, FH), the tones to be compared contained three harmonics of fixed number, so the changes in F0 were associated with spectral cues. For a second set of stimuli (Shaped), spectral cues were minimized by filtering stimuli through a fixed passband. For the INT and UNRES conditions, the excitation patterns evoked by the Shaped stimuli hardly changed when F0 was altered. To prevent subjects from comparing the frequencies of individual harmonics in the RES condition, subjects were required to detect F0 differences between two tones with non-overlapping harmonics. It was not possible to obtain repeatable results for the hearing-impaired subjects in this condition. The normally hearing subjects had smaller DLCs for the FH than for the Shaped stimuli for the RES condition, and the UNRES condition at the two higher F0s. However, DLCs were similar for the FH and Shaped stimuli for the INT condition and the UNRES condition at the 100-Hz F0, suggesting that spectral cues were not used in these conditions. Except for one subject with F0 = 400 Hz, the hearing-impaired subjects had smaller DLCs for the FH than for the Shaped stimuli, for both INT and UNRES conditions (although the difference was small for F0 = 200 Hz in the UNRES condition), suggesting that they used spectral cues for the FH stimuli. For the Shaped stimuli, DLCs were similar in the INT and UNRES conditions for the hearing-impaired subjects, but were smaller in the INT than the RES condition for the normally hearing subjects. We suggest that, in the INT condition with Shaped stimuli, normally hearing subjects used temporal fine structure cues to perform the task. The hearing-impaired subjects appeared to use only temporal envelope cues. (C) 2003 Elsevier B.V. All rights reserved. C1 Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England. RP Moore, BCJ (reprint author), Univ Cambridge, Dept Expt Psychol, Downing St, Cambridge CB2 3EB, England. RI Moore, Brian/I-5541-2012 CR AREHART KH, 1994, J ACOUST SOC AM, V95, P3574, DOI 10.1121/1.409975 BACON SP, 1992, J SPEECH HEAR RES, V35, P642 BILSEN FA, 1970, J ACOUST SOC AM, V47, P469, DOI 10.1121/1.1911916 BURNS EM, 1981, J ACOUST SOC AM, V70, P1655, DOI 10.1121/1.387220 BURNS EM, 1976, J ACOUST SOC AM, V60, P863, DOI 10.1121/1.381166 BUUS S, 1983, J ACOUST SOC AM, V74, P1709, DOI 10.1121/1.390279 CARLYON RP, 1994, J ACOUST SOC AM, V95, P3541, DOI 10.1121/1.409971 CULLEN JK, 1986, J ACOUST SOC AM, V79, P114, DOI 10.1121/1.393762 de Boer E, 1956, THESIS U AMSTERDAM FLANAGAN JL, 1958, J ACOUST SOC AM, V30, P435, DOI 10.1121/1.1909640 FORMBY C, 1985, J ACOUST SOC AM, V78, P70, DOI 10.1121/1.392456 GLASBERG BR, 1986, J ACOUST SOC AM, V79, P1020, DOI 10.1121/1.393374 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T GOLDSTEI.JL, 1973, J ACOUST SOC AM, V54, P1496, DOI 10.1121/1.1914448 Grose JH, 2002, J ACOUST SOC AM, V112, P2956, DOI 10.1121/1.1514934 HALL JW, 1981, J ACOUST SOC AM, V69, P509, DOI 10.1121/1.385480 Hall JW, 2003, J ACOUST SOC AM, V113, P986, DOI 10.1121/1.1532004 Hoekstra A., 1979, THESIS U HOSP GRONIN Hoekstra A., 1977, PSYCHOPHYSICS PHYSL, P263 HOUTGAST T, 1976, J ACOUST SOC AM, V60, P405, DOI 10.1121/1.381096 HOUTSMA AJM, 1990, J ACOUST SOC AM, V87, P304, DOI 10.1121/1.399297 JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982 LEE JM, 1994, J ACOUST SOC AM, V96, P2140, DOI 10.1121/1.410156 Lemanska J., 2002, Archives of Acoustics, V27 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Meddis R, 1997, J ACOUST SOC AM, V102, P1811, DOI 10.1121/1.420088 MEDDIS R, 1991, J ACOUST SOC AM, V89, P2866, DOI 10.1121/1.400725 Micheyl C, 1998, J ACOUST SOC AM, V104, P1039, DOI 10.1121/1.423322 Miller RL, 1999, J ACOUST SOC AM, V105, P311, DOI 10.1121/1.424552 Moore B., 1998, COCHLEAR HEARING LOS Moore B. C. J., 1988, CLIN AUDIOLOGY, P104 Moore B. C. J., 1976, BRIT J AUDIOL, V10, P17, DOI 10.3109/03005367609078803 Moore B. C. J., 1988, BASIC ISSUES HEARING, P421 Moore BC., 2003, INTRO PSYCHOL HEARIN MOORE BCJ, 1991, J ACOUST SOC AM, V89, P2858, DOI 10.1121/1.400724 MOORE BCJ, 2003, IN PRESS PITCH PERCE MOORE BCJ, 1990, J ACOUST SOC AM, V87, P2163, DOI 10.1121/1.399184 MOORE BCJ, 1977, PSYCHOPHYSICS PHYSL, P349 MOORE BCJ, 1984, J ACOUST SOC AM, V75, P550, DOI 10.1121/1.390527 MOORE BCJ, 1979, J EXP PSYCHOL, V31, P229 MOORE BCJ, 1990, ADV AUDIOL, P187 MOORE BCJ, 1993, J ACOUST SOC AM, V93, P452, DOI 10.1121/1.405625 Moore BCJ, 2001, J ACOUST SOC AM, V110, P1067, DOI 10.1121/1.1385177 MOORE BCJ, 1992, J ACOUST SOC AM, V91, P2881, DOI 10.1121/1.402925 MOORE BCJ, 1992, BRIT J AUDIOL, V26, P229, DOI 10.3109/03005369209076641 Moore GA, 2003, J ACOUST SOC AM, V113, P977, DOI 10.1121/1.1536631 OHGUSHI K, 1978, J ACOUST SOC AM, V64, P764, DOI 10.1121/1.382041 PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X PATTERSO.RD, 1973, J ACOUST SOC AM, V53, P1565, DOI 10.1121/1.1913504 PATTERSON RD, 1976, J ACOUST SOC AM, V59, P1450, DOI 10.1121/1.381034 PATTERSON RD, 1977, PSYCHOPHYSICS PHYSL, P363 Pick G., 1977, PSYCHOPHYSICS PHYSL, P273 PLOMP R, 1964, J ACOUST SOC AM, V36, P1628, DOI 10.1121/1.1919256 PLOMP R, 1967, J ACOUST SOC AM, V41, P1526, DOI 10.1121/1.1910515 RITSMA RJ, 1962, J ACOUST SOC AM, V34, P1224, DOI 10.1121/1.1918307 RITSMA RJ, 1963, J ACOUST SOC AM, V35, P1241, DOI 10.1121/1.1918679 RITSMA RJ, 1967, J ACOUST SOC AM, V42, P191, DOI 10.1121/1.1910550 ROSEN S, 1987, PSYCHOPHYSICS SPEECH, P481 SCHOUTEN J. F., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1418, DOI 10.1121/1.1918360 Schouten J. F., 1940, P K NED AKAD WETENSC, V43, P991 SHACKLETON TM, 1994, J ACOUST SOC AM, V95, P3529, DOI 10.1121/1.409970 SMOORENB.GF, 1970, J ACOUST SOC AM, V48, P924, DOI 10.1121/1.1912232 TERHARDT E, 1974, J ACOUST SOC AM, V55, P1061, DOI 10.1121/1.1914648 Tyler R. S., 1986, FREQUENCY SELECTIVIT, P309 WALLISER K, 1969, ACUSTICA, V21, P319 WOOLF NK, 1981, HEARING RES, V4, P335, DOI 10.1016/0378-5955(81)90017-4 NR 66 TC 33 Z9 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2003 VL 182 IS 1-2 BP 153 EP 163 DI 10.1016/S0378-5955(03)00191-6 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 720KR UT WOS:000185260400017 PM 12948610 ER PT J AU Ostroff, JM McDonald, KL Schneider, BA Alain, C AF Ostroff, JM McDonald, KL Schneider, BA Alain, C TI Aging and the processing of sound duration in human auditory cortex SO HEARING RESEARCH LA English DT Article DE aging; perception; evoked potential; sound duration; temporal processing; auditory; scene analysis ID TEMPORAL INTEGRATION; TONE BURSTS; RISE TIME; DISCRIMINATION; RESPONSES; LISTENERS; NOISE; POTENTIALS; FIELDS; YOUNG AB Age-related declines in coding the fine temporal structure of acoustic signals is proposed to play a critical role in the speech perception difficulties commonly observed in older individuals. This hypothesis was tested by measuring auditory evoked potentials elicited by sounds of various durations in young, middle-aged and older adults. All stimuli generated N1 and P2 waves that peaked at about 104 and 200 ms post-stimulus onset. The N1 amplitude increased linearly with increases in the tonal duration in young, middle-aged, and older adults. The P2 amplitude also increased linearly with signal duration, but only in young and middle-aged adults. The results demonstrate that the N1 and P2 waves can resolve duration differences as short as 2-4 ms and that normal aging decreases the temporal resolving power for processing small differences in sound duration. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Baycrest Ctr Geriatr Care, Rotman Res Inst, Toronto, ON M6A 2E1, Canada. Univ Toronto, Dept Psychol, Mississauga, ON L5L 1C6, Canada. Univ Toronto, Dept Psychol, Toronto, ON M5S 1A1, Canada. RP Alain, C (reprint author), Baycrest Ctr Geriatr Care, Rotman Res Inst, 3560 Bathurst St, Toronto, ON M6A 2E1, Canada. CR ABEL SM, 1990, SCAND AUDIOL, V19, P43, DOI 10.3109/01050399009070751 ABEL SM, 1972, J ACOUST SOC AM, V51, P1219, DOI 10.1121/1.1912963 Alain C, 1999, PSYCHOL AGING, V14, P507, DOI 10.1037/0882-7974.14.3.507 Alain C, 1997, EVOKED POTENTIAL, V104, P531, DOI 10.1016/S0168-5597(97)00057-9 ALAIN C, UNPUB PSYCHOL AGING ARLINGER SD, 1976, ACTA PHYSIOL SCAND, V98, P412, DOI 10.1111/j.1748-1716.1976.tb10330.x Bertoli S, 2002, CLIN NEUROPHYSIOL, V113, P396, DOI 10.1016/S1388-2457(02)00013-5 Fitzgibbons P J, 1996, J Am Acad Audiol, V7, P183 FITZGIBBONS PJ, 1994, J SPEECH HEAR RES, V37, P662 FORSS N, 1993, HEARING RES, V68, P89, DOI 10.1016/0378-5955(93)90067-B Gage NM, 2000, NEUROREPORT, V11, P2723, DOI 10.1097/00001756-200008210-00023 GORDONSALANT S, 1993, J SPEECH HEAR RES, V36, P1276 JOUTSINIEMI SL, 1989, AUDIOLOGY, V28, P325 MCCARTHY G, 1985, ELECTROEN CLIN NEURO, V62, P203, DOI 10.1016/0168-5597(85)90015-2 MILLER JL, 1979, PERCEPT PSYCHOPHYS, V25, P457, DOI 10.3758/BF03213823 ONISHI S, 1968, J ACOUST SOC AM, V44, P582, DOI 10.1121/1.1911124 Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3676, DOI 10.1121/1.418328 PETERSON GE, 1960, J ACOUST SOC AM, V32, P693, DOI 10.1121/1.1908183 Picton TW, 2000, CLIN NEUROPHYSIOL, V111, P53, DOI 10.1016/S1388-2457(99)00227-8 Schneider BA, 1999, J ACOUST SOC AM, V106, P371, DOI 10.1121/1.427062 Schneider Bruce A., 2001, Seminars in Hearing, V22, P227, DOI 10.1055/s-2001-15628 SKINNER PH, 1968, J SPEECH HEAR RES, V11, P301 NR 22 TC 31 Z9 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2003 VL 181 IS 1-2 BP 1 EP 7 DI 10.1016/S0378-5955(03)00113-8 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 702XU UT WOS:000184250700001 PM 12855356 ER PT J AU van Dijk, P Backes, WH AF van Dijk, P Backes, WH TI Brain activity during auditory backward and simultaneous masking tasks SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 24th Annual Midwinter Meeting of the Association for Research in Otolaryngology CY 2001 CL ST PETERSBURG, FLORIDA SP Assoc Res Otolaryngol DE human; hearing; backward masking; simultaneous masking; brain; functional magnetic resonance imaging ID CORTEX; CHILDREN; FMRI; RESPONSES; DEFICITS AB Normal-hearing adult subjects performed a simultaneous and a backward auditory masking task, while their brain activity was recorded using functional magnetic resonance imaging. No differences between these tasks were observed in the auditory brain regions on the superior temporal lobes. Brain activity was larger for simultaneous than backward masking in the left inferior parietal lobe, the left inferior frontal cortex, the posterior cingulate cortex, and the cerebellum. In contrast, backward masking gave more activation in the left and right anterior temporal poles, and the anterior cingulate cortex. Apparently, backward and simultaneous masking tasks activate different auditory processing streams and require different cognitive brain resources. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Hosp Maastricht, Dept Otorhinolaryngol & Head & Neck Surg, NL-6202 AZ Maastricht, Netherlands. Univ Hosp Maastricht, Dept Radiol, NL-6202 AZ Maastricht, Netherlands. RP van Dijk, P (reprint author), Univ Hosp Maastricht, Dept Otorhinolaryngol & Head & Neck Surg, POB 5800, NL-6202 AZ Maastricht, Netherlands. RI Van Dijk, Pim/E-8019-2010 OI Van Dijk, Pim/0000-0002-8023-7571 CR Backes WH, 2002, MAGNET RESON MED, V47, P90, DOI 10.1002/mrm.10015 Belin P, 1999, NEUROIMAGE, V10, P417, DOI 10.1006/nimg.1999.0480 Bishop DVM, 1999, J SPEECH LANG HEAR R, V42, P1295 Buss E, 1999, J SPEECH LANG HEAR R, V42, P844 Duzel E, 1999, P NATL ACAD SCI USA, V96, P1794, DOI 10.1073/pnas.96.4.1794 ELLIOTT LL, 1962, J ACOUST SOC AM, V34, P1116, DOI 10.1121/1.1918254 FASTL H, 1977, ACUSTICA, V36, P317 Friston KJ, 1994, HUMAN BRAIN MAPPING, V2, P189, DOI DOI 10.1002/HBM.460020402 Gazzaniga M.S., 1998, COGNITIVE NEUROSCIEN GREEN DM, 1990, J ACOUST SOC AM, V87, P2622 Hall DA, 2002, CEREB CORTEX, V12, P140, DOI 10.1093/cercor/12.2.140 Kraus N, 1996, SCIENCE, V273, P971, DOI 10.1126/science.273.5277.971 Maeder PP, 2001, NEUROIMAGE, V14, P802, DOI 10.1006/nimg.2001.0888 POSNER MI, 1994, TRENDS NEUROSCI, V17, P75, DOI 10.1016/0166-2236(94)90078-7 Pugh KR, 1996, NEUROIMAGE, V4, P159, DOI 10.1006/nimg.1996.0067 Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800 Rauschecker JP, 1998, AUDIOL NEURO-OTOL, V3, P86, DOI 10.1159/000013784 Roth Daphne Ari-Even, 2001, Journal of Basic and Clinical Physiology and Pharmacology, V12, P145 Talairach J., 1988, COPLANAR STEREOTAXIC TALLAL P, 1973, NATURE, V241, P468, DOI 10.1038/241468a0 Tallal P, 1998, EXP BRAIN RES, V123, P210, DOI 10.1007/s002210050563 VANDIJK P, 2002, ARO MIDW RES M ARO M, P246 Wessinger CM, 2001, J COGNITIVE NEUROSCI, V13, P1, DOI 10.1162/089892901564108 Wright BA, 1997, NATURE, V387, P176, DOI 10.1038/387176a0 WRIGHT BA, 1996, J ACOUST SOC AM, V100, P2818, DOI 10.1121/1.416611 NR 25 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2003 VL 181 IS 1-2 BP 8 EP 14 DI 10.1016/S0378-5955(03)00130-8 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 702XU UT WOS:000184250700002 PM 12855357 ER PT J AU Sawada, S Takeda, T Kitano, H Takeuchi, S Okada, T Ando, M Suzuki, M Kakigi, A AF Sawada, S Takeda, T Kitano, H Takeuchi, S Okada, T Ando, M Suzuki, M Kakigi, A TI Aquaporin-1 (AQP1) is expressed in the stria vascularis of rat cochlea SO HEARING RESEARCH LA English DT Article DE endolymph; water transport; polymerase chain reaction; immunohistochemistry ID INNER-EAR; INTERMEDIATE CELLS; GUINEA-PIG; LOCALIZATION; MEMBRANE; CHANNELS; PROTEIN; GERBILS; DUCT; SAC AB Cochlea endolymph, produced by the stria vascularis, is essential for normal inner ear function. Abnormal endolymphatic volumes correlate closely with pathological conditions such as Meniere's disease. The critical roles played by aquaporins, which facilitate osmotic movement of water molecules, are known in a variety of tissues. We investigated the expression of aquaporin-1 (AQP1) in the rat inner ear using reverse transcription polymerase chain reaction and immunohistochemical methods. We obtained novel data showing that not just AQP1 mRNA but also AQP1 protein is expressed in the stria vascularis, in addition to other data confirming previous reports. AQP1 immuno reactivity localized to the intermediate cells in the stria vascularis. The above finding suggests that AQP1 may play a role in the water distribution associated with vigorous ion transport in the stria vascularis since the intermediate part of the stria vascularis contains both intermediate cells and the basolateral parts of marginal cells, both of which express ion transporters abundantly. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Kochi Med Sch, Dept Otolaryngol, Nanko Ku, Kochi 7838505, Japan. Shiga Univ Med Sci, Dept Otolaryngol, Shiga, Japan. Kochi Med Sch, Dept Anat, Nanko Ku, Kochi 7838505, Japan. Kochi Med Sch, Dept Physiol, Nanko Ku, Kochi 7838505, Japan. RP Sawada, S (reprint author), Kochi Med Sch, Dept Otolaryngol, Nanko Ku, Kochi 7838505, Japan. CR BAGGERSJOBACK D, 1999, MENIERES DIS, P81 Beitz E, 1999, HEARING RES, V132, P76, DOI 10.1016/S0378-5955(99)00036-2 Crouch JJ, 1997, J HISTOCHEM CYTOCHEM, V45, P773 DENKER BM, 1988, J BIOL CHEM, V263, P15634 Hallpike C. S., 1938, J LARYNG, V53, P625, DOI 10.1017/S0022215100003947 IWANO T, 1989, J HISTOCHEM CYTOCHEM, V37, P353 KIMURA RS, 1967, ANN OTO RHINOL LARYN, V76, P664 Schnermann J, 1998, P NATL ACAD SCI USA, V95, P9660, DOI 10.1073/pnas.95.16.9660 Stankovic KM, 1995, AM J PHYSIOL-CELL PH, V269, pC1450 Takeuchi S, 1998, NEUROSCI LETT, V247, P175, DOI 10.1016/S0304-3940(98)00318-8 Takeuchi S, 2000, BIOPHYS J, V79, P2572 Takeuchi S, 1999, AM J PHYSIOL-CELL PH, V277, pC91 TAKEUCHI S, 1995, HEARING RES, V83, P89, DOI 10.1016/0378-5955(94)00191-R Takeuchi S, 1996, J MEMBRANE BIOL, V150, P47, DOI 10.1007/s002329900029 Takumi Y, 1998, EUR J NEUROSCI, V10, P3584, DOI 10.1046/j.1460-9568.1998.00360.x van Os CH, 2000, PFLUG ARCH EUR J PHY, V440, P513, DOI 10.1007/s004240000317 NR 16 TC 24 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2003 VL 181 IS 1-2 BP 15 EP 19 DI 10.1016/S0378-5955(03)00131-X PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 702XU UT WOS:000184250700003 PM 12855358 ER PT J AU Nicolas, MT Barhanin, J Reyes, R Dememes, D AF Nicolas, MT Barhanin, J Reyes, R Dememes, D TI Cellular localization of TWIK-1, a two-pore-domain potassium channel in the rodent inner ear SO HEARING RESEARCH LA English DT Article DE inner car; KCNK1; 2P-domain K+ channel; immunocytochemistry; confocal microscopy ID VESTIBULAR DARK CELLS; STRIAL MARGINAL CELLS; K+ CHANNEL; APICAL MEMBRANE; NONSELECTIVE CATION; MAXI K+; IMMUNOREACTIVITY; CHINCHILLA; CALRETININ; SECRETION AB K+ channels in the inner ear regulate the secretion and homeostasis of K+, i.e. the flux of K+ ions required to ensure good mechanosensory transduction. We studied the expression and cellular localization of TWIK-1 and TWIK-2, two-pore-domain K+ channels responsible for background K+ currents. Reverse transcription-polymerase chain reaction showed that TWIK-1 mRNA is present in the vestibular end organs, vestibular ganglion and cochlea. In contrast, the TWIK-2 mRNA was not detected in the inner ear. Immunocytochemical experiments using confocal microscopy showed that TWIK-1 is specifically localized in 'non-sensory' cells of the inner ear, in the dark cells of the vestibule and in the strial marginal cells of the cochlea. All of these cell types secrete and regulate the K+ endolymph production and homeostasis. The labeling was strictly limited to the apical membranes of these cells. TWIK-1 was also detected in the cytoplasm of the large neurons of vestibular ganglion and their fibers. The finding that TWIK-1 is specifically distributed in certain areas of the inner ear suggests that this type of K+ channel plays a role in the regulation of K+ homeostasis in dark cells and in strial marginal cells. This role has yet to be identified. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Montpellier 2, INSERM, U432, F-34095 Montpellier 05, France. CNRS, Inst Pharmacol Mol & Cellulaire, F-06560 Valbonne, France. Univ Chile, Fac Med, Programa Fisiopatol, Inst Ciencias Biomed, Santiago 7, Chile. RP Nicolas, MT (reprint author), Univ Montpellier 2, INSERM, U432, Pl Eugene Bataillon,POB 089, F-34095 Montpellier 05, France. CR ALBRECHT L, 2002, P 25 ARO M, P78 Arrighi I, 1998, FEBS LETT, V425, P310, DOI 10.1016/S0014-5793(98)00260-9 BAIRD RA, 1988, J NEUROPHYSIOL, V60, P182 Choe S, 2002, NAT REV NEUROSCI, V3, P115, DOI 10.1038/nrn727 CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1006/abio.1987.9999 Cluzeaud F, 1998, AM J PHYSIOL-CELL PH, V275, pC1602 DEMEMES D, 1992, BRAIN RES, V582, P168, DOI 10.1016/0006-8993(92)90334-6 DESMADRYL G, 1992, EXP BRAIN RES, V89, P105 FERRARY E, 1998, KIDNEY INT, V53, pS98 Lesage F, 2000, AM J PHYSIOL, V279, P793 Lesage F, 1996, EMBO J, V15, P6400 Lesage F, 1997, FEBS LETT, V402, P28, DOI 10.1016/S0014-5793(96)01491-3 Lesage F, 1996, EMBO J, V15, P1004 MARCUS DC, 1992, AM J PHYSIOL, V262, pC1423 MARCUS DC, 1994, BIOPHYS J, V66, P1939 MARCUS DC, 1994, AM J PHYSIOL, V267, pC857 Medhurst A D, 2001, Brain Res Mol Brain Res, V86, P101 Nicolas MT, 2001, HEARING RES, V153, P132, DOI 10.1016/S0378-5955(00)00268-9 Orias M, 1997, AM J PHYSIOL-RENAL, V273, pF663 Sage CL, 2002, J MEMBRANE BIOL, V185, P103, DOI 10.1007/s00232-001-0116-z TAKEUCHI S, 1992, AM J PHYSIOL, V262, pC1430 TAKEUCHI S, 1992, HEARING RES, V61, P86, DOI 10.1016/0378-5955(92)90039-P Talley EM, 2001, J NEUROSCI, V21, P7491 Trussell L, 2000, P NATL ACAD SCI USA, V97, P3786, DOI 10.1073/pnas.97.8.3786 Vetter DE, 1996, NEURON, V17, P1251, DOI 10.1016/S0896-6273(00)80255-X Wang ZG, 1998, CIRCULATION, V98, P2422 WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 NR 27 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2003 VL 181 IS 1-2 BP 20 EP 26 DI 10.1016/S0378-5955(03)00162-X PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 702XU UT WOS:000184250700004 PM 12855359 ER PT J AU Firzlaff, U Schuller, G AF Firzlaff, U Schuller, G TI Spectral directionality of the external ear of the lesser spear-nosed bat, Phyllostomus discolor SO HEARING RESEARCH LA English DT Article DE pinna; head-related transfer function; spatial hearing; microchiroptera ID SOUND PRESSURE TRANSFORMATION; BIG BROWN BAT; EPTESICUS-FUSCUS; HEARING; PINNA; CUES; LOCALIZATION; SENSITIVITY; CAT; CHIROPTERA AB The directional dependence of sound pressure transformation of head and pinna has been measured in the phyllostomid bat Phyllostomus discolor for the frontal hemisphere using a maximum length sequence method. The azimuthal position of the axis of highest pinna gain came closer to the midsagital plane with increasing frequency. The acoustic axis of highest pinna gain was further characterized by an increase of the elevation angle with increasing frequency and a specific decrease at 55 kHz. Additionally. a spectral notch separated two regions of high and low frequency hearing at specific elevation and frequency combinations. The special influence of the tragus on the position of the pinna gain axis and the spectral notches is demonstrated. The functional implications of the spectral notch for hearing in P. discolor are discussed. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Munich, Dept Biol 2, D-80333 Munich, Germany. RP Firzlaff, U (reprint author), Univ Munich, Dept Biol 2, Luisenstr 14, D-80333 Munich, Germany. CR BLAUERT B, 1996, SPATIAL HEARING BUTLER RA, 1993, HEARING RES, V67, P220, DOI 10.1016/0378-5955(93)90250-5 CARLILE S, 1990, J ACOUST SOC AM, V88, P2180, DOI 10.1121/1.400115 COLES RB, 1989, J COMP PHYSIOL A, V165, P269, DOI 10.1007/BF00619201 COLES RB, 1986, J EXP BIOL, V121, P371 Esser KH, 1996, J COMP PHYSIOL A, V178, P779 ESSER KH, 1989, ETHOLOGY, V82, P156 ESSER KH, 1995, LEARN MEMORY, V1, P193 Fenzl T, 2002, EUR J NEUROSCI, V16, P1974, DOI 10.1046/j.1460-9568.2002.02261.x FLEMING TH, 1972, ECOLOGY, V53, P555, DOI 10.2307/1934771 Fuzessery ZM, 1996, HEARING RES, V95, P1, DOI 10.1016/0378-5955(95)00223-5 Gardner A. L., 1977, Special Publ Mus Texas Tech Univ, VNo. 13, P293 GRINNELL AD, 1967, SYSTEMES SONARS ANIM, V1, P451 GUPPY A, 1988, J COMP PHYSIOL A, V162, P653, DOI 10.1007/BF01342641 HARTLEY DJ, 1987, J ACOUST SOC AM, V82, P1892, DOI 10.1121/1.395684 HARTUNG K, 1999, MODELLALGORITHMEN RI JEN PHS, 1988, HEARING RES, V34, P101, DOI 10.1016/0378-5955(88)90098-6 Keller CH, 1998, HEARING RES, V118, P13, DOI 10.1016/S0378-5955(98)00014-8 Koay G, 1997, HEARING RES, V105, P202, DOI 10.1016/S0378-5955(96)00208-0 Koay G, 2002, HEARING RES, V171, P96, DOI 10.1016/S0378-5955(02)00458-6 LAVAL R K, 1970, Southwestern Naturalist, V15, P1 LAWRENCE BD, 1982, SCIENCE, V218, P481, DOI 10.1126/science.7123247 MAKOUS JC, 1986, HEARING RES, V24, P73, DOI 10.1016/0378-5955(86)90006-7 MEHRGARDT S, 1977, J ACOUST SOC AM, V61, P1567, DOI 10.1121/1.381470 MIDDLEBROOKS JC, 1989, J ACOUST SOC AM, V86, P89, DOI 10.1121/1.398224 MOORE BCJ, 1989, J ACOUST SOC AM, V85, P820, DOI 10.1121/1.397554 MUSICANT AD, 1990, J ACOUST SOC AM, V87, P757, DOI 10.1121/1.399545 MUSICANT AD, 1984, HEARING RES, V14, P185, DOI 10.1016/0378-5955(84)90017-0 NIXDORF A, 2002, 13 NEUR DOKT 27 29 J Nowak RM, 1994, WALKERS BATS WORLD OBRIST MK, 1993, J EXP BIOL, V180, P119 PHILLIPS DP, 1982, HEARING RES, V8, P13, DOI 10.1016/0378-5955(82)90031-4 RICE JJ, 1992, HEARING RES, V58, P132, DOI 10.1016/0378-5955(92)90123-5 RIFE DD, 1989, J AUDIO ENG SOC, V37, P419 Rothman Stanley, 1982, PUBLIC OPIN, V5, P47 Schmidt S., 1984, Myotis, V21-22, P62 SCHMIDT U, 1991, J COMP PHYSIOL A, V168, P45, DOI 10.1007/BF00217102 SCHROEDER MR, 1979, J ACOUST SOC AM, V66, P467 WIGHTMAN FL, 1989, J ACOUST SOC AM, V85, P858, DOI 10.1121/1.397557 Wotton JM, 2000, J ACOUST SOC AM, V107, P1034, DOI 10.1121/1.428283 WOTTON JM, 1995, J ACOUST SOC AM, V98, P1423, DOI 10.1121/1.413410 Young ED, 1996, J ACOUST SOC AM, V99, P3064, DOI 10.1121/1.414883 NR 42 TC 25 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2003 VL 181 IS 1-2 BP 27 EP 39 DI 10.1016/S0378-5955(03)00164-3 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 702XU UT WOS:000184250700005 PM 12855360 ER PT J AU Kurian, R Krupp, NL Saunders, JC AF Kurian, R Krupp, NL Saunders, JC TI Tip link loss and recovery on chick short hair cells following intense exposure to sound SO HEARING RESEARCH LA English DT Article DE tip link; chick; acoustic overstimulation; hair cell; stereocilia ID SCANNING-ELECTRON-MICROSCOPY; SEVERE ACOUSTIC TRAUMA; BASILAR PAPILLA; BUNDLE STIFFNESS; TECTORIAL MEMBRANE; COATING TECHNIQUE; NEONATAL CHICKS; COCHLEAR NERVE; BIRD COCHLEA; GUINEA-PIG AB Stereocilia tip links on chick short hair cells (SHCs) were counted in the 'patch' lesion produced by acoustic overstimulation. Tip links were also counted on tall hair cells (THCs) immediately superior to the lesion. Eight groups were studied with three exposed to intense sound for differing durations. Three other groups were allowed to recover from the longest exposure for different time periods. Tip link counts from non-exposed control hair cells came from two other groups. Chicks exposed for 4, 24 or 48 h to a 120-dB SPL 0.9-kHz pure tone showed SHC tip link loss of 30.3, 40.6, and 35.5%, respectively. Chicks exposed for 48 h were allowed to recover for 24, 96 or 288 h, and showed systematic tip link recovery to control levels. Tip link loss and recovery in THCs adjacent to the patch lesion were identical to that seen in SHCs. After 288 h of recovery, surviving SHCs were distinguished from newly regenerated SHCs in the patch lesion. A comparison of tip link presence in the surviving (74%) and regenerated (84%) SHCs revealed a significant difference. These results suggest that the process of tip link destruction and recovery following acoustic overstimulation is the same for THCs and SHCs. This observation is surprising based on differences in the degree of acoustic injury to THC and SHC regions of the papillae, and the difference between THC and SHC sensory hair bundle stimulation. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Penn, Dept Otorhinolaryngol Head & Neck Surg, Philadelphia, PA 19104 USA. RP Saunders, JC (reprint author), Univ Penn, Dept Otorhinolaryngol Head & Neck Surg, 5 Ravdin ORL,3400 Spruce St, Philadelphia, PA 19104 USA. CR ADLER HJ, 1993, HEARING RES, V86, P43 ADLER HJ, 1992, ACTA OTO-LARYNGOL, V112, P444, DOI 10.3109/00016489209137425 ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X AVINASH GB, 1993, HEARING RES, V67, P139, DOI 10.1016/0378-5955(93)90241-R Chen L, 1996, HEARING RES, V98, P152, DOI 10.1016/0378-5955(96)00086-X COTANCHE DA, 1987, HEARING RES, V30, P197, DOI 10.1016/0378-5955(87)90136-5 COTANCHE DA, 1987, HEARING RES, V30, P181, DOI 10.1016/0378-5955(87)90135-3 COTANCHE DA, 1992, EXP NEUROL, V115, P23, DOI 10.1016/0014-4886(92)90215-C Cotanche DA, 1999, AUDIOL NEURO-OTOL, V4, P271, DOI 10.1159/000013852 COTANCHE DA, 1992, ABSTR ASS RES OT, V15, P116 COTANCHE DA, 1990, HEARING RES, V46, P29, DOI 10.1016/0378-5955(90)90137-E COTANCHE DA, 1994, ANAT EMBRYOL, V189, P1 Duncan RK, 1998, HEARING RES, V124, P69, DOI 10.1016/S0378-5955(98)00118-X Duncan RK, 2000, J COMP PHYSIOL A, V186, P1095, DOI 10.1007/s003590000164 Erulkar J. S., 1996, Scanning Microscopy, V10, P1127 FURNESS DN, 1986, HEARING RES, V21, P243, DOI 10.1016/0378-5955(86)90222-4 HENRY WJ, 1988, OTOLARYNG HEAD NECK, V98, P607 HEYWOOD P, 1981, ACTA OTO-LARYNGOL, V91, P183, DOI 10.3109/00016488109138498 Husbands JM, 1999, HEARING RES, V135, P135, DOI 10.1016/S0378-5955(99)00101-X Kachar B, 2000, P NATL ACAD SCI USA, V97, P13336, DOI 10.1073/pnas.97.24.13336 MARKIN VS, 1995, ANNU REV BIOPH BIOM, V24, P59 Marquis RE, 1997, P NATL ACAD SCI USA, V94, P11923, DOI 10.1073/pnas.94.22.11923 MARSH RR, 1990, HEARING RES, V46, P229, DOI 10.1016/0378-5955(90)90004-9 MCFADDEN EA, 1989, HEARING RES, V41, P205, DOI 10.1016/0378-5955(89)90012-9 OSBORNE MP, 1991, SCANNING MICROSCOPY, V5, P555 PICKLES JO, 1984, HEARING RES, V15, P103, DOI 10.1016/0378-5955(84)90041-8 PICKLES JO, 1989, HEARING RES, V41, P31, DOI 10.1016/0378-5955(89)90176-7 PICKLES JO, 1987, HEARING RES, V25, P173, DOI 10.1016/0378-5955(87)90089-X PICKLES JO, 1990, HEARING RES, V50, P139, DOI 10.1016/0378-5955(90)90040-V Plontke SKR, 1999, BRAIN RES, V842, P262, DOI 10.1016/S0006-8993(99)01897-1 RAPHAEL Y, 1993, J COMP NEUROL, V330, P521, DOI 10.1002/cne.903300408 Raphael Y, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P30 RAPHAEL Y, 1991, HEARING RES, V53, P173, DOI 10.1016/0378-5955(91)90052-B RAPHAEL Y, 1991, CELL MOTIL CYTOSKEL, V18, P215, DOI 10.1002/cm.970180307 Saunders JC, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P62 SAUNDERS JC, 1991, J ACOUST SOC AM, V90, P136, DOI 10.1121/1.401307 Saunders JC, 1996, J NEUROPHYSIOL, V76, P770 SAUNDERS JC, 1992, EXP NEUROL, V115, P13, DOI 10.1016/0014-4886(92)90213-A SAUNDERS JC, 1986, BIOL CHANGE OTOLARYN, P319 Schneider ME, 2002, NATURE, V418, P837, DOI 10.1038/418837a SHEPARD GMG, 1994, J NEUROSCI, V14, P8627 Smolders JWT, 1999, AUDIOL NEURO-OTOL, V4, P286, DOI 10.1159/000013853 Smolders JWT, 1995, HEARING RES, V92, P151, DOI 10.1016/0378-5955(95)00214-6 SZYMKO YM, 1995, J COMP PHYSIOL A, V176, P727 TILNEY LG, 1986, DEV BIOL, V116, P100, DOI 10.1016/0012-1606(86)90047-3 ZHAO Y, 1996, P NATL ACAD SCI USA, V94, P15469 NR 46 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2003 VL 181 IS 1-2 BP 40 EP 50 DI 10.1016/S0378-5955(03)00165-5 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 702XU UT WOS:000184250700006 PM 12855361 ER PT J AU Lazar, R Metherate, R AF Lazar, R Metherate, R TI Spectral interactions, but no mismatch negativity, in auditory cortex of anesthetized rat SO HEARING RESEARCH LA English DT Article DE mismatch negativity; event-related potential; auditory cortex; rat; anesthesia ID STIMULUS DEVIANCE; ACOUSTIC CHANGE; CAT; MMN AB We used an 'oddball' stimulation paradigm to evoke epidural, event-related potentials over auditory cortex in urethane/xylazine-anesthetized rats, in order to study the neural mechanisms underlying the mismatch negativity (MMN). Oddball stimulus sets included deviants (10 kHz, 10% probability) and one of six standards that ranged from 1.25 to 9.75 kHz (overall stimulus rate 2/s). Controls included 'reference' responses (10 kHz, stimulus rate 1/5 s) obtained before and after each oddball set. We found that the deviant-evoked response was modified by the preceding standards, and the degree of modification varied systematically with the spectral separation between the standard and deviant. However, the modification was apparent relative to the reference, rather than relative to the standard (as with the MMN), and did not resemble the MMN. In fact, we found no evidence for the MMN in this preparation. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Calif Irvine, Dept Neurobiol & Behav, Irvine, CA 92697 USA. RP Metherate, R (reprint author), Univ Calif Irvine, Dept Neurobiol & Behav, 2205 McGaugh Hall, Irvine, CA 92697 USA. CR ALHO K, 1995, EAR HEARING, V16, P38, DOI 10.1097/00003446-199502000-00004 Brosch M, 1997, J NEUROPHYSIOL, V77, P923 CALFORD MB, 1995, J NEUROPHYSIOL, V73, P1876 CSEPE V, 1995, EAR HEARING, V16, P91 CSEPE V, 1987, ELECTROEN CLIN NEURO, V66, P571, DOI 10.1016/0013-4694(87)90103-9 Ehret G, 1997, J COMP PHYSIOL A, V181, P635, DOI 10.1007/s003590050146 HOCHERMAN S, 1981, J NEUROPHYSIOL, V45, P987 JAVITT DC, 1994, BRAIN RES, V667, P192, DOI 10.1016/0006-8993(94)91496-6 KELLY JB, 1977, J COMP PHYSIOL PSYCH, V91, P930, DOI 10.1037/h0077356 KING C, 1995, HEARING RES, V85, P45, DOI 10.1016/0378-5955(95)00028-3 KRAUS N, 1994, J NEUROPHYSIOL, V72, P1270 KRAUS N, 1994, J ACOUST SOC AM, V96, P2758, DOI 10.1121/1.411282 LUCE RD, 1993, SOUND HEARING CONCEP Naatanen R., 1992, ATTENTION BRAIN FUNC Naatanen R, 2001, TRENDS NEUROSCI, V24, P283, DOI 10.1016/S0166-2236(00)01790-2 Ruusuvirta T, 1998, NEUROSCI LETT, V248, P45, DOI 10.1016/S0304-3940(98)00330-9 TIITINEN H, 1994, NATURE, V372, P90, DOI 10.1038/372090a0 NR 17 TC 25 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2003 VL 181 IS 1-2 BP 51 EP 56 DI 10.1016/S0378-5955(03)00166-7 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 702XU UT WOS:000184250700007 PM 12855362 ER PT J AU Walpurger, V Hebing-Lennartz, G Denecke, H Pietrowsky, R AF Walpurger, V Hebing-Lennartz, G Denecke, H Pietrowsky, R TI Habituation deficit in auditory event-related potentials in tinnitus complainers SO HEARING RESEARCH LA English DT Article DE tinnitus; tinnitus complainer; tinnitus non-complainer; habituation; event-related potential; vertex potential; NIHL; noise-induced hearing loss ID CHOLECYSTOKININ-ANALOG CERULETIDE; EVOKED RESPONSES; ATTENTION; SLEEP AB According to Hallam's habituation theory of tinnitus, most of the suffering caused by tinnitus is due to difficulties in habituation to the perceived tinnitus sound. Thus tinnitus complainers are assumed to display a less pronounced habituation as compared to tinnitus non-complainers. In the present study, an experimental test of this theory was undertaken using event-related potentials (ERPs) as indicators of habituation to exogenously administered tone pips. In 22 patients (10 tinnitus complainers and 12 tinnitus non-complainers) and 10 healthy controls, the habituation of ERPs to series of auditory stimuli across four consecutive trials was studied. Diminuition of the N-1 and P-2 amplitudes of the ERPs was taken to measure the habituation process across the trials. Tinnitus complainers showed a less distinct habituation of the N-1 - P-2 amplitude difference (vertex potential) compared to tinnitus non-complainers. The results are in accordance with Hallam's theory and support the notion that patients with a severe tinnitus fail to properly habituate to auditory stimuli. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Dusseldorf, Dept Psychoendocrinol, D-40225 Dusseldorf, Germany. Univ Dusseldorf, Dept Clin Psychol, D-4000 Dusseldorf, Germany. RP Walpurger, V (reprint author), Univ Dusseldorf, Dept Psychoendocrinol, Univ Str 1, D-40225 Dusseldorf, Germany. CR Attias J, 1996, EAR HEARING, V17, P327, DOI 10.1097/00003446-199608000-00004 ATTIAS J, 1993, HEARING RES, V71, P106, DOI 10.1016/0378-5955(93)90026-W Attias J, 1995, J Basic Clin Physiol Pharmacol, V6, P173 AXELSSON A, 1989, British Journal of Audiology, V23, P53, DOI 10.3109/03005368909077819 BORN J, 1989, PSYCHOPHARMACOLOGY, V101, P34 BURKHART MA, 1993, ELECTROEN CLIN NEURO, V88, P42, DOI 10.1016/0168-5597(93)90027-M CARLSSON SG, 1991, J PSYCHOSOM RES, V35, P509, DOI 10.1016/0022-3999(91)90045-P COLES RRA, 1984, J LARYNGOL OTOL S, V9, P195 Coles R R, 1984, J Laryngol Otol Suppl, V9, P7 GEISSER S, 1958, ANN MATH STAT, V29, P885, DOI 10.1214/aoms/1177706545 Gerken GM, 2001, HEARING RES, V157, P52, DOI 10.1016/S0378-5955(01)00277-5 GOEBEL G, 1997, TINNITUS FRAGENBOGEN Hallam R. S, 1987, TINNITUS, P156 HALLAM RS, 1988, BRIT J CLIN PSYCHOL, V27, P213 Hallam RS, 1984, CONTRIBUTIONS MED PS, V3, P31 Hallam RS, 1996, SCAND AUDIOL, V25, P263, DOI 10.3109/01050399609074965 HALLBERG LRM, 1993, BRIT J AUDIOL, V27, P19, DOI 10.3109/03005369309077885 Hautzinger M., 1993, ALLGEMEINE DEPRESSIO Jacobson GP, 1996, HEARING RES, V97, P66 JAKES S, 1987, British Journal of Audiology, V21, P259, DOI 10.3109/03005368709076418 JAKES SC, 1985, AUDIOLOGY, V24, P159 Jasper H. H., 1958, ELECTROENCEPHALOGRAP, V10, P371, DOI DOI 10.1016/0013-4694(58)90053-1 Jastreboff PJ, 1996, P 5 INT TINN SEM POR, P500 Jastreboff P.J., 1996, P 5 INT TINN SEM 199, P58 Kau RJ, 1997, ORL J OTO-RHINO-LARY, V59, P79 KNOTT VJ, 1991, PROG NEURO-PSYCHOPH, V15, P257, DOI 10.1016/0278-5846(91)90089-J Lemaire MC, 1995, AUDIOLOGY, V34, P287 MAURIZI M, 1985, AUDIOLOGY, V24, P207 Meikle M, 1984, J Laryngol Otol Suppl, V9, P17 *MRC I HEAR RES, 1987, TINN, P46 PIETROWSKY R, 1990, NEUROPSYCHOBIOLOGY, V23, P41, DOI 10.1159/000118714 PIETROWSKY R, 1993, J PSYCHOPHYSIOL, V7, P3 SANDMAN CA, 1987, INT J PSYCHOPHYSIOL, V5, P215, DOI 10.1016/0167-8760(87)90008-0 TYLER RS, 1983, J SPEECH HEAR DISORD, V48, P150 NR 34 TC 32 Z9 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2003 VL 181 IS 1-2 BP 57 EP 64 DI 10.1016/S0378-5955(03)00172-2 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 702XU UT WOS:000184250700008 PM 12855363 ER PT J AU Wang, J Ding, DL Salvi, RJ AF Wang, J Ding, DL Salvi, RJ TI Carboplatin-induced early cochlear lesion in chinchillas SO HEARING RESEARCH LA English DT Article DE inner hair cell; ototoxicity; carboplatin; auditory nerve; spiral ganglion neuron ID HAIR CELL LOSS; KAINIC ACID EXCITOTOXICITY; TREATED CHINCHILLAS; INNER; DAMAGE; OTOTOXICITY; THRESHOLD; CISPLATIN; INHIBITORS; SYNAPSES AB Carboplatin preferentially damages inner hair cells (IHC) and type I spiral ganglion neurons (SGNs) in the chinchilla; however, the temporal sequence of events leading to the destruction of these structures is poorly understood. To better understand the mechanisms leading up to the destruction of IHCs and type I SGNs, we measured the activity in single auditory nerve fibers for the first 8 It following carboplatin treatment and also monitored the development of histopathologies in SGNs and IHCs using a dose of carboplatin that killed approximately 50% of the IHCs. The spontaneous discharge rate (SDR) showed a slight increase around 3 h post carboplatin followed by a significant decline at 4-5 h. The saturation driven discharge rate (DDR) showed a significant increase 1-5 h post carboplatin. These physiological changes were associated with the formation of small vacuoles in type I afferent terminals and proximal nerve fibers 1-6 h post carboplatin; signs of IHC damage were first observed around 24-48 h. Thus. the neurotoxic effects of carboplatin occur approximately a day before the IHCs are damaged. The large fluctuations in SDR and DDR that occur several hours after carboplatin treatment are most likely due to the neurotoxic effects of carboplatin. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Dalhousie Univ, Sch Human Commun Disorders, Halifax, NS B3H 1R2, Canada. SUNY Buffalo, Hearing Res Lab, Buffalo, NY 14214 USA. RP Wang, J (reprint author), Dalhousie Univ, Sch Human Commun Disorders, 5599 Fenwick St, Halifax, NS B3H 1R2, Canada. CR Cheng AG, 1999, BRAIN RES, V850, P234, DOI 10.1016/S0006-8993(99)01983-6 DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 DING D, 2002, ABSTR ASS RES OT, V25, P36 DING D, 2001, JARO-J ASSOC RES OTO, V3, P68 Ding D, 1998, CHIN J OTOLARYNGOL, V33, P30 Ding DL, 1999, ANN NY ACAD SCI, V884, P152, DOI 10.1111/j.1749-6632.1999.tb08640.x Ding DL, 1997, AUDIOL NEURO-OTOL, V2, P155 Eitel K, 1999, CANCER LETT, V142, P11, DOI 10.1016/S0304-3835(99)00076-2 Hofstetter P, 1997, HEARING RES, V112, P199, DOI 10.1016/S0378-5955(97)00123-8 Hu BH, 1999, HEARING RES, V128, P125, DOI 10.1016/S0378-5955(98)00210-X Kasabdji D, 1996, LIFE SCI, V59, P1793, DOI 10.1016/0024-3205(96)00522-X Li X, 1998, Zhonghua Er Bi Yan Hou Ke Za Zhi, V33, P199 Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 Lockwood DS, 2000, AUDIOL NEURO-OTOL, V5, P263, DOI 10.1159/000013890 MCKEAGE MJ, 1995, DRUG SAFETY, V13, P228 Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037 PUEL JL, 1995, CR ACAD SCI III-VIE, V318, P67 Pujol R, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P100 RYAN A, 1975, NATURE, V253, P44, DOI 10.1038/253044a0 SAITO T, 1991, HEARING RES, V56, P143, DOI 10.1016/0378-5955(91)90163-4 SALVI RJ, 1983, HEARING RES, V10, P37, DOI 10.1016/0378-5955(83)90017-5 Spicer SS, 1999, HEARING RES, V136, P139, DOI 10.1016/S0378-5955(99)00118-5 Sun H, 2001, J COMP NEUROL, V430, P172, DOI 10.1002/1096-9861(20010205)430:2<172::AID-CNE1023>3.0.CO;2-W Takeno S, 1998, AUDIOL NEURO-OTOL, V3, P281, DOI 10.1159/000013800 TAKENO S, 1994, SCANNING MICROSCOPY, V8, P97 TAUDY M, 1992, AUDIOLOGY, V31, P293 Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 WAKE M, 1994, LARYNGOSCOPE, V104, P488 Wang J, 1997, HEARING RES, V107, P67, DOI 10.1016/S0378-5955(97)00020-8 Zheng XY, 1997, HEARING RES, V105, P65, DOI 10.1016/S0378-5955(96)00188-8 NR 30 TC 21 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2003 VL 181 IS 1-2 BP 65 EP 72 DI 10.1016/S0378-5955(03)00176-X PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 702XU UT WOS:000184250700009 PM 12855364 ER PT J AU Ryugo, DK Cahill, HB Rose, LS Rosenbaum, BT Schroeder, ME Wright, AL AF Ryugo, DK Cahill, HB Rose, LS Rosenbaum, BT Schroeder, ME Wright, AL TI Separate forms of pathology in the cochlea of congenitally deaf white cats SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Midwinter Meeting of the Association-for-Research-in-Otolaryngology CY JAN 27-31, 2002 CL ST PETERSBURG BEACH, FLORIDA SP Assoc Res Otolaryngol DE ABRs; development; hearing; organ of Corti; scala media ID AUDITORY-NERVE FIBERS; POSTNATAL-DEVELOPMENT; INNER-EAR; HEREDITARY DEAFNESS; HEARING-LOSS; NUCLEUS; MOUSE; NEURONS; DEGENERATION; REMOVAL AB Congenital deafness due to cochlear pathology can have an immediate or progressive onset. The timing of this onset could have a significant impact on the development of structures in the central auditory system, depending on the animal's hearing status during its critical period. In order to determine whether cats in our deaf white cat colony suffered from progressive hearing loss, they were tested repeatedly in 30-day intervals using standard auditory evoked brainstem response (ABR) methodology. ABR thresholds did not change over time, indicating that deafness in our colony was not progressive. Moreover, different forms of cochlear pathology were associated with deafness. One form (67% of the deaf ears) had a collapsed Reissner's membrane that obliterated the scala media, resembling what is called the Scheibe deformity in humans. A second form (18%) exhibited excessive epithelial growth within the bony labyrinth. A third form (15%) combined excessive epithelial growth in the apex and a collapsed Reissner's membrane in the base. Cochleae having an abnormally thin tectorial membrane and an outward bulging Reissner's membrane were associated with elevated thresholds (poor hearing). (C) 2003 Elsevier Science B.V. All rights reserved. C1 Johns Hopkins Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Ctr Hearing Sci, Baltimore, MD 21205 USA. Johns Hopkins Univ, Sch Med, Dept Neurosci, Ctr Hearing Sci, Baltimore, MD 21205 USA. RP Ryugo, DK (reprint author), Johns Hopkins Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Ctr Hearing Sci, Traylor 510,720 Rutland Ave, Baltimore, MD 21205 USA. CR Bamber RC, 1933, J GENET, V27, P407, DOI 10.1007/BF02981752 BERGSMA DR, 1971, J HERED, V62, P171 Bosher S. K., 1967, J LARYNGOL OTOL, V80, P222 BOSHER SK, 1965, PROC R SOC SER B-BIO, V162, P147, DOI 10.1098/rspb.1965.0030 Brighton P, 1991, ANN NY ACAD SCI, V630, P152 BROWN K S, 1971, Birth Defects Original Article Series, V7, P102 BRUGGE JF, 1983, DEV AUDITORY VESTIBU, P89 BURKARD R, 1984, ELECTROEN CLIN NEURO, V57, P83, DOI 10.1016/0013-4694(84)90010-5 DEOL MS, 1970, PROC R SOC SER B-BIO, V175, P201, DOI 10.1098/rspb.1970.0019 DEOL MS, 1956, J EMBRYOL EXP MORPH, V4, P190 Deol M S, 1968, J Med Genet, V5, P137, DOI 10.1136/jmg.5.2.137 DEOL MS, 1954, J GENET, V52, P562, DOI 10.1007/BF02985081 GANTZ BJ, 1994, AM J OTOL, V15, P1 Holme RH, 1999, CURR OPIN GENET DEV, V9, P309, DOI 10.1016/S0959-437X(99)80046-X Holme RH, 2002, HEARING RES, V169, P13, DOI 10.1016/S0378-5955(02)00334-9 Keats BJB, 1999, GENOME RES, V9, P7 KETTNER RE, 1985, J NEUROSCI, V5, P275 Larsen S A, 1984, Acta Otolaryngol Suppl, V417, P1 LEE DJ, 2001, ARO ABSTR, V24, P272 Li SG, 2002, DEVELOPMENT, V129, P3523 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 Madden VJ, 1997, HEARING RES, V111, P76, DOI 10.1016/S0378-5955(97)00107-X Mair I W, 1973, Acta Otolaryngol Suppl, V314, P1 Mostafapour SP, 2000, J COMP NEUROL, V426, P561, DOI 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G NADOL JB, 1982, LARYNGOSCOPE, V92, P1028 OLMSTEAD CE, 1980, PHYSIOL BEHAV, V24, P705, DOI 10.1016/0031-9384(80)90401-1 PARKS TN, 1979, J COMP NEUROL, V183, P665, DOI 10.1002/cne.901830313 Powell TP, 1962, J ANAT, V96, P219 PUJOL R, 1973, ACTA OTO-LARYNGOL, V76, P1, DOI 10.3109/00016487309121476 PUJOL R, 1977, ACTA OTO-LARYNGOL, V83, P59, DOI 10.3109/00016487709128813 QUITTNER AL, 1991, AM J OTOL, V12, P89 REBILLARD G, 1976, ACTA OTO-LARYNGOL, V82, P48, DOI 10.3109/00016487609120862 REBILLARD M, 1981, HEARING RES, V5, P189, DOI 10.1016/0378-5955(81)90045-9 REBILLARD M, 1981, HEARING RES, V5, P179, DOI 10.1016/0378-5955(81)90044-7 Redd EE, 2000, HEARING RES, V147, P160, DOI 10.1016/S0378-5955(00)00129-5 RETZIUS G, 1884, GEHOROGAN WIRBELTIER, V2 ROMAND R, 1980, ACTA OTO-LARYNGOL, V90, P391, DOI 10.3109/00016488009131740 ROMAND R, 1984, EXP BRAIN RES, V56, P395 RUBEL EW, 1984, ANNU REV PHYSIOL, V46, P213 Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849 Ryugo DK, 2000, COCHLEAR IMPLANTS, P33 Ryugo DK, 1997, J COMP NEUROL, V385, P230, DOI 10.1002/(SICI)1096-9861(19970825)385:2<230::AID-CNE4>3.0.CO;2-2 Ryugo DK, 1998, J COMP NEUROL, V397, P532, DOI 10.1002/(SICI)1096-9861(19980810)397:4<532::AID-CNE6>3.0.CO;2-2 SCHEIBE A, 1892, ARCH OTOLARYNGOL, V21, P12 Scheibe A., 1895, Z OHRENHEILKD, V27, P95 SHNERSON A, 1980, J COMP PHYSIOL PSYCH, V94, P36, DOI 10.1037/h0077648 SOKOLICH WG, 1977, J ACOUST SOC AM, V62, P12 STEEL KP, 1980, NATURE, V288, P159, DOI 10.1038/288159a0 Suga F, 1970, Laryngoscope, V80, P81 TRUNE DR, 1982, J COMP NEUROL, V209, P425, DOI 10.1002/cne.902090411 TRUNE DR, 1982, J COMP NEUROL, V209, P409, DOI 10.1002/cne.902090410 Tucci DL, 2000, COCHLEAR IMPLANTS, P189 Tyler R. S., 1996, EAR HEAR S, V17, p38S VILLABLANCA JR, 1979, DEV PSYCHOBIOL, V12, P101, DOI 10.1002/dev.420120204 WALSH EJ, 1986, J ACOUST SOC AM, V79, P712, DOI 10.1121/1.393461 WALSH EJ, 1987, HEARING RES, V28, P97, DOI 10.1016/0378-5955(87)90157-2 WEBSTER DB, 1979, ANN OTO RHINOL LARYN, V88, P684 WEBSTER DB, 1983, HEARING RES, V12, P145, DOI 10.1016/0378-5955(83)90123-5 WILSON T G, 1959, Acta Otolaryngol, V50, P269, DOI 10.3109/00016485909129195 Wolff D, 1942, J HERED, V33, P39 NR 60 TC 17 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2003 VL 181 IS 1-2 BP 73 EP 84 DI 10.1016/S0378-5955(03)00171-0 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 702XU UT WOS:000184250700010 PM 12855365 ER PT J AU Jongkamonwiwat, N Phansuwan-Pujito, P Sarapoke, P Chetsawang, B Casalotti, SO Forge, A Dodson, H Govitrapong, P AF Jongkamonwiwat, N Phansuwan-Pujito, P Sarapoke, P Chetsawang, B Casalotti, SO Forge, A Dodson, H Govitrapong, P TI The presence of opioid receptors in rat inner ear SO HEARING RESEARCH LA English DT Article DE opioid receptor; cochlea; enkephalin; endorphin; inner ear; inner hair cell ID PERFORMANCE LIQUID-CHROMATOGRAPHY; ENKEPHALIN-LIKE IMMUNOREACTIVITY; GUINEA-PIG COCHLEA; IMMUNOHISTOCHEMICAL LOCALIZATION; AUDITORY FUNCTION; SPINAL-CORD; BRAIN-STEM; IMMUNOELECTRON MICROSCOPY; OLIVOCOCHLEAR NEURONS; ELECTRON-MICROSCOPY AB Opioid peptides have been identified in the inner ear but relatively little information is available about the expression and distribution of their receptors. The aim of the present study was therefore to identify and localize the mu (MOR), delta (DOR) and kappa (KOR) opioid receptor subtypes within the rat cochlea. The expression of these opioid receptor subtypes was determined by reverse transcriptase-polymerase chain reaction followed by nested polymerase chain reaction analysis. Amplification of RNAs from rat cerebral cortex (positive control) and rat cochlea with MOR, DOR and KOR primers resulted in products of the predicted lengths, 564, 356 and 276 bp, respectively. Restriction digestion confirmed the identity of these products. All three receptor subtypes were identified in the cochlea and further characterized by immunocytochemistry. DOR and KOR immunoreactivity was found in inner and outer hair cells, bipolar cells of the spiral ganglion and interdental cells of the limbus. In contrast, no MOR immunoreactivity was observed in the inner and outer hair cells, and interdental cells. All three types of receptor fibers were also detected in the bipolar cells and nerve fibers within the spiral ganglion. In addition, MOR- and KOR-containing nerve fibers were observed in the limbus. These findings are the first report of the presence of all three classical opioid receptors in the inner ear and suggest that these receptors may have both presynaptic and postsynaptic roles. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Mahidol Univ, Neurobehav Biol Ctr, Inst Sci & Technol Res & Dev, Nakhon Pathom 73170, Thailand. Srinakharinwirot Univ, Dept Anat, Fac Med, Bangkok 10110, Thailand. UCL, Inst Laryngol & Otol, London WC1X 8EE, England. RP Govitrapong, P (reprint author), Mahidol Univ, Neurobehav Biol Ctr, Inst Sci & Technol Res & Dev, Salaya Campus, Nakhon Pathom 73170, Thailand. EM grpkk@mahidol.ac.th CR ABOOD ME, 1994, J NEUROSCI RES, V37, P714, DOI 10.1002/jnr.490370605 Agarwals D, 1993, LIFE SCI, V52, P193 ALTSCHULER RA, 1985, HEARING RES, V17, P249, DOI 10.1016/0378-5955(85)90069-3 ALTSCHULER RA, 1986, AM J OTOLARYNG, V7, P100, DOI 10.1016/S0196-0709(86)80038-2 ALTSCHULER RA, 1984, HEARING RES, V16, P1617 ARVIDSSON U, 1995, J NEUROSCI, V15, P1215 ARVIDSSON U, 1995, J NEUROSCI, V15, P3328 ARVIDSSON U, 1995, P NATL ACAD SCI USA, V92, P5062, DOI 10.1073/pnas.92.11.5062 ASCHOFF A, 1987, J COMP NEUROL, V264, P56, DOI 10.1002/cne.902640106 BAUMHAKER Y, 1993, LIFE SCI, V52, P205 BESSE D, 1990, BRAIN RES, V521, P15, DOI 10.1016/0006-8993(90)91519-M BOURGOIN S, 1994, FUNDAM CLIN PHARM, V8, P307 BURKI C, 1993, ORL J OTO-RHINO-LARY, V55, P3 Byku M, 2000, BRAIN RES, V857, P1, DOI 10.1016/S0006-8993(99)02290-8 CHAVKIN C, 1982, SCIENCE, V215, P413, DOI 10.1126/science.6120570 CHEN Y, 1993, MOL PHARMACOL, V44, P8 CHETSAWANG B, 1999, BIOCHEM BIOPH RES CO, V218, P877 DADO RJ, 1993, NEUROREPORT, V5, P341, DOI 10.1097/00001756-199312000-00041 DRESCHER DG, 1992, J NEUROCHEM, V59, P765, DOI 10.1111/j.1471-4159.1992.tb09436.x DRESCHER MJ, 1983, J NEUROCHEM, V41, P309, DOI 10.1111/j.1471-4159.1983.tb04745.x ELGOYHEN AB, 1994, CELL, V79, P705, DOI 10.1016/0092-8674(94)90555-X EYBALIN M, 1990, J ELECTRON MICR TECH, V15, P209, DOI 10.1002/jemt.1060150303 EYBALIN M, 1987, BRAIN RES, V421, P336, DOI 10.1016/0006-8993(87)91303-5 EYBALIN M, 1984, BRAIN RES, V305, P313, DOI 10.1016/0006-8993(84)90437-2 EYBALIN M, 1985, BRAIN RES, V331, P389, DOI 10.1016/0006-8993(85)91570-7 EYBALIN M, 1984, HEARING RES, V13, P135, DOI 10.1016/0378-5955(84)90104-7 EYBALIN M, 1993, PHYSIOL REV, V73, P309 FEX J, 1981, P NATL ACAD SCI-BIOL, V78, P1255, DOI 10.1073/pnas.78.2.1255 Helfert RH, 1991, NEUROBIOLOGY HEARING, P1 HOFFMAN DW, 1983, HEARING RES, V9, P71, DOI 10.1016/0378-5955(83)90135-1 HOFFMAN DW, 1986, NEUROBIOLOGY HEARING, P371 HOFFMAN DW, 1985, HEARING RES, V17, P47, DOI 10.1016/0378-5955(85)90129-7 HONDA CN, 1995, NEUROREPORT, V6, P1025, DOI 10.1097/00001756-199505090-00019 Jordan BA, 2000, DNA CELL BIOL, V19, P19, DOI 10.1089/104454900314672 Kaewsuk S, 2001, EUR J PHARMACOL, V411, P11, DOI 10.1016/S0014-2999(00)00768-8 Kieffer BL, 1995, CELL MOL NEUROBIOL, V15, P615, DOI 10.1007/BF02071128 KIMURA RS, 1990, AM J OTOLARYNG, V11, P99, DOI 10.1016/0196-0709(90)90006-H LEHTOSALO JI, 1984, HEARING RES, V16, P101, DOI 10.1016/0378-5955(84)90028-5 LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309 LIBERMAN MC, 1980, HEARING RES, V3, P189, DOI 10.1016/0378-5955(80)90046-5 LORD JAH, 1977, NATURE, V267, P495, DOI 10.1038/267495a0 MARTIN WR, 1976, J PHARMACOL EXP THER, V197, P517 MINAMI M, 1993, FEBS LETT, V329, P291, DOI 10.1016/0014-5793(93)80240-U Morley BJ, 1998, MOL BRAIN RES, V53, P78, DOI 10.1016/S0169-328X(97)00272-6 Popa R, 2000, ACTA OTO-LARYNGOL, V120, P484, DOI 10.1080/000164800750045974 Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3 Rask-Andersen H, 2000, HEARING RES, V141, P1, DOI 10.1016/S0378-5955(99)00179-3 ROBERTSON D, 1987, HEARING RES, V27, P177, DOI 10.1016/0378-5955(87)90018-9 RYAN AF, 1991, EXP BRAIN RES, V87, P259 SAFIEDDINE S, 1992, EUR J NEUROSCI, V4, P981, DOI 10.1111/j.1460-9568.1992.tb00124.x Safieddine S, 1996, MOL BRAIN RES, V40, P127 Sahley TL, 1996, EAR HEARING, V17, P552, DOI 10.1097/00003446-199612000-00011 Sahley TL, 1996, EAR HEARING, V17, P341, DOI 10.1097/00003446-199608000-00006 SAHLEY TL, 1994, EAR HEARING, V15, P422, DOI 10.1097/00003446-199412000-00003 Scholtz AW, 1998, HEARING RES, V118, P123, DOI 10.1016/S0378-5955(98)00023-9 Spangler K., 1991, NEUROBIOLOGY HEARING, P27 Spicer SA, 2000, HEARING RES, V143, P147, DOI 10.1016/S0378-5955(00)00037-X TACHIBANA M, 1992, HEARING RES, V59, P14, DOI 10.1016/0378-5955(92)90096-6 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 NR 59 TC 22 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2003 VL 181 IS 1-2 BP 85 EP 93 DI 10.1016/S0378-5955(03)00175-8 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 702XU UT WOS:000184250700011 PM 12855366 ER PT J AU McKay, CM Henshall, KR AF McKay, CM Henshall, KR TI The perceptual effects of interphase gap duration in cochlear implant stimulation SO HEARING RESEARCH LA English DT Article DE cochlear implant; electric stimulation; loudness ID PULSATILE ELECTRICAL-STIMULATION; AUDITORY-NERVE; FIBER AB The most common current pulse shape used for cochlear implants is a biphasic rectangular pulse. The interphase gap (IPG) is the duration of the zero-current portion which lies between the two phases. It is known from single-nerve studies in animals that, as the IPG decreases, the biphasic pulse becomes less efficient in activating the nerve cell. Thus, it can be predicted that stimulation using smaller IPGs will necessitate the use of higher currents to maintain the loudness required by the cochlear implantee. The development of contemporary processing schemes commonly involves the maximization of the rate parameter, and to achieve this in sequential pulsatile stimulation, the IPG as well as the pulse phase duration must be minimized. This experiment investigated the effect of IPG on loudness in eight cochlear implantees who use the CI24 implant manufactured by Cochlear Ltd. An exponential increase in current level was required to maintain equal loudness when IPG is reduced from 100 to 45 and 8.4 mus. The effect of IPG was greater at lower levels, was greater for shorter pulse durations (26 mus compared to 52 mus), and was not significantly different for the rates (1 kHz or 4 kHz) tested. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Melbourne, Human Commun Res Ctr, Dept Otolaryngol, Melbourne, Vic 3002, Australia. RP McKay, CM (reprint author), Univ Melbourne, Human Commun Res Ctr, Dept Otolaryngol, 384-388 Albert St, Melbourne, Vic 3002, Australia. CR HAMBRECHT FT, 1985, COCHLEAR IMPLANTS, P29 Javel E, 2000, HEARING RES, V140, P45, DOI 10.1016/S0378-5955(99)00186-0 McKay CM, 1998, J ACOUST SOC AM, V104, P1061, DOI 10.1121/1.423316 McKay CM, 2001, J ACOUST SOC AM, V110, P1514, DOI 10.1121/1.1394222 Miller CA, 2001, HEARING RES, V151, P79, DOI 10.1016/S0300-2977(00)00082-6 PARKINS CW, 1989, HEARING RES, V41, P137, DOI 10.1016/0378-5955(89)90007-5 Rubinstein JT, 2001, IEEE T BIO-MED ENG, V48, P1065, DOI 10.1109/10.951508 Shepherd RK, 1999, HEARING RES, V130, P171, DOI 10.1016/S0378-5955(99)00011-8 VANDENHONERT C, 1979, ANN BIOMED ENG, V7, P117 NR 9 TC 22 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2003 VL 181 IS 1-2 BP 94 EP 99 DI 10.1016/S0378-5955(03)00177-1 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 702XU UT WOS:000184250700012 PM 12855367 ER PT J AU Pourbakht, A Yamasoba, T AF Pourbakht, A Yamasoba, T TI Ebselen attenuates cochlear damage caused by acoustic trauma SO HEARING RESEARCH LA English DT Article DE noise-induced hearing loss; cochlea; ebselen; hair cell ID INDUCED HEARING-LOSS; PIG INNER-EAR; NITRIC-OXIDE; GUINEA-PIG; FREE-RADICALS; CISPLATIN OTOTOXICITY; CEREBRAL-ISCHEMIA; OXIDATIVE STRESS; NOISE EXPOSURE; IRON CHELATOR AB Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one), a seleno-organic compound, mimics glutathione peroxidase and reacts with peroxynitrite. It is reported to protect against gentamicin- and cisplatin-induced ototoxicity. We investigated whether it protects the cochlea from acoustic trauma. Male pigmented guinea pigs (250-300 g) with normal auditory brainstem response (ABR) thresholds were exposed for 5 It to 125 dB sound pressure level octave band noise centered at 4 kHz. One hour before and 18 h after exposure, they received orally 0.25 ml chloroform solution containing 0, 10, or 30 mg/kg ebselen (n = 6, 5 and 5, respectively). The protective effect of ebselen was evaluated by ABR measurement and quantitative hair cell assessment. Treatment significantly (P < 0.01) reduced the extent of permanent threshold shifts and outer hair cell loss. Interestingly, the protective effect of a 30 mg/kg dose was less than that of a 10 mg/kg dose. There were no adverse systemic or auditory function effects in three unexposed control subjects given 30 mg/kg ebselen. These findings indicate that ebselen attenuates noise-induced cochlear damage. The concentration that provides optimal protection against such damage has now to be determined. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Tokyo, Dept Otolaryngol, Bunkyo Ku, Tokyo 1138655, Japan. RP Yamasoba, T (reprint author), Univ Tokyo, Dept Otolaryngol, Bunkyo Ku, Hongo 7-3-1, Tokyo 1138655, Japan. CR ADES HW, 1974, ACTA OTO-LARYNGOL, V78, P192, DOI 10.3109/00016487409126345 Amaee FR, 1997, ACTA OTO-LARYNGOL, V117, P329, DOI 10.3109/00016489709113403 Arteel GE, 1999, FEBS LETT, V445, P226, DOI 10.1016/S0014-5793(99)00073-3 Barker JE, 1996, DEV NEUROSCI-BASEL, V18, P391, DOI 10.1159/000111432 BECKMAN JS, 1990, P NATL ACAD SCI USA, V87, P1620, DOI 10.1073/pnas.87.4.1620 Briviba K, 1996, BIOCHEM J, V319, P13 COYLE JT, 1993, SCIENCE, V262, P689, DOI 10.1126/science.7901908 DAWSON DA, 1995, NEUROSCI LETT, V185, P65, DOI 10.1016/0304-3940(94)11226-9 DAWSON VL, 1991, P NATL ACAD SCI USA, V88, P6368, DOI 10.1073/pnas.88.14.6368 ENGSTROM B, 1983, HEARING RES, V12, P251, DOI 10.1016/0378-5955(83)90110-7 Fessenden JD, 1998, HEARING RES, V118, P168, DOI 10.1016/S0378-5955(98)00027-6 Franz P, 1996, ACTA OTO-LARYNGOL, V116, P726, DOI 10.3109/00016489609137914 HAMERNIK RP, 1989, HEARING RES, V38, P199, DOI 10.1016/0378-5955(89)90065-8 HELMER ME, 1979, ARCH BIOCHEM BIOPHYS, V193, P340 Hight NG, 2003, HEARING RES, V179, P21, DOI 10.1016/S0378-5955(03)00067-4 Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3 HUNTERDU.IM, 1973, J ACOUST SOC AM, V54, P1179, DOI 10.1121/1.1914364 Husain K, 2001, HEARING RES, V159, P14, DOI 10.1016/S0378-5955(01)00306-9 Kong SK, 1996, P NATL ACAD SCI USA, V93, P3377, DOI 10.1073/pnas.93.8.3377 Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3 Kopke RD, 1997, AM J OTOL, V18, P559 Lataye R, 1996, J ACOUST SOC AM, V99, P1621, DOI 10.1121/1.414885 Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 LIBERMAN MC, 1979, ACTA OTO-LARYNGOL, V88, P161, DOI 10.3109/00016487909137156 LIBERMAN MC, 1995, HEARING RES, V90, P158, DOI 10.1016/0378-5955(95)00160-2 LUNEC J, 1990, ANN CLIN BIOCHEM, V27, P173 LYNCH ED, 2003, EBSELEN MEDIATED PRO Masumoto H, 1996, CHEM RES TOXICOL, V9, P262, DOI 10.1021/tx950115u MATSUI T, 1990, PHARMACOLOGY OF CEREBRAL ISCHEMIA 1990, P363 Ohinata Y, 2000, HEARING RES, V146, P28, DOI 10.1016/S0378-5955(00)00096-4 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 Parnham M, 2000, EXPERT OPIN INV DRUG, V9, P607, DOI 10.1517/13543784.9.3.607 Popa R, 2001, ACTA OTO-LARYNGOL, V121, P454 Pourbakht A, 2003, HEARING RES, V178, P70, DOI 10.1016/S0378-5955(03)00039-X Pujol R, 1999, ANN NY ACAD SCI, V884, P249, DOI 10.1111/j.1749-6632.1999.tb08646.x QUIRK WS, 1994, HEARING RES, V74, P217, DOI 10.1016/0378-5955(94)90189-9 ROBERTSON D, 1980, HEARING RES, V2, P39, DOI 10.1016/0378-5955(80)90015-5 Roussyn I, 1996, ARCH BIOCHEM BIOPHYS, V330, P216, DOI 10.1006/abbi.1996.0245 Rybak LP, 2000, AM J OTOL, V21, P513 Rybak LP, 1999, LARYNGOSCOPE, V109, P1740, DOI 10.1097/00005537-199911000-00003 SAUNDERS JC, 1986, HEARING RES, V23, P233, DOI 10.1016/0378-5955(86)90112-7 SCHEWE C, 1994, BIOCHEM PHARMACOL, V48, P65, DOI 10.1016/0006-2952(94)90224-0 SCHEWE T, 1995, GEN PHARMACOL, V26, P1153, DOI 10.1016/0306-3623(95)00003-J SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 Shi XR, 2002, HEARING RES, V164, P49 Sies H, 1997, J BIOL CHEM, V272, P27812, DOI 10.1074/jbc.272.44.27812 SIESJPO B K, 1989, Cerebrovascular and Brain Metabolism Reviews, V1, P165 SLEPECKY N, 1982, CELL TISSUE RES, V20, P245 Tabuchi K, 2001, HEARING RES, V160, P31, DOI 10.1016/S0378-5955(01)00315-X Takumida M, 2001, ACTA OTO-LARYNGOL, V121, P342 TAKUMIDA M, 1988, ORL, V60, P67 Takumida M, 1998, EUR ARCH OTO-RHINO-L, V255, P184, DOI 10.1007/s004050050040 Takumida M, 1997, ORL J OTO-RHINO-LARY, V59, P311 Takumida M, 1999, ORL J OTO-RHINO-LARY, V61, P63, DOI 10.1159/000027643 TILNEY LG, 1982, HEARING RES, V7, P181, DOI 10.1016/0378-5955(82)90013-2 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 YAMASOBA T, 2001, NOISE HLTH, V11, P65 Yamasoba T, 1999, BRAIN RES, V815, P317, DOI 10.1016/S0006-8993(98)01100-7 Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6 Yamasoba T, 1998, BRAIN RES, V804, P72, DOI 10.1016/S0006-8993(98)00660-X Yamauchi M, 1998, BRAIN RES, V780, P253, DOI 10.1016/S0006-8993(97)01201-8 NR 62 TC 47 Z9 50 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2003 VL 181 IS 1-2 BP 100 EP 108 DI 10.1016/S0378-5955(03)00178-3 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 702XU UT WOS:000184250700013 PM 12855368 ER PT J AU Ekborn, A Laurell, G Ehrsson, H Miller, J AF Ekborn, A Laurell, G Ehrsson, H Miller, J TI Intracochlear administration of thiourea protects against cisplatin-induced outer hair cell loss in the guinea pig SO HEARING RESEARCH LA English DT Article DE cisplatin; ototoxicity; protection; thiourea; intracochlear administration ID INDUCED HEARING-LOSS; TERM FOLLOW-UP; D-METHIONINE; INNER-EAR; SODIUM THIOSULFATE; OTOTOXICITY; GENTAMICIN; TOXICITY; PLATINUM; AGENTS AB Amelioration of cisplatin-induced side-effects is of great clinical importance. Local administration of a cytoprotective agent to the inner ear offers a possibility to prevent cisplatin-induced ototoxicity without risk of interference with the antitumour effect. The ideal substance for local administration has yet to be identified. Thiourea (TU) has unique properties that make it an interesting candidate. This study was initiated to test the hypothesis that TU given by local administration protects against cisplatin ototoxicity in the guinea pig. After baseline auditory brainstem response (ABR) assessment, the left cochlea was implanted with a microtip catheter connected to an osmotic pump filled with either 27 mg/ml TU in artificial perilymph (AP), or AP administered for the full duration of the study. Three days post-implant, animals with normal ABRs received an intravenous injection of 8 mg/kg body-weight cisplatin. Five days after the cisplatin treatment ABRs were reassessed, animals decapitated and bilateral cytocochleograms prepared. TU-treated ears demonstrated significantly lower outer hair cell (OHC) loss as compared to contralateral untreated ears, and significantly lower OHC loss compared to AP-treated ears. ABR threshold shift did not differ significantly between the two groups. It can be postulated that TU demonstrates partial protection against cisplatin-induced ototoxicity. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Karolinska Hosp, Dept Otorhinolaryngol, S-17176 Stockholm, Sweden. Karolinska Pharm, S-10401 Stockholm, Sweden. Karolinska Inst, Dept Oncol Pathol, Stockholm, Sweden. Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Ekborn, A (reprint author), Karolinska Hosp, Dept Otorhinolaryngol, S-17176 Stockholm, Sweden. CR AAMDAL S, 1988, CANCER CHEMOTH PHARM, V21, P129 AAMDAL S, 1987, CANCER TREAT REV, V14, P389, DOI 10.1016/0305-7372(87)90035-1 BERRY JM, 1990, J CLIN ONCOL, V8, P1585 Bokemeyer C, 1996, BRIT J CANCER, V74, P2036, DOI 10.1038/bjc.1996.673 BROWN JN, 1993, HEARING RES, V70, P167, DOI 10.1016/0378-5955(93)90155-T Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9 Cooper JS, 1999, JAMA-J AM MED ASSOC, V281, P1623, DOI 10.1001/jama.281.17.1623 Driscoll CLW, 1997, LARYNGOSCOPE, V107, P83, DOI 10.1097/00005537-199701000-00017 Ekborn A, 2002, HEARING RES, V165, P53, DOI 10.1016/S0378-5955(02)00277-0 Ekborn A, 2000, HEARING RES, V140, P38, DOI 10.1016/S0378-5955(99)00190-2 FICHTINGERSCHEPMAN AMJ, 1995, J INORG BIOCHEM, V58, P177, DOI 10.1016/0162-0134(94)00045-C Goycoolea MV, 2001, ACTA OTO-LARYNGOL, V121, P437, DOI 10.1080/000164801300366552 Grigsby PW, 2001, CLIN OBSTET GYNECOL, V44, P531, DOI 10.1097/00003081-200109000-00008 Harner SG, 2001, OTOL NEUROTOL, V22, P210, DOI 10.1097/00129492-200103000-00016 Hoffer ME, 2001, LARYNGOSCOPE, V111, P2046, DOI 10.1097/00005537-200111000-00033 Kaltenbach JA, 1997, OTOLARYNG HEAD NECK, V117, P493, DOI 10.1016/S0194-5998(97)70020-2 Klis SFL, 2002, HEARING RES, V164, P138, DOI 10.1016/S0378-5955(01)00425-7 KOHONEN A, 1969, ACTA OTO-LARYNGOL, V68, P90, DOI 10.3109/00016486909121547 KOMUNE S, 1981, OTOLARYNG HEAD NECK, V89, P275 Laurell G, 2002, HEARING RES, V173, P198, DOI 10.1016/S0378-5955(02)00613-5 LAURELL G, 1990, LARYNGOSCOPE, V100, P724 LAURELL G, 1991, J OTOLARYNGOL, V20, P158 LAURELL G, 1989, HEARING RES, V38, P27, DOI 10.1016/0378-5955(89)90125-1 Li GM, 2001, NEUROTOXICOLOGY, V22, P163, DOI 10.1016/S0161-813X(00)00010-3 Lokich J, 2001, CANCER INVEST, V19, P756, DOI 10.1081/CNV-100106152 Miller J.H., 2001, NOISE INDUCED HEARIN, P215 Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5 OTTO WC, 1988, HEARING RES, V35, P79, DOI 10.1016/0378-5955(88)90042-1 Piccart MJ, 2001, ANN ONCOL, V12, P1195, DOI 10.1023/A:1012259625746 Prieskorn DM, 2000, HEARING RES, V140, P212, DOI 10.1016/S0378-5955(99)00193-8 RILEY CM, 1982, POLYHEDRON, V1, P201, DOI 10.1016/S0277-5387(00)80987-0 Rybak LP, 1999, TOXICOL SCI, V47, P195, DOI 10.1093/toxsci/47.2.195 Rybak LP, 1999, ANN NY ACAD SCI, V884, P143 Rybak LP, 2000, AM J OTOL, V21, P513 Saito T, 1997, EUR ARCH OTO-RHINO-L, V254, P281, DOI 10.1007/BF02905989 Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4 Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 Valentini V, 2001, INT J RADIAT ONCOL, V51, P371, DOI 10.1016/S0360-3016(01)01618-2 Yonezawa Y, 2001, MUTAT RES-GEN TOX EN, V490, P21, DOI 10.1016/S1383-5718(00)00148-0 NR 39 TC 12 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2003 VL 181 IS 1-2 BP 109 EP 115 DI 10.1016/S0378-5955(03)00181-3 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 702XU UT WOS:000184250700014 PM 12855369 ER PT J AU Rutkowski, RG Miasnikov, AA Weinberger, NM AF Rutkowski, RG Miasnikov, AA Weinberger, NM TI Characterisation of multiple physiological fields within the anatomical core of rat auditory cortex SO HEARING RESEARCH LA English DT Article DE auditory cortex; microelectrode mapping; rat; temporal cortex 1 ID MEDIAL GENICULATE-BODY; GERBIL MERIONES-UNGUICULATUS; SINGLE NEURONS; TONOTOPIC ORGANIZATION; RESPONSE PROPERTIES; FUNCTIONAL-ORGANIZATION; FREQUENCY REPRESENTATION; TOPOGRAPHIC ORGANIZATION; NUCLEUS BASALIS; ALBINO-RAT AB The organisation and response properties of the rat auditory cortex were investigated with single and multi-unit electrophysiological recording. Two tonotopically organised 'core' fields, i.e. the primary (A1) and anterior (AAF) auditory fields, as well as three non-tonotopically organised 'belt' fields, i.e. the posterodorsal (PDB), dorsal (DB) and anterodorsal (ADB) belt fields, were identified. Compared to neurones in A1, units in AAF exhibited broader frequency tuning, as well as shorter minimum, modal and mean first spike latencies. In addition, units in AAF showed significantly higher thresholds and best SPLs, as well as broader dynamic ranges. Units in PDB, DB and ADB were characterised by strong responses to white noise and showed either poor or no responses to pure tones. The differences in response properties found between the core and belt fields may reflect a functional specificity in processing different features of auditory stimuli. The present study also combined microelectrode mapping with Nissl staining to determine if the physiological differences between A1 and AAF corresponded to cytoarchitectonically defined borders. Both A1 and AAF were located within temporal cortex 1 (Tel), with AAF occupying an anteroventral subdivision of Tel, indicating that the two neighbouring, physiologically distinct fields are cytoarchitectonically homogeneous. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Calif Irvine, Dept Neurobiol & Behav, Ctr Neurobiol Learning & Memory, Irvine, CA 92697 USA. RP Weinberger, NM (reprint author), Univ Calif Irvine, Dept Neurobiol & Behav, Ctr Neurobiol Learning & Memory, 212 Bonney Res Lab, Irvine, CA 92697 USA. CR ANDERSEN RA, 1980, J COMP NEUROL, V194, P663, DOI 10.1002/cne.901940312 ANDERSEN RA, 1980, J COMP NEUROL, V191, P479, DOI 10.1002/cne.901910310 Bao SW, 2001, NATURE, V412, P79, DOI 10.1038/35083586 Budinger E, 2000, EUR J NEUROSCI, V12, P2425, DOI 10.1046/j.1460-9568.2000.00142.x CALFORD MB, 1983, J NEUROSCI, V3, P2350 CALFORD MB, 1983, HEARING RES, V11, P395, DOI 10.1016/0378-5955(83)90070-9 Cotillon N, 2000, HEARING RES, V142, P113, DOI 10.1016/S0378-5955(00)00016-2 Doron NN, 2002, J COMP NEUROL, V453, P345, DOI 10.1002/cne.10412 Gaese BH, 2001, J NEUROPHYSIOL, V86, P1062 Harrison RV, 1996, HEARING RES, V100, P157, DOI 10.1016/0378-5955(96)00120-7 He JF, 1997, J NEUROSCI, V17, P2615 Heil P, 1997, J NEUROPHYSIOL, V77, P2616 HERBERT H, 1991, J COMP NEUROL, V304, P103, DOI 10.1002/cne.903040108 HORIKAWA J, 1988, P JPN ACAD B-PHYS, V64, P260, DOI 10.2183/pjab.64.260 IMIG TJ, 1977, J COMP NEUROL, V171, P111, DOI 10.1002/cne.901710108 JARRELL TW, 1987, BRAIN RES, V412, P285, DOI 10.1016/0006-8993(87)91135-8 Kaas JH, 1999, CURR OPIN NEUROBIOL, V9, P164, DOI 10.1016/S0959-4388(99)80022-1 KELLY JB, 1988, J NEUROPHYSIOL, V59, P1756 Kilgard MP, 1998, NAT NEUROSCI, V1, P727, DOI 10.1038/3729 Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714 Kilgard MP, 1999, HEARING RES, V134, P16, DOI 10.1016/S0378-5955(99)00061-1 Kilgard MP, 2001, J NEUROPHYSIOL, V86, P326 KITZES LM, 1978, J NEUROPHYSIOL, V41, P1165 KNIGHT PL, 1977, BRAIN RES, V130, P447, DOI 10.1016/0006-8993(77)90108-1 Kosaki H, 1997, J COMP NEUROL, V386, P304 KOWALSKI N, 1995, J NEUROPHYSIOL, V73, P1513 LANGNER G, 1987, HEARING RES, V31, P197, DOI 10.1016/0378-5955(87)90127-4 LUETHKE LE, 1988, J COMP NEUROL, V268, P181, DOI 10.1002/cne.902680205 McLin DE, 2002, P NATL ACAD SCI USA, V99, P4002, DOI 10.1073/pnas.062057099 MCMULLEN NT, 1982, EXP NEUROL, V75, P208, DOI 10.1016/0014-4886(82)90019-X MERZENIC.MM, 1973, BRAIN RES, V50, P275, DOI 10.1016/0006-8993(73)90731-2 MERZENICH MM, 1975, J NEUROPHYSIOL, V38, P231 Miasnikov AA, 2001, NEUROREPORT, V12, P1537, DOI 10.1097/00001756-200105250-00047 MILLER MW, 1984, J COMP NEUROL, V226, P184, DOI 10.1002/cne.902260204 MOREL A, 1993, J COMP NEUROL, V335, P437, DOI 10.1002/cne.903350312 MOREL A, 1987, J COMP NEUROL, V265, P119, DOI 10.1002/cne.902650109 Ojima H, 1997, Acta Otolaryngol Suppl, V532, P126 PANDYA DN, 1973, Z ANAT ENTWICKLUNGS, V139, P127, DOI 10.1007/BF00523634 PEOPLES RW, 1994, BRIT J PHARMACOL, V113, P555 PHILLIPS DP, 1988, J NEUROPHYSIOL, V59, P1524 PHILLIPS DP, 1988, BRAIN RES, V443, P281, DOI 10.1016/0006-8993(88)91622-8 PHILLIPS DP, 1982, BRAIN RES, V248, P237, DOI 10.1016/0006-8993(82)90581-9 PHILLIPS DP, 1984, J NEUROPHYSIOL, V51, P147 PHILLIPS DP, 1985, HEARING RES, V18, P73, DOI 10.1016/0378-5955(85)90111-X PHILLIPS DP, 1989, HEARING RES, V37, P269, DOI 10.1016/0378-5955(89)90027-0 PHILLIPS DP, 1981, J NEUROPHYSIOL, V45, P48 Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800 Rauschecker JP, 1997, J COMP NEUROL, V382, P89 REALE RA, 1980, J COMP NEUROL, V192, P265, DOI 10.1002/cne.901920207 Recanzone GH, 2000, J NEUROPHYSIOL, V83, P2315 REDIES H, 1989, J COMP NEUROL, V282, P473, DOI 10.1002/cne.902820402 REDIES H, 1989, J COMP NEUROL, V282, P489, DOI 10.1002/cne.902820403 RODRIGUESDAGAEFF C, 1989, HEARING RES, V39, P103, DOI 10.1016/0378-5955(89)90085-3 ROGER M, 1989, J COMP NEUROL, V287, P339, DOI 10.1002/cne.902870306 ROMANSKI LM, 1993, CEREB CORTEX, V3, P515, DOI 10.1093/cercor/3.6.515 ROMANSKI LM, 1992, J NEUROSCI, V12, P4501 ROMANSKI LM, 1993, CEREB CORTEX, V3, P499, DOI 10.1093/cercor/3.6.499 SALLY SL, 1988, J NEUROPHYSIOL, V59, P1627 SCHEEL M, 1988, ANAT EMBRYOL, V179, P181, DOI 10.1007/BF00304700 SCHREINER CE, 1984, J NEUROPHYSIOL, V51, P1284 SCHREINER CE, 1992, J NEUROPHYSIOL, V68, P1487 SCHREINER CE, 1992, EXP BRAIN RES, V92, P105 SCHREINER CE, 1990, J NEUROPHYSIOL, V64, P1442 Shen JX, 1997, J COMP PHYSIOL A, V181, P591, DOI 10.1007/s003590050142 Stiebler I, 1997, J COMP PHYSIOL A, V181, P559, DOI 10.1007/s003590050140 THOMAS H, 1993, EUR J NEUROSCI, V5, P882, DOI 10.1111/j.1460-9568.1993.tb00940.x TIAN B, 1994, J NEUROPHYSIOL, V71, P1959 TURNER JG, 2003, ABSTR MIDW RES M ASS, V26, P52 Ungerleider Leslie G., 1994, Current Opinion in Neurobiology, V4, P157, DOI 10.1016/0959-4388(94)90066-3 Wallace MN, 2000, EXP BRAIN RES, V132, P445, DOI 10.1007/s002210000362 Winer JA, 1999, HEARING RES, V130, P42, DOI 10.1016/S0378-5955(98)00217-2 Zhang LI, 2002, P NATL ACAD SCI USA, V99, P2309, DOI 10.1073/pnas.261707398 Zhang LI, 2001, NAT NEUROSCI, V4, P1123, DOI 10.1038/nn745 Zilles K., 1985, CORTEX RAT STEREOTAX NR 74 TC 97 Z9 98 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2003 VL 181 IS 1-2 BP 116 EP 130 DI 10.1016/S0378-5955(03)00182-5 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 702XU UT WOS:000184250700015 PM 12855370 ER PT J AU Stenfelt, S Puria, S Hato, N Goode, RL AF Stenfelt, S Puria, S Hato, N Goode, RL TI Basilar membrane and osseous spiral lamina motion in human cadavers with air and bone conduction stimuli SO HEARING RESEARCH LA English DT Article DE bone conduction; basilar membrane motion; osseous spiral lamina motion; characteristic frequency ID OTOACOUSTIC EMISSIONS; COCHLEAR PARTITION; MIDDLE-EAR; MODELS AB It is generally accepted that bone conduction (BC) stimuli yield a traveling wave on the basilar membrane (BM) and hence stimulate the cochlea by the same mechanisms as normal air conduction (AC). The basis for this is the ability to cancel or mask a BC tone with an AC tone and the ability to generate two tone distortion products with a BC tone and an AC tone. The hypothesis is proposed that BC stimulates the BM not only through the hydrodynamics of the scala vestibuli and scala tympani, but also through osseous spiral lamina (OSL) vibrations. To test this hypothesis the BM and OSL response with AC as well as BC stimulation was measured with a laser Doppler vibrometer. Human temporal bones mounted on a shaker were used to record the velocities of the bone per se, the BM and the OSL. The measurements were then converted to relative BM and OSL velocities. The results from the basal turn of the cochlea show similar behavior with AC and BC stimulation. The motion of the OSL at the edge where it connects to the BM is in phase and is typically 6 dB lower than the BM motion. With BC stimulation, there is less phase accumulation in the OSL after the cochlea is drained; the OSL moves due to inertial forces and resonates at approximately 7 kHz. Inertial vibration of the OSL may partially contribute to the total response of BC sound, especially at the high frequencies, although current models of the cochlea assume a rigid OSL. The measurements reported here can be used to include a flexible OSL in cochlear models. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Stanford Univ, Med Ctr, Div Otolaryngol Head & Neck Surg, Stanford, CA 94305 USA. Chalmers Univ Technol, Dept Signals & Syst, SE-41296 Gothenburg, Sweden. Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. Calif Ear Inst Stanford, Palo Alto, CA USA. RP Stenfelt, S (reprint author), Stanford Univ, Med Ctr, Div Otolaryngol Head & Neck Surg, Stanford, CA 94305 USA. RI Stenfelt, Stefan/J-9363-2013 OI Stenfelt, Stefan/0000-0003-3350-8997 CR Aibara R, 2001, HEARING RES, V152, P100, DOI 10.1016/S0378-5955(00)00240-9 CARHART R, 1971, HEARING MEASUREMENT, P116 Everberg G, 1968, Acta Otolaryngol, V66, P320, DOI 10.3109/00016486809126299 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 GUNDERSEN T, 1978, ACTA OTO-LARYNGOL, V86, P225, DOI 10.3109/00016487809124740 Hao LF, 2000, HEARING RES, V148, P31, DOI 10.1016/S0378-5955(00)00112-X Hato N, 2001, OTOLARYNG HEAD NECK, V124, P274, DOI 10.1067/mhn.2001.113664 KHANNA SM, 1976, J ACOUST SOC AM, V60, P139, DOI 10.1121/1.381081 Lowy K, 1942, J ACOUST SOC AM, V14, P156, DOI 10.1121/1.1916212 PETERSON LC, 1950, J ACOUST SOC AM, V22, P369, DOI 10.1121/1.1906615 Purcell D, 1999, EAR HEARING, V20, P375, DOI 10.1097/00003446-199910000-00001 Purcell D, 1998, EAR HEARING, V19, P362, DOI 10.1097/00003446-199810000-00003 PURIA S, 1993, J ACOUST SOC AM, V93, P2356, DOI 10.1121/1.406196 Rossi G, 1988, Scand Audiol Suppl, V29, P1 Schratzenstaller B, 2000, ORL J OTO-RHINO-LARY, V62, P1, DOI 10.1159/000027707 Shera CA, 2003, J ACOUST SOC AM, V113, P2762, DOI 10.1121/1.1557211 STEELE CR, 1981, J ACOUST SOC AM, V69, P1107, DOI 10.1121/1.385679 Stenfelt S, 2002, J ACOUST SOC AM, V111, P947, DOI 10.1121/1.1432977 Stenfelt S, 2002, HEARING RES, V167, P1, DOI 10.1016/S0378-5955(01)00407-5 TONNDORF J, 1966, ACTA OTOLARYNGOL S, V213 TONNDORF J, 1962, J ACOUST SOC AM, V34, P1127, DOI 10.1121/1.1918259 TONNDORF J, 1957, J ACOUST SOC AM, V29, P558, DOI 10.1121/1.1908965 TONNDORF J, 1962, ANN OTO RHINOL LARYN, V71, P5 von Bekesy G, 1932, ANN PHYS-BERLIN, V13, P111 VONBEKESY G, 1955, J ACOUST SOC AM, V27, P137 Wever EG, 1954, PHYSL ACOUSTICS ZWISLOCKI J, 1953, J ACOUST SOC AM, V25, P986, DOI 10.1121/1.1907231 NR 27 TC 32 Z9 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2003 VL 181 IS 1-2 BP 131 EP 143 DI 10.1016/S0378-5955(03)00183-7 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 702XU UT WOS:000184250700016 PM 12855371 ER PT J AU Freeman, DM Abnet, CC Hemmert, W Tsai, BS Weiss, TF AF Freeman, DM Abnet, CC Hemmert, W Tsai, BS Weiss, TF TI Dynamic material properties of the tectorial membrane: a summary SO HEARING RESEARCH LA English DT Article DE cochlea; macromechanics; micromechanics; tectorial membrane; osmotic response; polyelectrolyte gel; fixed charge; bulk modulus; viscoelastic; connective tissue; stiffness; point impedance; material property ID COCHLEAR HAIR BUNDLES; GUINEA-PIG; MECHANOELECTRICAL TRANSDUCTION; FREQUENCY-ANALYSIS; STIFFNESS; CELLS; MODEL; ORGAN; CORTI; FORCES AB Dynamic material properties of the tectorial membrane (TM) have been measured at audio frequencies in TMs excised from the apical portions of mouse cochleae. We review, integrate, and interpret recent findings. The mechanical point impedance of the TM in the radial, longitudinal, and transverse directions is viscoelastic and has a frequency dependence of the form 1/(K(j2pif)(alpha)) for 10 less than or equal to f less than or equal to 4000 Hz, where f is frequency, K is a constant, j = root-1 and alpha approximate to 0.66. Comparison with other connective tissues shows that the TM is a relatively lossy viscoelastic material. The median magnitudes of the point impedance at 10 Hz in the radial, longitudinal, and transverse directions are 4.6 X 10(-3) N.s/m, 1.8 X 10(-3) N.s/m, and 2.7 X 10(-3) N.s/m. Consistent with osmotic responses (Freeman et al., 2003), the TM point impedance is anisotropic - the TM is stiffer in the radial than in the longitudinal and transverse directions. The mechanical space constant of the TM is approximately 20 gm. Comparisons reveal that in the apical region of the mouse cochlea, the TM dynamic stiffness at 10 Hz is 10 times larger than the static stiffness of the aggregate hair cells in a mechanical space constant and roughly comparable to the stiffness of the basilar membrane. We conclude that the TM provides a mechanical load on the basilar membrane and that the lability of the TM to changes in endolymph composition may well be reflected in changes in basilar membrane motion. (C) 2003 Elsevier Science B.V. All rights reserved. C1 MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. MIT, Div Hlth Sci & Technol, Cambridge, MA 02139 USA. MIT, Elect Res Lab, Cambridge, MA 02139 USA. Massachusetts Eye & Ear Infirm, Eaton Peabody Lab Auditory Physiol, Boston, MA 02114 USA. LLC, Lightwave Instruments, Watertown, MA 02472 USA. Infineon Technol AG, Corp Res, D-81730 Munich, Germany. Baylor Coll Med, Houston, TX 77030 USA. RP Freeman, DM (reprint author), MIT, Dept Elect Engn & Comp Sci, Room 36-889,77 Massachusetts Ave, Cambridge, MA 02139 USA. CR Abnet CC, 2000, HEARING RES, V144, P29, DOI 10.1016/S0378-5955(00)00041-1 ALLEN JB, 1980, J ACOUST SOC AM, V68, P1660, DOI 10.1121/1.385198 ARANYOSI AJ, 1998, 23 MIDW RES M STPET, P183 ARIMA T, 1990, HEARING RES, V46, P289, DOI 10.1016/0378-5955(90)90010-M ASHMORE JF, 1984, J PHYSIOL-LONDON, V350, pP20 BILLONE M, 1973, J ACOUST SOC AM, V54, P1143, DOI 10.1121/1.1914361 CRAWFORD AC, 1985, J PHYSIOL-LONDON, V364, P359 DALLOS P, 1972, SCIENCE, V177, P356, DOI 10.1126/science.177.4046.356 Davis CQ, 1998, OPT ENG, V37, P1290, DOI 10.1117/1.601966 Davis CQ, 1998, OPT ENG, V37, P1299, DOI 10.1117/1.601967 DAVIS H, 1958, Ann Otol Rhinol Laryngol, V67, P789 Davis S. S., 1973, RHEOLOGY BIOLOGICAL, P158 de Boer E., 1996, COCHLEA, P258 DENNY MW, 1980, J EXP BIOL, V88, P375 Ferry JD, 1980, VISCOELASTIC PROPERT, V3rd FITZGERALD ER, 1970, MED BIOL ENG, V9, P459 FREEMAN DM, 1990, HEARING RES, V48, P1, DOI 10.1016/0378-5955(90)90195-U FREEMAN DM, 2003, STATIC MAT PROPERTIE, DOI UNSP S0378-5955(03)00072-8 Fung Y.C., 1993, BIOMECHANICS MECH PR GEISLER CD, 1986, HEARING RES, V24, P125, DOI 10.1016/0378-5955(86)90056-0 Geleoc GSG, 1997, P ROY SOC B-BIOL SCI, V264, P611 GUMMER AW, 1981, J ACOUST SOC AM, V70, P1298, DOI 10.1121/1.387144 Gummer AW, 1996, P NATL ACAD SCI USA, V93, P8727, DOI 10.1073/pnas.93.16.8727 HASKO JA, 1988, HEARING RES, V35, P21, DOI 10.1016/0378-5955(88)90037-8 Hemmert W, 2000, BIOPHYS J, V78, P2285 HEMMERT W, 2000, 23 MIDW RES M STPET, P207 HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0 HOWARD J, 1986, HEARING RES, V23, P93, DOI 10.1016/0378-5955(86)90178-4 Hu XT, 1999, J NEUROPHYSIOL, V82, P2798 Iatridis JC, 1996, SPINE, V21, P1174, DOI 10.1097/00007632-199605150-00009 JOHNSTON.JR, 1966, J ACOUST SOC AM, V40, P1405, DOI 10.1121/1.1910240 KOLSTON PJ, 1988, J ACOUST SOC AM, V83, P1481, DOI 10.1121/1.395903 KOSSL M, 1990, HEARING RES, V44, P217, DOI 10.1016/0378-5955(90)90082-Z KRONESTERFREI A, 1978, CELL TISSUE RES, V193, P11 Langer MG, 2001, BIOPHYS J, V80, P2608 Legan PK, 2000, NEURON, V28, P273, DOI 10.1016/S0896-6273(00)00102-1 LIM DJ, 1972, ARCHIV OTOLARYNGOL, V96, P199 LIM DJ, 1986, HEARING RES, V22, P117, DOI 10.1016/0378-5955(86)90089-4 MAMMANO F, 1993, J ACOUST SOC AM, V93, P3320, DOI 10.1121/1.405716 Marquis RE, 1997, P NATL ACAD SCI USA, V94, P11923, DOI 10.1073/pnas.94.22.11923 Martin P, 2000, P NATL ACAD SCI USA, V97, P12026, DOI 10.1073/pnas.210389497 McGuirt WT, 1999, NAT GENET, V23, P413 MILLER CE, 1985, J ACOUST SOC AM, V77, P1465, DOI 10.1121/1.392041 NAIDU RC, 2000, RECENT DEV AUDITORY, P123, DOI 10.1142/9789812793980_0018 Naidu RC, 1998, HEARING RES, V124, P124, DOI 10.1016/S0378-5955(98)00133-6 NEELY ST, 1983, HEARING RES, V9, P123, DOI 10.1016/0378-5955(83)90022-9 OLSON ES, 1994, J ACOUST SOC AM, V95, P395, DOI 10.1121/1.408331 OLSON ES, 1991, J ACOUST SOC AM, V89, P1262, DOI 10.1121/1.400535 ORMAN S, 1981, SOC NEUR ABSTR, V7, P536 Patuzzi R., 1996, COCHLEA, P186 RACK PMH, 1984, J PHYSIOL-LONDON, V351, P99 RHODE WS, 1967, J ACOUST SOC AM, V42, P185, DOI 10.1121/1.1910547 Ruggero MA, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P23 RUSSELL IJ, 1992, P ROY SOC B-BIOL SCI, V250, P217, DOI 10.1098/rspb.1992.0152 SHOTWELL SL, 1981, ANN NY ACAD SCI, V374, P1, DOI 10.1111/j.1749-6632.1981.tb30854.x Simmler MC, 2000, NAT GENET, V24, P139, DOI 10.1038/72793 STEEL KP, 1983, HEARING RES, V9, P327, DOI 10.1016/0378-5955(83)90035-7 STRELIOFF D, 1984, HEARING RES, V15, P19, DOI 10.1016/0378-5955(84)90221-1 TABER LA, 1981, J ACOUST SOC AM, V70, P426, DOI 10.1121/1.386785 Timoshenko S. P., 1970, THEORY ELASTICITY VONBEKESY G, 1953, J ACOUST SOC AM, V25, P770 VONBEKESY G, 1948, J ACOUST SOC AM, V20, P227 VONBEKESY G, 1947, J ACOUST SOC AM, V19, P452 ZWISLOCKI JJ, 1980, HEARING RES, V2, P505, DOI 10.1016/0378-5955(80)90087-8 ZWISLOCKI JJ, 1979, ACTA OTO-LARYNGOL, V87, P267, DOI 10.3109/00016487909126419 ZWISLOCKI JJ, 1989, HEARING RES, V42, P211, DOI 10.1016/0378-5955(89)90146-9 ZWISLOCKI JJ, 1979, SCIENCE, V204, P639, DOI 10.1126/science.432671 ZWISLOCKI JJ, 1980, J ACOUST SOC AM, V67, P1679 NR 68 TC 29 Z9 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2003 VL 180 IS 1-2 BP 1 EP 10 DI 10.1016/S0378-5955(03)00073-X PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 690WU UT WOS:000183574100001 PM 12782348 ER PT J AU Seki, S Eggermont, JJ AF Seki, S Eggermont, JJ TI Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss SO HEARING RESEARCH LA English DT Article DE cat; cortex; noise trauma; reorganization; spontaneous activity; cross-correlation; tinnitus ID DORSAL COCHLEAR NUCLEUS; RECEPTOR ORGAN DAMAGE; SENSORY SYSTEMS; ACOUSTIC TRAUMA; PLASTICITY; SOUND; MAP; STEREOCILIA; CONNECTIONS; INHIBITION AB Increase in spontaneous neural activity after noise-induced hearing loss has frequently been associated with the phenomenon of tinnitus. Eighteen juvenile and adult cats were exposed for 2 h to a 6 kHz tone with an intensity of 115 dB SPL at the cat's head. Seven non-exposed littermates and seven other normal hearing cats were used as age-matched controls. The trauma cats showed localized hearing losses, as assessed by ABR, ranging from less than 20 to 60 dB. The frequency representation in primary auditory cortex was mapped using an eight-electrode array. Single-unit spontaneous activity was recorded for 15 min. Peak cross-correlation coefficients (R) for unit cluster activity recorded on separate electrodes were calculated. We found elevated spontaneous firing rates in regions with reorganization of the tonotopic map compared to the neurons in the non-reorganized cortical regions in the same animals. A second finding was that in these regions the peak cross-correlation coefficients were also increased relative to the non-reorganized parts. A third finding was that exposed animals showed higher spontaneous activity compared to controls regardless of the presence of cortical reorganization. This may be a correlate of tinnitus in the presence of only minor hearing losses. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Calgary, Dept Physiol, Calgary, AB T2N 1N4, Canada. Univ Calgary, Dept Biophys, Calgary, AB T2N 1N4, Canada. Univ Calgary, Dept Psychol, Calgary, AB T2N 1N4, Canada. RP Eggermont, JJ (reprint author), Univ Calgary, Dept Physiol, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. CR Bedenbaugh P, 1997, NEURAL COMPUT, V9, P1265, DOI 10.1162/neco.1997.9.6.1265 Bezzi M, 2002, J COMPUT NEUROSCI, V12, P165, DOI 10.1023/A:1016531312091 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 deCharms RC, 1996, NATURE, V381, P610, DOI 10.1038/381610a0 Eggermont JJ, 1990, CORRELATIVE BRAIN TH Eggermont JJ, 2000, HEARING RES, V142, P89, DOI 10.1016/S0378-5955(00)00024-1 Eggermont JJ, 1997, NEUROREPORT, V8, P2709, DOI 10.1097/00001756-199708180-00014 Eggermont JJ, 2000, J NEUROPHYSIOL, V83, P2708 EGGERMONT JJ, 1992, J NEUROPHYSIOL, V68, P1216 EGGERMONT JJ, 1996, AUDIT NEUROSCI, V2, P76 Kaas JH, 1997, ADV NEUROL, V73, P147 Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6 Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57 Kiang NY, 1970, SENSORINEURAL HEARIN, P241 Kimura M, 1999, HEARING RES, V135, P146, DOI 10.1016/S0378-5955(99)00104-5 Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 LIBERMAN MC, 1987, HEARING RES, V26, P45, DOI 10.1016/0378-5955(87)90035-9 LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8 MCGUIRE BA, 1991, J COMP NEUROL, V305, P370, DOI 10.1002/cne.903050303 Milbrandt JC, 2000, HEARING RES, V147, P251, DOI 10.1016/S0378-5955(00)00135-0 Rajan R, 1998, NAT NEUROSCI, V1, P138, DOI 10.1038/388 Rajan R, 2001, CEREB CORTEX, V11, P171, DOI 10.1093/cercor/11.2.171 Rauschecker JP, 1999, TRENDS NEUROSCI, V22, P74, DOI 10.1016/S0166-2236(98)01303-4 SALVI RJ, 1978, EXP BRAIN RES, V32, P301 Schulze H, 1999, J COMP PHYSIOL A, V185, P493, DOI 10.1007/s003590050410 Seki S, 2002, HEARING RES, V173, P172, DOI 10.1016/S0378-5955(02)00518-X Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002 WALLACE MN, 1991, EXP BRAIN RES, V86, P527 Zhu Z, 2002, J NEUROSCI METH, V115, P45, DOI 10.1016/S0165-0270(01)00529-5 ZURITA P, 1994, NEUROSCI RES, V19, P303, DOI 10.1016/0168-0102(94)90043-4 NR 30 TC 129 Z9 136 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2003 VL 180 IS 1-2 BP 28 EP 38 DI 10.1016/S0378-5955(03)00074-1 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 690WU UT WOS:000183574100003 PM 12782350 ER PT J AU Ruttiger, L Ciuffani, R Zenner, HP Knipper, M AF Ruttiger, L Ciuffani, R Zenner, HP Knipper, M TI A behavioral paradigm to judge acute sodium salicylate-induced sound experience in rats: a new approach for an animal model on tinnitus SO HEARING RESEARCH LA English DT Article DE animal model; tinnitus; Operant behavior; sound experience; rat; salicylate ID INFERIOR COLLICULUS; GUINEA-PIG; HEARING-LOSS; OTOTOXICITY; QUININE; ASPIRIN; SYSTEM AB Behavioral conditioning studies on rats have been proven to be a valid animal model for the evaluation of acute and chronic phantom auditory experience (tinnitus). We developed an animal model for short-term, acute induced phantom auditory sensations in rats. Rats were trained in a conditioning chamber to actively access a liquid feeder whenever a constant white noise sound was present. During silence, no reward was given. Fulfilling the demands of animal protection laws for maximal avoidance of pain and fear, punitive paradigms were maximally reduced. After 15-17 learning sessions, all animals performed more accesses to the reward feeder during periods of sound than during periods of silence. Tinnitus was induced by the administration of sodium salicylate (350 mg/kg body weight) given 3 h before testing. The feeder access activity of a rat treated with salicylate was significantly increased during periods of silence, indicating a phantom auditory experience. The presumptive auditory experience was estimated to be comparable to a white noise sound of about 30 dB SPL rms. The activity increase was less pronounced for lower doses of sodium salicylate (150 mg/kg body weight) and was not found in animals trained on a dark-light paradigm, as expected. As the learning sessions of the operant conditioning were performed without pharmacological treatment, unintentional drug effects, for example, on learning and motivation of a rat were minimized in this behavioral paradigm. Furthermore, the behavioral changes reported here were shown to be a specific drug effect evoking a phantom auditory experience of a rat and cannot be explained by unspecific drug effects on motor activity, motivation, learning or hearing loss. The conditional paradigm is discussed in the context of its potential as a model for testing drugs that may have a therapeutic value in tinnitus research. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Tubingen, Dept Otorhinolaryngol, THRC, D-72076 Tubingen, Germany. RP Ruttiger, L (reprint author), Univ Tubingen, Dept Otorhinolaryngol, THRC, Elfriede Aulhorn Str 5, D-72076 Tubingen, Germany. CR Bauer CA, 2000, HEARING RES, V147, P175, DOI 10.1016/S0378-5955(00)00130-1 Bauer CA, 1999, OTOLARYNG HEAD NECK, V121, P457, DOI 10.1016/S0194-5998(99)70237-8 Bauer CA, 2001, JARO, V2, P54 BOETTCHER FA, 1989, HEARING RES, V42, P129, DOI 10.1016/0378-5955(89)90139-1 WallhausserFranke E, 1996, NEUROREPORT, V7, P1585, DOI 10.1097/00001756-199607080-00010 BROWNELL WE, 1989, M ASS RES OTOLARYNGO, P138 CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O CHERMAK GD, 1987, SCAND AUDIOL, V16, P67, DOI 10.3109/01050398709042158 Eggermont JJ, 1998, HEARING RES, V117, P149, DOI 10.1016/S0378-5955(98)00008-2 Estes WK, 1941, J EXP PSYCHOL, V29, P390, DOI 10.1037/h0062283 Evans E F, 1982, Br J Audiol, V16, P101, DOI 10.3109/03005368209081454 Germann R, 1996, HAUTARZT, V47, P624, DOI 10.1007/s001050050479 *I PHON SCI, 2001, IFA SERV STAT OV TES Janssen T, 2000, J ACOUST SOC AM, V107, P1790, DOI 10.1121/1.428578 Jarboe JK, 1999, HEARING RES, V132, P43, DOI 10.1016/S0378-5955(99)00031-3 JASTREBOFF PJ, 1986, J ACOUST SOC AM, V80, P1384, DOI 10.1121/1.394391 JASTREBOFF PJ, 1994, AUDIOLOGY, V33, P202 JASTREBOFF PJ, 1994, AM J OTOL, V15, P19 JASTREBOFF PJ, 1988, LARYNGOSCOPE, V98, P280 JASTREBOFF PJ, 1988, ARCH OTOLARYNGOL, V114, P186 Jastreboff PJ, 1997, AUDIOL NEURO-OTOL, V2, P197 KAY IS, 1993, EUR ARCH OTO-RHINO-L, V250, P51 Kenmochi M, 1997, HEARING RES, V113, P110, DOI 10.1016/S0378-5955(97)00137-8 LOWRY R, 2000, VASSARSTATS STAT COM Lue AJC, 1999, HEARING RES, V135, P163, DOI 10.1016/S0378-5955(99)00102-1 Manabe Y, 1997, HEARING RES, V103, P192, DOI 10.1016/S0378-5955(96)00181-5 MCFADDEN D, 1984, HEARING RES, V16, P251, DOI 10.1016/0378-5955(84)90114-X MCFADDEN D, 1983, HEARING RES, V9, P295, DOI 10.1016/0378-5955(83)90033-3 MYERS EN, 1965, ARCHIV OTOLARYNGOL, V82, P483 Oliver D, 2001, SCIENCE, V292, P2340, DOI 10.1126/science.1060939 PENNER MJ, 1996, CLIN ASPECTS HEARING, P258 RUTTIGER L, 2001, GOTTINGEN NEUROBIOLO, P438 SASAKI CT, 1980, BRAIN RES, V194, P511, DOI 10.1016/0006-8993(80)91233-0 STYPULKOWSKI PH, 1990, HEARING RES, V46, P113, DOI 10.1016/0378-5955(90)90144-E Szczepaniak WS, 1996, HEARING RES, V97, P46 TUNSTALL MJ, 1995, J PHYSIOL-LONDON, V485, P739 VERPLANCK WS, 1953, J COMP PHYSIOL PSYCH, V46, P327, DOI 10.1037/h0055380 Wilson J P, 1981, Ciba Found Symp, V85, P82 NR 38 TC 61 Z9 70 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2003 VL 180 IS 1-2 BP 39 EP 50 DI 10.1016/S0378-5955(03)00075-3 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 690WU UT WOS:000183574100004 PM 12782351 ER PT J AU Tabuchi, K Oikawa, K Uemaetomari, I Tsuji, S Wada, T Hara, A AF Tabuchi, K Oikawa, K Uemaetomari, I Tsuji, S Wada, T Hara, A TI Glucocorticoids and dehydroepiandrosterone sulfate ameliorate ischemia-induced injury of the cochlea SO HEARING RESEARCH LA English DT Article DE cochlea; ischemia; glucocorticoid; dehydroepiandrosterone; neurosteroid; idiopathic sudden sensorineural hearing loss ID SENSORINEURAL HEARING-LOSS; GUINEA-PIG; INNER-EAR; BRAIN; METHYLPREDNISOLONE; DHEA; METABOLISM; MYOCARDIUM; NEURONS AB This study aimed to evaluate the effects of steroidal drugs on the functional recovery of the cochlea after transient ischemia. Albino guinea pigs were subjected to transient cochlear ischemia of 30 min duration, and the threshold shifts of the compound action potential (CAP) from the pre-ischemic values were evaluated 4 h after ischemia. Pre-ischemic administration of a glucocorticoid, prednisolone-or methylprednisolone, significantly ameliorated the post-ischemic CAP threshold shifts as compared with control animals at a relatively wide range of doses. Post-ischemic administration of these glucocorticoids also exhibited protective effects. Pre-ischemic administration of dehydroepiandrosterone sulfate significantly decreased the post-ischemic CAP threshold shifts 4 It after ischemia. The present results indicate that glucocorticoids and dehydroepiandrosterone sulfate possess therapeutic effects against ischemic injury of the cochlea, such as idiopathic sudden sensorineural hearing loss. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Tsukuba, Inst Clin Med, Dept Otolaryngol, Tsukuba, Ibaraki 3058575, Japan. RP Hara, A (reprint author), Univ Tsukuba, Inst Clin Med, Dept Otolaryngol, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, Japan. CR Alexiou C, 2001, ARCH OTOLARYNGOL, V127, P253 Aragno M, 2000, DIABETES, V49, P1924, DOI 10.2337/diabetes.49.11.1924 Bastianetto S, 1999, MOL BRAIN RES, V66, P35, DOI 10.1016/S0169-328X(99)00002-9 Baulieu EE, 1996, J ENDOCRINOL, V150, pS221 Borski RJ, 2000, TRENDS ENDOCRIN MET, V11, P427, DOI 10.1016/S1043-2760(00)00325-8 CORPECHOT C, 1981, P NATL ACAD SCI-BIOL, V78, P4704, DOI 10.1073/pnas.78.8.4704 GLODDEK B, 1997, ANN NY ACAD SCI, V830, P260 HALL ED, 1992, J NEUROSURG, V76, P13, DOI 10.3171/jns.1992.76.1.0013 Hara A, 2000, HEARING RES, V143, P110, DOI 10.1016/S0378-5955(00)00029-0 Kanzaki J, 1988, Acta Otolaryngol Suppl, V456, P31 KAWABATA H, 1995, ANGIOLOGY, V46, P895, DOI 10.1177/000331979504601004 Kim JS, 1999, NEUROLOGY, V52, P40 Kimonides VG, 1998, P NATL ACAD SCI USA, V95, P1852, DOI 10.1073/pnas.95.4.1852 KIMURA RS, 1986, AM J OTOLARYNG, V7, P130, DOI 10.1016/S0196-0709(86)80042-4 Kusakari J, 1981, Auris Nasus Larynx, V8, P55 Lamm K, 1998, HEARING RES, V115, P149, DOI 10.1016/S0378-5955(97)00186-X Lamm K, 1999, ANN NY ACAD SCI, V884, P233, DOI 10.1111/j.1749-6632.1999.tb08645.x Li H, 2001, BRAIN RES, V888, P263, DOI 10.1016/S0006-8993(00)03077-8 Majewska MD, 1995, ANN NY ACAD SCI, V774, P111, DOI 10.1111/j.1749-6632.1995.tb17375.x Makara GB, 2001, PROG NEUROBIOL, V65, P367, DOI 10.1016/S0301-0082(01)00012-0 MOSKOWITZ D, 1984, LARYNGOSCOPE, V94, P664 Nakashima T, 2000, OTOLARYNG HEAD NECK, V123, P593, DOI 10.1067/mhn.2000.109486 PUEL JL, 1994, J COMP NEUROL, V341, P241, DOI 10.1002/cne.903410209 Rabinstein A, 2001, NEUROLOGY, V56, P571 SPATH JA, 1974, CIRC RES, V35, P44 Tabuchi K, 2001, HEARING RES, V153, P1, DOI 10.1016/S0378-5955(00)00247-1 Tsuji S, 2002, HEARING RES, V166, P72, DOI 10.1016/S0378-5955(02)00299-X Zwain IH, 1999, ENDOCRINOLOGY, V140, P880, DOI 10.1210/en.140.2.880 NR 28 TC 29 Z9 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2003 VL 180 IS 1-2 BP 51 EP 56 DI 10.1016/S0378-5955(03)00078-9 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 690WU UT WOS:000183574100005 PM 12782352 ER PT J AU Neelon, MF Jenison, RL AF Neelon, MF Jenison, RL TI The effect of trajectory on the au'ditory motion aftereffect SO HEARING RESEARCH LA English DT Article DE auditory motion; adaptation; motion aftereffect; amplitude modulation; frequency modulation; binaural ID INTERAURAL TIME DIFFERENCES; SOUND LOCALIZATION; MOVEMENT; DISCRIMINATION; INTENSITY; LISTENER; CUES AB The auditory motion aftereffect (aMAE) can be induced in listeners after repeated presentation of a horizontally moving sound source. Aftereffects have also been found for the individual acoustic consequences of source motion such as amplitude or frequency modulations (AM, FM). No study, however, has investigated whether combining these changes would enhance the magnitude of the aMAE, which has appeared otherwise weak relative to its visual counterpart. AM, FM and binaural changes can occur simultaneously when sources move along common translational trajectories rather than the restricted rotational paths used in previous adaptation studies. This raises the question whether the observed weakness of the aMAE is due to the improper stimulation of units responsive to the entire macrostructure induced by translational motion. The hypothesis is tested here that if integrated motion detectors exist, then including lawful amplitude and frequency changes in adapting stimuli may enhance aftereffects. Though results indicate that interaurally moving stimuli in general induce an aMAE, the acoustic macrostructure of translational motion does not appear to increase the aftereffect. A simple cross-correlation model is used to illustrate that such acoustic modulations may allow brainstem auditory centers time to recover from adaptation to translational motion. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Wisconsin, Dept Psychol, Madison, WI 53706 USA. RP Neelon, MF (reprint author), Univ Wisconsin, Dept Psychol, 1202 W Johnson St, Madison, WI 53706 USA. CR Clarey J.C., 1992, MAMMALIAN AUDITORY P, P232 Dong CJ, 2000, PERCEPT PSYCHOPHYS, V62, P1099, DOI 10.3758/BF03212091 EHRENSTEIN WH, 1994, PERCEPTION, V23, P1249, DOI 10.1068/p231249 Grantham DW, 1997, BINAURAL SPATIAL HEA, P295 GRANTHAM DW, 1989, PERCEPT PSYCHOPHYS, V45, P129, DOI 10.3758/BF03208047 GRANTHAM DW, 1979, PERCEPT PSYCHOPHYS, V26, P403, DOI 10.3758/BF03204166 Grantham DW, 1998, ACUSTICA, V84, P337 Jenison RL, 1997, ECOL PSYCHOL, V9, P131, DOI 10.1207/s15326969eco0902_2 JENISON RL, 1998, 20 ANN INT C IEEE EN, P880 Joris PX, 1998, NEURON, V21, P1235, DOI 10.1016/S0896-6273(00)80643-1 Kashino M, 1998, J ACOUST SOC AM, V103, P3597, DOI 10.1121/1.423064 KUHN GF, 1977, J ACOUST SOC AM, V29, P988 Lutfi RA, 1999, J ACOUST SOC AM, V106, P919, DOI 10.1121/1.428033 Macpherson EA, 2002, J ACOUST SOC AM, V111, P2219, DOI 10.1121/1.1471898 MIDDLEBROOKS JC, 1991, ANNU REV PSYCHOL, V42, P135, DOI 10.1146/annurev.ps.42.020191.001031 Moore B. C. J., 1986, FREQUENCY SELECTIVIT, P251 Morse P.M, 1968, THEORETICAL ACOUSTIC NEELON MF, 2000, 23 MIDW RES M ASS RE Niedeggen M, 1998, MOTION AFTEREFFECT, P125 PERROTT DR, 1993, J ACOUST SOC AM, V93, P1053, DOI 10.1121/1.405553 REINHARDTRUTLAND AH, 1992, J GEN PSYCHOL, V119, P113 ROSENBLUM LD, 1987, PERCEPTION, V16, P303 SABERI K, 1990, J ACOUST SOC AM, V88, P2639, DOI 10.1121/1.399984 SHU ZJ, 1993, NATURE, V364, P721, DOI 10.1038/364721a0 Stern Richard M., 1996, Journal of the Acoustical Society of America, V100, P2278, DOI 10.1121/1.417937 Stern Richard M., 1995, P347, DOI 10.1016/B978-012505626-7/50012-1 Wade NJ, 1998, MOTION AFTEREFFECT, P1 Wightman F. L., 1997, BINAURAL SPATIAL HEA, P1 Wightman FL, 1999, J ACOUST SOC AM, V105, P2841, DOI 10.1121/1.426899 WIGHTMAN FL, 1992, J ACOUST SOC AM, V91, P1648, DOI 10.1121/1.402445 ZAKARAUSKAS P, 1991, HEARING RES, V52, P233, DOI 10.1016/0378-5955(91)90203-L NR 31 TC 7 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2003 VL 180 IS 1-2 BP 57 EP 66 DI 10.1016/S0378-5955(03)00095-9 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 690WU UT WOS:000183574100006 PM 12782353 ER PT J AU Hampton, LL Wright, CG Alagramam, KN Battey, JF Noben-Trauth, K AF Hampton, LL Wright, CG Alagramam, KN Battey, JF Noben-Trauth, K TI A new spontaneous mutation in the mouse Ames waltzer gene, Pcdh15 SO HEARING RESEARCH LA English DT Article DE deafness; Ames waltzer; protocadherin 15 (Pcdh15) ID PROTOCADHERIN GENE; DEAFNESS; MICE; DEFECTS; MDFW AB A recessive deafness mutation in the mouse arose spontaneously and was identified in a colony segregating a null allele of the gastrin-releasing peptide receptor (Grpr) locus. Auditory-evoked brain stem response measurements revealed deafness in 7-week-old affected mice. By linkage analyses, the mutant phenotype was mapped near marker D10Mit186 and the protocadherin gene Pcdh15. As shown by complementation testing, the new mutation is allelic with Ames waltzer (Pcdh15(av)). Sequencing mutant-derived brain Pcdh15 cDNAs identified the insertion of a cytosine residue at nucleotide position c2099 (2099insC), which results in a frame-shift and premature stop codon. Abnormal stereocilia on inner and outer hair cells of the organ of Corti were identified by scanning electron microscopy as early as postnatal day 0 and cross-sectional histology revealed severe neuroepithelial degeneration in cochleas of 30-50-day-old mutants. The new allele of Ames waltzer, designated Pcdh15(av-Jfb), may aid in studying the histopathology associated with Usher syndrome type IF, which is caused by a functional null allele of PCDH15. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Natl Inst Deafness & Other Commun Disorders, Neurogenet Sect, Mol Biol Lab, NIH, Rockville, MD 20850 USA. NINDS, G Prot Coupled Receptors Sect, NIH, Bethesda, MD 20892 USA. Univ Texas, SW Med Ctr, Dept Otolaryngol Head & Neck Surg, Dallas, TX 75390 USA. Univ Hosp Cleveland, Inst Res, Dept Otolaryngol Head & Neck Surg, Cleveland, OH 44106 USA. Case Western Reserve Univ, Cleveland, OH 44106 USA. RP Noben-Trauth, K (reprint author), Natl Inst Deafness & Other Commun Disorders, Neurogenet Sect, Mol Biol Lab, NIH, 5 Res Court,Room 2A3I, Rockville, MD 20850 USA. CR Ahmed ZM, 2001, AM J HUM GENET, V69, P25, DOI 10.1086/321277 Alagramam KN, 1999, GENETICS, V152, P1691 Alagramam KN, 2001, NAT GENET, V27, P99 Alagramam KN, 2001, HUM MOL GENET, V10, P1709, DOI 10.1093/hmg/10.16.1709 Alagramam KN, 2000, HEARING RES, V148, P181, DOI 10.1016/S0378-5955(00)00152-0 Bryda EC, 2001, GENOMICS, V73, P338, DOI 10.1006/geno.2001.6538 Hampton LL, 1998, P NATL ACAD SCI USA, V95, P3188, DOI 10.1073/pnas.95.6.3188 Hynes R O, 1992, Curr Opin Genet Dev, V2, P621, DOI 10.1016/S0959-437X(05)80182-0 Keats BJB, 1999, AM J MED GENET, V89, P158, DOI 10.1002/(SICI)1096-8628(19990924)89:3<158::AID-AJMG6>3.0.CO;2-# Libby RT, 2001, INVEST OPHTH VIS SCI, V42, P770 Lyon MF.RastanS, 1996, GENETIC VARIANTS STR *MGD, 2001, MOUS GEN INF PROJ NobenTrauth K, 1997, GENOMICS, V44, P266, DOI 10.1006/geno.1997.4869 Nollet F, 2000, J MOL BIOL, V299, P551, DOI 10.1006/jmbi.2000.3777 Raphael Y, 2001, HEARING RES, V151, P237, DOI 10.1016/S0378-5955(00)00233-1 SCHAIBLE RH, 1956, MOUSE NEWS LETT, V15, P29 Suzuki ST, 2000, EXP CELL RES, V261, P13, DOI 10.1006/excr.2000.5039 Zobeley E, 1998, GENOMICS, V50, P260, DOI 10.1006/geno.1998.5298 NR 18 TC 17 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2003 VL 180 IS 1-2 BP 67 EP 75 DI 10.1016/S0378-5955(03)00107-2 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 690WU UT WOS:000183574100007 PM 12782354 ER PT J AU Dou, HW Finberg, K Cardell, EL Lifton, R Choo, D AF Dou, HW Finberg, K Cardell, EL Lifton, R Choo, D TI Mice lacking the B1 subunit of H+-ATPase have normal hearing SO HEARING RESEARCH LA English DT Article DE distal renal tubular acidosis; H+-ATPase B1 subunit; auditory brainstem response; mouse inner ear; sensorineural hearing loss; in situ hybridization ID MOUSE INNER-EAR; CARBONIC-ANHYDRASE; GUINEA-PIG; ENDOLYMPHATIC SAC; TUBULAR-ACIDOSIS; EXPRESSION; LOCALIZATION; EXCHANGER; COCHLEA; NA+ AB Acid-base homeostasis of endolymph is thought to be essential for normal inner ear function. This assumption was supported by clinical data from individuals affected by autosomal recessive distal renal tubular acidosis with sensorineural hearing loss. This recessive syndrome was recently demonstrated to be due to mutations in the gene encoding the B1 subunit of H+-ATPase (ATP6B1). To examine the potential roles of H+-ATPase B1 subunit in inner ear development and function, we defined its spatial and temporal expression patterns in the developing mouse inner ear and examined the morphologic and physiologic effects of loss of its function. Standard in situ hybridization was used for the expression study with routine morphologic and physiologic assessments of hearing and balance in H+-ATPase B1 subunit (Atp6b1) null mutant mice. Atp6b1 mRNA was first detected at embryonic day 11.5 (E11.5) in the endolymphatic duct epithelia. From E16.5 onward, Atp6b1 was also observed in the presumptive interdental cell layer of the spiral limbus in the cochlea. Auditory brainstem response tests revealed normal hearing in mice lacking Atp6b1. The inner ears of these mice develop normally and show no overt morphological abnormalities. Our data demonstrate that Atp6b1 is not critical for normal inner ear development or normal inner ear function in mice and suggest that other proton-transporting mechanisms or pH buffering systems must allow the mouse inner ear to compensate for lack of normal Atp6b1 activity. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Cincinnati Childrens Hosp, Med Ctr, Dept Pediat Otolaryngol, Ctr Hearing & Deafness Res, Cincinnati, OH 45229 USA. Yale Univ, Sch Med, Boyer Ctr Mol Med, Dept Genet & Med, New Haven, CT USA. Yale Univ, Sch Med, Howard Hughes Med Inst, New Haven, CT 06510 USA. RP Choo, D (reprint author), Cincinnati Childrens Hosp, Med Ctr, Dept Pediat Otolaryngol, Ctr Hearing & Deafness Res, 3333 Burnet Ave, Cincinnati, OH 45229 USA. CR Bond BR, 1998, HEARING RES, V123, P1, DOI 10.1016/S0378-5955(98)00089-6 Choo D, 1998, DEV BIOL, V204, P136, DOI 10.1006/dbio.1998.9095 Couloigner V, 2000, AM J PHYSIOL-REG I, V279, pR1695 ERULKAR SD, 1961, NATURE, V189, P459, DOI 10.1038/189459a0 Everett LA, 1999, P NATL ACAD SCI USA, V96, P9727, DOI 10.1073/pnas.96.17.9727 FINBERG KE, 2002, THESIS YALE U NEW HA Goto S, 1999, HEARING RES, V128, P89, DOI 10.1016/S0378-5955(98)00191-9 HSU CJ, 1991, ACTA OTO-LARYNGOL, V111, P75, DOI 10.3109/00016489109137357 ICHIMIYA I, 1994, ACTA OTO-LARYNGOL, V114, P167, DOI 10.3109/00016489409126037 Karet FE, 1999, NAT GENET, V21, P84, DOI 10.1038/5022 Lee BS, 1996, AM J PHYSIOL-CELL PH, V270, pC382 Liu XZ, 2000, HUM MOL GENET, V9, P63, DOI 10.1093/hmg/9.1.63 LUNDQUIST PG, 1984, ULTRASTRUCTURAL ATLA, P309 Merves M, 2000, LARYNGOSCOPE, V110, P1925, DOI 10.1097/00005537-200011000-00030 MISRAHY GA, 1958, AM J PHYSIOL, V194, P393 Morsli H, 1998, J NEUROSCI, V18, P3327 NELSON RD, 1992, P NATL ACAD SCI USA, V89, P3541, DOI 10.1073/pnas.89.8.3541 Plum A, 2001, DEV BIOL, V231, P334, DOI 10.1006/dbio.2000.0148 Rodriguez-Soriano J, 2000, PEDIATR NEPHROL, V14, P1121 ROYER P, 1967, PATHOL BIOL, V15, P803 Scott DA, 1999, NAT GENET, V21, P440 SELLICK P M, 1975, Progress in Neurobiology (Oxford), V5, P337, DOI 10.1016/0301-0082(75)90015-5 SMITH CA, 1954, LARYNGOSCOPE, V64, P141 Stankovic KM, 1997, HEARING RES, V114, P21, DOI 10.1016/S0378-5955(97)00072-5 STEEL KP, 1989, DEVELOPMENT, V107, P453 STERKERS O, 1988, PHYSIOL REV, V68, P1083 STERKERS O, 1984, AM J PHYSIOL, V246, pF47 Stevens TH, 1997, ANNU REV CELL DEV BI, V13, P779, DOI 10.1146/annurev.cellbio.13.1.779 Wax MB, 1997, P NATL ACAD SCI USA, V94, P6752, DOI 10.1073/pnas.94.13.6752 Wu DZ, 1998, PFLUG ARCH EUR J PHY, V436, P182, DOI 10.1007/s004240050621 YAMASHITA H, 1992, J LARYNGOL OTOL, V106, P98, DOI 10.1017/S0022215100118808 Zimmermann U, 2000, MOL CELL BIOCHEM, V205, P25, DOI 10.1023/A:1007002916772 NR 32 TC 30 Z9 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2003 VL 180 IS 1-2 BP 76 EP 84 DI 10.1016/S0378-5955(03)00108-4 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 690WU UT WOS:000183574100008 PM 12782355 ER PT J AU Kimitsuki, T Kawano, K Matsuda, K Haruta, A Nakajima, T Komune, S AF Kimitsuki, T Kawano, K Matsuda, K Haruta, A Nakajima, T Komune, S TI Potassium current properties in apical and basal inner hair cells from guinea-pig cochlea SO HEARING RESEARCH LA English DT Article DE cochlea; inner hair cell; potassium current; tetraethylammonium; tonotopic ID TURTLE COCHLEA; CHICK COCHLEA; EXPRESSION; VARIANTS; ORGAN; CORTI; FROG AB Inner hair cells (IHCs) of guinea-pigs were separately isolated from the apical and basal turn and the potassium currents were measured by the whole-cell voltage-clamp technique. The potassium current flows through two types of membrane conductance: a fast (I-k,I-f), tetraethylammonium (TEA)-sensitive conductance and a slow (I-k,I-f), TEA-resistant conductance. Membrane conductance demonstrated no significant differences between apical IHCs and basal IHCs. Reversal potentials were -65 +/- 2 mV and -68 +/- 5 mV in apical and basal IHCs, respectively. The rate of outward current activation was voltage dependent and faster in basal IHCs than in apical IHCs. TEA effect was stronger on basal IHCs than on apical IHCs, suggesting that Ik,f is dominant in basal IHCs. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Miyazaki Med Coll, Dept Otorhinolaryngol, Miyazaki 8891692, Japan. RP Kimitsuki, T (reprint author), Miyazaki Med Coll, Dept Otorhinolaryngol, 5200 Kihara, Miyazaki 8891692, Japan. CR ANGGARD L, 1965, ACTA OTOLARYNGOL S S, V203 Armstrong CE, 1998, J NEUROSCI, V18, P2962 ART JJ, 1987, J PHYSIOL-LONDON, V385, P207 FUCHS PA, 1988, J NEUROSCI, V8, P2460 FUCHS PA, 1988, J COMP PHYSIOL A, V164, P151, DOI 10.1007/BF00603947 Guinan JJ, 1996, J ACOUST SOC AM, V100, P1680, DOI 10.1121/1.416066 HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73 HUDSPETH AJ, 1988, J PHYSIOL-LONDON, V400, P275 Jones EMC, 1999, J PHYSIOL-LONDON, V518, P653, DOI 10.1111/j.1469-7793.1999.0653p.x KROS CJ, 1990, J PHYSIOL-LONDON, V421, P263 Kros CJ, 1998, NATURE, V394, P281, DOI 10.1038/28401 KROS CJ, 1991, J PHYSL, V434 Mammano F, 1996, J PHYSIOL-LONDON, V496, P639 Mu MY, 1997, DEV BRAIN RES, V99, P29, DOI 10.1016/S0165-3806(96)00194-0 Navaratnam DS, 1997, NEURON, V19, P1077, DOI 10.1016/S0896-6273(00)80398-0 Nenov AP, 1997, HEARING RES, V105, P146, DOI 10.1016/S0378-5955(96)00207-9 Raybould NP, 1997, J PHYSIOL-LONDON, V498, P717 ROSE ML, 1997, CARDIOVASC ENG, V2, P19 RUBEN RJ, 1967, ACTA OTOLARYNGOL S S, V240 TANAKA K, 1979, ANN OTO RHINOL LARYN, V88, P749 Ulfendahl M, 1998, CURR OPIN NEUROBIOL, V8, P475, DOI 10.1016/S0959-4388(98)80034-2 NR 21 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2003 VL 180 IS 1-2 BP 85 EP 90 DI 10.1016/S0378-5955(03)00109-6 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 690WU UT WOS:000183574100009 PM 12782356 ER PT J AU Zou, Y Zheng, JF Nuttall, AL Ren, TY AF Zou, Y Zheng, JF Nuttall, AL Ren, TY TI The sources of electrically evoked otoacoustic emissions SO HEARING RESEARCH LA English DT Article DE electrical stimulation; cochlea; otoacoustic emission; electrically evoked otoacoustic emission; characteristic frequency; gerbil ID OUTER HAIR-CELLS; GUINEA-PIG COCHLEA; ELECTROKINETIC SHAPE CHANGES; ACOUSTIC ENHANCEMENT; GERBIL COCHLEA; MULTICOMPONENTS; ELECTROMOTILITY; MODULATION; RESPONSES; MODEL AB It has been hypothesized that electrically evoked otoacoustic emissions (EEOAEs) are generated at a site on the basilar membrane near the stimulating electrode. From this original site, the energy propagates towards the oval window, giving rise to the short time delay component (SDC) of EEOAEs. The energy also propagates towards its characteristic frequency (CF) location, and the emission reflected from the CF location forms a long time delay component (LDC). This hypothesis is directly tested in this study by using an acoustical swept tone to modulate the EEOAEs generated by alternating electric current delivered to the round window niche in gerbils. An acoustical tone with a high sound pressure level or a small frequency separation from the EEOAE frequency induced a strong suppression of the EEOAE LDC, but no obvious suppression of the SDC. When the electrical current frequency was fixed, the swept acoustic tone induced a slight suppression, an enhanced peak, and a strong suppression of EEOAEs as the acoustic frequency was swept from the low to high frequency. These data indicate that the electrical current induced cochlear partition vibration near the stimulating electrode. One part of this energy propagates directly to the ear canal, forming the SDC, and the other part propagates to its CF place and is reflected from there to the ear canal, forming the LDC. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Oregon Hlth Sci Univ, Dept Otolaryngol Head & Neck Surg, Oregon Hearing Res Ctr, Portland, OR 97239 USA. Xian Jiaotong Univ, Dept Biomed Engn, Xian 710049, Peoples R China. Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Ren, TY (reprint author), Oregon Hlth Sci Univ, Dept Otolaryngol Head & Neck Surg, Oregon Hearing Res Ctr, 3181 SW Sam Jackson Pk Rd, Portland, OR 97239 USA. CR ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 COHEN L, 1989, P IEEE, V77, P941, DOI 10.1109/5.30749 DALLOS P, 1991, NATURE, V350, P155, DOI 10.1038/350155a0 HE DZZ, 1994, HEARING RES, V78, P77, DOI 10.1016/0378-5955(94)90046-9 HUBBARD AE, 1983, SCIENCE, V222, P510, DOI 10.1126/science.6623090 KACHAR B, 1986, NATURE, V322, P365, DOI 10.1038/322365a0 KIRK DL, 1994, HEARING RES, V74, P38, DOI 10.1016/0378-5955(94)90174-0 Kirk DL, 1996, J ACOUST SOC AM, V100, P3714, DOI 10.1121/1.417335 MOUNTAIN DC, 1989, HEARING RES, V42, P195, DOI 10.1016/0378-5955(89)90144-5 MURATA K, 1991, HEARING RES, V55, P201, DOI 10.1016/0378-5955(91)90105-I Nuttall AL, 2001, HEARING RES, V152, P77, DOI 10.1016/S0378-5955(00)00238-0 Nuttall AL, 1995, HEARING RES, V92, P170, DOI 10.1016/0378-5955(95)00216-2 NUTTALL AL, 1993, J ACOUST SOC AM, V93, P2061, DOI 10.1121/1.406692 Ren T, 2000, J NEUROSCI METH, V96, P97, DOI 10.1016/S0165-0270(99)00187-9 Ren TY, 1995, HEARING RES, V92, P178, DOI 10.1016/0378-5955(95)00217-0 Ren TY, 1998, HEARING RES, V120, P7, DOI 10.1016/S0378-5955(98)00045-8 Ren TY, 2000, HEARING RES, V143, P58, DOI 10.1016/S0378-5955(00)00027-7 Ren TY, 1996, HEARING RES, V102, P43, DOI 10.1016/S0378-5955(96)00145-1 Ren TY, 1996, NEUROSCI LETT, V207, P167, DOI 10.1016/0304-3940(96)12524-6 Xue SW, 1995, HEARING RES, V91, P93, DOI 10.1016/0378-5955(95)00175-1 XUE SW, 1993, HEARING RES, V70, P121, DOI 10.1016/0378-5955(93)90056-7 Zheng JF, 2001, HEARING RES, V154, P124, DOI 10.1016/S0378-5955(01)00229-5 NR 23 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2003 VL 180 IS 1-2 BP 91 EP 100 DI 10.1016/S0378-5955(03)00110-2 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 690WU UT WOS:000183574100010 PM 12782357 ER PT J AU Ferguson, WD Collins, LM Smith, DW AF Ferguson, WD Collins, LM Smith, DW TI Psychophysical threshold variability in cochlear implant subjects SO HEARING RESEARCH LA English DT Article DE cochlear implant; psychophysics; threshold; phase duration; human; cat ID STRENGTH-DURATION FUNCTIONS; ACROSS-SPECIES COMPARISONS; AUDITORY-NERVE FIBERS; ELECTRICAL-STIMULATION; SPEECH-RECOGNITION; ELECTRODE DISCRIMINATION; NOISE; PERFORMANCE; RESPONSES; PATTERNS AB The dramatic differences observed when comparing auditory neural responses to electrical and acoustic stimulation may illustrate one of the important mechanisms underlying the sometimes poor speech recognition abilities of individuals with cochlear implants. Recent research has suggested that the absence of a stochastic component in neural responses to electrical activation may be an important potential mechanism for this degradation in speech recognition performance. There are few psychophysical data, however, demonstrating that this stochastic behavior can be measured directly in implant subjects. In this study, variability in psychophysical threshold was investigated as a measure of the stochastic nature of the underlying neural response in human and non-human subjects implanted with intracochlear electrode arrays. Threshold data collected in both monopolar and bipolar stimulation modes at several phase durations from cat and human subjects are presented. The nature of the neural input/output curve suggests that threshold variability should increase as the slope of the input/output curve is decreased, i.e. as phase duration is increased. These predictions are confirmed by the pattern of psychophysical results measured experimentally in cat and human subjects. Furthermore, the data may suggest that subjects with higher threshold variability, i.e. a relatively greater stochastic component, are more likely to have higher speech recognition scores. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA. Duke Univ, Med Ctr, Div Otolaryngol Head & Neck Surg, Hearing Res Labs, Durham, NC 27710 USA. RP Collins, LM (reprint author), Duke Univ, Dept Elect & Comp Engn, Box 90291, Durham, NC 27708 USA. CR BATTMER RD, 1993, ADV OTO-RHINO-LARYNG, V48, P9 BLAMEY PJ, 1992, ANN OTO RHINOL LARYN, V101, P342 BRUCE IC, 1997, THESIS U MELBOURNE M Bruce IC, 1999, IEEE T BIO-MED ENG, V46, P617, DOI 10.1109/10.764938 Chatterjee M, 1998, J ACOUST SOC AM, V103, P2565, DOI 10.1121/1.422777 COLLINS LM, 1994, J ACOUST SOC AM, V96, P2731, DOI 10.1121/1.411279 Collins LM, 1997, J ACOUST SOC AM, V101, P440, DOI 10.1121/1.417989 DAWSON PW, 1995, EAR HEARING, V16, P287, DOI 10.1097/00003446-199506000-00005 Dynes SBC, 1996, THESIS MIT CAMBRIDGE FINLEY C C, 1990, P55 GREEN DM, 1966, SIGNAL DETECTION THE HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7 HENRY BA, 1997, 1997 C IMPL AUD PROS HOCHMAIRDESOYER IJ, 1985, COCHLEAR IMPLANTS HONG RS, IN PRESS OTOL NEUROT KIANG NYS, 1972, ANN OTO RHINOL LARYN, V81, P714 Kileny PR, 1998, AM J OTOL, V19, P313 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Loeb GE, 1995, J NEUROSCI METH, V63, P85, DOI 10.1016/0165-0270(95)00091-7 Miller AL, 2001, HEARING RES, V152, P55, DOI 10.1016/S0378-5955(00)00236-7 Miller AL, 1999, HEARING RES, V134, P89, DOI 10.1016/S0378-5955(99)00072-6 Miller AL, 1999, HEARING RES, V135, P47, DOI 10.1016/S0378-5955(99)00089-1 Miller CA, 1995, HEARING RES, V92, P85, DOI 10.1016/0378-5955(95)00204-9 MOON AK, 1993, HEARING RES, V67, P166, DOI 10.1016/0378-5955(93)90244-U Morse RP, 1996, NAT MED, V2, P928, DOI 10.1038/nm0896-928 Morse RP, 1999, HEARING RES, V133, P107, DOI 10.1016/S0378-5955(99)00062-3 Morse RP, 1999, HEARING RES, V133, P120, DOI 10.1016/S0378-5955(99)00063-5 NELSON DA, 1995, J ACOUST SOC AM, V98, P1987, DOI 10.1121/1.413317 PARKINS CW, 1989, HEARING RES, V41, P137, DOI 10.1016/0378-5955(89)90007-5 PFINGST BE, 1991, J ACOUST SOC AM, V90, P1856 PFINGST BE, 1993, J ACOUST SOC AM, V94, P1287, DOI 10.1121/1.408155 Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3 SHANNON RV, 1983, HEARING RES, V11, P157, DOI 10.1016/0378-5955(83)90077-1 Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 SKINNER MW, 1991, EAR HEARING, V12, P3, DOI 10.1097/00003446-199102000-00002 Smith DW, 1997, J ACOUST SOC AM, V102, P2228, DOI 10.1121/1.419636 Throckmorton CS, 1999, J ACOUST SOC AM, V105, P861, DOI 10.1121/1.426275 Verveen A. A., 1960, STRUCTURE FUNCTION C, P282 VERVEEN AA, 1969, ACTA PHYSIOL PHARM N, V15, P353 WHITE MW, 1994, INT COCHL IMPL SPEEC WILSON BS, 1994, SPEECH PROCESSOR AUD Zwolan TA, 1997, J ACOUST SOC AM, V102, P3673, DOI 10.1121/1.420401 Zwolan TA, 1996, AM J OTOL, V17, P717 NR 43 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2003 VL 180 IS 1-2 BP 101 EP 113 DI 10.1016/S0378-5955(03)00111-4 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 690WU UT WOS:000183574100011 PM 12782358 ER PT J AU Berggren, D Liu, W Frenz, D Van De Water, T AF Berggren, D Liu, W Frenz, D Van De Water, T TI Spontaneous hair-cell renewal following gentamicin exposure in postnatal rat utricular explants SO HEARING RESEARCH LA English DT Article DE in vitro model; aminoglycoside; vestibular hair-cell renewal; mitotic activity ID VESTIBULAR SENSORY EPITHELIA; SENSORINEURAL HEARING-LOSS; LIGHT-MICROSCOPIC EVIDENCE; AVIAN INNER-EAR; SUPPORTING CELL; ACOUSTIC TRAUMA; GUINEA-PIGS; MORPHOLOGICAL EVIDENCE; FISH EAR; REGENERATION AB We have established an in vitro model of long-time culture of 4-day-old rat utricular maculae to study aminoglycoside-induced vestibular hair-cell renewal in the mammalian inner ear. The explanted maculae were cultured for up to 28 days on the surface of a membrane insert system. In an initial series of experiments utricles were exposed to 1 mM of gentamicin for 48 It and then allowed to recover in unsupplemented medium or in medium supplemented with the anti-mitotic drug aphidicolin. In a parallel control series, explants were not exposed to gentamicin. Utricles were harvested at specified time points from the second through the 28th day in vitro. Whole-mount utricles were stained with phalloidin-fluorescein isothiocyanate and their stereociliary bundles visualized and counted. In a second experimental series 2'-bromo-5'deoxyuridine labeling was used to confirm the antimitotic efficacy of aphidicolin. Loss of hair-cell stereociliary bundles was nearly complete 3 days after exposure to gentamicin, with the density of stereociliary bundles only 3-4% of their original density. Renewal of hair-cell bundles was abundant (i.e. 15 X increase) in cultures in unsupplemented medium, with a peak of stereociliary bundle renewal reached after 21 days in vitro. A limited amount of hair-cell renewal also occurred in the presence of the anti-mitotic drug, aphidicolin. These results suggest that spontaneous renewal of hair-cell stereociliary bundles following gentamicin damage in utricular explants predominantly follows a pathway that includes mitotic events, but that a small portion of the hair-cell stereociliary bundle renewal does not require mitotic activity. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Miami, Sch Med, Univ Miami Ear Inst, Dept Otolaryngol,Cochlear Implant Res Program, Miami, FL 33136 USA. Albert Einstein Coll Med, Dept Otolaryngol, New York, NY USA. Umea Univ, Dept Otolaryngol, Umea, Sweden. Albert Einstein Coll Med, Dept Anat & Struct Biol, New York, NY USA. RP Van De Water, T (reprint author), Univ Miami, Sch Med, Univ Miami Ear Inst, Dept Otolaryngol,Cochlear Implant Res Program, 1600 NW 10th Ave,RMSB 3160, Miami, FL 33136 USA. CR Adler HJ, 1996, NEUROSCI LETT, V205, P17, DOI 10.1016/0304-3940(96)12367-3 Adler HJ, 1997, INT J DEV NEUROSCI, V15, P375, DOI 10.1016/S0736-5748(96)00098-6 Anniko M., 1983, DEV AUDITORY VESTIBU, P375 BAHVE SA, 1995, J NEUROSCI, V15, P4618 Baird RA, 2000, P NATL ACAD SCI USA, V97, P11722, DOI 10.1073/pnas.97.22.11722 Corwin JT, 1997, NEURON, V19, P951, DOI 10.1016/S0896-6273(00)80386-4 CORWIN JT, 1985, P NATL ACAD SCI USA, V82, P3911, DOI 10.1073/pnas.82.11.3911 CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 COTANCHE DA, 1999, REV AUDIOL NEUROOTOL, V6, P271 CRUZ RM, 1987, ARCH OTOLARYNGOL, V113, P1058 DESAI SS, 2002, ASS RES OT ABSTR, P31 DESMADRYL G, 1992, DEV AUDITORY VESTIBU, V2, P461 Dye BJ, 1999, HEARING RES, V133, P17, DOI 10.1016/S0378-5955(99)00046-5 FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284 FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2 Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X Forge A, 1998, J COMP NEUROL, V397, P69 Gale JE, 2002, J NEUROBIOL, V50, P81, DOI 10.1002/neu.10002 GIROD DA, 1989, HEARING RES, V42, P175, DOI 10.1016/0378-5955(89)90143-3 HASHINO E, 1992, HEARING RES, V59, P46, DOI 10.1016/0378-5955(92)90101-R JONES TA, 1992, HEARING RES, V62, P181, DOI 10.1016/0378-5955(92)90184-O JORGENSEN JM, 1988, NATURWISSENSCHAFTEN, V75, P319, DOI 10.1007/BF00367330 Kil J, 1997, HEARING RES, V114, P117, DOI 10.1016/S0378-5955(97)00166-4 Kopke RD, 2001, P NATL ACAD SCI USA, V98, P5886, DOI 10.1073/pnas.101120898 KOTECHA B, 1994, HEARING RES, V73, P173, DOI 10.1016/0378-5955(94)90232-1 Lang HN, 1997, HEARING RES, V111, P177, DOI 10.1016/S0378-5955(97)00098-1 Li L., 1995, AUDIT NEUROSCI, V1, P111 Li L, 1997, INT J DEV NEUROSCI, V15, P433, DOI 10.1016/S0736-5748(96)00102-5 LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307 Lopez I, 1997, INT J DEV NEUROSCI, V15, P447, DOI 10.1016/S0736-5748(96)00103-7 Lysakowski A, 1999, ANN NY ACAD SCI, V871, P422, DOI 10.1111/j.1749-6632.1999.tb09209.x Matsui JI, 2000, JARO, V1, P46, DOI 10.1007/s101620010005 MATTOX DE, 1977, ANN OTO RHINOL LARYN, V86, P463 MCFADDEN EA, 1989, HEARING RES, V41, P205, DOI 10.1016/0378-5955(89)90012-9 NADOL JB, 1993, NEW ENGL J MED, V329, P1092, DOI 10.1056/NEJM199310073291507 Nakagawa T, 1998, EUR ARCH OTO-RHINO-L, V255, P127, DOI 10.1007/s004050050027 Nakagawa T, 1997, EUR ARCH OTO-RHINO-L, V254, P9, DOI 10.1007/BF02630749 OESTERLE EC, 1993, HEARING RES, V70, P85, DOI 10.1016/0378-5955(93)90054-5 POPPER AN, 1984, HEARING RES, V15, P133, DOI 10.1016/0378-5955(84)90044-3 POPPER AN, 1990, HEARING RES, V45, P33, DOI 10.1016/0378-5955(90)90180-W Quint E, 1998, HEARING RES, V118, P157, DOI 10.1016/S0378-5955(98)00026-4 RAPHAEL Y, 1992, J NEUROCYTOL, V21, P633 REDLEAF MI, 1995, AM J OTOL, V16, P295 Roberson DW, 1996, AUDIT NEUROSCI, V2, P195 RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101 RYAN A, 2000, LIFE DEATH LIFE HAIR, P73 SOBOKOWICZ HM, 1996, ACTA OTOLARYNGOL STO, V116, P257 Staecker H, 1998, CURR OPIN NEUROBIOL, V8, P480, DOI 10.1016/S0959-4388(98)80035-4 Steyger PS, 1997, INT J DEV NEUROSCI, V15, P417, DOI 10.1016/S0736-5748(96)00101-3 Stone JS, 1998, CURR OPIN NEUROL, V11, P17, DOI 10.1097/00019052-199802000-00004 TSUE TT, 1994, J NEUROSCI, V14, P140 Vago P, 1998, NEUROREPORT, V9, P431, DOI 10.1097/00001756-199802160-00014 WARCHOL ME, 1993, SCIENCE, V259, P1619, DOI 10.1126/science.8456285 Wilkins HR, 1999, J NEUROBIOL, V39, P527, DOI 10.1002/(SICI)1097-4695(19990615)39:4<527::AID-NEU6>3.0.CO;2-K Wilkins HR, 2001, JARO-J ASSOC RES OTO, V2, P79, DOI 10.1007/101620010025 Wyllie A H, 1980, Int Rev Cytol, V68, P251 Ylikoski J, 2002, HEARING RES, V163, P71, DOI 10.1016/S0378-5955(01)00380-X Zheng JL, 1999, J NEUROSCI, V19, P2161 NR 58 TC 16 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2003 VL 180 IS 1-2 BP 114 EP 125 DI 10.1016/S0378-5955(03)00112-6 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 690WU UT WOS:000183574100012 PM 12782359 ER PT J AU Hou, FX Wang, S Zhai, SQ Hu, YY Yang, WY He, LH AF Hou, FX Wang, S Zhai, SQ Hu, YY Yang, WY He, LH TI Effects of alpha-tocopherol on noise-induced hearing loss in guinea pigs SO HEARING RESEARCH LA English DT Article DE noise; alpha-tocopherol; noise-induced hearing loss; antioxidant; guinea pig ID CAROTENE CANCER PREVENTION; TEMPORARY THRESHOLD SHIFTS; INDUSTRIAL NOISE; VITAMIN-E; INNER-EAR; NEUROTROPHIC FACTOR; ACOUSTIC TRAUMA; COCHLEAR DAMAGE; FREE-RADICALS; EXPOSURE AB Preventing noise-induced hearing loss (NIHL) by antioxidants is based on the hypothesis that generation of reactive oxygen species is one of the causes of NIHL. alpha-Tocopherol is a naturally occurring antioxidant with no noticeable side effects. In this study, we attempted to protect guinea pigs from developing NIHL by administering alpha-tocopherol. Pigmented male guinea pigs were exposed to a noise (4 kHz octave band, 100 dB SPL), 8 h/day for 3 days consecutively. alpha-Tocopherol (10 mg/kg or 50 mg/kg daily) was given by intraperitoneal injection from 3 days before through 3 days after the noise exposure. Auditory evoked brainstem, response (ABR) thresholds at 2, 4 and 8 kHz were recorded prior to the experiment, immediately post-noise, 2 and 8 days post-noise. On day 8 post-noise, after the ABR recording, guinea pigs were decapitated and the cochleae were removed for cochlear surface preparations and scanning electron microscope (SEM) study. ABR threshold shifts of groups receiving alpha-tocopherol were significantly smaller than those of groups not receiving alpha-tocopherol at all frequencies and all time points tested except that of group 3 at 8 kHz 8 days post-noise. No hair cell loss was seen on the surface preparations, but stereocilia loss was found by SEM study. The noise-induced stereocilia loss was significantly decreased by alpha-tocopherol: These results indicate that alpha-tocopherol can attenuate the noise-induced cochlear damage. Further investigations on the preventive effect of alpha-tocopherol on NIHL in noise-exposed workers are necessary. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Peking Univ, Hlth Sci Ctr, Sch Publ Hlth, Dept Occupat Hlth, Beijing 100871, Peoples R China. Chinese Peoples Liberat Army Gen Hosp, Inst Otolaryngol, Beijing, Peoples R China. RP Hou, FX (reprint author), Peking Univ, Hlth Sci Ctr, Sch Publ Hlth, Dept Occupat Hlth, Beijing 100871, Peoples R China. CR Ahasan M R, 2001, J Epidemiol, V11, P74 ALBANES D, 1995, AM J CLIN NUTR, V62, P1427 Boettcher FA, 1998, HEARING RES, V121, P139, DOI 10.1016/S0378-5955(98)00075-6 BOHNE BA, 1976, ANN OTO RHINOL LARYN, V85, P711 ELBARBARY A, 1993, HEARING RES, V71, P80 Eleftheriou PC, 2002, APPL ACOUST, V63, P35, DOI 10.1016/S0003-682X(01)00022-6 Engelen W, 2000, AM J CLIN NUTR, V72, P1142 Engström B, 1983, Acta Otolaryngol Suppl, V402, P5 Engström B, 1983, Scand Audiol Suppl, V19, P1 Grundman M, 2000, AM J CLIN NUTR, V71, p630S Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3 Jacono AA, 1998, HEARING RES, V117, P31, DOI 10.1016/S0378-5955(97)00214-1 JULICHER RHM, 1984, ARCH TOXICOL, V56, P83, DOI 10.1007/BF00349076 Karlidag T, 2002, AURIS NASUS LARYNX, V29, P147, DOI 10.1016/S0385-8146(01)00137-7 Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3 Lamm K, 2000, HEARING RES, V141, P199, DOI 10.1016/S0378-5955(00)00005-8 Lamm K, 1998, HEARING RES, V115, P149, DOI 10.1016/S0378-5955(97)00186-X Lataye R, 2000, HEARING RES, V139, P86, DOI 10.1016/S0378-5955(99)00174-4 Latoni J, 1996, ACTA OTO-LARYNGOL, V116, P388, DOI 10.3109/00016489609137862 Leppala JM, 2000, ARCH NEUROL-CHICAGO, V57, P1503, DOI 10.1001/archneur.57.10.1503 Lurie MH, 1942, ANN OTO RHINOL LARYN, V51, P712 Maisarah S Z, 1993, Med J Malaysia, V48, P280 Melamed S, 1996, J OCCUP ENVIRON MED, V38, P252, DOI 10.1097/00043764-199603000-00009 Melamed S, 1997, ARCH ENVIRON HEALTH, V52, P292 Mocci F, 2001, OCCUP MED-OXFORD, V51, P56, DOI 10.1093/occmed/51.1.56 Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5 Ohinata Y, 2000, HEARING RES, V146, P28, DOI 10.1016/S0378-5955(00)00096-4 OHLEMILLER KK, 1998, ASS RES OT ABSTR, V21, P518 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 PROBST R, 1992, ACTA OTO-LARYNGOL, V112, P435, DOI 10.3109/00016489209137424 Pryor WA, 2000, FREE RADICAL BIO MED, V28, P141, DOI 10.1016/S0891-5849(99)00224-5 QUIRK WS, 1994, HEARING RES, V74, P217, DOI 10.1016/0378-5955(94)90189-9 RESNICK DM, 1998, OCCUP HLTH IND MED, V38, P254 SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 Shoji F, 2000, HEARING RES, V146, P134, DOI 10.1016/S0378-5955(00)00106-4 Shoji F, 2000, HEARING RES, V142, P41, DOI 10.1016/S0378-5955(00)00007-1 Teranishi M, 2001, HEARING RES, V151, P61, DOI 10.1016/S0300-2977(00)00080-2 TURKKAN JS, 1984, PHYSIOL BEHAV, V33, P21, DOI 10.1016/0031-9384(84)90007-6 Van Campen LE, 2002, HEARING RES, V164, P29, DOI 10.1016/S0378-5955(01)00391-4 VANDIJK FJH, 1987, INT ARCH OCC ENV HEA, V59, P147 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 Yamasoba T, 1999, BRAIN RES, V815, P317, DOI 10.1016/S0006-8993(98)01100-7 Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6 Ylikoski J, 1998, HEARING RES, V124, P17, DOI 10.1016/S0378-5955(98)00095-1 NR 44 TC 26 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2003 VL 179 IS 1-2 BP 1 EP 8 DI 10.1016/S0378-5955(03)00065-0 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 679ZB UT WOS:000182950900001 PM 12742233 ER PT J AU Makitie, AA Pirvola, U Pyykko, I Sakakibara, H Riihimaki, V Ylikoski, J AF Makitie, AA Pirvola, U Pyykko, I Sakakibara, H Riihimaki, V Ylikoski, J TI The ototoxic interaction of styrene and noise SO HEARING RESEARCH LA English DT Article DE styrene; solvent; hearing loss; inner ear; ototoxicity; interaction ID INDUCED HEARING-LOSS; OCCUPATIONAL EXPOSURE; ORGANIC-SOLVENTS; AUDITORY-SYSTEM; RATS; TOLUENE; CISPLATIN; INNER AB The interaction between noise and inhaled styrene on the structure and function of the auditory organ of the male Wistar rat was studied. The animals were exposed either to 600 ppm, 300 ppm or 100 ppm styrene (12 h/day, 5 days/week, for 4 weeks) alone or in combination with a simultaneous 100-105 dB industrial noise stimulant. Auditory sensitivity was tested by auditory brainstem audiometry at 1.0, 2.0, 4.0 and 8.0 kHz frequencies. Inner ear changes were studied by light microscopy. Exposure to 600 ppm styrene alone caused a 3 dB hearing loss only at the highest test frequency (8 kHz). Quantitative morphological analysis of cochlear hair cells (cytocochleograms) showed a severe outer hair cell (OHC) loss particularly in the third OHC row of the upper basal and lower middle coil. Exposure to noise alone caused only a mild hearing loss (2-9 dB), and only an occasional loss of OHCs (<1% missing). Exposure to the combination of noise and 600 ppm styrene caused a moderate flat hearing loss of 23-27 dB. The cytocochleograms showed a more severe damage of the OHCs than after exposure to 600 ppm styrene alone. The inner hair cells were found to be destroyed in some animals in the upper basal turn only after the combination exposure. Only in combination with noise exposure, the lower styrene concentrations (100 and 300 ppm) induced a hearing loss which was equivalent to that seen after exposure to noise alone. We conclude that: (1) There is an ototoxic interaction between styrene and noise. (2) Synergism is manifested only if styrene is applied in concentrations above the critical level (between 300 and 600 ppm in this study). (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Helsinki, Cent Hosp, Dept Otorhinolaryngol & Head & Neck Surg, Helsinki 00029, Finland. Univ Helsinki, Inst Biotechnol, Helsinki 00014, Finland. Tampere Univ Hosp, Dept Otorhinolaryngol & Head & Neck Surg, Tampere 33521, Finland. Nagoya Univ, Sch Hlth Sci, Higashi Ku, Nagoya, Aichi 4618673, Japan. Finnish Inst Occupat Hlth, Dept Ind Hyg & Toxicol, Helsinki 00250, Finland. RP Makitie, AA (reprint author), 293 Glen Rd, Toronto, ON M4W 2X4, Canada. CR ALBEE RR, 1996, K000874036B HET DOW Anniko M, 1985, Arch Toxicol Suppl, V8, P221 ARAN JM, 1995, OTOLARYNG HEAD NECK, V112, P133, DOI 10.1016/S0194-5998(95)70313-6 BOETTCHER FA, 1992, NOISE INDUCED HEARIN, P175 BOETTCHER FA, 1987, EAR HEARING, V8, P192, DOI 10.1097/00003446-198708000-00003 BORG E, 1982, HEARING RES, V8, P117, DOI 10.1016/0378-5955(82)90070-3 BROWN JJ, 1978, ACTA OTO-LARYNGOL, V86, P394, DOI 10.3109/00016487809107518 Campo P., 1993, Acta Acustica, V1 CROFTON KM, 1994, HEARING RES, V80, P25, DOI 10.1016/0378-5955(94)90005-1 DALLOS P, 1972, SCIENCE, V177, P356, DOI 10.1126/science.177.4046.356 DAVIS RR, 1996, 19 MIDW RES M FL US DAYAL VS, 1971, ANN OTO RHINOL LARYN, V80, P897 FECHTER LD, 1993, NEUROTOXICOL TERATOL, V15, P151, DOI 10.1016/0892-0362(93)90010-L GRATTON MA, 1990, HEARING RES, V50, P211, DOI 10.1016/0378-5955(90)90046-R HAMERNIK RP, 1989, HEARING RES, V38, P199, DOI 10.1016/0378-5955(89)90065-8 JACOBSEN P, 1993, OCCUP MED-OXFORD, V43, P180, DOI 10.1093/occmed/43.4.180 Jersey G.C., 1978, 2 YEAR CHRONIC INHAL JOHNSON AC, 1990, ACTA OTO-LARYNGOL, V109, P34, DOI 10.3109/00016489009107412 JOHNSON AC, 1988, ACTA OTO-LARYNGOL, V105, P56, DOI 10.3109/00016488809119446 JOHNSON AC, 1995, OCCUP MED, V10, P623 KEITHLEY EM, 1982, HEARING RES, V8, P249, DOI 10.1016/0378-5955(82)90017-X KULIG BM, 1989, NEUROTOXICOL TERATOL, V10, P511 Lataye R, 2000, HEARING RES, V139, P86, DOI 10.1016/S0378-5955(99)00174-4 LAURELL G, 1986, ACTA OTO-LARYNGOL, V101, P66, DOI 10.3109/00016488609108609 LURIE MH, 1937, LARYNGOSCOPE, V48, P418 Makitie A, 2002, ARCH TOXICOL, V76, P40, DOI 10.1007/s00204-001-0316-4 MORATA TC, 1994, ARCH ENVIRON HEALTH, V49, P359 MORATA TC, 1993, SCAND J WORK ENV HEA, V19, P245 MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7 NOMARSKI MG, 1955, J PHYS RADIUM, V16, P95 NYLEN P, 1994, PHARMACOL TOXICOL, V74, P116 PRYOR GT, 1987, J APPL TOXICOL, V7, P55, DOI 10.1002/jat.2550070110 REBERT CS, 1983, NEUROBEH TOXICOL TER, V5, P59 RYBAK LP, 1992, OTOLARYNG HEAD NECK, V106, P677 Sass-Kortsak Andrea M., 1995, Annals of Epidemiology, V5, P15, DOI 10.1016/1047-2797(94)00036-S SULLIVAN MJ, 1989, NEUROTOXICOL TERATOL, V10, P525 YANO BL, 1992, TOXICOL PATHOL, V20, P1 YLIKOSKI J, 1975, THESIS U HELSINKI Ylikoski J, 1974, Acta Otolaryngol Suppl, V326, P42 NR 39 TC 21 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2003 VL 179 IS 1-2 BP 9 EP 20 DI 10.1016/S0378-5955(03)00066-2 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 679ZB UT WOS:000182950900002 PM 12742234 ER PT J AU Hight, NG McFadden, SL Henderson, D Burkard, RF Nicotera, T AF Hight, NG McFadden, SL Henderson, D Burkard, RF Nicotera, T TI Noise-induced hearing loss in chinchillas pre-treated with glutathione monoethylester and R-PIA SO HEARING RESEARCH LA English DT Article DE noise-induced hearing loss; protection; glutathione ID ADENOSINE RECEPTORS; LIPID-PEROXIDATION; ACOUSTIC TRAUMA; DAMAGE; COCHLEA; EXPOSURE; RADICALS; REPERFUSION; MONOESTERS; GENERATION AB The protective effects of glutathione monoethylester (GEE) and GEE in combination with R-N6-phenylisopropyladenosine (R-PIA) were evaluated in the chinchilla when exposed to impulse (145 dB pSPL) or continuous (105 dB SPL, 4 kHz OB) noise. Six groups of 10 chinchillas were used as subjects. Before exposure to noise, the subjects were anesthetized, a 30 PI drop of drug was placed on the round window (GEE [50, 100, 150 mM], GEE 50 mM and R-PIA). Forty minutes later the subject was exposed to either impulse or continuous noise. The 50 mM treatment provided significant protection from impulse noise, but not from continuous noise exposure. The combination provided significant protection from both the continuous and impulse noise. In a separate set of experiments, glutathione:(GSH) levels were measured in the perilymph. All the drug treatments elevated GSH levels. The results are discussed in terms of antioxidant treatments as a prophylactic measure against noise-induced hearing loss. (C) 2003 Elsevier Science B.V. All rights reserved. C1 SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14226 USA. SUNY Buffalo, Dept Communicat Disorders & Sci, Buffalo, NY 14226 USA. Natl Naval Med Res Inst, San Diego, CA 92134 USA. Roswell Pk Canc Inst, Buffalo, NY 14263 USA. RP Henderson, D (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 215 Parker Hall, Buffalo, NY 14226 USA. EM donaldhe@acsu.buffalo.edu CR ANBAR M, 1977, 59 NSRDSNBS ANBAR M, 1973, 43 NSRDSNBS ANDERSON ME, 1994, METHOD ENZYMOL, V234, P492 ANDERSON ME, 1985, ARCH BIOCHEM BIOPHYS, V239, P538, DOI 10.1016/0003-9861(85)90723-4 ANDERSON ME, 1989, ANAL BIOCHEM, V183, P16, DOI 10.1016/0003-2697(89)90164-4 Anderson M E, 1997, Adv Pharmacol, V38, P65 Beagley H A, 1965, Acta Otolaryngol, V60, P479, DOI 10.3109/00016486509127031 BOBBIN RP, 1995, HEARING RES, V87, P49, DOI 10.1016/0378-5955(95)00077-H BOBBIN RP, 1992, HEARING RES, V63, P157, DOI 10.1016/0378-5955(92)90082-X BOLLI R, 1988, J CLIN INVEST, V82, P476, DOI 10.1172/JCI113621 BRAUGHLER JM, 1989, FREE RADICAL BIO MED, V6, P289, DOI 10.1016/0891-5849(89)90056-7 CHUNG DY, 1983, AUDIOLOGY, V22, P199 DANIELSON R, 1991, J ACOUST SOC AM, V90, P209, DOI 10.1121/1.402361 FERNANDEZCHECA JC, 1990, ANAL BIOCHEM, V190, P212, DOI 10.1016/0003-2697(90)90183-A Ford MS, 1997, HEARING RES, V105, P130, DOI 10.1016/S0378-5955(96)00204-3 HALLIWELL B, 1984, LANCET, V1, P1396 HALLIWELL B, 1994, ENVIRON HEALTH PERSP, V102, P5, DOI 10.2307/3432205 HALLIWELL B, 1984, LANCET, V2, P1095 Halliwell B., 1999, FREE RADICALS BIOL M HAMERNIK RP, 1980, SCAND AUDIOL, P128 HAMERNIK RP, 1984, HEARING RES, V13, P229, DOI 10.1016/0378-5955(84)90077-7 HENDERSO.D, 1974, ARCH OTOLARYNGOL, V99, P62 HENDERSO.D, 1973, J ACOUST SOC AM, V54, P1099, DOI 10.1121/1.1914321 HIGHT NG, 1999, EFFECT GLUTATHIONE M Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3 Jacono AA, 1998, HEARING RES, V117, P31, DOI 10.1016/S0378-5955(97)00214-1 Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3 LIU CC, 1999, PROTECTION IMPULSE N LIU Z, 1992, CHIN J OTORHINOLARYN, V27, P24 MAGGIRWAR SB, 1994, BIOCHEM BIOPH RES CO, V201, P508, DOI 10.1006/bbrc.1994.1731 McFadden SL, 1997, HEARING RES, V111, P114, DOI 10.1016/S0378-5955(97)00099-3 MEISTER A, 1986, J AM COLL NUTR, V5, P137 MEISTER A, 1983, ANNU REV BIOCHEM, V52, P711, DOI 10.1146/annurev.bi.52.070183.003431 NICOTERA T, 1999, REACTIVE OXYGEN SPEC Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P219, DOI 10.1159/000013845 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 PRICE GR, 1983, J ACOUST SOC AM, V73, P556, DOI 10.1121/1.389001 RAMKUMAR V, 1994, AM J PHYSIOL, V267, pC731 SALVI RJ, 1982, AM J OTOLARYNG, V3, P408, DOI 10.1016/S0196-0709(82)80018-5 SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 SHI XL, 1994, J INORG BIOCHEM, V56, P77, DOI 10.1016/0162-0134(94)85039-9 SNYDER DL, 1994, LAB ANIMAL, V23, P42 SPOENDLI.H, 1973, ACTA OTO-LARYNGOL, V75, P220, DOI 10.3109/00016487309139699 SPOENDLI.H, 1971, ACTA OTO-LARYNGOL, V71, P166, DOI 10.3109/00016487109125346 SPOENDLIN H, 1973, EFFECTS NOISE HEARIN, P69 Stadtman ER, 1998, DRUG METAB REV, V30, P225, DOI 10.3109/03602539808996310 Wells PG, 1997, MUTAT RES-FUND MOL M, V396, P65, DOI 10.1016/S0027-5107(97)00175-9 Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6 Yamasoba T, 1998, BRAIN RES, V804, P72, DOI 10.1016/S0006-8993(98)00660-X Yu XC, 1997, CLIN EXP PHARMACOL P, V24, P976, DOI 10.1111/j.1440-1681.1997.tb02732.x ZHAO ZQ, 1993, CIRCULATION, V88, P709 NR 53 TC 60 Z9 65 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2003 VL 179 IS 1-2 BP 21 EP 32 DI 10.1016/S0378-5955(03)00067-4 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 679ZB UT WOS:000182950900003 PM 12742235 ER PT J AU Idrizbegovic, E Bogdanovic, N Viberg, A Canlon, B AF Idrizbegovic, E Bogdanovic, N Viberg, A Canlon, B TI Auditory peripheral influences on calcium binding protein immunoreactivity in the cochlear nucleus during aging in the C57BL/6J mouse SO HEARING RESEARCH LA English DT Article DE aging; progressive hearing loss; hereditary hearing loss; cochlea; hair cell; spiral ganglion neurons; stereology ID CALBINDIN D-28K IMMUNOREACTIVITY; PRODUCT OTOACOUSTIC EMISSIONS; AGE-RELATED LOSS; BRAIN-STEM; HIPPOCAMPAL-NEURONS; CBA/CAJ MICE; CALRETININ IMMUNOREACTIVITY; INFERIOR COLLICULUS; RAT HIPPOCAMPUS; MEDIAL NUCLEUS AB The C57BL/6J (C57) mouse was selected as a suitable model for early presbyacusis to determine if there were correlations between peripheral pathology (spiral ganglion loss, inner and outer hair cell loss) and calcium binding immunoreactivity in the cochlear nucleus during aging. The quantitative stereological method, the optical fractionator, was used for determining the total number of neurons and calcium binding immunopositive. neurons (calbindin, parvalbumin and calretinin) during aging in the posteroventral- and dorsal cochlear nucleus (PVCN and DCN) in C57 mice. Comparing 30-month-old to 1-month-old C57 mice, a percent increase in parvalbumin and calbindin immunoreactivity was evident in both the PVCN and DCN. Correlations were made between peripheral pathology (spiral ganglion and inner and outer hair cell loss) and calcium binding protein expression. Significant correlations between cochlear pathology and the percentage of parvalbumin and calretinin immunoreactive neurons were demonstrated in the DCN. Moreover, significant correlations were found between cochlear pathology and parvalbumin and calbindin in the PVCN. In summary, the findings imply that degenerative changes in the auditory periphery can modulate neuronal homeostasis by increasing calcium binding proteins in the PVCN and DCN during aging. Taken together, these findings suggest a role for calcium binding proteins in protecting against age-induced calcium toxicity. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Huddinge Univ Hosp, Karolinska Inst, Dept Audiol, Stockholm, Sweden. Karolinska Inst, Dept Physiol & Pharmacol, Stockholm, Sweden. Karolinska Inst, NEUROTEC, Geriatr Sect, Stockholm, Sweden. RP Idrizbegovic, E (reprint author), Huddinge Univ Hosp, Karolinska Inst, Dept Audiol, Stockholm, Sweden. CR BAIMBRIDGE KG, 1992, TRENDS NEUROSCI, V15, P303, DOI 10.1016/0166-2236(92)90081-I Bellido T, 2000, J BIOL CHEM, V275, P26328, DOI 10.1074/jbc.M003600200 BROWNER RH, 1982, J COMP NEUROL, V211, P115, DOI 10.1002/cne.902110203 Caicedo A, 1997, J COMP NEUROL, V378, P1, DOI 10.1002/(SICI)1096-9861(19970203)378:1<1::AID-CNE1>3.0.CO;2-8 Caicedo A, 1996, ANAT EMBRYOL, V194, P465 CELIO MR, 1986, SCIENCE, V231, P995, DOI 10.1126/science.3945815 Forster CR, 2000, J COMP NEUROL, V416, P173, DOI 10.1002/(SICI)1096-9861(20000110)416:2<173::AID-CNE4>3.0.CO;2-V Franklin KBJ, 1997, MOUSE BRAIN STEREOTA, V1st FRISINA RD, 1995, HEARING RES, V85, P53, DOI 10.1016/0378-5955(95)00029-4 GUNDERSEN HJG, 1988, APMIS, V96, P857 Guo Q, 1998, P NATL ACAD SCI USA, V95, P3227, DOI 10.1073/pnas.95.6.3227 HARRISON JM, 1966, J COMP NEUROL, V162, P269 Heizmann CW, 1995, CALCIUM REGULATION C HENRY KR, 1980, AUDIOLOGY, V19, P369 HUNTER KP, 1987, HEARING RES, V30, P207, DOI 10.1016/0378-5955(87)90137-7 Idrizbegovic E, 2001, HEARING RES, V158, P102, DOI 10.1016/S0378-5955(01)00295-7 Idrizbegovic E, 2001, AUDIOL NEURO-OTOL, V6, P132, DOI 10.1159/000046820 Jimenez AM, 1999, HEARING RES, V138, P91, DOI 10.1016/S0378-5955(99)00154-9 KANE EC, 1973, INT J NEUROSCI, V5, P251, DOI 10.3109/00207457309149485 KELLEY PE, 1992, J COMP NEUROL, V320, P196, DOI 10.1002/cne.903200205 Khachaturian Z S, 1989, Aging (Milano), V1, P17 LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418 LI HS, 1994, ORL J OTO-RHINO-LARY, V56, P61 LLEDO PM, 1992, NEURON, V9, P943, DOI 10.1016/0896-6273(92)90246-A Lohmann C, 1996, J COMP NEUROL, V367, P90, DOI 10.1002/(SICI)1096-9861(19960325)367:1<90::AID-CNE7>3.0.CO;2-E MATTSON MP, 1991, NEURON, V6, P41, DOI 10.1016/0896-6273(91)90120-O MIKAELIAN DO, 1979, LARYNGOSCOPE, V89, P1 MOORE DR, 1990, J COMP NEUROL, V302, P810, DOI 10.1002/cne.903020412 Mostafapour SP, 2000, J COMP NEUROL, V426, P561, DOI 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G NITSCH C, 1989, NEUROSCI LETT, V105, P263, DOI 10.1016/0304-3940(89)90631-9 ONeill WE, 1997, HEARING RES, V112, P158, DOI 10.1016/S0378-5955(97)00116-0 Parham K, 1997, HEARING RES, V112, P216, DOI 10.1016/S0378-5955(97)00124-X PASIC TR, 1989, J COMP NEUROL, V283, P474, DOI 10.1002/cne.902830403 SLOVITER RS, 1989, J COMP NEUROL, V280, P183, DOI 10.1002/cne.902800203 Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 Tierney TS, 1997, J COMP NEUROL, V387, P421 VATER M, 1994, J COMP NEUROL, V341, P534, DOI 10.1002/cne.903410409 Verkhratsky A, 1998, TRENDS NEUROSCI, V21, P2, DOI 10.1016/S0166-2236(97)01156-9 WEBSTER WR, 1990, NEUROSCI LETT, V111, P252, DOI 10.1016/0304-3940(90)90270-J WEST MJ, 1991, ANAT REC, V231, P482, DOI 10.1002/ar.1092310411 WILLOTT JF, 1992, J COMP NEUROL, V321, P666, DOI 10.1002/cne.903210412 WILLOTT JF, 1990, J COMP NEUROL, V300, P61, DOI 10.1002/cne.903000106 WILLOTT JF, 1987, J COMP NEUROL, V260, P472, DOI 10.1002/cne.902600312 Zettel ML, 2001, HEARING RES, V158, P131, DOI 10.1016/S0378-5955(01)00305-7 ZETTEL ML, 1991, J COMP NEUROL, V313, P1, DOI 10.1002/cne.903130102 Zettel ML, 1997, J COMP NEUROL, V386, P92, DOI 10.1002/(SICI)1096-9861(19970915)386:1<92::AID-CNE9>3.0.CO;2-8 NR 46 TC 21 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2003 VL 179 IS 1-2 BP 33 EP 42 DI 10.1016/S0378-5955(03)00076-5 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 679ZB UT WOS:000182950900004 PM 12742236 ER PT J AU Ozeki, M Duan, LJ Hamajima, Y Obritch, W Edson-Herzovi, D Lin, JZ AF Ozeki, M Duan, LJ Hamajima, Y Obritch, W Edson-Herzovi, D Lin, JZ TI Establishment and characterization of rat progenitor hair cell lines SO HEARING RESEARCH LA English DT Article DE immortalization; cochlea; progenitor hair cell line; hair cell marker; rat ID INNER-EAR DEVELOPMENT; TRANSCRIPTION FACTORS; EPITHELIAL-CELLS; HEARING-LOSS; MYOSIN VIIA; MIDDLE-EAR; STEM-CELLS; DIFFERENTIATION; REGENERATION; COCHLEA AB Cochlear progenitor hair cell lines are useful for studies of cellular specification, gene expression features, and signal transduction involved in the development of hair cells. To obtain embryonic and postnatal cochlear progenitor hair cell lines, we immortalized primary cultures of sensorineural epithelial cells from otocysts on embryonic day 12 (E12) and explants of the organ of Corti tissues on postnatal day 5 (P5). Primary cultures and explants were then transduced by the E6/E7 genes of human papilloma virus type 16. Transduced cells were passed for >50 passages and partial clonal cells were isolated from the above P5 organ of Corti explants by limiting dilution. The expression of neuronal, neural, epithelial, hair cell markers, and important transcription factors were then examined in these cell clones. Clones that express the above markers were considered as being progenitor hair cells. At least two representative cell lines, one from a mixed culture of otocyst epithelial cells and the other from the organ of Corti cells, ultimately expressed hair cell markers and neuronal/neural cell markers. The former only expressed the early hair cell marker oncomodulin and myosin VIIa, whereas the latter expressed oncomodulin, calretinin, myosin VIIa and Brn 3.1. These cell lines may represent progenitor hair cells at the different stages of cochlear development. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Minnesota, Sch Med, Dept Otolaryngol, Minneapolis, MN 55455 USA. Univ Minnesota, Sch Med, Dept Ophthalmol, Minneapolis, MN 55455 USA. RP Lin, JZ (reprint author), Univ Minnesota, Sch Med, Dept Otolaryngol, 2001 6th St SE,216 Lions Res Bldg, Minneapolis, MN 55455 USA. CR Barald KF, 1997, INT J DEV NEUROSCI, V15, P523, DOI 10.1016/S0736-5748(96)00108-6 Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837 Chardin S, 1997, INT J DEV NEUROSCI, V15, P497, DOI 10.1016/S0736-5748(96)00106-2 CHARDIN S, 1995, SCIENCE, V267, P707, DOI 10.1126/science.7839151 Chen P, 2002, DEVELOPMENT, V129, P2495 Chun YM, 2002, ANN OTO RHINOL LARYN, V111, P507 Daudet N, 1998, J COMP NEUROL, V401, P145 Edmonds B, 2000, NAT NEUROSCI, V3, P786, DOI 10.1038/77687 Erkman L, 1996, NATURE, V381, P603, DOI 10.1038/381603a0 FRANKE WW, 1979, DIFFERENTIATION, V15, P7, DOI 10.1111/j.1432-0436.1979.tb01030.x Garcia VP, 2001, ACTA OTO-LARYNGOL, V121, P569, DOI 10.1080/000164801316878836 GILLESPIE PG, 1995, CURR OPIN NEUROBIOL, V5, P449, DOI 10.1016/0959-4388(95)80004-2 Green J, 2002, PEDIATRICS, V109, P987, DOI 10.1542/peds.109.5.987 Haddon C, 1998, DEVELOPMENT, V125, P4637 HASSON T, 1995, P NATL ACAD SCI USA, V92, P9815, DOI 10.1073/pnas.92.21.9815 He DZZ, 2001, HEARING RES, V162, P113, DOI 10.1016/S0378-5955(01)00376-8 Hiel H, 2000, BRAIN RES, V858, P215, DOI 10.1016/S0006-8993(00)01947-8 Ito J, 2001, ACTA OTO-LARYNGOL, V121, P140 Kalinec F, 1999, CELL BIOL INT, V23, P175, DOI 10.1006/cbir.1998.0339 KELLEY MW, 1993, DEVELOPMENT, V119, P1041 Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x Lanford PJ, 1999, NAT GENET, V21, P289 LENDAHL U, 1990, CELL, V60, P585, DOI 10.1016/0092-8674(90)90662-X Lin JH, 2003, HEARING RES, V175, P2, DOI 10.1016/S0378-5955(02)00704-9 Lin JZ, 2002, INT J PEDIATR OTORHI, V65, P203, DOI 10.1016/S0165-5876(02)00130-1 Lin JZ, 1999, J INFECT DIS, V179, P1145, DOI 10.1086/314714 Lyden D, 1999, NATURE, V401, P670, DOI 10.1038/44334 Malgrange B, 2002, MECH DEVELOP, V112, P79, DOI 10.1016/S0925-4773(01)00642-6 MCKAY R, 1993, CR ACAD SCI III-VIE, V316, P1452 Morsli H, 1998, J NEUROSCI, V18, P3327 NAGATA Y, 1994, BIOCHEM BIOPH RES CO, V199, P1355, DOI 10.1006/bbrc.1994.1380 Nishida Y, 1998, J COMP NEUROL, V395, P18 Represa J, 2000, ACTA OTO-LARYNGOL, V120, P5 Richardson GP, 1999, ANN NY ACAD SCI, V884, P110 Rinkwitz S, 2001, ANN NY ACAD SCI, V942, P1 Rivolta MN, 2002, J NEUROBIOL, V53, P306, DOI 10.1002/neu.10111 Rivolta MN, 1997, AUDIOL NEURO-OTOL, V2, P36 Rivolta MN, 1998, P ROY SOC B-BIOL SCI, V265, P1595 ROBERSON DW, 1994, AM J OTOL, V15, P28 Ruben R. J., 1967, ACTA OTO-LARYNGOL, V220, P1 Sakaguchi N, 1998, J HISTOCHEM CYTOCHEM, V46, P29 Stone JS, 1999, J NEUROCYTOL, V28, P863, DOI 10.1023/A:1007022205821 Stone JS, 2000, P NATL ACAD SCI USA, V97, P11714, DOI 10.1073/pnas.97.22.11714 Stone JS, 1999, DEVELOPMENT, V126, P961 TSUE TT, 1994, J NEUROSCI, V14, P140 Vahava O, 1998, SCIENCE, V279, P1950, DOI 10.1126/science.279.5358.1950 Xiang MQ, 1997, P NATL ACAD SCI USA, V94, P9445, DOI 10.1073/pnas.94.17.9445 Xiang MQ, 1998, DEVELOPMENT, V125, P3935 Zheng JL, 2000, NAT NEUROSCI, V3, P580 Zheng JL, 1997, J NEUROSCI, V17, P8270 Zheng JL, 2000, DEVELOPMENT, V127, P4551 Zine A, 2001, J NEUROSCI, V21, P4712 Zine A, 1998, NEUROREPORT, V9, P263, DOI 10.1097/00001756-199801260-00016 NR 53 TC 11 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2003 VL 179 IS 1-2 BP 43 EP 52 DI 10.1016/S0378-5955(03)00077-7 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 679ZB UT WOS:000182950900005 PM 12742237 ER PT J AU Wolters, FLC Klis, SFL de Groot, JCMJ Hamers, FPT Prieskorn, DA Miller, JM Smoorenburg, GF AF Wolters, FLC Klis, SFL de Groot, JCMJ Hamers, FPT Prieskorn, DA Miller, JM Smoorenburg, GF TI Systemic co-treatment with alpha-melanocyte stimulating hormone delays hearing loss caused by local cisplatin administration in guinea pigs SO HEARING RESEARCH LA English DT Article DE compound action potential; cisplatin ototoxicity; protection; alpha-MSH; mini-osmotic pump; cochlea; deafness ID NEUROTROPHIC ACTH((4-9)) ANALOG; STRIA VASCULARIS; INDUCED OTOTOXICITY; D-METHIONINE; HAIR-CELLS; ORGANOTYPIC CULTURES; CIS-PLATINUM; PROTECTION; RECOVERY; DAMAGE AB It has previously been demonstrated that ototoxicity induced by systemic administration of cisplatin is reduced by concomitant administration of melanocortins, like alpha-melanocyte stimulating hormone (alpha-MSH). However, these experiments were hampered by large interanimal variability. Therefore, we re-investigated the effects of systemically administered alpha-MSH during local (intracochlear) administration of cisplatin. Guinea pigs, implanted with a round-window electrode, allowing daily monitoring of the compound action potentials (CAPs), and a mini-osmotic pump, pumping either 0.5 mul/h physiological saline or cisplatin solution (15 mug/ml), were co-treated daily with a subcutaneous bolus injection of either alpha-MSH (75 mug/kg) or physiological saline for I week or until the electrocochleogram showed a persistent decrease in CAP amplitude (40 dB threshold shift at 8 kHz). Next, the animals were sacrificed and the cochleas were processed for histology. After 2-3 days, cisplatin alone caused a threshold shift at all frequencies (2-16 kHz). Co-administration with alpha-MSH consistently delayed the criterion threshold shift by I day. When the 40 dB criterion had been reached, similar outer hair cell losses in both the cisplatin/alpha-MSH- and cisplatin/saline-treated groups were observed. This experiment confirms that direct administration of cisplatin into the cochlea results in considerably less interanimal variability than systemic administration and that co-treatment with alpha-MSH delays cisplatin ototoxicity. Since cisplatin was delivered directly to the cochlea, the ameliorating effect of alpha-MSH probably involves a cochlear target. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Med Ctr Utrecht, Hearing Res Labs, NL-3508 GA Utrecht, Netherlands. Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Wolters, FLC (reprint author), Univ Med Ctr Utrecht, Hearing Res Labs, Room G02-531,POB 85 500, NL-3508 GA Utrecht, Netherlands. CR Campbell KCM, 1999, HEARING RES, V138, P13, DOI 10.1016/S0378-5955(99)00142-2 Cappaert NLM, 2001, HEARING RES, V162, P67, DOI 10.1016/S0378-5955(01)00373-2 Cardinaal RM, 2000, HEARING RES, V144, P147, DOI 10.1016/S0378-5955(00)00060-5 Cardinaal RM, 2000, HEARING RES, V144, P157, DOI 10.1016/S0378-5955(00)00061-7 Cardinaal RM, 2000, HEARING RES, V144, P135, DOI 10.1016/S0378-5955(00)00059-9 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 DEGROOT JCMJ, 1987, ACTA OTO-LARYNGOL, V104, P234, DOI 10.3109/00016488709107323 deGroot JCMJ, 1997, HEARING RES, V106, P9, DOI 10.1016/S0378-5955(96)00213-4 Ekborn A, 2002, HEARING RES, V165, P53, DOI 10.1016/S0378-5955(02)00277-0 Greenwood DD, 1996, HEARING RES, V94, P157, DOI 10.1016/0378-5955(95)00229-4 HAMERS FPT, 1994, EUR ARCH OTO-RHINO-L, V251, P23 Heijmen PS, 1999, HEARING RES, V128, P27, DOI 10.1016/S0378-5955(98)00194-4 HILDING DA, 1977, ACTA OTO-LARYNGOL, V84, P24, DOI 10.3109/00016487709123939 HOEVE LJ, 1988, ARCH OTO-RHINO-LARYN, V245, P98, DOI 10.1007/BF00481444 Klis SFL, 2000, NEUROREPORT, V11, P623, DOI 10.1097/00001756-200002280-00037 Klis SFL, 2002, HEARING RES, V164, P138, DOI 10.1016/S0378-5955(01)00425-7 KOHN S, 1988, LARYNGOSCOPE, V98, P865 Kohn S, 1997, ULTRASTRUCT PATHOL, V21, P289 KOMUNE S, 1981, OTOLARYNG HEAD NECK, V89, P275 Kopke RD, 1997, AM J OTOL, V18, P559 Li GM, 2002, LAB INVEST, V82, P585, DOI 10.1038/labinvest.3780453 Li GM, 2001, NEUROTOXICOLOGY, V22, P163, DOI 10.1016/S0161-813X(00)00010-3 Meech RP, 1998, HEARING RES, V124, P44, DOI 10.1016/S0378-5955(98)00116-6 MOTOHASHI H, 1994, HEARING RES, V80, P10, DOI 10.1016/0378-5955(94)90003-5 NAKAI Y, 1982, ACTA OTO-LARYNGOL, V93, P227, DOI 10.3109/00016488209130876 O'Leary SJ, 2001, HEARING RES, V154, P135, DOI 10.1016/S0378-5955(01)00232-5 Prieskorn DM, 2000, HEARING RES, V140, P212, DOI 10.1016/S0378-5955(99)00193-8 Reser D, 1999, NEUROTOXICOLOGY, V20, P731 Rybak LP, 1999, LARYNGOSCOPE, V109, P1740, DOI 10.1097/00005537-199911000-00003 RYBAK LP, 1995, FUND APPL TOXICOL, V26, P293, DOI 10.1006/faat.1995.1100 SAITO T, 1994, ORL J OTO-RHINO-LARY, V56, P315 SCHWEITZER VG, 1993, LARYNGOSCOPE, V103, P1, DOI 10.1288/00005537-199304000-00001 Smoorenburg GF, 1999, ANN NY ACAD SCI, V884, P192, DOI 10.1111/j.1749-6632.1999.tb08642.x Stengs CHM, 1998, HEARING RES, V124, P108, DOI 10.1016/S0378-5955(98)00130-0 TANGE RA, 1984, ARCH OTO-RHINO-LARYN, V239, P41, DOI 10.1007/BF00454261 TANGE RA, 1984, CLIN OTOLARYNGOL, V9, P323, DOI 10.1111/j.1365-2273.1984.tb01515.x Tsukasaki N, 2000, HEARING RES, V149, P189, DOI 10.1016/S0378-5955(00)00182-9 Zheng JL, 1996, EUR J NEUROSCI, V8, P1897, DOI 10.1111/j.1460-9568.1996.tb01333.x ZUMGOTTESBERGE AMM, 2000, MENIERES DIS 1999 UP, P49 NR 39 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2003 VL 179 IS 1-2 BP 53 EP 61 DI 10.1016/S0378-5955(03)00080-7 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 679ZB UT WOS:000182950900006 PM 12742238 ER PT J AU Rousche, PJ Otto, KJ Reilly, MP Kipke, DR AF Rousche, PJ Otto, KJ Reilly, MP Kipke, DR TI Single electrode micro-stimulation of rat auditory cortex: an evaluation of behavioral performance SO HEARING RESEARCH LA English DT Article DE auditory cortex; micro-stimulation; neuroprosthetics; neuroscience; sensory perception ID INTRACORTICAL MICROSTIMULATION; ALBINO-RAT AB A combination of electrophysiological mapping, behavioral analysis and cortical micro-stimulation was used to explore the interrelation between the auditory cortex and behavior in the adult rat. Auditory discriminations were evaluated in eight rats trained to discriminate the presence or absence of a 75 dB pure tone stimulus. A probe trial technique was used to obtain intensity generalization gradients that described response probabilities to mid-level tones between 0 and 75 dB. The same rats were then chronically implanted in the auditory cortex with a 16 or 32 channel tungsten microwire electrode array. Implanted animals were then trained to discriminate the presence of single electrode micro-stimulation of magnitude 90 muA (22.5 nC/phase). Intensity generalization gradients were created to obtain the response probabilities to mid-level current magnitudes ranging from 0 to 90 muA on 36 different electrodes in six of the eight rats. The 50% point (the current level resulting in 50% detections) varied from 16.7 to 69.2 muA, with an overall mean of 42.4 (+/-8.1) muA across all single electrodes. Cortical micro-stimulation induced sensory-evoked behavior with similar characteristics as normal auditory stimuli. The results highlight the importance of the auditory cortex in a discrimination task and suggest that micro-stimulation of the auditory cortex might be an effective means for a graded information transfer of auditory information directly to the brain as part of a cortical auditory prosthesis. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA. Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA. Arizona State Univ, Dept Bioengn, Tempe, AZ 85287 USA. Arizona State Univ, Dept Psychol, Tempe, AZ 85287 USA. RP Rousche, PJ (reprint author), Univ Illinois, Dept Bioengn, 851 So Morgan St,Room 218, Chicago, IL 60607 USA. CR BAK M, 1990, MED BIOL ENG COMPUT, V28, P257, DOI 10.1007/BF02442682 BARTLETT JR, 1980, ACTA NEUROBIOL EXP, V40, P713 BIRT D, 1978, J NEUROPHYSIOL, V41, P705 Blumberg MS, 2000, PSYCHOL SCI, V11, P78, DOI 10.1111/1467-9280.00219 DOBELLE WH, 1973, ANN OTO RHINOL LARYN, V82, P445 KELLY JB, 1977, J COMP PHYSIOL PSYCH, V91, P930, DOI 10.1037/h0077356 KELLY JB, 1978, BRAIN RES, V145, P315, DOI 10.1016/0006-8993(78)90865-X Kelly J.B., 1990, CEREBRAL CORTEX RAT, P381 Kilgard MP, 1999, HEARING RES, V134, P16, DOI 10.1016/S0378-5955(99)00061-1 Maldonado PE, 1996, EXP BRAIN RES, V112, P420 RONNER SF, 1983, EXP NEUROL, V81, P376, DOI 10.1016/0014-4886(83)90270-4 Rousche P J, 1999, IEEE Trans Rehabil Eng, V7, P56, DOI 10.1109/86.750552 Sachs BD, 2000, BEHAV NEUROSCI, V114, P1203 SALLY SL, 1988, J NEUROPHYSIOL, V59, P1627 SALZMAN CD, 1990, NATURE, V346, P174, DOI 10.1038/346174a0 Schmidt EM, 1996, BRAIN, V119, P507, DOI 10.1093/brain/119.2.507 Talwar SK, 2001, J NEUROPHYSIOL, V85, P2350 Tehovnik EJ, 1996, J NEUROSCI METH, V65, P1, DOI 10.1016/0165-0270(95)00131-X Tokioka R, 2000, BRAIN RES, V861, P271, DOI 10.1016/S0006-8993(00)01991-0 Williams JC, 1999, BRAIN RES PROTOC, V4, P303, DOI 10.1016/S1385-299X(99)00034-3 NR 20 TC 26 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2003 VL 179 IS 1-2 BP 62 EP 71 DI 10.1016/S0378-5955(03)00081-9 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 679ZB UT WOS:000182950900007 PM 12742239 ER PT J AU Cohen, LT Richardson, LM Saunders, E Cowan, RSC AF Cohen, LT Richardson, LM Saunders, E Cowan, RSC TI Spatial spread of neural excitation in cochlear implant recipients: comparison of improved ECAP method and psychophysical forward masking SO HEARING RESEARCH LA English DT Article DE cochlear implant; electrically evoked compound action potential; spread of neural excitation; neural response telemetry; forward masking ID STIMULATED AUDITORY-NERVE; ELECTRICAL-STIMULATION; ELECTRODE ARRAY; PATTERNS; POSITION; MODEL AB This study introduces and evaluates a method for measurement of the longitudinal spread of electrically evoked neural excitation in the cochlea, using the Neural Response Telemetry(TM) D system (NRT(TM)) available with the Nucleus(TM) 24 cochlear implant system. The recently released version of the NRT software (version 3.0) enables presentation of the 'masker' and 'probe' on different electrodes. In the present method the probe position was fixed, while the masker position was varied across the electrode array. The amplitude of the response to the partially masked probe provides a measure of the amount of masking, which is dependent on the extent of overlap of the excitation regions of the masker and probe. These measurements were performed in seven subjects implanted with the Nucleus 24 cochlear implant system (four with straight and three with Contour(TM) electrode arrays), for basal, middle and apical probe electrodes. Similar excitation profiles were obtained using either the standard NRT subtraction paradigm or an alternative 'Miller' method. The excitation profiles were compared with those obtained from psychophysical forward masking and good agreement was found. The widths of electrically evoked compound action potential (ECAP) and forward masking profiles did not differ significantly. Whereas the width of the ECAP measure was significantly correlated with both the maximum comfortable level and the distance of the electrode band from the modiolus, the width of the forward masking profile was not. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Melbourne, Cooperat Res Ctr Cochlear Implant & Hearing Aid I, Melbourne, Vic 3002, Australia. Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3002, Australia. RP Cohen, LT (reprint author), Univ Melbourne, Cooperat Res Ctr Cochlear Implant & Hearing Aid I, 384-388 Albert St, Melbourne, Vic 3002, Australia. CR Abbas PJ, 1999, EAR HEARING, V20, P45, DOI 10.1097/00003446-199902000-00005 BATTMER RD, 2001, 2 INT S WORKSH OBJ M BLACK RC, 1980, J ACOUST SOC AM, V67, P868, DOI 10.1121/1.383966 BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716 Bruce IC, 1999, IEEE T BIO-MED ENG, V46, P617, DOI 10.1109/10.764938 BUSBY PA, 1993, J ACOUST SOC AM, V93, P1058, DOI 10.1121/1.405554 CARHART R, 1959, J SPEECH HEAR DISORD, V24, P330 Chatterjee M, 1998, J ACOUST SOC AM, V103, P2565, DOI 10.1121/1.422777 CLARK GM, 1979, J LARYNGOL OTOL, V93, P107, DOI 10.1017/S0022215100086825 Cohen L T, 1996, Audiol Neurootol, V1, P278 Cohen LT, 2001, HEARING RES, V155, P63, DOI 10.1016/S0378-5955(01)00248-9 COHEN LT, 2001, 2001 C IMPL AUD PROS COHEN LT, 1998, 1 INT S WORKSH OBJ M COHEN LT, 2001, 2 INT S WORKSH OBJ M Cohen LT, 1996, AM J OTOL, V17, P859 Cohen L.T., 2000, 5 EUR S PAED COCHL I Collins LM, 2000, J ACOUST SOC AM, V108, P2353, DOI 10.1121/1.1314320 Donaldson GS, 2000, J ACOUST SOC AM, V107, P1645, DOI 10.1121/1.428449 FAVRE E, 1993, HEARING RES, V66, P150, DOI 10.1016/0378-5955(93)90136-O Finley C., 1997, SPEECH PROCESSORS AU GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Hanekom JJ, 1998, J ACOUST SOC AM, V104, P2372, DOI 10.1121/1.423772 KNIGHT M, 2001, 3 INT C AS PAC S COC Lai WK, 2000, AUDIOL NEURO-OTOL, V5, P333, DOI 10.1159/000013899 LIM HH, 1989, J ACOUST SOC AM, V86, P971, DOI 10.1121/1.398732 MARSH MA, 1993, AM J OTOL, V14, P386 Miller CA, 2000, EAR HEARING, V21, P280, DOI 10.1097/00003446-200008000-00003 PARKER J, 2002, THESIS U MELBOURNE A ROBERTS LA, 2000, P AUST NEUROSCI SOC, V11, P144 Saunders E, 2002, EAR HEARING, V23, p28S SHANNON RV, 1983, HEARING RES, V12, P1, DOI 10.1016/0378-5955(83)90115-6 TAYLOR MM, 1967, J ACOUST SOC AM, V41, P782, DOI 10.1121/1.1910407 TONG YC, 1986, J ACOUST SOC AM, V79, P1958, DOI 10.1121/1.393203 TONG YC, 1983, ANN NY ACAD SCI, V405, P264, DOI 10.1111/j.1749-6632.1983.tb31639.x VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5 VONBEKESY G, 1947, ACTA OTO-LARYNGOL, V35, P411 Xu J, 2000, AM J OTOL, V21, P49, DOI 10.1016/S0196-0709(00)80112-X NR 37 TC 105 Z9 108 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2003 VL 179 IS 1-2 BP 72 EP 87 DI 10.1016/S0378-5955(03)00096-0 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 679ZB UT WOS:000182950900008 PM 12742240 ER PT J AU Henry, KR AF Henry, KR TI Hyperthermia exacerbates and hypothermia protects from noise-induced threshold elevation of the cochlear nerve envelope response in the C57BL/6J mouse SO HEARING RESEARCH LA English DT Article ID INDUCED HEARING-LOSS; FREE OXYGEN RADICALS; MICROMECHANICAL PROPERTIES; DIETARY RESTRICTION; APICAL DIFFERENCES; CEREBRAL-ISCHEMIA; BODY-TEMPERATURE; SOUND PRESSURE; GUINEA-PIG; MICE AB The scalp-recorded cochlear nerve envelope response (CNER) reflects the ability of high frequency cochlear nerve axons to fire in a phase-locked fashion to low frequency modulations of the acoustic envelope of high frequency stimuli. This property might be useful in evaluating the adverse effects of noise exposure on the ability of the ear to detect acoustic changes characteristic of vocalizations and speech. Hyperthermia (40degreesC rectal) per se had no observable influence on the CNER in C57BL/6 mice. Hypothermia (30degreesC) elevated CNER thresholds elicited by high frequency stimuli, although these stimuli still, generated an auditory brainstem response. Mice exposed to noise when hyperthermic had greater threshold elevations than those exposed when euthermic (36degreesC); those exposed when hypothermic had smaller threshold elevations than those exposed when euthermic. These observations were discussed in terms of the interaction of temperature and noise on oxidative processes within the cochlea. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Calif Davis, Dept Psychol, Davis, CA 95616 USA. RP Henry, KR (reprint author), Univ Calif Davis, Dept Psychol, Davis, CA 95616 USA. EM krhenry@ucdavis.edu CR Arehart KH, 1999, J ACOUST SOC AM, V105, P2454, DOI 10.1121/1.426850 AREHART KH, 1994, J ACOUST SOC AM, V95, P3574, DOI 10.1121/1.409975 BERNDT H, 1981, ARCH OTO-RHINO-LARYN, V232, P199, DOI 10.1007/BF00505038 Bieser A, 1996, EXP BRAIN RES, V108, P273 Bieser A, 1998, EXP BRAIN RES, V122, P139, DOI 10.1007/s002210050501 BRANIS M, 1988, HEARING RES, V33, P137, DOI 10.1016/0378-5955(88)90026-3 BRITT RH, 1983, THERMAL PHYSL, P519 BROWN MC, 1983, J ACOUST SOC AM, V73, P1662, DOI 10.1121/1.389387 COATS AC, 1965, SCIENCE, V150, P1481, DOI 10.1126/science.150.3702.1481 DEMOPOULOS HB, 1982, CAN J PHYSIOL PHARM, V60, P1415 DRESCHER DG, 1976, J ACOUST SOC AM, V59, P401, DOI 10.1121/1.380877 DRESCHER DG, 1974, SCIENCE, V185, P273, DOI 10.1126/science.185.4147.273 EATOCK RA, 1981, J COMP PHYSIOL, V142, P219 Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X FerberViart C, 1995, HEARING RES, V91, P202, DOI 10.1016/0378-5955(95)00193-X FERNANDEZ C, 1958, Acta Otolaryngol, V49, P189, DOI 10.3109/00016485809134747 Fletcher H, 1924, PHYS REV, V23, P427, DOI 10.1103/PhysRev.23.427 GIRADET F, 2002, HEARING RES, V171, P239 GOLDSTEIN JL, 1978, AUDIOLOGY, V17, P421 GULICK WL, 1989, HEARING PHYSL ACOUST, P323 GULICK W. L., 1960, ANN OTOL RHINOL AND LARYNGOL, V69, P35 Hakuba N, 2000, J NEUROSCI, V20, P8750 HARRISON JB, 1965, PHYSIOL ZOOL, V38, P34 Henderson D, 1999, ANN NY ACAD SCI, V884, P368, DOI 10.1111/j.1749-6632.1999.tb08655.x HENRY KR, 1992, ACTA OTO-LARYNGOL, V112, P599, DOI 10.3109/00016489209137447 HENRY KR, 1980, AUDIOLOGY, V19, P369 HENRY KR, 1984, HEARING RES, V16, P225, DOI 10.1016/0378-5955(84)90111-4 HENRY KR, 1986, AUDIOLOGY, V25, P329 HENRY KR, 1983, ACTA OTO-LARYNGOL, V95, P323, DOI 10.3109/00016488309130949 Henry KR, 2000, J COMP PSYCHOL, V114, P22, DOI 10.1037//0735-7036.114.1.22 Henry KR, 1996, HEARING RES, V99, P160, DOI 10.1016/S0378-5955(96)00097-4 Henry KR, 1997, J COMP PHYSIOL A, V181, P239, DOI 10.1007/s003590050110 Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3 Hyodo J, 2001, NEUROREPORT, V12, P1983, DOI 10.1097/00001756-200107030-00041 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Joris PX, 1998, J NEUROPHYSIOL, V79, P253 KAHANA L, 1950, AM J PHYSIOL, V163, P213 Karlidag T, 2002, AURIS NASUS LARYNX, V29, P147, DOI 10.1016/S0385-8146(01)00137-7 KATBAMNA B, 1993, AUDIOLOGY, V32, P344 Kaygusuz I, 2001, HEARING RES, V162, P43, DOI 10.1016/S0378-5955(01)00365-3 Kil HY, 1996, J CEREBR BLOOD F MET, V16, P100 KIM DO, 1980, J ACOUST SOC AM, V67, P1704, DOI 10.1121/1.384297 KONISHI T, 1981, HEARING RES, V4, P265, DOI 10.1016/0378-5955(81)90011-3 LAUTERMANN J, 1995, HEARING RES, V86, P15, DOI 10.1016/0378-5955(95)00049-A LUCAS JH, 1990, BRAIN RES, V517, P354, DOI 10.1016/0006-8993(90)91051-H Mathevon N, 1996, CR ACAD SCI III-VIE, V319, P29 MUSTAFA KY, 1988, ELECTROEN CLIN NEURO, V71, P133, DOI 10.1016/0168-5597(88)90071-8 NUTTALL AL, 1994, J ACOUST SOC AM, V96, P2210 OHLEMILLER KK, 1994, HEARING RES, V80, P174, DOI 10.1016/0378-5955(94)90109-0 OHLEMILLER KK, 2000, JARO, V1, P234 OHLEMILLER KK, 1992, HEARING RES, V63, P79, DOI 10.1016/0378-5955(92)90076-Y Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 Ohlemiller KK, 1998, HEARING RES, V123, P78, DOI 10.1016/S0378-5955(98)00105-1 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847 Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037 Pujol R, 1999, ANN NY ACAD SCI, V884, P249, DOI 10.1111/j.1749-6632.1999.tb08646.x Rabinowitz PM, 2002, HEARING RES, V173, P164, DOI 10.1016/S0378-5955(02)00350-7 ROBISSON P, 1993, ETHOLOGY, V94, P279 SEIDMAN MD, 2000, LARYNGOSCOPE, V727, P38 SHADDOCK LC, 1984, AM J OTOLARYNG, V5, P99, DOI 10.1016/S0196-0709(84)80028-9 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 SHAW EAG, 1974, J ACOUST SOC AM, V56, P1848, DOI 10.1121/1.1903522 SIEGEL JH, 1982, J NEUROPHYSIOL, V47, P303 Sinswat P, 2000, KIDNEY INT, V58, P2525, DOI 10.1046/j.1523-1755.2000.00437.x Staecker H, 2001, ACTA OTO-LARYNGOL, V121, P666, DOI 10.1080/00016480152583593 SWEET RJ, 1988, AUDIOLOGY, V27, P305 Takahashi K, 1996, ACTA OTO-LARYNGOL, V116, P209, DOI 10.3109/00016489609137825 THOMAS CJ, 1991, CLIN OTOLARYNGOL, V16, P138, DOI 10.1111/j.1365-2273.1991.tb01962.x Veuillet E, 1997, J NEUROL SCI, V145, P69, DOI 10.1016/S0022-510X(96)00243-2 WILLOTT JF, 1995, HEARING RES, V88, P143, DOI 10.1016/0378-5955(95)00107-F WOOLF NK, 1981, HEARING RES, V4, P335, DOI 10.1016/0378-5955(81)90017-4 Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87 Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6 Yoshida N, 1999, J NEUROSCI, V19, P10116 Zhao W, 1996, J NEUROSCI RES, V45, P282, DOI 10.1002/(SICI)1097-4547(19960801)45:3<282::AID-JNR10>3.0.CO;2-6 NR 75 TC 13 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2003 VL 179 IS 1-2 BP 88 EP 96 DI 10.1016/S0378-5955(03)00097-2 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 679ZB UT WOS:000182950900009 PM 12742241 ER PT J AU Ismail, H Thornton, ARD AF Ismail, H Thornton, ARD TI The interaction between ear and sex differences and stimulus rate SO HEARING RESEARCH LA English DT Article DE maximum length sequence; otoacoustic emission; sex; side ID EVOKED OTOACOUSTIC EMISSIONS; MAXIMUM LENGTH SEQUENCES; PERIPHERAL AUDITORY LATERALIZATION; GENDER DIFFERENCES; QUALITY ESTIMATION; RESPONSES; HEARING; ASYMMETRY; SYSTEM; HUMANS AB Evoked otoacoustic emissions (EOAEs) are produced by the cochlea in response to acoustic stimuli and provide an objective and non-invasive measure of cochlear function. A new technique, based on maximum length sequences (MLSs), enables stimulus rates of up to 5000 clicks/s to be used. Conventional EOAE amplitude differs between ears and sexes, female subjects having responses of greater amplitude than male subjects and right ears larger responses than left ears. As a prerequisite to clinical use it is necessary to establish if these differences occur with the MLS OAE technique and whether they change with stimulus rate. Eighty ears of normally hearing adults between the ages of 18 and 40 years were tested. MLS OAEs were recorded at eight stimulus rates ranging from 40/s to 5000/s. Two stimulus levels and two recordings were made at each stimulus rate. Female subjects were found to have statistically significantly larger MLS OAEs than male subjects and gave larger amplitude responses in the right ears. The difference was not significant between male right and left ears. A rate effect was also demonstrated with the amplitude of the MLS OAEs decreasing with an increase in rate. The study provides normative data for MLS OAE testing and shows that females have MLS OAEs of larger amplitude than males and that as the click stimulus rate increases the significance of this difference decreases. Female right ears also have MLS OAEs of greater amplitude than female left cars. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Royal S Hants Hosp, ENT Dept, Southampton SO14 0YG, Hants, England. Royal S Hants Hosp, MRC, Inst Hearing Res, Southampton SO14 0YG, Hants, England. RP Thornton, ARD (reprint author), Royal S Hants Hosp, ENT Dept, Southampton SO14 0YG, Hants, England. CR Aidan D, 1997, ACTA OTO-LARYNGOL, V117, P25, DOI 10.3109/00016489709117986 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 BURKARD R, 1990, J ACOUST SOC AM, V87, P1656, DOI 10.1121/1.399413 Cassidy JW, 2001, J MUSIC THER, V38, P28 CHANG KW, 1993, ARCH OTOLARYNGOL, V119, P276 CHATRIAN GE, 1985, EAR HEARING, V6, P130, DOI 10.1097/00003446-198505000-00002 CHI JG, 1977, ARCH NEUROL-CHICAGO, V34, P346 COLLET L, 1993, BRAIN DEV-JPN, V15, P249, DOI 10.1016/0387-7604(93)90018-4 COLLET L, 1991, AUDIOLOGY, V30, P164 Davies W. D. T., 1966, CONTROL, V10, P364 DON M, 1993, J ACOUST SOC AM, V94, P2135, DOI 10.1121/1.407485 ELBERLING C, 1984, SCAND AUDIOL, V13, P187, DOI 10.3109/01050398409043059 EYSHOLDT U, 1982, AUDIOLOGY, V21, P242 Ferguson MA, 2000, AUDIOLOGY, V39, P125 GESCHWIN.N, 1968, SCIENCE, V161, P186, DOI 10.1126/science.161.3837.186 Hall J., 2000, HDB OTOACOUSTIC EMIS Hine JE, 1997, EAR HEARING, V18, P121, DOI 10.1097/00003446-199704000-00004 JERGER J, 1974, ARCH OTOLARYNGOL, V99, P165 Kei J, 1997, AUDIOLOGY, V36, P61 Kemp D T, 1986, Scand Audiol Suppl, V25, P71 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 Khalfa S, 1998, HEARING RES, V121, P29, DOI 10.1016/S0378-5955(98)00062-8 Khalfa S, 1996, NEUROREPORT, V7, P993, DOI 10.1097/00001756-199604100-00008 Lamprecht-Dinnesen A, 1998, AUDIOL NEURO-OTOL, V3, P386, DOI 10.1159/000013808 LAUTER JL, 1988, SCAND AUDIOL, V17, P87, DOI 10.3109/01050398809070696 LEVINE RA, 1988, NEUROPSYCHOLOGIA, V26, P603, DOI 10.1016/0028-3932(88)90116-9 LONSBURYMARTIN BL, 1988, HEARING RES, V34, P313, DOI 10.1016/0378-5955(88)90011-1 LUTMAN ME, 1990, SCAND AUDIOL, V19, P3, DOI 10.3109/01050399009070745 LUTMAN ME, 1989, AUDIOLOGY, V28, P205 MARTIN G K, 1990, Seminars in Hearing, V11, P186, DOI 10.1055/s-0028-1091347 MCFADDEN D, 1993, HEARING RES, V68, P143, DOI 10.1016/0378-5955(93)90118-K MCGLONE J, 1980, BEHAV BRAIN SCI, V3, P215 Morlet T, 1996, NEUROSCI LETT, V220, P49, DOI 10.1016/S0304-3940(96)13226-2 MORLET T, 1995, HEARING RES, V90, P44, DOI 10.1016/0378-5955(95)00144-4 MOULIN A, 1993, HEARING RES, V65, P216, DOI 10.1016/0378-5955(93)90215-M Newmark M., 1997, Journal of Basic and Clinical Physiology and Pharmacology, V8, P133 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 SATO H, 1991, ACTA OTO-LARYNGOL, V111, P1037, DOI 10.3109/00016489109138447 Slaven A, 1998, EAR HEARING, V19, P103, DOI 10.1097/00003446-199804000-00002 TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V THORNTON ARD, 1993, BRIT J AUDIOL, V27, P109, DOI 10.3109/03005369309077900 THORNTON ARD, 1994, ADV OTOACOUSTIC EMIS, V2, P32 THORNTON ARD, 1995, SCAND AUDIOL, V24, P83, DOI 10.3109/01050399509047519 THORNTON ARD, 1994, SCAND AUDIOL, V23, P225, DOI 10.3109/01050399409047512 THORNTON ARD, 1993, J ACOUST SOC AM, V94, P132, DOI 10.1121/1.407090 WARD WD, 1957, J ACOUST SOC AM, V29, P1289, DOI 10.1121/1.1908768 Wright A, 1987, Acta Otolaryngol Suppl, V436, P15 NR 47 TC 9 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2003 VL 179 IS 1-2 BP 97 EP 103 DI 10.1016/S0378-5955(03)00099-6 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 679ZB UT WOS:000182950900010 PM 12742242 ER PT J AU Hart, HC Hall, DA Palmer, AR AF Hart, HC Hall, DA Palmer, AR TI The sound-level-dependent growth in the extent of fMRI activation in Heschl's gyrus is different for low- and high-frequency tones SO HEARING RESEARCH LA English DT Article DE functional magnetic resonance imaging; sound level; tone frequency; cortex ID PRIMARY AUDITORY-CORTEX; VOLUME MEASUREMENT; REPRESENTATION; POPULATION; RESPONSES; SYSTEM; 3.0-T; MOTOR; TIME AB fMRI (functional magnetic resonance imaging) was used to investigate whether the growth in activation of the human auditory cortex, with increasing sound level, is discernibly different for high- and low-frequency tones. Ten volunteers were scanned whilst listening to sequences of low-frequency (0.30-kHz) tones at sound levels between 42 and 96 dB sound pressure level (SPL), and 10 whilst listening to high-frequency (4.75-kHz) tones at the same sound levels. Activation was measured in Heschl's gyrus (including primary auditory cortex) which has been shown to be most sensitive to changes in sound level. For the 0.30-kHz tone, the extent of activation was flat up to 66 dB and then showed a rapid growth which continued up to the highest level studied (96 dB SPL). In contrast, increasing the level of 4.75-kHz tones produced a steady growth in the extent of activation across the range of levels studied. These results are consistent with physiological evidence suggesting that recruitment of primary auditory cortical neurotics may be different at high and low frequencies. (C) 2003 Elsevier Science B.V. All rights reserved. C1 MRC, Inst Hearing Res, Nottingham NG7 2RD, England. RP Hall, DA (reprint author), MRC, Inst Hearing Res, Univ Pk, Nottingham NG7 2RD, England. CR Bowtell R, 1999, MAGNET RESON MED, V41, P600, DOI 10.1002/(SICI)1522-2594(199903)41:3<600::AID-MRM24>3.0.CO;2-E BOWTELL R, 1994, MAGN RESON MATER PHY, V2, P241, DOI 10.1007/BF01705247 Brett M, 2002, NAT REV NEUROSCI, V3, P243, DOI 10.1038/nrn756 BURKHARD MD, 1975, J ACOUST SOC AM, V58, P214, DOI 10.1121/1.380648 CLARE S, 2001, T MAGN RESON MED, V45, P930 Dejardin S, 1998, EUR J NEUROSCI, V10, P2328 Evan A, 1993, P IEEE NUCL SCI S ME, P1813 EVANS EF, 1975, AUDIOLOGY, V14, P419 Friston K. J., 1993, HUMAN BRAIN MAPPING, V1, P153, DOI 10.1002/hbm.460010207 Hall DA, 2000, MAGNET RESON MED, V43, P601, DOI 10.1002/(SICI)1522-2594(200004)43:4<601::AID-MRM16>3.0.CO;2-R Hall DA, 2002, CEREB CORTEX, V12, P140, DOI 10.1093/cercor/12.2.140 Hall DA, 2002, MAGN RESON IMAGING, V20, P695, DOI 10.1016/S0730-725X(02)00607-0 HART HC, 2002, HEARING RES, V171, P170 HEIL P, 1994, HEARING RES, V76, P188, DOI 10.1016/0378-5955(94)90099-X KIM DO, 1979, J NEUROPHYSIOL, V42, P16 Lockwood AH, 1999, CEREB CORTEX, V9, P65, DOI 10.1093/cercor/9.1.65 Maes F, 1997, IEEE T MED IMAGING, V16, P187, DOI 10.1109/42.563664 Morosan P, 2001, NEUROIMAGE, V13, P684, DOI 10.1006/nimg.2000.0715 OZDAMAR O, 1976, J ACOUST SOC AM, V59, P143 Palmer AR, 1998, NEUROIMAGE, V7, pS359 Palmer Alan R., 1995, P75, DOI 10.1016/B978-012505626-7/50005-4 Penhune VB, 1996, CEREB CORTEX, V6, P661, DOI 10.1093/cercor/6.5.661 PHILLIPS DP, 1994, EXP BRAIN RES, V102, P210 Picard N, 1996, CEREB CORTEX, V6, P342, DOI 10.1093/cercor/6.3.342 PICKLES J, 1981, INTRO PHYSL HEARING Rademacher J, 2001, NEUROIMAGE, V13, P669, DOI 10.1006/nimg.2000.0714 RORDEN C, 2000, BEHAV NEUROL, V21, P191 VONBEKESY G, 1947, J ACOUST SOC AM, V19, P452 Wessinger CM, 2001, J COGNITIVE NEUROSCI, V13, P1, DOI 10.1162/089892901564108 NR 29 TC 35 Z9 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2003 VL 179 IS 1-2 BP 104 EP 112 DI 10.1016/S0378-5955(03)00100-X PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 679ZB UT WOS:000182950900011 PM 12742243 ER PT J AU Slaven, A Lineton, B Thornton, ARD AF Slaven, A Lineton, B Thornton, ARD TI Properties of Volterra slices of otoacoustic emissions in normal-hearing humans obtained using maximum length sequences of clicks SO HEARING RESEARCH LA English DT Article DE otoacoustic emission; nonlinearity temporal interaction; Volterra kernel; maximum length sequence; Volterra series ID STIMULATED ACOUSTIC EMISSIONS; GUINEA-PIG COCHLEAE; BASILAR-MEMBRANE; MOSSBAUER TECHNIQUE; HOOK REGION; NONLINEARITY; SUPPRESSION; DISTORTION; CAT AB Nonlinear temporal interaction components of otoacoustic emissions (OAEs) may be investigated by presenting a stream of clicks in maximum length sequences. This yields responses, termed here Volterra slices, which are related to the Volterra kernels of the system. The aim of this study was to obtain normative data on Volterra slices over a range of click rates and stimulus levels. OAEs were recorded in 12 normally hearing adult ears at six rates and four click levels. In addition to the first order kernel, six slices from the Volterra slices of orders 2-5 were extracted from the recordings. It was found that higher order kernel slices could be reliably measured in all 12 ears tested and that they have properties that differ from those of the conventional OAEs. These findings may facilitate the study of cochlear function in both normal and pathological ears. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Royal S Hants Hosp, MRC, Inst Hearing Res, Southampton SO14 0YG, Hants, England. RP Thornton, ARD (reprint author), Royal S Hants Hosp, MRC, Inst Hearing Res, Brintons Terrace,St Marys Rd, Southampton SO14 0YG, Hants, England. CR BRASS D, 1993, J ACOUST SOC AM, V93, P920, DOI 10.1121/1.405453 COOPER NP, 1992, HEARING RES, V63, P163, DOI 10.1016/0378-5955(92)90083-Y COPE Y, 1998, PAEDIAT AUDIOLOGY 0, P221 Hine JE, 2002, HEARING RES, V165, P128, DOI 10.1016/S0378-5955(02)00295-2 Hine JE, 1997, EAR HEARING, V18, P121, DOI 10.1097/00003446-199704000-00004 Kapadia S, 2000, HEARING RES, V146, P101, DOI 10.1016/S0378-5955(00)00103-9 Kemp D., 1997, OTOACOUSTIC EMISSION, P1 KEMP DT, 1980, HEARING RES, V2, P213, DOI 10.1016/0378-5955(80)90059-3 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222 Kemp DT, 1980, PSYCHOPHYSICAL PHYSL, P34 NEELY ST, 1988, J ACOUST SOC AM, V83, P652, DOI 10.1121/1.396542 NORTON SJ, 1987, J ACOUST SOC AM, V81, P1860, DOI 10.1121/1.394750 Patuzzi R., 1996, COCHLEA, P186 RHODE WS, 1993, HEARING RES, V66, P31, DOI 10.1016/0378-5955(93)90257-2 RHODE WS, 1971, J ACOUST SOC AM, V49, P1218, DOI 10.1121/1.1912485 ROBLES L, 1991, NATURE, V349, P413, DOI 10.1038/349413a0 Schetzen M., 1989, VOLTERRA WIENER THEO SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 Shi Y, 1991, IEEE Trans Biomed Eng, V38, P834 Thornton ARD, 1997, BRIT J AUDIOL, V31, P493, DOI 10.3109/03005364000000043 Thornton ARD, 2001, CLIN NEUROPHYSIOL, V112, P768, DOI 10.1016/S1388-2457(01)00484-9 THORNTON ARD, 1994, SCAND AUDIOL, V23, P225, DOI 10.3109/01050399409047512 THORNTON ARD, 1993, J ACOUST SOC AM, V94, P132, DOI 10.1121/1.407090 WRIGHT M, 1993, THESIS U SOUTHAMPTON NR 25 TC 5 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2003 VL 179 IS 1-2 BP 113 EP 125 DI 10.1016/S0378-5955(03)00101-1 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 679ZB UT WOS:000182950900012 PM 12742244 ER PT J AU Millman, RE Green, GGR Lorenzi, C Rees, A AF Millman, RE Green, GGR Lorenzi, C Rees, A TI Effect of a noise modulation masker on the detection of second-order amplitude modulation SO HEARING RESEARCH LA English DT Article DE amplitude modulation; human psychophysics; modulation masking; psychoacoustics; temporal processing ID SPEECH RECEPTION; FREQUENCY; CARRIERS; MASKING AB Amplitude modulation waveforms can contain complex patterns of modulation frequency and depth that are characteristic of many biologically relevant sounds. To investigate the mechanisms involved in the processing of such patterns, we measured detection thresholds for second-order amplitude modulation (AM), a sinusoidal AM in which AM depth varies with time at frequency f(m)'. Second-order AM generates sidebands in the modulation spectrum on either side of the frequency components introduced by the first-order AM. Previous masking studies suggested that a distortion product located at f(m)' contributes to the detection of second-order AM. This hypothesis was tested by masking the putative distortion product using a noise modulation masker centred on (1) the second-order modulation frequency (f(m)' = 2 Hz) and (2) the first-order modulation frequency (f(m) = 16 Hz). The second-order AM was applied to a 5-kHz pure-tone carrier. Increasing the depth of a 2-Hz-wide noise modulator masker centred on 2 Hz had little effect on detection thresholds for second-order AM, but increased detection thresholds for 2-Hz first-order AM six-fold. Increasing the depth of an 8-Hz-wide noise modulator masker centred on 16 Hz increased detection thresholds for both first-and second-order AM three-fold. These results show that the detection of the second-order AM, when f(m)' is 2 Hz, is not dependent on the detection of modulation at fm' but is dependent on the detection of modulation components centred on f(m). (C) 2003 Elsevier Science B.V. All rights reserved. C1 Med Sch Newcastle Upon Tyne, Sch Neurol Neurobiol & Psychiat, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England. Univ Paris 05, Inst Psychol, CNRS, UMR 8581,Lab Psychol Expt, F-75270 Paris 06, France. Inst Univ France, F-92774 Boulogne, France. RP Millman, RE (reprint author), Med Sch Newcastle Upon Tyne, Sch Neurol Neurobiol & Psychiat, Framlington Pl, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England. RI Lorenzi, Christian/F-5310-2012; Rees, Adrian/H-2200-2012; Green, Gary/D-3543-2009 CR Bregman AS., 1990, AUDITORY SCENE ANAL Dau T, 1997, J ACOUST SOC AM, V102, P2892, DOI 10.1121/1.420344 Draganova R, 2002, EAR HEARING, V23, P254, DOI 10.1097/00003446-200206000-00009 DRULLMAN R, 1994, J ACOUST SOC AM, V95, P1053, DOI 10.1121/1.408467 DRULLMAN R, 1994, J ACOUST SOC AM, V95, P2670, DOI 10.1121/1.409836 HARTMANN WM, 1997, SIGNALS SOUND SENSAT HOUTGAST T, 1989, J ACOUST SOC AM, V85, P1676, DOI 10.1121/1.397956 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Lorenzi C, 2001, J ACOUST SOC AM, V110, P2470, DOI 10.1121/1.1406160 Lorenzi C, 2001, J ACOUST SOC AM, V110, P1030, DOI 10.1121/1.1383295 Moore BCJ, 2000, J ACOUST SOC AM, V108, P2337, DOI 10.1121/1.1312362 Moore BCJ, 1999, J ACOUST SOC AM, V106, P908, DOI 10.1121/1.427106 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Sheft S, 1997, J ACOUST SOC AM, V102, P1106, DOI 10.1121/1.419862 Shofner WP, 1996, J ACOUST SOC AM, V99, P3592, DOI 10.1121/1.414957 SIMPSON MIG, 2002, ARO MIDW M, V25, P144 NR 16 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2003 VL 178 IS 1-2 BP 1 EP 11 DI 10.1016/S0378-5955(02)00795-5 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 666TD UT WOS:000182191800001 PM 12684172 ER PT J AU Guo, YQ Burkard, R AF Guo, YQ Burkard, R TI The masking level difference in chinchilla auditory cortex. Effects of inner hair cell loss SO HEARING RESEARCH LA English DT Article DE carboplatin; inner hair cell loss; masking level difference; auditory cortex; chinchilla ID NOISE; CARBOPLATIN; HEARING; BANDWIDTH; FREQUENCY; SYSTEM AB The purpose of the present study was to investigate responses from the unanesthetized chinchilla auditory cortex (AC) to conditions producing a masking level difference (MLD) in perceptual studies, both before and after inner hair cell (IHC) loss caused by carboplatin. Tungsten electrodes were chronically implanted in the right AC (active) and anterior cranium (common) in six adult chinchillas. Following a recovery period, AC responses were obtained from the unanesthetized animal placed in a passive restraint. Toneburst input/output functions were obtained. Tonebursts (500 Hz) ranged from 0 to 80 dB pSPL, in 10 dB steps, and were presented to the left ear, the right ear, binaural (in-phase) and binaural (out-of-phase). For the MLD series, responses to 70 dB pSPL, 500 Hz tonebursts and a continuous broadband noise (40-90 dB SPL, in 5 dB steps) were studied. Three MLD versus non-MLD conditions were obtained: SpiN0/S0N0, SLN0/SLNL, and SRN0/SRNR. Following baseline data collection, each animal was given 75 mg/kg carboplatin intraperitoneally. Four to five weeks later, the electrophysiology protocol was followed again. At 5 weeks post-carboplatin, the animals were sacrificed, the cochleas were harvested, and cochleograms (hair cell loss across cochlear place) were constructed. For all conditions, response latencies increased and amplitudes decreased with decreasing toneburst level and increasing level of masking noise. Masked AC response thresholds were higher (better) for the MLD conditions than their respective non-MLD conditions. AC response latencies across masking noise level did not appear to vary systematically across conditions. Under some conditions, the MLD conditions showed larger amplitudes than their respective non-MLD conditions for equivalent masker levels. Post-carboplatin, cochleograms showed moderate IHC loss (on average, similar to40% loss in apex) with minimal outer hair cell loss. The differences in MLD versus non-MLD conditions in terms of masked threshold and response amplitude were often reduced post-carboplatin. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. Univ Buffalo, Dept Communicat Disorders & Sci, Buffalo, NY 14214 USA. Univ Buffalo, Dept Otolaryngol, Buffalo, NY 14214 USA. RP Burkard, R (reprint author), Univ Buffalo, Ctr Hearing & Deafness, 215 Parker Hall, Buffalo, NY 14214 USA. CR BENSON DA, 1976, BRAIN RES, V103, P313, DOI 10.1016/0006-8993(76)90801-5 BLODGETT HC, 1958, AM J PSYCHOL, V71, P283, DOI 10.2307/1419217 Burkard R, 1997, J ACOUST SOC AM, V102, P3620, DOI 10.1121/1.420149 EDWARDS JD, 1971, J ACOUST SOC AM, V49, P112, DOI 10.1121/1.1975643 FOWLER CG, 1992, ELECTROEN CLIN NEURO, V84, P157, DOI 10.1016/0168-5597(92)90020-C FOWLER CG, 1992, J SPEECH HEAR RES, V35, P216 Fowler C G, 1996, J Am Acad Audiol, V7, P23 GALAMBOS R, 1992, J ACOUST SOC AM, V92, P2691, DOI 10.1121/1.404384 Green D.M., 1976, INTRO HEARING GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HALL JW, 1985, AUDIOLOGY, V24, P25 HALL JW, 1988, AUDIOLOGY, V27, P89 HALL JW, 1993, J SPEECH HEAR RES, V36, P210 JARDINE D, 2001, 2001 M ASS RES OT ST JERGER J, 1984, ARCH OTOLARYNGOL, V110, P290 KEVANISHVILI Z, 1987, SCAND AUDIOL, V16, P3, DOI 10.3109/01050398709042149 Kuwada Shigeyuki, 2002, J Am Acad Audiol, V13, P188 LYNN GE, 1981, ARCH OTOLARYNGOL, V107, P357 MCFADDEN D, 1975, NERVOUS SYSTEM, V3 MOLLER A, 1994, PRINCIPLES APPL AUDI Phillips DP, 2001, HEARING RES, V155, P133, DOI 10.1016/S0378-5955(01)00249-0 Qiu CX, 2000, HEARING RES, V139, P153, DOI 10.1016/S0378-5955(99)00171-9 QUARANTA A, 1974, AUDIOLOGY, V13, P428 Schuknecht HF, 1993, PATHOLOGY EAR SNYDER DL, 1994, LAB ANIMAL, V23, P42 SZALDA K, 2001, 2001 M ASS RES OT ST TAKENO S, 1994, SCANNING MICROSCOPY, V8, P97 TOWNSEND TH, 1972, J ACOUST SOC AM, V51, P621, DOI 10.1121/1.1912884 WAKEFORD OS, 1974, J ACOUST SOC AM, V56, P952, DOI 10.1121/1.1903354 WILSON RH, 1986, SCAND AUDIOL, V15, P209, DOI 10.3109/01050398609042145 YONOVITZ A, 1979, J SPEECH HEAR RES, V22, P403 NR 31 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2003 VL 178 IS 1-2 BP 12 EP 26 DI 10.1016/S0378-5955(03)00023-6 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 666TD UT WOS:000182191800002 PM 12684173 ER PT J AU Koay, G Heffner, RS Bitter, KS Heffner, HE AF Koay, G Heffner, RS Bitter, KS Heffner, HE TI Hearing in American leaf-nosed bats. II: Carollia perspicillata SO HEARING RESEARCH LA English DT Article DE audiogram; chiroptera; echolocation; evolution; mammal; evoked potential ID BIG BROWN BAT; SOUND LOCALIZATION; EPTESICUS-FUSCUS; POSTNATAL-DEVELOPMENT; PHYLLOSTOMID BAT; EXTERNAL EAR; ECHOLOCATION; CUES; PERCEPTION; EVOLUTION AB We determined the audiograms of two short-tailed fruit bats (Carollia perspicillata), 18-g phyllostomids from Central and South America. For testing, we used a conditioned suppression/avoidance procedure with a fruit juice reward. At an intensity of 60 dB SPL, the hearing of C perspicillata extends from 5.2 to 150 kHz, showing a best sensitivity of 0 dB at 25 kHz and a secondary region of sensitivity at 71 kHz. Although C. perspicillata is frugivorous, and therefore does not rely on sonar for detecting and pursuing insects, its audiogram is similar to that of insectivorous bats; similarly, there is no suggestion of unusual sensitivity associated with its low-intensity echolocation calls. The behavioral audiogram is compared to previously published physiological estimates of hearing. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Toledo, Dept Psychol, Toledo, OH 43606 USA. RP Heffner, RS (reprint author), Univ Toledo, Dept Psychol, Toledo, OH 43606 USA. CR Barnard S.M, 1995, BATS IN CAPTIVITY Bohn Kirsten M., 2001, Bat Research News, V42, P144 BONACCORSO FJ, 1987, J ANIM ECOL, V56, P907, DOI 10.2307/4956 CLOUTIER D, 1992, MAMMALIAN SPECIES, V417, P1 DALLAND JI, 1965, SCIENCE, V150, P1185, DOI 10.1126/science.150.3700.1185 Esser KH, 1999, EUR J NEUROSCI, V11, P3669, DOI 10.1046/j.1460-9568.1999.00789.x Fleming T. H., 1988, SHORT TAILED FRUIT B Gale JE, 1997, NATURE, V389, P63, DOI 10.1038/37968 Gardner A. L., 1977, Special Publ Mus Texas Tech Univ, VNo. 13, P293 GOULD E, 1975, J MAMMAL, V56, P15, DOI 10.2307/1379603 GOULD E, 1977, SPECIAL PUBLICATIONS, P247 GRIFFIN DR, 1955, J EXP ZOOL, V130, P251, DOI 10.1002/jez.1401300205 Griffin DR, 1958, LISTENING DARK ACOUS GRINNELL AD, 1970, Z VERGL PHYSIOL, V68, P117, DOI 10.1007/BF00297691 GRINNELL AD, 1958, BIOL BULL, V114, P10, DOI 10.2307/1538961 Heffner H. E., 1995, METHODS COMP PSYCHOA, P73 HEFFNER HE, 1983, BEHAV NEUROSCI, V97, P310, DOI 10.1037/0735-7044.97.2.310 Heffner H.E., 1998, ENCY COMP PSYCHOL, P290 Heffner RS, 2001, HEARING RES, V157, P138, DOI 10.1016/S0378-5955(01)00298-2 HEFFNER RS, 1993, J COMP NEUROL, V331, P418, DOI 10.1002/cne.903310311 Heffner RS, 2001, J ACOUST SOC AM, V109, P412, DOI 10.1121/1.1329620 HOWELL DJ, 1974, J MAMMAL, V55, P293, DOI 10.2307/1378999 JEN PHS, 1988, HEARING RES, V34, P101, DOI 10.1016/0378-5955(88)90098-6 Koay G, 1997, HEARING RES, V105, P202, DOI 10.1016/S0378-5955(96)00208-0 KOAY G, 2002, ASS RES OTOLARYNGOL, V25, P210 KOAY G, 2002, HEARING RES, V171, P97 Koay G, 1998, J COMP PSYCHOL, V112, P371, DOI 10.1037/0735-7036.112.4.371 LAWRENCE BD, 1982, SCIENCE, V218, P481, DOI 10.1126/science.7123247 MASTERTO.B, 1969, J ACOUST SOC AM, V45, P966, DOI 10.1121/1.1911574 MIDDLEBROOKS JC, 1991, ANNU REV PSYCHOL, V42, P135, DOI 10.1146/annurev.ps.42.020191.001031 PYE A, 1966, J MORPHOL, V121, P241 ROFFLER SK, 1968, J ACOUST SOC AM, V43, P1255, DOI 10.1121/1.1910976 Schmidt S., 1984, Myotis, V21-22, P62 Schnitzler H. U., 1980, ANIMAL SONAR SYSTEMS, P109, DOI 10.1007/978-1-4684-7254-7_6 Schnitzler Hans-Ulrich, 1998, P183 SIMMONS JA, 1980, J COMP PHYSIOL, V135, P61 Sterbing SJ, 2002, J MAMMAL, V83, P516, DOI 10.1644/1545-1542(2002)083<0516:PDOVAH>2.0.CO;2 STERBING SJ, 1994, HEARING RES, V76, P133, DOI 10.1016/0378-5955(94)90095-7 Thies W, 1998, BEHAV ECOL SOCIOBIOL, V42, P397, DOI 10.1007/s002650050454 WENSTRUP JJ, 1984, J COMP PHYSIOL, V155, P91, DOI 10.1007/BF00610934 Wotton JM, 1996, J ACOUST SOC AM, V100, P1764, DOI 10.1121/1.416073 Wotton JM, 1997, J ACOUST SOC AM, V101, P1723, DOI 10.1121/1.418271 NR 42 TC 18 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2003 VL 178 IS 1-2 BP 27 EP 34 DI 10.1016/S0378-5955(03)00025-X PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 666TD UT WOS:000182191800003 PM 12684174 ER PT J AU Fullgrabe, C Meyer, B Lorenzi, C AF Fullgrabe, C Meyer, B Lorenzi, C TI Effect of cochlear damage on the detection of complex temporal envelopes SO HEARING RESEARCH LA English DT Article DE temporal envelope; second-order amplitude modulation; sensorineural hearing loss; cochlear compression; non-linearity ID MODULATION TRANSFER-FUNCTIONS; HEARING-IMPAIRED LISTENERS; AMPLITUDE-MODULATION; DETECTION THRESHOLDS; SINUSOIDAL CARRIERS; SPEECH RECEPTION; FREQUENCY; PERCEPTION; NOISE AB Recent studies have demonstrated that the detection of complex temporal envelopes relies - at least partially - on the perception of a distortion component generated by a peripheral (cochlear) and/or central (post-cochlear) non-linearity. In the present study, first- and second-order amplitude modulation (AM) detection thresholds were obtained in normally hearing (NH) and hearing-impaired (HI) listeners using a 2-kHz pure-tone carrier. In both groups of listeners, first-order AM detection thresholds were measured for AM rates fm ranging between 4 and 87 Hz, and second-order AM detection thresholds were measured for second-order AM rates fm' ranging between 4 and 23 Hz, using a fixed first-order 'carrier' AM rate fm of 64 Hz. When the sound pressure level was adjusted in order to yield equal delectability in both groups for the 64-Hz first-order carrier modulation, (i) first-order AM detection thresholds for the HI listeners were normal at fm = 87 Hz, and better-than-normal at fm = 4 and 16 Hz, and (ii) second-order AM detection thresholds were identical at all modulation rates in NH and HI listeners. Similar results were obtained when the audibility of the 2-kHz pure-tone carrier was equated for both groups, i.e. when listeners were tested at the same sensation level. These results demonstrate clearly that cochlear damage has no effect on the detection of complex temporal envelopes, and indicate that the distortion component must be generated by a more central non-linearity than cochlear compression, transduction, or short-term adaptation. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Paris 05, Inst Psychol, CNRS, UMR 8581,Lab Psychol Expt,Equipe Percept Audit, F-92774 Boulogne, France. Univ Paris 06, CHU St Antoine, Hop St Antoine, Lab Rech ORL, Paris, France. Inst Univ France, Paris, France. RP Fullgrabe, C (reprint author), Univ Paris 05, Inst Psychol, CNRS, UMR 8581,Lab Psychol Expt,Equipe Percept Audit, 71 Ave Vaillant, F-92774 Boulogne, France. RI Lorenzi, Christian/F-5310-2012; Fullgrabe, Christian/I-6331-2012 CR BACON SP, 1992, J SPEECH HEAR RES, V35, P642 BACON SP, 1985, AUDIOLOGY, V24, P117 DRULLMAN R, 1994, J ACOUST SOC AM, V95, P1053, DOI 10.1121/1.408467 DRULLMAN R, 1994, J ACOUST SOC AM, V95, P2670, DOI 10.1121/1.409836 Fullgrabe C, 2003, J ACOUST SOC AM, V113, P49, DOI 10.1121/1.1523383 Kohlrausch A, 2000, J ACOUST SOC AM, V108, P723, DOI 10.1121/1.429605 Lorenzi C, 2001, J ACOUST SOC AM, V110, P2470, DOI 10.1121/1.1406160 Lorenzi C, 2001, J ACOUST SOC AM, V110, P1030, DOI 10.1121/1.1383295 MOORE BCJ, 1995, PRECEPTUAL CONSEQUEN Moore BCJ, 2000, J ACOUST SOC AM, V108, P2337, DOI 10.1121/1.1312362 Moore BCJ, 1996, J ACOUST SOC AM, V100, P481, DOI 10.1121/1.415861 Moore BCJ, 2001, J ACOUST SOC AM, V110, P1067, DOI 10.1121/1.1385177 Moore BCJ, 1999, J ACOUST SOC AM, V106, P908, DOI 10.1121/1.427106 MOORE BCJ, 1992, BRIT J AUDIOL, V26, P229, DOI 10.3109/03005369209076641 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 SHEFT S, 1990, J ACOUST SOC AM, V88, P796, DOI 10.1121/1.399729 Sheft S, 1997, J ACOUST SOC AM, V102, P1106, DOI 10.1121/1.419862 Shofner WP, 1996, J ACOUST SOC AM, V99, P3592, DOI 10.1121/1.414957 Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a Tandetnik S, 2001, BRIT J AUDIOL, V35, P355 VANTASELL DJ, 1987, J ACOUST SOC AM, V77, P1069 Viemeister N. F., 1993, HUMAN PSYCHOPHYSICS, P116 VIEMEISTER NF, 1979, J ACOUST SOC AM, V66, P1364, DOI 10.1121/1.383531 NR 23 TC 19 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2003 VL 178 IS 1-2 BP 35 EP 43 DI 10.1016/S0378-5955(03)00027-3 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 666TD UT WOS:000182191800004 PM 12684175 ER PT J AU Pickles, JO AF Pickles, JO TI Expression of Ephs and ephrins in developing mouse inner ear SO HEARING RESEARCH LA English DT Article DE Eph; ephrin; mouse; inner ear; cochlea; vestibular system; utricle; saccule; development ID RECEPTOR TYROSINE KINASES; NEURAL CREST MIGRATION; GENE-EXPRESSION; LIGANDS; FAMILY; QUANTIFICATION; GUIDANCE; DISTINCT; PATTERNS; COCHLEA AB Levels of expression of mRNAs encoding the different Ephs and ephrins were measured by semi-quantitative reverse-transcription polymerase chain reaction in developing mouse whole inner ears, and in dissected fractions of the neonatal mouse inner ear. Nineteen of the 24 known Ephs and ephrins were surveyed. The results showed that between embryonic age (E) 11.5 days and E12.5, levels increased 10-300 times per unit of tissue. In neonatal mice, the fraction containing combined organ of Corti and spiral ganglion showed relatively strong expression of EphA4, EphB3, ephrin-A3, ephrin-B2 and ephrin-B3. In the lateral wall, EphA4, ephrin-A3 and ephrin-B2 were strongly expressed, while ephrin-A3 was particularly strongly expressed in utricular and saccular sensory epithelia. The results suggest that the Ephs and ephrins are likely to play a part in the differentiation of the structures of the inner ear, and show which Ephs and ephrins are most likely to play important roles in the different structures. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Queensland, Sch Biomed Sci, Vis Touch & Hearing Res Ctr, Brisbane, Qld 4072, Australia. RP Pickles, JO (reprint author), Univ Queensland, Sch Biomed Sci, Vis Touch & Hearing Res Ctr, Brisbane, Qld 4072, Australia. CR Adams RH, 1999, GENE DEV, V13, P295, DOI 10.1101/gad.13.3.295 Adams RH, 2000, TRENDS CARDIOVAS MED, V10, P183, DOI 10.1016/S1050-1738(00)00046-3 Bianchi LM, 1999, ANAT REC, V254, P127 Bianchi LM, 1998, HEARING RES, V117, P161, DOI 10.1016/S0378-5955(98)00010-0 CHENG HJ, 1995, CELL, V82, P37 Coulthard MG, 2002, INT J DEV BIOL, V46, P375 Cramer KS, 2000, J COMP NEUROL, V426, P270 Davy A, 2000, EMBO J, V19, P5396, DOI 10.1093/emboj/19.20.5396 DRESCHER U, 1995, CELL, V82, P359, DOI 10.1016/0092-8674(95)90425-5 ELLIS J, 1995, MECH DEVELOP, V52, P319, DOI 10.1016/0925-4773(95)00411-S Flenniken AM, 1996, DEV BIOL, V179, P382, DOI 10.1006/dbio.1996.0269 Helbling PM, 2000, DEVELOPMENT, V127, P269 Holmberg J, 2002, TRENDS NEUROSCI, V25, P239, DOI 10.1016/S0166-2236(02)02149-5 KINOSHITA T, 1992, ANAL BIOCHEM, V206, P231, DOI 10.1016/0003-2697(92)90358-E Knoll B, 2002, TRENDS NEUROSCI, V25, P145, DOI 10.1016/S0166-2236(00)02093-2 Knoll B, 2001, DEVELOPMENT, V128, P895 Krull CE, 1997, CURR BIOL, V7, P571, DOI 10.1016/S0960-9822(06)00256-9 Lee AM, 1996, DNA CELL BIOL, V15, P817, DOI 10.1089/dna.1996.15.817 Lim D J, 1985, Acta Otolaryngol Suppl, V422, P1 Matsunaga T, 2000, EUR J NEUROSCI, V12, P1599, DOI 10.1046/j.1460-9568.2000.00051.x Mellitzer G, 1999, NATURE, V400, P77 Nagler JJ, 2000, J MOL ENDOCRINOL, V25, P243, DOI 10.1677/jme.0.0250243 NIETO MA, 1992, DEVELOPMENT, V116, P1137 Pickles JO, 2002, J COMP NEUROL, V449, P207, DOI 10.1002/cne.10231 Pickles JO, 1997, DEV NEUROSCI-BASEL, V19, P476, DOI 10.1159/000111245 RinkwitzBrandt S, 1996, HEARING RES, V99, P129, DOI 10.1016/S0378-5955(96)00093-7 Ruben R. J., 1967, ACTA OTO-LARYNGOL, V220, P1 Sher A E, 1971, Acta Otolaryngol Suppl, V285, P1 Sobkowicz HM, 1992, DEV AUDITORY VESTIBU, V2, P59 Swartz ME, 2001, DEVELOPMENT, V128, P4669 Takasu MA, 2002, SCIENCE, V295, P491, DOI 10.1126/science.1065983 Tang XX, 2000, P NATL ACAD SCI USA, V97, P10936, DOI 10.1073/pnas.190123297 van Heumen WRA, 2000, HEARING RES, V139, P42, DOI 10.1016/S0378-5955(99)00158-6 Wang HU, 1997, NEURON, V18, P383, DOI 10.1016/S0896-6273(00)81240-4 NR 34 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2003 VL 178 IS 1-2 BP 44 EP 51 DI 10.1016/S0378-5955(03)00029-7 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 666TD UT WOS:000182191800005 PM 12684176 ER PT J AU Lin, MJ Su, MC Tan, CT Su, CC Li, SY Lin, RH Lin-Shiau, SY Hung, CC Lee, SY AF Lin, MJ Su, MC Tan, CT Su, CC Li, SY Lin, RH Lin-Shiau, SY Hung, CC Lee, SY TI The effect of L-arginine on slow motility of mammalian outer hair cell SO HEARING RESEARCH LA English DT Article DE outer hair cell; motility; L-arginine; nitric oxide; calcium ID GUINEA-PIG COCHLEA; NITRIC-OXIDE; CYCLIC-GMP; ELECTROMOTILITY; LOCALIZATION; INHIBITION; PATHWAY AB The effect of L-arginine on the slow motility of mammalian cochlear outer hair cells was studied in this experiment. L-Arginine (3 mM) but not D-arginine (3 mM) or other amino acids (L-aspartate or L-glutamate) induced length increases of guinea pig outer hair cell. Similarly, the membrane-permeant cGMP analogues, 8-(4-chlorophenylthio)guanosine 3':5'-cyclic monophosphate (1 mM) or 8-bromo-guanosine 3':5'-cyclic monophosphate (1 mM) induced length increases of guinea pig outer hair cells. These length increases induced by L-arginine can be attenuated by a 30 min preincubation of the cells with the nitric oxide synthase inhibitors N(G)-nitro-L-arginine methyl ester hydrochloride (3 mM) or 7-nitroindazole (1 mM). Comparing the effects of L-arginine and ionomycin on cell length and intracellular calcium change in outer hair cells, both L-arginine and ionomycin were able to induce the elongation of outer hair cells but L-arginine did not change the fluorescence intensity of Fluo-3. Preincubation of the cells with EGTA (3 mM) for 40 min to reduce the extracellular calcium concentration did not influence the effect of L-arginine. This experiment demonstrated that nitric oxide/cGMP pathway involvement in regulating the slow motility of mammalian outer hair cells cannot be ruled out. The effect of L-arginine is independent of extracellular calcium concentration. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Natl Taiwan Univ Hosp, Dept Otolaryngol, Taipei 100, Taiwan. Chung Shan Med Univ, Dept Life Sci, Taichung, Taiwan. Tong Kong Teaching Hosp, Pingtung, Taiwan. RP Lee, SY (reprint author), Natl Taiwan Univ Hosp, Dept Otolaryngol, 7 Chung Shan S Rd, Taipei 100, Taiwan. EM mjl@csmu.edu.tw CR BLATTER LA, 1994, CELL CALCIUM, V15, P122, DOI 10.1016/0143-4160(94)90051-5 Coling DE, 1998, HEARING RES, V115, P175, DOI 10.1016/S0378-5955(97)00194-9 Dais CGD, 1996, HEARING RES, V99, P1 Dolgobrodov SG, 2000, HEARING RES, V150, P94, DOI 10.1016/S0378-5955(00)00196-9 DULON D, 1987, ARCH OTO-RHINO-LARYN, V244, P104, DOI 10.1007/BF00458558 DULON D, 1990, J NEUROSCI, V10, P1388 Fessenden JD, 1997, J HISTOCHEM CYTOCHEM, V45, P1401 Fessenden JD, 1999, J COMP NEUROL, V404, P52 FESSENDEN JD, 1998, HEARING RES, V118, P68 FLOCK A, 1986, ARCH OTO-RHINO-LARYN, V243, P83, DOI 10.1007/BF00453755 KACHAR B, 1986, NATURE, V322, P365, DOI 10.1038/322365a0 Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 Michel O, 1999, HEARING RES, V133, P1, DOI 10.1016/S0378-5955(99)00049-0 Puschner B, 1997, HEARING RES, V110, P251, DOI 10.1016/S0378-5955(97)00086-5 Robbins RA, 1997, INT J BIOCHEM CELL B, V29, P857, DOI 10.1016/S1357-2725(96)00167-7 SCHACHT J, 1987, HEARING RES, V31, P155, DOI 10.1016/0378-5955(87)90121-3 Shi XR, 2001, HEARING RES, V153, P23, DOI 10.1016/S0378-5955(00)00254-9 STEELE CR, 1990, LECT NOTES BIOMATH, V87, P76 Szonyi M, 1999, HEARING RES, V137, P29, DOI 10.1016/S0378-5955(99)00127-6 Tan CT, 2001, HEARING RES, V161, P72, DOI 10.1016/S0378-5955(01)00359-8 Tian F, 1999, HEARING RES, V131, P63, DOI 10.1016/S0378-5955(99)00015-5 ULFENDAHL M, 1987, ACTA PHYSIOL SCAND, V130, P521, DOI 10.1111/j.1748-1716.1987.tb08171.x ZENNER HP, 1985, HEARING RES, V18, P127, DOI 10.1016/0378-5955(85)90004-8 ZENNER HP, 1986, HEARING RES, V22, P83, DOI 10.1016/0378-5955(86)90082-1 NR 24 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2003 VL 178 IS 1-2 BP 52 EP 58 DI 10.1016/S0378-5955(03)00030-3 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 666TD UT WOS:000182191800006 PM 12684177 ER PT J AU Kondrachuk, AV AF Kondrachuk, AV TI Qualitative model of otolith-ocular asymmetry in vertical eccentric rotation experiments SO HEARING RESEARCH LA English DT Article DE otolith asymmetry; eccentric rotation; eye counter-rotation ID SPACE MOTION SICKNESS; SQUIRREL-MONKEY; TORSION; ACCELERATION; RESPONSES; MOVEMENT; REFLEX; BODY; TILT AB Today, investigation of the vestibulo-ocular reactions is a mainstream method of studying the vestibular asymmetry. Analysis of experimental data requires a model of otolith-ocular interaction. The proposed model is based on the literary data concerning measurements of ocular counter-rotation (OCR) and luminous line rotation (LLR) in experiments with eccentric rotation carried out by Wetzig et al. [Acta Astronaut. 21 (1990) 519-525]. The method utilizes a number of simplifications and suppositions, the basic of which is linearity of all stages of transformation of mechanical stimulus with the exception of the proportionality of neural response to acceleration. It was demonstrated that the model qualitatively imitates the behavior of OCR and LLR in response to centrifugal acceleration of utricular otoliths and permits analysis of the role of various parameters of the otolith-ocular interaction. Comparison of modeling and experimental dependences of OCR and LLR on acceleration can help understand otolithic asymmetry. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Natl Acad Sci Ukraine, Inst Phys, Dept Theoret Phys, UA-03028 Kiev, Ukraine. RP Kondrachuk, AV (reprint author), Natl Acad Sci Ukraine, Inst Phys, Dept Theoret Phys, 46 Prospekt Nauki, UA-03028 Kiev, Ukraine. CR BENSON AJ, 1986, AVIAT SPACE ENVIR MD, V57, P1088 BENSON AJ, 1973, 5 S ROL VEST ORG SPA, P221 BOS JE, 1994, IEEE T BIO-MED ENG, V41, P351, DOI 10.1109/10.284963 BOS JE, 1998, COMMUNICATION Bos JE, 1996, ANN NY ACAD SCI, V781, P583, DOI 10.1111/j.1749-6632.1996.tb15730.x CURTHOYS IS, 1991, EXP BRAIN RES, V85, P218 Curthoys IS, 1999, ANN NY ACAD SCI, V871, P27, DOI 10.1111/j.1749-6632.1999.tb09173.x FERNANDEZ C, 1976, J NEUROPHYSIOL, V39, P970 GORGILADZE GI, 1986, KOSM BIOL AVIAK MED+, V20, P19 HESS BJM, 1991, J NEUROPHYSIOL, V66, P1805 Kondo Y, 2001, BOUNDR ELEMENT, V3, P1 KONDRACHUK AV, 1987, SPACE BIOL AVIASPACE, V21, P70 KONDRACHUK AV, 1994, 30 COSPAR ASS HAMB G Kondrachuk A V, 2000, Aviakosm Ekolog Med, V34, P22 LACKNER JR, 1987, AVIAT SPACE ENVIR MD, V58, P652 LEIGH RJ, 1989, EXP BRAIN RES, V75, P221 Markham C H, 1989, Acta Otolaryngol Suppl, V468, P263 MARKHAM CH, 1992, AVIAT SPACE ENVIR MD, V63, P118 MERFELD DM, 1995, EXP BRAIN RES, V106, P111 MITTELSTAEDT H, 2002, COMMUNICATION MITTELSTAEDT H, 1986, ACTA PSYCHOL, V63, P63, DOI 10.1016/0001-6918(86)90043-0 MITTELSTAEDT H, 1992, ANN NY ACAD SCI, V656, P124, DOI 10.1111/j.1749-6632.1992.tb25204.x PAIGE GD, 1991, J NEUROPHYSIOL, V65, P1170 PARKER DE, 1977, AVIAT SPACE ENVIR MD, V48, P356 PARKER DE, 1983, AVIAT SPACE ENVIR MD, V54, P402 PETERKA RJ, 1994, ACTA ASTRONAUT, V31, P1 SZENTAGOTHAI J, 1952, ROLLE EINZELELNEN LA, P212 von Baumgarten R J, 1979, Life Sci Space Res, V17, P161 WETZIG J, 1990, ACTA ASTRONAUT, V21, P519, DOI 10.1016/0094-5765(90)90070-2 YOUNG LR, 1981, ANN NY ACAD SCI, V374, P80, DOI 10.1111/j.1749-6632.1981.tb30862.x NR 30 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2003 VL 178 IS 1-2 BP 59 EP 69 DI 10.1016/S0378-5955(03)00031-5 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 666TD UT WOS:000182191800007 PM 12684178 ER PT J AU Pourbakht, A Yamasoba, T AF Pourbakht, A Yamasoba, T TI Cochlear damage caused by continuous and intermittent noise exposure SO HEARING RESEARCH LA English DT Article DE cochlea; hair cell; noise-induced hearing loss ID TEMPORARY THRESHOLD SHIFT; GUINEA-PIG; HEARING-LOSS; NEUROTROPHIC FACTOR; IMPULSE NOISE; RECOVERY; STEREOCILIA; OVERSTIMULATION; CHINCHILLA; CRITERIA AB We compared the extent of permanent threshold shifts (PTS) and cochlear hair cell damage caused by continuous noise exposure with those caused by intermittent noise exposure. Twenty male pigmented guinea pigs that had been exposed to a one-octave band of noise at 4 kHz for 5 h were placed in four groups: exposure to 115 dB SPL continuous noise (group 1, n = 5), 115 dB SPL intermittent noise (group 2, n = 5), 125 dB SPL continuous noise (group 3, n = 5), and 125 dB SPL intermittent noise (group 4, n = 5). PTS at 2, 4, 8, and 16 kHz were assessed by means of auditory brainstem responses measured before noise exposure and 10 days after. The guinea pigs were killed 15 days after noise exposure, and the number of hair cells missing counted in surface preparations of the organs of Corti stained with rhodamine phalloidin. Groups I and 3 had significantly greater PTS (P < 0.05) at all frequencies than intermittent groups 2 and 4. Group 3 had the greatest PTS at all the frequencies. Intermittent 125 dB noise total energy was greater than that of continuous 115 dB noise but the latter elicited more PTS than the former. The extent of hair cell damage was comparable to the physiological findings. this indicates that continuous noise causes greater damage to the cochlea than intermittent noise of the same intensity and that, at the intensities tested, damage to the cochlea is not proportional to the total noise energy. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Tokyo, Fac Med, Dept Otolaryngol, Bunkyo Ku, Tokyo 1138655, Japan. RP Yamasoba, T (reprint author), Univ Tokyo, Fac Med, Dept Otolaryngol, Bunkyo Ku, Hongo 7-3-1, Tokyo 1138655, Japan. CR BLAKESLEE EA, 1978, J ACOUST SOC AM, V63, P876, DOI 10.1121/1.381767 BOHNE BA, 1976, HEARING DAVIS ESSAYS, P85 CAMPO P, 1992, NOISE INDUCED HEARIN, P456 CLARK WW, 1987, J ACOUST SOC AM, V82, P1253, DOI 10.1121/1.395261 CLARK WW, 1992, NOISE INDUCED HEARIN, P445 DOLAN TR, 1976, EFFECTS NOISE HEARIN, P327 DRESCHER DG, 1974, J ACOUST SOC AM, V56, P929, DOI 10.1121/1.1903350 Eldred K M., 1957, LARYNGOSCOPE, V58, P465 ELDREDGE D. H., 1959, ANN OTOL RHINOL AND LARYNGOL, V68, P723 ENGSTROM B, 1983, HEARING RES, V12, P251, DOI 10.1016/0378-5955(83)90110-7 Engstrom H, 1966, STRUCTURAL PATTERN O Erlandsson B, 1980, Acta Otolaryngol Suppl, V367, P1 FREDELIUS L, 1992, HEARING RES, V62, P194, DOI 10.1016/0378-5955(92)90186-Q FREDELIUS L, 1987, HEARING RES, V30, P157, DOI 10.1016/0378-5955(87)90133-X GOODFRIEND LS, 1971, NOISE IND PLANTS GOULIOS H, 1983, HEARING RES, V11, P327, DOI 10.1016/0378-5955(83)90065-5 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Hawkins Jr JE, 1976, HDB SENSORY PHYSIOLO, P707 HENDERSON D, 1979, J ACOUST SOC AM, V65, P1231, DOI 10.1121/1.382790 JOHNSON DL, 1976, AVIAT SPACE ENVIR MD, V47, P987 KRYTER KD, 1966, J ACOUST SOC AM, V39, P451, DOI 10.1121/1.1909912 Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 LIBERMAN MC, 1979, ACTA OTO-LARYNGOL, V88, P161, DOI 10.3109/00016487909137156 MITCHELL C, 1976, J ACOUST SOC AM, V60, P418, DOI 10.1121/1.381098 Patuzzi R, 1998, HEARING RES, V125, P17, DOI 10.1016/S0378-5955(98)00126-9 Pujol R, 1999, ANN NY ACAD SCI, V884, P249, DOI 10.1111/j.1749-6632.1999.tb08646.x RAPHAEL Y, 1991, HEARING RES, V51, P173, DOI 10.1016/0378-5955(91)90034-7 ROBERTSON D, 1980, HEARING RES, V2, P39, DOI 10.1016/0378-5955(80)90015-5 SATALOFF J, 1983, ANN OTO RHINOL LARYN, V92, P623 SATALOFF J, 1969, ARCH ENVIRON HEALTH, V18, P972 SAUNDERS JC, 1977, J ACOUST SOC AM, V61, P558, DOI 10.1121/1.381298 SAUNDERS JC, 1986, HEARING RES, V23, P233, DOI 10.1016/0378-5955(86)90112-7 SCHMIDEK M, 1975, IND HYG ASS J, V36, P351 SCHMIDEK M, 1974, AM IND HYG ASSOC J, V35, P152, DOI 10.1080/0002889748507017 Shoji F, 2000, HEARING RES, V142, P41, DOI 10.1016/S0378-5955(00)00007-1 SLEPECKY N, 1982, CELL TISSUE RES, V20, P245 Sobkowicz HM, 1996, ACTA OTO-LARYNGOL, V116, P257, DOI 10.3109/00016489609137836 TILNEY LG, 1982, HEARING RES, V7, P181, DOI 10.1016/0378-5955(82)90013-2 Tsuji J, 1997, J COMP NEUROL, V381, P188 WARD WD, 1970, J ACOUST SOC AM, V48, P561, DOI 10.1121/1.1912172 WARD WD, 1981, ANN OTO RHINOL LARYN, V90, P584 WARD WD, 1991, J ACOUST SOC AM, V90, P164, DOI 10.1121/1.401310 Yamamoto T, 1985, Sangyo Igaku, V27, P158 YAMASOBA T, 2001, NOISE HLTH, V11, P65 Yamasoba T, 1999, BRAIN RES, V815, P317, DOI 10.1016/S0006-8993(98)01100-7 NR 45 TC 25 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2003 VL 178 IS 1-2 BP 70 EP 78 DI 10.1016/S0378-5955(03)00039-X PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 666TD UT WOS:000182191800008 PM 12684179 ER PT J AU Avallone, B Porritiello, M Esposito, D Mutone, R Balsamo, G Marmo, F AF Avallone, B Porritiello, M Esposito, D Mutone, R Balsamo, G Marmo, F TI Evidence for hair cell regeneration in the crista ampullaris of the lizard Podarcis sicula SO HEARING RESEARCH LA English DT Article DE regeneration; lizard; crista ampullaris; bromodeoxyuridine; gentamicin ID AVIAN INNER-EAR; ACOUSTIC TRAUMA; LATERAL LINE; VESTIBULAR EPITHELIUM; POSSIBLE PRECURSORS; SENSORY ORGANS; CHICK COCHLEA; GENTAMICIN; IDENTIFICATION; PROGENITOR AB We studied hair cell regeneration in the crista ampullaris of the lizard Podarcis sicula both in untreated animals and at early and late time intervals following a single high dose of gentamicim. The study was carried out using the S-phase marker 5-bromo-2'-deoxyuridine. Our ultrastructural and immunofluorescence studies showed that both apoptosis and hair cell regeneration happen in the lizard crista ampullaris in untreated animals, and that regenerative processes are greatly accelerated after treatment with the aminoglycoside antibiotic gentamicin. Our observations indicate that hair cell regeneration is strongly implicated in the repair of damaged sensory epithelium, and that new hair cells appear likely to arise from supporting cells. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Naples Federico II, Dept Genet Gen & Mol Biol, I-80134 Naples, Italy. RP Marmo, F (reprint author), Univ Naples Federico II, Dept Genet Gen & Mol Biol, Via Mezzocannone 8, I-80134 Naples, Italy. CR BALAK KJ, 1990, J NEUROSCI, V10, P2502 BHAVE SA, 1995, J NEUROSCI, V15, P4618 CORWIN JT, 1981, J COMP NEUROL, V201, P541, DOI 10.1002/cne.902010406 CORWIN JT, 1985, P NATL ACAD SCI USA, V82, P3911, DOI 10.1073/pnas.82.11.3911 Corwin J.T., 1989, P161 CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 CORWIN JT, 1983, J COMP NEUROL, V217, P345, DOI 10.1002/cne.902170309 CORWIN JT, 1986, BIOL CHANGE OTOLARYN COTANCHE DA, 1987, HEARING RES, V30, P181, DOI 10.1016/0378-5955(87)90135-3 COTANCHE DA, 1994, ANAT EMBRYOL, V189, P1 CRUZ RM, 1987, ARCH OTOLARYNGOL, V113, P1058 Fekete DM, 1998, J NEUROSCI, V18, P7811 FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284 GIROD DA, 1989, HEARING RES, V42, P175, DOI 10.1016/0378-5955(89)90143-3 Goodyear RJ, 1999, J NEUROCYTOL, V28, P851, DOI 10.1023/A:1007070121751 GRATZNER HG, 1982, SCIENCE, V218, P474, DOI 10.1126/science.7123245 HAMILTON DW, 1965, J MORPHOL, V116, P339, DOI 10.1002/jmor.1051160303 JANAS JD, 1994, ASS RES OTOLARYNGOL, V17, pA66 JONES JE, 1991, THESIS U VIRGINIA JONES JE, 1993, J NEUROSCI, V13, P1022 JORGENSEN JM, 1988, NATURWISSENSCHAFTEN, V75, P319, DOI 10.1007/BF00367330 JORGENSEN JM, 1991, CIBA F SYMP, V160, P151 LIPPE WR, 1991, HEARING RES, V56, P203, DOI 10.1016/0378-5955(91)90171-5 Lopez I, 1997, INT J DEV NEUROSCI, V15, P447, DOI 10.1016/S0736-5748(96)00103-7 POPPER AN, 1984, HEARING RES, V15, P133, DOI 10.1016/0378-5955(84)90044-3 POPPER AN, 1990, HEARING RES, V45, P3340 PRESSON JC, 1990, HEARING RES, V46, P9, DOI 10.1016/0378-5955(90)90135-C RAPHAEL Y, 1992, J NEUROCYTOL, V21, P663, DOI 10.1007/BF01191727 ROBERSON DF, 1992, HEARING RES, V57, P166, DOI 10.1016/0378-5955(92)90149-H RUBEL EW, 1995, SCIENCE, V267, P701, DOI 10.1126/science.7839150 RYALS BM, 1990, HEARING RES, V50, P87, DOI 10.1016/0378-5955(90)90035-N RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101 SOBKOWICZ HM, 1992, EXP NEUROL, V115, P44, DOI 10.1016/0014-4886(92)90219-G STONE JS, 1994, J COMP NEUROL, V331, P97 Stone JS, 1999, J NEUROCYTOL, V28, P863, DOI 10.1023/A:1007022205821 Stone JS, 2000, J COMP NEUROL, V417, P1, DOI 10.1002/(SICI)1096-9861(20000131)417:1<1::AID-CNE1>3.0.CO;2-E TANYERI H, 1995, HEARING RES, V89, P194, DOI 10.1016/0378-5955(95)00137-7 TSUE TT, 1994, J NEUROSCI, V14, P140 Warchol ME, 1996, J NEUROSCI, V16, P5466 WEISLEDER P, 1992, EXP NEUROL, V115, P2, DOI 10.1016/0014-4886(92)90211-8 WEISLEDER P, 1993, J COMP NEUROL, V331, P97, DOI 10.1002/cne.903310106 WERSALL J, 1956, Acta Otolaryngol Suppl, V126, P1 Zheng JL, 1997, J NEUROSCI, V17, P8270 NR 43 TC 13 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2003 VL 178 IS 1-2 BP 79 EP 88 DI 10.1016/S0378-5955(03)00040-6 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 666TD UT WOS:000182191800009 PM 12684180 ER PT J AU Piscopo, M Balsamo, G Mutone, R Avallone, B Marmo, F AF Piscopo, M Balsamo, G Mutone, R Avallone, B Marmo, F TI Calbindin D28K is a component of the organic matrix of lizard Podarcis sicula otoconia SO HEARING RESEARCH LA English DT Article DE calbindin D28K; Podarcis sicula; otoconia; inner ear ID CALCIUM-BINDING PROTEINS; INNER-EAR; MAJOR PROTEIN; LOCALIZATION; CHICK; CELLS AB The factors controlling otoconia growth are not well known but it seems that the type of proteins contained in the otocoma regulates the initiation and/or the subsequent rates of crystal growth determining the morphology and the size of the final crystal. In order to clarify the mechanism of otoconia formation and their turnover, major proteins contained in the otoconia from the maculae of the saccule, utricle and lagena of inner ear of lizard Podarcis sicula were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Coomassie staining of SDS-PAGE resulted in a major broad band of 15 kDa and four other bands of 21, 8, 45 and 97 kDa. The proteins of 15, 21, 28 and 45 kDa were separated by high-pressure liquid chromatography on a C-4-reverse-phase column and the incubation of blots with monoclonal anti-Calbindin D28K antibodies indicated that the band of 28 kDa was Calbindin D28K, a calcium-binding protein. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Naples Federico II, Dept Genet Gen & Mol Biol, I-80134 Naples, Italy. RP Marmo, F (reprint author), Univ Naples Federico II, Dept Genet Gen & Mol Biol, Via Mezzocannone 8, I-80134 Naples, Italy. CR BALLARINO J, 1985, THESIS CORNELL U Balsamo G, 2000, HEARING RES, V148, P1, DOI 10.1016/S0378-5955(00)00094-0 BELANGER LF, 1960, CALCIFICATION BIOL S, P151 CARLSTROM D, 1963, BIOL BULL, V125, P421 Dechesne C J, 1988, Brain Res, V468, P233 DECHESNE CJ, 1988, HEARING RES, V33, P273, DOI 10.1016/0378-5955(88)90157-8 DEGENS ET, 1969, MAR BIOL, V2, P105, DOI 10.1007/BF00347005 DEVINCEN.M, 1966, J EMBRYOL EXP MORPH, V15, P349 FERMIN CD, 1987, HEARING RES, V28, P23, DOI 10.1016/0378-5955(87)90150-X Karita K, 1999, Acta Otolaryngol Suppl, V540, P16 LAEMMLI UK, 1970, NATURE, V227, P680, DOI 10.1038/227680a0 LOWENSTAM HA, 1975, SCIENCE, V188, P363, DOI 10.1126/science.1118730 Lowenstam HA, 1989, BIOMINERALIZATION LOYZAGA PG, 1985, HEARING RES, V18, P269 MARMO F, 1964, RIV ISTOCH, V10, P733 MARMO F, 1981, CELL TISSUE RES, V218, P265 MARMO F, 1983, Acta Embryologiae et Morphologiae Experimentalis New Series, V4, P202 MEYER HG, 1965, KRYSTALLOGR KRISTALL, V66, P220 OBERHOLTZER JC, 1988, P NATL ACAD SCI USA, V85, P3387, DOI 10.1073/pnas.85.10.3387 POTE KG, 1986, J ULTRA MOL STRUCT R, V95, P61, DOI 10.1016/0889-1605(86)90029-7 POTE KG, 1991, COMP BIOCHEM PHYS B, V98, P287, DOI 10.1016/0305-0491(91)90181-C POTE KG, 1993, BIOCHEMISTRY-US, V32, P5017, DOI 10.1021/bi00070a007 PRESTON RE, 1975, ACTA OTO-LARYNGOL, V80, P269, DOI 10.3109/00016487509121327 Ross M D, 1979, Adv Otorhinolaryngol, V25, P26 ROSS MD, 1985, AUDITORY BIOCH, P500 ROSS MD, 1980, PHYSIOLOGIST S6, V23, P129 SALT AN, 1989, AM J OTOLARYNG, V10, P371, DOI 10.1016/0196-0709(89)90030-6 SANS A, 1986, BRAIN RES, V364, P190, DOI 10.1016/0006-8993(86)91003-6 SLEPECKY NB, 1993, HEARING RES, V70, P73, DOI 10.1016/0378-5955(93)90053-4 Takumida Masaya, 1997, Auris Nasus Larynx, V24, P119, DOI 10.1016/S0385-8146(96)00017-X Thalmann R, 2001, ANN NY ACAD SCI, V942, P162 USAMI S, 1995, ORL J OTO-RHINO-LARY, V57, P94 VEENHOFF VB, 1969, 258 AK WET Verpy E, 1999, P NATL ACAD SCI USA, V96, P529, DOI 10.1073/pnas.96.2.529 WISLOCKI GB, 1955, J ANAT, V89, P3 NR 35 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2003 VL 178 IS 1-2 BP 89 EP 94 DI 10.1016/S0378-5955(03)00053-4 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 666TD UT WOS:000182191800010 PM 12684181 ER PT J AU Glueckert, R Wietzorrek, G Kammen-Jolly, K Scholtz, A Stephan, K Striessnig, J Schrott-Fischer, A AF Glueckert, R Wietzorrek, G Kammen-Jolly, K Scholtz, A Stephan, K Striessnig, J Schrott-Fischer, A TI Role of class D L-type Ca2+ channels for cochlear morphology SO HEARING RESEARCH LA English DT Article DE inner ear; voltage-gated ion channel; alpha 1D calcium channel; degeneration; knockout mouse; electron microscopy ID HAIR-CELLS; FUNCTIONAL RECOVERY; ELECTRON MICROSCOPY; DEGENERATION; DYSFUNCTION; PATHOLOGY; MOUSE; MICE AB Voltage-gated Ca2+ channels formed by subunits (class D Ca2+ channels) tightly regulate neurotransmitter release from cochlear inner hair cells (IHCs) by controlling the majority of depolarisation-induced Ca2+ entry. We have recently shown that the absence of these channels can cause deafness and degeneration of outer hair cells (OHCs) and IHCs in alpha1D-deficient mice (alpha1D(-/-)) (Platzer et al., 2000. Cell 102, 89-97). We investigated the time-dependent patterns of degeneration during postnatal development in the alpha1D(-/-) mouse cochlea using light and electron microscopy. At postnatal day 3 (P3), electron microscopy revealed no morphological aberrations in sensory cells, in afferent as well as in efferent nerve endings. But at P7 we observed a beginning degeneration of afferent nerve fibres by electron microscopy. By P15, we found a loss of OHCs in apical turns but electron microscopy revealed no ultrastructural changes in IHCs and efferent axons as compared to C57 black control animals (C57BL). We demonstrated by serial ultrathin sectioning of 15 days old alpha1D(-/-) mice that intact efferent nerve fibres formed direct contacts with IHCs as the degeneration of afferent nerve fibres progressed. We also saw a notable degeneration of spiral ganglion cells at P15. By 8 months, nearly all spiral ganglion and sensory cells of the organ of Corti were absent. Random ultrathin sectioning gave the impression that synaptic bodies abundant in wild-type animals were absent in nearly all alpha1D(-/-) mice investigated. We conclude that besides presumably reduced synaptic bodies the absence of class D L-type Ca2+ channels does not prevent morphological development of the cochlea until P3 but may cause cochlear degeneration thereafter. The observed pattern of degeneration involves afferent nerve fibres (P7) followed by cell bodies in the spiral ganglion (P15), OHCs (P15) and IHCs (after P15). (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Innsbruck, Klin Hals Nasen Ohrenheilkunde, A-6020 Innsbruck, Austria. Inst Biochem Pharmakol, A-6020 Innsbruck, Austria. Inst Pharm, Abt Pharmakol & Toxikol, A-6020 Innsbruck, Austria. RP Schrott-Fischer, A (reprint author), Univ Innsbruck, Klin Hals Nasen Ohrenheilkunde, Anichstr 35, A-6020 Innsbruck, Austria. EM annelies.schrott@uibk.ac.at CR BOHMER A, 1988, ACTA OTO-LARYNGOL, V106, P368, DOI 10.3109/00016488809122259 Bruce LL, 2000, J COMP NEUROL, V423, P532, DOI 10.1002/1096-9861(20000731)423:3<532::AID-CNE14>3.0.CO;2-T FUCHS PA, 1992, P ROY SOC B-BIOL SCI, V248, P35, DOI 10.1098/rspb.1992.0039 Hequembourg S, 2001, JARO, V2, P118 HUDSPETH AJ, 1988, J PHYSIOL-LONDON, V400, P275 Koschak A, 2001, J BIOL CHEM, V276, P22100, DOI 10.1074/jbc.M101469200 Platzer J, 2000, CELL, V102, P89, DOI 10.1016/S0092-8674(00)00013-1 PUEL JL, 1995, CR ACAD SCI III-VIE, V318, P67 Pujol R, 1999, ANN NY ACAD SCI, V884, P249, DOI 10.1111/j.1749-6632.1999.tb08646.x PUJOL R, 1985, ACTA OTO-LARYNGOL, P5 RICHARDSON KC, 1960, STAIN TECHNOL, V35, P313 RUBEN RJ, 1967, ACTA OTOLARYNGOL S, V44, P1 Shnerson A, 1983, Brain Res, V285, P305 Simmons DD, 1996, J COMP NEUROL, V370, P551, DOI 10.1002/(SICI)1096-9861(19960708)370:4<551::AID-CNE10>3.0.CO;2-M SNELL GD, 1948, J GENET, V49, P87, DOI 10.1007/BF02986826 SPOENDLI.H, 1974, ARCH OTO-RHINO-LARYN, V208, P137, DOI 10.1007/BF00453927 SPOENDLIN H, 1970, AUDITORY VESTIBULAR, P173 SPURR AR, 1969, J ULTRA MOL STRUCT R, V26, P31, DOI 10.1016/S0022-5320(69)90033-1 STEEL KP, 1983, BEHAV NEUROSCI, V97, P381, DOI 10.1037//0735-7044.97.3.381 White JA, 2000, HEARING RES, V141, P12, DOI 10.1016/S0378-5955(99)00204-X WIETZORREK G, 2001, THESIS U INNSBRUCK Zhang Y., 1999, CRYST ENG, V2, P1, DOI 10.1016/S1463-0184(99)00002-7 NR 22 TC 25 Z9 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2003 VL 178 IS 1-2 BP 95 EP 105 DI 10.1016/S0378-5955(03)00054-6 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 666TD UT WOS:000182191800011 PM 12684182 ER PT J AU Withnell, RH Shaffer, LA Talmadge, CL AF Withnell, RH Shaffer, LA Talmadge, CL TI Generation of DPOAEs in the guinea pig SO HEARING RESEARCH LA English DT Article ID EVOKED OTOACOUSTIC EMISSIONS; STIMULATED ACOUSTIC EMISSIONS; FINE-STRUCTURE; COCHLEAR MECHANICS; DISTORTION; MODEL; 2F(1)-F(2); SUPPRESSION; ORIGIN; SYSTEM AB In humans, distortion product otoacoustic emissions (DPOAEs) at frequencies lower than the f(2) stimulus frequency are a composite of two separate sources, these two sources involving two distinctly different mechanisms for their production: non-linear distortion and linear coherent reflection [Talmadge et al., J. Acoust. Soc. Am. 104 (1998) 1517-1543; Talmadge et al., J. Acoust. Soc. Am. 105 (1999) 275-292; Shera and Guinan, J. Acoust. Soc. Am. 105 (1999) 332-348; Kalluri and Shera, J. Acoust. Soc. Am. 109 (2001) 662-637]. In rodents, DPOAEs are larger, consistent with broader filters; however the evidence for two separate mechanisms of DPOAE production as seen in humans is limited. In this study, we report DPOAE amplitude and phase fine structure from the guinea pig with f(2)/f(1) held constant at 1.2 and f(2) swept over a range of frequencies. Inverse Fast Fourier Transform analysis and time-domain windowing were used to separate the two components. Both the 2f(1)-f(2) DPOAE and the 2f(2)-f(1) DPOAE were examined. It was found that, commensurate with human data, the guinea pig DPOAE is a composite of two components arising from different mechanisms. It would appear that the 2f(1)-f(2) emission measured in the ear canal is usually dominated by non-linear distortion, at least for a stimulus frequency ratio of 1.2. The 2f(2)-f(1) DPOAE exhibits amplitude fine structure that, for the animals examined, is predominantly due to the variation in amplitude of the place-fixed component. Cochlear delay times appear consistent with a linear coherent reflection mechanism from the distortion product place for both the 2f(1)-f(2) and 2f(2)-f(1) place-fixed components. (C) 2003 Published by Elsevier Science B.V. C1 Indiana Univ, Dept Speech & Hearing Sci, Bloomington, IN 47405 USA. Univ Mississippi, Natl Ctr Phys Acoust, University, MS 38677 USA. RP Withnell, RH (reprint author), Indiana Univ, Dept Speech & Hearing Sci, 200 S Jordan Ave, Bloomington, IN 47405 USA. CR Brown AM, 1996, J ACOUST SOC AM, V100, P3260, DOI 10.1121/1.417209 DEBOER E, 1995, J ACOUST SOC AM, V98, P904, DOI 10.1121/1.413516 Gaskill SA, 1996, J ACOUST SOC AM, V100, P3268, DOI 10.1121/1.417210 GUELKE RW, 1985, HEARING RES, V19, P185, DOI 10.1016/0378-5955(85)90137-6 Heitmann J, 1998, J ACOUST SOC AM, V103, P1527, DOI 10.1121/1.421290 HILGER AW, 1995, HEARING RES, V84, P1, DOI 10.1016/0378-5955(95)00007-Q Kalluri R, 2001, J ACOUST SOC AM, V109, P622, DOI 10.1121/1.1334597 Kemp D. T., 1983, MECH HEARING, P75 KEMP DT, 1980, HEARING RES, V2, P533, DOI 10.1016/0378-5955(80)90091-X KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0 KIM DO, 1980, HEARING RES, V2, P297, DOI 10.1016/0378-5955(80)90064-7 Knight RD, 2000, J ACOUST SOC AM, V107, P457, DOI 10.1121/1.428351 Knight RD, 2001, J ACOUST SOC AM, V109, P1513, DOI 10.1121/1.1354197 LONG GR, 1999, RECENT DEV AUDITORY, P367 Mallat S., 1998, WAVELET TOUR SIGNAL Martin GK, 1998, J ACOUST SOC AM, V103, P1957, DOI 10.1121/1.421347 MOUNTAIN DC, 1986, NEUROBIOLOGY HEARING, P77 SHERA CA, 2002, IN PRESS J ACOUST SO SHERA CA, 1993, J ACOUST SOC AM, V93, P3333, DOI 10.1121/1.405717 Shera CA, 2000, J ACOUST SOC AM, V108, P2933, DOI 10.1121/1.1323234 SHERA CA, 1991, J ACOUST SOC AM, V89, P1290, DOI 10.1121/1.400654 Shera CA, 2002, P NATL ACAD SCI USA, V99, P3318, DOI 10.1073/pnas.032675099 Shera CA, 2001, J ACOUST SOC AM, V110, P332, DOI 10.1121/1.1378349 Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 Stover LJ, 1996, J ACOUST SOC AM, V99, P1016, DOI 10.1121/1.414630 STRUBE HW, 1989, HEARING RES, V38, P35, DOI 10.1016/0378-5955(89)90126-3 Talmadge CL, 1999, J ACOUST SOC AM, V105, P275, DOI 10.1121/1.424584 Talmadge CL, 2000, J ACOUST SOC AM, V108, P2911, DOI 10.1121/1.1321012 Talmadge CL, 1998, J ACOUST SOC AM, V104, P1517, DOI 10.1121/1.424364 Tubis A, 2000, J ACOUST SOC AM, V108, P1772, DOI 10.1121/1.1310666 Withnell RH, 1998, J ACOUST SOC AM, V104, P344, DOI 10.1121/1.423243 Withnell RH, 2000, HEARING RES, V139, P1, DOI 10.1016/S0378-5955(99)00132-X Withnell RH, 1998, J ACOUST SOC AM, V104, P350, DOI 10.1121/1.423292 Yates GK, 1999, HEARING RES, V136, P49, DOI 10.1016/S0378-5955(99)00108-2 ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320 NR 36 TC 35 Z9 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2003 VL 178 IS 1-2 BP 106 EP 117 DI 10.1016/S0378-5955(03)00064-9 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 666TD UT WOS:000182191800012 PM 12684183 ER PT J AU Howard, MA Rodenas-Ruano, A Henkemeyer, M Martin, GK Lonsbury-Martin, BL Liebl, DJ AF Howard, MA Rodenas-Ruano, A Henkemeyer, M Martin, GK Lonsbury-Martin, BL Liebl, DJ TI Eph receptor deficiencies lead to altered cochlear function SO HEARING RESEARCH LA English DT Article DE Eph receptor; ephrin; cochlea; knockout mice; distortion-product otoacoustic emission ID PRODUCT OTOACOUSTIC EMISSIONS; HEARING-IMPAIRED MICE; COMMISSURAL AXONS; INNER-EAR; LIGANDS; EPHRINS; EXPRESSION; GUIDANCE; SYSTEM; MOUSE AB Ephrins and Eph receptors are a family of molecules that have been implicated in many developmental processes including neuronal network formation, guidance of cell migration, and axonal pathfinding. These molecules exhibit the ability to send bidirectional signals following ligand-receptor interactions resulting from cell-cell contacts. Gene-targeted knockout mice of B-class ephrins and Eph receptors have been shown to display phenotypic responses that correlate with anatomical defects. For example, disruption of the EphB2 receptor leads to defects of the vestibular system, including pathfinding abnormalities in efferent axons and reduced endolymph production. Such developmental distortions lead to deficiencies in ionic homeostasis and repetitive circling behaviors. The present study demonstrates that B-class ephrins and Eph receptors are expressed in cochlear tissues, suggesting that they may play some role in auditory function. To determine whether ephrins and Eph receptors have a functional role in the peripheral auditory system, distortion-product otoacoustic emission (DPOAE) levels, collected across a broad frequency range, were compared between groups of mice expressing different Eph receptor genotypes. In particular, EphB1 and EphB3 receptor knockout mice exhibited significantly diminished DPOAE levels as compared to wild-type littermates, indicating that these specific Eph receptors are necessary for normal cochlear function. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Miami, Sch Med, Neurosci Program, Miami, FL 33101 USA. Univ Colorado, Hlth Sci Ctr, Dept Otolaryngol, Denver, CO 80262 USA. Univ Miami, Sch Med, Miami Project Cure Paralysis, Miami, FL 33101 USA. Univ Texas, SW Med Ctr, Ctr Dev Biol, Dallas, TX 75235 USA. RP Liebl, DJ (reprint author), Univ Miami, Sch Med, Neurosci Program, Miami, FL 33101 USA. CR Adams RH, 1999, GENE DEV, V13, P295, DOI 10.1101/gad.13.3.295 Bianchi LM, 1999, ANAT REC, V254, P127 Braisted JE, 1997, DEV BIOL, V191, P14, DOI 10.1006/dbio.1997.8706 Cowan CA, 2002, TRENDS CELL BIOL, V12, P339, DOI 10.1016/S0962-8924(02)02317-6 Cowan CA, 2000, NEURON, V26, P417, DOI 10.1016/S0896-6273(00)81174-5 Flanagan JG, 1998, ANNU REV NEUROSCI, V21, P309, DOI 10.1146/annurev.neuro.21.1.309 Gao WQ, 1998, MOL CELL NEUROSCI, V11, P247, DOI 10.1006/mcne.1998.0696 Henkemeyer M, 1996, CELL, V86, P35, DOI 10.1016/S0092-8674(00)80075-6 Jimenez AM, 1999, HEARING RES, V138, P91, DOI 10.1016/S0378-5955(99)00154-9 Le Calvez S, 1998, HEARING RES, V120, P51, DOI 10.1016/S0378-5955(98)00051-3 Le Calvez S, 1998, HEARING RES, V120, P37, DOI 10.1016/S0378-5955(98)00050-1 Matsunaga T, 2000, EUR J NEUROSCI, V12, P1599, DOI 10.1046/j.1460-9568.2000.00051.x Muller BK, 1996, CURR OPIN GENET DEV, V6, P469, DOI 10.1016/S0959-437X(96)80069-4 Orioli D, 1996, EMBO J, V15, P6035 Orioli D, 1997, TRENDS GENET, V13, P354, DOI 10.1016/S0168-9525(97)01220-1 Pickles JO, 2002, J COMP NEUROL, V449, P207, DOI 10.1002/cne.10231 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 Schmucker D, 2001, CELL, V105, P701, DOI 10.1016/S0092-8674(01)00391-9 SHONE G, 1991, HEARING RES, V57, P153, DOI 10.1016/0378-5955(91)90084-M van Heumen WRA, 2000, HEARING RES, V139, P42, DOI 10.1016/S0378-5955(99)00158-6 Wang HU, 1997, NEURON, V18, P383, DOI 10.1016/S0896-6273(00)81240-4 Yokoyama N, 2001, NEURON, V29, P85, DOI 10.1016/S0896-6273(01)00182-9 NR 22 TC 14 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2003 VL 178 IS 1-2 BP 118 EP 130 DI 10.1016/S0378-5955(03)00068-6 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 666TD UT WOS:000182191800013 PM 12684184 ER PT J AU Dunaway, G Mhaskar, Y Armour, G Whitworth, C Rybak, L AF Dunaway, G Mhaskar, Y Armour, G Whitworth, C Rybak, L TI Migration of cochlear lateral wall cells SO HEARING RESEARCH LA English DT Article DE hearing; cochlea; stria vascularis; spiral ligament; apoptosis; cell division; BrdU incorporation; proliferating cell nuclear antigen; cell movement ID INNER-EAR; SUPEROXIDE-DISMUTASE; STRIA VASCULARIS; RAT COCHLEA; APOPTOSIS; BROMODEOXYURIDINE; OTOTOXICITY; DEATH; DIETHYLDITHIOCARBAMATE; PROTECTION AB The role of apoptosis and proliferation in maintenance of cochlear lateral wall cells was examined. The methods employed for detection of apoptosis were the Hoechst fluorescence stain and TUNEL (TdT-mediated dUTP-biotin nick-end-labeling) assay, and proliferations were 5-bromo-2'-deoxyuridine (BrdU) incorporation and presence of the proliferating cell nuclear antigen. The incidence of apoptosis in the strial marginal cell was 50% greater (32.9 +/- 3.7%) than strial intermediate and basal cells but similar to spiral ligament cells. Although division of marginal strial cells was rarely detected, a significant number of proliferating cells in the remaining stria vascularis and spiral ligament were observed. These data implied that replacement of marginal cells arose elsewhere and could be followed by a BrdU-deoxythymidine pulse-chase study. At 2 h post injection, nuclear BrdU in marginal cells was not detected; however, by 24 h post injection, 20-25% of marginal cell nuclei were BrdU-positive. These observations are consistent with the hypothesis that marginal cells were replaced by underlying cells. Cell migration appears to be an important mechanism for preserving the function and structure of the stria vascularis. (C) 2003 Elsevier Science B.V. All rights reserved. C1 So Illinois Univ, Sch Med, Dept Pharmacol, Springfield, IL 62794 USA. So Illinois Univ, Sch Med, Dept Surg, Div Otolaryngol, Springfield, IL 62794 USA. RP Dunaway, G (reprint author), So Illinois Univ, Sch Med, Dept Pharmacol, POB 10629, Springfield, IL 62794 USA. CR Armour G, 2001, HEARING RES, V151, P149, DOI 10.1016/S0378-5955(00)00222-7 BARTOLAMI S, 1993, HEARING RES, V67, P203, DOI 10.1016/0378-5955(93)90248-Y CANLON B, 1983, HEARING RES, V10, P217, DOI 10.1016/0378-5955(83)90055-2 CANLON B, 1987, ARCH OTO-RHINO-LARYN, V244, P273, DOI 10.1007/BF00468635 CELIS JE, 1985, EMBO J, V4, P1187 CHOU JTH, 1964, BIOCH HORORGANS, P446 CHURCH MW, 1995, HEARING RES, V86, P195, DOI 10.1016/0378-5955(95)00066-D CLERICI WJ, 1995, HEARING RES, V84, P30, DOI 10.1016/0378-5955(95)00010-2 DAVIS H, 1965, COLD SPRING HARB SYM, V30, P181 DUNAWAY GA, 1983, MOL CELL BIOCHEM, V52, P75 Fekete DM, 1997, DEVELOPMENT, V124, P2451 FERNANDEZ C, 1959, ARCHIV OTOLARYNGOL, V69, P82 GODFREY DA, 1986, NEUROBIOLOGY HEARING, P149 HILDING DA, 1977, ACTA OTO-LARYNGOL, V84, P24, DOI 10.3109/00016487709123939 HOFFMAN DW, 1988, ANN OTO RHINOL LARYN, V97, P36 Jokay I, 1998, HEARING RES, V117, P131, DOI 10.1016/S0378-5955(97)00215-3 KONISHI T, 1961, J ACOUST SOC AM, V33, P349, DOI 10.1121/1.1908659 Kopke RD, 1997, AM J OTOL, V18, P559 KRISS JP, 1962, CANCER RES, V22, P254 Lai MT, 1996, EUR ARCH OTO-RHINO-L, V253, P273 LAUTERMANN J, 1995, HEARING RES, V86, P15, DOI 10.1016/0378-5955(95)00049-A McFadden SL, 1999, NEUROBIOL AGING, V20, P1, DOI 10.1016/S0197-4580(99)00018-4 MCNICOL AM, 1987, CELL TISSUE KINET, V20, P519, DOI 10.1111/j.1365-2184.1987.tb01361.x Nikolic P, 2000, DEV BRAIN RES, V119, P75, DOI 10.1016/S0165-3806(99)00161-3 Nishizaki K, 1998, ACTA OTO-LARYNGOL, V118, P96 Nishizaki K, 1999, HEARING RES, V130, P131, DOI 10.1016/S0378-5955(99)00002-7 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847 PIERSON MG, 1982, HEARING RES, V6, P141, DOI 10.1016/0378-5955(82)90050-8 RAVI R, 1992, OTOLARYNGOL HEAD NEC, V107, P232 RYAN AF, 1988, PHYSL EAR, P317 RYBAK LP, 1991, ORL J OTO-RHINO-LARY, V53, P72 RYBAK LP, 1992, HEARING RES, V59, P189, DOI 10.1016/0378-5955(92)90115-4 RYBAK LP, 1995, FUND APPL TOXICOL, V26, P293, DOI 10.1006/faat.1995.1100 SALT AN, 1987, LARYNGOSCOPE, V97, P984 SCHACHT J, 1985, AUDITORY BIOCH, P389 Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 THOOLEN B, 1990, J HISTOCHEM CYTOCHEM, V38, P267 Usami S, 1997, BRAIN RES, V747, P147, DOI 10.1016/S0006-8993(96)01243-7 VANDIERENDONCK JH, 1991, AM J PATHOL, V138, P1165 WANGEMANN AP, 1996, HDB AUDITORY RES, V9, P130 Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4 WIJSMAN JH, 1992, J PATHOL, V168, P75, DOI 10.1002/path.1711680113 WYNFORDTHOMAS D, 1986, CELL TISSUE KINET, V19, P179, DOI 10.1111/j.1365-2184.1986.tb00728.x Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87 Yao XF, 1996, HEARING RES, V96, P199, DOI 10.1016/0378-5955(96)00050-0 ZELCK U, 1993, EUR ARCH OTO-RHINO-L, V250, P213 NR 46 TC 7 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2003 VL 177 IS 1-2 BP 1 EP 11 DI 10.1016/S0378-5995(02)-00767-0 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 655VU UT WOS:000181574000001 PM 12618312 ER PT J AU Heaney, DL Schulte, BA AF Heaney, DL Schulte, BA TI Dystroglycan expression in the mouse cochlea SO HEARING RESEARCH LA English DT Article DE stria vascularis; W-v mutant; dystroglycan; immunohistochemistry; mouse ID ENDOCOCHLEAR POTENTIAL GENERATION; AUTOIMMUNE STRAIN MOUSE; QUIET-AGED GERBILS; INNER-EAR DISEASE; STRIA VASCULARIS; ION-TRANSPORT; W-LOCUS; C-KIT; EXTRACELLULAR-MATRIX; PROTO-ONCOGENE AB Viable dominant spotting (W-v/W-v) mice have a c-kit gene mutation, which impedes the migration of neural crest cells to the developing cochlea where they normally differentiate into intermediate cells (ICs). A prominent pathological feature shared by these mutants and the aging human and gerbil cochlea is thickening of the basement membrane (BM) of strial capillaries. Atrophy of strial capillaries in the aging gerbil has been associated with changes in the expression of dystroglycan (DG), a cell-surface receptor that regulates BM assembly. Here we evaluated the expression of DG in W-v/W-v mutant and C57BL/6J wild-type mice to investigate the possible role of ICs in regulating strial capillary BM homeostasis. The DG gene product was identified in lateral wall dissections from both W-v/W-v mutant and wild-type mice by reverse transcription-polymerase chain reaction. Subunit-specific antibodies were employed to localize the alpha and beta subunits of the DG heterodimer. Some sites in both wild-type and mutant mice, such as the subepithelial BM lining the scala media and regions of contact between selected epithelial cells, expressed alpha-DG alone. Other sites such as the perineural BM and the perivascular BM subtending strial capillaries and capillaries in the central portion of the auditory nerve coexpressed alpha- and beta-DG. The strong diffuse staining for alpha-DG along the basolateral membrane of strial marginal cells disappeared with advancing strial degeneration in abnormal turns of W-v/W-v mutants. Variations in staining intensity for both alpha- and beta-DG also occurred in the subendothelial BM of strial capillaries in turns lacking ICs and appeared to correspond with the degree of capillary atrophy. The results support the possibility that ICs play a role in the homeostasis of the strial capillary BM. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Med Univ S Carolina, Dept Pathol & Lab Med, Charleston, SC 29425 USA. Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, Charleston, SC 29425 USA. RP Heaney, DL (reprint author), Med Univ S Carolina, Dept Pathol & Lab Med, 171 Ashley Ave, Charleston, SC 29425 USA. CR Belkin AM, 1996, CELL ADHES COMMUN, V4, P281, DOI 10.3109/15419069609010772 BOSHER SK, 1973, ACTA OTO-LARYNGOL, V75, P184, DOI 10.3109/00016487309139694 CABLE J, 1992, HEARING RES, V64, P6, DOI 10.1016/0378-5955(92)90164-I CABLE J, 1994, PIGM CELL RES, V7, P17, DOI 10.1111/j.1600-0749.1994.tb00015.x CARLISLE L, 1990, CELL TISSUE RES, V262, P329, DOI 10.1007/BF00309888 Cavaldesi M, 1999, J NEUROCHEM, V72, P1648, DOI 10.1046/j.1471-4159.1999.721648.x CHABOT B, 1988, NATURE, V335, P88, DOI 10.1038/335088a0 CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1006/abio.1987.9999 Crouch JJ, 1997, J HISTOCHEM CYTOCHEM, V45, P773 DAVIS H, 1958, Laryngoscope, V68, P596 Durbeej M, 1998, J HISTOCHEM CYTOCHEM, V46, P449 Durbeej M, 1998, CURR OPIN CELL BIOL, V10, P594, DOI 10.1016/S0955-0674(98)80034-3 Durbeej M, 1999, J BIOL CHEM, V274, P26609, DOI 10.1074/jbc.274.37.26609 ERVASTI JM, 1993, J CELL BIOL, V122, P809, DOI 10.1083/jcb.122.4.809 ERVASTI JM, 1990, NATURE, V345, P315, DOI 10.1038/345315a0 Fujimura T, 1999, HEARING RES, V128, P135, DOI 10.1016/S0378-5955(98)00206-8 GEE SH, 1994, CELL, V77, P675, DOI 10.1016/0092-8674(94)90052-3 GEISSLER EN, 1988, CELL, V55, P185, DOI 10.1016/0092-8674(88)90020-7 GRATTON MA, 1995, HEARING RES, V82, P44 Heaney DL, 2002, HEARING RES, V174, P9, DOI 10.1016/S0378-5955(02)00611-1 Henry MD, 1999, CURR OPIN CELL BIOL, V11, P602, DOI 10.1016/S0955-0674(99)00024-1 Henry MD, 1996, CURR OPIN CELL BIOL, V8, P625, DOI 10.1016/S0955-0674(96)80103-7 Hoshino T, 2000, HEARING RES, V140, P145, DOI 10.1016/S0378-5955(99)00192-6 IBRAGHIMOVBESKROVNAYA O, 1992, NATURE, V355, P696, DOI 10.1038/355696a0 KONISHI T, 1978, ACTA OTO-LARYNGOL, V86, P22, DOI 10.3109/00016487809124717 KONISHI T, 1978, ACTA OTO-LARYNGOL, V86, P176, DOI 10.3109/00016487809124734 Kusakari C, 1992, Ann Otol Rhinol Laryngol Suppl, V157, P82 MARCUS DC, 1986, NEUROBIOLOGY HEARING, P123 MCMENOMEY SO, 1992, OTOLARYNG HEAD NECK, V106, P288 NAKAZAWA K, 1995, J HISTOCHEM CYTOCHEM, V43, P981 Nariuchi H, 1994, Acta Otolaryngol Suppl, V514, P127 OFFNER FF, 1987, HEARING RES, V29, P117, DOI 10.1016/0378-5955(87)90160-2 RUCKENSTEIN MJ, 1993, ACTA OTO-LARYNGOL, V113, P160, DOI 10.3109/00016489309135785 Saito F, 1999, J BIOL CHEM, V274, P8240, DOI 10.1074/jbc.274.12.8240 Sakaguchi N, 1997, HEARING RES, V105, P44, DOI 10.1016/S0378-5955(96)00180-3 SALT AN, 1987, LARYNGOSCOPE, V97, P984 SCHULTE BA, 1989, J HISTOCHEM CYTOCHEM, V37, P127 Shimizu H, 1999, J BIOL CHEM, V274, P11995, DOI 10.1074/jbc.274.17.11995 SONE M, 1995, HEARING RES, V83, P26, DOI 10.1016/0378-5955(94)00189-W STEEL KP, 1989, DEVELOPMENT, V107, P453 Tago C, 1992, Ann Otol Rhinol Laryngol Suppl, V157, P87 TASAKI I, 1959, J NEUROPHYSIOL, V22, P149 Thomopoulos GN, 1997, HEARING RES, V111, P31, DOI 10.1016/S0378-5955(97)00080-4 Tian M, 1996, EUR J NEUROSCI, V8, P2739, DOI 10.1111/j.1460-9568.1996.tb01568.x Trune DR, 1996, HEARING RES, V95, P57, DOI 10.1016/0378-5955(96)00018-4 TRUNE DR, 1989, HEARING RES, V38, P57, DOI 10.1016/0378-5955(89)90128-7 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S WONG ML, 1992, HEARING RES, V59, P93, DOI 10.1016/0378-5955(92)90106-W YOSHIDA M, 1994, EUR J BIOCHEM, V222, P1055, DOI 10.1111/j.1432-1033.1994.tb18958.x Zaccaria ML, 2001, NEUROSCIENCE, V104, P311, DOI 10.1016/S0306-4522(01)00092-6 NR 50 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2003 VL 177 IS 1-2 BP 12 EP 20 DI 10.1016/S0378-5995(02)00769-4 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 655VU UT WOS:000181574000002 PM 12618313 ER PT J AU Tanaka, F Whitworth, CA Rybak, LP AF Tanaka, F Whitworth, CA Rybak, LP TI Influence of pH on the ototoxicity of cisplatin: a round window application study SO HEARING RESEARCH LA English DT Article DE cisplatin; ototoxicity; pH; auditory brainstern response; chinchilla ID MAMMARY-TUMOR CELLS; INTRACELLULAR PH; CYTOTOXICITY; MEMBRANE; PERMEABILITY; RESISTANCE; ACID AB Cisplatin is an antineoplastic agent that produces a number of dose-limiting side effects, including ototoxicity. We investigated the effect of pH on cisplatin ototoxicity. Auditory brainstem responses (ABR) were recorded in chinchillas. Then the auditory bullae were opened and acidic (pH = 6.5), neutral (pH = 7.4) or alkaline (pH = 10.2) phosphate-buffered saline (PBS) was applied to the round window membrane. After 30 min, any remaining solution was removed and cisplatin solution was applied to the round window membrane. After 3 days, follow-up ABRs were performed and the cochleae were processed for morphological analysis. Neutral PBS+cisplatin administration resulted in profound threshold changes at all frequencies. Acidic PBS+cisplatin administration showed had a trend of increased threshold changes, but the change did not reach statistical significance. However, the degree of hair cell loss was significantly higher than that of the neutral PBS-cisplatin group. Alkaline PBS significantly reduced cisplatin-induced threshold changes (P < 0.05) compared to the neutral PBS group. Because the pH of cisplatin solution was 6.0, pH 6.0 PBS was applied to round window membrane. This acidic PBS solution did not cause any hearing impairment. These results demonstrate that pH can modulate the ototoxic effects of cisplatin. (C) 2003 Elsevier Science B.V. All rights reserved. C1 So Illinois Univ, Sch Med, Dept Surg, Springfield, IL 62794 USA. Nagasaki Univ, Sch Med, Dept Otolaryngol, Nagasaki 8528501, Japan. RP Rybak, LP (reprint author), So Illinois Univ, Sch Med, Dept Surg, POB 19638, Springfield, IL 62794 USA. CR ANDERSSON A, 1994, J PHARM SCI, V83, P859, DOI 10.1002/jps.2600830620 ATEMA A, 1993, INT J CANCER, V54, P166, DOI 10.1002/ijc.2910540126 Barton J K, 1978, Ann N Y Acad Sci, V313, P686, DOI 10.1111/j.1749-6632.1978.tb39455.x BERTOLERO F, 1982, RES COMMUN CHEM PATH, V36, P273 Chau Q, 1999, CANCER CHEMOTH PHARM, V44, P193, DOI 10.1007/s002800050967 Fausti SA, 1999, EAR HEARING, V20, P497, DOI 10.1097/00003446-199912000-00005 Goycoolea M V, 1988, Laryngoscope, V98, P1, DOI 10.1288/00005537-198806001-00002 Goycoolea MV, 2001, ACTA OTO-LARYNGOL, V121, P437, DOI 10.1080/000164801300366552 GROOS E, 1986, CANCER, V58, P1199, DOI 10.1002/1097-0142(19860915)58:6<1199::AID-CNCR2820580604>3.0.CO;2-Z IKEDA K, 1989, AM J OTOLARYNG, V10, P382, DOI 10.1016/0196-0709(89)90032-X Janning MH, 1998, OTOLARYNG HEAD NECK, V119, P574, DOI 10.1016/S0194-5998(98)70014-2 Juhn S K, 1989, Acta Otolaryngol Suppl, V457, P43 Korver KD, 2002, OTOLARYNG HEAD NECK, V126, P683, DOI 10.1067/mhn.2002.125299 LAURENCOT CM, 1995, ONCOL RES, V7, P371 LAURENCOT CM, 1995, ONCOL RES, V7, P363 Murakami T, 2001, INT J CANCER, V93, P869, DOI 10.1002/ijc.1418 OKUNO T, 1984, ARCH OTO-RHINO-LARYN, V240, P103 PIEL IJ, 1974, CANCER CHEMOTH REP 1, V58, P871 RYBAK LP, 1981, J LARYNGOL OTOL, V95, P745, DOI 10.1017/S0022215100091374 Salt AN, 2001, HEARING RES, V154, P88, DOI 10.1016/S0378-5955(01)00223-4 SALT AN, 1988, PHYSL EAR, P341 Yachnin JR, 1998, CANCER LETT, V132, P175, DOI 10.1016/S0304-3835(98)00175-X NR 22 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2003 VL 177 IS 1-2 BP 21 EP 31 DI 10.1016/S0378-5955(02)00771-2 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 655VU UT WOS:000181574000003 PM 12618314 ER PT J AU Henkel, CK Fuentes-Santamaria, V Alvarado, JC Brunso-Bechtold, JK AF Henkel, CK Fuentes-Santamaria, V Alvarado, JC Brunso-Bechtold, JK TI Quantitative measurement of afferent layers in the ferret inferior colliculus: DNLL projections to sublayers SO HEARING RESEARCH LA English DT Article DE dorsal nucleus of the lateral lemniscus; fibrodendritic lamina; afferent band; central nucleus of the inferior colliculus ID LATERAL SUPERIOR OLIVE; DORSAL NUCLEUS; COCHLEAR NUCLEUS; ASCENDING PROJECTIONS; GABAERGIC PROJECTION; SEROTONIN DEPLETION; RESPONSE PROPERTIES; AUDITORY AFFERENTS; POSSIBLE SUBSTRATE; SINGLE NEURONS AB In the central nucleus of the inferior colliculus (IC), afferent projections are aligned with dendritic arbors of disk-shaped cells, forming fibrodendritic layers. One feature that may serve as a guide for study of the intrinsic organization of the IC layers is the segregation of certain inputs to bands and patches within the layers of the central nucleus. In this study, we used Phaseolus leucoagglutinin as an anterograde tracer to examine the projections from the dorsal nucleus of the lateral lemniscus to the contralateral IC in adult ferrets. The labeled afferent projections distributed along the IC layers in a series of bands where there were dense endings and interband spaces where there were few if any endings. Branches of individual labeled axons that were reconstructed distributed within a single afferent band. Measurements of both the terminal density distribution and the optical density across the band were similar indicating that afferent bands were approximately 85 pin thick. Quantitative measurements of the labeled afferent bands will enhance comparison with other afferent projections and analysis of afferent development and plasticity. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Wake Forest Univ, Bowman Gray Sch Med, Dept Neurobiol & Anat, Winston Salem, NC 27157 USA. RP Henkel, CK (reprint author), Wake Forest Univ, Bowman Gray Sch Med, Dept Neurobiol & Anat, Med Ctr Blvd, Winston Salem, NC 27157 USA. CR ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305 ADAMS JC, 1984, BRAIN RES BULL, V13, P585, DOI 10.1016/0361-9230(84)90041-8 BAJO VM, 1993, J COMP NEUROL, V334, P241, DOI 10.1002/cne.903340207 Bajo VM, 1998, BRAIN RES BULL, V47, P595, DOI 10.1016/S0361-9230(98)00127-0 BENNETTCLARKE CA, 1994, J NEUROSCI, V14, P7594 BLACKSTAD TW, 1988, COMPUT BIOL MED, V18, P321, DOI 10.1016/0010-4825(88)90020-0 Brown LL, 2002, J NEUROSCI, V22, P305 BRUCKNER S, 1995, HEARING RES, V86, P1, DOI 10.1016/0378-5955(95)00048-9 BRUGGE JF, 1970, J NEUROPHYSIOL, V33, P441 BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P705, DOI 10.1002/cne.901970410 CABELLI RJ, 1995, SCIENCE, V267, P1662, DOI 10.1126/science.7886458 Chen L, 1999, HEARING RES, V138, P106, DOI 10.1016/S0378-5955(99)00156-2 COVEY E, 1993, J NEUROPHYSIOL, V69, P842 FAINGOLD CL, 1993, HEARING RES, V69, P98, DOI 10.1016/0378-5955(93)90097-K FITZPATRICK KA, 1975, J COMP NEUROL, V164, P185, DOI 10.1002/cne.901640204 Gabriele ML, 2000, J NEUROSCI, V20, P6939 Gabriele ML, 2000, J COMP NEUROL, V416, P368, DOI 10.1002/(SICI)1096-9861(20000117)416:3<368::AID-CNE8>3.0.CO;2-C GLENDENNING KK, 1992, J COMP NEUROL, V319, P100, DOI 10.1002/cne.903190110 GLENDENNING KK, 1981, J COMP NEUROL, V197, P673, DOI 10.1002/cne.901970409 GOLDBERG JM, 1967, J COMP NEUROL, V129, P143, DOI 10.1002/cne.901290203 GonzalezHernandez T, 1996, J COMP NEUROL, V372, P309, DOI 10.1002/(SICI)1096-9861(19960819)372:2<309::AID-CNE11>3.0.CO;2-E HENKEL CK, 2001, SOC NEUR ABSTR, V27 HENKEL CK, 1988, J COMP NEUROL, V271, P577, DOI 10.1002/cne.902710408 HENKEL CK, 1993, J COMP NEUROL, V331, P458, DOI 10.1002/cne.903310403 Henkel C. K., 1992, Society for Neuroscience Abstracts, V18, P1038 HUFFMAN RF, 1995, J COMP NEUROL, V357, P532, DOI 10.1002/cne.903570405 Kelly JB, 1998, HEARING RES, V122, P25, DOI 10.1016/S0378-5955(98)00082-3 KUDO M, 1981, BRAIN RES, V221, P57, DOI 10.1016/0006-8993(81)91063-5 LEVAY S, 1978, J COMP NEUROL, V179, P223, DOI 10.1002/cne.901790113 MALMIERCA MS, 1993, J COMP NEUROL, V333, P1, DOI 10.1002/cne.903330102 MARKOVITZ NS, 1994, HEARING RES, V73, P121, DOI 10.1016/0378-5955(94)90290-9 MERZENIC.MM, 1974, BRAIN RES, V77, P397, DOI 10.1016/0006-8993(74)90630-1 MOREST DK, 1964, ANAT REC, V148, P314 OLIVER DL, 1984, J COMP NEUROL, V222, P237, DOI 10.1002/cne.902220207 OLIVER DL, 1989, NEUROBIOLOGY HEARING, P195 Oliver DL, 1997, J COMP NEUROL, V382, P215, DOI 10.1002/(SICI)1096-9861(19970602)382:2<215::AID-CNE6>3.0.CO;2-6 OLIVER DL, 1995, J COMP NEUROL, V360, P17, DOI 10.1002/cne.903600103 Persico AM, 2000, CEREB CORTEX, V10, P181, DOI 10.1093/cercor/10.2.181 ROCKEL AJ, 1973, J COMP NEUROL, V147, P11, DOI 10.1002/cne.901470103 ROTH GL, 1978, J COMP NEUROL, V182, P661, DOI 10.1002/cne.901820407 SAINTMARIE RL, 1989, J COMP NEUROL, V279, P382 SCHREINER CE, 1988, J NEUROPHYSIOL, V60, P1823 SEMPLE MN, 1981, NEURONAL MECHANISMS, P155 SHNEIDERMAN A, 1993, J NEUROCHEM, V60, P72, DOI 10.1111/j.1471-4159.1993.tb05824.x SHNEIDERMAN A, 1987, J COMP NEUROL, V266, P519, DOI 10.1002/cne.902660406 Shneiderman A, 1999, J COMP NEUROL, V410, P265 SHNEIDERMAN A, 1988, J COMP NEUROL, V276, P188, DOI 10.1002/cne.902760204 Snyder RL, 1997, J COMP NEUROL, V379, P133, DOI 10.1002/(SICI)1096-9861(19970303)379:1<133::AID-CNE9>3.0.CO;2-5 WARR WB, 1972, BRAIN RES, V40, P247 WARR WB, 1966, EXP NEUROL, V14, P453, DOI 10.1016/0014-4886(66)90130-0 Zhang DX, 1998, HEARING RES, V117, P1, DOI 10.1016/S0378-5955(97)00202-5 ZOOK JM, 1985, J COMP NEUROL, V231, P530, DOI 10.1002/cne.902310410 NR 52 TC 13 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2003 VL 177 IS 1-2 BP 32 EP 42 DI 10.1016/S0378-5955(02)00794-3 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 655VU UT WOS:000181574000004 PM 12618315 ER PT J AU Shi, XR Dai, CF Nuttall, AL AF Shi, XR Dai, CF Nuttall, AL TI Altered expression of inducible nitric oxide synthase (iNOS) in the cochlea SO HEARING RESEARCH LA English DT Article DE lipopolysaccharide; mouse; guinea pig; loud sound; nitric oxide ID GUINEA-PIG COCHLEA; LIPOPOLYSACCHARIDE; BRAIN; INHIBITION; INCREASE; INJURY; VIVO AB Using immunohistochemistry and Western blot, the expression of inducible nitric oxide synthase (iNOS) in the lateral wall and organ of Corti was examined in normal (unstimulated) and stimulated mice and guinea pigs. The stimuli were: (1) injection of bacterial lipopolysaccharide (LPS, 5 mg/ml) into the middle ear through the tympanic membrane and (2) exposure to a 110 dB SPL (A-weighted) broadband noise, 3 h/day, for three consecutive days. For the unstimulated condition, weak iNOS expression was found in the vascular endothelium, marginal cells, nerve fibers, stereocilia of hair cells and Hensen's cells of the organ of Corti. More intense iNOS fluorescence signals were observed in cochlear tissues (particularly in hair cells and stria vascularis marginal cells) in animals exposed to loud sound or treated with LPS. Although the precise role:; of iNOS expression in normal cochlear function have yet to be determined, enhanced iNOS expression following noise exposure and LPS suggests its participation in cochlear pathophysiology, including noise- and inflammatory factor-induced hearing loss. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr NRC04, Portland, OR 97239 USA. CPAPA, Gen Hosp, Dept Otolaryngol, Beijing 100039, Peoples R China. Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Nuttall, AL (reprint author), Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr NRC04, 3181 SW Sam Jackson Pk Rd, Portland, OR 97239 USA. CR Alderton WK, 2001, BIOCHEM J, V357, P593, DOI 10.1042/0264-6021:3570593 Arnhold S, 1999, EUR J NEUROSCI, V11, P2187, DOI 10.1046/j.1460-9568.1999.00663.x BRECHTELSBAUER PB, 1994, HEARING RES, V77, P38, DOI 10.1016/0378-5955(94)90251-8 Coleman JW, 2001, INT IMMUNOPHARMACOL, V1, P1397, DOI 10.1016/S1567-5769(01)00086-8 DAWSON TM, 1992, ANN NEUROL, V32, P297, DOI 10.1002/ana.410320302 DAWSON VL, 1991, P NATL ACAD SCI USA, V88, P6368, DOI 10.1073/pnas.88.14.6368 Devaux Y, 2001, J IMMUNOL, V167, P3962 Fu YX, 2001, FREE RADICAL BIO MED, V31, P450, DOI 10.1016/S0891-5849(01)00607-4 GUO FH, 1995, P NATL ACAD SCI USA, V92, P7809, DOI 10.1073/pnas.92.17.7809 Hattori R, 2002, AM J PHYSIOL-HEART C, V282, pH1988, DOI 10.1152/ajpheart.01012.2001 Hess A, 1999, BRAIN RES, V830, P113, DOI 10.1016/S0006-8993(99)01433-X Hickey MJ, 2001, CLIN SCI, V100, P1, DOI 10.1042/CS20000135 Jager W, 2000, EXP BRAIN RES, V134, P426, DOI 10.1007/s002210000470 Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x Kroncke KD, 2001, INT IMMUNOPHARMACOL, V1, P1407, DOI 10.1016/S1567-5769(01)00087-X Kubes P, 2000, GUT, V47, P6, DOI 10.1136/gut.47.1.6 Levy D, 2001, J NEUROPATH EXP NEUR, V60, P411 LOWENSTEIN CJ, 1992, P NATL ACAD SCI USA, V89, P6711, DOI 10.1073/pnas.89.15.6711 Matsuo I, 2001, AM J PHYSIOL-REG I, V280, pR1285 Michel O, 2000, HEARING RES, V143, P23, DOI 10.1016/S0378-5955(00)00018-6 MONCADA S, 1999, FREE RADICAL BIO MED, V27, pP2 MORRIS RJ, 1983, HISTOCHEM CYTOCHEM, V31, P263 Murphy MP, 1999, BBA-BIOENERGETICS, V1411, P401, DOI 10.1016/S0005-2728(99)00029-8 MUTASA HCF, 1988, HISTOCHEM J, V20, P558, DOI 10.1007/BF01002610 Popa R, 2001, ACTA OTO-LARYNGOL, V121, P454 Pujol R, 1990, Acta Otolaryngol Suppl, V476, P32 Punkt K, 2002, HISTOCHEM CELL BIOL, V118, P371, DOI 10.1007/s00418-002-0465-4 Reuss S, 2000, MICROSC RES TECHNIQ, V51, P318, DOI 10.1002/1097-0029(20001115)51:4<318::AID-JEMT3>3.0.CO;2-Y Reuss S, 1998, NEUROREPORT, V9, P3643 Rumbaut RE, 2000, AM J PHYSIOL-HEART C, V279, pH2017 Shi XR, 2002, HEARING RES, V164, P49 Shi XR, 2001, HEARING RES, V153, P23, DOI 10.1016/S0378-5955(00)00254-9 SHI XR, 2001, ASS RES OT MIDW M ST SHI XR, 2002, IN PRESS BRAIN RES SHI XR, 2002, EXP BIOL M NEW ORL L Shirato M, 1998, BIOCHEM J, V333, P795 Tabuchi K, 2001, HEARING RES, V160, P31, DOI 10.1016/S0378-5955(01)00315-X Takumida M, 2000, HEARING RES, V140, P91, DOI 10.1016/S0378-5955(99)00188-4 TAN C, 2001, J BIOL CHEM, V277, P3109 Vanin AF, 1998, BIOCHEMISTRY-MOSCOW+, V63, P731 Watanabe K, 2000, HEARING RES, V145, P149, DOI 10.1016/S0378-5955(00)00086-1 Watanabe K, 2001, ORL J OTO-RHINO-LARY, V63, P155, DOI 10.1159/000055732 Watanabe KI, 2000, FREE RADICAL RES, V32, P363, DOI 10.1080/10715760000300361 Wu Men-Dar, 1997, Okajimas Folia Anatomica Japonica, V74, P155 Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87 Zucker RM, 2001, CYTOMETRY, V44, P273, DOI 10.1002/1097-0320(20010801)44:4<273::AID-CYTO1120>3.0.CO;2-N NR 46 TC 35 Z9 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2003 VL 177 IS 1-2 BP 43 EP 52 DI 10.1016/S0378-5955(02)00796-7 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 655VU UT WOS:000181574000005 PM 12618316 ER PT J AU Hartley, DEH Moore, DR AF Hartley, DEH Moore, DR TI Effects of conductive hearing loss on temporal aspects of sound transmission through the ear SO HEARING RESEARCH LA English DT Article DE otitis media; middle car disease; effusion; earplug; acoustic damping; cochlear microphonic ID STEM AUDITORY NUCLEI; MASKING-LEVEL DIFFERENCE; OTITIS-MEDIA; BRAIN-STEM; BINAURAL HEARING; BARN OWL; INFERIOR COLLICULUS; COCHLEAR NUCLEUS; SENSITIVE PERIOD; OPTIC TECTUM AB Effects of conductive hearing loss on level and spectrum are well known. However, little is known about possible additional effects on temporal aspects of sound transmission. This study investigated effects of earplugs and middle ear effusions on amplitude and timing of cochlear microphonic (CM) responses in gerbils. Bilateral CM responses to pure tones (1-16 kHz) were monitored before and after (i) unilateral earplug insertion or (ii) injection of silicone oil, of various viscosities, into one middle ear. Earplugs produced flat hearing losses (mean 13 dB) and delayed CMs more at lower (mean 80 mus, 1-6 kHz) than at higher (20 mus, 8-16 kHz) frequencies. Effusions also produced flat hearing loss. On average, high viscosity effusions produced larger hearing losses (36 dB) than medium (25 dB) or low (20 dB) viscosity effusions. Low and medium viscosity effusions delayed responses to lower (mean 82 and 65 mus respectively, 1-6 kHz) more than to higher (mean 20 and 10 mus respectively, 8-16 kHz) frequencies. High viscosity effusions produced smaller delays across all frequencies (mean 31 mus, 1-16 kHz). In normal animals, CM responses were not delayed over a wide range of stimulus levels. Therefore, in addition to attenuation, conductive loss distorts acoustic temporal cues important for hearing. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Oxford, Physiol Lab, Oxford OX1 3PT, England. RP Moore, DR (reprint author), MRC, Inst Hearing Res, Univ Pk, Nottingham NG7 2RD, England. CR BENDAVID J, 1981, EAR NOSE THROAT J, V60, P120 BLUESTONE CD, 1995, OTITIS MEDIA INFANTS, P1 BLUESTON.CD, 1973, LARYNGOSCOPE, V83, P594, DOI 10.1288/00005537-197304000-00015 BROWN DT, 1983, INT J PEDIATR OTORHI, V5, P39, DOI 10.1016/S0165-5876(83)80006-8 BRUGGE JF, 1978, J NEUROPHYSIOL, V41, P1557 CLOPTON BM, 1978, EXP BRAIN RES, V32, P39 CONLEE JW, 1981, J COMP NEUROL, V202, P373, DOI 10.1002/cne.902020307 Dallos P., 1973, AUDITORY PERIPHERY B DISHOECK HAE, 1944, ACTA OTOLARYNGOL, V32, P99 EVANS WJ, 1983, HEARING RES, V10, P269, DOI 10.1016/0378-5955(83)90092-8 Florentine M, 1976, J Am Audiol Soc, V1, P243 GOODHILL V, 1958, Acta Otolaryngol, V49, P38, DOI 10.3109/00016485809134725 GRAVEL JS, 1996, CLIN ASPECTS HEARING, P86 HALL JW, 1994, J ACOUST SOC AM, V95, P2652, DOI 10.1121/1.409834 Hall JW, 1998, EAR HEARING, V19, P429, DOI 10.1097/00003446-199812000-00004 HALL JW, 1995, HEARING RES, V84, P91, DOI 10.1016/0378-5955(95)00016-W HALL JW, 1995, ARCH OTOLARYNGOL, V121, P847 HALL JW, 1986, J OTOL RHINOL LARYNG, V95, P118 Häusler R, 1983, Acta Otolaryngol Suppl, V400, P1 Hogan SC, 1997, BRIT MED J, V314, P350 HOGAN SC, 1995, BRIT J AUDIOL, V29, P56 King AJ, 2000, P NATL ACAD SCI USA, V97, P11821, DOI 10.1073/pnas.97.22.11821 KING AJ, 1988, NATURE, V332, P73, DOI 10.1038/332073a0 KNUDSEN EI, 1984, J NEUROSCI, V4, P1001 KNUDSEN EI, 1983, SCIENCE, V222, P939, DOI 10.1126/science.6635667 KNUDSEN EI, 1985, J NEUROSCI, V5, P3094 LAY DOUGLAS, 1972, J MORPHOL, V138, P41, DOI 10.1002/jmor.1051380103 LUESCHER E, 1939, ACTA OTOLARYNGOL, V27, P250 MAJIMA Y, 1988, ANN OTO RHINOL LARYN, V97, P272 MARSH RR, 1985, INT J PEDIATR OTORHI, V9, P115, DOI 10.1016/S0165-5876(85)80011-2 McPartland JL, 1997, HEARING RES, V113, P165, DOI 10.1016/S0378-5955(97)00142-1 Moore DR, 1999, J NEUROSCI, V19, P8704 MOORE DR, 1989, J NEUROSCI, V9, P1213 MOORE DR, 1991, AUDIOLOGY, V30, P91 MOORE DR, 1981, BRAIN RES, V208, P198, DOI 10.1016/0006-8993(81)90632-6 MORRONGIELLO BA, 1989, J ACOUST SOC AM, V86, P597, DOI 10.1121/1.398749 PARSONS CH, 1999, ARO ABSTR, V22, P2136 PILLSBURY HC, 1991, ARCH OTOLARYNGOL, V117, P718 RAVIRAJAN CT, 1992, LUPUS, V1, P157, DOI 10.1177/096120339200100307 ROSER D, 1965, J LARYNGOL RHINOL, V45, P423 SILVERMAN MS, 1977, J NEUROPHYSIOL, V40, P1266 SLATTERY WH, 1994, HEARING RES, V75, P38, DOI 10.1016/0378-5955(94)90053-1 SMITH ZDJ, 1983, J COMP NEUROL, V220, P199, DOI 10.1002/cne.902200207 TAKEUCHI K, 1989, ANN OTO RHINOL LARYN, V98, P443 Teoh SW, 1997, HEARING RES, V106, P39, DOI 10.1016/S0378-5955(97)00002-6 TONNDORF J, 1981, J ACOUST SOC AM, V70, P1294, DOI 10.1121/1.387143 Tucci DL, 1999, LARYNGOSCOPE, V109, P1359, DOI 10.1097/00005537-199909000-00001 VONBEKESY G, 1948, J ACOUST SOC AM, V20, P727 WEBSTER DB, 1977, ARCH OTOLARYNGOL, V103, P392 WEBSTER DB, 1983, EXP NEUROL, V79, P130, DOI 10.1016/0014-4886(83)90384-9 WEBSTER DB, 1979, ANN OTO RHINOL LARYN, V88, P684 WEIDERHOLD ML, 1980, ANN OTO RHINOL LARYN, V89, P185 Wever EG, 1954, PHYSL ACOUSTICS WILMINGTON D, 1994, HEARING RES, V74, P99, DOI 10.1016/0378-5955(94)90179-1 ZUREK PM, 1986, J ACOUST SOC AM, V80, P466, DOI 10.1121/1.394041 NR 55 TC 17 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2003 VL 177 IS 1-2 BP 53 EP 60 DI 10.1016/S0378-5955(02)00797-9 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 655VU UT WOS:000181574000006 PM 12618317 ER PT J AU Wada, H Usukura, H Sugawara, M Katori, Y Kakehata, S Ikeda, K Kobayashi, T AF Wada, H Usukura, H Sugawara, M Katori, Y Kakehata, S Ikeda, K Kobayashi, T TI Relationship between the local stiffness of the outer hair cell along the cell axis and its ultrastructure observed by atomic force microscopy SO HEARING RESEARCH LA English DT Article DE ultrastructure; outer hair cell; lateral wall; cortical lattice; actin filament; atomic force microscopy ID CYTOSKELETON; GENERATION; MOTILITY; MEMBRANE; PROTEIN; ACTIN; WALL AB As electromotility may arise from a conformational change of the molecules' 'protein motors', which might be distributed along the outer hair cell (OHC) lateral wall, the force generated by the OHC electromotility would be related not only to the conformational change of the protein motors but also to the mechanical properties of the lateral wall. Therefore, a detailed understanding of the mechanical properties of the OHC lateral wall is important. In our previous reports, to understand the difference in the stiffness along the cell axis, the local deformation of the OHC in response to hypotonic stimulation was analyzed by measuring the displacement of microspheres attached randomly to the cell lateral wall, and the distribution of Young's modulus along the cell axis was obtained using the contact mode of an atomic force microscope (AFM). These investigations revealed that the stiffness of the cell in the apical region was greater than that in other regions where the stiffness is constant. In this study, the ultrastructure of the OHC lateral wall was investigated with the oscillation imaging mode of the AFM (Tapping Mode(TM)), and the relationship between the stiffness along the cell axis and the ultrastructure that was observed by the AFM imaging was analyzed. From the analysis, it was concluded that the circumferential filaments observed in the lapping mode AFM are actins which are part of the cortical lattice, and that the difference between the intervals of the circumferential filaments in the apical region and those in other regions is one factor that causes the high stiffness in the apical region. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Tohoku Univ, Dept Mech Engn, Sendai, Miyagi 9808579, Japan. Tohoku Univ, Grad Sch Med, Dept Otolaryngol Head & Neck Surg, Sendai, Miyagi 980, Japan. Hirosaki Univ, Sch Med, Dept Otorhinolaryngol, Hirosaki, Aomori 036, Japan. RP Wada, H (reprint author), Tohoku Univ, Dept Mech Engn, Aoba Yama 01, Sendai, Miyagi 9808579, Japan. CR ARIMA T, 1991, CELL TISSUE RES, V263, P91, DOI 10.1007/BF00318403 CHANG L, 1993, BIOPHYS J, V64, P1282 FORGE A, 1991, CELL TISSUE RES, V265, P473, DOI 10.1007/BF00340870 Hallworth R, 1995, J NEUROPHYSIOL, V74, P2319 HENDERSON E, 1992, SCIENCE, V257, P1944, DOI 10.1126/science.1411511 HOLLEY MC, 1990, J CELL SCI, V96, P283 HOLLEY MC, 1992, J CELL SCI, V102, P569 HOLLEY MC, 1988, NATURE, V335, P635, DOI 10.1038/335635a0 HOLLEY MC, 1990, EUR ARCH OTO-RHINO-L, V247, P4 HUANG GJ, 1994, P NATL ACAD SCI USA, V91, P12268, DOI 10.1073/pnas.91.25.12268 IWASA KH, 1992, J ACOUST SOC AM, V92, P3169, DOI 10.1121/1.404194 KALINEC F, 1992, P NATL ACAD SCI USA, V89, P8671, DOI 10.1073/pnas.89.18.8671 Leonova EV, 1999, HEARING RES, V130, P137, DOI 10.1016/S0378-5955(99)00004-0 Ratnanather JT, 1996, J ACOUST SOC AM, V99, P1025, DOI 10.1121/1.414631 SANTOS-SACCHI J, 1991, J NEUROSCI, V11, P3096 SLEPECKY N, 1988, J SUBMICR CYTOL PATH, V20, P37 Sugawara M, 2001, HEARING RES, V160, P63, DOI 10.1016/S0378-5955(01)00343-4 Sugawara M, 2002, HEARING RES, V174, P222, DOI 10.1016/S0378-5955(02)00696-2 Wada H, 2001, HEARING RES, V162, P10, DOI 10.1016/S0378-5955(01)00355-0 You HX, 2000, ULTRAMICROSCOPY, V82, P297, DOI 10.1016/S0304-3991(99)00139-4 ZENNER HP, 1992, ACTA OTO-LARYNGOL, V112, P248 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 NR 22 TC 18 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2003 VL 177 IS 1-2 BP 61 EP 70 DI 10.1016/S0378-5955(02)00798-0 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 655VU UT WOS:000181574000007 PM 12618318 ER PT J AU Rozengurt, N Lopez, I Chiu, CS Kofuji, P Lester, HA Neusch, C AF Rozengurt, N Lopez, I Chiu, CS Kofuji, P Lester, HA Neusch, C TI Time course of inner ear degeneration and deafness in mice lacking the Kir4.1 potassium channel subunit SO HEARING RESEARCH LA English DT Article DE deafness; inner ear; stria vascularis; inwardly rectifying K+ channel; development; KCNJ10 ID COCHLEAR STRIA VASCULARIS; LANGE-NIELSEN-SYNDROME; RECTIFYING K+ CHANNEL; LONG-QT SYNDROME; INTERMEDIATE CELLS; KVLQT1; EXPRESSION; DOMINANT; GENE; MUTATIONS AB The Kir4.1 gene (KCNJ10) encodes an inwardly rectifying K+ channel subunit abundantly expressed in the CNS. Its expression in the mammalian inner ear has been suggested but its function in vivo in the inner ear is unknown. Because diverse human hereditary deafness syndromes are associated with mutations in K+ channels, we examined auditory function and inner ear structure in mice with a genetically inactivated Kir4.1 K+ channel subunit. Startle response experiments suggest that Kir4.1-/- mice are profoundly deaf, whereas Kir4.1+/- mice react like wild-type mice to acoustic stimuli. In Kir4.1-/- mice, the Reissner membrane is collapsed, the tectorial membrane is swollen, and type I hair cells and spiral ganglion neurons as well as their central processes degenerate over the first postnatal weeks. In the vestibular ganglia, neuronal cell death with apoptotic features is also observed. Immunostaining reveals that Kir4.1 is strongly expressed in stria vascularis of wild-type but not Kir4.1-/- mice. Within the spiral ganglion, Kir4.1 labeling was detected on satellite cells surrounding spiral ganglion neurons and axons. We conclude that Kir4.1 is crucial for normal development of the cochlea and hearing, via two distinct aspects of extracellular K+ homeostasis: (1) in stria vascularis, Kir4.1 helps to generate the cochlear endolymph; and (2) in spiral and vestibular ganglia, Kir4.1 in surrounding glial cells helps to support the spiral and vestibular ganglion neurons and their projecting axons. (C) 2003 Elsevier Science B.V. All rights reserved. C1 CALTECH, Div Biol, Pasadena, CA 91125 USA. Univ Calif Los Angeles, Sch Med, Dept Pathol, Los Angeles, CA 90095 USA. Univ Calif Los Angeles, Sch Med, Dept Surg, Div Head & Neck, Los Angeles, CA 90095 USA. Univ Minnesota, Dept Neurosci, Minneapolis, MN 55455 USA. Univ Gottingen, Dept Neurol, D-37075 Gottingen, Germany. RP Neusch, C (reprint author), CALTECH, Div Biol, Pasadena, CA 91125 USA. CR Ando M, 1999, CELL TISSUE RES, V298, P179, DOI 10.1007/s004419900066 Chen QY, 1999, CIRCULATION, V99, P1344 Chouabe C, 2000, CARDIOVASC RES, V45, P971, DOI 10.1016/S0008-6363(99)00411-3 Hibino H, 1999, AM J PHYSIOL-CELL PH, V277, pC638 Hibino H, 1997, J NEUROSCI, V17, P4711 Hille B., 1992, IONIC CHANNELS EXCIT, V2nd Ishii M, 1997, J NEUROSCI, V17, P7725 Isomoto S, 1997, JPN J PHYSIOL, V47, P11, DOI 10.2170/jjphysiol.47.11 Kharkovets T, 2000, P NATL ACAD SCI USA, V97, P4333, DOI 10.1073/pnas.97.8.4333 Kofuji P, 2000, J NEUROSCI, V20, P5733 Kusaka S, 1999, J PHYSIOL-LONDON, V520, P373, DOI 10.1111/j.1469-7793.1999.00373.x Lagrutta AA, 1996, JPN HEART J, V37, P651 Lee MP, 2000, J CLIN INVEST, V106, P1447, DOI 10.1172/JCI10897 Marcus DC, 2002, AM J PHYSIOL-CELL PH, V282, pC403 Neusch C, 2001, J NEUROSCI, V21, P5429 Reimann F, 1999, CURR OPIN CELL BIOL, V11, P503, DOI 10.1016/S0955-0674(99)80073-8 Romey G, 1997, J BIOL CHEM, V272, P16713, DOI 10.1074/jbc.272.27.16713 SchulzeBahr E, 1997, HUM GENET, V100, P573, DOI 10.1007/s004390050554 Takeuchi S, 2001, HEARING RES, V155, P103, DOI 10.1016/S0378-5955(01)00252-0 Takeuchi S, 2000, BIOPHYS J, V79, P2572 Talebizadeh Z, 1999, HUM MUTAT, V14, P493, DOI 10.1002/(SICI)1098-1004(199912)14:6<493::AID-HUMU8>3.0.CO;2-P Van Hauwe P, 1999, BRIT J AUDIOL, V33, P285 Vetter DE, 1996, NEURON, V17, P1251, DOI 10.1016/S0896-6273(00)80255-X Wang Q, 1998, MOL MED TODAY, V4, P382, DOI 10.1016/S1357-4310(98)01320-3 Wollnik B, 1997, HUM MOL GENET, V6, P1943, DOI 10.1093/hmg/6.11.1943 Xu HX, 2000, J PHYSIOL-LONDON, V524, P725, DOI 10.1111/j.1469-7793.2000.00725.x Yang J, 2000, J EARTHQUAKE ENG, V4, P1, DOI 10.1142/S1363246900000023 NR 27 TC 45 Z9 49 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2003 VL 177 IS 1-2 BP 71 EP 80 DI 10.1016/S0378-5955(02)00799-2 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 655VU UT WOS:000181574000008 PM 12618319 ER PT J AU Chen, GD Fechter, LD AF Chen, GD Fechter, LD TI The relationship between noise-induced hearing loss and hair cell loss in rats SO HEARING RESEARCH LA English DT Article DE noise-induced hearing loss; hair cell loss; rat ID CARBON-MONOXIDE; EXPOSURE; POTENTIATION; COCHLEA; INTERMITTENT; SENSITIVITY; STIMULATION; CHINCHILLA; DAMAGE AB Noise-induced hearing loss (NIHL) and hair cell loss are known to show only a moderate correlation. One reason for this is that NIHL may reflect not only the sum of dead hair cells, but also the sum of impaired but:;till living hair cells. This report compares hair cell loss in different cochlear regions in rats with noise-induced compound action potential (CAP) threshold elevation at corresponding frequencies. CAP threshold elevation and hair cell loss were determined 4 weeks after noise exposure. In the apical turn (< 35% from the apex) there was no hair cell loss even when a 60 dB CAP threshold elevation was induced. In the region of 40-60% from the apex in the middle turn, significant hair cell loss was not observed until CAP threshold elevation exceeded about 40-50 dB. This critical level decreased towards the basal turn. In the basal turn, outer hair cell (OHC) loss was observed in almost all of the noise-exposed rats, even in some cases without detectable NIHL, but inner hair cell (IHC) loss was still not observed until 50 dB threshold elevation. In the region of 75-90% from the apex related to the highest frequencies tested in this study (30-40 kHz), a linear NlHL/OHC loss relationship was observed. The results of this paper suggest that the high frequency hair cells in rat cochlea may die relatively rapidly after injury, leading to a linear relation between NIHL and hair cell loss, but that the low frequency hair cells may survive without auditory function. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Oklahoma, Hlth Sci Ctr, Coll Pharm, Oklahoma City, OK 73190 USA. RP Chen, GD (reprint author), Univ Oklahoma, Hlth Sci Ctr, Coll Pharm, POB 26901, Oklahoma City, OK 73190 USA. CR Bohne B.A., 1982, NEW PERSPECTIVES NOI, P283 BORG E, 1987, HEARING RES, V30, P119, DOI 10.1016/0378-5955(87)90129-8 BORG E, 1989, J ACOUST SOC AM, V86, P1776, DOI 10.1121/1.398609 Bredberg G, 1968, ACTA OTO-LARYNGOL, V236, P1 Chen GD, 1999, HEARING RES, V138, P181, DOI 10.1016/S0378-5955(99)00157-4 Chen GD, 2001, HEARING RES, V154, P108, DOI 10.1016/S0378-5955(01)00228-3 Chen GD, 2000, HEARING RES, V145, P101 Chen GD, 1999, HEARING RES, V132, P149, DOI 10.1016/S0378-5955(99)00044-1 CHEN GD, 2002, IN PRESS HEAR RES CLARK WW, 1987, J ACOUST SOC AM, V82, P1253, DOI 10.1121/1.395261 CLARK WW, 1986, SENSORINEURAL HEARIN, P59 CLARK WW, 1978, ANN OTO RHINOL LARYN, V87, P1 Engström B, 1983, Acta Otolaryngol Suppl, V402, P5 Fechter LD, 2002, TOXICOL SCI, V66, P131, DOI 10.1093/toxsci/66.1.131 Fechter LD, 2000, TOXICOL SCI, V58, P315, DOI 10.1093/toxsci/58.2.315 FELDMAN AM, 1981, PHARM HEARING EXPT C, P51 Flock A, 1999, J NEUROSCI, V19, P4498 HAMERNIK RP, 1989, HEARING RES, V38, P199, DOI 10.1016/0378-5955(89)90065-8 HENDERSO.D, 1974, J ACOUST SOC AM, V56, P1210, DOI 10.1121/1.1903410 HU B, 2002, HEARING RES, V172, P62 Hu BH, 1997, HEARING RES, V110, P209, DOI 10.1016/S0378-5955(97)00075-0 HUNTERDU.IM, 1973, J ACOUST SOC AM, V54, P1179, DOI 10.1121/1.1914364 Lataye R, 2000, HEARING RES, V139, P86, DOI 10.1016/S0378-5955(99)00174-4 LIBERMAN MC, 1979, ACTA OTO-LARYNGOL, V88, P161, DOI 10.3109/00016487909137156 MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7 Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043 White DR, 1998, J ACOUST SOC AM, V103, P1566, DOI 10.1121/1.421303 Yamasoba T, 1999, HEARING RES, V127, P31, DOI 10.1016/S0378-5955(98)00178-6 NR 29 TC 49 Z9 58 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2003 VL 177 IS 1-2 BP 81 EP 90 DI 10.1016/S0378-5955(02)00802-X PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 655VU UT WOS:000181574000009 PM 12618320 ER PT J AU Sterbing, SJ Schrott-Fischer, A AF Sterbing, SJ Schrott-Fischer, A TI Neuronal responses in the inferior colliculus of mutant mice (Bronx waltzer) with hereditary inner hair cell loss SO HEARING RESEARCH LA English DT Article DE mutant mouse; inner hair cell loss; inferior colliculus ID COCHLEAR PATHOLOGY; DAMAGE; MOUSE; HEARING; LOCALIZATION; PLASTICITY; THRESHOLD AB Bronx waltzer mice lose a great proportion of their cochlear inner hair cells during early development. Hair cell counts revealed that these mice lacked on average 86% of their inner hair cells. Outer hair cells were present in a normal number, but appeared disarranged. The effect of this inner hair cell loss on the properties of central auditory neurons was investigated by recording neuronal responses in the inferior colliculus. Neuronal thresholds were on average elevated by 40 dB compared to CBA controls. The frequency tuning curves of the mutants were broad, and in part (18.5%) multi-peaked. The tonotopy found in the inferior colliculus of the Bronx waltzer mice appeared diffuse. Both the driven and spontaneous discharge rates were not statistically significantly different from the controls. However, the average first spike latency was significantly longer in the Bronx waltzer mice. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Ruhr Univ Bochum, Dept Zool & Neurobiol, D-4630 Bochum, Germany. Univ Hosp, ENT Dept, Innsbruck, Austria. RP Sterbing, SJ (reprint author), Univ Connecticut, Ctr Hlth, Dept Neurosci, 263 Farmington Ave, Farmington, CT 06030 USA. RI Sterbing-D'Angelo, Susanne/H-5899-2012 CR Bekesy G., 1960, EXPT HEARING BERLIN CI, 1963, J SPEECH HEAR RES, V6, P359 BOCK GR, 1982, J PHYSIOL-LONDON, V332, P20 Bussoli TJ, 1997, MAMM GENOME, V8, P714, DOI 10.1007/s003359900552 DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 DEOL MS, 1979, NATURE, V278, P250, DOI 10.1038/278250a0 DORRSCHEIDT GH, 1981, BRAIN RES, V220, P397, DOI 10.1016/0006-8993(81)91232-4 Evans EF, 1976, J PHYSIOL-LONDON, V256, P43 GREENWOOD D, 1961, J ACOUST SOC AM, V33, P1344, DOI 10.1121/1.1908437 Harrison RV, 1998, EXP BRAIN RES, V123, P449, DOI 10.1007/s002210050589 HORNER KC, 1985, J ACOUST SOC AM, V78, P1603, DOI 10.1121/1.392798 KEITHLEY EM, 1983, HEARING RES, V12, P381, DOI 10.1016/0378-5955(83)90007-2 Kong WJ, 2002, HEARING RES, V167, P136, DOI 10.1016/S0378-5955(02)00382-9 LENOIR M, 1984, HEARING RES, V13, P123, DOI 10.1016/0378-5955(84)90103-5 LIBERMAN MC, 1979, ACTA OTO-LARYNGOL, V88, P161, DOI 10.3109/00016487909137156 LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 SCHROTT A, 1989, HEARING RES, V40, P213, DOI 10.1016/0378-5955(89)90162-7 Sobkowicz HM, 1999, J NEUROCYTOL, V28, P17, DOI 10.1023/A:1007059616607 Spoendlin H, 1987, Acta Otolaryngol Suppl, V436, P25 SPOENDLI.H, 1974, ARCH OTO-RHINO-LARYN, V208, P137, DOI 10.1007/BF00453927 Sterbing SJ, 2002, HEARING RES, V170, P179, DOI 10.1016/S0378-5955(02)00490-2 Tucker JB, 1999, J NEUROCYTOL, V28, P1017, DOI 10.1023/A:1007092105185 Wake M, 1996, ACTA OTO-LARYNGOL, V116, P714, DOI 10.3109/00016489609137912 Wang J, 1997, HEARING RES, V107, P67, DOI 10.1016/S0378-5955(97)00020-8 Whitlon DS, 1996, J COMP NEUROL, V364, P515 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 NR 27 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2003 VL 177 IS 1-2 BP 91 EP 99 DI 10.1016/S0378-5955(02)00805-5 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 655VU UT WOS:000181574000010 PM 12618321 ER PT J AU Lu, Y Jen, PHS AF Lu, Y Jen, PHS TI Binaural interaction in the inferior colliculus of the big brown bat, Eptesicus fuscus SO HEARING RESEARCH LA English DT Article DE aurality; binaural inhibition; Frequency tuning curve; gamma-aminobutyric acid; rate-intensity function ID SOUND LOCATION SELECTIVITY; CENTRAL AUDITORY-SYSTEM; LATERAL LEMNISCUS; DORSAL NUCLEUS; GLYCINERGIC INHIBITION; TUNING CHARACTERISTICS; GABAERGIC INHIBITION; MEDIATED INHIBITION; RESPONSE PROPERTIES; EVOKED INHIBITION AB Binaural interaction plays an important role in shaping response properties of central auditory neurons. Using single unit recording and iontophoresis, we examined frequency tuning curves (FTCs), interaural intensity difference (IID) curves, and rate-intensity functions of inferior collicular (IQ neurons of the big brown bat, Eptesicus fuscus, under closed system or free field stimulation conditions. We isolated 46 El (excitation-inhibition), 24 EO (monaural excitation) and 6 EE (excitation-excitation) neurons. Inhibitory FTCs of El neurons plotted under ipsilateral sound stimulation fell within (n = 10, 22%), partly overlapped (n = 26, 56%), or almost entirely encompassed (n = 10, 22%) excitatory FTCs plotted by contralateral sound stimulation. The discharge rate of El neurons was a sigmoid function of IID. The peak discharge rate occurred at IIDs at which contralateral sound stimulation was stronger than ipsilateral sound stimulation. Application of bicuculline, an antagonist for gamma-aminobutyric acid A receptors, raised the IID curves and broadened the excitatory FTCs but partly or completely abolished the ipsilateral inhibitory FTCs. For EE neurons, excitatory FTCs and rate-intensity functions plotted by contralateral sound stimulation were always broader and higher than those plotted by ipsilateral sound stimulation. The sharpness of FTCs of El neurons was significantly greater at ipsilateral 30degrees than at 30degrees contralateral. This direction-dependent frequency tuning was effectively abolished by occlusion of the ipsilateral ear. Possible mechanisms underlying these observations are discussed. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. Univ Missouri, Interdisciplinary Neurosci Program, Columbia, MO 65211 USA. RP Jen, PHS (reprint author), Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. CR ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305 ADAMS JC, 1984, BRAIN RES BULL, V13, P585, DOI 10.1016/0361-9230(84)90041-8 AITKIN LM, 1975, NEUROSCI LETT, V1, P315, DOI 10.1016/0304-3940(75)90019-1 BORMANN J, 1988, TRENDS NEUROSCI, V11, P112, DOI 10.1016/0166-2236(88)90156-7 CASSEDAY JH, 1995, NEURAL REPRESENTATIO, P25 CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341 Covey E, 1999, ANNU REV PHYSIOL, V61, P457, DOI 10.1146/annurev.physiol.61.1.457 EHRET G, 1988, BRAIN RES REV, V13, P139, DOI 10.1016/0165-0173(88)90018-5 ERULKAR SD, 1972, PHYSIOL REV, V52, P237 FAINGOLD CL, 1991, HEARING RES, V52, P201, DOI 10.1016/0378-5955(91)90200-S Fubara BM, 1996, J COMP NEUROL, V369, P83 Fuzessery ZM, 1996, J NEUROPHYSIOL, V76, P1059 FUZESSERY ZM, 1990, J NEUROPHYSIOL, V63, P1128 FUZESSERY ZM, 1985, J NEUROPHYSIOL, V54, P757 GOOLER DM, 1993, J NEUROPHYSIOL, V69, P1018 Gooler DM, 1996, J NEUROPHYSIOL, V76, P2580 HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 Jen PHS, 2000, BRAIN RES, V862, P127, DOI 10.1016/S0006-8993(00)02098-9 JEN PHS, 1982, J COMP PHYSIOL, V147, P351 JEN PHS, 1987, BRAIN RES, V419, P7, DOI 10.1016/0006-8993(87)90563-4 Jen PHS, 1999, J COMP PHYSIOL A, V184, P185, DOI 10.1007/s003590050317 KLUG A, 1995, J NEUROPHYSIOL, V74, P1701 Koch U, 1998, J NEUROPHYSIOL, V80, P71 LeBeau FEN, 1996, J NEUROPHYSIOL, V75, P902 LeBeau FEN, 2001, J NEUROSCI, V21, P7303 LI L, 1992, J NEUROSCI, V12, P4530 Lu Y, 1997, J COMP PHYSIOL A, V181, P331, DOI 10.1007/s003590050119 LU Y, 1999, NEUR ABSTR, V25, P667 Lu Y, 2001, EXP BRAIN RES, V141, P331, DOI 10.1007/s002210100885 McAlpine D, 2002, J NEUROSCI, V22, P1443 OLIVER DL, 1994, J COMP NEUROL, V340, P27, DOI 10.1002/cne.903400104 PARK TJ, 1993, J NEUROSCI, V13, P2050 Perkins KL, 1997, CAN J PHYSIOL PHARM, V75, P516, DOI 10.1139/cjpp-75-5-516 Pollak GD, 1989, NEURAL BASIS ECHOLOC Pollak GD, 2002, HEARING RES, V168, P60, DOI 10.1016/S0378-5955(02)00362-3 ROBERTS RC, 1987, J NEUROCYTOL, V16, P333, DOI 10.1007/BF01611345 Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O SCHLEGEL P, 1977, J COMP PHYSIOL, V118, P353 SCHNEIDERMAN A, 1989, J COMP NEUROL, V286, P28 SEMPLE MN, 1987, J NEUROPHYSIOL, V57, P1130 SEMPLE MN, 1985, J NEUROPHYSIOL, V53, P1467 Shen JX, 1997, J COMP PHYSIOL A, V181, P591, DOI 10.1007/s003590050142 SUGA N, 1995, NEUROSCI RES, V21, P287, DOI 10.1016/0168-0102(94)00868-G Winer JA, 1998, J COMP NEUROL, V400, P147 Yang LC, 1998, HEARING RES, V122, P125, DOI 10.1016/S0378-5955(98)00088-4 YANG LC, 1992, J NEUROPHYSIOL, V68, P1760 Zhang H, 1999, J COMP PHYSIOL A, V184, P85, DOI 10.1007/s003590050308 NR 47 TC 13 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2003 VL 177 IS 1-2 BP 100 EP 110 DI 10.1016/S0378-5955(03)00024-8 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 655VU UT WOS:000181574000011 PM 12618322 ER PT J AU Martin, GK Villasuso, EI Stagner, BB Lonsbury-Martin, BL AF Martin, GK Villasuso, EI Stagner, BB Lonsbury-Martin, BL TI Suppression and enhancement of distortion-product otoacoustic emissions by interference tones above f(2). II. Findings in humans SO HEARING RESEARCH LA English DT Article DE distortion-product otoacoustic emission; interference response area; suppression tuning curve; enhancement; human ID TUNING CHARACTERISTICS; 2F(1)-F(2); CURVES; DEPENDENCE AB Distortion-product otoacoustic emission (DPOAE) suppression tuning curves (STCs) can be obtained in a variety of laboratory animals and humans by sweeping the frequencies and levels of a third tone (f(3)) around a set of f(1) and f(2) primaries. In small laboratory animals, it was previously observed that, when the suppressor tone (f(3)) is above f(2), substantial suppression and or enhancement (suppression/enhancement) could be obtained. In the present study, it was of interest to determine if similar suppression/enhancement phenomena could be observed in humans and to what extent this might influence the interpretation of STC results reported in the literature. To this end, STCs were measured for DPOAEs at 2f(1)-f(2) and 2f(2)-f(1) in human subjects at geometric-mean frequencies (GM) of 1, 2, 3, and 4 kHz, and primary-tone equilevels of 80/80 and 75/75 dB SPL and unequal levels of 65/55 dB SPL. Overall, STC parameters were found to be comparable to those reported in the literature. For the 2f(1)-f(2) DPOAE, STC tip frequencies tuned to the region of the primaries, and tip frequencies were slightly influenced by primary-tone level. STC tip thresholds were typically within 10 dB of the level of L-2, and Q(10dB) values ranged from 1.0 to 2.5, which was consistent with the higher-level primaries employed. The 2f(1)-f(2) DPOAE showed consistent regions of suppression that were approximately an octave above the GM for the 1-kHz, 65/55-dB SPL condition. The 2f(2)-f(1) DPOAE tuned to its characteristic place above f(2) and showed reliable enhancement above the STC tip region for the 1-kHz, 75/75-dB SPL primaries. Overall, the results clearly revealed that human ears also display suppression/enhancement phenomena when f(3) reaches frequencies considerably above f(2). If suppression/enhancement phenomena reflect secondary DPOAE sources, then these sources are present in the ear-canal signal from humans as well as small laboratory animals. (C) 2003 Elsevier Science B.V. All rights reserved. C1 Univ Colorado, Hlth Sci Ctr, Dept Otolaryngol, Denver, CO 80262 USA. RP Martin, GK (reprint author), Univ Colorado, Hlth Sci Ctr, Dept Otolaryngol, 4200 E 9th Ave, Denver, CO 80262 USA. CR Abdala C, 1998, HEARING RES, V121, P125, DOI 10.1016/S0378-5955(98)00073-2 Abdala C, 1996, EAR HEARING, V17, P374, DOI 10.1097/00003446-199610000-00003 Abdala C, 2001, J ACOUST SOC AM, V110, P1465, DOI 10.1121/1.1388018 Abdala C, 1996, HEARING RES, V98, P38, DOI 10.1016/0378-5955(96)00056-1 BROWN AM, 1984, HEARING RES, V13, P29, DOI 10.1016/0378-5955(84)90092-3 CIANFRONE G, 1994, BRIT J AUDIOL, V28, P205, DOI 10.3109/03005369409086569 Fahey PF, 2000, J ACOUST SOC AM, V108, P1786, DOI 10.1121/1.1308048 FRANK G, 1995, HEARING RES, V83, P151, DOI 10.1016/0378-5955(94)00197-X Gorga MP, 2002, J ACOUST SOC AM, V111, P271, DOI 10.1121/1.1426372 Harris M., 1992, ADV EC THEORY, V2, P64 Khanna SM, 1999, HEARING RES, V135, P89, DOI 10.1016/S0378-5955(99)00095-7 KOPPL C, 1993, J ACOUST SOC AM, V93, P2834 KUMMER P, 1995, J ACOUST SOC AM, V98, P197, DOI 10.1121/1.413747 Lukashkin AN, 1999, J ACOUST SOC AM, V106, P2661, DOI 10.1121/1.428096 Martin GK, 1998, J ACOUST SOC AM, V103, P1957, DOI 10.1121/1.421347 MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9 Martin GK, 1999, HEARING RES, V136, P105, DOI 10.1016/S0378-5955(99)00119-7 Mills DM, 2000, J ACOUST SOC AM, V107, P2586, DOI 10.1121/1.428646 Pienkowski M, 2001, J ACOUST SOC AM, V109, P1496, DOI 10.1121/1.1354202 Shera CA, 2002, P NATL ACAD SCI USA, V99, P3318, DOI 10.1073/pnas.032675099 Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 Taschenberger G, 1998, HEARING RES, V123, P183, DOI 10.1016/S0378-5955(98)00120-8 White S. D., 1992, Waltham International Focus, V2, P2 WHITEHEAD ML, 1995, J ACOUST SOC AM, V97, P2346, DOI 10.1121/1.411959 NR 24 TC 13 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2003 VL 177 IS 1-2 BP 111 EP 122 DI 10.1016/S0378-5955(03)00028-5 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 655VU UT WOS:000181574000012 PM 12618323 ER PT J AU Gioglio, L Russo, G Polimeni, M Prigioni, N AF Gioglio, L Russo, G Polimeni, M Prigioni, N TI Ecto-ATPase activity sites in vestibular tissues: an ultracytochemical study in frog semicircular canals SO HEARING RESEARCH LA English DT Article DE ecto-ATPase activity; frog; semicircular canal; hair cell; supporting cell; dark cell; ultracytochemistry ID GUINEA-PIG COCHLEA; 5'-TRIPHOSPHATE-GATED ION-CHANNEL; CYTOCHEMICAL-LOCALIZATION; EXTRACELLULAR ATP; HAIR-CELLS; ADENOSINE 5'-TRIPHOSPHATE; CRISTA-AMPULLARIS; RANA-ESCULENTA; MARGINAL CELLS; INNER-EAR AB 0The present study describes the localization and distribution of putative ecto-nucleoside-triphosphate-diphosphohydrolases in the frog semicircular canals. These enzymes provide the terminating mechanism of adenosine-5'-triphosphate (ATP) signalling. The localization of the ATP hydrolysis was mapped ultracytochemically using a one-step cerium citrate reaction. Electron-dense precipitates, indicating ecto-adenosine-triphosphatase (ecto-ATPase) activity, were found at the outer surface of plasma membranes of crista hair cells and supporting cells of the sensory epithelium, transitional cells and undifferentiated cells of the ampullar wall and dark cells constituting the secretory epithelium. Non-sensory cells of the ampulla usually exhibited reaction deposits at the level of both apical and basolateral membranes coming into contact with the endolymph and the perilymph respectively, while cells constituting the sensory epithelium showed evident differences in relation to their position. Hair cells and supporting cells of the peripheral regions exhibited clear reaction products both at the level of apical and basolateral membranes, while those of the isthmus region showed abundant reactivity only at the level of their apical membranes. Of particular interest was the observation that hair cell stereocilia exhibited an abundant ecto-ATPase activity, thus suggesting a possible colocalization of enzymatic sites with purinergic receptors and mechanotransduction channels. This strategic expression of ecto-ATPase sites could provide a rapid mechanism of ATP removal able to rapidly restore the sensitivity of transduction channels. In conclusion, the widespread distribution of ecto-ATPase sites at the level of sensory and non-sensory cells of the frog semicircular canals suggests that ATP may have a key role in controlling vestibular function. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Pavia, Dipartimento Sci Fisiol & Farmacol, I-27100 Pavia, Italy. Univ Pavia, Dipartimento Med Sperimentale, I-27100 Pavia, Italy. RP Prigioni, N (reprint author), Univ Pavia, Dipartimento Sci Fisiol & Farmacol, Via Forlanini 6, I-27100 Pavia, Italy. RI Polimeni, Mariarosa/B-6036-2012 CR AUBERT A, 1994, NEUROSCIENCE, V62, P963, DOI 10.1016/0306-4522(94)90487-1 AUBERT A, 1995, NEUROSCIENCE, V64, P1153, DOI 10.1016/0306-4522(94)00434-7 BOBBIN RP, 1978, ANN OTO RHINOL LARYN, V87, P185 BUTLEN D, 1998, AM J PHYSIOL, V275, P253 CARDY JD, 1993, J HISTOCHEM CYTOCHEM, V44, P103 DULON D, 1993, CELL CALCIUM, V14, P245, DOI 10.1016/0143-4160(93)90071-D EYBALIN M, 1993, PHYSIOL REV, V73, P309 GIOGLIO L, 1995, ARCH HISTOL CYTOL, V58, P1, DOI 10.1679/aohc.58.1 GLEESON RA, 1992, CELL TISSUE RES, V269, P439, DOI 10.1007/BF00353899 Housley GD, 1997, AUDIOL NEURO-OTOL, V2, P92 Housley GD, 1998, MOL NEUROBIOL, V16, P21, DOI 10.1007/BF02740601 Housley GD, 1998, J COMP NEUROL, V393, P403 Jarlebark LE, 2000, J COMP NEUROL, V421, P289, DOI 10.1002/(SICI)1096-9861(20000605)421:3<289::AID-CNE1>3.0.CO;2-0 Kittel A, 1999, J HISTOCHEM CYTOCHEM, V47, P393 Kittel A, 1996, ACTA NEUROPATHOL, V92, P362 KORTJE KH, 1990, J HISTOCHEM CYTOCHEM, V38, P895 KUJAWA SG, 1994, HEARING RES, V76, P87, DOI 10.1016/0378-5955(94)90091-4 LIN SH, 1989, J BIOL CHEM, V264, P14403 LIU J, 1995, AUDIT NEUROSCI, V1, P331 MASETTO S, 1994, J NEUROPHYSIOL, V72, P443 MOCKETT BG, 1994, J NEUROSCI, V14, P6992 MUNOZ DJB, 1995, HEARING RES, V90, P119, DOI 10.1016/0378-5955(95)00153-5 OUDAR O, 1988, ANAT REC, V220, P328, DOI 10.1002/ar.1092200316 PLESNER L, 1995, INT REV CYTOL, V158, P141 PRIGIONI I, 1983, BRAIN RES, V269, P83, DOI 10.1016/0006-8993(83)90964-2 RENNIE KJ, 1993, NEUROSCI LETT, V160, P185, DOI 10.1016/0304-3940(93)90409-E ROBINSON JM, 1983, J HISTOCHEM CYTOCHEM, V31, P1197 SALAMA AH, 1987, J HISTOCHEM CYTOCHEM, V35, P471 Stout JG, 1996, BIOCHEMISTRY-US, V35, P8289, DOI 10.1021/bi960563g Sugasawa M, 1996, AM J PHYSIOL-CELL PH, V271, pC1817 Thirion S, 1996, J HISTOCHEM CYTOCHEM, V44, P103 Thorne PR, 1996, SEMIN NEUROSCI, V8, P233, DOI 10.1006/smns.1996.0030 VANNOORDEN CJF, 1993, J MICROSC-OXFORD, V171, P3 Vlajkovic SM, 1999, MOL BRAIN RES, V73, P85, DOI 10.1016/S0169-328X(99)00244-2 Vlajkovic SM, 1996, HEARING RES, V99, P31, DOI 10.1016/S0378-5955(96)00079-2 Vlajkovic SM, 1998, NEUROREPORT, V9, P1559 WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 WHITE PN, 1995, HEARING RES, V90, P97, DOI 10.1016/0378-5955(95)00151-1 Zimmermann H, 1996, PROG NEUROBIOL, V49, P589, DOI 10.1016/0301-0082(96)00026-3 Zimmermann H, 1999, TRENDS PHARMACOL SCI, V20, P231, DOI 10.1016/S0165-6147(99)01293-6 NR 40 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2003 VL 176 IS 1-2 BP 1 EP 10 DI 10.1016/S0378-5955(02)00583-X PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645QX UT WOS:000180990800001 PM 12583876 ER PT J AU Wagner, E Klump, GM Hamann, I AF Wagner, E Klump, GM Hamann, I TI Gap detection in Mongolian gerbils (Meriones unguiculatus) SO HEARING RESEARCH LA English DT Article DE gap detection; temporal resolution; gerbil ID AUDITORY-NERVE FIBERS; MELOPSITTACUS-UNDULATUS; BASILAR-MEMBRANE; NOISE; FREQUENCY; CORTEX; CAT; DISCRIMINATION; SENSITIVITY; CHINCHILLA AB Hearing thresholds for white-noise stimuli and temporal gap-detection thresholds in six Mongolian gerbils (Meriones unguiculatus) were determined in a GO/NOGO procedure using the method of constant stimuli. Gerbils were offspring of animals collected in the field and only bred in captivity for four generations or less. Hearing thresholds for 800 ms bursts of white noise ranged between -0.8 and 6.3 dB SPL. The median minimum-detectable gap centered in an 800 ms burst of white noise presented at 50 dB SPL was 2.1 ms. At levels of 40 dB SPL and above, gap-detection thresholds were independent of the sound-pressure level of the stimulus. At 30 dB SPL and below, the minimum-detectable gap increased with decreasing sound-pressure level. Near 5 dB sensation level, gap-detection thresholds ranged from 13.6 to 29.4 ms. The median threshold for the detection of gaps inserted 5 ms after the onset of an 800 ms burst of white noise of 50 dB SPL was 2.3 ms. The individuals' detection thresholds varied between 2.3 and 3.6 ms for stimuli in which the relative sound-pressure levels of the noise before and after the gap differed by up to 20 dB. The data found in the Mongolian gerbil match results from other mammal and bird species. (C) 2002 Published by Elsevier Science B.V. C1 Tech Univ Munich, Inst Zool, D-85747 Garching, Germany. RP Klump, GM (reprint author), Carl von Ossietzky Univ Olenburg, AG Zoophysiol & Verhalten, Carl von Ossietzkystr 9-11,Postfach 2503, D-26111 Oldenburg, Germany. CR Boettcher FA, 1996, HEARING RES, V102, P167, DOI 10.1016/S0378-5955(96)90016-7 BRAUN M, 1994, HEARING RES, V78, P98, DOI 10.1016/0378-5955(94)90048-5 BURKARD R, 1993, J ACOUST SOC AM, V94, P2441, DOI 10.1121/1.407465 BURKARD R, 1989, J ACOUST SOC AM, V85, P2514, DOI 10.1121/1.397746 Buus S, 1985, TIME RESOLUTION AUDI, P159 Chatterjee M, 1998, HEARING RES, V124, P170, DOI 10.1016/S0378-5955(98)00135-X DOOLING RJ, 1980, HEARING RES, V3, P279, DOI 10.1016/0378-5955(80)90023-4 EGGERMONT JJ, 1995, NEUROREPORT, V6, P1645, DOI 10.1097/00001756-199508000-00014 Eggermont JJ, 1999, J NEUROPHYSIOL, V81, P2570 FORREST TG, 1987, J ACOUST SOC AM, V82, P1933, DOI 10.1121/1.395689 GIRAUDI D, 1980, J ACOUST SOC AM, V68, P802, DOI 10.1121/1.384818 He NJ, 1999, J ACOUST SOC AM, V106, P966, DOI 10.1121/1.427109 ISON JR, 1982, J COMP PHYSIOL PSYCH, V96, P945, DOI 10.1037/0735-7036.96.6.945 Kittel M, 2002, HEARING RES, V164, P69, DOI 10.1016/S0378-5955(01)00411-7 KLUMP GM, 1989, J COMP PHYSIOL A, V164, P531, DOI 10.1007/BF00610446 LAY DOUGLAS, 1972, J MORPHOL, V138, P41, DOI 10.1002/jmor.1051380103 MULLER M, 1996, HEARING RES, V56, P1 Ohl FW, 1999, LEARN MEMORY, V6, P347 OKANOYA K, 1990, HEARING RES, V50, P185, DOI 10.1016/0378-5955(90)90044-P OXENHAM AJ, 1994, HEARING RES, V80, P105, DOI 10.1016/0378-5955(94)90014-0 PENNER MJ, 1977, J ACOUST SOC AM, V61, P552, DOI 10.1121/1.381297 PLASSMANN W, 1987, BRAIN BEHAV EVOLUT, V30, P82, DOI 10.1159/000118639 PLOMP R, 1964, J ACOUST SOC AM, V36, P277, DOI 10.1121/1.1918946 Richter CP, 1998, J NEUROPHYSIOL, V79, P2255 RYAN A, 1976, J ACOUST SOC AM, V59, P1222, DOI 10.1121/1.380961 SCHMIEDT RA, 1989, HEARING RES, V42, P23, DOI 10.1016/0378-5955(89)90115-9 Schulze H, 1997, J COMP PHYSIOL A, V181, P573, DOI 10.1007/s003590050141 SCHWENZFEIER C, 1998, THESIS TU MUNCHEN Sinnott JM, 1997, HEARING RES, V112, P235, DOI 10.1016/S0378-5955(97)00125-1 SINNOTT JM, 1992, HEARING RES, V59, P205, DOI 10.1016/0378-5955(92)90117-6 Snell KB, 1999, J ACOUST SOC AM, V106, P3571, DOI 10.1121/1.428210 STUERMER W, 1997, VERH DTSCH ZOOL GES, V90, P18 Walton JP, 1997, J COMP PHYSIOL A, V181, P161, DOI 10.1007/s003590050103 ZHANG W, 1990, HEARING RES, V46, P181, DOI 10.1016/0378-5955(90)90001-6 NR 34 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2003 VL 176 IS 1-2 BP 11 EP 16 DI 10.1016/S0378-5955(02)00643-3 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645QX UT WOS:000180990800002 PM 12583877 ER PT J AU Naito, R Murofushi, T Mizutani, M Kaga, K AF Naito, R Murofushi, T Mizutani, M Kaga, K TI Myelin-deficiency in the cochlear nerve of the 'bt' mutant hamster SO HEARING RESEARCH LA English DT Article DE black tremor; mutant hamster; dysmyelination; spiral ganglion; myelin ID MARIE-TOOTH DISEASE; SPIRAL GANGLION-CELLS; BRAIN-STEM RESPONSES; HEREDITARY MOTOR; DEGENERATION; GLYCOPROTEIN; MATURATION; NEUROPATHY; PATHOLOGY; PROTEIN AB In a previous report, we showed abnormal auditory evoked potentials in the mutant hamster, 'black tremor (bt)', with significantly prolonged wave latencies of auditory brainstem responses and prolonged N1 latencies of compound action potentials, but normal cochlear microphonics. In this report, we present the results of morphological studies supporting the results of our electrophysiological studies of the auditory pathway in bt. Observation by transmission electron microscopy revealed an abnormal myelin sheath surrounding the spiral ganglion cells, and a thinner compact myelin sheath surrounding the axons in bt than in normal hamsters. The bt hamster has a myelin deficiency not only in the brainstem, but also in the cochlear nerve. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Tokyo, Dept Otorhinolaryngol, Tokyo, Japan. Tokyo Metropolitan Neurol Hosp, Dept Neurootol, Fuchu, Tokyo 1830046, Japan. Nippon Inst Biol Sci, Yamanashi, Japan. RP Naito, R (reprint author), Univ Tokyo, Dept Otorhinolaryngol, Tokyo, Japan. CR ANNIKO M, 1983, ACTA OTO-LARYNGOL, V95, P263, DOI 10.3109/00016488309130943 BERGOFFEN J, 1993, SCIENCE, V262, P2039, DOI 10.1126/science.8266101 BRISMAR T, 1981, ACTA PHYSIOL SCAND, V113, P161, DOI 10.1111/j.1748-1716.1981.tb06877.x CRAGG BG, 1964, J NEUROL NEUROSUR PS, V27, P106, DOI 10.1136/jnnp.27.2.106 FILBIN MT, 1991, NEURON, V7, P845, DOI 10.1016/0896-6273(91)90286-9 FRUTTIGER M, 1995, EUR J NEUROSCI, V7, P511, DOI 10.1111/j.1460-9568.1995.tb00347.x HAMMER JA, 1993, J NEUROSCI RES, V35, P546, DOI 10.1002/jnr.490350511 Hawkins J E Jr, 1973, Adv Otorhinolaryngol, V20, P125 JOHNSSON LG, 1972, ANN OTO RHINOL LARYN, V81, P179 JOHNSSON LG, 1974, ANN OTO RHINOL LARYN, V83, P294 Kaga K, 1996, SCAND AUDIOL, V25, P233, DOI 10.3109/01050399609074960 KEITHLEY EM, 1979, J COMP NEUROL, V188, P429, DOI 10.1002/cne.901880306 KOICHEV K, 1982, ACTA OTOLARYNGOL STO, V94, P431 LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4 LYNN G, 1980, ELECTROENCEPHALOGR C, V50, P167 Martenson Russell E., 1992, P509 MARTINI R, 1995, J NEUROSCI, V15, P4488 MCKERRACHER L, 1994, NEURON, V13, P805, DOI 10.1016/0896-6273(94)90247-X MIZUTANI M, 1986, EXP ANIM TOKYO, V35, P175 Morell Pierre, 1994, P117 Naito R, 1999, HEARING RES, V136, P44, DOI 10.1016/S0378-5955(99)00107-0 NUNOYA T, 1985, ACTA NEUROPATHOL, V65, P305 OTA CY, 1980, ACTA OTO-LARYNGOL, V89, P53, DOI 10.3109/00016488009127108 PATEL PI, 1992, NAT GENET, V1, P159, DOI 10.1038/ng0692-159 RAGLAN E, 1987, ACTA OTO-LARYNGOL, V103, P50, DOI 10.3109/00016488709134697 RASMINSKY M, 1985, SCI BASIC CLIN NEURO, P390 ROMAND MR, 1987, ACTA OTO-LARYNGOL, V104, P29, DOI 10.3109/00016488709109044 ROMAND MR, 1990, J ELECTRON MICR TECH, V15, P144, DOI 10.1002/jemt.1060150206 ROMAND R, 1976, J COMP NEUROL, V170, P1, DOI 10.1002/cne.901700102 ROSENBLUTH J, 1962, J CELL BIOL, V12, P329, DOI 10.1083/jcb.12.2.329 SATYAMURTI S, 1980, NEUROLOGY, V30, P1047 Spoendlin H, 1988, PHYSL EAR, P201 SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683 SPOENDLI.H, 1974, BRAIN, V97, P41, DOI 10.1093/brain/97.1.41 Starr A, 1996, BRAIN, V119, P741, DOI 10.1093/brain/119.3.741 SUGA F, 1976, ANN OTO RHINOL LARYN, V85, P169 SUTER U, 1995, ANNU REV NEUROSCI, V18, P45, DOI 10.1146/annurev.neuro.18.1.45 TRAPP BD, 1989, J CELL BIOL, V109, P2417, DOI 10.1083/jcb.109.5.2417 WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7 Ylikoski J, 1974, Acta Otolaryngol Suppl, V326, P23 YOSHIKAWA K, 1987, J AICHI MED U ASS, V15, P101 NR 41 TC 0 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2003 VL 176 IS 1-2 BP 17 EP 24 DI 10.1016/S0378-5955(02)00550-6 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645QX UT WOS:000180990800003 PM 12583878 ER PT J AU Cacace, AT McFarland, DJ AF Cacace, AT McFarland, DJ TI Spectral dynamics of electroencephalographic activity during auditory information processing SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT International Evoked Response Audiometry Study Group Meeting CY JUL, 2001 CL VANCOUVER, CANADA DE electroencephalography; event-related synchronization; event-related desynchronization; event-related brain dynamics; spectral analysis; time domain analysis; psychophysics ID EVENT-RELATED DESYNCHRONIZATION; ODDBALL PARADIGM; CEREBRAL-CORTEX; MU-RHYTHM; EEG; POTENTIALS; MOVEMENT; SYNCHRONIZATION; RESPONSES; P300 AB Dynamics of electroencephalographic (EEG) activity during auditory information processing were evaluated in response to changes in stimulus complexity, stimulus discriminability and attention using the oddball paradigm. In comparison to pre-stimulus baseline conditions, auditory stimulation synchronized EEG activity in delta, theta and alpha frequency bands. Event-related synchronization (ERS) effects were greatest at approximately 3 Hz (theta frequency band), and their magnitude depended on stimulus and task demands. Event-related desynchronization (ERD) of EEG activity was observed in the beta frequency band. This effect was greatest at approximately 21 Hz but occurred only for easily discriminable stimuli inattention-related target conditions. Because active discrimination tasks also required a button-press response with the right hand, ERDs involved more complex responses that may be related to a combination of perceptual, motor and cognitive processes. These results demonstrate that oddball and attention-related EEG responses to auditory stimulation could be characterized in the frequency domain. The specific design and analysis features described herein may prove useful since they provide a simple index of the brain's response to stimulation while at the same time provide powerful information not contained in typical time domain analysis. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Albany Med Coll, Dept Surg, Div Otolaryngol, Albany, NY 12208 USA. New York State Dept Hlth, Wadsworth Ctr, Albany, NY 12201 USA. RP Cacace, AT (reprint author), Albany Med Coll, Dept Surg, Div Otolaryngol, 47 New Scotland Ave, Albany, NY 12208 USA. CR Basar E, 1999, NEUROSCI LETT, V259, P165, DOI 10.1016/S0304-3940(98)00934-3 BIRBAUMER N, 1990, PHYSIOL REV, V70, P1 Crone NE, 2001, CLIN NEUROPHYSIOL, V112, P565, DOI 10.1016/S1388-2457(00)00545-9 DERAMBURE P, 1993, ELECTROEN CLIN NEURO, V89, P197, DOI 10.1016/0168-5597(93)90133-A DONCHIN E, 1988, BEHAV BRAIN SCI, V11, P357 Engel AK, 2001, TRENDS COGN SCI, V5, P16, DOI 10.1016/S1364-6613(00)01568-0 Fell J, 1997, NEUROSCI LETT, V235, P121, DOI 10.1016/S0304-3940(97)00730-1 FLORIAN G, 1995, ELECTROEN CLIN NEURO, V95, P393, DOI 10.1016/0013-4694(95)00198-8 Gurtubay IG, 2001, CLIN NEUROPHYSIOL, V112, P1219, DOI 10.1016/S1388-2457(01)00557-0 HJORTH B, 1975, ELECTROEN CLIN NEURO, V39, P526, DOI 10.1016/0013-4694(75)90056-5 Jasper H. H., 1958, ELECTROENCEPHALOGRAP, V10, P371, DOI DOI 10.1016/0013-4694(58)90053-1 Kaas JH, 1999, CURR OPIN NEUROBIOL, V9, P164, DOI 10.1016/S0959-4388(99)80022-1 Kaiser J, 2002, EUR J NEUROSCI, V15, P345, DOI 10.1046/j.0953-816x.2001.01857.x Kaiser J, 2001, NEUROSCI LETT, V312, P149, DOI 10.1016/S0304-3940(01)02217-0 KALCHER J, 1995, ELECTROEN CLIN NEURO, V94, P381, DOI 10.1016/0013-4694(95)00040-6 Klimesch W, 2001, COGNITIVE BRAIN RES, V12, P33, DOI 10.1016/S0926-6410(01)00024-6 Klimesch W, 1999, BRAIN RES REV, V29, P169, DOI 10.1016/S0165-0173(98)00056-3 KOLEV V, 2001, NEUROREPORT, V13, P2791 Krause CM, 1996, ELECTROEN CLIN NEURO, V98, P319, DOI 10.1016/0013-4694(96)00283-0 Krause Christina M., 1995, Brain Topography, V8, P47, DOI 10.1007/BF01187669 Krause Christina M., 1994, Brain Topography, V7, P107, DOI 10.1007/BF01186768 Lange DH, 1997, IEEE T BIO-MED ENG, V44, P791, DOI 10.1109/10.623048 Makeig S, 2002, SCIENCE, V295, P690, DOI 10.1126/science.1066168 MAKEIG S, 1993, ELECTROEN CLIN NEURO, V86, P283, DOI 10.1016/0013-4694(93)90110-H Marple Jr S. L., 1987, DIGITAL SPECTRAL ANA McFarland DJ, 2000, BRAIN TOPOGR, V12, P177, DOI 10.1023/A:1023437823106 Naatanen R., 1992, ATTENTION BRAIN FUNC NAATANEN R, 1990, BEHAV BRAIN SCI, V13, P201 Pantev Christo, 1995, Brain Topography, V7, P321, DOI 10.1007/BF01195258 PARDO PJ, 1993, NEUROSCI LETT, V159, P43, DOI 10.1016/0304-3940(93)90794-L Penny WD, 2002, TRENDS NEUROSCI, V25, P387, DOI 10.1016/S0166-2236(02)02202-6 Pfurtscheller G, 2001, VISION RES, V41, P1257, DOI 10.1016/S0042-6989(00)00235-2 Pfurtscheller G., 1999, ELECTROENCEPHALOGRAP, P958 Pfurtscheller G, 1999, CLIN NEUROPHYSIOL, V110, P1842, DOI 10.1016/S1388-2457(99)00141-8 PFURTSCHELLER G, 1979, ELECTROEN CLIN NEURO, V46, P138, DOI 10.1016/0013-4694(79)90063-4 PICTON TW, 1992, J CLIN NEUROPHYSIOL, V9, P456, DOI 10.1097/00004691-199210000-00002 Polish J, 1999, ELECTROENCEPHALOGRAP, P1073 SAYERS BMA, 1974, NATURE, V247, P481 SAYERS BM, 1974, NATURE, V251, P608, DOI 10.1038/251608a0 Spencer KM, 1999, PSYCHOPHYSIOLOGY, V36, P220, DOI 10.1017/S0048577299971615 SQUIRES NK, 1975, ELECTROEN CLIN NEURO, V38, P387, DOI 10.1016/0013-4694(75)90263-1 Stancak A, 1996, ELECTROEN CLIN NEURO, V99, P174, DOI 10.1016/0013-4694(96)95701-6 STEPHENSON WA, 1951, ELECTROEN CLIN NEURO, V3, P237, DOI 10.1016/0013-4694(51)90017-X Sutoh T, 2000, CLIN NEUROPHYSIOL, V111, P858, DOI 10.1016/S1388-2457(99)00321-1 TORO C, 1994, ELECTROEN CLIN NEURO, V93, P380, DOI 10.1016/0168-5597(94)90126-0 VONDERMALSBURG C, 1995, CURR OPIN NEUROBIOL, V5, P520 Yordanova J, 2001, PSYCHOPHYSIOLOGY, V38, P143, DOI 10.1017/S0048577201990079 Zhou P. B., 1993, NUMERICAL ANAL ELECT NR 48 TC 19 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2003 VL 176 IS 1-2 BP 25 EP 41 DI 10.1016/S0378-5955(02)00715-3 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645QX UT WOS:000180990800004 PM 12583879 ER PT J AU Sellick, P Patuzzi, R Robertson, D AF Sellick, P Patuzzi, R Robertson, D TI Primary afferent and cochlear nucleus contributions to extracellular potentials during tone-bursts SO HEARING RESEARCH LA English DT Article DE cochlear potential; cochlear nucleus; hair cell; auditory nerve ID AUDITORY-NERVE FIBERS; GUINEA-PIG COCHLEA; SUMMATING POTENTIALS; ROUND-WINDOW; HAIR-CELLS; RAPID ADAPTATION; RESPONSES; ORIGIN AB Gross electrical responses to tone bursts were measured in the guinea pig with electrodes located in scala tympani (ST) and scala vestibuli (SV) of the cochlea, on the central portion of the VIIIth nerve fibres in the internal auditory meatus, and on the surface of the cochlear nuclear complex (CN). Intracochlear perfusion of pharmacological blockers of neural and postsynaptic activity as well as aspiration of parts or all of the CN were used to dissect the origin of the many components of the gross responses. It was shown that single-ended recordings from either ST or SV or those derived from the sum of the ST and SV responses not only contain mixed responses from the auditory nerve fibres and cochlear hair cells, but are contaminated or modified by neural activity central to the internal auditory meatus, probably in various parts of the CN. Differential recordings between ST and SV were relatively uncontaminated by such activity. Recordings from central locations were largely uncontaminated by potentials from cochlear hair cells. These results suggest that a revised and extended system of nomenclature for the different components of the gross cochlear potentials is necessary, and interpretation of such potentials needs to take into account multiple central as well as peripheral generators. (C) 2002 Published by Elsevier Science B.V. C1 Univ Western Australia, Sch Biomed & Chem Sci, Discipline Physiol, Auditory Lab, Crawley, WA 6009, Australia. RP Patuzzi, R (reprint author), Univ Western Australia, Sch Biomed & Chem Sci, Discipline Physiol, Auditory Lab, 35 Stirling Highway, Crawley, WA 6009, Australia. EM rpatuzzi@cyllene.uwa.edu.au CR ANTOLICANDELA F, 1978, EVOKED ELECTRICAL AC, P165 BLEDSOE SC, 1981, HEARING RES, V4, P109, DOI 10.1016/0378-5955(81)90040-X CHEATHAM MA, 1984, HEARING RES, V16, P189, DOI 10.1016/0378-5955(84)90009-1 CODY AR, 1987, J PHYSIOL-LONDON, V383, P551 DAIGNEAU.EA, 1974, ACTA OTO-LARYNGOL, V77, P405, DOI 10.3109/00016487409124642 DAIGNEAULT EA, 1968, ACTA OTOLARYGOL, V66, P1 DALLOS P, 1969, J ACOUST SOC AM, V45, P999, DOI 10.1121/1.1911576 DALLOS P, 1970, SCIENCE, V170, P641, DOI 10.1126/science.170.3958.641 DALLOS P, 1985, J NEUROSCI, V5, P1591 DALLOS P, 1972, ACTA OTO-LARYNGOL, P1 DALLOS P, 1973, AUDITORY PERIPHERY, P288 Davis H, 1934, AM J PHYSIOL, V107, P311 DAVIS H, 1950, P NATL ACAD SCI USA, V36, P580, DOI 10.1073/pnas.36.10.580 DAVIS H, 1958, AM J PHYSIOL, V195, P251 DAVIS H, 1952, COLD SPRING HARB SYM, V17, P143 DOLAN DF, 1983, J ACOUST SOC AM, V73, P580, DOI 10.1121/1.389005 DOLAN DF, 1989, J ACOUST SOC AM, V86, P2167, DOI 10.1121/1.398477 FISCH U P, 1962, Acta Otolaryngol, V54, P532, DOI 10.3109/00016486209126971 KAPLAN MS, 1983, HEARING RES, V12, P323, DOI 10.1016/0378-5955(83)90004-7 KIANG NYS, 1975, ELECTROCOCHLEOGRAPHY, P95 LEGOUIX JP, 1978, ACTA OTO-LARYNGOL, V85, P177 LEGOUIX JP, 1974, J ACOUST SOC AM, V56, P1222, DOI 10.1121/1.1903411 LUTKENHONER B, 1986, HEARING RES, V24, P289, DOI 10.1016/0378-5955(86)90028-6 McMahon CM, 2002, HEARING RES, V173, P134, DOI 10.1016/S0378-5955(02)00281-2 MOLLER AR, 1983, EXP NEUROL, V80, P633, DOI 10.1016/0014-4886(83)90313-8 MOLLER AR, 1983, J NEUROSURG, V59, P1013, DOI 10.3171/jns.1983.59.6.1013 PANAYIOT.CP, 1970, J PHYSIOL-LONDON, V210, P495 RAJAN R, 1989, HEARING RES, V39, P299, DOI 10.1016/0378-5955(89)90049-X RUSSELL IJ, 1978, J PHYSIOL-LONDON, V284, P261 SELLICK PM, 2002, UNPUB TASAKI I, 1952, J ACOUST SOC AM, V24, P502, DOI 10.1121/1.1906928 YATES GK, 1985, HEARING RES, V17, P1, DOI 10.1016/0378-5955(85)90124-8 NR 32 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2003 VL 176 IS 1-2 BP 42 EP 58 DI 10.1016/S0378-5955(02)00716-5 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645QX UT WOS:000180990800005 PM 12583880 ER PT J AU Takegoshi, H Murofushi, T AF Takegoshi, H Murofushi, T TI Effect of white noise on vestibular evoked myogenic potentials SO HEARING RESEARCH LA English DT Article DE VEMP; ABR; SN10; stapedial reflex; facial palsy; vestibulo-collic ID GUINEA-PIG; ACOUSTIC RESPONSES; BRAIN-STEM; NEURONS; REFLEX; CLICKS; MUSCLE; NERVE AB Objectives: To clarify if p13-n23 of vestibular evoked myogenic potentials (VEMPs) is independent of cochlear afferents. Methods: Twenty normal volunteers and 10 patients with hemifacial palsy enrolled into this study. VEMP and auditory brainstem responses (ABRs) were recorded with or without white noise (WN, 75 dBnHL or 95 dBnHL) ipsilaterally or contralaterally to the stimulated ear. Short tone bursts (STBs) of 0.5 kHz (95 dBnHL, rise/fall time = 1 ms, plateau time = 2 ms) were presented though headphones. For recording VEMPs surface electromyographic activity was recorded in the supine subjects form symmetrical sites over the upper half of each SCM with a reference electrode over the upper sternum. Results: The amplitude of p13-n23 significantly decreased during exposure of the contralateral ear as well as the ipsilateral ear to 95 dBnHL WN in normal volunteers (41% reduction by the ipsilateral exposure and 38% reduction by the contralateral exposure). Exposure to 75 dBnHL WN caused only minimal reduction of the amplitudes of p13-n23 (5% reduction) although it caused remarkable reduction of the amplitudes of V-SN10 (ABRs) (23% reduction). However, 95 dBnHL WN exposure showed no effect on the amplitudes of p13-n23 in the ipsilateral side to hemifacial palsy. Conclusion: Overall the data are in favor of the hypothesis that cochlear afferents could affect the amplitude of p13-n23 only through the stapedial reflex, although our data might not be strict proof of an absence of influence of cochlear afferents' activity. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Saitama Med Sch, Dept Otolaryngol, Saitama Med Ctr, Kawagoe, Saitama 3508550, Japan. Univ Tokyo, Fac Med, Dept Otolaryngol, Tokyo, Japan. RP Takegoshi, H (reprint author), Saitama Med Sch, Dept Otolaryngol, Saitama Med Ctr, 1981 Tsujido, Kawagoe, Saitama 3508550, Japan. CR CAZALS Y, 1980, SCIENCE, V210, P83, DOI 10.1126/science.6968092 COLEBATCH JG, 1992, NEUROLOGY, V42, P1635 COLEBATCH JG, 1994, J NEUROL NEUROSUR PS, V57, P190, DOI 10.1136/jnnp.57.2.190 DALLOS P, 1978, J ACOUST SOC AM, V64, P151, DOI 10.1121/1.381980 DAVIS H, 1979, AUDIOLOGY, V18, P445 DIDIER A, 1989, HEARING RES, V37, P123, DOI 10.1016/0378-5955(89)90034-8 Halmagyi G M, 1995, Acta Otolaryngol Suppl, V520 Pt 1, P1 Kiang N. Y. -S., 1963, QUARTERLY PROGRESS R, V44, P218 Matsuzaki M, 2002, HEARING RES, V165, P152, DOI 10.1016/S0378-5955(02)00297-6 MUCUE MP, 1994, J NEUROSCI, V14, P6058 Murofushi T, 1996, EXP BRAIN RES, V111, P149 Murofushi T, 1999, ARCH OTOLARYNGOL, V125, P660 Murofushi T, 1997, ACTA OTO-LARYNGOL, V117, P66, DOI 10.3109/00016489709117994 Murofushi T, 1998, ARCH OTOLARYNGOL, V124, P509 MUROFUSHI T, 1995, EXP BRAIN RES, V103, P174 Murofushi T, 1996, ARCH OTOLARYNGOL, V122, P845 Ozeki H, 1999, ORL J OTO-RHINO-LARY, V61, P80, DOI 10.1159/000027646 PETERSON JL, 1972, AUDIOLOGY, V11, P97 von Bekesy G, 1935, ARCH GES PHYSL, V236, P59 YOUNG ED, 1977, ACTA OTO-LARYNGOL, V84, P352, DOI 10.3109/00016487709123977 NR 20 TC 15 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2003 VL 176 IS 1-2 BP 59 EP 64 DI 10.1016/S0378-5955(02)00741-4 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645QX UT WOS:000180990800006 PM 12583881 ER PT J AU Ran, I Miura, RM Puil, E AF Ran, I Miura, RM Puil, E TI Spermine modulates neuronal excitability and NMDA receptors in juvenile gerbil auditory thalamus SO HEARING RESEARCH LA English DT Article DE spermine; auditory thalamic neuron; medial geniculate body; N-methyl-D-aspartate; NR2B ID D-ASPARTATE RECEPTOR; MEDIAL GENICULATE-BODY; CAT NEOCORTICAL NEURONS; SODIUM CURRENT; IN-VITRO; HIPPOCAMPAL-NEURONS; CORTICAL-NEURONS; RAT; POLYAMINES; INCREASES AB Medial geniculate body (MGB) neurons process synaptic inputs from auditory cortex. Corticothalamic stimulation evokes glutamatergic excitatory postsynaptic potentials (EPSPs) that vary markedly in amplitude and duration during development. The EPSP decay phase is prolonged during second postnatal week but then shortens, significantly, until adulthood. The EPSP prolongation depends on spermine interactions with a polyamine-sensitive site on receptors for N-methyl-D-aspartate (NMDA). We examined effects of spermine application on EPSPs, firing modes, and membrane properties in gerbil MGB neurons during the P14 period of highest polyamine sensitivity. Spermine slowed EPSP decay and promoted firing on EPSPs, without changing passive membrane properties. Spermine increased membrane rectification on depolarization, which is mediated by tetrodotoxin (TTX)-sensitive, persistent Na+ conductance. As a result, spermine lowered threshold and increased tonic firing evoked with current injection by up to - 150%. These effects were concentration-dependent (ED50 = 100 muM), reversible, and eliminated by NMDA receptor antagonist, 2-amino-5-phosphonovalerate (APV). In contrast, spermine increased dV/dt of the low threshold Ca2+ spike (LTS) and burst firing, evoked from hyperpolarized potentials. LTS enhancement was greater at -55 mV than at hyperpolarized potentials and did not result from persistent Na+ conductance or glutamate receptor mechanisms. In summary, spermine increased excitability by modulating NMDA receptors in juvenile gerbil neurons. (C) 2002 Published by Elsevier Science B.V. C1 Univ British Columbia, Dept Pharmacol & Therapeut, Vancouver, BC V6T 1Z3, Canada. New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA. New Jersey Inst Technol, Dept Biomed Engn, Newark, NJ 07102 USA. Univ British Columbia, Dept Anesthesia, Vancouver, BC V6T 1Z3, Canada. RP Puil, E (reprint author), Univ British Columbia, Dept Pharmacol & Therapeut, 300-6174 Univ Blvd, Vancouver, BC V6T 1Z3, Canada. CR Astman N, 1998, J NEUROPHYSIOL, V80, P1547 Bartlett EL, 1999, J NEUROPHYSIOL, V81, P1999 BENVENISTE M, 1993, J PHYSIOL-LONDON, V464, P131 CARLIER E, 2000, BIOCH BIOPHYS RES, V274, P392 Chen CF, 2000, NEURON, V28, P955, DOI 10.1016/S0896-6273(00)00166-5 CHIDA N, 1992, BRAIN RES, V593, P57, DOI 10.1016/0006-8993(92)91263-E CONNOR JA, 1988, SCIENCE, V240, P649, DOI 10.1126/science.2452481 Crill WE, 1996, ANNU REV PHYSIOL, V58, P349, DOI 10.1146/annurev.ph.58.030196.002025 Dot J, 2000, J NEUROCHEM, V75, P1917, DOI 10.1046/j.1471-4159.2000.0751917.x FAGE D, 1992, J NEUROCHEM, V58, P2170, DOI 10.1111/j.1471-4159.1992.tb10960.x FAINGOLD CL, 1989, EPILEPSY RES, V3, P199, DOI 10.1016/0920-1211(89)90024-7 Franceschetti S, 2000, J PHYSIOL-LONDON, V528, P291, DOI 10.1111/j.1469-7793.2000.00291.x GONZALEZLIMA F, 1984, BRAIN RES, V299, P201, DOI 10.1016/0006-8993(84)90702-9 HARMAN RJ, 1981, J NEUROCHEM, V36, P1609, DOI 10.1111/j.1471-4159.1981.tb00409.x He JF, 2002, J NEUROPHYSIOL, V88, P2152, DOI 10.1152/jn.00091.2002 HEIERLI P, 1987, HEARING RES, V25, P209, DOI 10.1016/0378-5955(87)90093-1 HERNANDEZCRUZ A, 1989, J NEUROPHYSIOL, V61, P1270 Hsieh Candace Y, 2002, Brain Res Dev Brain Res, V133, P19 HU B, 1995, J PHYSIOL-LONDON, V483, P167 HU B, 1994, J PHYSIOL-LONDON, V479, P217 Jacobsen RB, 2001, J NEUROPHYSIOL, V86, P1365 JAHNSEN H, 1984, J PHYSIOL-LONDON, V349, P227 JAHR CE, 1992, SCIENCE, V255, P470, DOI 10.1126/science.1346477 Kew JNC, 1998, J PHYSIOL-LONDON, V512, P17, DOI 10.1111/j.1469-7793.1998.017bf.x Khan AM, 2000, J COMP NEUROL, V428, P428 Koerner C, 1996, EPILEPSY RES, V25, P11, DOI 10.1016/0920-1211(96)00015-0 Kotlinska J, 1996, PSYCHOPHARMACOLOGY, V127, P238, DOI 10.1007/BF02805999 KRAUS N, 1987, HEARING RES, V27, P165, DOI 10.1016/0378-5955(87)90017-7 KUWABARA N, 1993, J NEUROPHYSIOL, V69, P1713 LERMA J, 1992, NEURON, V8, P343, DOI 10.1016/0896-6273(92)90300-3 MCCANN PP, 1992, PHARMACOL THERAPEUT, V54, P195, DOI 10.1016/0163-7258(92)90032-U Metherate R, 1999, EXP BRAIN RES, V126, P160, DOI 10.1007/s002210050726 MOREL A, 1987, J COMP NEUROL, V265, P119, DOI 10.1002/cne.902650109 MORRISON LD, 1995, J NEUROCHEM, V65, P636 NGouemo P, 1997, BRAIN RES, V761, P217, DOI 10.1016/S0006-8993(97)00322-3 Parri HR, 1998, J NEUROSCI, V18, P854 PORTA R, 1981, J NEUROCHEM, V37, P723 PRITCHARD GA, 1994, EUR J PHARM-MOLEC PH, V266, P107, DOI 10.1016/0922-4106(94)90099-X REYNOLDS IJ, 1990, J PHARMACOL EXP THER, V255, P1001 Roberts EB, 1999, J NEUROPHYSIOL, V81, P2587 Roy SA, 2001, J NEUROSCI, V21, P2462 SCHWEITZER L, 1986, BRAIN RES BULL, V16, P215, DOI 10.1016/0361-9230(86)90035-3 SCHWINDT PC, 1992, NEUROSCIENCE, V47, P571, DOI 10.1016/0306-4522(92)90166-Y SCHWINDT PC, 1995, J NEUROPHYSIOL, V74, P2220 SIEKEVITZ P, 1991, P NATL ACAD SCI USA, V88, P5374, DOI 10.1073/pnas.88.12.5374 STAFSTROM CE, 1982, BRAIN RES, V236, P221, DOI 10.1016/0006-8993(82)90050-6 SUCHER NJ, 1995, J NEUROSCI, V15, P6509 Tang YP, 1999, NATURE, V401, P63 Tennigkeit F, 1998, DEV BRAIN RES, V109, P255, DOI 10.1016/S0165-3806(98)00056-X Tennigkeit F, 1996, J NEUROPHYSIOL, V76, P3597 Williams K, 1997, BIOCHEM J, V325, P289 WILLIAMS K, 1994, MOL PHARMACOL, V45, P803 NR 52 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2003 VL 176 IS 1-2 BP 65 EP 79 DI 10.1016/S0378-5955(02)00746-3 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645QX UT WOS:000180990800007 PM 12583882 ER PT J AU Wu, JL Chiu, TW Poon, PWF AF Wu, JL Chiu, TW Poon, PWF TI Differential changes in Fos-immunoreactivity at the auditory brainstem after chronic injections of salicylate in rats SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 7th International Tinnitus Seminar CY 2002 CL PERTH, AUSTRALIA DE tinnitus; aspirin; activity marker; inferior colliculus; cochlear nucleus ID C-FOS; INFERIOR COLLICULUS; GUINEA-PIG; COCHLEAR NUCLEUS; NEURAL ACTIVITY; ANIMAL-MODEL; TINNITUS; STIMULATION; OTOTOXICITY; EXPRESSION AB In human, salicylate-induced tinnitus sometimes occurs a few days after its administration, but the chronic effects of salicylate in animal models are not fully known. In this study, we revealed the distribution of active cells in the rat auditory brainstem by staining an activity marker Fos-protein after multiple daily injections of salicylate. Experimental animals were first given five daily doses of sodium salicylate (250 mg/kg, i.p.). On day 6 they were placed inside a sound room for 8 h before sacrifice. Immunohistochemistry showed a significant increase in the number of Fos-positive cells at the inferior colliculus (IC), particularly its central division. At the cochlear nucleus (CN), only a few Fos-stains were found at the dorsal nucleus while no Fos-stain appeared at the ventral nucleus. The scarcity of Fos-stains at the CN reflected more a lack of external sound inputs than an adaptation in Fos-expression. Since Fos-stains in CN could still be induced on day 6 following brief tonal stimulation. Results are consistent with the hypothesis that salicylate-induced tinnitus is a phantom sound perception related to overactivity of cells at the IC. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Natl Cheng Kung Univ, Coll Med, Dept Physiol, Tainan 70101, Taiwan. Natl Cheng Kung Univ, Inst Basic Med Sci, Tainan 70101, Taiwan. Natl Cheng Kung Univ, Dept Otolaryngol, Tainan 70101, Taiwan. RP Poon, PWF (reprint author), Natl Cheng Kung Univ, Coll Med, Dept Physiol, Tainan 70101, Taiwan. CR AITKIN LM, 1981, J COMP NEUROL, V196, P25, DOI 10.1002/cne.901960104 Andersson G, 2000, ACTA OTO-LARYNGOL, V120, P967, DOI 10.1080/00016480050218717 Bauer CA, 1999, OTOLARYNG HEAD NECK, V121, P457, DOI 10.1016/S0194-5998(99)70237-8 BOETTCHER FA, 1991, AM J OTOLARYNG, V12, P33, DOI 10.1016/0196-0709(91)90071-M BOETTCHER FA, 1990, ARCH OTOLARYNGOL, V116, P681 WallhausserFranke E, 1996, NEUROREPORT, V7, P1585, DOI 10.1097/00001756-199607080-00010 BRENNAN JF, 1991, ACTA NEUROBIOL EXP, V51, P15 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 BRUMMETT RE, 1995, MECH TINNITUS, P7 CARSON SS, 1989, ARCH OTOLARYNGOL, V115, P1070 Cazals Y, 1998, J NEUROPHYSIOL, V80, P2113 Cazals Y, 2000, PROG NEUROBIOL, V62, P583, DOI 10.1016/S0301-0082(00)00027-7 CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O CZIBULKA A, 1991, HEARING RES, V52, P43, DOI 10.1016/0378-5955(91)90186-D DAY RO, 1989, BRIT J CLIN PHARMACO, V28, P695 Didier A, 1996, EUR ARCH OTO-RHINO-L, V253, P25 DIDIER A, 1993, HEARING RES, V69, P199, DOI 10.1016/0378-5955(93)90108-D DIELER R, 1991, J NEUROCYTOL, V20, P637, DOI 10.1007/BF01187066 Dineen R, 1997, BRIT J AUDIOL, V31, P331, DOI 10.3109/03005364000000027 Eggermont JJ, 1998, HEARING RES, V117, P149, DOI 10.1016/S0378-5955(98)00008-2 EHRET G, 1991, BRAIN RES, V567, P350, DOI 10.1016/0006-8993(91)90819-H Evans E F, 1982, Br J Audiol, V16, P101, DOI 10.3109/03005368209081454 Evans E F, 1981, Ciba Found Symp, V85, P108 FRIAUF E, 1995, BEHAV BRAIN RES, V66, P217, DOI 10.1016/0166-4328(94)00147-8 FRIAUF E, 1992, EUR J NEUROSCI, V4, P798, DOI 10.1111/j.1460-9568.1992.tb00190.x GRIGOR RR, 1987, J RHEUMATOL, V14, P60 HAZELL JWP, 1990, J OTOLARYNGOL, V19, P1 HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 Illing RB, 2001, NEUROREPORT, V12, P875, DOI 10.1097/00001756-200103260-00050 JAGER BV, 1946, AM J MED SCI, V211, P273, DOI 10.1097/00000441-194603000-00004 JASTREBOFF PJ, 1986, J ACOUST SOC AM, V80, P1384, DOI 10.1121/1.394391 JASTREBOFF PJ, 1988, BEHAV NEUROSCI, V102, P811, DOI 10.1037/0735-7044.102.6.811 JASTREBOFF PJ, 1994, AM J OTOL, V15, P19 JASTREBOFF PJ, 1988, ARCH OTOLARYNGOL, V114, P186 JASTREBOFF PJ, 1992, TINNITUS 91, P305 Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6 Lorente de No R, 1933, LARYNGOSCOPE, V43, P327 Lue AJC, 1999, HEARING RES, V135, P163, DOI 10.1016/S0378-5955(99)00102-1 Manabe Y, 1997, HEARING RES, V103, P192, DOI 10.1016/S0378-5955(96)00181-5 MARTIN WH, 1993, LARYNGOSCOPE, V103, P600 MCCABE PA, 1965, ANN OTO RHINOL LARYN, V74, P312 MCFADDEN D, 1984, J ACOUST SOC AM, V76, P443, DOI 10.1121/1.391585 Melcher JR, 2000, J NEUROPHYSIOL, V83, P1058 Mirz F, 1999, HEARING RES, V134, P133, DOI 10.1016/S0378-5955(99)00075-1 MITCHELL CR, 1995, OTOLARYNG HEAD NECK, V113, P223, DOI 10.1016/S0194-5998(95)70110-9 MOLLER AR, 1992, LARYNGOSCOPE, V102, P1165 MOLLER AR, 1992, LARYNGOSCOPE, V102, P187 MYERS EN, 1965, ARCHIV OTOLARYNGOL, V82, P483 Ochi K, 1996, HEARING RES, V95, P63, DOI 10.1016/0378-5955(96)00019-6 Oliver D, 2001, SCIENCE, V292, P2340, DOI 10.1126/science.1060939 Paxinos G, 1986, RAT BRAIN STEREOTAXI, V2nd Poon AMS, 1997, PHYSIOL BEHAV, V62, P1253, DOI 10.1016/S0031-9384(97)00305-3 ROUILLER EM, 1992, NEUROSCI LETT, V144, P19, DOI 10.1016/0304-3940(92)90706-D RUSSELL IJ, 1995, AUDIT NEUROSCI, V1, P309 SAGAR SM, 1993, ADV NEUROL, V59, P273 Saito H, 2000, HEARING RES, V145, P37, DOI 10.1016/S0378-5955(00)00070-8 SATO K, 1992, NEUROSCI LETT, V142, P48, DOI 10.1016/0304-3940(92)90617-G Sato K, 1993, Acta Otolaryngol Suppl, V500, P18 SCHEICH H, 1995, BEHAV BRAIN RES, V66, P195, DOI 10.1016/0166-4328(94)00140-B SCHREINER CE, 1987, P 3 INT TINN SEM HAR, P100 SHARP FR, 1993, CRIT REV NEUROBIOL, V7, P205 STYPULKOWSKI PH, 1990, HEARING RES, V46, P113, DOI 10.1016/0378-5955(90)90144-E TRINDER P, 1954, BIOCHEM J, V57, P301 TUNSTALL MJ, 1995, J PHYSIOL-LONDON, V485, P739 WallhausserFranke E, 1997, NEUROREPORT, V8, P725, DOI 10.1097/00001756-199702100-00029 WIER CC, 1988, J ACOUST SOC AM, V84, P230, DOI 10.1121/1.396970 Xu J.F., 1990, COMPUT ENG APPL, V6, P7 Yan W, 1998, NAT NEUROSCI, V1, P54, DOI 10.1038/255 NR 68 TC 12 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2003 VL 176 IS 1-2 BP 80 EP 93 DI 10.1016/S0378-5955(02)00747-5 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645QX UT WOS:000180990800008 PM 12583883 ER PT J AU Peters, TA Tonnaer, ELGM Kuijpers, W Curfs, JHAJ AF Peters, TA Tonnaer, ELGM Kuijpers, W Curfs, JHAJ TI Changes in ultrastructural characteristics of endolymphatic sac ribosome-rich cells of the rat during development SO HEARING RESEARCH LA English DT Article DE endolymphatic sac; ribosome-rich cells; ultrastructure; protein; endolymph homeostasis; rat ID GUINEA-PIG; TYROSINE SULFATION; LUMINAL FLUID; PROTEIN; VESICLE; LOCALIZATION; TRAFFICKING; ENDOCYTOSIS; HYALURONAN; DYNAMICS AB It has recently been demonstrated that endolymphatic sac (ES) ribosome-rich (dark) cells respond to induced endolymph changes and are thus likely to be involved in endolymph homeostasis. Therefore, we studied the ultrastructural characteristics of rat ES ribosome-rich cells during development in order to determine the cellular distribution of organelles involved in protein metabolism, secretion and absorption, indicative for their contribution to endolymph homeostasis. During embryonal stages ribosome-rich cells contain a limited number and variety of organelles and are predominantly involved in the production of components for cell growth and differentiation. In the young adult stage (P60) three different states of ribosome-rich cells may be distinguished. State A resembles a cell with only limited metabolic activities whereas state B is characterized by numerous different intracellular organelles and is considered to be involved in production and secretion as well as absorption and degradation of complex proteins. A third cellular state, state C, is filled with phagolysosomes and contains very few other organelles. This is considered to be a final (pre)apoptotic state. Autoradiography data suggest that ES ribosome-rich cells are capable of synthesis and secretion of tyrosine-containing proteins and may thus be involved in regulation of the osmolarity of endolymph based on the capacity to bind cations as well as water molecules. In addition, ES ribosome-rich cells appear to synthesize and secrete fucosylated glycoproteins into the endolymph. In conclusion, the present data suggest that ES ribosome-rich cells are actively involved in endolymph homeostasis through secretion and absorption of complex proteins and it is hypothesized that they are able to adapt their function or activities in response to changes in endolymph composition. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Med Ctr St Radboud, Dept Otorhinolaryngol, NL-6500 HB Nijmegen, Netherlands. RP Peters, TA (reprint author), Univ Med Ctr St Radboud, Dept Otorhinolaryngol, Philips van Leydenlaan 15, NL-6500 HB Nijmegen, Netherlands. CR BAGGERSJOBACK D, 1992, ORL J OTO-RHINO-LARY, V54, P179 BARBARA M, 1989, ORL J OTO-RHINO-LARY, V51, P1 BIOL MC, 1992, BIOCHIMIE, V74, P13, DOI 10.1016/0300-9084(92)90180-M Couloigner V, 2000, AM J PHYSIOL-REG I, V279, pR1695 Couloigner V, 1999, ACTA OTO-LARYNGOL, V119, P200 DAHLMANN A, 1995, CELL TISSUE RES, V282, P277, DOI 10.1007/s004410050479 DANCKWARDTLILLIESTROM N, 1994, ACTA OTO-LARYNGOL, V114, P382, DOI 10.3109/00016489409126074 Denzer K, 2000, J CELL SCI, V113, P3365 Dougherty DA, 1996, SCIENCE, V271, P163, DOI 10.1126/science.271.5246.163 Erwall C, 2000, Auris Nasus Larynx, V27, P3, DOI 10.1016/S0385-8146(99)00041-3 ERWALL C, 1988, THESIS U UPPSALA UPP Friberg U, 1985, Acta Otolaryngol Suppl, V426, P1 Gao WY, 1998, HEARING RES, V118, P62, DOI 10.1016/S0378-5955(98)00018-5 Haddad A, 1998, BRAZ J MED BIOL RES, V31, P207 Hultcrantz M, 1997, ACTA OTO-LARYNGOL, V117, P518, DOI 10.3109/00016489709113431 Ilgoutz SC, 1999, EMBO J, V18, P3643, DOI 10.1093/emboj/18.13.3643 Kehoe JW, 2000, CHEM BIOL, V7, pR57, DOI 10.1016/S1074-5521(00)00093-4 Lippincott-Schwartz J, 2000, ANNU REV CELL DEV BI, V16, P557, DOI 10.1146/annurev.cellbio.16.1.557 LODISH H, 2001, MOL CELL BIOL, P675 LUNDQUIST PG, 1965, ACTA OTOLARYNGOL S S, V201, P1 Madrid JF, 1998, J HISTOCHEM CYTOCHEM, V46, P1311 MANNI JJ, 1987, THESIS U NIJMEGEN NI MANNI JJ, 1987, HEARING RES, V26, P229, DOI 10.1016/0378-5955(87)90059-1 MATA LR, 1995, INT REV CYTOL, V160, P267, DOI 10.1016/S0074-7696(08)61557-0 Mellman I, 1996, ANNU REV CELL DEV BI, V12, P575, DOI 10.1146/annurev.cellbio.12.1.575 MUKERJEE S, 1997, PHYSIOL REV, V77, P759 NIEHRS C, 1994, CHEM-BIOL INTERACT, V92, P257, DOI 10.1016/0009-2797(94)90068-X PARKER DA, 1992, LARYNGOSCOPE, V102, P152 Peters TA, 2002, LARYNGOSCOPE, V112, P534, DOI 10.1097/00005537-200203000-00023 Peters TA, 2001, ACTA OTO-LARYNGOL, V121, P125 MAROVITZ WF, 1972, ANN OTO RHINOL LARYN, V81, P76 Qvortrup K, 1999, ACTA OTO-LARYNGOL, V119, P194 Rask-Andersen H, 1999, HEARING RES, V138, P81, DOI 10.1016/S0378-5955(99)00153-7 Salt AN, 2001, ANN NY ACAD SCI, V942, P306 Salt AN, 2000, HEARING RES, V149, P46, DOI 10.1016/S0378-5955(00)00160-X SANDHOFF K, 1994, FEBS LETT, V346, P103, DOI 10.1016/0014-5793(94)00282-7 Schmid SL, 1997, ANNU REV BIOCHEM, V66, P511, DOI 10.1146/annurev.biochem.66.1.511 TAKUMIDA M, 1989, ARCH OTO-RHINO-LARYN, V246, P89, DOI 10.1007/BF00457460 TAKUMIDA M, 1988, THESIS KARLOLINSKA I THALMANN I, 2002, PROTEINS ENDOLYMPH E TIAN Q, 1994, ACTA OTO-LARYNGOL, V114, P632, DOI 10.3109/00016489409126117 NR 41 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2003 VL 176 IS 1-2 BP 94 EP 104 DI 10.1016/S0378-5955(02)00748-7 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645QX UT WOS:000180990800009 PM 12583884 ER PT J AU Horst, JW Wit, HP Albers, FWJ AF Horst, JW Wit, HP Albers, FWJ TI Quantification of audiogram fine-structure as a function of hearing threshold SO HEARING RESEARCH LA English DT Article DE audiogram fine-structure; hearing loss; Meniere's disease; otoacoustic emissions ID SPONTANEOUS OTOACOUSTIC EMISSIONS; MENIERES-DISEASE; MICROSTRUCTURE; AUDIOMETRY AB We investigated the amount of fine-structure in the audiograms of patients with Meniere's disease. Both ears (often an affected and an unaffected ear) were investigated. Data are presented from 39 ears of 21 patients with hearing thresholds varying from about 0 to 70 dB HL. The fine-structure was measured in the frequency range from 500 to 3500 Hz; this agrees with a part of the basilar membrane from 10 to 22.5 mm from the apex. The fine-structure was characterized by means of the number of peaks N-p and the sum S-p of the heights of all the peaks in an audiogram. From these quantities, we also determined average peak height Hp. We found a negative correlation between hearing loss and strength of fine-structure, i.e. the higher the thresholds the smaller N-p and S-p as well as H-p. Also N-p and H-p were correlated, i.e. the more peaks the higher the average peak height. The summated peak height S-p = NpHp showed a strong dependence on the hearing loss. In cases of strong fine-structure, S-p reached values around 200 dB. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Groningen Hosp, Dept Otorhinolaryngol, NL-9700 RB Groningen, Netherlands. RP Horst, JW (reprint author), Univ Groningen Hosp, Dept Otorhinolaryngol, POB 30-001, NL-9700 RB Groningen, Netherlands. CR COHEN MF, 1982, J ACOUST SOC AM, V71, P405, DOI 10.1121/1.387442 DEKLEINE E, 2002, OTOL NEUROOTOL, V4, P510 ELLIOTT E, 1958, NATURE, V181, P1076, DOI 10.1038/1811076a0 GORGA MP, 1993, J ACOUST SOC AM, V94, P2639, DOI 10.1121/1.407348 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HORST JW, 2000, WORSH INN EAR BIOL H, V37, P76 HORST JW, 1999, WORSH INN EAR BIOL H, V36, P19 Horst JW, 1999, AUDIOLOGY, V38, P267 HORST JW, 1983, HEARING PHYSL BASES, P89 Kapadia S, 1999, AUDIOLOGY, V38, P257 Kemp DT, 1979, SCAND AUDIOL S, V9, P35 LONG GR, 1988, HEARING RES, V36, P125, DOI 10.1016/0378-5955(88)90055-X Lutman ME, 1999, AUDIOLOGY, V38, P263 Mateijsen DJM, 2001, CLIN OTOLARYNGOL, V26, P379, DOI 10.1046/j.1365-2273.2001.00488.x MATEIJSEN DJM, 2001, THESIS U GRONINGEN T Mrowinski D, 1996, Audiol Neurootol, V1, P125 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 RUYTJENS L, 2001, THESIS U LEUVEN BELG SCHLOTH E, 1983, ACUSTICA, V53, P250 TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V THOMAS IB, 1975, J ACOUST SOC AM, V57 van Huffelen WM, 1998, AUDIOL NEURO-OTOL, V3, P419, DOI 10.1159/000013810 WILSON JP, 1980, HEARING RES, V2, P233, DOI 10.1016/0378-5955(80)90060-X ZWICKER E, 1988, COCHLEAR MECH, P359 NR 24 TC 6 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2003 VL 176 IS 1-2 BP 105 EP 112 DI 10.1016/S0378-5955(02)00749-9 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645QX UT WOS:000180990800010 PM 12583885 ER PT J AU Mulders, WHAM Paolini, AG Needham, K Robertson, D AF Mulders, WHAM Paolini, AG Needham, K Robertson, D TI Olivocochlear collaterals evoke excitatory effects in onset neurones of the rat cochlear nucleus SO HEARING RESEARCH LA English DT Article DE D-stellate cells; intracellular recording; medial olivocochlear system; multipolar cells; ventral cochlear nucleus ID AUDITORY-NERVE FIBERS; INTRACELLULAR RESPONSES; ELECTRICAL-STIMULATION; RETROGRADE TRANSPORT; SLICE PREPARATIONS; STELLATE CELLS; GUINEA-PIG; BRAIN-STEM; CAT; CLASSIFICATION AB Axons of medial olivocochlear neurones in the superior olivary complex terminate on the outer hair cells of the cochlea and also give off collaterals that terminate in the cochlear nucleus. Previous work in our laboratory, using extracellular recordings in the cochlear nucleus, has indicated that stimulation of the olivocochlear axons may have an excitatory effect on specific cell populations of the cochlear nucleus, such as onset-choppers, in contrast to the peripheral suppressive action of the same axons. We have investigated whether this excitation is produced by action of the olivocochlear collaterals in the cochlear nucleus or whether it is mediated via the peripheral suppression, by measuring intracellular responses in the rat cochlear nucleus to electrical stimulation of the olivocochlear axons in silence. The results demonstrate that single shocks applied to the olivocochlear axons can evoke excitatory postsynaptic potentials in onset neurones. We observed an inhibitory effect in one chopper only. In the same animals in all other neurones investigated (i.e. three primary-like neurones and eight choppers) the same stimulation was without any effect on cell membrane potential. We conclude that the excitatory effects in onset neurones are not caused by suppression in the auditory peripheral organ, but by activation of olivocochlear collaterals in the cochlear nucleus. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Western Australia, Auditory Lab, Discipline Physiol, Sch Biomed & Chem Sci, Crawley, WA 6009, Australia. Univ Melbourne, Dept Otolaryngol, Human Commun Res Ctr, Melbourne, Vic, Australia. La Trobe Univ, Sch Psychol Sci, Bundoora, Vic 3086, Australia. RP Robertson, D (reprint author), Univ Western Australia, Auditory Lab, Discipline Physiol, Sch Biomed & Chem Sci, Crawley, WA 6009, Australia. CR ADAMS JC, 1976, J COMP NEUROL, V170, P107, DOI 10.1002/cne.901700108 Alibardi L, 2000, ANN ANAT, V182, P207, DOI 10.1016/S0940-9602(00)80023-0 BENSON CG, 1990, J COMP NEUROL, V296, P415, DOI 10.1002/cne.902960307 Benson TE, 1996, J COMP NEUROL, V365, P27 BENSON TE, 1990, J COMP NEUROL, V295, P52, DOI 10.1002/cne.902950106 BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303 Borg E, 1968, Acta Otolaryngol, V66, P461, DOI 10.3109/00016486809126311 BROWN MC, 1993, J COMP NEUROL, V337, P600, DOI 10.1002/cne.903370406 CANT NB, 1982, J COMP NEUROL, V212, P313, DOI 10.1002/cne.902120308 Cazals Y, 1996, HEARING RES, V101, P81, DOI 10.1016/S0378-5955(96)00135-9 DESMEDT J. E., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1478, DOI 10.1121/1.1918374 Doucet JR, 1999, J COMP NEUROL, V408, P515 FENG JJ, 1994, J COMP NEUROL, V346, P1, DOI 10.1002/cne.903460102 Ferragamo MJ, 1998, J NEUROPHYSIOL, V79, P51 Fujino K, 2001, J NEUROSCI, V21, P7372 GALAMBOS R, 1956, J NEUROPHYSIOL, V19, P424 GODFREY DA, 1975, J COMP NEUROL, V162, P247, DOI 10.1002/cne.901620206 GUINAN JJ, 1988, HEARING RES, V33, P115, DOI 10.1016/0378-5955(88)90024-X Horvath M, 2000, J COMP NEUROL, V422, P95 KIM DO, 1995, ACTIVE HEARING, V1, P31 Mulders WHAM, 2002, HEARING RES, V174, P264, DOI 10.1016/S0378-5955(02)00701-3 OERTEL D, 1990, J COMP NEUROL, V295, P136, DOI 10.1002/cne.902950112 OERTEL D, 1989, J COMP NEUROL, V283, P228, DOI 10.1002/cne.902830206 Oliver DL, 1999, NEUROSCIENCE, V93, P643, DOI 10.1016/S0306-4522(99)00143-8 Paolini AG, 1999, J NEUROPHYSIOL, V81, P2347 Paolini AG, 1997, NEUROREPORT, V8, P3415, DOI 10.1097/00001756-199710200-00044 RAJAN R, 1988, J NEUROPHYSIOL, V60, P549 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 Schofield BR, 1996, J COMP NEUROL, V375, P128, DOI 10.1002/(SICI)1096-9861(19961104)375:1<128::AID-CNE8>3.0.CO;2-5 SMITH PH, 1989, J COMP NEUROL, V282, P595, DOI 10.1002/cne.902820410 VANDENBERGE H, 1990, HEARING RES, V48, P209, DOI 10.1016/0378-5955(90)90061-S WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 WENTHOLD RJ, 1987, BRAIN RES, V415, P183, DOI 10.1016/0006-8993(87)90285-X WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P950, DOI 10.1121/1.1912234 WINTER IM, 1995, J NEUROPHYSIOL, V73, P141 WINTER IM, 1989, J COMP NEUROL, V280, P143, DOI 10.1002/cne.902800110 YOUNG ED, 1988, J NEUROPHYSIOL, V60, P1 ZHANG S, 1994, J NEUROPHYSIOL, V71, P914 NR 38 TC 18 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2003 VL 176 IS 1-2 BP 113 EP 121 DI 10.1016/S0378-5955(02)00750-5 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645QX UT WOS:000180990800011 PM 12583886 ER PT J AU Nakagawa, T Kim, TS Murai, N Endo, T Iguchi, F Tateya, I Yamamoto, N Naito, Y Ito, J AF Nakagawa, T Kim, TS Murai, N Endo, T Iguchi, F Tateya, I Yamamoto, N Naito, Y Ito, J TI A novel technique for inducing local inner ear damage SO HEARING RESEARCH LA English DT Article DE inner ear; surgical anatomy; aminoglycoside; apoptosis; hair cell ID VESTIBULAR SENSORY EPITHELIA; HAIR-CELLS; GUINEA-PIGS; OTOTOXICITY AB With significant development of mouse genomics and the availability of transgenic and knockout mice, the mouse will be the preferred animal model for inner ear research. However, few studies have used mice as experimental animals for examination of hair cell degeneration, because of their relative resistance to ototoxic agents and difficulties in surgical treatment. This study presents a model for induction of apoptotic cell death in sensory epithelia of the mouse inner ear using injection of neomycin into the posterior semicircular canal. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay revealed that local application of neomycin produced sufficient induction of apoptotic cell death in both auditory and vestibular epithelia over a definite time course. Supplementation of the general caspase-inhibitor significantly reduced induction of TUNEL-positive cells, indicating caspase-dependency of apoptotic cell death observed in the present model. In addition, the approach to the posterior semicircular canal was an easy technique, and sham-operation induced no significant induction of TUNEL-positive cells. This model, hence, enables the use of various genetic tools in studies for mechanisms of hair cell apoptosis. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Kyoto Univ, Dept Otolaryngol Head & Neck Surg, Grad Sch Med, Sakyo Ku, Kyoto 6068507, Japan. RP Nakagawa, T (reprint author), Kyoto Univ, Dept Otolaryngol Head & Neck Surg, Grad Sch Med, Sakyo Ku, 54 Kawahara Cho, Kyoto 6068507, Japan. CR Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X Gaverieli Y, 1992, J CELL BIOL, V119, P493 Jero J, 2001, HEARING RES, V151, P106, DOI 10.1016/S0378-5955(00)00216-1 LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307 Nakagawa T, 1998, ACTA OTO-LARYNGOL, V118, P530, DOI 10.1080/00016489850154676 Nakagawa T, 1997, EUR ARCH OTO-RHINO-L, V254, P9, DOI 10.1007/BF02630749 Pirvola U, 2000, J NEUROSCI, V20, P43 Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3 NR 9 TC 34 Z9 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2003 VL 176 IS 1-2 BP 122 EP 127 DI 10.1016/S0378-5955(02)00768-2 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645QX UT WOS:000180990800012 PM 12583887 ER PT J AU Purcell, DW John, MS Picton, TW AF Purcell, DW John, MS Picton, TW TI Concurrent measurement of distortion product otoacoustic emissions and auditory steady state evoked potentials SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT International Evoked Response Audiometry Study Group Meeting CY JUL, 2001 CL VANCOUVER, CANADA DE auditory steady state responses; distortion product otoacoustic emissions; latency ID ENVELOPE FOLLOWING RESPONSE; AMPLITUDE-MODULATED TONES; CANAL STANDING WAVES; HUMAN ADULTS; HUMAN EARS; INFERIOR COLLICULUS; MONGOLIAN GERBIL; FINE-STRUCTURE; PHASE; STIMULI AB Distortion product otoacoustic emissions (DPOAEs) and auditory steady state evoked response potentials (ASSRs) can both be evoked by tone pairs with frequencies f(1) and f(2). The DPOAE is maximal at 2f(1)-f(2) and the ASSR is maximal at f(2)-f(1). Since DPOAE magnitude depends on the ratio f(2)/f(1), but ASSR amplitude depends on the beat frequency f(2)-f(1), compromises are necessary when recording both responses concurrently. Tone pairs with f2 of 900, 1800 and 3600 Hz were presented simultaneously at either 40 or 50 dB sound pressure level (SPL). The f(1) frequency of each pair was approximately 85 or 180 Hz lower than f2. Phase measurements were used to calculate apparent latencies at 40 dB SPL. For increasing f2, DPOAE latencies were 14.5, 9.7 and 6.3 ms for 85 Hz beats, and 11.5, 9.0 and 4.3 ms for 180 Hz beats. ASSR latencies were 22.0, 15.7 and 17.8 ms at 85 Hz, and 17.7, 11.3 and 9.6 ms at 180 Hz. From a model of the mechanical transmission in the cochlea, delays between the basilar membrane and the generator of the ASSR were estimated as 15.4, 12.2 and 15.3 ms at 85 Hz and 8.6, 7.6 and 8.0 ms at 180 Hz. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Toronto, Rotman Res inst, Baycrest Ctr Geriatr Ctr, Toronto, ON M6A 2E1, Canada. RP Purcell, DW (reprint author), Univ Toronto, Rotman Res inst, Baycrest Ctr Geriatr Ctr, 3560 Bathurst St, Toronto, ON M6A 2E1, Canada. CR Abdala C, 1996, J ACOUST SOC AM, V100, P3726, DOI 10.1121/1.417234 Arnold S, 1998, J ACOUST SOC AM, V104, P1565, DOI 10.1121/1.424368 Bowman DM, 1997, J ACOUST SOC AM, V101, P1550, DOI 10.1121/1.418129 Brown AM, 1996, J ACOUST SOC AM, V100, P3260, DOI 10.1121/1.417209 Brown RH, 2000, J ENVIRON MONITOR, V2, P1, DOI 10.1039/a906404d CHERTOFF ME, 1990, J ACOUST SOC AM, V87, P1248, DOI 10.1121/1.398800 COHEN LT, 1991, J ACOUST SOC AM, V90, P2467, DOI 10.1121/1.402050 Dimitrijevic A, 2001, EAR HEARING, V22, P100, DOI 10.1097/00003446-200104000-00003 Dimitrijevic Andrew, 2002, J Am Acad Audiol, V13, P205 DOLPHIN WF, 1999, Patent No. 5916174 DOLPHIN WF, 1997, Patent No. 5601091 DOLPHIN WF, 1994, J ACOUST SOC AM, V96, P2225, DOI 10.1121/1.411382 Dolphin WF, 1997, HEARING RES, V110, P1, DOI 10.1016/S0378-5955(97)00056-7 DOLPHIN WF, 1993, J ACOUST SOC AM, V94, P3215, DOI 10.1121/1.407227 EGGERMONT JJ, 1979, J ACOUST SOC AM, V65, P463, DOI 10.1121/1.382345 Fahey PF, 1997, J ACOUST SOC AM, V102, P2880, DOI 10.1121/1.420343 GALAMBOS R, 1981, P NATL ACAD SCI-BIOL, V78, P2643, DOI 10.1073/pnas.78.4.2643 GARDNER MB, 1972, J ACOUST SOC AM, V52, P1620, DOI 10.1121/1.1913295 GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732 Gaskill SA, 1996, J ACOUST SOC AM, V100, P3268, DOI 10.1121/1.417210 GIGUERE C, 1992, P I ACOUST, V14, P305 GIGUERE C, 1994, J ACOUST SOC AM, V95, P331 Goldstein JL, 1971, PHYSL AUDITORY SYSTE, P133 HARRIS FP, 1989, J ACOUST SOC AM, V85, P220, DOI 10.1121/1.397728 Heitmann J, 1998, J ACOUST SOC AM, V103, P1527, DOI 10.1121/1.421290 Herdman AT, 2002, BRAIN TOPOGR, V15, P69, DOI 10.1023/A:1021470822922 Herdman AT, 2001, SCAND AUDIOL, V30, P41, DOI 10.1080/010503901750069563 HUMES LE, 1985, J ACOUST SOC AM, V78, P1245, DOI 10.1121/1.392893 John MS, 2000, HEARING RES, V141, P57, DOI 10.1016/S0378-5955(99)00209-9 John MS, 2000, COMPUT METH PROG BIO, V61, P125, DOI 10.1016/S0169-2607(99)00035-8 John MS, 2001, AUDIOL NEURO-OTOL, V6, P12, DOI 10.1159/000046805 John M Sasha, 2002, J Am Acad Audiol, V13, P246 John MS, 2001, CLIN NEUROPHYSIOL, V112, P555, DOI 10.1016/S1388-2457(01)00456-4 John MS, 1998, AUDIOLOGY, V37, P59 Kim DO, 1997, EAR HEARING, V18, P277, DOI 10.1097/00003446-199708000-00002 KIMBERLEY BP, 1993, J ACOUST SOC AM, V94, P1343, DOI 10.1121/1.408162 Knight RD, 2000, J ACOUST SOC AM, V107, P457, DOI 10.1121/1.428351 Knight RD, 2001, J ACOUST SOC AM, V109, P1513, DOI 10.1121/1.1354197 LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799 LINS OG, 1995, EVOKED POTENTIAL, V96, P420, DOI 10.1016/0168-5597(95)00048-W Lonsbury-Martin B L, 1990, Ann Otol Rhinol Laryngol Suppl, V147, P3 LUTMAN ME, 1979, J SOUND VIB, V64, P133, DOI 10.1016/0022-460X(79)90578-9 MAHONEY CFO, 1995, J ACOUST SOC AM, V97, P3721 MONTGOMERY DC, 1992, INTRO LINEAR REGRESS, P108 Moulin A, 1996, J ACOUST SOC AM, V100, P1640, DOI 10.1121/1.416064 Moulin A, 1996, J ACOUST SOC AM, V100, P1617, DOI 10.1121/1.416063 NEELY ST, 1988, J ACOUST SOC AM, V83, P652, DOI 10.1121/1.396542 PICTON PE, 1999, THESIS U TORONTO TOR PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 REGAN D, 1966, ELECTROEN CLIN NEURO, V20, P238, DOI 10.1016/0013-4694(66)90088-5 REGAN D, 1989, HUMAN BRAIN ELECTROP, P42 RICKMAN MD, 1991, J ACOUST SOC AM, V89, P2818, DOI 10.1121/1.400720 Ruggero M A, 1992, Curr Opin Neurobiol, V2, P449, DOI 10.1016/0959-4388(92)90179-O Schoonhoven R, 2001, J ACOUST SOC AM, V109, P1503, DOI 10.1121/1.1354987 SCHOONHOVEN R, 2002, IN PRESS CLIN NEUROP Shera CA, 2000, J ACOUST SOC AM, V108, P2933, DOI 10.1121/1.1323234 Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 Shirane M, 1991, Acta Otolaryngol Suppl, V489, P32 SIEGEL JH, 1994, J ACOUST SOC AM, V95, P2589, DOI 10.1121/1.409829 Starr A., 2001, AUDITORY NEUROPATHY, P67 Stover LJ, 1996, J ACOUST SOC AM, V99, P1016, DOI 10.1121/1.414630 Talmadge CL, 1999, J ACOUST SOC AM, V105, P275, DOI 10.1121/1.424584 Wable J, 1997, AUDIOLOGY, V36, P72 Whitehead ML, 1995, J ACOUST SOC AM, V98, P3200, DOI 10.1121/1.413810 WHITEHEAD ML, 1995, J ACOUST SOC AM, V97, P2346, DOI 10.1121/1.411959 Whitehead ML, 1996, J ACOUST SOC AM, V100, P1663, DOI 10.1121/1.416065 ZUERCHER JC, 1988, J ACOUST SOC AM, V83, P1653, DOI 10.1121/1.395920 ZUREK PM, 1992, EAR HEARING, V13, P307, DOI 10.1097/00003446-199210000-00008 ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382 NR 69 TC 7 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2003 VL 176 IS 1-2 BP 128 EP 141 DI 10.1016/S0378-5955(02)00770-0 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 645QX UT WOS:000180990800013 PM 12583888 ER PT J AU Lin, JH Ozeki, M Javel, E Zhao, ZF Pan, W Schlentz, E Levine, S AF Lin, JH Ozeki, M Javel, E Zhao, ZF Pan, W Schlentz, E Levine, S TI Identification of gene expression profiles in rat ears with cDNA microarrays SO HEARING RESEARCH LA English DT Article DE cochlea; gene profile; microarray; rat ID GLUTAMIC-ACID DECARBOXYLASE; GATED CA2+ CHANNELS; LOOP-HELIX PROTEINS; MIDDLE-EAR; ALPHA(1D) SUBUNIT; CHICKENS COCHLEA; CALCIUM-CHANNEL; SENSORY NEURONS; MESSENGER-RNA; DNA-BINDING AB The physiological processes of hearing implicate thousands of molecules acting in harmony, however, their identities are only partially understood. We used cDNA microarrays containing 1, 176 genes to identify > 150 genes expressed in rat middle and inner ear tissue. Expressed genes covered several gene families and biological pathways, many of which have previously not been described. Transcription factor genes that were expressed included inhibitors of DNA binding protein (Id). These were localized to the spiral ganglion, organ of Corti and stria vascularis, and they are possibly involved in neurogenesis and angiogenesis. Transcriptional factors that were highly expressed included Gax (homeobox) and I-kappaB, which inhibit cellular proliferation. Their presence suggests that inhibitory programs for cell proliferation are enforced in the ear. Ion channel genes that were expressed included voltage-dependent L-type calcium channels (LTCC) and proton-gated cation channels (PGCC). Genes involved in neurotransmitter production and release included glutamic acid decarboxylase (GAD1). Genes involved in postsynaptic inhibition included neuropeptide Y5 receptors (NPY5) and GAD1 Due to the existence of receptors and/or enzymes involved in their biochemical synthesis, neurotransmitters associated with these might include serotonin, glutamide, acetylcholine, gamma-aminobutyric acid (GABA), neurotensin, and dopamine. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Minnesota, Sch Med, Dept Otolaryngol, Div Biostat, Minneapolis, MN 55455 USA. Univ Minnesota, Sch Med, Dept Pediat, Div Biostat, Minneapolis, MN 55455 USA. Univ Minnesota, Sch Publ Hlth, Minneapolis, MN 55455 USA. RP Lin, JH (reprint author), 2001 6th St SE,216 Lions Res Bldg, Minneapolis, MN 55455 USA. CR Arnold T, 1998, HEARING RES, V125, P147, DOI 10.1016/S0378-5955(98)00144-0 Avraham KB, 1998, NAT MED, V4, P1238, DOI 10.1038/3215 BAIN G, 1993, MOL BRAIN RES, V17, P23, DOI 10.1016/0169-328X(93)90068-Z BENEZRA R, 1990, CELL, V61, P49, DOI 10.1016/0092-8674(90)90214-Y CHEN ZY, 2001, JARO, V3, P140 Cho YS, 2002, JARO, V3, P54, DOI 10.1007/s101620010042 Efron B., 2000, MICROARRAYS THEIR US Gerald C, 1996, NATURE, V382, P168, DOI 10.1038/382168a0 Green GE, 1996, J NEUROCHEM, V67, P37 HIGUCHI H, 1988, J BIOL CHEM, V263, P6288 Ho MWY, 2000, J NEUROPHYSIOL, V83, P723 Hu YH, 1996, J BIOL CHEM, V271, P26315 KOCH WJ, 1990, J BIOL CHEM, V265, P17786 Kollmar R, 1997, P NATL ACAD SCI USA, V94, P14889, DOI 10.1073/pnas.94.26.14889 Kollmar R, 1997, P NATL ACAD SCI USA, V94, P14883, DOI 10.1073/pnas.94.26.14883 KOVALCHUK YN, 1990, NEUROSCI LETT, V115, P237, DOI 10.1016/0304-3940(90)90461-H KRISHTAL OA, 1980, NEUROSCIENCE, V5, P2325, DOI 10.1016/0306-4522(80)90149-9 Lin JZ, 2001, AM J PHYSIOL-LUNG C, V280, pL1157 Lin JZ, 2002, INT J PEDIATR OTORHI, V65, P203, DOI 10.1016/S0165-5876(02)00130-1 Lin JZ, 1999, ANN OTO RHINOL LARYN, V108, P762 Lin JZ, 1999, J INFECT DIS, V179, P1145, DOI 10.1086/314714 Lin JZ, 1999, ACTA OTO-LARYNGOL, V119, P787, DOI 10.1080/00016489950180432 Littlewood T D, 1994, Protein Profile, V1, P635 Lomax MI, 2000, HEARING RES, V147, P293, DOI 10.1016/S0378-5955(00)00139-8 Lyden D, 1999, NATURE, V401, P670, DOI 10.1038/44334 MAISONPIERRE PC, 1991, GENOMICS, V10, P558, DOI 10.1016/0888-7543(91)90436-I MU MY, 1994, ACTA OTO-LARYNGOL, V114, P516, DOI 10.3109/00016489409126096 MURRE C, 1989, CELL, V56, P777, DOI 10.1016/0092-8674(89)90682-X NAGATA Y, 1994, BIOCHEM BIOPH RES CO, V199, P1355, DOI 10.1006/bbrc.1994.1380 Nelson N, 1996, J NATL CANCER I, V88, P1803, DOI 10.1093/jnci/88.24.1803 Norton JD, 1998, TRENDS CELL BIOL, V8, P58, DOI 10.1016/S0962-8924(97)01183-5 Pan W, 2002, GENOME BIOL, V3 Platzer J, 2000, CELL, V102, P89, DOI 10.1016/S0092-8674(00)00013-1 Rivolta MN, 1997, AUDIOL NEURO-OTOL, V2, P36 SCHENA M, 1995, SCIENCE, V270, P467, DOI 10.1126/science.270.5235.467 Vale C, 2000, J NEUROSCI, V20, P1912 Waldmann R, 1997, J BIOL CHEM, V272, P20975, DOI 10.1074/jbc.272.34.20975 Waldmann R, 1997, NATURE, V386, P173, DOI 10.1038/386173a0 WEINTRAUB H, 1991, SCIENCE, V251, P761, DOI 10.1126/science.1846704 WYBORSKI RJ, 1990, MOL BRAIN RES, V8, P193, DOI 10.1016/0169-328X(90)90016-7 NR 40 TC 18 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2003 VL 175 IS 1-2 BP 2 EP 13 DI 10.1016/S0378-5955(02)00704-9 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 638JF UT WOS:000180567300002 PM 12527121 ER PT J AU Nizami, L AF Nizami, L TI Afferent response parameters derived from postmasker probe-detection thresholds: 'the decay of sensation' revisited SO HEARING RESEARCH LA English DT Article DE sensation; just-detectable increment; forward masking; psychometric; Gaussian; signal detection ID SUPERIOR OLIVARY COMPLEX; VENTRAL COCHLEAR NUCLEUS; NEURAL SPIKE TRAIN; AUDITORY-NERVE; FORCED-CHOICE; DYNAMIC-RANGE; MASKING; CAT; INTENSITY; NOISE AB The classical model of forward masking postulates that the detection threshold for a tone probe that follows a stimulus of similar frequency content is elevated relative to the quiet threshold because the probe must evoke a just-detectable increment in a decaying postmasker sensation. That postmasker decay is charted by probe-detection thresholds if the sensation increment is small and constant. This model was examined for a 2-kHz Gaussian-shaped probe and a 2-kHz forward masker, based on the model's assumption that a just-detectable increment in sensation results from a just-detectable increment in level. Psychometric functions for detection were obtained at 2.5-30 ms postmasker. Their means and standard deviations generally decreased with delay. It was assumed that standard deviation is related to the putative just-detectable level increment by a simple monotonic transformation. Thus, if the standard deviation of the psychometric function for probe detection is neither small nor constant, then the corresponding just-detectable increment in level is neither small nor constant, and the just-detectable increment in sensation is neither small nor constant. The classical model also fails to allow for the variability of internal events. The concept of detection threshold as a sensation increment was preserved in a Signal Detection model, that does allow for internal variability. In this model the postmasker residual is the input to a probe detector. The new model produces an equation for the just-detectable level increment as a function of probe delay. Comparison data were generated by again assuming some relation between the standard deviation of the psychometric function for detection, and the just-detectable increment in level. The fit of equation to data yields robust values for the probe detector's maximum firing rate, dynamic range, and spike-counting time. All that is required to account for the decay of sensation, for a pure tone, is a single neuron operating at some higher center. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Boys Town Natl Res Hosp, Omaha, NE 68131 USA. RP Nizami, L (reprint author), Boys Town Natl Res Hosp, 555 N 30th St, Omaha, NE 68131 USA. CR AITKIN L, 1994, EXP BRAIN RES, V98, P53 American National Standards Institute, 1969, SPEC AUD BRITT R, 1976, J NEUROPHYSIOL, V39, P162 CARLYON RP, 1988, HEARING RES, V32, P65, DOI 10.1016/0378-5955(88)90147-5 CHISTOVICH L. A., 1959, BIOFIZIKA [TRANSL], V4, P46 Delgutte B, 1987, PSYCHOPHYSICS SPEECH, P333 FASTL H, 1977, J ACOUST SOC AM, V61, P162, DOI 10.1121/1.381277 Ghoshal S, 1997, J NEUROPHYSIOL, V77, P2083 GOLDBERG JM, 1973, BRAIN RES, V64, P35, DOI 10.1016/0006-8993(73)90169-8 GUINAN JJ, 1972, INT J NEUROSCI, V4, P101, DOI 10.3109/00207457209147165 HACKER MJ, 1979, PERCEPT PSYCHOPHYS, V26, P168, DOI 10.3758/BF03208311 HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083 HELLMAN WS, 1990, J ACOUST SOC AM, V87, P1255, DOI 10.1121/1.398801 Imig TJ, 2000, J NEUROPHYSIOL, V83, P907 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 LUSCHER E, 1947, ACTA OTO-LARYNGOL, V35, P428, DOI 10.3109/00016484709123758 MAY BJ, 1992, J NEUROPHYSIOL, V68, P1589 MCKEE SP, 1985, PERCEPT PSYCHOPHYS, V37, P286, DOI 10.3758/BF03211350 NIZAMI L, 2001, AFFERENT RESPONSE PA, V27 NIZAMI L, 2000, ARO ABS, V23, P27 NIZAMI L, 1999, THESIS U TORONTO TOR Nizami L, 1997, MATH BIOSCI, V141, P1, DOI 10.1016/S0025-5564(96)00153-8 NIZAMI L, 2001, ABSTR ARO, V24, P102 Nizami L, 2002, HEARING RES, V167, P13, DOI 10.1016/S0378-5955(02)00293-9 Nizami L, 1999, J ACOUST SOC AM, V106, P1187, DOI 10.1121/1.427130 Oxenham AJ, 2001, J ACOUST SOC AM, V109, P732, DOI 10.1121/1.1336501 OXENHAM AJ, 1994, HEARING RES, V80, P105, DOI 10.1016/0378-5955(94)90014-0 PENNER MJ, 1977, J ACOUST SOC AM, V61, P552, DOI 10.1121/1.381297 PLOMP R, 1961, J ACOUST SOC AM, V33, P1561, DOI 10.1121/1.1908501 PLOMP R, 1964, J ACOUST SOC AM, V36, P277, DOI 10.1121/1.1918946 RELKIN EM, 1988, J ACOUST SOC AM, V84, P584, DOI 10.1121/1.396836 RELKIN EM, 1987, J ACOUST SOC AM, V82, P1679, DOI 10.1121/1.395159 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 YOUNG E, 1973, J ACOUST SOC AM, V54, P1544, DOI 10.1121/1.1914452 SAMOILOVA I. K., 1959, BIOFIZIKA [TRANSL], V4, P44 SCHLAUCH RS, 2002, ARO, V25, P196 Schlauch RS, 2001, J ACOUST SOC AM, V109, P2880, DOI 10.1121/1.1372913 SCHNEIDER BA, 1994, J ACOUST SOC AM, V95, P980, DOI 10.1121/1.408403 SHOFNER WP, 1989, J ACOUST SOC AM, V86, P2172, DOI 10.1121/1.398478 SMITH RL, 1977, J NEUROPHYSIOL, V40, P1098 Stabler SE, 1996, J NEUROPHYSIOL, V76, P1667 STEIN RB, 1967, BIOPHYS J, V7, P797, DOI 10.1016/S0006-3495(67)86623-2 TEICH MC, 1989, IEEE T BIO-MED ENG, V36, P150, DOI 10.1109/10.16460 TEICH MC, 1990, HEARING RES, V46, P41, DOI 10.1016/0378-5955(90)90138-F TEICH MC, 1985, J ACOUST SOC AM, V77, P1110, DOI 10.1121/1.392176 TSUCHITANI C, 1977, J NEUROPHYSIOL, V40, P296 TURNER CW, 1994, J ACOUST SOC AM, V96, P795, DOI 10.1121/1.410317 WEBER DL, 1981, J ACOUST SOC AM, V69, P1402, DOI 10.1121/1.385822 WESTERMAN LA, 1985, THESIS SYRACUSE U SY Xu Z, 1996, J NEUROPHYSIOL, V76, P2020 ZWICKER E, 1984, J ACOUST SOC AM, V75, P219, DOI 10.1121/1.390398 Zwislocki J. J., 1978, HDB PERCEPTION, VIV, P283 NR 52 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2003 VL 175 IS 1-2 BP 14 EP 35 DI 10.1016/S0378-5955(02)00706-2 PG 22 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 638JF UT WOS:000180567300003 PM 12527122 ER PT J AU Catacuzzeno, L Fioretti, B Perin, P Franciolini, F AF Catacuzzeno, L Fioretti, B Perin, P Franciolini, F TI Frog saccular hair cells dissociated with protease VIII exhibit inactivating BK currents, K-V currents, and low-frequency electrical resonance SO HEARING RESEARCH LA English DT Article DE frog sacculus; hair cells; BK channels; voltage-dependent K channels; electrical resonance; protease VIII; papain ID ION-DEPENDENT CONDUCTANCES; POTASSIUM CURRENTS; RANA-CATESBEIANA; BULL-FROG; CHANNELS; ACTIVATION AB Outward K currents and electrical resonance of frog (Rana esculenta) saccular hair cells isolated enzymatically with bacterial protease VIII were investigated using the perforated patch-clamp method. Under voltage-clamp conditions we identified two K currents, a voltage-dependent K (K-v) current, and a partially inactivating iberiotoxin-sensitive K (BK) current. The K-v current activated at a membrane potential of similar to -50 mV (from a holding potential of -70 mV). Its activation rate was rather slow, having a time constant in the range 5-8 ms at 0 mV. The K-v current was resistant to tetraethylammonium (10 mM), but was inhibited by 4-aminopyridine (1 mM). A striking feature of the BK current was its inactivation; this was monoexponential and had fast kinetics (pi(inact) = 2.7 ms +/- 1.2, at -10 mV; n = 8). Inactivation of the current was incomplete, a residual sustained component remaining. This varied considerably among hair cells (mean ratio between peak transient and sustained component was 1.22 +/- 0.18, range 0.53-1.8; n = 8). In current-clamp mode steady depolarizing current pulses evoked membrane potential oscillatory responses, with mean frequencies varying between 30 and 100 Hz for membrane potentials from -60 to -40 mV (n = 18). Most hair cells (14/18) exhibited damped oscillations, and in the remainder a few initial damped oscillations were succeeded by smaller, undamped voltage oscillations. The peak quality factor and the characteristic frequency assessed on 14 cells displaying only damped oscillatory responses were 2.4 +/- 1.3 and 59 +/- 39 Hz, respectively. In contrast, papain-dissociated frog saccular hair cells possess solely a sustained BK current, and exhibited significantly higher resonant frequencies and quality factors. In conclusion, the K currents and the electrical resonance of hair cells dissociated in protease VIII differ markedly from those dissociated with papain, but are similar to those reported for in situ preparations, suggesting that our dissociation procedure preserves the electrophysiological profile of in situ frog saccular hair cells. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Perugia, Dipartimento Biol Cellulare & Mol, I-06100 Perugia, Italy. Univ Pavia, Dipartimento Sci Fisiol Farmacol Cellulari Mol, I-27100 Pavia, Italy. RP Fioretti, B (reprint author), Univ Perugia, Dipartimento Biol Cellulare & Mol, Via Pascoli 1, I-06100 Perugia, Italy. RI franciolini, fabio/F-9699-2014; Catacuzzeno, Luigi/M-4637-2014 CR Armstrong CE, 2001, J PHYSIOL-LONDON, V536, P49, DOI 10.1111/j.1469-7793.2001.00049.x Armstrong CE, 1998, J NEUROSCI, V18, P2962 ASHMORE JF, 1983, NATURE, V304, P536, DOI 10.1038/304536a0 CORREIA MJ, 1989, J NEUROPHYSIOL, V62, P924 CRAWFORD AC, 1981, J PHYSIOL-LONDON, V312, P377 EATOCK RA, 1993, J NEUROSCI, V13, P1767 Fettiplace R, 1999, ANNU REV PHYSIOL, V61, P809, DOI 10.1146/annurev.physiol.61.1.809 GALVEZ A, 1990, J BIOL CHEM, V265, P11083 Goodman MB, 1996, J PHYSIOL-LONDON, V497, P395 Hofmann G, 2001, J BIOL CHEM, V276, P4923, DOI 10.1074/jbc.M005682200 Holt JC, 2001, HEARING RES, V152, P25, DOI 10.1016/S0378-5955(00)00225-2 HOLT JR, 1995, J NEUROPHYSIOL, V73, P1484 HORN R, 1988, J GEN PHYSIOL, V92, P145, DOI 10.1085/jgp.92.2.145 HUDSPETH AJ, 1988, J PHYSIOL-LONDON, V400, P275 HUDSPETH AJ, 1988, J PHYSIOL-LONDON, V400, P237 LEWIS ER, 1988, BIOPHYS J, V53, P441 LEWIS RS, 1983, NATURE, V304, P538, DOI 10.1038/304538a0 NEHER E, 1992, METHOD ENZYMOL, V207, P123 ROBERTS WM, 1990, J NEUROSCI, V10, P3664 Xia XM, 1999, J NEUROSCI, V19, P5255 YU XL, 1991, J COMP PHYSIOL A, V169, P241, DOI 10.1007/BF00215871 NR 21 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2003 VL 175 IS 1-2 BP 36 EP 44 DI 10.1016/S0378-5955(02)00707-4 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 638JF UT WOS:000180567300004 PM 12527123 ER PT J AU Liu, JX Li, XP Wang, L Dong, Y Han, HW Liu, GQ AF Liu, JX Li, XP Wang, L Dong, Y Han, HW Liu, GQ TI Effects of salicylate on serotoninergic activities in rat inferior colliculus and auditory cortex SO HEARING RESEARCH LA English DT Article DE salicylate; tinnitus; inferior colliculus; auditory cortex; 5-HT; microdialysis ID FREELY MOVING RAT; AMINO-ACIDS; PERCEPTION TINNITUS; NEURAL ACTIVITY; INVIVO RELEASE; GLUCOSE-LEVELS; LIMBIC SYSTEM; ANIMAL-MODEL; BLOOD-FLOW; GUINEA-PIG AB In vivo microdialysis offers a unique approach to monitor biochemical events related to brain function and metabolism, and has been used extensively in many systems to measure the release of endogenous transmitters and other neuroactive substances during normal and pathological conditions. The characterization of neurotransmitters' changes induced by salicylate in the inferior colliculus (IC) and the auditory cortex (AC) may provide insight into the action of salicylate on the auditory system and, through this, provide a better understanding of neurological mechanism of salicylate-induced tinnitus. In the present study, the effect of salicylate on 5-HT system in IC and AC has been monitored by microdialysis in salicylate-induced tinnitus animal models. Glucose and lactate levels in IC and AC were significantly increased after application of salicylate (350 mg/kg, i.p.), indicating a salicylate-related increase in regional neuronal activity. The 5-HT level increased to a maximum of 268 +/- 27% basal level in IC 2 It after application and of 277 +/- 24% basal level in AC around 3 h after application. These data suggest that the increases of 5-HT levels in IC and AC may be involved in the tinnitus generation. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Peking Univ, Dept Otorhinolaryngol, Third Hosp, Beijing 100083, Peoples R China. Chinese Acad Sci, Inst Chem, Beijing 100080, Peoples R China. RP Liu, JX (reprint author), Peking Univ, Dept Otorhinolaryngol, Third Hosp, 49th Huayuan Rd, Beijing 100083, Peoples R China. CR ANDORN AC, 1989, PSYCHOPHARMACOLOGY, V99, P520, DOI 10.1007/BF00589902 ANTELMAN SM, 1997, ANIMAL MODELS PSYCHI, P227 Arnold W, 1996, ORL J OTO-RHINO-LARY, V58, P195 Bauer CA, 2000, HEARING RES, V147, P175, DOI 10.1016/S0378-5955(00)00130-1 BOUTELLE MG, 1992, ANAL CHEM, V64, P1790, DOI 10.1021/ac00041a010 Cespuglio R., 1984, EXP BRAIN RES S, V8, P95 CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O Cransac H, 1996, HEARING RES, V100, P150, DOI 10.1016/0378-5955(96)00116-5 Cung DD, 1997, PHARMACOTHERAPY, V17, P383 DOUEK E, 1987, 3 INT TINN SEM KARLS, P64 EGGERMONT JJ, 1992, TINNITUS 91, P293 FELLOWS LK, 1993, BRAIN RES, V604, P225, DOI 10.1016/0006-8993(93)90373-U FELLOWS LK, 1993, J NEUROCHEM, V61, P949, DOI 10.1111/j.1471-4159.1993.tb03607.x FELLOWS LK, 1992, J NEUROCHEM, V59, P2141 FELLOWS LK, 1993, J NEUROCHEM, V60, P1258, DOI 10.1111/j.1471-4159.1993.tb03285.x Fornai F, 2000, NEUROSCIENCE, V97, P447, DOI 10.1016/S0306-4522(00)00038-5 FORRESTER T, 1979, J PHYSIOL-LONDON, V296, P343 FOX PT, 1988, SCIENCE, V241, P462, DOI 10.1126/science.3260686 GLOBUS MYT, 1988, J NEUROCHEM, V51, P1455, DOI 10.1111/j.1471-4159.1988.tb01111.x GOLDSMITH JD, 1995, HEARING RES, V83, P80, DOI 10.1016/0378-5955(94)00193-T Grove G, 1997, J NEUROPSYCH CLIN N, V9, P198 Hallam RS, 1996, SCAND AUDIOL, V25, P263, DOI 10.3109/01050399609074965 Horrobin DF, 1999, PROSTAG LEUKOTR ESS, V60, P141, DOI 10.1054/plef.1999.0027 JASTREBOFF PJ, 1988, BEHAV NEUROSCI, V102, P811, DOI 10.1037/0735-7044.102.6.811 JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 JASTREBOFF PJ, 1994, AUDIOLOGY, V33, P202 JASTREBOFF PJ, 1994, AM J OTOL, V15, P19 Johnson G, 1998, J NUCL CARDIOL, V5, P285, DOI 10.1016/S1071-3581(98)90130-1 KUDROW L, 1995, HEADACHE, V35, P79, DOI 10.1111/j.1526-4610.1995.hed3502079.x KUHR WG, 1988, J CEREBR BLOOD F MET, V8, P848 LEPAGE EL, 1995, MECH TINNITUS, P115 Lockwood AH, 1998, NEUROLOGY, V50, P114 LUX HD, 1975, BRAIN WORK, P172 Manabe Y, 1997, HEARING RES, V103, P192, DOI 10.1016/S0378-5955(96)00181-5 MCGINTY DJ, 1976, BRAIN RES, V101, P569, DOI 10.1016/0006-8993(76)90480-7 MELO LL, 1995, PHARMACOL BIOCHEM BE, V51, P317, DOI 10.1016/0091-3057(94)00387-X Mirz F, 1999, HEARING RES, V134, P133, DOI 10.1016/S0378-5955(99)00075-1 MOLLER AR, 1995, MECH TINNITUS, P181 MOLLER AR, 1992, LARYNGOSCOPE, V102, P1165 MOLLER AR, 1992, TINNITUS 91, P165 MURPHY PJ, 1998, J CLIN PSYCHIAT S, V15, P4 NEHLIG A, 1993, PROG NEUROBIOL, V40, P163, DOI 10.1016/0301-0082(93)90022-K Ochi K, 1996, HEARING RES, V95, P63, DOI 10.1016/0378-5955(96)00019-6 OLESEN J, 1974, THESIS FADLS FORLAG O'Malley PG, 1999, J FAM PRACTICE, V48, P980 PALMER RMJ, 1988, NATURE, V333, P664, DOI 10.1038/333664a0 PAULSEN RE, 1989, J NEUROCHEM, V52, P1823, DOI 10.1111/j.1471-4159.1989.tb07263.x Petty F, 1996, J CLIN PSYCHIAT, V57, P11 ROBINSON PJ, 1986, AM J PHYSIOL, V250, pR127 SACHANSKA T, 1999, INT TINNITUS J, V5, P20 Schoenen J, 1997, CEPHALALGIA, V17, P28 Shemen L, 1998, OTOLARYNG HEAD NECK, V118, P421, DOI 10.1016/S0194-5998(98)70332-8 Shergill SS, 1998, SCHIZOPHR RES, V32, P137, DOI 10.1016/S0920-9964(98)00052-8 SIMPSON JJ, 1999, P 6 INT TINN SEM BRI, P254 THOMPSON GC, 1994, OTOLARYNG HEAD NECK, V110, P93, DOI 10.1016/S0194-5998(94)70797-9 WANG HT, 2000, CHIN J OTORHINOLARYN, V35, P331 Wang W, 1996, NEUROLOGY, V46, P1404 WESTERINK BHC, 1989, J NEUROCHEM, V52, P705, DOI 10.1111/j.1471-4159.1989.tb02512.x Woods CI, 1999, BRAIN RES, V836, P9, DOI 10.1016/S0006-8993(99)01541-3 ZENNER HP, 1993, EUR ARCH OTO-RHINO-L, V249, P447 NR 60 TC 21 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2003 VL 175 IS 1-2 BP 45 EP 53 DI 10.1016/S0378-5955(02)00708-6 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 638JF UT WOS:000180567300005 PM 12527124 ER PT J AU Werner, YL AF Werner, YL TI Mechanical leverage in the middle ear of the American bullfrog, Rana catesbeiana SO HEARING RESEARCH LA English DT Article DE American bullfrog; Rana catesbeiana; middle ear; mechanical lever; hearing ID BODY-SIZE; FROG; TRANSMISSION; HEARING; SOUND; LIZARDS; GECKO; FIELD AB Textbooks lump the middle ears of 'submammalian Tetrapoda' as being 'one-ossicle ears'. Conventionally the anuran middle ear is depicted with a shaft-like skeletal unit connecting the tympanic membrane to the inner ear. This shaft comprises mediad a long bony columella and laterad a short cartilaginous extracolumella. But dissection of Rana catesbeiana ears showed: the extracolumella, as long as the columella, is proximally expanded in the vertical plane, forming dorsal and ventral heads. The medio-dorsal head is movably jointed to the columella, between these two there is an obtuse angle ventrad; the extracolumellar medio-ventral head is anchored by a ligament to the middle-ear cavity ceiling. When the tympanic membrane moves outwards, pulling the extracolumella, the medio-dorsal head of the extracolumella must be forced inwards, rotating on the ventral anchorage, pushing the columella towards the inner ear. The ossicular chain thus includes a mechanical lever, possessing the magnitude of the ratio length:width of the extracolumella; this is additional to the lever known from the columellar footplate, which rotates on its firm ventral attachment. These levers are confirmed physiologically, by the difference between the inner-car sensitivity (shown by isopotential audiograms of microphonic potentials) when stimulated by a vibrator first at the tympanic membrane, then at the proximal stump of the amputated columella. Perusal of the primary literature showed that this morphology is widespread among anuran ears. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Princeton Univ, Dept Psychol, Princeton, NJ 08544 USA. RP Werner, YL (reprint author), Hebrew Univ Jerusalem, Dept Evolut Systemat & Ecol, IL-91904 Jerusalem, Israel. CR Alexander R.M., 1975, CHORDATES CAPRANICA RR, 1978, FED PROC, V37, P2324 CAPRANICA RR, 1976, FROG NEUROBIOLOGY, P561 CHRISTENSENDALS.J, 1996, EXTRATYMPANIC SOUND, P73 CHUNG SH, 1978, NATURE, V272, P142, DOI 10.1038/272142a0 CHUNG SH, 1981, PROC R SOC SER B-BIO, V212, P459, DOI 10.1098/rspb.1981.0048 DeBurlet H. M., 1934, HDB VERGLEICHENDEN A, P1293 Duellman W. E, 1986, BIOL AMPHIBIANS EATOCK RA, 1981, J COMP PHYSIOL, V142, P219 ECKER A, 1896, ANATOMIE FROSCHES EHRET G, 1990, NATURWISSENSCHAFTEN, V77, P192, DOI 10.1007/BF01131168 Eiselt J., 1941, Archiv fuer Naturgeschichte Leipzig NF, V10, P179 FRITZSCH B, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P351 GAUPP E, 2004, A ECKERS R WIEDERSHE GAUPP E, 1896, A ECKERS R WIEDERSHE Gaupp E., 1898, ERG ANAT ENTWICKLU, V8, P990 GIBBS EL, 1971, BIOSCIENCE, V21, P1027, DOI 10.2307/1296057 HETHERINGTON TE, 1988, J COMP PHYSIOL A, V163, P43, DOI 10.1007/BF00611995 HETHERINGTON TE, 1994, J ACOUST SOC AM, V95, P2122, DOI 10.1121/1.408673 HETHERINGTON TE, 1992, BRAIN BEHAV EVOLUT, V39, P133, DOI 10.1159/000114111 HETHERINGTON TE, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P421 HUBL L, 1979, J COMP PHYSIOL, V130, P17, DOI 10.1007/BF02582970 Jaslow A.P., 1988, P69 Jorgensen MB, 1998, J COMP PHYSIOL A, V182, P59 KOPPL C, 1990, J COMP PHYSIOL A, V167, P139 Lewis ER, 1999, COMP HEARING FISH AM, P101 LILLYWHI.HB, 1970, COPEIA, P158 LILLYWHI.HB, 1971, COMP BIOCHEM PHYSIOL, V40, P213, DOI 10.1016/0300-9629(71)90162-9 LOMBARD RE, 1979, BIOL J LINN SOC, V11, P19, DOI 10.1111/j.1095-8312.1979.tb00027.x LOMBARD RE, 1974, J EXP BIOL, V61, P71 Lombard R.E., 1980, P121 Manley G. A., 1990, PERIPHERAL HEARING M MANLEY GA, 1972, J COMP PHYSIOL, V81, P251, DOI 10.1007/BF00693630 McClelland BE, 1998, BIOL J LINN SOC, V63, P51, DOI 10.1111/j.1095-8312.1998.tb01638.x MOFFAT AJM, 1978, J COMP PHYSIOL, V127, P97 NARINS PM, 1995, ADV HEARING RES, P198 Narins Peter M., 2001, P61 Pickles JO, 1988, INTRO PHYSL HEARING PINDER AC, 1983, PROC R SOC SER B-BIO, V219, P371, DOI 10.1098/rspb.1983.0079 Purgue AP, 2000, J COMP PHYSIOL A, V186, P481, DOI 10.1007/s003590050446 Saunders J. C., 2000, COMP HEARING BIRDS R, P13 SAUNDERS JC, 1972, ACTA OTO-LARYNGOL, V73, P353, DOI 10.3109/00016487209138952 SEDRA SHOKRALLA N., 1959, JOUR MORPHOL, V104, P359, DOI 10.1002/jmor.1051040207 SMIRNOV SV, 1988, ANAT ANZ JENA, V16, P317 Smotherman MS, 2000, J EXP BIOL, V203, P2237 STADTMULLER F, 1936, HDB VERGLEICHENDEN A, P501 STIEBLER IB, 1990, HEARING RES, V46, P63, DOI 10.1016/0378-5955(90)90140-K TONNDORF J, 1970, ANN OTO RHINOL LARYN, V79, P743 TUMARKIN A, 1955, EVOLUTION, V9, P221, DOI 10.2307/2405646 TUMARKIN A, 1968, HEARING MECH VERTEBR, P18 VANDIJK P, 1990, HEARING RES, V44, P231, DOI 10.1016/0378-5955(90)90083-2 VOROBYEVA E, 1987, J MORPHOL, V192, P1, DOI 10.1002/jmor.1051920102 WALKOWIAK W, 1980, BEHAV PROCESS, V5, P363, DOI 10.1016/0376-6357(80)90019-4 WATERMAN AJ, 1971, CHORDATE STRUCTURE F WERNER YI, 1976, J EXP ZOOL, V195, P319, DOI 10.1002/jez.1401950302 WERNER YL, 1972, J EXP ZOOL, V179, P1, DOI 10.1002/jez.1401790102 WERNER YL, 1971, SYST ZOOL, V20, P249, DOI 10.2307/2412063 WERNER Y L, 1972, Journal of Herpetology, V6, P147, DOI 10.2307/1562767 WERNER YL, 1983, HEARING OTHER SENSES, P149 WERNER YL, 1997, J BASIC CLIN PHYSL P, V8, P207 WERNER YL, 1979, ISRAEL J ZOOL, V28, P53 Werner YL, 1998, J EXP BIOL, V201, P487 Werner Yehudah L., 2001, Journal of Morphology, V248, P299 WERNER YUL, UNPUB SEXUAL DIMORPH Wever EG, 1978, REPTILE EAR ITS STRU WEVER E. G., 1974, HDB SENSORY PHYSIOLO, VV, P423 Wever EG, 1985, AMPHIBIAN EAR WEVER EG, 1973, J MORPHOL, V141, P461, DOI 10.1002/jmor.1051410406 WEVER EG, 1970, J EXP ZOOL, V175, P327, DOI 10.1002/jez.1401750307 WILCZYNSKI W, 1987, J COMP PHYSIOL A, V161, P659, DOI 10.1007/BF00605007 ZAHNERT T, 1997, MIDDLE EAR MECH RES, P214 NR 71 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2003 VL 175 IS 1-2 BP 54 EP 65 DI 10.1016/S0378-5955(02)00709-8 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 638JF UT WOS:000180567300006 PM 12527125 ER PT J AU Moore, BCJ Glasberg, BR AF Moore, BCJ Glasberg, BR TI Behavioural measurement of level-dependent shifts in the vibration pattern on the basilar membrane at 1 and 2 kHz SO HEARING RESEARCH LA English DT Article DE forward masking; Basilar membrane mechanics; frequency tuning ID AUDITORY-NERVE FIBERS; TUNING CURVES; CHINCHILLA COCHLEA; PULSATION PATTERNS; MAMMALIAN COCHLEA; NOISE MASKERS; SIGNAL DELAY; FREQUENCY; MASKING; RESPONSES AB Physiological data suggest that the peak of the travelling wave on the basilar membrane evoked by a high-frequency sinusoid moves towards the base with increasing level. Previously, we used a forward-masking technique to provide evidence for a similar effect in humans at 4 and 6.5 kHz. In the present study, we used a similar technique to determine whether level-dependent shifts occur for mid-range frequencies. The signal was a brief 1-kHz or 2-kHz tone presented at 10 dB SL (approximately 30 dB SPL). For three fixed masker levels (75, 85 and 95 dB SPL), we measured the duration of the gap between the masker and signal required to give 79.40%, correct detection of the signal (called the 'gap threshold') as a function of masker frequency; the longer the gap threshold, the more effective is the masker. The gap-threshold patterns nearly always showed a single peak close to the signal frequency. The gap-threshold patterns spread markedly towards lower frequencies with increasing masker level, but the frequency at the peak did not change systematically with level. We conclude that, for mid-range frequencies, the peak of the travelling wave does not shift significantly with increasing level over the range 30-95 dB SPL, but the envelope of the travelling wave becomes more shallow on its basal side. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England. RP Moore, BCJ (reprint author), Univ Cambridge, Dept Expt Psychol, Downing St, Cambridge CB2 3EB, England. RI Moore, Brian/I-5541-2012 CR Carney LH, 1999, J ACOUST SOC AM, V105, P2384, DOI 10.1121/1.426843 Cooper NP, 1997, J NEUROPHYSIOL, V78, P261 DEBOER E, 1990, BIOL CYBERN, V63, P433 GLASBERG BR, 1994, J ACOUST SOC AM, V96, P134, DOI 10.1121/1.410473 HIRSH IJ, 1952, J ACOUST SOC AM, V24, P131, DOI 10.1121/1.1906867 JESTEADT W, 1982, J ACOUST SOC AM, V71, P950, DOI 10.1121/1.387576 JOHNSONDAVIES D, 1979, J ACOUST SOC AM, V65, P765, DOI 10.1121/1.382490 KIDD G, 1981, HEARING RES, V5, P49, DOI 10.1016/0378-5955(81)90026-5 LONG GR, 1988, J ACOUST SOC AM, V84, P1343, DOI 10.1121/1.396633 MCFADDEN D, 1983, J ACOUST SOC AM, V74, P1178, DOI 10.1121/1.390041 McFadden D., 1986, BASIC APPL ASPECTS N, P295 MCFADDEN D, 1983, J ACOUST SOC AM, V74, P1185, DOI 10.1121/1.390042 Moore BCJ, 2002, HEARING RES, V163, P101, DOI 10.1016/S0378-5955(01)00390-2 Moore BCJ, 1998, J ACOUST SOC AM, V104, P1023, DOI 10.1121/1.423321 MOORE BCJ, 1983, J ACOUST SOC AM, V73, P1249, DOI 10.1121/1.389273 MOORE BCJ, 1987, HEARING RES, V28, P209, DOI 10.1016/0378-5955(87)90050-5 MUNSON WA, 1950, J ACOUST SOC AM, V22, P177, DOI 10.1121/1.1906586 Narayan SS, 2000, RECENT DEV AUDITORY, P95, DOI 10.1142/9789812793980_0014 OLOUGHLIN BJ, 1981, HEARING RES, V5, P343, DOI 10.1016/0378-5955(81)90057-5 OLOUGHLIN BJ, 1981, J ACOUST SOC AM, V69, P1119, DOI 10.1121/1.385691 Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3666, DOI 10.1121/1.418327 PATTERSON RD, 1980, J ACOUST SOC AM, V67, P229, DOI 10.1121/1.383732 Plack CJ, 1998, J ACOUST SOC AM, V103, P1598, DOI 10.1121/1.421294 ROBLES L, 1986, J ACOUST SOC AM, V80, P1364, DOI 10.1121/1.394389 ROSE JE, 1971, J NEUROPHYSIOL, V34, P685 Ruggero M A, 1992, Curr Opin Neurobiol, V2, P449, DOI 10.1016/0959-4388(92)90179-O Ruggero MA, 2000, P NATL ACAD SCI USA, V97, P11744, DOI 10.1073/pnas.97.22.11744 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 Russell IJ, 1997, J ACOUST SOC AM, V102, P1734, DOI 10.1121/1.420083 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 van den Brink G., 1970, Journal of the Acoustical Society of America, V48, DOI 10.1121/1.1912292 VERSCHUURE J, 1981, ACUSTICA, V49, P288 VERSCHUURE J, 1981, ACUSTICA, V49, P296 WIDIN GP, 1979, J ACOUST SOC AM, V66, P388, DOI 10.1121/1.383673 Zinn C, 2000, HEARING RES, V142, P159, DOI 10.1016/S0378-5955(00)00012-5 Zwicker E, 1999, PSYCHOACOUSTICS FACT Zwicker E., 1956, ACUSTICA, V6, P356 ZWISLOCKI J, 1952, EXPERIENTIA, V8, P279, DOI 10.1007/BF02301400 NR 38 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2003 VL 175 IS 1-2 BP 66 EP 74 DI 10.1016/S0378-5955(02)00711-6 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 638JF UT WOS:000180567300007 PM 12527126 ER PT J AU Izumi, A AF Izumi, A TI Effect of temporal separation on tone-sequence discrimination in monkeys SO HEARING RESEARCH LA English DT Article DE auditory discrimination; tone sequence; Japanese monkey ID HUMANS HOMO-SAPIENS; SHORT-TERM-MEMORY; CEBUS-APELLA; INFANTS PERCEPTION; PITCH PERCEPTION; MACACA-FUSCATA; VISUAL-SEARCH; FREQUENCY; INFORMATION; DURATION AB Perception of auditory spectral-temporal patterns was examined in two Japanese monkeys. The stimuli used were pairs of pure tones of different frequencies that were presented sequentially. The monkeys were required to discriminate whether the frequency of the second tone was higher or lower than the first tone. The performances of the monkeys deteriorated when a temporal gap (i.e., silence) was inserted between the component tones. A comparison experiment did not show such effects in human participants. The results suggested that monkeys use frequency transitions for tone-sequence discrimination, and that local characters are more dominant discrimination cues in monkeys than in humans. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Kyoto Univ, Primate Res Inst, Inuyama, Aichi 4848506, Japan. RP Izumi, A (reprint author), Kyoto Univ, Primate Res Inst, Inuyama, Aichi 4848506, Japan. CR Cavoto KK, 2001, J EXP PSYCHOL ANIM B, V27, P3, DOI 10.1037//0097-7403.27.1.3 CHANG HW, 1977, J EXP CHILD PSYCHOL, V24, P324, DOI 10.1016/0022-0965(77)90010-8 COLOMBO M, 1986, Q J EXP PSYCHOL-B, V38, P425 DAMATO MR, 1984, ANIM LEARN BEHAV, V12, P184, DOI 10.3758/BF03213141 DAMATO MR, 1988, MUSIC PERCEPT, V5, P453 DAMATO MR, 1982, ANIM LEARN BEHAV, V10, P126, DOI 10.3758/BF03212259 DEMANY L, 1984, J ACOUST SOC AM, V76, P57, DOI 10.1121/1.391006 Deruelle C, 1998, PSYCHON B REV, V5, P476, DOI 10.3758/BF03208825 Fagot J, 1999, J COMP PSYCHOL, V113, P3, DOI 10.1037/0735-7036.113.1.3 Fagot J, 2001, Anim Cogn, V4, P171, DOI 10.1007/s100710100109 Fagot J, 1997, J EXP PSYCHOL HUMAN, V23, P429, DOI 10.1037/0096-1523.23.2.429 Green S., 1975, Primate Behav, V4, P1 Hopkins WD, 2002, ANIM COGN, V5, P27, DOI 10.1007/s10071-001-0121-8 HULSE SH, 1984, J EXP PSYCHOL GEN, V113, P38, DOI 10.1037//0096-3445.113.1.38 Itani Junnichiro, 1963, PRIMATES, V4, P11, DOI 10.1007/BF01659149 Izumi A, 2001, J COMP PSYCHOL, V115, P127 Izumi A, 1999, PERCEPTION, V28, P437, DOI 10.1068/p2812 Izumi A, 2002, COGNITION, V82, pB113, DOI 10.1016/S0010-0277(01)00161-5 Jackson LL, 1999, J ACOUST SOC AM, V106, P3017, DOI 10.1121/1.428121 KOJIMA S, 1985, INT J NEUROSCI, V25, P255, DOI 10.3109/00207458508985378 MOODY DB, 1989, COMP PSYCHOL AUDITIO, P353 MOODY DB, 1986, EXP BIOL, V45, P219 RALSTON JV, 1995, J COMP PSYCHOL, V109, P268, DOI 10.1037//0735-7036.109.3.268 SINNOTT JM, 1993, J ACOUST SOC AM, V93, P1541, DOI 10.1121/1.406812 SINNOTT JM, 1987, J ACOUST SOC AM, V82, P465, DOI 10.1121/1.395447 SINNOTT JM, 1985, J ACOUST SOC AM, V78, P1977, DOI 10.1121/1.392654 TREHUB SE, 1987, CHILD DEV, V58, P741, DOI 10.1111/j.1467-8624.1987.tb01414.x TREHUB SE, 1984, CHILD DEV, V55, P821, DOI 10.1111/j.1467-8624.1984.tb03819.x NR 28 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2003 VL 175 IS 1-2 BP 75 EP 81 DI 10.1016/S0378-5955(02)00712-8 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 638JF UT WOS:000180567300008 PM 12527127 ER PT J AU Ahmad, M Bohne, BA Harding, GW AF Ahmad, M Bohne, BA Harding, GW TI An in vivo tracer study of noise-induced damage to the reticular lamina SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Midwinter Research Meeting of the Association-for-Research-in-Otolaryngology CY FEB 04-08, 2001 CL ST PETERSBURG, FLORIDA SP Assoc Res Otolaryngol DE noise; tracer; endolymphatic potential; holes in reticular lamina; membrane discontinuities; chinchilla ID INDUCED HEARING-LOSS; GUINEA-PIG COCHLEA; HAIR CELL LOSS; POTASSIUM CONCENTRATION; CHINCHILLA-COCHLEA; ORGAN; CORTI; ENDOLYMPH; DEGENERATION; EXPOSURE AB An in vivo tracer was used to determine if the reticular lamina and/or the cell membranes abutting the temporarily disrupted after intense noise exposure (4-kHz OBN, 108-dB SPL, 1.75 h). Using a double-barreled micropipette, the endolymphatic potential (EP) was recorded and artificial endolymph containing 10% carbon particles was injected into the endolymphatic space either 0 days or 28 days post-exposure. The cochleae were fixed 30-45 min post-injection, then dehydrated, embedded in plastic and dissected as flat preparations. Damage in the organ of Corti (OC) was quantified, the location of carbon was determined, and some OC segments were then sectioned radially. EP averaged 72 +/- 5 mV in five controls. These cochleae had carbon tracer in the endolymphatic space only. Four of five noise-exposed chinchillas examined 3-4 h post-exposure had a low EP (30 +/- 6 mV). The cochleae from these 0-day animals had several focal lesions in which nearly all outer hair cells had just degenerated. At these lesions, carbon was attached to cell membranes and debris between the reticular lamina and basilar membrane. By transmission electron microscopy, discontinuities were found in the apical membranes of sensory and supporting cells. Carbon particles were found in the cytoplasm of these cells. Four of five animals examined at 28 days had an average EP of 70 +/- 11 mV. The cochleae from these animals had multiple lesions in the basal turn, all of which were healed by phalangeal scars or squamous epithelial cells. In these cochleae, no carbon was found within the OC. Acute disruption of the reticular lamina and the apical membranes of sensory and supporting cells from noise appears to be a major mechanism to account for degeneration in the cochlea that spreads or continues for days to weeks post-exposure. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. RP Bohne, BA (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, Box 8115,660 S Euclid Ave, St Louis, MO 63110 USA. RI Bohne, Barbara/A-9113-2008 OI Bohne, Barbara/0000-0003-3874-7620 CR BENITEZ LD, 1972, J ACOUST SOC AM, V52, P1115, DOI 10.1121/1.1913222 Boettcher FA, 1995, J ACOUST SOC AM, V98, P3215, DOI 10.1121/1.413811 BOHNE B, 1971, THESIS WASHINGTON U Bohne B.A., 1982, NEW PERSPECTIVES NOI, P283 Bohne BA, 2000, AM J OTOL, V21, P505 BOHNE BA, 1990, HEARING RES, V48, P79, DOI 10.1016/0378-5955(90)90200-9 BOHNE BA, 1972, LARYNGOSCOPE, V82, P1 Bohne B.A., 1976, EFFECTS NOISE HEARIN, P41 BOHNE BA, 1976, HEARING DAVIS ESSAYS, P85 BOHNE BA, 1993, HEARING RES, V71, P114, DOI 10.1016/0378-5955(93)90027-X BOHNE BA, 1983, HEARING RES, V11, P41, DOI 10.1016/0378-5955(83)90044-8 BOHNE BA, 1976, ANN OTO RHINOL LARYN, V85, P711 CODY AR, 1980, ACTA OTO-LARYNGOL, V89, P440, DOI 10.3109/00016488009127160 DUVALL AJ, 1969, ANN OTO RHINOL LARYN, V78, P342 ELDREDGE DH, 1981, J ACOUST SOC AM, V69, P1091, DOI 10.1121/1.385688 ENGSTROM H, 1960, Acta Morphol Neerl Scand, V3, P195 Engstrom H, 1966, STRUCTURAL PATTERN O FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2 FREDELIUS L, 1988, ACTA OTO-LARYNGOL, V106, P81, DOI 10.3109/00016488809107374 GEYER G, 1978, EXPERIENTIA, V34, P363, DOI 10.1007/BF01923037 GULLEY RL, 1976, J NEUROCYTOL, V5, P479, DOI 10.1007/BF01181652 HARDING GW, 2002, HEARING RES, V174, P159 HAWKINS JE, 1971, ANN OTO RHINOL LARYN, V80, P903 HUNTERDUVAR IM, 1982, NEW PERSPECTIVES NOI, P3 IKEDA K, 1988, HEARING RES, V34, P193, DOI 10.1016/0378-5955(88)90106-2 IKEDA K, 1990, EUR ARCH OTO-RHINO-L, V247, P43 JAHNKE K, 1975, ACTA OTOLARYNGOL, V336, P4 JOHNSTONE BM, 1989, J PHYSIOL-LONDON, V408, P77 LIM DJ, 1979, OTOLARYNG CLIN N AM, V12, P493 LIM DJ, 1971, ARCHIV OTOLARYNGOL, V94, P294 LIM DJ, 1976, ANN OTO RHINOL LARYN, V85, P740 Ma YL, 1995, HEARING RES, V91, P79, DOI 10.1016/0378-5955(95)00172-7 MCDOWELL B, 1989, HEARING RES, V40, P221, DOI 10.1016/0378-5955(89)90163-9 MELICHAR I, 1980, Hearing Research, V2, P55, DOI 10.1016/0378-5955(80)90016-7 MORIZONO T, 1980, ARCH OTO-RHINO-LARYN, V229, P149, DOI 10.1007/BF00454238 Mulroy MJ, 1998, HEARING RES, V115, P93, DOI 10.1016/S0378-5955(97)00181-0 Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 QUIRK WS, 1992, HEARING RES, V63, P102, DOI 10.1016/0378-5955(92)90079-3 RAPHAEL Y, 1991, CELL MOTIL CYTOSKEL, V18, P215, DOI 10.1002/cm.970180307 SALT AN, 1979, EXP BRAIN RES, V36, P87 Salt AN, 1997, HEARING RES, V107, P29, DOI 10.1016/S0378-5955(97)00018-X SALT AN, 1986, NEUROBIOLOGY HEARING, P109 SPOENDLIN H, 1985, J OTOLARYNGOL, V14, P282 SYKA J, 1981, HEARING RES, V4, P287, DOI 10.1016/0378-5955(81)90013-7 TASAKI I, 1952, J NEUROPHYSIOL, V15, P497 THALMANN I, 1993, ARCH BIOCHEM BIOPHYS, V307, P391, DOI 10.1006/abbi.1993.1605 VASSOUT P, 1984, ACTA OTO-LARYNGOL, V98, P199, DOI 10.3109/00016488409107555 Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87 ZENNER HP, 1994, EUR ARCH OTO-RHINO-L, V251, P143 NR 50 TC 26 Z9 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2003 VL 175 IS 1-2 BP 82 EP 100 DI 10.1016/S0378-5955(02)00713-X PG 19 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 638JF UT WOS:000180567300009 PM 12527128 ER PT J AU Smittkamp, SE Park, DL Girod, DA Durham, D AF Smittkamp, SE Park, DL Girod, DA Durham, D TI Effects of age and cochlear damage on the metabolic activity of the avian cochlear nucleus SO HEARING RESEARCH LA English DT Article DE aging; auditory; chicken; cytochrome oxidase; metabolism; nucleus magnocellularis ID STEM AUDITORY NUCLEI; CYTOCHROME-OXIDASE ACTIVITY; NERVE ELECTRICAL-ACTIVITY; BRAIN-STEM; CELL-SIZE; INFERIOR COLLICULUS; NEURONAL-ACTIVITY; AFFERENT INFLUENCES; VISUAL-SYSTEM; ADULT MONKEYS AB Most aging commercially raised broiler chickens display a progressive loss of cochlear hair cells in a pattern similar to the cochlear degeneration found in aging humans: basal (high frequency) hair cells are affected first, followed by apical (low frequency) hair cells [Durham et al., Hear. Res. 166 (2002) 82-95]. Here, cochlear anatomy was assessed from scanning electron micrographs. Then, the metabolic activity of cochlear nucleus (nucleus magnocellularis, NM) neurons in 15-19, 30, 39, 40, and 6566 week old broiler chickens was examined using cytochrome oxidase histochemistry and compared to the degree of cochlear abnormality. Cochleae of 15-19 week old birds are largely normal; therefore the level of NM metabolic activity is considered the baseline. Cochleae of the 30 week old group display mild damage and hair cell regeneration in the base. Metabolic activity in rostral (high frequency) NM is increased relative to the baseline, while activity remains unchanged in caudal (low frequency) NM. The 39 and 65-66 week old groups display severe and total damage extending into the apex of the cochlea. Metabolic activity is decreased in rostral and caudal NM at these ages. These results suggest that auditory central nervous system metabolism (cytochrome oxidase activity) is affected by changes in the aging chicken cochlea. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Kansas, Med Ctr, Dept Otolaryngol Head & Neck Surg, Kansas City, KS 66160 USA. Univ Kansas, Med Ctr, Smith Mental Retardat Res Ctr, Kansas City, KS 66160 USA. Univ Kansas, Med Ctr, Dept Speech & Hearing, Kansas City, KS 66160 USA. Kansas City Vet Affairs Med Ctr, Kansas City, MO USA. RP Durham, D (reprint author), Univ Kansas, Med Ctr, Dept Otolaryngol Head & Neck Surg, 3901 Rainbow Blvd, Kansas City, KS 66160 USA. CR BORN DE, 1991, BRAIN RES, V557, P37, DOI 10.1016/0006-8993(91)90113-A BORN DE, 1985, J COMP NEUROL, V231, P435, DOI 10.1002/cne.902310403 Caicedo A, 1997, J COMP NEUROL, V378, P1, DOI 10.1002/(SICI)1096-9861(19970203)378:1<1::AID-CNE1>3.0.CO;2-8 Capurso SA, 1997, J NEUROSCI, V17, P7372 Caspary DM, 1999, NEUROSCIENCE, V93, P307, DOI 10.1016/S0306-4522(99)00121-9 CASPARY DM, 1995, EXP GERONTOL, V30, P349, DOI 10.1016/0531-5565(94)00052-5 CHINO YM, 1992, VISION RES, V32, P789, DOI 10.1016/0042-6989(92)90021-A Chino YM, 1995, CAN J PHYSIOL PHARM, V73, P1323 Churchill JD, 1998, EXP BRAIN RES, V118, P189, DOI 10.1007/s002210050271 COLGAN AL, 2000, ARO ABSTR, V23, P44 DIETRICH WD, 1985, J NEUROSCI, V5, P874 Durham D, 2002, HEARING RES, V166, P82, DOI 10.1016/S0378-5955(02)00301-5 Edmonds JL, 1999, HEARING RES, V127, P62, DOI 10.1016/S0378-5955(98)00180-4 FischelGhodsian N, 1997, HEARING RES, V110, P147, DOI 10.1016/S0378-5955(97)00077-4 Forster CR, 2000, J COMP NEUROL, V416, P173, DOI 10.1002/(SICI)1096-9861(20000110)416:2<173::AID-CNE4>3.0.CO;2-V Garcia MM, 2000, HEARING RES, V147, P113, DOI 10.1016/S0378-5955(00)00125-8 HASHISAKI GT, 1989, J COMP NEUROL, V283, P465, DOI 10.1002/cne.902830402 Horton JC, 1998, J NEUROSCI, V18, P5433 HYDE GE, 1990, J COMP NEUROL, V297, P329, DOI 10.1002/cne.902970302 Jain N, 2000, P NATL ACAD SCI USA, V97, P5546, DOI 10.1073/pnas.090572597 JEFFERY G, 1987, EXP BRAIN RES, V67, P651 Keithley EM, 2001, HEARING RES, V157, P93, DOI 10.1016/S0378-5955(01)00281-7 KOERBER KC, 1966, EXP NEUROL, V16, P119, DOI 10.1016/0014-4886(66)90091-4 Krenning J, 1998, LARYNGOSCOPE, V108, P26, DOI 10.1097/00005537-199801000-00005 LEVAY S, 1980, J COMP NEUROL, V191, P1, DOI 10.1002/cne.901910102 LIPPE W, 1985, J COMP NEUROL, V237, P273, DOI 10.1002/cne.902370211 LIPPE WR, 1991, HEARING RES, V51, P193, DOI 10.1016/0378-5955(91)90036-9 Milbrandt JC, 1997, J COMP NEUROL, V379, P455, DOI 10.1002/(SICI)1096-9861(19970317)379:3<455::AID-CNE10>3.0.CO;2-F Mostafapour SP, 2000, J COMP NEUROL, V426, P561, DOI 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G NORDEEN KW, 1983, J COMP NEUROL, V214, P144, DOI 10.1002/cne.902140204 NUCKOLS DA, 1999, ARO ABSTR, V22, P129 Park DL, 1998, HEARING RES, V126, P84, DOI 10.1016/S0378-5955(98)00157-9 PASIC TR, 1989, J COMP NEUROL, V283, P474, DOI 10.1002/cne.902830403 PASIC TR, 1991, OTOLARYNG HEAD NECK, V104, P6 PASIC TR, 1994, J COMP NEUROL, V348, P111, DOI 10.1002/cne.903480106 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 RICHARDSON BE, 1990, HEARING RES, V46, P53 RUBEL EW, 1990, J NEUROBIOL, V21, P169, DOI 10.1002/neu.480210112 RYALS BM, 1982, ACTA OTO-LARYNGOL, V93, P205, DOI 10.3109/00016488209130873 SANDS SJ, 1999, ASS RES OT ABSTR, V22, P146 Seidman MD, 2000, LARYNGOSCOPE, V110, P727, DOI 10.1097/00005537-200005000-00003 Seidman MD, 2000, AM J OTOL, V21, P161, DOI 10.1016/S0196-0709(00)80003-4 Shumway CA, 1999, J COMP NEUROL, V413, P583 SIE KCY, 1992, J COMP NEUROL, V320, P501, DOI 10.1002/cne.903200407 SMITTKAMP SE, 2001, ARO ABSTR, V24, P148 SMITTKAMP SE, 2002, ARO, V25, P71 Smittkamp SE, 2002, HEARING RES, V170, P139, DOI 10.1016/S0378-5955(02)00486-0 Tierney TS, 1997, J COMP NEUROL, V378, P295, DOI 10.1002/(SICI)1096-9861(19970210)378:2<295::AID-CNE11>3.0.CO;2-R WESTRUM LE, 1986, J COMP NEUROL, V243, P195, DOI 10.1002/cne.902430205 Wilkinson BL, 2002, MOL BRAIN RES, V99, P67, DOI 10.1016/S0169-328X(02)00113-4 Willott JF, 1997, J COMP NEUROL, V385, P405 WONGRILEY M, 1984, NATURE, V307, P262, DOI 10.1038/307262a0 WONGRILEY MTT, 1989, TRENDS NEUROSCI, V12, P94, DOI 10.1016/0166-2236(89)90165-3 Woods TM, 2000, J NEUROSCI, V20, P3884 Xu J, 1999, J NEUROSCI, V19, P7578 Yinon U, 1995, CAN J PHYSIOL PHARM, V73, P1378 NR 56 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2003 VL 175 IS 1-2 BP 101 EP 111 DI 10.1016/S0378-5955(02)00714-1 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 638JF UT WOS:000180567300010 PM 12527129 ER PT J AU Priner, R Perez, R Freeman, S Sohmer, H AF Priner, R Perez, R Freeman, S Sohmer, H TI Mechanisms responsible for postnatal middle ear amniotic fluid clearance SO HEARING RESEARCH LA English DT Article DE middle ear; amniotic; conductive; fluid; neonate; osmotic ID EUSTACHIAN-TUBE; ION-TRANSPORT; OTITIS-MEDIA AB Neonatal guinea pigs show signs of a temporary conductive hearing loss during the first few days after birth. It has been suggested that this is due mainly to the presence of amniotic fluid in the middle ear (ME) cavity at birth and its subsequent clearance. This study was designed to try to identify the mechanisms responsible for the amniotic fluid clearance from the ME after birth by means of several experiments in guinea pigs. The osmolarity of the blood, amniotic fluid and the fluid in the ME cavity of guinea pig fetuses was measured. Serum and normal saline were introduced into the ME of older animals and fluid clearance was monitored short- and long-term by microscopic observation, tympanometry and estimation of residual fluid. Following instillation of 115 normal saline and normal saline into the ME cavity, the osmolarity of the remaining fluid was determined, short- and long-term. Clear osmotic pressure gradients were found between amniotic fluid (low pressure), fetal blood (higher pressure) and the fluid in the fetal ME (intermediate between them). The MEs into which normal saline had been introduced developed negative pressure and, over several days, were cleared of fluid. When serum was applied, ME pressure remained close to atmospheric and the fluid was not cleared. Hypotonic saline application led to an increase in the osmotic pressure in the fluid remaining in the ME. It is concluded that most of the amniotic fluid is cleared from the neonatal ME cavity by water outflow into the blood due to osmotic pressure gradients. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Hebrew Univ Jerusalem, Dept Physiol, Hadassah Med Sch, IL-91120 Jerusalem, Israel. Shaare Zedek Med Ctr, Dept Otolaryngol Head & Neck Surg, Jerusalem, Israel. RP Sohmer, H (reprint author), Hebrew Univ Jerusalem, Dept Physiol, Hadassah Med Sch, POB 12272, IL-91120 Jerusalem, Israel. CR ADELMAN C, 1990, ELECTROEN CLIN NEURO, V77, P77, DOI 10.1016/0168-5597(90)90019-A BARAJAS JJ, 1981, AUDIOLOGY, V20, P41 Bennett MJ, 1975, BRIT J AUDIOL, V9, P117, DOI 10.3109/03005367509079122 BLAND RD, 1992, ANNU REV PHYSIOL, V54, P373, DOI 10.1146/annurev.physiol.54.1.373 Bland R D, 1987, Adv Pediatr, V34, P175 BORTNICK E, 1965, ARCHIV OTOLARYNGOL, V81, P237 DESA DJ, 1973, ARCH DIS CHILD, V48, P872 GILBERT WM, 1993, SEMIN PERINATOL, V17, P150 Gilbert WM, 1991, FETAL MED REV, V3, P89 GRACE A, 1987, OTOLARYNG HEAD NECK, V96, P336 HADAS E, 1979, J LARYNGOL OTOL, V93, P781, DOI 10.1017/S0022215100087715 HAYASHI M, 1986, AM J OTOLARYNG, V7, P399, DOI 10.1016/S0196-0709(86)80014-X HONJO I, 1985, AM J OTOLARYNG, V6, P241, DOI 10.1016/S0196-0709(85)80095-8 HONJO I, 1981, ACTA OTO-LARYNGOL, V91, P85, DOI 10.3109/00016488109138485 Magnuson B, 1981, Am J Otolaryngol, V2, P1, DOI 10.1016/S0196-0709(81)80002-6 NUUTINEN J, 1983, ARCH OTOLARYNGOL, V109, P669 PARK K, 1992, AM J OTOLARYNG, V13, P93, DOI 10.1016/0196-0709(92)90005-E Perez R, 2002, OTOL NEUROTOL, V23, P29, DOI 10.1097/00129492-200201000-00008 Portier F, 1999, AM J PHYSIOL-CELL PH, V276, pC312 POULSEN G, 1978, Scandinavian Audiology, V7, P159, DOI 10.3109/01050397809076282 PRINER R, 2002, IN PRESS AUDIOL NEUR QUEENAN JT, 1970, AM J OBSTET GYNECOL, V108, P406 RAPHAEL Y, 1983, ARCH OTO-RHINO-LARYN, V237, P147, DOI 10.1007/BF00463614 ROBERTS DG, 1995, ARCH PEDIAT ADOL MED, V149, P873 Sadé J, 1967, Arch Otolaryngol, V86, P128 SADE J, 1979, INT J PEDIATR OTORHI, V1, P41, DOI 10.1016/0165-5876(79)90028-4 SAKAGAMI M, 1990, EUR ARCH OTO-RHINO-L, V248, P113 Stuart A, 1994, J Am Acad Audiol, V5, P163 TAKAHASHI H, 1992, ANN OTO RHINOL LARYN, V101, P759 TOS M, 1980, ANN OTO RHINOL LARYN, V89, P217 YEN PT, 1993, ACTA OTO-LARYNGOL, V113, P358, DOI 10.3109/00016489309135825 NR 31 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2003 VL 175 IS 1-2 BP 133 EP 139 DI 10.1016/S0378-5955(02)00718-9 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 638JF UT WOS:000180567300012 PM 12527131 ER PT J AU Engel-Yeger, B Zaaroura, S Zlotogora, J Shalev, S Hujeirat, Y Carrasquillo, M Saleh, B Pratt, H AF Engel-Yeger, B Zaaroura, S Zlotogora, J Shalev, S Hujeirat, Y Carrasquillo, M Saleh, B Pratt, H TI Otoacoustic emissions and brainstem evoked potentials in compound carriers of connexin 26 mutations SO HEARING RESEARCH LA English DT Article DE hereditary; congenital deafness; consanguinity; auditory; outer hair cell; compound carrier ID HEARING-LOSS; GENE GJB2; RECESSIVE DEAFNESS; GAP-JUNCTIONS; SENSORINEURAL DEAFNESS; PRELINGUAL DEAFNESS; CHILDHOOD DEAFNESS; HIGH PREVALENCE; RAT COCHLEA; DFNB1 AB This study compares the effects of mutations in the gap junction protein connexin 26 (Cx26), on outer hair cells (OHCs), inner hair cells (IHCs) and auditory nerve/brainstem among carriers of these mutations. One hundred and twenty eight individuals, from a village with widespread consanguinity and congenital deafness, due to three Cx26 mutations, were selected among relatives of deaf persons, and divided into non-carriers, carriers of one mutation, homozygous to one mutation, or compound heterozygous carriers of two different mutations. Distortion product otoacoustic emissions (DPOAEs), auditory brainstem responses (ABRs) and audiometric evaluation were compared in these genetic groups. Hearing loss among homozygotes and compound heterozygotes was comparable and ranged from mild to profound. Most ABRs from these groups showed no responses or partial responses (peaks III, V) with prolonged latencies, but some individuals had all peaks at normal latencies. DPOAEs were absent, except sporadic responses. Carriers of one mutation had significantly smaller DPOAEs compared to non-carriers, although normal pure tone audiograms and ABRs were found in these groups. In conclusion, based on DPOAEs, Cx26 mutations may impact OHC function among carriers of one or two Cx26 mutations. IHC/nerve impairment among homozygotes and compound heterozygotes is variable. OHCs may be more susceptible to Cx26 mutations compared to IHCs and the auditory nerve and brainstem pathway activated by them. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Technion Israel Inst Technol, Evoked Potentials Lab, IL-32000 Haifa, Israel. French Hosp, Nazareth, Israel. Minist Hlth, Jerusalem, Israel. Haemeq Hosp, Afula, Israel. Johns Hopkins Univ, Sch Med, Baltimore, MD USA. RP Engel-Yeger, B (reprint author), Technion Israel Inst Technol, Evoked Potentials Lab, Gutwirth Bldg, IL-32000 Haifa, Israel. CR Abe S, 2000, J MED GENET, V37, P41, DOI 10.1136/jmg.37.1.41 Antoniadi T, 2000, HUM MUTAT, V16, P7, DOI 10.1002/1098-1004(200007)16:1<7::AID-HUMU2>3.0.CO;2-A Antoniadi T, 1999, CLIN GENET, V55, P381 Bruzzone R, 1996, EUR J BIOCHEM, V238, P1, DOI 10.1111/j.1432-1033.1996.0001q.x Carrasquillo MM, 1997, HUM MOL GENET, V6, P2163, DOI 10.1093/hmg/6.12.2163 Cohn ES, 1999, PEDIATRICS, V103, P546, DOI 10.1542/peds.103.3.546 Denoyelle F, 1997, HUM MOL GENET, V6, P2173, DOI 10.1093/hmg/6.12.2173 Denoyelle F, 1999, LANCET, V353, P1298, DOI 10.1016/S0140-6736(98)11071-1 Engel-Yeger B, 2002, HEARING RES, V163, P93, DOI 10.1016/S0378-5955(01)00386-0 Estivill X, 1998, LANCET, V351, P394, DOI 10.1016/S0140-6736(97)11124-2 Evans WH, 1999, NOVART FDN SYMP, V219, P44 Fortnum H, 1997, BRIT J AUDIOL, V31, P409, DOI 10.3109/03005364000000037 Goodenough DA, 1996, ANNU REV BIOCHEM, V65, P475, DOI 10.1146/annurev.bi.65.070196.002355 Griffith AJ, 2000, AM J HUM GENET, V67, P745, DOI 10.1086/303045 HAEFLIGER JA, 1992, J BIOL CHEM, V267, P2057 KANDEL ER, 1991, PRINCIPES NEURAL SCI, P481 Katz J, 1994, HDB CLIN AUDIOLOGY Kelley PM, 1998, AM J HUM GENET, V62, P792, DOI 10.1086/301807 Kelley PM, 2000, BRAIN RES REV, V32, P184, DOI 10.1016/S0165-0173(99)00080-6 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 Kikuchi T, 2000, BRAIN RES REV, V32, P163, DOI 10.1016/S0165-0173(99)00076-4 Kudo T, 2000, AM J MED GENET, V90, P141, DOI 10.1002/(SICI)1096-8628(20000117)90:2<141::AID-AJMG10>3.0.CO;2-G Lautermann J, 1998, CELL TISSUE RES, V294, P415, DOI 10.1007/s004410051192 Lefebvre PP, 2000, BRAIN RES REV, V32, P159 Martin PEM, 1999, HUM MOL GENET, V8, P2369, DOI 10.1093/hmg/8.13.2369 Morell RJ, 1998, NEW ENGL J MED, V339, P1500, DOI 10.1056/NEJM199811193392103 MORTON NE, 1991, ANN NY ACAD SCI, V630, P16, DOI 10.1111/j.1749-6632.1991.tb19572.x Murgia A, 1999, J MED GENET, V36, P829 PAPARELLA MM, 1998, OTOLARYNGOLOGY Park HJ, 2000, LARYNGOSCOPE, V110, P1535, DOI 10.1097/00005537-200009000-00023 PAUL DL, 1995, CURR OPIN CELL BIOL, V7, P665, DOI 10.1016/0955-0674(95)80108-1 Rabionet R, 2000, HUM MUTAT, V16, P190, DOI 10.1002/1098-1004(200009)16:3<190::AID-HUMU2>3.0.CO;2-I Resendes BL, 2001, AM J HUM GENET, V69, P923, DOI 10.1086/324122 Robinette M. S., 1997, OTOACOUSTIC EMISSION VANLAER L, 2001, J MED GENET, V38, P535 Wilcox SA, 2000, HUM GENET, V106, P399, DOI 10.1007/s004390000273 Zelante L, 1997, HUM MOL GENET, V6, P1605, DOI 10.1093/hmg/6.9.1605 NR 37 TC 11 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2003 VL 175 IS 1-2 BP 140 EP 151 DI 10.1016/S0378-5955(02)00719-0 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 638JF UT WOS:000180567300013 PM 12527132 ER PT J AU Liu, GB AF Liu, GB TI Functional development of the auditory brainstem in the tammar wallaby (Macropus eugenii): the superior olivary complex and its relationship with the auditory brainstem response (ABR) SO HEARING RESEARCH LA English DT Article DE auditory brainstem response; tammar wallaby; superior olivary complex; development; auditory adaptation ID STEM RESPONSE; TEMPORAL RELATIONSHIP; INFERIOR COLLICULUS; COCHLEAR NUCLEI; STIMULUS RATE; CAT; POTENTIALS; CELLS; NERVE; GENERATORS AB Twenty pouch-young tammar wallabies (Macropus eugenii) were used to determine the generator of the auditory brainstem response (ABR) during development through ABR and focal superior olivary complex (SO) recordings. A click response from the SO in the wallaby was recorded from postnatal day (PND) 112 when the ABR was only a positive-negative deflection. Before PND 120, the SO response did not contribute to the ABR as it occurred outside the ABR time-span. After PND 140, the SO response was correlated with multiple waves of the ABR with its dominant component corresponding to the ABR P3 wave. The latency, threshold, and amplitude of the SO response developed to the adult-like level at PND 140, while the rate-following ability in the SO response reached the adult level at PND 160. Presumably this was due to more complicated mechanisms underlying the auditory adaptation. The adaptation of the SO response was directly proportional to the stimulus rate and intensity as well as developmental status. Developmental comparison between the ABR and the focal responses from four auditory brainstem nuclei indicated that each ABR component may have a dominant contributor from the auditory brainstem, but there was no simple and exclusive association between the ABR component and the auditory brainstem nuclei. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Queensland, Sch Biomed Sci, Vis Touch & Hearing Res Ctr, Brisbane, Qld 4072, Australia. RP Liu, GB (reprint author), Univ Queensland, Sch Biomed Sci, Vis Touch & Hearing Res Ctr, Brisbane, Qld 4072, Australia. CR Aitkin L, 1996, J EXP ZOOL, V276, P394, DOI 10.1002/(SICI)1097-010X(19961215)276:6<394::AID-JEZ3>3.3.CO;2-K AITKIN L, 1995, HEARING RES, V82, P257, DOI 10.1016/0378-5955(94)00182-P BABIGHIAN C, 1975, AUDIOLOGY, V14, P72 BRUGGE JF, 1984, J ACOUST SOC AM, V75, P1548, DOI 10.1121/1.390826 BRUNSOBECHTOLD JK, 1994, HEARING RES, V77, P99, DOI 10.1016/0378-5955(94)90257-7 Burkard R, 1996, J ACOUST SOC AM, V100, P991, DOI 10.1121/1.416210 Cant N. B., 1991, NEUROBIOLOGY HEARING, P99 Caspary DM, 1991, NEUROBIOLOGY HEARING, P141 CLARK GM, 1968, EXP NEUROL, V20, P31, DOI 10.1016/0014-4886(68)90122-2 DON M, 1977, ANN OTO RHINOL LARYN, V86, P186 ECKMAN G, 1967, SCAND J PHYSL, V1, P177 EGGERMONT JJ, 1991, HEARING RES, V57, P45, DOI 10.1016/0378-5955(91)90073-I FURUKAWA T, 1978, J PHYSIOL-LONDON, V276, P193 GALAMBOS R, 1959, AM J PHYSIOL, V197, P527 GOLDBERG JAY M., 1968, J NEUROPHYSIOL, V31, P639 GREENE LC, 1962, J APPL PHYSIOL, V17, P693 Grothe B, 2000, PROG NEUROBIOL, V61, P581, DOI 10.1016/S0301-0082(99)00068-4 GUINAN JJ, 1972, INT J NEUROSCI, V4, P147 GUINAN JJ, 1972, INT J NEUROSCI, V4, P101, DOI 10.3109/00207457209147165 Helfert RH, 1991, NEUROBIOLOGY HEARING, P1 Henry J A, 2000, J Am Acad Audiol, V11, P103 HUANG CM, 1977, BRAIN RES, V137, P291 KANO Y, 1987, BRAIN RES, V419, P262, DOI 10.1016/0006-8993(87)90592-0 KING AJ, 1987, J NEUROPHYSIOL, V57, P596 Leung SM, 1998, HEARING RES, V123, P201, DOI 10.1016/S0378-5955(98)00114-2 Liu GB, 2001, AUDIOL NEURO-OTOL, V6, P140, DOI 10.1159/000046821 Liu GB, 2001, HEARING RES, V157, P112, DOI 10.1016/S0378-5955(01)00289-1 Melcher JR, 1996, HEARING RES, V93, P52, DOI 10.1016/0378-5955(95)00200-6 Melcher JR, 1996, HEARING RES, V93, P28, DOI 10.1016/0378-5955(95)00179-4 MIDDLEBROOKS JC, 1984, J NEUROSCI, V4, P2621 Moller A. R., 1994, PRINCIPLES APPL AUDI, P23 MOORE JK, 1987, HEARING RES, V29, P33, DOI 10.1016/0378-5955(87)90203-6 OLLO C, 1979, AM J ANAT, V155, P349, DOI 10.1002/aja.1001550306 PRASHER D, 1994, SCAND AUDIOL, V24, P101 SANES DH, 1985, DEV BRAIN RES, V22, P255, DOI 10.1016/0165-3806(85)90177-4 SANES DH, 1988, J NEUROSCI, V8, P682 SCHEIBEL ME, 1974, EXP NEUROL, V43, P339, DOI 10.1016/0014-4886(74)90175-7 SCHWARTZ IR, 1977, NEUROSCIENCE, V2, P81, DOI 10.1016/0306-4522(77)90070-7 STARR A, 1979, ANN OTO RHINOL LARYN, V88, P550 TSUCHITANI C, 1964, J NEUROPHYSIOL, V27, P814 TSUCHITANI C, 1983, BASES AUDITORY BRAIN, P67 WU SH, 1987, HEARING RES, V30, P99 YOUNG SR, 1986, J COMP NEUROL, V254, P425, DOI 10.1002/cne.902540402 NR 43 TC 1 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2003 VL 175 IS 1-2 BP 152 EP 164 DI 10.1016/S0378-5955(02)00733-5 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 638JF UT WOS:000180567300014 PM 12527133 ER PT J AU Balaban, CD Zhou, JX Li, HS AF Balaban, CD Zhou, JX Li, HS TI Type 1 vanilloid receptor expression by mammalian inner ear ganglion cells SO HEARING RESEARCH LA English DT Article ID ACTIVATED ION-CHANNEL; CAPSAICIN RECEPTOR; DOMAIN AB The type I vanilloid receptor (VR1) is a non-specific cation channel activated by capsaicin, lipoxygenase (LOX) products, heat and acid. This study demonstrates VR1 and 5-LOX expression by inner ear ganglion cells. A PCR product (210 bp) was amplified from both oligo(dT)- and random primer-generated cDNAs of rat spiral ganglion cells using VR1 gene-specific primers constructed from the 3' non-homologous region. This PCR product shared 100% sequence homology to a rat VR1 cDNA (GenBank accession no. AF029310) and a rat vanilloid receptor splice variant mRNA (GenBank accession no. AF158248). Frozen sections of PLP-fixed, decalcified Long-Evans rat temporal bones were stained immunohistochemically for VR1 Neurons and satellite cells in both the vestibular and spiral ganglia were VR1-immunopositive. Neurons and supporting cells in adjacent sections of these ganglia were immunopositive for 5-LOX. These findings raise the hypothesis that activation of VR1 by endogenous ligands may contribute to hypersensitivity of the eighth nerve to hair cell inputs in a variety of pathologic conditions, such Lis tinnitus, Meniere's disease and migraine. In particular, these data suggest that LOX activation during inflammatory processes or during cyclo-oxygenase inhibition (e.g. by aspirin) is a potential intrinsic source of VR1 activation in inner ear ganglia. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Pittsburgh, Sch Med, Dept Otolaryngol, Inst Eye & Ear, Pittsburgh, PA 15213 USA. Univ Pittsburgh, Sch Med, Dept Neurobiol, Pittsburgh, PA 15213 USA. Univ Pittsburgh, Sch Med, Dept Commun Sci & Disorders, Pittsburgh, PA 15213 USA. RP Balaban, CD (reprint author), Univ Pittsburgh, Sch Med, Dept Otolaryngol, Inst Eye & Ear, 203 Lothrop St,Rm 153, Pittsburgh, PA 15213 USA. CR Caterina MJ, 1997, NATURE, V389, P816 Caterina MJ, 2000, SCIENCE, V288, P306, DOI 10.1126/science.288.5464.306 CHRISTIE MJ, 1998, INFLAMM RES, V48, P1 Fosslien E, 1998, ANN CLIN LAB SCI, V28, P67 Hwang SW, 2000, P NATL ACAD SCI USA, V97, P6155, DOI 10.1073/pnas.97.11.6155 Jordt SE, 2000, P NATL ACAD SCI USA, V97, P8134, DOI 10.1073/pnas.100129497 Jung J, 1999, J NEUROSCI, V19, P529 MCLEAN IW, 1974, J HISTOCHEM CYTOCHEM, V22, P1077 RASK-MADSEN J, 1992, Agents and Actions, pC37 Schumacher MA, 2000, J BIOL CHEM, V275, P2756, DOI 10.1074/jbc.275.4.2756 Suzuki M, 1999, J BIOL CHEM, V274, P6330, DOI 10.1074/jbc.274.10.6330 NR 11 TC 36 Z9 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2003 VL 175 IS 1-2 BP 165 EP 170 DI 10.1016/S0378-5955(02)00734-7 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 638JF UT WOS:000180567300015 PM 12527134 ER PT J AU Nishimura, T Nakagawa, S Sakaguchi, T Hosoi, H AF Nishimura, T Nakagawa, S Sakaguchi, T Hosoi, H TI Ultrasonic masker clarifies ultrasonic perception in man SO HEARING RESEARCH LA English DT Article DE ultrasonic perception; bone conduction; simultaneous masking; dynamic range; ultrasound; high-frequency audition; downward spread of masking ID HEARING-IMPAIRED LISTENERS; OUTER HAIR-CELLS; PSYCHOPHYSICAL TUNING CURVES; AUDITORY-NERVE; MASKING; FREQUENCY AB Bone conduction enables ultrasound to be heard. Although several hypotheses about ultrasonic perception have been presented, the perception mechanism of bone-conducted ultrasound has not yet been established. In this study, to investigate ultrasonic perception, the amount of masking produced by 27-, 30- and 33-kHz bone-conducted ultrasonic maskers for air-conducted high-frequency sounds was measured in the frequency range of 8-18 kHz at 1-kHz intervals. The results showed that the air-conducted signals in the frequency range of 10-14 kHz were strongly masked by the ultrasonic maskers. When the masker intensity increased from 5 to 10 dB SL, the growth of masking was more than 10 dB in the frequency range of 9-15 kHz, and the masking spread strongly to lower frequencies. Furthermore, the dynamic range for bone-conducted ultrasound was clearly narrower than that for air-conducted high-frequency sounds. These results suggest that perception of bone-conducted ultrasound depends on inner hair cell activity induced by ultrasound, even without modulation being present, and does not depend on enhancement by the outer hair cells in the basal turn of the cochlea. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Nara Med Univ, Dept Otolaryngol, Kashihara, Nara 6348522, Japan. Natl Inst Adv Ind Sci & Technol, Life Elect Lab, Ikeda, Osaka 5638577, Japan. RP Nishimura, T (reprint author), Nara Med Univ, Dept Otolaryngol, Kashihara, Nara 6348522, Japan. CR ABRAMOVICH SJ, 1978, J LARYNGOL OTOL, V92, P861, DOI 10.1017/S0022215100086230 Bekesy G., 1960, EXPT HEARING BELLUCCI RICHARD J., 1962, ANN OTOL RHINOL AND LARYNGOL, V71, P719 BRUNDIN L, 1989, NATURE, V342, P814, DOI 10.1038/342814a0 Buus S., 1986, AUDITORY FREQUENCY S, P341 CARRICK D G, 1986, British Journal of Audiology, V20, P153, DOI 10.3109/03005368609079009 RENDELL R J, 1987, British Journal of Audiology, V21, P289, DOI 10.3109/03005368709076421 CORSO JF, 1963, J ACOUST SOC AM, V35, P1738, DOI 10.1121/1.1918804 DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 DEATHERAGE BH, 1954, J ACOUST SOC AM, V26, P582, DOI 10.1121/1.1907379 DELGUTTE B, 1990, J ACOUST SOC AM, V87, P791, DOI 10.1121/1.398891 DIEROFF HG, 1975, ARCH OTO-RHINO-LARYN, V209, P277, DOI 10.1007/BF00456548 EGAN JP, 1950, J ACOUST SOC AM, V22, P622, DOI 10.1121/1.1906661 GATES GA, 1991, ACTA OTO-LARYNGOL, V111, P240, DOI 10.3109/00016489109137382 GAVREAU V, 1948, CR HEBD ACAD SCI, V226, P2053 HAEFF AV, 1963, SCIENCE, V139, P590, DOI 10.1126/science.139.3555.590 Hosoi H, 1998, LANCET, V351, P496, DOI 10.1016/S0140-6736(05)78683-9 LENHARDT ML, 1991, SCIENCE, V253, P82, DOI 10.1126/science.2063208 MOORE BCJ, 1978, J ACOUST SOC AM, V63, P524, DOI 10.1121/1.381752 MOORE BCJ, 1995, J ACOUST SOC AM, V97, P2468, DOI 10.1121/1.411967 NELSON DA, 1991, J SPEECH HEAR RES, V34, P1233 Noordhoek IM, 2000, J ACOUST SOC AM, V107, P1685, DOI 10.1121/1.428452 OHYAMA K, 1985, HEARING RES, V17, P143, DOI 10.1016/0378-5955(85)90017-6 Ohyama K, 1987, Acta Otolaryngol Suppl, V435, P73 OLOUGHLIN BJ, 1981, J ACOUST SOC AM, V69, P1119, DOI 10.1121/1.385691 Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3666, DOI 10.1121/1.418327 PUMPHREY RJ, 1950, NATURE, V166, P571, DOI 10.1038/166571b0 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 SHANNON RV, 1983, HEARING RES, V11, P157, DOI 10.1016/0378-5955(83)90077-1 SOUCEK S, 1986, J OTOLARYNGOL, V15, P175 STELMACHOWICZ PG, 1987, J ACOUST SOC AM, V81, P1881, DOI 10.1121/1.394752 STRELIOFF D, 1985, HEARING RES, V18, P169, DOI 10.1016/0378-5955(85)90009-7 Wegel R. L., 1932, ANN OTO RHINOL LARYN, V41, P740 NR 34 TC 25 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2003 VL 175 IS 1-2 BP 171 EP 177 DI 10.1016/S0378-5955(02)00735-9 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 638JF UT WOS:000180567300016 PM 12527135 ER PT J AU Szymko-Bennett, YM Kurima, K Olsen, B Seegmiller, R Griffith, AJ AF Szymko-Bennett, YM Kurima, K Olsen, B Seegmiller, R Griffith, AJ TI Auditory function associated with Col11a1 haploinsufficiency in chondrodysplasia (cho) mice SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Midwinter Research Meeting of the Association-for-Research-in-Otolaryngology CY FEB 04-08, 2001 CL ST PETERSBURG, FLORIDA SP Assoc Res Otolaryngol DE genetic; hearing; deafness; Stickler; Marshall; collagen ID STICKLER-SYNDROME; HEARING-LOSS; MARSHALL-SYNDROME; INBRED STRAINS; GENE; COLLAGEN; MUTATIONS; DEFECT; LOCUS AB Heterozygosity for mutations in the fibrillar collagen gene COLIIAl causes sensorineural hearing loss in patients with Stickler syndrome or Marshall syndrome. Chondrodysplasia (cho) is a functional null allele of ColIIal that causes lethal chondrodysplasia in cholcho newborn mice, and osteoarthritis in chol+ heterozygotes. To determine if Col11al haploinsufficiency causes hearing loss in chol+ mice, auditory brainstem response (ABR) thresholds were measured at 2, 4, 6 8 and 10 months of age. There was no difference in ABR thresholds for click and tone burst stimuli between chol+ and +/+ mice at all ages. In contrast to the conclusion of a previous report, our results indicate that Col11al haploinsufficiency does not cause significant hearing loss on the C5713L/6 strain background. We conclude that Stickler syndrome and Marshall syndrome mutations in COL11Al cause hearing loss via dominant negative effects upon wild-type fibrillar collagen polypeptides in the extracellular matrices of the cochlea. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Natl Inst Deafness & Other Commun Disorders, Hearing Sect, NIH, Rockville, MD 20850 USA. Natl Inst Deafness & Other Commun Disorders, Sect Gene Structure & Funct, NIH, Rockville, MD 20850 USA. Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA. Brigham Young Univ, Dept Zool, Provo, UT 84602 USA. RP Griffith, AJ (reprint author), Natl Inst Deafness & Other Commun Disorders, Hearing Sect, NIH, 5 Res Court, Rockville, MD 20850 USA. CR Admiraal RJC, 2000, LARYNGOSCOPE, V110, P457, DOI 10.1097/00005537-200003000-00025 Annunen S, 1999, AM J HUM GENET, V65, P974, DOI 10.1086/302585 Bishop PN, 2000, PROG RETIN EYE RES, V19, P323, DOI 10.1016/S1350-9462(99)00016-6 CHO H, 1991, ANN NY ACAD SCI, V630, P259 SEEGMILL.R, 1971, J CELL BIOL, V48, P580, DOI 10.1083/jcb.48.3.580 Griffith AJ, 2000, ARCH OTOLARYNGOL, V126, P891 Griffith AJ, 1998, AM J HUM GENET, V62, P816, DOI 10.1086/301789 Hall J, 1992, HDB AUDITORY EVOKED Jacobson J, 1990, J Am Acad Audiol, V1, P37 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 LI Y, 1995, CELL, V80, P423, DOI 10.1016/0092-8674(95)90492-1 LIBERFARB RM, 1982, BIRTH DEFECTS-ORIG, V18, P525 McGuirt WT, 1999, NAT GENET, V23, P413 Richards AJ, 1996, HUM MOL GENET, V5, P1339, DOI 10.1093/hmg/5.9.1339 SEEGMILL.R, 1972, J ULTRA MOL STRUCT R, V38, P288, DOI 10.1016/S0022-5320(72)90006-8 Sirko-Osadsa D, 1998, J PEDIATR-US, V132, P368, DOI 10.1016/S0022-3476(98)70466-4 SLEPECKY NB, 1992, MATRIX, V11, P80 STICKLER GB, 1965, MAYO CLIN PROC, V40, P433 Szymko-Bennett YM, 2001, ARCH OTOLARYNGOL, V127, P1061 THALMANN I, 1993, CONNECT TISSUE RES, V29, P191, DOI 10.3109/03008209309016826 VIKKULA M, 1995, CELL, V80, P431, DOI 10.1016/0092-8674(95)90493-X Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 23 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2003 VL 175 IS 1-2 BP 178 EP 182 DI 10.1016/S0378-5955(02)00736-0 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 638JF UT WOS:000180567300017 PM 12527136 ER PT J AU He, DZZ Jia, SP Feng, F AF He, DZZ Jia, SP Feng, F TI Thyroid hormone is not necessary for the development of outer hair cell electromotility SO HEARING RESEARCH LA English DT Article DE outer hair cell; development; motility; thyroid hormone; hypothyroidism; auditory system; gerbil; tissue culture ID ELECTROKINETIC SHAPE CHANGES; HEARING-LOSS; EXPRESSION; MEMBRANE; ONSET; MOUSE; PROTEIN; ORGAN; CORTI AB The outer hair cell (OHC), one of two receptor cell types in the organ of Corti, plays a critical role in mammalian hearing. OHCs enhance basilar membrane motion through a local mechanical feedback process within the cochlea, termed the 'cochlear amplifier'. It is generally believed that the basis of cochlear amplification is a voltage-dependent electromotile response of OHCs. Measurements of electromotility in developing animals indicate that the onset of motility normally occurs around 7 days after birth in altricial rodents such as gerbils and rats. Thyroid hormone (TH) plays a crucial role in the development of the auditory system. Deficiency of the hormone between the late embryonic stage and the second postnatal week can cause severe hearing loss. Several studies suggest that TH deficiency might also affect the development of the cochlear amplifier. The goal of this study was therefore to examine whether TH was necessary for the development of OHC motility. The organ of Corti of gerbils was dissected out at birth and grown in culture with defined concentration of triiodothyronine T3), the active ligand for the TH receptor. Motility was measured from OHCs isolated from 7-, 11- and 14-day-old cultures. Motility did indeed develop in OHCs deprived of normal concentration of T3. This suggests that the defective auditory function seen in TH-deficient animals is most likely due to morphological and physiological changes in the cochlea, rather than the motor function of the OHCs. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Boys Town Natl Res Hosp, Hair Cell Biophys Lab, Omaha, NE 68131 USA. RP He, DZZ (reprint author), Boys Town Natl Res Hosp, Hair Cell Biophys Lab, 555 N 30th St, Omaha, NE 68131 USA. CR ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 BRADLEY DJ, 1994, P NATL ACAD SCI USA, V91, P439, DOI 10.1073/pnas.91.2.439 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Dallos P., 1996, COCHLEA, P1 DALLOS P, 1993, J NEUROPHYSIOL, V70, P299 DALLOS P, 1991, NATURE, V350, P155, DOI 10.1038/350155a0 DEOL MS, 1976, ACTA OTO-LARYNGOL, V81, P429 DEOL MS, 1973, J MED GENET, V10, P235, DOI 10.1136/jmg.10.3.235 ECHTELER SM, 1989, NATURE, V341, P147, DOI 10.1038/341147a0 EVANS BN, 1991, HEARING RES, V52, P288, DOI 10.1016/0378-5955(91)90019-6 Forrest D, 1996, J CLIN ENDOCR METAB, V81, P2764, DOI 10.1210/jc.81.8.2764 HE DZZ, 1994, HEARING RES, V78, P77, DOI 10.1016/0378-5955(94)90046-9 He DZZ, 1997, J NEUROSCI, V17, P3634 He DZZ, 1997, DEV BRAIN RES, V103, P95, DOI 10.1016/S0165-3806(97)00120-X HEBERT R, 1985, DEV BRAIN RES, V23, P161, DOI 10.1016/0165-3806(85)90037-9 HUANG GJ, 1994, P NATL ACAD SCI USA, V91, P12268, DOI 10.1073/pnas.91.25.12268 KACHAR B, 1986, NATURE, V322, P365, DOI 10.1038/322365a0 KALINEC F, 1992, P NATL ACAD SCI USA, V89, P8671, DOI 10.1073/pnas.89.18.8671 Knipper M, 2000, J NEUROPHYSIOL, V83, P3101 Knipper M, 2001, J BIOL CHEM, V276, P39046, DOI 10.1074/jbc.M103385200 Li DQ, 1999, HEARING RES, V138, P65, DOI 10.1016/S0378-5955(99)00150-1 Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 MEYERHOFF WL, 1979, LARYNGOSCOPE S, V89, P19 OMALLEY BW, 1995, HEARING RES, V88, P181, DOI 10.1016/0378-5955(95)00111-G RITTER FN, 1967, LARYNGOSCOPE, V77, P1427, DOI 10.1288/00005537-196708000-00016 Rusch A, 1998, P NATL ACAD SCI USA, V95, P15758, DOI 10.1073/pnas.95.26.15758 Rusch A, 1998, J NEUROSCI, V18, P7487 SOBKOWICZ HM, 1984, ULTRASTRUCTURAL ATLA, P61 SONG L, 2001, DEV SENSITIVITY TUNI Sprenkle PM, 2001, JARO, V2, P312, DOI 10.1007/s101620010076 Uziel A, 1986, Acta Otolaryngol Suppl, V429, P23 Uziel A, 1985, Brain Res, V351, P123 Uziel A, 1985, Brain Res, V351, P111 Uziel A, 1983, Brain Res, V283, P295 VANDEWAT.TR, 1971, ACTA OTO-LARYNGOL, V71, P303, DOI 10.3109/00016487109125368 VANDEWATER TR, 1973, ANN OTOL RHINOL L S4, V82, P19 WALSH E, 2000, ARO, P5807 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 NR 38 TC 4 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2003 VL 175 IS 1-2 BP 183 EP 189 DI 10.1016/S0378-5955(02)00737-2 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 638JF UT WOS:000180567300018 PM 12527137 ER PT J AU Wit, HP Feijen, RA Albers, FWJ AF Wit, HP Feijen, RA Albers, FWJ TI Cochlear aqueduct flow resistance is not constant during evoked inner ear pressure change in the guinea pig SO HEARING RESEARCH LA English DT Article DE endolymph; hydrops; meniere; micropressure system; perilymph; round window ID PERILYMPHATIC FLUID; MENIERES-DISEASE; MANIPULATION; TRANSMISSION; DYNAMICS; ANATOMY AB Inner ear fluid pressure was measured during 6.25 mHz square wave middle ear pressure manipulation, with a perforated tympanic membrane. After a negative-going middle ear pressure change the calculated flow resistance of the inner ear pressure release routes (mainly the cochlear aqueduct) was approximately constant, with a value of 12 Pa s/nl (averaged over two ears), when values for the inner ear window compliance are taken from the literature. After a positive-going middle ear pressure change the calculated flow resistance changed with round window position and with the pressure difference across the cochlear aqueduct. It reached an average maximum value of 114 Pa s/nl. The change of flow resistance during inner ear pressure variation can be explained by a permeability change of the cochlear aqueduct, caused by a change of structures filling the aqueduct and its entrance in scala tympani. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Groningen Hosp, Dept Otorhinolaryngol, NL-9700 RB Groningen, Netherlands. RP Wit, HP (reprint author), Univ Groningen Hosp, Dept Otorhinolaryngol, POB 30001, NL-9700 RB Groningen, Netherlands. EM h.p.wit@med.rug.nl CR ALLEN GW, 1987, AM J OTOL, V8, P319 CARLBORG B, 1982, ANN OTO RHINOL LARYN, V91, P209 DECORY L, 1990, LECT NOTES BIOMATH, V87, P270 Densert B, 1997, AM J OTOL, V18, P726 DENSERT B, 1986, ACTA OTO-LARYNGOL, V102, P186, DOI 10.3109/00016488609108665 DENSERT O, 1981, ACTA OTO-LARYNGOL, V91, P55, DOI 10.3109/00016488109138482 Duckert L., 1974, T AM ACAD OPHTHALMOL, V78, P21 Feijen RA, 2000, ACTA OTO-LARYNGOL, V120, P804, DOI 10.1080/000164800750061633 Feijen RA, 2002, ACTA OTO-LARYNGOL, V122, P138, DOI 10.1080/00016480252814135 Ghiz AF, 2001, HEARING RES, V162, P105, DOI 10.1016/S0378-5955(01)00375-6 Gopen Q, 1997, HEARING RES, V107, P9, DOI 10.1016/S0378-5955(97)00017-8 IVARSSON A, 1977, ACTA OTO-LARYNGOL, V84, P38, DOI 10.3109/00016487709123940 KRUKOWSKI B, 1980, HEARING RES, V2, P207, DOI 10.1016/0378-5955(80)90058-1 Odkvist LM, 2000, ACTA OTO-LARYNGOL, P99 SVANE-KNUDSEN V, 1958, Acta Otolaryngol, V49, P240, DOI 10.3109/00016485809134752 Thalen E, 2002, EUR ARCH OTO-RHINO-L, V259, P174, DOI 10.1007/s00405-001-0431-0 Thalen EO, 2001, ACTA OTO-LARYNGOL, V121, P470, DOI 10.1080/000164801300366606 TORIYA R, 1991, ACTA OTO-LARYNGOL, V111, P699, DOI 10.3109/00016489109138402 TORIYA R, 1991, ACTA OTO-LARYNGOL, V111, P917, DOI 10.3109/00016489109138430 WALTNER JG, 1947, ARCH OTOLARYNGOL, V47, P656 Wit HP, 2000, HEARING RES, V145, P82, DOI 10.1016/S0378-5955(00)00078-2 Wit HP, 1999, HEARING RES, V132, P131, DOI 10.1016/S0378-5955(99)00048-9 NR 22 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2003 VL 175 IS 1-2 BP 190 EP 199 DI 10.1016/S0378-5955(02)00738-4 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 638JF UT WOS:000180567300019 PM 12527138 ER PT J AU Miller, CA Abbas, PJ Nourski, KV Hu, N Robinson, BK AF Miller, CA Abbas, PJ Nourski, KV Hu, N Robinson, BK TI Electrode configuration influences action potential initiation site and ensemble stochastic response properties SO HEARING RESEARCH LA English DT Article DE auditory prosthesis; cochlear implant; electric stimulation; auditory nerve; evoked potential; monopolar; bipolar; cat; model ID STIMULATED AUDITORY-NERVE; COCHLEAR IMPLANTS; ELECTRICAL-STIMULATION; MONOPHASIC STIMULATION; CAT; EXCITATION; MONOPOLAR; EXPERIENCE; PATTERNS; BIPOLAR AB The configuration of intracochlear electrodes used to electrically stimulate the auditory nerve influences the ensemble fiber response. For example, monopolar stimulation produces lower thresholds and greater spread of excitation than does bipolar stimulation. We used two approaches to investigate how the ensemble of auditory-nerve fibers responds to stimulation delivered by different electrode configurations. As the electrically evoked compound action potential (ECAP) reflects the ensemble response of the nerve, we used its morphology and changes with stimulus level to assess issues related to site-of-excitation and fiber recruitment. In our first approach, feline ECAPs were obtained using a nucleus-style banded electrode array. ECAP latency functions indicated that bipolar stimulation can initiate action potentials at more peripheral sites than does monopolar stimulation. We observed double-peaked ECAPs with bipolar and tripolar stimulation, suggesting excitation of both peripheral and central neural processes. Finally, we observed in some cases a tendency for monopolar stimulation to produce wider ECAP potentials, consistent with the notion that monopolar stimulation excites a broader spatial extent of the fiber population. In our second approach, we applied a simple model to published surveys of single-fiber responses to provide insight into the stochastic properties of the ensemble response. Our results suggest that broader recruitment of fiber activity produced by monopolar stimulation results in a population response with more probabilistic response characteristics and ensemble spike jitter. These observations and our ECAP results are consistent with reports of perceptual advantages attributed to monopolar or other less-focused modes of stimulation. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Iowa Hosp & Clin, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA. Univ Iowa, Dept Speech Pathol & Audiol, Iowa City, IA 52242 USA. RP Miller, CA (reprint author), Univ Iowa Hosp & Clin, Dept Otolaryngol Head & Neck Surg, 21201 PFP,200 Hawkins Dr, Iowa City, IA 52242 USA. CR ABBAS PJ, 1999, N01DC62111 NIH Bierer JA, 2002, J NEUROPHYSIOL, V87, P478 BLACK RC, 1980, J ACOUST SOC AM, V67, P868, DOI 10.1121/1.383966 Briaire JJ, 2000, HEARING RES, V148, P18, DOI 10.1016/S0378-5955(00)00104-0 Brown CJ, 1998, AM J OTOL, V19, P320 Brown CJ, 1996, J SPEECH HEAR RES, V39, P453 Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012 Frijns JHM, 2002, EAR HEARING, V23, P184, DOI 10.1097/00003446-200206000-00003 HATSUSHIKA S, 1990, ANN OTO RHINOL LARYN, V99, P871 Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6 LEHNHARDT E, 1992, ORL J OTO-RHINO-LARY, V54, P308 Liang DH, 1999, IEEE T BIO-MED ENG, V46, P35, DOI 10.1109/10.736751 MARSH RR, 1981, OTOLARYNG HEAD NECK, V89, P125 Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X Miller CA, 1999, HEARING RES, V135, P1, DOI 10.1016/S0378-5955(99)00081-7 MILLER CA, 1993, HEARING RES, V66, P130, DOI 10.1016/0378-5955(93)90134-M Miller CA, 1999, HEARING RES, V130, P197, DOI 10.1016/S0378-5955(99)00012-X Miller CA, 2001, HEARING RES, V151, P79, DOI 10.1016/S0300-2977(00)00082-6 Miller CA, 2000, EAR HEARING, V21, P280, DOI 10.1097/00003446-200008000-00003 MINO H, 2001, N01DC92107 Pfingst BE, 1997, HEARING RES, V112, P247, DOI 10.1016/S0378-5955(97)00122-6 Pfingst BE, 2001, JARO, V2, P87 Pfingst B E, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P127 Rebscher SJ, 2001, J ACOUST SOC AM, V109, P2035, DOI 10.1121/1.1365115 SCHINDLER RA, 1977, ARCH OTOLARYNGOL, V103, P691 SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3 Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 SMITH DW, 1995, ASS RES OTOLARYNGOL, V708, P177 SNYDER RL, 2002, N01DC02108 Spelman F A, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P131 STYPULKOWSKI PH, 1984, HEARING RES, V14, P205, DOI 10.1016/0378-5955(84)90051-0 VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5 Verveen A. A., 1961, FLUCTUATION EXCITABI von Wallenberg E L, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P372 WALLOCH RA, 1974, ARCH OTOLARYNGOL, V100, P19 White M.W., 1984, AUDIOL ITAL, V1, P77 XU SA, 1993, HEARING RES, V70, P205, DOI 10.1016/0378-5955(93)90159-X Zwolan TA, 1996, AM J OTOL, V17, P717 NR 38 TC 37 Z9 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2003 VL 175 IS 1-2 BP 200 EP 214 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 638JF UT WOS:000180567300020 PM 12527139 ER PT J AU Carvalho, S Buki, B Bonfils, P Avan, P AF Carvalho, S Buki, B Bonfils, P Avan, P TI Effect of click intensity on click-evoked otoacoustic emission waveforms: implications for the origin of emissions SO HEARING RESEARCH LA English DT Article DE click-evoked otoacoustic emission; nonlinearity; intensity; phase; envelope ID OUTER HAIR-CELLS; BASILAR-MEMBRANE; ACOUSTIC TRAUMA; RESPONSES; MODEL; COMBINATION; DISTORTION; STIMULI; COCHLEA AB The rather shallow growth of click-evoked otoacoustic emissions (CEOAE) with click intensity, namely < I dB/dB, distinguishes genuine CEOAEs from stimulus artifacts, thereby providing the rationale for the popular 'derived nonlinear recording' method. However, other CEOAE nonlinearities regarding phase or envelope dependence on stimulus intensity have been barely acknowledged so far. The present work used CEOAEs from 20 normal ears recorded in response to 50-86 dB peak equivalent SPL clicks. The phases of CEOAE spectral components varied considerably with click intensity (sometimes more than 120degrees), mostly in a monotonic manner and in such a way that in the majority of ears, phase lagged with increasing intensity. When present, synchronized spontaneous otoacoustic emissions exhibited the same behavior. In a few instances, conspicuous frequency shifts of CEOAE spectral peaks were seen. In contrast to CEOAE phases, envelopes were almost intensity-invariant. This behavior contrasts with that of basilar membrane motion at the place tuned to the stimulus frequency, as consistently disclosed by several recent publications, i.e., no phase shift and large envelope shift with stimulus intensity. It is thought that the phase invariance of basilar membrane motion implies that whatever they do, outer hair cells cannot alter the resonance frequency of the cochlear partition. If one elaborates along this line of reasoning, the large phase shift of CEOAEs with click intensity implies that CEOAEs at frequency f cannot come from the place tuned to f and that instead, they may be intermodulation distortion products produced by nonlinear interactions between spectral components of the click stimulus over a significant length of the basilar membrane. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Sch Med, Lab Sensory Biophys, F-63000 Clermont Ferrand, France. Krems Krankenhaus, ENT Clin, Krems, Austria. European Hosp G Pompidou, CNRS, UPRESA 7060, Paris, France. RP Avan, P (reprint author), Sch Med, Lab Sensory Biophys, POB 38, F-63000 Clermont Ferrand, France. CR ANDERSON SD, 1980, HEARING RES, V2, P273, DOI 10.1016/0378-5955(80)90063-5 AVAN P, 1995, J ACOUST SOC AM, V97, P3012, DOI 10.1121/1.411866 BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 DALLOS P, 1995, SCIENCE, V267, P2006, DOI 10.1126/science.7701325 DEBOER E, 2000, J ACOUST SOC AM, V107, P1494 FURST M, 1982, J ACOUST SOC AM, V72, P717, DOI 10.1121/1.388252 GOLD T, 1948, PROC R SOC SER B-BIO, V135, P492, DOI 10.1098/rspb.1948.0025 Gold T., 1988, COCHLEAR MECHANISMS, P299 KEMP DT, 1980, HEARING RES, V2, P533, DOI 10.1016/0378-5955(80)90091-X Kemp D T, 1986, Scand Audiol Suppl, V25, P71 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 Knight RD, 1999, J ACOUST SOC AM, V106, P1420, DOI 10.1121/1.427145 LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X Lin T, 2000, J ACOUST SOC AM, V107, P2615, DOI 10.1121/1.428648 MOLLER AR, 1983, AUDITORY PHYSL, P88 NEELY ST, 1988, J ACOUST SOC AM, V83, P652, DOI 10.1121/1.396542 NORTON SJ, 1987, J ACOUST SOC AM, V81, P1860, DOI 10.1121/1.394750 Papoulis A., 1962, FOURIER INTEGRAL ITS Patuzzi R., 1996, COCHLEA, P186 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 Ravazzani P, 1996, AUDIOLOGY, V35, P73 Recio A, 2000, J ACOUST SOC AM, V108, P2281, DOI 10.1121/1.1318898 Ruggero M A, 1992, Curr Opin Neurobiol, V2, P449, DOI 10.1016/0959-4388(92)90179-O Shera CA, 2001, J ACOUST SOC AM, V110, P332, DOI 10.1121/1.1378349 Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 SIVARAMAKRISHNA.S, 1991, DO LATENCIES TRANSIE, V14, P66 Talmadge CL, 1999, J ACOUST SOC AM, V105, P275, DOI 10.1121/1.424584 WILSON JP, 1980, HEARING RES, V2, P572 WIT HP, 1994, HEARING RES, V73, P141, DOI 10.1016/0378-5955(94)90228-3 WIT HP, 1980, J ACOUST SOC AM, V66, P911 Withnell RH, 2000, HEARING RES, V139, P1, DOI 10.1016/S0378-5955(99)00132-X Yates GK, 1999, HEARING RES, V136, P49, DOI 10.1016/S0378-5955(99)00108-2 ZWICKER E, 1986, J ACOUST SOC AM, V80, P154, DOI 10.1121/1.394176 NR 34 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2003 VL 175 IS 1-2 BP 215 EP 225 DI 10.1016/S0378-5955(02)00745-1 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 638JF UT WOS:000180567300021 PM 12527140 ER PT J AU Pettit, K Henson, MM Henson, OW Gewalt, SL Salt, AN AF Pettit, K Henson, MM Henson, OW Gewalt, SL Salt, AN TI Quantitative anatomy of the guinea pig endolymphatic sac SO HEARING RESEARCH LA English DT Article DE endolymph; endolymphatic sac ID INNER-EAR; IN-VIVO; GLYCEROL; COCHLEA; FLUID; SPACE AB The endolymphatic sac is believed to represent one of the primary loci for endolymph volume regulation in the inner ear. Quantitative analysis of physiologic measurements from the endolymphatic sac requires knowledge of the anatomy of the structure, specifically the luminal volume and the variation of cross-sectional area with distance along the sac. Recently techniques have become available to make these measurements. In the present study, fixed, isolated specimens of the guinea pig endolymphatic sac were imaged by high-resolution magnetic resonance microscopy (MRM) or by histological serial sections. Structures were reconstructed and quantified using image analysis software. In specimens imaged by MRM the endolymphatic sac volume, including tissue and lumen, was 359 nl for the intraosseous region and 106 nl for the extraosseous region, totaling 465 nl for the entire structure. The luminal volumes were 131 nl for the intraosseous region and 13 nl for the extraosseous region, totaling 144 nl. In histological specimens the volume, including tissue and lumen, was 414 nl for the intraosseous region and 121 nl for the extraosseous region, totaling 535 nl for the entire structure. The luminal volumes were 152 nl for the intraosseous region and 26 nI for the extraosseous region, totaling 179 nl. Differences in volume estimates obtained by the two methods were not statistically significant and variation was dominated by inter-specimen variation. Pooling the data, the total volume of the endolymphatic sac in the guinea pig including tissue and lumen was 506 nl (S.D. 100, n = 17) and the volume of the lumen was 169 nI (S.D. 48, n = 14). (C) 2002 Elsevier Science B.V. All rights reserved. C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. Univ N Carolina, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC 27599 USA. Univ N Carolina, Dept Cell & Dev Biol, Chapel Hill, NC 27599 USA. Duke Univ, Med Ctr, Ctr In Vivo Micorscopy, Dept Radiol, Durham, NC 27710 USA. RP Salt, AN (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, Box 8115,660 S Euclid Ave, St Louis, MO 63110 USA. CR BAGGERSJOBACK D, 1990, ARCH OTOLARYNGOL, V116, P345 Couloigner V, 1999, ACTA OTO-LARYNGOL, V119, P200 Couloigner V, 1998, LARYNGOSCOPE, V108, P592, DOI 10.1097/00005537-199804000-00024 ERWALL C, 1988, HEARING RES, V36, P277, DOI 10.1016/0378-5955(88)90068-8 FRIBERG U, 1986, ACTA OTO-LARYNGOL, V101, P172, DOI 10.3109/00016488609132825 Guild SR, 1927, AM J ANAT, V39, P57, DOI 10.1002/aja.1000390103 HEBBAR GK, 1991, ANN OTO RHINOL LARYN, V100, P219 IKEDA K, 1991, HEARING RES, V54, P118, DOI 10.1016/0378-5955(91)90141-U JANSSON B, 1992, ORL J OTO-RHINO-LARY, V54, P201 LUNDQUIST P, 1965, ACTA OTOLARYNGOL S, V201, P7 LUNDQUIST PG, 1964, ACTA OTOLARYNGOL S, V188, P195 MIYAMOTO H, 1979, ARCH OHREN NASEN KEH, V222, P77, DOI 10.1007/BF00456341 MORGENSTERN C, 1982, AM J OTOLARYNG, V3, P323, DOI 10.1016/S0196-0709(82)80004-5 MORI N, 1987, ARCH OTO-RHINO-LARYN, V244, P61, DOI 10.1007/BF00453493 Mori N, 1998, Acta Otolaryngol Suppl, V533, P12 Rask-Andersen H, 1999, HEARING RES, V138, P81, DOI 10.1016/S0378-5955(99)00153-7 SALT AN, 1995, HEARING RES, V88, P79, DOI 10.1016/0378-5955(95)00103-B SALT AN, 1995, ANN OTO RHINOL LARYN, V104, P886 Salt AN, 2000, HEARING RES, V149, P46, DOI 10.1016/S0378-5955(00)00160-X Shinomori Y, 2001, ANN OTO RHINOL LARYN, V110, P91 TAKUMIDA M, 1989, HEARING RES, V40, P1, DOI 10.1016/0378-5955(89)90094-4 Takumida M, 1991, Acta Otolaryngol Suppl, V481, P129 Teixeira M, 1999, HEARING RES, V128, P45, DOI 10.1016/S0378-5955(98)00197-X Thorne M, 1999, LARYNGOSCOPE, V109, P1661, DOI 10.1097/00005537-199910000-00021 ZHOU XH, 1993, JMRI-J MAGN RESON IM, V3, P803, DOI 10.1002/jmri.1880030518 NR 25 TC 5 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 1 EP 8 DI 10.1016/S0378-5955(02)00610-X PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100001 PM 12433391 ER PT J AU Heaney, DL Schulte, BA Niedzielski, AS AF Heaney, DL Schulte, BA Niedzielski, AS TI Dystroglycan expression in the developing and senescent gerbil cochlea SO HEARING RESEARCH LA English DT Article DE presbyacusis; aging; development; stria vascularis; dystroglycan; immunohistochemistry ID DYSTROPHIN-GLYCOPROTEIN COMPLEX; QUIET-AGED GERBILS; STRIA VASCULARIS; BASEMENT-MEMBRANES; EXTRACELLULAR-MATRIX; ALPHA-DYSTROGLYCAN; BINDING-PROTEIN; INNER-EAR; LAMININ; BRAIN AB Dystroglycan (DG) forms part of a cell surface laminin receptor complex and is believed to play a critical role in the assembly and homeostasis of basement membranes (BM). The receptor complex is made up of (alpha- and beta-DG subunits and is found in muscle, epithelial and nerve tissue. In the cochlea, DG may be involved in the abnormal accumulation of laminin seen in the thickened BM of strial capillaries with age. This excess deposition of laminin is thought to lead to capillary necrosis and contribute to degeneration of the stria vascularis (SV). Here we assessed the presence and distribution of DG in the developing, mature and senescent gerbil cochlea in order to ascertain whether altered patterns of expression are a factor in age-related pathology. Western blots of proteins isolated from the entire cochlea demonstrated the presence of the alpha-DG subunit. mRNA encoding DG was identified in microdissected specimens of the lateral wall and the combined organ of Corti/modiolus by RT-PCR analysis. Immunohistochemical experiments localized a-DG in epithelial BMs and regions of epithelial cell-cell contact with no intervening BM in the developing and mature cochlea. Immuoreactive alpha-DG was present in the BM underlying strial capillaries and in vessels of the central portion of the auditory nerve, but was not detected in any other vessels in the cochlea. Age-related changes in alpha-DG expression were observed only in the SV where a marked decrease in (alpha-DG immunoreactivity was seen in the BM of strial capillaries as well as throughout the SV. The results demonstrate the selective expression of alpha-DG in both BM and non-BM sites in the mature cochlea and suggests its involvement in both developmental and aging processes. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Med Univ S Carolina, Dept Pathol & Lab Med, Charleston, SC 29425 USA. Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, Charleston, SC 29425 USA. RP Heaney, DL (reprint author), Med Univ S Carolina, Dept Pathol & Lab Med, 171 Ashley Ave, Charleston, SC 29425 USA. CR Barber AJ, 1997, DEV DYNAM, V208, P62, DOI 10.1002/(SICI)1097-0177(199701)208:1<62::AID-AJA6>3.0.CO;2-# Belkin AM, 1996, CELL ADHES COMMUN, V4, P281, DOI 10.3109/15419069609010772 BOSHER SK, 1973, ACTA OTO-LARYNGOL, V75, P184, DOI 10.3109/00016487309139694 Cavaldesi M, 1999, J NEUROCHEM, V72, P1648, DOI 10.1046/j.1471-4159.1999.721648.x COHEN GM, 1989, CRC CRIT R CLIN NEUR, V4, P179 DAVIS H, 1958, Laryngoscope, V68, P596 DEYST KA, 1995, J BIOL CHEM, V270, P25956 Durbeej M, 1998, J HISTOCHEM CYTOCHEM, V46, P449 Durbeej M, 1998, CURR OPIN CELL BIOL, V10, P594, DOI 10.1016/S0955-0674(98)80034-3 DURBEEJ M, 1995, J CELL BIOL, V130, P79, DOI 10.1083/jcb.130.1.79 Durbeej M, 1999, J BIOL CHEM, V274, P26609, DOI 10.1074/jbc.274.37.26609 ERVASTI JM, 1991, CELL, V66, P1121, DOI 10.1016/0092-8674(91)90035-W ERVASTI JM, 1993, J CELL BIOL, V122, P809, DOI 10.1083/jcb.122.4.809 ERVASTI JM, 1990, NATURE, V345, P315, DOI 10.1038/345315a0 Frisina R. D., 2001, FUNCTIONAL NEUROBIOL, P531, DOI 10.1016/B978-012351830-9/50039-1 GEE SH, 1993, J BIOL CHEM, V268, P14972 Gratton M A, 1996, Hear Res, V102, P181, DOI 10.1016/S0378-5955(96)90017-9 GRATTON MA, 1995, HEARING RES, V82, P44 Gratton MA, 1997, HEARING RES, V114, P1, DOI 10.1016/S0378-5955(97)00025-7 GULYA AJ, 1990, ASHA REP, V13, P126 Henry MD, 1999, CURR OPIN CELL BIOL, V11, P602, DOI 10.1016/S0955-0674(99)00024-1 Henry MD, 1998, CELL, V95, P859, DOI 10.1016/S0092-8674(00)81708-0 Henry MD, 1996, CURR OPIN CELL BIOL, V8, P625, DOI 10.1016/S0955-0674(96)80103-7 Hof P. R., 2001, FUNCTIONAL NEUROBIOL, P605, DOI 10.1016/B978-012351830-9/50044-5 IBRAGHIMOVBESKROVNAYA O, 1992, NATURE, V355, P696, DOI 10.1038/355696a0 JOHNSSON LG, 1972, ANN OTO RHINOL LARYN, V81, P364 MARCUS DC, 1986, NEUROBIOLOGY HEARING, P123 NADOL JB, 1980, AGING COMMUNICATION, P63 OFFNER FF, 1987, HEARING RES, V29, P117, DOI 10.1016/0378-5955(87)90160-2 Rodgers KD, 2001, HEARING RES, V158, P39, DOI 10.1016/S0378-5955(01)00283-0 Saito F, 1999, J BIOL CHEM, V274, P8240, DOI 10.1074/jbc.274.12.8240 Sakaguchi N, 1997, HEARING RES, V109, P83, DOI 10.1016/S0378-5955(97)00048-8 Sakaguchi N, 1997, HEARING RES, V105, P44, DOI 10.1016/S0378-5955(96)00180-3 SALT AN, 1987, LARYNGOSCOPE, V97, P984 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 SCHUKNEC.HF, 1974, LARYNGOSCOPE, V84, P1777 SCHULTE BA, 1989, J HISTOCHEM CYTOCHEM, V37, P127 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K Shimizu H, 1999, J BIOL CHEM, V274, P11995, DOI 10.1074/jbc.274.17.11995 TASAKI I, 1959, J NEUROPHYSIOL, V22, P149 Thomopoulos GN, 1997, HEARING RES, V111, P31, DOI 10.1016/S0378-5955(97)00080-4 Tian M, 1996, EUR J NEUROSCI, V8, P2739, DOI 10.1111/j.1460-9568.1996.tb01568.x VANKUPPEVELT THMSM, 1994, MICROSC RES TECHNIQ, V28, P125, DOI 10.1002/jemt.1070280204 YAMADA H, 1994, FEBS LETT, V352, P49, DOI 10.1016/0014-5793(94)00917-1 YANG B, 1995, J BIOL CHEM, V270, P11711 Zaccaria ML, 2001, NEUROSCIENCE, V104, P311, DOI 10.1016/S0306-4522(01)00092-6 NR 46 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 9 EP 18 DI 10.1016/S0378-5955(02)00611-1 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100002 PM 12433392 ER PT J AU Rupp, A Uppenkamp, S Gutschalk, A Beucker, R Patterson, RD Dau, T Scherg, M AF Rupp, A Uppenkamp, S Gutschalk, A Beucker, R Patterson, RD Dau, T Scherg, M TI The representation of peripheral neural activity in the middle-latency evoked field of primary auditory cortex in humans SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Annual Conference of the Polish-Systems-and-Operational-Research-Society CY SEP-FEB -, 2004-2000 CL Warsaw, POLAND SP Polish Syst & Operat Res Soc DE primary auditory cortex; auditory image; magnetoencephalography; spatio-temporal source modelling; chirp signal; auditory evoked field; cochlear phase delay ID VENTRAL COCHLEAR NUCLEUS; BRAIN-STEM RESPONSES; FREQUENCY SPECIFICITY; POTENTIALS; MASKING; DISPERSION; SIGNALS; NOISE; SOUND AB Short sweeps with increasing instantaneous frequency (up-chirps) designed to compensate for the propagation delay along the human cochlea enhance the magnitude of wave V of the auditory brainstem responses, while time reversed sweeps (down-chirps) reduce the magnitude of wave V [Dau, T., Wegner, O., Mellert, V., Kollmeier, B., J. Acoust. Soc. Am. 107 (2000) 1530-1540]. This effect is due to synchronisation of frequency channels along the basilar membrane and it indicates that cochlear phase delays are preserved up to the input of the inferior colliculus. The present magnetoencephalography study was designed to investigate the influence of peripheral synchronisation on the activation in primary auditory cortex. Spatio-temporal source analysis of middle-latency auditory evoked fields (MAEFs) elicited by clicks and up- and down-chirps showed that up-chirps elicited significantly larger MAEF responses compared to clicks or down-chirps. Both N19m-P30m magnitude and its latency are influenced by peripheral cross-channel phase effects. Furthermore, deconvolution of the empirical source waveforms with spike probability functions simulated with a cochlear model indicated that the source waves for all stimulus conditions could be explained with the same unit-response function, i.e. a far field recorded cortical response of a very small cell assembly along the medio-lateral axis of Heschl's gyrus that receives input from a small number of excitatory fibres. The conclusion is that (i) phase delays between channels in the auditory pathway are preserved up to primary auditory cortex, and (ii) MAEFs can be described by a convolution of a unit-response function with the summary neural activity pattern of the auditory nerve. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Heidelberg, Dept Neurol, Sect Biomagnetism, D-69120 Heidelberg, Germany. Univ Cambridge, Ctr Neural Basis Hearing, Dept Physiol, Cambridge CB2 3EG, England. Carl von Ossietzky Univ Oldenburg, Fachbereich Phys, AG Med Phys, D-26111 Oldenburg, Germany. RP Rupp, A (reprint author), Univ Heidelberg, Dept Neurol, Sect Biomagnetism, Neuenheimer Feld 230, D-69120 Heidelberg, Germany. EM andre.rupp@urz.uni-heidelberg.de CR AHONEN AI, 1993, PHYS SCRIPTA, VT49A, P198, DOI 10.1088/0031-8949/1993/T49A/033 Bekesy G., 1960, EXPT HEARING Dau T, 2000, J ACOUST SOC AM, V107, P1530, DOI 10.1121/1.428438 DEBOER E, 1980, PHYS REP, V62, P87, DOI 10.1016/0370-1573(80)90100-3 DON M, 1978, J ACOUST SOC AM, V63, P1084, DOI 10.1121/1.381816 GIGUERE C, 1994, J ACOUST SOC AM, V95, P331 Griffiths TD, 2001, NAT NEUROSCI, V4, P633, DOI 10.1038/88459 Gutschalk A, 1999, CLIN NEUROPHYSIOL, V110, P856, DOI 10.1016/S1388-2457(99)00019-X HANSEN PCH, 1998, REGULATISATION TOOLS HANSEN PCH, 1992, RANK DEFICIENT DISCR HOLM S, 1979, SCAND J STAT, V6, P65 KOHLRAUSCH A, 1995, J ACOUST SOC AM, V97, P1817, DOI 10.1121/1.413097 LIEGEOISCHAUVEL C, 1994, ELECTROEN CLIN NEURO, V92, P204, DOI 10.1016/0168-5597(94)90064-7 MEDDIS R, 1988, J ACOUST SOC AM, V83, P1056, DOI 10.1121/1.396050 Oxenham AJ, 2001, J ACOUST SOC AM, V110, P3169, DOI 10.1121/1.1414706 Oxenham AJ, 2001, J ACOUST SOC AM, V110, P1525, DOI 10.1121/1.1394740 PATTERSON RD, 1992, ADV BIOSCI, V83, P429 PATTERSON RD, 1995, J ACOUST SOC AM, V98, P1890, DOI 10.1121/1.414456 Rupp A, 2000, NEUROREPORT, V11, P3731, DOI 10.1097/00001756-200011270-00028 Scherg M., 1989, ADV BIOMAGNETISM, P97 SCHERG M, 1983, ELECTROEN CLIN NEURO, V56, P443, DOI 10.1016/0013-4694(83)90227-4 SCHERG M, 1990, ADV AUDIOL, V6, P165 SCHNEIDER P, 2001, THESIS U HEIDELBERG SHORE SE, 1987, J ACOUST SOC AM, V82, P471, DOI 10.1121/1.395448 SHORE SE, 1985, J ACOUST SOC AM, V78, P1286, DOI 10.1121/1.392898 Sprent P., 2001, APPL NONPARAMETRIC S Tikhonov A.N., 1963, SOV MATH DOKL, V4, P1035 Uppenkamp S, 2001, HEARING RES, V158, P71, DOI 10.1016/S0378-5955(01)00299-4 Webster DB, 1992, MAMMALIAN AUDITORY P, P1 WEGNER O, 1999, PSYCHOPHYSICS PHYSL, P59 Wegner O, 2002, J ACOUST SOC AM, V111, P1318, DOI 10.1121/1.1433805 Wiegrebe L, 2001, J NEUROPHYSIOL, V85, P1206 NR 32 TC 25 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 19 EP 31 DI 10.1016/S0378-5955(02)00614-7 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100003 PM 12433393 ER PT J AU Willi, UB Ferrazzini, MA Huber, AM AF Willi, UB Ferrazzini, MA Huber, AM TI The incudo-malleolar joint and sound transmission losses SO HEARING RESEARCH LA English DT Article DE incudo-malleolar joint; transfer function; middle ear mechanics; temporal bone; human middle ear function ID MIDDLE-EAR; MALLEUS VIBRATION; FREQUENCY AB The question as to whether the incudo-malleolar joint (IMJ) is mobile or immobile at moderate sound pressure levels (SPLs) is addressed. Referring to the mechanical properties of elastic tissue, we suggest that the IMJ is mobile at any SPL. In order to test this hypothesis, we investigated the dynamics of the IMJ in nine temporal bones by means of laser scanning doppler vibrometry. The dynamic behavior of both ossicles is described by three degrees of freedom, and transfer functions (TFs) are shown for each of them. We show that there is indeed relative motion between the malleus and the incus. This transmission loss affects the middle ear TF and results in a frequency dependent sound transmission loss. Some characteristics of our results are in agreement with middle ear TFs described in the literature. The increasing transmission loss towards higher frequencies is caused by relative motion between malleus and incus at the IMJ. The concept that the IMJ is functionally mobile is consistent with the physical properties of elastic tissues which most likely define the mechanics of this joint. Since the IMJ is indeed mobile at moderate sound intensities and audible frequencies the theory of the lever ratio being responsible for the characteristics of the middle ear TF must be reconsidered. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Zurich Hosp, Dept Otorhinolaryngol, Lab Expt Audiol, CH-8091 Zurich, Switzerland. RP Willi, UB (reprint author), Univ Zurich Hosp, Dept Otorhinolaryngol, Lab Expt Audiol, Frauenklinikstr 24, CH-8091 Zurich, Switzerland. RI Huber, Alexander/A-2693-2009 OI Huber, Alexander/0000-0002-8888-8483 CR BARANY E, 1938, ACTA OTOLARYNGOL S, V26 Bekesy G., 1939, ACTA OTO-LARYNGOL, V27, P281, DOI 10.3109/00016483909124145 Bekesy G., 1939, ACTA OTO-LARYNGOL, V27, P388, DOI 10.3109/00016483909123734 BELAL A, 1974, ANN OTO RHINOL LARYN, V83, P159 BRENKMAN CJ, 1987, J ACOUST SOC AM, V82, P1646, DOI 10.1121/1.395156 CANCURA W, 1980, ACTA OTO-LARYNGOL, V89, P342, DOI 10.3109/00016488009127146 Dahmann H, 1930, Z HALS NASEN OHRENH, V27, P329 Decraemer W., 1999, FUNCTION MECH NORMAL, P23 DECRAEMER WF, 1994, HEARING RES, V72, P1, DOI 10.1016/0378-5955(94)90199-6 DECRAEMER WF, 1991, HEARING RES, V54, P305, DOI 10.1016/0378-5955(91)90124-R Decraemer WF, 2001, P 24 ANN MIDW RES M, V24, P221 Elpern BS, 1965, ACTA OTOLARYNGOL, V60, P223, DOI 10.3109/00016486509127004 ETHOLM B, 1974, ANN OTO RHINOL LARYN, V83, P49 FRANK O, 1923, AKAD WISS MATH PHYS, V11, P11 GOODE RL, 1994, AM J OTOL, V15, P145 GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465 GUNDERSEN T, 1976, ACTA OTO-LARYNGOL, V82, P16, DOI 10.3109/00016487609120858 GYO K, 1987, ACTA OTO-LARYNGOL, V103, P87, DOI 10.3109/00016488709134702 HARTY M., 1964, Z MIKROSKOP ANAT FORSCH, V71, P24 Helmholtz H, 1868, PFLUGERS ARCH, V1, P1, DOI 10.1007/BF01640310 HUTTENBRINK KB, 1987, LARYNGO RHINO OTOL, V66, P176, DOI 10.1055/s-2007-998633 HUTTENBRINK KB, 1988, LARYNGO RHINO OTOL, V67, P45 Kirikae I., 1960, STRUCTURE FUNCTION M KOBRAK HG, 1969, MIDDLE EAR KRINGLEBOTN M, 1985, J ACOUST SOC AM, V77, P159, DOI 10.1121/1.392280 MACH E, 1974, SITZ BER KAIS AKAD K, V3, P221 MARQUET J, 1981, J LARYNGOL OTOL, V95, P543, DOI 10.1017/S0022215100091118 ROSOWSKI JJ, 1990, ANN OTO RHINOL LARYN, V99, P403 Schon F, 1999, AUDIOL NEURO-OTOL, V4, P142, DOI 10.1159/000013833 Stuhlman O. Jr., 1937, Journal of the Acoustical Society of America, V9, DOI 10.1121/1.1915915 Tay JL, 1996, CLIN OTOLARYNGOL, V21, P256 WEISTENHOFER C, 2000, SCHWINGUNGSFORMEN ME NR 32 TC 47 Z9 47 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 32 EP 44 DI 10.1016/S0378-5955(02)00632-9 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100004 PM 12433394 ER PT J AU Devarajan, P Savoca, M Castaneda, MP Park, MS Esteban-Cruciani, N Kalinec, G Kalinec, F AF Devarajan, P Savoca, M Castaneda, MP Park, MS Esteban-Cruciani, N Kalinec, G Kalinec, F TI Cisplatin-induced apoptosis in auditory cells: role of death receptor and mitochondrial pathways SO HEARING RESEARCH LA English DT Article DE apoptosis; cisplatin; ototoxicity; auditory cell ID VESTIBULAR SENSORY EPITHELIA; DRUG-INDUCED APOPTOSIS; CYTOCHROME-C; GUINEA-PIGS; BCL-2 FAMILY; OXIDATIVE STRESS; HAIR-CELLS; INNER-EAR; OTOTOXICITY; MECHANISMS AB Cisplatin, a commonly used chemotherapeutic agent, has a major limitation due to its ototoxicity. Previous studies have shown that cisplatin induces apoptosis in auditory sensory cells, but the underlying mechanisms remain to be elucidated. In this study, cisplatin was found to induce apoptosis in a cochlear cell line, in a dose- and duration-dependent manner. Specific caspase assays revealed an early (6 h) but transient increase in caspase 8 activity, and a delayed (12 h) increase in caspase 9 activity. The enhanced caspase 8 activity was preceded by upregulation of p53 expression, and coincided with cleavage of Bid to its truncated form. This was followed temporally by activation and mitochondrial translocation of Bax, induction of mitochondrial permeability transition, release of cytochrome c into the cytosol, activation of caspase 9, and entry into the execution phase of apoptosis. Our results indicate the involvement of both the death receptor mechanisms as well as mitochondrial pathways in cisplatin-induced apoptosis of auditory cells in an in vitro model system. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Albert Einstein Coll Med, Childrens Hosp, Div Gen Pediat, Bronx, NY 10467 USA. House Ear Res Inst, Gonda Dept Cell & Mol Biol, Los Angeles, CA 90057 USA. Albert Einstein Coll Med, Childrens Hosp, Div Nephrol, Bronx, NY 10467 USA. RP Devarajan, P (reprint author), Cincinnati Childrens Hosp, Med Ctr, 3333 Burnet Ave, Cincinnati, OH 45229 USA. CR Adams JM, 1998, SCIENCE, V281, P1322, DOI 10.1126/science.281.5381.1322 Alam SA, 2000, HEARING RES, V141, P28, DOI 10.1016/S0378-5955(99)00211-7 Ashkenazi A, 1998, SCIENCE, V281, P1305, DOI 10.1126/science.281.5381.1305 Bertolaso L, 2001, AUDIOLOGY, V40, P327 Brenner C, 2000, SCIENCE, V289, P1150, DOI 10.1126/science.289.5482.1150 Burns TF, 1999, J CELL PHYSIOL, V181, P231, DOI 10.1002/(SICI)1097-4652(199911)181:2<231::AID-JCP5>3.0.CO;2-L Cardinaal RM, 2000, HEARING RES, V144, P135, DOI 10.1016/S0378-5955(00)00059-9 Chandel NS, 2000, ONCOGENE, V19, P3840, DOI 10.1038/sj.onc.1203727 Cohen SM, 2001, PROG NUCLEIC ACID RE, V67, P93, DOI 10.1016/S0079-6603(01)67026-0 CUNNINGHAM LL, 2002, 25 ARO MIDW M ST PET Davies KJA, 2000, IUBMB LIFE, V50, P279, DOI 10.1080/15216540051081010 Deng YB, 2000, P NATL ACAD SCI USA, V97, P12050, DOI 10.1073/pnas.97.22.12050 Devarajan P, 2001, J BIOL CHEM, V276, P40599, DOI 10.1074/jbc.M103424200 Eskes R, 2000, MOL CELL BIOL, V20, P929, DOI 10.1128/MCB.20.3.929-935.2000 Evans P, 1999, ANN NY ACAD SCI, V884, P19, DOI 10.1111/j.1749-6632.1999.tb08633.x Feghali JG, 2001, LARYNGOSCOPE, V111, P1147, DOI 10.1097/00005537-200107000-00005 Feldenberg LR, 1999, AM J PHYSIOL-RENAL, V276, pF837 FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2 Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X Friesen C, 1999, LEUKEMIA, V13, P1854, DOI 10.1038/sj.leu.2401333 Fulda S, 1997, CANCER RES, V57, P3823 Goldstein JC, 2000, NAT CELL BIOL, V2, P156 Green DR, 1998, SCIENCE, V281, P1309, DOI 10.1126/science.281.5381.1309 Gross A, 1999, GENE DEV, V13, P1899, DOI 10.1101/gad.13.15.1899 Harris MH, 2000, CELL DEATH DIFFER, V7, P1182, DOI 10.1038/sj.cdd.4400781 Higuchi M, 1998, ONCOGENE, V17, P2753, DOI 10.1038/sj.onc.1202211 HUANG HF, 1995, SCIENCE, V270, P1842, DOI 10.1126/science.270.5243.1842 Huang T, 2000, INT J DEV NEUROSCI, V18, P259, DOI 10.1016/S0736-5748(99)00094-5 Humes HD, 1999, ANN NY ACAD SCI, V884, P15 Jordan P, 2000, CELL MOL LIFE SCI, V57, P1229, DOI 10.1007/PL00000762 Kalinec F, 1999, CELL BIOL INT, V23, P175, DOI 10.1006/cbir.1998.0339 KALINEC G, 2002, 25 ARO MIDW M ST PET Kartalou M, 2001, MUTAT RES-FUND MOL M, V478, P23, DOI 10.1016/S0027-5107(01)00141-5 KERR JFR, 1972, BRIT J CANCER, V26, P239, DOI 10.1038/bjc.1972.33 KHARBANDA S, 1995, NATURE, V376, P785, DOI 10.1038/376785a0 Kopke RD, 1997, AM J OTOL, V18, P559 Korsmeyer SJ, 2000, CELL DEATH DIFFER, V7, P1166, DOI 10.1038/sj.cdd.4400783 KOTECHA B, 1994, HEARING RES, V73, P173, DOI 10.1016/0378-5955(94)90232-1 Lemasters JJ, 1999, AM J PHYSIOL-GASTR L, V276, pG1 Li HL, 1998, CELL, V94, P491, DOI 10.1016/S0092-8674(00)81590-1 LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307 LIM DJ, 1998, KIDNEY INT S65, V53, P104 Liu W, 1998, NEUROREPORT, V9, P2609, DOI 10.1097/00001756-199808030-00034 Luo X, 1998, CELL, V94, P481, DOI 10.1016/S0092-8674(00)81589-5 Matsui JI, 2002, J NEUROSCI, V22, P1218 MIYASHITA T, 1995, CELL, V80, P293 Muller M, 1997, J CLIN INVEST, V99, P403, DOI 10.1172/JCI119174 Reed JC, 1997, CELL, V91, P559, DOI 10.1016/S0092-8674(00)80442-0 Rivolta MN, 1998, P ROY SOC B-BIOL SCI, V265, P1595 Rybak LP, 1999, LARYNGOSCOPE, V109, P1740, DOI 10.1097/00005537-199911000-00003 Saikumar P, 1998, ONCOGENE, V17, P3341 Teranishi M, 2001, HEARING RES, V151, P61, DOI 10.1016/S0300-2977(00)00080-2 Thornberry NA, 1998, SCIENCE, V281, P1312, DOI 10.1126/science.281.5381.1312 Trimmer EE, 1999, ESSAYS BIOCHEM, V34, P191 Tsujimoto Y, 2000, CELL DEATH DIFFER, V7, P1174, DOI 10.1038/sj.cdd.4400780 Ueda N, 2000, AM J MED, V108, P403, DOI 10.1016/S0002-9343(00)00311-9 Vaux DL, 1996, P NATL ACAD SCI USA, V93, P2239, DOI 10.1073/pnas.93.6.2239 Vieira HLA, 2000, CELL DEATH DIFFER, V7, P1146, DOI 10.1038/sj.cdd.4400778 Von Ahsen O, 2000, CELL DEATH DIFFER, V7, P1192, DOI 10.1038/sj.cdd.4400782 Watanabe K, 2001, ANTICANCER RES, V21, P1135 Watanabe K, 2000, ANTI-CANCER DRUG, V11, P401, DOI 10.1097/00001813-200006000-00011 Watanabe K, 2000, ANTI-CANCER DRUG, V11, P731, DOI 10.1097/00001813-200010000-00010 Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3 ZHANG M, 2002, 25 ARO MIDW M ST PET, pA582 NR 64 TC 101 Z9 109 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 45 EP 54 DI 10.1016/S0378-5955(02)00634-2 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100005 PM 12433395 ER PT J AU Pearsall, N Bhattacharya, G Wisecarver, J Adams, J Cosgrove, D Kimberling, W AF Pearsall, N Bhattacharya, G Wisecarver, J Adams, J Cosgrove, D Kimberling, W TI Usherin expression is highly conserved in mouse and human tissues SO HEARING RESEARCH LA English DT Article ID SYNDROME TYPE IIA; IV COLLAGEN; BASEMENT-MEMBRANE; GENE; LOCALIZATION; ALPHA-3(IV); PREVALENCE; MUTATIONS; 1Q41 AB Usher syndrome is an autosomal recessive disease that results in varying degrees of hearing loss and retinitis pigmentosa. Three types of Usher syndrome (1, 11, and 111) have been identified clinically with Usher type 11 being the most common of the three types. Usher type 11 has been localized to three different chromosomes 1q41, 3p, and 5q, corresponding to Usher type 2A, 213, and 2C respectively. Usherin is a basement membrane protein encoded by the USH2A gene. Expression of usherin has been localized in the basement membrane of several tissues, however it is not ubiquitous. Immunohistochemistry detected usherin in the following human tissues: retina, cochlea, small and large intestine, pancreas, bladder, prostate, esophagus, trachea, thymus, salivary glands, placenta, ovary, fallopian tube, uterus, and testis. Usherin was absent in many other tissues such as heart, lung, liver, kidney, and brain. This distribution is consistent with the usherin distribution seen in the mouse. Conservation of usherin is also seen at the nucleotide and amino acid level when comparing the mouse and human gene sequences. Evolutionary conservation of usherin expression at the molecular level and in tissues unaffected by Usher 2a supports the important structural and functional role this protein plays in the human. In addition, we believe that these results could lead to a diagnostic procedure for the detection of Usher syndrome and those who carry an USH2A mutation. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Boys Town Natl Res Hosp, Omaha, NE 68131 USA. Univ Nebraska, Med Ctr, Dept Pathol, Omaha, NE 68182 USA. Massachusetts Eye & Ear Infirm, ENT Dept, Boston, MA 02114 USA. RP Pearsall, N (reprint author), Boys Town Natl Res Hosp, 555 30th St, Omaha, NE 68131 USA. CR ADAMS JC, 1992, J HISTOCHEM CYTOCHEM, V40, P1457 Ahmed ZM, 2001, AM J HUM GENET, V69, P25, DOI 10.1086/321277 BECK K, 1990, FASEB J, V4, P148 Bhattacharya G, 2002, HEARING RES, V163, P1, DOI 10.1016/S0378-5955(01)00344-6 Bork P, 1996, Q REV BIOPHYS, V29, P119 BOUGHMAN JA, 1983, J CHRON DIS, V36, P595, DOI 10.1016/0021-9681(83)90147-9 Eudy JD, 1998, GENOMICS, V50, P382, DOI 10.1006/geno.1998.5345 Hmani M, 1999, EUR J HUM GENET, V7, P363, DOI 10.1038/sj.ejhg.5200307 Kahsai TZ, 1997, J BIOL CHEM, V272, P17023, DOI 10.1074/jbc.272.27.17023 Kalluri R, 2000, J BIOL CHEM, V275, P12719, DOI 10.1074/jbc.275.17.12719 KIMBERLING WJ, 1995, AM J HUM GENET, V56, P216 KIMBERLING WJ, 1990, GENOMICS, V7, P245, DOI 10.1016/0888-7543(90)90546-7 KIMBERLING WJ, 1991, ANN NY ACAD SCI, V630, P167, DOI 10.1111/j.1749-6632.1991.tb19585.x NINOMIYA Y, 1995, J CELL BIOL, V130, P1219, DOI 10.1083/jcb.130.5.1219 Petit C, 2001, ANNU REV GENOM HUM G, V2, P271, DOI 10.1146/annurev.genom.2.1.271 Pieke-Dahl S, 2000, J MED GENET, V37, P256, DOI 10.1136/jmg.37.4.256 Rosenberg T, 1997, CLIN GENET, V51, P314 SANKILA EM, 1995, HUM MOL GENET, V4, P93 Sayers R, 1999, KIDNEY INT, V56, P1662, DOI 10.1046/j.1523-1755.1999.00744.x SMITH RJH, 1992, GENOMICS, V14, P995, DOI 10.1016/S0888-7543(05)80122-3 Weston MD, 2000, AM J HUM GENET, V66, P1199, DOI 10.1086/302855 YOSHIOKA K, 1994, AM J PATHOL, V144, P986 NR 22 TC 24 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 55 EP 63 DI 10.1016/S0378-5955(02)00635-4 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100006 PM 12433396 ER PT J AU Lee, HJ Wallani, T Mendelson, JR AF Lee, HJ Wallani, T Mendelson, JR TI Temporal processing speed in the inferior colliculus of young and aged rats SO HEARING RESEARCH LA English DT Article DE aging; frequency modulated sweeps; inferior colliculus ID PRIMARY AUDITORY-CORTEX; FREQUENCY-MODULATED SWEEPS; FUNCTIONAL TOPOGRAPHY; FISCHER-344 RATS; RHESUS-MONKEYS; CBA/J MICE; RESPONSES; NEURONS; NUCLEUS; STIMULI AB A common problem among the elderly is a difficulty in discriminating speech. One factor that may contribute to this is a deterioration in the ability to process dynamic aspects of speech such as formant transitions. Recently, Mendelson and Ricketts [Mendelson, JR., Ricketts, C., Hear. Res. 158 (2001) 84-94] showed that cells recorded from the auditory cortex of aged animals exhibited a decrease in temporal processing speed compared to young animals. In the present study, we examined whether this age-related effect was exclusive to the auditory cortex or whether it was apparent subcortically. To this end, single units were recorded from the inferior colliculus (IQ of young and aged rats in response to frequency modulated (FM) sweeps. Results showed that there was no age-related difference in speed or direction selectivity of FM sweep responses in the IC. The present results suggest that the effect of aging on temporal processing speed occurs in the cortex, but not subcortically. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Toronto, Fac Med, Dept Speech Language Pathol, Toronto, ON M5G 1V7, Canada. RP Mendelson, JR (reprint author), Univ Toronto, Fac Med, Dept Speech Language Pathol, 500 Univ Ave, Toronto, ON M5G 1V7, Canada. CR AITKIN LM, 1981, J COMP NEUROL, V196, P25, DOI 10.1002/cne.901960104 BACKOFF PM, 1994, HEARING RES, V73, P163, DOI 10.1016/0378-5955(94)90231-3 BANAYSCHWARTZ M, 1989, NEUROCHEM RES, V14, P555, DOI 10.1007/BF00964918 Boettcher FA, 1996, HEARING RES, V102, P167, DOI 10.1016/S0378-5955(96)90016-7 Caird D, 1991, NEUROBIOLOGY HEARING, P253 Caspary DM, 1999, NEUROSCIENCE, V93, P307, DOI 10.1016/S0306-4522(99)00121-9 CASPARY DM, 1995, EXP GERONTOL, V30, P349, DOI 10.1016/0531-5565(94)00052-5 Felsheim C, 1996, HEARING RES, V98, P137, DOI 10.1016/0378-5955(96)00078-0 GRASSE KL, 1990, VISUAL NEUROSCI, V6, P604 GUITERREZ A, 1994, J NEUROSCI, V14, P7469 Helfert RH, 1999, J COMP NEUROL, V406, P285 HERBERT H, 1991, J COMP NEUROL, V304, P103, DOI 10.1002/cne.903040108 HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 KALTWASSER MT, 1990, J COMP PSYCHOL, V104, P227, DOI 10.1037/0735-7036.104.3.227 KONKLE DF, 1977, J SPEECH HEAR RES, V20, P108 LANGNER G, 1992, HEARING RES, V60, P115, DOI 10.1016/0378-5955(92)90015-F LEVITAN ES, 1988, NEURON, V1, P773, DOI 10.1016/0896-6273(88)90125-0 Mendelson JR, 2001, HEARING RES, V158, P84, DOI 10.1016/S0378-5955(01)00294-5 MENDELSON JR, 1992, EXP BRAIN RES, V91, P435 Mendelson JR, 2002, VISION RES, V42, P695, DOI 10.1016/S0042-6989(01)00307-8 MENDELSON JR, 1993, EXP BRAIN RES, V94, P65 Milbrandt JC, 1997, J COMP NEUROL, V379, P455, DOI 10.1002/(SICI)1096-9861(19970317)379:3<455::AID-CNE10>3.0.CO;2-F Nelken I, 2000, EUR J NEUROSCI, V12, P549, DOI 10.1046/j.1460-9568.2000.00935.x Palombi PS, 1996, J NEUROPHYSIOL, V76, P3114 Paxinos G, 1986, RAT BRAIN STEREOTAXI, V2nd POON PWF, 1991, EXP BRAIN RES, V83, P598 POON PWF, 1992, EXP BRAIN RES, V91, P94 REES A, 1987, HEARING RES, V27, P129, DOI 10.1016/0378-5955(87)90014-1 REES A, 1983, HEARING RES, V10, P301, DOI 10.1016/0378-5955(83)90095-3 Ricketts C, 1998, HEARING RES, V123, P27, DOI 10.1016/S0378-5955(98)00086-0 Schmolesky MT, 2000, NAT NEUROSCI, V3, P384 SCHNEIDER BA, 1994, J ACOUST SOC AM, V95, P980, DOI 10.1121/1.408403 SCHREINER CE, 1990, J NEUROPHYSIOL, V64, P1442 Palombi PS, 2001, HEARING RES, V153, P174, DOI 10.1016/S0378-5955(00)00264-1 SPEAR PD, 1994, J NEUROPHYSIOL, V72, P402 VARTANIAN IA, 1974, ACUSTICA, V31, P305 Walton JP, 1998, J NEUROSCI, V18, P2764 WILLOTT JF, 1991, HEARING RES, V53, P78, DOI 10.1016/0378-5955(91)90215-U WILLOTT JF, 1988, HEARING RES, V37, P1, DOI 10.1016/0378-5955(88)90073-1 Willott J. F., 1991, AGING AUDITORY SYSTE WINGFIELD A, 1985, J GERONTOL, V40, P579 Zettel ML, 1997, J COMP NEUROL, V386, P92, DOI 10.1002/(SICI)1096-9861(19970915)386:1<92::AID-CNE9>3.0.CO;2-8 NR 42 TC 18 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 64 EP 74 DI 10.1016/S0378-5955(02)00639-1 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100007 PM 12433397 ER PT J AU Schrott-Fischer, A Kammen-Jolly, K Scholtz, AW Gluckert, R Eybalin, M AF Schrott-Fischer, A Kammen-Jolly, K Scholtz, AW Gluckert, R Eybalin, M TI Patterns of GABA-like immunoreactivity in efferent fibers of the human cochlea SO HEARING RESEARCH LA English DT Article DE gamma-aminobutyric acid; human; efferent neurotransmission; electron microscopy; inner ear; immunohistochemistry ID GAMMA-AMINOBUTYRIC-ACID; GUINEA-PIG COCHLEA; CROSSED OLIVOCOCHLEAR BUNDLE; OUTER HAIR-CELLS; CHOLINE-ACETYLTRANSFERASE; GLUTAMATE-DECARBOXYLASE; INNER-EAR; SQUIRREL-MONKEY; ULTRASTRUCTURAL-LOCALIZATION; IMMUNOCYTOCHEMICAL DETECTION AB Olivocochlear efferent neurons originate in the superior olivary complex of the brainstem and terminate within sensory cell regions of the organ of Corti. Components of this complex include the lateral olivocochlear bundle whose unmyelinated axons synapse with radial afferent dendrites below inner hair cells and the medial olivocochlear bundle, from which myelinated axons form a direct synaptic contact with outer hair cells. 7-Aminobutyric acid (GABA), a major neurotransmitter of the central nervous system believed to be responsible for most fast-inhibitory transmissions, has been demonstrated with interspecies variation between mammal and primate auditory efferents. In the present study, we evaluate the immunocytochemical presence of GABA in 10 human cochleae using light and electron microscopy. GABA-like immunostaining could be observed in inner spiral fibers, tunnel spiral fibers, tunnel-crossing fibers, and at efferent endings synapsing with outer hair cells. To approximate medial efferent fiber quantifications, we counted labeled terminals at the base of each outer hair cell and then compared this sum with the number of tunnel crossing fibers. We found a 'branching ratio' of 1:2 implicating a doubling in quantifiable efferent fibers at the level of the outer hair cell. In human, the distribution of GABA-like immunoreactivity showed a consistent presence throughout all turns of the cochlea. A new method for application of immunoelectron microscopy on human cochleae using a pre-embedding technique is also presented and discussed. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Innsbruck, Dept Otolaryngol, A-6020 Innsbruck, Austria. Univ Innsbruck, Dept Psychiat, A-6020 Innsbruck, Austria. INSERM U 254, F-34090 Montpellier, France. RP Schrott-Fischer, A (reprint author), Univ Innsbruck, Dept Otolaryngol, Anichstr 35, A-6020 Innsbruck, Austria. EM annelies.schrott@uibk.ac.at CR ALTSCHULER RA, 1985, BRAIN RES, V338, P1, DOI 10.1016/0006-8993(85)90242-2 BOBBIN RP, 1990, HEARING RES, V47, P39, DOI 10.1016/0378-5955(90)90165-L BOBBIN RP, 1970, NEUROPHARMACOLOGY, V9, P567, DOI 10.1016/0028-3908(70)90007-9 CHANPALAY V, 1982, P NATL ACAD SCI-BIOL, V79, P7027, DOI 10.1073/pnas.79.22.7027 DALDIN C, 1995, HEARING RES, V90, P202, DOI 10.1016/0378-5955(95)00167-5 DIDIER A, 1990, CELL TISSUE RES, V260, P415, DOI 10.1007/BF00318645 DRESCHER MJ, 1983, J NEUROCHEM, V41, P309, DOI 10.1111/j.1471-4159.1983.tb04745.x EYBALIN M, 1990, J ELECTRON MICR TECH, V15, P209, DOI 10.1002/jemt.1060150303 EYBALIN M, 1988, NEUROSCIENCE, V24, P29, DOI 10.1016/0306-4522(88)90308-9 EYBALIN M, 1987, EXP BRAIN RES, V65, P261 EYBALIN M, 1993, PHYSIOL REV, V73, P309 FEX J, 1984, HEARING RES, V15, P123, DOI 10.1016/0378-5955(84)90043-1 FEX J, 1976, BRAIN RES, V109, P575, DOI 10.1016/0006-8993(76)90036-6 FEX J, 1986, BRAIN RES, V366, P106, DOI 10.1016/0006-8993(86)91285-0 GODFREY DA, 1976, J HISTOCHEM CYTOCHEM, V24, P468 GUINAN JJ, 1983, J COMP NEUROL, V221, P358, DOI 10.1002/cne.902210310 IGARASHI M, 1972, ACTA OTO-LARYNGOL, V73, P455, DOI 10.3109/00016487209138966 KAWASE T, 1993, J NEUROPHYSIOL, V70, P2533 KLINKE R, 1986, HEARING RES, V22, P235, DOI 10.1016/0378-5955(86)90100-0 KLINKE R, 1977, EXP BRAIN RES, V28, P311 Kong WJ, 1998, HEARING RES, V119, P104, DOI 10.1016/S0378-5955(98)00034-3 Kong WJ, 1998, ACTA OTO-LARYNGOL, V118, P90 LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1 LOPEZ I, 1990, COMP BIOCHEM PHYS B, V95, P375, DOI 10.1016/0305-0491(90)90090-G MERCHANPEREZ A, 1993, DEV BRAIN RES, V76, P33, DOI 10.1016/0165-3806(93)90120-Y MERCHANPEREZ A, 1990, INT J DEV NEUROSCI, V8, P613, DOI 10.1016/0736-5748(90)90053-5 MU MY, 1994, ACTA OTO-LARYNGOL, V114, P516, DOI 10.3109/00016489409126096 PUJOL R, 1993, ACTA OTO-LARYNGOL, V113, P330, DOI 10.3109/00016489309135819 PUJOL R, 1994, BRIT J AUDIOL, V28, P185, DOI 10.3109/03005369409086567 RAJAN R, 1988, BRAIN RES, V459, P241, DOI 10.1016/0006-8993(88)90640-3 RAJAN R, 1992, HEARING RES, V60, P216, DOI 10.1016/0378-5955(92)90023-G RAJAN R, 1983, HEARING RES, V12, P405, DOI 10.1016/0378-5955(83)90009-6 RASMUSSEN GL, 1946, J COMP NEUROL, V84, P141, DOI 10.1002/cne.900840204 REITER ER, 1995, J NEUROPHYSIOL, V73, P506 RICHRATH W, 1974, ARCH OTO-RHINO-LARYN, V208, P283, DOI 10.1007/BF02438987 Ruel J, 2001, EUR J NEUROSCI, V14, P977, DOI 10.1046/j.0953-816x.2001.01721.x Safieddine S, 1997, EUR J NEUROSCI, V9, P356, DOI 10.1111/j.1460-9568.1997.tb01405.x SCHROTTFISCHER A, 1994, HEARING RES, V78, P149, DOI 10.1016/0378-5955(94)90020-5 SCHWARTZ IR, 1986, J COMP NEUROL, V246, P500, DOI 10.1002/cne.902460407 SCHWARZ DWF, 1988, HEARING RES, V32, P97, DOI 10.1016/0378-5955(88)90150-5 SPOENDLIN H, 1985, AM J OTOLARYNG, V6, P453, DOI 10.1016/S0196-0709(85)80026-0 SPURR AR, 1969, J ULTRA MOL STRUCT R, V26, P31, DOI 10.1016/S0022-5320(69)90033-1 TACHIBAN.M, 1974, BRAIN RES, V69, P370, DOI 10.1016/0006-8993(74)90017-1 TANAKA Y, 1966, J NEUROPHYSIOL, V29, P94 THALMANN R, 1975, OTOLARYNG CLIN N AM, V8, P313 THOMPSON GC, 1986, BRAIN RES, V372, P72, DOI 10.1016/0006-8993(86)91459-9 THOMPSON GC, 1985, BRAIN RES, V339, P119, DOI 10.1016/0006-8993(85)90628-6 THOMPSON GC, 1986, BRAIN RES, V370, P182, DOI 10.1016/0006-8993(86)91121-2 TRAHIOTI.C, 1970, J ACOUST SOC AM, V47, P592, DOI 10.1121/1.1911934 USAMI S, 1989, BRAIN RES, V503, P214, DOI 10.1016/0006-8993(89)91666-1 USAMI S, 1987, BRAIN RES, V417, P367, DOI 10.1016/0006-8993(87)90466-5 USAMI S, 1987, HEARING RES, V30, P19, DOI 10.1016/0378-5955(87)90178-X VETTER DE, 1991, SYNAPSE, V7, P21, DOI 10.1002/syn.890070104 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 Zhao HB, 1999, NATURE, V399, P359 Zheng XY, 1997, HEARING RES, V107, P147, DOI 10.1016/S0378-5955(97)00031-2 Zheng XY, 1997, HEARING RES, V105, P65, DOI 10.1016/S0378-5955(96)00188-8 NR 57 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 75 EP 85 DI 10.1016/S0378-5955(02)00640-8 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100008 PM 12433398 ER PT J AU Tseng, J Erbe, CB Kwitek, AE Jacob, HJ Popper, P Wackym, PA AF Tseng, J Erbe, CB Kwitek, AE Jacob, HJ Popper, P Wackym, PA TI Radiation hybrid mapping of five muscarinic acetylcholine receptor subtype genes in Rattus norvegicus SO HEARING RESEARCH LA English DT Article DE acetylcholine; efferent vestibular system; muscarinic; radiation hybrid mapping; receptor; vestibular ID VESTIBULAR END-ORGANS; SUBUNIT MESSENGER-RNA; KNOCKOUT MICE; IMMUNOREACTIVITY; EXPRESSION; PERIPHERY; LOCALIZATION; LINKAGE; SYSTEM; CELLS AB Acetylcholine is the main neurotransmitter of the vestibular efferent system and a wide variety of muscarinic and nicotinic acetylcholine receptors are expressed in the vestibular periphery. The role of these receptors and in particular the role of muscarinic acetylcholine receptors in the physiology of the vestibular neuroepithelium is not understood. Congenic and consomic rats are a convenient way to investigate the involvement of candidate genes in the manifestation of defined traits. To use congenic or consomic rats to elucidate the roles of these receptors in vestibular physiology or pathology the chromosomal location of the genes encoding these receptors has to be determined. Using radiation hybrid (RH) mapping and a rat RH map server (www.rgd.mcw.edu/RHMAP SERVER/), we determined the chromosomal locations of the muscarinic acetylcholine receptor genes in the rat (Rattus norvegicus). The ml-m5 muscarinic subtypes mapped to the following chromosomes: Chrml, chromosome 1; Chrm2, chromosome 4; Chrm3, chromosome 17; Chrm4, chromosome 3; and Chrm5, chromosome 3. With the chromosomal location for each of these muscarinic subtypes known, it is now possible to develop congenic and consomic strains of rats that can be used to study the functions of each of these subtypes. (C) 2002 Published by Elsevier Science B.V. C1 Med Coll Wisconsin, Dept Otolaryngol & Commun Sci, Milwaukee, WI 53226 USA. Med Coll Wisconsin, Dept Physiol, Milwaukee, WI 53226 USA. RP Wackym, PA (reprint author), Med Coll Wisconsin, Dept Otolaryngol & Commun Sci, 9200 W Wisconsin Ave, Milwaukee, WI 53226 USA. CR Anderson AD, 1997, BRAIN RES, V778, P409, DOI 10.1016/S0006-8993(97)01121-9 COX DR, 1990, SCIENCE, V250, P245, DOI 10.1126/science.2218528 Drescher DG, 1999, BRAIN RES, V845, P199, DOI 10.1016/S0006-8993(99)01939-3 GACEK RR, 1974, ACTA OTO-LARYNGOL, V77, P92, DOI 10.3109/00016487409124603 GOLDBERG JM, 1980, J NEUROPHYSIOL, V43, P986 Gomeza J, 1999, P NATL ACAD SCI USA, V96, P1692, DOI 10.1073/pnas.96.4.1692 Gomeza J, 1999, P NATL ACAD SCI USA, V96, P10483, DOI 10.1073/pnas.96.18.10483 Guth PS, 1998, PROG NEUROBIOL, V54, P193, DOI 10.1016/S0301-0082(97)00068-3 Gyapay G, 1996, HUM MOL GENET, V5, P339, DOI 10.1093/hmg/5.3.339 Hiel H, 1996, BRAIN RES, V738, P347, DOI 10.1016/S0006-8993(96)01046-3 HILDING D, 1962, Acta Otolaryngol, V55, P205, DOI 10.3109/00016486209127354 HULME EC, 1990, ANNU REV PHARMACOL, V30, P633, DOI 10.1146/annurev.pa.30.040190.003221 ISHII T, 1967, ANN OTO RHINOL LARYN, V76, P69 Ishiyama A, 1997, AM J OTOL, V18, P648 ISHIYAMA A, 1994, CELL BIOL INT, V18, P979, DOI 10.1006/cbir.1994.1019 IURATO S, 1971, ACTA OTO-LARYNGOL, V71, P147, DOI 10.3109/00016487109125343 Jacob HJ, 2002, NAT REV GENET, V3, P33, DOI 10.1038/nrg702 KONG WJ, 1994, HEARING RES, V75, P191, DOI 10.1016/0378-5955(94)90070-1 Lopez I, 1999, NEUROSCIENCE, V92, P773, DOI 10.1016/S0306-4522(99)00005-6 LUNETTA KL, 1995, GENOME RES, V5, P151, DOI 10.1101/gr.5.2.151 MATSUDA Y, 1991, NEUROSCI RES S, V14, pS163, DOI 10.1016/S0921-8696(06)80477-9 Matsui M, 2000, P NATL ACAD SCI USA, V97, P9579, DOI 10.1073/pnas.97.17.9579 MATSUI M, 1998, GENES GENET SYST, V73, P15 Popper P, 2002, AUDIOL NEURO-OTOL, V7, P298, DOI 10.1159/000064445 Rouse ST, 2000, NEUROSCI LETT, V278, P61, DOI 10.1016/S0304-3940(99)00914-3 Steen RG, 1999, GENOME RES, V9, pAP1 Szpirer C, 1998, MAMM GENOME, V9, P721, DOI 10.1007/s003359900853 Tseng J, 2001, MOL BRAIN RES, V91, P169, DOI 10.1016/S0169-328X(01)00146-2 USAMI S, 1987, BRAIN RES, V418, P383, DOI 10.1016/0006-8993(87)90108-9 WACKYM PA, 1995, CELL BIOL INT, V19, P291, DOI 10.1006/cbir.1995.1071 Wackym PA, 1996, CELL BIOL INT, V20, P187, DOI 10.1006/cbir.1996.0023 NR 31 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 86 EP 92 DI 10.1016/S0378-5955(02)00641-X PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100009 PM 12433399 ER PT J AU Chertoff, ME Amani-Taleshi, D Guo, YQ Burkard, R AF Chertoff, ME Amani-Taleshi, D Guo, YQ Burkard, R TI The influence of inner hair cell loss on the instantaneous frequency of the cochlear microphonic SO HEARING RESEARCH LA English DT Article DE instantaneous frequency; cochlear microphonic; outer hair cell; inner hair cell; carboplatin ID GUINEA-PIG COCHLEA; CARBOPLATIN; RESPONSES; SENSITIVITY; OTOTOXICITY AB The cochlear microphonic (CM) is produced by a change in standing currents during the motion of the cochlear partition. The motion of the partition and associated hair cell transduction processes are nonlinear and are reflected in the variation of the instantaneous frequency (IF) of the CM. Although the CM is dominated from receptor currents from outer hair cells (OHCs), receptor currents from inner hair cells (IHCs) may contribute to the fluctuation in the IF. In this paper we examine the influence of THCs on the variation of the IF of the CM. A 75 mg/kg intraperitoneal (i.p.) dose of carboplatin reduced the IHC population by approximately 40%. The reduction in IHCs did not substantially affect the amplitude of the CM. The amplitude of the IF, however, was reduced at high signal levels (90 and 100 dB peak SPL). A phenomenological model of the CM indicated that the contribution of IHC receptor currents to the IF was small and that changes in OHC transducer characteristics may have a greater impact on the IF. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Kansas, Med Ctr, Dept Hearing & Speech, Kansas City, KS 66160 USA. Univ Kansas, Dept Math, Kansas City, KS USA. SUNY Buffalo, Dept Communicat Disorders & Sci, Buffalo, NY USA. RP Chertoff, ME (reprint author), Univ Kansas, Med Ctr, Dept Hearing & Speech, 39th & Rainbow Blvd, Kansas City, KS 66160 USA. EM mchertof@kumc.edu CR BOASHASH B, 1992, P IEEE, V80, P520, DOI 10.1109/5.135376 Chertoff ME, 2000, HEARING RES, V145, P190, DOI 10.1016/S0378-5955(00)00090-3 COHEN L, 1989, P IEEE, V77, P941, DOI 10.1109/5.30749 DALLOS P, 1972, SCIENCE, V177, P356, DOI 10.1126/science.177.4046.356 Hofstetter P, 1997, HEARING RES, V112, P199, DOI 10.1016/S0378-5955(97)00123-8 HUDSPETH AJ, 1977, P NATL ACAD SCI USA, V74, P2407, DOI 10.1073/pnas.74.6.2407 Husain K, 2001, HEARING RES, V159, P14, DOI 10.1016/S0378-5955(01)00306-9 Lerner DE, 2000, HEARING RES, V145, P203, DOI 10.1016/S0378-5955(00)00089-7 Phillips DP, 2001, HEARING RES, V155, P133, DOI 10.1016/S0378-5955(01)00249-0 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 RUSSELL IJ, 1986, HEARING RES, V22, P199, DOI 10.1016/0378-5955(86)90096-1 RUSSELL IJ, 1991, J PHYSIOL-LONDON, V435, P493 SANTOS-SACCHI J, 1993, BIOPHYS J, V65, P2217 SNYDER DL, 1994, LAB ANIMAL, V23, P42 TAKENO S, 1994, SCANNING MICROSCOPY, V8, P97 TAKENO S, 1994, HEARING RES, V75, P93, DOI 10.1016/0378-5955(94)90060-4 Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 WAKE M, 1993, J LARYNGOL OTOL, V107, P585, DOI 10.1017/S0022215100123771 WAKE M, 1994, LARYNGOSCOPE, V104, P488 NR 19 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 93 EP 100 DI 10.1016/S0378-5955(02)00642-1 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100010 PM 12433400 ER PT J AU Zeng, FG AF Zeng, FG TI Temporal pitch in electric hearing SO HEARING RESEARCH LA English DT Article DE pitch; temporal pitch; frequency discrimination; electric hearing; cochlear implant; Fechner's model ID AUDITORY-NERVE FIBERS; PULSE TRAINS; SPEECH-DISCRIMINATION; COCHLEAR IMPLANTS; DEAF SUBJECTS; STIMULATION; PERCEPTION; FREQUENCY; RECOGNITION; MODULATION AB Both place and temporal codes in the peripheral auditory system contain pitch information, however, their actual use by the brain is unclear. Here pitch data are reported from users of the cochlear implant, which provides the ability to change the temporal code independently from the place code. With fixed electrode stimulation, both frequency discrimination and pitch estimate data show that the cochlear implant users can only discern differences in pitch for frequencies up to about 300 Hz. An integration model can predict pitch estimation from frequency discrimination, reinforcing Fechner's hypothesis relating sensation magnitude to stimulus discriminability. The present results suggest that 300 Hz is the upper boundary of the temporal code and that the absolute place information should be included in the present pitch models. They further suggest that future cochlear implants need to increase the number of independent electrodes to restore normal pitch range and resolution. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Calif Irvine, Dept Otolaryngol, Irvine, CA 92697 USA. Univ Calif Irvine, Dept Anat & Neurobiol, Irvine, CA 92697 USA. Univ Calif Irvine, Dept Biomed Engn, Irvine, CA 92697 USA. Univ Calif Irvine, Dept Cognit Sci, Irvine, CA 92697 USA. RP Zeng, FG (reprint author), Univ Calif Irvine, Dept Otolaryngol, Irvine, CA 92697 USA. RI Zeng, Fan-Gang/G-4875-2012 CR *ANSI, 1973, PSYCHOACOUSTICAL TER BILGER RC, 1977, ANN OTO RHINOL LARYN, V86, P3 BURNS EM, 1976, J ACOUST SOC AM, V60, P863, DOI 10.1121/1.381166 Chatterjee M, 1997, HEARING RES, V111, P65, DOI 10.1016/S0378-5955(97)00089-0 CLARK GM, 1987, U MELBOURNE NUCLEUS DYNES SBC, 1992, HEARING RES, V58, P79, DOI 10.1016/0378-5955(92)90011-B EDDINGTON DK, 1980, J ACOUST SOC AM, V68, P885, DOI 10.1121/1.384827 Eddington D K, 1978, Ann Otol Rhinol Laryngol, V87, P1 EVANS EF, 1978, AUDIOLOGY, V17, P369 Fearn R., 1999, Acoustics Australia, V27 Fechner G. T., 1966, ELEMENTS PSYCHOPHYSI, V1 Fishman KE, 1997, J SPEECH LANG HEAR R, V40, P1201 FORMBY C, 1985, J ACOUST SOC AM, V78, P70, DOI 10.1121/1.392456 HELMHOLZ HLF, 1877, SENSATION TONES Hochmair-Desoyer I. J., 1985, COCHLEAR IMPLANTS, P291 HOCHMAIRDESOYER IJ, 1983, ANN NY ACAD SCI, V405, P295, DOI 10.1111/j.1749-6632.1983.tb31642.x HOUTSMA AJM, 1990, J ACOUST SOC AM, V87, P304, DOI 10.1121/1.399297 JOHNSTON.BM, 1967, SCIENCE, V158, P389, DOI 10.1126/science.158.3799.389 Kiang NY-s, 1965, DISCHARGE PATTERNS S LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LICKLIDER JCR, 1951, EXPERIENTIA, V7, P128, DOI 10.1007/BF02156143 Litvak L, 2001, J ACOUST SOC AM, V110, P368, DOI 10.1121/1.1375140 LYON R, 1984, IEEE ICASSP, V36, P1 MCDERMOTT HJ, 1994, J ACOUST SOC AM, V96, P155, DOI 10.1121/1.410475 McDermott HJ, 1997, J ACOUST SOC AM, V101, P1622, DOI 10.1121/1.418177 McKay CM, 1999, J ACOUST SOC AM, V105, P347, DOI 10.1121/1.424553 Meddis R, 1997, J ACOUST SOC AM, V102, P1811, DOI 10.1121/1.420088 Moller AR, 1999, ACTA OTO-LARYNGOL, V119, P424, DOI 10.1080/00016489950180946 NELSON DA, 1995, J ACOUST SOC AM, V98, P1987, DOI 10.1121/1.413317 PIJL S, 1995, J ACOUST SOC AM, V98, P886, DOI 10.1121/1.413514 RHODE WS, 1978, J ACOUST SOC AM, V64, P158, DOI 10.1121/1.381981 ROSE JE, 1967, J NEUROPHYSIOL, V30, P769 Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3 RUSHTON W, 1961, SENS COMMUN, P169 SHACKLETON TM, 1994, J ACOUST SOC AM, V95, P3529, DOI 10.1121/1.409970 Shamma S, 2000, J ACOUST SOC AM, V107, P2631, DOI 10.1121/1.428649 SHANNON RV, 1983, HEARING RES, V11, P157, DOI 10.1016/0378-5955(83)90077-1 SHANNON RV, 1992, J ACOUST SOC AM, V91, P2156, DOI 10.1121/1.403807 SIMMONS FB, 1981, ANN OTO RHINOL LARYN, V90, P15 SRULOVICZ P, 1983, J ACOUST SOC AM, V73, P1266, DOI 10.1121/1.389275 STEVENS SS, 1970, SCIENCE, V170, P1043, DOI 10.1126/science.170.3962.1043 STEVENS SS, 1954, J ACOUST SOC AM, V26, P1075, DOI 10.1121/1.1907452 TONG YC, 1983, SCIENCE, V219, P993, DOI 10.1126/science.6823564 TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554 WEVER EG, 1948, THEORY HEARING WILSON B, 1997, N01DC52103 NIH YOUNG ED, 1979, J ACOUST SOC AM, V66, P1381, DOI 10.1121/1.383532 Zeng FG, 1999, NEUROREPORT, V10, P1931, DOI 10.1097/00001756-199906230-00025 Zeng FG, 2000, BRAIN RES, V869, P251, DOI 10.1016/S0006-8993(00)02475-6 ZENG FG, 1994, SCIENCE, V264, P564, DOI 10.1126/science.8160013 ZWISLOCKI JJ, 1980, PERCEPT PSYCHOPHYS, V28, P28, DOI 10.3758/BF03204312 NR 51 TC 138 Z9 144 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 101 EP 106 DI 10.1016/S0378-5955(02)00644-5 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100011 PM 12433401 ER PT J AU Khanna, SM AF Khanna, SM TI Non-linear response to amplitude-modulated waves in the apical turn of the guinea pig cochlea SO HEARING RESEARCH LA English DT Article DE guinea pig cochlea; cochlear mechanics; apical turn; amplitude modulation; non-linear velocity response; stereocilia non-linearity; demodulation ID AUDITORY-NERVE FIBERS; SHORT-TIME FOURIER; OUTER HAIR-CELLS; INFERIOR COLLICULUS; INNER-EAR; HEARING ORGAN; STIMULI; NUCLEUS; TONES; CAT AB Mechanical vibrations of the Hensen's cells were measured in the apical turn of the cochlea in living guinea pigs, in response to amplitude-modulated (AM) sound. The FFT of the input wave consisted of spectral components at the carrier frequency C and two sidebands (C+/-M separated from the carrier by the modulation frequency M. The FFT of the velocity response consisted of components at: (i) the modulation frequency M, and harmonics n M; (ii) Carrier frequency. C and sidebands (C n M); (iii) harmonics of the carrier frequency and their side bands (2C +/- n M; (3C +/- n M;) (4C +/- nM); ... n = 1,2,3,..., 10. The carrier and the first pair of side bands were broadly tuned and nearly linear. Other components were sharply tuned and highly non-linear, suggesting a different origin. Evidence is presented that these components are generated in the non-linear stereocilia dynamics. An important function of this non-linearity is to demodulate the AM wave to extract information contained in the modulation. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Columbia Univ, Dept Otolaryngol Head & Neck Surg, New York, NY 10032 USA. RP Khanna, SM (reprint author), Columbia Univ, Dept Otolaryngol Head & Neck Surg, 630 W 168th St, New York, NY 10032 USA. CR BENSER ME, 1993, HEARING RES, V68, P243, DOI 10.1016/0378-5955(93)90128-N Bieser A, 1996, EXP BRAIN RES, V108, P273 Bode H. W., 1945, NETWORK ANAL FEEDBAC BRUGGE JF, 1993, BRAIN RES, V615, P199, DOI 10.1016/0006-8993(93)90030-Q BRUNDIN L, 1991, NEUROSCI LETT, V128, P77, DOI 10.1016/0304-3940(91)90763-J BRUNDIN L, 1992, NEUROSCIENCE, V49, P607, DOI 10.1016/0306-4522(92)90230-Y COOPER NP, 1993, J NEUROPHYSIOL, V70, P370 COREY DP, 1983, J NEUROSCI, V3, P962 DALLOS P, 1986, HEARING RES, V22, P185, DOI 10.1016/0378-5955(86)90095-X EGGERMONT JJ, 1994, HEARING RES, V74, P51, DOI 10.1016/0378-5955(94)90175-9 EVANS EF, 1972, J PHYSIOL-LONDON, V226, P263 Fletcher H., 1953, SPEECH HEARING COMMU FLOCK A, 1965, TRANSDUCING MECH LAT FLOCK A, 1984, NATURE, V310, P597, DOI 10.1038/310597a0 Frisina RD, 1996, J ACOUST SOC AM, V99, P475, DOI 10.1121/1.414559 Frisina RD, 2001, HEARING RES, V158, P1, DOI 10.1016/S0378-5955(01)00296-9 FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y FRISINA RD, 1990, HEARING RES, V44, P123, DOI 10.1016/0378-5955(90)90075-Z GLATTKE TJ, 1969, J ACOUST SOC AM, V5, P419 Greenwood DD, 1996, J ACOUST SOC AM, V99, P1029, DOI 10.1121/1.414632 Hao LF, 1996, HEARING RES, V99, P176, DOI 10.1016/S0378-5955(96)00099-8 Hao LF, 2000, HEARING RES, V148, P31, DOI 10.1016/S0378-5955(00)00112-X HENEGHAN C, 1994, IEEE T SIGNAL PROCES, V42, P3335, DOI 10.1109/78.340771 HENEGHAN C, 1993, P SOC PHOTO-OPT INS, V2036, P183, DOI 10.1117/12.162711 HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0 HUDSPETH AJ, 1977, P NATL ACAD SCI USA, V74, P2407, DOI 10.1073/pnas.74.6.2407 JAVEL E, 1980, J ACOUST SOC AM, V68, P133, DOI 10.1121/1.384639 JOHN MS, 2000, HUMAN AUDITORY STEAD JORIS PX, 1992, J ACOUST SOC AM, V91, P215, DOI 10.1121/1.402757 Keilson S E, 1989, Acta Otolaryngol Suppl, V467, P257 KEMP DT, 1985, PERIPHERAL AUDITORY KHANNA SM, 1996, P SOC PHOTO-OPT INS, V2732, P64, DOI 10.1117/12.231687 KHANNA SM, 1989, HEARING RES, V39, P143, DOI 10.1016/0378-5955(89)90087-7 Khanna SM, 1999, HEARING RES, V132, P15, DOI 10.1016/S0378-5955(99)00027-1 Khanna SM, 2000, HEARING RES, V149, P55, DOI 10.1016/S0378-5955(00)00162-3 Khanna SM, 1999, HEARING RES, V135, P89, DOI 10.1016/S0378-5955(99)00095-7 KOESTER CJ, 1990, T ROY MICR, V1, P327 KOESTER CJ, 1994, APPL OPTICS, V33, P702, DOI 10.1364/AO.33.000702 Koester C J, 1989, Acta Otolaryngol Suppl, V467, P27 KOESTER CJ, 1980, APPL OPTICS, V19, P1749, DOI 10.1364/AO.19.001749 Kouril F., 1988, NONLINEAR PARAMETRIC LENHARDT ML, 1972, PSYCHON SCI, V24, P30 LICKLIDER JCR, 1960, HDB EXPT PSYCHOL LIM DJ, 1986, HEARING RES, V22, P117, DOI 10.1016/0378-5955(86)90089-4 MOLLER AR, 1974, EXP NEUROL, V45, P104, DOI 10.1016/0014-4886(74)90104-6 MOLLER AR, 1987, ELECTROEN CLIN NEURO, V66, P56, DOI 10.1016/0013-4694(87)90138-6 MOLLER AR, 1976, EXP BRAIN RES, V25, P307 REES A, 1987, HEARING RES, V27, P129, DOI 10.1016/0378-5955(87)90014-1 REES A, 1989, J ACOUST SOC AM, V85, P1978, DOI 10.1121/1.397851 RHODE WS, 1994, J NEUROPHYSIOL, V71, P1797 RUSSELL IJ, 1992, P ROY SOC B-BIOL SCI, V250, P217, DOI 10.1098/rspb.1992.0152 RUSSELL IJ, 1978, J PHYSIOL-LONDON, V284, P261 Schulze H, 1999, J COMP PHYSIOL A, V185, P493, DOI 10.1007/s003590050410 SCHWARTZ M, 1990, INFORMATION TRANSMIS SMITH RL, 1980, HEARING RES, V2, P123, DOI 10.1016/0378-5955(80)90034-9 SOKOLICH GW, 1982, Patent No. 4251686 STRELIOFF D, 1984, HEARING RES, V15, P19, DOI 10.1016/0378-5955(84)90221-1 Teich M C, 1989, Acta Otolaryngol Suppl, V467, P249 TEICH MC, 1995, ANN BIOMED ENG, V23, P583, DOI 10.1007/BF02584458 Teich M C, 1989, Acta Otolaryngol Suppl, V467, P265 TEICH MC, 1994, P IEEE SP INT S TIM, P588 TILNEY LG, 1980, J CELL BIOL, V86, P224 van Netten SM, 2000, P ROY SOC B-BIOL SCI, V267, P1915 VERWEIJ C, 1978, AUDIOLOGY, V16, P241 WILLEMIN JF, 1988, J ACOUST SOC AM, V83, P787, DOI 10.1121/1.396122 Willemin J F, 1989, Acta Otolaryngol Suppl, V467, P35 NR 66 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 107 EP 123 DI 10.1016/S0378-5955(02)00645-7 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100012 PM 12433402 ER PT J AU Niu, XZ Canlon, B AF Niu, XZ Canlon, B TI Activation of tyrosine hydroxylase in the lateral efferent terminals by sound conditioning SO HEARING RESEARCH LA English DT Article DE cochlea; auditory brainstem response; hearing loss; acoustic trauma; dopamine ID INDUCED HEARING-LOSS; GUINEA-PIG COCHLEA; TEMPORARY THRESHOLD SHIFT; MIDDLE-EAR MUSCLES; ACOUSTIC TRAUMA; ACQUIRED-RESISTANCE; DE-EFFERENTATION; NOISE EXPOSURE; DOPAMINE; STIMULATION AB Preconditioning to sound is a well-documented strategy to provide protections against a subsequent acoustic trauma. In the present study, preconditioning (1.0 kHz tone at 81 dB sound pressure level (SPL) for 24 h) protected ABR thresholds by 17-28 dB from an acoustic trauma (2.7 kHz, 103 dB SPL, 30 min) that resulted in a temporary threshold shift. The protection afforded by sound conditioning was shown to be blocked by the administration of 6-hydroxydopamine which disrupts tyrosine hydroxylase in the nerve terminals of the lateral efferent fibers. Furthermore, tyrosine hydroxylase immunoreactivity was up-regulated both by sound conditioning alone, and by the combined treatment of sound conditioning and acoustic trauma. In contrast, acoustic trauma alone resulted in a reduction in tyrosine hydroxylase immunoreactivity compared to unexposed controls. These findings are the first demonstration that tyrosine hydroxylase in the lateral efferents are up-regulated during sound conditioning and suggests a role for the lateral efferent system in protecting against acoustic trauma by sound conditioning. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Karolinska Inst, Dept Physiol & Pharmacol, S-17177 Stockholm, Sweden. RP Canlon, B (reprint author), Karolinska Inst, Dept Physiol & Pharmacol, S-17177 Stockholm, Sweden. CR CANLON B, 1988, HEARING RES, V34, P197, DOI 10.1016/0378-5955(88)90107-4 CODY AR, 1982, HEARING RES, V6, P199, DOI 10.1016/0378-5955(82)90054-5 Dagli S, 1997, HEARING RES, V104, P39, DOI 10.1016/S0378-5955(96)00179-7 DALDIN C, 1995, EUR ARCH OTO-RHINO-L, V252, P270 DALDIN C, 1995, HEARING RES, V90, P202, DOI 10.1016/0378-5955(95)00167-5 DENSERT O, 1975, ACTA OTO-LARYNGOL, V79, P339, DOI 10.3109/00016487509124696 EYBALIN M, 1993, NEUROSCIENCE, V54, P133, DOI 10.1016/0306-4522(93)90389-W Flock A, 1999, J NEUROSCI, V19, P4498 Franceschini V., 1991, Theoretical and Computational Fluid Dynamics, V2, DOI 10.1007/BF00271636 Gaborjan A, 1999, NEUROSCIENCE, V90, P131, DOI 10.1016/S0306-4522(98)00461-8 Gaborjan A, 1999, NEUROSCI LETT, V269, P49, DOI 10.1016/S0304-3940(99)00410-3 GILLOYZAGA P, 1989, DEV BRAIN RES, V48, P157, DOI 10.1016/0165-3806(89)90100-4 GILLOYZAGA P, 1994, HEARING RES, V79, P178, DOI 10.1016/0378-5955(94)90138-4 GILLOYZAGA PE, 1995, ACTA OTO-LARYNGOL, V115, P222, DOI 10.3109/00016489509139296 GOULIOS H, 1983, HEARING RES, V11, P327, DOI 10.1016/0378-5955(83)90065-5 HANDROCK M, 1982, ARCH OTO-RHINO-LARYN, V234, P191, DOI 10.1007/BF00453630 HAWKINS JE, 1971, ANN OTO RHINOL LARYN, V80, P903 HENDERSON D, 1994, HEARING RES, V74, P22, DOI 10.1016/0378-5955(94)90172-4 Jacono AA, 1998, HEARING RES, V117, P31, DOI 10.1016/S0378-5955(97)00214-1 JONES N, 1987, HEARING RES, V30, P33, DOI 10.1016/0378-5955(87)90180-8 Kujawa SG, 1997, J NEUROPHYSIOL, V78, P3095 LEGAN PK, 2000, NEURON, V28, P7 LIBERMAN MC, 1995, HEARING RES, V90, P158, DOI 10.1016/0378-5955(95)00160-2 Liu SY, 1997, CHINESE MED J-PEKING, V110, P279 MIYAKITA T, 1992, HEARING RES, V60, P149, DOI 10.1016/0378-5955(92)90017-H Oestreicher E, 1997, HEARING RES, V107, P46, DOI 10.1016/S0378-5955(97)00023-3 ONALI P, 1987, LIFE SCI, V40, P1219, DOI 10.1016/0024-3205(87)90242-6 PACK A, 2001, 23 MIDW M ARO, P43 PICKLES JO, 1987, HEARING RES, V25, P173, DOI 10.1016/0378-5955(87)90089-X Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037 PUJOL R, 1993, ACTA OTO-LARYNGOL, V113, P330, DOI 10.3109/00016489309135819 Rajan R, 2001, J NEUROPHYSIOL, V86, P1277 RAJAN R, 1988, J NEUROPHYSIOL, V60, P569 REITER ER, 1995, J NEUROPHYSIOL, V73, P506 RYAN AF, 1994, HEARING RES, V72, P23, DOI 10.1016/0378-5955(94)90201-1 Safieddine S, 1997, EUR J NEUROSCI, V9, P356, DOI 10.1111/j.1460-9568.1997.tb01405.x SPOENDLIN H, 1971, ACTA OTOLARYNGOL, V71, P159 Sun W, 2001, NEUROREPORT, V12, P803, DOI 10.1097/00001756-200103260-00037 ULFENDAHL M, 1993, EUR J NEUROSCI, V5, P713, DOI 10.1111/j.1460-9568.1993.tb00535.x Usami S, 1988, Acta Otolaryngol Suppl, V447, P36 WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7 Willott JF, 1998, HEARING RES, V115, P162, DOI 10.1016/S0378-5955(97)00189-5 Yamasoba T, 1998, HEARING RES, V120, P143, DOI 10.1016/S0378-5955(98)00054-9 Yamasoba T, 1999, HEARING RES, V127, P31, DOI 10.1016/S0378-5955(98)00178-6 Zheng XY, 1997, HEARING RES, V107, P147, DOI 10.1016/S0378-5955(97)00031-2 Zheng XY, 2000, HEARING RES, V144, P187, DOI 10.1016/S0378-5955(00)00065-4 Zheng XY, 1997, HEARING RES, V104, P191, DOI 10.1016/S0378-5955(96)00187-6 ZIGMOND RE, 1989, ANNU REV NEUROSCI, V12, P415, DOI 10.1146/annurev.ne.12.030189.002215 ZIGMOND RE, 1988, J PHYSIOL-PARIS, V83, P267 NR 49 TC 14 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 124 EP 132 DI 10.1016/S0378-5955(02)00646-9 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100013 PM 12433403 ER PT J AU Phillips, DP Hall, SE AF Phillips, DP Hall, SE TI Auditory temporal gap detection for noise markers with partially overlapping and non-overlapping spectra SO HEARING RESEARCH LA English DT Article DE auditory gap detection; temporal processing; spectral dissimilarity; pitch; bandwidth ID SINUSOIDAL MARKERS; DETECTION THRESHOLDS; STREAM SEGREGATION; ACROSS-FREQUENCY; CHANNEL; DISCRIMINATION; SEPARATION; INTERVALS; BANDWIDTH; MODEL AB Temporal gap detection thresholds were obtained from six listeners using an adaptive tracking method and constant spectrumlevel noises. In separate blocks of trials, the markers bounding the gap were systematically varied in their spectral overlap or separation (expressed in equivalent rectangular bandwidths, ERBs). In the same listeners, gap thresholds were also obtained for noises of the same bandwidths as those constituting the overlap in the overlap conditions (in the presence of a wideband notched noise masker: 'mask' conditions). For the spectral overlap/separation conditions, gap thresholds were a systematic, linear function of spectral dissimilarity in four of six listeners. In the mask conditions, gap thresholds were inversely related to bandwidth in all listeners. For the three-, four- and five-ERB conditions, gap thresholds in the same listeners for the spectral overlap conditions were higher than those for mask stimuli with the same available within-channel bandwidth and spectrum levels. These data suggest that the spectral dissimilarity between the markers over-rode the availability of within-channel information in the recovery of the temporal gap. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Dalhousie Univ, Dept Psychol, Hearing Res Lab, Halifax, NS B3H 4J1, Canada. RP Phillips, DP (reprint author), Dalhousie Univ, Dept Psychol, Hearing Res Lab, Halifax, NS B3H 4J1, Canada. RI Phillips, Dennis/A-6496-2011 CR BREGMAN AS, 1971, J EXP PSYCHOL, V89, P244, DOI 10.1037/h0031163 Bregman AS., 1990, AUDITORY SCENE ANAL DIVENYI PL, 1977, PERCEPT PSYCHOPHYS, V21, P125, DOI 10.3758/BF03198716 EDDINS DA, 1992, J ACOUST SOC AM, V91, P1069, DOI 10.1121/1.402633 Eggermont JJ, 2000, J NEUROPHYSIOL, V84, P1453 FITZGIBBONS PJ, 1974, PERCEPT PSYCHOPHYS, V16, P522, DOI 10.3758/BF03198581 FORMBY C, 1991, J ACOUST SOC AM, V89, P830, DOI 10.1121/1.1894643 Formby C, 1996, AUDIT NEUROSCI, V3, P1 Formby C, 1998, J ACOUST SOC AM, V103, P3554, DOI 10.1121/1.423084 Formby C, 1998, J ACOUST SOC AM, V104, P984, DOI 10.1121/1.423313 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Grose JH, 2001, J ACOUST SOC AM, V109, P1587, DOI 10.1121/1.1354983 Grose JH, 1999, J ACOUST SOC AM, V106, P946, DOI 10.1121/1.427609 Hall JW, 1996, J ACOUST SOC AM, V99, P1091, DOI 10.1121/1.414595 Heinz MG, 1996, AUDIT NEUROSCI, V3, P35 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 MOORE BCJ, 1988, J ACOUST SOC AM, V83, P1093, DOI 10.1121/1.396054 NEFF DL, 1982, PERCEPT PSYCHOPHYS, V31, P493, DOI 10.3758/BF03204859 Oxenham AJ, 1997, J ACOUST SOC AM, V102, P1779, DOI 10.1121/1.420086 Oxenham AJ, 2000, J ACOUST SOC AM, V107, P2215, DOI 10.1121/1.428502 Phillips DP, 1997, J ACOUST SOC AM, V101, P3694, DOI 10.1121/1.419376 Phillips DP, 2000, J ACOUST SOC AM, V108, P2957, DOI 10.1121/1.1320473 Phillips DP, 2002, HEARING RES, V167, P192, DOI 10.1016/S0378-5955(02)00393-3 PHILLIPS DP, 2001, PHYSL EAR, P613 Phillips DP, 1998, J ACOUST SOC AM, V103, P2064, DOI 10.1121/1.421353 SHAILER MJ, 1983, J ACOUST SOC AM, V74, P467, DOI 10.1121/1.389812 Snell KB, 1999, J ACOUST SOC AM, V106, P3571, DOI 10.1121/1.428210 Taylor TL, 1999, J ACOUST SOC AM, V105, P563, DOI 10.1121/1.424593 VIEMEISTER NF, 1979, J ACOUST SOC AM, V66, P1364, DOI 10.1121/1.383531 Vliegen J, 1999, J ACOUST SOC AM, V106, P938, DOI 10.1121/1.427140 WILLIAMS KN, 1972, J ACOUST SOC AM, V51, P644, DOI 10.1121/1.1912888 NR 31 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 133 EP 141 DI 10.1016/S0378-5955(02)00647-0 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100014 PM 12433404 ER PT J AU Kitamura, Y Teranishi, MA Sone, M Nakashima, T AF Kitamura, Y Teranishi, MA Sone, M Nakashima, T TI Round window membrane in young and aged C57BL/6 mice SO HEARING RESEARCH LA English DT Article DE round window membrane; aging; ultrastructure; C57BL/6 mouse ID MENIERES-DISEASE; INTRATYMPANIC GENTAMICIN; ELASTIC FIBER; OTITIS-MEDIA; PERMEABILITY; UPDATE; CELL AB Although there have been many studies on the round window membrane (RWM), little information has been reported about changes in the membrane associated with aging. We have undertaken morphological studies of RWMs using young (7-8 weeks old) and aged (27-29 months old) C57BL/6 mice. The RWM was thinner in mice from the aged group compared with that of the young group. The cell density in the epithelial and inner layers was also reduced in the aged group. In the middle layer of the RWM in aged mice, transmission electron microscopy revealed many degenerated short and thick elastic fibers. Confocal laser microscopy using fluorescein isothiocyanate(FITC)-wheat germ agglutinin (WGA) staining was used to identify WGA-positive fibers in the middle layer of the RWM, which changed in a similar manner to the fibers in aging skin. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Nagoya Univ, Sch Med, Dept Otorhinolaryngol, Showa Ku, Nagoya, Aichi 4668550, Japan. RP Kitamura, Y (reprint author), Nagoya Univ, Sch Med, Dept Otorhinolaryngol, Showa Ku, 65 Tsurumai Cho, Nagoya, Aichi 4668550, Japan. RI Nakashima, Tsutomu/B-8259-2012; Teranishi, Masaaki/I-1956-2012 OI Nakashima, Tsutomu/0000-0003-3930-9120; CR Blakley BW, 2000, LARYNGOSCOPE, V110, P236, DOI 10.1097/00005537-200002010-00009 BRAVERMAN IM, 1982, J INVEST DERMATOL, V78, P434, DOI 10.1111/1523-1747.ep12507866 CARPENTER AM, 1989, ARCH OTOLARYNGOL, V115, P585 Gotoh Tadashi, 1994, Journal of Nippon Medical School, V61, P129 Goycoolea M V, 1988, Laryngoscope, V98, P1, DOI 10.1288/00005537-198806001-00002 Goycoolea MV, 2001, ACTA OTO-LARYNGOL, V121, P437, DOI 10.1080/000164801300366552 Goycoolea MV, 1997, MICROSC RES TECHNIQ, V36, P201, DOI 10.1002/(SICI)1097-0029(19970201)36:3<201::AID-JEMT8>3.0.CO;2-R GOYCOOLEA MV, 1987, ARCH OTOLARYNGOL, V113, P617 HELLSTROM S, 1988, ACTA OTOLARYNGOL S S, V457, P33 Hibi T, 2001, ACTA OTO-LARYNGOL, V121, P336, DOI 10.1080/000164801300102699 Hirsch BE, 1997, OTOLARYNG CLIN N AM, V30, P1039 HUNTER KP, 1987, HEARING RES, V30, P207, DOI 10.1016/0378-5955(87)90137-7 Ichimiya I, 2000, HEARING RES, V139, P116, DOI 10.1016/S0378-5955(99)00170-7 Nakashima T, 2000, ACTA OTO-LARYNGOL, V120, P904, DOI 10.1080/00016480050218627 NEDZELSKI JM, 1993, AM J OTOL, V14, P278 OSKVIST LM, 1997, ACTA OTOLARYNGOL S, V526, P54 PasqualiRonchetti I, 1997, MICROSC RES TECHNIQ, V38, P428, DOI 10.1002/(SICI)1097-0029(19970815)38:4<428::AID-JEMT10>3.0.CO;2-L Rauch SD, 1997, LARYNGOSCOPE, V107, P49, DOI 10.1097/00005537-199701000-00012 SAHNI RS, 1987, ARCH OTOLARYNGOL, V113, P630 SCHACHERN PA, 1982, ARCH OTOLARYNGOL, V108, P550 SCHACHERN PA, 1987, ARCH OTOLARYNGOL, V113, P625 Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 Wanamaker HH, 1998, AM J OTOL, V19, P170 White JA, 2000, HEARING RES, V141, P12, DOI 10.1016/S0378-5955(99)00204-X YOSHIHARA T, 1995, ORL J OTO-RHINO-LARY, V57, P115 NR 25 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 142 EP 148 DI 10.1016/S0378-5955(02)00651-2 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100015 PM 12433405 ER PT J AU Saberi, K Tirtabudi, P Petrosyan, A Perrott, DR Strybel, TZ AF Saberi, K Tirtabudi, P Petrosyan, A Perrott, DR Strybel, TZ TI Concurrent motion detection based on dynamic changes in interaural delay SO HEARING RESEARCH LA English DT Article DE binaural; dynamic interaural delay; auditory motion ID MODULATION DETECTION INTERFERENCE; MONAURAL LISTENING CONDITIONS; COMODULATION MASKING RELEASE; AUDIBLE MOVEMENT ANGLE; AMPLITUDE-MODULATION; HORIZONTAL PLANE; SOUND SOURCES; NOISE-BAND; DISCRIMINATION; FREQUENCY AB The ability to detect a dynamic change in the interaural delay of a pure tone in the presence of a distracter tone of a different frequency was investigated in four conditions: (1) a control condition in which no distracter tone was present, (2) the distracter tone was stationary (fixed interaural delay), (3) the distracter had an interaural delay that changed in the same direction as that of the target tone, i.e., concurrent auditory motion in the same direction, and (4) the distracter had an interaural delay that changed in a direction opposite to that of the target tone, i.e., concurrent auditory motion in opposite directions. In a cued single-interval two-alternative forced-choice design, the observer had to determine if the target tone had a constant or dynamic interaural delay. The target was a 500-Hz tone and the distracter was a tone with a frequency of 300, 510, 550, 600, 800, or 1000 Hz. Detection was also examined for a range of stimulus durations, rates of change in interaural delay (i.e., velocity), and extent of change in interaural time difference (i.e., 'distance'). Results showed that the best performance (highest d') was associated with the nodistracter condition, followed by the stationary-distracter, opposite-direction, and same-direction conditions, respectively. Detection improved with increasing frequency difference between distracter and target tones, but was nonetheless lower than that associated with the no-distracter condition, even when the distracter frequency was several critical bands removed from the target frequency. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Calif Irvine, Dept Cognit Sci, Irvine, CA 92697 USA. Calif State Univ Los Angeles, Dept Psychol, Los Angeles, CA 90032 USA. Calif State Univ Long Beach, Dept Psychol, Long Beach, CA 90840 USA. RP Saberi, K (reprint author), Univ Calif Irvine, Dept Cognit Sci, Irvine, CA 92697 USA. CR Arbogast TL, 2000, J ACOUST SOC AM, V108, P1803, DOI 10.1121/1.1289366 BACON SP, 1993, J ACOUST SOC AM, V93, P1012, DOI 10.1121/1.405549 BERNSTEIN LR, 1992, J ACOUST SOC AM, V94, P735 BERNSTEIN LR, 1995, J ACOUST SOC AM, V98, P155, DOI 10.1121/1.414467 BLAUERT J, 1972, AUDIOLOGY, V11, P265 Bolia RS, 1999, HUM FACTORS, V41, P664, DOI 10.1518/001872099779656789 Bregman AS., 1990, AUDITORY SCENE ANAL CHANDLER DW, 1992, J ACOUST SOC AM, V91, P1624, DOI 10.1121/1.402443 COHEN MF, 1987, J ACOUST SOC AM, V81, P721, DOI 10.1121/1.394839 Creelman C. D., 1991, DETECTION THEORY USE DYE RH, 1997, BINAURAL SPATIAL HEA Dye RH, 1996, J ACOUST SOC AM, V99, P1096, DOI 10.1121/1.414670 FANTINI DA, 1994, J ACOUST SOC AM, V95, P2180, DOI 10.1121/1.408678 GRANTHAM DW, 1978, J ACOUST SOC AM, V63, P511, DOI 10.1121/1.381751 GRANTHAM DW, 1984, J ACOUST SOC AM, V76, P71, DOI 10.1121/1.391009 GRANTHAM DW, 1986, J ACOUST SOC AM, V79, P1939, DOI 10.1121/1.393201 GREEN DM, 1995, J ACOUST SOC AM, V97, P3749, DOI 10.1121/1.412390 GREEN DM, 1966, SIGNAL DETECTION THE GREEN DM, 1995, ADV HEARING RES, P501 GROSE JH, 1992, J ACOUST SOC AM, V91, P1042, DOI 10.1121/1.402630 HALL JW, 1984, J ACOUST SOC AM, V76, P50, DOI 10.1121/1.391005 HELLER LM, 1994, J ACOUST SOC AM, V97, P1808 Kidd G, 1998, J ACOUST SOC AM, V104, P422, DOI 10.1121/1.423246 KOLLMEIER B, 1992, J ACOUST SOC AM, V92, P1889, DOI 10.1121/1.405264 MCFADDEN D, 1987, J ACOUST SOC AM, V81, P1519, DOI 10.1121/1.394504 MENDOZA L, 1995, J ACOUST SOC AM, V97, P2487, DOI 10.1121/1.413100 MOORE BCJ, 1997, INTRO PSYCHOL HEART PERROTT DR, 1969, J ACOUST SOC AM, V46, P1477, DOI 10.1121/1.1911890 PERROTT DR, 1988, J ACOUST SOC AM, V83, P1522, DOI 10.1121/1.395908 PERROTT DR, 1984, J ACOUST SOC AM, V75, P1201, DOI 10.1121/1.390771 PERROTT DR, 1977, J ACOUST SOC AM, V62, P1463, DOI 10.1121/1.381675 PERROTT DR, 1977, J ACOUST SOC AM, V61, P1288, DOI 10.1121/1.381430 Saberi K, 1997, PERCEPT PSYCHOPHYS, V59, P867, DOI 10.3758/BF03205504 SABERI K, 1995, NATURE, V374, P537, DOI 10.1038/374537a0 Saberi K., 1997, BINAURAL SPATIAL HEA, P315 Saberi K, 1995, J ACOUST SOC AM, V98, P3146, DOI 10.1121/1.413804 Saberi K, 1996, PSYCHOL REV, V103, P137 SABERI K, 1990, J ACOUST SOC AM, V88, P2639, DOI 10.1121/1.399984 SAYERS BM, 1957, J ACOUST SOC AM, V29, P973, DOI 10.1121/1.1914990 Scharf B, 1970, FOUNDATIONS MODERN A, V1, P157 STRYBEL TZ, 1989, PERCEPT PSYCHOPHYS, V45, P371, DOI 10.3758/BF03204951 TRAHIOTIS C, 1990, J ACOUST SOC AM, V87, P810, DOI 10.1121/1.398892 WAUGH W, 1979, Journal of Auditory Research, V19, P103 YOST WA, 1989, J ACOUST SOC AM, V86, P2138, DOI 10.1121/1.398474 Yost WA, 1996, PERCEPT PSYCHOPHYS, V58, P1026, DOI 10.3758/BF03206830 YOST WA, 1989, J ACOUST SOC AM, V85, P848, DOI 10.1121/1.397556 YOST WA, 1990, J ACOUST SOC AM, V87, P897, DOI 10.1121/1.398899 YOST WA, 1997, BINAURAL SPATIAL HEA ZUREK P M, 1985, Journal of the Acoustical Society of America, V78, pS18, DOI 10.1121/1.2022675 ZWICKER E, 1961, J ACOUST SOC AM, V33, P248, DOI 10.1121/1.1908630 NR 50 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 149 EP 157 DI 10.1016/S0378-5955(02)00652-4 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100016 PM 12433406 ER PT J AU Harding, GW Bohne, BA Ahmad, M AF Harding, GW Bohne, BA Ahmad, M TI DPOAE level shifts and ABR threshold shifts compared to detailed analysis of histopathological damage from noise SO HEARING RESEARCH LA English DT Article DE noise; distortion product otoacoustic emission; auditory brainstem response; organ of Corti; histopathology; chinchilla ID PRODUCT OTOACOUSTIC EMISSIONS; EVOKED-POTENTIAL THRESHOLDS; HAIR CELL LOSS; CHINCHILLA-COCHLEA; DEGENERATION; SUPPRESSION; DEPENDENCE; SECONDARY; EXPOSURES; AMPLITUDE AB A detailed comparison of 2f(1)-f(2) distortion product otoacoustic emission (DPOAE) level shifts (LS) and auditory brainstem response (ABR) threshold shifts with noise-induced histopathology was conducted in chinchillas. DPOAE levels (i.e., L-1 and L-2) at f(1) and f(2), respectively, ranged from 55-75 dB sound pressure level (SPL), with f(2)/f(1) = 1.23, 6 points/octave, f(2) = 0.41-20 kHz, and ABR thresholds at 0.5-20 kHz, 2 points/octave, were determined pre-exposure. The exposure was a 108 dB SPL octave band of noise centered at 4 kHz (1-1.75 h, n = 6) or 80-86 dB SPL (24 h, n = 5). DPOAE LSs (magnitude pre- minus post-exposure) and ABR threshold shifts (TS) were determined at 0 days and up to 28 days post-exposure. The cochleae were fixed, embedded in plastic and dissected into flat preparations. The length of the organ of Corti (OC) was measured; missing inner (IHC) and outer (OHC) hair cells counted; stereocilia damage rated; and regions of OC and nerve-fiber loss determined. Cytocochleograms were made showing functional loss and structural damage with the LS and TS overlaid. Some unexpected results were obtained. First, the best correlation of LS with histopathology required plotting the DPOAE data at f(1) with respect to the chinchilla-place map. The best correlation of TS was with IHC and nerve-fiber loss. Second, wide regions of up to 10% scattered OHC loss in the apical half of the OC showed little or no LS. Third, with the 108 dB SPL noise, there was 20-40 dB of recovery for DPOAEs at mid-high frequencies (3-10 kHz) in eight of 12 cochleae where there was 70-100% OHC loss in the basal half of the OC. The largest recovery at mid-high frequencies occurred in regions where the OC was entirely missing. Fourth, with the 80-86 dB SPL noise, there was no LS at small focal lesions (100% loss of OHCs over 0.4 mm) when the frequency place of either f(1) or f(2) was within the lesion but not both. There was no correlation of LS with OHC stereocilia loss, fusion or disarray. These results suggest that, after noise exposure, DPOAEs at mid-high frequencies can originate from or be augmented by generators located at someplace other than the frequency place of f(2), possibly the basal 20% of the OC when this region is intact. Also, noise-induced DPOAE LSs seemed to reflect differing mechanisms for temporary and permanent hearing loss. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. RP Harding, GW (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, Box 8115,600 S Euclid Ave, St Louis, MO 63110 USA. RI Bohne, Barbara/A-9113-2008 OI Bohne, Barbara/0000-0003-3874-7620 CR Arnold DJ, 1999, ARCH OTOLARYNGOL, V125, P215 Bohne B.A., 1982, NEW PERSPECTIVES NOI, P283 Bohne BA, 2000, AM J OTOL, V21, P505 BOHNE BA, 1990, HEARING RES, V48, P79, DOI 10.1016/0378-5955(90)90200-9 BOHNE BA, 1976, HEARING DAVIS ESSAYS, P85 Bohne BA, 1999, HEARING RES, V134, P163, DOI 10.1016/S0378-5955(99)00082-9 BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 CANLON B, 1995, HEARING RES, V84, P112, DOI 10.1016/0378-5955(95)00020-5 CLARK WW, 1984, HEARING RES, V16, P299, DOI 10.1016/0378-5955(84)90119-9 ELDREDGE DH, 1981, J ACOUST SOC AM, V69, P1091, DOI 10.1121/1.385688 Fahey PF, 2000, J ACOUST SOC AM, V108, P1786, DOI 10.1121/1.1308048 Hamernik RP, 2000, HEARING RES, V150, P245, DOI 10.1016/S0378-5955(00)00204-5 Jock BM, 1996, HEARING RES, V96, P179, DOI 10.1016/0378-5955(96)00058-5 Kakigi A, 1998, AUDIOL NEURO-OTOL, V3, P361, DOI 10.1159/000013806 KURODA T, 2001, AURIS NASUS LARYNX, V28, P33 MARTIN GK, 2002, ABST ARO, V25, P69 Martin GK, 1999, HEARING RES, V136, P105, DOI 10.1016/S0378-5955(99)00119-7 McFadden SL, 1998, J ACOUST SOC AM, V104, P2290, DOI 10.1121/1.423776 Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X Raveh E, 1998, J OTOLARYNGOL, V27, P354 SPOENDLIN H, 1984, ULTRASTRUCTURAL ATLA, P133 Strominger RN, 1995, HEARING RES, V92, P52, DOI 10.1016/0378-5955(95)00196-4 SUBRAMANIAM M, 1995, EAR HEARING, V16, P372, DOI 10.1097/00003446-199508000-00004 SUTTON LA, 1994, HEARING RES, V75, P161, DOI 10.1016/0378-5955(94)90067-1 VONBISMARCK G, 1967, THESIS MIT CAMBRIDGE Wang J, 1997, HEARING RES, V107, P67, DOI 10.1016/S0378-5955(97)00020-8 WHITEHEAD ML, 1992, J ACOUST SOC AM, V91, P1587, DOI 10.1121/1.402440 WHITEHEAD ML, 1995, J ACOUST SOC AM, V97, P2346, DOI 10.1121/1.411959 NR 28 TC 39 Z9 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 158 EP 171 DI 10.1016/S0378-5955(02)00653-6 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100017 PM 12433407 ER PT J AU Bobbin, RP AF Bobbin, RP TI Caffeine and ryanodine demonstrate a role for the ryanodine receptor in the organ of Corti SO HEARING RESEARCH LA English DT Article DE cochlear microphonic; summating potential; action potential; distortion product ID GUINEA-PIG COCHLEA; OUTER HAIR-CELLS; INTRACELLULAR CALCIUM; SUPPORTING CELLS; PHARMACOLOGICAL EVIDENCE; ATP; ACETYLCHOLINE; CONDUCTANCE; MECHANICS; ELECTROMOTILITY AB The hypothesis that the release of Ca2+ from ryanodine receptor activated Ca2+ stores in vivo can affect the function of the cochlea was tested by examining the effects of caffeine (1-10 mM) and ryanodine (1-333 muM), two drugs that release Ca2+ from these intracellular stores. The drugs were infused into the perilymph compartment of the guinea pig cochlea while sound (10 kHz) evoked cochlear potentials and distortion product otoacoustic emissions (DPOAEs; 2f(1)-f(2) = 8 kHz, f(2) = 12 kHz) were monitored. Caffeine significantly suppressed the compound action potential of the auditory nerve (CAP) at low intensity (56 dB SPL; 3.3 and 10 mM) and high intensity (92 dB SPL; 10 mM), increased N1 latency at high and low intensity (3 and 10 mM) and suppressed low intensity summating potential (SP; 10 mM) without an effect on high intensity SP. Ryanodine significantly suppressed the CAP at low intensity (100 and 333 M) and at high intensity (333 muM), increased NI latency at low intensity (33, 100 and 333 muM) and at high intensity (333 muM) and suppressed low intensity SP (100 and 333 muM) and increased high intensity SP (333 PM). The cochlear microphonic (CM) evoked by 10 kHz tone bursts was not affected by caffeine at high or low intensity, and ryanodine had no effect on it at low intensity but decreased it at high intensity (10, 33, 100 and 333 muM). In contrast, caffeine (10 mM) and ryanodine (33 and 100 muM) significantly increased CM evoked by 1 kHz tone bursts and recorded from the round window. Caffeine (10 mM) and ryanodine (100 M) reversibly suppressed the cubic DPOAEs evoked by low intensity primaries. Overall, low intensity evoked responses were more sensitive and were suppressed to a greater extent by both drugs. This is consistent with the hypothesis that release of Ca2+ from ryanodine receptor Ca2+ stores, possibly in outer hair cells and supporting cells, affects the function of the cochlear amplifier. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Louisiana State Univ, Hlth Sci Ctr, Dept Otorhinolaryngol & Biocommun, Kresge Hearing Res Labs, New Orleans, LA 70112 USA. RP Bobbin, RP (reprint author), Louisiana State Univ, Hlth Sci Ctr, Dept Otorhinolaryngol & Biocommun, Kresge Hearing Res Labs, 533 Bolivar St,5th Floor, New Orleans, LA 70112 USA. CR ASHMORE JF, 1990, J PHYSIOL-LONDON, V428, P109 Berridge MJ, 1998, NEURON, V21, P13, DOI 10.1016/S0896-6273(00)80510-3 BLEDSOE SC, 1981, HEARING RES, V4, P109, DOI 10.1016/0378-5955(81)90040-X BOBBIN RP, 2002, INNER EAR BIOL BASIC, P91 BOBBIN RP, 1981, PHARM HEARING, P19 BOBBIN RP, 1991, HEARING RES, V56, P101, DOI 10.1016/0378-5955(91)90159-7 BOBBIN RP, 2001, HAIR CELLS MICROMECH, P129 BOBBIN RP, 2001, NEUROREPORT, V12, P1000 Chen C, 1998, BRIT J PHARMACOL, V124, P337, DOI 10.1038/sj.bjp.0701848 Chen C, 1998, HEARING RES, V118, P47, DOI 10.1016/S0378-5955(98)00019-7 CHUNG JW, 2001, JARO, V4, P399 Dallos P, 1997, J NEUROSCI, V17, P2212 DULON D, 1994, BIOCHEM BIOPH RES CO, V201, P1263, DOI 10.1006/bbrc.1994.1841 FITZGERALD JJ, 1993, HEARING RES, V67, P147, DOI 10.1016/0378-5955(93)90242-S Haak LL, 2001, J NEUROSCI, V21, P3860 KONISHI T, 1971, SCIENCE, V172, P483, DOI 10.1126/science.172.3982.483 KUJAWA SG, 1992, HEARING RES, V64, P73, DOI 10.1016/0378-5955(92)90169-N Kujawa SG, 1996, HEARING RES, V97, P153 KUJAWA SG, 1994, HEARING RES, V76, P87, DOI 10.1016/0378-5955(94)90091-4 Lagostena L, 2001, J PHYSIOL-LONDON, V531, P693, DOI 10.1111/j.1469-7793.2001.0693h.x Lagostena T, 2001, CELL CALCIUM, V29, P191, DOI 10.1054/ceca.2000.0183 Mammano F, 1999, J NEUROSCI, V19, P6918 Matsunobu T, 2000, J COMP NEUROL, V423, P452 Murugasu E, 1996, AUDIT NEUROSCI, V2, P363 Murugasu E., 1995, AUDIT NEUROSCI, V1, P139 Nenov AP, 1996, HEARING RES, V101, P149, DOI 10.1016/S0378-5955(96)00143-8 PATUZZI RB, 1989, HEARING RES, V39, P177, DOI 10.1016/0378-5955(89)90089-0 PUEL JL, 1988, HEARING RES, V37, P53, DOI 10.1016/0378-5955(88)90077-9 PUEL JL, 1989, COMP BIOCHEM PHYS C, V93, P73, DOI 10.1016/0742-8413(89)90013-3 RICCI AJ, 2001, HAIR CELLS MICROMECH, P45 Robles L, 2001, PHYSIOL REV, V81, P1305 Ruel J, 1999, J PHYSIOL-LONDON, V518, P667, DOI 10.1111/j.1469-7793.1999.0667p.x Ruel J, 2000, NEUROPHARMACOLOGY, V39, P1959, DOI 10.1016/S0028-3908(00)00069-1 SANTOSSACCHI J, 2001, PHYSL EAR, P357 Sato Y, 1998, ACTA OTO-LARYNGOL, V118, P821, DOI 10.1080/00016489850182512 Skellett RA, 1997, HEARING RES, V111, P42, DOI 10.1016/S0378-5955(97)00093-2 SKELLETT RA, 1995, HEARING RES, V87, P41, DOI 10.1016/0378-5955(95)00076-G Sridhar TS, 1997, J NEUROSCI, V17, P428 Sugasawa M, 1996, J PHYSIOL-LONDON, V491, P707 Sziklai I, 2001, ACTA OTO-LARYNGOL, V121, P153 Take K, 1996, Nihon Jibiinkoka Gakkai Kaiho, V99, P1641 YAMAMOTO T, 1995, BRAIN RES, V677, P89, DOI 10.1016/0006-8993(95)00121-6 Zhang Y., 1999, CRYST ENG, V2, P1, DOI 10.1016/S1463-0184(99)00002-7 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 Zucchi R, 1997, PHARMACOL REV, V49, P1 NR 45 TC 15 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 172 EP 182 DI 10.1016/S0378-5955(02)00654-8 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100018 PM 12433408 ER PT J AU Rosowski, JJ Lee, CY AF Rosowski, JJ Lee, CY TI The effect of immobilizing the gerbil's pars flaccida on the middle-ear's response to static pressure SO HEARING RESEARCH LA English DT Article DE tympanic membrane; tympanometry; laser Doppler vibrometry ID MONGOLIAN GERBIL; TYMPANIC MEMBRANE; MECHANICS AB The pars flaccida of the tympanic membrane has a small role in regulating middle-ear static pressure (Acta Physiol. Scand. 118 (1983) 337; Hear. Res. 118 (1998) 35) and can also modify the response of the middle ear to low-frequency sound pressures by shunting ear-canal volume velocity around the pars tensa (Hear. Res. 13 (1984) 83; Hear. Res. 106 (1997) 39; Diversity in Auditory Mechanics (1997) 129; Audiol. Neuro-Otol. 4 (1999) 129). It has been hypothesized that these two functions can interact to reduce the effect of middle-ear static pressure on sound transmission through the middle ear (Hear. Res. 153 (2001) 146). This paper tests this hypothesis by measuring the effect of static pressure on the sensitivity of the p. tensa and the coupled malleus to sound, before and after immobilizing the p. flaccida. The results are consistent with a limited role of the p. flaccida in influencing the effect of static pressure on the p. tensa's acoustic response. However, this effect is only observed at low frequencies and over the +/-1 cm H2O range of middle-ear static pressures. The results also suggest that large negative middle-ear pressures can induce a change in the mode of tympanic membrane motion regardless of the state of the p. flaccida. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Massachusetts Eye & Ear Infirm, Dept Otolaryngol & Eaton Peabody Lab, Boston, MA 02114 USA. Harvard Univ, Dept Otol & Laryngol, Sch Med, Boston, MA USA. MIT, Div Hlth Sci & Technol, Speech & Hearing Sci Program, Cambridge, MA USA. Natl Taiwan Univ Hosp, Dept Otorhinolaryngol, Taipei, Taiwan. RP Rosowski, JJ (reprint author), Massachusetts Eye & Ear Infirm, Dept Otolaryngol & Eaton Peabody Lab, 243 Charles St, Boston, MA 02114 USA. CR DECRAEMER WF, 1989, HEARING RES, V38, P1, DOI 10.1016/0378-5955(89)90123-8 Dirckx JJJ, 1998, HEARING RES, V118, P35, DOI 10.1016/S0378-5955(98)00025-2 Dirckx JJJ, 1997, HEARING RES, V111, P153, DOI 10.1016/S0378-5955(97)00108-1 HELLSTROM S, 1983, ACTA PHYSIOL SCAND, V118, P337, DOI 10.1111/j.1748-1716.1983.tb07280.x Hüttenbrink K B, 1988, Acta Otolaryngol Suppl, V451, P1 KOHLLOFFEL LUE, 1984, HEARING RES, V13, P83, DOI 10.1016/0378-5955(84)90098-4 Lee CY, 2001, HEARING RES, V153, P146, DOI 10.1016/S0378-5955(00)00269-0 Rosowski JJ, 1997, DIVERSITY AUDITORY M, P129 Rosowski JJ, 1999, AUDIOL NEURO-OTOL, V4, P129, DOI 10.1159/000013831 Shrapnell HJ, 1832, LONDON MED GAZ, V10, P120 STENFORS LE, 1979, ACTA OTO-LARYNGOL, V88, P395, DOI 10.3109/00016487909137184 SWARTS JD, 1995, ANN OTO RHINOL LARYN, V104, P522 Teoh SW, 1997, HEARING RES, V106, P39, DOI 10.1016/S0378-5955(97)00002-6 Vanhuyse VJ, 1975, SCAND AUDIOL, V4, P45, DOI 10.3109/01050397509075014 VONUNGE M, 1991, AM J OTOL, V12, P407 VRETTAKOS PA, 1988, AM J OTOLARYNG, V9, P58, DOI 10.1016/S0196-0709(88)80009-7 NR 16 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 183 EP 195 DI 10.1016/S0378-5955(02)00655-X PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100019 PM 12433409 ER PT J AU Chao, TK Burgess, BJ Eddington, DK Nadol, JB AF Chao, TK Burgess, BJ Eddington, DK Nadol, JB TI Morphometric changes in the cochlear nucleus in patients who had undergone cochlear implantation for bilateral profound deafness SO HEARING RESEARCH LA English DT Article DE cochlear nucleus; cochlear implantation; synaptosome-associated protein 25; ventral cochlear nucleus; anterior ventral cochlear nucleus; dorsal cochlear nucleus ID INTRACOCHLEAR ELECTRICAL-STIMULATION; CELL-SIZE CHANGES; HEARING-LOSS; MORPHOLOGY; NERVE; CAT AB We have investigated the morphometric changes in the cochlear nucleus of patients who had undergone cochlear implantation following profound deafness. The brain stems of 11 adult patients who had undergone implantation and four non-implanted control cases with varying degrees of hearing loss were studied. The volumes of the ventral cochlear nucleus (VCN) and dorsal cochlear nucleus (DCN), and the maximal cross-sectional area and densities of cell bodies in the anterior ventral cochlear nucleus (AVCN) were measured bilaterally by light microscopy assisted by the Neurolucida 2000 image analysis system. In addition, the density of synapses on cells of the AVCN were estimated using immunostaining for the synaptosome-associated protein (SNAP-25) by light microscopy. There was no significant difference in volumes of VCN and DCN, maximal cross-sectional area and density of cell bodies of the AVCN, and SNAP-25 immunostaining between the cochlear nucleus ipsilateral and contralateral to cochlear implantation. In addition, there was no significant correlation between these morphometric parameters and clinical performance. Peripheral deafness seems to reduce the size of neurons in the AVCN in that the maximum diameter of cell bodies was greater in the ear with better hearing preoperatively (chi-square test P < 0.05). However, electrical stimulation provided by the cochlear implantation did not alter these morphometric changes in adult cochlear implant patients. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Harvard Univ, Sch Med, Massachusetts Eye & Ear Infirm, Dept Otol & Laryngol, Boston, MA 02114 USA. Far Eastern Mem Hosp, Dept Otolaryngol, Taipei, Taiwan. Massachusetts Eye & Ear Infirm, Dept Otolaryngol, Boston, MA 02114 USA. RP Nadol, JB (reprint author), Harvard Univ, Sch Med, Massachusetts Eye & Ear Infirm, Dept Otol & Laryngol, Boston, MA 02114 USA. CR Blamey P, 1996, Audiol Neurootol, V1, P293 Clark G M, 1988, Acta Otolaryngol Suppl, V448, P1 DUBLIN WB, 1982, OTOLARYNG HEAD NECK, V90, P744 GANTZ BJ, 1993, ANN OTO RHINOL LARYN, V102, P909 Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3 Hodel A, 1998, INT J BIOCHEM CELL B, V30, P1069, DOI 10.1016/S1357-2725(98)00079-X HULTCRANTZ M, 1991, HEARING RES, V54, P272, DOI 10.1016/0378-5955(91)90121-O KONIGSMARK B W, 1972, Journal of Neuropathology and Experimental Neurology, V31, P304, DOI 10.1097/00005072-197204000-00006 LESPERANCE MM, 1995, HEARING RES, V86, P77, DOI 10.1016/0378-5955(95)00056-A LUSTIG LR, 1994, HEARING RES, V74, P29, DOI 10.1016/0378-5955(94)90173-2 MATSUSHIMA JI, 1991, HEARING RES, V56, P133, DOI 10.1016/0378-5955(91)90162-3 MOORE JK, 1979, AM J ANAT, V154, P393, DOI 10.1002/aja.1001540306 MOORE JK, 1994, AM J OTOL, V15, P588 Moore JK, 1997, ANN OTO RHINOL LARYN, V106, P385 Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883 Niparko JK, 1997, OTOLARYNG HEAD NECK, V117, P229, DOI 10.1016/S0194-5998(97)70179-7 SELDON HL, 1991, BRAIN RES, V551, P185, DOI 10.1016/0006-8993(91)90932-L TERR LI, 1988, AM J OTOL, V9, P1 TOLBERT LP, 1982, NEUROSCIENCE, V7, P3013, DOI 10.1016/0306-4522(82)90227-5 WILLOTT JF, 1994, HEARING RES, V74, P1, DOI 10.1016/0378-5955(94)90171-6 NR 20 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 196 EP 205 DI 10.1016/S0378-5955(02)00694-9 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100020 PM 12433410 ER PT J AU Lewis, ER Henry, KR Yamada, WM AF Lewis, ER Henry, KR Yamada, WM TI Tuning and timing in the gerbil ear: Wiener-kernel analysis SO HEARING RESEARCH LA English DT Article DE tuning; temporal response; suppression; reverse correlation; gerbil cochlea ID TEMPORAL RECEPTIVE-FIELD; FROG INNER-EAR; AUDITORY NEURONS; COCHLEAR-NERVE; GAUSSIAN-NOISE; RESPONSES; BULLFROG; STIMULI; SYSTEM AB Information about the tuning and timing of excitation in cochlear axons with low-characteristic frequency (CF) is embodied in the first-order Wiener kernel, or reverse correlation function. For high-CF axons, the highest-ranking eigenvector (or singular vector) of the second-order Wiener kernel often can serve as a surrogate for the first-order kernel, providing the same information. For mid-CF axons, the two functions are essentially identical. In this paper we apply these tools to gerbil cochlear-nerve axons with Us ranging from 700 Hz to 14 kHz. Eigen or singular-value decomposition of the second-order Wiener kernel allows us to separate excitatory and suppressive effects, and to determine precisely the timing of the latter. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. Univ Calif Davis, Dept Psychol, Davis, CA 95616 USA. Univ So Calif, Los Angeles, CA 90089 USA. RP Lewis, ER (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. RI X, Simon/F-4678-2011 CR CARNEY LH, 1988, J NEUROPHYSIOL, V60, P1653 DEBOER E, 1978, J ACOUST SOC AM, V63, P115, DOI 10.1121/1.381704 DEBOER E, 1968, IEEE T BIO-MED ENG, VBM15, P169, DOI 10.1109/TBME.1968.4502561 EDWARDS BW, 1993, J ACOUST SOC AM, V93, P3353, DOI 10.1121/1.405718 EGGERMONT JJ, 1983, Q REV BIOPHYS, V16, P341 EGGERMONT JJ, 1983, HEARING RES, V10, P191, DOI 10.1016/0378-5955(83)90053-9 EGGERMONT JJ, 1993, HEARING RES, V66, P177, DOI 10.1016/0378-5955(93)90139-R EGGERMONT JJ, 1983, HEARING RES, V10, P167, DOI 10.1016/0378-5955(83)90052-7 EVANS EF, 1989, COCHLEAR MECH STRUCT, P241 Evans EF, 1977, PSYCHOPHYSICS PHYSL, P185 HENRY KR, 1992, HEARING RES, V63, P1, DOI 10.1016/0378-5955(92)90066-V HUDSPETH AJ, 1977, P NATL ACAD SCI USA, V74, P2407, DOI 10.1073/pnas.74.6.2407 Lewis ER, 2000, BIOSYSTEMS, V58, P109, DOI 10.1016/S0303-2647(00)00113-1 Lewis ER, 2002, HEARING RES, V171, P13, DOI 10.1016/S0378-5955(02)00290-3 Lewis ER, 1995, HEARING RES, V92, P1, DOI 10.1016/0378-5955(95)00189-1 LEWIS ER, 1989, HEARING RES, V37, P219, DOI 10.1016/0378-5955(89)90024-5 LEWIS ER, 1986, AUDITORY FREQUENCY S, P129 LEWIS ER, 1994, HEARING RES, V79, P183, DOI 10.1016/0378-5955(94)90139-2 MOLLER AR, 1986, COMPUT MATH APPL-A, V12, P803, DOI 10.1016/0898-1221(86)90065-9 Recio A., 1997, DIVERSITY AUDITORY M, P325 RHODE WS, 1976, PSYCHOPHYSICS PHYSL, P27 Stein RB, 1970, NEUROSCIENCES, P597 TEICH MC, 1991, MECHANICS BIOPHYSICS, P354 vanDijk P, 1997, HEARING RES, V114, P229, DOI 10.1016/S0378-5955(97)00168-8 vanDijk P, 1997, HEARING RES, V114, P243, DOI 10.1016/S0378-5955(97)00169-X VANDIJK P, 1994, J ACOUST SOC AM, V95, P904, DOI 10.1121/1.410009 WOLODKIN G, 1997, DIVERSITY AUDITORY M, P104 Yamada WM, 1999, HEARING RES, V130, P155, DOI 10.1016/S0378-5955(99)00005-2 YAMADA WY, 1997, THESIS U CALIFORNIA YU XL, 1989, IEEE T BIO-MED ENG, V36, P36, DOI 10.1109/10.16447 NR 30 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 206 EP 221 DI 10.1016/S0378-5955(02)00695-0 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100021 PM 12433411 ER PT J AU Sugawara, M Ishida, Y Wada, H AF Sugawara, M Ishida, Y Wada, H TI Local mechanical properties of guinea pig outer hair cells measured by atomic force microscopy SO HEARING RESEARCH LA English DT Article DE outer hair cell; guinea pig; local mechanical property; atomic force microscopy ID ENDOTHELIAL-CELLS; GENERATION; STIFFNESS; FIBROBLASTS; ELASTICITY; RESPONSES; PROTEIN; ACTIN; ORGAN; CORTI AB In this study, mechanical properties of guinea pig outer hair cells (OHCs) were measured by atomic force microscopy (AFM). First, in order to confirm the availability of AFM for measurement of the mechanical properties of the OHC, Young's moduli of the OHCs measured in this study were converted into stiffnesses using a one-dimensional model of the cell and then compared with the values reported in the literature. Next, the difference in local mechanical properties of the OHC along the cell axis was measured. Finally, the relationship between Young's modulus in the middle region of the OHC and the cell length was evaluated. The results were as follows. (1) AFM is an adequate tool for the measurement of mechanical properties of the OHC. (2) Mechanical properties in the apical region of the OHC are a maximum of three times larger than those in the basal and middle regions of the cell. (3) Young's modulus in the middle region of a long OHC obtained from the apical turn of the cochlea and that of a short OHC obtained from the basal turn or the second turn are 2.0 +/- 0.81 kPa (n = 10) and 3.7 +/- 0.96 kPa (n = 10), respectively. In addition, it was found that Young's modulus decreases with an increase in the cell length. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Tohoku Univ, Dept Engn Mech, Sendai, Miyagi 9808579, Japan. RP Wada, H (reprint author), Tohoku Univ, Dept Engn Mech, Aobayama 01, Sendai, Miyagi 9808579, Japan. CR Adachi M, 1997, BIOPHYS J, V73, P2809 ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Dimitriadis EK, 2002, BIOPHYS J, V82, P2798 FLOCK A, 1982, HEARING RES, V7, P75, DOI 10.1016/0378-5955(82)90082-X Haga H, 2000, ULTRAMICROSCOPY, V82, P253, DOI 10.1016/S0304-3991(99)00157-6 Hallworth R, 1995, J NEUROPHYSIOL, V74, P2319 Hertz H, 1882, J REINE ANGEW MATH, V92, P156 HOLLEY MC, 1990, J CELL SCI, V96, P283 HOLLEY MC, 1988, NATURE, V335, P635, DOI 10.1038/335635a0 IWASA KH, 1989, HEARING RES, V40, P247, DOI 10.1016/0378-5955(89)90165-2 Iwasa KH, 1997, BIOPHYS J, V73, P546 KACHAR B, 1986, NATURE, V322, P365, DOI 10.1038/322365a0 Miyazaki H, 1999, MED BIOL ENG COMPUT, V37, P530, DOI 10.1007/BF02513342 RADMACHER M, 1995, BIOPHYS J, V69, P264 Radmacher M, 1996, BIOPHYS J, V70, P556 Rotsch C, 2000, BIOPHYS J, V78, P520 SAITO K, 1983, CELL TISSUE RES, V229, P467 SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X Sato M, 2000, J BIOMECH, V33, P127, DOI 10.1016/S0021-9290(99)00178-5 SLEPECKY NB, 1992, HEARING RES, V57, P201, DOI 10.1016/0378-5955(92)90152-D SUGAWARA M, 2001, P 8 INT C SOUND VIBR Sugawara M, 2001, HEARING RES, V160, P63, DOI 10.1016/S0378-5955(01)00343-4 Tolomeo JA, 1996, BIOPHYS J, V71, P421 Ulfendahl M, 1998, PFLUG ARCH EUR J PHY, V436, P9, DOI 10.1007/s004240050598 Wada H, 2001, HEARING RES, V162, P10, DOI 10.1016/S0378-5955(01)00355-0 ZENNER HP, 1992, ACTA OTO-LARYNGOL, V112, P248 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 NR 28 TC 16 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 222 EP 229 DI 10.1016/S0378-5955(02)00696-2 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100022 PM 12433412 ER PT J AU McFadden, SL Ding, DL Jiang, HY Woo, JM Salvi, RJ AF McFadden, SL Ding, DL Jiang, HY Woo, JM Salvi, RJ TI Chinchilla models of selective cochlear hair cell loss SO HEARING RESEARCH LA English DT Article DE aminoglycoside antibiotic; loop diuretic; ototoxicity; inner ear pathology; hearing loss; free radical ID PIG IN-VIVO; VESTIBULAR SENSORY EPITHELIA; FREE-RADICAL FORMATION; ETHACRYNIC-ACID; AMINOGLYCOSIDE ANTIBIOTICS; GENTAMICIN OTOTOXICITY; IRON CHELATORS; INNER-EAR; NUTRITIONAL-STATUS; GLUTATHIONE AB Although it is well known that ethacrynic acid (EA) can enhance gentamicin (GM) ototoxicity, there has been no systematic study of the relationship between dosing parameters and inner ear pathology. We examined the effects of two parameters, GM dose and time delay between GM and EA administration, on cochlear and vestibular hair cell loss in chinchillas. 'No delay' groups received one injection of GM (125 40, 20, or 10 mg/kg i.m.) followed immediately by EA (40 mg/kg i.v.); 'delay' groups received GM (10 mg/kg i.m.) followed by EA 1 or 1.5 It later. Animals were sacrificed 7 days later for evaluation of hair cell loss in the cochlea and vestibular end organs (cristae, saccule and utricle). Vestibular function was assessed prior to sacrifice by measuring the duration of nystagmus induced by cold caloric stimulation. No delay groups had similar to100% loss of outer hair cells and dose-dependent losses of inner hair cells, ranging from similar to100% to 58%. In 1 and 1.5 h delay groups, inner hair cell losses were similar to19% and 0%, outer hair cell losses were similar to74% and 47%, and outer hair cell loss followed a typical base to apex gradient. Two results were remarkable. First, the three groups with partial inner hair cell loss showed an atypical lesion pattern in which losses were substantially greater in the apical half than in the basal half of the cochlea. Second, there was no vestibular pathology in any group. The results establish dosing parameters that can be used to produce animal models with defined patterns and magnitudes of cochlear hair cell damage, but normal vestibular function and morphology. (C) 2002 Elsevier Science B.V. All rights reserved. C1 SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP McFadden, SL (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 215 Parker Hall, Buffalo, NY 14214 USA. EM mcfadden@buffalo.edu CR ANNIKO M, 1987, AM J OTOLARYNG, V8, P48, DOI 10.1016/S0196-0709(87)80018-2 AU S, 1987, BIOCHIM BIOPHYS ACTA, V902, P80, DOI 10.1016/0005-2736(87)90137-4 AU S, 1986, BIOCHIM BIOPHYS ACTA, V862, P205, DOI 10.1016/0005-2736(86)90484-0 BARTOLAMI S, 1994, NEUROSCI LETT, V174, P169, DOI 10.1016/0304-3940(94)90013-2 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 Conlon BJ, 1998, HEARING RES, V115, P1, DOI 10.1016/S0378-5955(97)00171-8 Ding D, 2002, HEARING RES, V173, P1, DOI 10.1016/S0378-5955(02)00585-3 DULON D, 1986, ANTIMICROB AGENTS CH, V30, P96 ERICKSONLAMY K, 1992, INVEST OPHTH VIS SCI, V33, P2631 ERLICH MA, 1980, OTOLARYNG HEAD NECK, V88, P630 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X FORGE A, 1989, HEARING RES, V37, P129, DOI 10.1016/0378-5955(89)90035-X GARETZ SL, 1994, HEARING RES, V77, P81, DOI 10.1016/0378-5955(94)90255-0 HENLEY CM, 1988, AUDIOLOGY, V27, P137 HOFFMAN DW, 1995, BIOCHEM PHARMACOL, V49, P411, DOI 10.1016/0006-2952(94)00474-Z HOFFMAN DW, 1987, HEARING RES, V31, P217, DOI 10.1016/0378-5955(87)90190-0 HOFFMAN DW, 1988, ANN OTO RHINOL LARYN, V97, P36 Hofstetter P, 1997, HEARING RES, V112, P199, DOI 10.1016/S0378-5955(97)00123-8 Hofstetter P, 1997, AUDIOLOGY, V36, P301 Huang J, 1996, BRAIN RES, V711, P184, DOI 10.1016/0006-8993(95)01376-8 HUY PTB, 1986, J CLIN INVEST, V77, P1492 HUY PTB, 1981, SCAND AUDIOL S, V14, P225 Kulkarni AP, 1999, ARCH BIOCHEM BIOPHYS, V371, P220, DOI 10.1006/abbi.1999.1439 Kulkarni AP, 1997, TOXICOL APPL PHARM, V143, P179, DOI 10.1006/taap.1996.8062 Lang HN, 1997, HEARING RES, V111, P177, DOI 10.1016/S0378-5955(97)00098-1 LAUTERMANN J, 1995, HEARING RES, V86, P15, DOI 10.1016/0378-5955(95)00049-A MCCUE MP, 1994, J NEUROSCI, V14, P6071 MCCUE MP, 1994, J NEUROSCI, V14, P6058 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P219, DOI 10.1159/000013845 Priuska E M, 1997, Ear Nose Throat J, V76, P164 Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4 RYBAK LP, 1988, J LARYNGOL OTOL, V102, P518, DOI 10.1017/S0022215100105523 SANTI PA, 1982, HEARING RES, V7, P261, DOI 10.1016/0378-5955(82)90040-5 SCHACHT J, 1993, OTOLARYNG CLIN N AM, V26, P845 Schacht J, 1998, OTOLARYNG HEAD NECK, V118, P674, DOI 10.1177/019459989811800518 Sha SH, 1999, HEARING RES, V128, P112, DOI 10.1016/S0378-5955(98)00200-7 Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4 Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 Shepherd RK, 1995, HEARING RES, V92, P131, DOI 10.1016/0378-5955(95)00211-1 Song BB, 1997, J PHARMACOL EXP THER, V282, P369 Song BB, 1998, FREE RADICAL BIO MED, V25, P189, DOI 10.1016/S0891-5849(98)00037-9 Song BB, 1996, HEARING RES, V94, P87, DOI 10.1016/0378-5955(96)00003-2 TAKENO S, 1994, SCANNING MICROSCOPY, V8, P97 HUY PTB, 1983, HEARING RES, V11, P191, DOI 10.1016/0378-5955(83)90078-3 WAKE M, 1994, LARYNGOSCOPE, V104, P488 WIT HP, 1982, ARCH OTO-RHINO-LARYN, V234, P205, DOI 10.1007/BF00453633 Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6 NR 48 TC 15 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 230 EP 238 DI 10.1016/S0378-5955(02)00697-4 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100023 PM 12433413 ER PT J AU Giraudet, F Horner, KC Cazals, Y AF Giraudet, F Horner, KC Cazals, Y TI Similar half-octave TTS protection of the cochlea by xylazine/ketamine or sympathectomy SO HEARING RESEARCH LA English DT Article DE hearing; trauma; sympathetics; stress; anesthesia; cochlea ID GUINEA-PIG COCHLEA; ACOUSTIC TRAUMA; OTOACOUSTIC EMISSIONS; MAMMALIAN COCHLEA; THRESHOLD SHIFT; STRESS; ANESTHESIA; SLOW; EAR; STIMULATION AB Cochlear efferents, sympathetic control and stress conditions have been shown to influence sound-induced hearing loss. These factors are also known to be modified by sedation/anesthesia. We tested here the effect of sedation/anesthesia on temporary threshold shift (TTS) compared to that in the same awake animals. The effect of sympathectomy was also tested. We employed awake guinea pigs with a chronically implanted electrode on the round window of each of the cochleae. Each ear was tested for its sensitivity to TTS induced by a 1 min or a 10 min exposure to an 8 kHz pure tone at 96 dB sound pressure level. After an intramuscular injection of xylazine or ketamine together with xylazine, TTS at half-octave frequencies was reduced compared to that in awake animals. The second half-octave frequencies were less affected. This specific pattern of protection was also observed here after surgical ablation of a superior cervical ganglion. The data lead to the speculation that protection from TTS under sedation/anesthesia might be due to diminished sympathetic influence. Xylazine is a pre-synaptic alpha2-adrenoreceptor agonist which blocks noradrenaline release from the sympathetic system. Ketamine is a N-methyl-D-aspartic acid receptor antagonist which could reduce glutamate excitotoxicity as well as reduce sympathetic activity. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Aix Marseille 2, INSERM EPI 9902, Lab Otol Neurootol, Fac Med Nord, F-13916 Marseille 20, France. RP Horner, KC (reprint author), Univ Aix Marseille 2, INSERM EPI 9902, Lab Otol Neurootol, Fac Med Nord, Blvd Pierre Dramard, F-13916 Marseille 20, France. CR Amonoo-Kuofi HS, 1999, CLIN ANAT, V12, P345, DOI 10.1002/(SICI)1098-2353(1999)12:5<345::AID-CA5>3.0.CO;2-L BORG E, 1982, ACTA PHYSIOL SCAND, V114, P387, DOI 10.1111/j.1748-1716.1982.tb06999.x BROWN MC, 1983, HEARING RES, V10, P345, DOI 10.1016/0378-5955(83)90097-7 Canlon B, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P118 Cazals Y, 1996, HEARING RES, V101, P81, DOI 10.1016/S0378-5955(96)00135-9 CAZALS Y, 1980, HEARING RES, V2, P95, DOI 10.1016/0378-5955(80)90031-3 CODY AR, 1982, HEARING RES, V6, P199, DOI 10.1016/0378-5955(82)90054-5 daCosta DL, 1997, EXP BRAIN RES, V116, P259, DOI 10.1007/PL00005754 daCosta DL, 1997, J NEUROPHYSIOL, V78, P1826 DALDIN C, 1995, HEARING RES, V90, P202, DOI 10.1016/0378-5955(95)00167-5 DeKock M, 1997, PHARMACOL BIOCHEM BE, V58, P109, DOI 10.1016/S0091-3057(96)00462-5 DRESCHER DG, 1976, J ACOUST SOC AM, V59, P401, DOI 10.1121/1.380877 EYBALIN M, 1993, PHYSIOL REV, V73, P309 Fay R. R., 1988, HEARING VERTEBRATES Gaborjan A, 1999, NEUROSCIENCE, V90, P131, DOI 10.1016/S0306-4522(98)00461-8 Guinan Jr J.J., 1996, COCHLEA, P435 Harel N, 1997, HEARING RES, V110, P25, DOI 10.1016/S0378-5955(97)00061-0 HENRY KR, 1980, AUDIOLOGY, V19, P44 Hildesheimer M, 2002, HEARING RES, V163, P46, DOI 10.1016/S0378-5955(01)00371-9 HIRSH IJ, 1958, J ACOUST SOC AM, V30, P912, DOI 10.1121/1.1909402 HOFFMAN WE, 1992, ANESTHESIOLOGY, V76, P755, DOI 10.1097/00000542-199205000-00014 Horner KC, 2001, EUR J NEUROSCI, V13, P405, DOI 10.1046/j.0953-816X.2000.01386.x Jager W, 2000, EXP BRAIN RES, V134, P426, DOI 10.1007/s002210000470 Juhn SK, 1999, AM J OTOL, V20, P800 LIBERMAN MC, 1992, NOISE INDUCED HEARIN, P423 LONSBURYMARTIN BL, 1987, HEARING RES, V28, P173, DOI 10.1016/0378-5955(87)90048-7 Maignan E, 2000, J AUTONOM NERV SYST, V80, P46, DOI 10.1016/S0165-1838(00)00075-8 MICHENFELDER JD, 1993, J NEUROSURG ANESTH, V5, P22 HILDESHEIMER M, 1991, HEARING RES, V51, P161, DOI 10.1016/0378-5955(91)90014-Z MUCHNIK C, 1983, ARCH OTOLARYNGOL, V109, P530 Mulders WHAM, 2001, J CHEM NEUROANAT, V21, P313, DOI 10.1016/S0891-0618(01)00118-1 MURAGASU E, 1996, J NEUROSCI, V16, P325 Olff M, 1999, PSYCHIAT RES, V85, P7, DOI 10.1016/S0165-1781(98)00139-5 Paddleford RR, 1999, VET CLIN N AM-SMALL, V29, P737 PATON WDM, 1969, BRIT J PHARMACOL, V35, P10 PATUZZI RB, 1991, HEARING RES, V54, P45, DOI 10.1016/0378-5955(91)90135-V Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3 PUJOL R, 1994, BRIT J AUDIOL, V28, P185, DOI 10.3109/03005369409086567 Rajan R, 1992, NOISE INDUCED HEARIN, P429 RAJAN R, 1983, HEARING RES, V9, P279, DOI 10.1016/0378-5955(83)90032-1 RAJAN R, 1989, HEARING RES, V39, P263, DOI 10.1016/0378-5955(89)90046-4 RAREY KE, 1995, HEARING RES, V82, P135, DOI 10.1016/0378-5955(94)00171-L REITER ER, 1995, J NEUROPHYSIOL, V73, P506 RUBINSTEIN M, 1976, ANN OTO RHINOL LARYN, V85, P276 Ruel J, 1999, J PHYSIOL-LONDON, V518, P667, DOI 10.1111/j.1469-7793.1999.0667p.x Ruel J, 2001, EUR J NEUROSCI, V14, P977, DOI 10.1046/j.0953-816x.2001.01721.x SAMARA M, 1981, HEARING RES, V5, P337, DOI 10.1016/0378-5955(81)90056-3 SRIDHAR TS, 1995, J NEUROSCI, V15, P3667 Takahashi K, 1996, ACTA OTO-LARYNGOL, V116, P209, DOI 10.3109/00016489609137825 Wang Y, 2002, HEARING RES, V165, P96, DOI 10.1016/S0378-5955(02)00289-7 WARD DW, 1965, J ACOUST SOC AM, V38, P121 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 Yoshida N, 1999, J NEUROPHYSIOL, V82, P3168 Yoshida N, 2000, HEARING RES, V148, P213, DOI 10.1016/S0378-5955(00)00161-1 Yoshida N, 1999, J NEUROSCI, V19, P10116 Zheng YL, 1997, HEARING RES, V112, P167, DOI 10.1016/S0378-5955(97)00118-4 NR 56 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 239 EP 248 DI 10.1016/S0378-5955(02)00698-6 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100024 PM 12433414 ER PT J AU Jen, PHS Xu, LJ AF Jen, PHS Xu, LJ TI Monaural middle ear destruction in juvenile and adult mice: effects on responses to sound direction in the inferior colliculus ipsilateral to the intact ear SO HEARING RESEARCH LA English DT Article DE middle ear destruction; inferior colliculus; Q(n) value; sound direction; tonotopic organization ID ANTEROVENTRAL COCHLEAR NUCLEUS; SENSORINEURAL HEARING-LOSS; AUDITORY BRAIN-STEM; FREQUENCY-TUNING CHARACTERISTICS; BINAURAL INTERACTION; POSTNATAL EXPOSURE; NEURONS; DEPRIVATION; MOUSE; PLASTICITY AB This study examined the effect of monaural middle ear destruction on auditory responses to sound direction in the inferior colliculus (IC) of the laboratory mice, Mus musculus. Monaural middle ear destruction was performed on juvenile and adult mice (the experimental mice). Auditory response properties of neurons to ipsilateral and contralateral sounds (I-40degrees and C-40degrees) were examined in the IC ipsilateral to the intact ear 4 weeks later. IC neurons of control mice had higher minimum thresholds (MTs), larger Q(n) (Q(10), Q(30)) values but smaller dynamic ranges at I-40degrees than at C-40degrees. These direction-dependent response properties were not observed for IC neurons of experimental juvenile and adult mice. However, Q(n) values of IC neurons were significantly smaller in experimental juvenile than in control and experimental adult mice. Normal tonotopic organization in terms of positive correlation between recording depth and best frequency (BF) was observed in the IC of control and experimental adult mice at both sound directions but not in the IC of experimental juvenile mice. A positive correlation of increasing MT with BF was only observed for IC neurons in control mice but not in both experimental mice. Possible mechanisms for these different response properties are discussed. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. RP Jen, PHS (reprint author), Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. CR BATKIN S, 1970, ELECTROEN CLIN NEURO, V28, P351, DOI 10.1016/0013-4694(70)90227-0 BLATCHLEY BJ, 1983, EXP NEUROL, V80, P81, DOI 10.1016/0014-4886(83)90008-0 Cain D, 1999, CHINESE J PHYSIOL, V42, P1 Chen Y.-W., 1995, Society for Neuroscience Abstracts, V21, P670 CLEMENTS M, 1978, J COMP PHYSIOL PSYCH, V92, P34, DOI 10.1037/h0077424 CLOPTON BM, 1977, J NEUROPHYSIOL, V40, P1275 CLOPTON BM, 1978, EXP BRAIN RES, V32, P39 CLOPTON BM, 1976, J NEUROPHYSIOL, V39, P1081 COLEMAN JR, 1979, EXP NEUROL, V64, P553, DOI 10.1016/0014-4886(79)90231-0 EHRET G, 1992, DEV BRAIN RES, V67, P317, DOI 10.1016/0165-3806(92)90233-M ERULKAR SD, 1972, PHYSIOL REV, V52, P237 FENG AS, 1980, BRAIN RES, V189, P530, DOI 10.1016/0006-8993(80)90112-2 GOOLER DM, 1993, J NEUROPHYSIOL, V69, P1018 Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3 Hardie NA, 1998, NEUROREPORT, V9, P2019, DOI 10.1097/00001756-199806220-00020 Harrison RV, 1998, EXP BRAIN RES, V123, P449, DOI 10.1007/s002210050589 HASHISAKI GT, 1989, J COMP NEUROL, V283, P465, DOI 10.1002/cne.902830402 Jen PHS, 2000, BRAIN RES, V862, P127, DOI 10.1016/S0006-8993(00)02098-9 Jen P H, 1990, Chin J Physiol, V33, P231 JEN PHS, 1982, J COMP PHYSIOL, V147, P351 Jen P H, 1993, Chin J Physiol, V36, P7 JEN PHS, 1978, J COMP PHYSIOL, V128, P47 KITZES L M, 1984, Brain Research, V306, P171, DOI 10.1016/0006-8993(84)90366-4 KITZES LM, 1985, J NEUROPHYSIOL, V53, P1483 KNUDSEN EI, 1984, J NEUROSCI, V4, P1001 MASTERTON RB, 1984, ANNU REV PHYSIOL, V46, P275 McAlpine D, 1997, J NEUROPHYSIOL, V78, P767 MOORE DR, 1988, J COMP NEUROL, V272, P503, DOI 10.1002/cne.902720405 MOORE DR, 1985, J COMP NEUROL, V240, P180, DOI 10.1002/cne.902400208 MOORE DR, 1986, BRAIN RES, V373, P268, DOI 10.1016/0006-8993(86)90341-0 MOORE DR, 1981, BRAIN RES, V208, P198, DOI 10.1016/0006-8993(81)90632-6 MOORE DR, 1992, NEUROREPORT, V3, P269, DOI 10.1097/00001756-199203000-00014 Nishiyama N, 2000, HEARING RES, V140, P18, DOI 10.1016/S0378-5955(99)00185-9 NORDEEN KW, 1983, J COMP NEUROL, V214, P144, DOI 10.1002/cne.902140204 PASIC TR, 1994, J COMP NEUROL, V348, P111, DOI 10.1002/cne.903480106 POON PWF, 1990, BRAIN RES, V524, P327, DOI 10.1016/0006-8993(90)90710-S POON PWF, 1992, BRAIN RES, V585, P391, DOI 10.1016/0006-8993(92)91243-8 POWELL TPS, 1962, J ANAT, V96, P249 ROMAND R, 1990, DEV BRAIN RES, V54, P221, DOI 10.1016/0165-3806(90)90145-O SANES DH, 1985, J NEUROSCI, V5, P1152 SANES DH, 1993, EUR J NEUROSCI, V5, P570, DOI 10.1111/j.1460-9568.1993.tb00522.x SILVERMAN MS, 1977, J NEUROPHYSIOL, V40, P1266 SUGA N, 1975, J EXP BIOL, V62, P277 TONNDORF J, 1976, ACTA OTO-LARYNGOL, V81, P330, DOI 10.3109/00016487609119970 TONNDORF J, 1970, ANN OTO RHINOL LARYN, V79, P743 TRUNE DR, 1982, J COMP NEUROL, V209, P409, DOI 10.1002/cne.902090410 WEBSTER DB, 1977, ARCH OTOLARYNGOL, V103, P392 WEBSTER DB, 1983, EXP NEUROL, V79, P130, DOI 10.1016/0014-4886(83)90384-9 Xu LJ, 2001, CHINESE J PHYSIOL, V44, P121 Xu LJ, 2001, CHINESE J PHYSIOL, V44, P181 Xu LJ, 2001, HEARING RES, V159, P1, DOI 10.1016/S0378-5955(01)00304-5 Zhang H, 1998, J COMP PHYSIOL A, V182, P725, DOI 10.1007/s003590050217 Zhang H, 1999, J COMP PHYSIOL A, V184, P85, DOI 10.1007/s003590050308 ZHUANG L, 1997, NEUR ABSTR, V23, P184 NR 54 TC 4 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 249 EP 259 DI 10.1016/S0378-5955(02)00699-8 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100025 PM 12433415 ER PT J AU Pibal, I Drexl, M Kossl, M AF Pibal, I Drexl, M Kossl, M TI Level dependence of optimal stimulus level difference for evoking DPOAEs in the gerbil SO HEARING RESEARCH LA English DT Article DE otoacoustic emission; cochlea; two-tone stimulation; gerbil ID PRODUCT OTOACOUSTIC EMISSIONS; ACOUSTIC DISTORTION PRODUCT; AUDITORY-SENSITIVITY; IMPAIRED EARS; 2F1-F2; RESPONSES; BEHAVIOR AB In distortion product otoacoustic emission (DPOAE) measurements the car is stimulated with two pure tones f1 and f2. To maximize DPOAE levels and hence increase the sensitivity of DPOAE measurements, the separation of the two primary tone levels has been shown to play a crucial role. In contrast to conventionally used paradigms where the difference between the stimulus levels L1 and L2 is constant, Whitehead et al. [Whitehead, M.L. et al., 1995. J. Acoust. Soc. Am. 97, 2359-2377] found a variable level separation L1-L2, which is increasing with decreasing overall stimulus levels, to be optimal for evoking maximal DPOAE levels. This optimal level separation was quantified by Kummer et al. [Kummer, P. et al., 2000. Hear. Res. 146, 47-56] for humans. The aim of our study was to find out if such optimal level differences also exist in the gerbil Meriones unguiculatus in order to obtain an adequate animal model for determination of auditory sensitivity and its pathologies. The results clearly indicate that, as in humans, a variable level separation L1-L2 is optimal for generation of maximal DPOAE levels in the gerbil. This level separation strongly depends on the frequency relation between f1 and f2 and the deviation of the optimal level difference from L1 = L2 increases with the frequency ratio f2/f1. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Munich, Dept Biol 2, D-80333 Munich, Germany. Univ Frankfurt, Inst Zool, D-60323 Frankfurt, Germany. RP Pibal, I (reprint author), Univ Munich, Dept Biol 2, Luisenstr 14, D-80333 Munich, Germany. CR BROWN AM, 1987, HEARING RES, V31, P25, DOI 10.1016/0378-5955(87)90211-5 Faulstich M., 2000, Hearing Research, V140, P99, DOI 10.1016/S0378-5955(99)00189-6 Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4 GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732 HAUSER R, 1991, J ACOUST SOC AM, V89, P280, DOI 10.1121/1.400511 Kossl M, 1998, J ACOUST SOC AM, V104, P326, DOI 10.1121/1.423258 Kummer P, 1998, J ACOUST SOC AM, V103, P3431, DOI 10.1121/1.423054 Kummer P, 2000, HEARING RES, V146, P47, DOI 10.1016/S0378-5955(00)00097-6 Long GR, 1994, COMP HEARING MAMMALS, P18 MILLS DM, 1994, HEARING RES, V77, P183, DOI 10.1016/0378-5955(94)90266-6 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 WHITEHEAD ML, 1995, J ACOUST SOC AM, V97, P2359, DOI 10.1121/1.411960 WHITEHEAD ML, 1995, J ACOUST SOC AM, V97, P2346, DOI 10.1121/1.411959 NR 13 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 260 EP 263 DI 10.1016/S0378-5955(02)00700-1 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100026 PM 12433416 ER PT J AU Mulders, WHAM Winter, IM Robertson, D AF Mulders, WHAM Winter, IM Robertson, D TI Dual action of olivocochlear collaterals in the guinea pig cochlear nucleus SO HEARING RESEARCH LA English DT Article DE medial olivocochlear system; multipolar cell; ventral cochlear nucleus; kanamycin; strychnine ID RESPONSE PROPERTIES; BRAIN-STEM; ELECTRICAL-STIMULATION; DESCENDING PROJECTIONS; RETROGRADE TRANSPORT; AUDITORY-SENSITIVITY; INFERIOR COLLICULUS; DECEREBRATE CAT; MARGINAL SHELL; NEURONS AB Axons of olivocochlear neurones in the superior olivary complex terminate on hair cells of the cochlea, reducing the sensitivity to sound. These axons also have collateral branches to neurones in the cochlear nucleus, the first processing centre in the brainstem. Anatomical data show that these collaterals terminate mainly in the granule cell area but their precise neuronal targets and the effects they might have are unknown. We have studied the effects of these collaterals in guinea pigs, by electrically stimulating the olivocochlear axons at the floor of the IVth ventricle while recording single neurone responses in the cochlear nucleus. We eliminated the peripheral effects of olivocochlear stimulation either by destruction of the target receptor cells using chronic administration of kanamycin, or by acute perfusion of the cochlea with strychnine, a specific blocker of the postsynaptic receptors. Electrical stimulation of the olivocochlear axons in normal animals caused a variety of effects on cochlear nucleus neurones. In some neurones, there was suppression of spontaneous firing and a reduction in sensitivity to sound, while in others there was an excitatory effect of olivocochlear axon stimulation. When the peripheral olivocochlear action was eliminated, we still found both inhibition and excitation in the cochlear nucleus. These results show that the effects of olivocochlear stimulation on cochlear nucleus responses are not a simple passive reflection of peripheral changes but are a result of complex interactions between peripheral suppression of afferent input and collateral-mediated excitation and possibly also inhibition. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Western Australia, Sch Biomed & Chem Sci, Auditory Lab, Discipline Physiol, Crawley, WA 6009, Australia. Univ Cambridge, Physiol Lab, Cambridge CB2 3EG, England. RP Robertson, D (reprint author), Univ Western Australia, Sch Biomed & Chem Sci, Auditory Lab, Discipline Physiol, Crawley, WA 6009, Australia. CR Alibardi L, 1998, ANN ANAT, V180, P427 BENSON CG, 1990, J COMP NEUROL, V296, P415, DOI 10.1002/cne.902960307 Benson TE, 1996, J COMP NEUROL, V365, P27 BENSON TE, 1990, J COMP NEUROL, V295, P52, DOI 10.1002/cne.902950106 BROWN MC, 1993, J COMP NEUROL, V337, P600, DOI 10.1002/cne.903370406 CANT NB, 1982, J COMP NEUROL, V212, P313, DOI 10.1002/cne.902120308 CASPARY DM, 1983, EXP NEUROL, V82, P491, DOI 10.1016/0014-4886(83)90419-3 COMIS SD, 1968, J NEUROPHYSIOL, V31, P62 COMIS SD, 1970, J PHYSIOL-LONDON, V210, P751 DESMEDT J. E., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1478, DOI 10.1121/1.1918374 Doucet JR, 1997, J COMP NEUROL, V385, P245 Doucet JR, 1999, J COMP NEUROL, V408, P515 ENGSTROM H, 1964, ACTA OTOLARYNGOL S, V188, P92 EYBALIN M, 1993, PHYSIOL REV, V73, P309 Fujino K, 2001, J NEUROSCI, V21, P7372 Ghoshal S, 1996, ACTA OTO-LARYNGOL, V116, P280, DOI 10.3109/00016489609137841 Ghoshal S, 1996, NEUROSCI LETT, V205, P71, DOI 10.1016/0304-3940(96)12386-7 Giraud AL, 1997, NEUROREPORT, V8, P1779 Hienz RD, 1998, HEARING RES, V116, P10, DOI 10.1016/S0378-5955(97)00197-4 Horvath M, 2000, J COMP NEUROL, V422, P95 JOHNSTONE JR, 1979, J ACOUST SOC AM, V65, P254, DOI 10.1121/1.382244 Joris PX, 1998, J NEUROSCI, V18, P10157 Kanold PO, 2001, J NEUROSCI, V21, P7848 KIM DO, 1995, ACTIVE HEARING, V1, P31 LEVINE RA, 1994, MECH TINNITUS, P149 MAY BJ, 1992, J NEUROPHYSIOL, V68, P1589 MERRILL EG, 1972, MED BIOL ENG, V10, P662, DOI 10.1007/BF02476084 Mulders WHA, 2000, HEARING RES, V149, P11, DOI 10.1016/S0378-5955(00)00157-X OERTEL D, 1990, J COMP NEUROL, V295, P136, DOI 10.1002/cne.902950112 OSTAPOFF EM, 1994, J COMP NEUROL, V346, P19, DOI 10.1002/cne.903460103 Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3 RAJAN R, 1989, HEARING RES, V39, P299, DOI 10.1016/0378-5955(89)90049-X RAJAN R, 1988, J NEUROPHYSIOL, V60, P549 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 RHODE WS, 1983, J COMP NEUROL, V213, P448, DOI 10.1002/cne.902130408 RYAN AF, 1990, J COMP NEUROL, V300, P572, DOI 10.1002/cne.903000410 Scharf B, 1997, HEARING RES, V103, P101, DOI 10.1016/S0378-5955(96)00168-2 Schofield BR, 1996, J COMP NEUROL, V375, P128, DOI 10.1002/(SICI)1096-9861(19961104)375:1<128::AID-CNE8>3.0.CO;2-5 Schofield BR, 2001, J COMP NEUROL, V429, P206, DOI 10.1002/1096-9861(20000108)429:2<206::AID-CNE3>3.0.CO;2-X SHERRIFF FE, 1994, NEUROSCIENCE, V58, P627, DOI 10.1016/0306-4522(94)90086-8 SMITH PH, 1989, J COMP NEUROL, V282, P595, DOI 10.1002/cne.902820410 SPANGLER KM, 1987, J COMP NEUROL, V259, P452, DOI 10.1002/cne.902590311 Warr WB, 1996, HEARING RES, V93, P83, DOI 10.1016/0378-5955(95)00198-0 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 WARREN EH, 1989, HEARING RES, V37, P105, DOI 10.1016/0378-5955(89)90033-6 Weedman DL, 1996, BRAIN RES, V706, P97, DOI 10.1016/0006-8993(95)01201-X WEINBERG RJ, 1987, NEUROSCIENCE, V20, P209, DOI 10.1016/0306-4522(87)90013-3 WENTHOLD RJ, 1987, BRAIN RES, V415, P183, DOI 10.1016/0006-8993(87)90285-X STARR A, 1968, J NEUROPHYSIOL, V31, P549 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P950, DOI 10.1121/1.1912234 WINSLOW RL, 1987, J NEUROPHYSIOL, V57, P1002 WINTER IM, 1995, J NEUROPHYSIOL, V73, P141 WINTER IM, 1989, J COMP NEUROL, V280, P143, DOI 10.1002/cne.902800110 Wright DD, 1996, J COMP NEUROL, V365, P159, DOI 10.1002/(SICI)1096-9861(19960129)365:1<159::AID-CNE12>3.0.CO;2-L YOUNG ED, 1988, J NEUROPHYSIOL, V60, P1 NR 55 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 264 EP 280 DI 10.1016/S0378-5955(02)00701-3 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100027 PM 12433417 ER PT J AU Jen, PHS Chen, QC Wu, FJ AF Jen, PHS Chen, QC Wu, FJ TI Interaction between excitation and inhibition affects frequency tuning curve, response size and latency of neurons in the auditory cortex of the big brown bat, Eptesicus fuscus SO HEARING RESEARCH LA English DT Article DE auditory cortex; bat; bicuculline; frequency tuning curve; inhibition; latency ID COMBINATION-SENSITIVE NEURONS; INFERIOR COLLICULAR NEURONS; FM BAT; ECHOLOCATING BATS; MUSTACHED BAT; CAT; ORGANIZATION; SIGNALS; REPRESENTATION; MORPHOLOGY AB Neurons in the auditory cortex (AC) receive convergent excitatory and inhibitory inputs from the lower auditory nuclei. Interaction between these two opposing inputs shapes different response properties of AC neurons. In this study, we examined how this interaction might affect the frequency tuning curves (FTCs), number of impulses and latency of AC neurons in the big brown bat, Eptesicus fuscus, using a probe (excitatory tone) and a masker (inhibitory tone) under different stimulation conditions. Excitatory FTCs of AC neurons were either V-shaped, closed (i.e. upper threshold) or double-peaked. Inhibitory FTCs were obtained either at both flanks or only at the low or high flank of excitatory FTCs. Application of bicuculline, an antagonist for gamma-aminobutyric acid A receptors, produced expansion of excitatory FTCs into predrug inhibitory FTCs. Inhibition of probe-elicited responses occurred when a masker was presented at certain intertone intervals. Maximal inhibition typically took place when a masker was presented within 4 ms prior to the probe. During maximal inhibition, a neuron had the minimal number of impulses and the longest response latency. Inhibition became stronger with increasing masker intensity but became weaker with increasing intertone interval. Biological significance of these data is discussed. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. RP Jen, PHS (reprint author), Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. CR CALFORD MB, 1995, J NEUROPHYSIOL, V73, P1876 CASSEDAY JH, 1992, J COMP NEUROL, V319, P34, DOI 10.1002/cne.903190106 Chen QC, 2000, HEARING RES, V150, P161, DOI 10.1016/S0378-5955(00)00197-0 DEAR SP, 1993, J NEUROPHYSIOL, V70, P1988 DEATHERA.BH, 1969, J ACOUST SOC AM, V46, P362, DOI 10.1121/1.1911698 EHRET G, 1988, BRAIN RES REV, V13, P139, DOI 10.1016/0165-0173(88)90018-5 ELLIOTT LL, 1962, J ACOUST SOC AM, V34, P1108, DOI 10.1121/1.1918253 Fuzessery ZM, 1996, J NEUROPHYSIOL, V76, P1059 Griffin DR, 1958, LISTENING DARK GRINNELL AD, 1963, J PHYSIOL-LONDON, V167, P38 HENSON OW, 1965, J PHYSIOL-LONDON, V180, P871 JEN PHS, 1987, BRAIN RES, V419, P7, DOI 10.1016/0006-8993(87)90563-4 Kanwal JS, 1999, J NEUROPHYSIOL, V82, P2327 Litovsky RY, 1998, J NEUROPHYSIOL, V80, P1302 Lu Y, 1997, J COMP PHYSIOL A, V181, P331, DOI 10.1007/s003590050119 Lu Y, 2001, EXP BRAIN RES, V141, P331, DOI 10.1007/s002210100885 Lu Y, 2002, HEARING RES, V169, P140, DOI 10.1016/S0378-5955(02)00457-4 MITANI A, 1985, J COMP NEUROL, V235, P430, DOI 10.1002/cne.902350403 NEUWEILER G, 1990, PHYSIOL REV, V70, P615 PATTERSO.JH, 1971, J ACOUST SOC AM, V50, P1123, DOI 10.1121/1.1912744 PRIETO JJ, 1994, J COMP NEUROL, V344, P349, DOI 10.1002/cne.903440304 PRIETO JJ, 1994, J COMP NEUROL, V344, P383, DOI 10.1002/cne.903440305 RAAB DH, 1961, J ACOUST SOC AM, V33, P137, DOI 10.1121/1.1908600 SCHULLER G, 1984, J COMP PHYSIOL, V155, P121, DOI 10.1007/BF00610937 SHAMMA SA, 1985, HEARING RES, V19, P1, DOI 10.1016/0378-5955(85)90094-2 SIMMONS JA, 1979, SCIENCE, V203, P16, DOI 10.1126/science.758674 SUGA N, 1965, J PHYSIOL-LONDON, V179, P26 Suga N., 1997, ENCY ACOUSTICS, P1409 SUGA N, 1995, NEUROSCI RES, V21, P287, DOI 10.1016/0168-0102(94)00868-G SUGA N, 1985, J NEUROPHYSIOL, V53, P1109 Suga N, 1997, J NEUROPHYSIOL, V77, P2098 SUGA N, 1976, SCIENCE, V194, P542, DOI 10.1126/science.973140 SUGA N, 1983, J NEUROPHYSIOL, V49, P1573 SUGA N, 1975, J EXP BIOL, V62, P277 SUTTER ML, 1991, J NEUROPHYSIOL, V65, P1207 Sutter ML, 1999, J NEUROPHYSIOL, V82, P2358 VATER M, 1992, J COMP PHYSIOL A, V171, P541 Wang J, 2000, NEUROREPORT, V11, P1137, DOI 10.1097/00001756-200004070-00045 WINER JA, 1992, MAMMALIAN AUDITORY P, P223 YANG LC, 1992, J NEUROPHYSIOL, V68, P1760 Zhang H, 1998, J COMP PHYSIOL A, V182, P725, DOI 10.1007/s003590050217 NR 41 TC 14 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 281 EP 289 DI 10.1016/S0378-5955(02)00702-5 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100028 PM 12433418 ER PT J AU Moleti, A Sisto, R Lucertini, M AF Moleti, A Sisto, R Lucertini, M TI Linear and nonlinear transient evoked otoacoustic emissions in humans exposed to noise SO HEARING RESEARCH LA English DT Article DE transient evoked otoacoustic emissions; hearing loss; exposure to noise ID HEARING-LOSS AB Transient evoked otoacoustic emissions (TEOAEs) have been analyzed in a population of 134 ears, divided into three classes: (1) nonexposed ears in bilaterally normal hearing subjects, (2) audiometrically normal ears of subjects exposed to noise and affected by unilateral high-frequency (f > 3 kHz) hearing loss in the contralateral ear, and (3) the contralateral impaired ears of the exposed subjects. The statistical distributions of global and spectral signal-to-noise ratio (SNR) were analyzed. TEOAEs were recorded both in the linear and nonlinear acquisition mode to evaluate the effectiveness of two standard averaging techniques with respect to their sensitivity to the early effects of noise exposure. Good discrimination between nonexposed and exposed ears was obtained using either the linear or the nonlinear mode. Despite its intrinsically higher SNR, the linear mode is not more sensitive than the nonlinear mode for this purpose because it is not possible to find a window for effectively cancelling the linear artifact while keeping a suitable sensitivity to the short-latency high-frequency aspect of the response. Moreover, with respect to another measurable parameter, the TEOAE latency, good discrimination is obtained only by using the nonlinear mode because, again, the linear artifact masks the high-frequency TEOAE response. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. ISPESL, Dipartimento Igiene Lavoro, I-00040 Monte Porzio Catone, Italy. Italian Air Force, CSV Aerosp Med Dept, I-00040 Pomezia, Italy. RP Moleti, A (reprint author), Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00133 Rome, Italy. CR Attias J, 1995, EAR HEARING, V16, P612, DOI 10.1097/00003446-199512000-00007 COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155 FURST M, 1992, J ACOUST SOC AM, V91, P1003, DOI 10.1121/1.402626 Hall AJ, 1999, AUDIOLOGY, V38, P277 Hussain DM, 1998, EAR HEARING, V19, P434, DOI 10.1097/00003446-199812000-00005 Kowalska S, 1997, Int J Occup Med Environ Health, V10, P441 Lucertini M, 2002, J ACOUST SOC AM, V111, P972, DOI 10.1121/1.1432979 PRIEVE BA, 1993, J ACOUST SOC AM, V93, P3308, DOI 10.1121/1.405715 Sisto R, 2001, J ACOUST SOC AM, V109, P638, DOI 10.1121/1.1336502 Sisto R, 2002, J ACOUST SOC AM, V111, P297, DOI 10.1121/1.1428547 Tognola G, 2001, EAR HEARING, V22, P182, DOI 10.1097/00003446-200106000-00002 Yantis PA, 1994, HDB CLIN AUDIOLOGY, P97 NR 12 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 290 EP 295 DI 10.1016/S0378-5955(02)00703-7 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100029 PM 12433419 ER PT J AU Berg, A Watson, GM AF Berg, A Watson, GM TI Rapid recovery of sensory function in blind cave fish treated with anemone repair proteins SO HEARING RESEARCH LA English DT Article DE neuromast; hair cell; tip link; rheotaxis ID HAIR-CELL REGENERATION; GUINEA-PIG; ACOUSTIC OVERSTIMULATION; LATERAL-LINE; SEA-ANEMONES; TIP LINKS; INNER-EAR; STEREOCILIA; RHEOTAXIS; APOPTOSIS AB Blind cave fish employ superficial neuromasts to detect currents [Baker, C.F. and J.C. Montgomery, J. Comp. Physiol. A 184 (1999) 519-527]. Briefly exposing fish to calcium-free water significantly reduces the ability of the fish to perform rheotaxis (i.e., to orient properly in currents). Spontaneous recovery to control levels of rheotaxis requires 9 days. However, if the fish are treated with fraction beta immediately after exposure to calcium-free water, recovery to control levels of rheotaxis occurs within 1.3 h, the first time point tested. Fraction beta is a chromatographic fraction of 'repair proteins' isolated from sea anemones. The benefits of fraction beta on restoring rheotaxis exhibit dose dependency with the minimum effective dose estimated at 1 ng/ml. Exogenously supplied ATP augments the efficacy of fraction beta. Such augmentation is abolished by PPADS, an inhibitor of purinoceptors. Immunocytochemistry confirms the presence of purinoceptors in superficial neuromasts. The present results suggest that 'repair proteins' obtained from anemones significantly augment intrinsic repair mechanisms in fish. Furthermore, the data obtained in the fish system strongly parallel our previously published findings on sea anemones, raising the possibility that mechanisms of hair bundle repair may be evolutionarily conserved. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Louisiana Lafayette, Dept Biol, Lafayette, LA 70504 USA. RP Watson, GM (reprint author), Univ Louisiana Lafayette, Dept Biol, 411 E St Mary Blvd, Lafayette, LA 70504 USA. CR Baird RA, 1996, ANN NY ACAD SCI, V781, P59, DOI 10.1111/j.1749-6632.1996.tb15693.x Baird RA, 2000, P NATL ACAD SCI USA, V97, P11722, DOI 10.1073/pnas.97.22.11722 Baker CF, 1999, J COMP PHYSIOL A, V184, P519, DOI 10.1007/s003590050351 Clark JA, 1996, HEARING RES, V99, P119, DOI 10.1016/S0378-5955(96)00092-5 Corwin JT, 1997, NEURON, V19, P951, DOI 10.1016/S0896-6273(00)80386-4 Cotanche DA, 1999, AUDIOL NEURO-OTOL, V4, P271, DOI 10.1159/000013852 COTANCHE DA, 1994, ANAT EMBRYOL, V189, P1 Duncan RK, 2000, J COMP PHYSIOL A, V186, P1095, DOI 10.1007/s003590000164 Duncan RK, 1995, AUDIT NEUROSCI, V1, P321 Gale JE, 2001, J NEUROSCI, V21, P7013 Gong TWL, 1996, HEARING RES, V96, P20, DOI 10.1016/0378-5955(96)00013-5 Goodyear R, 1999, J NEUROSCI, V19, P3761 Hall A, 1998, SCIENCE, V279, P509, DOI 10.1126/science.279.5350.509 Hu BH, 2000, ACTA OTO-LARYNGOL, V120, P19, DOI 10.1080/000164800760370774 Husbands JM, 1999, HEARING RES, V135, P135, DOI 10.1016/S0378-5955(99)00101-X Lang HN, 1997, HEARING RES, V111, P177, DOI 10.1016/S0378-5955(97)00098-1 MINASIAN LL, 1979, BIOL BULL, V157, P478, DOI 10.2307/1541032 Montgomery JC, 1997, NATURE, V389, P960, DOI 10.1038/40135 Munday PL, 1997, J FISH BIOL, V51, P931, DOI 10.1006/jfbi.1997.0498 Nakagawa T, 1997, ORL J OTO-RHINO-LARY, V59, P303 PICKLES JO, 1987, HEARING RES, V25, P173, DOI 10.1016/0378-5955(87)90089-X Repass JJ, 2001, HEARING RES, V154, P98, DOI 10.1016/S0378-5955(01)00226-X SOBKOWICZ HM, 1992, EXP NEUROL, V115, P44, DOI 10.1016/0014-4886(92)90219-G Stone JS, 1998, CURR OPIN NEUROL, V11, P17, DOI 10.1097/00019052-199802000-00004 Stone JS, 2000, P NATL ACAD SCI USA, V97, P11714, DOI 10.1073/pnas.97.22.11714 STOSCHECK CM, 1990, METHOD ENZYMOL, V182, P50 TSUE TT, 1994, OTOLARYNG HEAD NECK, V111, P281, DOI 10.1016/S0194-5998(94)70603-4 WATSON GM, 1989, SCIENCE, V243, P1589, DOI 10.1126/science.2564698 Watson GM, 2000, HEARING RES, V146, P35, DOI 10.1016/S0378-5955(00)00095-2 Watson GM, 1999, HEARING RES, V136, P1, DOI 10.1016/S0378-5955(99)00087-8 WATSON GM, 2001, HAIR CELLS MICROMECH, P27 Watson GM, 1998, HEARING RES, V115, P119, DOI 10.1016/S0378-5955(97)00185-8 ZHAO Y, 1996, P NATL ACAD SCI USA, V94, P15469 NR 33 TC 6 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2002 VL 174 IS 1-2 BP 296 EP 304 DI 10.1016/S0378-5955(02)00705-0 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 618UR UT WOS:000179436100030 PM 12433420 ER PT J AU Ding, D McFadden, SL Woo, JM Salvi, RJ AF Ding, D McFadden, SL Woo, JM Salvi, RJ TI Ethacrynic acid rapidly and selectively abolishes blood flow in vessels supplying the lateral wall of the cochlea SO HEARING RESEARCH LA English DT Article DE loop diuretic; microcirculation; ischemia; stria vascularis; ototoxicity; free radical; chinchilla ID PIG INNER-EAR; GUINEA-PIG; ADENYLATE-CYCLASE; FREE-RADICALS; IN-VIVO; SUPEROXIDE-DISMUTASE; STRIA VASCULARIS; LOOP DIURETICS; GLUTATHIONE; OTOTOXICITY AB The mechanisms underlying the ototoxicity of ethacrynic acid (EA) are not fully understood. Previous studies have focused on morphologic and enzymatic changes in the stria vascularis. The current experiment shows that one of the earliest effects of EA is ischemia, resulting from impaired blood flow in vessels supplying the lateral wall of the cochlea. Inner ear microcirculation, endocochlear potentials, compound action potentials (CAP), cochlear microphonics (CM) and summating potentials (SP) were monitored over time in chinchillas following a single injection of EA (40 mg/kg i.v.). At all times after EA injection, blood vessels supplying the spiral lamina, modiolus, and vestibular end organs appeared normal. In contrast, lateral wall (spiral ligament and stria vascularis) vessels were poorly stained with eosin 2 min after EA injection, and devoid of red blood cells at 30 min post EA. Decline, but not recovery, of CAP, CM and SP followed the microcirculation changes in the lateral wall. Reperfusion was delayed in stria vascularis arterioles relative to other lateral wall vessels. The ischemia-reperfusion caused by EA would be expected to generate large quantities of free radicals, which may trigger or contribute to the cellular, enzymatic, and functional pathologies that have been described in detail previously., (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP McFadden, SL (reprint author), Univ Buffalo, Ctr Hearing & Deafness, 215 Parker Hall, Buffalo, NY 14214 USA. CR Akiyoshi M, 1981, Scand Audiol Suppl, V14 Suppl, P185 ANNIKO M, 1988, ARCH OTO-RHINO-LARYN, V244, P346, DOI 10.1007/BF00497462 ANNIKO M, 1987, AM J OTOLARYNG, V8, P48, DOI 10.1016/S0196-0709(87)80018-2 AXELSSON A, 1975, ACTA OTO-LARYNGOL, V79, P352, DOI 10.3109/00016487509124697 BAGGERSJOBACK D, 1980, ARCH OTO-RHINO-LARYN, V228, P217, DOI 10.1007/BF00454231 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 DING D, 1995, J AUDIOL SPEECH DISO, V3, P76 Evans P, 1999, ANN NY ACAD SCI, V884, P19, DOI 10.1111/j.1749-6632.1999.tb08633.x FORGE A, 1984, HEARING RES, V13, P189, DOI 10.1016/0378-5955(84)90108-4 GOLDBERG M, 1966, ANN NY ACAD SCI, V139, P443, DOI 10.1111/j.1749-6632.1966.tb41218.x Henderson D, 1999, ANN NY ACAD SCI, V884, P368, DOI 10.1111/j.1749-6632.1999.tb08655.x HOFFMAN DW, 1995, BIOCHEM PHARMACOL, V49, P411, DOI 10.1016/0006-2952(94)00474-Z HOFFMAN DW, 1987, HEARING RES, V31, P217, DOI 10.1016/0378-5955(87)90190-0 HORN KL, 1978, ARCH OTOLARYNGOL, V104, P42 HORN KL, 1977, ARCH OTOLARYNGOL, V103, P539 Huang J, 1996, BRAIN RES, V711, P184, DOI 10.1016/0006-8993(95)01376-8 Humes HD, 1999, ANN NY ACAD SCI, V884, P15 HUY PTB, 1981, SCAND AUDIOL S, V14, P225 Kasajima K, 1978, Auris Nasus Larynx, V5, P1 KOCH T, 1991, EUR ARCH OTO-RHINO-L, V248, P459, DOI 10.1007/BF00627634 Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x Kulkarni AP, 1999, ARCH BIOCHEM BIOPHYS, V371, P220, DOI 10.1006/abbi.1999.1439 Kulkarni AP, 1997, TOXICOL APPL PHARM, V143, P179, DOI 10.1006/taap.1996.8062 Marks S C, 1981, Scand Audiol Suppl, V14 Suppl, P131 MATZ GJ, 1969, ARCH OTOLARYNGOL, V90, P152 MCFADDEN SL, 2001, NOISE INDUCED HEARIN, P3 McFadden SL, 1999, NEUROBIOL AGING, V20, P1, DOI 10.1016/S0197-4580(99)00018-4 McFadden SL, 1999, J COMP NEUROL, V413, P101 McFadden SL, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P489 *MERCK CO INC, 1984, EDECRIN ETH AC INTR Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P219, DOI 10.1159/000013845 PALOHEIMO S, 1977, ARCH OTO-RHINO-LARYN, V217, P347, DOI 10.1007/BF00465552 Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4 PUSCHETT JB, 1994, CARDIOLOGY, V84, P4, DOI 10.1159/000176450 RYBAK LP, 1988, AM J OTOLARYNG, V9, P238, DOI 10.1016/S0196-0709(88)80033-4 RYBAK LP, 1988, J LARYNGOL OTOL, V102, P518, DOI 10.1017/S0022215100105523 RYBAK LP, 1990, HEARING RES, V46, P95, DOI 10.1016/0378-5955(90)90142-C SEIDMAN MD, 1991, OTOLARYNG HEAD NECK, V105, P511 SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4 SILVERST.H, 1971, LARYNGOSCOPE, V81, P873, DOI 10.1288/00005537-197106000-00008 Song BB, 1996, HEARING RES, V94, P87, DOI 10.1016/0378-5955(96)00003-2 Syka J, 1981, Scand Audiol Suppl, V14 Suppl, P63 SYKA J, 1985, HEARING RES, V20, P267, DOI 10.1016/0378-5955(85)90031-0 THALMANN R, 1977, LARYNGOSCOPE, V87, P699 Usami S, 1996, BRAIN RES, V743, P337, DOI 10.1016/S0006-8993(96)01090-6 Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 ZHAO J, 1988, ACTA U MED SECOND SH, V8, P34 ZHAO J, 1988, CHIN J CLIN OTORHINO, V2, P65 ZHOU J, 1993, J AUDIOL SPEECH DISO, V1, P47 NR 51 TC 18 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2002 VL 173 IS 1-2 BP 1 EP 9 DI 10.1016/S0378-5955(02)00585-3 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 607HJ UT WOS:000178785800001 PM 12372630 ER PT J AU Furness, DN Karkanevatos, A West, B Hackney, CM AF Furness, DN Karkanevatos, A West, B Hackney, CM TI An immunogold investigation of the distribution of calmodulin in the apex of cochlear hair cells SO HEARING RESEARCH LA English DT Article DE calmodulin; mechanoelectrical transduction; stereocilium; hair cell; cochlea ID MEMBRANE CA-ATPASE; GUINEA-PIG ORGAN; MYOSIN I-BETA; MECHANOELECTRICAL TRANSDUCTION; UNCONVENTIONAL MYOSINS; TIP LINKS; ULTRASTRUCTURAL-LOCALIZATION; MECHANICAL TRANSDUCTION; SUPPORTING CELLS; BLOCK ADAPTATION AB Calmodulin is found in the mechanosensitive stereociliary bundle of hair cells where it plays a role in various calcium-sensitive events associated with mechanoelectrical transduction. In this study, we have investigated the ultrastructural distribution of calmodulin in the apex of guinea-pig cochlear hair cells, using post-embedding immunogold labelling, in order to determine in more detail where calmodulin-dependent processes may be occurring. Labelling was found in the cuticular plate as well as the hair bundle, the rootlets of the stereocilia being more densely labelled than the surrounding filamentous matrix. In the bundle, labelling was found almost exclusively at the periphery rather than over the centre of the actin core of the stereocilia, and was clearly associated with the attachments of the lateral links that connect them to their nearest neighbours. It was also found to be denser towards the tips of stereocilia compared to other stereociliary regions and occurred consistently at either end of the tip link that connects stereocilia of adjacent rows. The contact region between stereocilia that is found just below the tip link was also clearly labelled. These concentrations of labelling in the bundle are likely to indicate sites where calmodulin is associated with calcium/calmodulin-sensitive proteins such as the various myosin isoforms and the plasma membrane ATPase (PMCA2a) that are known to occur there, and possibly with the transduction channels themselves. At least one of the myosin isoforms, myosin 1c, is thought to be associated with slow adaptation, and PMCA2a with control of calcium levels in the bundle. The concentration of calmodulin in the contact region further supports the suggestion that this is a functionally distinct region rather than a simple geometrical association between adjacent stereocilia. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Keele, MacKay Inst Commun & Neurosci, Sch Life Sci, Keele ST5 5BG, Staffs, England. RP Furness, DN (reprint author), Univ Keele, MacKay Inst Commun & Neurosci, Sch Life Sci, Keele ST5 5BG, Staffs, England. CR ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X ASSAD JA, 1989, P NATL ACAD SCI USA, V86, P2918, DOI 10.1073/pnas.86.8.2918 BELYANTSEVA IA, 2002, 25 MIDW M ASS RES OT, P157 Caride AJ, 2001, CELL CALCIUM, V30, P49, DOI 10.1054/ceca.2001.0212 CRAWFORD AC, 1991, J PHYSIOL-LONDON, V434, P369 CRAWFORD AC, 1989, J PHYSIOL-LONDON, V419, P405 Crouch JJ, 1995, HEARING RES, V92, P112, DOI 10.1016/0378-5955(95)00201-4 Cyr JL, 2002, J NEUROSCI, V22, P2487 DEARRUDA MV, 1990, J CELL BIOL, V111, P1069, DOI 10.1083/jcb.111.3.1069 Denk W, 1995, NEURON, V15, P1311, DOI 10.1016/0896-6273(95)90010-1 Dumont RA, 2001, J NEUROSCI, V21, P5066 Eatock RA, 2000, ANNU REV NEUROSCI, V23, P285, DOI 10.1146/annurev.neuro.23.1.285 Fettiplace R, 2001, TRENDS NEUROSCI, V24, P169, DOI 10.1016/S0166-2236(00)01740-9 FLOCK A, 1982, HEARING RES, V7, P75, DOI 10.1016/0378-5955(82)90082-X FODER B, 1981, BIOCHIM BIOPHYS ACTA, V649, P367, DOI 10.1016/0005-2736(81)90426-0 FURNESS DN, 1985, HEARING RES, V18, P177, DOI 10.1016/0378-5955(85)90010-3 Furness DN, 1997, P ROY SOC B-BIOL SCI, V264, P45 Garcia JA, 1998, J NEUROSCI, V18, P8637 GILLESPIE PG, 1993, P NATL ACAD SCI USA, V90, P2710, DOI 10.1073/pnas.90.7.2710 HACKNEY CM, 1995, AM J PHYSIOL-CELL PH, V268, pC1 HACKNEY CM, 1992, P ROY SOC B-BIOL SCI, V248, P215, DOI 10.1098/rspb.1992.0064 HACKNEY CM, 1999, P SENDAI EAR S, V9, P9 HACOHEN N, 1989, J NEUROSCI, V9, P3988 Hasson T, 1997, J CELL BIOL, V137, P1287, DOI 10.1083/jcb.137.6.1287 Holt JR, 2002, CELL, V108, P371, DOI 10.1016/S0092-8674(02)00629-3 Houdusse A, 1996, STRUCTURE, V4, P1475, DOI 10.1016/S0969-2126(96)00154-2 HOWARD J, 1987, P NATL ACAD SCI USA, V84, P3064, DOI 10.1073/pnas.84.9.3064 HUDSPETH AJ, 1989, NATURE, V341, P397, DOI 10.1038/341397a0 JIANG D, 1993, BRIT J AUDIOL, V27, P195, DOI 10.3109/03005369309076693 Kachar B, 2000, P NATL ACAD SCI USA, V97, P13336, DOI 10.1073/pnas.97.24.13336 LIBERMAN MC, 1987, HEARING RES, V26, P45, DOI 10.1016/0378-5955(87)90035-9 LUMPKIN EA, 1995, P NATL ACAD SCI USA, V92, P10297, DOI 10.1073/pnas.92.22.10297 Mahendrasingam S, 1998, HEARING RES, V126, P151, DOI 10.1016/S0378-5955(98)00164-6 Matsubara A, 1996, J NEUROSCI, V16, P4457 Mermall V, 1998, SCIENCE, V279, P527, DOI 10.1126/science.279.5350.527 Meyer J, 1998, J NEUROSCI, V18, P6748 Mooseker MS, 1995, ANNU REV CELL DEV BI, V11, P633, DOI 10.1146/annurev.cellbio.11.1.633 Nakazawa K, 2001, HEARING RES, V151, P133, DOI 10.1016/S0378-5955(00)00220-3 Ogata Y, 1998, J VESTIBUL RES-EQUIL, V8, P209 Pack AK, 1995, HEARING RES, V91, P119 PICKLES JO, 1984, HEARING RES, V15, P103, DOI 10.1016/0378-5955(84)90041-8 Ricci AJ, 2000, J NEUROSCI, V20, P7131 Ricci AJ, 1997, J PHYSIOL-LONDON, V501, P111, DOI 10.1111/j.1469-7793.1997.111bo.x Ricci AJ, 1998, J NEUROSCI, V18, P8261 Saimi Y, 2002, ANNU REV PHYSIOL, V64, P289, DOI 10.1146/annurev.physiol.64.100301.111649 SHEPHERD GMG, 1989, P NATL ACAD SCI USA, V86, P4973, DOI 10.1073/pnas.86.13.4973 SLEPECKY N, 1985, HEARING RES, V20, P245, DOI 10.1016/0378-5955(85)90029-2 Steyger PS, 1998, J NEUROSCI, V18, P4603 TILNEY MS, 1989, J CELL BIOL, V109, P1711, DOI 10.1083/jcb.109.4.1711 VANELDIK LJ, 1981, J BIOL CHEM, V256, P4205 Walker RG, 1996, P NATL ACAD SCI USA, V93, P2203, DOI 10.1073/pnas.93.5.2203 WALKER RG, 1993, P NATL ACAD SCI USA, V90, P2807, DOI 10.1073/pnas.90.7.2807 Whittaker M, 1997, J MOL BIOL, V269, P548, DOI 10.1006/jmbi.1997.1058 Wu YC, 1999, J NEUROPHYSIOL, V82, P2171 Yamoah EN, 1996, NEURON, V17, P523, DOI 10.1016/S0896-6273(00)80184-1 Yamoah EN, 1998, J NEUROSCI, V18, P610 Yao YH, 1996, BIOCHEMISTRY-US, V35, P12015, DOI 10.1021/bi960834n Zhang MJ, 1998, BIOCHEM CELL BIOL, V76, P313, DOI 10.1139/bcb-76-2-3-313 Zhao YD, 1996, P NATL ACAD SCI USA, V93, P15469, DOI 10.1073/pnas.93.26.15469 Zhu T, 1998, J BIOL CHEM, V273, P20481, DOI 10.1074/jbc.273.32.20481 NR 60 TC 20 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2002 VL 173 IS 1-2 BP 10 EP 20 DI 10.1016/S0378-5955(02)00584-1 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 607HJ UT WOS:000178785800002 PM 12372631 ER PT J AU Bibikov, NG AF Bibikov, NG TI Addition of noise enhances neural synchrony to amplitude-modulated sounds in the frog's midbrain SO HEARING RESEARCH LA English DT Article DE amplitude modulation; torus semicircularis; adaptation; stochastic resonance; circle histogram; inferior colliculus ID AUDITORY-NERVE FIBERS; INFERIOR COLLICULUS; BACKGROUND-NOISE; SINGLE NEURONS; RESPONSES; STIMULI; TONES; CHINCHILLA; CATS AB The ability of 109 single units in the midbrain acoustic centre of frogs (Rana ridibunda, Rana temporaria) to reproduce 10%, 20 Hz sinusoidal amplitude modulation of a long-duration characteristic frequency tone was studied. The sinusoidal modulation was presented either in isolation or summed with a low-frequency (0-50 Hz) noise. Recordings were obtained in the adapted state. The magnitude of the 20 Hz periodic response component was estimated by means of the synchronisation coefficient and the amplitude of the sine modulation of the instantaneous spike rate. In many units, addition of noise modulation produced considerable enhancement of both the mean discharge rate and the discharge rate synchronised to the 20 Hz amplitude modulation. This enhancement phenomenon is interpreted in the context of stochastic resonance theory. (C) 2002 Published by Elsevier Science B.V. C1 NN Andreev Acoust Inst, Moscow 117036, Russia. RP Bibikov, NG (reprint author), NN Andreev Acoust Inst, Schwernik St 4, Moscow 117036, Russia. CR ABBAS PJ, 1981, HEARING RES, V5, P69, DOI 10.1016/0378-5955(81)90027-7 Batschelet E, 1981, CIRCULAR STAT BIOL BIBIKOV N G, 1980, Neirofiziologiya, V12, P264 BIBIKOV NG, 1990, SENS SYST, V4, P28 BIBIKOV NG, 1981, NEURONAL MECH HEARIN, P347 BIBIKOV NG, 1987, SENS SYST, V1, P273 BIBIKOV NJG, 1996, HEARING RES, V100, P23 BRZOSKA J, 1977, J COMP PHYSIOL, V118, P173 COSTALUPES JA, 1985, J NEUROSCI, V5, P3261 FREEDMAN EG, 1988, J ACOUST SOC AM, V84, P2081, DOI 10.1121/1.397053 Frisina RD, 1996, J ACOUST SOC AM, V99, P475, DOI 10.1121/1.414559 Frisina RD, 2001, HEARING RES, V158, P1, DOI 10.1016/S0378-5955(01)00296-9 FRISINA RD, 1994, EXP BRAIN RES, V102, P160 Gerhardt H.C., 1988, P455 GIBSON DJ, 1985, J NEUROPHYSIOL, V53, P940 GOOLER DM, 1992, J NEUROPHYSIOL, V67, P1 Bibikov N. G., 1996, Sensornye Sistemy, V10, P5 Henry KR, 1999, J COMP PHYSIOL A, V184, P577, DOI 10.1007/s003590050357 Kaplan H. M., 1969, P FED AM SOC EXP BIO, V28, P1541 KIM DO, 1990, HEARING RES, V45, P95, DOI 10.1016/0378-5955(90)90186-S Lewis ER, 1995, HEARING RES, V92, P1, DOI 10.1016/0378-5955(95)00189-1 MOLLER AR, 1986, HEARING RES, V24, P203, DOI 10.1016/0378-5955(86)90019-5 NARINS PM, 1989, J ACOUST SOC AM, V85, P1255, DOI 10.1121/1.397456 REES A, 1987, HEARING RES, V27, P129, DOI 10.1016/0378-5955(87)90014-1 REES A, 1989, J ACOUST SOC AM, V85, P1978, DOI 10.1121/1.397851 ROSE GJ, 1985, J NEUROPHYSIOL, V53, P446 Shofner WP, 1996, J ACOUST SOC AM, V99, P3592, DOI 10.1121/1.414957 SMITH RL, 1982, BIOL CYBERN, V44, P107, DOI 10.1007/BF00317970 TOULGAARD J, 2000, BIOL CYBERN, V83, P471 WALKOWIAK W, 1984, J COMP PHYSIOL, V155, P57, DOI 10.1007/BF00610931 NR 30 TC 18 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2002 VL 173 IS 1-2 BP 21 EP 28 DI 10.1016/S0378-5955(02)00456-2 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 607HJ UT WOS:000178785800003 PM 12372632 ER PT J AU Jaeger, R Takagi, A Haslwanter, T AF Jaeger, R Takagi, A Haslwanter, T TI Modeling the relation between head orientations and otolith responses in humans SO HEARING RESEARCH LA English DT Article DE otolith; utricle; saccule; vestibular; simulation; modeling; finite element ID SQUIRREL-MONKEY; GUINEA-PIG; VESTIBULAR APPARATUS; LINEAR ACCELERATION; DYNAMIC-RESPONSE; STATIC TILTS; ORGANS; MEMBRANE; NEURONS; MECHANICS AB We have performed a finite element simulation of realistic displacements of otolith membranes by static linear accelerations. The simulations were based on accurate measurements of the surfaces of human utricular and saccular maculae, which indicate a clear curvature of these surfaces. The results show that this curvature, a feature probably found in all mammals, has no effect on the mechanics of the structure as a whole since the elastic coupling in the otolith membrane is insufficient. Hair cell excitations on any place of the macula are only affected by the local orientation of the macula with respect to acceleration. Based on the displacements of the otolith membrane, we also calculated the induced activation patterns on the otolith epithelia. These patterns provide for the first time a complete image of peripheral otolith activity. The individual activation patterns at selected locations on the macula correspond well with single cell recordings of actual peripheral otolith neurons. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Tubingen Hosp, Dept Neurol, D-72076 Tubingen, Germany. Shizuoka Prefectural Gen Hosp, Dept Otolaryngol, Shizuoka, Japan. Univ Zurich Hosp, Dept Neurol, CH-8091 Zurich, Switzerland. Swiss Fed Inst Technol, Inst Theoret Phys, Zurich, Switzerland. RP Jaeger, R (reprint author), Univ Tubingen Hosp, Dept Neurol, Hoppe Seyler Str 3, D-72076 Tubingen, Germany. CR Angelaki DE, 2000, J NEUROPHYSIOL, V84, P2113 ANGELAKI DE, 1992, BIOL CYBERN, V67, P83, DOI 10.1007/BF00201805 ANGELAKI DE, 1992, BIOL CYBERN, V67, P511, DOI 10.1007/BF00198758 BENSER ME, 1993, HEARING RES, V68, P243, DOI 10.1016/0378-5955(93)90128-N Curthoys IS, 1999, ANN NY ACAD SCI, V871, P27, DOI 10.1111/j.1749-6632.1999.tb09173.x DAI MJ, 1989, BIOL CYBERN, V60, P185 Damiano ER, 1996, J FLUID MECH, V307, P333, DOI 10.1017/S0022112096000146 FERNANDE.C, 1972, J NEUROPHYSIOL, V35, P978 FERNANDEZ C, 1976, J NEUROPHYSIOL, V39, P970 FERNANDEZ C, 1976, J NEUROPHYSIOL, V39, P985 Glasauer S, 1997, 3 DIMENSIONAL KINEMA, P387 GOLDBERG JM, 1990, J NEUROPHYSIOL, V63, P781 GRANT JW, 1984, J BIOMECH ENG-T ASME, V106, P302 GRANT JW, 1986, ANN BIOMED ENG, V14, P241, DOI 10.1007/BF02584273 GRANT JW, 1993, J VESTIBUL RES-EQUIL, V2, P137 Grant J W, 1990, J Vestib Res, V1, P139 GRANT W, 1987, AVIAT SPACE ENVIR MD, V58, P970 Haslwanter T, 2000, EXP BRAIN RES, V134, P96, DOI 10.1007/s002210000418 HESS BJM, 1993, BIOL CYBERN, V69, P407, DOI 10.1007/BF00199440 HUDETZ W J, 1973, Computers in Biology and Medicine, V3, P355, DOI 10.1016/0010-4825(73)90002-4 KACHAR B, 1990, HEARING RES, V45, P179, DOI 10.1016/0378-5955(90)90119-A Kondrachuk AV, 2000, HEARING RES, V143, P130, DOI 10.1016/S0378-5955(00)00034-4 KONDRACHUK AV, 1987, USSR REP-SPACE BIOL, V21, P70 Leigh R. J., 1999, NEUROLOGY EYE MOVEME LIM D, 1976, SCANNING ELECT MICRO, V2, P270 Lindeman H H, 1969, Ergeb Anat Entwicklungsgesch, V42, P1 Lins U, 2000, J STRUCT BIOL, V131, P67, DOI 10.1006/jsbi.2000.4260 Merfeld D M, 1993, J Vestib Res, V3, P141 MONEY KE, 1971, AM J PHYSIOL, V220, P140 Peters R, 1969, CR1309 NASA Rabbitt RD, 1999, J NEUROPHYSIOL, V82, P1033 RABBITT RD, 1995, J NEUROPHYSIOL, V73, P2237 ROSS MD, 1987, ACTA OTO-LARYNGOL, V103, P56, DOI 10.3109/00016488709134698 SATO H, 1992, OTOLARYNG HEAD NECK, V107, P405 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 SHOTWELL SL, 1981, ANN NY ACAD SCI, V374, P1, DOI 10.1111/j.1749-6632.1981.tb30854.x TAKAGI A, 1988, OTOLARYNGOL HEAD NEC, V88, P195 Trincker D, 1962, S SOC EXP BIOL, V16, P289 TWIZELL EH, 1977, COMPUT BIOL MED, V7, P131, DOI 10.1016/0010-4825(77)90018-X NR 39 TC 12 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2002 VL 173 IS 1-2 BP 29 EP 42 DI 10.1016/S0378-5955(02)00485-9 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 607HJ UT WOS:000178785800004 PM 12372633 ER PT J AU Russell, FA Moore, DR AF Russell, FA Moore, DR TI Ultrastructural transynaptic effects of unilateral cochlear ablation in the gerbil medial superior olive SO HEARING RESEARCH LA English DT Article DE ultrastructure; auditory brainstem; cochlear ablation; synaptic plasticity ID STEM AUDITORY NUCLEI; ATROPHY FOLLOWING DEAFFERENTATION; INDUCED DENDRITIC ATROPHY; EAR OSSICLE REMOVAL; BRAIN-STEM; AFFERENT INFLUENCES; GUINEA-PIG; INFERIOR COLLICULUS; PROTEIN-SYNTHESIS; TRAPEZOID BODY AB This study investigated the long-term effects of unilateral hearing loss on the structure of synapses within the gerbil medial superior olivary (MSO) nuclei. Five animals had complete (surgical) left cochlear ablation at postnatal day 18. Previous studies have shown this to produce, within 3 days, significant transneuronal atrophy in the left dendritic field of both MSOs. Electron micrographs from sagittal ultrathin sections through the MSOs of the cochlear-ablated animals were compared to those from unoperated normals. Qualitatively, the ultrastructural features were similar. Most of the axodendritic terminals were R-type (round-type vesicles, putative excitatory) whereas, in the central part of the nucleus, predominated by neuron soma profiles, terminals of P- and F-type (pleomorphic- and flattened-type vesicles, putative inhibitory) were present in equal numbers with R-type terminals. F-type terminals were infrequent and occurred most around lateral parts of the MSO somata. These three types of terminals seen around the somata and proximal dendrites all had extended profiles with multiple, discontinuous appositions. Quantitative analysis revealed that R-type axodendritic terminals became smaller and less densely populated with vesicles where they synapsed onto the remaining dendrites arrayed towards the ablated side of both MSOs, and axosomatic P-type afferent terminals were smaller in the contralateral nuclei. A significant reduction in the number of terminals and synapses occurred in the central, somatic, region of the ipsilateral MSO. However, the terminal vesicle concentration in the remaining terminals increased. The results indicate that cochlear ablation can induce transynaptic reduction in the size of afferent axon terminals within the MSO, and alter their vesicle concentration. These changes are likely to affect the probability of transmitter release and thus influence their signaling power within the nucleus. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Oxford, Physiol Lab, Oxford OX1 3PT, England. RP Russell, FA (reprint author), Univ Oxford, Physiol Lab, Parks Rd, Oxford OX1 3PT, England. CR ABBOTT SD, 1999, NEUROSCIENCE, V93, P75 ADAMS JC, 1990, HEARING RES, V49, P281, DOI 10.1016/0378-5955(90)90109-3 BENES FM, 1977, BRAIN RES, V122, P1, DOI 10.1016/0006-8993(77)90658-8 Bilak M, 1997, EXP NEUROL, V147, P256, DOI 10.1006/exnr.1997.6636 Bledsoe SC, 1995, NEUROREPORT, V7, P225, DOI 10.1097/00001756-199512000-00054 BORN DE, 1991, BRAIN RES, V557, P37, DOI 10.1016/0006-8993(91)90113-A BORN DE, 1985, J COMP NEUROL, V231, P435, DOI 10.1002/cne.902310403 BORN DE, 1988, J NEUROSCI, V8, P901 Brodin L, 1997, EUR J NEUROSCI, V9, P2503, DOI 10.1111/j.1460-9568.1997.tb01679.x BRUNSOBECHTOLD JK, 1992, J COMP NEUROL, V324, P539, DOI 10.1002/cne.903240407 Cant N. B., 1991, NEUROBIOLOGY HEARING, P99 CANT NB, 1992, HEARING RES, V58, P26, DOI 10.1016/0378-5955(92)90005-8 Cant NB, 1992, MAMMALIAN AUDITORY P, P66 CLARK GM, 1969, BRAIN RES, V14, P293, DOI 10.1016/0006-8993(69)90111-5 Cowen T, 1998, PROG NEUROBIOL, V54, P249, DOI 10.1016/S0301-0082(97)00071-3 CZIBULKA A, 1991, HEARING RES, V52, P43, DOI 10.1016/0378-5955(91)90186-D CZIBULKA A, 1993, HEARING RES, V67, P1, DOI 10.1016/0378-5955(93)90226-Q DEITCH JS, 1984, J COMP NEUROL, V229, P66, DOI 10.1002/cne.902290106 DEITCH JS, 1989, J COMP NEUROL, V281, P234, DOI 10.1002/cne.902810207 DEITCH JS, 1989, J COMP NEUROL, V281, P259, DOI 10.1002/cne.902810208 FADDIS BT, 1993, EXP NEUROL, V120, P160, DOI 10.1006/exnr.1993.1051 FENG AS, 1980, BRAIN RES, V189, P530, DOI 10.1016/0006-8993(80)90112-2 FLECKNELL PA, 1984, LAB ANIM, V18, P143, DOI 10.1258/002367784780891406 GARDEN GA, 1994, J NEUROSCI, V14, P1994 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 GROTHE B, 1993, J NEUROPHYSIOL, V69, P1192 Grothe B, 1998, J NEUROSCI, V18, P6608 GROTHE B, 1994, J NEUROSCI, V14, P1701 Hackney CM, 1996, EUR J NEUROSCI, V8, P79, DOI 10.1111/j.1460-9568.1996.tb01169.x HARRIS WA, 1981, ANNU REV PHYSIOL, V43, P689, DOI 10.1146/annurev.ph.43.030181.003353 HELFERT RH, 1992, J COMP NEUROL, V323, P305, DOI 10.1002/cne.903230302 HELFERT RH, 1989, BRAIN RES, V501, P269, DOI 10.1016/0006-8993(89)90644-6 HYDE GE, 1994, J NEUROSCI, V14, P291 HYSON RL, 1989, J NEUROSCI, V9, P2835 JEANBAPTISTE M, 1975, J COMP NEUROL, V162, P111, DOI 10.1002/cne.901620107 KALIL RE, 1990, J EXP BIOL, V153, P261 Katz LC, 1996, SCIENCE, V274, P1133, DOI 10.1126/science.274.5290.1133 Kelley MS, 1997, J COMP NEUROL, V389, P469 Kim JN, 1997, HEARING RES, V103, P169, DOI 10.1016/S0378-5955(96)00173-6 KISS A, 1983, EXP BRAIN RES, V52, P315 KITZES LM, 1995, J COMP NEUROL, V353, P341, DOI 10.1002/cne.903530303 KITZES LM, 1985, J NEUROPHYSIOL, V53, P1483 KOERBER KC, 1966, EXP NEUROL, V16, P119, DOI 10.1016/0014-4886(66)90091-4 Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3 LEVIMONTALCINI R, 1949, J COMP NEUROL, V91, P209, DOI 10.1002/cne.900910204 LUND RD, 1971, SCIENCE, V171, P804, DOI 10.1126/science.171.3973.804 McAlpine D, 1997, J NEUROPHYSIOL, V78, P767 MCGINN MD, 1987, HEARING RES, V31, P235, DOI 10.1016/0378-5955(87)90193-6 McGinn MD, 1998, MICROSC RES TECHNIQ, V41, P187, DOI 10.1002/(SICI)1097-0029(19980501)41:3<187::AID-JEMT3>3.0.CO;2-R MOORE DR, 1990, J COMP NEUROL, V302, P810, DOI 10.1002/cne.903020412 MOORE DR, 1985, J COMP NEUROL, V240, P180, DOI 10.1002/cne.902400208 MOORE DR, 1992, NEUROREPORT, V3, P269, DOI 10.1097/00001756-199203000-00014 Morest DK, 1997, HEARING RES, V103, P151, DOI 10.1016/S0378-5955(96)00172-4 Mossop JE, 2000, HEARING RES, V147, P183, DOI 10.1016/S0378-5955(00)00054-X NORDEEN KW, 1983, J COMP NEUROL, V214, P144, DOI 10.1002/cne.902140204 PARKS TN, 1987, J COMP NEUROL, V260, P312, DOI 10.1002/cne.902600211 PARKS TN, 1979, J COMP NEUROL, V183, P665, DOI 10.1002/cne.901830313 PASIC TR, 1994, J COMP NEUROL, V348, P111, DOI 10.1002/cne.903480106 Penn AA, 1999, PEDIATR RES, V45, P447, DOI 10.1203/00006450-199904010-00001 PERKINS RE, 1973, J COMP NEUROL, V148, P387, DOI 10.1002/cne.901480306 Peters A, 1991, FINE STRUCTURE NERVO, V3rd PEYRET D, 1987, ACTA OTO-LARYNGOL, V104, P71, DOI 10.3109/00016488709109049 Potashner SJ, 1997, EXP NEUROL, V148, P222, DOI 10.1006/exnr.1997.6641 POWELL TPS, 1962, J ANAT, V96, P249 Reser DH, 1997, ACTA OTO-LARYNGOL, V117, P239, DOI 10.3109/00016489709117779 RUBEL E W, 1991, Brain Dysfunction, V4, P55 RUBEL EW, 1990, J NEUROBIOL, V21, P169, DOI 10.1002/neu.480210112 RUBEL EW, 1981, J COMP NEUROL, V202, P397, DOI 10.1002/cne.902020309 Russell FA, 1999, EUR J NEUROSCI, V11, P1379, DOI 10.1046/j.1460-9568.1999.00547.x RUSSELL FA, 1995, J COMP NEUROL, V352, P607, DOI 10.1002/cne.903520409 SANES DH, 1987, J NEUROSCI, V7, P3793 SANES DH, 1993, EUR J NEUROSCI, V5, P570, DOI 10.1111/j.1460-9568.1993.tb00522.x Schwartz I. R., 1992, MAMMALIAN AUDITORY P, P117 SCHWARTZ IR, 1972, BRAIN RES, V46, P187, DOI 10.1016/0006-8993(72)90015-7 SCHWARTZ IR, 1980, AM J ANAT, V159, P23 SMITH PH, 1995, J NEUROPHYSIOL, V73, P1653 SMITH ZDJ, 1983, J COMP NEUROL, V220, P199, DOI 10.1002/cne.902200207 Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812 Suneja SK, 1998, EXP NEUROL, V154, P473, DOI 10.1006/exnr.1998.6946 Tierney TS, 1997, J COMP NEUROL, V378, P295, DOI 10.1002/(SICI)1096-9861(19970210)378:2<295::AID-CNE11>3.0.CO;2-R Tonra JR, 1999, MICROSC RES TECHNIQ, V45, P225, DOI 10.1002/(SICI)1097-0029(19990515/01)45:4/5<225::AID-JEMT6>3.0.CO;2-1 von Bartheld CS, 2000, J NEUROSCI, V20, P736 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 Zirpel L, 1998, J NEUROPHYSIOL, V79, P2288 Zirpel L, 1996, J NEUROPHYSIOL, V76, P4127 NR 85 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2002 VL 173 IS 1-2 BP 43 EP 61 DI 10.1016/S0378-5955(02)00606-8 PG 19 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 607HJ UT WOS:000178785800005 PM 12372634 ER PT J AU Heller, AJ Stanley, C Shaia, WT Sismanis, A Spencer, RF Wolf, B AF Heller, AJ Stanley, C Shaia, WT Sismanis, A Spencer, RF Wolf, B TI Localization of biotinidase in the brain: implications for its role in hearing loss in biotinidase deficiency SO HEARING RESEARCH LA English DT Article DE biotinidase; biotinidase deficiency; auditory; hearing; hearing loss; deafness; sensorineural; immunohistochemistry ID HUMAN SERUM BIOTINIDASE AB Biotinidase deficiency is an autosomal recessively inherited disorder characterized by neurological and cutaneous features, including sensorineural hearing loss. Although many of the features of the disorder are reversible following treatment with biotin, the hearing loss appears to be irreversible. To better characterize the nature of the hearing loss in this disorder, location of the expression and presence of biotinidase within the brain was examined using Northern blot analysis, in vitro hybridization of a cDNA panel, and immunohistochemical staining. Results indicate low, but detectable expression of biotinidase throughout the brain, but increased concentrations of biotinidase within the dorsal cochlear nucleus, ventral cochlear nucleus, and superior olivary complex of the brainstem, as well as, in the hair cells and spiral ganglion of the cochlea. These findings suggest that biotinidase and possibly biotin plays an important role in hearing. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Connecticut Childrens Med Ctr, Dept Res, Hartford, CT 06106 USA. Virginia Commonwealth Univ, Med Coll Virginia, Dept Otolaryngol, Richmond, VA 23298 USA. Virginia Commonwealth Univ, Med Coll Virginia, Dept Human Genet, Richmond, VA 23298 USA. Virginia Commonwealth Univ, Med Coll Virginia, Dept Anat, Richmond, VA 23298 USA. Univ Connecticut, Sch Med, Dept Pediat, Hartford, CT 06106 USA. RP Wolf, B (reprint author), Connecticut Childrens Med Ctr, Dept Res, 282 Washington St, Hartford, CT 06106 USA. CR COLE H, 1994, J BIOL CHEM, V269, P6566 HART PS, 1992, AM J HUM GENET, V50, P126 Heard G.S., 1989, FASEB J, V3, P124 HYMES J, 1995, BIOCHEM MOL MED, V56, P76, DOI 10.1006/bmme.1995.1059 Pispa J, 1965, ANN MED EXP BIOL F S, V43, P1 Prasad PD, 1997, PLACENTA, V18, P527, DOI 10.1016/0143-4004(77)90006-6 RYBAK LP, 1991, ANN OTO RHINOL LARYN, V100, P294 Spencer RF, 1996, J COMP NEUROL, V366, P134, DOI 10.1002/(SICI)1096-9861(19960226)366:1<134::AID-CNE9>3.0.CO;2-4 STANLEY CM, 2002, THESIS VIRGINIA COMM, P51 SUCHY SF, 1985, NEUROLOGY, V35, P1510 Wolf B, 2002, J PEDIATR-US, V140, P242, DOI 10.1067/mpd.2002.121938 Wolf B, 2001, METABOLIC MOL BASES, P3935 Zeng W, 2001, AM J HUM GENET, V69, P195 NR 13 TC 12 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2002 VL 173 IS 1-2 BP 62 EP 68 DI 10.1016/S0378-5955(02)00609-3 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 607HJ UT WOS:000178785800006 PM 12372635 ER PT J AU Shofner, WP AF Shofner, WP TI Perception of the periodicity strength of complex sounds by the chinchilla SO HEARING RESEARCH LA English DT Article ID GOLDFISH CARASSIUS-AURATUS; DOMINANCE REGION; PITCH STRENGTH; AUDITORY-NERVE; PHASE-LOCKING; SINGLE TONES; RIPPLE NOISE; HAIR-CELLS; HEARING; DISCRIMINATION AB The perception of periodicity strength was studied in chinchillas using a stimulus generalization paradigm in an operant-conditioning, positive reinforcement behavioral task. Stimuli consisted of cosine-phase and random-phase harmonic complex tones, infinitely iterated rippled noises, and wideband noise. These stimuli vary in periodicity strength as measured by autocorrelation functions and are known to generate a continuum in the perception of pitch strength in human listeners. Chinchillas were trained to discriminate a cosine-phase harmonic tone complex from wideband noise and tested in the generalization paradigm using random-phase tone complexes and iterated rippled noises as probe stimuli. Chinchillas were tested in three different conditions in which the periods of the fundamental frequencies of the tone complexes were fixed at 2 ms, 4 ms, or 8 ms. Behavioral responses obtained from chinchillas were related to stimulus periodicity strength. For most animals, the behavioral responses to random-phase tone complexes were smaller than those to cosine-phase tone complexes. The behavioral responses were analyzed in terms of the Auditory Image Model of Patterson et al. [Patterson, R.D., Allerhand, M.H., Giguere, C., J. Acoust. Soc. Am. 98 (1995) 1890-1894], and the results suggest that the periodicity information in the stimulus envelope has a large influence in controlling the behavioral response of the chinchilla. Comparison of the generalization data obtained in the present study to magnitude estimation data obtained previously in human subjects suggests a greater influence of stimulus envelope for the perception of periodicity strength in chinchillas than for the perception of pitch strength in human listeners. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Loyola Univ, Parmly Hearing Inst, Chicago, IL 60626 USA. RP Shofner, WP (reprint author), Loyola Univ, Parmly Hearing Inst, 6525 N Sheridan Rd, Chicago, IL 60626 USA. CR FASTL H, 1979, HEARING RES, V1, P293, DOI 10.1016/0378-5955(79)90002-9 Fay RR, 1998, HEARING RES, V120, P17, DOI 10.1016/S0378-5955(98)00048-3 FAY RR, 1994, HEARING RES, V76, P158, DOI 10.1016/0378-5955(94)90097-3 FAY RR, 1995, HEARING RES, V89, P146, DOI 10.1016/0378-5955(95)00132-8 FAY RR, 1972, J ACOUST SOC AM, V52 FAY RR, 2000, J ACOUST SOC AM, V107, P2833, DOI 10.1121/1.429148 GREENBER.GZ, 1968, J ACOUST SOC AM, V44, P1513, DOI 10.1121/1.1911290 GUTTMAN N, 1963, PSYCHOL STUDY SCI, P114 Heffner RS, 2001, HEARING RES, V157, P138, DOI 10.1016/S0378-5955(01)00298-2 HEFFNER RS, 1991, HEARING RES, V52, P13, DOI 10.1016/0378-5955(91)90183-A Hulse S. H, 1995, METHODS COMP PSYCHOA, P319 JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982 JORIS PX, 1992, J ACOUST SOC AM, V91, P215, DOI 10.1121/1.402757 KUHL PK, 1978, J ACOUST SOC AM, V63, P905, DOI 10.1121/1.381770 Malott R. W., 1970, ANIMAL PSYCHOPHYSICS, P363 MOODY DB, 1976, HDB AUDITORY VESTIBU, P439 NIEMIEC AJ, 1992, J ACOUST SOC AM, V92, P2636, DOI 10.1121/1.404380 Ohlemiller KK, 1999, BEHAV BRAIN RES, V100, P185, DOI 10.1016/S0166-4328(98)00130-2 PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X PATTERSON RD, 1995, J ACOUST SOC AM, V98, P1890, DOI 10.1121/1.414456 PFINGST BE, 1975, J ACOUST SOC AM, V57, P421, DOI 10.1121/1.380465 Shofner WP, 2000, HEARING RES, V149, P106, DOI 10.1016/S0378-5955(00)00171-4 Shofner W. P., 1995, AUDIT NEUROSCI, V1, P127 Shofner WP, 1997, HEARING RES, V110, P15, DOI 10.1016/S0378-5955(97)00063-4 SHOFNER WP, 2002, ASS RES OT ABSTR, P18 Shofner WP, 2002, PERCEPT PSYCHOPHYS, V64, P437, DOI 10.3758/BF03194716 WOOLF NK, 1981, HEARING RES, V4, P335, DOI 10.1016/0378-5955(81)90017-4 YOST WA, 1978, J ACOUST SOC AM, V64, P485, DOI 10.1121/1.382021 Yost WA, 1996, J ACOUST SOC AM, V100, P3329, DOI 10.1121/1.416973 YOST WA, 1982, J ACOUST SOC AM, V72, P416, DOI 10.1121/1.388094 NR 30 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2002 VL 173 IS 1-2 BP 69 EP 81 DI 10.1016/S0378-5955(02)00612-3 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 607HJ UT WOS:000178785800007 PM 12372636 ER PT J AU Shaia, WT Shapiro, SM Heller, AJ Galiani, DL Sismanis, A Spencer, RF AF Shaia, WT Shapiro, SM Heller, AJ Galiani, DL Sismanis, A Spencer, RF TI Immunohistochemical localization of calcium-binding proteins in the brainstem vestibular nuclei of the jaundiced Gunn rat SO HEARING RESEARCH LA English DT Article DE parvalbumin; calbindin-D28k; vestibulo-ocular; vestibulospinal; posture; balance; gaze; Gunn rat; jaundice; kernicterus; hyperbilirubinemia ID AUDITORY-EVOKED-POTENTIALS; SUPERIOR OLIVARY COMPLEX; LEANER MUTANT MICE; NERVOUS-SYSTEM; BILIRUBIN ENCEPHALOPATHY; EXPERIMENTAL-MODEL; CALBINDIN D-28K; STEM; PARVALBUMIN; NEURONS AB Vestibular gaze and postural abnormalities are major sequelae of neonatal hyperbilirubinemia. The sites and cellular effects of bilirubin toxicity in the brainstem vestibular pathway are not easily detected. Since altered intracellular calcium homeostasis may play a role in neuronal cell death, we hypothesized that altered expression of calcium-binding proteins may occur in brainstem vestibular nuclei of the classic animal model of bilirubin neurotoxicity. The expression of the calcium-binding proteins calbindin-D28k and parvalbumin in the brainstem. vestibular pathways and cerebellum of homozygous recessive jaundiced (jj) Gunn rats was examined by light microscopy and immunohistochemistry at 18 days postnatally and compared to the findings obtained from age-matched non-jaundiced heterozygous (Nj) littermate controls. Jaundiced animals exhibited decreased parvalbumin immunoreactivity specifically in synaptic inputs to superior, medial, and inferior vestibular nuclei, and to oculomotor and trochlear nuclei, whereas the neurons retained their normal immunoreactivity. Jaundiced animals also demonstrated a decrease in calbindin expression in the lateral vestibular nuclei and a paucity of calbindin-immunoreactive synaptic endings on the somata of Deiters' neurons. The involved regions are related to the control of the vestibulo-ocular and vestibulospinal reflexes. Decreased expression of calcium-binding proteins in brainstem vestibular neurons may relate to the vestibulo-ocular and vestibulospinal dysfunction seen with clinical kernicterus, and may provide a sensitive new way to assess bilirubin toxicity in the vestibular system. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Virginia Commonwealth Univ Hlth Syst, Dept Otolaryngol Head & Neck Surg, Sch Med, Richmond, VA 23298 USA. Virginia Commonwealth Univ Hlth Syst, Dept Neurol, Sch Med, Richmond, VA 23298 USA. Virginia Commonwealth Univ Hlth Syst, Dept Pediat, Sch Med, Richmond, VA 23298 USA. Virginia Commonwealth Univ Hlth Syst, Dept Anat, Sch Med, Richmond, VA 23298 USA. RP Shapiro, SM (reprint author), Virginia Commonwealth Univ Hlth Syst, Dept Otolaryngol Head & Neck Surg, Sch Med, Med Coll Virginia Campus, Richmond, VA 23298 USA. CR Ahdab-Barmada M, 1987, J Perinatol, V7, P149 Ahlfors CE, 2001, BIOL NEONATE, V80, P158, DOI 10.1159/000047136 Airaksinen MS, 1997, P NATL ACAD SCI USA, V94, P1488, DOI 10.1073/pnas.94.4.1488 SILVERMAN WA, 1956, PEDIATRICS, V18, P614 BAURLE J, 1994, NEUROSCI LETT, V167, P85, DOI 10.1016/0304-3940(94)91033-2 BLANC WA, 1959, J NEUROPATH EXP NEUR, V18, P165, DOI 10.1097/00005072-195901000-00011 BOYLE R, 1992, J NEUROPHYSIOL, V68, P471 CELIO MR, 1990, NEUROSCIENCE, V35, P375, DOI 10.1016/0306-4522(90)90091-H CHURN SB, 1995, PEDIATR RES, V38, P949, DOI 10.1203/00006450-199512000-00020 CONNOLLY AM, 1990, CLIN PERINATOL, V17, P371 DECHESNE CJ, 1988, HEARING RES, V33, P273, DOI 10.1016/0378-5955(88)90157-8 DEMEMES D, 1993, CELL TISSUE RES, V274, P487, DOI 10.1007/BF00314545 DIAMOND I, 1966, J CLIN INVEST, V45, P678, DOI 10.1172/JCI105383 ENDERLIN S, 1987, ANAT EMBRYOL, V177, P15, DOI 10.1007/BF00325286 FRIAUF E, 1994, J COMP NEUROL, V349, P193, DOI 10.1002/cne.903490204 FRIAUF E, 1993, J COMP NEUROL, V334, P59, DOI 10.1002/cne.903340105 Gourley G R, 1997, Adv Pediatr, V44, P173 GrusserCornehls U, 1995, BRAIN RES, V703, P51, DOI 10.1016/0006-8993(95)01064-5 HECKROTH JA, 1994, BRAIN RES, V658, P93 HORN AKE, 1995, J COMP NEUROL, V359, P350, DOI 10.1002/cne.903590212 JOHNSON L, 1961, AM J DIS CHILD, V101, P322 JOHNSON L, 1959, AMA J DIS CHILD, V97, P591 KANDLER K, 1995, EUR J NEUROSCI, V7, P1773, DOI 10.1111/j.1460-9568.1995.tb00697.x KANDLER K, 1993, J COMP NEUROL, V328, P161, DOI 10.1002/cne.903280202 Kevetter GA, 1996, J COMP NEUROL, V365, P575 KOTAK VC, 1995, J NEUROPHYSIOL, V74, P1611 Kotak VC, 1996, J NEUROSCI, V16, P1836 LARROCHE JC, 1968, HDB CLIN NEUROLOGY, V6, P491 Lohmann C, 1996, J COMP NEUROL, V367, P90, DOI 10.1002/(SICI)1096-9861(19960325)367:1<90::AID-CNE7>3.0.CO;2-E MALAMUD N, 1961, KERNICTERUS ITS IMPO, P230 MARTICHKRISS V, 1995, AM J NEURORADIOL, V16, P819 MCBURNEY RN, 1987, TRENDS NEUROSCI, V10, P164, DOI 10.1016/0166-2236(87)90042-7 MCELLIGOTT JG, 1999, IN PRESS NEUROCHEMIS ROSE AL, 1979, J NEUROPATH EXP NEUR, V38, P152, DOI 10.1097/00005072-197903000-00006 SCHUTTA HS, 1969, J PEDIATR, V75, P1070, DOI 10.1016/S0022-3476(69)80351-3 SHAPIRO SM, 1988, PEDIATR RES, V23, P306, DOI 10.1203/00006450-198803000-00015 Shapiro S M, 1988, Brain Res, V469, P147 SHAPIRO SM, 1989, ANN OTO RHINOL LARYN, V98, P308 SHAPIRO SM, 1991, HEARING RES, V53, P41, DOI 10.1016/0378-5955(91)90212-R SHAPIRO SM, 1993, PEDIATR RES, V34, P629, DOI 10.1203/00006450-199311000-00014 SHAPIRO SM, 1991, HEARING RES, V57, P16 SHAPIRO SM, 1994, CLIN PEDIATR, V33, P460, DOI 10.1177/000992289403300803 SOLBACH S, 1991, ANAT EMBRYOL, V184, P103, DOI 10.1007/BF00942742 Spencer RF, 1996, J COMP NEUROL, V366, P134, DOI 10.1002/(SICI)1096-9861(19960226)366:1<134::AID-CNE9>3.0.CO;2-4 Spencer RF, 2002, HEARING RES, V171, P129, DOI 10.1016/S0378-5955(02)00494-X SPENCER R F, 1990, Society for Neuroscience Abstracts, V16, P1083 STREBEL L, 1971, PEDIATR RES, V5, P548, DOI 10.1203/00006450-197110000-00007 UZIEL A, 1983, ACTA OTO-LARYNGOL, V95, P651, DOI 10.3109/00016488309139458 NR 48 TC 15 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2002 VL 173 IS 1-2 BP 82 EP 90 DI 10.1016/S0378-5955(02)00631-7 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 607HJ UT WOS:000178785800008 PM 12372637 ER PT J AU Sekiya, T Shimamura, N Yagihashi, A Suzuki, S AF Sekiya, T Shimamura, N Yagihashi, A Suzuki, S TI Axonal injury in auditory nerve observed in reversible latency changes of brainstem auditory evoked potentials (BAEP) during cerebellopontine angle manipulations in rats SO HEARING RESEARCH LA English DT Article DE axonal injury; auditory nerve; beta-amyloid precursor protein; brainstem auditory evoked potential; hearing; intraoperative monitoring ID AMYLOID PRECURSOR PROTEIN; HEAD-INJURY; COCHLEAR NERVE; BETA-APP; METHYLPREDNISOLONE; AMPLITUDE; DAMAGE; MARKER AB Intraoperative monitoring of brainstem auditory evoked potentials (BAEP) has been widely utilized to reduce the incidence of postoperative hearing disturbance due to cerebellopontine angle manipulations. The prolongation of wave V of BAEP is usually used as a criterion to warn the surgeons to modify their surgical maneuvers. However, it is not known whether all neuropathological changes are avoided if BAEP latency intraoperatively returns to the baseline level or some neuropathological changes 'silently' occur even if BAEP normalizes. The aim of this study was to experimentally clarify this point that would be important for the long-term prognosis of patients' hearing. The cerebellopontine angle portion of the auditory nerve was quantitatively compressed in the rats and reversible prolongation of BAEP latency was reproduced just as it occurs during surgery in humans. Twenty-four hours after the compression, the auditory nerve was removed for beta-APP immunostaining to investigate the degree of axonal injury. The results of the present study disclosed that axonal injury occurred even in the cases where the intraoperative normalization of prolonged wave IV (equivalent to wave V in humans) latency had been obtained. Therefore, the interpretation of BAEP changes based only on the prolongation of the latency of BAEP was not enough to prevent the auditory nerve from developing morphological changes. Changes in the amplitude of wave V of BAEP appears to be more sensitive than its latency change as an intraoperative indicator for axonal injury in the auditory nerve. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Hirosaki Univ, Sch Med, Dept Neurosurg, Hirosaki, Aomori 0368216, Japan. RP Sekiya, T (reprint author), Hirosaki Univ, Sch Med, Dept Neurosurg, 5 Zaifu Cho, Hirosaki, Aomori 0368216, Japan. CR Ahlgren S, 1996, ACTA NEUROPATHOL, V92, P49 BLUMBERGS PC, 1995, J NEUROTRAUM, V12, P565, DOI 10.1089/neu.1995.12.565 Bramlett HM, 1997, J NEUROPATH EXP NEUR, V56, P1132, DOI 10.1097/00005072-199710000-00007 CHIAPPA KH, 1997, EVOKED POTENTIALS CL Don M, 1997, AM J OTOL, V18, P608 FERREIRA A, 1993, J NEUROSCI, V13, P3112 FISCHER C, 1989, NEUROMONITORING SURG, P191 GENTLEMAN SM, 1993, NEUROSCI LETT, V160, P139, DOI 10.1016/0304-3940(93)90398-5 Hatayama T, 1998, ACTA NEUROCHIR, V140, P681, DOI 10.1007/s007010050163 JONES SJ, 1982, EVOKED POTENTIALS CL, P565 KOO EH, 1990, P NATL ACAD SCI USA, V87, P1561, DOI 10.1073/pnas.87.4.1561 Linden R. Dean, 1997, P601 Maxwell WL, 1999, J NEUROTRAUM, V16, P1225, DOI 10.1089/neu.1999.16.1225 McKenzie KJ, 1996, ACTA NEUROPATHOL, V92, P608 MOLLER AR, 1992, NEUROMONITORING OTOL, P199 MOLLER AR, 2000, HEARING ITS PHYSL PA, P297 MOLLER AR, 1986, ELECTROEN CLIN NEURO, V65, P361, DOI 10.1016/0168-5597(86)90015-8 MOLLER AR, 2000, HEARING ITS PHYSL PA, P123 Sekiya T, 2000, EXP NEUROL, V161, P490, DOI 10.1006/exnr.1999.7280 Sekiya T, 2001, BRAIN RES, V905, P152, DOI 10.1016/S0006-8993(01)02523-9 Sekiya T, 2000, J NEUROSURG, V93, P90, DOI 10.3171/jns.2000.93.1.0090 Sekiya T, 2000, ACTA OTO-LARYNGOL, V120, P473, DOI 10.1080/000164800750045956 Sekiya T, 2001, HEARING RES, V151, P125, DOI 10.1016/S0378-5955(00)00219-7 SHERRIFF FE, 1994, ACTA NEUROPATHOL, V88, P433 Stone JR, 1999, ACTA NEUROPATHOL, V97, P335 NR 25 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2002 VL 173 IS 1-2 BP 91 EP 99 DI 10.1016/S0378-5955(02)00633-0 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 607HJ UT WOS:000178785800009 PM 12372638 ER PT J AU van Dijk, P Mason, MJ Narins, PM AF van Dijk, P Mason, MJ Narins, PM TI Distortion product otoacoustic emissions in frogs: correlation with middle and inner ear properties SO HEARING RESEARCH LA English DT Article DE distortion product otoacoustic emission; hearing; amphibia; frog; inner ear ID BULLFROG RANA-CATESBEIANA; OUTER HAIR-CELLS; DIRECTIONAL HEARING; ANURAN AMPHIBIANS; XENOPUS-LAEVIS; ACTIVE PROCESS; TEMPORARIA L; FREQUENCY; RESPONSES; THRESHOLD AB Four frog species, Rana pipiens, Scaphiopus couchii, Xenopus laevis and Bombina orientalis, were examined for distortion product otoacoustic emissions (DPOAE). These species were chosen for their diverse otic morphologies. Rana has a well-developed caudal extension of the amphibian papilla within the inner ear; Scaphiopus, Xenopus and Bombina do not. Rana and Scaphiopus have a tympanic middle ear, Xenopus has a subcutaneous tympanic disk and Bombina has only an operculum. DPOAEs were present in Rana and Xenopus, with amplitudes up to 55 and 20 dB SPL, respectively. DPOAEs could be detected in neither Scaphiopus nor Bombina. These results show that (1) a well-developed caudal extension is not necessary for generation of DPOAEs, and (2) a tympanic middle ear is neither required nor sufficient to have DPOAEs. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Hosp Maastricht, Dept Otorhinolaryngol Head & Neck Surg, NL-6202 AZ Maastricht, Netherlands. Univ Calif Los Angeles, Dept Physiol Sci, Los Angeles, CA 90095 USA. RP van Dijk, P (reprint author), Univ Hosp Maastricht, Dept Otorhinolaryngol Head & Neck Surg, POB 5800, NL-6202 AZ Maastricht, Netherlands. RI Van Dijk, Pim/E-8019-2010 OI Van Dijk, Pim/0000-0002-8023-7571 CR AERTSEN AMHJ, 1986, HEARING RES, V21, P17, DOI 10.1016/0378-5955(86)90043-2 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 CAPRANICA RR, 1975, J COMP PHYSIOL, V100, P231 CHRISTENSENDALSGAARD J, 1990, NATURWISSENSCHAFTEN, V77, P135, DOI 10.1007/BF01134478 CHRISTENSENDALSGAARD J, 1993, J COMP PHYSIOL A, V172, P653 DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 Elepfandt A, 2000, J EXP BIOL, V203, P3621 FENG AS, 1975, J COMP PHYSIOL, V100, P221 Frank G, 1999, P NATL ACAD SCI USA, V96, P4420, DOI 10.1073/pnas.96.8.4420 FRISHKOPF LS, 1963, J ACOUST SOC AM, V35, P1219, DOI 10.1121/1.1918676 GOLD T, 1948, PROC R SOC SER B-BIO, V135, P492, DOI 10.1098/rspb.1948.0025 HE D, 2001, 24 ARO MIDW M, P159 HETHERINGTON TE, 1992, BRAIN BEHAV EVOLUT, V39, P133, DOI 10.1159/000114111 Hetherington TE, 1999, J COMP PHYSIOL A, V184, P395, DOI 10.1007/s003590050338 HETHERINGTON TE, 1994, J ACOUST SOC AM, V96, P1186, DOI 10.1121/1.410326 HILLERY CM, 1987, HEARING RES, V25, P233, DOI 10.1016/0378-5955(87)90095-5 KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222 Koppl C, 1995, ADV HEARING RES, P207 LEWIS ER, 1984, SCAN ELECTR MICROSC, V4, P1899 LEWIS ER, 1981, NEUROSCI LETT, V21, P131, DOI 10.1016/0304-3940(81)90370-0 LEWIS ER, 1978, SCANNING ELECTRON MI, V2, P633 Manley GA, 2001, J NEUROPHYSIOL, V86, P541 Martin P, 1999, P NATL ACAD SCI USA, V96, P14306, DOI 10.1073/pnas.96.25.14306 Palmer AR, 1982, J PHYSL, V324, P66 PINDER AC, 1983, PROC R SOC SER B-BIO, V219, P371, DOI 10.1098/rspb.1983.0079 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 Talmadge CL, 1998, J ACOUST SOC AM, V104, P1517, DOI 10.1121/1.424364 vanDijk P, 1996, HEARING RES, V101, P102 VANDIJK P, 1989, HEARING RES, V42, P273, DOI 10.1016/0378-5955(89)90151-2 van Dijk P, 2001, HEARING RES, V153, P14, DOI 10.1016/S0378-5955(00)00251-3 VLAMING MSMG, 1984, HEARING RES, V14, P191, DOI 10.1016/0378-5955(84)90018-2 Wever EG, 1985, AMPHIBIAN EAR WILSON JP, 1980, HEARING RES, V2, P233, DOI 10.1016/0378-5955(80)90060-X ZUREK PM, 1981, J ACOUST SOC AM, V69, P514, DOI 10.1121/1.385481 NR 34 TC 14 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2002 VL 173 IS 1-2 BP 100 EP 108 DI 10.1016/S0378-5955(02)00605-6 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 607HJ UT WOS:000178785800010 PM 12372639 ER PT J AU Fairfield, DA Kanicki, AC Lomax, MI Altschuler, RA AF Fairfield, DA Kanicki, AC Lomax, MI Altschuler, RA TI Expression and localization of heat shock factor (Hsf) 1 in the rodent cochlea SO HEARING RESEARCH LA English DT Article DE cochlea; rat; mouse; heat shock; heat shock factor; Hsf ID DEPENDENT PROTEIN-KINASE; TRANSCRIPTION FACTOR-1; RAT COCHLEA; FACTOR-I; GENE-EXPRESSION; APAF-1 APOPTOSOME; PROMOTER ANALYSIS; VIRUS VECTOR; STRESS; ACTIVATION AB Activation of heat shock factors (Hsfs) is one of the potential mechanisms for regulating the transcription of the heat shock proteins (Hsps) and certain other stress-responsive genes. Reverse transcription polymerase chain reaction (RT-PCR), Western blot and immunocytochemistry were used to examine the expression and localization of Hsf1, the stress-responsive member of the Hsf family, in the rat and mouse cochlea. Cerebellum was used as a positive control. Semi-quantitative RT-PCR of cochlear RNA revealed that Hsf1 was more highly expressed in a subfraction containing sensorineural epithelium and lateral wall than in a subfraction containing modiolus, with the alpha splice form predominant over the beta in both subfractions. Immunocytochemistry showed selective staining in the rodent cochlea. Hsf1 immunostaining was found in the nuclei of inner and outer hair cells in the organ of Corti, spiral ganglion cells in the modiolus, and cells in the marginal and intermediate layers of the stria vascularis. This is largely consistent with where Hsp70 induction is reported. Hsf1 activation following heat shock was examined by Western blot. Hyperthermia resulted in stress-induced Hsf1 hyperphosphorylation. in cochlea as well as cerebellum. This hyperphosphorylation as well as the correlation of its localization with Hsp70 induction supports a role for Hsf1 in the cochlear stress response. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol Head & Neck Surg, Ann Arbor, MI 48109 USA. Univ Michigan, Dept Cell & Dev Biol, Ann Arbor, MI 48109 USA. RP Altschuler, RA (reprint author), Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol Head & Neck Surg, 1301 E Ann St, Ann Arbor, MI 48109 USA. CR Altschuler R. A., 1999, COCHLEAR PHARM NOISE, P98 Beere HM, 2000, NAT CELL BIOL, V2, P469 Bellmann K, 1996, FEBS LETT, V391, P185, DOI 10.1016/0014-5793(96)00730-2 Brar BK, 1999, J MOL CELL CARDIOL, V31, P135, DOI 10.1006/jmcc.1998.0857 Brown IR, 1996, J NEUROSCI RES, V44, P52, DOI 10.1002/(SICI)1097-4547(19960401)44:1<52::AID-JNR7>3.0.CO;2-H Brown IR, 1999, BRAIN RES, V821, P333, DOI 10.1016/S0006-8993(99)01087-2 Cahill CM, 1996, J BIOL CHEM, V271, P24874 CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1006/abio.1987.9999 Cooper LF, 2000, BBA-GENE STRUCT EXPR, V1490, P348, DOI 10.1016/S0167-4781(00)00005-1 Dale EC, 1997, CELL STRESS CHAPERON, V2, P87, DOI 10.1379/1466-1268(1997)002<0087:MKHSPG>2.3.CO;2 Dale EC, 1996, GENE, V172, P279, DOI 10.1016/0378-1119(96)00191-6 DECHESNE CJ, 1992, HEARING RES, V59, P195, DOI 10.1016/0378-5955(92)90116-5 Dewji NN, 1996, MOL BRAIN RES, V35, P325, DOI 10.1016/0169-328X(95)00214-D GOODSON ML, 1995, BIOCHEM BIOPH RES CO, V211, P943, DOI 10.1006/bbrc.1995.1903 GOODSON ML, 1995, MOL CELL BIOL, V15, P5288 HAWKINS JE, 1971, ANN OTO RHINOL LARYN, V80, P903 Head MW, 1996, J CELL SCI, V109, P1029 Higashi T, 1995, MOL BRAIN RES, V34, P262, DOI 10.1016/0169-328X(95)00163-M HOSOKAWA N, 1993, GENE, V126, P187 Huang JR, 1997, J BIOL CHEM, V272, P26009, DOI 10.1074/jbc.272.41.26009 KONISHI T, 1995, J BIOCHEM-TOKYO, V118, P1021 Kubota H, 1999, FEBS LETT, V461, P125, DOI 10.1016/S0014-5793(99)01437-4 Leonova EV, 2002, HEARING RES, V163, P61, DOI 10.1016/S0378-5955(01)00379-3 Leppa S, 1997, J BIOL CHEM, V272, P15293, DOI 10.1074/jbc.272.24.15293 LIM HH, 1993, HEARING RES, V69, P146 Liu L, 1998, MOL CELL BIOL, V18, P4221 McMillan DR, 1998, J BIOL CHEM, V273, P7523, DOI 10.1074/jbc.273.13.7523 Mercier PA, 1999, J CELL SCI, V112, P2765 Michel D, 1997, BIOCHEM J, V328, P45 Morimoto RI, 1997, ESSAYS BIOCHEM, V32, P17 Morris ST, 2000, ANIM SCI, V70, P363 MYERS MW, 1992, LARYNGOSCOPE, V102, P981 Nakai A, 2000, EMBO J, V19, P1545, DOI 10.1093/emboj/19.7.1545 Nishizawa J, 1996, CIRCULATION, V94, P2185 Oh SH, 2000, ACTA OTO-LARYNGOL, V120, P146 Okinaga S, 1996, BLOOD, V87, P5074 PETERSON SR, 1995, J BIOL CHEM, V270, P1449 QUIRK WS, 1991, HEARING RES, V52, P217, DOI 10.1016/0378-5955(91)90201-J Radford NB, 1996, P NATL ACAD SCI USA, V93, P2339, DOI 10.1073/pnas.93.6.2339 Rajdev S, 2000, ANN NEUROL, V47, P782, DOI 10.1002/1531-8249(200006)47:6<782::AID-ANA11>3.0.CO;2-3 Rarey KE, 1996, ACTA OTO-LARYNGOL, V116, P833, DOI 10.3109/00016489609137935 Saleh A, 2000, NAT CELL BIOL, V2, P476 SARGE KD, 1993, MOL CELL BIOL, V13, P1392 Simon JR, 1999, MOL MICROBIOL, V31, P823, DOI 10.1046/j.1365-2958.1999.01220.x SIMON MM, 1995, J CLIN INVEST, V95, P926, DOI 10.1172/JCI117800 Singh IS, 2000, J BIOL CHEM, V275, P9841, DOI 10.1074/jbc.275.13.9841 Stacchiotti A, 1999, NEUROSCI LETT, V268, P73, DOI 10.1016/S0304-3940(99)00394-8 THOMPSON AM, 1992, OTOLARYNG HEAD NECK, V107, P769 Vilaboa NE, 2000, J BIOL CHEM, V275, P24970, DOI 10.1074/jbc.M909136199 Wagstaff MJD, 1998, EUR J NEUROSCI, V10, P3343, DOI 10.1046/j.1460-9568.1998.00339.x Whitlon DS, 2001, BRAIN RES PROTOC, V6, P159, DOI 10.1016/S1385-299X(00)00048-9 Xia WL, 1997, J BIOL CHEM, V272, P4094 Xia WL, 1999, CELL STRESS CHAPERON, V4, P8, DOI 10.1054/csac.1998.0113 Xiao XZ, 1999, EMBO J, V18, P5943, DOI 10.1093/emboj/18.21.5943 Xu QB, 1996, HYPERTENSION, V28, P53 Yasuda K, 1999, BIOCHEM BIOPH RES CO, V256, P75, DOI 10.1006/bbrc.1999.0283 Yoo HY, 1999, J BIOL CHEM, V274, P23887, DOI 10.1074/jbc.274.34.23887 Yoshida N, 1999, J NEUROSCI, V19, P10116 Zhang Y, 1998, J BIOL CHEM, V273, P32514, DOI 10.1074/jbc.273.49.32514 NR 59 TC 8 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2002 VL 173 IS 1-2 BP 109 EP 118 DI 10.1016/S0378-5955(02)00607-X PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 607HJ UT WOS:000178785800011 PM 12372640 ER PT J AU Stevens, HE Wickesberg, RE AF Stevens, HE Wickesberg, RE TI Representation of whispered word-final stop consonants in the auditory nerve SO HEARING RESEARCH LA English DT Article DE auditory nerve; consonant; chinchilla; speech ID VOICE-ONSET TIME; DISCHARGE RATE REPRESENTATION; SPEECH-PERCEPTION; COMPLEX TONES; CUES; FIBERS; RECOGNITION; PATTERNS; INVARIANCE; CHINCHILLA AB Recent physiological results from the auditory nerve suggest that specific response patterns for word-initial /d/ and /t/ are present across acoustic variations. In this study, single cell recordings from the auditory nerve of anesthetized chinchillas in response to the stop consonants /d/ and /t/ presented in a variety of acoustic contexts were analyzed. Consonants had variable word positions, vowel contexts, types of phonation, and speakers. The response patterns from individual auditory nerve fibers did not reliably differentiate the consonants /d/ and /t/. Global average peristimulus time histograms (GAPSTs) contained invariant patterns for all tokens of each word-final consonant, regardless of context. Ensemble responses to word-final consonants had similarities in their temporal patterns to those in GAPSTs for word-initial consonants. The similar representations in the ensemble auditory nerve response for consonants with different acoustic content suggest a possible substrate for perceptual normalization. Both invariant and variable elements of speech can be computed from the ensemble response of the auditory nerve. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Illinois, Dept Psychol, Champaign, IL 61820 USA. Univ Illinois, Neurosci Program, Champaign, IL 61820 USA. RP Wickesberg, RE (reprint author), Univ Illinois, Dept Psychol, 603 E Daniel St, Champaign, IL 61820 USA. CR BLUMSTEIN SE, 1986, INVARIANCE VARIABILI, P179 BLUMSTEIN SE, 1979, J ACOUST SOC AM, V66, P1001, DOI 10.1121/1.383319 BLUMSTEIN SE, 1980, J ACOUST SOC AM, V67, P648, DOI 10.1121/1.383890 Boothroyd A, 1996, J ACOUST SOC AM, V100, P1807, DOI 10.1121/1.416000 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698 CARNEY LH, 1986, J ACOUST SOC AM, V79, P1896, DOI 10.1121/1.393197 COLE RA, 1974, PERCEPT PSYCHOPHYS, V15, P101, DOI 10.3758/BF03205836 DANNENBRING GL, 1980, PERCEPT MOTOR SKILL, V51, P979 DELGUTTE B, 1980, J ACOUST SOC AM, V68, P843, DOI 10.1121/1.384824 HALLE M, 1957, J ACOUST SOC AM, V29, P107, DOI 10.1121/1.1908634 HILLENBRAND J, 1984, J ACOUST SOC AM, V76, P18, DOI 10.1121/1.391094 HOGAN JT, 1980, J ACOUST SOC AM, V67, P1764, DOI 10.1121/1.384304 Johnson K., 1997, TALKER VARIABILITY S, P1 KEWLEYPORT D, 1983, J ACOUST SOC AM, V73, P322, DOI 10.1121/1.388813 KIANG NYS, 1980, J ACOUST SOC AM, V68, P830, DOI 10.1121/1.384822 KUHL PK, 1975, SCIENCE, V190, P69, DOI 10.1126/science.1166301 LIBERMAN AM, 1957, J EXP PSYCHOL, V54, P358, DOI 10.1037/h0044417 LISKER L, 1975, J ACOUST SOC AM, V57, P1547, DOI 10.1121/1.380602 LISKER L, 1978, LANG SPEECH, V21, P375 LISKER L, 1957, LANGUAGE, V33, P42, DOI 10.2307/410949 MILLER JL, 1989, COGNITION, V33, P111, DOI 10.1016/0010-0277(89)90007-3 MILLER MI, 1983, J ACOUST SOC AM, V74, P502, DOI 10.1121/1.389816 Moller AR, 1999, ACTA OTO-LARYNGOL, V119, P424, DOI 10.1080/00016489950180946 MULLENNIX JW, 1990, PERCEPT PSYCHOPHYS, V47, P379, DOI 10.3758/BF03210878 MULLENNIX JW, 1989, J ACOUST SOC AM, V85, P365, DOI 10.1121/1.397688 NYGAARD LC, 1994, PSYCHOL SCI, V5, P42, DOI 10.1111/j.1467-9280.1994.tb00612.x NYGAARD LC, 1995, P 13 INT C PHON SCI, P194 NYGAARD LC, 1995, HDB PERCEPTION COGNI, V11, P63 O'Kane D., 1978, J PHONETICS, V6, P311 Parker Frank, 1974, J PHONETICS, V2, P211 PETERSON GE, 1960, J ACOUST SOC AM, V32, P693, DOI 10.1121/1.1908183 Pisoni D. B., 1997, TALKER VARIABILITY S, P9 RAPHAEL LJ, 1981, PHONETICA, V38, P126 RAPHAEL LJ, 1980, J ACOUST SOC AM S, V67, P51 REPP BH, 1989, J ACOUST SOC AM, V85, P379, DOI 10.1121/1.397689 REVOILE S, 1982, J ACOUST SOC AM, V72, P1145, DOI 10.1121/1.388324 SACHS MB, 1980, J ACOUST SOC AM, V68, P858, DOI 10.1121/1.384825 SCHWARTZ MF, 1970, J SPEECH HEAR RES, V13, P445 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 SINEX DG, 1993, NEURAL SYSTEMS ANAL, P307 SINEX DG, 1993, J ACOUST SOC AM, V94, P1351, DOI 10.1121/1.408163 SINEX DG, 1991, J ACOUST SOC AM, V90, P2441, DOI 10.1121/1.402048 SINEX DG, 1989, J ACOUST SOC AM, V85, P1995, DOI 10.1121/1.397852 SINEX DG, 1988, J ACOUST SOC AM, V83, P1817, DOI 10.1121/1.396516 Stevens HE, 1999, HEARING RES, V131, P47, DOI 10.1016/S0378-5955(99)00014-3 Stevens K. N., 1981, PERSPECTIVES STUDY S, P1 STEVENS KN, 1993, SPEECH COMMUN, V13, P367, DOI 10.1016/0167-6393(93)90035-J TARTTER VC, 1989, J ACOUST SOC AM, V86, P1678, DOI 10.1121/1.398598 TERKEURS M, 1992, J ACOUST SOC AM, V91, P2872, DOI 10.1121/1.402950 VANTASELL DJ, 1987, J ACOUST SOC AM, V82, P1152, DOI 10.1121/1.395251 VOIGT HF, 1982, HEARING RES, V8, P49, DOI 10.1016/0378-5955(82)90033-8 WARDRIPFRUIN C, 1982, J ACOUST SOC AM, V71, P187, DOI 10.1121/1.387346 Wickesberg RE, 1998, J ACOUST SOC AM, V103, P1990, DOI 10.1121/1.421348 WOOD CC, 1976, J ACOUST SOC AM, V60, P1381, DOI 10.1121/1.381231 YOUNG ED, 1979, J ACOUST SOC AM, V66, P1381, DOI 10.1121/1.383532 ZUE VW, 1979, J ACOUST SOC AM, V66, P1039, DOI 10.1121/1.383323 NR 57 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2002 VL 173 IS 1-2 BP 119 EP 133 DI 10.1016/S0378-5955(02)00608-1 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 607HJ UT WOS:000178785800012 PM 12372641 ER PT J AU McMahon, CM Patuzzi, RB AF McMahon, CM Patuzzi, RB TI The origin of the 900 Hz spectral peak in spontaneous and sound-evoked round-window electrical activity SO HEARING RESEARCH LA English DT Article DE tinnitus; round-window potential; membrane resonance; salicylate; lateral olivocochlear system of efferent neurones ID ANTEROVENTRAL COCHLEAR NUCLEUS; AUDITORY-NERVE RESPONSE; GUINEA-PIG; FIBER RESPONSES; POTASSIUM CHANNELS; MYELINATED AXONS; AVERAGE SPECTRUM; DE-EFFERENTATION; NEURAL ACTIVITY; FINE-STRUCTURE AB We have monitored the spectrum of the (spontaneous) neural noise at the round window (RW) and on the surface of the anteroventral cochlear nucleus (CN) and the dorsal CN (DCN) of anaesthetised guinea pigs. We have also obtained the average gross extracellular waveform evoked by 20 kHz tone-bursts (0.25 ms and 25 ms) at each of these recording sites, and calculated the spectrum of the average waveforms (SAW). With these tone-bursts, only a small population of neurones in the extreme basal turn of the cochlea near the RW electrode responds, presumably with only a single action potential for each 0.25 ms tone-burst. The RW waveforms recorded between 20 dB and 60 dB SPL were very similar, and are therefore presumably a simple estimate of the shape of the contribution of the firing of a single neurone to the gross RW signal (the unitary potential or UP). In normal animals, the SNN and the SAW were remarkably similar, with peaks at 900 Hz and at 2400 Hz, suggesting that they are not due to neural synchronisation (as suggested previously by others), but are due to an oscillatory waveform produced by each single fibre action potential. Abolition of all spike activity by RW tetrodotoxin left a waveform. with only a summating potential and a dendritic potential, and no 900 Hz peak in the SAW or SNN, indicating that the spectral peak is due to neural spiking only. Abolition of the CN contribution to the RW waveforms by CN application of lignocaine or sectioning of the cochlear nerve at the internal meatus (by focal aspiration of the DCN and underlying cochlear nerve) showed that the 900 Hz peak was not simply due to the addition of a delayed and inverted CN contribution: mathematical modelling shows that this would produce a broad spectral peak at about 1200 Hz. Moreover, the 900 Hz spectral peak remains after complete abolition of the CN contribution, although reduced in amplitude. This residual 900 Hz peak can be traced to an oscillation in the gross waveform due to the presence of two peaks (P-1* and N-2*) which follow the intact N-1 peak. The P-1* and N-2* peaks were present at the RW, but not at the cochlear nerve as it exits the internal meatus, suggesting that they were not due to double-spiking of some of the neurotics, but were probably due to a subthreshold electrical resonance in the peripheral dendrites. We have successfully modelled the production of the SNN and the compound action potential and SAW in response to 0.25 ms and 25 ms tone-bursts at 20 kHz by including only a damped 900 Hz resonance in the UP, without refractory effects, preferred intervals or synchronisation in the timing of neural spike generation. Such resonances in other neurotics are known to be due to the activation kinetics of the voltage-controlled sodium (Na+) channels of these neurones. The presence of such sub-threshold oscillations probably indicates that the peripheral dendrites are devoid of stabilising potassium (K+) channels. We also discuss the role of this membrane resonance in generating burst-firing of the cochlear nerve (as with salicylate) and the role of such burst-firing in generating tinnitus. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Western Australia, Auditory Lab, Dept Physiol, Nedlands, WA 6907, Australia. RP Patuzzi, RB (reprint author), Univ Western Australia, Auditory Lab, Dept Physiol, Nedlands, WA 6907, Australia. CR BAKER M, 1987, J PHYSIOL-LONDON, V383, P45 Cazals Y, 1998, J NEUROPHYSIOL, V80, P2113 Cazals Y, 2000, PROG NEUROBIOL, V62, P583, DOI 10.1016/S0301-0082(00)00027-7 Cazals Y, 1996, HEARING RES, V101, P81, DOI 10.1016/S0378-5955(96)00135-9 CLAPHAM DE, 1976, PFLUG ARCH EUR J PHY, V366, P273, DOI 10.1007/BF00585890 DOLAN DF, 1990, J ACOUST SOC AM, V87, P2621, DOI 10.1121/1.399054 DOLAN DF, 1989, J ACOUST SOC AM, V86, P2167, DOI 10.1121/1.398477 DOUCET JR, 1995, AUDIT NEUROSCI, V1, P151 EGGERMONT JJ, 1990, HEARING RES, V48, P111, DOI 10.1016/0378-5955(90)90202-Z Eggermont JJ, 1995, MECH TINNITUS, P21 ENG DL, 1988, J NEUROPHYSIOL, V60, P2168 Evans E F, 1982, Br J Audiol, V16, P101, DOI 10.3109/03005368209081454 Evans E F, 1981, Ciba Found Symp, V85, P108 GLEICH O, 1993, HEARING RES, V71, P69, DOI 10.1016/0378-5955(93)90022-S GOLDSTEIN MH, 1958, J ACOUST SOC AM, V30, P107, DOI 10.1121/1.1909497 HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083 HARRISON RV, 1984, HEARING RES, V14, P79, DOI 10.1016/0378-5955(84)90070-4 HODGKIN AL, 1952, J PHYSIOL-LONDON, V117, P500 HODGKIN AL, 1946, PROC R SOC SER B-BIO, V133, P444, DOI 10.1098/rspb.1946.0024 Jagger DJ, 2000, J NEUROSCI METH, V104, P77, DOI 10.1016/S0165-0270(00)00322-8 Javel E, 2000, HEARING RES, V140, P45, DOI 10.1016/S0378-5955(99)00186-0 JOHNSTONE BM, 1989, J PHYSIOL-LONDON, V408, P77 JORIS PX, 1994, J NEUROPHYSIOL, V71, P1022 Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6 Kiang NYS, 1965, RES MONOGRAPH, V35 KIANG NYS, 1976, ANN OTO RHINOL LARYN, V85, P752 KOCSIS JD, 1987, NEUROSCI LETT, V75, P193, DOI 10.1016/0304-3940(87)90296-5 KOCSIS JD, 1986, BRAIN RES, V383, P357, DOI 10.1016/0006-8993(86)90040-5 Lenarz T., 1995, MECH TINNITUS, P101 Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 LIBERMAN MC, 1990, HEARING RES, V49, P209, DOI 10.1016/0378-5955(90)90105-X Lin X, 2001, HEARING RES, V152, P90, DOI 10.1016/S0378-5955(00)00239-2 LUTKENHONER B, 1986, HEARING RES, V24, P289, DOI 10.1016/0378-5955(86)90028-6 MANLEY GA, 1976, J PHYSIOL-LONDON, V258, P323 Martin W.H., 1995, MECH TINNITUS, P163 MARTIN WH, 1993, LARYNGOSCOPE, V103, P600 MCCABE PA, 1965, ANN OTO RHINOL LARYN, V74, P312 MCFADDEN D, 1984, HEARING RES, V16, P251, DOI 10.1016/0378-5955(84)90114-X OZDAMAR O, 1978, BRAIN RES, V155, P169, DOI 10.1016/0006-8993(78)90320-7 PATUZZI RP, 1989, HEARING RES, V39, P198 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 RUSSELL IJ, 1983, J PHYSIOL-LONDON, V338, P179 Ryugo DK, 1998, J COMP NEUROL, V397, P532, DOI 10.1002/(SICI)1096-9861(19980810)397:4<532::AID-CNE6>3.0.CO;2-2 SCHREINER CE, 1987, P 3 INT TINN SEM HAR, P100 Schwarz DWF, 1997, HEARING RES, V114, P127, DOI 10.1016/S0378-5955(97)00162-7 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 Shepherd RK, 1999, HEARING RES, V130, P171, DOI 10.1016/S0378-5955(99)00011-8 SHOFNER WP, 1987, HEARING RES, V29, P45, DOI 10.1016/0378-5955(87)90204-8 SIEGEL JH, 1986, HEARING RES, V22, P245, DOI 10.1016/0378-5955(86)90101-2 STYPULKOWSKI PH, 1990, HEARING RES, V46, P113, DOI 10.1016/0378-5955(90)90144-E WESTERMAN LA, 1984, HEARING RES, V15, P249, DOI 10.1016/0378-5955(84)90032-7 Zheng XY, 1999, J COMP NEUROL, V406, P72 Zheng XY, 1996, HEARING RES, V95, P161, DOI 10.1016/0378-5955(96)00047-0 NR 54 TC 29 Z9 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2002 VL 173 IS 1-2 BP 134 EP 152 DI 10.1016/S0378-5955(02)00281-2 PG 19 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 607HJ UT WOS:000178785800013 PM 12372642 ER PT J AU Tabuchi, K Tsuji, S Fujihira, K Oikawa, K Hara, A Kusakari, J AF Tabuchi, K Tsuji, S Fujihira, K Oikawa, K Hara, A Kusakari, J TI Outer hair cells functionally and structurally deteriorate during reperfusion SO HEARING RESEARCH LA English DT Article DE outer hair cell; cochlear potential; ischemia; reperfusion; hydroxyl radical ID INDUCED COCHLEAR DAMAGE; TRANSIENT LOCAL ANOXIA; ISCHEMIA; INJURY; ORGAN; CORTI AB Transient ischemia of the cochlea was induced in 65 albino guinea pigs by pressing the labyrinthine artery, and the effects of cochlear reperfusion on cochlear potentials (endocochlear potential, compound action potential and cochlear microphonics (CM)) and structural changes in hair cells were examined. Although 15 min ischemia did not elevate the post-ischemic CM pseudo-threshold as compared with the pre-ischemic value, ischemia of 30 min or longer significantly elevated the CM pseudo-threshold. CM amplitude tended to progressively decrease during the reperfusion period in the animals subjected to 45 or 60 min ischemia. After transient ischemia, outer hair cells (OHCs) were swollen and exhibited alterations of the nucleus. Severer structural deterioration of OHCs was induced by 4 h reperfusion than ischemia itself when the ischemic period was 45 or 60 min. Perilymphatic perfusion of dimethylthiourea, a hydroxyl radical scavenger, partially ameliorated the elevation of the CM pseudo-thresholds and the structural changes of OHCs. These results indicate that cochlear reperfusion induces functional and structural deterioration of OHC probably by hydroxyl radical generation. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Tsukuba, Dept Otolaryngol, Inst Clin Med, Tsukuba, Ibaraki 3058575, Japan. RP Hara, A (reprint author), Univ Tsukuba, Dept Otolaryngol, Inst Clin Med, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, Japan. CR BILLETT TE, 1989, HEARING RES, V41, P189, DOI 10.1016/0378-5955(89)90010-5 FREEMAN BA, 1982, LAB INVEST, V47, P412 Hara A, 2000, HEARING RES, V143, P110, DOI 10.1016/S0378-5955(00)00029-0 KIMURA R., 1958, ANN OTOL RHINOL AND LARYNGOL, V67, P5 KONISHI T, 1961, J ACOUST SOC AM, V33, P349, DOI 10.1121/1.1908659 Kusakari J, 1981, Auris Nasus Larynx, V8, P55 Lopez-Gonzalez MA, 1999, J PINEAL RES, V27, P73, DOI 10.1111/j.1600-079X.1999.tb00599.x PERLMAN H B, 1959, Laryngoscope, V69, P591 SEIDMAN MD, 1991, OTOLARYNG HEAD NECK, V105, P511 SEIDMAN MD, 1991, OTOLARYNG HEAD NECK, V105, P457 Tabuchi K, 1999, ACTA OTO-LARYNGOL, V119, P179 Tabuchi K, 1998, HEARING RES, V126, P28, DOI 10.1016/S0378-5955(98)00142-7 Tabuchi K, 2000, HEARING RES, V144, P1, DOI 10.1016/S0378-5955(00)00038-1 NR 13 TC 17 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2002 VL 173 IS 1-2 BP 153 EP 163 DI 10.1016/S0378-5955(02)00349-0 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 607HJ UT WOS:000178785800014 PM 12372643 ER PT J AU Rabinowitz, PM Wise, JP Mobo, BH Antonucci, PG Powell, C Slade, M AF Rabinowitz, PM Wise, JP Mobo, BH Antonucci, PG Powell, C Slade, M TI Antioxidant status and hearing function in noise-exposed workers SO HEARING RESEARCH LA English DT Article DE hearing loss; noise-induced; glutathione S-transferase; polymorphism; vitamin C; vitamin E; antioxidant ID GLUTATHIONE-S-TRANSFERASE; PRODUCT OTOACOUSTIC EMISSIONS; IMMUNOHISTOCHEMICAL LOCALIZATION; RAT; POLYMORPHISMS; CISPLATIN; COCHLEA; GSTT1 AB The cellular antioxidant system appears to protect cochlear hair cells from oxidative stress due to noise and aging. The role of individual metabolic variables remains poorly understood, however. We examined the role of a number of metabolic factors on human cochlear function in noise-exposed individuals. In 58 factory workers we measured audiometry and distortion product otoacoustic emissions prior to a workshift. Simultaneously we measured levels of vitamin E, vitamin C, and polymorphism status for two metabolic genes related to glutathione S-transferase function (GSTM1 and GSTT1). Age and total noise exposure were predictive of hearing status. Vitamin E levels were negatively correlated with hearing function, and this effect was partly explained by an increase in vitamin E levels with age. No effect was found for vitamin C. Individuals possessing the GSTM1 gene had significantly better high frequency otoacoustic emissions compared to GSTM1 null individuals. The protective effect of GSTM1 was present even after adjusting for age, race, sex, and years of noise exposure. GSTT1 did not exhibit a similarly protective effect. While the cross-sectional nature of the study precludes drawing conclusions about causation, these data suggest that GSTM1, an antioxidant enzyme which is found in the mammalian cochlea, may play a protective role in humans against hair cell damage due to noise or aging. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Yale Univ, Sch Med, Yale Occupat & Environm Med Program, New Haven, CT 06510 USA. Yale Univ, Dept Epidemiol & Publ Hlth, Lab Environm & Genet Toxicol, Div Environm Hlth Sci,Sch Med, New Haven, CT 06520 USA. Yale Univ, Yale Canc Ctr, Sch Med, New Haven, CT 06520 USA. Yale Univ, Dept Otolaryngol, Sch Med, New Haven, CT 06520 USA. Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA. RP Rabinowitz, PM (reprint author), Yale Univ, Sch Med, Yale Occupat & Environm Med Program, 135 Coll St,3rd Floor, New Haven, CT 06510 USA. CR Arnold DJ, 1999, ARCH OTOLARYNGOL, V125, P215 Attias J, 1998, BRIT J AUDIOL, V32, P39, DOI 10.3109/03005364000000049 BOARD PG, 1981, AM J HUM GENET, V33, P36 BRANIS M, 1988, HEARING RES, V33, P137, DOI 10.1016/0378-5955(88)90026-3 ELBARBARY A, 1993, HEARING RES, V71, P80 Garcia-Closas M, 1999, J NATL CANCER I, V91, P1960, DOI 10.1093/jnci/91.22.1960 Gates GA, 2000, HEARING RES, V141, P220, DOI 10.1016/S0378-5955(99)00223-3 Geisler SA, 2001, AM J EPIDEMIOL, V154, P95, DOI 10.1093/aje/154.2.95 Henderson D, 1999, ANN NY ACAD SCI, V884, P368, DOI 10.1111/j.1749-6632.1999.tb08655.x Hood LJ, 1999, LARYNGOSCOPE, V109, P1745, DOI 10.1097/00005537-199911000-00004 Husain K, 2001, HEARING RES, V151, P71, DOI 10.1016/S0300-2977(00)00081-4 Ishii EK, 1998, J OCCUP ENVIRON MED, V40, P661, DOI 10.1097/00043764-199808000-00001 JOHNSON JA, 1993, J NEUROSCI, V13, P2013 Lautermann J, 1997, HEARING RES, V114, P75, DOI 10.1016/S0378-5955(97)00154-8 Mann CLA, 2000, NEUROLOGY, V54, P552 McBride DI, 2001, OCCUP ENVIRON MED, V58, P46, DOI 10.1136/oem.58.1.46 Mecocci P, 2000, FREE RADICAL BIO MED, V28, P1243, DOI 10.1016/S0891-5849(00)00246-X NIJHOFF WA, 1995, CARCINOGENESIS, V16, P2125, DOI 10.1093/carcin/16.9.2125 Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5 PEMBLE S, 1994, BIOCHEM J, V300, P271 Peters U, 2000, ANTI-CANCER DRUG, V11, P639, DOI 10.1097/00001813-200009000-00007 Prasher D, 1999, Int J Occup Med Environ Health, V12, P183 Ress BD, 1999, OTOLARYNG HEAD NECK, V121, P693, DOI 10.1053/hn.1999.v121.a101567 Seidman MD, 2000, LARYNGOSCOPE, V110, P727, DOI 10.1097/00005537-200005000-00003 Strange RC, 1999, IARC SCI PUBL, V148, P231 SUNDBERG AGM, 1993, PHARMACOL TOXICOL, V72, P321 Tan EK, 2000, NEUROLOGY, V55, P533 TAOLI E, 2001, BIOCHEM BIOPH RES CO, V280, P1389 Touliatos JS, 2000, EUR ARCH OTO-RHINO-L, V257, P6, DOI 10.1007/PL00007509 Whitlon DS, 1999, HEARING RES, V137, P43, DOI 10.1016/S0378-5955(99)00136-7 NR 30 TC 47 Z9 51 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2002 VL 173 IS 1-2 BP 164 EP 171 DI 10.1016/S0378-5955(02)00350-7 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 607HJ UT WOS:000178785800015 PM 12372644 ER PT J AU Seki, S Eggermont, JJ AF Seki, S Eggermont, JJ TI Changes in cat primary auditory cortex after minor-to-moderate pure-tone induced hearing loss SO HEARING RESEARCH LA English DT Article DE single unit; cat; primary auditory cortex; pure-tone trauma; topographic map; functional reorganization ID NOISE EXPOSURE; EVOKED-RESPONSES; GUINEA-PIGS; PLASTICITY; MAP; ENHANCEMENT; INHIBITION; DAMAGE; RATS AB In this paper we present findings in the primary auditory cortex of cats exposed for 2 h to a 115 dB SPL, 6 kHz tone at 36 days, 56 days or 118 days after birth. We evaluate the effects of age at exposure, amount of hearing loss, and time after induction of trauma on the functional reorganization of the cortical tonotopic map. We found a fairly sharp demarcation in the amount of hearing loss (20-25 dB) that caused cortical reorganization. For localized hearing losses, unmasking of excitatory contributions of neighboring frequency regions was found. For cats showing reorganization of the tonotopic map, the frequency-tuning curve bandwidth at 20 dB above threshold at CF (BW20dB) increased with increasing threshold at CF. Threshold at CF, and BW20dB increased with time after exposure. Minimum spike latency was initially increased, but subsequently decreased with time after exposure at a rate that was two times faster in cats with reorganized cortex than in cats with normal tonotopic maps, to reach the same asymptotic value. Thresholds at CF were correlated with the peripheral hearing loss at near CF frequencies as estimated from ABR measurements. The correlation between BW20dB and CF threshold suggests that part of the reorganization could be due to 'residual' sensitivity of the high frequency neurons to not-affected lower or higher frequencies. However, for CFs above 6 kHz, the BW20dB for cats with reorganization of the tonotopic map was significantly lower (on average 0.3 octave, P<0.05) than for cats with normal tonotopic maps. This is not what one would expect in cases of pseudo-plasticity characterized by concurrent shifts in BW20dB and CF as a result of residual sensitivity to lower frequencies. (C) 2002 Published by Elsevier Science B.V. C1 Univ Calgary, Dept Physiol & Biophys, Calgary, AB T2N 1N4, Canada. Univ Calgary, Dept Psychol, Calgary, AB T2N 1N4, Canada. RP Eggermont, JJ (reprint author), Univ Calgary, Dept Physiol & Biophys, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. CR CALFORD MB, 1993, NEUROSCIENCE, V55, P953, DOI 10.1016/0306-4522(93)90310-C Eggermont JJ, 1990, CORRELATIVE BRAIN TH Eggermont JJ, 2000, HEARING RES, V142, P89, DOI 10.1016/S0378-5955(00)00024-1 EGGERMONT JJ, 1996, AUDIT NEUROSCI, V2, P76 Eggermont JJ, 1996, AUDIT NEUROSCI, V2, P309 Gerken GM, 1996, HEARING RES, V97, P75 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 Kaltenbach JA, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P317 Mendelson JR, 1997, J COMP PHYSIOL A, V181, P615, DOI 10.1007/s003590050145 Ngan EM, 2001, HEARING RES, V156, P44, DOI 10.1016/S0378-5955(01)00264-7 Rajan R, 1998, NAT NEUROSCI, V1, P138, DOI 10.1038/388 RAJAN R, 2000, CEREB CORTEX, V11, P171 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 RAUSCHECKER JP, 1991, PHYSIOL REV, V71, P587 Rybalko N, 2001, HEARING RES, V155, P32, DOI 10.1016/S0378-5955(01)00245-3 Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 Snyder RL, 2002, J NEUROPHYSIOL, V87, P434 Syka J, 2000, HEARING RES, V139, P59, DOI 10.1016/S0378-5955(99)00175-6 SYKA J, 1994, HEARING RES, V78, P158, DOI 10.1016/0378-5955(94)90021-3 WALLACE MN, 1991, EXP BRAIN RES, V86, P527 Wang J, 1996, J NEUROPHYSIOL, V75, P171 WILLIAMSON BP, 1993, NLGI SPOKESMAN, V57, P329 NR 22 TC 41 Z9 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2002 VL 173 IS 1-2 BP 172 EP 186 DI 10.1016/S0378-5955(02)00518-X PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 607HJ UT WOS:000178785800016 PM 12372645 ER PT J AU Ishimoto, S Kawamoto, K Kanzaki, S Raphael, Y AF Ishimoto, S Kawamoto, K Kanzaki, S Raphael, Y TI Gene transfer into supporting cells of the organ of Corti SO HEARING RESEARCH LA English DT Article DE gene transfer; supporting cell; cochlea; guinea pig; adenovirus ID GUINEA-PIG COCHLEA; SPIRAL GANGLION NEURONS; MAMMALIAN INNER-EAR; TRANSGENE EXPRESSION; HAIR-CELLS; IN-VIVO; ADENOASSOCIATED VIRUS; EFFERENT NEURONS; PROLIFERATION; REGENERATION AB To utilize the rapidly accumulating genetic information for developing new therapeutic technologies for inner ear disease, it is necessary to design technologies for expressing transgenes in the inner ear, especially in the organ of Corti. We examined the outcome of an adenovirus gene transfer into the organ of Corti via the scala media in guinea pigs. The transgene insert is the bacterial lacZ gene driven by a cytomegalovirus promoter. We demonstrate that the inoculation is detrimental to the hair cells that surround the site of inoculation, but the supporting cells in the organ of Corti survive and retain the ability to express the reporter transgene beta-gal. The ability to deliver transgenes that are expressed in the supporting cells is an important step in the development of clinically applicable treatments that involve hair cell regeneration. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. Univ Tokyo, Dept Otolaryngol, Tokyo 113, Japan. Kansai Med Univ, Dept Otolaryngol, Osaka, Japan. Keio Univ, Sch Med, Dept Otolaryngol, Tokyo 160, Japan. RP Raphael, Y (reprint author), Univ Michigan, Kresge Hearing Res Inst, MSRB 3,Rm 9303,1150 W Med Ctr Dr, Ann Arbor, MI 48109 USA. RI Kanzaki, Sho/B-3100-2014 OI Kanzaki, Sho/0000-0001-9056-0850 CR BALAK KJ, 1990, J NEUROSCI, V10, P2502 Chen P, 1999, DEVELOPMENT, V126, P1581 Chen XW, 2001, MOL THER, V3, P958, DOI 10.1006/mthe.2001.0334 Cotanche DA, 1999, AUDIOL NEURO-OTOL, V4, P271, DOI 10.1159/000013852 Couffinhal T, 1997, HUM GENE THER, V8, P929, DOI 10.1089/hum.1997.8.8-929 Dazert S, 1997, INT J DEV NEUROSCI, V15, P595, DOI 10.1016/S0736-5748(96)00114-1 Derby ML, 1999, HEARING RES, V134, P1, DOI 10.1016/S0378-5955(99)00045-3 FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284 Han JJ, 1999, HUM GENE THER, V10, P1867, DOI 10.1089/10430349950017545 Holt JR, 1999, J NEUROPHYSIOL, V81, P1881 Kawamoto K, 2001, MOL THER, V4, P575, DOI 10.1006/mthe.2001.0490 KOSKAS HJ, 1983, OTOLARYNG HEAD NECK, V91, P61 Lalwani AK, 1996, GENE THER, V3, P588 LAWRENCE M, 1983, ACTA OTO-LARYNGOL, V95, P480, DOI 10.3109/00016488309139432 Lopez I, 1997, INT J DEV NEUROSCI, V15, P447, DOI 10.1016/S0736-5748(96)00103-7 Lowenheim H, 1999, P NATL ACAD SCI USA, V96, P4084, DOI 10.1073/pnas.96.7.4084 Luebke AE, 2001, GENE THER, V8, P789, DOI 10.1038/sj.gt.3301445 Luebke AE, 2001, HUM GENE THER, V12, P773, DOI 10.1089/104303401750148702 MEITELES LZ, 1994, ANN OTO RHINOL LARYN, V103, P149 Muller M, 1996, HEARING RES, V94, P148, DOI 10.1016/0378-5955(95)00230-8 RAPHAEL Y, 1992, J NEUROCYTOL, V21, P663, DOI 10.1007/BF01191727 RAPHAEL Y, 1991, HEARING RES, V51, P173, DOI 10.1016/0378-5955(91)90034-7 Raphael Y, 1993, Rev Laryngol Otol Rhinol (Bord), V114, P171 Raphael Y, 1996, NEUROSCI LETT, V207, P137, DOI 10.1016/0304-3940(96)12499-X RAPHAEL Y, 1991, CELL MOTIL CYTOSKEL, V18, P215, DOI 10.1002/cm.970180307 ROBERTSON D, 1985, HEARING RES, V20, P63, DOI 10.1016/0378-5955(85)90059-0 ROBERTSON D, 1984, HEARING RES, V15, P113, DOI 10.1016/0378-5955(84)90042-X SHINOZAKI N, 1980, ACTA OTO-LARYNGOL, V90, P370, DOI 10.3109/00016488009131738 Staecker H, 2001, ACTA OTO-LARYNGOL, V121, P157 Stone JS, 1998, CURR OPIN NEUROL, V11, P17, DOI 10.1097/00019052-199802000-00004 STONE JS, 1994, J COMP NEUROL, V341, P50, DOI 10.1002/cne.903410106 Stover T, 1999, HEARING RES, V136, P124, DOI 10.1016/S0378-5955(99)00115-X Suzuki M, 2000, GENE THER, V7, P1046, DOI 10.1038/sj.gt.3301180 Thorne M, 1999, LARYNGOSCOPE, V109, P1661, DOI 10.1097/00005537-199910000-00021 WARCHOL ME, 1993, SCIENCE, V259, P1619, DOI 10.1126/science.8456285 Wareing M, 1999, HEARING RES, V128, P61, DOI 10.1016/S0378-5955(98)00196-8 Weiss MA, 1997, INT J DEV NEUROSCI, V15, P577, DOI 10.1016/S0736-5748(96)00112-8 Whitlon DS, 2001, BRAIN RES PROTOC, V6, P159, DOI 10.1016/S1385-299X(00)00048-9 Yagi M, 2000, JARO, V1, P315, DOI 10.1007/s101620010011 Yagi M, 1999, HUM GENE THER, V10, P813, DOI 10.1089/10430349950018562 Yamasoba T, 1999, HUM GENE THER, V10, P769, DOI 10.1089/10430349950018526 NR 41 TC 60 Z9 68 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2002 VL 173 IS 1-2 BP 187 EP 197 DI 10.1016/S0378-5955(02)00579-8 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 607HJ UT WOS:000178785800017 PM 12372646 ER PT J AU Laurell, G Teixeira, M Sterkers, O Bagger-Sjoback, D Eksborg, S Lidman, O Ferrary, E AF Laurell, G Teixeira, M Sterkers, O Bagger-Sjoback, D Eksborg, S Lidman, O Ferrary, E TI Local administration of antioxidants to the inner ear - Kinetics and distribution SO HEARING RESEARCH LA English DT Article DE pharmacokinetics; autoradiography; scavenger; scala tympani perilymph; lateral wall ID ROUND WINDOW MEMBRANE; OXYGEN SPECIES GENERATION; INDUCED HEARING-LOSS; CISPLATIN OTOTOXICITY; HAIR-CELLS; IN-VIVO; PROTECTION; NOISE; PERMEABILITY; PERILYMPH AB Round window (r.w.) administration of drugs involves the delivery of medication directly into the inner ear via the r.w. membrane, avoiding a systemic effect of the therapy. Earlier experimental studies suggest that a number of antioxidants and scavengers hold promise for ameliorating the tissue damaging capacity of reactive oxygen species in some acquired cochlear disorders. D-Methionine and thiourea are two small sulfur-containing molecules with an antioxidative and scavenging effect. The passage through the r.w. of radioactive D-methionine and thiourea administered by 1 h infusion to the r.w. was studied in a rat model. Levels of the tracers were measured in scala tympani perilymph (PLT) 17-254 min after r.w. administration. Both tracers pass the r.w. membrane readily. Peak levels were found in the earliest taken samples after the administration. The radioactivity in PLT of the basal turn reached a peak to about 1.5-1.9% of the irrigating medium radioactivity. Following the r.w. administration, the concentration of radioactive D-methionine and thiourea declined with a terminal half-life of 0.57 and 0.77 h, respectively. The distribution of the tracers at the cellular level was analyzed by autoradiography. The most intense expression was found in the lateral wall of the cochlea. It can be postulated that local delivery to the cochlea Of D-methionine and thiourea via the r.w. gives high local concentrations of the substances in PLT in the basal turn. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Karolinska Hosp, Dept Otolaryngol, S-17176 Stockholm, Sweden. Univ Paris 07, INSERM, U426, F-75018 Paris, France. Univ Paris 07, Fac Xavier Bichat, F-75018 Paris, France. Karolinska Pharm, S-17176 Stockholm, Sweden. Karolinska Hosp, Ctr Mol Med, S-17176 Stockholm, Sweden. RP Laurell, G (reprint author), Karolinska Hosp, Dept Otolaryngol, S-17176 Stockholm, Sweden. CR BAGGERSJOBACK D, 1992, ORL J OTO-RHINO-LARY, V54, P5 Banaclocha MM, 1999, BRAIN RES, V842, P249 Brizel DM, 2000, J CLIN ONCOL, V18, P3339 Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 Clerici WJ, 1996, HEARING RES, V101, P14, DOI 10.1016/S0378-5955(96)00126-8 Duan ML, 2000, P NATL ACAD SCI USA, V97, P7597, DOI 10.1073/pnas.97.13.7597 DUNNE A, 1985, COMPUT METH PROG BIO, V20, P269, DOI 10.1016/0169-2607(85)90085-9 Ekborn A, 2002, HEARING RES, V165, P53, DOI 10.1016/S0378-5955(02)00277-0 Engel F, 1998, INFECT IMMUN, V66, P343 Gabaizadeh R, 1997, ACTA OTO-LARYNGOL, V117, P232, DOI 10.3109/00016489709117778 Goycoolea MV, 1997, MICROSC RES TECHNIQ, V36, P201, DOI 10.1002/(SICI)1097-0029(19970201)36:3<201::AID-JEMT8>3.0.CO;2-R HALLIWELL B, 1992, J NEUROCHEM, V59, P1609, DOI 10.1111/j.1471-4159.1992.tb10990.x HARA A, 1989, HEARING RES, V42, P265 Harner SG, 1998, LARYNGOSCOPE, V108, P1446, DOI 10.1097/00005537-199810000-00005 Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3 Husmann KR, 1998, HEARING RES, V125, P109, DOI 10.1016/S0378-5955(98)00137-3 Jacono AA, 1998, HEARING RES, V117, P31, DOI 10.1016/S0378-5955(97)00214-1 KAWAUCHI H, 1988, ACTA OTOLARYNGOL S S, V457, P100 Li GM, 2001, NEUROTOXICOLOGY, V22, P163, DOI 10.1016/S0161-813X(00)00010-3 LUNDMAN L, 1992, ACTA OTO-LARYNGOL, V112, P524, DOI 10.3109/00016489209137435 MILLER JM, 1994, AM J OTOL, V15, P299 Parnes LS, 1999, LARYNGOSCOPE, V109, P1, DOI 10.1097/00005537-199907001-00001 RAVI R, 1995, PHARMACOL TOXICOL, V76, P386 RILEY CM, 1982, POLYHEDRON, V1, P201, DOI 10.1016/S0277-5387(00)80987-0 Salt AN, 2001, HEARING RES, V154, P88, DOI 10.1016/S0378-5955(01)00223-4 SHA SH, 2000, HEARING RES, V142, P24 Sprong RC, 1997, J LAB CLIN MED, V129, P470, DOI 10.1016/S0022-2143(97)90081-0 STERKERS O, 1987, AM J PHYSIOL, V253, pF50 STERKERS O, 1982, AM J PHYSIOL, V243, pF173 WALLACE DC, 1992, SCIENCE, V256, P628, DOI 10.1126/science.1533953 WOOLLINS JD, 1983, POLYHEDRON, V2, P175, DOI 10.1016/S0277-5387(00)83954-6 Yamasoba T, 1999, BRAIN RES, V815, P317, DOI 10.1016/S0006-8993(98)01100-7 Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6 NR 34 TC 24 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2002 VL 173 IS 1-2 BP 198 EP 209 DI 10.1016/S0378-5955(02)00613-5 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 607HJ UT WOS:000178785800018 PM 12372647 ER PT J AU Hu, BH Henderson, D Nicotera, TM AF Hu, BH Henderson, D Nicotera, TM TI F-actin cleavage in apoptotic outer hair cells in chinchilla cochleas exposed to intense noise SO HEARING RESEARCH LA English DT Article DE apoptosis; filamentous actin; noise; hair cell; caspase ID INDUCED HEARING-LOSS; HL-60 CELLS; CYTOSKELETAL; DEATH; POLYMERIZATION; DEGENERATION; FILAMENTS; CASPASE-3 AB Apoptosis is an active cell death pathway involved in a variety of pathological conditions, including noise-induced outer hair cell (OHC) death. During this process, the cytoskeletal proteins have been found to be either damaged and/or enzymatically disassembled in several cell types, leading to formation of apoptotic manifestations. This study was designed to examine the cleavage of filamentous actin (F-actin), an important cytoskeletal protein, in the cochlear OHCs after noise exposure. Chinchillas were exposed to a 4 kHz narrow band noise at 106 dB SPL for 1 h and cochleas were either collected immediately or 3 h after the noise exposure. The organs of Corti were double-stained using FITC-labeled phalloidin for F-actin and propidium iodide for OHC nuclei. The effect of noise on F-actin and nuclei was examined by confocal microscopy. The result showed that the fluorescence associated with F-actin was decreased in the OHCs possessing condensed nuclei, but remained unchanged in the OHCs with swollen nuclei. The change in F-actin labeling occurred coordinately with the changes in nuclear morphology of apoptotic cells and was prevented by administration of caspase-3 inhibitor (Z-DEVD-FMK). The results of this study indicate that F-actin cleavage is an important early cellular event in apoptotic development in OHCs following exposure to traumatic noise. (C) 2001 Published by Elsevier Science B.V. C1 SUNY Buffalo, Dept Commun Sci & Disorders, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. CITY, Dept Mol & Cellular Biophys, Roswell Pk Canc Inst, Buffalo, NY USA. RP Henderson, D (reprint author), SUNY Buffalo, Dept Commun Sci & Disorders, Ctr Hearing & Deafness, 215 Parker Hall,3435 Main St, Buffalo, NY 14214 USA. CR ABRAMS GD, 1982, PATHOPHYSIOLOGY CLIN, P5 Asumendi A, 2000, CELL MOL BIOL, V46, P1 Atencia R, 2000, VITAM HORM, V58, P267, DOI 10.1016/S0083-6729(00)58028-5 Bursch W, 2000, J CELL SCI, V113, P1189 ENDRESEN PC, 1995, VIRCHOWS ARCH, V426, P257 FLOCK A, 1977, J CELL BIOL, V75, P339, DOI 10.1083/jcb.75.2.339 Hu BH, 1997, HEARING RES, V110, P209, DOI 10.1016/S0378-5955(97)00075-0 Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3 Hu BH, 2000, ACTA OTO-LARYNGOL, V120, P19, DOI 10.1080/000164800760370774 HU BH, 2001, TEMPORAL SPATIAL PRO Levee MG, 1996, AM J PHYSIOL-CELL PH, V271, pC1981 Lowenheim H, 1999, HEARING RES, V128, P16, DOI 10.1016/S0378-5955(98)00181-6 MAJNO G, 1995, AM J PATHOL, V146, P3 Maruyama W, 2000, HISTOCHEM J, V32, P495, DOI 10.1023/A:1004104619154 Mashima T, 1995, BIOCHEM BIOPH RES CO, V217, P1185, DOI 10.1006/bbrc.1995.2894 Mashima T, 1999, ONCOGENE, V18, P2423, DOI 10.1038/sj.onc.1202558 Mashima T, 1997, ONCOGENE, V14, P1007, DOI 10.1038/sj.onc.1200919 NICOTERA T, 1999, COCHLEAR CELL DEATH Pirvola U, 2000, J NEUROSCI, V20, P43 Porter AG, 1999, CELL DEATH DIFFER, V6, P99, DOI 10.1038/sj.cdd.4400476 Rao JY, 1999, J CELL BIOCHEM, V75, P686, DOI 10.1002/(SICI)1097-4644(19991215)75:4<686::AID-JCB14>3.0.CO;2-F Raphael Y, 1993, Rev Laryngol Otol Rhinol (Bord), V114, P171 RAPHAEL Y, 1991, CELL MOTIL CYTOSKEL, V18, P215, DOI 10.1002/cm.970180307 Robertson JD, 2000, J STRUCT BIOL, V129, P346, DOI 10.1006/jsbi.2000.4254 Sabourin LA, 2000, MOL CELL BIOL, V20, P684, DOI 10.1128/MCB.20.2.684-696.2000 SAUNDERS JC, 1985, J ACOUST SOC AM, V78, P299, DOI 10.1121/1.392491 Shoji F, 2000, HEARING RES, V142, P41, DOI 10.1016/S0378-5955(00)00007-1 Spongr V P, 1998, Scand Audiol Suppl, V48, P15 Suarez-Huerta N, 2000, J CELL PHYSIOL, V184, P239, DOI 10.1002/1097-4652(200008)184:2<239::AID-JCP12>3.0.CO;2-R Thornberry NA, 1998, SCIENCE, V281, P1312, DOI 10.1126/science.281.5381.1312 VanDeWater B, 1996, AM J PHYSIOL-RENAL, V270, pF593 vanEngeland M, 1997, EXP CELL RES, V235, P421, DOI 10.1006/excr.1997.3738 NR 32 TC 30 Z9 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2002 VL 172 IS 1-2 BP 1 EP 9 DI 10.1016/S0378-5955(01)00361-6 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 604GG UT WOS:000178608200001 PM 12361861 ER PT J AU Borg, E Viberg, A AF Borg, E Viberg, A TI Extra inner hair cells in the developing rabbit cochlea SO HEARING RESEARCH LA English DT Article DE inner ear; hair cell; rabbit; hearing; development ID DEVELOPING ORGAN; CORTI AB Development of the rabbit inner ear was analysed with respect to the presence of extra inner hair cells (XIHCs) in phalloidin-impregnated cochleas of newborn rabbits 0, 3 and 5 days of age. The number of XIHCs ranged from four to 77. The distribution was asymmetrical with a peak in the apical 3 min of the cochlea. There was no general disorganisation in the vicinity of the XIHCs, and the numbers were highly symmetrical between the two ears. The number was significantly larger (P < 0.001) in newborns than in adults. There was no correlation between number of XIHCs and cochlear length, making it unlikely that the presence of XIHCs is due to lack of space in the ordinary row of IHCs. The possible relation of the XIHCs to growth factors, molecular genetics and regeneration is discussed. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Orebro, Orebro Univ Hosp, Ahlsen Res Inst, S-70185 Orebro, Sweden. Karolinska Inst, Dept Physiol & Pharmacol, S-17177 Stockholm, Sweden. RP Borg, E (reprint author), Univ Orebro, Orebro Univ Hosp, Ahlsen Res Inst, S-70185 Orebro, Sweden. CR ANGGARD L, 1965, ACTA OTOLARYNGOL S, V203, P5 BORG E, 1995, HEARING RES, V83, P175, DOI 10.1016/0378-5955(94)00200-A Chen P, 1999, DEVELOPMENT, V126, P1581 KELLEY MW, 1993, DEVELOPMENT, V119, P1041 Lefebvre PP, 2000, ACTA OTO-LARYNGOL, V120, P142 Morita Hirofumi, 1996, Scanning Microscopy, V10, P165 Retzius G., 1884, GEHORORGAN WIRBELTHI RICHTER CP, 2000, MICROMECHANICS CONTR NR 8 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2002 VL 172 IS 1-2 BP 10 EP 13 DI 10.1016/S0378-5955(02)00284-8 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 604GG UT WOS:000178608200002 PM 12361862 ER PT J AU Cabanillas, LA Luebke, AE AF Cabanillas, LA Luebke, AE TI CGRP- and cholinergic-containing fibers project to guinea pig outer hair cells SO HEARING RESEARCH LA English DT Article DE cochlea; efferent system; immunohistochemistry; calcitonin gene-related peptide; acetylcholinesterase; guinea pig ID GENE-RELATED PEPTIDE; EFFERENT NEURONS; NERVE-FIBERS; RAT; COCHLEA AB MU33, an antibody to calcitonin gene-related peptide (CGRP), was used to investigate the magnitude of CGRP-containing nerve fiber endings, compared to acetylcholinesterase (AChE)-containing nerve fiber endings on outer hair cells (OHCs). Results showed that CGRP-containing nerve fiber immunoreactivity mimicked the AChE fiber OHC staining pattern across the cochlea suggesting that CGRP can function as both a medial efferent (contacting primarily OHCs) and as a lateral efferent (contacting primarily inner hair cell afferents) neurotransmitter. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Miami, Sch Med, Dept Otolaryngol, Miami, FL 33136 USA. Univ Miami, Sch Med, Program Neurosci, Miami, FL 33136 USA. RP Luebke, AE (reprint author), Univ Miami, Sch Med, Dept Otolaryngol, 1600 NW 10th Ave,RMSB 3160, Miami, FL 33136 USA. CR ADAMS JC, 1992, J HISTOCHEM CYTOCHEM, V40, P1457 Code RA, 1996, HEARING RES, V97, P127 KARNOVSKY MJ, 1964, J HISTOCHEM CYTOCHEM, V12, P219 LU SM, 1987, HEARING RES, V31, P137, DOI 10.1016/0378-5955(87)90119-5 Ohno K, 1993, Acta Otolaryngol Suppl, V501, P16 Rasmussen G.L, 1942, ANAT REC, V82, P441 REITER ER, 1995, J NEUROPHYSIOL, V73, P506 Rosenblatt MI, 1997, PEPTIDES, V18, P567, DOI 10.1016/S0196-9781(97)00055-7 Safieddine S, 1997, EUR J NEUROSCI, V9, P356, DOI 10.1111/j.1460-9568.1997.tb01405.x STRUTZ J, 1981, ANN OTO RHINOL LARYN, V90, P158 TAKEDA N, 1987, ACTA OTO-LARYNGOL, V103, P567 Tsuji J, 1997, J COMP NEUROL, V381, P188 VETTER DE, 1991, SYNAPSE, V7, P21, DOI 10.1002/syn.890070104 Wackym P A, 1991, Acta Otolaryngol Suppl, V481, P141 YLIKOSKI J, 1989, ACTA OTO-LARYNGOL, V107, P417, DOI 10.3109/00016488909127533 NR 15 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2002 VL 172 IS 1-2 BP 14 EP 17 DI 10.1016/S0378-5955(02)00305-2 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 604GG UT WOS:000178608200003 PM 12361863 ER PT J AU Dehmel, S Kopp-Scheinpflug, C Dorrscheidt, GJ Rubsamen, R AF Dehmel, S Kopp-Scheinpflug, C Dorrscheidt, GJ Rubsamen, R TI Electrophysiological characterization of the superior paraolivary nucleus in the Mongolian gerbil SO HEARING RESEARCH LA English DT Article DE superior paraolivary nucleus; Mongolian gerbil; superior olivary complex; frequency-intensity tuning; poststimulus-time histogram; single unit recording ID POSTEROVENTRAL COCHLEAR NUCLEUS; SINGLE AUDITORY UNITS; RAT MEDIAL NUCLEUS; GUINEA-PIG; OLIVARY COMPLEX; TRAPEZOID BODY; INFERIOR COLLICULUS; LATERAL LEMNISCUS; RESPONSE PROPERTIES; RETROGRADE TRANSPORT AB The superior paraolivary nucleus (SPN) of the superior olivary complex (SOC) though morphologically well described, has not been characterized physiologically. Here we report the basic response properties of SPN units acquired with extracellular recording techniques under monaural acoustic stimulation in the Mongolian gerbil. Poststimulus-time histograms corresponded to those described earlier for the cat's cochlear nucleus (onset, chopper, primary-like), and partly to those previously acquired in other SOC nuclei (tonic, off/rebound). Two-thirds of the units responded solely to contralateral stimulation (40% excitatory [E], 19% inhibitory [I], 6% mixed [EI]). Most of the remainder responded equally to stimulation from either ear (18% I.I, 9% E.E). Overall, the monaural contralateral input was more effective than the ipsilateral and bilateral input. Characteristic frequencies and response areas covered the entire hearing range of the gerbil and the units mostly showed broad frequency-tuning. In combination, these properties suggest that the SPN might be a constituent of an afferent pathway encoding stimulus features across broad frequency ranges. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Leipzig, Dept Zool, D-04103 Leipzig, Germany. Ruhr Univ Bochum, Dept Gen Zool & Neurobiol, D-44780 Bochum, Germany. RP Rubsamen, R (reprint author), Univ Leipzig, Dept Zool, Talstr 33, D-04103 Leipzig, Germany. CR ADAMS JC, 1990, HEARING RES, V49, P281, DOI 10.1016/0378-5955(90)90109-3 ADAMS JC, 1981, J HISTOCHEM CYTOCHEM, V29, P775 ASCHOFF A, 1988, EXP BRAIN RES, V71, P252 BAJO VM, 1993, J COMP NEUROL, V334, P241, DOI 10.1002/cne.903340207 Bajo VM, 1998, BRAIN RES BULL, V47, P595, DOI 10.1016/S0361-9230(98)00127-0 BANKS MI, 1992, J NEUROSCI, V12, P2819 BENSON C, 2000, ASS RES OT ABSTR, V23, P179 BENSON CG, 1990, J COMP NEUROL, V296, P415, DOI 10.1002/cne.902960307 BERREBI AS, 1997, ASS RES OTOL ABSTR, V20, P143 BRUECKNER S, 1994, ASS RES OT ABSTR, V19, P119 BRUECKNER S, 1996, ABSTR ASS RES OT, V19, P119 CAIRD D, 1983, EXP BRAIN RES, V52, P385 Caspary DM, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P227, DOI 10.1007/978-1-4419-8712-9_21 CASPARY DM, 1994, J NEUROPHYSIOL, V72, P2124 CLARK GM, 1969, EXP NEUROL, V23, P266, DOI 10.1016/0014-4886(69)90062-4 COLOMBO A, 1996, ASS RES OT ABSTR, V19, P121 Davis KA, 1996, J NEUROPHYSIOL, V75, P1411 DEHMEL S, 1999, ASS RES OT ABSTR, V22, P71 DORRSCHEIDT GH, 1981, BRAIN RES, V220, P397, DOI 10.1016/0006-8993(81)91232-4 EVANS EF, 1985, 11 DAN S TIM RES AUD, P74 EVANS EF, 1973, EXP BRAIN RES, V17, P402 EVANS EF, 1993, PROG BRAIN RES, V97, P117 FOELLER E, 2001, ASS RES OTOLARYNGOLO, V24, P50 FRIAUF E, 1988, EXP BRAIN RES, V73, P263 FRIAUF E, 1992, EUR J NEUROSCI, V4, P798, DOI 10.1111/j.1460-9568.1992.tb00190.x FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y FRISINA RD, 1990, HEARING RES, V44, P123, DOI 10.1016/0378-5955(90)90075-Z FUENTES V, 1999, ABSTR ASS RES OT, V22, P222 GODFREY DA, 1975, J COMP NEUROL, V162, P247, DOI 10.1002/cne.901620206 GOLDBERG JAY M., 1968, J NEUROPHYSIOL, V31, P639 GonzalezHernandez T, 1996, J COMP NEUROL, V372, P309, DOI 10.1002/(SICI)1096-9861(19960819)372:2<309::AID-CNE11>3.0.CO;2-E GUINAN JJ, 1972, INT J NEUROSCI, V4, P147 GUINAN JJ, 1972, INT J NEUROSCI, V4, P101, DOI 10.3109/00207457209147165 HALL JW, 1984, J ACOUST SOC AM, V76, P50, DOI 10.1121/1.391005 HELFERT RH, 1989, IN PRESS BRAIN RES, V509, P180 HELFERT RH, 1989, BRAIN RES, V501, P269, DOI 10.1016/0006-8993(89)90644-6 JORIS PX, 1992, J ACOUST SOC AM, V91, P215, DOI 10.1121/1.402757 Kelly JB, 1998, HEARING RES, V116, P43, DOI 10.1016/S0378-5955(97)00195-0 KOLSTON J, 1992, ANAT EMBRYOL, V186, P443 KOPP C, 1998, ASS RES OT ABSTR, V21, P90 KOPPSCHEINPFLUG C, 1999, BERICHTE BIOL INTERA KULESZA R, 2000, ASS RES OT ABSTR, V23, P37 KULESZA R, 1998, ABSTR ASS RES OT, V21, P92 Kulesza RJ, 2000, JARO, V1, P255, DOI 10.1007/s101620010054 KUWABARA N, 1991, J COMP NEUROL, V314, P707, DOI 10.1002/cne.903140406 KUWABARA N, 1994, ASS RES OT ABSTR, V17 Kuwabara N, 1999, BRAIN RES, V846, P59, DOI 10.1016/S0006-8993(99)01942-3 KUWABARA N, 1991, J COMP NEUROL, V314, P684, DOI 10.1002/cne.903140405 KUWABARA N, 1992, J COMP NEUROL, V324, P522, DOI 10.1002/cne.903240406 Kuwada S, 1999, J NEUROSCI, V19, P2273 MOORE JK, 1987, J COMP NEUROL, V260, P157, DOI 10.1002/cne.902600202 MOREST D. KENT, 1968, BRAIN RES, V9, P288, DOI 10.1016/0006-8993(68)90235-7 Nelken I, 1999, NATURE, V397, P154, DOI 10.1038/16456 NORDEEN KW, 1983, J COMP NEUROL, V214, P131, DOI 10.1002/cne.902140203 OLLO C, 1979, AM J ANAT, V155, P349, DOI 10.1002/aja.1001550306 Ostapoff EM, 1997, J COMP NEUROL, V381, P500, DOI 10.1002/(SICI)1096-9861(19970519)381:4<500::AID-CNE9>3.0.CO;2-6 OSTAPOFF EM, 1990, J CHEM NEUROANAT, V3, P285 OSTAPOFF EM, 1994, J COMP NEUROL, V346, P19, DOI 10.1002/cne.903460103 RHODE WS, 1995, ASS RES OT ABSTR, V18 RHODE WS, 1987, J NEUROPHYSIOL, V57, P414 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 RHODE WS, 1983, J COMP NEUROL, V213, P448, DOI 10.1002/cne.902130408 RHODE WS, 1994, J NEUROPHYSIOL, V71, P1797 ROBERTS RC, 1987, J COMP NEUROL, V258, P267, DOI 10.1002/cne.902580207 ROBERTSON D, 1985, HEARING RES, V20, P79, DOI 10.1016/0378-5955(85)90060-7 RYAN A, 1976, J ACOUST SOC AM, V59, P1222, DOI 10.1121/1.380961 SAINTMARIE RL, 1990, BRAIN RES, V524, P244, DOI 10.1016/0006-8993(90)90698-B SaintMarie RL, 1996, J COMP NEUROL, V373, P255, DOI 10.1002/(SICI)1096-9861(19960916)373:2<255::AID-CNE8>3.0.CO;2-2 Saldana E, 2000, ANAT EMBRYOL, V202, P265, DOI 10.1007/s004290000109 Saldana E., 1994, Society for Neuroscience Abstracts, V20, P975 SCHOFIELD BR, 1991, J COMP NEUROL, V312, P68, DOI 10.1002/cne.903120106 SCHOFIELD BR, 1991, J COMP NEUROL, V314, P645, DOI 10.1002/cne.903140403 SCHOFIELD BR, 1992, J COMP NEUROL, V317, P438, DOI 10.1002/cne.903170409 SCHOFIELD BR, 1995, J COMP NEUROL, V360, P135, DOI 10.1002/cne.903600110 SCHOONEVELDT GP, 1989, J ACOUST SOC AM, V85, P273, DOI 10.1121/1.397734 Siegel S., 1988, NONPARAMETRIC STAT B SMITH PH, 1989, J COMP NEUROL, V282, P595, DOI 10.1002/cne.902820410 Smith PH, 1998, J NEUROPHYSIOL, V79, P3127 SMITH PH, 1991, J COMP NEUROL, V304, P387, DOI 10.1002/cne.903040305 SOMMER I, 1993, EXP BRAIN RES, V95, P223 SPITZER MW, 1995, J NEUROPHYSIOL, V73, P1668 SUNDARAN S, 1998, ASS RES OT ABSTR, V21, P91 THOMPSON AM, 1991, J COMP NEUROL, V311, P495, DOI 10.1002/cne.903110405 THOMPSON AM, 1991, J COMP NEUROL, V303, P267, DOI 10.1002/cne.903030209 TOKUNAGA A, 1988, NEUROSCI RES, V6, P20, DOI 10.1016/0168-0102(88)90003-X Tsuchitani C, 1997, HEARING RES, V105, P211, DOI 10.1016/S0378-5955(96)00212-2 TSUCHITANI C, 1991, NEUROBIOLOGY HEARING, P163 VETTER DE, 1993, HEARING RES, V70, P173, DOI 10.1016/0378-5955(93)90156-U Warr WB, 1996, HEARING RES, V93, P83, DOI 10.1016/0378-5955(95)00198-0 WENTHOLD RJ, 1986, BRAIN RES, V380, P7, DOI 10.1016/0006-8993(86)91423-X WENTHOLD RJ, 1990, GLYCINE NEUROTRANSMI WHITE JS, 1983, J COMP NEUROL, V219, P203, DOI 10.1002/cne.902190206 WHITLEY JM, 1984, J COMP NEUROL, V229, P257, DOI 10.1002/cne.902290210 WINTER IM, 2000, ABSTR ASS RES OT, V23, P181 WINTER IM, 1989, J COMP NEUROL, V280, P143, DOI 10.1002/cne.902800110 NR 95 TC 24 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2002 VL 172 IS 1-2 BP 18 EP 36 DI 10.1016/S0378-5955(02)00353-2 PG 19 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 604GG UT WOS:000178608200004 PM 12361864 ER PT J AU Hoffman, LF Honrubia, V AF Hoffman, LF Honrubia, V TI Fiber diameter distributions in the chinchilla's ampullary nerves SO HEARING RESEARCH LA English DT Article DE vestibular; afferent; crista ampullares; labyrinth ID PERIPHERAL INNERVATION PATTERNS; VESTIBULAR NERVE; SQUIRREL-MONKEY; CRISTAE AMPULLARES; AUDITORY-NERVE; SEMICIRCULAR CANALS; RAT; IMMUNOREACTIVITY; NEURONS; MORPHOMETRY AB A morphometric study of the chinchilla's ampullary nerves was conducted to produce an unbiased accounting of the diameter distribution of their constituent fibers. Diameter analyses were determined from I gm plastic-embedded nerve sections taken at a plane immediately proximal to the sensory epithelium. We found these nerves to be composed of 2094 573 fibers, having diameters that ranged from 0.5 to 8 mum. The distributions of diameters were positively skewed, where approximately 75% of the fibers were found to have diameters less than 3.5 mum. An analysis of the spatial distribution of diameters within the nerve section revealed that the lateralmost areas of the nerve contained larger fractions of fibers within the smallest diameter quintiles, and the central area harbored greater proportions of the larger diameter quintiles. However, significant fractions of all quintiles were found in all areas. These data were integrated with available data of Fernandez et al. (1998) to produce diameter estimates of calyx, dimorphic, and bouton morphology subpopulations. In view of a general relationship between diameter, innervation locus, and an afferent's physiologic characteristics, these data provide the basis for developing a perspective for the in situ distribution of afferent response dynamics. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Calif Los Angeles, Sch Med, Div Head & Neck Surg, Los Angeles, CA 90095 USA. RP Hoffman, LF (reprint author), Univ Calif Los Angeles, Sch Med, Div Head & Neck Surg, POB 951624, Los Angeles, CA 90095 USA. CR ALIDINA A, 1990, AM J OTOLARYNG, V11, P174, DOI 10.1016/0196-0709(90)90034-S ALIDINA A, 1990, IN PRESS AM J OTOLAR BAIRD RA, 1988, J NEUROPHYSIOL, V60, P182 BERGSTRO.B, 1973, ACTA OTO-LARYNGOL, V76, P331, DOI 10.3109/00016487309121518 BERGSTRO.B, 1973, ACTA OTO-LARYNGOL, V76, P173, DOI 10.3109/00016487309121496 BOORD RL, 1958, ANAT REC, V130, P394 CAJAL SR, 1908, TRAB I CAJAL INVEST, V6, P161 CARNEY ME, 1990, ABSTR ASS RES OT, V13, P364 FERMIN CD, 1987, ACTA ANAT, V129, P188 FERNANDEZ C, 1990, J NEUROPHYSIOL, V63, P767 FERNANDEZ C, 1995, J NEUROPHYSIOL, V73, P1253 FERNANDEZ C, 1988, J NEUROPHYSIOL, V60, P167 GACEK RR, 1961, ANAT REC, V139, P455, DOI 10.1002/ar.1091390402 GLEICH O, 1993, HEARING RES, V71, P69, DOI 10.1016/0378-5955(93)90022-S Gleich O, 2001, HEARING RES, V151, P141, DOI 10.1016/S0378-5955(00)00221-5 GOLDBERG JM, 1992, ANN NY ACAD SCI, V656, P92, DOI 10.1111/j.1749-6632.1992.tb25202.x Goldberg J M, 1991, Curr Opin Neurobiol, V1, P229, DOI 10.1016/0959-4388(91)90083-J HOFFMAN L, 1995, ABSTR ASS RES OT, V18, P16 HONRUBIA V, 1984, LARYNGOSCOPE, V94, P464, DOI 10.1288/00005537-198404000-00004 HONRUBIA V, 1987, LARYNGOSCOPE, V97, P228 HONRUBIA V, 1989, J NEUROPHYSIOL, V61, P688 KIANG NYS, 1982, SCIENCE, V217, P175, DOI 10.1126/science.7089553 Koppl C, 2000, HEARING RES, V139, P123, DOI 10.1016/S0378-5955(99)00178-1 LANDOLT JP, 1973, BRAIN RES, V54, P31, DOI 10.1016/0006-8993(73)90031-0 LAU C, 1988, NEURAL INFORMATION P, P457 Lee W S, 1990, Laryngoscope, V100, P756 LIBERMAN MC, 1984, J COMP NEUROL, V223, P163, DOI 10.1002/cne.902230203 Lindeman H H, 1969, Ergeb Anat Entwicklungsgesch, V42, P1 Lorente de No R., 1926, TRAV LAB INVEST BIOL, V24, P53 Lysakowski A, 1999, HEARING RES, V133, P149, DOI 10.1016/S0378-5955(99)00065-9 Lysakowski A, 1997, J COMP NEUROL, V389, P419, DOI 10.1002/(SICI)1096-9861(19971222)389:3<419::AID-CNE5>3.0.CO;2-3 LYSAKOWSKI A, 1995, J NEUROPHYSIOL, V73, P1270 MARCO J, 1990, ADV OTO-RHINO-LARYNG, V45, P82 Marco RAW, 1996, HEARING RES, V97, P95 Naito E, 1997, AUDIOL NEURO-OTOL, V2, P213 RASMUSSEN GL, 1958, ANAT REC, V130, P361 SHARMA AK, 1980, J ANAT, V130, P417 Sokal R. R., 1981, BIOMETRY, V2nd SPOENDLI.H, 1971, ARCH KLIN EXP OHR, V200, P275, DOI 10.1007/BF00373310 Suryadevara AC, 2001, HEARING RES, V161, P45, DOI 10.1016/S0378-5955(01)00340-9 THOMAS PK, 1980, ACTA NEUROPATHOL, V52, P1 WACKYM PA, 1993, AM J OTOL, V14, P41 WACKYM PA, 1993, ACTA OTO-LARYNGOL, V113, P601, DOI 10.3109/00016489309135871 WATANUKI K, 1971, ANN OTO RHINOL LARYN, V80, P450 WERSALL J, 1956, Acta Otolaryngol Suppl, V126, P1 YAGI T, 1977, EXP BRAIN RES, V30, P587 Zar JH, 1984, BIOSTATISTICAL ANAL NR 47 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2002 VL 172 IS 1-2 BP 37 EP 52 DI 10.1016/S0378-5955(02)00390-8 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 604GG UT WOS:000178608200005 PM 12361865 ER PT J AU Fukazawa, T AF Fukazawa, T TI How can the cochlear amplifier be realized by the outer hair cells which have nothing to push against? SO HEARING RESEARCH LA English DT Article DE outer hair cell; active amplification; cochlear model; micromechanics ID TECTORIAL MEMBRANE; RESPONSE CHARACTERISTICS; CHINCHILLA COCHLEA; MODEL; MECHANICS; FEEDBACK; MICROMECHANICS; MOTILITY; SULCUS; ORGAN AB A theoretical consideration is given on how the constituent cells of the cochlear partition can amplify its motion and increase its momentum without resorting to external forces, and it leads to a micromechanical model that explains the role of the cells in the active amplification. The triangle composed of the outer hair cell, the phalanx of Deiters cell and the reticular lamina forms a mechanical unit that stores up and releases strain. When outer hair cells contract in a region along the cochlear partition, strain accumulates in the triangle causing deformation of the region that pushes down the basilar membrane, and hence it appears as a transverse pressure that drives the basilar membrane. The momentum of the region increases at the cost of the momentum of neighboring regions, and the total momentum of the cochlear partition is not altered by the internal forces generated by the outer ;hair cells. The model can produce a frequency-response curve that compares favorably with experimental data. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Kasukabe City Hosp, Dept Otolaryngol, Kasukabe, Saitama 3440067, Japan. RP Fukazawa, T (reprint author), Kasukabe City Hosp, Dept Otolaryngol, Kasukabe, Saitama 3440067, Japan. CR ALLEN JB, 1992, PHYS TODAY, V45, P40, DOI 10.1063/1.881349 ALLEN JB, 1980, J ACOUST SOC AM, V68, P1660, DOI 10.1121/1.385198 ALLEN JB, 1988, COCHLEAR MECH STRUCT, P453 ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 Bekesy G., 1960, EXPT HEARING BROWNELL WE, 1985, SCIENCE, V227, P195 DALLOS P, 1985, J NEUROSCI, V5, P1591 DEBOER E, 1983, J ACOUST SOC AM, V73, P574, DOI 10.1121/1.389003 DEBOER E, 1993, J ACOUST SOC AM, V93, P2845, DOI 10.1121/1.406851 DEBOER E, 1983, J ACOUST SOC AM, V73, P567, DOI 10.1121/1.389002 DEBOER E, 1993, BIOPHYSICS HAIR CELL, P3 Fukazawa T, 1997, HEARING RES, V113, P182, DOI 10.1016/S0378-5955(97)00138-X Fukazawa T, 1999, HEARING RES, V137, P59, DOI 10.1016/S0378-5955(99)00128-8 GEISLER CD, 1993, HEARING RES, V68, P253, DOI 10.1016/0378-5955(93)90129-O GEISLER CD, 1991, HEARING RES, V54, P105, DOI 10.1016/0378-5955(91)90140-5 GEISLER CD, 1995, HEARING RES, V86, P132, DOI 10.1016/0378-5955(95)00064-B GUMMER AW, 1996, P NATL ACAD SCI USA, V93, P8728 IWASA KH, 1992, J ACOUST SOC AM, V92, P3169, DOI 10.1121/1.404194 JOHNSTONE BM, 1986, HEARING RES, V22, P147, DOI 10.1016/0378-5955(86)90090-0 Khanna SM, 2000, HEARING RES, V149, P55, DOI 10.1016/S0378-5955(00)00162-3 Khanna SM, 1999, HEARING RES, V135, P89, DOI 10.1016/S0378-5955(99)00095-7 KOLSTON PJ, 1988, COCHLEAR MECH STRUCT, P453 LIM DJ, 1972, ARCHIV OTOLARYNGOL, V96, P199 MAMMANO F, 1993, J ACOUST SOC AM, V93, P3320, DOI 10.1121/1.405716 MOUNTAIN DC, 1993, BIOPHYSICS HAIR CELL, P361 NEELY ST, 1986, J ACOUST SOC AM, V79, P1472, DOI 10.1121/1.393674 NEELY ST, 1993, BIOPHYSICS HAIR CELL, P64 NEELY ST, 1993, J ACOUST SOC AM, V94, P137, DOI 10.1121/1.407091 NEELY ST, 1983, HEARING RES, V9, P123, DOI 10.1016/0378-5955(83)90022-9 Rhode WS, 1996, AUDIT NEUROSCI, V3, P101 RHODE WS, 1978, J ACOUST SOC AM, V64, P158, DOI 10.1121/1.381981 ROBLES L, 1986, J ACOUST SOC AM, V80, P1364, DOI 10.1121/1.394389 SANTOS-SACCHI J, 1992, J NEUROSCI, V12, P1906 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 Steele CR, 1993, BIOPHYSICS HAIR CELL, P207 Steele CR, 1999, AUDIOL NEURO-OTOL, V4, P197, DOI 10.1159/000013841 STRELIOFF D, 1985, HEARING RES, V18, P169, DOI 10.1016/0378-5955(85)90009-7 Ulfendahl M, 1996, J NEUROPHYSIOL, V76, P3850 Voldrich L, 1983, MECH HEARING, P163 ZWISLOCKI JJ, 1979, SCIENCE, V204, P639, DOI 10.1126/science.432671 NR 40 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2002 VL 172 IS 1-2 BP 53 EP 61 DI 10.1016/S0378-5955(02)00455-0 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 604GG UT WOS:000178608200006 PM 12361866 ER PT J AU Roberson, DW Alosi, JA Mercola, M Cotanche, DA AF Roberson, DW Alosi, JA Mercola, M Cotanche, DA TI REST mRNA expression in normal and regenerating avian auditory epithelium SO HEARING RESEARCH LA English DT Article DE chicken; hair cell; regeneration; DNA-binding protein; transcription factor ID RESTRICTIVE SILENCER FACTOR; HAIR CELL REGENERATION; GENE-EXPRESSION; TARGET GENES; IN-VIVO; TRANSCRIPTION; RECOVERY; COCHLEA; GENTAMICIN; DAMAGE AB Hair cells (HCs) and supporting cells (SCs) in the auditory epithelium initially arise from a sheet of undifferentiated cells. Although much has been learned about the initial steps leading to the fate determination of HCs and SCs, respectively, little is known about what molecular events 'finalize' cell fate determination. We investigated the role of repressor element-1 (RE-1) silencing transcription factor (REST), whose inactivation is known to be a requirement for a cell to assume a neuronal identity. Here we show by in situ hybridization (ISH) that SCs express REST messenger RNA (mRNA) but sensory HCs lack detectable expression. Using a more sensitive reverse transcription-polymerase chain reaction assay, however, we detected the presence of a neuron-specific splice variant in the epithelium, suggesting that HCs express REST mRNA at levels too low to be detectable by ISH. In regenerating auditory epithelium, we found that REST mRNA was expressed and upregulated in all remaining cells in the damaged region of the epithelium, consistent with its expression pattern during development prior to neurogenesis. Surprisingly, REST mRNA was also upregulated in SCs in the apical, undamaged region of the epithelium, and readily detectable by ISH in the HCs in this region. This finding suggests that the grossly undamaged region of the epithelium is in fact biochemically altered towards a 'less developed' state. Our results indicate that REST inactivation is an important step in finalizing HC fate in the chick inner ear. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Childrens Hosp Boston, Dept Otolaryngol, Medford, MA 02155 USA. Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02114 USA. Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA. RP Roberson, DW (reprint author), Childrens Hosp Boston, Dept Otolaryngol, 300 Longwood Ave, Medford, MA 02155 USA. CR BHAVE SA, 1995, J NEUROSCI, V15, P4618 Chen ZF, 1998, NAT GENET, V20, P136, DOI 10.1038/2431 CHONG JHA, 1995, CELL, V80, P949, DOI 10.1016/0092-8674(95)90298-8 Cotanche DA, 1999, AUDIOL NEURO-OTOL, V4, P271, DOI 10.1159/000013852 Daudet N, 1998, J COMP NEUROL, V401, P145 Forge A, 1998, J COMP NEUROL, V397, P69 Geisler C. D., 1998, SOUND SYNAPSE Haddon C, 1999, J NEUROCYTOL, V28, P837, DOI 10.1023/A:1007013904913 Hennig AK, 1998, J NEUROSCI, V18, P3282 Immaneni A, 2000, NUCLEIC ACIDS RES, V28, P3403, DOI 10.1093/nar/28.17.3403 Janas JD, 1995, HEARING RES, V92, P17, DOI 10.1016/0378-5955(95)00190-5 Kallunki P, 1997, J CELL BIOL, V138, P1343, DOI 10.1083/jcb.138.6.1343 KELLEY MW, 1995, J NEUROSCI, V15, P3013 Koenigsberger C, 2000, P NATL ACAD SCI USA, V97, P2291, DOI 10.1073/pnas.050578797 Lanford PJ, 1999, NAT GENET, V21, P289 Lee S, 2000, MECH TIME-DEPEND MAT, V4, P1, DOI 10.1023/A:1009827622426 Levin M, 1999, DEVELOPMENT, V126, P4703 Mieda M, 1997, J BIOL CHEM, V272, P5854 OBERHOLTZER JC, 1988, P NATL ACAD SCI USA, V85, P3387, DOI 10.1073/pnas.85.10.3387 Okamoto S, 1999, MOL BRAIN RES, V74, P44, DOI 10.1016/S0169-328X(99)00250-8 Palm K, 1999, MOL BRAIN RES, V72, P30, DOI 10.1016/S0169-328X(99)00196-5 Palm K, 1998, J NEUROSCI, V18, P1280 ROBERSON DW, 1994, AM J OTOL, V15, P28 Roberson DW, 2000, HEARING RES, V141, P155, DOI 10.1016/S0378-5955(99)00218-X Schoenherr CJ, 1996, P NATL ACAD SCI USA, V93, P9881, DOI 10.1073/pnas.93.18.9881 SCHOENHERR CJ, 1995, CURR OPIN NEUROBIOL, V5, P566, DOI 10.1016/0959-4388(95)80060-3 SCHOENHERR CJ, 1995, SCIENCE, V267, P1360, DOI 10.1126/science.7871435 Shimojo M, 1999, MOL CELL BIOL, V19, P6788 Smith C.A., 1985, P273 Smolders JWT, 1999, AUDIOL NEURO-OTOL, V4, P286, DOI 10.1159/000013853 Stone JS, 1999, DEVELOPMENT, V126, P961 TapiaRamirez J, 1997, P NATL ACAD SCI USA, V94, P1177, DOI 10.1073/pnas.94.4.1177 Thiel G, 1998, J BIOL CHEM, V273, P26891, DOI 10.1074/jbc.273.41.26891 Timmusk T, 1999, J BIOL CHEM, V274, P1078 Zine A, 2000, DEVELOPMENT, V127, P3373 NR 35 TC 4 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2002 VL 172 IS 1-2 BP 62 EP 72 DI 10.1016/S0378-5955(02)00512-9 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 604GG UT WOS:000178608200007 PM 12361867 ER PT J AU Shi, XR Nuttall, AL AF Shi, XR Nuttall, AL TI The demonstration of nitric oxide in cochlear blood vessels in vivo and in vitro: the role of endothelial nitric oxide in venular permeability SO HEARING RESEARCH LA English DT Article DE guinea pig; 4,5-diaminofluorescein diacetate; nitric oxide synthase inhibitor; nitro-L-arginine methyl ester; fluorescein isothiocyanate-albumin ID GUINEA-PIG COCHLEA; SYNTHASE; INHIBITION; SYSTEM; LOCALIZATION; EXPRESSION; ADHESION; PATHWAY; FLOW; RAT AB The objectives of the current study were to investigate the distribution and production of NO in cochlear blood vessels, and to assess whether the inhibition of basal NO production leads to vascular protein leakage of the cochlear microvasculature. Using the fluorescent dye 4,5-diaminofluorescein diacetate, NO was detected, both in vitro and in vivo, in the endothelial cells of various cochlear blood vessels, including the spiral modiolar artery, the vessel of the basilar membrane and the vessels of the spiral osseous lamina. Vessel leakage was assessed using intravital fluorescence microscopy following systemic infusion of fluorescein isothiocyanate-labeled bovine albumin. Local perfusion of the cochlear basal turn with either Ringer's solution or Ringer's containing an inactive nitric oxide synthase inhibitor (100 muM) produced minimal protein leakage. Perfusion with the nitric oxide synthase inhibitor N-nitro-L-arginine methyl ester (100 muM) produced significantly enhanced vascular protein leakage. The findings demonstrate the presence of endothelial NO in the cochlear blood vessels and suggest that NO protects cochlear venules against excessive vascular leakage. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, Dept Otolaryngol & Head & Neck Surg, NRC04, Portland, OR 97201 USA. CPAPA, Gen Hosp, Dept Otolaryngol, Beijing 100039, Peoples R China. Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Nuttall, AL (reprint author), Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, Dept Otolaryngol & Head & Neck Surg, NRC04, 3181 SW Sam Jackson Pk Rd, Portland, OR 97201 USA. CR Arnhold S, 1999, J CARDIOVASC PHARM, V33, P938, DOI 10.1097/00005344-199906000-00015 Al-Naemi H, 2000, MICROCIRCULATION, V7, P215, DOI 10.1038/sj.mn.7300107 BALDWIN AL, 1998, AM J PHYSIOL, V274, P1776 BRECHTELSBAUER PB, 1994, HEARING RES, V77, P38, DOI 10.1016/0378-5955(94)90251-8 DEPAOLA N, 1992, ARTERIOSCLER THROMB, V12, P1254 Fessenden JD, 1999, J COMP NEUROL, V404, P52 FESSENDEN JD, 1994, BRAIN RES, V668, P9, DOI 10.1016/0006-8993(94)90505-3 Franz P, 1996, ACTA OTO-LARYNGOL, V116, P726, DOI 10.3109/00016489609137914 Gath I, 1999, BIOCHEM J, V340, P723, DOI 10.1042/0264-6021:3400723 Gosepath K, 1997, BRAIN RES, V747, P26, DOI 10.1016/S0006-8993(96)01149-3 HARRIS NR, 1997, AM J PHYSIOL-GASTR L, V272, P1320 HE P, 1997, AM J PHYSIOL-HEART C, V272, P176 Hess A, 1998, BRAIN RES, V813, P97, DOI 10.1016/S0006-8993(98)00997-4 Hess A, 1999, BRAIN RES, V830, P113, DOI 10.1016/S0006-8993(99)01433-X Hess A, 1999, NEUROSCI LETT, V264, P145, DOI 10.1016/S0304-3940(99)00195-0 HULTCRANTZ E, 1987, AM J OTOLARYNG, V8, P16, DOI 10.1016/S0196-0709(87)80014-5 JACOBS ER, 1995, PFLUG ARCH EUR J PHY, V431, P129, DOI 10.1007/BF00374386 KUBES P, 1991, P NATL ACAD SCI USA, V88, P4651, DOI 10.1073/pnas.88.11.4651 KUROSE I, 1993, CIRC RES, V73, P164 Lincoln TM, 1996, METHOD ENZYMOL, V269, P149 Mayhan WG, 2000, BRAIN RES, V855, P143, DOI 10.1016/S0006-8993(99)02389-6 Michel O, 1999, HEARING RES, V133, P1, DOI 10.1016/S0378-5955(99)00049-0 Nagura M, 2001, HEARING RES, V153, P7, DOI 10.1016/S0378-5955(00)00250-1 Riemann R, 1999, HEARING RES, V135, P181, DOI 10.1016/S0378-5955(99)00113-6 RUMBAUT RE, 1995, AM J PHYSIOL-HEART C, V268, pH1856 RUMBAUT RE, 1999, AM J PHYSIOL, V276, P333 RUMBAUT RE, 2000, AM J PHYSIOL-HEART C, V279, P2017 Shi XR, 2002, HEARING RES, V164, P49 SHI X, 2001, HEARING RES, V153, P21 SI JQ, 2001, ASS RES OT MIDW M ST Sundrani R, 2000, CRIT CARE MED, V28, P2898, DOI 10.1097/00003246-200008000-00035 VANSTOES ESG, 1998, J CARDIOVASC PHARM, V32, P14 Vass Z, 1996, HEARING RES, V100, P114, DOI 10.1016/0378-5955(96)00102-5 NR 33 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2002 VL 172 IS 1-2 BP 73 EP 80 DI 10.1016/S0378-5955(02)00513-0 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 604GG UT WOS:000178608200008 PM 12361868 ER PT J AU Bodmer, D Brors, D Pak, K Gloddek, B Ryan, AF AF Bodmer, D Brors, D Pak, K Gloddek, B Ryan, AF TI Rescue of auditory hair cells from aminoglycoside toxicity by Clostridium difficile toxin B, an inhibitor of the small GTPases Rho/Rac/Cdc42 SO HEARING RESEARCH LA English DT Article DE aminoglycoside toxicity; Clostridium difficile toxin B; G protein; hair cell; c-Jun-N-terminal kinase; Rho/Rac/Cdc42 ID GTP-BINDING PROTEIN; SIGNALING PATHWAY; NUCLEOTIDE-BINDING; BACTERIAL TOXINS; RHO-PROTEINS; NEURONS; APOPTOSIS; KINASE; CDC42; JNK AB The hair cells (HCs) are the most vulnerable elements in the cochlea and damage to them is the most common cause of sensorineural hearing loss. Understanding the intracellular events that lead to the death of HCs is a key to developing protective strategies. Recently, it has been shown that the c-Jun-N-terminal kinase (JNK) pathway is activated in HCs in response to aminoglycosides (J. Neurosci. 20 (2000) 43). We have studied the upstream events leading to JNK activation in aminoglycoside toxicity in vitro. The small GTPases Rac and Cdc42 are well known upstream activators of JNK in other cell types. Clostridium difficile toxin B monoglucosylates all members of the Rho GTPase subfamily (Rho, Rac and Cdc42 isoforms) and inhibits GTP binding by steric interference (Nature 341 (1989) 209). Organ of Corti explants from p5 rat basal turns were maintained in tissue culture and treated with C difficile toxin B for 12 h. They were then treated with toxin B plus gentamicin for 72 h. Significantly less HC death was observed compared to with gentamicin alone. Toxin B alone had no effect on HCs at the highest concentration used. Using antibodies against phospho-c-Jun, we observed background immunoreactivity in control explants, strong staining of outer hair cell nuclei in gentamicin treated explants, and weaker immunostaining in explants treated with gentamicin and C. difficile toxin B. We conclude that Rho family small GTPases play a role in aminoglycoside toxicity signaling as upstream activators of the JNK signaling pathway. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Calif San Diego, Sch Med, Dept Surg, Div Otolaryngol, La Jolla, CA 92093 USA. VA Med Ctr, La Jolla, CA USA. Univ Zurich Hosp, Clin Otolaryngol Head & Neck Surg, CH-8091 Zurich, Switzerland. RP Ryan, AF (reprint author), Univ Calif San Diego, Sch Med, Dept Surg, Div Otolaryngol, 9500 Gilman Dr 0666, La Jolla, CA 92093 USA. CR Aktories K, 1997, J CLIN INVEST, V99, P827, DOI 10.1172/JCI119245 BAGRODIA S, 1995, J BIOL CHEM, V270, P22731 BATTAGLIA A, 2002, THESIS U CALIFORNIA Bazenet CE, 1998, P NATL ACAD SCI USA, V95, P3984, DOI 10.1073/pnas.95.7.3984 Bonvin C, 2002, CELL SIGNAL, V14, P123, DOI 10.1016/S0898-6568(01)00219-4 Chang LF, 2001, NATURE, V410, P37, DOI 10.1038/35065000 Chinenov Y, 2001, ONCOGENE, V20, P2438, DOI 10.1038/sj.onc.1204385 Chuang TH, 1997, MOL BIOL CELL, V8, P1687 COSO OA, 1995, CELL, V81, P1137, DOI 10.1016/S0092-8674(05)80018-2 Ding DL, 1999, ANN NY ACAD SCI, V884, P152, DOI 10.1111/j.1749-6632.1999.tb08640.x Esteve P, 1998, ONCOGENE, V17, P1855, DOI 10.1038/sj.onc.1202082 Fiorentini C, 1998, CELL DEATH DIFFER, V5, P720, DOI 10.1038/sj.cdd.4400412 Gu Y, 2001, J BIOL CHEM, V276, P15929, DOI 10.1074/jbc.M010445200 Haataja L, 1997, J BIOL CHEM, V272, P20384, DOI 10.1074/jbc.272.33.20384 Hall A, 1998, SCIENCE, V279, P509, DOI 10.1126/science.279.5350.509 Harper SJ, 2001, CELL SIGNAL, V13, P299, DOI 10.1016/S0898-6568(01)00148-6 Huang T, 2000, INT J DEV NEUROSCI, V18, P259, DOI 10.1016/S0736-5748(99)00094-5 Ip YT, 1998, CURR OPIN CELL BIOL, V10, P205, DOI 10.1016/S0955-0674(98)80143-9 Kalinec F, 2000, J BIOL CHEM, V275, P28000 Lores P, 1997, ONCOGENE, V15, P601, DOI 10.1038/sj.onc.1201378 Mackay DJG, 1998, J BIOL CHEM, V273, P20685, DOI 10.1074/jbc.273.33.20685 MINDEN A, 1995, CELL, V81, P1147, DOI 10.1016/S0092-8674(05)80019-4 Nimnual AS, 1998, SCIENCE, V279, P560, DOI 10.1126/science.279.5350.560 PAI EF, 1989, NATURE, V341, P209, DOI 10.1038/341209a0 Pirvola U, 2000, J NEUROSCI, V20, P43 Ryan AF, 2000, P NATL ACAD SCI USA, V97, P6939, DOI 10.1073/pnas.97.13.6939 Schacht J, 1999, ANN NY ACAD SCI, V884, P125 Scita G, 1999, NATURE, V401, P290 Sehr P, 1998, BIOCHEMISTRY-US, V37, P5296, DOI 10.1021/bi972592c Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 Shulman A, 1999, ANN NY ACAD SCI, V884, P433, DOI 10.1111/j.1749-6632.1999.tb08660.x Sobkowicz H M, 1993, Acta Otolaryngol Suppl, V502, P3 Teramoto H, 1996, J BIOL CHEM, V271, P25731 VANDEWAT.T, 1974, ANN OTO RHINOL LARYN, V83, P1 VANDEWAT.TR, 1971, ACTA OTO-LARYNGOL, V71, P303, DOI 10.3109/00016487109125368 Ylikoski J, 2002, HEARING RES, V163, P71, DOI 10.1016/S0378-5955(01)00380-X NR 36 TC 26 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2002 VL 172 IS 1-2 BP 81 EP 86 DI 10.1016/S0378-5955(02)00514-2 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 604GG UT WOS:000178608200009 PM 12361869 ER PT J AU Wasniewska, M De Luca, F Siclari, S Salzano, G Messina, MF Lombardo, F Valenzise, M Ruggeri, C Arrigo, T AF Wasniewska, M De Luca, F Siclari, S Salzano, G Messina, MF Lombardo, F Valenzise, M Ruggeri, C Arrigo, T TI Hearing loss in congenital hypothalamic hypothyroidism: a wide therapeutic window SO HEARING RESEARCH LA English DT Article DE audiological evaluation; deafness; hearing loss; hypothalamic hypothyroidism; therapeutic window; thyroid failure ID THYROID-HORMONE; RAT; IMPAIRMENT; EXPRESSION; CONDUCTION; THYROXINE; SYSTEMS; ONSET AB In this study, which aims to investigate for the first time auditory sensitivity in congenital central hypothyroidism (CH), we concluded that: (1) permanent sensorineural hearing loss may be observed not only in congenital primary disorders of thyroid function, as reported hitherto; (2) it may also be found in patients with congenital CH, at least when substitutive treatment is started many years after thyroid failure presentation; (3) the concept of a 'critical therapeutic window' in preventing hearing impairment also holds true for children with congenital CH; (4) the therapeutic window in CH is wider than in primary hypothyroidism; (5) this is probably due to the less severe thyroid impairment in the cases with a central origin of hypothyroidism. These conclusions were suggested by the following data obtained in a cohort of 10 patients with congenital CH who were euthyroid at the time of audiological evaluation thanks to long-standing substitutive therapy: (a) four out of 10 patients exhibited a bilateral sensorineural hearing loss; (b) hearing impaired patients were the oldest of the entire series at diagnosis of hypothyroidism and none of them was aged less than 7 years at the time of the start of replacement therapy; (c) a strong positive relationship was found between age at therapy start and hearing loss. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Messina, Dept Pediat, I-98125 Messina, Italy. Univ Messina, Dept Oto Rhino Laryngol, Messina, Italy. RP De Luca, F (reprint author), Univ Messina, Dept Pediat, Via Consolare Valeria, I-98125 Messina, Italy. CR Arrigo T, 1998, EUR J ENDOCRINOL, V139, P84, DOI 10.1530/eje.0.1390084 Bellman SC, 1996, ARCH DIS CHILD, V74, P215 BERNAL J, 1995, EUR J ENDOCRINOL, V133, P390 Biebermann H, 1997, NEW ENGL J MED, V336, P1390, DOI 10.1056/NEJM199705083361914 Chan S, 2000, J ENDOCRINOL, V165, P1, DOI 10.1677/joe.0.1650001 DELANGE F, 1993, PEDIAT ENDOCRINOLOGY, P252 DELUCA F, 1985, ACTA PAEDIATR SCAND, V74, P148 DELUCA F, 1986, ANN PEDIATR-PARIS, V33, P35 EGGERMONT JJ, 1991, J ACOUST SOC AM, V90, P288, DOI 10.1121/1.401299 Guadano-Ferraz A, 1999, J NEUROSCI, V19, P3430 Knipper M, 2000, J NEUROPHYSIOL, V83, P3101 Lai CL, 2000, J NEUROL SCI, V173, P113, DOI 10.1016/S0022-510X(99)00310-X Lai CL, 1997, J NEUROL SCI, V148, P139, DOI 10.1016/S0022-510X(96)05348-8 McCarrison R, 1908, LANCET, V2, P1275 MEYERHOFF WL, 1980, LARYNGOSCOPE S19, V89 Moore D R, 1985, Acta Otolaryngol Suppl, V421, P19 OPPENHEIMER JH, 1994, EUR J ENDOCRINOL, V130, P15 PITTMAN JA, 1978, THYROID, P936 RAPPAPORT R, 1995, SYNERMED, V11 REFETOFF S, 1967, J CLIN ENDOCR METAB, V27, P279 RITTER F, 1967, LARYNGOSCOPE, V67, P1427 Rovet J, 1996, J PEDIATR-US, V128, P776, DOI 10.1016/S0022-3476(96)70329-3 Rusch A, 1998, P NATL ACAD SCI USA, V95, P15758, DOI 10.1073/pnas.95.26.15758 Soriguer F, 2000, THYROID, V10, P991, DOI 10.1089/thy.2000.10.991 TEAS DC, 1982, HEARING RES, V7, P19, DOI 10.1016/0378-5955(82)90080-6 TROTTER WR, 1960, BRIT MED BULL, V16, P92 UZIEL A, 1985, DEV BRAIN RES, V19, P111, DOI 10.1016/0165-3806(85)90236-6 UZIEL A, 1985, DEV BRAIN RES, V19, P123, DOI 10.1016/0165-3806(85)90237-8 VANDERSCHUERENL.M, 1992, FUNCTIONAL ENDOCRINO, P37 VANDERSCHUERENLODEWEYCKX M, 1983, ARCH DIS CHILD, V58, P419 NR 30 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2002 VL 172 IS 1-2 BP 87 EP 91 DI 10.1016/S0378-5955(02)00515-4 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 604GG UT WOS:000178608200010 PM 12361870 ER PT J AU Shepherd, RK Xu, J AF Shepherd, RK Xu, J TI A multichannel scala tympani electrode array incorporating a drug delivery system for chronic intracochlear infusion SO HEARING RESEARCH LA English DT Article DE intracochlear electrode; drug delivery system; cochlear implant; cochlear infusion; osmotic pump; electrical stimulation; neurotrophin; deafness ID SPIRAL GANGLION NEURONS; HIGH STIMULUS RATES; AUDITORY-NERVE; ELECTRICAL-STIMULATION; CELL-SURVIVAL; NEUROTROPHIN-3; DEPOLARIZATION; PROTECTION AB We have developed a novel scala tympani electrode array suitable for use in experimental animals. A unique feature of this array is its ability to chronically deliver pharmacological agents to the scala tympani. The design of the electrode array is described in detail. Experimental studies performed in guinea pigs confirm that this array can successfully deliver various drugs to the cochlea while chronically stimulating the auditory nerve. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3002, Australia. Bion Ear Inst, Melbourne, Vic 3002, Australia. RP Shepherd, RK (reprint author), Univ Melbourne, Dept Otolaryngol, 32 Gisborne St, Melbourne, Vic 3002, Australia. RI Shepherd, Robert/I-6276-2012 CR BROWN JN, 1993, HEARING RES, V70, P167, DOI 10.1016/0378-5955(93)90155-T Chen JK, 1997, IEEE T BIO-MED ENG, V44, P760 Duan ML, 2000, P NATL ACAD SCI USA, V97, P7597, DOI 10.1073/pnas.97.13.7597 Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463 Hansen MR, 2001, J NEUROSCI, V21, P2256 Hegarty JL, 1997, J NEUROSCI, V17, P1959 Huang CQ, 2000, HEARING RES, V146, P57, DOI 10.1016/S0378-5955(00)00100-3 Marzella PL, 1999, ACTA OTO-LARYNGOL, V119, P407 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 O'Leary SJ, 2001, HEARING RES, V154, P135, DOI 10.1016/S0378-5955(01)00232-5 PASIC TR, 1989, J COMP NEUROL, V283, P474, DOI 10.1002/cne.902830403 Praetorius M, 2001, AUDIOL NEURO-OTOL, V6, P250, DOI 10.1159/000046130 Prieskorn DM, 2000, HEARING RES, V140, P212, DOI 10.1016/S0378-5955(99)00193-8 Ruan RS, 1999, NEUROREPORT, V10, P2067, DOI 10.1097/00001756-199907130-00014 SCHMIEDT RA, 2002, IN PRESS J ARO SHAH SB, 1995, AM J OTOL, V16, P310 SHEPHERD R, 2000, N01DC02109 NIH U MEL, P1 Xu J, 1997, HEARING RES, V105, P1, DOI 10.1016/S0378-5955(96)00193-1 NR 18 TC 30 Z9 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2002 VL 172 IS 1-2 BP 92 EP 98 DI 10.1016/S0378-5955(02)00517-8 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 604GG UT WOS:000178608200011 PM 12361871 ER PT J AU Hendricson, AW Guth, PS AF Hendricson, AW Guth, PS TI Transmitter release from Rana pipiens vestibular hair cells via mGluRs: A role for intracellular Ca++ release SO HEARING RESEARCH LA English DT Article DE vestibular; pharmacology; signal transduction; metabotropic glutamate receptor ID METABOTROPIC GLUTAMATE RECEPTORS; CYCLIC ADP-RIBOSE; CEREBELLAR GRANULE CELLS; SENSITIVE CALCIUM STORES; D-ASPARTATE RESPONSES; PROTEIN-KINASE-C; NEUROTRANSMITTER RELEASE; SARCOPLASMIC-RETICULUM; SYMPATHETIC NEURONS; STRIATAL NEURONS AB The response of the semicircular canal (SCC) to the group I mGluR-selective agonist dihydroxyphenylglycine (DHPG; 300 muM) - facilitation of afferent discharge rate - was dose-dependently reduced by the phospholipase C inhibitor U-73122 (1-100 muM; IC50: 22 muM), the smooth endoplasmic reticulum Ca++ ATPase inhibitor thapsigargin (100 nM-3 muM; IC50: 500 nM), and xestospongin C (100 pM-1 muM; IC50: 11 nM), an inositol trisphosphate receptor (IP3R) antagonist. Ryanodine, a modulator of Ca++-induced Ca++ release, biphasically facilitated, then suppressed this response (1 nM-1 mM; approximate IC50: 50 M). 5 mM caffeine increased the amplitude (34.6 +/- 13.4%) and duration (453 +/- 169.8%; n = 4) of the response of the SCC to DHPG, while 50 mM caffeine eliminated this response (n = 2). The protein kinase C inhibitor bisindolylmaleimide I-HCl (10-100 muM; n = 3) and the cyclic-ADP ribose antagonist 8-Br-cyclic-ADP ribose (1-10 muM; n = 3) had no effect on the response of the SCC to DHPG. These data suggest that the increase in transmitter release following activation of group I mGluRs on vestibular hair cells is associated with intracellular Ca++ release from both IP3-sensitive and ryanodine/caffeine-sensitive intracellular Ca++ stores. Such positive feedback on transmitter release may serve to enhance the contrast between the spontaneous and stimulus-evoked modes of hair cell transmitter release, thereby optimizing signal discrimination at the synapse between hair cells and vestibular afferent fibers. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Texas, Coll Pharm, Div Pharmacol Toxicol, Austin, TX 78712 USA. Tulane Univ, Sch Med, Dept Pharmacol SL83, New Orleans, LA 70112 USA. RP Hendricson, AW (reprint author), Univ Texas, Coll Pharm, Div Pharmacol Toxicol, 2409 Univ Ave,PHR 5-214, Austin, TX 78712 USA. CR Berridge MJ, 1998, NEURON, V21, P13, DOI 10.1016/S0896-6273(00)80510-3 BERVEN LA, 1995, BIOCHEM PHARMACOL, V49, P1373, DOI 10.1016/0006-2952(95)00050-A Bledsoe Jr S.C., 1988, PHYSL HEARING, P385 Broad LM, 2001, J BIOL CHEM, V276, P15945, DOI 10.1074/jbc.M011571200 BUCK E, 1992, J BIOL CHEM, V267, P23560 BULL R, 1989, BIOPHYS J, V56, P749 Cochilla AJ, 1998, NEURON, V20, P1007, DOI 10.1016/S0896-6273(00)80481-X COURTNEY MJ, 1992, J NEUROCHEM, V59, P983, DOI 10.1111/j.1471-4159.1992.tb08339.x COURTNEY MJ, 1990, J NEUROSCI, V10, P3873 COUSILLAS H, 1988, HEARING RES, V36, P213, DOI 10.1016/0378-5955(88)90063-9 Crawford JH, 1997, J NEUROPHYSIOL, V77, P2573 Crawford JH, 2000, NEUROPHARMACOLOGY, V39, P621, DOI 10.1016/S0028-3908(99)00167-7 Emptage NJ, 2001, NEURON, V29, P197, DOI 10.1016/S0896-6273(01)00190-8 Fagni L, 2000, TRENDS NEUROSCI, V23, P80, DOI 10.1016/S0166-2236(99)01492-7 FERNANDE.C, 1971, J NEUROPHYSIOL, V34, P661 FERRIS CD, 1992, J NEUROSCI, V12, P1567 FLEISCHER S, 1985, P NATL ACAD SCI USA, V82, P7256, DOI 10.1073/pnas.82.21.7256 Gafni J, 1997, NEURON, V19, P723, DOI 10.1016/S0896-6273(00)80384-0 GUTH PS, 1986, ACTA OTO-LARYNGOL, V102, P194, DOI 10.3109/00016488609108666 Guth PS, 1998, PROG NEUROBIOL, V54, P193, DOI 10.1016/S0301-0082(97)00068-3 Guth PS, 1998, HEARING RES, V125, P154, DOI 10.1016/S0378-5955(98)00145-2 GUTH PS, 1991, HEARING RES, V56, P69, DOI 10.1016/0378-5955(91)90155-3 Haak LL, 2001, J NEUROSCI, V21, P3860 HENDRICSON AW, 2001, ASS RES OT ABSTR, V24, P62 HERNANDEZCRUZ A, 1995, EUR J NEUROSCI, V7, P1684, DOI 10.1111/j.1460-9568.1995.tb00690.x HERRERO I, 1992, NATURE, V360, P163, DOI 10.1038/360163a0 Hirono M, 1998, BIOCHEM BIOPH RES CO, V251, P753, DOI 10.1006/bbrc.1998.9465 HU GY, 1991, BRAIN RES, V568, P339, DOI 10.1016/0006-8993(91)91423-X HUA SY, 1994, NEURON, V12, P1073, DOI 10.1016/0896-6273(94)90315-8 JIN WZ, 1994, BRAIN RES, V642, P237, DOI 10.1016/0006-8993(94)90927-X Lee HC, 1996, RECENT PROG HORM RES, V51, P355 LLANO I, 1991, NEURON, V7, P577, DOI 10.1016/0896-6273(91)90370-F LUJAN R, 1996, NEUROPHARMACOLOGY, V34, P829 LUJAN R, 1997, SOC NEUR ABSTR, V23, P1753 MANZONI O, 1990, MOL PHARMACOL, V38, P1 MANZONI OJJ, 1991, EUR J PHARM-MOLEC PH, V207, P231 Nassar A, 2000, J BIOL CHEM, V275, P23661, DOI 10.1074/jbc.M000457200 NORRIS CH, 1988, HEARING RES, V32, P197, DOI 10.1016/0378-5955(88)90092-5 OLEARY D, 1976, NATURE, V251, P225 Otun H, 1996, CELL CALCIUM, V19, P315, DOI 10.1016/S0143-4160(96)90072-X Pisani A, 2001, NEUROSCIENCE, V106, P579, DOI 10.1016/S0306-4522(01)00297-4 Pollock J, 1999, CELL CALCIUM, V26, P139, DOI 10.1054/ceca.1999.0064 PRIGIONI I, 1990, HEARING RES, V46, P253, DOI 10.1016/0378-5955(90)90006-B REBER BFX, 1993, J PHYSIOL-LONDON, V468, P711 Ronde P, 2000, J PHYSIOL-LONDON, V529, P307, DOI 10.1111/j.1469-7793.2000.00307.x ROUSSEAU E, 1988, ARCH BIOCHEM BIOPHYS, V267, P75, DOI 10.1016/0003-9861(88)90010-0 Schrader LA, 1997, J NEUROPHYSIOL, V77, P527 STARR PA, 1991, HEARING RES, V52, P23, DOI 10.1016/0378-5955(91)90185-C THAYER SA, 1988, MOL PHARMACOL, V34, P664 Treiman M, 1998, TRENDS PHARMACOL SCI, V19, P131, DOI 10.1016/S0165-6147(98)01184-5 VALLI P, 1985, BRAIN RES, V330, P1, DOI 10.1016/0006-8993(85)90002-2 Wang SQ, 2001, NATURE, V410, P592, DOI 10.1038/35069083 WEISS S, 1989, J NEUROCHEM, V52, P530, DOI 10.1111/j.1471-4159.1989.tb09152.x Zucchi R, 1997, PHARMACOL REV, V49, P1 NR 54 TC 18 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2002 VL 172 IS 1-2 BP 99 EP 109 DI 10.1016/S0378-5955(02)00519-1 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 604GG UT WOS:000178608200012 PM 12361872 ER PT J AU Wolters, FLC de Vocht, TF Klis, SFL Hamers, FPT Smoorenburg, GF AF Wolters, FLC de Vocht, TF Klis, SFL Hamers, FPT Smoorenburg, GF TI Co-treatment with melanotan-II, a potent melanocortin, does not protect against cisplatin ototoxicity SO HEARING RESEARCH LA English DT Article DE cisplatin; guinea pig; compound action potential; ototoxicity; protection; melanotan-II ID NEUROTROPHIC ACTH((4-9)) ANALOG; MELANOCYTE-STIMULATING HORMONE; ALBINO GUINEA-PIG; STRIA VASCULARIS; SPONTANEOUS-RECOVERY; RAT; ORG-2766; DAMAGE; AGENTS; METHIONINE AB Cisplatin, an important chemotherapeutic agent, has severe dose-limiting side effects including peripheral neurotoxicity and ototoxicity. Peripheral neurotoxicity can be delayed or prevented by simultaneous treatment with a class of neuropeptides known as melanocortins. Examples are ORG 2766, alpha-melanocyte stimulating hormone (alpha-MSH) and melanotan-II (MT-II). In albino guinea pigs, our group has found that ORG 2766 and alpha-MSH can also reduce cisplatin-induced ototoxicity. In this study we investigated the possibly protective effects of MT-II upon cisplatin ototoxicity. Guinea pigs, equipped with a permanent roundwindow electrode for electrocochleography, were treated with cisplatin (1.5 mg/kg/day intraperitoneal) and simultaneously with MT-II (30 or 3 mug/kg/day subcutaneous) or saline until a 40 dB suppression of the compound action potential (CAP) threshold (3 muV criterion) at 8 kHz occurred. This -40 dB criterion was reached after 5-18 days. Thereafter, the treatment was stopped, but electrocochleography was continued for another 4 weeks. The number of days in which the -40 dB criterion was reached in the MT-II co-treated group did not differ from the period in the saline group. Ten days after the end of the treatment a spontaneous recovery of the CAP was observed in all groups and at all frequencies, although it was more pronounced at lower frequencies. Also with respect to recovery, no differences were found between the saline and the MT-II co-treated group. Thus, in contrast with the otoprotective properties of other melanocortins, MT-II has no protective properties against cisplatin-induced ototoxicity, at least not with the doses applied here. (C) 2002 Elsevier Science BV. All rights reserved. C1 Univ Utrecht, Med Ctr, Hearing Res Labs, NL-3508 GA Utrecht, Netherlands. RP Wolters, FLC (reprint author), Univ Utrecht, Med Ctr, Hearing Res Labs, Room GO 2-531,POB 85-500, NL-3508 GA Utrecht, Netherlands. CR BIJLSMA WA, 1984, PSYCHONEUROENDOCRINO, V9, P199, DOI 10.1016/0306-4530(84)90001-5 Campbell KCM, 1999, HEARING RES, V138, P13, DOI 10.1016/S0378-5955(99)00142-2 Cardinaal RM, 2000, HEARING RES, V144, P157, DOI 10.1016/S0378-5955(00)00061-7 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 Dallos P, 1973, AUDITORY PERIPHERY DEKONING P, 1987, EXP NEUROL, V97, P746, DOI 10.1016/0014-4886(87)90132-4 deGroot JCMJ, 1997, HEARING RES, V106, P9, DOI 10.1016/S0378-5955(96)00213-4 DEKONING P, 1986, J NEUROL SCI, V74, P237, DOI 10.1016/0022-510X(86)90109-7 DEOLIVIERA JAA, 1989, AUDIOVESTIBULAR TOXI, V2 GOTTESBERGE M, 1999, MENIERES DIS 1999 UP, P49 HADLEY ME, 1998, INTEGRATION PHARM DI, P575 HAMERS FPT, 1993, CANCER CHEMOTH PHARM, V32, P162, DOI 10.1007/BF00685621 HAMERS FPT, 1994, EUR ARCH OTO-RHINO-L, V251, P23 Haskell-Luevano C, 2000, PEPTIDES, V21, P49, DOI 10.1016/S0196-9781(99)00167-9 Heijmen PS, 1999, HEARING RES, V128, P27, DOI 10.1016/S0378-5955(98)00194-4 Kaltenbach JA, 1997, OTOLARYNG HEAD NECK, V117, P493, DOI 10.1016/S0194-5998(97)70020-2 Kamimura T, 1999, HEARING RES, V131, P117, DOI 10.1016/S0378-5955(99)00017-9 Klis SFL, 2002, HEARING RES, V164, P138, DOI 10.1016/S0378-5955(01)00425-7 KLIS SFL, 2000, NEUROREPORT, V28, P623 Kohn S, 1997, ULTRASTRUCT PATHOL, V21, P289 Kopke RD, 1997, AM J OTOL, V18, P559 LAURELL G, 1991, ACTA OTO-LARYNGOL, V111, P891, DOI 10.3109/00016489109138427 Meech RP, 1998, HEARING RES, V124, P44, DOI 10.1016/S0378-5955(98)00116-6 NAKAI Y, 1982, ACTA OTO-LARYNGOL, V93, P227, DOI 10.3109/00016488209130876 Reser D, 1999, NEUROTOXICOLOGY, V20, P731 Rybak LP, 1999, LARYNGOSCOPE, V109, P1740, DOI 10.1097/00005537-199911000-00003 Schioth HB, 1997, EUR J PHARMACOL, V319, P369, DOI 10.1016/S0014-2999(96)00959-4 SCHWEITZER VG, 1993, LARYNGOSCOPE, V103, P1, DOI 10.1288/00005537-199304000-00001 Smoorenburg GF, 1999, ANN NY ACAD SCI, V884, P192, DOI 10.1111/j.1749-6632.1999.tb08642.x Stengs CHM, 1998, HEARING RES, V124, P108, DOI 10.1016/S0378-5955(98)00130-0 Stengs CHM, 1997, HEARING RES, V111, P103, DOI 10.1016/S0378-5955(97)00095-6 STENGS CHM, 1998, HEARING RES, V124, P94 TERLAAK MP, 1999, THESIS U UTRECHT UTR Ugwu Sydney O., 1994, Biopharmaceutics and Drug Disposition, V15, P383, DOI 10.1002/bdd.2510150505 VANDERHOOP RG, 1990, NEW ENGL J MED, V322, P89, DOI 10.1056/NEJM199001113220204 VANDERZEE CEEM, 1991, BRIT J PHARMACOL, V103, P1041 Wessells H, 2000, UROLOGY, V56, P641, DOI 10.1016/S0090-4295(00)00680-4 WILSON JF, 1980, J ENDOCRINOL, V86, P61, DOI 10.1677/joe.0.0860061 Yang YK, 1997, J BIOL CHEM, V272, P23000, DOI 10.1074/jbc.272.37.23000 NR 39 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2002 VL 172 IS 1-2 BP 110 EP 117 DI 10.1016/S0378-5955(02)00551-8 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 604GG UT WOS:000178608200013 PM 12361873 ER PT J AU Lang, H Schulte, BA Schmiedt, RA AF Lang, H Schulte, BA Schmiedt, RA TI Endocochlear potentials and compound action potential recovery: functions in the C57BL/6J mouse SO HEARING RESEARCH LA English DT Article DE endocochlear potential; compound action potential; auditory nerve; C57BL/6J mice; forward masking; presbyacusis ID AUDITORY-NERVE FIBERS; QUIET-AGED GERBILS; HAIR CELL LOSS; HEARING-LOSS; STRIA VASCULARIS; PRIOR STIMULATION; MONGOLIAN GERBIL; PLACE-FREQUENCY; LATERAL WALL; COCHLEA AB The C57BL/6J mouse suffers from cochlear degeneration beginning at an early age and has been used as a model of age-related hearing loss (presbyacusis). Here, the endocochlear potential (EP) and compound action potential (CAP) responses were determined in one-, four-, 12- and 24-month-old C57BL/6J mice. CAP measures included thresholds to tone pips, input/output (I/O) functions, and recovery functions to conditioning tones. EP values among the four age groups did not differ significantly (P > 0.05) in either the basal or apical turns. CAP thresholds were increased significantly by 10 to 30 dB in the four-month group compared to the one-month controls at 11.3, 16, 20, and 22.6 kHz. CAP I/O functions were shallower in the four-month group compared to controls at all frequencies. In the 12- and 24-month-old mice, CAP responses were absent, despite normal EP values in these animals. Recovery functions after conditioning tones were obtained at 8, 16, 20 and 22.6 kHz; the functions had fast and slow components at all frequencies tested in both the one- and four-month-old groups. The corresponding recovery curves were identical for both age groups, even with significant threshold shifts in the older group. The two component recovery curves provide the first physiological evidence that different spontaneous rate (SR) classes of auditory neurons exist in the C57BL/6J mouse. Moreover, the unchanged recovery functions in the older group suggest that there was no loss of activity of the low-SR fiber population with age under conditions where the EP remains stable, in contrast to the gerbil model of presbyacusis where there is a loss of low-SR fiber activity and EP does decline with age. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, Charleston, SC 29425 USA. Med Univ S Carolina, Dept Pathol & Lab Med, Charleston, SC 29425 USA. RP Schmiedt, RA (reprint author), Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, POB 250150,Walton Res Bldg,39 Sabin St,Rm 608, Charleston, SC 29425 USA. CR ALLAM A F, 1970, Journal of Laryngology and Otology, V84, P765, DOI 10.1017/S0022215100072534 Cable J, 1998, HEARING RES, V123, P125, DOI 10.1016/S0378-5955(98)00107-5 CHEN L, 1995, HEARING RES, V89, P28, DOI 10.1016/0378-5955(95)00119-5 COHEN GM, 1990, J ELECTRON MICR TECH, V15, P165, DOI 10.1002/jemt.1060150208 Ehret G, 1983, AUDITORY PSYCHOBIOLO, P169 EHRET G, 1977, J COMP PHYSIOL, V122, P65 Engström B, 1987, Acta Otolaryngol Suppl, V436, P110 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H Frisina RD, 2001, HEARING RES, V158, P1, DOI 10.1016/S0378-5955(01)00296-9 FRISINA RD, 1996, J ACOUST SOC AM, V99, P457 Gratton M A, 1996, Hear Res, V102, P181, DOI 10.1016/S0378-5955(96)90017-9 GRATTON MA, 1995, HEARING RES, V82, P44 Gratton MA, 1997, HEARING RES, V114, P1, DOI 10.1016/S0378-5955(97)00025-7 Hellstrom LI, 1996, J ACOUST SOC AM, V100, P3275, DOI 10.1121/1.417211 HELLSTROM LI, 1990, HEARING RES, V50, P163, DOI 10.1016/0378-5955(90)90042-N HENRY KR, 1980, AUDIOLOGY, V19, P369 HENRY KR, 1984, DEV PSYCHOBIOL, V17, P493, DOI 10.1002/dev.420170507 Hequembourg S, 2001, JARO, V2, P118 HUNTER KP, 1987, HEARING RES, V30, P207, DOI 10.1016/0378-5955(87)90137-7 Ichimiya I, 2000, HEARING RES, V139, P116, DOI 10.1016/S0378-5955(99)00170-7 KIANG NYS, 1965, MITRESEARCH MONOGRAP, V35 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 KOMUNE S, 1993, HEARING RES, V70, P197, DOI 10.1016/0378-5955(93)90158-W KONISHI T, 1980, EXP BRAIN RES, V40, P457 LANG H, 2002, IN PRESS J ASS RES O LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418 LI HS, 1994, ORL J OTO-RHINO-LARY, V56, P61 LI HS, 1992, ACTA OTO-LARYNGOL, V112, P956, DOI 10.3109/00016489209137496 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 MIKAELIA.DO, 1974, ACTA OTO-LARYNGOL, V77, P327, DOI 10.3109/00016487409124632 MIKAELIAN DO, 1979, LARYNGOSCOPE, V89, P1 Minowa O, 1999, SCIENCE, V285, P1408, DOI 10.1126/science.285.5432.1408 MIZUTA K, 1993, SCANNING MICROSCOPY, V7, P889 Muller M, 1996, HEARING RES, V94, P148, DOI 10.1016/0378-5955(95)00230-8 PARHAM K, 1988, Behavioral Neuroscience, V102, P881, DOI 10.1037/0735-7044.102.6.881 PAULER M, 1988, LARYNGOSCOPE, V98, P754 PLASSMANN W, 1987, BRAIN BEHAV EVOLUT, V30, P82, DOI 10.1159/000118639 RELKIN EM, 1995, HEARING RES, V83, P183, DOI 10.1016/0378-5955(95)00004-N RELKIN EM, 1987, J ACOUST SOC AM, V82, P1679, DOI 10.1121/1.395159 RELKIN EM, 1991, HEARING RES, V55, P215, DOI 10.1016/0378-5955(91)90106-J RYAN A, 1976, J ACOUST SOC AM, V59, P1222, DOI 10.1121/1.380961 SADANAGA M, 1995, HEARING RES, V89, P155, DOI 10.1016/0378-5955(95)00133-X SALT AN, 1986, NEUROBIOLOGY HEARING, P109 Salvi R., 1982, NEW PERSPECTIVES NOI, P165 SCHMIEDT RA, 1993, SENSORY RESEARCH MULTIMODAL PERSPECTIVES, P91 SCHMIEDT RA, 1989, HEARING RES, V42, P23, DOI 10.1016/0378-5955(89)90115-9 SCHMIEDT RA, 2002, IN PRESS J NEUROSCI Schmiedt RA, 1996, HEARING RES, V102, P125, DOI 10.1016/S0378-5955(96)00154-2 SCHMIEDT RA, 2000, ASS RES OT ABSTR, V23, P80 Schmiedt RA, 1996, J NEUROPHYSIOL, V76, P2799 SCHMIEDT RA, 1990, HEARING RES, V45, P221, DOI 10.1016/0378-5955(90)90122-6 SCHMIEDT RA, 2001, ASS RES OT ABSTR, V24, P148 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 SCHUKNEC.HF, 1974, LARYNGOSCOPE, V84, P1777 SCHUKNECHT HF, 1964, ARCHIV OTOLARYNGOL, V80, P369 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K SEWELL WF, 1984, J PHYSIOL-LONDON, V347, P685 Shnerson A., 1982, DEV BRAIN RES, V2, P77 SHONE G, 1991, HEARING RES, V56, P173, DOI 10.1016/0378-5955(91)90167-8 Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 SPICER SS, 1991, HEARING RES, V56, P53, DOI 10.1016/0378-5955(91)90153-Z Spicer SS, 1997, HEARING RES, V111, P93, DOI 10.1016/S0378-5955(97)00097-X Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 SUGA F, 1976, ANN OTO RHINOL LARYN, V85, P169 Suryadevara AC, 2001, HEARING RES, V161, P45, DOI 10.1016/S0378-5955(01)00340-9 WALTON JP, 1995, HEARING RES, V88, P19, DOI 10.1016/0378-5955(95)00093-J Walton JP, 1998, J NEUROSCI, V18, P2764 White JA, 2000, HEARING RES, V141, P12, DOI 10.1016/S0378-5955(99)00204-X Willott J. F., 1991, AGING AUDITORY SYSTE WILLOTT JF, 1986, J NEUROPHYSIOL, V56, P391 WINTER IM, 1990, HEARING RES, V45, P191, DOI 10.1016/0378-5955(90)90120-E ZHANG QY, 1999, HEARING RES, V130, P94 NR 72 TC 28 Z9 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2002 VL 172 IS 1-2 BP 118 EP 126 DI 10.1016/S0378-5955(02)00552-X PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 604GG UT WOS:000178608200014 PM 12361874 ER PT J AU Hellier, WPL Wagstaff, SA O'Leary, SJ Shepherd, RK AF Hellier, WPL Wagstaff, SA O'Leary, SJ Shepherd, RK TI Functional and morphological response of the stria vascularis following a sensorineural hearing loss SO HEARING RESEARCH LA English DT Article DE stria vascularis; endocochlear potential; deafness; aminoglycoside; ototoxicity; K+ ion transport ID CHRONIC GENTAMICIN TREATMENT; BETA-SUBUNIT ISOFORMS; GERBIL INNER-EAR; GUINEA-PIG; ETHACRYNIC-ACID; COCHLEAR POTENTIALS; SUBCELLULAR-LOCALIZATION; KANAMYCIN SULFATE; MARGINAL CELLS; ALPHA-SUBUNIT AB Cochlear endolymph is maintained at a potential of (+)80 mV by an active transport mechanism involving the stria vascularis (SV). This so-called endocochlear potential (EP) is integral to hair cell transduction. We compared the EP with changes in SV area and Na+, K+-ATPase expression following a sensorineural hearing loss. Guinea pigs were deafened using kanamycin and a loop diuretic, and the EP was measured at two, 14, 56, 112 or 224 days following deafening. Auditory brainstem responses were used to confirm that each animal had a severe-profound hearing loss. There was a significant reduction in EP following two days of deafness (normal, 73.5 mV S.E.M. = 2.4; deaf, 42.1 mV, S.E.M. = 2.8; P < 0.0001, t-test). In animals deafened for 14 days the EP had partially recovered (65.2 mV, S.E.M. = 5.08), while animals deafened for longer periods exhibited a complete recovery (56 days 80.5 mV, S.E.M. = 5.36; 112 days 75.7 mV, S.E.M. = 2.71; 224 days 81.0 mV; S.E.M. = 6.0). Despite this recovery, there was a systematic reduction in SV area with duration of deafness over the first 112 days of deafness. Significant reductions were localised to the basal turn in animals deafened for two days, but had extended to all turns in animals deafened for 112 days. While there was a significant reduction in strial area, the optical density of Na+, K+-ATPase within the remaining SV was normal. Since the treated animals exhibited essentially a complete elimination of all hair cells, the total K+ leakage current from the scala media would be expected to be significantly reduced. The large reduction in the extent of the SV after deafening suggests that a reduced strial volume is capable of maintaining a normal EP under conditions of reduced K+ leakage current. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3002, Australia. RP Shepherd, RK (reprint author), Univ Melbourne, Dept Otolaryngol, 32 Gisborne St, Melbourne, Vic 3002, Australia. RI Shepherd, Robert/I-6276-2012 CR ASAKUMA S, 1979, ARCH OTOLARYNGOL, V105, P145 VONBEKESY G, 1952, J ACOUST SOC AM, V24, P72 BOSHER S, 1980, ACTA OTOLARYNGOL, V89, P40 BOSHER SK, 1973, ACTA OTO-LARYNGOL, V75, P184, DOI 10.3109/00016487309139694 BOSHER SK, 1980, ACTA OTO-LARYNGOL, V89, P407, DOI 10.3109/00016488009127156 Crouch JJ, 1997, J HISTOCHEM CYTOCHEM, V45, P773 DEGROOT JCMJ, 1990, HEARING RES, V50, P35, DOI 10.1016/0378-5955(90)90031-J DUVALL AJ, 1974, ANN OTO RHINOL LARYN, V83, P498 FORGE A, 1987, HEARING RES, V31, P253, DOI 10.1016/0378-5955(87)90195-X FORGE A, 1985, HEARING RES, V20, P233, DOI 10.1016/0378-5955(85)90028-0 FORGE A, 1981, ACTA OTO-LARYNGOL, V92, P439, DOI 10.3109/00016488109133283 Gratton M A, 1996, Hear Res, V102, P181, DOI 10.1016/S0378-5955(96)90017-9 Gratton MA, 1997, HEARING RES, V108, P9, DOI 10.1016/S0378-5955(97)00034-8 Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3 Hawkins J E Jr, 1973, Adv Otorhinolaryngol, V20, P125 HAYASHIDA T, 1989, ACTA OTO-LARYNGOL, V108, P404, DOI 10.3109/00016488909125546 Hibino H, 1997, J NEUROSCI, V17, P4711 HIEL H, 1992, HEARING RES, V57, P157, DOI 10.1016/0378-5955(92)90148-G Hotta S, 1998, ACTA OTO-LARYNGOL, V118, P362 Javel E, 2000, HEARING RES, V140, P45, DOI 10.1016/S0378-5955(99)00186-0 KERR TP, 1982, AM J OTOLARYNG, V3, P332, DOI 10.1016/S0196-0709(82)80006-9 Klis SFL, 2000, NEUROREPORT, V11, P623, DOI 10.1097/00001756-200002280-00037 KOMUNE S, 1985, HEARING RES, V18, P153, DOI 10.1016/0378-5955(85)90007-3 KOMUNE S, 1982, ARCH OTOLARYNGOL, V108, P334 KOMUNE S, 1987, ORL J OTO-RHINO-LARY, V49, P9 KOMUNE S, 1981, OTOLARYNG HEAD NECK, V89, P1013 KOMUNE S, 1983, OTOLARYNG HEAD NECK, V91, P427 KONISHI T, 1983, HEARING RES, V11, P219, DOI 10.1016/0378-5955(83)90080-1 KONISHI T, 1980, EXP BRAIN RES, V40, P457 KONISHI T, 1979, ACTA OTO-LARYNGOL, V88, P41, DOI 10.3109/00016487909137138 KUIJPERS W, 1970, PFLUG ARCH EUR J PHY, V320, P348, DOI 10.1007/BF00588213 MCDOWELL B, 1989, HEARING RES, V40, P221, DOI 10.1016/0378-5955(89)90163-9 MCGUIRT JP, 1994, J HISTOCHEM CYTOCHEM, V42, P843 MENDELSO.M, 1972, LARYNGOSCOPE, V82, P397, DOI 10.1288/00005537-197203000-00006 Mulheran M, 1998, BRIT J AUDIOL, V32, P47, DOI 10.3109/03005364000000050 OFFNER FF, 1987, HEARING RES, V29, P117, DOI 10.1016/0378-5955(87)90160-2 PAULER M, 1988, LARYNGOSCOPE, V98, P754 RAPHAEL Y, 1991, CELL MOTIL CYTOSKEL, V18, P215, DOI 10.1002/cm.970180307 RUSSELL NJ, 1979, ACTA OTO-LARYNGOL, V88, P369, DOI 10.3109/00016487909137181 SALT AN, 1987, LARYNGOSCOPE, V97, P984 SANTI PA, 1978, OTOLARYNG HEAD NECK, V86, P354 Schmiedt RA, 1996, HEARING RES, V102, P125, DOI 10.1016/S0378-5955(96)00154-2 SCHUKNEC.HF, 1974, LARYNGOSCOPE, V84, P1777 SCHULTE BA, 1989, J HISTOCHEM CYTOCHEM, V37, P127 SCHULTE BA, 1994, HEARING RES, V78, P65, DOI 10.1016/0378-5955(94)90045-0 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K Slepecky N. B., 1996, COCHLEA, P44 SMITH CA, 1954, LARYNGOSCOPE, V64, P141 SYKA J, 1981, HEARING RES, V4, P287, DOI 10.1016/0378-5955(81)90013-7 SYKA J, 1985, HEARING RES, V20, P267, DOI 10.1016/0378-5955(85)90031-0 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S Yamane H, 1988, Acta Otolaryngol Suppl, V447, P28 NR 52 TC 14 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2002 VL 172 IS 1-2 BP 127 EP 136 DI 10.1016/S0378-5955(02)00553-1 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 604GG UT WOS:000178608200015 PM 12361875 ER PT J AU Zacharek, MA Kaltenbach, JA Mathog, TA Zhang, JS AF Zacharek, MA Kaltenbach, JA Mathog, TA Zhang, JS TI Effects of cochlear ablation on noise induced hyperactivity in the hamster dorsal cochlear nucleus: implications for the origin of noise induced tinnitus SO HEARING RESEARCH LA English DT Article DE hyperactivity; spontaneous activity; dorsal cochlear nucleus; cochlear ablation; tinnitus ID STEM AUDITORY NUCLEI; SPONTANEOUS NEURAL ACTIVITY; INTENSE SOUND EXPOSURE; BRAIN-STEM; GUINEA-PIG; INFERIOR COLLICULUS; ANIMAL-MODEL; RAT; PROJECTIONS; DEGENERATION AB Chronic increases in multiunit spontaneous activity are induced in the dorsal cochlear nucleus (DCN) following exposures to intense sound. This hyperactivity has been implicated as a neurophysiological correlate of noise induced tinnitus. However, it is not known whether this hyperactivity originates centrally, or instead, reflects an increase in the level of spontaneous input from the auditory nerve. In the present study we addressed this issue by testing whether hyperactivity, induced in the DCN by previous exposure to intense sound, persists after ipsilateral cochlear input to the DCN has been removed. To induce hyperactivity, Syrian golden hamsters were exposed under anesthesia to an intense pure tone (122-127 dB SPL at 10 kHz) for 4 h. Additional hamsters, which were anesthetized for 4 h, but not tone exposed, served as controls. Electrophysiological recordings of spontaneous activity were performed on the surface of the left DCN in animals in which the ipsilateral cochlea was either intact or ablated. The degree of cochlear removal was determined by microdissection and histologic evaluation of the cochlea after completion of each recording session. Comparisons between the levels of activity recorded in animals with and without intact cochleas revealed that the induced hyperactivity in the DCN persisted after both partial and complete cochlear ablations. These results indicate that the maintenance of hyperactivity is not dependent on input from the ipsilateral cochlea, implying that hyperactivity originates centrally. (C) 2002 Published by Elsevier Science B.V. C1 Wayne State Univ, Sch Med, Dept Otolaryngol, Detroit, MI 48201 USA. RP Kaltenbach, JA (reprint author), Wayne State Univ, Sch Med, Dept Otolaryngol, 540 E Canfield,5E-UHC, Detroit, MI 48201 USA. EM jkalten@med.wayne.edu CR Benson TE, 1996, J COMP NEUROL, V365, P27 BENSON TE, 1990, J COMP NEUROL, V295, P52, DOI 10.1002/cne.902950106 BROWN MC, 1988, J COMP NEUROL, V278, P591, DOI 10.1002/cne.902780410 BURIAN M, 1988, NEUROSCI LETT, V84, P13, DOI 10.1016/0304-3940(88)90329-1 CAICEDO A, 1993, J COMP NEUROL, V328, P377, DOI 10.1002/cne.903280305 CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O Dandy W, 1941, SURG GYNECOL OBSTET, V72, P421 Gabriele ML, 2000, J NEUROSCI, V20, P6939 HEFFNER HE, 2002, IN PRESS HEAR RES HEFFNER HE, 1999, ARO ABSTR, V22, P47 House J W, 1981, Ciba Found Symp, V85, P204 ITOH K, 1987, BRAIN RES, V400, P145, DOI 10.1016/0006-8993(87)90662-7 JASTREBOFF PJ, 1988, BEHAV NEUROSCI, V102, P811, DOI 10.1037/0735-7044.102.6.811 JASTREBOFF PJ, 1994, AUDIOLOGY, V33, P202 JASTREBOFF PJ, 1988, LARYNGOSCOPE, V98, P280 JASTREBOFF PJ, 1991, ARCH OTOLARYNGOL, V117, P1162 Kaltenbach J A, 2000, J Am Acad Audiol, V11, P125 Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6 KALTENBACH JA, 1996, P 5 INT TINN SEM AM, P34 Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5 Kaltenbach JA, 1998, HEARING RES, V124, P78, DOI 10.1016/S0378-5955(98)00119-1 Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57 KALTENBACH JA, 1991, HEARING RES, V51, P149, DOI 10.1016/0378-5955(91)90013-Y KALTENBACH JA, 2002, IN PRESS J NEUROPHYS Kim JN, 1997, HEARING RES, V103, P169, DOI 10.1016/S0378-5955(96)00173-6 KLEPPER A, 1991, BRAIN RES, V557, P190, DOI 10.1016/0006-8993(91)90134-H KOERBER KC, 1966, EXP NEUROL, V16, P119, DOI 10.1016/0014-4886(66)90091-4 KROMER LF, 1980, ANAT EMBRYOL, V158, P227, DOI 10.1007/BF00315908 LEVINE RA, 1997, ASS RES OT ABSTR, V20, P65 Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8 Lockwood AH, 1998, NEUROLOGY, V50, P114 Luo L, 1999, J COMP NEUROL, V404, P271, DOI 10.1002/(SICI)1096-9861(19990208)404:2<271::AID-CNE10>3.0.CO;2-4 Manabe Y, 1997, HEARING RES, V103, P192, DOI 10.1016/S0378-5955(96)00181-5 McGinn MD, 1998, MICROSC RES TECHNIQ, V41, P187, DOI 10.1002/(SICI)1097-0029(19980501)41:3<187::AID-JEMT3>3.0.CO;2-R Meleca RJ, 1997, BRAIN RES, V750, P201, DOI 10.1016/S0006-8993(96)01354-6 PASIC TR, 1994, J COMP NEUROL, V348, P111, DOI 10.1002/cne.903480106 Potashner SJ, 2000, HEARING RES, V147, P125, DOI 10.1016/S0378-5955(00)00126-X Reich G. E., 1996, P 5 INT TINN SEM 199, P397 SALDANA E, 1993, NATO ADV SCI INST SE, V239, P153 SALVI RJ, 1983, J SPEECH HEAR RES, V26, P629 SASAKI CT, 1981, LARYNGOSCOPE, V91, P2018 SASAKI CT, 1980, BRAIN RES, V194, P511, DOI 10.1016/0006-8993(80)91233-0 Shore SE, 2000, J COMP NEUROL, V419, P271, DOI 10.1002/(SICI)1096-9861(20000410)419:3<271::AID-CNE1>3.0.CO;2-M Shore SE, 1998, HEARING RES, V116, P33, DOI 10.1016/S0378-5955(97)00207-4 SNOW JB, 1995, P 5 INT TINN SEM AM, P11 Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812 Suneja SK, 1998, EXP NEUROL, V154, P473, DOI 10.1006/exnr.1998.6946 THOMPSON AM, 1995, J COMP NEUROL, V351, P104, DOI 10.1002/cne.903510110 Weedman DL, 1996, J COMP NEUROL, V371, P311 WEINBERG RJ, 1987, NEUROSCIENCE, V20, P209, DOI 10.1016/0306-4522(87)90013-3 Wright DD, 1996, J COMP NEUROL, V365, P159, DOI 10.1002/(SICI)1096-9861(19960129)365:1<159::AID-CNE12>3.0.CO;2-L Zhang JS, 1998, NEUROSCI LETT, V250, P197, DOI 10.1016/S0304-3940(98)00482-0 ZHAO HB, 1995, BRAIN RES, V700, P295, DOI 10.1016/0006-8993(95)01078-A NR 54 TC 49 Z9 49 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2002 VL 172 IS 1-2 BP 137 EP 144 DI 10.1016/S0378-5955(02)00575-0 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 604GG UT WOS:000178608200016 PM 12361876 ER PT J AU Hartmann, R Gerlach, U Klinke, R AF Hartmann, R Gerlach, U Klinke, R TI Ototoxic side-effects of the I-Ks-channel blocker HMR1556 SO HEARING RESEARCH LA English DT Article DE potassium channel; ototoxicity; hearing loss; cochlear action potential; stria vascularis; blood-labyrinth barrier ID STRIAL MARGINAL CELLS; VESTIBULAR DARK CELLS; APICAL MEMBRANE; K+ SECRETION; SK CHANNEL; PROTEIN; INHIBITION; VASCULARIS; VIVO AB The inhibitor of I-Ks-channels, HMR1556, a potentially antiarrhythmic drug, might possess ototoxic side-effects. The I-Ks-channels are not only expressed in the heart but also in the stria vascularis of the inner ear and in the dark cells of the vestibular organ. Therefore possible effects of HMR1556 on hearing were studied in cats. Thresholds and intensity function of the cochlear action potential (CAP) were used as criteria. In addition to effects of the drug on heart rate and ECG, a substantial elevation of hearing thresholds and a shift in CAP intensity functions were observed. There was a clear dose-effect relationship. The hearing impairment observed showed a tendency for recovery. It is concluded that inhibitors of I-Ks-channels may generally exert ototoxic effects provided they can reach the cochlear spaces. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Inst Physiol 2, D-60590 Frankfurt, Germany. Aventis Pharma Deutschland, D-65926 Frankfurt, Germany. RP Klinke, R (reprint author), Inst Physiol 2, Theodor Stern Kai 7, D-60590 Frankfurt, Germany. CR EVANS EF, 1982, J PHYSIOL-LONDON, V331, P409 GALLEY N, 1971, PFLUG ARCH EUR J PHY, V330, P1, DOI 10.1007/BF00588729 Gerlach U, 2001, DRUG FUTURE, V26, P473, DOI 10.1358/dof.2001.026.05.858709 Gogelein H, 2000, N-S ARCH PHARMACOL, V362, P480, DOI 10.1007/s002100000284 GOTTL KH, 1985, N-S ARCH PHARMACOL, V331, P275, DOI 10.1007/BF00634249 HERBERT DA, 1971, J APPL PHYSIOL, V30, P434 JUHN SK, 1981, ACTA OTO-LARYNGOL, V91, P529, DOI 10.3109/00016488109138538 KLINKE R, 1988, ARZNEIM FORSCH DRUG, V38, P136 KLINKE R, 1981, OTOTOXIC SIDE EFFECT, V14, P95 Marcus DC, 1997, AM J PHYSIOL-CELL PH, V273, pC2022 Marcus DC, 1998, HEARING RES, V115, P82, DOI 10.1016/S0378-5955(97)00180-9 MORI N, 1993, EUR ARCH OTO-RHINO-L, V250, P186 Muller M, 1996, HEARING RES, V102, P133, DOI 10.1016/S0378-5955(96)00155-4 SAKAGAMI M, 1991, HEARING RES, V56, P168, DOI 10.1016/0378-5955(91)90166-7 Selnick HG, 1997, J MED CHEM, V40, P3865, DOI 10.1021/jm970517u SHEN Z, 1995, J MEMBRANE BIOL, V146, P283 Vetter DE, 1996, NEURON, V17, P1251, DOI 10.1016/S0896-6273(00)80255-X WANGEMANN P, 2000, Z AUDIOL S, V3, P7 WANGEMANN P, 1995, J MEMBRANE BIOL, V147, P263 WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 Whitworth CA, 2001, PHARMACOL TOXICOL, V88, P45, DOI 10.1034/j.1600-0773.2001.088001045.x NR 21 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2002 VL 172 IS 1-2 BP 145 EP 150 DI 10.1016/S0378-5955(02)00576-2 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 604GG UT WOS:000178608200017 PM 12361877 ER PT J AU Syka, J Rybalko, N Mazelova, J Druga, R AF Syka, J Rybalko, N Mazelova, J Druga, R TI Gap detection threshold in the rat before and after auditory cortex ablation SO HEARING RESEARCH LA English DT Article DE gap detection; temporal resolution; bilateral ablation; auditory cortex; rat ID DORSAL COCHLEAR NUCLEUS; FERRET MUSTELA-PUTORIUS; WORD DEAFNESS; NOISE; FREQUENCY; HEARING; NEURONS; CHINCHILLA; BANDWIDTH; DISCRIMINATION AB Gap detection threshold (GDT) was measured in adult female pigmented rats (strain Long-Evans) by an operant conditioning technique with food reinforcement, before and after bilateral ablation of the auditory cortex. GDT was dependent on the frequency spectrum and intensity of the continuously present noise in which the gaps were embedded. The mean values of GDT for gaps embedded in white noise or low-frequency noise (upper cutoff frequency 3 kHz) at 70 dB sound pressure level (SPL) were 1.57 +/- 0.07 ms and 2.9 +/- 0.34 ms, respectively. Decreasing noise intensity from 80 dB SPL to 20 dB SPL produced a significant increase in GDT. The increase in GDT was relatively small in the range of 80-50 dB SPL for white noise and in the range of 8060 dB for low-frequency noise. The minimal intensity level of the noise that enabled GDT measurement was 20 dB SPL for white noise and 30 dB SPL for low-frequency noise. Mean GDT values at these intensities were 10.6 +/- 3.9 ms and 31.3 +/- 4.2 ms, respectively. Bilateral ablation of the primary auditory cortex (complete destruction of the Te1 and partial destruction of the Te2 and Te3 areas) resulted in an increase in GDT values. The fifth day after surgery, the rats were able to detect gaps in the noise. The values of GDT observed at this time were 4.2 +/- 1.1 ms for white noise and 7.4 +/- 3.1 ms for low-frequency noise at 70 dB SPL. During the first month after cortical ablation, recovery of GDT was observed. However, I month after cortical ablation GDT still remained slightly higher than in controls (1.8 +/- 0.18 for white noise, 3.22 +/- 0.15 for low-frequency noise, P < 0.05). A decrease in DT values during the subsequent months was not observed. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Acad Sci Czech Republ, Inst Expt Med, Prague 14220 4, Czech Republic. Charles Univ, Fac Med 2, Dept Funct Anat, Prague, Czech Republic. RP Syka, J (reprint author), Acad Sci Czech Republ, Inst Expt Med, Videnska 1083, Prague 14220 4, Czech Republic. RI Druga, Rastislav/H-1179-2014; Rybalko, Natalia/H-2629-2014; Syka, Josef/H-3103-2014 CR AITKIN L., 1990, AUDITORY CORTEX ALBERT ML, 1974, BRAIN, V97, P373, DOI 10.1093/brain/97.1.373 Barsz K, 1998, HEARING RES, V115, P13, DOI 10.1016/S0378-5955(97)00173-1 BOETTCHER FA, 1990, HEARING RES, V48, P125, DOI 10.1016/0378-5955(90)90203-2 BUCHTEL HA, 1989, BRAIN LANG, V37, P12, DOI 10.1016/0093-934X(89)90098-9 EFRON R, 1985, NEUROPSYCHOLOGIA, V23, P43, DOI 10.1016/0028-3932(85)90042-9 EGGERMONT JJ, 1995, NEUROREPORT, V6, P1645, DOI 10.1097/00001756-199508000-00014 Eggermont JJ, 1999, J NEUROPHYSIOL, V81, P2570 Ehret G, 1997, J COMP PHYSIOL A, V181, P547, DOI 10.1007/s003590050139 FITZGIBBONS PJ, 1983, J ACOUST SOC AM, V74, P67, DOI 10.1121/1.389619 FLORENTINE M, 1984, J SPEECH HEAR RES, V27, P449 Frisina RD, 2001, HEARING RES, V158, P1, DOI 10.1016/S0378-5955(01)00296-9 GIRAUDI D, 1980, J ACOUST SOC AM, V68, P802, DOI 10.1121/1.384818 HEFFNER HE, 1994, HEARING RES, V73, P244, DOI 10.1016/0378-5955(94)90240-2 HEFFNER RS, 1988, J COMP PSYCHOL, V102, P66, DOI 10.1037/0735-7036.102.1.66 HEFFNER RS, 1991, HEARING RES, V52, P13, DOI 10.1016/0378-5955(91)90183-A HENDRICK.J, 1966, J EXP ANAL BEHAV, V9, P501, DOI 10.1901/jeab.1966.9-501 ISON JR, 1991, BEHAV NEUROSCI, V105, P33, DOI 10.1037//0735-7044.105.1.33 ISON JR, 1982, J COMP PHYSIOL PSYCH, V96, P945, DOI 10.1037/0735-7036.96.6.945 KALTENBACH JA, 1993, HEARING RES, V67, P35, DOI 10.1016/0378-5955(93)90229-T KELLY JB, 1971, J NEUROPHYSIOL, V34, P802 KELLY JB, 1977, J COMP PHYSIOL PSYCH, V91, P930, DOI 10.1037/h0077356 Kelly JB, 1996, BEHAV NEUROSCI, V110, P542 KELLY JB, 1973, BRAIN RES, V62, P71, DOI 10.1016/0006-8993(73)90620-3 KELLY JB, 1986, HEARING RES, V24, P269, DOI 10.1016/0378-5955(86)90025-0 LEITNER DS, 1993, PERCEPT PSYCHOPHYS, V54, P395, DOI 10.3758/BF03205275 Ohl FW, 1999, LEARN MEMORY, V6, P347 OKANOYA K, 1990, HEARING RES, V50, P185, DOI 10.1016/0378-5955(90)90044-P PALOMBI PS, 1994, HEARING RES, V75, P175, DOI 10.1016/0378-5955(94)90068-X Paxinos G, 1986, RAT BRAIN STEREOTAXI, V2nd PENNER MJ, 1977, J ACOUST SOC AM, V61, P552, DOI 10.1121/1.381297 PHILLIPS DP, 1990, BEHAV BRAIN RES, V40, P85, DOI 10.1016/0166-4328(90)90001-U PLOMP R, 1964, J ACOUST SOC AM, V36, P227 RELKIN EM, 1988, J ACOUST SOC AM, V84, P584, DOI 10.1121/1.396836 SALVI RJ, 1985, J ACOUST SOC AM, V77, P1173, DOI 10.1121/1.392181 Scheich H, 1997, ADV NEUROL, V73, P179 SHAILER MJ, 1983, J ACOUST SOC AM, V74, P467, DOI 10.1121/1.389812 SNELL KB, 1994, J ACOUST SOC AM, V96, P1458, DOI 10.1121/1.410288 Syka J, 2000, HEARING RES, V139, P59, DOI 10.1016/S0378-5955(99)00175-6 Syka J, 1996, HEARING RES, V100, P107, DOI 10.1016/0378-5955(96)00101-3 TYLER RS, 1982, J ACOUST SOC AM, V72, P740, DOI 10.1121/1.388254 Walton JP, 1997, J COMP PHYSIOL A, V181, P161, DOI 10.1007/s003590050103 ZHANG W, 1990, HEARING RES, V46, P181, DOI 10.1016/0378-5955(90)90001-6 Zilles K., 1985, P1 NR 44 TC 29 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2002 VL 172 IS 1-2 BP 151 EP 159 DI 10.1016/S0378-5955(02)00578-6 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 604GG UT WOS:000178608200018 PM 12361878 ER PT J AU Wallace, MN Shackleton, TM Palmer, AR AF Wallace, MN Shackleton, TM Palmer, AR TI Phase-locked responses to pure tones in the primary auditory cortex SO HEARING RESEARCH LA English DT Article DE neural synchrony; neural coding; coincidence detection; phase-locking; vocalisation ID MEDIAL GENICULATE-BODY; GUINEA-PIG; NEURONS; ORGANIZATION; TRANSMISSION; COLUMNAR; SOUND; AREAS; CAT AB At the level of the brainstem, precise temporal information is essential for some aspects of binaural processing, while at the level of the cortex, rate and place mechanisms for neural coding seem to predominate. However, we now show that precise timing of steady-state responses to pure tones occurs in the primary auditory cortex (AI). Recordings were made from 163 multi-units in guinea pig AI. All units increased their firing rate in response to pure tones at 100 Hz and 46 (28%) gave sustained responses which were synchronised with the stimulus waveform (phase-locking). The phase-locking units were clustered together in columns. Phase-locking was generally strongest in layers III and IV but was also recorded in layers 1, 11 and V. Good phase-locking was observed over a range of 60-250 Hz: some units (30%) were narrow band while others (37%) were low-pass (33% were not determined). Phase-locking strength was also influenced by sound level: some units showed monotonic increases in strength with level and others were non-monotonic. Ten of the units provided a good temporal representation of the fundamental frequency (270 Hz) of a guinea pig vocalisation (rumble) and may be involved in analysing communication calls. (C) 2002 Elsevier Science B.V. All rights reserved. C1 MRC, Inst Hearing Res, Nottingham NG7 2RD, England. RP Wallace, MN (reprint author), MRC, Inst Hearing Res, Univ Pk, Nottingham NG7 2RD, England. CR Ahissar E, 2001, P NATL ACAD SCI USA, V98, P13367, DOI 10.1073/pnas.201400998 ARVOLA A, 1974, Annales Zoologici Fennici, V11, P1 Brugge JF, 1992, MAMMALIAN AUDITORY P, P1 deRibaupierre F, 1997, CENTRAL AUDITORY SYS, P317 DERIBAUPIERRE F, 1980, HEARING RES, V3, P65, DOI 10.1016/0378-5955(80)90008-8 Eggermont JJ, 2000, J NEUROPHYSIOL, V83, P2708 Eggermont JJ, 2001, HEARING RES, V157, P1, DOI 10.1016/S0378-5955(01)00259-3 Engel AK, 2001, TRENDS COGN SCI, V5, P16, DOI 10.1016/S1364-6613(00)01568-0 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 Heil P, 1997, J NEUROPHYSIOL, V77, P2616 KUWADA S, 1984, J NEUROPHYSIOL, V51, P1306 Mardia K. V., 1972, STAT DIRECTIONAL DAT MCCORMICK DA, 1985, J NEUROPHYSIOL, V54, P782 MERRILL EG, 1972, MED BIOL ENG, V10, P662, DOI 10.1007/BF02476084 MITANI A, 1985, J COMP NEUROL, V235, P430, DOI 10.1002/cne.902350403 MOUNTCAS.VB, 1969, J NEUROPHYSIOL, V32, P452 Oertel D, 1999, ANNU REV PHYSIOL, V61, P497, DOI 10.1146/annurev.physiol.61.1.497 PHILLIPS DP, 1981, J NEUROPHYSIOL, V45, P48 PHILLIPS DP, 1991, NEUROBIOLOGY HEARING, P335 REDIES H, 1989, J COMP NEUROL, V282, P489, DOI 10.1002/cne.902820403 Rood J.P., 1972, Animal Behav Monogr, V5, P1 ROUILLER E, 1979, HEARING RES, V1, P213, DOI 10.1016/0378-5955(79)90015-7 Rutkowski RG, 2000, HEARING RES, V145, P177, DOI 10.1016/S0378-5955(00)00087-3 Sabatini BL, 1999, ANNU REV PHYSIOL, V61, P521, DOI 10.1146/annurev.physiol.61.1.521 Shen JX, 1999, HEARING RES, V137, P174, DOI 10.1016/S0378-5955(99)00149-5 STEINSCHNEIDER M, 1980, BRAIN RES, V198, P75, DOI 10.1016/0006-8993(80)90345-5 Sugimoto S, 1997, HEARING RES, V112, P175, DOI 10.1016/S0378-5955(97)00119-6 Syka J, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P431, DOI 10.1007/978-1-4419-8712-9_39 Wallace MN, 2002, EXP BRAIN RES, V143, P106, DOI 10.1007/s00221-001-0973-9 Wallace MN, 2000, BRIT J AUDIOL, V34, P92 Wallace MN, 2000, EXP BRAIN RES, V132, P445, DOI 10.1007/s002210000362 Wallace MN, 2000, NEUROREPORT, V11, P3989, DOI 10.1097/00001756-200012180-00017 Winer JA, 1992, MAMMALIAN AUDITORY P, P222 WINTER IM, 1990, HEARING RES, V44, P161, DOI 10.1016/0378-5955(90)90078-4 Yost WA, 1996, J ACOUST SOC AM, V99, P1066, DOI 10.1121/1.414593 NR 35 TC 26 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2002 VL 172 IS 1-2 BP 160 EP 171 DI 10.1016/S0378-5955(02)00580-4 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 604GG UT WOS:000178608200019 PM 12361879 ER PT J AU Spicer, SS Schulte, BA AF Spicer, SS Schulte, BA TI Spiral ligament pathology in quiet-aged gerbils SO HEARING RESEARCH LA English DT Article DE cochlea; lateral wall; fibrocytes; ultrastructure; aging; presbyacusis ID GUINEA-PIG COCHLEA; OUTER HAIR-CELLS; STRIA VASCULARIS; PLACE-FREQUENCY; FINE-STRUCTURE; ION-TRANSPORT; POTASSIUM; MEMBRANE; NA,K-ATPASE; FIBROCYTES AB The ultrastructure of the spiral ligament was compared in aged and young gerbils to assess the involvement of connective tissues in the lateral wall and particularly the fibrocytes in development of presbyacusis. Pathologic features in fibrocytes of senescent gerbils spanned a wide range reflecting different stages of lateral wall involution. All of the type II, IV and V fibrocytes selectively developed cytosolic vacuoles in an early degenerative phase showing minimal strial involvement. Clear spaces indicative of interstitial edema separated the vacuolated cell bodies and their plasmalemmal processes. As a presumed intermediate phase, profiles of amorphous substance apparently derived from apoptosis/necrosis of type II fibrocytes infiltrated the type II fibrocyte area among nearly normal appearing cells. In cochlear turns with advanced strial degeneration, type II fibrocytes disappeared from the spiral prominence area leaving only type I-like fibrocytes occasionally accompanied by a collagen infiltrate. Type V fibrocytes disappeared similarly from the suprastrial area. The extent of atrophy in type II fibrocytes corresponded in general with that in the neighboring stria vascularis. Age-dependent atrophy in the lateral wall largely spared type I fibrocytes except that they often enclosed discrete amorphous foci lacking organelles. The involution thus affected principally the Na,K-ATPase-positive fibrocytes functioning in active uptake rather than passive conductance of K+. The vacuolization and degeneration exclusive to ATPase-rich fibrocytes and the associated intercellular edema are interpreted as secondary responses, possibly as a result of impaired diffusion of K+ through downstream marginal cells. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Med Univ S Carolina, Dept Pathol & Lab Med, Charleston, SC 29425 USA. Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, Charleston, SC 29425 USA. RP Spicer, SS (reprint author), Med Univ S Carolina, Dept Pathol & Lab Med, 165 Ashley Ave, Charleston, SC 29425 USA. CR ASHMORE JF, 1986, NATURE, V322, P386 Ashok BT, 1999, EXP GERONTOL, V34, P293, DOI 10.1016/S0531-5565(99)00005-4 Barja G, 1998, ANN NY ACAD SCI, V854, P224, DOI 10.1111/j.1749-6632.1998.tb09905.x COREY DP, 1979, NATURE, V281, P675, DOI 10.1038/281675a0 GITTER AH, 1992, HEARING RES, V60, P13, DOI 10.1016/0378-5955(92)90053-P GITTER AH, 1986, ORL J OTO-RHINO-LARY, V48, P68 Gratton M A, 1996, Hear Res, V102, P181, DOI 10.1016/S0378-5955(96)90017-9 Gratton MA, 1997, HEARING RES, V114, P1, DOI 10.1016/S0378-5955(97)00025-7 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 Knight JA, 1998, ANN CLIN LAB SCI, V28, P331 KONISHI T, 1978, ACTA OTO-LARYNGOL, V86, P22, DOI 10.3109/00016487809124717 MARCUS DC, 1986, NEUROBIOLOGY HEARING, P123 NAKAZAWA K, 1995, J HISTOCHEM CYTOCHEM, V43, P981 SALT AN, 1986, NEUROBIOLOGY HEARING, P108 SALT AN, 1987, LARYNGOSCOPE, V97, P984 SCHMIEDT RA, 2002, IN PRESS APPL ROUND SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 SCHULTE BA, 1989, J HISTOCHEM CYTOCHEM, V37, P127 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K Seidman MD, 2000, AM J OTOL, V21, P161, DOI 10.1016/S0196-0709(00)80003-4 Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 SPICER SS, 1987, LAB INVEST, V57, P535 HOLTHOFER H, 1987, AM J PHYSIOL, V253, pC323 SPICER SS, 1994, ANAT REC, V240, P149, DOI 10.1002/ar.1092400202 SPICER SS, 1994, HEARING RES, V79, P161, DOI 10.1016/0378-5955(94)90137-6 SPICER SS, 1993, ANAT REC, V237, P421, DOI 10.1002/ar.1092370316 Spicer SS, 1997, HEARING RES, V111, P93, DOI 10.1016/S0378-5955(97)00097-X Spicer SS, 1997, ANAT REC, V249, P117 Stadtman ER, 1998, DRUG METAB REV, V30, P225, DOI 10.3109/03602539808996310 STERKERS O, 1988, PHYSIOL REV, V68, P1083 TARNOWSKI BI, 1991, HEARING RES, V54, P123, DOI 10.1016/0378-5955(91)90142-V Thomopoulos GN, 1997, HEARING RES, V111, P31, DOI 10.1016/S0378-5955(97)00080-4 WADA J, 1979, ARCH OTO-RHINO-LARYN, V225, P79, DOI 10.1007/BF00455206 ZIDANIC M, 1990, BIOPHYS J, V57, P1253 NR 34 TC 59 Z9 63 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2002 VL 172 IS 1-2 BP 172 EP 185 DI 10.1016/S0378-5955(02)00581-6 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 604GG UT WOS:000178608200020 PM 12361880 ER PT J AU Chen, GD AF Chen, GD TI Effect of hypoxia on noise-induced auditory impairment SO HEARING RESEARCH LA English DT Article DE hypoxia; noise-induced hearing loss; hair cell loss; rat ID COCHLEAR BLOOD-FLOW; INDUCED HEARING-LOSS; TEMPORARY THRESHOLD SHIFTS; LOUD SOUND EXPOSURE; CARBON-MONOXIDE; GUINEA-PIG; POTENTIATION; OXYGEN; MICROCIRCULATION; ABR AB Chemical asphyxiants have been shown to potentiate noise-induced hearing loss (NIHL) in our previous reports. However, it is still unclear whether hypoxia interacts with noise to potentiate NIHL. This is an important issue, since many people at risk of exposure to noise may also suffer from hypoxia. In the present study, rats were exposed to 14.1-kHz octave-band noise at 105, 110, and 115 dB SPL and hypoxic air (10% O-2 and 18% O-2) for 4 h. Cochlear compound action potential threshold loss and hair cell loss were determined 4 weeks after the exposure. Though the hypoxia did not cause hearing loss and hair cell loss, the combined exposure to noise and hypoxic air caused more hearing loss and hair cell loss than the noise alone. The NIHL potentiation by hypoxia appeared to increase linearly with the hypoxia level. 10% O-2 exposure significantly potentiated NIHL and 18% 02 exposure also showed an evident NIHL potentiation. This suggests that people suffering from hypoxia may have increased risk to noise trauma. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Oklahoma, Hlth Sci Ctr, Coll Pharm, Oklahoma City, OK 73190 USA. RP Chen, GD (reprint author), Univ Oklahoma, Hlth Sci Ctr, Coll Pharm, POB 26901, Oklahoma City, OK 73190 USA. CR Attanasio G, 2001, ACTA OTO-LARYNGOL, V121, P465, DOI 10.1080/000164801300366598 ATTIAS J, 1990, HEARING RES, V45, P247, DOI 10.1016/0378-5955(90)90124-8 BUICK F, 1991, AVIAT SPACE ENVIR MD, V62, P1119 BURSAUX E, 1971, Bulletin de Physio-Pathologie Respiratoire, V7, P729 CARLILE S, 1992, AVIAT SPACE ENVIR MD, V63, P1093 Chen GD, 1999, HEARING RES, V138, P181, DOI 10.1016/S0378-5955(99)00157-4 Chen GD, 2001, HEARING RES, V154, P108, DOI 10.1016/S0378-5955(01)00228-3 CHEN GD, 2002, ABSTR ASS RES OTOLAR, P401 Chen GD, 1999, HEARING RES, V132, P149, DOI 10.1016/S0378-5955(99)00044-1 CUMMING JF, 1976, CLIN PHARMACOL THER, V19, P468 DENGERINK HA, 1984, ACTA OTO-LARYNGOL, V98, P81, DOI 10.3109/00016488409107537 Fechter L. D., 2000, NOISE HLTH, V3, P11 FECHTER LD, 2001, NOISE INDUCED HEARIN Fechter LD, 2002, TOXICOL SCI, V66, P131, DOI 10.1093/toxsci/66.1.131 FECHTER LD, 1988, HEARING RES, V34, P39, DOI 10.1016/0378-5955(88)90049-4 Fechter LD, 2000, TOXICOL SCI, V58, P315, DOI 10.1093/toxsci/58.2.315 FECHTER LD, 2002, NOISE HLTH, V4, P51 Goldwyn B, 1998, OTOLARYNG HEAD NECK, V118, P576, DOI 10.1177/019459989811800503 HATCH M, 1991, HEARING RES, V56, P265, DOI 10.1016/0378-5955(91)90176-A HILDESHEIMER M, 1987, LARYNGOSCOPE, V97, P204 HILLERDAL M, 1987, ACTA OTO-LARYNGOL, V104, P270, DOI 10.3109/00016488709107328 KOJDE Y, 1960, ANN OTOL, V69, P661 Lamm K, 1996, Audiol Neurootol, V1, P148 Lamm K, 1998, HEARING RES, V115, P149, DOI 10.1016/S0378-5955(97)00186-X LAMM K, 1988, HNO, V36, P367 MAASS B, 1976, ARCH OTO-RHINO-LARYN, V214, P109, DOI 10.1007/BF00453607 MAASS B, 1977, TIEREXPERIMENTELLE U MEYER P, 1991, ORL J OTO-RHINO-LARY, V53, P327 MISRAHY GA, 1958, J ACOUST SOC AM, V30, P247, DOI 10.1121/1.1909555 MISRAHY GA, 1958, J ACOUST SOC AM, V30, P701, DOI 10.1121/1.1909734 NISHIDA O, 1977, HIROSHIMA J MED SCI, V25, P129 OKAMOTO A, 1992, ACTA OTO-LARYNGOL, V112, P59, DOI 10.3109/00016489209100783 OKAMOTO A, 1990, ACTA OTO-LARYNGOL, V109, P378, DOI 10.3109/00016489009125158 OKAMOTO A, 1990, ACTA OTO-LARYNGOL, V110, P394, DOI 10.3109/00016489009107460 PERLMAN H B, 1962, Acta Otolaryngol, V54, P99, DOI 10.3109/00016486209126927 SERIES F, 1990, ANN INTERN MED, V113, P507 SOHMER H, 1989, HEARING RES, V40, P87, DOI 10.1016/0378-5955(89)90102-0 Swenson ER, 1997, AVIAT SPACE ENVIR MD, V68, P499 THORNE PR, 1987, HEARING RES, V27, P1, DOI 10.1016/0378-5955(87)90021-9 TIRLAPUR VG, 1983, THORAX, V38, P785, DOI 10.1136/thx.38.10.785 *US DEP HHS, 1996, MMWR-MORBID MORTAL W, V35, P185 VERTES D, 1981, ACTA OTO-LARYNGOL, V92, P15, DOI 10.3109/00016488109133233 NR 42 TC 18 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2002 VL 172 IS 1-2 BP 186 EP 195 DI 10.1016/S0378-5955(02)00582-8 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 604GG UT WOS:000178608200021 PM 12361881 ER PT J AU Schwartz, IR Keh, A Hsu, G AF Schwartz, IR Keh, A Hsu, G TI Morphology, GluR1 and GRIP-C localization differ in octopus cells of C57BL6 and B6Cast mice SO HEARING RESEARCH LA English DT Article DE age-related hearing loss; ionotropic glutamate receptor; presbycusis ID SENSORINEURAL HEARING-LOSS; ANTEROVENTRAL COCHLEAR NUCLEUS; INFERIOR COLLICULUS NEURONS; CBA/J MICE; GLUTAMATE RECEPTORS; AZIMUTHAL LOCATION; AGING C57BL/6J; MOUSE; PRESBYCUSIS; RESPONSES AB The C57BL6 mouse (B6) is homozygous for the gene for age-related hearing loss (ahl/ahl) and shows normal adult-like hearing before subtle changes in hearing begin at about 30 days of age. The B6Cast mouse is congenic to B6, having the wild type allele for normal hearing from Castaneous Ei on a B6 background. It has normal hearing throughout most of its lifespan. This study characterized the morphology of octopus cell (OC) somata in the posterior-ventral cochlear nucleus and of synaptic terminals on the OC somata in 8-week-old B6 and B6Cast mice, and the immunolocalization of antibodies to GluR1 (glutamate receptor subunit 1) and GRIP-C (glutamate receptor interacting protein-C terminus). By 8 weeks of age there are significant changes in the morphology of OCs and synaptic terminals around their somata in B6 mice compared to B6Cast mice. The distribution of immunoreactivity for the proteins GluR1 and GRIP is also significantly different in B6 mice from that in B6Cast mice. The modest degenerative changes reported in some B6 outer hair cells of the basal turn at this age do not seem adequate to explain the major changes observed in most OCs at a time when physiological studies show that many measures of the animals' hearing are still near normal. The Findings suggest that changes in the alpha-amino-3-hydroxy-5-methyl-4-isoxazole glutamate receptor subunits and/or their binding proteins are part of the phenotype of ahl, and may reflect a role of the glutamate receptor pathway in the mechanism of ahl. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Yale Univ, Sch Med, Dept Surg Otolaryngol, New Haven, CT 06520 USA. RP Schwartz, IR (reprint author), Yale Univ, Sch Med, Dept Surg Otolaryngol, POB 208041,333 Cedar St, New Haven, CT 06520 USA. CR BRINER W, 1989, NEUROBIOL AGING, V10, P295, DOI 10.1016/0197-4580(89)90039-0 DONG H, 1997, NATURE, V386, P223 DONG H, 1997, NATURE, V386, P221 Dong HL, 1997, NATURE, V386, P279, DOI 10.1038/386279a0 EHRENBERGER K, 1995, ACTA OTO-LARYNGOL, V115, P236, DOI 10.3109/00016489509139299 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H HARRISON JM, 1966, J COMP NEUROL, V126, P391, DOI 10.1002/cne.901260303 HENRY KR, 1978, ACTA OTO-LARYNGOL, V86, P366, DOI 10.3109/00016487809107515 HSU G, 2000, ARO MIDW M, V23, P270 HUNTER KP, 1987, HEARING RES, V30, P207, DOI 10.1016/0378-5955(87)90137-7 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 KAZEE AM, 1995, HEARING RES, V89, P109, DOI 10.1016/0378-5955(95)00128-6 KORADA S, 1999, ABSTR ASS RES OT, V22, P67 MCCAUGHRAN J, 1999, BEHAV GENET, V1, P21 MCFADDEN SL, 1994, HEARING RES, V78, P132, DOI 10.1016/0378-5955(94)90019-1 MCFADDEN SL, 1994, HEARING RES, V78, P115, DOI 10.1016/0378-5955(94)90018-3 MIKAELIA.DO, 1974, ACTA OTO-LARYNGOL, V77, P327, DOI 10.3109/00016487409124632 MIKAELIAN DO, 1979, LARYNGOSCOPE, V89, P1 PARHAM K, 1988, Behavioral Neuroscience, V102, P881, DOI 10.1037/0735-7044.102.6.881 Petralia RS, 1996, J COMP NEUROL, V372, P356 Sanes D H, 1985, Brain Res, V354, P255 SANES DH, 1985, J NEUROSCI, V5, P1152 Schwartz IR, 2000, HEARING RES, V147, P70, DOI 10.1016/S0378-5955(00)00121-0 SCHWARTZ IR, 2000, SOC NEUR ABSTR, V26, P676 Schwartz IR, 1999, HEARING RES, V137, P77, DOI 10.1016/S0378-5955(99)00140-9 Shnerson A, 1981, Brain Res, V254, P65 Shnerson A, 1981, Brain Res, V254, P77 Tanaka H, 2000, BRAIN RES, V886, P190, DOI 10.1016/S0006-8993(00)02951-6 Weiss JH, 2000, TRENDS NEUROSCI, V23, P365, DOI 10.1016/S0166-2236(00)01610-6 WILLIS RD, 1984, J VAC SCI TECHNOL A, V2, P57, DOI 10.1116/1.572625 WILLOTT JF, 1988, HEARING RES, V37, P15, DOI 10.1016/0378-5955(88)90074-3 WILLOTT JF, 1991, HEARING RES, V53, P78, DOI 10.1016/0378-5955(91)90215-U Willott J. F., 1991, AGING AUDITORY SYSTE WILLOTT JF, 1988, EXP NEUROL, V99, P615, DOI 10.1016/0014-4886(88)90178-1 WILLOTT JF, 1986, J NEUROPHYSIOL, V56, P391 Willott JF, 1997, J COMP NEUROL, V385, P405 WILLOTT JF, 1991, ABSTR ASS RES OT, V14, P16 WILLOTT JF, 1992, J COMP NEUROL, V321, P666, DOI 10.1002/cne.903210412 Willott J F, 1996, J Am Acad Audiol, V7, P141 WILLOTT JF, 1990, J COMP NEUROL, V300, P61, DOI 10.1002/cne.903000106 Willott JF, 1999, HEARING RES, V135, P78, DOI 10.1016/S0378-5955(99)00094-5 WILLOTT JF, 1987, J COMP NEUROL, V260, P472, DOI 10.1002/cne.902600312 WILLOTT JF, 1994, HEARING RES, V74, P1, DOI 10.1016/0378-5955(94)90171-6 Willott JF, 1998, HEARING RES, V119, P27, DOI 10.1016/S0378-5955(98)00029-X WILLOTT JF, 1984, BRAIN RES, V309, P159, DOI 10.1016/0006-8993(84)91022-9 Willott JF, 1996, DEV BRAIN RES, V91, P218, DOI 10.1016/0165-3806(95)00188-3 WILLOTT JF, 1995, HEARING RES, V88, P143, DOI 10.1016/0378-5955(95)00107-F Willott J F, 1990, Acta Otolaryngol Suppl, V476, P153 NR 49 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2002 VL 171 IS 1-2 BP 1 EP 12 DI 10.1016/S0378-5955(01)00396-3 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 594BZ UT WOS:000178030000001 PM 12204345 ER PT J AU Lewis, ER Henry, KR Yamada, WM AF Lewis, ER Henry, KR Yamada, WM TI Tuning and timing of excitation and inhibition in primary auditory nerve fibers SO HEARING RESEARCH LA English DT Article DE tuning; temporal response; adaptation; suppression; reverse correlation; frog amphibian papilla ID WIENER-KERNEL ANALYSIS; INNER-EAR FUNCTION; RANA-CATESBEIANA; GAUSSIAN-NOISE; RESPONSES; BULLFROG; FREQUENCY; PATTERNS; STIMULI; SYSTEM AB Information about the tuning and timing of excitation, adaptation and suppression in an auditory primary afferent axon can be obtained from the second-order Wiener kernel. Through the process of singular-value decomposition, this information can be extracted from the kernel and displayed graphically in separate two-dimensional images for excitation and inhibition(1). For low- to mid-frequency units, the images typically include checkerboard patterns. For all units they may include patterns of parallel diagonal lines. The former represent non-linearities in the phase-locked (ac) response of the unit; the latter reflect non-linear envelope-following (dc) responses. Examples of detailed interpretation are presented for three amphibian-papillar units from the American bullfrog, The second-order Wiener kernel itself is derived from second-order reverse correlation between spikes and a continuous, non-repeating, broad-band white-noise stimulus. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. Univ Calif Davis, Dept Psychol, Davis, CA 95616 USA. Univ So Calif, Los Angeles, CA 90089 USA. RP Lewis, ER (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM lewis@eecs.berkeley.edu CR Capranica R.R., 1976, P551 Carney LH, 1999, J ACOUST SOC AM, V105, P2384, DOI 10.1121/1.426843 DEBOER E, 1978, J ACOUST SOC AM, V63, P115, DOI 10.1121/1.381704 DEBOER E, 1968, IEEE T BIO-MED ENG, VBM15, P169, DOI 10.1109/TBME.1968.4502561 Dongarra J.J., 1979, LINPACK USERS GUIDE EGGERMONT JJ, 1993, HEARING RES, V66, P177, DOI 10.1016/0378-5955(93)90139-R FENG AS, 1975, J COMP PHYSIOL, V100, P221 FRISHKOPF LS, 1963, J ACOUST SOC AM, V35, P1219, DOI 10.1121/1.1918676 HILLERY CM, 1987, HEARING RES, V25, P233, DOI 10.1016/0378-5955(87)90095-5 Lewis ER, 1995, HEARING RES, V92, P1, DOI 10.1016/0378-5955(95)00189-1 LEWIS ER, 1986, AUDITORY FREQUENCY S, P129 Lewis E.R., 1990, Comments on Theoretical Biology, V1, P253 LEWIS ER, 1990, LECT NOTES BIOMATH, V87, P139 LEWIS ER, 1982, J COMP PHYSIOL, V145, P437 Marmarelis PZ, 1978, ANAL PHYSL SYSTEMS W MEGELA AL, 1981, J NEUROPHYSIOL, V46, P465 MEGELA AL, 1984, J ACOUST SOC AM, V75, P1155, DOI 10.1121/1.390764 RUGH WJ, 1981, NONLINEAR SYSTEM THE Schetzen M., 1980, VOLTERRA WIENER THEO, Vfirst vanDijk P, 1997, HEARING RES, V114, P229, DOI 10.1016/S0378-5955(97)00168-8 vanDijk P, 1997, HEARING RES, V114, P243, DOI 10.1016/S0378-5955(97)00169-X VANDIJK P, 1994, J ACOUST SOC AM, V95, P904, DOI 10.1121/1.410009 WEISS TF, 1988, HEARING RES, V33, P175, DOI 10.1016/0378-5955(88)90030-5 Yamada WM, 1999, HEARING RES, V130, P155, DOI 10.1016/S0378-5955(99)00005-2 YAMADA WM, 1996, DIVERSITY AUDITORY M, P111 YAMADA WY, 1997, THESIS U CALIFORNIA YU XY, 1991, THESIS U CALIFORNIA NR 27 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2002 VL 171 IS 1-2 BP 13 EP 31 DI 10.1016/S0378-5955(02)00290-3 PG 19 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 594BZ UT WOS:000178030000002 PM 12204346 ER PT J AU Hoshijima, H Makimoto, K Noi, O Ohinata, Y Takenaka, F AF Hoshijima, H Makimoto, K Noi, O Ohinata, Y Takenaka, F TI Effects of nitric oxide synthase inhibitor on cochlear blood flow SO HEARING RESEARCH LA English DT Article DE cochlear blood flow; cutaneous blood flow; endothelial nitric oxide synthase; N-nitro-L-arginine-methyl ester; L-arginine; spiral modiolar artery; spiral ligament ID SPIRAL MODIOLAR ARTERY; GUINEA-PIG COCHLEA; RAT; PHYSIOLOGY; RELAXATION; PATHWAY; MUSCLE; MICROCIRCULATION; AUTOREGULATION; LOCALIZATION AB We observed in rats the changes in cochlear blood flow (CoBF) and cutaneous blood flow of the abdominal all (AbBF) after the administration of the NO synthase inhibitor, N-nitro-L-arginine-methyl ester (L-NAME), Ten minutes after i.v. infusion of L-NAME (0.2, 1, 5, 10 mg/kg), L-arginine, which is a substrate of NO, was infused (100 mg/kg) i.v, Employing a laser Doppler flowmeter, the changes in blood flow were recorded from the basal turn of the right cochlea or the abdominal all and blood pressure (BP) was recorded from the left femoral artery simultaneously. Vascular conductance (VC) was calculated from CoBF/ mean BP (cochlear VC) or AbBF/mean BP (abdominal VC). The findings in rats generally agreed with those in guinea Pigs [Brechtelsbauer et al., Hear. Res. 77 (1994) 38-42]. Intravenous infusion of L-NAME produced it dose-dependent depression of cochlear VC at 0.2 mg/kg (-18.9), 1 mg/kg (-37.9%), 5 mg/kg (-45.8%) and 10 mg/kg (-48.3%). AbBF also decreased after infusion of L-NAME (5 mg/kg) but to a lesser degree (-41.1%,) in VC) with no significance compared to CoBF (5 mg/kg). Infusion Of L-arginine partially reversed the CoBF decrease caused by L-NAME. The group of 0.2 mg/kg infusion of L-NAME showed the largest degree of recovery with L-arginine, while the 10 mg/kg group showed the smallest. The decrease ill AbBF did not recover substantially with L-arginine, the degree being less than that of each group in the CoBF experiment. It its Suggested that the NO/ soluble guanylate cyclase/cGMP system is more active in the cochlear microcirculation, With the round window (RW) application of 1% L-NAME (2 mul), cochlear VC was decreased by 21.6%, which was closest to that of the 0.2 mg/kg group of L-NAME i.v. infusion. The cochlear VC depression after local application of L-NAME did not show any recovery (-0.3%) by RW application Of 5% L-arginine (2 mul) 25 min after L-NAME application: a slight gradual increase was observed when a higher concentration (20%) Of L-arginine was applied to the RW. We propose that i.v. infusions of L-NAME and L-arginine primarily affect the precapillary arteriole of the spiral modiolar artery which effectively regulates microcirculation as a resistance vessel. and that RW application affects the vessels of the lateral wall. not the spiral modiolar artery because of the difficulty of substance diffusion. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Osaka Med Coll, Dept Otolaryngol, Osaka 5698686, Japan. RP Makimoto, K (reprint author), Osaka Med Coll, Dept Otolaryngol, 2-7 Daigakumachi, Osaka 5698686, Japan. CR BALLIGAND JL, 1991, J CARDIOVASC PHARM, V17, pS213, DOI 10.1097/00005344-199117003-00039 Bensley RR, 1928, ANAT REC, V39, P37, DOI 10.1002/ar.1090390104 BRAVERMAN IM, 1989, J INVEST DERMATOL, V93, pS2, DOI 10.1111/1523-1747.ep12580893 BRECHTELSBAUER PB, 1995, HEARING RES, V89, P130, DOI 10.1016/0378-5955(95)00130-4 BRECHTELSBAUER PB, 1994, HEARING RES, V77, P38, DOI 10.1016/0378-5955(94)90251-8 BROWN JN, 1994, AM J PHYSIOL, V266, pH458 CARLISLE L, 1990, HEARING RES, V43, P107, DOI 10.1016/0378-5955(90)90219-F Clough GF, 1999, J PHYSIOL-LONDON, V516, P549, DOI 10.1111/j.1469-7793.1999.0549v.x Fessenden JD, 1998, HEARING RES, V118, P168, DOI 10.1016/S0378-5955(98)00027-6 Fessenden JD, 1997, J HISTOCHEM CYTOCHEM, V45, P1401 Franz P, 1996, ACTA OTO-LARYNGOL, V116, P726, DOI 10.3109/00016489609137914 FURCHGOTT RF, 1980, NATURE, V288, P373, DOI 10.1038/288373a0 GAUDIO E, 1985, ANGIOLOGY, V36, P458, DOI 10.1177/000331978503600708 GOSEPATH K, 1999, J PHYSL, V516, P549 Gruber DD, 1998, HEARING RES, V119, P113, DOI 10.1016/S0378-5955(98)00036-7 HAEFLIGER IO, 1994, INVEST OPHTH VIS SCI, V35, P991 Hess A, 1999, BRAIN RES, V830, P113, DOI 10.1016/S0006-8993(99)01433-X HONIG CR, 1982, AM J PHYSIOL, V243, P196 KAWAKAMI M, 1991, EUR ARCH OTO-RHINO-L, V248, P471, DOI 10.1007/BF00627636 Kellogg DL, 1998, J APPL PHYSIOL, V85, P824 Koss MC, 1998, INVEST OPHTH VIS SCI, V39, P559 LEBEUX YJ, 1978, ANAT REC, V190, P811, DOI 10.1002/ar.1091900404 Messlinger K, 2000, BRIT J PHARMACOL, V129, P1397, DOI 10.1038/sj.bjp.0703220 MICHEL O, 1998, HEARING RES, V133, P1 MONCADA S, 1993, NEW ENGL J MED, V329, P2002 MONCADA S, 1988, HYPERTENSION, V12, P365 MORITOKI H, 1994, ARCH INT PHARMACOD T, V327, P152 PERSSON MG, 1990, BRIT J PHARMACOL, V100, P463 REN TY, 1994, J APPL PHYSIOL, V76, P212 Shastry S, 2000, J APPL PHYSIOL, V88, P467 SHEPRO D, 1993, FASEB J, V7, P1031 Tian F, 1999, HEARING RES, V131, P63, DOI 10.1016/S0378-5955(99)00015-5 WARREN JB, 1994, AM J PHYSIOL, V266, pH1846 WHAL M, 1993, ACTA NEUROCHIR SUPP, V59, P3 Yamane H, 1997, HEARING RES, V108, P65, DOI 10.1016/S0378-5955(97)00041-5 NR 35 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2002 VL 171 IS 1-2 BP 32 EP 42 DI 10.1016/S0378-5955(02)00328-3 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 594BZ UT WOS:000178030000003 PM 12204347 ER PT J AU Reyes, SA Salvi, RJ Burkard, RF Coad, ML Wack, DS Galantowicz, PJ Lockwood, AH AF Reyes, SA Salvi, RJ Burkard, RF Coad, ML Wack, DS Galantowicz, PJ Lockwood, AH TI Brain imaging of the effects of lidocaine on tinnitus SO HEARING RESEARCH LA English DT Article DE tinnitus; lidocaine; tomography; emission-computed; positron emission tomography; auditory pathway ID POSITRON-EMISSION-TOMOGRAPHY; INTRAVENOUS LIDOCAINE; DOUBLE-BLIND; INFERIOR COLLICULUS; FUNCTIONAL-ANATOMY; NEURAL PLASTICITY; SALICYLATE; INFUSION; SYSTEM; PAIN AB Using a single-blind placebo-controlled design, we mapped lidocaine related changes in neural activity, measured by regional cerebral blood flow (rCBF) with O-15-H2O positron emission tomography. Intravenous lidocaine produced both increases and decreases in the loudness of tinnitus. The change in tinnitus loudness was associated with a statistically significant change in neural activity in the right temporal lobe in auditory association cortex. Decreases in tinnitus loudness resulted in larger changes in rCBF than increases. The unilateral activation pattern associated with tinnitus, in contrast with the bilateral activation produced by a real sound, suggests that tinnitus originates in the central auditory system rather than the cochlea. In addition, generalized lidocaine effects were found in the basal ganglia, thalamus, and a region spanning the Rolandic fissure. (C) 2002 Elsevier Science B.V. All rights reserved. C1 SUNY Buffalo, Dept Communicat Disorders & Sci, Buffalo, NY 14214 USA. SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. SUNY Buffalo, Dept Otolaryngol, Buffalo, NY 14214 USA. SUNY Buffalo, Ctr Positron Emiss Tomog, Buffalo, NY 14214 USA. VAWNYHS, Ctr PET 115P, Buffalo, NY 14215 USA. SUNY Buffalo, Dept Neurol, Buffalo, NY 14214 USA. SUNY Buffalo, Dept Nucl Med, Buffalo, NY 14214 USA. RP Reyes, SA (reprint author), VAWNYHS, Ctr PET 115P, 3495 Bailey Ave, Buffalo, NY 14215 USA. CR Andersson G, 2000, ACTA OTO-LARYNGOL, V120, P967, DOI 10.1080/00016480050218717 Ashburner J, 1997, NEUROIMAGE, V6, P209, DOI 10.1006/nimg.1997.0290 Atanassoff PG, 2001, ANESTHESIOLOGY, V95, P627, DOI 10.1097/00000542-200109000-00013 Attal N, 2000, NEUROLOGY, V54, P564 BARNAY R, 1935, ACTA OTOLARYNGOL, V23, P201 CATTERAL W, 1996, GOODMAN GILMAN PHARM CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O Colonna-Romano P, 1998, ANESTH ANALG, V86, P985 DENHARTIGH J, 1993, CLIN PHARMACOL THER, V54, P415 DUCKERT LG, 1983, OTOLARYNG HEAD NECK, V91, P550 Eggermont JJ, 1998, HEARING RES, V117, P149, DOI 10.1016/S0378-5955(98)00008-2 Frackowiak RSJ, 1997, HUMAN BRAIN FUNCTION HULSHOF JH, 1984, ACTA OTO-LARYNGOL, V98, P231, DOI 10.3109/00016488409107559 ISRAEL JM, 1982, ARCH OTOLARYNGOL, V108, P471 JOHNSON RM, 1993, ARCH OTOLARYNGOL, V119, P842 Kim K, 2000, SCAND AUDIOL, V29, P211, DOI 10.1080/010503900750022835 Levine RA, 1999, AM J OTOLARYNG, V20, P351, DOI 10.1016/S0196-0709(99)90074-1 Lockwood A H, 1999, Scand Audiol Suppl, V51, P47 Lockwood AH, 1999, CEREB CORTEX, V9, P65, DOI 10.1093/cercor/9.1.65 Lockwood AH, 2001, NEUROLOGY, V56, P472 Lockwood AH, 1998, NEUROLOGY, V50, P114 LYTTKENS L, 1984, ORL J OTO-RHINO-LARY, V46, P17 Manabe Y, 1997, HEARING RES, V103, P192, DOI 10.1016/S0378-5955(96)00181-5 Mirz F, 1999, HEARING RES, V134, P133, DOI 10.1016/S0378-5955(99)00075-1 Moller A R, 2000, J Am Acad Audiol, V11, P115 MOLLER AR, 1992, LARYNGOSCOPE, V102, P1165 Moller AR, 2001, NEUROL RES, V23, P565, DOI 10.1179/016164101101199009 Moller AR, 1997, AM J OTOL, V18, P577 Moore JM, 1998, ANESTH ANALG, V86, P1015, DOI 10.1097/00000539-199805000-00020 RUTH RA, 1985, ARCH OTOLARYNGOL, V111, P799 RUTH RA, 2001, HEAR J, V54, P26 Simpson JJ, 1999, TRENDS PHARMACOL SCI, V20, P12, DOI 10.1016/S0165-6147(98)01281-4 Staffen W, 1999, AUDIOLOGY, V38, P53 STARGEL WW, 1981, AM HEART J, V102, P872, DOI 10.1016/0002-8703(81)90038-7 NR 34 TC 66 Z9 72 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2002 VL 171 IS 1-2 BP 43 EP 50 DI 10.1016/S0378-5955(02)00346-5 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 594BZ UT WOS:000178030000004 PM 12204348 ER PT J AU Pitovski, DZ Kerr, TP AF Pitovski, DZ Kerr, TP TI Sodium- and potassium-activated ATPase in the mammalian vestibular system SO HEARING RESEARCH LA English DT Article DE Na; K-ATPase; dark cell; hair cell; ion transport; sensory epithelium ID SUBUNIT ISOFORM EXPRESSION; NA+-K+-ATPASE; STRIA VASCULARIS; GUINEA-PIG; INNER-EAR; ULTRASTRUCTURAL-LOCALIZATION; ADENOSINE-TRIPHOSPHATASE; DIFFERENTIAL EXPRESSION; ALKALINE-PHOSPHATASES; ENDOLYMPHATIC SAC AB Autoradiographic and cytochemical procedures were employed to determine the cellular distribution of the Na,K-ATPase enzyme in the mammalian vestibular system, A light-microscope survey of vestibular tissues incubated with [H-3]ouabain shows high densities of ouabain binding sites within the dark cell epithelium (DC) of the ampullae of the semi-circular canals, and to a lesser extent, the DC of the utricular macula. A moderate number of binding sites was found in nerve fibers penetrating the connective tissue beneath the sensory epithelium (SE) of the ampullae and the maculae. A small number of binding sites is distributed in the deep portion of the SE, both in the ampullae and in the maculae. These latter binding sites seem to be associated with nerve terminals and receptor cells. At the ultrastructural level, the vestibular dark cells exhibit extensive basolateral membrane infolding, a morphological hallmark of cells engaged in trans-epithelial ion transport. The cytochemical reaction product is K+-dependent. ouabain inhibitable, and is restricted to the basolateral membrane extensions, with little of no product on the luminal membrane. The extent of membrane infolding in dark cells of the utricle is less pronounced than that of the ampullar dark cells and the intensity of the cytochemical reaction appears to correlate with the extent of membrane infolding. The results support the widely held hypothesis that the vestibular dark cells play a role in endolymph production. They also suggest that the vestibular sensory epithelia may be a site of ion exchange. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Wake Forest Univ, Bowman Gray Sch Med, Dept Otolaryngol, Winston Salem, NC 27157 USA. Wayne State Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Detroit, MI USA. RP Pitovski, DZ (reprint author), Wake Forest Univ, Bowman Gray Sch Med, Dept Otolaryngol, Med Ctr Blvd, Winston Salem, NC 27157 USA. EM dzpito@wfubmc.edu CR AHN KY, 1993, AM J PHYSIOL, V265, pF792 AKERA DKT, 1974, ANN NY ACAD SCI, V242, P617 ALBERS M, 1989, GEN PHYSIOL BIOPHYS, V8, P409 BERNARD C, 1986, J PHYSIOL-LONDON, V371, P17 BORGERS M, 1975, HISTOCHEMISTRY, V44, P277, DOI 10.1007/BF00491496 BORGERS M, 1973, J HISTOCHEM CYTOCHEM, V21, P812 BOSHER SK, 1968, PROC R SOC SER B-BIO, V171, P227, DOI 10.1098/rspb.1968.0066 BOSHER SK, 1980, ACTA OTO-LARYNGOL, V90, P219, DOI 10.3109/00016488009131718 BOSHER SK, 1971, J PHYSIOL-LONDON, V212, P739 BUDELLI R, 1979, GEN PHARMACOL, V10, P335, DOI 10.1016/0306-3623(79)90063-6 COREY DP, 1983, J NEUROSCI, V3, P962 DEPONT JJHHM, 1984, J BIOENERG BIOMEMBR, V16, P263 DRESCHER DG, 1985, AUDITORY BIOCH ERNST SA, 1980, CURR TOP MEMBR TRANS, V13, P355 ERNST SA, 1981, HISTOCHEM J, V13, P397, DOI 10.1007/BF01005056 ERNST SA, 1972, J HISTOCHEM CYTOCHEM, V20, P13 FERRARY E, 1989, AM J PHYSIOL, V257, pF182 FERRARY E, 1993, J PHYSIOL-LONDON, V46, P451 Ferrary E, 1998, Kidney Int Suppl, V65, pS98 FINA M, 1994, MOL CELL NEUROSCI, V5, P604, DOI 10.1006/mcne.1994.1074 FINK DJ, 1995, NEUROSCI LETT, V183, P206, DOI 10.1016/0304-3940(94)11152-9 Go K G, 1997, Adv Tech Stand Neurosurg, V23, P47 GOLDBERG JM, 1980, J NEUROPHYSIOL, V43, P986 GREGER R, 1987, RENAL PHYSIOL BIOCH, V10, P174 HANSEN O, 1978, BIOCHIM BIOPHYS ACTA, V511, P10, DOI 10.1016/0005-2736(78)90061-5 HANSEN O, 1973, BIOCHIM BIOPHYS ACTA, V311, P51, DOI 10.1016/0005-2736(73)90254-X IKEDA K, 1989, HEARING RES, V39, P279, DOI 10.1016/0378-5955(89)90047-6 IWASA KH, 1994, NEUROSCI LETT, V172, P163, DOI 10.1016/0304-3940(94)90687-4 KERN RC, 1991, BRAIN RES, V546, P8, DOI 10.1016/0006-8993(91)91153-R KERR TP, 1982, AM J OTOLARYNG, V3, P332, DOI 10.1016/S0196-0709(82)80006-9 KIMURA RS, 1969, ANN OTO RHINOL LARYN, V78, P542 KUIJPERS W, 1970, PFLUG ARCH EUR J PHY, V320, P348, DOI 10.1007/BF00588213 MACKNIGHT ADC, 1977, PHYSIOL REV, V57, P510 MAKIMOTO K, 1978, ARCH OHREN NASEN KEH, V220, P259, DOI 10.1007/BF00455361 MARCUS DC, 1981, HEARING RES, V4, P149, DOI 10.1016/0378-5955(81)90002-2 MARCUS DC, 1987, HEARING RES, V30, P55, DOI 10.1016/0378-5955(87)90183-3 MATTA M, 1991, BRAIN RES, V546, P47 MILLS JW, 1980, CURR TOP MEMBR TRANS, V13, P387 MILLS JW, 1981, J CELL BIOL, V88, P637, DOI 10.1083/jcb.88.3.637 MORGENSTERN C, 1982, AM J OTOLARYNG, V3, P323, DOI 10.1016/S0196-0709(82)80004-5 NICHOLSON C, 1979, NEUROSCI RES PROG B, V18, P177 OFFNER FF, 1987, HEARING RES, V29, P117, DOI 10.1016/0378-5955(87)90160-2 Pestov NB, 1999, FEBS LETT, V456, P243, DOI 10.1016/S0014-5793(99)00954-0 Peters TA, 2001, EUR ARCH OTO-RHINO-L, V258, P67, DOI 10.1007/s004050000304 PITOVSKI DZ, 1993, BRAIN RES, V601, P273, DOI 10.1016/0006-8993(93)91720-D RAUCH S, 1968, OTOLARYNGOLOGIC CLIN, P369 SALT AN, 1987, LARYNGOSCOPE, V97, P984 SCATCHARD G, 1949, ANN NY ACAD SCI, V51, P660, DOI 10.1111/j.1749-6632.1949.tb27297.x STEKHOVEN FS, 1981, PHYSIOL REV, V61, P1 SCHWARTZ A, 1972, CURRENT TOPICS MEMBR, V3, P1, DOI 10.1016/S0070-2161(08)61057-6 SCHWARTZ A, 1975, PHARMACOL REV, V27, P3 SELLICK PM, 1972, PFLUEGERS ARCH, V352, P339 SIEGEL G, 1982, BASIC NEUROCHEMISTRY, P107 SIEGEL GJ, 1972, EUR J BIOCHEM, V25, P323, DOI 10.1111/j.1432-1033.1972.tb01700.x SINHA PK, 1995, ACTA OTOLARYNGOL, V118, P643 SMITH C, 1970, BIOCH MECHANISMS HEA, P171 SPRING KR, 1982, J MEMBRANE BIOL, V69, P1677 STERKERS O, 1984, AM J PHYSIOL, V247, pF602 STERKERS O, 1982, AM J PHYSIOL, V243, pF173 STIRLING CE, 1972, J CELL BIOL, V53, P704, DOI 10.1083/jcb.53.3.704 Sun XW, 1999, J APPL PHYSIOL, V87, P1132 Taglietti V, 1983, Boll Soc Ital Biol Sper, V59, P1149 TENCATE WJF, 1994, ORL J OTO-RHINO-LARY, V56, P257 TOBIN T, 1970, BIOCHIM BIOPHYS ACTA, V198, P120, DOI 10.1016/0005-2744(70)90040-9 VANBELLE H, 1972, BIOCHIM BIOPHYS ACTA, V289, P158, DOI 10.1016/0005-2744(72)90118-0 WANGEMANN P, 1994, AM J PHYSIOL, V266, pC1046 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S WENDT CH, 1998, AM J PHYSIOL, V274, P356 YOSHIHARA T, 1987, ARCH OTO-RHINO-LARYN, V243, P417, DOI 10.1007/BF00464655 NR 69 TC 13 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD SEP PY 2002 VL 171 IS 1-2 BP 51 EP 65 DI 10.1016/S0378-5955(02)00352-0 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 594BZ UT WOS:000178030000005 PM 12204349 ER PT J AU Norena, A Micheyl, C Durrant, JD Chery-Croze, S Collet, L AF Norena, A Micheyl, C Durrant, JD Chery-Croze, S Collet, L TI Perceptual correlates of neural plasticity related to spontaneous otoacoustic emissions? SO HEARING RESEARCH LA English DT Article DE spontaneous otoacoustic emission; frequency discrimination; plasticity ID SPONTANEOUS CELLULAR VIBRATIONS; THRESHOLD MICROSTRUCTURE; ACOUSTIC EMISSIONS; TINNITUS; DISCRIMINATION; TONES; EAR AB The inner car contains receptor cells that oscillate spontaneously, generating waves that propagate backward in the cochlea, ultimately causing sound to be radiated into the ear canal - the spontaneous otoacoustic emissions (SOAEs), Except in rare conditions, these internally generated signals appear to go unheard. The intensity of SOAEs admittedly hovers near the threshold of detection, but they are essentially continuous and perhaps last a lifetime, The hypothesis is tested that the frequency difference limen (DLF) is affected by SOAEs. The results show, that the DLF systematically improves near SOAE frequencies, determined ipsi- or contralaterally to the SOAEs, arguing for a central effect. The results are discussed in the context of central plasticity. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Lyon 1, Edouard Herriot Hosp, CNRS, UMR 5020,Neurosci & Sensory Syst Lab, F-69437 Lyon 03, France. Univ Calgary, Dept Psychol, Behav Neurosci Res Grp, Calgary, AB T2N 1N4, Canada. RP Norena, A (reprint author), Univ Lyon 1, Edouard Herriot Hosp, CNRS, UMR 5020,Neurosci & Sensory Syst Lab, Pl Arsonval, F-69437 Lyon 03, France. CR RUGGERO MA, 1983, HEARING RES, V10, P283, DOI 10.1016/0378-5955(83)90094-1 BIALEK W, 1984, PHYS LETT A, V104, P173, DOI 10.1016/0375-9601(84)90371-2 BONFILS P, 1989, LARYNGOSCOPE, V99, P752 BURNS EM, 1994, J ACOUST SOC AM, V95, P385, DOI 10.1121/1.408330 Ceranic BJ, 1998, J NEUROL NEUROSUR PS, V65, P523, DOI 10.1136/jnnp.65.4.523 CLARK WW, 1984, HEARING RES, V16, P299, DOI 10.1016/0378-5955(84)90119-9 GREEN DM, 1974, SIGNAL DETECTION THE KEILSON SE, 1993, ACTA OTO-LARYNGOL, V113, P591, DOI 10.3109/00016489309135869 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0 KHANNA SM, 1993, BRIT J AUDIOL, V27, P79, DOI 10.3109/03005369309077895 KOHLER W, 1994, ACTA OTO-LARYNGOL, V114, P110, DOI 10.3109/00016489409126026 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LONG GR, 1988, HEARING RES, V36, P125, DOI 10.1016/0378-5955(88)90055-X McDermott HJ, 1998, J ACOUST SOC AM, V104, P2314, DOI 10.1121/1.423744 MCFADDEN D, 1993, HEARING RES, V71, P208, DOI 10.1016/0378-5955(93)90036-Z MICHEYL C, 1994, SCAND AUDIOL, V23, P171, DOI 10.3109/01050399409047504 NORTON SJ, 1990, EAR HEARING, V11, P159, DOI 10.1097/00003446-199004000-00011 PENNER MJ, 1990, ARCH OTOLARYNGOL, V116, P418 PENNER MJ, 1988, ARCH OTOLARYNGOL, V114, P150 PENNER MJ, 1989, ARCH OTOLARYNGOL, V115, P871 PLINKERT PK, 1990, ACTA OTO-LARYNGOL, V110, P342, DOI 10.3109/00016489009107453 POON PWF, 1992, BRAIN RES, V585, P391, DOI 10.1016/0006-8993(92)91243-8 POWERS NL, 1995, NATURE, V375, P585, DOI 10.1038/375585a0 RECANZONE GH, 1993, J NEUROSCI, V13, P87 RECANZONE GH, 1990, J NEUROPHYSIOL, V63, P1213 Smurzynski J, 1998, HEARING RES, V115, P197, DOI 10.1016/S0378-5955(97)00193-7 NR 27 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2002 VL 171 IS 1-2 BP 66 EP 71 DI 10.1016/S0378-5955(02)00388-X PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 594BZ UT WOS:000178030000006 PM 12204350 ER PT J AU Loquet, G Rouiller, EM AF Loquet, G Rouiller, EM TI Neural adaptation to pulsatile acoustical stimulation in the cochlear nucleus of the rat SO HEARING RESEARCH LA English DT Article DE adaptation; cochlear nucleus; auditory evoked potentials; rat; repetitive stimulation ID AUDITORY-NERVE FIBERS; SHORT-TERM ADAPTATION; GUINEA-PIG; RESPONSES; RECOVERY; MASKING; FREQUENCY; NEURONS; TONES AB This study, carried out in adult Long-Evans rats, was designed to investigate the adaptive properties of the cochlear nucleus to pulsatile acoustical stimuli. To achieve this purpose, near-field evoked potentials were picked up from the ventral cochlear nucleus in awake animals. Individual auditory thresholds were measured and responses to 250 ins trains of repetitive clicks with pulse rates ranging from 100 to 2000 pulses per second were collected. The amplitude of the first negative (N-1) component of the evoked potentials to consecutive individual pulses in the train was measured by using a subtraction method. As expected, a rapid amplitude decrement of the responses in the train was obtained and a three phase adaptation was described. The decrease of individual N-1 component amplitude was fitted for each rate of stimulation with exponential decrease equations and time constants were calculated. Such an analysis allowed us to characterize three distinct adaptive processes which were discussed. The results were comparable to those obtained in previous studies in the auditory nerve and suggest that the adaptation recorded in the ventral cochlear nucleus by using near-field evoked potentials reflects the adaptive properties of auditory nerve fibers. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Fribourg, Dept Med, Div Physiol, CH-1700 Fribourg, Switzerland. RP Rouiller, EM (reprint author), Univ Fribourg, Dept Med, Div Physiol, Rue Musee 5, CH-1700 Fribourg, Switzerland. CR ABBAS PJ, 1981, J ACOUST SOC AM, V69, P492, DOI 10.1121/1.385477 ABBAS PJ, 1984, J ACOUST SOC AM, V75, P1541, DOI 10.1121/1.390825 BOETTCHER FA, 1990, HEARING RES, V48, P125, DOI 10.1016/0378-5955(90)90203-2 Bourk TR, 1976, THESIS MIT CAMBRIDGE BURKARD R, 1994, J ACOUST SOC AM, V95, P2126, DOI 10.1121/1.408674 BURKARD R, 1984, ELECTROEN CLIN NEURO, V57, P83, DOI 10.1016/0013-4694(84)90010-5 Campo P, 1997, NEUROTOXICOL TERATOL, V19, P129, DOI 10.1016/S0892-0362(96)00214-0 CHIMENTO TC, 1990, J ACOUST SOC AM, V88, P857, DOI 10.1121/1.399735 CHIMENTO TC, 1991, J ACOUST SOC AM, V90, P263, DOI 10.1121/1.401296 CHIMENTO TC, 1992, HEARING RES, V62, P131, DOI 10.1016/0378-5955(92)90178-P EGGERMON.JJ, 1973, AUDIOLOGY, V12, P193 EGGERMON.JJ, 1973, AUDIOLOGY, V12, P221 EGGERMONT JJ, 1985, HEARING RES, V18, P57, DOI 10.1016/0378-5955(85)90110-8 EVANS EF, 1975, HDB SENSORY PHYSL, V2, P1 GORGA MP, 1981, J ACOUST SOC AM, V70, P1310, DOI 10.1121/1.387145 HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083 HENDERSO.D, 1973, J ACOUST SOC AM, V54, P1099, DOI 10.1121/1.1914321 HUANG CM, 1981, ELECTROEN CLIN NEURO, V52, P394, DOI 10.1016/0013-4694(81)90021-3 HUANG C, 1980, ELECTROEN CLIN NEURO, V49, P15, DOI 10.1016/0013-4694(80)90347-8 Javel E, 1996, J ACOUST SOC AM, V99, P1040, DOI 10.1121/1.414633 JORIS PX, 1994, J NEUROPHYSIOL, V71, P1022 KALTENBACH JA, 1993, HEARING RES, V67, P35, DOI 10.1016/0378-5955(93)90229-T Kiang NYS, 1965, ACTA OTOLARYNG STOCK, V59, P186, DOI 10.3109/00016486509124552 KIANG NYS, 1965, RES MONOGRAPH MIT, V35 LI J, 1993, HEARING RES, V69, P151 MOLLER AR, 1969, ACTA PHYSIOL SCAND, V75, P542 MOLLER AR, 1976, ACTA PHYSIOL SCAND, V98, P157, DOI 10.1111/j.1748-1716.1976.tb00235.x Mulheran M, 1999, HEARING RES, V134, P145, DOI 10.1016/S0378-5955(99)00076-3 Paxinos G., 1998, RAT BRAIN STEREOTAXI PEAKE WT, 1962, J ACOUST SOC AM, V34, P571, DOI 10.1121/1.1918170 PEAKE WT, 1962, J ACOUST SOC AM, V34, P562, DOI 10.1121/1.1918169 PFEIFFER RR, 1966, EXP BRAIN RES, V1, P220 SMITH RL, 1979, J ACOUST SOC AM, V65, P166, DOI 10.1121/1.382260 SMITH RL, 1977, J NEUROPHYSIOL, V40, P1098 SMITH RL, 1975, BIOL CYBERN, V17, P169, DOI 10.1007/BF00364166 WESTERMAN LA, 1984, HEARING RES, V15, P249, DOI 10.1016/0378-5955(84)90032-7 YATES GK, 1985, HEARING RES, V17, P1, DOI 10.1016/0378-5955(85)90124-8 YOUNG ED, 1988, J NEUROPHYSIOL, V60, P1 Zwicker E., 1974, FACTS MODELS HEARING, P132 NR 39 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2002 VL 171 IS 1-2 BP 72 EP 81 DI 10.1016/S0378-5955(02)00394-5 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 594BZ UT WOS:000178030000007 PM 12204351 ER PT J AU Hamann, I Gleich, O Klump, GM Kittel, MC Boettcher, FA Schmiedt, RA Strutz, R AF Hamann, I Gleich, O Klump, GM Kittel, MC Boettcher, FA Schmiedt, RA Strutz, R TI Behavioral and evoked-potential thresholds in young and old Mongolian gerbils (Meriones unguiculatus) SO HEARING RESEARCH LA English DT Article DE aging; behavioral threshold; hearing loss; presbycusis; psychoacoustics; auditory-evoked potential ID QUIET-AGED GERBILS; AUDITORY-NERVE FIBERS; BRAIN-STEM RESPONSE; HAIR CELL LESIONS; HEARING-LOSS; GUINEA-PIGS; COCHLEAR NUCLEUS; TUNING CURVES; LATERAL WALL; IMPAIRMENT AB Age-dependent hearing loss has been well documented in gerbils exceeding 2 years of age using physiological methods (e.g. [Mills et al. (1990) Hear, Res. 46, 201-210]). We determined behavioral thresholds for broad-band noise and pure-tone pulses in gerbils as a function of age. Contrary to expectations based on previously published physiological data. we found no significant (broad-band noise and 10 kHz) or only a very small hearing loss (7 dB at 2 kHz) in 30-36-month-old animals. In animals over 3 years of age we observed. an increased spread of thresholds and threshold shifts exceeding 20 dB in some individuals. Behavioral thresholds of old gerbils from two breeding colonies (University of Regensburg and Medical University of South Carolina) were similar. Data from individual animals where thresholds were determined physiologically and behaviorally indicate that results from auditory brainstem response measurements show no shift at 18 months while subsequent measurements at 28 29 months revealed age-dependent threshold shifts of 10-15 dB. In contrast, thresholds determined by behavioral methods in these same individuals at 3133 months of age remained stable. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Regensburg, ENT Dept, HNO Klin, D-93042 Regensburg, Germany. Univ Oldenburg, FB7, AG Zoophysiol & Verhalten, D-26111 Oldenburg, Germany. Med Univ S Carolina, Dept Otolaryngol, Charleston, SC 29425 USA. RP Gleich, O (reprint author), Univ Regensburg, ENT Dept, HNO Klin, Franz Josef Str Allee 11, D-93042 Regensburg, Germany. CR BOETTCHER FA, 1993, HEARING RES, V71, P137, DOI 10.1016/0378-5955(93)90029-Z BOETTCHER FA, 1993, HEARING RES, V71, P146, DOI 10.1016/0378-5955(93)90030-5 BORG E, 1983, ACTA OTO-LARYNGOL, V95, P19, DOI 10.3109/00016488309130911 BORG E, 1982, HEARING RES, V8, P101, DOI 10.1016/0378-5955(82)90069-7 CHEAL M, 1986, EXP AGING RES, V12, P3 COOPER WA, 1990, HEARING RES, V43, P171, DOI 10.1016/0378-5955(90)90226-F Cruickshanks KJ, 1998, AM J EPIDEMIOL, V148, P879 CZIBULKA A, 1991, HEARING RES, V52, P43, DOI 10.1016/0378-5955(91)90186-D CZIBULKA A, 1993, HEARING RES, V67, P1, DOI 10.1016/0378-5955(93)90226-Q DAVIS AC, 1989, INT J EPIDEMIOL, V18, P911, DOI 10.1093/ije/18.4.911 DAVIS AC, 1997, SCOTTBROWNS OTOLARYN DAVIS AC, 1991, ACTA OTOLARYNGOLOG S, V476, P23 EHRET G, 1974, NATURWISSENSCHAFTEN, V61, P506 Fay R. R., 1988, HEARING VERTEBRATES, P469 FLORENTINE M, 1988, J ACOUST SOC AM, V84, P195, DOI 10.1121/1.396964 Gleich O, 2002, HEARING RES, V164, P166, DOI 10.1016/S0378-5955(01)00430-0 Gleich O, 2000, J COMP NEUROL, V428, P609, DOI 10.1002/1096-9861(20001225)428:4<609::AID-CNE2>3.0.CO;2-F GLEICH O, 2001, 24 MIDW RES M ASS RE, P84 Gratton M A, 1996, Hear Res, V102, P181, DOI 10.1016/S0378-5955(96)90017-9 Gratton MA, 1997, HEARING RES, V114, P1, DOI 10.1016/S0378-5955(97)00025-7 Gratton MA, 1997, HEARING RES, V108, P9, DOI 10.1016/S0378-5955(97)00034-8 GRATTON MA, 1995, HEARING RES, V83, P43, DOI 10.1016/0378-5955(94)00188-V GREEN DM, 1966, SIGNAL DETECTION THE GRZIMEK G, 1979, GRZIMEKS TIERLEBEN E, V11, P342 HAMANN I, 2000, 23 MIDW RES M ASS RE, P79 Hellstrom LI, 1996, J ACOUST SOC AM, V100, P3275, DOI 10.1121/1.417211 HELLSTROM LI, 1990, HEARING RES, V50, P163, DOI 10.1016/0378-5955(90)90042-N HELLSTROM LI, 1991, HEARING RES, V53, P217, DOI 10.1016/0378-5955(91)90055-E HENRY KR, 1980, ARCH OTO-RHINO-LARYN, V228, P233, DOI 10.1007/BF00660735 Ingham NJ, 1998, ACTA OTO-LARYNGOL, V118, P673 Kim HN, 2000, J KOREAN MED SCI, V15, P580 McFadden SL, 1997, HEARING RES, V111, P114, DOI 10.1016/S0378-5955(97)00099-3 MCGINN MD, 1987, HEARING RES, V31, P235, DOI 10.1016/0378-5955(87)90193-6 MILLS JH, 2001, 24 MIDW RES M ASS RE, P82 MILLS JH, 1996, 19 ARO MIDW RES M, P161 MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 MOSCICKI EK, 1985, EAR HEARING, V6, P184, DOI 10.1097/00003446-198507000-00003 Ngan EM, 2001, HEARING RES, V156, P44, DOI 10.1016/S0378-5955(01)00264-7 Nozawa I, 1996, LARYNGOSCOPE, V106, P1034, DOI 10.1097/00005537-199608000-00024 OSTAPOFF EM, 1989, HEARING RES, V37, P141, DOI 10.1016/0378-5955(89)90036-1 PICKLES JO, 1988, INTRO PHYSL HEARING, P306 Proctor TB, 1998, AM J OTOL, V19, P226 RYAN A, 1976, J ACOUST SOC AM, V59, P1222, DOI 10.1121/1.380961 SCHMIEDT RA, 1978, J ACOUST SOC AM, V64, P502, DOI 10.1121/1.382000 SCHMIEDT RA, 1980, J NEUROPHYSIOL, V43, P1390 Schmiedt RA, 1996, HEARING RES, V102, P125, DOI 10.1016/S0378-5955(96)00154-2 Schmiedt RA, 1996, J NEUROPHYSIOL, V76, P2799 SCHMIEDT RA, 1990, HEARING RES, V45, P221, DOI 10.1016/0378-5955(90)90122-6 SCHMIEDT RA, 1980, J NEUROPHYSIOL, V43, P1367 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K Sinnott JM, 1997, HEARING RES, V112, P235, DOI 10.1016/S0378-5955(97)00125-1 SOLIMAN S, 1993, EAR HEARING, V14, P235, DOI 10.1097/00003446-199308000-00002 Spicer SS, 1997, HEARING RES, V111, P93, DOI 10.1016/S0378-5955(97)00097-X STATLER KD, 1990, HEARING RES, V50, P275, DOI 10.1016/0378-5955(90)90051-P TARNOWSKI BI, 1991, HEARING RES, V54, P124 TURNOCK MT, 1975, J ACOUST SOC AM S1, V58, P90 WATSON CS, 1969, J ACOUST SOC AM, V46, P989, DOI 10.1121/1.1911819 WILLOTT JF, 1986, J NEUROPHYSIOL, V56, P93 Wilson DH, 1999, INT J EPIDEMIOL, V28, P247, DOI 10.1093/ije/28.2.247 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 61 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2002 VL 171 IS 1-2 BP 82 EP 95 DI 10.1016/S0378-5955(02)00454-9 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 594BZ UT WOS:000178030000008 PM 12204352 ER PT J AU Koay, G Bitter, KS Heffner, HE Heffner, RS AF Koay, G Bitter, KS Heffner, HE Heffner, RS TI Hearing in American leaf-nosed bats. 1: Phyllostomus hastatus SO HEARING RESEARCH LA English DT Article DE audiogram; Chiroptera; echolocation; evolution; mammal ID FROG-EATING BAT; BIG BROWN BAT; SOUND LOCALIZATION; EPTESICUS-FUSCUS; TRACHOPS-CIRRHOSUS; SPECTRAL CUES; ACOUSTIC CUES; EXTERNAL EAR; ECHOLOCATION; PERCEPTION AB We determined the audiogram of Phyllostomus hastatus (the greater spear-nosed bat). a large, omnivorous American leaf-nosed bat native to Central and South America. A conditioned suppression/avoidance procedure with a fruit juice reward was used for testing. At an intensity of 60 dB sound pressure level (SPL re 20 muN/m(2)), the hearing range of P, hastatus extends from 1.8 to 105 kHz, with a best sensitivity of 1 dB SPL at 20 kHz. Both its high-frequency and low-frequency hearing are not unusual for a small mammal. Despite its use of low-intensity echolocation calls there was no evidence for unusual sensitivity to either the frequencies used for echolocation or to the main frequencies of its communication calls, suggesting no selective 'tuning' of the audiogram. Its behavioral pure-tone thresholds are lower than the multi-unit thresholds in the inferior colliculus, (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Toledo, Dept Psychol, Toledo, OH 43606 USA. RP Heffner, RS (reprint author), Univ Toledo, Dept Psychol, 2801 Bancroft St, Toledo, OH 43606 USA. CR Arlettaz R, 2001, NATURE, V414, P742, DOI 10.1038/414742a Barnard S.M, 1995, BATS IN CAPTIVITY BELL GP, 1982, BEHAV ECOL SOCIOBIOL, V10, P217, DOI 10.1007/BF00299688 BELWOOD JJ, 1986, ANIMAL SONAR PROCESS, P601 Boughman JW, 1998, ANIM BEHAV, V55, P1717, DOI 10.1006/anbe.1997.0721 BROWN PE, 1984, AM NEUR ABSTR, V10, P1150 BRUNS V, 1989, J MORPHOL, V199, P103, DOI 10.1002/jmor.1051990109 DALLAND JI, 1965, SCIENCE, V150, P1185, DOI 10.1126/science.150.3700.1185 Esser KH, 1996, J COMP PHYSIOL A, V178, P779 FENTON MB, 1995, PALEOBIOLOGY, V21, P229 FUZESSERY ZM, 1993, J COMP PHYSIOL A, V171, P767, DOI 10.1007/BF00213073 Gardner A. L., 1977, Special Publ Mus Texas Tech Univ, VNo. 13, P293 GOULD E, 1977, MUSEUM SPECIAL PUBLI, V13, P247 Griffin DR, 1958, LISTENING DARK ACOUS GRINNELL AD, 1970, Z VERGL PHYSIOL, V68, P117, DOI 10.1007/BF00297691 Heffner H. E., 1995, METHODS COMP PSYCHOA, P73 Heffner RS, 2001, HEARING RES, V157, P138, DOI 10.1016/S0378-5955(01)00298-2 HOWELL DJ, 1974, J MAMMAL, V55, P293, DOI 10.2307/1378999 Huang AY, 1996, J ACOUST SOC AM, V100, P2341, DOI 10.1121/1.417943 HUMANSKI RA, 1988, J ACOUST SOC AM, V83, P2300, DOI 10.1121/1.396361 JEN PHS, 1988, HEARING RES, V34, P101, DOI 10.1016/0378-5955(88)90098-6 Kalko EKV, 1998, FUNCT ECOL, V12, P364, DOI 10.1046/j.1365-2435.1998.00198.x Koay G, 1997, HEARING RES, V105, P202, DOI 10.1016/S0378-5955(96)00208-0 Koay G, 1998, J COMP PSYCHOL, V112, P371, DOI 10.1037/0735-7036.112.4.371 LAWRENCE BD, 1982, SCIENCE, V218, P481, DOI 10.1126/science.7123247 LONG GR, 1975, J COMP PHYSIOL, V100, P211 MASTERTO.B, 1969, J ACOUST SOC AM, V45, P966, DOI 10.1121/1.1911574 MIDDLEBROOKS JC, 1991, ANNU REV PSYCHOL, V42, P135, DOI 10.1146/annurev.ps.42.020191.001031 NEUWEILER G, 1989, TRENDS ECOL EVOL, V4, P160, DOI 10.1016/0169-5347(89)90120-1 NEUWEILER G, 1984, NATURWISSENSCHAFTEN, V71, P446, DOI 10.1007/BF00455897 PYE A, 1966, J MORPHOL, V121, P241 RYAN MJ, 1983, ANIM BEHAV, V31, P827, DOI 10.1016/S0003-3472(83)80239-5 RYAN MJ, 1983, J COMP PHYSIOL, V150, P413 Schmidt S., 1984, Myotis, V21-22, P62 SCHMIDT U, 1991, J COMP PHYSIOL A, V168, P45, DOI 10.1007/BF00217102 Schnitzler HU, 2001, BIOSCIENCE, V51, P557, DOI 10.1641/0006-3568(2001)051[0557:EBIEB]2.0.CO;2 TUTTLE MD, 1981, SCIENCE, V214, P677, DOI 10.1126/science.214.4521.677 Wilkinson GS, 1998, ANIM BEHAV, V55, P337, DOI 10.1006/anbe.1997.0557 Wotton JM, 2000, J ACOUST SOC AM, V107, P1034, DOI 10.1121/1.428283 WOTTON JM, 1995, J ACOUST SOC AM, V98, P1423, DOI 10.1121/1.413410 NR 40 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2002 VL 171 IS 1-2 BP 96 EP 102 DI 10.1016/S0378-5955(02)00458-6 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 594BZ UT WOS:000178030000009 PM 12204353 ER PT J AU Kamemori, M Ohyama, Y Kurabayashi, M Takahashi, K Nagai, R Furuya, N AF Kamemori, M Ohyama, Y Kurabayashi, M Takahashi, K Nagai, R Furuya, N TI Expression of Klotho protein in the inner ear SO HEARING RESEARCH LA English DT Article DE Klotho; stria vascularis; nitric oxide; ion channel; aging ID NITRIC-OXIDE SYNTHASE; COCHLEAR-PATHOLOGY; MARGINAL CELLS; GUINEA-PIG; GENE; STRESS; MICE AB The Klotho mouse is a recently developed model that exhibits phenotypes resembling human aging, We used this model to investigate sensorineural hearing loss from the point of view that it may be considered an issue of aging. Using reverse transcription-polymerase chain reaction, Western blotting and immunohistochemical staining, we were able to confirm klotho gene transcription and protein synthesis in the kidney and inner ear. Klotho protein was mainly expressed in the stria vascularis and spiral ligament of the inner ear and in the distal convoluted tubule of the kidney, likely serving a common function in the two organs, i.e., modulating ion transport. The threshold for the auditory brainstem response was significantly higher in Klotho mice than in wild-type mice, and wave I latencies were prolonged. On the other hand, Klotho mice exhibited a normal distribution of I-IV interpeak intervals. No obvious morphological abnormalities were detected in Klotho mice, although no expression of Klotho protein was detected, and there was an apparent hearing disorder. Taken together, these findings suggest that by contributing to the maintenance ion homeostasis in the endolymph, Klotho protein serves as a key mediator of auditory function. (C) 2002 Elsevier Science B.V, All rights reserved. C1 Gunma Univ, Dept Otolaryngol, Maebashi, Gumma 371, Japan. Gunma Univ, Dept Internal Med 2, Gunma, Japan. Univ Tokyo, Dept Internal Med, Tokyo, Japan. RP Furuya, N (reprint author), Gunma Univ, Dept Otolaryngol, Showa Machi 3-39-22, Maebashi, Gumma 371, Japan. CR Aizawa H, 1998, BIOCHEM BIOPH RES CO, V249, P865, DOI 10.1006/bbrc.1998.9246 CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1006/abio.1987.9999 Deal KK, 1996, PHYSIOL REV, V76, P49 Delpire E, 1999, NAT GENET, V22, P192, DOI 10.1038/9713 Hess A, 1998, BRAIN RES, V813, P97, DOI 10.1016/S0006-8993(98)00997-4 KATAGIRI S, 1968, ACTA OTOLARYNGOL, V68, P386 Kato Y, 2000, BIOCHEM BIOPH RES CO, V267, P597, DOI 10.1006/bbrc.1999.2009 Kuroo M, 1997, NATURE, V390, P45, DOI 10.1038/36285 Matsumura Y, 1998, BIOCHEM BIOPH RES CO, V242, P626, DOI 10.1006/bbrc.1997.8019 OFFNER FF, 1987, HEARING RES, V29, P117, DOI 10.1016/0378-5955(87)90160-2 Ohyama Y, 1998, BIOCHEM BIOPH RES CO, V251, P920, DOI 10.1006/bbrc.1998.9576 PALMER RMJ, 1987, NATURE, V327, P524, DOI 10.1038/327524a0 Saito Y, 1998, BIOCHEM BIOPH RES CO, V248, P324, DOI 10.1006/bbrc.1998.8943 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 SCHUKNECHT HF, 1964, ARCHIV OTOLARYNGOL, V80, P369 SELLICK P M, 1975, Progress in Neurobiology (Oxford), V5, P337, DOI 10.1016/0301-0082(75)90015-5 SPECTOR GJ, 1979, LARYNGOSCOPE, V89, P1, DOI 10.1288/00005537-197906001-00001 Takumida M, 2000, HEARING RES, V140, P91, DOI 10.1016/S0378-5955(99)00188-4 Takumida M, 1998, ORL J OTO-RHINO-LARY, V60, P67, DOI 10.1159/000027567 Takumida M, 1998, ORL J OTO-RHINO-LARY, V60, P246, DOI 10.1159/000027605 WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 WILLOTT JF, 2001, AUDIOL NEURO-OTOL, V5, P231 Willott JF, 1998, HEARING RES, V119, P27, DOI 10.1016/S0378-5955(98)00029-X NR 23 TC 29 Z9 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2002 VL 171 IS 1-2 BP 103 EP 110 DI 10.1016/S0378-5955(02)00483-5 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 594BZ UT WOS:000178030000010 PM 12204354 ER PT J AU Koay, G Heffner, RS Heffner, HE AF Koay, G Heffner, RS Heffner, HE TI Behavioral audiograms of homozygous med(J) mutant mice with sodium channel deficiency and unaffected controls SO HEARING RESEARCH LA English DT Article DE audiogram; sodium channel; med(J); mutation; behavioral method; test reliability ID HEARING-LOSS; HOUSE-MOUSE; SCN8A; MUTATION; IDENTIFICATION; EVOLUTION; INSIGHTS; DISEASE; NEURONS; GENES AB Complete behavioral audiograms were determined for med(J) mice (F1 offspring of C57BL/6JXC3HeB/FeJ) and unaffected controls from the same F1 background. The med(J) mutation results in greatly reduced levels of Scn8a voltage-gated sodium channels, which causes abnormal conduction of action potentials throughout the nervous system and may account for the virtual absence of spontaneous bursting activity in the dorsal cochlear nucleus. The medJ mice also have tremors, display dystonic postures, and drag their hind legs. The mice were tested using a conditioned suppression/avoidance procedure, with minor modifications of the apparatus made to accommodate the motor-impaired med(J) mice. Thresholds were repeatedly obtained up to the age of 50 weeks to determine if the animals developed a hearing loss with age. The results indicate that med(J) mice have normal thresholds, with the first signs of hearing loss (detectable at 80 kHz) appearing for both the medJ and normal mice by 48 weeks. Neither the med(J) nor the normal mice could hear below I kHz, indicating that house mice fall into the group of mammals with poor low-frequency hearing. The results also demonstrate that the conditioned suppression/avoidance procedure is well suited for assessing hearing in severely impaired, as well as normal, mice and that it can provide for the rapid determination of thresholds necessary to follow changes in hearing that may occur as the result of age, disease, mutation, or drugs. (C) 2002 Published by Elsevier Science B.V. C1 Univ Toledo, Dept Psychol, Toledo, OH 43606 USA. RP Heffner, HE (reprint author), Univ Toledo, Dept Psychol, Toledo, OH 43606 USA. CR BERLIN CI, 1963, J SPEECH HEAR RES, V6, P359 BIRCH LM, 1968, J AUD RES, V8, P459 BURGESS DL, 1995, NAT GENET, V10, P461, DOI 10.1038/ng0895-461 Caldwell JH, 2000, P NATL ACAD SCI USA, V97, P5616, DOI 10.1073/pnas.090034797 Carlson S, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P83 Cheatham MA, 2001, AUDIOL NEURO-OTOL, V6, P79, DOI 10.1159/000046813 Chen K, 1999, BRAIN RES, V847, P85, DOI 10.1016/S0006-8993(99)02031-4 EHRET G, 1974, NATURWISSENSCHAFTEN, V61, P506 EHRET G, 1983, AUDITORY PSYCHOBIOLO, P305 EHRET G, 1975, J COMP PHYSIOL, V103, P329 HEFFNER H, 1980, J ACOUST SOC AM, V68, P1584, DOI 10.1121/1.385213 Heffner H. E., 1995, METHODS COMP PSYCHOA, P73 Heffner HF, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P19 Heffner RS, 2001, HEARING RES, V157, P138, DOI 10.1016/S0378-5955(01)00298-2 HENRY KR, 1992, AUDIOLOGY, V31, P181 Ison Jr, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P59 Kohrman DC, 1996, J BIOL CHEM, V271, P17576 LLINAS RR, 1988, SCIENCE, V242, P1654, DOI 10.1126/science.3059497 Meisler MH, 2001, NEUROSCIENTIST, V7, P136 Parham K, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P37 Paylor R, 1997, PSYCHOPHARMACOLOGY, V132, P169, DOI 10.1007/s002130050333 Plummer NW, 1999, GENOMICS, V57, P323, DOI 10.1006/geno.1998.5735 Probst FJ, 1999, HEARING RES, V130, P1, DOI 10.1016/S0378-5955(98)00231-7 Prosen CA, 2000, J NEUROSCI METH, V97, P59, DOI 10.1016/S0165-0270(00)00169-2 Raman IM, 1999, ANN NY ACAD SCI, V868, P93, DOI 10.1111/j.1749-6632.1999.tb11279.x SCHLINGER MJ, 1979, J ADVERTISING RES, V19, P37 Sprunger LK, 1999, HUM MOL GENET, V8, P471, DOI 10.1093/hmg/8.3.471 Steel KP, 1995, ANNU REV GENET, V29, P675 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 29 TC 24 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2002 VL 171 IS 1-2 BP 111 EP 118 DI 10.1016/S0378-5955(02)00492-6 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 594BZ UT WOS:000178030000011 PM 12204355 ER PT J AU Voie, AH AF Voie, AH TI Imaging the intact guinea pig tympanic bulla by orthogonal-plane fluorescence optical sectioning microscopy SO HEARING RESEARCH LA English DT Article DE cochlea; vestibular system; ossicles; guinea pig; imaging; microwave ID AIDED 3-DIMENSIONAL RECONSTRUCTION; TEMPORAL BONE; ROUND WINDOW; INNER-EAR; COCHLEA; MEMBRANE; ANATOMY; IMAGES AB Orthogonal-plane fluorescence optical sectioning (OPFOS) microscopy was developed for the purpose of making quantitative measurements of the intact mammalian cochlea and to facilitate 3D reconstructions of complex features. A new version of this imaging apparatus was built with a specimen chamber designed to accommodate samples as large as the intact guinea pig bulla. This method left the cochlear connections with the vestibular system and with the ossicles of the middle car undisturbed, providing views within the cochlea with no breaches of its structural integrity. Since the features within the bulla were not physically touched during the preparation process, the risk of damage was minimized, and were imaged in relatively pristine condition with spatial resolution to 16 mum. A description of the imaging method and specimen preparation procedure is presented, as are images of features from the cochlea, ossicles, and vestibular system. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Spencer Technol, Seattle, WA 98122 USA. RP Voie, AH (reprint author), Spencer Technol, 701 16th Ave, Seattle, WA 98122 USA. CR ARIYASU L, 1989, OTOLARYNG HEAD NECK, V100, P87 BEVER M, 2000, 23 MIDW RES M ARO Bissonnette JP, 1996, J COMP NEUROL, V368, P620, DOI 10.1002/(SICI)1096-9861(19960513)368:4<620::AID-CNE12>3.0.CO;2-L CULLING CFA, 1957, HDB HISTOPATHOLOGICA EMMEL V, 1964, LAB TECHNIQUE BIOL M Ghiz AF, 2001, HEARING RES, V162, P105, DOI 10.1016/S0378-5955(01)00375-6 GREEN JD, 1990, LARYNGOSCOPE, V100, P1 HARADA T, 1988, ARCH OTOLARYNGOL, V114, P1139 HARADA T, 1990, EUR ARCH OTOLARYNGOL, V247, P248 HAUGLAND R, 1981, HDB FLUORESCENT COMP HENSON MM, 1994, HEARING RES, V75, P75, DOI 10.1016/0378-5955(94)90058-2 Inoue S, 1997, VIDEO MICROSCOPY LUTZ C, 1989, OTOLARYNG HEAD NECK, V101, P522 Madden VJ, 1997, HEARING RES, V111, P76, DOI 10.1016/S0378-5955(97)00107-X NANAWA S, 1999, RADIOLOGY, V213, P819 PLASSMANN W, 1987, BRAIN BEHAV EVOLUT, V30, P82, DOI 10.1159/000118639 Sato M, 1999, HEARING RES, V135, P29, DOI 10.1016/S0378-5955(99)00086-6 Siegman A., 1986, LASERS, V1st Spalteholz W, 1914, DURCHSICHTIGMACHEN M TAKAGI A, 1989, ANN OTO RHINOL LARYN, V98, P515 TAKAHASHI H, 1989, OTOLARYNG HEAD NECK, V101, P517 TAKAHASHI H, 1989, LARYNGOSCOPE, V99, P505 TAKAHASHI H, 1990, LARYNGOSCOPE, V100, P1319 Thorne M, 1999, LARYNGOSCOPE, V109, P1661, DOI 10.1097/00005537-199910000-00021 Tomandl BF, 2000, RADIOGRAPHICS, V20, P547 Tompsett DH, 1970, ANATOMICAL TECHNIQUE VOIE AH, 1993, J MICROSC-OXFORD, V170, P229 Voie AH, 1995, COMPUT MED IMAG GRAP, V19, P377, DOI 10.1016/0895-6111(95)00034-8 VOIE AH, 2002, 25 MIDW RES M ARO Wada H, 1998, HEARING RES, V120, P1, DOI 10.1016/S0378-5955(98)00007-0 NR 30 TC 43 Z9 44 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2002 VL 171 IS 1-2 BP 119 EP 128 DI 10.1016/S0378-5955(02)00493-8 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 594BZ UT WOS:000178030000012 PM 12204356 ER PT J AU Spencer, RF Shaia, WT Gleason, AT Sismanis, A Shapiro, SM AF Spencer, RF Shaia, WT Gleason, AT Sismanis, A Shapiro, SM TI Changes in calcium-binding protein expression in the auditory brainstem nuclei of the jaundiced Gunn rat SO HEARING RESEARCH LA English DT Article DE cochlear nucleus; superior olivary complex; lateral lemniscus nucleus; inferior colliculus; immunohistochemistry; light microscopy; electron microscopy; jaundice; kernicterus; hyperbilirubinemia ID SUPERIOR OLIVARY COMPLEX; CALBINDIN D-28K IMMUNOREACTIVITY; EVOKED-POTENTIAL ABNORMALITIES; SERUM BILIRUBIN LEVELS; GUINEA-PIG; COCHLEAR NUCLEUS; NERVOUS-SYSTEM; MORPHOLOGICAL-CHANGES; HYPER-BILITRUBINEMIA; EXPERIMENTAL-MODEL AB Sensorineural hearing loss and auditory dysfunction are major sequelae of neonatal hyperbilirubinemia. The sites and cellular effects of bilirubin toxicity in the auditory brainstem pathway are not easily detected. Since altered intracellular calcium homeostasis may play a role in neuronal cell death, we hypothesized that the expression of calcium-binding proteins may be altered in the classic animal model of bilirubin neurotoxicity. The expression of the calcium-binding proteins, calbindin-D28k and parvalbumin, in the brainstem auditory pathway of homozygous recessive jaundiced (jj) Gunn rats was examined by light and electron microscopic immunohistochemistry at 18 days postnatally and compared to the findings obtained from age-matched non-jaundiced heterozygous (Nj) littermate control rats. Immunoreactive staining for both calbindin and parvalbumin was reduced in the cochlear nuclei and the superior olivary complex in jj rats. The extent of the reduction in immunoreactivity was related to the severity of the clinical symptoms. By contrast, immunoreactive staining in other brainstem areas (e.g., dorsal and ventral nuclei of the lateral lemniscus, inferior colliculus), thalamic (medial geniculate body) auditory areas, and neighboring non-auditory structures was similar in jaundiced and control rats. Calbindin-immunoreactive staining in the superior paraolivary and medial superior olivary nuclei in Nj rats was associated with myelinated axons, whereas parvalbumin-immunoreactive staining was localized post synaptically in neuronal somata and dendrites. Immunoreactive staining for the calcium-binding proteins calbindin and parvalbumin in lower brainstem auditory nuclei shows abnormalities in areas susceptible to the effects of hyperbilirubinemia and provides a sensitive new way to assess bilirubin toxicity in the auditory system. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Virginia Commonwealth Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Richmond, VA 23298 USA. Virginia Commonwealth Univ, Sch Med, Dept Anat, Richmond, VA 23298 USA. Virginia Commonwealth Univ, Sch Med, Dept Neurol, Richmond, VA 23298 USA. Virginia Commonwealth Univ, Sch Med, Dept Pediat, Richmond, VA 23298 USA. Virginia Commonwealth Univ, Sch Med, Dept Physiol, Richmond, VA 23298 USA. RP Shapiro, SM (reprint author), Virginia Commonwealth Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Med Coll Virginia Campus, Richmond, VA 23298 USA. CR ADAMS JC, 1990, HEARING RES, V49, P281, DOI 10.1016/0378-5955(90)90109-3 Ahlfors CE, 2001, BIOL NEONATE, V80, P158, DOI 10.1159/000047136 Airaksinen MS, 1997, P NATL ACAD SCI USA, V94, P1488, DOI 10.1073/pnas.94.4.1488 SILVERMAN WA, 1956, PEDIATRICS, V18, P614 AOKI E, 1990, BRAIN RES, V525, P140, DOI 10.1016/0006-8993(90)91329-F BELAL A, 1975, J LARYNGOL OTOL, V89, P259, DOI 10.1017/S002221510008035X BERGMAN I, 1985, J PEDIATR, V106, P5 Blackburn S, 1995, Neonatal Netw, V14, P15 BLANC WA, 1959, J NEUROPATH EXP NEUR, V18, P165, DOI 10.1097/00005072-195901000-00011 Caicedo A, 1997, J COMP NEUROL, V378, P1, DOI 10.1002/(SICI)1096-9861(19970203)378:1<1::AID-CNE1>3.0.CO;2-8 Caicedo A, 1996, ANAT EMBRYOL, V194, P465 CARHART R, 1967, ACTA OTOLARYNGOL S, P1 CELIO MR, 1990, NEUROSCIENCE, V35, P375, DOI 10.1016/0306-4522(90)90091-H CHISIN R, 1979, ANN OTO RHINOL LARYN, V88, P352 CHURN SB, 1995, PEDIATR RES, V38, P949, DOI 10.1203/00006450-199512000-00020 CONLEE JW, 1991, HEARING RES, V57, P23, DOI 10.1016/0378-5955(91)90070-P Conlee JW, 2000, ACTA NEUROPATHOL, V99, P393 CONNOLLY AM, 1990, CLIN PERINATOL, V17, P371 Deltenre P, 1997, EVOKED POTENTIAL, V104, P17, DOI 10.1016/S0168-5597(96)96635-6 DEVRIES LS, 1985, PEDIATRICS, V76, P351 DEVRIES LS, 1987, EARLY HUM DEV, V15, P269, DOI 10.1016/0378-3782(87)90050-8 DIAMOND I, 1966, J CLIN INVEST, V45, P678, DOI 10.1172/JCI105383 DUBLIN WB, 1986, OTOLARYNG HEAD NECK, V95, P363 ELBARBARY A, 1991, HEARING RES, V54, P75 ENDERLIN S, 1987, ANAT EMBRYOL, V177, P15, DOI 10.1007/BF00325286 FRIAUF E, 1994, J COMP NEUROL, V349, P193, DOI 10.1002/cne.903490204 FRIAUF E, 1993, J COMP NEUROL, V334, P59, DOI 10.1002/cne.903340105 FRISINA RD, 1995, HEARING RES, V85, P53, DOI 10.1016/0378-5955(95)00029-4 GROTHE B, 1994, J NEUROSCI, V14, P1701 Gunn CH, 1938, J HERED, V29, P137 HELFERT RH, 1992, J COMP NEUROL, V323, P305, DOI 10.1002/cne.903230302 HELFERT RH, 1990, BRAIN RES, V509, P180 HELFERT RH, 1989, BRAIN RES, V501, P269, DOI 10.1016/0006-8993(89)90644-6 Irvine D. R. F., 1992, MAMMALIAN AUDITORY P, P153 JEW JY, 1979, ARCH NEUROL-CHICAGO, V36, P149 JEW JY, 1977, J ANAT, V124, P599 JOHNSON L, 1961, AM J DIS CHILD, V101, P322 JOHNSON L, 1959, AMA J DIS CHILD, V97, P591 Johnson LH, 2002, J PEDIATR-US, V140, P396, DOI 10.1067/mpd.2002.123098 KANDLER K, 1995, EUR J NEUROSCI, V7, P1773, DOI 10.1111/j.1460-9568.1995.tb00697.x KANDLER K, 1993, J COMP NEUROL, V328, P161, DOI 10.1002/cne.903280202 KELLEY PE, 1992, J COMP NEUROL, V320, P196, DOI 10.1002/cne.903200205 KOTAK VC, 1995, J NEUROPHYSIOL, V74, P1611 Kotak VC, 1996, J NEUROSCI, V16, P1836 KUMOI K, 1993, HEARING RES, V68, P173, DOI 10.1016/0378-5955(93)90121-G Lohmann C, 1996, J COMP NEUROL, V367, P90, DOI 10.1002/(SICI)1096-9861(19960325)367:1<90::AID-CNE7>3.0.CO;2-E MARTICHKRISS V, 1995, AM J NEURORADIOL, V16, P819 MATSUBARA JA, 1990, BRAIN RES, V508, P353, DOI 10.1016/0006-8993(90)90424-A MCBURNEY RN, 1987, TRENDS NEUROSCI, V10, P164, DOI 10.1016/0166-2236(87)90042-7 MORINOWANNIER P, 1992, EXP BRAIN RES, V88, P422, DOI 10.1007/BF02259117 Pack AK, 1995, HEARING RES, V91, P119 ROSE AL, 1979, J NEUROPATH EXP NEUR, V38, P152, DOI 10.1097/00005072-197903000-00006 SALLEY LH, 1999, PEDIATR RES, P45 SANES DH, 1993, EUR J NEUROSCI, V5, P570, DOI 10.1111/j.1460-9568.1993.tb00522.x SCHOFIELD BR, 1992, J COMP NEUROL, V317, P438, DOI 10.1002/cne.903170409 SCHUTTA HS, 1969, J PEDIATR, V75, P1070, DOI 10.1016/S0022-3476(69)80351-3 SETOOHSHIMA A, 1990, NEUROSCI LETT, V119, P60, DOI 10.1016/0304-3940(90)90755-X SHAPIRO SM, 1988, PEDIATR RES, V23, P306, DOI 10.1203/00006450-198803000-00015 Shapiro S M, 1988, Brain Res, V469, P147 SHAPIRO SM, 1989, ANN OTO RHINOL LARYN, V98, P308 SHAPIRO SM, 1991, HEARING RES, V53, P41, DOI 10.1016/0378-5955(91)90212-R SHAPIRO SM, 1993, PEDIATR RES, V34, P629, DOI 10.1203/00006450-199311000-00014 SHAPIRO SM, 1994, AM J OTOLARYNG, V15, P129, DOI 10.1016/0196-0709(94)90062-0 SHAPIRO SM, 1991, HEARING RES, V57, P16 SHAPIRO SM, 1994, CLIN PEDIATR, V33, P460, DOI 10.1177/000992289403300803 SOLBACH S, 1991, ANAT EMBRYOL, V184, P103, DOI 10.1007/BF00942742 SPITZER MW, 1995, J NEUROPHYSIOL, V73, P1668 Starr A, 1996, BRAIN, V119, P741, DOI 10.1093/brain/119.3.741 STREBEL L, 1971, PEDIATR RES, V5, P548, DOI 10.1203/00006450-197110000-00007 STURROCK RR, 1978, NEUROPATH APPL NEURO, V4, P209, DOI 10.1111/j.1365-2990.1978.tb00538.x TSUCHITANI C, 1991, NEUROBIOLOGY HEARING, P163 USAMI S, 1995, ORL J OTO-RHINO-LARY, V57, P94 UZIEL A, 1983, ACTA OTO-LARYNGOL, V95, P651, DOI 10.3109/00016488309139458 WATCHKO JF, 1994, PEDIATRICS, V93, P996 WEBSTER WR, 1990, NEUROSCI LETT, V111, P252, DOI 10.1016/0304-3940(90)90270-J Wenthold RJ, 1991, NEUROBIOLOGY HEARING, P121 YOKOCHI K, 1995, ACTA PAEDIATR, V84, P937, DOI 10.1111/j.1651-2227.1995.tb13796.x NR 77 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2002 VL 171 IS 1-2 BP 129 EP 141 DI 10.1016/S0378-5955(02)00494-X PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 594BZ UT WOS:000178030000013 PM 12204357 ER PT J AU May, BJ Prosen, CA Weiss, D Vetter, D AF May, BJ Prosen, CA Weiss, D Vetter, D TI Behavioral investigation of some possible effects of the central olivocochlear pathways in transgenic mice SO HEARING RESEARCH LA English DT Article DE acetylcholine receptor knockout; auditory psychophysics; olivocochlear efferent feedback ID COMPOUND ACTION-POTENTIALS; VENTRAL COCHLEAR NUCLEUS; OUTER HAIR-CELLS; AUDITORY-NERVE RESPONSE; CONTRALATERAL SOUND; ACOUSTIC INJURY; OTOACOUSTIC EMISSIONS; DE-EFFERENTATION; FIBER RESPONSES; HEARING-LOSS AB This study investigated the auditory behaviors of transgenic mice with deletions of alpha9 nicotinic acetylcholine receptor subunits. In the normal mammalian cochlea, the mechanical properties of outer hair cells are modified by the release of acetylcholine from olivocochlear efferent terminals. Electrophysiological correlates of this efferent feedback have not been demonstrated in alpha9 knockout mice, presumably because they are mediated by alpha9 receptors. Previous studies have associated lesions of olivocochlear pathways with hearing impairments in background noise. The prediction that alpha9 knockout mice would show similar deficits was tested by collecting psychophysical thresholds for tone detection and intensity discrimination from knockout mice, within-strain control subjects, and CBA/CaJ mice. Comparable performance was observed for the subject group, in quiet and in continuous background noise. The preservation of auditory function in alpha9 knockout mice suggests that central efferent pathways work in combination with the peripheral olivocochlear system to enhance hearing in noise. and may compensate for profound manipulations of peripheral feedback in highly routine testing procedures. An intriguing Possibility is that these central mechanisms include the brainstem collaterals of olivocochlear neurons since their post-synaptic targets do not express alpha9 receptors and therefore are likely to maintain their effects in alpha9 knockout mice. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Johns Hopkins Med Inst, Dept Otolaryngol Head & Neck Surg, Baltimore, MD 21205 USA. No Michigan Univ, Dept Psychol, Marquette, MI 49855 USA. Tufts Univ, Sch Med, Dept Neurosci, Boston, MA 02111 USA. RP May, BJ (reprint author), Johns Hopkins Med Inst, Dept Otolaryngol Head & Neck Surg, 505 Traylor Bldg,720 Rutland Ave, Baltimore, MD 21205 USA. CR BENJAMINI Y, 1988, AM STAT, V42, P257, DOI 10.2307/2685133 BENSON TE, 1990, J COMP NEUROL, V295, P52, DOI 10.1002/cne.902950106 Blanchet C, 1996, J NEUROSCI, V16, P2574 BROWN MC, 1991, J COMP NEUROL, V303, P300, DOI 10.1002/cne.903030211 BROWN MC, 1993, J COMP NEUROL, V337, P600, DOI 10.1002/cne.903370406 Dallos P, 1997, J NEUROSCI, V17, P2212 DEWSON JH, 1968, J NEUROPHYSIOL, V31, P122 ELGOYHEN AB, 1994, CELL, V79, P705, DOI 10.1016/0092-8674(94)90555-X Elgoyhen AB, 2001, P NATL ACAD SCI USA, V98, P3501, DOI 10.1073/pnas.051622798 Evans MG, 1996, J PHYSIOL-LONDON, V491, P563 Fujino K, 2001, J NEUROSCI, V21, P7372 GALAMBOS R, 1956, J NEUROPHYSIOL, V19, P424 GIFFORD ML, 1983, J ACOUST SOC AM, V74, P115, DOI 10.1121/1.389728 GREEN DM, 1966, SIGNAL DETECTION THE HEINZ RD, 1998, HEARING RES, V116, P10 HOUSLEY GD, 1991, P ROY SOC B-BIOL SCI, V244, P161, DOI 10.1098/rspb.1991.0065 IGARASHI M, 1979, ACTA OTO-LARYNGOL, V87, P429, DOI 10.3109/00016487909126446 KAWASE T, 1993, J NEUROPHYSIOL, V70, P2519 KUJAWA SG, 1993, HEARING RES, V68, P97, DOI 10.1016/0378-5955(93)90068-C LIBERMAN MC, 1989, HEARING RES, V38, P47, DOI 10.1016/0378-5955(89)90127-5 LIBERMAN MC, 1995, HEARING RES, V90, P158, DOI 10.1016/0378-5955(95)00160-2 LIBERMAN MC, 1990, HEARING RES, V49, P209, DOI 10.1016/0378-5955(90)90105-X Maison SF, 2000, J NEUROSCI, V20, P4701 May BJ, 1995, AUDIT NEUROSCI, V1, P385 May BJ, 1998, J NEUROPHYSIOL, V79, P1755 MAY BJ, 1992, J NEUROPHYSIOL, V68, P1589 Micheyl C, 1996, J ACOUST SOC AM, V99, P1604, DOI 10.1121/1.414734 MOTT JB, 1989, HEARING RES, V38, P229, DOI 10.1016/0378-5955(89)90068-3 Ngan EM, 2001, HEARING RES, V156, P44, DOI 10.1016/S0378-5955(01)00264-7 NIEMIEC AJ, 1995, METHODS COMP PSYCHOA, P65 Prosen CA, 2000, J NEUROSCI METH, V97, P59, DOI 10.1016/S0165-0270(00)00169-2 PUEL JL, 1988, HEARING RES, V37, P65, DOI 10.1016/0378-5955(88)90078-0 Puria S, 1996, J ACOUST SOC AM, V99, P500, DOI 10.1121/1.414508 RAJAN R, 1995, J NEUROPHYSIOL, V74, P582 Scharf B, 1997, HEARING RES, V103, P101, DOI 10.1016/S0378-5955(96)00168-2 SCHARF B, 1994, HEARING RES, V75, P11, DOI 10.1016/0378-5955(94)90051-5 Sgard F, 2002, MOL PHARMACOL, V61, P150, DOI 10.1124/mol.61.1.150 TRAHIOTI.C, 1970, J ACOUST SOC AM, V47, P592, DOI 10.1121/1.1911934 Tukey J.W., 1977, EXPLORATORY DATA ANA Vetter DE, 1999, NEURON, V23, P93, DOI 10.1016/S0896-6273(00)80756-4 Wang ZQ, 1997, MECH DEVELOP, V62, P137, DOI 10.1016/S0925-4773(97)00655-2 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P966, DOI 10.1121/1.1912235 WINSLOW RL, 1988, HEARING RES, V35, P165, DOI 10.1016/0378-5955(88)90116-5 WINSLOW RL, 1987, J NEUROPHYSIOL, V57, P1002 Yoshida N, 2000, HEARING RES, V141, P97, DOI 10.1016/S0378-5955(99)00210-5 Zeng FG, 2000, HEARING RES, V142, P102, DOI 10.1016/S0378-5955(00)00011-3 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 48 TC 20 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2002 VL 171 IS 1-2 BP 142 EP 157 DI 10.1016/S0378-5955(02)00495-1 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 594BZ UT WOS:000178030000014 PM 12204358 ER PT J AU Guo, YQ Burkard, R AF Guo, YQ Burkard, R TI Onset and offset responses from inferior colliculus and auditory cortex to paired noisebursts: inner hair cell loss SO HEARING RESEARCH LA English DT Article DE carboplatin; inner hair cell loss; gap detection; inferior colliculus; auditory cortex; chinchilla ID GAP DETECTION; UNANESTHETIZED CHINCHILLA; HEARING-LOSS; CARBOPLATIN; LISTENERS; STIMULUS; OTOTOXICITY; THRESHOLDS; AMPLITUDES; MASKING AB Thirteen adult chinchillas were anesthetized with ketamine/acepromazine and tungsten electrodes were placed in the right inferior colliculus (IC) and auditory cortex (AC). A reference electrode was implanted in the anterior cranium. Following a recovery period, AC and IC responses to left ear stimulation were obtained from unanesthetized animals resting in a passive restraint inside a sound-attenuating booth. After the first recording, the animals were injected with carboplatin (75 mg/kg). Four to five weeks later, a second recording was made. Stimuli were 50 ms duration (0 ms rise and full time), 80 dB SPL noiseburst pairs, In one group of seven animals, the gap time varied from 1 to 64 ms. In a second group of six animals, the gap time ranged from 0.25 to 64 ms in order to determine gap threshold. The responses were amplified (10 000 X) and filtered from 10 to 3000 Hz. Each response was the average of 100 stimulus presentations. The dependent variables were the latency of the initial positive peak and the amplitude of the response from initial positive peak to the following negativity. Following the second recording, all animals were sacrificed, the cochleas harvested, and cochleograms were obtained by counting outer hair cells (OHCs) and inner hair cells (IHCs). For the onset response to the second noiseburst of each pair, response amplitudes decreased and latencies increased with decreasing gap time. For a 64 ins gap time, the IC response approached the latencies and amplitudes seen for the onset response to the single noiseburst or first noiseburst in the pair (herein called 'baseline' values), while the AC response latency approached baseline values, but AC amplitude did not. Interestingly, the offset responses to the first noiseburst were not present at gaps of less than 8 ms, while the onset responses to the second noiseburst were typically present at gaps of 1-2 ms, Cochleograms revealed a normal (or near-normal) complement of OHCs, and IHC loss averaging roughly 30-40% in apical regions and increasing to 60-70% in more basal regions (compared to normative data). Following carboplatin, the latencies of IC onset responses were delayed by several tenths of a millisecond, with the greatest pre- versus post-carboplatin latency shift occurring at short noiseburst gaps. AC response latencies were largely unaffected by carboplatin. IC onset response amplitudes were reduced following carboplatin, while AC onset responses were similar to pre-carboplatin values. IC offset response latencies to the first noiseburst were increased post-carboplatin, while AC offset response latencies varied little from pre-carboplatin values. IC and AC offset response amplitudes to the first noiseburst were decreased post-carboplatin. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Buffalo, Ctr Hearing & Deafness, Buffalo, NY USA. Univ Buffalo, Dept Communicat Disorders & Sci, Buffalo, NY USA. Univ Buffalo, Dept Otolaryngol, Buffalo, NY USA. RP Burkard, R (reprint author), Univ Buffalo, Ctr Hearing & Deafness, Buffalo, NY USA. CR BRINKMANN R D, 1979, Scandinavian Audiology, V8, P27, DOI 10.3109/01050397909076298 Burkard RF, 1999, J ACOUST SOC AM, V106, P304, DOI 10.1121/1.427058 ELBADRY M, 2000, 2000 MIDW M ASS RES GIRAUDI D, 1980, J ACOUST SOC AM, V68, P802, DOI 10.1121/1.384818 GIRAUDIPERRY DM, 1982, J ACOUST SOC AM, V72, P1387, DOI 10.1121/1.388444 Hall JW, 1998, J SPEECH LANG HEAR R, V41, P340 HENRY KR, 1988, ELECTROEN CLIN NEURO, V69, P476, DOI 10.1016/0013-4694(88)90070-3 HENRY KR, 1987, HEARING RES, V30, P1, DOI 10.1016/0378-5955(87)90176-6 HENRY KR, 1988, J ACOUST SOC AM, V84, P1354, DOI 10.1121/1.396634 HILLYARD SA, 1978, PERCEPT PSYCHOPHYS, V24, P391, DOI 10.3758/BF03199736 Hofstetter P, 1997, HEARING RES, V112, P199, DOI 10.1016/S0378-5955(97)00123-8 LAUKLI E, 1985, AUDIOLOGY, V24, P217 LEWIS ER, 1989, HEARING RES, V37, P219, DOI 10.1016/0378-5955(89)90024-5 McFadden SL, 1998, HEARING RES, V120, P121, DOI 10.1016/S0378-5955(98)00052-5 Nelson PB, 1997, J SPEECH LANG HEAR R, V40, P1387 PEREZABALO MC, 1988, AUDIOLOGY, V27, P249 Phillips DP, 2001, HEARING RES, V155, P133, DOI 10.1016/S0378-5955(01)00249-0 Qiu CX, 2000, HEARING RES, V139, P153, DOI 10.1016/S0378-5955(99)00171-9 SALVI RJ, 1985, J ACOUST SOC AM, V77, P1173, DOI 10.1121/1.392181 Schneider BA, 1999, J ACOUST SOC AM, V106, P371, DOI 10.1121/1.427062 SNELL K, 1997, J ACOUST SOC AM, V10, P2214 Snell KB, 2000, J ACOUST SOC AM, V107, P1615, DOI 10.1121/1.428446 SNYDER DL, 1994, LAB ANIMAL, V23, P42 WAKE M, 1993, J LARYNGOL OTOL, V107, P585, DOI 10.1017/S0022215100123771 WAKE M, 1994, LARYNGOSCOPE, V104, P488 Walton JP, 1998, J NEUROSCI, V18, P2764 NR 26 TC 7 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2002 VL 171 IS 1-2 BP 158 EP 166 DI 10.1016/S0378-5955(02)00496-3 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 594BZ UT WOS:000178030000015 PM 12204359 ER PT J AU Si, JQ Zhao, H Yang, YQ Jiang, ZG Nuttall, AL AF Si, JQ Zhao, H Yang, YQ Jiang, ZG Nuttall, AL TI Nitric oxide induces hyperpolarization by opening ATP-sensitive K+ channels in guinea pig spiral modiolar artery SO HEARING RESEARCH LA English DT Article DE smooth muscle cell; endothelial cell; spiral modiolar artery; membrane potential; nitric oxide; potassium channel; cochlea ID SMOOTH-MUSCLE CELLS; RABBIT BASILAR ARTERY; COCHLEAR BLOOD-FLOW; INDUCED MEMBRANE HYPERPOLARIZATION; ENDOTHELIUM-DEPENDENT RELAXATION; POTASSIUM CHANNELS; MESENTERIC ARTERIOLES; CEREBRAL-ARTERIES; CAROTID-ARTERY; RAT AORTA AB Nitric oxide (NO) hyperpolarizes vascular smooth muscle cells and dilates blood vessels of various beds, but little is known on cochlear vasculatures. Using in vitro preparations of the spiral modiolar artery (SMA), intracellular electrical recording and labeling techniques, we found that the NO donor DPTA-NONOate (10 muM) caused a hyperpolarization of similar to 9 mV in all the cells that had a low resting potential (RP) level near -40 mV. The hyperpolarization amplitude was concentration-dependent, with a 50% effect concentration (EC50) of 1 muM. The responses occur in both smooth muscle and endothelial cells, neither of which was blocked by 18beta-glycyrrhetinic acid. The induced hyperpolarization was completely blocked by glipizide, but not by charybdotoxin, apamin, barium, 4-aminopyridine or tetraethylammonium. The hyperpolarizing responses were imitated by pinacidil (EC50 = 30 muM). The pinacidil-induced response was also blocked by glipizide but not by the other K+ channel blockers mentioned above. Both DPTA-NONOate and pinacidil had little membrane potential effect on cells that had a high RP level near -75 mV. However, when the high RP cells were depolarized to a level beyond -45 mV by barium, both DPTA-NONOate and pinacidil hyperpolarized these cells not differently from those that initially had a low RP. It is concluded that NO hyperpolarizes the SMA primarily by activating K-ATP channels in both muscle and endothelial cells. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Oregon Hlth Sci Univ, Oregon Hearing Res Ctr, Portland, OR 97201 USA. Shihezi Univ, Coll Med, Dept Physiol, Xinjiang, Peoples R China. Shanghai Chinese Tradit & Western Med Combined Ho, Dept Otolaryngol, Shanghai, Peoples R China. Oregon Hlth Sci Univ, Vollum Inst Adv Biomed Res, Portland, OR 97201 USA. Huazhong Univ Sci & Technol, Tongji Med Coll, Huazhong, Peoples R China. Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Jiang, ZG (reprint author), Oregon Hlth Sci Univ, Oregon Hearing Res Ctr, Portland, OR 97201 USA. CR Archer SL, 1996, CIRC RES, V78, P431 Armstead WM, 1997, AM J PHYSIOL-HEART C, V272, pH1785 BOLOTINA VM, 1994, NATURE, V368, P850, DOI 10.1038/368850a0 BRAYDEN JE, 1990, AM J PHYSIOL, V259, pH668 BRECHTELSBAUER PB, 1994, HEARING RES, V77, P38, DOI 10.1016/0378-5955(94)90251-8 Brovkovych V, 1999, J PHARMACEUT BIOMED, V19, P135, DOI 10.1016/S0731-7085(98)00090-9 CHEN GF, 1992, CIRC RES, V70, P257 Cohen RA, 1997, P NATL ACAD SCI USA, V94, P4193, DOI 10.1073/pnas.94.8.4193 Coleman HA, 2001, J PHYSIOL-LONDON, V531, P359, DOI 10.1111/j.1469-7793.2001.0359i.x DIETRICH HH, 1994, J NEUROSURG, V81, P437, DOI 10.3171/jns.1994.81.3.0437 Dorschner H, 1999, MOL PHARMACOL, V55, P1060 Emerson GG, 2001, AM J PHYSIOL-HEART C, V280, pH160 Faraci FM, 1998, PHYSIOL REV, V78, P53 Feletou M, 1999, J MOL CELL CARDIOL, V31, P15, DOI 10.1006/jmcc.1998.0840 FURSPAN PB, 1992, EUR J PHARMACOL, V223, P201, DOI 10.1016/0014-2999(92)94841-I GARLAND CJ, 1992, BRIT J PHARMACOL, V105, P429 JIANG ZG, 2002, ARO MIDW RES M, V25, P229 JIANG ZG, 1991, J PHYSIOL-LONDON, V443, P533 Jiang ZG, 2001, J PHYSIOL-LONDON, V537, P829 JIANG ZG, 2001, ASS RES OT MIDW RES, V24, P29 Jiang ZG, 1999, HEARING RES, V138, P171, DOI 10.1016/S0378-5955(99)00166-5 Katnik C, 1997, AM J PHYSIOL-HEART C, V272, pH2507 Keefer LK, 1996, METHOD ENZYMOL, V268, P281 Kleppisch Thomas, 1996, American Journal of Physiology, V271, pH2462 Knot HJ, 1998, J PHYSIOL-LONDON, V508, P199 KRIPPEITDREWS P, 1992, J CARDIOVASC PHARM, V20, pS72 Mistry DK, 1998, BRIT J PHARMACOL, V124, P1131, DOI 10.1038/sj.bjp.0701940 MURPHY ME, 1995, J PHYSIOL-LONDON, V486, P47 Nelson MT, 1990, AM J PHYSIOL, V259, P3 Nelson M.T., 1995, AM J PHYSIOL, V268, P799 Nelson MT, 1997, J PHYSIOL-LONDON, V502, P259, DOI 10.1111/j.1469-7793.1997.259bk.x Plane F, 1998, BRIT J PHARMACOL, V123, P1351, DOI 10.1038/sj.bjp.0701746 PLANE F, 1993, BRIT J PHARMACOL, V110, P651 PLANE F, 1994, J AUTONOM NERV SYST, V49, pS15 Quayle JM, 1997, PHYSIOL REV, V77, P1165 RAND VE, 1992, BRIT J PHARMACOL, V106, P143 Ren TY, 1997, HEARING RES, V112, P87, DOI 10.1016/S0378-5955(97)00109-3 Ruan RS, 1999, EXP NEUROL, V158, P192, DOI 10.1006/exnr.1999.7075 SHI XR, 2001, ASS RES OT ABSTR, V24, P32 SI JQ, 2001, ASS RES OT MIDW RES, V24, P29 Vanheel B, 1997, CAN J PHYSIOL PHARM, V75, P1387, DOI 10.1139/cjpp-75-12-1387 Vass Z, 1996, HEARING RES, V100, P114, DOI 10.1016/0378-5955(96)00102-5 Weidelt T, 1997, J PHYSIOL-LONDON, V500, P617 Welsh DG, 1998, AM J PHYSIOL-HEART C, V274, pH178 Yamamoto Y, 1999, J PHYSIOL-LONDON, V514, P505, DOI 10.1111/j.1469-7793.1999.505ae.x Yamamoto Y, 2001, J PHYSIOL-LONDON, V535, P181, DOI 10.1111/j.1469-7793.2001.00181.x Yuan XJ, 1996, P NATL ACAD SCI USA, V93, P10489, DOI 10.1073/pnas.93.19.10489 ZHANG H, 1994, PHARMACOL TOXICOL, V75, P327 ZHANG H, 1994, PHARMACOLOGY, V49, P11, DOI 10.1159/000139212 NR 49 TC 11 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2002 VL 171 IS 1-2 BP 167 EP 176 DI 10.1016/S0378-5955(02)00497-5 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 594BZ UT WOS:000178030000016 PM 12204360 ER PT J AU Hart, HC Palmer, AR Hall, DA AF Hart, HC Palmer, AR Hall, DA TI Heschl's gyrus is more sensitive to tone level than non-primary auditory cortex SO HEARING RESEARCH LA English DT Article ID CAT CEREBRAL-CORTEX; SINGLE NEURONS; INTENSITY DISCRIMINATION; RESPONSE PROPERTIES; FUNCTIONAL-ANATOMY; SOUND INTENSITY; SCANNER NOISE; REPRESENTATION; ORGANIZATION; FREQUENCY AB Previous neuroimaging studies generally demonstrate a growth in the cortical response with an increase in sound level, However, the details of the shape and topographic location of such growth remain largely unknown. One limiting methodological factor has been the relatively sparse sampling of sound intensities. Additionally, most studies have either analysed the entire auditory cortex without differentiating primary and non-primary regions or have limited their analyses to Heschl's gyrus (HG). Here, we characterise the pattern of responses to a 300-Hz tone presented in 6-dB steps from 42 to 96 dB sound pressure level as a function of its sound level, within three anatomically defined auditory areas; the primary area, on HG, and two non-primary areas, consisting of a small area lateral to the axis of HG (the anterior lateral area, ALA) and the posterior part of auditory cortex (the planum temporale, PT). Extent and magnitude of auditory activation increased non-linearly with sound level. In FIG, the extent and magnitude were more sensitive to increasing level than in ALA and PT, Thus, HG appears to have a larger involvement in sound-level processing than does ALA or PT. (C) 2002 Elsevier Science B.V. All rights reserved. C1 MRC, Inst Hearing Res, Nottingham NG7 2RD, England. RP Hart, HC (reprint author), MRC, Inst Hearing Res, Univ Pk, Nottingham NG7 2RD, England. CR Baumgart F, 1999, NATURE, V400, P724, DOI 10.1038/23390 Beagley H A, 1967, J Laryngol Otol, V81, P861, DOI 10.1017/S0022215100067815 Belin P, 1998, J NEUROSCI, V18, P6388 Binder JR, 2000, CEREB CORTEX, V10, P512, DOI 10.1093/cercor/10.5.512 Bowtell R, 1999, MAGNET RESON MED, V41, P600, DOI 10.1002/(SICI)1522-2594(199903)41:3<600::AID-MRM24>3.0.CO;2-E BOWTELL R, 1994, MAGN RESON MATER PHY, V2, P241, DOI 10.1007/BF01705247 Brechmann A, 2002, J NEUROPHYSIOL, V87, P423 BURKHARD MD, 1975, J ACOUST SOC AM, V58, P214, DOI 10.1121/1.380648 DADSON R S, 1952, J Laryngol Otol, V66, P366, DOI 10.1017/S0022215100047812 Evan A, 1993, P IEEE NUCL SCI S ME, P1813 EVANS EF, 1975, AUDIOLOGY, V14, P419 Friston K. J., 1993, HUMAN BRAIN MAPPING, V1, P153, DOI 10.1002/hbm.460010207 FRISTON KJ, 1995, HUMAN BRAIN MAPPING, V2, P165 Friston KJ, 1996, MAGNET RESON MED, V35, P346, DOI 10.1002/mrm.1910350312 GALABURDA A, 1980, J COMP NEUROL, V190, P597, DOI 10.1002/cne.901900312 Giraud AL, 2000, J NEUROPHYSIOL, V84, P1588 GUTSCHALK A, 2001, ABSTR ASS RES OT, V24, P187 Hall DA, 2000, MAGNET RESON MED, V43, P601, DOI 10.1002/(SICI)1522-2594(200004)43:4<601::AID-MRM16>3.0.CO;2-R Hall DA, 2002, CEREB CORTEX, V12, P140, DOI 10.1093/cercor/12.2.140 Hall DA, 2001, J ACOUST SOC AM, V109, P1559, DOI 10.1121/1.1345697 Heeger DJ, 1999, J NEUROSCI, V19, P7162 HEIL P, 1992, HEARING RES, V63, P135, DOI 10.1016/0378-5955(92)90081-W HEIL P, 1994, HEARING RES, V76, P188, DOI 10.1016/0378-5955(94)90099-X Hunton DL, 1996, HUM BRAIN MAPP, V4, P122, DOI 10.1002/(SICI)1097-0193(1996)4:2<122::AID-HBM4>3.0.CO;2-5 Jancke L, 1998, NEUROPSYCHOLOGIA, V36, P875, DOI 10.1016/S0028-3932(98)00019-0 JOHNSRUDE IS, 2002, IN PRESS J AUDIOL NE KIM DO, 1979, J NEUROPHYSIOL, V42, P16 LAI S, 1993, MAGNET RESON MED, V30, P387, DOI 10.1002/mrm.1910300318 LAUTER JL, 1985, HEARING RES, V20, P199, DOI 10.1016/0378-5955(85)90024-3 Lockwood AH, 1999, CEREB CORTEX, V9, P65, DOI 10.1093/cercor/9.1.65 Logothetis NK, 2001, NATURE, V412, P150, DOI 10.1038/35084005 LUTKENHONER B, 2000, PHYSL PSYCHOPHYSICAL, P113 Maes F, 1997, IEEE T MED IMAGING, V16, P187, DOI 10.1109/42.563664 MILLEN SJ, 1995, LARYNGOSCOPE, V105, P1305, DOI 10.1288/00005537-199512000-00008 Mohr CM, 1999, J ACOUST SOC AM, V105, P2738, DOI 10.1121/1.426942 MONDT JP, 1989, PHYS MED BIOL, V34, P1073, DOI 10.1088/0031-9155/34/8/009 Morosan P, 2001, NEUROIMAGE, V13, P684, DOI 10.1006/nimg.2000.0715 OZDAMAR O, 1976, J ACOUST SOC AM, V59, P143 Palmer AR, 1998, NEUROIMAGE, V7, pS359 Pantev C, 1991, Acta Otolaryngol Suppl, V491, P106 Penhune VB, 1996, CEREB CORTEX, V6, P661, DOI 10.1093/cercor/6.5.661 PFINGST BE, 1981, J NEUROPHYSIOL, V45, P16 PHILLIPS DP, 1981, HEARING RES, V4, P299, DOI 10.1016/0378-5955(81)90014-9 PHILLIPS DP, 1982, BRAIN RES, V248, P237, DOI 10.1016/0006-8993(82)90581-9 PHILLIPS DP, 1984, J NEUROPHYSIOL, V51, P147 PHILLIPS DP, 1994, EXP BRAIN RES, V102, P210 Pickles JO, 1982, INTRO PHYSL HEARING Rademacher J, 2001, NEUROREPORT, V12, P1561, DOI 10.1097/00001756-200106130-00010 RAPIN I, 1966, ELECTROEN CLIN NEURO, V21, P335, DOI 10.1016/0013-4694(66)90039-3 RAUSCHECKER JP, 1995, SCIENCE, V268, P111, DOI 10.1126/science.7701330 Recanzone GH, 2000, J NEUROPHYSIOL, V83, P2315 Recanzone GH, 1999, J COMP NEUROL, V415, P460, DOI 10.1002/(SICI)1096-9861(19991227)415:4<460::AID-CNE4>3.0.CO;2-F Rees G, 2000, NAT NEUROSCI, V3, P716, DOI 10.1038/76673 Rivier F, 1997, NEUROIMAGE, V6, P288, DOI 10.1006/nimg.1997.0304 Rorden C, 2000, BEHAV NEUROL, V12, P191 Rutkowski RG, 2000, HEARING RES, V145, P177, DOI 10.1016/S0378-5955(00)00087-3 Shamma S, 2001, TRENDS COGN SCI, V5, P340, DOI 10.1016/S1364-6613(00)01704-6 Strainer JC, 1997, AM J NEURORADIOL, V18, P601 SUGA N, 1977, SCIENCE, V196, P64, DOI 10.1126/science.190681 Talavage TM, 2000, HEARING RES, V150, P225, DOI 10.1016/S0378-5955(00)00203-3 TANIGUCHI I, 1993, NEUROSCI LETT, V151, P178, DOI 10.1016/0304-3940(93)90015-D VIEMEISTER NF, 1988, J ACOUST SOC AM, V84, P172, DOI 10.1121/1.396961 Waldvogel D, 2000, NATURE, V406, P995 Wallace MN, 2002, EXP BRAIN RES, V143, P499, DOI 10.1007/s00221-002-1014-z Weeks RA, 1999, NEUROSCI LETT, V262, P155, DOI 10.1016/S0304-3940(99)00062-2 Westbury CF, 1999, CEREB CORTEX, V9, P392, DOI 10.1093/cercor/9.4.392 Yang YH, 2000, MAGNET RESON MED, V43, P185, DOI 10.1002/(SICI)1522-2594(200002)43:2<185::AID-MRM4>3.0.CO;2-3 Zatorre RJ, 2001, CEREB CORTEX, V11, P946, DOI 10.1093/cercor/11.10.946 NR 68 TC 31 Z9 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2002 VL 171 IS 1-2 BP 177 EP 190 DI 10.1016/S0378-5955(02)00498-7 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 594BZ UT WOS:000178030000017 PM 12204361 ER PT J AU Pantev, C Ross, B Wollbrink, A Riebandt, M Delank, KW Seifert, E Lamprecht-Dinnesen, A AF Pantev, C Ross, B Wollbrink, A Riebandt, M Delank, KW Seifert, E Lamprecht-Dinnesen, A TI Acoustically and electrically evoked responses of the human cortex before and after cochlear implantation SO HEARING RESEARCH LA English DT Article DE auditory evoked potential; cochlear implant; human auditory cortex; cortical plasticity ID POTENTIALS; PERFORMANCE; DEAF AB Multi-channel auditory evoked potentials (AEP) were recorded before and after cochlear implantation (CI) from a patient suffering from severe high frequency hearing loss with residual, but highly fluctuating hearing around 250 Hz. Immediately after CI activation early components of the N1 were present. Later N1 components developed during the use of CI. The unique result of this single case study is the concordance of the cortical AEP pattern obtained by native and artificial peripheral stimulation, which can be regarded as an indicator for the adequate function of the Cl. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Toronto, Canada Res Chair Human Cort Plast, Baycrest Ctr Geriatr Care, Rotman Res Inst Neurosci, Toronto, ON M6A 2E1, Canada. Munster Univ Hosp, Inst Expt Audiol, Munster, Germany. Munster Univ Hosp, Dept Phoniatr & Pediat Audiol, Munster, Germany. Munster Univ Hosp, ENT Dept, Munster, Germany. Univ Bern, ENT Dept, Div Phoniatr, Bern, Switzerland. RP Pantev, C (reprint author), Univ Toronto, Canada Res Chair Human Cort Plast, Baycrest Ctr Geriatr Care, Rotman Res Inst Neurosci, 3560 Bathurst St, Toronto, ON M6A 2E1, Canada. CR BRIX R, 1991, EUR ARCH OTO-RHINO-L, V248, P442, DOI 10.1007/BF00627630 Chen JM, 1999, AM J OTOL, V20, P192 Jordan K, 1997, AM J OTOL, V18, pS116 MIYAMOTO RT, 1986, LARYNGOSCOPE, V96, P178 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x PONTON CW, 1993, ELECTROEN CLIN NEURO, V88, P478, DOI 10.1016/0168-5597(93)90037-P Rauschecker JP, 2002, SCIENCE, V295, P1025, DOI 10.1126/science.1067796 TYLER RS, 1995, AUDIOLOGY, V34, P135 van Dijk JE, 1999, AUDIOLOGY, V38, P109 NR 9 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2002 VL 171 IS 1-2 BP 191 EP 195 DI 10.1016/S0378-5955(02)00511-7 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 594BZ UT WOS:000178030000018 PM 12204362 ER PT J AU Camarero, G Villar, MA Contreras, J Fernandez-Moreno, C Pichel, JG Avendano, C Varela-Nieto, I AF Camarero, G Villar, MA Contreras, J Fernandez-Moreno, C Pichel, JG Avendano, C Varela-Nieto, I TI Cochlear abnormalities in insulin-like growth factor-1 mouse mutants SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 38th Workshop on Inner Ear Biology CY SEP 01-04, 2001 CL ROME, ITALY DE cochlear neuron; apoptosis; postnatal development; insulin-like growth factor 1; mouse knockout; stereology ID DEVELOPING INNER-EAR; FACTOR-I; IGF-I; POSTNATAL-GROWTH; TRANSGENIC MICE; TRANSCRIPTION FACTORS; STEREOLOGICAL METHODS; CELL-PROLIFERATION; SENSORY EPITHELIA; NERVOUS-SYSTEM AB Insulin-like growth factor 1 (IGF-1) modulates inner ear cell proliferation, differentiation and survival in Culture. Its function in human hearing was first evidenced by a report of a boy with a homozygous deletion of the Igf-1 gene. who showed severe sensorineural deafness [Woods et al., New Engl. J. Med. 335 (1996) 1363-1367]. To better understand the in vivo role of IGF-1 during inner ear differentiation and maturation, we studied the cochleae of Igf-1 gene knockout Mice by performing morphometric stereological analyses, immunohistochemistry and electron microscopy on postnatal days 5 (P5). P8 and P20, At P20, but not at P5, the volumes of the cochlea and cochlear ganglion were significantly reduced in mutant mice, although the reduction was less severe than whole body dwarfism. A significant decrease in the number and average size of auditory neurons was also evident at P20. IGF-1-deficient cochlear neurons showed increased apoptosis, along with altered expression of neurofilament 200 kDa and vimentin. The eighth nerve, the cochlear ganglion and the fibers innervating the sensory cells of the organ of Corti of the P20 mouse mutants presented increased expression of vimentin, whereas the expression of neurofilament was decreased. In addition, the myelin sheath was severely affected in ganglion neurons. In conclusion, IGF-1 deficit in mice severely affects postnatal survival, differentiation and maturation of the cochlear ganglion cells. (C) 2002 Elsevier Science B.V, All rights reserved. C1 Univ Autonoma Madrid, CSIC, Inst Invest Biomed Alberto Sols, Madrid 28029, Spain. Univ Complutense Madrid, Fac Vet, Dept Anat, Madrid, Spain. CSIC, Ctr Invest Biol, Dept Cell & Dev Biol, Madrid, Spain. Univ Autonoma Madrid, Fac Med, Dept Morphol, Madrid, Spain. RP Varela-Nieto, I (reprint author), Univ Autonoma Madrid, CSIC, Inst Invest Biomed Alberto Sols, Arturo Duperier 4, Madrid 28029, Spain. CR BAKER J, 1993, CELL, V75, P73, DOI 10.1016/S0092-8674(05)80085-6 Baker J, 1996, MOL ENDOCRINOL, V10, P903, DOI 10.1210/me.10.7.903 BECK KD, 1995, NEURON, V14, P717, DOI 10.1016/0896-6273(95)90216-3 BEHRINGER RR, 1990, ENDOCRINOLOGY, V127, P1033 Blasco B, 1999, VISUAL NEUROSCI, V16, P933 BONDY CA, 1991, J NEUROSCI, V11, P3442 Burns JL, 2001, DEVELOPMENT, V128, P3819 Camarero G, 2001, J NEUROSCI, V21, P7630 Cao MY, 1996, FASEB J, V10, P1635 CARSON MJ, 1993, NEURON, V10, P729, DOI 10.1016/0896-6273(93)90173-O Cheng CM, 1998, J NEUROSCI, V18, P5673 COCHARD P, 1984, J NEUROSCI, V4, P2080 COLUCCIGUYON E, 1994, CELL, V79, P679, DOI 10.1016/0092-8674(94)90553-3 DEPABLO F, 1995, TRENDS NEUROSCI, V18, P143, DOI 10.1016/0166-2236(95)93892-2 Frago LM, 2000, HISTOL HISTOPATHOL, V15, P657 Frago LM, 1998, J CELL SCI, V111, P549 Gao WQ, 1999, J NEUROBIOL, V39, P142, DOI 10.1002/(SICI)1097-4695(199904)39:1<142::AID-NEU11>3.0.CO;2-H GIESE KP, 1992, CELL, V71, P565, DOI 10.1016/0092-8674(92)90591-Y GUNDERSEN HJG, 1988, APMIS, V96, P379 Hirokawa N, 1998, J CELL BIOL, V143, P1, DOI 10.1083/jcb.143.1.1 Hogan B., 1994, MANIPULATING MOUSE E Howard CV, 1998, UNBIASED STEREOLOGY JENSEN EBV, 1993, J MICROSC-OXFORD, V170, P35 KNIPPER M, 1995, DEV BRAIN RES, V89, P73, DOI 10.1016/0165-3806(95)00113-R Knipper M, 1996, CELL TISSUE RES, V283, P339, DOI 10.1007/s004410050545 Lagares A, 2000, BRAIN RES, V865, P202, DOI 10.1016/S0006-8993(00)02218-6 Lee KH, 1996, HEARING RES, V94, P1, DOI 10.1016/0378-5955(95)00220-0 Leon Yolanda, 1998, Journal of Comparative Neurology, V398, P323, DOI 10.1002/(SICI)1096-9861(19980831)398:3<323::AID-CNE2>3.0.CO;2-1 Leon Y, 1999, HORM METAB RES, V31, P126, DOI 10.1055/s-2007-978709 LEON Y, 1995, ENDOCRINOLOGY, V136, P3494, DOI 10.1210/en.136.8.3494 LIU JP, 1993, CELL, V75, P59, DOI 10.1016/0092-8674(93)90679-K LIU JL, 1998, MOL ENDOCRINOL, V12, P1542 MCLEAN WHI, 1995, CURR OPIN CELL BIOL, V7, P118 Oesterle EC, 1997, J COMP NEUROL, V380, P262, DOI 10.1002/(SICI)1096-9861(19970407)380:2<262::AID-CNE8>3.0.CO;2-1 POWELLBRAXTON L, 1993, GENE DEV, V7, P2609, DOI 10.1101/gad.7.12b.2609 ROMAND R, 1987, HEARING RES, V28, P1, DOI 10.1016/0378-5955(87)90148-1 Ryan AF, 2000, P NATL ACAD SCI USA, V97, P6939, DOI 10.1073/pnas.97.13.6939 Saffer LD, 1996, HEARING RES, V94, P14, DOI 10.1016/0378-5955(95)00228-6 Sanz C, 1999, J CELL SCI, V112, P3967 Sanz C, 1999, ONCOGENE, V18, P429, DOI 10.1038/sj.onc.1202312 SAVAGE MO, 2001, GROWTH HORM IFG R SA, pS65 SCHWARTZ AM, 1983, AM J ANAT, V167, P33, DOI 10.1002/aja.1001670104 Staecker H, 1998, CURR OPIN NEUROBIOL, V8, P480, DOI 10.1016/S0959-4388(98)80035-4 Toesca A, 1996, NEUROSCI LETT, V221, P21, DOI 10.1016/S0304-3940(96)13273-0 Wang J, 1999, ENDOCRINOLOGY, V140, P3391, DOI 10.1210/en.140.7.3391 WEST MJ, 1993, NEUROBIOL AGING, V14, P275, DOI 10.1016/0197-4580(93)90112-O Woods KA, 1996, NEW ENGL J MED, V335, P1363, DOI 10.1056/NEJM199610313351805 Woods K A, 1997, Acta Paediatr Suppl, V423, P39 YE P, 1995, J NEUROSCI, V15, P7344 NR 49 TC 36 Z9 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2002 VL 170 IS 1-2 BP 2 EP 11 DI 10.1016/S0378-5955(02)00447-1 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 590ED UT WOS:000177804600002 PM 12208536 ER PT J AU Hatzopoulos, S Petruccelli, J Laurell, G Finesso, M Martini, A AF Hatzopoulos, S Petruccelli, J Laurell, G Finesso, M Martini, A TI Evaluation of anesthesia effects in a rat animal model using otoacoustic emission protocols SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 38th Workshop on Inner Ear Biology CY SEP 01-04, 2001 CL ROME, ITALY DE distortion product otoacoustic emission; transient evoked otoacoustic emission; anesthetic; ketamine; atropine; Sprague-Dawley rat ID MIDDLE-EAR PRESSURE; CISPLATIN OTOTOXICITY; DISTORTION PRODUCTS; IMPAIRED EARS; GUINEA-PIG; VULNERABILITY; MECHANISMS; DEPENDENCE; HUMANS; TONE AB Anesthesia effects on otoacoustic emission (OAE) recordings were evaluated in a group of 72 Sprague-Dawley rats (mean weight 225 +/- 20 gr). Two anesthesia dosages (high and normal) and two anesthetic protocols (ketamine xylazine, ketamine xylazine-atropine) were tested. Transient evoked OAE (TEOAE) and distortion product OAE (DPOAE) responses were recorded in 10 min intervals, for a total period of 60 min. Analyses of the data with repeated measure models indicated the following: (1) The animals receiving a high dose of anesthesia (cumulative dose 66.6 mg of ketamine and 13.2 mg of xylazine/kg of body weight) presented significant alterations of the TEOAE response level and the signal to noise ratio at 3.0 kHz; (2) the animals receiving a normal dose of ketamine-xylazine anesthesia (cumulative dose 50 mg of ketamine and 10 mg of xylazine/kg of body weight) presented TEOAE and DPOAE responses invariant in terms of time: (3) significant differences were observed in the DPOAE responses from animals anesthetized with ketamine-xylazine and ketamine-xylazine-atropine. The data support the hypothesis that the ketamine anesthesia OAE suppressing mechanism is related to middle-ear mechanics. (C) 2002 Elsevier Science B.V. All rights, reserved. C1 Univ Ferrara, Ctr Bioacoust, I-44100 Ferrara, Italy. Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA. Karolinska Hosp, Dept Otolaryngol, S-10401 Stockholm, Sweden. Fidia Res Labs, Padua, Italy. RP Hatzopoulos, S (reprint author), Univ Ferrara, Ctr Bioacoust, Corso Giovecca 203, I-44100 Ferrara, Italy. CR Avan P, 2000, HEARING RES, V140, P189, DOI 10.1016/S0378-5955(99)00201-4 BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Buki B, 2000, BRAIN RES, V852, P140, DOI 10.1016/S0006-8993(99)02227-1 Chinn K, 1997, LARYNGOSCOPE, V107, P357, DOI 10.1097/00005537-199703000-00015 Elam M, 1998, AM J OTOL, V19, P709 Ferber-Viart C, 1998, HEARING RES, V121, P53, DOI 10.1016/S0378-5955(98)00064-1 Harel N, 1997, HEARING RES, V110, P25, DOI 10.1016/S0378-5955(97)00061-0 Hatzopoulos S, 2001, AUDIOLOGY, V40, P253 Hatzopoulos S, 1999, ANN NY ACAD SCI, V884, P211, DOI 10.1111/j.1749-6632.1999.tb08643.x HAUSER R, 1992, ANN OTO RHINOL LARYN, V101, P994 HAUSER R, 1991, J ACOUST SOC AM, V89, P280, DOI 10.1121/1.400511 HORNER K, 1989, HEARING RES, V43, P71, DOI 10.1016/0378-5955(89)90060-9 KEMP DT, 1990, EAR HEARING, V11, P93 KETTEMBEIL S, 1995, HEARING RES, V86, P47, DOI 10.1016/0378-5955(95)00053-7 Khvoles R, 1996, HEARING RES, V97, P120 Khvoles R, 1998, AUDIOL NEURO-OTOL, V3, P40, DOI 10.1159/000013777 Konradsson KS, 1999, EAR HEARING, V20, P403, DOI 10.1097/00003446-199910000-00003 LAIRD NM, 1982, BIOMETRICS, V38, P963, DOI 10.2307/2529876 LONSBURYMARTIN BL, 1987, HEARING RES, V28, P173, DOI 10.1016/0378-5955(87)90048-7 Magnan P, 1999, AUDIOL NEURO-OTOL, V4, P123, DOI 10.1159/000013830 Marshall L, 1997, EAR HEARING, V18, P218, DOI 10.1097/00003446-199706000-00005 MILLS DM, 1993, J ACOUST SOC AM, V94, P2108, DOI 10.1121/1.407483 Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 SOCHALINGAM R, 2000, AM J OTOL, V21, P521 Voss SE, 2001, J ACOUST SOC AM, V110, P1432, DOI 10.1121/1.1394195 White S. D., 1992, Waltham International Focus, V2, P2 WHITEHEAD ML, 1995, J ACOUST SOC AM, V97, P2359, DOI 10.1121/1.411960 WHITEHEAD ML, 1995, J ACOUST SOC AM, V97, P2346, DOI 10.1121/1.411959 Withnell RH, 1998, J ACOUST SOC AM, V104, P344, DOI 10.1121/1.423243 Withnell RH, 1998, J ACOUST SOC AM, V104, P350, DOI 10.1121/1.423292 Zhao F, 2000, CLIN OTOLARYNGOL, V25, P3, DOI 10.1046/j.1365-2273.2000.00312.x Zheng YL, 1997, HEARING RES, V112, P167, DOI 10.1016/S0378-5955(97)00118-4 ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320 NR 34 TC 17 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2002 VL 170 IS 1-2 BP 12 EP 21 DI 10.1016/S0378-5955(02)00448-3 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 590ED UT WOS:000177804600003 PM 12208537 ER PT J AU Zine, A de Ribaupierre, F AF Zine, A de Ribaupierre, F TI Notch/Notch ligands and Math1 expression patterns in the organ of Corti of wild-type and Hes1 and Hes5 mutant mice SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 38th Workshop on Inner Ear Biology CY SEP 01-04, 2001 CL ROME, ITALY DE Notch; Notch ligand; Math1; mouse mutant; cochlea; hair cell differentiation ID HAIR CELL-DIFFERENTIATION; LOOP-HELIX FACTORS; INNER-EAR; TRANSCRIPTION FACTORS; PRIMARY NEUROGENESIS; NERVOUS-SYSTEM; NOTCH; DROSOPHILA; GENES; ENHANCER AB The sensory epithelium of the mammalian cochlea (the organ of Corti) represents an excellent developmental system, The organ of Corti contains two main cell types: the sensors hair cells and the supporting cells which are organized in a defined mosaic pattern. Previous results have demonstrated the participation of Notch signaling in the regulation of tile pattern of hair cell differentiation within this sensory mosaic. It has also been shown that the basic helix-loop-helix transcription factor Math1 is a positive regulator of hair cell differentiation. We demonstrated that Hes1 and Hes5. two members of the inhibitory bHLH transcription factors, act as negative regulators of hair cell differentiation. Loss-of-function studies implicating the neurogenic genes Notch1, Jag2. Hes1 and Hes5 generated a significant increase in tile number of hair cells. However, their functional interplay within the organ of Corti has not been determined. To clarify tile mechanisms that regulate hair cell differentiation, we examined the expression of Notch/Notch ligand system and Math1 in the developing organ of Corti of Hes1- and Hes5-deficient mice. Our study suggests complex specific relationships between Notch signaling. Math1 and Hes1/Hes5 in the control of hair cell differentiation in the developing organ of Corti.,. (C) 2002 Elsevier Science B,V. All tights reserved. C1 Univ Lausanne, Inst Physiol, CH-1005 Lausanne, Switzerland. RP Zine, A (reprint author), Univ Lausanne, Inst Physiol, 7 Rue Burgnon, CH-1005 Lausanne, Switzerland. CR AKAZAWA C, 1995, J BIOL CHEM, V270, P8730 Anderson DJ, 1999, CURR OPIN NEUROBIOL, V9, P517, DOI 10.1016/S0959-4388(99)00015-X Anderson DJ, 1997, MOL CELLULAR APPROAC, P26 Artavanis-Tsakonas S, 1999, SCIENCE, V284, P770, DOI 10.1126/science.284.5415.770 Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837 Bray SJ, 1997, PERSPECT DEV NEUROBI, V4, P313 Cau E, 2000, DEVELOPMENT, V127, P2323 Chan YM, 1999, CURR OPIN NEUROBIOL, V9, P582, DOI 10.1016/S0959-4388(99)00017-3 Eddison M, 2000, P NATL ACAD SCI USA, V97, P11692, DOI 10.1073/pnas.97.22.11692 Fisher A, 1998, BIOESSAYS, V20, P298, DOI 10.1002/(SICI)1521-1878(199804)20:4<298::AID-BIES6>3.0.CO;2-M Haddon C, 1998, DEVELOPMENT, V125, P359 Heitzler P, 1996, DEVELOPMENT, V122, P161 Helms AW, 1998, DEVELOPMENT, V125, P919 Ishibashi M, 1995, GENE DEV, V9, P3136, DOI 10.1101/gad.9.24.3136 Ito T, 2000, DEVELOPMENT, V127, P3913 JARRIAULT S, 1995, NATURE, V377, P355, DOI 10.1038/377355a0 Kageyama R, 1997, CURR OPIN GENET DEV, V7, P659, DOI 10.1016/S0959-437X(97)80014-7 Kiernan AE, 2001, P NATL ACAD SCI USA, V98, P3873, DOI 10.1073/pnas.071496998 Lanford Pamela J., 2000, JARO Journal of the Association for Research in Otolaryngology, V1, P161, DOI 10.1007/s101620010023 Lanford PJ, 1999, NAT GENET, V21, P289 Lee JE, 1997, CURR OPIN NEUROBIOL, V7, P13, DOI 10.1016/S0959-4388(97)80115-8 Lewis J, 1996, CURR OPIN NEUROBIOL, V6, P3, DOI 10.1016/S0959-4388(96)80002-X Lim D J, 1985, Acta Otolaryngol Suppl, V422, P1 Lim D, 1992, DEV AUDITORY VESTIBU, P33 Morrison A, 1999, MECH DEVELOP, V84, P169, DOI 10.1016/S0925-4773(99)00066-0 Ohtsuka T, 1999, EMBO J, V18, P2196, DOI 10.1093/emboj/18.8.2196 Sestan N, 1999, SCIENCE, V286, P741, DOI 10.1126/science.286.5440.741 TAKEBAYASHI K, 1994, J BIOL CHEM, V269, P5150 Tamura K, 1995, CURR BIOL, V5, P1416, DOI 10.1016/S0960-9822(95)00279-X Tsai H, 2001, HUM MOL GENET, V10, P507, DOI 10.1093/hmg/10.5.507 WEINMASTER G, 1998, CURR OPIN GENE DEV, V8, P336 Weinmaster G, 1997, MOL CELL NEUROSCI, V9, P91, DOI 10.1006/mcne.1997.0612 Wettstein DA, 1997, DEVELOPMENT, V124, P693 WILKINSON HA, 1994, CELL, V79, P1187, DOI 10.1016/0092-8674(94)90010-8 Zheng JL, 2000, NAT NEUROSCI, V3, P580 Zheng JL, 2000, DEVELOPMENT, V127, P4551 Zine A, 2001, J NEUROSCI, V21, P4712 Zine A, 2000, DEVELOPMENT, V127, P3373 NR 38 TC 34 Z9 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2002 VL 170 IS 1-2 BP 22 EP 31 DI 10.1016/S0378-5955(02)00449-5 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 590ED UT WOS:000177804600004 PM 12208538 ER PT J AU Santarelli, R Arslan, E AF Santarelli, R Arslan, E TI Electrocochleography in auditory neuropathy SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 38th Workshop on Inner Ear Biology CY SEP 01-04, 2001 CL ROME, ITALY DE auditory neuropathy; electrocochleography; otoacoustic emission; speech perception; auditory periphery ID BRAIN-STEM RESPONSES; OTOACOUSTIC EMISSIONS; HEARING-LOSS; GUINEA-PIG; SUMMATING POTENTIALS; SENSORY NEUROPATHY; NERVE DISEASE; INFANTS; BILIRUBIN; DYSFUNCTION AB Auditory neuropathy (AN) is a disorder characterized by the absence or the severe impairment of the auditory brainstem responses (ABRs) together with the preservation of otoacoustic emissions and/or cochlear microphonic (CM). We recorded transtympanic electrocochleography (ECohG) evoked by 0.1 ms clicks in one young adult and in Four children having distortion product otoacoustic emissions and absent ABRs. In all but one patient CM and summating potential (SP) were present with normal threshold, and their amplitudes appeared comparable to or higher than the values obtained from Subjects with normal hearing. The compound action potential (CAP) was absent in two patients while in one subject CM and SP were followed by a highly desynchronized neural activity. A broad CAP was found in two children and the threshold appeared clearly elevated in one of them, while it showed only a mild elevation in the other. No correlation Was found between CAP and behavioral thresholds. These results suggest that ECohG can be useful in AN diagnoses since it is the only reliable tool ill evaluating the auditory peripheral function in the presence of a desynchronized ABR. (C) 2002 Elsevier Science B,V, All right,, reserved. C1 Univ Padua, Dept Med & Surg Special, Audiol & Phoniat Serv, I-35128 Padua, Italy. RP Santarelli, R (reprint author), Univ Padua, Dept Med & Surg Special, Audiol & Phoniat Serv, Via Giustimani 2, I-35128 Padua, Italy. CR ARAN JM, 1973, AUDIOLOGY, V12, P488 Arslan E, 1997, Scand Audiol Suppl, V46, P32 Arslan E, 1994, Acta Otorhinolaryngol Ital, V14, P315 Berlin CI, 1998, EAR HEARING, V19, P37, DOI 10.1097/00003446-199802000-00002 Berlin Charles I., 1999, Seminars in Hearing, V20, P307, DOI 10.1055/s-0028-1082946 Bocca E, 1950, ARCH ITAL OTOL, V5, P116 Butinar D, 1999, ANN NEUROL, V46, P36, DOI 10.1002/1531-8249(199907)46:1<36::AID-ANA7>3.0.CO;2-J Chandler D, 2000, NEUROMUSCULAR DISORD, V10, P584, DOI 10.1016/S0960-8966(00)00148-6 COLLET L, 1993, LANCET, V342, P923, DOI 10.1016/0140-6736(93)91969-S Corley V M, 1999, J Am Acad Audiol, V10, P484 DALLOS P, 1974, AUDIOLOGY, V13, P277 DAUMAN R, 1988, CLIN OTOLARYNGOL, V13, P107, DOI 10.1111/j.1365-2273.1988.tb00750.x DELTENRE P, 1997, ELECTROENCEPHALOGR C, V107, P17 deSauvage RC, 1996, HEARING RES, V102, P15, DOI 10.1016/S0378-5955(96)00137-2 DUBLIN W, 1986, OTOLARYNGOL HEAD NEC, V95, P364 Durrant JD, 1998, J ACOUST SOC AM, V104, P370, DOI 10.1121/1.423293 EGGERMONT JJ, 1976, J ACOUST SOC AM, V60, P1132, DOI 10.1121/1.381214 Eggermont JJ, 1976, HDB SENSORY PHYSL, P625 ELBERLING C, 1974, SCAND AUDIOL, V3, P13, DOI 10.3109/01050397409044959 GERSDORFF MCH, 1982, ARCH OTO-RHINO-LARYN, V234, P15, DOI 10.1007/BF00453533 Gupta AK, 1998, AM J OTOLARYNG, V19, P232, DOI 10.1016/S0196-0709(98)90123-5 Hall GW, 2001, BRIT J HAEMATOL, V112, P851, DOI 10.1046/j.1365-2141.2001.02453.x Harrison RV, 1998, EAR HEARING, V19, P355, DOI 10.1097/00003446-199810000-00002 Hoffman DJ, 1996, PEDIATR RES, V40, P804, DOI 10.1203/00006450-199612000-00005 Kaga K, 1996, SCAND AUDIOL, V25, P233, DOI 10.3109/01050399609074960 KAGA K, 1979, INT J PEDIATR OTORHI, V1, P255, DOI 10.1016/0165-5876(79)90020-X KRAUS N, 1984, LARYNGOSCOPE, V94, P400 MARANGOS N, 1990, HNO, V38, P322 McDonald JW, 1998, EXP NEUROL, V150, P21, DOI 10.1006/exnr.1997.6762 MEURICE JC, 1991, HEARING RES, V53, P209, DOI 10.1016/0378-5955(91)90054-D MOLLER AR, 1988, ELECTROEN CLIN NEURO, V71, P198, DOI 10.1016/0168-5597(88)90005-6 MOLLER AR, 1983, EXP NEUROL, V80, P633, DOI 10.1016/0014-4886(83)90313-8 MOLLER AR, 1991, AUDIOLOGY, V30, P142 Nielsen SE, 1997, SCAND AUDIOL, V26, P187, DOI 10.3109/01050399709074992 NWAESEI CG, 1984, PEDIATRICS, V74, P800 Ohashi T, 2001, HEARING RES, V154, P26, DOI 10.1016/S0378-5955(00)00267-7 PRIEVE BA, 1991, J SPEECH HEAR RES, V34, P379 Rance G, 1999, EAR HEARING, V20, P238, DOI 10.1097/00003446-199906000-00006 RIMONDINI P, 1982, B ITOL AUDIOL FONIAT, V5, P98 Roseth S, 1998, PEDIATR RES, V44, P312, DOI 10.1203/00006450-199809000-00008 Salvi R J, 1999, Scand Audiol Suppl, V51, P1 Schoonhoven R, 1999, AUDIOLOGY, V38, P141 Sheykholeslami K, 2000, INT J PEDIATR OTORHI, V52, P65, DOI 10.1016/S0165-5876(99)00293-1 Sheykholeslami K, 2001, J LARYNGOL OTOL, V115, P530 Simmons J L, 2000, J Am Acad Audiol, V11, P337 Starr A, 1996, BRAIN, V119, P741, DOI 10.1093/brain/119.3.741 Starr A, 2001, EAR HEARING, V22, P91, DOI 10.1097/00003446-200104000-00002 Starr A., 2000, Journal of Basic and Clinical Physiology and Pharmacology, V11, P215 Starr A, 1998, EAR HEARING, V19, P169, DOI 10.1097/00003446-199806000-00001 STARR A, 2001, 17 BIENN S INT EV RE, P75 Stein Laszlo, 1996, Seminars in Hearing, V17, P197, DOI 10.1055/s-0028-1083049 Zeng FG, 1999, NEUROREPORT, V10, P3429, DOI 10.1097/00001756-199911080-00031 NR 52 TC 21 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2002 VL 170 IS 1-2 BP 32 EP 47 DI 10.1016/S0378-5955(02)00450-1 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 590ED UT WOS:000177804600005 PM 12208539 ER PT J AU Malgrange, B Rigo, JM Coucke, P Thiry, M Hans, G Nguyen, L van de Water, TR Moonen, G Lefebvre, PP AF Malgrange, B Rigo, JM Coucke, P Thiry, M Hans, G Nguyen, L van de Water, TR Moonen, G Lefebvre, PP TI Identification of factors that maintain mammalian outer hair cells in adult organ of Corti explants SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 38th Workshop on Inner Ear Biology CY SEP 01-04, 2001 CL ROME, ITALY DE apoptosis; organ of Corti; outer hair cell; trophic factor; guinea pig ID VESTIBULAR SENSORY EPITHELIA; FIBROBLAST GROWTH-FACTORS; INNER-EAR; NEUROTROPHIC FACTOR; RAT ORGAN; IN-VITRO; APOPTOSIS; COCHLEAR; EXPRESSION; OTOTOXICITY AB Both outer hair cells (OHCs) and inner hair cells (IHCs) survive and mature in 3 days old rat organ of Corti explants cultured for I month in a minimal essential medium. In contrast. under the same culture conditions, only IHCs survive in explants from adult guinea pig organ of Corti while many of the OHCs are lost within the first 48 It. Hair cell Count,, show OHCs loss to be greater in the lower portion (i.e. middle turn) of the cochlea than Lit the apex. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) indicates that there is DNA damage in adult OHCs, within 8 h of explantation. Treatment of the adult organ of Corti explants with either actinomycin D (10(-7) M) or cycloheximide (10(-6) M) prevents most OHC losses . According to these results apoptosis may be the mechanism of OHC loss in adult organ of Corti explants, Stable membrane potentials recorded from the OHCs in both uncultured and actinomycin D-treated organ of Corti explants cultured for 72 h demonstrate the functional integrity of these hair cells. OHC losses in the adult guinea pig, organ of Corti cultures can also be prevented by treatment with several of the growth factors tested. i.e. acidic fibroblast growth factor (aFGF), insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), transforming growth factor-beta1 (TGF-beta1). and glial cell-derived neurotrophic factor (GDNF). The results of this study suggest that growth factor therapy may be applicable to the treatment of some hearing disorders. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Liege, Ctr Cellular & Mol Neurosci, B-4020 Liege, Belgium. Univ Liege, Lab Cell & Tissuse Biol, B-4020 Liege, Belgium. Univ Miami, Dept Otolaryngol, Miami, FL 33152 USA. RP Malgrange, B (reprint author), Univ Liege, Ctr Cellular & Mol Neurosci, 17 Pl Delcour, B-4020 Liege, Belgium. RI Rigo, Jean-Michel/E-3456-2010 CR Aarnisalo AA, 2000, ORL J OTO-RHINO-LARY, V62, P330, DOI 10.1159/000027764 ALAM SA, 2001, LARYNGOSCOPE, V11, P528 Brownell W. E., 1983, MECH HEARING, P5 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Chatterjee S, 2001, ANN NEUROL, V49, P345, DOI 10.1002/ana.71 Compton MM, 1998, CELL IMMUNOL, V184, P143, DOI 10.1006/cimm.1998.1265 Daudet N, 2002, J COMP NEUROL, V442, P6, DOI 10.1002/cne.1418 ERNFORS P, 1995, NEURON, V14, P1153, DOI 10.1016/0896-6273(95)90263-5 Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463 HARPUR ES, 1989, PERSPECTIVES BASIC A, P42 Hossain WA, 2000, J NEUROSCI RES, V62, P40, DOI 10.1002/1097-4547(20001001)62:1<40::AID-JNR5>3.0.CO;2-L Iwasaki S, 1997, HEARING RES, V108, P55, DOI 10.1016/S0378-5955(97)00045-2 Kil J, 1997, HEARING RES, V114, P117, DOI 10.1016/S0378-5955(97)00166-4 Kopke RD, 2001, P NATL ACAD SCI USA, V98, P5886, DOI 10.1073/pnas.101120898 Kros CJ, 1996, COCHLEA, P318 Kuang R, 1999, ANN NY ACAD SCI, V884, P270, DOI 10.1111/j.1749-6632.1999.tb08648.x Lang HN, 1997, HEARING RES, V111, P177, DOI 10.1016/S0378-5955(97)00098-1 LENOIR M, 1980, ANAT EMBRYOL, V160, P253, DOI 10.1007/BF00305106 LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307 Liu W, 1998, NEUROREPORT, V9, P2609, DOI 10.1097/00001756-199808030-00034 Malgrange B, 1998, TOXICOL IN VITRO, V12, P705, DOI 10.1016/S0887-2333(98)00048-4 MALGRANGE B, 1998, NEUROCHEM RES, V23, P1135 Matsui JI, 2002, J NEUROSCI, V22, P1218 NORDEMAR H, 1983, ACTA OTO-LARYNGOL, V96, P457, DOI 10.3109/00016488309132732 Pickles JO, 2001, HEARING RES, V155, P54, DOI 10.1016/S0378-5955(01)00247-7 Pickles JO, 1998, NEUROREPORT, V9, P4093, DOI 10.1097/00001756-199812210-00016 PinkasKramarski R, 1997, ONCOGENE, V15, P2803, DOI 10.1038/sj.onc.1201466 PIRVOLA U, 1992, P NATL ACAD SCI USA, V89, P9915, DOI 10.1073/pnas.89.20.9915 PIRVOLA U, 1995, P NATL ACAD SCI USA, V92, P9269, DOI 10.1073/pnas.92.20.9269 RAFF MC, 1992, NATURE, V356, P397, DOI 10.1038/356397a0 RICHARDSON GP, 1991, HEARING RES, V53, P293, DOI 10.1016/0378-5955(91)90062-E RUSSELL IJ, 1986, NATURE, V321, P517, DOI 10.1038/321517a0 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 SNIDER WD, 1994, CELL, V77, P627, DOI 10.1016/0092-8674(94)90048-5 Staecker H, 1997, INT J DEV NEUROSCI, V15, P553, DOI 10.1016/S0736-5748(96)00110-4 Staecker H, 1998, OTOLARYNG HEAD NECK, V119, P7, DOI 10.1016/S0194-5998(98)70194-9 Suzuki M, 2000, GENE THER, V7, P1046, DOI 10.1038/sj.gt.3301180 TAN SA, 1996, CIBA F SYMP, V196, P211 TARNOWSKI BI, 1991, HEARING RES, V54, P123, DOI 10.1016/0378-5955(91)90142-V Usami S, 1997, BRAIN RES, V747, P147, DOI 10.1016/S0006-8993(96)01243-7 Vago P, 1998, NEUROREPORT, V9, P431, DOI 10.1097/00001756-199802160-00014 Wyllie A H, 1980, Int Rev Cytol, V68, P251 Xie T, 2002, J NEUROSCI, V22, P274 Yagi M, 1999, HUM GENE THER, V10, P813, DOI 10.1089/10430349950018562 Zine A, 2000, HEARING RES, V141, P19, DOI 10.1016/S0378-5955(99)00203-8 Zine A, 1998, NEUROREPORT, V9, P263, DOI 10.1097/00001756-199801260-00016 NR 46 TC 25 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2002 VL 170 IS 1-2 BP 48 EP 58 DI 10.1016/S0378-5955(02)00451-3 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 590ED UT WOS:000177804600006 PM 12208540 ER PT J AU Mhatre, AN Jero, J Chiappini, I Bolasco, G Barbara, M Lalwani, AK AF Mhatre, AN Jero, J Chiappini, I Bolasco, G Barbara, M Lalwani, AK TI Aquaporin-2 expression in the mammalian cochlea and investigation of its role in Meniere's disease SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 38th Workshop on Inner Ear Biology CY SEP 01-04, 2001 CL ROME, ITALY DE aquaporin-2; cochlea; testis; Meniere's disease; endolymph ID INNER-EAR FLUIDS; WATER CHANNELS; ENDOLYMPHATIC SAC; COLLECTING DUCT; RAT-KIDNEY; PERMEABILITY; MEMBRANE; CLONING AB The expression pattern of aquaporin-2 (AQP2), a vasopressin regulated member of the aquaporin gene family, in the cochlea and its potential role in Meniere's disease was investigated. RT-PCR screen of multiple rat tissues identified AQP2 transcripts in the cochlea, testis and kidney and an absence of tissue-specific splice variants. The level of AQP2 transcript in the cochlea was 10-fold lower relative to its expression in the testis and kidney. Western blot analysis demonstrated a single, 29 kDa band in the membrane fractions from cochlea. testis and the kidney. In the rat and mouse cochlea, AQP2 was expressed in the structures bordering the endolymph, including Reissner's membrane, the organ of Corti, inner and outer sulcus cells and the spiral limbus. A mutation screen of AQP2 in 12 individuals with Meniere's disease did not identify any sequence alterations or mutations within the four coding exons of AQP2 and their intron-exon junctions. The physiological role of AQP2 in water transport and its expression pattern in the cochlea suggests an important role for AQP2 in fluid homeostasis of the inner car; however, its role in the pathogenesis in Meniere's disease remains to be established. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Calif San Francisco, Dept Otolaryngol Head & Neck Surg, Lab Mol Otol, Epstein Labs, San Francisco, CA 94143 USA. Univ Roma La Sapienza, Dept Clin Neurol ENT Rehabil Surg Motor & Communi, Fac 2, Rome, Italy. RP Lalwani, AK (reprint author), Univ Calif San Francisco, Dept Otolaryngol Head & Neck Surg, Lab Mol Otol, Epstein Labs, 533 Parnassus Ave,U490A, San Francisco, CA 94143 USA. CR Beitz E, 1999, HEARING RES, V132, P76, DOI 10.1016/S0378-5955(99)00036-2 Belyantseva IA, 2000, J NEUROSCI, V20, P8996 CHARACHON GC, 1997, ARO MIDW M SESS DD, P927 CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1006/abio.1987.9999 COMACCHIO F, 1992, AM J OTOL, V13, P477 Ferrary E, 1996, ACTA OTO-LARYNGOL, V116, P244, DOI 10.3109/00016489609137833 FUSHIMI K, 1993, NATURE, V361, P549, DOI 10.1038/361549a0 FUSHIMI K, 1994, AM J PHYSIOL-RENAL, V267, pF573 HAYASHI M, 1994, J CLIN INVEST, V94, P1778, DOI 10.1172/JCI117525 Kitano H, 1994, Ear Nose Throat J, V73, P921 Kumagami H, 1998, PFLUG ARCH EUR J PHY, V436, P970, DOI 10.1007/s004240050731 Kuwahara M, 2001, AM J HUM GENET, V69, P738, DOI 10.1086/323643 Li J, 2001, J BIOL CHEM, V276, P31233, DOI 10.1074/jbc.M104368200 Merves M, 2000, LARYNGOSCOPE, V110, P1925, DOI 10.1097/00005537-200011000-00030 Mhatre AN, 1999, BIOCHEM BIOPH RES CO, V264, P157, DOI 10.1006/bbrc.1999.1323 NIELSEN S, 1995, P NATL ACAD SCI USA, V92, P1013, DOI 10.1073/pnas.92.4.1013 Stankovic KM, 1995, AM J PHYSIOL-CELL PH, V269, pC1450 STERKERS O, 1988, PHYSIOL REV, V68, P1083 Takeda T, 1995, Acta Otolaryngol Suppl, V519, P219 Takumi Y, 1998, EUR J NEUROSCI, V10, P3584, DOI 10.1046/j.1460-9568.1998.00360.x UCHIDA S, 1994, J BIOL CHEM, V269, P23451 Yang BX, 2001, J BIOL CHEM, V276, P2775, DOI 10.1074/jbc.M008216200 NR 22 TC 39 Z9 46 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2002 VL 170 IS 1-2 BP 59 EP 69 DI 10.1016/S0378-5955(02)00452-5 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 590ED UT WOS:000177804600007 PM 12208541 ER PT J AU Hatzopoulos, S Petruccelli, J Laurell, G Avan, P Finesso, M Martini, A AF Hatzopoulos, S Petruccelli, J Laurell, G Avan, P Finesso, M Martini, A TI Ototoxic effects of cisplatin in a Sprague-Dawley rat animal model as revealed by ABR and transiently evoked otoacoustic emission measurements SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 38th Workshop on Inner Ear Biology CY SEP 01-04, 2001 CL ROME, ITALY DE ototoxicity; cisplatin; otoacoustic emissions; transiently evoked otoacoustic emission; auditory brainstem response ID HIGH-DOSE CISPLATIN; ALBINO GUINEA-PIGS; HEARING-LOSS; NEPHROTOXICITY; PROTECTION; RESPONSES; PLATINUM; SYSTEM AB The ototoxic effects of cisplatin in a Sprague-Dawley rat model were evaluated by recordings of auditory brainstem responses (ABR) and transiently evoked otoacoustic emissions (TEOAEs). The ABR responses were evoked front alternating clicks and 8, 10, 12, 16, 20 and 30 kHz tone pips in a range from 40 to 100 dB SPL range. The TEOAEs' were recorded with it non-linear protocol, and were evoked by a 63.5 dB SPL click stimulus. Twenty fife male Sprague Dawley rats were used in the study, 20 animals were treated with cisplatin (16 mg/kg, body weight) and five animals served Lis controls. The data showed that 72 h after the cisplatin administration, the TEOAE and ABR variables were significantly altered. The relationship between the ABR and TEOAE variables was shown to be non-linear. The most significant relationships were observed between the TEOAE correlation and the ABR threshold values at 10, 12, and 16 kHz. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Ferrara, Dept Audiol, I-44100 Ferrara, Italy. Univ Ferrara, Ctr Bioacoust, I-44100 Ferrara, Italy. Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA. Karolinska Hosp, Dept Otolaryngol, S-10401 Stockholm, Sweden. Sch Med, Lab Sensory Biophys, Clermont Ferrand, France. Fidia Res Labs, Padua, Italy. RP Hatzopoulos, S (reprint author), Univ Ferrara, Dept Audiol, 203 Corso Giovecca, I-44100 Ferrara, Italy. CR Arruda J, 1996, AM J OTOL, V17, P787 BECK A, 1992, HNO, V40, P123 BLAKLEY BW, 1994, ARCH OTOLARYNGOL, V120, P541 Bourre JM, 1999, AUDIOLOGY, V38, P13 BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9 Efron B., 1993, INTRO BOOTSTRAP Ekborn A, 2000, HEARING RES, V140, P38, DOI 10.1016/S0378-5955(99)00190-2 Fausti S A, 1992, J Am Acad Audiol, V3, P397 FAUSTI SA, 1984, CANCER, V53, P224, DOI 10.1002/1097-0142(19840115)53:2<224::AID-CNCR2820530207>3.0.CO;2-D GANDARA DR, 1991, SEMIN ONCOL, V18, P49 Hatzopoulos S, 2000, AUDIOLOGY, V39, P1 Hatzopoulos S, 1999, ANN NY ACAD SCI, V884, P211, DOI 10.1111/j.1749-6632.1999.tb08643.x HOTZ MA, 1994, LARYNGOSCOPE, V104, P1130 Husain K, 1998, MOL CELL BIOCHEM, V178, P127, DOI 10.1023/A:1006889427520 Kersten L, 1998, J APPL TOXICOL, V18, P93 Khvoles R, 1996, HEARING RES, V97, P120 Khvoles R, 1998, AUDIOL NEURO-OTOL, V3, P40, DOI 10.1159/000013777 KOHN SM, 1988, LARYNGOSCOPE, V98, P871, DOI 10.1288/00005537-198808000-00015 KOPELMAN J, 1988, LARYNGOSCOPE, V98, P858 LAURELL G, 1990, LARYNGOSCOPE, V100, P724 LAURELL G, 1991, ACTA OTO-LARYNGOL, V111, P891, DOI 10.3109/00016489109138427 MCFADDEN D, 1984, J ACOUST SOC AM, V76, P443, DOI 10.1121/1.391585 Meech RP, 1998, HEARING RES, V124, P44, DOI 10.1016/S0378-5955(98)00116-6 RAVI R, 1995, ANTIOXID SYST PHARM, V76, P384 Riggs LC, 1996, LARYNGOSCOPE, V106, P401, DOI 10.1097/00005537-199604000-00003 SAITO T, 1994, ORL J OTO-RHINO-LARY, V56, P315 Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 SOCHALINGAM R, 2000, AM J OTOL, V21, P521 Stengs CHM, 1998, HEARING RES, V124, P99, DOI 10.1016/S0378-5955(98)00129-4 Stengs CHM, 1998, HEARING RES, V124, P108, DOI 10.1016/S0378-5955(98)00130-0 TANGE R, 1982, ARCH OTORHINOLARYNGO, V239, P41 TANGE RA, 1982, ARCH OTO-RHINO-LARYN, V237, P17, DOI 10.1007/BF00453712 TAUDY M, 1992, AUDIOLOGY, V31, P293 UEDA H, 1998, BIOL PHARM B Withnell RH, 1998, J ACOUST SOC AM, V104, P344, DOI 10.1121/1.423243 Withnell RH, 1998, J ACOUST SOC AM, V104, P350, DOI 10.1121/1.423292 ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320 NR 39 TC 6 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2002 VL 170 IS 1-2 BP 70 EP 82 DI 10.1016/S0378-5955(02)00453-7 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 590ED UT WOS:000177804600008 PM 12208542 ER PT J AU Heffner, HE Harrington, IA AF Heffner, HE Harrington, IA TI Tinnitus in hamsters following exposure to intense sound SO HEARING RESEARCH LA English DT Article DE audiogram; auditory brainstem response; hamster; hearing loss; tinnitus ID DORSAL COCHLEAR NUCLEUS; PHANTOM AUDITORY-PERCEPTION; SPONTANEOUS NEURAL ACTIVITY; ANIMAL-MODEL; RATS AB Hamsters were trained with a conditioned suppression/avoidance procedure to drink in the presence of a broadband noise and/or a tone and to stop drinking in the absence of sound. A variety of tones and loudspeaker locations were used during training so that the animals would respond to a sound regardless of its frequency or location. Four groups of animals then had their left ears exposed to a 10-kHz tone at 124 or 127 dB for 0.5, 1.2 or 4 h. They were then tested for tinnitus by comparing their performance with that of unexposed animals to determine if they behaved as if they perceived a sound when no external sound was present. The groups exposed for 2 and 4 h tested positive for tinnitus whereas those exposed for 0.5 and 1 h did not. The degree of hearing loss produced by the tone exposure was assessed using behavioral and auditory brainstem response (ABR) procedures. A partial dissociation was found between the hearing loss, as estimated by the ABR, and the results of the tinnitus test in that animals exposed for 1 h had the same hearing loss as the 2- and 4-h exposed animals. but did not test positive for tinnitus. This suggests that the positive scores on the tinnitus test were not due to hearing loss. These results are discussed along with those of previous behavioral studies of tinnitus in animals. (C) 2002 Published by Elsevier Science B.V. C1 Univ Toledo, Dept Psychol, Toledo, OH 43606 USA. RP Heffner, HE (reprint author), Univ Toledo, Dept Psychol, Toledo, OH 43606 USA. CR Bauer CA, 1999, OTOLARYNG HEAD NECK, V121, P457, DOI 10.1016/S0194-5998(99)70237-8 Bauer CA, 2001, JARO, V2, P54 Brennan JF, 1996, DEV PSYCHOBIOL, V29, P69, DOI 10.1002/(SICI)1098-2302(199601)29:1<69::AID-DEV4>3.0.CO;2-K BRENNAN JF, 1991, ACTA NEUROBIOL EXP, V51, P15 Gellermann LW, 1933, PEDAGOG SEMIN J GEN, V42, P206 Heffner H. E., 1995, METHODS COMP PSYCHOA, P73 HEFFNER HE, 1994, HEARING RES, V73, P244, DOI 10.1016/0378-5955(94)90240-2 Heffner RS, 2001, HEARING RES, V157, P138, DOI 10.1016/S0378-5955(01)00298-2 JASTREBOFF PJ, 1988, ANN NY ACAD SCI, V522, P716, DOI 10.1111/j.1749-6632.1988.tb33419.x JASTREBOFF PJ, 1988, BEHAV NEUROSCI, V102, P811, DOI 10.1037/0735-7044.102.6.811 JASTREBOFF PJ, 1994, AUDIOLOGY, V33, P202 JASTREBOFF PJ, 1988, LARYNGOSCOPE, V98, P280 JASTREBOFF PJ, 1991, ARCH OTOLARYNGOL, V117, P1162 Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6 KALTENBACH JA, 1992, HEARING RES, V60, P205, DOI 10.1016/0378-5955(92)90022-F Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5 Kaltenbach JA, 1998, HEARING RES, V124, P78, DOI 10.1016/S0378-5955(98)00119-1 Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57 Klump G.M., 1995, METHODS COMP PSYCHOA NR 19 TC 78 Z9 82 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2002 VL 170 IS 1-2 BP 83 EP 95 DI 10.1016/S0378-5955(02)00343-X PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 590ED UT WOS:000177804600009 PM 12208543 ER PT J AU Salvi, RJ Lockwood, AH Frisina, RD Coad, ML Wack, DS Frisina, DR AF Salvi, RJ Lockwood, AH Frisina, RD Coad, ML Wack, DS Frisina, DR TI PET imaging of the normal human auditory system: responses to speech in quiet and in background noise SO HEARING RESEARCH LA English DT Article DE speech; noise; superior temporal gyrus; cerebellum; post-central gyrus; thalamus; superior frontal gyrus; attention; auditory pathway ID POSITRON-EMISSION-TOMOGRAPHY; VERBAL WORKING-MEMORY; COCHLEAR-IMPLANT; FUNCTIONAL-ANATOMY; CORTEX; ACTIVATION; RECOGNITION; PERCEPTION; ATTENTION; LISTENERS AB The neural mechanisms involved in listening to sentences, and then detecting and verbalizing a specific word are poorly understood, but most likely involve complex neural networks. We used positron emission tomography to identify the areas of the human brain that are activated when young, normal hearing males and females were asked to listen to a sentence and repeat the last word from the Speech in Noise (SPIN) test. Listening conditions were (1) Quiet, (2) Speech, (3) Noise, and (4) SPIN with stimuli presented monaurally to either the left ear or the right ear, The least difficult listening task, Speech. resulted in bilateral activation of superior and middle temporal gyrus and pre-central gyrus. The Noise and SPIN conditions activated many of the same regions as Speech alone plus additional sites within the cerebellum, thalamus and superior/middle frontal gyri, Comparison of the SPIN condition versus Speech revealed additional activation in the right anterior lobe of the cerebellum and right medial frontal gyrus, near the cingulate. None of the left ear-right ear stimulus comparison revealed any significant differences except For the SPIN condition that showed greater activation in the left superior temporal gyrus for stimuli presented to the right ear. No gender differences were observed. These results demonstrate that repeating the last word in a sentence activates mainly auditory and motor areas of the brain when Speech is presented, whereas more difficult tasks, such as SPIN or milti-talker Noise, activate linguistic, attentional, cognitive, working memory, and motor planning areas. (C) 2002 Elsevier Science B.V. All rights reserved. C1 SUNY Buffalo, Hearing Res Lab, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. SUNY Buffalo, Dept Neurol, Buffalo, NY 14214 USA. SUNY Buffalo, Ctr Positron Emiss Tomog, Buffalo, NY 14214 USA. SUNY Buffalo, Dept Nucl Med, Buffalo, NY 14214 USA. Vet Adm Western New York Hlth Care Syst, Buffalo, NY 14214 USA. Rochester Inst Technol, Int Ctr Hearing & Speech, Rochester, NY 14623 USA. Univ Rochester, Sch Med & Dent, Dept Otolaryngol, Rochester, NY 14642 USA. RP Salvi, RJ (reprint author), SUNY Buffalo, Hearing Res Lab, Ctr Hearing & Deafness, 215 Parker Hall, Buffalo, NY 14214 USA. CR BEATTIE RC, 1978, J AM AUDITORY SOC, V3, P267 Benedict RHB, 1998, NEUROREPORT, V9, P121, DOI 10.1097/00001756-199801050-00024 BILGER RC, 1984, J SPEECH HEAR RES, V27, P32 Burton MW, 2001, BRAIN LANG, V77, P119, DOI 10.1006/brln.2000.2444 Bush G, 1998, HUM BRAIN MAPP, V6, P270, DOI 10.1002/(SICI)1097-0193(1998)6:4<270::AID-HBM6>3.0.CO;2-0 CARHART R, 1971, J SPEECH HEAR DISORD, V36, P476 CARHART R, 1971, J SPEECH HEAR RES, V14, P486 Crosson B, 1999, CEREB CORTEX, V9, P307, DOI 10.1093/cercor/9.4.307 DIRKS DD, 1977, J SPEECH HEAR DISORD, V42, P408 Fiez JA, 1996, NEURON, V16, P13, DOI 10.1016/S0896-6273(00)80018-5 Fox PT, 1996, NATURE, V382, P158, DOI 10.1038/382158a0 FRACKOWIAK RJS, 1997, HUMAN BRAIN FUNCTION, P528 Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3 Frith CD, 1996, NEUROIMAGE, V4, P210, DOI 10.1006/nimg.1996.0072 GordonSalant S, 1997, J SPEECH LANG HEAR R, V40, P423 Hood J D, 1977, Br J Audiol, V11, P93, DOI 10.3109/03005367709078841 Hugdahl K, 1999, NEUROPSYCHOLOGIA, V37, P431, DOI 10.1016/S0028-3932(98)00101-8 HUMES LE, 1979, AUDIOLOGY, V18, P307 HUTCHERSON RW, 1979, OTOLARYNG HEAD NECK, V87, P239 Jonides J, 1998, J NEUROSCI, V18, P5026 KALIKOW DN, 1977, J ACOUST SOC AM, V61, P1337, DOI 10.1121/1.381436 Kim K, 2000, SCAND AUDIOL, V29, P211, DOI 10.1080/010503900750022835 Kinomura S, 1996, SCIENCE, V271, P512, DOI 10.1126/science.271.5248.512 Kirk KI, 1997, J SPEECH LANG HEAR R, V40, P1395 LAUTER JL, 1985, HEARING RES, V20, P199, DOI 10.1016/0378-5955(85)90024-3 Liegeois-Chauvel C, 1999, CEREB CORTEX, V9, P484, DOI 10.1093/cercor/9.5.484 Lockwood AH, 1999, CEREB CORTEX, V9, P65, DOI 10.1093/cercor/9.1.65 Lockwood AH, 1998, NEUROLOGY, V50, P114 MEYER DH, 1985, J SPEECH HEAR DISORD, V50, P326 Mirz F, 1999, SCAND AUDIOL, V28, P161, DOI 10.1080/010503999424734 Muller RA, 1998, NEUROSCI LETT, V245, P1, DOI 10.1016/S0304-3940(98)00151-7 NAITO Y, 1995, COGNITIVE BRAIN RES, V2, P207, DOI 10.1016/0926-6410(95)90009-8 Okazawa H, 1996, BRAIN, V119, P1297, DOI 10.1093/brain/119.4.1297 Papathanassiou D, 2000, NEUROIMAGE, V11, P347, DOI 10.1006/nimg.2000.0546 Pascoe D P, 1975, Ann Otol Rhinol Laryngol, V84, P1 Persson P, 2001, OTOL NEUROTOL, V22, P625, DOI 10.1097/00129492-200109000-00011 PETERSEN SE, 1993, ANNU REV NEUROSCI, V16, P509, DOI 10.1146/annurev.ne.16.030193.002453 POSNER MI, 1988, SCIENCE, V240, P1627, DOI 10.1126/science.3289116 RIZZO SR, 1991, EAR HEARING, V12, P61, DOI 10.1097/00003446-199102000-00008 Roskies AL, 2001, J COGNITIVE NEUROSCI, V13, P829, DOI 10.1162/08989290152541485 Schum D J, 1992, J Am Acad Audiol, V3, P303 Schumacher EH, 1996, NEUROIMAGE, V3, P79, DOI 10.1006/nimg.1996.0009 Scott SK, 2000, BRAIN, V123, P2400, DOI 10.1093/brain/123.12.2400 SHIRINIAN MJ, 1982, ARCH OTOLARYNGOL, V108, P15 Talairach J., 1988, COPLANAR STEREOTAXIC Thivard L, 2000, NEUROREPORT, V11, P2969, DOI 10.1097/00001756-200009110-00028 VanHorn JD, 1996, BIOL PSYCHIAT, V39, P389, DOI 10.1016/0006-3223(95)00249-9 Warburton E, 1996, BRAIN, V119, P159, DOI 10.1093/brain/119.1.159 Wildgruber D, 2001, NEUROIMAGE, V13, P101, DOI 10.1006/nimg.2000.0672 Wong D, 1999, HEARING RES, V132, P34, DOI 10.1016/S0378-5955(99)00028-3 NR 50 TC 28 Z9 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2002 VL 170 IS 1-2 BP 96 EP 106 DI 10.1016/S0378-5955(02)00386-6 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 590ED UT WOS:000177804600010 PM 12208544 ER PT J AU Henry, KR AF Henry, KR TI Sex- and age-related elevation of cochlear nerve envelope response (CNER) and auditory brainstem response (ABR) thresholds in C57BL/6 mice SO HEARING RESEARCH LA English DT Article ID PRODUCT OTOACOUSTIC EMISSIONS; HEARING-LOSS; INBRED STRAINS; MOUSE; DISTORTION; DEGENERATION; CELL; SENSITIVITY; DALMATIANS; DIFFERENCE AB The C57BL/6 mouse has long been considered, in scores of published studies. as a model of early adult-onset, progressive sensorineural hearing loss (presbycusis). The auditory brainstem response (ABR) has most often been used in these studies as a measure of functional loss. Whereas the ABR measures the response to a rapid acoustic onset, the cochlear nerve envelope response (CNER) measures the ability of cochlear nerve axons to respond to the low frequency modulations of the entire acoustic waveform, acoustic changes that are utilized in vocalizations and music. The present study compared the ability of these two measures to assess presbycusis in male and female C57BL/6 mice, at ages ranging from 50 to 400 days. Thresholds to the CNER were almost invariably more sensitive than the ABR, in response to stimulus frequencies ranging from 8 to 56 kHz. By 100 days of age, mice showed elevation of thresholds in response to high frequency stimuli, and this loss was greater in females than in males. These trends persisted for both measures over the next 300 days, involving successively lower frequencies. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Calif Davis, Dept Psychol, Davis, CA 95616 USA. RP Henry, KR (reprint author), Univ Calif Davis, Dept Psychol, Davis, CA 95616 USA. CR AREHART KH, 1994, J ACOUST SOC AM, V95, P3574, DOI 10.1121/1.409975 CORSO JF, 1963, ARCH ENVIRON HEALTH, V6, P350 EHRET G, 1987, NATURE, V325, P249, DOI 10.1038/325249a0 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H Famula TR, 2001, PREV VET MED, V48, P15, DOI 10.1016/S0167-5877(00)00183-5 Gates GA, 1999, ARCH OTOLARYNGOL, V125, P654 HENRY KR, 1980, AUDIOLOGY, V19, P369 Henry KR, 1996, HEARING RES, V99, P151, DOI 10.1016/S0378-5955(96)00096-2 HENRY KR, 1998, AUDIOLOGY, V36, P262 Henry KR, 2000, J COMP PSYCHOL, V114, P22, DOI 10.1037//0735-7036.114.1.22 Henry KR, 1996, HEARING RES, V99, P160, DOI 10.1016/S0378-5955(96)00097-4 HENRY KR, 1982, J GERONTOL, V37, P275 HENRY KR, 1984, DEV PSYCHOBIOL, V17, P493, DOI 10.1002/dev.420170507 Henry KR, 1997, J COMP PHYSIOL A, V181, P239, DOI 10.1007/s003590050110 Hequembourg S, 2001, JARO, V2, P118 HOLLIDAY TA, 1992, J VET INTERN MED, V6, P166 Jimenez AM, 1999, HEARING RES, V138, P91, DOI 10.1016/S0378-5955(99)00154-9 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 KIANG NYS, 1979, ACTA OTO-LARYNGOL, V87, P204, DOI 10.3109/00016487909126408 KIM DO, 1980, J ACOUST SOC AM, V67, P1704, DOI 10.1121/1.384297 LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418 McFadden SL, 1999, EAR HEARING, V20, P164, DOI 10.1097/00003446-199904000-00007 MIKAELIA.DO, 1974, ACTA OTO-LARYNGOL, V77, P327, DOI 10.3109/00016487409124632 MIKAELIAN DO, 1979, LARYNGOSCOPE, V89, P1 NORTHERN JL, 1972, J ACOUST SOC AM, V52, P585, DOI 10.1121/1.1913149 NUTTALL AL, 1994, J ACOUST SOC AM, V96, P2583, DOI 10.1121/1.410064 PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X Parham K, 1997, HEARING RES, V112, P216, DOI 10.1016/S0378-5955(97)00124-X PEARSON JD, 1995, J ACOUST SOC AM, V97, P1196, DOI 10.1121/1.412231 PEDERSEN KE, 1989, AUDIOLOGY, V28, P194 ROSE JE, 1967, J NEUROPHYSIOL, V30, P769 Rosen S, 1964, ARCH OTOLARYNGOL, V79, P34 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Shnerson A, 1981, Brain Res, V254, P65 SIEGEL JH, 1982, J NEUROPHYSIOL, V47, P303 Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 Stenberg AE, 1999, HEARING RES, V136, P29, DOI 10.1016/S0378-5955(99)00098-2 White JA, 2000, HEARING RES, V141, P12, DOI 10.1016/S0378-5955(99)00204-X WILLOTT JF, 1986, J NEUROPHYSIOL, V56, P391 Willott JF, 1998, HEARING RES, V115, P162, DOI 10.1016/S0378-5955(97)00189-5 WILLOTT JF, 2000, ARO ABSTR, V23, P224 Willott JF, 2001, HDB MOUSE AUDITORY R Wood JLN, 1998, PREV VET MED, V36, P39, DOI 10.1016/S0167-5877(98)00074-9 NR 44 TC 23 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2002 VL 170 IS 1-2 BP 107 EP 115 DI 10.1016/S0378-5955(02)00391-X PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 590ED UT WOS:000177804600011 PM 12208545 ER PT J AU Popelar, J Mazelova, J Syka, J AF Popelar, J Mazelova, J Syka, J TI Effects of electrical stimulation of the inferior colliculus on 2f(1)-f(2) distortion product otoacoustic emissions in anesthetized guinea pigs SO HEARING RESEARCH LA English DT Article ID OUTER HAIR-CELLS; OLIVOCOCHLEAR BUNDLE; CONTRALATERAL SUPPRESSION; AUDITORY-CORTEX; AMINOGLYCOSIDE ANTIBIOTICS; MICROMECHANICAL PROPERTIES; COCHLEAR RESPONSES; ALBINO-RAT; PROJECTIONS; GENTAMICIN AB The effects of electrical stimulation of the inferior colliculus (IC) on the activation of olivocochlear nerve fibers were investigated in guinea pigs in which the 2f(1)-f(2) distortion product otoacoustic emissions (DPOAE) were recorded, Animals were anesthetized with ketamine (33 mg/kg) and xylazine (6.6 mg/ka). Bipolar electrical stimulation of the IC by a train of pulses with currents less than the threshold for evoking muscle twitches resulted in a small depression of the DPOAE amplitude by 0.1-2 dB. The maximal effect was observed when the stimulating electrodes were located in the rostro-medial or central parts of the IC. The suppression of electrically evoked DPOAE was similar to the DPOAE suppression produced by acoustical stimulation of the contralateral ear by a broad-band noise. Suppression of DPOAE amplitude in response to both acoustical and electrical stimulation Was abolished 1-2 h after a single intramuscular injection of gentamicin (210-250 mg/kg). The results indicate that electrical stimulation of the IC can activate the efferent system and produce DPOAE changes by similar mechanisms as does acoustical stimulation of the contralateral ear. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Acad Sci Czech Republ, Inst Expt Med, Prague 14220 4, Czech Republic. RP Popelar, J (reprint author), Acad Sci Czech Republ, Inst Expt Med, Videnska 1083, Prague 14220 4, Czech Republic. RI Popelar, Jiri/H-2558-2014; Syka, Josef/H-3103-2014 CR ANDERSEN RA, 1980, J COMP NEUROL, V191, P479, DOI 10.1002/cne.901910310 Avan P, 1996, EXP BRAIN RES, V109, P9 BERLIN CI, 1993, HEARING RES, V71, P1, DOI 10.1016/0378-5955(93)90015-S COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204 daCosta DL, 1997, EXP BRAIN RES, V116, P259, DOI 10.1007/PL00005754 DIAMOND IT, 1969, BRAIN RES, V15, P305, DOI 10.1016/0006-8993(69)90160-7 Druga R, 1997, PHYSIOL RES, V46, P215 DRUGA R, 1984, PHYSIOL BOHEMOSLOV, V33, P31 DULON D, 1989, J NEUROSCI RES, V24, P338, DOI 10.1002/jnr.490240226 FAYELUND H, 1985, ANAT EMBRYOL, V173, P53, DOI 10.1007/BF00707304 FEX J, 1959, Acta Otolaryngol, V50, P540, DOI 10.3109/00016485909129230 GIFFORD ML, 1987, HEARING RES, V29, P179, DOI 10.1016/0378-5955(87)90166-3 Giraud AL, 1997, NEUROREPORT, V8, P1779 GUITTON M, 2001, 24 MIDW RES M ASS RE HOOD LJ, 1996, HEARING RES, V37, P29 Khalfa S, 2001, NEUROSCIENCE, V104, P347, DOI 10.1016/S0306-4522(01)00072-0 LIBERMAN MC, 1989, HEARING RES, V38, P47, DOI 10.1016/0378-5955(89)90127-5 Luparello T. J., 1967, STEREOTAXIC ATLAS FO Micheyl C, 1996, J ACOUST SOC AM, V99, P1604, DOI 10.1121/1.414734 MOUNTAIN DC, 1980, SCIENCE, V210, P71, DOI 10.1126/science.7414321 Mulders WHA, 2000, HEARING RES, V149, P11, DOI 10.1016/S0378-5955(00)00157-X NAKAGAWA T, 1992, BRAIN RES, V580, P345, DOI 10.1016/0006-8993(92)90966-D POPELAR J, 1996, AUDIT NEUROSCI, V3, P425 POPELAR J, 1994, HEARING RES, V72, P125, DOI 10.1016/0378-5955(94)90212-7 Popelar J, 2001, HEARING RES, V152, P128, DOI 10.1016/S0378-5955(00)00244-6 Popelar J, 1999, HEARING RES, V135, P61, DOI 10.1016/S0378-5955(99)00091-X PUEL JL, 1988, BRAIN RES, V447, P380, DOI 10.1016/0006-8993(88)91144-4 PUEL JL, 1990, J ACOUST SOC AM, V87, P1630, DOI 10.1121/1.399410 RAJAN R, 1990, BRAIN RES, V506, P192, DOI 10.1016/0006-8993(90)91251-B RAJAN R, 1983, HEARING RES, V12, P405, DOI 10.1016/0378-5955(83)90009-6 Scates KW, 1999, HEARING RES, V128, P51, DOI 10.1016/S0378-5955(98)00198-1 SCHARF B, 1987, PERCEPT PSYCHOPHYS, V42, P215, DOI 10.3758/BF03203073 SCHERERSINGLER U, 1983, J NEUROSCI METH, V9, P229, DOI 10.1016/0165-0270(83)90085-7 Schofield BR, 1999, J COMP NEUROL, V409, P210, DOI 10.1002/(SICI)1096-9861(19990628)409:2<210::AID-CNE3>3.0.CO;2-A SIEGEL JH, 1982, HEARING RES, V6, P171, DOI 10.1016/0378-5955(82)90052-1 SMITH DW, 1994, BRAIN RES, V652, P243, DOI 10.1016/0006-8993(94)90233-X Spangler K., 1991, NEUROBIOLOGY HEARING, P27 SYKA J, 1971, BRAIN RES, V28, P567, DOI 10.1016/0006-8993(71)90068-0 SYKA J, 1971, EXP NEUROL, V28, P384 SYKA J, 1988, AUDITORY PATHWAY STR, P299 SYKA J, 1988, AUDITORY PATHWAY STR, P279 VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724 WHITE JS, 1983, J COMP NEUROL, V219, P203, DOI 10.1002/cne.902190206 Winer JA, 1998, J COMP NEUROL, V400, P147 WONGRILEY M, 1979, BRAIN RES, V171, P11, DOI 10.1016/0006-8993(79)90728-5 Xiao ZJ, 2002, NAT NEUROSCI, V5, P57, DOI 10.1038/nn786 Yoshida N, 1999, J NEUROPHYSIOL, V82, P3168 NR 47 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2002 VL 170 IS 1-2 BP 116 EP 126 DI 10.1016/S0378-5955(02)00397-0 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 590ED UT WOS:000177804600012 PM 12208546 ER PT J AU Vlajkovic, SM Thorne, PR Sevigny, J Robson, SC Housley, GD AF Vlajkovic, SM Thorne, PR Sevigny, J Robson, SC Housley, GD TI Distribution of ectonucleoside triphosphate diphosphohydrolases 1 and 2 in rat cochlea SO HEARING RESEARCH LA English DT Article DE ectonucleoside triphosphate diphosphohydrolase; ectonucleotidase; ATP; P2 receptor; cochlea; immunohistochemistry ID P2X(2) RECEPTOR SUBUNIT; STRIAL MARGINAL CELLS; GUINEA-PIG COCHLEA; 5'-TRIPHOSPHATE-GATED ION-CHANNEL; VASCULAR ATP-DIPHOSPHOHYDROLASE; PRIMARY AUDITORY NEURONS; INNER-EAR; BLOOD-FLOW; HAIR-CELLS; CATALYTIC-PROPERTIES AB Extracellular ATP and other extracellular nucleotides acting via P2 receptors in the inner ear initiate a wide variety of signalling pathways important for regulation of hearing and balance. Ectonucleotidases are extracellular nucleotide-metabolising enzymes that modulate purinergic signalling in most tissues. Major ectonucleotidases in the cochlea are likely members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family, In this study, we provide a detailed description of NTPDasel and NTPDase2 distribution in cochlear tissues using immunocytochemistry. E-NTPDase immunoreactivity was not equally distributed in the tissues bordering scala media. It was observed in the organ of Corti, including sensory and supporting cells, but was notably absent from Reissner's membrane and most of the marginal cells of the stria vascularis. NTPDasel expression was most prominent in the cochlear vasculature and cell bodies of the spiral ganglion neurones, whereas considerable NTPDase2 immunoreactivity was detected in the stria vascularis. Both E-NTPDases were expressed in the cuticular plates of the sensory hair cells and nerve fibres projecting from the synaptic area underneath the inner and outer hair cells. E-NTPDase localisation corresponds to the reported distribution of some P2X receptor subunits (P2X(2) in particular) in sensory, supporting and neural cells and also P2Y receptor distribution in the vasculature and secretory tissues of the lateral wall. The role for E-NTPDases in purinergic signalling is most likely to regulate extracellular nucleoside triphosphate and diphosphate levels and thus provide termination for extracellular ATP signalling that has been linked to control of cochlear blood flow, electrochemical regulation of sound transduction and to neurotransmission in the cochlea. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Auckland, Fac Med & Hlth Sci, Div Physiol, Auckland 1, New Zealand. Univ Auckland, Fac Med & Hlth Sci, Discipline Audiol, Auckland 1, New Zealand. Univ Laval, CHUQ, Ctr Rech Rhumatol & Immunol, Ste Foy, PQ G1K 7P4, Canada. Harvard Univ, Sch Med, Beth Israel Deaconess Med Ctr, Dept Med, Boston, MA USA. RP Vlajkovic, SM (reprint author), Univ Auckland, Fac Med & Hlth Sci, Div Physiol, Private Bag 92019, Auckland 1, New Zealand. EM s.vlajkovic@auckland.ac.nz RI Sevigny, Jean/E-8039-2012 OI Sevigny, Jean/0000-0003-2922-1600 CR Abbracchio MP, 1998, JPN J PHARMACOL, V78, P113, DOI 10.1254/jjp.78.113 Axellson A, 1968, ACTA OTO-LARYNGOL, V243, P1 Axelsson A, 1988, PHYSL EAR, P295 Beaudoin AR, 1999, PROG BRAIN RES, V120, P387 Bobbin RP, 2001, NEUROREPORT, V12, P2923, DOI 10.1097/00001756-200109170-00034 Brandle U, 1999, NEUROSCI LETT, V273, P105, DOI 10.1016/S0304-3940(99)00648-5 Braun N, 2000, EUR J NEUROSCI, V12, P4357, DOI 10.1111/j.1460-9568.2000.01342.x Burnstock G, 2001, DRUG DEVELOP RES, V52, P1, DOI 10.1002/ddr.1093 Chow SC, 1997, NEUROPHARMACOLOGY, V36, P1149, DOI 10.1016/S0028-3908(97)00123-8 Chung JW, 2001, JARO, V2, P399, DOI 10.1007/s101620010058 Delpire E, 1999, NAT GENET, V22, P192, DOI 10.1038/9713 Di Virgilio F, 1998, CELL DEATH DIFFER, V5, P191 Di Virgilio F, 2000, J AUTONOM NERV SYST, V81, P59, DOI 10.1016/S0165-1838(00)00114-4 Enjyoji K, 1999, NAT MED, V5, P1010 Ferrari D, 1999, FEBS LETT, V447, P71, DOI 10.1016/S0014-5793(99)00270-7 Goding JW, 2000, J LEUKOCYTE BIOL, V67, P285 GREENWOOD D, 1999, P PHYSL SOC NZ, V18, P55 Handa M, 1996, BIOCHEM BIOPH RES CO, V218, P916, DOI 10.1006/bbrc.1996.0162 Heine P, 2001, EUR J BIOCHEM, V268, P364, DOI 10.1046/j.1432-1327.2001.01896.x Housley GD, 2001, HANDB EXP PHARM, V151, P339 Housley GD, 1998, MOL NEUROBIOL, V16, P21, DOI 10.1007/BF02740601 Housley GD, 2000, J AUTONOM NERV SYST, V81, P139, DOI 10.1016/S0165-1838(00)00116-8 Housley GD, 1998, HEARING RES, V119, P1, DOI 10.1016/S0378-5955(97)00206-2 Housley GD, 1999, J NEUROSCI, V19, P8377 Housley GD, 1998, J COMP NEUROL, V393, P403 Housley GD, 2000, CLIN EXP PHARMACOL P, V27, P575, DOI 10.1046/j.1440-1681.2000.03314.x Imai M, 1999, BIOCHEMISTRY-US, V38, P13473, DOI 10.1021/bi990543p JACOBSON KA, 2000, CELL TRANSM, V16, P3 Jagger DJ, 2000, J NEUROSCI METH, V104, P77, DOI 10.1016/S0165-0270(00)00322-8 Jarlebark LE, 2000, J COMP NEUROL, V421, P289, DOI 10.1002/(SICI)1096-9861(20000605)421:3<289::AID-CNE1>3.0.CO;2-0 Kaczmarek E, 1996, J BIOL CHEM, V271, P33116 LAURIKAINEN EA, 1993, HEARING RES, V64, P199, DOI 10.1016/0378-5955(93)90006-M Mammano F, 1999, J NEUROSCI, V19, P6918 Marcus AJ, 1997, J CLIN INVEST, V99, P1351, DOI 10.1172/JCI119294 MARCUS DC, 1999, P ASS RES OTOLARYNGO, V22, P308 Marcus DC, 2002, AM J PHYSIOL-CELL PH, V282, pC403 Marcus DC, 1998, HEARING RES, V115, P82, DOI 10.1016/S0378-5955(97)00180-9 MCLAREN GM, 1993, HEARING RES, V71, P183, DOI 10.1016/0378-5955(93)90033-W MOCKETT BG, 1994, J NEUROSCI, V14, P6992 Munoz DJB, 1999, HEARING RES, V138, P56, DOI 10.1016/S0378-5955(99)00151-3 Munoz DJB, 1999, HEARING RES, V127, P55, DOI 10.1016/S0378-5955(98)00161-0 MUNOZ DJB, 1995, HEARING RES, V90, P106, DOI 10.1016/0378-5955(95)00152-3 NIKOLIC P, 2001, P SAT S AUD FUNCT DY, P339 Nikolic P, 2001, DEV BRAIN RES, V126, P173, DOI 10.1016/S0165-3806(00)00149-8 OHLSEN KA, 1991, CIRC RES, V69, P509 Ottersen OP, 1998, PROG NEUROBIOL, V54, P127, DOI 10.1016/S0301-0082(97)00054-3 Pace AJ, 2001, HEARING RES, V156, P17, DOI 10.1016/S0378-5955(01)00263-5 Parks TN, 2000, HEARING RES, V147, P77, DOI 10.1016/S0378-5955(00)00122-2 PLESNER L, 1995, INT REV CYTOL, V158, P141 QUIRK WS, 1988, HEARING RES, V32, P129 Ramamurthi A, 2001, THROMB RES, V102, P331, DOI 10.1016/S0049-3848(01)00244-4 Ren TY, 1997, HEARING RES, V112, P87, DOI 10.1016/S0378-5955(97)00109-3 Robertson D, 2002, AUDIOL NEURO-OTOL, V7, P62, DOI 10.1159/000046866 Robson SC, 1997, BLOOD COAGUL FIBRIN, V8, P21, DOI 10.1097/00001721-199701000-00005 Robson SC, 2000, XENOTRANSPLANTATION, V7, P166, DOI 10.1034/j.1399-3089.2000.00067.x Sage CL, 2002, J MEMBRANE BIOL, V185, P103, DOI 10.1007/s00232-001-0116-z Salih SG, 2002, NEUROPHARMACOLOGY, V42, P386, DOI 10.1016/S0028-3908(01)00184-8 Salih SG, 1999, NEUROREPORT, V10, P2579, DOI 10.1097/00001756-199908200-00026 Salih SG, 1998, NEUROREPORT, V9, P279, DOI 10.1097/00001756-199801260-00019 SCHEIBE F, 1992, HEARING RES, V63, P19, DOI 10.1016/0378-5955(92)90069-Y SCHULTE B, 1994, HEARING RES, V78, P259 Sevigny J, 2002, BLOOD, V99, P2801, DOI 10.1182/blood.V99.8.2801 Sevigny J, 1997, BBA-GEN SUBJECTS, V1334, P73, DOI 10.1016/S0304-4165(96)00079-7 Shen ZJ, 1997, AUDIT NEUROSCI, V3, P215 Thorn JA, 1996, GEN PHARMACOL, V27, P613, DOI 10.1016/0306-3623(95)02053-5 THORNE PR, 1989, HEARING RES, V27, P1 Thorne PR, 2002, AUDIOL NEURO-OTOL, V7, P180, DOI 10.1159/000058307 Virginio C, 1999, NAT NEUROSCI, V2, P315 Vlajkovic SM, 1999, MOL BRAIN RES, V73, P85, DOI 10.1016/S0169-328X(99)00244-2 Vlajkovic SM, 1998, HEARING RES, V117, P71, DOI 10.1016/S0378-5955(98)00004-5 Vlajkovic SM, 1996, HEARING RES, V99, P31, DOI 10.1016/S0378-5955(96)00079-2 Vlajkovic SM, 1998, NEUROREPORT, V9, P1559 Wangemann P, 1996, AUDIT NEUROSCI, V2, P187 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S Xiang ZH, 1999, HEARING RES, V128, P190, DOI 10.1016/S0378-5955(98)00208-1 Zimmermann H, 2001, DRUG DEVELOP RES, V52, P44, DOI 10.1002/ddr.1097 Zimmermann H, 1999, NAT MED, V5, P987, DOI 10.1038/12419 Zimmermann H, 2000, N-S ARCH PHARMACOL, V362, P299, DOI 10.1007/s002100000309 Zimmermann H, 1999, PROG BRAIN RES, V120, P371 NR 79 TC 23 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD AUG PY 2002 VL 170 IS 1-2 BP 127 EP 138 DI 10.1016/S0378-5955(02)00460-4 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 590ED UT WOS:000177804600013 PM 12208547 ER PT J AU Smittkamp, SE Colgan, AL Park, DL Girod, DA Durham, D AF Smittkamp, SE Colgan, AL Park, DL Girod, DA Durham, D TI Time course and quantification of changes in cochlear integrity observed in commercially raised broiler chickens SO HEARING RESEARCH LA English DT Article DE auditory avian neurogenesis ID MOUSE OLFACTORY EPITHELIUM; HAIR CELL LOSS; BASILAR PAPILLA; STEREOCILIARY BUNDLES; ACOUSTIC TRAUMA; INNER-EAR; REGENERATION; DAMAGE; GENTAMICIN; RECOVERY AB Extensive cochlear hair cell damage and loss occurs in aged broiler chickens. We describe the time course and several characteristics of this decline in cochlear integrity in 19-, 30-, 38- and 66-week-old commercially raised broiler chickens. The 19-week-old group is normal and serves as a baseline for comparison. Generally, cochlear damage increases in severity and percent length of the cochlea with age. Hair cell density increases from the base to the apex, Density is similar across the groups in regions of the cochlea that sustained little or no damage, and decreases in regions of extreme damage, Counts of normal and abnormal hair cells are inversely related. A subset of 66-week-old birds has higher density measurements and increased hair cell counts in the,c found in these commercially raised birds is described in the context of both apical region of the cochlea. The progressive damage the effects of age and noise exposure on the auditory system. Two additional groups of birds were raised at the University of Kansas Medical Center in a quieter environment to determine the cause of the damage seen in age-matched commercially raised birds. These cochleae are largely normal: a small number displayed damage, This suggests that noise exposure exacerbates naturally occurring cochlear degradation. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Kansas, Med Ctr, Dept Otolaryngol, Kansas City, KS 66160 USA. Univ Kansas, Med Ctr, Smith Mental Retardat Res Ctr, Kansas City, KS 66160 USA. Univ Kansas, Med Ctr, Dept Speech & Hearing, Kansas City, KS 66160 USA. Kansas City Vet Affairs Med Ctr, Kansas City, MO USA. RP Durham, D (reprint author), Univ Kansas, Med Ctr, Dept Otolaryngol, 3901 Rainbow Blvd, Kansas City, KS 66160 USA. CR BESS FH, 1996, HEARING DISORDERS, P199 Breckenridge LJ, 1997, J ANAT, V191, P151, DOI 10.1046/j.1469-7580.1997.19110151.x COLGAN AL, 2000, ARO ABSTR, V23, P44 CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 COTANCHE DA, 1984, DEV BRAIN RES, V16, P181, DOI 10.1016/0165-3806(84)90024-5 Cotanche DA, 1999, AUDIOL NEURO-OTOL, V4, P271, DOI 10.1159/000013852 COTANCHE DA, 1990, HEARING RES, V46, P29, DOI 10.1016/0378-5955(90)90137-E Cotanche DA, 1995, HEARING RES, V91, P148, DOI 10.1016/0378-5955(95)00185-9 COTANCHE DA, 1991, HEARING RES, V52, P379, DOI 10.1016/0378-5955(91)90027-7 DOBIE RA, 1993, MEDICAL LEGAL EVALUA, P133 DUCKERT LG, 1990, HEARING RES, V48, P161, DOI 10.1016/0378-5955(90)90206-5 Durham D, 2000, HEARING RES, V147, P145, DOI 10.1016/S0378-5955(00)00128-3 Durham D, 2002, HEARING RES, V166, P82, DOI 10.1016/S0378-5955(02)00301-5 GLEICH O, 1995, HEARING RES, V82, P100 Husmann KR, 1998, HEARING RES, V125, P109, DOI 10.1016/S0378-5955(98)00137-3 Janas JD, 1995, HEARING RES, V92, P17, DOI 10.1016/0378-5955(95)00190-5 JOHNSSON LG, 1972, ANN OTO RHINOL LARYN, V81, P179 Li H S, 1992, Scand Audiol Suppl, V36, P1 Loo AT, 1996, INT J DEV NEUROSCI, V14, P881, DOI 10.1016/S0736-5748(96)00046-9 Park DL, 1998, HEARING RES, V126, P84, DOI 10.1016/S0378-5955(98)00157-9 Rosli Y, 1999, J ELECTRON MICROSC, V48, P77 RYALS BM, 1988, HEARING RES, V36, P1, DOI 10.1016/0378-5955(88)90133-5 Ryals BM, 1999, HEARING RES, V131, P71, DOI 10.1016/S0378-5955(99)00022-2 STEWART AF, 1996, AM SOC BONE MINERAL, V3, P198 TANAKA K, 1978, AM J ANAT, V153, P251, DOI 10.1002/aja.1001530206 TILNEY LG, 1983, J CELL BIOL, V96, P807, DOI 10.1083/jcb.96.3.807 Weiler E, 1997, J NEUROSCI, V17, P3610 Weisleder P, 1996, J COMP NEUROL, V369, P292, DOI 10.1002/(SICI)1096-9861(19960527)369:2<292::AID-CNE9>3.0.CO;2-Z Willott JF, 1998, HEARING RES, V115, P162, DOI 10.1016/S0378-5955(97)00189-5 Willott JF, 1999, HEARING RES, V135, P78, DOI 10.1016/S0378-5955(99)00094-5 NR 30 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2002 VL 170 IS 1-2 BP 139 EP 154 DI 10.1016/S0378-5955(02)00486-0 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 590ED UT WOS:000177804600014 PM 12208548 ER PT J AU Helfert, RH Glatz, FR Wilson, TS Ramkumar, V Hughes, LF AF Helfert, RH Glatz, FR Wilson, TS Ramkumar, V Hughes, LF TI HsP70 in the inferior colliculus of Fischer-344 rats: effects of age and acoustic stress SO HEARING RESEARCH LA English DT Article DE auditory; cerebellum; hsp72; hsp73; noise; immunocytochemistry; western blot ID HEAT-SHOCK PROTEINS; MESSENGER-RNAS; MOLECULAR CHAPERONES; GLUCOSE-UTILIZATION; CONSTITUTIVE HSP70; CAPILLARY DENSITY; OXIDATIVE STRESS; BRAIN; EXPRESSION; CEREBELLUM AB Heat shock proteins 72 and 73 (hsp72 and hsp73) were studied in the inferior colliculus (IC) of Fischer-344 rats to determine if their levels are altered during normal aging and following exposure to intense acoustic noise. Three age groups of rats (3, 18, and 25 months) were exposed to ambient sound (control) or broad-band noise at 108 dB sound pressure level (0,0004 dyn/cm(2)) for 30 min. Western blotting procedures were used to measure hsp72 and hsp73 in lCs and cerebella (positive control). Immunohistochemistry was performed using 3-month olds to study the localization patterns of hsp72 and hsp73 in both structures. The IC and cerebellum exhibited immunolabeling over neuronal somata and proximal dendrites. Ambient levels of hsp72 in supernatants from aged rats were reduced 56.5%. 7.8% in the IC relative to 3-month olds. This decrease may render the IC more susceptible to stress-related damage. An increase in constitutive hsp73 (350.7% +/- 70.4%) was observed in IC pellet fractions from animals exposed to the 108-dB noise when compared to the ambient-noise controls. suggestive of a lipoprotective role for hsp73. This elevation was consistent across age groups. No noise-induced changes in hsp72 were detectable in the IC, indicating that loud sounds may not be an appropriate stimulus for hsp72 induction in this structure. (C) 2002 Elsevier Science B.V. All rights reserved. C1 So Illinois Univ, Sch Med, Dept Surg, Springfield, IL 62794 USA. So Illinois Univ, Sch Med, Dept Pharmacol, Springfield, IL 62794 USA. So Illinois Univ, Sch Med, Ctr Alzheimers Dis & Related Disorders, Springfield, IL 62794 USA. RP Helfert, RH (reprint author), So Illinois Univ, Sch Med, Dept Surg, POB 19638, Springfield, IL 62794 USA. CR Ackermann H, 1999, BRAIN LANG, V67, P228, DOI 10.1006/brln.1999.2056 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1006/abio.1976.9999 Bukau B, 1998, CELL, V92, P351, DOI 10.1016/S0092-8674(00)80928-9 CREMER JE, 1983, J CEREBR BLOOD F MET, V3, P291 D'Souza SM, 1998, CELL STRESS CHAPERON, V3, P188, DOI 10.1379/1466-1268(1998)003<0188:CEOHSP>2.3.CO;2 Ehret G., 1997, CENTRAL AUDITORY SYS, P259 Foster JA, 1996, J NEUROSCI RES, V46, P652 FOSTER JA, 1995, J NEUROSCI RES, V41, P603, DOI 10.1002/jnr.490410506 Gabai VL, 1998, FEBS LETT, V438, P1, DOI 10.1016/S0014-5793(98)01242-3 Gabai VL, 1997, J BIOL CHEM, V272, P18033, DOI 10.1074/jbc.272.29.18033 GEORGOPOULOS C, 1993, ANNU REV CELL BIOL, V9, P601, DOI 10.1146/annurev.cb.09.110193.003125 GREENOUGH WT, 1986, BRAIN RES, V380, P136, DOI 10.1016/0006-8993(86)91437-X GROSS PM, 1987, J CEREBR BLOOD F MET, V7, P154 Hartl FU, 1996, NATURE, V381, P571, DOI 10.1038/381571a0 HAYES RL, 1995, J NEUROTRAUM, V12, P779, DOI 10.1089/neu.1995.12.779 Helfert RH, 1999, J COMP NEUROL, V406, P285 Kyosseva SV, 2001, NEUROPSYCHOPHARMACOL, V24, P267, DOI 10.1016/S0893-133X(00)00180-9 Manzerra P, 1996, EXP CELL RES, V229, P35, DOI 10.1006/excr.1996.0341 Marini M, 1996, INT J RADIAT BIOL, V70, P337, DOI 10.1080/095530096145076 Mei Y, 1999, HEARING RES, V135, P169, DOI 10.1016/S0378-5955(99)00103-3 MILLER EK, 1991, J NEUROCHEM, V56, P2060, DOI 10.1111/j.1471-4159.1991.tb03467.x Moon IS, 2001, CEREB CORTEX, V11, P238, DOI 10.1093/cercor/11.3.238 Muller David P. R., 1997, V38, P557 Murphy SJ, 1996, BRAIN RES, V727, P145 O'Donnell E, 2000, EUR J NEUROSCI, V12, P345, DOI 10.1046/j.1460-9568.2000.00900.x PALMER TM, 1992, MOL PHARMACOL, V42, P391 PARDUE S, 1992, NEUROBIOL AGING, V13, P661, DOI 10.1016/0197-4580(92)90088-F Pringle AK, 1997, NEUROPATH APPL NEURO, V23, P289, DOI 10.1111/j.1365-2990.1997.tb01298.x RICHTER OG, 1995, ASTR SOC P, V70, P1 SATO T, 2001, NEUROSCIENCE, V10, P695 SATOH J, 1994, BRAIN RES, V653, P243, DOI 10.1016/0006-8993(94)90396-4 SCHLOSSMAN DM, 1984, J CELL BIOL, V99, P723, DOI 10.1083/jcb.99.2.723 SHARP FR, 1991, J CEREBR BLOOD F MET, V11, P621 SIMON RP, 1991, J NEUROSCI, V11, P881 SOKOLOFF L, 1977, J NEUROCHEM, V28, P897, DOI 10.1111/j.1471-4159.1977.tb10649.x Su CY, 1999, BIOCHEM BIOPH RES CO, V265, P279, DOI 10.1006/bbrc.1999.1649 Su CY, 1999, J MOL CELL CARDIOL, V31, P845, DOI 10.1006/jmcc.1998.0923 TACCHINI L, 1995, BIOCHEM J, V309, P453 Unno K, 2000, J GERONTOL A-BIOL, V55, pB329 VOLLOCH V, 1999, EXP CELL RES, V15, P483 Volloch V, 1998, CELL STRESS CHAPERON, V3, P265, DOI 10.1379/1466-1268(1998)003<0265:RTIACR>2.3.CO;2 Zeller K, 1997, J CEREBR BLOOD F MET, V17, P204 NR 42 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2002 VL 170 IS 1-2 BP 155 EP 165 DI 10.1016/S0378-5955(02)00487-2 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 590ED UT WOS:000177804600015 PM 12208549 ER PT J AU Jancke, L Wustenberg, T Schulze, K Heinze, HJ AF Jancke, L Wustenberg, T Schulze, K Heinze, HJ TI Asymmetric hemodynamic responses of the human auditory cortex to monaural and binaural stimulation SO HEARING RESEARCH LA English DT Article DE auditory cortex; functional magnetic resonance imaging; loudness; auditory; perception ID EVOKED POTENTIALS; TEMPORAL-LOBE; HUMAN-BRAIN; SPEECH; FMRI; RECOGNITION; ACTIVATION; LANGUAGE; LATERALIZATION; DISCRIMINATION AB Applying whole-head functional magnetic resonance imaging (fMRI) in 11 neurologically intact subjects, hemodynamic responses to mon- or binaurally presented auditory stimuli were measured. To expand on previous studies in this research area, we used tones and consonant-vowel (CV) syllables. In one group of subjects (n = 6) the perceived loudness of the monaurally presented stimuli were adjusted so that they matched the loudness of the binaurally presented Stimuli, In it second group (n = 5) no loudness adjustment was performed, thus the monaural stimuli were perceived less loud (similar to 10 dB) than the binaural stimuli. These extensions allowed us to test whether CV syllables and tones produce different contralaterality effects (stronger hemodynamic responses in the auditory cortex contralateral to the stimulated ear) and whether binaural stimulation results in stronger activations in the auditory areas than during both monaural stimulation conditions (binaural summation) independent of loudness influences. In summary, we obtained the following findings: (1) strong contralaterality effects during monaural acoustic stimulation in the posterior superior temporal gyrus (STG) comprising the planum temporale and the dorsal bank of the superior temporal sulcus to CV syllables and tones: (2) the hemodynamic responses to contralaterally presented stimuli (during the monaural conditions) were mostly stronger than those to binaurally presented CV syllables: (3) there was no interaction between stimulus type and the size of the contralaterality effect; (4) there was no indication of binaural summation, rather we found stronger hemodynamic responses to the sum of both monaural stimulations (right and left ear) than to binaural stimulation in all auditory areas; (5) there were generally stronger hemodynamic responses to CV syllables than to tones in the posterior STG, while the hemodynamic responses to tones were stronger in the anterior part of the STG (temporal pole): and finally. (6) there was no general difference in terms of hemodynamic response in the auditory cortex between the two groups when receiving either loudness-matched or non-loudness-matched monaural stimulation. These findings are discussed in the context of the underlying neurophysiological mechanisms, the peculiarities of functional fMRI, and the direct access and callosal relay models of hemispheric lateralization. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Zurich, Inst Psychol & Neuropsychol, CH-8044 Zurich, Switzerland. Otto Von Guericke Univ, Inst Gen Psychol, Magdeburg, Germany. Otto Von Guericke Univ, Neurol Clin, Magdeburg, Germany. RP Jancke, L (reprint author), Univ Zurich, Inst Psychol & Neuropsychol, Zurichbergstr 43, CH-8044 Zurich, Switzerland. RI Schulze, Katrin/A-7385-2010; Jancke, Lutz/C-3792-2009; Jancke, Lutz/D-2910-2013 OI Jancke, Lutz/0000-0002-8115-4890; Jancke, Lutz/0000-0003-2110-9067 CR Ackermann H, 2001, NEUROREPORT, V12, P1683, DOI 10.1097/00001756-200106130-00033 BANICH MT, 1992, J EXP PSYCHOL HUMAN, V18, P763, DOI 10.1037//0096-1523.18.3.763 BELGER A, 1992, NEUROPSYCHOLOGIA, V30, P923, DOI 10.1016/0028-3932(92)90036-L Belin P, 2000, NATURE, V403, P309, DOI 10.1038/35002078 Binder JR, 2000, CEREB CORTEX, V10, P512, DOI 10.1093/cercor/10.5.512 BINDER JR, 1994, COGNITIVE BRAIN RES, V2, P31, DOI 10.1016/0926-6410(94)90018-3 Binder JR, 1997, J NEUROSCI, V17, P353 Buchanan TW, 2000, COGNITIVE BRAIN RES, V9, P227, DOI 10.1016/S0926-6410(99)00060-9 DI S, 1993, BRAIN RES, V630, P303, DOI 10.1016/0006-8993(93)90670-I Evans AC, 1993, P IEEE NUCL SCI S ME, V3, P1813 Friston KJ, 1994, HUMAN BRAIN MAPPING, V2, P189, DOI DOI 10.1002/HBM.460020402 FRISTON KJ, 1995, NEUROIMAGE, V2, P157, DOI 10.1006/nimg.1995.1018 Frost JA, 1999, BRAIN, V122, P199, DOI 10.1093/brain/122.2.199 GALABURDA AM, 1978, ARCH NEUROL-CHICAGO, V35, P812 Giraud AL, 2001, J COGNITIVE NEUROSCI, V13, P754, DOI 10.1162/08989290152541421 Grabowski TJ, 2001, HUM BRAIN MAPP, V13, P199, DOI 10.1002/hbm.1033 Hall DA, 1999, HUM BRAIN MAPP, V7, P213, DOI 10.1002/(SICI)1097-0193(1999)7:3<213::AID-HBM5>3.0.CO;2-N HELLMAN RP, 1963, J ACOUST SOC AM, V35, P856, DOI 10.1121/1.1918619 Hirano S, 1997, EXP BRAIN RES, V113, P75, DOI 10.1007/BF02454143 HOLM S, 1979, SCAND J STAT, V6, P65 JANCKE L, 2002, IN PRESS LATERALITY Jancke L, 2001, BRAIN LANG, V78, P349, DOI 10.1006/brln.2000.2476 Jancke L, 1999, COGNITIVE BRAIN RES, V8, P117, DOI 10.1016/S0926-6410(99)00012-9 Jancke L, 2002, NEUROLOGY, V58, P736 Jancke L, 1998, NEUROPSYCHOLOGIA, V36, P875, DOI 10.1016/S0028-3932(98)00019-0 Jancke L, 2002, NEUROIMAGE, V15, P733, DOI 10.1006/nimg.2001.1027 KARNATH HO, 1991, CORTEX, V27, P345 KELLY JB, 1994, J NEUROPHYSIOL, V71, P904 LOVELESS N, 1994, HEARING RES, V81, P91, DOI 10.1016/0378-5955(94)90156-2 MAJKOWSK.J, 1971, BRAIN RES, V25, P416, DOI 10.1016/0006-8993(71)90449-5 MARKS LE, 1978, J ACOUST SOC AM, V64, P107, DOI 10.1121/1.381976 McNicol D., 1972, PRIMER SIGNAL DETECT Morosan P, 2001, NEUROIMAGE, V13, P684, DOI 10.1006/nimg.2000.0715 Nakamura K, 2001, NEUROPSYCHOLOGIA, V39, P1047, DOI 10.1016/S0028-3932(01)00037-9 Peters M, 1998, Laterality, V3, P77, DOI 10.1080/713754291 Rademacher J, 2001, NEUROREPORT, V12, P1561, DOI 10.1097/00001756-200106130-00010 Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800 Rauschecker J P, 1997, Acta Otolaryngol Suppl, V532, P34 ROSENZWEIG MR, 1951, AM J PHYSIOL, V167, P147 Scheffler K, 1998, CEREB CORTEX, V8, P156, DOI 10.1093/cercor/8.2.156 Scott SK, 2000, BRAIN, V123, P2400, DOI 10.1093/brain/123.12.2400 Shah NJ, 2000, NEUROIMAGE, V12, P100, DOI 10.1006/nimg.2000.0588 Sugiura M, 2001, NEUROIMAGE, V13, P877, DOI 10.1006/nimg.2001.0747 Suzuki M, 2002, HEARING RES, V163, P37, DOI 10.1016/S0378-5955(01)00367-7 Westbury CF, 1999, CEREB CORTEX, V9, P392, DOI 10.1093/cercor/9.4.392 Wise RJS, 2001, BRAIN, V124, P83, DOI 10.1093/brain/124.1.83 Wise RJS, 2000, NEUROPSYCHOLOGIA, V38, P985, DOI 10.1016/S0028-3932(99)00152-9 Zaidel E., 1990, NEUROBIOLOGY HIGHER, P297 ZATORRE RJ, 1992, SCIENCE, V256, P846, DOI 10.1126/science.1589767 NR 49 TC 70 Z9 73 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2002 VL 170 IS 1-2 BP 166 EP 178 DI 10.1016/S0378-5955(02)00488-4 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 590ED UT WOS:000177804600016 PM 12208550 ER PT J AU Sterbing, SJ Schrott-Fischer, A AF Sterbing, SJ Schrott-Fischer, A TI Electrophysiological characteristics of inferior colliculus neurons in mutant mice with hereditary absence of cochlear outer hair cells SO HEARING RESEARCH LA English DT Article DE mouse; cochlear pathology; electrophysiology; tuning curve; inferior colliculus ID GUINEA-PIG; RESPONSE PROPERTIES; STEREOCILIA DAMAGE; AUDITORY MIDBRAIN; PLASTICITY; PATHOLOGY; MOUSE; GANGLION; C57BL/6J; EXPOSURE AB One strain of homozygous Kit(W-v) mice (formerly known as W-v/W-v) lack 98% of the cochlear outer hair cells (OHCs) from birth. Inner hair cells (IHCs) and supporting cells develop normally. Thus, this strain is an attractive model to study the effect of complete OHC absence on central frequency representation. Frequency threshold curves were recorded along the tonotopic axis of inferior colliculus (IC) in mutant and control mice of the genetic background strain (C57BL/6J) and a different outbred strain (NMRI/wild mouse hybrids) known to be free of any cochlear pathology. The average threshold level of neurons in the mutants was 100 dB sound pressure level, 60 dB higher than in C57BL/6J and NMRI mice. Their tuning curves lacked the sharply tuned tip. In the C57BL/6J mice, although younger than four months, abnormal tuning curves were found for about 30% of the neurons, especially in the high frequency range. No abnormal tuning curves were found in the NMRI mice, The bandwidth of the tuning curves, measured at 10 dB above threshold, was on average 1.27 octaves in mutants, 0.62 octaves in C57BL/6J mice, and 0.34 octaves in NMRI mice. The range for the high cut-off frequency of the tuning curves at 10 dB above threshold was 6.4-61.1 kHz in the NMRI and 7-59.5 kHz in C57BL/6J. In the mutants, the range was limited to 11.1-41.7 kHz. The tonotopic gradient based on the cut-off frequency was less steep in the IC of the mutants than in both control groups. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Ruhr Univ Bochum, Dept Zool & Neurobiol, D-4630 Bochum, Germany. Univ Innsbruck Hosp, Dept ENT, A-6020 Innsbruck, Austria. RP Sterbing, SJ (reprint author), Univ Connecticut, Ctr Hlth, Dept Neurosci, 263 Farmington Ave, Farmington, CT 06030 USA. RI Sterbing-D'Angelo, Susanne/H-5899-2012 CR CODY AR, 1980, HEARING RES, V3, P3, DOI 10.1016/0378-5955(80)90004-0 DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 DEOL MS, 1970, J EMBRYOL EXP MORPH, V23, P773 EHRET G, 1974, NATURWISSENSCHAFTEN, V61, P506 EVANS EF, 1975, AUDIOLOGY, V14, P336 Evans EF, 1976, J PHYSIOL-LONDON, V256, P43 HARRISON RV, 1981, J ACOUST SOC AM, V70, P1036, DOI 10.1121/1.386954 Harrison RV, 1998, EXP BRAIN RES, V123, P449, DOI 10.1007/s002210050589 HORNER KC, 1986, HEARING RES, V23, P71, DOI 10.1016/0378-5955(86)90176-0 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X JOHNSTON.BM, 1970, J ACOUST SOC AM, V47, P504, DOI 10.1121/1.1911921 KALTENBACH JA, 1992, HEARING RES, V59, P213, DOI 10.1016/0378-5955(92)90118-7 LeBeau FEN, 2001, J NEUROSCI, V21, P7303 LIBERMAN MC, 1979, ACTA OTO-LARYNGOL, V88, P161, DOI 10.3109/00016487909137156 LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8 MAYER TC, 1968, DEV BIOL, V18, P62, DOI 10.1016/0012-1606(68)90023-7 MOREST DK, 1984, J COMP NEUROL, V222, P209, DOI 10.1002/cne.902220206 Rajan R, 1998, AUDIOL NEURO-OTOL, V3, P123, DOI 10.1159/000013786 Rajan R, 1998, J COMP NEUROL, V399, P35 Rhodes CH, 1997, DIAGN MOL PATHOL, V6, P49, DOI 10.1097/00019606-199702000-00008 ROBERTSO.D, 1974, J COMP PHYSIOL, V91, P363, DOI 10.1007/BF00694467 Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 SCHROTT A, 1990, EUR ARCH OTO-RHINO-L, V247, P8 SCHROTT A, 1990, HEARING RES, V46, P1, DOI 10.1016/0378-5955(90)90134-B SCHROTT A, 1987, ACTA OTO-LARYNGOL, V103, P451 SCHROTT A, 1991, HEARING RES, V52, P245, DOI 10.1016/0378-5955(91)90204-M Shnerson A., 1982, DEV BRAIN RES, V2, P77 Shnerson A., 1982, DEV BRAIN RES, V2, P65 Spoendlin H, 1987, Acta Otolaryngol Suppl, V436, P25 SPOENDLI.H, 1974, ARCH OTO-RHINO-LARYN, V208, P137, DOI 10.1007/BF00453927 STEEL KP, 1987, HEARING RES, V27, P11, DOI 10.1016/0378-5955(87)90022-0 Steel KP, 1995, ANNU REV GENET, V29, P675 STIEBLER I, 1985, J COMP NEUROL, V238, P65, DOI 10.1002/cne.902380106 Wang J, 1996, J NEUROPHYSIOL, V75, P171 Willott JF, 1999, HEARING RES, V135, P78, DOI 10.1016/S0378-5955(99)00094-5 WILLOTT JF, 1981, J NEUROPHYSIOL, V45, P35 NR 37 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2002 VL 170 IS 1-2 BP 179 EP 189 DI 10.1016/S0378-5955(02)00490-2 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 590ED UT WOS:000177804600017 PM 12208551 ER PT J AU Lim, KM Steele, CR AF Lim, KM Steele, CR TI A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method SO HEARING RESEARCH LA English DT Article DE nonlinear cochlear model; response suppression; distortion ID BASILAR-MEMBRANE; CHINCHILLA-COCHLEA; TIME-DOMAIN; MECHANICS; DISTORTION; MAP; DEPENDENCE; RESPONSES; ORGAN; CORTI AB A physiologically based nonlinear active cochlear model is presented. The model includes the three-dimensional at viscous fluid effects, an orthotropic cochlear partition with dimensional and material property variation along its length, and a nonlinear active feed-forward mechanism of the organ of Corti. A hybrid asymptotic and numerical method combined with Fourier series expansions is used to provide a fast and efficient iterative procedure for modeling and simulation of the nonlinear responses in the active cochlea. The simulation results for the chinchilla cochlea compare very well with experimental measurements, capturing several nonlinear features observed in basilar membrane responses. These include compression of response with stimulus level, two-tone suppressions, and generation of harmonic distortion and distortion products. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Natl Univ Singapore, Dept Engn Mech, Singapore 119260, Singapore. Stanford Univ, Dept Engn Mech, Div Mech & Computat, Stanford, CA 94305 USA. RP Lim, KM (reprint author), Natl Univ Singapore, Dept Engn Mech, 10 Kent Ridge Crescent, Singapore 119260, Singapore. EM limkm@nus.edu.sg RI Lim, Kian-Meng/B-2556-2010 OI Lim, Kian-Meng/0000-0003-4311-9223 CR ALLEN JB, 1993, J ACOUST SOC AM, V94, P809, DOI 10.1121/1.408182 BAKER G, 2000, THESIS STANFORD U ST BOHNE BA, 1979, J ACOUST SOC AM, V66, P411, DOI 10.1121/1.383092 Bohnke F, 1998, IEEE T BIO-MED ENG, V45, P1227, DOI 10.1109/10.720200 CABEZUDO LM, 1978, ACTA OTO-LARYNGOL, V86, P160, DOI 10.3109/00016487809124733 COOPER NP, 1992, HEARING RES, V63, P163, DOI 10.1016/0378-5955(92)90083-Y DALLOS P, 1970, J ACOUST SOC AM, V48, P489, DOI 10.1121/1.1912163 DEBOER E, 1983, J ACOUST SOC AM, V73, P574, DOI 10.1121/1.389003 DIEPENDAAL RJ, 1987, J ACOUST SOC AM, V82, P1655, DOI 10.1121/1.395157 DIEPENDAAL RJ, 1989, J ACOUST SOC AM, V85, P803, DOI 10.1121/1.397553 DODSON JM, 2001, THESIS U MICHIGAN ELDREDGE DH, 1981, J ACOUST SOC AM, V69, P1091, DOI 10.1121/1.385688 Fukazawa T, 1996, HEARING RES, V95, P135, DOI 10.1016/0378-5955(96)00039-1 GEISLER CD, 1995, HEARING RES, V86, P132, DOI 10.1016/0378-5955(95)00064-B HUBBARD A, 1996, P INT S DIV AUD MECH, P420 Kanis LJ, 1997, J ACOUST SOC AM, V101, P1527, DOI 10.1121/1.418173 Kanis LJ, 1996, J ACOUST SOC AM, V100, P2543, DOI 10.1121/1.417363 KOLSTON PJ, 1989, J ACOUST SOC AM, V86, P133, DOI 10.1121/1.398332 Kolston PJ, 1996, J ACOUST SOC AM, V99, P455, DOI 10.1121/1.414557 LIM DJ, 1980, J ACOUST SOC AM, V67, P1686, DOI 10.1121/1.384295 LIM KM, 2000, THESIS STANFORD U ST LIM KM, 1999, P PAN AM C APPL MECH, P117 Naidu RC, 1998, HEARING RES, V124, P124, DOI 10.1016/S0378-5955(98)00133-6 NEELY ST, 1985, J ACOUST SOC AM, V78, P345, DOI 10.1121/1.392497 NEELY ST, 1993, J ACOUST SOC AM, V94, P137, DOI 10.1121/1.407091 Parthasarathi AA, 2000, J ACOUST SOC AM, V107, P474, DOI 10.1121/1.428352 PETERSON LC, 1950, J ACOUST SOC AM, V22, P369, DOI 10.1121/1.1906615 Pickles JO, 1988, INTRO PHYSL HEARING Robles L, 1997, J NEUROPHYSIOL, V77, P2385 ROBLES L, 1990, LECT NOTES BIOMATH, V87, P304 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 RUGGERO MA, 1992, J NEUROPHYSIOL, V68, P1087 Shera CA, 2001, J ACOUST SOC AM, V110, P332, DOI 10.1121/1.1378349 Smith C A, 1968, Adv Sci, V24, P419 Steele CR, 1999, ORL J OTO-RHINO-LARY, V61, P238, DOI 10.1159/000027681 STEELE CR, 1993, P INT S BIOPH HAIR C, P207 STEELE CR, 1983, MECH HEARING, P29 Steele CR, 1999, AUDIOL NEURO-OTOL, V4, P197, DOI 10.1159/000013841 ZWEIG G, 1991, J ACOUST SOC AM, V89, P1229, DOI 10.1121/1.400653 NR 39 TC 56 Z9 60 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2002 VL 170 IS 1-2 BP 190 EP 205 DI 10.1016/S0378-5955(02)00491-4 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 590ED UT WOS:000177804600018 PM 12208552 ER PT J AU Smith, L Gross, J Morest, DK AF Smith, L Gross, J Morest, DK TI Fibroblast growth factors (FGFs) in the cochlear nucleus of the adult mouse following acoustic overstimulation SO HEARING RESEARCH LA English DT Article DE cochlear damage; noise exposure; plasticity; astrocyte; neuronal FGF receptor; sensory hyperactivity; sensory deprivation ID RAT-BRAIN; GANGLION-CELLS; BASIC FGF; NERVE; EXPRESSION; NEURONS; DEGENERATION; TRANSECTION; ASTROCYTES; CHINCHILLA AB To see if fibroblast growth factors (FGFs) might function in the central changes following auditory overstimulation we tracked immunostaining in the cochlear nucleus of adult mice with monoclonal antibodies to FGFs (FGF-1, FGF-2) and FGF receptor. After exposure nearly all outer hair cells died, while inner hair cell and fiber loss were restricted to a region midway along the cochlear spiral, FGFs staining in the cochlear nucleus appeared in hypertrophied astrocytes in the regions of nerve fiber degeneration only. For normal-sized astrocytes there was an increase in the number stained and the intensity of staining across all frequency domains, but not in neurons. The increases were modest at 3-7 days, pronounced at 14 days, modest again by 30 days, and back to control levels by 60 days. FGF receptor staining of neurons occurred equally in all mice, exposed or not. The findings suggest that astrocytes play a role in the central responses to acoustic overstimulation and cochlear damage, involving FGFs, possibly regulating the activity of intrinsic neurons or signaling axonal growth. Not limited to regions of cochlear nerve fiber and inner hair cell loss, the changes in FGFs may represent a reaction to outer hair cell damage which spreads broadly across the central pathways. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Connecticut, Ctr Hlth, Dept Neurosci, Farmington, CT 06030 USA. RP Morest, DK (reprint author), Univ Connecticut, Ctr Hlth, Dept Neurosci, 263 Farmington Ave, Farmington, CT 06030 USA. CR Altschuler RA, 1999, ANN NY ACAD SCI, V884, P305, DOI 10.1111/j.1749-6632.1999.tb08650.x ANDERSON KJ, 1988, NATURE, V332, P360, DOI 10.1038/332360a0 Bilak M, 1997, EXP NEUROL, V147, P256, DOI 10.1006/exnr.1997.6636 Blum T, 2001, NEUROSCI RES, V40, P115, DOI 10.1016/S0168-0102(01)00217-6 Bohne BA, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P171 DESPRES G, 1991, NEUROREPORT, V2, P639, DOI 10.1097/00001756-199111000-00001 ELDE R, 1991, NEURON, V7, P349, DOI 10.1016/0896-6273(91)90288-B FRIM DM, 1993, NEUROREPORT, V4, P367, DOI 10.1097/00001756-199304000-00006 Fuxe K, 1996, J CHEM NEUROANAT, V11, P13, DOI 10.1016/0891-0618(96)00119-6 GOMEZPINILLA F, 1992, J NEUROSCI, V12, P345 GONZALEZ AM, 1995, BRAIN RES, V701, P201, DOI 10.1016/0006-8993(95)01002-X Grothe C, 2001, J COMP NEUROL, V434, P342, DOI 10.1002/cne.1181 Hossain WA, 2000, J NEUROSCI RES, V62, P40, DOI 10.1002/1097-4547(20001001)62:1<40::AID-JNR5>3.0.CO;2-L JOHNSON DE, 1993, ADV CANCER RES, V60, P1 Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57 Kim JN, 1997, HEARING RES, V103, P169, DOI 10.1016/S0378-5955(96)00173-6 LOGAN A, 1992, J NEUROSCI, V12, P3828 LUO L, 1993, HEARING RES, V86, P24 MIGNATTI P, 1992, J CELL PHYSIOL, V151, P81, DOI 10.1002/jcp.1041510113 Moffett J, 1998, MOL BIOL CELL, V9, P2269 Morest DK, 1998, MICROSC RES TECHNIQ, V41, P205 Morest DK, 1997, HEARING RES, V103, P151, DOI 10.1016/S0378-5955(96)00172-4 MOREST DK, 1983, HEARING RES, V9, P141 Ou HC, 2000, HEARING RES, V145, P123, DOI 10.1016/S0378-5955(00)00082-4 PETROSKI RE, 1991, DEV BIOL, V147, P1, DOI 10.1016/S0012-1606(05)80002-8 PIRVOLA U, 1995, P NATL ACAD SCI USA, V92, P9269, DOI 10.1073/pnas.92.20.9269 RIEDEL E, 1995, J COMP NEUROL, V354, P353 SIEVERS J, 1987, NEUROSCI LETT, V76, P157, DOI 10.1016/0304-3940(87)90708-7 SMITH L, 1999, ASS RES OT ABSTR, V22, P150 Sugahara K, 2001, NEUROREPORT, V12, P3299, DOI 10.1097/00001756-200110290-00030 TOURBAH A, 1991, J NEUROSCI RES, V29, P560, DOI 10.1002/jnr.490290417 Zhou X., 1996, Hearing Research, V101, P187, DOI 10.1016/S0378-5955(96)00122-0 NR 32 TC 9 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2002 VL 169 IS 1-2 BP 1 EP 12 DI 10.1016/S0378-5955(02)00461-6 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576UX UT WOS:000177025300001 PM 12121735 ER PT J AU Holme, RH Steel, KP AF Holme, RH Steel, KP TI Stereocilia defects in waltzer (Cdh23), shaker1 (Myo7a) and double waltzer/shaker1 mutant mice SO HEARING RESEARCH LA English DT Article DE Cdh23; Myo7a; cadherin 23; myosin VIIa; stereocilia; hair cell; mouse mutant ID MYOSIN-VIIA GENE; USHER 1B SYNDROME; SYNDROME TYPE 1F; SYNDROME TYPE 1D; HEARING-LOSS; INNER-EAR; AMES WALTZER; UNCONVENTIONAL MYOSINS; PROTOCADHERIN GENE; RECESSIVE DEAFNESS AB Mutations in myosin VIIa (Myo7a) and eadherin 23 (Cdh23) cause deafness in shaker1 (sh1) and waltzer (v) mouse mutants respectively. In humans, mutations in these genes cause Usher's syndrome type 113 and D respectively, as well as certain forms of non-syndromic deafness. Examination of the organ of Corti from shaker1 and waltzer mice has shown that these genes are required for the proper organisation of hair cell stereocilia. Here we show that at embryonic day 18.5, the outer hair cells of Cdh23(v) homozygote mutant mice appear immature. projecting fewer recognisable stereocilia than heterozygote controls, and by post-natal day (P) 4 their stereocilia are arranged in a disorganised pattern rather than in the regular 'V'-shape seen in heterozygotes. Inner hair cell stereocilia are also disorganised in Cdh23(v) mutant homozygotes. Myo7a was expressed normally in the hair cells of PO Cdh(v2J) mutants demonstrating that cadherin 23 is not required for Myo7a expression at this stage. No stereocilia defects were observed in P4 Cdh23(v)/Myo7a(4626SB) double heterozygotes (+/Cdh23(v) +/Myo7a(4626SB)) and neither the Cdh23(v) nor Myo7a(4626SB) homozygote phenotypes were affected by the presence of one mutant copy of Myo7a or Cdh23 respectively, The hair cell phenotype of double homozygote mutant mice did not differ from single Myo7a(4626SB) homozygote mutants. Finally, we found no significant correlation between loss of hearing and double heterozygosity for mutations in Cdh23 and Myo7a in mice aged between 7.5 and 10 months. These findings suggest that Cdh23 and Myo7a are both required for establishing and/or maintaining the proper organisation of the stereocilia bundle and that they do not genetically interact to affect this process nor to cause age-related hearing loss. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Nottingham, MRC Inst Hearing Res, Nottingham NG7 2RD, England. RP Steel, KP (reprint author), Univ Nottingham, MRC Inst Hearing Res, Nottingham NG7 2RD, England. CR Adler PN, 1998, DEVELOPMENT, V125, P959 Ahmed ZM, 2001, AM J HUM GENET, V69, P25, DOI 10.1086/321277 Alagramam KN, 2001, NAT GENET, V27, P99 Alagramam KN, 2001, HUM MOL GENET, V10, P1709, DOI 10.1093/hmg/10.16.1709 Alagramam KN, 2000, HEARING RES, V148, P181, DOI 10.1016/S0378-5955(00)00152-0 Astuto LM, 2000, AM J HUM GENET, V67, P1569, DOI 10.1086/316889 Bitner-Glindzicz M, 2000, NAT GENET, V26, P56, DOI 10.1038/79178 Bolz H, 2001, NAT GENET, V27, P108 Bork JM, 2001, AM J HUM GENET, V68, P26, DOI 10.1086/316954 Bray S, 2000, CURR BIOL, V10, pR155, DOI 10.1016/S0960-9822(00)00330-4 Bryda EC, 2001, GENOMICS, V73, P338, DOI 10.1006/geno.2001.6538 Chae J, 1999, DEVELOPMENT, V126, P5421 DEOL MS, 1956, PROC R SOC SER B-BIO, V145, P206, DOI 10.1098/rspb.1956.0028 Di Palma F, 2001, NAT GENET, V27, P103 GIBSON F, 1995, NATURE, V374, P62, DOI 10.1038/374062a0 Goodyear R, 1999, J NEUROSCI, V19, P3761 Hasson T, 1997, CELL MOTIL CYTOSKEL, V37, P127, DOI 10.1002/(SICI)1097-0169(1997)37:2<127::AID-CM5>3.3.CO;2-6 Hasson T, 1997, J CELL BIOL, V137, P1287, DOI 10.1083/jcb.137.6.1287 Hunter-Duvar I M, 1978, Acta Otolaryngol Suppl, V351, P3 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 Keats BJB, 1999, AM J MED GENET, V89, P158, DOI 10.1002/(SICI)1096-8628(19990924)89:3<158::AID-AJMG6>3.0.CO;2-# Kiernan AE, 1999, J NEUROCYTOL, V28, P969, DOI 10.1023/A:1007090626294 KITAMURA K, 1992, ACTA OTO-LARYNGOL, V112, P622, DOI 10.3109/00016489209137451 KITAMURA K, 1991, ACTA OTO-LARYNGOL, V111, P61, DOI 10.3109/00016489109137355 Knudsen K A, 1998, J Cell Biochem Suppl, V30-31, P168 Kussel-Andermann P, 2000, EMBO J, V19, P6020, DOI 10.1093/emboj/19.22.6020 Liu XR, 1997, CELL MOTIL CYTOSKEL, V37, P240, DOI 10.1002/(SICI)1097-0169(1997)37:3<240::AID-CM6>3.0.CO;2-A Liu XZ, 1997, NAT GENET, V16, P188, DOI 10.1038/ng0697-188 Liu XZ, 1997, NAT GENET, V17, P268, DOI 10.1038/ng1197-268 Lord EM, 1929, AM NAT, V63, P435, DOI 10.1086/280276 Mburu Philomena, 1997, Genes and Function, V1, P191 NobenTrauth K, 1997, GENOMICS, V44, P266, DOI 10.1006/geno.1997.4869 Nollet F, 2000, J MOL BIOL, V299, P551, DOI 10.1006/jmbi.2000.3777 Raphael Y, 2001, HEARING RES, V151, P237, DOI 10.1016/S0378-5955(00)00233-1 RINCHIK EM, 1990, P NATL ACAD SCI USA, V87, P896, DOI 10.1073/pnas.87.3.896 Self T, 1998, DEVELOPMENT, V125, P557 Sjöström B, 1992, Acta Otolaryngol Suppl, V493, P141 Street VA, 1998, NAT GENET, V19, P390 Titus MA, 1997, TRENDS CELL BIOL, V7, P119, DOI 10.1016/S0962-8924(97)01019-2 Usui T, 1999, CELL, V98, P585, DOI 10.1016/S0092-8674(00)80046-X VERNON M, 1969, J CHRON DIS, V22, P133, DOI 10.1016/0021-9681(69)90055-1 Verpy E, 2000, NAT GENET, V26, P51 Wada T, 2001, BIOCHEM BIOPH RES CO, V283, P113, DOI 10.1006/bbrc.2001.4724 Weil D, 1997, NAT GENET, V16, P191, DOI 10.1038/ng0697-191 Weil D, 1995, Nature, V374, P60 Wilson SM, 2001, GENOMICS, V74, P228, DOI 10.1006/geno.2001.6554 Zheng LL, 2000, CELL, V102, P377, DOI 10.1016/S0092-8674(00)00042-8 NR 48 TC 42 Z9 46 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2002 VL 169 IS 1-2 BP 13 EP 23 DI 10.1016/S0378-5955(02)00334-9 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576UX UT WOS:000177025300002 PM 12121736 ER PT J AU Fowler, CG Torre, P Kemnitz, JW AF Fowler, CG Torre, P Kemnitz, JW TI Effects of caloric restriction and aging on the auditory function of rhesus monkeys (Macaca mulatta): The University of Wisconsin Study SO HEARING RESEARCH LA English DT Article DE animal; aging; evoked potential; auditory; brain stem; diet; sex; auditory threshold/physiology; binaural ID BRAIN-STEM RESPONSE; AGE-RELATED-CHANGES; HEARING-LOSS; DIETARY RESTRICTION; EVOKED-POTENTIALS; NONHUMAN-PRIMATES; PRESBYCUSIS; THRESHOLDS; LATENCY; PRESBYACUSIS AB The present study is part of a larger project that investigates the effect of caloric restriction on longevity I in the rhesus monkey. The purpose of the present study was to document presbycusis and the effect of caloric restriction on presbycusis in monkeys. The control group had 35 monkeys allowed to eat freely and the caloric-restricted group (CR) had 33 monkeys with a 30% reduction in caloric intake. Monaural and binaural auditory brainstem response (ABR) and middle latency response (MLR) were obtained from 27 female and 41 male monkeys that were 11-23 years of age and had been in the study for 102, 42, or 36 months when tested. Significant findings were the following: (1) wave I amplitudes were larger for females and for younger monkeys, and amplitudes decreased in aging males but not in aging females; (2) wave IV amplitudes were larger for females than males, and amplitudes for CR females were larger than for female controls, whereas the amplitudes from control and CR males were not different: (3) wave Pa latencies were shorter for females, and shorter latencies were maintained for aging females but not for aging males; (4) interwave interval IV-Pa was shorter for females. and intervals lengthened for aging males but not aging females; (5) binaural wave IV amplitude decreased faster with age for control monkeys than for CR monkeys, and the L+R Pa amplitude decreased with age. Additional trends were identified for longitudinal monitoring as monkeys enter old age. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Wisconsin, Dept Communicat Disorders, Wisconsin Reg Primate Ctr, Madison, WI 53706 USA. Univ Wisconsin, Dept Populat Hlth Sci, Madison, WI 53706 USA. Univ Wisconsin, Dept Physiol, Madison, WI 53706 USA. RP Fowler, CG (reprint author), Univ Wisconsin, Dept Communicat Disorders, Wisconsin Reg Primate Ctr, 1975 Willow Dr, Madison, WI 53706 USA. EM cgfowler@facstaff.wisc.edu CR ALLEN AR, 1978, ELECTROEN CLIN NEURO, V45, P53, DOI 10.1016/0013-4694(78)90341-3 Azumi T, 1995, Electromyogr Clin Neurophysiol, V35, P397 BENNETT CL, 1983, BEHAV NEUROSCI, V97, P602, DOI 10.1037//0735-7044.97.4.602 BESS FH, 1989, J AM GERIATR SOC, P123 BRANT LJ, 1990, J ACOUST SOC AM, V88, P813, DOI 10.1121/1.399731 Cefalu WT, 2000, J GERONTOL A-BIOL, V55, pB355 Cefalu WT, 1999, TOXICOL SCI, V52, P49, DOI 10.1093/toxsci/52.suppl_1.49 CONEWESSON BK, 1995, ASHA A, V36 DOYLE WJ, 1983, ELECTROEN CLIN NEURO, V56, P210, DOI 10.1016/0013-4694(83)90075-5 Edwards IJ, 2001, EXP GERONTOL, V36, P1413, DOI 10.1016/S0531-5565(01)00107-3 FOWLER CG, 1994, PRINCIPLES APPL AUDI, pCH10 Gates GA, 1999, ARCH OTOLARYNGOL, V125, P654 GOYCOOLEA MV, 1986, LARYNGOSCOPE, V96, P1391 Gresl TA, 2001, AM J PHYSIOL-ENDOC M, V281, pE757 HAWKINS JE, 1985, BEHAV PATHOLOGY AGIN, P137 HENRY KR, 1986, AUDIOLOGY, V25, P329 JERGER J, 1995, J AM GERIATR SOC, V43, P928 JERGER J, 1988, EAR HEARING, V9, P168, DOI 10.1097/00003446-198808000-00002 JERGER J, 1988, SEM HEAR, V8, P75 KELLYBALLWEBER D, 1984, AUDIOLOGY, V23, P181 KEMNITZ JW, 1993, J GERONTOL, V48, pB17 Kemnitz JW, 1998, PENN CTR N, V8, P180 LASKY RE, 1995, HEARING RES, V89, P212, DOI 10.1016/0378-5955(95)00140-7 MAKISHIMA K, 1978, OTOLARYNG HEAD NECK, V86, P322 MOLLER AR, 1986, ELECTROEN CLIN NEURO, V65, P361, DOI 10.1016/0168-5597(86)90015-8 MOSCICKI EK, 1985, EAR HEARING, V6, P184, DOI 10.1097/00003446-198507000-00003 PARK JC, 1990, HEARING RES, V48, P275, DOI 10.1016/0378-5955(90)90067-Y RAMSEY JJ, 2000, J GERONTOL, V35, P1131 ROSEN S, 1965, ARCHIV OTOLARYNGOL, V82, P236 ROSEN S, 1962, ANN OTO RHINOL LARYN, V71, P727 ROWE MJ, 1978, ELECTROEN CLIN NEURO, V44, P459, DOI 10.1016/0013-4694(78)90030-5 RUBINSTEIN M, 1977, GERONTOLOGY, V23, P4 SUSMANO A, 1988, AM J OTOL, V9, P403 SWEET RJ, 1988, AUDIOLOGY, V27, P305 Torre P, 2000, HEARING RES, V142, P131, DOI 10.1016/S0378-5955(00)00025-3 Verdery RB, 1997, AM J PHYSIOL-ENDOC M, V273, pE714 Watson DR, 1996, AUDIOLOGY, V35, P246 Weindruch R, 1996, SCI AM, V274, P46 Wiley T L, 2001, J Am Acad Audiol, V12, P337 Wiley T L, 1996, J Am Acad Audiol, V7, P260 WILLOTT JF, 1995, HEARING RES, V88, P143, DOI 10.1016/0378-5955(95)00107-F WOODS DL, 1986, ELECTROEN CLIN NEURO, V65, P297, DOI 10.1016/0168-5597(86)90008-0 NR 42 TC 12 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2002 VL 169 IS 1-2 BP 24 EP 35 DI 10.1016/S0378-5955(02)00335-0 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576UX UT WOS:000177025300003 PM 12121737 ER PT J AU Wysocki, LE Ladich, F AF Wysocki, LE Ladich, F TI Can fishes resolve temporal characteristics of sounds? New insights using auditory brainstem responses SO HEARING RESEARCH LA English DT Article DE auditory temporal resolution; auditory brainstem response; teleost; temporal sound pattern; acoustic communication ID ACOUSTIC COMMUNICATION; EVOKED-RESPONSES; HEARING SUBJECTS; SENSITIVITY; DISCRIMINATION; VOCALIZATION; GOLDFISH; NOISE; CLICK; NEUROPHYSIOLOGY AB Numerous fish species produce broad-band pulsed sounds with a distinct temporal patterning which is thought to be important during intraspecific communication. In order to determine whether fishes are able to utilize temporal characteristics of acoustic signals, time resolution was determined in four species of otophysines and anabantoids by analyzing auditory brainstem responses (ABRs) to double-click stimuli with varying click periods. At click periods of 3.5 ms, two distinct ABRs were clearly detectable in all species. The minimum pulse period resolvable by the auditory system was below 1.5 ms in each species and slightly intensity-dependent. No differences were found between vocal and non-vocal species within each taxon. Comparisons OF the time resolution data to the pulse periods of intraspecific sounds in the vocal species showed that the otophysine Platydoras costatus and the anabantoid Trichopsis vittata are likely to process each pulse within a series of intraspecific sounds. However, as non-vocal and vocal species have a similar minimum resolvable click period, the high temporal resolution capacities Of the auditory system of fish might not represent special adaptations for intraspecific acoustic communication. Nonetheless. we suggest that temporal characteristics of naturally occurring conspecific and heterospecific sounds provide reliable information for acoustic communication. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Vienna, Inst Zool, A-1090 Vienna, Austria. RP Wysocki, LE (reprint author), Univ Vienna, Inst Zool, Althanstr 14, A-1090 Vienna, Austria. EM a9403658@unet.univie.ac.at CR Aitkin L, 1997, HEARING RES, V113, P69, DOI 10.1016/S0378-5955(97)00128-7 AU WWL, 1990, NATO ADV SCI I A-LIF, V196, P203 AU WWL, 1988, J ACOUST SOC AM, V83, P662, DOI 10.1121/1.396161 Corwin J.T., 1981, HEARING SOUND COMMUN, P81 Crawford JD, 1997, MAR FRESHW BEHAV PHY, V29, P65 DIMITRIEVA LP, 1994, BEHAV NEURAL BIOL, V61, P19 Dolphin William Ford, 1997, Bioacoustics, V8, P79 DUBROVSKIY NA, 1990, NATO ADV SCI I A-LIF, V196, P233 FAY RR, 1980, J NEUROPHYSIOL, V44, P312 Fay R. R., 1988, HEARING VERTEBRATES FAY RR, 1983, HEARING RES, V12, P31, DOI 10.1016/0378-5955(83)90117-X FAY RR, 1982, J COMP PHYSIOL, V147, P201 FAY R, 1984, Journal of the Acoustical Society of America, V76, pS12, DOI 10.1121/1.2021708 Fay R.R., 1985, P28 GERALD JW, 1971, EVOLUTION, V25, P75, DOI 10.2307/2406500 GORGA MP, 1988, J SPEECH HEAR RES, V31, P87 Hall J, 1992, HDB AUDITORY EVOKED Hawkins A. D., 1981, HEARING SOUND COMMUN, P109 Hawkins A.D., 1983, P347 HAWKINS AD, 1978, J MAR BIOL ASSOC UK, V58, P891 Hill KG, 1998, HEARING RES, V117, P97, DOI 10.1016/S0378-5955(97)00211-6 Kenyon TN, 1998, J COMP PHYSIOL A, V182, P307, DOI 10.1007/s003590050181 KILENY P, 1986, J SPEECH HEAR RES, V29, P20 KRATOCHVIL H, 1985, ZOOL JAHRB ALLG ZOOL, V89, P203 Kratochvil H, 2000, J COMP PHYSIOL A, V186, P279, DOI 10.1007/s003590050428 Ladich F, 1998, ETHOLOGY, V104, P517 Ladich F, 1998, J COMP PHYSIOL A, V182, P737, DOI 10.1007/s003590050218 Ladich F, 1999, BRAIN BEHAV EVOLUT, V53, P288, DOI 10.1159/000006600 Ladich F, 1997, MAR FRESHW BEHAV PHY, V29, P87 Ladich F., 1992, Bioacoustics, V4, P131 LADICH F, 1997, BIOACOUSTICS, V8, P85 Mann DA, 1997, J ACOUST SOC AM, V101, P3783, DOI 10.1121/1.418425 Marvit P, 2000, J ACOUST SOC AM, V108, P1819, DOI 10.1121/1.1287845 McFadden SL, 1996, HEARING RES, V100, P68, DOI 10.1016/0378-5955(96)00108-6 McKibben JR, 1998, J ACOUST SOC AM, V104, P3520, DOI 10.1121/1.423938 Myrberg A.A. Jr, 1978, P137 MYRBERG AA, 1986, ANIM BEHAV, V34, P913, DOI 10.1016/S0003-3472(86)80077-X MYRBERG AA, 1972, J EXP BIOL, V57, P727 Pfeiffer W., 1965, Zeitschrift fuer Morphologie und Oekologie der Tiere, V54, P669, DOI 10.1007/BF00429936 POPOV VV, 1990, J COMP PHYSIOL A, V166, P385 POPPER AN, 1972, J ACOUST SOC AM, V52, P596, DOI 10.1121/1.1913150 Pruzsinszky I, 1998, ENVIRON BIOL FISH, V53, P183, DOI 10.1023/A:1007413108550 Scholik AR, 2001, HEARING RES, V152, P17, DOI 10.1016/S0378-5955(00)00213-6 SUPIN AY, 1995, J ACOUST SOC AM, V97, P2586, DOI 10.1121/1.411913 Winn HE, 1964, MARINE BIOACOUSTICS, V2, P213 WINN HOWARD E., 1967, MAR BIO ACOUSTICS, V2, P283 Wysocki LE, 2001, J COMP PHYSIOL A, V187, P177, DOI 10.1007/s003590100186 Yan HY, 1998, J COMP PHYSIOL A, V183, P325, DOI 10.1007/s003590050259 NR 48 TC 37 Z9 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2002 VL 169 IS 1-2 BP 36 EP 46 DI 10.1016/S0378-5955(02)00336-2 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576UX UT WOS:000177025300004 PM 12121738 ER PT J AU Dehne, N Rauen, U de Groot, H Lautermann, J AF Dehne, N Rauen, U de Groot, H Lautermann, J TI Involvement of the mitochondrial permeability transition in gentamicin ototoxicity SO HEARING RESEARCH LA English DT Article DE cochlea; gentamicin; apoptosis; mitochondrial permeability transition; iron ID VESTIBULAR SENSORY EPITHELIA; APOPTOTIC CELL-DEATH; OUTER HAIR-CELLS; PIG INNER-EAR; GUINEA-PIG; AMINOGLYCOSIDE ANTIBIOTICS; FREE-RADICALS; IN-VITRO; SIGNAL-TRANSDUCTION; HYDROGEN-PEROXIDE AB Aminoglycosides may induce irreversible hearing loss in both animals and humans. In order to study the nature and mechanisms underlying gentamicin-induced cell death in the inner ear, the cochlear neurosensory epithelia were dissected from guinea pigs and incubated with 0.5-10 mM gentamicin. Concentration-dependent loss of cell viability was detected by the inability of damaged cells to exclude propidium iodide, Outer hair cells were most sensitive towards gentamicin toxicity, followed by inner hair cells whereas Deiters and Hensen cells were not affected by the gentamicin concentrations used. The iron chelators 2,2'-dipyridyl and deferoxamine provided partial protection against gentamicin-induced hair cell death while the calcium chelator Quin-2 AM had no effect. Gentamicin (0.5-1 mM) induced condensation of chromatin typical for apoptosis. Using the fluorescent dye tetramethylrhodamine methyl ester and laser scanning microscopy we could visualize a loss of the mitochondrial membrane potential in damaged outer hair cells about 1 h before cell death occurred. Cyclosporin A, an inhibitor of the mitochondrial permeability pore, provided partial protection against gentamicin toxicity. This strongly suggests an involvement of the mitochondrial permeability transition in gentamicin-induced apoptosis. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Essen Gesamthsch, Dept Otorhinolaryngol, D-45122 Essen, Germany. Univ Essen Gesamthsch, Dept Physiol Chem, Essen, Germany. RP Lautermann, J (reprint author), Univ Essen Gesamthsch, Dept Otorhinolaryngol, Hufelandstr 55, D-45122 Essen, Germany. RI Rauen, Ursula/N-2137-2014 CR ANNIKO M, 1982, AM J OTOLARYNG, V3, P422, DOI 10.1016/S0196-0709(82)80020-3 ANNIKO M, 1983, ACTA OTO-LARYNGOL, V96, P75, DOI 10.3109/00016488309132877 BERNARDI P, 1994, J BIOENERG BIOMEMBR, V26, P509, DOI 10.1007/BF00762735 Budihardjo I, 1999, ANNU REV CELL DEV BI, V15, P269, DOI 10.1146/annurev.cellbio.15.1.269 BUJA LM, 1993, ARCH PATHOL LAB MED, V117, P1208 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 Conlon BJ, 1998, LARYNGOSCOPE, V108, P284, DOI 10.1097/00005537-199802000-00023 CRANN SA, 1992, BIOCHEM PHARMACOL, V43, P1835, DOI 10.1016/0006-2952(92)90718-X DEGROOT H, 1994, HEPATO-GASTROENTEROL, V41, P328 Dehne N, 2000, HEARING RES, V143, P162, DOI 10.1016/S0378-5955(00)00036-8 DULON D, 1989, J NEUROSCI RES, V24, P338, DOI 10.1002/jnr.490240226 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2 Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X GARETZ SL, 1994, HEARING RES, V77, P75, DOI 10.1016/0378-5955(94)90254-2 Hagar H, 1996, AM J PHYSIOL-RENAL, V271, pF209 HALLIWELL B, 1990, METHOD ENZYMOL, V186, P1 Hickman JA, 1997, BRIT MED BULL, V53, P632 Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4 HUTCHIN T, 1994, ANTIMICROB AGENTS CH, V38, P2517 HYDE GE, 1995, OTOLARYNG HEAD NECK, V113, P530, DOI 10.1177/019459989511300503 Ip YT, 1998, CURR OPIN CELL BIOL, V10, P205, DOI 10.1016/S0955-0674(98)80143-9 Jacotot E, 1999, ANN NY ACAD SCI, V887, P18 Kil J, 1997, HEARING RES, V114, P117, DOI 10.1016/S0378-5955(97)00166-4 Kroemer G, 2000, NAT MED, V6, P513, DOI 10.1038/74994 Lang HN, 1997, HEARING RES, V111, P177, DOI 10.1016/S0378-5955(97)00098-1 LAUTERMANN J, 1995, HEARING RES, V86, P15, DOI 10.1016/0378-5955(95)00049-A Lemasters JJ, 1999, BIOPHYS J, V77, P1747, DOI 10.1016/S0006-3495(99)77020-7 Lemasters JJ, 1999, J BIOENERG BIOMEMBR, V31, P305, DOI 10.1023/A:1005419617371 LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307 LODHI S, 1980, BIOCHEM PHARMACOL, V29, P543 LUNDQUIS.PG, 1966, Z ZELLFORSCH MIK ANA, V72, P543, DOI 10.1007/BF00319259 Mather M, 2001, BBA-BIOENERGETICS, V1503, P357, DOI 10.1016/S0005-2728(00)00231-0 Nakagawa T, 1998, EUR ARCH OTO-RHINO-L, V255, P127, DOI 10.1007/s004050050027 Nakagawa T, 1999, BRAIN RES, V847, P357, DOI 10.1016/S0006-8993(99)02088-0 Nakagawa T, 1997, EUR ARCH OTO-RHINO-L, V254, P9, DOI 10.1007/BF02630749 NICOTERA P, 1990, CHEM RES TOXICOL, V3, P484, DOI 10.1021/tx00018a001 NIEMINEN AL, 1995, BIOCHEM J, V307, P99 Pedersen PL, 1999, J BIOENERG BIOMEMBR, V31, P291, DOI 10.1023/A:1005453700533 Petronilli V, 1999, BIOPHYS J, V76, P725, DOI 10.1016/S0006-3495(99)77239-5 Pirvola U, 2000, J NEUROSCI, V20, P43 Priuska EM, 1998, INORG CHIM ACTA, V273, P85, DOI 10.1016/S0020-1693(97)05942-2 Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4 Raffray M, 1997, PHARMACOL THERAPEUT, V75, P153, DOI 10.1016/S0163-7258(97)00037-5 RAPHAEL Y, 1983, ARCH OTO-RHINO-LARYN, V237, P147, DOI 10.1007/BF00463614 Rauen U, 1999, FASEB J, V13, P155 RICHARDSON GP, 1991, HEARING RES, V53, P293, DOI 10.1016/0378-5955(91)90062-E Robb SJ, 1999, J NEUROSCI RES, V55, P674, DOI 10.1002/(SICI)1097-4547(19990315)55:6<674::AID-JNR3>3.0.CO;2-J Robertson JD, 2000, J STRUCT BIOL, V129, P346, DOI 10.1006/jsbi.2000.4254 SATO Y, 1969, ANN OTO RHINOL LARYN, V78, P1201 Sha SH, 1999, HEARING RES, V128, P112, DOI 10.1016/S0378-5955(98)00200-7 Sha SH, 1999, FREE RADICAL BIO MED, V26, P341, DOI 10.1016/S0891-5849(98)00207-X Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 SIMMONS CF, 1980, J PHARMACOL EXP THER, V214, P709 Song BB, 1996, HEARING RES, V94, P87, DOI 10.1016/0378-5955(96)00003-2 Suzuki YJ, 1997, FREE RADICAL BIO MED, V22, P269, DOI 10.1016/S0891-5849(96)00275-4 Usami S, 1996, BRAIN RES, V743, P337, DOI 10.1016/S0006-8993(96)01090-6 Vago P, 1998, NEUROREPORT, V9, P431, DOI 10.1097/00001756-199802160-00014 Vollgraf U, 1999, J NEUROCHEM, V73, P2501, DOI 10.1046/j.1471-4159.1999.0732501.x Walker PR, 1997, BIOCHEM CELL BIOL, V75, P287, DOI 10.1139/bcb-75-4-287 WEINBERG JM, 1980, RES COMMUN CHEM PATH, V27, P521 Wersäll J, 1973, Adv Otorhinolaryngol, V20, P14 Ylikoski J, 1974, Acta Otolaryngol Suppl, V326, P5 Zheng JL, 1999, J NEUROSCI, V19, P2161 NR 64 TC 55 Z9 63 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2002 VL 169 IS 1-2 BP 47 EP 55 DI 10.1016/S0378-5955(02)00338-6 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576UX UT WOS:000177025300005 PM 12121739 ER PT J AU Zhang, M Ding, DL Salvi, R AF Zhang, M Ding, DL Salvi, R TI Expression of heregulin and ErbB/Her receptors in adult chinchilla cochlear and vestibular sensory epithelium SO HEARING RESEARCH LA English DT Article DE heregulin; ErbB-2; ErbB-3; ErbB-4; cochlea; hair cell; vestibular ID HAIR-CELL REGENERATION; EPIDERMAL GROWTH-FACTOR; BREAST-CANCER CELLS; INNER-EAR; NEUROTROPHIC FACTOR; ACOUSTIC TRAUMA; RAT COCHLEA; HUMAN FETAL; DNA-REPAIR; MORPHOLOGICAL EVIDENCE AB Immunolabeling of heregulin. a growth factor that enhances cell proliferation in damaged utricles, and one of its binding receptors, ErbB-2, has been briefly described in the P3 rat cochlea and utricle [Zheng et al. (1999) J. Neurocytol. 28, 901-912]. However, little is known about the distribution of heregulin and its three binding receptors in adult animals. Here we describe the immunolabeling patterns for heregulin, ErbB-2, ErbB-3 and ErB-4 in the cochlea. spiral ganglion. utricle and saccule of the adult chinchilla using confocal microscopy. Heregulin immunolaboling was intense along the apical pole of Deiters cells and Hensen cells and along the membrane of supporting cells of the utricle and saccule: light immunolabeling was present in the outer layer of the spiral prominence and cytoplasm of spiral ganglion neurons. In the cochlea, intense to moderate ErbB-2 immunolabeling was evident in the cytoplasm of pillar cells, outer hair cells (OHCs). border cells, stria vascularis and spiral ligament; moderate ErbB-2 immunolabeling was present in the cytoplasm of the hair cell and supporting cell layers of the Utricle and saccule. In the cochlea, light ErbB-3 immunolabeling was present in the inner hair cells, OHCs, marginal and intermediate cell layers of the stria vascular-is and spiral ganglion neurons: moderate ErbB-3 immunolabeling was present in the cytoplasm of hair cells and supporting cells of the utricle and saccule. In the cochlea, utricle and saccule, ErbB-4 immunolabeling was intense in the nuclei and light to moderate in the cycoplasm and membrane of sensory cells and supporting cells, These results suggest that heregulin acting through ErbB receptors and various receptor complexes may play an important role in cell proliferation and survival in the cochlea and vestibular system. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Buffalo, Hearing Res Lab, Buffalo, NY 14214 USA. RP Salvi, R (reprint author), Univ Buffalo, Hearing Res Lab, 215 Parker Hall, Buffalo, NY 14214 USA. CR Adam L, 2001, J BIOL CHEM, V276, P28443, DOI 10.1074/jbc.M009769200 Alaoui-Jamali MA, 1997, BIOCHEM CELL BIOL, V75, P315, DOI 10.1139/bcb-75-4-315 ALIMANDI M, 1995, ONCOGENE, V10, P1813 ANDERSON DJ, 1989, NEURON, V3, P1, DOI 10.1016/0896-6273(89)90110-4 APFEL SC, 1995, BAILLIERE CLIN NEUR, V4, P593 ARTEAGA CL, 1994, CANCER RES, V54, P3758 BAIRD RA, 1993, HEARING RES, V65, P164, DOI 10.1016/0378-5955(93)90211-I Ballinger MD, 1998, J BIOL CHEM, V273, P11675, DOI 10.1074/jbc.273.19.11675 Benoit BO, 2001, J NEUROBIOL, V46, P265, DOI 10.1002/1097-4695(200103)46:4<265::AID-NEU1007>3.3.CO;2-2 BERGMAN L, 2001, CLIN CANCER RES, V7, P2050 CABLE J, 1994, PIGM CELL RES, V7, P17, DOI 10.1111/j.1600-0749.1994.tb00015.x CARRAWAY KL, 1994, CELL, V78, P5, DOI 10.1016/0092-8674(94)90564-9 CARRAWAY KL, 1995, J BIOL CHEM, V270, P7111 Castagnino P, 2000, ONCOGENE, V19, P640, DOI 10.1038/sj.onc.1203357 CATTANEO E, 1990, NATURE, V347, P762, DOI 10.1038/347762a0 Chalazonitis A, 1996, MOL NEUROBIOL, V12, P39, DOI 10.1007/BF02740746 CONLEE JW, 1994, HEARING RES, V79, P115, DOI 10.1016/0378-5955(94)90133-3 CORWIN JT, 1981, J COMP NEUROL, V201, P541, DOI 10.1002/cne.902010406 Corwin JT, 1997, NEURON, V19, P951, DOI 10.1016/S0896-6273(00)80386-4 CORWIN JT, 1985, P NATL ACAD SCI USA, V82, P3911, DOI 10.1073/pnas.82.11.3911 CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 Cotanche Douglas A., 1994, Current Opinion in Neurobiology, V4, P509, DOI 10.1016/0959-4388(94)90051-5 COTANCHE DA, 1994, ANAT EMBRYOL, V189, P1 Cristobal R, 1998, AM J OTOL, V19, P660 Ding DL, 1999, ANN NY ACAD SCI, V884, P152, DOI 10.1111/j.1749-6632.1999.tb08640.x Ensor E, 2001, J BIOL CHEM, V276, P5204, DOI 10.1074/jbc.M007068200 Erickson JT, 2001, J NEUROSCI, V21, P581 Forander P, 2001, CELL TISSUE RES, V305, P43 FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284 GAO WQ, 1995, J NEUROSCI, V15, P2656 Garratt AN, 2000, J CELL BIOL, V148, P1035, DOI 10.1083/jcb.148.5.1035 Ghosh MM, 1995, BIOREMED SER, V3, P15 Gu R, 1997, ASS RES OTOLARYNGOL, V20, P390 HASHINO E, 1992, HEARING RES, V59, P46, DOI 10.1016/0378-5955(92)90101-R HASHINO E, 1993, J CELL SCI, V105, P23 HO WH, 1995, J BIOL CHEM, V270, P26722 HOLMES WE, 1992, SCIENCE, V256, P1205, DOI 10.1126/science.256.5060.1205 HUDSPETH AJ, 1977, P NATL ACAD SCI USA, V74, P2407, DOI 10.1073/pnas.74.6.2407 HUME CR, 2001, ABSTR ASS RES OT, V24, P782 KHETARPAL U, 1994, HEARING RES, V79, P59, DOI 10.1016/0378-5955(94)90127-9 Lefebvre PP, 2000, BRAIN RES REV, V32, P159 Leon Y, 1999, HORM METAB RES, V31, P126, DOI 10.1055/s-2007-978709 LEVI ADO, 1995, J NEUROSCI, V15, P1329 Lewis GD, 1996, CANCER RES, V56, P1457 Li L, 1997, INT J DEV NEUROSCI, V15, P433, DOI 10.1016/S0736-5748(96)00102-5 Li WL, 1996, ONCOGENE, V12, P2473 Lopez I, 1999, AM J OTOL, V20, P317 Lowenstein DH, 1996, J NEUROSCI, V16, P1759 Mahendrasingam S, 1997, HEARING RES, V111, P85, DOI 10.1016/S0378-5955(97)00091-9 Malgrange B, 1998, NEUROCHEM RES, V23, P1133, DOI 10.1023/A:1020724506337 MARCHIONNI MA, 1995, NATURE, V378, P334, DOI 10.1038/378334a0 Matsunaga T, 2001, DNA CELL BIOL, V20, P307, DOI 10.1089/10445490152122424 Meyer D, 1997, DEVELOPMENT, V124, P3575 MIETTINEN PJ, 1995, NATURE, V376, P337, DOI 10.1038/376337a0 MIZUTA K, 1995, HEARING RES, V88, P199, DOI 10.1016/0378-5955(95)00113-I Montcouquiol M, 2001, J NEUROSCI, V21, P974 Montcouquiol M, 2001, J NEUROSCI, V21, P570 Morley BJ, 1998, MOL BRAIN RES, V54, P170, DOI 10.1016/S0169-328X(97)00355-0 Navaratnam DS, 1996, NAT MED, V2, P1136, DOI 10.1038/nm1096-1136 Oesterle EC, 1999, J NEUROCYTOL, V28, P877, DOI 10.1023/A:1007074222659 Oka N, 2000, NEUROREPORT, V11, P3673, DOI 10.1097/00001756-200011270-00017 PELES E, 1993, BIOESSAYS, V15, P815, DOI 10.1002/bies.950151207 PELES E, 1993, EMBO J, V12, P961 Pickles JO, 2001, HEARING RES, V155, P54, DOI 10.1016/S0378-5955(01)00247-7 PIETRAS RJ, 1994, ONCOGENE, V9, P1829 Pirvola U, 2000, J NEUROSCI, V20, P6125 RAPHAEL Y, 1992, J NEUROCYTOL, V21, P663, DOI 10.1007/BF01191727 RAPHAEL Y, 1991, CELL MOTIL CYTOSKEL, V18, P215, DOI 10.1002/cm.970180307 RUBEL EW, 1995, SCIENCE, V267, P701, DOI 10.1126/science.7839150 Ruemmele FM, 1998, J CELL PHYSIOL, V176, P120, DOI 10.1002/(SICI)1097-4652(199807)176:1<120::AID-JCP14>3.3.CO;2-O RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101 Saito T, 2001, BRAIN RES, V895, P253, DOI 10.1016/S0006-8993(01)02020-0 Shoji F, 2000, HEARING RES, V142, P41, DOI 10.1016/S0378-5955(00)00007-1 Silberbach M, 2001, CELL SIGNAL, V13, P221, DOI 10.1016/S0898-6568(01)00139-5 SLIWKOWSKI MX, 1994, J BIOL CHEM, V269, P14661 SPICER SS, 1991, HEARING RES, V56, P53, DOI 10.1016/0378-5955(91)90153-Z Srinivasan R, 1998, J PATHOL, V185, P236, DOI 10.1002/(SICI)1096-9896(199807)185:3<236::AID-PATH118>3.0.CO;2-7 STEEL KP, 1992, DEVELOPMENT, V115, P1111 Stover T, 2000, MOL BRAIN RES, V76, P25, DOI 10.1016/S0169-328X(99)00328-9 Sutherland RL, 1998, J MAMMARY GLAND BIOL, V3, P63, DOI 10.1023/A:1018774302092 Tanaka Y, 1999, LARYNGOSCOPE, V109, P1102, DOI 10.1097/00005537-199907000-00017 TANYERI H, 1995, HEARING RES, V89, P194, DOI 10.1016/0378-5955(95)00137-7 TOMODA K, 1988, ARCH OTO-RHINO-LARYN, V245, P307, DOI 10.1007/BF00464638 TZAHAR E, 1998, BIOCHIM BIOPHYS ACTA, V1377, P25 VICARIOABEJON C, 1995, NEURON, V15, P105, DOI 10.1016/0896-6273(95)90068-3 WALLASCH C, 1995, EMBO J, V14, P4267 Wang J, 1997, HEARING RES, V107, P67, DOI 10.1016/S0378-5955(97)00020-8 WARCHOL ME, 1993, SCIENCE, V259, P1619, DOI 10.1126/science.8456285 Weiss FU, 1997, J CELL PHYSIOL, V173, P187, DOI 10.1002/(SICI)1097-4652(199711)173:2<187::AID-JCP19>3.3.CO;2-R WESTBROOK EW, 1988, ABSTR ASS RES OT, V11, P50 Yamashita H, 1996, EUR ARCH OTO-RHINO-L, V253, P494 Yan H, 2001, GLIA, V33, P334, DOI 10.1002/1098-1136(20010315)33:4<334::AID-GLIA1032>3.0.CO;2-I Yen L, 1997, ONCOGENE, V14, P1827, DOI 10.1038/sj.onc.1201019 Ylikoski J, 1998, HEARING RES, V124, P17, DOI 10.1016/S0378-5955(98)00095-1 Zheng JL, 1997, J NEUROSCI, V17, P216 Zheng JL, 1999, J NEUROCYTOL, V28, P901, DOI 10.1023/A:1007078307638 Zheng JL, 1999, J NEUROSCI, V19, P2161 NR 97 TC 15 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2002 VL 169 IS 1-2 BP 56 EP 68 DI 10.1016/S0378-5955(02)00339-8 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576UX UT WOS:000177025300006 PM 12121740 ER PT J AU Ohlemiller, KK Hennig, AK Lett, JM Heidbreder, AF Sands, MS AF Ohlemiller, KK Hennig, AK Lett, JM Heidbreder, AF Sands, MS TI Inner ear pathology in the mucopolysaccharidosis VII mouse SO HEARING RESEARCH LA English DT Article DE hair cell; cochlea; macula; crista; lysosomal storage disease; beta-glucuronidase; Sly syndrome ID BETA-GLUCURONIDASE DEFICIENCY; BONE-MARROW TRANSPLANTATION; AUDITORY BRAIN-STEM; AP TUNING CURVES; HEARING-LOSS; IMMUNOHISTOCHEMICAL LOCALIZATION; KERATAN SULFATE; PLACE-FREQUENCY; GUINEA-PIG; MICE AB Mucopolysaccharidosis type VII (MPS VII, Sly syndrome) is caused by dysfunction of the acid hydrolase P-D-glucuronidase. The defect results in the accumulation of incompletely degraded glycosaminoglycans within lysosomes of a wide array of cell types. MPS VII is associated with mixed (conductive and sensorineural) hearing loss, vision defects', shortened stature, mental retardation and decreased lifespan. Whether the sensorineural component of hearing loss in MPS VII involves degeneration of cochlear sensory cells is not yet clear. The MPS VII mouse resembles its human counterpart in all major aspects. and has been the focus of extensive research seeking to correct MPS VII and other lysosomal storage diseases. The value of potential treatments for this hearing loss can be determined only if cochlear pathology in this model is well characterized. We examined threshold sensitivity, frequency tuning, hair cell density and the appearance of the cochlea and vestibular organs in MPS VII mice ranging from 1.0 to 7.5 months of age. At all ages, lysosomal storage is pronounced within cells of spiral limbus, spiral prominence, spiral ligament and glial cells, but not within organ of Corti, stria vascularis, or neurons. Within the vestibular maculae and cristae, both hair cells and supporting cells also show lysosomal storage. Although hearing thresholds are never normal, reduction in the sharpness of frequency tuning is not apparent until 2,5 months of age, suggesting that the sensorineural component of hearing loss begins in adulthood. No evidence was found for cell loss within the organ of Corti, or any other structure. however, Our results suggest that sensorineural hearing loss in the MPS VII mouse is not caused by degeneration, but may arise from alterations in mass and stiffness of cochlear structures or impaired sensory cell function. They also indicate a possible vestibular component in MPS VII. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Fay & Carl Simons Ctr Biol Hearing & Deafness, Cent Inst Deaf, St Louis, MO 63110 USA. Washington Univ, Sch Med, Dept Internal Med, St Louis, MO 63110 USA. Washington Univ, Sch Med, Dept Genet, St Louis, MO 63110 USA. RP Ohlemiller, KK (reprint author), Fay & Carl Simons Ctr Biol Hearing & Deafness, Cent Inst Deaf, 4560 Clayton Ave, St Louis, MO 63110 USA. CR BERRY CL, 1994, LAB INVEST, V71, P438 BIRKENMEIER EH, 1989, J CLIN INVEST, V83, P1258, DOI 10.1172/JCI114010 BREDENKAMP JK, 1992, ANN OTO RHINOL LARYN, V101, P472 BROWN CJ, 1987, HEARING RES, V25, P193, DOI 10.1016/0378-5955(87)90091-8 Cosgrove D, 1996, HEARING RES, V97, P54 DALLOS P, 1976, J ACOUST SOC AM, V59, P591, DOI 10.1121/1.380903 Daly T M, 1998, Expert Opin Investig Drugs, V7, P1673, DOI 10.1517/13543784.7.10.1673 Daly TM, 2001, GENE THER, V8, P1291, DOI 10.1038/sj.gt.3301420 DOLAN TG, 1985, HEARING RES, V17, P259, DOI 10.1016/0378-5955(85)90070-X GIESELMANN V, 1995, BBA-MOL BASIS DIS, V1270, P103, DOI 10.1016/0925-4439(94)00075-2 GORLIN RJ, 1995, HEREDITARY HEARING L, P318 HARRIS DM, 1979, HEARING RES, V1, P133, DOI 10.1016/0378-5955(79)90024-8 HARRISON RV, 1981, J ACOUST SOC AM, V69, P1374, DOI 10.1121/1.385819 HASKINS ME, 1984, PEDIATR RES, V18, P980, DOI 10.1203/00006450-198418100-00014 Hayashi Masando, 1993, P222 HAYES E, 1980, AM J OTOL, V2, P64 HENRY KR, 1992, AUDIOLOGY, V31, P190 HENRY KR, 1985, HEARING RES, V19, P115, DOI 10.1016/0378-5955(85)90115-7 HENSON MM, 1982, HEARING RES, V7, P91, DOI 10.1016/0378-5955(82)90083-1 Hultcrantz M, 1996, ACTA OTO-LARYNGOL, V116, P25, DOI 10.3109/00016489609137708 Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 Kelemen G, 1966, J Laryngol Otol, V80, P791, DOI 10.1017/S0022215100065993 KIMURA RS, 1990, AM J OTOLARYNG, V11, P99, DOI 10.1016/0196-0709(90)90006-H Meikle PJ, 1999, JAMA-J AM MED ASSOC, V281, P249, DOI 10.1001/jama.281.3.249 MUNYER PD, 1994, HEARING RES, V79, P83, DOI 10.1016/0378-5955(94)90129-5 NEUFELD EF, 1970, SCIENCE, V169, P141, DOI 10.1126/science.169.3941.141 O'Connor LH, 1998, J CLIN INVEST, V101, P1394, DOI 10.1172/JCI1773 Ohlemiller KK, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P581 Ou HC, 2000, HEARING RES, V145, P123, DOI 10.1016/S0378-5955(00)00082-4 Papsin BC, 1998, OTOLARYNG HEAD NECK, V118, P30, DOI 10.1016/S0194-5998(98)70371-7 PECK JE, 1984, EAR HEARING, V5, P243, DOI 10.1097/00003446-198407000-00009 SANDS MS, 1995, BLOOD, V86, P2033 Sands MS, 1997, NEUROMUSCULAR DISORD, V7, P352, DOI 10.1016/S0960-8966(97)00061-8 SANDS MS, 1993, P NATL ACAD SCI USA, V90, P6567, DOI 10.1073/pnas.90.14.6567 Satoh H, 1998, EUR ARCH OTO-RHINO-L, V255, P285, DOI 10.1007/s004050050060 SAUNDERS JC, 1991, J ACOUST SOC AM, V90, P136, DOI 10.1121/1.401307 SAUNDERS JC, 1983, AUDITORY PSYCHOBIOLO, P131 Schuknecht HF, 1993, PATHOLOGY EAR SLEPECKY NB, 1996, HDB AUDITORY RES COC, P44 SLY WS, 1973, J PEDIATR-US, V82, P249, DOI 10.1016/S0022-3476(73)80162-3 Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 SPICER SS, 1994, HEARING RES, V79, P161, DOI 10.1016/0378-5955(94)90137-6 Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 STEEL KP, 1987, HEARING RES, V28, P227, DOI 10.1016/0378-5955(87)90051-7 STEEL KP, 1994, TRENDS GENET, V10, P428, DOI 10.1016/0168-9525(94)90113-9 THALMANN I, 1993, ARCH BIOCHEM BIOPHYS, V307, P391, DOI 10.1006/abbi.1993.1605 TORIHARA K, 1995, J HISTOCHEM CYTOCHEM, V43, P299 VOGLER C, 1994, MODERN PATHOL, V7, P132 VOGLER C, 1990, AM J PATHOL, V136, P207 WALLACE SP, 1990, INT J PEDIATR OTORHI, V19, P97, DOI 10.1016/0165-5876(90)90215-D Walsh EJ, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P537 NR 51 TC 18 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2002 VL 169 IS 1-2 BP 69 EP 84 DI 10.1016/S0378-5955(02)00341-6 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576UX UT WOS:000177025300007 PM 12121741 ER PT J AU Riedel, H Kollmeier, B AF Riedel, H Kollmeier, B TI Comparison of binaural auditory brainstem responses and the binaural difference potential evoked by chirps and clicks SO HEARING RESEARCH LA English DT Article DE auditory brainstem response; binaural difference potential; chirp; basilar membrane dispersion; frequency specificity ID INTERACTION COMPONENT; STEM; LATERALIZATION; BETA AB Rising chirps that compensate for the dispersion of the travelling wave on the basilar membrane evoke larger monaural brainstem responses than clicks [Dau et al., J. Acoust. Soc. Am. 107 (2000) 1530-1540]. In order to test if a similar effect applies for the early processing stages of binaural information, monaurally and binaurally evoked auditory brainstem responses were recorded for clicks and chirps for levels from 10 to 60 dB nHL in steps of 10 dB. Ten thousand sweeps were collected for every stimulus condition from 10 normal hearing subjects. Wave V amplitudes are significantly larger for chirps than for clicks for all conditions. The amplitude of the binaural difference potential, DP1-DN1, is significantly larger for chirps at the levels 30 and 40 dB nHL. Both the binaurally evoked potential and the binaural difference potential exhibit steeper growth functions for chirps than for clicks for levels up to 40 dB nHL. For higher stimulation levels the chirp responses saturate approaching the click evoked amplitude. For both stimuli the latency of DP1 is shorter than the latency of the binaural wave V, which in turn is shorter than the latency of DN1. The amplitude ratio of the binaural difference potential to the binaural response is independent of stimulus level for clicks and chirps. A possible interpretation is that with click stimulation predominantly binaural interaction from high frequency regions is seen which is compatible with a processing by contralateral inhibitory and ipsilateral excitatory (IE) cells. Contributions from low frequencies are negligible since the responses from low frequencies are not synchronized for clicks. The improved synchronization at lower frequencies using chirp stimuli yields contributions from both low and high frequency neurons enlarging the amplitudes of the binaural responses as well as the binaural difference potential. Since the constant amplitude ratio of the binaural difference potential to the binaural response makes contralateral and ipsilateral excitatory interaction improbable. binaural interaction at low frequencies is presumably also of the 1E type. Another conclusion of this study is that the chirp stimuli employed here are better suited for auditory brainstem responses and binaural difference potentials than click stimuli since they exhibit higher amplitudes and a better signal-to-noise ratio. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Oldenburg, AG Med Phys, D-26111 Oldenburg, Germany. RP Riedel, H (reprint author), Univ Oldenburg, AG Med Phys, D-26111 Oldenburg, Germany. CR Bekesy G., 1960, EXPT HEARING Brantberg K, 1999, AUDIOL NEURO-OTOL, V4, P88, DOI 10.1159/000013825 Brantberg K, 1999, SCAND AUDIOL, V28, P15, DOI 10.1080/010503999424879 Dau T, 2000, J ACOUST SOC AM, V107, P1530, DOI 10.1121/1.428438 DEBOER E, 1980, PHYS REP, V62, P87, DOI 10.1016/0370-1573(80)90100-3 FURST M, 1985, J ACOUST SOC AM, V78, P1644, DOI 10.1121/1.392802 FURST M, 1990, HEARING RES, V49, P347, DOI 10.1016/0378-5955(90)90113-4 GAUMOND RP, 1991, J ACOUST SOC AM, V89, P454, DOI 10.1121/1.400482 GOLDBERG JM, 1969, J NEUROPHYSIOL, V36, P157 Granzow M., 2001, Zeitschrift fur Audiologie, V40 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HOTH S, 1986, AUDIOLOGY, V25, P248 IRVINE DRF, 1992, MAMMALIAN AUDITORY P ITO S, 1988, HEARING RES, V35, P9, DOI 10.1016/0378-5955(88)90036-6 Jasper H. H., 1958, ELECTROENCEPHALOGRAP, V10, P371, DOI DOI 10.1016/0013-4694(58)90053-1 Jiang ZD, 1996, EVOKED POTENTIAL, V100, P505 JONES SJ, 1990, ELECTROEN CLIN NEURO, V77, P214, DOI 10.1016/0168-5597(90)90040-K LEVINE RA, 1981, ANN NEUROL, V9, P384, DOI 10.1002/ana.410090412 LEVINE RA, 1991, HEARING RES, V57, P121, DOI 10.1016/0378-5955(91)90081-J Riedel H., 2001, Zeitschrift fur Audiologie, V40 Riedel H, 2002, HEARING RES, V163, P12, DOI 10.1016/S0378-5955(01)00362-8 NR 21 TC 12 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2002 VL 169 IS 1-2 BP 85 EP 96 DI 10.1016/S0378-5955(02)00342-8 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576UX UT WOS:000177025300008 PM 12121742 ER PT J AU Cunningham, J Nicol, T King, C Zecker, SG Kraus, N AF Cunningham, J Nicol, T King, C Zecker, SG Kraus, N TI Effects of noise and cue enhancement on neural responses to speech in auditory midbrain, thalamus and cortex SO HEARING RESEARCH LA English DT Article DE central auditory physiology; noise; speech-sound perception; acoustic cue enhancement; learning and attention disorders ID CONSONANT VOWEL SYLLABLES; MIDDLE LATENCY RESPONSE; STEADY-STATE VOWELS; NERVE FIBERS; BACKGROUND-NOISE; STOCHASTIC RESONANCE; IMPAIRED CHILDREN; LEARNING-PROBLEMS; CONVERSATIONAL SPEECH; DISABLED-CHILDREN AB Speech perception depends on the auditory system's ability to extract relevant acoustic features from competing background noise. Despite widespread acknowledgement that noise exacerbates this process, little is known about the neurophysiologic mechanisms underlying the encoding of speech in noise. Moreover, the relative contribution of different brain nuclei to these processes has not been fully established. To address these issues, aggregate neural responses were recorded from within the inferior colliculus, medial geniculate body and over primary auditory cortex of anesthetized guinea pigs to a synthetic vowel-consonant-vowel syllable /ada/ in quiet and in noise. In noise the onset response to the stop consonant /d/ was reduced or eliminated at each level, to the greatest degree in primary auditory cortex. Acoustic cue enhancements characteristic of "clear" speech (lengthening the stop gap duration and increasing the intensity of the release burst) improved the neurophysiologic representation of the consonant at each level, especially at the cortex. Finally, the neural encoding of the vowel segment was evident at subcortical levels only, and was more resistant to noise than encoding of the dynamic portion of the consonant (release burst and formant transition). This experiment sheds light on which speech-sound elements are poorly represented in noise and demonstrates how acoustic modifications to the speech signal can improve neural responses in a normal auditory system. Implications for understanding neurophysiologic auditory signal processing in children with perceptual impairments and the design of efficient perceptual training strategies are also discussed. (C) 2002 Elsevier Science B.V. All rights reserved. C1 House Ear Res Inst, Electrophysiol Lab, Los Angeles, CA 90057 USA. Northwestern Univ, Dept Commun Sci, Evanston, IL USA. Northwestern Univ, Dept Physiol & Neurobiol, Evanston, IL USA. Northwestern Univ, Dept Otolaryngol, Evanston, IL USA. RP Cunningham, J (reprint author), House Ear Res Inst, Electrophysiol Lab, 2100 W 3rd St, Los Angeles, CA 90057 USA. CR AREHOLE S, 1987, HEARING RES, V30, P23, DOI 10.1016/0378-5955(87)90179-1 BOETTCHER FA, 1990, HEARING RES, V48, P125, DOI 10.1016/0378-5955(90)90203-2 Bradlow AR, 1999, J ACOUST SOC AM, V106, P2086, DOI 10.1121/1.427953 Brosch M, 1997, J NEUROPHYSIOL, V77, P923 Brosch M, 1999, J NEUROPHYSIOL, V82, P1542 Brugge JF, 1992, MAMMALIAN AUDITORY P, P1 CARNEY LH, 1986, J ACOUST SOC AM, V79, P1896, DOI 10.1121/1.393197 COSTALUPES JA, 1984, J NEUROPHYSIOL, V51, P1326 CROWTHER JA, 1990, HEARING RES, V43, P115, DOI 10.1016/0378-5955(90)90220-J Cunningham J, 2001, CLIN NEUROPHYSIOL, V112, P758, DOI 10.1016/S1388-2457(01)00465-5 CUNNINGHAM J, 2000, ASS RES OTOLARYNGOL, V23, P86 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P908, DOI 10.1121/1.390537 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P897, DOI 10.1121/1.390599 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P866, DOI 10.1121/1.390596 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P887, DOI 10.1121/1.390598 DENG L, 1987, J ACOUST SOC AM, V82, P1977, DOI 10.1121/1.395642 DOBIE RA, 1984, J ACOUST SOC AM, V76, P1411, DOI 10.1121/1.391458 DODD F, 1992, HEARING RES, V62, P173, DOI 10.1016/0378-5955(92)90183-N ELLIOTT LL, 1989, J SPEECH HEAR RES, V32, P112 ENRENBERGER K, 1999, ACTA OTOLARYNGOL, V119, P166 Frisina RD, 1996, J ACOUST SOC AM, V99, P475, DOI 10.1121/1.414559 Frisina RD, 2001, HEARING RES, V158, P1, DOI 10.1016/S0378-5955(01)00296-9 FRISINA RD, 1994, EXP BRAIN RES, V102, P160 GEISLER CD, 1989, J ACOUST SOC AM, V85, P1639, DOI 10.1121/1.397952 GEISLER CD, 1980, HEARING RES, V3, P317 GODFREY JJ, 1981, J ACOUST SOC AM, V69, P1446, DOI 10.1121/1.385721 GORDONSALANT S, 1986, J ACOUST SOC AM, V80, P1599, DOI 10.1121/1.394324 HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083 Hazan V, 1998, SPEECH COMMUN, V24, P211, DOI 10.1016/S0167-6393(98)00011-9 Heil P, 1997, J NEUROPHYSIOL, V78, P2438 Henry KR, 1999, J COMP PHYSIOL A, V184, P577, DOI 10.1007/s003590050357 HOCHERMAN S, 1981, J NEUROPHYSIOL, V45, P987 Jaramillo F, 1998, NAT NEUROSCI, V1, P384, DOI 10.1038/1597 KING C, 1996, ASS RES OTOLARYGOL, V19 KING C, 2000, ASS RES OTOLARYNGOL, V23, P255 King C, 1999, NEUROSCI LETT, V267, P89, DOI 10.1016/S0304-3940(99)00336-5 KITZES M, 1969, EXP NEUROL, V25, P85, DOI 10.1016/0014-4886(69)90073-9 KLATT DH, 1980, J ACOUST SOC AM, V67, P971, DOI 10.1121/1.383940 KRAUS N, 1988, ELECTROEN CLIN NEURO, V70, P541, DOI 10.1016/0013-4694(88)90152-6 Kraus N, 1996, SCIENCE, V273, P971, DOI 10.1126/science.273.5277.971 KRAUS N, 1994, J ACOUST SOC AM, V96, P2758, DOI 10.1121/1.411282 Levin JE, 1996, NATURE, V380, P165, DOI 10.1038/380165a0 Lewis ER, 1995, HEARING RES, V92, P1, DOI 10.1016/0378-5955(95)00189-1 MCGEE T, 1992, HEARING RES, V61, P147, DOI 10.1016/0378-5955(92)90045-O Merzenich MM, 1996, SCIENCE, V271, P77, DOI 10.1126/science.271.5245.77 MILLER GA, 1955, J ACOUST SOC AM, V27, P338, DOI 10.1121/1.1907526 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x PHILLIPS DP, 1995, AM J OTOL, V16, P338 PHILLIPS DP, 1985, HEARING RES, V19, P253, DOI 10.1016/0378-5955(85)90145-5 PHILLIPS DP, 1989, J ACOUST SOC AM, V85, P2537, DOI 10.1121/1.397748 PHILLIPS DP, 1990, BEHAV BRAIN RES, V37, P197, DOI 10.1016/0166-4328(90)90132-X PHILLIPS DP, 1990, BEHAV BRAIN RES, V40, P85, DOI 10.1016/0166-4328(90)90001-U PICHENY MA, 1985, J SPEECH HEAR RES, V28, P96 PICHENY MA, 1986, J SPEECH HEAR RES, V29, P434 PINEDA JA, 1989, ELECTROEN CLIN NEURO, V73, P532, DOI 10.1016/0013-4694(89)90262-9 REED MA, 1989, J EXP CHILD PSYCHOL, V48, P270, DOI 10.1016/0022-0965(89)90006-4 SACHS MB, 1979, J ACOUST SOC AM, V66, P470, DOI 10.1121/1.383098 SACHS MB, 1983, J NEUROPHYSIOL, V50, P27 SHAMMA SA, 1985, J ACOUST SOC AM, V78, P1612, DOI 10.1121/1.392799 Siegel S., 1988, NONPARAMETRIC STAT B SILKES SM, 1991, J ACOUST SOC AM, V90, P3122, DOI 10.1121/1.401421 SINEX DG, 1983, J ACOUST SOC AM, V73, P602, DOI 10.1121/1.389007 SMITH DI, 1987, AM J OTOLARYNG, V8, P241, DOI 10.1016/S0196-0709(87)80010-8 SPENNER H, 1986, EXP BRAIN RES, V62, P607 Stark RE, 1996, J SPEECH HEAR RES, V39, P860 STEINSCHNEIDER M, 1982, BRAIN RES, V252, P353, DOI 10.1016/0006-8993(82)90403-6 TALLAL P, 1974, NEUROPSYCHOLOGIA, V12, P83, DOI 10.1016/0028-3932(74)90030-X Tallal P, 1996, SCIENCE, V271, P81, DOI 10.1126/science.271.5245.81 Walton JP, 1997, J COMP PHYSIOL A, V181, P161, DOI 10.1007/s003590050103 WIESENFELD K, 1995, NATURE, V373, P33, DOI 10.1038/373033a0 Wright BA, 1997, NATURE, V387, P176, DOI 10.1038/387176a0 YOUNG ED, 1979, J ACOUST SOC AM, V66, P1381, DOI 10.1121/1.383532 NR 72 TC 31 Z9 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2002 VL 169 IS 1-2 BP 97 EP 111 DI 10.1016/S0378-5955(02)00344-1 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576UX UT WOS:000177025300009 PM 12121743 ER PT J AU Kanzaki, S Ogawa, K Camper, SA Raphael, Y AF Kanzaki, S Ogawa, K Camper, SA Raphael, Y TI Transgene expression in neonatal mouse inner ear explants mediated by first and advanced generation adenovirus vectors SO HEARING RESEARCH LA English DT Article DE gene transfer; adenovirus vector; mouse; shaker-2 ID SERIAL-SECTION RECONSTRUCTION; GENE-TRANSFER; ACOUSTIC TRAUMA; IN-VIVO; ULTRASTRUCTURAL-CHANGES; UNCONVENTIONAL MYOSIN; CUTICULAR PLATES; HEARING-LOSS; HAIR-CELLS; STEREOCILIA AB The mouse serves as a valuable model for treatment leading to the prevention and therapy of inner ear disease. Transgenic correction of genetic inner ear disease in mice may help develop treatment for human genetic inner ear disease, In mutations involving hair cells (HCs) or supporting cells (SCs). it is necessary to insert the Wild-type transgenes directly into these cells. We used inner ear explants to characterize the transgenic expression using adenovirus-mediated reporter genes (bacterial lacZ). The variable parameters were the age of the explants (P1-P5), the type of hector (First and advanced generation adenovirus) and the genotype of the mouse (wild-type versus shaker-2 mutant). Transduction of cochlear HCs was detected at P1 and in some of the P3 cochleae. Low efficiency transduction of SCs was observed in PI explants. but the efficiency increased with age and reached high levels at P5. The pattern of transduction was similar regardless of the genotype and the type of vector used. The data demonstrate that differentiating HCs and SCs in mouse explants can be transduced by adenovirus vectors, suggesting that cultures of mouse ears are a valuable model for developing inner ear gene therapy protocols. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. Keio Univ, Dept Otorhinolaryngol, Shinjuku Ku, Tokyo, Japan. Univ Michigan, Dept Human Genet, Ann Arbor, MI 48109 USA. RP Raphael, Y (reprint author), Univ Michigan, Kresge Hearing Res Inst, MSRB 3,Room 9303, Ann Arbor, MI 48109 USA. RI Kanzaki, Sho/B-3100-2014 OI Kanzaki, Sho/0000-0001-9056-0850 CR Amalfitano A, 1999, GENE THER, V6, P1643, DOI 10.1038/sj.gt.3301027 Amalfitano A, 1996, P NATL ACAD SCI USA, V93, P3352, DOI 10.1073/pnas.93.8.3352 Anderson DW, 2000, HUM MOL GENET, V9, P1729, DOI 10.1093/hmg/9.12.1729 Anderson WF, 1998, NATURE, V392, P25 ANNIKO M, 1980, ARCH OTO-RHINO-LARYN, V226, P45, DOI 10.1007/BF00455401 Brough DE, 1996, J VIROL, V70, P6497 Brough DE, 1997, J VIROL, V71, P9206 DAVIDSON BL, 1993, NAT GENET, V3, P219, DOI 10.1038/ng0393-219 Dazert S, 1997, INT J DEV NEUROSCI, V15, P595, DOI 10.1016/S0736-5748(96)00114-1 ENGSTROM B, 1983, HEARING RES, V12, P251, DOI 10.1016/0378-5955(83)90110-7 Holt JR, 1999, J NEUROPHYSIOL, V81, P1881 Kovesdi I, 1997, CURR OPIN BIOTECH, V8, P583, DOI 10.1016/S0958-1669(97)80033-X Krieglstein K., 1995, Journal of Neural Transmission Supplement, V46, P209 Levy G, 1997, HUM MOL GENET, V6, P111, DOI 10.1093/hmg/6.1.111 LI TS, 1994, INVEST OPHTH VIS SCI, V35, P2543 LIBERMAN MC, 1987, HEARING RES, V26, P45, DOI 10.1016/0378-5955(87)90035-9 LIBERMAN MC, 1987, HEARING RES, V26, P65, DOI 10.1016/0378-5955(87)90036-0 Lim D J, 1985, Acta Otolaryngol Suppl, V422, P1 Nabel EG, 1997, ANN NY ACAD SCI, V811, P289, DOI 10.1111/j.1749-6632.1997.tb52008.x Nabel Gary J., 1998, Biochimica et Biophysica Acta, V1378, pR19, DOI 10.1016/S0304-419X(98)00018-3 Nabel GJ, 1998, NATURE, V392, P3 Nabel GJ, 1999, P NATL ACAD SCI USA, V96, P324, DOI 10.1073/pnas.96.2.324 Nalbantoglu J, 1999, HUM GENE THER, V10, P1009, DOI 10.1089/10430349950018409 Nemerow GR, 1999, MICROBIOL MOL BIOL R, V63, P725 Probst FJ, 1998, SCIENCE, V280, P1444, DOI 10.1126/science.280.5368.1444 Probst FJ, 1999, HEARING RES, V130, P1, DOI 10.1016/S0378-5955(98)00231-7 Ramalingam R, 1999, BLOOD, V93, P2936 RAPHAEL Y, 1993, J COMP NEUROL, V330, P521, DOI 10.1002/cne.903300408 RAPHAEL Y, 1994, HEARING RES, V76, P173, DOI 10.1016/0378-5955(94)90098-1 Rosenberg S A, 1996, Hum Gene Ther, V7, P1621 Sher A E, 1971, Acta Otolaryngol Suppl, V285, P1 Steel KP, 1998, NAT GENET, V20, P319, DOI 10.1038/3781 Steel KP, 1998, NEW ENGL J MED, V339, P1545, DOI 10.1056/NEJM199811193392110 STONE JS, 1994, J COMP NEUROL, V341, P50, DOI 10.1002/cne.903410106 Stover T, 2000, GENE THER, V7, P377, DOI 10.1038/sj.gt.3301108 Suzuki M, 2000, GENE THER, V7, P1046, DOI 10.1038/sj.gt.3301180 Vahava O, 1998, SCIENCE, V279, P1950, DOI 10.1126/science.279.5358.1950 Wang AH, 1998, SCIENCE, V280, P1447, DOI 10.1126/science.280.5368.1447 Whitlon DS, 2001, BRAIN RES PROTOC, V6, P159, DOI 10.1016/S1385-299X(00)00048-9 Yagi M, 1999, HUM GENE THER, V10, P813, DOI 10.1089/10430349950018562 NR 40 TC 12 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2002 VL 169 IS 1-2 BP 112 EP 120 DI 10.1016/S0378-5955(02)00347-7 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576UX UT WOS:000177025300010 PM 12121744 ER PT J AU Miman, MC Ozturan, O Iraz, M Erdem, T Olmez, E AF Miman, MC Ozturan, O Iraz, M Erdem, T Olmez, E TI Amikacin ototoxicity enhanced by Ginkgo biloba extract (EGb 761) SO HEARING RESEARCH LA English DT Article DE amikacin; distortion product otoacoustic emission; Ginkgo biloba extract; ototoxicity; prevention; rat ID INDUCED HEARING-LOSS; PIG IN-VIVO; GUINEA-PIG; AMINOGLYCOSIDE ANTIBIOTICS; GENTAMICIN OTOTOXICITY; RAT; ANTAGONISTS; ATTENUATION; KANAMYCIN; PRODUCTS AB An animal study was realized to investigate the possible beneficial effect of EGb 761 as an antioxidant agent on amikacin ototoxicity by measuring distortion product otoacoustic emissions (DPOAEs). Twenty-eight adult rats were grouped equally as follows. Group amikacin: rats received amikacin 600 mg/kg/day intramuscularly between postnatal days (PND) 30 and PND44. Group amikacin/EGb 761: rats received amikacin 600 mg/kg/day intramuscularly between PND30 and PND44 and EGb 761 100 mg/kg/day orally between PND30 and PND50. Group EGb 761: rats received equivolume saline intramuscularly between PND30 and PND44 and EGb 761 100 mg/kg/day orally between PND30 and PND50. No treatment group: rats received nothing, Group amikacin was found to be affected only on the last measurement day of study (PND57). The frequencies greater than 2002 Hz were significantly reduced compared with the amplitudes of PND30 (P < 0.05). Group amikacin/EGb 761 was most and earliest affected by amikacin-induced ototoxicity. DPOAE amplitudes were found in this group to be decreased at 2-6 kHz starting on PND50. The results of Group EGb 761 and No treatment group were not significantly changed. For the DPOAE input/output amplitude thresholds, Group amikacin (P < 0.05) and Group amikacin/EGb 761 (P < 0.01) had significantly elevated thresholds on PND57, except at 5 kHz for Group amikacin (P = 0,06), According to the results of the study, EGb 761 may be regarded as a facilitating drug for the development of amikacin ototoxicity. The results of the present study may warn against concomitant use of aminoglycosides, specifically amikacin, with EGb 761. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Inonu Univ, Dept Otorhinolaryngol, Fac Med, Malatya, Turkey. Inonu Univ, Dept Pharmacol, TR-44300 Malatya, Turkey. RP Miman, MC (reprint author), Inonu Univ, Dept Otorhinolaryngol, Fac Med, Malatya, Turkey. RI OZTURAN, ORHAN/B-4984-2015 OI OZTURAN, ORHAN/0000-0002-6129-8627 CR ASTBURY PJ, 1982, ARCH TOXICOL, V50, P267, DOI 10.1007/BF00310859 Basile AS, 1996, NAT MED, V2, P1338, DOI 10.1038/nm1296-1338 BEAUBIEN AR, 1990, ACTA OTO-LARYNGOL, V109, P345, DOI 10.3109/00016489009125154 BEGG EJ, 1995, BRIT J CLIN PHARMACO, V39, P597 BRAQUET P, 1991, J ETHNOPHARMACOL, V32, P135, DOI 10.1016/0378-8741(91)90111-P BROWN AM, 1989, HEARING RES, V42, P143, DOI 10.1016/0378-5955(89)90140-8 BRUMMETT RE, 1990, ARCH OTOLARYNGOL, V116, P406 Conlon BJ, 1999, HEARING RES, V128, P40, DOI 10.1016/S0378-5955(98)00195-6 DEFEUDIS FV, 1998, GINKGO BILOBA EXTRAC, P119 Diamond BJ, 2000, ARCH PHYS MED REHAB, V81, P668, DOI 10.1053/mr.2000.3840 Didier A, 1996, EUR ARCH OTO-RHINO-L, V253, P25 DIDIER A, 1993, HEARING RES, V69, P199, DOI 10.1016/0378-5955(93)90108-D FAUSTI SA, 1984, AM J OTOLARYNG, V5, P177, DOI 10.1016/S0196-0709(84)80009-5 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 GARETZ SL, 1994, HEARING RES, V77, P81, DOI 10.1016/0378-5955(94)90255-0 Guidetti C, 2001, J PHARM PHARMACOL, V53, P387, DOI 10.1211/0022357011775442 HENLEY CM, 1987, BRAIN RES BULL, V19, P695, DOI 10.1016/0361-9230(87)90056-6 Henley CM, 1996, HEARING RES, V99, P85, DOI 10.1016/S0378-5955(96)00094-9 HENLEY CM, 1995, BRAIN RES REV, V20, P68, DOI 10.1016/0165-0173(94)00006-B Henley CM, 1996, HEARING RES, V98, P93, DOI 10.1016/0378-5955(96)00077-9 Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4 JUNG F, 1990, ARZNEIMITTEL-FORSCH, V40-1, P589 KLEIJNEN J, 1992, BRIT J CLIN PHARMACO, V34, P352 KLEIJNEN J, 1992, LANCET, V340, P1136, DOI 10.1016/0140-6736(92)93158-J KOLTRINGER P, 1989, PERFUSION, V1, P28 LANDES P, 1997, HERBALGRAM, V40, P52 LENOIR M, 1987, HEARING RES, V26, P199, DOI 10.1016/0378-5955(87)90112-2 Li CL, 1997, PLANTA MED, V63, P563, DOI 10.1055/s-2006-957768 MAASS B, 1987, EXTR OTORHINOLARYNGO, V9, P169 MOREAU JP, 1986, PRESSE MED, V15, P1458 Nekrassov V, 2000, BRAIN RES, V868, P222, DOI 10.1016/S0006-8993(00)02333-7 NIWA Y, 1986, INFLAMMATION, V10, P79, DOI 10.1007/BF00916043 Parietti C, 1998, BRAIN RES, V813, P57, DOI 10.1016/S0006-8993(98)00965-2 Sha SH, 1999, HEARING RES, V128, P112, DOI 10.1016/S0378-5955(98)00200-7 Sharifzadeh M, 1998, PHARMACOL TOXICOL, V83, P220 XUAN WJ, 1995, ANN OTO RHINOL LARYN, V104, P374 NR 36 TC 8 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2002 VL 169 IS 1-2 BP 121 EP 129 DI 10.1016/S0378-5955(02)00385-4 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576UX UT WOS:000177025300011 PM 12121745 ER PT J AU Getzmann, S AF Getzmann, S TI The effect of eye position and background noise on vertical sound localization SO HEARING RESEARCH LA English DT Article DE eye position; background noise; sound localization; median vertical plane; auditory contrast effect; human ID AUDITORY LOCALIZATION; VISUAL LOCALIZATION; GAZE DIRECTION; ADAPTATION; SIGNALS; SPACE AB The influence of the eye position in combination with a simultaneously presented background (frame) sound on the auditory localization of a single (target) sound source was investigated in the median vertical plane (MVP). Five loudspeakers ranged from -20degrees to +20degrees with the center speaker at 0degrees elevation. Listeners verbally estimated the position of a 500-ms noise stimulus, which was presented while they were fixating visual targets in various elevations. The perceived sound elevation appeared to be shifted 8.6degrees on average towards the direction of eccentric gaze. When the target was temporarily embedded in a 2-s frame sound (emitted by one of the two outer loudspeakers) and the gaze was fixated at a straight-ahead position. the listeners consistently shifted the apparent target positions about 4degrees away from the frame locations. This auditory contrast effect. which is consistent with earlier findings, remained even if the gaze direction deviated from straight ahead. It is concluded that the auditory contrast effect exists independently from the eye position effect and that the two effects act separately on auditory sound localization. (C) 2002 Published by Elsevier Science B.V. C1 Ruhr Univ Bochum, Fak Psychol Kognit & Umweltpsychol, D-44780 Bochum, Germany. RP Getzmann, S (reprint author), Ruhr Univ Bochum, Fak Psychol Kognit & Umweltpsychol, Univ Str 150, D-44780 Bochum, Germany. CR Bartlett FC, 1922, B J PSYCHOL-GEN SECT, V13, P215 Blauert J., 1997, SPATIAL HEARING PSYC BOCK O, 1986, EXP BRAIN RES, V64, P476, DOI 10.1007/BF00340484 BOHLANDER RW, 1984, PERCEPT MOTOR SKILL, V59, P483 Bridgeman B, 1997, PSYCHOL RES-PSYCH FO, V60, P238, DOI 10.1007/BF00419408 Brungart DS, 2000, PERCEPT PSYCHOPHYS, V62, P48, DOI 10.3758/BF03212060 Butler RA, 1999, PERSPECT BIOL MED, V42, P157 Canevet G, 1996, ACUSTICA, V82, P149 Carlile S, 2001, J ACOUST SOC AM, V110, P416, DOI 10.1121/1.1375843 Dye RH, 1996, J ACOUST SOC AM, V99, P1096, DOI 10.1121/1.414670 FLUGEL JC, 1921, BRIT J PSYCHOL, V11, P105 GETZMANN S, IN PRESS FORTSCHRITT Goldstein K, 1926, PSYCHOL FORSCH, V8, P318, DOI 10.1007/BF02411524 Grantham D. Wesley, 1995, P297, DOI 10.1016/B978-012505626-7/50011-X HEBRANK J, 1974, J ACOUST SOC AM, V56, P1829, DOI 10.1121/1.1903520 JAY MF, 1987, J NEUROPHYSIOL, V57, P35 KASHINO M, 1999, JOINT M BERL 99 137 Kashino M, 1998, PSYCHOL PHYSL ADV HE, P322 Kashino M, 1998, J ACOUST SOC AM, V103, P3597, DOI 10.1121/1.423064 Lewald J, 1996, NEUROREPORT, V7, P1929, DOI 10.1097/00001756-199608120-00012 Lewald J, 2001, NEUROSCI RES, V39, P253, DOI 10.1016/S0168-0102(00)00210-8 Lewald J, 1998, HEARING RES, V115, P206, DOI 10.1016/S0378-5955(97)00190-1 Lewald J, 1997, BEHAV BRAIN RES, V87, P35, DOI 10.1016/S0166-4328(96)02254-1 MORGAN CL, 1978, PERCEPT PSYCHOPHYS, V23, P61, DOI 10.3758/BF03214296 PERRETT S, 1995, PERCEPT PSYCHOPHYS, V57, P150, DOI 10.3758/BF03206501 PIERCE AH, 2001, STUDIES AUDITORY VIS Ryan TA, 1941, AM J PSYCHOL, V54, P243, DOI 10.2307/1416796 WEERTS TC, 1971, PERCEPT PSYCHOPHYS, V9, P35, DOI 10.3758/BF03213025 WENZEL EM, 1993, J ACOUST SOC AM, V94, P111, DOI 10.1121/1.407089 Wightman FL, 1997, J ACOUST SOC AM, V101, P1050, DOI 10.1121/1.418029 NR 30 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2002 VL 169 IS 1-2 BP 130 EP 139 DI 10.1016/S0378-5955(02)00387-8 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576UX UT WOS:000177025300012 PM 12121746 ER PT J AU Lu, Y Jen, PHS AF Lu, Y Jen, PHS TI Interaction of excitation and inhibition in inferior collicular neurons of the big brown bat, Eptesicus fuscus SO HEARING RESEARCH LA English DT Article DE bat; inferior colliculus; intensity; temporal window; masking ID DURATION-TUNING CHARACTERISTICS; SOUND DURATION; LATERAL INHIBITION; AUDITORY-CORTEX; CAT; SELECTIVITY; PROJECTIONS; MECHANISMS; TOPOGRAPHY AB Neurons in the inferior colliculus (IC) of the midbrain receive convergent excitatory and inhibitory inputs from both lower and higher auditory nuclei. Interaction of these two opposing inputs shapes different response properties of IC neurons. In this study, we examined this interaction of excitation and inhibition in IC neurons using a probe (excitatory pulse) and a masker (inhibitory pulse) under different stimulation conditions. Inhibition of probe-elicited responses by a masker, i.e. masking. occurred when the masker was presented at certain inter-pulse intervals (the temporal window) in relation to the probe. At the best inter-pulse interval, masking was maximal such that a neuron had the minimal number of impulses. the longest response latency, and the smallest excitatory frequency tuning curve. The temporal window for masking expanded with increasing masker duration. The inhibition decreased with increasing probe intensity but increased with increasing masker intensity. Increasing masker intensity also produced progressive shrinkage in excitatory frequency tuning curves. Similarly. increasing probe intensity produced progressive shrinkage of inhibitory, frequency tuning curves. Possible mechanisms underlying the time and intensity dependence of inhibition are discussed. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Missouri, Dept Sci Biol, Columbia, MO 65211 USA. RP Jen, PHS (reprint author), Univ Missouri, Dept Sci Biol, Columbia, MO 65211 USA. CR Aitkin L., 1986, AUDITORY MIDBRAIN ST Brand A, 2000, J NEUROPHYSIOL, V84, P1790 CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341 Casseday JH, 1996, BRAIN BEHAV EVOLUT, V47, P311, DOI 10.1159/000113249 Chen GD, 1998, HEARING RES, V122, P142, DOI 10.1016/S0378-5955(98)00103-8 Covey E, 1996, J NEUROSCI, V16, P3009 EHRET G, 1988, BRAIN RES REV, V13, P139, DOI 10.1016/0165-0173(88)90018-5 Ehrlich D, 1997, J NEUROPHYSIOL, V77, P2360 EYSEL UT, 1987, EXP BRAIN RES, V68, P606 FUZESSERY ZM, 1983, J COMP PHYSIOL, V150, P107 Fuzessery ZM, 1999, HEARING RES, V137, P137, DOI 10.1016/S0378-5955(99)00133-1 HERBERT H, 1991, J COMP NEUROL, V304, P103, DOI 10.1002/cne.903040108 HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 JEN PHS, 1982, J COMP PHYSIOL, V147, P351 Jen PHS, 1999, BRAIN RES, V841, P184, DOI 10.1016/S0006-8993(99)01786-2 JEN PHS, 1987, BRAIN RES, V419, P7, DOI 10.1016/0006-8993(87)90563-4 Jen PHS, 1999, J COMP PHYSIOL A, V184, P185, DOI 10.1007/s003590050317 Jen PHS, 1999, J COMP PHYSIOL A, V185, P471, DOI 10.1007/s003590050408 KATSUKI Y, 1958, J NEUROPHYSIOL, V21, P569 KELLY DH, 1973, J PHYSIOL-LONDON, V228, P55 Litovsky RY, 1998, J NEUROPHYSIOL, V80, P1302 Lu Y, 1997, J COMP PHYSIOL A, V181, P331, DOI 10.1007/s003590050119 Lu Y., 2001, EXP BRAIN RES, V14, P331 MOUNTCASTLE VB, 1959, B JOHNS HOPKINS HOSP, V105, P201 PINHEIRO AD, 1991, J COMP PHYSIOL A, V169, P69 POLLAK GD, 1989, NEURAL BASIS ECHOLAT Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O SINGER W, 1970, EXP BRAIN RES, V10, P311 Suga N., 1997, ENCY ACOUSTICS, P1409 SUGA N, 1995, NEUROSCI RES, V21, P287, DOI 10.1016/0168-0102(94)00868-G SUGA N, 1985, J NEUROPHYSIOL, V53, P1109 Suga N, 1997, J NEUROPHYSIOL, V77, P2098 Winer JA, 1998, J COMP NEUROL, V400, P147 Zhou XM, 2001, J COMP PHYSIOL A, V187, P63, DOI 10.1007/s003590000179 Zhou XM, 2000, J COMP PHYSIOL A, V186, P389, DOI 10.1007/s003590050438 NR 35 TC 16 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2002 VL 169 IS 1-2 BP 140 EP 150 DI 10.1016/S0378-5955(02)00457-4 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576UX UT WOS:000177025300013 PM 12121747 ER PT J AU Biebel, UW Langner, G AF Biebel, UW Langner, G TI Evidence for interactions across frequency channels in the inferior colliculus of awake chinchilla SO HEARING RESEARCH LA English DT Article DE chinchilla; spectral integration; periodicity coding; modulation; inferior colliculus ID COMBINATION-SENSITIVE NEURONS; BASILAR-MEMBRANE RESPONSES; PURE-TONE STIMULI; LATERAL LEMNISCUS; GUINEA-PIG; AUDITORY-SYSTEM; SUPERIOR OLIVE; SPECTRAL INTEGRATION; DISTORTION PRODUCTS; COCHLEAR-NUCLEUS AB As a result of cochlear processing, information about acoustic broadband signals is distributed across many parallel frequency channels. Periodic modulations of signal envelopes - conspicuous in particular in harmonic signals - may extend across a wide frequency range and give rise to temporal response patterns in the auditory nerve, particularly useful for recombination of constituents and the separation of the signals from background noise. Herein we report evidence that across frequency processing as necessary for binding of related signal components occurs already in the auditory midbrain of mammals. Extracellular recordings were made from 231 multi and single units in the inferior colliculus of awake chinchillas. Loud pure tones evoked onset type excitation (26%) and suppression of spontaneous rate (60%) not only in the range of the units' characteristic frequency (CF), but also in a frequency range far above CF. About 80% of all units tuned to CFs below 3 kHz gave sustained responses to low level stimuli of high frequencies (> 2CF) provided the tones were sinusoidally amplitude modulated (SAM) with a unit specific modulation frequency although none of the spectral components of the amplitude modulation alone was sufficient to evoke such a response, even at high intensities. Low level high carrier SAM responses and wide band onset responses as well as inhibition must have their origin in a non-linear across frequency channel interaction of neuronal information. Many aspects of these responses cannot be explained by peripheral distortion in the cochlea, We therefore propose a mechanism of integration across frequency channels that may originate within the inferior colliculus and/or the nuclei of the lateral lemniscus. This process may lead to the binding of information that shares a common periodicity and may thereby help to distinguish different acoustic objects. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Tech Univ Darmstadt, Inst Zool, D-64287 Darmstadt, Germany. RP Biebel, UW (reprint author), Univ Frankfurt Klinikum, D-60590 Frankfurt, Germany. EM biebel@em.uni-frankfurt.de CR AITKIN LM, 1975, J NEUROPHYSIOL, V38, P1196 ANDERSEN RA, 1980, J COMP NEUROL, V191, P479, DOI 10.1002/cne.901910310 ASSMANN PF, 1990, J ACOUST SOC AM, V88, P680, DOI 10.1121/1.399772 Astl J, 1996, AUDIOLOGY, V35, P335 BAJO VM, 1993, J COMP NEUROL, V334, P241, DOI 10.1002/cne.903340207 BIEBEL UW, 1998, P 26 GOTT NEUR C 199, V2, P344 BUELL TN, 1991, J ACOUST SOC AM, V90, P1894, DOI 10.1121/1.401668 Chatterjee M, 1997, HEARING RES, V111, P65, DOI 10.1016/S0378-5955(97)00089-0 Cheatham MA, 1997, J ACOUST SOC AM, V102, P1038, DOI 10.1121/1.419857 Cooper NP, 1997, J NEUROPHYSIOL, V78, P261 CULLING JF, 1993, J ACOUST SOC AM, V93, P3454, DOI 10.1121/1.405675 Edeline JM, 1999, HEARING RES, V131, P135, DOI 10.1016/S0378-5955(99)00026-X EHRET G, 1988, HEARING RES, V35, P1, DOI 10.1016/0378-5955(88)90035-4 FAYELUND H, 1985, ANAT EMBRYOL, V171, P1, DOI 10.1007/BF00319050 FELICIANO M, 1995, J NEUROCHEM, V65, P1348 Frolenkov GI, 1998, HEARING RES, V126, P67, DOI 10.1016/S0378-5955(98)00150-6 Gaese BH, 2001, J NEUROPHYSIOL, V86, P1062 GOLDSTEI.JL, 1967, J ACOUST SOC AM, V41, P676, DOI 10.1121/1.1910396 GonzalezHernandez T, 1996, J COMP NEUROL, V372, P309, DOI 10.1002/(SICI)1096-9861(19960819)372:2<309::AID-CNE11>3.0.CO;2-E GREENWOO.DD, 1972, J ACOUST SOC AM, V52, P1155, DOI 10.1121/1.1913228 HALL JL, 1972, J ACOUST SOC AM, V51, P1863, DOI 10.1121/1.1913045 Harris DM, 1997, HEARING RES, V108, P145, DOI 10.1016/S0378-5955(97)00047-6 HEWITT MJ, 1992, J ACOUST SOC AM, V91, P2096, DOI 10.1121/1.403696 JAHNSIEBERT TK, 1995, LEARN MEMORY, P318 JAHNSIEBERT TK, 1993, THESIS TU DARMSTADT Kelly JB, 1998, HEARING RES, V116, P43, DOI 10.1016/S0378-5955(97)00195-0 KIM DO, 1980, J ACOUST SOC AM, V67, P1704, DOI 10.1121/1.384297 Krishna BS, 2000, J NEUROPHYSIOL, V84, P255 LANGNER G, 1983, EXP BRAIN RES, V52, P333 LANGNER G, 2002, HEAR RES LANGNER G, 1992, HEARING RES, V60, P115, DOI 10.1016/0378-5955(92)90015-F LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799 LANGNER G, 1992, ADV BIOSCI, V83, P241 Langner G, 1997, ACTA OTO-LARYNGOL, P68 Malmierca MS, 1998, J NEUROSCI, V18, P10603 MALMIERCA MS, 1995, J COMP NEUROL, V357, P124, DOI 10.1002/cne.903570112 MCALPINE D, 2002, ASS RES OT ABSTR, V25, P154 MCGEE T, 1976, J ACOUST SOC AM, V60, P1146, DOI 10.1121/1.381216 Misawa H, 2001, HEARING RES, V151, P15, DOI 10.1016/S0300-2977(00)00079-6 MITTMANN DH, 1995, HEARING RES, V90, P185, DOI 10.1016/0378-5955(95)00164-X MOREST DK, 1984, J COMP NEUROL, V222, P209, DOI 10.1002/cne.902220206 NUTTALL AL, 1993, J ACOUST SOC AM, V93, P2061, DOI 10.1121/1.406692 Oliver DL, 1997, J COMP NEUROL, V382, P215, DOI 10.1002/(SICI)1096-9861(19970602)382:2<215::AID-CNE6>3.0.CO;2-6 OLIVER DL, 1995, J COMP NEUROL, V360, P17, DOI 10.1002/cne.903600103 OSEN KK, 1972, J COMP NEUROL, V144, P355, DOI 10.1002/cne.901440307 PALMER AR, 1982, ARCH OTO-RHINO-LARYN, V236, P197, DOI 10.1007/BF00454039 PATTERSON RD, 1995, J ACOUST SOC AM, V98, P1890, DOI 10.1121/1.414456 Pressnitzer D., 2001, PHYSL PSYCHOPHYSICAL, P97 REES A, 1989, J ACOUST SOC AM, V85, P1978, DOI 10.1121/1.397851 RHODE WS, 1991, MAMMALIAN AUDITORY P, P94 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 SAINTMARIE RL, 1990, BRAIN RES, V524, P244, DOI 10.1016/0006-8993(90)90698-B SALDANA E, 1992, J COMP NEUROL, V319, P417, DOI 10.1002/cne.903190308 SCHEICH H, 1979, CELL TISSUE RES, V204, P17 Schreiner CE, 1997, NATURE, V388, P383, DOI 10.1038/41106 Schulze H, 1999, J COMP PHYSIOL A, V185, P493, DOI 10.1007/s003590050410 SEMPLE MN, 1979, J NEUROPHYSIOL, V42, P1626 SERVIERE J, 1984, J COMP NEUROL, V228, P463, DOI 10.1002/cne.902280403 SUGA N, 1995, NEUROSCI RES, V21, P287, DOI 10.1016/0168-0102(94)00868-G THORNTON S, 2001, ASS RES OTOLARYNGOL, P54 Treurniet WC, 2001, J ACOUST SOC AM, V109, P306, DOI 10.1121/1.1328791 Wakasugi M, 1999, ANESTH ANALG, V88, P676, DOI 10.1097/00000539-199903000-00039 WENSTRUP JJ, 1995, J NEUROSCI, V15, P4693 Wenstrup JJ, 1999, J COMP NEUROL, V409, P509, DOI 10.1002/(SICI)1096-9861(19990712)409:4<509::AID-CNE1>3.0.CO;2-S Wenstrup JJ, 2001, J NEUROSCI, V21 YOST WA, 1990, J ACOUST SOC AM, V87, P897, DOI 10.1121/1.398899 NR 66 TC 18 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2002 VL 169 IS 1-2 BP 151 EP 168 DI 10.1016/S0378-5955(02)00459-8 PG 18 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576UX UT WOS:000177025300014 PM 12121748 ER PT J AU Hurley, LM Thompson, AM Pollak, GD AF Hurley, LM Thompson, AM Pollak, GD TI Serotonin in the inferior colliculus SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Symposium on the Inferior Colliculus CY MAY 20-25, 2001 CL SALAMANCA, SPAIN DE 5HT, 5-hydroxytryptamine (serotonin); IC, inferior colliculus ID FREELY MOVING CATS; NUCLEUS RAPHE DORSALIS; LATERAL SUPERIOR OLIVE; CENTRAL-NERVOUS-SYSTEM; AUDITORY BRAIN-STEM; FREE-TAILED BATS; COCHLEAR NUCLEUS; RAT-BRAIN; GLOBUS-PALLIDUS; TOPOGRAPHIC ORGANIZATION AB It has been recognized for some time that serotonin fibers originating in raphe nuclei are present in the inferior colliculi of all mammalian species studied. More recently, serotonin has been found to modulate the responses of single inferior colliculus neurons to many types of auditory stimuli, ranging from simple tone bursts to complex species-specific vocalizations. The effects of serotonin are often quite strong, and for some neurons are also highly specific. A dramatic illustration of this is that serotonin can change the selectivity of some neurons for sounds, including species-specific vocalizations. These results are discussed in light of several theories on the function of serotonin in the IC, and of outstanding issues that remain to be addressed. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Indiana Univ, Bloomington, IN 47405 USA. Univ Oklahoma, Dept Otorhinolaryngol, Oklahoma City, OK 73104 USA. RP Hurley, LM (reprint author), Indiana Univ, 1001 E Third St,Jordan Hall, Bloomington, IN 47405 USA. CR ADELL A, 1991, J NEUROCHEM, V56, P709, DOI 10.1111/j.1471-4159.1991.tb08208.x AITKIN LM, 1981, J COMP NEUROL, V196, P25, DOI 10.1002/cne.901960104 ALLEN GV, 1994, J COMP NEUROL, V350, P357, DOI 10.1002/cne.903500303 ANDERSEN RA, 1980, J COMP NEUROL, V191, P479, DOI 10.1002/cne.901910310 ARANEDA S, 1989, J NEUROSCI METH, V30, P211, DOI 10.1016/0165-0270(89)90132-5 AZMITIA EC, 1978, J COMP NEUROL, V179, P641, DOI 10.1002/cne.901790311 BALCOMBE JP, 1992, ANIM BEHAV, V43, P79, DOI 10.1016/S0003-3472(05)80073-9 BASSANT MH, 1990, NEUROSCIENCE, V39, P431, DOI 10.1016/0306-4522(90)90279-D BEAUDET A, 1978, NEUROSCIENCE, V3, P851, DOI 10.1016/0306-4522(78)90115-X Bieser A, 1998, EXP BRAIN RES, V122, P139, DOI 10.1007/s002210050501 BINZ H, 1990, NEUROSCI LETT, V112, P25, DOI 10.1016/0304-3940(90)90316-2 BOBILLIER P, 1975, BRAIN RES, V85, P205, DOI 10.1016/0006-8993(75)90071-2 BOWKER RM, 1983, BRAIN RES, V288, P33, DOI 10.1016/0006-8993(83)90079-3 BRANDAO ML, 1994, NEUROSCI BIOBEHAV R, V18, P339, DOI 10.1016/0149-7634(94)90047-7 Braun M, 2000, HEARING RES, V145, P130, DOI 10.1016/S0378-5955(00)00083-6 Brugge JF, 1992, MAMMALIAN AUDITORY P, P1 Bunin MA, 1998, J NEUROSCI, V18, P4854 CANFIELD DR, 1984, BRIT J PHARMACOL, V82, P557 CHALMERS DT, 1991, BRAIN RES, V561, P51, DOI 10.1016/0006-8993(91)90748-K Chan-Palay V, 1981, Adv Exp Med Biol, V133, P81 COUCH JR, 1970, BRAIN RES, V19, P137, DOI 10.1016/0006-8993(70)90243-X Covey E, 1999, ANNU REV PHYSIOL, V61, P457, DOI 10.1146/annurev.physiol.61.1.457 Covey E, 2000, PHYSIOL BEHAV, V69, P211, DOI 10.1016/S0031-9384(00)00203-1 Cransac H, 1998, HEARING RES, V118, P151, DOI 10.1016/S0378-5955(98)00031-8 DAHLSTROM A, 1964, EXPERIENTIA, V20, P398, DOI 10.1007/BF02147990 Doetsch GS, 2000, PHYSIOL BEHAV, V69, P187, DOI 10.1016/S0031-9384(00)00201-8 EATON SA, 1989, NEUROSCIENCE, V33, P285, DOI 10.1016/0306-4522(89)90208-X EBERT U, 1992, NEUROSCI LETT, V145, P51, DOI 10.1016/0304-3940(92)90201-H Ehrlich D, 1997, J NEUROPHYSIOL, V77, P2360 Faingold C.L., 1991, NEUROBIOLOGY HEARING, P223 FALLON JH, 1984, NEUROSCI LETT, V45, P81, DOI 10.1016/0304-3940(84)90333-1 FARLEY GR, 1983, HEARING RES, V11, P73, DOI 10.1016/0378-5955(83)90046-1 Fitzgerald KK, 1999, J NEUROPHYSIOL, V81, P2743 Fornal CA, 1996, BRAIN RES, V716, P123, DOI 10.1016/0006-8993(96)00006-6 Friedrich RW, 2001, SCIENCE, V291, P889, DOI 10.1126/science.291.5505.889 FUNKE K, 1993, EXP BRAIN RES, V95, P409 FUXE KJELL, 1965, ACTA PHYSIOL SCAND, V64, P39 Galazyuk AV, 2001, J NEUROSCI, V21, part. no. GELFAND DL, 1986, ANIM BEHAV, V34, P1078, DOI 10.1016/S0003-3472(86)80167-1 GROBECKER H, 1983, EUR NEUROL, V22, P38, DOI 10.1159/000115610 Habbicht H, 1996, BRAIN RES, V724, P169, DOI 10.1016/0006-8993(96)00224-7 HARLAN R, 2000, ARO ABSTR, V23, P113 HENDERSON Z, 1991, J COMP NEUROL, V314, P147, DOI 10.1002/cne.903140114 HERBERT H, 1991, J COMP NEUROL, V304, P103, DOI 10.1002/cne.903040108 HEYM J, 1982, BRAIN RES, V232, P29, DOI 10.1016/0006-8993(82)90608-4 HUANG XG, 1993, J NEUROPHYSIOL, V70, P723 HURLEY L, 2001, J COMP NEUROL, V435, P77 Hurley LM, 1999, J NEUROSCI, V19, P8071 Hurley LM, 2001, J NEUROPHYSIOL, V85, P828 HYDE P, 2000, J COMP NEUROL, V421, P143 IRVINE DRF, 1992, MAMMALIAN AUDITORY P, V2, P153 IRVINE DRF, 1995, HEARING RES, V85, P127, DOI 10.1016/0378-5955(95)00040-B ITAYA SK, 1982, BRAIN RES, V233, P45, DOI 10.1016/0006-8993(82)90928-3 JACOBS BL, 1993, TRENDS NEUROSCI, V16, P346, DOI 10.1016/0166-2236(93)90090-9 Jacobs BL, 1999, NEUROPSYCHOPHARMACOL, V21, pS9, DOI 10.1038/sj.npp.1395336 JACOBS BL, 1978, BRAIN RES, V147, P149, DOI 10.1016/0006-8993(78)90779-5 JACOBS BL, 1992, PHYSIOL REV, V72, P165 JANKOWSKA E, 1994, EUR J NEUROSCI, V6, P1058, DOI 10.1111/j.1460-9568.1994.tb00601.x JANKOWSKA E, 1995, NEUROSCIENCE, V67, P489, DOI 10.1016/0306-4522(95)00060-V Kaiser A, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P71, DOI 10.1007/978-1-4419-8712-9_7 KANWAL JS, 1994, J ACOUST SOC AM, V96, P1229, DOI 10.1121/1.410273 Kirifides ML, 2001, J COMP NEUROL, V435, P325, DOI 10.1002/cne.1033 KLEPPER A, 1991, BRAIN RES, V557, P190, DOI 10.1016/0006-8993(91)90134-H KOYAMA Y, 1993, NEUROSCIENCE, V55, P1117, DOI 10.1016/0306-4522(93)90325-A Li H, 1997, NEUROSCI RES, V29, P135, DOI 10.1016/S0168-0102(97)00082-5 Li L, 1998, BEHAV NEUROSCI, V112, P1187, DOI 10.1037/0735-7044.112.5.1187 Li L, 1998, PHYSIOL BEHAV, V65, P133, DOI 10.1016/S0031-9384(98)00143-7 Li YQ, 2001, NEUROSCI LETT, V299, P33, DOI 10.1016/S0304-3940(00)01771-7 Lopez-Garcia JA, 1998, EUR J NEUROSCI, V10, P1341 LUETHKE LE, 1989, J COMP NEUROL, V285, P487, DOI 10.1002/cne.902850406 MAGOUL R, 1988, NEUROSCIENCE, V26, P959, DOI 10.1016/0306-4522(88)90112-1 Marsh R. A., 1999, Society for Neuroscience Abstracts, V25, P1417 Mooney RD, 1996, PROG BRAIN RES, V112, P57 MOORE RY, 1979, ANNU REV NEUROSCI, V2, P113, DOI 10.1146/annurev.ne.02.030179.000553 MOORE RY, 1978, J COMP NEUROL, V180, P417, DOI 10.1002/cne.901800302 MOREST DK, 1984, J COMP NEUROL, V222, P209, DOI 10.1002/cne.902220206 MORIIZUMI T, 1992, NEUROSCIENCE, V46, P711, DOI 10.1016/0306-4522(92)90157-W MORIIZUMI T, 1991, EXP BRAIN RES, V87, P223 NAKAYA Y, 1994, J COMP NEUROL, V347, P249, DOI 10.1002/cne.903470208 OLAZABAL UE, 1989, J COMP NEUROL, V282, P98, DOI 10.1002/cne.902820108 OLIVER DL, 1984, J COMP NEUROL, V222, P237, DOI 10.1002/cne.902220207 OLIVER DL, 1987, J COMP NEUROL, V264, P24, DOI 10.1002/cne.902640104 Oliver DL, 1992, MAMMALIAN AUDITORY P, P168 PALOFF AM, 1985, NEUROSCI LETT, V54, P339 Paloff AM, 2000, ANN ANAT, V182, P423, DOI 10.1016/S0940-9602(00)80047-3 PARK TJ, 1993, J NEUROSCI, V13, P2050 Park TJ, 1996, J NEUROSCI, V16, P6554 Petersen RS, 2000, J NEUROSCI, V20, P6135 PETROV T, 1992, J COMP NEUROL, V318, P18, DOI 10.1002/cne.903180103 POMPEIANO M, 1992, J NEUROSCI, V12, P440 RASMUSSEN K, 1986, BRAIN RES, V369, P336, DOI 10.1016/0006-8993(86)90546-9 ROBARDS MJ, 1979, J COMP NEUROL, V184, P547, DOI 10.1002/cne.901840308 ROGAWSKI MA, 1980, EXP NEUROL, V69, P678, DOI 10.1016/0014-4886(80)90060-6 Sato A, 1996, J COMP NEUROL, V367, P465, DOI 10.1002/(SICI)1096-9861(19960408)367:3<465::AID-CNE11>3.0.CO;2-G ShammahLagnado SJ, 1996, J COMP NEUROL, V376, P489, DOI 10.1002/(SICI)1096-9861(19961216)376:3<489::AID-CNE10>3.0.CO;2-H SHINONAGA Y, 1992, NEUROSCI LETT, V135, P179, DOI 10.1016/0304-3940(92)90431-6 SHIPLEY C, 1991, J ACOUST SOC AM, V89, P902, DOI 10.1121/1.1894652 SHNEIDERMAN A, 1988, J COMP NEUROL, V276, P188, DOI 10.1002/cne.902760204 Sillar KT, 1998, ANN NY ACAD SCI, V860, P318, DOI 10.1111/j.1749-6632.1998.tb09059.x SIMMONS JA, 1979, SCIENCE, V203, P16, DOI 10.1126/science.758674 SIMMONS JA, 1978, J COMP PHYSIOL, V125, P291 Simmons JA, 1996, BIOL BULL, V191, P109, DOI 10.2307/1543071 Stanley GB, 1999, J NEUROSCI, V19, P8036 STEINBUSCH HWM, 1981, NEUROSCIENCE, V6, P557, DOI 10.1016/0306-4522(81)90146-9 TANAKA M, 1993, BRAIN RES BULL, V30, P561, DOI 10.1016/0361-9230(93)90083-N THOMPSON AM, 1995, J COMP NEUROL, V351, P104, DOI 10.1002/cne.903510110 Thompson AM, 2001, BRAIN RES, V907, P195, DOI 10.1016/S0006-8993(01)02483-0 THOMPSON GC, 1994, OTOLARYNG HEAD NECK, V110, P93, DOI 10.1016/S0194-5998(94)70797-9 TO ZP, 1995, BRIT J PHARMACOL, V115, P107 TRULSON ME, 1982, NEUROSCI LETT, V32, P137, DOI 10.1016/0304-3940(82)90263-4 TRULSON ME, 1979, BRAIN RES, V163, P135, DOI 10.1016/0006-8993(79)90157-4 Tsunoda K, 2001, NAT NEUROSCI, V4, P832, DOI 10.1038/90547 Verge D, 2000, J CHEM NEUROANAT, V18, P41, DOI 10.1016/S0891-0618(99)00050-2 WAEBER C, 1994, NEUROPHARMACOLOGY, V33, P527, DOI 10.1016/0028-3908(94)90084-1 WALLIS DI, 1994, TRENDS PHARMACOL SCI, V15, P288, DOI 10.1016/0165-6147(94)90009-4 Wang XY, 1997, HEARING RES, V106, P20, DOI 10.1016/S0378-5955(96)00211-0 WATERHOUSE BD, 1986, BRAIN RES BULL, V17, P507, DOI 10.1016/0361-9230(86)90218-2 Winer JA, 1998, J COMP NEUROL, V400, P147 WRIGHT DE, 1995, J COMP NEUROL, V351, P357, DOI 10.1002/cne.903510304 Wynne B, 1995, J CHEM NEUROANAT, V9, P289, DOI 10.1016/0891-0618(95)00095-X Wynne B, 1997, J CHEM NEUROANAT, V12, P259, DOI 10.1016/S0891-0618(97)00219-6 Wynne B, 1996, Audiol Neurootol, V1, P54 YASUI Y, 1990, NEUROSCI LETT, V115, P121, DOI 10.1016/0304-3940(90)90441-B Ye Y, 2001, Acta Otolaryngol, V121, P284 NR 124 TC 38 Z9 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2002 VL 168 IS 1-2 BP 1 EP 11 DI 10.1016/S0378-5955(02)00365-9 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576GL UT WOS:000176994900001 PM 12117504 ER PT J AU Kulesza, RJ Vinuela, A Saldana, E Berrebi, AS AF Kulesza, RJ Vinuela, A Saldana, E Berrebi, AS TI Unbiased stereological estimates of neuron number in subcortical auditory nuclei of the rat SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Symposium on the Inferior Colliculus CY MAY 20-25, 2001 CL SALAMANCA, SPAIN DE optical fractionator; cochlear nucleus; superior olivary complex; lateral lemniscus; inferior colliculus; medial geniculate body ID SUPERIOR PARAOLIVARY NUCLEUS; BATS INFERIOR COLLICULUS; DORSAL COCHLEAR NUCLEUS; MEDIAL GENICULATE-BODY; LATERAL LEMNISCUS; TOPOGRAPHIC ORGANIZATION; DESCENDING PROJECTIONS; RESPONSE PROPERTIES; OLIVARY COMPLEX; VENTRAL NUCLEUS AB The mammalian auditory system consists of a large number of cell groups, each containing its own complement of neuronal cell types. In recent years, much effort has been devoted to the quantitation of auditory neurons with common morphological, connectional, pharmacological or functional features. However, it is difficult to place these data into the proper quantitative perspective due to our lack of knowledge of the number of neurons contained within each auditory nucleus. To this end, we have employed unbiased stereological methods to estimate neuron number in the cochlear nuclei, superior olivary complex, lateral lemniscus, inferior colliculus and medial geniculate body. Additionally, we generated a three-dimensional model of the superior olivary complex. The utility of unbiased stereological estimates of auditory nuclei is discussed in the context of various experimental paradigms. (C) 2002 Elsevier Science B.V. All rights reserved. C1 W Virginia Sch Med, Hlth Sci Ctr, Dept Otolaryngol, Morgantown, WV 26506 USA. W Virginia Sch Med, Hlth Sci Ctr, Dept Neurobiol, Morgantown, WV 26506 USA. W Virginia Sch Med, Hlth Sci Ctr, Dept Anat, Morgantown, WV 26506 USA. W Virginia Sch Med, Hlth Sci Ctr, Sensory Neurosci Res Ctr, Morgantown, WV 26506 USA. Univ Salamanca, Sch Med, Dept Pathol & Cell Biol, E-37008 Salamanca, Spain. INCyL, Salamanca, Spain. RP Berrebi, AS (reprint author), W Virginia Sch Med, Hlth Sci Ctr, Dept Otolaryngol, POB 9200, Morgantown, WV 26506 USA. RI Saldana, Enrique/C-4017-2011 CR ABERCROMBIE M, 1946, ANAT REC, V94, P239, DOI 10.1002/ar.1090940210 ADAMS JC, 1984, BRAIN RES BULL, V13, P585, DOI 10.1016/0361-9230(84)90041-8 Agar E, 1999, ANN OTO RHINOL LARYN, V108, P661 BAJO VM, 1993, J COMP NEUROL, V334, P241, DOI 10.1002/cne.903340207 BERREBI AS, 1991, ANAT EMBRYOL, V183, P427 BRAWER JR, 1974, J COMP NEUROL, V155, P251, DOI 10.1002/cne.901550302 CAICEDO A, 1993, J COMP NEUROL, V328, P377, DOI 10.1002/cne.903280305 Cant NB, 1992, MAMMALIAN AUDITORY P, P66 CASEY MA, 1990, NEUROBIOL AGING, V11, P391, DOI 10.1016/0197-4580(90)90004-J Gates TS, 1996, HEARING RES, V96, P157, DOI 10.1016/0378-5955(96)00054-8 Gundersen H. J., 1987, J MICROSC-OXFORD, V147, P3 GUNDERSEN HJG, 1988, J MICROSC-OXFORD, V151, P3 GUNDERSEN HJG, 1988, APMIS, V96, P857 Howard CV, 1998, UNBIASED STEREOLOGY Idrizbegovic E, 2001, HEARING RES, V158, P102, DOI 10.1016/S0378-5955(01)00295-7 IRVING R, 1967, J COMP NEUROL, V130, P77, DOI 10.1002/cne.901300105 KLINKE GJ, 2000, LAB RAT HDB EXPT ANI Koch U, 1998, J NEUROPHYSIOL, V80, P71 Kulesza RJ, 2000, JARO, V1, P255, DOI 10.1007/s101620010054 LeBeau FEN, 1996, J NEUROPHYSIOL, V75, P902 LEDOUX JE, 1987, J COMP NEUROL, V264, P123, DOI 10.1002/cne.902640110 Lorente de No R, 1981, PRIMARY ACOUSTIC NUC Merchan MA, 1996, J COMP NEUROL, V372, P245 MERCHAN MA, 1994, J COMP NEUROL, V342, P259, DOI 10.1002/cne.903420209 MUGNAINI E, 1980, J COMP NEUROL, V191, P581, DOI 10.1002/cne.901910406 Mugnaini E, 1985, HDB CHEM NEUROANAT 1, V4, P436 OKOYAMA S, 1995, HEARING RES, V88, P71, DOI 10.1016/0378-5955(95)00101-9 OLIVER DL, 1991, J COMP NEUROL, V303, P75, DOI 10.1002/cne.903030108 OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407 Osen K.K., 1988, P65 PARK TJ, 1993, J NEUROSCI, V13, P2050 PARK TJ, 1993, J NEUROSCI, V13, P5172 Paxinos G, 1986, RAT BRAIN STEREOTAXI, V2nd PAXINOS G, 1985, J NEUROSCI METH, V13, P139, DOI 10.1016/0165-0270(85)90026-3 Reuss S, 1999, CELL TISSUE RES, V297, P13, DOI 10.1007/s004410051329 Riemann R, 1999, HEARING RES, V135, P181, DOI 10.1016/S0378-5955(99)00113-6 Riquelme R, 2001, J COMP NEUROL, V432, P409, DOI 10.1002/cne.1111 RUIZGOMEZ MD, 1988, THESIS U SALAMANCA S Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O Saldana E, 2000, ANAT EMBRYOL, V202, P265, DOI 10.1007/s004290000109 SVENDSEN P, 1994, HDB LAB ANIMAL SCI, V2 WEBSTER WR, 1995, RAT NERVOUS SYSTEM Winer JA, 1999, HEARING RES, V130, P42, DOI 10.1016/S0378-5955(98)00217-2 Winer JA, 1999, HEARING RES, V130, P19, DOI 10.1016/S0378-5955(98)00216-0 YANG LC, 1992, J NEUROPHYSIOL, V68, P1760 Zhang DX, 1998, HEARING RES, V117, P1, DOI 10.1016/S0378-5955(97)00202-5 NR 46 TC 44 Z9 44 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2002 VL 168 IS 1-2 BP 12 EP 24 DI 10.1016/S0378-5955(02)00374-X PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576GL UT WOS:000176994900002 PM 12117505 ER PT J AU Ma, CL Kelly, JB Wu, SH AF Ma, CL Kelly, JB Wu, SH TI AMPA and NMDA receptors mediate synaptic excitation in the rat's inferior colliculus SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Symposium on the Inferior Colliculus CY MAY 20-25, 2001 CL SALAMANCA, SPAIN DE auditory system; hearing; brain slice; patch clamp recording; alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; N-methyl-D-aspartate receptor ID LONG-TERM POTENTIATION; VISUAL-CORTEX; AMINO-ACIDS; BRAIN SLICE; POSTSYNAPTIC CURRENTS; IDENTIFIED NEURONS; LATERAL LEMNISCUS; COCHLEAR NUCLEUS; DORSAL NUCLEUS; RESPONSES AB The synaptic mechanisms underlying excitation in the rat's central nucleus of the inferior colliculus (ICC) were examined by making whole-cell patch clamp recordings in brain slice preparations of the auditory midbrain. Responses were elicited by current pulse stimulation of the lateral lemniscus and recordings were made in ICC using either current clamp or voltage clamp methods. The excitatory postsynaptic responses in either current or voltage clamp mode consisted of two distinct components, an early component that could be blocked by bath application of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), and a later component that could be blocked by application of the N-methyl-D-aspartate (NMDA) receptor antagonists, (+/-)-2-amino-5-phosphonovaleric acid (APV) or (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP). Both AMPA and NMDA receptor-mediated responses were present at resting potential and could be isolated pharmacologically by application of receptor antagonists. Voltage clamp experiments revealed that the NMDA receptor-mediated current was voltage-dependent and increased in magnitude as the cell membrane was depolarized. This NMDA receptor-mediated response was enhanced at resting potential when Mg2+ was eliminated from the bath solution. The ratio of response amplitudes associated with the late and early components, an estimate of the relative contribution of NMDA and AMPA receptor types, changed with age. There was a progressive decline in the ratio between 9 and 13 days of age, but no further reduction between days 13 and 16. The data show that both AMPA and NMDA receptors are important for determining excitatory responses in the ICC and that both receptor types probably play a role in auditory processing after the onset of hearing. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Carleton Univ, Inst Neurosci, Lab Sensory Neurosci, Ottawa, ON K1S 5B6, Canada. RP Wu, SH (reprint author), Carleton Univ, Inst Neurosci, Lab Sensory Neurosci, 35 Life Sci Res Bldg,1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada. CR ADAMS JC, 1979, NEUROSCIENCE, V4, P1947, DOI 10.1016/0306-4522(79)90067-8 Bear Mark F., 1994, Current Opinion in Neurobiology, V4, P389, DOI 10.1016/0959-4388(94)90101-5 BEKKERS JM, 1989, NATURE, V341, P230, DOI 10.1038/341230a0 BLISS TVP, 1993, NATURE, V361, P31, DOI 10.1038/361031a0 Burger RM, 1998, J NEUROPHYSIOL, V80, P1686 CANT NB, 1998, DEV AUDITORY SYSTEM, P315 COLLINGRIDGE GL, 1983, J PHYSIOL-LONDON, V334, P33 COTMAN CW, 1987, TRENDS NEUROSCI, V10, P263, DOI 10.1016/0166-2236(87)90170-6 Covey E, 1996, J NEUROSCI, V16, P3009 DAW NW, 1993, ANNU REV NEUROSCI, V16, P207, DOI 10.1146/annurev.ne.16.030193.001231 FAINGOLD CL, 1989, HEARING RES, V40, P127, DOI 10.1016/0378-5955(89)90106-8 Faingold C.L., 1991, NEUROBIOLOGY HEARING, P223 FORSYTHE ID, 1993, P ROY SOC B-BIOL SCI, V251, P151, DOI 10.1098/rspb.1993.0022 FOX K, 1990, J NEUROPHYSIOL, V64, P1413 Fu XW, 1997, NEUROSCIENCE, V78, P815, DOI 10.1016/S0306-4522(96)00580-5 GOLDEN GT, 1989, NEUROCHEM RES, V14, P465, DOI 10.1007/BF00964862 GREENAMYRE JT, 1984, J NEUROSCI, V4, P133 HOSOMI H, 1995, NEUROSCI LETT, V195, P175, DOI 10.1016/0304-3940(95)11811-A ISAACSON JS, 1995, J NEUROPHYSIOL, V73, P964 JONES KA, 1991, NEURON, V7, P593, DOI 10.1016/0896-6273(91)90372-7 Kelly JB, 2000, J NEUROPHYSIOL, V83, P1403 Kirson ED, 2000, J NEUROSCI, V20, P4844 Kuwada S, 1997, J NEUROSCI, V17, P7565 MA CL, 2002, IN PRESS NEUROSCIENC Manis PB, 1996, J NEUROPHYSIOL, V76, P1639 MAYER ML, 1984, NATURE, V309, P261, DOI 10.1038/309261a0 MCBAIN CJ, 1994, PHYSIOL REV, V74, P723 Moore DR, 1998, J NEUROPHYSIOL, V80, P2229 NELSON PG, 1963, J NEUROPHYSIOL, V26, P908 NICOLL RA, 1988, NEURON, V1, P97, DOI 10.1016/0896-6273(88)90193-6 NOWAK L, 1984, NATURE, V307, P462, DOI 10.1038/307462a0 Oliver DL, 1992, MAMMALIAN AUDITORY P, P168 Pedemonte M, 1997, BRAIN RES, V759, P24, DOI 10.1016/S0006-8993(97)00123-6 Reetz G, 1999, BRAIN RES, V816, P527, DOI 10.1016/S0006-8993(98)01230-X Sanes DH, 1998, DEV AUDITORY SYSTEM, P271 Sanes D.H., 2000, DEV NERVOUS SYSTEM TSUMOTO T, 1987, NATURE, V327, P513, DOI 10.1038/327513a0 Wagner T, 1996, EUR J NEUROSCI, V8, P1231, DOI 10.1111/j.1460-9568.1996.tb01291.x Westbrook Gary L., 1994, Current Opinion in Neurobiology, V4, P337, DOI 10.1016/0959-4388(94)90094-9 Zhang HM, 2001, J NEUROPHYSIOL, V86, P871 Zhang Y, 2000, HEARING RES, V147, P92, DOI 10.1016/S0378-5955(00)00123-4 NR 41 TC 21 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2002 VL 168 IS 1-2 BP 25 EP 34 DI 10.1016/S0378-5955(02)00370-2 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576GL UT WOS:000176994900003 PM 12117506 ER PT J AU Kelly, JB Zhang, HM AF Kelly, JB Zhang, HM TI Contribution of AMPA and NMDA receptors to excitatory responses in the inferior colliculus SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Symposium on the Inferior Colliculus CY MAY 20-25, 2001 CL SALAMANCA, SPAIN DE AMPA; NMDA; excitation; inferior colliculus; central nucleus ID LONG-TERM POTENTIATION; BAT AUDITORY-SYSTEM; BIG BROWN BAT; GABAERGIC INHIBITION; MOUSTACHE BAT; BRAIN SLICE; CORTICOFUGAL MODULATION; GLUTAMATE RECEPTORS; MEDIATED INHIBITION; ACOUSTIC RESPONSES AB Brain slice studies of neurons in the central nucleus of the inferior colliculus (ICC) indicate that excitatory responses evoked by electrical stimulation of the lateral lemniscus consist of two components, an early, rapid response mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and a later, a slower one mediated by N-methyl-D-aspartate (NMDA) receptors. The early response can be selectively blocked by AMPA receptor antagonists (1,2,3,4-tetrahydro-6-nitro-2,3-dioxobenzo[f]quinoxaline-7-sulfonamide disodium [NBQX]; or 6-cyano-7-nitroquinoxaline-2,3-dione) [CNQX], and the later one by NMDA receptor antagonists ((+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid [CPP]; or (+/-)-2-amino-5-phosphonovaleric acid) [APV]. Both AMPA and NMDA receptor-mediated responses can be elicited at resting potential, although the NMDA response is voltage dependent and makes a greater contribution when the cell membrane is depolarized. In vivo studies indicate that both AMPA and NMDA receptors contribute to sound-evoked responses. Both AMPA and NMDA receptor antagonists reduce the firing rate of single neurons in the ICC to contralaterally presented tones. Both classes of antagonist lower evoked activity over a wide range of sound intensities from threshold to maximum sound pressure levels. Thus, both NMDA and AMPA receptors contribute to responses over the full dynamic range of auditory sensitivity. The AMPA receptor antagonist, NBQX, is more effective than the NMDA receptor antagonist, CPP, in blocking responses of onset cells. Furthermore, NBQX and CPP have preferential effects in blocking the early or late responses of neurons that exhibited sustain activity to a 100 ms tone. Excitatory responses to sinusoidally amplitude-modulated stimuli are also reduced by application of either AMPA or NMDA antagonists. However, the synchrony of firing of action potentials to the modulation period (vector strength) is largely unaffected. The data suggest that the synchrony of firing of neurons in the inferior colliculus is determined primarily by the pattern of activity at lower levels of the auditory pathway and/or the local intrinsic properties of the cells. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Carleton Univ, Dept Psychol, Lab Sensory Neurosci, Ottawa, ON K1S 5B6, Canada. RP Kelly, JB (reprint author), Carleton Univ, Dept Psychol, Lab Sensory Neurosci, 329 Life Sci Bldg, Ottawa, ON K1S 5B6, Canada. CR Burger RM, 1998, J NEUROPHYSIOL, V80, P1686 COTMAN CW, 1987, TRENDS NEUROSCI, V10, P263, DOI 10.1016/0166-2236(87)90170-6 Covey E, 1996, J NEUROSCI, V16, P3009 DAW NW, 1993, ANNU REV NEUROSCI, V16, P207, DOI 10.1146/annurev.ne.16.030193.001231 FAINGOLD CL, 1993, EXP NEUROL, V119, P198, DOI 10.1006/exnr.1993.1021 FAINGOLD CL, 1989, HEARING RES, V40, P127, DOI 10.1016/0378-5955(89)90106-8 FAINGOLD CL, 1989, BRAIN RES, V500, P302, DOI 10.1016/0006-8993(89)90326-0 Faingold C.L., 1991, NEUROBIOLOGY HEARING, P223 FARLEY GR, 1983, HEARING RES, V11, P73, DOI 10.1016/0378-5955(83)90046-1 Feldman DE, 1996, SCIENCE, V271, P525, DOI 10.1126/science.271.5248.525 Feldman DE, 1998, NEURON, V20, P1067, DOI 10.1016/S0896-6273(00)80488-2 FELDMAN DE, 1994, J NEUROSCI, V14, P5939 Foeller E, 2001, JARO, V2, P279 FOX K, 1990, J NEUROPHYSIOL, V64, P1413 FUJITA I, 1991, J NEUROSCI, V11, P722 Fuzessery ZM, 1996, J NEUROPHYSIOL, V76, P1059 Habbicht H, 1996, BRAIN RES, V724, P169, DOI 10.1016/0006-8993(96)00224-7 HAVEY DC, 1980, ELECTROEN CLIN NEURO, V48, P249, DOI 10.1016/0013-4694(80)90313-2 HOSOMI H, 1995, NEUROSCI LETT, V195, P175, DOI 10.1016/0304-3940(95)11811-A Hurley LM, 1999, J NEUROSCI, V19, P8071 Hurley LM, 2001, J NEUROPHYSIOL, V85, P828 Jen PHS, 1998, J COMP PHYSIOL A, V183, P683, DOI 10.1007/s003590050291 Jen PHS, 2001, EXP BRAIN RES, V137, P292 Kirson ED, 2000, J NEUROSCI, V20, P4844 KLUG A, 1995, J NEUROPHYSIOL, V74, P1701 Koch U, 1998, J NEUROPHYSIOL, V80, P71 Kuwada S, 1997, J NEUROSCI, V17, P7565 LeBeau FEN, 1996, J NEUROPHYSIOL, V75, P902 Lerma J, 1997, TRENDS NEUROSCI, V20, P9, DOI 10.1016/S0166-2236(96)20055-4 Li Y, 1999, HEARING RES, V137, P15, DOI 10.1016/S0378-5955(99)00129-X Li Y, 1998, HEARING RES, V121, P1, DOI 10.1016/S0378-5955(98)00066-5 Lo YJ, 1998, NEUROSCIENCE, V83, P1075, DOI 10.1016/S0306-4522(97)00410-7 MA CL, 2000, ASS RES OT ABSTR, V23, P258 MA CL, 2001, ASS RES OT ABSTR, V24, P53 MALMIERCA MS, 1995, J COMP NEUROL, V357, P124, DOI 10.1002/cne.903570112 MISGELD U, 1995, PROG NEUROBIOL, V46, P423, DOI 10.1016/0301-0082(95)00012-K Moore DR, 1998, J NEUROPHYSIOL, V80, P2229 NELSON PG, 1963, J NEUROPHYSIOL, V26, P908 Oliver DL, 1992, MAMMALIAN AUDITORY P, P168 PARK TJ, 1993, J NEUROSCI, V13, P2050 PARK TJ, 1994, J NEUROPHYSIOL, V72, P1080 Parks TN, 2000, HEARING RES, V147, P77, DOI 10.1016/S0378-5955(00)00122-2 Pedemonte M, 1997, BRAIN RES, V759, P24, DOI 10.1016/S0006-8993(97)00123-6 PIERSON MG, 1989, BRAIN RES, V486, P381, DOI 10.1016/0006-8993(89)90528-3 POLLAK GD, 1993, HEARING RES, V65, P99, DOI 10.1016/0378-5955(93)90205-F Reetz G, 1999, BRAIN RES, V816, P527, DOI 10.1016/S0006-8993(98)01230-X SALDANA E, 1992, J COMP NEUROL, V319, P417, DOI 10.1002/cne.903190308 SMITH PH, 1992, J NEUROSCI, V12, P3700 VATER M, 1992, J COMP PHYSIOL A, V171, P541 Vaughn MD, 1996, NEUROPHARMACOLOGY, V35, P1761, DOI 10.1016/S0028-3908(96)00143-8 Wagner T, 1996, EUR J NEUROSCI, V8, P1231, DOI 10.1111/j.1460-9568.1996.tb01291.x WAGNER T, 1994, NEUROREPORT, V6, P89, DOI 10.1097/00001756-199412300-00024 Yan W, 1998, NAT NEUROSCI, V1, P54, DOI 10.1038/255 YANG LC, 1992, J NEUROPHYSIOL, V68, P1760 Zhang H, 1999, J COMP PHYSIOL A, V184, P85, DOI 10.1007/s003590050308 Zhang HM, 2001, J NEUROPHYSIOL, V86, P871 Zhang Y, 2000, HEARING RES, V147, P92, DOI 10.1016/S0378-5955(00)00123-4 Zhang YF, 1997, NATURE, V387, P900 NR 58 TC 22 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2002 VL 168 IS 1-2 BP 35 EP 42 DI 10.1016/S0378-5955(02)00372-6 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576GL UT WOS:000176994900004 PM 12117507 ER PT J AU Wu, SH Ma, CL Sivaramakrishnan, S Oliver, DL AF Wu, SH Ma, CL Sivaramakrishnan, S Oliver, DL TI Synaptic modification in neurons of the central nucleus of the inferior colliculus SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Symposium on the Inferior Colliculus CY MAY 20-25, 2001 CL SALAMANCA, SPAIN DE long-term potentiation; long-term depression; AMPA receptor; NMDA receptor; auditory pathway; patch clamp recording; synaptic plasticity ID LONG-TERM POTENTIATION; RABBIT FOLLOWING STIMULATION; LEARNED AUDITORY RESPONSES; RAT HIPPOCAMPAL SLICES; NMDA RECEPTORS; LASTING POTENTIATION; PERFORANT PATH; DENTATE AREA; AMINO-ACIDS; CELL-TYPES AB Whole-cell patch clamp recordings were made from neurons in the central nucleus of the inferior colliculus (ICC) in brain slices from rat (8-13 days old). ICC neurons were classified by their discharge pattern in response to depolarizing and hyperpolarizing current injection. Excitatory postsynaptic currents (EPSCs) were elicited by stimulation of synaptic inputs under the condition that the synaptic inhibition was suppressed by strychnine and picrotoxin. EPSCs in all tested types of ICC neurons showed posttetanic, long-term potentiation (LTP) and long-term depression with tetanic stimulation. The potentiated EPSCs consisted of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor and NMDA receptor mediated components. The magnitude of LTP was larger when the intracellular concentration of the calcium buffer ethylene glycol-bis (beta-aminoethyl ether)-N,N,N',N'-tetracetic acid (EGTA) was lower and stimulation frequency was higher in cells with rebound firing patterns. Blocking N-methyl-D-aspartate (NMDA) receptors in rebound cells prevented generation of LTP. These results suggest that excitatory synaptic transmission in ICC neurons can be modified. LTP in the auditory midbrain may be important for activity-dependent, adaptive changes in response to normal and pathological stimulus conditions. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Carleton Univ, Inst Neurosci, Life Sci Res Ctr, Lab Sensory Neurosci, Ottawa, ON K1S 5B6, Canada. Univ Connecticut, Ctr Hlth, Dept Neurosci, Farmington, CT 06030 USA. RP Wu, SH (reprint author), Carleton Univ, Inst Neurosci, Life Sci Res Ctr, Lab Sensory Neurosci, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada. CR BLISS TVP, 1973, J PHYSIOL-LONDON, V232, P331 BLISS TVP, 1973, J PHYSIOL-LONDON, V232, P357 Chen HX, 1998, NEUROSCIENCE, V86, P415, DOI 10.1016/S0306-4522(98)00042-6 COLLINGRIDGE GL, 1983, J PHYSIOL-LONDON, V334, P33 Cummings JA, 1996, NEURON, V16, P825, DOI 10.1016/S0896-6273(00)80102-6 FAINGOLD CL, 1989, HEARING RES, V40, P127, DOI 10.1016/0378-5955(89)90106-8 Faingold C.L., 1991, NEUROBIOLOGY HEARING, P223 Feldman DE, 1996, SCIENCE, V271, P525, DOI 10.1126/science.271.5248.525 Feldman DE, 1997, J NEUROSCI, V17, P6820 FELDMAN DE, 1994, J NEUROSCI, V14, P5939 Feldman DE, 1998, J NEUROSCI, V18, P3073 HARRIS EW, 1984, BRAIN RES, V323, P132, DOI 10.1016/0006-8993(84)90275-0 HESTRIN S, 1990, J PHYSIOL-LONDON, V422, P203 HOSOMI H, 1995, NEUROSCI LETT, V195, P175, DOI 10.1016/0304-3940(95)11811-A HRABETOVA S, 2000, J NEUROSCI, V20, P1 KATO K, 1993, NEUROSCIENCE, V53, P39, DOI 10.1016/0306-4522(93)90282-K KIRKWOOD A, 1993, SCIENCE, V260, P1518, DOI 10.1126/science.8502997 Kirkwood A, 1996, NATURE, V381, P526, DOI 10.1038/381526a0 Kirson ED, 2000, J NEUROSCI, V20, P4844 Knudsen EI, 2000, P NATL ACAD SCI USA, V97, P11815, DOI 10.1073/pnas.97.22.11815 KUDOH M, 1994, NEUROSCI LETT, V171, P21, DOI 10.1016/0304-3940(94)90594-0 KULLMANN DM, 1992, NEURON, V9, P1175, DOI 10.1016/0896-6273(92)90075-O KUNO M, 1995, SYNAPSE FUNCTION PLA, P89 MA CL, 2002, HEARING RES, V167, DOI PII S03785955(02)00370-2 MALENKA RC, 1993, TRENDS NEUROSCI, V16, P521, DOI 10.1016/0166-2236(93)90197-T MALENKA RC, 1991, NEURON, V6, P53, DOI 10.1016/0896-6273(91)90121-F MALENKA RC, 1992, NEURON, V9, P121, DOI 10.1016/0896-6273(92)90227-5 Malenka RC, 1999, SCIENCE, V285, P1870, DOI 10.1126/science.285.5435.1870 Malenka RC, 2001, SYNAPSES, P393 MULKEY RM, 1992, NEURON, V9, P967, DOI 10.1016/0896-6273(92)90248-C Oliver DL, 1992, MAMMALIAN AUDITORY P, P168 Peruzzi D, 2000, NEUROSCIENCE, V101, P403, DOI 10.1016/S0306-4522(00)00382-1 SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 Sivaramakrishnan S, 2001, J NEUROSCI, V21, P2861 Bear MF, 2001, SYNAPSES, P455 Szczepaniak WS, 1996, EVOKED POTENTIAL, V100, P158, DOI 10.1016/0013-4694(95)00234-0 ZENGEL JE, 1982, J GEN PHYSIOL, V80, P583, DOI 10.1085/jgp.80.4.583 Zhang HM, 2001, J NEUROPHYSIOL, V86, P871 Zhang Y, 2000, HEARING RES, V147, P92, DOI 10.1016/S0378-5955(00)00123-4 NR 40 TC 21 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2002 VL 168 IS 1-2 BP 43 EP 54 DI 10.1016/S0378-5955(02)00375-1 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576GL UT WOS:000176994900005 PM 12117508 ER PT J AU Trahiotis, C Hartung, K AF Trahiotis, C Hartung, K TI Peripheral auditory processing, the precedence effect and responses of single units in the inferior colliculus SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Symposium on the Inferior Colliculus CY MAY 20-25, 2001 CL SALAMANCA, SPAIN DE precedence effect; peripheral interaction; peripheral filtering; interaural temporal difference; interaural intensitive difference ID CROSS-CORRELATION MODEL; CONTRALATERAL INHIBITION; NEURAL TRANSDUCTION; SIMULATION; EXTENSION; CAT AB The purpose of this paper is to illustrate how interactions occurring within the auditory periphery are relevant to the interpretation of neurophysiological data obtained in recent studies seeking to find physiological correlates of 'the precedence effect'. Similar information was presented orally at the recent International Symposium on the Central Auditory System held in Salamanca, Spain. The physiological data of interest are responses from single neural units in the inferior colliculus recorded following stimulation by successive pairs of binaural clicks. We show how peripheral, monaural, within-filter interactions of such successive clicks can produce internal values of interaural temporal differences (ITDs) and interaural intensitive differences (IIDs) that can differ greatly from those present in the external stimulus. These interactions can produce unintended internal ITDs and IIDs that are well 'outside the tuning range' of the single unit being studied. When this occurs, the responses of the single units to the pairs of clicks would be expected to diminish. We also discuss how hair cell-related adaptation and compression can also lead to diminished responses. It is suggested that effects resulting from peripheral interactions should be taken into account or evaluated quantitatively before other factors, including central inhibition, are invoked. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Connecticut, Ctr Hlth, Dept Neurosci, Farmington, CT 06030 USA. Univ Connecticut, Ctr Hlth, Dept Surg Otolaryngol, Farmington, CT 06030 USA. RP Trahiotis, C (reprint author), Univ Connecticut, Ctr Hlth, Dept Neurosci, Farmington, CT 06030 USA. CR Blauert J., 1997, SPATIAL HEARING PSYC COLBURN HS, 2001, PHYSL PSYCHOPHYSICAL, P161 Fitzpatrick DC, 1995, J NEUROPHYSIOL, V74, P2469 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T HARTUNG K, 2001, IN PRESS J ACOUST SO JEFFRESS LA, 1968, J ACOUST SOC AM, V43, P164, DOI 10.1121/1.1910748 LINDEMANN W, 1986, J ACOUST SOC AM, V80, P1623, DOI 10.1121/1.394326 LINDEMANN W, 1986, J ACOUST SOC AM, V80, P1608, DOI 10.1121/1.394325 Litovsky RY, 1998, J NEUROPHYSIOL, V80, P1302 MEDDIS R, 1988, J ACOUST SOC AM, V83, P1056, DOI 10.1121/1.396050 MEDDIS R, 1986, J ACOUST SOC AM, V79, P702, DOI 10.1121/1.393460 Meddis R., 1990, J ACOUST SOC AM, V87, P1013 Panter P.F., 1965, MODULATION NOISE SPE PATTERSON RD, 1995, J ACOUST SOC AM, V98, P1890, DOI 10.1121/1.414456 SHINNCUNNINGHAM BG, 1995, J ACOUST SOC AM, V98, P164, DOI 10.1121/1.413752 Slaney M, 1993, EFFICIENT IMPLEMENTA WALLACH H, 1949, AM J PSYCHOL, V62, P315, DOI 10.2307/1418275 YIN TCT, 1994, J NEUROSCI, V14, P5170 YOST WA, 1984, J ACOUST SOC AM, V76, P1377, DOI 10.1121/1.391454 ZUREK PM, 1987, DIRECTIONAL HEARING NR 20 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2002 VL 168 IS 1-2 BP 55 EP 59 DI 10.1016/S0378-5955(02)00357-X PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576GL UT WOS:000176994900006 PM 12117509 ER PT J AU Pollak, GD Burger, RM Park, TJ Klug, A Bauer, EE AF Pollak, GD Burger, RM Park, TJ Klug, A Bauer, EE TI Roles of inhibition for transforming binaural properties in the brainstem auditory system SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Symposium on the Inferior Colliculus CY MAY 20-25, 2001 CL SALAMANCA, SPAIN DE inferior colliculus; auditory system; GABA; binaural processing; precedence effect; lateral superior olive; dorsal nucleus of the lateral lemniscus ID LATERAL SUPERIOR OLIVE; BATS INFERIOR COLLICULUS; INTERAURAL INTENSITY DIFFERENCES; TADARIDA-BRASILIENSIS-MEXICANA; SOUND PRESSURE LEVEL; IPSILATERALLY EVOKED INHIBITION; HIGH-FREQUENCY NEURONS; SINGLE-UNIT RESPONSES; FREE-TAILED BATS; DORSAL NUCLEUS AB This review is concerned with the operation of circuits in the central auditory system, how they transform response features and what functional significance may be attributed to those transformations. We focus on the role that GABAergic inhibition plays in processing interaural intensity disparities (IIDs), the principal cues for localizing high frequencies, and the transformations of IID coding that occur between the superior olivary complex and the inferior colliculus (IC). IIDs are coded by excitatory-inhibitory (EI) cells, so called because they are excited by one ear and inhibited by the other. El neurons are first created in the lateral superior olive (LSO), but they also dominate the dorsal nucleus of the lateral lemniscus (DNLL) and regions of the IC. The three nuclei are intimately linked through a complex arrangement of excitatory and inhibitory connections. One of these is a crossed excitatory projection from the LSO to both the DNLL and IC. The binaural properties of El neurons in LSO, DNLL and IC appear strikingly similar, suggesting that the El properties created in the LSO are simply imposed on the DNLL and IC through the crossed excitatory projections. Recent studies support the idea that El properties created in lower centers are imposed on some IC cells. However, other studies show that the circuitry linking LSO, DNLL and IC generates a number of response transformations in many IC cells. These transformations include marked changes in El properties with stimulus duration, the generation of highly focused spatial receptive Fields, shifts in sensitivity to IIDs, and the de novo creation of the El response property. All of these transformations are produced by inhibitory innervation of the IC. An additional emergent property is also imposed on IC cells that receive GABAergic innervation from the DNLL. That property is a change in the binaural features of the IC cell, a change produced by the reception of an earlier sound whose IID is strongly excitatory to the IC cell. We illustrate each of these transformations, propose circuitry that could account for the observed properties and suggest some functional relevance for each. In the final section, we discuss some of the inherent uncertainties associated with attributing functional consequences to response features and then consider whether the transformations found in some mammals are species-specific or are universal features of all mammals. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Texas, Neurobiol Sect, Austin, TX 78731 USA. Univ Washington, Sch Med, Virginia Merrill Bloedel Hearing Res Ctr, Seattle, WA 98195 USA. Univ Illinois, Neurobiol Grp, Dept Biol Sci, Chicago, IL 60607 USA. Oregon Hlth Sci Univ, Oregon Hearing Res Ctr, Portland, OR 97201 USA. RP Pollak, GD (reprint author), Univ Texas, Neurobiol Sect, Austin, TX 78731 USA. CR ADAMS JC, 1984, BRAIN RES BULL, V13, P585, DOI 10.1016/0361-9230(84)90041-8 AITKIN LM, 1970, J NEUROPHYSIOL, V33, P421 BALCOMBE JP, 1992, ANIM BEHAV, V43, P79, DOI 10.1016/S0003-3472(05)80073-9 BALCOMBE JP, 1990, ANIM BEHAV, V39, P960, DOI 10.1016/S0003-3472(05)80961-3 BLAURET J, 1983, SPATIAL HEARING PSYC BOUDREAU JC, 1968, J NEUROPHYSIOL, V31, P442 BRUGGE JF, 1970, J NEUROPHYSIOL, V33, P441 BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P705, DOI 10.1002/cne.901970410 Burger RM, 2001, J NEUROSCI, V21, P4830 CAIRD D, 1983, EXP BRAIN RES, V52, P385 CANT NB, 1986, J COMP NEUROL, V247, P457, DOI 10.1002/cne.902470406 COVEY E, 1993, J NEUROPHYSIOL, V69, P842 Davis KA, 1999, J NEUROPHYSIOL, V82, P164 ERULKAR SD, 1972, PHYSIOL REV, V52, P237 FAINGOLD CL, 1991, HEARING RES, V52, P201, DOI 10.1016/0378-5955(91)90200-S FAINGOLD CL, 1989, BRAIN RES, V500, P302, DOI 10.1016/0006-8993(89)90326-0 FAINGOLD CL, 1993, HEARING RES, V69, P98, DOI 10.1016/0378-5955(93)90097-K FINLAYSON PG, 1989, HEARING RES, V38, P221, DOI 10.1016/0378-5955(89)90067-1 Fitzpatrick DC, 1995, J NEUROPHYSIOL, V74, P2469 French B, 1998, SOUTHWEST NAT, V43, P484 FRENCH B, 2000, BATS BAT CONSERVATIO, V18, P1 FUZESSERY ZM, 1990, J NEUROPHYSIOL, V63, P1128 FUZESSERY ZM, 1985, J NEUROPHYSIOL, V54, P757 FUZESSERY ZM, 1985, HEARING RES, V20, P85, DOI 10.1016/0378-5955(85)90061-9 GELFAND DL, 1986, ANIM BEHAV, V34, P1078, DOI 10.1016/S0003-3472(86)80167-1 HAPLEA S, 1994, J COMP PHYSIOL A, V174, P671 HENKEL CK, 1993, J COMP NEUROL, V331, P458, DOI 10.1002/cne.903310403 HUTSON KA, 1991, J COMP NEUROL, V312, P105, DOI 10.1002/cne.903120109 IMIG TJ, 1990, J NEUROPHYSIOL, V63, P1448 Irvine D. R. F., 1986, PROGR SENSORY PHYSL IRVINE DRF, 1990, J NEUROPHYSIOL, V63, P570 JORIS PX, 1995, J NEUROPHYSIOL, V73, P1043 KANWAL JS, 1994, J ACOUST SOC AM, V96, P1229, DOI 10.1121/1.410273 Keller CH, 1996, J COMP PHYSIOL A, V178, P499 Kelly JB, 1998, HEARING RES, V122, P25, DOI 10.1016/S0378-5955(98)00082-3 Kelly JB, 1998, HEARING RES, V116, P43, DOI 10.1016/S0378-5955(97)00195-0 KELLY JB, 1974, J ACOUST SOC AM, V55, P1277, DOI 10.1121/1.1914697 Kidd SA, 1996, J NEUROSCI, V16, P7390 Klug A, 1999, J NEUROPHYSIOL, V82, P593 KLUG A, 1995, J NEUROPHYSIOL, V74, P1701 LI L, 1992, J NEUROSCI, V12, P4530 LI L, 1992, HEARING RES, V61, P73, DOI 10.1016/0378-5955(92)90038-O Litovsky RY, 1998, J NEUROPHYSIOL, V80, P1285 Litovsky RY, 1998, J NEUROPHYSIOL, V80, P1302 Litovsky RY, 1999, J ACOUST SOC AM, V106, P1633, DOI 10.1121/1.427914 Litovsky RY, 1997, J NEUROPHYSIOL, V77, P2223 MARKOVITZ NS, 1994, HEARING RES, V73, P121, DOI 10.1016/0378-5955(94)90290-9 MARKOVITZ NS, 1993, HEARING RES, V71, P51, DOI 10.1016/0378-5955(93)90020-2 Mills A. W., 1972, FOUNDATIONS MODERN A, V2, P303 MOORE MJ, 1983, J NEUROSCI, V3, P237 Ohlemiller K., 1994, AUDIT NEUROSCI, V1, P19 OLIVER DL, 1995, J COMP NEUROL, V360, P17, DOI 10.1002/cne.903600103 Oswald JP, 1999, J NEUROSCI, V19, P1149 Park TJ, 1998, NATURWISSENSCHAFTEN, V85, P176, DOI 10.1007/s001140050479 PARK TJ, 1993, J NEUROSCI, V13, P2050 Park TJ, 1997, J NEUROPHYSIOL, V77, P2863 PARK TJ, 1993, J NEUROSCI, V13, P5172 PARK TJ, 1994, J NEUROPHYSIOL, V72, P1080 Park TJ, 1998, J NEUROPHYSIOL, V79, P2416 Park TJ, 1996, J NEUROSCI, V16, P6554 Pollak GD, 1997, ANN OTO RHINOL LARYN, V106, P44 Ramachandran R, 1999, J NEUROPHYSIOL, V82, P152 Ramachandran R, 2000, JARO, V1, P144, DOI 10.1007/s101620010029 ROSS LS, 1988, J COMP NEUROL, V270, P488, DOI 10.1002/cne.902700403 ROSS LS, 1989, J NEUROSCI, V9, P2819 SAINTMARIE RL, 1989, J COMP NEUROL, V279, P382 SANES DH, 1990, J NEUROSCI, V10, P3494 SANES DH, 1988, J NEUROSCI, V8, P682 SEMPLE MN, 1987, J NEUROPHYSIOL, V57, P1130 Shneiderman A, 1999, J COMP NEUROL, V410, P265 SHNEIDERMAN A, 1988, J COMP NEUROL, V276, P188, DOI 10.1002/cne.902760204 SMITH PH, 1991, J COMP NEUROL, V304, P387, DOI 10.1002/cne.903040305 VATER M, 1992, J COMP PHYSIOL A, V171, P541 VATER M, 1992, J COMP NEUROL, V325, P183, DOI 10.1002/cne.903250205 VATER M, 1995, J COMP NEUROL, V351, P632, DOI 10.1002/cne.903510411 WALLACH H, 1949, AM J PSYCHOL, V62, P315, DOI 10.2307/1418275 WENSTRUP JJ, 1985, HEARING RES, V17, P191, DOI 10.1016/0378-5955(85)90021-8 WENSTRUP JJ, 1988, J NEUROPHYSIOL, V60, P1384 WENSTRUP JJ, 1986, J NEUROSCI, V6, P962 Winer JA, 1996, P NATL ACAD SCI USA, V93, P8005, DOI 10.1073/pnas.93.15.8005 WINER JA, 1995, J COMP NEUROL, V355, P317, DOI 10.1002/cne.903550302 WU SH, 1992, NEUROSCI LETT, V134, P257, DOI 10.1016/0304-3940(92)90529-G WU SH, 1991, J NEUROPHYSIOL, V65, P230 WYTTENBACH RA, 1993, J ACOUST SOC AM, V94, P777, DOI 10.1121/1.408207 YANG L, 1994, AUDIT NEUROSCI, V1, P1 YANG LC, 1994, J NEUROPHYSIOL, V71, P1999 Yang LC, 1998, HEARING RES, V122, P125, DOI 10.1016/S0378-5955(98)00088-4 YANG LC, 1994, J NEUROPHYSIOL, V71, P2014 Yang LC, 1996, J COMP NEUROL, V373, P575, DOI 10.1002/(SICI)1096-9861(19960930)373:4<575::AID-CNE7>3.0.CO;2-Z YIN TCT, 1994, J NEUROSCI, V14, P5170 YIN TCT, 1984, J ACOUST SOC AM, V76, P1401, DOI 10.1121/1.391457 ZOOK JM, 1982, J COMP NEUROL, V207, P14, DOI 10.1002/cne.902070103 Zurek P. M., 1987, DIRECTIONAL HEARING, P85, DOI 10.1007/978-1-4612-4738-8_4 NR 93 TC 47 Z9 48 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2002 VL 168 IS 1-2 BP 60 EP 78 DI 10.1016/S0378-5955(02)00362-3 PG 19 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576GL UT WOS:000176994900007 PM 12117510 ER PT J AU Fitzpatrick, DC Kuwada, S Batra, R AF Fitzpatrick, DC Kuwada, S Batra, R TI Transformations in processing interaural time differences between the superior olivary complex and inferior colliculus: beyond the Jeffress model SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Symposium on the Inferior Colliculus CY MAY 20-25, 2001 CL SALAMANCA, SPAIN DE lateral superior olive; medial superior olive; auditory pathway; interaural time differences; sound localization ID HIGH-FREQUENCY NEURONS; ANTEROVENTRAL COCHLEAR NUCLEUS; CONTRALATERAL INHIBITION; UNANESTHETIZED RABBIT; SOUND LOCALIZATION; DELAY-LINES; BRAIN-STEM; COINCIDENCE DETECTION; TEMPORAL DISPARITIES; RESPONSE PROPERTIES AB Interaural time differences (ITDs) are used to localize sounds and improve signal detection in noise. Encoding ITDs in neurons depends on specialized mechanisms for comparing inputs from the two ears. Most studies have emphasized how the responses of ITD-sensitive neurons are consistent with the tenets of the Jeffress model. The Jeffress model uses neuronal coincidence detectors that compare inputs from both sides and delay lines so that different neurons achieve coincidence at different ITDs. Although Jeffress-type models are successful at predicting sensitivity to ITDs in humans, in many respects they are a limited representation of the responses seen in neurons. In the superior olivary complex (SOC), ITD-sensitive neurons are distributed across both the medial (MSO) and lateral (LSO) superior olives. Similar response types are found in neurons sensitive to ITDs in two signal types: low-frequency sounds and envelopes of high-frequency sounds. Excitatory-excitatory interactions in the MSO are associated with peak-type responses, and excitatory-inhibitory interactions in the LSO are associated with trough-type responses. There are also neurons with responses intermediate between peak- and trough-type. In the inferior colliculus (IC), the same basic types remain, presumably due to inputs arising from the MSO and LSO. Using recordings from the SOC and IC, we describe how the response types can be described within a continuum that extends to very large values of ITD, and compare the functional organization at the two levels. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ N Carolina, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC 27599 USA. Univ Connecticut, Ctr Hlth, Dept Neurosci, Farmington, CT 06030 USA. Univ Mississippi, Dept Anat, Jackson, MS 39216 USA. RP Fitzpatrick, DC (reprint author), Univ N Carolina, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC 27599 USA. EM dcf@med.unc.edu CR Batra R, 1997, J NEUROPHYSIOL, V78, P1237 Batra R, 1997, J NEUROPHYSIOL, V78, P1222 BATRA R, 1989, J NEUROPHYSIOL, V61, P257 Beckius GE, 1999, J NEUROSCI, V19, P3146 BERNSTEIN LR, 1994, J ACOUST SOC AM, V95, P3561, DOI 10.1121/1.409973 Bernstein LR, 2001, J NEUROSCI RES, V66, P1035, DOI 10.1002/jnr.10103 Bernstein LR, 1996, J ACOUST SOC AM, V100, P3774, DOI 10.1121/1.417237 BERNSTEIN LR, 1982, J ACOUST SOC AM, V71, P147, DOI 10.1121/1.387254 Bonham BH, 1999, J ACOUST SOC AM, V106, P281, DOI 10.1121/1.427056 BRAND A, 2001, ASS RES OTOLARYNGOL, V24, P59 Breebaart J, 2001, J ACOUST SOC AM, V110, P1074, DOI 10.1121/1.1383297 Breebaart J, 2001, J ACOUST SOC AM, V110, P1105, DOI 10.1121/1.1383299 Breebaart J, 2001, J ACOUST SOC AM, V110, P1089, DOI 10.1121/1.1383298 Cai HM, 1998, J ACOUST SOC AM, V103, P475, DOI 10.1121/1.421100 CANT NB, 1992, HEARING RES, V58, P26, DOI 10.1016/0378-5955(92)90005-8 CARR CE, 1988, P NATL ACAD SCI USA, V85, P8311, DOI 10.1073/pnas.85.21.8311 FINLAYSON PG, 1991, J NEUROPHYSIOL, V65, P598 Fitzpatrick DC, 1997, NATURE, V388, P871, DOI 10.1038/42246 Fitzpatrick DC, 2000, J NEUROSCI, V20, P1605 GLENDENNING KK, 1985, J COMP NEUROL, V232, P261, DOI 10.1002/cne.902320210 GOLDBERG JAY M., 1968, J NEUROPHYSIOL, V31, P639 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 GROTHE B, 1993, J NEUROPHYSIOL, V69, P1192 Grothe B, 2000, J COMP PHYSIOL A, V186, P413, DOI 10.1007/s003590050441 Grothe B, 1998, J NEUROSCI, V18, P6608 GROTHE B, 1994, J NEUROSCI, V14, P1701 HEFFNER H, 1980, J ACOUST SOC AM, V68, P1584, DOI 10.1121/1.385213 Henkel CK, 1999, ANAT EMBRYOL, V199, P149, DOI 10.1007/s004290050216 HENNING GB, 1974, J ACOUST SOC AM, V55, P84, DOI 10.1121/1.1928135 JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495 Joris PX, 1996, J NEUROPHYSIOL, V76, P2137 Joris PX, 1998, J NEUROPHYSIOL, V79, P253 JORIS PX, 1995, J NEUROPHYSIOL, V73, P1043 KAVANAGH GL, 1992, J NEUROPHYSIOL, V67, P1643 KIL J, 1995, J COMP NEUROL, V353, P317, DOI 10.1002/cne.903530302 KUWADA S, 1987, J NEUROPHYSIOL, V57, P1338 Mardia K. V., 1972, STAT DIRECTIONAL DAT McAlpine D, 1998, J NEUROSCI, V18, P6026 MCFADDEN D, 1976, J ACOUST SOC AM, V59, P634, DOI 10.1121/1.380913 MOUSHEGI.G, 1967, J NEUROPHYSIOL, V30, P1239 NEUTZEL JM, 1981, J ACOUST SOC AM, V69, P1112 PALMER AR, 1990, HEARING RES, V50, P71, DOI 10.1016/0378-5955(90)90034-M Pena JL, 2001, J NEUROSCI, V21, P9455 Schroeder M. R., 1977, PSYCHOPHYSICS PHYSL, P455 Shackleton TM, 2000, HEARING RES, V149, P199, DOI 10.1016/S0378-5955(00)00187-8 SHACKLETON TM, 1992, J ACOUST SOC AM, V91, P2276, DOI 10.1121/1.403663 SHAMMA SA, 1989, J ACOUST SOC AM, V86, P989, DOI 10.1121/1.398734 SMITH PH, 1993, J COMP NEUROL, V331, P245, DOI 10.1002/cne.903310208 Smith PH, 1998, J NEUROPHYSIOL, V79, P3127 SPITZER MW, 1995, J NEUROPHYSIOL, V73, P1668 STANFORD TR, 1992, J NEUROSCI, V12, P3200 STERN RM, 1978, J ACOUST SOC AM, V64, P127, DOI 10.1121/1.381978 STERN RM, 1992, ADV BIOSCI, V83, P547 TOLLIN DJ, 2000, ASS RES OTOLARYNGOL, V23, P32 vandePar S, 1997, J ACOUST SOC AM, V101, P1671, DOI 10.1121/1.418151 WARR WB, 1972, BRAIN RES, V40, P247 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 YIN TCT, 1986, J NEUROPHYSIOL, V55, P280 YIN TCT, 1984, J ACOUST SOC AM, V76, P1401, DOI 10.1121/1.391457 YOUNG SR, 1983, J NEUROSCI, V3, P1373 NR 60 TC 34 Z9 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2002 VL 168 IS 1-2 BP 79 EP 89 DI 10.1016/S0378-5955(02)00359-3 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576GL UT WOS:000176994900008 PM 12117511 ER PT J AU Batra, R Fitzpatrick, DC AF Batra, R Fitzpatrick, DC TI Monaural and binaural processing in the ventral nucleus of the lateral lemniscus: a major source of inhibition to the inferior colliculus SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Symposium on the Inferior Colliculus CY MAY 20-25, 2001 CL SALAMANCA, SPAIN DE auditory brainstem; onset neuron; auditory neurophysiology; lateral tegmentum ID SUPERIOR OLIVARY COMPLEX; SINGLE AUDITORY UNITS; TONOTOPIC ORGANIZATION; COCHLEAR NUCLEUS; INTERAURAL PHASE; HORSERADISH-PEROXIDASE; RESPONSE PROPERTIES; ECHOLOCATING BAT; CAT; NEURONS AB The ventral nucleus of the lateral lemniscus (VNLL) is a major source of input to the inferior colliculus. This paper reviews recent studies of neural responses in the VNLL of the unanesthetized rabbit. The VNLL has generally been viewed as a monaural nucleus, with its neurons responding primarily to stimulation of the contralateral ear. In the rabbit, the VNLL is divided into a medial division (VNLLm) comprising neurons intercalated in the medial limb of the lemniscus, a compact lateral division (VNLLl), and a dorsal division. The VNLLm contains an abundance of neurons sensitive to interaural temporal disparities (ITDs), one of the major binaural cues for sound localization. These neurons respond only at the onset of tones, and therefore appear to encode the ITDs of transients. Even in the VNLLl, many neurons are sensitive to binaural stimulation. The VNLLl contains a variety of neurons with different discharge patterns, the two most common of which are sustained and onset. The discharge patterns, frequency-tuning and dynamic ranges of VNLLl neurons indicate that this division is able to supply the inferior colliculus with a variety of inputs, each serving a different function in the analysis of sound. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Mississippi, Med Ctr, Dept Anat, Jackson, MS 39216 USA. Univ N Carolina, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC 27599 USA. RP Batra, R (reprint author), Univ Mississippi, Med Ctr, Dept Anat, 2500 N State St, Jackson, MS 39216 USA. CR ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305 Adams JC, 1997, AUDIT NEUROSCI, V3, P335 AITKIN LM, 1970, J NEUROPHYSIOL, V33, P421 BATRA R, 2001, ASS RES OT ABSTR, V24, P59 Batra R, 1999, J NEUROPHYSIOL, V82, P1097 Batra R, 1997, J NEUROPHYSIOL, V78, P511 BORG E, 1988, HEARING RES, V36, P191, DOI 10.1016/0378-5955(88)90061-5 BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P705, DOI 10.1002/cne.901970410 CASSEDAY JH, 1995, NEURAL REPRESENTATIO, P25 COVEY E, 1991, J NEUROSCI, V11, P3456 COVEY E, 1987, J COMP NEUROL, V263, P179, DOI 10.1002/cne.902630203 COVEY E, 1993, J NEUROPHYSIOL, V69, P842 GLENDENNING KK, 1981, J COMP NEUROL, V197, P673, DOI 10.1002/cne.901970409 GUINAN JJ, 1972, INT J NEUROSCI, V4, P147 GUINAN JJ, 1972, INT J NEUROSCI, V4, P101, DOI 10.3109/00207457209147165 HARTMANN WM, 1983, J ACOUST SOC AM, V74, P1380, DOI 10.1121/1.390163 HARTMANN WM, 1989, J ACOUST SOC AM, V86, P1366, DOI 10.1121/1.398696 HENKEL CK, 1978, J COMP NEUROL, V182, P763, DOI 10.1002/cne.901820502 HENKEL CK, 1983, BRAIN RES, V259, P21, DOI 10.1016/0006-8993(83)91063-6 HENKEL CK, 1981, J COMP NEUROL, V203, P213, DOI 10.1002/cne.902030205 HENKEL CK, 1983, J COMP NEUROL, V221, P416, DOI 10.1002/cne.902210405 Malmierca MS, 1998, J NEUROSCI, V18, P10603 MAY PJ, 1990, J NEUROPHYSIOL, V64, P381 Merchan MA, 1996, J COMP NEUROL, V372, P245 METZNER W, 1989, NATURE, V341, P529, DOI 10.1038/341529a0 MOREST DK, 1965, J ANAT, V99, P611 RAKERD B, 1986, J ACOUST SOC AM, V80, P1695, DOI 10.1121/1.394282 REALE RA, 1990, J NEUROPHYSIOL, V64, P1247 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 SaintMarie RL, 1997, J COMP NEUROL, V389, P264 Schofield BR, 1997, J COMP NEUROL, V379, P363, DOI 10.1002/(SICI)1096-9861(19970317)379:3<363::AID-CNE4>3.0.CO;2-1 SPITZER MW, 1995, J NEUROPHYSIOL, V73, P1668 Vater M, 1997, CELL TISSUE RES, V289, P223, DOI 10.1007/s004410050869 WHITLEY JM, 1984, J COMP NEUROL, V229, P257, DOI 10.1002/cne.902290210 YIN TCT, 1983, J NEUROPHYSIOL, V50, P1000 Yost WA, 1997, J ACOUST SOC AM, V101, P2994, DOI 10.1121/1.418528 ZETTEL ML, 1991, J COMP NEUROL, V313, P1, DOI 10.1002/cne.903130102 Zhao M, 2001, J COMP NEUROL, V433, P255, DOI 10.1002/cne.1139 ZUREK PM, 1993, J ACOUST SOC AM, V93, P1200, DOI 10.1121/1.405516 NR 39 TC 17 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2002 VL 168 IS 1-2 BP 90 EP 97 DI 10.1016/S0378-5955(02)00368-4 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576GL UT WOS:000176994900009 PM 12117512 ER PT J AU Li, L Yue, Q AF Li, L Yue, Q TI Auditory gating processes and binaural inhibition in the inferior colliculus SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Symposium on the Inferior Colliculus CY MAY 20-25, 2001 CL SALAMANCA, SPAIN DE auditory gating; prepulse inhibition; precedence effect; binaural inhibition; inferior colliculus; inhibitory transmission ID SUPERIOR OLIVARY COMPLEX; ACOUSTIC STARTLE RESPONSE; PEDUNCULOPONTINE TEGMENTAL NUCLEUS; MINIMUM AUDIBLE ANGLE; MICROSCOPIC AUTORADIOGRAPHIC LOCALIZATION; CENTRAL NERVOUS-SYSTEM; SUBUNIT MESSENGER-RNA; RATS DORSAL NUCLEUS; LATERAL LEMNISCUS; PREPULSE INHIBITION AB Physiological/behavioral/perceptual responses to an auditory stimulus can be inhibited by another leading auditory stimulus at certain stimulus intervals, and have been considered useful models of auditory gating processes. Two typical examples of auditory gating are prepulse inhibition of the startle reflex and the precedence effect (echo suppression). This review summarizes studies of these two auditory gating processes with regard to their biological significance, cognitive modulation, binaural properties, and underlying neural mechanisms. Both prepulse inhibition and the precedence effect have gating functions of reducing the disruptive influence of the lagging sound, but prepulse inhibition has a much longer temporal window than the precedence effect. Attentional processes can modulate prepulse inhibition, and the listener's previous experience can modulate the precedence effect. Compared to monaural hearing, binaural hearing reduces prepulse inhibition but enhances the precedence effect. The inferior colliculus, the major structure of the auditory midbrain, plays an important role in mediating these two auditory gating processes, and inhibitory neural transmissions within the inferior colliculus may account for binaural inhibition observed in prepulse inhibition and lag suppression recorded in the inferior colliculus. The neural mechanisms underlying binaural inhibition in the inferior colliculus are also discussed. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Peking Univ, Dept Psychol, Beijing 100871, Peoples R China. RP Li, L (reprint author), Peking Univ, Dept Psychol, Beijing 100871, Peoples R China. CR ACODELLA CM, 1990, PSYCHOL REP, V66, P275 ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305 ADAMS JC, 1984, BRAIN RES BULL, V13, P585, DOI 10.1016/0361-9230(84)90041-8 AITKIN LM, 1970, J NEUROPHYSIOL, V33, P421 AOKI E, 1988, BRAIN RES, V442, P63, DOI 10.1016/0006-8993(88)91432-1 APPELL PP, 1990, J COMP NEUROL, V302, P143, DOI 10.1002/cne.903020111 ARAKI T, 1988, NEUROSCIENCE, V25, P613, DOI 10.1016/0306-4522(88)90263-1 BEYERL BD, 1978, BRAIN RES, V145, P209, DOI 10.1016/0006-8993(78)90858-2 BLAUERT J, 1988, ACUSTICA, V66, P267 Blumenthal TD, 1996, PERCEPT PSYCHOPHYS, V58, P73, DOI 10.3758/BF03205477 BOUDREAU JC, 1968, J NEUROPHYSIOL, V31, P442 Braff DL, 2001, PSYCHOPHARMACOLOGY, V156, P234, DOI 10.1007/s002130100810 BRAFF DL, 1990, ARCH GEN PSYCHIAT, V47, P181 BRISTOW DR, 1988, EUR J PHARMACOL, V148, P283, DOI 10.1016/0014-2999(88)90576-6 BRUGGE JF, 1970, J NEUROPHYSIOL, V33, P441 BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P705, DOI 10.1002/cne.901970410 BUCKLAND G, 1969, J COMP PHYSIOL PSYCH, V67, P493, DOI 10.1037/h0027307 Burger RM, 2001, J NEUROSCI, V21, P4830 CADUSSEAU J, 1985, J HIRNFORSCH, V26, P667 Caicedo A, 1999, EUR J NEUROSCI, V11, P51, DOI 10.1046/j.1460-9568.1999.00410.x CAIRD D, 1983, EXP BRAIN RES, V52, P385 CARNEY LH, 1989, J NEUROPHYSIOL, V62, P141 CLIFTON RK, 1989, PERCEPT PSYCHOPHYS, V46, P139, DOI 10.3758/BF03204973 CLIFTON RK, 1987, J ACOUST SOC AM, V82, P1834, DOI 10.1121/1.395802 CLIFTON RK, 1994, J ACOUST SOC AM, V95, P1525, DOI 10.1121/1.408540 COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204 CORNELISSE LE, 1987, NEUROPSYCHOLOGIA, V25, P449, DOI 10.1016/0028-3932(87)90033-9 COVEY E, 1987, J COMP NEUROL, V263, P179, DOI 10.1002/cne.902630203 COVEY E, 1993, J NEUROPHYSIOL, V69, P843 CRANFORD J, 1971, SCIENCE, V172, P286, DOI 10.1126/science.172.3980.286 DAVIS M, 1977, J COMP PHYSIOL PSYCH, V91, P549, DOI 10.1037/h0077345 DRUGA R, 1984, NEUROSCI LETT, V45, P247, DOI 10.1016/0304-3940(84)90234-9 ELVERLAND HH, 1978, EXP BRAIN RES, V32, P117 FAINGOLD CL, 1991, HEARING RES, V52, P201, DOI 10.1016/0378-5955(91)90200-S FAINGOLD CL, 1989, BRAIN RES, V500, P302, DOI 10.1016/0006-8993(89)90326-0 FAINGOLD CL, 1993, HEARING RES, V69, P98, DOI 10.1016/0378-5955(93)90097-K FENDT M, 1994, NEUROREPORT, V5, P1725, DOI 10.1097/00001756-199409080-00009 Fendt M, 1999, EUR J PHARMACOL, V370, P101, DOI 10.1016/S0014-2999(99)00156-9 Fendt M, 1999, BRAIN RES, V833, P81, DOI 10.1016/S0006-8993(99)01525-5 FILION DL, 1993, BIOL PSYCHOL, V35, P185, DOI 10.1016/0301-0511(93)90001-O FILION DL, 1994, PSYCHOPHYSIOLOGY S, V31, P46 Fitzpatrick DC, 1995, J NEUROPHYSIOL, V74, P2469 Fitzpatrick DC, 1999, J ACOUST SOC AM, V106, P3460, DOI 10.1121/1.428199 FOSS JA, 1989, HUM FACTORS, V31, P307 FOX JE, 1979, PHYSIOL BEHAV, V23, P291, DOI 10.1016/0031-9384(79)90370-6 Freyman RL, 1999, J ACOUST SOC AM, V106, P3578, DOI 10.1121/1.428211 Freyman RL, 2001, J ACOUST SOC AM, V109, P2112, DOI 10.1121/1.1354984 FREYMAN RL, 1991, J ACOUST SOC AM, V90, P874, DOI 10.1121/1.401955 Freyman RL, 1998, J ACOUST SOC AM, V103, P2031, DOI 10.1121/1.421350 GASKELL H, 1983, HEARING RES, V11, P277 GLENDENNING KK, 1988, J COMP NEUROL, V275, P288, DOI 10.1002/cne.902750210 GLENDENNING KK, 1983, J NEUROSCI, V3, P1521 GonzalezHernandez T, 1996, J COMP NEUROL, V372, P309, DOI 10.1002/(SICI)1096-9861(19960819)372:2<309::AID-CNE11>3.0.CO;2-E GRAHAM FK, 1975, PSYCHOPHYSIOLOGY, V12, P238, DOI 10.1111/j.1469-8986.1975.tb01284.x HACKLEY SA, 1987, J EXP PSYCHOL HUMAN, V13, P411, DOI 10.1037/0096-1523.13.3.411 HARRIS GERARD G., 1963, JOUR ACOUSTICAL SOC AMER, V35, P672, DOI 10.1121/1.1918583 HASHIKAWA T, 1983, EXP BRAIN RES, V49, P457 HENKEL CK, 1993, J COMP NEUROL, V331, P458, DOI 10.1002/cne.903310403 HIRONAKA T, 1990, MOL BRAIN RES, V7, P335, DOI 10.1016/0169-328X(90)90083-P HOCHSTER ME, 1981, NEUROPSYCHOLOGIA, V19, P49, DOI 10.1016/0028-3932(81)90043-9 HOFFMAN HS, 1980, PSYCHOL REV, V87, P175, DOI 10.1037/0033-295X.87.2.175 HOFFMAN HS, 1971, PSYCHON SCI, V24, P233 HOFFMAN HS, 1981, J EXP PSYCHOL HUMAN, V7, P1357 HOFFMAN HS, 1980, J EXP PSYCHOL HUMAN, V6, P769, DOI 10.1037/0096-1523.6.4.769 Irvine D. R. F., 1986, PROGR SENSORY PHYSL, V7 ISON JR, 1983, PSYCHOL BULL, V94, P3, DOI 10.1037/0033-2909.94.1.3 ISON JR, 1990, PERCEPT PSYCHOPHYS, V47, P337, DOI 10.3758/BF03210873 ISON JR, 1983, PERCEPT PSYCHOPHYS, V34, P84, DOI 10.3758/BF03205900 Kelly JB, 1998, HEARING RES, V122, P25, DOI 10.1016/S0378-5955(98)00082-3 Kelly JB, 1997, HEARING RES, V104, P112, DOI 10.1016/S0378-5955(96)00182-7 Kelly JB, 2000, J NEUROPHYSIOL, V83, P1403 Kidd SA, 1996, J NEUROSCI, V16, P7390 Koch M, 1997, BEHAV BRAIN RES, V89, P35, DOI 10.1016/S0166-4328(97)02296-1 KOCH M, 1993, EXP BRAIN RES, V97, P71 Koch M, 2000, BEHAV BRAIN RES, V117, P153, DOI 10.1016/S0166-4328(00)00299-0 Kodsi MH, 1997, BRAIN RES BULL, V43, P219, DOI 10.1016/S0361-9230(96)00440-6 KUDO M, 1984, EXP BRAIN RES, V54, P203 Kuwada S, 1997, J NEUROSCI, V17, P7565 Lee YL, 1996, J NEUROSCI, V16, P3775 LEITNER DS, 1985, PHYSIOL BEHAV, V34, P65, DOI 10.1016/0031-9384(85)90079-4 Li L, 2000, BRAIN RES BULL, V51, P95, DOI 10.1016/S0361-9230(99)00215-4 LI L, 1992, J NEUROSCI, V12, P4530 Li L., 1992, Society for Neuroscience Abstracts, V18, P1035 Li L, 2000, BRAIN RES PROTOC, V5, P67, DOI 10.1016/S1385-299X(99)00056-2 Li L, 1998, BEHAV NEUROSCI, V112, P1187, DOI 10.1037/0735-7044.112.5.1187 LI L, 1992, HEARING RES, V61, P73, DOI 10.1016/0378-5955(92)90038-O Li L, 1998, PHYSIOL BEHAV, V65, P133, DOI 10.1016/S0031-9384(98)00143-7 Liebenthal E, 1999, J ACOUST SOC AM, V106, P291, DOI 10.1121/1.427057 Light GA, 1998, BIOL PSYCHIAT, V43, P918, DOI 10.1016/S0006-3223(98)00118-8 Litovsky RY, 1998, J NEUROPHYSIOL, V80, P1285 Litovsky RY, 1998, J NEUROPHYSIOL, V80, P1302 LITOVSKY RY, 1994, J ACOUST SOC AM, V96, P752, DOI 10.1121/1.411390 Litovsky RY, 1998, J ACOUST SOC AM, V103, P3139, DOI 10.1121/1.423072 Litovsky RY, 1999, J ACOUST SOC AM, V106, P1633, DOI 10.1121/1.427914 Litovsky RY, 1997, J NEUROPHYSIOL, V77, P2223 Litovsky RY, 1997, J ACOUST SOC AM, V102, P1739, DOI 10.1121/1.420106 LOPEZCOLOME AM, 1978, NEUROSCIENCE, V3, P1069, DOI 10.1016/0306-4522(78)90124-0 LUGOGARCIA N, 1988, J HIRNFORSCH, V29, P187 MARKOVITZ NS, 1994, HEARING RES, V73, P121, DOI 10.1016/0378-5955(94)90290-9 MARSH RR, 1976, SCIENCE, V192, P390, DOI 10.1126/science.1257776 MEREDITH MA, 1992, EXP BRAIN RES, V88, P181, DOI 10.1007/BF02259139 MOORE JK, 1987, J COMP NEUROL, V260, P157, DOI 10.1002/cne.902600202 MUSSATWHITLOW BJ, 1997, PSYCHOPHYSIOLOGY S, V34, P66 NORRIS CM, 1995, PSYCHOPHYSIOLOGY S, V32, P57 Norris CM, 1996, PSYCHOBIOLOGY, V24, P160 OLIVER DL, 1989, J NEUROSCI, V9, P967 PARK TJ, 1993, J NEUROSCI, V13, P2050 Pedemonte M, 1997, BRAIN RES, V759, P24, DOI 10.1016/S0006-8993(97)00123-6 PERLSTEIN WM, 1989, PSYCHOPHYSIOLOGY S, pS48 PERLSTEIN WM, 1993, PSYCHOPHYSIOLOGY, V30, P347, DOI 10.1111/j.1469-8986.1993.tb02056.x PERROTT D R, 1987, Journal of Auditory Research, V27, P59 PERROTT DR, 1989, J ACOUST SOC AM, V85, P282, DOI 10.1121/1.397735 PERROTT DR, 1989, J ACOUST SOC AM, V85, P2669, DOI 10.1121/1.397764 PICKNEY LA, 1976, ANIM LEARN BEHAV, V4, P467 PROBST A, 1986, NEUROSCIENCE, V17, P11, DOI 10.1016/0306-4522(86)90222-8 RAKERD B, 1992, J ACOUST SOC AM, V92, P2296, DOI 10.1121/1.405156 REDGRAVE P, 1987, EXP BRAIN RES, V68, P147 RIBAK CE, 1986, J NEUROCYTOL, V15, P421, DOI 10.1007/BF01611726 ROBERTS RC, 1987, J COMP NEUROL, V258, P267, DOI 10.1002/cne.902580207 SAINTMARIE RL, 1990, BRAIN RES, V524, P244, DOI 10.1016/0006-8993(90)90698-B SaintMarie RL, 1996, J COMP NEUROL, V373, P255, DOI 10.1002/(SICI)1096-9861(19960916)373:2<255::AID-CNE8>3.0.CO;2-2 SAINTMARIE RL, 1989, J COMP NEUROL, V279, P382 SALLY SL, 1992, BRAIN RES, V572, P5, DOI 10.1016/0006-8993(92)90444-E SANES DH, 1987, J NEUROSCI, V7, P3793 Sato K, 1999, NEUROSCIENCE, V89, P839, DOI 10.1016/S0306-4522(98)00350-9 SEIGHART W, 1986, J NEUROCHEM, V74, P920 SEMBA K, 1992, J COMP NEUROL, V323, P387, DOI 10.1002/cne.903230307 SHNEIDERMAN A, 1993, J NEUROCHEM, V60, P72, DOI 10.1111/j.1471-4159.1993.tb05824.x SHNEIDERMAN A, 1989, J COMP NEUROL, V286, P28, DOI 10.1002/cne.902860103 SPARKS DL, 1986, PHYSIOL REV, V66, P118 STEININGER TL, 1992, J COMP NEUROL, V321, P515, DOI 10.1002/cne.903210403 STITT CL, 1980, PERCEPT PSYCHOPHYS, V27, P82, DOI 10.3758/BF03199909 Swerdlow NR, 2001, PSYCHOPHARMACOLOGY, V156, P194 SWERDLOW NR, 1993, BEHAV NEUROSCI, V107, P104, DOI 10.1037//0735-7044.107.1.104 Thiele A, 1996, EXP BRAIN RES, V112, P223 THOMPSON GC, 1985, BRAIN RES, V339, P119, DOI 10.1016/0006-8993(85)90628-6 Thurlow W. R., 1961, PERCEPT MOTOR SKILL, V13, P7 Tollin DJ, 1998, J ACOUST SOC AM, V104, P3030, DOI 10.1121/1.423884 Torterolo P, 1995, ARCH ITAL BIOL, V134, P57 TSUCHITANI C, 1969, J ACOUST SOC AM, V36, P196 VANBUSKIRK RL, 1983, BRAIN RES BULL, V10, P583, DOI 10.1016/0361-9230(83)90025-4 WALLACE MN, 1989, EXP BRAIN RES, V78, P435 WALLACH H, 1949, AM J PSYCHOL, V62, P315, DOI 10.2307/1418275 WENTHOLD RJ, 1987, NEUROSCIENCE, V22, P897, DOI 10.1016/0306-4522(87)92968-X WHITFIELD IC, 1978, EXP BRAIN RES, V31, P211 WU MF, 1984, J EXP PSYCHOL ANIM B, V10, P221 Wu SH, 1998, HEARING RES, V122, P47, DOI 10.1016/S0378-5955(98)00085-9 Wu SH, 1996, J NEUROPHYSIOL, V75, P1271 WU SH, 1992, J NEUROSCI, V12, P3084 Yang XF, 1997, PERCEPT PSYCHOPHYS, V59, P1108, DOI 10.3758/BF03205525 Yeomans JS, 1996, BRAIN RES REV, V21, P301 YIN TCT, 1994, J NEUROSCI, V14, P5170 Yost WA, 1996, CURR DIR PSYCHOL SCI, V5, P125, DOI 10.1111/1467-8721.ep11452783 ZARBIN MA, 1981, J NEUROSCI, V1, P532 Zhang DX, 1998, HEARING RES, V117, P1, DOI 10.1016/S0378-5955(97)00202-5 ZHANG SQ, 1987, BRAIN RES, V416, P375, DOI 10.1016/0006-8993(87)90922-X ZOOK JM, 1982, J COMP NEUROL, V207, P14, DOI 10.1002/cne.902070103 ZUREK PM, 1980, J ACOUST SOC AM, V67, P952, DOI 10.1121/1.383974 NR 158 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2002 VL 168 IS 1-2 BP 98 EP 109 DI 10.1016/S0378-5955(02)00356-8 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576GL UT WOS:000176994900010 PM 12117513 ER PT J AU Langner, G Albert, M Briede, T AF Langner, G Albert, M Briede, T TI Temporal and spatial coding of periodicity information in the inferior colliculus of awake chinchilla (Chinchilla laniger) SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Symposium on the Inferior Colliculus CY MAY 20-25, 2001 CL SALAMANCA, SPAIN DE inferior colliculus; amplitude modulation; latency; envelope periodicity; temporal processing; neuronal map; pitch perception ID PRIMARY AUDITORY-CORTEX; MULTIPLE-NEURON RECORDINGS; AMPLITUDE-MODULATED TONES; GERBIL COCHLEAR NUCLEUS; NERVE-FIBERS; MOUSTACHED BAT; BRAIN-STEM; STOCHASTIC RESONANCE; DISCHARGE PATTERNS; PITCH ANALYSIS AB Amplitude modulation responses and onset latencies of multi-unit recordings and evoked potentials were investigated in the central nucleus of inferior colliculus (ICC) in the awake chinchilla. Nine hundred and one recording sites with best frequencies between 60 and 30 kHz showed either phasic (18%), tonic (25%), or phasic-tonic (57%) responses. Of 554 sites tested for responses to modulation frequencies 73% were responsive and 57% showed clear preference for a narrow range of modulation frequencies. Well defined bandpass characteristics were found for 32% of rate modulation transfer functions (rate-MTFs) and 36% of synchronization MTFs (sync-MTFs). The highest best modulation frequency (BMF) of a bandpass rate-MTF was 600 Hz. Neurons with phasic responses to best-frequency tones showed strong phase coupling to modulation frequencies and were dominated by bandpass rate-MTFs and sync-MTFs. Most neurons with tonic responses showed bandpass tuning only for sync-MTFs. Both BMFs and onset latencies changed systematically across frequency-band laminae of the ICC. Low BMFs and long latencies were located medially and high BMFs and short latencies laterally. Latency distributions obtained with evoked potentials to clicks showed a similar gradient to the multi-unit data. These findings are in line with previous findings in different animals including humans and support the hypothesis that temporal processing results in a topographic arrangement orthogonal to the spectral processing axis, thus forming a second neural axis of the auditory system. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Tech Univ Darmstadt, Inst Zool, D-64287 Darmstadt, Germany. RP Langner, G (reprint author), Tech Univ Darmstadt, Inst Zool, Schnittspahnstr 3, D-64287 Darmstadt, Germany. CR ANGELO R, 1990, AUDIOLOGY, V29, P336 ARAN JM, 1978, EVOKED ELECT ACTIVIT, P239 BATRA R, 1989, J NEUROPHYSIOL, V61, P257 BIEBEL U, 2002, IN PRESS HEARING RES BILSEN FA, 1969, ACUSTICA, V22, P63 Burkard R, 1997, J ACOUST SOC AM, V102, P3620, DOI 10.1121/1.420149 Calhoun BM, 1998, EUR J NEUROSCI, V10, P926, DOI 10.1046/j.1460-9568.1998.00102.x Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698 Cheung SW, 2001, J NEUROPHYSIOL, V85, P1732 Covey E, 1999, ANNU REV PHYSIOL, V61, P457, DOI 10.1146/annurev.physiol.61.1.457 CUMBEL EJ, 1955, J AM STAT ASSOC, V48, P131 DELGUTTE B, 1980, J ACOUST SOC AM, V68, P843, DOI 10.1121/1.384824 EGGERMONT JJ, 1995, J NEUROPHYSIOL, V73, P227 Ehrenberger K, 1999, ACTA OTO-LARYNGOL, V119, P166 EPPING WJM, 1986, HEARING RES, V24, P55, DOI 10.1016/0378-5955(86)90005-5 EVANS EF, 1980, J PHYSIOL-LONDON, V298, P30 Fitzpatrick DC, 2000, J NEUROSCI, V20, P1605 FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y FRISINA RD, 1990, HEARING RES, V44, P123, DOI 10.1016/0378-5955(90)90075-Z FRISINA RD, 1994, EXP BRAIN RES, V102, P160 Hartmann WM, 1996, J ACOUST SOC AM, V99, P567, DOI 10.1121/1.414514 Hattori T, 1997, J COMP PHYSIOL A, V180, P271, DOI 10.1007/s003590050047 Hazell J., 1999, P 6 INT TINN SEM LON, P155 HEFFNER RS, 1991, HEARING RES, V52, P13, DOI 10.1016/0378-5955(91)90183-A Heid S, 1997, HEARING RES, V110, P191, DOI 10.1016/S0378-5955(97)00074-9 Heil P, 1995, AUDIT NEUROSCI, V1, P363 Heil P, 1997, J NEUROPHYSIOL, V78, P2438 Henry KR, 1999, J COMP PHYSIOL A, V184, P577, DOI 10.1007/s003590050357 HEWITT MJ, 1994, J ACOUST SOC AM, V95, P2145, DOI 10.1121/1.408676 HOSE B, 1987, BRAIN RES, V422, P367, DOI 10.1016/0006-8993(87)90946-2 IMIG TJ, 1990, J NEUROPHYSIOL, V63, P1448 JAHNSIEBERT TK, 1995, LEARN MEMORY, P318 JAVEL E, 1980, J ACOUST SOC AM, V68, P133, DOI 10.1121/1.384639 JORIS PX, 1992, J ACOUST SOC AM, V91, P215, DOI 10.1121/1.402757 KIM DO, 1979, J NEUROPHYSIOL, V42, P16 KITZES LM, 1978, J NEUROPHYSIOL, V41, P1165 Krishna BS, 2000, J NEUROPHYSIOL, V84, P255 KUWADA S, 1989, J NEUROPHYSIOL, V61, P269 LANGNER G, 1983, EXP BRAIN RES, V52, P333 LANGNER G, 1981, EXP BRAIN RES, V44, P450 Langner G, 1997, J COMP PHYSIOL A, V181, P665, DOI 10.1007/s003590050148 LANGNER G, 1987, HEARING RES, V31, P197, DOI 10.1016/0378-5955(87)90127-4 Langner G., 1997, Society for Neuroscience Abstracts, V23, P1034 Langner G, 1997, Acta Otolaryngol Suppl, V532, P68 LANGNER G, 1992, HEARING RES, V60, P115, DOI 10.1016/0378-5955(92)90015-F LANGNER G, 1996, ADV SP HEAR A&B, V3, P447 LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799 LANGNER G, 1999, ASS RES OT ABSSTR, P180 LANGNER G, 1988, AUDITORY PATHWAY STR, P207 Licklider J. C. R., 1959, PSYCHOL STUDY SCI, V1, P41 LICKLIDER JCR, 1951, EXPERIENTIA, V7, P128, DOI 10.1007/BF02156143 LICKLIDER JCR, 1954, J ACOUST SOC AM, V26, P945, DOI 10.1121/1.1928005 Mardia K. V., 1972, STAT DIRECTIONAL DAT McFadden SL, 1998, HEARING RES, V117, P81, DOI 10.1016/S0378-5955(98)00013-6 McFadden SL, 1997, HEARING RES, V111, P114, DOI 10.1016/S0378-5955(97)00099-3 MILLER JD, 1970, J ACOUST SOC AM, V48, P513, DOI 10.1121/1.1912166 MILLER MI, 1984, HEARING RES, V14, P257, DOI 10.1016/0378-5955(84)90054-6 MOLLER AR, 1975, J NEUROPHYSIOL, V38, P812 MOLLER AR, 1973, BASIC MECH HEARING, P593 MOLLER AR, 1974, ACUSTICA, V31, P292 Oliver DL, 1999, NEUROSCIENCE, V93, P643, DOI 10.1016/S0306-4522(99)00143-8 PALMER AR, 1982, ARCH OTO-RHINO-LARYN, V236, P197, DOI 10.1007/BF00454039 PFEIFFER B, 1992, RHYTHMOGENESIS NEURO, P239 PHILLIPS DP, 1989, HEARING RES, V40, P137, DOI 10.1016/0378-5955(89)90107-X Phillips DP, 1999, J ACOUST SOC AM, V105, P2731, DOI 10.1121/1.426891 Portfors CV, 2001, HEARING RES, V151, P95, DOI 10.1016/S0378-5955(00)00214-8 REES A, 1983, HEARING RES, V10, P301, DOI 10.1016/0378-5955(83)90095-3 Reetz G, 1999, BRAIN RES, V816, P527, DOI 10.1016/S0006-8993(98)01230-X RHODE WS, 1994, J NEUROPHYSIOL, V71, P1797 RHODE WS, 1995, J ACOUST SOC AM, V97, P2414, DOI 10.1121/1.411963 RITSMA RJ, 1967, J ACOUST SOC AM, V42, P191, DOI 10.1121/1.1910550 Robles L, 2001, PHYSIOL REV, V81, P1305 SAITOH I, 1995, J NEUROPHYSIOL, V74, P1 Schreiner CE, 1997, NATURE, V388, P383, DOI 10.1038/41106 SCHREINER CE, 1992, J NEUROPHYSIOL, V68, P1487 SCHREINER CE, 1992, EXP BRAIN RES, V92, P105 SCHREINER CE, 1988, J NEUROPHYSIOL, V60, P1823 Schulze H, 1997, Acta Otolaryngol Suppl, V532, P89 Palombi PS, 2001, HEARING RES, V153, P174, DOI 10.1016/S0378-5955(00)00264-1 SHAMMA SA, 1993, J NEUROPHYSIOL, V69, P367 Shofner WP, 2000, HEARING RES, V149, P106, DOI 10.1016/S0378-5955(00)00171-4 Shofner WP, 1997, HEARING RES, V110, P15, DOI 10.1016/S0378-5955(97)00063-4 STIEBLER I, 1985, J COMP NEUROL, V238, P65, DOI 10.1002/cne.902380106 SUGA N, 1979, SCIENCE, V206, P351, DOI 10.1126/science.482944 SUTTER ML, 1995, J NEUROPHYSIOL, V73, P190 Vater M, 1997, CELL TISSUE RES, V289, P223, DOI 10.1007/s004410050869 Walton JP, 1998, J NEUROSCI, V18, P2764 Yan J, 1996, HEARING RES, V93, P102, DOI 10.1016/0378-5955(95)00209-X Zeng FG, 2000, BRAIN RES, V869, P251, DOI 10.1016/S0006-8993(00)02475-6 NR 89 TC 49 Z9 51 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2002 VL 168 IS 1-2 BP 110 EP 130 DI 10.1016/S0378-5955(02)00367-2 PG 21 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576GL UT WOS:000176994900011 PM 12117514 ER PT J AU Portfors, CV Wenstrup, JJ AF Portfors, CV Wenstrup, JJ TI Excitatory and facilitatory frequency response areas in the inferior colliculus of the mustached bat SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Symposium on the Inferior Colliculus CY MAY 20-25, 2001 CL SALAMANCA, SPAIN DE inferior colliculus; frequency tuning; spectral integration; facilitation; communication sound; mustached bat ID COMBINATION-SENSITIVE NEURONS; PRIMARY AUDITORY-CORTEX; MEDIAL GENICULATE-BODY; MOUSTACHED BAT; TARGET-DISTANCE; SINGLE; REPRESENTATION; INFORMATION; THALAMUS; MIDBRAIN AB In the mustached bat's central nucleus of the inferior colliculus (ICC), many neurons display facilitatory or inhibitory responses when presented with two tones of distinctly different frequencies. Our previous studies have focused on spectral interactions between specific frequency bands contained in the bat's sonar vocalization. In this study, we describe excitatory and facilitatory frequency response areas across all frequencies in the mustached bat's audible range. We show that many neurons in the ICC have more extensive frequency interactions than previously documented. We recorded responses of 96 single units to single tones and combinations of two tones. Best frequencies of the units ranged from 59-15 kHz. Forty-one units had a single, excitatory frequency response area. The rest of the units had more complex frequency tuning that included multiple excitatory frequency response areas and facilitatory frequency response areas. Some of the facilitatory frequency interactions were between one sound with energy in a sonar frequency band and a second sound with energy in a non-sonar frequency band. We also found that neurons could be facilitated by more than one additional frequency band. Our findings of extensive frequency interactions in the ICC of the mustached bat suggest that some neurons may be well suited for the analysis of complex sounds, possibly including social communication sounds. (C) 2002 Elsevier Science B.V. All rights reserved. C1 NE Ohio Univ, Coll Med, Dept Neurobiol & Pharmacol, Rootstown, OH 44272 USA. Washington State Univ, Sch Biol Sci, Vancouver, WA 98686 USA. RP Portfors, CV (reprint author), NE Ohio Univ, Coll Med, Dept Neurobiol & Pharmacol, Rootstown, OH 44272 USA. CR CASSEDAY JH, 1992, J COMP NEUROL, V319, P34, DOI 10.1002/cne.903190106 Doupe AJ, 1997, J NEUROSCI, V17, P1147 EHRET G, 1985, J COMP PHYSIOL A, V156, P619, DOI 10.1007/BF00619111 Esser KH, 1997, P NATL ACAD SCI USA, V94, P14019, DOI 10.1073/pnas.94.25.14019 FITZPATRICK DC, 1993, J NEUROSCI, V13, P931 FUZESSERY ZM, 1983, J COMP PHYSIOL, V150, P333 Kanwal JS, 1999, J NEUROPHYSIOL, V82, P2327 Kanwal JS, 1999, DESIGN OF ANIMAL COMMUNICATION, P133 KANWAL JS, 1994, J ACOUST SOC AM, V96, P1229, DOI 10.1121/1.410273 LeBeau FEN, 2001, J NEUROSCI, V21, P7303 Leroy SA, 2000, J NEUROSCI, V20, P8533 MARGOLIASH D, 1992, J NEUROSCI, V12, P4309 MITTMANN DH, 1995, HEARING RES, V90, P185, DOI 10.1016/0378-5955(95)00164-X Ohlemiller KK, 1996, NEUROREPORT, V7, P1749, DOI 10.1097/00001756-199607290-00011 OLSEN JF, 1991, J NEUROPHYSIOL, V65, P1254 ONEILL WE, 1979, SCIENCE, V203, P69, DOI 10.1126/science.758681 Portfors CV, 2001, HEARING RES, V151, P95, DOI 10.1016/S0378-5955(00)00214-8 Portfors CV, 1999, J NEUROPHYSIOL, V82, P1326 SUGA N, 1986, J NEUROPHYSIOL, V55, P776 SUGA N, 1979, SCIENCE, V206, P351, DOI 10.1126/science.482944 SUGA N, 1979, SCIENCE, V203, P270, DOI 10.1126/science.760193 SUGA N, 1983, J NEUROPHYSIOL, V49, P1573 Sussman HM, 1998, BEHAV BRAIN SCI, V21, P241 THORNTON S, 2001, ASS RES OT ABSTR, V190, P54 Wenstrup JJ, 1999, J NEUROPHYSIOL, V82, P2528 Yan J, 1996, HEARING RES, V93, P102, DOI 10.1016/0378-5955(95)00209-X ZOOK JM, 1985, J COMP NEUROL, V231, P530, DOI 10.1002/cne.902310410 NR 27 TC 26 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2002 VL 168 IS 1-2 BP 131 EP 138 DI 10.1016/S0378-5955(02)00376-3 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576GL UT WOS:000176994900012 PM 12117515 ER PT J AU Jen, PHS Wu, FJ Chen, QC AF Jen, PHS Wu, FJ Chen, QC TI The effect of two-tone stimulation on responses of two simultaneously recorded neurons in the inferior colliculus of the big brown bat, Eptesicus fuscus SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Symposium on the Inferior Colliculus CY MAY 20-25, 2001 CL SALAMANCA, SPAIN DE facilitation; frequency tuning curve; inferior colliculus; suppression; rate-amplitude function ID SPACE REPRESENTATION; AUDITORY-CORTEX; NEURAL INHIBITION; FM BAT; FREQUENCY; PROJECTIONS; SELECTIVITY; RAT; TOPOGRAPHY; GABA AB This study examined auditory responses of two simultaneously recorded neurons in the central nucleus of bat inferior colliculus (IC) under two-tone stimulation conditions. We specifically examined how a sound within the excitatory frequency tuning curve (FTC) of one IC neuron might affect responses of the other IC neuron in amplitude and frequency domains. Under this specific two-tone stimulation condition, responses of 82% neurons were suppressed and their excitatory FTCs sharpened. Responses of the other 18% neurons were facilitated and their excitatory FTCs broadened. Two-tone suppression was greater at low than at high stimulus amplitudes. Two-tone suppression also decreased with increasing recording depth and best frequency (BF) difference between each pair of neurons. The suppressive or facilitatory FTC of a neuron plotted under two-tone stimulation conditions was always within the excitatory FTC of the other neuron. Two-tone suppression or two-tone facilitation was weak near the BF but became increasingly strong with frequencies away from the BF. Biological significance of these findings is discussed. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. RP Jen, PHS (reprint author), Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. CR ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305 ADAMS JC, 1984, BRAIN RES BULL, V13, P585, DOI 10.1016/0361-9230(84)90041-8 ADAMS JC, 1979, NEUROSCIENCE, V4, P1947, DOI 10.1016/0306-4522(79)90067-8 Casseday JH, 1996, BRAIN BEHAV EVOLUT, V47, P311, DOI 10.1159/000113249 Covey Ellen, 1995, Springer Handbook of Auditory Research, V5, P235 EHRET G, 1988, BRAIN RES REV, V13, P139, DOI 10.1016/0165-0173(88)90018-5 FAYELUND H, 1985, ANAT EMBRYOL, V173, P53, DOI 10.1007/BF00707304 FUZESSERY ZM, 1994, J NEUROPHYSIOL, V72, P1061 Fuzessery ZM, 1996, J NEUROPHYSIOL, V76, P1059 GAMES KD, 1988, HEARING RES, V34, P1, DOI 10.1016/0378-5955(88)90047-0 HERBERT H, 1991, J COMP NEUROL, V304, P103, DOI 10.1002/cne.903040108 HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 JEN PHS, 1989, J COMP PHYSIOL A, V165, P1, DOI 10.1007/BF00613794 Jen PHS, 1998, J COMP PHYSIOL A, V183, P683, DOI 10.1007/s003590050291 JEN PHS, 1982, J COMP PHYSIOL, V147, P351 JEN PHS, 1987, BRAIN RES, V419, P7, DOI 10.1016/0006-8993(87)90563-4 JEN PHS, 1999, BRAIN RES, V842, P184 Lu Y, 2001, EXP BRAIN RES, V141, P331, DOI 10.1007/s002210100885 PINHEIRO AD, 1991, J COMP PHYSIOL A, V169, P69 Pollak GD, 1989, NEURAL BASIS ECHOLOC POON PWF, 1990, EXP BRAIN RES, V79, P83 Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O SUGA N, 1995, NEUROSCI RES, V21, P287, DOI 10.1016/0168-0102(94)00868-G SUGA N, 1972, SCIENCE, V177, P82, DOI 10.1126/science.177.4043.82 Suga N, 1998, CENTRAL AUDITORY PROCESSING AND NEURAL MODELING, P55 VATER M, 1992, J COMP PHYSIOL A, V171, P541 Wu M, 1991, Chin J Physiol, V34, P145 Zhou XM, 2000, J COMP PHYSIOL A, V186, P389, DOI 10.1007/s003590050438 NR 28 TC 7 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2002 VL 168 IS 1-2 BP 139 EP 149 DI 10.1016/S0378-5955(02)00369-6 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576GL UT WOS:000176994900013 PM 12117516 ER PT J AU Sinex, DG Sabes, JH Li, HZ AF Sinex, DG Sabes, JH Li, HZ TI Responses of inferior colliculus neurons to harmonic and mistuned complex tones SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Symposium on the Inferior Colliculus CY MAY 20-25, 2001 CL SALAMANCA, SPAIN DE inferior colliculus; auditory scene analysis; complex sound; temporal coding; electrophysiology ID CONSONANT VOWEL SYLLABLES; INTERAURAL TIME DELAYS; AUDITORY-NERVE FIBERS; LOW-FREQUENCY NEURONS; BINAURAL INTERACTION; CENTRAL NUCLEUS; SINGLE NEURONS; NOISE STIMULI; CAT; REPRESENTATION AB Responses of inferior colliculus neurons to simplified stimuli that may engage mechanisms that contribute to auditory scene analysis were obtained. The stimuli were harmonic complex tones, which are heard by human listeners as single sounds, and the same tones with one component 'mistuned', which are heard as two separate sounds. The temporal discharge pattern elicited by a harmonic complex tone usually resembled the same neuron's response to a pure tone. In contrast, tones with a mistuned component elicited responses with distinctive, stereotypical temporal patterns that were not obviously related to the stimulus waveform. For a particular stimulus configuration, the discharge pattern was similar across neurons with different pure-tone frequency selectivity. A computational model that compared response envelopes across multiple narrow bands successfully reproduced the stereotypical response patterns elicited by different stimulus configurations. The results suggest that mistuning created a temporally synchronous distributed representation of the mistuned component that could be identified by higher auditory centers in the presence of the ongoing response produced by the remaining components, this kind of representation might facilitate the identification of individual sound sources in complex acoustic environments. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Arizona State Univ, Dept Speech & Hearing Sci, Tempe, AZ 85287 USA. RP Sinex, DG (reprint author), Arizona State Univ, Dept Speech & Hearing Sci, Box 871908, Tempe, AZ 85287 USA. CR BERG BG, 1990, J ACOUST SOC AM, V88, P149, DOI 10.1121/1.399962 Bregman AS., 1990, AUDITORY SCENE ANAL BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P705, DOI 10.1002/cne.901970410 Cai HM, 1998, J ACOUST SOC AM, V103, P475, DOI 10.1121/1.421100 CHAN JCK, 1987, J NEUROPHYSIOL, V58, P543 Chen GD, 1996, AUDIT NEUROSCI, V3, P179 Darwin C. J., 1995, P387, DOI 10.1016/B978-012505626-7/50013-3 deCharms RC, 1996, NATURE, V381, P610, DOI 10.1038/381610a0 Doherty KA, 1996, J ACOUST SOC AM, V99, P1053, DOI 10.1121/1.414634 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 Grothe B, 2000, CURR OPIN NEUROBIOL, V10, P467, DOI 10.1016/S0959-4388(00)00115-X HENKEL CK, 1983, J COMP NEUROL, V221, P416, DOI 10.1002/cne.902210405 HEWITT MJ, 1994, J ACOUST SOC AM, V95, P2145, DOI 10.1121/1.408676 HORST JW, 1986, J ACOUST SOC AM, V79, P398, DOI 10.1121/1.393528 KUWADA S, 1983, J NEUROPHYSIOL, V50, P981 Langner G, 1997, Acta Otolaryngol Suppl, V532, P68 LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799 MERZENIC.MM, 1974, BRAIN RES, V77, P397, DOI 10.1016/0006-8993(74)90630-1 MOORE BCJ, 1985, J ACOUST SOC AM, V77, P1853, DOI 10.1121/1.391936 MOORE BCJ, 1986, J ACOUST SOC AM, V80, P479, DOI 10.1121/1.394043 MOORE BCJ, 1985, J ACOUST SOC AM, V77, P1861, DOI 10.1121/1.391937 Nuding SC, 1999, HEARING RES, V131, P89, DOI 10.1016/S0378-5955(99)00023-4 OLIVER DL, 1991, NEUROBIOLOGY HEARING, V2, P195 Patterson R.D., 1992, AUDITORY PROCESSING, P67 Pena JL, 2001, SCIENCE, V292, P249, DOI 10.1126/science.1059201 ROSE JE, 1966, J NEUROPHYSIOL, V29, P288 ROTH GL, 1978, J COMP NEUROL, V182, P661, DOI 10.1002/cne.901820407 SAINTMARIE RL, 1990, BRAIN RES, V524, P244, DOI 10.1016/0006-8993(90)90698-B Shackleton TM, 2000, HEARING RES, V149, P199, DOI 10.1016/S0378-5955(00)00187-8 SINEX DG, 1983, J ACOUST SOC AM, V73, P602, DOI 10.1121/1.389007 SINEX DG, 1993, J ACOUST SOC AM, V94, P1351, DOI 10.1121/1.408163 Sinex DG, 2000, J ACOUST SOC AM, V107, P486, DOI 10.1121/1.428316 SINGER W, 1995, ANNU REV NEUROSCI, V18, P555, DOI 10.1146/annurev.neuro.18.1.555 Slaney M., 1994, AUDITORY TOOLBOX YIN TCT, 1983, J NEUROPHYSIOL, V50, P1020 YIN TCT, 1986, J NEUROPHYSIOL, V55, P280 YOST WA, 1991, HEARING RES, V56, P8, DOI 10.1016/0378-5955(91)90148-3 YOUNG ED, 1979, J ACOUST SOC AM, V66, P1381, DOI 10.1121/1.383532 NR 38 TC 28 Z9 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2002 VL 168 IS 1-2 BP 150 EP 162 DI 10.1016/S0378-5955(02)00366-0 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576GL UT WOS:000176994900014 PM 12117517 ER PT J AU Caspary, DM Palombi, PS Hughes, LF AF Caspary, DM Palombi, PS Hughes, LF TI GABAergic inputs shape responses to amplitude modulated stimuli in the inferior colliculus SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Symposium on the Inferior Colliculus CY MAY 20-25, 2001 CL SALAMANCA, SPAIN DE chinchilla; inferior colliculus; amplitude modulation; inhibition; gamma-aminobutyric acid ID DORSAL COCHLEAR NUCLEUS; LATERAL LEMNISCUS; AUDITORY-SYSTEM; GUINEA-PIG; BRAIN-STEM; GABA SHAPES; NEURONS; INHIBITION; RAT; GLYCINE AB The inferior colliculus (IC) is an important auditory processing center receiving inputs from lower brainstem nuclei, higher auditory and nonauditory structures, and contralateral IC. The IC, along with other auditory structures, is involved in coding information about the envelope of complex signals. Biologically relevant acoustic signals, including animal vocalizations and speech, are spectrally and temporally complex and display amplitude and frequency variations over time. Certain IC neurons respond selectively over a narrow range of modulation frequencies to sinusoidally amplitude modulated (SAM) stimuli. Responses to SAM stimuli can be measured in terms of discharge rate, with rate plotted against the modulation frequency to generate rate modulation transfer functions (rMTF). A role for the inhibitory neurotransmitter, gamma-aminobutyric acid (GABA), in shaping selective responses to SAM stimuli has been suggested. The present study examined the role of GABA in shaping responses to SAM stimuli in the IC of anesthetized chinchilla. Responses from 94 IC neurons were obtained before, during and after iontophoretic application of the GABA(A) receptor antagonist bicuculline methiodide. Complete responses to SAM stimuli were obtained from 55 extensively tested neurons, displaying band-pass (38) and low-pass rMTFs (17). For neurons showing band-pass rMTFs, GABAA receptor blockade selectively increased discharge rate at low modulation frequencies for 14 units, increased discharge near the best modulation frequency for 12 units. For neurons showing low-pass rMTFs, GABAA receptor blockade selectively increased discharge rate at low modulation frequencies for nine units. GABAA receptor blockade consistently reduced peak modulation gain, producing low-pass gain functions in a subset of IC neurons. In support of previous findings suggesting that selective temporal responses to SAM stimuli are coded in lower brainstem nuclei, temporal responses to SAM stimuli were relatively unaffected by GABAA receptor blockade. These findings support a role for GABA in shaping selective rate responses to SAM stimuli for a subset of chinchilla IC neurons. (C) 2002 Elsevier Science B.V. All rights reserved. C1 So Illinois Univ, Sch Med, Dept Pharmacol, Springfield, IL 62794 USA. RP Caspary, DM (reprint author), So Illinois Univ, Sch Med, Dept Pharmacol, 801 N Rutledge,POB 19629, Springfield, IL 62794 USA. CR ADAMS JC, 1984, BRAIN RES BULL, V13, P585, DOI 10.1016/0361-9230(84)90041-8 AITKIN L, 1994, EXP BRAIN RES, V98, P53 Backoff PM, 1999, HEARING RES, V134, P77, DOI 10.1016/S0378-5955(99)00071-4 BATRA R, 1989, J NEUROPHYSIOL, V61, P257 Burger RM, 1998, J NEUROPHYSIOL, V80, P1686 Caird D, 1991, NEUROBIOLOGY HEARING, P253 CASPARY DM, 1984, HEARING RES, V13, P113, DOI 10.1016/0378-5955(84)90102-3 CASPARY DM, 1994, J NEUROPHYSIOL, V72, P2124 CASPARY DM, 1987, BRAIN RES, V417, P273, DOI 10.1016/0006-8993(87)90452-5 COVEY E, 1991, J NEUROSCI, V11, P3456 FAINGOLD CL, 1989, BRAIN RES, V500, P302, DOI 10.1016/0006-8993(89)90326-0 FAINGOLD CL, 1993, HEARING RES, V69, P98, DOI 10.1016/0378-5955(93)90097-K FAYELUND H, 1985, ANAT EMBRYOL, V171, P1, DOI 10.1007/BF00319050 FRISINA RD, 1985, EXP BRAIN RES, V60, P417 FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y FRISINA RD, 1994, EXP BRAIN RES, V102, P160 FUJITA I, 1991, J NEUROSCI, V11, P722 Fuzessery ZM, 1996, J NEUROPHYSIOL, V76, P1059 Galazyuk AV, 2001, J NEUROSCI, V21, part. no. GLENDENNING KK, 1992, J COMP NEUROL, V319, P100, DOI 10.1002/cne.903190110 HALL JC, 1994, AM ZOOL, V34, P670 HAVEY DC, 1980, ELECTROEN CLIN NEURO, V48, P249, DOI 10.1016/0013-4694(80)90313-2 HELFERT RH, 1989, BRAIN RES, V501, P269, DOI 10.1016/0006-8993(89)90644-6 HIRONAKA T, 1990, MOL BRAIN RES, V7, P335, DOI 10.1016/0169-328X(90)90083-P HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 Irvine D. R. F., 1992, MAMMALIAN AUDITORY P, P153 Koch U, 1998, J NEUROPHYSIOL, V80, P71 Krishna BS, 2000, J NEUROPHYSIOL, V84, P255 LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799 LeBeau FEN, 1996, J NEUROPHYSIOL, V75, P902 LI L, 1992, J NEUROSCI, V12, P4530 MERCHAN MA, 1994, J COMP NEUROL, V342, P259, DOI 10.1002/cne.903420209 MOLLER AR, 1972, ACTA PHYSIOL SCAND, V86, P223, DOI 10.1111/j.1748-1716.1972.tb05328.x Moore DR, 1998, J NEUROPHYSIOL, V80, P2229 NISTRI A, 1983, NEUROSCI LETT, V39, P199, DOI 10.1016/0304-3940(83)90077-0 Oliver D. L., 1991, NEUROBIOLOGY HEARING, P195 OLIVER DL, 1994, J COMP NEUROL, V340, P27, DOI 10.1002/cne.903400104 PALOMBI PS, 1994, HEARING RES, V75, P175, DOI 10.1016/0378-5955(94)90068-X Palombi PS, 1996, J NEUROPHYSIOL, V75, P2211 PARK TJ, 1993, J NEUROSCI, V13, P2050 PARK TJ, 1993, J NEUROSCI, V13, P5172 POLLAK GD, 1993, HEARING RES, V65, P99, DOI 10.1016/0378-5955(93)90205-F REES A, 1987, HEARING RES, V27, P129, DOI 10.1016/0378-5955(87)90014-1 REES A, 1988, J ACOUST SOC AM, V83, P1488, DOI 10.1121/1.395904 REES A, 1989, J ACOUST SOC AM, V85, P1978, DOI 10.1121/1.397851 REIMER K, 1987, J COMP PHYSIOL A, V161, P305, DOI 10.1007/BF00615250 RHODE WS, 1994, J NEUROPHYSIOL, V71, P1797 ROBERTS RC, 1987, J COMP NEUROL, V258, P267, DOI 10.1002/cne.902580207 SALDANA E, 1992, J COMP NEUROL, V319, P417, DOI 10.1002/cne.903190308 Palombi PS, 2001, HEARING RES, V153, P174, DOI 10.1016/S0378-5955(00)00264-1 SHIRASAKI T, 1991, BRAIN RES, V561, P77, DOI 10.1016/0006-8993(91)90751-G SHNEIDERMAN A, 1993, J NEUROCHEM, V60, P72, DOI 10.1111/j.1471-4159.1993.tb05824.x SHNEIDERMAN A, 1989, J COMP NEUROL, V286, P28, DOI 10.1002/cne.902860103 SHNEIDERMAN A, 1988, J COMP NEUROL, V276, P188, DOI 10.1002/cne.902760204 SUZUKI S, 1990, J PHYSIOL-LONDON, V421, P645 THOMPSON GC, 1985, BRAIN RES, V339, P119, DOI 10.1016/0006-8993(85)90628-6 VATER M, 1992, J COMP PHYSIOL A, V171, P541 WATANABE T, 1973, JPN J PHYSIOL, V23, P291 YAMAUCHI R, 1989, NEUROSCI RES, V6, P446, DOI 10.1016/0168-0102(89)90006-0 YANG LC, 1992, J NEUROPHYSIOL, V68, P1760 NR 60 TC 54 Z9 54 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2002 VL 168 IS 1-2 BP 163 EP 173 DI 10.1016/S0378-5955(02)00363-5 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576GL UT WOS:000176994900015 PM 12117518 ER PT J AU Goldstein-Daruech, N Pedemonte, M Inderkum, A Velluti, RA AF Goldstein-Daruech, N Pedemonte, M Inderkum, A Velluti, RA TI Effects of excitatory amino acid antagonists on the activity of inferior colliculus neurons during sleep and wakefulness SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Symposium on the Inferior Colliculus CY MAY 20-25, 2001 CL SALAMANCA, SPAIN DE excitatory neurotransmitter; auditory system; N-methyl-D-aspartate; kynurenic acid; inferior colliculus; sleep; wakefulness; cortical stimulation ID AUDITORY-CORTEX; GUINEA-PIG; SOUND STIMULATION; RESPONSES; PROJECTIONS; POTENTIALS; MODULATION; THALAMUS; SIGNALS; WAKING AB The contribution of N-methyl-D-aspartate to the response to sound of guinea pig inferior colliculus neurons was analyzed by recording single-unit activity before and after iontophoretic injection of a receptor specific antagonist, 2-amino-5-phosphonovaleric acid (AP5), during the sleep-waking cycle. The AP5 produced a significant firing decrease in most of the units recorded, while some neurons exhibited a particular decrease in the later part of the response. A latency reduction in one out of three units in paradoxical sleep was observed. A low proportion of them exhibited a significant firing increase. These actions were observed in wakefulness (W) as well as during sleep phases. We compared the action of kynurenic acid (Kyn) and the electrical stimulation of the auditory cortex on the same inferior colliculus neuron in anesthetized animals and during W. Both Kyn iontophoresis and cortical stimulation evoked similar changes, decreased firing rate in most inferior colliculus units, whereas a low proportion of them increased their discharge, in anesthetized guinea pigs and in W. Ascending as well as descending - efferent - glutamatergic fibers impinging on inferior colliculus neurons contribute to sound-evoked responses. The enhanced unitary activity observed in some neurons with after glutamatergic receptor blocking may indicate that polysynaptic pathways involving inhibitory neurons decreased their activity. These effects were observed in anesthetized and in behaving animals. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Republica, Fac Med, Dept Fisiol, Montevideo 11800, Uruguay. RP Velluti, RA (reprint author), Univ Republica, Fac Med, Dept Fisiol, Av Gral Flores 2125, Montevideo 11800, Uruguay. CR Burger RM, 1998, J NEUROPHYSIOL, V80, P1686 Campbell K., 1992, SLEEP AROUSAL PERFOR, P89 CURTIS DR, 1961, J NEUROPHYSIOL, V24, P80 Edeline JM, 2000, J NEUROPHYSIOL, V84, P934 Faingold C.L., 1991, NEUROBIOLOGY HEARING, P223 FELDMAN DE, 1994, J NEUROSCI, V14, P5939 FELICIANO M, 1995, J NEUROCHEM, V65, P1348 FITZPATRICK KA, 1978, J COMP NEUROL, V177, P537, DOI 10.1002/cne.901770402 HALL RD, 1970, EXP BRAIN RES, V11, P93 HUTTENLOCHER PR, 1960, ELECTROEN CLIN NEURO, V12, P819, DOI 10.1016/0013-4694(60)90129-2 Jen PHS, 2001, EXP BRAIN RES, V137, P292 MITANI A, 1983, NEUROSCI LETT, V42, P185, DOI 10.1016/0304-3940(83)90404-4 MoralesCobas G, 1995, J SLEEP RES, V4, P242 PEDEMONTE M, 1994, ARCH ITAL BIOL, V132, P165 Pena JL, 1999, BRAIN RES, V816, P463, DOI 10.1016/S0006-8993(98)01194-9 PERIA JL, 1992, ARCH ITAL BIOL, V130, P179 REDIES H, 1989, J COMP NEUROL, V282, P473, DOI 10.1002/cne.902820402 Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O SALT TE, 1994, NMDA RECEPTOR, P243 SAUERLAN.EK, 1972, EXP NEUROL, V36, P79, DOI 10.1016/0014-4886(72)90137-9 SUN X, 1989, BRAIN RES, V495, P1, DOI 10.1016/0006-8993(89)91212-2 SYKA J, 1984, NEUROSCI LETT, V51, P235, DOI 10.1016/0304-3940(84)90557-3 Torterolo P, 1998, NEUROSCI LETT, V249, P172, DOI 10.1016/S0304-3940(98)00367-X VELLUTI R, 1989, HEARING RES, V39, P203, DOI 10.1016/0378-5955(89)90091-9 Velluti RA, 1997, J SLEEP RES, V6, P61 Velluti RA, 2000, BIOL SIGNAL RECEPT, V9, P297 Yan J, 1996, SCIENCE, V273, P1100, DOI 10.1126/science.273.5278.1100 Zhang HM, 2001, J NEUROPHYSIOL, V86, P871 NR 28 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2002 VL 168 IS 1-2 BP 174 EP 180 DI 10.1016/S0378-5955(02)00364-7 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576GL UT WOS:000176994900016 PM 12117519 ER PT J AU Winer, JA Chernock, ML Larue, DT Cheung, SW AF Winer, JA Chernock, ML Larue, DT Cheung, SW TI Descending projections to the inferior colliculus from the posterior thalamus and the auditory cortex in rat, cat, and monkey SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Symposium on the Inferior Colliculus CY MAY 20-25, 2001 CL SALAMANCA, SPAIN DE thalamotectal; posterior intralaminar system; substantia nigra; biotinylated dextran amine ID MEDIAL GENICULATE-BODY; TOPOGRAPHIC ORGANIZATION; RETICULAR-FORMATION; EXTERNAL NUCLEUS; LAYER-V; HORSERADISH-PEROXIDASE; CELLULAR ARCHITECTURE; EFFERENT PROJECTIONS; AUDIOGENIC-SEIZURES; NEURONS AB Projections from the posterior thalamus and medial geniculate body were labeled retrogradely with wheat germ agglutinin conjugated to horseradish peroxidase injected into the rat, cat, and squirrel monkey inferior colliculus. Neurons were found ipsilaterally in the (1) medial division of the medial geniculate body, (2) central gray, (3) posterior limitans nucleus, and the (4) reticular part of the substantia nigra. Bilateral projections involved the (5) peripeduncular/suprapeduncular nucleus, (6) subparafascicular and posterior intralaminar nuclei, (7) nucleus of the brachium of the inferior colliculus, (8) lateral tegmental/lateral mesencephalic areas, and (9) deep layers of the superior colliculus. The medial geniculate projection was concentrated in the caudal one-third of the thalamus; in contrast, the labeling in the subparafascicular nucleus, substantia nigra, and central gray continued much further rostrally. Robust anterograde labeling corresponded to known patterns of tectothalamic projection. Biotinylated dextran amine deposits in the rat inferior colliculus revealed that (1) many thalamotectal cells were elongated multipolar neurons with long, sparsely branched dendrites, resembling neurons in the posterior intralaminar system, and that other labeled cells were more typical of thalamic relay neurons; (2) some cells have reciprocal projections. Similar results were seen in the cat and squirrel monkey. The widespread origins of descending thalamic influences on the inferior colliculus may represent a phylogenetically ancient feedback system onto the acoustic tectum, one that predates the corticocollicular system and modulates nonauditory centers and brainstem autonomic nuclei. Besides their role in normal hearing such pathways may influence behaviors ranging from the startle reflex to the genesis of sound-induced seizures. (C) 2002 Published by Elsevier Science B.V. C1 Univ Calif Berkeley, Dept Mol & Cell Biol, Div Neurobiol, Berkeley, CA 94720 USA. Univ Calif San Francisco, Coleman Mem Lab, San Francisco, CA 94143 USA. Univ Calif San Francisco, Dept Otolaryngol, WM Keck Ctr Integrat Neurosci, San Francisco, CA 94143 USA. RP Winer, JA (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Div Neurobiol, Berkeley, CA 94720 USA. CR ACKERMANN H, 1991, NEUROSCI LETT, V127, P242, DOI 10.1016/0304-3940(91)90803-2 ADAMS JC, 1980, NEUROSCI LETT, V19, P1, DOI 10.1016/0304-3940(80)90246-3 Aitkin L., 1986, AUDITORY MIDBRAIN ST AITKIN LM, 1978, J NEUROPHYSIOL, V41, P837 AITKIN LM, 1981, J COMP NEUROL, V196, P25, DOI 10.1002/cne.901960104 AITKIN LM, 1973, J NEUROPHYSIOL, V36, P275 ANDERSEN RA, 1980, J COMP NEUROL, V191, P479, DOI 10.1002/cne.901910310 ARNAULT P, 1990, J COMP NEUROL, V302, P110, DOI 10.1002/cne.903020109 BASBAUM AI, 1987, J COMP NEUROL, V261, P306, DOI 10.1002/cne.902610211 Berman A.L., 1968, BRAIN STEM CAT CYTOA BEYERL BD, 1978, BRAIN RES, V145, P209, DOI 10.1016/0006-8993(78)90858-2 BINNS KE, 1995, DEV BRAIN RES, V85, P14, DOI 10.1016/0165-3806(94)00182-Y BRANDT HM, 1992, J NEUROSCI METH, V45, P35, DOI 10.1016/0165-0270(92)90041-B BURTON H, 1976, J COMP NEUROL, V168, P249, DOI 10.1002/cne.901680204 CALFORD MB, 1983, J NEUROSCI, V3, P2365 Campeau S, 2000, J COMP NEUROL, V423, P474 Campeau S, 1997, J NEUROSCI, V17, P5979 Carlson S, 1998, J NEUROPHYSIOL, V79, P2603 Casseday JH, 1996, BRAIN BEHAV EVOLUT, V47, P311, DOI 10.1159/000113249 CHAGNACAMITAL Y, 1990, J COMP NEUROL, V296, P598, DOI 10.1002/cne.902960407 COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204 DAVIS M, 1994, TRENDS NEUROSCI, V17, P208, DOI 10.1016/0166-2236(94)90106-6 Doron NN, 1999, J COMP NEUROL, V412, P383 Druga R, 1997, PHYSIOL RES, V46, P215 EDELINE JM, 1992, BEHAV NEUROSCI, V106, P81, DOI 10.1037//0735-7044.106.1.81 Emmers R., 1963, STEREOTAXIC ATLAS BR Endepols H, 1999, EUR J MORPHOL, V37, P182, DOI 10.1076/ejom.37.2.182.4753 FAINGOLD CL, 1994, BRAIN RES, V640, P40, DOI 10.1016/0006-8993(94)91855-4 FAYELUND H, 1985, ANAT EMBRYOL, V171, P1, DOI 10.1007/BF00319050 FAYELUND H, 1985, ANAT EMBRYOL, V173, P53, DOI 10.1007/BF00707304 FITZPATRICK KA, 1975, J COMP NEUROL, V164, P185, DOI 10.1002/cne.901640204 FITZPATRICK KA, 1978, J COMP NEUROL, V177, P537, DOI 10.1002/cne.901770402 Frisina RD, 1997, J ACOUST SOC AM, V101, P2741, DOI 10.1121/1.418562 FRISINA RD, 1989, J COMP NEUROL, V284, P85, DOI 10.1002/cne.902840107 GAMES KD, 1988, HEARING RES, V34, P1, DOI 10.1016/0378-5955(88)90047-0 GARCIACAIRASCO N, 1991, PHYSIOL BEHAV, V50, P421, DOI 10.1016/0031-9384(91)90089-7 Gergen J.A., 1962, STEREOTAXIC ATLAS SQ GUINAN JJ, 1972, INT J NEUROSCI, V4, P147 Hefti BJ, 2000, J NEUROPHYSIOL, V83, P2626 HERBERT H, 1991, J COMP NEUROL, V304, P103, DOI 10.1002/cne.903040108 HERKENHAM M, 1980, SCIENCE, V207, P532, DOI 10.1126/science.7352263 HERRERA M, 1994, ARCH ITAL BIOL, V132, P147 HERZOG J, 2000, J NEUROSCI METH, V191, P149 Huang CL, 2000, J COMP NEUROL, V427, P302, DOI 10.1002/1096-9861(20001113)427:2<302::AID-CNE10>3.0.CO;2-J HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 IMIG TJ, 1984, J COMP NEUROL, V227, P511, DOI 10.1002/cne.902270405 JANE JA, 1965, J COMP NEUROL, V125, P165, DOI 10.1002/cne.901250203 Jones EG, 1985, THALAMUS KELLY JP, 1981, BRAIN RES, V212, P1, DOI 10.1016/0006-8993(81)90027-5 Koch M, 1999, PROG NEUROBIOL, V59, P107, DOI 10.1016/S0301-0082(98)00098-7 Kuwabara N, 2000, BRAIN RES, V878, P79, DOI 10.1016/S0006-8993(00)02695-0 LEDOUX JE, 1987, J COMP NEUROL, V264, P123, DOI 10.1002/cne.902640110 LEDOUX JE, 1986, BRAIN RES, V371, P395, DOI 10.1016/0006-8993(86)90383-5 LEDOUX JE, 1985, J COMP NEUROL, V242, P182, DOI 10.1002/cne.902420204 LEDOUX JE, 1984, J NEUROSCI, V4, P683 LINGENHOHL K, 1994, J NEUROSCI, V14, P1176 LOVE JA, 1969, CAN J PHYSIOL PHARM, V47, P881 Mesulam M., 1982, TRACING NEURAL CONNE MOREST DK, 1964, J ANAT, V98, P611 OLAZABAL UE, 1989, J COMP NEUROL, V282, P98, DOI 10.1002/cne.902820108 OLIVER DL, 1984, J COMP NEUROL, V222, P237, DOI 10.1002/cne.902220207 Paxinos G., 1998, RAT BRAIN STEREOTAXI PAYDAR S, 1993, P SOC NEUROSCI, V19, P1426 RAMONMOL.E, 1966, J COMP NEUROL, V126, P311, DOI 10.1002/cne.901260301 ROSEN JB, 1991, BEHAV NEUROSCI, V105, P817, DOI 10.1037//0735-7044.105.6.817 Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O Schwartz I.R., 1992, Springer Handbook of Auditory Research, V1, P117 Seidenbecher T, 2001, EUR J NEUROSCI, V13, P1537, DOI 10.1046/j.0953-816x.2001.01537.x SENATOROV VV, 1999, P SOC NEUROSCI, V25, P1418 SHINONAGA Y, 1994, J COMP NEUROL, V340, P405, DOI 10.1002/cne.903400310 SOUSAPINTO A, 1975, BRAIN RES, V85, P331, DOI 10.1016/0006-8993(75)90091-8 SPREAFICO R, 1985, SOMATOSENS MOT RES, V3, P119 Sukov W, 2001, J NEUROPHYSIOL, V85, P1235 van der Want JJL, 1997, BRAIN RES PROTOC, V1, P269, DOI 10.1016/S1385-299X(96)00042-6 WILLARD FH, 1979, P SOC NEUROSCI, V5, P33 Winer JA, 1998, J COMP NEUROL, V400, P147 WINER JA, 1991, NEUROBIOLOGY HEARING, V2, P293 Winer JA, 1996, P NATL ACAD SCI USA, V93, P8005, DOI 10.1073/pnas.93.15.8005 WINER JA, 1983, J NEUROSCI, V3, P2629 WINER JA, 1988, J COMP NEUROL, V278, P47, DOI 10.1002/cne.902780104 Winer JA, 1999, HEARING RES, V130, P19, DOI 10.1016/S0378-5955(98)00216-0 Winer JA, 2001, J COMP NEUROL, V434, P379, DOI 10.1002/cne.1183 WINER JA, 1998, P SOC NEUROSCI, V24, P1881 WINER JA, 1988, J COMP NEUROL, V274, P422, DOI 10.1002/cne.902740310 YASUI Y, 1992, EXP BRAIN RES, V90, P508 YEOMANS JS, 1993, BRAIN RES, V617, P320, DOI 10.1016/0006-8993(93)91100-7 NR 86 TC 56 Z9 57 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2002 VL 168 IS 1-2 BP 181 EP 195 DI 10.1016/S0378-5955(02)00489-6 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576GL UT WOS:000176994900017 PM 12117520 ER PT J AU Jen, PHS Zhou, XM Zhang, JP Chen, QC Sun, XD AF Jen, PHS Zhou, XM Zhang, JP Chen, QC Sun, XD TI Brief and short-term corticofugal modulation of acoustic signal processing in the bat midbrain SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Symposium on the Inferior Colliculus CY MAY 20-25, 2001 CL SALAMANCA, SPAIN DE auditory cortex; bat; corticofugal modulation; facilitation; frequency tuning; inferior colliculus; inhibition ID BIG BROWN BAT; INFERIOR COLLICULAR NEURONS; EPTESICUS-FUSCUS; AUDITORY-CORTEX; CORTICAL ACTIVATION; FREQUENCY MAP; PROJECTIONS; RESPONSES; SYSTEM; CAT AB This article reviews our recent studies of brief and short-term corticofugal modulation of signal processing in the central nucleus of the inferior colliculus (ICc) by electrical stimulation in the primary auditory cortex (AC). When cortical electrical stimulation was synchronized with an acoustic stimulus, auditory responses of ICc neurons were either inhibited or facilitated and the modulative effect typically vanished within 5-10 s after the stimulation. When cortical electrical stimulation synchronized with an acoustic stimulus was repetitively delivered for 30 min, corticofugal modulation of collicular responses typically persisted up to 40 min after the stimulation. In the frequency domain, cortical electrical stimulation decreased the excitatory frequency tuning curves (FTCs) and asymmetrically increased the lateral inhibitory FTCs of corticofugally inhibited ICc neurons but produced the opposite effect on corticofugally facilitated ICc neurons. Cortical electrical stimulation facilitated auditory responses of neurons in the external nucleus of the inferior colliculus (ICx) while electrical stimulation in the ICx decreased auditory responses of ICc neurons. Auditory responses of simultaneously recorded ICx and ICc neurons varied in opposite ways during cortical electrical stimulation or drug application to recorded ICx neurons. In the amplitude domain, cortical electrical stimulation compressed rate-amplitude functions so as to increase the slope of rate-amplitude functions of ICc neurons. This modulative effect decreased with increasing stimulus amplitude. The possible biological relevance of these findings is discussed. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. RP Jen, PHS (reprint author), Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. CR ANDERSEN RA, 1980, J COMP NEUROL, V191, P479, DOI 10.1002/cne.901910310 COOPER MH, 1976, EXP NEUROL, V51, P488, DOI 10.1016/0014-4886(76)90272-7 DIAMOND IT, 1969, BRAIN RES, V15, P305, DOI 10.1016/0006-8993(69)90160-7 ERULKAR SD, 1972, PHYSIOL REV, V52, P237 FAYELUND H, 1985, ANAT EMBRYOL, V171, P1, DOI 10.1007/BF00319050 FAYELUND H, 1985, ANAT EMBRYOL, V173, P53, DOI 10.1007/BF00707304 FITZPATRICK KA, 1978, J COMP NEUROL, V177, P537, DOI 10.1002/cne.901770402 GAMES KD, 1988, HEARING RES, V34, P1, DOI 10.1016/0378-5955(88)90047-0 Gao E, 1998, P NATL ACAD SCI USA, V95, P12663, DOI 10.1073/pnas.95.21.12663 Gao EQ, 2000, P NATL ACAD SCI USA, V97, P8081, DOI 10.1073/pnas.97.14.8081 He JF, 1997, J NEUROPHYSIOL, V77, P896 HERBERT H, 1991, J COMP NEUROL, V304, P103, DOI 10.1002/cne.903040108 HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 Jen PHS, 1998, J COMP PHYSIOL A, V183, P683, DOI 10.1007/s003590050291 Jen PHS, 2000, BRAIN RES, V862, P127, DOI 10.1016/S0006-8993(00)02098-9 Jen PHS, 2001, EXP BRAIN RES, V137, P292 JEN PHS, 1999, BRAIN RES, V842, P184 MASSOPUST LC, 1962, EXP NEUROL, V6, P465, DOI 10.1016/0014-4886(62)90072-9 Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O Suga N., 1997, ENCY ACOUSTICS, P1409 Suga N, 1998, CENTRAL AUDITORY PROCESSING AND NEURAL MODELING, P55 Suga N, 1997, Trends Cogn Sci, V1, P13, DOI 10.1016/S1364-6613(97)01002-4 SUN X, 1989, BRAIN RES, V495, P1, DOI 10.1016/0006-8993(89)91212-2 Sun XD, 1996, NEUROSCI LETT, V212, P131, DOI 10.1016/0304-3940(96)12788-9 VILLA AEP, 1991, EXP BRAIN RES, V86, P506 Winer JA, 1998, J COMP NEUROL, V400, P147 Yan J, 1996, SCIENCE, V273, P1100, DOI 10.1126/science.273.5278.1100 Yan W, 1998, NAT NEUROSCI, V1, P54, DOI 10.1038/255 Zhang H, 1999, J COMP PHYSIOL A, V184, P85, DOI 10.1007/s003590050308 Zhang JP, 2000, J COMP PHYSIOL A, V186, P913, DOI 10.1007/s003590000142 Zhang YF, 1997, NATURE, V387, P900 Zhang YF, 1997, J NEUROPHYSIOL, V78, P3489 Zhang YF, 2000, J NEUROPHYSIOL, V84, P325 Zhou XM, 2000, BRAIN RES, V881, P62, DOI 10.1016/S0006-8993(00)02805-5 Zhou XM, 2000, J NEUROPHYSIOL, V84, P3083 NR 35 TC 19 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2002 VL 168 IS 1-2 BP 196 EP 207 DI 10.1016/S0378-5955(02)00358-1 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576GL UT WOS:000176994900018 PM 12117521 ER PT J AU Garcia-Cairasco, N AF Garcia-Cairasco, N TI A critical review on the participation of inferior colliculus in acoustic-motor and acoustic-limbic networks involved in the expression of acute and kindled audiogenic seizures SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Symposium on the Inferior Colliculus CY MAY 20-25, 2001 CL SALAMANCA, SPAIN DE inferior colliculus; audiogenic seizure; audiogenic kindling; neuroethology; acoustic midbrain; forebrain recruitment; sensorimotor integration; plasticity; Wistar audiogenic rat strain ID EPILEPSY-PRONE RAT; FEAR-POTENTIATED STARTLE; MAXIMAL ELECTROSHOCK MODEL; GAMMA-AMINOBUTYRIC ACID; DEEP PREPIRIFORM CORTEX; COCHLEAR ROOT NEURONS; C-FOS EXPRESSION; SUBSTANTIA-NIGRA; WISTAR RATS; SUPERIOR COLLICULUS AB The main goal of this article is to review the key role that the inferior colliculus plays in the expression of acoustic-motor and acoustic-limbic integration involved, respectively, in acute and chronic audiogenic seizures. In order to put this in context, we will review the behavioral characterization of acute and chronic audiogenic seizures, neuroanatomical substrates, neurochemistry, neuropharmacology, electrophysiology, as well as the cellular and molecular mechanisms involved in their expression. Secondly, we will also correlate our results, collected from audiogenic seizures susceptible rats, before and after the genetic selection of our own audiogenic susceptible strain, and from those sensitized by lesions or drug microinjections, with those pertinent from the international literature. In brief, genetic or sensitized animals express acute audiogenic seizures as a wild running behavior preceding the onset of tonic-clonic seizures. The latter can have several presentations including opistotonus and fore- and hindlimb tonic hyperextensions, followed by clonic convulsions of fore- and hindlimbs. Chronic (kindled) audiogenic seizures change this behavioral expression, with similar patterns such as those present in temporal lobe epileptic seizures, intermingled with the original audiogenic seizure pattern, which is known to be dependent on brainstem networks. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Sao Paulo, Ribeirao Preto Sch Med, Dept Physiol, Neurophysiol & Expt Neuroethol Lab, BR-14049900 Ribeirao Preto, SP, Brazil. RP Garcia-Cairasco, N (reprint author), Univ Sao Paulo, Ribeirao Preto Sch Med, Dept Physiol, Neurophysiol & Expt Neuroethol Lab, BR-14049900 Ribeirao Preto, SP, Brazil. CR Anisman H, 2000, EUR J NEUROSCI, V12, P4405, DOI 10.1046/j.0953-816X.2000.01216.x Babb T L, 1992, Epilepsy Res Suppl, V9, P193 BAGRI A, 1989, BRAZ J MED BIOL RES, V22, P1361 BAGRI A, 1991, PHARMACOL BIOCHEM BE, V39, P683, DOI 10.1016/0091-3057(91)90147-T BAGRI A, 1992, PHARMACOL BIOCHEM BE, V41, P727, DOI 10.1016/0091-3057(92)90219-6 Bauer CA, 2000, HEARING RES, V147, P175, DOI 10.1016/S0378-5955(00)00130-1 BONHAUS DW, 1986, J NEUROSCI, V6, P3024 BRANDAO ML, 1994, NEUROSCI BIOBEHAV R, V18, P339, DOI 10.1016/0149-7634(94)90047-7 BRANDAO ML, 1988, PHYSIOL BEHAV, V44, P361, DOI 10.1016/0031-9384(88)90038-8 Browning RA, 1999, EXP NEUROL, V155, P295, DOI 10.1006/exnr.1998.6981 CARDOSO SH, 1994, BEHAV BRAIN RES, V63, P17, DOI 10.1016/0166-4328(94)90046-9 CAVAZOS JE, 1991, J NEUROSCI, V11, P2795 Clough RW, 1997, EXP NEUROL, V146, P341, DOI 10.1006/exnr.1997.6531 COIMBRA NC, 1993, BEHAV BRAIN RES, V59, P131, DOI 10.1016/0166-4328(93)90159-N Coimbra NC, 1996, BRAIN RES, V736, P348, DOI 10.1016/S0006-8993(96)00928-6 DAILEY JW, 1989, EPILEPSY RES, V3, P3, DOI 10.1016/0920-1211(89)90063-6 DANSCHER G, 1981, HISTOCHEMISTRY, V71, P1, DOI 10.1007/BF00592566 DAVENPORT CJ, 1990, EXP NEUROL, V109, P180, DOI 10.1016/0014-4886(90)90072-Z DAVIS M, 1982, J NEUROSCI, V2, P791 DAVIS M, 1992, ANNU REV NEUROSCI, V15, P353, DOI 10.1146/annurev.ne.15.030192.002033 DEAN P, 1989, TRENDS NEUROSCI, V12, P137, DOI 10.1016/0166-2236(89)90052-0 DEPAULIS A, 1990, NEUROSCI LETT, V111, P269, DOI 10.1016/0304-3940(90)90273-C Deransart C, 2001, NEUROSCIENCE, V105, P203, DOI 10.1016/S0306-4522(01)00165-8 DORETTO MC, 1994, EPILEPSY RES, V17, P157, DOI 10.1016/0920-1211(94)90015-9 DORETTO MC, 1995, PHYSIOL BEHAV, V58, P273, DOI 10.1016/0031-9384(95)00050-S Eells JB, 2000, BRAIN RES BULL, V52, P379, DOI 10.1016/S0361-9230(00)00276-8 Eichenberger GCD, 2002, NEUROPHARMACOLOGY, V42, P48, DOI 10.1016/S0028-3908(01)00155-1 FAINGOLD CL, 1986, EXP NEUROL, V93, P145, DOI 10.1016/0014-4886(86)90154-8 FAINGOLD CL, 1991, DRUGS CONTROL EPILEP, P1 FAINGOLD CL, 1990, EXP NEUROL, V108, P55, DOI 10.1016/0014-4886(90)90007-F FAINGOLD CL, 1999, JASPERS BASIC MECH E, V79, P311 FAINGOLD CL, 1989, BRAIN RES, V500, P302, DOI 10.1016/0006-8993(89)90326-0 FAINGOLD CL, 1986, LIFE SCI, V39, P869, DOI 10.1016/0024-3205(86)90368-1 Falls WA, 1997, BEHAV NEUROSCI, V111, P855, DOI 10.1037/0735-7044.111.4.855 Fendt M, 1997, EUR J NEUROSCI, V9, P299, DOI 10.1111/j.1460-9568.1997.tb01400.x Ferland RJ, 1998, EPILEPSY RES, V30, P49, DOI 10.1016/S0920-1211(97)00093-4 FOLMER RL, 2001, HEAD NECK SURG, V124, P394 FOX JE, 1979, PHYSIOL BEHAV, V23, P291, DOI 10.1016/0031-9384(79)90370-6 FRANCK J E, 1987, Society for Neuroscience Abstracts, V13, P944 FRANCK JE, 1989, EPILEPSIA, V30, P1, DOI 10.1111/j.1528-1157.1989.tb05273.x FRYE GD, 1983, J PHARMACOL EXP THER, V227, P663 GALVISALONSO OY, 2000, SOC NEUR ABSTR, V26, P228 GARANT D, 1986, EUR J PHARMACOL, V124, P365, DOI 10.1016/0014-2999(86)90242-6 GARANT DS, 1987, EXP NEUROL, V97, P143, DOI 10.1016/0014-4886(87)90289-5 GARCIACAIRASCO N, 1992, BEHAV BRAIN RES, V48, P49, DOI 10.1016/S0166-4328(05)80138-X GARCIACAIRASCO N, 1990, EPILEPSIA, V31, P815 Garcia-Cairasco N., 1998, Society for Neuroscience Abstracts, V24, P1211 GARCIACAIRASCO N, 1994, NEUROREPORT, V5, P1853 Garcia-Cairasco N., 1996, Society for Neuroscience Abstracts, V22, P2092 Garcia-Cairasco N, 1998, PHYSIOL BEHAV, V64, P671, DOI 10.1016/S0031-9384(98)00129-2 GARCIACAIRASCO N, 1983, BRAZ J MED BIOL RES, V16, P171 GARCIACAIRASCO N, 1989, BEHAV BRAIN RES, V33, P65, DOI 10.1016/S0166-4328(89)80019-1 GARCIACAIRASCO N, 1991, PHYSIOL BEHAV, V50, P421, DOI 10.1016/0031-9384(91)90089-7 GarciaCairasco N, 1996, EPILEPSY RES, V26, P177, DOI 10.1016/S0920-1211(96)00050-2 GARCIACAIRASCO N, 1993, BEHAV BRAIN RES, V58, P57, DOI 10.1016/0166-4328(93)90090-D GarciaCairasco N, 1996, PHARMACOL BIOCHEM BE, V53, P503, DOI 10.1016/0091-3057(95)02040-3 GELOWITZ DL, 1999, J NEUROSCI, V19, P41 Glenn D W, 1980, Neurol Res, V2, P85 GODDARD GV, 1969, EXP NEUROL, V25, P295, DOI 10.1016/0014-4886(69)90128-9 GONZALEZ LP, 1984, BRAIN RES, V298, P163, DOI 10.1016/0006-8993(84)91162-4 Heldt S, 2000, BEHAV NEUROSCI, V114, P749, DOI 10.1037//0735-7044.114.4.719 HERRERA M, 1988, J ANAT, V158, P137 Hirsch E, 1997, NEUROSCIENCE, V77, P975, DOI 10.1016/S0306-4522(96)00503-9 HIRSCH E, 1992, EPILEPSY RES, V111, P59 HJERESEN DL, 1987, DEV PSYCHOBIOL, V20, P355, DOI 10.1002/dev.420200312 HOLMES GL, 1990, ANN NEUROL, V27, P24, DOI 10.1002/ana.410270106 IADAROLA MJ, 1982, SCIENCE, V218, P1237, DOI 10.1126/science.7146907 JASTREBOFF PJ, 1993, BRIT J AUDIOL, V27, P7, DOI 10.3109/03005369309077884 JASTREBOFF PJ, 1986, J ACOUST SOC AM, V80, P1384, DOI 10.1121/1.394391 Jastreboff PJ, 1996, AM J OTOL, V17, P236 JASTREBOFF PJ, 1994, AM J OTOL, V15, P19 JOBE PC, 1991, CRIT REV NEUROBIOL, V6, P183 JOBE PC, 1981, BIOCHEM PHARMACOL, V30, P3137, DOI 10.1016/0006-2952(81)90510-4 KESNER RP, 1966, EXP NEUROL, V15, P192, DOI 10.1016/0014-4886(66)90045-8 KIESMANN M, 1988, J NEURAL TRANSM, V72, P235, DOI 10.1007/BF01243422 KING PH, 1987, BRAIN RES, V423, P261, DOI 10.1016/0006-8993(87)90848-1 KRUSHINSKI LV, 1963, C INT CTR NATIONAL R, V112, P71 LASLEY SM, 1991, BRAIN RES, V701, P117 LEDOUX JE, 1990, J NEUROSCI, V10, P1043 Lee YL, 1996, J NEUROSCI, V16, P3775 LEITE JP, 1990, NEUROSCI BIOBEHAV R, V14, P511, DOI 10.1016/S0149-7634(05)80076-4 Lopez DE, 1999, J COMP NEUROL, V415, P160 MATHERN GW, 1999, EPILEPSIES ETIOLOGIE, P149, DOI 10.1016/B978-012422150-5/50021-4 MCCOWN TJ, 1987, EPILEPSIA, V28, P234, DOI 10.1111/j.1528-1157.1987.tb04213.x MCCOWN TJ, 1984, EXP NEUROL, V86, P527, DOI 10.1016/0014-4886(84)90087-6 MCCOWN TJ, 1991, BRAIN RES, V567, P25, DOI 10.1016/0006-8993(91)91431-Y MCCOWN TJ, 1991, EPILEPSY RES, V8, P21, DOI 10.1016/0920-1211(91)90032-B Melcher JR, 2000, J NEUROPHYSIOL, V83, P1058 MELLO L, 1992, PHYSIOL BEHAV, V51, P557 MIDDLESWORTH LV, 1980, ENDOCRINOLOGY, V106, P1686 MILLAN MH, 1986, EXP NEUROL, V91, P634, DOI 10.1016/0014-4886(86)90059-2 MILLAN MH, 1988, EXP NEUROL, V99, P687, DOI 10.1016/0014-4886(88)90185-9 Mirz F, 2000, Acta Otolaryngol Suppl, V543, P241 Moraes MFD, 2001, HEARING RES, V161, P35, DOI 10.1016/S0378-5955(01)00341-0 Moraes MFD, 2000, EPILEPSY RES, V39, P251 Moraes MFD, 2000, NEUROSCI LETT, V284, P13, DOI 10.1016/S0304-3940(00)00978-2 MORGAN JI, 1991, TRENDS PHARMACOL SCI, V12, P343, DOI 10.1016/0165-6147(91)90594-I Muhlnickel W, 1998, P NATL ACAD SCI USA, V95, P10340, DOI 10.1073/pnas.95.17.10340 NARITOKU DK, 1992, EXP NEUROL, V115, P317, DOI 10.1016/0014-4886(92)90197-X N'Gouemo P, 1998, NEUROSCIENCE, V84, P619, DOI 10.1016/S0306-4522(97)00551-4 N'Gouemo P, 1999, EPILEPSY RES, V35, P39, DOI 10.1016/S0920-1211(98)00128-4 OLAZABAL UE, 1989, J COMP NEUROL, V282, P98, DOI 10.1002/cne.902820108 PEIRSON MG, 1992, EPILEPSIA, V33, P23 PEREIRA NRR, 2000, EPILIPSIA, V4, P46 PETERSON GM, 1989, HIPPOCAMPUS, P438 PIERSON M, 1994, BRAIN RES, V636, P55, DOI 10.1016/0006-8993(94)90175-9 PIERSON M, 1992, MOL NEUROBIOLOGY E S, V9, P371 PIERSON MG, 1991, EPILEPSIA, V32, P1, DOI 10.1111/j.1528-1157.1991.tb05602.x PIERSON MG, 1988, HEARING RES, V32, P1, DOI 10.1016/0378-5955(88)90142-6 PIERSON MG, 1989, BRAIN RES, V486, P381, DOI 10.1016/0006-8993(89)90528-3 PIREDDA S, 1987, EPILEPSY RES, V1, P102, DOI 10.1016/0920-1211(87)90014-3 PLOTNIKOFF N, 1963, PSYCHOPHARMACOLOGIE REDGRAVE P, 1992, NEUROSCIENCE, V46, P379, DOI 10.1016/0306-4522(92)90059-B REDGRAVE P, 1992, NEUROSCIENCE, V46, P391, DOI 10.1016/0306-4522(92)90060-F RIBAK CE, 1993, EPILEPSY RES, V14, P105, DOI 10.1016/0920-1211(93)90015-Y RIBAK CE, 1988, EPILEPSY RES, V2, P9 Ribak CE, 1997, EPILEPSY RES, V26, P397, DOI 10.1016/S0920-1211(96)01011-X Ribak C E, 1994, J Hirnforsch, V35, P303 RIBAK C E, 1991, Epilepsia, V32, P46 RIBAK CE, 1990, EPILEPSIA, V31, P609 ROBERTS RC, 1985, BRAIN RES, V361, P324, DOI 10.1016/0006-8993(85)91303-4 Rosen JB, 1996, BEHAV NEUROSCI, V110, P43 Ross KC, 2000, NEUROSCI BIOBEHAV R, V24, P639, DOI 10.1016/S0149-7634(00)00029-4 Ross KC, 1999, DEV PSYCHOBIOL, V34, P303, DOI 10.1002/(SICI)1098-2302(199905)34:2<303::AID-DEV6>3.0.CO;2-X SAHIBZADA N, 1986, J NEUROSCI, V6, P723 Sakamoto T, 2001, BRAIN RES, V898, P358, DOI 10.1016/S0006-8993(01)02163-1 Simler S, 1999, EXP NEUROL, V157, P106, DOI 10.1006/exnr.1999.7036 SIMLER S, 1994, NEUROSCI LETT, V175, P58, DOI 10.1016/0304-3940(94)91077-4 SNYDERKELLER AM, 1992, NEUROSCI LETT, V135, P108, DOI 10.1016/0304-3940(92)90147-Y SUTULA T, 1988, SCIENCE, V239, P1147, DOI 10.1126/science.2449733 Sutula T, 1995, J NEUROSCI, V15, P8295 TERRA VC, 1992, BEHAV BRAIN RES, V52, P19, DOI 10.1016/S0166-4328(05)80321-3 TERRA VC, 1994, BEHAV BRAIN RES, V62, P29, DOI 10.1016/0166-4328(94)90035-3 TOKUNAGA A, 1984, J HIRNFORSCH, V25, P461 TOMAZ C, 1992, NEUROTRANSMITTER INTERACTIONS AND COGNITIVE FUNCTION, P240 TSUTSUI J, 1992, BEHAV BRAIN RES, V52, P7, DOI 10.1016/S0166-4328(05)80320-1 VERGNES M, 1987, INT J NEUROSCI, V36, P167, DOI 10.3109/00207458709058791 WAHNSCHAFFE U, 1990, NEUROSCI LETT, V113, P205, DOI 10.1016/0304-3940(90)90304-R WILLOTT JF, 1980, EXP NEUROL, V70, P288, DOI 10.1016/0014-4886(80)90028-X WISDEN W, 1992, J NEUROSCI, V12, P1040 ZHANG H, 1991, EPILEPSY RES, V8, P11, DOI 10.1016/0920-1211(91)90031-A NR 141 TC 47 Z9 47 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2002 VL 168 IS 1-2 BP 208 EP 222 DI 10.1016/S0378-5955(02)00371-4 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576GL UT WOS:000176994900019 PM 12117522 ER PT J AU Faingold, CL AF Faingold, CL TI Role of GABA abnormalities in the inferior colliculus pathophysiology - audiogenic seizures SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Symposium on the Inferior Colliculus CY MAY 20-25, 2001 CL SALAMANCA, SPAIN DE inferior colliculus; audiogenic seizure; gamma-aminobutyric acid; glutamate; inhibition ID GENETICALLY EPILEPSY-PRONE; GAMMA-AMINOBUTYRIC-ACID; PONTINE RETICULAR-FORMATION; EXCITANT AMINO-ACID; ETHANOL WITHDRAWAL SEIZURES; CEREBELLAR PURKINJE NEURONS; PERIAQUEDUCTAL GRAY NEURONS; SUBUNIT MESSENGER-RNAS; AUDITORY BRAIN-STEM; INDUCE C-FOS AB gamma-Aminobutyric acid (GABA), acting at GABA(A) receptors, mediates inhibition in inferior colliculus (IC) central nucleus (ICc) neurons and plays a prominent role in mediating acoustically evoked non-monotonicity, offset inhibition, and binaural inhibition, and is also important in tonic inhibition. The IC plays an important role in a number of pathophysiological conditions that involve hearing, including tinnitus, age-related hearing loss, and audiogenic seizures (AGS). AGS are a major form of rodent neurological disorder that can be genetically mediated and can also be readily induced in both young and mature animals. A deficit in GABA-mediated inhibition in IC neurons has been shown to be a critical mechanism in genetic and induced forms of AGS. Thus, both endogenously evoked GABA-mediated inhibition and exogenously applied GABA are reduced in efficacy in IC neurons of rats that are susceptible to AGS. GABA-mediated inhibition in IC neurons is significantly more easily blocked by a GABAA antagonist in genetic and induced forms of AGS in vivo and in vitro. AGS can be induced in normal animals by treatments that reduce the effectiveness of GABA in the IC. Glutamate-mediated excitation is a critical element of neurotransmission in IC neurons, and excessive activation of glutamate receptors in the IC is also strongly implicated as the other major mechanism in the pathophysiology of AGS. These neurotransmitter abnormalities result in excessive firing of ICc neurons that acts as the critical initiation mechanism for triggering seizures in response to intense acoustic stimuli. (C) 2002 Elsevier Science B.V. All rights reserved. C1 So Illinois Univ, Sch Med, Dept Pharmacol, Springfield, IL 62794 USA. RP Faingold, CL (reprint author), So Illinois Univ, Sch Med, Dept Pharmacol, POB 19629, Springfield, IL 62794 USA. CR Abe S, 2001, NEUROPSYCHOPHARMACOL, V25, P173, DOI 10.1016/S0893-133X(00)00250-5 Ahmed S, 2000, HOSP MED, V61, P793 AITKIN L, 1986, AUDITORY MEMBRANE ST Atkins AL, 2000, ALCOHOL CLIN EXP RES, V24, P1743, DOI 10.1111/j.1530-0277.2000.tb01976.x Bac P, 1998, J NEUROSCI, V18, P4363 Bagri A, 1999, THERAPIE, V54, P589 BAGRI A, 1992, PHARMACOL BIOCHEM BE, V41, P727, DOI 10.1016/0091-3057(92)90219-6 Bauer CA, 2000, HEARING RES, V147, P175, DOI 10.1016/S0378-5955(00)00130-1 BERREBI AS, 2001, INT S CENTR AUD SYST, P19 Bormann J, 2000, TRENDS PHARMACOL SCI, V21, P16, DOI 10.1016/S0165-6147(99)01413-3 Brailowsky S, 1999, ARCH MED RES, V30, P3, DOI 10.1016/S0188-0128(98)00013-X Brennan TJ, 1997, NAT GENET, V16, P387, DOI 10.1038/ng0897-387 BROWNING RA, 1986, LIFE SCI, V39, P857, DOI 10.1016/0024-3205(86)90367-X BROWNING RA, 1991, EXP NEUROL, V112, P200, DOI 10.1016/0014-4886(91)90070-S Browning R.A., 1994, IDIOPATHIC GEN EPILE, P399 BROWNING RA, 1985, EPILEPSIA, V26, P175, DOI 10.1111/j.1528-1157.1985.tb05402.x BUCK KJ, 1991, J NEUROCHEM, V57, P1452, DOI 10.1111/j.1471-4159.1991.tb08313.x Burger RM, 2001, J NEUROSCI, V21, P4830 Caicedo A, 1999, EUR J NEUROSCI, V11, P51, DOI 10.1046/j.1460-9568.1999.00410.x Caird D, 1991, NEUROBIOLOGY HEARING, P253 Caspary DM, 1999, NEUROSCIENCE, V93, P307, DOI 10.1016/S0306-4522(99)00121-9 Casseday JH, 2000, J NEUROPHYSIOL, V84, P1475 Chakravarty DN, 1998, BRAIN RES, V783, P102, DOI 10.1016/S0006-8993(97)01193-1 Chakravarty DN, 1997, BRAIN RES, V761, P263, DOI 10.1016/S0006-8993(97)00331-4 Chakravarty DN, 1996, EXP NEUROL, V141, P280, DOI 10.1006/exnr.1996.0162 CHAPMAN AG, 1986, J NEUROCHEM, V47, P314 Chen L, 2001, NEUROSCIENCE, V103, P1043, DOI 10.1016/S0306-4522(01)00036-7 Cherubini E, 2001, TRENDS NEUROSCI, V24, P155, DOI 10.1016/S0166-2236(00)01724-0 CHUNG SH, 1984, PROC R SOC SER B-BIO, V221, P145, DOI 10.1098/rspb.1984.0028 Clough RW, 1997, EXP NEUROL, V146, P341, DOI 10.1006/exnr.1997.6531 COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204 Covey E, 1999, ANNU REV PHYSIOL, V61, P457, DOI 10.1146/annurev.physiol.61.1.457 CURTIS DR, 1995, TRENDS NEUROSCI, V18, P263, DOI 10.1016/0166-2236(95)80005-M Dahchour A, 1999, ALCOHOL CLIN EXP RES, V23, P1698, DOI 10.1111/j.1530-0277.1999.tb04063.x DALKARA T, 1986, BRAIN RES, V366, P314, DOI 10.1016/0006-8993(86)91309-0 Davis KM, 2001, J BIOMED SCI, V8, P7, DOI 10.1007/BF02255966 Devaud LL, 1997, J NEUROCHEM, V69, P126 ECKARDT MJ, 1986, BRAIN RES, V366, P1, DOI 10.1016/0006-8993(86)91276-X Evans MS, 2000, ALCOHOL CLIN EXP RES, V24, P1180, DOI 10.1111/j.1530-0277.2000.tb02081.x EVANS MS, 1994, EPILEPSY RES, V18, P97, DOI 10.1016/0920-1211(94)90002-7 Faingold C, 1999, BRAIN RES, V821, P392, DOI 10.1016/S0006-8993(99)01101-4 Faingold C, 2000, BRAIN RES, V868, P287, DOI 10.1016/S0006-8993(00)02342-8 FAINGOLD CL, 1994, EXP NEUROL, V126, P225, DOI 10.1006/exnr.1994.1060 FAINGOLD CL, 1986, EXP NEUROL, V93, P145, DOI 10.1016/0014-4886(86)90154-8 FAINGOLD CL, 1989, EPILEPSY RES, V3, P199, DOI 10.1016/0920-1211(89)90024-7 FAINGOLD CL, 1992, EPILEPSY RES, V13, P95, DOI 10.1016/0920-1211(92)90064-Z FAINGOLD CL, 1991, HEARING RES, V52, P201, DOI 10.1016/0378-5955(91)90200-S FAINGOLD CL, 1994, BRAIN RES, V640, P40, DOI 10.1016/0006-8993(94)91855-4 Faingold CL, 1999, BRAIN RES, V815, P250, DOI 10.1016/S0006-8993(98)01136-6 FAINGOLD CL, 1993, EXP NEUROL, V119, P198, DOI 10.1006/exnr.1993.1021 FAINGOLD CL, 1989, HEARING RES, V40, P127, DOI 10.1016/0378-5955(89)90106-8 Faingold CL, 1998, PROG NEUROBIOL, V55, P509, DOI 10.1016/S0301-0082(98)00027-6 FAINGOLD CL, 1988, EXP NEUROL, V99, P678, DOI 10.1016/0014-4886(88)90184-7 Faingold CL, 1995, BRAIN RES, V704, P218, DOI 10.1016/0006-8993(95)01116-1 FAINGOLD CL, 1991, EXP NEUROL, V113, P354, DOI 10.1016/0014-4886(91)90026-9 FAINGOLD CL, 1989, BRAIN RES, V500, P302, DOI 10.1016/0006-8993(89)90326-0 Faingold C L, 1999, Adv Neurol, V79, P311 FAINGOLD CL, 1993, HEARING RES, V69, P98, DOI 10.1016/0378-5955(93)90097-K FAINGOLD CL, 1994, BRAIN RES, V663, P69, DOI 10.1016/0006-8993(94)90463-4 Faingold C.L., 1991, NEUROBIOLOGY HEARING, P223 Faingold CL, 1992, DRUGS CONTROL EPILEP, P277 FAINGOLD CL, 1995, EXP NEUROL, V132, P91, DOI 10.1016/0014-4886(95)90062-4 FAINGOLD CL, 1986, ELECTROEN CLIN NEURO, V63, P296, DOI 10.1016/0013-4694(86)90097-0 FELICIANO M, 1995, J NEUROCHEM, V65, P1348 FENG HJ, 2002, EXP NEUROL, V172, P477 Feng HJ, 2002, BRAIN RES, V932, P61, DOI 10.1016/S0006-8993(02)02282-5 FRYE GD, 1983, J PHARMACOL EXP THER, V227, P663 FULLER JL, 1967, J HERED, V58, P135 Fuzessery ZM, 1996, J NEUROPHYSIOL, V76, P1059 FYRE GD, 1986, J PHARMACOL EXP THER, V237, P478 Garcia-Cairasco N, 1998, PHYSIOL BEHAV, V64, P671, DOI 10.1016/S0031-9384(98)00129-2 GARCIACAIRASCO N, 1996, EPILEPSY RES, V26, P77 Gaza WC, 1997, BRAIN RES, V774, P175, DOI 10.1016/S0006-8993(97)81701-5 GOLDSMITH JD, 1995, HEARING RES, V83, P80, DOI 10.1016/0378-5955(94)00193-T GonzalezHernandez T, 1996, J COMP NEUROL, V372, P309, DOI 10.1002/(SICI)1096-9861(19960819)372:2<309::AID-CNE11>3.0.CO;2-E GOULD EM, 1991, J PHARMACOL EXP THER, V259, P1008 GOULD EM, 1995, BRAIN RES, V698, P62, DOI 10.1016/0006-8993(95)00813-6 Grobin AC, 2000, NEUROCHEM INT, V37, P453, DOI 10.1016/S0197-0186(00)00058-9 Harris RA, 1999, ALCOHOL CLIN EXP RES, V23, P1563, DOI 10.1097/00000374-199910000-00001 Helfert RH, 1999, J COMP NEUROL, V406, P285 Hirsch E, 1997, NEUROSCIENCE, V77, P975, DOI 10.1016/S0306-4522(96)00503-9 HOFFMAN PL, 1995, METAB BRAIN DIS, V10, P73, DOI 10.1007/BF01991784 Hosomi H, 1997, J NEUROPHYSIOL, V77, P994 *JAXM, JAXM DAT BAS PROD DE Jen PHS, 2000, BRAIN RES, V862, P127, DOI 10.1016/S0006-8993(00)02098-9 Jen PHS, 2001, EXP BRAIN RES, V137, P292 JOBE PC, 1973, J PHARMACOL EXP THER, V184, P1 Jobe PC, 1992, DRUGS CONTROL EPILEP, P253 Koob GF, 2000, ADDICTION, V95, pS73 Krnjevic K, 1997, CAN J PHYSIOL PHARM, V75, P439, DOI 10.1139/cjpp-75-5-439 KULESZA RJ, 2002, ASS RES OT ABSTR, V25, P111 Kulesza RJ, 2000, JARO, V1, P255, DOI 10.1007/s101620010054 Kwon J, 1997, EPILEPSY RES, V27, P89, DOI 10.1016/S0920-1211(97)01024-3 LASALLE GL, 1990, BRAIN RES, V518, P308 LASLEY SM, 1991, BRAIN RES, V560, P63, DOI 10.1016/0006-8993(91)91215-M LeBeau FEN, 1996, J NEUROPHYSIOL, V75, P902 Leinekugel X, 1999, Adv Neurol, V79, P189 Lewohl JM, 1999, NAT NEUROSCI, V2, P1084, DOI 10.1038/16012 LI L, 1992, J NEUROSCI, V12, P4530 LI Y, 1994, BRAIN RES, V660, P232, DOI 10.1016/0006-8993(94)91294-7 Li Y, 1999, HEARING RES, V137, P15, DOI 10.1016/S0378-5955(99)00129-X LI Y, 1997, DISS ABSTR INT B, V5902, P548 Liao WH, 2000, HEARING RES, V150, P12, DOI 10.1016/S0378-5955(00)00167-2 Loh EW, 2000, NEUROCHEM INT, V37, P413, DOI 10.1016/S0197-0186(00)00054-1 MAJCHROWICZ E, 1975, PSYCHOPHARMACOLOGIA, V43, P245, DOI 10.1007/BF00429258 MARESCAUX C, 1987, EXP NEUROL, V97, P160, DOI 10.1016/0014-4886(87)90290-1 Margineanu Doru Georg, 2000, Brain Research Bulletin, V51, P69, DOI 10.1016/S0361-9230(99)00209-9 MARIANOWSKI R, 1995, NEUROSCI LETT, V189, P190, DOI 10.1016/0304-3940(95)11454-5 McBride WJ, 1998, CRIT REV NEUROBIOL, V12, P339 MCCOWN TJ, 1995, BRAIN RES, V701, P117, DOI 10.1016/0006-8993(95)00970-X MCCOWN TJ, 1984, EXP NEUROL, V86, P527, DOI 10.1016/0014-4886(84)90087-6 MCCOWN TJ, 1993, ALCOHOL CLIN EXP RES, V17, P1290, DOI 10.1111/j.1530-0277.1993.tb05243.x MCCOWN TJ, 1991, BRAIN RES, V567, P25, DOI 10.1016/0006-8993(91)91431-Y McKernan RM, 1996, TRENDS NEUROSCI, V19, P139, DOI 10.1016/S0166-2236(96)80023-3 MHATRE MC, 1992, MOL PHARMACOL, V42, P415 Mihic S. J., 1996, PHARM TOXIC, P51 Mihic SJ, 1997, NATURE, V389, P385 MILLAN MH, 1986, EXP NEUROL, V91, P634, DOI 10.1016/0014-4886(86)90059-2 Miranda JD, 1997, J BIOL CHEM, V272, P16288, DOI 10.1074/jbc.272.26.16288 MIYAKAWA T, 1995, MOL BRAIN RES, V28, P349, DOI 10.1016/0169-328X(94)00251-9 Molnar LR, 2000, J PHARMACOL EXP THER, V295, P1258 Moore DR, 1998, J NEUROPHYSIOL, V80, P2229 NARITOKU DK, 1992, EXP NEUROL, V115, P317, DOI 10.1016/0014-4886(92)90197-X Nath C, 2001, PHARMACOL BIOCHEM BE, V68, P777, DOI 10.1016/S0091-3057(01)00477-4 NEHLIG A, 1995, J CEREBR BLOOD F MET, V15, P259 NEUMANN PE, 1991, P NATL ACAD SCI USA, V88, P5408, DOI 10.1073/pnas.88.12.5408 N'Gouemo P, 2000, BRAIN RES, V859, P311, DOI 10.1016/S0006-8993(00)01996-X N'Gouemo P, 1998, NEUROSCIENCE, V84, P619, DOI 10.1016/S0306-4522(97)00551-4 NGouemo P, 1996, BRAIN RES, V724, P200, DOI 10.1016/0006-8993(96)00304-6 NGouemo P, 1997, BRAIN RES, V761, P217, DOI 10.1016/S0006-8993(97)00322-3 N'Gouemo P, 1999, EPILEPSY RES, V35, P39, DOI 10.1016/S0920-1211(98)00128-4 NGouemo P, 1996, BRAIN RES, V710, P92, DOI 10.1016/0006-8993(95)01356-3 Oh S, 1999, NEUROCHEM RES, V24, P1603, DOI 10.1023/A:1021168519387 ONODERA K, 1992, METHOD FIND EXP CLIN, V14, P13 Palombi PS, 1996, HEARING RES, V100, P59, DOI 10.1016/0378-5955(96)00113-X Palombi PS, 1996, J NEUROPHYSIOL, V75, P2211 Parks TN, 2000, HEARING RES, V147, P77, DOI 10.1016/S0378-5955(00)00122-2 Pedemonte M, 1997, BRAIN RES, V759, P24, DOI 10.1016/S0006-8993(97)00123-6 Perkins KL, 1997, CAN J PHYSIOL PHARM, V75, P516, DOI 10.1139/cjpp-75-5-516 Pierson M, 1996, HEARING RES, V101, P7, DOI 10.1016/S0378-5955(96)00125-6 Pollak GD, 1997, ANN OTO RHINOL LARYN, V106, P44 REID HM, 1986, BEHAV NEURAL BIOL, V46, P424, DOI 10.1016/S0163-1047(86)90443-7 Reid KH, 1996, EPILEPSY RES, V23, P195, DOI 10.1016/0920-1211(95)00099-2 Reilly MT, 2000, NEUROCHEM INT, V37, P443, DOI 10.1016/S0197-0186(00)00055-3 RIAZ A, 1994, ALCOHOL CLIN EXP RES, V18, P1456, DOI 10.1111/j.1530-0277.1994.tb01450.x RIBAK CE, 1988, EPILEPSY RES, V2, P9 RIBAK CE, 1995, ANAT EMBRYOL, V191, P279, DOI 10.1007/BF00534681 Ribak CE, 1997, EPILEPSY RES, V26, P397, DOI 10.1016/S0920-1211(96)01011-X Ribak C E, 1994, J Hirnforsch, V35, P303 Robello M, 1999, BIOCHEM BIOPH RES CO, V266, P603, DOI 10.1006/bbrc.1999.1861 Ross KC, 2001, NEUROSCI LETT, V299, P234, DOI 10.1016/S0304-3940(01)01532-4 ROSSETTI ZL, 1995, EUR J PHARMACOL, V283, P177, DOI 10.1016/0014-2999(95)00344-K Rudolph U, 2001, TRENDS PHARMACOL SCI, V22, P188, DOI 10.1016/S0165-6147(00)01646-1 Russek SJ, 2000, P NATL ACAD SCI USA, V97, P8600, DOI 10.1073/pnas.97.15.8600 SaintMarie RL, 1996, J COMP NEUROL, V373, P255, DOI 10.1002/(SICI)1096-9861(19960916)373:2<255::AID-CNE8>3.0.CO;2-2 Sakamoto T, 2001, BRAIN RES, V898, P358, DOI 10.1016/S0006-8993(01)02163-1 SALDANA E, 1992, J COMP NEUROL, V319, P417, DOI 10.1002/cne.903190308 Samson HH, 2000, ALCOHOL CLIN EXP RES, V24, P766, DOI 10.1111/j.1530-0277.2000.tb02054.x Seyfried T N, 1999, Adv Neurol, V79, P279 Shan WS, 1997, CHINESE MED J-PEKING, V110, P579 Sieghart W, 2000, TRENDS PHARMACOL SCI, V21, P411, DOI 10.1016/S0165-6147(00)01564-9 Sigel E, 1997, TRENDS PHARMACOL SCI, V18, P425, DOI 10.1016/S0165-6147(97)01118-8 Simler S, 1999, EXP NEUROL, V157, P106, DOI 10.1006/exnr.1999.7036 SIMSON PE, 1991, J PHARMACOL EXP THER, V259, P1288 SIMSON PE, 1993, BRAIN RES, V607, P9, DOI 10.1016/0006-8993(93)91483-9 SMITH PH, 1992, J NEUROSCI, V12, P3700 Snell LD, 1996, MOL BRAIN RES, V40, P71 SNYDERKELLER AM, 1992, NEUROSCI LETT, V135, P108, DOI 10.1016/0304-3940(92)90147-Y Stanojlović O, 2000, Srp Arh Celok Lek, V128, P316 SUNEJA SK, 1995, J NEUROCHEM, V64, P161 Suneja SK, 2000, EXP NEUROL, V165, P355, DOI 10.1006/exnr.2000.7471 Szot P, 1999, J NEUROSCI, V19, P10985 TECOTT LH, 1995, NATURE, V374, P542, DOI 10.1038/374542a0 Tsai GC, 1998, ANNU REV MED, V49, P173 Tsai GCE, 1998, AM J PSYCHIAT, V155, P726 Vaughn MD, 1996, NEUROPHARMACOLOGY, V35, P1761, DOI 10.1016/S0028-3908(96)00143-8 Waagepetersen HS, 1999, J NEUROCHEM, V73, P1335, DOI 10.1046/j.1471-4159.1999.0731335.x WADA JA, 1970, ELECTROEN CLIN NEURO, V28, P100 Wagner T, 1996, EUR J NEUROSCI, V8, P1231, DOI 10.1111/j.1460-9568.1996.tb01291.x Wan FJ, 1996, P NATL ACAD SCI USA, V93, P5049, DOI 10.1073/pnas.93.10.5049 Xiao X, 1997, BRAIN RES, V756, P76, DOI 10.1016/S0006-8993(97)00120-0 Yang L, 2001, EXP NEUROL, V171, P147, DOI 10.1006/exnr.2001.7733 Yang XH, 2000, ALCOHOL CLIN EXP RES, V24, P682, DOI 10.1111/j.1530-0277.2000.tb02040.x Yasuda S, 2000, EXP NEUROL, V164, P396, DOI 10.1006/exnr.2000.7401 Yechikhov S, 2001, EPILEPSY RES, V46, P15, DOI 10.1016/S0920-1211(01)00255-8 Zhang HM, 2001, J NEUROPHYSIOL, V86, P871 Zhong Y, 1997, BRIT J PHARMACOL, V121, P1392, DOI 10.1038/sj.bjp.0701269 NR 187 TC 56 Z9 62 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2002 VL 168 IS 1-2 BP 223 EP 237 DI 10.1016/S0378-5955(02)00373-8 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576GL UT WOS:000176994900020 PM 12117523 ER PT J AU Wang, JA Ding, DL Salvi, RJ AF Wang, JA Ding, DL Salvi, RJ TI Functional reorganization in chinchilla inferior colliculus associated with chronic and acute cochlear damage SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Symposium on the Inferior Colliculus CY MAY 20-25, 2001 CL SALAMANCA, SPAIN DE plasticity; inner hair cell; acoustic trauma; chinchilla; inhibition; inferior colliculus ID HAIR CELL LOSS; STEM AUDITORY NUCLEI; EAR OSSICLE REMOVAL; BRAIN-STEM; RESPONSE PROPERTIES; ACOUSTIC TRAUMA; TUNING CURVES; UNILATERAL COCHLEAR; EVOKED-POTENTIALS; DISCHARGE RATE AB This paper describes some of the unexpected functional changes that occur in the inferior colliculus (IC) following noise- and drug-induced cochlear pathology. A striking example of this is the compensation that is seen in IC responsiveness after drug-induced selective inner hair cell (IHC) loss. Despite a massive reduction in the compound action potential (CAP) caused by partial IHC loss, the evoked potential amplitude from the IC shows little or no reduction. Acoustic trauma, which impairs cochlear sensitivity and tuning, also reduces the CAP amplitude. Despite this reduced neural input, IC amplitude sometimes increases at a faster than normal rate and the response amplitude is enhanced at frequencies below the hearing loss. Single unit recordings suggest the IC enhancement phenomenon may be due to the loss of lateral inhibition. After an acute traumatizing exposure to a tone located above the characteristic frequency (CF), approximately 50% of IC neurons show a significant increase in their spike rate, a significant expansion of the low frequency tail of the tuning curve and a significant improvement in sensitivity in the tail of the tuning curve. These changes suggest that IC neurons receive inhibition from a high frequency side band and that this inhibition is diminished by acoustic trauma above CF. To determine if side band inhibition was locally mediated, specific antagonist(s) to inhibitory neurotransmitters were applied and found to produce effects similar to acoustic trauma. The results suggest that lesioned-induced central auditory plasticity could contribute to several symptoms associated with sensorineural hearing loss such as loudness recruitment, tinnitus and poor speech discrimination in noise. (C) 2002 Elsevier Science B.V. All rights reserved. C1 SUNY Buffalo, Hearing Res Lab, Buffalo, NY 14210 USA. RP Salvi, RJ (reprint author), SUNY Buffalo, Hearing Res Lab, 215 Parker Hall, Buffalo, NY 14210 USA. EM salvi@buffalo.edu CR Arckens L, 2000, EUR J NEUROSCI, V12, P4222, DOI 10.1046/j.0953-816X.2000.01328.x AREHOLE S, 1987, HEARING RES, V27, P19 ATHERLEY GR, 1968, J ACOUST SOC AM, V44, P1503, DOI 10.1121/1.1911288 Benson CG, 1997, SYNAPSE, V25, P243 Bilak M, 1997, EXP NEUROL, V147, P256, DOI 10.1006/exnr.1997.6636 BOETTCHER FA, 1993, J ACOUST SOC AM, V94, P2123, DOI 10.1121/1.407484 BOHNE BA, 1973, ANN OTO RHINOL LARYN, V82, P595 CALFORD MB, 1988, NATURE, V332, P446, DOI 10.1038/332446a0 CHEN CS, 1983, AUDITORY PSYCHOBIOLO, P426 CHINO YM, 1992, VISION RES, V32, P789, DOI 10.1016/0042-6989(92)90021-A DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 DeBello WM, 2001, J NEUROSCI, V21, P3161 DOSTROVSKY JO, 1976, EXP NEUROL, V52, P480, DOI 10.1016/0014-4886(76)90219-3 Eldredge D H, 1973, Adv Otorhinolaryngol, V20, P64 EVANS EF, 1973, EXP BRAIN RES, V17, P402 FAINGOLD CL, 1991, HEARING RES, V52, P201, DOI 10.1016/0378-5955(91)90200-S FELDMAN DE, 1994, J NEUROSCI, V14, P5939 GERKEN G, 1986, BASIC APPL ASPECTS N, P195 Gonzalez-Lima F, 1990, Neuroreport, V1, P161, DOI 10.1097/00001756-199010000-00019 Harrison RV, 2001, SCAND AUDIOL S, V53, P8 Hofstetter P, 1997, AUDIOLOGY, V36, P301 Horvath M, 1997, J COMP NEUROL, V382, P104, DOI 10.1002/(SICI)1096-9861(19970526)382:1<104::AID-CNE7>3.0.CO;2-5 JEANBAPTISTE M, 1975, J COMP NEUROL, V162, P111, DOI 10.1002/cne.901620107 Kim JN, 1997, HEARING RES, V103, P169, DOI 10.1016/S0378-5955(96)00173-6 Ma XF, 2001, J NEUROPHYSIOL, V85, P1078 McFadden SL, 1998, HEARING RES, V120, P121, DOI 10.1016/S0378-5955(98)00052-5 Milbrandt JC, 2000, HEARING RES, V147, P251, DOI 10.1016/S0378-5955(00)00135-0 Milbrandt JC, 1996, NEUROSCIENCE, V73, P449, DOI 10.1016/0306-4522(96)00050-4 MOORE DR, 1994, J COMP NEUROL, V339, P301, DOI 10.1002/cne.903390209 MOORE MJ, 1983, J NEUROSCI, V3, P237 MOREST DK, 1982, NEW PERSPECTIVES NOI, P87 Morest DK, 1997, HEARING RES, V103, P151, DOI 10.1016/S0378-5955(96)00172-4 Palombi PS, 1996, J NEUROPHYSIOL, V75, P2211 Potashner SJ, 1997, EXP NEUROL, V148, P222, DOI 10.1006/exnr.1997.6641 QUI CX, 2000, HEARING RES, V139, P153 RYAN A, 1975, NATURE, V253, P44, DOI 10.1038/253044a0 RYAN A, 1979, J ACOUST SOC AM, V66, P370, DOI 10.1121/1.383194 SALVI RJ, 1982, AM J OTOLARYNG, V3, P408, DOI 10.1016/S0196-0709(82)80018-5 SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U Salvi RJ, 1996, P 5 INT TINN SEM POR, P457 SALVI RJ, 1992, NOISE INDUCED HEARIN, P156 SALVI RJ, 1978, EXP BRAIN RES, V32, P301 SALVI RJ, 1979, HEARING RES, V1, P237, DOI 10.1016/0378-5955(79)90017-0 SCHMIEDT RA, 1980, J NEUROPHYSIOL, V43, P1367 SIE KCY, 1992, J COMP NEUROL, V320, P501, DOI 10.1002/cne.903200407 Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812 Suneja SK, 1998, EXP NEUROL, V154, P473, DOI 10.1006/exnr.1998.6946 SZCZEPANIAK WS, 1995, NEUROSCI LETT, V196, P77, DOI 10.1016/0304-3940(95)11851-M TAKENO S, 1994, HEARING RES, V75, P93, DOI 10.1016/0378-5955(94)90060-4 Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 URBAN GP, 1979, EXP NEUROL, V63, P229, DOI 10.1016/0014-4886(79)90120-1 Wake M, 1996, ACTA OTO-LARYNGOL, V116, P714, DOI 10.3109/00016489609137912 WAKE M, 1993, J LARYNGOL OTOL, V107, P585, DOI 10.1017/S0022215100123771 Wang J, 2000, NEUROREPORT, V11, P1137, DOI 10.1097/00001756-200004070-00045 WANG J, 1997, CHIN J OTORHINOLARYN, V32, P218 Wang J, 1996, J NEUROPHYSIOL, V75, P171 Wang J, 1997, HEARING RES, V107, P67, DOI 10.1016/S0378-5955(97)00020-8 Willott JF, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P297 WILLOTT JF, 1988, HEARING RES, V37, P15, DOI 10.1016/0378-5955(88)90074-3 WILLOTT JF, 1986, J NEUROPHYSIOL, V57, P391 WILLOTT JF, 1994, BEHAV NEUROSCI, V108, P703, DOI 10.1037/0735-7044.108.4.703 WILLOTT JF, 1984, BRAIN RES, V309, P159, DOI 10.1016/0006-8993(84)91022-9 WILLOTT JF, 1982, SCIENCE, V216, P1331, DOI 10.1126/science.7079767 WILLOTT JF, 1974, J COMP PHYSIOL PSYCH, V86, P1, DOI 10.1037/h0035922 YANG LC, 1992, J NEUROPHYSIOL, V68, P1760 YOUNG ED, 1982, HEARING RES, V6, P153, DOI 10.1016/0378-5955(82)90051-X ZENG FG, 1991, Q J EXP PSYCHOL-A, V43, P565 NR 67 TC 63 Z9 72 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2002 VL 168 IS 1-2 BP 238 EP 249 DI 10.1016/S0378-5955(02)00360-X PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576GL UT WOS:000176994900021 PM 12117524 ER PT J AU Stenfelt, S Hakansson, B AF Stenfelt, S Hakansson, B TI Air versus bone conduction: an equal loudness investigation SO HEARING RESEARCH LA English DT Article DE bone conduction; loudness estimation; acoustic reflex ID ANCHORED HEARING-AID; SKULL IN-VIVO; OTOACOUSTIC EMISSIONS; PERCEPTION; IMPEDANCE; SOUND AB Air conduction (AC) versus bone conduction (BC) loudness balance testing was conducted at frequencies of 0.25, 0.5, 0.75, 1, 2, and 4 kHz for two groups: 23 normal hearing subjects and eight subjects with a mild to moderate pure sensorineural hearing loss. Narrow-band noise was presented interchangeably between earphones and a bone transducer fitted to the subjects. Loudness matching was carried out at each frequency and at the levels 30-80 dB hearing level (HL) (10 dB steps) in the following manner: the sound pressure from the earphones was fixed and the subject adjusted the output level of the bone transducer for equal loudness by bracketing the standard. The results revealed somewhat different loudness functions for AC and BC sound with a 6-10 dB difference in the AC and BC loudness functions for the normal hearing group over the dynamic range 30-80 dB HL at the frequencies 250-750 Hz. At the higher frequencies, 1-4 kHz, the difference was only 4-5 dB over the same dynamic range. Similar results were obtained for the sensorineural hearing-impaired group. The difference between the AC and the BC loudness functions may originate from changes with level of the AC sound path, e.g. contraction of the stapedius muscle, but also distortion from the bone transducer and tactile stimulation could have contributed to the results seen. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Chalmers Univ Technol, Dept Signals & Syst, SE-41296 Gothenburg, Sweden. RP Stenfelt, S (reprint author), Chalmers Univ Technol, Dept Signals & Syst, SE-41296 Gothenburg, Sweden. RI Stenfelt, Stefan/J-9363-2013 OI Stenfelt, Stefan/0000-0003-3350-8997 CR BARANY E, 1938, ACTA OTOLARYNGOL S, V26 Bekesy G., 1960, EXPT HEARING Brinkmann K., 1983, Audiologische Akustik, V22 Buus S, 1997, J ACOUST SOC AM, V101, P669, DOI 10.1121/1.417959 CARLSSON P, 1995, J ACOUST SOC AM, V97, P1124, DOI 10.1121/1.412225 Carlsson PU, 1997, EAR HEARING, V18, P34, DOI 10.1097/00003446-199702000-00004 CORLISS ELR, 1955, J ACOUST SOC AM, V27, P1164, DOI 10.1121/1.1908150 Fletcher H, 1933, J ACOUST SOC AM, V5, P82, DOI 10.1121/1.1915637 Florentine M, 1998, J ACOUST SOC AM, V104, P999, DOI 10.1121/1.423314 FLOTTORP G, 1971, J ACOUST SOC AM, V49, P457, DOI 10.1121/1.1912373 FLOTTORP G, 1976, J ACOUST SOC AM, V59, P899, DOI 10.1121/1.380949 Hakansson B, 1996, J ACOUST SOC AM, V99, P2239 HAKANSSON B, 1986, J ACOUST SOC AM, V80, P1065 HAKANSSON B, 1994, J ACOUST SOC AM, V95, P1474 HAKANSSON B, 1989, SCAND AUDIOL, V18, P91, DOI 10.3109/01050398909070728 Hayes D E, 1998, J Am Acad Audiol, V9, P59 Keidser G, 2000, J ACOUST SOC AM, V107, P3351, DOI 10.1121/1.429406 KHALIL TB, 1979, J SOUND VIB, V63, P351, DOI 10.1016/0022-460X(79)90679-5 KHANNA SM, 1996, MIDDLE EAR MECH RES, P21 KHANNA SM, 1976, J ACOUST SOC AM, V60, P139, DOI 10.1121/1.381081 KIRIKAE I, 1959, ACTA OTOLARYNGOL S, V145 LENHARDT ML, 1991, SCIENCE, V253, P82, DOI 10.1126/science.2063208 MAULDIN L, 1979, ARCH OTOLARYNGOL, V105, P656 Merchant SN, 1996, HEARING RES, V97, P30 NEUMAN J, 1996, AUDIOL NEURO-OTOL, V1, P354 NOLAN M, 1981, J LARYNGOL OTOL, V95, P597, DOI 10.1017/S0022215100091155 NORTHERN JL, 1994, HDB CLIN AUDIOLOGY, P300 Purcell D, 1999, EAR HEARING, V20, P375, DOI 10.1097/00003446-199910000-00001 Purcell D, 1998, EAR HEARING, V19, P362, DOI 10.1097/00003446-199810000-00003 Rossi G, 1988, Scand Audiol Suppl, V29, P1 SCHARF B, 1969, J ACOUST SOC AM, V45, P1193, DOI 10.1121/1.1911590 SCHARF B, 1959, J ACOUST SOC AM, V31, P365, DOI 10.1121/1.1907725 Schratzenstaller B, 2000, ORL J OTO-RHINO-LARY, V62, P1, DOI 10.1159/000027707 SMITH JB, 1976, J SOUND VIB, V48, P35, DOI 10.1016/0022-460X(76)90369-2 SNIK AFM, 1995, OTOLARYNG CLIN N AM, V28, P73 Stenfelt S, 2000, SCAND AUDIOL, V29, P175, DOI 10.1080/010503900750042743 Stenfelt SPY, 1999, SCAND AUDIOL, V28, P190, DOI 10.1080/010503999424761 Stevens S. S., 1975, PSYCHOPHYSICS INTRO STEVENS SS, 1956, J ACOUST SOC AM, V28, P807, DOI 10.1121/1.1908487 Tjellstrom A, 2001, OTOLARYNG CLIN N AM, V34, P337, DOI 10.1016/S0030-6665(05)70335-2 TONNDORF J, 1966, ACTA OTOLARYNGOL S, V213 TONNDORF J, 1962, J ACOUST SOC AM, V34, P1127, DOI 10.1121/1.1918259 TONNDORF J, 1957, J ACOUST SOC AM, V29, P558, DOI 10.1121/1.1908965 von Bekesy G, 1932, ANN PHYS-BERLIN, V13, P111 VONBEKESY G, 1955, J ACOUST SOC AM, V27, P137 WEVER EG, 1936, ANN OTO RHINOL LARYN, V45, P822 Wever EG, 1954, PHYSL ACOUSTICS ZWISLOCKI J, 1953, J ACOUST SOC AM, V25, P986, DOI 10.1121/1.1907231 NR 48 TC 19 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2002 VL 167 IS 1-2 BP 1 EP 12 DI 10.1016/S0378-5955(01)00407-5 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 575XZ UT WOS:000176974900001 PM 12117525 ER PT J AU Nizami, L AF Nizami, L TI Estimating auditory neuronal dynamic range using a fitted function SO HEARING RESEARCH LA English DT Article DE dynamic range; afferent; slope; rate-level; firing rate ID RATE-INTENSITY-FUNCTIONS; BASILAR-MEMBRANE NONLINEARITY; CROSSED OLIVOCOCHLEAR BUNDLE; COCHLEAR NERVE-FIBERS; RATE-LEVEL FUNCTIONS; RATE RESPONSES; SOUND; NOISE; CATS; DISCRIMINATION AB To obtain the dynamic range of an auditory afferent, the neuron's firing rate is plotted versus stimulus level, and the dynamic range is taken as the difference between the threshold for evoked firing, and the level at which firing rate saturates. Those dynamic range endpoints are typically defined in terms of the neuron's spontaneous firing rate and its maximum firing rate, according to a plurality of schemes, each of which depends on user-chosen sets of numerical criteria. The dynamic ranges predicted by some of these schemes are compared for the first time, and the resulting estimates can differ by a factor of 2. A step can be taken towards standardizing the measurement of neuronal dynamic range, if dynamic range is incorporated into a rate-level function as a parameter. To build this function, it is first assumed that the neuron's rate-level response reaches half its maximum at a level halfway between the threshold and the level at saturation, i.e. at threshold plus half the dynamic range. Then the firing rates at threshold and at threshold plus dynamic range are defined according to the most popular of the endpoint schemes. The resulting equation produces credible estimates of neuronal properties when fitted, and correctly predicts the behavior of the slope of the empirical rate-level plot [McGee, 1983. M.S. thesis, Creighton University; Ohlemiller et al., 1991. J. Acoust. Soc. Am. 90, 274-287]. Thus, despite not being deterministic, the new equation has remarkable predictive power. When two of the rate-level functions are added and weighted, the resulting equation fits sloping-saturating data better than any functions presently employed. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Boys Town Natl Res Hosp, Omaha, NE 68131 USA. RP Nizami, L (reprint author), Boys Town Natl Res Hosp, 555 N 30th St, Omaha, NE 68131 USA. CR ADAMS WB, 1971, J GEN PHYSIOL, V58, P562, DOI 10.1085/jgp.58.5.562 AITKIN L, 1991, J NEUROPHYSIOL, V65, P383 Delgutte B, 1987, PSYCHOPHYSICS SPEECH, P333 EATOCK RA, 1991, J NEUROPHYSIOL, V65, P1580 EVANS EF, 1980, EXP BRAIN RES, V40, P115 GEISLER CD, 1974, J NEUROPHYSIOL, V37, P1156 GOLDSTEIN JL, 1974, SENSATION MEASUREMEN, P223 Heil P, 2001, J NEUROSCI, V21, P7404 HILL KG, 1980, J COMP PHYSIOL, V141, P39 Imaizumi K, 2001, J ACOUST SOC AM, V109, P1247, DOI 10.1121/1.1348004 Koppl C, 1999, J NEUROSCI, V19, P9674 LACHS G, 1984, IEEE T SYST MAN CYB, V14, P819 LAWRENCE M, 1965, COLD SPRING HARB SYM, V30, P159 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 LICKLIDER JCR, 1966, HDB EXPT PSYCHOL, P985 MAY BJ, 1992, J NEUROPHYSIOL, V68, P1589 MCGEE JD, 1983, THESIS CREIGHTON U Nizami L, 1997, MATH BIOSCI, V141, P1, DOI 10.1016/S0025-5564(96)00153-8 NIZAMI L, 2001, ABSTR ARO, V24, P102 NIZAMI L, 2001, J ACOUST SOC AM, V109, P2349 NOMOTO M, 1980, JPN J PHYSIOL, V30, P31 OHLEMILLER KK, 1991, J ACOUST SOC AM, V90, P274, DOI 10.1121/1.401298 PALMER AR, 1979, HEARING MECHANISMS S, P19 Plontke SKR, 1999, BRAIN RES, V842, P262, DOI 10.1016/S0006-8993(99)01897-1 RICHTER CP, 1995, HEARING RES, V83, P19, DOI 10.1016/0378-5955(94)00186-T ROEDER KD, 1974, J INSECT PHYSIOL, V20, P55, DOI 10.1016/0022-1910(74)90123-1 Romer H, 1998, J COMP PHYSIOL A, V182, P595, DOI 10.1007/s003590050206 RUGGERO MA, 1973, J NEUROPHYSIOL, V36, P569 SACHS MB, 1989, HEARING RES, V41, P61, DOI 10.1016/0378-5955(89)90179-2 Sachs M.B., 1980, P323 SACHS MB, 1974, J ACOUST SOC AM, V56, P1835, DOI 10.1121/1.1903521 SCHALK TB, 1980, J ACOUST SOC AM, V67, P903, DOI 10.1121/1.383970 SMITH RL, 1980, BRAIN RES, V184, P499, DOI 10.1016/0006-8993(80)90817-3 SUGA N, 1961, JPN J PHYSIOL, V11, P666 SURLYKKE A, 1984, J EXP BIOL, V113, P323 Temchin A. N., 1992, Society for Neuroscience Abstracts, V18, P1190 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P966, DOI 10.1121/1.1912235 WINSLOW RL, 1988, HEARING RES, V35, P165, DOI 10.1016/0378-5955(88)90116-5 WINTER IM, 1990, HEARING RES, V45, P191, DOI 10.1016/0378-5955(90)90120-E Yates GK, 2000, J ACOUST SOC AM, V107, P2143, DOI 10.1121/1.428496 YATES GK, 1990, HEARING RES, V45, P203, DOI 10.1016/0378-5955(90)90121-5 YATES GK, 1990, HEARING RES, V50, P145, DOI 10.1016/0378-5955(90)90041-M 1986, WEBSTERS 9 NEW COLLE NR 43 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2002 VL 167 IS 1-2 BP 13 EP 27 DI 10.1016/S0378-5955(02)00293-9 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 575XZ UT WOS:000176974900002 PM 12117526 ER PT J AU Job, A Nottet, JB AF Job, A Nottet, JB TI DPOAEs in young normal-hearing subjects with histories of otitis media: evidence of sub-clinical impairments SO HEARING RESEARCH LA English DT Article DE otitis media; noise induced hearing loss; distortion product otoacoustic emission; otoscopy; childhood infection; cochlea; middle ear ID PRODUCT OTOACOUSTIC EMISSIONS; MIDDLE-EAR; TINNITUS; UTILITY AB To investigate the origin of the susceptibility to noise in subjects with histories of otitis media (OM), we assessed early subclinical impairments in normally hearing subjects with a history of OM using distortion product otoacoustic emissions (DPOAEs). DPOAEs of 213 normal-hearing subjects aged 18-24 years were obtained and comparisons of DPOAE levels in several groups as a function of OM past infections were tested by ANOVA. A main finding was that young normal-hearing subjects with a history of OM had significantly lower DPOAEs over all octaves tested compared to normal-hearing subjects without antecedent of OM. The mean difference was 3.5+/-1.1 dB in the 2-4 kHz zone, which was especially marked in subjects (n=21) that had undergone a myringotomy (6.6+/-1.5 dB) in the 4 kHz zone. The level of impairment seemed to depend on the severity of the past infection as characterised by the importance and the duration of the infectious effusions. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Serv Sante Armees, Ctr Rech, F-38702 La Tronche, France. Hop Instruct Armees Desgenettes, Serv ORL, F-69275 Lyon 03, France. RP Job, A (reprint author), Serv Sante Armees, Ctr Rech, 24 Ave Maquis Gresivaudan,POB 87, F-38702 La Tronche, France. RI JOB, Agnes/L-3158-2014 OI JOB, Agnes/0000-0001-6764-284X CR CHERYCROZE S, 1994, BRIT J AUDIOL, V28, P13, DOI 10.3109/03005369409077909 Demaria TF, 1999, ACTA OTO-LARYNGOL, V119, P583, DOI 10.1080/00016489950180838 Gorga MP, 1996, J ACOUST SOC AM, V100, P968, DOI 10.1121/1.416208 Gorga MP, 1997, EAR HEARING, V18, P440, DOI 10.1097/00003446-199712000-00003 HARRIS FP, 1990, J SPEECH HEAR RES, V33, P594 Hellstrom S, 1997, ANN NY ACAD SCI, V830, P110, DOI 10.1111/j.1749-6632.1997.tb51883.x Ichimiya I, 1999, HEARING RES, V131, P128, DOI 10.1016/S0378-5955(99)00025-8 Job A, 1999, LANCET, V353, P35, DOI 10.1016/S0140-6736(98)04216-0 Job A, 2000, REV EPIDEMIOL SANTE, V48, P227 KEMP DT, 1990, EAR HEARING, V11, P93 LONSBURYMARTIN BL, 1990, EAR HEARING, V11, P144 MARGOLIS RH, 2002, OTOACOUSTIC EMISSION PLINKERT PK, 1994, EUR ARCH OTO-RHINO-L, V251, P95 PROBST R, 1990, AM J OTOLARYNG, V11, P236, DOI 10.1016/0196-0709(90)90083-8 SCHACHERN PA, 1992, ARCH OTOLARYNGOL, V118, P53 Shiomi Y, 1997, HEARING RES, V108, P83, DOI 10.1016/S0378-5955(97)00043-9 Stover L, 1996, J ACOUST SOC AM, V100, P956, DOI 10.1121/1.416207 Ueda H, 1998, HEARING RES, V122, P41, DOI 10.1016/S0378-5955(98)00084-7 VONBEKESY G, 1960, EXPT HEARING, P81 NR 19 TC 15 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2002 VL 167 IS 1-2 BP 28 EP 32 DI 10.1016/S0378-5955(02)00330-1 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 575XZ UT WOS:000176974900003 PM 12117527 ER PT J AU Werner, YL Igic, PG AF Werner, YL Igic, PG TI The middle ear of gekkonoid lizards: interspecific variation of structure in relation to body size and to auditory sensitivity SO HEARING RESEARCH LA English DT Article DE reptilia; Gekkonoidea; middle ear; structure and function; variation; allometry ID TRANSMISSION; AMPHIBIANS; REPTILES; GECKO AB Wishing to assess the effects of the dimensions of the middle ear on the auditory sensitivity of gekkonoid lizards, we measured middle ear components in preserved geckos, which in life had yielded 'cochlear microphonics' audiograms. We examined two to seven specimens of 14 species. The measures of middle ear elements varied relative to head or body length similarly within species and among species. The areas of the external ear opening, tympanic membrane, and columellar footplate, and the ratio between the last two ('hydraulic lever'), were correlated with animal length. The hydraulic and mechanical (extracolumellar) lever ratios appeared to complement each other, the former being emphasized in large animals, the latter in small animals. The apparent auditory sensitivity correlated with the sizes of the animal, head and external ear opening, and negatively (insignificantly) correlated with the mechanical lever ratio. The correlation of sensitivity with the hydraulic lever was insignificant, perhaps due to a 'tympanic membrane lever' (catenary effect). The most sensitive frequency negatively correlated with the area of the external ear opening, the area of the tympanic membrane, and with the level of greatest sensitivity. It was positively correlated with the relative length of the cartilaginous portion of the ossicular chain. However, the number of hair cells in the basilar papilla, too, is known to correlate with animal size. Moreover, the least sensitive species were not only the smallest species, they were also the species known to lack a zone of unidirectional hair cells in the basilar papilla. Hence the apparent sensitivity hypothetically depends on both middle ear dimensions and summation of inner ear output. This hypothesis requires verification by other methods. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Hebrew Univ Jerusalem, Dept Evolut Systemat & Ecol, IL-91904 Jerusalem, Israel. Univ Chicago, Pritzker Sch Med, Chicago, IL 60637 USA. RP Werner, YL (reprint author), Hebrew Univ Jerusalem, Dept Evolut Systemat & Ecol, IL-91904 Jerusalem, Israel. CR AVILA-PIRES T. C. S., 1995, ZOOLOGISCHE VERHANDE Bauer A. M., 1998, ENCY REPTILES AMPHIB, P126 CHEVERUD JM, 1982, AM J PHYS ANTHROPOL, V59, P139, DOI 10.1002/ajpa.1330590204 Dooling R.J., 1980, P261 DOOLING RJ, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P545 Emerson SB, 1993, SKULL, V3, P384 Frankenberg Eliezer, 1992, Acta Zoologica Lilloana, V41, P45 GOREN M, 1993, J ZOOL, V230, P187 HAMILTON DW, 1964, J MORPHOL, V115, P255, DOI 10.1002/jmor.1051150209 Henson Jr O. W., 1974, HDB SENSORY PHYSIOLO, P39 HETHERINGTON TE, 1992, BRAIN BEHAV EVOLUT, V39, P133, DOI 10.1159/000114111 HETHERINGTON TE, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P421 Jaslow A.P., 1988, P69 JOHNSTONE BM, 2001, HERPETOL NAT HIST, V80, P49 Kastle W., 1964, Zeitschrift fuer Tierpsychologie, V21, P486 KHANNA SM, 1969, ARCH KLIN EXP OHR, V193, P78, DOI 10.1007/BF00417239 KOPPL C, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P489 KOPPL C, 1995, HEARING RES, V82, P14 LOFTUS-HILLS J J, 1973, Australian Journal of Zoology, V21, P353, DOI 10.1071/ZO9730353 LOFTUSHI.JJ, 1970, J ACOUST SOC AM, V47, P1131, DOI 10.1121/1.1912015 Manley G. A., 1990, PERIPHERAL HEARING M MANLEY GA, 1981, PROGR SENSORY PHYSL, V2, P49 MANLEY GA, 1972, J COMP PHYSIOL, V81, P251, DOI 10.1007/BF00693630 MANLEY GA, 1989, COCHLEAR MECH STRUCT, P143 MARCELLINI D, 1977, AM ZOOL, V17, P251 MARTEN K, 1977, BEHAV ECOL SOCIOBIOL, V2, P271, DOI 10.1007/BF00299740 Miller M.R., 1980, P169 MILLER MR, 1985, J COMP NEUROL, V232, P1, DOI 10.1002/cne.902320102 MILLER MR, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P463 MILLER MR, 1973, Z ZELLFORSCH MIK ANA, V136, P307, DOI 10.1007/BF00307037 MILLER MALCOLM R., 1966, PROC CALIF AC AD SCI, V33, P255 MILLS R, 1994, J ROY SOC MED, V87, P155 MOFFAT AJM, 1978, J COMP PHYSIOL, V127, P97 NIELSEN DW, 1983, AUDIOLOGY, V22, P530 NUMMELA S, 1995, HEARING RES, V85, P18, DOI 10.1016/0378-5955(95)00030-8 PENNA M, 1983, CAN J ZOOL, V61, P2369 Reiss M. J., 1989, ALLOMETRY GROWTH REP ROSOWSKI JJ, 1988, ABS ASS RES OTOLARYN, V12, P55 Saunders J. C., 2000, COMP HEARING BIRDS R, P13 SAUNDERS JC, 1972, ACTA OTO-LARYNGOL, V73, P353, DOI 10.3109/00016487209138952 Sokal R, 1995, BIOMETRY, V3rd Starck J M, 1995, Adv Anat Embryol Cell Biol, V131, P1 STORR G. M., 1963, J ROY SOC WESTERN AUSTRALIA, V46, P85 TONNDORF J, 1970, ANN OTO RHINOL LARYN, V79, P743 Turner R.G., 1980, P205 VERSLUYS J, 1998, ZOOL JB ABT ANAT, V12, P106 WERNER YI, 1976, J EXP ZOOL, V195, P319, DOI 10.1002/jez.1401950302 WERNER YL, 1991, J ZOOL, V225, P647 WERNER YL, 1972, J EXP ZOOL, V179, P1, DOI 10.1002/jez.1401790102 WERNER YL, 1971, SYST ZOOL, V20, P249, DOI 10.2307/2412063 Werner Y. L., 1994, Journal of Morphology, V220, P410 WERNER Y L, 1989, Annales de la Societe Royale Zoologique de Belgique, V119, P101 WERNER Y L, 1972, Journal of Herpetology, V6, P147, DOI 10.2307/1562767 WERNER YL, 1995, ISRAEL J ZOOL, V41, P106 WERNER YL, 1983, HEARING OTHER SENSES, P149 Werner Y. L., 1997, Journal of Morphology, V232, P339 Werner YL, 1998, J EXP BIOL, V201, P487 WERNER YL, 2001, IN PRESS HERPETOL NA, V80 WEVER EG, 1978, REPTILE EAR WEVER E G, 1973, Journal of Herpetology, V7, P323, DOI 10.2307/1562866 WEVER EG, 1974, J MORPHOL, V143, P121, DOI 10.1002/jmor.1051430202 Wever EG, 1985, AMPHIBIAN EAR WEVER EG, 1965, SCIENCE, V150, P1172, DOI 10.1126/science.150.3700.1172 WEVER EG, 1970, J EXP ZOOL, V175, P327, DOI 10.1002/jez.1401750307 WILEY RH, 1978, BEHAV ECOL SOCIOBIOL, V3, P69, DOI 10.1007/BF00300047 ZAHNERT T, 1997, MIDDLE EAR MECH RES, P214 NR 66 TC 12 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2002 VL 167 IS 1-2 BP 33 EP 45 DI 10.1016/S0378-5955(02)00331-3 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 575XZ UT WOS:000176974900004 PM 12117528 ER PT J AU Londero, A Bonfils, P Avan, P AF Londero, A Bonfils, P Avan, P TI Magnitudes and phases of human distortion-product otoacoustic emissions at 2f(1)-f(2) against f(2)/f(1): effects of an audiometric notch SO HEARING RESEARCH LA English DT Article DE otoacoustic emission; distortion; cochlear dysfunction; group delay ID IMPAIRED EARS; HUMAN ADULTS; SOUND; MODEL; DEPENDENCE; GENERATION; AMPLITUDE; RESPONSES; PRESSURE; RATIO AB The influence of the frequency ratio f(2)/f(1) of two pure-tone stimuli on the distortion-product otoacoustic emissions (DPOAEs) at 2f(1)-f(2) was assessed in 14 hearing-impaired human ears exhibiting a narrow audiometric notch at 4 kHz, whereas 11 normally hearing ears served as controls. A fixed-f(2) paradigm was used, with f(2) values varying from 2 to 8 kHz in 1-kHz steps. The intensities of the two stimuli were either 60 or 70 dB SPL. The magnitudes and phases of DPOAEs were extracted so that the bandpass filter-like profile of DPOAE magnitude against f(2)/f(1) (f(2)/f(1) magnitude function) could be characterized by the presence and position of its maximum, and DPOAE group delays were derived from the phase gradient of the DPOAE when f(1) varied. The main difference between normal and impaired ears occurred at 4 kHz in that, in contrast with normal ears, nine impaired ears out of 14 did not present any peak in their f(2)/f(1) magnitude function, while the remaining five ears only differed from normal ones by a slightly shifted maximum toward larger f(2)/f(1)s. Group delays were significantly shortened in all impaired ears, with a tendency to be shorter in the subset of ears with flat DPOAE magnitude profiles with f(2)/f(1). No clear effect of notch depth was observed, and with the chosen stimulus characteristics, no abnormal DPOAE result was observed whenever f(2) fell outside the audiometric notch. It is concluded that DPOAE group delays apparently provide useful objective clues of cochlear dysfunction, more sensitive than DPOAE magnitudes inasmuch as many of them remained near the normal range. Although a majority of f(2)/f(1) magnitude functions were clearly flattened when f(2) was impaired, this feature was less systematic. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Auvergne, Sch Med, Lab Sensory Biophys, F-63001 Clermont Ferrand, France. Univ Paris 05, Sch Med Necker Enfants Malad, ENT Dept, Paris, France. Univ Paris 05, Sch Med Necker Enfants Malad, Format Associee Claude Bernard, Auditory Res Lab, Paris, France. Univ Paris 05, Sch Med Necker Enfants Malad, CNRS, UPRESSA 7060, Paris, France. RP Avan, P (reprint author), Univ Auvergne, Sch Med, Lab Sensory Biophys, POB 38, F-63001 Clermont Ferrand, France. CR Abdala C, 1996, J ACOUST SOC AM, V100, P3726, DOI 10.1121/1.417234 Allen J. B, 1990, USER MANUAL CUBDIS D ALLEN JB, 1993, J ACOUST SOC AM, V94, P809, DOI 10.1121/1.408182 Avan P, 1998, EUR J NEUROSCI, V10, P1764, DOI 10.1046/j.1460-9568.1998.00188.x Bowman DM, 1998, HEARING RES, V119, P14, DOI 10.1016/S0378-5955(98)00041-0 BROWN AM, 1992, P ROY SOC B-BIOL SCI, V250, P29, DOI 10.1098/rspb.1992.0126 BROWN AM, 1993, J ACOUST SOC AM, V93, P3298, DOI 10.1121/1.405714 BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 GOLDSTEI.JL, 1967, J ACOUST SOC AM, V41, P676, DOI 10.1121/1.1910396 HARRIS FP, 1989, J ACOUST SOC AM, V85, P220, DOI 10.1121/1.397728 Harris M., 1992, ADV EC THEORY, V2, P64 Kanis LJ, 1997, J ACOUST SOC AM, V101, P1527, DOI 10.1121/1.418173 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KIM DO, 1980, J ACOUST SOC AM, V67, P1704, DOI 10.1121/1.384297 KIMBERLEY BP, 1993, J ACOUST SOC AM, V94, P1343, DOI 10.1121/1.408162 Le Calvez S, 1998, HEARING RES, V120, P51, DOI 10.1016/S0378-5955(98)00051-3 Lukashkin AN, 2001, J ACOUST SOC AM, V110, P3097, DOI 10.1121/1.1417525 MAHONEY CFO, 1995, J ACOUST SOC AM, V97, P3721 MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9 Moulin A, 1996, J ACOUST SOC AM, V100, P1640, DOI 10.1121/1.416064 Moulin A, 1996, J ACOUST SOC AM, V100, P1617, DOI 10.1121/1.416063 Patuzzi R, 1998, HEARING RES, V125, P39, DOI 10.1016/S0378-5955(98)00127-0 PATUZZI RB, 1989, HEARING RES, V42, P47, DOI 10.1016/0378-5955(89)90117-2 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 Shera CA, 2000, J ACOUST SOC AM, V108, P2933, DOI 10.1121/1.1323234 Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 Stover LJ, 1999, J ACOUST SOC AM, V106, P2669, DOI 10.1121/1.428097 Talmadge CL, 1999, J ACOUST SOC AM, V105, P275, DOI 10.1121/1.424584 WHITEHEAD ML, 1995, J ACOUST SOC AM, V97, P2359, DOI 10.1121/1.411960 Whitehead ML, 1996, J ACOUST SOC AM, V100, P1663, DOI 10.1121/1.416065 NR 30 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2002 VL 167 IS 1-2 BP 46 EP 56 DI 10.1016/S0378-5955(02)00332-5 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 575XZ UT WOS:000176974900005 PM 12117529 ER PT J AU Galvan, VV Chen, J Weinberger, NM AF Galvan, VV Chen, J Weinberger, NM TI Differential thresholds of local field potentials and unit discharges in rat auditory cortex SO HEARING RESEARCH LA English DT Article DE tone stimulation; frequency tuning; synaptic potentials ID EVOKED-POTENTIALS; FREQUENCY; RECORDINGS; NEOCORTEX AB Thresholds for responses to tone bursts in the primary auditory field of pentobarbital-anesthetized rat are significantly lower for local field potentials (5.60 dB+/-1.76 S.E.M.) than for multiple unit discharges (17.80 dB+/-3.17), recorded simultaneously from the same microelectrode. The characteristic frequencies (CFs) of local field potentials provide a good 'predictive' estimate of unit CFs at their higher thresholds. The findings are consistent with the view that local field potentials in the auditory cortex reflect summed synaptic potentials rather than cellular discharges. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Calif Irvine, Dept Neurobiol & Behav, Irvine, CA 92697 USA. Univ Calif Irvine, Ctr Neurobiol Learning & Memory, Qureshey Res Lab 309, Irvine, CA 92697 USA. RP Weinberger, NM (reprint author), Univ Calif Irvine, Dept Neurobiol & Behav, Irvine, CA 92697 USA. CR ARONIADOU VA, 1993, J NEUROPHYSIOL, V70, P1553 BARTH DS, 1990, J NEUROPHYSIOL, V64, P1527 CREUTZFE.OD, 1966, ELECTROEN CLIN NEURO, V20, P19, DOI 10.1016/0013-4694(66)90137-4 DI S, 1993, BRAIN RES, V630, P303, DOI 10.1016/0006-8993(93)90670-I Eggermont JJ, 1996, AUDIT NEUROSCI, V2, P79 EGGERMONT JJ, 1995, J NEUROPHYSIOL, V73, P227 Galvan VV, 2001, JARO, V2, P199 GALVAN VV, 1997, SOC NEUR ABSTR, V27, P1035 KONIG N, 1972, BRAIN RES, V36, P469, DOI 10.1016/0006-8993(72)90757-3 METHERATE R, 1993, SYNAPSE, V14, P132, DOI 10.1002/syn.890140206 MITZDORF U, 1985, PHYSIOL REV, V65, P37 NICOLL RA, 1972, J PHYSIOL-LONDON, V223, P803 Ohl FW, 2000, J PHYSIOLOGY-PARIS, V94, P549, DOI 10.1016/S0928-4257(00)01091-3 SALLY SL, 1988, J NEUROPHYSIOL, V59, P1627 South DA, 1995, BRAIN RES, V704, P275, DOI 10.1016/0006-8993(95)01134-X Tunturi AR, 1944, AM J PHYSIOL, V141, P0397 WOLPAW JR, 1979, ELECTROEN CLIN NEURO, V47, P372, DOI 10.1016/0013-4694(79)90288-8 Woolsey CN, 1942, B JOHNS HOPKINS HOSP, V71, P315 NR 18 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2002 VL 167 IS 1-2 BP 57 EP 60 DI 10.1016/S0378-5955(02)00333-7 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 575XZ UT WOS:000176974900006 PM 12117530 ER PT J AU Himeno, C Komeda, M Izumikawa, M Takemura, K Yagi, M Yang, WP Doi, T Kuriyama, H Miller, JM Yamashita, T AF Himeno, C Komeda, M Izumikawa, M Takemura, K Yagi, M Yang, WP Doi, T Kuriyama, H Miller, JM Yamashita, T TI Intra-cochlear administration of dexamethasone attenuates aminoglycoside ototoxicity in the guinea pig SO HEARING RESEARCH LA English DT Article DE corticosteroid; aminoglycoside antibiotic; hair cell; cochlea; guinea pig; osmotic pump ID INDUCED HEARING-LOSS; INNER-EAR; FREE-RADICALS; IN-VIVO; GLUCOCORTICOID RECEPTORS; GENTAMICIN OTOTOXICITY; NEUROTROPHIC FACTOR; ACOUSTIC TRAUMA; CELL-SURVIVAL; RAT COCHLEA AB This study demonstrates the attenuation of aminoglycoside ototoxicity by cochlear infusion of dexamethasone (Dex) using a microcannulation-osmotic pump delivery system. The results indicate that treating the cochlea with Dex both before and after kanamycin administration was more effective in preventing ototoxicity than Dex treatment only after kanamycin administration. A concentration of 1 ng/ml Dex showed the greatest protective effect on both kanamycin-induced threshold shift of the auditory brainstem response and outer hair cell survival. These results show that the Dex treatment attenuates both functional and structural damage of the inner ear from aminoglycoside toxicity. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Kansai Med Univ, Dept Otolaryngol, Osaka 5708506, Japan. Chinese Peoples Liberat Army Gen Hosp, Beijing 100853, Peoples R China. Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. Karolinska Inst, Dept Otolaryngol, Stockholm, Sweden. RP Himeno, C (reprint author), Kansai Med Univ, Dept Otolaryngol, Fumizono Cho 10-15, Osaka 5708506, Japan. CR BALLARD PL, 1974, ENDOCRINOLOGY, V94, P998 BARNES PJ, 1993, TRENDS PHARMACOL SCI, V14, P436, DOI 10.1016/0165-6147(93)90184-L Basile AS, 1996, NAT MED, V2, P1338, DOI 10.1038/nm1296-1338 BAULIEU EE, 1989, ENDOCRINOLOGY, P16 BROWN JN, 1993, HEARING RES, V70, P167, DOI 10.1016/0378-5955(93)90155-T BRUMMETT RE, 1990, ARCH OTOLARYNGOL, V116, P406 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 CRANN SA, 1992, BIOCHEM PHARMACOL, V43, P1835, DOI 10.1016/0006-2952(92)90718-X Duan ML, 2000, P NATL ACAD SCI USA, V97, P7597, DOI 10.1073/pnas.97.13.7597 DULON D, 1989, J NEUROSCI RES, V24, P338, DOI 10.1002/jnr.490240226 Erichsen S, 1996, HEARING RES, V100, P143, DOI 10.1016/0378-5955(96)00105-0 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 GARETZ SL, 1994, HEARING RES, V77, P81, DOI 10.1016/0378-5955(94)90255-0 Hawkins Jr JE, 1976, HDB SENSORY PHYSIOLO, P707 HAYNES BF, 1981, ARTHRITIS RHEUM, V24, P501, DOI 10.1002/art.1780240308 HU ZB, 1995, LEUKEMIA, V9, P789 HUNG MY, 1990, BIOCHEM PHARMACOL, V40, pR11 KANZAKI J, 1993, ORL J OTO-RHINO-LARY, V55, P24 KIMURA RS, 1969, ANN OTO RHINOL LARYN, V78, P542 KOLLS J, 1994, P SOC EXP BIOL MED, V205, P220 KUSAKARI J, 1976, LARYNGOSCOPE, V86, P132, DOI 10.1288/00005537-197601000-00025 Lalwani AK, 1996, GENE THER, V3, P588 Lamm K, 1998, HEARING RES, V115, P149, DOI 10.1016/S0378-5955(97)00186-X Luttage W.G., 1983, P247 MCCABE BF, 1979, ANN OTO RHINOL LARYN, V88, P585 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 Nagura M, 1999, EUR J PHARMACOL, V366, P47, DOI 10.1016/S0014-2999(98)00881-4 OFFNER FF, 1987, HEARING RES, V29, P117, DOI 10.1016/0378-5955(87)90160-2 Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5 Ohinata Y, 2000, HEARING RES, V146, P28, DOI 10.1016/S0378-5955(00)00096-4 Parnes LS, 1999, LARYNGOSCOPE, V109, P1, DOI 10.1097/00005537-199907001-00001 PITOVSKI DZ, 1994, HEARING RES, V77, P216, DOI 10.1016/0378-5955(94)90269-0 Prieskorn DM, 2000, HEARING RES, V140, P212, DOI 10.1016/S0378-5955(99)00193-8 RAREY KE, 1993, HEARING RES, V12, P169 Ruan RS, 1999, NEUROREPORT, V10, P2067, DOI 10.1097/00001756-199907130-00014 Seidman MD, 1996, ARCH OTOLARYNGOL, V122, P1221 Shea JJ, 1996, OTOLARYNG CLIN N AM, V29, P353 Shirwany NA, 1998, AM J OTOL, V19, P230 Shoji F, 2000, HEARING RES, V142, P41, DOI 10.1016/S0378-5955(00)00007-1 Silverstein H, 1996, Ear Nose Throat J, V75, P468 SNOW JB, 1991, INNER EAR, P1619 Song BB, 1997, J PHARMACOL EXP THER, V282, P369 Spandow O, 1992, Acta Otolaryngol Suppl, V493, P89 SPANDOW O, 1989, ORL J OTO-RHINO-LARY, V51, P94 Takahashi K, 1996, ACTA OTO-LARYNGOL, V116, P209, DOI 10.3109/00016489609137825 Takumida M, 1998, ORL J OTO-RHINO-LARY, V60, P246, DOI 10.1159/000027605 TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865 TUOR UI, 1993, BRAIN RES, V604, P165, DOI 10.1016/0006-8993(93)90364-S Walker P. D., 1987, AM J PHYSIOL, V253, P495 WEST BA, 1973, ARCH OTOLARYNGOL, V98, P32 Yagi M, 1999, HUM GENE THER, V10, P813, DOI 10.1089/10430349950018562 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 YANG CL, 1995, RENAL FAILURE, V17, P21, DOI 10.3109/08860229509036371 Ylikoski J, 1998, HEARING RES, V124, P17, DOI 10.1016/S0378-5955(98)00095-1 Ziemski Z, 1992, Otolaryngol Pol, V46, P57 ZUO J, 1995, HEARING RES, V87, P220, DOI 10.1016/0378-5955(95)00092-I NR 56 TC 72 Z9 82 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2002 VL 167 IS 1-2 BP 61 EP 70 DI 10.1016/S0378-5955(02)00345-3 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 575XZ UT WOS:000176974900007 PM 12117531 ER PT J AU Koo, JW Homanics, GE Balaban, CD AF Koo, JW Homanics, GE Balaban, CD TI Hypoplasia of spiral and Scarpa's ganglion cells in GABA(A) receptor beta(3) subunit knockout mice SO HEARING RESEARCH LA English DT Article DE gamma-aminobutyric acid; eighth cranial nerve; calretinin; immunohistochemistry; mouse ID PERIPHERAL INNERVATION PATTERNS; MESSENGER-RNAS; INNER-EAR; CALRETININ IMMUNOREACTIVITY; VESTIBULAR NERVE; DEVELOPING MOUSE; RAT-BRAIN; COCHLEA; LOCALIZATION; CHINCHILLA AB This study documents morphologic alterations in the spiral ganglion and Scarpa's ganglion from gamma-aminobutyric acid A (GABA(A)) receptor beta(3) subunit null mutant mice. The ganglion cells of the mutant mice were hypoplastic in hematoylin&eosin-stained sections. Hypoplasia was observed at every location of the spiral ganglion and Scarpa's ganglion except the apical cochlear turn. Calretinin immunostaining demonstrated a selective hypoplasia of calretinin-negative cells at every location of spiral and Scarpa's ganglion cells, while the soma area. of calretinin-positive cells was not affected by the gene deletion. Meanwhile, in the spiral ganglion of both wild type and knockout mice, there were apical to basal gradients in the soma size and the proportion of calretinin-positive cells. The absence of statistically significant hypoplasia in hematoylin&eosin sections through the apical turn of the cochlea can be explained by the relatively higher proportion of calretinin-positive ganglion cells, which were unaffected by the gene deletion. These findings suggest that GABA(A) receptor isoforms containing the beta(3) subunit may play an important role in the development and differentiation of non-calyceal terminals of Scarpa's ganglion cells and type II and smaller type I spiral ganglion cells. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Pittsburgh, Sch Med, Dept Otolaryngol, Pittsburgh, PA USA. Univ Pittsburgh, Sch Med, Dept Neurobiol, Pittsburgh, PA USA. Univ Pittsburgh, Sch Med, Dept Commun Sci, Pittsburgh, PA USA. Univ Pittsburgh, Sch Med, Dept Anesthesiol, Pittsburgh, PA 15261 USA. Univ Pittsburgh, Sch Med, Dept Crit Care Med, Pittsburgh, PA USA. RP Balaban, CD (reprint author), 203 Lothrop St,EEIB Rm 153, Pittsburgh, PA 15213 USA. CR BAIRD RA, 1988, J NEUROPHYSIOL, V60, P182 BERGLUND AM, 1991, J COMP NEUROL, V306, P393, DOI 10.1002/cne.903060304 BERGLUND AM, 1987, J COMP NEUROL, V255, P560, DOI 10.1002/cne.902550408 DECHESNE CJ, 1993, HEARING RES, V69, P91, DOI 10.1016/0378-5955(93)90096-J DECHESNE CJ, 1994, J COMP NEUROL, V346, P517, DOI 10.1002/cne.903460405 DESMADRYL G, 1992, EXP BRAIN RES, V89, P105 DRESCHER DG, 1993, J NEUROCHEM, V61, P1167, DOI 10.1111/j.1471-4159.1993.tb03638.x Echteler SM, 2000, J COMP NEUROL, V425, P436 FOSTER JD, 1995, HEARING RES, V83, P203, DOI 10.1016/0378-5955(95)00006-P GITTER AH, 1992, EUR ARCH OTO-RHINO-L, V249, P62 GOLDBERG JM, 1990, J NEUROPHYSIOL, V63, P791 Hafidi A, 1998, BRAIN RES, V805, P181, DOI 10.1016/S0006-8993(98)00448-X Homanics GE, 1997, P NATL ACAD SCI USA, V94, P4143, DOI 10.1073/pnas.94.8.4143 Kong WJ, 1998, ACTA OTO-LARYNGOL, V118, P90 LAURIE DJ, 1992, J NEUROSCI, V12, P4151 Lysakowski A, 1999, HEARING RES, V133, P149, DOI 10.1016/S0378-5955(99)00065-9 NAYEEM N, 1994, J NEUROCHEM, V62, P815 OTA CY, 1980, ACTA OTO-LARYNGOL, V89, P53, DOI 10.3109/00016488009127108 Rezaee A, 1999, LARYNGOSCOPE, V109, P329, DOI 10.1097/00005537-199902000-00028 ROMAND MR, 1987, ACTA OTO-LARYNGOL, V104, P29, DOI 10.3109/00016488709109044 ROMAND R, 1990, HEARING RES, V49, P119, DOI 10.1016/0378-5955(90)90099-B Rudolph U, 2001, TRENDS PHARMACOL SCI, V22, P188, DOI 10.1016/S0165-6147(00)01646-1 SCHOFIELD PR, 1987, NATURE, V328, P221, DOI 10.1038/328221a0 SHI SR, 1992, J HISTOCHEM CYTOCHEM, V40, P787 WHITLON DS, 1989, J NEUROCYTOL, V18, P505, DOI 10.1007/BF01474546 WISDEN W, 1992, J NEUROSCI, V12, P1040 Ylikoski J, 1993, Acta Otolaryngol Suppl, V503, P121 YLIKOSKI J, 1984, J LARYNGOL OTOL, V98, P759, DOI 10.1017/S0022215100147413 ZDILAR D, 1992, J COMP NEUROL, V326, P580, DOI 10.1002/cne.903260407 NR 29 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2002 VL 167 IS 1-2 BP 71 EP 80 DI 10.1016/S0378-5955(02)00348-9 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 575XZ UT WOS:000176974900008 PM 12117532 ER PT J AU Ungan, P Yagcioglu, S AF Ungan, P Yagcioglu, S TI Origin of the binaural interaction component in wave P4 of the short-latency auditory evoked potentials in the cat: evaluation of serial depth recordings from the brainstem SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 6th International Evoked Potentials Symposium (6th IEPS) CY MAR 21-25, 1998 CL OKAZAKI, JAPAN SP Minist Educ Sci Culture & Sports Japan, Okazaki Natl Res Inst, Natl Inst Physiol Sci, Pharmaceut Manufacturers Assoc Tokyo, Osaka Pharmaceut Manufacturers Assoc DE sound lateralization; interaural time difference; auditory brainstem response; binaural interaction; field potentials; superior olive; lateral lemniscus; cat ID LATERAL SUPERIOR OLIVE; INTERAURAL TIME DIFFERENCES; STEM RESPONSES ABRS; TRAPEZOID BODY; DORSAL NUCLEUS; COINCIDENCE DETECTION; INFERIOR COLLICULUS; SOUND LOCALIZATION; ACOUSTIC RESPONSE; REPETITION RATE AB There is no general agreement on the origin of the binaural interaction (BI) component in auditory brainstem responses (ABRs). To study this issue the ABRs to monaural and binaural clicks with various interaural time differences (ITDs) were simultaneously recorded from the vertex and from a recording electrode aiming at the superior olive (SO) in cats. Electrode path was along the fibers of the lateral lemniscus (LL). Binaural difference potentials (BDPs), which were computed by subtracting the sum of the two monaural responses from the binaural response, were obtained at systematic depths and across a range of ITD values. It was observed that only a specific BDP deflection recorded at the level at which lemniscal fibers terminate in the nuclei of LL coincided in time with the most prominent BDP in the cat's vertex-recorded ABRs, the BDP in their wave P4. As ITD was increased, the latency shifts and amplitude decrements of the scalp-recorded far-field BDP wave exactly followed those recorded at this lemniscal near-field BDP locus. The data support our hypothesis that the BI component in wave P4 results from a binaural reduction in dischargings of axons ascending in the LL, with this reduction due to contralateral inhibition of the discharge activity of the inhibitory-excitatory units in the lateral nucleus of the SO. Furthermore, at the level of the SO, the BDP in the responses to contra-leading binaural clicks always had larger magnitudes than those evoked by ipsi-leading ones. This bilateral asymmetry is consistent with the view that the BDP in scalp-recorded ABRs is related to the function of sound lateralization. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Hacettepe Univ, Fac Med, Dept Biophys, TR-06100 Ankara, Turkey. RP Ungan, P (reprint author), Hacettepe Univ, Fac Med, Dept Biophys, TR-06100 Ankara, Turkey. CR ACHOR LJ, 1980, ELECTROEN CLIN NEURO, V48, P174, DOI 10.1016/0013-4694(80)90302-8 ACHOR LJ, 1980, ELECTROEN CLIN NEURO, V48, P154, DOI 10.1016/0013-4694(80)90301-6 Berman A.L., 1968, BRAIN STEM CAT CYTOA BIEDENBACH MA, 1964, AM J PHYSIOL, V206, P1408 BOBBIN RP, 1979, ARCH OTOLARYNGOL, V105, P467 Boudreau J C, 1970, Contrib Sens Physiol, V4, P143 BRUGGE JF, 1978, ANNU REV NEUROSCI, V1, P363, DOI 10.1146/annurev.ne.01.030178.002051 BRUGGE JF, 1970, J NEUROPHYSIOL, V33, P441 BUCHWALD JS, 1975, SCIENCE, V189, P382, DOI 10.1126/science.1145206 CAIRD D, 1983, EXP BRAIN RES, V52, P385 CAIRD D, 1985, ELECTROEN CLIN NEURO, V61, P50, DOI 10.1016/0013-4694(85)91072-7 CARR CE, 1990, J NEUROSCI, V10, P3227 CHURCH MW, 1987, BRAIN RES, V403, P72, DOI 10.1016/0006-8993(87)90124-7 CURIO G, 1990, ELECTROEN CLIN NEURO, V77, P19, DOI 10.1016/0168-5597(90)90013-4 DENO RL, 1947, ROCKEFELLER I SERIES, V132 DOBIE RA, 1979, ARCH OTOLARYNGOL, V105, P391 DOBIE RA, 1980, ELECTROEN CLIN NEURO, V49, P303, DOI 10.1016/0013-4694(80)90224-2 ERNE SN, 1987, INT J NEUROSCI, V37, P115, DOI 10.3109/00207458708987142 FULLERTON BC, 1987, ELECTROEN CLIN NEURO, V66, P547, DOI 10.1016/0013-4694(87)90102-7 GALAMBOS R, 1959, AM J PHYSIOL, V197, P527 GARDI JN, 1981, ARCH OTOLARYNGOL, V107, P164 GLENDENNING KK, 1992, J COMP NEUROL, V319, P100, DOI 10.1002/cne.903190110 GLENDENNING KK, 1983, J NEUROSCI, V3, P1521 GLENN SL, 1992, J NEUROSCI, V12, P3688 GOLD S, 1985, ELECTROEN CLIN NEURO, V60, P146, DOI 10.1016/0013-4694(85)90021-5 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 GROTHE B, 1994, J NEUROSCI, V14, P1701 GUINAN JJ, 1972, INT J NEUROSCI, V4, P147 HALL JL, 1965, J ACOUST SOC AM, V37, P814, DOI 10.1121/1.1909447 HAN Y, 1993, HEARING RES, V68, P115, DOI 10.1016/0378-5955(93)90070-H HEFFNER RS, 1986, BEHAV NEUROSCI, V100, P93, DOI 10.1037/0735-7044.100.1.93 HUANG C, 1980, BRAIN RES, V184, P215, DOI 10.1016/0006-8993(80)90601-0 HUANG CM, 1978, ELECTROEN CLIN NEURO, V44, P179, DOI 10.1016/0013-4694(78)90264-X HUANG CM, 1977, BRAIN RES, V137, P291 Irvine D. R. F., 1986, PROGR SENSORY PHYSL, V7 IRVING R, 1967, J COMP NEUROL, V130, P77, DOI 10.1002/cne.901300105 ITO S, 1988, HEARING RES, V35, P9, DOI 10.1016/0378-5955(88)90036-6 JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495 JEWETT DL, 1990, ELECTROEN CLIN NEURO, V75, P105, DOI 10.1016/0013-4694(90)90158-G JEWETT DL, 1970, ELECTROEN CLIN NEURO, V28, P609, DOI 10.1016/0013-4694(70)90203-8 JONES SJ, 1990, ELECTROEN CLIN NEURO, V77, P214, DOI 10.1016/0168-5597(90)90040-K Joris PX, 1998, J NEUROPHYSIOL, V79, P253 JORIS PX, 1995, J NEUROPHYSIOL, V73, P1043 JOSEPH AW, 1993, J NEUROPHYSIOL, V69, P1197 Kemp EH, 1937, AM J PHYSIOL, V120, P316 KIMURA J, 1984, ELECTROEN CLIN NEURO, V58, P351, DOI 10.1016/0013-4694(84)90061-0 KUWABARA N, 1992, J COMP NEUROL, V324, P522, DOI 10.1002/cne.903240406 LEGATT AD, 1986, ELECTROEN CLIN NEURO, V64, P53, DOI 10.1016/0013-4694(86)90043-X LEVINE RA, 1981, ANN NEUROL, V9, P384, DOI 10.1002/ana.410090412 MARKOVITZ NS, 1994, HEARING RES, V73, P121, DOI 10.1016/0378-5955(94)90290-9 MCPHERSON DL, 1993, HEARING RES, V66, P91, DOI 10.1016/0378-5955(93)90263-Z Melcher JR, 1996, HEARING RES, V93, P52, DOI 10.1016/0378-5955(95)00200-6 Melcher JR, 1996, HEARING RES, V93, P28, DOI 10.1016/0378-5955(95)00179-4 Melcher JR, 1996, HEARING RES, V95, P144, DOI 10.1016/0378-5955(96)00032-9 Melcher JR, 1996, HEARING RES, V93, P1, DOI 10.1016/0378-5955(95)00178-6 MOLLER AR, 1983, SCAND AUDIOL, V12, P125, DOI 10.3109/01050398309076235 MOORE DR, 1991, AUDIOLOGY, V30, P125 MOORE JK, 1987, HEARING RES, V29, P33, DOI 10.1016/0378-5955(87)90203-6 MOORE JK, 1971, FOLIA PRIMATOL, V16, P35, DOI 10.1159/000155390 NUNEZ PL, 1981, ELECT FIELDS BRAIN N, P111 OVERHOLT EM, 1992, J NEUROSCI, V12, P1698 PHILLIPS DP, 1985, ANNU REV PSYCHOL, V36, P245 Plonsey R, 1988, BIOELECTRICITY QUANT, P149 ROSENZWEIG MR, 1955, EXPERIENTIA, V11, P498, DOI 10.1007/BF02166840 ROSSI GT, 1984, ELECTROEN CLIN NEURO, V57, P143, DOI 10.1016/0013-4694(84)90173-1 ROTH GL, 1978, J COMP NEUROL, V182, P661, DOI 10.1002/cne.901820407 RUBEL EW, 1988, TXB PHYSL, P386 RUDELL AP, 1987, ELECTROEN CLIN NEURO, V67, P53, DOI 10.1016/0013-4694(87)90163-5 SANES DH, 1990, J NEUROSCI, V10, P3494 SHIPLEY C, 1984, BRAIN RES, V321, P299, DOI 10.1016/0006-8993(84)90182-3 SMITH PH, 1993, J COMP NEUROL, V331, P245, DOI 10.1002/cne.903310208 Smith PH, 1998, J NEUROPHYSIOL, V79, P3127 SNIEDER RS, 1964, STEREOTAXIC ATLAS CA SONTHEIMER D, 1985, ELECTROEN CLIN NEURO, V61, P539, DOI 10.1016/0013-4694(85)90973-3 SPIVAK LG, 1988, EAR HEARING, V9, P57, DOI 10.1097/00003446-198804000-00002 STEGEMAN DF, 1987, ELECTROEN CLIN NEURO, V67, P176 STOTLER WA, 1953, J COMP NEUROL, V98, P401, DOI 10.1002/cne.900980303 SUZUKI T, 1986, ELECTROEN CLIN NEURO, V65, P150, DOI 10.1016/0168-5597(86)90048-1 TSUCHITANI C, 1988, J NEUROPHYSIOL, V59, P164 Tsuchitani C, 1997, HEARING RES, V105, P211, DOI 10.1016/S0378-5955(96)00212-2 Ungan P, 1997, HEARING RES, V106, P66, DOI 10.1016/S0378-5955(97)00003-8 WADA SI, 1983, ELECTROEN CLIN NEURO, V56, P352, DOI 10.1016/0013-4694(83)90261-4 WADA SI, 1983, ELECTROEN CLIN NEURO, V56, P326, DOI 10.1016/0013-4694(83)90259-6 WADA SI, 1983, ELECTROEN CLIN NEURO, V56, P340, DOI 10.1016/0013-4694(83)90260-2 WADA SI, 1989, ELECTROEN CLIN NEURO, V72, P535, DOI 10.1016/0013-4694(89)90231-9 WERNICK JS, 1968, J NEUROPHYSIOL, V31, P428 WU SH, 1992, J NEUROPHYSIOL, V68, P1151 WU SH, 1991, J NEUROPHYSIOL, V65, P230 YIN TCT, 1988, AUDITORY FUNCTION NE YIN TCT, 1984, DYNAMIC ASPECTS NEOC, P263 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 YOUNG SR, 1983, J NEUROSCI, V3, P1373 ZAAROOR M, 1991, ELECTROEN CLIN NEURO, V80, P422, DOI 10.1016/0168-5597(91)90091-B ZACKSENHOUSE M, 1992, HEARING RES, V62, P105, DOI 10.1016/0378-5955(92)90207-4 NR 94 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2002 VL 167 IS 1-2 BP 81 EP 101 DI 10.1016/S0378-5955(02)00351-9 PG 21 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 575XZ UT WOS:000176974900009 PM 12117533 ER PT J AU Kammen-Jolly, K Scholtz, AW Kreczy, A Gluckert, R Thalmann, I Thalmann, R Schrott-Fischer, A AF Kammen-Jolly, K Scholtz, AW Kreczy, A Gluckert, R Thalmann, I Thalmann, R Schrott-Fischer, A TI OCP2 immunoreactivity in the human fetal cochlea at weeks 11, 17, 20, and 28, and the human adult cochlea SO HEARING RESEARCH LA English DT Article DE OCP1; OCP2; human; fetal cochlea; epithelial gap junction system ID ULTRASTRUCTURAL ANALYSIS; CORTI; ORGAN; PROTEIN; LOCALIZATION AB The two most abundant proteins of the organ of Corti, OCP1 and OCP2, are acidic, cytosolic, low molecular weight proteins diffusely distributed within the cytoplasm of supporting cells. A recent study by Henzl et al. (2001) found first, that these two proteins co-localize with connexin 26 along the epithelial gap junction system and second, that OCP2 could participate with OCP1 in an organ of Corti-specific SCF complex (Skp1, cullin, and Fbp), a ubiquitin ligase complex. Previous study has also implicated OCP2 in the recycling and regulation of intracellular K(+) efflux as well as pH homeostatic mechanisms. In the present study, we document the emergence and distribution features of OCP2 through various stages (weeks 11-28) of gestation in human fetal cochleae. Four fetal cochleae, the cochleae of a normal hearing human adult and a mature rat for positive control were fixed in 4% formalin within 2 h post mortem. Immunohistochemical studies were performed using a rabbit polyclonal antibody raised against a synthetic peptide corresponding to amino acids 3-16. Specimens were mounted in paraffin sections. Results show that OCP2 immunoreactivity is evident at a prenatal age of 11 weeks, peaks in expression at the onset of cochlear function at 20 weeks and achieves adult-like patterns of distribution just prior to histological maturation at 28 weeks. Though this protein could be associated with the development, maturation, and electrochemical maintenance of the cochlear gap junction system, the nature of this protein's function in the developing and mature human cochlea remains unclear. (C) 2002 Published by Elsevier Science B.V. C1 Univ Innsbruck, Dept Otolaryngol, A-6020 Innsbruck, Austria. Univ Innsbruck, Dept Psychiat, A-6020 Innsbruck, Austria. Univ Innsbruck, Dept Pathol, A-6020 Innsbruck, Austria. Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. RP Schrott-Fischer, A (reprint author), Univ Innsbruck, Dept Otolaryngol, Anichstr 35, A-6020 Innsbruck, Austria. EM annelies.schrott-fischer@uibk.ac.at CR Bast T. H., 1949, TEMPORAL BONE EAR Bredberg G, 1967, J Laryngol Otol, V81, P739, DOI 10.1017/S0022215100067670 CHEN H, 1995, GENOMICS, V27, P389, DOI 10.1006/geno.1995.1068 Henzl MT, 2001, HEARING RES, V157, P100, DOI 10.1016/S0378-5955(01)00285-4 Kammen-Jolly K, 2001, HEARING RES, V160, P15, DOI 10.1016/S0378-5955(01)00310-0 Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 KIKUCHI T, 1994, ACTA OTO-LARYNGOL, V114, P520, DOI 10.3109/00016489409126097 LAVIGNEREBILLARD M, 1987, ACTA OTO-LARYNGOL, P43 PUJOL R, 1995, INT J PEDIATR OTORHI, V32, pS177, DOI 10.1016/0165-5876(94)01156-R PUJOL R, 1991, ACTA OTO-LARYNGOL, P7 PUJOL R, 1992, ACTA OTO-LARYNGOL, V112, P259 PUJOL R, 1985, ACTA OTO-LARYNGOL, P5 PUJOL R, 1990, SEMIN PERINATOL, V14, P275 Schuknecht HF, 1986, ANATOMY TEMPORAL BON THALMANN I, 1980, ARCH OTO-RHINO-LARYN, V226, P123, DOI 10.1007/BF00455126 THALMANN I, 1990, EUR ARCH OTO-RHINO-L, V248, P15, DOI 10.1007/BF00634774 Yoho ER, 1997, HEARING RES, V104, P47, DOI 10.1016/S0378-5955(96)00183-9 NR 18 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2002 VL 167 IS 1-2 BP 102 EP 109 DI 10.1016/S0378-5955(02)00354-4 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 575XZ UT WOS:000176974900010 PM 12117534 ER PT J AU Brors, D Aletsee, C Schwager, K Mlynski, R Hansen, S Schafers, M Ryan, AF Dazert, S AF Brors, D Aletsee, C Schwager, K Mlynski, R Hansen, S Schafers, M Ryan, AF Dazert, S TI Interaction of spiral ganglion neuron processes with alloplastic materials in vitro SO HEARING RESEARCH LA English DT Article DE alloplastic material; spiral ganglion; neurite growth; cochlear implant ID COCHLEAR IMPLANT; INTRACOCHLEAR ELECTRODES; NEURITE OUTGROWTH; INSERTION TRAUMA; TEMPORAL BONES; GROWTH CONES; NERVE-CELL; IN-VITRO; LAMININ; TITANIUM AB The cochlear implant (CI) involves the introduction of alloplastic materials into the cochlea. While current implants interact with cochlear neurons at a distance, direct interactions between spiral ganglion (SG) neurites and implants could be fostered by appropriate treatment with neurotrophic factors. The interactions of fibroblasts and osteoblasts with alloplastic materials have been well studied in vitro and in vivo. However, interactions of inner ear neurons with such alloplastic materials have yet to be described. To investigate survival and growth behavior of SG neurons on different materials, SG explants from post-natal day 5 rat SG were cultured for 72 h in the presence of neurotrophin-3 (10 ng/ml) on titanium, gold, stainless steel, platinum, silicone and plastic surfaces that had been coated with laminin and poly-L-lysine. Neurite outgrowth was investigated after immunohistological staining for neurofilament, by image analysis to determine neurite extension and directional changes. Neurite morphology and adhesion to the alloplastic material were also evaluated by scanning electron microscopy (SEM). On titanium, SG neurites reached the highest extent of outgrowth, with an average length of 662 pm and a mean of 31 neurites per explant, compared to 568 Pin and 21 neurites on gold, 574 mum and 24 neurites on stainless steel, 509 mum and 16 neurites on platinum, 281 mum and 12 neurites on silicone and 483 pm and 31 neurites on plastic. SEM revealed details of adhesion of neurites and interaction with non-neuronal cells. The results of this study indicate that the growth of SG neurons in vitro is strongly influenced by alloplastic materials, with titanium exhibiting the highest degree of biocompatibility with respect to neurite extension. The knowledge of neurite interaction with different alloplastic materials is of clinical interest, as development in CI technology leads to closer contact of implanted electrodes with surviving inner ear neurons. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Calif San Diego, Sch Med, Dept Surg, Div Otolaryngol, La Jolla, CA 92093 USA. VA Med Ctr, La Jolla, CA 92093 USA. Univ Wurzburg, Dept Otorhinolaryngol Head & Neck Surg, D-97080 Wurzburg, Germany. Univ Wurzburg, Dept Neurol, D-97080 Wurzburg, Germany. RP Ryan, AF (reprint author), Univ Calif San Diego, Sch Med, Dept Surg, Div Otolaryngol, 9500 Gilman Dr 0666, La Jolla, CA 92093 USA. CR ALETSEE C, 2002, HEARING RES, V37, P1 Berruecos P, 2000, AUDIOLOGY, V39, P221 Bertuleit H, 1999, LARYNGO RHINO OTOL, V78, P304, DOI 10.1055/s-2007-996876 BISLAND J, 1999, J NEUROSCI METH, V92, P75 BJURSTEN LM, 1991, BONE-BIOMATERIAL INTERFACE, P165 BLAMEY PJ, 1992, ANN OTO RHINOL LARYN, V101, P342 Blume SS, 1999, SOC SCI MED, V49, P1257, DOI 10.1016/S0277-9536(99)00164-1 Boyan BD, 1996, BIOMATERIALS, V17, P137, DOI 10.1016/0142-9612(96)85758-9 BRAY D, 1987, EXP CELL RES, V168, P127, DOI 10.1016/0014-4827(87)90422-8 Brunette D, 1996, NANOFABRICATION BIOS, P335 BUETTNER HM, 1991, DEV BIOL, V145, P266, DOI 10.1016/0012-1606(91)90125-M Cheng AK, 1999, ANN OTO RHINOL LARYN, V108, P124 Clark G M, 1988, Acta Otolaryngol Suppl, V448, P1 CLARK P, 1993, J CELL SCI, V105, P203 Clark R. C., 1977, EFFECTS PETROLEUM AR, V1, P91 Cords SM, 2000, AM J OTOL, V21, P212, DOI 10.1016/S0196-0709(00)80011-3 Culp LA, 1998, J BIOMAT SCI-POLYM E, V9, P1161, DOI 10.1163/156856298X00703 Curtis A, 1997, BIOMATERIALS, V18, P1573, DOI 10.1016/S0142-9612(97)00144-0 DAVIES JE, 1990, J BIOMED MATER RES, V24, P1289, DOI 10.1002/jbm.820241003 Dazert S, 1998, J CELL PHYSIOL, V177, P123, DOI 10.1002/(SICI)1097-4652(199810)177:1<123::AID-JCP13>3.0.CO;2-E DODD J, 1988, SCIENCE, V242, P692, DOI 10.1126/science.3055291 ERNFORS P, 1995, NEURON, V14, P1153, DOI 10.1016/0896-6273(95)90263-5 Fayad JN, 2000, AM J OTOL, V21, P226, DOI 10.1016/S0196-0709(00)80013-7 Gonzalez C, 1997, J NEUROSCI METH, V72, P189, DOI 10.1016/S0165-0270(96)02202-9 Gstoettner W, 1999, ACTA OTO-LARYNGOL, V119, P229 GUNDERSEN RW, 1987, DEV BIOL, V121, P423, DOI 10.1016/0012-1606(87)90179-5 HYNES RO, 1992, CELL, V68, P303, DOI 10.1016/0092-8674(92)90472-O Kawa A, 1998, J NEUROSCI METH, V79, P53, DOI 10.1016/S0165-0270(97)00165-9 KENNEDY DW, 1987, LARYNGOSCOPE, V97, P42 KLEITMAN N, 1989, CELL MOTIL CYTOSKEL, V13, P288, DOI 10.1002/cm.970130407 Lau C, 2001, PACE, V24, P1055, DOI 10.1046/j.1460-9592.2001.01055.x LEAKEJONES PA, 1983, ANN NY ACAD SCI, V405, P203, DOI 10.1111/j.1749-6632.1983.tb31634.x LETOURNEAU PC, 1983, TRENDS NEUROSCI, V6, P451, DOI 10.1016/0166-2236(83)90217-5 LETOURNEAU PC, 1975, DEV BIOL, V44, P92, DOI 10.1016/0012-1606(75)90379-6 LINTHICUM FH, 1991, AM J OTOL, V12, P8 LINTHICUM FH, 1991, ACTA OTO-LARYNGOL, V111, P327, DOI 10.3109/00016489109137395 LOWENBERG B, 1991, CELL MATER, V1, P177 LUDUENA MA, 1973, DEV BIOL, V33, P268, DOI 10.1016/0012-1606(73)90137-1 Maher MP, 1999, J NEUROSCI METH, V87, P45, DOI 10.1016/S0165-0270(98)00156-3 MARSH MA, 1992, AM J OTOL, V13, P241 MICHELSO.RP, 1971, ANN OTO RHINOL LARYN, V80, P914 ORR RD, 1992, CELL MATER, V2, P241 PIRVOLA U, 1992, P NATL ACAD SCI USA, V89, P9915, DOI 10.1073/pnas.89.20.9915 Proops DW, 2001, OTOLARYNG CLIN N AM, V34, P447, DOI 10.1016/S0030-6665(05)70341-8 REICHARDT LF, 1989, DEV NEUROSCI-BASEL, V11, P332, DOI 10.1159/000111910 SANES JR, 1989, ANNU REV NEUROSCI, V12, P491, DOI 10.1146/annurev.neuro.12.1.491 SCHUKNECHT HF, 1994, PATHOLOGY EAR SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3 SHEPHERD RK, 1985, ANN OTO RHINOL LARYN, V94, P55 SIBUM H, 1985, ULLMANS ENCY IND CHE, P95 SIMMONS FB, 1967, LARYNGOSCOPE, V79, P171 SMALHEISER NR, 1984, DEV BRAIN RES, V12, P136, DOI 10.1016/0165-3806(84)90184-6 SUTTON D, 1980, ANN OTO RHINOL LARYN, V89, P11 SUTTON D, 1983, ANN OTO RHINOL LARYN, V92, P53 Suzuki R, 2000, CLIN ORTHOP RELAT R, P280 TENGVALL P, 1989, J COLLOID INTERF SCI, V130, P405, DOI 10.1016/0021-9797(89)90117-3 THOMAS WA, 1990, DEVELOPMENT, V110, P1101 Tykocinski M, 2000, AM J OTOL, V21, P205, DOI 10.1016/S0196-0709(00)80010-1 VANDEWAT.TR, 1971, ACTA OTO-LARYNGOL, V71, P303, DOI 10.3109/00016487109125368 Von Recum AF, 1996, TISSUE ENG, V2, P241, DOI 10.1089/ten.1996.2.241 WEISS P, 1945, J EXP ZOOL, V100, P353, DOI 10.1002/jez.1401000305 Wiegand UKH, 1999, PACE, V22, P935, DOI 10.1111/j.1540-8159.1999.tb06818.x Yang N W, 2000, Ann Otol Rhinol Laryngol Suppl, V185, P18 ZAPPIA JJ, 1991, ANN OTO RHINOL LARYN, V100, P914 Zecevic D, 1998, HISTOCHEM J, V30, P197, DOI 10.1023/A:1003299420524 NR 65 TC 28 Z9 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2002 VL 167 IS 1-2 BP 110 EP 121 DI 10.1016/S0378-5955(02)00355-6 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 575XZ UT WOS:000176974900011 PM 12117535 ER PT J AU Weisstaub, N Vetter, DE Elgoyhen, AB Katz, E AF Weisstaub, N Vetter, DE Elgoyhen, AB Katz, E TI The alpha 9 alpha 10 nicotinic acetylcholine receptor is permeable to and is modulated by divalent cations SO HEARING RESEARCH LA English DT Article DE nicotinic receptor; outer hair cell; olivocochlear efferent synapse; Ca2+ permeability; voltage-dependent blockage; neurotransmitter receptor channel; ligand-gated channel ID OUTER HAIR-CELLS; HIGH-CALCIUM PERMEABILITY; RAT CENTRAL NEURONS; GUINEA-PIG COCHLEA; SYNAPTIC TRANSMISSION; CHOLINERGIC RECEPTOR; PHARMACOLOGICAL PROPERTIES; XENOPUS OOCYTES; RT-PCR; CHANNELS AB The native cholinergic receptor that mediates synaptic transmission between olivocochlear fibers and outer hair cells of the cochlea is permeable to Ca2+ and is thought to be composed of both the alpha9 and the alpha10 cholinergic nicotinic subunits. The aim of the present work was to study the permeability of the recombinant alpha9alpha10 nicotinic acetylcholine receptor to Ca2+, Ba2+ and Mg2+ and its modulation by these divalent cations. Experiments were performed, by the two-electrode voltage-clamp technique, in Xenopus laevis oocytes injected with alpha9 and alpha10 cRNA. The relative divalent to monovalent cation permeability was high (similar to10) for Ca2+, Ba2+ and Mg2+. Currents evoked by acetylcholine (ACh) were potentiated by either Ca2+ or Ba2+ up to 500 muM but were blocked by higher concentrations of these cations. Potentiation by Ca2+ was voltage-independent, whereas blockage was stronger at hyperpolarized than at depolarized potentials. Mg2+ did not potentiate but it blocked ACh-evoked currents (IC50 = 0.38 mM). In the absence of Ca2+, the EC50 for ACh was higher (48 muM) than that obtained with 1.8 mM Ca2+ (14.3 muM), suggesting that potentiation by Ca2+ involves changes in the apparent affinity of the alpha9alpha10 receptor for ACh. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Buenos Aires, CONICET, Inst Invest Ingn Genet & Biol Mol, RA-1428 Buenos Aires, DF, Argentina. Tufts Univ, Sch Med, Boston, MA 02111 USA. UBA, FCEyN, Dept Biol, Buenos Aires, DF, Argentina. RP Katz, E (reprint author), Univ Buenos Aires, CONICET, Inst Invest Ingn Genet & Biol Mol, Vuelta de Obligado 2490, RA-1428 Buenos Aires, DF, Argentina. CR ADAMS DJ, 1980, J GEN PHYSIOL, V75, P493, DOI 10.1085/jgp.75.5.493 AMADOR M, 1995, J NEUROSCI, V15, P4525 ARELLANO RO, 1995, J PHYSIOL-LONDON, V484, P593 BARISH ME, 1983, J PHYSIOL-LONDON, V342, P309 BERTRAND D, 1993, P NATL ACAD SCI USA, V90, P6971, DOI 10.1073/pnas.90.15.6971 Blanchet C, 1996, J NEUROSCI, V16, P2574 Booker TK, 1998, J NEUROCHEM, V71, P1490 BOTON R, 1989, J PHYSIOL-LONDON, V408, P511 Chen C, 1996, HEARING RES, V98, P9, DOI 10.1016/0378-5955(96)00049-4 COOPER E, 1991, NATURE, V350, P235, DOI 10.1038/350235a0 Dallos P., 1996, COCHLEA, P1 DECKER ER, 1990, J NEUROSCI, V10, P3413 DOI T, 1993, HEARING RES, V67, P179, DOI 10.1016/0378-5955(93)90245-V Dulon D, 1998, EUR J NEUROSCI, V10, P907, DOI 10.1046/j.1460-9568.1998.00098.x Dulon D, 1996, EUR J NEUROSCI, V8, P1945, DOI 10.1111/j.1460-9568.1996.tb01338.x Ebihara L, 1996, BIOPHYS J, V71, P742 ELGOYHEN AB, 1994, CELL, V79, P705, DOI 10.1016/0092-8674(94)90555-X Elgoyhen AB, 2001, P NATL ACAD SCI USA, V98, P3501, DOI 10.1073/pnas.051622798 EROSTEGUI C, 1994, HEARING RES, V74, P135, DOI 10.1016/0378-5955(94)90182-1 EROSTEGUI C, 1994, HEARING RES, V81, P119, DOI 10.1016/0378-5955(94)90159-7 Evans MG, 1996, J PHYSIOL-LONDON, V491, P563 FIEBER LA, 1991, J PHYSIOL-LONDON, V434, P215 FRINGS S, 1995, NEURON, V15, P169, DOI 10.1016/0896-6273(95)90074-8 FUCHS PA, 1992, J NEUROSCI, V12, P800 Fuchs PA, 1996, CURR OPIN NEUROBIOL, V6, P514, DOI 10.1016/S0959-4388(96)80058-4 Galzi JL, 1996, EMBO J, V15, P5824 GERZANICH V, 1994, MOL PHARMACOL, V45, P212 GLOWATZKI E, 1995, P ROY SOC B-BIOL SCI, V262, P141, DOI 10.1098/rspb.1995.0188 Glowatzki E, 2000, SCIENCE, V288, P2366, DOI 10.1126/science.288.5475.2366 Guinan Jr J.J., 1996, COCHLEA, P435 Holley M. C., 1996, COCHLEA, P386 HOUSLEY GD, 1991, P ROY SOC B-BIOL SCI, V244, P161, DOI 10.1098/rspb.1991.0065 HUDSPETH AJ, 1989, NATURE, V341, P397, DOI 10.1038/341397a0 IFUNE CK, 1991, J PHYSIOL-LONDON, V443, P683 Jagger DJ, 2000, J PHYSIOL-LONDON, V527, P49, DOI 10.1111/j.1469-7793.2000.t01-1-00049.x Katz E, 2000, HEARING RES, V141, P117, DOI 10.1016/S0378-5955(99)00214-2 LEWIS CA, 1979, J PHYSIOL-LONDON, V286, P417 Liu YW, 1999, J GASTROINTEST SURG, V3, P82, DOI 10.1016/S1091-255X(99)80013-4 MAYER ML, 1987, J PHYSIOL-LONDON, V394, P501 McNiven AI, 1996, AUDIT NEUROSCI, V2, P63 Morley BJ, 1998, MOL BRAIN RES, V53, P78, DOI 10.1016/S0169-328X(97)00272-6 MULLE C, 1992, NEURON, V8, P937, DOI 10.1016/0896-6273(92)90208-U MULLE C, 1992, NEURON, V8, P135, DOI 10.1016/0896-6273(92)90115-T Nenov AP, 1996, HEARING RES, V101, P149, DOI 10.1016/S0378-5955(96)00143-8 Oliver D, 2000, NEURON, V26, P595, DOI 10.1016/S0896-6273(00)81197-6 Park HJ, 1997, HEARING RES, V112, P95, DOI 10.1016/S0378-5955(97)00111-1 Ricci AJ, 1998, J PHYSIOL-LONDON, V506, P159, DOI 10.1111/j.1469-7793.1998.159bx.x Role LW, 1996, NEURON, V16, P1077, DOI 10.1016/S0896-6273(00)80134-8 Rothlin CV, 1999, MOL PHARMACOL, V55, P248 SANDS SB, 1991, BRAIN RES, V560, P38, DOI 10.1016/0006-8993(91)91211-I SEGUELA P, 1993, J NEUROSCI, V13, P596 Verbitsky M, 2000, NEUROPHARMACOLOGY, V39, P2515, DOI 10.1016/S0028-3908(00)00124-6 VERNINO S, 1992, NEURON, V8, P127, DOI 10.1016/0896-6273(92)90114-S VERNINO S, 1994, J NEUROSCI, V14, P5514 Vetter DE, 1999, NEURON, V23, P93, DOI 10.1016/S0896-6273(00)80756-4 NR 55 TC 58 Z9 62 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2002 VL 167 IS 1-2 BP 122 EP 135 DI 10.1016/S0378-5955(02)00380-5 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 575XZ UT WOS:000176974900012 PM 12117536 ER PT J AU Kong, WJ Scholtz, AW Hussl, B Kammen-Jolly, K Schrott-Fischer, A AF Kong, WJ Scholtz, AW Hussl, B Kammen-Jolly, K Schrott-Fischer, A TI Localization of efferent neurotransmitters in the inner ear of the homozygous Bronx waltzer mutant mouse SO HEARING RESEARCH LA English DT Article DE mutant mice; efferents; neurotransmission ID GENE-RELATED-PEPTIDE; GABA-LIKE IMMUNOREACTIVITY; VESTIBULAR END-ORGANS; CHAT-LIKE IMMUNOREACTIVITY; CENTRAL-NERVOUS-SYSTEM; GUINEA-PIG COCHLEA; OUTER HAIR-CELLS; CHOLINE-ACETYLTRANSFERASE; ULTRASTRUCTURAL-LOCALIZATION; NEUROACTIVE SUBSTANCES AB Naturally occurring mutant mice provide an excellent model for the study of genetic malformations of the inner ear. Mice homozygous for the Bronx waltzer (bv/bv,) mutation are severely hearing impaired or deaf and exhibit a 'waltzing' gait. Functional aspects of cochlear epsilonnd vestibular efferents in the bv/bv mutant mouse are not well known. The present study was designed to evaluate several candidates of efferent neurotransmitters or neuromodulators including choline acetyltransferase (ChAT), gamma-aminobutyric acid (GABA), and calcitonin gene-related peptide (CGRP) in the inner ear of the bv/bv mutant mouse. Ultrastructural investigations at both light and electron microscopic level were performed. Ultrastructural morphologic evaluations of the cochlea and the vestibular end-organs were also undertaken. It is demonstrated that ChAT. GABA and CGRP immunoreactivities are present in the cochlea and in vestibular cad-organs of bv/bv mutant mice. In the organ of Corti, immunoreactivity of ChAT. GABA and CGRP is confined to the inner spiral fibers, tunnel-crossing fibers. and the vesiculated nerve endings synapsing with outer hair cells. Interestingly, immunoreactivity was detectable even where inner hair cells appeared missing. Results also revealed malformations of the outer hair cells with synaptic contacts to efferent nerve endings consistently intact. In the neurosensory epithelia of the vestibular end-organs, the presence of ChAT. GABA, and CGRP immunoreactivity was localized at the vestibular efferents, with the exception of the macula of saccule. In one 8-month-old macula of utricle where the depletion of hair cells appeared highest, ChAT immunostaining was still discernible. Ultrastructural investigation demonstrated that vesiculated efferent nerve endings make synaptic contact with the outer hair cells in the organ of Corti and with type II hair cells in the vestibular end-organs. The present study provides further support that the efferent system in the bv/bv mutant inner ear is morphologically as well as functionally mature. These findings also demonstrate that if and when the onset of efferent degeneration in the bv/bv mutant inner ear occurs, it transpires subsequent to pathological conditions in the hair cells. The present findings give further indication that the efferent systems of the bv/bv, mutant inner ear are independent of the afferent systems in many aspects including development, maturation as well as degeneration. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Innsbruck, Dept Otolaryngol, A-6020 Innsbruck, Austria. Hua Zhong Univ Sci & Technol, Tongji Med Coll, Union Hosp, Dept Otolaryngol, Hua Zhong, Peoples R China. RP Schrott-Fischer, A (reprint author), Univ Innsbruck, Dept Otolaryngol, Anichstr 35, A-6020 Innsbruck, Austria. EM annelies.schrott@uibk.ac.at CR AVRAHAM KB, 1995, NAT GENET, V11, P369, DOI 10.1038/ng1295-369 BOCK GR, 1982, NEUROSCI LETT, V34, P19, DOI 10.1016/0304-3940(82)90086-6 BOCK GR, 1982, BRAIN RES, V239, P608, DOI 10.1016/0006-8993(82)90536-4 Bussoli TJ, 1997, MAMM GENOME, V8, P714, DOI 10.1007/s003359900552 DANNHOF BJ, 1991, CELL TISSUE RES, V266, P89, DOI 10.1007/BF00678715 Demêmes D, 1985, Brain Res, V350, P285 Deol M S, 1968, J Med Genet, V5, P137, DOI 10.1136/jmg.5.2.137 DEOL MS, 1981, ACTA OTO-LARYNGOL, V92, P331, DOI 10.3109/00016488109133269 DEOL MS, 1979, NATURE, V278, P250, DOI 10.1038/278250a0 EYBALIN M, 1990, J ELECTRON MICR TECH, V15, P209, DOI 10.1002/jemt.1060150303 EYBALIN M, 1988, NEUROSCIENCE, V24, P29, DOI 10.1016/0306-4522(88)90308-9 EYBALIN M, 1987, EXP BRAIN RES, V65, P261 EYBALIN M, 1989, ARCH OTO-RHINO-LARYN, V246, P228, DOI 10.1007/BF00463561 EYBALIN M, 1993, PHYSIOL REV, V73, P309 FEX J, 1986, BRAIN RES, V366, P106, DOI 10.1016/0006-8993(86)91285-0 FEX J, 1986, HEARING RES, V22, P249, DOI 10.1016/0378-5955(86)90102-4 GIBSON F, 1995, NATURE, V374, P62, DOI 10.1038/374062a0 GREEN TP, 1981, GENETIC VARIANTS STR HIGHSTEIN SM, 1991, NEUROSCI RES, V12, P13, DOI 10.1016/0168-0102(91)90096-H Hughes DC, 1997, AUDIOL NEURO-OTOL, V2, P3 ISHIYAMA A, 1994, CELL BIOL INT, V18, P979, DOI 10.1006/cbir.1994.1019 Iurato S, 1972, Prog Brain Res, V37, P429, DOI 10.1016/S0079-6123(08)63917-5 KEITHLEY EM, 1983, HEARING RES, V12, P381, DOI 10.1016/0378-5955(83)90007-2 KITAJIRI M, 1985, BRAIN RES, V358, P394, DOI 10.1016/0006-8993(85)90992-8 KLINKE R, 1981, ACTA OTO-LARYNGOL, V91, P541, DOI 10.3109/00016488109138540 Kong WJ, 1998, HEARING RES, V119, P96, DOI 10.1016/S0378-5955(98)00033-1 Kong WJ, 1998, HEARING RES, V119, P104, DOI 10.1016/S0378-5955(98)00034-3 KONG WJ, 1994, HEARING RES, V75, P191, DOI 10.1016/0378-5955(94)90070-1 KONG WJ, 1994, ACTA OTO-LARYNGOL, V114, P245, DOI 10.3109/00016489409126051 Kong WJ, 1998, ACTA OTO-LARYNGOL, V118, P90 KURIYAMA H, 1990, BRAIN RES, V517, P76, DOI 10.1016/0006-8993(90)91010-E LENOIR M, 1984, HEARING RES, V13, P123, DOI 10.1016/0378-5955(84)90103-5 LU SM, 1987, HEARING RES, V31, P137, DOI 10.1016/0378-5955(87)90119-5 Marco RAW, 1996, HEARING RES, V97, P95 MERCHANPEREZ A, 1990, EUR ARCH OTO-RHINO-L, V248, P4, DOI 10.1007/BF00634770 MERCHANPEREZ A, 1990, INT J DEV NEUROSCI, V8, P603, DOI 10.1016/0736-5748(90)90052-4 Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3 ROTH B, 1991, ANAT EMBRYOL, V183, P483 SAFIEDDINE S, 1992, NEUROREPORT, V3, P1145, DOI 10.1097/00001756-199212000-00029 SCHROTT A, 1989, HEARING RES, V40, P213, DOI 10.1016/0378-5955(89)90162-7 SCHROTT A, 1991, HEARING RES, V52, P245, DOI 10.1016/0378-5955(91)90204-M SCHROTTFISCHER A, 1994, HEARING RES, V78, P149, DOI 10.1016/0378-5955(94)90020-5 SILVERMAN JD, 1989, J COMP NEUROL, V280, P303, DOI 10.1002/cne.902800211 Simmons DD, 1996, DEV BRAIN RES, V95, P213 SKOFITSCH G, 1988, CELL MOL NEUROBIOL, V8, P339, DOI 10.1007/BF00711224 SLIWINSKAKOWALSKA M, 1989, HEARING RES, V42, P83, DOI 10.1016/0378-5955(89)90119-6 SMITH C, 1967, NASA, P183 Sobkowicz HM, 1999, J NEUROCYTOL, V28, P17, DOI 10.1023/A:1007059616607 SPOENDLI.H, 1974, ARCH OTO-RHINO-LARYN, V208, P137, DOI 10.1007/BF00453927 SPOENDLIN H, 1987, ACTA OTO-LARYNGOL, P25 SPOENDLIN H, 1985, AM J OTOLARYNG, V6, P453, DOI 10.1016/S0196-0709(85)80026-0 STEEL KP, 1983, BEHAV NEUROSCI, V97, P381, DOI 10.1037//0735-7044.97.3.381 STEEL KP, 1983, ARCH OTOLARYNGOL, V109, P22 TAKEDA N, 1987, ACTA OTOLARYNGOL, V130, P567 TAKEDA N, 1986, EXP BRAIN RES, V61, P575 TANAKA M, 1989, BRAIN RES, V504, P31, DOI 10.1016/0006-8993(89)91593-X TANAKA M, 1988, BRAIN RES, V447, P175, DOI 10.1016/0006-8993(88)90981-X THOMPSON GC, 1986, BRAIN RES, V372, P72, DOI 10.1016/0006-8993(86)91459-9 TOHYAMA Y, 1989, DEV BRAIN RES, V45, P309, DOI 10.1016/0165-3806(89)90050-3 USAMI S, 1987, BRAIN RES, V418, P383, DOI 10.1016/0006-8993(87)90108-9 USAMI SI, 1988, ACTA OTO-LARYNGOL, P36 USAMI SI, 1995, ACTA OTO-LARYNGOL, P160 VETTER DE, 1991, SYNAPSE, V7, P21, DOI 10.1002/syn.890070104 WACKYM PA, 1993, AM J OTOL, V14, P41 WACKYM PA, 1991, OTOLARYNG HEAD NECK, V105, P493 WACKYM PA, 1991, ACTA OTO-LARYNGOL, P141 WARR WB, 1975, J COMP NEUROL, V161, P159, DOI 10.1002/cne.901610203 WERSALL J, 1956, Acta Otolaryngol Suppl, V126, P1 WERSALL J, 1974, HDB SENSORY PHYSL VE, V9, P123 Whitlon DS, 1996, J COMP NEUROL, V364, P515 WHITLON DS, 1989, J NEUROCYTOL, V18, P505, DOI 10.1007/BF01474546 YLIKOSKI J, 1989, ACTA OTO-LARYNGOL, V107, P417, DOI 10.3109/00016488909127533 NR 72 TC 10 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2002 VL 167 IS 1-2 BP 136 EP 155 DI 10.1016/S0378-5955(02)00382-9 PG 20 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 575XZ UT WOS:000176974900013 PM 12117537 ER PT J AU Holt, LL Lotto, AJ AF Holt, LL Lotto, AJ TI Behavioral examinations of the level of auditory processing of speech context effects SO HEARING RESEARCH LA English DT Article DE speech perception; phonetic perception; context effect; spectral contrast; auditory enhancement ID STOP-CONSONANT PERCEPTION; PRECEDING LIQUID; RHESUS-MONKEYS; NERVE FIBERS; ENHANCEMENT; IDENTIFICATION; DISTINCTION; NEURONS; CATEGORIZATION; CHINCHILLA AB One of the central findings of speech perception is that identical acoustic signals can be perceived as different speech sounds depending on adjacent speech context. Although these phonetic context effects are ubiquitous in speech perception, their neural mechanisms remain largely unknown. The present work presents a review of recent data suggesting that spectral content of speech mediates phonetic context effects and argues that these effects are likely to be governed by general auditory processes. A descriptive framework known as spectral contrast is presented as a means of interpreting these findings. Finally, and most centrally, four behavioral experiments that begin to delineate the level of the auditory system at which interactions among stimulus components occur are described. Two of these experiments investigate the influence of diotic versus dichotic presentation upon two phonetic context effects. Results indicate that context effects remain even when context is presented to the ear contralateral to that of the target syllable. The other two experiments examine the time course of phonetic context effects by manipulating the silent interval between context and target syllables. These studies reveal that phonetic context effects persist for hundreds of milliseconds. Results are interpreted in terms of auditory mechanism with particular attention to the putative link between auditory enhancement and phonetic context effects. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Carnegie Mellon Univ, Dept Psychol, Ctr Neural Basis Cognit, Pittsburgh, PA 15213 USA. Washington State Univ, Dept Psychol, Pullman, WA 99164 USA. RP Holt, LL (reprint author), Carnegie Mellon Univ, Dept Psychol, Ctr Neural Basis Cognit, 500 Forbes Ave, Pittsburgh, PA 15213 USA. CR Borsky S, 1998, J ACOUST SOC AM, V103, P2670, DOI 10.1121/1.422787 Brosch M, 1999, J NEUROPHYSIOL, V82, P1542 Brosch M, 2000, CEREB CORTEX, V10, P1155, DOI 10.1093/cercor/10.12.1155 Cant NB, 1992, MAMMALIAN AUDITORY P Cathcart EP, 1928, B J PSYCHOL-GEN SECT, V18, P262 CONNINE CM, 1987, J MEM LANG, V26, P527, DOI 10.1016/0749-596X(87)90138-0 DELGUTTE B, 1996, P ESCA WORKSH AUD BA, V1, P1 DELGUTTE B, 1996, HDB PHONETIC SCI, P505 Dent ML, 1997, J ACOUST SOC AM, V102, P1891, DOI 10.1121/1.420111 FOWLER CA, 2001, J EXP PSYCHOL HUMAN, P877 Fowler CA, 1996, J ACOUST SOC AM, V99, P1730, DOI 10.1121/1.415237 FOWLER CA, 1990, PERCEPT PSYCHOPHYS, V48, P559, DOI 10.3758/BF03211602 GANONG WF, 1980, J EXP PSYCHOL HUMAN, V6, P110, DOI 10.1037/0096-1523.6.1.110 Gibson JJ, 1933, J EXP PSYCHOL, V16, P1, DOI 10.1037/h0074626 GREEN DM, 1959, J ACOUST SOC AM, V31, P1446, DOI 10.1121/1.1907648 Guilford JP, 1931, AM J PSYCHOL, V43, P589, DOI 10.2307/1415160 HARTLINE HK, 1954, SCIENCE, V120, P781 Holt L. L., 1999, THESIS U WISCONSIN M Holt LL, 2000, J ACOUST SOC AM, V108, P710, DOI 10.1121/1.429604 HOLT LL, 2000, MIDW M ASS RES OT ST Holt LL, 2001, J ACOUST SOC AM, V109, P764, DOI 10.1121/1.1339825 HOLT LL, 2000, J ACOUST SOC AM, V108, P2641 HOLT LL, 2001, J ACOUST SOC AM, V109, P2311 KLATT DH, 1980, J ACOUST SOC AM, V67, P971, DOI 10.1121/1.383940 KLUENDER KR, 1994, J ACOUST SOC AM, V95, P1044, DOI 10.1121/1.408466 Koffka K., 1935, PRINCIPLES GESTALT P KUHL PK, 1975, SCIENCE, V190, P69, DOI 10.1126/science.1166301 KUHL PK, 1978, J ACOUST SOC AM, V63, P905, DOI 10.1121/1.381770 LINDBLOM BE, 1967, J ACOUST SOC AM, V42, P830, DOI 10.1121/1.1910655 Lotto AJ, 1997, J ACOUST SOC AM, V102, P1134, DOI 10.1121/1.419865 LOTTO AJ, 1996, J ACOUST SOC AM, V99, P2591, DOI 10.1121/1.415258 Lotto AJ, 1998, PERCEPT PSYCHOPHYS, V60, P602, DOI 10.3758/BF03206049 MANDAVA P, 1995, HEARING RES, V87, P114, DOI 10.1016/0378-5955(95)00084-H MANN VA, 1980, PERCEPT PSYCHOPHYS, V28, P407, DOI 10.3758/BF03204884 MANN VA, 1980, PERCEPT PSYCHOPHYS, V28, P213, DOI 10.3758/BF03204377 MANN VA, 1981, J ACOUST SOC AM, V69, P548, DOI 10.1121/1.385483 MANN VA, 1986, COGNITION, V24, P169, DOI 10.1016/S0010-0277(86)80001-4 MORSE PA, 1975, PERCEPT PSYCHOPHYS, V17, P9, DOI 10.3758/BF03203991 PALMER AR, 1995, J ACOUST SOC AM, V97, P1786, DOI 10.1121/1.412055 Popper AN, 1992, MAMMALIAN AUDITORY P RELKIN EM, 1991, HEARING RES, V55, P215, DOI 10.1016/0378-5955(91)90106-J REPP BH, 1982, PSYCHOL BULL, V92, P81, DOI 10.1037//0033-2909.92.1.81 RYUGO DK, 1992, MAMMALIAN AUDITORY P, V1, P23 SMITH RL, 1977, J NEUROPHYSIOL, V40, P1098 SUMMERFIELD Q, 1987, J ACOUST SOC AM, V81, P700, DOI 10.1121/1.394838 SUMMERFIELD Q, 1984, PERCEPT PSYCHOPHYS, V35, P203, DOI 10.3758/BF03205933 SUMMERFIELD Q, 1989, PERCEPT PSYCHOPHYS, V45, P529, DOI 10.3758/BF03208060 VIEMEISTER NF, 1982, J ACOUST SOC AM, V71, P1502, DOI 10.1121/1.387849 Viemeister NF, 1980, PSYCHOPHYSICAL PHYSL, P190 VONBEKESY G, 1967, SENSORY PERCEPTION WARREN RM, 1985, PSYCHOL REV, V92, P574, DOI 10.1037//0033-295X.92.4.574 WATERS RS, 1976, PERCEPT PSYCHOPHYS, V19, P285, DOI 10.3758/BF03204232 YOUNG E, 1973, J ACOUST SOC AM, V54, P1535, DOI 10.1121/1.1914451 NR 53 TC 39 Z9 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2002 VL 167 IS 1-2 BP 156 EP 169 DI 10.1016/S0378-5955(02)00383-0 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 575XZ UT WOS:000176974900014 PM 12117538 ER PT J AU Trune, DR Kempton, JB AF Trune, DR Kempton, JB TI Female MRL.MpJ-Fas(lpr) autoimmune mice have greater hearing loss than males SO HEARING RESEARCH LA English DT Article DE MRL.MpJ-Fas(lpr) autoimmune mice; autoimmune inner ear disease; auditory brainstem response; gender ID SYSTEMIC LUPUS-ERYTHEMATOSUS; BRAIN-STEM RESPONSES; MRL LPR/LPR MICE; INNER-EAR; RHEUMATOID-ARTHRITIS; ESTROGEN INCREASES; MENIERES-DISEASE; VASOPRESSIN; SYMPTOMS; GENDER AB Although women make up approximately 60-70% of the patients with autoimmune hearing loss, little is known about the impact of gender on this cochlear disease. To explore this relationship of gender and autoimmune inner ear disease, an evaluation was made of cochlear function in male and female autoimmune MRL.MpJ-Fas(lpr) mice. Autoimmune disease and hearing loss onset occur at 3-4 months of age, so mice were tested with auditory brainstem response audiometry at 3, 6, and 9 months of age to identify potential gender differences in thresholds. Sera also were analyzed for differences in the autoimmune factors of immune complexes, anti-nuclear antibodies, and hematocrits. By 9 months of age the surviving mice showed a dramatic gender difference. Female mice had thresholds 25-45 dB higher than males at 4, 8, and 16 kHz, although male thresholds at 32 kHz had risen sufficiently to be statistically similar to those for females. No gender differences were seen in any of the systemic autoimmune factors. These findings of worse hearing in female autoimmune mice parallel a reported female preponderance in clinical immune hearing disorders. This potential gender influence in autoimmune inner ear disease must be better understood for effective evaluation and treatment of this disorder. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Oregon Hlth Sci Univ, Dept Otolaryngol Head & Neck Surg, Oregon Hearing Res Ctr, Portland, OR 97201 USA. RP Trune, DR (reprint author), Oregon Hlth Sci Univ, Dept Otolaryngol Head & Neck Surg, Oregon Hearing Res Ctr, Mail Code NRC04,3181 SW Sam Jackson Pk Rd, Portland, OR 97201 USA. CR Ahmed SA, 1999, ENVIRON HEALTH PERSP, V107, P681, DOI 10.2307/3434327 ANDONOPOULOS AP, 1995, CLIN EXP RHEUMATOL, V13, P137 ANDREWS JC, 1992, ARCH OTOLARYNGOL, V118, P74 BEESON PB, 1994, AM J MED, V96, P457, DOI 10.1016/0002-9343(94)90173-2 BOWMAN CA, 1987, LARYNGOSCOPE, V97, P7 CARLSTEN H, 1990, CLIN EXP IMMUNOL, V80, P467 CARLSTEN H, 1992, CELL IMMUNOL, V144, P190, DOI 10.1016/0008-8749(92)90236-I DICKINS JRE, 1990, AM J OTOL, V11, P51 ELKINDHIRSCH KE, 1992, HEARING RES, V60, P143, DOI 10.1016/0378-5955(92)90016-G ELWANY S, 1986, J RHEUMATOL, V13, P878 Ferrini MG, 1997, CELL MOL NEUROBIOL, V17, P671, DOI 10.1023/A:1022538120627 HARRIS JP, 1995, OTOLARYNG HEAD NECK, V112, P639, DOI 10.1016/S0194-5998(95)70170-2 HONGJUN X, 1995, P SEND S, V5, P55 HUGHES GB, 1988, OTOLARYNG HEAD NECK, V98, P221 Kanda N, 1997, ARTHRITIS RHEUM, V40, P1703, DOI 10.1002/art.1780400921 Kitano H, 1997, NEUROREPORT, V8, P2289, DOI 10.1097/00001756-199707070-00038 Kumagami H, 1998, PFLUG ARCH EUR J PHY, V436, P970, DOI 10.1007/s004240050731 LAHITA RG, 1987, ARTHRITIS RHEUM, V30, P241, DOI 10.1002/art.1780300301 LAHITA RG, 1990, BAILLIERE CLIN RHEUM, V4, P1, DOI 10.1016/S0950-3579(05)80240-7 Lahita R G, 1999, Curr Opin Rheumatol, V11, P352, DOI 10.1097/00002281-199909000-00005 LAUGEL GR, 1987, HEARING RES, V31, P245, DOI 10.1016/0378-5955(87)90194-8 MAGARO M, 1990, CLIN EXP RHEUMATOL, V8, P487 Mitchell C, 1996, HEARING RES, V99, P38, DOI 10.1016/S0378-5955(96)00081-0 MORI N, 1986, ACTA OTO-LARYNGOL, V101, P217, DOI 10.3109/00016488609132830 Rider V, 1998, CLIN IMMUNOL IMMUNOP, V89, P171, DOI 10.1006/clin.1998.4604 SCHWARZ SM, 1988, AM J PHYSIOL, V254, pG687 Sperling NM, 1998, OTOLARYNG HEAD NECK, V118, P762, DOI 10.1016/S0194-5998(98)70265-7 Stenberg AE, 1999, HEARING RES, V136, P29, DOI 10.1016/S0378-5955(99)00098-2 Takeda T, 1995, Acta Otolaryngol Suppl, V519, P219 THEOFILOPOULOS AN, 1980, CLIN IMMUNOL IMMUNOP, V15, P258, DOI 10.1016/0090-1229(80)90039-2 Trune DR, 1997, HEARING RES, V105, P57, DOI 10.1016/S0378-5955(96)00191-8 VANVOLLENHOVEN RF, 1994, CLEV CLIN J MED, V61, P271 Verthelyi DI, 1998, CELL IMMUNOL, V189, P125, DOI 10.1006/cimm.1998.1372 NR 33 TC 8 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2002 VL 167 IS 1-2 BP 170 EP 174 DI 10.1016/S0378-5955(02)00384-2 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 575XZ UT WOS:000176974900015 PM 12117539 ER PT J AU Foster, PK Luebke, AE AF Foster, PK Luebke, AE TI A model for perilymphatic fistula induced hearing loss in the guinea pig cochlea SO HEARING RESEARCH LA English DT Article DE perilymphatic fistula; pneumolabyrinth; round-window membrane rupture; osmotic perfusion pump; DPOAE ID OTOACOUSTIC EMISSIONS; INFUSION AB In cases of sudden, reversible hearing loss where perilymphatic fistulas are thought to be the cause, a multitude of causes have been postulated. These include perilymphatic pressure changes, Simmons' double-break theory, perilymphatic hemorrhage, pneumolabyrinth, and others. This study was proposed to explore the role pneumolabyrinth may have in this pathology. Guinea pigs were fitted with cochlear perfusion pumps pumping artificial perilymph into the left scala tympani. One group of animals received a bubble (similar to 1.5-2 mul) introduced into the scala tympani while the other group of animals received continuous infusion of artificial perilymph. The animals' cochlear function was monitored using distortion product otoacoustic emissions (DPOAEs) while the animals' behavior was assessed to evaluate for vestibular dysfunction. While unaffected by pump surgery, animals that received air into the scala tympani had their DPOAEs eliminated by day 2 after pump placement. On day 6, positional changes in the DPOAEs were observed where the left lateral decubitus position showed a sharp demarcation at 4 kHz, where lower DPOAE frequencies were abolished and higher ones minimally affected, with DPOAEs normal in the prone position. By days 8 and 20, DPOAEs recovered to normal amplitudes. Vestibular dysfunction was never detected in any animal that received a pneumolabyrinth. All control animals receiving a continuous perilymph infusion exhibited no loss of cochlear function throughout the testing period. The reversible nature of pneumolabyrinth induced hearing loss and the pneumolabyrinth's sole presence (without other possible causes of hearing loss, such as pressure differentials or round window membrane perforations) are powerful indicators of the role of air in the pathology of perilymphatic fistulas. In addition, the fluctuation of the hearing loss with positional changes supports the use of positional audiometry when evaluating perilymphatic fistulas. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Miami, Sch Med, Dept Otolaryngol, Miami, FL 33136 USA. Univ Miami, Sch Med, Neurosci Program, Miami, FL 33136 USA. RP Luebke, AE (reprint author), Univ Miami, Sch Med, Dept Otolaryngol, 1600 NW 10th Ave,RMSB 3160, Miami, FL 33136 USA. CR BOHMER A, 1991, LARYNGOSCOPE, V101, P1307 BROWN JN, 1993, HEARING RES, V70, P167, DOI 10.1016/0378-5955(93)90155-T KOBAYASHI T, 1990, ACTA OTO-LARYNGOL, V110, P209, DOI 10.3109/00016489009122539 LAMM K, 1992, HNO, V40, P374 Lonsbury-Martin B L, 1990, Ann Otol Rhinol Laryngol Suppl, V147, P3 LONSBURYMARTIN BL, 1991, J SPEECH HEAR RES, V34, P964 LONSBURYMARTIN BL, 1993, PROG BRAIN RES, V97, P77 MARTIN GK, 1990, ANN OTO RHINOL LARYN, V99, P30 NISHIOKA I, 1986, AM J OTOL, V7, P430 Prieskorn DM, 2000, HEARING RES, V140, P212, DOI 10.1016/S0378-5955(99)00193-8 SIMMONS FB, 1979, LARYNGOSCOPE, V89, P59 WEISSKOPF A, 1978, LARYNGOSCOPE, V88, P389, DOI 10.1288/00005537-197803000-00002 NR 12 TC 6 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2002 VL 167 IS 1-2 BP 175 EP 179 DI 10.1016/S0378-5955(02)00389-1 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 575XZ UT WOS:000176974900016 PM 12117540 ER PT J AU Buki, B de Kleine, E Wit, HP Avan, P AF Buki, B de Kleine, E Wit, HP Avan, P TI Detection of intracochlear and intracranial pressure changes with otoacoustic emissions: a gerbil model SO HEARING RESEARCH LA English DT Article DE intracochlear pressure; intracranial pressure; otoacoustic emissions; stapes; middle-ear muscles ID MIDDLE-EAR INFLUENCE; COCHLEAR AQUEDUCT; GUINEA-PIG; POSTURAL CHANGES; MUSCLE-SPINDLES; DISPLACEMENT; BEHAVIOR; PATENCY AB Increased intracranial pressure (ICP) is known to affect the phases and levels of lower-frequency distortion-product otoacoustic emissions (DPOAE) in a characteristic: manner suggestive of an increase in the stiffness of the stapes system. likely in relation to an attendant increased intracochlear pressure (ICoP). DPOAEs may thus provide an easy non-invasive means of gaining access to the otherwise elusive ICoP. However, the mechanisms by which DPOAEs actually relate to ICoP are unclear and may involve changes in the stiffness of the annular ligament, stapedius muscle and even some indirect contributions of other parts of the middle ear such as the tensor tympani. A systematic study of the role of each middle-ear element on ICoP-to-DPOAE relationships as a function of frequency was undertaken in gerbils under direct control of ICP via an intracranial catheter (from 0 to 500 daPa). After the bulla was widely opened, the tendons of the stapedius and tensor tympani muscles were severed in turn. A standard electroacoustic analog model of the middle ear was used for predicting the forward and reverse middle-ear transfer-functions changes under different experimental manipulations and their consequences on DPOAEs. The observed DPOAE changes chiefly consisted in a phase-lead peaking around 2.15 kHz in closed-bulla, and 1.2 kHz in open-bulla conditions. It was proportional to ICP increase provided ICP exceeded a threshold of about 50 daPa. The profiles of DPOAE shifts matched those derived from the premise that ICoP mainly induced a change in the stiffness of the stapes system. The possible involvement of the stapedius muscle was ruled out by the absence of any effect of cutting its tendon so that the intrinsically non-linear stiffness of the annular ligament must have been the main factor. A relatively minor contribution from the tensor tympani was observed, possibly in relation to the detection of ICoP-induced displacement of the ossicular chain by neuromuscular spindles. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Sch Med, Lab Sensory Biophys, F-63001 Clermont Ferrand, France. Krankenhaus Krems, ENT Clin, Krems, Austria. AZG, Dept Audiol, Groningen, Netherlands. RP Avan, P (reprint author), Sch Med, Lab Sensory Biophys, POB 38, F-63001 Clermont Ferrand, France. EM paul.avan@u-clermont1.fr RI de Kleine, Emile/P-2350-2014 CR ALLEN JB, 1990, CUB2DIS USER MANUAL AVAN P, 2000, MENIERES DIS UPDATE, P243 Avan P, 2000, HEARING RES, V140, P189, DOI 10.1016/S0378-5955(99)00201-4 Buki B, 1996, HEARING RES, V94, P125, DOI 10.1016/0378-5955(96)00015-9 Buki B, 2000, HEARING RES, V140, P202, DOI 10.1016/S0378-5955(99)00202-6 CARLBORG B, 1982, ANN OTO RHINOL LARYN, V91, P209 CASSELBRANT M, 1979, ACTA OTO-LARYNGOL, P7 de Kleine E, 2000, J ACOUST SOC AM, V107, P3308, DOI 10.1121/1.429403 de Kleine E, 2001, J ACOUST SOC AM, V110, P973, DOI 10.1121/1.1381025 DENSERT O, 1977, ACTA OTO-LARYNGOL, V84, P220, DOI 10.3109/00016487709123960 FUNG YCB, 1967, AM J PHYSIOL, V213, P1532 Gopen Q, 1997, HEARING RES, V107, P9, DOI 10.1016/S0378-5955(97)00017-8 IVARSSON A, 1977, ACTA OTO-LARYNGOL, V84, P38, DOI 10.3109/00016487709123940 KAST R, 1985, J NEUROL, V232, P260, DOI 10.1007/BF00313790 KEMP DT, 1980, HEARING RES, V2, P533, DOI 10.1016/0378-5955(80)90091-X KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222 Kierner AC, 1999, HEARING RES, V135, P71, DOI 10.1016/S0378-5955(99)00092-1 Klockhoff I, 1966, Acta Otolaryngol, V61, P361 LYNCH TJ, 1982, J ACOUST SOC AM, V72, P108, DOI 10.1121/1.387995 MARCHBANKS R J, 1990, British Journal of Audiology, V24, P179, DOI 10.3109/03005369009076554 Marchbanks RJ, 1982, HEARING AID J, V35, P14 NUTTALL AL, 1974, J ACOUST SOC AM, V56, P1239, DOI 10.1121/1.1903414 PANG XD, 1985, PERIPHERAL AUDITORY, P36 PHILLIPS A J, 1989, British Journal of Audiology, V23, P279, DOI 10.3109/03005368909076515 Rosingh HJ, 1998, AUDIOLOGY, V37, P1 RUSKELL GL, 1989, J ANAT, V167, P199 Salt AN, 1997, HEARING RES, V107, P29, DOI 10.1016/S0378-5955(97)00018-X SEO T, 1997, ABSTR ASS RES OT, V20, P157 Wada H, 2001, HEARING RES, V154, P158, DOI 10.1016/S0378-5955(01)00242-8 WEVER EG, 1954, PHYSL ACOUSTICS, P416 WIEDERHOLD ML, 1990, LECT NOTES BIOMATH, V87, P251 Wit HP, 1999, HEARING RES, V132, P131, DOI 10.1016/S0378-5955(99)00048-9 WLODYKA J, 1978, ANN OTO RHINOL LARYN, V87, P22 ZWISLOCKI J, 1963, J ACOUST SOC AM, V35, P1034, DOI 10.1121/1.1918650 ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382 NR 36 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2002 VL 167 IS 1-2 BP 180 EP 191 DI 10.1016/S0378-5955(02)00392-1 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 575XZ UT WOS:000176974900017 PM 12117541 ER PT J AU Mulders, WHAM Robertson, D AF Mulders, WHAM Robertson, D TI Inputs from the cochlea and the inferior colliculus converge on olivocochlear neurones SO HEARING RESEARCH LA English DT Article DE guinea pigs; medical olivocochlear system; compound action potential; cochlear microphonic; descending pathway ID PRODUCT OTOACOUSTIC EMISSIONS; TEMPORARY THRESHOLD SHIFTS; COMPOUND ACTION-POTENTIALS; SUPERIOR OLIVARY COMPLEX; CONTRALATERAL SOUND; GUINEA-PIG; ELECTRICAL-STIMULATION; AUDITORY-SENSITIVITY; EFFERENT NEURONS; CHOLERA-TOXIN AB Medial olivocochlear (MOC) neurones, located in the superior olivary complex, can suppress cochlear gain by their action on the cochlear outer hair cells. Inputs from the contralateral cochlea and the inferior colliculus (IC) have been separately shown to increase activity of MOC neurones. In this study we have investigated in guinea-pigs under barbiturate anaesthesia the interactions between these two inputs by combining electrical stimulation of the IC with acoustic stimulation of the contralateral cochlea. Electrical stimulation of the IC resulted in a significant suppression of the amplitude of the compound action potential (CAP) of the auditory nerve to test tones. This suppression was equivalent to an average decrease in sound intensity of 5.7 dB and 3.7 dB for contralateral and ipsilateral stimulation, respectively. Acoustic stimulation of the contralateral cochlea with broadband noise produced no detectable change in the amplitude of the CAP in the test cochlea in all but one animal. However, simultaneous electrical stimulation of the IC and acoustic stimulation of the contralateral cochlea resulted in a reduction in CAP amplitude that was markedly larger than that produced by IC stimulation alone. The suppression with the addition of contralateral noise was equivalent to a mean reduction in sound intensity of 8.7 dB with contralateral and 5.7 dB with ipsilateral IC stimulation. We hypothesise that excitatory input from the contralateral cochlea converges with excitatory input from the IC on the MOC neurones and in this way augments the activity of these neurones, resulting in a larger peripheral effect. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Western Australia, Sch Biomed & Chem Sci, Discipline Physiol, Auditory Lab, Crawley, WA 6009, Australia. RP Mulders, WHAM (reprint author), Univ Western Australia, Sch Biomed & Chem Sci, Discipline Physiol, Auditory Lab, Stirling Highway, Crawley, WA 6009, Australia. CR BROWN MC, 1984, J PHYSIOL-LONDON, V354, P625 BUNO W, 1978, EXP NEUROL, V59, P62, DOI 10.1016/0014-4886(78)90201-7 Giraud AL, 1995, BRAIN RES, V705, P15, DOI 10.1016/0006-8993(95)01091-2 Giraud AL, 1997, NEUROREPORT, V8, P1779 GUINAN JJ, 1984, J COMP NEUROL, V226, P21, DOI 10.1002/cne.902260103 Hienz RD, 1998, HEARING RES, V116, P10, DOI 10.1016/S0378-5955(97)00197-4 JOHNSTONE JR, 1979, J ACOUST SOC AM, V65, P254, DOI 10.1121/1.382244 KEMP DT, 1988, HEARING RES, V34, P49, DOI 10.1016/0378-5955(88)90050-0 KUJAWA SG, 1993, HEARING RES, V68, P97, DOI 10.1016/0378-5955(93)90068-C Kujawa SG, 2001, JARO, V2, P268, DOI 10.1007/s101620010047 LIBERMAN MC, 1989, HEARING RES, V38, P47, DOI 10.1016/0378-5955(89)90127-5 LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1 MOTT JB, 1989, HEARING RES, V38, P229, DOI 10.1016/0378-5955(89)90068-3 MOUNTAIN DC, 1980, SCIENCE, V210, P71, DOI 10.1126/science.7414321 Mulders WHA, 2000, HEARING RES, V149, P11, DOI 10.1016/S0378-5955(00)00157-X Mulders WHAM, 2001, J CHEM NEUROANAT, V21, P313, DOI 10.1016/S0891-0618(01)00118-1 Mulders WHAM, 2000, HEARING RES, V144, P65, DOI 10.1016/S0378-5955(00)00046-0 PATUZZI RB, 1991, HEARING RES, V54, P45, DOI 10.1016/0378-5955(91)90135-V PUEL JL, 1990, J ACOUST SOC AM, V87, P1630, DOI 10.1121/1.399410 Puria S, 1996, J ACOUST SOC AM, V99, P500, DOI 10.1121/1.414508 RAJAN R, 1990, BRAIN RES, V506, P192, DOI 10.1016/0006-8993(90)91251-B RAJAN R, 1988, J NEUROPHYSIOL, V60, P569 RAJAN R, 1988, J NEUROPHYSIOL, V60, P549 ROBERTSON D, 1988, BRAIN RES, V462, P47, DOI 10.1016/0006-8993(88)90583-5 ROBERTSON D, 1985, HEARING RES, V20, P63, DOI 10.1016/0378-5955(85)90059-0 Scharf B, 1997, HEARING RES, V103, P101, DOI 10.1016/S0378-5955(96)00168-2 Schofield BR, 1999, J COMP NEUROL, V409, P210, DOI 10.1002/(SICI)1096-9861(19990628)409:2<210::AID-CNE3>3.0.CO;2-A SIEGEL JH, 1982, HEARING RES, V6, P171, DOI 10.1016/0378-5955(82)90052-1 THOMPSON AM, 1993, J COMP NEUROL, V335, P402, DOI 10.1002/cne.903350309 THOMPSON AM, 1991, J COMP NEUROL, V303, P267, DOI 10.1002/cne.903030209 THOMPSON ML, 1993, THESIS U W AUSTR CRA VETTER DE, 1993, HEARING RES, V70, P173, DOI 10.1016/0378-5955(93)90156-U VETTER DE, 1991, SYNAPSE, V7, P21, DOI 10.1002/syn.890070104 VETTER DE, 1992, ANAT EMBRYOL, V185, P1, DOI 10.1007/BF00213596 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 WARREN EH, 1989, HEARING RES, V37, P89, DOI 10.1016/0378-5955(89)90032-4 WHITE JS, 1983, J COMP NEUROL, V219, P203, DOI 10.1002/cne.902190206 NR 37 TC 17 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2002 VL 167 IS 1-2 BP 206 EP 213 DI 10.1016/S0378-5955(02)00395-7 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 575XZ UT WOS:000176974900019 PM 12117543 ER PT J AU Fridberger, A Zheng, JF Nuttall, A AF Fridberger, A Zheng, JF Nuttall, A TI Alterations of basilar membrane response phase and velocity after acoustic overstimulation SO HEARING RESEARCH LA English DT Article DE basilar membrane; noise-induced hearing loss; response phase; laser velocimetry; guinea pig ID GUINEA-PIG; CHINCHILLA COCHLEA; NEGATIVE FEEDBACK; AUDITORY-SYSTEM; HEARING ORGAN; HAIR-CELLS; VIBRATION; REGION; BASE; MECHANICS AB To investigate the physiology of noise-induced hearing loss, the sound-induced vibrations of the basilar membrane (BM) of the inner ear were measured in living anesthetized guinea pigs before and after intense sound exposure. The vibrations were measured using a laser Doppler velocimeter after placing reflective glass beads on the BM. Pseudo-random noise waveforms containing frequencies between 4 and 24 kHz were used to generate velocity tuning curves. Before overstimulation. sharp response peaks were seen at stimulus frequencies between 15 and 17 kHz, consistent with the expected best frequency of the recording location. The response to low level stimuli lagged the high level ones by up to 90 at the characteristic frequency. Following exposure to loud sound, the BM vibrations showed a pronounced reduction in amplitude, primarily at low stimulus levels, and the best frequency moved to approximately 12 kHz. At higher levels, the reduction was either absent or much smaller. In addition to the amplitude changes, increased phase lags were seen at frequencies near the characteristic frequency. In animals with more severe exposures, response phases were altered also at frequencies showing no change of the amplitude. The phase was independent of stimulus level after severe exposures. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Karolinska Inst, Dept Physiol & Pharmacol, SE-17177 Stockholm, Sweden. Oregon Hlth Sci Univ, Dept Otolaryngol Head & Neck Surg, Oregon Hearing Res Ctr, Portland, OR 97201 USA. Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Fridberger, A (reprint author), Karolinska Inst, Dept Physiol & Pharmacol, Berzelius V 3,5tr, SE-17177 Stockholm, Sweden. RI Fridberger, Anders/E-8977-2010 OI Fridberger, Anders/0000-0002-7960-1559 CR COOPER NP, 1995, HEARING RES, V82, P225, DOI 10.1016/0378-5955(94)00180-X COOPER NP, 1992, HEARING RES, V63, P163, DOI 10.1016/0378-5955(92)90083-Y DALLOS P, 1985, J NEUROSCI, V5, P1591 de Boer E, 2000, J ACOUST SOC AM, V107, P1497, DOI 10.1121/1.428436 de Boer E, 2002, J ACOUST SOC AM, V111, P979, DOI 10.1121/1.1428548 Khanna SM, 2000, HEARING RES, V149, P55, DOI 10.1016/S0378-5955(00)00162-3 LONSBURYMARTIN BL, 1978, J NEUROPHYSIOL, V41, P987 MOLLER AR, 1983, BIOL CYBERN, V47, P95, DOI 10.1007/BF00337083 Nuttall AL, 1996, J ACOUST SOC AM, V99, P1556, DOI 10.1121/1.414732 NUTTALL AL, 1993, J ACOUST SOC AM, V93, P2061, DOI 10.1121/1.406692 NUTTALL AL, 1991, HEARING RES, V51, P203, DOI 10.1016/0378-5955(91)90037-A PATUZZI R, 1984, HEARING RES, V13, P99, DOI 10.1016/0378-5955(84)90100-X Recio A, 1998, J ACOUST SOC AM, V103, P1972, DOI 10.1121/1.421377 Ren TY, 2001, HEARING RES, V151, P48, DOI 10.1016/S0378-5955(00)00211-2 Rhode W. S., 1973, BASIC MECHANISMS HEA, P49 Rhode WS, 2000, J ACOUST SOC AM, V107, P3317, DOI 10.1121/1.429404 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 Ruggero MA, 1996, AUDIT NEUROSCI, V2, P329 RUGGERO MA, 1991, J NEUROSCI, V11, P1057 Russell IJ, 1997, P NATL ACAD SCI USA, V94, P2660, DOI 10.1073/pnas.94.6.2660 SWERUP C, 1978, BIOL CYBERN, V29, P97, DOI 10.1007/BF00364012 ULFENDAHL M, 1993, EUR J NEUROSCI, V5, P713, DOI 10.1111/j.1460-9568.1993.tb00535.x Ulfendahl M, 1996, J NEUROPHYSIOL, V76, P3850 Zinn C, 2000, HEARING RES, V142, P159, DOI 10.1016/S0378-5955(00)00012-5 NR 24 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2002 VL 167 IS 1-2 BP 214 EP 222 DI 10.1016/S0378-5955(02)00396-9 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 575XZ UT WOS:000176974900020 PM 12117544 ER PT J AU Stenberg, AE Wang, H Sahlin, L Stierna, P Enmark, E Hultcrantz, M AF Stenberg, AE Wang, H Sahlin, L Stierna, P Enmark, E Hultcrantz, M TI Estrogen receptors alpha and beta in the inner ear of the 'Turner mouse' and an estrogen receptor beta knockout mouse SO HEARING RESEARCH LA English DT Article DE Turner syndrome; estrogen receptor; mouse; estrogen receptor beta knockout mouse; inner ear; immunohistochemistry ID BRAIN-STEM RESPONSE; HEARING-LOSS; RAT; AGE; WOMEN; MICE; SEX AB Estrogen receptors have earlier been shown in the normal mouse, rat and human inner car. If estrogens are important in normal hearing and development of presbyacusis in the normal population is not known, However it is known that patients with Turner syndrome, where a lack of estrogens is one of the main characteristics, commonly develop an early presbyacusis. A 'Turner mouse' has been developed, as a model for the ear problems in Turner syndrome, and it shows otitis media and a premature aging of the hearing, Estrogen receptors exist in an alpha and a beta form. In this study inner ear tissue, from the Turner mouse and an estrogen receptor beta knockout mouse (betaERKO), was investigated regarding estrogen receptor alpha and beta using immunohistochemistry. Results show that the Turner mouse has the same pattern of inner car labeling, both concerning the estrogen receptor alpha and beta, as that of a normal CBA/Ca mouse, with positive staining in the organ of Corti and spiral ganglion. The betaERKO mice show close to normal inner ear morphology and positive estrogen receptor alpha immunostaining at the same locations as the CBA/Ca mouse. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Karolinska Hosp, Dept Otorhinolaryngol, S-17176 Stockholm, Sweden. Karolinska Hosp, Dept Woman & Child Hlth, S-10401 Stockholm, Sweden. Karolinska Inst, NOVUM, Dept Med Nutr, Huddinge, Sweden. RP Hultcrantz, M (reprint author), Karolinska Hosp, Dept Otorhinolaryngol, S-17176 Stockholm, Sweden. CR ANDERSSON H, 1969, ACTA OTOLARYNGOL S S, V247 Garcia-Segura LM, 2001, PROG NEUROBIOL, V63, P29, DOI 10.1016/S0301-0082(00)00025-3 Gungor N, 2000, EUR J PEDIATR, V159, P740, DOI 10.1007/PL00008338 Hultcrantz M, 2000, HEARING RES, V143, P182, DOI 10.1016/S0378-5955(00)00042-3 HULTCRANTZ M, 1994, HEARING RES, V76, P127, DOI 10.1016/0378-5955(94)90094-9 JERGER J, 1988, EAR HEARING, V9, P168, DOI 10.1097/00003446-198808000-00002 JERGER J, 1980, ARCH OTOLARYNGOL, V106, P387 Jonsson R, 1998, SCAND AUDIOL, V27, P81, DOI 10.1080/010503998420324 Krege JH, 1998, P NATL ACAD SCI USA, V95, P15677, DOI 10.1073/pnas.95.26.15677 Kuiper GGJM, 1996, P NATL ACAD SCI USA, V93, P5925, DOI 10.1073/pnas.93.12.5925 Kuiper GGJM, 1998, FRONT NEUROENDOCRIN, V19, P253, DOI 10.1006/frne.1998.0170 KUMAGAMI H, 1994, ACTA OTO-LARYNGOL, V114, P48, DOI 10.3109/00016489409126015 LINDSTEN J, 1963, THESIS LOSORDO DW, 1994, CIRCULATION, V89, P1501 Nathan CAO, 1999, ACTA OTO-LARYNGOL, V119, P853 Pettersson K, 2001, ANNU REV PHYSIOL, V63, P165, DOI 10.1146/annurev.physiol.63.1.165 ROSENHALL U, 1990, EAR HEARING, V11, P257, DOI 10.1097/00003446-199008000-00002 Saji S, 2000, P NATL ACAD SCI USA, V97, P337, DOI 10.1073/pnas.97.1.337 Saunders P.T., 1997, J ENDOCRINOL, V154, P13 Stenberg AE, 1999, HEARING RES, V136, P29, DOI 10.1016/S0378-5955(99)00098-2 Stenberg AE, 2001, HEARING RES, V157, P87, DOI 10.1016/S0378-5955(01)00280-5 Stenberg AE, 1998, HEARING RES, V124, P85, DOI 10.1016/S0378-5955(98)00113-0 Taylor AH, 2000, J MOL ENDOCRINOL, V24, P145, DOI 10.1677/jme.0.0240145 TURNER RT, 1994, ENDOCR REV, V15, P275, DOI 10.1210/er.15.3.275 Wang H, 1999, BIOL REPROD, V61, P955, DOI 10.1095/biolreprod61.4.955 Wang L, 2001, P NATL ACAD SCI USA, V98, P2792, DOI 10.1073/pnas.041617498 WATKIN PM, 1989, J LARYNGOL OTOL, V103, P731, DOI 10.1017/S0022215100109934 WHARTON JA, 1990, AUDIOLOGY, V29, P196 WHELING M, 1997, ANNU REV PHYSIOL, V59, P365 NR 29 TC 16 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2002 VL 166 IS 1-2 BP 1 EP 8 DI 10.1016/S0378-5955(02)00310-6 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 567HQ UT WOS:000176479700001 PM 12062753 ER PT J AU Wong, D Pisoni, DB Learn, J Gandour, JT Miyamoto, RT Hutchins, GD AF Wong, D Pisoni, DB Learn, J Gandour, JT Miyamoto, RT Hutchins, GD TI PET imaging of differential cortical activation by monaural speech and nonspeech stimuli SO HEARING RESEARCH LA English DT Article DE speech perception; positron emission tomography imaging; reversed speech; auditory cortical processing; cochlear implant ID POSITRON-EMISSION-TOMOGRAPHY; COCHLEAR IMPLANT USERS; HUMAN AUDITORY-CORTEX; SOUND STIMULATION; HEARING SUBJECTS; CEREBRAL-CORTEX; WORKING MEMORY; LOCALIZATION; WORDS; PITCH AB Positron emission tomography imaging was used to investigate the brain activation patterns of listeners presented monaurally (right ear) with speech and nonspeech stimuli. The major objectives were to identify regions involved with speech and nonspeech processing, and to develop a stimulus paradigm suitable for studies of cochlear-implant subjects. Scans were acquired under a silent condition and stimulus conditions that required listeners to press a response button to repeated words. sentences, time-reversed (TR) words. or TR sentences. Group-averaged data showed activated foci in the posterior superior temporal gyrus (STG) bilaterally and in or near the anterior insula/frontal operculum across all stimulus conditions compared to silence. The anterior STG was activated bilaterally for speech signals, but only on the right side for TR sentences. Only nonspeech conditions showed frontal-lobe activation in both the left inferior frontal gyrus [Brodmann's area (BA) 47] and ventromedial prefrontal areas (BA 10/11). An STG focus near the superior temporal sulcus was observed for sentence compared to word. The present findings show that both speech and nonspeech engaged a distributed network in temporal cortex for early acoustic and prelexical phonological analysis. Yet backward speech, though lacking semantic content, is perceived as speechlike by engaging prefrontal regions implicated in lexico-semantic processing. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Indiana Univ, Sch Med, Dept Anat & Cell Biol, Indianapolis, IN 46202 USA. Indiana Univ, Sch Med, Dept Otolaryngol Head Neck Surg, Indianapolis, IN 46202 USA. Indiana Univ, Dept Psychol, Bloomington, IN 47405 USA. Indiana Univ, Sch Med, Dept Psychiat, Program Med Neurobiol, Indianapolis, IN 46202 USA. Purdue Univ, Dept Audiol & Speech Sci, W Lafayette, IN 47907 USA. Indiana Univ, Sch Med, Dept Radiol, Indianapolis, IN 46202 USA. RP Wong, D (reprint author), Indiana Univ, Sch Med, Dept Anat & Cell Biol, 635 Barnhill Dr, Indianapolis, IN 46202 USA. CR Binder JR, 2000, CEREB CORTEX, V10, P512, DOI 10.1093/cercor/10.5.512 BINDER JR, 1994, COGNITIVE BRAIN RES, V2, P31, DOI 10.1016/0926-6410(94)90018-3 Binder JR, 1997, J NEUROSCI, V17, P353 Binder JR, 1999, J COGNITIVE NEUROSCI, V11, P80, DOI 10.1162/089892999563265 BROWN C. M., 1999, NEUROCOGNITION LANGU Buckner RL, 1996, J NEUROSCI, V16, P6219 CUTTING JE, 1974, PERCEPT PSYCHOPHYS, V16, P601, DOI 10.3758/BF03198592 EGAN JP, 1948, LARYNGOSCOPE, V58, P955, DOI 10.1288/00005537-194809000-00002 Fiez JA, 1997, HUM BRAIN MAPP, V5, P79, DOI 10.1002/(SICI)1097-0193(1997)5:2<79::AID-HBM1>3.0.CO;2-J FRISTON KJ, 1991, J CEREB BLOOD FLOW M, V11, P81 FRISTON KJ, 1990, J CEREBR BLOOD F MET, V10, P458 GESCHWIND N, 1979, SCI AM, V241, P158 Griffiths TD, 1999, NEUROREPORT, V10, P3825, DOI 10.1097/00001756-199912160-00019 Hirano S, 1997, EXP BRAIN RES, V113, P75, DOI 10.1007/BF02454143 HOWARD D, 1992, BRAIN, V115, P1769, DOI 10.1093/brain/115.6.1769 JONES EG, 1985, CEREBRAL CORTEX, V4 Just MA, 1996, SCIENCE, V274, P114, DOI 10.1126/science.274.5284.114 LAUTER JL, 1985, HEARING RES, V20, P199, DOI 10.1016/0378-5955(85)90024-3 MAZOYER BM, 1993, J COGNITIVE NEUROSCI, V5, P467, DOI 10.1162/jocn.1993.5.4.467 MINOSHIMA S, 1993, J NUCL MED, V34, P322 MIYAMOTO RT, 2000, ANN CONV ASHA NOV 16 Naito Y, 1997, ACTA OTO-LARYNGOL, V117, P490, DOI 10.3109/00016489709113426 NAITO Y, 1995, COGNITIVE BRAIN RES, V2, P207, DOI 10.1016/0926-6410(95)90009-8 Norris D., 2000, NEW COGNITIVE NEUROS, P867 PAULESU E, 1993, NATURE, V362, P342, DOI 10.1038/362342a0 PETERSEN SE, 1988, NATURE, V331, P585, DOI 10.1038/331585a0 PETERSEN SE, 1993, ANNU REV NEUROSCI, V13, P25 PETRIDES M, 1993, P NATL ACAD SCI USA, V90, P878, DOI 10.1073/pnas.90.3.878 PRICE C, 1999, NEUROCOGNITION LANGU, P211 PRICE C, 1992, NEUROSCI LETT, V146, P179, DOI 10.1016/0304-3940(92)90072-F Price CJ, 1996, BRAIN, V119, P919, DOI 10.1093/brain/119.3.919 RADEMACHER J, 1992, J COGNITIVE NEUROSCI, V4, P352, DOI 10.1162/jocn.1992.4.4.352 Scheffler K, 1998, CEREB CORTEX, V8, P156, DOI 10.1093/cercor/8.2.156 Shulman GL, 1997, J COGNITIVE NEUROSCI, V9, P648, DOI 10.1162/jocn.1997.9.5.648 Smith EE, 1999, SCIENCE, V283, P1657, DOI 10.1126/science.283.5408.1657 Talairach J., 1988, COPLANAR STEREOTAXIC Vandenberghe R, 1996, NATURE, V383, P254, DOI 10.1038/383254a0 WISE R, 1991, BRAIN, V114, P1803, DOI 10.1093/brain/114.4.1803 Wong D, 1999, HEARING RES, V132, P34, DOI 10.1016/S0378-5955(99)00028-3 ZATORRE RJ, 1992, SCIENCE, V256, P846, DOI 10.1126/science.1589767 ZATORRE RJ, 1994, J NEUROSCI, V14, P1908 NR 41 TC 21 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2002 VL 166 IS 1-2 BP 9 EP 23 DI 10.1016/S0378-5955(02)00311-8 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 567HQ UT WOS:000176479700002 PM 12062754 ER PT J AU Davis, RR Murphy, WJ Snawder, JE Striley, CAF Henderson, D Khan, A Krieg, EF AF Davis, RR Murphy, WJ Snawder, JE Striley, CAF Henderson, D Khan, A Krieg, EF TI Susceptibility to the ototoxic properties of toluene is species specific SO HEARING RESEARCH LA English DT Article DE ototoxicity; toluene; hepatic microsome; CYP2E1; CYP2B; chinchilla ID AUDITORY-EVOKED-RESPONSE; INDUCED HEARING-LOSS; SIMULTANEOUS EXPOSURE; NOISE; METABOLISM; RATS; CHINCHILLA; MICROSOMES; WORKERS; MODEL AB Toluene is the most widely used industrial solvent. It has been shown to be ototoxic in mice and rats, and to increase permanent threshold shift in conjunction with exposure to noise. Chinchillas are widely used for studying noise effects on the cochlea. The present study was initiated to study toluene and noise interaction in chinchillas, Thirty-three chinchillas were exposed to a 95 dBA 500 Hz octave band noise plus 2000 ppm toluene, 8 or 12 It per day for 10 days. Auditors function was estimated using the auditory brainstem response (ABR) to tones between 500 Hz and 16 kHz. There as no effect on the ABR of toluene alone. Noise alone produced a threshold shift. There was no interaction of noise and toluene on the car. The present study suggests that chinchillas are markedly less susceptible to the ototoxic effect of toluene than mice and rats, A working hypothesis Lis to the species differences was that chinchilla liver was able to detoxify the toluene. Hepatic microsomes from chinchillas, rats and humans were tested for their ability to convert toluene to the more water-soluble Compound benzyl alcohol. Chinchilla livers were Found to contain more of the P450 enzymes CYP2E1 and CYP2B than rats or humans. In addition, the data show that the P450 enzymes are more active in chinchillas than in rats and humans. In conclusion, the results suggest that rats and mice are a more appropriate model for human toluene ototoxicity. However. chinchillas may provide a valuable model for investigating how ototoxic agents can be detoxified to less damaging compounds. (C) 2002 Elsevier Science B.V. All rights reserved. C1 NIOSH, Hearing Loss Prevent Sect, Engn & Phys Hazards Branch, Cincinnati, OH 45226 USA. NIOSH, Control Technol Sect, Engn & Phys Hazards Branch, Cincinnati, OH 45226 USA. NIOSH, Biol Monitoring Lab Sect, Biomonitoring & Hlth Assessment Branch, Cincinnati, OH 45226 USA. NIOSH, Monitoring Res & Stat Act, Div Appl Res & Technol, Cincinnati, OH 45226 USA. Univ Cincinnati, Dept Biol Sci, Cincinnati, OH 45221 USA. SUNY Buffalo, Hearing Res Lab, Buffalo, NY 14260 USA. RP Davis, RR (reprint author), NIOSH, Hearing Loss Prevent Sect, Engn & Phys Hazards Branch, 4676 Columbia Pkwy, Cincinnati, OH 45226 USA. RI Davis, Rickie/A-3186-2008 CR Allen BC, 1996, TOXICOLOGY, V111, P289, DOI 10.1016/0300-483X(96)03383-5 BANCROFT BR, 1991, HEARING RES, V54, P20, DOI 10.1016/0378-5955(91)90132-S Campo P, 1999, NEUROTOXICOL TERATOL, V21, P427, DOI 10.1016/S0892-0362(99)00010-0 Campo P., 1993, Acta Acustica, V1 DAVIS RR, 1996, 19 MIDW RES M ASS RE DAVIS RR, 2000, 21 MIDW M ASS RES OT de la Maza MP, 2000, ALCOHOL CLIN EXP RES, V24, P605, DOI 10.1097/00000374-200005000-00004 DORSEY AS, 1994, US DEP HLTH HUMAN SE Fay R. R., 1988, HEARING VERTEBRATES Frank PM, 1996, EUR J CONTROL, V2, P6 Guengerich FP, 1989, PRINCIPLES METHODS T, P777 HENDERSO.D, 1969, PERCEPT PSYCHOPHYS, V5, P41, DOI 10.3758/BF03210478 JOHNSON AC, 1990, ACTA OTO-LARYNGOL, V109, P34, DOI 10.3109/00016489009107412 JOHNSON AC, 1988, ACTA OTO-LARYNGOL, V105, P56, DOI 10.3109/00016488809119446 JOHNSON AC, 1994, HEARING RES, V75, P201, DOI 10.1016/0378-5955(94)90071-X Lataye R, 1997, NEUROTOXICOL TERATOL, V19, P373, DOI 10.1016/S0892-0362(97)00049-4 Li H S, 1992, Scand Audiol Suppl, V36, P1 Liu Y, 1997, TOXICOL APPL PHARM, V142, P270, DOI 10.1006/taap.1996.8059 MORATA TC, 1989, SCAND AUDIOL, V18, P53, DOI 10.3109/01050398909070723 Morata TC, 1997, SCAND J WORK ENV HEA, V23, P289 NAKAJIMA T, 1993, BIOCHEM PHARMACOL, V45, P1079 Nebert DW, 2001, SCI TOTAL ENVIRON, V274, P93, DOI 10.1016/S0048-9697(01)00732-X Pierce CH, 1996, TOXICOL APPL PHARM, V139, P49, DOI 10.1006/taap.1996.0142 REBERT CS, 1983, NEUROBEH TOXICOL TER, V5, P59 Roe RA, 1999, APPL PSYCHOL-INT REV, V48, P1 Snawder JE, 2000, REGUL TOXICOL PHARM, V32, P200, DOI 10.1006/rtph.2000.1424 SNYDER DL, 1994, LAB ANIMAL, V23, P42 SULLIVAN MJ, 1988, NEUROTOXICOL TERATOL, V10, P525, DOI 10.1016/0892-0362(88)90088-8 NR 28 TC 22 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2002 VL 166 IS 1-2 BP 24 EP 32 DI 10.1016/S0378-5955(02)00280-0 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 567HQ UT WOS:000176479700003 PM 12062755 ER PT J AU Ylikoski, J Liang, XQ Virkkala, J Pirvola, U AF Ylikoski, J Liang, XQ Virkkala, J Pirvola, U TI Blockade of c-Jun N-terminal kinase pathway attenuates gentamicin-induced cochlear and vestibular hair cell death SO HEARING RESEARCH LA English DT Article DE cellular stress; apoptosis; JNK signaling; inner ear; hair cell; ototoxicity; therapy ID PIG IN-VIVO; AMINOGLYCOSIDE OTOTOXICITY; SIGNAL-TRANSDUCTION; SENSORY EPITHELIA; IRON CHELATORS; INNER-EAR; APOPTOSIS; STRESS; ACTIVATION; JNK AB The ototoxic action of aminoglycoside antibiotics leading to the loss of inner ear hair cells is well documented. However, the molecular mechanisms are poorly defined. We have previously shown that in neomycin-exposed cochlear organotypic cultures, the c-Jun N-terminal kinase (JNK) pathway-associated with stress, injury and apoptosis-is activated in hair cells. We have shown that hair cell death can be attenuated by CEP-1347, an inhibitor of JNK signaling (Pirvola et al., 2000). In the present study, we demonstrate that gentamicin-induced ototoxicity leads to JNK activation and apoptosis in the inner ear hair cells in vivo. We show that systemic administration of CEP-1347 attenuates gentamicin-induced decrease of auditory sensitivity and cochlear hair cell damage. In addition, CEP-1347 treatment reduces the extent of hair cell loss in the ampullary cristae after gentamicin intoxication. Particularly, the inner hair cells of the cochlea and type I hair cells of the vestibular organs are protected. Our previous data have shown that also acoustic overstimulation can cause apoptotic death of cochlear hair cells and that CEP-1347 can attenuate noise-induced hair cell loss. Thus, our results imply that activation of JNK cascade may be a common molecular outcome of cellular stress in the inner ear sensory epithelia and that attenuation of the lesion can be provided by inhibiting JNK activation. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Helsinki, Inst Biotechnol, Helsinki 00014, Finland. Univ Helsinki, Dept Otolaryngol, FIN-00290 Helsinki, Finland. RP Ylikoski, J (reprint author), Univ Helsinki, Inst Biotechnol, POB 56,Viikinkaari 9, Helsinki 00014, Finland. CR Adler V, 1999, ONCOGENE, V18, P6104, DOI 10.1038/sj.onc.1203128 Basile AS, 1996, NAT MED, V2, P1338, DOI 10.1038/nm1296-1338 BECK C, 1956, Z HALS HEILK, V170, P81 BRUSCH W, 1990, BIOCH CELL BIOL, V88, P1071 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 DERIJARD B, 1994, CELL, V76, P1025, DOI 10.1016/0092-8674(94)90380-8 Finkel T, 1998, CURR OPIN CELL BIOL, V10, P248, DOI 10.1016/S0955-0674(98)80147-6 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2 Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X GARETZ SL, 1994, HEARING RES, V77, P81, DOI 10.1016/0378-5955(94)90255-0 Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4 HU BH, 2000, ACTA OTOLARYNGOL, V120, P9 HUANG MY, 1990, BIOCHEM PHARMACOL, V40, P11 HULKA GF, 1993, AM J OTOL, V14, P352 Ip YT, 1998, CURR OPIN CELL BIOL, V10, P205, DOI 10.1016/S0955-0674(98)80143-9 KERR JFR, 1972, BRIT J CANCER, V26, P239, DOI 10.1038/bjc.1972.33 Kerr J.F.R., 1987, P93 Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x KYRIAKIS JM, 1994, NATURE, V369, P156, DOI 10.1038/369156a0 LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307 LINDEMAN HH, 1969, ACTA OTO-LARYNGOL, V67, P177, DOI 10.3109/00016486909125441 Lo YYC, 1996, J BIOL CHEM, V271, P15703 Maroney AC, 1998, J NEUROSCI, V18, P104 Meriin AB, 1998, J BIOL CHEM, V273, P6373, DOI 10.1074/jbc.273.11.6373 MEYER C, 1980, ACTA OTO-LARYNGOL, V90, P250, DOI 10.3109/00016488009131722 Mielke K, 2000, PROG NEUROBIOL, V61, P45, DOI 10.1016/S0301-0082(99)00042-8 NAGAKAWA Y, 1998, EUR ARCH OTO-RHINO-L, V255, P127 NAGAKAWA Y, 1997, EUR ARCH OTO-RHINO-L, V254, P9 Pirvola U, 2000, J NEUROSCI, V20, P43 PorteraCailliau C, 1997, J COMP NEUROL, V378, P70 Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4 RAFF MC, 1992, NATURE, V356, P97 Ronai Z, 1999, ONCOGENE, V18, P6084, DOI 10.1038/sj.onc.1203175 SCHACHT J, 1993, OTOLARYNG CLIN N AM, V26, P845 SHA SH, 1999, HEARING RES, V128, P12 Song BB, 1997, J PHARMACOL EXP THER, V282, P369 Song BB, 1996, HEARING RES, V94, P87, DOI 10.1016/0378-5955(96)00003-2 Usami S, 1997, BRAIN RES, V747, P147, DOI 10.1016/S0006-8993(96)01243-7 Vago P, 1998, NEUROREPORT, V9, P431, DOI 10.1097/00001756-199802160-00014 Weil M, 1996, J CELL BIOL, V133, P1053, DOI 10.1083/jcb.133.5.1053 Wyllie A H, 1980, Int Rev Cytol, V68, P251 Ylikoski J, 1997, AUDIT NEUROSCI, V3, P415 YLIKOSKI J, 1975, ACTA OTOLARYNGOL S, V326, P7 Yoshida N, 1999, J NEUROSCI, V19, P10116 NR 45 TC 60 Z9 65 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2002 VL 166 IS 1-2 BP 33 EP 43 DI 10.1016/S0378-5955(01)00388-4 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 567HQ UT WOS:000176479700004 PM 12062756 ER PT J AU Delahaye, R AF Delahaye, R TI Contralateral inhibition in a release from forward masking SO HEARING RESEARCH LA English DT Article DE forward masking; masking release; contralateral; inhibition; individual difference ID NARROW-BAND NOISE; 2-TONE SUPPRESSION; BASILAR-MEMBRANE; PSYCHOPHYSICAL SUPPRESSION; LATERAL INHIBITION; MASKERS; UNMASKING; COCHLEA; SYSTEM; SOUND AB The current study investigated contralateral inhibition involved in a release from forward masking. The masker and probe were 1-kHz pure tones shaped by a 20-Hz modulation. Durations of the masker and probe were 500 ms and 50 ms (single cycle) respectively. A 10-ms delay between the masker and probe was added to rule out any confusion. A contralateral component (cue). with various spectral and temporal properties. could be added during the masker. The First experiment showed that masking release occurred more often or increased with an increasing number of spectral cue components. The second experiment showed that increasing cue duration, leaving the cue and masker offsets synchronous. increased detection thresholds. In the third experiment the temporal position of a short cue relative to the masker was varied. The lowest thresholds were obtained for 0- and 150-ms delays between the cue and masker offsets. Despite large individual differences. the obtained release from forward masking provided support fora contralateral inhibition process. Contralateral inhibition seemed to be dependent on the number of spectral cue components and on the delay between the cue onset and the masker offset. (C) 2002 Published by Elsevier Science B.V. C1 Loyola Univ, Parmly Hearing Inst, Chicago, IL 60626 USA. RP Delahaye, R (reprint author), Loyola Univ, Parmly Hearing Inst, 6525 N Sheridan Rd, Chicago, IL 60626 USA. CR COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E Cooper NP, 1996, J ACOUST SOC AM, V99, P3087, DOI 10.1121/1.414795 Culling JF, 1998, J ACOUST SOC AM, V103, P3509, DOI 10.1121/1.423059 daCosta DL, 1997, J NEUROPHYSIOL, V78, P1826 Geisler CD, 1997, J ACOUST SOC AM, V102, P430, DOI 10.1121/1.419765 HALL JW, 1990, J ACOUST SOC AM, V88, P119, DOI 10.1121/1.399957 HARTMANN WM, 1984, J ACOUST SOC AM, V75, P528, DOI 10.1121/1.390486 HARTMANN WM, 1984, J ACOUST SOC AM, V75, pK10 Hill KG, 1998, HEARING RES, V115, P129, DOI 10.1016/S0378-5955(97)00187-1 HOUTGAST T, 1973, ACUSTICA, V29, P168 HOUTGAST T, 1972, J ACOUST SOC AM, V51, P1885, DOI 10.1121/1.1913048 Lee J, 1998, J ACOUST SOC AM, V104, P1013, DOI 10.1121/1.423315 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LIBERMAN MC, 1989, HEARING RES, V38, P47, DOI 10.1016/0378-5955(89)90127-5 LUFTI RA, 1980, J ACOUST SOC AM, V68, P700 MCFADDEN D, 1992, J ACOUST SOC AM, V91, P3436 MOORE BCJ, 1985, J ACOUST SOC AM, V77, P2137, DOI 10.1121/1.391738 MOORE BCJ, 1982, J ACOUST SOC AM, V71, P942, DOI 10.1121/1.387574 MOORE BCJ, 1981, J ACOUST SOC AM, V70, P62, DOI 10.1121/1.386582 MOORE BCJ, 1980, PSYCHOPHYSICAL PHYSL, P222 NEFF DL, 1983, J ACOUST SOC AM, V74, P1695, DOI 10.1121/1.390277 NEFF DL, 1986, J ACOUST SOC AM, V79, P1519, DOI 10.1121/1.393678 NEFF DL, 1985, J ACOUST SOC AM, V78, P1966, DOI 10.1121/1.392653 RHODE WS, 1993, HEARING RES, V66, P31, DOI 10.1016/0378-5955(93)90257-2 RUGGERO MA, 1992, J NEUROPHYSIOL, V68, P1087 SHANNON RV, 1976, J ACOUST SOC AM, V59, P1460, DOI 10.1121/1.381007 Smith DW, 2000, J ACOUST SOC AM, V107, P933, DOI 10.1121/1.428274 TERRY M, 1977, J ACOUST SOC AM, V62, P781, DOI 10.1121/1.381553 WARREN EH, 1989, HEARING RES, V37, P105, DOI 10.1016/0378-5955(89)90033-6 WEBER DL, 1981, J ACOUST SOC AM, V69, P1402, DOI 10.1121/1.385822 Wright BA, 1996, J ACOUST SOC AM, V100, P3295, DOI 10.1121/1.417213 YOST WA, 1989, J ACOUST SOC AM, V85, P848, DOI 10.1121/1.397556 ZWISLOCK.JJ, 1968, J ACOUST SOC AM, V43, P1267, DOI 10.1121/1.1910978 ZWISLOCKI JJ, 1967, PERCEPT PSYCHOPHYS, V2, P59 NR 34 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2002 VL 166 IS 1-2 BP 44 EP 53 DI 10.1016/S0378-5955(01)00408-7 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 567HQ UT WOS:000176479700005 PM 12062757 ER PT J AU Kakigi, A Takeuchi, S Ando, M Higashiyama, K Azuma, H Sato, T Takeda, T AF Kakigi, A Takeuchi, S Ando, M Higashiyama, K Azuma, H Sato, T Takeda, T TI Reduction in the endocochlear potential caused by Cs+ in the perilymph can be explained by the five-compartment model of the stria vascularis SO HEARING RESEARCH LA English DT Article DE stria vascularis; intermediate cell; K- channel; Cs+; perilymphatic perfusion ID K+-CHANNEL BLOCKERS; INTERMEDIATE CELLS; GUINEA-PIG; INNER-EAR; COCHLEA; MELANOCYTES; MUTATIONS; POTASSIUM; PERFUSION; GERBILS AB In an earlier publication (Takeuchi et al., Biophys. J. 79 (2000) 2572 2582), we proposed that K channels in intermediate cells within the stria vascularis may play an essential role in the generation or the endocochlear potential (EP). and we presented an extended version of the five-compartment model of the stria vascularis. In search of further evidence supporting the five-compartment model, we studied the effects of Cs+ added to the perilymph on guinea pig EP, Cs+ is known as a competitive K+ channel blocker. Both the scala tympani and the scala vestibuli of four cochlear turns were perfused at a flow rate of 10 mul/min, and the EP was recorded from the second cochlear turn. Cs- at 30 mM caused a biphasic change in the EP the EP increased transiently from a control level of 89.6 mV to 94.8 mV within 10 min, and then decreased to a. steady level of 24.5 mV within the next 40 min. We propose that the initial transient increase in the EP results from Cs+-mediated blockade of K+ conductance in the basolateral membrane of hair cells. and that the subsequent EP decrease is due to effects of Cs+ on the stria vascularis. We believe that Cs- in the perilymph is able to access the stria vascularis by being taken up by fibrocytes in the spiral ligament and then being transported to intermediate cells because it is known that Cs+ is taken up via Na+, K+-ATPase and that gap junctions connect fibrocytes in the spiral ligament to basal cells and basal cells to intermediate cells. To clarify the effect of intracellular Cs+ on the electrophysiological properties of intermediate cells. these cells were dissociated from guinea pigs and Studied by the whole-cell patch-clamp method. intracellular Cs+ depolarized intermediate cells in a dose-dependent manner. In addition, efflux of Cs+ from the intermediate cell was much less than the efflux of K+. Thus, Cs+ may accumulate in the intermediate cell, which depolarizes the cell, which in turn decreases the EP. We conclude that the five-compartment model of the stria vascularis can explain the EP decrease caused by Cs+ in the perilymph. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Kochi Med Sch, Dept Otolaryngol, Nankoku, Kochi 7838505, Japan. Kochi Med Sch, Dept Physiol, Nankoku, Kochi 7838505, Japan. RP Takeuchi, S (reprint author), Kochi Med Sch, Dept Otolaryngol, Nankoku, Kochi 7838505, Japan. CR BADER H, 1966, BIOCHIM BIOPHYS ACTA, V118, P116 BAGGERSJOBACK D, 1987, ACTA OTO-LARYNGOL, V103, P64, DOI 10.3109/00016488709134699 BAKER PF, 1969, J PHYSIOL-LONDON, V200, P459 BEAUGE LA, 1968, J PHYSIOL-LONDON, V194, P105 CABLE J, 1994, PIGM CELL RES, V7, P17, DOI 10.1111/j.1600-0749.1994.tb00015.x Chiba T, 2000, J MEMBRANE BIOL, V174, P167, DOI 10.1007/s002320001041 DAVIS DG, 1988, BIOCHEMISTRY-US, V27, P3547, DOI 10.1021/bi00410a003 EISNER DA, 1980, J PHYSIOL-LONDON, V303, P441 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 KONISHI T, 1978, ACTA OTO-LARYNGOL, V86, P22, DOI 10.3109/00016487809124717 LIANG F, 2001, ABSTR ASS RES OT, V24, P236 MARCUS DC, 1985, HEARING RES, V17, P79, DOI 10.1016/0378-5955(85)90133-9 MARCUS DC, 1981, HEARING RES, V4, P149, DOI 10.1016/0378-5955(81)90002-2 MARCUS DC, 1984, AM J PHYSIOL, V247, P240 MITRA RL, 1991, J MEMBRANE BIOL, V122, P33, DOI 10.1007/BF01872737 SALT AN, 1987, LARYNGOSCOPE, V97, P984 SCHULTE BA, 1994, HEARING RES, V78, P65, DOI 10.1016/0378-5955(94)90045-0 SKOU JC, 1960, BIOCHIM BIOPHYS ACTA, V42, P623 Slepecky N. B., 1996, COCHLEA, P44 Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 STEEL KP, 1989, DEVELOPMENT, V107, P453 Takeuchi S, 2001, HEARING RES, V155, P103, DOI 10.1016/S0378-5955(01)00252-0 Takeuchi S, 1998, NEUROSCI LETT, V247, P175, DOI 10.1016/S0304-3940(98)00318-8 Takeuchi S, 1996, HEARING RES, V101, P181, DOI 10.1016/S0378-5955(96)00151-7 Takeuchi S, 2000, BIOPHYS J, V79, P2572 TAKEUCHI S, 1999, AM J PHYSIOL, V277, P91 Takeuchi S, 1998, CELL TISSUE RES, V293, P271, DOI 10.1007/s004410051118 WANG J, 1993, HEARING RES, V68, P152 Wangemann P., 1996, COCHLEA, P130 WHITTAM R, 1964, J BIOCH, V93, P337 Wigmore MA, 2000, J PHYSIOL-LONDON, V527, P493, DOI 10.1111/j.1469-7793.2000.t01-1-00493.x NR 31 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2002 VL 166 IS 1-2 BP 54 EP 61 DI 10.1016/S0378-5955(01)00412-9 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 567HQ UT WOS:000176479700006 PM 12062758 ER PT J AU Hu, BH Henderson, D Nicotera, TM AF Hu, BH Henderson, D Nicotera, TM TI Involvement of apoptosis in progression of cochlear lesion following exposure to intense noise SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 22nd Midwinter Meeting of the Association-for-Research-in-Otolaryngology CY FEB 07, 2001 CL ST PETERSBURG, FLORIDA SP Assoc Res Otolaryngol DE apoptosis; noise; outer hair cell; cochlea; chinchilla ID FOCAL ADHESION KINASE; ACOUSTIC TRAUMA; NERVOUS-SYSTEM; IMPULSE NOISE; GUINEA-PIG; HAIR-CELLS; CHINCHILLA; DEGENERATION; INHIBITOR; CASPASE-3 AB It has been known for some time that noise-induced outer hair cell (OHC) death in the cochlea continues well after the termination of a noise exposure. However, the underlying mechanisms leading to the expansion of a cochlear lesion are not fully understood. Here we report involvement of the apoptotic pathway in the progression of OHC death in the chinchilla cochlea following exposure to a 4 kHz narrow band noise at 110 dB SPL for 1 h. Morphological examination of OHC nuclei revealed nuclear condensation and fragmentation. typical morphological features of apoptosis, OHC apoptosis developed asymmetrically toward the apical and basal parts of the cochleas following the noise exposure. Two days after the noise exposure. there was still active OHC pathology with condensed and fragmented nuclei in the basal part of the cochleas. Detection of caspase-3 activation, an intracellular marker for apoptosis. showed a spatial agreement between the apoptotic nuclei and activated caspase-3. These results clearly implicate the apoptotic pathway in the post-exposure progression of OHC demise. (C) 2002 Elsevier Science B.V. All rights reserved. C1 SUNY Buffalo, Dept Communicat Disorders & Sci, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. Roswell Pk Canc Inst, Dept Mol & Cellular Biophys, Buffalo, NY 14263 USA. RP Henderson, D (reprint author), SUNY Buffalo, Dept Communicat Disorders & Sci, Ctr Hearing & Deafness, 215 Parker Hall,3435 Main St, Buffalo, NY 14214 USA. CR Barinaga M, 1998, SCIENCE, V281, P1302, DOI 10.1126/science.281.5381.1302 Bohne B.A., 1976, EFFECTS NOISE HEARIN, P41 Bohne BA, 1999, HEARING RES, V134, P163, DOI 10.1016/S0378-5955(99)00082-9 Engström H, 1979, Acta Otolaryngol Suppl, V360, P75 FREDELIUS L, 1988, ACTA OTO-LARYNGOL, V106, P81, DOI 10.3109/00016488809107374 FREDELIUS L, 1988, ACTA OTO-LARYNGOL, V106, P373, DOI 10.3109/00016488809122260 HALLIWELL B, 1990, METHOD ENZYMOL, V186, P1 HAMERNIK RP, 1984, HEARING RES, V13, P229, DOI 10.1016/0378-5955(84)90077-7 HENDERSON D, 1986, J ACOUST SOC AM, V80, P569, DOI 10.1121/1.394052 HENDERSON D, 1994, HEARING RES, V76, P101, DOI 10.1016/0378-5955(94)90092-2 Hu BH, 1997, HEARING RES, V110, P209, DOI 10.1016/S0378-5955(97)00075-0 Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3 Hu BH, 2000, ACTA OTO-LARYNGOL, V120, P19, DOI 10.1080/000164800760370774 Huang T, 2000, INT J DEV NEUROSCI, V18, P259, DOI 10.1016/S0736-5748(99)00094-5 Jacono AA, 1998, HEARING RES, V117, P31, DOI 10.1016/S0378-5955(97)00214-1 KERR JFR, 1972, BRIT J CANCER, V26, P239, DOI 10.1038/bjc.1972.33 LIBERMAN MC, 1987, HEARING RES, V26, P45, DOI 10.1016/0378-5955(87)90035-9 LIM DJ, 1971, ARCHIV OTOLARYNGOL, V94, P294 LO AC, 1995, ARCH HISTOL CYTOL, V58, P139, DOI 10.1679/aohc.58.139 MAJNO G, 1995, AM J PATHOL, V146, P3 Nicotera T., 2001, NOISE INDUCED HEARIN, P99 Pirvola U, 2000, J NEUROSCI, V20, P43 Porter AG, 1999, CELL DEATH DIFFER, V6, P99, DOI 10.1038/sj.cdd.4400476 QUIRK WS, 1994, HEARING RES, V74, P217, DOI 10.1016/0378-5955(94)90189-9 Robertson JD, 2000, J STRUCT BIOL, V129, P346, DOI 10.1006/jsbi.2000.4254 SAUNDERS JC, 1985, J ACOUST SOC AM, V78, P833, DOI 10.1121/1.392915 Schlaepfer DD, 1999, PROG BIOPHYS MOL BIO, V71, P435, DOI 10.1016/S0079-6107(98)00052-2 Springer JE, 2001, CLIN CHEM LAB MED, V39, P299, DOI 10.1515/CCLM.2001.046 Thornberry NA, 1998, SCIENCE, V281, P1312, DOI 10.1126/science.281.5381.1312 THORNE PR, 1984, ACTA OTO-LARYNGOL, V97, P69, DOI 10.3109/00016488409130966 Zhao J H, 2000, Prog Mol Subcell Biol, V25, P37 NR 31 TC 115 Z9 133 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2002 VL 166 IS 1-2 BP 62 EP 71 DI 10.1016/S0378-5955(02)00286-1 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 567HQ UT WOS:000176479700007 PM 12062759 ER PT J AU Tsuji, S Tabuchi, K Hara, A Kusakari, J AF Tsuji, S Tabuchi, K Hara, A Kusakari, J TI Long-term observations on the reversibility of cochlear dysfunction after transient ischemia SO HEARING RESEARCH LA English DT Article DE ischemia; cochlea; auditory brainstem response; nitric oxide ID NITRIC-OXIDE SYNTHASE; INFERIOR CEREBELLAR ARTERY; LOCAL ANOXIA; BLOOD-FLOW; GERBIL COCHLEA; GUINEA-PIGS; INHIBITION; MECHANICS; MODEL AB To examine the reversibility of functional damage to the cochlea after transient ischemia cochlear ischemia of 0 60 min was induced in 34 albino guinea pigs. Thresholds of auditory brainstem response (ABR) were then followed for 5 days after ischemia. Although the ABR threshold returned to almost the pre-ischemic value after 15 min ischemia, ischemia of 30 and 60 min duration induced irreversible dysfunction. Aminoguanidine, an inducible NO synthase (iNOS) inhibitor significantly ameliorated the post-ischemic cochlear dysfunction induced by 60 min ischemia. Morphological findings of the hair cells, ere consistent with these functional results. These results indicate that ischemia of 30 min or longer induces irreversible damage to the cochlea and that iNOS plays injury-producing roles in this type of injury. (C) 2002 Elsevier Science B,V. All rights reserved. C1 Univ Tsukuba, Inst Clin Med, Dept Otolaryngol, Tsukuba, Ibaraki 3058575, Japan. RP Hara, A (reprint author), Univ Tsukuba, Inst Clin Med, Dept Otolaryngol, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, Japan. CR DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 IADECOLA C, 1995, AM J PHYSIOL-REG I, V268, pR286 Iadecola C, 1996, STROKE, V27, P1373 Kim JS, 1999, NEUROLOGY, V52, P40 KIMURA R., 1958, ANN OTOL RHINOL AND LARYNGOL, V67, P5 KUSAKARI J, 1980, TOHOKU J EXP MED, V131, P1 Kusakari J, 1981, Auris Nasus Larynx, V8, P55 MISKO TP, 1993, EUR J PHARMACOL, V233, P119, DOI 10.1016/0014-2999(93)90357-N Mom T, 1997, BRAIN RES, V751, P20, DOI 10.1016/S0006-8993(96)01388-1 PERLMAN H B, 1959, Laryngoscope, V69, P591 Popa R, 2000, ACTA OTO-LARYNGOL, V120, P350, DOI 10.1080/000164800750000559 REN TY, 1994, J APPL PHYSIOL, V76, P212 REN TY, 1993, HEARING RES, V71, P91, DOI 10.1016/0378-5955(93)90024-U Ren TY, 1995, HEARING RES, V92, P30, DOI 10.1016/0378-5955(95)00192-1 Robles L, 2001, PHYSIOL REV, V81, P1305 SHORT SO, 1985, OTOLARYNG HEAD NECK, V93, P786 Tabuchi K, 1999, ACTA OTO-LARYNGOL, V119, P179 Tabuchi K, 1998, HEARING RES, V126, P28, DOI 10.1016/S0378-5955(98)00142-7 Tabuchi K, 2000, ANN OTO RHINOL LARYN, V109, P715 TILTON RG, 1993, DIABETES, V42, P221, DOI 10.2337/diabetes.42.2.221 Watanabe K, 2000, ANTI-CANCER DRUG, V11, P731, DOI 10.1097/00001813-200010000-00010 NR 21 TC 13 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2002 VL 166 IS 1-2 BP 72 EP 81 DI 10.1016/S0378-5955(02)00299-X PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 567HQ UT WOS:000176479700008 PM 12062760 ER PT J AU Durham, D Park, DL Girod, DA AF Durham, D Park, DL Girod, DA TI Breed differences in cochlear integrity in adult, commercially raised chickens SO HEARING RESEARCH LA English DT Article DE presbycusis; hair cell regeneration; aging; auditory; deafness ID HAIR-CELL REGENERATION; BELGIAN WATERSLAGER CANARIES; AVIAN INNER-EAR; SEVERE ACOUSTIC TRAUMA; STARLING STURNUS-VULGARIS; STEM AUDITORY NEURONS; DEAF WHITE CATS; BRAIN-STEM; SERINUS-CANARIUS; BASILAR PAPILLA AB Two types of chickens are commercially available. Broiler birds are bred to develop quickly for meat production. while egg layers are bred to attain a smaller adult size. Because we have observed breed differences in the response of central auditory neurons to cochlear ablation in adult birds [Edmonds et al. (1999) Hear, Res, 127. 62-76] we examined cochleae from the two breeds for differences in integrity. We evaluated cochlear hair cell structure using scanning electron microscopy and cochlear hair cell function using distortion product otoacoustic emissions (DPOAEs) and the auditory brainstem response, We observed striking breed differences in cochlear integrity in adult but not hatchling birds. In adult broiler birds, all cochleae showed damage, encompassing at least the basal 29% of the cochlea. In 15 of 18 broiler cars, damage vas observed throughout the basal 60% of the cochlea. In contrast. cochleae from egg layer adults were largely normal. Two thirds of egg layer ears showed no anatomical abnormalities. while in the remainder cochlear damage was seen within the basal 48% of the cochlea. DPOAEs recorded from egg layer birds showed loss of high frequency emissions in every ear For which the cochlea displayed anatomical damage, Average sound pressure levels in both commercial facilities were 90 dB, suggesting these two breeds may exhibit differential Susceptibility to noise damage. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Kansas, Med Ctr, Dept Otolaryngol, Kansas City, KS 66160 USA. Univ Kansas, Med Ctr, Smith Mental Retardat Res Ctr, Kansas City, KS 66160 USA. Kansas City Vet Affairs Med Ctr, Kansas City, MO USA. RP Durham, D (reprint author), Univ Kansas, Med Ctr, Dept Otolaryngol, 3901 Rainbow Blvd, Kansas City, KS 66160 USA. CR ADLER HJ, 1995, J NEUROCYTOL, V24, P111, DOI 10.1007/BF01181554 BORN DE, 1985, J COMP NEUROL, V231, P435, DOI 10.1002/cne.902310403 BUNTING EC, 1996, ABSTR ASS RES OT, V19, P4 CANADY KS, 1994, J NEUROSCI, V14, P5973 Chen L, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P43 CLARK WW, 1992, OTOLARYNG HEAD NECK, V106, P669 COLGAN AL, 2000, ARO ABSTR, V23, P44 Corwin JT, 1997, NEURON, V19, P951, DOI 10.1016/S0896-6273(00)80386-4 COTANCHE DA, 1987, HEARING RES, V30, P181, DOI 10.1016/0378-5955(87)90135-3 COTANCHE DA, 1984, DEV BRAIN RES, V16, P181, DOI 10.1016/0165-3806(84)90024-5 Cotanche DA, 1999, AUDIOL NEURO-OTOL, V4, P271, DOI 10.1159/000013852 Cotanche DA, 1995, HEARING RES, V91, P148, DOI 10.1016/0378-5955(95)00185-9 COTANCHE DA, 1994, ANAT EMBRYOL, V189, P1 Ding-Pfennigdorff D, 1998, HEARING RES, V120, P109, DOI 10.1016/S0378-5955(98)00055-0 Dooling RJ, 1997, P NATL ACAD SCI USA, V94, P14206, DOI 10.1073/pnas.94.25.14206 Durham D, 2000, HEARING RES, V147, P145, DOI 10.1016/S0378-5955(00)00128-3 Edmonds JL, 1999, HEARING RES, V127, P62, DOI 10.1016/S0378-5955(98)00180-4 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H Erway LC, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P56 GIROD DA, 1995, ASS RES OT ABSTR, V18, P787 GIROD DA, 1989, HEARING RES, V42, P175, DOI 10.1016/0378-5955(89)90143-3 GIROD DA, 1991, LARYNGOSCOPE, V101, P1139 Gleich O, 1997, J COMP NEUROL, V377, P5, DOI 10.1002/(SICI)1096-9861(19970106)377:1<5::AID-CNE2>3.0.CO;2-8 GLEICH O, 1995, HEARING RES, V82, P100 GLEICH O, 1994, HEARING RES, V79, P123, DOI 10.1016/0378-5955(94)90134-1 HASHISAKI GT, 1989, J COMP NEUROL, V283, P465, DOI 10.1002/cne.902830402 Husmann KR, 1998, HEARING RES, V125, P109, DOI 10.1016/S0378-5955(98)00137-3 HYDE GE, 1994, J COMP NEUROL, V339, P27, DOI 10.1002/cne.903390105 JAECKEL EC, 2000, ARO ABSTR, V23, P44 Jones SM, 1998, HEARING RES, V121, P161, DOI 10.1016/S0378-5955(98)00074-4 LARSEN SA, 1992, EXP NEUROL, V115, P151, DOI 10.1016/0014-4886(92)90240-Q LINDEN R, 1994, NEUROSCIENCE, V58, P671, DOI 10.1016/0306-4522(94)90447-2 LIPPE WR, 1991, HEARING RES, V51, P193, DOI 10.1016/0378-5955(91)90036-9 LONSBURYMARTIN BL, 1998, OTOLARYNGOLOGY HEAD, P3153 Lurie DI, 2000, HEARING RES, V149, P178, DOI 10.1016/S0378-5955(00)00181-7 Marean GC, 1998, J ACOUST SOC AM, V103, P3567, DOI 10.1121/1.423085 MAREAN GC, 1993, HEARING RES, V71, P125, DOI 10.1016/0378-5955(93)90028-Y Mattson MP, 1996, PERSPECT DEV NEUROBI, V3, P79 Mills JH, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P193 Muller M, 1996, HEARING RES, V102, P133, DOI 10.1016/S0378-5955(96)00155-4 Muller M, 1997, INT J DEV NEUROSCI, V15, P401, DOI 10.1016/S0736-5748(96)00100-1 Muller M, 1998, HEARING RES, V120, P25, DOI 10.1016/S0378-5955(98)00049-5 Niparko J, 1998, OTOLARYNGOLOGY HEAD, P2934 OESTERLE EC, 1992, J COMP NEUROL, V318, P64, DOI 10.1002/cne.903180105 Park DL, 1999, HEARING RES, V138, P45, DOI 10.1016/S0378-5955(99)00138-0 Park DL, 1998, HEARING RES, V126, P84, DOI 10.1016/S0378-5955(98)00157-9 Parks TN, 1997, ANN OTO RHINOL LARYN, V106, P37 ROSOWSKI JJ, 1980, J COMP PHYSIOL, V136, P183 Rubel EW, 1988, AUDITORY FUNCTION NE, P3 RUBEL EW, 1990, J NEUROBIOL, V21, P169, DOI 10.1002/neu.480210112 Ryals BM, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P84 RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101 Ryals BM, 1999, HEARING RES, V131, P71, DOI 10.1016/S0378-5955(99)00022-2 Ryugo DK, 1998, J COMP NEUROL, V397, P532, DOI 10.1002/(SICI)1096-9861(19980810)397:4<532::AID-CNE6>3.0.CO;2-2 Saada AA, 1996, BRAIN RES, V736, P315, DOI 10.1016/0006-8993(96)00719-6 SANDS SJ, 1999, ASS RES OT ABSTR, V22, P146 Saunders JC, 1998, J COMP NEUROL, V390, P412 SCHWARTZ IR, 1982, ACTA OTO-LARYNGOL, V93, P9, DOI 10.3109/00016488209130847 SMITTKAMP SE, 2001, ARO ABSTR, V24, P148 Smolders JWT, 1999, AUDIOL NEURO-OTOL, V4, P286, DOI 10.1159/000013853 Steel KP, 1996, CURR OPIN NEUROBIOL, V6, P520, DOI 10.1016/S0959-4388(96)80059-6 Stone JS, 2000, J COMP NEUROL, V417, P1, DOI 10.1002/(SICI)1096-9861(20000131)417:1<1::AID-CNE1>3.0.CO;2-E Stone JS, 1998, CURR OPIN NEUROL, V11, P17, DOI 10.1097/00019052-199802000-00004 STREUBEL SO, 1998, ARO ABSTR, V21, P62 Suga F, 1970, Laryngoscope, V80, P81 Tierney TS, 1997, J COMP NEUROL, V378, P295, DOI 10.1002/(SICI)1096-9861(19970210)378:2<295::AID-CNE11>3.0.CO;2-R Trautwein P, 1996, Audiol Neurootol, V1, P86 TSUE TT, 1994, J NEUROSCI, V14, P140 TUCCI DL, 1990, OTOLARYNG HEAD NECK, V103, P443 Weisleder P, 1996, J COMP NEUROL, V369, P292, DOI 10.1002/(SICI)1096-9861(19960527)369:2<292::AID-CNE9>3.0.CO;2-Z WEISLEDER P, 1994, HEARING RES, V80, P64, DOI 10.1016/0378-5955(94)90009-4 Willan AR, 1996, HEALTH ECON, V5, P297, DOI 10.1002/(SICI)1099-1050(199607)5:4<297::AID-HEC216>3.0.CO;2-T WILLIS RD, 1984, J VAC SCI TECHNOL A, V2, P57, DOI 10.1116/1.572625 Willot JF, 1991, ACTA OTOLARYNGOL S, V476, P153 Willott JF, 1998, HEARING RES, V115, P162, DOI 10.1016/S0378-5955(97)00189-5 Willott JF, 1999, HEARING RES, V135, P78, DOI 10.1016/S0378-5955(99)00094-5 Willott JF, 2000, HEARING RES, V142, P79, DOI 10.1016/S0378-5955(00)00014-9 WILLOTT JF, 1981, J NEUROPHYSIOL, V45, P35 Woolley SMN, 2001, HEARING RES, V153, P181, DOI 10.1016/S0378-5955(00)00217-3 NR 79 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2002 VL 166 IS 1-2 BP 82 EP 95 DI 10.1016/S0378-5955(02)00301-5 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 567HQ UT WOS:000176479700009 PM 12062761 ER PT J AU Kondrachuk, AV AF Kondrachuk, AV TI Models of otolithic membrane-hair cell bundle interaction SO HEARING RESEARCH LA English DT Article DE model; otolith; hair cell bundle; stereocilia; tip-link ID INNER-EAR; SENSITIVITY AB Transformation of the mechanical input in the chain: acceleration of otolithic membrane (OM) displacement of the OM gel layer-deflection of hair cell bundle (HCB)-formation of the temporal pattern of polarization was studied using simplified analytical models of these stages of conversion of mechanical stimulus into the HCB electrical response, The dynamic behavior of an OM was modeled by a homogeneous viscoelastic (Kelvin-Voight body) model of the OM. Two alternative models of an 'HCB-surrounding gel' interaction corresponding to different types of the HCB were considered: (1) a model of stereocilia tip-link deformation in the case when the HCBs passively follow the gel deformation and (2) a model in which the tip-link dynamics is determined by an 'HCB viscous fluid' interaction. It was shown that in the first model the 'HCB OM gel' system functions as an accelerometer while in the second model it measures the time derivative of external acceleration. A simplified model of the temporal formation of cell depolarization is proposed and analyzed. Results of the modeling suggest that formation of a temporal response of the HCB to external acceleration occurs mainly due to two mutually correlated factors: the spatial dependence of gel displacement on the distance from a macular plane and the spatial distribution of stereocilia heights in the HCB. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Natl Acad Sci Ukraine, Inst Phys, Dept Theoret Phys, UA-03028 Kiev, Ukraine. RP Kondrachuk, AV (reprint author), Natl Acad Sci Ukraine, Inst Phys, Dept Theoret Phys, 46 Prospect Nauki, UA-03028 Kiev, Ukraine. CR BAGGERSJOBACK D, 1988, ACTA OTO-LARYNGOL, V106, P393, DOI 10.3109/00016488809122262 Duncan RK, 1997, HEARING RES, V104, P15, DOI 10.1016/S0378-5955(96)00176-1 FLOCK A, 1977, ACTA OTO-LARYNGOL, V83, P85, DOI 10.3109/00016487709128817 Grant J W, 1994, J Vestib Res, V4, P137 Grant J W, 1990, J Vestib Res, V1, P139 HENSON BL, 1979, BIOPHYS J, V27, P277 HUDSPETH AJ, 1982, J NEUROSCI, V2, P1 HUDSPETH AJ, 1977, P NATL ACAD SCI USA, V74, P2407, DOI 10.1073/pnas.74.6.2407 Kondrachuk AV, 2000, HEARING RES, V143, P130, DOI 10.1016/S0378-5955(00)00034-4 KONDRACHUK AV, 2001, J VESTIBUL RES-EQUIL, V11, P11 KONDRACHUK AV, 1989, USSR REP-SPACE BIOL, V23, P90 KONDRACHUK AV, 1997, 13 ANN M AM SOC GRAV KONDRACHUK AV, 2001, J VESTIBUL RES-EQUIL, V11, P29 Landau L. D., 1986, THEORY ELASTICITY Landau L. D., 1986, HYDRODYNAMICS Martin P, 2000, P NATL ACAD SCI USA, V97, P12026, DOI 10.1073/pnas.210389497 PICKLES JO, 1993, HEARING RES, V68, P159, DOI 10.1016/0378-5955(93)90120-P SHIPOV AA, 1997, BIOMECHANICS VESTIBU SHOTWELL SL, 1981, ANN NY ACAD SCI, V374, P1, DOI 10.1111/j.1749-6632.1981.tb30854.x WIESE K, 1976, J NEUROPHYSIOL, V39, P816 NR 20 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2002 VL 166 IS 1-2 BP 96 EP 112 DI 10.1016/S0378-5955(02)00302-7 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 567HQ UT WOS:000176479700010 PM 12062762 ER PT J AU Tuncel, U Clerici, WJ Jones, RO AF Tuncel, U Clerici, WJ Jones, RO TI Differential ototoxicities induced by lead acetate and tetraethyl lead SO HEARING RESEARCH LA English DT Article DE cochlear microphonic; compound action potential; lead compounds; reactive oxygen species; alpha-phenyl-tert-butyl-nitrone; ototoxicity ID OUTER HAIR CELL; OXYGEN SPECIES GENERATION; INDUCED COCHLEAR DAMAGE; CENTRAL-NERVOUS-SYSTEM; LIPID PEROXIDE LEVEL; GUINEA-PIG COCHLEA; BUTYL NITRONE PBN; CISPLATIN OTOTOXICITY; SUPEROXIDE-DISMUTASE; FREE-RADICALS AB Lead poisoning disrupts many biological structures and functions, including those of the auditory system. This study examined the ototoxic effects of lead acetate (LA) and tetraethyl lead (TEL) of equal lead content on cochlear function and the ability of alpha-phenyl-tert-butyl-nitrone (PBN) to attenuate such effects. Baseline 1.0 muV cochlear microphonic (CM) and compound action potential (CAP) responses were recorded and animals administered either PBN (100 mg/kg, i.p.) or an equal volume of 0.9% saline. followed by an i.p. injection of LA (50 mg/kg) in an ethanol vehicle, TEL (42.7 mg/kg) in a corn oil vehicle, corn oil or ethanol vehicle alone. Two hours after administration, post-exposure CM and CAP responses were recorded. CAP threshold shifts in the saline-LA group were elevated by 5-10 dB at mid to high frequencies relative to controls (20-24 kHz, P<0.05). Mean CAP threshold shifts in the saline-TEL were significantly greater than those of both control groups at all tested frequencies except 2 kHz (P<0.001). However, threshold shifts in the group receiving PBN prior to TEL were significantly smaller than shifts in the group receiving saline prior to TEL (P<0.01). These data suggest that TEL is more ototoxic than is LA and that free radicals partially mediate TEL-induced CAP disruption. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Ankara Numune Teaching & Res Hosp, Div Otolaryngol Head & Neck Surg, Ankara, Turkey. Univ Kentucky, Coll Med, Div Otolaryngol Head & Neck Surg, Lexington, KY USA. RP Tuncel, U (reprint author), Ankara Numune Teaching & Res Hosp, Div Otolaryngol Head & Neck Surg, Ankara, Turkey. CR BERTONI JM, 1988, NEUROTOXICOLOGY, V9, P235 BOLANOWS.W, 1968, BRIT J IND MED, V25, P203 Bressler J, 1999, NEUROCHEM RES, V24, P595, DOI 10.1023/A:1022596115897 BROCKHAUS A, 1983, INT ARCH OCC ENV HEA, V52, P167, DOI 10.1007/BF00405420 BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 BUTTERFIELD DA, 1994, BIOCHEM BIOPH RES CO, V200, P710, DOI 10.1006/bbrc.1994.1508 CAO XH, 1994, BRAIN RES, V644, P267, DOI 10.1016/0006-8993(94)91689-6 Cardinaal RM, 2000, HEARING RES, V144, P147, DOI 10.1016/S0378-5955(00)00060-5 CARNEY JM, 1991, J MOL NEUROSCI, V3, P47, DOI 10.1007/BF02896848 CHAVEZ E, 1987, J BIOENERG BIOMEMBR, V19, P285, DOI 10.1007/BF00762418 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 CLERICI WJ, 1991, TOXICOL APPL PHARM, V109, P547, DOI 10.1016/0041-008X(91)90017-9 Clerici WJ, 1996, TOXICOL APPL PHARM, V136, P236, DOI 10.1006/taap.1996.0030 Clerici WJ, 1996, HEARING RES, V101, P14, DOI 10.1016/S0378-5955(96)00126-8 CLERICI WJ, 1995, HEARING RES, V84, P30, DOI 10.1016/0378-5955(95)00010-2 COOPER GP, 1983, NEUROTOXICOLOGY, V4, P69 DULON D, 1989, INT J RADIAT BIOL, V55, P1007, DOI 10.1080/09553008914551031 Evans P, 1999, ANN NY ACAD SCI, V884, P19, DOI 10.1111/j.1749-6632.1999.tb08633.x FECHTER LD, 1992, HEARING RES, V58, P166, DOI 10.1016/0378-5955(92)90125-7 Fechter LD, 1997, TOXICOL APPL PHARM, V142, P47, DOI 10.1006/taap.1996.8027 FROST LS, 1997, J OCCUP ENVIRON MED, V39, P658 GARETZ SL, 1994, HEARING RES, V77, P81, DOI 10.1016/0378-5955(94)90255-0 GMEREK DE, 1981, J NEUROCHEM, V36, P1109, DOI 10.1111/j.1471-4159.1981.tb01706.x GOZDZIC Z, 1969, ACTA OTOLARYNGOL, V68, P85 Gurer H, 1998, TOXICOLOGY, V128, P181, DOI 10.1016/S0300-483X(98)00074-2 HALLIWELL B, 1992, J NEUROCHEM, V59, P1609, DOI 10.1111/j.1471-4159.1992.tb10990.x HENSLEY K, 1994, FREE RADICAL BIO MED, V17, P321, DOI 10.1016/0891-5849(94)90018-3 Hester TO, 1998, OTOLARYNG HEAD NECK, V119, P581, DOI 10.1016/S0194-5998(98)70015-4 HIRATA M, 1993, ENVIRON RES, V63, P60, DOI 10.1006/enrs.1993.1127 HOLDSTEIN Y, 1986, J LARYNGOL OTOL, V100, P1031, DOI 10.1017/S0022215100100519 Hotta S, 1996, EUR ARCH OTO-RHINO-L, V253, P488 Hsu PC, 1998, TOXICOLOGY, V128, P169, DOI 10.1016/S0300-483X(98)00068-7 IKEDA K, 1993, ACTA OTO-LARYNGOL, V113, P137, DOI 10.3109/00016489309135781 ITO Y, 1985, INT ARCH OCC ENV HEA, V56, P119, DOI 10.1007/BF00379383 Janzen E. G., 1980, FREE RADICAL BIO MED, P115 KALYANARAMAN B, 1982, REV BIOCHEM TOXICOL, V4, P73 KANG MY, 1998, ACTA ANAESTH SCAND, V42, P1 Kulkarni AP, 1997, TOXICOL APPL PHARM, V143, P179, DOI 10.1006/taap.1996.8062 KUNKEL DB, 1986, EMERGEN MED, V18, P207 LAI EK, 1986, ARCH BIOCHEM BIOPHYS, V244, P156, DOI 10.1016/0003-9861(86)90104-9 LASKY RE, 1995, NEUROTOXICOL TERATOL, V17, P633, DOI 10.1016/0892-0362(95)02006-3 LAWTON LJ, 1991, BIOL TRACE ELEM RES, V28, P83, DOI 10.1007/BF02863075 Lilienthal H, 1996, NEUROTOXICOL TERATOL, V18, P17, DOI 10.1016/0892-0362(95)02010-1 LIMAHERMES M, 1991, XENOBIOTICA, V21, P1085 MARCUS W L, 1986, Toxicology and Industrial Health, V2, P363 Matthews RT, 1999, EXP NEUROL, V157, P120, DOI 10.1006/exnr.1999.7045 MONTEIRO HP, 1986, BIOCHIM BIOPHYS ACTA, V881, P100, DOI 10.1016/0304-4165(86)90102-9 MOORE MR, 1985, ANN NY ACAD SCI, P191 MURATA K, 1995, AM J IND MED, V28, P233, DOI 10.1002/ajim.4700280208 Nakao N, 1996, NEUROSCIENCE, V73, P185, DOI 10.1016/0306-4522(96)00034-6 NIELSEN T, 1978, NATURE, V10, P602 OLIVER CN, 1990, P NATL ACAD SCI USA, V87, P5144, DOI 10.1073/pnas.87.13.5144 OTTO D, 1985, ENVIRON RES, V38, P168, DOI 10.1016/0013-9351(85)90082-9 OTTO DA, 1993, NEUROTOXICOLOGY, V14, P191 OTTO WC, 1988, HEARING RES, V35, P79, DOI 10.1016/0378-5955(88)90042-1 Patra RC, 2000, RES VET SCI, V68, P71, DOI 10.1053/rvsc.1999.0340 PIERSON MG, 1982, HEARING RES, V6, P141, DOI 10.1016/0378-5955(82)90050-8 POYER JL, 1980, BIOCHEM BIOPH RES CO, V94, P1154, DOI 10.1016/0006-291X(80)90540-9 RAVI R, 1995, PHARMACOL TOXICOL, V76, P386 REGUNATHAN S, 1985, J NEUROCHEM, V44, P1642, DOI 10.1111/j.1471-4159.1985.tb08807.x ROTHENBERG SJ, 1994, NEUROTOXICOLOGY, V15, P695 Rothenberg SJ, 2000, NEUROTOXICOL TERATOL, V22, P503, DOI 10.1016/S0892-0362(00)00079-9 RYBAK LP, 1999, ANN NY ACAD SCI, V28, P143 Rybak LP, 2000, AM J OTOL, V21, P513 Rybak LP, 1999, LARYNGOSCOPE, V109, P1740, DOI 10.1097/00005537-199911000-00003 RYBAK LP, 1986, NEUROBIOLOGY HEARING, P441 RYBAK LP, 1995, FUND APPL TOXICOL, V26, P293, DOI 10.1006/faat.1995.1100 SANDHIR R, 1995, BIOL TRACE ELEM RES, V48, P91, DOI 10.1007/BF02789081 SANDHIR R, 1994, MOL CELL BIOCHEM, V131, P25, DOI 10.1007/BF01075721 SANDHIR R, 1994, PHARMACOL TOXICOL, V74, P66 Sang H, 1997, FREE RADICAL BIO MED, V22, P843, DOI 10.1016/S0891-5849(96)00431-5 SCHULZ JB, 1995, EXP NEUROL, V132, P279, DOI 10.1016/0014-4886(95)90033-0 SCHWARTZ J, 1987, ARCH ENVIRON HEALTH, V42, P153 SCHWARTZ J, 1991, ARCH ENVIRON HEALTH, V46, P301 SEIDMAN MD, 1991, OTOLARYNG HEAD NECK, V105, P457 SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 SHARMA RP, 1980, J AM VET MED ASSOC, V177, P149 SIMONS TJB, 1986, BRIT MED BULL, V42, P431 SIMONS TJB, 1993, NEUROTOXICOLOGY, V14, P77 Skoczyńska A, 1994, Int J Occup Med Environ Health, V7, P263 Sone M, 1998, HEARING RES, V115, P217, DOI 10.1016/S0378-5955(97)00191-3 Stewart CA, 1999, ARCH BIOCHEM BIOPHYS, V365, P71, DOI 10.1006/abbi.1999.1159 STOEPPLER M, 1978, ANALYST, V103, P714, DOI 10.1039/an9780300714 VALLEE BL, 1972, ANNU REV BIOCHEM, V41, P91, DOI 10.1146/annurev.bi.41.070172.000515 YAMAMURA K, 1989, FUND APPL TOXICOL, V13, P509, DOI 10.1016/0272-0590(89)90287-X YAMAMURA K, 1984, TOXICOL LETT, V21, P41, DOI 10.1016/0378-4274(84)90221-2 YAMAMURA K, 1987, B ENVIRON CONTAM TOX, V38, P571 ZAWIA NH, 1995, INT J DEV NEUROSCI, V13, P639, DOI 10.1016/0736-5748(95)00032-C ZHAO Q, 1994, ACTA PHYSIOL SCAND, V152, P349, DOI 10.1111/j.1748-1716.1994.tb09816.x NR 89 TC 7 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2002 VL 166 IS 1-2 BP 113 EP 123 DI 10.1016/S0378-5955(02)00303-9 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 567HQ UT WOS:000176479700011 PM 12062763 ER PT J AU Zhou, XM Jen, PHS AF Zhou, XM Jen, PHS TI The effect of sound duration on rate-amplitude functions of inferior collicular neurons in the big brown bat, Eptisicus fuscus SO HEARING RESEARCH LA English DT Article DE bat; dynamic range; inferior colliculus; sound duration; rate-amplitude function ID PRIMARY AUDITORY-CORTEX; PERCEIVED ECHO AMPLITUDES; RATE-INTENSITY FUNCTIONS; AUTOMATIC GAIN-CONTROL; RATE-LEVEL FUNCTIONS; EPTESICUS-FUSCUS; ECHOLOCATING BATS; TUNING CHARACTERISTICS; SPACE REPRESENTATION; MODULATED STIMULI AB During echolocation, the amplitude and duration of echo pulses of the big brown bat. Eptesicus fuscus, covary throughout the entire course of hunting. The purpose of this study was to examine if variation in sound duration might affect the amplitude selectivity of inferior collicular (IC) neurons of this bat species under free-Field stimulation conditions. A family of rate amplitude functions of each IC neuron was obtained with different sound durations, The effect of sound duration on the neuron's amplitude selectivity was then studied by examining the type, best amplitude. dynamic range and slope of each rate amplitude function. The rate-amplitude functions of 83 IC neurons determined with different sound durations were either monotonic, saturated or non-monotonic. Neurons with monotonic rate-amplitude functions had the highest best amplitude, largest dynamic range but smallest slope. Neurons with non-monotonic rate-amplitude functions had the lowest best amplitude, smallest dynamic range but largest slope. The best amplitude. dynamic range and slope of neurons with saturated rate-amplitude functions were intermediate between these two types. Rate-amplitude functions of one group (47, 57%) of IC neurons changed from one type to another with sound duration and one-third of these neurons were tuned to sound duration, As a result, the best amplitude. dynamic range, and slope also varied with sound duration. However. rate-amplitude functions of the other group (36, 43%) of IC neurons were hardly affected by sound duration and two-thirds of these neurons were tuned to sound duration, Biological relevance of these findings in relation to bat echolocation is discussed. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. RP Jen, PHS (reprint author), Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. CR AITKIN L, 1991, J NEUROPHYSIOL, V65, P383 BLAIR WF, 1958, AM NAT, V92, P27, DOI 10.1086/282007 Brand A, 2000, J NEUROPHYSIOL, V84, P1790 BUSNEL RG, 1967, ANIMAL SONAR SYSTEMS, P78 Capranica R. R., 1983, ADV VERTEBRATE NEURO, P701 CAPRANIC.RR, 1966, J ACOUST SOC AM, V40, P1131, DOI 10.1121/1.1910198 Casseday JH, 2000, J NEUROPHYSIOL, V84, P1475 CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341 Chen GD, 1998, HEARING RES, V122, P142, DOI 10.1016/S0378-5955(98)00103-8 Chen QC, 2000, HEARING RES, V150, P161, DOI 10.1016/S0378-5955(00)00197-0 Ehrlich D, 1997, J NEUROPHYSIOL, V77, P2360 FENG AS, 1990, PROG NEUROBIOL, V34, P313, DOI 10.1016/0301-0082(90)90008-5 FENTON MB, 1977, CAN J ZOOL, V55, P1151, DOI 10.1139/z77-149 FREMOUW T, 2000, ABSTR SOC NEUROSCI, V26, P445 FUZESSERY ZM, 1994, J NEUROPHYSIOL, V72, P1061 Fuzessery ZM, 1999, HEARING RES, V137, P137, DOI 10.1016/S0378-5955(99)00133-1 Galazyuk AV, 2000, J NEUROPHYSIOL, V83, P128 Galazyuk AV, 1997, J COMP PHYSIOL A, V180, P301, DOI 10.1007/s003590050050 GOOLER DM, 1992, J NEUROPHYSIOL, V67, P1 Gould E., 1970, P144 Griffin DR, 1958, LISTENING DARK GULICK WL, 1989, HEARING PHYSL ACOUST, P48 HARTLEY DJ, 1992, J ACOUST SOC AM, V91, P1120, DOI 10.1121/1.402639 HARTLEY DJ, 1992, J ACOUST SOC AM, V91, P1133, DOI 10.1121/1.402640 He JF, 1997, J NEUROSCI, V17, P2615 HEIL P, 1994, HEARING RES, V76, P188, DOI 10.1016/0378-5955(94)90099-X HEIL P, 1992, HEARING RES, V63, P108, DOI 10.1016/0378-5955(92)90080-7 HENSON OW, 1965, J PHYSIOL-LONDON, V180, P871 JEN PHS, 1982, J COMP PHYSIOL, V148, P389 JEN PHS, 1989, J COMP PHYSIOL A, V165, P1, DOI 10.1007/BF00613794 JEN PHS, 1982, J COMP PHYSIOL, V147, P351 JEN PHS, 1987, BRAIN RES, V419, P7, DOI 10.1016/0006-8993(87)90563-4 Jen PHS, 2001, J COMP PHYSIOL A, V187, P605, DOI 10.1007/s003590100233 Jen PHS, 1999, J COMP PHYSIOL A, V184, P185, DOI 10.1007/s003590050317 Jen PHS, 1999, J COMP PHYSIOL A, V185, P471, DOI 10.1007/s003590050408 KICK SA, 1984, J NEUROSCI, V4, P2725 KOBLER JB, 1985, HEARING RES, V20, P99, DOI 10.1016/0378-5955(85)90161-3 Manunta Y, 1998, EXP BRAIN RES, V118, P361, DOI 10.1007/s002210050290 PHILLIPS DP, 1988, J NEUROPHYSIOL, V59, P1524 PHILLIPS DP, 1995, J NEUROPHYSIOL, V73, P674 PHILLIPS DP, 1986, J ACOUST SOC AM, V80, P177, DOI 10.1121/1.394178 PHILLIPS DP, 1989, HEARING RES, V37, P269, DOI 10.1016/0378-5955(89)90027-0 PINHEIRO AD, 1991, J COMP PHYSIOL A, V169, P69 SIMMONS JA, 1979, SCIENCE, V203, P16, DOI 10.1126/science.758674 SIMMONS JA, 1992, J ACOUST SOC AM, V91, P1150, DOI 10.1121/1.402641 SUGA N, 1972, SCIENCE, V177, P82, DOI 10.1126/science.177.4043.82 SUGA N, 1975, J EXP BIOL, V62, P277 Wu M, 1991, Chin J Physiol, V34, P145 WU MI, 1995, HEARING RES, V85, P155, DOI 10.1016/0378-5955(95)00042-3 Zhou XM, 2001, J COMP PHYSIOL A, V187, P63, DOI 10.1007/s003590000179 NR 50 TC 11 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2002 VL 166 IS 1-2 BP 124 EP 135 DI 10.1016/S0378-5955(02)00306-4 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 567HQ UT WOS:000176479700012 PM 12062764 ER PT J AU Parazzini, M Ravazzani, P Medaglini, S Weber, G Fornara, C Tognola, G Vigone, MC Bianchi, C Comi, G Chiumello, G Grandori, F AF Parazzini, M Ravazzani, P Medaglini, S Weber, G Fornara, C Tognola, G Vigone, MC Bianchi, C Comi, G Chiumello, G Grandori, F TI Click-evoked otoacoustic emissions recorded from untreated congenital hypothyroid newborns SO HEARING RESEARCH LA English DT Article DE hypothyroidism; newborn; transient-evoked otoacoustic emission; wavelet transform ID BRAIN-STEM RESPONSES; HEARING-LOSS; THYROID-HORMONE; HYPO-THYROIDISM; IMPAIRMENT; CONDUCTION; CHILDREN; INFANTS; MOUSE; RATS AB Thyroid hormone plays an important role in hearing development. Both it genetic or non-genetic hypothyroidism is Often associated with congenital hearing loss, The exact incidence of hearing impairment in untreated congenital hypothyroid (CH) patients is unknown. This paper will present the results of measuring of the transient-evoked otoacoustic emissions (TEOAE) in a population of 29 newborns, who tested positive on a screening test for hypothyroidism (CH group) and in 68 well babies (control group) randomly chosen from all the newborns, classified as PASS, included in the Hearing Screening Program of the San Raffaele Hospital in Milan. TEOAE were recorded in all newborns within 1 month after birth and before beginning t-thyroxine treatment with conventional commercial instrumentation. Both temporal and time-frequency analyses of the emitted responses were conducted by means of a wavelet transform. The comparison of the characteristics of the temporal and frequency content of the responses of the two groups (CH and control) showed no statistically significant difference. No correlation was found between outer hair cell dysfunction and hypothyroidism. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Politecn Milan, Dept Biomed Engn, I-20133 Milan, Italy. Politecn Milan, CNR, Ctr Biomed Engn, I-20133 Milan, Italy. Hosp San Raffaele, IRCCS, Ctr Neurophysiol, I-20132 Milan, Italy. Hosp San Raffaele, IRCCS, Paediat Clin, I-20132 Milan, Italy. RP Parazzini, M (reprint author), Politecn Milan, Dept Biomed Engn, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy. RI Parazzini, Marta/J-8175-2014; Tognola, Gabriella/B-9025-2015; Ravazzani, Paolo/B-9139-2015 OI Parazzini, Marta/0000-0001-9008-7530; Ravazzani, Paolo/0000-0003-0282-3329 CR Bellman SC, 1996, ARCH DIS CHILD, V74, P215 BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 BruckerDavis F, 1996, J CLIN ENDOCR METAB, V81, P2768, DOI 10.1210/jc.81.8.2768 DEBRUYNE F, 1983, AUDIOLOGY, V22, P404 DILORENZO L, 1995, HORM RES, V43, P200, DOI 10.1159/000184278 FISHER DA, 1979, J PEDIATR-US, V94, P700, DOI 10.1016/S0022-3476(79)80133-X FRANCOIS M, 1994, J PEDIATR-US, V124, P444, DOI 10.1016/S0022-3476(94)70373-6 FRANCOIS M, 1993, ACTA OTO-LARYNGOL, V113, P39, DOI 10.3109/00016489309135764 GLORIEUX J, 1992, J PEDIATR-US, V121, P581, DOI 10.1016/S0022-3476(05)81150-3 HIMELFARB MZ, 1981, J LARYNGOL OTOL, V95, P679, DOI 10.1017/S0022215100091271 Knipper M, 2000, J NEUROPHYSIOL, V83, P3101 KRONLANDMARTINET R, 1988, COMPUT MUSIC J, V12, P11, DOI 10.2307/3680149 Lai CL, 2000, J NEUROL SCI, V173, P113, DOI 10.1016/S0022-510X(99)00310-X Lai CL, 1997, J NEUROL SCI, V148, P139, DOI 10.1016/S0022-510X(96)05348-8 Lautermann J, 1997, HEARING RES, V107, P23, DOI 10.1016/S0378-5955(97)00014-2 Li DQ, 1999, HEARING RES, V138, P65, DOI 10.1016/S0378-5955(99)00150-1 MEYERHOFF WL, 1979, LARYNGOSCOPE, V89, P1 MEYERHOFF WL, 1978, LARYNGOSCOPE, V89, P1 Mra Z, 1999, LARYNGOSCOPE, V109, P343, DOI 10.1097/00005537-199903000-00001 OMALLEY BW, 1995, HEARING RES, V88, P181, DOI 10.1016/0378-5955(95)00111-G Ravazzani P, 1996, AUDIOLOGY, V35, P73 Ravazzani P, 1999, AUDIOLOGY, V38, P69 Rioul O, 1991, IEEE SIGNAL PROC MAG, V8, P14, DOI 10.1109/79.91217 Rovet J, 1996, J PEDIATR-US, V128, P776, DOI 10.1016/S0022-3476(96)70329-3 TOGNOLA G, 2001, SCAND AUDIOL S, V52, P135 Tognola G, 1997, HEARING RES, V106, P112, DOI 10.1016/S0378-5955(97)00007-5 TOGNOLA G, 1998, IEEE T BIOMED ENG, V45, P1 UZIEL A, 1981, ACTA OTO-LARYNGOL, V92, P469, DOI 10.3109/00016488109133286 WIT HP, 1994, HEARING RES, V73, P437 1988, OTODYNAMICS USER MAN NR 30 TC 5 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2002 VL 166 IS 1-2 BP 136 EP 142 DI 10.1016/S0378-5955(02)00307-6 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 567HQ UT WOS:000176479700013 PM 12062765 ER PT J AU Hesse, PAS Gerken, GM AF Hesse, PAS Gerken, GM TI Amplitude-intensity functions for auditory middle latency responses in hearing-impaired subjects SO HEARING RESEARCH LA English DT Article DE middle latency response; evoked potential; hearing loss; edge effect ID EVOKED MAGNETIC-FIELDS; AWAKE GUINEA-PIGS; NOISE EXPOSURE; TINNITUS; ENHANCEMENT; POTENTIALS; CORTEX AB Results from animal studies show that hearing loss can result in increased neural responsiveness within the central auditory system. This study employed auditory middle latency evoked responses to compare central auditory responsiveness in human mates with and without hearing loss. Measurements of auditory middle latency responses (MLRs) recorded from 14 normal hearing males were compared with MLR measures from 14 males with high-frequency, sensorineural hearing loss. Sixteen toneburst stimuli (four frequencies X four intensities) were used. Slopes of the amplitude-intensity functions for the several components of the MLR were obtained for each subject at frequencies below, near, and above the audiometric edge. Analysis of variance (ANOVA) revealed a significant group effect for MLR component Pa-Na, with less steep slopes at all frequencies for the hearing-impaired group, The ANOVA also showed a trend towards a significant group effect for Pb-Nb. Two-sample t-tests performed for Pb-Nb for each of the four tonebursts showed a frequency-specific effect. For Pb-Nb there was a statistically greater mean slope for the hearing-impaired group at the toneburst frequency associated with the audiometric edge. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Texas, Callier Ctr Commun Disorders, Dallas, TX 75235 USA. RP Hesse, PAS (reprint author), Univ Texas, Callier Ctr Commun Disorders, 1966 Inwood Rd, Dallas, TX 75235 USA. CR ERWIN R, 1986, ELECTROEN CLIN NEURO, V65, P383, DOI 10.1016/0168-5597(86)90017-1 GERKEN G, 1986, BASIC APPL ASPECTS N, P195 Gerken GM, 1996, HEARING RES, V97, P75 Gerken GM, 2001, HEARING RES, V157, P52, DOI 10.1016/S0378-5955(01)00277-5 HASHIMOTO I, 1982, ELECTROEN CLIN NEURO, V53, P652, DOI 10.1016/0013-4694(82)90141-9 JACOBSON GP, 1997, ELECTROPHYSIOLOGIC E, P46 JASTREBOFF PJ, 1993, BRIT J AUDIOL, V27, P7, DOI 10.3109/03005369309077884 JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 Jastreboff P J, 2000, J Am Acad Audiol, V11, P162 KNIGHT RT, 1990, ELECTROEN CLIN NEURO, V77, P225, DOI 10.1016/0168-5597(90)90041-B Kraus N., 1994, PRINCIPLES APPL AUDI, P155 MUSIEK FE, 1984, LARYNGOSCOPE, V94, P1545, DOI 10.1288/00005537-198412000-00002 POPELAR J, 1987, HEARING RES, V26, P239, DOI 10.1016/0378-5955(87)90060-8 Syka J, 2000, HEARING RES, V139, P59, DOI 10.1016/S0378-5955(99)00175-6 SYKA J, 1994, HEARING RES, V78, P158, DOI 10.1016/0378-5955(94)90021-3 Yoshiura T, 1995, BRAIN RES, V703, P139, DOI 10.1016/0006-8993(95)01075-0 Yoshiura T, 1996, BRAIN TOPOGR, V8, P291, DOI 10.1007/BF01184787 NR 17 TC 4 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2002 VL 166 IS 1-2 BP 143 EP 149 DI 10.1016/S0378-5955(02)00308-8 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 567HQ UT WOS:000176479700014 PM 12062766 ER PT J AU Xia, AP Kikuchi, T Minowa, O Katori, Y Oshima, T Noda, T Ikeda, K AF Xia, AP Kikuchi, T Minowa, O Katori, Y Oshima, T Noda, T Ikeda, K TI Late-onset hearing loss in a mouse model of DFN3 non-syndromic deafness: morphologic and immunohistochemical analyses SO HEARING RESEARCH LA English DT Article DE Brn-4; heterozygous female mouse; Cx26; Cx31; Na,K-ATPase; Na-K-Cl cotransporter ID X-CHROMOSOME INACTIVATION; LINKED MIXED DEAFNESS; SENSORINEURAL DEAFNESS; CONNEXIN-26 MUTATIONS; GERBIL COCHLEA; INNER-EAR; EXPRESSION; MICE; WALL; AGE AB Recently, we reported that homozygous males and females of a mouse model of DFN3 non-syndromic deafness generated by the deletion of Brn-4 transcription factor showed profound deafness due to severe alterations in the cochlear spiral ligament fibrocytes from the age of 11 weeks. whereas no hearing loss was recognized in young female heterozygotes. It is known that a part of obligate female carriers of DFN3 showed progressive hearing loss, In the present study. we examined the late-onset effect of Brn-4 deficiency on the hearing organ of the mouse. About one third of heterozygous female mice revealed late-onset profound deafness at the age of 1 year. Furthermore, in these deafened heterozygotes. characteristic abnormalities in Reissner's membrane attachment type II fibrocytes in the suprastrial zone became evident under light microscope, similar to homozygous female mice. A significant reduction in the immunoreactivity of connexin 26 (Cx26), connexin 31 (Cx31), Na,K-ATPase and Na-K-Cl cotransporter in the spiral ligament fibrocytes was observed in aged heterozygotes shocking late-onset profound deafness. The late-onset phenotype observed in heterozygous mutant mice, being consistent with the progressive deafness observed ill human female heterozygotes. may be explained by alterations of the ion transport systems in the spiral ligament fibrocytes. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Tohoku Univ, Grad Sch Med, Dept Otorhinolaryngol Head & Neck Surg, Aoba Ku, Sendai, Miyagi 9808574, Japan. Nagasaki Univ, Sch Med, Dept Otolaryngol, Nagasaki 8528501, Japan. Japanese Fdn Canc Res, Inst Canc, Dept Cell Biol, Toshima Ku, Tokyo 1708455, Japan. Tohoku Univ, Grad Sch Med, Dept Mol Genet, Aoba Ku, Sendai, Miyagi 9808575, Japan. RP Ikeda, K (reprint author), Tohoku Univ, Grad Sch Med, Dept Otorhinolaryngol Head & Neck Surg, Aoba Ku, 1-1 Seiryo Machi, Sendai, Miyagi 9808574, Japan. CR Arellano B, 2000, ARCH OTOLARYNGOL, V126, P1065 CREMERS CWRJ, 1983, INT J PEDIATR OTORHI, V6, P179 Crouch JJ, 1997, J HISTOCHEM CYTOCHEM, V45, P773 DEKOK YJM, 1995, SCIENCE, V267, P685, DOI 10.1126/science.7839145 Estivill X, 1998, LANCET, V351, P394, DOI 10.1016/S0140-6736(97)11124-2 GARDNER RL, 1971, NATURE, V231, P385, DOI 10.1038/231385a0 Hequembourg S, 2001, JARO, V2, P118 HUNTER KP, 1987, HEARING RES, V30, P207, DOI 10.1016/0378-5955(87)90137-7 Ichimiya I, 2000, HEARING RES, V139, P116, DOI 10.1016/S0378-5955(99)00170-7 Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 Liu XZ, 2000, HUM MOL GENET, V9, P63, DOI 10.1093/hmg/9.1.63 MIKAELIA.DO, 1974, ACTA OTO-LARYNGOL, V77, P327, DOI 10.3109/00016487409124632 Minowa O, 1999, SCIENCE, V285, P1408, DOI 10.1126/science.285.5432.1408 Phippard D, 1999, J NEUROSCI, V19, P5980 Sakaguchi N, 1998, HEARING RES, V118, P114, DOI 10.1016/S0378-5955(98)00022-7 SCHULTE BA, 1989, J HISTOCHEM CYTOCHEM, V37, P127 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K Steel KP, 1999, SCIENCE, V285, P1363, DOI 10.1126/science.285.5432.1363 WAREHAM KA, 1983, HISTOCHEM J, V15, P363, DOI 10.1007/BF01002969 WAREHAM KA, 1986, J EMBRYOL EXP MORPH, V95, P239 Xia AP, 1999, BRAIN RES, V846, P106, DOI 10.1016/S0006-8993(99)01996-4 Xia AP, 2000, NEUROREPORT, V11, P2449, DOI 10.1097/00001756-200008030-00022 Xia JH, 1998, NAT GENET, V20, P370, DOI 10.1038/3845 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 25 TC 20 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2002 VL 166 IS 1-2 BP 150 EP 158 DI 10.1016/S0378-5955(02)00309-X PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 567HQ UT WOS:000176479700015 PM 12062767 ER PT J AU Rehn, AE Loeliger, M Hardie, NA Rees, SM Dieni, S Shepherd, RK AF Rehn, AE Loeliger, M Hardie, NA Rees, SM Dieni, S Shepherd, RK TI Chronic placental insufficiency has long-term effects on auditory function in the guinea pig SO HEARING RESEARCH LA English DT Article DE auditory brainstem response; prenatal compromise; auditory deficit; low birth weight ID INTRAUTERINE GROWTH-RETARDATION; BRAIN-STEM RESPONSES; HEARING-LOSS; FETAL SHEEP; FULL-TERM; CONDUCTION-VELOCITY; BIRTH-WEIGHT; INFANTS; ABNORMALITIES; RESTRICTION AB Very low birth weight and growth-restricted infants have an increased risk of auditory impairments. It is uncertain whether these impairments are related to adverse pre, peri- or postnatal events. We aimed to determine whether a period of chronic placental insufficiency (CPI) in the guinea pig results in long-term alterations to auditory function, Near mid-gestation, CPI was induced via unilateral ligation of the uterine artery. At 8 weeks of age, auditory brainstem responses (ABRs) were recorded in response to unilateral acoustic stimulation in prenatally-compromised (PC, n=8) and control animals (n=8). Stimuli consisted of 100 As clicks, presented at 33 pulses per second (pps) and tone pip stimuli at frequencies of 2, 4, 8, 16 and 32 kHz. To examine temporal response properties, click stimuli were also presented at rates of 66, 132 and 200 pps. Normal ABR waveforms were elicited by both click and tone pip stimuli in all animals. Moreover, there was no difference between control and PC animals in stimulus detection thresholds across the frequencies examined. Using high rate click stimuli, PC animals demonstrated a significant increase in both the latency of wave III (normalised to 33 pps) and the wave I-III inter-peak interval compared to the controls. We hypothesise that these functional changes reflect alterations in myelination of the auditory brainstem and/or changes in synaptic efficacy. The results suggest subtle deficits in neural conduction in the PC guinea pig at maturity, and may have implications for speech perception abilities of low birth weight or prenatally affected infants. (C)2002 Elsevier Science B.V. All rights reserved. C1 Univ Melbourne, Dept Anat & Cell Biol, Parkville, Vic 3010, Australia. Univ Melbourne, Dept Otolaryngol, Parkville, Vic 3010, Australia. RP Rehn, AE (reprint author), Univ Melbourne, Dept Anat & Cell Biol, Parkville, Vic 3010, Australia. RI Shepherd, Robert/I-6276-2012 CR ANAGNOSTAKIS D, 1982, AM J DIS CHILD, V136, P602 BECK KD, 1995, NEURON, V14, P717, DOI 10.1016/0896-6273(95)90216-3 Beeby PJ, 1996, J PAEDIATR CHILD H, V32, P512, DOI 10.1111/j.1440-1754.1996.tb00965.x BISIGNANO M, 1988, INT J DEV NEUROSCI, V6, P453, DOI 10.1016/0736-5748(88)90051-2 CONEWESSON B, 1987, INT J PEDIATR OTORHI, V14, P203, DOI 10.1016/0165-5876(87)90032-2 Cone-Wesson B, 1997, J Am Acad Audiol, V8, P299 DOBBING J, 1970, BRAIN RES, V17, P115, DOI 10.1016/0006-8993(70)90311-2 EGGERMONT JJ, 1988, HEARING RES, V33, P35, DOI 10.1016/0378-5955(88)90019-6 Eldredge L, 1996, EARLY HUM DEV, V45, P215, DOI 10.1016/0378-3782(96)01732-X Fay R. R., 1988, HEARING VERTEBRATES GUNNARSON AD, 1991, J SPEECH HEAR RES, V34, P1207 HALL JW, 1993, J SPEECH HEAR RES, V36, P210 JIANG ZD, 1995, INT J PEDIATR OTORHI, V33, P225, DOI 10.1016/0165-5876(95)01213-3 JONES CT, 1990, J DEV PHYSIOL, V13, P189 KURTZBERG D, 1984, DEV MED CHILD NEUROL, V26, P466 LAFEBER HN, 1984, J DEV PHYSIOL, V6, P441 Lehtovirta P, 1980, Int J Gynaecol Obstet, V18, P208 Mallard C, 2000, NEUROSCIENCE, V100, P327, DOI 10.1016/S0306-4522(00)00271-2 Mallard EC, 1999, SCHIZOPHR RES, V40, P11, DOI 10.1016/S0920-9964(99)00041-9 MICHELSSON K, 1983, EUR J PEDIATR, V141, P96, DOI 10.1007/BF00496798 MUSIEK FE, 1989, AM J OTOL, V10, P343 NITSOS I, 1990, INT J DEV NEUROSCI, V8, P233, DOI 10.1016/0736-5748(90)90029-2 Rance G, 1999, EAR HEARING, V20, P238, DOI 10.1097/00003446-199906000-00006 REES S, 1990, INT J DEV NEUROSCI, V8, P133, DOI 10.1016/0736-5748(90)90003-K REES S, 1989, NEUROSCI LETT, V99, P157, DOI 10.1016/0304-3940(89)90282-6 REHN A, 2000, ALTERED AUDITORY BRA, P130 Robinson JS, 1996, PEDIAT PERINATOLOGY, P290 SALAMY A, 1984, J CLIN NEUROPHYSIOL, V1, P293, DOI 10.1097/00004691-198407000-00003 SARDA P, 1992, J PERINAT MED, V20, P57, DOI 10.1515/jpme.1992.20.1.57 STARR A, 1975, ARCH NEUROL-CHICAGO, V32, P761 STOCKARD JJ, 1977, NEUROLOGY, V27, P316 WALTHER FJ, 1982, NEUROPEDIATRICS, V13, P77, DOI 10.1055/s-2008-1059601 WAXMAN SG, 1980, MUSCLE NERVE, V3, P141, DOI 10.1002/mus.880030207 XU SA, 1993, HEARING RES, V70, P205, DOI 10.1016/0378-5955(93)90159-X NR 34 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2002 VL 166 IS 1-2 BP 159 EP 165 DI 10.1016/S0378-5955(02)00312-X PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 567HQ UT WOS:000176479700016 PM 12062768 ER PT J AU Dreiling, FJ Henson, MM Henson, OW AF Dreiling, FJ Henson, MM Henson, OW TI The presence and arrangement of type 11 collagen in the basilar membrane SO HEARING RESEARCH LA English DT Article DE basilar membrane; type II collagen; immunoelectron microscopy immunohistochemistry; extracellular matrix; scanning electron microscopy ID HUMAN ARTICULAR-CARTILAGE; II COLLAGEN; EXTRACELLULAR-MATRIX; IMMUNOHISTOCHEMICAL ANALYSIS; ELECTRON-MICROSCOPY; TECTORIAL MEMBRANE; GUINEA-PIG; MONOCLONAL-ANTIBODIES; CHINCHILLA COCHLEA; FINE-STRUCTURE AB Previous studies demonstrating the presence of collagen II in the basilar membrane have used it biochemical approach or have used immunohistochemistry at the light microscopic level. In this investigation both the presence and arrangement of collagen II were demonstrated at the ultrastructural level using pre- and post-embedding immunoelectron microscopy. Labeling was dependent on the development of protocols to expose epitopes while maintaining identifiable ultrastructure. Both Positive and negative controls indicate that the labeling was specific for collagen II. Collagen II was detected in the fibrous sheet of the pars tecta and in the two fibrous layers of the pars pectinata. It was detected in situ and on isolated individual 10-12 nm fibrils. The presence of collagen II in all the fibrous layers of the basilar membrane places constraints oil the biomechanical properties of this important structure. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ N Carolina, Dept Cell & Dev Biol, Chapel Hill, NC 27599 USA. Univ N Carolina, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC USA. RP Henson, OW (reprint author), Univ N Carolina, Dept Cell & Dev Biol, Taylor Hall,CB 7090, Chapel Hill, NC 27599 USA. CR Alberts B., 1994, MOL BIOL CELL ANDERSON HC, 1971, J CELL BIOL, V49, P650, DOI 10.1083/jcb.49.3.650 ASARI A, 1994, J HISTOCHEM CYTOCHEM, V42, P513 BASHONG W, 1983, EUR J CELL BIOL, V32, P1 BENDAYAN M, 1983, J HISTOCHEM CYTOCHEM, V31, P101 BREWTON RG, 1994, EXTRACELLULAR MATRIX, P129 Buckwalter JA, 1998, AAOS INSTR COURS LEC, V47, P477 CHEN Q, 1993, DEV DYNAM, V196, P47 CHICHESTER C, 1991, J IMMUNOL METHODS, V140, P259, DOI 10.1016/0022-1759(91)90379-T CLEMMENSEN I, 1982, HISTOCHEMISTRY, V76, P51, DOI 10.1007/BF00493284 Cohen NP, 1998, J ORTHOP SPORT PHYS, V28, P203 DAHLBACK K, 1990, J INVEST DERMATOL, V94, P284, DOI 10.1111/1523-1747.ep12874430 Dingemans KP, 2000, ANAT REC, V258, P1 DREILING FJ, 2002, IN PRESS HEAR RES DUNN MG, 1983, CONNECT TISSUE RES, V12, P59, DOI 10.3109/03008208309005612 EHRET G, 1978, J ACOUST SOC AM, V64, P1723, DOI 10.1121/1.382153 ENGSTROM H., 1958, EXPTL CELL RES SUPPL, V5, P460 ENGSTROM H, 1955, Acta Otorhinolaryngol Belg, V9, P531 EYRE DR, 1977, BIOCHIM BIOPHYS ACTA, V492, P29, DOI 10.1016/0005-2795(77)90211-2 EYRE DR, 1973, BIOCHEM J, V135, P393 Giberson RT, 1997, J VET DIAGN INVEST, V9, P61 HAMILTON DW, 1967, ANAT REC, V157, P627, DOI 10.1002/ar.1091570409 HAYASHI M, 1988, DEVELOPMENT, V103, P27 HAYAT MA, 1986, MICRON MICROSC ACTA, V17, P115, DOI 10.1016/0739-6260(86)90042-0 HELLSTROM S, 1994, ORL J OTO-RHINO-LARY, V56, P253 ISHIBE T, 1990, AM J OTOL, V11, P33 ISHIBE T, 1989, ANN OTO RHINOL LARYN, V98, P648 IURATO SALVATORE, 1962, JOUR ACOUSTICAL SOC AMER, V34, P1386, DOI 10.1121/1.1918355 IURATO S, 1962, Z ZELLFORSCH MIK ANA, V56, P40, DOI 10.1007/BF00326848 JOHNSTONE B, 1997, COMMUNICATION KATORI Y, 1993, ACTA OTO-LARYNGOL, V113, P715, DOI 10.3109/00016489309135890 KEENE DR, 1991, J HISTOCHEM CYTOCHEM, V39, P441 KEITHLEY EM, 1993, J COMP NEUROL, V327, P612, DOI 10.1002/cne.903270411 Kreis T, 1993, GUIDEBOOK EXTRACELLU Kucharz E.J., 1992, COLLAGENS BIOCH PATH KUTCHAI H, 1988, PHYSIOLOGY, P22 LINSENMAYER TF, 1980, BIOCHEM BIOPH RES CO, V92, P440, DOI 10.1016/0006-291X(80)90352-6 LITWIN JA, 1987, AM J PATHOL, V128, P141 Madden VJ, 1997, HEARING RES, V111, P76, DOI 10.1016/S0378-5955(97)00107-X Madden VJ, 2001, MICROWAVE TECHNIQUES AND PROTOCOLS, P101, DOI 10.1007/978-1-59259-128-2_9 MAROUDAS A, 1985, DEGENERATIVE JOINTS, V2, P99 Maroudas A., 1986, ARTICULAR CARTILAGE, P311 Martin J A, 2000, Iowa Orthop J, V20, P1 Mayne R, 1993, CURR OPIN CELL BIOL, V5, P883, DOI 10.1016/0955-0674(93)90039-S MCGRATH JA, 1994, ACTA DERM-VENEREOL, V74, P197 MIKUNI H, 1994, ARCH HISTOL CYTOL, V57, P187, DOI 10.1679/aohc.57.187 MILLER CE, 1985, J ACOUST SOC AM, V77, P1465, DOI 10.1121/1.392041 Montes G.S., 1988, COLLAGEN, V2, P41 MUNYER PD, 1994, HEARING RES, V79, P83, DOI 10.1016/0378-5955(94)90129-5 NERLICH AG, 1993, VIRCHOWS ARCH B, V63, P249, DOI 10.1007/BF02899269 NEWMAN GR, 1989, COLLOIDAL GOLD PRINC, V2, P33 Nimni ME, 1988, COLLAGEN, V1, P1 OLSON ES, 1991, J ACOUST SOC AM, V89, P1262, DOI 10.1121/1.400535 Parry DAD, 1988, COLLAGEN, P1 Pfander D, 1999, J RHEUMATOL, V26, P386 PLASSMANN W, 1987, BRAIN BEHAV EVOLUT, V30, P82, DOI 10.1159/000118639 RICHARDSON GP, 1987, HEARING RES, V25, P45, DOI 10.1016/0378-5955(87)90078-5 ROBINSON G, 1982, THEORY PRACTICE HIST, P406 ROMIJN HJ, 1993, J HISTOCHEM CYTOCHEM, V41, P1259 SANTI PA, 1989, HEARING RES, V39, P91, DOI 10.1016/0378-5955(89)90084-1 Schenk RK, 1986, ARTICULAR CARTILAGE, P3 Schweitzer L, 1996, HEARING RES, V97, P84 SLEPECKY NB, 1992, MATRIX, V11, P80 SLEPECKY NB, 1992, CELL TISSUE RES, V267, P413, DOI 10.1007/BF00319363 SLEPECKY NB, 1992, ACTA OTO-LARYNGOL, V112, P611, DOI 10.3109/00016489209137449 SRINIVAS GR, 1993, J IMMUNOL METHODS, V159, P53, DOI 10.1016/0022-1759(93)90141-S SWIDERSKI RE, 1994, DEV DYNAM, V200, P294 THALMANN I, 1986, ORL J OTO-RHINO-LARY, V48, P107 THALMANN I, 1987, LARYNGOSCOPE, V97, P357 THALMANN I, 1993, CONNECT TISSUE RES, V29, P191, DOI 10.3109/03008209309016826 THOMAS JT, 1994, ANN RHEUM DIS, V53, P488, DOI 10.1136/ard.53.8.488 Timpl R., 1984, EXTRACELLULAR MATRIX, P159 Tsuprun V, 1999, HEARING RES, V129, P35, DOI 10.1016/S0378-5955(98)00219-6 VAUGHAN L, 1988, J CELL BIOL, V106, P991, DOI 10.1083/jcb.106.3.991 VOGEL KG, 1984, BIOCHEM J, V223, P587 Wainwright S, 1976, MECH DESIGN ORGANISM WAKABAYASHI Y, 1993, HISTOCHEMISTRY, V100, P401, DOI 10.1007/BF00267819 WALLACE RN, 1991, CURR EYE RES, V10, P99, DOI 10.3109/02713689109007614 WOJNO KJ, 1992, AM J SURG PATHOL, V16, P1144, DOI 10.1097/00000478-199212000-00002 WRIGHT DW, 1988, J ULTRA MOL STRUCT R, V100, P224, DOI 10.1016/0889-1605(88)90039-0 YOO TJ, 1982, SCIENCE, V217, P1153, DOI 10.1126/science.7112122 YOO TJ, 1983, ANN OTO RHINOL LARYN, V92, P267 YOO TJ, 1983, SCIENCE, V222, P65, DOI 10.1126/science.6623056 YOO TJ, 1988, LARYNGOSCOPE, V98, P1255 NR 84 TC 19 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2002 VL 166 IS 1-2 BP 166 EP 180 DI 10.1016/S0378-5955(02)00314-3 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 567HQ UT WOS:000176479700017 PM 12062769 ER PT J AU Dreiling, FJ Henson, MM Henson, OW AF Dreiling, FJ Henson, MM Henson, OW TI Immunolabeling type II collagen in the basilar membrane, a pre-embedding approach SO HEARING RESEARCH LA English DT Article DE basilar membrane; type II collagen; immunoelectron microscopy immunohistochemistry; extracellular matrix ID AGE-RELATED-CHANGES; ARTICULAR-CARTILAGE; EXTRACELLULAR-MATRIX; IMMUNOHISTOCHEMICAL LOCALIZATION; CROSS-LINKING; X-RAY; TISSUE; IX; DEGRADATION; BONE AB This paper describes the development of a protocol that can be used to detect collagen II in the healthy adult basilar membrane (BM) at the electron microscopic level. This protocol required aggressive epitope exposure techniques to break the crosslinks that bind the collagen molecules tightly into fibrils and to remove a dense mat of ground substance that surrounds the fibrils. On the other hand, the steps had to be carefully controlled to preserve BM ultrastructure and the collagen II epitopes that are typically labile. These requirements were satisfied by introducing a targeted crosslink breakage method and by regulating the duration of epitope exposure based on changes in tissue appearance observed with differential interference contrast microscopy, High levels of immunolabeling were achieved by substituting tissue preservation techniques for most or all of fixation: this was important because fixation reduces antigenicity directly and impedes epitope exposure. When these techniques were combined with more traditional trypsin and pepsin treatments, the result was dense immunolabeling and preservation of ultrastructure that allowed accurate localization of the immunolabeling. This pre-embedding immunoelectron microscopic method is the first to be carried out on the BM and may be adaptable to future studies of the BM as well as other tissues with similar molecular composition. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ N Carolina, Dept Cell & Dev Biol, Chapel Hill, NC 27599 USA. Univ N Carolina, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC USA. RP Henson, OW (reprint author), Univ N Carolina, Dept Cell & Dev Biol, Taylor Hall,CB 7090, Chapel Hill, NC 27599 USA. CR Alberts B., 1989, MOL BIOL CELL ALLARD SA, 1990, ARTHRITIS RHEUM, V33, P1170 ap Gwynn I, 2001, IMMUNOCYTOCHEMISTRY AND IN SITU HYBRIDIZATION IN THE BIOMEDICAL SCIENCES, P6 BENDAYAN M, 1987, J HISTOCHEM CYTOCHEM, V35, P983 BENJAMIN M, 1991, J ANAT, V179, P127 Buckwalter JA, 1998, AAOS INSTR COURS LEC, V47, P477 CHICHESTER C, 1991, J IMMUNOL METHODS, V140, P259, DOI 10.1016/0022-1759(91)90379-T Diab M, 1996, BIOCHEM J, V314, P327 Dingemans KP, 2000, ANAT REC, V258, P1 DINGEMANS KP, 1990, ULTRASTRUCT PATHOL, V14, P519 DODGE GR, 1989, J CLIN INVEST, V83, P647, DOI 10.1172/JCI113929 DODGE GR, 1991, MATRIX, V11, P330 DREILING FJ, 2002, HEAR RES EMONARD H, 1990, CELL MOL BIOL, V36, P131 EYRE DR, 1973, BIOCHEM J, V135, P393 EYRE DR, 1988, BIOCHEM J, V252, P495 Freshney RI, 2000, CULTURE ANIMAL CELLS FULLWOOD NJ, 1993, J MICROSC-OXFORD, V170, P190 FULLWOOD NJ, 1993, J MICROSC-OXFORD, V169, P53 ISHIBE T, 1990, AM J OTOL, V11, P33 IURATO S, 1962, Z ZELLFORSCH MIK ANA, V56, P40, DOI 10.1007/BF00326848 Jiaan DB, 1995, WORLD J UROL, V13, P369 Junqueira LC, 1992, BASIC HISTOLOGY KELLENBERGER E, 1991, COLLOIDAL GOLD PRINC, V3, P1 Kreis T, 1993, GUIDEBOOK EXTRACELLU KUMAGAI J, 1994, J ANAT, V185, P279 LEE ER, 1990, J HISTOCHEM CYTOCHEM, V38, P659 Madden VJ, 1997, HEARING RES, V111, P76, DOI 10.1016/S0378-5955(97)00107-X MARCHI F, 1991, AM J ANAT, V190, P41, DOI 10.1002/aja.1001900106 MAROUDAS A, 1985, DEGENERATIVE JOINTS, V2, P99 MARTIN GR, 1966, ENV VARIABLES ORAL D, P155 MENDLER M, 1989, J CELL BIOL, V108, P191, DOI 10.1083/jcb.108.1.191 MILLER EJ, 1972, BIOCHEMISTRY-US, V11, P4903, DOI 10.1021/bi00776a005 MILLER EJ, 1969, P NATL ACAD SCI USA, V64, P1264, DOI 10.1073/pnas.64.4.1264 Montes G.S., 1988, COLLAGEN, V2, P41 MORAN ME, 1992, J BONE JOINT SURG BR, V74, P659 MUNYER PD, 1994, HEARING RES, V79, P83, DOI 10.1016/0378-5955(94)90129-5 Nimni ME, 1993, EXTRACELLULAR MATRIX, P121 Parry DAD, 1988, COLLAGEN, P1 Petit B, 1996, EXP CELL RES, V225, P151, DOI 10.1006/excr.1996.0166 RAMPRASHAD F, 1984, CAN J ZOOL, V62, P2476 RONZIERE MC, 1985, BIOCHIM BIOPHYS ACTA, V842, P170, DOI 10.1016/0304-4165(85)90199-0 RUBEL EW, 1978, DEV SENSORY SYSTEMS, P133 Sagarriga VC, 1996, ARCH BIOCHEM BIOPHYS, V328, P135 SCHEVEN BAA, 1988, BONE, V9, P407, DOI 10.1016/8756-3282(88)90123-8 SLEPECKY NB, 1992, MATRIX, V11, P80 SLEPECKY NB, 1992, CELL TISSUE RES, V267, P413, DOI 10.1007/BF00319363 SRINIVAS GR, 1993, J IMMUNOL METHODS, V159, P53, DOI 10.1016/0022-1759(93)90141-S Tian SF, 1996, J BIOCHEM-TOKYO, V120, P1153 Tsuprun V, 1999, HEARING RES, V129, P35, DOI 10.1016/S0378-5955(98)00219-6 VAUGHAN L, 1988, J CELL BIOL, V106, P991, DOI 10.1083/jcb.106.3.991 Voet D, 1990, BIOCHEMISTRY WRIGHT DW, 1988, J ULTRA MOL STRUCT R, V100, P224, DOI 10.1016/0889-1605(88)90039-0 YANG CL, 1993, BIOCHEM J, V289, P829 YOO TJ, 1988, LARYNGOSCOPE, V98, P1255 NR 55 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2002 VL 166 IS 1-2 BP 181 EP 191 DI 10.1016/S0378-5955(02)00313-1 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 567HQ UT WOS:000176479700018 PM 12062770 ER PT J AU Krishnan, A AF Krishnan, A TI Human frequency-following responses: representation of steady-state synthetic vowels SO HEARING RESEARCH LA English DT Article DE human FFR; steady-state synthetic vowel; neural phase-locking; formant; temporal encoding ID AUDITORY-NERVE FIBERS; VENTRAL COCHLEAR NUCLEUS; DISCHARGE PATTERNS; DISTORTION PRODUCTS; EVOKED-POTENTIALS; BACKGROUND-NOISE; SOUNDS; STIMULI; PERIODICITY; CONSONANTS AB Auditory nerve single-unit population studies have demonstrated that phase-locking plays a dominant role in the neural encoding of the spectrum of speech sounds. Given this. it was reasoned that the phase-locked neural activity underlying the scalp-recorded human frequency-following response (FFR) might preserve information about certain acoustic features of speech sounds. It was recently reported (Ananthanarayan. A.K., 1999. J. Audiol. Neurootol. 4, 95-103) that the FFR spectrum to simple two-tone approximations of several English back vowels does indeed contain peaks corresponding to the first and second formant frequencies. In this investigation FFRs to the more complex steady-state synthetic English back vowels (/u/, /)/, and /a/) were evaluated. FFRs were obtained from 10 normal-hearing human adults at 85, 75,65, and 55 dB normal-hearing level (nHL). Spectrum analyses of the FFRs revealed distinct peaks at harmonics adjacent to the first and the second formants across all levels suggesting that phase-locked activity among two distinct Populations of neurons is indeed preserved in the FFR, For each vowel the spectral peaks at first formant harmonics dominated the spectrum at high stimulus levels suggesting formant capture. The observation of less robust peaks for harmonics between the formants may very well suggest selective suppression to enhance spectral peaks at the formant frequencies. These results Suggest that the scalp-recorded FFR may provide for a non-invasive analytic window to evaluate neural encoding of speech sounds in the brainstem of normal-hearing individuals and how this encoding may be degraded subsequent to cochlear hearing impairment. (C) 2002 Elsevier Science B,V. All rights reserved. C1 Purdue Univ, Dept Audiol & Speech Sci, Auditory Electrophysiol Lab, W Lafayette, IN 47907 USA. RP Krishnan, A (reprint author), Purdue Univ, Dept Audiol & Speech Sci, Auditory Electrophysiol Lab, W Lafayette, IN 47907 USA. CR ANANTHANARAYAN AK, 1992, EAR HEARING, V13, P228, DOI 10.1097/00003446-199208000-00003 ANANTHANARAYAN AK, 1999, J AUDIOL NEUROOTOL, V4, P95 ANANTHANARAYAN AK, 2000, J AUDIOL NEUROOTOL, V5, P312 ARTHUR RM, 1971, J PHYSIOL-LONDON, V212, P593 BLACKBURN CC, 1990, J NEUROPHYSIOL, V63, P1191 BLEDSOE SC, 1980, ELECTROEN CLIN NEURO, V48, P654, DOI 10.1016/0013-4694(80)90422-8 BROWN R, 1958, WORDS THINGS, P36 Carlson R., 1975, AUDITORY ANAL PERCEP, P55 CASPARY DM, 1977, EXP NEUROL, V54, P414, DOI 10.1016/0014-4886(77)90246-1 CHERTOFF ME, 1990, J ACOUST SOC AM, V87, P1248, DOI 10.1121/1.398800 CHERTOFF ME, 1992, J SPEECH HEAR RES, V35, P157 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P908, DOI 10.1121/1.390537 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P897, DOI 10.1121/1.390599 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P866, DOI 10.1121/1.390596 DELGUTTE B, 1980, J ACOUST SOC AM, V68, P843, DOI 10.1121/1.384824 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P887, DOI 10.1121/1.390598 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P879, DOI 10.1121/1.390597 GARDI J, 1979, AUDIOLOGY, V18, P494 GLASER EM, 1976, ELECTROEN CLIN NEURO, V40, P25, DOI 10.1016/0013-4694(76)90176-0 GOBLICK TJ, 1969, J ACOUST SOC AM, V46, P924, DOI 10.1121/1.1911812 GREENBERG S, 1987, HEARING RES, V25, P91, DOI 10.1016/0378-5955(87)90083-9 HALL JW, 1979, SCIENCE, V205, P1297, DOI 10.1126/science.472748 Keilson SE, 1997, J ACOUST SOC AM, V102, P1056, DOI 10.1121/1.419859 KLATT DH, 1980, J ACOUST SOC AM, V67, P971, DOI 10.1121/1.383940 Marsh J.T., 1974, ELECTROENCEPHALOGR C, V38, P415 MILLER MI, 1983, J ACOUST SOC AM, V74, P502, DOI 10.1121/1.389816 MILLER MI, 1984, HEARING RES, V14, P257, DOI 10.1016/0378-5955(84)90054-6 MOUSHEGI.G, 1973, ELECTROEN CLIN NEURO, V35, P665, DOI 10.1016/0013-4694(73)90223-X PALMER AR, 1986, J ACOUST SOC AM, V79, P100, DOI 10.1121/1.393633 PETERSON GE, 1952, J ACOUST SOC AM, V24, P175, DOI 10.1121/1.1906875 REALE RA, 1980, J ACOUST SOC AM, V67, P891, DOI 10.1121/1.383969 Recio A, 2000, HEARING RES, V146, P167, DOI 10.1016/S0378-5955(00)00111-8 Rhode WS, 1998, HEARING RES, V117, P39, DOI 10.1016/S0378-5955(98)00002-1 RICKMAN MD, 1991, J ACOUST SOC AM, V89, P2818, DOI 10.1121/1.400720 SACHS MB, 1979, J ACOUST SOC AM, V66, P470, DOI 10.1121/1.383098 SACHS MB, 1983, J NEUROPHYSIOL, V50, P27 SMITH JC, 1975, ELECTROEN CLIN NEURO, V39, P465, DOI 10.1016/0013-4694(75)90047-4 VOIGT HF, 1982, HEARING RES, V8, P49, DOI 10.1016/0378-5955(82)90033-8 WORDEN F. G., 1968, ELECTROENCEPHALOGR C, V25, P45 YOUNG ED, 1979, J ACOUST SOC AM, V66, P1381, DOI 10.1121/1.383532 NR 40 TC 68 Z9 72 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2002 VL 166 IS 1-2 BP 192 EP 201 DI 10.1016/S0378-5955(02)00327-1 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 567HQ UT WOS:000176479700019 PM 12062771 ER PT J AU Norena, A Eggermont, JJ AF Norena, A Eggermont, JJ TI Comparison between local field potentials and unit cluster activity in primary auditory cortex and anterior auditory field in the cat SO HEARING RESEARCH LA English DT Article DE multiple-unit recording; local field potential; primary auditory cortex; anterior auditory field; cat; intracortical inhibition ID VISUAL-CORTEX; RESPONSE PROPERTIES; CORTICAL FIELDS; STRIATE CORTEX; SIMPLE CELLS; NEURONS; REPRESENTATION; INHIBITION; PATTERNS; DISCRIMINATION AB Multi-unit (MU) activity and local field potentials (LFP) were simultaneously recorded from 161 sites in the middle cortical layers of the primary auditory cortex (AI) and the anterior auditory Field (AAF) in 51 cats. Responses were obtained for frequencies between 625 Hz and 40 kHz, at intensities from 75 dB SPL to threshold. We compared the response properties of MU activity and LFP triggers, in terms of characteristic frequency (CF). threshold at CF. minimum latency and frequency tuning-curve bandwidth 20 dB above threshold. On average. thresholds at CF were significantly lower for LFP events than those for MU spikes (4 6 dB for AI. and 3 dB for AAF). Minimum latencies were significantly shorter for LFP events than for MU spikes (1.5 ms in AI, and 1.7 ms in AAF). Frequency tuning curves were significantly broader for LFP event,, than those for MU spikes (1.0 octave in AI. and 1.3 octaves in AAF). In contrast. the CF was not significantly different between LFP events and MU spikes. The LFP results indicate that cortical neurons receive convergent sub-cortical inputs from a broad frequency range. The sharper tuning curves for MU activity compared to those of LFP events are likely the result of intracortical inhibitory processes. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Calgary, Neurosci Res Grp, Dept Physiol & Biophys, Calgary, AB, Canada. Univ Calgary, Neurosci Res Grp, Dept Psychol, Calgary, AB, Canada. RP Eggermont, JJ (reprint author), Univ Calgary, Neurosci Res Grp, Dept Physiol & Biophys, 2500 Univ Dr NW, Calgary, AB, Canada. CR Alonso JM, 2001, J NEUROSCI, V21, P4002 Brosch M, 1997, J NEUROPHYSIOL, V77, P923 Buracas GT, 1998, NEURON, V20, P959 CALFORD MB, 1995, J NEUROPHYSIOL, V73, P1876 DEVENECIA RK, 1994, DEV BRAIN RES, V81, P135, DOI 10.1016/0165-3806(94)90077-9 ECKHORN R, 1993, EXP BRAIN RES, V95, P177 Eggermont JJ, 1996, AUDIT NEUROSCI, V2, P79 Eggermont JJ, 2000, HEARING RES, V142, P89, DOI 10.1016/S0378-5955(00)00024-1 Eggermont JJ, 1998, J NEUROPHYSIOL, V80, P2743 EGGERMONT JJ, 1992, J NEUROPHYSIOL, V68, P1216 Eggermont JJ, 1998, HEARING RES, V117, P149, DOI 10.1016/S0378-5955(98)00008-2 EGGERMONT JJ, 1995, J NEUROPHYSIOL, V73, P227 Foeller E, 2001, JARO, V2, P279 Frien A, 2000, EUR J NEUROSCI, V12, P1466, DOI 10.1046/j.1460-9568.2000.00026.x Gaese BH, 2001, J NEUROPHYSIOL, V86, P1062 Galvan VV, 2001, JARO, V2, P199 Gray CM, 1995, J NEUROSCI METH, V63, P43, DOI 10.1016/0165-0270(95)00085-2 Hirsch JA, 1998, J NEUROSCI, V18, P9517 Huang CL, 2000, J COMP NEUROL, V427, P302, DOI 10.1002/1096-9861(20001113)427:2<302::AID-CNE10>3.0.CO;2-J Kimura M, 1999, HEARING RES, V135, P146, DOI 10.1016/S0378-5955(99)00104-5 KNIGHT PL, 1977, BRAIN RES, V130, P447, DOI 10.1016/0006-8993(77)90108-1 MCMULLEN NT, 1993, BRAIN RES, V620, P317, DOI 10.1016/0006-8993(93)90173-K MERZENICH MM, 1975, J NEUROPHYSIOL, V38, P231 Metherate R, 1999, EXP BRAIN RES, V126, P160, DOI 10.1007/s002210050726 Miller LM, 2001, NEURON, V32, P151, DOI 10.1016/S0896-6273(01)00445-7 MILLER LM, 2001, J NEUROSCI, V15, P8136 MITZDORF U, 1985, PHYSIOL REV, V65, P37 RAJAN R, 2001, CEREB CORTEX, V11, P161 SERKOV F N, 1984, Neirofiziologiya, V16, P123 SERKOV FN, 1984, NEUROPHYSIOLOGY, V16, P193 SERKOV F N, 1974, Neirofiziologiya, V6, P119 SHAMMA SA, 1985, HEARING RES, V19, P1, DOI 10.1016/0378-5955(85)90094-2 Swadlow HA, 2000, J NEUROPHYSIOL, V83, P2802 Talwar SK, 2001, J NEUROPHYSIOL, V86, P1555 VOLKOV IO, 1991, NEUROSCIENCE, V43, P307, DOI 10.1016/0306-4522(91)90295-Y Wang J, 2000, NEUROREPORT, V11, P1137, DOI 10.1097/00001756-200004070-00045 WINER JA, 1990, MAMMALIAN AUDITORY P, P222 ZURITA P, 1994, NEUROSCI RES, V19, P303, DOI 10.1016/0168-0102(94)90043-4 NR 38 TC 51 Z9 51 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2002 VL 166 IS 1-2 BP 202 EP 213 DI 10.1016/S0378-5955(02)00329-5 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 567HQ UT WOS:000176479700020 PM 12062772 ER PT J AU Boettcher, FA Madhotra, D Poth, EA Mills, JH AF Boettcher, FA Madhotra, D Poth, EA Mills, JH TI The frequency-modulation following response in young and aged human subjects SO HEARING RESEARCH LA English DT Article DE age-related hearing loss; frequency-modulation following response; presbyacusis ID AUDITORY-EVOKED-POTENTIALS; STEADY-STATE RESPONSES; BRAIN-STEM RESPONSE; INFERIOR COLLICULUS; STRIA VASCULARIS; AMPLITUDE-MODULATION; GERBILS; TONES; DISCRIMINATION; ENHANCEMENT AB The frequency-modulation following response (FMFR) is a steady-state evoked response which may be a neural correlate of frequency discrimination. Aged subjects with normal hearing have abnormal frequency discrimination for low carrier frequencies and thus it might be predicted that aged individuals would have reduced FMFR amplitudes compared to young subjects. In this study. FMFR amplitudes were measured for frequency-modulated sinusoids with a carrier frequency of 0.5 kHz (80 dB SPL). In Experiment 1, the modulation depth was held constant (80%) and the modulation rate was varied (4-38 Hz). whereas in Experiment 2 the modulation rate was held constant (38 Hz) and the modulation depth was varied (0-80%). Aged subjects had significantly larger FMFR amplitudes than young subjects for certain stimulus parameters, although individual variability was large. Such results would not be predicted given previous data regarding frequency discrimination. but are consistent with several reports of larger-than-normal amplitudes of middle latency and late responses in aged subjects. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, Charleston, SC 29425 USA. RP Boettcher, FA (reprint author), Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, 39 Sabin St,POB 250150, Charleston, SC 29425 USA. CR ABEL SM, 1990, SCAND AUDIOL, V19, P43, DOI 10.3109/01050399009070751 Adams JC, 1997, HEARING RES, V104, P101, DOI 10.1016/S0378-5955(96)00184-0 ANANTHANARAYAN AK, 1987, ELECTROEN CLIN NEURO, V66, P427 ANANTHANARAYAN AK, 1983, ELECTROEN CLIN NEURO, V55, P223, DOI 10.1016/0013-4694(83)90191-8 BOETTCHER FA, 1993, HEARING RES, V71, P137, DOI 10.1016/0378-5955(93)90029-Z Boettcher FA, 2001, HEARING RES, V153, P32, DOI 10.1016/S0378-5955(00)00255-0 BOHNE BA, 1990, HEARING RES, V48, P79, DOI 10.1016/0378-5955(90)90200-9 CASPARY DM, 1990, J NEUROSCI, V10, P2363 CHAMBERS RD, 1991, HEARING RES, V51, P1, DOI 10.1016/0378-5955(91)90002-Q CHAMBERS RD, 1991, HEARING RES, V58, P121 COHEN LT, 1991, J ACOUST SOC AM, V90, P2467, DOI 10.1121/1.402050 Felder E, 1997, HEARING RES, V105, P183, DOI 10.1016/S0378-5955(96)00209-2 Felix H, 1990, Acta Otolaryngol Suppl, V470, P71 GERKEN GM, 1973, ELECTROEN CLIN NEURO, V34, P509, DOI 10.1016/0013-4694(73)90068-0 GRATTON MA, 1995, HEARING RES, V82, P44 Gratton MA, 1997, HEARING RES, V114, P1, DOI 10.1016/S0378-5955(97)00025-7 GUMNIT RJ, 1961, AM J PHYSIOL, V200, P1219 HARRIS JD, 1952, J ACOUST SOC AM, V24, P750, DOI 10.1121/1.1906970 He NJ, 1998, J ACOUST SOC AM, V103, P553, DOI 10.1121/1.421127 Helfert RH, 1999, J COMP NEUROL, V406, P285 HELLSTROM LI, 1990, HEARING RES, V50, P163, DOI 10.1016/0378-5955(90)90042-N HENNING GB, 1970, FREQUENCY ANAL PERIO John MS, 2000, HEARING RES, V141, P57, DOI 10.1016/S0378-5955(99)00209-9 John MS, 2001, AUDIOL NEURO-OTOL, V6, P12, DOI 10.1159/000046805 JOHNSON B W, 1988, Brain Topography, V1, P117, DOI 10.1007/BF01129176 Johnsson L G, 1990, Acta Otolaryngol Suppl, V470, P88 KEITHLEY EM, 1982, HEARING RES, V8, P249, DOI 10.1016/0378-5955(82)90017-X KEITHLEY EM, 1989, HEARING RES, V38, P125, DOI 10.1016/0378-5955(89)90134-2 KONIG E, 1957, Acta Otolaryngol, V48, P475, DOI 10.3109/00016485709126909 KUWADA S, 1986, HEARING RES, V21, P179, DOI 10.1016/0378-5955(86)90038-9 MAKELA JP, 1987, ELECTROEN CLIN NEURO, V66, P539, DOI 10.1016/0013-4694(87)90101-5 MILBRANDT JC, 1994, NEUROBIOL AGING, V15, P699, DOI 10.1016/0197-4580(94)90051-5 MILLS JH, 2001, ABSTR ASS RES OTOLAR, V24, P82 MOORE BCJ, 1992, J ACOUST SOC AM, V91, P2881, DOI 10.1121/1.402925 PICTON TW, 1987, J ACOUST SOC AM, V82, P165, DOI 10.1121/1.395560 POTH EA, 2001, ASS RES OTOLARYNGOL, V24, P81 QUI CX, 2000, HEARING RES, V139, P153 REES A, 1986, HEARING RES, V23, P123, DOI 10.1016/0378-5955(86)90009-2 REGAN D, 1979, J ACOUST SOC AM, V65, P1249, DOI 10.1121/1.382792 ROSS B, 2000, J ACOUST SOC AM, V108, P579 SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U SALVI RJ, 1992, NOISE INDUCED HEARIN, P156 Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K Shower EG, 1931, J ACOUST SOC AM, V3, P275, DOI 10.1121/1.1915561 SUN JC, 1994, LARYNGOSCOPE, V104, P1251 TANSLEY BW, 1979, SENS PROCESS, V3, P132 TARNOWSKI BI, 1991, HEARING RES, V54, P123, DOI 10.1016/0378-5955(91)90142-V Thomopoulos GN, 1997, HEARING RES, V111, P31, DOI 10.1016/S0378-5955(97)00080-4 Weir C. C., 1977, J ACOUST SOC AM, V61, P178 WOODS DL, 1986, ELECTROEN CLIN NEURO, V65, P297, DOI 10.1016/0168-5597(86)90008-0 NR 52 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2002 VL 165 IS 1-2 BP 10 EP 18 DI 10.1016/S0378-5955(01)00398-7 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559BZ UT WOS:000176006000002 PM 12031510 ER PT J AU Li, YZ Godfrey, DA Godfrey, MA Ding, DL Salvi, R AF Li, YZ Godfrey, DA Godfrey, MA Ding, DL Salvi, R TI Effects of carboplatin on amino acid chemistry in chinchilla cochlear nucleus SO HEARING RESEARCH LA English DT Article DE auditory; ototoxicity; aspartate; glutamate; gamma-aminobutyrate; glycine; glutaminase ID HAIR CELL LOSS; STEM AUDITORY NUCLEI; ASPARTATE-AMINOTRANSFERASE; QUANTITATIVE DISTRIBUTION; GLUTAMIC-ACID; NERVE LESION; INNER; DORSAL; DEGENERATION; OTOTOXICITY AB Carboplatin, a drug widely used against solid head and neck tumors, selectively destroys cochlear inner hair cells and type I auditory nerve fibers in chinchilla. This should affect neurotransmitter chemistry, involving amino acids, where the type I auditory nerve fibers terminate in the cochlear nucleus. Using microdissection combined with high-performance liquid chromatography, amino acid concentrations were mapped in the cochlear nuclei of chinchillas injected intraperitoneally 6-8 weeks earlier with 100 mg/kg carboplatin and in those of control animals, Glutamate concentrations were 23% lower in the anteroventral cochlear nucleus (AVCN) and 40% lower in the posteroventral cochlear nucleus (PVCN) of carboplatin-injected chinchillas as compared to controls. while aspartate concentrations were 18% lower in AVCN and 27% lower in PVCN. Using a fluorometric assay, activities of glutaminase, an enzyme which catalyzes glutamate synthesis, were 30% lower in AVCN and 38% lower in PVCN of carboplatin-injected chinchillas. Concentrations of glutamine, gamma-aminobutyrate. and glycine were also lower in some ventral and dorsal cochlear nucleus regions of treated animals. These changes probably result mainly from both primary and later effects of reduced type I auditory nerve fiber input to the cochlear nucleus. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Med Coll Ohio, Dept Otolaryngol Head & Neck Surg, Toledo, OH 43699 USA. SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP Godfrey, DA (reprint author), Med Coll Ohio, Dept Otolaryngol Head & Neck Surg, 3065 Arlington Ave, Toledo, OH 43699 USA. EM dgodfrey@mco.edu CR ALTSCHULER RA, 1993, NATO ADV SCI INST SE, V239, P211 APRISON MH, 1970, HDB NEUROCHEMISTRY, V3, P381 Bartus RT, 2000, J PHARMACOL EXP THER, V293, P903 BONOMI P, 1991, SEMIN ONCOL, V18, P2 BROWN MC, 1993, NATO ADV SCI INST SE, V239, P43 COHEN ES, 1972, EXP NEUROL, V35, P470, DOI 10.1016/0014-4886(72)90117-3 DING D, 2002, J ASS RES OTOLARYNGO Ding DL, 1999, ANN NY ACAD SCI, V884, P152, DOI 10.1111/j.1749-6632.1999.tb08640.x Doucet JR, 1999, J COMP NEUROL, V408, P515 EVANS EF, 1973, EXP BRAIN RES, V17, P428 Freilich RJ, 1996, MED PEDIATR ONCOL, V26, P95 GODFREY DA, 1976, J HISTOCHEM CYTOCHEM, V24, P679 GODFREY DA, 1999, P 6 INT TINN SEM TIN, P203 GODFREY DA, 2000, NEUROCHEMISTRY VESTI, P347 Godfrey DA, 2000, HEARING RES, V150, P189, DOI 10.1016/S0378-5955(00)00199-4 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HARRISON JM, 1962, J COMP NEUROL, V119, P341, DOI 10.1002/cne.901190306 Hofstetter P, 1997, HEARING RES, V112, P199, DOI 10.1016/S0378-5955(97)00123-8 Hofstetter P, 1997, AUDIOLOGY, V36, P301 Hu BH, 1999, HEARING RES, V128, P125, DOI 10.1016/S0378-5955(98)00210-X JOHNSSON LG, 1974, ANN OTO RHINOL LARYN, V83, P294 Li H, 1994, J Vestib Res, V4, P437 Li HY, 1996, J NEUROCHEM, V66, P1550 LI Y, 2001, ABSTR ASS RES OTOLAR, V24, P277 LI Y, 2000, ABSTR ASS RES OTOLAR, V23, P269 Lorente de No R., 1981, PRIMARY ACOUSTIC NUC Lowry OH, 1972, FLEXIBLE SYSTEM ENZY MACDONALD MR, 1994, J OTOLARYNGOL, V23, P151 McGeer P.L., 1989, BASIC NEUROCHEMISTRY, P311 MCKEAGE MJ, 1995, DRUG SAFETY, V13, P228 MOREST DK, 1990, J COMP NEUROL, V300, P230, DOI 10.1002/cne.903000207 OERTEL D, 1993, NATO ADV SCI INST SE, V239, P225 OSEN KK, 1970, ARCH ITAL BIOL, V108, P21 Ostapoff EM, 1999, HEARING RES, V130, P75, DOI 10.1016/S0378-5955(98)00224-X Pagano M, 1993, PRINCIPLES BIOSTATIS Potashner SJ, 2000, HEARING RES, V147, P125, DOI 10.1016/S0378-5955(00)00126-X POTASHNER SJ, 1993, NATO ADV SCI INST SE, V239, P195 Qiu CX, 2000, HEARING RES, V139, P153, DOI 10.1016/S0378-5955(99)00171-9 Ross CD, 1995, NEUROCHEM RES, V20, P1483, DOI 10.1007/BF00970598 ROSS CD, 1989, VISION RES, V29, P1079 SAITO T, 1989, Auris Nasus Larynx, V16, P13 SPOENDLIN H, 1981, ACTA OTO-LARYNGOL, V91, P451, DOI 10.3109/00016488109138527 SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683 Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812 Suneja SK, 1998, EXP NEUROL, V154, P473, DOI 10.1006/exnr.1998.6946 Takeno S, 1998, AUDIOL NEURO-OTOL, V3, P281, DOI 10.1159/000013800 TAKENO S, 1994, SCANNING MICROSCOPY, V8, P97 TAKENO S, 1994, HEARING RES, V75, P93, DOI 10.1016/0378-5955(94)90060-4 TAUDY M, 1992, AUDIOLOGY, V31, P293 WAKE M, 1993, J LARYNGOL OTOL, V107, P397 WAKE M, 1994, LARYNGOSCOPE, V104, P488 Wang J, 1997, HEARING RES, V107, P67, DOI 10.1016/S0378-5955(97)00020-8 WENTHOLD RJ, 1978, BRAIN RES, V143, P544, DOI 10.1016/0006-8993(78)90365-7 WENTHOLD RJ, 1980, BRAIN RES, V190, P293, DOI 10.1016/0006-8993(80)91183-X WENTHOLD RJ, 1977, BRAIN RES, V138, P111, DOI 10.1016/0006-8993(77)90787-9 WIET GJ, 1986, HEARING RES, V24, P137, DOI 10.1016/0378-5955(86)90058-4 WONGRILEY MTT, 1986, J COMP NEUROL, V245, P41, DOI 10.1002/cne.902450104 NR 57 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2002 VL 165 IS 1-2 BP 19 EP 29 DI 10.1016/S0378-5955(01)00389-6 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559BZ UT WOS:000176006000003 PM 12031511 ER PT J AU Tobita, T Senarita, MI Hara, A Kusakari, J AF Tobita, T Senarita, MI Hara, A Kusakari, J TI Determination of prednisolone in the cochlear tissue SO HEARING RESEARCH LA English DT Article DE prednisolone; glucocorticoid; cochlea; liver; serum; HPLC ID INNER-EAR FLUIDS; GLUCOCORTICOID RECEPTORS; RAT; METHYLPREDNISOLONE; TRANSPORT; HORMONES AB Although glucocorticoids are widely used to treat inner car diseases. glucocorticoid concentration has never been determined in the cochlear tissue. The aim of the present study was to measure the prednisolone concentration in the cochlear tissue after intravenous administration. At 0.5. 1, 2, 4 or 8 h after the injection (100 mg/kg). cochlea, hepatic and brain tissue and serum were removed, and prednisolone extracted from these samples was measured using high-performance liquid chromatography. Although prednisolone was not detected in the brain tissue, it was detected in the hepatic tissue and serum, demonstrating the peak value at 30 min after administration and a rather rapid decline with time thereafter. Prednisolone was also detected in the cochlear tissue, but the uptake and elimination patterns were entirely different from other samples. The prednisolone level in the cochlea reached the peak value 1 h after administration and gradually declined. The present study shows that the prednisolone administered is gradually transported to the cochlear tissue from blood and remains at higher concentrations than in the hepatic tissue or serum over several hours. It is highly likely that this slow elimination is closely related to the therapeutic effect of steroids in inner ear diseases. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Tsukuba, Inst Clin Med, Dept Otolaryngol, Tsukuba, Ibaraki 3058575, Japan. RP Hara, A (reprint author), Univ Tsukuba, Inst Clin Med, Dept Otolaryngol, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, Japan. CR Erichsen S, 1996, ACTA OTO-LARYNGOL, V116, P721, DOI 10.3109/00016489609137913 FURLOW TW, 1976, BRAIN RES, V10, P366 GORESKY CA, 1977, FED PROC, V36, P2629 HARA A, 1991, OTOL JPN, V1, P28 Lamm K, 1998, HEARING RES, V115, P149, DOI 10.1016/S0378-5955(97)00186-X McWhinney BC, 1996, CLIN CHEM, V42, P979 MISHINA EV, 1994, RES COMMUN CHEM PATH, V84, P47 PARDRIDGE WM, 1981, ENDOCR REV, V2, P103 PARDRIDGE WM, 1979, J CLIN INVEST, V64, P145, DOI 10.1172/JCI109433 Parnes LS, 1999, LARYNGOSCOPE, V109, P1, DOI 10.1097/00005537-199907001-00001 PITOVSKI DZ, 1994, HEARING RES, V77, P216, DOI 10.1016/0378-5955(94)90269-0 Rarey KE, 1996, OTOLARYNG HEAD NECK, V115, P38, DOI 10.1016/S0194-5998(96)70133-X RAREY KE, 1993, HEARING RES, V64, P205, DOI 10.1016/0378-5955(93)90007-N RYBAK LP, 1984, J PHARMACOL EXP THER, V230, P706 SMITH PK, 1985, ANAL BIOCHEM, V150, P76, DOI 10.1016/0003-2697(85)90442-7 STERKERS O, 1987, AM J PHYSIOL, V253, pF50 STERKERS O, 1984, AM J PHYSIOL, V246, pF47 Takahashi K, 1996, ACTA OTO-LARYNGOL, V116, P209, DOI 10.3109/00016489609137825 TENCATE WJF, 1992, HEARING RES, V60, P199, DOI 10.1016/0378-5955(92)90021-E VOGH BP, 1975, AM J PHYSIOL, V228, P673 NR 20 TC 19 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2002 VL 165 IS 1-2 BP 30 EP 34 DI 10.1016/S0378-5955(01)00394-X PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559BZ UT WOS:000176006000004 PM 12031512 ER PT J AU Soto, E Vega, R Budelli, R AF Soto, E Vega, R Budelli, R TI The receptor potential in type I and type II vestibular system hair cells: A model analysis SO HEARING RESEARCH LA English DT Article DE transduction; vestibular; sensory coding; membrane potential; afferent synapse ID IONIC CURRENTS; K+ CHANNELS; MECHANOELECTRICAL TRANSDUCTION; POTASSIUM CURRENTS; CRISTA-AMPULLARIS; DELAYED RECTIFIER; CALCIUM CHANNELS; FROG; CONDUCTANCE; AFFERENTS AB Several studies have shown that type I hair cells present a large outward rectifying potassium current (g(K,L)) that is substantially activated at the resting potential, greatly reducing cell input resistance and voltage gain. In fact, mechanoelectrical transducer currents seem not to be large enough to depolarize type I hair cells to produce neurotransmitter release. Also, the strongly nonlinear transducer currents and the limited voltage oscillations found in some hair cells did not account for the bidirectionality of response in hair cell systems. We developed a model based in the analysis of nonlinear Goldman-Hodgkin-Katz equations to calculate the hair cell receptor potential and ionic movements produced by transducer current activation. Type I hair cells displaying the large g(K,L) current were found to produce small receptor potentials (3-13.8 mV) in response to mechanoelectrical transducer current input. In contrast, type II cells that lack g(K,L) produced receptor potentials of about 30 mV. Properties of basolateral ionic conductances in type II hair cells will linearize hair bundle displacement to receptor potential relationship, The voltage to obtain the half maximal activation of g(K,L) significantly affects the resting membrane potential, the amplitude. and the linearity of the receptor potential, Electrodiffusion equations were also used to analyze ionic changes in the intercellular space between type I hair cell and calyx endings. Significant K+ accumulation could take place at the intercellular space depending on calyx structure, (C) 2002 Elsevier Science B.V. All rights reserved. C1 Benemetria Univ Autonoma Puebla, Inst Fisiol, Puebla 72000, Mexico. Univ Republica, Fac Ciencias, Inst Biol, Montevideo, Uruguay. RP Soto, E (reprint author), Benemetria Univ Autonoma Puebla, Inst Fisiol, Apartado Postal 406, Puebla 72000, Mexico. RI Soto, Enrique/C-4073-2013 CR ALEXANDROV A, 2001, MATH MODELING COMPLE, P26 ANGELAKI DE, 1991, BIOL CYBERN, V65, P1, DOI 10.1007/BF00197284 BLANKS RHI, 1976, EXP BRAIN RES, V25, P369 Borst JGG, 1999, J PHYSIOL-LONDON, V521, P123, DOI 10.1111/j.1469-7793.1999.00123.x BOSHER SK, 1968, PROC R SOC SER B-BIO, V171, P227, DOI 10.1098/rspb.1968.0066 Boyer C, 1998, EUR J NEUROSCI, V10, P971, DOI 10.1046/j.1460-9568.1998.00107.x BRACHO H, 1978, J PHYSIOL-LONDON, V281, P445 Chen JWY, 2000, J NEUROPHYSIOL, V84, P139 COREY DP, 1979, BIOPHYS J, V26, P499 COREY DP, 1983, J NEUROSCI, V3, P962 CORREIA MJ, 1990, NEUROSCI LETT, V116, P106, DOI 10.1016/0304-3940(90)90394-O CORREIA MJ, 1992, ANN NY ACAD SCI, V656, P182 CRAWFORD AC, 1991, J PHYSIOL-LONDON, V434, P369 EATOCK RA, 1992, ANN NY ACAD SCI, V656, P58, DOI 10.1111/j.1749-6632.1992.tb25200.x Eatock RA, 1997, SEMIN CELL DEV BIOL, V8, P265, DOI 10.1006/scdb.1997.0142 FAKLER B, 1994, NEURON, V13, P1413, DOI 10.1016/0896-6273(94)90426-X FERNANDEZ C, 1976, J NEUROPHYSIOL, V39, P985 FUCHS PA, 1990, J PHYSIOL-LONDON, V429, P553 Geleoc GSG, 1997, P ROY SOC B-BIOL SCI, V264, P611 Goldberg JM, 1996, J NEUROPHYSIOL, V76, P1942 Goldman David E., 1943, JOUR GEN PHYSIOL, V27, P37, DOI 10.1085/jgp.27.1.37 Guth PS, 1998, PROG NEUROBIOL, V54, P193, DOI 10.1016/S0301-0082(97)00068-3 HARTMANN R, 1980, PFLUG ARCH EUR J PHY, V388, P111, DOI 10.1007/BF00584116 HODGKIN AL, 1949, J PHYSIOL-LONDON, V108, P37 HOLT JR, 1995, J NEUROPHYSIOL, V73, P1484 HUDSPETH AJ, 1988, J PHYSIOL-LONDON, V400, P237 HUDSPETH AJ, 1986, HEARING RES, V22, P21, DOI 10.1016/0378-5955(86)90070-5 HURLEY KM, 1999, ASS RES OTOLARYNGOL, V22, P764 ISSA NP, 1994, P NATL ACAD SCI USA, V91, P7578, DOI 10.1073/pnas.91.16.7578 Lennan GWT, 1999, PFLUG ARCH EUR J PHY, V438, P40, DOI 10.1007/s004240050877 LOWENSTEIN O, 1949, J PHYSIOL-LONDON, V110, P392 MASETTO S, 1994, J NEUROPHYSIOL, V72, P443 Mo ZL, 1997, J NEUROPHYSIOL, V78, P3019 Nicholson C, 1998, TRENDS NEUROSCI, V21, P207, DOI 10.1016/S0166-2236(98)01261-2 OHMORI H, 1985, J PHYSIOL-LONDON, V359, P189 OHMORI H, 1987, J PHYSIOL-LONDON, V387, P589 Perin P, 2000, NEUROREPORT, V11, P417, DOI 10.1097/00001756-200002070-00039 Rennie KJ, 1996, J NEUROPHYSIOL, V75, P2117 RENNIE KJ, 1991, HEARING RES, V51, P279, DOI 10.1016/0378-5955(91)90044-A Ricci AJ, 1996, PFLUG ARCH EUR J PHY, V432, P34, DOI 10.1007/s004240050102 Ricci AJ, 1997, J PHYSIOL-LONDON, V501, P111, DOI 10.1111/j.1469-7793.1997.111bo.x Ricci AJ, 1998, J PHYSIOL-LONDON, V506, P159, DOI 10.1111/j.1469-7793.1998.159bx.x Rusch A, 1996, ANN NY ACAD SCI, V781, P71, DOI 10.1111/j.1749-6632.1996.tb15694.x Rusch A, 1996, J NEUROPHYSIOL, V76, P995 Sauer G, 1999, HEARING RES, V129, P1, DOI 10.1016/S0378-5955(98)00230-5 SCARFONE E, 1988, J NEUROSCI, V8, P4640 SCHESSEL DA, 1991, BRAIN RES, V544, P1, DOI 10.1016/0006-8993(91)90879-Z SOTO E, 1999, ASS RES OTOLARYNGOL, V22, P765 STERKERS O, 1988, PHYSIOL REV, V68, P1083 Sugihara I, 1995, J PHYSIOL-LONDON, V489, P443 van Emst MG, 1998, HEARING RES, V115, P184, DOI 10.1016/S0378-5955(97)00192-5 YAMASHITA M, 1990, EXP BRAIN RES, V80, P475 NR 52 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2002 VL 165 IS 1-2 BP 35 EP 47 DI 10.1016/S0378-5955(01)00418-X PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559BZ UT WOS:000176006000005 PM 12031513 ER PT J AU Kierner, AC Mayer, R von Kirschhofer, K AF Kierner, AC Mayer, R von Kirschhofer, K TI Do the tensor tympani and tensor veli palatini muscles of man form a functional unit? A histochemical investigation of their putative connections SO HEARING RESEARCH LA English DT Article DE tensor tympani muscle; tensor veli palatini muscle; histochemical investigation ID DILATATOR TUBAE MUSCLES AB The discussion among anatomists and otolaryngologists about the muscles originating from the Eustachian tube and the connections between the tenser tympani and tensor veli palatini muscles started in the 1860s. From then on. a considerable number of contradictory hypotheses and data have been presented. However, before discussing whether or not these two muscles form a functional unit, interest should focus on the question of whether it is even possible. The cartilaginous portion of the Eustachian tube with all muscles originating from it, including the whole tensor tympani muscle. was dissected from five perfusion-fixed cadavers and removed in toto. Complete longitudinal serial sections of 10 mum were made in the axis of the tensor tympani muscle. Sections were alternatingly stained according to Cason's and Maskar's techniques. The macroscopic aspect (under the operating microscope) of a tendinous connection between the two muscles under consideration could be proven by the histochemical methods used in all cases. Based on our findings and the literature reviewed we are convinced that the tensor tympani and tensor veli palatini muscles of man constitute a functional unit. This represents an important step forward towards the understanding of the possible functions the tensor tympani muscle serve in man. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Hosp Frankfurt, ENT Dept, D-60528 Frankfurt, Germany. Univ Hosp Vienna, ENT Dept, Vienna, Austria. RP Kierner, AC (reprint author), Univ Hosp Frankfurt, ENT Dept, Schwanheimerstr 3, D-60528 Frankfurt, Germany. CR Barsoumian R, 1998, CLEFT PALATE-CRAN J, V35, P101, DOI 10.1597/1545-1569(1998)035<0101:AASOTT>2.3.CO;2 KAMERER DB, 1978, OTOLARYNG HEAD NECK, V86, P416 KESSEL J, 1968, ARCH OHRENHEILKD, V3, P308 Kierner AC, 1999, HEARING RES, V135, P71, DOI 10.1016/S0378-5955(99)00092-1 KOLMER W, 1927, HDB MIKROSKOP ANATOM, V1, P268 LUPIN AJ, 1969, ANN OTO RHINOL LARYN, V78, P792 POLLAK J, 1986, MED JAHRB NEUE FOLGE, V1, P555 Prades JM, 1998, SURG RADIOL ANAT, V20, P335, DOI 10.1007/BF01630616 PROCTOR B, 1973, ARCH OTOLARYNGOL, V97, P1 Romeis B, 1968, MIKROSKOPISCHE TECHN, V16th ROOD SR, 1978, ANN OTO RHINOL LARYN, V87, P202 URBANTSCHITSCH V, 1875, WR MED JAHRB, P39 URBANTSCHITSCH V, 1878, ARCH OHRENHEILKD, V14, P1, DOI 10.1007/BF01967839 NR 13 TC 11 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2002 VL 165 IS 1-2 BP 48 EP 52 DI 10.1016/S0378-5955(01)00419-1 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559BZ UT WOS:000176006000006 PM 12031514 ER PT J AU Ekborn, A Laurell, G Johnstrom, P Wallin, I Eksborg, S Ehrsson, H AF Ekborn, A Laurell, G Johnstrom, P Wallin, I Eksborg, S Ehrsson, H TI D-Methionine and cisplatin ototoxicity in the guinea pig: D-methionine influences cisplatin pharmacokinetics SO HEARING RESEARCH LA English DT Article DE cisplatin; D-Methionine; pharmacokinetics; ototoxicity; nephrotoxicity; positron emission tomography ID POSITRON-EMISSION-TOMOGRAPHY; MONOHYDRATED COMPLEX; TESTICULAR CANCER; OVARIAN-CANCER; NEPHROTOXICITY; PROTECTION; CHILDREN; CIS-DIAMMINEDICHLOROPLATINUM(II); DIETHYLDITHIOCARBAMATE; CHEMOTHERAPY AB D-Methionine has recently been advocated as a protectant against cisplatin toxicity. The Use Of Systemic D-methionine as a protector was studied in 58 guinea pigs, Kinetics and distribution of [(CH3)-C-11]D-methionine was analysed by positron emission tomography. Cisplatin and the monohydrated complex of cisplatin was quantified in blood ultrafiltrate using reversed-phase liquid chromatography with post-column derivatisation, Administration of 300 mg/kg Of D-methionine caused a 30%, decrease in the area under the concentration-time curve (AUC) of cisplatin. The toxic effect of cisplatin was studied after dose adjustment of cisplatin. i.e. with similar cisplatin AUC in the group receiving D-Methionine and the saline control group. A significant ototoxic effect, measured as difference in pre- and 96 h post-treatment electrophysiological hearing threshold (auditory brainstem response). was observed at stimulus frequencies of 30 and 20 kHz. There was no difference between the groups in the extent of threshold shift. Quantitative outer hair cell counts showed a similar loss of cells in the two groups. All animals had a significant increase in plasma-creatinine but there was no difference between the groups. The results indicate that protection from cisplatin ototoxicity by systemic D-methionine can be explained by a lowered systemic exposure to the drug. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Karolinska Hosp, Dept Otorhinolaryngol Head & Neck Surg, SE-17176 Stockholm, Sweden. Karolinska Pharm, SE-17176 Stockholm, Sweden. RP Ekborn, A (reprint author), Karolinska Hosp, Dept Otorhinolaryngol Head & Neck Surg, SE-17176 Stockholm, Sweden. CR AAMDAL S, 1987, CANCER TREAT REV, V14, P389, DOI 10.1016/0305-7372(87)90035-1 ALDEN WW, 1984, CHEM-BIOL INTERACT, V48, P121, DOI 10.1016/0009-2797(84)90012-7 ANDERSSON A, 1994, J CHROMATOGR B, V652, P203, DOI 10.1016/0378-4347(93)E0403-D Andersson A, 1996, J PHARM SCI, V85, P824, DOI 10.1021/js960037a ANDREOTTI PE, 1995, CANCER RES, V55, P5276 Bokemeyer C, 1998, BRIT J CANCER, V77, P1355, DOI 10.1038/bjc.1998.226 BOXENBAU.HG, 1974, J PHARMACOKINET BIOP, V2, P123, DOI 10.1007/BF01061504 BROCK PR, 1991, J PEDIATR-US, V118, P531, DOI 10.1016/S0022-3476(05)83372-4 Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9 CANLON B, 1995, HEARING RES, V84, P112, DOI 10.1016/0378-5955(95)00020-5 Carter EA, 1999, J TRAUMA, V47, P341, DOI 10.1097/00005373-199908000-00021 Cloven NG, 2000, ANTICANCER RES, V20, P4205 COMIS RL, 1994, SEMIN ONCOL, V21, P109 DALEYYATES PT, 1984, BIOCHEM PHARMACOL, V33, P3063, DOI 10.1016/0006-2952(84)90610-5 Ekborn A, 2000, HEARING RES, V140, P38, DOI 10.1016/S0378-5955(99)00190-2 FINLEY RS, 1985, DRUG INTEL CLIN PHAR, V19, P362 FORASTIERE AA, 1988, CANCER RES, V48, P3869 HAINSWORTH JD, 1988, ANN INTERN MED, V108, P165 Heudi O, 1998, J INORG BIOCHEM, V71, P61, DOI 10.1016/S0162-0134(98)10033-8 INGVAR M, 1991, J CEREBR BLOOD F MET, V11, P926 JOHNSTROM P, 1984, ACTA PHARM SUEC, V21, P189 JONES MM, 1991, CANCER CHEMOTH PHARM, V29, P29, DOI 10.1007/BF00686332 KONSTANTINOV S, 1994, NEOPLASMA, V41, P253 LONNQVIST PA, 1994, ANESTHESIOLOGY, V81, P1097 MUGGIA FM, 1985, CANCER CHEMOTH PHARM, V15, P1 OZOLS RF, 1989, SEMIN ONCOL, V16, P22 REDDEL RR, 1982, CANCER TREAT REP, V66, P19 Reser D, 1999, NEUROTOXICOLOGY, V20, P731 RYBAK LP, 1995, FUND APPL TOXICOL, V26, P293, DOI 10.1006/faat.1995.1100 Skinner R, 1998, BRIT J CANCER, V77, P1677, DOI 10.1038/bjc.1998.276 THOMPSON SW, 1984, CANCER, V54, P1269, DOI 10.1002/1097-0142(19841001)54:7<1269::AID-CNCR2820540707>3.0.CO;2-9 VERMORKEN JB, 1983, EUR J CANCER CLIN ON, V19, P53, DOI 10.1016/0277-5379(83)90398-X Yachnin JR, 1998, CANCER LETT, V132, P175, DOI 10.1016/S0304-3835(98)00175-X NR 33 TC 45 Z9 46 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2002 VL 165 IS 1-2 BP 53 EP 61 DI 10.1016/S0378-5955(02)00277-0 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559BZ UT WOS:000176006000007 PM 12031515 ER PT J AU Sheykholeslami, K Kaga, K AF Sheykholeslami, K Kaga, K TI The otolithic organ as a receptor of vestibular hearing revealed by vestibular-evoked myogenic potentials in patients with inner ear anomalies SO HEARING RESEARCH LA English DT Article DE inner ear anomalies; vestibular-evoked myogenic potential; otolith organ; saccule; vestibular ID GUINEA-PIG; RESPONSES; NERVE; SENSITIVITY; FIBERS; HUMANS; SOUND AB The human vestibule has preserved an ancestral sound sensitivity and it has been suggested that a reflex could originate from this property underlying cervical muscle micro-contractions secondary to strong acoustic stimulation. Previous studies have established that an early component of loud sound-evoked myogenic potentials from the sternocleidomastoid muscle originate in the vestibule. This is based on findings that the response can still be obtained from patients with complete loss of cochlear and vestibular (semi-circular canal) function. Our data confirm, in a more direct way. a saccular origin of this short-latency acoustic response and verifies that a saccular acoustic response persists in the human ear. The contribution of this response to the perception of loud sounds is discussed. It is concluded that vestibular response to sound might be used to assist in the rehabilitation of deafness. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Tokyo, Fac Med, Dept Otolaryngol, Bunkyo Ku, Tokyo 1130033, Japan. RP Sheykholeslami, K (reprint author), NE Ohio Univ, Coll Med, Neurobiol & Pharmacol Dept, 4209 State Route 44, Rootstown, OH 44272 USA. CR BICKFORD RG, 1964, ANN NY ACAD SCI, V112, P204, DOI 10.1111/j.1749-6632.1964.tb26749.x BLEEKER JD, 1984, ANN OTO RHINOL LARYN, V93, P192 BLEEKER JD, 1949, ACTA OTOLARYNGOL, V37, P76 BOCCA E, 1960, Acta Otolaryngol, V51, P260, DOI 10.3109/00016486009124496 BURIAN M, 1988, NEUROSCI LETT, V84, P13, DOI 10.1016/0304-3940(88)90329-1 BURIAN M, 1989, ARCH OTO-RHINO-LARYN, V246, P238, DOI 10.1007/BF00463563 CAZALS Y, 1980, SCIENCE, V210, P83, DOI 10.1126/science.6968092 CAZALS Y, 1983, ACTA OTO-LARYNGOL, V95, P211, DOI 10.3109/00016488309130937 CODY DTR, 1969, LARYNGOSCOPE, V79, P400, DOI 10.1288/00005537-196903000-00007 COLEBATCH JG, 1994, J NEUROL NEUROSUR PS, V57, P190, DOI 10.1136/jnnp.57.2.190 Ferber-Viart C, 1999, ACTA OTO-LARYNGOL, V119, P6 Ferber-Viart C, 1998, ACTA OTO-LARYNGOL, V118, P6 FREDRICK.JM, 1966, EXP BRAIN RES, V2, P318 GEISLER CD, 1958, SCIENCE, V128, P1210, DOI 10.1126/science.128.3333.1210 Halmagyi G M, 1995, Acta Otolaryngol Suppl, V520 Pt 1, P1 KIANG NYS, 1972, ANN OTO RHINOL LARYN, V81, P714 MCCUE MP, 1994, J NEUROSCI, V14, P6058 MCCUE MP, 1995, J NEUROPHYSIOL, V74, P1563 MIKAELIAN D, 1964, Acta Otolaryngol, V58, P409, DOI 10.3109/00016486409121400 Murofushi T, 1998, ARCH OTOLARYNGOL, V124, P509 Murofushi T, 1996, ARCH OTOLARYNGOL, V122, P845 ODKVIST LM, 1973, EXP BRAIN RES, V18, P279 POPPER AN, 1973, J ACOUST SOC AM, V53, P1515, DOI 10.1121/1.1913496 RIBARIC K, 1984, AUDIOLOGY, V23, P388 SCHEURINK AW, 1985, CLIN OTOLARYNGOL, V10, P54 Sheykholeslami K, 2001, HEARING RES, V160, P58, DOI 10.1016/S0378-5955(01)00333-1 Sheykholeslami K, 2001, AURIS NASUS LARYNX, V28, P41, DOI 10.1016/S0385-8146(00)00091-2 Todd N, 2001, J ACOUST SOC AM, V110, P380, DOI 10.1121/1.1373662 Todd NPM, 2000, HEARING RES, V141, P180, DOI 10.1016/S0378-5955(99)00222-1 TOWNSEND GL, 1971, ANN OTO RHINOL LARYN, V80, P121 TULLIO P, 1932, HDB BIOL ARBEIMETODE, P1175 TULLIO P, 1916, ARCH FISIOL, V14, P403 WIT HP, 1981, ACTA OTO-LARYNGOL, V92, P409, DOI 10.3109/00016488109133280 YOUNG ED, 1977, ACTA OTO-LARYNGOL, V84, P352, DOI 10.3109/00016487709123977 NR 34 TC 14 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2002 VL 165 IS 1-2 BP 62 EP 67 DI 10.1016/S0378-5955(02)00278-2 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559BZ UT WOS:000176006000008 PM 12031516 ER PT J AU Ross, B Picton, TW Pantev, C AF Ross, B Picton, TW Pantev, C TI Temporal integration in the human auditory cortex as represented by the development of the steady-state magnetic field SO HEARING RESEARCH LA English DT Article DE temporal integration; auditory steady-state response; primary auditory cortex; amplitude modulation; middle latency response; gamma band ID MODULATION TRANSFER-FUNCTIONS; AMPLITUDE-MODULATION; HUMAN BRAIN; NEUROMAGNETIC EVIDENCE; EVOKED-POTENTIALS; SENSORY MEMORY; NORMAL-HEARING; DURATION; RESPONSES; SOUND AB The threshold for detecting amplitude modulation (AM) decreases with increasing duration of the AM sound up to several hundred milliseconds. If the auditory evoked steady-state response (SSR) to AM sound is an electrophysiological correlate of AM processing in the human brain, the development of the SSR should follow this course of temporal integration. Magnetoencephalographic recordings of SSR to 40 Hz AM tone-bursts were compared with responses to non-modulated tone-bursts at inter-stimulus intervals (ISIs) of 3, 1, and 0.5 s. Both types of stimuli elicited a transient gamma-band response (GBR), an N1 wave. and a sustained field (SF) during stimulus presentation. The AM stimulus evoked an additional 40 Hz SSR. The NI amplitude was strongly reduced with shortened ISI, whereas the amplitudes of SSR. GBR, and SF were little affected by the ISI. Magnetic source-localization procedures estimated the generators of the early GBR. the SSR. and the SF to be anterior and medial to the sources of the N1. The sources of the SSR were in primary auditory cortex and separate from GBR sources. The SSR amplitude increased monotonically over a 200 ms period beginning about 40 ms after stimulus onset. The time course of the SSR phase reliably measured the duration of this transition to the steady state. At stimulus offset the SSR ceased within 50 ms. These results indicate that the primary auditory cortex responds immediately to stimulus changes and integrates stimulus features over a period of about 200 ms. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Munster Univ Hosp, Inst Expt Audiol, Munster, Germany. Baycrest Ctr Geriatr Care, Rotman Res Inst Neurosci, Toronto, ON M6A 2E1, Canada. RP Ross, B (reprint author), Munster Univ Hosp, Inst Expt Audiol, Munster, Germany. EM bernhard.ross@ieee.org CR Alain C, 1997, EVOKED POTENTIAL, V104, P531, DOI 10.1016/S0168-5597(97)00057-9 BABKOFF H, 1980, PSYCHIAT RES, V3, P163, DOI 10.1016/0165-1781(80)90033-5 BACON SP, 1985, AUDIOLOGY, V24, P117 BASAR E, 1987, INT J NEUROSCI, V33, P103 Borgmann C, 2001, HEARING RES, V158, P57, DOI 10.1016/S0378-5955(01)00292-1 BUDD TW, 1994, NEUROREPORT, V5, P2513, DOI 10.1097/00001756-199412000-00027 Buus S, 1999, J ACOUST SOC AM, V105, P2466, DOI 10.1121/1.426859 Dau T, 1997, J ACOUST SOC AM, V102, P2906, DOI 10.1121/1.420345 Davison A.C., 1997, BOOTSTRAP METHODS TH de Boer E, 1985, TIME RESOLUTION AUDI, P141 Engelien A, 2000, HEARING RES, V148, P153, DOI 10.1016/S0378-5955(00)00148-9 FLORENTINE M, 1988, J ACOUST SOC AM, V84, P195, DOI 10.1121/1.396964 Gage NM, 2000, NEUROREPORT, V11, P2723, DOI 10.1097/00001756-200008210-00023 GALAMBOS R, 1988, DYNAMICS SENSORY COG, P103 GALAMBOS R, 1981, P NATL ACAD SCI-BIOL, V78, P2643, DOI 10.1073/pnas.78.4.2643 GERKEN GM, 1990, J ACOUST SOC AM, V88, P767, DOI 10.1121/1.399726 GREEN DM, 1957, J ACOUST SOC AM, V29, P523, DOI 10.1121/1.1908951 Griffiths TD, 2001, NAT NEUROSCI, V4, P633, DOI 10.1038/88459 Griffiths TD, 1998, NAT NEUROSCI, V1, P422, DOI 10.1038/1637 HAMALAINEN M, 1993, REV MOD PHYS, V65, P413, DOI 10.1103/RevModPhys.65.413 HARI R, 1989, J ACOUST SOC AM, V86, P1033, DOI 10.1121/1.398093 HUGHES JW, 1946, PROC R SOC SER B-BIO, V133, P486, DOI 10.1098/rspb.1946.0026 Ilmoniemi R.J., 1987, BIOMAGNETISM 87, P182 Jacobson G P, 1997, J Am Acad Audiol, V8, P44 Jefferys JGR, 1996, TRENDS NEUROSCI, V19, P202, DOI 10.1016/S0166-2236(96)10023-0 JERGER J, 1986, EAR HEARING, V7, P240, DOI 10.1097/00003446-198608000-00004 KUWADA S, 1986, HEARING RES, V21, P179, DOI 10.1016/0378-5955(86)90038-9 LANE RH, 1971, J SPEECH HEAR RES, V14, P408 Lee J, 1997, J ACOUST SOC AM, V101, P3688, DOI 10.1121/1.418329 LEE JM, 1994, J ACOUST SOC AM, V96, P2140, DOI 10.1121/1.410156 LINDEN RD, 1985, EAR HEARING, V6, P167, DOI 10.1097/00003446-198505000-00008 Loveless N, 1996, EVOKED POTENTIAL, V100, P220, DOI 10.1016/0168-5597(95)00271-5 MAKEIG S, 1990, PSYCHOPHYSIOLOGICAL, P56 MAKELA JP, 1987, ELECTROEN CLIN NEURO, V66, P539, DOI 10.1016/0013-4694(87)90101-5 May P, 2001, NEUROREPORT, V12, P573, DOI 10.1097/00001756-200103050-00028 McEvoy L, 1997, PSYCHOPHYSIOLOGY, V34, P308, DOI 10.1111/j.1469-8986.1997.tb02401.x Noreen E.W., 1989, COMPUTER INTENSIVE M ONISHI S, 1968, J ACOUST SOC AM, V44, P582, DOI 10.1121/1.1911124 PANTEV C, 1993, ELECTROEN CLIN NEURO, V88, P389, DOI 10.1016/0168-5597(93)90015-H PANTEV C, 1994, ELECTROEN CLIN NEURO, V90, P82, DOI 10.1016/0013-4694(94)90115-5 Pantev Christo, 1995, Brain Topography, V7, P321, DOI 10.1007/BF01195258 Pantev C, 1996, HEARING RES, V101, P62, DOI 10.1016/S0378-5955(96)00133-5 PHILLIPS DP, 1990, BEHAV BRAIN RES, V40, P85, DOI 10.1016/0166-4328(90)90001-U PICTON TW, 1987, J ACOUST SOC AM, V82, P165, DOI 10.1121/1.395560 PICTON TW, 1978, ELECTROEN CLIN NEURO, V45, P186, DOI 10.1016/0013-4694(78)90003-2 PICTON TW, 1974, ELECTROEN CLIN NEURO, V36, P179, DOI 10.1016/0013-4694(74)90155-2 PLOMP R, 1959, J ACOUST SOC AM, V31, P749, DOI 10.1121/1.1907781 PLOURDE G, 1990, ANESTH ANALG, V71, P460 Poppel E, 1997, TRENDS COGN SCI, V1, P56, DOI 10.1016/S1364-6613(97)01008-5 REES A, 1986, HEARING RES, V23, P123, DOI 10.1016/0378-5955(86)90009-2 Regan D., 1989, HUMAN BRAIN ELECTROP ROBINSON SE, 1992, INT CONGR SER, V988, P761 Robinson SE, 1989, ADV BIOMAGNETISM, P599 Ross B, 2000, J ACOUST SOC AM, V108, P679, DOI 10.1121/1.429600 Santarelli R, 1999, SCAND AUDIOL, V28, P23 SHEFT S, 1990, J ACOUST SOC AM, V88, P796, DOI 10.1121/1.399729 SINKKONEN J, 1995, J NEUROSCI METH, V56, P99, DOI 10.1016/0165-0270(94)00111-S Sussman E, 1999, NEUROSCI LETT, V264, P161, DOI 10.1016/S0304-3940(99)00214-1 VIEMEISTER NF, 1979, J ACOUST SOC AM, V66, P1364, DOI 10.1121/1.383531 VIEMEISTER NF, 1991, J ACOUST SOC AM, V90, P858, DOI 10.1121/1.401953 WATSON CS, 1969, J ACOUST SOC AM, V46, P989, DOI 10.1121/1.1911819 Winkler I, 1998, NEUROREPORT, V9, P495, DOI 10.1097/00001756-199802160-00025 Yabe H, 1997, NEUROREPORT, V8, P1971, DOI 10.1097/00001756-199705260-00035 YOST WA, 1989, J ACOUST SOC AM, V86, P2138, DOI 10.1121/1.398474 NR 64 TC 77 Z9 80 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2002 VL 165 IS 1-2 BP 68 EP 84 DI 10.1016/S0378-5955(02)00285-X PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559BZ UT WOS:000176006000009 PM 12031517 ER PT J AU Huang, DL Chen, P Chen, SP Nagura, M Lim, DJ Lin, X AF Huang, DL Chen, P Chen, SP Nagura, M Lim, DJ Lin, X TI Expression patterns of aquaporins in the inner ear: evidence for concerted actions of multiple types of aquaporins to facilitate water transport in the cochlea SO HEARING RESEARCH LA English DT Article DE perilymph; endolymph; fluid regulation in the inner ear; immunolabeling ID ENDOLYMPHATIC SAC; RAT-KIDNEY; CHANNEL; CLONING; FAMILY AB Water transport between the perilymph and endolymph is important in regulations of volume and osmotic pressure of the inner ear labyrinth. It is now known that expression of water channels (aquaporins or AQPs) in the cell membrane dramatically increases the ability of water to cross epithelial cells. The aims of the current studs were to investigate the cellular localization of AQPs by immunolabeling, and to study the developmental expression and relative abundance of various subtypes of AQPs. We report here that AQP3, AQP7 and AQP9 were expressed in the inner ear, Specific subtypes of AQPs were found in discrete regions expressed by both epithelial cells and fibrocytes in cochlear and vestibular organs. Semi-quantitative measurements showed that AQP4 and AQP1 were the two most abundantly expressed AQP subtypes in the inner ear, and their expressions were dramatically upregulated during development. These data showed a highly localized and largely non-overlapping distribution pattern for different subtypes of AQPs in the inner ear, suggesting the existence of regional subtype-specific water transport pathways, and global regulation of water transport in the inner ear may require concerted actions of multiple types of AQPs. (C) 2002 Elsevier Science B.V. All rights reserved. C1 House Ear Res Inst, Leslie & Susan Gonda Dept Cell & Mol Biol, Neurobiol Sect, Los Angeles, CA 90057 USA. Chinese Peoples Liberat Army Gen Hosp, Beijing 100853, Peoples R China. RP Lin, X (reprint author), House Ear Res Inst, Leslie & Susan Gonda Dept Cell & Mol Biol, Neurobiol Sect, 2100 W 3rd St, Los Angeles, CA 90057 USA. CR Agre P, 1998, J BIOL CHEM, V273, P14659, DOI 10.1074/jbc.273.24.14659 Beitz E, 1999, HEARING RES, V132, P76, DOI 10.1016/S0378-5955(99)00036-2 Chou CL, 1998, AM J PHYSIOL-CELL PH, V274, pC549 FUSHIMI K, 1993, NATURE, V361, P549, DOI 10.1038/361549a0 Hallpike C. S., 1938, J LARYNG, V53, P625, DOI 10.1017/S0022215100003947 Hamann S, 1998, AM J PHYSIOL-CELL PH, V274, pC1332 Ishikawa Y, 1998, BIOCHEM BIOPH RES CO, V245, P835, DOI 10.1006/bbrc.1998.8395 Kumagami H, 1998, PFLUG ARCH EUR J PHY, V436, P970, DOI 10.1007/s004240050731 Lee MD, 1997, MEDICINE, V76, P141, DOI 10.1097/00005792-199705000-00001 Li J, 2001, J BIOL CHEM, V276, P31233, DOI 10.1074/jbc.M104368200 Lim DJ, 1999, MENIERES DIS, P175 Lin X, 1997, HEARING RES, V108, P157, DOI 10.1016/S0378-5955(97)00050-6 Ma TH, 1998, J BIOL CHEM, V273, P4296, DOI 10.1074/jbc.273.8.4296 Mhatre AN, 1999, BIOCHEM BIOPH RES CO, V264, P157, DOI 10.1006/bbrc.1999.1323 NIELSEN S, 1993, P NATL ACAD SCI USA, V90, P11663, DOI 10.1073/pnas.90.24.11663 Nielsen S, 1997, AM J PHYSIOL-CELL PH, V273, pC1549 Shiels A, 1996, NAT GENET, V12, P212, DOI 10.1038/ng0296-212 Stankovic KM, 1995, AM J PHYSIOL-CELL PH, V269, pC1450 STERKERS O, 1982, AM J PHYSIOL, V243, pF173 Takumi Y, 1998, EUR J NEUROSCI, V10, P3584, DOI 10.1046/j.1460-9568.1998.00360.x Verkman AS, 1996, AM J PHYSIOL-CELL PH, V270, pC12 Verkman AS, 2000, AM J PHYSIOL-RENAL, V278, pF13 Wackym PA, 1997, OTOLARYNG CLIN N AM, V30, P947 Yasui M, 1997, J PHYSIOL-LONDON, V505, P3, DOI 10.1111/j.1469-7793.1997.003bc.x ZIDANIC M, 1990, BIOPHYS J, V57, P1253 NR 25 TC 49 Z9 58 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2002 VL 165 IS 1-2 BP 85 EP 95 DI 10.1016/S0378-5955(02)00288-5 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559BZ UT WOS:000176006000010 PM 12031518 ER PT J AU Wang, Y Liberman, MC AF Wang, Y Liberman, MC TI Restraint stress and protection from acoustic injury in mice SO HEARING RESEARCH LA English DT Article DE hearing; noise; conditioning; corticosterone ID COCHLEAR GLUCOCORTICOID PROTEIN; INNER-EAR; TRAUMA; NA,K-ATPASE; RECEPTOR; RAT AB The phenomenon of 'conditioning'. whereby prior exposure to moderate-level non-traumatic sound reduces the permanent injury to subsequent high-level sound exposures, is suggestive of protective effects mediated by stress-induced gene expression in other systems. To test the role of stress pathways in acoustic injury, this study investigated the effect of mild physical restraint, a classic non-acoustic elicitor of stress, on vulnerability to subsequent noise-induced hearing loss. CBA/CaJ mice were divided into groups (control, restraint-only. restraint pre-trauma. and trauma-only). and cochlear sensitivity was assessed via compound action potentials and distortion product otoacoustic emissions. Results showed that two 12-h epochs of mild physical restraint significantly reduced permanent threshold shifts from a subsequent acoustic overexposure, as long as the treatment-trauma interval was short (2 h). Concurrent measures of circulating glucocorticoids showed that the period of protection coincided with the period of elevated corticosterone. Results are consistent with the idea that cochlear protective effects may be mediated by stress pathways and that glucocorticoid levels may be an important upstream regulator of these effects. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA. Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02114 USA. RP Liberman, MC (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, 243 Charles St, Boston, MA 02114 USA. CR Canlon B, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P118 CURTIS LM, 1993, EUR ARCH OTO-RHINO-L, V250, P265 Curtis LM, 1995, HEARING RES, V92, P120, DOI 10.1016/0378-5955(95)00207-3 Erichsen S, 1998, HEARING RES, V124, P146, DOI 10.1016/S0378-5955(98)00117-8 Ghoshal K, 1998, J BIOL CHEM, V273, P27904, DOI 10.1074/jbc.273.43.27904 HERMANN G, 1994, J NEUROIMMUNOL, V49, P25, DOI 10.1016/0165-5728(94)90177-5 Jacono AA, 1998, HEARING RES, V117, P31, DOI 10.1016/S0378-5955(97)00214-1 Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x Kujawa SG, 1997, J NEUROPHYSIOL, V78, P3095 LIBERMAN MC, 1995, HEARING RES, V90, P158, DOI 10.1016/0378-5955(95)00160-2 RAREY KE, 1993, HEARING RES, V64, P205, DOI 10.1016/0378-5955(93)90007-N RAREY KE, 1995, HEARING RES, V82, P135, DOI 10.1016/0378-5955(94)00171-L Subramaniam M, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P128 Takahashi K, 1996, ACTA OTO-LARYNGOL, V116, P209, DOI 10.3109/00016489609137825 WANG Y, 2001, IN PRESS JARO Yamasoba T, 1999, HEARING RES, V127, P31, DOI 10.1016/S0378-5955(98)00178-6 Yoshida N, 2000, HEARING RES, V148, P213, DOI 10.1016/S0378-5955(00)00161-1 Yoshida N, 1999, J NEUROSCI, V19, P10116 NR 18 TC 63 Z9 67 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2002 VL 165 IS 1-2 BP 96 EP 102 DI 10.1016/S0378-5955(02)00289-7 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559BZ UT WOS:000176006000011 PM 12031519 ER PT J AU Alcantara, JI Moore, BCJ AF Alcantara, JI Moore, BCJ TI The relative role of beats and combination tones in determining the shapes of masking patterns: II. Hearing-impaired listeners SO HEARING RESEARCH LA English DT Article DE masking pattern; beat; combination tone; hearing-impaired ID PSYCHOPHYSICAL TUNING CURVES; AMPLITUDE-MODULATION; NORMALLY HEARING; BASILAR-MEMBRANE; GAP DETECTION; NOISE; EARS; BAND; DISCRIMINATION; DISTORTION AB Masking patterns were measured for hearing-impaired subjects with varying degrees of hearing loss. In one set of conditions, three subjects were tested using narrowband noise ('noise') and sinusoidal ('tone') maskers and narrov band noise signals. The maskers had centre frequencies of 0.25, 0.5, 1.0 and 4.0 kHz and levels of 60, 80 and 100 dB SPL. Masking patterns for both the noise and tone maskers showed irregularities ('dips'), especially for signal frequencies up to 500 Hz above the masker frequency. The irregularities occurred for all masker levels and for all subjects for at least one masker frequency and they occurred for a relatively constant range of masker-signal frequency separations, suggesting that they were the result of beat detection. In another set of conditions, masking patterns were measured using two subjects, for a 2.0-kHz tone masker with a level of 100 dB SPL and tone and noise signals. For the tone masker alone (baseline condition), the masking patterns again exhibited prominent dips above, and sometimes below, the masker frequency. The addition of a lowpass noise to the masker, intended to mask combination tones, had little effect for one subject. For the other subject, who had near-normal absolute thresholds at low frequencies, the noise elevated thresholds for masker-signal frequency separations between 500 and 1500 Hz. For this subject, an extra tone with a frequency equal to the masker-signal frequency separation, added in place of the lowpass noise, had a very similar effect to that produced by the lowpass noise, suggesting that he was detecting a simple difference tone in the baseline condition, The addition of a pair of high-frequency tones (MDI tones - intended to reduce the detectability of beats) to the masker elevated thresholds for signal frequencies from 1500 to 2500 Hz for one subject and from 1500 to 3500 Hz for another subject. The addition of lowpass noise and MIDI tones to the masker produced masking patterns very similar to those observed when the MDI tones alone were added to the masker. Overall, the results suggest that the irregularities in the masking patterns were caused mainly by the detection of beats and not by the detection of combination tones. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England. RP Moore, BCJ (reprint author), Univ Cambridge, Dept Expt Psychol, Downing St, Cambridge CB2 3EB, England. RI Moore, Brian/I-5541-2012 CR Alcantara JI, 2000, HEARING RES, V148, P63, DOI 10.1016/S0378-5955(00)00114-3 BOS CE, 1966, J ACOUST SOC AM, V39, P708, DOI 10.1121/1.1909945 BUUS S, 1982, AUDIOLOGY, V21, P365 BUUS S, 1982, AUDIOLOGY, V21, P273 Buus S, 1985, TIME RESOLUTION AUDI, P159 BUUS S, 1985, J ACOUST SOC AM, V78, P1958, DOI 10.1121/1.392652 CARNEY AE, 1983, J ACOUST SOC AM, V73, P268, DOI 10.1121/1.388860 Chistovich L.A., 1957, BIOPHYSICS-USSR, V2, P743 Dallos P., 1973, AUDITORY PERIPHERY B Dau T, 1997, J ACOUST SOC AM, V102, P2892, DOI 10.1121/1.420344 EGAN JP, 1950, J ACOUST SOC AM, V22, P622, DOI 10.1121/1.1906661 EHMER RH, 1959, J ACOUST SOC AM, V31, P1115, DOI 10.1121/1.1907836 FLORENTINE M, 1980, J SPEECH HEAR RES, V23, P643 GLASBERG BR, 1987, J ACOUST SOC AM, V81, P1546, DOI 10.1121/1.394507 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T GOLDSTEI.JL, 1967, J ACOUST SOC AM, V41, P676, DOI 10.1121/1.1910396 GOLDSTEIN JL, 1999, J ACOUST SOC AM, V106, P2147 GORGA MP, 1993, J ACOUST SOC AM, V93, P2050, DOI 10.1121/1.406691 GREENWOO.DD, 1971, J ACOUST SOC AM, V50, P502, DOI 10.1121/1.1912668 Hall JL, 1997, J ACOUST SOC AM, V101, P1023, DOI 10.1121/1.418027 HARTMANN WM, 1987, AUDITORY PROCESSING, P126 HELLMAN RP, 1972, PERCEPT PSYCHOPHYS, V11, P241, DOI 10.3758/BF03206257 JERGER J, 1959, ARCHIV OTOLARYNGOL, V69, P200 JOHNSONDAVIES D, 1979, J ACOUST SOC AM, V65, P765, DOI 10.1121/1.382490 LESHOWITZ B, 1977, PSYCHOPHYSICS PHYSL, P283 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Moore BCJ, 1997, AUDIT NEUROSCI, V3, P289 MOORE BCJ, 1983, J ACOUST SOC AM, V74, P750, DOI 10.1121/1.389861 Moore BCJ, 1998, J ACOUST SOC AM, V104, P1023, DOI 10.1121/1.423321 Moore BCJ, 2001, J ACOUST SOC AM, V110, P1067, DOI 10.1121/1.1385177 MOORE BCJ, 1988, J ACOUST SOC AM, V83, P1093, DOI 10.1121/1.396054 MURNANE O, 1991, AUDIOLOGY, V30, P275 Nelson DA, 1996, J ACOUST SOC AM, V100, P2266, DOI 10.1121/1.417936 Nelson DA, 1997, J ACOUST SOC AM, V101, P2186, DOI 10.1121/1.418203 OLOUGHLIN BJ, 1981, HEARING RES, V5, P343, DOI 10.1016/0378-5955(81)90057-5 OXENHAM AJ, 1995, J ACOUST SOC AM, V98, P1921, DOI 10.1121/1.413376 Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3666, DOI 10.1121/1.418327 Patterson RD, 1986, FREQUENCY SELECTIVIT, P123 Rhode WS., 1977, PSYCHOPHYSICS PHYSL, P27 Riesz RR, 1928, PHYS REV, V31, P0867, DOI 10.1103/PhysRev.31.867 ROBLES L, 1991, NATURE, V349, P413, DOI 10.1038/349413a0 Rosowski J, 1996, AUDITORY COMPUTATION, P15 SCHRODER AC, 1994, J ACOUST SOC AM, V96, P2683, DOI 10.1121/1.411276 SIEGEL JH, 1994, J ACOUST SOC AM, V95, P2589, DOI 10.1121/1.409829 SMALL AM, 1959, J ACOUST SOC AM, V31, P1619, DOI 10.1121/1.1907670 SMOORENB.GF, 1972, J ACOUST SOC AM, V52, P603, DOI 10.1121/1.1913151 Tyler R. S., 1986, FREQUENCY SELECTIVIT, P309 Wegel RL, 1924, PHYS REV, V23, P266, DOI 10.1103/PhysRev.23.266 YOST WA, 1989, J ACOUST SOC AM, V86, P2138, DOI 10.1121/1.398474 Zwicker E., 1990, PSYCHOACOUSTICS FACT Zwicker E, 1999, PSYCHOACOUSTICS FACT ZWICKER E, 1981, J ACOUST SOC AM, V70, P1277, DOI 10.1121/1.387141 NR 52 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2002 VL 165 IS 1-2 BP 103 EP 116 DI 10.1016/S0378-5955(02)00291-5 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559BZ UT WOS:000176006000012 PM 12031520 ER PT J AU Babkoff, H Muchnik, C Ben-David, N Furst, M Even-Zohar, S Hildesheimer, M AF Babkoff, H Muchnik, C Ben-David, N Furst, M Even-Zohar, S Hildesheimer, M TI Mapping lateralization of click trains in younger and older populations SO HEARING RESEARCH LA English DT Article DE aging; click lateralization; ITD; ILD ID AGING AUDITORY-SYSTEM; AGE-RELATED-CHANGES; SOUND LOCALIZATION; HEARING-LOSS; TEMPORAL RESOLUTION; DISCRIMINATION; FREQUENCY; LESIONS; TIME AB The main purpose of this study was to describe and compare lateralization of earphone-presented stimuli in younger and older individuals. Lateralization functions, relating perceived location to either interaural time differences (ITDs) or interaural level differences (ILDs) were determined for 78 subjects, aged 21-88 years, who responded by pressing one of nine keys to indicate the perceived location of the stimulus. All subjects were healthy, without any history of hearing loss or ear surgery and within the normal pure tone audiometric range for their age group. Interaural pure tone and click thresholds did not differ by more than 5 dB across ears. The ILD lateralization functions, ranging from 10 dB favoring the left ear to 10 d13 favoring the right ear were linear. In contrast, the ITD lateralization functions were S-shaped with a clear linear component ranging from 750 mus favoring one ear to 750 mus favoring the other ear and with an asymptote from 750 Ls to I ms. The same general shape of the ITD and ILD lateralization functions was found at all ages, but the linear slope of the ITD lateralization function became shallower with age. The ability to discriminate midline-located click trains (ITD and ILD=0) from ITD-lateralized click trains deteriorated with age, while the comparable ability to discriminate ILD-lateralized click trains did not change significantly with age. The data support two general conclusions. First there seems to be an overall reduction in the range of ITD-based lateralization due to aging. Second, there is a greater reduction in sensitivity due to aging in chances from the perceived midline position (ITD and ILD = 0) when ITD is manipulated than when ILD is manipulated. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Bar Ilan Univ, Dept Psychol, Ramat Gan, Israel. Tel Aviv Univ, Sackler Fac Med, Dept Commun Disorders Speech Language & Hearing, Ramat Aviv, Israel. Tel Aviv Univ, Fac Engn, Dept Elect Engn Syst, Ramat Aviv, Israel. RP Babkoff, H (reprint author), Baycrest Ctr Geriatr Care, Rotman Res Inst, 3560 Bathurst St, Toronto, ON M6A 2E1, Canada. CR Abel SM, 1996, SCAND AUDIOL, V25, P3, DOI 10.3109/01050399609047549 Aharonson V, 1998, J ACOUST SOC AM, V103, P2624, DOI 10.1121/1.422783 ALGOM D, 1988, J ACOUST SOC AM, V84, P1302, DOI 10.1121/1.396629 BABKOFF H, 1982, CONTRIBUTIONS SENSOR, V6, P179 BABKOFF H, 1966, J ACOUST SOC AM, V39, P87, DOI 10.1121/1.1909878 BALOGH DW, 1982, J NERV MENT DIS, V170, P553, DOI 10.1097/00005053-198209000-00006 Bergman M., 1980, AGING PERCEPTION SPE BUTLER RA, 1970, INT AUDIOL, V9, P117, DOI 10.3109/05384917009072002 COLBURN HS, 1982, BINAURAL EFFECTS NOR, V15, P123 COOPER JC, 1991, EAR HEARING, V12, P304, DOI 10.1097/00003446-199110000-00002 CRANFORD JL, 1993, J SPEECH HEAR RES, V36, P437 CRANFORD JL, 1990, J SPEECH HEAR RES, V33, P654 FISCHRUNGABUDY A, 1993, THESIS TEL AVIV U IS Fitzgibbons PJ, 1995, J ACOUST SOC AM, V98, P3140, DOI 10.1121/1.413803 Fitzgibbons P J, 1996, J Am Acad Audiol, V7, P183 Furst M, 1995, J Basic Clin Physiol Pharmacol, V6, P149 FURST M, 1995, HEARING RES, V82, P109 Häusler R, 1983, Acta Otolaryngol Suppl, V400, P1 HERMAN GE, 1977, J GERONTOL, V32, P187 HERMAN GE, 1978, J GERONTOL, V33, P730 HULLRH, 1995, HEARGIN AGING JEFFRESS LA, 1972, FDN MODERN AUDITORY Jerger J, 1973, Adv Otorhinolaryngol, V20, P115 JERGER J, 1991, EAR HEARING, V12, P103 JERGER S, 1981, AUDITORY DISORDERS M, P147 KONIG E, 1969, INT AUDIOL, V8, P240, DOI 10.3109/05384916909079065 LEBO CP, 1972, LARYNGOSCOPE, V82, P1399, DOI 10.1288/00005537-197208000-00002 LEVINE RA, 1993, HEARING RES, V68, P73, DOI 10.1016/0378-5955(93)90066-A LUDLOW CL, 1982, J ACOUST SOC AM, V71, P47 MCCROSKEY RL, 1982, EAR HEARING, V3, P124, DOI 10.1097/00003446-198205000-00005 MUCHNIK C, 1985, Journal of Auditory Research, V25, P239 Phillips SL, 2000, J SPEECH LANG HEAR R, V43, P217 Prosser S, 1991, ACTA OTOLARYNGOL S, V476, P136 RIZZO SR, 1991, EAR HEARING, V12, P61, DOI 10.1097/00003446-199102000-00008 Schneider B, 1998, CAN J EXP PSYCHOL, V52, P184, DOI 10.1037/h0087291 SEARLE C L, 1976, Journal of the Acoustical Society of America, V60, P1164, DOI 10.1121/1.381219 Snell KB, 1997, J ACOUST SOC AM, V101, P2214, DOI 10.1121/1.418205 Stevens J. C., 1992, J GERONTOL PSYCHOL S, V47, P35 Stevens JC, 1996, SOMATOSENS MOT RES, V13, P153, DOI 10.3109/08990229609051403 Strouse A, 1998, J ACOUST SOC AM, V104, P2385, DOI 10.1121/1.423748 von Wedel H, 1990, Acta Otolaryngol Suppl, V476, P161 WIGHTMAN FL, 1992, J ACOUST SOC AM, V91, P1648, DOI 10.1121/1.402445 WILLOTT JF, 1991, AGING AUDITORY SYSTE, P168 Yamada K, 1997, Acta Otolaryngol Suppl, V532, P135 YOST WA, 1981, J ACOUST SOC AM, V70, P397, DOI 10.1121/1.386775 NR 45 TC 20 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2002 VL 165 IS 1-2 BP 117 EP 127 DI 10.1016/S0378-5955(02)00292-7 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559BZ UT WOS:000176006000013 PM 12031521 ER PT J AU Hine, JE Thornton, ARD AF Hine, JE Thornton, ARD TI Temporal nonlinearity revealed by transient evoked otoacoustic emissions recorded to trains of multiple clicks SO HEARING RESEARCH LA English DT Article DE otoacoustic emission; temporal nonlinearity; maximum length sequence; interclick interval ID MAXIMUM LENGTH SEQUENCES; MEDIAL OLIVOCOCHLEAR SYSTEM; IPSILATERAL SUPPRESSION; STIMULUS RATE; MODEL AB A series of detailed experiments is described that investigates how a transient evoked otoacoustic emission (TEOAE) recorded to one-click Stimulus is affected by the presence of a variable number of preceding clicks presented over a range of interclick intervals (ICIs). Part of the rationale was to determine if the resulting nonlinear temporal interactions could help explain the amplitude reduction seen when TEOAEs are recorded at very high click rates, as when using maximum length sequence stimulation. Amongst the findings was that the presence of a preceding train of clicks could either suppress or enhance emission amplitude, depending on the number of clicks in the train and the ICI Results also indicated that the duration of the click trains, rather than the ICI was the important factor in yielding the most suppressed response and that this seemed to depend on stimulus level. The results recorded at two levels also suggested that the cochlear temporal nonlinearity being monitored was in part related to the nonlinear process that determines the compressive input/output function for stimulus level. It is hypothesised that nonlinear temporal overlap of vibration patterns on the basilar membrane may underlie much of the pattern of results. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Royal S Hants Hosp, MRC, Inst Hearing Res, Southampton SO14 0YG, Hants, England. RP Hine, JE (reprint author), Royal S Hants Hosp, MRC, Inst Hearing Res, Southampton SO14 0YG, Hants, England. CR COLLET L, 1993, BRIT J AUDIOL, V27, P155, DOI 10.3109/03005369309077907 Cope Y., 1988, PAEDIATRIC AUDIOLOGY, P221 ENGDAHL B, 1994, SCAND AUDIOL, V23, P99, DOI 10.3109/01050399409047492 GRANDORI F, 1994, ADV OTOACOUSTIC EMIS, V1, P46 HENNING GB, 1981, J ACOUST SOC AM, V70, P1669, DOI 10.1121/1.387231 Hine JE, 1997, HEARING RES, V108, P28, DOI 10.1016/S0378-5955(97)00036-1 Hine JE, 1997, EAR HEARING, V18, P121, DOI 10.1097/00003446-199704000-00004 Johannesen PT, 1998, SCAND AUDIOL, V27, P37, DOI 10.1080/010503998419687 Kapadia S, 2000, HEARING RES, V146, P89, DOI 10.1016/S0378-5955(00)00102-7 Kapadia S, 2000, HEARING RES, V146, P101, DOI 10.1016/S0378-5955(00)00103-9 KEMP DT, 1980, HEARING RES, V2, P213, DOI 10.1016/0378-5955(80)90059-3 Kevanishvili Z, 1996, SCAND AUDIOL, V25, P161, DOI 10.3109/01050399609047999 LINAGRANADE G, 1995, HEARING RES, V87, P55, DOI 10.1016/0378-5955(95)00078-I LYON R, 1996, SPR HDB AUD, V6, P221 MEDDIS R, 1999, PSYCHOPHYSICS PHYSL, P131 MOORE BCJ, 1989, INTRO PSYCHOL HEARIN, P1 Patuzzi R., 1996, COCHLEA, P186 PICKLES JO, 1988, INTRO PHYSL HEARING, P112 PICTON TW, 1993, EAR HEARING, V14, P299, DOI 10.1097/00003446-199310000-00001 PROBST R, 1997, ELECTROPHYSIOLOGIC E, P182 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 RESNICK SB, 1975, J ACOUST SOC AM, V57, P1493, DOI 10.1121/1.380590 TAVARTKILADZE GA, 1994, ADV OTOACOUSTIC EMIS, V3, P9 Tavartkiladze GA, 1996, ACTA OTO-LARYNGOL, V116, P213, DOI 10.3109/00016489609137826 THORNTON ARD, 1993, BRIT J AUDIOL, V27, P109, DOI 10.3109/03005369309077900 THORNTON ARD, 1995, SCAND AUDIOL, V24, P83, DOI 10.3109/01050399509047519 THORNTON ARD, 1994, BRIT J AUDIOL, V28, P227, DOI 10.3109/03005369409086572 THORNTON ARD, 1994, SCAND AUDIOL, V23, P225, DOI 10.3109/01050399409047512 THORNTON ARD, 1993, J ACOUST SOC AM, V94, P132, DOI 10.1121/1.407090 Wiegrebe L, 1999, J ACOUST SOC AM, V105, P2746, DOI 10.1121/1.426892 NR 30 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2002 VL 165 IS 1-2 BP 128 EP 141 DI 10.1016/S0378-5955(02)00295-2 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559BZ UT WOS:000176006000014 PM 12031522 ER PT J AU Philibert, B Collet, L Vesson, JF Veuillet, E AF Philibert, B Collet, L Vesson, JF Veuillet, E TI Intensity-related performances are modified by long-term hearing aid use: a functional plasticity? SO HEARING RESEARCH LA English DT Article DE acclimatization effect; sensorineural hearing-impaired listeners; intensity discrimination; loudness perception; functional plasticity ID PRIMARY AUDITORY-CORTEX; LOUDNESS PERCEPTION; FREQUENCY DISCRIMINATION; UNILATERAL DEAFNESS; LATE-ONSET; SYSTEM; REPRESENTATION; ACCLIMATIZATION; REORGANIZATION; LATERALIZATION AB It is now well established that the adult central nervous system can reorganize following various environmental changes. In particular, it has been hypothesized that auditory rehabilitation of sensorineural hearing-impaired adults may involve functional plasticity. The present study sought to compare intensity-related performance between two groups of subjects paired for age, gender and absolute thresholds in both ears. One group comprised long-term binaural hearing aid (HA) users and the other non-HA users. The effect of HA use was measured in two intensity tasks. a discrimination-limen-for-intensity task (DLI) and a loudness-scaling task. Results indicated that significant differences exist in loudness perception between long-term. HA users and non-HA users, the latter rating intensity as louder than the former. Concerning intensity discrimination performance, a statistical tendency to lower, i.e. better, DLIs in long-term than in non-HA users was revealed. Moreover, significant differences between ears were observed in the loudness-scaling task, with the right ear showing greater inter-group difference than the left ear. This additional result points to a lateralization of the acclimatization effect. Finally, this study suggests significant perceptual modification and thus a possible functional plasticity entailed by HA use, (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Lyon 1, Hospices Civils Lyon, CNRS GDR 2213 Protheses Audit, Unite CNRS UMR 5020,Lab Neurosci & Syst Sensoriel, F-69366 Lyon 07, France. RP Veuillet, E (reprint author), Univ Lyon 1, Hospices Civils Lyon, CNRS GDR 2213 Protheses Audit, Unite CNRS UMR 5020,Lab Neurosci & Syst Sensoriel, 50 Av Tony Garnier, F-69366 Lyon 07, France. CR Belin P, 1998, J NEUROSCI, V18, P6388 BENTLER RA, 1993, J SPEECH HEAR RES, V36, P808 Bilecen D, 2000, NEUROLOGY, V54, P765 Florentine M, 1997, MODELING SENSORINEURAL HEARING LOSS, P187 Fowler EP, 1936, ARCHIV OTOLARYNGOL, V24, P731 Fujiki N, 1998, NEUROREPORT, V9, P3129, DOI 10.1097/00001756-199810050-00002 GATEHOUSE S, 1989, J ACOUST SOC AM, V86, P2103, DOI 10.1121/1.398469 GREEN DM, 1995, J ACOUST SOC AM, V97, P3749, DOI 10.1121/1.412390 GREEN DM, 1993, J ACOUST SOC AM, V93, P2096, DOI 10.1121/1.406696 Hagermann B, 1999, SCAND AUDIOL, V28, P102, DOI 10.1080/010503999424833 Halpern L., 1963, PROBLEMS DYNAMIC NEU, P101 He NJ, 1998, J ACOUST SOC AM, V103, P553, DOI 10.1121/1.421127 HEIL P, 1994, HEARING RES, V76, P188, DOI 10.1016/0378-5955(94)90099-X HELLMAN RP, 1994, J ACOUST SOC AM, V96, P2655, DOI 10.1121/1.411445 Hugdahl K, 2000, ACTA PSYCHOL, V105, P211, DOI 10.1016/S0001-6918(00)00062-7 Humes LE, 1996, J SPEECH HEAR RES, V39, P923 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 JOANETTE Y, 1994, NEUROPSYCHOLOGIE HUM, P342 Khalfa S, 1996, NEUROREPORT, V7, P993, DOI 10.1097/00001756-199604100-00008 Kimura D., 1967, CORTEX, V3, P163 KIMURA D, 1961, CAN J PSYCHOLOGY, V15, P166, DOI 10.1037/h0083219 KRAUS N, 1995, J COGNITIVE NEUROSCI, V7, P25, DOI 10.1162/jocn.1995.7.1.25 McDermott HJ, 1998, J ACOUST SOC AM, V104, P2314, DOI 10.1121/1.423744 MCGILL WJ, 1968, J ACOUST SOC AM, V44, P576, DOI 10.1121/1.1911123 Menning H, 2000, NEUROREPORT, V11, P817, DOI 10.1097/00001756-200003200-00032 Moore BCJ, 1997, AUDIT NEUROSCI, V3, P289 Muhlnickel W, 1998, P NATL ACAD SCI USA, V95, P10340, DOI 10.1073/pnas.95.17.10340 OESTERRE.RE, 1971, BRAIN RES, V27, P251, DOI 10.1016/0006-8993(71)90252-6 Olsen SO, 1999, AUDIOLOGY, V38, P202 Palmer CV, 1998, J ACOUST SOC AM, V103, P1705, DOI 10.1121/1.421050 Philibert B, 1998, NEUROSCI LETT, V253, P99, DOI 10.1016/S0304-3940(98)00615-6 Ponton CW, 1996, EAR HEARING, V17, pS78, DOI 10.1097/00003446-199617031-00008 RECANZONE GH, 1993, J NEUROSCI, V13, P87 ROBINSON K, 1995, J ACOUST SOC AM, V97, P1183, DOI 10.1121/1.412230 Robinson K, 1996, J ACOUST SOC AM, V99, P1255, DOI 10.1121/1.414637 Robinson K, 1996, EAR HEARING, V17, P120, DOI 10.1097/00003446-199604000-00005 Saunders GH, 1997, EAR HEARING, V18, P129, DOI 10.1097/00003446-199704000-00005 Scheffler K, 1998, CEREB CORTEX, V8, P156, DOI 10.1093/cercor/8.2.156 Steinberg JC, 1937, J ACOUST SOC AM, V9, P11, DOI 10.1121/1.1915905 Surr R K, 1998, J Am Acad Audiol, V9, P165 TAYLOR KS, 1993, EAR HEARING, V14, P390, DOI 10.1097/00003446-199312000-00003 Turner CW, 1998, J ACOUST SOC AM, V104, P3673, DOI 10.1121/1.423949 Williams D, 1996, TRENDS PHARMACOL SCI, V17, P66 WILLOTT JF, 1984, BRAIN RES, V309, P159, DOI 10.1016/0006-8993(84)91022-9 NR 44 TC 17 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2002 VL 165 IS 1-2 BP 142 EP 151 DI 10.1016/S0378-5955(02)00296-4 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559BZ UT WOS:000176006000015 PM 12031523 ER PT J AU Matsuzaki, M Murofushi, T AF Matsuzaki, M Murofushi, T TI Click-evoked potentials on the neck of the guinea pig SO HEARING RESEARCH LA English DT Article DE vestibular evoked myogenic potential; guinea pig; amikacin; click sound ID BRAIN-STEM RESPONSES; MYOGENIC POTENTIALS; VESTIBULAR NEURONS; 8TH NERVE AB Vestibulocollic reflex in humans is called vestibular evoked myogenic potential. To try to establish an animal model of the acoustically evoked vestibulocollic reflex. 18 guinea pigs were used in this study. Eight of the 18 guinea pigs received intramuscular injection of amikacin for 18 days (450 mg/kg/day) before recording to destroy the cochlea pharmacologically. Under general anesthesia with intraperitoneal injection of pentobarbital sodium (40 mg/kg body weight), auditory brainstem responses (ABRs) were recorded. Then potentials on the neck evoked by loud clicks were recorded on the pre-vertebral muscle or on the spinal cord at the level of third cervical vertebral bone using a silver-ball electrode. As a result, a negative peak (NP) with a latency of 6 similar to 8 ms was observed on the neck muscle or on the spinal cord in the control group. The thresholds of the NP were 90-100 dB above those of ABRs. The NP was also observed in the amikacin-administered group using clicks with the same intensity as that for the control group, while the ABR thresholds were highly elevated. These results are in agreement with a vestibular origin of the NP potential. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Tokyo, Fac Med, Dept Otolaryngol, Bunkyo Ku, Tokyo 113, Japan. RP Matsuzaki, M (reprint author), Univ Tokyo, Fac Med, Dept Otolaryngol, Bunkyo Ku, 7-3-1 Hongo, Tokyo 113, Japan. CR CAZALS Y, 1987, HEARING RES, V31, P93, DOI 10.1016/0378-5955(87)90216-4 CAZALS Y, 1979, ARCH OTO-RHINO-LARYN, V224, P61, DOI 10.1007/BF00455225 COLEBATCH JG, 1992, NEUROLOGY, V42, P1635 COLEBATCH JG, 1994, J NEUROL NEUROSUR PS, V57, P190, DOI 10.1136/jnnp.57.2.190 DIDIER A, 1989, HEARING RES, V37, P123, DOI 10.1016/0378-5955(89)90034-8 Matsuzaki M, 1999, EUR ARCH OTO-RHINO-L, V256, P1, DOI 10.1007/s004050050112 MCCUE MP, 1994, J NEUROSCI, V14, P6058 Murofushi T, 1997, ACTA OTO-LARYNGOL, V117, P66, DOI 10.3109/00016489709117994 Murofushi T, 1998, ARCH OTOLARYNGOL, V124, P509 MUROFUSHI T, 1995, EXP BRAIN RES, V103, P174 Murofushi T, 1996, ARCH OTOLARYNGOL, V122, P845 Naito R, 1999, HEARING RES, V136, P44, DOI 10.1016/S0378-5955(99)00107-0 OZEKI H, 1999, ORL, V61, P81 TOWNSEND GL, 1971, ANN OTO RHINOL LARYN, V80, P121 YOUNG ED, 1977, ACTA OTO-LARYNGOL, V84, P352, DOI 10.3109/00016487709123977 NR 15 TC 11 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2002 VL 165 IS 1-2 BP 152 EP 155 DI 10.1016/S0378-5955(02)00297-6 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559BZ UT WOS:000176006000016 PM 12031524 ER PT J AU Pouyatos, B Campo, P Lataye, R AF Pouyatos, B Campo, P Lataye, R TI Use of DPOAEs for assessing hearing loss caused by styrene in the rat SO HEARING RESEARCH LA English DT Article DE distortion product otoacoustic emission; auditory-evoked potential; hearing loss; solvent; styrene; sensory cell loss ID PRODUCT OTOACOUSTIC EMISSIONS; EVOKED-POTENTIAL THRESHOLDS; OUTER HAIR-CELLS; DISTORTION-PRODUCT; ACOUSTIC DISTORTION; COCHLEAR PATHOLOGY; NOISE EXPOSURES; TOLUENE; RESPONSES; AMPLITUDE AB The study was carried out to test whether or not cubic distortion otoacoustic emissions were more sensitive than auditory-evoked potentials for assessing styrene-induced hearing losses in the Long-Evans rat. For the purposes of comparison, changes in cubic distortion product otoacoustic emissions (DeltaDPOAE). evoked potential permanent threshold shifts (PTS) and outer hair cell losses were measured in a population of styrene-treated rats. Each rat was exposed to either 650 or 750 ppm of styrene for 4 weeks, 5 days per week, 6 h per day. Only the 750 ppm exposure caused significant hearing losses. For this concentration. DPOAEs appeared as sensitive to styrene as the audiometry performed with evoked potentials, but not more. A high coefficient of correlation [0.84less than or equal torless than or equal to0.91] between DeltaDPOAE and PTS was obtained across the styrene-induced effects for frequencies ranging from 5 to 12 kHz. This experiment demonstrates that DPOAEs can be used to monitor the ototoxicity induced by styrene even though they cannot be considered as a more sensitive index of cochlear pathology than the evoked potentials, at least under our experimental conditions. Likewise evoked potentials, normal DPOAEs may not guarantee a normal cochlear status and therefore results of DPOAE measurements should be interpreted cautiously. The use of both techniques and the determination of the ratio DeltaDPOAE/PTS may be useful in determining the cause of hearing loss: mechanical or chemical process. Moreover, because of its non-invasive and objective characteristics. the use of DPOAEs could play a greater role in a prevention policy. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Inst Natl Rech & Secur, Lab Neurotoxicite, F-54501 Vandoeuvre Les Nancy, France. RP Campo, P (reprint author), Inst Natl Rech & Secur, Lab Neurotoxicite, Ave Bourgogne,POB 27, F-54501 Vandoeuvre Les Nancy, France. CR BROWN AM, 1987, HEARING RES, V31, P25, DOI 10.1016/0378-5955(87)90211-5 Calabrese G, 1996, INT ARCH OCC ENV HEA, V68, P219 Campo P, 1997, NEUROTOXICOL TERATOL, V19, P129, DOI 10.1016/S0892-0362(96)00214-0 Campo P, 2001, HEARING RES, V154, P170, DOI 10.1016/S0378-5955(01)00218-0 CROFTON KM, 1994, HEARING RES, V80, P25, DOI 10.1016/0378-5955(94)90005-1 FILSER JG, 1993, ARCH TOXICOL, V67, P517, DOI 10.1007/BF01969264 GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732 Hamernik RP, 2000, HEARING RES, V150, P245, DOI 10.1016/S0378-5955(00)00204-5 HAMERNIK RP, 1989, HEARING RES, V38, P199, DOI 10.1016/0378-5955(89)90065-8 HARRIS FP, 1989, J ACOUST SOC AM, V85, P220, DOI 10.1121/1.397728 Henley C, 1989, HEARING RES, V43, P141 Hofstetter P, 1997, HEARING RES, V112, P199, DOI 10.1016/S0378-5955(97)00123-8 JACOBSEN P, 1993, OCCUP MED-OXFORD, V43, P180, DOI 10.1093/occmed/43.4.180 JOHNSON AC, 1994, HEARING RES, V72, P189, DOI 10.1016/0378-5955(94)90218-6 Khvoles R, 1998, AUDIOL NEURO-OTOL, V3, P349, DOI 10.1159/000013805 Lataye R, 1997, NEUROTOXICOL TERATOL, V19, P373, DOI 10.1016/S0892-0362(97)00049-4 Lataye R, 2000, HEARING RES, V139, P86, DOI 10.1016/S0378-5955(99)00174-4 Lataye R, 2001, NEUROTOXICOL TERATOL, V23, P71, DOI 10.1016/S0892-0362(00)00114-8 Lim D J, 1986, Scand Audiol Suppl, V25, P17 Loquet G, 1999, NEUROTOXICOL TERATOL, V21, P689, DOI 10.1016/S0892-0362(99)00030-6 MILLER RR, 1994, CRIT REV TOXICOL, V24, pS1, DOI 10.3109/10408449409020137 Mills CD, 1999, HEARING RES, V128, P75, DOI 10.1016/S0378-5955(98)00190-7 MOLLER C, 1990, SCAND J WORK ENV HEA, V16, P189 Morata T, 2001, NOISE INDUCED HEARIN, P293 MORATA TC, 1994, ARCH ENVIRON HEALTH, V49, P359 MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7 Nylander-French LA, 1999, ANN OCCUP HYG, V43, P99, DOI 10.1016/S0003-4878(98)00080-5 PROSEN CA, 1990, HEARING RES, V44, P179, DOI 10.1016/0378-5955(90)90079-5 REBERT CS, 1993, INT J PSYCHOPHYSIOL, V14, P49, DOI 10.1016/0167-8760(93)90083-2 Sass-Kortsak Andrea M., 1995, Annals of Epidemiology, V5, P15, DOI 10.1016/1047-2797(94)00036-S SUBRAMANIAM M, 1994, EAR HEARING, V15, P299, DOI 10.1097/00003446-199408000-00004 YANO BL, 1992, TOXICOL PATHOL, V20, P1 NR 32 TC 22 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2002 VL 165 IS 1-2 BP 156 EP 164 DI 10.1016/S0378-5955(02)00298-8 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559BZ UT WOS:000176006000017 PM 12031525 ER PT J AU Wada, H Takeda, A Kawase, T AF Wada, H Takeda, A Kawase, T TI Timing of neural excitation in relation to basilar membrane motion in the basal region of the guinea pig cochlea during the presentation of low-frequency acoustic stimulation SO HEARING RESEARCH LA English DT Article DE inner hair cell; auditory nerve fiber; basilar membrane; phase ID AUDITORY-NERVE FIBERS; PRODUCT OTOACOUSTIC EMISSIONS; INNER HAIR-CELLS; CHINCHILLA COCHLEA; SPIKE INITIATION; RESPONSE PHASE; VELOCITY; TONES; DEPENDENCE; VIBRATION AB In spite of many studies concerning auditory nerve action potentials, the timing of neural excitation in relation to basilar membrane (BM) motion is still not well understood. In this study. therefore, BM vibrations in the basal region of the guinea pig cochlea were measured using a laser Doppler velocimeter, and action potentials in auditory nerve fibers were recorded by a conventional microelectrode technique. An attempt was then made to determine the relationship between BM motion and neural excitation in auditory nerve fibers. To obtain BM responses in the high-characteristic frequency (CF) region (18-22 kHz) and responses of auditory nerve fibers with high CFs (14-22 kHz), low-frequency stimuli (50-2000 Hz), frequencies of which were well below CFs, were presented at 60-100 dB SPL. The results indicated that neural excitation occurred when the BM was displaced toward the scala vestibuli. Moreover, the neural excitatory phase did not significantly vary with the fiber's CF between 14 and 22 kHz nor with the stimulus level between 60 and 100 dB SPL. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Tohoku Univ, Dept Mech Engn, Sendai, Miyagi 9808579, Japan. Tohoku Univ, Sch Med, Dept Otolaryngol, Sendai, Miyagi 980, Japan. RP Wada, H (reprint author), Tohoku Univ, Dept Mech Engn, Aoba Yama 01, Sendai, Miyagi 9808579, Japan. CR ARBUTHNOTT ER, 1980, J PHYSIOL-LONDON, V308, P125 BROWN MC, 1987, J COMP NEUROL, V260, P591, DOI 10.1002/cne.902600411 Cai YD, 1996, HEARING RES, V96, P83, DOI 10.1016/0378-5955(96)00033-0 Cheatham MA, 1999, J ACOUST SOC AM, V105, P799, DOI 10.1121/1.426269 Cheatham MA, 1998, J ACOUST SOC AM, V104, P356, DOI 10.1121/1.423245 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 GOLDSTEIN MH, 1968, MED PHYSL, P1465 HORNER KC, 1991, EUR ARCH OTO-RHINO-L, V248, P302 Khanna SM, 1999, HEARING RES, V135, P89, DOI 10.1016/S0378-5955(99)00095-7 KONISHI T, 1978, JPN J PHYSIOL, V28, P291 NUTTALL AL, 1981, BRAIN RES, V211, P171, DOI 10.1016/0006-8993(81)90078-0 OSHIMA W, 1983, HEARING RES, V12, P167, DOI 10.1016/0378-5955(83)90104-1 PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X PFEIFFER RR, 1975, J ACOUST SOC AM, V58, P867, DOI 10.1121/1.380735 Ren TY, 2001, HEARING RES, V151, P48, DOI 10.1016/S0378-5955(00)00211-2 ROBLES L, 1986, J ACOUST SOC AM, V80, P1364, DOI 10.1121/1.394389 Ruggero MA, 2000, P NATL ACAD SCI USA, V97, P11744, DOI 10.1073/pnas.97.22.11744 RUGGERO MA, 1987, J NEUROPHYSIOL, V58, P379 RUGGERO MA, 1983, J ACOUST SOC AM, V73, P2096, DOI 10.1121/1.389577 RUGGERO MA, 1986, J ACOUST SOC AM, V80, P1375, DOI 10.1121/1.394390 RUSSELL IJ, 1983, J PHYSIOL-LONDON, V338, P179 SELLICK PM, 1980, HEARING RES, V2, P439, DOI 10.1016/0378-5955(80)90080-5 SELLICK PM, 1982, HEARING RES, V7, P199, DOI 10.1016/0378-5955(82)90014-4 SOKOLICH WG, 1976, J ACOUST SOC AM, V59, P963, DOI 10.1121/1.380955 TELISCHI FF, 1995, AM J OTOL, V16, P597 WADA H, 1996, P INT S DIV AUD MECH, P284 WILSON JP, 1975, J ACOUST SOC AM, V57, P705, DOI 10.1121/1.380472 NR 27 TC 7 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2002 VL 165 IS 1-2 BP 165 EP 176 DI 10.1016/S0378-5955(02)00300-3 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559BZ UT WOS:000176006000018 PM 12031526 ER PT J AU Litovsky, RY Fligor, BJ Traino, MJ AF Litovsky, RY Fligor, BJ Traino, MJ TI Functional role of the human inferior colliculus in binaural hearing SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 23rd Meeting of the Association-for-Research-in-Otolaryngology CY FEB 21-23, 2000 CL ST PETERSBURG, FLORIDA SP Assoc Res Otolaryngol DE binaural; inferior colliculus; lesion; precedence; localization; speech ID SOUND LOCALIZATION; LATERAL LEMNISCUS; DORSAL NUCLEUS; BRAIN-STEM; SPEECH-INTELLIGIBILITY; UNANESTHETIZED RABBIT; MULTIPLE-SCLEROSIS; UNILATERAL LESIONS; INHIBITORY INPUTS; NEURAL RESPONSES AB Psychophysical experiments were carried out in a rare case involving a 48 year old man (RJC) with a small traumatic hemorrhage of the right dorsal midbrain, including the inferior colliculus (IC). RJC had normal audiograms bilaterally, but there was a marked decrease in wave V amplitude on click-evoked brainstem auditory evoked potentials following left ear stimulation. RJC demonstrated a deficit in sound localization identification when the loudspeakers lay within the auditory hemifield contralateral to his IC lesion. Errors showed a consistent bias towards the hemifield ipsilateral to the lesion. Echo suppression was abnormally weak compared with that seen in control subjects, but only for sources contralateral to the lesion. Finally, speech intelligibility tests showed normal ability to benefit from spatial separation of target and competing speech sources. These results suggest that: (1) localizing sounds within a given hemifield relies on the integrity of the contralateral IC, (2) unilateral IC lesions give the illusion that sound sources in the 'bad' hemifield are displaced towards the 'good' hernifield, (3) the IC mediates aspects of echo suppression, and (4) lesion in the IC does not impede spatial release from masking in speech intelligibility, possibly due to that ability being more heavily mediated by cortical regions. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Boston Univ, Hearing Res Ctr, Boston, MA 02215 USA. Massachusetts Gen Hosp, Boston, MA 02114 USA. Harvard Univ, Sch Med, Boston, MA 02115 USA. RP Litovsky, RY (reprint author), Univ Wisconsin, Waisman Ctr, Room 567,1500 Highland Ave, Madison, WI 53706 USA. CR Aharonson V, 1998, J ACOUST SOC AM, V103, P2624, DOI 10.1121/1.422783 Blauert J., 1997, SPATIAL HEARING PSYC Bronkhorst AW, 2000, ACUSTICA, V86, P117 Cai HM, 1998, J ACOUST SOC AM, V103, P475, DOI 10.1121/1.421100 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717 CHERRY EC, 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229 CULLING JF, 1999, J ACOUST SOC AM, V105, P1344, DOI 10.1121/1.426377 DURLACH N, 1978, HDB PERCEPTION, V4, P405 DURRANT JD, 1994, HEARING RES, V72, P99, DOI 10.1016/0378-5955(94)90210-0 Fitzpatrick DC, 1995, J NEUROPHYSIOL, V74, P2469 FREYMAN RL, 1991, J ACOUST SOC AM, V90, P874, DOI 10.1121/1.401955 FURST M, 1995, HEARING RES, V82, P109 Furst M, 2000, HEARING RES, V143, P29, DOI 10.1016/S0378-5955(00)00019-8 Gilkey R., 1997, BINAURAL SPATIAL HEA, P329 GLENDENNING KK, 1981, J COMP NEUROL, V197, P673, DOI 10.1002/cne.901970409 HAWLEY ML, 2000, THESIS HAWLEY ML, 2000, ASS RES OTOLARYNGOL, V105, P1150 Hawley ML, 1999, J ACOUST SOC AM, V105, P3436, DOI 10.1121/1.424670 HEFFNER H, 1975, J NEUROPHYSIOL, V38, P1340 IEEE Subcommittee, 1969, IEEE T AUDIO ELECTRO, V3, P225, DOI DOI 10.1109/TAU.1969.1162058 JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987 Jiang D, 1997, J NEUROSCI, V17, P9331 KELLY JB, 1994, J NEUROPHYSIOL, V71, P1078 Kelly JB, 1996, BEHAV NEUROSCI, V110, P1445, DOI 10.1037//0735-7044.110.6.1445 KUWADA S, 1987, J NEUROPHYSIOL, V57, P1338 Kuwada S., 1997, BINAURAL SPATIAL HEA, P399 Litovsky RY, 2001, J ACOUST SOC AM, V109, P346, DOI 10.1121/1.1328792 Litovsky RY, 1998, J NEUROPHYSIOL, V80, P1302 LITOVSKY RY, 2001, ADV HEARING RES Litovsky RY, 1998, J ACOUST SOC AM, V103, P3139, DOI 10.1121/1.423072 Litovsky RY, 1999, J ACOUST SOC AM, V106, P1633, DOI 10.1121/1.427914 NILSSON M, 1994, J ACOUST SOC AM, V95, P1085, DOI 10.1121/1.408469 Palmer AR, 2000, J NEUROPHYSIOL, V84, P844 Parham K, 1998, HEARING RES, V125, P131, DOI 10.1016/S0378-5955(98)00140-3 SHNEIDERMAN A, 1989, J COMP NEUROL, V286, P28, DOI 10.1002/cne.902860103 SHNEIDERMAN A, 1988, J COMP NEUROL, V276, P188, DOI 10.1002/cne.902760204 TAYLOR MM, 1967, J ACOUST SOC AM, V41, P782, DOI 10.1121/1.1910407 WHITFIELD IC, 1978, J NEUROPHYSIOL, V289, pP81 WICKESBERG RE, 1990, J NEUROSCI, V10, P1762 YIN TCT, 1994, J NEUROSCI, V14, P5170 YIN TCT, 1997, BINAURAL SPATIAL HEA, P427 Zurek P. M., 1993, ACOUSTICAL FACTORS A, P255 ZUREK PM, 1980, J ACOUST SOC AM, V67, P952, DOI 10.1121/1.383974 NR 43 TC 28 Z9 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2002 VL 165 IS 1-2 BP 177 EP 188 DI 10.1016/S0378-5955(02)00304-0 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 559BZ UT WOS:000176006000019 PM 12031527 ER PT J AU Aletsee, C Brors, D Palacios, S Pak, K Mullen, L Dazert, S Ryan, AF AF Aletsee, C Brors, D Palacios, S Pak, K Mullen, L Dazert, S Ryan, AF TI The effects of laminin-1 on spiral ganglion neurons are dependent on the MEK/ERK signaling pathway and are partially independent of Ras SO HEARING RESEARCH LA English DT Article DE laminin; Ras; p38; extracellular-regulated kinase kinase; spiral ganglion ID ACTIVATED PROTEIN-KINASE; MICROVASCULAR ENDOTHELIAL-CELLS; P38 MAP KINASE; NEURITE OUTGROWTH; GROWTH-FACTOR; K-RAS; DIFFERENTIAL EXPRESSION; TRANSDUCTION PATHWAYS; SELECTIVE ACTIVATION; CYCLE PROGRESSION AB Laminin-1 (LN) is expressed along the route of neural growth from spiral ganglion (SG) neurons towards the developing organ of Corti, and has been shown to enhance neurite outgrowth from SG neurons in vitro. Signal transduction pathways linking LN signaling at the cell membrane to the cell nucleus can involve a variety of signaling molecules. Data from other systems suggest the potential involvement of the small G protein Ras, and the mitogen-activated protein kinases (MAPKs) Erk and/or p38. To assess these possibilities, the length and number of processes extending from SG explants cultured on LN-coated surfaces were evaluated after treatment with the Ras inhibitor FTI-277, the p38 inhibitor SB203580 and MAPK kinase (MEK) inhibitor U0126, which operates immediately upstream of the Erk MAPK. Treatment with the Ras inhibitor at levels known to inhibit the H- and N-Ras isoforms had no effect, while FTI-277 levels known to inhibit K-Ras reduced only neurite length. Suppression of MEK resulted in a decrease of both parameters, while incubation with the p38 inhibitor had no effect. The results of this study suggest that MEK plays a central role in LN signaling in SG neurites. While K-Ras signaling may participate in MEK-dependent increases in neurite length, the MEK-dependent increase in neurite number appears to be activated by a different intracellular pathway. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Calif San Diego, Sch Med, Dept Surg Otolaryngol & Neurosci, La Jolla, CA 92093 USA. Univ Wurzburg, Dept Otolaryngol Head & Neck Surg, D-97080 Wurzburg, Germany. RP Ryan, AF (reprint author), Univ Calif San Diego, Sch Med, Dept Surg Otolaryngol & Neurosci, 9500 Gilman Dr 0666, La Jolla, CA 92093 USA. CR Aletsee C, 2001, AUDIOL NEURO-OTOL, V6, P57, DOI 10.1159/000046811 BATTAGLIA A, 2001, UNPUB DISINTEGRIN KI BISLAND J, 1999, J NEUROSCI METH, V15, P75 BORASIO GD, 1989, NEURON, V2, P1087 Cary LA, 1999, HISTOL HISTOPATHOL, V14, P1001 Casey PJ, 1996, J BIOL CHEM, V271, P5289 Chen QM, 1996, J BIOL CHEM, V271, P18122 CHENG YF, 1991, EXP CELL RES, V194, P69, DOI 10.1016/0014-4827(91)90131-D CLARK EA, 1995, SCIENCE, V268, P233, DOI 10.1126/science.7716514 Cosgrove D, 1997, HEARING RES, V105, P159, DOI 10.1016/S0378-5955(96)00203-1 CREWS CM, 1992, SCIENCE, V258, P478, DOI 10.1126/science.1411546 Dazert S, 1998, J CELL PHYSIOL, V177, P123, DOI 10.1002/(SICI)1097-4652(199810)177:1<123::AID-JCP13>3.0.CO;2-E DeSilva DR, 1998, J IMMUNOL, V160, P4175 Doherty P, 2000, MOL CELL NEUROSCI, V16, P283, DOI 10.1006/mcne.2000.0907 EBENDAL T, 1989, NERVE GROWTH FACTORS, P81 EDGAR D, 1984, EMBO J, V3, P1463 Enslen H, 2000, EMBO J, V19, P1301, DOI 10.1093/emboj/19.6.1301 Enslen H, 1998, J BIOL CHEM, V273, P1741, DOI 10.1074/jbc.273.3.1741 Favata MF, 1998, J BIOL CHEM, V273, P18623, DOI 10.1074/jbc.273.29.18623 FURTH ME, 1987, ONCOGENE, V1, P47 GALLEGO C, 1992, P NATL ACAD SCI USA, V89, P7355, DOI 10.1073/pnas.89.16.7355 GALLO G, 1998, CURR BIOL, V8, P80 Giancotti FG, 1997, CURR OPIN CELL BIOL, V9, P691, DOI 10.1016/S0955-0674(97)80123-8 Goedert M, 1997, EMBO J, V16, P3563, DOI 10.1093/emboj/16.12.3563 GREENE LA, 1995, CURR OPIN NEUROBIOL, V5, P579, DOI 10.1016/0959-4388(95)80062-X Grewal SS, 1999, CURR OPIN NEUROBIOL, V9, P544, DOI 10.1016/S0959-4388(99)00010-0 Hale KK, 1999, J IMMUNOL, V162, P4246 Han J, 1997, NATURE, V386, P296, DOI 10.1038/386296a0 Iwasaki S, 1999, J BIOL CHEM, V274, P26503, DOI 10.1074/jbc.274.37.26503 Johnson L, 1997, GENE DEV, V11, P2468, DOI 10.1101/gad.11.19.2468 Kaplan DR, 2000, CURR OPIN NEUROBIOL, V10, P381, DOI 10.1016/S0959-4388(00)00092-1 Koera K, 1997, ONCOGENE, V15, P1151, DOI 10.1038/sj.onc.1201284 KRAMER RH, 1990, J CELL BIOL, V111, P1233, DOI 10.1083/jcb.111.3.1233 LANDER AD, 1985, J CELL BIOL, V101, P898, DOI 10.1083/jcb.101.3.898 LANGECARTER CA, 1993, SCIENCE, V260, P315, DOI 10.1126/science.8385802 LEIN PJ, 1989, DEV BIOL, V136, P330, DOI 10.1016/0012-1606(89)90260-1 LEON J, 1987, MOL CELL BIOL, V7, P1535 LERNER EC, 1995, J BIOL CHEM, V270, P26802 Lerner EC, 1997, ONCOGENE, V15, P1283, DOI 10.1038/sj.onc.1201296 LIU HM, 1988, J NEUROSCI RES, V20, P64, DOI 10.1002/jnr.490200110 LOWY DR, 1993, ANNU REV BIOCHEM, V62, P851, DOI 10.1146/annurev.bi.62.070193.004223 Matsumoto T, 1999, J BIOL CHEM, V274, P13954, DOI 10.1074/jbc.274.20.13954 McKerracher L, 1996, MOL NEUROBIOL, V12, P95, DOI 10.1007/BF02740648 Olson MF, 2000, SEMIN IMMUNOL, V12, P63, DOI 10.1006/smim.2000.0208 Ono K, 2000, CELL SIGNAL, V12, P1, DOI 10.1016/S0898-6568(99)00071-6 Palsson EM, 2000, J BIOL CHEM, V275, P7818, DOI 10.1074/jbc.275.11.7818 Perron JC, 1999, MOL CELL NEUROSCI, V13, P362, DOI 10.1006/mcne.1999.0753 PIRVOLA U, 1992, P NATL ACAD SCI USA, V89, P9915, DOI 10.1073/pnas.89.20.9915 POSADA J, 1993, MOL CELL BIOL, V13, P2546 RAINGEAUD J, 1995, J BIOL CHEM, V270, P7420 RUOSLAHTI E, 1994, CELL, V77, P477, DOI 10.1016/0092-8674(94)90209-7 SCHLAEPFER DD, 1994, NATURE, V372, P786 SRIRAMARAO P, 1993, J CELL SCI, V105, P1001 VANDEWAT.TR, 1971, ACTA OTO-LARYNGOL, V71, P303, DOI 10.3109/00016487109125368 VENSTROM KA, 1993, FASEB J, V7, P996 Wang XZ, 1996, SCIENCE, V272, P1347, DOI 10.1126/science.272.5266.1347 Wary KK, 1996, CELL, V87, P733, DOI 10.1016/S0092-8674(00)81392-6 Yan J, 1998, J BIOL CHEM, V273, P24052, DOI 10.1074/jbc.273.37.24052 York RD, 1998, NATURE, V392, P622 ZHU XY, 1995, MOL BIOL CELL, V6, P273 NR 60 TC 12 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2002 VL 164 IS 1-2 BP 1 EP 11 DI 10.1016/S0378-5955(01)00364-1 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 544TV UT WOS:000175178100001 PM 11950519 ER PT J AU Suzuki, M Yamasoba, T Ishibashi, T Miller, JM Kaga, K AF Suzuki, M Yamasoba, T Ishibashi, T Miller, JM Kaga, K TI Effect of noise exposure on blood-labyrinth barrier in guinea pigs SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 22nd Midwinter Meeting of the Association-for-Research-in-Otolaryngology CY FEB 13-18, 1999 CL ST PETERSBURG, FLORIDA SP Assoc Res Otolaryngol DE polyethyleneimine; intense noise exposure; blood-labyrinth barrier; stria vascularis; Reissner's membrane; guinea pig ID ACOUSTIC TRAUMA; STRIA VASCULARIS; ANIONIC SITES; PERMEABILITY; RAT AB The influence of noise exposure on the endothelial transport system in the cochlea was investigated using cationic polyethyleneimine (PEI), since systemically administered PEI passes through the capillary endothelial cell and attaches to basal lamina (BL) anionic sites in the cochlea. Under general anesthesia. all guinea pigs were administered an intravenous injection of 0.5% PEI. Thirty minutes later, five animals were exposed to noise (10 kHz, broad band noise, 105 dB SPL) for 30 min, via speakers inserted into the external auditory canal. The remaining five animals (controls) were left without noise exposure for 1 h following PEI injection. All guinea pigs were then immediately sacrificed, and the bony labyrinths were removed. PEI distribution on the BL was assessed in the stria vascularis, spiral ligament. basilar membrane, spiral limbus and Reissner's membrane throughout the cochlea with transmission electron microscopy. Compared to control animals, PEI distribution in the noise-exposed animals was significantly increased in the strial vessels of the basal and second turns and in Reissner's membrane of all turns. In the spiral ligament, basilar membrane and spiral limbus, no significant difference in PEI distribution was observed between the control and noise-exposed animals. These findings indicate that noise exposure increases macromolecular transport in the stria vascularis but not in the spiral ligament, spiral limbus and basilar membrane and that systemically administered macromolecules are more readily transported to Reissner's membrane by noise exposure. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Tokyo, Dept Otolaryngol, Bunkyo Ku, Tokyo 1138655, Japan. Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI USA. RP Suzuki, M (reprint author), Univ Tokyo, Dept Otolaryngol, Bunkyo Ku, Hongo 7-3-1, Tokyo 1138655, Japan. CR AXELSSON A, 1987, HEARING RES, V31, P183, DOI 10.1016/0378-5955(87)90125-0 DUVALL AJ, 1974, ANN OTO RHINOL LARYN, V83, P498 DUVALL AJ, 1987, ARCH OTOLARYNGOL, V113, P1066 GAO WY, 1992, HEARING RES, V62, P27, DOI 10.1016/0378-5955(92)90200-7 Goldwyn BG, 1997, LARYNGOSCOPE, V107, P1112, DOI 10.1097/00005537-199708000-00019 HAWKINS JE, 1971, ANN OTO RHINOL LARYN, V80, P903 HUKEE MJ, 1985, ANN OTO RHINOL LARYN, V94, P297 JAHNKE K, 1980, ARCH OTO-RHINO-LARYN, V228, P29, DOI 10.1007/BF00455891 JUHN SK, 1981, ACTA OTO-LARYNGOL, V91, P529, DOI 10.3109/00016488109138538 Kroll RA, 1998, NEUROSURGERY, V42, P1083, DOI 10.1097/00006123-199805000-00082 LENOIR M, 1987, HEARING RES, V26, P199, DOI 10.1016/0378-5955(87)90112-2 QUIRK WS, 1995, AM J OTOL, V16, P322 SAKAGAMI M, 1982, CELL TISSUE RES, V226, P511 SUZUKI M, 1995, ACTA OTO-LARYNGOL, V115, P747, DOI 10.3109/00016489509139397 Suzuki M, 1998, HEARING RES, V116, P107, DOI 10.1016/S0378-5955(97)00208-6 TOMODA K, 1988, ARCH OTO-RHINO-LARYN, V245, P307, DOI 10.1007/BF00464638 YAMANE H, 1991, ACTA OTO-LARYNGOL, V111, P85, DOI 10.3109/00016489109137358 Yamasoba T, 1996, HEARING RES, V102, P116, DOI 10.1016/S0378-5955(96)00159-1 NR 18 TC 13 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2002 VL 164 IS 1-2 BP 12 EP 18 DI 10.1016/S0378-5955(01)00397-5 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 544TV UT WOS:000175178100002 PM 11950520 ER PT J AU Kubke, MF Dent, ML Hodos, W Carr, CE Dooling, RJ AF Kubke, MF Dent, ML Hodos, W Carr, CE Dooling, RJ TI Nucleus magnocellularis and nucleus laminaris in Belgian Waterslager and normal strain canaries SO HEARING RESEARCH LA English DT Article DE afferent regulation; auditory brainstem; hair cell loss; hair cell regeneration; cochlear nucleus; bird; cell death; canary; Belgian Waterslager ID STEM AUDITORY NUCLEI; SENSORINEURAL HEARING-LOSS; ANTEROVENTRAL COCHLEAR NUCLEUS; DEAF WHITE CATS; BRAIN-STEM; AFFERENT INFLUENCES; SERINUS-CANARIUS; MORPHOLOGICAL-CHANGES; INFERIOR COLLICULUS; PROTEIN-SYNTHESIS AB Belgian Waterslager (BWS) canaries are characterized by a mean 30% loss of hair cells in the basilar papilla compared to other canaries, and a corresponding increase in behavioral auditory thresholds. In spite of the large number of missing and damaged sensory cells, there is on average only a 12% reduction in the number of fibers in the VIIIth nerve. In this study, we examined cell number and size, and volume of auditory nuclei, specifically in nucleus magnocellularis and nucleus laminaris in Belgian Waterslager canaries. While the overall anatomical structure and organization of these nuclei and the total number of cells in the non-BWS and BWS canaries were comparable, BWS canaries showed a significant decrease in the volume of the auditory nuclei that was attributed to a reduction in cell size. These results provide further evidence in favor of a role of the sensory epithelium in the maintenance of central auditory structures. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Maryland, Dept Biol, College Pk, MD 20742 USA. Univ Maryland, Dept Psychol, College Pk, MD 20742 USA. RP Kubke, MF (reprint author), Univ Maryland, Dept Biol, College Pk, MD 20742 USA. RI Kubke, Maria Fabiana/E-2472-2011; Kubke, M Fabiana/H-3320-2012 CR Ariens Kappers C.U., 1936, COMP ANATOMY NERVOUS BLATCHLEY BJ, 1983, EXP NEUROL, V80, P81, DOI 10.1016/0014-4886(83)90008-0 BORN DE, 1991, BRAIN RES, V557, P37, DOI 10.1016/0006-8993(91)90113-A BORN DE, 1985, J COMP NEUROL, V231, P435, DOI 10.1002/cne.902310403 BORN DE, 1988, J NEUROSCI, V8, P901 COGGESHALL RE, 1992, TRENDS NEUROSCI, V15, P9, DOI 10.1016/0166-2236(92)90339-A DENT ML, 2000, WINT M ASS RES OT Gleich O, 2000, HEARING RES, V142, P56, DOI 10.1016/S0378-5955(00)00006-X Gleich O, 1997, J COMP NEUROL, V377, P5, DOI 10.1002/(SICI)1096-9861(19970106)377:1<5::AID-CNE2>3.0.CO;2-8 GLEICH O, 1995, HEARING RES, V82, P100 Gleich O, 2001, HEARING RES, V151, P141, DOI 10.1016/S0378-5955(00)00221-5 GLEICH O, 1994, NATURWISSENSCHAFTEN, V81, P320, DOI 10.1007/BF01131950 GLEICH O, 1994, HEARING RES, V79, P123, DOI 10.1016/0378-5955(94)90134-1 GUTTINGER HR, 1985, BEHAVIOUR, V92, P255 HASHISAKI GT, 1989, J COMP NEUROL, V283, P465, DOI 10.1002/cne.902830402 HEIL P, 1986, J COMP NEUROL, V252, P279, DOI 10.1002/cne.902520302 JACKSON H, 1988, J COMP NEUROL, V271, P106, DOI 10.1002/cne.902710111 JEANBAPTISTE M, 1975, J COMP NEUROL, V162, P11 Kelley MS, 1997, J COMP NEUROL, V389, P469 KONISHI M, 1999, NEURAL CODES DISTRIB, P1 KUBKE MF, 2000, SOC NEUR ABSTR KUBKE MF, 2000, HEARING RES, V3492, P1 LEVIMONTALCINI R, 1949, J COMP NEUROL, V91, P909 LIPPE WR, 1980, BRAIN RES, V196, P43, DOI 10.1016/0006-8993(80)90715-5 Mair I W, 1973, Acta Otolaryngol Suppl, V314, P1 MARLER P, 1977, J COMP PHYSIOL PSYCH, V91, P8, DOI 10.1037/h0077303 MOORE DR, 1990, J COMP NEUROL, V302, P810, DOI 10.1002/cne.903020412 MOORE DR, 1989, J NEUROSCI, V9, P1213 MOORE DR, 1988, J COMP NEUROL, V272, P503, DOI 10.1002/cne.902720405 MOREST DK, 1983, HEARING RES, V9, P145, DOI 10.1016/0378-5955(83)90024-2 MOREST DK, 1982, NEW PERSPECTIVES NOI Morest DK, 1998, MICROSC RES TECHNIQ, V41, P205 Mostafapour SP, 2000, J COMP NEUROL, V426, P561, DOI 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G NOTTEBOHM F, 1981, SCIENCE, V214, P1368, DOI 10.1126/science.7313697 OKANOYA K, 1987, J COMP PSYCHOL, V101, P213, DOI 10.1037/0735-7036.101.2.213 OKANOYA K, 1990, HEARING RES, V50, P185, DOI 10.1016/0378-5955(90)90044-P OKANOYA K, 1985, J ACOUST SOC AM, V78, P1170, DOI 10.1121/1.392885 Park DL, 1998, HEARING RES, V126, P84, DOI 10.1016/S0378-5955(98)00157-9 PARK TJ, 1989, J ETHOL, V7, P167, DOI 10.1007/BF02350038 PARKS TN, 1979, J COMP NEUROL, V183, P655 PASIC TR, 1994, J COMP NEUROL, V348, P111, DOI 10.1002/cne.903480106 RUBEL EW, 1990, J NEUROBIOL, V21, P169, DOI 10.1002/neu.480210112 RYALS BM, 2001, WINT M ASS RES OT Ryugo DK, 1998, J COMP NEUROL, V397, P532, DOI 10.1002/(SICI)1096-9861(19980810)397:4<532::AID-CNE6>3.0.CO;2-2 Saada AA, 1996, BRAIN RES, V736, P315, DOI 10.1016/0006-8993(96)00719-6 SIE KCY, 1992, J COMP NEUROL, V320, P501, DOI 10.1002/cne.903200407 SMITH ZDJ, 1983, J COMP NEUROL, V220, P199, DOI 10.1002/cne.902200207 STEWARD O, 1985, J COMP NEUROL, V231, P385, DOI 10.1002/cne.902310308 Stresemann E., 1923, Ornithologische Monatsberichte, V31, P103 Tierney TS, 1997, J COMP NEUROL, V378, P295, DOI 10.1002/(SICI)1096-9861(19970210)378:2<295::AID-CNE11>3.0.CO;2-R TRUNE DR, 1982, J COMP NEUROL, V209, P409, DOI 10.1002/cne.902090410 TUCCI DL, 1985, J COMP NEUROL, V238, P371, DOI 10.1002/cne.902380402 TUCCI DL, 1987, ANN OTO RHINOL LARYN, V96, P343 WALKER GBR, 1987, COLOURED TYPE SONG C WASER MS, 1977, J COMP PHYSIOL PSYCH, V91, P1, DOI 10.1037/h0077299 WEBSTER DB, 1983, EXP NEUROL, V79, P130, DOI 10.1016/0014-4886(83)90384-9 WEBSTER DB, 1983, HEARING RES, V12, P145, DOI 10.1016/0378-5955(83)90123-5 Willott JF, 1996, DEV BRAIN RES, V91, P218, DOI 10.1016/0165-3806(95)00188-3 NR 58 TC 4 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2002 VL 164 IS 1-2 BP 19 EP 28 DI 10.1016/S0378-5955(01)00387-2 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 544TV UT WOS:000175178100003 PM 11950521 ER PT J AU Van Campen, LE Murphy, WJ Franks, JR Mathias, PI Toraason, MA AF Van Campen, LE Murphy, WJ Franks, JR Mathias, PI Toraason, MA TI Oxidative DNA damage is associated with intense noise exposure in the rat SO HEARING RESEARCH LA English DT Article DE free radical; reactive oxygen species; oxidative stress; cochlea; DNA; 8-hydroxy-2 '-deoxyguanosine; thiobarbituric acid-reactive substance ID CISPLATIN-INDUCED OTOTOXICITY; INDUCED HEARING-LOSS; OXYGEN SPECIES GENERATION; LIPID-PEROXIDATION; ANTIOXIDANT SYSTEM; 4-METHYLTHIOBENZOIC ACID; SUPEROXIDE-DISMUTASE; CARBON-MONOXIDE; COCHLEAR DAMAGE; MUTT PROTEIN AB Increasing evidence suggests that noise-induced hearing loss may be reduced or prevented with antioxidant therapy. Biochemical markers of reactive oxygen species (ROS)-induced damage can help elucidate possible treatment timing constraints. This study examined the time course of ROS damage following a 2-h, broad-band noise exposure resulting in permanent threshold shift in 35 Long-Evans rats. Cochlea, brain, liver, serum and urine were analyzed at 1, 3, 8, 72, and 672 h (28 days) after exposure. Oxidative DNA damage was assessed by measuring 8-hydroxy-2'-deoxyguanosine (80HdG) by high performance liquid chromatography with electrochemical detection. Lipid peroxidation was measured via the thiobarbituric acid-reactive substances (TBARS) colorimetric assay for detection of aldehydes (e.g., malondialdehyde). Auditory brainstem. response and distortion product otoacoustic emission thresholds showed progressive elevation for the 3- and 8-h groups, then notable recovery for the 72-h group, and some worsening for the 672-h group. 80HdG was significantly elevated in cochlea in the 8-h group, and in brain and liver for the 72-h group. TBARS were significantly elevated in serum for the 72-h group. Based upon oxidative DNA damage present in cochlea following intense noise, we postulate that the first 8 h following exposure might be a critical period for antioxidant treatment. Published by Elsevier Science B.V. C1 CDCP, Engn & Phys Hazards Branch, Div Appl Res & Technol, NIOSH, Cincinnati, OH 45226 USA. CDCP, Biomonitoring & Hlth Assessment Branch, Div Appl Res & Technol, NIOSH, Cincinnati, OH 45226 USA. RP Van Campen, LE (reprint author), CDCP, Engn & Phys Hazards Branch, Div Appl Res & Technol, NIOSH, 4676 Columbia Pkwy, Cincinnati, OH 45226 USA. CR ADACHI S, 1993, CANCER RES, V53, P4153 AKIYAMA M, 1989, P NATL ACAD SCI USA, V86, P3949, DOI 10.1073/pnas.86.11.3949 Beckman KB, 1997, J BIOL CHEM, V272, P19633, DOI 10.1074/jbc.272.32.19633 BREEN AP, 1995, FREE RADICAL BIO MED, V18, P1033, DOI 10.1016/0891-5849(94)00209-3 CHENG KC, 1992, J BIOL CHEM, V267, P166 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 Clerici WJ, 1996, HEARING RES, V101, P14, DOI 10.1016/S0378-5955(96)00126-8 CLERICI WJ, 1995, HEARING RES, V84, P30, DOI 10.1016/0378-5955(95)00010-2 Collins AR, 1996, ENVIRON HEALTH PERSP, V104, P465, DOI 10.2307/3432805 DIZDAROGLU M, 1992, MUTAT RES, V275, P331, DOI 10.1016/0921-8734(92)90036-O Fechter LD, 1997, TOXICOL APPL PHARM, V142, P47, DOI 10.1006/taap.1996.8027 Ford MS, 1997, HEARING RES, V111, P143, DOI 10.1016/S0378-5955(97)00103-2 Hall G. F., 1991, SSSA SPEC PUBL, V28, P9 HALLIWEELL B, 1992, MOL BIOL FREE RADICA Halliwell B, 1998, FREE RADICAL RES, V29, P469, DOI 10.1080/10715769800300531 Halliwell B., 1999, FREE RADICAL BIO MED, P246 Hofer T, 1998, CHEM RES TOXICOL, V11, P882, DOI 10.1021/tx980041x ISING H, 2000, NOISE HLTH, V7, P7 Jacono AA, 1998, HEARING RES, V117, P31, DOI 10.1016/S0378-5955(97)00214-1 JANERO DR, 1990, FREE RADICAL BIO MED, V9, P515, DOI 10.1016/0891-5849(90)90131-2 Kamimura T, 1999, HEARING RES, V131, P117, DOI 10.1016/S0378-5955(99)00017-9 LIU Z, 1992, CHIN J OTORHINOLARYN, V27, P24 Lopez-Gonzalez MA, 1999, HEARING RES, V136, P165, DOI 10.1016/S0378-5955(99)00122-7 Lopez-Gonzalez MA, 1998, NEUROCHEM INT, V33, P55, DOI 10.1016/S0197-0186(05)80009-9 MAKI H, 1992, NATURE, V355, P273, DOI 10.1038/355273a0 MORROW JD, 1990, P NATL ACAD SCI USA, V87, P9383, DOI 10.1073/pnas.87.23.9383 Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5 OHKAWA H, 1979, ANAL BIOCHEM, V95, P351, DOI 10.1016/0003-2697(79)90738-3 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P219, DOI 10.1159/000013845 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847 QUIRK WS, 1999, ASS RES OT MIDW M ST QUIRK WS, 1994, HEARING RES, V74, P217, DOI 10.1016/0378-5955(94)90189-9 Rao D, 2000, TOXICOL APPL PHARM, V167, P125, DOI 10.1006/taap.2000.8995 RAVI R, 1995, PHARMACOL TOXICOL, V76, P386 Rybak LP, 1999, TOXICOL SCI, V47, P195, DOI 10.1093/toxsci/47.2.195 Rybak LP, 1997, PHARMACOL TOXICOL, V81, P173 Rybak LP, 1999, LARYNGOSCOPE, V109, P1740, DOI 10.1097/00005537-199911000-00003 RYBAK LP, 1995, FUND APPL TOXICOL, V26, P293, DOI 10.1006/faat.1995.1100 Schacht J, 1999, ANN NY ACAD SCI, V884, P125 SCHRAUFSTATTER IU, 1986, J CLIN INVEST, V77, P1312, DOI 10.1172/JCI112436 SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 SHE WD, 1995, CHUNG KUO CHUNG HSI, V15, P609 Szabo C, 1996, P NATL ACAD SCI USA, V93, P1753, DOI 10.1073/pnas.93.5.1753 WANG YJ, 1995, CHEM-BIOL INTERACT, V94, P135, DOI 10.1016/0009-2797(94)03327-5 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 Yamasoba T, 1999, BRAIN RES, V815, P317, DOI 10.1016/S0006-8993(98)01100-7 Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6 YIN DH, 1995, CLIN CHEM, V41, P329 NR 49 TC 52 Z9 55 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2002 VL 164 IS 1-2 BP 29 EP 38 DI 10.1016/S0378-5955(01)00391-4 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 544TV UT WOS:000175178100004 PM 11950522 ER PT J AU Velenovsky, DS Glattke, TJ AF Velenovsky, DS Glattke, TJ TI The effect of noise bandwidth on the contralateral suppression of transient evoked otoacoustic emissions SO HEARING RESEARCH LA English DT Article DE otoacoustic emission; transient evoked otoacoustic emission; contralateral suppression; noise bandwidth; critical band ID MEDIAL OLIVOCOCHLEAR SYSTEM; COCHLEAR MICROMECHANICAL PROPERTIES; AUDITORY-NERVE FIBERS; ELECTRICAL-STIMULATION; NEURONAL ORGANIZATION; STAPEDIUS MOTONEURONS; FREQUENCY-SELECTIVITY; ACOUSTIC STIMULATION; GUINEA-PIG; REFLEX AB The purpose of this study was to determine whether the bandwidth or loudness of a contralateral stimulus is the most important factor in evoking suppression of transient evoked otoacoustic emissions (TEOAEs). TEOAEs were measured in both ears of 10 women in quiet and in the presence of one of three contralateral noise bands; narrow band (NB), wide band (WB) and equalized (EQ), all centered at 2000 Hz. The NB (100 Hz bandwidth) and WB (2200 Hz bandwidth) noises were presented at 60 dB SPL. The SPL of the EQ (100 Hz bandwidth) noise was adjusted such that it was equal in loudness to the WB noise as determined using a psychoacoustic procedure. Only the WB noise was associated with a significant reduction of TEOAE levels. It is believed that this effect occurred because the WB noise has greater effective energy representation across frequency on the basilar membrane as it may receive more gain from the action of the cochlear amplifier. Results of the present study indicate that noise bandwidth is the most important factor in the contralateral suppression of TEOAEs. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Arizona, Dept Speech & Hearing Sci, Tucson, AZ 85724 USA. RP Velenovsky, DS (reprint author), Univ Arizona, Coll Med, Dept Cell Biol & Anat, POB 245044,1501 N Campbell Ave, Tucson, AZ 85724 USA. CR BERLIN CI, 1994, OTOLARYNG HEAD NECK, V110, P3, DOI 10.1016/S0194-5998(94)70788-X BERLIN CI, 1993, HEARING RES, V71, P1, DOI 10.1016/0378-5955(93)90015-S BLOCK MG, 1977, J ACOUST SOC AM, V61, P120, DOI 10.1121/1.381274 BORG E, 1973, BRAIN RES, V49, P101, DOI 10.1016/0006-8993(73)90404-6 BROWN MC, 1989, HEARING RES, V40, P93, DOI 10.1016/0378-5955(89)90103-2 BROWN MC, 1987, J COMP NEUROL, V260, P591, DOI 10.1002/cne.902600411 BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E COLLET L, 1992, AUDIOLOGY, V31, P1 COLLET L, 1993, BRIT J AUDIOL, V27, P155, DOI 10.3109/03005369309077907 DALLOS P, 1992, J NEUROSCI, V12, P4575 DESMEDT J. E., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1478, DOI 10.1121/1.1918374 FELDTKELLER R, 1956, OHR NACHRICHTENEMPFA, P75 FEX J, 1967, J ACOUST SOC AM, V41, P666, DOI 10.1121/1.1910395 FISCH U, 1963, Acta Otolaryngol, V56, P287, DOI 10.3109/00016486309127418 FLOTTORP G, 1971, J ACOUST SOC AM, V49, P457, DOI 10.1121/1.1912373 GACEK RR, 1961, ARCHIV OTOLARYNGOL, V74, P690 GALAMBOS R, 1956, J NEUROPHYSIOL, V19, P424 GEISLER CD, 1974, J ACOUST SOC AM, V56, P1908, DOI 10.1121/1.1903532 GIFFORD ML, 1987, HEARING RES, V29, P179, DOI 10.1016/0378-5955(87)90166-3 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T GORGA MP, 1980, AUDIOLOGY, V19, P277 GUINAN JJ, 1988, HEARING RES, V33, P97, DOI 10.1016/0378-5955(88)90023-8 HARRIS FP, 1991, AUDIOLOGY, V30, P135 Hood LJ, 1996, HEARING RES, V101, P113, DOI 10.1016/S0378-5955(96)00138-4 Ishii D, 1968, Acta Otolaryngol, V66, P282, DOI 10.3109/00016486809126295 JOHNSTONE BM, 1986, HEARING RES, V22, P147, DOI 10.1016/0378-5955(86)90090-0 JOSEPH MP, 1985, J COMP NEUROL, V232, P43, DOI 10.1002/cne.902320105 KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222 KIM DO, 1986, HEARING RES, V22, P105, DOI 10.1016/0378-5955(86)90088-2 KOBLER JB, 1992, J NEUROPHYSIOL, V68, P807 Leek MR, 1996, J ACOUST SOC AM, V100, P1796, DOI 10.1121/1.415999 LEEK MR, 1992, PERCEPT PSYCHOPHYS, V51, P247, DOI 10.3758/BF03212251 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1 Maison S, 2000, HEARING RES, V140, P111, DOI 10.1016/S0378-5955(99)00196-3 MARGOLIS RH, 1975, J ACOUST SOC AM, V58, P1330, DOI 10.1121/1.380787 Marshall L, 1996, EAR HEARING, V17, P237, DOI 10.1097/00003446-199606000-00007 MOLLER AAGE R., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1524, DOI 10.1121/1.1918384 NAKAI Y, 1974, ACTA OTO-LARYNGOL, V77, P393, DOI 10.3109/00016487409124641 NORMAN M, 1993, BRIT J AUDIOL, V27, P281, DOI 10.3109/03005369309076705 RASMUSSEN GL, 1946, J COMP NEUROL, V84, P141, DOI 10.1002/cne.900840204 RASMUSSEN GL, 1953, J COMP NEUROL, V99, P61, DOI 10.1002/cne.900990105 ROUILLER EM, 1989, BRAIN RES, V476, P21, DOI 10.1016/0006-8993(89)91532-1 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 Ryan S, 1996, HEARING RES, V94, P140, DOI 10.1016/0378-5955(96)00021-4 Scharf B, 1970, FOUNDATIONS MODERN A, V1, P157 SCHARF B, 1961, PSYCHOL BULL, V58, P205, DOI 10.1037/h0049235 SMITH CA, 1963, ANN OTO RHINOL LARYN, V72, P489 SMITH CA, 1961, ANN OTO RHINOL LARYN, V70, P504 SPOENDLIN HH, 1963, ANN OTO RHINOL LARYN, V72, P660 Veuillet E, 1996, HEARING RES, V93, P128, DOI 10.1016/0378-5955(95)00212-X VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724 VONBEKESY G, 1960, EXPT HEARING, P410 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 WARR WB, 1986, NEUROBIOLOGY HEARING, P349 Wen H., 1993, ARO ABSTR, V16, P102 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P950, DOI 10.1121/1.1912234 ZWICKER E, 1986, J ACOUST SOC AM, V80, P154, DOI 10.1121/1.394176 ZWICKER E, 1957, J ACOUST SOC AM, V29, P548, DOI 10.1121/1.1908963 NR 60 TC 17 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2002 VL 164 IS 1-2 BP 39 EP 48 DI 10.1016/S0378-5955(01)00393-8 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 544TV UT WOS:000175178100005 PM 11950523 ER PT J AU Shi, XR Ren, TY Nuttall, AL AF Shi, XR Ren, TY Nuttall, AL TI The electrochemical and fluorescence detection of nitric oxide in the cochlea and its increase following loud sound SO HEARING RESEARCH LA English DT Article DE nitric oxide electrode; polarography; reactive oxygen species; N-G-nitro-L-arginine methyl ester; L-arginine and (6R)-5,6,7,8-tetrahydrobiopterin dihydrochloride; noise exposure; guinea pig ID AUDITORY BRAIN-STEM; GUINEA-PIG COCHLEA; NO PRODUCTION; SYNTHASE; PATHWAY; NMDA; PEROXYNITRITE; ENDOTHELIUM; PHYSIOLOGY; EXPRESSION AB A nitric oxide (NO)-selective sensor (tip diameter 30 mum) was inserted into the perilymph of the basal turn of the guinea pig cochlea. The basal level and stimulation-induced changes of NO were measured. The mean ( S.E.M.) basal level of NO was mine 273 +/- 42.9 nM. Following perilymphatic perfusion of the artificial perilymph containing NO synthase (NOS) substrate L-arginine (100 muM) combined with cofactor (6R)-5,6,7,8-tetrahydrobiopterin dihydrochloride (100 muM), a rapid and significant increase of NO to a mean concentration of 392 +/- 32.3 nM (P < 0.01, n = 10) was recorded. In contrast, a significant decrease of mean NO concentration to 180 +/- 32.7 nM (P < 0.01, n = 10) was observed following the perfusion of the NOS-inhibiting agent N-G-nitro-L-arginine methyl ester (100 muM). No change in the NO concentration was found following the perfusion of either artificial perilymph or N-G-monomethyl-D-arginine (100 muM) solution employed as controls. Broadband noise exposure (3 h/day at 120 dBA SPL) for three consecutive days produced an increase in NO concentration to 618 +/- 60.7 nM (P < 0.05, n = 10) in the perilymph. In addition, by using specific dyes for NO, 4,5-diaminofluoresceine diacetate and for the reactive oxygen species (ROS), dihydrorhodamine 1,2,3, the distribution of NO in the whole mounts of the organ of Corti and the production of ROS in vivo in the organ of Corti were investigated in both control (n = 5) and noise-exposed (n = 5) animals. The more intense NO and ROS fluorescence was observed in both the inner and outer hair cells in the noise-exposed groups. It is proposed that both the basal level and the increase in NO concentration following the addition of substrate (L-arginine) are produced by the constitutive NOS while the elevated NO and ROS following noise exposure indicate that NO may be involved in noise-induced hearing loss. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Oregon Hlth Sci Univ, Oregon Hearing Res Ctr, Dept Otolaryngol Head & Neck Surg, Portland, OR 97201 USA. Gen Hosp CPAPA, Dept Otolaryngol, Beijing 100039, Peoples R China. Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Nuttall, AL (reprint author), Oregon Hlth Sci Univ, Oregon Hearing Res Ctr, Dept Otolaryngol Head & Neck Surg, 3181 SW Sam Jackson Pk Rd,NRC04, Portland, OR 97201 USA. CR AGNATI LF, 1995, NEUROSCIENCE, V69, P711, DOI 10.1016/0306-4522(95)00308-6 AMAEE FR, 1995, ACTA OTO-LARYNGOL, V115, P386, DOI 10.3109/00016489509139334 Blottner D, 1999, J NEUROSCI RES, V58, P139, DOI 10.1002/(SICI)1097-4547(19991001)58:1<139::AID-JNR14>3.0.CO;2-X BRECHTELSBAUER PB, 1994, HEARING RES, V77, P38, DOI 10.1016/0378-5955(94)90251-8 Broillet MC, 2001, FEBS LETT, V491, P227, DOI 10.1016/S0014-5793(01)02206-2 Brovkovych V, 1999, J PHARMACEUT BIOMED, V19, P135, DOI 10.1016/S0731-7085(98)00090-9 BROWN GC, 1995, FEBS LETT, V369, P136, DOI 10.1016/0014-5793(95)00763-Y Chen GD, 2001, HEARING RES, V154, P108, DOI 10.1016/S0378-5955(01)00228-3 Contestabile A, 2000, BRAIN RES REV, V32, P476, DOI 10.1016/S0165-0173(00)00018-7 DAIS CGD, 1995, ARO M, P76 Dawson TM, 1998, PROG BRAIN RES, V118, P3 DAWSON TM, 1992, ANN NEUROL, V32, P297, DOI 10.1002/ana.410320302 Dehne N, 2000, HEARING RES, V143, P162, DOI 10.1016/S0378-5955(00)00036-8 Fessenden JD, 1998, HEARING RES, V118, P168, DOI 10.1016/S0378-5955(98)00027-6 Fessenden JD, 1999, J COMP NEUROL, V404, P52 FESSENDEN JD, 1994, BRAIN RES, V668, P9, DOI 10.1016/0006-8993(94)90505-3 Gosepath K, 2000, EUR ARCH OTO-RHINO-L, V257, P418, DOI 10.1007/s004050000261 Halliwell B, 1999, FREE RADICAL RES, V31, P651, DOI 10.1080/10715769900301221 HENDERSON D, 1999, ANN NY ACAD SCI, V28, P368 Kojima H, 1998, NEUROREPORT, V9, P3345, DOI 10.1097/00001756-199810260-00001 Kong WJ, 1996, HEARING RES, V99, P22, DOI 10.1016/S0378-5955(96)00076-7 Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x Lipton SA, 1999, CELL DEATH DIFFER, V6, P943, DOI 10.1038/sj.cdd.4400580 Matsuo I, 2001, AM J PHYSIOL-REG I, V280, pR1285 Michel O, 1999, HEARING RES, V133, P1, DOI 10.1016/S0378-5955(99)00049-0 Mitchell C, 1996, HEARING RES, V99, P38, DOI 10.1016/S0378-5955(96)00081-0 OHINATA Y, 2000, BRAIN RES, V29, P164 OMELCHENKO I, 2001, ASS RES OT MIDW M ST POLLOCK JS, 1991, P NATL ACAD SCI USA, V88, P10480, DOI 10.1073/pnas.88.23.10480 Pryor WA, 1997, FREE RADICAL BIO MED, V23, P331, DOI 10.1016/S0891-5849(97)00121-4 Reuss S, 2000, MECH AGEING DEV, V112, P125, DOI 10.1016/S0047-6374(99)00082-2 Reuss S, 1998, NEUROREPORT, V9, P3643 SHI XR, 2001, ASS RES OT MIDW M ST Sunami K, 1999, EUR ARCH OTO-RHINO-L, V256, P323, DOI 10.1007/s004050050156 Takumida M, 2001, ACTA OTO-LARYNGOL, V121, P16, DOI 10.1080/000164801300006218 Takumida M, 2000, HEARING RES, V140, P91, DOI 10.1016/S0378-5955(99)00188-4 Tsikas D, 2000, FEBS LETT, V478, P1, DOI 10.1016/S0014-5793(00)01686-0 Watanabe K, 2000, ANTI-CANCER DRUG, V11, P29, DOI 10.1097/00001813-200001000-00005 ZHANG XJ, 1999, BIOCH NITR OX 6 INT NR 39 TC 53 Z9 58 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2002 VL 164 IS 1-2 BP 49 EP 58 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 544TV UT WOS:000175178100006 PM 11950524 ER PT J AU Chang, H Chen, K Kaltenbach, JA Zhang, JS Godfrey, DA AF Chang, H Chen, K Kaltenbach, JA Zhang, JS Godfrey, DA TI Effects of acoustic trauma on dorsal cochlear nucleus neuron activity in slices SO HEARING RESEARCH LA English DT Article DE auditory; bursting; cartwheel cell; fusiform. cell; granule cell; tinnitus ID HIGH-INTENSITY SOUND; INFERIOR COLLICULUS; LATERAL LEMNISCUS; BRAIN-STEM; RAT; EXPOSURE; ACETYLCHOLINE; TINNITUS; LESIONS; DEAFFERENTATION AB Previous studies found increased multi-unit spontaneous activity in the dorsal cochlear nucleus (DCN) of animals that had been exposed to intense sound, Such activity may be related to tinnitus. Our study examined effects of previous exposure to intense sound on single neurons in the DCN, by measuring spontaneous activities and sensitivities to acetylcholine, an important neuro transmitter of centrifugal pathways to the cochlear nucleus, in brain slices. Spontaneous discharges were recorded extracellularly in the DCN portion of brain slices from control and intense-tone-exposed rats. Slices from exposed rats showed increased prevalence of bursting and decreased regular spontaneous activity. Since regular neurons include fusiform cells, and bursting neurons include cartwheel cells, intense tone exposure may lead to increased activity of DCN cartwheel cells and decreased activity of fusiform cells. Alternatively, the activity of some fusiform. cells might change to bursting. Intense tone exposure also appeared to increase bursting neuron sensitivity to carbachol. This suggests that changes in DCN cartwheel cell spontaneous activity may reflect changes in effects of cholinergic centrifugal pathways following intense tone exposure. We conclude that acoustic trauma may lead to changes in the physiology and pharmacology of DCN neurons. These changes may be related to underlying mechanisms of central tinnitus. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Med Coll Ohio, Dept Otolaryngol, Toledo, OH 43614 USA. Wayne State Univ, Dept Otolaryngol, Detroit, MI 48201 USA. RP Godfrey, DA (reprint author), Med Coll Ohio, Dept Otolaryngol, Toledo, OH 43614 USA. CR ADAMS JC, 1984, BRAIN RES BULL, V13, P585, DOI 10.1016/0361-9230(84)90041-8 Bauer CA, 2001, JARO, V2, P54 CASPARY DM, 1983, EXP NEUROL, V82, P491, DOI 10.1016/0014-4886(83)90419-3 CHANG H, 2001, ABSTR ASS RES OT, V24, P274 Chen K, 2000, HEARING RES, V149, P216, DOI 10.1016/S0378-5955(00)00188-X CHEN K, 1999, P 6 INT TINN SEEM TI, P212 Chen K, 1999, NEUROSCIENCE, V90, P1043, DOI 10.1016/S0306-4522(98)00503-X CHEN KJ, 1994, HEARING RES, V77, P168 Chen KJ, 1998, BRAIN RES, V783, P219, DOI 10.1016/S0006-8993(97)01348-6 EVANS EF, 1973, EXP BRAIN RES, V17, P402 Francis HW, 2000, HEARING RES, V149, P91, DOI 10.1016/S0378-5955(00)00165-9 GERKEN GM, 1984, HEARING RES, V13, P249, DOI 10.1016/0378-5955(84)90078-9 GODFREY DA, 1987, HEARING RES, V28, P253, DOI 10.1016/0378-5955(87)90053-0 GODFREY DA, 1992, J NEUROSCI METH, V41, P167, DOI 10.1016/0165-0270(92)90058-L Golding NL, 1996, J NEUROSCI, V16, P2208 Helfert RH, 1991, NEUROBIOLOGY HEARING, P1 HU B, 1994, J PHYSIOL-LONDON, V479, P217 Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6 KALTENBACH JA, 1992, HEARING RES, V60, P205, DOI 10.1016/0378-5955(92)90022-F Kaltenbach JA, 1998, HEARING RES, V124, P78, DOI 10.1016/S0378-5955(98)00119-1 KALTENBACH JA, 1999, P 6 INT TINN SEM TIN, P13 Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57 KOERBER KC, 1966, EXP NEUROL, V16, P119, DOI 10.1016/0014-4886(66)90091-4 Kulesza RJ, 2000, JARO, V1, P255, DOI 10.1007/s101620010054 LEVEY AI, 1995, J NEUROSCI, V15, P4077 Luo L, 1999, J COMP NEUROL, V404, P271, DOI 10.1002/(SICI)1096-9861(19990208)404:2<271::AID-CNE10>3.0.CO;2-4 MANIS PB, 1994, J COMP NEUROL, V348, P261, DOI 10.1002/cne.903480208 Morest DK, 1997, HEARING RES, V103, P151, DOI 10.1016/S0378-5955(96)00172-4 OERTEL D, 1989, J COMP NEUROL, V283, P228, DOI 10.1002/cne.902830206 Oliver DL, 1999, NEUROSCIENCE, V93, P643, DOI 10.1016/S0306-4522(99)00143-8 OLIVER DL, 1985, J COMP NEUROL, V237, P343, DOI 10.1002/cne.902370306 OSEN KK, 1972, J COMP NEUROL, V144, P355, DOI 10.1002/cne.901440307 Pagano M, 1993, PRINCIPLES BIOSTATIS Peruzzi D, 1997, J NEUROSCI, V17, P3766 Ris L, 2001, NEUROSCI LETT, V297, P142, DOI 10.1016/S0304-3940(00)01677-3 Rusznak Z, 1997, EUR J NEUROSCI, V9, P2348, DOI 10.1111/j.1460-9568.1997.tb01652.x SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U SASAKI CT, 1980, BRAIN RES, V194, P511, DOI 10.1016/0006-8993(80)91233-0 SHERRIFF FE, 1994, NEUROSCIENCE, V58, P627, DOI 10.1016/0306-4522(94)90086-8 SHNEIDERMAN A, 1989, J COMP NEUROL, V286, P28, DOI 10.1002/cne.902860103 WALLER HJ, 1994, J NEUROPHYSIOL, V71, P467 Waller HJ, 1996, HEARING RES, V98, P169, DOI 10.1016/0378-5955(96)00090-1 Wang J, 1996, J NEUROPHYSIOL, V75, P171 WENTHOLD RJ, 1987, NEUROSCIENCE, V22, P897, DOI 10.1016/0306-4522(87)92968-X WOUTERLOOD FG, 1984, J COMP NEUROL, V227, P136, DOI 10.1002/cne.902270114 Yao WP, 1999, J HISTOCHEM CYTOCHEM, V47, P83 Zhang JS, 1998, NEUROSCI LETT, V250, P197, DOI 10.1016/S0304-3940(98)00482-0 ZHANG S, 1994, J NEUROPHYSIOL, V71, P914 NR 48 TC 50 Z9 52 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2002 VL 164 IS 1-2 BP 59 EP 68 DI 10.1016/S0378-5955(01)00410-5 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 544TV UT WOS:000175178100007 PM 11950525 ER PT J AU Kittel, M Wagner, E Klump, GM AF Kittel, M Wagner, E Klump, GM TI An estimate of the auditory-filter bandwidth in the Mongolian gerbil SO HEARING RESEARCH LA English DT Article DE critical ratio; critical band; frequency selectivity; Meriones unguiculatits ID MOUSE MUS-MUSCULUS; MERIONES-UNGUICULATUS; CRITICAL BANDS; FREQUENCY REPRESENTATION; FUNCTIONAL-ORGANIZATION; BEHAVIORAL MEASURES; BASILAR-MEMBRANE; MODULATED TONES; CRITICAL RATIOS; COCHLEA AB Critical ratios (CRs) and the critical band (CB) were determined in six Mongolian gerbils (Meriones unguiculatus) using a GO/NOGO procedure and the method of constant stimuli. The test-tone frequencies were 0.5, 1, 2, 4 and 8 kHz in the CR measurements and 2 kHz in the CB measurement. Critical ratios were independent of the level of the white-noise masker. The lowest CR with a mean of 24.8 dB was found at I kHz for maskers with spectrum levels of 20 and 40 dB SPL. The CR increased on average by 2.1 dB per octave between the frequencies I and 4 kHz. The CR bandwidth at 2 kHz and at a masker spectrum level of 40 dB SPL was 417 Hz. Using the band-narrowing procedure, we determined a mean CB of 216 Hz at a test-tone frequency of 2 kHz. The results are discussed in comparison to psychophysical data from other rodent species and humans. Finally, the relation of CR and CB bandwidths to the bandwidth of tuning curves of gerbil auditory-nerve fibers and the gerbil's cochlear frequency map are explored. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Tech Univ Munich, Inst Zool, D-85747 Garching, Germany. RP Klump, GM (reprint author), Carl Von Ossietzky Univ Oldenburg, AG Zoophysiol & Verhalten, D-26111 Oldenburg, Germany. EM georg.klump@uni-oldenburg.de CR BREDBERG G, 1968, HEARING MECHANISMS V, P126 BUUS S, 1995, J ACOUST SOC AM, V98, P112, DOI 10.1121/1.414466 Buus S., 1997, ENCY ACOUSTICS, V3, P1427 EHRET G, 1975, J COMP PHYSIOL, V103, P329 EHRET G, 1976, BIOL CYBERN, V24, P35, DOI 10.1007/BF00365592 ELDREDGE DH, 1981, J ACOUST SOC AM, V69, P1091, DOI 10.1121/1.385688 EVANS EF, 1992, ADV BIOSCI, V83, P159 Fay R. R., 1988, HEARING VERTEBRATES Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47 Fletcher H, 1930, J ACOUST SOC AM, V1, P311, DOI 10.1121/1.1915186 GOUREVIT.G, 1965, J ACOUST SOC AM, V37, P439, DOI 10.1121/1.1909348 GREENWOOD D, 1961, J ACOUST SOC AM, V33, P1344, DOI 10.1121/1.1908437 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HAWKINS JE, 1950, J ACOUST SOC AM, V22, P6, DOI 10.1121/1.1906581 LANGEMANN U, 1995, HEARING RES, V84, P167, DOI 10.1016/0378-5955(95)00023-W MULLER M, 1991, HEARING RES, V56, P1, DOI 10.1016/0378-5955(91)90147-2 Muller M, 1996, HEARING RES, V94, P148, DOI 10.1016/0378-5955(95)00230-8 NIEMIEC AJ, 1992, J ACOUST SOC AM, V92, P2636, DOI 10.1121/1.404380 Ou HC, 2000, HEARING RES, V145, P123, DOI 10.1016/S0378-5955(00)00082-4 PICKLES JO, 1979, J ACOUST SOC AM, V66, P1725, DOI 10.1121/1.383645 PLASSMANN W, 1987, BRAIN BEHAV EVOLUT, V30, P82, DOI 10.1159/000118639 Richter C-P, 2001, PHYSL PSYCHOPHYSICAL, P44 RYAN A, 1976, J ACOUST SOC AM, V59, P1222, DOI 10.1121/1.380961 SCHEICH H, 1993, EUR J NEUROSCI, V5, P898, DOI 10.1111/j.1460-9568.1993.tb00941.x SCHMIEDT RA, 1989, HEARING RES, V42, P23, DOI 10.1016/0378-5955(89)90115-9 Schulze H, 1999, NEUROSCI LETT, V261, P13, DOI 10.1016/S0304-3940(98)00991-4 Schulze H, 1997, ACTA OTO-LARYNGOL, P89 Schulze H, 1997, J COMP PHYSIOL A, V181, P573, DOI 10.1007/s003590050141 Schulze H, 1999, J COMP PHYSIOL A, V185, P493, DOI 10.1007/s003590050410 SEATON WH, 1975, J ACOUST SOC AM, V57, P193, DOI 10.1121/1.380414 SINNOTT J, 1995, METHODS COMP PSYCHOA, P281 Sinnott JM, 1997, HEARING RES, V112, P235, DOI 10.1016/S0378-5955(97)00125-1 SINNOTT JM, 1992, HEARING RES, V59, P205, DOI 10.1016/0378-5955(92)90117-6 STURMER I, 1997, VERH DTSCH ZOOL GES, V90, P18 THOMAS H, 1993, EUR J NEUROSCI, V5, P882, DOI 10.1111/j.1460-9568.1993.tb00940.x Wetzel W, 1998, BEHAV BRAIN RES, V91, P29, DOI 10.1016/S0166-4328(97)00099-5 Zwicker E., 1956, Acustica, V6 ZWISLOCKI JJ, 1974, FACTS MODELS HEARING, P107 NR 38 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2002 VL 164 IS 1-2 BP 69 EP 76 DI 10.1016/S0378-5955(01)00411-7 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 544TV UT WOS:000175178100008 PM 11950526 ER PT J AU Thompson, AM Wiechmann, AF AF Thompson, AM Wiechmann, AF TI 5-HT1A receptor subtype mRNA expression in cochlear nucleus SO HEARING RESEARCH LA English DT Article DE central auditory system; polymerase chain reaction; in situ hybridization; cat ID PHYSIOLOGICAL-RESPONSE PROPERTIES; CENTRAL-NERVOUS-SYSTEM; AUDITORY BRAIN-STEM; RAT-BRAIN; MESSENGER-RNA; SEROTONIN RECEPTORS; HORSERADISH-PEROXIDASE; MOLECULAR-BIOLOGY; LOCALIZATION; CELLS AB Previous studies indicate expression of various serotonin receptor subtypes, including the 5-HT1A receptor subtype, in rodent cochlear nucleus, Our long-term goal is to identify the types of cochlear nucleus neurons, which are well described in cat, that express 5-HT receptors. In the current study, the reverse transcriptase/polymerase chain reaction and the in situ hybridization method were used to detect the mRNA encoding a portion of the 5-HT1A receptor subtype in the cochlear nucleus of the cat. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Oklahoma, Hlth Sci Ctr, Dept Otorhinolaryngol, Oklahoma City, OK 73190 USA. Univ Oklahoma, Hlth Sci Ctr, Dept Cell Biol, Oklahoma City, OK 73190 USA. Univ Oklahoma, Hlth Sci Ctr, Dept Ophthalmol, Oklahoma City, OK 73190 USA. RP Thompson, AM (reprint author), Univ Oklahoma, Hlth Sci Ctr, Dept Otorhinolaryngol, POB 26901, Oklahoma City, OK 73190 USA. CR ALBERT PR, 1990, J BIOL CHEM, V265, P5825 Andrade R, 1998, ANN NY ACAD SCI, V861, P190, DOI 10.1111/j.1749-6632.1998.tb10191.x BANERJEE P, 1993, BIOCHEM BIOPH RES CO, V192, P104, DOI 10.1006/bbrc.1993.1387 Blier P, 1998, ANN NY ACAD SCI, V861, P204, DOI 10.1111/j.1749-6632.1998.tb10192.x BOESS FG, 1994, NEUROPHARMACOLOGY, V33, P275, DOI 10.1016/0028-3908(94)90059-0 CANT NB, 1984, HEARING SCI RECENT A, P371 Carter AG, 2000, J NEUROSCI, V20, P4423 Chery N, 1999, J NEUROSCI, V19, P7342 EBERT U, 1992, NEUROSCI LETT, V145, P51, DOI 10.1016/0304-3940(92)90201-H Fornal CA, 1996, J PHARMACOL EXP THER, V278, P752 Godfrey DA, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P139, DOI 10.1007/978-1-4419-8712-9_13 HALAN R, 2000, ASS RES OT ABSTR, V23, P113 HILLE B, 1994, TRENDS NEUROSCI, V17, P531, DOI 10.1016/0166-2236(94)90157-0 Hurd LB, 1999, SYNAPSE, V33, P83 Hurley LM, 2001, J COMP NEUROL, V435, P78, DOI 10.1002/cne.1194 Hutson KA, 1996, J COMP NEUROL, V371, P397, DOI 10.1002/(SICI)1096-9861(19960729)371:3<397::AID-CNE4>3.0.CO;2-Y Kia HK, 1996, J COMP NEUROL, V365, P289 Kiang NY, 1973, BASIC MECHANISMS HEA, P455 KLEPPER A, 1991, BRAIN RES, V557, P190, DOI 10.1016/0006-8993(91)90134-H Lysakowski A, 1999, J COMP NEUROL, V403, P378, DOI 10.1002/(SICI)1096-9861(19990118)403:3<378::AID-CNE7>3.0.CO;2-X MANIS PB, 1994, J COMP NEUROL, V348, P261, DOI 10.1002/cne.903480208 MIQUEL MC, 1991, NEUROCHEM INT, V19, P453, DOI 10.1016/0197-0186(91)90063-J Morest DK, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P19, DOI 10.1007/978-1-4419-8712-9_2 Morest DK, 1973, BASIC MECH HEARING, P479 Oertel D, 1991, Curr Opin Neurobiol, V1, P221, DOI 10.1016/0959-4388(91)90082-I PAZOS A, 1985, BRAIN RES, V346, P231, DOI 10.1016/0006-8993(85)90857-1 PEROUTKA SJ, 1994, SYNAPSE, V18, P241, DOI 10.1002/syn.890180310 POMPEIANO M, 1992, J NEUROSCI, V12, P440 Revelis J, 1998, HEARING RES, V116, P119, DOI 10.1016/S0378-5955(97)00210-4 RHODE WS, 1983, J COMP NEUROL, V213, P448, DOI 10.1002/cne.902130408 RHODE WS, 1983, J COMP NEUROL, V213, P426, DOI 10.1002/cne.902130407 Riad N, 2000, J COMP NEUROL, V417, P181 ROUILLER EM, 1984, J COMP NEUROL, V225, P167, DOI 10.1002/cne.902250203 THOMPSON AM, 1995, J COMP NEUROL, V351, P104, DOI 10.1002/cne.903510110 Thompson AM, 2001, BRAIN RES, V907, P195, DOI 10.1016/S0006-8993(01)02483-0 THOMPSON GC, 1994, OTOLARYNG HEAD NECK, V110, P93, DOI 10.1016/S0194-5998(94)70797-9 Wiechmann AF, 1996, J PINEAL RES, V20, P217, DOI 10.1111/j.1600-079X.1996.tb00262.x Wiechmann AF, 1999, MOL BRAIN RES, V63, P297, DOI 10.1016/S0169-328X(98)00292-7 WRIGHT DE, 1995, J COMP NEUROL, V351, P357, DOI 10.1002/cne.903510304 NR 39 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2002 VL 164 IS 1-2 BP 77 EP 81 DI 10.1016/S0378-5955(01)00413-0 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 544TV UT WOS:000175178100009 PM 11950527 ER PT J AU Moore, CM Vollmer, M Leake, PA Snyder, RL Rebscher, SJ AF Moore, CM Vollmer, M Leake, PA Snyder, RL Rebscher, SJ TI The effects of chronic intracochlear electrical stimulation on inferior colliculus spatial representation in adult deafened cats SO HEARING RESEARCH LA English DT Article DE cochlear implant; electrical stimulation; plasticity; inferior colliculus; chronic stimulation; spatial ID SPIRAL GANGLION NEURONS; COCHLEAR IMPLANT; TEMPORAL RESOLUTION; NEONATAL DEAFNESS; AUDITORY-SYSTEM; CELL SURVIVAL; MOTOR CORTEX; PLASTICITY; PERFORMANCE; NERVE AB Previous studies have shown that chronic electrical stimulation through a cochlear implant causes significant alterations in the central auditory system of neonatally deafened cats. The goal of this study was to investigate the effects of chronic stimulation in the mature auditory system. Normal hearing adult animals were deafened by ototoxic drugs and received daily electrical stimulation over periods of 4-6 months. In terminal physiology experiments, response thresholds to pulsatile and sinusoidal signals were recorded within the inferior colliculus (IC). Using previously established methods, spatial tuning curves (STCs; threshold vs. IC depth functions) were constructed, and their widths measured to infer spatial selectivity. The IC spatial representations were similar for pulsatile and sinusoidal stimulation when phase duration was taken into consideration. However, sinusoidal signals consistently elicited much lower thresholds than pulsatile signals, a difference not solely attributable to differences in charge/phase. The average STC width was significantly broader in the adult deafened/stimulated animals than in controls (adult deafened/unstimulated cats), suggesting that electrical stimulation can induce spatial expansion of the IC representation of the chronically stimulated cochlear sector. Further, results in these adult animals were not significantly different from results in neonatally deafened, early stimulated animals, suggesting that a similar degree of plasticity was induced within the auditory midbrains of mature animals. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Calif San Francisco, Dept Otolaryngol, Epstein Lab, San Francisco, CA 94143 USA. RP Moore, CM (reprint author), Univ Calif San Francisco, Dept Otolaryngol, Epstein Lab, Room U490, San Francisco, CA 94143 USA. CR Araki S, 1998, LARYNGOSCOPE, V108, P687, DOI 10.1097/00005537-199805000-00012 Battmer R D, 1999, Ann Otol Rhinol Laryngol Suppl, V177, P69 Beitel RE, 2000, J NEUROPHYSIOL, V83, P2145 BLACK RC, 1983, ANN NY ACAD SCI, V405, P137, DOI 10.1111/j.1749-6632.1983.tb31626.x Bledsoe SC, 1995, NEUROREPORT, V7, P225, DOI 10.1097/00001756-199512000-00054 Brown M, 1997, HEARING RES, V104, P57, DOI 10.1016/S0378-5955(96)00185-2 Butefisch CM, 2000, P NATL ACAD SCI USA, V97, P3661, DOI 10.1073/pnas.050350297 Classen J, 1998, J NEUROPHYSIOL, V79, P1117 DARIANSMITH C, 1994, NATURE, V368, P737, DOI 10.1038/368737a0 Dorman M.F., 1993, COCHLEAR IMPLANTS AU, P145 Eggermont J.J., 1986, ACTA OTOLARYNGOL S, V429, P1 GREENWOOD DD, 1974, SENSATION MEASUREMEN, P231 Gstoettner WK, 1998, ACTA OTO-LARYNGOL, V118, P640 HARTSHORN DO, 1991, OTOLARYNG HEAD NECK, V104, P311 Kaas JH, 1997, BRAIN RES BULL, V44, P107, DOI 10.1016/S0361-9230(97)00094-4 Kilgard MP, 1998, NAT NEUROSCI, V1, P727, DOI 10.1038/3729 Klinke R, 1999, SCIENCE, V285, P1729, DOI 10.1126/science.285.5434.1729 Kompis M, 1999, ACTA OTO-LARYNGOL, V119, P659, DOI 10.1080/00016489950180595 Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3 LEAKE PA, 1992, HEARING RES, V64, P99, DOI 10.1016/0378-5955(92)90172-J LEAKE PA, 1991, HEARING RES, V54, P251, DOI 10.1016/0378-5955(91)90120-X Leake PA, 2000, HEARING RES, V147, P221, DOI 10.1016/S0378-5955(00)00133-7 Li L, 1999, HEARING RES, V133, P27, DOI 10.1016/S0378-5955(99)00043-X LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677 LOUSTEAU RJ, 1987, LARYNGOSCOPE, V97, P836 McKay CM, 1999, HEARING RES, V136, P159, DOI 10.1016/S0378-5955(99)00121-5 MERZENIC.MM, 1974, BRAIN RES, V77, P397, DOI 10.1016/0006-8993(74)90630-1 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 Nikolopoulos TP, 1999, LARYNGOSCOPE, V109, P595, DOI 10.1097/00005537-199904000-00014 NUDO RJ, 1990, SOMATOSENS MOT RES, V7, P463 OSBERGER MJ, 1991, ANN OTO RHINOL LARYN, V100, P883 Osberger M J, 1999, Ann Otol Rhinol Laryngol Suppl, V177, P74 Pfingst BE, 1997, HEARING RES, V112, P247, DOI 10.1016/S0378-5955(97)00122-6 Rao BSS, 1999, NEUROSCIENCE, V91, P799 RECANZONE GH, 1990, J NEUROPHYSIOL, V63, P1213 Robinson K, 1998, INT J PEDIATR OTORHI, V46, P71, DOI 10.1016/S0165-5876(98)00125-6 RUBEN RJ, 1980, ANN OTO RHINOL LARYN, V89, P303 SATO K, 2000, HEARING RES, V147, P37 Schindler R. A., 1995, Annals of Otology Rhinology and Laryngology, V104, P269 SCHREINER CE, 1988, J NEUROPHYSIOL, V60, P1823 SHEPHERD RK, 1994, HEARING RES, V81, P150, DOI 10.1016/0378-5955(94)90162-7 SNYDER R, 1995, J NEUROPHYSIOL, V73, P449 SNYDER RL, 1991, HEARING RES, V56, P246, DOI 10.1016/0378-5955(91)90175-9 SNYDER RL, 1990, HEARING RES, V50, P7, DOI 10.1016/0378-5955(90)90030-S Tyler RS, 1997, J ACOUST SOC AM, V102, P508, DOI 10.1121/1.419724 van Dijk JE, 1999, AUDIOLOGY, V38, P109 Vollmer M., 2000, P 4 EUR C OT BERL MO, P181 Vollmer M, 1999, J NEUROPHYSIOL, V82, P2883 VUREK LS, 1981, ANN OTO RHINOL LARYN, V90, P21 Xu J, 1999, J NEUROSCI, V19, P7578 XU SA, 1993, HEARING RES, V70, P205, DOI 10.1016/0378-5955(93)90159-X NR 51 TC 26 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2002 VL 164 IS 1-2 BP 82 EP 96 DI 10.1016/S0378-5955(01)00415-4 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 544TV UT WOS:000175178100010 PM 11950528 ER PT J AU Thiers, FA Burgess, BJ Nadol, JB AF Thiers, FA Burgess, BJ Nadol, JB TI Axodendritic and dendrodendritic synapses within outer spiral bundles in a human SO HEARING RESEARCH LA English DT Article DE axodendritic; dendrodendritic; type II spiral ganglion cell; outer spiral bundle; neural network; mitochondria-associated adherens complex ID HAIR-CELLS; ELECTRON-MICROSCOPY; EFFERENT SYNAPSES; OLFACTORY-BULB; GANGLION-CELLS; HUMAN ORGAN; INNERVATION; AFFERENT; CORTI; COCHLEA AB Axodendritic and dendrodendritic synapses have been described at the level of the outer spiral bundle (OSB) (Nadol, J.B., Jr., 1983. Laryngoscope 93, 780-791; Bodian, D., 1978. Proc. Natl. Acad. Sci. USA 75, 4582-4586). The objectives of this study were to quantify these synaptic interactions and to describe their ultrastructural morphology in a young human subject. The temporal bone of an 8-month old infant was processed for transmission electron microscopy and semiserial section reconstructions of the three OSBs were performed. The nerve fibers ((NFs)) forming the OSBs were found to segregate into two morphological groups: (1) vesicle-rich and neurofilament-poor (VR/NP); (2) vesicle-poor and neurofilament-rich (VP/NR). Synapses between VR/NP and VP/NR NFs and synapses between two VP/NR NFs were quantified. Presumed axodendritic synapses (i.e. between VR/NP and VP/NR NFs) were numerous and their numbers decreased from the first towards the third row. Presumed dendrodendritic synapses (i.e. between two VP/NR NFs) were also frequent but their numbers did not vary significantly among different rows. The presence of axodendritic synapses may provide the morphological basis for modulation of the function of the type 11 spiral ganglion cells (type II's) by the olivocochlear efferent system. Similarly, numerous presumed dendrodendritic synapses may provide a morphological substrate for interaction between dendrites of type H's. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Harvard Univ, Massachusetts Gen Hosp, Sch Med, Dept Otol & Laryngol, Boston, MA 02114 USA. Harvard Mit Div Hlth Sci & Technol, Speech & Hearing Sci Program, Cambridge, MA 02139 USA. RP Nadol, JB (reprint author), Harvard Univ, Massachusetts Gen Hosp, Sch Med, Dept Otol & Laryngol, 243 Charles St, Boston, MA 02114 USA. CR ANTON PS, 1993, BRAIN RES, V628, P157, DOI 10.1016/0006-8993(93)90951-I BODIAN D, 1978, P NATL ACAD SCI USA, V75, P4582, DOI 10.1073/pnas.75.9.4582 DANNHOF BJ, 1993, HEARING RES, V66, P8, DOI 10.1016/0378-5955(93)90255-Y Fechner FP, 2001, J COMP NEUROL, V429, P289, DOI 10.1002/1096-9861(20000108)429:2<289::AID-CNE9>3.0.CO;2-Z FRANCIS HW, 1993, HEARING RES, V64, P184, DOI 10.1016/0378-5955(93)90004-K FRANCIS HW, 1993, HEARING RES, V64, P217, DOI 10.1016/0378-5955(93)90009-P GINZBERG RD, 1984, HEARING RES, V14, P109, DOI 10.1016/0378-5955(84)90011-X GRAY EG, 1963, J ANAT, V97, P101 IURATO S, 1978, J COMP NEUROL, V182, P57, DOI 10.1002/cne.901820105 JONES DG, 1983, CELL TISSUE RES, V231, P533 KIIMURA RS, 1979, ANN OTOL RHINOL LA S, V88, P2 Kimura R S, 1987, Acta Otolaryngol Suppl, V438, P1 Kirillova V, 1998, NEUROSCIENCE, V87, P255, DOI 10.1016/S0306-4522(98)00146-8 LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309 Liberman MC, 2000, J COMP NEUROL, V423, P132 NADOL JB, 1994, HEARING RES, V81, P49, DOI 10.1016/0378-5955(94)90152-X NADOL JB, 1990, ANN OTO RHINOL LARYN, V99, P215 NADOL JB, 1983, LARYNGOSCOPE, V93, P780 NADOL JB, 1988, HEARING RES, V34, P253, DOI 10.1016/0378-5955(88)90006-8 NAKANISHI S, 1995, TRENDS NEUROSCI, V18, P359, DOI 10.1016/0166-2236(95)93929-R Rask-Andersen H, 2000, HEARING RES, V141, P1, DOI 10.1016/S0378-5955(99)00179-3 Ross MD, 1997, J COMP NEUROL, V379, P333, DOI 10.1002/(SICI)1096-9861(19970317)379:3<333::AID-CNE2>3.0.CO;2-4 Rowland KC, 2000, J NEUROSCI, V20, P9135 Sato M, 1997, HEARING RES, V108, P46, DOI 10.1016/S0378-5955(97)00049-X SMITH CA, 1963, ANN OTO RHINOL LARYN, V72, P489 Spirou GA, 1998, J COMP NEUROL, V398, P257, DOI 10.1002/(SICI)1096-9861(19980824)398:2<257::AID-CNE7>3.0.CO;2-# SPOENDLIN H, 1988, ACTA OTO-LARYNGOL, V105, P403, DOI 10.3109/00016488809119493 SPOENDLIN HH, 1963, ANN OTO RHINOL LARYN, V72, P660 Thiers FA, 2000, HEARING RES, V150, P119, DOI 10.1016/S0378-5955(00)00193-3 NR 29 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2002 VL 164 IS 1-2 BP 97 EP 104 DI 10.1016/S0378-5955(01)00414-2 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 544TV UT WOS:000175178100011 PM 11950529 ER PT J AU Yang, XM Henson, OW AF Yang, XM Henson, OW TI Smooth muscle in the annulus fibrosus of the tympanic membrane: physiological effects on sound transmission in the gerbil SO HEARING RESEARCH LA English DT Article DE tympanic membrane; annulus fibrosus; smooth muscle; vanadate ID LENGTH-TENSION RELATIONSHIP; MIDDLE-EAR; AUTONOMIC INNERVATION; TYROSINE KINASE; GUINEA-PIG; VANADATE; RAT; SYMPATHECTOMY; CONTRACTILITY; REFLEX AB In a wide variety of mammals, the rim of the tympanic membrane (annulus fibrosus) has an array of contractile elements, either smooth muscle [Henson and Henson, J. Assoc. Res. Otolaryngol. 1 (2000) 25-32] or myofibroblasts [Kuijpers et al., Hear. Res. 128 (1999) 80-88]. These elements are anchored peripherally to the bony tympanic ring and centrally to incoming fibers of the pars tensa. Their arrangement suggests that they are involved in the control of tympanic membrane tension. In this study, cochlear microphonic (CM) threshold changes were recorded in gerbils to study the physiological effects of these contractile elements. It was demonstrated that the application of substances known to make smooth muscle contract (vanadate and norepinephrine) caused concentration-dependent elevations in CM thresholds. Maximum changes of 8-9 dB occurred with the lowest frequency tested (2.16 kHz). The application of muscle-relaxing drugs reversed these effects. Controls showed that the threshold changes were not induced by effects on middle or inner car structures. These results add to emerging evidence that the tympanic membrane has intrinsic control of tension and is potentially able to have some control over energy levels reaching the cochlea. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Cent S Univ, Xiang Ya Sch Med, Affiliated Hosp 2, Dept Otolaryngol, Changsha 01186, Peoples R China. Univ N Carolina, Dept Dev & Cell Biol, Chapel Hill, NC 27599 USA. RP Henson, OW (reprint author), Cent S Univ, Xiang Ya Sch Med, Affiliated Hosp 2, Dept Otolaryngol, Changsha 01186, Peoples R China. CR Alcon S, 2000, BIOCHEM PHARMACOL, V59, P1077, DOI 10.1016/S0006-2952(00)00237-9 AVAN P, 1992, HEARING RES, V59, P59, DOI 10.1016/0378-5955(92)90102-S Bayliss WM, 1902, J PHYSIOL-LONDON, V28, P220 BORG E, 1972, ACTA PHYSIOL SCAND, V86, P175, DOI 10.1111/j.1748-1716.1972.tb05324.x BORG E, 1980, BRAIN RES, V188, P43, DOI 10.1016/0006-8993(80)90555-7 BORG E, 1982, ACTA PHYSIOL SCAND, V115, P281, DOI 10.1111/j.1748-1716.1982.tb07077.x Cortijo J, 1997, BRIT J PHARMACOL, V121, P1339, DOI 10.1038/sj.bjp.0701277 DAVIS MJ, 1989, AM J PHYSIOL, V256, pH630 DAVIS MJ, 1992, AM J PHYSIOL, V263, pH1292 FOLANCURRAN J, 1994, SOMATOSENS MOT RES, V11, P65, DOI 10.3109/08990229409028858 Frith D, 2000, EUR J PHARMACOL, V400, P305, DOI 10.1016/S0014-2999(00)00406-4 GALAMBOS R, 1959, J ACOUST SOC AM, V31, P349, DOI 10.1121/1.1907723 Goodman A, 1985, PHARM BASIS THERAPEU HARRIS DE, 1991, AM J PHYSIOL, V260, pC1104 HENSON MM, 2001, 24 ANN MIDW M ASS RE Henson OW, 2000, JARO, V1, P25, DOI 10.1007/s101620010003 HENSON OW, 2001, 24 ANN MIDW M ASS RE HERLIHY JT, 1973, CIRC RES, V33, P275 HILDESHEIMER M, 1991, HEARING RES, V51, P49, DOI 10.1016/0378-5955(91)90006-U Horner KC, 2001, EUR J NEUROSCI, V13, P405, DOI 10.1046/j.0953-816X.2000.01386.x HULTCRANTZ E, 1982, ACTA OTO-LARYNGOL, V94, P439, DOI 10.3109/00016488209128932 IRVINE DR, 1975, AUDIOLOGY, V15, P433 Kuijpers W, 1999, HEARING RES, V128, P80, DOI 10.1016/S0378-5955(98)00203-2 Kwon SC, 2000, AM J PHYSIOL-GASTR L, V279, pG1235 LEE AH, 1985, HEARING RES, V19, P127, DOI 10.1016/0378-5955(85)90116-9 MASCARELLO F, 1982, J MUSCLE RES CELL M, V3, P363, DOI 10.1007/BF00713043 MOTTA PM, 1990, ULTRASTRUCTURE SMOOT NAGAI T, 1989, ARCH OTO-RHINO-LARYN, V246, P169, DOI 10.1007/BF00456661 Nagai T., 1995, Acta Oto-Rhino-Laryngologica Belgica, V49, P117 NUTTALL AL, 1974, J ACOUST SOC AM, V56, P1239, DOI 10.1121/1.1903414 OZAKI H, 1980, EUR J PHARMACOL, V68, P339, DOI 10.1016/0014-2999(80)90531-2 PICKLES JO, 1979, ACTA OTO-LARYNGOL, V87, P69, DOI 10.3109/00016487909126388 Pilz PKD, 1997, HEARING RES, V105, P171, DOI 10.1016/S0378-5955(96)00206-7 PonceMonter H, 1995, ARCH MED RES, V26, pS185 RAMASARMA T, 1999, INDIAN J PHYSL PHARM, V3, P277 REGER SN, 1960, ANN OTO RHINOL LARYN, V69, P1 ROCKLEY TJ, 1992, ACTA OTO-LARYNGOL, V112, P816, DOI 10.3109/00016489209137479 SANDIRASEGARANE L, 1995, LIFE SCI, V56, P169 SELDEN D, 1971, AM J ANAT, V132, P267 Sim SS, 1998, ARCH PHARM RES, V21, P315, DOI 10.1007/BF02975294 Srivastava AK, 1997, MOL CELL BIOCHEM, V176, P47, DOI 10.1023/A:1006818810678 StLouis J, 1995, MOL CELL BIOCHEM, V153, P145, DOI 10.1007/BF01075930 TIERNEY S, 1993, J ANAT, V182, P355 UDDMAN R, 1983, ANN OTO RHINOL LARYN, V92, P151 UEDA F, 1985, ARCH INT PHARMACOD T, V276, P120 VANDENBERGE H, 1990, HEARING RES, V48, P209, DOI 10.1016/0378-5955(90)90061-S Wada Tetsuro, 1995, Auris Nasus Larynx, V22, P86 Wada T, 1999, Auris Nasus Larynx, V26, P375, DOI 10.1016/S0385-8146(99)00017-6 WEAVER EG, 1936, ANN OTO RHINOL LARYN, V65, P5 WIDEMAR L, 1985, ACTA OTO-LARYNGOL, V100, P58, DOI 10.3109/00016488509108588 Wiggers HC, 1937, AM J PHYSIOL, V120, P771 WILSON JG, 1911, AM J ANAT, V11, P1 NR 52 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2002 VL 164 IS 1-2 BP 105 EP 114 DI 10.1016/S0378-5955(01)00416-6 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 544TV UT WOS:000175178100012 PM 11950530 ER PT J AU Ding, DL Stracher, A Salvi, RJ AF Ding, DL Stracher, A Salvi, RJ TI Leupeptin protects cochlear and vestibular hair cells from gentamicin ototoxicity SO HEARING RESEARCH LA English DT Article DE gentamicin; hair cell; cochlea; utricle; crista; calpain; leupeptin and ototoxicity ID INDUCED LYSOSOMAL PHOSPHOLIPIDOSIS; AMINOGLYCOSIDE INDUCED OTOTOXICITY; L-ASPARTIC ACID; CYSTEINE PROTEINASES; POLYASPARTIC ACID; ANTIBIOTICS; INHIBITORS; INVITRO; LOCALIZATION; FIBROBLASTS AB Calpains, a family of calcium-activated proteases that breakdown proteins, kinases, phosphatases and transcription factors, can promote cell death, Since leupeptin, a calpain inhibitor, protected against hair cell loss from acoustic overstimulation, we hypothesized that it might protect cochlear and vestibular hair cells against gentamicin (GM) ototoxicity. To test this hypothesis, mouse organotypic cultures from the cochlea, maculae of the utricle and the crista of the semicircular canal (P1-P3) were treated with different doses of GM (0.1-3 mM) alone or in the presence of leupeptin (0.1-3 mM). The percentage of outer hair cells (OHCs) and inner hair cells (IHCs) decreased with increasing doses of GM between 0.1 and 3 mM. The addition of I mM of leupeptin significantly reduced GM-induced damage to IHCs and OHCs; this protective effect was dose-dependent. GM also significantly reduced hair cell density in the crista and utricle in a dose-dependent manner between 0.1 and 3 mM. The addition of I mm of leupeptin significantly reduced hair cell loss in the crista and utricle for GM concentrations between 0.1 and 3 mM. These results suggest that one of the early steps in GM ototoxicity may involve calcium-activated proteases that lead to the demise of cochlear and vestibular hair cells. (C) 2002 Elsevier Science B.V. All rights reserved. C1 SUNY Buffalo, Hearing Res Lab, Buffalo, NY 14214 USA. SUNY Hlth Sci Ctr, Dept Biochem, Brooklyn, NY 11203 USA. RP Salvi, RJ (reprint author), SUNY Buffalo, Hearing Res Lab, 215 Parker Hall, Buffalo, NY 14214 USA. CR BADALAMENTE MA, 1989, P NATL ACAD SCI USA, V86, P5983, DOI 10.1073/pnas.86.15.5983 BADALAMENTE MA, 1987, EXP NEUROL, V98, P357, DOI 10.1016/0014-4886(87)90248-2 Barton-Davis ER, 1999, J CLIN INVEST, V104, P375, DOI 10.1172/JCI7866 BARTUS RT, 1995, NEUROL RES, V17, P249 BEAUCHAMP D, 1990, J PHARMACOL EXP THER, V255, P858 Cui SY, 1996, AM J PHYSIOL-RENAL, V271, pF900 DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 DEBROE ME, 1999, ATLAS DIS KIDNEY CUR DEGROOT JCMJ, 1990, HEARING RES, V50, P35, DOI 10.1016/0378-5955(90)90031-J DING D, 2001, J ASS RES OTOLARYNGO DULON D, 1989, J NEUROSCI RES, V24, P338, DOI 10.1002/jnr.490240226 DULON D, 1993, CR ACAD SCI III-VIE, V316, P682 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 Fridberger A, 1998, ACTA OTO-LARYNGOL, V118, P352 Hammond TG, 1997, AM J PHYSIOL-RENAL, V272, pF117 Hashino E, 1997, BRAIN RES, V777, P75, DOI 10.1016/S0006-8993(97)00977-3 Hashino E, 1995, BRAIN RES, V704, P135, DOI 10.1016/0006-8993(95)01198-6 HIEL H, 1992, HEARING RES, V57, P157, DOI 10.1016/0378-5955(92)90148-G HIEL H, 1993, AUDIOLOGY, V32, P78 Hirose K, 1999, ANN NY ACAD SCI, V884, P389, DOI 10.1111/j.1749-6632.1999.tb08657.x HULKA GF, 1993, AM J OTOL, V14, P352 HURWITZ R, 1994, BIOL CHEM H-S, V375, P447, DOI 10.1515/bchm3.1994.375.7.447 KISHORE BK, 1990, J PHARMACOL EXP THER, V255, P867 KISHORE BK, 1990, J PHARMACOL EXP THER, V255, P875 LAURENT G, 1982, BIOCHEM PHARMACOL, V31, P3861, DOI 10.1016/0006-2952(82)90303-3 LI Y, 1995, CHUNG HUA ERH PI YEN, V30, P227 MOESTRUP SK, 1995, J CLIN INVEST, V96, P1404, DOI 10.1172/JCI118176 MONTENEZ JP, 1994, LIFE SCI, V55, P1199, DOI 10.1016/0024-3205(94)00659-8 MONTENEZ JP, 1994, TOXICOL LETT, V73, P201, DOI 10.1016/0378-4274(94)90059-0 MULHERIN D, 1991, IRISH J MED SCI, V160, P173, DOI 10.1007/BF02961666 PREZANT TR, 1993, NAT GENET, V4, P289, DOI 10.1038/ng0793-289 RAMI A, 1993, BRAIN RES, V609, P67, DOI 10.1016/0006-8993(93)90856-I Richardson GP, 1997, J NEUROSCI, V17, P9506 RICHARDSON GP, 1991, HEARING RES, V53, P293, DOI 10.1016/0378-5955(91)90062-E Saatman KE, 1996, P NATL ACAD SCI USA, V93, P3428, DOI 10.1073/pnas.93.8.3428 SAIDEL WM, 1990, HEARING RES, V47, P139, DOI 10.1016/0378-5955(90)90171-K SARIN A, 1994, J IMMUNOL, V153, P862 Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 Trautwein PG, 1998, AUDIOL NEURO-OTOL, V3, P229, DOI 10.1159/000013795 Verroust PJ, 1996, B ACAD NAT MED PARIS, V180, P1187 Wang J, 1999, NEUROREPORT, V10, P811, DOI 10.1097/00001756-199903170-00027 YAN HY, 1991, P ROY SOC B-BIOL SCI, V245, P133, DOI 10.1098/rspb.1991.0099 Zheng JL, 1996, EUR J NEUROSCI, V8, P1897, DOI 10.1111/j.1460-9568.1996.tb01333.x NR 43 TC 73 Z9 89 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2002 VL 164 IS 1-2 BP 115 EP 126 DI 10.1016/S0378-5955(01)00417-8 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 544TV UT WOS:000175178100013 PM 11950531 ER PT J AU Cook, RD Hung, TY Miller, RL Smith, DW Tucci, DL AF Cook, RD Hung, TY Miller, RL Smith, DW Tucci, DL TI Effects of conductive hearing loss on auditory nerve activity in gerbil SO HEARING RESEARCH LA English DT Article DE conductive hearing loss; deprivation; auditory nerve activity; spontaneous activity; ensemble background activity ID ANTEROVENTRAL COCHLEAR NUCLEUS; BRAIN-STEM; PROTEIN-SYNTHESIS; MONGOLIAN GERBIL; OTITIS-MEDIA; OLIVOCOCHLEAR BUNDLE; AFFERENT INFLUENCES; HAIR CELLS; 8TH NERVE; FIBERS AB The goal of this research was to define the effects of conductive hearing loss (CHL) produced by malleus removal (MR) on auditory nerve activity in the absence of acoustic stimulation. Subjects were gerbils in two age groups: 21 days (P21) and 42 days (P42). Ensemble background activity (EBA) of the auditory nerve was measured by spectral analysis of a signal recorded from the round window. The EBA measure was studied following MR in an acute setting in P42 animals, and in chronic experiments either 5 days (P21 and P42 animals) or 3 weeks (P21 animals) after MR. Findings were: (1) an EBA can be reliably measured in the gerbils and this measure is highly stable over time; (2) the EBA is eliminated by application of tetrodotoxin, confirming the auditory nerve as the source of this measure; (3) MR results in a statistically significant decrease in the magnitude of the EBA in adult animals; and (4) the EBA measure is age-dependent. The EBA was significantly lower in P21 than in P42 animals, and response to MR varied as a function of age. We conclude that CHL decreases 'spontaneous' activity of the auditory nerve in young adult gerbils. (C) 2002 Published by Elsevier Science B.V. C1 Duke Univ, Med Ctr, Div Otolaryngol Head & Neck Surg, Dept Surg, Durham, NC 27710 USA. RP Tucci, DL (reprint author), Duke Univ, Med Ctr, Div Otolaryngol Head & Neck Surg, Dept Surg, Durham, NC 27710 USA. CR BLATCHLEY BJ, 1983, EXP NEUROL, V80, P81, DOI 10.1016/0014-4886(83)90008-0 BORN DE, 1988, J NEUROSCI, V8, P901 CARTER NL, 1994, SLEEP, V17, P289 Cazals Y, 1996, HEARING RES, V101, P81, DOI 10.1016/S0378-5955(96)00135-9 COLEMAN JR, 1979, EXP NEUROL, V64, P553, DOI 10.1016/0014-4886(79)90231-0 daCosta DL, 1997, EXP BRAIN RES, V116, P259, DOI 10.1007/PL00005754 DOLAN DF, 1990, J ACOUST SOC AM, V87, P2621, DOI 10.1121/1.399054 DOWNS MP, 1985, OTOLARYNG CLIN N AM, V18, P337 DOYLE WJ, 1991, HEARING RES, V54, P145, DOI 10.1016/0378-5955(91)90144-X FENG AS, 1980, BRAIN RES, V189, P530, DOI 10.1016/0006-8993(80)90112-2 FRUHSTORFER B, 1984, EUR J APPL PHYSIOL O, V53, P159, DOI 10.1007/BF00422580 FRUHSTORFER B, 1980, AM J PHYSL SOC, V80, P985 FURUKAWA T, 1967, J NEUROPHYSIOL, V30, P1377 FURUKAWA T, 1978, J PHYSIOL-LONDON, V276, P211 FURUKAWA T, 1972, JPN J PHYSIOL, V22, P617 GUINAN JJ, 1988, HEARING RES, V33, P115, DOI 10.1016/0378-5955(88)90024-X Hall JW, 1998, ARCH OTOLARYNGOL, V124, P892 HALL JW, 1995, ARCH OTOLARYNGOL, V121, P847 HYSON RL, 1989, J NEUROSCI, V9, P2835 ISHII Y, 1971, JPN J PHYSIOL, V21, P91 Kiang NYS, 1976, ELECTROCOCHLEOGRAPHY, P95 KIANG NYS, 1976, ANN OTO RHINOL LARYN, V85, P752 Knudsen EI, 1999, J COMP PHYSIOL A, V185, P305, DOI 10.1007/s003590050391 LEWIS ER, 1992, HEARING RES, V63, P7, DOI 10.1016/0378-5955(92)90067-W MOORE DR, 1989, J NEUROSCI, V9, P1213 MOORE DR, 1991, AUDIOLOGY, V30, P91 MOORE DR, 1992, DEV AUDITORY VESTIBU, V2, P297 POPELAR J, 1996, AUDIT NEUROSCI, V3, P425 PUJOL R, 1978, J COMP NEUROL, V177, P529, DOI 10.1002/cne.901770311 RUBEL EW, 1990, J NEUROBIOL, V21, P169, DOI 10.1002/neu.480210112 Ruben R J, 1984, Acta Otolaryngol Suppl, V414, P157 RYAN A, 1976, J ACOUST SOC AM, V59, P1222, DOI 10.1121/1.380961 RYAN AF, 1993, DEV AUDITORY VESTIBU, V2, P243 Ryugo DK, 1998, J COMP NEUROL, V397, P532, DOI 10.1002/(SICI)1096-9861(19980810)397:4<532::AID-CNE6>3.0.CO;2-2 SEWELL WF, 1984, J PHYSIOL-LONDON, V347, P685 SIE KCY, 1992, J COMP NEUROL, V320, P501, DOI 10.1002/cne.903200407 TONNDORF J, 1972, FDN MODERN AUDITORY, P195 TRUNE DR, 1988, HEARING RES, V35, P259, DOI 10.1016/0378-5955(88)90122-0 TUCCI DL, 1994, NEUROTOLOGY, P567 Tucci DL, 1999, LARYNGOSCOPE, V109, P1359, DOI 10.1097/00005537-199909000-00001 TUCCI DL, 2002, IN PRESS J ASS RES O, V3 TUCCI DL, 1985, J COMP NEUROL, V238, P371, DOI 10.1002/cne.902380402 TUCCI DL, 1987, ANN OTO RHINOL LARYN, V96, P343 VERNONFEAGANS L, 1999, EVIDENCE BASED OTITI, P353 Walsh EJ, 1998, J NEUROSCI, V18, P3859 WEBSTER DB, 1983, INT J PEDIATR OTORHI, V6, P107 WEBSTER DB, 1979, ANN OTO RHINOL LARYN, V88, P684 WELCH PD, 1967, IEEE T ACOUST SPEECH, VAU15, P70, DOI 10.1109/TAU.1967.1161901 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P950, DOI 10.1121/1.1912234 WILMINGTON D, 1994, HEARING RES, V74, P99, DOI 10.1016/0378-5955(94)90179-1 WOOLF NK, 1984, HEARING RES, V13, P277, DOI 10.1016/0378-5955(84)90081-9 WOOLF NK, 1985, DEV BRAIN RES, V17, P131, DOI 10.1016/0165-3806(85)90138-5 NR 52 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2002 VL 164 IS 1-2 BP 127 EP 137 DI 10.1016/S0378-5955(01)00424-5 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 544TV UT WOS:000175178100014 PM 11950532 ER PT J AU Klis, SFL O'Leary, SJ Wijbenga, J de Groot, JCMJ Hamers, FPT Smoorenburg, GF AF Klis, SFL O'Leary, SJ Wijbenga, J de Groot, JCMJ Hamers, FPT Smoorenburg, GF TI Partial recovery of cisplatin-induced hearing loss in the albino guinea pig in relation to cisplatin dose SO HEARING RESEARCH LA English DT Article DE cisplatin; recovery; compound action potential; cochlear microphonics; endocochlear potential; outer hair cell ID STRIA VASCULARIS; INDUCED OTOTOXICITY; HAIR-CELLS; COCHLEA AB The objective of the present study was to further characterize cochlear recovery after cisplatin damage. We equipped albino guinea pigs with permanent round window electrodes. Cisplatin was injected i.p. on a daily basis at either 1.5 or 2.0 mg/kg/day. Treatment was stopped when the criterion of :40 dB loss in the compound action potential iso-response level at 8 kHz had occurred. Either shortly (1-3 days) or long (4 weeks or more) after this stop, the endocochlear potential (EP) was measured and all animals were sacrificed for histology. At a cisplatin dose of 2.0 mg/kg/day, the time needed to reach the criterion hearing loss varied from 5 to I I days. With 1.5 mg/kg/day this period lasted longer, the cumulative dose being the first-order predictor. The cochlear potentials gradually recovered in the first 2 weeks after treatment. At the lower frequencies, recovery was often complete. At the higher frequencies complete recovery was never seen. EP was depressed when measured just after treatment but had normal values long after. Basal outer hair cell (OHC) loss was found for both the short and the long post-treatment period. Thus, loss and recovery of cochlear potentials can for a large part be explained by loss and recovery of the EP. Recovery is limited by permanent OHC loss. (C) 2002 Published by Elsevier Science B.V. C1 Univ Utrecht, Med Ctr, Hearing Res Labs, NL-3584 CX Utrecht, Netherlands. RP Klis, SFL (reprint author), Univ Utrecht, Med Ctr, Hearing Res Labs, Room G02-531,Heidelberglaan 100, NL-3584 CX Utrecht, Netherlands. CR AGUILARMARKULIS NV, 1981, J SURG ONCOL, V16, P111, DOI 10.1002/jso.2930160203 Alam SA, 2000, HEARING RES, V141, P28, DOI 10.1016/S0378-5955(99)00211-7 ARAN JM, 1979, AUDITORY INVESTIGATI, P233 Campbell KCM, 1999, HEARING RES, V138, P13, DOI 10.1016/S0378-5955(99)00142-2 Cardinaal RM, 2000, HEARING RES, V144, P147, DOI 10.1016/S0378-5955(00)00060-5 Cardinaal RM, 2000, HEARING RES, V144, P135, DOI 10.1016/S0378-5955(00)00059-9 Dallos P, 1973, AUDITORY PERIPHERY DALLOS P, 1995, SCIENCE, V267, P2006, DOI 10.1126/science.7701325 deGroot JCMJ, 1997, HEARING RES, V106, P9, DOI 10.1016/S0378-5955(96)00213-4 DEOLIVEIRA JAA, 1989, AUDIOVESTIBULAR TOXI, V2 Gill SS, 1997, HEARING RES, V113, P191, DOI 10.1016/S0378-5955(97)00141-X Heijmen PS, 1999, HEARING RES, V128, P27, DOI 10.1016/S0378-5955(98)00194-4 Klis SFL, 2000, NEUROREPORT, V11, P623, DOI 10.1097/00001756-200002280-00037 KOHN S, 1991, LARYNGOSCOPE, V101, P709 LAURELL G, 1995, HEARING RES, V87, P16, DOI 10.1016/0378-5955(95)00074-E LAURELL G, 1990, LARYNGOSCOPE, V100, P724 LAURELL G, 1989, HEARING RES, V38, P27, DOI 10.1016/0378-5955(89)90125-1 Lenoir M, 1997, INT J DEV NEUROSCI, V15, P487, DOI 10.1016/S0736-5748(96)00105-0 MCALPINE D, 1990, HEARING RES, V47, P191, DOI 10.1016/0378-5955(90)90151-E Meech RP, 1998, HEARING RES, V124, P44, DOI 10.1016/S0378-5955(98)00116-6 NAKAI Y, 1982, ACTA OTO-LARYNGOL, V93, P227, DOI 10.3109/00016488209130876 Park Kay Rabbitt, 1996, Ear and Hearing, V17, P107, DOI 10.1097/00003446-199604000-00003 SCHWEITZER VG, 1993, LARYNGOSCOPE, V103, P1, DOI 10.1288/00005537-199304000-00001 Stengs CHM, 1998, HEARING RES, V124, P99, DOI 10.1016/S0378-5955(98)00129-4 Stengs CHM, 1997, HEARING RES, V111, P103, DOI 10.1016/S0378-5955(97)00095-6 TANGE RA, 1984, ARCH OTO-RHINO-LARYN, V239, P41, DOI 10.1007/BF00454261 vanEmst MG, 1997, HEARING RES, V114, P93, DOI 10.1016/S0378-5955(97)00156-1 VERMORKEN JB, 1983, EUR J CANCER CLIN ON, V19, P53, DOI 10.1016/0277-5379(83)90398-X NR 28 TC 18 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2002 VL 164 IS 1-2 BP 138 EP 146 DI 10.1016/S0378-5955(01)00425-7 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 544TV UT WOS:000175178100015 PM 11950533 ER PT J AU Hossler, FE Avila, FC Musil, G AF Hossler, FE Avila, FC Musil, G TI Na+,K+-ATPase activity and ultrastructural localization in the tegmenturn vasculosum in the cochlea of the duckling SO HEARING RESEARCH LA English DT Article DE avian cochlea; endolymph; tegmentum vasculosum; p-nitrophenyl phosphatase; Na+,K+-ATPase; cytochemistry; ultrastructure ID NA-K-ATPASE; GUINEA-PIG; CYTOCHEMICAL-LOCALIZATION; NITROPHENYLPHOSPHATASE ACTIVITY; PHOSPHATASE-ACTIVITY; INNER-EAR; OUABAIN AB The tegmentum vasculosum of the avian cochlear duct mimics the stria vascularis of the mammalian cochlear duct in both location and structure, and previous studies indicate that it may be its functional counterpart with regard to endolymph synthesis. In the present study, we report on the enzymatic activity and ultrastructural localization of the Na+ K+-ATPase in the tegmentum vasculosum of the duckling. Na+,K+-ATPase activity was determined by measuring K+-dependent, ouabain-sensitive p-nitrophenyl phosphatase (p-NPPase) activity in homogenates of dissected regions of the cochlear duct. The ultrastructural localization of the Na+,K+-ATPase was identified using K+-dependent, ouabain-sensitive, p-NPPase cytochemistry. Specific enzyme activity was localized primarily in homogenates of the tegmentum vasculosum (2.27 mumol p-nitrophenyl phosphate/mg protein/min) when compared to homogenates of the entire cochlear duct (0.69 mumol p-nitrophenyl phosphate/mg protein/min). Reaction product for p-NPPase was localized primarily along the basolateral plasma membrane folds of the dark cells. The cytochemical deposits appeared to be located exclusively on the cytoplasmic side of the plasma membrane. The light cells were devoid of reaction product. Biochemical and cytochemical localization of p-NPPase activity on the basolateral plasma membrane folds of the dark cells of the tegmentum. vasculosum in conjunction with the ultrastructural morphology of these cells is compatible with a Na+,K+-ATPase-dependent ion transport function related to endolymph. synthesis. (C) 2002 Elsevier Science B.V. All rights reserved. C1 E Tennessee State Univ, James H Quillen Coll Med, Dept Anat & Cell Biol, Johnson City, TN 37614 USA. E Tennessee State Univ, James H Quillen Coll Med, Dept Pathol, Johnson City, TN 37614 USA. RP Hossler, FE (reprint author), E Tennessee State Univ, James H Quillen Coll Med, Dept Anat & Cell Biol, Box 70582, Johnson City, TN 37614 USA. CR ALBERS RW, 1967, ANNU REV BIOCHEM, V36, P727, DOI 10.1146/annurev.bi.36.070167.003455 BADER H, 1966, BIOCHIM BIOPHYS ACTA, V118, P116 BOSHER SK, 1980, ACTA OTO-LARYNGOL, V90, P219, DOI 10.3109/00016488009131718 BULGER RE, 1965, AM J ANAT, V116, P237, DOI 10.1002/aja.1001160112 COPELAND DE, 1948, J MORPHOL, V82, P201, DOI 10.1002/jmor.1050820204 COTANCHE DA, 1987, HEARING RES, V25, P125, DOI 10.1016/0378-5955(87)90086-4 COTANCHE DA, 1982, SCAN ELECTRON MICROS, P1283 DIBONA DR, 1979, FED PROC, V38, P134 DOYLE WL, 1960, EXP CELL RES, V21, P386, DOI 10.1016/0014-4827(60)90270-6 DRESCHER DG, 1985, AUDITORY BIOCH, P463 ERNST SA, 1972, J HISTOCHEM CYTOCHEM, V20, P23 GOERTEMILLER CC, 1976, CELL TISSUE RES, V175, P101 HINOJOSA R, 1966, AM J ANAT, V118, P631, DOI 10.1002/aja.1001180218 Hodde K. C., 1977, SCANNING ELECTRON MI, VII, P477 HOOTMAN SR, 1979, ANAT REC, V193, P99, DOI 10.1002/ar.1091930107 Hossler FE, 2002, HEARING RES, V164, P155, DOI 10.1016/S0378-5955(01)00427-0 ISHIYAMA E, 1970, ANN OTO RHINOL LARYN, V79, P998 JOHNSTONE CG, 1963, COMP BIOCHEM PHYSIOL, V9, P335, DOI 10.1016/0010-406X(63)90008-2 JUDAH JD, 1962, BIOCHIM BIOPHYS ACTA, V65, P472, DOI 10.1016/0006-3002(62)90449-3 KERR TP, 1982, AM J OTOLARYNG, V3, P332, DOI 10.1016/S0196-0709(82)80006-9 KUIJPERS W, 1967, SCIENCE, V157, P949, DOI 10.1126/science.157.3791.949 KUIJPERS W, 1974, ACTA OTO-LARYNGOL, V78, P341, DOI 10.3109/00016487409126364 KUIJPERS W, 1970, PFLUG ARCH EUR J PHY, V320, P348, DOI 10.1007/BF00588213 KUIJPERS W, 1970, COMP BIOCHEM PHYSIOL, V36, P669, DOI 10.1016/0010-406X(70)90525-6 LAWRENCE M, 1984, BLOOD VESSELS LYMPHA, P233 LOWRY OH, 1951, J BIOL CHEM, V193, P265 MATSCHINSKY FM, 1970, BIOCH MECHANISMS HEA, P265 MAYAHARA H, 1980, HISTOCHEMISTRY, V67, P125, DOI 10.1007/BF00493231 MEES K, 1983, ACTA OTO-LARYNGOL, V95, P277, DOI 10.3109/00016488309130944 OLSON KR, 1985, J ELECTRON MICR TECH, V2, P217, DOI 10.1002/jemt.1060020307 ROSS MD, 1982, AM J OTOLARYNG, V3, P353, DOI 10.1016/S0196-0709(82)80010-0 SCHMIDT RS, 1962, J CELL COMPAR PHYSL, V59, P311, DOI 10.1002/jcp.1030590311 SCHNEIDER ME, 1987, HEARING RES, V31, P39, DOI 10.1016/0378-5955(87)90212-7 SEGUCHI H, 1983, ACTA HISTOCHEM CYTOC, V16, P610 SEN AK, 1964, J BIOL CHEM, V239, P345 SKOU JC, 1965, PHYSIOL REV, V45, P596 SMITH C., 1957, ANN OTOL RHINOL AND LARYNGOL, V66, P521 YOSHIHARA T, 1987, ACTA OTO-LARYNGOL, V103, P161, DOI 10.3109/00016488709107779 NR 38 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2002 VL 164 IS 1-2 BP 147 EP 154 DI 10.1016/S0378-5955(01)00426-9 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 544TV UT WOS:000175178100016 PM 11950534 ER PT J AU Hossler, FE Olson, KR Musil, G McKamey, MI AF Hossler, FE Olson, KR Musil, G McKamey, MI TI Ultrastructure and blood supply of the tegmenturn vasculosum in the cochlea of the duckling SO HEARING RESEARCH LA English DT Article DE avian cochlea; tegmentum vasculosum; endolymph secretion; gap junction; vascular corrosion casting; electron microscopy ID ULTRA-CYTOCHEMICAL LOCALIZATION; SEVERE ACOUSTIC TRAUMA; BASILAR PAPILLA; CHICK COCHLEA; TECTORIAL MEMBRANE; STEREOCILIARY BUNDLES; ELECTRON-MICROSCOPY; ANAS-PLATYRHYNCHOS; AVIAN COCHLEA; GUINEA-PIG AB The tegmentum vasculosum of the duckling consists of a highly folded epithelium which extends over the dorsal and lateral walls of the cochlear duct, separating the scala media from the scala vestibuli. This epithelium consists of two distinct cell types, dark cells and light cells, and is well vascularized. The surface of the epithelium is formed by a mosaic of alternating dark and light cells. The goblet-shaped dark cells have an electron-dense, organelle-rich cytoplasm, and are expanded basally by extensive basolateral plasma membrane infoldings, within which are numerous mitochondria. Dark cells are isolated from each other and from the capillaries within the epithelium by intervening light cells. In contrast, columnar light cells exhibit an electron-lucent, organelle-poor cytoplasm and may extend from the underlying capillaries to the endolymphatic surface. Light cells contain abundant, coated endocytic vesicles on their apical surfaces and are bound, apically, to other light cells or to dark cells by tight junctions and desmosomes. Laterally, light cells are linked to each other either by complex, fluid-filled membrane interdigitations or by extensive gap junctions. Plasma membrane interdigitations and obvious, fluid-filled intercellular spaces characterize the lateral borders between light and dark cells. Vascular corrosion casting reveals the three-dimensional anatomy of the cochlear vasculature. A continuous arteriolar loop fed by anterior and posterior cochlear arterioles encircles the cochlear duct. The rich capillary beds of the tegmentum vasculosum are supplied by arching arterioles arising from this loop. These capillaries are the continuous type and are situated primarily within the core of the epithelium or along its border with the scala vestibuli. The structure and blood supply of the tegmentum vasculosum are characteristic of an epithelium involved in active transport. (C) 2002 Elsevier Science B.V. All rights reserved. C1 E Tennessee State Univ, James H Quillen Coll Med, Dept Anat & Cell Biol, Johnson City, TN 37614 USA. Univ Notre Dame, Univ Indiana Sch Med, Dept Physiol, S Bend Ctr, Notre Dame, IN 46556 USA. E Tennessee State Univ, Quillen Dishner Coll Med, Dept Pathol, Johnson City, TN 37614 USA. RP Hossler, FE (reprint author), E Tennessee State Univ, James H Quillen Coll Med, Dept Anat & Cell Biol, Box 70582, Johnson City, TN 37614 USA. CR Adler HJ, 1997, INT J DEV NEUROSCI, V15, P375, DOI 10.1016/S0736-5748(96)00098-6 ADLER HJ, 1995, HEARING RES, V86, P43, DOI 10.1016/0378-5955(95)00051-5 Baumel J.J., 1975, SISSON GROSSMANS ANA, V2, P2019 BAUMEL JJ, 1979, NOMINA ANATOMICA AVI, P345 BOORD RL, 1969, ANN NY ACAD SCI, V167, P186, DOI 10.1111/j.1749-6632.1969.tb20444.x BOSHER SK, 1979, J PHYSIOL-LONDON, V293, P329 CHANDLER JP, 1984, J COMP NEUROL, V222, P523, DOI 10.1002/cne.902220406 CHANDLER JP, 1984, J COMP NEUROL, V222, P506, DOI 10.1002/cne.902220405 COTANCHE DA, 1987, HEARING RES, V28, P35, DOI 10.1016/0378-5955(87)90151-1 COTANCHE DA, 1987, HEARING RES, V30, P197, DOI 10.1016/0378-5955(87)90136-5 COTANCHE DA, 1987, HEARING RES, V25, P267, DOI 10.1016/0378-5955(87)90098-0 COTANCHE DA, 1987, HEARING RES, V30, P181, DOI 10.1016/0378-5955(87)90135-3 COTANCHE DA, 1992, EXP NEUROL, V115, P23, DOI 10.1016/0014-4886(92)90215-C COTANCHE DA, 1985, SCAN ELECTRON MICROS, P407 COTANCHE DA, 1987, HEARING RES, V25, P125, DOI 10.1016/0378-5955(87)90086-4 COTANCHE DA, 1982, SCAN ELECTRON MICROS, P1283 COTANCHE DA, 1991, HEARING RES, V52, P379, DOI 10.1016/0378-5955(91)90027-7 COTANCHE DA, 1994, ANAT EMBRYOL, V189, P1 ERNST SA, 1972, J HISTOCHEM CYTOCHEM, V20, P23 FISCHER FP, 1994, SCANNING MICROSCOPY, V8, P351 FISCHER FP, 1994, J MORPHOL, V220, P71, DOI 10.1002/jmor.1052200107 GLEICH O, 1994, J MORPHOL, V221, P1, DOI 10.1002/jmor.1052210102 GOERTEMILLER CC, 1976, CELL TISSUE RES, V175, P101 HINOJOSA R, 1966, AM J ANAT, V118, P631, DOI 10.1002/aja.1001180218 HIROKAWA N, 1978, J COMP NEUROL, V181, P361, DOI 10.1002/cne.901810208 HOOTMAN SR, 1979, ANAT REC, V193, P99, DOI 10.1002/ar.1091930107 HOSSLER FE, 1984, AM J ANAT, V170, P205, DOI 10.1002/aja.1001700206 HOSSLER FE, 1999, MICROSC MICROANAL, V5, P1194 Hossler FE, 2002, HEARING RES, V164, P147, DOI 10.1016/S0378-5955(01)00426-9 ISHIYAMA E, 1970, ANN OTO RHINOL LARYN, V79, P998 JAHNKE V, 1969, ACTA OTO-LARYNGOL, V67, P583, DOI 10.3109/00016486909125485 JOHNSTONE CG, 1963, COMP BIOCHEM PHYSIOL, V9, P335, DOI 10.1016/0010-406X(63)90008-2 JORGENSEN JM, 1989, BRAIN BEHAV EVOLUT, V34, P273, DOI 10.1159/000116512 KERR TP, 1982, AM J OTOLARYNG, V3, P332, DOI 10.1016/S0196-0709(82)80006-9 Kikuchi T, 2000, BRAIN RES REV, V32, P163, DOI 10.1016/S0165-0173(99)00076-4 Koppl C, 1998, HEARING RES, V126, P99, DOI 10.1016/S0378-5955(98)00156-7 KUIJPERS W, 1967, SCIENCE, V157, P949, DOI 10.1126/science.157.3791.949 KUIJPERS W, 1969, BIOCHIM BIOPHYS ACTA, V173, P477, DOI 10.1016/0005-2736(69)90012-1 KUIJPERS W, 1970, PFLUG ARCH EUR J PHY, V320, P348, DOI 10.1007/BF00588213 KUIJPERS W, 1970, COMP BIOCHEM PHYSIOL, V36, P669, DOI 10.1016/0010-406X(70)90525-6 Manley GA, 1996, J MORPHOL, V227, P197, DOI 10.1002/(SICI)1097-4687(199602)227:2<197::AID-JMOR6>3.0.CO;2-6 MANLEY GA, 1993, J MORPHOL, V218, P153, DOI 10.1002/jmor.1052180205 MAYAHARA H, 1980, ACTA HISTOCHEM CYTOC, V13, P90 OLSON KR, 1985, J ELECTRON MICR TECH, V2, P217, DOI 10.1002/jemt.1060020307 PALADE G, 1975, SCIENCE, V189, P347, DOI 10.1126/science.1096303 RYALS BM, 1995, HEARING RES, V83, P51, DOI 10.1016/0378-5955(94)00190-2 RYALS BM, 1984, ACTA OTO-LARYNGOL, V98, P93, DOI 10.3109/00016488409107539 SALT AN, 1987, LARYNGOSCOPE, V97, P984 SCHMIDT RS, 1964, J COMP NEUROL, V123, P187, DOI 10.1002/cne.901230204 SCHMIDT RS, 1962, J CELL COMPAR PHYSL, V59, P311, DOI 10.1002/jcp.1030590311 SCHNEIDER ME, 1987, HEARING RES, V31, P39, DOI 10.1016/0378-5955(87)90212-7 TAKASAKA T, 1971, J ULTRA MOL STRUCT R, V35, P20, DOI 10.1016/S0022-5320(71)80141-7 TANAKA K, 1978, AM J ANAT, V153, P251, DOI 10.1002/aja.1001530206 WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 NR 54 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2002 VL 164 IS 1-2 BP 155 EP 165 DI 10.1016/S0378-5955(01)00427-0 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 544TV UT WOS:000175178100017 PM 11950535 ER PT J AU Gleich, O Strutz, J AF Gleich, O Strutz, J TI Age dependent changes in the medial nucleus of the trapezoid body in gerbils SO HEARING RESEARCH LA English DT Article DE brain; auditory cell size; nuclear volume; spongiform lesion ID SUPERIOR OLIVARY COMPLEX; VENTRAL COCHLEAR NUCLEUS; CENTRAL AUDITORY-SYSTEM; MERIONES-UNGUICULATUS; MONGOLIAN GERBIL; BRAIN-STEM; GLYCINE IMMUNOREACTIVITY; FISCHER-344 RAT; NERVE FIBERS; AGING RATS AB The results of a quantitative light microscopic analysis of serial glycine immunoreacted sections through the medial nucleus of the trapezoid body (MNTB) of young and old gerbils are presented. Spongiform lesions were prominent in the MNTB of gerbils that were 3 years and older. but were virtually absent in animals below I year of age. In old animals the prevalence and density of spongiform lesions were most pronounced in the caudal MNTB and decreased towards the rostral MNTB. Total MNTB volume and rostro-caudal extent were independent of age and the cross-sectional area of MNTB varied in an identical fashion along the MNTB in young and old gerbils. Mean MNTB soma size (cross-sectional area) varied with the age of the animal. In young gerbils soma size e 2 increased between I and 6 months of age reaching a maximum near 160 mum(2). In old gerbils mean soma size was significantly reduced to 130 mum(2). At all three rostro-caudal positions analyzed along MNTB, soma size varied systematically being largest in the ventrolateral and smallest in the dorso-medial part of MNTB. The reduction of soma size in old animals appeared uniform across MNTB. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Regensburg, ENT Dept, D-93042 Regensburg, Germany. RP Gleich, O (reprint author), Univ Regensburg, ENT Dept, Franz Josef Strauss Allee 11, D-93042 Regensburg, Germany. CR Abel SM, 2000, J ACOUST SOC AM, V108, P743, DOI 10.1121/1.429607 BLEDSOE SC, 1990, BRAIN RES, V517, P189, DOI 10.1016/0006-8993(90)91025-C BROWN CH, 1984, EXP AGING RES, V10, P35 CASEY MA, 1982, NEUROBIOL AGING, V3, P187, DOI 10.1016/0197-4580(82)90039-2 CASEY MA, 1990, NEUROBIOL AGING, V11, P391, DOI 10.1016/0197-4580(90)90004-J CASPARY DM, 1995, EXP GERONTOL, V30, P349, DOI 10.1016/0531-5565(94)00052-5 CHEAL M, 1986, EXP AGING RES, V12, P3 COOPER WA, 1990, HEARING RES, V43, P171, DOI 10.1016/0378-5955(90)90226-F CZIBULKA A, 1991, HEARING RES, V52, P43, DOI 10.1016/0378-5955(91)90186-D CZIBULKA A, 1993, HEARING RES, V67, P1, DOI 10.1016/0378-5955(93)90226-Q ELVERLAND HH, 1978, EXP BRAIN RES, V32, P117 FINLAYSON PG, 1993, NEUROBIOL AGING, V14, P127, DOI 10.1016/0197-4580(93)90088-S FRIAUF E, 1995, BEHAV BRAIN RES, V66, P217, DOI 10.1016/0166-4328(94)00147-8 FRIAUF E, 1992, EUR J NEUROSCI, V4, P798, DOI 10.1111/j.1460-9568.1992.tb00190.x Gleich O, 2000, J COMP NEUROL, V428, P609, DOI 10.1002/1096-9861(20001225)428:4<609::AID-CNE2>3.0.CO;2-F GLEICH O, 2000, LARYNGORHINOOTOLO S1, V79, pS86 Gleich O, 1998, AUDIOL NEURO-OTOL, V3, P1, DOI 10.1159/000013775 GLENDENNING KK, 1985, J COMP NEUROL, V232, P261, DOI 10.1002/cne.902320210 Glendenning KK, 1998, BRAIN BEHAV EVOLUT, V51, P59, DOI 10.1159/000006530 GUINAN JJ, 1972, INT J NEUROSCI, V4, P147 HAMANN I, 2000, 23 MIDW RES M ASS RE, P280 HARRISON JM, 1981, EXP AGING RES, V9, P35 Krenning J, 1998, LARYNGOSCOPE, V108, P26, DOI 10.1097/00005537-199801000-00005 KUWABARA N, 1992, J COMP NEUROL, V324, P522, DOI 10.1002/cne.903240406 MARTIN DR, 1991, AM J OTOL, V12, P365 MCGINN MD, 1987, HEARING RES, V31, P235, DOI 10.1016/0378-5955(87)90193-6 McGinn MD, 1997, HEARING RES, V104, P90, DOI 10.1016/S0378-5955(96)00177-3 McGinn MD, 1998, MICROSC RES TECHNIQ, V41, P187, DOI 10.1002/(SICI)1097-0029(19980501)41:3<187::AID-JEMT3>3.0.CO;2-R MILBRANDT JC, 1995, NEUROSCIENCE, V67, P713, DOI 10.1016/0306-4522(95)00082-T MOORE MJ, 1983, J NEUROSCI, V3, P237 ONeill WE, 1997, HEARING RES, V112, P158, DOI 10.1016/S0378-5955(97)00116-0 OSTAPOFF EM, 1989, HEARING RES, V37, P141, DOI 10.1016/0378-5955(89)90036-1 PASIC TR, 1994, J COMP NEUROL, V348, P111, DOI 10.1002/cne.903480106 RUBSAMEN R, 1994, J COMP NEUROL, V346, P289, DOI 10.1002/cne.903460208 Saint Marie RL, 1999, J COMP NEUROL, V404, P258, DOI 10.1002/(SICI)1096-9861(19990208)404:2<258::AID-CNE9>3.0.CO;2-U Schmiedt RA, 1996, J NEUROPHYSIOL, V76, P2799 SPANGLER KM, 1985, J COMP NEUROL, V238, P249, DOI 10.1002/cne.902380302 STATLER KD, 1990, HEARING RES, V50, P275, DOI 10.1016/0378-5955(90)90051-P Strouse A, 1998, J ACOUST SOC AM, V104, P2385, DOI 10.1121/1.423748 TOLBERT LP, 1982, NEUROSCIENCE, V7, P3031, DOI 10.1016/0306-4522(82)90228-7 WARR WB, 1972, BRAIN RES, V40, P247 WENTHOLD RJ, 1987, NEUROSCIENCE, V22, P897, DOI 10.1016/0306-4522(87)92968-X Willott JF, 1997, J COMP NEUROL, V385, P405 WINTER IM, 1990, HEARING RES, V45, P191, DOI 10.1016/0378-5955(90)90120-E WOOLF NK, 1984, HEARING RES, V13, P277, DOI 10.1016/0378-5955(84)90081-9 NR 45 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2002 VL 164 IS 1-2 BP 166 EP 178 DI 10.1016/S0378-5955(01)00430-0 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 544TV UT WOS:000175178100018 PM 11950536 ER PT J AU Cheong, MA Steel, KP AF Cheong, MA Steel, KP TI Early development and degeneration of vestibular hair cells in bronx waltzer mutant mice SO HEARING RESEARCH LA English DT Article DE mouse mutant; vestibular development; hair cell degeneration; Bronx waltzer ID ELECTRON-MICROSCOPY; INNER-EAR; MOUSE; FETAL; DIFFERENTIATION; EPITHELIA; RECEPTORS; HEARING; SEM AB In bronx waltzer mouse mutants, inner hair cells die at an early stage in their development, from around 17.5 days of gestation onwards. In contrast, outer hair cells appear to develop normally. Vestibular hair cells also degenerate, but the earliest signs of vestibular abnormalities have not yet been described. We looked at prenatal and early postnatal stages of vestibular development by scanning electron microscopy in the mutants, and established that vestibular hair cells (types I and II) never reach beyond the middle stages of differentiation (at least up to P2) and instead show signs of degeneration. Thus, it appears that the bronx waltzer gene product is required for the continued survival and differentiation of inner and vestibular hair cells past a set point in their development. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Nottingham, MRC, Inst Hearing Res, Nottingham NG7 2RD, England. RP Steel, KP (reprint author), Univ Nottingham, MRC, Inst Hearing Res, Univ Pk, Nottingham NG7 2RD, England. CR ANNIKO M, 1982, AM J OTOLARYNG, V3, P31, DOI 10.1016/S0196-0709(82)80030-6 Anniko M., 1983, DEV AUDITORY VESTIBU, P375 BUSSOLI TJ, 1996, THESIS U NOTTINGHAM Bussoli TJ, 1997, MAMM GENOME, V8, P714, DOI 10.1007/s003359900552 Copeland N G, 1993, Science, V262, P67, DOI 10.1126/science.8211131 Demêmes D, 1985, Brain Res, V350, P285 Denman-Johnson K, 1999, J NEUROCYTOL, V28, P821, DOI 10.1023/A:1007061819934 DEOL MS, 1981, ACTA OTO-LARYNGOL, V92, P331, DOI 10.3109/00016488109133269 DEOL MS, 1979, NATURE, V278, P250, DOI 10.1038/278250a0 Dietrich WF, 1996, NATURE, V380, P149, DOI 10.1038/380149a0 Hunter-Duvar I M, 1978, Acta Otolaryngol Suppl, V351, P3 KEITHLEY EM, 1983, HEARING RES, V12, P381, DOI 10.1016/0378-5955(83)90007-2 LENOIR M, 1984, HEARING RES, V13, P123, DOI 10.1016/0378-5955(84)90103-5 LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307 LIM DJ, 1969, ARCH OTOLARYNGOL, V90, P283 MARTIN P, 1993, DEV BIOL, V159, P549, DOI 10.1006/dbio.1993.1263 MBIENE JP, 1988, ANAT EMBRYOL, V177, P331, DOI 10.1007/BF00315841 MBIENE JP, 1984, ANAT EMBRYOL, V170, P229, DOI 10.1007/BF00318726 MBIENE JP, 1986, J COMP NEUROL, V254, P271, DOI 10.1002/cne.902540210 SCHROTT A, 1989, HEARING RES, V40, P213, DOI 10.1016/0378-5955(89)90162-7 Self T, 1998, DEVELOPMENT, V125, P557 Sobkowicz HM, 1992, DEV AUDITORY VESTIBU, V2, P59 TILNEY LG, 1992, ANNU REV CELL BIOL, V8, P257, DOI 10.1146/annurev.cb.08.110192.001353 Whitlon DS, 1996, J COMP NEUROL, V364, P515 WHITLON DS, 1991, ANN NY ACAD SCI, V630, P270, DOI 10.1111/j.1749-6632.1991.tb19602.x NR 25 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2002 VL 164 IS 1-2 BP 179 EP 189 DI 10.1016/S0378-5955(01)00429-4 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 544TV UT WOS:000175178100019 PM 11950537 ER PT J AU Schulte, CC Meyer, J Furness, DN Hackney, CM Kleyman, TR Gummer, AW AF Schulte, CC Meyer, J Furness, DN Hackney, CM Kleyman, TR Gummer, AW TI Functional effects of a monoclonal antibody on mechanoelectrical transduction in outer hair cells SO HEARING RESEARCH LA English DT Article DE mechanoelectrical transduction channel; outer hair cell; antiidiotypic antibody; amiloride ID EPITHELIAL SODIUM-CHANNEL; GUINEA-PIG COCHLEA; NA+ CHANNEL; AMILORIDE BLOCK; XENOPUS OOCYTES; ALPHA-SUBUNIT; MECHANOSENSITIVE CHANNEL; MOUSE COCHLEA; BINDING-SITE; CROSS-LINKS AB The functional effect of a monoclonal antibody, RA6.3, on mechanoelectrical transduction (MET) of outer hair cells (OHCs) isolated from the adult guinea-pig cochlea was investigated. This antibody was raised by an antiidiotypic approach against amiloride binding sites. RA6.3 irreversibly reduced the receptor current, independent of membrane potential. The time course of the functional block was independent of dilution (1:100, 50 and 10), beginning 1.2 +/- 0.5 min after the start of application and decreasing exponentially with a time constant of 0.29 +/- 0.18 min to 53 +/- 8% of the control current. The residual current was reversibly blocked by amiloride (300 muM), mainly at negative membrane potentials. Block of control current by amiloride was competitively inhibited by simultaneous application of RA6.3. These results suggest that RA6.3 binds to or in close proximity to amiloride receptor sites associated with the MET channels. Irreversibility, incompleteness, independence of membrane potential and independence of antibody dilution of the functional block can all be explained by irreversible binding of one antibody molecule to a receptor site, yielding a non-blocked state, followed by a relatively slow, reversible transition to a blocked state. It is proposed that the reversible transition might represent intramolecular binding of the second antibody combining site to the second receptor site. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Tubingen, Dept Otolaryngol, Sect Physiol Acoust & Commun, D-72076 Tubingen, Germany. Univ Keele, Sch Life Sci, MacKay Inst Commun & Neurosci, Keele ST5 5BG, Staffs, England. Univ Pittsburgh, Div Renal, Pittsburgh, PA 15261 USA. RP Gummer, AW (reprint author), Univ Tubingen, Dept Otolaryngol, Sect Physiol Acoust & Commun, Silcherstr 5, D-72076 Tubingen, Germany. CR ASHMORE JF, 1993, BIOPHYSICS HAIR CELL, P151 Awayda MS, 1998, J GEN PHYSIOL, V112, P97, DOI 10.1085/jgp.112.2.97 AWAYDA MS, 1995, AM J PHYSIOL-CELL PH, V268, pC1450 Benos DJ, 1997, NEWS PHYSIOL SCI, V12, P55 Benos D.J, 1982, AM J PHYSIOL, V242, P131 BENOS DJ, 1987, J BIOL CHEM, V262, P10613 CLEVELAND WL, 1983, NATURE, V305, P56, DOI 10.1038/305056a0 COREY DP, 1979, BIOPHYS J, V26, P499 COREY DP, 1979, NATURE, V281, P675, DOI 10.1038/281675a0 COREY DP, 1983, J NEUROSCI, V3, P962 CRAWFORD AC, 1989, J PHYSIOL-LONDON, V419, P405 CROTHERS DM, 1972, IMMUNOCHEMISTRY, V9, P341, DOI 10.1016/0019-2791(72)90097-3 DALLOS P, 1985, J NEUROSCI, V5, P1591 DENK W, 1992, J NEUROPHYSIOL, V68, P927 Denk W, 1995, NEURON, V15, P1311, DOI 10.1016/0896-6273(95)90010-1 Eyring H, 1935, J CHEM PHYS, V3, P107, DOI 10.1063/1.1749604 Eyring H., 1949, REC CHEM PROGR, V10, P100 FLOCK A, 1977, ACTA OTO-LARYNGOL, V83, P85, DOI 10.3109/00016487709128817 FURNESS DN, 1985, HEARING RES, V18, P177, DOI 10.1016/0378-5955(85)90010-3 Furness DN, 1996, HEARING RES, V93, P136, DOI 10.1016/0378-5955(95)00224-3 FURNESS DN, 1989, HEARING RES, V38, P95, DOI 10.1016/0378-5955(89)90131-7 GarciaAnoveros J, 1997, ANNU REV NEUROSCI, V20, P567, DOI 10.1146/annurev.neuro.20.1.567 HACKNEY CM, 1995, AM J PHYSIOL-CELL PH, V268, pC1 HACKNEY CM, 1992, P ROY SOC B-BIOL SCI, V248, P215, DOI 10.1098/rspb.1992.0064 HACKNEY CM, 1993, BIOPHYSICS HAIR CELL, P116 Hamill OP, 1996, PHARMACOL REV, V48, P231 Hamill OP, 2001, PHYSIOL REV, V81, P685 HAMILL OP, 1981, PFLUG ARCH EUR J PHY, V391, P85, DOI 10.1007/BF00656997 HAYNES L, 1985, NATURE, V317, P61, DOI 10.1038/317061a0 HILLE B, 1992, NEURON, V9, P187, DOI 10.1016/0896-6273(92)90158-A HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0 HUDSPETH AJ, 1982, J NEUROSCI, V2, P1 Ismailov II, 1997, BIOPHYS J, V72, P1182 Jack J. J. B., 1975, ELECT CURRENT FLOW E JARAMILLO F, 1991, NEURON, V7, P409, DOI 10.1016/0896-6273(91)90293-9 JORGENSEN F, 1988, J PHYSIOL-LONDON, V403, P577 Katori Y, 1996, CELL TISSUE RES, V284, P473, DOI 10.1007/s004410050608 Kieber-Emmons T, 1999, J BIOL CHEM, V274, P9648, DOI 10.1074/jbc.274.14.9648 KIMITSUKI T, 1993, BRAIN RES, V624, P143, DOI 10.1016/0006-8993(93)90072-U KLEYMAN TR, 1991, J BIOL CHEM, V266, P3907 Kleyman TR, 1999, SEMIN NEPHROL, V19, P524 KLEYMAN TR, 1989, J BIOL CHEM, V264, P11995 KROESE ABA, 1989, HEARING RES, V37, P203, DOI 10.1016/0378-5955(89)90023-3 KROS CJ, 1992, P ROY SOC B-BIOL SCI, V249, P185, DOI 10.1098/rspb.1992.0102 LANE JW, 1992, BRIT J PHARMACOL, V106, P283 LANE JW, 1993, BRIT J PHARMACOL, V108, P116 LANE JW, 1991, J PHYSIOL-LONDON, V441, P347 LUMPKIN EA, 1995, P NATL ACAD SCI USA, V92, P10297, DOI 10.1073/pnas.92.22.10297 Meyer J, 1998, J NEUROSCI, V18, P6748 OHMORI H, 1985, J PHYSIOL-LONDON, V359, P189 PICKLES JO, 1984, HEARING RES, V15, P103, DOI 10.1016/0378-5955(84)90041-8 Preyer S, 1996, AUDIT NEUROSCI, V2, P145 PREYER S, 1994, HEARING RES, V77, P116, DOI 10.1016/0378-5955(94)90259-3 Rossier BC, 1998, J GEN PHYSIOL, V112, P95, DOI 10.1085/jgp.112.2.95 Rusch A, 1999, HEARING RES, V131, P170, DOI 10.1016/S0378-5955(99)00030-1 RUSCH A, 1994, J PHYSIOL-LONDON, V474, P75 RUSSELL IJ, 1992, P ROY SOC B-BIOL SCI, V250, P217, DOI 10.1098/rspb.1992.0152 RUSSELL IJ, 1978, J PHYSIOL-LONDON, V284, P261 SAUNDERS JC, 1989, J ACOUST SOC AM, V86, P1797, DOI 10.1121/1.398612 Schild L, 1997, J GEN PHYSIOL, V109, P15, DOI 10.1085/jgp.109.1.15 TOUSSON A, 1989, J CELL SCI, V93, P349 WASSERMANN NH, 1982, P NATL ACAD SCI-BIOL, V79, P4810, DOI 10.1073/pnas.79.15.4810 YAU KW, 1989, ANNU REV NEUROSCI, V12, P289, DOI 10.1146/annurev.neuro.12.1.289 NR 63 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2002 VL 164 IS 1-2 BP 190 EP 205 DI 10.1016/S0378-5955(01)00431-2 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 544TV UT WOS:000175178100020 PM 11950538 ER PT J AU Rachel, JD Kaltenbach, JA Janisse, J AF Rachel, JD Kaltenbach, JA Janisse, J TI Increases in spontaneous neural activity in the hamster dorsal cochlear nucleus following cisplatin treatment: a possible basis for cisplatin-induced tinnitus SO HEARING RESEARCH LA English DT Article DE dorsal cochlear nucleus; spontaneous activity; cisplatin ID INDUCED HEARING-LOSS; INFERIOR COLLICULUS; INDUCED OTOTOXICITY; INTENSE SOUND; SODIUM THIOSULFATE; THRESHOLD SHIFT; ACOUSTIC INJURY; PLATINUM; EXPOSURE; DAMAGE AB Recent investigations in the hamster have implicated increased spontaneous activity (SA) in the dorsal cochlear nucleus (DCN) as a contributing factor in the etiology of tinnitus induced by intense sound exposure. It might therefore be expected that increased SA would also develop in the DCN of hamsters treated with cisplatin, another cause of tinnitus. We tested this hypothesis by measuring the effects of cisplatin on SA in the DCN. Adult hamsters were divided into three groups, each receiving five injections of cisplatin at one of the following doses: 3 mg/kg, 2.25 mg/kg, or 1.5 mg/kg. Each group had corresponding controls receiving injections of isotonic saline. The effects of cisplatin were studied electrophysiologically I month after treatment by recording multiunit SA on the surface of the DCN. Measurements of SA were obtained in three rows of 13-15 locations spaced roughly 100 pm apart and spanning the length of the DCN along the tonotopic axis. Effects of cisplatin were evaluated by comparing plots of mean SA vs. tonotopic locus for cisplatin-treated groups with those of their corresponding untreated control groups. The results demonstrated a consistently higher level of SA in cisplatin-treated groups than in untreated controls. Whereas the highest rates of mean SA in control groups were between 10 and 15 events/s, the highest mean spontaneous rates in cisplatin-treated groups were between 25 and 38 events/s. The cisplatin-induced hyperactivity was greatest in the medial half of the DCN corresponding to the high frequency portion of the tonotopic range. These results suggest that cisplatin treatment is an effective inducer of hyperactivity in the DCN. This hyperactivity may be an important neural correlate of cisplatin-induced tinnitus. (C) 2002 Published by Elsevier Science B.V. C1 Wayne State Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Detroit, MI 48201 USA. Wayne State Univ, Ctr Healthcare Effectiveness Res, Detroit, MI 48201 USA. RP Kaltenbach, JA (reprint author), Wayne State Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, 5E-UHC, Detroit, MI 48201 USA. CR Axelsson A., 1992, NOISE INDUCED HEARIN, P269 BARRON SE, 1987, HEARING RES, V26, P131, DOI 10.1016/0378-5955(87)90104-3 Bauer CA, 2001, JARO, V2, P54 Benson TE, 1996, J COMP NEUROL, V365, P27 BENSON TE, 1990, J COMP NEUROL, V295, P52, DOI 10.1002/cne.902950106 BLAKLEY BW, 1993, OTOLARYNG HEAD NECK, V109, P385 BOHEIM K, 1995, ARCH OTO-RHINO-LARYN, V242, P1 Bokemeyer C, 1998, BRIT J CANCER, V77, P1355, DOI 10.1038/bjc.1998.226 CHANG H, 2002, IN PRESS HEAR RES CHURCH MW, 1995, HEARING RES, V86, P195, DOI 10.1016/0378-5955(95)00066-D GANDARA DR, 1990, CRIT REV ONCOL HEMAT, V10, P353, DOI 10.1016/1040-8428(90)90010-P GREGG RW, 1992, J CLIN ONCOL, V10, P795 HEFFNER HE, IN PRESS HEAR RES KALTENBACH JA, 1992, HEARING RES, V59, P213, DOI 10.1016/0378-5955(92)90118-7 KALTENBACH JA, 2001, P 6 INT S NOIS IND H Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5 Kaltenbach JA, 1998, HEARING RES, V124, P78, DOI 10.1016/S0378-5955(98)00119-1 Kaltenbach JA, 1997, OTOLARYNG HEAD NECK, V117, P493, DOI 10.1016/S0194-5998(97)70020-2 Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57 KALTENBACH JA, 1991, HEARING RES, V51, P149, DOI 10.1016/0378-5955(91)90013-Y Kawakita Mutsushi, 1999, Acta Urologica Japonica, V45, P783 Kim JN, 1997, HEARING RES, V103, P169, DOI 10.1016/S0378-5955(96)00173-6 KOMUNE S, 1995, ANN OTO RHINOL LARYN, V104, P149 Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8 LOEHRER PJ, 1984, ANN INTERN MED, V100, P704 Lorente de No R, 1981, PRIMARY ACOUSTIC NUC Melamed SB, 2000, AUDIOLOGY, V39, P24 Minami T, 1998, TOXICOLOGY, V130, P107, DOI 10.1016/S0300-483X(98)00103-6 Minami T, 1996, J PHARM PHARMACOL, V48, P505 MOROSO MJ, 1983, J OTOLARYNGOL, V12, P365 MUGNAINI E, 1985, J COMP NEUROL, V235, P61, DOI 10.1002/cne.902350106 Nakagawa H, 1996, CANCER CHEMOTH PHARM, V37, P317, DOI 10.1007/s002800050391 NAKAI Y, 1982, ACTA OTO-LARYNGOL, V93, P227, DOI 10.3109/00016488209130876 OSEN KK, 1972, J COMP NEUROL, V144, P355, DOI 10.1002/cne.901440307 Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037 RYBAK LP, 1986, ANNU REV PHARMACOL, V26, P79 RYBAK LP, 1981, J LARYNGOL OTOL, V95, P745, DOI 10.1017/S0022215100091374 RYUGO DK, 1981, BRAIN RES, V210, P342, DOI 10.1016/0006-8993(81)90907-0 SAITO T, 1994, ORL J OTO-RHINO-LARY, V56, P315 Salvi RJ, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P275 Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 SALVI RJ, 1978, EXP BRAIN RES, V32, P301 SAUNDERS JC, 1991, J ACOUST SOC AM, V90, P136, DOI 10.1121/1.401307 SAUNDERS JC, 1985, J ACOUST SOC AM, V78, P833, DOI 10.1121/1.392915 SCHWEITZER VG, 1993, LARYNGOSCOPE, V103, P1, DOI 10.1288/00005537-199304000-00001 Wang J, 1996, J NEUROPHYSIOL, V75, P171 WILLOTT JF, 1982, SCIENCE, V216, P1331, DOI 10.1126/science.7079767 NR 48 TC 22 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2002 VL 164 IS 1-2 BP 206 EP 214 DI 10.1016/S0378-5955(02)00287-3 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 544TV UT WOS:000175178100021 PM 11950539 ER PT J AU Formby, C Rutledge, JC Sherlock, LP AF Formby, C Rutledge, JC Sherlock, LP TI Exponential processes in human auditory excitation and adaptation SO HEARING RESEARCH LA English DT Article DE auditory excitation; adaptation; temporal masking; mid-level compression ID SHORT-TERM ADAPTATION; HEARING-IMPAIRED LISTENERS; BASILAR-MEMBRANE; NERVE FIBERS; TIME CONSTANTS; TUNING CURVES; MASKER LEVEL; MASKING; OVERSHOOT; RESPONSES AB Peripheral auditory adaptation has been studied extensively in animal models, and multiple exponential components have been identified. This study explores the feasibility of estimating these component processes for human listeners with a peripheral model of adaptation. The processes were estimated from off-frequency masked detection data that probed temporal masking responses to a gated narrowband masker. The resulting response patterns reflected step-like onset and offset features with characteristically little evidence of confounding backward and forward masking. The model was implemented with linear combinations of exponential functions to represent the unadapted excitation response to gating the masker on and then off and the opposing effects of adaptation in each instance. The onset and offset of the temporal masking response were assumed to be approximately inverse operations and were modeled independently in this scheme. The unadapted excitation response at masker onset and the reversed excitation response at masker offset were each represented in the model by a single exponential function. The adaptation processes were modeled by three independent exponential functions, which were reversed at masker offset. Each adaptation component was subtractive and partially negated the unadapted excitation response to the dynamic masker. This scheme allowed for quantification of the response amplitude, action latency, and time constant for the unadapted excitation component and for each adaptation component. The results reveal that (1) the amplitudes of the unadapted excitation and reversed excitation components grow nonlinearly with masker level and mirror the 'compressive' input-output velocity response of the basilar membrane (2) the time constants for the unadapted excitation and reversed excitation components are related inversely to masker intensity, which is compatible with neural synchrony increasing at masker onset (or offset) with increasing masker strength; (3) the composite strength of adaptation levels off at high masker levels; this 'saturation' response is consistent with a diminished contribution from peripheral neural adaptation processes at high sound levels; and (4) the response dynamics for two of the adaptation components correspond generally to those for the 'very rapid'/'rapid' processes and 'short-term' processes described in animal studies of peripheral neural adaptation. The action latency of a third adaptation component suggests the role of a second-order peripheral or central process. This modeling exercise (1) indicates that multiple adaptation processes, whatever their origins, contribute substantively to the form of the temporal masking response and (2) supports a sum-of-exponentials scheme for estimating properties of the component processes. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Maryland, Sch Med, Dept Surg, Div Otolaryngol HNS, Baltimore, MD 21201 USA. RP Formby, C (reprint author), Univ Maryland, Sch Med, Dept Surg, Div Otolaryngol HNS, Frenkil Bldg,16 S Eutaw St,Suite 500, Baltimore, MD 21201 USA. CR Adrian E. D., 1928, BASIS SENSATION ACTI BACON SP, 1994, J ACOUST SOC AM, V95, P2616, DOI 10.1121/1.410018 BACON SP, 1990, J ACOUST SOC AM, V88, P698, DOI 10.1121/1.399773 CHAMPLIN CA, 1989, J ACOUST SOC AM, V85, P2005, DOI 10.1121/1.397853 CUDAHY E, 1982, NEW PERSPECTIVES NOI, P395 DUIFHUIS H, 1973, J ACOUST SOC AM, V54, P1471, DOI 10.1121/1.1914446 EFRON R, 1970, PERCEPT PSYCHOPHYS, V8, P231, DOI 10.3758/BF03210211 EGGERMON.JJ, 1974, AUDIOLOGY, V13, P1 EGGERMONT JJ, 1985, HEARING RES, V18, P57, DOI 10.1016/0378-5955(85)90110-8 Formby C, 2000, J VESTIBUL RES-EQUIL, V10, P25 Formby C, 2000, J ACOUST SOC AM, V107, P2169, DOI 10.1121/1.428498 FORMBY C, 1998, J ACOUST SOC AM, V103, P2811, DOI 10.1121/1.421564 HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083 Kiang NY-s, 1965, DISCHARGE PATTERNS S LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LUSCHER E, 1947, ACTA OTO-LARYNGOL, V35, P428, DOI 10.3109/00016484709123758 MALCOLM R, 1970, ACTA OTO-LARYNGOL, V53, P315 Moore B.C.J., 1995, PERCEPTUAL CONSEQUEN Moore BCJ, 1998, PSYCHOL REV, V105, P108, DOI 10.1037/0033-295X.105.1.108 Moore BCJ, 1997, J ACOUST SOC AM, V102, P2954, DOI 10.1121/1.420350 NELSON DA, 1976, PSYCHOPHYSICAL PHYSL, P175 NELSON DA, 1989, J SPEECH HEAR RES, V32, P298 NELSON DA, 1987, J ACOUST SOC AM, V81, P709, DOI 10.1121/1.395131 RAAB DH, 1963, PSYCHOL BULL, V60, P118, DOI 10.1037/h0040543 Ratliff F, 1965, MACH BANDS QUANTITAT RELKIN EM, 1988, J ACOUST SOC AM, V84, P584, DOI 10.1121/1.396836 RHODE WS, 1985, HEARING RES, V18, P159, DOI 10.1016/0378-5955(85)90008-5 RHODE WS, 1971, J ACOUST SOC AM, V49, P1218, DOI 10.1121/1.1912485 ROBLES L, 1986, J ACOUST SOC AM, V80, P1364, DOI 10.1121/1.394389 Ruggero M A, 1992, Curr Opin Neurobiol, V2, P449, DOI 10.1016/0959-4388(92)90179-O RUGGERO MA, 1991, J NEUROSCI, V11, P1057 SHANNON RV, 1990, J ACOUST SOC AM, V88, P741, DOI 10.1121/1.399777 SMITH RL, 1979, J ACOUST SOC AM, V65, P166, DOI 10.1121/1.382260 SMITH RL, 1977, J NEUROPHYSIOL, V40, P1098 SMITH RL, 1975, BIOL CYBERN, V17, P169, DOI 10.1007/BF00364166 Strope B, 1997, IEEE T SPEECH AUDI P, V5, P451, DOI 10.1109/89.622569 TURNER CW, 1994, J ACOUST SOC AM, V96, P795, DOI 10.1121/1.410317 VOGTEN LLM, 1978, J ACOUST SOC AM, V63, P1520, DOI 10.1121/1.381846 von Bekesy G., 1967, SENSORY INHIBITION VONKLITZING R, 1994, J ACOUST SOC AM, V95, P2192, DOI 10.1121/1.408679 WESTERMAN LA, 1984, HEARING RES, V15, P249, DOI 10.1016/0378-5955(84)90032-7 WESTERMAN LA, 1988, J ACOUST SOC AM, V83, P2266, DOI 10.1121/1.396357 YATES GK, 1980, PSYCHOPHYSICAL PHYSL, P200 YATES GK, 1990, HEARING RES, V50, P145, DOI 10.1016/0378-5955(90)90041-M YOUNG E, 1973, J ACOUST SOC AM, V54, P1535, DOI 10.1121/1.1914451 NR 45 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2002 VL 164 IS 1-2 BP 215 EP 230 DI 10.1016/S0378-5955(01)00428-2 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 544TV UT WOS:000175178100022 PM 11950540 ER PT J AU Kozel, PJ Davis, RR Krieg, EF Shull, GE Erway, LC AF Kozel, PJ Davis, RR Krieg, EF Shull, GE Erway, LC TI Deficiency in plasma membrane calcium ATPase isoform 2 increases susceptibility to noise-induced hearing loss in mice SO HEARING RESEARCH LA English DT Article DE mice; noise-induced hearing loss; calcium; plasma membrane calcium ATPase isoform 2 ID CALMODULIN-BINDING DOMAIN; CA2+ PUMP; F1-HYBRID STRAINS; INBRED STRAINS; CA2+-ATPASE; DEAFNESS; PHOSPHORYLATION; STEREOCILIA; EXPRESSION; MUTATIONS AB Susceptibility to noise-induced hearing loss (NIHL) is poorly understood at the genetic level. Mice homozygous for a null mutation in the plasma membrane Ca2+-ATPase isoform. 2 (PMCA2) gene are deaf (Kozel et al., 1998). PMCA2 is expressed on outer hair cell stereocilia (Furuta et al., 1998). Fridberger et al. (1998) observed that the outer hair cell cytoplasmic Ca2+ concentration rises following acoustic overstimulation. We hypothesized that Pmca2(+/-) mice may be more susceptible to NIHL. Since the auditory brainstem response (ABR) thresholds of Pmca2(+/-) mice vary with the presence of a modifier locus (Noben-Trauth et al., 1997), Pmca2(+/-) mice were outcrossed to normal hearing CAST/Ei mice. The pre-exposure ABR thresholds of the resulting Pmca2(+/+) and Pmca2(+/-) siblings were indistinguishable. Groups of these mice were exposed to varying intensities of broadband noise, and ABR threshold shifts were calculated. Fifteen days following an 8 h, 113 dB noise exposure, the Pmca2(+/-) mice displayed significant (P less than or equal to 0.0007) permanent threshold shifts at 16 and 32 kHz that were 15 or 25 dB greater than those observed in Pinea2(+/+) littermates. Pmca2 may be the first gene with a known mutated protein product that confers increased susceptibility to NIHL. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Cincinnati, Dept Mol Genet Biochem & Microbiol, Cincinnati, OH 45267 USA. Univ Cincinnati, Dept Biol Sci, Cincinnati, OH 45221 USA. NIOSH, Div Appl Res & Technol, Hearing Loss Prevent Sect, Engn & Phys Hazards Branch, Cincinnati, OH 45226 USA. NIOSH, Monitoring Res & Stat Act, Div Appl Res & Technol, Cincinnati, OH 45226 USA. RP Davis, RR (reprint author), Univ Cincinnati, Dept Mol Genet Biochem & Microbiol, Cincinnati, OH 45267 USA. RI Davis, Rickie/A-3186-2008 CR BLACHE P, 1990, J BIOL CHEM, V265, P21514 Bryda EC, 2001, GENOMICS, V73, P338, DOI 10.1006/geno.2001.6538 CARAFOLI E, 1994, J NEUROBIOL, V25, P312, DOI 10.1002/neu.480250311 CARAFOLI E, 1992, J BIOL CHEM, V267, P2115 CARAFOLI E, 1994, FASEB J, V8, P993 CODY AR, 1983, HEARING RES, V9, P55, DOI 10.1016/0378-5955(83)90134-X Davis RR, 1999, HEARING RES, V134, P9, DOI 10.1016/S0378-5955(99)00060-X Davis RR, 2001, HEARING RES, V155, P82, DOI 10.1016/S0378-5955(01)00250-7 DIPALMA E, 2001, NAT GENET, V27, P103 Enyedi A, 1996, J BIOL CHEM, V271, P32461 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X FAY RR, 1988, HEARING VERTEBRATES, P367 FILOTEO AG, 1992, J BIOL CHEM, V267, P11800 Fridberger A, 1998, P NATL ACAD SCI USA, V95, P7127, DOI 10.1073/pnas.95.12.7127 Furuta H, 1998, HEARING RES, V123, P10, DOI 10.1016/S0378-5955(98)00091-4 GARCIA ML, 1999, FRONT BIOSCI, V4, P869 GREEB J, 1989, J BIOL CHEM, V264, P18569 Holme RH, 1999, CURR OPIN GENET DEV, V9, P309, DOI 10.1016/S0959-437X(99)80046-X Hsu CJ, 2000, HEARING RES, V142, P203, DOI 10.1016/S0378-5955(00)00020-4 JAMES PH, 1989, BIOCHEMISTRY-US, V28, P4253, DOI 10.1021/bi00436a020 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 KEETON TP, 1993, J BIOL CHEM, V268, P2740 Kozel PJ, 1998, J BIOL CHEM, V273, P18693, DOI 10.1074/jbc.273.30.18693 *NAT I OCC SAF HLT, 1996, 96115 US DEP HLTH HU, P14 NEWLANDER JK, 1995, ARO MIDW RES M NobenTrauth K, 1997, GENOMICS, V44, P266, DOI 10.1006/geno.1997.4869 PEDERSEN PL, 1987, TRENDS BIOCHEM SCI, V12, P146, DOI 10.1016/0968-0004(87)90071-5 SHONE G, 1991, HEARING RES, V56, P173, DOI 10.1016/0378-5955(91)90167-8 Street VA, 1998, NAT GENET, V19, P390 Takahashi K, 1999, BIOCHEM BIOPH RES CO, V261, P773, DOI 10.1006/bbrc.1999.1102 TAYLOR W, 1965, J ACOUST SOC AM, V38, P113, DOI 10.1121/1.1909580 Yamoah EN, 1998, J NEUROSCI, V18, P610 ZHAO Y, 1996, P NATL ACAD SCI USA, V94, P15469 ZHENG QY, 2001, HEARING RES, V3639, P1 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 37 TC 45 Z9 48 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2002 VL 164 IS 1-2 BP 231 EP 239 DI 10.1016/S0378-5955(01)00420-8 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 544TV UT WOS:000175178100023 PM 11950541 ER PT J AU Bhattacharya, G Miller, C Kimberling, WJ Jablonski, MM Cosgrove, D AF Bhattacharya, G Miller, C Kimberling, WJ Jablonski, MM Cosgrove, D TI Localization and expression of usherin: a novel basement membrane protein defective in people with Usher's syndrome-type IIa SO HEARING RESEARCH LA English DT Article DE Usher's syndrome; usherin; basement membrane; cochlea; retinitis pigmentosa ID HEPARIN-BINDING; FIBRONECTIN; LAMININ; MATRIX; GENE; IDENTIFICATION; NETRIN-1; GUIDANCE; ADHESION; THROMBOSPONDIN-1 AB People with Usher's syndrome type IIa have mutations in a novel gene encoding a protein with domains commonly found in many types of extracellular matrix and cell surface receptor proteins. Here we report that this protein, which we refer to as usherin, is a new basement membrane protein. In the mouse, usherin has a broad, but not ubiquitous, tissue distribution. Usherin is found in all of the capillary and structural basement membranes of the human and mouse retina and in the murine inner ear at both post-natal day 0 and in the adult. High levels of usherin are also observed. in tissues not affected in Usher's syndrome type IIa, including spleen, testis, oviduct, epididymis, submaxillary gland, and large and small intestines. Many organs are completely devoid of usherin, including the brain, skin, kidney, lung, liver, and skeletal muscle. Expression was observed in the smooth muscle of the small intestine, colon, and oviduct, however, usherin is not present in cardiac smooth muscle. Usherin is critical for normal development and tissue homeostasis in the inner ear and retina, illustrating yet another example of the importance of basement membranes in the development and function of tissues. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Boys Town Natl Res Hosp, Omaha, NE 68131 USA. Univ Tennessee, Memphis, TN 38163 USA. RP Cosgrove, D (reprint author), Boys Town Natl Res Hosp, 555 30th St, Omaha, NE 68131 USA. CR BARKALOW FJB, 1991, J BIOL CHEM, V266, P7812 BECK K, 1990, FASEB J, V4, P148 Bein K, 2000, J BIOL CHEM, V275, P32167, DOI 10.1074/jbc.M003834200 Bork P, 1996, Q REV BIOPHYS, V29, P119 BOUGHMAN JA, 1983, J CHRON DIS, V36, P595, DOI 10.1016/0021-9681(83)90147-9 BOWDITCH RD, 1994, J BIOL CHEM, V269, P10856 BRUCH M, 1989, EUR J BIOCHEM, V185, P271, DOI 10.1111/j.1432-1033.1989.tb15112.x Colognato H, 2000, DEV DYNAM, V218, P213, DOI 10.1002/(SICI)1097-0177(200006)218:2<213::AID-DVDY1>3.0.CO;2-R Deiner MS, 1997, NEURON, V19, P575, DOI 10.1016/S0896-6273(00)80373-6 Dreyer B, 2000, EUR J HUM GENET, V8, P500, DOI 10.1038/sj.ejhg.5200491 Ehret G, 1976, J Am Audiol Soc, V1, P179 ENGEL J, 1989, FEBS LETT, V251, P1, DOI 10.1016/0014-5793(89)81417-6 Eudy JD, 1998, SCIENCE, V280, P1753, DOI 10.1126/science.280.5370.1753 Goicoechea Silvia, 2000, Journal of Biological Chemistry, V275, P36358, DOI 10.1074/jbc.M005951200 Hallgren B, 1959, ACTA PSYCHIAT SCAN S, V138, P1 Hmani M, 1999, EUR J HUM GENET, V7, P363, DOI 10.1038/sj.ejhg.5200307 Kalluri R, 2000, J BIOL CHEM, V275, P12719, DOI 10.1074/jbc.275.17.12719 Kashtan CE, 1999, MEDICINE, V78, P338, DOI 10.1097/00005792-199909000-00005 Kimberling W J, 1995, J Am Acad Audiol, V6, P63 Kimberling WJ, 2000, ADV OTO-RHINO-LARYNG, V56, P11 KIMBERLING WJ, 1995, AM J HUM GENET, V56, P216 Leonardo ED, 1997, COLD SPRING HARB SYM, V62, P467 MAYER U, 1995, FEBS LETT, V365, P129, DOI 10.1016/0014-5793(95)00438-F Metin C, 1997, DEVELOPMENT, V124, P5063 Murphy-Ullrich JE, 2000, CYTOKINE GROWTH F R, V11, P59, DOI 10.1016/S1359-6101(99)00029-5 NICOSIA RF, 1994, J CELL BIOL, V124, P183, DOI 10.1083/jcb.124.1.183 NUUTILA A, 1970, J GENET HUM, V18, P57 Pieke-Dahl S, 2000, J MED GENET, V37, P256, DOI 10.1136/jmg.37.4.256 Poe BH, 1998, DEV BRAIN RES, V105, P153, DOI 10.1016/S0165-3806(97)00186-7 Sayers R, 1999, KIDNEY INT, V56, P1662, DOI 10.1046/j.1523-1755.1999.00744.x Sharma A, 1999, EMBO J, V18, P1468, DOI 10.1093/emboj/18.6.1468 Silletti S, 2000, J CELL BIOL, V149, P1485, DOI 10.1083/jcb.149.7.1485 Sipes JM, 1999, J BIOL CHEM, V274, P22755, DOI 10.1074/jbc.274.32.22755 Sumegi J, 1996, GENOMICS, V35, P79, DOI 10.1006/geno.1996.0325 TARABOLETTI G, 1990, J CELL BIOL, V111, P765, DOI 10.1083/jcb.111.2.765 Weston MD, 2000, AM J HUM GENET, V66, P1199, DOI 10.1086/302855 YURCHENCO PD, 1993, J BIOL CHEM, V268, P17286 NR 37 TC 38 Z9 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2002 VL 163 IS 1-2 BP 1 EP 11 DI 10.1016/S0378-5955(01)00344-6 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 512UB UT WOS:000173341000001 PM 11788194 ER PT J AU Riedel, H Kollmeier, B AF Riedel, H Kollmeier, B TI Auditory brain stem responses evoked by lateralized clicks: is lateralization extracted in the human brain stem? SO HEARING RESEARCH LA English DT Article DE auditory brain stem response; binaural difference potential; interaural time difference; interaural level difference; lateralization ID BINAURAL INTERACTION COMPONENT; INTERAURAL TIME DIFFERENCES; COINCIDENCE DETECTION; POTENTIALS; CAT; STIMULI; INTENSITY; GENERATORS; FREQUENCY; NEURONS AB The dependence of binaurally evoked auditory brain stem responses and the binaural difference potential on simultaneously presented interaural time and level differences is investigated in order to assess the representation of stimulus lateralization in the brain stem. Auditory brain stem responses to binaural click stimuli with all combinations of three interaural time and three interaural level differences were recorded from 12 subjects and 4 channels. The latency of Jewett wave V is shortest for zero interaural time difference and longest for the trading stimuli. The amplitude of wave V is largest for centrally perceived stimuli, i.e., the diotic and trading stimuli, and smallest for the most laterally perceived Stimuli. The latency of the most prominent peak of the binaural difference potential DN1 mainly depends on the interaural time difference. The amplitude of the components of the binaural difference potential, DP1-DN1, depends similarly on stimulus conditions as wave V amplitude in the case or the binaural stimuli: smallest amplitudes are found for the most lateral stimuli and largest amplitudes for central stimuli. The results demonstrate that interaural level and time differences are not processed independently. This supports the hypothesis that directional information in humans is already extracted and represented at the level of the brain stem. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Oldenburg, Med Phys AG, D-26111 Oldenburg, Germany. RP Kollmeier, B (reprint author), Univ Oldenburg, Med Phys AG, D-26111 Oldenburg, Germany. CR ACHOR LJ, 1980, ELECTROEN CLIN NEURO, V48, P154, DOI 10.1016/0013-4694(80)90301-6 AINSLIE PJ, 1980, ELECTROEN CLIN NEURO, V49, P291, DOI 10.1016/0013-4694(80)90223-0 Brantberg K, 1999, AUDIOL NEURO-OTOL, V4, P88, DOI 10.1159/000013825 Brantberg K, 1999, SCAND AUDIOL, V28, P15, DOI 10.1080/010503999424879 CAIRD D, 1983, EXP BRAIN RES, V52, P385 CAIRD D, 1985, ELECTROEN CLIN NEURO, V61, P50, DOI 10.1016/0013-4694(85)91072-7 COLBURN HS, 1978, HDB PERCEPTION HEARI ConeWesson B, 1997, HEARING RES, V106, P163, DOI 10.1016/S0378-5955(97)00016-6 Damaschke J., 2000, Zeitschrift fur Audiologie, V39 DOBIE RA, 1979, ARCH OTOLARYNGOL, V105, P391 DOBIE RA, 1980, ELECTROEN CLIN NEURO, V49, P303, DOI 10.1016/0013-4694(80)90224-2 Durlach NI, 1978, HDB PERCEPTION HEARI FEDDERSEN UE, 1957, J ACOUST SOC AM, V29, P988 FURST M, 1985, J ACOUST SOC AM, V78, P1644, DOI 10.1121/1.392802 GAUMOND RP, 1991, J ACOUST SOC AM, V89, P454, DOI 10.1121/1.400482 GERULL G, 1984, AUDIOLOGY, V23, P265 GOLDBERG JM, 1969, J NEUROPHYSIOL, V36, P157 Granzow M., 2001, Zeitschrift fur Audiologie, V40 GUMMER AW, 1996, COMPREHENSIVE HUMAN HOTH S, 1986, AUDIOLOGY, V25, P248 IRVINE DRF, 1992, MAMMALIAN AUDITORY P ITO S, 1988, HEARING RES, V35, P9, DOI 10.1016/0378-5955(88)90036-6 Jasper H. H., 1958, ELECTROENCEPHALOGRAP, V10, P371, DOI DOI 10.1016/0013-4694(58)90053-1 JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495 Jiang ZD, 1996, EVOKED POTENTIAL, V100, P505 JONES SJ, 1990, ELECTROEN CLIN NEURO, V77, P214, DOI 10.1016/0168-5597(90)90040-K JOSEPH AW, 1993, J NEUROPHYSIOL, V69, P1197 KELLYBALLWEBER D, 1984, AUDIOLOGY, V23, P181 LEVINE RA, 1981, ANN NEUROL, V9, P384, DOI 10.1002/ana.410090412 MCPHERSON DL, 1989, ELECTROEN CLIN NEURO, V74, P124, DOI 10.1016/0168-5597(89)90017-8 MCPHERSON DL, 1995, HEARING RES, V89, P162, DOI 10.1016/0378-5955(95)00134-1 Melcher JR, 1996, HEARING RES, V93, P52, DOI 10.1016/0378-5955(95)00200-6 MILLS AW, 1958, J ACOUST SOC AM, V30, P237, DOI 10.1121/1.1909553 MILLS AW, 1960, J ACOUST SOC AM, V32, P132, DOI 10.1121/1.1907864 Nieuwenhuys R., 1988, HUMAN CENTRAL NERVOU NORDBY K, 1982, J ACOUST SOC AM, V71, P132 Popper AN, 1992, MAMMALIAN AUDITORY P Rayleigh L., 1907, PHILOS MAG, V13, P214 Riedel H., 2001, Zeitschrift fur Audiologie, V40 SCHERG M, 1985, ELECTROEN CLIN NEURO, V62, P290, DOI 10.1016/0168-5597(85)90006-1 SCHERG M, 1991, AKUSTISCH EVOZIERTE SEMPLE MN, 1979, J NEUROPHYSIOL, V42, P1626 Sharbrough F., 1991, J CLIN NEUROPHYSIOL, V8, P200 Ungan P, 1997, HEARING RES, V106, P66, DOI 10.1016/S0378-5955(97)00003-8 van Adel BA, 1999, HEARING RES, V130, P115, DOI 10.1016/S0378-5955(98)00226-3 WREGE KS, 1981, ARCH NEUROL-CHICAGO, V38, P572 YIN TCT, 1988, AUDITORY FUNCTION NE YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 NR 48 TC 22 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2002 VL 163 IS 1-2 BP 12 EP 26 DI 10.1016/S0378-5955(01)00362-8 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 512UB UT WOS:000173341000002 PM 11788195 ER PT J AU Gratton, MA Meehan, DT Smyth, BJ Cosgrove, D AF Gratton, MA Meehan, DT Smyth, BJ Cosgrove, D TI Strial marginal cells play a role in basement membrane homeostasis: In vitro and in vivo evidence SO HEARING RESEARCH LA English DT Article DE cochlea; stria vascularis; basement membrane; pathogenesis; extracellular matrix; cell culture ID QUIET-AGED GERBILS; DEPENDENT DIABETIC MICROANGIOPATHY; AUTOSOMAL ALPORT-SYNDROME; INNER-EAR; EXTRACELLULAR-MATRIX; CHINCHILLA COCHLEA; TISSUE INHIBITORS; LATERAL WALL; MOUSE MODEL; IV COLLAGEN AB The interaction of extracellular matrix and receptors plays a role in tissue homeostasis. The thickened strial capillary basement membrane (SCBM) reported in animal models of presbycusis and Alport's syndrome might be secondary to elevated synthesis and/or decreased turnover of specific basement membrane (BM) components. In this study, expression of specific BM proteins, integrin receptors and mediators of matrix turnover in the marine lateral wall were determined using cDNA probes and antibodies. The presence of collagen alpha1 and alpha2(IV) and laminin-8 in the SCBM was verified. The integrin subunits alpha3, alphav and beta1, cell surface receptors for the BM proteins, localized primarily to the SCBM and/or the strial marginal cells as did TIMP-3, a tissue inhibitor of matrix metalloproteinase. The epithelial cell line SV-k1, derived from the lateral wall of the 'immortomouse', showed expression of the same BM proteins as well as demonstrating the presence of markers specific to strial marginal cells, namely Na,K-ATPase alpha1 and beta2 subunits. Thus, the cultured cells are identified as deriving from marginal cells of the stria vascularis. Moreover, these data suggest that a culture system using this marginal cell line will be useful to delineate mechanisms underlying the pathologic accumulation of extracellular matrix in the SCBM. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Boys Town Natl Res Hosp, Omaha, NE 68131 USA. RP Gratton, MA (reprint author), Univ Penn, Dept Otorhinolaryngol Head & Neck Surg, Auditory Res Lab, 5 Silverstein Ravdin ORL,3400 Spruce St, Philadelphia, PA 19104 USA. CR ABERDAM D, 1994, NAT GENET, V6, P299, DOI 10.1038/ng0394-299 BARKER DF, 1990, SCIENCE, V248, P1224, DOI 10.1126/science.2349482 Behrendtsen O, 1997, DEV DYNAM, V208, P255 BELYANTSEVA I, 1998, ABSTR ASS RES OTOLAR, V21, P620 BOSMAN FT, 1993, HISTOCHEM J, V25, P469, DOI 10.1007/BF00159282 Brew K, 2000, BBA-PROTEIN STRUCT M, V1477, P267, DOI 10.1016/S0167-4838(99)00279-4 Cirulli V, 2000, J CELL BIOL, V150, P1445, DOI 10.1083/jcb.150.6.1445 Cosgrove D, 1996, GENE DEV, V10, P2981, DOI 10.1101/gad.10.23.2981 Cosgrove D, 1998, HEARING RES, V121, P84, DOI 10.1016/S0378-5955(98)00069-0 DAVIES M, 1992, KIDNEY INT, V41, P671, DOI 10.1038/ki.1992.103 Eudy JD, 1998, SCIENCE, V280, P1753, DOI 10.1126/science.280.5370.1753 Evans AL, 2000, NAT GENET, V24, P424 FRISCH SM, 1994, J CELL BIOL, V124, P619, DOI 10.1083/jcb.124.4.619 GRATTON MA, 1995, HEARING RES, V82, P44 GRATTON MA, 1995, HEARING RES, V83, P43, DOI 10.1016/0378-5955(94)00188-V HAZENMARTIN DJ, 1987, PEDIATR RES, V21, P72, DOI 10.1203/00006450-198701000-00016 HAZENMARTIN DJ, 1993, ENVIRON HEALTH PERSP, V101, P510, DOI 10.2307/3431588 Hibino H, 1997, J NEUROSCI, V17, P4711 HYNES RO, 1992, CELL, V69, P11, DOI 10.1016/0092-8674(92)90115-S Inderdeo DS, 1996, BIOL REPROD, V55, P498, DOI 10.1095/biolreprod55.3.498 JAT PS, 1991, P NATL ACAD SCI USA, V88, P5096, DOI 10.1073/pnas.88.12.5096 KALINEC F, 1996, ABSTR ASS RES OTOLAR, V19, P577 KNOWLDEN J, 1995, KIDNEY INT, V47, P1682, DOI 10.1038/ki.1995.233 Makino H, 2000, KIDNEY INT, V58, pS67 McQueen CT, 1999, J LARYNGOL OTOL, V113, P13 MOCHIZUKI T, 1994, NAT GENET, V8, P77, DOI 10.1038/ng0994-77 Nariuchi H, 1994, Acta Otolaryngol Suppl, V514, P127 RODGERS KD, 2000, HEARING RES, V158, P39 RoyChaudhury P, 1997, KIDNEY INT, V52, P103, DOI 10.1038/ki.1997.309 Sakaguchi N, 1997, HEARING RES, V105, P44, DOI 10.1016/S0378-5955(96)00180-3 SANTI PA, 1989, HEARING RES, V39, P91, DOI 10.1016/0378-5955(89)90084-1 Satoh H, 1998, EUR ARCH OTO-RHINO-L, V255, P285, DOI 10.1007/s004050050060 SCHULTE BA, 1994, HEARING RES, V78, P65, DOI 10.1016/0378-5955(94)90045-0 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K SMITH TL, 1995, LARYNGOSCOPE, V105, P236, DOI 10.1288/00005537-199503000-00002 SONE M, 1995, HEARING RES, V83, P26, DOI 10.1016/0378-5955(94)00189-W STRAUSS P, 1982, LARYNG RHINOL OTOL V, V61, P325, DOI 10.1055/s-2007-1008585 TAKAHASHI M, 1992, ANN OTO RHINOL LARYN, V101, P58 Thomopoulos GN, 1997, HEARING RES, V111, P31, DOI 10.1016/S0378-5955(97)00080-4 Tsuprun V, 1999, HEARING RES, V129, P35, DOI 10.1016/S0378-5955(98)00219-6 Vachon PH, 1997, J CLIN INVEST, V100, P1870, DOI 10.1172/JCI119716 Wada J, 1996, J CELL BIOL, V132, P1161, DOI 10.1083/jcb.132.6.1161 WHITLON D, 2000, ABSTR ASS RES OTOLAR, V23, P872 XU H, 1994, P NATL ACAD SCI USA, V91, P5572, DOI 10.1073/pnas.91.12.5572 NR 44 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2002 VL 163 IS 1-2 BP 27 EP 36 DI 10.1016/S0378-5955(01)00358-6 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 512UB UT WOS:000173341000003 PM 11788196 ER PT J AU Suzuki, M Kitano, H Kitanishi, T Itou, R Shiino, A Nishida, Y Yazawa, Y Ogawa, F Kitajima, K AF Suzuki, M Kitano, H Kitanishi, T Itou, R Shiino, A Nishida, Y Yazawa, Y Ogawa, F Kitajima, K TI Cortical and subcortical activation with monaural monosyllabic stimulation by functional MRI SO HEARING RESEARCH LA English DT Article DE functional magnetic resonance imaging; auditory response; human brain mapping; profound unilateral deafness; monaural stimulation ID ACOUSTIC NOISE; HEARING; FMRI; BRAIN; ANATOMY; MOTOR; SOUND AB Few reports have characterized auditory processing in monaural stimulation, which is important to the understanding of auditory brain activity in subjects with hearing loss. We therefore measured regional brain activity in response to monaural stimulation of 95 dB SPL monosyllables using functional magnetic resonance imaging (fMRI) in subjects with normal hearing and five with unilateral deafness as controls for 'cross-hearing'. Images were analyzed by statistical parametric mapping software. In subjects without hearing loss, the stimuli elicited cortical activation in the primary auditory (BA 41) and auditory association regions (BA 42, 22), particularly contralaterally where extent of activation was approximately 2.5 times the ipsilateral extent. All patients with profound unilateral deafness showed no statistically apparent response in the primary auditory and auditory association regions, ruling out an important influence from cross-hearing. We found fMRI to be a: useful technique for analysis of auditory processing that should be applicable to patients with various hearing abnormalities. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Shiga Univ Med Sci, Dept Otolaryngol, Otsu, Shiga 5202192, Japan. Shiga Univ Med Sci, Dept Radiol, Otsu, Shiga 5202192, Japan. Shiga Univ Med Sci, Dept Neurosurg, Otsu, Shiga 5202192, Japan. Shiga Univ Med Sci, Dept Ophthalmol, Otsu, Shiga 5202192, Japan. RP Suzuki, M (reprint author), Shiga Univ Med Sci, Dept Otolaryngol, Seta, Otsu, Shiga 5202192, Japan. CR Augustine JR, 1996, BRAIN RES REV, V22, P229, DOI 10.1016/S0165-0173(96)00011-2 Bilecen D, 2000, NEUROLOGY, V54, P765 Binder JR, 1997, J NEUROSCI, V17, P353 BINDER JR, 1994, ANN NEUROL, V35, P662, DOI 10.1002/ana.410350606 Cho ZH, 1998, MAGNET RESON MED, V39, P331, DOI 10.1002/mrm.1910390224 Elliott MR, 1999, MAGNET RESON MED, V41, P1230, DOI 10.1002/(SICI)1522-2594(199906)41:6<1230::AID-MRM20>3.0.CO;2-1 Friston KJ, 1999, NEUROIMAGE, V10, P385, DOI 10.1006/nimg.1999.0484 Hirano S, 1997, EXP BRAIN RES, V113, P75, DOI 10.1007/BF02454143 Luxon L M, 1981, Br J Audiol, V15, P31, DOI 10.3109/03005368109108952 Maehara T, 1999, Radiat Med, V17, P145 MOORE DR, 1991, AUDIOLOGY, V30, P125 OGAWA S, 1990, MAGNET RESON MED, V14, P68, DOI 10.1002/mrm.1910140108 OGAWA S, 1992, P NATL ACAD SCI USA, V89, P5951, DOI 10.1073/pnas.89.13.5951 PETERSEN SE, 1988, NATURE, V331, P585, DOI 10.1038/331585a0 Sadato N, 1998, J COMPUT ASSIST TOMO, V22, P945, DOI 10.1097/00004728-199811000-00020 Scheffler K, 1998, CEREB CORTEX, V8, P156, DOI 10.1093/cercor/8.2.156 Suzuki M, 2000, Nihon Jibiinkoka Gakkai Kaiho, V103, P879 Ulmer JL, 1998, J COMPUT ASSIST TOMO, V22, P480, DOI 10.1097/00004728-199805000-00022 Wildgruber D, 2001, NEUROIMAGE, V13, P101, DOI 10.1006/nimg.2000.0672 ZATORRE RJ, 1992, SCIENCE, V256, P846, DOI 10.1126/science.1589767 NR 20 TC 36 Z9 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2002 VL 163 IS 1-2 BP 37 EP 45 DI 10.1016/S0378-5955(01)00367-7 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 512UB UT WOS:000173341000004 PM 11788197 ER PT J AU Hildesheimer, M Henkin, Y Pye, A Heled, S Sahartov, E Shabtai, EL AF Hildesheimer, M Henkin, Y Pye, A Heled, S Sahartov, E Shabtai, EL TI Bilateral superior cervical sympathectomy and noise-induced, permanent threshold shift in guinea pigs SO HEARING RESEARCH LA English DT Article DE permanent threshold shift; temporary threshold shift; cochlear sympathetic innervation; noise; stress ID COCHLEAR BLOOD-FLOW; INDUCED HEARING-LOSS; LASER DOPPLER MEASUREMENTS; SOUND EXPOSURE; STRESS; EAR; STIMULATION; VASCULATURE; INNERVATION; GANGLION AB The rich sympathetic innervation to the cochlea suggests its potential control of cochlear blood flow and activity during noise exposure, as part of the general and local stress sympathetic reaction evoked by noise. In a Previous study, superior cervical sympathectomy prior to sound exposure in guinea pigs in an awake state, resulted in reduced temporary threshold shift. The present study was conducted to explore whether this potential protection would also be manifested in conditions producing permanent threshold shift (PTS). Thirty-six guinea pigs, divided into four groups of nine guinea pigs each, were sound exposed for 2 h in an awake state. Eighteen guinea pigs underwent superior cervical sympathectomy prior to sound exposure. Auditory brainstem thresholds were recorded prior to sound exposure, and then at 24 h. 1 and 6 weeks post-exposure, Results indicated a reduced PTS at 122 dB sound pressure level (SPL) exposure, suggesting a protective effect of the sympathectomy, However. at 125 dB SPL exposure, the protective effect was reduced. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Chaim Sheba Med Ctr, Speech & Hearing Ctr, IL-52621 Tel Hashomer, Israel. Tel Aviv Univ, Dept Commun Disorders,Speech Language & Hearing, IL-69978 Tel Aviv, Israel. UCL, Sch Med, Inst Laryngol & Otol, London W1N 8AA, England. RP Hildesheimer, M (reprint author), Chaim Sheba Med Ctr, Speech & Hearing Ctr, IL-52621 Tel Hashomer, Israel. EM hildeshe@post.tau.ac.il CR Angelborg C, 1979, Adv Otorhinolaryngol, V25, P41 AXELSSON A, 1981, ACTA OTO-LARYNGOL, V91, P237, DOI 10.3109/00016488109138504 BORG E, 1982, ACTA PHYSIOL SCAND, V115, P281, DOI 10.1111/j.1748-1716.1982.tb07077.x BRECHTELSBAUER PB, 1990, OTOLARYNG HEAD NECK, V103, P566 Breschi M C, 1994, Int J Neurosci, V75, P73 Gil-Loyzaga P, 1998, BRAIN RES, V779, P53, DOI 10.1016/S0006-8993(97)01077-9 Goldwyn B, 1998, OTOLARYNG HEAD NECK, V118, P576, DOI 10.1177/019459989811800503 HATCH M, 1991, HEARING RES, V56, P265, DOI 10.1016/0378-5955(91)90176-A HAWKINS JE, 1971, ANN OTO RHINOL LARYN, V80, P903 HILDESHEIMER M, 1991, HEARING RES, V51, P49, DOI 10.1016/0378-5955(91)90006-U Horner KC, 2001, EUR J NEUROSCI, V13, P405, DOI 10.1046/j.0953-816X.2000.01386.x HULCRANTZ E, 1979, ACAT OTOLARYNGOL, V224, P103 Kellerhals B, 1972, Adv Otorhinolaryngol, V18, P91 LANGEWITZ W, 1994, AM HEART J, V127, P122, DOI 10.1016/0002-8703(94)90517-7 LAURIKAINEN EA, 1993, HEARING RES, V64, P199, DOI 10.1016/0378-5955(93)90006-M Laurikainen EA, 1997, HEARING RES, V105, P141, DOI 10.1016/S0378-5955(96)00198-0 Levine S, 1998, Scand Audiol Suppl, V48, P27 McEwen BS, 1998, NEW ENGL J MED, V338, P171 MILLER JM, 1983, HEARING RES, V11, P385, DOI 10.1016/0378-5955(83)90069-2 Muchnik C, 1998, ACTA OTO-LARYNGOL, V118, P646 Ohinata Y, 2000, HEARING RES, V146, P28, DOI 10.1016/S0378-5955(00)00096-4 PERLMAN H B, 1963, Acta Otolaryngol, V56, P587, DOI 10.3109/00016486309127454 QUIRK WS, 1995, AM J OTOL, V16, P322 REN TY, 1993, ACTA OTO-LARYNGOL, V113, P146, DOI 10.3109/00016489309135783 Roy MP, 1998, J PERS SOC PSYCHOL, V75, P1273, DOI 10.1037/0022-3514.75.5.1273 RYAN AF, 1988, ACTA OTO-LARYNGOL, V105, P232, DOI 10.3109/00016488809097003 SAWADA Y, 1993, JPN CIRC J, V57, P862 Selye H., 1956, STRESS LIFE Shoji F, 2000, HEARING RES, V146, P134, DOI 10.1016/S0378-5955(00)00106-4 SPOENDLIN H, 1981, ADV OTOL RHINOL LARY, V22, P1 Spoendlin H, 1966, Acta Otolaryngol, V61, P423 SUGA F, 1969, ANN OTO RHINOL LARYN, V78, P358 SUGA F, 1976, ACTA OTO-LARYNGOL, V81, P26, DOI 10.3109/00016487609107474 THORNE PR, 1987, HEARING RES, V27, P1, DOI 10.1016/0378-5955(87)90021-9 Wada T, 1999, Auris Nasus Larynx, V26, P375, DOI 10.1016/S0385-8146(99)00017-6 WARD WD, 1995, OCCUP MED, V10, P561 NR 36 TC 12 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2002 VL 163 IS 1-2 BP 46 EP 52 DI 10.1016/S0378-5955(01)00371-9 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 512UB UT WOS:000173341000005 PM 11788198 ER PT J AU Gates, GA Mills, D Nam, BH D'Agostino, R Rubel, EW AF Gates, GA Mills, D Nam, BH D'Agostino, R Rubel, EW TI Effects of age on the distortion product otoacoustic emission growth functions SO HEARING RESEARCH LA English DT Article DE presbycusis; strial atrophy; distortion product otoacoustic emission; aging ID COCHLEAR MECHANICS; STRIA VASCULARIS; HEARING-LOSS; RESPONSES; GERBIL; EAR AB Age-related hearing loss (presbycusis) is thought to result from age-related degeneration (aging) of the cochlea plus the cumulative effects of extrinsic damage (noise and other ototoxic agents) and intrinsic disorders (e.g. systemic diseases). Previous studies have implicated dysfunction of the hair cells (sensory presbycusis) as the principal mechanism of age-related hearing loss. However, recent evidence from quiet-reared gerbils suggests that cochlear aging results primarily from atrophy of the stria vascularis, which is associated with diminished endocochlear potential (EP), spiral ganglion atrophy, and a relatively flat audiometric loss, termed metabolic presbycusis. Because it is not currently possible to measure EP directly in the clinical setting, we wondered if cochlear metabolic dysfunction might be evidenced indirectly from existing clinical tests, specifically, the input-output (10) growth function of the distortion product (DP) otoacoustic emissions in relation to behavioral hearing threshold levels (HTL). We anticipated finding discordance between the 10 functions and HTL with either a greater decline with age in HTL than in 10 functions if an age-related metabolic dysfunction of the cochlea was operant, or a greater loss of 10 function than HTL if outer hair cell dysfunction was the dominant pathology. To address this supposition we analyzed existing auditory data from a large cohort of adults to determine the change with age in three aspects of the DP 10 function: area under the curve, threshold, and slope. The analyses demonstrated a greater effect of age on HTL than on the DP 10 measures. This effect supports the hypothesis that strial dysfunction is a substantive factor in cochlear aging. The etiology and mechanisms for this dysfunction are conjectural at present. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Washington, Sch Med 357923, Virginia Merrill Bloedel Hearing Res Ctr, Dept Otolaryngol Head & Neck Surg, Seattle, WA 98195 USA. Boston Univ, Dept Math, Boston, MA 02215 USA. RP Gates, GA (reprint author), Univ Washington, Sch Med 357923, Virginia Merrill Bloedel Hearing Res Ctr, Dept Otolaryngol Head & Neck Surg, Seattle, WA 98195 USA. CR BROWN AM, 1989, HEARING RES, V42, P143, DOI 10.1016/0378-5955(89)90140-8 CILENTO BW, 2001, UNPUB OTOLARYNGOL HE Crowe SJ, 1934, B JOHNS HOPKINS HOSP, V54, P315 DANCER AL, 1992, NOISE INDUCED HEARIN DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 DUBLIN WB, 1976, ANN OTO RHINOL LARYN, V85, P813 Falk R., 1997, J STAT ED, V5, P1 Gates GA, 1999, ARCH OTOLARYNGOL, V125, P654 Gorga MP, 1997, EAR HEARING, V18, P440, DOI 10.1097/00003446-199712000-00003 Gratton M A, 1996, Hear Res, V102, P181, DOI 10.1016/S0378-5955(96)90017-9 Gratton MA, 1996, HEARING RES, V94, P116, DOI 10.1016/0378-5955(96)00011-1 Hamernik RP, 1996, J ACOUST SOC AM, V100, P1003, DOI 10.1121/1.416285 HANSEN CC, 1965, ARCHIV OTOLARYNGOL, V82, P115 HAWKINS JE, 1985, SEMIN H EAR, V6, P115, DOI 10.1055/s-0028-1091997 JOHNSSON LG, 1972, ANN OTO RHINOL LARYN, V81, P179 JOHNSTONE BM, 1990, ADV AUDIOL, V7, P57 KANNEL WB, 1979, AM J EPIDEMIOL, V110, P281 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KIM DO, 1980, HEARING RES, V2, P297, DOI 10.1016/0378-5955(80)90064-7 MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9 MENG XL, 1992, PSYCHOL BULL, V111, P172, DOI 10.1037/0033-2909.111.1.172 MILLS DM, 1993, J ACOUST SOC AM, V94, P2108, DOI 10.1121/1.407483 MILLS DM, 2001, 18 BIENN S INT EV RE Mills DM, 2000, J ACOUST SOC AM, V107, P2586, DOI 10.1121/1.428646 MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 NORTON SJ, 1991, HEARING RES, V51, P73, DOI 10.1016/0378-5955(91)90008-W PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 RUBSAMEN R, 1995, J NEUROPHYSIOL, V74, P1628 SCHUKNEC.HF, 1974, LARYNGOSCOPE, V84, P1777 SCHUKNECHT HF, 1964, ARCHIV OTOLARYNGOL, V80, P369 Statacorp, 2001, STAT STAT SOFTW REL SUGA F, 1976, ANN OTO RHINOL LARYN, V85, P169 Working Group on Speech Understanding Committee on Hearing Bioacoustics and Biomechanics, 1988, J ACOUST SOC AM, V83, P859 NR 33 TC 23 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2002 VL 163 IS 1-2 BP 53 EP 60 DI 10.1016/S0378-5955(01)00377-X PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 512UB UT WOS:000173341000006 PM 11788199 ER PT J AU Leonova, EV Fairfield, DA Lomax, MI Altschuler, RA AF Leonova, EV Fairfield, DA Lomax, MI Altschuler, RA TI Constitutive expression of Hsp27 in the rat cochlea SO HEARING RESEARCH LA English DT Article DE heat shock protein-27; reverse transcription-polymerase chain reaction. immunofluorescence; outer hair cell; tension fibroblast; rat ID HEAT-SHOCK-PROTEIN; P38 MAP KINASE; ALPHA-B-CRYSTALLIN; OUTER HAIR-CELLS; SMOOTH-MUSCLE CONTRACTION; GUINEA-PIG COCHLEA; SPIRAL LIGAMENT; TNF-ALPHA; IMMUNOCYTOCHEMICAL LOCALIZATION; MEDIATED PHOSPHORYLATION AB Heat shock protein-27 (Hsp27) is known to function as both a stress-inducible molecular chaperone and regulator of actin polymerization. For many cells in the cochlea, actin is part of the cytoskeleton and plays an important role in the maintenance of cochlear function. To understand the molecular processes by which the cochlear actin cytoskeleton is maintained and regulated during normal auditory function, we examined the expression and localization of Hsp27 in the normal rat cochlea. Reverse transcription-polymerase chain reaction and Western blot showed constitutive expression of Hsp27 in the normal rat cochlea. Immunofluorescence microscopy showed Hsp27-like staining is localized to the cuticular plate and lateral wall of outer hair cells. Hsp27-like immunostaining is also found in tension fibroblasts, in the root cells of the spiral limbus and in. Reissner's membrane. The presence of Hsp27 in the actin-rich tension fibroblasts and outer hair cells suggests a potential role in the regulation and maintenance of the actin cytoskeleton in these cells. The presence of high levels of constitutive Hsp27 may also provide a mechanism for pre-protecting these cells against environmental stressors. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Michigan, Dept Otolaryngol, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. Univ Michigan, Dept Cell & Dev Biol, Ann Arbor, MI 48109 USA. RP Altschuler, RA (reprint author), Univ Michigan, Dept Otolaryngol, Kresge Hearing Res Inst, 1301 E Ann St, Ann Arbor, MI 48109 USA. CR Arai H, 1997, CELL STRUCT FUNCT, V22, P539 Beall A, 1999, BBA-MOL CELL RES, V1449, P41, DOI 10.1016/S0167-4889(98)00169-4 Beck FX, 2000, AM J PHYSIOL-RENAL, V279, pF203 BENNDORF R, 1994, J BIOL CHEM, V269, P20780 BITAR KN, 1991, BIOCHEM BIOPH RES CO, V181, P1192, DOI 10.1016/0006-291X(91)92065-R Boelens WC, 1998, J BIOL CHEM, V273, P28085, DOI 10.1074/jbc.273.43.28085 Brophy CM, 1998, J VASC SURG, V27, P963, DOI 10.1016/S0741-5214(98)70279-4 Bruey JM, 2000, NAT CELL BIOL, V2, P645 CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1006/abio.1987.9999 Clark JI, 2000, CURR OPIN STRUC BIOL, V10, P52, DOI 10.1016/S0959-440X(99)00048-2 CRAWFORD AC, 1985, J PHYSIOL-LONDON, V364, P359 Cuesta R, 2000, GENE DEV, V14, P1460 Davidson SM, 2000, DEV BIOL, V218, P146, DOI 10.1006/dbio.1999.9596 DEROSIER DJ, 1989, J CELL BIOL, V109, P2853, DOI 10.1083/jcb.109.6.2853 Dunlop ME, 2000, KIDNEY INT, V57, P464, DOI 10.1046/j.1523-1755.2000.00866.x Ehrnsperger M, 1997, EMBO J, V16, P221, DOI 10.1093/emboj/16.2.221 Erlandsson B, 1980, Acta Otolaryngol Suppl, V367, P1 FLOCK A, 1986, ARCH OTO-RHINO-LARYN, V243, P83, DOI 10.1007/BF00453755 Galić M, 1989, Acta Otolaryngol Suppl, V461, P1 GERNOLD M, 1993, DEV GENET, V14, P103, DOI 10.1002/dvg.1020140204 Guay J, 1997, J CELL SCI, V110, P357 Guo ZY, 2000, BIOCHEM BIOPH RES CO, V270, P183, DOI 10.1006/bbrc.2000.2401 Hedges JC, 1999, J BIOL CHEM, V274, P24211, DOI 10.1074/jbc.274.34.24211 HENSON MM, 1984, HEARING RES, V16, P231, DOI 10.1016/0378-5955(84)90112-6 HENSON MM, 1985, HEARING RES, V20, P207, DOI 10.1016/0378-5955(85)90025-5 HENSON MM, 1988, HEARING RES, V35, P237, DOI 10.1016/0378-5955(88)90121-9 HOLLEY MC, 1990, J CELL SCI, V96, P283 HOLLEY MC, 1990, EUR ARCH OTO-RHINO-L, V247, P4 HUOT J, 1995, EUR J BIOCHEM, V227, P416, DOI 10.1111/j.1432-1033.1995.tb20404.x IWANO T, 1989, J HISTOCHEM CYTOCHEM, V37, P353 Kachar B, 1997, HEARING RES, V107, P102, DOI 10.1016/S0378-5955(97)00027-0 Landry J, 1995, BIOCHEM CELL BIOL, V73, P703 LANDRY J, 1991, J CELL PHYSIOL, V147, P93, DOI 10.1002/jcp.1041470113 LAVOIE JN, 1995, MOL CELL BIOL, V15, P505 LIBERMAN MC, 1979, ACTA OTO-LARYNGOL, V88, P161, DOI 10.3109/00016487909137156 Lindner RA, 2001, BIOCHEM J, V354, P79, DOI 10.1042/0264-6021:3540079 Liu CH, 1999, BIOCHEM BIOPH RES CO, V255, P256, DOI 10.1006/bbrc.1999.0174 MacRae TH, 2000, CELL MOL LIFE SCI, V57, P899, DOI 10.1007/PL00000733 McLaughlin MM, 1996, J BIOL CHEM, V271, P8488 Mehlen P, 1996, EMBO J, V15, P2695 Mehlen P, 1997, BIOCHEM BIOPH RES CO, V241, P187, DOI 10.1006/bbrc.1997.7635 MIRON T, 1991, J CELL BIOL, V114, P255, DOI 10.1083/jcb.114.2.255 Morimoto RI, 1997, ESSAYS BIOCHEM, V32, P17 New L, 1998, EMBO J, V17, P3372, DOI 10.1093/emboj/17.12.3372 NICHOLL ID, 1994, EMBO J, V13, P945 Piotrowicz RS, 1997, J BIOL CHEM, V272, P7042 Piotrowicz RS, 1998, FASEB J, V12, P1481 Preville X, 1998, J CELL BIOCHEM, V69, P436, DOI 10.1002/(SICI)1097-4644(19980615)69:4<436::AID-JCB5>3.3.CO;2-H PTOK M, 1993, HEARING RES, V66, P245, DOI 10.1016/0378-5955(93)90144-P RAPHAEL Y, 1991, HEARING RES, V51, P173, DOI 10.1016/0378-5955(91)90034-7 RAPHAEL Y, 1987, DIFFERENTIATION, V35, P151, DOI 10.1111/j.1432-0436.1987.tb00163.x ROBERTSON D, 1980, HEARING RES, V3, P167, DOI 10.1016/0378-5955(80)90044-1 ROBERTSON NG, 1994, GENOMICS, V23, P42, DOI 10.1006/geno.1994.1457 Rogalla T, 1999, J BIOL CHEM, V274, P18947, DOI 10.1074/jbc.274.27.18947 Rousseau S, 1997, ONCOGENE, V15, P2169, DOI 10.1038/sj.onc.1201380 Schafer C, 1999, AM J PHYSIOL-CELL PH, V277, pC1032 SLEPECKY N, 1982, ACTA OTO-LARYNGOL, V93, P329, DOI 10.3109/00016488209130890 Slepecky N. B., 1996, COCHLEA, P44 Smoyer WE, 2000, J AM SOC NEPHROL, V11, P211 Tezel G, 2000, J NEUROSCI, V20, P3552 Treweek TM, 2000, BBA-PROTEIN STRUCT M, V1481, P175, DOI 10.1016/S0167-4838(00)00109-6 WANG P, 1998, AM J PHYSIOL, V275, P1454 Wong JW, 2000, J INVEST DERMATOL, V115, P427, DOI 10.1046/j.1523-1747.2000.00077.x Yamboliev IA, 2000, AM J PHYSIOL-HEART C, V278, pH1899 Yeh TH, 1997, HEARING RES, V109, P1, DOI 10.1016/S0378-5955(97)00030-0 Zheng J, 1998, J BIOL CHEM, V273, P12999, DOI 10.1074/jbc.273.21.12999 NR 66 TC 17 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2002 VL 163 IS 1-2 BP 61 EP 70 DI 10.1016/S0378-5955(01)00379-3 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 512UB UT WOS:000173341000007 PM 11788200 ER PT J AU Ylikoski, J Liang, XQ Virkkala, J Pirvola, U AF Ylikoski, J Liang, XQ Virkkala, J Pirvola, U TI Blockade of c-Jun N-terminal kinase pathway attenuates gentamicin-induced cochlear and vestibular hair cell death SO HEARING RESEARCH LA English DT Article DE cellular stress; c-Jun N-terminal kinase signalling; cellular death; inner car; hair cell; ototoxicity ID PIG IN-VIVO; AMINOGLYCOSIDE OTOTOXICITY; SIGNAL-TRANSDUCTION; SENSORY EPITHELIA; IRON CHELATORS; INNER-EAR; APOPTOSIS; STRESS; ACTIVATION; JNK AB The ototoxic action of aminoglycoside antibiotics leading to the loss of hair cells of the inner ear is well documented. However, the molecular mechanisms are poorly defined. We have previously shown that in neomycin-exposed organotypic cultures of the cochlea, the c-Jun N-terminal kinase (INK) pathway associated with stress, injury and apoptosis - is activated in hair cells and leads to their death. We have also shown that hair cell death can be attenuated by CEP-1347, an inhibitor of JNK signalling [Pirvola et al., J. Neurosci. 20 (2000) 43-50]. In the present study, we demonstrate that gentamicin-induced ototoxicity leads to JNK activation and apoptosis in the inner ear hair cells in vivo. We also show that systemic administration of CEP-1347 attenuates gentamicin-induced decrease of auditory sensitivity and cochlear hair cell damage. In addition, CEP-1347 treatment reduces the extent of hair cell loss in the ampullary cristae after gentamicin intoxication. Particularly, the inner hair cells of the cochlea and type I hair cells of the vestibular organs are protected. We have previously shown that also acoustic overstimulation leads to apoptosis of cochlear hair cells and that CEP-1347 can attenuate noise-induced sensory cell loss. These results suggest that activation of the JNK cascade may be a common molecular outcome of cellular stress in the inner car sensory epithelia, and that attenuation or the lesion can be provided by inhibiting JNK activation. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Helsinki, Inst Biotechnol, FIN-00014 Helsinki, Finland. Univ Helsinki, Dept ORL, FIN-00290 Helsinki, Finland. RP Ylikoski, J (reprint author), Univ Helsinki, Inst Biotechnol, POB 56,Viikinkaari 9, FIN-00014 Helsinki, Finland. CR Adler V, 1999, ONCOGENE, V18, P6104, DOI 10.1038/sj.onc.1203128 Basile AS, 1996, NAT MED, V2, P1338, DOI 10.1038/nm1296-1338 BRUSCH W, 1990, BIOCH CELL BIOL, V88, P1071 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 DERIJARD B, 1994, CELL, V76, P1025, DOI 10.1016/0092-8674(94)90380-8 Dugan LL, 1997, P NATL ACAD SCI USA, V94, P4086, DOI 10.1073/pnas.94.8.4086 Finkel T, 1998, CURR OPIN CELL BIOL, V10, P248, DOI 10.1016/S0955-0674(98)80147-6 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2 Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X GARETZ SL, 1994, HEARING RES, V77, P81, DOI 10.1016/0378-5955(94)90255-0 Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4 HU BH, 2000, ACTA OTOLARYNGOL, V120, P9 HUANG MY, 1990, BIOCHEM PHARMACOL, V40, pR11, DOI 10.1016/0006-2952(90)90077-X HULKA GF, 1993, AM J OTOL, V14, P352 Ip YT, 1998, CURR OPIN CELL BIOL, V10, P205, DOI 10.1016/S0955-0674(98)80143-9 KERR JFR, 1972, BRIT J CANCER, V26, P239, DOI 10.1038/bjc.1972.33 Kerr J.F.R., 1987, P93 Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x KYRIAKIS JM, 1994, NATURE, V369, P156, DOI 10.1038/369156a0 LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307 LINDEMAN HH, 1969, ACTA OTO-LARYNGOL, V67, P177, DOI 10.3109/00016486909125441 Lo YYC, 1996, J BIOL CHEM, V271, P15703 Lopez I, 1999, AM J OTOL, V20, P317 Maroney AC, 1998, J NEUROSCI, V18, P104 Meriin AB, 1998, J BIOL CHEM, V273, P6373, DOI 10.1074/jbc.273.11.6373 Mielke K, 2000, PROG NEUROBIOL, V61, P45, DOI 10.1016/S0301-0082(99)00042-8 NAGAKAWA Y, 1998, EUR ARCH OTO-RHINO-L, V255, P127 NAGAKAWA Y, 1997, EUR ARCH OTO-RHINO-L, V254, P9 Pirvola U, 2000, J NEUROSCI, V20, P43 PorteraCailliau C, 1997, J COMP NEUROL, V378, P70 Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4 RAFF MC, 1992, NATURE, V356, P97 Ronai Z, 1999, ONCOGENE, V18, P6084, DOI 10.1038/sj.onc.1203175 Ruan RS, 1999, NEUROREPORT, V10, P2067, DOI 10.1097/00001756-199907130-00014 SCHACHT J, 1993, OTOLARYNG CLIN N AM, V26, P845 SHA SH, 1999, HEARING RES, V128, P12 Song BB, 1997, J PHARMACOL EXP THER, V282, P369 Song BB, 1996, HEARING RES, V94, P87, DOI 10.1016/0378-5955(96)00003-2 Usami S, 1997, BRAIN RES, V747, P147, DOI 10.1016/S0006-8993(96)01243-7 Vago P, 1998, NEUROREPORT, V9, P431, DOI 10.1097/00001756-199802160-00014 Weil M, 1996, J CELL BIOL, V133, P1053, DOI 10.1083/jcb.133.5.1053 Wyllie A H, 1980, Int Rev Cytol, V68, P251 Ylikoski J, 1997, AUDIT NEUROSCI, V3, P415 YLIKOSKI J, 1975, ACTA OTOLARYNGOL S, V326, P7 Yoshida N, 1999, J NEUROSCI, V19, P10116 NR 46 TC 54 Z9 59 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2002 VL 163 IS 1-2 BP 71 EP 81 DI 10.1016/S0378-5955(01)00380-X PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 512UB UT WOS:000173341000008 PM 11788201 ER PT J AU Goverts, ST Houtgast, T van Beek, HHM AF Goverts, ST Houtgast, T van Beek, HHM TI The precedence effect for lateralization for the mild sensory neural hearing impaired SO HEARING RESEARCH LA English DT Article DE precedence effect; localization dominance; lateralization accuracy; binaural hearing; hearing impaired ID LISTENERS AB Using dichotic signals presented by headphone, stimulus onset dominance (the precedence effect for lateralization) was investigated for six sensorineural hearing-impaired subjects. Stimuli were based oil 2400-Hz lowpass-filtered 5-ms noise bursts. We used the paradigm, as described by Goverts et al. (2000, Hear. Res. 148, 88 94), in which,I single noise burst is divided into leading and lagging parts, with opposite lateralization cues (viz. an interaural time delay of 0.2 ms), The Occurrence of onset dominance was investigated by measuring the lateral perception of the stimulus ('left' or 'right') with fixed, equal durations of leading and lagging parts, while decreasing the absolute signal level or adding a filtered white noise. The dominance of the leading part was quantified by measuring the lateral perception of the stimulus as a function of the relative duration of the leading (and thus the lagging) part. This was done at about 40 dB sensation level (SL) in quiet and in filtered white noise. at it signal-to-noise ratio resulting in I SL of about 6 dB. Results are compared to normal hearing reference data at various SLs. Hearing-impaired data show a large variance and overall a decreased precedence effect in terms of both occurrence and quantification. which cannot be explained oil basis of reduced audibility. Mean performance of the hearing-impaired subjects at 40 dB in quiet Was Similar to normal hearing performance in masking noise at a signal-to-noise ratio of 0 dB. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Vrije Univ Amsterdam, Ctr Med, Dept Otolaryngol Audiol, NL-1007 MB Amsterdam, Netherlands. RP Goverts, ST (reprint author), Vrije Univ Amsterdam, Ctr Med, Dept Otolaryngol Audiol, POB 7057, NL-1007 MB Amsterdam, Netherlands. CR Blauert J., 1997, SPATIAL HEARING PSYC Colburn H S, 1982, Scand Audiol Suppl, V15, P27 CRANFORD JL, 1993, J SPEECH HEAR RES, V36, P437 DURLACH NI, 1981, AUDIOLOGY, V20, P181 Goverts ST, 2000, HEARING RES, V148, P88, DOI 10.1016/S0378-5955(00)00143-X HOUTGAST T, 1968, J ACOUST SOC AM, V44, P807, DOI 10.1121/1.1911178 KOEHNKE J, 1997, BINAURAL SPATIAL HEA KOLLMEIER B, 1997, BINAURAL SPATIAL HEA Kramer SE, 1998, AUDIOLOGY, V37, P302 Kramer SE, 1996, AUDIOLOGY, V35, P277 Litovsky RY, 1999, J ACOUST SOC AM, V106, P1633, DOI 10.1121/1.427914 Noordhoek IM, 2000, J ACOUST SOC AM, V107, P1685, DOI 10.1121/1.428452 NR 12 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2002 VL 163 IS 1-2 BP 82 EP 92 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 512UB UT WOS:000173341000009 ER PT J AU Engel-Yeger, B Zaaroura, S Zlotogora, J Shalev, S Hujeirat, Y Carrasquillo, M Barges, S Pratt, H AF Engel-Yeger, B Zaaroura, S Zlotogora, J Shalev, S Hujeirat, Y Carrasquillo, M Barges, S Pratt, H TI The effects of a connexin 26, mutation-35delG-on oto-acoustic emissions and brainstem evoked potentials: homozygotes and carriers SO HEARING RESEARCH LA English DT Article DE hereditary; congenital deafness; consanguinity; auditory; physiology; connexin 26 ID RECESSIVE DEAFNESS; HEARING-LOSS; SENSORINEURAL DEAFNESS; MOLECULAR-GENETICS; GAP-JUNCTIONS; RAT COCHLEA; MUTATIONS; IMPAIRMENT; GJB2 AB The purpose of this study was to examine whether outer hair cells (OHCs), inner hair cells and the brainstem auditory pathway are impaired due to a mutation in a gap junction protein, connexin 26 (Cx26), 35delG. Fifty-six individuals, from a village with widespread consanguinity and profound, non-syndromic congenital deafness. due to 35delG mutation, were selected among relatives of deaf people. The individuals were either non-carriers (n = 20), heterozygous (n = 20) or homozygous (n = 16) for the mutation. Distortion product oto-acoustic emissions (DPOAEs) and auditory brainstem evoked potentials (ABEPs) in mutation non-carriers, in heterozygotes (carriers) and in subjects homozygous for the mutation were compared in addition to audiometric evaluation. Most deaf homozygotes had no DPOAEs, except some sporadic responses at 1000, 8000 and 10 000 Hz. This was also observed in audiometry which showed profound hearing loss in most cases. Two cases were unique: one had moderate to severe hearing loss and the other had severe to profound hearing loss. A significant difference was found between non-carriers and carriers of 35delG : non-carriers had larger DPOAE responses than heterozygotes at all frequencies. The prevalence of responses got lower with higher frequencies in both groups, but between 6000 and 10 000 Hz 50-70% of the carriers had no DPOAE responses. compared to 30-60% of non-carriers. In both groups responses diminished with age, but no significant interaction was found between age and the genetic group. ABEPs among homozygotes were variable: in most homozygotes ABEPs were absent or partial (waves III, V) with prolonged latencies, but two subjects had ABEPs within normal limits, in one car. ABEPs were normal with no differences between carriers and non-carriers. We suggest that OHC function is affected by the 35delG mutation in Cx26. In addition, the hearing of carriers of this mutation may be impaired at very high frequencies (8000-10000 Hz), which are not assessed in routine audiometry or ABEP testing. (C) 2002 Published by Elsevier Science B.V. C1 Technion Israel Inst Technol, Evoked Potentials Lab, IL-32000 Haifa, Israel. French Hosp, Nazareth, Israel. Minist Hlth, Jerusalem, Israel. Haemeq Hosp, Afula, Israel. Johns Hopkins Univ, Sch Med, Baltimore, MD 21218 USA. Briout Klalit Sick Fdn, Briout Klalit, Israel. RP Engel-Yeger, B (reprint author), Technion Israel Inst Technol, Evoked Potentials Lab, Gutwirth Bldg, IL-32000 Haifa, Israel. CR Carrasquillo MM, 1997, HUM MOL GENET, V6, P2163, DOI 10.1093/hmg/6.12.2163 Cohn ES, 1999, AM J MED GENET, V89, P130, DOI 10.1002/(SICI)1096-8628(19990924)89:3<130::AID-AJMG3>3.3.CO;2-D Cohn ES, 1999, PEDIATRICS, V103, P546, DOI 10.1542/peds.103.3.546 Denoyelle F, 1997, HUM MOL GENET, V6, P2173, DOI 10.1093/hmg/6.12.2173 Denoyelle F, 1998, NATURE, V393, P319, DOI 10.1038/30639 Denoyelle F, 1999, LANCET, V353, P1298, DOI 10.1016/S0140-6736(98)11071-1 Estivill X, 1998, LANCET, V351, P394, DOI 10.1016/S0140-6736(97)11124-2 Evans WH, 1999, NOVART FDN SYMP, V219, P44 Gabriel HD, 1998, J CELL BIOL, V140, P1453, DOI 10.1083/jcb.140.6.1453 JOHNSTONE BM, 1989, J PHYSIOL-LONDON, V408, P77 Kelley PM, 2000, BRAIN RES REV, V32, P184, DOI 10.1016/S0165-0173(99)00080-6 Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 Kikuchi T, 2000, BRAIN RES REV, V32, P163, DOI 10.1016/S0165-0173(99)00076-4 Lautermann J, 1998, CELL TISSUE RES, V294, P415, DOI 10.1007/s004410051192 Lefebvre PP, 2000, BRAIN RES REV, V32, P159 Lench N, 1998, LANCET, V351, P415, DOI 10.1016/S0140-6736(98)24006-2 Morell RJ, 1998, NEW ENGL J MED, V339, P1500, DOI 10.1056/NEJM199811193392103 Murgia A, 1999, J MED GENET, V36, P829 Nance WE, 2000, LANCET, V356, P500, DOI 10.1016/S0140-6736(00)02565-4 Orzan E, 1999, BRIT J AUDIOL, V33, P291 Park HJ, 2000, LARYNGOSCOPE, V110, P1535, DOI 10.1097/00005537-200009000-00023 Rabionet R, 1999, J MED GENET, V36, P260 Rabionet R, 2000, HUM MUTAT, V16, P190, DOI 10.1002/1098-1004(200009)16:3<190::AID-HUMU2>3.0.CO;2-I Reardon W, 1998, LANCET, V351, P383, DOI 10.1016/S0140-6736(05)78347-1 NR 25 TC 21 Z9 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2002 VL 163 IS 1-2 BP 93 EP 100 DI 10.1016/S0378-5955(01)00386-0 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 512UB UT WOS:000173341000010 PM 11788203 ER PT J AU Moore, BCJ Alcantara, JI Glasberg, BR AF Moore, BCJ Alcantara, JI Glasberg, BR TI Behavioural measurement of level-dependent shifts in the vibration pattern on the basilar membrane SO HEARING RESEARCH LA English DT Article DE forward masking; Basilar-membrane mechanics; frequency tuning ID AUDITORY-NERVE FIBERS; NARROW-BAND NOISE; MASKING PATTERNS; NORMAL-HEARING; TUNING CURVES; SIGNAL DELAY; FREQUENCY; NONLINEARITY; RESPONSES; MASKERS AB Physiological data suggest that the travelling wave on the basilar membrane evoked by a sinusoid of fixed frequency moves towards the base with increasing level. We describe two psychoacoustic experiments that attempted to provide evidence for and quantify the extent of such a shift in humans. In experiment 1, masking patterns were measured in forward masking using a fixed 6-kHz tone presented at 65 or 85 dB sound pressure level. The threshold for detecting a brief sinusoidal signal was measured as a function of signal frequency for several time delays of the signal relative to the end of the masker. A background noise was included to reduce 'off-frequency listening'. As the signal delay was increased, the signal level at the peaks of the masking patterns decreased and the signal frequency at the peak of the patterns moved progressively towards higher frequencies. The pattern of results was consistent with the idea of it basalward shift of the travelling wave with increasing level. The estimated shift corresponds to about 0.25 octaves for a 40-dB change in level. Experiment 2 also used forward masking. The signal was a 4-kHz tone presented at 10 dB sensation level. For three fixed masker levels (65, 85 and 95 dB), we measured the duration of the gap between the masker and signal required to give 79.4% correct detection of the signal (called the 'gap threshold') as a function of masker frequency; the longer the gap threshold, the more effective is the masker. The gap threshold patterns sometimes showed two peaks. One occurred just below the signal frequency and the frequency at the peak was hardly affected by masker level. The second peak fell at a lower frequency, and this frequency tended to decrease with increasing masker level. The gap threshold patterns tended to spread markedly towards lower frequencies with increasing masker level. The shift with level provides further evidence for a basalward spread of the travelling wave with increasing level. (C) 2002 Elsevier Science B.V. All rights reserved. C1 Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England. RP Moore, BCJ (reprint author), Univ Cambridge, Dept Expt Psychol, Downing St, Cambridge CB2 3EB, England. RI Moore, Brian/I-5541-2012 CR Alcantara JI, 2000, HEARING RES, V148, P63, DOI 10.1016/S0378-5955(00)00114-3 EGAN JP, 1950, J ACOUST SOC AM, V22, P622, DOI 10.1121/1.1906661 Hicks ML, 1999, J ACOUST SOC AM, V105, P326, DOI 10.1121/1.424526 HIRSH IJ, 1952, J ACOUST SOC AM, V24, P131, DOI 10.1121/1.1906867 JESTEADT W, 1982, J ACOUST SOC AM, V71, P950, DOI 10.1121/1.387576 JOHNSONDAVIES D, 1979, J ACOUST SOC AM, V65, P765, DOI 10.1121/1.382490 KIDD G, 1981, HEARING RES, V5, P49, DOI 10.1016/0378-5955(81)90026-5 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LONG GR, 1988, J ACOUST SOC AM, V84, P1343, DOI 10.1121/1.396633 McFadden D., 1986, BASIC APPL ASPECTS N, P295 Meddis R, 2001, J ACOUST SOC AM, V109, P2852, DOI 10.1121/1.1370357 Moore BCJ, 1998, J ACOUST SOC AM, V104, P1023, DOI 10.1121/1.423321 MOORE BCJ, 1983, J ACOUST SOC AM, V73, P1249, DOI 10.1121/1.389273 MOORE BCJ, 1986, FREQUENCY SELECTIVIT, P179 MOORE BCJ, 1982, J ACOUST SOC AM, V71, P942, DOI 10.1121/1.387574 MOORE BCJ, 1980, J ACOUST SOC AM, V69, P594 MOORE BCJ, 1981, J ACOUST SOC AM, V70, P62, DOI 10.1121/1.386582 MOORE BCJ, 1980, PSYCHOPHYSICAL PHYSL, P222 MOORE BCJ, 1988, J ACOUST SOC AM, V83, P1102, DOI 10.1121/1.396055 MUNSON WA, 1950, J ACOUST SOC AM, V22, P177, DOI 10.1121/1.1906586 Narayan SS, 2000, RECENT DEV AUDITORY, P95, DOI 10.1142/9789812793980_0014 NEFF DL, 1986, J ACOUST SOC AM, V79, P1519, DOI 10.1121/1.393678 NEFF DL, 1985, J ACOUST SOC AM, V78, P1966, DOI 10.1121/1.392653 OLOUGHLIN BJ, 1981, HEARING RES, V5, P343, DOI 10.1016/0378-5955(81)90057-5 OLOUGHLIN BJ, 1981, J ACOUST SOC AM, V69, P1119, DOI 10.1121/1.385691 Oxenham AJ, 2001, J ACOUST SOC AM, V109, P732, DOI 10.1121/1.1336501 Oxenham AJ, 2000, HEARING RES, V150, P258, DOI 10.1016/S0378-5955(00)00206-9 Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3666, DOI 10.1121/1.418327 OXENHAM AJ, 1994, HEARING RES, V80, P105, DOI 10.1016/0378-5955(94)90014-0 Plack CJ, 1998, J ACOUST SOC AM, V103, P1598, DOI 10.1121/1.421294 ROSE JE, 1971, J NEUROPHYSIOL, V34, P685 Ruggero M A, 1992, Curr Opin Neurobiol, V2, P449, DOI 10.1016/0959-4388(92)90179-O Ruggero MA, 2000, P NATL ACAD SCI USA, V97, P11744, DOI 10.1073/pnas.97.22.11744 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 Russell IJ, 1997, P NATL ACAD SCI USA, V94, P2660, DOI 10.1073/pnas.94.6.2660 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 SMITH RL, 1979, J ACOUST SOC AM, V65, P166, DOI 10.1121/1.382260 SMITH RL, 1977, J NEUROPHYSIOL, V40, P1098 TERRY M, 1977, J ACOUST SOC AM, V62, P781, DOI 10.1121/1.381553 TURNER CW, 1994, J ACOUST SOC AM, V96, P795, DOI 10.1121/1.410317 van den Brink G., 1970, Journal of the Acoustical Society of America, V48, DOI 10.1121/1.1912292 WIDIN GP, 1979, J ACOUST SOC AM, V66, P388, DOI 10.1121/1.383673 Yates Graeme K., 1995, P41, DOI 10.1016/B978-012505626-7/50004-2 Zhang XD, 2001, J ACOUST SOC AM, V109, P648, DOI 10.1121/1.1336503 NR 44 TC 17 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2002 VL 163 IS 1-2 BP 101 EP 110 DI 10.1016/S0378-5955(01)00390-2 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 512UB UT WOS:000173341000011 PM 11788204 ER PT J AU Mire, P Nasse, J AF Mire, P Nasse, J TI Hair bundle motility induced by chemoreceptors in anemones SO HEARING RESEARCH LA English DT Article DE hair bundle; hair cell; mechanotransduction; motility; stereocilium; tip link ID SEA-ANEMONES; NEMATOCYST DISCHARGE; CELL COMPLEXES; GUINEA-PIG; MECHANORECEPTORS; TRANSDUCTION; STEREOCILIA; FREQUENCY; COMMUNICATION; MOVEMENTS AB Most hair bundles are essentially fixed with respect to frequency specificity. However, hair bundles in sea anemones are dynamically tuned by actin-dependent changes in length. Tuning to low frequencies is accomplished by activation of chemoreceptors to N-acetylated sugars resulting in hair bundle elongation. We report here that following sugar-induced tuning of hair bundles, membrane currents reverse polarity in hair cells during unidirectional mechanical stimulation. Reversal in polarity of currents with sugar stimulation is inhibited if hair bundle elongation is blocked by pretreatment with cytochalasin D. A re-examination of morphological changes to hair bundles reveals a sugar-induced reorientation of stereocilia in addition to elongation with chemosensitization. In controls, hair bundles are noticeably twisted. With sugar stimulation stereocilia become oriented more parallel to the long axis of the hair bundle. This sugar-induced change in orientation is similarly inhibited by cytochalasin D pretreatment. Based on these results, we present a model wherein anemone hair bundle twisting serves as a built-in safety mechanism to preserve linkages likely to be subjected to potentially damaging tension during tuning. The twisted hair bundles can untwist while elongating to relieve excessive tension on extracellular linkages between stereocilia critical to mechanosensititvity. (C) 2002 Published by Elsevier Science B.V. C1 Univ SW Louisiana, Dept Biol, Lafayette, LA 70504 USA. RP Mire, P (reprint author), Univ SW Louisiana, Dept Biol, Box 42451, Lafayette, LA 70504 USA. EM pmt9606@louisiana.edu CR ASSAD JA, 1992, J NEUROSCI, V12, P3291 ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X Barnes R.S.K., 1993, INVERTEBRATES NEW SY Benser ME, 1996, J NEUROSCI, V16, P5629 Brownell WE, 2000, CELL AND MOLECULAR BIOLOGY OF THE EAR, P69 CHO H, 1991, ACTA OTO-LARYNGOL, P13 Clark JA, 1996, HEARING RES, V99, P119, DOI 10.1016/S0378-5955(96)00092-5 COOPER JA, 1987, J CELL BIOL, V105, P1473, DOI 10.1083/jcb.105.4.1473 COREY DP, 2001, HAIR CELLS MICROMECH, P1 COREY DP, 1992, SOC GEN PHY, V47, P325 CRAWFORD AC, 1985, J PHYSIOL-LONDON, V364, P359 CRAWFORD AC, 1991, J PHYSIOL-LONDON, V434, P369 HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0 HUDSPETH AJ, 1992, SOC GEN PHY, V47, P357 MARISCAL RN, 1978, SCANNING ELECTRON MI, V2, P959 MIRE P, 2001, HAIR CELLS MICROMECH, P67 Mire P, 2000, HEARING RES, V144, P109, DOI 10.1016/S0378-5955(00)00047-2 Mire P, 1997, HEARING RES, V113, P224, DOI 10.1016/S0378-5955(97)00145-7 MIRETHIBODEAUX P, 1994, J EXP ZOOL, V270, P517, DOI 10.1002/jez.1402700605 MIRETHIBODEAUX P, 1994, J EXP ZOOL, V268, P282, DOI 10.1002/jez.1402680404 PETEYA DJ, 1975, TISSUE CELL, V7, P243, DOI 10.1016/0040-8166(75)90003-8 PICKLES JO, 1984, HEARING RES, V15, P103, DOI 10.1016/0378-5955(84)90041-8 RICCI A, 2001, ASS RES OTOLARYNGOL, V24, P761 WATSON GM, 2000, CELL MOL BIOL EAR, P10 WATSON GM, 1989, SCIENCE, V243, P1589, DOI 10.1126/science.2564698 WATSON GM, 1994, J EXP ZOOL, V268, P177, DOI 10.1002/jez.1402680302 WATSON GM, 1994, J EXP ZOOL, V270, P527, DOI 10.1002/jez.1402700606 WATSON GM, 1987, TISSUE CELL, V19, P747, DOI 10.1016/0040-8166(87)90016-4 WATSON GM, 1989, TISSUE CELL, V21, P17, DOI 10.1016/0040-8166(89)90017-7 WATSON GM, 1995, CELL MOTIL CYTOSKEL, V30, P208, DOI 10.1002/cm.970300305 Watson GM, 1997, HEARING RES, V107, P53, DOI 10.1016/S0378-5955(97)00022-1 Watson GM, 1998, J EXP ZOOL, V281, P582 Watson GM, 1998, HEARING RES, V115, P119, DOI 10.1016/S0378-5955(97)00185-8 Watson GM, 1999, CURR TOP DEV BIOL, V43, P51 WATSON GM, 1991, J CELL SCI, V99, P307 ZHAO Y, 1996, P NATL ACAD SCI USA, V94, P15469 NR 36 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2002 VL 163 IS 1-2 BP 111 EP 120 DI 10.1016/S0378-5955(01)00392-6 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 512UB UT WOS:000173341000012 PM 11788205 ER PT J AU Summers, V AF Summers, V TI Overshoot effects using Schroeder-phase harmonic maskers in listeners with normal hearing and with hearing impairment SO HEARING RESEARCH LA English DT Article DE overshoot; Schroeder-phase masking; hearing impairment; cochlear nonlinearity ID MASKING PERIOD PATTERNS; AUDITORY-NERVE FIBERS; BASILAR-MEMBRANE RESPONSES; OLIVOCOCHLEAR NEURONS; CHINCHILLA COCHLEA; SEVERE DEPARTURE; LEVEL; STIMULATION; COMPLEXES; CAT AB Overshoot was examined in normal-hearing listeners and in listeners with sensorineural hearing loss using positive (m(+)) and negative (m(-)) Schroeder-phase harmonic maskers and brief (5-ms) 1000-Hz and 4000-Hz signals. Maskers were 460 ms in duration and contained equal-amplitude harmonics of a 100-Hz fundamental frequency. For each masker, probes were presented at temporal locations near the start of the masker (probe onsets 3, 5.5, 8, 10.5, and 13 ms following masker onset) and at the same positions (relative to masker fine structure) 150 ms later, near the temporal center of each masker. Probes were held constant at either 60 or 80 dB sound-pressure level (SPL) and masker levels were varied adaptively to determine masked thresholds at each position within the 10-ms masker period. Overshoot effects were greatest for conditions where cochlear processing was likely to be highly nonlinear, i.e., for normal-hearing listeners tested at moderate presentation levels (60 dB SPL probes). In addition, greater overshoot was observed for m(+) than for m(-) maskers. These findings are consistent with earlier suggestions that masking effectiveness of m(+) complexes is particularly influenced by cochlear nonlinearity (Summers, V. and Leek, M.R., 1998. Hear. Res. 188, 139-150) and with evidence linking overshoot to nonlinearity in peripheral auditory processing. Published by Elsevier Science B.V. C1 Walter Reed Army Med Ctr, Army Audiol & Speech Ctr, Washington, DC 20307 USA. RP Summers, V (reprint author), Walter Reed Army Med Ctr, Army Audiol & Speech Ctr, Washington, DC 20307 USA. CR Alcantara JI, 1996, J ACOUST SOC AM, V100, P2382, DOI 10.1121/1.417948 American National Standards Institute (ANSI), 1989, S361989 ANSI BACON SP, 2000, J ACOUST SOC AM, V107, P2914, DOI 10.1121/1.428855 BACON SP, 1985, J ACOUST SOC AM, V78, P1220, DOI 10.1121/1.392890 Bacon SP, 2000, J ACOUST SOC AM, V107, P2295, DOI 10.1121/1.428510 Bacon SP, 2000, J ACOUST SOC AM, V107, P1589, DOI 10.1121/1.428443 BACON SP, 1988, AUDIOLOGY, V27, P313 BACON SP, 1992, J ACOUST SOC AM, V91, P2865, DOI 10.1121/1.402967 BACON SP, 1990, J ACOUST SOC AM, V88, P698, DOI 10.1121/1.399773 CARLYON RP, 1984, J ACOUST SOC AM, V76, P1369, DOI 10.1121/1.391453 Carlyon RP, 1997, J ACOUST SOC AM, V101, P3636, DOI 10.1121/1.418324 Carlyon RP, 1997, J ACOUST SOC AM, V101, P3648, DOI 10.1121/1.418325 CARLYON RP, 1992, J ACOUST SOC AM, V91, P1034, DOI 10.1121/1.402629 CHAMPLIN CA, 1989, J ACOUST SOC AM, V85, P2005, DOI 10.1121/1.397853 FEX J, 1967, J ACOUST SOC AM, V41, P666, DOI 10.1121/1.1910395 GIFFORD ML, 1987, HEARING RES, V29, P179, DOI 10.1016/0378-5955(87)90166-3 Guinan Jr J.J., 1996, COCHLEA, P435 JOHNSTONE BM, 1986, HEARING RES, V22, P147, DOI 10.1016/0378-5955(86)90090-0 KIMBERLEY BP, 1989, J ACOUST SOC AM, V85, P1660, DOI 10.1121/1.397954 KOHLRAUSCH A, 1995, J ACOUST SOC AM, V97, P1817, DOI 10.1121/1.413097 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1 MCFADDEN D, 1989, J ACOUST SOC AM, V85, P254, DOI 10.1121/1.397732 MCFADDEN D, 1990, J ACOUST SOC AM, V87, P2634, DOI 10.1121/1.399056 Murugasu E, 1996, J NEUROSCI, V16, P325 OXENHAM AJ, 1995, J ACOUST SOC AM, V97, P2442, DOI 10.1121/1.411965 Recio A, 2000, J ACOUST SOC AM, V108, P2281, DOI 10.1121/1.1318898 RELKIN EM, 1991, HEARING RES, V55, P215, DOI 10.1016/0378-5955(91)90106-J Rhode WS, 1996, AUDIT NEUROSCI, V3, P101 RHODE WS, 1985, HEARING RES, V18, P159, DOI 10.1016/0378-5955(85)90008-5 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 SCHMIDT S, 1991, J ACOUST SOC AM, V89, P1324, DOI 10.1121/1.400656 SCHROEDE.MR, 1970, IEEE T INFORM THEORY, V16, P85, DOI 10.1109/TIT.1970.1054411 SMITH RL, 1975, BIOL CYBERN, V17, P169, DOI 10.1007/BF00364166 Summers V, 2000, J ACOUST SOC AM, V108, P2307, DOI 10.1121/1.1318897 Summers V, 1998, HEARING RES, V118, P139, DOI 10.1016/S0378-5955(98)00030-6 Turner CW, 1997, MODELING SENSORINEURAL HEARING LOSS, P387 VONKLITZING R, 1994, J ACOUST SOC AM, V95, P2192, DOI 10.1121/1.408679 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P950, DOI 10.1121/1.1912234 YATES GK, 1990, HEARING RES, V50, P145, DOI 10.1016/0378-5955(90)90041-M Zeng FG, 2000, HEARING RES, V142, P102, DOI 10.1016/S0378-5955(00)00011-3 ZWICKER E, 1965, J ACOUST SOC AM, V37, P653, DOI 10.1121/1.1909389 NR 42 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2001 VL 162 IS 1-2 BP 1 EP 9 DI 10.1016/S0378-5955(01)00342-2 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 494PA UT WOS:000172290000001 PM 11707346 ER PT J AU Wada, H Usukura, H Takeuchi, S Sugawara, M Kakehata, S Ikeda, K AF Wada, H Usukura, H Takeuchi, S Sugawara, M Kakehata, S Ikeda, K TI Distribution of protein motors along the lateral wall of the outer hair cell SO HEARING RESEARCH LA English DT Article DE outer hair cell; protein motor; distribution; lateral wall; microsphere ID MOTILITY VOLTAGE SENSOR; COCHLEAR AMPLIFIER; MECHANICAL RESPONSES; PLASMA-MEMBRANE; FREQUENCY LIMIT; ELECTROMOTILITY; LOCALIZATION; MOVEMENT; PRESTIN AB The outer hair cell (OHC) plays an important role in the normal functioning of the cochlea, and cochlear amplification is believed to be based on OHC electromotility. This electromotility putatively arises from a conformational change of molecules, i.e., 'protein motors', which would be distributed along the plasma membrane. Although it has been assumed that protein motors are distributed in a restricted area of the plasma membrane, details of such distribution remain unclarified. In this study, first, in order to understand the difference in the stiffness along the cell axis, the local deformation of the OHC in response to hypotonic stimulation is analyzed by measuring the displacement of microspheres attached randomly to the lateral wall of the cell. As a result, the stiffness is expected to be constant throughout the region except in the apical part of the cell, and the stiffness of the apical part is expected to be higher than that of the other regions. Then, the local elongation and contraction of the OHC in response to sinusoidal voltage stimulation are analyzed by measuring the displacement of the microspheres in the same way as in the case of the hypotonic stimulation. From the two measurements mentioned above, it is concluded that there are no motors in the apical and basal parts of the cell, and that the motors are equally distributed along the cell lateral wall in the middle part of the cell. (C) 2001 Published by Elsevier Science B.V. C1 Tohoku Univ, Dept Mech Engn, Sendai, Miyagi 9808579, Japan. Tohoku Univ, Grad Sch Med, Dept Otorhinolaryngol Head & Neck Surg, Sendai, Miyagi 9808579, Japan. RP Wada, H (reprint author), Tohoku Univ, Dept Mech Engn, Aoba Yama 01, Sendai, Miyagi 9808579, Japan. EM wada@cc.mech.tohoku.ac.jp CR ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 Belyantseva IA, 2000, J NEUROSCI, V20, part. no. BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 DALLOS P, 1995, SCIENCE, V267, P2006, DOI 10.1126/science.7701325 EVANS BN, 1990, HEARING RES, V45, P265, DOI 10.1016/0378-5955(90)90126-A FORGE A, 1991, CELL TISSUE RES, V265, P473, DOI 10.1007/BF00340870 Gale JE, 1997, NATURE, V389, P63, DOI 10.1038/37968 HALLWORTH R, 1993, J NEUROPHYSIOL, V70, P549 HAMILL OP, 1981, PFLUG ARCH EUR J PHY, V391, P85, DOI 10.1007/BF00656997 HOLLEY MC, 1988, PROC R SOC SER B-BIO, V232, P413, DOI 10.1098/rspb.1988.0004 HUANG GJ, 1993, BIOPHYS J, V65, P2228 HUANG GJ, 1994, P NATL ACAD SCI USA, V91, P12268, DOI 10.1073/pnas.91.25.12268 IWASA KH, 1989, HEARING RES, V40, P247, DOI 10.1016/0378-5955(89)90165-2 KACHAR B, 1986, NATURE, V322, P365, DOI 10.1038/322365a0 KALINEC F, 1992, P NATL ACAD SCI USA, V89, P8671, DOI 10.1073/pnas.89.18.8671 SAITO K, 1983, CELL TISSUE RES, V229, P467 SANTOS-SACCHI J, 1991, J NEUROSCI, V11, P3096 SANTOSSACCHI J, 1990, LECT NOTES BIOMATH, V87, P69 SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X SANTOS-SACCHI J, 1992, J NEUROSCI, V12, P1906 SLEPECKY N, 1986, CELL TISSUE RES, V245, P229 Takahashi S, 2001, PFLUG ARCH EUR J PHY, V441, P506 ZENNER HP, 1986, HEARING RES, V22, P83, DOI 10.1016/0378-5955(86)90082-1 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 NR 24 TC 10 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2001 VL 162 IS 1-2 BP 10 EP 18 DI 10.1016/S0378-5955(01)00355-0 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 494PA UT WOS:000172290000002 PM 11707347 ER PT J AU Penheiter, AR Filoteo, AG Croy, CL Penniston, JT AF Penheiter, AR Filoteo, AG Croy, CL Penniston, JT TI Characterization of the deafwaddler mutant of the rat plasma membrane calcium-ATPase 2 SO HEARING RESEARCH LA English DT Article DE PMCA; cytosolic Ca2+; ion pump; Ca2+ signal; deafwaddler ID SARCOPLASMIC-RETICULUM CA2+-ATPASE; SITE-DIRECTED MUTAGENESIS; HAIR-CELL STEREOCILIA; CA2+ PUMP; CALMODULIN; BINDING; EXPRESSION; MUTATIONS; ISOFORM-2; DEAFNESS AB The deafwaddler mutant in mice was the first spontaneous mutant discovered in the plasma membrane Ca2+ pump (PMCA) [Street, V.A. et al., 1998, Nat. Genet. 19, 390-394]. A nucleotide substitution in deafwaddler results in a Gly to Ser transition at amino acid 283 in the small cytoplasmic loop of PMCA isoform 2 (PMCA2). PMCA2 is abundant in the stereocilia of auditory and vestibular hair cells, neurons of the spiral ganglion, and participates in inner ear development. Mice that are homozygous for deafwaddler are deaf and have poor balance. However, the balance and hearing disorders of the deafwaddler mice appear to be less severe than homozygotes for a functionally null frameshift mutant or homozygous PMCA2 knockout mice, suggesting that deafwaddler PMCA2 retains some biological activity. To examine the enzymic effects of the deafwaddler mutant, PMCA2 wild-type and deafwaddler were produced by transient expression in COS cells as well as baculovirus-mediated expression in Sf9 insect cells. Membrane preparations were assayed for calcium transport and ATPase activity. No significant differences in the regulation by calmodulin of the wild-type and deafwaddler PMCA2b were found. Steady-state transport assays and pre-steady-state ATPase assays of these two proteins revealed that the K-0.5 for Ca2+, K-0.5 for calmodulin, degree of activation by calmodulin and rate of activation by Ca-calmodulin were nearly identical. However, calcium transport of the deafwaddler pump was reduced to 30% of the wild-type activity. Although calcium transport activity was reduced in the deafwaddler pump, total phosphoenzyme formation from ATP was slightly higher for deafwaddler than for wild-type. 50 muM LaCl3 (which blocks the E1P to E2P conformational transition) increased the steady-state level of phosphoenzyme 3-fold for the wild-type but had no effect on the deafwaddler. Taken together, the kinetic data suggest that the deafwaddler mutation affects PMCA2 by slowing the E1P to E2P transition, resulting in approximately 70% reduction in the PMCA2-mediated Ca2+ export. (C) 2001 Elsevier Science B.V. All rights reserved. C1 Mayo Clin & Mayo Fdn, Dept Biochem & Mol Biol, Rochester, MN 55905 USA. RP Penniston, JT (reprint author), Mayo Clin & Mayo Fdn, Dept Biochem & Mol Biol, 200 1st St SW, Rochester, MN 55905 USA. CR ANDERSEN JP, 1989, J BIOL CHEM, V264, P21018 ANDERSEN JP, 1992, ACTA PHYSIOL SCAND, V146, P151 ANDERSEN JP, 1986, J MEMBRANE BIOL, V93, P85, DOI 10.1007/BF01871021 Andersen JP, 1995, BIOSCIENCE REP, V15, P243, DOI 10.1007/BF01788358 Blaustein MP, 1999, PHYSIOL REV, V79, P763 Bryda EC, 2001, GENOMICS, V73, P338, DOI 10.1006/geno.2001.6538 CARAFOLI E, 1987, ANNU REV BIOCHEM, V56, P395, DOI 10.1146/annurev.biochem.56.1.395 Caride AJ, 2001, CELL CALCIUM, V30, P49, DOI 10.1054/ceca.2001.0212 Caride AJ, 1999, J BIOL CHEM, V274, P35227, DOI 10.1074/jbc.274.49.35227 CLAPHAM DE, 1995, CELL, V80, P259, DOI 10.1016/0092-8674(95)90408-5 Di Palma F, 2001, NAT GENET, V27, P103 Dumont RA, 2001, J NEUROSCI, V21, P5066 Elwess NL, 1997, J BIOL CHEM, V272, P17981, DOI 10.1074/jbc.272.29.17981 ENYEDI A, 1994, J BIOL CHEM, V269, P41 Furuta H, 1998, HEARING RES, V123, P10, DOI 10.1016/S0378-5955(98)00091-4 Herscher CJ, 1996, BIOCHEMISTRY-US, V35, P14917, DOI 10.1021/bi961879r HERSCHER CJ, 1994, J BIOL CHEM, V269, P10400 HILFIKER H, 1994, J BIOL CHEM, V269, P26178 JUUL B, 1995, J BIOL CHEM, V270, P20123 Konrad-Martin D, 2001, HEARING RES, V151, P205, DOI 10.1016/S0378-5955(00)00228-8 Kozel PJ, 1998, J BIOL CHEM, V273, P18693, DOI 10.1074/jbc.273.30.18693 Lane PW, 1987, MOUSE NEWS LETT, V77, P129 Lumpkin EA, 1998, J NEUROSCI, V18, P6300 MACLENNAN DH, 1992, ACTA PHYSIOL SCAND, V146, P141 MacLennan DH, 1998, ACTA PHYSIOL SCAND, V163, P55 NobenTrauth K, 1997, GENOMICS, V44, P266, DOI 10.1006/geno.1997.4869 NORTON SJ, 1996, ASS RES OT ABSTR, V19, P82 O'Reilly D.R., 1994, BACULOVIRUS EXPRESSI SARKADI B, 1986, J BIOL CHEM, V261, P9552 Sorensen TLM, 2000, J BIOL CHEM, V275, P5400, DOI 10.1074/jbc.275.8.5400 Street VA, 1998, NAT GENET, V19, P390 Strehler EE, 2001, PHYSIOL REV, V81, P21 Toyoshima C, 2000, NATURE, V405, P647, DOI 10.1038/35015017 Tucker T, 1995, NEURON, V15, P1323, DOI 10.1016/0896-6273(95)90011-X Verma AK, 1996, J BIOL CHEM, V271, P3714 Yamoah EN, 1998, J NEUROSCI, V18, P610 NR 36 TC 18 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2001 VL 162 IS 1-2 BP 19 EP 28 DI 10.1016/S0378-5955(01)00356-2 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 494PA UT WOS:000172290000003 PM 11707348 ER PT J AU Le Prell, CG Niemiec, AJ Moody, DB AF Le Prell, CG Niemiec, AJ Moody, DB TI Macaque thresholds for detecting increases in intensity: effects of formant structure SO HEARING RESEARCH LA English DT Article DE increment detection; profile analysis ID AUDITORY PROFILE ANALYSIS; FREQUENCY DISCRIMINATION; MONKEY VOCALIZATIONS; DISCHARGE PATTERNS; RHESUS-MONKEY; NERVE FIBERS; REPRESENTATION; COMPONENTS; VOWELS; SOUNDS AB Macaque monkeys, like humans, are more sensitive to differences in formant frequency than to differences in the frequency of pure tones (see Sinnott et al. (1987) J. Comp. Psychol. 94, 401-415; Pfingst (1993) J. Acoust. Soc. Am. 93, 2124-2129; Prosen et al. (1990) J. Acoust. Soc. Am. 88, 2152-2158; Sinnott et al. (1985) J. Acoust. Soc. Am. 78, 1977-1985; Sinnott and Kreiter (1991) J. Acoust. Soc. Am. 89,2421-2429; for summary, see May et al. (1996) And. Neurosci. 3, 135-162). In the discrimination of formant frequency, it appears that the relevant cue for macaque monkeys is relative level differences of the component frequencies (Sommers et al. (1992) J. Acoust. Soc. Am. 91, 3499-3510). To further explore the result of Sommers et al., we trained macaque monkeys (Macaca fuscata) to report detection of a change in the spectral shape of multi-component harmonic complexes. Spectral shape changes were produced by the addition of intensity increments. When the amplitude spectrum of the comparison stimulus was modeled after the /ae/ vowel sound, thresholds for detecting a change from the comparison stimulus were lowest when intensity increments were added at spectral peaks. These results parallel previous data from human subjects, suggesting that both human and monkey subjects may process vowel spectra through simultaneous comparisons of component levels across the spectrum. When the subjects were asked to detect a change from a comparison stimulus with a flat amplitude spectrum, the subjects showed sensitivity that was relatively comparable to that of human subjects tested in other investigations (e.g. Zera. et al. (1993) J. Acoust. Soc. Am. 93, 3431-3441). In additional experiments, neither increasing the. dynamic range of the /ae/ spectrum nor dynamically varying the amplitude of the increment during the stimulus presentation reliably affected detection thresholds. (C) 2001 Elsevier Science B.V. All rights reserved. C1 Univ Michigan, Kresge Hearing Res Inst, Sch Med, Ann Arbor, MI 48109 USA. RP Le Prell, CG (reprint author), Univ Michigan, Kresge Hearing Res Inst, Sch Med, 1301 E Ann St, Ann Arbor, MI 48109 USA. CR ASSMANN PF, 1987, J ACOUST SOC AM, V81, P520, DOI 10.1121/1.394918 Bacon SP, 1996, J ACOUST SOC AM, V99, P1653, DOI 10.1121/1.414737 DAI HP, 1991, J ACOUST SOC AM, V90, P836, DOI 10.1121/1.401951 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P866, DOI 10.1121/1.390596 Dissard P, 2000, J ACOUST SOC AM, V107, P960, DOI 10.1121/1.428277 Ellermeier W, 1996, J ACOUST SOC AM, V99, P3119, DOI 10.1121/1.414797 Gockel H, 1998, J ACOUST SOC AM, V103, P542, DOI 10.1121/1.421102 Green D. M., 1988, PROFILE ANAL AUDITOR GREEN DM, 1983, J ACOUST SOC AM, V73, P639, DOI 10.1121/1.389009 GREEN DM, 1992, J ACOUST SOC AM, V91, P1616, DOI 10.1121/1.402442 GREEN DM, 1988, HEARING RES, V32, P147 GREEN DM, 1983, AM PSYCHOL, V38, P133, DOI 10.1037/0003-066X.38.2.133 Green S., 1975, Primate Behav, V4, P1 HAUSER MD, 1993, ANIM BEHAV, V45, P423, DOI 10.1006/anbe.1993.1054 HAUSER MD, 1994, BRAIN LANG, V46, P232, DOI 10.1006/brln.1994.1014 HAUSER MD, 1992, J ACOUST SOC AM, V91, P2175, DOI 10.1121/1.403676 HEINZ RD, 1996, J ACOUST SOC AM, V100, P1052 HEINZ RD, 1996, J ACOUST SOC AM, V99, P3656 HENN CC, 1990, J ACOUST SOC AM, V88, P126, DOI 10.1121/1.399958 KAKUSHO HH, 1971, ACUSTICA, V24, P179 KewleyPort D, 1996, J ACOUST SOC AM, V100, P2462, DOI 10.1121/1.417954 KIDD G, 1992, J ACOUST SOC AM, V91, P2855, DOI 10.1121/1.402966 KIDD G, 1991, J ACOUST SOC AM, V90, P1340, DOI 10.1121/1.401926 Lentz JJ, 1998, J ACOUST SOC AM, V103, P535, DOI 10.1121/1.421124 LEPRELL CG, 1998, THESIS ANN ARBOR MI LePrell CG, 1997, J COMP PSYCHOL, V111, P261 LePrell G, 1996, AUDIT NEUROSCI, V2, P275 Lieberman P., 1977, SPEECH PHYSL ACOUSTI May BJ, 1996, AUDIT NEUROSCI, V3, P135 Moody DB, 1998, J ACOUST SOC AM, V103, P2618, DOI 10.1121/1.422782 MOODY DB, 1970, BEHAV RES METH INSTR, V2, P180, DOI 10.3758/BF03209297 MOODY DB, 1994, J ACOUST SOC AM, V95, P3499, DOI 10.1121/1.409967 *NAT RES COUNC I L, 1996, GUID CAR US LAB AN NIEMIEC AJ, 1995, BIOMETHODS, V6, P65 NIEMIEC AJ, 1992, ASS RES OTOLARYNGOLO, P52 PALMER AR, 1986, J ACOUST SOC AM, V79, P100, DOI 10.1121/1.393633 PFINGST BE, 1993, J ACOUST SOC AM, V93, P2124, DOI 10.1121/1.406673 PROSEN CA, 1990, J ACOUST SOC AM, V88, P2152, DOI 10.1121/1.400112 RYALLS JH, 1982, J ACOUST SOC AM, V75, P1631 SACHS MB, 1968, J ACOUST SOC AM, V43, P1120, DOI 10.1121/1.1910947 SINNOTT J, 1987, J COMP PSYCHOL, V94, P401 SINNOTT JM, 1991, J ACOUST SOC AM, V89, P2421, DOI 10.1121/1.400974 SINNOTT JM, 1985, J ACOUST SOC AM, V78, P1977, DOI 10.1121/1.392654 SOMMERS MS, 1992, J ACOUST SOC AM, V91, P3499, DOI 10.1121/1.402839 Sommers MS, 1996, J ACOUST SOC AM, V99, P3770, DOI 10.1121/1.414972 SOMMERS MS, 1990, THESIS ANN ARBOR MI YOUNG ED, 1979, J ACOUST SOC AM, V66, P1381, DOI 10.1121/1.383532 ZERA J, 1993, J ACOUST SOC AM, V93, P3431, DOI 10.1121/1.405673 NR 48 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2001 VL 162 IS 1-2 BP 29 EP 42 DI 10.1016/S0378-5955(01)00357-4 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 494PA UT WOS:000172290000004 PM 11707349 ER PT J AU Kaygusuz, I Ozturk, A Ustundag, B Yalcin, S AF Kaygusuz, I Ozturk, A Ustundag, B Yalcin, S TI Role of free oxygen radicals in noise-related hearing impairment SO HEARING RESEARCH LA English DT Article DE hearing impairment; noise; free oxygen radicals scavenging; antioxidant ID EXPOSURE; COCHLEA; SERUM AB This. study was aimed at defining the relationship between noise-related hearing impairment in industrial workers exposed to continuous noise. For this malondialdehyde and glutathione peroxidase were analyzed as free radical form and antioxidant form. A total of 60 patients working in the units of a hydroelectric power plant were included in the study. This experimental group was further divided into three subgroups of 20 workers, each group exposed to a different noise level. The control group consisted of 20 male volunteers employed in the Medical Centre where the study was carried out. A standard ascending/descending method was applied to the subjects of the experimental and the control groups in order to determine their hearing thresholds at seven different frequencies between 250 and 8000 Hz. Then, 10 ml blood was collected from each person to measure the malondialdehyde values in plasma and glutathione peroxidase activity in erythrocytes. Slight sensorineural hearing impairment was found in group I beginning at 4 kHz and in group II beginning at 6 kHz. Statistically significant differences were observed in group I and II when compared to the control group (P < 0.05). It was found that malondialdehyde levels increased in the experimental groups more than in the control groups. However, this increase was only significant in group I (P < 0.05). Erythrocyte glutathione peroxidase activity significantly increased in group I and II compared to the other groups (P < 0.05), also, the difference was significant between group I and II (P < 0.05). Accordingly, it is suggested that free oxygen radicals may take a role in noise-related hearing impairment. (C) 2001 Elsevier Science B.V. All rights reserved. C1 Firat Univ, Dept Otorhinolaryngol, Fac Med, TR-23200 Elazig, Turkey. Firat Univ, Dept Biochem, Fac Med, TR-23200 Elazig, Turkey. RP Kaygusuz, I (reprint author), Firat Univ, Dept Otorhinolaryngol, Fac Med, TR-23200 Elazig, Turkey. CR ALBERTI PW, 1997, SCOTT BROWNS OTOLARY, P1 ATTIAS J, 1985, AUDIOLOGY, V24, P149 Celik Onur, 1996, Auris Nasus Larynx, V23, P127 DOBIE RA, 1995, ARCH OTOLARYNGOL, V121, P385 HALLIWELL B, 1994, LANCET, V344, P721, DOI 10.1016/S0140-6736(94)92211-X HAWKINS JE, 1971, ANN OTO RHINOL LARYN, V80, P903 Henry J P, 1977, Prog Brain Res, V47, P263 Herken H, 2001, MOL PSYCHIATR, V6, P66, DOI 10.1038/sj.mp.4000789 Ising H, 2000, Schriftenr Ver Wasser Boden Lufthyg, V106, P169 ISING H, 2000, SOIL AIR HYGIENE NOI, V7, P7 Jacono AA, 1998, HEARING RES, V117, P31, DOI 10.1016/S0378-5955(97)00214-1 Licastro F, 2001, ALZ DIS ASSOC DIS, V15, P51, DOI 10.1097/00002093-200101000-00007 LIU Z, 1992, CHIN J OTORHINOLARYN, V27, P24 Mihailovic Momcilo B., 1998, Journal of Environmental Pathology Toxicology and Oncology, V17, P285 Nakai Y, 1988, Acta Otolaryngol Suppl, V447, P23 Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5 OSGUTHORPE JD, 1991, OTOLARYNG CLIN N AM, V24, P403 PAGLIA DE, 1967, J LAB CLIN MED, V70, P158 Salvi A, 2001, BIOCHEM PHARMACOL, V61, P1237, DOI 10.1016/S0006-2952(01)00607-4 SATOH K, 1978, CLIN CHIM ACTA, V90, P37 SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 Ward WD, 1991, OTOLARYNGOLOGY, P1639 YAGI K, 1984, METHOD ENZYMOL, V105, P328 Yamasoba T, 1998, BRAIN RES, V804, P72, DOI 10.1016/S0006-8993(98)00660-X YAMENE H, 1995, ACTA OTOLARYNGOL S S, V519, P87 YELLIN MW, 1991, OTOLARYNGOLOGY, P961 NR 26 TC 34 Z9 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2001 VL 162 IS 1-2 BP 43 EP 47 DI 10.1016/S0378-5955(01)00365-3 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 494PA UT WOS:000172290000005 PM 11707350 ER PT J AU Marangos, N Illing, RB Kruger, J Laszig, R AF Marangos, N Illing, RB Kruger, J Laszig, R TI In vivo visualization of the cochlear nerve and nuclei with fluorescent axonal tracers SO HEARING RESEARCH LA English DT Article DE auditory brainstem implant; axonal tracers; cochlear nucleus; Fast Blue ID BRAIN-STEM IMPLANT; PROMONTORY STIMULATION; ACOUSTIC NEUROMA; CORTEX; PROJECTIONS; SURGERY AB In recent years multichannel neuroprostheses have been developed which directly stimulate the central auditory pathway. Substantially these have been used in cases of total hearing loss caused by neurofibromatosis type 2 where bilateral damage to the auditory nerve prevents more peripheral stimulation. The electrode carrier of the auditory brainstem implant (ABI) is designed to be placed on the cochlear nucleus complex residing at the lateral brainstem surface. Despite altered anatomy due to tumor growth or preceding surgery, correct electrode placement is essential to maximize the variety of pitch percept elicited during electrical stimulation with the ABI without producing side-effects. In order to assist intraoperative identification of the proximal auditory nerve and cochlear nuclei, the non-toxic fluorescent axonal tracers Fast Blue or Fluorogold were injected into the cochlea of rats and Java monkeys. Four to seven days after tracer application, labeling of the eighth cranial nerve, its entrance into the brainstem and the primary radiation of auditory fibers into the cochlear nucleus could be demonstrated as colored fluorescence on the living brain under appropriate ultraviolet illumination. Additional histological processing revealed groups of retrogradely labeled neuronal cell bodies in both species. Our results suggest that this method could also be used in humans in order to aid surgeons with the proper positioning of the electrode array. (C) 2001 Elsevier Science B.V. All rights reserved. C1 Univ Freiburg, Neurobiol Res Lab, Dept Otorhinolaryngol, Freiburg, Germany. Univ Freiburg, Inst Brain Res, Freiburg, Germany. RP Marangos, N (reprint author), Univ Mainz, HNO Klin, Langenbeckstr 1, D-55101 Mainz, Germany. CR BENTIVOGLIO M, 1980, NEUROSCI LETT, V18, P25, DOI 10.1016/0304-3940(80)90208-6 BRACKMANN DE, 1993, OTOLARYNG HEAD NECK, V108, P624 CUEVA RA, 1992, LARYNGOSCOPE, V102, P1220, DOI 10.1288/00005537-199211000-00003 EDGERTON BJ, 1982, ANN OTO RHINOL LARYN, V91, P117 ILLING RB, 1985, NEUROSCIENCE, V14, P455, DOI 10.1016/0306-4522(85)90303-3 INNOCENTI GM, 1988, J COMP NEUROL, V272, P242, DOI 10.1002/cne.902720207 JONES EG, 1978, ANNU REV NEUROSCI, V1, P215, DOI 10.1146/annurev.ne.01.030178.001243 Laszig R, 1999, Ear Nose Throat J, V78, P110 LASZIG R, 1991, EUR ARCH OTO-RHINO-L, V248, P420, DOI 10.1007/BF01463568 LASZIG R, 1995, J LARYNGOL OTOL, V109, P385 LEHNHARDT E, 1993, HNO, V41, P356 Marangos N, 2000, J LARYNGOL OTOL, V114, P27 MARANGOS N, 2000, J LARYNGOL OTOL S, V144, P3 MINCIACCHI D, 1991, J NEUROSCI METH, V38, P183, DOI 10.1016/0165-0270(91)90168-Y O'Leary D D, 1986, Brain Res, V392, P87 O-Uchi T, 1994, Acta Otolaryngol Suppl, V514, P95 SLONIEWSKI P, 1985, NEUROSCI LETT, V60, P189, DOI 10.1016/0304-3940(85)90242-3 RAMSDEN RT, 1991, J LARYNGOL OTOL, V105, P729, DOI 10.1017/S0022215100117141 ROSINA A, 1982, NEUROSCI LETT, V33, P217, DOI 10.1016/0304-3940(82)90374-3 SCHMUED LC, 1986, BRAIN RES, V377, P147, DOI 10.1016/0006-8993(86)91199-6 STANFIELD BB, 1985, J COMP NEUROL, V238, P236, DOI 10.1002/cne.902380210 THIELERT CD, 1993, J COMP NEUROL, V337, P113, DOI 10.1002/cne.903370108 Vogt Weisenhorn D. M., 1995, Journal of Comparative Neurology, V362, P233 VRABEC JT, 1995, AM J OTOL, V16, P643 YETERIAN EH, 1994, EXP BRAIN RES, V99, P383 NR 25 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2001 VL 162 IS 1-2 BP 48 EP 52 DI 10.1016/S0378-5955(01)00368-9 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 494PA UT WOS:000172290000006 PM 11707351 ER PT J AU Riera-Sala, C Molina-Mira, A Marco-Algarra, J Martinez-Soriano, F Olucha, FE AF Riera-Sala, C Molina-Mira, A Marco-Algarra, J Martinez-Soriano, F Olucha, FE TI Inner ear lesion alters acoustically induced c-Fos expression in the rat auditory rhomboencephalic brainstem SO HEARING RESEARCH LA English DT Article DE immediate early gene; auditory system; acetylcholinesterase; sensory deprivation ID INTRACOCHLEAR ELECTRICAL-STIMULATION; UNILATERAL COCHLEAR ABLATION; MESSENGER-RNA EXPRESSION; INFERIOR COLLICULUS; NERVOUS-SYSTEM; GUINEA-PIG; TRANSCRIPTION FACTOR; LATERAL LEMNISCUS; PURE-TONES; NUCLEUS AB The pattern of c-Fos expression was mapped in the adult rat's brain following unilateral cochlear lesions. In normal and cochlear lesioned rats, c-Fos. expression was induced with sound stimuli. Acoustic stimulation consisted of pulses of four tones. An additional control group consisted of non-stimulated rats. In the cochlear nuclei (CN), c-Fos activation was scarce in isolated rats and increased strongly following sound stimulation. Following unilateral cochlear lesion, acoustically driven expression was decreased in all CN in both the lesioned and the untreated sides. The ventromedial periolivary nucleus and the rostral periolivary nucleus showed c-Fos activation in isolated conditions and were strongly activated following sound stimulation. The rest of the superior olivary complex showed no c-Fos activation in isolated rats and a weak activation following sound stimulation. Following unilateral cochlear lesions, acoustically driven expression was decreased in some, but not all superior olivary nuclei in both the lesioned and the untreated sides. In the lateral lemniscus complex, c-Fos activation was scarce in isolated rats and increased strongly after stimulation. Following unilateral cochlear lesion, acoustically driven expression decreased bilaterally in all nuclei. We have found that unilateral inner ear lesions lead to bilateral impairment of the capability of acoustic pathway neurons, to being c-Fos-activated following sound stimulation. (C) 2001 Elsevier Science BN. All rights reserved. C1 Univ Valencia, Dept Ciencias Morfol, Fac Med & Odontol, E-46010 Valencia, Spain. Hosp Gen Castellon, Serv Otorrinolaringol, Castellon De La Plana, Spain. Hosp Arnau Vilanova, Serv Otorrinolaringol, Valencia, Spain. Univ Valencia, Serv Otorrinolaringol, Hosp Clin Valencia, Dept Cirugia,Fac Med & Odontol, Valencia, Spain. RP Olucha, FE (reprint author), Univ Valencia, Dept Ciencias Morfol, Fac Med & Odontol, Av Blasco Ibanez 17, E-46010 Valencia, Spain. EM francisco.olucha@uv.es CR ADAMS JC, 1995, J COMP NEUROL, V361, P645, DOI 10.1002/cne.903610408 AOKI E, 1988, BRAIN RES, V442, P63, DOI 10.1016/0006-8993(88)91432-1 BAJO VM, 1993, J COMP NEUROL, V334, P241, DOI 10.1002/cne.903340207 Benson CG, 1997, SYNAPSE, V25, P243 BROWN MC, 1995, J COMP NEUROL, V357, P85, DOI 10.1002/cne.903570109 Caicedo A, 1997, J COMP NEUROL, V378, P1, DOI 10.1002/(SICI)1096-9861(19970203)378:1<1::AID-CNE1>3.0.CO;2-8 CANT NB, 1982, J COMP NEUROL, V212, P313, DOI 10.1002/cne.902120308 EHRET G, 1991, BRAIN RES, V567, P350, DOI 10.1016/0006-8993(91)90819-H FRIAUF E, 1995, BEHAV BRAIN RES, V66, P217, DOI 10.1016/0166-4328(94)00147-8 FRIAUF E, 1992, EUR J NEUROSCI, V4, P798, DOI 10.1111/j.1460-9568.1992.tb00190.x Fujiwara K, 1998, BRAIN RES, V806, P210, DOI 10.1016/S0006-8993(98)00744-6 Garcia MM, 2000, HEARING RES, V147, P113, DOI 10.1016/S0378-5955(00)00125-8 GERKEN GM, 1979, J ACOUST SOC AM, V66, P721, DOI 10.1121/1.383222 GERKEN GM, 1979, J ACOUST SOC AM, V66, P728, DOI 10.1121/1.383223 GLENDENNING KK, 1981, J COMP NEUROL, V197, P673, DOI 10.1002/cne.901970409 Herdegen T, 1992, Brain Res Mol Brain Res, V14, P155 Hillman DE, 1997, BRAIN RES, V748, P77, DOI 10.1016/S0006-8993(96)01278-4 Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6 KALTENBACH JA, 1991, HEARING RES, V51, P149, DOI 10.1016/0378-5955(91)90013-Y KASEKI Y, 1991, LARYNGOSCOPE, V101, P1085 KEILMANN A, 1995, EUR ARCH OTO-RHINO-L, V252, P287 Keilmann A, 1997, BRAIN RES, V753, P291, DOI 10.1016/S0006-8993(97)00034-6 KOBAYASHI T, 1993, ACTA OTO-LARYNGOL, V113, P725, DOI 10.3109/00016489309135892 KOBAYASHI T, 1990, ACTA OTO-LARYNGOL, V110, P209, DOI 10.3109/00016489009122539 KOELLE GB, 1949, P SOC EXP BIOL MED, V70, P617 LEWIS PR, 1961, BIBL ANAT, V2, P1 LIBERMAN MC, 1978, ACTA OTO-LARYNGOL, P5 LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8 Luo L, 1999, J COMP NEUROL, V404, P271, DOI 10.1002/(SICI)1096-9861(19990208)404:2<271::AID-CNE10>3.0.CO;2-4 Mielke K, 2000, PROG NEUROBIOL, V61, P45, DOI 10.1016/S0301-0082(99)00042-8 Milbrandt JC, 2000, HEARING RES, V147, P251, DOI 10.1016/S0378-5955(00)00135-0 MORGAN JI, 1991, ANNU REV NEUROSCI, V14, P421, DOI 10.1146/annurev.ne.14.030191.002225 Mossop JE, 2000, HEARING RES, V147, P183, DOI 10.1016/S0378-5955(00)00054-X Nagase S, 2000, HEARING RES, V147, P242, DOI 10.1016/S0378-5955(00)00134-9 NORDEEN KW, 1983, J COMP NEUROL, V214, P144, DOI 10.1002/cne.902140204 Olucha F E, 1997, Acta Otorrinolaringol Esp, V48, P85 Ottersen Ole P., 1995, P1017 Paxinos G, 1986, RAT BRAIN STEREOTAXI, V2nd PFINGST BE, 1991, J ACOUST SOC AM, V90, P1857, DOI 10.1121/1.401665 PIERSON M, 1994, BRAIN RES, V636, P55, DOI 10.1016/0006-8993(94)90175-9 POTASHNER SJ, 1983, J NEUROCHEM, V41, P1094, DOI 10.1111/j.1471-4159.1983.tb09057.x Potashner SJ, 2000, HEARING RES, V147, P125, DOI 10.1016/S0378-5955(00)00126-X REIMER K, 1993, BRAIN RES, V616, P339, DOI 10.1016/0006-8993(93)90229-G RIERASALA C, 2000, EUR J ANAT, V4, P23 RIERASALA C, 1999, EUR J ANAT, V3, P153 ROUILLER EM, 1992, NEUROSCI LETT, V144, P19, DOI 10.1016/0304-3940(92)90706-D RUSSELL FA, 1995, J COMP NEUROL, V352, P607, DOI 10.1002/cne.903520409 SAGAR SM, 1993, ADV NEUROL, V59, P273 Saint Marie RL, 1999, J COMP NEUROL, V404, P258, DOI 10.1002/(SICI)1096-9861(19990208)404:2<258::AID-CNE9>3.0.CO;2-U Saito H, 1999, NEUROSCIENCE, V91, P139, DOI 10.1016/S0306-4522(98)00581-8 SALDANA E, 1993, NATO ADV SCI INST SE, V239, P153 Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 SASAKI CT, 1981, LARYNGOSCOPE, V91, P2018 SATO K, 1992, NEUROSCI LETT, V142, P48, DOI 10.1016/0304-3940(92)90617-G SATO K, 1993, ACTA OTO-LARYNGOL, P18 SHENG M, 1990, NEURON, V4, P477, DOI 10.1016/0896-6273(90)90106-P SHIRANE M, 1991, ACTA OTO-LARYNGOL, P32 SHORE SE, 1992, HEARING RES, V62, P16, DOI 10.1016/0378-5955(92)90199-W Snyder RL, 2000, HEARING RES, V147, P200, DOI 10.1016/S0378-5955(00)00132-5 SNYDER RL, 1991, HEARING RES, V56, P246, DOI 10.1016/0378-5955(91)90175-9 Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812 VISCHER MW, 1994, NEUROSCI RES, V19, P175, DOI 10.1016/0168-0102(94)90141-4 Webster William R., 1995, P797 WENTHOLD RJ, 1977, BRAIN RES, V138, P111, DOI 10.1016/0006-8993(77)90787-9 Yao WP, 1996, J COMP NEUROL, V373, P27 NR 65 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2001 VL 162 IS 1-2 BP 53 EP 66 DI 10.1016/S0378-5955(01)00369-0 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 494PA UT WOS:000172290000007 PM 11707352 ER PT J AU Cappaert, NLM Klis, SFL Muijser, H Kulig, BM Smoorenburg, GF AF Cappaert, NLM Klis, SFL Muijser, H Kulig, BM Smoorenburg, GF TI Simultaneous exposure to ethyl benzene and noise: synergistic effects on outer hair cells SO HEARING RESEARCH LA English DT Article DE ethyl benzene; noise; outer hair cell; electrocochleography; interaction; distortion product otoacoustic emissions ID GUINEA-PIG; OCCUPATIONAL EXPOSURE; AUDITORY-SENSITIVITY; STYRENE EXPOSURE; ORGANIC-SOLVENTS; HEARING FUNCTION; ACOUSTIC TRAUMA; RAT; TOLUENE; COCHLEA AB The effects on hearing of simultaneous exposure to the ototoxic organic solvent ethyl benzene and broad-band noise were evaluated in rats. The effects of three ethyl benzene concentrations (0, 300 or 400 ppm) and three noise levels (95 or 105 dB(lin) SPL or background noise at 65 dB(lin) SPL) and all their combinations were investigated for a 5 day exposure at 8 h/day. Distortion product otoacoustic emissions and compound action potentials were affected after 105 dB noise alone, and after 105 dB noise in combination with ethyl benzene (300 and 400 ppm). However, the amount of loss for these combinations did not exceed the loss for 105 dB noise alone. Outer hair cell (OHC) loss after exposure to 300 ppm ethyl benzene was located in the third row of OHCs. At 400 ppm, the loss spread out to the second and first row of OHCs. Noise alone hardly affected the OHC counts except for a minor loss in the first row of OHCs after 105 dB SPL. Noise at 105 dB in combination with ethyl benzene at 300 and 400 ppm, however, showed OHC loss greater than the sum of the losses induced by noise and ethyl benzene alone. (C) 2001 Elsevier Science B.V. All rights reserved. C1 Univ Utrecht, Med Ctr, Hearing Res Labs, NL-3508 GA Utrecht, Netherlands. TNO, Nutr & Food Res Inst, NL-3704 HE Zeist, Netherlands. RP Cappaert, NLM (reprint author), Univ Utrecht, Med Ctr, Hearing Res Labs, Room G-02-531,Heidelberglaan 100, NL-3508 GA Utrecht, Netherlands. CR ALBERTI P. W., 1998, NOISE HEALTH, V1, P3 *AM CHEM SOC, 1996, PROD US CHEM IND BARREGARD L, 1984, SCAND AUDIOL, V13, P151, DOI 10.3109/01050398409043054 BOHNE BA, 1990, HEARING RES, V48, P79, DOI 10.1016/0378-5955(90)90200-9 Borg E, 1995, Scand Audiol Suppl, V40, P1 BORG E, 1987, HEARING RES, V30, P111, DOI 10.1016/0378-5955(87)90128-6 Cappaert N.L., 2000, NOISE HLTH, V3, P23 Cappaert NLM, 1999, HEARING RES, V137, P91, DOI 10.1016/S0378-5955(99)00141-0 Cappaert NLM, 2000, JARO, V1, P292 COLEMAN JW, 1976, ACTA OTO-LARYNGOL, V82, P33, DOI 10.3109/00016487609120860 CROFTON KM, 1994, HEARING RES, V80, P25, DOI 10.1016/0378-5955(94)90005-1 DEGROOT JCMJ, 1987, ACTA OTO-LARYNGOL, V104, P234, DOI 10.3109/00016488709107323 ENGSTROM B, 1984, SCAND AUDIOL, V13, P87, DOI 10.3109/01050398409043045 Fay R. R., 1988, HEARING VERTEBRATES Fridberger A, 1996, ACTA OTO-LARYNGOL, V116, P17, DOI 10.3109/00016489609137707 JACOBSEN P, 1993, OCCUP MED-OXFORD, V43, P180, DOI 10.1093/occmed/43.4.180 JOHNSON AC, 1990, ACTA OTO-LARYNGOL, V109, P34, DOI 10.3109/00016489009107412 JOHNSON AC, 1988, ACTA OTO-LARYNGOL, V105, P56, DOI 10.3109/00016488809119446 JOHNSON AC, 1994, HEARING RES, V75, P201, DOI 10.1016/0378-5955(94)90071-X KEITHLEY EM, 1982, HEARING RES, V8, P249, DOI 10.1016/0378-5955(82)90017-X KELLY JB, 1977, J COMP PHYSIOL PSYCH, V91, P930, DOI 10.1037/h0077356 Lataye R, 1997, NEUROTOXICOL TERATOL, V19, P373, DOI 10.1016/S0892-0362(97)00049-4 Lataye R, 2000, HEARING RES, V139, P86, DOI 10.1016/S0378-5955(99)00174-4 LIBERMAN MC, 1987, HEARING RES, V26, P65, DOI 10.1016/0378-5955(87)90036-0 Liu Y, 1997, TOXICOL APPL PHARM, V142, P270, DOI 10.1006/taap.1996.8059 LOQUET G, 1999, NEUROTOXICOL TERATOL, V21, P697 MAKITIE A, 1997, THESIS U HELSINKI HE MELCHIAR I, 1980, HEARING RES, V2, P55 MORATA TC, 1994, ARCH ENVIRON HEALTH, V49, P359 MORATA TC, 1993, SCAND J WORK ENV HEA, V19, P245 MUIJSER H, 2000, NOISE HLTH, V6, P57 MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7 PRYOR GT, 1993, NEUROTOXICOLOGY INHA PRYOR GT, 1984, NEUROBEH TOXICOL TER, V6, P111 Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037 ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X RYBAK LP, 1992, OTOLARYNG HEAD NECK, V106, P677 SALVI RJ, 1995, HDB NEUROTOXICOLOGY, P907 Sass-Kortsak Andrea M., 1995, Annals of Epidemiology, V5, P15, DOI 10.1016/1047-2797(94)00036-S SUBRAMANIAM M, 1995, EAR HEARING, V16, P372, DOI 10.1097/00003446-199508000-00004 SULLIVAN MJ, 1989, NEUROTOXICOL TERATOL, V10, P525 SYKA J, 1981, HEARING RES, V4, P287, DOI 10.1016/0378-5955(81)90013-7 TARNOWSKI BI, 1991, HEARING RES, V54, P123, DOI 10.1016/0378-5955(91)90142-V YANO BL, 1992, TOXICOL PATHOL, V20, P1 Yoshida N, 1999, HEARING RES, V131, P29, DOI 10.1016/S0378-5955(99)00008-8 NR 45 TC 21 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2001 VL 162 IS 1-2 BP 67 EP 79 DI 10.1016/S0378-5955(01)00373-2 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 494PA UT WOS:000172290000008 PM 11707353 ER PT J AU Di Girolamo, S d'Ecclesia, A Quaranta, N Garozzo, A Evoli, A Paludetti, G AF Di Girolamo, S d'Ecclesia, A Quaranta, N Garozzo, A Evoli, A Paludetti, G TI Effects of contralateral white noise stimulation on distortion product otoacoustic emissions in myasthenic patients SO HEARING RESEARCH LA English DT Article DE contralateral suppression; medial olivo-cochlear bundle; distortion product otoacoustic emission; myasthenia gravis ID OUTER HAIR-CELLS; OLIVOCOCHLEAR BUNDLE SECTION; ACETYLCHOLINE-RECEPTORS; ACOUSTIC NEUROMA; COCHLEAR; HUMANS; ELECTROMOTILITY; GRAVIS; EARS AB Myasthenia gravis (MG) induces a reduction of transient evoked otoacoustic emissions (TEOAEs) and distortion product otoacoustic emissions (DPOAEs) that reverses partially after administration of an acetylcholinesterase (AChE) inhibitor. In normal subjects a contralateral acoustic stimulation (CAS) produces an amplitude reduction of TEOAEs and DPOAEs. This effect, called contralateral suppression (CS), is mediated by the efferent auditory system. Twenty subjects affected by MG underwent DPOAE recording with and without contralateral white noise in a drug-free baseline period ('basal') and 1 h ('post') after administration of a reversible AChE inhibitor. In 'basal' condition CAS did not induce significant DPOAE amplitude changes but a paradoxical slight increase was observed. After drug administration, CAS produced a significant decrease of DPOAE amplitudes for middle frequencies (f(2) between 1306 and 2600 Hz). In normal controls CAS caused a significant decrease (P < 0.001) for all frequencies. The amount of CS in controls and in the MG 'post' condition was not significantly different. The increased acetylcholine (ACh) availability following drug consumption seems to partially restore outer hair cell function and enhances their electromotility; a further influx of ACh due to CAS yields to restoration of the CS. These findings also suggest that DPOAEs may be useful in the diagnosis of MG and for monitoring the effectiveness of treatment. (C) 2001 Elsevier Science B.V. All rights reserved. C1 Univ Sacred Heart, Inst Otorhinolaryngol, I-00168 Rome, Italy. Catania Univ, ENT Dept, I-95126 Catania, Italy. Univ Sacred Heart, Inst Neurol, I-00168 Rome, Italy. RP Paludetti, G (reprint author), Univ Sacred Heart, Inst Otorhinolaryngol, Lgo Agostino Gemelli 8, I-00168 Rome, Italy. RI Di Girolamo, Stefano/F-7820-2011 CR ANNIKO M, 1991, ACTA OTO-LARYNGOL, V111, P491, DOI 10.3109/00016489109138374 BERLIN CI, 1993, HEARING RES, V71, P1, DOI 10.1016/0378-5955(93)90015-S BLOM S, 1974, J NEUROL SCI, V21, P71, DOI 10.1016/0022-510X(74)90107-5 COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E COLLET L, 1992, AUDIOLOGY, V31, P1 COLLET L, 1994, BRIT J AUDIOL, V28, P213, DOI 10.3109/03005369409086570 Dallos P, 1997, J NEUROSCI, V17, P2212 DRACHMAN DB, 1994, HARRISONS PRINCIPLES, P2393 ELGOYHEN AB, 1994, CELL, V79, P705, DOI 10.1016/0092-8674(94)90555-X GUINAN JJ, 1983, J COMP NEUROL, V221, P358, DOI 10.1002/cne.902210310 Guinan Jr J.J., 1996, COCHLEA, P435 Guth PS, 1996, HEARING RES, V98, P1, DOI 10.1016/0378-5955(96)00031-7 Kakigi A, 1997, HEARING RES, V110, P34, DOI 10.1016/S0378-5955(97)00062-2 MAURER J, 1995, OTOLARYNG HEAD NECK, V112, P369, DOI 10.1016/S0194-5998(95)70269-5 MORGENSTERN C, 1995, ACTA OTO-LARYNGOL, V115, P206, DOI 10.3109/00016489509139293 Paludetti G, 2001, ACTA OTO-LARYNGOL, V121, P119 PLINKERT PK, 1994, HNO, V42, P738 Quaranta A, 2000, ACTA OTO-LARYNGOL, V120, P227, DOI 10.1080/000164800750000982 Rosignoli M, 1979, Rev Otoneuroophtalmol, V51, P431 SZIKLAI I, 1993, ACTA OTO-LARYNGOL, V113, P326, DOI 10.3109/00016489309135818 Sziklai I, 1996, HEARING RES, V95, P87, DOI 10.1016/0378-5955(96)00026-3 Toth L, 1998, HEARING RES, V126, P123, DOI 10.1016/S0378-5955(98)00154-3 Williams DM, 1997, HEARING RES, V104, P127, DOI 10.1016/S0378-5955(96)00189-X WILLIAMS EA, 1994, ACTA OTO-LARYNGOL, V114, P121, DOI 10.3109/00016489409126029 NR 24 TC 9 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2001 VL 162 IS 1-2 BP 80 EP 84 DI 10.1016/S0378-5955(01)00370-7 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 494PA UT WOS:000172290000009 PM 11707354 ER PT J AU Nakashima, T Suzuki, T Iwagaki, T Hibi, T AF Nakashima, T Suzuki, T Iwagaki, T Hibi, T TI Effects of anterior inferior cerebellar artery occlusion on cochlear blood flow - a comparison between laser-Doppler and microsphere methods SO HEARING RESEARCH LA English DT Article DE cochlear blood flow; laser-Doppler flowmetry; microsphere; anterior inferior cerebellar artery; bone blood flow ID GUINEA-PIG COCHLEA; FLOWMETRY; ISCHEMIA; MODEL; ELECTROCOCHLEOGRAPHY; RAT AB The effects of anterior inferior cerebellar artery (AICA) occlusion on blood flow were investigated in rats using the laser-Doppler and microsphere methods. A specially designed microclamp was held in a micromanipulator and positioned to occlude the left AICA. After the middle ear mucosa had been removed, a 1.0-mm laser-Doppler probe was placed on the basal turn of the left cochlea. Non-radioactive microspheres were injected intracardially during the AICA occlusion and the numbers of microspheres. in various parts of the cochlea were counted, including in the bone surrounding the cochlea. Upon AICA clamping, the blood flow measured by laser-Doppler flowmetry decreased to 46.9 +/- 11.9% of the baseline value, and the number of microspheres trapped in the cochlea was 17.2 +/- 13.3% compared with the contralateral side in 15 animals. The number of microspheres in the bone surrounding the cochlea in the AICA-clamped side was 81 +/- 15% of that of the contralateral side. In animals in which there were few if any microspheres. in the cochlea, laser-Doppler output was 30-40% of the baseline value. From these findings, we infer that during complete interruption of cochlear blood flow in rats, residual laser-Doppler output was essentially attributable to blood flow in the bone surrounding the cochlea. (C) 2001 Elsevier Science B.V. All rights reserved. C1 Nagoya Univ, Sch Med, Dept Otorhinolaryngol, Showa Ku, Nagoya, Aichi 4668550, Japan. RP Nakashima, T (reprint author), Nagoya Univ, Sch Med, Dept Otorhinolaryngol, Showa Ku, 65 Tsurumai Cho, Nagoya, Aichi 4668550, Japan. RI Nakashima, Tsutomu/B-8259-2012 OI Nakashima, Tsutomu/0000-0003-3930-9120 CR AFZELIUS LE, 1979, ACTA OTO-LARYNGOL, V88, P183, DOI 10.3109/00016487909137158 Fabricius M, 1997, J CEREBR BLOOD F MET, V17, P1326 ITO H, 1991, ORL J OTO-RHINO-LARY, V53, P265 Jiang X, 1993, Nihon Jibiinkoka Gakkai Kaiho, V96, P1926 JOHANSSON K, 1991, INT J MICROCIRC, V10, P219 Laurikainen E, 1997, EUR ARCH OTO-RHINO-L, V254, P264, DOI 10.1007/BF02905984 LAUSTEN GS, 1993, J ORTHOPAED RES, V11, P573, DOI 10.1002/jor.1100110412 LEVINE RA, 1993, ANN OTO RHINOL LARYN, V102, P127 Makino Kouji, 1994, Auris Nasus Larynx, V21, P75 MCGRORY BJ, 1994, CLIN ORTHOP RELAT R, P264 Mom T, 1999, HEARING RES, V133, P40, DOI 10.1016/S0378-5955(99)00056-8 NAKASHIMA T, 1992, LARYNGOSCOPE, V102, P1308, DOI 10.1288/00005537-199211000-00020 NAKASHIMA T, 1991, ANN OTO RHINOL LARYN, V100, P394 Nario K, 1997, Acta Otolaryngol Suppl, V528, P63 NUTTALL AL, 1988, HEARING RES, V34, P215, DOI 10.1016/0378-5955(88)90001-9 Ogawa K, 1996, ACTA OTO-LARYNGOL, V116, P253, DOI 10.3109/00016489609137835 OHLSEN A, 1994, ACTA OTO-LARYNGOL, V114, P4, DOI 10.3109/00016489409126009 RANDOLF HB, 1990, EUR ARCH OTO-RHINO-L, V247, P226 REN TY, 1993, HEARING RES, V71, P91, DOI 10.1016/0378-5955(93)90024-U Ren TY, 1995, HEARING RES, V92, P30, DOI 10.1016/0378-5955(95)00192-1 RODGERS GK, 1986, ARCH OTOLARYNGOL, V112, P180 SCHEIBE F, 1990, EUR ARCH OTO-RHINO-L, V247, P20 SEIDMAN MD, 1992, EUR ARCH OTO-RHINO-L, V249, P332 SHORT SO, 1985, OTOLARYNG HEAD NECK, V93, P786 Suzuki T, 1998, ANN OTO RHINOL LARYN, V107, P648 Tyagi Isha, 1995, Auris Nasus Larynx, V22, P93 Yamamoto J, 1997, Nihon Jibiinkoka Gakkai Kaiho, V100, P36 NR 27 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2001 VL 162 IS 1-2 BP 85 EP 90 DI 10.1016/S0378-5955(01)00372-0 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 494PA UT WOS:000172290000010 PM 11707355 ER PT J AU Keiler, S Richter, CP AF Keiler, S Richter, CP TI Cochlear dimensions obtained in hemicochleae of four different strains of mice: CBA/CaJ, 129/CD1, 129/SvEv and C57BL/6J SO HEARING RESEARCH LA English DT Article DE hemicochlea; mouse; hearing; anatomy ID HEARING-LOSS; TECTORIAL MEMBRANE; ISOSMOTIC SOLUTIONS; CA2+ CONCENTRATION; OSMOTIC RESPONSE; MOUSE COCHLEA; GENETICS; NA+; K+ AB Because homologies between mice and human genomes. are well established and hereditary abnormalities are similar in both, mice present a valuable animal model to study hereditary hearing disorders in humans. One of the manifestations of hereditary hearing disorders might be in the structure of cochlear elements, such as the gross morphology of the cochlea. Cochlear dimensions, however, are one factor that determines inner ear mechanics and thus hearing function. Therefore, gross cochlear dimension might be important when different strains of mice are compared regarding their hearing. Although several studies have examined mouse inner ear structures on a sub-cellular level, only few have studied cochlear gross morphology. Moreover, the sparse data available were acquired from fixed and dehydrated tissue. Dehydration, however, prod-aces severe distortion of gel-like cochlear structures such as the tectorial membrane and the basilar membrane hyaline matrix. In this study, the hemicochlea technique, which allows fresh mouse cochlear material to be viewed from a radial perspective, was used to provide an itemized study of the dimensions of gross cochlear structures in four mouse strains (CBA/CaJ, 129/SvEv, 129/CDI and C57BL/6J). Except for the CBA/CaJ, these strains are known to possess genes for age-related hearing loss. The measurements showed no major differences among the four strains. However, when compared with previous data, the thickness measures of the basilar membrane were up to 10 times larger. Such differences are likely to result from the different techniques used to process the material. The hemicochlea technique eliminates much of the distortion caused by dehydration, which was present in previous experiments. (C) 2001 Elsevier Science B.V. All rights reserved. C1 Northwestern Univ, Dept Neurobiol & Physiol, Auditory Physiol Lab, Hugh Knowles Ctr, Evanston, IL 60208 USA. Northwestern Univ, Dept Commun Sci & Disorders, Auditory Physiol Lab, Hugh Knowles Ctr,Inst Neurosci, Evanston, IL 60208 USA. RP Richter, CP (reprint author), Northwestern Univ, Dept Neurobiol & Physiol, Auditory Physiol Lab, Hugh Knowles Ctr, Frances Searle Bldg,2299 N Campus Dr, Evanston, IL 60208 USA. RI Richter, Claus-Peter/B-4641-2012 CR BURDA H, 1988, HEARING RES, V36, P97106 BURDA H, 1988, J MORPHOL, V198, P269, DOI 10.1002/jmor.1051980303 Cheatham MA, 2001, AUDIOL NEURO-OTOL, V6, P79, DOI 10.1159/000046813 Edge RM, 1998, HEARING RES, V124, P1, DOI 10.1016/S0378-5955(98)00090-2 EHRET G, 1977, J COMP PHYSIOL, V122, P65 EHRET G, 1978, J ACOUST SOC AM, V64, P1723, DOI 10.1121/1.382153 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H FREEMAN DM, 1994, HEARING RES, V79, P197, DOI 10.1016/0378-5955(94)90141-4 HU X, 1995, ASS RES OT ABSTR, V18, P223 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X KRAUS HJ, 1981, HEARING RES, V4, P89, DOI 10.1016/0378-5955(81)90038-1 KRONESTERFREI A, 1979, HEARING RES, V1, P81, DOI 10.1016/0378-5955(79)90019-4 MIZUTA K, 1993, SCANNING MICROSCOPY, V7, P889 Ou HC, 2000, HEARING RES, V145, P123, DOI 10.1016/S0378-5955(00)00082-4 Richter CP, 2000, JARO, V1, P195, DOI 10.1007/s101620010019 Richter CP, 1998, J NEUROPHYSIOL, V79, P2255 SHAH DM, 1995, HEARING RES, V87, P187, DOI 10.1016/0378-5955(95)00089-M Steel KP, 1996, CURR OPIN NEUROBIOL, V6, P520, DOI 10.1016/S0959-4388(96)80059-6 WILLOTT JF, 1995, HEARING RES, V88, P143, DOI 10.1016/0378-5955(95)00107-F Yoshida N, 2000, HEARING RES, V141, P97, DOI 10.1016/S0378-5955(99)00210-5 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 21 TC 19 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2001 VL 162 IS 1-2 BP 91 EP 104 DI 10.1016/S0378-5955(01)00374-4 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 494PA UT WOS:000172290000011 PM 11707356 ER PT J AU Ghiz, AF Salt, AN DeMott, JE Henson, MM Henson, OW Gewalt, SL AF Ghiz, AF Salt, AN DeMott, JE Henson, MM Henson, OW Gewalt, SL TI Quantitative anatomy of the round window and cochlear aqueduct in guinea pigs SO HEARING RESEARCH LA English DT Article DE cochlea; perilymph; round window; scala tympani; cochlear aqueduct ID MAGNETIC-RESONANCE MICROSCOPY; INNER-EAR; RECONSTRUCTIONS; GENTAMICIN; IMAGES; SPACE; ACID AB In order to analyze the entry of solutes through the round window membrane, a quantitative description of round window anatomy in relationship to scala tympani is required. High-resolution magnetic resonance microscopy was used to visualize the fluid spaces and tissues of the inner ear in three dimensions in isolated, fixed specimens from guinea pigs. Each specimen was represented as consecutive serial slices, with a voxel size of approximately 25 mum(3). The round window membrane, and its relationship to the terminal portion of scala tympani in the basal turn, was quantified in six specimens. In each image slice, the round window membrane and scala tympani were identified and segmented. The total surface area of the round window membrane averaged 1.18 mm(2) (S.D. 0.08, n=6). The length and variation of cross-sectional area as a function of distance for the cochlear aqueduct was determined in five specimens. The cochlear aqueduct was shown to enter scala tympani at the medial limit of the round window membrane, which corresponded to a distance of approximately 1 mm. from the end of the scala when measured along its mid-point. These data are of value in simulating drug and other solute movements in the cochlear fluids and have been incorporated into a public-domain simulation program available at http://oto.wustl.edu/cochlea/. (C) 2001 Elsevier Science B.V. All rights reserved. C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. Univ N Carolina, Sch Med, Div Otolaryngol Head & Neck Surg, Chapel Hill, NC 27599 USA. Univ N Carolina, Dept Cell Biol & Anat, Chapel Hill, NC 27599 USA. Duke Univ, Med Ctr, Dept Radiol, Ctr Vivo Microscopy, Durham, NC 27710 USA. RP Salt, AN (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, POB 8115,517 S Euclid Ave, St Louis, MO 63110 USA. CR BANSON ML, 1992, INVEST RADIOL, V27, P157, DOI 10.1097/00004424-199202000-00013 Blakley BW, 1997, AM J OTOL, V18, P520 BRUMMETT RE, 1976, LARYNGOSCOPE, V86, P1177, DOI 10.1288/00005537-197608000-00009 COMMINS D, 1996, CURR OPIN OTOLARYNGO, V4, P319 Conlon BJ, 1998, LARYNGOSCOPE, V108, P1087, DOI 10.1097/00005537-199807000-00024 Fernandez C., 1952, J ACOUST SOC AM, V24, P521 Gopen Q, 1997, HEARING RES, V107, P9, DOI 10.1016/S0378-5955(97)00017-8 HENSON MM, 1994, HEARING RES, V75, P75, DOI 10.1016/0378-5955(94)90058-2 Hoffer ME, 1999, OTOLARYNG HEAD NECK, V120, P643, DOI 10.1053/hn.1999.v120.a91762 Lehner R, 1997, Ear Nose Throat J, V76, P567 Parnes LS, 1999, LARYNGOSCOPE, V109, P1, DOI 10.1097/00005537-199907001-00001 Salt AN, 2001, HEARING RES, V154, P88, DOI 10.1016/S0378-5955(01)00223-4 SALT AN, 1995, HEARING RES, V88, P79, DOI 10.1016/0378-5955(95)00103-B Shinomori Y, 2001, ANN OTO RHINOL LARYN, V110, P91 Silverstein H, 1999, Ear Nose Throat J, V78, P595 Thorne M, 1999, LARYNGOSCOPE, V109, P1661, DOI 10.1097/00005537-199910000-00021 Wilson JL, 1996, AM J OTOL, V17, P347 Zheng XY, 1997, HEARING RES, V105, P65, DOI 10.1016/S0378-5955(96)00188-8 NR 18 TC 28 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2001 VL 162 IS 1-2 BP 105 EP 112 DI 10.1016/S0378-5955(01)00375-6 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 494PA UT WOS:000172290000012 PM 11707357 ER PT J AU He, DZZ Zheng, J Dallos, P AF He, DZZ Zheng, J Dallos, P TI Development of acetylcholine receptors in cultured outer hair cells SO HEARING RESEARCH LA English DT Article DE outer hair cell; development; cochlea; gerbil; efferent innervation; alpha 9 acetylcholine receptor; neural regulation; voltage-clamp; PCR; potassium channel; tissue culture ID GUINEA-PIG COCHLEA; RAT COCHLEA; EFFERENT INNERVATION; CHOLINERGIC INHIBITION; POSTNATAL-DEVELOPMENT; POTASSIUM CHANNELS; MAMMALIAN COCHLEA; EXPRESSION; ALPHA-9; ELECTROMOTILITY AB Efferents, originating in the superior olivary complex, preferentially synapse with cochlear outer hair cells (OHCs), with acetylcholine (ACh) as their primary neurotransmitter. The OHC ACh receptors (AChRs), which have unusual pharmacology, have been cloned and identified as a new subunit (alpha9) of the nicotinic AChR family. The expression of alpha9 AChRs is first detected before birth and peaks between 6 and 10 days after birth (DAB) in developing mice and rats, while functional maturation of the receptor, as determined by measuring the ACh-induced currents, takes place between 6 and 12 DAB. In this study we attempted to examine the development of AChRs in OHCs grown in explanted cultures, deprived of efferent innervation. ACh-induced currents were used as an assay. Reverse transcription-PCR analysis was also performed to detect the expression of alpha9 subunit from cultured OHCs. PCR study indicates that mRNA of the alpha9 subunit was expressed in primary cochlear cultures, similar to that seen in the cochleae of developing animals. Measurement of whole-cell currents showed that ACh-induced outward current was first detected around 5 days in a fraction of cultured OHCs. The number of responsive cells increased between 5 and 12 days in culture. The size of ACh-induced currents also increased during this period. These results suggest that the development of AChRs in cultured OHCs is not affected by removal of efferent innervation. (C) 2001 Elsevier Science B.V. All rights reserved. C1 Boys Town Natl Res Hosp, Hair Cell Biophys Lab, Omaha, NE 68131 USA. Northwestern Univ, Auditory Physiol Lab, Hugh Knowles Ctr, Dept Neurobiol, Evanston, IL USA. Northwestern Univ, Auditory Physiol Lab, Hugh Knowles Ctr, Dept Physiol, Evanston, IL USA. Northwestern Univ, Auditory Physiol Lab, Hugh Knowles Ctr, Dept Commun Sci & Disorders, Evanston, IL USA. Northwestern Univ, Auditory Physiol Lab, Hugh Knowles Ctr, Inst Neurosci, Evanston, IL USA. RP He, DZZ (reprint author), Boys Town Natl Res Hosp, Hair Cell Biophys Lab, 555 N 30th St, Omaha, NE 68131 USA. CR ALTSCHULER RA, 1982, BRAIN RES, V338, P1 ANDERSON MJ, 1977, J PHYSIOL-LONDON, V268, P757 ART JJ, 1984, J PHYSIOL-LONDON, V356, P525 ART JJ, 1982, PROC R SOC SER B-BIO, V216, P377, DOI 10.1098/rspb.1982.0081 ASHMORE JF, 1986, NATURE, V322, P368, DOI 10.1038/322368a0 Blanchet C, 1996, J NEUROSCI, V16, P2574 BOBBIN RP, 1996, HAIR CELLS HEARING A, P29 Bruce LL, 2000, J COMP NEUROL, V423, P532, DOI 10.1002/1096-9861(20000731)423:3<532::AID-CNE14>3.0.CO;2-T COLE KS, 1992, BRAIN RES, V575, P223 Dallos P, 1997, J NEUROSCI, V17, P2212 DING JP, 1991, HEARING RES, V56, P19, DOI 10.1016/0378-5955(91)90149-4 Dulon D, 1998, EUR J NEUROSCI, V10, P907, DOI 10.1046/j.1460-9568.1998.00098.x Dulon D, 1996, EUR J NEUROSCI, V8, P1945, DOI 10.1111/j.1460-9568.1996.tb01338.x ECHTELER SM, 1992, P NATL ACAD SCI USA, V89, P6324, DOI 10.1073/pnas.89.14.6324 Edge RM, 1998, HEARING RES, V124, P1, DOI 10.1016/S0378-5955(98)00090-2 ELGOYHEN AB, 1994, CELL, V79, P705, DOI 10.1016/0092-8674(94)90555-X Elgoyhen AB, 2001, P NATL ACAD SCI USA, V98, P3501, DOI 10.1073/pnas.051622798 EROSTEGUI C, 1994, HEARING RES, V74, P135, DOI 10.1016/0378-5955(94)90182-1 Evans MG, 1996, J PHYSIOL-LONDON, V491, P563 EYBALIN M, 1993, PHYSIOL REV, V73, P309 FEX J, 1978, BRAIN RES, V159, P440, DOI 10.1016/0006-8993(78)90555-3 FRITZSCH B, 1993, HEARING RES, V65, P51, DOI 10.1016/0378-5955(93)90200-K FUCHS PA, 1992, P ROY SOC B-BIOL SCI, V248, P35, DOI 10.1098/rspb.1992.0039 FUCHS PA, 1992, J NEUROSCI, V12, P800 Glowatzki E, 2000, SCIENCE, V288, P2366, DOI 10.1126/science.288.5475.2366 Guinan Jr J.J., 1996, COCHLEA, P435 Guth PS, 1996, HEARING RES, V98, P1, DOI 10.1016/0378-5955(96)00031-7 HE DZZ, 1994, HEARING RES, V78, P77, DOI 10.1016/0378-5955(94)90046-9 He DZZ, 1997, J NEUROSCI, V17, P3634 He DZZ, 1997, DEV BRAIN RES, V103, P95, DOI 10.1016/S0165-3806(97)00120-X HE DZZ, 2001, UNPUB J NEUROPHYSIOL He DZZ, 1999, J NEUROPHYSIOL, V81, P1162 HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73 HOUSLEY GD, 1991, P ROY SOC B-BIOL SCI, V244, P161, DOI 10.1098/rspb.1991.0065 HU X, 1995, ORGAN CORTI MICROMEC Hu XT, 1999, J NEUROPHYSIOL, V82, P2798 IWASA KH, 1991, NEUROSCI LETT, V133, P171, DOI 10.1016/0304-3940(91)90562-8 Jacobson M, 1991, DEV NEUROBIOL, P359 JASSER A, 1974, J NEUROCHEM, V20, P45 LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309 Luo L, 1998, J COMP NEUROL, V393, P320 McNiven AI, 1996, AUDIT NEUROSCI, V2, P63 Morley BJ, 1998, MOL BRAIN RES, V53, P78, DOI 10.1016/S0169-328X(97)00272-6 Nenov AP, 1996, HEARING RES, V101, P149, DOI 10.1016/S0378-5955(96)00143-8 Park HJ, 1997, HEARING RES, V112, P95, DOI 10.1016/S0378-5955(97)00111-1 PLINKERT PK, 1991, HEARING RES, V53, P123, DOI 10.1016/0378-5955(91)90219-Y PLINKERT PK, 1990, HEARING RES, V44, P25, DOI 10.1016/0378-5955(90)90019-L RONTAL DA, 1999, POSTNATAL REMODELING Rusch A, 1998, J NEUROSCI, V18, P7487 SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X Santos-Sacchi J, 1997, BIOPHYS J, V73, P1424 SCHUHKNECHT HF, 1956, LARYNCOSCOPE, V66, P1 SCHUKNECHT HF, 1959, ARCHIV OTOLARYNGOL, V69, P549 Sewell W. F., 1996, COCHLEA, P503 Simmons DD, 1998, MOL BRAIN RES, V56, P287, DOI 10.1016/S0169-328X(98)00056-4 SIMMONS DD, 1990, HEARING RES, V49, P127, DOI 10.1016/0378-5955(90)90100-4 Sobkowicz H M, 1993, Acta Otolaryngol Suppl, V502, P3 SOBKOWICZ HM, 1989, J NEUROCYTOL, V18, P209, DOI 10.1007/BF01206663 SOBKOWICZ HM, 1984, ULTRASTRUCTURAL ATLA, P61 SOUTER M, 1997, J COMP NEUROL, V386, P633 SPOENDLI.H, 1972, ACTA OTO-LARYNGOL, V73, P235, DOI 10.3109/00016487209138937 Spoendlin H, 1986, Scand Audiol Suppl, V25, P27 VANDEWAT.TR, 1971, ACTA OTO-LARYNGOL, V71, P303, DOI 10.3109/00016487109125368 VANDEWATER TR, 1973, ANN OTOL RHINOL L S4, V82, P19 Walsh EJ, 1998, J NEUROSCI, V18, P3859 Warr W. B., 1986, NEUROBIOLOGY HEARING, P333 Zuo J, 1999, P NATL ACAD SCI USA, V96, P14100, DOI 10.1073/pnas.96.24.14100 NR 67 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2001 VL 162 IS 1-2 BP 113 EP 125 DI 10.1016/S0378-5955(01)00376-8 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 494PA UT WOS:000172290000013 PM 11707358 ER PT J AU Coro, F Kossl, M AF Coro, F Kossl, M TI Components of the 2f(1)-f(2) distortion-product otoacoustic emission in a moth SO HEARING RESEARCH LA English DT Article DE insect hearing; tympanal organ; otoacoustic emission; cochlear amplifier; Empyreuma affinis ID CELL MECHANOELECTRICAL TRANSDUCER; ACOUSTIC DISTORTION; COCHLEAR AMPLIFIER; TYMPANIC ORGAN; MUTANT MICE; 2F1-F2; F2-F1; EARS AB The noctuoid moth Empyreuma affinis has a simple tympanal organ with only two receptor cells attached to the eardrum. As in vertebrates, the growth of distortion-pro duct otoacoustic emissions (DPOAE) with increasing stimulus level is characterized by two distinct components. An initial increase of DPOAE level for f(2) levels in the range of 30-65 dB SPL is followed by a second steep growth of the DPOAE at f(2) levels above 65 dB SPL. Both components increase at a slope of about 2 dB/dB and the difference between both components was used to assess a mechanical gain of the tympanal organ of 17 dB (n = 23), At around 65 dB SPL, a notch in the level function coincides with an abrupt phase change of up to 180 degrees. The sensitive component induced by f(2) levels below 65 dB SPL is selectively affected by application of ethyl ether and disappears more quickly than the high-level component during ongoing deterioration of the moth preparation. (C) 2001 Elsevier Science B.V. All rights reserved. C1 Univ Frankfurt, Inst Zool, D-60323 Frankfurt, Germany. Univ La Habana, Dept Biol Anim & Humana, Fac Biol, Havana 10400, Cuba. RP Kossl, M (reprint author), Univ Frankfurt, Inst Zool, Siesmayerstr 70, D-60323 Frankfurt, Germany. CR BELLEN HJ, 1992, GENETICS, V131, P365 BROWN AM, 1989, HEARING RES, V42, P143, DOI 10.1016/0378-5955(89)90140-8 BROWN AM, 1987, HEARING RES, V31, P25, DOI 10.1016/0378-5955(87)90211-5 CORO F, 1984, J COMP PHYSIOL, V154, P287, DOI 10.1007/BF00604995 CORO F, 1983, NATURWISSENSCHAFTEN, V70, P99, DOI 10.1007/BF00365515 Coro F, 1998, J COMP PHYSIOL A, V183, P525, DOI 10.1007/s003590050278 CORO F, 1987, CIENC BIOL, V17, P31 Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4 Frolenkov GI, 1998, HEARING RES, V126, P67, DOI 10.1016/S0378-5955(98)00150-6 Gopfert MC, 2001, P ROY SOC B-BIOL SCI, V268, P333, DOI 10.1098/rspb.2000.1376 HORNER KC, 1985, J ACOUST SOC AM, V78, P1603, DOI 10.1121/1.392798 KIRIAKOFF SG, 1948, ANN SOC ENTOMOL BELG, V84, P231 Knight RD, 2000, J ACOUST SOC AM, V107, P457, DOI 10.1121/1.428351 Koppl C, 1995, ADV HEARING RES, P207 Kossl M, 1998, J ACOUST SOC AM, V104, P326, DOI 10.1121/1.423258 Kossl M, 1999, J COMP PHYSIOL A, V185, P217, DOI 10.1007/s003590050381 LONSBURYMARTIN BL, 1990, ANN OTO RHINOL LARYN, V99, P3 Lukashkin AN, 1999, J ACOUST SOC AM, V106, P2661, DOI 10.1121/1.428096 Lukashkin AN, 1998, J ACOUST SOC AM, V103, P973, DOI 10.1121/1.421214 MANLEY GA, 1995, ADV HEARING RES, P219 MANLEY GA, 1993, J ACOUST SOC AM, V93, P2820, DOI 10.1121/1.405803 MILLS DM, 1993, J ACOUST SOC AM, V94, P2108, DOI 10.1121/1.407483 Mills DM, 1997, J ACOUST SOC AM, V102, P413, DOI 10.1121/1.419763 MILLS DM, 1994, AUDIT NEUROSCI, V1, P77 Mills DM, 1996, J ACOUST SOC AM, V100, P428, DOI 10.1121/1.415857 NEELY ST, 1997, DIVERSITY AUDITORY M, P434 PARK JY, 1995, HEARING RES, V86, P147, DOI 10.1016/0378-5955(95)00065-C PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 REBILLARD G, 1992, HEARING RES, V62, P142, DOI 10.1016/0378-5955(92)90179-Q ROEDER KD, 1964, J INSECT PHYSIOL, V10, P529, DOI 10.1016/0022-1910(64)90025-3 ROEDER KD, 1957, J EXP ZOOL, V134, P127, DOI 10.1002/jez.1401340107 SCHROTT A, 1991, HEARING RES, V52, P245, DOI 10.1016/0378-5955(91)90204-M SUGA N, 1961, JPN J PHYSIOL, V11, P666 White S. D., 1992, Waltham International Focus, V2, P2 Whitehead M. L., 1996, CLIN ASPECTS HEARING, P199 NR 35 TC 14 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2001 VL 162 IS 1-2 BP 126 EP 133 DI 10.1016/S0378-5955(01)00381-1 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 494PA UT WOS:000172290000014 PM 11707359 ER PT J AU Barnes-Davies, M Owens, S Forsythe, ID AF Barnes-Davies, M Owens, S Forsythe, ID TI Calcium channels triggering transmitter release in the rat medial superior olive SO HEARING RESEARCH LA English DT Article DE medial superior olive; medial nucleus of the trapezoid body; anterior ventral cochlear nucleus; voltage-gated calcium current; glutamate; glycine ID ANTEROVENTRAL COCHLEAR NUCLEUS; CENTRAL SYNAPTIC TRANSMISSION; AUDITORY BRAIN-STEM; DEVELOPMENTAL-CHANGES; TRAPEZOID BODY; DELAY-LINES; NEURONS; PROJECTIONS; TERMINALS; PROTEINS AB We used whole cell voltage clamp recordings from neurones in rat auditory brainstem slices to study the Ca2+ channel types involved in triggering synaptic glutamate and glycine release in the medial superior olivary nucleus. Glutamate release from the anterior ventral cochlear (aVCN) bushy neurone synapse did not involve L-type Ca2+ channels (alpha (1C-D); Ca(V)1.2-1.3), but was mediated with similar efficacies by both N-type (alpha (1B); Ca(V)2.2) and the P/Q-type Ca2+ channels (alpha (1A); Ca(V)2.1). Glycine release from the medial nucleus of the trapezoid body (MNTB) synapse was mediated predominantly by P/Q-type Ca2+ channels, but with a significant contribution from N-type Ca2+ Channels. Combined application of the P/Q- and N-type Ca2+ channel toxins, omega -agatoxin IVA and omega -conotoxin GVIA, left a very small remnant of both the inhibitory and excitatory postsynaptic currents, probably reflecting a minimal contribution of R-type Ca2+ channels (alpha (1E); Ca(V)2.3) to transmitter release, In contrast with aVCN bushy neurones, MNTB somata lacked both T-(alpha (1G-I); Ca(V)3.1-3.3) and L-type channels, but expressed a higher proportion of P/Q-type Ca2+ channels. (C) 2001 Elsevier Science B.V. All rights reserved. C1 Univ Leicester, Dept Cell Physiol & Pharmacol, Ion Channel Grp, Leicester LE1 9HN, Leics, England. RP Barnes-Davies, M (reprint author), Univ Leicester, Dept Cell Physiol & Pharmacol, Ion Channel Grp, POB 138, Leicester LE1 9HN, Leics, England. CR BANKS MI, 1992, J NEUROSCI, V12, P2819 BARNESDAVIES M, 1995, J PHYSIOL-LONDON, V488, P387 Beckius GE, 1999, J NEUROSCI, V19, P3146 Bito H, 1997, CURR OPIN NEUROBIOL, V7, P419, DOI 10.1016/S0959-4388(97)80072-4 Bollmann JH, 1998, J NEUROSCI, V18, P10409 Borst JGG, 1996, NATURE, V383, P431, DOI 10.1038/383431a0 Brew HM, 1995, J NEUROSCI, V15, P8011 CANT NB, 1986, J COMP NEUROL, V247, P457, DOI 10.1002/cne.902470406 DOLPHIN AC, 1995, EXP PHYSIOL, V80, P1 Doughty JM, 1998, J PHYSIOL-LONDON, V512, P365, DOI 10.1111/j.1469-7793.1998.365be.x Ertel EA, 2000, NEURON, V25, P533, DOI 10.1016/S0896-6273(00)81057-0 Forsythe ID, 1998, NEURON, V20, P797, DOI 10.1016/S0896-6273(00)81017-X GEIGER JRP, 1995, NEURON, V15, P193, DOI 10.1016/0896-6273(95)90076-4 GHOSH A, 1995, SCIENCE, V268, P239, DOI 10.1126/science.7716515 Graef IA, 1999, NATURE, V401, P703, DOI 10.1038/44378 GROTHE B, 1994, J NEUROSCI, V14, P1701 Huguenard JR, 1996, ANNU REV PHYSIOL, V58, P329, DOI 10.1146/annurev.physiol.58.1.329 Iwasaki S, 1998, J PHYSIOL-LONDON, V509, P419, DOI 10.1111/j.1469-7793.1998.419bn.x Iwasaki S, 2000, J NEUROSCI, V20, P59 JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495 Joris PX, 1998, NEURON, V21, P1235, DOI 10.1016/S0896-6273(00)80643-1 KUWABARA N, 1992, J COMP NEUROL, V324, P522, DOI 10.1002/cne.903240406 Maximov A, 1999, J BIOL CHEM, V274, P24453, DOI 10.1074/jbc.274.35.24453 Qian J, 2001, J NEUROSCI, V21, P3721 RANDALL A, 1995, J NEUROSCI, V15, P2995 Reid CA, 1997, J NEUROSCI, V17, P2738 Reuter H, 1996, CURR OPIN NEUROBIOL, V6, P331, DOI 10.1016/S0959-4388(96)80116-4 Schneggenburger R, 1999, NEURON, V23, P399, DOI 10.1016/S0896-6273(00)80789-8 Seagar M, 1999, PHILOS T ROY SOC B, V354, P289, DOI 10.1098/rstb.1999.0380 Smith AJ, 2000, J PHYSIOL-LONDON, V529, P681, DOI 10.1111/j.1469-7793.2000.00681.x SMITH PH, 1993, J COMP NEUROL, V331, P245, DOI 10.1002/cne.903310208 Stephens GJ, 2001, EUR J NEUROSCI, V13, P1902, DOI 10.1046/j.0953-816x.2001.01566.x Sutton KG, 1999, NATURE, V401, P800 TAKAHASHI T, 1993, NATURE, V366, P156, DOI 10.1038/366156a0 Takahashi T, 1996, SCIENCE, V274, P594, DOI 10.1126/science.274.5287.594 Westenbroek RE, 1998, J NEUROSCI, V18, P6319 WESTENBROEK RE, 1995, J NEUROSCI, V15, P6403 WHEELER DB, 1994, SCIENCE, V264, P107, DOI 10.1126/science.7832825 Wu LG, 1999, J NEUROSCI, V19, P726 NR 39 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2001 VL 162 IS 1-2 BP 134 EP 145 DI 10.1016/S0378-5955(01)00378-1 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 494PA UT WOS:000172290000015 PM 11707360 ER EF