FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Hribar, M Suput, D Carvalho, AA Battelino, S Vovk, A AF Hribar, Manja Suput, Dusan Carvalho, Altiere Araujo Battelino, Saba Vovk, Andrej TI Structural alterations of brain grey and white matter in early deaf adults SO HEARING RESEARCH LA English DT Article ID SENSORINEURAL HEARING-LOSS; PRIMARY AUDITORY-CORTEX; CORTICAL THICKNESS ANALYSIS; MAGNETIC-RESONANCE IMAGES; SIGN-LANGUAGE PRODUCTION; VOXEL-BASED MORPHOMETRY; FUNCTIONAL CONNECTIVITY; DIFFUSION ANISOTROPY; PRELINGUAL DEAFNESS; SPATIAL STATISTICS AB Functional and structural brain alterations in the absence of the auditory input have been described, but the observed structural brain changes in the deaf are not uniform. Some of the previous researchers focused only on the auditory areas, while others investigated the whole brain or other selected regions of interest. Majority of studies revealed decreased white matter (WM) volume or altered WM microstructure and preserved grey matter (GM) structure of the auditory areas in the deaf. However, preserved WM and increased or decreased GM volume of the auditory areas in the deaf have also been reported. Several structural alterations in the deaf were found also outside the auditory areas, but these regions differ between the studies. The observed differences between the studies could be due to the use of different single-analysis techniques, or the diverse population sample and its size, or possibly due to the usage of hearing aids by some participating deaf subjects. To overcome the aforementioned limitations four different image-processing techniques were used to investigate changes in the brain morphology of prelingually deaf adults who have never used hearing aids. GM and WM volume of the Heschl's gyrus (HG) were measured using manual volumetry, while whole brain GM volume, thickness and surface area were assessed by voxel-based morphometry (VBM) and surface-based analysis. The microstructural properties of the WM were evaluated by diffusion tensor imaging (DTI). The data were compared between 14 congenitally deaf adults and 14 sex- and age-matched normal hearing controls. Manual volumetry revealed preserved GM volume of the bilateral HG and significantly decreased WM volume of the left HG in the deaf. VBM showed increased cerebellar GM volume in the deaf, while no statistically significant differences were observed in the GM thickness or surface area between the groups. The results of the DTI analysis showed WM microstructural alterations between the groups in the bilateral auditory areas, including the superior temporal gyrus, the HG, the planum temporale and the planum polare, which were more extensive in the right hemisphere. Fractional anisotropy (FA) was significantly reduced in the right and axial diffusivity (AD) in the left auditory areas in the deaf. FA and AD were significantly reduced also in several other brain areas outside the auditory cortex in the deaf. The use of four different methods used in our study, although showing changes that are not directly related, provides additional information and supports the conclusion that in prelingually deaf subjects structural alterations are present both in the auditory areas and elsewhere. Our results support the findings of those studies showing that early deafness results in decreased WM volume and microstructural WM alterations in the auditory areas. As we observed WM microstructural alteration also in several other areas and increased GM volume in the cerebellum in the deaf, we can conclude that early deafness results in widespread structural brain changes. These probably reflect atrophy or degradation as well as compensatory cross-modal reorganisation in the absence of the auditory input and the use of the sign language. (C) 2014 The Authors. Published by Elsevier B.V. C1 [Hribar, Manja; Suput, Dusan; Vovk, Andrej] Univ Ljubljana, Fac Med, Ctr Clin Physiol, Ljubljana 61000, Slovenia. [Suput, Dusan] Univ Ljubljana, Fac Med, Inst Pathophysiol, Ljubljana 61000, Slovenia. [Carvalho, Altiere Araujo] FMU, Sao Paulo, Brazil. [Battelino, Saba] Univ Ljubljana, Fac Med, Dept Otorhinolaryngol, Ljubljana 61000, Slovenia. RP Vovk, A (reprint author), Univ Ljubljana, Fac Med, Ctr Clin Physiol, Vrazov Trg 2, Ljubljana 61000, Slovenia. EM andrej.vovk@mf.uni-lj.si FU research foundation of Slovenia, ARRS [P3-0019] FX This work was supported by the grant of the research foundation of Slovenia, ARRS, grant No. P3-0019. CR Alexander AL, 2007, NEUROTHERAPEUTICS, V4, P316, DOI 10.1016/j.nurt.2007.05.011 Allen JS, 2013, FRONT NEUROANAT, V7, DOI 10.3389/fnana.2013.00026 Allen JS, 2008, J NEUROSCI, V28, P11900, DOI 10.1523/JNEUROSCI.3141-08.2008 Amodio DM, 2006, NAT REV NEUROSCI, V7, P268, DOI 10.1038/nrn1884 Augustine JR, 1996, BRAIN RES REV, V22, P229, DOI 10.1016/S0165-0173(96)00011-2 Bamiou DE, 2003, BRAIN RES REV, V42, P143, DOI 10.1016/S0165-0173(03)00172-3 Barone P, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0060093 BASSER PJ, 1994, BIOPHYS J, V66, P259 Bavelier D, 2006, TRENDS COGN SCI, V10, P512, DOI 10.1016/j.tics.2006.09.006 Beer AL, 2011, EXP BRAIN RES, V213, P299, DOI 10.1007/s00221-011-2715-y Bettger J., 1997, J DEAF STUD DEAF EDU, V2, P223 Binder JR, 1997, J NEUROSCI, V17, P353 Chanraud S, 2010, NEUROPSYCHOL REV, V20, P209, DOI 10.1007/s11065-010-9129-7 Connor CM, 2006, EAR HEARING, V27, P628, DOI 10.1097/01.aud.0000240640.59205.42 Corina David P, 2012, Front Psychol, V3, P587, DOI 10.3389/fpsyg.2012.00587 Cox RW, 1996, COMPUT BIOMED RES, V29, P162, DOI 10.1006/cbmr.1996.0014 Da Costa S, 2011, J NEUROSCI, V31, P14067, DOI 10.1523/JNEUROSCI.2000-11.2011 Dale AM, 1999, NEUROIMAGE, V9, P179, DOI 10.1006/nimg.1998.0395 DAMASIO AR, 1984, ANNU REV NEUROSCI, V7, P127 De Smet HJ, 2013, BRAIN LANG, V127, P334, DOI 10.1016/j.bandl.2012.11.001 Dessau Ram Benny, 2008, Ugeskr Laeger, V170, P328 DiVirgilio G, 1997, HUM BRAIN MAPP, V5, P347, DOI 10.1002/(SICI)1097-0193(1997)5:5<347::AID-HBM3>3.0.CO;2-3 Douaud G, 2007, BRAIN, V130, P2375, DOI 10.1093/brain/awm184 Emmorey K, 2002, NEUROIMAGE, V17, P812, DOI 10.1006/nimg.2002.1187 Emmorey K, 2003, P NATL ACAD SCI USA, V100, P10049, DOI 10.1073/pnas.1730169100 Fallon JB, 2008, HEARING RES, V238, P110, DOI 10.1016/j.heares.2007.08.004 Fine I, 2005, J COGNITIVE NEUROSCI, V17, P1621, DOI 10.1162/089892905774597173 Finney EM, 2001, NAT NEUROSCI, V4, P1171, DOI 10.1038/nn763 Fischl B, 2002, NEURON, V33, P341, DOI 10.1016/S0896-6273(02)00569-X Fischl B, 2000, P NATL ACAD SCI USA, V97, P11050, DOI 10.1073/pnas.200033797 Fischl B, 2004, NEUROIMAGE, V23, pS69, DOI 10.1016/j.neuroimage.2004.07.016 Good CD, 2001, NEUROIMAGE, V14, P21, DOI 10.1006/nimg.2001.0786 Hagler DJ, 2006, NEUROIMAGE, V33, P1093, DOI 10.1016/j.neuroimage.2006.07.036 Hauthal N, 2013, ADV COGN PSYCHOL, V9, P53, DOI [10.2478/v10053-008-0131-z, 10.5709/acp-0131-z] Hoeft F, 2007, J NEUROSCI, V27, P11960, DOI 10.1523/JNEUROSCI.3591-07.2007 Hofer S, 2006, NEUROIMAGE, V32, P989, DOI 10.1016/j.neuroimage.2006.05.044 Hu ZG, 2011, BRAIN LANG, V116, P64, DOI 10.1016/j.bandl.2010.11.006 Hyde KL, 2008, NEUROPSYCHOLOGIA, V46, P632, DOI 10.1016/j.neuropsychologia.2007.09.004 Jellison BJ, 2004, AM J NEURORADIOL, V25, P356 Kanwisher N, 1997, J NEUROSCI, V17, P4302 Karns CM, 2012, J NEUROSCI, V32, P9626, DOI 10.1523/JNEUROSCI.6488-11.2012 Kassubek J, 2004, NEUROSCI LETT, V364, P168, DOI 10.1016/j.neulet.2004.04.088 Kelly J., 1991, PRINCIPLES NEURAL SC, P481 Kim DJ, 2009, NEUROREPORT, V20, P1032, DOI 10.1097/WNR.0b013e32832e0cdd Kral A, 2012, TRENDS NEUROSCI, V35, P111, DOI 10.1016/j.tins.2011.09.004 Krienen FM, 2009, CEREB CORTEX, V19, P2485, DOI 10.1093/cercor/bhp135 Le Bihan D, 2001, J MAGN RESON IMAGING, V13, P534, DOI 10.1002/jmri.1076 Leow AD, 2009, 2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, P622, DOI 10.1109/ISBI.2009.5193124 Lepore N, 2010, HUM BRAIN MAPP, V31, P970, DOI 10.1002/hbm.20910 Levanen S, 2001, NEUROSCI LETT, V301, P75, DOI 10.1016/S0304-3940(01)01597-X Levanen S, 1998, CURR BIOL, V8, P869, DOI 10.1016/S0960-9822(07)00348-X Li JH, 2012, BRAIN RES, V1430, P35, DOI 10.1016/j.brainres.2011.09.057 Li W, 2013, NEUROIMAGE, V78, P46, DOI 10.1016/j.neuroimage.2013.04.011 Li WJ, 2013, RESTOR NEUROL NEUROS, V31, P1, DOI 10.3233/RNN-2012-120269 Li YY, 2012, HUM BRAIN MAPP, V33, P349, DOI 10.1002/hbm.21215 Lin Y, 2008, J MAGN RESON IMAGING, V28, P598, DOI 10.1002/jmri.21464 Lomber SG, 2010, NAT NEUROSCI, V13, P1421, DOI 10.1038/nn.2653 MacSweeney M, 2002, NEUROPSYCHOLOGIA, V40, P801, DOI 10.1016/S0028-3932(01)00180-4 Martin W, 2012, INT J PEDIATR OTORHI, V76, P1520, DOI 10.1016/j.ijporl.2012.07.007 Miao W, 2013, AM J NEURORADIOL, V34, P1264, DOI 10.3174/ajnr.A3370 Neville HJ, 1998, P NATL ACAD SCI USA, V95, P922, DOI 10.1073/pnas.95.3.922 Nishimura H, 1999, NATURE, V397, P116, DOI 10.1038/16376 Olulade OA, 2014, J NEUROSCI, V34, P5613, DOI 10.1523/JNEUROSCI.3700-13.2014 O'Reilly JX, 2010, CEREB CORTEX, V20, P953, DOI 10.1093/cercor/bhp157 PAULESU E, 1993, NATURE, V362, P342, DOI 10.1038/362342a0 Penhune VB, 1996, CEREB CORTEX, V6, P661, DOI 10.1093/cercor/6.5.661 Penhune VB, 2003, NEUROIMAGE, V20, P1215, DOI 10.1016/S1053-8119(03)00373-2 Penicaud S., 2012, NEUROIMAGE C, V66C, P42, DOI DOI 10.1016/J.NEUR0IMAGE.2012.09.076 Philibert B, 2002, HEARING RES, V165, P142, DOI 10.1016/S0378-5955(02)00296-4 Philippi CL, 2009, J NEUROSCI, V29, P15089, DOI 10.1523/JNEUROSCI.0796-09.2009 Picard N, 1996, CEREB CORTEX, V6, P342, DOI 10.1093/cercor/6.3.342 Ponton CW, 2001, HEARING RES, V154, P32, DOI 10.1016/S0378-5955(01)00214-3 Sadato N, 2004, BMC NEUROSCI, V5, DOI 10.1186/1471-2202-5-56 Sakai KL, 2005, BRAIN, V128, P1407, DOI 10.1093/brain/awh465 Salmi J, 2010, J COGNITIVE NEUROSCI, V22, P2663, DOI 10.1162/jocn.2009.21382 San Jose-Robertson L, 2004, HUM BRAIN MAPP, V23, P156, DOI 10.1002/hbm.20054 Shibata DK, 2007, AM J NEURORADIOL, V28, P243 Shiell MM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0090498 Smith KM, 2011, CEREB CORTEX, V21, P991, DOI 10.1093/cercor/bhq164 Smith SM, 2004, NEUROIMAGE, V23, pS208, DOI 10.1016/j.neuroimage.2004.07.051 Smith SM, 2006, NEUROIMAGE, V31, P1487, DOI 10.1016/j.neuroimage.2006.02.024 Smith SM, 2009, NEUROIMAGE, V44, P83, DOI 10.1016/j.neuroimage.2008.03.061 Song SK, 2002, NEUROIMAGE, V17, P1429, DOI 10.1006/nimg.2002.1267 Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002 Vachon P, 2013, NEUROSCIENCE, V245, P50, DOI 10.1016/j.neuroscience.2013.04.004 Wheeler-Kingshott CAM, 2009, MAGN RESON MED, V61, P1255, DOI 10.1002/mrm.21965 Wong C., 2013, CEREB CORTEX Wu CM, 2009, AM J NEURORADIOL, V30, P1773, DOI 10.3174/ajnr.A1681 Zatorre RJ, 2002, TRENDS COGN SCI, V6, P37, DOI 10.1016/S1364-6613(00)01816-7 Zatorre RJ, 2001, CEREB CORTEX, V11, P946, DOI 10.1093/cercor/11.10.946 NR 90 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD DEC PY 2014 VL 318 BP 1 EP 10 DI 10.1016/j.heares.2014.09.008 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AY6FT UT WOS:000347663400001 PM 25262621 ER PT J AU Nadol, JB O'Malley, JT Burgess, BJ Galler, D AF Nadol, Joseph B., Jr. O'Malley, Jennifer T. Burgess, Barbara J. Galler, Donald TI Cellular immunologic responses to cochlear implantation in the human SO HEARING RESEARCH LA English DT Article ID FOREIGN-BODY REACTION; SILICONE ALLERGY; HISTOPATHOLOGY; REMOVAL AB A cochlear implant array consists of biomaterials, including metal and polymeric in type which are biocompatible, but not necessarily bio-inert. Histologic evidence of a foreign body reaction has been described in temporal bones in patients who in life had undergone cochlear implantation. In the current study, the cellular immune response was characterized using immunohistochemical stains for B-cell lymphocytes (CD20), T-cell lymphocytes (CD3), and macrophages (CD68). In addition, energy dispersive spectroscopy by scanning electron microscopy (EDS-SEM) was performed to characterize the nature of particulate foreign material seen near the electrode array. Infiltrations of B-cell and Tcell lymphocytes and macrophages were identified immunohistochemically. The track of the electrode array was frequently lined by multi-nucleated foreign body giant cells. Energy dispersive X-ray spectroscopy identified the particulate material found in the fibrous sheeth surrounding the cochlear implant to be consistent with platinum. In conclusion, a cochlear implant generates a vigorous cellular immune response consisting of B and T lymphocytes, foreign body giant cells, and macrophages. Platinum was identified as one of the antigens likely responsible for this cellular response. This foreign body response may in certain cases result in migration or even extrusion of an implant device. (C) 2014 Elsevier B.V. All rights reserved. C1 [Nadol, Joseph B., Jr.; O'Malley, Jennifer T.; Burgess, Barbara J.] Massachusetts Eye & Ear Infirm, Dept Otolaryngol, Boston, MA 02114 USA. [Nadol, Joseph B., Jr.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02114 USA. [Galler, Donald] MIT, Dept Mat Sci & Engn, Cambridge, MA 02138 USA. RP Nadol, JB (reprint author), Massachusetts Eye & Ear Infirm, Dept Otolaryngol, 243 Charles St, Boston, MA 02114 USA. EM Joseph_nadol@meei.harvard.edu CR Anderson JM, 2008, SEMIN IMMUNOL, V20, P86, DOI 10.1016/j.smim.2007.11.004 Bertuleit H, 1999, LARYNGO RHINO OTOL, V78, P304, DOI 10.1055/s-2007-996876 BUSCH H, 1994, SEMIN ARTHRITIS RHEU, V24, P11, DOI 10.1016/0049-0172(94)90104-X Chan WO, 2011, ARCH OPHTHALMOL-CHIC, V129, P1247, DOI 10.1001/archophthalmol.2011.255 Clark GM, 2013, JAMA-J AM MED ASSOC, V310, P1225, DOI 10.1001/jama.2013.278142 Clark G.M., 2014, COCHLEAR IMPLANTS IN, P1 Doherty JK, 2004, OTOL NEUROTOL, V25, P1029, DOI 10.1097/00129492-200411000-00029 Groothuis J, 2014, BRAIN STIMUL, V7, P1, DOI 10.1016/j.brs.2013.07.001 Hirose K, 2005, J COMP NEUROL, V489, P180, DOI 10.1002/cne.20619 Ho Eu Chin, 2007, Cochlear Implants Int, V8, P162, DOI 10.1002/cii.337 JIMENEZ DF, 1994, CHILD NERV SYST, V10, P59, DOI 10.1007/BF00313586 Killer M, 2010, J BIOMED MATER RES B, V94B, P486, DOI 10.1002/jbm.b.31660 Kistler U, 2005, J HAND SURG-AM, V30A, P1282, DOI 10.1016/j.jhsa.2005.07.009 Kronenberg J., 2001, OTORHINOLARYNGOL NOV, V11, P207, DOI 10.1159/000063002 Kunda LD, 2006, OTOL NEUROTOL, V27, P1078, DOI 10.1097/01.mao.0000235378.64654.4d MATURRI L, 1991, INT SURG, V76, P115 MAUSHAGEN E, 1994, Z KARDIOL, V83, P340 Meyer DR, 1998, OPHTHALMIC PLAST REC, V14, P182, DOI 10.1097/00002341-199805000-00007 Migirov L, 2007, EUR ARCH OTO-RHINO-L, V264, P3, DOI 10.1007/s00405-006-0144-5 Nadol JB, 2004, OTOL NEUROTOL, V25, P257, DOI 10.1097/00129492-200405000-00010 Nadol JB, 2008, OTOL NEUROTOL, V29, P1076, DOI 10.1097/MAO.0b013e31818c33cf Okano T, 2008, J NEUROSCI RES, V86, P1758, DOI 10.1002/jnr.21625 O'Leary SJ, 2013, HEARING RES, V298, P27, DOI 10.1016/j.heares.2013.01.012 O'Malley JT, 2009, ANN OTO RHINOL LARYN, V118, P435 O'Malley JT, 2009, AUDIOL NEURO-OTOL, V14, P78, DOI 10.1159/000158536 Pepas N.A., 1994, SCIENCE, V263, P1715 Pulec J L, 1998, Ear Nose Throat J, V77, P614 Puri S, 2005, LARYNGOSCOPE, V115, P1760, DOI 10.1097/01.mlg.0000172202.58968.41 Seyeddi M., 2014, OTOL NEUROTOL SHEPHERD RK, 1984, ACTA OTO-LARYNGOL, P71 SNOW RB, 1989, SURG NEUROL, V31, P209, DOI 10.1016/0090-3019(89)90119-5 NR 31 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD DEC PY 2014 VL 318 BP 11 EP 17 DI 10.1016/j.heares.2014.09.007 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AY6FT UT WOS:000347663400002 PM 25285622 ER PT J AU Kendall, A Schacht, J AF Kendall, Ann Schacht, Jochen TI Disparities in auditory physiology and pathology between C57BL/6J and C57BL/6N substrains SO HEARING RESEARCH LA English DT Article ID NICOTINAMIDE NUCLEOTIDE TRANSHYDROGENASE; HEARING-LOSS; MOUSE STRAINS; MICE; SYSTEM; GENE; CBA AB C57BL/6 inbred mice are frequently used as models in auditory research, mostly the C57BL/6J and C57BL/6N substrains. Genetic variation and phenotypic disparities between these two substrains have been extensively investigated, but conflicting information exists about differences in their auditory and vestibular phenotypes. Literature-based comparisons are rendered difficult or impossible because most auditory publications do not designate the substrain used. We therefore evaluated commercial C57BL/6N and C57BL/6J mice for their baseline auditory brainstem response (ABR) thresholds at 3 months of age as well as their susceptibility to noise exposure and aminoglycoside antibiotics. Both substrains have similar thresholds at 4 and 12 kHz, but C57BL/6N show significantly higher baseline thresholds at 24 and 32 kHz. Because of these elevated thresholds, the N substrain is unsuitable as a model for drug ototoxicity, which primarily affects high frequencies. Exposure to 2-20 kHz broadband noise for 2 h at 110 dB produced significantly higher threshold shifts in the J substrain. These results suggest caution in the selection of C57BL/6 substrains for auditory research and indicate the need to specify substrains, age and the breeding source in all publications. (C) 2014 Elsevier B.V. All rights reserved. C1 [Kendall, Ann; Schacht, Jochen] Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, Ann Arbor, MI 48109 USA. RP Schacht, J (reprint author), Univ Michigan, Kresge Hearing Res Inst, 1150 West Med Ctr Dr, Ann Arbor, MI 48109 USA. EM akendall@umich.edu; schacht@umich.edu FU National Institutes on Deafness and Other Communication Disorders, National Institutes of Health [R01 DC003685, P30 DC005188] FX This work was supported by research grant R01 DC003685 and core grant P30 DC005188 from the National Institutes on Deafness and Other Communication Disorders, National Institutes of Health. The authors thank Dr. David Dolan, Jennifer Eberle and Karin Halsey for help with and discussions of ABR data; and Andra Talaska for expert editing. CR Bottger EC, 2013, HEARING RES, V303, P12, DOI 10.1016/j.heares.2013.01.006 Chen FQ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0061999 DIWAN BA, 1980, CANCER LETT, V9, P111, DOI 10.1016/0304-3835(80)90114-7 Freeman HC, 2006, DIABETES, V55, P2153, DOI 10.2337/db06-0358 Frisina RD, 2011, NEUROBIOL AGING, V32, P1716, DOI 10.1016/j.neurobiolaging.2009.09.009 Green ML, 2007, DEV DYNAM, V236, P613, DOI 10.1002/dvdy.21048 Simon MM, 2013, GENOME BIOL, V14, DOI 10.1186/gb-2013-14-7-r82 HUMPHREY GF, 1957, BIOCHEM J, V65, P546 Jones SM, 2006, BRAIN RES, V1091, P40, DOI 10.1016/j.brainres.2006.01.066 Kane KL, 2012, HEARING RES, V283, P80, DOI 10.1016/j.heares.2011.11.007 LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418 Lopert P, 2014, J BIOL CHEM, V289, P15611, DOI 10.1074/jbc.M113.533653 Matsuo N, 2010, FRONT BEHAV NEUROSCI, V4, DOI 10.3389/fnbeh.2010.00029 Meimaridou E, 2012, NAT GENET, V44, P740, DOI 10.1038/ng.2299 Mekada K, 2009, EXP ANIM TOKYO, V58, P141, DOI 10.1538/expanim.58.141 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 Ronchi JA, 2013, FREE RADICAL BIO MED, V63, P446, DOI 10.1016/j.freeradbiomed.2013.05.049 Saul SM, 2008, MOL CELL NEUROSCI, V37, P153, DOI 10.1016/j.mcn.2007.09.006 Skarnes WC, 2011, NATURE, V474, P337, DOI 10.1038/nature10163 Tadros SF, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0090279 Toye AA, 2005, DIABETOLOGIA, V48, P675, DOI 10.1007/s00125-005-1680-z Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3 Zhang Q, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0062786 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 Zurita E, 2011, TRANSGENIC RES, V20, P481, DOI 10.1007/s11248-010-9403-8 NR 25 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD DEC PY 2014 VL 318 BP 18 EP 22 DI 10.1016/j.heares.2014.10.005 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AY6FT UT WOS:000347663400003 PM 25456090 ER PT J AU Szczepek, AJ Haupt, H Klapp, BF Olze, H Mazurek, B AF Szczepek, Agnieszka J. Haupt, Heidemarie Klapp, Burghard F. Olze, Heidi Mazurek, Birgit TI Biological correlates of tinnitus-related distress: An exploratory study SO HEARING RESEARCH LA English DT Article ID NEUROTROPHIC FACTOR BDNF; STRESS; IMMUNE; PLASMA; METAANALYSIS; DEPRESSION; SUFFERERS; SEVERITY; IMPACT; SERUM AB During the process of tinnitus diagnostics, various psychometric instruments are used to measure tinnitus-related distress. The aim of present work was to explore whether candidates for biological correlates of the tinnitus-related distress could be found in peripheral blood of patients and if so, whether there was association between them and psychometric scores that reflect tinnitus-related distress. The concentrations of interleukin-1 beta (IL1 beta), interleukin-6 (IL6), tumor necrosis factor-cc (TNF alpha) and a brain-derived neutrotrophic factor (BDNF) were measured in serum of 30 patients diagnosed with chronic tinnitus and tested for correlation with psychometric scores collected on the same day. Spearman's correlation analyses detected significant positive association between the concentrations of tumor necrosis factor a and tinnitus loudness, total perceived stress, tension and depression and a negative association between tumor necrosis factor a and a psychometric score "joy". Concentrations of interleukin-1 beta correlated with the awareness grade of tinnitus. The correlation between visual analogue scale (VAS) "loudness" and tumor necrosis factor a as well as between "joy" and tumor necrosis factor a retained their significance (p < 0.00167) after the application of Bonferroni correction for multiple testing. Partial correlations removing the effects of age, hearing loss and the duration of tinnitus verified the results obtained using Spearman correlation. We conclude that measuring the concentrations of selected circulating cytokines could possibly become an additional objective element of tinnitus diagnostics in the future. (C) 2014 Elsevier B.V. All rights reserved. C1 [Szczepek, Agnieszka J.; Haupt, Heidemarie; Olze, Heidi; Mazurek, Birgit] Charite, Dept Otorhinolaryngol, Mol Biol Res Lab, D-10117 Berlin, Germany. [Haupt, Heidemarie; Mazurek, Birgit] Charite, Tinnitus Ctr, D-10117 Berlin, Germany. [Klapp, Burghard F.] Charite, Dept Internal Med & Psychosomat, D-10117 Berlin, Germany. [Olze, Heidi] Charite, Dept Otorhinolaryngol, D-10117 Berlin, Germany. RP Mazurek, B (reprint author), Charite, Tinnitus Ctr, Campus Charite Mitte,Charitepl 1, D-10117 Berlin, Germany. EM birgit.mazurek@charite.de CR Adamchic I, 2012, AM J AUDIOL, V21, P215, DOI 10.1044/1059-0889(2012/12-0010) Alpini D, 2006, ORL J OTO-RHINO-LARY, V68, P31, DOI 10.1159/000090488 Andrews JA, 2012, J NEUROCHEM, V120, P26, DOI 10.1111/j.1471-4159.2011.07545.x BENTON H P, 1991, Current Opinion in Cell Biology, V3, P171, DOI 10.1016/0955-0674(91)90135-L Bhang SY, 2012, NEUROSCI LETT, V512, P72, DOI 10.1016/j.neulet.2012.01.012 Bob P, 2010, J AFFECT DISORDERS, V120, P231, DOI 10.1016/j.jad.2009.03.017 Cho HC, 2012, NEUROSCI LETT, V519, P78, DOI 10.1016/j.neulet.2012.05.025 Coelho FGD, 2013, ARCH GERONTOL GERIAT, V56, P10, DOI 10.1016/j.archger.2012.06.003 Eyre H, 2012, PSYCHONEUROENDOCRINO, V37, P1397, DOI 10.1016/j.psyneuen.2012.03.019 Feuerecker M, 2013, CLIN EXP IMMUNOL, V172, P290, DOI 10.1111/cei.12049 Fliege H, 2005, PSYCHOSOM MED, V67, P78, DOI 10.1097/01.psy.0000151491.80178.78 Gameiro CM, 2010, MATURITAS, V67, P316, DOI 10.1016/j.maturitas.2010.08.003 GOEBEL G, 1994, HNO, V42, P166 Goto F, 2012, NEUROSCI LETT, V510, P73, DOI 10.1016/j.neulet.2012.01.001 Hansel A, 2010, NEUROSCI BIOBEHAV R, V35, P115, DOI 10.1016/j.neubiorev.2009.12.012 HANSON JM, 1982, PHARMACOL THERAPEUT, V17, P165, DOI 10.1016/0163-7258(82)90010-9 Hebert S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0037733 Henry J.L, 1995, INT TINNITUS J, V1, P85 HILLER W, 1992, J PSYCHOSOM RES, V36, P337, DOI 10.1016/0022-3999(92)90070-I Howren MB, 2009, PSYCHOSOM MED, V71, P171, DOI 10.1097/PSY.0b013e3181907c1b Huang EJ, 2001, ANNU REV NEUROSCI, V24, P677, DOI 10.1146/annurev.neuro.24.1.677 Janssen DGA, 2010, HUM PSYCHOPHARM CLIN, V25, P201, DOI 10.1002/hup.1103 Katsuki A, 2012, CNS SPECTRUMS, V17, P155, DOI 10.1017/S109285291200051X Liu T, 2013, MOL PAIN, V9, DOI 10.1186/1744-8069-9-16 Mazurek B, 2010, INT J ENV RES PUB HE, V7, P3071, DOI 10.3390/ijerph7083071 McCusker RH, 2013, J EXP BIOL, V216, P84, DOI 10.1242/jeb.073411 Pajor AM, 2013, EUR ARCH OTO-RHINO-L, V270, P881, DOI 10.1007/s00405-012-2079-3 Pluchino N, 2013, NEUROSCIENCE, V239, P271, DOI 10.1016/j.neuroscience.2013.01.025 Savastano M, 2007, ANN OTO RHINOL LARYN, V116, P100 Schwarz Markus J, 2003, Dialogues Clin Neurosci, V5, P139 Seydel C, 2013, EAR HEARING, V34, P661, DOI 10.1097/AUD.0b013e31828149f2 Seydel C, 2012, HNO, V60, P732, DOI 10.1007/s00106-011-2403-z Shore SE, 2011, HEARING RES, V281, P38, DOI 10.1016/j.heares.2011.05.001 Steptoe A, 2007, BRAIN BEHAV IMMUN, V21, P901, DOI 10.1016/j.bbi.2007.03.011 STOUFFER JL, 1990, J SPEECH HEAR DISORD, V55, P439 Tamura S, 2012, BIOCHEM BIOPH RES CO, V427, P542, DOI 10.1016/j.bbrc.2012.09.093 Tyler R, 2014, AM J AUDIOL, V23, P260, DOI 10.1044/2014_AJA-13-0014 TYLER RS, 1983, J SPEECH HEAR DISORD, V48, P150 Tyler RS, 2007, PROG BRAIN RES, V166, P425, DOI 10.1016/S0079-6123(07)66041-5 Weber C, 2002, J PSYCHOSOM RES, V52, P29, DOI 10.1016/S0022-3999(01)00281-1 Zhang G, 2013, NATURE, V497, P211, DOI 10.1038/nature12143 Zirke N, 2013, QUAL LIFE RES, V22, P263, DOI 10.1007/s11136-012-0156-0 NR 42 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD DEC PY 2014 VL 318 BP 23 EP 30 DI 10.1016/j.heares.2014.10.007 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AY6FT UT WOS:000347663400004 PM 25445818 ER PT J AU Mishra, SK AF Mishra, Srikanta K. TI Attentional modulation of medial olivocochlear inhibition: Evidence for immaturity in children SO HEARING RESEARCH LA English DT Article ID EVOKED OTOACOUSTIC EMISSIONS; HUMAN AUDITORY-CORTEX; CONTRALATERAL SUPPRESSION; INFERIOR COLLICULUS; SPEECH-PERCEPTION; EFFERENT REFLEX; SYSTEM FUNCTION; MATURATION; HUMANS; NOISE AB Efferent feedback shapes afferent auditory processing. Auditory attention has been shown to modulate medial olivocochlear (MOC) efferent activity in human adults. Since auditory attention continues to develop throughout childhood, the present study explored whether attentional control of medial-efferent inhibition in 5-10 year-old children is adult-like. MOC inhibition was measured in adults (n = 14) and children (n = 12) during no-task (contralateral broadband noise), passive (contralateral noise with tone-pips) and active listening conditions (attended tone-pips embedded in contralateral broadband noise). A stronger MOC inhibition was observed when measured during the active listening condition for adults which is consistent with past work. However, the effect of auditory attention on MOC inhibition in children was not robust and was significantly lower compared to that observed for adults. These findings suggest the potential immaturity of the attentional mediation of MOC inhibition in tested children. (C) 2014 Elsevier B.V. All rights reserved. C1 [Mishra, Srikanta K.] New Mexico State Univ, Dept Special Educ & Commun Disorders, Las Cruces, NM 88003 USA. [Mishra, Srikanta K.] Butler Univ, Dept Commun Sci & Disorders, Indianapolis, IN 46208 USA. RP Mishra, SK (reprint author), New Mexico State Univ, Dept Special Educ & Commun Disorders, Las Cruces, NM 88003 USA. EM smishra@nmsu.edu FU Faculty Research Award, Holcomb Awards Committee, Butler University FX This work was supported by a Faculty Research Award, Holcomb Awards Committee, Butler University. The author acknowledges BreeAnna Sawyer for her assistance with data collection. Carolyn Herbert is acknowledged for editorial assistance. CR Abdala C, 2013, J ACOUST SOC AM, V133, P938, DOI 10.1121/1.4773265 Abdala C, 1999, J ACOUST SOC AM, V105, P2392, DOI 10.1121/1.426844 Backus BC, 2007, J ACOUST SOC AM, V121, P1588, DOI 10.1121/1.2434831 Backus BC, 2007, JARO-J ASSOC RES OTO, V8, P484, DOI 10.1007/s10162-007-0100-0 Clark NR, 2012, J ACOUST SOC AM, V132, P1535, DOI 10.1121/1.4742745 Coch D, 2005, J COGNITIVE NEUROSCI, V17, P605, DOI 10.1162/0898929053467631 COOLEY EL, 1990, DEV NEUROPSYCHOL, V6, P239 De Boer J, 2007, HEARING RES, V233, P117, DOI 10.1016/j.heares.2007.08.002 de Boer J, 2008, J NEUROSCI, V28, P4929, DOI 10.1523/JNEUROSCI.0902-08.2008 Durante AS, 2002, INT J AUDIOL, V41, P211, DOI 10.3109/14992020209078333 Feeney MP, 2003, J SPEECH LANG HEAR R, V46, P128, DOI 10.1044/1092-4388(2003/010) FERBERVIART C, 1995, PHYSIOL BEHAV, V57, P1075, DOI 10.1016/0031-9384(95)00012-8 Garinis AC, 2011, J SPEECH LANG HEAR R, V54, P1464, DOI 10.1044/1092-4388(2011/10-0223) Gkoritsa E, 2007, INT J AUDIOL, V46, P277, DOI 10.1080/14992020701261405 Gomes H, 2000, FRONT BIOSCI, V5, pD108, DOI 10.2741/Gomes Goodman SS, 2013, JARO-J ASSOC RES OTO, V14, P829, DOI 10.1007/s10162-013-0409-9 Guinan JJ, 2006, EAR HEARING, V27, P589, DOI 10.1097/01.aud.0000240507.83072.e7 Guinan JJ, 2003, JARO-J ASSOC RES OTO, V4, P521, DOI 10.1007/s10162-002-3037-3 Harkrider AW, 2009, J AM ACAD AUDIOL, V20, P208, DOI 10.3766/jaaa.20.3.7 He J., 2010, OXFORD HDB AUDITORY, P247 Keefe DH, 2010, HEARING RES, V263, P52, DOI 10.1016/j.heares.2009.09.008 Kemp D T, 1986, Scand Audiol Suppl, V25, P71 Khalfa S, 2001, NEUROSCIENCE, V104, P347, DOI 10.1016/S0306-4522(01)00072-0 Klenberg L, 2001, DEV NEUROPSYCHOL, V20, P407, DOI 10.1207/S15326942DN2001_6 Kumar UA, 2004, EAR HEARING, V25, P142, DOI 10.1097/01.AUD.0000120363.56591.E6 Maison S, 2001, PSYCHOPHYSIOLOGY, V38, P35, DOI 10.1017/S0048577201990109 Mishra SK, 2014, FRONT HUM NEUROSCI, V8, DOI 10.3389/fnhum.2014.00860 Mishra SK, 2013, EAR HEARING, V34, P789, DOI 10.1097/AUD.0b013e3182944c04 Mishra SK, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0085756 Moore JK, 2001, JARO, V2, P297, DOI 10.1007/s101620010052 Moore JK, 2002, ANN OTO RHINOL LARYN, V111, P7 Muchnik C, 2004, AUDIOL NEURO-OTOL, V9, P107, DOI 10.1159/000076001 Mulders WHA, 2000, HEARING RES, V149, P11, DOI 10.1016/S0378-5955(00)00157-X Mulders WHAM, 2000, HEARING RES, V144, P65, DOI 10.1016/S0378-5955(00)00046-0 Mulders WHAM, 2002, HEARING RES, V167, P206, DOI 10.1016/S0378-5955(02)00395-7 NORTON SJ, 1990, EAR HEARING, V11, P121, DOI 10.1097/00003446-199004000-00006 PEARSON DA, 1991, J EXP CHILD PSYCHOL, V51, P320, DOI 10.1016/0022-0965(91)90039-U Perrot X, 2014, HEARING RES, V308, P27, DOI 10.1016/j.heares.2013.08.010 Prieve BA, 1997, J ACOUST SOC AM, V102, P2860, DOI 10.1121/1.420341 Puria S, 1996, J ACOUST SOC AM, V99, P500, DOI 10.1121/1.414508 Schofield B., 2010, OXFORD HDB AUDITORY, P43 Spangler K., 1991, NEUROBIOLOGY HEARING, P27 Suga N, 2000, P NATL ACAD SCI USA, V97, P11807, DOI 10.1073/pnas.97.22.11807 Tognola G, 1997, HEARING RES, V106, P112, DOI 10.1016/S0378-5955(97)00007-5 Veuillet E, 2007, BRAIN, V130, P2915, DOI 10.1093/brain/awm235 Xiao ZJ, 2002, NAT NEUROSCI, V5, P57, DOI 10.1038/nn786 NR 46 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD DEC PY 2014 VL 318 BP 31 EP 36 DI 10.1016/j.heares.2014.10.009 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AY6FT UT WOS:000347663400005 PM 25445819 ER PT J AU Davis, JL Grant, JW AF Davis, J. L. Grant, J. W. TI Turtle utricle dynamic behavior using a combined anatomically accurate model and experimentally measured hair bundle stiffness SO HEARING RESEARCH LA English DT Article ID COMPUTATIONAL MODELS; MECHANICAL-PROPERTIES; OTOLITHIC-MEMBRANE; SLIDER TURTLE; CELL; ORGANS; EAR; FREQUENCY; HEIGHTS; MACULA AB Anatomically correct turtle utricle geometry was incorporated into two finite element models. The geometrically accurate model included appropriately shaped macular surface and otoconial layer, compact gel and column filament (or shear) layer thicknesses and thickness distributions. The first model included a shear layer where the effects of hair bundle stiffness was included as part of the shear layer modulus. This solid model's undamped natural frequency was matched to an experimentally measured value. This frequency match established a realistic value of the effective shear layer Young's modulus of 16 Pa. We feel this is the most accurate prediction of this shear layer modulus and fits with other estimates (Kondrachuk, 2001b). The second model incorporated only beam elements in the shear layer to represent hair cell bundle stiffness. The beam element stiffness's were further distributed to represent their location on the neuroepithelial surface. Experimentally measured striola hair cell bundles mean stiffness values were used in the striolar region and the mean extrastriola hair cell bundles stiffness values were used in this region. The results from this second model indicated that hair cell bundle stiffness contributes approximately 40% to the overall stiffness of the shear layer-hair cell bundle complex. This analysis shows that high mass saccules, in general, achieve high gain at the sacrifice of frequency bandwidth. We propose the mechanism by which this can be achieved is through increase the otoconial layer mass. The theoretical difference in gain (deflection per acceleration) is shown for saccules with large otoconial layer mass relative to saccules and utricles with small otoconial layer mass. Also discussed is the necessity of these high mass saccules to increase their overall system shear layer stiffness. Un-damped natural frequencies and mode shapes for these sensors are shown. Published by Elsevier B.V. C1 [Davis, J. L.] Univ So Indiana, Dept Engn, Evansville, IN 47712 USA. [Grant, J. W.] Dept Biomed Engn & Mech, Blacksburg, VA 24061 USA. RP Davis, JL (reprint author), 2030 Business & Engn Ctr, 8600 Univ Blvd, Evansville, IN 47712 USA. EM julian.ly.davis@usi.edu FU National Institutes of Health NIDCD [R01 DC 05063] FX National Institutes of Health NIDCD R01 DC 05063 supported this work. CR BENSER ME, 1993, HEARING RES, V68, P243, DOI 10.1016/0378-5955(93)90128-N Cotton J, 2004, HEARING RES, V197, P96, DOI 10.1016/j.heares.2004.06.004 Cotton J, 2004, HEARING RES, V197, P105, DOI 10.1016/j.heares.2004.06.005 CRAWFORD AC, 1985, J PHYSIOL-LONDON, V364, P359 Davis J. L., 2007, COMPUTATIONAL STUDY Davis J. L, 2004, EFFECTS OTOCONIA THI Davis JL, 2007, J VESTIBUL RES-EQUIL, V17, P145 DE VRIES H, 1951, Acta Otolaryngol, V38, P262 DeWolf J. T., 2006, MECH MAT, V4th Dunlap MD, 2012, J VESTIBUL RES-EQUIL, V22, P57, DOI 10.3233/VES-2011-0431 Dunlap MD, 2014, JARO-J ASSOC RES OTO, V15, P511, DOI 10.1007/s10162-014-0456-x FERNANDEZ C, 1976, J NEUROPHYSIOL, V39, P996 FLOCK A, 1984, NATURE, V310, P597, DOI 10.1038/310597a0 Grant J. W., 2007, EXPT COMPUTATIONAL A GRANT JW, 1984, J BIOMECH ENG-T ASME, V106, P302 GRANT JW, 1986, ANN BIOMED ENG, V14, P241, DOI 10.1007/BF02584273 Grant J W, 1994, J Vestib Res, V4, P137 Grant J W, 1990, J Vestib Res, V1, P139 GRANT W, 1987, AVIAT SPACE ENVIR MD, V58, P970 HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0 HOWARD J, 1986, HEARING RES, V23, P93, DOI 10.1016/0378-5955(86)90178-4 Huterer M, 2002, J NEUROPHYSIOL, V88, P13, DOI 10.1152/jn.01034.2001 Kondrachuk AV, 2000, HEARING RES, V143, P130, DOI 10.1016/S0378-5955(00)00034-4 Kondrachuk AV, 2001, J VESTIBUL RES-EQUIL, V11, P33 Kondrachuk AV, 2001, J VESTIBUL RES-EQUIL, V11, P13 Lewis ER, 1985, VERTEBRATE INNER EAR Li A, 2008, J NEUROPHYSIOL, V99, P718, DOI 10.1152/jn.00831.2007 LOWENSTEIN O, 1949, J PHYSIOL-LONDON, V110, P392 Nam J. H., 2005, SOC NEUROSCI, V47 Nam JH, 2007, BIOPHYS J, V92, P1918, DOI 10.1529/biophysj.106.085076 NARINS PM, 1984, J ACOUST SOC AM, V76, P1384, DOI 10.1121/1.391455 ROSENHALL U, 1975, ACTA OTO-LARYNGOL, V79, P67, DOI 10.3109/00016487509124657 Rosenhall U., 2011, THICKNESS WAS MEASUR Rowe MH, 2006, J NEUROPHYSIOL, V96, P2653, DOI 10.1152/jn.00565.2006 Severinsen SA, 2003, JARO-J ASSOC RES OTO, V4, P505 Silber J, 2004, HEARING RES, V197, P112, DOI 10.1016/j.heares.2004.06.006 Songer JE, 2013, J NEUROSCI, V33, P3706, DOI 10.1523/JNEUROSCI.4067-12.2013 Spoon C, 2011, J NEUROPHYSIOL, V106, P2950, DOI 10.1152/jn.00469.2011 Spoon C., 2005, ASS RES OT MIDW RES Spoon C, 2011, J EXP BIOL, V214, P862, DOI 10.1242/jeb.051151 STRELIOFF D, 1984, HEARING RES, V15, P19, DOI 10.1016/0378-5955(84)90221-1 Tribukait A, 2001, AUDIOL NEURO-OTOL, V6, P98, DOI 10.1159/000046815 Watannuki K., 1976, ARCH OTOLARYNGOL, V102 Xue J., 2003, ASS RES OT MIDW RES Xue JB, 2006, J NEUROPHYSIOL, V95, P171, DOI 10.1152/jn.00800.2005 NR 45 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD DEC PY 2014 VL 318 BP 37 EP 44 DI 10.1016/j.heares.2014.10.010 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AY6FT UT WOS:000347663400006 PM 25445820 ER PT J AU Chen, GD Decker, B Muthaiah, VPK Sheppard, A Salvi, R AF Chen, Guang-Di Decker, Brandon Muthaiah, Vijaya Prakash Krishnan Sheppard, Adam Salvi, Richard TI Prolonged noise exposure-induced auditory threshold shifts in rats SO HEARING RESEARCH LA English DT Article ID DORSAL COCHLEAR NUCLEUS; INTENSE SOUND EXPOSURE; ACOUSTIC TRAUMA; HEARING-LOSS; INDUCED TINNITUS; NEURAL ACTIVITY; PROTECTION; DAMAGE; TTS; IMPAIRMENT AB Noise-induced hearing loss (NIHL) initially increases with exposure duration, but eventually reaches an asymptotic threshold shift CATS) once the exposure duration exceeds 18-24 h. Equations for predicting the ATS have been developed for several species, but not for rats, even though this species is extensively used in noise exposure research. To fill this void, we exposed rats to narrowband noise (NBN, 16-20 kHz) for 5 weeks starting at 80 dB SPL in the first week and then increasing the level by 6 dB per week to a final level of 104 dB SPL. Auditory brainstem responses (ABR) were recorded before, during, and following the exposure to determine the amount of hearing loss. The noise induced threshold shift to continuous long-term exposure, defined as compound threshold shift (CTS), within and above 16-20 kHz increased with noise level at the rate of 1.82 dB threshold shift per dB of noise level (NL) above a critical level (C) of 77.2 dB SPL i.e. CIS = 1.82(NL-77.2). The normalized amplitude of the largest ABR peak measured at 100 dB SPL decreased at the rate of 3.1% per dB of NL above the critical level of 76.9 dB SPL, i.e., %ABR Reduction = 3.1%(NL-76.9). ABR thresholds measured >30 days post-exposure only partially recovered resulting in a permanent threshold shift of 30-40 dB along with severe hair cell loss in the basal, high-frequency region of the cochlea. In the rat, CTS increases with noise level with a slope similar to humans and chinchillas. The critical level (C) in the rat is similar to that of humans, but higher than that of chinchillas. (C) 2014 Elsevier B.V. All rights reserved. C1 [Chen, Guang-Di; Decker, Brandon; Muthaiah, Vijaya Prakash Krishnan; Sheppard, Adam; Salvi, Richard] SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP Chen, GD (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA. EM gchen7@buffalo.edu FU National Institutes of Health [5R01DC011808]; Office of Naval Research [N000141210731] FX Research supported by grants from the National Institutes of Health (5R01DC011808) and Office of Naval Research (N000141210731). We thank Kim Lourette for the editorial assistance with the manuscript. CR ATHERLEY GR, 1968, J ACOUST SOC AM, V44, P1503, DOI 10.1121/1.1911288 Atik Alp, 2014, Indian J Otolaryngol Head Neck Surg, V66, P1, DOI 10.1007/s12070-011-0374-8 AXELSSON A, 1985, British Journal of Audiology, V19, P271, DOI 10.3109/03005368509078983 AXELSSON A, 1987, ACTA OTO-LARYNGOL, V104, P225, DOI 10.3109/00016488709107322 BLAKESLEE EA, 1978, J ACOUST SOC AM, V63, P876, DOI 10.1121/1.381767 Bohne B.A., 1982, NEW PERSPECTIVES NOI, P283 Cacace AT, 2014, HEARING RES, V311, P49, DOI 10.1016/j.heares.2014.02.003 Canlon B, 1998, NEUROREPORT, V9, P269, DOI 10.1097/00001756-199801260-00017 Canlon B., 1997, ENT-EAR NOSE THROAT, V76, P253 Canlon B, 1997, Ear Nose Throat J, V76, P248 Cappaert N.L., 2000, NOISE HLTH, V3, P23 CARDER HM, 1972, J SPEECH HEAR RES, V15, P603 CARDER H M, 1971, Transactions of the American Academy of Ophthalmology and Oto-Laryngology, V75, P1346 Cave KM, 2007, MIL MED, V172, P726 Chen G, 2013, JARO-J ASSOC RES OTO, V14, P413, DOI 10.1007/s10162-013-0375-2 Chen GD, 2003, HEARING RES, V177, P81, DOI 10.1016/S0378-5955(02)00802-X Chen GD, 2002, HEARING RES, V172, P186, DOI 10.1016/S0378-5955(02)00582-8 Chen GD, 2014, NEURAL PLAST, DOI 10.1155/2014/658741 CLARK WW, 1991, J ACOUST SOC AM, V90, P155, DOI 10.1121/1.401309 CODY AR, 1981, J ACOUST SOC AM, V70, P707, DOI 10.1121/1.386906 Coomber B, 2014, EUR J NEUROSCI, V40, P2427, DOI 10.1111/ejn.12580 DAVIS H, 1950, Acta Otolaryngol Suppl, V88, P1 Dawes P, 2014, EAR HEARING, V35, pE44, DOI 10.1097/AUD.0000000000000010 Eddins AC, 1999, HEARING RES, V127, P119 Hamernik RP, 2003, J ACOUST SOC AM, V113, P969, DOI 10.1121/1.1531981 Hebert S, 2013, J NEUROSCI, V33, P2356, DOI 10.1523/JNEUROSCI.3461-12.2013 Heffner HE, 2011, BEHAV RES METHODS, V43, P577, DOI 10.3758/s13428-011-0061-4 Henderson D., 2001, NOISE HEALTH, V3, P33 JOHNSON DL, 1976, AVIAT SPACE ENVIR MD, V47, P987 Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6 Konig O, 2006, HEARING RES, V221, P59, DOI 10.1016/j.heares.2006.07.007 LAROCHE C, 1989, J ACOUST SOC AM, V85, P1681, DOI 10.1121/1.397957 LOEB M, 1967, J ACOUST SOC AM, V42, P453, DOI 10.1121/1.1910600 Luebke AE, 2002, J NEUROSCI, V22, P4241 Mahmood G, 2014, NEUROSCIENCE, V269, P367, DOI 10.1016/j.neuroscience.2014.03.020 Martins Kelly, 2013, Codas, V25, P224, DOI 10.1590/S2317-17822013000300006 Melnick W, 1976, HUMAN ASYMPTOTIC THR MELNICK W, 1991, J ACOUST SOC AM, V90, P147, DOI 10.1121/1.401308 MENCHER G T, 1973, Cortex, V9, P335 MILLS JH, 1981, J ACOUST SOC AM, V70, P390, DOI 10.1121/1.386774 MILLS JH, 1979, J ACOUST SOC AM, V65, P1238, DOI 10.1121/1.382791 MILLS JH, 1972, J SPEECH HEAR RES, V15, P624 Moody D.B., 1976, EFFECTS NOISE HEARIN Moon IS, 2011, J OCCUP ENVIRON HYG, V8, P618, DOI 10.1080/15459624.2011.609013 MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7 NIELSEN DW, 1984, AUDIOLOGY, V23, P297 Niu XZ, 2002, ADV OTO-RHINO-LARYNG, V59, P96 Niu XZ, 2004, AUDIOL NEURO-OTOL, V9, P265, DOI 10.1159/000080226 Ortmann M, 2011, EUR J NEUROSCI, V33, P568, DOI 10.1111/j.1460-9568.2010.07542.x Pace E, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0075011 PHOON WH, 1993, OCCUP MED-OXFORD, V43, P35, DOI 10.1093/occmed/43.1.35 Pukkila M, 1997, ACTA OTO-LARYNGOL, P59 SAUNDERS JC, 1977, J ACOUST SOC AM, V61, P558, DOI 10.1121/1.381298 STEPHENSON MR, 1980, AVIAT SPACE ENVIR MD, V51, P391 Stolzberg D, 2013, J NEUROSCI METH, V219, P224, DOI 10.1016/j.jneumeth.2013.07.021 SUBRAMANIAM M, 1992, HEARING RES, V58, P57, DOI 10.1016/0378-5955(92)90008-B Sun W, 2012, BRAIN RES, V1485, P108, DOI 10.1016/j.brainres.2012.02.008 SYKA J, 1980, HEARING RES, V3, P205, DOI 10.1016/0378-5955(80)90047-7 Tahera Y, 2007, NEUROBIOL DIS, V25, P189, DOI 10.1016/j.nbd.2006.09.004 VIALL J, 1977, T AM ACAD OPHTHALMOL, V84, P459 Ward W.D., 1975, STUDIES ASYMPTOTICS Zhang JS, 1998, NEUROSCI LETT, V250, P197, DOI 10.1016/S0304-3940(98)00482-0 NR 62 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD NOV PY 2014 VL 317 BP 1 EP 8 DI 10.1016/j.heares.2014.08.004 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AU3XF UT WOS:000345543300001 PM 25219503 ER PT J AU Gilbertson, L Lutfi, RA AF Gilbertson, Lynn Lutfi, Robert A. TI Correlations of decision weights and cognitive function for the masked discrimination of vowels by young and old adults SO HEARING RESEARCH LA English DT Article ID ON-SPEECH MASKING; INFORMATIONAL MASKING; ELDERLY LISTENERS; HEARING-LOSS; SOUND SOURCE; PERCEPTION; NOISE; IDENTIFICATION; RECOGNITION; TALKERS AB Older adults are often reported in the literature to have greater difficulty than younger adults understanding speech in noise [Helfer and Wilber (1988). J. Acoust. Soc. Am, 859-8931. The poorer performance of older adults has been attributed to a general deterioration of cognitive processing, deterioration of cochlear anatomy, and/or greater difficulty segregating speech from noise. The current work used perturbation analysis [Berg (1990). J. Acoust. Soc. Am., 149-158] to provide a more specific assessment of the effect of cognitive factors on speech perception in noise. Sixteen older (age 56-79 years) and seventeen younger (age 19-30 years) adults discriminated a target vowel masked by randomly selected masker vowels immediately preceding and following the target. Relative decision weights on target and maskers resulting from the analysis revealed large individual differences across participants despite similar performance scores in many cases. On the most difficult vowel discriminations, the older adult decision weights were significantly correlated with inhibitory control (Color Word Interference test) and pure-tone threshold averages (PTA). Young adult decision weights were not correlated with any measures of peripheral (PTA) or central function (inhibition or working memory). (C) 2014 The Authors. Published by Elsevier B.V. C1 [Gilbertson, Lynn; Lutfi, Robert A.] Univ Wisconsin, Auditory Behav Res Lab, Dept Commun Sci & Disorders, Madison, WI 53706 USA. RP Gilbertson, L (reprint author), Univ Wisconsin, Dept Commun Sci & Disorders, 800 W Main St,Roseman Hall 1016, Whitewater, WI 53190 USA. EM gilbertl@uww.edu; ralutfi@wisc.edu FU NIDCD [R01 DC001262-20]; Wisconsin Alzheimer's Disease Research Center FX The authors would like to thank Dr. Margaritis Fourakis for providing the vowel stimuli as well as Dr. Ruth Litovsky, Dr. Tom Yin, and Dr. Lyn Turkstra, for their comments and revisions. This research was conducted as part of Dr. Gilbertson's dissertation work. This research was supported by NIDCD grant R01 DC001262-20 and the Wisconsin Alzheimer's Disease Research Center. The authors would like to thank Dr. Brian Moore and an anonymous reviewer for comments on a previous draft. CR Agus TR, 2009, J ACOUST SOC AM, V126, P1926, DOI 10.1121/1.3205403 Anderson S, 2013, HEARING RES, V300, P18, DOI 10.1016/j.heares.2013.03.006 BERG BG, 1990, J ACOUST SOC AM, V88, P149, DOI 10.1121/1.399962 Bouma A, 2011, BRAIN COGNITION, V76, P286, DOI 10.1016/j.bandc.2011.02.008 Brungart DS, 2001, J ACOUST SOC AM, V109, P1101, DOI 10.1121/1.1345696 Brungart DS, 2006, J ACOUST SOC AM, V120, P4007, DOI 10.1121/1.2363929 CRAIK FIM, 1965, Q J EXP PSYCHOL, V17, P227, DOI 10.1080/17470216508416436 Creelman C. D., 1991, DETECTION THEORY USE Delis DC, 2001, DELIS KAPLAN EXECUTI Dollemore D., 2009, AGING MICROSCOPE BIO DORMAN MF, 1977, Q J EXP PSYCHOL, V29, P483, DOI 10.1080/14640747708400624 Gatehouse S, 2004, INT J AUDIOL, V43, P85, DOI 10.1080/14992020400050014 Gordon-Salant S, 2004, J ACOUST SOC AM, V115, P1808, DOI 10.1121/1.1645249 Guerreiro MJS, 2010, PSYCHOL BULL, V136, P975, DOI 10.1037/a0020731 HAWKS JW, 1995, J ACOUST SOC AM, V97, P1343, DOI 10.1121/1.412986 Helfer K., 1988, J ACOUST SOC AM, V83, P859 Helfer KS, 2008, EAR HEARING, V29, P87 Huang Y, 2010, EAR HEARING, V31, P579, DOI 10.1097/AUD.0b013e3181db6dc2 HUMES LE, 1994, J SPEECH HEAR RES, V37, P465 INGLIS J, 1963, CAN J PSYCHOLOGY, V17, P98, DOI 10.1037/h0083265 Kidd G, 2008, J ACOUST SOC AM, V124, P3793, DOI 10.1121/1.2998980 KLATT DH, 1990, J ACOUST SOC AM, V87, P820, DOI 10.1121/1.398894 Leger AC, 2012, HEARING RES, V294, P95, DOI 10.1016/j.heares.2012.10.002 Lunner T, 2003, INT J AUDIOL, V42, pS49 Lutfi RA, 2008, J ACOUST SOC AM, V124, P3784, DOI 10.1121/1.2998767 Lutfi RA, 2011, J ACOUST SOC AM, V129, pEL52, DOI 10.1121/1.3533000 NEAREY TM, 1989, J ACOUST SOC AM, V85, P2088, DOI 10.1121/1.397861 Pichora-Fuller M. K., 2003, INT J AUDIOL, V42, P59, DOI DOI 10.3109/14992020309074625 PICHORAFULLER MK, 1995, J ACOUST SOC AM, V97, P593, DOI 10.1121/1.412282 Russo FA, 2008, EAR HEARING, V29, P746, DOI 10.1097/AUD.0b013e31817bdd1f Stewart R, 2009, J AM ACAD AUDIOL, V20, P147, DOI 10.3766/jaaa.20.2.7 SUMMERFIELD Q, 1984, PERCEPT PSYCHOPHYS, V35, P203, DOI 10.3758/BF03205933 Tun P. A., 1999, J GERONTOL B-PSYCHOL, V54B, P317 VANROOIJ JCGM, 1990, J ACOUST SOC AM, V88, P2611, DOI 10.1121/1.399981 Wechsler D., 1981, MANUAL WECHSLER ADUL WINGFIELD A, 1985, J GERONTOL, V40, P579 NR 36 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD NOV PY 2014 VL 317 BP 9 EP 14 DI 10.1016/j.heares.2014.09.001 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AU3XF UT WOS:000345543300002 PM 25256580 ER PT J AU Rocha-Muniz, CN Befi-Lopes, DM Schochat, E AF Rocha-Muniz, Caroline Nunes Befi-Lopes, Debora Maria Schochat, Eliane TI Sensitivity, specificity and efficiency of speech-evoked ABR SO HEARING RESEARCH LA English DT Article ID BRAIN-STEM RESPONSE; AUDITORY PROCESSING DISORDER; INFERIOR COLLICULUS; LANGUAGE IMPAIRMENT; LEARNING-PROBLEMS; SOUND DURATION; BIOLOGICAL MARKER; CHILDREN; REPRESENTATION; DEFICITS AB We determined the sensitivity, specificity and efficiency of speech-evoked Auditory Brainstem Response (ABR) as a diagnostic support for Auditory Processing Disorder (APD) and specific language impairment (SLI). Speech-evoked ABRs were elicited using the five-formant syllable/da/. The waveforms V. A. C, D, E, F. and 0 of all groups were analyzed. The sensitivity and specificity were calculated, and receiver operating characteristic analyses were performed to determine the optimum cut-off. Seventy-five children who were native speakers of Brazilian-Portuguese participated. The participants included 25 children with APD, 25 children with SLI and 25 with typical development. Statistical analysis demonstrated a cut-off for latency values of 6.48, 7.51, 17.82, 22.33, 30.79, 39.54 and 48.00 for V. A, C, D, E, F, and 0 waves, respectively. The A wave exhibited superior balance for the APD group. For the SLI group, the A, D and 0 waves exhibited the best balance. Furthermore, when analyzing the APD and SLI groups separately, better sensitivity values were observed for the SLI group than the APD group. Speech-evoked ABR is a useful test to identify auditory processing disorders and language impairment. Furthermore, this study represented an important step forward in establishing the clinical utility of speech-evoked ABR in Brazilian Portuguese-speaking children. (C) 2014 Elsevier B.V. All rights reserved. C1 [Rocha-Muniz, Caroline Nunes; Befi-Lopes, Debora Maria; Schochat, Eliane] Univ Sao Paulo, Sch Med, BR-09500900 Sao Paulo, Brazil. RP Rocha-Muniz, CN (reprint author), 58 Evaristo Silva, BR-06186020 Osasco, SP, Brazil. EM carolrocha@usp.br RI Befi-Lopes, Debora/C-8459-2012 FU Sao Paulo Research Foundation - FAPESP [2009/18417-0] FX This study was supported by the Sao Paulo Research Foundation - FAPESP (2009/18417-0). CR Abrams DA, 2006, J NEUROSCI, V26, P11131, DOI 10.1523/JNEUROSCI.2744-06.2006 American Academy of Audiology, 2010, AM AC AUS CLIN PRACT American Speech-Language-Hearing Association Working Group on Auditory Processing Disorder (ASHA), 2005, CETRN AUD PROC Anderson S, 2013, J SPEECH LANG HEAR R, V56, P31, DOI 10.1044/1092-4388(2012/12-0043) Andrade C.R.F., 2004, ABFW TEST LINGUAGEM Angelini A. L., 1999, MATRIZES PROGR COLOR Araujo K., 2007, REV SOC BRASILEIRA F, V12, P263 Banai K, 2005, J NEUROSCI, V25, P9850, DOI 10.1523/JNEUROSCI.2373-05.2005 Banai K, 2009, CEREB CORTEX, V19, P2699, DOI 10.1093/cercor/bhp024 Bauer EE, 2002, J NEUROPHYSIOL, V88, P1955, DOI 10.1152/jn.00261.2002 Billiet CR, 2011, J SPEECH LANG HEAR R, V54, P228, DOI 10.1044/1092-4388(2010/09-0239) Bio-logic S.C, 2005, AUDITORY EVOKED POTE Brand A, 2000, J NEUROPHYSIOL, V84, P1790 British Society of Audiology (BSA), 2007, AUD PROC DIS STEER C Casseday JH, 2000, J NEUROPHYSIOL, V84, P1475 CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341 Chandrasekaran B, 2010, PSYCHOPHYSIOLOGY, V47, P236, DOI 10.1111/j.1469-8986.2009.00928.x Chermak G, 1997, CENTRAL AUDITORY PRO Covey E, 1996, J NEUROSCI, V16, P3009 Cunningham J, 2001, CLIN NEUROPHYSIOL, V112, P758, DOI 10.1016/S1388-2457(01)00465-5 Dhar S, 2009, CLIN NEUROPHYSIOL, V120, P959, DOI 10.1016/j.clinph.2009.02.172 Ehrlich D, 1997, J NEUROPHYSIOL, V77, P2360 Faure PA, 2003, J NEUROSCI, V23, P3052 Ferguson MA, 2011, J SPEECH LANG HEAR R, V54, P211, DOI 10.1044/1092-4388(2010/09-0167) Filippini R, 2012, FOLIA PHONIATR LOGO, V64, P217, DOI 10.1159/000342139 Gorga M, 1985, AUDITORY BRAINSTEM R, P49 Hornickel J, 2009, AUDIOL NEURO-OTOL, V14, P198, DOI 10.1159/000188533 Hornickel J, 2012, HEARING RES, V284, P52, DOI 10.1016/j.heares.2011.12.005 Hornickel J, 2009, P NATL ACAD SCI USA, V106, P13022, DOI 10.1073/pnas.0901123106 Hornickel J, 2013, J NEUROSCI, V33, P3500, DOI 10.1523/JNEUROSCI.4205-12.2013 Hresko W. P., 1999, TEST EARLY LANGUAGE Jasper H. H., 1958, ELECTROENCEPHALOGRAP, V10, P371, DOI DOI 10.1016/0013-4694(58)90053-1 Johnson KL, 2007, J COGNITIVE NEUROSCI, V19, P376, DOI 10.1162/jocn.2007.19.3.376 Johnson KL, 2005, EAR HEARING, V26, P424, DOI 10.1097/01.aud.0000179687.71662.6e Johnson R.A., 1992, APPL MULTIVARIATE ST Karawani H, 2010, INT J AUDIOL, V49, P844, DOI 10.3109/14992027.2010.495083 KATZ J, 1968, J SPEECH HEAR DISORD, V33, P132 King C, 2002, NEUROSCI LETT, V319, P111, DOI 10.1016/S0304-3940(01)02556-3 KLATT DH, 1980, J ACOUST SOC AM, V67, P971, DOI 10.1121/1.383940 Kraus N, 2005, TRENDS NEUROSCI, V28, P176, DOI 10.1016/j.tins.2005.02.003 Krishnan A, 2002, HEARING RES, V166, P192, DOI 10.1016/S0378-5955(02)00327-1 Krizman J, 2010, AUDIOL NEURO-OTOL, V15, P332, DOI 10.1159/000289572 Moore DR, 2013, INT J AUDIOL, V52, P3, DOI 10.3109/14992027.2012.723143 MUSIEK FE, 1991, AM J OTOL, V12, P109 Musiek F E, 1994, J Am Acad Audiol, V5, P265 Musiek FE, 2011, J AM ACAD AUDIOL, V22, P342, DOI 10.3766/jaaa.22.6.4 Park SH, 2004, KOREAN J RADIOL, V5, P11 Rocha-Muniz CN, 2012, HEARING RES, V294, P143, DOI 10.1016/j.heares.2012.08.008 Russo N, 2004, CLIN NEUROPHYSIOL, V115, P2021, DOI 10.1016/j.clinph.2004.04.003 Sayegh R, 2011, J COMP PHYSIOL A, V197, P571, DOI 10.1007/s00359-011-0627-8 Skoe E, 2010, EAR HEARING, V31, P302, DOI 10.1097/AUD.0b013e3181cdb272 Song JH, 2006, AUDIOL NEURO-OTOL, V11, P233, DOI 10.1159/000093058 Strait D.L., 2013, CEREB CORTEX TALLAL P, 1981, J ACOUST SOC AM, V69, P568, DOI 10.1121/1.385431 VanCampen LE, 1997, HEARING RES, V103, P35, DOI 10.1016/S0378-5955(96)00161-X Wible B, 2004, BIOL PSYCHOL, V67, P299, DOI 10.1016/j.biopsycho.2004.02.002 NR 56 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD NOV PY 2014 VL 317 BP 15 EP 22 DI 10.1016/j.heares.2014.09.004 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AU3XF UT WOS:000345543300003 PM 25262622 ER PT J AU Wright, MCM Winter, IM Forster, JJ Bleeck, S AF Wright, M. C. M. Winter, I. M. Forster, J. J. Bleeck, S. TI Response to best-frequency tone bursts in the ventral cochlear nucleus is governed by ordered inter-spike interval statistics SO HEARING RESEARCH LA English DT Article ID REGULARITY ANALYSIS; SINGLE UNITS; GUINEA-PIG; CAT; NEURONS; NOISE; CLASSIFICATION; FACILITATION; INFORMATION; INTENSITY AB The spike trains generated by short constant-amplitude constant-frequency tone bursts in the ventral cochlear nucleus of the anaesthetised guinea pig are examined. Spikes are grouped according to the order in which they occur following the onset of the stimulus. It is found that successive inter-spike intervals have low statistical dependence according to information-theoretic measures. This is in contrast to previous observations with long-duration tone bursts in the cat dorsal and posteroventral cochlear nuclei and lateral superior olive, where it was found that long intervals tended to be followed by shorter ones and vice versa. The interval distributions can also be reasonably modelled by a shifted Gamma distribution parameterised by the dead-time and the mean and coefficient of variation of the dead-time corrected ISI distribution. Knowledge of those three parameters for each interval is sufficient to determine the pen-stimulus time histogram and the regularity measures used to classify these neurons. (C) 2014 Elsevier B.V. All rights reserved. C1 [Wright, M. C. M.; Bleeck, S.] Univ Southampton, Inst Sound & Vibrat Res, Southampton SO17 1BJ, Hants, England. [Forster, J. J.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Winter, I. M.] Ctr Neural Basis Hearing, Physiol Lab, Cambridge CB2 3EG, England. RP Wright, MCM (reprint author), Univ Southampton, Inst Sound & Vibrat Res, Southampton SO17 1BJ, Hants, England. EM mcmw@isvr.soton.ac.uk FU Google; Wellcome Trust; UK Biotechnology and Biological Sciences Research Council [BBE017398/1]; UK Engineering and Physical Sciences Research Council [GR/R76967/01] FX Part of this work was funded by Google. The collection of the physiological data was supported by the Wellcome Trust and the UK Biotechnology and Biological Sciences Research Council (BBE017398/1). The first author was supported by an Advanced Research Fellowship from the UK Engineering and Physical Sciences Research Council (GR/R76967/01) for part of this work. CR [Anonymous], 2013, MATLAB STAT TOOLB RE Avila-Akerberg O, 2011, EXP BRAIN RES, V210, P353, DOI 10.1007/s00221-011-2553-y BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303 Bleeck S, 2006, HEARING RES, V212, P176, DOI 10.1016/j.heares.2005.12.005 Botev ZI, 2010, ANN STAT, V38, P2916, DOI 10.1214/10-AOS799 Bourk T.R., 1976, THESIS CAMBRIDGE Bowman A. W., 1997, APPL SMOOTHING TECHN Chase SM, 2007, P NATL ACAD SCI USA, V104, P5175, DOI 10.1073/pnas.0610368104 GOLDBERG JM, 1966, J NEUROPHYSIOL, V29, P72 Grinstead C. M., 2003, INTRO PROBABILITY Hogg R.V., 2001, PROBABILITY STAT INF JOHNSON DH, 1986, HEARING RES, V21, P135, DOI 10.1016/0378-5955(86)90035-3 May BJ, 1998, J NEUROPHYSIOL, V79, P1755 Oertel D, 2011, HEARING RES, V276, P61, DOI 10.1016/j.heares.2010.10.018 Pressnitzer D, 2001, J NEUROSCI, V21, P6377 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 Ross S., 2010, INTRO STAT SHOFNER WP, 1989, J ACOUST SOC AM, V86, P2172, DOI 10.1121/1.398478 Spirou GA, 2005, NEUROSCIENCE, V136, P843, DOI 10.1016/j.neuroscience.2005.08.068 WINTER IM, 1990, HEARING RES, V44, P161, DOI 10.1016/0378-5955(90)90078-4 Winter IM, 2001, J PHYSIOL-LONDON, V537, P553, DOI 10.1111/j.1469-7793.2001.00553.x WINTER IM, 1995, J NEUROPHYSIOL, V73, P141 Wright MCM, 2011, J ACOUST SOC AM, V130, P3545, DOI 10.1121/1.3652890 Yao YY, 2003, STUD FUZZ SOFT COMP, V119, P115 YOUNG ED, 1988, J NEUROPHYSIOL, V60, P1 NR 25 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD NOV PY 2014 VL 317 BP 23 EP 32 DI 10.1016/j.heares.2014.09.006 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AU3XF UT WOS:000345543300004 PM 25261771 ER PT J AU Jones, AE Ruhland, JL Gai, Y Yin, TCT AF Jones, Amy E. Ruhland, Janet L. Gai, Yan Yin, Tom C. T. TI Simultaneous comparison of two sound localization measures SO HEARING RESEARCH LA English DT Article ID SPATIAL RECEPTIVE-FIELDS; LATERAL SUPERIOR OLIVE; AUDITORY-CORTEX; INFERIOR COLLICULUS; COOLING DEACTIVATION; UNILATERAL ABLATION; SINGLE UNITS; CAT; STIMULI; LOCATION AB Almost all behavioral studies of sound localization have used either an approach-to-target or pointing/orienting task to assess absolute sound localization performance, yet there are very few direct comparisons of these measures. In an approach-to-target task, the subject is trained to walk to a sound source from a fixed location. In an orienting task, finger, head and/or eye movements are monitored while the subject's body is typically constrained. The fact that subjects may also initiate head and eye movements toward the target during the approach-to-target task allows us to measure the accuracy of the initial orienting response and compare it with subsequent target selection. To perform this comparison, we trained cats to localize a broadband noise presented randomly from one of four speakers located +/- 30 degrees and +/- 60 degrees in azimuth. The cat responded to each sound presentation by walking to and pressing a lever at the perceived location, and a food reward was delivered if the first attempt was correct. In tandem, we recorded initial head and eye orienting movements, via magnetic search coils, immediately following target onset and prior to the walking response. Reducing either stimulus duration or level resulted in a systematic decline in both measurements of localization performance. When the task was easy, localization performance was accurate for both measures. When the task was more difficult, the number of incorrect (i.e., wrong selection) and no-go (i.e., no selection) responses increased. Interestingly, for many of the incorrect trials, there was a dissociation between the orienting response and the target selected, and for many of the no-go trials, the gaze oriented towards the correct target even though the cat did not move to it. This suggests different neural systems governing walking to a target as compared to unconditioned gaze orienting. (C) 2014 Elsevier B.V. All rights reserved. C1 [Jones, Amy E.; Ruhland, Janet L.; Gai, Yan; Yin, Tom C. T.] Univ Wisconsin, Dept Neurosci, Madison, WI 53706 USA. RP Jones, AE (reprint author), Univ Wisconsin Madison, Med Sci Bldg,290 SMI,1300 Univ Ave, Madison, WI 53706 USA. EM ahong@wisc.edu; jlruhland@physiology.wisc.edu; ygai@wisc.edu; tcyin@wisc.edu FU NIH [DC-07177] FX We thank J Sekulski for helping with the computer programming and John Cress, Irina Khitsun, Nishant Sharma and Kelly Young for assistance. This work was supported by NIH DC-07177. We also thank An-chieh Chang and Carol Dizack for their support in drawing figure. CR BEITEL RE, 1993, J NEUROPHYSIOL, V70, P351 Boudreau J.C, 1970, CONTRIBUTIONS SENSOR CASSEDAY JH, 1975, J NEUROPHYSIOL, V38, P842 Efron B, 1986, STAT SCI, V1, P54, DOI DOI 10.1214/SS/1177013815 FUCHS AF, 1966, J APPL PHYSIOL, V21, P1068 Gai Y, 2013, J NEUROPHYSIOL, V110, P607, DOI 10.1152/jn.01019.2012 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987 JENKINS WM, 1984, J NEUROPHYSIOL, V52, P819 KAVANAGH GL, 1987, J NEUROPHYSIOL, V57, P1746 Lomber SG, 2007, HEARING RES, V229, P31, DOI 10.1016/j.heares.2007.01.013 Lomber SG, 2001, J COMP NEUROL, V441, P44, DOI 10.1002/cne.1396 Lomber SG, 2008, NAT NEUROSCI, V11, P609, DOI 10.1038/nn.2108 Malhotra S, 2007, J NEUROPHYSIOL, V97, P26, DOI 10.1152/jn.00720.2006 Malhotra S, 2004, J NEUROPHYSIOL, V92, P1625, DOI 10.1152/jn.01205.2003 May BJ, 1996, J ACOUST SOC AM, V100, P1059, DOI 10.1121/1.416292 Moore JM, 2008, HEARING RES, V238, P94, DOI 10.1016/j.heares.2007.11.006 Nodal FR, 2008, NEUROSCIENCE, V154, P397, DOI 10.1016/j.neuroscience.2007.12.022 Nodal FR, 2010, J NEUROPHYSIOL, V103, P1209, DOI 10.1152/jn.00991.2009 Populin LC, 2002, J NEUROSCI, V22, P2826 Populin LC, 1998, J NEUROSCI, V18, P2147 ROSE JE, 1966, J NEUROPHYSIOL, V29, P288 Ruhland JL, 2013, JARO-J ASSOC RES OTO, V14, P731, DOI 10.1007/s10162-013-0401-4 Smith AL, 2004, EUR J NEUROSCI, V19, P3059, DOI 10.1111/j.1460-9568.2004.03379.x STEIN BE, 1981, BRAIN BEHAV EVOLUT, V19, P180, DOI 10.1159/000121641 Thompson C.C., 1978, J NEUROPHYSIOL, V41, P1183 Tollin DJ, 2009, J NEUROPHYSIOL, V101, P1258, DOI 10.1152/jn.90977.2008 Tollin DJ, 2002, J NEUROSCI, V22, P1468 Tollin DJ, 2005, J NEUROPHYSIOL, V93, P1223, DOI 10.1152/jn.00747.2004 Tollin DJ, 2002, J NEUROSCI, V22, P1454 Valentine DE, 2002, J COMP PHYSIOL A, V188, P89, DOI 10.1007/s00359-001-0275-5 WHITFIEL.IC, 1972, J NEUROPHYSIOL, V35, P718 YIN TCT, 1983, J NEUROPHYSIOL, V50, P1000 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 YIN TCT, 1987, J NEUROPHYSIOL, V58, P562 NR 35 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD NOV PY 2014 VL 317 BP 33 EP 40 DI 10.1016/j.heares.2014.08.007 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AU3XF UT WOS:000345543300005 PM 25261773 ER PT J AU Nishimura, T Okayasu, T Saito, O Shimokura, R Yamashita, A Yamanaka, T Hosoi, H Kitahara, T AF Nishimura, Tadashi Okayasu, Tadao Saito, Osamu Shimokura, Ryota Yamashita, Akinori Yamanaka, Toshiaki Hosoi, Hiroshi Kitahara, Tadashi TI An examination of the effects of broadband air-conduction masker on the speech intelligibility of speech-modulated bone-conduction ultrasound SO HEARING RESEARCH LA English DT Article ID AUDITORY-CORTEX; PERCEPTION; RECOGNITION; HEARING; FREQUENCIES; NOISE AB Ultrasound can be heard by bone-conduction, and speech-modulated bone-conducted ultrasound (BCU) delivers the speech information to the human ear. One of the recognition mechanisms is the demodulation of the signals. Because some of the profoundly deaf can also hear speech-modulated BCU, another mechanism may also contribution to the recognition of speech-modulated BCU. In this study, eight volunteers with normal hearing participated. The intelligibilities of speech-modulated BCU were measured using a numeral word list under masking conditions. Because the masker can mask the demodulated sounds, the evaluation of the masking reveals the contribution of the demodulation to the recognition of speech-modulated BCU. In the current results, the masking of speech-modulated BCU differed from that of original non-modulated speech. Although the masking shifted the recognition curve for the original speech upward, the same results were not observed for the speech-modulated BCU. The masking generated the difference in the correct answers among the words for the speech-modulated BCU. The current results suggested the importance of the envelope of the modulated ultrasonic signal to the recognition under masking condition. Both demodulation and direct ultrasonic stimulation contribute to the recognition of speech-modulated BCU for the normal hearing individuals, and the direct ultrasonic stimulation plays an important role in the recognition for the profoundly deaf. (C) 2014 Elsevier B.V. All rights reserved. C1 [Nishimura, Tadashi; Okayasu, Tadao; Saito, Osamu; Shimokura, Ryota; Yamashita, Akinori; Yamanaka, Toshiaki; Kitahara, Tadashi] Nara Med Univ, Dept Otolaryngol Head & Neck Surg, Kashihara, Nara 6348522, Japan. [Hosoi, Hiroshi] Nara Med Univ, Kashihara, Nara 6348522, Japan. RP Nishimura, T (reprint author), Nara Med Univ, Dept Otolaryngol Head & Neck Surg, 840 Shijo Cho, Kashihara, Nara 6348522, Japan. EM t-nishim@naramed-u.ac.jp FU Japan Society for the Promotion on Science (JSPS) [20791217, 26282130] FX This study was supported by Grant-in-Aid for Young Scientists (B) (20791217) and Grant-in-Aid for Scientific Research (B) (26282130) from the Japan Society for the Promotion on Science (JSPS). CR BELLUCCI RICHARD J., 1962, ANN OTOL RHINOL AND LARYNGOL, V71, P719 CORSO JF, 1963, J ACOUST SOC AM, V35, P1738, DOI 10.1121/1.1918804 Deatherage H., 1954, J ACOUST SOC AM, V26, P582 DIEROFF HG, 1975, ARCH OTO-RHINO-LARYN, V209, P277, DOI 10.1007/BF00456548 DIRKS DD, 1982, J SPEECH HEAR DISORD, V47, P114 Fujimoto K, 2005, HEARING RES, V204, P210, DOI 10.1016/j.heares.2005.02.004 GAVREAU V, 1948, CR HEBD ACAD SCI, V226, P2053 HAEFF AV, 1963, SCIENCE, V139, P590, DOI 10.1126/science.139.3555.590 Hosoi H, 1998, LANCET, V351, P496, DOI 10.1016/S0140-6736(05)78683-9 Imaizumi S, 2001, NEUROREPORT, V12, P583, DOI 10.1097/00001756-200103050-00030 Japan Audiological Society, 2010, AUDIOL JPN, V46, P622 Koizumi T, 2014, HEARING RES, V310, P48, DOI 10.1016/j.heares.2014.01.011 LENHARDT ML, 1991, SCIENCE, V253, P82, DOI 10.1126/science.2063208 Matsui T., 2013, P M ACOUST, V19 Moore BCJ, 2012, J ACOUST SOC AM, V132, P1542, DOI 10.1121/1.4739444 Nishimura T, 2011, HEARING RES, V277, P176, DOI 10.1016/j.heares.2011.01.004 Nishimura T, 2009, ACTA OTO-LARYNGOL, V129, P28, DOI 10.1080/00016480902915707 Nishimura T, 2003, HEARING RES, V175, P171, DOI 10.1016/S0378-5955(02)00735-9 Okamoto Y, 2005, HEARING RES, V208, P107, DOI 10.1016/j.heares.2005.05.007 Okayasu T, 2014, NEUROSCI LETT, V559, P117, DOI 10.1016/j.neulet.2013.11.048 Okayasu T, 2013, NEUROSCI LETT, V539, P71, DOI 10.1016/j.neulet.2013.01.040 Oxenham AJ, 2011, P NATL ACAD SCI USA, V108, P7629, DOI 10.1073/pnas.1015291108 PUMPHREY RJ, 1950, NATURE, V166, P571, DOI 10.1038/166571b0 Shimokura R., 2012, BEHAV SCI RES, V50, P187 Studebaker GA, 1999, J ACOUST SOC AM, V105, P2431, DOI 10.1121/1.426848 Yamashita A., 2009, NEUROREPORT, V21, P119 Yamashita A, 2009, ACTA OTO-LARYNGOL, V129, P34, DOI 10.1080/00016480902926449 NR 27 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD NOV PY 2014 VL 317 BP 41 EP 49 DI 10.1016/j.heares.2014.09.012 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AU3XF UT WOS:000345543300006 PM 25285623 ER PT J AU Stone, MA Moore, BCJ AF Stone, Michael A. Moore, Brian C. J. TI Amplitude-modulation detection by recreational-noise-exposed humans with near-normal hearing thresholds and its medium-term progression SO HEARING RESEARCH LA English DT Article ID DISC-JOCKEYS; BASILAR-MEMBRANE; MUSIC; LOUDNESS; DAMAGE; LEVEL; MODEL; DEGENERATION; NIGHTCLUBS; PERCEPTION AB Noise exposure can affect the functioning of cochlear inner and outer hair cells (IHC/OHC), leading to multiple perceptual changes. This work explored possible changes in detection of amplitude modulation (AM) at three Sensation Levels (SL) for carrier frequencies of 3, 4 and 6 kHz. There were two groups of participants, aged 19 to 24 (Young) and 26 to 35 (Older) years. All had near-normal audiometric thresholds. Participants self-assessed exposure to high-level noise in recreational settings. Each group was sub-grouped into low-noise (LN) or high-noise (HN) exposure. AM detection thresholds were worse for the HN than for the LN sub-group at the lowest SI, for the males only of the Young group and for both genders for the Older group, despite no significant difference in absolute threshold at 3 and 4 kHz between sub-groups. AM detection at the lowest SL, at both 3 and 4 kHz, generally improved with increasing age and increasing absolute threshold, consistent with a recruitment-like process. However, poorer AM detection was correlated with increasing exposure at 3 kHz in the Older group. It is suggested that high-level noise exposure produces both IHC- and OHC-related damage, the balance between the two varying across frequency. However, the use of AM detection offers poor sensitivity as a measure of the effects. (C) 2014 The Authors. Published by Elsevier B.V. C1 [Stone, Michael A.] Univ Manchester, Audiol & Deafness Grp, Sch Psychol Sci, Manchester M13 9PL, Lancs, England. [Stone, Michael A.; Moore, Brian C. J.] Univ Cambridge, Auditory Percept Grp, Dept Expt Psychol, Cambridge CB2 3EB, England. RP Stone, MA (reprint author), Univ Manchester, Audiol & Deafness Grp, Sch Psychol Sci, Manchester M13 9PL, Lancs, England. EM michael.stone@manchester.ac.uk FU MRC (UK) [G0701870]; Central Manchester University Hospitals NHS Foundation Trust Charity; School of Psychological Sciences, University of Manchester FX We thank Mike Eason, Doug McKechnie, Sam Nava, Martin Farrell, and Matthew Mitchard for assistance with data collection. This work was supported by the MRC (UK), grant number G0701870. The first author was supported in preparation of this manuscript by the Central Manchester University Hospitals NHS Foundation Trust Charity and the School of Psychological Sciences, University of Manchester. The changing pattern of IHC and OHC damage with characteristic frequency in the data of Liberman and Dodds (1984) and a similar pattern on our data was pointed out to the first author by Dr Ian C. Bruce. We thank three reviewers for helpful comments on an earlier version of this paper. CR Attias J, 1998, BRIT J AUDIOL, V32, P39, DOI 10.3109/03005364000000049 BORG E, 1995, SCAND AUDIOL, V24, P6 BRADLEY R, 1987, British Journal of Audiology, V21, P119, DOI 10.3109/03005368709077784 Bray A, 2004, J LARYNGOL OTOL, V118, P123 Coles RRA, 2000, CLIN OTOLARYNGOL, V25, P264, DOI 10.1046/j.1365-2273.2000.00368.x DAVIS H, 1950, Acta Otolaryngol Suppl, V88, P1 Davis RI, 2009, EAR HEARING, V30, P628, DOI 10.1097/AUD.0b013e3181b527a8 FASTL H, 1971, ACUSTICA, V25, P350 FAUSTI SA, 1981, J ACOUST SOC AM, V69, P1343, DOI 10.1121/1.385805 Fligor BJ, 2004, EAR HEARING, V25, P513, DOI 10.1097/00003446-200412000-00001 Fowler EP, 1929, ARCHIV OTOLARYNGOL, V10, P624 Furman AC, 2013, J NEUROPHYSIOL, V110, P577, DOI 10.1152/jn.00164.2013 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Hall AJ, 1999, AUDIOLOGY, V38, P277 HALLMO P, 1995, SCAND AUDIOL, V24, P47, DOI 10.3109/01050399509042209 ISO, 1990, AC DET OCC NOIS EXP ISO (International Organization for Standardization), 1999, AC DET OCC NOIS EXP Kohlrausch A, 2000, J ACOUST SOC AM, V108, P723, DOI 10.1121/1.429605 Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 Kumar UA, 2012, NOISE HEALTH, V14, P100, DOI 10.4103/1463-1741.97252 KURAS J E, 1974, Journal of Auditory Research, V14, P51 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Liberman M.C., 1984, HEARING RES, V16, P54 Lin HW, 2011, JARO-J ASSOC RES OTO, V12, P605, DOI 10.1007/s10162-011-0277-0 Liu LJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049550 Long G.R., 1993, CONTRIB PSYCHOL, P59 Lucertini M, 2002, J ACOUST SOC AM, V111, P972, DOI 10.1121/1.1432979 Makary CA, 2011, JARO-J ASSOC RES OTO, V12, P711, DOI 10.1007/s10162-011-0283-2 Moore BCJ, 2004, HEARING RES, V188, P70, DOI 10.1016/S0378-5955(03)00347-2 Moore BCJ, 2007, J ACOUST SOC AM, V121, P1604, DOI 10.1121/1.2431331 Moore BCJ, 1997, J AUDIO ENG SOC, V45, P224 Moore BCJ, 1996, J ACOUST SOC AM, V100, P481, DOI 10.1121/1.415861 Moore B.C.J., 2012, TINNITUS, P187 Moore BCJ, 2014, AUDITORY PROCESSING OF TEMPORAL FINE STRUCTURE: EFFECTS OF AGE AND HEARING LOSS, P1, DOI 10.1142/9064 Potier M, 2009, EAR HEARING, V30, P291, DOI 10.1097/AUD.0b013e31819769fc PUMPLIN J, 1985, J ACOUST SOC AM, V78, P100, DOI 10.1121/1.392571 ROBLES L, 1986, J ACOUST SOC AM, V80, P1364, DOI 10.1121/1.394389 Robles L, 2001, PHYSIOL REV, V81, P1305 Sadhra S, 2002, ANN OCCUP HYG, V46, P455, DOI 10.1093/annhyg/mef051 Santos L, 2007, INT J AUDIOL, V46, P223, DOI 10.1080/14992020601188575 Schaette R, 2011, J NEUROSCI, V31, P13452, DOI 10.1523/JNEUROSCI.2156-11.2011 Schuknecht HF, 1993, PATHOLOGY EAR SHEFT S, 1990, J ACOUST SOC AM, V88, P796, DOI 10.1121/1.399729 Shimokura R, 2012, J ACOUST SOC AM, V132, P1407, DOI 10.1121/1.4740472 Smith P.A., 2000, NOISE HEALTH, V6, P41 SMOORENBURG GF, 1990, ACTA OTO-LARYNGOL, P38 Stone MA, 2008, INT J AUDIOL, V47, P737, DOI 10.1080/14992020802290543 Torre P, 2008, EAR HEARING, V29, P791, DOI 10.1097/AUD.0b013e31817e7409 Vinay, 2010, J ACOUST SOC AM, V128, P3634, DOI 10.1121/1.3500679 Vogel I, 2008, J PEDIATR, V152, P400, DOI 10.1016/j.jpeds.2007.07.009 WARD WD, 1970, J ACOUST SOC AM, V48, P561, DOI 10.1121/1.1912172 WARD WD, 1981, ANN OTO RHINOL LARYN, V90, P584 WEST P D B, 1990, British Journal of Audiology, V24, P89, DOI 10.3109/03005369009077849 Williams W, 2005, INT J AUDIOL, V44, P231, DOI 10.1080/14992020500057673 Worthington DA, 2009, J ACOUST SOC AM, V125, P3733, DOI 10.1121/1.3125798 NR 55 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD NOV PY 2014 VL 317 BP 50 EP 62 DI 10.1016/j.heares.2014.09.005 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AU3XF UT WOS:000345543300007 PM 25260433 ER PT J AU Greene, NT Anbuhl, KL Williams, W Tollin, DJ AF Greene, Nathaniel T. Anbuhl, Kelsey L. Williams, Whitney Tollin, Daniel J. TI The acoustical cues to sound location in the guinea pig (Cavia porcellus) SO HEARING RESEARCH LA English DT Article ID INTERAURAL TIME DIFFERENCES; DIFFERENCE DISCRIMINATION THRESHOLDS; EAR TRANSFER-FUNCTIONS; INFERIOR COLLICULUS; EXTERNAL-EAR; PRESSURE TRANSFORMATION; SUPERIOR COLLICULUS; DIRECTIONAL HEARING; AUDITORY PERIPHERY; BINAURAL MASKING AB There are three main acoustical cues to sound location, each attributable to space- and frequency-dependent filtering of the propagating sound waves by the outer ears, head, and torso: Interaural differences in time (ITD) and level (ILD) as well as monaural spectral shape cues. While the guinea pig has been a common model for studying the anatomy, physiology, and behavior of binaural and spatial hearing, extensive measurements of their available acoustical cues are lacking. Here, these cues were determined from directional transfer functions (DTFs), the directional components of the head-related transfer functions, for 11 adult guinea pigs. In the frontal hemisphere, monaural spectral notches were present for frequencies from similar to 10 to 20 kHz; in general, the notch frequency increased with increasing sound source elevation and in azimuth toward the contralateral ear. The maximum ITDs calculated from low-pass filtered (2 kHz cutoff frequency) DTFs were similar to 250 mu s, whereas the maximum ITD measured with low-frequency tone pips was over 320 mu s. A spherical head model underestimates ITD magnitude under normal ceinditions, but closely approximates values when the pinnae were removed. Interaural level differences (ILDs) strongly depended on location and frequency; maximum ILDs were <10 dB for frequencies <4 kHz and were as large as 40 dB for frequencies > 10 kHz. Removal of the pinna reduced the depth and sharpness of spectral notches, altered the acoustical axis, and reduced the acoustical gain, ITDs, and ILDs; however, spectral shape features and acoustical gain were not completely eliminated, suggesting a substantial contribution of the head and torso in altering the sounds present at the tympanic membrane. (C) 2014 Elsevier B.V. All rights reserved. C1 [Greene, Nathaniel T.; Anbuhl, Kelsey L.; Williams, Whitney; Tollin, Daniel J.] Univ Colorado, Sch Med, Dept Physiol & Biophys, Aurora, CO 80045 USA. [Anbuhl, Kelsey L.; Tollin, Daniel J.] Univ Colorado, Sch Med, Neurosci Training Program, Aurora, CO 80045 USA. [Greene, Nathaniel T.; Tollin, Daniel J.] Univ Colorado, Sch Med, Dept Otolaryngol, Aurora, CO 80045 USA. RP Greene, NT (reprint author), Univ Colorado, Sch Med, Dept Physiol & Biophys, Mail Stop 8307,12800 East 19th Ave, Aurora, CO 80045 USA. EM nathaniel.greene@ucdenver.edu FU National Institutes of Deafness and Other Communicative Disorders (NIDCD) [R01-DC011555, T32HD041697, T32DC012280] FX The authors thank Dr. Kanthaiah Koka for assistance in data collection and analysis, and Alex Ferber and Dr. Andrew Brown for comments on the manuscript. This work was supported by the National Institutes of Deafness and Other Communicative Disorders (NIDCD) grant R01-DC011555 (DJT), T32HD041697 (KLA) and T32DC012280 (NTG). NTG and KLA contributed equally on all aspects of this work. CR Aaronson NL, 2014, J ACOUST SOC AM, V135, P817, DOI 10.1121/1.4861243 Aytekin M, 2004, J ACOUST SOC AM, V116, P3594, DOI [10.1121/1.1811412, 10.1121/1.1811412]] Behrend O, 2004, J NEUROPHYSIOL, V92, P3014, DOI 10.1152/jn.00402.2004 Bierman HS, 2014, J EXP BIOL, V217, P1094, DOI 10.1242/jeb.092866 Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a Bugayevskiy LM, 1995, MAP PROJECTIONS REFE CAIRD DM, 1991, HEARING RES, V57, P91, DOI 10.1016/0378-5955(91)90078-N CALFORD MB, 1984, HEARING RES, V14, P13, DOI 10.1016/0378-5955(84)90064-9 CARLILE S, 1990, J ACOUST SOC AM, V88, P2180, DOI 10.1121/1.400115 CARLILE S, 1987, HEARING RES, V31, P111, DOI 10.1016/0378-5955(87)90117-1 CARLILE S, 1990, J ACOUST SOC AM, V88, P2196, DOI 10.1121/1.400116 Carr CE, 2009, J NEUROSCI, V29, P7978, DOI 10.1523/JNEUROSCI.6154-08.2009 CHEN QC, 1995, J EXP BIOL, V198, P2007 CLEMENTS M, 1978, J COMP PHYSIOL PSYCH, V92, P34, DOI 10.1037/h0077424 COLES RB, 1986, J EXP BIOL, V121, P371 COLES RB, 1988, J COMP PHYSIOL A, V163, P117, DOI 10.1007/BF00612002 Duda RO, 1998, J ACOUST SOC AM, V104, P3048, DOI 10.1121/1.423886 Ebert CS, 2008, HEARING RES, V235, P134, DOI 10.1016/j.heares.2007.11.003 Firzlaff U, 2003, HEARING RES, V181, P27, DOI 10.1016/S0378-5955(03)00164-3 Fuzessery ZM, 1996, HEARING RES, V95, P1, DOI 10.1016/0378-5955(95)00223-5 Gilbert S.G., 1981, PICTORAL ANATOMY CAT Harper NS, 2004, NATURE, V430, P682, DOI 10.1038/nature02768 HARRISON JM, 1970, J ACOUST SOC AM, V47, P1509, DOI 10.1121/1.1912082 HEFFNER R, 1971, J ACOUST SOC AM, V49, P1888, DOI 10.1121/1.1912596 Heffner R S, 1997, Acta Otolaryngol Suppl, V532, P46 HEFFNER RS, 1988, HEARING RES, V36, P221, DOI 10.1016/0378-5955(88)90064-0 HEFFNER RS, 1994, HEARING RES, V80, P247, DOI 10.1016/0378-5955(94)90116-3 HOUBEN D, 1979, J ACOUST SOC AM, V66, P1057, DOI 10.1121/1.383377 IRVINE DRF, 1987, HEARING RES, V26, P267, DOI 10.1016/0378-5955(87)90063-3 IRVING R, 1967, J COMP NEUROL, V130, P77, DOI 10.1002/cne.901300105 JEN PHS, 1988, HEARING RES, V34, P101, DOI 10.1016/0378-5955(88)90098-6 Jiang D, 1997, J NEUROPHYSIOL, V77, P3085 Jones HG, 2011, JARO-J ASSOC RES OTO, V12, P127, DOI 10.1007/s10162-010-0242-3 Keating P., 2013, JARO-J ASSOC RES OTO, V14, P561 Keller CH, 1998, HEARING RES, V118, P13, DOI 10.1016/S0378-5955(98)00014-8 KELLY JB, 1980, J NEUROPHYSIOL, V44, P1161 Kim DO, 2010, JARO-J ASSOC RES OTO, V11, P541, DOI 10.1007/s10162-010-0221-8 KING AJ, 1983, J PHYSIOL-LONDON, V342, P361 Koka K, 2008, J ACOUST SOC AM, V123, P4297, DOI 10.1121/1.2916587 Koka K, 2011, HEARING RES, V272, P135, DOI 10.1016/j.heares.2010.10.007 KUHN GF, 1977, J ACOUST SOC AM, V62, P157, DOI 10.1121/1.381498 Lauer AM, 2011, JARO-J ASSOC RES OTO, V12, P633, DOI 10.1007/s10162-011-0279-y Leong P., 1998, J NEUROSCI METH, V80, P191 Lesica NA, 2010, J NEUROSCI, V30, P11696, DOI 10.1523/JNEUROSCI.0846-10.2010 Liu LF, 2006, J NEUROPHYSIOL, V95, P1926, DOI 10.1152/jn.00497.2005 Lupo E.J., 2011, HEARING RES, V272, P30 Maki K, 2005, J ACOUST SOC AM, V118, P872, DOI 10.1121/1.1944647 MARTIN RL, 1987, HEARING RES, V30, P239, DOI 10.1016/0378-5955(87)90140-7 McAlpine D, 2001, NAT NEUROSCI, V4, P396, DOI 10.1038/86049 McAlpine D, 1996, HEARING RES, V97, P136 McAlpine D, 2003, TRENDS NEUROSCI, V26, P347, DOI 10.1016/S0166-2236(03)00140-1 MIDDLEBROOKS JC, 1989, J ACOUST SOC AM, V86, P89, DOI 10.1121/1.398224 MIDDLEBROOKS JC, 1990, J ACOUST SOC AM, V87, P2149, DOI 10.1121/1.399183 Middlebrooks JC, 1999, J ACOUST SOC AM, V106, P1480, DOI 10.1121/1.427176 MIDDLEBROOKS JC, 1981, J NEUROSCI, V1, P107 MILLS AW, 1960, J ACOUST SOC AM, V32, P132, DOI 10.1121/1.1907864 MOISEFF A, 1989, J COMP PHYSIOL A, V164, P629, DOI 10.1007/BF00614505 MOORE DR, 1979, ACTA OTO-LARYNGOL, V87, P434, DOI 10.3109/00016487909126447 MUSICANT AD, 1990, J ACOUST SOC AM, V87, P757, DOI 10.1121/1.399545 OBRIST MK, 1993, J EXP BIOL, V180, P119 PALMER AR, 1982, NATURE, V299, P248, DOI 10.1038/299248a0 PALMER AR, 1990, HEARING RES, V50, P71, DOI 10.1016/0378-5955(90)90034-M PALMER AR, 1985, HEARING RES, V17, P267, DOI 10.1016/0378-5955(85)90071-1 Palmer AR, 2007, HEARING RES, V223, P105, DOI 10.1016/j.heares.2006.10.005 PHILLIPS DP, 1982, HEARING RES, V8, P13, DOI 10.1016/0378-5955(82)90031-4 Populin LC, 1998, J NEUROSCI, V18, P2147 RICE JJ, 1992, HEARING RES, V58, P132, DOI 10.1016/0378-5955(92)90123-5 RIFE DD, 1989, J AUDIO ENG SOC, V37, P419 ROTH GL, 1980, J ACOUST SOC AM, V68, P1643, DOI 10.1121/1.385196 Schnupp J.W., 2003, J ACOUST SOC AM, V113, P2021 Scott BH, 2007, J NEUROSCI, V27, P6489, DOI 10.1523/JNEUROSCI.0016-07.2007 Shackleton TM, 2003, J NEUROSCI, V23, P716 Shackleton TM, 2010, J NEUROPHYSIOL, V104, P189, DOI 10.1152/jn.00267.2010 Shaw E. A. G., 1974, HDB SENSORY PHYSL, P455 SINYOR A, 1973, J ACOUST SOC AM, V54, P916, DOI 10.1121/1.1914346 Skottun BC, 2001, P NATL ACAD SCI USA, V98, P14050, DOI 10.1073/pnas.241513998 Slee SJ, 2010, HEARING RES, V260, P96, DOI 10.1016/j.heares.2009.12.001 Spezio ML, 2000, HEARING RES, V144, P73, DOI 10.1016/S0378-5955(00)00050-2 Sterbing SJ, 2002, EXP BRAIN RES, V142, P570, DOI 10.1007/s00221-001-0963-y Sterbing SJ, 2003, J NEUROPHYSIOL, V90, P2648, DOI 10.1152/jn.00348.2003 Tollin DJ, 2003, J NEUROPHYSIOL, V90, P525, DOI 10.1152/jn.00107.2003 Tollin DJ, 2009, J ACOUST SOC AM, V125, P980, DOI 10.1121/1.3058630 Tollin DJ, 2013, J NEUROPHYSIOL, V109, P1658, DOI 10.1152/jn.00358.2012 Tollin DJ, 2009, J ACOUST SOC AM, V126, P3125, DOI 10.1121/1.3257234 Tsai JJ, 2010, J NEUROPHYSIOL, V103, P875, DOI 10.1152/jn.00911.2009 WAKEFORD OS, 1974, J ACOUST SOC AM, V55, P649, DOI 10.1121/1.1914577 WIGHTMAN FL, 1989, J ACOUST SOC AM, V85, P858, DOI 10.1121/1.397557 Woodworth R. S., 1938, EXPT PSYCHOL WOTTON JM, 1995, J ACOUST SOC AM, V98, P1423, DOI 10.1121/1.413410 Xu L, 2000, J ACOUST SOC AM, V107, P1451, DOI 10.1121/1.428432 Young ED, 1996, J ACOUST SOC AM, V99, P3064, DOI 10.1121/1.414883 Zohar O, 2011, J NEUROSCI, V31, P9192, DOI 10.1523/JNEUROSCI.6193-10.2011 NR 92 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD OCT PY 2014 VL 316 BP 1 EP 15 DI 10.1016/j.heares.2014.07.004 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AS0EO UT WOS:000343951300001 PM 25051197 ER PT J AU Oetting, D Brand, T Ewert, SD AF Oetting, Dirk Brand, Thomas Ewert, Stephan D. TI Optimized loudness-function estimation for categorical loudness scaling data SO HEARING RESEARCH LA English DT Article ID ADAPTIVE PROCEDURE; GROWTH FUNCTIONS; HEARING-AIDS; RELIABILITY; THRESHOLD; AUDIOMETRY; LISTENERS; BANDWIDTH; SIGNALS; SPEECH AB Individual loudness perception can be assessed using categorical loudness scaling (CLS). The procedure does not require any training and is frequently used in clinics. The goal of this study was to investigate different methods of loudness-function estimation from CLS data in terms of their test-retest behaviour and to suggest an improved method compared to Brand and Hohmann (2002) for adaptive CLS. Four different runs of the CLS procedure were conducted using 13 normal-hearing and 11 hearing-impaired listeners. The following approaches for loudness-function estimation (fitting) by minimising the error between the data and loudness function were compared: Errors were defined both in level and in loudness direction, respectively. The hearing threshold level (HTL) was extracted from CLS by splitting the responses into an audible and an inaudible category. The extracted HTL was used as a fixed starting point of the loudness function. The uncomfortable loudness level (UCL) was estimated if presentation levels were not sufficiently high to yield responses in the upper loudness range, as often observed in practise. Compared to the original fitting method, the modified estimation of the HTL was closer to the pure-tone audiometric threshold. Results of a computer simulation for UCL estimation showed that the estimation error was reduced for data sets with sparse or absent responses in the upper loudness range. Overall, the suggested modifications lead to a better test-retest behaviour. If CLS data are highly consistent over the whole loudness range, all fitting methods lead to almost equal loudness functions. A considerable advantage of the suggested fitting method is observed for data sets where the responses either show high standard deviations or where responses are not present in the upper loudness range. Both cases regularly occur in clinical practice. (C) 2014 Elsevier B.V. All rights reserved. C1 [Oetting, Dirk] Fraunhofer IDMT, Project Grp Hearing Speech & Audio Technol, D-26129 Oldenburg, Germany. [Oetting, Dirk] Cluster Excellence Hearing4all, D-26129 Oldenburg, Germany. [Oetting, Dirk; Brand, Thomas; Ewert, Stephan D.] Carl von Ossietzky Univ Oldenburg, D-26111 Oldenburg, Germany. [Oetting, Dirk; Brand, Thomas; Ewert, Stephan D.] Carl von Ossietzky Univ Oldenburg, Cluster Excellence Hearing4all, D-26111 Oldenburg, Germany. RP Oetting, D (reprint author), Fraunhofer IDMT, Project Grp Hearing Speech & Audio Technol, Marie Curie Str 2, D-26129 Oldenburg, Germany. EM dirk.oetting@idmt.fraunhofer.de FU BMBF ("Modellbasierte Horsysteme") [13EZ1127D]; Deutsche Forschungsgemeinschaft ("Individualisierte Horakustik", TPE) [DFG FOR 1732] FX We are very grateful to Birger Kollmeier for his substantial support. We thank Ray Meddis for comments on earlier versions and discussions. This work was supported by the BMBF 13EZ1127D ("Modellbasierte Horsysteme") and the Deutsche Forschungsgemeinschaft (DFG FOR 1732 "Individualisierte Horakustik", TPE). CR ALLEN JB, 1990, J ACOUST SOC AM, V88, P745, DOI 10.1121/1.399778 Al-Salim SC, 2010, EAR HEARING, V31, P567, DOI 10.1097/AUD.0b013e3181da4d15 American Speech-Language-Hearing Association, 2005, GUID MAN PUR TON THR [Anonymous], 2006, 16832 ISO [Anonymous], 2010, 536 ANSI Anweiler AK, 2006, J ACOUST SOC AM, V119, P2919, DOI 10.1121/1.2184224 ATHERLEY GR, 1963, BRIT J IND MED, V20, P231 Bentler RA, 2001, EAR HEARING, V22, P58, DOI 10.1097/00003446-200102000-00006 Bevington P R, 2003, DATA REDUCTION ERROR Bland JM, 1996, BRIT MED J, V313, P744 Brand T., 2007, 8 EFAS C C GER SOC A Brand T, 2002, J ACOUST SOC AM, V112, P1597, DOI 10.1121/1.1502902 Brand T, 2001, AUDIOLOGY, V40, P92 Brand T., 2000, THESIS U OLDENBURG G Burns W., 1957, J ACOUST SOC AM, V4, P1274 Buus S, 1998, J ACOUST SOC AM, V104, P399, DOI 10.1121/1.423295 Cox RM, 1997, EAR HEARING, V18, P388, DOI 10.1097/00003446-199710000-00004 Dreschler W.A., 2008, J ACOUST SOC AM, V123, P3714, DOI 10.1121/1.2935153 Elberling C., 1993, RECENT DEV HEARING I, P99 Elberling C, 1999, J Am Acad Audiol, V10, P248 Ewert S.D., 2013, I C AC AIA DAGA, P1326 Ewert S.D., 2012, P ISAAR 2011 SPEECH, P393 Fletcher H, 1933, J ACOUST SOC AM, V5, P82, DOI 10.1121/1.1915637 FOWLER EP, 1950, LARYNGOSCOPE, V60, P680 Gallego S, 1999, ACTA OTO-LARYNGOL, V119, P234, DOI 10.1080/00016489950181738 Heeren W, 2013, J ACOUST SOC AM, V133, pEL314, DOI 10.1121/1.4795217 HELLBRUCK J, 1985, PSYCHOL BEITR, V27, P494 HELLER O, 1985, PSYCHOL BEITR, V27, P478 Herzke T, 2005, EURASIP J APPL SIG P, V2005, P3034, DOI 10.1155/ASP.2005.3034 Hohmann V., 1995, Audiologische Akustik, V34 Hohmann V., 1997, HORFLACHENSKALIERUNG, P81 HorTech, 2010, OP MAN CAT LOUDN SCA HorTech, 2013, BED KAT LAUTH VERS 1 Humes L E, 1996, Trends Amplif, V1, P121, DOI 10.1177/108471389600100402 Jenstad LM, 1997, EAR HEARING, V18, P401, DOI 10.1097/00003446-199710000-00005 Jesteadt W., 2013, P M AC AC SOC AM Jurgens T, 2011, HEARING RES, V280, P177, DOI 10.1016/j.heares.2011.05.016 Keidser G, 1999, SCAND AUDIOL, V28, P3, DOI 10.1080/010503999424860 Keidser G., 2008, AUDIOL RES, V1, P88 Keller J.N., 2006, THESIS WASHINGTON U Kiessling J, 2001, SCAND AUDIOL, V30, P57, DOI 10.1080/010503901300007074 Kiessling J, 1996, SCAND AUDIOL, V25, P153, DOI 10.3109/01050399609047998 Kollmeier B., 1997, HORFLACHENSKALIERUNG Kreikemeier S., 2011, THESIS U GIEBEN Launer S., 1994, EXPT MODELLVORSTELLU, P1409 Launer S., 1996, AUDIOL AKUST, V4, P156 Launer S., 1995, THESIS U OLDENBURG Lecluyse W, 2009, J ACOUST SOC AM, V126, P2570, DOI 10.1121/1.3238248 Pascoe D.P., 1988, HEARING AID FITTING, P129 Polonenko MJ, 2010, INT J AUDIOL, V49, P550, DOI 10.3109/14992021003713122 Rasmussen A.N., 1998, SCAND AUDIOL, V27, P161 Rennies J, 2013, ACTA ACUST UNITED AC, V99, P268, DOI 10.3813/AAA.918609 Ricketts TA, 1996, J ACOUST SOC AM, V99, P2281, DOI 10.1121/1.415415 Robinson K, 1996, EAR HEARING, V17, P120, DOI 10.1097/00003446-199604000-00005 Scharf B., 2007, LOUDNESS ENCY ACOUST, V3, P1481 Smeds K, 2011, SPRINGER HANDB AUDIT, V37, P223, DOI 10.1007/978-1-4419-6712-1_9 Stenfelt S, 2013, HEARING RES, V301, P85, DOI 10.1016/j.heares.2013.03.010 Stevens SS, 1936, PSYCHOL REV, V43, P405, DOI 10.1037/h0058773 STEVENS SS, 1959, J ACOUST SOC AM, V31, P995, DOI 10.1121/1.1907827 Theelen-van den Hoek FL, 2014, INT J AUDIOL, V53, P409, DOI 10.3109/14992027.2013.879338 Valente M, 1997, Trends Amplif, V2, P6, DOI 10.1177/108471389700200102 van Esch TEM, 2013, INT J AUDIOL, V52, P305, DOI 10.3109/14992027.2012.759665 NR 62 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD OCT PY 2014 VL 316 BP 16 EP 27 DI 10.1016/j.heares.2014.07.003 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AS0EO UT WOS:000343951300002 PM 25058812 ER PT J AU Puschmann, S Sandmann, P Bendixen, A Thiel, CM AF Puschmann, Sebastian Sandmann, Pascale Bendixen, Alexandra Thiel, Christiane M. TI Age-related hearing loss increases cross-modal distractibility SO HEARING RESEARCH LA English DT Article ID COCHLEAR-IMPLANT USERS; AUDITORY-CORTEX; SPEECH-PERCEPTION; LISTENING EFFORT; VISUAL-STIMULI; DEAF SUBJECTS; OLDER-ADULTS; PLASTICITY; IMPAIRMENT; MOTION AB Recent electrophysiological studies have provided evidence that changes in multisensory processing in auditory cortex cannot only be observed following extensive hearing loss, but also in moderately hearing-impaired subjects. How the reduced auditory input affects audio-visual interactions is however largely unknown. Here we used a cross-modal distraction paradigm to investigate multisensory processing in elderly participants with an age-related high-frequency hearing loss as compared to young and elderly subjects with normal hearing. During the experiment, participants were simultaneously presented with independent streams of auditory and visual input and were asked to categorize either the auditory or visual information while ignoring the other modality. Unisensory sequences without any cross-modal input served as control conditions to assure that all participants were able to perform the task. While all groups performed similarly in these unisensory conditions, hearing-impaired participants showed significantly increased error rates when confronted with distracting cross-modal stimulation. This effect could be observed in both the auditory and the visual task. Supporting these findings, an additional regression analysis indicted that the degree of high-frequency hearing loss significantly modulates cross-modal visual distractibility in the auditory task. These findings provide new evidence that already a moderate sub-clinical hearing loss, a common phenomenon in the elderly population, affects the processing of audio-visual information. (C) 2014 Elsevier B.V. All rights reserved. C1 [Puschmann, Sebastian; Thiel, Christiane M.] Carl von Ossietzky Univ Oldenburg, European Med Sch, Cluster Excellence Hearing4all, Biol Psychol Lab,Dept Psychol, D-26111 Oldenburg, Germany. [Sandmann, Pascale] Hannover Med Sch, Cluster Excellence Hearing4all, Dept Neurol, Cent Auditory Diagnost Lab, Hannover, Germany. [Bendixen, Alexandra] Carl von Ossietzky Univ Oldenburg, European Med Sch, Cluster Excellence Hearing4all, Auditory Psychophysiol Lab,Dept Psychol, D-26111 Oldenburg, Germany. [Bendixen, Alexandra; Thiel, Christiane M.] Carl von Ossietzky Univ Oldenburg, Res Ctr Neurosensory Sci, D-26111 Oldenburg, Germany. RP Puschmann, S (reprint author), Carl von Ossietzky Univ Oldenburg, European Med Sch, Cluster Excellence Hearing4all, Biol Psychol Lab,Dept Psychol, D-26111 Oldenburg, Germany. EM sebastian.puschmann@uni-oldenburg.de FU German Research Foundation (Deutsche Forschungsgemeinschaft, DFG; Cluster of Excellence "Hearing4a11) [EXC 1077/1] FX This work was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG; Cluster of Excellence EXC 1077/1 "Hearing4a11). The authors wish to thank the Horzentrum Oldenburg for their support in recruiting participants as well as Maria Schmolling and Marita Weerts-Eden for their assistance in data acquisition. The helpful comments of two anonymous reviewers are gratefully acknowledged. CR Armstrong BA, 2002, COGNITIVE BRAIN RES, V14, P422, DOI 10.1016/S0926-6410(02)00211-2 Auer Jr T.E., 2007, NEUROREPORT, V18, P645 Baskent D, 2011, EAR HEARING, V32, P582, DOI 10.1097/AUD.0b013e31820fca23 Bavelier D, 2002, NAT REV NEUROSCI, V3, P443, DOI 10.1038/nrn848 Bendixen A, 2010, NEUROPSYCHOLOGIA, V48, P2130, DOI 10.1016/j.neuropsychologia.2010.04.004 Bergeson TR, 2010, RESTOR NEUROL NEUROS, V28, P157, DOI 10.3233/RNN-2010-0522 Brault Lynn M, 2010, Hum Factors, V52, P479 Butler Blake E, 2013, Front Syst Neurosci, V7, P92, DOI 10.3389/fnsys.2013.00092 Campbell J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0090594 Cardin V, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2463 Champoux F, 2009, NEUROPSYCHOLOGIA, V47, P17, DOI 10.1016/j.neuropsychologia.2008.08.028 Desai S, 2008, J ACOUST SOC AM, V123, P428, DOI 10.1121/1.2816573 Dormal G, 2011, J NEUROPHYSIOL, V105, P2627, DOI 10.1152/jn.00109.2011 Fine I, 2005, J COGNITIVE NEUROSCI, V17, P1621, DOI 10.1162/089892905774597173 Finney EM, 2001, NAT NEUROSCI, V4, P1171, DOI 10.1038/nn763 Griffiths TD, 2004, NAT REV NEUROSCI, V5, P887, DOI 10.1038/nrn1538 Guerreiro MJS, 2011, PSYCHOL AGING, V26, P415, DOI 10.1037/a0021507 Guerreiro MJS, 2013, ACTA PSYCHOL, V142, P184, DOI 10.1016/j.actpsy.2012.11.007 Hauthal N, 2013, ADV COGN PSYCHOL, V9, P53, DOI [10.2478/v10053-008-0131-z, 10.5709/acp-0131-z] Huddleston WE, 2003, PERCEPTION, V32, P1141, DOI 10.1068/p5077 Kalbe E, 2004, INT J GERIATR PSYCH, V19, P136, DOI 10.1002/gps.1042 Kavcic V, 2013, INT J PSYCHOPHYSIOL, V89, P78, DOI 10.1016/j.ijpsycho.2013.05.012 Kral A, 2007, INT J AUDIOL, V46, P479, DOI 10.1080/14992020701383027 Lambertz N, 2005, COGNITIVE BRAIN RES, V25, P884, DOI 10.1016/j.cogbrainres.2005.09.010 Landry S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033113 Landry SP, 2013, PSYCHOL SCI, V24, P1260, DOI 10.1177/0956797612471142 Liu XZ, 2007, J PATHOL, V211, P188, DOI 10.1002/path.2102 Lomber SG, 2010, NAT NEUROSCI, V13, P1421, DOI 10.1038/nn.2653 Merabet LB, 2010, NAT REV NEUROSCI, V11, P44, DOI 10.1038/nrn2758 Meredith MA, 2012, NEUROSCIENCE, V214, P136, DOI 10.1016/j.neuroscience.2012.04.001 Mitchell TV, 2007, INT J AUDIOL, V46, P500, DOI 10.1080/14992020701383050 Musacchia G, 2009, EAR HEARING, V30, P505, DOI 10.1097/AUD.0b013e3181a7f5b7 Pichora-Fuller M Kathleen, 2006, Trends Amplif, V10, P29, DOI 10.1177/108471380601000103 Picou EM, 2011, J SPEECH LANG HEAR R, V54, P1416, DOI 10.1044/1092-4388(2011/10-0154) Picou EM, 2013, EAR HEARING, V34, pe52, DOI 10.1097/AUD.0b013e31827f0431 Rönnberg Jerker, 2013, Front Syst Neurosci, V7, P31, DOI 10.3389/fnsys.2013.00031 Rouger J, 2012, HUM BRAIN MAPP, V33, P1929, DOI 10.1002/hbm.21331 Rouger J, 2007, P NATL ACAD SCI USA, V104, P7295, DOI 10.1073/pnas.0609419104 Rouger J, 2008, BRAIN RES, V1188, P87, DOI 10.1016/j.brainres.2007.10.049 Sadato N, 2005, CEREB CORTEX, V15, P1113, DOI 10.1093/cercor/bhh210 Sandmann P, 2012, BRAIN, V135, P555, DOI 10.1093/brain/awr329 Tremblay C, 2010, RESTOR NEUROL NEUROS, V28, P283, DOI 10.3233/RNN-2010-0498 Tye-Murray N, 2007, EAR HEARING, V28, P656, DOI 10.1097/AUD.0b013e31812f7185 Van Eyken E, 2007, AUDIOL NEURO-OTOL, V12, P345, DOI 10.1159/000106478 Wagemans J, 2012, PSYCHOL BULL, V138, P1172, DOI 10.1037/a0029333 World Medical Association, 2008, ETH PRINC MED RES IN Zahnert T, 2011, DTSCH ARZTEBL INT, V108, P433, DOI 10.3238/arztebl.2011.0433 NR 47 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD OCT PY 2014 VL 316 BP 28 EP 36 DI 10.1016/j.heares.2014.07.005 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AS0EO UT WOS:000343951300003 PM 25080386 ER PT J AU Yang, M Chen, HJ Liu, B Huang, ZC Feng, Y Li, J Chen, JY Zhang, LL Ji, H Feng, X Zhu, X Teng, GJ AF Yang, Ming Chen, Hua-Jun Liu, Bin Huang, Zhi-Chun Feng, Yuan Li, Jing Chen, Jing-Ya Zhang, Ling-Ling Ji, Hui Feng, Xu Zhu, Xin Teng, Gao-Jun TI Brain structural and functional alterations in patients with unilateral hearing loss SO HEARING RESEARCH LA English DT Article ID VOXEL-BASED MORPHOMETRY; OLDER-ADULTS; DIFFUSION ANISOTROPY; AUDITORY-CORTEX; EARLY DEAFNESS; SIGN-LANGUAGE; DEFAULT-MODE; CHILDREN; NETWORKS; CONNECTIVITY AB Alterations of brain structure and functional connectivity have been described in patients with hearing impairments due to distinct pathogenesis; however, the influence of unilateral hearing loss (UHL) On brain morphology and regional brain activity is still not completely understood. In this study, we aim to investigate regional brain structural and functional alterations in patients with UHL. T1-weighted volumetric images and task-free fMRIs were acquired from 14 patients with right-sided UHL (pure tone average >= 40 dB HL) and 19 healthy controls. Hearing ability was assessed by pure tone audiometry. Voxel-based morphometry (VBM) was performed to detect brain regions with changed gray matter volume or white matter volume in UHL The amplitude of low-frequency fluctuation (ALFF) was calculated to analyze brain activity at the baseline and was compared between two groups. Compared with controls, UHL patients showed decreased gray matter volume in bilateral posterior cingulate gyrus and precuneus, left superior/middle/inferior temporal gyrus, and right parahippocampal gyrus and lingual gyrus. Meanwhile, patients showed significantly decreased ALFF in bilateral precuneus, left inferior parietal lobule, and right inferior frontal gyrus and insula and increased ALFF in right inferior and middle temporal gyrus. These findings suggest that chronic UHL could induce brain morphological changes and is associated with aberrant baseline brain activity. (C) 2014 Elsevier B.V. All rights reserved. C1 [Yang, Ming; Chen, Hua-Jun; Liu, Bin; Feng, Yuan; Li, Jing; Chen, Jing-Ya; Zhang, Ling-Ling; Teng, Gao-Jun] Southeast Univ, Zhong Da Hosp, Dept Radiol, Nanjing 210009, Jiangsu, Peoples R China. [Huang, Zhi-Chun; Ji, Hui; Feng, Xu; Zhu, Xin] Southeast Univ, Dept Otorhinolaryngol & Head Neck Surg, Nanjing 210009, Jiangsu, Peoples R China. RP Yang, M (reprint author), Southeast Univ, Zhong Da Hosp, Dept Radiol, Nanjing 210009, Jiangsu, Peoples R China. EM yangming19710217@163.com; gjteng@vip.sina.com FU project of the excellent teachers of Jiangsu Provincial Department of Education; National Science Foundation of China [30970808]; overseas great teacher project of Southeast University FX The study was supported by the project of the excellent teachers of Jiangsu Provincial Department of Education and was partly supported by National Science Foundation of China (Grant No. 30970808) and the overseas great teacher project of Southeast University. CR Ashburner J, 2005, NEUROIMAGE, V26, P839, DOI 10.1016/j.neuroimage.2005.02.018 Ashburner J, 2007, NEUROIMAGE, V38, P95, DOI 10.1016/j.neuroimage.2007.07.007 Bavelier D, 2001, J NEUROSCI, V21, P8931 Boi R, 2012, GERIATR GERONTOL INT, V12, P440, DOI 10.1111/j.1447-0594.2011.00789.x Borton SA, 2010, AM J AUDIOL, V19, P61, DOI [10.1044/1059-0889(2010/07-0043), 10.1044/1059-0889(2010/07-0043] Boyen K, 2013, HEARING RES, V295, P67, DOI 10.1016/j.heares.2012.02.010 Burton H, 2012, BMC NEUROSCI, V13, DOI 10.1186/1471-2202-13-3 Chang YM, 2004, NEUROREPORT, V15, P1699, DOI 10.1097/01.wnr.0000134584.10207.1a Chilosi AM, 2010, DEV MED CHILD NEUROL, V52, P856, DOI 10.1111/j.1469-8749.2010.03621.x Emmorey K, 2003, P NATL ACAD SCI USA, V100, P10049, DOI 10.1073/pnas.1730169100 Fetterman BL, 1996, AM J OTOL, V17, P529 Fortnum HM, 2002, INT J AUDIOL, V41, P170, DOI 10.3109/14992020209077181 Gaab N, 2008, HUM BRAIN MAPP, V29, P858, DOI 10.1002/hbm.20578 Han Y, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0028664 Hu SW, 2010, NEUROIMAGE, V49, P3027, DOI 10.1016/j.neuroimage.2009.11.051 Husain E.T., 2014, HEARING RES, V307, P153 Husain FT, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026639 Husain FT, 2011, BRAIN RES, V1369, P74, DOI 10.1016/j.brainres.2010.10.095 Kiely KM, 2012, J GERONTOL A-BIOL, V67, P997, DOI 10.1093/gerona/gls066 Kim DJ, 2009, NEUROREPORT, V20, P1032, DOI 10.1097/WNR.0b013e32832e0cdd Koravand A, 2013, CLIN NEUROPHYSIOL, V124, P1439, DOI 10.1016/j.clinph.2013.01.016 Kuhn M, 2011, TRENDS AMPLIF, V15, P91, DOI 10.1177/1084713811408349 Langers DRM, 2011, NEUROIMAGE, V55, P1617, DOI 10.1016/j.neuroimage.2011.01.019 Li JH, 2012, BRAIN RES, V1430, P35, DOI 10.1016/j.brainres.2011.09.057 Li YY, 2013, CEREB CORTEX, V23, P1988, DOI 10.1093/cercor/bhs185 Lin FR, 2011, J GERONTOL A-BIOL, V66, P1131, DOI 10.1093/gerona/glr115 Lin FR, 2013, JAMA INTERN MED, V173, P293, DOI 10.1001/jamainternmed.2013.1868 Lin MY, 2004, J AM GERIATR SOC, V52, P1996, DOI 10.1111/j.1532-5415.2004.52554.x Lin Y, 2008, J MAGN RESON IMAGING, V28, P598, DOI 10.1002/jmri.21464 Lorenz I, 2009, NEUROSCI LETT, V453, P225, DOI 10.1016/j.neulet.2009.02.028 Mantini D, 2007, P NATL ACAD SCI USA, V104, P13170, DOI 10.1073/pnas.0700668104 Menon V, 2010, BRAIN STRUCT FUNCT, V214, P655, DOI 10.1007/s00429-010-0262-0 Meyer M, 2007, RESTOR NEUROL NEUROS, V25, P335 Moore JK, 1997, ANN OTO RHINOL LARYN, V106, P385 Musacchia G, 2009, EAR HEARING, V30, P505, DOI 10.1097/AUD.0b013e3181a7f5b7 Nelson SM, 2010, BRAIN STRUCT FUNCT, V214, P669, DOI 10.1007/s00429-010-0260-2 Noppeney U, 2002, NEUROIMAGE, V15, P917, DOI 10.1006/nimg.2001.1016 Oakes TR, 2007, NEUROIMAGE, V34, P500, DOI 10.1016/j.neuroimage.2006.10.007 Oates PA, 2002, EAR HEARING, V23, P399, DOI 10.1097/01.AUD.0000034777.12562.31 Ojemann GA, 2002, NAT NEUROSCI, V5, P64, DOI 10.1038/nn785 Price CJ, 2000, J ANAT, V197, P335, DOI 10.1046/j.1469-7580.2000.19730335.x Raichle ME, 2001, P NATL ACAD SCI USA, V98, P676, DOI 10.1073/pnas.98.2.676 Ronnberg J, 2011, J SPEECH LANG HEAR R, V54, P705, DOI 10.1044/1092-4388(2010/09-0088) Schmidt SA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0076488 Schneider P, 2002, NAT NEUROSCI, V5, P688, DOI 10.1038/nn871 SELEMON LD, 1988, J NEUROSCI, V8, P4049 Shibata DK, 2007, AM J NEURORADIOL, V28, P243 Skudlarski P, 2010, BIOL PSYCHIAT, V68, P61, DOI 10.1016/j.biopsych.2010.03.035 Smith SM, 2009, NEUROIMAGE, V44, P83, DOI 10.1016/j.neuroimage.2008.03.061 Surprenant Aimee M, 2014, Evid Based Nurs, V17, P60, DOI 10.1136/eb-2013-101375 Talavage TM, 2014, HEARING RES, V307, P4, DOI 10.1016/j.heares.2013.09.009 Thai-Van H., 2009, ACTA OTO-LARYNGOL, V130, P333 Tibbetts K, 2011, OTOLARYNG HEAD NECK, V144, P602, DOI 10.1177/0194599810394954 Tomasi D, 2012, MOL PSYCHIATR, V17, P841, DOI 10.1038/mp.2011.177 Wang ZQ, 2011, HUM BRAIN MAPP, V32, P1720, DOI 10.1002/hbm.21140 Weisberg J, 2012, NEUROIMAGE, V60, P661, DOI 10.1016/j.neuroimage.2011.12.031 Yang H, 2007, NEUROIMAGE, V36, P144, DOI 10.1016/j.neuroimage.2007.01.054 Zang YF, 2007, BRAIN DEV-JPN, V29, P83, DOI 10.1016/j.braindev.2006.07.002 Zielinski BA, 2010, P NATL ACAD SCI USA, V107, P18191, DOI 10.1073/pnas.1003109107 NR 59 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD OCT PY 2014 VL 316 BP 37 EP 43 DI 10.1016/j.heares.2014.07.006 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AS0EO UT WOS:000343951300004 PM 25093284 ER PT J AU Hughes, ML Baudhuin, JL Goehring, JL AF Hughes, Michelle L. Baudhuin, Jacquelyn L. Goehring, Jenny L. TI The relation between auditory-nerve temporal responses and perceptual rate integration in cochlear implants SO HEARING RESEARCH LA English DT Article ID PULSATILE ELECTRICAL-STIMULATION; PULSE TRAINS; TELEMETRY; FIBERS; USERS; ECAP; THRESHOLDS; RECIPIENTS; AMPLITUDE; STRATEGY AB The purpose of this study was to examine auditory-nerve temporal response properties and their relation to psychophysical threshold for electrical pulse trains of varying rates ("rate integration"). The primary hypothesis was that better rate integration (steeper slope) would be correlated with smaller decrements in ECAP amplitude as a function of stimulation rate (shallower slope of the amplitude-rate function), reflecting a larger percentage of the neural population contributing more synchronously to each pulse in the train. Data were obtained for 26 ears in 23 cochlear-implant recipients. Electrically evoked compound action potential (ECAP) amplitudes were measured in response to each of 21 pulses in a pulse train for the following rates: 900, 1200, 1800, 2400, and 3500 pps. Psychophysical thresholds were obtained using a 3-interval, forced-choice adaptive procedure for 300-ms pulse trains of the same rates as used for the ECAP measures, which formed the rate-integration function. For each electrode, the slope of the psychophysical rate-integration function was compared to the following ECAP measures: (I) slope of the function comparing average normalized ECAP amplitude across pulses versus stimulation rate ("adaptation"), (2) the rate that produced the maximum alternation depth across the pulse train, and (3) rate at which the alternating pattern ceased (stochastic rate). Results showed no significant relations between the slope of the rate-integration function and any of the ECAP measures when data were collapsed across subjects. However, group data showed that both threshold and average ECAP amplitude decreased with increased stimulus rate, and within-subject analyses showed significant positive correlations between psychophysical thresholds and mean ECAP response amplitudes across the pulse train. These data suggest that ECAP temporal response patterns are complex and further study is required to better understand the relative contributions of adaptation, desynchronization, and firing probabilities of individual neurons that contribute to the aggregate ECAP response. (C) 2014 Elsevier B.V. All rights reserved. C1 [Hughes, Michelle L.; Baudhuin, Jacquelyn L.; Goehring, Jenny L.] Boys Town Natl Res Hosp, Omaha, NE 68131 USA. RP Hughes, ML (reprint author), Boys Town Natl Res Hosp, 425 North 30th St, Omaha, NE 68131 USA. EM michelle.hughes@boystown.org FU NIH/NIDCD [R01 DC009595, T35 DC008757, P30 DC04662] FX This research was supported by NIH/NIDCD R01 DC009595, T35 DC008757, and P30 DC04662. The content of this project is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute on Deafness and Other Communication Disorders or the National Institutes of Health. The authors thank Tom Creutz for data collection and analysis programs; Leonid Litvak (Advanced Bionics) for BEDCS support; Lisa Stille, Erin Castioni, and Donna Neff for assistance with data collection; and Rachel Scheperle for feedback on earlier versions of this manuscript. CR Botros A, 2010, EAR HEARING, V31, P380, DOI 10.1097/AUD.0b013e3181cb41aa Brill SM, 1997, AM J OTOL, V18, pS104 Brown CJ, 1998, AM J OTOL, V19, P320 Brown CJ, 1996, J SPEECH HEAR RES, V39, P453 Cartee LA, 2000, HEARING RES, V146, P143, DOI 10.1016/S0378-5955(00)00109-X Donaldson GS, 1997, J ACOUST SOC AM, V101, P3706, DOI 10.1121/1.418330 Finley C., 1997, 6 NIH Friesen LM, 2005, AUDIOL NEURO-OTOL, V10, P169, DOI 10.1159/000084027 Haenggeli A, 1998, AUDIOLOGY, V37, P353 Hay-McCutcheon MJ, 2005, J ACOUST SOC AM, V118, P2444, DOI 10.1121/1.2035593 Holden LK, 2002, EAR HEARING, V23, P463, DOI 10.1097/01.AUD.0000034718.53595.99 Hughes ML, 2012, HEARING RES, V285, P46, DOI 10.1016/j.heares.2012.01.010 Hughes ML, 2010, EAR HEARING, V31, P679, DOI 10.1097/AUD.0b013e3181e1d19e Kiefer J., 2000, COCHLEAR IMPLANTS Kreft HA, 2004, J ACOUST SOC AM, V116, P2258, DOI 10.1121/1.1786871 Litvak L, 2001, J ACOUST SOC AM, V110, P368, DOI 10.1121/1.1375140 Litvak LM, 2003, J ACOUST SOC AM, V114, P2066, DOI 10.1121/1.1612492 Loizou PC, 2000, J ACOUST SOC AM, V108, P790, DOI 10.1121/1.429612 Matsuoka AJ, 2000, HEARING RES, V149, P115, DOI 10.1016/S0378-5955(00)00172-6 McKay CM, 2013, JARO-J ASSOC RES OTO, V14, P879, DOI 10.1007/s10162-013-0417-9 McKay CM, 2005, EAR HEARING, V26, p38S, DOI 10.1097/00003446-200508001-00006 McKay CM, 1998, J ACOUST SOC AM, V104, P1061, DOI 10.1121/1.423316 Middlebrooks JC, 2004, J ACOUST SOC AM, V116, P452, DOI 10.1121/1.1760795 Miller CA, 2008, JARO-J ASSOC RES OTO, V9, P122, DOI 10.1007/s10162-007-0108-5 Miller CA, 2000, EAR HEARING, V21, P280, DOI 10.1097/00003446-200008000-00003 Morsnowski A., 2006, AUDIOL NEUROTOL, V11, P38 Pfingst BE, 2011, J ACOUST SOC AM, V130, P3954, DOI 10.1121/1.3651820 Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3 SHANNON RV, 1985, HEARING RES, V18, P135, DOI 10.1016/0378-5955(85)90005-X Vandali AE, 2000, EAR HEARING, V21, P608, DOI 10.1097/00003446-200012000-00008 Wilson BS, 1997, AM J OTOL, V18, pS30 Zhang FW, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0084631 Zhang F, 2007, JARO-J ASSOC RES OTO, V8, P356, DOI 10.1007/s10162-007-0086-7 Zhou N, 2012, HEARING RES, V284, P25, DOI 10.1016/j.heares.2011.12.008 NR 34 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD OCT PY 2014 VL 316 BP 44 EP 56 DI 10.1016/j.heares.2014.07.007 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AS0EO UT WOS:000343951300005 PM 25093283 ER PT J AU Zong, L Chen, KT Zhou, W Jiang, D Sun, L Zhang, XM Jiang, HY AF Zong, Ling Chen, Kaitian Zhou, Wei Jiang, Di Sun, Liang Zhang, Xuemei Jiang, Hongyan TI Inner ear stem cells derived feeder layer promote directional differentiation of amniotic fluid stem cells into functional neurons SO HEARING RESEARCH LA English DT Article ID SPIRAL GANGLION NEURONS; MOUSE; PROGENITORS; SOX2; PROLIFERATION; EXPRESSION; COCHLEA; CULTURE; GROWTH; ORGAN AB Intact spiral ganglion neurons are required for cochlear implantation or conventional hearing amplification as an intervention for sensorineural hearing loss. Treatment strategies to replace the loss of spiral ganglion neurons are needed. Recent reports have suggested that amniotic fluid-derived stem cells are capable of differentiating into neuron-like cells in response to cytokines and are not tumorigenic. Amniotic fluid stem cells represent a potential resource for cellular therapy of neural deafness due to spiral ganglion pathology. However, the directional differentiation of amniotic fluid stem cells is undetermined in the absence of cytokines and the consequence of inner ear supporting cells from the mouse cochlea organ of Corti on the differentiation of amniotic fluid stem cells remains to be defined. In an effort to circumvent these limitations, we investigated the effect of inner ear stem cells derived feeder layer on amniotic fluid stem cells differentiation in vitro. An inner ear stem cells derived feeder layer direct contact system was established to induce differentiation of amniotic fluid stem cells. Our results showed that inner ear stem cells derived feeder layer successfully promoted directional differentiation of amniotic fluid stem cells into neurons with characteristics of functionality. Furthermore, we showed that Wnt signaling may play an essential role in triggering neurogenesis. These findings indicate the potential use of inner ear stem cells derived feeder layer as a nerve-regenerative scaffold. A reliable and effective amniotic fluid stem cell differentiation support structure provided by inner ear stem cells derived feeder layer should contribute to efforts to translate cell-based strategies to the clinic. (C) 2014 Elsevier B.V. All rights reserved. C1 [Zong, Ling; Chen, Kaitian; Zhou, Wei; Jiang, Di; Sun, Liang; Zhang, Xuemei; Jiang, Hongyan] Sun Yat Sen Univ, Affiliated Hosp 1, Dept Otorhinolaryngol, Guangzhou 510080, Guangdong, Peoples R China. [Zong, Ling; Chen, Kaitian; Zhou, Wei; Jiang, Di; Sun, Liang; Zhang, Xuemei; Jiang, Hongyan] Sun Yat Sen Univ, Inst Otorhinolaryngol, Guangzhou 510080, Guangdong, Peoples R China. [Jiang, Di] Dongguan Peoples Hosp, Dept Otorhinolaryngol, Dongguan 523059, Peoples R China. [Sun, Liang] Hainan Gen Hosp, Dept Otorhinolaryngol, Haikou 570311, Peoples R China. [Zhang, Xuemei] Hebei Med Univ, Hosp 2, Dept Otorhinolaryngol, Shijiazhuang 050000, Hebei, Peoples R China. RP Jiang, HY (reprint author), Sun Yat Sen Univ, Affiliated Hosp 1, Dept Otorhinolaryngol, Guangzhou 510080, Guangdong, Peoples R China. EM hyjiangus@163.com FU National Basic Research Program of China [2011CB504502]; National Natural Science fund of China [81271076, 81200748]; Minster of Health of China [201202005] FX The study was supported by grants from the National Basic Research Program of China (No. 2011CB504502), the National Natural Science fund of China (No. 81271076 and No. 81200748) and the Minster of Health of China (No. 201202005). CR Amaral E, 2011, METHODS MOL BIOL, V689, P137, DOI 10.1007/978-1-60761-950-5_8 Atkinson PJ, 2011, HEARING RES, V278, P77, DOI 10.1016/j.heares.2011.04.011 Bas E, 2014, STEM CELLS DEV, V23, P502, DOI 10.1089/scd.2013.0274 Blakely BD, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018373 Chai RJ, 2012, P NATL ACAD SCI USA, V109, P8167, DOI 10.1073/pnas.1202774109 Chen P, 1999, DEVELOPMENT, V126, P1581 Chen W, 2012, NATURE, V490, P278, DOI 10.1038/nature11415 Corrales CE, 2006, J NEUROBIOL, V66, P1489, DOI 10.1002/neu.20310 De Coppi P, 2007, NAT BIOTECHNOL, V25, P100, DOI 10.1038/nbt1274 Donaldson AE, 2009, STEM CELLS DEV, V18, P1003, DOI 10.1089/scd.2008.0300 Donovan PJ, 2001, NAT GENET, V29, P246, DOI 10.1038/ng1101-246 Fauza D, 2004, BEST PRACT RES CL OB, V18, P877, DOI 10.1016/j.bpobgyn.2004.07.001 Ferri ALM, 2004, DEVELOPMENT, V131, P3805, DOI 10.1242/dev.01204 Hirabayashi Y, 2004, DEVELOPMENT, V131, P2791, DOI 10.1242/dev.01165 Hu ZQ, 2005, EXP CELL RES, V302, P40, DOI 10.1016/j.yexer.2004.08.023 In T.A.P., 2003, BLOOD, V102, P1548 Kleber M, 2004, CURR OPIN CELL BIOL, V16, P681, DOI 10.1016/j.ceb.2004.08.006 Kondo T, 2011, STEM CELLS, V29, P836, DOI 10.1002/stem.624 McLaughlin D, 2006, J NEUROSCI RES, V83, P1190, DOI 10.1002/jnr.20828 Muroyama Y, 2004, BIOCHEM BIOPH RES CO, V313, P915, DOI 10.1016/j.bbrc.2003.12.023 Neves J, 2007, J COMP NEUROL, V503, P487, DOI 10.1002/cne.21299 Oshima Kazuo, 2009, V493, P141, DOI 10.1007/978-1-59745-523-7_9 Pan GJ, 2002, CELL RES, V12, P321, DOI 10.1038/sj.cr.7290134 Pandit SR, 2011, STEM CELLS, V29, P670, DOI 10.1002/stem.609 Pesce M, 2001, STEM CELLS, V19, P271, DOI 10.1634/stemcells.19-4-271 Pevny LH, 2010, INT J BIOCHEM CELL B, V42, P421, DOI 10.1016/j.biocel.2009.08.018 Prusa A. R., 2002, MED SCI MONITOR, V8, pRA253 Prusa AR, 2003, HUM REPROD, V18, P1489, DOI 10.1093/humrep/deg279 Prusa AR, 2004, AM J OBSTET GYNECOL, V191, P309, DOI 10.1016/j.ajog.2003.12.014 RYAN TA, 1993, NEURON, V11, P713, DOI 10.1016/0896-6273(93)90081-2 Shi FX, 2012, J NEUROSCI, V32, P9639, DOI 10.1523/JNEUROSCI.1064-12.2012 Tang K, 2002, BIOCHEM BIOPH RES CO, V293, P167, DOI 10.1016/S0006-291X(02)00215-2 Tsai MS, 2004, HUM REPROD, V19, P1450, DOI 10.1093/humrep/deh279 Tsai MS, 2006, BIOL REPROD, V74, P545, DOI 10.1095/biolreprod.105.046029 Wodarz A, 1998, ANNU REV CELL DEV BI, V14, P59, DOI 10.1146/annurev.cellbio.14.1.59 Xu NY, 2012, HEARING RES, V283, P33, DOI 10.1016/j.heares.2011.11.010 Zhang M, 2011, CANCER LETT, V303, P108, DOI 10.1016/j.canlet.2011.01.017 ZSEBO KM, 1990, CELL, V63, P213, DOI 10.1016/0092-8674(90)90302-U NR 38 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD OCT PY 2014 VL 316 BP 57 EP 64 DI 10.1016/j.heares.2014.07.012 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AS0EO UT WOS:000343951300006 PM 25124154 ER PT J AU Wurfel, W Lanfermann, H Lenarz, T Majdani, O AF Wuerfel, Waldemar Lanfermann, Heinrich Lenarz, Thomas Majdani, Omid TI Cochlear length determination using Cone Beam Computed Tomography in a clinical setting SO HEARING RESEARCH LA English DT Article ID DEEP ELECTRODE INSERTION; AIDED 3-DIMENSIONAL RECONSTRUCTION; INNER-EAR; IMPLANT; TRAUMA; HEARING; ORGAN; CORTI; PRESERVATION; PERCEPTION AB Indications for cochlear implants are determined by audiological and medical considerations. Clinical imaging is therefore an integral element for anatomical evaluation in terms of medical considerations. Several authors have discussed the variability of cochlear shape, especially cochlear length. Cochlear length is, however, an increasingly recognized parameter in terms of preoperative evaluation. This study introduces a methodology to determine individual cochlear length in clinical setting by using Cone Beam Computed Tomography. Cochlear length determination was performed retrospectively with an OsiriX curved 3D Multiplanar Reconstruction tool on subjects who underwent temporal bone imaging from January 2011 to February 2013. Cochlear length was defined as the spiral route from the center-distal point of the bony round window along the lateral wall towards the helicotrema, which is the endpoint of the measurement. Cochlear length was measured in 436 temporal bones (218 left ears, 218 right ears, 218 subjects). The mean cochlear length was 37.6 mm (SD: +/- 1.93 mm), median was 37.6 mm, range 32-43.5 mm. The cochlear length had a normal distribution. A significant difference was found between cochlear length by gender (p < .0001), but not between the left and right cochlea (p = .301) or according to age. Consideration of the cochlear length in clinical data may be an insufficiently represented parameter in cochlear implant treatment. Literature shows the impact of electrode insertion depth on residual hearing preservation and speech performance. Individual evaluation of the cochlear implant electrode choice may be the next step in personalized cochlear implant treatment as a valuable addition to existing audiological and surgical evaluation. The cochlear length determination methodology presented herein is a reproducible and clinically available parameter. Indeed, revealing a significant cochlear length span width, especially according to gender differences, may be assumed as hardly ignorable. (C) 2014 Elsevier B.V. All rights reserved. C1 [Wuerfel, Waldemar; Lenarz, Thomas; Majdani, Omid] Hannover Med Sch, Dept Otorhinolaryngol, D-30625 Hannover, Germany. [Lanfermann, Heinrich] Hannover Med Sch, Inst Neuroradiol, D-30625 Hannover, Germany. RP Wurfel, W (reprint author), Hannover Med Sch, Dept Otorhinolaryngol, Carl Neuberg Str 1, D-30625 Hannover, Germany. EM Wuerfel.Waldemar@mh-hannover.de CR Adunka O, 2005, ARCH OTOLARYNGOL, V131, P488, DOI 10.1001/archotol.131.6.488 Adunka O, 2004, ORL J OTO-RHINO-LARY, V66, P306, DOI 10.1159/000081887 Adunka O, 2006, OTOLARYNG HEAD NECK, V135, P374, DOI 10.1016/j.otohns.2006.05.002 Aschendorff A., 2007, EAR HEAR, V28 Boex C, 2006, JARO-J ASSOC RES OTO, V7, P110, DOI 10.1007/s10162-005-0027-2 Briggs Robert J S, 2011, Cochlear Implants Int, V12, P129, DOI 10.1179/1754762811Y0000000007 CochlearTM, COCHL NUCL EL PORTF Colletti L, 2012, OTOLARYNG HEAD NECK, V147, P139, DOI 10.1177/0194599812441572 De Raeve L, 2010, OTOL NEUROTOL, V31, P1261, DOI 10.1097/MAO.0b013e3181f1cde3 Dorman MF, 2007, JARO-J ASSOC RES OTO, V8, P234, DOI 10.1007/s10162-007-0071-1 Erixon E, 2009, OTOL NEUROTOL, V30, P14, DOI 10.1097/MAO.0b013e31818a08e8 Erixon E., 2013, ACTA OTO-LARYNGOL, P1 Escudé Bernard, 2006, Audiol Neurootol, V11 Suppl 1, P27, DOI 10.1159/000095611 Finley CC, 2008, OTOL NEUROTOL, V29, P920, DOI 10.1097/MAO.0b013e318184f492 Gani M, 2007, JARO-J ASSOC RES OTO, V8, P69, DOI 10.1007/s10162-006-0065-4 Grewe J, 2013, AM J AUDIOL, V22, P65, DOI 10.1044/1059-0889(2012/12-0039) Gstoettner W, 1997, ACTA OTO-LARYNGOL, V117, P274, DOI 10.3109/00016489709117786 Gstottner W, 2005, HNO, V53, P784, DOI 10.1007/s00106-004-1170-5 Hardy M, 1938, AM J ANAT, V62, P291, DOI 10.1002/aja.1000620204 Helbig S, 2011, ACTA OTO-LARYNGOL, V131, P585, DOI 10.3109/00016489.2010.544327 Hochmair I, 2003, ACTA OTO-LARYNGOL, V123, P612, DOI 10.1080/00016480310001844 Kawano A, 1996, ANN OTO RHINOL LARYN, V105, P701 KENNEDY DW, 1987, LARYNGOSCOPE, V97, P42 Ketten DR, 1998, ANN OTO RHINOL LARYN, V107, P1 Lenarz Thomas, 2006, Audiol Neurootol, V11 Suppl 1, P34, DOI 10.1159/000095612 Lenarz T, 2013, INT J AUDIOL, V52, P838, DOI 10.3109/14992027.2013.802032 Lenarz T, 2009, AUDIOL NEURO-OTOL, V14, P22, DOI 10.1159/000206492 MED-EL, 2012, MED E EL PORTF Miller JD, 2007, J ACOUST SOC AM, V121, pEL151, DOI 10.1121/1.2710746 Noble JH, 2013, IEEE T NEUR SYS REH, V21, P820, DOI 10.1109/TNSRE.2013.2253333 Pollak A, 1987, Acta Otolaryngol Suppl, V436, P37 Rask-Andersen H, 2012, ANAT REC, V295, P1791, DOI 10.1002/ar.22599 Rau TS, 2011, INT J COMPUT ASS RAD, V6, P421, DOI 10.1007/s11548-010-0520-x Rau TS, 2013, INT J COMPUT ASS RAD, V8, P481, DOI 10.1007/s11548-013-0825-7 Retzius G., 1884, GEHORORGAN WIRBELTHI SATO H, 1991, ACTA OTO-LARYNGOL, V111, P1037, DOI 10.3109/00016489109138447 SHEPHERD RK, 1985, ANN OTO RHINOL LARYN, V94, P55 Stakhovskaya O, 2007, JARO-J ASSOC RES OTO, V8, P220, DOI 10.1007/s10162-007-0076-9 TAKAGI A, 1989, ANN OTO RHINOL LARYN, V98, P515 ULEHLOVA L, 1987, HEARING RES, V28, P149, DOI 10.1016/0378-5955(87)90045-1 WALBY AP, 1985, ANN OTO RHINOL LARYN, V94, P393 WELLING DB, 1993, LARYNGOSCOPE, V103, P995 NR 42 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD OCT PY 2014 VL 316 BP 65 EP 72 DI 10.1016/j.heares.2014.07.013 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AS0EO UT WOS:000343951300007 PM 25124151 ER PT J AU Kong, YY Mullangi, A Ding, N AF Kong, Ying-Yee Mullangi, Ala Ding, Nai TI Differential modulation of auditory responses to attended and unattended speech in different listening conditions SO HEARING RESEARCH LA English DT Article ID EVENT-RELATED POTENTIALS; SELECTIVE ATTENTION; COCKTAIL PARTY; CORTICAL REPRESENTATION; NEURONAL OSCILLATIONS; TEMPORAL DYNAMICS; NATURAL SPEECH; PHASE PATTERNS; CORTEX; ENVELOPE AB This study investigates how top-down attention modulates neural tracking of the speech envelope in different listening conditions. In the quiet conditions, a single speech stream was presented and the subjects paid attention to the speech stream (active listening) or watched a silent movie instead (passive listening). In the competing speaker (CS) conditions, two speakers of opposite genders were presented diotically. Ongoing electroencephalographic (EEG) responses were measured in each condition and cross-correlated with the speech envelope of each speaker at different time lags. In quiet, active and passive listening resulted in similar neural responses to the speech envelope. In the CS conditions, however, the shape of the cross-correlation function was remarkably different between the attended and unattended speech. The cross-correlation with the attended speech showed stronger N1 and P2 responses but a weaker P1 response compared to the cross-correlation with the unattended speech. Furthermore, the N1 response to the attended speech in the CS condition was enhanced and delayed compared with the active listening condition in quiet, while the P2 response to the unattended speaker in the CS condition was attenuated compared with the passive listening in quiet. Taken together, these results demonstrate that top-down attention differentially modulates envelope-tracking neural activity at different time lags and suggest that top-down attention can both enhance the neural responses to the attended sound stream and suppress the responses to the unattended sound stream. (C) 2014 Elsevier B.V. All rights reserved. C1 [Kong, Ying-Yee] Northeastern Univ, Dept Speech Language Pathol & Audiol, Boston, MA 02115 USA. [Kong, Ying-Yee; Mullangi, Ala] Northeastern Univ, Bioengn Program, Boston, MA 02115 USA. [Ding, Nai] NYU, Dept Psychol, New York, NY 10012 USA. RP Kong, YY (reprint author), Northeastern Univ, Dept Speech Language Pathol & Audiol, 226 Forsyth Bldg,360 Huntington Ave, Boston, MA 02115 USA. EM yykong@neu.edu FU NIH [R01-DC-012300] FX This work was supported by NIH R01-DC-012300. We thank the two anonymous reviewers for their helpful comments. CR Aiken SJ, 2008, EAR HEARING, V29, P139 ALAIN C, 1994, PERCEPT PSYCHOPHYS, V56, P501, DOI 10.3758/BF03206947 ALAIN C, 1993, PSYCHOPHYSIOLOGY, V30, P572, DOI 10.1111/j.1469-8986.1993.tb02083.x ALHO K, 1994, BIOL PSYCHOL, V38, P73, DOI 10.1016/0301-0511(94)90050-7 Bidet-Caulet A, 2010, NEUROIMAGE, V50, P277, DOI 10.1016/j.neuroimage.2009.12.039 Billings CJ, 2011, EAR HEARING, V32, P53, DOI 10.1097/AUD.0b013e3181ec5c46 Chait M., 2010, NEUROPSYCHOLOGIA, V48, P3262 Choi I, 2014, HEARING RES, V314, P10, DOI 10.1016/j.heares.2014.04.008 Crosse MJ, 2014, J NEUROPHYSIOL, V111, P1400, DOI 10.1152/jn.00690.2013 de Cheveigne A, 2008, J NEUROSCI METH, V171, P331, DOI 10.1016/j.jneumeth.2008.03.015 Ding N., 2014, FRONT HUM NEUROSCI, V8 Ding N, 2012, P NATL ACAD SCI USA, V109, P11854, DOI 10.1073/pnas.1205381109 Ding N, 2012, J NEUROPHYSIOL, V107, P78, DOI 10.1152/jn.00297.2011 Golumbic EZ, 2013, J NEUROSCI, V33, P1417, DOI 10.1523/JNEUROSCI.3675-12.2013 HANSEN JC, 1988, PSYCHOPHYSIOLOGY, V25, P316, DOI 10.1111/j.1469-8986.1988.tb01249.x HILLYARD SA, 1973, SCIENCE, V182, P177, DOI 10.1126/science.182.4108.177 Horton C, 2013, J NEUROPHYSIOL, V109, P3082, DOI 10.1152/jn.01026.2012 Howard MF, 2010, J NEUROPHYSIOL, V104, P2500, DOI 10.1152/jn.00251.2010 Kerlin JR, 2010, J NEUROSCI, V30, P620, DOI 10.1523/JNEUROSCI.3631-09.2010 Lakatos P, 2008, SCIENCE, V320, P110, DOI 10.1126/science.1154735 Lakatos P, 2013, NEURON, V77, P750, DOI 10.1016/j.neuron.2012.11.034 Lalor EC, 2009, J NEUROPHYSIOL, V102, P349, DOI 10.1152/jn.90896.2008 Lalor EC, 2010, EUR J NEUROSCI, V31, P189, DOI 10.1111/j.1460-9568.2009.07055.x Luo H, 2007, NEURON, V54, P1001, DOI 10.1016/j.neuron.2007.06.004 Melara RD, 2002, J EXP PSYCHOL HUMAN, V28, P279, DOI 10.1037//0096-1523.28.2.279 Mesgarani N, 2012, NATURE, V485, P233, DOI 10.1038/nature11020 Naatanen R., 1992, ATTENTION BRAIN FUNC Neelon MF, 2006, CLIN NEUROPHYSIOL, V117, P504, DOI 10.1016/j.clinph.2005.11.009 O'Sullivan J., 2014, CEREB CORTEX OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4 Oostenveld R, 2001, CLIN NEUROPHYSIOL, V112, P713, DOI 10.1016/S1388-2457(00)00527-7 Pasely B.N., 2012, PLOS BIOL, V10 PICTON TW, 1974, ELECTROEN CLIN NEURO, V36, P191, DOI 10.1016/0013-4694(74)90156-4 Power AJ, 2012, EUR J NEUROSCI, V35, P1497, DOI 10.1111/j.1460-9568.2012.08060.x RIF J, 1991, ELECTROEN CLIN NEURO, V79, P464, DOI 10.1016/0013-4694(91)90166-2 Ross B, 2010, CEREB CORTEX, V20, P1360, DOI 10.1093/cercor/bhp201 Schroeder CE, 2009, TRENDS NEUROSCI, V32, P9, DOI 10.1016/j.tins.2008.09.012 Snyder JS, 2006, J COGNITIVE NEUROSCI, V18, P1, DOI 10.1162/089892906775250021 Teder-Salejarvi WA, 1999, COGNITIVE BRAIN RES, V8, P213, DOI 10.1016/S0926-6410(99)00023-3 NR 39 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD OCT PY 2014 VL 316 BP 73 EP 81 DI 10.1016/j.heares.2014.07.009 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AS0EO UT WOS:000343951300008 PM 25124153 ER PT J AU Tanaka, C Nguyen-Huynh, A Loera, K Stark, G Reiss, L AF Tanaka, Chiemi Anh Nguyen-Huynh Loera, Katherine Stark, Gemaine Reiss, Lina TI Factors associated with hearing loss in a normal-hearing guinea pig model of hybrid cochlear implants SO HEARING RESEARCH LA English DT Article ID CHRONIC ELECTRICAL-STIMULATION; SPIRAL GANGLION NEURONS; IMPAIRED LISTENERS; SPEECH RECOGNITION; RESIDUAL HEARING; NEUROTROPHIC FACTOR; NERVE DEGENERATION; ARTICULATION INDEX; AUDITORY-NERVE; CELL SURVIVAL AB The Hybrid cochlear implant (CI), also known as Electro-Acoustic Stimulation (EAS), is a new type of Cl that preserves residual acoustic hearing and enables combined cochlear implant and hearing aid use in the same ear. However, 30-55% of patients experience acoustic hearing loss within days to months after activation, suggesting that both surgical trauma and electrical stimulation may cause hearing loss. The goals of this study were to: 1) determine the contributions of both implantation surgery and EAS to hearing loss in a normal-hearing guinea pig model; 2) determine which cochlear structural changes are associated with hearing loss after surgery and EAS. Two groups of animals were implanted (n = 6 per group), with one group receiving chronic acoustic and electric stimulation for 10 weeks, and the other group receiving no direct acoustic or electric stimulation during this time frame. A third group (n = 6) was not implanted, but received chronic acoustic stimulation. Auditory brainstem response thresholds were followed over time at 1, 2, 6, and 16 kHz. At the end of the study, the following cochlear measures were quantified: hair cells, spiral ganglion neuron density, fibrous tissue density, and stria vascularis blood vessel density; the presence or absence of ossification around the electrode entry was also noted. After surgery, implanted animals experienced a range of 0-55 dB of threshold shifts in the vicinity of the electrode at 6 and 16 kHz. The degree of hearing loss was significantly correlated with reduced stria vascularis vessel density and with the presence of ossification, but not with hair cell counts, spiral ganglion neuron density, or fibrosis area. After 10 weeks of stimulation, 67% of implanted, stimulated animals had more than 10 dB of additional threshold shift at 1 kHz, compared to 17% of implanted, non-stimulated animals and 0% of non-implanted animals. This 1-kHz hearing loss was not associated with changes in any of the cochlear measures quantified in this study. The variation in hearing loss after surgery and electrical stimulation in this animal model is consistent with the variation in human patients. Further, these findings illustrate an advantage of a normal-hearing animal model for quantification of hearing loss and damage to cochlear structures without the confounding effects of chemical- or noise-induced hearing loss. Finally, this study is the first to suggest a role of the stria vascularis and damage to the lateral wall in implantation-induced hearing loss. Further work is needed to determine the mechanisms of implantation- and electrical-stimulation-induced hearing loss. (C) 2014 Elsevier B.V. All rights reserved. C1 [Tanaka, Chiemi; Anh Nguyen-Huynh; Loera, Katherine; Stark, Gemaine; Reiss, Lina] Oregon Hlth & Sci Univ, Dept Otolaryngol, Oregon Hearing Res Ctr, Portland, OR 97239 USA. RP Tanaka, C (reprint author), Univ Hawaii Manoa, John A Burns Sch Med, Dept Commun Sci & Disorders, 677 Ala Moana Blvd,Suite 625, Honolulu, HI 96816 USA. EM tanakach@hawaii.edu; nguyanh@ohsu.edu; loerakatherine@gmail.com; starkg@ohsu.edu; reiss@ohsu.edu FU NIH-NIDCD grant [P30DC010755, P30DC005983]; NCRR grant [KL2RR024141] FX This study was funded by a NIH-NIDCD grant P30DC010755, a NCRR grant KL2RR024141, and a NIH-NIDCD grant P30DC005983 to the Oregon Hearing Research Center (OHRC). The authors thank Yehoash Raphael and his lab members at Kresge Hearing Research Institute for cochlear histology training; Dennis Trune for cochlear histology consultation and for helpful comments on the manuscript, Xiao-Rui Shi and their lab members at OHRC and Dalian Ding at State University of New York at Buffalo for cochlear histology consultation; Paul Abbas and Carolyn Brown at the University of Iowa, and Manuel Don and Mickey Waring for electrophysiology consultation; and John Brigande and his lab members at the OHRC in assistance in cochlear imaging. The authors also thank Michael Reiss for help with custom cochlear implant assembly design; Richard Salvi at State University of New York at Buffalo for providing information for the custom-made animal restraint; David Wozny for building the restraint; Frank Risi at Cochlear for assistance with obtaining external cochlear implant components; Guang-Di Chen at State University of New York at Buffalo for providing ABR loudspeakers; Edward Porsov and Fangyi Chen at OHRC for troubleshooting equipment problems; Judy Jin for assistance in statistical analysis. CR Agterberg MJH, 2010, HEARING RES, V269, P169, DOI 10.1016/j.heares.2010.06.015 Briggs RJS, 2005, ACTA OTO-LARYNGOL, V125, P870, DOI 10.1080/00016480510031489 Ching TYC, 1998, J ACOUST SOC AM, V103, P1128, DOI 10.1121/1.421224 Choi CH, 2005, HEARING RES, V205, P193, DOI 10.1016/j.heares.2005.03.018 Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004 Eshraghi AA, 2013, LARYNGOSCOPE, V123, pS1, DOI 10.1002/lary.23902 Eshraghi AA, 2005, OTOL NEUROTOL, V26, P442, DOI 10.1097/01.mao.0000169791.53201.e1 Gantz BJ, 2003, LARYNGOSCOPE, V113, P1726, DOI 10.1097/00005537-200310000-00012 Gantz BJ, 2009, AUDIOL NEURO-OTOL, V14, P32, DOI 10.1159/000206493 Gfeller Kate E, 2006, Audiol Neurootol, V11 Suppl 1, P12, DOI 10.1159/000095608 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Gstoettner WG, 2009, ACTA OTO-LARYNGOL, V129, P372, DOI 10.1080/00016480802552568 HARTSHORN DO, 1991, OTOLARYNG HEAD NECK, V104, P311 Hogan CA, 1998, J ACOUST SOC AM, V104, P432, DOI 10.1121/1.423247 KAMM CA, 1985, J ACOUST SOC AM, V77, P281, DOI 10.1121/1.392269 Kang SY, 2010, JARO-J ASSOC RES OTO, V11, P245, DOI 10.1007/s10162-009-0194-7 Kanzaki S, 2002, J COMP NEUROL, V454, P350, DOI 10.1002/cne.10480 Khan DC, 2000, HEARING RES, V142, P12, DOI 10.1016/S0378-5955(99)00221-X Kiefer J, 2002, ADV COCHLEAR IMPLANT, P569 Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 Li L, 1999, HEARING RES, V133, P27, DOI 10.1016/S0378-5955(99)00043-X Lin H. W., 2011, JARO-J ASSOC RES OTO, V12, P608 LOUSTEAU RJ, 1987, LARYNGOSCOPE, V97, P836 MacArthur CJ, 2006, LARYNGOSCOPE, V116, P1071, DOI 10.1097/01.mlg.0000224527.41288.c4 Miller AL, 2003, BRAIN RES, V966, P218, DOI 10.1016/S0006-8993(02)04170-7 Miller J M, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P57 Mitchell A, 1997, HEARING RES, V105, P30, DOI 10.1016/S0378-5955(96)00202-X NI DF, 1992, HEARING RES, V62, P63, DOI 10.1016/0378-5955(92)90203-Y OLEARY MJ, 1991, ANN OTO RHINOL LARYN, V100, P695 O'Leary SJ, 2013, HEARING RES, V298, P27, DOI 10.1016/j.heares.2013.01.012 PAVLOVIC CV, 1984, J ACOUST SOC AM, V75, P1253, DOI 10.1121/1.390731 Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037 Radeloff A, 2007, LARYNGOSCOPE, V117, P58, DOI 10.1097/01.mlg.0000242073.02488.f4 Richard C, 2012, OTOL NEUROTOL, V33, P1181, DOI 10.1097/MAO.0b013e318263d56d Roland R.S., 2006, ADV OTORHINOLARYNGOL, V64, P11 Santa Maria Peter L, 2013, Otol Neurotol, V34, P526, DOI 10.1097/MAO.0b013e318281e0c9 Scheper V, 2009, J NEUROSCI RES, V87, P1389, DOI 10.1002/jnr.21964 Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564 Shepherd R K, 1983, Acta Otolaryngol Suppl, V399, P19 Snyder D.L, 1994, LAB ANIM, V24, P42 Turner C, 2008, J REHABIL RES DEV, V45, P769, DOI 10.1682/JRRD.2007.05.0065 Turner CW, 2004, J ACOUST SOC AM, V115, P1729, DOI 10.1121/1.1687425 Vivero RJ, 2008, LARYNGOSCOPE, V118, P2028, DOI 10.1097/MLG.0b013e31818173ec Wang Q, 2011, J NEUROSCI, V31, P7938, DOI 10.1523/JNEUROSCI.1434-10.2011 Wilson BS, 2003, ANNU REV BIOMED ENG, V5, P207, DOI 10.1146/annurev.bioeng.5.040202.121645 Wright CG, 2013, OTOL NEUROTOL, V34, P402, DOI 10.1097/MAO.0b013e318278509a Xu J, 1997, HEARING RES, V105, P1, DOI 10.1016/S0378-5955(96)00193-1 NR 47 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD OCT PY 2014 VL 316 BP 82 EP 93 DI 10.1016/j.heares.2014.07.011 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AS0EO UT WOS:000343951300009 PM 25128626 ER PT J AU Frissen, I Feron, FX Guastavino, C AF Frissen, Ilja Feron, Francois-Xavier Guastavino, Catherine TI Auditory velocity discrimination in the horizontal plane at very high velocities SO HEARING RESEARCH LA English DT Article ID SOUND SOURCE; INTENSITY DIFFERENCES; INTERAURAL TIME; HUMAN LISTENERS; LOCALIZATION; REVERBERATION; DETECTABILITY; MOTION; ANGLES; IMAGE AB We determined velocity discrimination thresholds and Weber fractions for sounds revolving around the listener at very high velocities. Sounds used were a broadband white noise and two harmonic sounds with fundamental frequencies of 330 Hz and 1760 Hz. Experiment 1 used velocities ranging between 288 degrees/s and 720 degrees/s in an acoustically treated room and Experiment 2 used velocities between 288 degrees/s and 576 degrees/s in a highly reverberant hall. A third experiment addressed potential confounds in the first two experiments. The results show that people can reliably discriminate velocity at very high velocities and that both thresholds and Weber fractions decrease as velocity increases. These results violate Weber's law but are consistent with the empirical trend observed in the literature. While thresholds for the noise and 330 Hz harmonic stimulus were similar, those for the 1760 Hz harmonic stimulus were substantially higher. There were no reliable differences in velocity discrimination between the two acoustical environments, suggesting that auditory motion perception at high velocities is robust against the effects of reverberation. (C) 2014 Elsevier B.V. All rights reserved. C1 [Frissen, Ilja; Feron, Francois-Xavier; Guastavino, Catherine] McGill Univ, Sch Informat Studies, Multimodal Interact Lab, Montreal, PQ H3A 1X1, Canada. [Frissen, Ilja; Feron, Francois-Xavier; Guastavino, Catherine] Ctr Interdisciplinary Res Mus Media & Technol, Montreal, PQ H3A 1E3, Canada. RP Frissen, I (reprint author), McGill Univ, Sch Informat Studies, 3361 Peel St, Montreal, PQ H3A 1X1, Canada. EM ilja.frissen@mcgill.ca; feron@ircam.fr; catherine.guastavino@mcgill.ca FU FQRSC [113581]; NSERC [RGPIN 327392-13] FX This research was supported by FQRSC (113581) and NSERC (RGPIN 327392-13) grants held by C. Guastavino. The authors would like to thank Julien Boissinot, Yves Methot and Harold Kilianski of the CIRMMT technical team for their assistance, and Cedric Curlier. CR Agaeva M, 2004, HEARING RES, V198, P1, DOI 10.1016/j.heares.2004.07.007 ALTMAN JA, 1977, J ACOUST SOC AM, V61, P816, DOI 10.1121/1.381371 Aschoff V., 1962, ARBEITSGEMEINSHAFT F, V138, P7 Beranek L. L., 2004, CONCERT HALLS OPERA, V2nd BLAUERT J, 1972, AUDIOLOGY, V11, P265 BURNS E, 1977, J ACOUST SOC AM, V62, pS97, DOI 10.1121/1.2016480 Carlile S, 2002, J ACOUST SOC AM, V111, P1026, DOI 10.1121/1.1436067 Devore S, 2009, NEURON, V62, P123, DOI 10.1016/j.neuron.2009.02.018 Drake C., 1993, PERCEPT PSYCHOPHYS, V54, P77 Feron FX, 2010, J ACOUST SOC AM, V128, P3703, DOI 10.1121/1.3502456 Gescheider George A., 1997, PSYCHOPHYSICS FUNDAM GIGUERE C, 1993, J ACOUST SOC AM, V94, P769 GRANTHAM DW, 1978, J ACOUST SOC AM, V63, P511, DOI 10.1121/1.381751 GRANTHAM DW, 1982, J ACOUST SOC AM, V72, P1178, DOI 10.1121/1.388326 GRANTHAM DW, 1984, J ACOUST SOC AM, V76, P71, DOI 10.1121/1.391009 GRANTHAM DW, 1986, J ACOUST SOC AM, V79, P1939, DOI 10.1121/1.393201 Grantham DW, 2003, J ACOUST SOC AM, V114, P1009, DOI 10.1121/1.1590970 HARRIS JD, 1971, J SPEECH HEAR RES, V14, P618 International Organization for Standardization (ISO), 2004, AC REF ZER CAL AUD 8 MAKOUS JC, 1990, J ACOUST SOC AM, V87, P2188, DOI 10.1121/1.399186 MILLS AW, 1958, J ACOUST SOC AM, V30, P237, DOI 10.1121/1.1909553 Monaghan JJM, 2013, J ACOUST SOC AM, V133, P2288, DOI 10.1121/1.4793270 Nunes E., 1998, E NUNES, P153 Pulkki V, 1997, J AUDIO ENG SOC, V45, P456 Rakerd B., 2005, AUDITORY SIGNAL PROC, P413, DOI 10.1007/0-387-27045-0_51 SABERI K, 1990, J ACOUST SOC AM, V88, P2639, DOI 10.1121/1.399984 Shinn-Cunningham BG, 2003, 2003 IEEE WORKSH APP Stockhausen K., 1959, REIHE, V5, P67 Thompson ER, 2008, J ACOUST SOC AM, V123, P1017, DOI 10.1121/1.2821800 Verfaille V., 2006, P INT COMP MUS C NEW, P523 WAUGH W, 1979, Journal of Auditory Research, V19, P103 Wichmann FA, 2001, PERCEPT PSYCHOPHYS, V63, P1293, DOI 10.3758/BF03194544 NR 32 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD OCT PY 2014 VL 316 BP 94 EP 101 DI 10.1016/j.heares.2014.07.014 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AS0EO UT WOS:000343951300010 PM 25131340 ER PT J AU Leger, AC Ives, DT Lorenzi, C AF Leger, Agnes C. Ives, David T. Lorenzi, Christian TI Abnormal intelligibility of speech in competing speech and in noise in a frequency region where audiometric thresholds are near-normal for hearing-impaired listeners SO HEARING RESEARCH LA English DT Article ID TEMPORAL-FINE-STRUCTURE; AGE-RELATED DIFFERENCES; MASKING RELEASE; RECEPTION THRESHOLD; PERCEPTUAL SEPARATION; STRUCTURE SENSITIVITY; MODULATION DETECTION; FLUCTUATING MASKERS; ABSOLUTE THRESHOLDS; INTERFERING SPEECH AB The ability to identify syllables in the presence of speech-shaped noise and a single-talker background was measured for 18 normal-hearing (NH) listeners, and for eight hearing-impaired (HI) listeners with near-normal audiometric thresholds for frequencies up to 1.5 kHz and a moderate to severe hearing loss above 2 kHz. The stimulus components were restricted to the low-frequency (<= 1.5 kHz) region, where audiometric thresholds were classified clinically as normal or near normal for all listeners. Syllable identification in a speech background was measured as a function of the fundamental-frequency (F0) difference between competing voices (ranging from 1 semitone to similar to 1 octave). HI listeners had poorer syllable intelligibility than NH listeners in all conditions. Intelligibility decreased by about the same amount for both groups when the F0 difference between competing voices was reduced. The results suggest that the ability to identify speech against noise or an interfering talker was disrupted in frequency regions of near-normal hearing for HI listeners, but that the ability to benefit from the tested F0 differences was not disrupted. This deficit was not predicted by the elevated absolute thresholds for speech in speech, but it was for speech in noise. It may result from supra-threshold auditory deficits associated with aging. (C) 2014 Elsevier B.V. All rights reserved. C1 [Leger, Agnes C.] MIT, Elect Res Lab, Cambridge, MA 02139 USA. [Ives, David T.; Lorenzi, Christian] Paris Sci & Lettres, Ecole Normale Super, Inst Etud Cognit, Lab Syst Perceptifs,Dept Etud Cognit,UMR CNRS 824, F-75005 Paris, France. RP Leger, AC (reprint author), MIT, Elect Res Lab, Room 36-757,77 Massachusetts Ave, Cambridge, MA 02139 USA. EM legeragnes@gmail.com FU National Institutes of Health (NIH/NIDCD) grant [R01-DC000117]; (HEARFIN Project) from ANR; Starkey France; [ANR-11-0001-02 PSL*]; [ANR-10-LABX-0087] FX We are very grateful to A Stephan and S Gamier (Entendre, France) for their help in testing the listeners. AC Leger was supported by a grant from National Institutes of Health (NIH/NIDCD) grant R01-DC000117. DT Ives was supported by a grant from Starkey France. C Lorenzi was supported by ANR-11-0001-02 PSL* and ANR-10-LABX-0087, as well as by a grant (HEARFIN Project) from ANR. We would like to thank Brian CJ Moore and two anonymous reviewers for their very helpful comments on previous versions of this manuscript. CR ANSI, 1996, S31996 ANSI Arehart KH, 2011, J SPEECH LANG HEAR R, V54, P190, DOI 10.1044/1092-4388(2010/09-0145) Arehart KH, 1997, J SPEECH LANG HEAR R, V40, P1434 ASSMANN PF, 1990, J ACOUST SOC AM, V88, P680, DOI 10.1121/1.399772 ASSMANN PF, 1994, J ACOUST SOC AM, V95, P471, DOI 10.1121/1.408342 BAER T, 1994, J ACOUST SOC AM, V95, P2277, DOI 10.1121/1.408640 BAER T, 1993, J ACOUST SOC AM, V94, P1229, DOI 10.1121/1.408176 Bernstein JGW, 2009, J ACOUST SOC AM, V125, P3358, DOI 10.1121/1.3110132 Bernstein JGW, 2013, J AM ACAD AUDIOL, V24, P307, DOI 10.3766/jaaa.24.4.6 Boersma R, 2010, PRAAT DOING PHONETIC BROKX JPL, 1982, J PHONETICS, V10, P23 CHALIKIA MH, 1993, PERCEPT PSYCHOPHYS, V53, P125, DOI 10.3758/BF03211722 Christiansen C, 2012, J ACOUST SOC AM, V132, P1655, DOI 10.1121/1.4742732 de Cheveigne A, 2002, J ACOUST SOC AM, V111, P1917, DOI 10.1121/1.1458024 Desloge JG, 2010, J ACOUST SOC AM, V128, P342, DOI 10.1121/1.3436522 Dubno JR, 2003, J ACOUST SOC AM, V113, P2084, DOI 10.1121/1.1555611 Dubno JR, 2002, J ACOUST SOC AM, V111, P2897, DOI 10.1121/1.1480421 FESTEN JM, 1990, J ACOUST SOC AM, V88, P1725, DOI 10.1121/1.400247 DUQUESNOY AJ, 1983, J ACOUST SOC AM, V74, P739, DOI 10.1121/1.389859 Fullgrabe C, 2013, AM J AUDIOL, V22, P313, DOI 10.1044/1059-0889(2013/12-0070) George ELJ, 2006, J ACOUST SOC AM, V120, P2295, DOI 10.1121/1.2266530 Grose JH, 2009, EAR HEARING, V30, P568, DOI 10.1097/AUD.0b013e3181ac128f GUSTAFSSON HA, 1994, J ACOUST SOC AM, V95, P518, DOI 10.1121/1.408346 Harris KC, 2010, HEARING RES, V264, P21, DOI 10.1016/j.heares.2009.09.017 Harris KC, 2008, HEARING RES, V243, P47, DOI 10.1016/j.heares.2008.05.005 He NJ, 2008, J ACOUST SOC AM, V124, P3841, DOI 10.1121/1.2998779 He NJ, 1998, J ACOUST SOC AM, V103, P553, DOI 10.1121/1.421127 He NJ, 2007, J ACOUST SOC AM, V122, P467, DOI 10.1121/1.2741208 Hopkins K, 2011, J ACOUST SOC AM, V130, P334, DOI 10.1121/1.3585848 Horwitz AR, 2002, J ACOUST SOC AM, V111, P409, DOI 10.1121/1.1427357 Howell D. C., 1997, STAT METHODS PSYCHOL Jepsen ML, 2011, J ACOUST SOC AM, V129, P262, DOI 10.1121/1.3518768 KONIG E, 1957, Acta Otolaryngol, V48, P475, DOI 10.3109/00016485709126909 Leger AC, 2012, HEARING RES, V294, P95, DOI 10.1016/j.heares.2012.10.002 Leger AC, 2012, J ACOUST SOC AM, V131, P4114, DOI 10.1121/1.3699265 Leger AC, 2012, J ACOUST SOC AM, V131, P1502, DOI 10.1121/1.3665993 Lorenzi C, 2009, J ACOUST SOC AM, V125, P27, DOI 10.1121/1.2939125 Lorenzi C, 2006, P NATL ACAD SCI USA, V103, P18866, DOI 10.1073/pnas.0607364103 Moore B. C. J., 2012, P ISAAR 2011 SPEECH Moore B. C. J., 2007, COCHLEAR HEARING LOS Moore BCJ, 2012, J ACOUST SOC AM, V131, P1003, DOI 10.1121/1.3672808 Moore BCJ, 2014, AUDITORY PROCESSING OF TEMPORAL FINE STRUCTURE: EFFECTS OF AGE AND HEARING LOSS, P1, DOI 10.1142/9064 Neher T, 2012, J ACOUST SOC AM, V131, P2561, DOI 10.1121/1.3689850 Oxenham AJ, 2009, J ACOUST SOC AM, V125, P457, DOI 10.1121/1.3021299 Papakonstantinou A, 2011, HEARING RES, V280, P30, DOI 10.1016/j.heares.2011.02.005 Peters RW, 1998, J ACOUST SOC AM, V103, P577, DOI 10.1121/1.421128 Phatak SA, 2012, J ACOUST SOC AM, V132, P1646, DOI 10.1121/1.4742718 PLOMP R, 1978, J ACOUST SOC AM, V63, P533, DOI 10.1121/1.381753 Rhebergen KS, 2010, J ACOUST SOC AM, V127, P1570, DOI 10.1121/1.3291000 Rhebergen KS, 2006, J ACOUST SOC AM, V120, P3988, DOI 10.1121/1.2358008 Rhebergen KS, 2010, INT J AUDIOL, V49, P856, DOI 10.3109/14992027.2010.498446 Scheffers M. T. M., 1983, THESIS U GRONINGEN N SCHEFFERS MTM, 1983, J ACOUST SOC AM, V74, P1716, DOI 10.1121/1.390280 Sheft S, 2012, EAR HEARING, V33, P709, DOI 10.1097/AUD.0b013e31825aab15 Strelcyk O, 2009, J ACOUST SOC AM, V125, P3328, DOI 10.1121/1.3097469 STUBBS RJ, 1988, J ACOUST SOC AM, V84, P1236, DOI 10.1121/1.396624 STUDEBAKER GA, 1985, J SPEECH HEAR RES, V28, P455 Summers V, 2004, J SPEECH LANG HEAR R, V47, P245, DOI 10.1044/1092-4388(2004/020) Summers V, 2013, J AM ACAD AUDIOL, V24, P274, DOI 10.3766/jaaa.24.4.4 Summers V, 1998, J SPEECH LANG HEAR R, V41, P1294 TAKAHASHI GA, 1992, J SPEECH HEAR RES, V35, P1410 TERKEURS M, 1993, J ACOUST SOC AM, V94, P1307, DOI 10.1121/1.408158 Vongpoisal T, 2007, J SPEECH LANG HEAR R, V50, P1139, DOI 10.1044/1092-4388(2007/079) Warren RM, 2004, J ACOUST SOC AM, V115, P1292, DOI 10.1121/1.1646404 NR 64 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD OCT PY 2014 VL 316 BP 102 EP 109 DI 10.1016/j.heares.2014.07.008 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AS0EO UT WOS:000343951300011 PM 25124152 ER PT J AU Soshi, T Hisanaga, S Kodama, N Kanekama, Y Samejima, Y Yumoto, E Sekiyama, K AF Soshi, Takahiro Hisanaga, Satoko Kodama, Narihiro Kanekama, Yori Samejima, Yasuhiro Yumoto, Eiji Sekiyama, Kaoru TI Event-related potentials for better speech perception in noise by cochlear implant users SO HEARING RESEARCH LA English DT Article ID NORMAL-HEARING LISTENERS; MISMATCH NEGATIVITY MMN; SOUNDS VERTICAL-BAR; INFORMATIONAL MASKING; EVOKED-POTENTIALS; P300; RECOGNITION; RECIPIENTS; INTERFERENCE; PERFORMANCE AB Speech perception in noise is still difficult for cochlear implant (CI) users even with many years of Cl use. This study aimed to investigate neurophysiological and behavioral foundations for CI-dependent speech perception in noise. Seventeen post-lingual CI users and twelve age-matched normal hearing adults participated in two experiments. In Experiment 1, CI users' auditory-only word perception in noise (white noise, two-talker babble; at 10 dB SNR) degraded by about 15%, compared to that in quiet (48% accuracy). CI users' auditory-visual word perception was generally better than auditory-only perception. Auditory-visual word perception was degraded under information masking by the two-talker noise (69% accuracy), compared to that in quiet (77%). Such degradation was not observed for white noise (77%), suggesting that the overcoming of information masking is an important issue for CI users' speech perception improvement. In Experiment 2, event-related cortical potentials were recorded in an auditory oddball task in quiet and noise (white noise only). Similarly to the normal hearing participants, the CI users showed the mismatch negative response (MNR) to deviant speech in quiet, indicating automatic speech detection. In noise, the MNR disappeared in the CI users, and only the good Cl performers (above 66% accuracy) showed P300 (P3) like the normal hearing participants. P3 amplitude in the Cl users was positively correlated with speech perception scores. These results suggest that CI users' difficulty in speech perception in noise is associated with the lack of automatic speech detection indicated by the MNR. Successful performance in noise may begin with attended auditory processing indicated by P3. (C) 2014 Elsevier B.V. All rights reserved. C1 [Soshi, Takahiro; Hisanaga, Satoko; Kanekama, Yori; Sekiyama, Kaoru] Kumamoto Univ, Fac Letters, Div Cognit Psychol, Chuo Ku, Kumamoto 8608555, Japan. [Kodama, Narihiro; Samejima, Yasuhiro; Yumoto, Eiji] Kumamoto Univ, Grad Sch Med, Dept Otolaryngol Head & Neck Surg, Chou Ku, Kumamoto 8600811, Japan. RP Sekiyama, K (reprint author), Kumamoto Univ, Fac Letters, Div Cognit Psychol, Chuo Ku, 2-40-1 Kurokami, Kumamoto 8608555, Japan. EM sekiyama@kumamoto-u.ac.jp FU Japan Society for the Promotion of Science (JSPS) [21243040] FX This study was supported by a Grant-in-Aid for Scientific Research (21243040) to K. Sekiyama from the Japan Society for the Promotion of Science (JSPS). We would like to express our gratitude to Hideki Kawahara (Wakayama University) for use of the TANDEM-STRAIGHT software; Seiko Hayashida (Association of Cochlear Implant Transmitted Audition; ACITA) for recruitment of CI users; Takao Yamada, Toshikazu Kawagoe, Saki Shikita, and Naomi Nakamura for their support in preparation and delivery of the current study. The current affiliation of the first author (T.S) is National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan. CR Brungart DS, 2001, J ACOUST SOC AM, V110, P2527, DOI 10.1121/1.1408946 CARHART R, 1969, J ACOUST SOC AM, V45, P694, DOI 10.1121/1.1911445 Cooke M, 2008, J ACOUST SOC AM, V123, P414, DOI 10.1121/1.2804952 COWAN N, 1993, J EXP PSYCHOL LEARN, V19, P909, DOI 10.1037//0278-7393.19.4.909 Davidson LS, 2010, OTOL NEUROTOL, V31, P1310, DOI 10.1097/MAO.0b013e3181eb320c Desai S, 2008, J ACOUST SOC AM, V123, P428, DOI 10.1121/1.2816573 Donchin E., 1978, BRAIN EVENT RELATED, P349 Freyman RL, 2004, J ACOUST SOC AM, V115, P2246, DOI 10.1121/1.689343 Fu QJ, 2005, JARO-J ASSOC RES OTO, V6, P19, DOI 10.1007/s10162-004-5024-3 Gilley PM, 2006, CLIN NEUROPHYSIOL, V117, P1772, DOI 10.1016/j.clinph.2006.04.018 Groenen P, 1996, Audiol Neurootol, V1, P112 Groenen PAP, 2001, SCAND AUDIOL, V30, P31, DOI 10.1080/010503901750069554 Groenen PAP, 1996, ACTA OTO-LARYNGOL, V116, P785, DOI 10.3109/00016489609137926 Hamzavi J, 2003, ACTA OTO-LARYNGOL, V123, P493, DOI 10.1080/0036554021000028120 Henkin Y, 2009, AUDIOL NEURO-OTOL, V14, P39, DOI 10.1159/000153434 KAGA K, 1991, LARYNGOSCOPE, V101, P905 Kaiser AR, 2003, J SPEECH LANG HEAR R, V46, P390, DOI 10.1044/1092-4388(2003/032) Kaplan-Neeman R, 2006, J ACOUST SOC AM, V120, P926, DOI 10.1121/1.2217567 Kawahara H., 2009, P APSIPA SAPP, P111 Kelly AS, 2005, CLIN NEUROPHYSIOL, V116, P1235, DOI 10.1016/j.clinph.2005.02.011 KRAUS N, 1993, HEARING RES, V65, P118, DOI 10.1016/0378-5955(93)90206-G KRAUS N, 1992, EAR HEARING, V13, P158, DOI 10.1097/00003446-199206000-00004 Kubo T, 2001, ACTA OTO-LARYNGOL, V121, P257 Lonka E, 2013, ACTA OTO-LARYNGOL, V133, P853, DOI 10.3109/00016489.2013.780293 Marco-Pallares J, 2005, NEUROIMAGE, V25, P471, DOI 10.1016/j.neuroimage.2004.11.028 Martin BA, 1997, J ACOUST SOC AM, V101, P1585, DOI 10.1121/1.418146 Mattys SL, 2009, COGNITIVE PSYCHOL, V59, P203, DOI 10.1016/j.cogpsych.2009.04.001 MICCO AG, 1995, AM J OTOL, V16, P514 Miller G. A., 1955, J ACOUST SOC AM, V27, P328 Naatanen R., 1983, TUTORIALS EVENT RELA, P119 NAATANEN R, 1978, ACTA PSYCHOL, V42, P313, DOI 10.1016/0001-6918(78)90006-9 Naatanen R, 2007, CLIN NEUROPHYSIOL, V118, P2544, DOI 10.1016/j.clinph.2007.04.026 Nelson PB, 2003, J ACOUST SOC AM, V113, P961, DOI 10.1121/1.1531983 Nelson PB, 2004, J ACOUST SOC AM, V115, P2286, DOI 10.1121/1.1703538 NOVAK G, 1992, PSYCHOPHYSIOLOGY, V29, P412, DOI 10.1111/j.1469-8986.1992.tb01714.x Oba SI, 2011, EAR HEARING, V32, P573, DOI 10.1097/AUD.0b013e31820fc821 Obuchi C., 2012, CLIN EXP OTORHINO S1, V5, P6 Oviatt D. L., 1991, AM J AUDIOLOGY, V1, P48 PICTON TW, 1992, J CLIN NEUROPHYSIOL, V9, P456, DOI 10.1097/00004691-199210000-00002 PONTON CW, 1995, EAR HEARING, V16, P131, DOI 10.1097/00003446-199502000-00010 RITTER W, 1979, SCIENCE, V203, P1358, DOI 10.1126/science.424760 Roman S, 2005, HEARING RES, V201, P10, DOI 10.1016/j.heares.2004.08.021 Rouger J, 2007, P NATL ACAD SCI USA, V104, P7295, DOI 10.1073/pnas.0609419104 Rouger J, 2008, BRAIN RES, V1188, P87, DOI 10.1016/j.brainres.2007.10.049 Ruffin CV, 2007, LARYNGOSCOPE, V117, P1183, DOI 10.1097/MLG.0b013e318058191a Sandmann P, 2009, BRAIN, V132, P1967, DOI 10.1093/brain/awp034 Singh S, 2004, EAR HEARING, V25, P598, DOI 10.1097/00003446-200412000-00008 SQUIRES NK, 1975, ELECTROEN CLIN NEURO, V38, P387, DOI 10.1016/0013-4694(75)90263-1 SUMBY WH, 1954, J ACOUST SOC AM, V26, P212, DOI 10.1121/1.1907309 Tyler R. S., 2006, INT J AUDIOL S1, V45, P113, DOI 10.1080/14992020600783095 TYLER RS, 1995, AUDIOLOGY, V34, P135 Whiting KA, 1998, EAR HEARING, V19, P218, DOI 10.1097/00003446-199806000-00005 Wong PCM, 2008, J SPEECH LANG HEAR R, V51, P1026, DOI 10.1044/1092-4388(2008/075) Wunderlich JL, 2001, J ACOUST SOC AM, V109, P1526, DOI 10.1121/1.1349184 Zeng Fan-Gang, 2004, Trends Amplif, V8, P1, DOI 10.1177/108471380400800102 Zhang FW, 2011, HEARING RES, V275, P17, DOI 10.1016/j.heares.2010.11.007 NR 56 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD OCT PY 2014 VL 316 BP 110 EP 121 DI 10.1016/j.heares.2014.08.001 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AS0EO UT WOS:000343951300012 PM 25158303 ER PT J AU D'Alessandro, LM Harrison, RV AF D'Alessandro, Lisa M. Harrison, Robert V. TI Excitatory and inhibitory tonotopic bands in chinchilla inferior colliculus revealed by c-fos immuno-labeling SO HEARING RESEARCH LA English DT Article ID AUDITORY BRAIN-STEM; IMMEDIATE-EARLY GENES; CENTRAL NUCLEUS; NERVOUS-SYSTEM; RESPONSE PROPERTIES; RECEPTIVE-FIELDS; GROWTH-FACTOR; GUINEA-PIG; EXPRESSION; NEURONS AB We describe in detail a reliable experimental protocol for c-fos immuno-labeling of patterns of neural activation in the chinchilla (chinchilla laniger). We report on resting-level neural activity in inferior colliculus (IC) of auditory midbrain, and on tonotopic bands present following 90 min of pure-tone sound stimulation. Neurons activated by 6-kHz sound stimulation lay ventro-medial to those activated at 2 kHz. This is consistent with the known tonotopic organization of IC, and verified in the present report by multi-unit neuron response recordings in central nucleus of IC. Of particular interest, we observe a significant reduction in cell labeling adjacent to the tonotopic bands, and suggest that such decreases represent inhibitory regions. C-fos-labeled bands and lateral regions of reduced labeling resemble excitatory and lateral-inhibitory response areas of IC neurons. Crown Copyright (C) 2014 Published by Elsevier B.V. C1 [D'Alessandro, Lisa M.; Harrison, Robert V.] Univ Toronto, Dept Physiol, Toronto, ON M5S 1A8, Canada. [D'Alessandro, Lisa M.; Harrison, Robert V.] Univ Toronto, Inst Biomat & Biomed Engn, Toronto, ON M5S 3G9, Canada. [Harrison, Robert V.] Univ Toronto, Dept Otolaryngol Head & Neck Surg, Toronto, ON M5G 2N2, Canada. [D'Alessandro, Lisa M.; Harrison, Robert V.] Hosp Sick Children, Auditory Sci Lab, Program Neurosci & Mental Hlth, Toronto, ON M5G 1X8, Canada. RP D'Alessandro, LM (reprint author), Hosp Sick Children, Auditory Sci Lab, Peter Oilgan Ctr Res & Learning, 686 Bay St,Room 05-9400, Toronto, ON M5G 0A4, Canada. EM L.dalessandro@utoronto.ca; rvh@sickkids.ca FU Canadian Institutes of Health Research; Masonic Foundation; Natural Sciences and Engineering Research Council of Canada; Ontario Graduate Scholarship FX This study was funded by the Canadian Institutes of Health Research (RVH), the Masonic Foundation (RVH), the Natural Sciences and Engineering Research Council of Canada (LMD) and the Ontario Graduate Scholarship (LMD). We thank Dr. Ujimoto Konomi for assistance with inhibitory electrophysiological recordings. CR Alkhatib A, 2006, EXP BRAIN RES, V174, P124, DOI 10.1007/s00221-006-0424-8 BEAVER CJ, 1993, J COMP NEUROL, V333, P469, DOI 10.1002/cne.903330402 BROWN MC, 1995, J COMP NEUROL, V357, P85, DOI 10.1002/cne.903570109 Brown TA, 2011, HEARING RES, V275, P8, DOI 10.1016/j.heares.2010.11.008 Brown TA, 2010, BRAIN RES, V1309, P29, DOI 10.1016/j.brainres.2009.10.053 COCHRAN BH, 1984, SCIENCE, V226, P1080, DOI 10.1126/science.6093261 CURRAN T, 1984, CELL, V36, P259 CURRAN T, 1988, CELL, V55, P395, DOI 10.1016/0092-8674(88)90024-4 Davis KA, 1999, J NEUROPHYSIOL, V82, P164 Ehret G, 1988, Brain Res, V472, P139 EHRET G, 1994, EUR J NEUROSCI, V6, P1589, DOI 10.1111/j.1460-9568.1994.tb00549.x Filipkowski RK, 2000, LEARN MEMORY, V7, P116, DOI 10.1101/lm.7.2.116 Finkbeiner S, 1998, J NEUROBIOL, V37, P171, DOI 10.1002/(SICI)1097-4695(199810)37:1<171::AID-NEU13>3.0.CO;2-H FRIAUF E, 1992, EUR J NEUROSCI, V4, P798, DOI 10.1111/j.1460-9568.1992.tb00190.x GEALDOR M, 1993, HEARING RES, V69, P236, DOI 10.1016/0378-5955(93)90113-F GREENBERG ME, 1986, MOL CELL BIOL, V6, P1050 Harrison R. V., 1996, Scanning Microscopy, V10, P889 Harrison RV, 2012, ACTA OTO-LARYNGOL, V132, P409, DOI 10.3109/00016489.2011.648271 Harrison RV, 1998, EXP BRAIN RES, V123, P449, DOI 10.1007/s002210050589 Herrera DG, 1996, PROG NEUROBIOL, V50, P83, DOI 10.1016/S0301-0082(96)00021-4 HUGHES P, 1995, PHARMACOL REV, V47, P133 LeBeau FEN, 1996, J NEUROPHYSIOL, V75, P902 LeBeau FEN, 2001, J NEUROSCI, V21, P7303 Loebrich S, 2009, PHYSIOL REV, V89, P1079, DOI 10.1152/physrev.00013.2009 Lu HP, 2009, NEUROSCI LETT, V451, P139, DOI 10.1016/j.neulet.2008.12.048 MALMIERCA MS, 1993, J COMP NEUROL, V333, P1, DOI 10.1002/cne.903330102 Malmierca MS, 2008, J NEUROSCI, V28, P4767, DOI 10.1523/JNEUROSCI.0238-08.2008 Mayko ZM, 2012, FRONT NEURAL CIRCUIT, V6, DOI 10.3389/fncir.2012.00073 McAlpine D, 1996, HEARING RES, V97, P136 MERZENIC.MM, 1974, BRAIN RES, V77, P397, DOI 10.1016/0006-8993(74)90630-1 MOREST DK, 1984, J COMP NEUROL, V222, P209, DOI 10.1002/cne.902220206 Nakamura M, 2005, BRAIN RES, V1031, P39, DOI 10.1016/j.brainres.2004.10.024 OLIVER DL, 1984, J COMP NEUROL, V222, P237, DOI 10.1002/cne.902220207 Palombi PS, 1996, HEARING RES, V100, P59, DOI 10.1016/0378-5955(96)00113-X Palombi PS, 1996, J NEUROPHYSIOL, V75, P2211 Palombi PS, 1996, HEARING RES, V100, P41, DOI 10.1016/0378-5955(96)00115-3 Pienkowski M, 2005, J NEUROPHYSIOL, V93, P454, DOI 10.1152/jn.00569.2004 Pienkowski M, 2005, J COMP NEUROL, V492, P101, DOI 10.1002/cne.20708 Platenik J, 2000, LIFE SCI, V67, P335, DOI 10.1016/S0024-3205(00)00632-9 POLLAK GD, 1993, HEARING RES, V65, P99, DOI 10.1016/0378-5955(93)90205-F Pollak GD, 2011, HEARING RES, V274, P27, DOI 10.1016/j.heares.2010.05.010 QIAN Y, 1994, BRAIN RES, V664, P241, DOI 10.1016/0006-8993(94)91979-8 QUERLEU D, 1988, EUR J OBSTET GYN R B, V28, P191, DOI 10.1016/0028-2243(88)90030-5 REIMER K, 1993, BRAIN RES, V616, P339, DOI 10.1016/0006-8993(93)90229-G ROUX P, 1990, CELL, V63, P341, DOI 10.1016/0092-8674(90)90167-D SALLAZ M, 1993, NEUROREPORT, V4, P55, DOI 10.1097/00001756-199301000-00014 Sanes DH, 1998, J NEUROSCI, V18, P794 SCHEICH H, 1995, BEHAV BRAIN RES, V66, P195, DOI 10.1016/0166-4328(94)00140-B Schreiner CE, 1997, NATURE, V388, P383, DOI 10.1038/41106 SHENG M, 1990, NEURON, V4, P477, DOI 10.1016/0896-6273(90)90106-P Winer JA, 2005, INFERIOR COLLICULUS, P1, DOI 10.1007/0-387-27083-3_1 Wu SH, 2004, J NEUROSCI, V24, P4625, DOI 10.1523/JNEUROSCI.0318-04.2004 Xie RL, 2005, J NEUROPHYSIOL, V94, P4019, DOI 10.1152/jn.00688.2005 ZURITA P, 1994, NEUROSCI RES, V19, P303, DOI 10.1016/0168-0102(94)90043-4 NR 54 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD OCT PY 2014 VL 316 BP 122 EP 128 DI 10.1016/j.heares.2014.07.010 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AS0EO UT WOS:000343951300013 PM 25158304 ER PT J AU Saeedi, NE Blamey, PJ Burkitt, AN Grayden, DB AF Saeedi, Nafise Erfanian Blamey, Peter J. Burkitt, Anthony N. Grayden, David B. TI Application of a pitch perception model to investigate the effect of stimulation field spread on the pitch ranking abilities of cochlear implant recipients SO HEARING RESEARCH LA English DT Article ID DUAL-ELECTRODE STIMULI; AUDITORY-NERVE FIBERS; ELECTRICAL-STIMULATION; PLACE-PITCH; CONTOUR IDENTIFICATION; SPEECH RECOGNITION; MELODY RECOGNITION; INSERTION DEPTH; ACOUSTIC PITCH; DISCRIMINATION AB Although many cochlear implant (CI) recipients perceive speech very well in favorable conditions, they still have difficulty with music, speech in noisy environments, and tonal languages. Studies show that CI users' performance in these tasks are correlated with their ability to perceive pitch. The spread of stimulation field from the electrodes to the auditory nerve is one of the factors affecting performance. This study proposes a model of auditory perception to predict the performance of CI users in pitch ranking tasks using an existing sound processing scheme. The model is then used as a platform to investigate the effect of stimulation field spread on performance. (C) 2014 Elsevier B.V. All rights reserved. C1 [Saeedi, Nafise Erfanian; Burkitt, Anthony N.; Grayden, David B.] Univ Melbourne, Dept Elect & Elect Engn, NeuroEngn Lab, Parkville, Vic 3010, Australia. [Saeedi, Nafise Erfanian; Burkitt, Anthony N.; Grayden, David B.] Univ Melbourne, Ctr Neural Engn, Parkville, Vic 3010, Australia. [Blamey, Peter J.; Burkitt, Anthony N.; Grayden, David B.] Bion Inst, East Melbourne, Australia. [Blamey, Peter J.] Univ Melbourne, Dept Med Bion, Parkville, Vic 3010, Australia. RP Saeedi, NE (reprint author), Univ Melbourne, Level 2,BEE Bldg, Parkville, Vic 3010, Australia. EM ninaes@student.unimelb.edu.au RI Burkitt, Anthony/N-9077-2013 OI Burkitt, Anthony/0000-0001-5672-2772 FU Australian Research Council (ARC) [DP1094830]; Victorian Life Sciences Computation Initiative (VLSCI); Victorian Government FX This research was supported by Australian Research Council (ARC) Discovery Grant DP1094830 and the Victorian Life Sciences Computation Initiative (VLSCI). The authors acknowledge the support that the Bionics Institute receives from the Victorian Government through its Operational Infrastructure Support Program. CR Baskent D, 2005, J ACOUST SOC AM, V117, P1405, DOI 10.1121/1.1856273 BLAMEY PJ, 1984, J ACOUST SOC AM, V76, P97, DOI 10.1121/1.391012 Blamey PJ, 1996, HEARING RES, V99, P139, DOI 10.1016/S0378-5955(96)00095-0 Bruce IC, 1999, IEEE T BIO-MED ENG, V46, P630, DOI 10.1109/10.764939 Carlyon RP, 2002, J ACOUST SOC AM, V112, P1009, DOI 10.1121/1.1496766 Caruso VC, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0087065 Cohen LT, 2009, HEARING RES, V248, P1, DOI 10.1016/j.heares.2008.11.007 Cohen LT, 2009, HEARING RES, V248, P15, DOI 10.1016/j.heares.2008.11.008 Cohen LT, 2009, HEARING RES, V247, P100, DOI 10.1016/j.heares.2008.11.004 COHEN MA, 1995, J ACOUST SOC AM, V98, P862, DOI 10.1121/1.413512 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P866, DOI 10.1121/1.390596 Demuth H., 2008, NEURAL NETWORK TOOLB Donaldson GS, 2005, J ACOUST SOC AM, V118, P623, DOI 10.1121/1.1937362 Fielden CA, 2013, J ACOUST SOC AM, V133, P4109, DOI 10.1121/1.4803909 Fredelake S, 2012, HEARING RES, V287, P76, DOI 10.1016/j.heares.2012.03.005 Galvin JJ, 2007, EAR HEARING, V28, P302, DOI 10.1097/01.aud.0000261689.35445.20 Gfeller K., 2000, J ACAD REHABIL AUDIO, V33, P115 Gfeller K, 2007, EAR HEARING, V28, P412, DOI 10.1097/AUD.0b013e3180479318 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HAWKS JW, 1995, J ACOUST SOC AM, V97, P1343, DOI 10.1121/1.412986 Jolly CN, 1996, IEEE T BIO-MED ENG, V43, P857, DOI 10.1109/10.508549 Kang R, 2009, EAR HEARING, V30, P411, DOI 10.1097/AUD.0b013e3181a61bc0 Ketten DR, 1998, ANN OTO RHINOL LARYN, V107, P1 KLATT DH, 1980, J ACOUST SOC AM, V67, P971, DOI 10.1121/1.383940 Kwon BJ, 2006, J ACOUST SOC AM, V120, pEL1, DOI 10.1121/1.2208152 Landsberger D, 2011, J ACOUST SOC AM, V130, P1559, DOI 10.1121/1.3613938 Landsberger DM, 2012, HEARING RES, V284, P16, DOI 10.1016/j.heares.2011.12.009 Landsberger DM, 2009, HEARING RES, V254, P34, DOI 10.1016/j.heares.2009.04.007 Laneau J, 2004, J ACOUST SOC AM, V116, P3606, DOI 10.1121/1.1823311 LICKLIDER JCR, 1951, EXPERIENTIA, V7, P128, DOI 10.1007/BF02156143 LOEB GE, 1983, BIOL CYBERN, V47, P149, DOI 10.1007/BF00337005 Looi V, 2011, INT J PEDIATR OTORHI, V75, P472, DOI 10.1016/j.ijporl.2010.12.023 Looi V, 2004, INT CONGR SER, V1273, P197, DOI 10.1016/j.ics.2004.08.038 Luo X, 2012, J ACOUST SOC AM, V131, P1325, DOI 10.1121/1.3672708 Maarefvand M, 2013, INT J AUDIOL, V52, P424, DOI 10.3109/14992027.2012.762606 Macherey O, 2011, JARO-J ASSOC RES OTO, V12, P233, DOI 10.1007/s10162-010-0248-x MCDERMOTT HJ, 1994, J ACOUST SOC AM, V96, P155, DOI 10.1121/1.410475 McDermott HJ, 1997, J ACOUST SOC AM, V101, P1622, DOI 10.1121/1.418177 McKay C. M., 2000, Acoustics Research Letters Online, V1, DOI 10.1121/1.1318742 McKay CM, 1996, J ACOUST SOC AM, V99, P1079, DOI 10.1121/1.414594 Meddis R, 2010, SPRINGER HANDB AUDIT, V35, P1, DOI 10.1007/978-1-4419-5934-8 MILLER MI, 1984, HEARING RES, V14, P257, DOI 10.1016/0378-5955(84)90054-6 NELSON DA, 1995, J ACOUST SOC AM, V98, P1987, DOI 10.1121/1.413317 Oxenham AJ, 2004, P NATL ACAD SCI USA, V101, P1421, DOI 10.1073/pnas.0306958101 Pascal J, 1998, J ACOUST SOC AM, V104, P1509, DOI 10.1121/1.424363 Plack C. J., 2005, PITCH NEURAL CODING Qin MK, 2003, J ACOUST SOC AM, V114, P446, DOI 10.1121/1.1579009 ROSE JE, 1967, J NEUROPHYSIOL, V30, P769 Saoji AA, 2013, HEARING RES, V298, P109, DOI 10.1016/j.heares.2012.12.006 Schatzer R, 2014, HEARING RES, V309, P26, DOI 10.1016/j.heares.2013.11.003 Shamma S, 2000, J ACOUST SOC AM, V107, P2631, DOI 10.1121/1.428649 SHAMMA SA, 1985, J ACOUST SOC AM, V78, P1612, DOI 10.1121/1.392799 Shera CA, 2002, P NATL ACAD SCI USA, V99, P3318, DOI 10.1073/pnas.032675099 Slaney M., 1993, VISUAL REPRESENTATIO Srinivasan AG, 2010, HEARING RES, V270, P89, DOI 10.1016/j.heares.2010.09.004 Srinivasan AG, 2013, HEARING RES, V299, P29, DOI 10.1016/j.heares.2013.02.004 Stafford R. C., 2013, EAR HEARING, V35, P262 Sucher CM, 2007, HEARING RES, V230, P80, DOI 10.1016/j.heares.2007.05.002 Swanson B. A., 2008, THESIS U MELBOURNE A TONG YC, 1983, J ACOUST SOC AM, V74, P73, DOI 10.1121/1.389620 TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554 Van Compernolle D. S., 1987, GOOGLE PATENTS Vandali AE, 2005, J ACOUST SOC AM, V117, P3126, DOI 10.1121/1.1874632 van den Honert C, 2007, J ACOUST SOC AM, V121, P3703, DOI 10.1121/1.2722047 Voutsas K, 2005, IEEE T SYST MAN CY B, V35, P12, DOI 10.1109/TSMCB.2004.837751 Wang WQ, 2011, INT J AUDIOL, V50, P270, DOI 10.3109/14992027.2010.542490 Zarate JM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0075410 Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5 Zilany MSA, 2006, J ACOUST SOC AM, V120, P1446, DOI 10.1121/1.2225512 NR 69 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD OCT PY 2014 VL 316 BP 129 EP 137 DI 10.1016/j.heares.2014.08.006 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AS0EO UT WOS:000343951300014 ER PT J AU Fallon, JB Shepherd, RK Nayagam, DAX Wise, AK Heifer, LF Landry, TG Irvine, DRF AF Fallon, James B. Shepherd, Robert K. Nayagam, David A. X. Wise, Andrew K. Heifer, Leon F. Landry, Thomas G. Irvine, Dexter R. F. TI Effects of deafness and cochlear implant use on temporal response characteristics in cat primary auditory cortex SO HEARING RESEARCH LA English DT Article ID INTRACOCHLEAR ELECTRICAL-STIMULATION; NEONATALLY DEAFENED CATS; SPIRAL GANGLION NEURONS; INFERIOR COLLICULUS; CONGENITAL DEAFNESS; REPETITION RATE; SPEECH; NERVE; PLASTICITY; RESOLUTION AB We have previously shown that neonatal deafness of 7-13 months duration leads to loss of cochleotopy in the primary auditory cortex (Al) that can be reversed by cochlear implant use. Here we describe the effects of a similar duration of deafness and cochlear implant use on temporal processing. Specifically, we compared the temporal resolution of neurons in Al of young adult normal-hearing cats that were acutely deafened and implanted immediately prior to recording with that in three groups of neonatally deafened cats. One group of neonatally deafened cats received no chronic stimulation. The other two groups received up to 8 months of either low-or high-rate (50 or 500 pulses per second per electrode, respectively) stimulation from a clinical cochlear implant, initiated at 10 weeks of age. Deafness of 7-13 months duration had no effect on the duration of post-onset response suppression, latency, latency jitter, or the stimulus repetition rate at which units responded maximally (best repetition rate), but resulted in a statistically significant reduction in the ability of units to respond to every stimulus in a train (maximum following rate). None of the temporal response characteristics of the low-rate group differed from those in acutely deafened controls. In contrast, high-rate stimulation had diverse effects: it resulted in decreased suppression duration, longer latency and greater jitter relative to all other groups, and an increase in best repetition rate and cut-off rate relative to acutely deafened controls. The minimal effects of moderate-duration deafness on temporal processing in the present study are in contrast to its previously-reported pronounced effects on cochleotopy. Much longer periods of deafness have been reported to result in significant changes in temporal processing, in accord with the fact that duration of deafness is a major factor influencing outcome in human cochlear implantees. (C) 2014 Elsevier B.V. All rights reserved. C1 [Fallon, James B.; Shepherd, Robert K.; Nayagam, David A. X.; Wise, Andrew K.; Landry, Thomas G.; Irvine, Dexter R. F.] Bion Inst, Melbourne, Vic, Australia. [Fallon, James B.; Shepherd, Robert K.; Wise, Andrew K.; Heifer, Leon F.; Landry, Thomas G.] Univ Melbourne, Dept Otolaryngol, Melbourne, Vic, Australia. [Fallon, James B.; Shepherd, Robert K.; Wise, Andrew K.] Univ Melbourne, Med Bion Dept, Melbourne, Vic, Australia. [Nayagam, David A. X.] Univ Melbourne, Dept Pathol, Melbourne, Vic, Australia. RP Fallon, JB (reprint author), Bion Inst, 384-388 Albert St, East Melbourne, Vic 3002, Australia. EM jfallon@bionicsinstitute.org RI Wise, Andrew/B-5943-2014 OI Wise, Andrew/0000-0001-9715-8784 FU National Institutes of Health NIDCD [NO1-DC-3-1005, HHS-N-263-2007-00053-C]; National Health and Medical Research Council of Australia; Victorian State Government through their Operational Infrastructure Support scheme FX We are grateful for funding support from the National Institutes of Health NIDCD (NO1-DC-3-1005 & HHS-N-263-2007-00053-C), the National Health and Medical Research Council of Australia, and the Victorian State Government through their Operational Infrastructure Support scheme. CR Beitel RE, 2011, J NEUROPHYSIOL, V106, P944, DOI 10.1152/jn.00731.2010 Blamey P, 1996, Audiol Neurootol, V1, P293 BROWN M, 1992, HEARING RES, V59, P224, DOI 10.1016/0378-5955(92)90119-8 Chen XQ, 2013, ACTA OTO-LARYNGOL, V133, P733, DOI 10.3109/00016489.2013.773595 Christianson GB, 2011, J NEUROSCI, V31, P12837, DOI 10.1523/JNEUROSCI.2863-11.2011 Chung Y, 2013, ADV EXP MED BIOL, V787, P353, DOI 10.1007/978-1-4614-1590-9_39 Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004 Dowell R C, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P324 EGGERMONT JJ, 1991, HEARING RES, V56, P153, DOI 10.1016/0378-5955(91)90165-6 EGGERMONT JJ, 1992, HEARING RES, V61, P1, DOI 10.1016/0378-5955(92)90029-M Fallon J.B., 2007, PLASTIC CHANGES PRIM Fallon JB, 2009, J COMP NEUROL, V512, P101, DOI 10.1002/cne.21886 Fallon J.B., 2007, C IMPL AUD PROSTH LA Fallon J.B., 2014, COCHLEAR IMPLANTS Fallon JB, 2014, EUR J NEUROSCI, V39, P811, DOI 10.1111/ejn.12445 Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3 Heffer LF, 2008, J NEUROSCI METH, V170, P277, DOI 10.1016/j.jneumeth.2008.01.023 Kim JH, 2013, J NEUROSCI, V33, P9402, DOI 10.1523/JNEUROSCI.3389-12.2013 Kral A, 2009, J NEUROSCI, V29, P811, DOI 10.1523/JNEUROSCI.2424-08.2009 Kral A, 2006, PROG BRAIN RES, V157, P283, DOI 10.1016/S0079-6123(06)57018-9 Kral A, 2002, CEREB CORTEX, V12, P797, DOI 10.1093/cercor/12.8.797 LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4 LEAKE PA, 1991, HEARING RES, V54, P251, DOI 10.1016/0378-5955(91)90120-X Middlebrooks JC, 2008, J NEUROPHYSIOL, V100, P76, DOI 10.1152/jn.01109.2007 Middlebrooks JC, 2008, J NEUROPHYSIOL, V100, P92, DOI 10.1152/jn.01114.2007 Miller C.A., 2010, 33 ANN MIDW RES M AS Moore BCJ, 2008, PHILOS T R SOC B, V363, P947, DOI 10.1098/rstb.2007.2152 PHILLIPS DP, 1989, J ACOUST SOC AM, V85, P2537, DOI 10.1121/1.397748 ROSEN S, 1992, PHILOS T ROY SOC B, V336, P367, DOI 10.1098/rstb.1992.0070 Ryugo DK, 2010, J COMP NEUROL, V518, P1046, DOI 10.1002/cne.22262 SACHS MB, 1974, J ACOUST SOC AM, V56, P1835, DOI 10.1121/1.1903521 Sakata S, 2009, NEURON, V64, P404, DOI 10.1016/j.neuron.2009.09.020 Sarant JZ, 2001, EAR HEARING, V22, P18, DOI 10.1097/00003446-200102000-00003 Schreiner CE, 1996, J NEUROPHYSIOL, V75, P1283 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 Shepherd RK, 2001, AUDIOL NEURO-OTOL, V6, P305, DOI 10.1159/000046843 Shepherd RK, 1999, J NEUROPHYSIOL, V82, P1363 SNYDER R, 1995, J NEUROPHYSIOL, V73, P449 SNYDER RL, 1991, HEARING RES, V56, P246, DOI 10.1016/0378-5955(91)90175-9 Tan AYY, 2004, J NEUROPHYSIOL, V92, P630, DOI 10.1152/jn.01020.2003 Turrigiano GG, 2008, CELL, V135, P422, DOI 10.1016/j.cell.2008.10.008 Vollmer M, 2005, J NEUROPHYSIOL, V93, P3339, DOI 10.1152/jn.00900.2004 Vollmer M, 2011, J NEUROPHYSIOL, V106, P2423, DOI 10.1152/jn.00565.2011 Vollmer M, 1999, J NEUROPHYSIOL, V82, P2883 Wehr M, 2005, NEURON, V47, P437, DOI 10.1016/j.neuron.2005.06.009 NR 46 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD SEP PY 2014 VL 315 BP 1 EP 9 DI 10.1016/j.heares.2014.06.001 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AP2LC UT WOS:000341902700001 PM 24933111 ER PT J AU Kalkman, RK Briaire, JJ Dekker, DMT Frijns, JHM AF Kalkman, Randy K. Briaire, Jeroen J. Dekker, David M. T. Frijns, Johan H. M. TI Place pitch versus electrode location in a realistic computational model of the implanted human cochlea SO HEARING RESEARCH LA English DT Article ID ELECTRICAL-STIMULATION; SPEECH RECOGNITION; INSERTION DEPTH; 3-DIMENSIONAL RECONSTRUCTION; VOLUME CONDUCTION; SPECTRAL MISMATCH; BINAURAL BENEFIT; PERCEPTION; POSITION; HEARING AB Place pitch was investigated in a computational model of the implanted human cochlea containing nerve fibres with realistic trajectories that take the variable distance between the organ of Corti and spiral ganglion into account. The model was further updated from previous studies by including fluid compartments in the modiolus and updating the electrical conductivity values of (temporal) bone and the modiolus, based on clinical data. Four different cochlear geometries are used, modelled with both lateral and perimodiolar implants, and their neural excitation patterns were examined for nerve fibres modelled with and without peripheral processes. Additionally, equations were derived from the model geometries that describe Greenwood's frequency map as a function of cochlear angle at the basilar membrane as well as at the spiral ganglion. The main findings are: (I) in the first (basal) turn of the cochlea, cochlear implant induced pitch can be predicted fairly well using the Greenwood function. (II) Beyond the first turn this pitch becomes increasingly unpredictable, greatly dependent on stimulus level, state of the cochlear neurons and the electrode's distance from the modiolus. (III) After the first turn cochlear implant induced pitch decreases as stimulus level increases, but the pitch does not reach values expected from direct spiral ganglion stimulation unless the peripheral processes are missing. (IV) Electrode contacts near the end of the spiral ganglion or deeper elicit very unpredictable pitch, with broad frequency ranges that strongly overlap with those of neighbouring contacts. (V) The characteristic place pitch for stimulation at either the organ of Corti or the spiral ganglion can be described as a function of cochlear angle by the equations presented in this paper. (C) 2014 Elsevier B.V. All rights reserved. C1 [Kalkman, Randy K.; Briaire, Jeroen J.; Dekker, David M. T.; Frijns, Johan H. M.] Leiden Univ, Med Ctr, ENT Dept, NL-2300 RC Leiden, Netherlands. [Briaire, Jeroen J.; Frijns, Johan H. M.] Leiden Inst Brain & Cognit, NL-2300 RC Leiden, Netherlands. RP Kalkman, RK (reprint author), Leiden Univ, Med Ctr, ENT Dept, POB 9600, NL-2300 RC Leiden, Netherlands. EM r.k.kalkman@lumc.nl FU Heinsius-Houbolt Fund; Advanced Bionics Corporation FX This study was financially supported by the Heinsius-Houbolt Fund and Advanced Bionics Corporation. CR ARIYASU L, 1989, OTOLARYNG HEAD NECK, V100, P87 Arnoldner C, 2008, LARYNGOSCOPE, V118, P1630, DOI 10.1097/MLG.0b013e3181799715 Arnoldner C, 2006, LARYNGOSCOPE, V116, P1760, DOI 10.1097/01.mlg.0000228214.02606.42 Baskent D, 2004, J ACOUST SOC AM, V116, P3130, DOI 10.1121/1.1804627 Baskent D, 2007, EAR HEARING, V28, P277 Baskent D, 2005, J ACOUST SOC AM, V117, P1405, DOI 10.1121/1.1856273 Baumann U, 2006, HEARING RES, V213, P34, DOI 10.1016/j.heares.2005.12.010 Baumann U, 2004, EAR HEARING, V25, P275, DOI 10.1097/00003446-200406000-00008 Baumann U, 2011, EAR HEARING, V32, P656, DOI 10.1097/AUD.0b013e31821a4800 Biedron S, 2009, OTOL NEUROTOL, V30, P414, DOI 10.1097/MAO.0b013e3181977b8d Blamey PJ, 1996, HEARING RES, V99, P139, DOI 10.1016/S0378-5955(96)00095-0 Boex C, 2006, JARO-J ASSOC RES OTO, V7, P110, DOI 10.1007/s10162-005-0027-2 Boyd PJ, 2011, EAR HEARING, V32, P411, DOI 10.1097/AUD.0b013e3182064bda Bredberg G., 1968, ACTA OTOLARYNGOL S Briaire JJ, 2000, SIMULAT PRACT THEORY, V8, P57, DOI 10.1016/S0928-4869(00)00007-0 Briaire JJ, 2005, HEARING RES, V205, P143, DOI 10.1016/j.heares.2005.03.020 Briaire JJ, 2000, HEARING RES, V148, P18, DOI 10.1016/S0378-5955(00)00104-0 Briaire JJ, 2006, HEARING RES, V214, P17, DOI 10.1016/j.heares.2006.01.015 Brill S, 2009, BIOMED ENG ONLINE, V8, DOI 10.1186/1475-925X-8-40 Carlyon RP, 2010, JARO-J ASSOC RES OTO, V11, P625, DOI 10.1007/s10162-010-0222-7 Carlyon RP, 2010, J ACOUST SOC AM, V127, P2997, DOI 10.1121/1.3372711 Cohen L.T., 2000, 5 EUR S PAED COCHL I Deman PR, 2004, INT J AUDIOL, V43, P363, DOI 10.1080/14992020400050046 Dorman MF, 2007, JARO-J ASSOC RES OTO, V8, P234, DOI 10.1007/s10162-007-0071-1 Dorman MF, 1997, J ACOUST SOC AM, V102, P2993, DOI 10.1121/1.420354 Escudé Bernard, 2006, Audiol Neurootol, V11 Suppl 1, P27, DOI 10.1159/000095611 Faes TJC, 1999, PHYSIOL MEAS, V20, pR1, DOI 10.1088/0967-3334/20/4/201 Franke-Trieger A, 2014, OTOL NEUROTOL, V35, P58, DOI 10.1097/MAO.0000000000000211 Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012 Frijns JHM, 2011, ACTA OTO-LARYNGOL, V131, P362, DOI 10.3109/00016489.2010.541939 Frijns JHM, 2009, ACTA OTO-LARYNGOL, V129, P433, DOI 10.1080/00016480802610218 Frijns JHM, 2000, SIMULAT PRACT THEORY, V8, P75, DOI 10.1016/S0928-4869(00)00008-2 Frijns JHM, 2009, OTOL NEUROTOL, V30, P1168, DOI 10.1097/MAO.0b013e3181b12115 Fu QJ, 1999, J ACOUST SOC AM, V105, P1889, DOI 10.1121/1.426725 Gani M, 2007, JARO-J ASSOC RES OTO, V8, P69, DOI 10.1007/s10162-006-0065-4 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Hamzavi J, 2006, ACTA OTO-LARYNGOL, V126, P1182, DOI 10.1080/00016480600672683 Hanekom T, 2001, EAR HEARING, V22, P300, DOI 10.1097/00003446-200108000-00005 Hochmair I, 2003, ACTA OTO-LARYNGOL, V123, P612, DOI 10.1080/00016480310001844 Kawano A, 1996, ANN OTO RHINOL LARYN, V105, P701 Laneau J, 2004, J ACOUST SOC AM, V116, P3606, DOI 10.1121/1.1823311 Li TH, 2010, HEARING RES, V270, P81, DOI 10.1016/j.heares.2010.09.005 McDermott H, 2009, AUDIOL NEURO-OTOL, V14, P2, DOI 10.1159/000206489 Mens LHM, 1999, SCAND AUDIOL, V28, P249, DOI 10.1080/010503999424680 Pijl S, 1997, EAR HEARING, V18, P316, DOI 10.1097/00003446-199708000-00006 Rattay F, 2001, HEARING RES, V153, P64, DOI 10.1016/S0378-5955(00)00257-4 Reiss LAJ, 2007, JARO-J ASSOC RES OTO, V8, P241, DOI 10.1007/s10162-007-0077-8 Reiss LAJ, 2008, OTOL NEUROTOL, V29, P160 Schatzer R., 2013, HEAR RES C, V309, P26 SHANNON RV, 1983, HEARING RES, V11, P157, DOI 10.1016/0378-5955(83)90077-1 Shannon RV, 1998, J ACOUST SOC AM, V104, P2467, DOI 10.1121/1.423774 Siciliano CM, 2010, J ACOUST SOC AM, V127, P1645, DOI 10.1121/1.3293002 Skinner MW, 2007, ANN OTO RHINOL LARYN, V116, P2 Snel-Bongers J, 2013, JARO-J ASSOC RES OTO, V14, P781, DOI 10.1007/s10162-013-0395-y Stakhovskaya O, 2007, JARO-J ASSOC RES OTO, V8, P220, DOI 10.1007/s10162-007-0076-9 Suesserman M.F., 1992, THESIS U WASHINGTON TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554 van der Marel KS, 2014, EAR HEARING, V35, pE9, DOI 10.1097/01.aud.0000436256.06395.63 Vanpoucke FJ, 2004, IEEE T BIO-MED ENG, V51, P2174, DOI 10.1109/TBME.2004.836518 Verbist BM, 2005, AM J NEURORADIOL, V26, P424 Vermeire K, 2008, HEARING RES, V245, P98, DOI 10.1016/j.heares.2008.09.003 Whiten D.M., 2007, THESIS MIT Yoon YS, 2013, EAR HEARING, V34, P273, DOI 10.1097/AUD.0b013e31826709e8 Yoon YS, 2011, J ACOUST SOC AM, V130, pEL94, DOI 10.1121/1.3606460 NR 64 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD SEP PY 2014 VL 315 BP 10 EP 24 DI 10.1016/j.heares.2014.06.003 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AP2LC UT WOS:000341902700002 PM 24975087 ER PT J AU Dilwali, S Patel, PB Roberts, DS Basinsky, GM Harris, GJ Emerick, KS Stankovic, KM AF Dilwali, Sonam Patel, Pratik B. Roberts, Daniel S. Basinsky, Gina M. Harris, Gordon J. Emerick, Kevin S. Stankovic, Konstantina M. TI Primary culture of human Schwann and schwannoma cells: Improved and simplified, protocol SO HEARING RESEARCH LA English DT Article ID HIGHLY ENRICHED CULTURES; FIBROBLAST-GROWTH-FACTOR; VESTIBULAR SCHWANNOMAS; ACOUSTIC NEUROMAS; PERIPHERAL-NERVE; NATURAL-HISTORY; TUMOR SIZE; EXPRESSION; PURIFICATION; INHIBITION AB Primary culture of human Schwann cells (SCs) and vestibular schwannoma (VS) cells are invaluable tools to investigate SC physiology and VS pathobiology, and to devise effective pharmacotherapies against VS, which are sorely needed. However, existing culture protocols, in aiming to create robust, pure cultures, employ methods that can lead to loss of biological characteristics of the original cells, potentially resulting in misleading biological findings. We have developed a minimally manipulative method to culture primary human SC and VS cells, without the use of selective mitogens, toxins, or time-consuming and potentially transformative laboratory techniques. Schwann cell purity was quantified longitudinally using S100 staining in SC cultures derived from the great auricular nerve and VS cultures followed for 7 and 12 weeks, respectively. SC cultures retained approximately >= 85% purity for 2 weeks. VS cultures retained approximately >= 80% purity for the majority of the span of 12 weeks, with maximal purity of 87% at 2 weeks. The VS cultures showed high level of biological similarity (68% on average) to their respective parent tumors, as assessed using a protein array featuring 41 growth factors and receptors. Apoptosis rate in vitro negatively correlated with tumor volume. Our results, obtained using a faster, simplified culturing method than previously utilized, indicate that highly pure, primary human SC and VS cultures can be established with minimal manipulation, reaching maximal purity at 2 weeks of culture. The VS cultures recapitulate the parent tumors' biology to a great degree, making them relevant models to investigate VS pathobiology. (C) 2014 Elsevier B.V. All rights reserved. C1 [Dilwali, Sonam; Stankovic, Konstantina M.] MIT, Harvard Mit Div Hlth Sci & Technol, Speech & Hearing Biosci & Technol Program, Cambridge, MA 02139 USA. [Patel, Pratik B.; Roberts, Daniel S.; Emerick, Kevin S.; Stankovic, Konstantina M.] Harvard Univ, Sch Med, Dept Otol & Latyngol, Boston, MA 02115 USA. [Dilwali, Sonam; Patel, Pratik B.; Roberts, Daniel S.; Emerick, Kevin S.; Stankovic, Konstantina M.] Massachusetts Eye & Ear Infirm, Eaton Peabody Labs, Boston, MA 02114 USA. [Dilwali, Sonam; Patel, Pratik B.; Roberts, Daniel S.; Emerick, Kevin S.; Stankovic, Konstantina M.] Massachusetts Eye & Ear Infirm, Dept Otolaryngol, Boston, MA 02114 USA. [Basinsky, Gina M.; Harris, Gordon J.] Massachusetts Gen Hosp, Dept Radiol, Boston, MA 02114 USA. RP Stankovic, KM (reprint author), Massachusetts Eye & Ear Infirm, 243 Charles St, Boston, MA 02114 USA. EM konstantina_stankovic@meei.harvard.edu FU National Institute on Deafness and Other Communication Disorders (IDCD) [T32 DC00038, K08DC010419]; Bertarelli Foundation FX This research was supported by National Institute on Deafness and Other Communication Disorders (IDCD) Grants T32 DC00038 (S.D., K.M.S) and K08DC010419 (K.M.S.), and the Bertarelli Foundation (K.M.S.). We are grateful to Drs. McKenna and Barker for assisting in VS specimen collection. CR Ahmad ZK, 2011, OTOL NEUROTOL, V32, P841, DOI 10.1097/MAO.0b013e31821f7d88 ARMATI PJ, 1990, J NEUROSCI METH, V33, P149, DOI 10.1016/0165-0270(90)90018-B Bush M.L., 2012, OTOL NEUROTOL, V33 Calderon-Martinez D, 2002, J NEUROSCI METH, V114, P1, DOI 10.1016/S0165-0270(01)00493-9 Casella G T, 1996, Glia, V17, P327, DOI 10.1002/(SICI)1098-1136(199608)17:4<327::AID-GLIA7>3.0.CO;2-W CHARABI S, 1994, LARYNGOSCOPE, V104, P1348 Cioffi JA, 2010, OTOL NEUROTOL, V31, P1455, DOI 10.1097/MAO.0b013e3181f20655 Demetriades AK, 2010, SKULL BASE-INTERD AP, V20, P381, DOI 10.1055/s-0030-1253576 Dilwali S, 2013, OTOL NEUROTOL, V34, P748, DOI 10.1097/MAO.0b013e31828048ec Evans DG, 2010, AM J MED GENET A, V152A, P327, DOI 10.1002/ajmg.a.33139 HARDY DG, 1989, J NEUROSURG, V71, P799, DOI 10.3171/jns.1989.71.6.0799 Herwadker A., 2005, OTOL NEUROTOL, V26 Hood B, 2009, NEUROSURG FOCUS, V26, DOI 10.3171/FOC.2009.26.2.E4 Jin YQ, 2008, J NEUROSCI METH, V170, P140, DOI 10.1016/j.jneumeth.2008.01.003 Koutsimpelas D, 2007, OTOL NEUROTOL, V28, P1094 Matthies C, 1997, NEUROSURGERY, V40, P1 Mauritz C, 2004, J NEUROSCI RES, V77, P453, DOI 10.1002/jnr.20166 MORRISSEY TK, 1991, J NEUROSCI, V11, P2433 Nair S., 2007, OTOL NEUROTOL, V28 Neff BA, 2012, LARYNGOSCOPE, V122, P2269, DOI 10.1002/lary.23472 Neumann E, 2010, ARTHRITIS RES THER, V12, DOI 10.1186/ar3010 Niapour A, 2010, BIOTECHNOL LETT, V32, P781, DOI 10.1007/s10529-010-0230-z Nutik SL, 2001, J NEUROSURG, V94, P922, DOI 10.3171/jns.2001.94.6.0922 Ohtani I, 2007, OTOLOGY JAPAN, V17, P615 Olsavsky KM, 2007, TOXICOL APPL PHARM, V222, P42, DOI 10.1016/j.taap.2007.03.032 Pannunzio ME, 2005, J NEUROSCI METH, V149, P74, DOI 10.1016/j.jneumeth.2005.05.004 Smouha EE, 2005, LARYNGOSCOPE, V115, P1704 Spiegel I, 2009, J NEUROSCI RES, V87, P3288, DOI 10.1002/jnr.21985 SPRECA A, 1989, J HISTOCHEM CYTOCHEM, V37, P441 Stangerup SE, 2012, OTOLARYNG CLIN N AM, V45, P257, DOI 10.1016/j.otc.2011.12.008 THOMSEN J, 1983, J LARYNGOL OTOL, V97, P801, DOI 10.1017/S0022215100095037 Utermark T, 2005, BRAIN PATHOL, V15, P17 Yoshimoto Y, 2005, J NEUROSURG, V103, P59, DOI 10.3171/jns.2005.103.1.0059 NR 33 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD SEP PY 2014 VL 315 BP 25 EP 33 DI 10.1016/j.heares.2014.05.006 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AP2LC UT WOS:000341902700003 PM 24910344 ER PT J AU Negandhi, J Harrison, AL Allemang, C Harrison, RV AF Negandhi, Jaina Harrison, Adrienne L. Allemang, Cullen Harrison, Robert V. TI Time course of cochlear injury discharge (excitotoxicity) determined by ABR monitoring of contralateral cochlear events SO HEARING RESEARCH LA English DT Article ID AUDITORY BRAIN-STEM; OLIVOCOCHLEAR EFFERENT SYSTEM; PRODUCT OTOACOUSTIC EMISSION; FOS-LIKE IMMUNOREACTIVITY; C-FOS; ACOUSTIC STIMULATION; FUNCTIONAL RECOVERY; SOUND STIMULATION; HEARING-LOSS; SPINAL-CORD AB The dynamics of cochlear excitotoxicity can be monitored from effects on the contralateral ear. After unilateral mechanical ablation of the cochlea (in a mouse model) we observed immediate elevations in auditory brainstem evoked response (ABR) thresholds in the contralateral ear. Threshold elevations peaked at 2-3 h post ablation, and returned to baseline levels after 5-6 h. These contralateral effects are initiated by cochlear afferent injury discharges most likely activating the olivocochlear efferent system. Six hours after cochlear injury, ABR thresholds were fully returned to pre-lesion baseline levels and remained normal for up to 10 days of monitoring. We have confirmed that our cochlear ablation procedure increases short-term activity levels in the auditory brainstem and midbrain using c-fos labelling. The study provides insight into the dynamics of glutamate excitotoxicity, a pathological process directly related to acute tinnitus after acoustic trauma, and more generally implicated in many types of brain injury and neuro-degenerative disease. (C) 2014 Elsevier B.V. All rights reserved. C1 [Negandhi, Jaina; Harrison, Adrienne L.; Allemang, Cullen; Harrison, Robert V.] Hosp Sick Children, Auditory Sci Lab, Neurosci & Mental Hlth Program, Toronto, ON M5G 1X8, Canada. [Harrison, Robert V.] Hosp Sick Children, Dept Otolaryngol Head & Neck Surg, Toronto, ON M5G 2N2, Canada. [Harrison, Robert V.] Univ Toronto, Toronto, ON M5G 2N2, Canada. RP Harrison, RV (reprint author), Hosp Sick Children, Auditory Sci Lab, Neurosci & Mental Hlth Program, 555 Univ Ave, Toronto, ON M5G 1X8, Canada. EM rvh@sickkids.ca FU Canadian Institutes of Health Research (CIHR) FX This research was funded by the Canadian Institutes of Health Research (CIHR). CR ADAMS JC, 1995, J COMP NEUROL, V361, P645, DOI 10.1002/cne.903610408 BENVENISTE H, 1984, J NEUROCHEM, V43, P1369, DOI 10.1111/j.1471-4159.1984.tb05396.x BROWN MC, 1995, J COMP NEUROL, V357, P85, DOI 10.1002/cne.903570109 CHOI DW, 1990, ANNU REV NEUROSCI, V13, P171, DOI 10.1146/annurev.ne.13.030190.001131 Cody AR, 1996, BRAIN RES, V728, P72 COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E DRAGUNOW M, 1989, J NEUROSCI METH, V29, P261, DOI 10.1016/0165-0270(89)90150-7 DUSART I, 1994, EUR J NEUROSCI, V6, P712, DOI 10.1111/j.1460-9568.1994.tb00983.x Eggermont JJ, 2012, NEUROSCIENCE TINNITU Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 EGGERMONT JJ, 1990, HEARING RES, V48, P111, DOI 10.1016/0378-5955(90)90202-Z FADEN AI, 1988, ANN NEUROL, V23, P623, DOI 10.1002/ana.410230618 Giraud AL, 1997, J ACOUST SOC AM, V102, P2219, DOI 10.1121/1.419635 Guinan JJ, 2006, EAR HEARING, V27, P589, DOI 10.1097/01.aud.0000240507.83072.e7 Guitton MJ, 2003, J NEUROSCI, V23, P3944 Harrison RV, 1997, HEARING RES, V110, P229, DOI 10.1016/S0378-5955(97)00085-3 Harrison RV, 2012, ACTA OTO-LARYNGOL, V132, P409, DOI 10.3109/00016489.2011.648271 Harrison RV, 2008, ACTA OTO-LARYNGOL, V128, P404, DOI 10.1080/00016480701784965 James AL, 2005, INT J AUDIOL, V44, P118, DOI 10.1080/14992020400029996 Keilmann A, 1997, BRAIN RES, V753, P291, DOI 10.1016/S0006-8993(97)00034-6 Larsen E, 2010, HEARING RES, V260, P70, DOI 10.1016/j.heares.2009.11.011 LENARZ T, 1993, EUR ARCH OTO-RHINO-L, V249, P441 LIBERMAN MC, 1989, HEARING RES, V38, P47, DOI 10.1016/0378-5955(89)90127-5 Liberman MC, 1996, J ACOUST SOC AM, V99, P3572, DOI 10.1121/1.414956 Maison S, 2000, HEARING RES, V140, P111, DOI 10.1016/S0378-5955(99)00196-3 Matha A., 2013, EUR J PHARMACOL, V698, P6 MAYER ML, 1987, TRENDS NEUROSCI, V10, P59, DOI 10.1016/0166-2236(87)90023-3 MOTT JB, 1989, HEARING RES, V38, P229, DOI 10.1016/0378-5955(89)90068-3 MOULIN A, 1993, HEARING RES, V65, P193, DOI 10.1016/0378-5955(93)90213-K Mulders W., 2009, NEUROSCIENCE, V164, P33 Nakamura M, 2005, BRAIN RES, V1031, P39, DOI 10.1016/j.brainres.2004.10.024 Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037 PUEL JL, 1990, J ACOUST SOC AM, V87, P1630, DOI 10.1121/1.399410 PUEL JL, 1995, CR ACAD SCI III-VIE, V318, P67 Pujol R, 1999, ANN NY ACAD SCI, V884, P249, DOI 10.1111/j.1749-6632.1999.tb08646.x REIMER K, 1993, BRAIN RES, V616, P339, DOI 10.1016/0006-8993(93)90229-G Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 SCHEICH H, 1995, BEHAV BRAIN RES, V66, P195, DOI 10.1016/0166-4328(94)00140-B SIEGEL JH, 1982, HEARING RES, V6, P171, DOI 10.1016/0378-5955(82)90052-1 SIMON RP, 1984, SCIENCE, V226, P850, DOI 10.1126/science.6093256 WARREN EH, 1989, HEARING RES, V37, P89, DOI 10.1016/0378-5955(89)90032-4 Wolter NE, 2014, AUDIOL NEURO-OTOL, V19, P41, DOI 10.1159/000356174 Zacharek MA, 2002, HEARING RES, V172, P137, DOI 10.1016/S0378-5955(02)00575-0 Zhang JS, 1998, NEUROSCI LETT, V250, P197, DOI 10.1016/S0304-3940(98)00482-0 Zheng XY, 1997, HEARING RES, V105, P65, DOI 10.1016/S0378-5955(96)00188-8 NR 45 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD SEP PY 2014 VL 315 BP 34 EP 39 DI 10.1016/j.heares.2014.06.002 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AP2LC UT WOS:000341902700004 PM 24973579 ER PT J AU Smith, AR Kwon, JH Navarro, M Hurley, LM AF Smith, Adam R. Kwon, Jae Hyun Navarro, Marco Hurley, Laura M. TI Acoustic trauma triggers upregulation of serotonin receptor genes SO HEARING RESEARCH LA English DT Article ID MESSENGER-RNA EXPRESSION; RAT INFERIOR COLLICULUS; AUDITORY-SYSTEM; HEARING-LOSS; SYNAPTIC-TRANSMISSION; GABAERGIC INHIBITION; SUPERIOR COLLICULUS; VISUAL-CORTEX; BRAIN-STEM; IN-VITRO AB Hearing loss induces plasticity in excitatory and inhibitory neurotransmitter systems in auditory brain regions. Excitatory-inhibitory balance is also influenced by a range of neuromodulatory regulatory systems, but less is known about the effects of auditory damage on these networks. In this work, we studied the effects of acoustic trauma on neuromodulatory plasticity in the auditory midbrain of CBA/J mice. Quantitative PCR was used to measure the expression of serotonergic and GABAergic receptor genes in the inferior colliculus (IC) of mice that were unmanipulated, sham controls with no hearing loss, and experimental individuals with hearing loss induced by exposure to a 116 dB, 10 kHz pure tone for 3 h. Acoustic trauma induced substantial hearing loss that was accompanied by selective upregulation of two serotonin receptor genes in the IC. The Htr1 B receptor gene was upregulated tenfold following trauma relative to shams, while the Htr1 A gene was upregulated threefold. In contrast, no plasticity in serotonin receptor gene expression was found in the hippocampus, a region also innervated by serotonergic projections. Analyses in the IC demonstrated that acoustic trauma also changed the coexpression of genes in relation to each other, leading to an overexpression of Htr1 B compared to other genes. These data suggest that acoustic trauma induces serotonergic plasticity in the auditory system, and that this plasticity may involve comodulation of functionally-linked receptor genes. Published by Elsevier B.V. C1 [Smith, Adam R.; Kwon, Jae Hyun; Navarro, Marco; Hurley, Laura M.] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA. [Navarro, Marco] St Louis Univ, Dept Biol, St Louis, MO 63103 USA. RP Smith, AR (reprint author), Indiana Univ, Dept Biol, 1001 East 3rd St, Bloomington, IN 47405 USA. EM adarsmit@indiana.edu FU NIDCD [DC008963]; NSF REU program [DBI-0851607] FX The authors declare no competing financial interests. This research was funded by grant DC008963 to LMH from NIDCD. Support for MN was provided by the NSF REU program grant DBI-0851607. CR Argence M, 2006, NEUROSCIENCE, V141, P1193, DOI 10.1016/j.neuroscience.2006.04.058 Baroncelli L, 2010, EXP NEUROL, V226, P100, DOI 10.1016/j.expneurol.2010.08.009 Carleton KL, 2011, METHODS MOL BIOL, V772, P279, DOI 10.1007/978-1-61779-228-1_17 Caspary DM, 2008, J EXP BIOL, V211, P1781, DOI 10.1242/jeb.013581 Caspary DM, 1999, NEUROSCIENCE, V93, P307, DOI 10.1016/S0306-4522(99)00121-9 Choi JY, 2014, SYNAPSE, V68, P363, DOI 10.1002/syn.21748 D'Angelo WR, 2005, J NEUROPHYSIOL, V93, P3390, DOI 10.1152/jn.00956.2004 Dong S, 2010, BRAIN RES, V1342, P24, DOI 10.1016/j.brainres.2010.04.067 Dong SY, 2010, EUR J NEUROSCI, V31, P1616, DOI 10.1111/j.1460-9568.2010.07183.x Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Furay AR, 2011, BEHAV BRAIN RES, V224, P350, DOI 10.1016/j.bbr.2011.06.016 Hall IC, 2010, J EXP BIOL, V213, P1009, DOI 10.1242/jeb.035956 Hannon J, 2008, BEHAV BRAIN RES, V195, P198, DOI 10.1016/j.bbr.2008.03.020 Hazra R, 2012, NEUROSCIENCE, V225, P9, DOI 10.1016/j.neuroscience.2012.08.014 Holt AG, 2005, J NEUROCHEM, V93, P1069, DOI 10.1111/j.1471-4159.2005.03090.x Hurley LM, 2012, FRONT NEURAL CIRCUIT, V6, DOI 10.3389/fncir.2012.00058 Hurley LM, 2008, J NEUROPHYSIOL, V100, P1656, DOI 10.1152/jn.90536.2008 Hurley LM, 2007, BRAIN RES, V1181, P21, DOI 10.1016/j.brainres.2007.08.053 Hurley LM, 2006, J NEUROPHYSIOL, V96, P2177, DOI 10.1152/jn.00046.2006 Kang HH, 2013, NEUROIMAGE, V75, P262, DOI 10.1016/j.neuroimage.2012.06.049 Knipper Marlies, 2013, Prog Neurobiol, V111, P17, DOI 10.1016/j.pneurobio.2013.08.002 Kojic L, 1997, DEV BRAIN RES, V101, P299, DOI 10.1016/S0165-3806(97)00083-7 Lin WY, 2003, J NEUROSCI, V23, P8143 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Manzoor NF, 2013, HEARING RES, V295, P114, DOI 10.1016/j.heares.2012.04.003 Maya Vetencourt J.F., 2011, EUR J NEUROSCI, V33, P49, DOI DOI 10.1111/J.1460-9568.2010.07488.X Meltser I, 2011, HEARING RES, V281, P47, DOI 10.1016/j.heares.2011.06.003 Mossop JE, 2000, HEARING RES, V147, P183, DOI 10.1016/S0378-5955(00)00054-X Mulders WHAM, 2011, NEUROSCIENCE, V192, P753, DOI 10.1016/j.neuroscience.2011.06.046 OLESKEVICH S, 1990, NEUROSCIENCE, V34, P19, DOI 10.1016/0306-4522(90)90301-J Papesh MA, 2012, HEARING RES, V283, P89, DOI 10.1016/j.heares.2011.11.004 Pollak GD, 2012, HEARING RES, V288, P47, DOI 10.1016/j.heares.2012.01.011 Pollak GD, 2002, HEARING RES, V168, P60, DOI 10.1016/S0378-5955(02)00362-3 Qu Y, 2000, NEUROSCIENCE, V101, P863, DOI 10.1016/S0306-4522(00)00441-3 Rao D, 2010, J NEUROPHYSIOL, V104, P2693, DOI 10.1152/jn.01092.2009 Rasmuson S, 1998, MOL BRAIN RES, V53, P285, DOI 10.1016/S0169-328X(97)00317-3 RHOADES RW, 1990, J COMP NEUROL, V299, P151, DOI 10.1002/cne.902990203 Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 Sari Y, 2004, NEUROSCI BIOBEHAV R, V28, P565, DOI 10.1016/j.neubiorev.2004.08.008 Suga N, 2002, NEURON, V36, P9, DOI 10.1016/S0896-6273(02)00933-9 Tadros SF, 2007, NEUROBIOL AGING, V28, P1112, DOI 10.1016/j.neurobiolaging.2006.05.021 Tahera Y, 2006, ENDOCRINOLOGY, V147, P4430, DOI 10.1210/en.2006-0260 Tahera Y, 2006, J NEUROSCI RES, V83, P1066, DOI 10.1002/jnr.20795 Vale C, 2000, J NEUROSCI, V20, P1912 Vale C, 2004, EUR J NEUROSCI, V20, P2133, DOI 10.1111/j.1460-9568.2004.03679.x Vale C, 2002, EUR J NEUROSCI, V16, P2394, DOI 10.1046/j.1460-9568.2002.02302.x VIZUETE ML, 1993, NEUROSCIENCE, V56, P165, DOI 10.1016/0306-4522(93)90571-V Wang HT, 2008, HEARING RES, V236, P42, DOI 10.1016/j.heares.2007.11.015 YANG LC, 1992, J NEUROPHYSIOL, V68, P1760 Yohe LR, 2012, COGN AFFECT BEHAV NE, V12, P446, DOI 10.3758/s13415-012-0095-9 Zhao S., 2005, J COMPUT BIOL, V12, P1045, DOI DOI 10.1089/CMB.2005.12.1047 NR 51 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD SEP PY 2014 VL 315 BP 40 EP 48 DI 10.1016/j.heares.2014.06.004 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AP2LC UT WOS:000341902700005 PM 24997228 ER PT J AU Bullen, A Taylor, RR Kachar, B Moores, C Fleck, RA Forge, A AF Bullen, A. Taylor, R. R. Kachar, B. Moores, C. Fleck, R. A. Forge, A. TI Inner ear tissue preservation by rapid freezing: Improving fixation by high-pressure freezing and hybrid methods SO HEARING RESEARCH LA English DT Article ID ELECTRON-MICROSCOPY; CELLULAR ULTRASTRUCTURE; CRYOELECTRON MICROSCOPY; OSMIUM-TETROXIDE; ACTIN-FILAMENTS; HAIR-CELLS; SUBSTITUTION; TOMOGRAPHY; MEMBRANES; CRYOFIXATION AB In the preservation of tissues in as 'close to life' state as possible, rapid freeze fixation has many benefits over conventional chemical fixation. One technique by which rapid freeze-fixation can be achieved, high pressure freezing (HPF), has been shown to enable ice crystal artefact-free freezing and tissue preservation to greater depths (more than 40 pm) than other quick-freezing methods. Despite increasingly becoming routine in electron microscopy, the use of HPF for the fixation of inner ear tissue has been limited. Assessment of the quality of preservation showed routine HPF techniques were suitable for preparation of inner ear tissues in a variety of species. Good preservation throughout the depth of sensory epithelia was achievable. Comparison to chemically fixed tissue indicated that fresh frozen preparations exhibited overall superior structural preservation of cells. However, HPF fixation caused characteristic artefacts in stereocilia that suggested poor quality freezing of the actin bundles. The hybrid technique of pre-fixation and high pressure freezing was shown to produce cellular preservation throughout the tissue, similar to that seen in HPF alone. Pre-fixation HPF produced consistent high quality preservation of stereociliary actin bundles. Optimising the preparation of samples with minimal artefact formation allows analysis of the links between ultrastructure and function in inner ear tissues. (C) 2014 The Authors. Published by Elsevier B.V. C1 [Bullen, A.; Taylor, R. R.; Forge, A.] UCL Ear Inst, Ctr Auditory Res, London WC1X 8EE, England. [Kachar, B.] NIDCD, Lab Cell Struct & Dynam, NIH, Bethesda, MD 20892 USA. [Moores, C.] Birkbeck Coll, Inst Struct & Mol Biol, London WC1E 7HX, England. [Fleck, R. A.] Natl Inst Biol Stand & Controls, Potters Bar EN6 3QG, Herts, England. RP Bullen, A (reprint author), UCL Ear Inst, Ctr Auditory Res, London WC1X 8EE, England. EM a.bullen@ucl.ac.uk FU Biotechnology and Biological Sciences Research Council (BBSRC) [BB/I02123X/1] FX Dr Dan Clare (Birkbeck College) for assistance with HPF. This work is funded by a project grant from the Biotechnology and Biological Sciences Research Council (BBSRC) (BB/I02123X/1). CR Al-Amoudi A, 2004, EMBO J, V23, P3583, DOI 10.1038/sj.emboj.7600366 Boyde A., 1980, SCANNING ELECT MICRO, V117-124, P132 CAULFIELD JB, 1957, J BIOPHYS BIOCHEM CY, V3, P827, DOI 10.1083/jcb.3.5.827 Claeys M, 2004, NEMATOLOGY, V6, P319, DOI 10.1163/1568541042360564 DAHL R, 1989, J ELECTRON MICR TECH, V13, P165, DOI 10.1002/jemt.1060130305 DEROSIER DJ, 1980, NATURE, V287, P291, DOI 10.1038/287291a0 Dubochet J, 2007, METHOD CELL BIOL, V79, P7, DOI 10.1016/S0091-679X(06)79001-X Dumont RA, 2001, J NEUROSCI, V21, P5066 FLOCK A, 1977, J CELL BIOL, V75, P339, DOI 10.1083/jcb.75.2.339 FORGE A, 1991, J NEUROCYTOL, V20, P471, DOI 10.1007/BF01252275 Galway ME, 1995, METHOD CELL BIOL, V49, P3, DOI 10.1016/S0091-679X(08)61442-9 GILKEY JC, 1986, J ELECTRON MICR TECH, V3, P177, DOI 10.1002/jemt.1060030206 Hayat MA, 2000, PRINCIPLES AND TECHNIQUES OF ELECTRON MICROSCOPY: BIOLOGICAL APPLICATIONS, FOURTH EDITION, P4 HIROKAWA N, 1982, J CELL BIOL, V95, P249, DOI 10.1083/jcb.95.1.249 KACHAR B, 1990, HEARING RES, V45, P179, DOI 10.1016/0378-5955(90)90119-A Kachar B, 2000, P NATL ACAD SCI USA, V97, P13336, DOI 10.1073/pnas.97.24.13336 KELLENBERGER E, 1991, J MICROSC-OXFORD, V161, P183 Koster AJ, 2003, NAT CELL BIOL, pSS6, DOI 10.1038/nrm1194 Leforestier A, 1996, J MICROSC-OXFORD, V184, P4, DOI 10.1046/j.1365-2818.1996.1090666.x Lucic V, 2013, J CELL BIOL, V202, P407, DOI 10.1083/jcb.201304193 McDonald Kent L, 2007, Methods Mol Biol, V369, P143 McDonald KL, 2011, J MICROSC-OXFORD, V243, P227, DOI 10.1111/j.1365-2818.2011.03526.x MEISSNER DH, 1990, J ELECTRON MICR TECH, V14, P348, DOI 10.1002/jemt.1060140410 Meyer AC, 2009, NAT NEUROSCI, V12, P444, DOI 10.1038/nn.2293 Muller M., 1988, ELECT MICROSCOPY MIC, P1 Ohta K, 2012, J STRUCT BIOL, V177, P513, DOI 10.1016/j.jsb.2011.10.012 Resch GP, 2002, J CELL SCI, V115, P1877 Rzadzinska AK, 2004, J CELL BIOL, V164, P887, DOI 10.1083/jcb.200310055 Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089 Semmler K, 1998, J MICROSC-OXFORD, V190, P317 SMALL JV, 1981, J CELL BIOL, V91, P695, DOI 10.1083/jcb.91.3.695 Small JV, 1999, MICROSC RES TECHNIQ, V47, P3 Sosinsky GE, 2008, J STRUCT BIOL, V161, P359, DOI 10.1016/j.jsb.2007.09.002 Sosinsky GE, 2005, NEUROINFORMATICS, V3, P133, DOI 10.1385/NI:03:02:133 STEINBRECHT RA, 1985, J MICROSC-OXFORD, V140, P41 STUDER D, 1992, PLANTA, V188, P155, DOI 10.1007/BF00216809 Studer D, 2001, J MICROSC-OXFORD, V203, P285, DOI 10.1046/j.1365-2818.2001.00919.x Studer D, 2008, HISTOCHEM CELL BIOL, V130, P877, DOI 10.1007/s00418-008-0500-1 STUDER D, 1995, J MICROSC-OXFORD, V179, P321 Taylor RR, 2005, J COMP NEUROL, V484, P105, DOI 10.1002/cne.20450 Tilney LG, 1998, J CELL BIOL, V143, P121, DOI 10.1083/jcb.143.1.121 WHITE DL, 1976, BIOCHIM BIOPHYS ACTA, V436, P577, DOI 10.1016/0005-2736(76)90442-9 NR 42 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD SEP PY 2014 VL 315 BP 49 EP 60 DI 10.1016/j.heares.2014.06.006 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AP2LC UT WOS:000341902700006 PM 25016142 ER PT J AU Benovitski, YB Blarney, PJ Rathbone, GD Fallon, JB AF Benovitski, Yuri B. Blamey, Peter J. Rathbone, Graeme D. Fallon, James B. TI Behavioral frequency discrimination ability of partially deafened cats using cochlear implants SO HEARING RESEARCH LA English DT Article ID ELECTRIC-ACOUSTIC STIMULATION; SPEECH-PERCEPTION; AUDITORY-CORTEX; HEARING-AID; PLASTICITY; SYSTEM; RECOGNITION; CONJUNCTION; THRESHOLDS; LISTENERS AB The aim of this study was to determine the effects of cochlear implant (CI) use on behavioral frequency discrimination ability in partially deafened cats. We hypothesized that the additional information provided by the CI would allow subjects to perform better on a frequency discrimination task. Four cats with a high frequency hearing loss induced by ototoxic drugs were first trained on a go/no-go, positive reinforcement, frequency discrimination task and reached asymptotic performance (measured by d' - detection theory). Reference frequencies (1, 4, and 7 kHz) were systematically rotated (Block design) every 9-11 days to cover the hearing range of the cats while avoiding bias arising from the order of testing. Animals were then implanted with an intracochlear electrode array connected to a CI and speech processor. They then underwent 6 months of continuous performance measurement with the Cl turned on, except for one month when the stimulator was turned off. Overall, subjects performed the frequency discrimination task significantly better with their CI turned on than in the CI-off condition (3-way ANOVA, p < 0.001). The analysis showed no dependence on subject (3-way ANOVA, subject x on-off condition, p > 0.5); however, the CI only significantly improved performance for two (1 and 7 kHz) of the three reference frequencies. In this study we were able to show, for the first time, that cats can utilize information provided by a CI in performing a behavioral frequency discrimination task. (C) 2014 Elsevier B.V. All rights reserved. C1 [Benovitski, Yuri B.; Blamey, Peter J.; Rathbone, Graeme D.; Fallon, James B.] Bion Inst, East Melbourne, Vic 3002, Australia. [Benovitski, Yuri B.; Rathbone, Graeme D.] La Trobe Univ, Dept Elect Engn, Bundoora, Vic 3086, Australia. [Blamey, Peter J.; Fallon, James B.] Univ Melbourne, Dept Med Bion, Melbourne, Vic 3010, Australia. [Blamey, Peter J.; Fallon, James B.] Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3010, Australia. RP Fallon, JB (reprint author), Bion Inst, 384-388 Albert St, East Melbourne, Vic 3002, Australia. EM jfallon@bionicsinstitute.org FU National Institutes of Health [HHS-N-263-2007-00053-C]; National Health and Medical Research Council of Australia [GNT1002430]; Department of Electronic Engineering, La-Trobe University; Victorian Government through its Operational Infrastructure Support Program FX This work was funded by the National Institutes of Health (HHS-N-263-2007-00053-C), the National Health and Medical Research Council of Australia (GNT1002430) and The Department of Electronic Engineering, La-Trobe University. The Bionics Institute acknowledges the support it receives from the Victorian Government through its Operational Infrastructure Support Program. The authors are grateful to Andrew Wise for implant surgeries; Alison Neil, Nicole Critch and Amy Morley for technical assistance; Sam Irvine for advice; Sue Pierce for veterinary advice; Sue Mckay for animal maintenance; and Dexter Irvine for comments on the earlier versions of the manuscript. CR Armstrong M, 1997, AM J OTOL, V18, pS140 Beitel RE, 2000, AUDIOL NEURO-OTOL, V5, P31, DOI 10.1159/000013863 Benovitski YB, 2014, HEARING RES, V309, P1, DOI 10.1016/j.heares.2013.11.002 Blamey P., 2012, AUDIOL NEURO-OTOL, V18, P36 Blarney P., 1996, AUDIOL NEURO-OTOL, V1, P293 Blarney P.J., 1996, HEARING RES, V99, P139 Ching Teresa Y C, 2006, Audiol Neurootol, V11 Suppl 1, P6, DOI 10.1159/000095607 Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004 Dorman M.F., 2007, AUDIOL NEUROTOL, V13, P105 Fallon JB, 2009, HEARING RES, V257, P93, DOI 10.1016/j.heares.2009.08.006 Firszt JB, 2008, J REHABIL RES DEV, V45, P749, DOI 10.1682/JRRD.2007.08.0120 Hamzavi J, 2004, INT J AUDIOL, V43, P61, DOI 10.1080/14992020400050010 HARRISON RV, 1991, HEARING RES, V54, P11, DOI 10.1016/0378-5955(91)90131-R Heeger D., 1997, SIGNAL DETECTION THE Henry BA, 2005, J ACOUST SOC AM, V118, P1111, DOI 10.1121/1.1944567 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 Irving S, 2014, J NEURAL ENG, V11, DOI 10.1088/1741-2560/11/4/046008 Klinke R, 1999, SCIENCE, V285, P1729, DOI 10.1126/science.285.5434.1729 Kral A, 2006, PROG BRAIN RES, V157, P283, DOI 10.1016/S0079-6123(06)57018-9 MCDERMOTT H, 1989, IEEE T BIO-MED ENG, V36, P789, DOI 10.1109/10.32112 McDermott HJ, 1998, J ACOUST SOC AM, V104, P2314, DOI 10.1121/1.423744 Mok M, 2006, J SPEECH LANG HEAR R, V49, P338, DOI 10.1044/1092-4388(2006/027) Pettingill LN, 2007, IEEE T BIO-MED ENG, V54, P1138, DOI 10.1109/TBME.2007.895375 Pienkowski M, 2011, NEUROSCI BIOBEHAV R, V35, P2117, DOI 10.1016/j.neubiorev.2011.02.002 Rose MM, 2005, HEARING RES, V204, P16, DOI 10.1016/j.heares.2004.12.004 Shepherd R, 2011, HEARING RES, V277, P20, DOI 10.1016/j.heares.2011.03.017 Turner CW, 2008, HEARING RES, V242, P164, DOI 10.1016/j.heares.2007.11.008 Turner CW, 2004, J ACOUST SOC AM, V115, P1729, DOI 10.1121/1.1687425 Tyler RS, 2002, EAR HEARING, V23, P98, DOI 10.1097/00003446-200204000-00003 van den Honert C, 2007, J ACOUST SOC AM, V121, P3703, DOI 10.1121/1.2722047 Vollmer M, 2001, J NEUROPHYSIOL, V86, P2330 Vollmer M, 2011, J NEUROPHYSIOL, V106, P2423, DOI 10.1152/jn.00565.2011 von Ilberg C, 1999, ORL J OTO-RHINO-LARY, V61, P334, DOI 10.1159/000027695 von Ilberg CA, 2011, AUDIOL NEURO-OTOL, V16, P1, DOI 10.1159/000327765 Wilson BS, 2008, HEARING RES, V242, P3, DOI 10.1016/j.heares.2008.06.005 NR 35 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD SEP PY 2014 VL 315 BP 61 EP 66 DI 10.1016/j.heares.2014.06.005 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AP2LC UT WOS:000341902700007 PM 25008966 ER PT J AU Rattay, F Danner, SM AF Rattay, Frank Danner, Simon M. TI Peak I of the human auditory brainstem response results from the somatic regions of type I spiral ganglion cells: Evidence from computer modeling SO HEARING RESEARCH LA English DT Article ID HUMAN COCHLEAR NEURON; ELECTRICAL-STIMULATION; ACTION-POTENTIALS; NERVE-FIBERS; RAT; CAT; SENSITIVITY; GENERATORS; CHANNELS; PATTERNS AB Early neural responses to acoustic signals can be electrically recorded as a series of waves, termed the auditory brainstem response (ABR). The latencies of the ABR waves are important for clinical and neurophysiological evaluations. Using a biophysical model of transmembrane currents along spiral ganglion cells, we show that in human (i) the non-myelinated somatic regions of type I cells, which innervate inner hair cells, predominantly contribute to peak I, (ii) the supra-strong postsynaptic stimulating current (400 pA) and transmembrane currents of the myelinated peripheral axons of type I cells are an order smaller; such postsynaptic currents correspond to the short latencies of a small recordable ABR peak l', (iii) the ABR signal involvement of the central axon of bipolar type I cells is more effective than their peripheral counterpart as the doubled diameter causes larger transmembrane currents and a larger spike dipole-length, (iv) non-myelinated fibers of type II cells which innervate the outer hair cells generate essentially larger transmembrane currents but their ABR contribution is small because of the small ratio type II/type I cells, low firing rates and a short dipole length of spikes propagating slowly in non-myelinated fibers. Using a finite element model of a simplified head, peaks I-n and H (where I-n is the negative peak after peak I) are found to be stationary potentials when volleys of spikes cross the external electrical conductivity barrier at the bone&dura/CSF and at the CSF/brainstem interface whereas peaks I' and I may be generated by strong local transmembrane currents as postsynaptic events at the distal ending and the soma region of type I cells, respectively. All simulated human inter-peak times (I-I', II-I, I-n-I) are close to published data. (C) 2014 The Authors. Published by Elsevier B.V. C1 [Rattay, Frank; Danner, Simon M.] TU Vienna, Inst Anal & Sci Comp, Vienna, Austria. [Danner, Simon M.] Med Univ Vienna, Ctr Med Phys & Biomed Engn, Vienna, Austria. RP Rattay, F (reprint author), TU Vienna, Inst Anal & Sci Comp, Vienna, Austria. EM frank.rattay@tuwien.ac.at RI Rattay, Frank/A-2231-2015; Danner, Simon Michael/I-7944-2012 OI Rattay, Frank/0000-0002-2819-8827; Danner, Simon Michael/0000-0002-4642-7064 FU Austrian Science Fund [21848-N13] FX This work was supported by the Austrian Science Fund, Grant No. 21848-N13. CR ABBAS PJ, 1991, HEARING RES, V51, P123, DOI 10.1016/0378-5955(91)90011-W BOYD IA, 1979, J PHYSIOL-LONDON, V289, P277 Brown DJ, 2010, HEARING RES, V267, P12, DOI 10.1016/j.heares.2010.03.091 Danner SM, 2011, ARTIF ORGANS, V35, P257, DOI 10.1111/j.1525-1594.2011.01213.x Davis-Gunter MJ, 2001, SCAND AUDIOL, V30, P50, DOI 10.1080/010503901750069572 DOLAN DF, 1989, J ACOUST SOC AM, V86, P2167, DOI 10.1121/1.398477 Esteves M.C., 2009, BRAZ J OTORHINOLARYN, V75, P420 Felix H, 1997, PROGRESS IN HUMAN AUDITORY AND VESTIBULAR HISTOPATHOLOGY, P73 Fraher J, 2002, J ANAT, V200, P415, DOI 10.1046/j.1469-7580.2002.00037.x GERSDORFF MCH, 1982, ARCH OTO-RHINO-LARYN, V234, P15, DOI 10.1007/BF00453533 Grant L, 2010, J NEUROSCI, V30, P4210, DOI 10.1523/JNEUROSCI.4439-09.2010 Guiraud J, 2007, HEARING RES, V223, P48, DOI 10.1016/j.heares.2006.09.014 HALL RD, 1990, HEARING RES, V49, P155, DOI 10.1016/0378-5955(90)90102-U HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7 Hashimoto I, 1982, Electroencephalogr Clin Neurophysiol Suppl, V36, P305 HODGKIN AL, 1952, J PHYSIOL-LONDON, V117, P500 Hossain WA, 2005, J NEUROSCI, V25, P6857, DOI 10.1523/JNEUROSCI.0123-05.2005 Hu WQ, 2009, NAT NEUROSCI, V12, P996, DOI 10.1038/nn.2359 HUGHES JR, 1985, J CLIN NEUROPHYSIOL, V2, P355, DOI 10.1097/00004691-198510000-00003 Jewett D.L., 1970, CLIN NEUROL, V28, P609 JEWETT DL, 1971, BRAIN, V94, P681, DOI 10.1093/brain/94.4.681 Lescanne E, 2002, J NEUROSURG, V97, P1191, DOI 10.3171/jns.2002.97.5.1191 Lichtenhan JT, 2014, JARO-J ASSOC RES OTO, V15, P395, DOI 10.1007/s10162-014-0447-y Macherey O, 2008, JARO-J ASSOC RES OTO, V9, P241, DOI 10.1007/s10162-008-0112-4 Malherbe TK, 2013, MED ENG PHYS, V35, P926, DOI 10.1016/j.medengphy.2012.09.001 MARTIN WH, 1995, EVOKED POTENTIAL, V96, P357, DOI 10.1016/0168-5597(94)00326-A Mason JA, 1998, PEDIATRICS, V101, P221, DOI 10.1542/peds.101.2.221 MATSUSHIMA J, 1982, Hokkaido Journal of Medical Science, V57, P602 Melcher JR, 1996, HEARING RES, V93, P1, DOI 10.1016/0378-5955(95)00178-6 Miller CA, 2004, HEARING RES, V198, P75, DOI 10.1016/j.heares.2004.07.005 MOLLER AR, 1988, ELECTROEN CLIN NEURO, V71, P198, DOI 10.1016/0168-5597(88)90005-6 MOLLER AR, 1983, EXP NEUROL, V80, P633, DOI 10.1016/0014-4886(83)90313-8 MOORE EJ, 1992, SCAND AUDIOL, V21, P153, DOI 10.3109/01050399209045996 MOTZ H, 1986, NEUROSCIENCE, V18, P699, DOI 10.1016/0306-4522(86)90064-3 Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5 NADOL JB, 1988, HEARING RES, V34, P253, DOI 10.1016/0378-5955(88)90006-8 NAKANISHI T, 1982, ELECTROEN CLIN NEURO, V53, P343, DOI 10.1016/0013-4694(82)90095-5 NEGM MH, 2008, C P IEEE ENG MED BIO, P5539 OTA CY, 1980, ACTA OTO-LARYNGOL, V89, P53, DOI 10.3109/00016488009127108 Potrusil T, 2012, NEUROSCIENCE, V214, P120, DOI 10.1016/j.neuroscience.2012.03.033 RATTAY F, 1993, IEEE T BIO-MED ENG, V40, P1201, DOI 10.1109/10.250575 Rattay F, 1990, ELECT NERVE STIMULAT Rattay F, 2001, HEARING RES, V153, P64, DOI 10.1016/S0378-5955(00)00257-4 Rattay F, 2010, NEUROSCIENCE, V170, P399, DOI 10.1016/j.neuroscience.2010.07.032 Rattay F, 2000, SPINAL CORD, V38, P473, DOI 10.1038/sj.sc.3101039 RATTAY F, 2003, HDB NEUROPROSTHETIC, P39 Rattay F, 2001, HEARING RES, V153, P43, DOI 10.1016/S0378-5955(00)00256-2 Rattay F, 1999, NEUROSCIENCE, V89, P335, DOI 10.1016/S0306-4522(98)00330-3 Rattay F, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0079256 SPOENDLIN H, 1975, AUDIOLOGY, V14, P383 STARR A, 1979, ANN OTO RHINOL LARYN, V88, P550 STEGEMAN DF, 1987, ELECTROEN CLIN NEURO, V67, P176 TASAKI I, 1954, J ACOUST SOC AM, V26, P765, DOI 10.1121/1.1907415 Tuch DS, 2001, P NATL ACAD SCI USA, V98, P11697, DOI 10.1073/pnas.171473898 Undurraga JA, 2013, JARO-J ASSOC RES OTO, V14, P359, DOI 10.1007/s10162-013-0377-0 Weisz CJC, 2012, J NEUROSCI, V32, P9528, DOI 10.1523/JNEUROSCI.6194-11.2012 Yi EY, 2010, J NEUROPHYSIOL, V103, P2532, DOI 10.1152/jn.00506.2009 NR 57 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD SEP PY 2014 VL 315 BP 67 EP 79 DI 10.1016/j.heares.2014.07.001 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AP2LC UT WOS:000341902700008 PM 25019355 ER PT J AU Clarke, J Gaudrain, E Chatterjee, M Baskent, D AF Clarke, Jeanne Gaudrain, Etienne Chatterjee, Monita Baskent, Deniz TI T'ain't the way you say it, it's what you say - Perceptual continuity of voice and top-down restoration of speech SO HEARING RESEARCH LA English DT Article ID COCHLEAR-IMPLANT USERS; VOCAL-TRACT LENGTH; SELECTIVE AUDITORY ATTENTION; NORMAL-HEARING LISTENERS; FUNDAMENTAL-FREQUENCY; PHONEMIC RESTORATIONS; INTERRUPTED SPEECH; INTERVENING NOISE; DEGRADED SPEECH; INTELLIGIBILITY AB Phonemic restoration, or top down repair of speech, is the ability of the brain to perceptually reconstruct missing speech sounds, using remaining speech features, linguistic knowledge and context. This usually occurs in conditions where the interrupted speech is perceived as continuous. The main goal of this study was to investigate whether voice continuity was necessary for phonemic restoration. Restoration benefit was measured by the improvement in intelligibility of meaningful sentences interrupted with periodic silent gaps, after the gaps were filled with noise bursts. A discontinuity was induced on the voice characteristics. The fundamental frequency, the vocal tract length, or both of the original vocal characteristics were changed using STRAIGHT to make a talker sound like a different talker from one speech segment to another. Voice discontinuity reduced the global intelligibility of interrupted sentences, confirming the importance of vocal cues for perceptually constructing a speech stream. However, phonemic restoration benefit persisted through all conditions despite the weaker voice continuity. This finding suggests that participants may have relied more on other cues, such as pitch contours or perhaps even linguistic context, when the vocal continuity was disrupted. (C) 2014 Elsevier B.V. All rights reserved. C1 [Clarke, Jeanne; Gaudrain, Etienne; Baskent, Deniz] Univ Groningen, Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, NL-9700 RB Groningen, Netherlands. [Clarke, Jeanne; Gaudrain, Etienne; Baskent, Deniz] Univ Groningen, Univ Med Ctr Groningen, Grad Sch Med Sci, Res Sch Behav & Cognit Neurosci, NL-9700 AB Groningen, Netherlands. [Chatterjee, Monita] Boys Town Natl Res Hosp, Omaha, NE 68131 USA. RP Clarke, J (reprint author), Univ Groningen, Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, POB 30-001, NL-9700 RB Groningen, Netherlands. EM j.n.clarke@umcg.nl; e.p.c.gaudrain@umcg.nl; monita.chatterjee@boystown.org; d.baskent@umcg.nl FU VIDI grant from the Netherlands Organization for Scientific Research, NWO [016.096.397]; University of Groningen, University Medical Center Groningen; Heinsius Houbolt Foundation; VIDI grant from the Netherlands Organization for Health Research and Development, ZonMw FX The authors would like to thank Kelly Fitz for his assistance in technical aspects of the work, Marije Sleurink for transcribing participant responses, and the participants. The authors would also like to thank the associate editor and the two anonymous reviewers for their valuable comments to improve the quality of this paper. This study was supported by a VIDI grant from the Netherlands Organization for Scientific Research, NWO (grant no. 016.096.397; from Netherlands Organization for Health Research and Development, ZonMw). Further support came from a Rosalind Franklin Fellowship from the University of Groningen, University Medical Center Groningen, and funds from the Heinsius Houbolt Foundation. The study is part of the research program of the Otorhinolaryngology Department of the University Medical Center Groningen: Healthy Aging and Communication. CR Assmann PF, 2005, J ACOUST SOC AM, V117, P886, DOI 10.1121/1.1852549 BASHFORD JA, 1992, PERCEPT PSYCHOPHYS, V51, P211, DOI 10.3758/BF03212247 Baskent D, 2012, JARO-J ASSOC RES OTO, V13, P683, DOI 10.1007/s10162-012-0334-3 Baskent D, 2009, J ACOUST SOC AM, V125, P3995, DOI 10.1121/1.3125329 Beck J., 1982, ORG REPRESENTATION P Benard MR, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058149 Best V, 2008, P NATL ACAD SCI USA, V105, P13174, DOI 10.1073/pnas.0803718105 Bhargava P, 2014, HEARING RES, V309, P113, DOI 10.1016/j.heares.2013.12.003 Billig AJ, 2013, CURR BIOL, V23, P1585, DOI 10.1016/j.cub.2013.06.042 Bregman AS., 1990, AUDITORY SCENE ANAL COOPER WE, 1985, PERCEPT PSYCHOPHYS, V38, P30, DOI 10.3758/BF03202921 Darwin CJ, 2003, J ACOUST SOC AM, V114, P2913, DOI 10.1121/1.1616924 Fitch WT, 1999, J ACOUST SOC AM, V106, P1511, DOI 10.1121/1.427148 Fuller C., 2014, EFFECT FUNDAMENTAL F Gaudrain E, 2009, INTERSPEECH 2009: 10TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2009, VOLS 1-5, P152 Gaudrain E, 2007, HEARING RES, V231, P32, DOI 10.1016/j.heares.2007.05.001 HARTMANN WM, 1991, MUSIC PERCEPT, V9, P155 Helfer KS, 2009, J ACOUST SOC AM, V125, P447, DOI 10.1121/1.3035837 Hillenbrand JM, 2009, ATTEN PERCEPT PSYCHO, V71, P1150, DOI 10.3758/APP.71.5.1150 Ives DT, 2005, J ACOUST SOC AM, V118, P3816, DOI 10.1121/1.2118427 Kawahara H, 1999, SPEECH COMMUN, V27, P187, DOI 10.1016/S0167-6393(98)00085-5 Kidd G, 2008, J ACOUST SOC AM, V124, P3793, DOI 10.1121/1.2998980 LADEFOGED P, 1957, J ACOUST SOC AM, V29, P98, DOI 10.1121/1.1908694 Larson E, 2013, J ACOUST SOC AM, V134, pEL165, DOI 10.1121/1.4812439 Liu C, 2004, ACOUST RES LETT ONL, V5, P31, DOI 10.1121/1.1635431 Mackersie CL, 2011, J AM ACAD AUDIOL, V22, P113, DOI 10.3766/jaaa.22.2.6 Mackersie CL, 2011, J ACOUST SOC AM, V130, P1006, DOI 10.1121/1.3605548 Maddox RK, 2012, JARO-J ASSOC RES OTO, V13, P119, DOI 10.1007/s10162-011-0299-7 McLennan CT, 2005, J EXP PSYCHOL LEARN, V31, P306, DOI 10.1037/0278-7393.31.2.306 MILLER GA, 1950, J ACOUST SOC AM, V22, P167, DOI 10.1121/1.1906584 Moore B. C. J., 1995, HDB PERCEPTION COGNI, V6, P387 Nelson PB, 2003, J ACOUST SOC AM, V113, P961, DOI 10.1121/1.1531983 Nelson PB, 2004, J ACOUST SOC AM, V115, P2286, DOI 10.1121/1.1703538 POWERS GL, 1977, J ACOUST SOC AM, V61, P195, DOI 10.1121/1.381255 Shahin AJ, 2009, NEUROIMAGE, V44, P1133, DOI 10.1016/j.neuroimage.2008.09.045 Shinn-Cunningham B., 2013, POMA 21 INT C AC ICA Skuk V.G., 2013, J SPEECH LANG HEAR R, V57, P285 Smith DRR, 2007, J ACOUST SOC AM, V122, P3628, DOI 10.1121/1.2799507 Stickney GS, 2004, J ACOUST SOC AM, V116, P1081, DOI 10.1121/1.1772399 Stickney GS, 2007, J ACOUST SOC AM, V122, P1069, DOI 10.1121/1.2750159 STUDEBAKER GA, 1985, J SPEECH HEAR RES, V28, P455 TITZE IR, 1989, J ACOUST SOC AM, V85, P1699, DOI 10.1121/1.397959 Tsuzaki M, 2007, HEARING - FROM SENSORY PROCESSING TO PERCEPTION, P285, DOI 10.1007/978-3-540-73009-5_31 VERSCHUURE J, 1983, PERCEPT PSYCHOPHYS, V33, P232, DOI 10.3758/BF03202859 Versfeld NJ, 2000, J ACOUST SOC AM, V107, P1671, DOI 10.1121/1.428451 Wagemans J, 2012, PSYCHOL BULL, V138, P1218, DOI 10.1037/a0029334 Wang X, 2010, J ACOUST SOC AM, V128, P2100, DOI 10.1121/1.3483733 WARREN RM, 1974, PERCEPT PSYCHOPHYS, V16, P150, DOI 10.3758/BF03203268 WARREN RM, 1970, SCIENCE, V167, P392, DOI 10.1126/science.167.3917.392 WARREN RM, 1983, J AUDIO ENG SOC, V31, P623 Wild CJ, 2012, J NEUROSCI, V32, P14010, DOI 10.1523/JNEUROSCI.1528-12.2012 NR 51 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD SEP PY 2014 VL 315 BP 80 EP 87 DI 10.1016/j.heares.2014.07.002 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AP2LC UT WOS:000341902700009 PM 25019356 ER PT J AU Kim, E Kang, H Lee, H Lee, HJ Suh, MW Song, JJ Oh, SH Lee, DS AF Kim, Eunkyung Kang, Hyejin Lee, Hyekyoung Lee, Hyo-Jeong Suh, Myung-Whan Song, Jae-Jin Oh, Seung-Ha Lee, Dong Soo TI Morphological brain network assessed using graph theory and network filtration in deaf adults SO HEARING RESEARCH LA English DT Article ID CROSS-MODAL PLASTICITY; HUMAN CEREBRAL-CORTEX; SMALL-WORLD NETWORKS; AUDITORY-CORTEX; CORTICAL NETWORKS; ANATOMICAL CONNECTIVITY; FUNCTIONAL CONNECTIVITY; STRUCTURAL COVARIANCE; TOPOLOGICAL PATTERNS; PERSISTENT HOMOLOGY AB Prolonged deprivation of auditory input can change brain networks in pre- and postlingual deaf adults by brain-wide reorganization. To investigate morphological changes in these brains voxel-based morphometry, voxel-wise correlation with the primary auditory cortex, and whole brain network analyses using morphological covariance were performed in eight prelingual deaf, eleven postlingual deaf, and eleven hearing adults. Network characteristics based. on graph theory and network filtration based on persistent homology were examined. Gray matter density in the primary auditor cortex was preserved in prelingual deafness, while it tended to decrease in postlingual deafness. Unlike postlingual, prelingual deafness showed increased bilateral temporal connectivity of the primary auditory cortex compared to the hearing adults. Of the graph theory-based characteristics, clustering coefficient, betweenness centrality, and nodal efficiency all increased in prelingual deafness, while all the parameters of postlingual deafness were similar to the hearing adults. Patterns of connected components changing during network filtration were different between prelingual deafness and hearing adults according to the barcode, dendrogram, and single linkage matrix representations, while these were the same in postlingual deafness. Nodes in fronto-limbic and left temporal components were closely coupled, and nodes in the temporo-parietal component were loosely coupled, in prelingual deafness. Patterns of connected components changing in postlingual deafness were the same as hearing adults. We propose that the preserved density of auditory cortex associated with increased connectivity in prelingual deafness, and closer coupling between certain brain areas, represent distinctive reorganization of auditory and related cortices compared with hearing or postlingual deaf adults. The differential network reorganization in the prelingual deaf adults could be related to the absence of auditory speech experience. (C) 2014 Elsevier B.V. All rights reserved. C1 [Kim, Eunkyung; Kang, Hyejin; Lee, Hyekyoung; Lee, Dong Soo] Seoul Natl Univ, Coll Med, Dept Nucl Med, Seoul 110744, South Korea. [Kim, Eunkyung; Lee, Hyekyoung; Lee, Dong Soo] Seoul Natl Univ, Med Res Ctr, Inst Radiat Med, Seoul, South Korea. [Kim, Eunkyung; Lee, Dong Soo] Seoul Natl Univ, Interdisciplinary Program Cognit Sci, Seoul, South Korea. [Kang, Hyejin] Seoul Natl Univ, Data Sci Knowledge Creat Res Ctr, Seoul, South Korea. [Lee, Hyo-Jeong] Hallym Univ, Coll Med, Dept Otorhinolaryngol Head & Neck Surg, Chunchon, South Korea. [Oh, Seung-Ha] Seoul Natl Univ, Coll Med, Dept Otorhinolaryngol Head & Neck Surg, Seoul 110744, South Korea. [Suh, Myung-Whan; Oh, Seung-Ha] Seoul Natl Univ, Med Res Ctr, Sensory Organ Res Inst, Seoul, South Korea. [Song, Jae-Jin] Seoul Natl Univ, Bundang Hosp, Dept Otorhinolaryngol Head & Neck Surg, Songnam, South Korea. [Lee, Dong Soo] Seoul Natl Univ, Grad Sch Convergence Sci & Technol, Dept Mol Med & Biopharmaceut Sci, Seoul, South Korea. [Lee, Dong Soo] Seoul Natl Univ, Coll Med, Seoul, South Korea. [Lee, Dong Soo] Seoul Natl Univ, Coll Pharm, Seoul, South Korea. RP Lee, DS (reprint author), Seoul Natl Univ, Coll Med, Dept Nucl Med, 28 Yeongeon Dong, Seoul 110744, South Korea. EM shaoh@snu.ac.kr; dsl@plaza.snu.ac.kr FU National Research Foundation (NRF) - Korean government (MSIP) [2006-2005090]; National Research Foundation of Korea (NRF) - Korea government (MEST) [2011-0030815] FX This work was supported by the National Research Foundation (NRF) funded by the Korean government (MSIP) (No. 2006-2005090)]. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2011-0030815). CR Achard S, 2007, PLOS COMPUT BIOL, V3, P174, DOI 10.1371/journal.pcbi.0030017 Alain C, 2008, J COGNITIVE NEUROSCI, V20, P285, DOI 10.1162/jocn.2008.20014 ALEXANDER MP, 1989, BRAIN LANG, V37, P656, DOI 10.1016/0093-934X(89)90118-1 Alexander-Bloch A, 2013, NAT REV NEUROSCI, V14, P322, DOI 10.1038/nrn3465 Ashburner J, 2007, NEUROIMAGE, V38, P95, DOI 10.1016/j.neuroimage.2007.07.007 Bassett DS, 2012, NEUROIMAGE, V59, P2196, DOI 10.1016/j.neuroimage.2011.10.002 Bassett DS, 2008, J NEUROSCI, V28, P9239, DOI 10.1523/JNEUROSCI.1929-08.2008 BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289 Carr L, 2003, P NATL ACAD SCI USA, V100, P5497, DOI 10.1073/pnas.0935845100 CATALANAHUMADA M, 1993, BRAIN RES, V623, P287, DOI 10.1016/0006-8993(93)91439-Y Chang EF, 2003, SCIENCE, V300, P498, DOI 10.1126/science.1082163 Chen SL, 2006, PSYCHIAT RES-NEUROIM, V146, P65, DOI 10.1016/j.pscychresns.2005.09.006 Clarke S, 2002, EXP BRAIN RES, V147, P8, DOI 10.1007/s00221-002-1203-9 Desai NS, 2002, NAT NEUROSCI, V5, P783, DOI 10.1038/nn878 Edelsbrunner H, 2008, CONTEMP MATH, V453, P257 Emmorey K, 2003, P NATL ACAD SCI USA, V100, P10049, DOI 10.1073/pnas.1730169100 Evans AC, 2013, NEUROIMAGE, V80, P489, DOI 10.1016/j.neuroimage.2013.05.054 Evans AC, 2008, BRAIN IMAGING BEHAV, V2, P289, DOI 10.1007/s11682-008-9034-3 Faw B, 2003, CONSCIOUS COGN, V12, P83, DOI 10.1016/S1053-8100(02)00030-2 Finney EM, 2001, NAT NEUROSCI, V4, P1171, DOI 10.1038/nn763 Ghrist R, 2008, B AM MATH SOC, V45, P61 Gong GL, 2009, CEREB CORTEX, V19, P524, DOI 10.1093/cercor/bhn102 Gong GL, 2012, NEUROIMAGE, V59, P1239, DOI 10.1016/j.neuroimage.2011.08.017 Grubb MS, 2004, CURR OPIN NEUROBIOL, V14, P503, DOI 10.1016/j.conb.2004.06.006 Hackett TA, 2011, HEARING RES, V271, P133, DOI 10.1016/j.heares.2010.01.011 He Y, 2007, CEREB CORTEX, V17, P2407, DOI 10.1093/cercor/bhl149 He Y, 2008, J NEUROSCI, V28, P4756, DOI 10.1523/JNEUROSCI.0141-08.2008 Iturria-Medina Y, 2008, NEUROIMAGE, V40, P1064, DOI 10.1016/j.neuroimage.2007.10.060 Kral A, 2007, INT J AUDIOL, V46, P479, DOI 10.1080/14992020701383027 Latora V, 2001, PHYS REV LETT, V87, DOI 10.1103/PhysRevLett.87.198701 Lee DS, 2008, EUR J NUCL MED MOL I, V35, P1681, DOI 10.1007/s00259-008-0808-z Lee DS, 2001, NATURE, V409, P149, DOI 10.1038/35051653 Lee Gregory P, 2004, Cogn Behav Neurol, V17, P9, DOI 10.1097/00146965-200403000-00002 Lee H, 2011, LECT NOTES COMPUT SC, V6892, P302 Lee H, 2012, IEEE T MED IMAGING, V31, P2267, DOI 10.1109/TMI.2012.2219590 Lee HJ, 2007, BRAIN, V130, P2929, DOI 10.1093/brain/awm230 Lee JS, 2003, J NUCL MED, V44, P1435 Lerch JP, 2006, NEUROIMAGE, V31, P993, DOI 10.1016/j.neuroimage.2006.01.042 Mechelli A, 2005, J NEUROSCI, V25, P8303, DOI 10.1523/JNEUROSCI.0357-05.2005 Olea RA, 2009, STOCH ENV RES RISK A, V23, P749, DOI 10.1007/s00477-008-0255-1 Penhune VB, 2003, NEUROIMAGE, V20, P1215, DOI 10.1016/S1053-8119(03)00373-2 Petitto LA, 2000, P NATL ACAD SCI USA, V97, P13961, DOI 10.1073/pnas.97.25.13961 Pinotsis DA, 2013, NEUROIMAGE, V65, P127, DOI 10.1016/j.neuroimage.2012.10.016 Rauschecker JP, 1999, TRENDS NEUROSCI, V22, P74, DOI 10.1016/S0166-2236(98)01303-4 Rauschecker JP, 2001, ANN NY ACAD SCI, V930, P330 Robinson JL, 2010, HUM BRAIN MAPP, V31, P173, DOI 10.1002/hbm.20854 Rubinov M, 2010, NEUROIMAGE, V52, P1059, DOI 10.1016/j.neuroimage.2009.10.003 Rusch N, 2003, NEUROIMAGE, V20, P385, DOI 10.1016/S1053-8119(03)00297-0 Sadato N, 2002, NEUROIMAGE, V16, P389, DOI 10.1006/nimg.2002.1111 Salzman CD, 2010, ANNU REV NEUROSCI, V33, P173, DOI 10.1146/annurev.neuro.051508.135256 Shibata DK, 2007, AM J NEURORADIOL, V28, P243 Sporns O, 2011, ANN NY ACAD SCI, V1224, P109, DOI 10.1111/j.1749-6632.2010.05888.x Sporns O, 2004, TRENDS COGN SCI, V8, P418, DOI 10.1016/j.tics.2004.07.008 Spreng RN, 2013, J NEUROSCI, V33, P15226, DOI 10.1523/JNEUROSCI.2261-13.2013 van den Heuvel MP, 2008, NEUROIMAGE, V43, P528, DOI 10.1016/j.neuroimage.2008.08.010 Wang L, 2010, NEUROIMAGE, V50, P862, DOI 10.1016/j.neuroimage.2010.01.044 Watts DJ, 1998, NATURE, V393, P440, DOI 10.1038/30918 Wilson SM, 2004, NAT NEUROSCI, V7, P701, DOI 10.1038/nn1263 Zomorodian A, 2005, DISCRETE COMPUT GEOM, V33, P249, DOI 10.1007/s00454-004-1146-y NR 59 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD SEP PY 2014 VL 315 BP 88 EP 98 DI 10.1016/j.heares.2014.06.007 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AP2LC UT WOS:000341902700010 PM 25016143 ER PT J AU Salcher, R Schwab, B Lenarz, T Maier, H AF Salcher, Rolf Schwab, Burkard Lenarz, Thomas Maier, Hannes TI Round window stimulation with the floating mass transducer at constant pretension SO HEARING RESEARCH LA English DT Article ID MIDDLE-EAR IMPLANT; HUMAN TEMPORAL BONES; VIBRANT SOUNDBRIDGE; OSSICULAR CHAIN; HEARING LOSSES; COCHLEA; RECONSTRUCTION; MEMBRANE; MODEL AB Objective: Mechanical stimulation of the round window (RW) of the cochlea is successfully done with the Vibrant Soundbridge (Med-El), but clinical outcomes show a substantial degree of variability. One source of variability is variation in the static force applied by the stimulator to the round window (Maier et al., 2013). In this study we investigated other sources of variability by maintaining a constant pre-load testing the effect of a coupler device and the interposition of soft tissue between the stimulator and the RW. Study design: Experimental. Methods: The stapes footplate displacement produced by stimulation of the round window was determined in fresh human temporal bones. The response to sound and actuator stimulation was measured with a Laser Doppler Velocimeter at the stapes footplate. The RW was stimulated by a Floating Mass Transducer (FMT) with/without (1) an additional RW coupler (supplied by the manufacturer), and (2) the interposition of TUTOPATCH (R) between the stimulator and the RW, while maintaining a pre-load of similar to 1.96 mN. Results: In 8 temporal bones with normal stapes footplate response to sound, we found an average 11.9 dB increase (500 Hz-2 kHz) under controlled conditions by using the coupler together with the interposition. The increase was statistically significant at 500 Hz (p < 0.01). Additionally, the coupler/interposition combination reduced the variability between experiments (FMT alone SD = 10.9 dB; FMT with TUTOPATCH (R) 82 coupler: SD = 3.4 dB @ 500 Hz) and increased the repeatability. Conclusion: At controlled static force an improved output level, inter-subject variability and repeatability were found by using a coupler/TUTOPATCH combination in RW stimulation with the FMT. The high variability found in clinical experience is not solely due to inter-subject variability, but to coupling conditions and can be optimized further. (C) 2014 Elsevier B.V. All rights reserved. C1 Hannover Med Sch, Dept Otolaryngol, Hannover, Germany. Hannover Med Sch, Inst Audioneurotechnol VIANNA, Hannover, Germany. RP Maier, H (reprint author), Klin Hals Nasen Ohrenheilkunde, Med Hsch Hannover, Cluster Excellence Hearing4all, Carl Neuberg Str 1, D-30625 Hannover, Germany. EM Maier.Hannes@MH-Hannover.de CR Arnold A, 2010, OTOL NEUROTOL, V31, P122, DOI 10.1097/MAO.0b013e3181c34ee0 Arnold A, 2010, HEARING RES, V263, P120, DOI 10.1016/j.heares.2009.12.019 ASTM, 2005, STAND PRACT DESCR SY, V1 Beltrame AM, 2009, OTOL NEUROTOL, V30, P194, DOI 10.1097/MAO.0b013e318180a495 Cervera-Paz FJ, 2004, ACTA OTO-LARYNGOL, V124, P1124, DOI 10.1080/00016480410018197 Colletti V, 2009, ACTA OTO-LARYNGOL, V129, P449, DOI 10.1080/00016480802642070 Colletti V, 2006, INT J AUDIOL, V45, P600, DOI 10.1080/14992020600840903 DUMON T, 1995, OTOLARYNG CLIN N AM, V28, P173 Frenzel H, 2009, LARYNGOSCOPE, V119, P67, DOI 10.1002/lary.20036 Huttenbrink KB, 1997, HNO, V45, P742, DOI 10.1007/s001060050151 Kiefer J, 2006, ORL J OTO-RHINO-LARY, V68, P378, DOI 10.1159/000095282 Lupo JE, 2011, OTOLARYNG HEAD NECK, V145, P641, DOI 10.1177/0194599811409674 Maier H, 2013, HEARING RES, V301, P115, DOI 10.1016/j.heares.2012.12.010 Nakajima HH, 2010, OTOL NEUROTOL, V31, P506, DOI 10.1097/MAO.0b013e3181c0ea9f Pennings RJE, 2010, OTOL NEUROTOL, V31, P998, DOI 10.1097/MAO.0b013e3181e8fc21 Rajan GP, 2011, OTOL NEUROTOL, V32, P271, DOI 10.1097/MAO.0b013e318206fda1 Roland PS, 2007, LARYNGOSCOPE, V117, P1397, DOI 10.1097/MLG.0b013e318064e891 Rosowski JJ, 2007, AUDIOL NEURO-OTOL, V12, P265, DOI 10.1159/000101474 Schraven SP, 2011, HEARING RES, V282, P272, DOI 10.1016/j.heares.2011.07.001 Schraven SP, 2012, AUDIOL NEURO-OTOL, V17, P133, DOI 10.1159/000333807 SPINDEL JH, 1995, OTOLARYNG CLIN N AM, V28, P189 Sprinzl GM, 2011, LARYNGO RHINO OTOL, V90, P560, DOI 10.1055/s-0031-1286321 Stieger C, 2013, HEARING RES, V301, P105, DOI 10.1016/j.heares.2012.11.005 Tringali S, 2010, AUDIOL NEURO-OTOL, V15, P291, DOI 10.1159/000283006 WEVER EG, 1948, ARCH OTOLARYNGOL, V48, P19 Wollenberg B, 2007, HNO, V55, P349, DOI 10.1007/s00106-007-1540-x NR 26 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD AUG PY 2014 VL 314 BP 1 EP 9 DI 10.1016/j.heares.2014.04.001 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AL5CF UT WOS:000339150400001 PM 24727490 ER PT J AU Choi, I Wang, L Bharadwaj, H Shinn-Cunningham, B AF Choi, Inyong Wang, Le Bharadwaj, Hari Shinn-Cunningham, Barbara TI Individual differences in attentional modulation of cortical responses correlate with selective attention performance SO HEARING RESEARCH LA English DT Article ID PASS NOISE MASKING; COCKTAIL PARTY; AUDITORY-CORTEX; VISUAL-CORTEX; GAIN-CONTROL; SPEECH; OSCILLATIONS; MECHANISMS; ENTRAINMENT; POTENTIALS AB Many studies have shown that attention modulates the cortical representation of an auditory scene, emphasizing an attended source while suppressing competing sources. Yet, individual differences in the strength of this attentional modulation and their relationship with selective attention ability are poorly understood. Here, we ask whether differences in how strongly attention modulates cortical responses reflect differences in normal-hearing listeners' selective auditory attention ability. We asked listeners to attend to one of three competing melodies and identify its pitch contour while we measured cortical electroencephalographic responses. The three melodies were either from widely separated pitch ranges ("easy trials"), or from a narrow, overlapping pitch range ("hard trials"). The melodies started at slightly different times; listeners attended either the leading or lagging melody. Because of the timing of the onsets, the leading melody drew attention exogenously. In contrast, attending the lagging melody required listeners to direct top-down attention volitionally. We quantified how attention amplified auditory N1 response to the attended melody and found large individual differences in the N1 amplification, even though only correctly answered trials were used to quantify the ERP gain. Importantly, listeners with the strongest amplification of N1 response to the lagging melody in the easy trials were the best performers across other types of trials. Our results raise the possibility that individual differences in the strength of top-down gain control reflect inherent differences in the ability to control top-down attention. (C) 2014 Elsevier B.V. All rights reserved. C1 [Choi, Inyong; Wang, Le; Bharadwaj, Hari; Shinn-Cunningham, Barbara] Boston Univ, Ctr Computat Neurosci & Neural Technol, Boston, MA 02215 USA. [Bharadwaj, Hari; Shinn-Cunningham, Barbara] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA. RP Shinn-Cunningham, B (reprint author), Ctr Computat Neurosci & Neural Technol, 677 Beacon St, Boston, MA 02215 USA. EM shinn@cns.bu.edu RI Wang, Le/I-1195-2014 FU NIH [RO1 DC009477]; National Security Science and Engineering Fellowship; National Research Foundation of Korea Post-doctoral Fellowship [NRF-2013R1A6A3A03062982] FX The authors thank Tanzima Arif for helping with subject recruitment and data collection. This project was supported in part NIH RO1 DC009477, by a National Security Science and Engineering Fellowship to BGSC, and by a National Research Foundation of Korea Post-doctoral Fellowship to Choi (NRF-2013R1A6A3A03062982). The authors declare no competing financial interests. Authors thank to two anonymous reviewers for their helpful comments. CR Allison BZ, 2010, HUM-COMPUT INT-SPRIN, P35, DOI 10.1007/978-1-84996-272-8_3 Anderson S, 2013, J SPEECH LANG HEAR R, V56, P31, DOI 10.1044/1092-4388(2012/12-0043) Atiani S, 2009, NEURON, V61, P467, DOI 10.1016/j.neuron.2008.12.027 BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289 Best V, 2008, P NATL ACAD SCI USA, V105, P13174, DOI 10.1073/pnas.0803718105 Brainard DH, 1997, SPATIAL VISION, V10, P433, DOI 10.1163/156856897X00357 Chait M, 2010, NEUROPSYCHOLOGIA, V48, P3262, DOI 10.1016/j.neuropsychologia.2010.07.007 Choi I., 2013, FRONT HUM NEUROSCI, V7, P1 Cravo AM, 2013, J NEUROSCI, V33, P4002, DOI 10.1523/JNEUROSCI.4675-12.2013 Ding N, 2012, P NATL ACAD SCI USA, V109, P11854, DOI 10.1073/pnas.1205381109 Elhilali M, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000129 Giesbrecht B, 2003, NEUROIMAGE, V19, P496, DOI 10.1016/S1053-8119(03)00162-9 Golumbic EMZ, 2013, NEURON, V77, P980, DOI 10.1016/j.neuron.2012.12.037 Hill KT, 2010, CEREB CORTEX, V20, P583, DOI 10.1093/cercor/bhp124 Hill NJ, 2012, J NEURAL ENG, V9, DOI 10.1088/1741-2560/9/2/026011 Hillyard SA, 1998, PHILOS T ROY SOC B, V353, P1257, DOI 10.1098/rstb.1998.0281 HILLYARD SA, 1973, SCIENCE, V182, P177, DOI 10.1126/science.182.4108.177 Jerger J, 2000, J Am Acad Audiol, V11, P467 Kerlin JR, 2010, J NEUROSCI, V30, P620, DOI 10.1523/JNEUROSCI.3631-09.2010 Knudsen EI, 2007, ANNU REV NEUROSCI, V30, P57, DOI 10.1146/annurev.neuro.30.051606.094256 Lakatos P, 2008, SCIENCE, V320, P110, DOI 10.1126/science.1154735 Lakatos P, 2013, NEURON, V77, P750, DOI 10.1016/j.neuron.2012.11.034 Linkenkaer-Hansen K, 2004, J NEUROSCI, V24, P10186, DOI 10.1523/JNEUROSCI.2584-04.2004 Martin BA, 1999, J SPEECH LANG HEAR R, V42, P271 Martin BA, 2005, EAR HEARING, V26, P195, DOI 10.1097/00003446-200504000-00007 Martinez-Trujillo JC, 2002, NEURON, V35, P365 Mesgarani N, 2012, NATURE, V485, P233, DOI 10.1038/nature11020 Moore DR, 2013, INT J AUDIOL, V52, P3, DOI 10.3109/14992027.2012.723143 PICTON TW, 1974, ELECTROEN CLIN NEURO, V36, P191, DOI 10.1016/0013-4694(74)90156-4 Power AJ, 2011, CEREB CORTEX, V21, P1223, DOI 10.1093/cercor/bhq233 Ress D, 2000, NAT NEUROSCI, V3, P940 Ruggles D, 2012, CURR BIOL, V22, P1417, DOI 10.1016/j.cub.2012.05.025 Ruggles D, 2011, P NATL ACAD SCI USA, V108, P15516, DOI 10.1073/pnas.1108912108 Ruggles D, 2011, JARO-J ASSOC RES OTO, V12, P395, DOI 10.1007/s10162-010-0254-z Shamma SA, 2010, CURR OPIN NEUROBIOL, V20, P361, DOI 10.1016/j.conb.2010.03.009 WOLDORFF MG, 1993, P NATL ACAD SCI USA, V90, P8722, DOI 10.1073/pnas.90.18.8722 Xiang JJ, 2010, J NEUROSCI, V30, P12084, DOI 10.1523/JNEUROSCI.0827-10.2010 NR 37 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD AUG PY 2014 VL 314 BP 10 EP 19 DI 10.1016/j.heares.2014.04.008 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AL5CF UT WOS:000339150400002 PM 24821552 ER PT J AU Fujikawa, T Petralia, RS Fitzgerald, TS Wang, YX Millis, B Morgado-Diaz, JA Kitamura, K Kachar, B AF Fujikawa, Taro Petralia, Ronald S. Fitzgerald, Tracy S. Wang, Ya-Xian Millis, Bryan Morgado-Diaz, Jose Andres Kitamura, Ken Kachar, Bechara TI Localization of kainate receptors in inner and outer hair cell synapses SO HEARING RESEARCH LA English DT Article ID GUINEA-PIG COCHLEA; II AFFERENT-FIBERS; SPIRAL GANGLION; GLUTAMATE RECEPTORS; IMMUNOCYTOCHEMICAL LOCALIZATION; SYNAPTIC-TRANSMISSION; MAMMALIAN COCHLEA; RIBBON SYNAPSES; FUNCTIONAL-ROLE; AMPA RECEPTORS AB Glutamate plays a role in hair cell afferent transmission, but the receptors that mediate neurotransmission between outer hair cells (OHCs) and type H ganglion neurons are not well defined. A previous study using in situ hybridization showed that several kainate-type glutamate receptor (KAR) subunits are expressed in cochlear ganglion neurons. To determine whether KARs are expressed in hair cell synapses, we performed X-gal staining on mice expressing lacZ driven by the GluK5 promoter, and immunolabeling of glutamate receptors in whole-mount mammalian cochleae. X-gal staining revealed GluK5 expression in both type I and type II ganglion neurons and OHCs in adults. OHCs showed X-gal reactivity throughout maturation from postnatal day 4 (P4) to 1.5 months. Immunoreactivity for GluK5 in IHC afferent synapses appeared to be postsynaptic, similar to GluA2 (GluR2; AMPA-type glutamate receptor (AMPAR) subunit), while GluK2 may be on both sides of the synapses. In OHC afferent synapses, immunoreactivity for GluK2 and GluK5 was found, although GluK2 was only in those synapses bearing ribbons. GluA2 was not detected in adult OHC afferent synapses. Interestingly, GluK1, GluK2 and GluK5 were also detected in OHC efferent synapses, forming several active zones in each synaptic area. At P8, GluA2 and all KAR subunits except GluK4 were detected in OHC afferent synapses in the apical turn, and GluA2, GluK1, GluK3 decreased dramatically in the basal turn. These results indicate that AMPARs and KARs (GluK2/ GluK5) are localized to IHC afferent synapses, while only KARs (GluK2/GluK5) are localized to OHC afferent synapses in adults. Glutamate spillover near OHCs may act on KARs in OHC efferent terminals to modulate transmission of acoustic information and OHC electromotility. Published by Elsevier B.V. C1 [Fujikawa, Taro; Millis, Bryan; Kachar, Bechara] NIDCD, Lab Cell Struct & Dynam, NIH, Bethesda, MD 20892 USA. [Fujikawa, Taro; Kitamura, Ken] Tokyo Med & Dent Univ, Dept Otolaryngol, Bunkyo Ku, Tokyo 1138519, Japan. [Petralia, Ronald S.; Wang, Ya-Xian] NIDCD, Adv Imaging Core, NIH, Bethesda, MD 20892 USA. [Fitzgerald, Tracy S.] NIDCD, Mouse Auditory Testing Core Facil, NIH, Bethesda, MD 20892 USA. [Morgado-Diaz, Jose Andres] Natl Canc Inst, Cellular Biol Div, BR-20230050 Rio De Janeiro, Brazil. RP Petralia, RS (reprint author), NIDCD, NIH, 35A Convent Dr,35A-1E614, Bethesda, MD 20892 USA. EM petralia@nidcd.nih.gov FU Intramural Research Program of the NIDCD at the National Institutes of Health FX This work was supported by the Intramural Research Program of the NIDCD at the National Institutes of Health. We also thank Dr. Stephan Brenowitz for reviewing the manuscript, and Dr. Kai Chang for advice related to the GluK5 mutant mouse. CR Andrade-Talavera Y, 2012, J NEUROCHEM, V122, P891, DOI 10.1111/j.1471-4159.2012.07844.x Bianchi LM, 2002, J HISTOCHEM CYTOCHEM, V50, P1641 BROWN MC, 1994, J NEUROPHYSIOL, V71, P1835 Contractor Anis, 2008, P99 Corradi A, 2003, DEVELOPMENT, V130, P401, DOI 10.1242/dev.00215 Darstein M, 2003, J NEUROSCI, V23, P8013 DAU J, 1989, HEARING RES, V42, P253, DOI 10.1016/0378-5955(89)90149-4 Davies C, 2001, SYNAPSE, V40, P258, DOI 10.1002/syn.1048 DECHESNE CJ, 1994, J NEUROCYTOL, V23, P631, DOI 10.1007/BF01191557 Delaney AJ, 2002, NEURON, V36, P475, DOI 10.1016/S0896-6273(02)01008-5 Elgoyhen AB, 2012, J PHYSIOL-PARIS, V106, P47, DOI 10.1016/j.jphysparis.2011.06.001 Eybalin M, 2004, EUR J NEUROSCI, V20, P2981, DOI 10.1111/j.1460-9568.2004.03772.x EYBALIN M, 1993, PHYSIOL REV, V73, P309 Friedman RA, 2009, HUM MOL GENET, V18, P785, DOI 10.1093/hmg/ddn402 Furness DN, 2002, JARO, V3, P234, DOI 10.1007/s1016200210064 Garduno J, 2012, J NEUROSCI, V32, P15148, DOI 10.1523/JNEUROSCI.0941-12.2012 Glowatzki E, 2002, NAT NEUROSCI, V5, P147, DOI 10.1038/nn796 Grati M, 2012, J NEUROSCI, V32, P14288, DOI 10.1523/JNEUROSCI.3071-12.2012 Harvey DM, 2002, VISUAL NEUROSCI, V19, P681, DOI 10.1017/S0952523802195137 HASHIMOTO S, 1988, ACTA OTO-LARYNGOL, V105, P64, DOI 10.3109/00016488809119447 Hires SA, 2008, P NATL ACAD SCI USA, V105, P4411, DOI 10.1073/pnas.0712008105 Hnasko TS, 2012, ANNU REV PHYSIOL, V74, P225, DOI 10.1146/annurev-physiol-020911-153315 HOLLMANN M, 1994, ANNU REV NEUROSCI, V17, P31, DOI 10.1146/annurev.ne.17.030194.000335 Huang LC, 2012, NEURAL DEV, V7, DOI 10.1186/1749-8104-7-38 Kew JNC, 2005, PSYCHOPHARMACOLOGY, V179, P4, DOI 10.1007/s00213-005-2200-z Khimich D, 2005, NATURE, V434, P889, DOI 10.1038/nature03418 LEPAGE EL, 1989, HEARING RES, V38, P177, DOI 10.1016/0378-5955(89)90064-6 Lerma J, 2003, NAT REV NEUROSCI, V4, P481, DOI 10.1038/nrn1118 Lerma J, 2013, NEURON, V80, P292, DOI 10.1016/j.neuron.2013.09.045 Liberman LD, 2011, J NEUROSCI, V31, P801, DOI 10.1523/JNEUROSCI.3389-10.2011 LIBERMAN MC, 1980, HEARING RES, V3, P45, DOI 10.1016/0378-5955(80)90007-6 LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309 LIBERMAN MC, 1982, SCIENCE, V216, P1239, DOI 10.1126/science.7079757 LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1 Maison SF, 2006, J NEUROSCI, V26, P10315, DOI 10.1523/JNEUROSCI.2395-06.2006 Maison SF, 2009, JARO-J ASSOC RES OTO, V10, P50, DOI 10.1007/s10162-008-0138-7 Marrocco J, 2012, J NEUROSCI, V32, P17143, DOI 10.1523/JNEUROSCI.1040-12.2012 Martinez-Monedero R., 2012, ARO ANN 821 MIDWINTE, V35, P135 Matsubara A, 1996, J NEUROSCI, V16, P4457 McLean WJ, 2009, JARO-J ASSOC RES OTO, V10, P37, DOI 10.1007/s10162-008-0152-9 Meyer AC, 2009, NAT NEUROSCI, V12, P444, DOI 10.1038/nn.2293 Moser T, 2006, CELL TISSUE RES, V326, P347, DOI 10.1007/s00441-006-0276-3 Newman DL, 2012, HEARING RES, V294, P125, DOI 10.1016/j.heares.2012.08.016 NIEDZIELSKI AS, 1995, J NEUROSCI, V15, P2338 Nishiyama H, 2007, NAT NEUROSCI, V10, P675, DOI 10.1038/nn0607-675 Peppi M, 2012, JARO-J ASSOC RES OTO, V13, P199, DOI 10.1007/s10162-011-0309-9 Petralia RS, 2012, SCI WORLD J, DOI 10.1100/2012/267120 Petralia RS, 2010, NEUROSCIENCE, V167, P68, DOI 10.1016/j.neuroscience.2010.01.022 Petralia RS, 1997, J COMP NEUROL, V385, P456, DOI 10.1002/(SICI)1096-9861(19970901)385:3<456::AID-CNE9>3.0.CO;2-2 PETRALIA RS, 1992, J COMP NEUROL, V318, P329, DOI 10.1002/cne.903180309 Pinard A, 2003, EUR J NEUROSCI, V18, P3241, DOI 10.1046/j.1460-9568.2003.03028.x Puller C, 2013, NEUROSCIENCE, V243, P136, DOI 10.1016/j.neuroscience.2013.03.054 Puller C, 2011, J COMP NEUROL, V519, P467, DOI 10.1002/cne.22528 Ren J, 2011, NEURON, V69, P445, DOI 10.1016/j.neuron.2010.12.038 Robertson D, 1999, HEARING RES, V136, P151, DOI 10.1016/S0378-5955(99)00120-3 ROBERTSON D, 1984, HEARING RES, V15, P113, DOI 10.1016/0378-5955(84)90042-X ROMAND R, 1988, BRAIN RES, V462, P167, DOI 10.1016/0006-8993(88)90601-4 Ruel J, 1999, J PHYSIOL-LONDON, V518, P667, DOI 10.1111/j.1469-7793.1999.0667p.x Safieddine S, 1999, EUR J NEUROSCI, V11, P803, DOI 10.1046/j.1460-9568.1999.00487.x Safieddine S, 2012, ANNU REV NEUROSCI, V35, P509, DOI 10.1146/annurev-neuro-061010-113705 Shigemoto R, 1997, J NEUROSCI, V17, P7503 SPOENDLI.H, 1969, ACTA OTO-LARYNGOL, V67, P239, DOI 10.3109/00016486909125448 Szapiro G, 2009, NEUROSCIENCE, V162, P644, DOI 10.1016/j.neuroscience.2009.03.077 Szmajda BA, 2011, J NEUROSCI, V31, P13431, DOI 10.1523/JNEUROSCI.2105-11.2011 Tonnaer ELGM, 2010, HEARING RES, V267, P27, DOI 10.1016/j.heares.2010.03.090 Waguespack J, 2007, J NEUROSCI, V27, P13890, DOI 10.1523/JNEUROSCI.2159-07.2007 Wedemeyer C, 2013, J NEUROSCI, V33, P15477, DOI 10.1523/JNEUROSCI.2554-13.2013 Weisz C, 2009, NATURE, V461, P1126, DOI 10.1038/nature08487 Weisz CJC, 2012, J NEUROSCI, V32, P9528, DOI 10.1523/JNEUROSCI.6194-11.2012 Wersinger E, 2011, HEARING RES, V279, P1, DOI 10.1016/j.heares.2010.12.018 Yan D, 2013, NEURON, V78, P687, DOI 10.1016/j.neuron.2013.02.031 NR 71 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD AUG PY 2014 VL 314 BP 20 EP 32 DI 10.1016/j.heares.2014.05.001 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AL5CF UT WOS:000339150400003 PM 24858010 ER PT J AU Kale, S Cervantes, VM Wu, MR Pisano, DV Sheth, N Olson, ES AF Kale, Sushrut Cervantes, Vanessa M. Wu, Mailing R. Pisano, Dominic V. Sheth, Nakul Olson, Elizabeth S. TI A novel perfusion-based method for cochlear implant electrode insertion SO HEARING RESEARCH LA English DT Article ID ROUND WINDOW MEMBRANE; SPIRAL GANGLION; INTRACOCHLEAR POSITION; SCALA-TYMPANI; TEMPORAL BONE; HEARING; TRAUMA; PLACEMENT; SURGERY; ARRAYS AB A cochlear implant (CI) restores partial hearing to profoundly deaf individuals. CI electrodes are inserted manually in the cochlea and surgeons rely on tactile feedback from the implant to determine when to stop the insertion. This manual insertion method results in a large degree of variability in surgical outcomes and intra-cochlear trauma. Additionally, implants often span only the basal turn. In the present study we report on the development of a new method to assist Cl electrode insertion. The design objectives are (1) an automated and standardized insertion technique across patients with (2) more apical insertion than is possible by the contemporary methods, while (3) minimizing insertion trauma. The method relies on a viscous fluid flow through the cochlea to carry the electrode array with it. A small cochleostomy (similar to 100-150 um in diameter) is made in scala vestibuli (SV) and the round window (RW) membrane is opened. A flow of diluted Sodium Hyaluronate (also known as Hyaluronic Acid, (HA)) is set up from the RW to the SV opening using a perfusion pump that sets up a unidirectional flow. Once the flow is established an implant is dropped into the ongoing flow. Here we present a proof-of-concept study where we used this technique to insert silicone implants all the way to the cochlear apex in rats and gerbils. In light-microscopic histology, the implantation occurred without cochlear trauma. To further assess the ototoxicity of the HA perfusion, we measured compound action potential (CAP) thresholds following the perfusion of HA, and found that the CAP thresholds were substantially elevated. Thus, at this point the method is promising, and requires further development to become clinically viable. (C) 2014 Elsevier B.V. All rights reserved. C1 [Kale, Sushrut; Cervantes, Vanessa M.; Wu, Mailing R.; Pisano, Dominic V.; Sheth, Nakul; Olson, Elizabeth S.] Columbia Univ, Dept Otorhinolaryngol Head & Neck Surg, New York, NY 10032 USA. [Wu, Mailing R.; Olson, Elizabeth S.] Columbia Univ, Dept Biomed Engn, New York, NY 10025 USA. RP Kale, S (reprint author), 630 W 168th St,P&S 11-452, New York, NY 10032 USA. EM sk3646@cumc.columbia.edu FU NIDCD; Emil Capita Foundation [R01 DC003130] FX This research was funded by the NIDCD and the Emil Capita Foundation (R01 DC003130). We would like to thank Abort Medical Optics Inc., Santa Ana, CA for providing Hyaluronic Acid for this study. CR Adunka O, 2006, OTOLARYNG HEAD NECK, V135, P374, DOI 10.1016/j.otohns.2006.05.002 Adunka OF, 2010, ADV OTO-RHINO-LARYNG, V67, P96, DOI 10.1159/000262601 Adunka OF, 2007, LARYNGOSCOPE, V117, P2187, DOI 10.1097/MLG.0b013e3181453a6c Adunka OF, 2006, ACTA OTO-LARYNGOL, V126, P475, DOI 10.1080/00016480500437393 Angeli SI, 2006, OTOLARYNG HEAD NECK, V134, P225, DOI 10.1016/j.otohns.2005.09.028 ARIYASU L, 1989, OTOLARYNG HEAD NECK, V100, P87 Balkany TJ, 2006, OTOL NEUROTOL, V27, P1083, DOI 10.1097/01.mao.0000244355.34577.85 Baskent D, 2004, J ACOUST SOC AM, V116, P3130, DOI 10.1121/1.1804627 Boyd PJ, 2011, EAR HEARING, V32, P411, DOI 10.1097/AUD.0b013e3182064bda Briaire JJ, 2006, HEARING RES, V214, P17, DOI 10.1016/j.heares.2006.01.015 Briggs R J, 2001, Cochlear Implants Int, V2, P135, DOI 10.1002/cii.45 Briggs RJS, 2005, ACTA OTO-LARYNGOL, V125, P870, DOI 10.1080/00016480510031489 Choudhury B, 2012, OTOL NEUROTOL, V33, P1507, DOI 10.1097/MAO.0b013e31826dbc80 Deman PR, 2004, INT J AUDIOL, V43, P363, DOI 10.1080/14992020400050046 Eshraghi Adrien A, 2006, Curr Opin Otolaryngol Head Neck Surg, V14, P323, DOI 10.1097/01.moo.0000244189.74431.df Eshraghi AA, 2003, LARYNGOSCOPE, V113, P415, DOI 10.1097/00005537-200303000-00005 Finley CC, 2008, OTOL NEUROTOL, V29, P920, DOI 10.1097/MAO.0b013e318184f492 Friedland David R, 2009, Trends Amplif, V13, P124, DOI 10.1177/1084713809336422 Fu QJ, 1999, EAR HEARING, V20, P332, DOI 10.1097/00003446-199908000-00006 Gantz BJ, 2003, LARYNGOSCOPE, V113, P1726, DOI 10.1097/00005537-200310000-00012 Glueckert R, 2005, AUDIOL NEURO-OTOL, V10, P258, DOI 10.1159/000086000 Harris Robert, 2011, Cochlear Implants Int, V12, P209, DOI 10.1179/146701011X12950038111657 Huang S, 2011, JARO-J ASSOC RES OTO, V12, P559, DOI 10.1007/s10162-011-0272-5 LAURENT C, 1992, ACTA OTO-LARYNGOL, P63 Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3 Lee J, 2011, AUDIOL NEURO-OTOL, V16, P69, DOI 10.1159/000316445 LEHNHARDT E, 1993, HNO, V41, P356 Maleki A, 2007, POLYM BULL, V59, P217, DOI 10.1007/s00289-007-0760-2 NUTTALL AL, 1982, HEARING RES, V6, P207, DOI 10.1016/0378-5955(82)90055-7 PLASSMANN W, 1987, BRAIN BEHAV EVOLUT, V30, P82, DOI 10.1159/000118639 Rebscher SJ, 2008, J REHABIL RES DEV, V45, P731, DOI 10.1682/JRRD.2007.08.0119 Roland J T Jr, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P64 Roland Peter S, 2006, Adv Otorhinolaryngol, V64, P11 Salt AN, 2009, HEARING RES, V250, P63, DOI 10.1016/j.heares.2009.02.001 Scheidt RE, 2010, HEARING RES, V269, P23, DOI 10.1016/j.heares.2010.07.009 Skarzynski H, 2007, ACTA OTO-LARYNGOL, V127, P41, DOI 10.1080/00016480500488917 Souter MA, 2011, OTOL NEUROTOL, V32, P58, DOI 10.1097/MAO.0b013e3182009f52 Stakhovskaya O, 2007, JARO-J ASSOC RES OTO, V8, P220, DOI 10.1007/s10162-007-0076-9 SU WY, 1982, LARYNGOSCOPE, V92, P483 von Ilberg CA, 2011, AUDIOL NEURO-OTOL, V16, P1, DOI 10.1159/000327765 Wardrop P, 2005, HEARING RES, V203, P68, DOI 10.1016/j.heares.2004.11.007 Wardrop P, 2005, HEARING RES, V203, P54, DOI 10.1016/j.heares.2004.11.006 Wilson BS, 2008, HEARING RES, V242, P3, DOI 10.1016/j.heares.2008.06.005 Zhang J, 2006, LECT NOTES COMPUT SC, V4190, P33 NR 44 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD AUG PY 2014 VL 314 BP 33 EP 41 DI 10.1016/j.heares.2014.05.003 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AL5CF UT WOS:000339150400004 PM 24882641 ER PT J AU Lu, HP Syka, J Chiu, TW Poon, PWF AF Lu, H. P. Syka, J. Chiu, T. W. Poon, Paul W. F. TI Prolonged sound exposure has different effects on increasing neuronal size in the auditory cortex and brainstem SO HEARING RESEARCH LA English DT Article ID INFERIOR COLLICULUS; COCHLEAR NUCLEUS; NEOCORTICAL NEURONS; RESPONSE PROPERTIES; POSTNATAL EXPOSURE; PREFRONTAL CORTEX; CRITICAL PERIOD; VISUAL-CORTEX; JUVENILE RATS; ORGANIZATION AB Tone at moderate levels presented to young rats at a stage (postnatal week-4) presumably that has passed the cortical critical period still can enlarge neurons in the auditory cortex. It remains unclear whether this delayed plastic change occurs only in the cortex, or reflects a change taking place in the auditory brainstem. Here we compared sound-exposure effects on neuronal size in the auditory cortex and the midbrain. Starting from postnatal day 22, young rats were exposed to a low-frequency tone (4 kHz at 65 dB SPL) for a period of 3 (postnatal day 22-25) or 7 (postnatal day 22-29) days before sacrifice. Neurons were analyzed morphometrically from 7 mu m-thick histological sections. A marked increase in neuronal size (32%) was found at the cortex in the high-frequency region distant from the exposing tone. The increase in the midbrain was even larger (67%) and was found in both the low and high frequency regions. While cell enlargements were clear at day 29, only in the high frequency region of the cortex a slight enlargement was found at day 22, suggesting that the cortical and subcortical changes are synchronized, if not slightly preceded by the cortex. In contrast, no changes in neuronal size were found in the cochlear nucleus or the visual midbrain. Such differential effects of sound-exposure at the auditory centers across cortical and subcortical levels cannot be explained by a simple activity-driven change occurring earlier in the brainstem, and might involve function of other structures as for example the descending auditory system. (C) 2014 Elsevier B.V. All rights reserved. C1 [Lu, H. P.; Poon, Paul W. F.] Natl Cheng Kung Univ, Dept Physiol, Tainan 70101, Taiwan. [Lu, H. P.] Tzu Hui Inst Technol, Pingtung, Taiwan. [Syka, J.] ASCR, Inst Expt Med, Prague 14220 4, Czech Republic. [Chiu, T. W.] Natl Chiao Tung Univ, Dept Biol Sci & Technol, Hsinchu, Taiwan. RP Poon, PWF (reprint author), Natl Cheng Kung Univ, Dept Physiol, 1 Univ Rd, Tainan 70101, Taiwan. EM ppoon@mail.ncku.edu.tw FU NSC, Taiwan [99-2320-B-006-020, 100-2923-006-001, 101-2911-1-006-511]; GACR [P303/11/J005, P304/12/1342] FX We thank Dr lain Bruce for reading the manuscript and Maria Chiu for comments. Supported by NSC, Taiwan, grants 99-2320-B-006-020, 100-2923-006-001, 101-2911-1-006-511, and GACR P303/11/J005, P304/12/1342. CR Adjamian P, 2009, HEARING RES, V253, P15, DOI 10.1016/j.heares.2009.04.001 Argandona EG, 2000, BRAIN RES, V855, P137, DOI 10.1016/S0006-8993(99)02361-6 BERENDES HD, 1965, CHROMOSOMA, V17, P35 Bose M, 2010, SYNAPSE, V64, P97, DOI 10.1002/syn.20710 Bundgaard MJ, 2001, J ANAT, V198, P481, DOI 10.1046/j.1469-7580.2001.19840481.x Chiu TW, 2003, J NEUROL SCI, V216, P143, DOI 10.1016/S0022-510X(03)00230-2 de Villers-Sidani E, 2007, J NEUROSCI, V27, P180, DOI 10.1523/JNEUROSCI.3227-06.2007 Hromadka T, 2008, PLOS BIOL, V6, P124, DOI 10.1371/journal.pbio.0060016 Doron NN, 2002, J COMP NEUROL, V453, P345, DOI 10.1002/cne.10412 Eggermont JJ, 2008, AM J AUDIOL, V17, pS162, DOI 10.1044/1059-0889(2008/07-0025) Grecova J, 2009, EUR J NEUROSCI, V29, P1921, DOI 10.1111/j.1460-9568.2009.06739.x Kolluri N, 2005, AM J PSYCHIAT, V162, P1200, DOI 10.1176/appi.ajp.162.6.1200 LIPPE W, 1985, J COMP NEUROL, V237, P273, DOI 10.1002/cne.902370211 Loftus WC, 2008, NEUROSCIENCE, V154, P196, DOI 10.1016/j.neuroscience.2008.01.019 Lu HP, 2009, NEUROSCI LETT, V463, P145, DOI 10.1016/j.neulet.2009.07.075 Lu HP, 2009, NEUROSCI LETT, V451, P139, DOI 10.1016/j.neulet.2008.12.048 Markham JA, 2004, NEURON GLIA BIOL, V1, P351, DOI 10.1017/S1740925X05000219 Meitzen J, 2008, GEN COMP ENDOCR, V157, P259, DOI 10.1016/j.ygcen.2008.03.014 Miyakawa A, 2013, NEUROSCIENCE, V230, P114, DOI 10.1016/j.neuroscience.2012.10.068 MONTIRONI R, 1994, J CLIN PATHOL, V47, P906, DOI 10.1136/jcp.47.10.906 Niparko JK, 1997, OTOLARYNG HEAD NECK, V117, P229, DOI 10.1016/S0194-5998(97)70179-7 Nixdorf-Bergweiler BE, 1998, NEUROBIOL LEARN MEM, V69, P258, DOI 10.1006/nlme.1998.3819 Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9 Oliver DL, 2011, NEUROSCIENCE, V184, P75, DOI 10.1016/j.neuroscience.2011.04.001 Paxinos G., 1998, RAT BRAIN STEROTAXIC, P280 Pierri JN, 2001, ARCH GEN PSYCHIAT, V58, P466, DOI 10.1001/archpsyc.58.5.466 Polley DB, 2007, J NEUROPHYSIOL, V97, P3621, DOI 10.1152/jn.01298.2006 POON PWF, 1990, BRAIN RES, V524, P327, DOI 10.1016/0006-8993(90)90710-S POON PWF, 1992, BRAIN RES, V585, P391, DOI 10.1016/0006-8993(92)91243-8 Profant O, 2013, HEARING RES, V296, P51, DOI 10.1016/j.heares.2012.11.021 PTACEK JM, 1974, J COMP NEUROL, V158, P237, DOI 10.1002/cne.901580302 RENSING L, 1965, EXPERIENTIA, V21, P103, DOI 10.1007/BF02144769 Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849 RYAN AF, 1988, HEARING RES, V36, P181, DOI 10.1016/0378-5955(88)90060-3 Saada AA, 1996, BRAIN RES, V736, P315, DOI 10.1016/0006-8993(96)00719-6 Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O SAUNDERS JC, 1972, EXP NEUROL, V36, P426, DOI 10.1016/0014-4886(72)90003-9 SCHMIDT EE, 1995, J CELL BIOL, V128, P467, DOI 10.1083/jcb.128.4.467 Sempoux C, 1998, J CLIN ENDOCR METAB, V83, P1455, DOI 10.1210/jc.83.5.1455 Sims D, 2009, GENOME BIOL, V10, DOI 10.1186/gb-2009-10-2-r20 Stark Anette K., 2005, Current Alzheimer Research, V2, P449, DOI 10.2174/156720505774330528 Stark AK, 2007, NEUROSCIENCE, V150, P121, DOI 10.1016/j.neuroscience.2007.06.062 Stege R, 2000, CLIN CANCER RES, V6, P160 Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002 Wang Q, 1996, CALCIFIED TISSUE INT, V58, P40 Xu J.F., 1990, COMPUT ENG APPL, V6, P7 Yan J, 1996, SCIENCE, V273, P1100, DOI 10.1126/science.273.5278.1100 Yu X, 2007, P NATL ACAD SCI USA, V104, P12193, DOI 10.1073/pnas.0700960104 Zhang LI, 2002, P NATL ACAD SCI USA, V99, P2309, DOI 10.1073/pnas.261707398 Zhang LI, 2001, NAT NEUROSCI, V4, P1123, DOI 10.1038/nn745 Zhang YK, 2005, J NEUROPHYSIOL, V94, P2676, DOI 10.1152/jn.00549.2005 Zhou XM, 2009, NAT NEUROSCI, V12, P26, DOI 10.1038/nn.2239 NR 52 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD AUG PY 2014 VL 314 BP 42 EP 50 DI 10.1016/j.heares.2014.05.005 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AL5CF UT WOS:000339150400005 PM 24911238 ER PT J AU Li, YZ Peng, AQ Ge, SL Wang, Q Liu, JJ AF Li, Youzhong Peng, Anquan Ge, Shenglei Wang, Qin Liu, Jiajia TI miR-204 suppresses cochlear spiral ganglion neuron survival in vitro by targeting TMPRSS3 SO HEARING RESEARCH LA English DT Article ID AUTOSOMAL RECESSIVE DEAFNESS; SENSORINEURAL HEARING-LOSS; TRANSMEMBRANE SERINE PROTEASES; GUINEA-PIG; INNER-EAR; MUTATIONS; MICRORNAS; FAMILIES; CELLS; GENE AB Sensorineural hearing loss (SNHL) is the most common cause of hearing impairment. One of the essential steps to prevent progressive hearing loss is to protect spiral ganglion neurons (SGNs) from ongoing degeneration. MicroRNAs and TMPRSS3 (transmembrane protease, serine 3) have been reported to be involved in development of SGNs and genesis of SNHL The aim of this study was to investigate the role of miR-204 and TMPRSS3 in SGNs. Effect of miR-204 on cell viability of SGNs was first examined using MU (3[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. Expression of TMPRSS3 in SGNs with or without addition of miR-204 was assessed by real-time PCR and western blot further. A luciferase reporter activity assay was conducted to confirm target association between miR-204 and 3 '-UTR of TMPRSS3. Finally, role of TMPRSS3 on cell viability of SGNs was evaluated by transfection of TMPRSS3 siRNA. Cell viability of SGNs was suppressed by miR-204 in a concentration-dependent manner. Overexpression of miR-204 reduced expression of TMPRSS3 in SGNs at both mRNA and protein levels. Binding to the 3 '-UTR of TMPRSS3 by miR-204 was identified by luciferase assay. Knockdown of TMpRSS3 by siRNA significantly inhibits cell viability of SGNs. miR-204 could be a potential therapeutic target in sensorineural hearing loss. (C) 2014 Elsevier B.V. All rights reserved. C1 [Li, Youzhong; Peng, Anquan; Ge, Shenglei; Wang, Qin; Liu, Jiajia] Cent S Univ, Xiangya Hosp 2, Dept Otolaryngol Head & Neck Surg, Changsha 410011, Hunan, Peoples R China. RP Peng, AQ (reprint author), Cent S Univ, Xiangya Hosp 2, Dept Otolaryngol Head & Neck Surg, 139 Renmin Rd, Changsha 410011, Hunan, Peoples R China. EM anquanpeng2013@163.com CR Ben-Yosef T, 2001, J MED GENET, V38, P396, DOI 10.1136/jmg.38.6.396 BICHLER E, 1983, ARCH OTO-RHINO-LARYN, V237, P201, DOI 10.1007/BF00453725 Bindu LH, 2008, INT J AUDIOL, V47, P702, DOI 10.1080/14992020802215862 Bugge TH, 2009, J BIOL CHEM, V284, P23177, DOI 10.1074/jbc.R109.021006 Charif M, 2012, BIOCHEM BIOPH RES CO, V419, P643, DOI 10.1016/j.bbrc.2012.02.066 Charizopoulou N, 2011, NAT COMMUN, V2, DOI 10.1038/ncomms1200 Cho WCS, 2010, BBA-REV CANCER, V1805, P209, DOI 10.1016/j.bbcan.2009.11.003 Clark G. M., 2003, COCHLEAR IMPLANTS FU Dodson HC, 2000, J NEUROCYTOL, V29, P525, DOI 10.1023/A:1007201913730 Dror AA, 2009, ANNU REV GENET, V43, P411, DOI 10.1146/annurev-genet-102108-134135 Ebert MS, 2012, CELL, V149, P515, DOI 10.1016/j.cell.2012.04.005 Eppsteiner RW, 2012, HEARING RES, V292, P51, DOI 10.1016/j.heares.2012.08.007 Fasquelle L, 2011, J BIOL CHEM, V286, P17383, DOI 10.1074/jbc.M110.190652 Feghali J G, 1998, Ear Nose Throat J, V77, P282 Feghali JG, 1998, ENT-EAR NOSE THROAT, V77, P280 Feghali JG, 1998, ENT-EAR NOSE THROAT, V77, P282 Ge Shenglei, 2011, Zhong Nan Da Xue Xue Bao Yi Xue Ban, V36, P794, DOI 10.3969/j.issn.1672-7347.2011.08.018 Guipponi M, 2002, HUM MOL GENET, V11, P2829, DOI 10.1093/hmg/11.23.2829 Guipponi M, 2008, HUM MUTAT, V29, P130, DOI 10.1002/humu.20617 Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3 Hone S W, 2001, Semin Neonatol, V6, P531, DOI 10.1053/siny.2001.0094 Hutchin T, 2005, CLIN GENET, V68, P506, DOI 10.1111/j.1399-0004.2005.00539.x Hwang H-W, 2007, Br J Cancer, V96 Suppl, pR40 KOITCHEV K, 1982, ACTA OTO-LARYNGOL, V94, P431, DOI 10.3109/00016488209128931 Krol J, 2010, CELL, V141, P618, DOI 10.1016/j.cell.2010.03.039 LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4 Lee J, 2013, GENE, V532, P276, DOI 10.1016/j.gene.2013.07.108 Lee K, 2012, CLIN GENET, V82, P56, DOI 10.1111/j.1399-0004.2011.01695.x Li HQ, 2010, J NEUROSCI, V30, P3254, DOI 10.1523/JNEUROSCI.4948-09.2010 Martinez-Monedero R, 2008, DEV NEUROBIOL, V68, P669, DOI 10.1002/dneu.20616 Martinez-Monedero R, 2006, J NEUROBIOL, V66, P319, DOI 10.1002/neu.20232 Masmoudi S, 2001, HUM MUTAT, V18, P101, DOI 10.1002/humu.1159 NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411 Natera-Naranjo O, 2010, RNA, V16, P1516, DOI 10.1261/rna.1833310 Pasquinelli AE, 2012, NAT REV GENET, V13, P271, DOI 10.1038/nrg3162 Plasterk RHA, 2006, CELL, V124, P877, DOI 10.1016/j.cell.2006.02.030 Scott HS, 2001, NAT GENET, V27, P59 Tang X., 2010, NEURAL REGEN RES, V5, P1 Walsh Tom, 2006, Human Genomics, V2, P203 Wattenhofer M, 2005, HUM GENET, V117, P528, DOI 10.1007/s00439-005-1332-x Wattenhofer M, 2002, J MOL MED-JMM, V80, P124, DOI 10.1007/s00109-001-0310-6 Zhang PZ, 2013, HEARING RES, V298, P1, DOI 10.1016/j.heares.2013.01.022 NR 42 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD AUG PY 2014 VL 314 BP 60 EP 64 DI 10.1016/j.heares.2014.05.002 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AL5CF UT WOS:000339150400007 PM 24924414 ER PT J AU Lee, J Seong, K Lee, SH Lee, KY Cho, JH AF Lee, JangWoo Seong, KiWoong Lee, Sang-Heun Lee, Kyu-Yup Cho, Jin-Ho TI Comparison of auditory responses determined by acoustic stimulation and by mechanical round window stimulation at equivalent stapes velocities SO HEARING RESEARCH LA English DT Article ID IMPLANTABLE HEARING DEVICE; MIDDLE-EAR IMPLANT; FLOATING MASS TRANSDUCER; HUMAN TEMPORAL BONES; RECONSTRUCTION; PERFORMANCE; COCHLEA; HUMANS; AIDS AB Active middle ear implants (AMEIs) have been studied to overcome the limitations of conventional hearing aids such as howling, occlusion, and social discrimination. AMEIs usually drive the oval window (OW) by means of transmitting vibrational force through the ossicles and the vibrational force corresponding to sound is generated from a mechanical actuator. Recently, round window (RW) stimulation using an AMEI such as a floating mass transducer (FMT) to deliver sound to the cochlea has been introduced and hearing improvement in clinical use has been reported. Although previous studies demonstrated that the auditory response to RW stimulation was comparable to a sound-evoked auditory response, few studies have investigated the quantification of the physiologic performance of an AMEI through RW stimulation on the inner ear in vivo. There is no established relationship between the cochlear responses and mechanical stimulation to RW. The aim of this study is to assess the physiologic response in RW stimulation by an AMEI. The transferred energy through the RW to the inner ear could estimate the response corresponding to acoustic stimulation in order to quantify the AMEI output in the ossicular chain or OW stimulation. The parameters of the auditory brainstem responses (ABRs) were measured and compared based on stapes velocities similar enough to be regarded as the same for acoustic stimulation to the external auditory canal (EAC) and mechanical stimulation to the RW in an in vivo system. In conclusion, this study showed that the amplitudes and latencies of the ABRs of acoustic and RW stimulation showed significant differences at comparable stapes velocities in an in vivo system. These differences in the ABR amplitudes and latencies reflect different output functions of the cochlea in response to different stimulation pathways. Therefore, it is necessary to develop a new method for quantifying the output of the cochlea in the case of RW stimulation. (C) 2014 Published by Elsevier B.V. C1 [Lee, JangWoo] Kyungpook Natl Univ, Grad Sch Elect Engn & Comp Sci, Taegu, South Korea. [Seong, KiWoong] Kyungpook Natl Univ Hosp, Dept Biomed Engn, Taegu, South Korea. [Lee, Sang-Heun; Lee, Kyu-Yup] Kyungpook Natl Univ, Sch Med, Dept Otorhinolaryngol Head & Neck Surg, Taegu, South Korea. [Cho, Jin-Ho] Kyungpook Natl Univ, Coll IT Engn, Sch Elect Engn, Taegu, South Korea. RP Cho, JH (reprint author), Kyungpook Natl Univ, Sch Med, Inst Biomed Engn Res, N509 New Bldg, Taegu, South Korea. EM kylee@knu.ac.kr; jhcho@ee.knu.ac.kr FU Korea Healthcare Technology R&D Project, Korean Ministry of Health Welfare [A092106]; Ministry of Knowledge Economy, South Korea; Korea Institute for Advancement of Technology (KIAT); Dae-Gyeong Leading Industry Office through the Leading Industry Development for Economic Region FX This study was supported by a grant from the Korea Healthcare Technology R&D Project, Korean Ministry of Health & Welfare (A092106). And also this research was financially supported by the Ministry of Knowledge Economy, South Korea, Korea Institute for Advancement of Technology (KIAT) and Dae-Gyeong Leading Industry Office through the Leading Industry Development for Economic Region. CR Arnold A, 2010, HEARING RES, V263, P120, DOI 10.1016/j.heares.2009.12.019 ASTM International, 2005, STAND PRACT DESCR SY Backous Douglas D., 2006, HEAD NECK SURG, V14, P314 Colletti V, 2006, INT J AUDIOL, V45, P600, DOI 10.1080/14992020600840903 DUMON T, 1995, OTOLARYNG CLIN N AM, V28, P173 GOODE RL, 1995, OTOLARYNG CLIN N AM, V28, P141 Jenkins HA, 2004, ACTA OTO-LARYNGOL, V124, P391, DOI 10.1080/00016480410016298 Jenkins HA, 2008, OTOL NEUROTOL, V29, P534, DOI 10.1097/MAO.0b013e3181656969 JEWETT DL, 1971, BRAIN, V94, P681, DOI 10.1093/brain/94.4.681 Kiefer J, 2006, ORL J OTO-RHINO-LARY, V68, P378, DOI 10.1159/000095282 Koka K., 2010, CAN STAPES VELOCITY, V33 Koka K, 2010, HEARING RES, V263, P128, DOI 10.1016/j.heares.2009.08.009 Lefebvre PP, 2009, AUDIOL NEURO-OTOL, V14, P172, DOI 10.1159/000171479 Lupo JE, 2009, OTOL NEUROTOL, V30, P1215, DOI 10.1097/MAO.0b013e3181bc3c06 Lupo JE, 2011, OTOLARYNG HEAD NECK, V145, P641, DOI 10.1177/0194599811409674 Nakajima HH, 2010, OTOL NEUROTOL, V31, P506, DOI 10.1097/MAO.0b013e3181c0ea9f Park IY, 2011, HEARING RES, V272, P187, DOI [10.1016/j.heares.2010.10.017, 10.1016/j.heares.2010.10.17] Schraven SP, 2011, HEARING RES, V282, P272, DOI 10.1016/j.heares.2011.07.001 Schraven SP, 2012, AUDIOL NEURO-OTOL, V17, P133, DOI 10.1159/000333807 Siegert R, 2007, LARYNGOSCOPE, V117, P336, DOI 10.1097/MLG.0b013e31802b6561 Silva I, 2010, J ACOUST SOC AM, V127, P3629, DOI 10.1121/1.3397457 SPINDEL JH, 1995, OTOLARYNG CLIN N AM, V28, P189 Stieger C, 2013, HEARING RES, V301, P105, DOI 10.1016/j.heares.2012.11.005 Tringali S, 2008, INT J PEDIATR OTORHI, V72, P513, DOI 10.1016/j.ijporl.2007.12.002 Verhaegen VJO, 2008, LARYNGOSCOPE, V118, P1645, DOI 10.1097/MLG.0b013e31817b013a Voss SE, 1996, J ACOUST SOC AM, V100, P1602, DOI 10.1121/1.416062 W Ko, 1987, P 9 ANN C IEEE ENG M, P13 WEVER EG, 1950, J ACOUST SOC AM, V22, P460, DOI 10.1121/1.1906628 Wollenberg B, 2007, HNO, V55, P349, DOI 10.1007/s00106-007-1540-x Zenner HP, 1998, LANCET, V352, P1751, DOI 10.1016/S0140-6736(98)00076-2 NR 30 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD AUG PY 2014 VL 314 BP 65 EP 71 DI 10.1016/j.heares.2014.04.003 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AL5CF UT WOS:000339150400008 PM 24768763 ER PT J AU Narne, VK Prabhu, PP Chatni, S AF Narne, Vijaya Kumar Prabhu, P. Prashanth Chatni, Suma TI Time-frequency analysis of transient evoked-otoacoustic emissions in individuals with auditory neuropathy spectrum disorder SO HEARING RESEARCH LA English DT Article ID MANAGEMENT; SYNCHRONY; DIAGNOSIS AB The aim of the study was to describe and quantify the cochlear active mechanisms in individuals with Auditory Neuropathy Spectrum Disorders (ANSD). Transient Evoked Otoacoustic Emissions (TEOAEs) were recorded in 15 individuals with ANSD and 22 individuals with normal hearing. TEOAEs were analyzed by Wavelet transform method to describe and quantify the characteristics of TEOAEs in narrow-band frequency regions. It was noted that the amplitude of TEOAEs was higher and latency slightly shorter in individuals with ANSD compared to normal hearing individuals at low and mid frequencies. The increased amplitude and reduced latencies of TEOAEs in ANSD group could be attributed to the efferent system damage, especially at low and mid frequencies seen in individuals with ANSD. Thus, wavelet analysis of TEOAEs proves to be another important tool to understand the patho-physiology in individuals with ANSD. (C) 2014 Elsevier B.V. All rights reserved. C1 [Narne, Vijaya Kumar; Prabhu, P. Prashanth; Chatni, Suma] All India Inst Speech & Hearing, Dept Audiol, Mysore 570006, Karnataka, India. RP Prabhu, PP (reprint author), All India Inst Speech & Hearing, Dept Audiol, Naimisham Campus, Mysore 570006, Karnataka, India. EM prashanth.audio@gmail.com CR Amatuzzi M, 2011, JARO-J ASSOC RES OTO, V12, P595, DOI 10.1007/s10162-011-0273-4 Avilala V.K.Y., 2012, AUDIOL MED, V10, P50 Berlin CI, 1998, EAR HEARING, V19, P37, DOI 10.1097/00003446-199802000-00002 Berlin CI, 2010, INT J AUDIOL, V49, P30, DOI 10.3109/14992020903160892 BERLIN CI, 1993, HEARING RES, V71, P1, DOI 10.1016/0378-5955(93)90015-S Berlin CI, 2003, MENT RETARD DEV D R, V9, P225, DOI 10.1002/mrdd.10084 Bhagat S, 2013, AUDIOL NEURO-OTOL, V18, P71, DOI 10.1159/000343909 CARHART R, 1959, J SPEECH HEAR DISORD, V24, P330 Deltenre P., 1999, Audiology (London), V38, P187 Xu J., 2002, ZHONGHUA ER BI YAN H, V36, P436 Yang LP, 2002, MED BIOL ENG COMPUT, V40, P34, DOI 10.1007/BF02347693 Yathiraj A, 2005, PHONEMICALLY BALANCE Zhang ZG, 2008, HEARING RES, V243, P18, DOI 10.1016/j.heares.2008.07.002 NR 13 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUL PY 2014 VL 313 BP 1 EP 8 DI 10.1016/j.heares.2014.04.005 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AJ7GU UT WOS:000337866000001 PM 24768764 ER PT J AU Zhang, M AF Zhang, Ming TI Effects of the intensity of masking noise on ear canal recorded low-frequency cochlear microphonic waveforms in normal hearing subjects SO HEARING RESEARCH LA English DT Article ID PRODUCT OTOACOUSTIC EMISSIONS; OUTER HAIR-CELLS; NERVE; PRESSURE; AUDIOMETRY; RESPONSES; HUMANS; TONE; DIAGNOSIS; AMPLIFIER AB Compared to auditory brainstem responses (ABRs), cochlear microphonics (CMs) may be more appropriate to serve as a supplement to the test of otoacoustic emissions (OAEs). Researchers have shown that low-frequency CMs from the apical cochlea are measurable at the tympanic membrane using high-pass masking noise. Our objective is to study the effect of such noise at different intensities on low-frequency CMs recorded at the ear canal, which is not completely known. Six components were involved in this CM measurement including an ear canal electrode (1), a relatively long and low-frequency toneburst (2), and high-pass masking noise at different intensities (3). The rest components include statistical analysis based on multiple human subjects (4), curve modeling based on amplitudes of CM waveforms (CMWs) and noise intensity (5), and a technique based on electrocochleography (ECochG or ECoG) (6). Results show that low-frequency CMWs appeared clearly. The CMW amplitude decreased with an increase in noise level. It decreased first slowly, then faster, and finally slowly again. In conclusion, when masked with high-pass noise, the low-frequency CMs are measurable at the human ear canal. Such noise reduces the low-frequency CM amplitude. The reduction is noise-intensity dependent but not completely linear. The reduction may be caused by the excited basal cochlea which the low-frequency has to travel and pass through. Although not completely clear, six mechanisms related to such reduction are discussed. (C) 2014 Elsevier B.V. All rights reserved. C1 [Zhang, Ming] Univ Alberta, Fac Rehabil Med, Dept Commun Sci & Disorders, Edmonton, AB T6G 2G4, Canada. [Zhang, Ming] Glenrose Rehabil Hosp, Alberta Hlth Serv, Dept Audiol, Edmonton, AB T5G 0B7, Canada. [Zhang, Ming] Univ Alberta, Fac Med & Dent, Dept Surg Otolaryngol, Edmonton, AB T6G 2B7, Canada. RP Zhang, M (reprint author), 8205 114th St,2-70 Corbett Hall, Edmonton, AB T6G 2G4, Canada. EM ming.zhang@ualberta.ca FU Canada Foundation for Innovation; Glenrose Rehabilitation Hospital Foundation; Research Matching Funds from the University of Alberta FX Part of this work was supported by grants from the Canada Foundation for Innovation (M.Z.), Glenrose Rehabilitation Hospital Foundation (M.Z.), and Research Matching Funds from the University of Alberta (M.Z.). The authors wish to thank the subjects who participated in the experiment for their time and effort; Christy Woodruff for the editing and proofreading; Adrianne Boyd, Adrielle Soriano, Cassandra Wilson, Taylor King, Meriden Layfield, and Kristi Been for participation in part of this study; Dr. Vicky Zhao and Mr. Brian Schmidt for insightful discussions of the study; and anonymous reviewers for their invaluable comments. CR ABBAS PJ, 1976, J ACOUST SOC AM, V59, P112, DOI 10.1121/1.380841 Ashmore J, 2010, HEARING RES, V266, P1, DOI 10.1016/j.heares.2010.05.001 BATRA R, 1986, HEARING RES, V21, P167, DOI 10.1016/0378-5955(86)90037-7 Berlin CI, 2003, MENT RETARD DEV D R, V9, P225, DOI 10.1002/mrdd.10084 Brown CJ, 2008, EAR HEARING, V29, P704, DOI 10.1097/AUD.0b013e31817a98af CHIMENTO TC, 1990, ELECTROEN CLIN NEURO, V75, P88, DOI 10.1016/0013-4694(90)90156-E CHIMENTO TC, 1992, HEARING RES, V62, P131, DOI 10.1016/0378-5955(92)90178-P DALLOS P, 1981, ANNU REV PSYCHOL, V32, P153, DOI 10.1146/annurev.ps.32.020181.001101 Dallos P, 2006, J PHYSIOL-LONDON, V576, P37, DOI 10.1113/jphysiol.2006.114652 DAVIS RL, 1984, HEARING RES, V15, P29, DOI 10.1016/0378-5955(84)90222-3 Deppe C, 2013, EAR HEARING, V34, P122, DOI 10.1097/AUD.0b013e31826709c3 Don M, 2005, AUDIOL NEURO-OTOL, V10, P274, DOI 10.1159/000086001 Don M., 2002, AUDITORY BRAINSTEM R Ferraro J. A., 2002, HDB CLIN AUDIOLOGY, P249 FERRARO JA, 1989, AM J OTOL, V10, P42 GALAMBOS R, 1959, AM J PHYSIOL, V197, P527 Gardi J, 1979, Audiology, V18, P358 GLASER EM, 1976, ELECTROEN CLIN NEURO, V40, P25, DOI 10.1016/0013-4694(76)90176-0 Gouveris H, 2009, EUR ARCH OTO-RHINO-L, V266, P225, DOI 10.1007/s00405-008-0741-6 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 He WX, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034356 HENRY KR, 1995, HEARING RES, V90, P176, DOI 10.1016/0378-5955(95)00162-6 HINK RF, 1980, AUDIOLOGY, V19, P36 JERGER J, 1970, ARCHIV OTOLARYNGOL, V92, P311 MARSH JT, 1970, SCIENCE, V169, P1222, DOI 10.1126/science.169.3951.1222 Noguchi Y, 1999, AUDIOLOGY, V38, P135 Norton S.J., 1989, ABST ASS RES OTOLARY, V12, p227(A) OATES P, 1992, EAR HEARING, V13, P28, DOI 10.1097/00003446-199202000-00007 Oghalai John S, 2004, Curr Opin Otolaryngol Head Neck Surg, V12, P431, DOI 10.1097/01.moo.0000134449.05454.82 PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X PICTON TW, 1977, J OTOLARYNGOL, V6, P90 Poch-Broto J, 2009, ACTA OTO-LARYNGOL, V129, P749, DOI 10.1080/00016480802398962 PONTON CW, 1992, SCAND AUDIOL, V21, P131, DOI 10.3109/01050399209045993 Ren TY, 2011, NAT COMMUN, V2, DOI 10.1038/ncomms1226 RHODE WS, 1978, J NEUROPHYSIOL, V41, P692 Riazi M, 2008, J AM ACAD AUDIOL, V19, P46, DOI 10.3766/jaaa.19.1.5 Roeser RJ, 2007, AUDIOLOGY DIAGNOSIS Ruggero MA, 2007, JARO-J ASSOC RES OTO, V8, P153, DOI 10.1007/s10162-007-0081-z SNYDER RL, 1984, HEARING RES, V15, P261, DOI 10.1016/0378-5955(84)90033-9 STILLMAN RD, 1976, AUDIOLOGY, V15, P10 Sun XM, 2009, EAR HEARING, V30, P191, DOI 10.1097/AUD.0b013e31819769e1 Thorson MJ, 2012, J ACOUST SOC AM, V131, P1282, DOI 10.1121/1.3672654 TOGNOLA G, 1995, BRIT J AUDIOL, V29, P153, DOI 10.3109/03005369509086592 WHITEHEAD ML, 1993, J SPEECH HEAR RES, V36, P1097 WOLFE JA, 1978, J SPEECH HEAR RES, V21, P401 YAMADA O, 1982, SCAND AUDIOL, V11, P53, DOI 10.3109/01050398209076199 ZENG FG, 1994, J ACOUST SOC AM, V96, P2127, DOI 10.1121/1.410154 Zeng FG, 2006, J SPEECH LANG HEAR R, V49, P367, DOI 10.1044/1092-4388(2006/029) Zhang M., 2013, AUDIT RES, V3, P16 Zhang M, 1997, J ACOUST SOC AM, V102, P1032, DOI 10.1121/1.419856 Zhang M, 2010, TRENDS AMPLIF, V14, P211, DOI 10.1177/1084713810388811 Zhang M, 1998, ABST ASS RES OTOLARY, V21, P19 Zhang M., 2007, LOW FREQUENCY OAES C, P108 Zhang M., 2007, WHAT RESPONSES CAN B, P100 Zhang M, 2002, JARO, V3, P289, DOI 10.1007/s101620020016 Zhang M, 2000, PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON RECENT DEVELOPMENTS IN AUDITORY MECHANICS, P330 Zhang M, 2012, TRENDS AMPLIF, V16, P117, DOI 10.1177/1084713812448547 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 Zheng J., 2008, ABST ASS RES OTOLARY, V31, P233 Zheng XY, 2000, HEARING RES, V143, P14, DOI 10.1016/S0378-5955(99)00217-8 Zöllner C, 1975, Laryngol Rhinol Otol (Stuttg), V54, P681 NR 61 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUL PY 2014 VL 313 BP 9 EP 17 DI 10.1016/j.heares.2014.04.004 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AJ7GU UT WOS:000337866000002 PM 24793117 ER PT J AU Sun, W Fu, Q Zhang, C Manohar, S Kumaraguru, A Li, J AF Sun, Wei Fu, Qiang Zhang, Chao Manohar, Senthilvelan Kumaraguru, Anand Li, Ji TI Loudness perception affected by early age hearing loss SO HEARING RESEARCH LA English DT Article ID AUDIOGENIC-SEIZURE SUSCEPTIBILITY; OTITIS-MEDIA; WILLIAMS-SYNDROME; AUDITORY-CORTEX; VISUAL-CORTEX; CORTICAL DEVELOPMENT; INFERIOR COLLICULUS; GENE-EXPRESSION; UNITED-STATES; DELTA-SUBUNIT AB Tinnitus and hyperacusis, commonly seen in adults, are also reported in children. Although clinical studies found children with tinnitus and hyperacusis often suffered from recurrent otitis media, there is no direct study on how temporary hearing loss in the early age affects the sound loudness perception. In this study, sound loudness changes in rats affected by perforation of the tympanic membranes (TM) have been studied using an operant conditioning based behavioral task. We detected significant increases of sound loudness and susceptibility to audiogenic seizures (AGS) in rats with bilateral TM damage at postnatal 16 days. As increase to sound sensitivity is commonly seen in hyperacusis and tinnitus patients, these results suggest that early age hearing loss is a high risk factor to induce tinnitus and hyperacusis in children. In the TM damaged rats, we also detected a reduced expression of GABA receptor delta and alpha 6 subunits in the inferior colliculus (IC) compared to the controls. Treatment of vigabatrin (60 mg/kg/day, 7-14 days), an anti-seizure drug that inhibits the catabolism of GABA, not only blocked AGS, but also significantly attenuated the loudness response. Administration of vigabatrin following the early age TM damage could even prevent rats from developing AGS. These results suggest that TM damage at an early age may cause a permanent reduction of GABA tonic inhibition which is critical towards the maintenance of normal loudness processing of the IC. Increasing GABA concentration during the critical period may alleviate the impairment in the brain induced by early age hearing loss. Published by Elsevier B.V. C1 [Sun, Wei; Zhang, Chao; Manohar, Senthilvelan; Kumaraguru, Anand] SUNY Buffalo, Ctr Hearing & Deafness, Dept Commun Disorders & Sci, Buffalo, NY 14214 USA. [Fu, Qiang; Li, Ji] SUNY Buffalo, Dept Pharmacol & Toxicol, Buffalo, NY 14214 USA. [Fu, Qiang] Sichuan Univ, West China Sch Preclin & Forens Med, Dept Biochem & Mol Biol, Chengdu 610041, Peoples R China. [Zhang, Chao] Chinese Peoples Liberat Army Gen Hosp, Dept Otolaryngol, Beijing 100853, Peoples R China. RP Sun, W (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA. EM weisun@buffalo.edu FU Action on Hearing Loss [G42]; National Organization for Hearing Research FX This project was supported by Action on Hearing Loss (G42) and National Organization for Hearing Research. CR Auinger P, 2003, PEDIATRICS, V112, P514, DOI 10.1542/peds.112.3.514 Blomberg S, 2006, RES DEV DISABIL, V27, P668, DOI 10.1016/j.ridd.2005.09.002 Chakravarty DN, 1999, EXP NEUROL, V157, P135, DOI 10.1006/exnr.1999.7047 Chang EF, 2003, SCIENCE, V300, P498, DOI 10.1126/science.1082163 Chang EF, 2005, P NATL ACAD SCI USA, V102, P16460, DOI 10.1073/pnas.0508239102 Coelho CB, 2007, PROG BRAIN RES, V166, P179, DOI 10.1016/S0079-6123(07)66016-6 Dauman R, 2005, ACTA OTO-LARYNGOL, V125, P503, DOI 10.1080/00016480510027565 de Villers-Sidani E, 2008, NAT NEUROSCI, V11, P957, DOI 10.1038/nn.2144 FAGIOLINI M, 1994, VISION RES, V34, P709, DOI 10.1016/0042-6989(94)90210-0 Gothelf D, 2006, NEUROLOGY, V66, P390, DOI 10.1212/01.wnl.0000196643.35395.5f Hebert S, 2013, J NEUROSCI, V33, P2356, DOI 10.1523/JNEUROSCI.3461-12.2013 Hempel JM, 2012, OTOL NEUROTOL, V33, P1357, DOI 10.1097/MAO.0b013e31826939b5 HENRY KR, 1967, SCIENCE, V158, P938, DOI 10.1126/science.158.3803.938-a Hensch TK, 2005, CURR TOP DEV BIOL, V69, P215, DOI 10.1016/S0070-2153(05)69008-4 Hensch TK, 2005, NAT REV NEUROSCI, V6, P877, DOI 10.1038/nrn1787 Inge K, 2014, 37 ANN MIDW M ASS RE Iwai Y, 2003, J NEUROSCI, V23, P6695 JEANSONNE NE, 1991, J BIOL CHEM, V266, P14675 Johnson LB, 2001, J OTOLARYNGOL, V30, P90, DOI 10.2310/7070.2001.20811 Khalfa S, 2004, HEARING RES, V198, P87, DOI 10.1016/j.heares.2004.07.006 Kilman V, 2002, J NEUROSCI, V22, P1328 KLEIN AJ, 1990, J SPEECH HEAR DISORD, V55, P339 Klein BD, 2004, EPILEPSY RES, V62, P13, DOI 10.1016/j.eplepsyres.2004.06.007 Kral A, 2005, CEREB CORTEX, V15, P552, DOI 10.1093/cercor/bhh156 Kral A, 2002, CEREB CORTEX, V12, P797, DOI 10.1093/cercor/12.8.797 Kristjansson S, 2010, ACTA PAEDIATR, V99, P867, DOI 10.1111/j.1651-2227.2009.01637.x Kwon J, 1997, EPILEPSY RES, V27, P89, DOI 10.1016/S0920-1211(97)01024-3 Lanphear BP, 1997, PEDIATRICS, V99, part. no., DOI 10.1542/peds.99.3.e1 Lee H, 2003, ARCH NEUROL-CHICAGO, V60, P113 Levitin DJ, 2005, J CHILD PSYCHOL PSYC, V46, P514, DOI 10.1111/j.1469-7610.2004.00376.x Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 May BJ, 2009, JARO-J ASSOC RES OTO, V10, P295, DOI 10.1007/s10162-009-0157-z Nusser Z, 2002, J NEUROPHYSIOL, V87, P2624, DOI 10.1152/jn.00866.2001 O'Leary SJ, 2009, MED J AUSTRALIA, V191, pS65 Oliver DL, 2011, NEUROSCIENCE, V184, P75, DOI 10.1016/j.neuroscience.2011.04.001 Paradise JL, 1997, PEDIATRICS, V99, P318, DOI 10.1542/peds.99.3.318 POON PWF, 1992, BRAIN RES, V585, P391, DOI 10.1016/0006-8993(92)91243-8 Popescu MV, 2010, NEURON, V65, P718, DOI 10.1016/j.neuron.2010.02.019 Porcello DM, 2003, J NEUROPHYSIOL, V89, P1378, DOI 10.1152/jn.0899.2002 Richardson BD, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016508 Spigelman I, 2002, EPILEPSIA, V43, P3, DOI 10.1046/j.1528-1157.43.s.5.8.x Sun W, 2008, NEUROSCIENCE, V156, P374, DOI 10.1016/j.neuroscience.2008.07.040 Sun W., 2013, J OTOL, V8, P40 Sun W, 2011, HEARING RES, V282, P178, DOI 10.1016/j.heares.2011.08.004 Sun W, 2009, NEUROSCIENCE, V159, P325, DOI 10.1016/j.neuroscience.2008.12.024 Sun W, 2014, BEHAV BRAIN RES, V258, P187, DOI 10.1016/j.bbr.2013.10.024 VERNON JA, 1987, AM J OTOL, V8, P201 Weikum WM, 2012, P NATL ACAD SCI USA, V109, P17221, DOI 10.1073/pnas.1121263109 Xu H, 2007, J NEUROSCI, V27, P9417, DOI 10.1523/JNEUROSCI.1992-07.2007 NR 49 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUL PY 2014 VL 313 BP 18 EP 25 DI 10.1016/j.heares.2014.04.002 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AJ7GU UT WOS:000337866000003 PM 24747532 ER PT J AU Kalinec, GM Thein, P Parsa, A Yorgason, J Luxford, W Urrutia, R Kalinec, F AF Kalinec, Gilda M. Thein, Pru Parsa, Arya Yorgason, Joshua Luxford, William Urrutia, Raul Kalinec, Federico TI Acetaminophen and NAPQI are toxic to auditory cells via oxidative and endoplasmic reticulum stress-dependent pathways SO HEARING RESEARCH LA English DT Article ID HEARING-LOSS; OXIDANT STRESS; ANALGESIC USE; IN-VITRO; ABUSE; HEPATOTOXICITY; HEPATOCYTES; DEATH; MODEL; HYDROCODONE/ACETAMINOPHEN AB Pain relievers containing N-acetyl-para-aminophenol, also called APAP, acetaminophen or paracetamol, in combination with opioid narcotics are top-selling pharmaceuticals in the U.S. Individuals who abuse these drugs for as little as sixty days can develop tinnitus and progressive bilateral sensorineural hearing loss. Recently published studies indicate that APAP and its metabolic product N-acetyl-p-benzoquinoneimine (NAPQI) are the primary ototoxic agents in this type of pain relievers. However, the mechanisms underlying the deleterious effects of these drugs on auditory cells remain to be fully characterized. In this study, we report cellular, genomic, and proteomic experiments revealing that cytotoxicity by APAP and NAPQI involves two different pathways in Immortomouse (TM)-derived HEI-OC1 cells, implicating ROS overproduction, alterations in ER morphology, redistribution of intra-cisternal chaperones, activation of the eIF2 alpha-CHOP pathway, as well as changes in ER stress and protein folding response markers. Thus, both oxidative and ER stress are part of the cellular and molecular mechanisms that contribute to the cytotoxic effects of APAP and NAPQI in these cells. We suggest that these in vitro findings should be taken into consideration when designing pharmacological strategies aimed at preventing the toxic effects of these drugs on the auditory system. (C) 2014 Elsevier B.V. All rights reserved. C1 [Kalinec, Gilda M.; Thein, Pru; Parsa, Arya; Kalinec, Federico] Univ Calif Los Angeles, David Geffen Sch Med, Dept Head & Neck Surg, Los Angeles, CA 90095 USA. [Yorgason, Joshua] Univ Utah, Salt Lake City, UT 84112 USA. [Luxford, William] House Clin, Los Angeles, CA 90057 USA. [Urrutia, Raul] Mayo Clin, Ctr Individualized Med, Translat Epigen Program, Epigenet & Chromatin Dynam Lab, Rochester, MN 55905 USA. RP Kalinec, F (reprint author), Univ Calif Los Angeles, David Geffen Sch Med, Dept Head & Neck Surg, 2100 West Third St, Los Angeles, CA 90057 USA. EM fkalinec@mednet.ucla.edu FU NIH [R01-DC010146, R01-DC010397] FX The authors declare no existing or potential conflict of interest. This work was supported by NIH Grants R01-DC010146 and R01-DC010397, and personal funds from William M. Luxford. Its content is solely the responsibility of the authors and does not necessarily represent the official view of the National Institutes of Health. CR Bajt ML, 2004, TOXICOL SCI, V80, P343, DOI 10.1093/toxsci/kfh151 Bisaglia M, 2002, NEUROCHEM INT, V41, P43, DOI 10.1016/S0197-0186(01)00136-X Blakley BW, 2008, J OTOLARYNGOL-HEAD N, V37, P507, DOI 10.2310/7070.2008.0096 Bromer Matthew Q, 2003, Clin Liver Dis, V7, P351, DOI 10.1016/S1089-3261(03)00025-4 Curhan SG, 2012, AM J EPIDEMIOL, V176, P544, DOI 10.1093/aje/kws146 Curhan SG, 2010, AM J MED, V123, P231, DOI 10.1016/j.amjmed.2009.08.006 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 Friedman RA, 2000, AM J OTOL, V21, P188, DOI 10.1016/S0196-0709(00)80007-1 Gujral JS, 2002, TOXICOL SCI, V67, P322, DOI 10.1093/toxsci/67.2.322 HARMAN AW, 1991, BIOCHEM PHARMACOL, V41, P1111, DOI 10.1016/0006-2952(91)90648-O Hersh EV, 2007, CLIN THER, V29, P2477, DOI 10.1016/j.clinthera.2007.12.003 Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4 Ho Tang, 2007, Pain Physician, V10, P467 Jaeschke H, 2012, DRUG METAB REV, V44, P88, DOI 10.3109/03602532.2011.602688 Jaeschke H, 2011, LIFE SCI, V88, P737, DOI 10.1016/j.lfs.2011.01.025 Jemnitz K, 2008, TOXICOL IN VITRO, V22, P961, DOI 10.1016/j.tiv.2008.02.001 Kalinec GM, 2003, AUDIOL NEURO-OTOL, V8, P177, DOI 10.1159/000071059 Lin JH, 2007, SCIENCE, V318, P944, DOI 10.1126/science.1146361 Lin JH, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0004170 Locke CJ, 2008, NEUROSCI LETT, V439, P129, DOI 10.1016/j.neulet.2008.05.003 Maharaj H, 2006, METAB BRAIN DIS, V21, P189, DOI 10.1007/s11011-006-9012-7 McGill MR, 2011, HEPATOLOGY, V53, P974, DOI 10.1002/hep.24132 Mikus Gerd, 2005, Current Pharmacogenomics, V3, P43, DOI 10.2174/1570160053175018 Moyer AM, 2011, TOXICOL SCI, V120, P33, DOI 10.1093/toxsci/kfq375 Nagy G., 2009, TOXICOL APPL PHARM, V243, P96 Nagy G, 2007, ARCH BIOCHEM BIOPHYS, V459, P273, DOI 10.1016/j.abb.2006.11.021 Nassini R, 2010, FASEB J, V24, P4904, DOI 10.1096/fj.10-162438 Oh AK, 2000, NEUROLOGY, V54, P2345 Posadas I, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0015360 Rigby MH, 2008, J OTOLARYNGOL-HEAD N, V37, pE161, DOI 10.2310/7070.2008.CR0175 Schonthal AH, 2009, CANCER LETT, V275, P163, DOI 10.1016/j.canlet.2008.07.005 Tripathy D, 2009, J NEUROINFLAMM, V6, DOI 10.1186/1742-2094-6-10 Tripathy D, 2009, MICROVASC RES, V77, P289, DOI 10.1016/j.mvr.2009.02.002 Wiseman RL, 2011, SCIENCE, V332, P44, DOI 10.1126/science.1204505 Woehlbier U, 2011, TRENDS BIOCHEM SCI, V36, P329, DOI 10.1016/j.tibs.2011.03.001 Yorgason JG, 2010, OTOLARYNG HEAD NECK, V142, P814, DOI 10.1016/j.otohns.2010.01.010 Zimmerman H.J., 1998, CLIN LIVER DIS, V2, P523, DOI 10.1016/S1089-3261(05)70025-8 NR 37 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUL PY 2014 VL 313 BP 26 EP 37 DI 10.1016/j.heares.2014.04.007 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AJ7GU UT WOS:000337866000004 PM 24793116 ER PT J AU Shi, XR Zhang, F Urdang, Z Dai, M Neng, LL Zhang, JH Chen, SL Ramamoorthy, S Nuttall, AL AF Shi, Xiaorui Zhang, Fei Urdang, Zachary Dai, Min Neng, Lingling Zhang, Jinhui Chen, Songlin Ramamoorthy, Sripriya Nuttall, Alfred L. TI Thin and open vessel windows for intra-vital fluorescence imaging of murine cochlear blood flow SO HEARING RESEARCH LA English DT Article ID INNER-EAR; STRIA VASCULARIS; ACOUSTIC TRAUMA; HEARING-LOSS; IN-VIVO; SPIRAL LIGAMENT; AGED GERBILS; NITRIC-OXIDE; BARRIER; MICE AB Normal microvessel structure and function in the cochlea is essential for maintaining the ionic and metabolic homeostasis required for hearing function. Abnormal cochlear microcirculation has long been considered an etiologic factor in hearing disorders. A better understanding of cochlear blood flow (CoBF) will enable more effective amelioration of hearing disorders that result from aberrant blood flow. However, establishing the direct relationship between CoBF and other cellular events in the lateral wall and response to physio-pathological stress remains a challenge due to the lack of feasible interrogation methods and difficulty in accessing the inner ear. Here we report on new methods for studying the CoBF in a mouse model using a thin or open vessel-window in combination with fluorescence intra-vital microscopy (IVM). An open vessel-window enables investigation of vascular cell biology and blood flow permeability, including pericyte (PC) contractility, bone marrow cell migration, and endothelial barrier leakage, in wild type and fluorescent protein-labeled transgenic mouse models with high spatial and temporal resolution. Alternatively, the thin vessel-window method minimizes disruption of the homeostatic balance in the lateral wall and enables study CoBF under relatively intact physiological conditions. A thin vessel-window method can also be used for time-based studies of physiological and pathological processes. Although the small size of the mouse cochlea makes surgery difficult, the methods are sufficiently developed for studying the structural and functional changes in CoBF under normal and pathological conditions. (C) 2014 Elsevier B.V. All rights reserved. C1 [Shi, Xiaorui; Zhang, Fei; Urdang, Zachary; Dai, Min; Neng, Lingling; Zhang, Jinhui; Chen, Songlin; Ramamoorthy, Sripriya; Nuttall, Alfred L.] Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, Dept Otolaryngol Head & Neck Surg, Portland, OR 97239 USA. RP Shi, XR (reprint author), Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, 3181 SW Sam Jackson Pk Rd, Portland, OR 97239 USA. EM shix@ohsu.edu FU National Institutes of Health [NIH NIDCD DC008888S1, NIH NIDCD R01-DC010844, R21DC1239801, R01-DC000105, NIHP30-DC005983] FX This work was supported by National Institutes of Health grants NIH NIDCD DC008888S1 (XS), NIH NIDCD R01-DC010844 (XS), R21DC1239801 (XS), R01-DC000105 (ALN) and NIHP30-DC005983. CR Aimoni C, 2010, AUDIOL NEURO-OTOL, V15, P111, DOI 10.1159/000231636 ANGELBORG C, 1988, ORL J OTO-RHINO-LARY, V50, P355 Axelsson A., 1968, ACTA OTOLARYNGO S243, P3 AXELSSON A, 1990, ACTA OTO-LARYNGOL, V109, P263, DOI 10.3109/00016489009107442 Brown N.J., 1995, HEARING RES, V86, P189 Choudhury N, 2010, IEEE J SEL TOP QUANT, V16, P524, DOI 10.1109/JSTQE.2009.2032671 Dai M, 2009, HEARING RES, V254, P100, DOI 10.1016/j.heares.2009.04.018 Dai M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020652 Dai M, 2010, AM J PATHOL, V177, P3089, DOI 10.2353/ajpath.2010.100340 Drew PJ, 2010, NAT METHODS, V7, P981, DOI [10.1038/nmeth.1530, 10.1038/NMETH.1530] Gratton MA, 1997, HEARING RES, V114, P1, DOI 10.1016/S0378-5955(97)00025-7 Gratton MA, 1996, HEARING RES, V94, P116, DOI 10.1016/0378-5955(96)00011-1 Hirose K, 2005, J COMP NEUROL, V489, P180, DOI 10.1002/cne.20619 Lang HN, 2006, J COMP NEUROL, V496, P187, DOI 10.1002/cne.20929 LARSEN HC, 1982, ORL J OTO-RHINO-LARY, V44, P101 Le Floc'h J, 2014, J MAGN RESON IMAGING, V39, P150, DOI 10.1002/jmri.24144 Le Prell CG, 2007, HEARING RES, V226, P22, DOI 10.1016/j.heares.2006.10.006 MILLER JM, 1995, ANN OTO RHINOL LARYN, V104, P476 MILLER JM, 1988, AM J OTOLARYNG, V9, P302, DOI 10.1016/S0196-0709(88)80038-3 Monfared A, 2006, OTOL NEUROTOL, V27, P144, DOI 10.1097/01.mao.0000190708.44067.b0 Nakashima T, 2002, ANN OTO RHINOL LARYN, V111, P998 Nakashima T, 2003, BRAIN RES REV, V43, P17, DOI 10.1016/S0165-0173(03)00189-9 Nuttall A.L., 1999, NOISE HEALTH, V2, P17 NUTTALL AL, 1988, AM J OTOLARYNG, V9, P291, DOI 10.1016/S0196-0709(88)80037-1 NUTTALL AL, 1987, HEARING RES, V27, P111, DOI 10.1016/0378-5955(87)90012-8 OFFNER FF, 1987, HEARING RES, V29, P117, DOI 10.1016/0378-5955(87)90160-2 Ohlemiller KK, 2008, HEARING RES, V244, P85, DOI 10.1016/j.heares.2008.08.001 Ou HC, 2000, HEARING RES, V145, P123, DOI 10.1016/S0378-5955(00)00082-4 Reif R, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052041 Shi XR, 2007, HEARING RES, V224, P1, DOI 10.1016/j.heares.2006.10.011 Shi XR, 2002, HEARING RES, V172, P73, DOI 10.1016/S0378-5955(02)00513-0 Shi XR, 2009, AM J PATHOL, V174, P1692, DOI 10.2353/ajpath.2009.080739 Shi XR, 2008, MICROCIRCULATION, V15, P515, DOI 10.1080/10739680802047445 Spicer SS, 2002, HEARING RES, V172, P172, DOI 10.1016/S0378-5955(02)00581-6 Subhash HM, 2011, IEEE T MED IMAGING, V30, P224, DOI 10.1109/TMI.2010.2072934 Trune Dennis R., 2012, Seminars in Hearing, V33, P242, DOI 10.1055/s-0032-1315723 Wangemann P, 2002, ADV OTO-RHINO-LARYNG, V59, P51 Wangemann P, 1998, HEARING RES, V118, P90, DOI 10.1016/S0378-5955(98)00017-3 Zhang F, 2013, FASEB J, V27, P3730, DOI 10.1096/fj.13-232892 Zhang WJ, 2012, P NATL ACAD SCI USA, V109, P10388, DOI 10.1073/pnas.1205210109 NR 40 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUL PY 2014 VL 313 BP 38 EP 46 DI 10.1016/j.heares.2014.04.006 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AJ7GU UT WOS:000337866000005 PM 24780131 ER PT J AU Bahmer, A Baumann, U AF Bahmer, Andreas Baumann, Uwe TI Psychometric function of jittered rate pitch discrimination SO HEARING RESEARCH LA English DT Article ID COCHLEAR-IMPLANT RECIPIENTS; AUDITORY-NERVE FIBERS; ELECTRICAL-STIMULATION; RESPONSE PROPERTIES; TEMPORAL PITCH; PULSE TRAINS; FREQUENCY; PERCEPTION; HEARING; MODEL AB The impact of jitter on rate pitch discrimination (JRPD) is still a matter of debate. Previous studies have used adaptive procedures to assess pitch discrimination abilities of jittered rate pulses (Dobie and Dillier, 1985; Chen et al., 2005) or have used jitter detection thresholds (Fearn, 2001). Previous studies were conducted in a relatively small number of subjects using either a single-electrode cochlear implant (Dobie and Dillier, 1985, n = 2) or the Nucleus multi-channel devices (Fearn, 2001, n = 3; Chen et al., 2005, n = 5). The successful application of an adaptive procedure requires a monotone psychometric function to achieve asymptotic results. The underlying psychometric function of rate jitter has not been investigated so far. In order to close this knowledge gap, the present study determines psychometric functions by measuring of JRPD with a fixed stimulus paradigm. A rather large range of temporal, Gaussian distributed jitter standard deviation 0, 1, 2, 3, 4 ms was applied to electrical pulse patterns. Since the shape of the underlying probability density function (PDF) may also effect JRPD, a uniform PDF was alternatively applied. 7 Cl users (8 ears, high-level performers with open-speech perception, MED-EL Pulsar/Sonata devices, Innsbruck, Austria) served as subjects for the experiment. JRPD was assessed with a two-stage forced choice procedure. Gross results showed decreasing JRPD with increasing amounts of jitter independent of the applied jitter distribution. In conclusion, pulse rate jitter affects JRPD and therefore should be considered in current coding strategies. (C) 2014 Elsevier B.V. All rights reserved. C1 [Bahmer, Andreas; Baumann, Uwe] Goethe Univ Frankfurt, Clin Otolaryngol, D-60590 Frankfurt, Germany. RP Bahmer, A (reprint author), Goethe Univ Frankfurt, Clin Otolaryngol, D-60590 Frankfurt, Germany. EM andreas.bahmer@kgu.de; uwe.baumann@kgu.de CR AMIT DJ, 1991, NETWORK-COMP NEURAL, V2, P259, DOI 10.1088/0954-898X/2/3/003 Bahmer A, 2008, J NEUROSCI METH, V173, P306, DOI 10.1016/j.jneumeth.2008.06.012 Bahmer Andreas, 2013, Cochlear Implants Int, V14, P142, DOI 10.1179/1754762812Y.0000000011 Baumann U, 2004, HEARING RES, V196, P49, DOI 10.1016/j.heares.2004.06.008 Bierer JA, 2007, J ACOUST SOC AM, V121, P1642, DOI 10.1121/1.2436712 Carlyon RP, 2010, JARO-J ASSOC RES OTO, V11, P625, DOI 10.1007/s10162-010-0222-7 CARNEY LH, 1993, J ACOUST SOC AM, V93, P401, DOI 10.1121/1.405620 Chen HB, 2005, J ACOUST SOC AM, V118, P338, DOI 10.1121/1.1937228 DOBIE RA, 1985, HEARING RES, V18, P41, DOI 10.1016/0378-5955(85)90109-1 Donaldson GS, 2005, J ACOUST SOC AM, V118, P623, DOI 10.1121/1.1937362 Fearn R.A., 2001, THESIS U N S WALES Firszt JB, 2007, OTOL NEUROTOL, V28, P629, DOI 10.1097/01.mao.0000281803.36574.bc Goldsworthy RL, 2014, J ACOUST SOC AM, V135, P334, DOI 10.1121/1.4835735 Hancock KE, 2012, J NEUROPHYSIOL, V108, P714, DOI 10.1152/jn.00269.2012 HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7 Hughes ML, 2012, HEARING RES, V285, P46, DOI 10.1016/j.heares.2012.01.010 Koch DB, 2004, AUDIOL NEURO-OTOL, V9, P214, DOI 10.1159/000078391 Kong YY, 2009, J ACOUST SOC AM, V125, P1649, DOI 10.1121/1.3068457 Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6 Laback B, 2008, P NATL ACAD SCI USA, V105, P814, DOI 10.1073/pnas.0709199105 Litvak LM, 2003, J ACOUST SOC AM, V114, P2066, DOI 10.1121/1.1612492 Lopez-Poveda EA, 2001, J ACOUST SOC AM, V110, P3107, DOI 10.1121/1.1416197 McDermott HJ, 1997, J ACOUST SOC AM, V101, P1622, DOI 10.1121/1.418177 McKay C. M., 2000, Acoustics Research Letters Online, V1, DOI 10.1121/1.1318742 MEDDIS R, 1986, J ACOUST SOC AM, V79, P702, DOI 10.1121/1.393460 Miller CA, 2001, JARO, V2, P216 Morse RP, 1999, HEARING RES, V133, P107, DOI 10.1016/S0378-5955(99)00062-3 Morsnowski A, 2006, AUDIOL NEURO-OTOL, V11, P389, DOI 10.1159/000095966 POLLACK I, 1968, J ACOUST SOC AM, V43, P308, DOI 10.1121/1.1910780 POLLACK I, 1971, J ACOUST SOC AM, V50, P555, DOI 10.1121/1.1912671 POLLACK I, 1968, J ACOUST SOC AM, V43, P1107, DOI 10.1121/1.1910945 Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3 TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554 Tsodyks M, 1998, NEURAL COMPUT, V10, P821, DOI 10.1162/089976698300017502 Wever E. G., 1949, THEORY HEARING Wever EG, 1930, P NATL ACAD SCI USA, V16, P344, DOI 10.1073/pnas.16.5.344 Wever EG, 1930, J EXP PSYCHOL, V13, P373, DOI 10.1037/h0075820 Wever EG, 1930, PSYCHOL REV, V37, P365, DOI 10.1037/h0075002 Wieringen A., 2003, J ACOUST SOC AM, V114, P1516 Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5 NR 40 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUL PY 2014 VL 313 BP 47 EP 54 DI 10.1016/j.heares.2014.04.012 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AJ7GU UT WOS:000337866000006 PM 24821551 ER PT J AU Chang-Chien, J Yen, YC Chien, KH Li, SY Hsu, TC Yang, JJ AF Chang-Chien, Ju Yen, Yung-Chang Chien, Kuo-Hsuan Li, Shaun-Yow Hsu, Tsai-Ching Yang, Jiann-Jou TI The connexin 30.3 of zebrafish homologue of human connexin 26 may play similar role in the inner ear SO HEARING RESEARCH LA English DT Article ID GAP-JUNCTIONS; DANIO-RERIO; HAIR-CELLS; HEARING-LOSS; GENE; MUTATIONS; DEAFNESS; IDENTIFICATION; CHANNELS; PROTEIN AB The intercellular gap junction channels formed by connexins (CXs) are important for recycling potassium ions in the inner ear. CXs are encoded by a family of the CX gene, such as GJB2, and the mechanism leading to mutant connexin-associated diseases, including hearing loss, remains to be elucidated. In this study, using bioinformatics, we found that two zebrafish cx genes, cx27.5 and cx30.3, are likely homologous to human and mouse GJB2. During embryogeneis, zebrafish cx27.5 was rarely expressed at 1.5-3 h post-fertilization (hpf), but a relatively high level of cx27.5 expression was detected from 6 to 96 hpf. However, zebrafish cx30.3 transcripts were hardly detected until 9 hpf. The temporal experiment was conducted in whole larvae. Both cx27.5 and cx30.3 transcripts were revealed significantly in the inner ear by reverse transcription polymerase chain reaction (RT-PCR) and whole-mount in situ hybridization (WISH). In the HeLa cell model, we found that zebrafish Cx27.5 was distributed intracellularly in the cytoplasm, whereas Cx30.3 was localized in the plasma membrane of HeLa cells stably expressing Cx proteins. The expression pattern of zebrafish Cx30.3 in HeLa cells was more similar to that of cells expressing human CX26 than Cx27.5. In addition, we found that Cx30.3 was localized in the cell membrane of hair cells within the inner ear by immunohistochemistry (IHC), suggesting that zebrafish cx30.3 might play an essential role in the development of the inner ear, in the same manner as human GJB2. We then performed morpholino knockdown studies in zebrafish embryos to elucidate the physiological functions of Cx30.3. The zebrafish cx30.3 morphants exhibited wild-type-like and heart edema phenotypes with smaller inner ears at 72 hpf. Based on these results, we suggest that the zebrafish Cx30.3 and mammalian CX26 may play alike roles in the inner ear. Thus, zebrafish can potentially serve as a model for studying hearing loss disorders that result from human CX26 mutations. (C) 2014 Elsevier B.V. All rights reserved. C1 [Chang-Chien, Ju; Chien, Kuo-Hsuan; Li, Shaun-Yow; Yang, Jiann-Jou] Chung Shan Med Univ, Dept Biomed Sci, Taichung, Taiwan. [Yang, Jiann-Jou] Chung Shan Med Univ Hosp, Dept Med Sci, Taichung, Taiwan. [Hsu, Tsai-Ching] Chung Shan Med Univ, Inst Microbiol & Immunol, Coll Med, Taichung, Taiwan. [Hsu, Tsai-Ching] Chung Shan Med Univ Hosp, Clin Lab, Taichung, Taiwan. [Yen, Yung-Chang] CHi Mei Med Ctr, Dept Ophthalmol, Tainan, Taiwan. [Yen, Yung-Chang] Min Hwei Coll Hlth Care Management, Dept Nursing, Tainan, Taiwan. RP Yang, JJ (reprint author), Chung Shan Med Univ, Dept Biomed Sci, Taichung, Taiwan. EM htc@csmu.edu.tw; jiannjou@csmu.edu.tw FU National Science Council, Republic of China [NSC 98-2320-B-040-016-MY3, NSC 101-2320-B-040-014]; National Science Council [101-2321-B-400-014] FX This work was supported by the National Science Council, Republic of China (NSC 98-2320-B-040-016-MY3; NSC 101-2320-B-040-014). We also thank the Taiwan Zebrafish Core Facility at TZeTH (supported by grant 101-2321-B-400-014 from the National Science Council) for providing zebrafish used in this study. We also thank Dr. C-J YEH for helpful analysis of statistical methods. CR Ahmad S, 2003, BIOCHEM BIOPH RES CO, V307, P362, DOI 10.1016/S0006-291X(03)01166-5 Apps SA, 2007, INT J AUDIOL, V46, P75, DOI 10.1080/14992020600582190 Asai Y, 2006, P NATL ACAD SCI USA, V103, P9069, DOI 10.1073/pnas.0603453103 Beltramello M, 2003, BIOCHEM BIOPH RES CO, V305, P1024, DOI 10.1016/S0006-291X(03)00868-4 Cruciani V, 2007, BIOL CHEM, V388, P253, DOI 10.1515/BC.2007.028 Degen J, 2011, EUR J CELL BIOL, V90, P817, DOI 10.1016/j.ejcb.2011.05.001 Eastman SD, 2006, GENOMICS, V87, P265, DOI 10.1016/j.ygeno.2005.10.005 Evans WH, 2002, MOL MEMBR BIOL, V19, P121, DOI 10.1080/09687680210139839 GOODENOU.DA, 1974, J CELL BIOL, V61, P557, DOI 10.1083/jcb.61.2.557 Grifa A, 1999, NAT GENET, V23, P16 Haddon C, 1996, J COMP NEUROL, V365, P113, DOI 10.1002/(SICI)1096-9861(19960129)365:1<113::AID-CNE9>3.0.CO;2-6 Haffter P, 1996, DEVELOPMENT, V123, P1 Harris L.A., 2002, Q REV BIOPHYS, V34 Jensen AM, 2001, DEVELOPMENT, V128, P95 Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0 KIMMEL CB, 1995, DEV DYNAM, V203, P253 Kwak SJ, 2006, DEV DYNAM, V235, P3026, DOI 10.1002/dvdy.20961 Lanford PJ, 2000, HEARING RES, V143, P1, DOI 10.1016/S0378-5955(00)00015-0 Lautermann J, 1998, CELL TISSUE RES, V294, P415, DOI 10.1007/s004410051192 Lopez-Bigas Nuria, 2002, Gene Expression Patterns, V2, P113, DOI 10.1016/S0925-4773(02)00299-X Maeda S, 2009, NATURE, V458, P597, DOI 10.1038/nature07869 Marziano NK, 2003, HUM MOL GENET, V12, P805, DOI 10.1093/hmg/ddg076 Mese G, 2007, J INVEST DERMATOL, V127, P2516, DOI 10.1038/sj.jid.5700770 Minekawa A, 2009, NEUROSCIENCE, V164, P1312, DOI 10.1016/j.neuroscience.2009.08.043 Peracchia C, 2000, J MEMBRANE BIOL, V178, P55, DOI 10.1007/s002320010015 Pittlik S, 2008, GENE EXPR PATTERNS, V8, P141, DOI 10.1016/j.gep.2007.11.003 POSTLETHWAIT JH, 1994, SCIENCE, V264, P699, DOI 10.1126/science.8171321 Saez JC, 2003, PHYSIOL REV, V83, P1359, DOI 10.1152/physrev.00007.2003 SAITOU N, 1987, MOL BIOL EVOL, V4, P406 Shen YC, 2008, DEV DYNAM, V237, P941, DOI 10.1002/dvdy.21486 Smyth JW, 2010, J CLIN INVEST, V120, P266, DOI 10.1172/JCI39740 Sohl G, 2004, CARDIOVASC RES, V62, P228, DOI 10.1016/j.cardiores.2003.11.013 SOKOLOWSKI BHA, 1988, J MORPHOL, V198, P49, DOI 10.1002/jmor.1051980107 Steel KP, 2001, NAT GENET, V27, P143, DOI 10.1038/84758 Stooke-Vaughan GA, 2012, DEVELOPMENT, V139, P1777, DOI 10.1242/dev.079947 Su CC, 2010, EUR J HUM GENET, V18, P1061, DOI 10.1038/ejhg.2010.50 Tanimoto M, 2011, J NEUROSCI, V31, P3784, DOI 10.1523/JNEUROSCI.5554-10.2011 Tao LA, 2010, DEV DYNAM, V239, P2627, DOI 10.1002/dvdy.22399 Valiunas V, 2005, J PHYSIOL-LONDON, V568, P459, DOI 10.1113/jphysiol.2005.090985 White TW, 1996, J BIOENERG BIOMEMBR, V28, P339, DOI 10.1007/BF02110110 Whitfield TT, 2002, J NEUROBIOL, V53, P157, DOI 10.1002/neu.10123 Whitfield TT, 2002, DEV DYNAM, V223, P427, DOI 10.1002/dvdy.10073 Xia JH, 1998, NAT GENET, V20, P370, DOI 10.1038/3845 Xu J, 2013, BBA-BIOMEMBRANES, V1828, P167, DOI 10.1016/j.bbamem.2012.06.024 Yang JJ, 2010, HUM GENET, V128, P303, DOI 10.1007/s00439-010-0856-x Yang JJ, 2007, AUDIOL NEURO-OTOL, V12, P198, DOI 10.1159/000099024 Yu XW, 2011, DEVELOPMENT, V138, P487, DOI 10.1242/dev.057752 NR 47 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUL PY 2014 VL 313 BP 55 EP 66 DI 10.1016/j.heares.2014.04.010 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AJ7GU UT WOS:000337866000007 PM 24811980 ER PT J AU Agterberg, MJH Versnel, H AF Agterberg, Martijn J. H. Versnel, Huib TI Behavioral responses of deafened guinea pigs to intracochlear electrical stimulation: a new rapid psychophysical procedure SO HEARING RESEARCH LA English DT Article ID SPIRAL GANGLION NEURONS; NEUROTROPHIC FACTOR; AUDITORY NEURONS; COCHLEAR IMPLANTS; AVOIDANCE-BEHAVIOR; NEONATAL DEAFNESS; ACOUSTIC TRAUMA; HEARING-LOSS; INNER-EAR; SURVIVAL AB In auditory research the guinea pig is often preferred above rats and mice because of the easily accessible cochlea and because the frequency range of its hearing is more comparable to that of humans. Studies of the guinea-pig auditory system primarily apply histological and electrophysiological measures. Behavioral animal paradigms, in particular in combination with these histological and electrophysiological methods, are necessary in the development of new therapeutic interventions. However, the guinea pig is not considered an attractive animal for behavioral experiments. Therefore, the purpose of this study was to develop a behavioral task suitable for guinea pigs, that can be utilized in cochlear-implant related research. Guinea pigs were trained in a modified shuttle-box in which a stream of air was used as unconditioned stimulus (UCS). A stream of air was preferred over conventionally used methods as electric foot-shocks since it produces less stress, which is a confounding factor in behavioral experiments. Hearing guinea pigs were trained to respond to acoustic stimuli. They responded correctly within only five sessions of ten minutes. The animals maintained their performance four weeks after the right cochlea was implanted with an electrode array. After systemic deafening, the animals responded in the first session immediately to intracochlear electrical stimulation. These responses were not affected by daily chronic electrical stimulation (CES). In conclusion, the present study demonstrates that guinea pigs can be trained relatively fast to respond to acoustic stimuli, and that the training has a lasting effect, which generalizes to intracochlear electrical stimulation after deafening. Furthermore, it demonstrates that bilaterally deafened guinea pigs with substantial (similar to 50%) loss of spiral ganglion cells (SGCs), detect intracochlear electrical stimulation. (C) 2014 Elsevier B.V. All rights reserved. C1 [Agterberg, Martijn J. H.; Versnel, Huib] Univ Med Ctr Utrecht, Brain Ctr Rudolf Magnus, Dept Otorhinolaryngol & Head & Neck Surg, NL-3508 GA Utrecht, Netherlands. [Agterberg, Martijn J. H.] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, Dept Biophys, NL-6500 GL Nijmegen, Netherlands. RP Agterberg, MJH (reprint author), Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, Dept Biophys, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands. EM m.agterberg@donders.ru.nl FU Heinsius-Houbolt Foundation FX The authors would like to thank M. van den Broek for running training sessions, and R.E. van de Vosse and R. Struikmans for developing the recording software. We would like to thank Professor Dr. F.W.J. Albers, Dr. S.F.L. Klis, Dr. I.H.C.H.M. Philippens and Professor Dr. V.M. Wiegant for the helpful discussions concerning the study design. We thank Dr. J.C. Glennon for proofreading the manuscript. Furthermore, we would like to thank Dr. B. van Dijk and the Cochlear (TM) company for providing the electrode arrays. This study was supported by the Heinsius-Houbolt Foundation. CR Agterberg MJH, 2010, LAB ANIM-UK, V44, P206, DOI 10.1258/la.2009.009096 Agterberg MJH, 2010, HEARING RES, V269, P169, DOI 10.1016/j.heares.2010.06.015 Agterberg MJH, 2008, HEARING RES, V244, P25, DOI 10.1016/j.heares.2008.07.004 Agterberg MJH, 2009, JARO-J ASSOC RES OTO, V10, P355, DOI 10.1007/s10162-009-0170-2 Alagic Z, 2011, ACTA OTO-LARYNGOL, V131, P802, DOI 10.3109/00016489.2011.564652 Berger JI, 2013, J NEUROSCI METH, V213, P188, DOI 10.1016/j.jneumeth.2012.12.023 Berglin CE, 2011, CANCER CHEMOTH PHARM, V68, P1547, DOI 10.1007/s00280-011-1656-2 BROWN JN, 1993, HEARING RES, V70, P167, DOI 10.1016/0378-5955(93)90155-T Chikar JA, 2008, HEARING RES, V245, P24, DOI 10.1016/j.heares.2008.08.005 Dehmel Susanne, 2012, Front Syst Neurosci, V6, P42, DOI 10.3389/fnsys.2012.00042 Eggermont JJ, 2013, HEARING RES, V295, P140, DOI 10.1016/j.heares.2012.01.005 Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463 Fallon JB, 2009, J COMP NEUROL, V512, P101, DOI 10.1002/cne.21886 Fayad JN, 2006, LARYNGOSCOPE, V116, P1310, DOI 10.1097/01.mlg.0000227176.09500.28 Fransson A, 2010, J NEUROTRAUM, V27, P1745, DOI 10.1089/neu.2009.1218 Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542 Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193 Kang SY, 2010, JARO-J ASSOC RES OTO, V11, P245, DOI 10.1007/s10162-009-0194-7 Klinke R, 1999, SCIENCE, V285, P1729, DOI 10.1126/science.285.5434.1729 Kral A, 2012, TRENDS NEUROSCI, V35, P111, DOI 10.1016/j.tins.2011.09.004 Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3 LEAKE PA, 1991, HEARING RES, V54, P251, DOI 10.1016/0378-5955(91)90120-X Leake PA, 2013, JARO-J ASSOC RES OTO, V14, P187, DOI 10.1007/s10162-013-0372-5 Maruyama J, 2008, NEUROBIOL DIS, V29, P14, DOI 10.1016/j.nbd.2007.07.026 Miller CA, 1995, HEARING RES, V92, P85, DOI 10.1016/0378-5955(95)00204-9 Mitchell A, 1997, HEARING RES, V105, P30, DOI 10.1016/S0378-5955(96)00202-X Mulders WHAM, 2011, J COMP NEUROL, V519, P2637, DOI 10.1002/cne.22644 Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883 NICOL KMM, 1992, HEARING RES, V61, P117, DOI 10.1016/0378-5955(92)90042-L Pettingill LN, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018733 Pfingst BE, 2011, J ACOUST SOC AM, V130, P3954, DOI 10.1121/1.3651820 PHILIPPENS IHCHM, 1992, PHARMACOL BIOCHEM BE, V42, P285, DOI 10.1016/0091-3057(92)90528-N Sharma A, 2009, J COMMUN DISORD, V42, P272, DOI 10.1016/j.jcomdis.2009.03.003 Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564 Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999 SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683 Versnel H, 2007, HEARING RES, V231, P1, DOI 10.1016/j.heares.2007.03.003 Vollmer M, 2011, J NEUROPHYSIOL, V106, P2423, DOI 10.1152/jn.00565.2011 WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7 WEST BA, 1973, ARCH OTOLARYNGOL, V98, P32 Xu HX, 2012, ACTA OTO-LARYNGOL, V132, P482, DOI 10.3109/00016489.2011.647361 Yamagata T, 2004, J NEUROSCI RES, V78, P75, DOI 10.1002/jnr.20239 NR 42 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUL PY 2014 VL 313 BP 67 EP 74 DI 10.1016/j.heares.2014.04.011 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AJ7GU UT WOS:000337866000008 PM 24811981 ER PT J AU Malayeri, S Lotfi, Y Moossavi, SA Rostami, R Faghihzadeh, S AF Malayeri, Saeed Lotfi, Yones Moossavi, Seyed Abdollah Rostami, Reza Faghihzadeh, Soghrat TI Brainstem response to speech and non-speech stimuli in children with learning problems SO HEARING RESEARCH LA English DT Article ID AUDITORY NEUROPATHY; EVOKED-POTENTIALS; POOR READERS; DYSLEXIA; DEFICITS; DISCRIMINATION; SOUNDS; NOISE; TONES; REPRESENTATION AB Neuronal firing synchronization is critical for recording auditory responses from the brainstem. Recent studies have shown that both click and/da/synthetic syllable (speech) stimuli perform well in evoking neuronal synchronization at the brainstem level. In the present study, brainstem responses to click and speech stimuli were compared between children with learning problems (LP) and those with normal learning (NL) abilities. The study included 49 children with LP and 34 children with NL. Auditory brainstem response (ABR) to 100-mu s click stimulus and speech ABR (sABR) to/da/40-ms stimulus were tested in these children. Wave latencies III, V, and Vn and inter-peak latency (IPL) V-Vn in click ABR and wave latencies I, V. and A and IPLV-A in sABR were significantly longer in children with LP than children with NL Except IPL of I III, a significant positive correlation was observed between click ABR and sABR wave latencies and IPLs in children with NL; this correlation was weaker or not observed in children with LP. In this regard, the difference between correlation coefficients of wave latencies I, III, and V and IPLs I-V and V-Vn/V-A was significant in the two groups. Deficits in auditory processing timing in children with LP may have probably affected ABR for both click and speech stimuli. This finding emphasizes the possibility of shared connections between processing timing for speech and non-speech stimuli in auditory brainstem pathways. Weak or no correlation between click and speech ABR parameters in children with LP may have a clinical relevance and may be effectively used for objective diagnoses after confirming its sufficient sensitivity and specificity and demonstrating its acceptable validity with more scientific evidence. (C) 2014 Elsevier B.V. All rights reserved. C1 [Malayeri, Saeed; Lotfi, Yones; Moossavi, Seyed Abdollah] Univ Social Welf & Rehabil Sci, Dept Audiol, Tehran, Iran. [Rostami, Reza] Univ Tehran, Dept Psychol, Tehran, Iran. [Faghihzadeh, Soghrat] Zanjan Univ Med Sci, Dept Social Med, Tehran, Iran. RP Lotfi, Y (reprint author), Evin St,Daneshjo St,Koudakyar St, Tehran, Iran. EM smalayeri50@yahoo.com; yones1333@gmail.com; amoossavi@gmail.com; rezaros@gmail.com; s.faghihzadeh@zums.ac.ir FU University of Social Welfare and Rehabilitation Sciences [91.801.A.2.3707] FX This study was part of a Ph.D. dissertation project in audiology that was approved by the University of Social Welfare and Rehabilitation Sciences (grant #91.801.A.2.3707). The outstanding cooperation of all participants in this study is greatly appreciated. CR Ahissar M, 2004, TRENDS COGN SCI, V8, P457, DOI 10.1016/j.tics.2004.08.011 American National Standards Institute, 2004, SPEC AUD ANSI S3 6 2 American National Standards Institute, 2008, AM NAT STAND MAX PER Baldeweg T, 1999, ANN NEUROL, V45, P495, DOI 10.1002/1531-8249(199904)45:4<495::AID-ANA11>3.0.CO;2-M Banai K, 2007, INT J AUDIOL, V46, P524, DOI 10.1080/14992020701383035 Banai K, 2005, J NEUROSCI, V25, P9850, DOI 10.1523/JNEUROSCI.2373-05.2005 Banai K, 2009, CEREB CORTEX, V19, P2699, DOI 10.1093/cercor/bhp024 Burkard R.F., 2007, AUDITORY BRAINSTEN R Cohen J., 1983, APPL MULTIPLE REGRES, V2nd Cunningham J, 2001, CLIN NEUROPHYSIOL, V112, P758, DOI 10.1016/S1388-2457(01)00465-5 GRONTVED A, 1988, SCAND AUDIOL, V17, P53, DOI 10.3109/01050398809042180 Hall J. W., 2007, NEW HDB AUDITORY EVO Hornickel J, 2011, BEHAV BRAIN RES, V216, P597, DOI 10.1016/j.bbr.2010.08.051 Hurley A., 2007, HDB CENTRAL AUDITORY, V1, P347 Jafari Z, 2009, J AM ACAD AUDIOL, V20, P621, DOI 10.3766/jaaa.20.10.4 JERGER S, 1987, EAR HEARING, V8, P78, DOI 10.1097/00003446-198704000-00004 Johnson KL, 2005, EAR HEARING, V26, P424, DOI 10.1097/01.aud.0000179687.71662.6e King C, 2002, NEUROSCI LETT, V319, P111, DOI 10.1016/S0304-3940(01)02556-3 Kraus N, 2005, TRENDS NEUROSCI, V28, P176, DOI 10.1016/j.tins.2005.02.003 Kraus N, 1996, SCIENCE, V273, P971, DOI 10.1126/science.273.5277.971 Krishnan A, 2004, HEARING RES, V189, P1, DOI 10.1016/S0378-5955(03)00402-7 Krishnan A, 2009, BRAIN LANG, V110, P135, DOI 10.1016/j.bandl.2009.03.005 Kujala T, 2006, CLIN NEUROPHYSIOL, V117, P885, DOI 10.1016/j.clinph.2006.01.002 Lachmann T, 2005, INT J PSYCHOPHYSIOL, V56, P105, DOI 10.1016/j.ijpsycho.2004.11.005 LAUTER JL, 1993, ANN NY ACAD SCI, V682, P377, DOI 10.1111/j.1749-6632.1993.tb22998.x McAnally KI, 1997, J SPEECH LANG HEAR R, V40, P939 MASON SM, 1984, ELECTROEN CLIN NEURO, V59, P297, DOI 10.1016/0168-5597(84)90047-9 Mody M, 1997, J EXP CHILD PSYCHOL, V64, P199, DOI 10.1006/jecp.1996.2343 Nagarajan S, 1999, P NATL ACAD SCI USA, V96, P6483, DOI 10.1073/pnas.96.11.6483 Olkin L, 1995, PSYCHOL BULL, V118, P155 Paul I, 2006, NEUROPSYCHOLOGIA, V44, P785, DOI 10.1016/j.neuropsychologia.2005.07.011 Purdy Suzanne C, 2002, J Am Acad Audiol, V13, P367 Rance G, 2004, EAR HEARING, V25, P34, DOI 10.1097/01.AUD.0000111259.59690.B8 Roeser RJ, 2007, AUDIOLOGY DIAGNOSIS Russo N, 2004, CLIN NEUROPHYSIOL, V115, P2021, DOI 10.1016/j.clinph.2004.04.003 Shanks J, 2009, HDB CLIN AUDIOLOGY, P157 Skoe E, 2010, EAR HEARING, V31, P302, DOI 10.1097/AUD.0b013e3181cdb272 Song JH, 2012, CEREB CORTEX, V22, P1180, DOI 10.1093/cercor/bhr196 Song JH, 2008, AUDIOL NEURO-OTOL, V13, P335, DOI 10.1159/000132689 Song JH, 2006, AUDIOL NEURO-OTOL, V11, P233, DOI 10.1159/000093058 Strait D.L., 2011, BEHAV BRAIN FUNCT, V44, P2 TAIT C A, 1983, Journal of Auditory Research, V23, P56 TALLAL P, 1981, J ACOUST SOC AM, V69, P568, DOI 10.1121/1.385431 Vander Werff Kathy R, 2011, Ear Hear, V32, P168, DOI 10.1097/AUD.0b013e3181f534b5 Wechsler D, 1997, MANUAL WECHSLER PRES Wechsler D., 2001, WECHSLER INDIVIDUAL Wible B, 2004, BIOL PSYCHOL, V67, P299, DOI 10.1016/j.biopsycho.2004.02.002 WILL MC, 1986, EXCEPT CHILDREN, V52, P411 NR 48 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUL PY 2014 VL 313 BP 75 EP 82 DI 10.1016/j.heares.2014.04.009 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AJ7GU UT WOS:000337866000009 PM 24823662 ER PT J AU Luo, X Chang, YP Lin, CY Chang, RY AF Luo, Xin Chang, Yi-ping Lin, Chun-Yi Chang, Ronald Y. TI Contribution of bimodal hearing to lexical tone normalization in Mandarin-speaking cochlear implant users SO HEARING RESEARCH LA English DT Article ID CHINESE SPEECH RECOGNITION; ELECTRIC HEARING; ACOUSTIC HEARING; PERCEPTION; PITCH; BENEFITS; CHILDREN; CUES; SIMULATIONS; INFORMATION AB Native Mandarin normal-hearing (NH) listeners can easily perceive lexical tones even under conditions of great voice pitch variations across speakers by using the pitch contrast between context and target stimuli. It is however unclear whether cochlear implant (Cl) users with limited access to pitch cues can make similar use of context pitch cues for tone normalization. In this study, native Mandarin NH listeners and pre-lingually deafened unilaterally implanted CI users were asked to recognize a series of Mandarin tones varying from Tone 1 (high-flat) to Tone 2 (mid-rising) with or without a preceding sentence context. Most of the Cl subjects used a hearing aid (HA) in the non-implanted ear (i.e., bimodal users) and were tested both with CI alone and CI + HA. In the test without context, typical S-shaped tone recognition functions were observed for most CI subjects and the function slopes and perceptual boundaries were similar with either CI alone or CI + HA. Compared to NH subjects, CI subjects were less sensitive to the pitch changes in target tones. In the test with context, NH subjects had more (resp. fewer) Tone-2 responses in a context with high (resp. low) fundamental frequencies, known as the contrastive context effect. For Cl subjects, a similar contrastive context effect was found statistically significant for tone recognition with CI + HA but not with CI alone. The results suggest that the pitch cues from CIs may not be sufficient to consistently support the pitch contrast processing for tone normalization. The additional pitch cues from aided residual acoustic hearing can however provide Cl users with a similar tone normalization capability as NH listeners. (C) 2014 Elsevier B.V. All rights reserved. C1 [Luo, Xin] Purdue Univ, Dept Speech Language & Hearing Sci, W Lafayette, IN 47907 USA. [Chang, Yi-ping; Lin, Chun-Yi] Childrens Heating Fdn, Speech & Hearing Sci Res Inst, Taipei, Taiwan. [Chang, Ronald Y.] Acad Sinica, Res Ctr Informat Technol Innovat, Taipei 115, Taiwan. RP Luo, X (reprint author), Purdue Univ, Dept Speech Language & Hearing Sci, Heavilon Hall,500 Oval Dr, W Lafayette, IN 47907 USA. EM luo5@purdue.edu FU NIH [R21-DC-011844] FX The authors gratefully acknowledge the subjects who participated in this study and the support by the NIH Grant R21-DC-011844. Dr. Alexander Francis, Ching-Chih Wu, and Krista Ashmore provided constructive comments on an earlier version of the manuscript. Krista Ashmore also helped data collection at the Purdue University. CR Boersma Paul, 2012, PRAAT DOING PHONETIC Chao Y. R., 1948, MANDARIN PRIMER Chen F., 2013, J SPEECH LANG HEAR R Ching TYC, 2004, EAR HEARING, V25, P9, DOI 10.1097/01.AUD.0000111261.84611.C8 Deroche MLD, 2012, J ACOUST SOC AM, V131, P2938, DOI 10.1121/1.3692230 Dorman MF, 2008, AUDIOL NEURO-OTOL, V13, P105, DOI 10.1159/000111782 FOWLER CA, 1990, PERCEPT PSYCHOPHYS, V48, P559, DOI 10.3758/BF03211602 FOX RA, 1990, J CHINESE LINGUIST, V18, P261 Fu QJ, 2004, EAR HEARING, V25, P501, DOI 10.1097/01.aud.0000145125.50433.19 Fu QJ, 1998, J ACOUST SOC AM, V104, P505, DOI 10.1121/1.423251 Gantz BJ, 2009, AUDIOL NEURO-OTOL, V14, P32, DOI 10.1159/000206493 Geurts L, 2001, J ACOUST SOC AM, V109, P713, DOI 10.1121/1.1340650 Gifford RH, 2007, J SPEECH LANG HEAR R, V50, P835, DOI 10.1044/1092-4388(2007/058) Green T, 2002, J ACOUST SOC AM, V112, P2155, DOI 10.1121/1.1506688 Han DM, 2009, EAR HEARING, V30, P169, DOI 10.1097/AUD.0b013e31819342cf Huang JY, 2009, J ACOUST SOC AM, V125, P3983, DOI 10.1121/1.3125342 Huang JY, 2011, J ACOUST SOC AM, V129, P1145, DOI 10.1121/1.3543994 Hufnagle DG, 2013, J EXP CHILD PSYCHOL, V116, P728, DOI 10.1016/j.jecp.2013.05.008 Kong YY, 2005, J ACOUST SOC AM, V117, P1351, DOI 10.1121/1.1857526 LEATHER J, 1983, J PHONETICS, V11, P373 Luo X, 2008, EAR HEARING, V29, P957, DOI 10.1097/AUD.0b013e3181888f61 Luo Xin, 2004, Journal of the Acoustical Society of America, V116, P3659, DOI 10.1121/1.1783352 Luo X, 2006, J ACOUST SOC AM, V120, P2260, DOI 10.1121/1.2336990 Moore CB, 1997, J ACOUST SOC AM, V102, P1864, DOI 10.1121/1.420092 Peng SC, 2004, EAR HEARING, V25, P251, DOI 10.1097/01.AUD.0000130797.73809.40 Turner CW, 2004, J ACOUST SOC AM, V115, P1729, DOI 10.1121/1.1687425 Yost WA, 2009, ATTEN PERCEPT PSYCHO, V71, P1701, DOI 10.3758/APP.71.8.1701 Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5 Zhou N, 2013, OTOL NEUROTOL, V34, P499, DOI 10.1097/MAO.0b013e318287ca86 NR 29 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUN PY 2014 VL 312 BP 1 EP 8 DI 10.1016/j.heares.2014.02.005 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AH8BD UT WOS:000336358200001 PM 24576834 ER PT J AU Burghard, A Lenarz, T Kral, A Paasche, G AF Burghard, Alice Lenarz, Thomas Kral, Andrej Paasche, Gerrit TI Insertion site and sealing technique affect residual hearing and tissue formation after cochlear implantation SO HEARING RESEARCH LA English DT Article ID ROUND WINDOW; SPIRAL GANGLION; FIBROUS TISSUE; INNER-EAR; INTRACOCHLEAR; COCHLEOSTOMY; SURGERY; BONE; PRESERVATION AB Tissue formation around the electrode array of a cochlear implant has been suggested to influence preservation of residual hearing as well as electrical hearing performance of implanted subjects. Further, inhomogeneity in the electrical properties of the scala tympani shape the electrical field and affect current spread. Intracochlear trauma due to electrode insertion and the insertion site itself are commonly seen as triggers for the tissue formation. The present study investigates whether the insertion site, round window membrane (RWM) vs. cochleostomy (CS), or the sealing material, no seal vs. muscle graft vs. carboxylate cement, have an influence on the amount of fibrous tissue and/or new bone formation after CI implantation in the guinea pig. Hearing thresholds were determined by auditory brainstem response (ABR) measurements prior to implantation and after 28 days. The amount of tissue formation was quantified by evaluation of microscopic images obtained by a grinding/polishing procedure to keep the CI in place during histological processing. An insertion via the round window membrane resulted after 28 days in less tissue formation in the no seal and muscle seal condition compared to the cochleostomy approach. Between these two sealing techniques there was no difference. Sealing the cochlea with carboxylate cement resulted always in a strong new bone formation and almost total loss of residual hearing. The amount of tissue formation and the hearing loss correlated at 1-8 kHz. Consequently, the use of carboxylate cement as a sealing material in cochlear implantation should be avoided even in animal studies, whereas sealing the insertion site with a muscle graft did not induce an additional tissue growth compared to omitting a seal. For hearing preservation the round window approach should be used. (C) 2014 Elsevier B.V. All rights reserved. C1 [Burghard, Alice; Kral, Andrej] Hannover Med Sch, Inst Audioneurotechnol, D-30625 Hannover, Germany. [Burghard, Alice; Lenarz, Thomas; Paasche, Gerrit] Hannover Med Sch, Dept Otolaryngol, D-30625 Hannover, Germany. RP Burghard, A (reprint author), Hannover Med Sch, Inst Audioneurotechnol, Feodor Lynen Str 35, D-30625 Hannover, Germany. EM Burghard.Alice@mh-hannover.de FU German Research Foundation (DFG); Cluster of Excellence Hearing4all and the Transregio FX This study was supported by the German Research Foundation (DFG) with the Cluster of Excellence Hearing4all and the Transregio 37. The authors would also like to thank Peter Erfurt for the great support for the histological processing and Peter Baumhoff for the help with the 3D reconstruction. CR Adunka O, 2004, ACTA OTO-LARYNGOL, V124, P807, DOI 10.1080/00016480410018179 Adunka OF, 2006, ACTA OTO-LARYNGOL, V126, P475, DOI 10.1080/00016480500437393 Busby P A, 2002, Cochlear Implants Int, V3, P87, DOI 10.1002/cii.55 Choi CH, 2005, HEARING RES, V205, P193, DOI 10.1016/j.heares.2005.03.018 Clark G. M., 1995, Annals of Otology Rhinology and Laryngology, V104, P111 Eshraghi AA, 2012, ANAT REC, V295, P1957, DOI 10.1002/ar.22584 Farhadi Mohammad, 2013, Cochlear Implants Int, V14, P45 Franz B., 1984, ACTA OTO-LARYNGOL, V98, P17 Friedland David R, 2009, Trends Amplif, V13, P124, DOI 10.1177/1084713809336422 Gantz BJ, 2005, LARYNGOSCOPE, V115, P796, DOI 10.1097/01.MLG.0000157695.07536.D2 Havenith S, 2013, OTOL NEUROTOL, V34, P667, DOI 10.1097/MAO.0b013e318288643e Kawano A, 1998, ACTA OTO-LARYNGOL, V118, P313 Kral A, 2002, CEREB CORTEX, V12, P797, DOI 10.1093/cercor/12.8.797 Lenarz Thomas, 1998, Acta Oto-Rhino-Laryngologica Belgica, V52, P183 Lenarz Thomas, 2006, Audiol Neurootol, V11 Suppl 1, P34, DOI 10.1159/000095612 Li PMMC, 2007, ANN OTO RHINOL LARYN, V116, P731 MCELVEEN JT, 1995, OTOLARYNG HEAD NECK, V112, P457, DOI 10.1016/S0194-5998(95)70284-9 Nadol JB, 2004, OTOL NEUROTOL, V25, P257, DOI 10.1097/00129492-200405000-00010 O'Leary SJ, 2013, HEARING RES, V298, P27, DOI 10.1016/j.heares.2013.01.012 Paasche G, 2006, OTOL NEUROTOL, V27, P639, DOI 10.1097/01.mao.0000227662.88840.61 Pau HW, 2007, LARYNGOSCOPE, V117, P535, DOI 10.1097/MLG.0b013e31802f4169 Purser S., 1991, J OTOLARYNGOL SOC AU, V6, P472 Richard C, 2012, OTOL NEUROTOL, V33, P1181, DOI 10.1097/MAO.0b013e318263d56d ROBERTSON D, 1984, HEARING RES, V15, P113, DOI 10.1016/0378-5955(84)90042-X Scheper V, 2009, NANOMEDICINE-UK, V4, P623, DOI [10.2217/nnm.09.41, 10.2217/NNM.09.41] Somdas MA, 2007, AUDIOL NEURO-OTOL, V12, P277, DOI 10.1159/000103208 Stover T, 2005, OTOL NEUROTOL, V26, P1161 Warnecke A, 2012, HEARING RES, V289, P86, DOI 10.1016/j.heares.2012.04.007 NR 28 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUN PY 2014 VL 312 BP 21 EP 27 DI 10.1016/j.heares.2014.02.002 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AH8BD UT WOS:000336358200003 PM 24566091 ER PT J AU Gifford, RH Grantham, DW Sheffield, SW Davis, TJ Dwyer, R Dorman, MF AF Gifford, Rene H. Grantham, D. Wesley Sheffield, Sterling W. Davis, Timothy J. Dwyer, Robert Dorman, Michael F. TI Localization and interaural time difference (ITD) thresholds for cochlear implant recipients with preserved acoustic hearing in the implanted ear SO HEARING RESEARCH LA English DT Article ID HORIZONTAL-PLANE LOCALIZATION; SPEECH-PERCEPTION; ADULTS; NOISE; STIMULATION; FREQUENCY; LISTENERS; BENEFITS; SIGNALS; LEVEL AB The purpose of this study was to investigate horizontal plane localization and interaural time difference (ITD) thresholds for 14 adult cochlear implant recipients with hearing preservation in the implanted ear. Localization to broadband noise was assessed in an anechoic chamber with a 33-loudspeaker array extending from -90 to +90 degrees. Three listening conditions were tested including bilateral hearing aids, bimodal (implant + contralateral hearing aid) and best aided (implant + bilateral hearing aids). ITD thresholds were assessed, under headphones, for low-frequency stimuli including a 250-Hz tone and bandpass noise (100-900 Hz). Localization, in overall rms error, was significantly poorer in the bimodal condition (mean: 60.2 degrees) as compared to both bilateral hearing aids (mean: 46.1 degrees) and the best-aided condition (mean: 43.4 degrees). ITD thresholds were assessed for the same 14 adult implant recipients as well as 5 normal-hearing adults. ITD thresholds were highly variable across the implant recipients ranging from the range of normal to ITDs not present in real-world listening environments (range: 43 to over 1600 mu s). ITD thresholds were significantly correlated with localization, the degree of interaural asymmetry in low-frequency hearing, and the degree of hearing preservation related benefit in the speech reception threshold (SRT). These data suggest that implant recipients with hearing preservation in the implanted ear have access to binaural cues and that the sensitivity to ITDs is significantly correlated with localization and degree of preserved hearing in the implanted ear. (C) 2014 Published by Elsevier B.V. C1 [Gifford, Rene H.; Grantham, D. Wesley; Sheffield, Sterling W.; Davis, Timothy J.; Dwyer, Robert] Vanderbilt Univ, Dept Hearing & Speech Sci, Nashville, TN 37235 USA. [Dorman, Michael F.] Arizona State Univ, Dept Speech & Heating Sci, Tempe, AZ USA. RP Gifford, RH (reprint author), Vanderbilt Univ, Dept Hearing & Speech Sci, 221 Kirkland Hall, Nashville, TN 37235 USA. EM rene.h.gifford@Vanderbilt.edu FU National Institute on Deafness and Other Communication Disorders [R01 DC009404]; Vanderbilt Institute for Clinical and Translational Research (NCATS/NIH) [UL1 TR000445] FX This research was supported by grant R01 DC009404 from the National Institute on Deafness and Other Communication Disorders. Portions of these data were presented at the Hearing Preservation Symposium in Baltimore, MD, April 30, 2012, the 2012 International Hearing Aid Research Conference in Tahoe City, California, August 8-12, 2012, the American Speech-Language-Hearing Association, Atlanta, GA, November 15-17, 2012, and the Ultimate Midwinter Otolaryngology meeting, Vail, CO, February 2-6, 2014. Data collection and management via REDCap was supported by Vanderbilt Institute for Clinical and Translational Research grant support (UL1 TR000445 from NCATS/NIH). CR American National Standards Institute (ANSI), 2010, S362010 ANSIASA BRONKHORST AW, 1989, J ACOUST SOC AM, V86, P1374, DOI 10.1121/1.398697 Dillon H, 1998, NAL NL1 PRESCRIPTION, P4 Dorman MF, 2010, INT J AUDIOL, V49, P912, DOI 10.3109/14992027.2010.509113 Dorman MF, 2013, EAR HEARING, V34, P245, DOI 10.1097/AUD.0b013e318269ce70 Dunn CC, 2010, J AM ACAD AUDIOL, V21, P44, DOI 10.3766/jaaa.21.1.6 Erixon E, 2012, ACTA OTO-LARYNGOL, V132, P923, DOI 10.3109/00016489.2012.680198 Gantz B.J., 2013, EAS S Gifford RH, 2013, EAR HEARING, V34, P413, DOI 10.1097/AUD.0b013e31827e8163 Gifford RH, 2010, ADV OTO-RHINO-LARYNG, V67, P51, DOI 10.1159/000262596 Grantham DW, 2008, EAR HEARING, V29, P33 Grantham DW, 2007, EAR HEARING, V28, P524, DOI 10.1097/AUD.0b013e31806dc21a Grantham DW, 2012, EAR HEARING, V33, P595, DOI 10.1097/AUD.0b013e3182503e5e Harris PA, 2009, J BIOMED INFORM, V42, P377, DOI 10.1016/j.jbi.2008.08.010 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Litovsky RY, 2004, ARCH OTOLARYNGOL, V130, P648, DOI 10.1001/archotol.130.5.648 Rader T, 2013, EAR HEARING, V34, P324, DOI 10.1097/AUD.0b013e318272f189 RAKERD B, 1985, J ACOUST SOC AM, V78, P524, DOI 10.1121/1.392474 van Hoesel RJM, 2003, J ACOUST SOC AM, V113, P1617, DOI 10.1121/1.1539520 van Hoesel RJM, 2004, AUDIOL NEURO-OTOL, V9, P234, DOI 10.1159/000078393 Yost W.A., 2000, FUNDAMENTALS HEARING YOST WA, 1988, J ACOUST SOC AM, V83, P1846, DOI 10.1121/1.396520 NR 22 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUN PY 2014 VL 312 BP 28 EP 37 DI 10.1016/j.heares.2014.02.007 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AH8BD UT WOS:000336358200004 PM 24607490 ER PT J AU Heeringa, AN van Dijk, P AF Heeringa, A. N. van Dijk, P. TI The dissimilar time course of temporary threshold shifts and reduction of inhibition in the inferior colliculus following intense sound exposure SO HEARING RESEARCH LA English DT Article ID INDUCED HEARING-LOSS; INDUCED COCHLEAR NEUROPATHY; ACUTE NOISE EXPOSURE; ACOUSTIC TRAUMA; TINNITUS; HYPERACTIVITY; RAT; HYPERACUSIS; POTENTIALS; EXPRESSION AB Excessive noise exposure is known to produce an auditory threshold shift, which can be permanent or transient in nature. Recent studies showed that noise-induced temporary threshold shifts are associated with loss of synaptic connections to the inner hair cells and with cochlear nerve degeneration, which is reflected in a decreased amplitude of wave I of the auditory brainstem response (ABR). This suggests that, despite normal auditory thresholds, central auditory processing may be abnormal. We recorded changes in central auditory processing following a sound-induced temporary threshold shift. Anesthetized guinea pigs were exposed for 1 h to a pure tone of 11 kHz (124 dB sound pressure level). Hearing thresholds, amplitudes of ABR waves I and IV, and spontaneous and tone-evoked firing rates in the inferior colliculus (IC) were assessed immediately, one week, two weeks, and four weeks post exposure. Hearing thresholds were elevated immediately following overexposure, but recovered within one week. The amplitude of the ABR wave I was decreased in all sound-exposed animals for all test periods. In contrast, the ABR wave IV amplitude was only decreased immediately after overexposure and recovered within a week. The proportion of IC units that show inhibitory responses to pure tones decreased substantially up to two weeks after overexposure, especially when stimulated with high frequencies. The proportion of excitatory responses to low frequencies was increased. Spontaneous activity was unaffected by the overexposure. Despite rapid normalization of auditory thresholds, our results suggest an increased central gain following sound exposure and an abnormal balance between excitatory and inhibitory responses in the midbrain up to two weeks after overexposure. These findings may be associated with hyperacusis after a sound-induced temporary threshold shift. (C) 2014 The Authors. Published by Elsevier B.V. C1 [Heeringa, A. N.; van Dijk, P.] Univ Groningen, Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, NL-9700 RB Groningen, Netherlands. [Heeringa, A. N.; van Dijk, P.] Univ Groningen, Univ Med Ctr Groningen, Grad Sch Med Sci, Res Sch Behav & Cognit Neurosci, NL-9700 AB Groningen, Netherlands. RP Heeringa, AN (reprint author), Univ Groningen, Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, POB 30-001, NL-9700 RB Groningen, Netherlands. EM A.N.Heeringa@umcg.nl; P.van.Dijk@umcg.nl FU Heinsius Houbolt Foundation; Stichting Gehoorgestoorde Kind FX This work was supported by the Heinsius Houbolt Foundation and the Stichting Gehoorgestoorde Kind. The study is part of the research program of our department: Healthy Aging and Communication. CR BUNO W, 1978, EXP NEUROL, V59, P62, DOI 10.1016/0014-4886(78)90201-7 Dong S, 2010, BRAIN RES, V1342, P24, DOI 10.1016/j.brainres.2010.04.067 Dong SY, 2010, EUR J NEUROSCI, V31, P1616, DOI 10.1111/j.1460-9568.2010.07183.x Duan ML, 2000, P NATL ACAD SCI USA, V97, P7597, DOI 10.1073/pnas.97.13.7597 Duque D, 2012, J NEUROSCI, V32, P17762, DOI 10.1523/JNEUROSCI.3190-12.2012 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Eggermont JJ, 2013, HEARING RES, V295, P140, DOI 10.1016/j.heares.2012.01.005 Ehret G., 1997, CENTRAL AUDITORY SYS Furman AC, 2013, J NEUROPHYSIOL, V110, P577, DOI 10.1152/jn.00164.2013 Gu JW, 2010, J NEUROPHYSIOL, V104, P3361, DOI 10.1152/jn.00226.2010 Hickox AE, 2014, J NEUROPHYSIOL, V111, P552, DOI 10.1152/jn.00184.2013 Knipper Marlies, 2013, Prog Neurobiol, V111, P17, DOI 10.1016/j.pneurobio.2013.08.002 Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 Langers Dave R M, 2012, Front Syst Neurosci, V6, P2, DOI 10.3389/fnsys.2012.00002 LIBERMAN MC, 1989, HEARING RES, V38, P47, DOI 10.1016/0378-5955(89)90127-5 Lin HW, 2011, JARO-J ASSOC RES OTO, V12, P605, DOI 10.1007/s10162-011-0277-0 Ma WLD, 2006, HEARING RES, V212, P9, DOI 10.1016/j.heares.2005.10.003 Maison SF, 2000, J NEUROSCI, V20, P4701 Milbrandt JC, 2000, HEARING RES, V147, P251, DOI 10.1016/S0378-5955(00)00135-0 Mulders WHAM, 2009, NEUROSCIENCE, V164, P733, DOI 10.1016/j.neuroscience.2009.08.036 Mulders WHAM, 2011, NEUROSCIENCE, V192, P753, DOI 10.1016/j.neuroscience.2011.06.046 Niu YG, 2013, J NEUROSCI RES, V91, P292, DOI 10.1002/jnr.23152 SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 SALVI RJ, 1978, EXP BRAIN RES, V32, P301 Schaette R, 2011, J NEUROSCI, V31, P13452, DOI 10.1523/JNEUROSCI.2156-11.2011 Scholl B, 2008, J NEUROPHYSIOL, V100, P646, DOI 10.1152/jn.90406.2008 Sun W, 2012, BRAIN RES, V1485, P108, DOI 10.1016/j.brainres.2012.02.008 SZCZEPANIAK WS, 1995, NEUROSCI LETT, V196, P77, DOI 10.1016/0304-3940(95)11851-M Wang J, 1996, J NEUROPHYSIOL, V75, P171 WILLOTT JF, 1982, SCIENCE, V216, P1331, DOI 10.1126/science.7079767 Zeng FG, 2013, HEARING RES, V295, P172, DOI 10.1016/j.heares.2012.05.009 Zheng XY, 1997, HEARING RES, V107, P147, DOI 10.1016/S0378-5955(97)00031-2 Zuccotti A, 2012, J NEUROSCI, V32, P8545, DOI 10.1523/JNEUROSCI.1247-12.2012 NR 34 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUN PY 2014 VL 312 BP 38 EP 47 DI 10.1016/j.heares.2014.03.004 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AH8BD UT WOS:000336358200005 PM 24650953 ER PT J AU Boyen, K de Kleine, E van Dijk, P Langers, DRM AF Boyen, Kris de Kleine, Emile van Dijk, Pim Langers, Dave R. M. TI Tinnitus-related dissociation between cortical and subcortical neural activity in humans with mild to moderate sensorineural hearing loss SO HEARING RESEARCH LA English DT Article ID AUDITORY-CORTEX; SOUND-LEVEL; FMRI ACTIVATION; HUMAN BRAIN; NOISE; RESPONSES; LATERALIZATION; STIMULATION; HYPERACUSIS; CEREBELLUM AB Tinnitus is a phantom sound percept that is strongly associated with peripheral hearing loss. However, only a fraction of hearing-impaired subjects develops tinnitus. This may be based on differences in the function of the brain between those subjects that develop tinnitus and those that do not. In this study, cortical and sub-cortical sound-evoked brain responses in 34 hearing-impaired chronic tinnitus patients and 19 hearing level-matched controls were studied using 3-T functional magnetic resonance imaging (fMRI). Auditory stimuli were presented to either the left or the right ear at levels of 30-90 dB SPL. We extracted neural activation as a function of sound intensity in eight auditory regions (left and right auditory cortices, medial geniculate bodies, inferior colliculi and cochlear nuclei), the cerebellum and a cinguloparietal task-positive region. The activation correlated positively with the stimulus intensity, and negatively with the hearing threshold. We found no differences between both groups in terms of the magnitude and lateralization of the sound-evoked responses, except for the left medial geniculate body and right cochlear nucleus where activation levels were elevated in the tinnitus subjects. We observed significantly reduced functional connectivity between the inferior colliculi and the auditory cortices in tinnitus patients compared to controls. Our results indicate a failure of thalamic gating in the development of tinnitus. (C) 2014 The Authors. Published by Elsevier B.V. C1 [Boyen, Kris; de Kleine, Emile; van Dijk, Pim; Langers, Dave R. M.] Univ Groningen, Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, NL-9700 RB Groningen, Netherlands. [Boyen, Kris; de Kleine, Emile; van Dijk, Pim; Langers, Dave R. M.] Univ Groningen, Univ Med Ctr Groningen, Res Sch Behav & Cognit Neurosci, Grad Sch Med Sci, NL-9700 RB Groningen, Netherlands. [Langers, Dave R. M.] Univ Nottingham, NIHR, Nottingham Hearing Biomed Res Unit, Nottingham NG7 2RD, England. RP Boyen, K (reprint author), Univ Groningen, Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, POB 30-001, NL-9700 RB Groningen, Netherlands. EM k.boyen@umcg.nl RI de Kleine, Emile/P-2350-2014 FU American Tinnitus Association; Heinsius Houbolt Foundation; VENI from the Netherlands Organisation for Scientific Research and the Netherlands Organization for Health Research and Development (ZonMw) [016.096.011] FX This research was supported by the American Tinnitus Association and the Heinsius Houbolt Foundation. Dave R. M. Langers was funded by VENI research grant 016.096.011 from the Netherlands Organisation for Scientific Research and the Netherlands Organization for Health Research and Development (ZonMw). The study is part of the research program of our department: Healthy Aging and Communication. CR Adjamian P, 2009, HEARING RES, V253, P15, DOI 10.1016/j.heares.2009.04.001 Amaral A., 2013, FRONT NEUROSCI Baguley DM, 2003, J ROY SOC MED, V96, P582, DOI 10.1258/jrsm.96.12.582 Baumgart F, 1998, MED PHYS, V25, P2068, DOI 10.1118/1.598368 Boyen K, 2013, HEARING RES, V295, P67, DOI 10.1016/j.heares.2012.02.010 Brozoski TJ, 2007, HEARING RES, V228, P168, DOI 10.1016/j.heares.2007.02.003 Bush G, 2000, TRENDS COGN SCI, V4, P215, DOI 10.1016/S1364-6613(00)01483-2 Dobie RA, 2003, OTOLARYNG CLIN N AM, V36, P383, DOI 10.1016/S0030-6665(02)00168-8 Eggermont JJ, 2001, HEARING RES, V157, P1, DOI 10.1016/S0378-5955(01)00259-3 Ernst SMA, 2008, NEUROIMAGE, V43, P321, DOI 10.1016/j.neuroimage.2008.07.046 Farhadi M, 2010, J CEREBR BLOOD F MET, V30, P864, DOI 10.1038/jcbfm.2009.254 Fox MD, 2005, P NATL ACAD SCI USA, V102, P9673, DOI 10.1073/pnas.0504136102 Friston Karl J., 1994, Human Brain Mapping, V2, P56, DOI 10.1002/hbm.460020107 Ghez C., 1985, PRINCIPLES NEURAL SC, P833 Good P., 2002, J MODERN APPL STAT M, V1, P243 Gu JW, 2010, J NEUROPHYSIOL, V104, P3361, DOI 10.1152/jn.00226.2010 Hall DA, 1999, HUM BRAIN MAPP, V7, P213, DOI 10.1002/(SICI)1097-0193(1999)7:3<213::AID-HBM5>3.0.CO;2-N Hall DA, 2001, J ACOUST SOC AM, V109, P1559, DOI 10.1121/1.1345697 Harms MP, 2003, HUM BRAIN MAPP, V20, P168, DOI 10.1002/hbm.10136 Hoffmann H. J., 2004, TINNITUS THEORY MANA, P16 Hunter MD, 2006, P NATL ACAD SCI USA, V103, P189, DOI 10.1073/pnas.0506268103 Khalfa S, 2002, ORL J OTO-RHINO-LARY, V64, P436, DOI 10.1159/000067570 Langers Dave R M, 2011, Brain Connect, V1, P233, DOI 10.1089/brain.2011.0023 Langers DRM, 2005, NEUROIMAGE, V28, P490, DOI 10.1016/j.neuroimage.2005.06.024 Langers D.R.M., 2011, CEREB CORTEX, V55 Langers DRM, 2005, MAGNET RESON MED, V53, P49, DOI 10.1002/mrm.20315 Langers DRM, 2007, NEUROIMAGE, V34, P264, DOI 10.1016/j.neuroimage.2006.09.002 Langers DRM, 2007, NEUROIMAGE, V35, P709, DOI 10.1016/j.neuroimage.2006.12.013 Langers DRM, 2003, NEUROIMAGE, V20, P265, DOI 10.1016/S1053-8119(03)00258-1 Lanting CP, 2008, ACTA OTO-LARYNGOL, V128, P415, DOI 10.1080/00016480701793743 Lanting CP, 2009, HEARING RES, V255, P1, DOI 10.1016/j.heares.2009.06.009 Lanting CP, 2010, HEARING RES, V267, P78, DOI 10.1016/j.heares.2010.04.006 Leaver AM, 2011, NEURON, V69, P33, DOI 10.1016/j.neuron.2010.12.002 LIU RY, 1988, ANN STAT, V16, P1696, DOI 10.1214/aos/1176351062 Llinas RR, 1999, P NATL ACAD SCI USA, V96, P15222, DOI 10.1073/pnas.96.26.15222 Lockwood AH, 2002, NEW ENGL J MED, V347, P904, DOI 10.1056/NEJMra013395 Maldjian JA, 2003, NEUROIMAGE, V19, P1233, DOI 10.1016/S1053-8119(03)00169-1 Maudoux A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036222 Melcher JR, 2009, HEARING RES, V257, P63, DOI 10.1016/j.heares.2009.08.005 Melcher JR, 2000, J NEUROPHYSIOL, V83, P1058 Muhlau M, 2006, CEREB CORTEX, V16, P1283, DOI 10.1093/cercor/bhj070 Newman CW, 1996, OTOLARYNGOL HEAD NEC, V1996, p[143, 20] Nichols TE, 2002, HUM BRAIN MAPP, V15, P1, DOI 10.1002/hbm.1058 Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9 Norman-Haignere S, 2013, J NEUROSCI, V33, P19451, DOI 10.1523/JNEUROSCI.2880-13.2013 OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4 Osaki Y, 2005, NEUROREPORT, V16, P1625, DOI 10.1097/01.wnr.0000183899.85277.08 Petacchi A, 2005, HUM BRAIN MAPP, V25, P118, DOI 10.1002/hbm.20137 Rauschecker JP, 2010, NEURON, V66, P819, DOI 10.1016/j.neuron.2010.04.032 Richardson BD, 2012, BRAIN RES, V1485, P77, DOI 10.1016/j.brainres.2012.02.014 Rohl M, 2012, JARO-J ASSOC RES OTO, V13, P369, DOI 10.1007/s10162-012-0315-6 Rosenbaum PR, 2005, J ROY STAT SOC B, V67, P515, DOI 10.1111/j.1467-9868.2005.00513.x Scheffler K, 1998, CEREB CORTEX, V8, P156, DOI 10.1093/cercor/8.2.156 Schmahmann JD, 1998, BRAIN, V121, P561, DOI 10.1093/brain/121.4.561 Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1 Sigalovsky IS, 2006, HEARING RES, V215, P67, DOI 10.1016/j.heares.2006.03.002 Smith SM, 2009, P NATL ACAD SCI USA, V106, P13040, DOI 10.1073/pnas.0905267106 Strick PL, 2009, ANNU REV NEUROSCI, V32, P413, DOI 10.1146/annurev.neuro.31.060407.125606 Suzuki M, 2002, HEARING RES, V163, P37, DOI 10.1016/S0378-5955(01)00367-7 van Gendt MJ, 2012, J NEUROSCI, V32, P17528, DOI 10.1523/JNEUROSCI.2791-12.2012 WU CFJ, 1986, ANN STAT, V14, P1261, DOI 10.1214/aos/1176350142 Zhang JS, 2013, HEARING RES, V295, P38, DOI 10.1016/j.heares.2012.05.007 NR 62 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUN PY 2014 VL 312 BP 48 EP 59 DI 10.1016/j.heares.2014.03.001 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AH8BD UT WOS:000336358200006 PM 24631963 ER PT J AU De Greef, D Aernouts, J Aerts, J Cheng, JT Horwitz, R Rosowski, JJ Dirckx, JJJ AF De Greef, Daniel Aernouts, Jef Aerts, Johan Cheng, Jeffrey Tao Horwitz, Rachelle Rosowski, John J. Dirckx, Joris J. J. TI Viscoelastic properties of the human tympanic membrane studied with stroboscopic holography and finite element modeling SO HEARING RESEARCH LA English DT Article ID HUMAN MIDDLE-EAR; SOUND-TRANSMISSION; MOTION; SURFACE; TOMOGRAPHY; EARDRUM; RABBIT; GERBIL AB A new anatomically-accurate Finite Element (FE) model of the tympanic membrane (TM) and malleus was combined with measurements of the sound-induced motion of the TM surface and the bony manubrium, in an isolated TM-malleus preparation. Using the results, we were able to address two issues related to how sound is coupled to the ossicular chain: (i) Estimate the viscous damping within the tympanic membrane itself, the presence of which may help smooth the broadband response of a potentially highly resonant TM, and (ii) Investigate the function of a peculiar feature of human middle-ear anatomy, the thin mucosal epithelial fold that couples the mid part of the human manubrium to the TM. Sound induced motions of the surface of ex vivo human eardrums and mallei were measured with stroboscopic holography, which yields maps of the amplitude and phase of the displacement of the entire membrane surface at selected frequencies. The results of these measurements were similar, but not identical to measurements made in intact ears. The holography measurements were complemented by laser-Doppler vibrometer measurements of sound-induced umbo velocity, which were made with fine-frequency resolution. Comparisons of these measurements to predictions from a new anatomically accurate FE model with varied membrane characteristics suggest the TM contains viscous elements, which provide relatively low damping, and that the epithelial fold that connects the central section of the human manubrium to the TM only loosely couples the TM to the manubrium. The laser-Doppler measurements in two preparations also suggested the presence of significant variation in the complex modulus of the TM between specimens. (C) 2014 Elsevier B.V. All rights reserved. C1 [De Greef, Daniel; Aernouts, Jef; Aerts, Johan; Dirckx, Joris J. J.] Univ Antwerp, Lab Biomed Phys, B-2020 Antwerp, Belgium. [Aernouts, Jef; Cheng, Jeffrey Tao; Horwitz, Rachelle; Rosowski, John J.] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA. [Aernouts, Jef; Cheng, Jeffrey Tao; Rosowski, John J.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02114 USA. [Horwitz, Rachelle; Rosowski, John J.] Harvard Mit Div Hlth Sci & Technol, Speech & Hearing Biosci & Technol Program, Boston, MA 02115 USA. RP De Greef, D (reprint author), Univ Antwerp, Lab Biomed Phys, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. EM daniel.degreef@uantwerpen.be FU agency for Innovation by Science and Technology in Flanders (IWT-Vlaanderen); Research Foundation Flanders (FWO); University of Antwerp; US National Institute of Health FX Financial support to this project was given by the agency for Innovation by Science and Technology in Flanders (IWT-Vlaanderen), the Research Foundation Flanders (FWO), the University of Antwerp and the US National Institute of Health. We thank Mike Ravicz and Saumil Merchant for the valuable discussions, Melissa McKinnon for her technical assistance. CR Aernouts J, 2012, HEARING RES, V290, P45, DOI 10.1016/j.heares.2012.05.001 Cheng JT, 2013, J ACOUST SOC AM, V133, P918, DOI 10.1121/1.4773263 Cheng JT, 2010, HEARING RES, V263, P66, DOI 10.1016/j.heares.2009.12.024 de La Rochefoucauld O, 2010, HEARING RES, V263, P9, DOI 10.1016/j.heares.2009.10.014 Decraemer WF, 2004, PROCEEDINGS OF THE 3RD SYMPOSIUM ON MIDDLE EAR MECHANICS IN RESEARCH AND OTOLOGY, P3 Fay JP, 2006, P NATL ACAD SCI USA, V103, P19743, DOI 10.1073/pnas.0603898104 Fletcher NJC, 1992, ACOUSTIC SYSTEMS BIO FUNNELL WRJ, 1982, ORL J OTO-RHINO-LARY, V44, P181 Gan RZ, 2004, ANN BIOMED ENG, V32, P847, DOI 10.1023/B:ABME.0000030260.22737.53 GRAHAM MD, 1978, ANN OTO RHINOL LARYN, V87, P426 Gulya AJ, 1995, ANATOMY TEMPORAL BON Hernandez-Montes MDS, 2009, J BIOMED OPT, V14, DOI 10.1117/1.3153898 Horwitz R., 2012, 35 M ASS RES OT 2012 Koike T, 2001, JSME INT J C-MECH SY, V44, P1097, DOI 10.1299/jsmec.44.1097 Koike T, 2002, J ACOUST SOC AM, V111, P1306, DOI 10.1121/1.1451073 Margolis R.H., 1999, CONT PERSPECTIVES HE, P89 Masschaele BC, 2007, NUCL INSTRUM METH A, V580, P266, DOI 10.1016/j.nima.2007.05.099 Metscher Brian D., 2009, BMC Physiology, V9, P11, DOI 10.1186/1472-6793-9-11 NUMMELA S, 1995, HEARING RES, V85, P18, DOI 10.1016/0378-5955(95)00030-8 Rosowski JJ, 2009, HEARING RES, V253, P83, DOI 10.1016/j.heares.2009.03.010 Rosowski JJ, 2011, OTOL NEUROTOL, V32, P1559, DOI 10.1097/MAO.0b013e31822e94f3 ROSOWSKI JJ, 1990, ANN OTO RHINOL LARYN, V99, P403 Rosowski JJ, 2008, EAR HEARING, V29, P3 Rosowski JJ, 2007, AUDIOL NEURO-OTOL, V12, P265, DOI 10.1159/000101474 Salih WHM, 2012, HEARING RES, V284, P1, DOI 10.1016/j.heares.2011.12.004 Soons JAM, 2010, HEARING RES, V263, P33, DOI 10.1016/j.heares.2009.10.001 STINSON MR, 1985, J ACOUST SOC AM, V78, P1596, DOI 10.1121/1.392797 Sun Q, 2002, BIOMECH MODEL MECHAN, V1, P109, DOI 10.1007/s10237-002-0014-z Todd N Wendell, 2009, Ear Nose Throat J, V88, pE22 Van der Jeught S, 2013, JARO-J ASSOC RES OTO, V14, P483, DOI 10.1007/s10162-013-0394-z Volandri G, 2011, J BIOMECH, V44, P1219, DOI 10.1016/j.jbiomech.2010.12.023 Whittemore KR, 2004, HEARING RES, V187, P85, DOI 10.1016/S0378-5955(03)00332-0 Zhang X, 2010, INT J EXP COMPUT BIO, V1, P252, DOI 10.1504/IJECB.2010.03526 Zhang XM, 2013, ANN BIOMED ENG, V41, P205, DOI 10.1007/s10439-012-0624-2 Zhao F, 2009, MED ENG PHYS, V31, P907, DOI 10.1016/j.medengphy.2009.06.009 NR 35 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUN PY 2014 VL 312 BP 69 EP 80 DI 10.1016/j.heares.2014.03.002 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AH8BD UT WOS:000336358200008 PM 24657621 ER PT J AU Mistry, N Nolan, LS Saeed, SR Forge, A Taylor, RR AF Mistry, N. Nolan, L. S. Saeed, S. R. Forge, A. Taylor, R. R. TI Cochlear implantation in the mouse via the round window: Effects of array insertion SO HEARING RESEARCH LA English DT Article ID STAPEDIAL ARTERY; ANIMAL-MODEL; HEARING PRESERVATION; SURGICAL APPROACH; GENE-THERAPY; BONE; HISTOPATHOLOGY; ELECTRODE; SURGERY; RECONSTRUCTION AB Animal models are the only means of assessing the effects of cochlear implantation (CI) at a cellular and molecular level. The range of naturally occurring and genetically-modified mouse strains which mimic human deafness provide excellent opportunities for auditory research. To date, there are very few studies of Cl in mice. The main aims of this study were to develop a reproducible and viable technique to enable long term CI in the mouse and to assess the response of the mouse cochlea to implantation as a means of evaluating the success of the procedure. Electrode array implantation via the round window was performed in C57Bl/6 mice aged 3 and 6 months. The contralateral cochlea acted as a control. Auditory brainstem responses (ABR) were recorded prior to and following Cl. Analysis showed greater threshold shifts in the implanted ear compared to the control ear post-implantation, but substantial preservation of hearing. There were no cases in which implantation caused a profound hearing loss across all frequencies. Cone beam computerised tomography and light microscopy confirmed correct placement of the electrode array within the scala tympani. Cochleae were prepared for histological examination. Initial analysis revealed encapsulation of the implant in tissue with morphological characteristics suggestive of fibrosis. Our results show that mouse Cl via the round window offers a model for exploring tissue responses to implantation. (C) 2014 Elsevier B.V. All rights reserved. C1 [Mistry, N.; Nolan, L. S.; Saeed, S. R.; Forge, A.; Taylor, R. R.] UCL, Ear Inst, London WC1X 2EE, England. RP Mistry, N (reprint author), UCL, Ear Inst, 332 Grays Inn Rd, London WC1X 2EE, England. EM nina.mistry.11@ucl.ac.uk; nolan@ucl.ac.uk; shakeel.saeed@ucl.ac.uk; a.forge@ucl.ac.uk; ruth.r.taylor@ucl.ac.uk FU Royal College of Surgeons of England; Midland Institute of Otology; Royal Society of Medicine; Otorhinolaryngological Research Society FX Many thanks to The Royal College of Surgeons of England, Midland Institute of Otology, Royal Society of Medicine and the Otorhinolaryngological Research Society for their funding support towards this project and to CochlearTM Ltd for the supply of bespoke electrode arrays. CR Addams-Williams J, 2011, Cochlear Implants Int, V12 Suppl 2, pS36, DOI 10.1179/146701011X13074645127478 Akil O, 2012, NEURON, V75, P283, DOI 10.1016/j.neuron.2012.05.019 ALBIIN N, 1985, ANAT REC, V212, P17, DOI 10.1002/ar.1092120103 ALBIIN N, 1983, ACTA ANAT, V115, P134 Aschendorff A., 2011, HEAD NECK SURG, V10, pDoc07 Bogaerts S, 2008, J NEUROSCI METH, V168, P156, DOI 10.1016/j.jneumeth.2007.09.016 Cervera-Paz FJ, 2005, ANN OTO RHINOL LARYN, V114, P543 Chen ZQ, 2006, J NEUROSCI METH, V150, P67, DOI 10.1016/j.jeumeth.2005.05.017 Chow J K, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P42 Clark G M, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P40 Cosetti MK, 2011, EXPERT REV MED DEVIC, V8, P389, DOI [10.1586/erd.11.12, 10.1586/ERD.11.12] DeMason C, 2012, EAR HEARING, V33, P534, DOI 10.1097/AUD.0b013e3182498c28 Fayad JN, 2009, OTOLARYNG HEAD NECK, V141, P247, DOI 10.1016/j.otohns.2009.03.031 Friedland David R, 2009, Trends Amplif, V13, P124, DOI 10.1177/1084713809336422 GOVAERTS PJ, 1993, ANN OTO RHINOL LARYN, V102, P724 Iguchi F, 2004, ACTA OTO-LARYNGOL, V124, P43, DOI 10.1080/03655230310016816 Jero J, 2001, HEARING RES, V151, P106, DOI 10.1016/S0378-5955(00)00216-1 Kawano A, 1998, ACTA OTO-LARYNGOL, V118, P313 Kong WJ, 2012, ACTA OTO-LARYNGOL, V132, P116, DOI 10.3109/00016489.2011.626794 Kretzmer EA, 2004, ARCH OTOLARYNGOL, V130, P499, DOI 10.1001/archotol.130.5.499 Lenarz T, 2009, AUDIOL NEURO-OTOL, V14, P22, DOI 10.1159/000206492 LINTHICUM FH, 1991, AM J OTOL, V12, P245 Lorens A, 2008, LARYNGOSCOPE, V118, P288, DOI 10.1097/MLG.0b013e3181598887 Lu W, 2005, HEARING RES, V205, P115, DOI 10.1016/j.heares.2005.03.010 Maria PLS, 2013, OTOL NEUROTOL, V34, P526, DOI 10.1097/MAO.0b013e318281e0c9 MARSH MA, 1992, ARCH OTOLARYNGOL, V118, P1257 Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5 Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883 Nguyen Y, 2009, ACTA OTO-LARYNGOL, V129, P1153, DOI 10.3109/00016480802629440 Niparko J.K., 2009, ASSESSMENT CANDIDACY, P137 Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017 Pfingst BE, 2011, HEARING RES, V281, P65, DOI 10.1016/j.heares.2011.05.002 SAUNDERS JE, 1994, AM J OTOL, V15, P606 Skarzynski H, 2010, ADV OTO-RHINO-LARYNG, V67, P135, DOI 10.1159/000262605 Somdas MA, 2007, AUDIOL NEURO-OTOL, V12, P277, DOI 10.1159/000103208 Stöver Timo, 2009, GMS Curr Top Otorhinolaryngol Head Neck Surg, V8, pDoc10, DOI 10.3205/cto000062 Tamir S, 2012, AUDIOL NEURO-OTOL, V17, P331, DOI 10.1159/000339894 Willott J F, 1990, Acta Otolaryngol Suppl, V476, P153 Yamamoto H, 2003, HEARING RES, V186, P69, DOI 10.1016/S0378-5955(03)00310-1 Zeng Fan-Gang, 2008, IEEE Rev Biomed Eng, V1, P115, DOI 10.1109/RBME.2008.2008250 NR 40 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUN PY 2014 VL 312 BP 81 EP 90 DI 10.1016/j.heares.2014.03.005 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AH8BD UT WOS:000336358200009 PM 24657211 ER PT J AU Todd, NPM Paillard, AC Kluk, K Whittle, E Colebatch, JG AF Todd, N. P. M. Paillard, A. C. Kluk, K. Whittle, E. Colebatch, J. G. TI Source analysis of short and long latency vestibular-evoked potentials (VsEPs) produced by left vs. right ear air-conducted 500 Hz tone pips SO HEARING RESEARCH LA English DT Article ID SOUND; STIMULATION; CORTEX; PROJECTIONS; DOMINANCE; SYSTEM; CAT AB Todd et al. (2014) have recently demonstrated the presence of vestibular dependent changes both in the morphology and in the intensity dependence of auditory evoked potentials (AEPs) when passing through the vestibular threshold as determined by vestibular evoked myogenic potentials (VEMPs). In this paper we extend this work by comparing left vs. right ear stimulation and by conducting a source analysis of the resulting evoked potentials of short and long latency. Ten healthy, right-handed subjects were recruited and evoked potentials were recorded to both left- and right-ear sound stimulation, above and below vestibular threshold. Below VEMP threshold, typical AEPs were recorded, consisting of mid-latency (MLR) waves Na and Pa followed by long latency AEPs (LAEPs) N1 and P2. In the suprathreshold condition, the expected changes in morphology were observed, consisting of: (1) short-latency vestibular evoked potentials (VsEPs) which have no auditory correlate, i.e. the ocular VEMP (OVEMP) and inion response related potentials; (2) a later deflection, labelled N42/P52, followed by the LAEPs N1 and P2. Statistical analysis of the vestibular dependent responses indicated a contralateral effect for inion related short-latency responses and a left-ear/right-hemisphere advantage for the long-latency responses. Source analysis indicated that the short-latency effects may be mediated by a contralateral projection to left cerebellum, while the long-latency effects were mediated by a contralateral projection to right cingulate cortex. In addition we found evidence of a possible vestibular contribution to the auditory T-complex in radial temporal lobe sources. These last results raise the possibility that acoustic activation of the otolith organs could potentially contribute to auditory processing. (C) 2014 The Authors. Published by Elsevier B.V. C1 [Todd, N. P. M.; Paillard, A. C.; Whittle, E.] Univ Manchester, Fac Life Sci, Manchester M13 9PL, Lancs, England. [Kluk, K.] Univ Manchester, Sch Psychol Sci, Manchester M13 9PL, Lancs, England. [Colebatch, J. G.] Univ New S Wales, Prince Wales Clin Sch & Neurosci Res Australia, Sydney, NSW 2052, Australia. RP Todd, NPM (reprint author), Univ Manchester, Fac Life Sci, Manchester M13 9PL, Lancs, England. EM neil.todd@manchester.ac.uk FU Wellcome Trust [WT091961MA] FX The research reported in this article was supported by a grant from the Wellcome Trust (WT091961MA). We wish to thank Aisha McLean for assistance in the production of this manuscript. CR Barker M, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035955 BICKFORD RG, 1964, ANN NY ACAD SCI, V112, P204, DOI 10.1111/j.1749-6632.1964.tb26749.x BLUM PS, 1979, EXP NEUROL, V64, P587, DOI 10.1016/0014-4886(79)90234-6 Brimijoin WO, 2012, I-PERCEPTION, V3, P179, DOI 10.1068/i7173sas COLEBATCH JG, 1994, J NEUROL NEUROSUR PS, V57, P190, DOI 10.1136/jnnp.57.2.190 CONNOLLY JF, 1993, ELECTROEN CLIN NEURO, V86, P58, DOI 10.1016/0013-4694(93)90067-6 de Waele C, 2001, EXP BRAIN RES, V141, P541, DOI 10.1007/s00221-001-0894-7 Dieterich M, 2003, CEREB CORTEX, V13, P994, DOI 10.1093/cercor/13.9.994 Ebata S, 2004, NEUROSCI RES, V49, P55, DOI 10.1016/j.neures.2004.01.012 Emami S.F., 2012, ISRN OTOLARYNGOL, V7 Emami S.F., 2012, ISRN OTOLARYNGOL, V5 Govender S, 2009, CLIN NEUROPHYSIOL, V120, P1386, DOI 10.1016/j.clinph.2009.04.017 Hine J, 2007, CLIN NEUROPHYSIOL, V118, P1274, DOI 10.1016/j.clinph.2007.03.012 Janzen J, 2008, NEUROIMAGE, V42, P1508, DOI 10.1016/j.neuroimage.2008.06.026 Lopez C, 2012, NEUROSCIENCE, V212, P159, DOI 10.1016/j.neuroscience.2012.03.028 Lopez C, 2011, BRAIN RES REV, V67, P119, DOI 10.1016/j.brainresrev.2010.12.002 MCCUE MP, 1994, J NEUROSCI, V14, P6058 McNerney KM, 2011, J AM ACAD AUDIOL, V22, P143, DOI 10.3766/jaaa.22.3.3 Meddis R, 2011, J ACOUST SOC AM, V129, P3153, DOI 10.1121/1.3569712 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x Phillips-Silver J, 2008, BRAIN COGNITION, V67, P94, DOI 10.1016/j.bandc.2007.11.007 PROBST T, 1990, NEUROSCI LETT, V108, P255, DOI 10.1016/0304-3940(90)90650-X Rosengren SA, 2006, CLIN NEUROPHYSIOL, V117, P1145, DOI 10.1016/j.clinph.2005.12.026 Rosengren SM, 2005, CLIN NEUROPHYSIOL, V116, P1938, DOI 10.1016/j.clinph.2005.03.019 ROUCOUXHANUS M, 1977, EXP BRAIN RES, V29, P283 Scherg M, 1989, J Cogn Neurosci, V1, P336, DOI 10.1162/jocn.1989.1.4.336 Schlindwein P, 2008, NEUROIMAGE, V39, P19, DOI 10.1016/j.neuroimage.2007.08.016 Todd NPM, 2008, CLIN NEUROPHYSIOL, V119, P1881, DOI 10.1016/j.clinph.2008.03.027 Todd NPM, 2003, J ACOUST SOC AM, V114, P3264, DOI 10.1121/1.1628249 Todd NPM, 2007, CLIN NEUROPHYSIOL, V118, P381, DOI 10.1016/j.clinph.2006.09.025 Todd NPM, 2014, HEARING RES, V309, P63, DOI 10.1016/j.heares.2013.11.008 NR 31 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUN PY 2014 VL 312 BP 91 EP 102 DI 10.1016/j.heares.2014.03.006 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AH8BD UT WOS:000336358200010 PM 24699384 ER PT J AU Schneider, JN Lloyd, DR Banks, PN Mercado, E AF Schneider, Jennifer N. Lloyd, David R. Banks, Patchouly N. Mercado, Eduardo, III TI Modeling the utility of binaural cues for underwater sound localization SO HEARING RESEARCH LA English DT Article ID WINTERING HUMPBACK WHALES; ARTIFICIAL NEURAL-NETWORK; MEGAPTERA-NOVAEANGLIAE; AUDITORY LOCALIZATION; DIRECTIONAL HEARING; BASILAR-MEMBRANE; PHOCA-VITULINA; MIDDLE-EAR; PURE-TONES; AZIMUTH AB The binaural cues used by terrestrial animals for sound localization in azimuth may not always suffice for accurate sound localization underwater. The purpose of this research was to examine the theoretical limits of interaural timing and level differences available underwater using computational and physical models. A paired-hydrophone system was used to record sounds transmitted underwater and recordings were analyzed using neural networks calibrated to reflect the auditory capabilities of terrestrial mammals. Estimates of source direction based on temporal differences were most accurate for frequencies between 0.5 and 1.75 kHz, with greater resolution toward the midline (2), and lower resolution toward the periphery (9 degrees). Level cues also changed systematically with source azimuth, even at lower frequencies than expected from theoretical calculations, suggesting that binaural mechanical coupling (e.g., through bone conduction) might, in principle, facilitate underwater sound localization. Overall, the relatively limited ability of the model to estimate source position using temporal and level difference cues underwater suggests that animals such as whales may use additional cues to accurately localize conspecifics and predators at long distances. (C) 2014 Elsevier B.V. All rights reserved. C1 [Schneider, Jennifer N.; Lloyd, David R.; Banks, Patchouly N.; Mercado, Eduardo, III] SUNY Buffalo, Dept Psychol, Buffalo, NY 14260 USA. RP Schneider, JN (reprint author), LCC Int Univ, Dept Social Sci, Kretingos 36, LT-92307 Klaipeda, Lithuania. EM jns5@buffalo.edu FU Earthwatch Institute; the Animal Behavior Society's Cetacean Behavior and Conservation Award; Mark Diamond Research Fund [F-08-09]; Center for Undergraduate Research and Creative Activities (CURCA); National Science Foundation [0718004] FX This work was performed in part at the University at Buffalo's Center for Computational Research (CCR). This research was made possible with support from the Earthwatch Institute; the Animal Behavior Society's Cetacean Behavior and Conservation Award, and the Mark Diamond Research Fund (F-08-09) awarded to Jennifer Schneider, the Center for Undergraduate Research and Creative Activities (CURCA) awarded to David Lloyd; and the National Science Foundation Grant No. 0718004 awarded to Dr. Eduardo Mercado. Additional training and equipment was provided by members of Dr. Craig Woolsey's lab at Virginia Tech. We also want to thank Cynthia Cornelius for technical help, Gary House and Adam Lloyd for help with field work, and Brittany McIntosh, Dr. Micheal Dent, Dr. J. David Smith, and Dr. Carol Berman for help on earlier drafts of the manuscript. CR Aroyan JL, 2001, J ACOUST SOC AM, V110, P3305, DOI 10.1121/1.1401757 Au W. W. L., 1993, SONAR DOLPHINS Aytekin M, 2004, J ACOUST SOC AM, V116, P3594, DOI [10.1121/1.1811412, 10.1121/1.1811412]] Backman J., 1993, P ICASSP 93 MINN MN, VI, P125 Bailey C.A., 2013, J ACOUST SOC AM, V19 BAUER BB, 1966, J ACOUST SOC AM, V39, P25, DOI 10.1121/1.1909870 Bodson A, 2007, J ACOUST SOC AM, V122, P2263, DOI 10.1121/1.2775424 Bodson A, 2006, J ACOUST SOC AM, V120, P1550, DOI 10.1121/1.2221532 Branstetter BK, 2007, J ACOUST SOC AM, V121, P626, DOI 10.1121/1.2400664 Brown CH, 2005, SPR HDB AUD, V25, P124, DOI 10.1007/0-387-28863-5_5 Brown CP, 1998, IEEE T SPEECH AUDI P, V6, P476, DOI 10.1109/89.709673 Christensen-Dalsgaard J, 2005, SPR HDB AUD, V25, P67, DOI 10.1007/0-387-28863-5_4 Chung W, 2000, J ACOUST SOC AM, V107, P432, DOI 10.1121/1.428350 CLARK CW, 1980, SCIENCE, V207, P663, DOI 10.1126/science.207.4431.663 Clemins PJ, 2006, J ACOUST SOC AM, V120, P527, DOI 10.1121/1.2203596 Colbert DE, 2009, J EXP BIOL, V212, P2104, DOI 10.1242/jeb.029033 Colburn HS, 1996, AUDITORY COMPUTATION, P332 CRANFORD JL, 1979, J NEUROPHYSIOL, V42, P1518 CUMMINGS WC, 1971, FISH BULL NATL OC AT, V69, P525 CURREY JD, 1979, J BIOMECH, V12, P313, DOI 10.1016/0021-9290(79)90073-3 Darling JD, 2012, J ACOUST SOC AM, V132, P2955, DOI 10.1121/1.4757739 Datum MS, 1996, J ACOUST SOC AM, V100, P372, DOI 10.1121/1.415854 Van HEEL W. H. DUDOK, 1959, NATURE, V183, P1063 DYE RH, 1984, J ACOUST SOC AM, V75, P1593, DOI 10.1121/1.390868 Echteler SM, 1994, COMP HEARING MAMMALS, P134 Fay RR, 2005, SPR HDB AUD, V25, P36, DOI 10.1007/0-387-28863-5_3 FAY RR, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P229 Fay R.R., 2005, SOUND SOURCE LOCALIZ FEINSTEI.SH, 1973, J ACOUST SOC AM, V53, P393, DOI 10.1121/1.1913335 FENG AS, 1976, J NEUROPHYSIOL, V39, P871 Fenton MB, 2012, J EXP BIOL, V215, P2935, DOI 10.1242/jeb.073171 GRANTHAM DW, 1984, J ACOUST SOC AM, V75, P1191, DOI 10.1121/1.390769 GREENWOOD D, 1961, J ACOUST SOC AM, V33, P1344, DOI 10.1121/1.1908437 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HEFFNER RS, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P691 HEFFNER RS, 1992, J COMP PSYCHOL, V106, P107, DOI 10.1037//0735-7036.106.2.107 HEFFNER RS, 1982, J COMP PHYSIOL PSYCH, V96, P926, DOI 10.1037/0735-7036.96.6.926 Hemila S, 1999, HEARING RES, V133, P82, DOI 10.1016/S0378-5955(99)00055-6 Hemila S, 2001, HEARING RES, V151, P221, DOI 10.1016/S0378-5955(00)00232-X HERMANSKY H, 1990, J ACOUST SOC AM, V87, P1738, DOI 10.1121/1.399423 Hill A.J., 2012, P I AC 4, V34 HOLLIEN H, 1975, J ACOUST SOC AM, V57, P1488, DOI 10.1121/1.380589 HOUBEN D, 1979, J ACOUST SOC AM, V66, P1057, DOI 10.1121/1.383377 Houser Dorian S., 2001, Aquatic Mammals, V27, P82 IRVINE DRF, 1987, HEARING RES, V26, P267, DOI 10.1016/0378-5955(87)90063-3 Janko J., 1995, BINAURAL SPATIAL HEA, P557 Jensen FB, 2011, MOD ACOUST SIGN PROC, P1, DOI 10.1007/978-1-4419-8678-8 Jin C, 2000, J ACOUST SOC AM, V108, P1215, DOI 10.1121/1.1288411 Ketten Darlene R., 1997, Bioacoustics, V8, P103 Ketten D.R., 1994, IEEE P UNDERWATER AC, V1, P264 Ketten D.R., 2000, HEARING WHALES DOLPH, P330 Kim DO, 2010, JARO-J ASSOC RES OTO, V11, P541, DOI 10.1007/s10162-010-0221-8 King AJ, 2011, AUDITORY CORTEX, P329, DOI 10.1007/978-1-4419-0074-6_15 KLUMP GM, 1986, J COMP PHYSIOL A, V158, P383, DOI 10.1007/BF00603622 LePage EL, 2003, J ACOUST SOC AM, V114, P896, DOI 10.1121/1.1587150 Manley GA, 2011, HEARING RES, V273, P1, DOI 10.1016/j.heares.2011.01.005 MARTIN RL, 1987, HEARING RES, V30, P239, DOI 10.1016/0378-5955(87)90140-7 MASTERTO.B, 1969, J ACOUST SOC AM, V45, P966, DOI 10.1121/1.1911574 MCCORMICK J G, 1970, Journal of the Acoustical Society of America, V48, P1418, DOI 10.1121/1.1912302 Mercado E, 2008, BEHAV PROCESS, V77, P231, DOI 10.1016/j.beproc.2007.10.007 Mercado E, 1999, J ACOUST SOC AM, V106, P3004, DOI 10.1121/1.428120 Mercado III E., 1998, THESIS U HAWAII MILLS AW, 1958, J ACOUST SOC AM, V30, P237, DOI 10.1121/1.1909553 MOBLEY JR, 1988, BEHAV ECOL SOCIOBIOL, V23, P211, DOI 10.1007/BF00302944 Mohamed M.I.J., 2008, HUMAN SENSITIVITY IN, P47 Mooney TA, 2012, ADV MAR BIOL, V63, P197, DOI 10.1016/B978-0-12-394282-1.00004-1 MOORE BCJ, 1983, J ACOUST SOC AM, V74, P750, DOI 10.1121/1.389861 Nelson BS, 1998, ANIM BEHAV, V56, P467, DOI 10.1006/anbe.1998.0781 NETI C, 1992, J ACOUST SOC AM, V92, P3140, DOI 10.1121/1.404210 NORMAN DA, 1971, J ACOUST SOC AM, V50, P544, DOI 10.1121/1.1912669 Nummela S, 1999, HEARING RES, V133, P71, DOI 10.1016/S0378-5955(99)00054-4 O'Connell-Rodwell CE, 2007, PHYSIOLOGY, V22, P287, DOI 10.1152/physiol.00008.2007 Palmieri F., 1991, INT JOINT C NEUR NET, V1, P125 PARK TJ, 1991, J COMP PSYCHOL, V105, P125, DOI 10.1037/0735-7036.105.2.125 Pau HW, 2011, ACTA OTO-LARYNGOL, V131, P1279, DOI 10.3109/00016489.2011.607845 PAYNE K, 1985, Z TIERPSYCHOL, V68, P89 PAYNE R, 1971, ANN NY ACAD SCI, V188, P110, DOI 10.1111/j.1749-6632.1971.tb13093.x Phillips DP, 2012, NEUROSCI BIOBEHAV R, V36, P889, DOI 10.1016/j.neubiorev.2011.11.003 Populin LC, 1998, J NEUROSCI, V18, P2147 Ridgway S. H., 2001, Aquatic Mammals, V27, P267 ROSE JE, 1967, J NEUROPHYSIOL, V30, P769 Rowan D, 2008, INT J AUDIOL, V47, P404, DOI 10.1080/14992020802006055 Savel S, 2009, ACTA ACUST UNITED AC, V95, P128, DOI 10.3813/AAA.918134 SCHAUER C, 2000, ACOUST SPEECH SIG PR, P865 SHIPLEY C, 1991, J ACOUST SOC AM, V89, P902, DOI 10.1121/1.1894652 Shupak A, 2005, OTOL NEUROTOL, V26, P127, DOI 10.1097/00129492-200501000-00023 Simmons J.A., 1996, AUDITORY COMPUTATION, P401 Skottun BC, 2001, P NATL ACAD SCI USA, V98, P14050, DOI 10.1073/pnas.241513998 Stern R. M., 2006, COMPUTATIONAL AUDITO, P147 SUPIN AY, 1993, J ACOUST SOC AM, V93, P3490, DOI 10.1121/1.405679 THOMPSON PO, 1986, J ACOUST SOC AM, V80, P735, DOI 10.1121/1.393947 TYACK P, 1983, BEHAVIOUR, V83, P132, DOI 10.1163/156853982X00067 TYACK P, 1983, BEHAV ECOL SOCIOBIOL, V13, P49, DOI 10.1007/BF00295075 Van Wanrooij MM, 2007, J NEUROPHYSIOL, V97, P715, DOI 10.1152/jn.00260.2006 Van Wanrooij MM, 2004, J NEUROSCI, V24, P4163, DOI 10.1523/JNEUROSCI.0048-04.2004 Watkins WA, 1981, SCI REP WHALES RES, V33, P83 Welch TE, 2011, J ACOUST SOC AM, V130, P2293, DOI 10.1121/1.3628335 WEST CD, 1985, J ACOUST SOC AM, V77, P1091, DOI 10.1121/1.392227 Wilhelm H., 2011, ACTA OTO-LARYNGOL, V131, P1279 Yamato M, 2012, ANAT REC, V295, P991, DOI 10.1002/ar.22459 NR 100 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUN PY 2014 VL 312 BP 103 EP 113 DI 10.1016/j.heares.2014.03.011 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AH8BD UT WOS:000336358200011 PM 24727491 ER PT J AU Koelewijn, T Shinn-Cunningham, BG Zekveld, AA Kramer, SE AF Koelewijn, Thomas Shinn-Cunningham, Barbara G. Zekveld, Adriana A. Kramer, Sophia E. TI The pupil response is sensitive to divided attention during speech processing SO HEARING RESEARCH LA English DT Article ID LISTENING EFFORT; RECEPTION THRESHOLD; NORMAL-HEARING; NOISE; LOAD; INTELLIGIBILITY; DILATION; MEMORY; PERFORMANCE; SELECTION AB Dividing attention over two streams of speech strongly decreases performance compared to focusing on only one. How divided attention affects cognitive processing load as indexed with pupillometry during speech recognition has so far not been investigated. In 12 young adults the pupil response was recorded while they focused on either one or both of two sentences that were presented dichotically and masked by fluctuating noise across a range of signal-to-noise ratios. In line with previous studies, the performance decreases when processing two target sentences instead of one. Additionally, dividing attention to process two sentences caused larger pupil dilation and later peak pupil latency than processing only one. This suggests an effect of attention on cognitive processing load (pupil dilation) during speech processing in noise. (C) 2014 The Authors. Published by Elsevier B.V. C1 [Koelewijn, Thomas; Zekveld, Adriana A.; Kramer, Sophia E.] Vrije Univ Amsterdam, Med Ctr, Dept Otolaryngol Head & Neck Surg, Sect Audiol, NL-1007 MB Amsterdam, Netherlands. [Koelewijn, Thomas; Zekveld, Adriana A.; Kramer, Sophia E.] Vrije Univ Amsterdam, Med Ctr, EMGO Inst Hlth & Care Res, NL-1007 MB Amsterdam, Netherlands. [Shinn-Cunningham, Barbara G.] Boston Univ, Dept Biomed Engn, Ctr Computat Neurosci & Neural Technol, Boston, MA 02215 USA. [Zekveld, Adriana A.] Linkoping Univ, Linnaeus Ctr HEAD, Dept Behav Sci & Learning, Linkoping, Sweden. RP Koelewijn, T (reprint author), Vrije Univ Amsterdam, Med Ctr, Dept Otolaryngol Head & Neck Surg, POB 7057, NL-1007 MB Amsterdam, Netherlands. EM t.koelewijn@vumc.nl FU Netherlands Organization for Scientific Research (NWO) [451-12-039] FX This work is financed by The Netherlands Organization for Scientific Research (NWO) (Veni grant 451-12-039). CR AHERN S, 1979, SCIENCE, V205, P1289, DOI 10.1126/science.472746 Allen K, 2009, ATTEN PERCEPT PSYCHO, V71, P164, DOI 10.3758/APP.71.1.164 Aston-Jones G, 2005, ANNU REV NEUROSCI, V28, P403, DOI 10.1146/annurev.neuro.28.061604.135709 BEATTY J, 1982, PSYCHOL BULL, V91, P276, DOI 10.1037/0033-2909.91.2.276 Best V, 2010, EAR HEARING, V31, P213, DOI 10.1097/AUD.0b013e3181c34ba6 Best V, 2006, J ACOUST SOC AM, V120, P1506, DOI 10.1121/1.2234849 Broadbent D. E., 1958, PERCEPT COMMUN, P11, DOI 10.1037/10037-002 Bronkhorst AW, 2000, ACUSTICA, V86, P117 CHERRY EC, 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229 Desjardins JL, 2013, EAR HEARING, V34, P261, DOI 10.1097/AUD.0b013e31826d0ba4 FESTEN JM, 1990, J ACOUST SOC AM, V88, P1725, DOI 10.1121/1.400247 Gosselin P.A., 2011, INT J AUDIOL, V2011, P1 HOEKS B, 1993, BEHAV RES METH INSTR, V25, P16, DOI 10.3758/BF03204445 HYONA J, 1995, Q J EXP PSYCHOL-A, V48, P598 Ihlefeld A, 2008, J ACOUST SOC AM, V124, P2224, DOI 10.1121/1.2973185 Iriki A, 1996, NEUROSCI RES, V25, P173 KAHNEMAN D, 1966, SCIENCE, V154, P1583, DOI 10.1126/science.154.3756.1583 Koelewijn T., 2012, INT J OTOLARYNGOLOGY, DOI [10.1155/2012/865731, DOI 10.1155/2012/865731] Koelewijn T, 2012, EAR HEARING, V33, P291, DOI 10.1097/AUD.0b013e3182310019 Kramer SE, 2013, LANG COGNITIVE PROC, V28, P426, DOI 10.1080/01690965.2011.642267 Kramer SE, 1997, AUDIOLOGY, V36, P155 Lavie N, 2004, J EXP PSYCHOL GEN, V133, P339, DOI 10.1037/0096-3445.133.3.339 Lunner T, 2007, J AM ACAD AUDIOL, V18, P604, DOI 10.3766/jaaa.18.7.7 Mattys SL, 2012, LANG COGNITIVE PROC, V27, P953, DOI 10.1080/01690965.2012.705006 Meer E. V. D., 2010, PSYCHOPHYSIOLOGY, V47, P158 Ng EHN, 2013, INT J AUDIOL, V52, P433, DOI 10.3109/14992027.2013.776181 Picou EM, 2011, J SPEECH LANG HEAR R, V54, P1416, DOI 10.1044/1092-4388(2011/10-0154) Ronnberg J., 2013, FRONT SYST NEUROSCI, V7, P1 Rudner M, 2011, J AM ACAD AUDIOL, V22, P156, DOI 10.3766/jaaa.22.3.4 Ruggles D, 2011, P NATL ACAD SCI USA, V108, P15516, DOI 10.1073/pnas.1108912108 Versfeld NJ, 2000, J ACOUST SOC AM, V107, P1671, DOI 10.1121/1.428451 Zekveld AA, 2011, EAR HEARING, V32, P498, DOI 10.1097/AUD.0b013e31820512bb Zekveld AA, 2010, EAR HEARING, V31, P480, DOI 10.1097/AUD.0b013e3181d4f251 NR 33 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUN PY 2014 VL 312 BP 114 EP 120 DI 10.1016/j.heares.2014.03.010 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AH8BD UT WOS:000336358200012 PM 24709275 ER PT J AU Altmann, CF Terada, S Kashino, M Goto, K Mima, T Fukuyama, H Furukawa, S AF Altmann, Christian F. Terada, Satoshi Kashino, Makio Goto, Kazuhiro Mima, Tatsuya Fukuyama, Hidenao Furukawa, Shigeto TI Independent or integrated processing of interaural time and level differences in human auditory cortex? SO HEARING RESEARCH LA English DT Article ID HUMAN BRAIN-STEM; INTENSITY DIFFERENCES; SOUND LOCALIZATION; LATENCY DIFFERENCES; RELATIVE INFLUENCE; SUPERIOR OLIVE; SENSORY MEMORY; MIDDLE-LATENCY; SINE TONES; LATERALIZATION AB Sound localization in the horizontal plane is mainly determined by interaural time differences (ITD) and interaural level differences (ILD). Both cues result in an estimate of sound source location and in many real-life situations these two cues are roughly congruent. When stimulating listeners with headphones it is possible to counterbalance the two cues, so called ITD/ILD trading. This phenomenon speaks for integrated ITD/ILD processing at the behavioral level. However, it is unclear at what stages of the auditory processing stream ITD and ILD cues are integrated to provide a unified percept of sound lateralization. Therefore, we set out to test with human electroencephalography for integrated versus independent ITD/ILD processing at the level of preattentive cortical processing by measuring the mismatch negativity (MMN) to changes in sound lateralization. We presented a series of diotic standards (perceived at a midline position) that were interrupted by deviants that entailed either a change in a) ITD only, b) ILD only, c) congruent ITD and ILD, or d) counterbalanced ITD/ILD (ITD/ILD trading). The sound stimuli were either i) pure tones with a frequency of 500 Hz, or ii) amplitude modulated tones with a carrier frequency of 4000 Hz and a modulation frequency of 125 Hz. We observed significant MMN for the ITD/ILD traded deviants in case of the 500 Hz pure tones, and for the 4000 Hz amplitude-modulated tone. This speaks for independent processing of ITD and ILD at the level of the MMN within auditory cortex. However, the combined ITD/ILD cues elicited smaller MMN than the sum of the MMN induced in response to ITD and ILD cues presented in isolation for 500 Hz, but not 4000 Hz, suggesting independent processing for the higher frequency only. Thus, the two markers for independent processing additivity and cue-conflict resulted in contradicting conclusions with a dissociation between the lower (500 Hz) and higher frequency (4000 Hz) bands. (C) 2014 Elsevier B.V. All rights reserved. C1 [Altmann, Christian F.; Goto, Kazuhiro; Mima, Tatsuya; Fukuyama, Hidenao] Kyoto Univ, Grad Sch Med, Human Brain Res Ctr, Kyoto 6068507, Japan. [Altmann, Christian F.; Terada, Satoshi; Goto, Kazuhiro] Kyoto Univ, Career Path Promot Unit Young Life Scientists, Kyoto 6068501, Japan. [Kashino, Makio; Furukawa, Shigeto] NTT Corp, NTT Commun Sci Labs, Atsugi, Kanagawa 2430198, Japan. [Goto, Kazuhiro] Sagami Womens Univ, Fac Human Soc, Dept Psychol, Sagamihara, Kanagawa 2520383, Japan. RP Altmann, CF (reprint author), Kyoto Univ, Grad Sch Med, Human Brain Res Ctr, Sakyo Ku, 54 Shogoin Kawaracho, Kyoto 6068507, Japan. EM altmann@cp.kyoto-u.ac.jp FU Special Coordination Fund for Promoting Science and Technology; Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan; Japan Society for the Promotion of Science [23730701, 25870333, 2450226, 24300192] FX This study was partly supported by the Special Coordination Fund for Promoting Science and Technology to CFA from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, Grants-in-Aid for Young Scientists (B) 23730701 and 25870333 to CFA from the Japan Society for the Promotion of Science, and Grants-in-Aid for Scientific Research (B) 24300192 and for Exploratory Research (2450226) to TM from the Japan Society for the Promotion of Science. CR Bernstein LR, 2001, J NEUROSCI RES, V66, P1035, DOI 10.1002/jnr.10103 Bernstein S., 2002, J ACOUST SOC AM, V112, P1026 Brainard DH, 1997, SPATIAL VISION, V10, P433, DOI 10.1163/156856897X00357 Brughera A, 2013, J ACOUST SOC AM, V133, P2839, DOI 10.1121/1.4795778 Caclin A, 2006, J COGNITIVE NEUROSCI, V18, P1959, DOI 10.1162/jocn.2006.18.12.1959 Deouell LY, 2006, EUR J NEUROSCI, V24, P1488, DOI 10.1111/j.1460-9568.2006.05025.x DOMNITZ RH, 1977, J ACOUST SOC AM, V61, P1586, DOI 10.1121/1.381472 Edmonds BA, 2014, JARO-J ASSOC RES OTO, V15, P103, DOI 10.1007/s10162-013-0421-0 Furukawa S, 2006, HEARING RES, V212, P48, DOI 10.1016/j.heares.2005.10.009 Furukawa S, 2008, J ACOUST SOC AM, V123, P1602, DOI 10.1121/1.2835226 GAIK W, 1993, J ACOUST SOC AM, V94, P98, DOI 10.1121/1.406947 Green D. M., 1974, SIGNAL DETECTION THE Grothe B, 2010, PHYSIOL REV, V90, P983, DOI 10.1152/physrev.00026.2009 HAFTER ER, 1968, J ACOUST SOC AM, V44, P563, DOI 10.1121/1.1911121 HAFTER ER, 1972, J ACOUST SOC AM, V51, P1852, DOI 10.1121/1.1913044 Ihlefeld A, 2011, J ACOUST SOC AM, V130, P324, DOI 10.1121/1.3596476 Irvine D. R. F., 1992, MAMMALIAN AUDITORY P, P153 Johnson BW, 2010, NEUROPSYCHOLOGIA, V48, P2610, DOI 10.1016/j.neuropsychologia.2010.05.008 KAERNBACH C, 1991, PERCEPT PSYCHOPHYS, V49, P227, DOI 10.3758/BF03214307 Kiesel A, 2008, PSYCHOPHYSIOLOGY, V45, P250, DOI 10.1111/j.1469-8986.2007.00618.x King AJ, 2001, TRENDS COGN SCI, V5, P261, DOI 10.1016/S1364-6613(00)01660-0 Kleiner M., 2007, PERCEPTION, V36 Lang AG, 2008, J ACOUST SOC AM, V124, P3120, DOI 10.1121/1.2981041 Lang AG, 2009, J ACOUST SOC AM, V126, P2536, DOI 10.1121/1.3212927 Magezi DA, 2010, J NEUROPHYSIOL, V104, P1997, DOI 10.1152/jn.00424.2009 Maris E, 2004, PSYCHOPHYSIOLOGY, V41, P142, DOI 10.1111/j.1469-8986.2003.00139.x Maris E, 2007, J NEUROSCI METH, V164, P177, DOI 10.1016/j.jneumeth.2007.03.024 MCEVOY L, 1994, HEARING RES, V78, P249, DOI 10.1016/0378-5955(94)90031-0 MCGEE T, 1991, BRAIN RES, V544, P211, DOI 10.1016/0006-8993(91)90056-2 Melcher JR, 1996, HEARING RES, V93, P52, DOI 10.1016/0378-5955(95)00200-6 Miller J, 1998, PSYCHOPHYSIOLOGY, V35, P99, DOI 10.1111/1469-8986.3510099 Parkkonen L, 2009, HUM BRAIN MAPP, V30, P1772, DOI 10.1002/hbm.20788 Pelli DG, 1997, SPATIAL VISION, V10, P437, DOI 10.1163/156856897X00366 Pratt H, 1997, HEARING RES, V108, P1, DOI 10.1016/S0378-5955(97)00033-6 Rakerd B, 2010, J ACOUST SOC AM, V128, P3052, DOI 10.1121/1.3493447 Riedel H, 2002, HEARING RES, V163, P12, DOI 10.1016/S0378-5955(01)00362-8 RUOTOLO BR, 1979, J ACOUST SOC AM, V66, P1733, DOI 10.1121/1.383646 SAYERS BM, 1964, J ACOUST SOC AM, V36, P923, DOI 10.1121/1.1919121 SCHERG M, 1985, ELECTROEN CLIN NEURO, V62, P290, DOI 10.1016/0168-5597(85)90006-1 Schroger E, 1996, HEARING RES, V96, P191, DOI 10.1016/0378-5955(96)00066-4 Shaxby J.H., 1932, MED RES COUNC BRIT S, V166, P1 SPITZER MW, 1995, J NEUROPHYSIOL, V73, P1668 Stecker GC, 2010, HEARING RES, V268, P202, DOI 10.1016/j.heares.2010.06.002 Stevens SS, 1936, AM J PSYCHOL, V48, P297, DOI 10.2307/1415748 Strutt J. W, 1907, PHILOS MAG, V13, P214, DOI 10.1080/14786440709463595 Tardif E, 2006, BRAIN RES, V1092, P161, DOI 10.1016/j.brainres.2006.03.095 Tollin DJ, 2003, NEUROSCIENTIST, V9, P127, DOI 10.1177/1073858403252228 Ulrich R, 2001, PSYCHOPHYSIOLOGY, V38, P816, DOI 10.1017/S0048577201000610 Ungan P, 2001, CLIN NEUROPHYSIOL, V112, P485, DOI 10.1016/S1388-2457(00)00550-2 vandePar S, 1997, J ACOUST SOC AM, V101, P1671, DOI 10.1121/1.418151 WHITWORTH R, 1961, J ACOUST SOC AM, V33, P925, DOI 10.1121/1.1908849 Woldorff MG, 1999, HUM BRAIN MAPP, V7, P49, DOI 10.1002/(SICI)1097-0193(1999)7:1<49::AID-HBM5>3.0.CO;2-J Yin T.C., 2010, OXFORD HDB AUDITORY, P271 YOUNG LL, 1977, J ACOUST SOC AM, V61, P607, DOI 10.1121/1.381307 NR 54 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUN PY 2014 VL 312 BP 121 EP 127 DI 10.1016/j.heares.2014.03.009 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AH8BD UT WOS:000336358200013 PM 24709274 ER PT J AU Christison-Lagay, KL Bennur, S Blackwell, J Lee, JH Schroeder, T Cohen, YE AF Christison-Lagay, Kate L. Bennur, Sharath Blackwell, Jennifer Lee, Jung H. Schroeder, Tim Cohen, Yale E. TI Natural variability in species-specific vocalizations constrains behavior and neural activity SO HEARING RESEARCH LA English DT Article ID VENTROLATERAL PREFRONTAL CORTEX; MACACA-MULATTA VOCALIZATIONS; PRIMATE AUDITORY-CORTEX; METRIC-SPACE ANALYSIS; RHESUS-MONKEY; CONSPECIFIC VOCALIZATIONS; FUNCTIONAL SPECIALIZATION; COMMUNICATION SOUNDS; ACOUSTIC FEATURES; SPEECH CATEGORIES AB A listener's capacity to discriminate between sounds is related to the amount of acoustic variability that exists between these sounds. However, a full understanding of how this natural variability impacts neural activity and behavior is lacking. Here, we tested monkeys' ability to discriminate between different utterances of vocalizations from the same acoustic class (i.e., coos and grunts), while neural activity was simultaneously recorded in the anterolateral belt region (AL) of the auditory cortex, a brain region that is a part of a pathway that mediates auditory perception. Monkeys could discriminate between coos better than they could discriminate between grunts. We also found AL activity was more informative about different coos than different grunts. This difference could be attributed, in part, to our finding that coos had more acoustic variability than grunts. Thus, intrinsic acoustic variability constrained the discriminability of AL spike trains and the ability of rhesus monkeys to discriminate between vocalizations. (C) 2014 Elsevier B.V. All rights reserved. C1 [Christison-Lagay, Kate L.; Blackwell, Jennifer] Univ Penn, Neurosci Grad Grp, Philadelphia, PA 19104 USA. [Bennur, Sharath; Lee, Jung H.; Schroeder, Tim; Cohen, Yale E.] Univ Penn, Dept Otorhinolaryngol, Philadelphia, PA 19104 USA. [Cohen, Yale E.] Univ Penn, Philadelphia, PA 19104 USA. RP Cohen, YE (reprint author), 3400 Spruce St 5 Ravdin, Philadelphia, PA 19104 USA. EM ycohen@mail.med.upenn.edu RI Schroder, Tim/E-6196-2013 OI Schroder, Tim/0000-0002-3621-5957 FU NIDCD-NIH [R01-DC009224]; Boucai Hearing Restoration Fund FX We thank Robert Seyfarth, Joji Tsunada, Marc Schmidt, James Saunders, Maria Geffen, and Heather Hersh for helpful comments on the preparation of this manuscript. We also thank Harry Shirley for outstanding veterinary support. KLCL, SB, and YEC were supported by grants from NIDCD-NIH (R01-DC009224) and from the Boucai Hearing Restoration Fund. CR Averbeck BB, 2006, J NEUROSCI, V26, P11023, DOI 10.1523/JNEUROSCI.3466-06.2006 Averbeck BB, 2004, J NEUROPHYSIOL, V91, P2897, DOI 10.1152/jn.01103.2003 Bao S, 2013, NEUROSCIENCE, V248, P30, DOI 10.1016/j.neuroscience.2013.05.056 Bathellier B, 2012, NEURON, V76, P435, DOI 10.1016/j.neuron.2012.07.008 Bennur S, 2013, HEARING RES, V305, P3, DOI 10.1016/j.heares.2013.08.008 Bizley JK, 2013, NAT REV NEUROSCI, V14, P693, DOI 10.1038/nrn3565 Boersma P., 2001, GLOT INT, V5, P341 Boersma P., 1993, P I PHONETIC SCI, V17, P97 Chakladar S, 2008, J NEUROSCI METH, V170, P45, DOI 10.1016/j.jneumeth.2007.12.023 Cohen YE, 2007, J NEUROPHYSIOL, V97, P1470, DOI 10.1152/jn.00769.2006 Cohen YE, 2004, J NEUROSCI, V24, P11307, DOI 10.1523/JNEUROSCI.3935-04.2004 Cohen YE, 2009, P NATL ACAD SCI USA, V106, P20045, DOI 10.1073/pnas.0907248106 DiCarlo JJ, 2012, NEURON, V73, P415, DOI 10.1016/j.neuron.2012.01.010 DiMattina C, 2006, J NEUROPHYSIOL, V95, P1244, DOI 10.1152/jn.00818.2005 Egnor SER, 2004, TRENDS NEUROSCI, V27, P649, DOI 10.1016/j.tins.2004.08.009 Ellis D., 2003, DYNAMIC TIME WARP DT Engineer CT, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0078607 Fitch WT, 2006, J ACOUST SOC AM, V120, P2132, DOI 10.1121/1.2258499 Freeman J, 2013, NAT NEUROSCI, V16, P974, DOI 10.1038/nn.3402 Gaucher Q, 2013, HEARING RES, V305, P102, DOI 10.1016/j.heares.2013.03.011 Ghazanfar AA, 2007, CURR BIOL, V17, P425, DOI 10.1016/j.cub.2007.01.029 Ghazanfar AA, 2004, NAT REV NEUROSCI, V5, P603, DOI 10.1038/nrn1473 Gifford GW, 2005, J COGNITIVE NEUROSCI, V17, P1471, DOI 10.1162/0898929054985464 Green D. M., 1966, SIGNAL DETECTION THE Griffiths TD, 2004, TRENDS NEUROSCI, V27, P181, DOI 10.1016/j.tins.2004.02.005 Griffiths TD, 2004, NAT REV NEUROSCI, V5, P887, DOI 10.1038/nrn1538 Hauser M.D., 1997, EVOLUTION COMMUNICAT HAUSER MD, 1991, ETHOLOGY, V89, P29 Hauser MD, 1998, ANIM BEHAV, V55, P1647, DOI 10.1006/anbe.1997.0712 Kikuchi Y, 2010, J NEUROSCI, V30, P13021, DOI 10.1523/JNEUROSCI.2267-10.2010 King AJ, 2009, NAT NEUROSCI, V12, P698, DOI 10.1038/nn.2308 Klein DJ, 2000, J COMPUT NEUROSCI, V9, P85, DOI 10.1023/A:1008990412183 KUHL PK, 1991, PERCEPT PSYCHOPHYS, V50, P93, DOI 10.3758/BF03212211 Kusmierek P, 2009, J NEUROPHYSIOL, V102, P1606, DOI 10.1152/jn.00167.2009 Kusmierek P, 2012, J NEUROPHYSIOL, V107, P1123, DOI 10.1152/jn.00793.2011 LePrell CG, 1997, J COMP PSYCHOL, V111, P261 Le Prell CG, 2000, J EXP PSYCHOL ANIM B, V26, P261, DOI 10.1037//0097-7403.26.3.261 Le Prell CG, 2002, ANIM BEHAV, V63, P47, DOI 10.1006/anbe.2001.1888 Levene H., 1960, CONTRIBUTIONS PROBAB, P278 Liu RC, 2007, PLOS BIOL, V5, P1426, DOI 10.1371/journal.pbio.0050173 Miller EK, 2001, ANNU REV NEUROSCI, V24, P167, DOI 10.1146/annurev.neuro.24.1.167 Miller LM, 2002, J NEUROPHYSIOL, V87, P516 Ohl FW, 2001, NATURE, V412, P733, DOI 10.1038/35089076 Owren MJ, 2003, J COMP PSYCHOL, V117, P380, DOI 10.1037/0735-7036.117.4.380 OWREN MJ, 1992, BEHAVIOUR, V120, P218, DOI 10.1163/156853992X00615 Perrodin C, 2011, CURR BIOL, V21, P1408, DOI 10.1016/j.cub.2011.07.028 Petkov CI, 2008, NAT NEUROSCI, V11, P367, DOI 10.1038/nn2043 Plakke B, 2013, HEARING RES, V305, P135, DOI 10.1016/j.heares.2013.07.011 Plakke B, 2013, NEUROSCIENCE, V244, P62, DOI 10.1016/j.neuroscience.2013.04.002 Plakke B., 2012, 878102012 SOC NEUR Poremba A, 2013, HEARING RES, V305, P31, DOI 10.1016/j.heares.2013.06.005 Poremba A, 2004, NATURE, V427, P448, DOI 10.1038/nature02268 Quiroga RQ, 2004, NEURAL COMPUT, V16, P1661, DOI 10.1162/089976604774201631 Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800 Rauschecker JP, 2009, NAT NEUROSCI, V12, P718, DOI 10.1038/nn.2331 Rauschecker J.P., 2012, FRONT EVOL NEUROSCI, V4 Rendall D, 1998, J ACOUST SOC AM, V103, P602, DOI 10.1121/1.421104 Romanski Lizabeth M., 2004, Cognitive Affective & Behavioral Neuroscience, V4, P421, DOI 10.3758/CABN.4.4.421 Romanski LM, 2005, J NEUROPHYSIOL, V93, P734, DOI 10.1152/jn.00675.2004 Romanski LM, 2009, ANNU REV NEUROSCI, V32, P315, DOI 10.1146/annurev.neuro.051508.135431 Romanski LM, 2002, NAT NEUROSCI, V5, P15, DOI 10.1038/nn781 Russ BE, 2008, J NEUROPHYSIOL, V99, P87, DOI 10.1152/jn.01069.2007 Russ BE, 2008, CURR BIOL, V18, P1483, DOI 10.1016/j.cub.2008.08.054 Selezneva E, 2006, CURR BIOL, V16, P2428, DOI 10.1016/j.cub.2006.10.027 Singh NC, 2003, J ACOUST SOC AM, V114, P3394, DOI 10.1121/1.1624067 Tchernichovski O, 2000, ANIM BEHAV, V59, P1167, DOI 10.1006/anbe.1999.1416 Theunissen FE, 2004, ANN NY ACAD SCI, V1016, P187, DOI 10.1196/annals.1298.020 Tian B, 2001, SCIENCE, V292, P290, DOI 10.1126/science.1058911 Tsunada J, 2011, J NEUROPHYSIOL, V105, P2634, DOI 10.1152/jn.00037.2011 Tsunada J, 2012, J PHYSIOL-LONDON, V590, P3129, DOI 10.1113/jphysiol.2012.232892 Tsunada J., 2013, ANN M SOC NEUR SAN D Turetsky R., 2003, 4 INT S MUS INF RETR, P135 Victor JD, 1997, NETWORK-COMP NEURAL, V8, P127, DOI 10.1088/0954-898X/8/2/003 Victor JD, 1996, J NEUROPHYSIOL, V76, P1310 Woolley SMN, 2005, NAT NEUROSCI, V8, P1371, DOI 10.1038/nn1536 Zar JH, 1996, BIOSTATISTICAL ANAL ZOLOTH SR, 1979, SCIENCE, V204, P870, DOI 10.1126/science.108805 NR 77 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUN PY 2014 VL 312 BP 128 EP 142 DI 10.1016/j.heares.2014.03.007 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AH8BD UT WOS:000336358200014 PM 24721001 ER PT J AU Walsh, KP Pasanen, EG McFadden, D AF Walsh, Kyle P. Pasanen, Edward G. McFadden, Dennis TI Selective attention reduces physiological noise in the external ear canals of humans. I: Auditory attention SO HEARING RESEARCH LA English DT Article ID EVOKED OTOACOUSTIC EMISSIONS; ACTIVE MICROMECHANICAL PROPERTIES; STIMULATED ACOUSTIC EMISSIONS; VISUAL-ATTENTION; BROWNIAN-MOTION; HAIR-CELLS; GUINEA-PIG; OLIVOCOCHLEAR EFFERENTS; HUMAN COCHLEA; MIDDLE-EAR AB In this study, a nonlinear version of the stimulus-frequency OAE (SFOAE), called the nSFOAE, was used to measure cochlear responses from human subjects while they simultaneously performed behavioral tasks requiring, or not requiring, selective auditory attention. Appended to each stimulus presentation, and included in the calculation of each nSFOAE response, was a 30-ms silent period that was used to estimate the level of the inherent physiological noise in the ear canals of our subjects during each behavioral condition. Physiological-noise magnitudes were higher (noisier) for all subjects in the inattention task, and lower (quieter) in the selective auditory-attention tasks. These noise measures initially were made at the frequency of our nSFOAE probe tone (4.0 kHz), but the same attention effects also were observed across a wide range of frequencies. We attribute the observed differences in physiological-noise magnitudes between the inattention and attention conditions to different levels of efferent activation associated with the differing attentional demands of the behavioral tasks. One hypothesis is that when the attentional demand is relatively great, efferent activation is relatively high, and a decrease in the gain of the cochlear amplifier leads to lower-amplitude cochlear activity, and thus a smaller measure of noise from the ear. (C) 2014 Elsevier B.V. All rights reserved. C1 Univ Texas Austin, Dept Psychol, Austin, TX 78712 USA. Univ Texas Austin, Ctr Perceptual Syst, Austin, TX 78712 USA. RP Walsh, KP (reprint author), Univ Minnesota, Dept Psychol, 75 E River Rd, Minneapolis, MN 55455 USA. EM kpwalsh@umn.edu FU National Institute on Deafness (NIDCD) [RO1 DC000153] FX This study was done as part of the requirements for a doctoral degree from The University of Texas at Austin, by author KPW, who now is located at the University of Minnesota. The work was supported by a research grant awarded to author DM by the National Institute on Deafness and other Communication Disorders (NIDCD; RO1 DC000153). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIDCD or the National Institutes of Health. D.O. Kim and J.G. Guinan provided helpful discussion about these results, and two anonymous reviewers provided thoughtful comments. CR AVAN P, 1992, HEARING RES, V57, P269, DOI 10.1016/0378-5955(92)90156-H Backus BC, 2006, J ACOUST SOC AM, V119, P2889, DOI 10.1121/1.2169918 Bacon S. P., 2004, COMPRESSION COCHLEA BADDELEY A, 1992, SCIENCE, V255, P556, DOI 10.1126/science.1736359 Breneman KD, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005201 BROWN MC, 1983, SCIENCE, V222, P69, DOI 10.1126/science.6623058 Brown MC, 2011, SPRINGER HANDB AUDIT, V38, P17, DOI 10.1007/978-1-4419-7070-1_2 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Cherry C., 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229 COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155 Cooper NP, 2003, J PHYSIOL-LONDON, V548, P307, DOI 10.1113/jphysiol.2003.039081 Cooper NP, 2006, J PHYSIOL-LONDON, V576, P49, DOI 10.1113/jphysiol.2006.114991 COREY DP, 1983, J NEUROSCI, V3, P962 DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 De Boer J, 2007, HEARING RES, V233, P117, DOI 10.1016/j.heares.2007.08.002 DEVRIES HL, 1948, PHYSICA, V14, P48, DOI 10.1016/0031-8914(48)90060-3 DIEMONT B, 1988, INT J BIOMED COMPUT, V23, P161, DOI 10.1016/0020-7101(88)90011-6 FERBERVIART C, 1995, PHYSIOL BEHAV, V57, P1075, DOI 10.1016/0031-9384(95)00012-8 Fritz JB, 2007, CURR OPIN NEUROBIOL, V17, P437, DOI 10.1016/j.conb.2007.07.011 FROEHLICH P, 1990, BRAIN RES, V508, P286, DOI 10.1016/0006-8993(90)90408-4 FROEHLICH P, 1993, PHYSIOL BEHAV, V53, P679, DOI 10.1016/0031-9384(93)90173-D Gallun FJ, 2007, PERCEPT PSYCHOPHYS, V69, P757, DOI 10.3758/BF03193777 GAVRIELY N, 1981, J APPL PHYSIOL, V50, P307 GIARD MH, 1994, BRAIN RES, V633, P353, DOI 10.1016/0006-8993(94)91561-X Goodman SS, 2006, JARO-J ASSOC RES OTO, V7, P125, DOI 10.1007/s10162-006-0028-9 Guinan JJ, 2006, EAR HEARING, V27, P589, DOI 10.1097/01.aud.0000240507.83072.e7 Guinan JJ, 2003, JARO-J ASSOC RES OTO, V4, P521, DOI 10.1007/s10162-002-3037-3 Guinan JJ, 2011, SPRINGER HANDB AUDIT, V38, P39, DOI 10.1007/978-1-4419-7070-1_3 Hafter E. R., 1998, PSYCHOPHYSICAL PHYSL, P228 Harkrider AW, 2009, J AM ACAD AUDIOL, V20, P208, DOI 10.3766/jaaa.20.3.7 HARRIS GG, 1968, J ACOUST SOC AM, V44, P176, DOI 10.1121/1.1911052 HERNANDEZPEON R, 1956, SCIENCE, V123, P331, DOI 10.1126/science.123.3191.331 Jaramillo F, 1998, NAT NEUROSCI, V1, P384, DOI 10.1038/1597 Keefe DH, 1998, J ACOUST SOC AM, V103, P3489, DOI 10.1121/1.423057 KEMP DT, 1980, HEARING RES, V2, P533, DOI 10.1016/0378-5955(80)90091-X KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309 Lilaonitkul W, 2009, JARO-J ASSOC RES OTO, V10, P459, DOI 10.1007/s10162-009-0163-1 LUKAS JH, 1980, PSYCHOPHYSIOLOGY, V17, P444, DOI 10.1111/j.1469-8986.1980.tb00181.x Maison S, 2001, PSYCHOPHYSIOLOGY, V38, P35, DOI 10.1017/S0048577201990109 MERIC C, 1994, NEUROSCI BIOBEHAV R, V18, P215, DOI 10.1016/0149-7634(94)90026-4 MERIC C, 1992, INT J PSYCHOPHYSIOL, V12, P233, DOI 10.1016/0167-8760(92)90061-F MERIC C, 1994, INT J PSYCHOPHYSIOL, V17, P281, DOI 10.1016/0167-8760(94)90070-1 Mitchell JF, 2009, NEURON, V63, P879, DOI 10.1016/j.neuron.2009.09.013 Mulders WHA, 2000, HEARING RES, V149, P11, DOI 10.1016/S0378-5955(00)00157-X Mulders WHAM, 2000, HEARING RES, V144, P65, DOI 10.1016/S0378-5955(00)00046-0 Murugasu E, 1996, J NEUROSCI, V16, P325 Nutall A.L., 1997, HEARING RES, V114, P35 OSTER G, 1980, BIOPHYS J, V30, P119 Pasanen EG, 2000, J ACOUST SOC AM, V108, P1105, DOI 10.1121/1.1287026 PICTON TW, 1974, ELECTROEN CLIN NEURO, V36, P191, DOI 10.1016/0013-4694(74)90156-4 PUEL JL, 1988, BRAIN RES, V447, P380, DOI 10.1016/0006-8993(88)91144-4 Puria S, 2003, J ACOUST SOC AM, V113, P2773, DOI 10.1121/1.1564018 Rabbitt RD, 2009, PLOS COMPUT BIOL, V5, DOI 10.1371/journal.pcbi.1000444 RASMUSSEN GL, 1946, J COMP NEUROL, V84, P141, DOI 10.1002/cne.900840204 RASMUSSEN GL, 1953, J COMP NEUROL, V99, P61, DOI 10.1002/cne.900990105 REN T, 1995, ACTA OTO-LARYNGOL, V115, P725, DOI 10.3109/00016489509139393 Shera CA, 2003, J ACOUST SOC AM, V114, P244, DOI 10.1121/1.1575750 SRIDHAR TS, 1995, J NEUROSCI, V15, P3667 Svrcek-Seiler WA, 1998, J THEOR BIOL, V193, P623, DOI 10.1006/jtbi.1998.0729 TREISMAN AM, 1969, PSYCHOL REV, V76, P282, DOI 10.1037/h0027242 VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724 Walsh KP, 2010, J ACOUST SOC AM, V127, P955, DOI 10.1121/1.3279832 Walsh KP, 2014, HEARING RES, V312, P160, DOI 10.1016/j.heares.2014.03.013 Walsh KR, 2010, HEARING RES, V268, P22, DOI 10.1016/j.heares.2010.04.007 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P950, DOI 10.1121/1.1912234 WILSON JP, 1980, HEARING RES, V2, P233, DOI 10.1016/0378-5955(80)90060-X WIT HP, 1979, J ACOUST SOC AM, V66, P911, DOI 10.1121/1.383202 Worden F. G., 1973, HABITUATION PHYSL SU, P109 NR 70 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUN PY 2014 VL 312 BP 143 EP 159 DI 10.1016/j.heares.2014.03.012 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AH8BD UT WOS:000336358200015 PM 24732069 ER PT J AU Walsh, KP Pasanen, EG McFadden, D AF Walsh, Kyle P. Pasanen, Edward G. McFadden, Dennis TI Selective attention reduces physiological noise in the external ear canals of humans. II: Visual attention SO HEARING RESEARCH LA English DT Article ID EVOKED OTOACOUSTIC EMISSIONS; ACTIVE MICROMECHANICAL PROPERTIES; TASK; COCHLEA AB Human subjects performed in several behavioral conditions requiring, or not requiring, selective attention to visual stimuli. Specifically, the attentional task was to recognize strings of digits that had been presented visually. A nonlinear version of the stimulus-frequency otoacoustic emission (SFOAE), called the nSFOAE, was collected during the visual presentation of the digits. The segment of the physiological response discussed here occurred during brief silent periods immediately following the SFOAE-evoking stimuli. For all subjects tested, the physiological-noise magnitudes were substantially weaker (less noisy) during the tasks requiring the most visual attention. Effect sizes for the differences were >2.0. Our interpretation is that cortico-olivo influences adjusted the magnitude of efferent activation during the SFOAE-evoking stimulation depending upon the attention task in effect, and then that magnitude of efferent activation persisted throughout the silent period where it also modulated the physiological noise present. Because the results were highly similar to those obtained when the behavioral conditions involved auditory attention, similar mechanisms appear to operate both across modalities and within modalities. Supplementary measurements revealed that the efferent activation was spectrally global, as it was for auditory attention. (C) 2014 Elsevier B.V. All rights reserved. C1 [Walsh, Kyle P.; Pasanen, Edward G.; McFadden, Dennis] Univ Texas Austin, Ctr Perceptual Syst, Dept Psychol, Austin, TX 78712 USA. RP Walsh, KP (reprint author), Univ Minnesota, Ctr Cognit Sci, Dept Psychol, 75 E River Rd, Minneapolis, MN 55455 USA. EM kpwalsh@umn.edu FU National Institute on Deafness and other Communication Disorders (NIDCD) [RO1 DC000153] FX This study was done as part of the requirements for a doctoral degree from The University of Texas at Austin, by author KPW, who now is located at the University of Minnesota. This work was supported by a research grant awarded to author DM by the National Institute on Deafness and other Communication Disorders (NIDCD; RO1 DC000153). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIDCD or the National Institutes of Health. CR AVAN P, 1992, HEARING RES, V57, P269, DOI 10.1016/0378-5955(92)90156-H COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155 Cooper NP, 2006, J PHYSIOL-LONDON, V576, P49, DOI 10.1113/jphysiol.2006.114991 De Boer J, 2007, HEARING RES, V233, P117, DOI 10.1016/j.heares.2007.08.002 FERBERVIART C, 1995, PHYSIOL BEHAV, V57, P1075, DOI 10.1016/0031-9384(95)00012-8 FROEHLICH P, 1990, BRAIN RES, V508, P286, DOI 10.1016/0006-8993(90)90408-4 FROEHLICH P, 1993, PHYSIOL BEHAV, V53, P679, DOI 10.1016/0031-9384(93)90173-D HERNANDEZPEON R, 1956, SCIENCE, V123, P331, DOI 10.1126/science.123.3191.331 Keefe DH, 1998, J ACOUST SOC AM, V103, P3489, DOI 10.1121/1.423057 MERIC C, 1992, INT J PSYCHOPHYSIOL, V12, P233, DOI 10.1016/0167-8760(92)90061-F MERIC C, 1994, INT J PSYCHOPHYSIOL, V17, P281, DOI 10.1016/0167-8760(94)90070-1 PUEL JL, 1988, BRAIN RES, V447, P380, DOI 10.1016/0006-8993(88)91144-4 Walsh KP, 2010, J ACOUST SOC AM, V127, P955, DOI 10.1121/1.3279832 Walsh KP, 2014, HEARING RES, V312, P143, DOI 10.1016/j.heares.2014.03.012 Walsh KR, 2010, HEARING RES, V268, P22, DOI 10.1016/j.heares.2010.04.007 NR 15 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUN PY 2014 VL 312 BP 160 EP 167 DI 10.1016/j.heares.2014.03.013 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AH8BD UT WOS:000336358200016 PM 24732070 ER PT J AU Battisti, AC Fantetti, KN Moyers, BA Fekete, DM AF Battisti, Andrea C. Fantetti, Kristen N. Moyers, Bryan A. Fekete, Donna M. TI A subset of chicken statoacoustic ganglion neurites are repelled by Slit1 and Slit2 SO HEARING RESEARCH LA English DT Article ID DEVELOPING INNER-EAR; AXON GUIDANCE; COCHLEAR GANGLION; IN-VITRO; DIFFERENTIAL EXPRESSION; INNERVATION PATTERNS; ROBO RECEPTORS; NERVE-FIBERS; NEURONS; MIGRATION AB Mechanosensory hair cells in the chicken inner ear are innervated by bipolar afferent neurons of the statoacoustic ganglion (SAG). During development, individual SAG neurons project their peripheral process to only one of eight distinct sensory organs. These neuronal subtypes may respond differently to guidance cues as they explore the periphery in search of their target. Previous gene expression data suggested that Slit repellants might channel SAG neurites into the sensory primordia, based on the presence of robo transcripts in the neurons and the confinement of slit transcripts to the flanks of the prosensoiy domains. This led to the prediction that excess Slit proteins would impede the outgrowth of SAG neurites. As predicted, axonal projections to the primordium of the anterior crista were reduced 2-3 days after electroporation of either slit1 or slit2 expression plasmids into the anterior pole of the otocyst on embryonic day 3 (E3). The posterior crista afferents, which normally grow through and adjacent to slit expression domains as they are navigating towards the posterior pole of the otocyst, did not show Slit responsiveness when similarly challenged by ectopic delivery of slit to their targets. The sensitivity to ectopic Slits shown by the anterior crista afferents was more the exception than the rule: responsiveness to Slits was not observed when the entire E4 SAG was challenged with Slits for 40 h in vitro. The corona of neurites emanating from SAG explants was unaffected by the presence of purified human Slit1 and Slit2 in the culture medium. Reduced axon outgrowth from E8 olfactory bulbs cultured under similar conditions for 24 h confirmed bioactivity of purified human Slits on chicken neurons. In summary, differential sensitivity to Slit repellents may influence the directional outgrowth of otic axons toward either the anterior or posterior otocyst. (c) 2014 Elsevier B.V. All rights reserved. C1 [Fekete, Donna M.] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. Purdue Univ, Ctr Canc Res, W Lafayette, IN 47907 USA. RP Fekete, DM (reprint author), Purdue Univ, Dept Biol Sci, 915 W State St, W Lafayette, IN 47907 USA. EM abattisti@medinst.com; kfantetti@gmail.com; bamoyers@umich.edu; dfekete@purdue.edu FU National Institutes of Health [R01DC002756]; Purdue Research Foundation; NICHD; University of Iowa, Department of Biology, Iowa City [IA 52242] FX This work was funded by the National Institutes of Health Grant R01DC002756 and the Purdue Research Foundation. We are grateful to Dr. Bruce Craig (Purdue University) for expert statistical consultation and analysis. We thank Dr. Doris Wu for advice with experiments and Deb Biesemeier and Christine Dee for assistance with histology. The pEFX-GFP and pEFX plasmids were provided by Dr. Cliff Ragsdale (University of Chicago), while the CMV-hSlit plasmids were provided by Dr. William Andrews (University College London). The 9E10 myc (developed by J.M. Bishop) and 3A10 (developed by T.M. Jessell and collaborators) antibodies were obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biology, Iowa City, IA 52242. CR Adamska M, 2001, MECH DEVELOP, V109, P303, DOI 10.1016/S0925-4773(01)00550-0 Agarwala S, 2001, SCIENCE, V291, P2147, DOI 10.1126/science.1058624 Appler JM, 2011, PROG NEUROBIOL, V93, P488, DOI 10.1016/j.pneurobio.2011.01.004 Bank LM, 2012, DEVELOPMENT, V139, P4666, DOI 10.1242/dev.066647 Bashaw GJ, 1999, CELL, V97, P917, DOI 10.1016/S0092-8674(00)80803-X Battisti AC, 2008, DEV DYNAM, V237, P476, DOI 10.1002/dvdy.21429 BIANCHI LM, 1993, DEV BIOL, V159, P353, DOI 10.1006/dbio.1993.1247 Bianchi LM, 2005, JARO-J ASSOC RES OTO, V6, P355, DOI 10.1007/s10162-005-0013-8 Bianchi LM, 2002, EUR J NEUROSCI, V16, P1499, DOI 10.1046/j.1460-9568.2002.02248.x Bostrom M., 2009, AUDIOL NEURO-OTOL, V15, P175 Brors D, 2003, J COMP NEUROL, V462, P90, DOI 10.1002/cne.10707 Camarero G, 2003, DEV BIOL, V262, P242, DOI 10.1016/S0012-1606(03)00387-7 Chang W., 2008, PLOS GENET, V11 Chilton JK, 2003, DEV DYNAM, V228, P726, DOI 10.1002/dvdy.10396 Coate TM, 2012, NEURON, V73, P49, DOI 10.1016/j.neuron.2011.10.029 Coate TM, 2013, SEMIN CELL DEV BIOL, V24, P460, DOI 10.1016/j.semcdb.2013.04.003 DAMICOMARTEL A, 1982, AM J ANAT, V163, P351, DOI 10.1002/aja.1001630407 Dickson BJ, 2006, ANNU REV CELL DEV BI, V22, P651, DOI 10.1146/annurev.cellbio.21.090704.151234 Evans TA, 2010, CURR BIOL, V20, P567, DOI 10.1016/j.cub.2010.02.021 Fantetti K.N., 2011, J VIS EXP, V58, pe3600 Fantetti KN, 2011, HEARING RES, V278, P86, DOI 10.1016/j.heares.2011.04.005 Fantetti KN, 2012, DEV NEUROBIOL, V72, P1213, DOI 10.1002/dneu.20988 Fekete DM, 2007, INT J DEV BIOL, V51, P549, DOI 10.1387/ijdb.072341df Fritzsch B, 2005, HEARING RES, V206, P52, DOI 10.1016/j.heares.2004.11.025 GINZBERG RD, 1980, J NEUROCYTOL, V9, P405, DOI 10.1007/BF01181545 Gu CH, 2003, DEV CELL, V5, P45, DOI 10.1016/S1534-5807(03)00169-2 HAMBURGER V, 1951, J MORPHOL, V88, P49, DOI 10.1002/jmor.1050880104 Hammond R, 2005, DEVELOPMENT, V132, P4483, DOI 10.1242/dev.02038 Hansen MR, 2001, J NEUROSCI, V21, P2256 HEMOND SG, 1991, ANAT EMBRYOL, V184, P1, DOI 10.1007/BF01744256 Holmes G, 2001, DEV DYNAM, V222, P301, DOI 10.1002/dvdy.1182 Hossain WA, 2000, J NEUROSCI RES, V62, P40, DOI 10.1002/1097-4547(20001001)62:1<40::AID-JNR5>3.0.CO;2-L Hossain WA, 2008, J NEUROSCI RES, V86, P2376, DOI 10.1002/jnr.21685 Hossain WA, 1996, EXP NEUROL, V138, P121, DOI 10.1006/exnr.1996.0052 Jaworski A, 2010, J NEUROSCI, V30, P9445, DOI 10.1523/JNEUROSCI.6290-09.2010 Jeon EJ, 2011, NEUROSCIENCE, V177, P321, DOI 10.1016/j.neuroscience.2011.01.014 Krull CE, 2004, DEV DYNAM, V229, P433, DOI 10.1002/dvdy.10473 KURATANI S, 1988, AM J ANAT, V182, P169, DOI 10.1002/aja.1001820207 Li HS, 1999, CELL, V96, P807, DOI 10.1016/S0092-8674(00)80591-7 Momose T, 1999, DEV GROWTH DIFFER, V41, P335 Neves J, 2007, J COMP NEUROL, V503, P487, DOI 10.1002/cne.21299 Patel K, 2001, DEVELOPMENT, V128, P5031 Pauley S, 2005, SPR HDB AUD, V26, P85 Reeber SL, 2009, CELL ADHES MIGR, V3, P300, DOI 10.4161/cam.3.3.9156 Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849 Sang Q, 2002, MOL CELL NEUROSCI, V21, P250, DOI 10.1006/mcne.2002.1156 Siddiqui SA, 2005, J COMP NEUROL, V482, P309, DOI 10.1002/cne.20396 Tessarollo L, 2004, J NEUROSCI, V24, P2575, DOI 10.1523/JNEUROSCI.5514-03.2004 Vargesson N, 2001, MECH DEVELOP, V106, P175, DOI 10.1016/S0925-4773(01)00430-0 VONBARTHELD CS, 1991, DEVELOPMENT, V113, P455 Wang SZ, 2013, J NEUROSCI, V33, P12242, DOI 10.1523/JNEUROSCI.5736-12.2013 Webber A, 2006, ANAT REC PART A, V288A, P390, DOI 10.1002/ar.a.20299 WHITEHEAD MC, 1985, NEUROSCIENCE, V14, P255, DOI 10.1016/0306-4522(85)90177-0 Whitilon DS, 2009, NEUROSCIENCE, V161, P227, DOI 10.1016/j.neuroscience.2009.03.044 Wu DK, 1996, J NEUROSCI, V16, P6454 Ypsilanti AR, 2010, DEVELOPMENT, V137, P1939, DOI 10.1242/dev.044511 Zhou CQ, 2011, LARYNGOSCOPE, V121, P1541, DOI 10.1002/lary.21861 NR 57 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD APR PY 2014 VL 310 BP 1 EP 12 DI 10.1016/j.heares.2014.01.003 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AE6FV UT WOS:000334086900001 PM 24456709 ER PT J AU Kwacz, M Marek, P Borkowski, P Gambin, W AF Kwacz, Monika Marek, Piotr Borkowski, Pawel Gambin, Wiktor TI Effect of different stapes prostheses on the passive vibration of the basilar membrane SO HEARING RESEARCH LA English DT Article ID FINITE-ELEMENT MODEL; HUMAN TEMPORAL BONE; MAMMALIAN COCHLEA; SOUND-TRANSMISSION; DIFFERENT DIAMETER; PISTON DIAMETER; INNER-EAR; STAPEDOTOMY; OTOSCLEROSIS; SURGERY AB The effect of different stapes prostheses on the basilar membrane (BM) motion was determined. To that end, a three dimensional finite element (FE) model of the passive human cochlea was developed. Passive responses of the BM were found based on coupled fluid structure interactions between the cochlear solid structures and the scala fluids. The passive BM vibrations in normal (healthy) cochlea were compared with vibrations in the cochlea in which a 0.4-mm piston or a proposed new type of prosthesis was implanted. The proposed chamber prosthesis was not experimentally implanted, but only numerically simulated. Design of the new chamber stapes prosthesis is presented for the first time in this paper. The simulation results showed 10-20 dB decrease in BM displacement amplitude in the case of the piston. In contrast, the BM responses in the cochlea with the new prosthesis are higher with respect to the healthy ear. The results obtained in this study are promising for further research to optimize the design of the new chamber stapes prosthesis. (c) 2014 Elsevier B.V. All rights reserved. C1 [Kwacz, Monika; Gambin, Wiktor] Warsaw Univ Technol, Fac Mechatron, Inst Micromech & Photon, PL-02525 Warsaw, Poland. [Marek, Piotr; Borkowski, Pawel] Warsaw Univ Technol, Fac Power & Aeronaut Engn, Inst Aeronaut & Appl Mech, PL-00665 Warsaw, Poland. RP Kwacz, M (reprint author), Warsaw Univ Technol, Fac Mechatron, Inst Micromech & Photon, Ul Sw A Boboli 8, PL-02525 Warsaw, Poland. EM m.kwacz@mchtr.pw.edu.pl FU Polish Ministry of Science and Higher Education [N N518 377637] FX This work was partially supported by the Polish Ministry of Science and Higher Education (Research Project No. N N518 377637). CR Andoh M, 2004, J ACOUST SOC AM, V116, P417, DOI 10.1121/1.1763599 CABEZUDO LM, 1978, ACTA OTO-LARYNGOL, V86, P160, DOI 10.3109/00016487809124733 Cai HX, 2005, J ROY SOC INTERFACE, V2, P341, DOI 10.1098/rsif.2005.0049 Cavaliere M, 2012, ORL-J OTO-RHIN-LARYN, V74, P93, DOI 10.1159/000335927 DALLOS P, 1992, J NEUROSCI, V12, P4575 DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 de Boer E., 1996, COCHLEA, P258 DEBOER E, 1983, J ACOUST SOC AM, V73, P567, DOI 10.1121/1.389002 Dubreuil C, 1994, Ann Otolaryngol Chir Cervicofac, V111, P249 FISCH U, 1982, AM J OTOL, V4, P112 Fleischer M, 2010, J ACOUST SOC AM, V127, P2973, DOI 10.1121/1.3372752 Gan RZ, 2007, ANN BIOMED ENG, V35, P2180, DOI 10.1007/s10439-007-9366-y Gan RZ, 2006, MED ENG PHYS, V28, P395, DOI 10.1016/j.medengphy.2005.07.018 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Grolman W, 1997, EUR ARCH OTO-RHINO-L, V254, P422, DOI 10.1007/BF02439972 GUNDERSEN T, 1978, ACTA OTO-LARYNGOL, V86, P225, DOI 10.3109/00016487809124740 Hato N, 2003, AUDIOL NEURO-OTOL, V8, P140, DOI 10.1159/000069475 Hausler R, 2004, MIDDLE EAR SURG, P105 Heiland KE, 1999, AM J OTOL, V20, P81 HERZOG JA, 1991, AM J OTOL, V12, P16 Homer M, 2004, J ACOUST SOC AM, V116, P1025, DOI 10.1121/1.1771571 Huber AM, 2003, LARYNGOSCOPE, V113, P853, DOI 10.1097/00005537-200305000-00015 Huttenbrink KB, 2003, OTOL NEUROTOL, V24, P548 IURATO SALVATORE, 1962, JOUR ACOUSTICAL SOC AMER, V34, P1386, DOI 10.1121/1.1918355 Kim N, 2011, JARO-J ASSOC RES OTO, V12, P261, DOI 10.1007/s10162-011-0258-3 Kohlloffel L.U.E, 1983, MECH HEARING, P211 Koike T, 2012, HEARING RES, V283, P117, DOI 10.1016/j.heares.2011.10.006 Kolston PJ, 1996, J ACOUST SOC AM, V99, P455, DOI 10.1121/1.414557 Kwacz M, 2013, BIOMECH MODEL MECHAN, V12, P1243, DOI 10.1007/s10237-013-0479-y Kwacz M, 2012, ACTA BIOENG BIOMECH, V14, P67, DOI 10.5277/abb120209 Laske RD, 2011, OTOL NEUROTOL, V32, P520, DOI 10.1097/MAO.0b013e318216795b LECHNER TP, 1993, HEARING RES, V66, P202, DOI 10.1016/0378-5955(93)90140-V LIGHTHILL J, 1981, J FLUID MECH, V106, P149, DOI 10.1017/S0022112081001560 Lim KM, 2002, HEARING RES, V170, P190, DOI 10.1016/S0378-5955(02)00491-4 Liu S, 2008, J ACOUST SOC AM, V123, P2160, DOI 10.1121/1.2871682 Marchese MR, 2007, AUDIOL NEURO-OTOL, V12, P221, DOI 10.1159/000101329 MCGEE TM, 1981, LARYNGOSCOPE, V91, P1478 Miller C., 1984, J ACOUST SOC AM, V77, P1465 Moller P, 2007, ADV OTO-RHINO-LARYNG, V65, P169, DOI 10.1159/000098802 NEELY ST, 1981, J ACOUST SOC AM, V69, P1386, DOI 10.1121/1.385820 PETERSON LC, 1950, J ACOUST SOC AM, V22, P369, DOI 10.1121/1.1906615 Pozrikidis C, 2008, J FLUID STRUCT, V24, P336, DOI 10.1016/j.jfluidstructs.2007.08.006 Pozrikidis C, 2007, ENG ANAL BOUND ELEM, V31, P1, DOI 10.1016/j.enganabound.2006.07.003 Raut VV, 2002, CLIN OTOLARYNGOL, V27, P113, DOI 10.1046/j.1365-2273.2002.00542.x Reichenbach T, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.118102 Ren TY, 2002, P NATL ACAD SCI USA, V99, P17101, DOI 10.1073/pnas.262663699 RIZER FM, 1993, OTOLARYNG CLIN N AM, V26, P443 Robles L, 2001, PHYSIOL REV, V81, P1305 Rosowski JJ, 2003, OTOL NEUROTOL, V24, P165, DOI 10.1097/00129492-200303000-00008 ROSOWSKI JJ, 1995, AM J OTOL, V16, P486 Schweitzer L, 1996, HEARING RES, V97, P84 Sennaroglu L, 2001, OTOLARYNG HEAD NECK, V124, P279, DOI 10.1067/mhn.2001.112431 Shabana YK, 1999, CLIN OTOLARYNGOL, V24, P91 SHEA JJ, 1988, J LARYNGOL OTOL, V102, P14, DOI 10.1017/S0022215100103846 SHEA JJ, 1962, ARCHIV OTOLARYNGOL, V76, P516 SHEA J J Jr, 1958, Ann Otol Rhinol Laryngol, V67, P932 Shera CA, 2005, J ACOUST SOC AM, V118, P287, DOI 10.1121/1.1895025 Sim JH, 2010, JARO-J ASSOC RES OTO, V11, P329, DOI 10.1007/s10162-010-0207-6 Sim J.H., 2012, EAR HEARING, V33, P24 Somers T, 2006, ANN OTO RHINOL LARYN, V115, P880 Steele CR, 2009, J MECH MATER STRUCT, V4, P755, DOI 10.2140/jomms.2009.4.755 Steele CR, 1999, AUDIOL NEURO-OTOL, V4, P197, DOI 10.1159/000013841 Stenfelt S, 2003, HEARING RES, V181, P131, DOI 10.1016/S0378-5955(03)00183-7 Tange RA, 2004, OTOL NEUROTOL, V25, P102, DOI 10.1097/00129492-200403000-00004 Teig E, 1999, OTO RHINO LARYN NOVA, V9, P252, DOI 10.1159/000027931 Ulfendahl M, 1997, PROG NEUROBIOL, V53, P331, DOI 10.1016/S0301-0082(97)00040-3 Vincent R, 2006, OTOL NEUROTOL, V27, P25 von Bekesy G., 1960, EXPT HEARING, P44 von Békésy G, 1970, Nature, V225, P1207, DOI 10.1038/2251207a0 Watts L, 2000, J ACOUST SOC AM, V108, P2266, DOI 10.1121/1.1310194 Wittbrodt MJ, 2006, AUDIOL NEURO-OTOL, V11, P104, DOI 10.1159/000090683 Wysocki J, 2011, LARYNGOSCOPE, V121, P1958, DOI 10.1002/lary.22081 Yoon YJ, 2007, J ACOUST SOC AM, V122, P952, DOI 10.1121/1.2747162 NR 73 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD APR PY 2014 VL 310 BP 13 EP 26 DI 10.1016/j.heares.2014.01.004 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AE6FV UT WOS:000334086900002 PM 24463104 ER PT J AU Thein, P Kalinec, GM Park, C Kalinec, F AF Thein, Pru Kalinec, Gilda M. Park, Channy Kalinec, Federico TI In vitro assessment of antiretroviral drugs demonstrates potential for ototoxicity SO HEARING RESEARCH LA English DT Article ID ACETYL-L-CARNITINE; INDUCED HEARING-LOSS; REVERSE-TRANSCRIPTASE INHIBITORS; TOXIC NEUROPATHY; MITOCHONDRIAL TOXICITY; HIV-1 INFECTION; APOPTOSIS; CELLS; AIDS; ZIDOVUDINE AB Several studies have reported an increased incidence of auditory dysfunction among HIV/AIDS patients. We used auditory HEI-OC1 cells in cell viability, flow cytometry and caspases 3/7-activation studies to investigate the potential ototoxicity of fourteen HIV antiretroviral agents: Abacavir, AZT, Delavirdine, Didenosine, Efavirenz, Emtricitabine, Indinavir, Lamivudine, Nefinavir, Nevirapine, Tenofovir, Ritonavir, Stavudine and Zalcitabine, as well as combinations of these agents as used in the common anti-HIV cocktails Atripla (TM), Combivir (TM), Epzicom (TM), Trizivir (TM), and Truvada (TM). Our results suggested that most of the single assayed anti-HIV drugs are toxic for HEI-0C1 auditory cells. The cocktails, on the other hand, decreased auditory cells' viability with high significance, with the following severity gradient: Epzicom similar to Trizivir >> Atripla similar to Combivir > Truvada. Interestingly, our results suggest that Trizivir- and Epzicom-induced cell death would be mediated by a caspase-independent mechanism. L-Carnitine, a natural micronutrient known to protect HEI-0C1 cells against some ototoxic drugs as well as to decrease neuropathies associated with anti-HIV treatments, increased viability of cells treated with Lamivudine and Tenofovir as well as with the cocktail Atripla, but had only minor effects on cells treated with other drugs and drug combinations. Altogether, these results suggest that some frequently used anti-HIV agents could have deleterious effects on patients' hearing, and provide arguments in favor of additional studies aimed at elucidating the potential ototoxicity of current as well as future anti-HIV drugs. (c) 2014 Elsevier B.V. All rights reserved. C1 [Thein, Pru; Kalinec, Gilda M.; Park, Channy; Kalinec, Federico] Univ Calif Los Angeles, David Geffen Sch Med, Dept Head & Neck Surg, Los Angeles, CA 90057 USA. RP Kalinec, F (reprint author), Univ Calif Los Angeles, David Geffen Sch Med, Dept Head & Neck Surg, 2100 West 3rd St, Los Angeles, CA 90057 USA. EM fkalinec@mednet.ucla.edu FU Robert Mapplethorpe Foundation; Brotman Foundation of California; NIDCD/NIH [R01 DC010146, R01 DC010397] FX This work was supported by The Robert Mapplethorpe Foundation, The Brotman Foundation of California, and NIDCD/NIH Grants R01 DC010146 and R01 DC010397. Its content is solely the responsibility of the authors and does not necessarily represent the official views of these Institutions. These Institutions had no role in the study design, data collection, interpretation of results and manuscript preparation. The authors declare no existing or potential conflict of interest. CR Bektas D, 2008, HEARING RES, V239, P69, DOI 10.1016/j.heares.2008.01.016 Benbrik E, 1997, J NEUROL SCI, V149, P19, DOI 10.1016/S0022-510X(97)05376-8 Brüning Ansgar, 2009, Cancer Biol Ther, V8, P226, DOI 10.4161/cbt.8.3.7339 Degterev A, 2008, NAT REV MOL CELL BIO, V9, P378, DOI 10.1038/nrm2393 DESIMONE C, 1993, IMMUNOPHARM IMMUNOT, V15, P1, DOI 10.3109/08923979309066930 DESIMONE C, 1994, AIDS, V8, P655 FDA, 2012, ANT GUID Feng JY, 2001, J BIOL CHEM, V276, P23832, DOI 10.1074/jbc.M101156200 Fink SL, 2005, INFECT IMMUN, V73, P1907, DOI 10.1128/IAI.73.4.1907-1916.2005 Gazzard BG, 2008, HIV MED, V9, P563, DOI 10.1111/j.1468-1293.2008.00636.x Hammer SM, 2008, JAMA-J AM MED ASSOC, V300, P555, DOI 10.1001/jama.300.5.555 Harris T, 2012, SAMJ S AFR MED J, V102, P363 Hart AM, 2004, AIDS, V18, P1549, DOI 10.1097/01.aids.0000131354.14408.fb Hart AM, 2002, EXP BRAIN RES, V145, P182, DOI 10.1007/s00221-002-1100-2 Herzmann C, 2005, HIV CLIN TRIALS, V6, P344 Kalinec GM, 2005, P NATL ACAD SCI USA, V102, P16019, DOI 10.1073/pnas.0508053102 Kalinec GM, 2003, AUDIOL NEURO-OTOL, V8, P177, DOI 10.1159/000071059 Maiuri MC, 2007, NAT REV MOL CELL BIO, V8, P741, DOI 10.1038/nrm2239 Marra CM, 1997, ARCH NEUROL-CHICAGO, V54, P407 Monte S, 1997, INT J STD AIDS, V8, P201, DOI 10.1258/0956462971919723 Moretti S, 1998, BLOOD, V91, P3817 Moretti S, 2002, ANTIOXID REDOX SIGN, V4, P391, DOI 10.1089/15230860260196191 Parrish AB, 2013, CSH PERSPECT BIOL, V5, DOI 10.1101/cshperspect.a008672 Riddler SA, 2008, NEW ENGL J MED, V358, P2095, DOI 10.1056/NEJMoa074609 Simdon J, 2001, CLIN INFECT DIS, V32, P1623, DOI 10.1086/320522 Staszewski S, 1999, NEW ENGL J MED, V341, P1865, DOI 10.1056/NEJM199912163412501 Venhoff N, 2007, ANTIVIR THER, V12, P1075 Vogeser M, 1998, Eur J Clin Microbiol Infect Dis, V17, P214 Youle M, 2007, CNS DRUGS, V21, P25, DOI 10.2165/00023210-200721001-00004 Youle M, 2005, ANTIVIR THER, V10, pM125 Youle M, 2007, HIV MED, V8, P241, DOI 10.1111/j.1468-1293.2007.00467.x Zha B. S., 2011, RECENT TRANSLATIONAL, P253 Zhou HP, 2011, METHOD ENZYMOL, V490, P107, DOI 10.1016/B978-0-12-385114-7.00006-4 NR 33 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD APR PY 2014 VL 310 BP 27 EP 35 DI 10.1016/j.heares.2014.01.005 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AE6FV UT WOS:000334086900003 PM 24487230 ER PT J AU Sang, JQ Hu, HM Zheng, CS Li, GP Lutman, ME Bleeck, S AF Sang, Jinqiu Hu, Hongmei Zheng, Chengshi Li, Guoping Lutman, Mark E. Bleeck, Stefan TI Evaluation of the sparse coding shrinkage noise reduction algorithm in normal hearing and hearing impaired listeners SO HEARING RESEARCH LA English DT Article ID SPEECH RECOGNITION; SPECTRAL SUBTRACTION; COCHLEAR IMPLANT; CODE SHRINKAGE; ENHANCEMENT; INTELLIGIBILITY; AID; DESIGN AB Although there are numerous single-channel noise reduction strategies to improve speech perception in noise, most of them improve speech quality but do not improve speech intelligibility, in circumstances where the noise and speech have similar frequency spectra. Current exceptions that may improve speech intelligibility are those that require a priori knowledge of the speech or noise statistics, which limits practical application. Hearing impaired (HI) listeners suffer more in speech intelligibility than normal hearing listeners (NH) in the same noisy environment, so developing better single-channel noise reduction algorithms for HI listeners is justified. Our model-based "sparse coding shrinkage" (SCS) algorithm extracts key speech information in noisy speech. We evaluate it by comparison with a state-of-the-art Wiener filtering approach using speech intelligibility tests with NH and HI listeners. The model-based SCS algorithm relies only on statistical signal information without prior information. Results show that the SCS algorithm improves speech intelligibility in stationary noise and is comparable to the Wiener filtering algorithm. Both algorithms improve intelligibility for HI listeners but not for NH listeners. Improvement is less in fluctuating (babble) noise than in stationary noise. Both noise reduction algorithms perform better at higher input signal-to-noise ratios (SNR) where HI listeners can benefit but where NH listeners have already reached ceiling performance. The difference between NH and HI subjects in intelligibility gain depends fundamentally on the input SNR rather than the hearing loss level. We conclude that HI listeners need different signal processing algorithms from NH subjects and that the SCS algorithm offers a promising alternative to Wiener filtering. Performance of all noise reduction algorithms is likely to vary according to extent of hearing loss and algorithms that show little benefit for listeners with moderate hearing loss may be more beneficial for listeners with more severe hearing loss. (c) 2014 Elsevier B.V. All rights reserved. C1 [Sang, Jinqiu; Hu, Hongmei; Li, Guoping; Lutman, Mark E.; Bleeck, Stefan] Univ Southampton, Inst Sound & Vibrat Res, Southampton SO17 1BJ, Hants, England. [Zheng, Chengshi] Chinese Acad Sci, Inst Acoust, Beijing 100190, Peoples R China. RP Bleeck, S (reprint author), Univ Southampton, Inst Sound & Vibrat Res, Southampton SO17 1BJ, Hants, England. EM s.bleeck@soton.ac.uk FU European Commission within the ITN AUDIS [PITN-GA-2008-214699] FX We thank Aapo Hyvarinen, Patrik Hoyer and Xin Zou for their advice in sparse coding shrinkage. We thank Timo Gerkmann for providing CS-WF code. We thank David Simpson, James M. Kates and Kathryn Hoberg Arehart for their advice in NAL-R compensation. We also thank all the subjects. This work was supported by the European Commission within the ITN AUDIS (grant agreement number PITN-GA-2008-214699). CR Alcantara JI, 2003, INT J AUDIOL, V42, P34, DOI 10.3109/14992020309056083 Amos NE, 2007, J SPEECH LANG HEAR R, V50, P819, DOI 10.1044/1092-4388(2007/057) Arehart KH, 2003, SPEECH COMMUN, V40, P575, DOI 10.1016/S0167-6393(02)00183-8 BAER T, 1993, J REHABIL RES DEV, V30, P49 Bench J., 1979, BRIT J AUDIOL, V13, P102 Breithaupt C, 2008, INT CONF ACOUST SPEE, P4897, DOI 10.1109/ICASSP.2008.4518755 Dahlquist M, 2005, INT J AUDIOL, V44, P721, DOI 10.1080/14992020500271712 Deller J., 2000, DISCRETE TIME PROCES Dillon H., 2001, HEARING AIDS DIRKS DD, 1982, J SPEECH HEAR DISORD, V47, P114 ELBERLING C, 1993, SCAND AUDIOL, V22, P39 FIELD DJ, 1994, NEURAL COMPUT, V6, P559, DOI 10.1162/neco.1994.6.4.559 Gerkmann T, 2009, IEEE T SIGNAL PROCES, V57, P4165, DOI 10.1109/TSP.2009.2025795 Gerkmann T, 2012, IEEE T AUDIO SPEECH, V20, P1383, DOI 10.1109/TASL.2011.2180896 Harlander N., 2012, INT J AUDIOL, P1 Hu H., 2011, ENHANCED SPARSE SPEE Hu HM, 2013, INT CONF ACOUST SPEE, P7790 Hu Y, 2007, J ACOUST SOC AM, V122, P1777, DOI 10.1121/1.2766778 Hu Y, 2003, IEEE T SPEECH AUDI P, V11, P334, DOI 10.1109/TSA.2003.814458 Hyvarinen A, 1999, NEURAL COMPUT, V11, P1739, DOI 10.1162/089976699300016214 Hyvarinen A, 1998, P INT JOINT C NEUR N, V2, P859 JAMIESON DG, 1995, EAR HEARING, V16, P274, DOI 10.1097/00003446-199506000-00004 Kates JM, 1996, J ACOUST SOC AM, V99, P3138, DOI 10.1121/1.414798 Kim G, 2010, IEEE SIGNAL PROC LET, V17, P1010, DOI 10.1109/LSP.2010.2087412 LEVITT H, 1993, SCAND AUDIOL, V22, P7 Levitt H., 1993, ACOUSTICAL FACTORS A, P317 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Levitt H, 2001, J REHABIL RES DEV, V38, P111 Li G., 2008, THESIS U SOUTHAMPTON Li G., 2008, P EUSIPCO LAUS SWITZ Li GP, 2012, INT J AUDIOL, V51, P75, DOI 10.3109/14992027.2011.625984 LOCKWOOD P, 1992, SPEECH COMMUN, V11, P215, DOI 10.1016/0167-6393(92)90016-Z PLOMP R, 1994, EAR HEARING, V15, P2 POTAMITIS I, 2001, ACOUST SPEECH SIG PR, P621 Sang J., 2012, EVALUATION SPARSE CO Sang J., 2011, SUPERVISED SPARSE CO Sang J., 2011, IEEE ICCT 2011 CHIN Schum DJ, 2003, HEAR J, V56, P32 Verschuur C., 2006, COCHLEAR IMPLANTS IN, V7, P188 Weiss M., 1993, ACOUSTICAL FACTORS A, P337 Widrow B, 2003, SPEECH COMMUN, V39, P139, DOI 10.1016/S0167-6393(02)00063-8 Yang LP, 2005, J ACOUST SOC AM, V117, P1001, DOI 10.1121/1.1852873 Zou X, 2008, IEEE T SIGNAL PROCES, V56, P1812, DOI 10.1109/TSP.2007.910555 NR 43 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD APR PY 2014 VL 310 BP 36 EP 47 DI 10.1016/j.heares.2014.01.006 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AE6FV UT WOS:000334086900004 PM 24495441 ER PT J AU Koizumi, T Nishimura, T Yamashita, A Yamanaka, T Imamura, T Hosoi, H AF Koizumi, Toshizo Nishimura, Tadashi Yamashita, Akinori Yamanaka, Toshiaki Imamura, Tomoaki Hosoi, Hiroshi TI Residual inhibition of tinnitus induced by 30-kHz bone-conducted ultrasound SO HEARING RESEARCH LA English DT Article DE Bandwidth; Central frequency; Dynamic range; Tinnitus pitch; Ultrasonic hearing ID AUDITORY-CORTEX; PURE TONES; PERCEPTION; FREQUENCY; LOUDNESS; MASKING; HEARING; MASKER AB Sounds at frequencies of >24-kHz are classified as ultrasound which cannot be heard by humans if presented by air conduction, but can be perceived if presented by bone conduction. Some research studies involving ultrasonic hearing have reported that tinnitus is masked by bone-conducted ultrasound (BCU). However, little is known about residual inhibition (RI), which is a continuous reduction or disappearance of tinnitus after presentation of BCU. This study investigated whether RI could be induced by BCU. Five types of the masker sounds were used to measure RI in 21 subjects with tinnitus. A bone-conducted 30-kHz pure tone was used as a BCU, and an air-conducted 4-kHz pure tone, narrow-band noise, white noise, and a bone-conducted 4-kHz pure tone were used as controls of audible sounds. The masker intensities of the 30-kHz BCU and audible sounds were set at the minimum masking levels of tinnitus plus 3 and 10 dB, respectively, considering the narrow dynamic range of BCU. The duration of RI induced by the 30-kHz BCU was significantly longer than those induced by the 4-kHz sounds, but was not significantly different from that induced by the white noise. BCU activates the cochlear basal turn in response to the high frequency, which may broadly overlap with the frequency range that included the dominant tinnitus pitch in most of our subjects. The longer RI duration for the 30-kHz BCU was probably derived from this characteristic. These results suggested that the peripheral stimulation characteristic of BCU probably contributed to inducing long RI durations. (c) 2014 Elsevier B.V. All rights reserved. C1 [Koizumi, Toshizo; Nishimura, Tadashi; Yamashita, Akinori; Yamanaka, Toshiaki; Hosoi, Hiroshi] Nara Med Univ, Dept Otorhinolaryngol & Head & Neck Surg, Kashihara, Nara 6348522, Japan. [Imamura, Tomoaki] Nara Med Univ, Dept Publ Hlth Hlth Management & Policy, Kashihara, Nara 6348521, Japan. RP Nishimura, T (reprint author), Nara Med Univ, Dept Otorhinolaryngol & Head & Neck Surg, 840 Shijo Cho, Kashihara, Nara 6348522, Japan. EM t-nishim@naramed-u.ac.jp CR BELLUCCI RICHARD J., 1962, ANN OTOL RHINOL AND LARYNGOL, V71, P719 CARRICK D G, 1986, British Journal of Audiology, V20, P153, DOI 10.3109/03005368609079009 RENDELL R J, 1987, British Journal of Audiology, V21, P289, DOI 10.3109/03005368709076421 DAVIS H, 1950, Acta Otolaryngol Suppl, V88, P1 DEATHERAGE BH, 1954, J ACOUST SOC AM, V26, P582, DOI 10.1121/1.1907379 DIEROFF HG, 1975, ARCH OTO-RHINO-LARYN, V209, P277, DOI 10.1007/BF00456548 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 FELDMANN H, 1971, AUDIOLOGY, V10, P138 Fletcher H, 1933, J ACOUST SOC AM, V5, P82, DOI 10.1121/1.1915637 Fowler E.P., 1941, ANN OTO RHINOL LARYN, V50, P139 Fujimoto K, 2005, HEARING RES, V204, P210, DOI 10.1016/j.heares.2005.02.004 GAVREAU V, 1948, CR HEBD ACAD SCI, V226, P2053 Goldstein B A, 2001, Int Tinnitus J, V7, P122 Goldstein Barbara A, 2005, Int Tinnitus J, V11, P111 Goldstein Barbara A, 2005, Int Tinnitus J, V11, P14 HAEFF AV, 1963, SCIENCE, V139, P590, DOI 10.1126/science.139.3555.590 Henry J A, 2000, J Am Acad Audiol, V11, P138 Hosoi H, 1998, LANCET, V351, P496, DOI 10.1016/S0140-6736(05)78683-9 Imaizumi S, 2001, NEUROREPORT, V12, P583, DOI 10.1097/00001756-200103050-00030 KITAJIMA K, 1987, AM J OTOL, V8, P203 LENHARDT ML, 1991, SCIENCE, V253, P82, DOI 10.1126/science.2063208 Nishimura T, 2011, HEARING RES, V277, P176, DOI 10.1016/j.heares.2011.01.004 Nishimura T, 2003, HEARING RES, V175, P171, DOI 10.1016/S0378-5955(02)00735-9 Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156 Pan T, 2009, INT J AUDIOL, V48, P277, DOI 10.1080/14992020802581974 PUMPHREY RJ, 1950, NATURE, V166, P571, DOI 10.1038/166571b0 Roberts LE, 2008, JARO-J ASSOC RES OTO, V9, P417, DOI 10.1007/s10162-008-0136-9 ROBERTS LE, 2006, ACTA OTO-LARYNGOL, V556, P27, DOI DOI 10.1080/03655230600895358 ROBINSON DW, 1956, BRIT J APPL PHYS, V7, P166, DOI 10.1088/0508-3443/7/5/302 Terry A M, 1983, Br J Audiol, V17, P245, DOI 10.3109/03005368309081485 Vernon JA, 2003, OTOLARYNG CLIN N AM, V36, P293, DOI 10.1016/S0030-6665(02)00162-7 VERNON J A, 1985, Acta Oto-Rhino-Laryngologica Belgica, V39, P621 Wegel R. L., 1932, ANN OTO RHINOL LARYN, V41, P740 NR 33 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD APR PY 2014 VL 310 BP 48 EP 53 DI 10.1016/j.heares.2014.01.011 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AE6FV UT WOS:000334086900005 PM 24530434 ER PT J AU Jerin, C Berman, A Krause, E Ertl-Wagner, B Gurkov, R AF Jerin, Claudia Berman, Albert Krause, Eike Ertl-Wagner, Birgit Guerkov, Robert TI Ocular vestibular evoked myogenic potential frequency tuning in certain Meniere's disease SO HEARING RESEARCH LA English DT Article DE Vestibular evoked myogenic potential; oVEMP; Frequency tuning; Meniere's disease ID ENDOLYMPHATIC HYDROPS; VISUALIZATION; VIBRATION; DYNAMICS; SOUND; AGE AB Ocular vestibular evoked myogenic potentials (oVEMP) represent extraocular muscle activity in response to vestibular stimulation. To specify the value of oVEMP in the diagnostics of Meniere's disease, the amplitude ratio between 500 and 1000 Hz stimuli was investigated. Thirty-nine patients with certain Meniere's disease, i.e. definite Meniere's disease with visualization of endolymphatic hydrops by magnetic resonance imaging and 49 age-matched healthy controls were enrolled in this study. oVEMP were recorded using 500 and 1000 Hz air-conducted tone bursts. For Meniere's ears, the 500/1000 Hz amplitude ratio (mean ratio = 1.20) was significantly smaller when compared to unaffected ears of Meniere's patients (mean ratio = 1.80; p = 0.008) or healthy controls (mean ratio = 1.81; p = 0.011). The amplitude ratio was neither correlated with the degree of endolymphatic hydrops nor with the duration of disease. While an older age was associated with a diminished amplitude ratio in healthy controls, there was no correlation between the amplitude ratio and age in Meniere's ears. Hence, the calculation of the oVEMP 500/1000 Hz amplitude ratio may be a valuable diagnostic tool for Meniere's disease. (C) 2014 Elsevier B.V. All rights reserved. C1 [Jerin, Claudia; Berman, Albert; Krause, Eike; Guerkov, Robert] Univ Munich, Grosshadern Med Ctr, German Ctr Vertigo & Balance Disorders, D-81377 Munich, Germany. [Krause, Eike; Guerkov, Robert] Univ Munich, Grosshadern Med Ctr, Dept Otorhinolaryngol Head & Neck Surg, D-81377 Munich, Germany. [Ertl-Wagner, Birgit] Univ Munich, Grosshadern Med Ctr, Inst Clin Radiol, D-81377 Munich, Germany. RP Jerin, C (reprint author), Univ Munich, Grosshadern Med Ctr, German Ctr Vertigo & Balance Disorders, Marchioninistr 15, D-81377 Munich, Germany. EM claudia.jerin@med.uni-muenchen.de RI Gurkov, Robert/K-3536-2013 OI Gurkov, Robert/0000-0002-4195-149X FU Federal German Ministry of Education and Research [01EO0901] FX This study was supported by the Federal German Ministry of Education and Research (grant No. 01EO0901). CR AAO-HNS guidelines, 1995, HEAD NECK SURG, V113, P181 Gurkov R, 2012, OTOL NEUROTOL, V33, P1040, DOI 10.1097/MAO.0b013e31825d9a95 Hallpike C S, 1938, Proc R Soc Med, V31, P1317 Huang CH, 2011, AUDIOL NEURO-OTOL, V16, P41, DOI 10.1159/000312199 Iwasaki S, 2007, NEUROLOGY, V68, P1227, DOI 10.1212/01.wnl.0000259064.80564.21 Kantner C, 2012, HEARING RES, V294, P55, DOI 10.1016/j.heares.2012.10.008 Kim-Lee Y, 2009, ACTA OTO-LARYNGOL, V129, P924, DOI 10.1080/00016480802495412 Lewis A, 2010, J OTOLARYNGOL-HEAD N, V39, P491, DOI 10.2310/7070.2010.090205 Manzari L, 2010, CLIN NEUROPHYSIOL, V121, P1092, DOI 10.1016/j.clinph.2010.02.003 Murnane OD, 2011, J AM ACAD AUDIOL, V22, P469, DOI 10.3766/jaaa.22.7.7 Naganawa S, 2010, MAGN RESON MED SCI, V9, P237, DOI 10.2463/mrms.9.237 Naganawa S, 2013, MAGN RESON MED SCI, V12, P261, DOI 10.2463/mrms.2013-0019 Nakashima T, 2007, LARYNGOSCOPE, V117, P415, DOI 10.1097/MLG.0b013e31802c300c Nguyen KD, 2010, OTOL NEUROTOL, V31, P793, DOI 10.1097/MAO.0b013e3181e3d60e Node M, 2005, OTOL NEUROTOL, V26, P1208, DOI 10.1097/01.mao.0000176172.87141.5d Park HJ, 2010, CLIN NEUROPHYSIOL, V121, P85, DOI 10.1016/j.clinph.2009.10.003 Piker EG, 2013, EAR HEARING, V34, pE65, DOI 10.1097/AUD.0b013e31828fc9f2 Piker EG, 2011, J AM ACAD AUDIOL, V22, P222, DOI 10.3766/jaaa.22.4.5 Rauch SD, 2004, OTOL NEUROTOL, V25, P333, DOI 10.1097/00129492-200405000-00022 Rosengren SM, 2010, CLIN NEUROPHYSIOL, V121, P636, DOI 10.1016/j.clinph.2009.10.016 Sandhu JS, 2012, OTOL NEUROTOL, V33, P444, DOI 10.1097/MAO.0b013e3182488046 Taylor RL, 2011, CLIN NEUROPHYSIOL, V122, P1256, DOI 10.1016/j.clinph.2010.11.009 Taylor RL, 2012, CEPHALALGIA, V32, P213, DOI 10.1177/0333102411434166 Taylor RL, 2012, AUDIOL NEURO-OTOL, V17, P207, DOI 10.1159/000336959 Todd NPM, 2000, HEARING RES, V141, P180, DOI 10.1016/S0378-5955(99)00222-1 Winters SM, 2012, AUDIOL NEURO-OTOL, V17, P12, DOI 10.1159/000324858 Winters SM, 2011, OTOL NEUROTOL, V32, P1273, DOI 10.1097/MAO.0b013e31822e5ac9 NR 27 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD APR PY 2014 VL 310 BP 54 EP 59 DI 10.1016/j.heares.2014.02.001 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AE6FV UT WOS:000334086900006 PM 24530828 ER PT J AU Verma, RU Guex, AA Hancock, KE Durakovic, N McKay, CM Slama, MCC Brown, MC Lee, DJ AF Verma, Rohit U. Guex, Amelie A. Hancock, Kenneth E. Durakovic, Nedim McKay, Colette M. Slama, Michael C. C. Brown, M. Christian Lee, Daniel J. TI Auditory responses to electric and infrared neural stimulation of the rat cochlear nucleus SO HEARING RESEARCH LA English DT Article ID BRAIN-STEM IMPLANT; INFERIOR COLLICULUS; OPTICAL STIMULATION; GUINEA-PIGS; NERVE-STIMULATION; PERIPHERAL-NERVE; PROJECTIONS; LASER; WAVELENGTH; CAT AB In an effort to improve the auditory brainstem implant, a prosthesis in which user outcomes are modest, we applied electric and infrared neural stimulation (INS) to the cochlear nucleus in a rat animal model. Electric stimulation evoked regions of neural activation in the inferior colliculus and short-latency, multipeaked auditory brainstem responses (ABRs). Pulsed INS, delivered to the surface of the cochlear nucleus via an optical fiber, evoked broad neural activation in the inferior colliculus. Strongest responses were recorded when the fiber was placed at lateral positions on the cochlear nucleus, close to the temporal bone. INS-evoked ABRs were multipeaked but longer in latency than those for electric stimulation; they resembled the responses to acoustic stimulation. After deafening, responses to electric stimulation persisted, whereas those to INS disappeared, consistent with a reported "optophonic" effect, a laser-induced acoustic artifact. Thus, for deaf individuals who use the auditory brainstem implant, INS alone did not appear promising as a new approach. (C) 2014 Elsevier B.V. All rights reserved. C1 [Verma, Rohit U.] Univ Manchester, Sch Med, Manchester M13 9PL, Lancs, England. [McKay, Colette M.] Univ Manchester, Sch Psychol Sci, Manchester M13 9PL, Lancs, England. [Verma, Rohit U.; Hancock, Kenneth E.; Durakovic, Nedim; Slama, Michael C. C.; Brown, M. Christian; Lee, Daniel J.] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA. [Guex, Amelie A.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [McKay, Colette M.] Bion Inst Australia, Melbourne, Vic, Australia. [Verma, Rohit U.; Slama, Michael C. C.; Brown, M. Christian; Lee, Daniel J.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02114 USA. RP Brown, MC (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, 243 Charles St, Boston, MA 02114 USA. EM Chris_Brown@meei.harvard.edu FU Helene and Grant Wilson Auditory Brainstem Implant Program at the Massachusetts Eye and Ear Infirmary; Med-EL Hearing Solutions Research Grant; Bertarelli Foundation; NIH [DC01089]; Paul and Daisy Soros Fellowship for New Americans; Victorian Government through its Operational Infrastructure Support Program FX Supported by the Helene and Grant Wilson Auditory Brainstem Implant Program at the Massachusetts Eye and Ear Infirmary, a Med-EL Hearing Solutions Research Grant, the Bertarelli Foundation, NIH grant DC01089, and the Paul and Daisy Soros Fellowship for New Americans. The Bionics Institute acknowledges the support it receives from the Victorian Government through its Operational Infrastructure Support Program. We thank Lockheed-Martin for supplying the Aculite laser, and Ishmael Stefanov, Evan Foss, and Haobing Wang for technical assistance. Preliminary versions of this work were presented at the 2012 meeting of the Association for Research in Otolaryngology and are contained in a master's thesis (Guex, 2012). CR ABBAS PJ, 1991, HEARING RES, V51, P123, DOI 10.1016/0378-5955(91)90011-W ABBAS PJ, 1988, HEARING RES, V36, P153, DOI 10.1016/0378-5955(88)90057-3 Boyden ES, 2005, NAT NEUROSCI, V8, P1263, DOI 10.1038/nn1525 Colletti L, 2012, CURR OPIN OTOLARYNGO, V20, P353, DOI 10.1097/MOO.0b013e328357613d Colletti V, 2005, LARYNGOSCOPE, V115, P1974, DOI 10.1097/01.mlg.0000178327.42926.ec Darrow K.N., 2013, OPTOGENETIC CONTROL Fried NM, 2008, J ENDOUROL, V22, P409, DOI 10.1089/end.2008.9996 Frohne C, 2000, J LARYNGOL OTOL, V114, P11 GLENDENNING KK, 1992, J COMP NEUROL, V319, P100, DOI 10.1002/cne.903190110 Guex A, 2012, CHARACTERIZATION AUD HACKNEY CM, 1990, ANAT EMBRYOL, V182, P123 HALE GM, 1973, APPL OPTICS, V12, P555, DOI 10.1364/AO.12.000555 Harris DM, 2009, P SOC PHOTO-OPT INS, V7180, DOI 10.1117/12.810197 Hoa M, 2008, OTOLARYNG HEAD NECK, V139, P152, DOI 10.1016/j.otohns.2008.04.005 Izzo AD, 2007, IEEE T BIO-MED ENG, V54, P1108, DOI 10.1109/TBME.2007.892925 Izzo AD, 2006, LASER SURG MED, V38, P745, DOI 10.1002/lsm.20358 McCreery D B, 1998, IEEE Trans Rehabil Eng, V6, P391, DOI 10.1109/86.736153 Melcher JR, 1996, HEARING RES, V93, P52, DOI 10.1016/0378-5955(95)00200-6 Muniak MA, 2013, J COMP NEUROL, V521, P1510, DOI 10.1002/cne.23238 Nevison Barry, 2006, Adv Otorhinolaryngol, V64, P154 O'Driscoll M, 2011, EAR HEARING, V32, P300, DOI 10.1097/AUD.0b013e3181fc9f17 OLIVER DL, 1984, J COMP NEUROL, V224, P155, DOI 10.1002/cne.902240202 Otto SR, 1998, OTOLARYNG HEAD NECK, V118, P291, DOI 10.1016/S0194-5998(98)70304-3 Paxinos G., 1998, RAT BRAIN STEREOTAXI Richter CP, 2008, HEARING RES, V242, P42, DOI [10.1016/j.heares.2008.01.011, 10.1016/j.heares.2008.01.01] Richter C.-P., 2011, J NEURAL ENG, V8 Rosahl SK, 2001, J NEUROSURG, V95, P845, DOI 10.3171/jns.2001.95.5.0845 Ryan A.F., 1982, J COMP NEUROL, V207 Schofield BR, 2002, J COMP NEUROL, V453, P217, DOI 10.1002/cne.10402 Schofield BR, 2001, J COMP NEUROL, V429, P206, DOI 10.1002/1096-9861(20000108)429:2<206::AID-CNE3>3.0.CO;2-X Schultz Michael, 2012, Biomed Opt Express, V3, P3332, DOI 10.1364/BOE.3.003332 SHANNON RV, 1993, OTOLARYNG HEAD NECK, V108, P634 Shimano T., 2012, BRAIN RES, V1511, P138 Shivdasani MN, 2008, J NEUROPHYSIOL, V99, P1, DOI 10.1152/jn.00629.2007 Snyder RL, 2004, JARO-J ASSOC RES OTO, V5, P305, DOI 10.1007/s10162-004-4026-5 SPIROU GA, 1993, J COMP NEUROL, V329, P36, DOI 10.1002/cne.903290104 Teudt IU, 2007, LARYNGOSCOPE, V117, P1641, DOI 10.1097/M1LG.0b013e318074ec00 Teudt IU, 2011, IEEE T BIO-MED ENG, V58, P1648, DOI 10.1109/TBME.2011.2108297 VANDENHONERT C, 1986, HEARING RES, V21, P109, DOI 10.1016/0378-5955(86)90033-X Waring M., 1995, ANN OTO RHINOL LARYN, V103, P33 Waring MD, 1998, EVOKED POTENTIAL, V108, P331, DOI 10.1016/S0168-5597(97)00072-5 Waring MD, 1999, HEARING RES, V130, P219, DOI 10.1016/S0378-5955(99)00016-7 Wells J, 2007, J NEUROSCI METH, V163, P326, DOI 10.1016/j.jneumeth.2007.03.016 Wells J, 2007, BIOPHYS J, V93, P2567, DOI 10.1529/biophysj.107.104786 NR 44 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD APR PY 2014 VL 310 BP 69 EP 75 DI 10.1016/j.heares.2014.01.008 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AE6FV UT WOS:000334086900008 PM 24508368 ER PT J AU Gygi, B Shafiro, V AF Gygi, Brian Shafiro, Valeriy TI Spatial and temporal modifications of multitalker speech can improve speech perception in older adults SO HEARING RESEARCH LA English DT Article DE Speech perception; Stream segregation; Multitalker processing; Dual-task; Coordinate response measure; Auditory attention ID TIME-EXPANDED SPEECH; ELDERLY LISTENERS; HEARING-LOSS; INFORMATIONAL MASKING; IDENTIFICATION TASK; AGE-DIFFERENCES; WORKING-MEMORY; INTELLIGIBILITY; RECOGNITION; YOUNG AB Speech perception in multitalker environments often requires listeners to divide attention among several concurrent talkers before focusing on one talker with pertinent information. Such attentionally demanding tasks are particularly difficult for older adults due both to age-related hearing loss (presbacusis) and general declines in attentional processing and associated cognitive abilities. This study investigated two signal-processing techniques that have been suggested as a means of improving speech perception accuracy of older adults: time stretching and spatial separation of target talkers. Stimuli in each experiment comprised 2-4 fixed-form utterances in which listeners were asked to consecutively 1) detect concurrently spoken keywords in the beginning of the utterance (divided attention); and, 2) identify additional keywords from only one talker at the end of the utterance (selective attention). In Experiment 1, the overall tempo of each utterance was unaltered or slowed down by 25%; in Experiment 2 the concurrent utterances were spatially coincident or separated across a 180-degree hemifield. Both manipulations improved performance for elderly adults with age-appropriate hearing on both tasks. Increasing the divided attention load by attending to more concurrent keywords had a marked negative effect on performance of the selective attention task only when the target talker was identified by a keyword, but not by spatial location. These findings suggest that the temporal and spatial modifications of multitalker speech improved perception of multitalker speech primarily by reducing competition, among cognitive resources required to perform attentionally demanding tasks. Published by Elsevier B.V. C1 [Gygi, Brian] Natl Inst Hlth Res, Nottingham Hearing Biomed Res Unit, Nottingham, England. [Gygi, Brian] Univ Nottingham, Sch Med, Otol & Hearing Grp, Div Clin Neurosci, Nottingham NG7 2UH, England. [Gygi, Brian] Vet Affairs Northern Calif Hlth Care Syst, Martinez, CA USA. [Shafiro, Valeriy] Rush Univ, Med Ctr, Chicago, IL 60612 USA. RP Gygi, B (reprint author), NIHR, Natl Biomed Res Unit Hearing, 113 Ropewalk, Nottingham NG1 5DU, England. EM bgygi@ebire.org FU Merit Review Training Grant from the United States Department of Veterans Affairs Research Service [06-12-00446] FX This research was supported by a Merit Review Training Grant from the United States Department of Veterans Affairs Research Service, VA File # 06-12-00446. CR Akeroyd MA, 2008, INT J AUDIOL S2, V47, P53, DOI 10.1080/14992020802301142 Algazi V. R., 2001, 2001 IEEE WORKSH APP Best V, 2010, EAR HEARING, V31, P213, DOI 10.1097/AUD.0b013e3181c34ba6 Bolia RS, 2000, J ACOUST SOC AM, V107, P1065, DOI 10.1121/1.428288 Boothroyd A, 2010, J AM ACAD AUDIOL, V21, P601, DOI 10.3766/jaaa.21.9.6 Boyle PJ, 2013, EAR HEARING, V34, P203, DOI 10.1097/AUD.0b013e31826a8e82 Bradlow AR, 1999, PERCEPT PSYCHOPHYS, V61, P206, DOI 10.3758/BF03206883 Brungart DS, 2001, J ACOUST SOC AM, V110, P2527, DOI 10.1121/1.1408946 Brungart DS, 2006, J ACOUST SOC AM, V120, P4007, DOI 10.1121/1.2363929 DICARLO LM, 1972, J COMMUN DISORD, V5, P299, DOI 10.1016/0021-9924(72)90001-9 FOLSTEIN MF, 1975, J PSYCHIAT RES, V12, P189, DOI 10.1016/0022-3956(75)90026-6 Foo E. W., 2011, US Patent, Patent No. 20120215532 Gallun FJ, 2005, J ACOUST SOC AM, V118, P1614, DOI 10.1121/1.1984876 Gallun FJ, 2007, PERCEPT PSYCHOPHYS, V69, P757, DOI 10.3758/BF03193777 Gordon-Salant S, 2007, J SPEECH LANG HEAR R, V50, P1181, DOI 10.1044/1092-4388(2007/082) GordonSalant S, 1997, J SPEECH LANG HEAR R, V40, P423 Gygi B, 2012, ACTA ACUST UNITED AC, V98, P142, DOI 10.3813/AAA.918500 Helfer KS, 2008, EAR HEARING, V29, P87 Humes LE., 2008, ASHA LEAD, V13, P33 Humes LE, 2005, J SPEECH LANG HEAR R, V48, P224, DOI 10.1044/1092-4388(2005/016) Humes LE, 2006, J ACOUST SOC AM, V120, P2926, DOI 10.1121/1.2354070 Humes LE., 2008, ASHA LEAD, V13, P10 Ihlefeld A, 2008, J ACOUST SOC AM, V123, P4380, DOI 10.1121/1.2904825 Iyer N., 2005, J ACOUST SOC AM, V117, P2485 Kidd G, 2005, J ACOUST SOC AM, V118, P982, DOI 10.1121/1.1953167 Kidd G, 2005, J ACOUST SOC AM, V118, P3804, DOI 10.1121/1.2109187 KORABIC EW, 1978, AUDIOLOGY, V17, P159 Lasecki W.S., 2013, P 2013 ACM ANN C HUM, P2033 Lee JH, 2012, J ACOUST SOC AM, V132, P1700, DOI 10.1121/1.4740482 LUTERMAN DM, 1966, J SPEECH HEAR RES, V9, P226 MacMillan N. A., 2005, DETECTION THEORY USE Marrone N, 2008, J ACOUST SOC AM, V124, P3064, DOI 10.1121/1.2980441 MCCROSKEY RL, 1982, EAR HEARING, V3, P124, DOI 10.1097/00003446-198205000-00005 Moore T.J., 1981, AUR COMM AC NEUR SUR NAVON D, 1979, PSYCHOL REV, V86, P214, DOI 10.1037/0033-295X.86.3.214 Nejime Y, 1998, J ACOUST SOC AM, V103, P572, DOI 10.1121/1.421123 Nelson T.W., 1999, P HUM FACT ERG SOC 4 NORMAN DA, 1975, COGNITIVE PSYCHOL, V7, P44, DOI 10.1016/0010-0285(75)90004-3 Novak J.S., 2013, P INTERSPEECH, V2013, P1869 PICHENY MA, 1989, J SPEECH HEAR RES, V32, P600 Pichora-Fuller M.K., 2003, INT J AUDIOL, V42, p2S26 Ronnberg J., 2008, INT J AUDIOL, V47, P99, DOI 10.1080/14992020802301167 SALTHOUSE TA, 1991, DEV PSYCHOL, V27, P763, DOI 10.1037/0012-1649.27.5.763 Salthouse TA, 1996, PSYCHOL REV, V103, P403, DOI 10.1037/0033-295X.103.3.403 SCHMITT JF, 1981, J GERONTOL, V36, P441 SCHMITT JF, 1983, J SPEECH HEAR RES, V26, P373 Shafiro V, 2007, J ACOUST SOC AM, V122, pEL229, DOI 10.1121/1.2806174 Sheft S, 2012, EAR HEARING, V33, P709, DOI 10.1097/AUD.0b013e31825aab15 Shinn-Cunningham BG, 2005, ACTA ACUST UNITED AC, V91, P967 Stone MA, 2011, J ACOUST SOC AM, V130, P2874, DOI 10.1121/1.3641371 Vaughan N, 2008, J AM ACAD AUDIOL, V19, P533, DOI 10.3766/jaaa.19.7.2 Vaughan NE, 2002, J REHABIL RES DEV, V39, P559 Verhaeghen P, 1998, PSYCHOL AGING, V13, P120, DOI 10.1037/0882-7974.13.1.120 Verhaeghen P, 2003, PSYCHOL AGING, V18, P443, DOI 10.1037/0882-7974.18.3.443 Wickens C. D., 1991, MULTIPLE TASK PERFOR, P3 Wingfield A, 1999, PSYCHOL AGING, V14, P380, DOI 10.1037//0882-7974.14.3.380 Yost WA, 1996, PERCEPT PSYCHOPHYS, V58, P1026, DOI 10.3758/BF03206830 NR 57 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD APR PY 2014 VL 310 BP 76 EP 86 DI 10.1016/j.heares.2014.01.009 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AE6FV UT WOS:000334086900009 PM 24530609 ER PT J AU Benovitski, YB Blamey, PJ Rathbone, GD Fallon, JB AF Benovitski, Yuri B. Blamey, Peter J. Rathbone, Graeme D. Fallon, James B. TI An automated psychoacoustic testing apparatus for use in cats SO HEARING RESEARCH LA English DT Article ID FREQUENCY DISCRIMINATION; THRESHOLDS; RATS; STIMULATION AB Animal behavioral studies make a significant contribution to hearing research and provide vital information which is not available from human subjects. Animal psychoacoustics is usually extremely time consuming and labor intensive; in addition, animals may become stressed, especially if restraints or negative reinforcers such as electric shocks are used. We present a novel behavioral experimental system that was developed to allow efficient animal training in response to acoustic stimuli. Cats were required to perform a relatively simple task of moving toward and away from the device depending on whether the members of a tone pair were different or the same in frequency (go/no-go task). The experimental setup proved to be effective, with all animals (N = 7) performing at above, 90% correct on an easy task. Animals were trained within 2-4 weeks and then generated a total of 150-200 trials per day, distributed within approximately 8 self initiated sessions. Data collected using this system were stable over 1 week and repeatable over long test periods (14 weeks). Measured frequency discrimination thresholds from 3 animals at 3 different reference frequencies were comparable with previously published results. The main advantages of the system are: relatively simple setup; large amounts of data can be generated without the need of researcher supervision; multiple animals can be tested simultaneously without removal from home pens; and no electric shocks or restraints are required. (C) 2013 Elsevier B.V. All rights reserved. C1 [Benovitski, Yuri B.; Blamey, Peter J.; Rathbone, Graeme D.; Fallon, James B.] La Trobe Univ, Bion Inst, Bundoora, Vic 3086, Australia. [Benovitski, Yuri B.; Rathbone, Graeme D.] La Trobe Univ, Dept Elect Engn, Bundoora, Vic 3086, Australia. [Blamey, Peter J.; Fallon, James B.] Univ Melbourne, Dept Med Bion, Melbourne, Vic 3010, Australia. [Fallon, James B.] Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3010, Australia. RP Fallon, JB (reprint author), Bion Inst, 384-388 Albert St, East Melbourne, Vic 3002, Australia. EM jfallon@bionicsinstitute.org FU National Institutes of Health [HHS-N-263-2007-00053-C]; National Health and Medical Research Council of Australia; Department of Electronic Engineering, La-Trobe University; Victorian Government FX This work was funded by the National Institutes of Health (HHS-N-263-2007-00053-C), the National Health and Medical Research Council of Australia and The Department of Electronic Engineering, La-Trobe University. The Bionics Institute acknowledges the support it receives from the Victorian Government through its Operational Infrastructure Support Program. The authors are grateful to Alison Neil, Nicole Critch and Amy Morley for technical assistance; Andrew Wise and Sam Irvine for advice; Sue Pierce for veterinary advice; Sue Mckay for animal maintenance; Dexter Irvine for comments on the earlier versions of the manuscript. CR Ammersdorfer S., 2012, J COMP PHYSIOL A, P1 Beitel RE, 2000, J NEUROPHYSIOL, V83, P2145 Brown M, 2004, CEREB CORTEX, V14, P952, DOI 10.1093/cercor/bhh056 CARLSTEAD K, 1993, APPL ANIM BEHAV SCI, V38, P143, DOI 10.1016/0168-1591(93)90062-T Clark Graeme M., 1998, Auris Nasus Larynx, V25, P73, DOI 10.1016/S0385-8146(97)10030-X Duke JL, 2001, CONTEMP TOP LAB ANIM, V40, P17 ELLIOTT DN, 1960, J ACOUST SOC AM, V32, P380, DOI 10.1121/1.1908071 Ernst K, 2005, APPL ANIM BEHAV SCI, V91, P205, DOI 10.1016/j.applanim.2004.10.010 Fallon JB, 2009, HEARING RES, V257, P93, DOI 10.1016/j.heares.2009.08.006 Heeger D., 1997, SIGNAL DETECTION THE HEFFNER RS, 1985, HEARING RES, V19, P85, DOI 10.1016/0378-5955(85)90100-5 HIENZ RD, 1993, J ACOUST SOC AM, V93, P462, DOI 10.1121/1.405626 Koot S, 2009, BEHAV RES METHODS, V41, P1169, DOI 10.3758/BRM.41.4.1169 Liu YC, 2010, BEHAV BRAIN RES, V215, P28, DOI 10.1016/j.bbr.2010.06.013 May B.J., 1995, BIOMETHODS METHODS C Pretorius LL, 2008, HEARING RES, V244, P77, DOI 10.1016/j.heares.2008.07.005 RECANZONE GH, 1991, BEHAV RES METH INSTR, V23, P357 Sloan AM, 2009, HEARING RES, V251, P60, DOI 10.1016/j.heares.2009.02.009 SMITH DW, 1994, HEARING RES, V81, P1, DOI 10.1016/0378-5955(94)90147-3 TONG YC, 1982, J ACOUST SOC AM, V71, P153, DOI 10.1121/1.387342 Vollmer M, 2001, J NEUROPHYSIOL, V86, P2330 Wilson BS, 2008, HEARING RES, V242, P3, DOI 10.1016/j.heares.2008.06.005 NR 22 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAR PY 2014 VL 309 BP 1 EP 7 DI 10.1016/j.heares.2013.11.002 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AB5WF UT WOS:000331858700001 PM 24239868 ER PT J AU Benson, RR Gattu, R Cacace, AT AF Benson, Randall R. Gattu, Ramtilak Cacace, Anthony T. TI Left hemisphere fractional anisotropy increase in noise-induced tinnitus: A diffusion tensor imaging (DTI) study of white matter tracts in the brain SO HEARING RESEARCH LA English DT Article ID SENSORINEURAL HEARING-LOSS; CENTRAL AUDITORY-SYSTEM; WILLIAMS-SYNDROME; ACOUSTIC TRAUMA; IN-VIVO; HUNTINGTONS-DISEASE; SPATIAL STATISTICS; COCHLEAR NUCLEUS; HYPERACUSIS; HYPERACTIVITY AB Diffusion tensor imaging (DTI) is a contemporary neuroimaging modality used to study connectivity patterns and microstructure of white matter tracts in the brain. The use of DTI in the study of tinnitus is a relatively unexplored methodology with no studies focusing specifically on tinnitus induced by noise exposure. In this investigation, participants were two groups of adults matched for etiology, age, and degree of peripheral hearing loss, but differed by the presence or absence (+/-) of tinnitus. It is assumed that matching individuals on the basis of peripheral hearing loss, allows for differentiating changes in white matter microstructure due to hearing loss from changes due to the effects of chronic tinnitus. Alterations in white matter tracts, using the fractional anisotropy (FA) metric, which measures directional diffusion of water, were quantified using tract-based spatial statistics (TBSS) with additional details provided by in viva probabilistic tractography. Our results indicate that 10 voxel clusters differentiated the two groups, including 9 with higher FA in the group with tinnitus. A decrease in FA was found for a single cluster in the group with tinnitus. However, seven of the 9 clusters with higher FA were in left hemisphere thalamic, frontal, and parietal white matter. These foci were localized to the anterior thalamic radiations and the inferior and superior longitudinal fasciculi. The two right-sided clusters with increased FA were located in the inferior fronto-occipital fasciculus and superior longitudinal fasciculus. The only decrease in FA for the tinnitus-positive group was found in the superior longitudinal fasciculus of the left parietal lobe. (C) 2013 Elsevier B.V. All rights reserved. C1 [Benson, Randall R.] Ctr Neurol Studies, Novi, MI USA. [Gattu, Ramtilak] Wayne State Univ, Sch Med, Dept Radiol, Detroit, MI 48202 USA. [Cacace, Anthony T.] Wayne State Univ, Dept Commun Sci & Disorders, Detroit, MI 48202 USA. RP Cacace, AT (reprint author), Wayne State Univ, Dept Commun Sci & Disorders, 207 Rackham,60 Farnsworth, Detroit, MI 48202 USA. EM cacacea@wayne.edu FU Tinnitus Research Initiative; Tinnitus Research Consortium FX We thank Paula Morton, R.N., for performing safety questionnaire review prior to imaging and to Mr. Yang Xuan, for excellent technical MR scanning skills. Portions of these data were supported by grants from the Tinnitus Research Initiative and the Tinnitus Research Consortium awarded to ATC. CR Aldhafeeri FM, 2012, NEURORADIOLOGY, V54, P883, DOI 10.1007/s00234-012-1044-6 Arlinghaus LR, 2011, MAGN RESON IMAGING, V29, P1165, DOI 10.1016/j.mri.2011.07.012 Arnold W, 1996, ORL J OTO-RHINO-LARY, V58, P195 Attias Joseph, 2008, Journal of Basic and Clinical Physiology and Pharmacology, V19, P193 Awasthi R, 2010, AM J NEURORADIOL, V31, P442, DOI 10.3174/ajnr.A1849 Baguley DM, 2003, J ROY SOC MED, V96, P582, DOI 10.1258/jrsm.96.12.582 Baguley D.M., 2007, HYPERACUSIS Beaulieu C, 2002, NMR BIOMED, V15, P435, DOI 10.1002/nbm.782 Behrens TEJ, 2003, MAGNET RESON MED, V50, P1077, DOI 10.1002/mrm.10609 Boyen K, 2013, HEARING RES, V295, P67, DOI 10.1016/j.heares.2012.02.010 Browne CJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033272 Brozoski T., 2012, FRONT SYST NEUROSCI, V6, P1 Catani M, 2002, NEUROIMAGE, V17, P77, DOI 10.1006/nimg.2002.1136 Chang SE, 2010, J NEUROLINGUIST, V23, P455, DOI 10.1016/j.jneuroling.2008.11.004 Chang YM, 2004, NEUROREPORT, V15, P1699, DOI 10.1097/01.wnr.0000134584.10207.1a Clark WW, 1999, JAMA-J AM MED ASSOC, V281, P1658, DOI 10.1001/jama.281.17.1658 Coles R. R. A., 2000, TINNITUS HDB, P399 Crippa Alessandro, 2010, Open Neuroimag J, V4, P16, DOI 10.2174/1874440001004010016 Dong SY, 2010, EUR J NEUROSCI, V31, P1616, DOI 10.1111/j.1460-9568.2010.07183.x Douaud G, 2009, NEUROIMAGE, V46, P958, DOI 10.1016/j.neuroimage.2009.03.044 Eckert MA, 2006, NEUROIMAGE, V33, P39, DOI 10.1016/j.neuroimage.2006.05.062 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Elsabbagh M, 2011, J INTELL DISABIL RES, V55, P563, DOI 10.1111/j.1365-2788.2011.01411.x Etkin A, 2011, TRENDS COGN SCI, V15, P85, DOI 10.1016/j.tics.2010.11.004 Gattu R., 2012, P INT SOC MAG RESON Gerdes JS, 2012, SEIZURE-EUR J EPILEP, V21, P478, DOI 10.1016/j.seizure.2012.03.015 Godfrey DA, 2012, J NEUROSCI RES, V90, P2214, DOI 10.1002/jnr.23095 Golm D., 2012, HEAR RES Gu J.W., 2010, J NEUROPHYSIOL, V104, P2261 Haas BW, 2012, GENES BRAIN BEHAV, V11, P62, DOI 10.1111/j.1601-183X.2011.00733.x Haas S.W., 2012, FRONT PSYCHOL, V3, P1 Harris M., 2006, J MAG RESON IMAG, V24, P1259 Henderson D, 2011, TEXTBOOK OF TINNITUS, P301, DOI 10.1007/978-1-60761-145-5_37 Hoeft F, 2007, J NEUROSCI, V27, P11960, DOI 10.1523/JNEUROSCI.3591-07.2007 Holinger D.P., 2005, BRAIN RES, V1037, P39 Humes L, 2006, NOISE MILITARY SERVI Husain FT, 2011, BRAIN RES, V1369, P74, DOI 10.1016/j.brainres.2010.10.095 Jiang HY, 2006, COMPUT METH PROG BIO, V81, P106, DOI 10.1016/j.cmpb.2005.08.004 Kaltenbach JA, 2011, HEARING RES, V276, P52, DOI 10.1016/j.heares.2010.12.003 Keller SS, 2011, EPILEPSIA, V52, P1715, DOI 10.1111/j.1528-1167.2011.03117.x Kloppel S, 2008, BRAIN, V131, P196, DOI 10.1093/brain/awm275 Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 Lee YJ, 2007, J CLIN NEUROSCI, V14, P515, DOI 10.1016/j.jocn.2006.10.002 Levitin DJ, 1998, MUSIC PERCEPT, V15, P357 Levitin DJ, 2003, NEUROIMAGE, V18, P74, DOI 10.1006/nimg.2002.1297 Levitin DJ, 2005, J CHILD PSYCHOL PSYC, V46, P514, DOI 10.1111/j.1469-7610.2004.00376.x Li QQ, 2010, NEUROENDOCRINOL LETT, V31, P747 Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 Lin Y, 2008, J MAGN RESON IMAGING, V28, P598, DOI 10.1002/jmri.21464 Ling JM, 2012, BRAIN, V135, P1281, DOI 10.1093/brain/aws073 Lockwood AH, 2002, NEW ENGL J MED, V347, P904, DOI 10.1056/NEJMra013395 Mahoney CJ, 2011, J NEUROL NEUROSUR PS, V82, P1274, DOI 10.1136/jnnp.2010.235473 Makris N, 2005, CEREB CORTEX, V15, P854, DOI 10.1093/cercor/bhh186 Mamah D, 2010, PSYCHIAT RES-NEUROIM, V183, P144, DOI 10.1016/j.pscychresns.2010.04.013 Matsumoto Nozomu, 2011, Commun Integr Biol, V4, P208, DOI 10.4161/cib.4.2.14491 Mazurek B, 2010, INT J ENV RES PUB HE, V7, P3071, DOI 10.3390/ijerph7083071 Miani C, 2001, EUR ARCH OTO-RHINO-L, V258, P341, DOI 10.1007/s004050100364 Middleton JW, 2011, P NATL ACAD SCI USA, V108, P7601, DOI 10.1073/pnas.1100223108 Morest DK, 1998, MICROSC RES TECHNIQ, V41, P205 Mulders WHAM, 2011, NEUROSCIENCE, V192, P753, DOI 10.1016/j.neuroscience.2011.06.046 Mulders WHAM, 2011, J COMP NEUROL, V519, P2637, DOI 10.1002/cne.22644 Newman C. W., 2004, TINNITUS THEORY MANA, P237 Newman CW, 1996, ARCH OTOLARYNGOL, V122, P143 NIGAM A, 1994, J LARYNGOL OTOL, V108, P494 Piccirillo JF, 2011, ARCH OTOLARYNGOL, V137, P221, DOI 10.1001/archoto.2011.3 Pober B.R., 2010, NEW ENGL J MED, V62, P239 Reiss AL, 2004, J NEUROSCI, V24, P5009, DOI 10.1523/JNEUROSCI.5272-03.2004 Roberts LE, 2010, J NEUROSCI, V30, P14972, DOI 10.1523/JNEUROSCI.4028-10.2010 Rueckert D, 1999, IEEE T MED IMAGING, V18, P712, DOI 10.1109/42.796284 Rugg-Gunn FJ, 2001, BRAIN, V124, P627, DOI 10.1093/brain/124.3.627 Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 Schecklmann M, 2013, BRAIN STRUCT FUNCT, V218, P1061, DOI 10.1007/s00429-013-0520-z Scholz J, 2009, NAT NEUROSCI, V12, P1370, DOI 10.1038/nn.2412 Schreiner C.E., 2004, TINNITUS THEORY MANA, P189 Smith SM, 2006, NEUROIMAGE, V31, P1487, DOI 10.1016/j.neuroimage.2006.02.024 Smith SM, 2004, NEUROIMAGE, V23, P208, DOI DOI 10.1016/J.NEUROIMAGE.2004.07.051 Snook L, 2007, NEUROIMAGE, V34, P243, DOI 10.1016/j.neuroimage.2006.07.021 Steele CJ, 2013, J NEUROSCI, V33, P1282, DOI 10.1523/JNEUROSCI.3578-12.2013 Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002 Tzourio-Mazoyer N, 2002, NEUROIMAGE, V15, P273, DOI 10.1006/nimg.2001.0978 Vanneste S, 2012, EXP BRAIN RES, V221, P345, DOI 10.1007/s00221-012-3177-6 Versace A, 2008, ARCH GEN PSYCHIAT, V65, P1041, DOI 10.1001/archpsyc.65.9.1041 Wang HN, 2011, HEARING RES, V279, P111, DOI 10.1016/j.heares.2011.04.004 Wu CM, 2009, AM J NEURORADIOL, V30, P1773, DOI 10.3174/ajnr.A1681 Wu CM, 2009, AUDIOL NEURO-OTOL, V14, P248, DOI 10.1159/000191282 Yankaskas K, 2012, HEARING RES, V295, P3 Yu CS, 2007, NEUROIMAGE, V36, P411, DOI 10.1016/j.neuroimage.2007.03.003 Zhou SY, 2003, BIOL PSYCHIAT, V54, P427, DOI 10.1016/S0006-3223(03)00007-6 NR 88 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAR PY 2014 VL 309 BP 8 EP 16 DI 10.1016/j.heares.2013.10.005 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AB5WF UT WOS:000331858700002 PM 24212050 ER PT J AU Christison-Lagay, KL Cohen, YE AF Christison-Lagay, Kate L. Cohen, Yale E. TI Behavioral correlates of auditory streaming in rhesus macaques SO HEARING RESEARCH LA English DT Article ID COCKTAIL PARTY PROBLEM; PERCEPTUAL ORGANIZATION; PHONETIC BOUNDARIES; ENHANCED DISCRIMINABILITY; AWAKE MONKEY; CORTEX; SEGREGATION; OBJECT; REPRESENTATIONS; FREQUENCY AB Perceptual representations of auditory stimuli (i.e., sounds) are derived from the auditory system's ability to segregate and group the spectral, temporal, and spatial features of auditory stimuli a process called "auditory scene analysis". Psychophysical studies have identified several of the principles and mechanisms that underlie a listener's ability to segregate and group acoustic stimuli. One important psychophysical task that has illuminated many of these principles and mechanisms is the "streaming" task. Despite the wide use of this task to study psychophysical mechanisms of human audition, no studies have explicitly tested the streaming abilities of non-human animals using the standard methodologies employed in human-audition studies. Here, we trained rhesus macaques to participate in the streaming task using methodologies and controls similar to those presented in previous human studies. Overall, we found that the monkeys' behavioral reports were qualitatively consistent with those of human listeners, thus suggesting that this task may be a valuable tool for future neurophysiological studies. (C) 2013 Elsevier B.V. All rights reserved. C1 [Christison-Lagay, Kate L.] Univ Penn, Neurosci Grad Grp, Philadelphia, PA 19104 USA. [Cohen, Yale E.] U Penn, Perelman Sch Med, Dept Otorhinolaryngol & Neurosci, Philadelphia, PA 19104 USA. [Cohen, Yale E.] U Penn, Dept Bioengn, Philadelphia, PA 19104 USA. RP Christison-Lagay, KL (reprint author), Dept Otorhinolaryngol, 3400 Spruce St,5 Ravdin, Philadelphia, PA 19104 USA. EM katechri@mail.med.upenn.edu FU NIDCD-NIH; Boucai Hearing Restoration Fund FX We thank Joji Tsunada, Steven Eliades, and Heather Hersh for helpful comments on the preparation of this manuscript. We also thank Harry Shirley for outstanding veterinary support. KLCL and YEC were supported by grants from NIDCD-NIH and the Boucai Hearing Restoration Fund. CR Andersen RA, 1996, COLD SPRING HARB SYM, V61, P15 AULANKO R, 1993, NEUROREPORT, V4, P1356, DOI 10.1097/00001756-199309150-00018 Bendor D, 2006, CURR OPIN NEUROBIOL, V16, P391, DOI 10.1016/j.conb.2006.07.001 Bizley JK, 2013, NAT REV NEUROSCI, V14, P693, DOI 10.1038/nrn3565 Bizley JK, 2013, CURR BIOL, V23, P620, DOI 10.1016/j.cub.2013.03.003 BREGMAN AS, 1978, J EXP PSYCHOL HUMAN, V4, P380, DOI 10.1037//0096-1523.4.3.380 Bregman AS, 2000, PERCEPT PSYCHOPHYS, V62, P626, DOI 10.3758/BF03212114 Bregman AS., 1990, AUDITORY SCENE ANAL BROWN CH, 1980, J ACOUST SOC AM, V68, P127, DOI 10.1121/1.384638 Carlyon RP, 2001, J EXP PSYCHOL HUMAN, V27, P115, DOI 10.1037//0096-1523.27.1.115 Coath M, 2005, NETWORK-COMP NEURAL, V16, P285, DOI 10.1080/09548980500290120 Cohen Y.E., 2012, SPRINGER HDB AUDITOR, P1 Cusack R, 2005, J COGNITIVE NEUROSCI, V17, P641, DOI 10.1162/0898929053467541 DeWitt I, 2012, P NATL ACAD SCI USA, V109, pE505, DOI 10.1073/pnas.1113427109 Elhilali M, 2009, NEURON, V61, P317, DOI 10.1016/j.neuron.2008.12.005 Fishman YI, 2001, HEARING RES, V151, P167, DOI 10.1016/S0378-5955(00)00224-0 Fishman YI, 2004, J ACOUST SOC AM, V116, P1656, DOI 10.1121/1.1778903 Fishman YI, 2001, J NEUROPHYSIOL, V86, P2761 Fishman YI, 2000, J ACOUST SOC AM, V108, P235, DOI 10.1121/1.429460 Griffiths TD, 2004, NAT REV NEUROSCI, V5, P887, DOI 10.1038/nrn1538 Horvath J, 2001, COGNITIVE BRAIN RES, V12, P131, DOI 10.1016/S0926-6410(01)00038-6 Izumi A, 2002, COGNITION, V82, pB113, DOI 10.1016/S0010-0277(01)00161-5 Kaas JH, 1999, NAT NEUROSCI, V2, P1045, DOI 10.1038/15967 KUHL PK, 1982, PERCEPT PSYCHOPHYS, V32, P542, DOI 10.3758/BF03204208 KUHL PK, 1975, J ACOUST SOC AM, V57, pS49, DOI 10.1121/1.1995272 KUHL PK, 1983, J ACOUST SOC AM, V73, P1003, DOI 10.1121/1.389148 LOGOTHETIS NK, 1989, SCIENCE, V245, P761, DOI 10.1126/science.2772635 Ma L, 2010, J COMP PSYCHOL, V124, P317, DOI 10.1037/a0018273 McDermott JH, 2009, CURR BIOL, V19, pR1024, DOI 10.1016/j.cub.2009.09.005 Micheyl C, 2005, NEURON, V48, P139, DOI 10.1016/j.neuron.2005.08.039 Micheyl C, 2007, HEARING RES, V229, P116, DOI 10.1016/j.heares.2007.01.007 Miller CT, 2001, NAT NEUROSCI, V4, P783, DOI 10.1038/90481 Moerel M, 2012, J NEUROSCI, V32, P14205, DOI 10.1523/JNEUROSCI.1388-12.2012 Narayan R, 2007, NAT NEUROSCI, V10, P1601, DOI 10.1038/nn2009 Niwa M, 2012, J NEUROSCI, V32, P3193, DOI 10.1523/JNEUROSCI.0767-11.2012 Parker AJ, 1998, ANNU REV NEUROSCI, V21, P227, DOI 10.1146/annurev.neuro.21.1.227 Petkov CI, 2007, NEURON, V54, P153, DOI 10.1016/j.neuron.2007.02.031 Petkov CI, 2003, J NEUROSCI, V23, P9155 PFINGST BE, 1978, HEARING RES, V1, P43, DOI 10.1016/0378-5955(78)90008-4 Rahne T, 2009, EUR J NEUROSCI, V29, P205, DOI 10.1111/j.1460-9568.2008.06561.x Rauschecker JP, 2009, NAT NEUROSCI, V12, P718, DOI 10.1038/nn.2331 Recanzone GH, 2000, J NEUROPHYSIOL, V83, P2315 Recanzone GH, 2008, ANNU REV PSYCHOL, V59, P119, DOI 10.1146/annurev.psych.59.103006.093544 Romanski LM, 2009, ANNU REV NEUROSCI, V32, P315, DOI 10.1146/annurev.neuro.051508.135431 SERAFIN JV, 1982, J ACOUST SOC AM, V71, P1513, DOI 10.1121/1.387851 Shamma S, 2008, PLOS BIOL, V6, P1141, DOI 10.1371/journal.pbio.0060155 Shamma SA, 2010, CURR OPIN NEUROBIOL, V20, P361, DOI 10.1016/j.conb.2010.03.009 Shamma SA, 2011, TRENDS NEUROSCI, V34, P114, DOI 10.1016/j.tins.2010.11.002 Shinn-Cunningham BG, 2008, TRENDS COGN SCI, V12, P182, DOI 10.1016/j.tics.2008.02.003 SINNOTT JM, 1976, J ACOUST SOC AM, V60, P687, DOI 10.1121/1.381140 Sussman ES, 2007, PERCEPT PSYCHOPHYS, V69, P136, DOI 10.3758/BF03194460 Sussman ES, 2005, J ACOUST SOC AM, V117, P1285, DOI [10.1121/1.1854312, 10.1121/1.854312] Tsunada J, 2011, J NEUROPHYSIOL, V105, P2634, DOI 10.1152/jn.00037.2011 Wang X, 2008, NEUROSCIENCE, V154, P294, DOI 10.1016/j.neuroscience.2008.03.065 Winkler I, 2009, TRENDS COGN SCI, V13, P532, DOI 10.1016/j.tics.2009.09.003 Zar JH, 1996, BIOSTATISTICAL ANAL Zatorre RJ, 2004, J NEUROSCI, V24, P3637, DOI 10.1523/JNEUROSCI.5458-03.2004 NR 57 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAR PY 2014 VL 309 BP 17 EP 25 DI 10.1016/j.heares.2013.11.001 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AB5WF UT WOS:000331858700003 PM 24239869 ER PT J AU Schatzer, R Vermeire, K Visser, D Krenmayr, A Kals, M Voormolen, M Van de Heyning, P Zierhofer, C AF Schatzer, Reinhold Vermeire, Katrien Visser, Daniel Krenmayr, Andreas Kals, Mathias Voormolen, Maurits Van de Heyning, Paul Zierhofer, Clemens TI Electric-acoustic pitch comparisons in single-sided-deaf cochlear implant users: Frequency-place functions and rate pitch SO HEARING RESEARCH LA English DT Article ID FINE-STRUCTURE; SPEECH-PERCEPTION; CODING STRATEGY; STIMULATION; HEARING; EAR; MAP AB Eight cochlear implant users with near-normal hearing in their non-implanted ear compared pitch percepts for pulsatile electric and acoustic pure-tone stimuli presented to the two ears. Six subjects were implanted with a 31-mm MED-EL FLEXSOFT electrode, and two with a 24-mm medium (M) electrode, with insertion angles of the most apical contacts ranging from 565 degrees to 758 degrees. In the first experiment, frequency-place functions were derived from pure-tone matches to 1500-pps unmodulated pulse trains presented to individual electrodes and compared to Greenwood's frequency position map along the organ of Corti. While the overall median downward shift of the obtained frequency-place functions (-0.16 octaves re. Greenwood) and the mean shifts in the basal (<240 degrees; -0.33 octaves) and middle (-0.35 octaves) regions were statistically significant, the shift in the apical region (>480 degrees; 0.26 octaves) was not. Standard deviations of frequency-place functions were approximately half an octave at electrode insertion angles below 480 degrees, increasing to an octave at higher angular locations while individual functions were gradually leveling off. In a second experiment, subjects matched the rates of unmodulated pulse trains presented to individual electrodes in the apical half of the array to low-frequency pure tones between 100 Hz and 450 Hz. The aim was to investigate the influence of electrode place on the salience of temporal pitch cues, for coding strategies that present temporal fine structure information via rate modulations on select apical channels. Most subjects achieved reliable matches to tone frequencies from 100 Hz to 300 Hz only on electrodes at angular insertion depths beyond 360 degrees, while rate-matches to 450-Hz tones were primarily achieved on electrodes at shallower insertion angles. Only for electrodes in the second turn the average slopes of rate-pitch functions did not differ significantly from the pure-tone references, suggesting their use for the encoding of within-channel fine frequency information via rate modulations in temporal fine structure stimulation strategies. (C) 2013 Elsevier B.V. All rights reserved. C1 [Schatzer, Reinhold; Zierhofer, Clemens] Univ Innsbruck, Inst Mechatron, A-6020 Innsbruck, Austria. [Vermeire, Katrien; Visser, Daniel; Krenmayr, Andreas; Kals, Mathias] Univ Innsbruck, Inst Ion Phys & Appl Phys, C Doppler Lab Act Implantable Syst, A-6020 Innsbruck, Austria. [Voormolen, Maurits] Univ Antwerp, Univ Dept Radiol, Univ Antwerp Hosp, B-2650 Edegem, Belgium. [Van de Heyning, Paul] Univ Antwerp, Univ Dept Otorhinolaryngol Head & Neck Surg, Univ Antwerp Hosp, B-2650 Edegem, Belgium. RP Schatzer, R (reprint author), Univ Innsbruck, Inst Mechatron, Technikerstr 25, A-6020 Innsbruck, Austria. EM reinhold.schatzer@uibk.ac.at FU Austrian C. Doppler Research Association; TOPBOF project of the University of Antwerp FX We thank Dr. David Landsberger for his helpful comments on a previous version of this manuscript and Dr. Otto Peter for providing the RIB II MED-EL implant research interface. Special thanks go to our subjects for their time and commitment. This work was funded by the Austrian C. Doppler Research Association and supported by the TOPBOF project of the University of Antwerp. CR Baumann U, 2006, HEARING RES, V213, P34, DOI 10.1016/j.heares.2005.12.010 Baumann U, 2011, EAR HEARING, V32, P656, DOI 10.1097/AUD.0b013e31821a4800 Blamey PJ, 1996, HEARING RES, V99, P139, DOI 10.1016/S0378-5955(96)00095-0 Boex C, 2006, JARO-J ASSOC RES OTO, V7, P110, DOI 10.1007/s10162-005-0027-2 Canyon R. P., 2010, J ACOUST SOC AM, V127, P2997 Carlyon RP, 2010, JARO-J ASSOC RES OTO, V11, P625, DOI 10.1007/s10162-010-0222-7 Dorman MF, 2007, JARO-J ASSOC RES OTO, V8, P234, DOI 10.1007/s10162-007-0071-1 DORMAN MF, 1994, J ACOUST SOC AM, V95, P1677, DOI 10.1121/1.408558 Fearn R, 2000, Ann Otol Rhinol Laryngol Suppl, V185, P51 Frijns J. H., 2011, S AP COCHL NEUR EL S GOLDSTEI.JL, 1973, J ACOUST SOC AM, V54, P1496, DOI 10.1121/1.1914448 GREENWOOD D, 1961, J ACOUST SOC AM, V33, P1344, DOI 10.1121/1.1908437 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Kong YY, 2010, J ACOUST SOC AM, V127, P3114, DOI 10.1121/1.3372713 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Licklider J. C. R., 1959, PSYCHOL STUDY SCI, V1, P41 Loeb GE, 2005, EAR HEARING, V26, P435, DOI 10.1097/01.aud.0000179688.87621.48 McDermott H, 2009, AUDIOL NEURO-OTOL, V14, P2, DOI 10.1159/000206489 Meddis R, 1997, J ACOUST SOC AM, V102, P1811, DOI 10.1121/1.420088 Muller J, 2012, ORL J OTO-RHINO-LARY, V74, P185, DOI 10.1159/000337089 Oxenham AJ, 2004, P NATL ACAD SCI USA, V101, P1421, DOI 10.1073/pnas.0306958101 Plomp R., 1971, P 7 INT C AC BUD, V3, P377 Qin MK, 2003, J ACOUST SOC AM, V114, P446, DOI 10.1121/1.1579009 Reiss LAJ, 2007, JARO-J ASSOC RES OTO, V8, P241, DOI 10.1007/s10162-007-0077-8 Reiss LAJ, 2008, OTOL NEUROTOL, V29, P160 Riss D, 2008, OTOL NEUROTOL, V29, P784, DOI 10.1097/MAO.0b013e31817fe00f Schatzer R, 2010, ACTA OTO-LARYNGOL, V130, P1031, DOI 10.3109/00016481003591731 Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a Stakhovskaya O, 2007, JARO-J ASSOC RES OTO, V8, P220, DOI 10.1007/s10162-007-0076-9 TERHARDT E, 1979, HEARING RES, V1, P155, DOI 10.1016/0378-5955(79)90025-X TONG YC, 1983, J ACOUST SOC AM, V74, P73, DOI 10.1121/1.389620 TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554 Van de Heyning Paul, 2008, Ann Otol Rhinol Laryngol, V117, P645 Vermeire K, 2008, HEARING RES, V245, P98, DOI 10.1016/j.heares.2008.09.003 von Helmholtz H, 1863, LEHRE TONEMPFINDUNGE Weyer E. G., 1930, PSYCHOL REV, V37, P365 Weyer E. G., 1940, THEORY HEARING WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 Wundt W., 1880, GRUNDZUGE PHYSL PSYC Xu J, 2000, AM J OTOL, V21, P49, DOI 10.1016/S0196-0709(00)80112-X Xu L, 2003, J ACOUST SOC AM, V114, P3024, DOI 10.1121/1.1623786 NR 41 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAR PY 2014 VL 309 BP 26 EP 35 DI 10.1016/j.heares.2013.11.003 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AB5WF UT WOS:000331858700004 PM 24252455 ER PT J AU Macias, S Hechavarria, JC Cobo, A Mora, EC AF Macias, Silvio Hechavarria, Julio C. Cobo, Ariadna Mora, Emanuel C. TI Narrow sound pressure level tuning in the auditory cortex of the bats Molossus molossus and Macrotus waterhousii SO HEARING RESEARCH LA English DT Article ID AMPLITUDE-SPECTRUM REPRESENTATION; MOUSTACHED BATS; MUSTACHE BAT; FUNCTIONAL-ORGANIZATION; TELEMETRY MICROPHONE; RESPONSE PROPERTIES; ECHOLOCATING BATS; MYOTIS-LUCIFUGUS; TONE INTENSITY; HORSESHOE BAT AB In the auditory system, tuning to sound level appears in the form of non-monotonic response-level functions that depict the response of a neuron to changing sound levels. Neurons with non-monotonic response-level functions respond best to a particular sound pressure level (defined as "best level" or level evoking the maximum response). We performed a comparative study on the location and basic functional organization of the auditory cortex in the gleaning bat, Macrotus waterhousii, and the aerial-hawking bat, Molossus molossus. Here, we describe the response-level function of cortical units in these two species. In the auditory cortices of M. waterhousii and M. molossus, the characteristic frequency of the units increased from caudal to rostral. In M. waterhousii, there was an even distribution of characteristic frequencies while in M. molossus there was an overrepresentation of frequencies present within echolocation pulses. In both species, most of the units showed best levels in a narrow range, without an evident topography in the amplitopic organization, as described in other species. During flight, bats decrease the intensity of their emitted pulses when they approach a prey item or an obstacle resulting in maintenance of perceived echo intensity. Narrow level tuning likely contributes to the extraction of echo amplitudes facilitating echo-intensity compensation. For aerial-hawking bats, like M. molossus, receiving echoes within the optimal sensitivity range can help the bats to sustain consistent analysis of successive echoes without distortions of perception caused by changes in amplitude. (C) 2013 Elsevier B.V. All rights reserved. C1 [Macias, Silvio; Cobo, Ariadna; Mora, Emanuel C.] Univ Havana, Fac Biol, Dept Anim & Human Biol, Res Grp Bioacoust & Neuroethol, Havana 10400, Cuba. [Hechavarria, Julio C.] Goethe Univ Frankfurt, Inst Zellbiol & Neurowissensch, D-60054 Frankfurt, Germany. RP Macias, S (reprint author), Univ Havana, Fac Biol, Dept Anim & Human Biol, Res Grp Bioacoust & Neuroethol, 25 St 455, Havana 10400, Cuba. EM silvio@fbio.uh.cu FU Alexander von Humboldt Foundation; German Academic Exchange Service (DAAD) FX This work was supported by the Alexander von Humboldt Foundation and the German Academic Exchange Service (DAAD). Our gratitude goes as well to two anonymous reviewers who made very important contributions to earlier versions of the manuscript. CR Au WWL, 2003, NATURE, V423, P861, DOI 10.1038/nature01727 Coles R., 1998, J COMP PHYSIOL A, V165, P269 DEAR SP, 1993, J NEUROPHYSIOL, V70, P1988 Ehret G, 1997, J COMP PHYSIOL A, V181, P547, DOI 10.1007/s003590050139 Esser KH, 1997, P NATL ACAD SCI USA, V94, P14019, DOI 10.1073/pnas.94.25.14019 Esser KH, 1999, EUR J NEUROSCI, V11, P3669, DOI 10.1046/j.1460-9568.1999.00789.x GAIONI SJ, 1990, J NEUROPHYSIOL, V64, P1801 Galazyuk AV, 1997, J COMP PHYSIOL A, V180, P301, DOI 10.1007/s003590050050 Hagemann C, 2010, J NEUROPHYSIOL, V103, P322, DOI 10.1152/jn.00595.2009 Hagemann C, 2011, J COMP PHYSIOL A, V197, P605, DOI 10.1007/s00359-010-0530-8 Hechavarria JC, 2013, J ACOUST SOC AM, V133, P570, DOI 10.1121/1.4768794 HEIL P, 1994, HEARING RES, V76, P188, DOI 10.1016/0378-5955(94)90099-X Hiryu S, 2005, J ACOUST SOC AM, V118, P3927, DOI 10.1121/1.2130940 Hiryu S, 2007, J ACOUST SOC AM, V121, P1749, DOI 10.1121/1.2431337 Hiryu S, 2008, J COMP PHYSIOL A, V194, P841, DOI 10.1007/s00359-008-0355-x Hoffmann S, 2008, BMC NEUROSCI, V9, DOI 10.1186/1471-2202-9-65 Kanwal JS, 1999, J NEUROPHYSIOL, V82, P2327 KANWAL JS, 1994, J ACOUST SOC AM, V96, P1229, DOI 10.1121/1.410273 Macias S, 2009, HEARING RES, V250, P19, DOI 10.1016/j.heares.2009.01.006 NEUWEILER G, 1990, PHYSIOL REV, V70, P615 OSTWALD J, 1984, J COMP PHYSIOL, V155, P821, DOI 10.1007/BF00611599 RADTKESCHULLER S, 1995, EUR J NEUROSCI, V7, P570, DOI 10.1111/j.1460-9568.1995.tb00662.x Razak KA, 2002, J NEUROPHYSIOL, V87, P72 Rohl M, 2012, JARO-J ASSOC RES OTO, V13, P369, DOI 10.1007/s10162-012-0315-6 RUBSAMEN R, 1988, J COMP PHYSIOL A, V163, P271, DOI 10.1007/BF00612436 Sadagopan S, 2008, J NEUROSCI, V28, P3415, DOI 10.1523/JNEUROSCI.2743-07.2008 SCHREINER CE, 1992, EXP BRAIN RES, V92, P105 SUGA N, 1982, J NEUROPHYSIOL, V47, P225 SUGA N, 1992, PHILOS T ROY SOC B, V336, P423, DOI 10.1098/rstb.1992.0078 Suga N., 1984, DYNAMIC ASPECTS NEOC, P315 SUGA N, 1979, SCIENCE, V206, P351, DOI 10.1126/science.482944 SUGA N, 1976, SCIENCE, V194, P542, DOI 10.1126/science.973140 SUGA N, 1977, SCIENCE, V196, P64, DOI 10.1126/science.190681 SUTTER ML, 1995, J NEUROPHYSIOL, V73, P190 Takahashi H, 2004, NEUROREPORT, V15, P2061, DOI 10.1097/00001756-200409150-00013 TANIGUCHI I, 1993, NEUROSCI LETT, V151, P178, DOI 10.1016/0304-3940(93)90015-D Watkins PV, 2008, NAT NEUROSCI, V11, P1259, DOI 10.1038/nn.2201 WONG D, 1988, BRAIN RES, V453, P349, DOI 10.1016/0006-8993(88)90176-X NR 38 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAR PY 2014 VL 309 BP 36 EP 43 DI 10.1016/j.heares.2013.11.004 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AB5WF UT WOS:000331858700005 PM 24269749 ER PT J AU Godfrey, DA Jin, YM Liu, XC Godfrey, MA AF Godfrey, Donald A. Jin, Yong-Ming Liu, Xiaochen Godfrey, Matthew A. TI Effects of cochlear ablation on amino acid levels in the rat cochlear nucleus and superior olive SO HEARING RESEARCH LA English DT Article ID STEM AUDITORY NUCLEI; CHOLINE-ACETYLTRANSFERASE ACTIVITY; GAMMA-AMINOBUTYRIC ACID; INTENSE TONE EXPOSURE; ELECTRON-MICROSCOPIC IMMUNOCYTOCHEMISTRY; UNILATERAL VESTIBULAR GANGLIONECTOMY; EAR OSSICLE REMOVAL; GUINEA-PIG COCHLEA; BRAIN-STEM; WALLERIAN DEGENERATION AB Amino acids have important roles in the chemistry of the auditory system, including communication among neurons. There is much evidence for glutamate as a neurotransmitter from auditory nerve fibers to cochlear nucleus neurons. Previous studies in rodents have examined effects of removal of auditory nerve input by cochlear ablation on levels, uptake and release of glutamate in cochlear nucleus subdivisions, as well as on glutamate receptors. Effects have also been reported on uptake and release of gamma-aminobutyrate (GABA) and glycine, two other amino acids strongly implicated in cochlear nucleus synaptic transmission. We mapped the effects of cochlear ablation on the levels of amino acids, including glutamate, GABA, glycine, aspartate, glutamine, taurine, serine, threonine, and arginine, in microscopic subregions of the rat cochlear nucleus. Submicrogram-size samples microdissected from freeze-dried brainstem sections were assayed for amino acid levels by high performance liquid chromatography. After cochlear ablation, glutamate and aspartate levels decreased by 2 days in regions receiving relatively dense innervation from the auditory nerve, whereas the levels of most other amino acids increased. The results are consistent with a close association of glutamate and aspartate with auditory nerve fibers and of other amino acids with other neurons and glia in the cochlear nucleus. A consistent decrease of GABA level in the lateral superior olive could be consistent with a role in some lateral olivocochlear neurons. The results are compared with those obtained with the same methods for the rat vestibular nerve root and nuclei after vestibular ganglionectomy. (C) 2013 Elsevier B.V. All rights reserved. C1 Univ Toledo, Coll Med, Dept Neurol, Toledo, OH 43614 USA. Univ Toledo, Coll Med, Dept Surg, Div Otolaryngol & Dent, Toledo, OH 43614 USA. RP Godfrey, DA (reprint author), Univ Toledo, Dept Neurol, Mail Stop 1195,Hlth Sci Campus,3000 Arlington Ave, Toledo, OH 43614 USA. EM donald.godfrey@utoledo.edu FU NIH [DC00172]; University of Toledo Foundation FX Support for this research was received from NIH grant DC00172 and the University of Toledo Foundation. CR Abbott SD, 1999, NEUROSCIENCE, V93, P1375, DOI 10.1016/S0306-4522(99)00300-0 Albrecht J, 2005, NEUROCHEM RES, V30, P1615, DOI 10.1007/s11064-005-8986-6 Aldskogius H, 1998, PROG NEUROBIOL, V55, P1, DOI 10.1016/S0301-0082(97)00093-2 Alibardi L, 2003, J ANAT, V203, P31, DOI 10.1046/j.1469-7580.2003.00208.x Apostolides PF, 2013, J NEUROSCI, V33, P4768, DOI 10.1523/JNEUROSCI.5555-12.2013 BERREBI AS, 1991, ANAT EMBRYOL, V183, P427 BOBBIN RP, 1990, HEARING RES, V46, P83, DOI 10.1016/0378-5955(90)90141-B CHANPALAY V, 1982, P NATL ACAD SCI-BIOL, V79, P6717, DOI 10.1073/pnas.79.21.6717 COHEN ES, 1972, EXP NEUROL, V35, P470, DOI 10.1016/0014-4886(72)90117-3 DEMEDIUK P, 1989, J NEUROCHEM, V52, P1529, DOI 10.1111/j.1471-4159.1989.tb09204.x Dingledine Raymond, 1994, P367 Dong SY, 2010, EUR J NEUROSCI, V31, P1616, DOI 10.1111/j.1460-9568.2010.07183.x DRESCHER MJ, 1983, J NEUROCHEM, V41, P309, DOI 10.1111/j.1471-4159.1983.tb04745.x Eggermont JJ, 2012, NEUROSCIENCE TINNITU EYBALIN M, 1993, PHYSIOL REV, V73, P309 FEX J, 1976, BRAIN RES, V109, P575, DOI 10.1016/0006-8993(76)90036-6 FISHER SK, 1976, J NEUROCHEM, V27, P1145, DOI 10.1111/j.1471-4159.1976.tb00321.x FRANSON P, 1984, J COMP NEUROL, V223, P138, DOI 10.1002/cne.902230111 Fredrich M, 2013, EUR J NEUROSCI, V38, P2041, DOI 10.1111/ejn.12200 Fuentes-Santamaria V, 2012, J COMP NEUROL, V520, P2974, DOI 10.1002/cne.23088 GACEK RR, 1961, ANAT REC, V139, P455, DOI 10.1002/ar.1091390402 GEORGE R, 1994, EXP NEUROL, V129, P225, DOI 10.1006/exnr.1994.1164 Godfrey DA, 1988, AUDITORY PATHWAY, P107 Godfrey DA, 2012, J NEUROSCI RES, V90, P2214, DOI 10.1002/jnr.23095 GODFREY DA, 1976, J HISTOCHEM CYTOCHEM, V24, P468 Godfrey DA, 2004, J NEUROSCI RES, V77, P603, DOI 10.1002/jnr.20179 GODFREY DA, 1984, HEARING RES, V14, P93, DOI 10.1016/0378-5955(84)90072-8 Godfrey D.A., 2004, ASS RES OT ABSTR, V188 Godfrey Donald A., 2008, Seminars in Hearing, V29, P259, DOI 10.1055/s-0028-1082032 GODFREY DA, 1976, J HISTOCHEM CYTOCHEM, V24, P697 Godfrey DA, 2013, J NEUROSCI RES, V91, P987, DOI 10.1002/jnr.23227 Godfrey DA, 2008, NEUROSCIENCE, V154, P304, DOI 10.1016/j.neuroscience.2007.12.031 Godfrey DA, 2000, HEARING RES, V150, P189, DOI 10.1016/S0378-5955(00)00199-4 GUILLERY RW, 1993, J NEUROCYTOL, V22, P707, DOI 10.1007/BF01181316 Hackney CM, 1996, EUR J NEUROSCI, V8, P79, DOI 10.1111/j.1460-9568.1996.tb01169.x HARRISON JM, 1966, J COMP NEUROL, V126, P51, DOI 10.1002/cne.901260105 HARRISON JM, 1962, J COMP NEUROL, V119, P341, DOI 10.1002/cne.901190306 HARRISON JM, 1965, J COMP NEUROL, V124, P15, DOI 10.1002/cne.901240103 HASSEL B, 1995, NEUROCHEM RES, V20, P413, DOI 10.1007/BF00973096 Hildebrandt H, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023686 HILL DW, 1979, ANAL CHEM, V51, P1338, DOI 10.1021/ac50044a055 Jenkins SA, 2006, BRAIN RES, V1111, P12, DOI 10.1016/j.brainres.2006.06.067 Jin YM, 2005, J NEUROSCI RES, V81, P91, DOI 10.1002/jnr.20536 Jin YM, 2006, J NEUROSCI RES, V83, P157, DOI 10.1002/jnr.20706 Jin YM, 2006, HEARING RES, V216, P168, DOI 10.1016/j.heares.2006.02.002 Kim JJ, 2004, J NEUROSCI RES, V77, P829, DOI 10.1002/jnr.20211 Kraus KS, 2011, NEUROSCIENCE, V194, P309, DOI 10.1016/j.neuroscience.2011.07.056 Lehninger AL, 1975, BIOCHEMISTRY Li H, 1997, NEUROSCIENCE, V77, P473, DOI 10.1016/S0306-4522(96)00468-X Li HY, 1999, ANN OTO RHINOL LARYN, V108, P181 Li HY, 1996, J NEUROCHEM, V66, P1550 Lorente de No R, 1981, PRIMARY ACOUSTIC NUC Lowry OH, 1972, FLEXIBLE SYSTEM ENZY LUDWIN SK, 1990, ACTA NEUROPATHOL, V80, P266 MCCAMAN RE, 1959, J NEUROCHEM, V5, P18, DOI 10.1111/j.1471-4159.1959.tb13329.x MERCHAN MA, 1985, J ANAT, V141, P121 Michler SA, 2003, AUDIOL NEURO-OTOL, V8, P190, DOI 10.1159/000071060 Milbrandt JC, 2000, HEARING RES, V147, P251, DOI 10.1016/S0378-5955(00)00135-0 Morest DK, 1998, MICROSC RES TECHNIQ, V41, P205 MUGNAINI E, 1985, J COMP NEUROL, V235, P61, DOI 10.1002/cne.902350106 OTTERSEN OP, 1992, NEUROSCIENCE, V46, P519, DOI 10.1016/0306-4522(92)90141-N Pagano M, 1993, PRINCIPLES BIOSTATIS PATEL AJ, 1985, J NEUROCHEM, V44, P1816, DOI 10.1111/j.1471-4159.1985.tb07173.x Potashner SJ, 2000, HEARING RES, V147, P125, DOI 10.1016/S0378-5955(00)00126-X POTASHNER SJ, 1985, J NEUROCHEM, V45, P1558, DOI 10.1111/j.1471-4159.1985.tb07227.x Potashner SJ, 1997, EXP NEUROL, V148, P222, DOI 10.1006/exnr.1997.6641 Potts MB, 2009, CEREBELLUM, V8, P211, DOI 10.1007/s12311-009-0114-8 RICHRATH W, 1974, ARCH OTO-RHINO-LARYN, V208, P283, DOI 10.1007/BF02438987 Ross CD, 1995, NEUROCHEM RES, V20, P1483, DOI 10.1007/BF00970598 RYAN AF, 1992, HEARING RES, V61, P24, DOI 10.1016/0378-5955(92)90032-I Shannon-Hartman S., 1993, Society for Neuroscience Abstracts, V19, P533 Suneja SK, 2000, EXP NEUROL, V165, P355, DOI 10.1006/exnr.2000.7471 Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812 Suneja SK, 1998, EXP NEUROL, V154, P473, DOI 10.1006/exnr.1998.6946 TACHIBAN.M, 1974, BRAIN RES, V69, P370, DOI 10.1016/0006-8993(74)90017-1 Torres AC, 1999, NEUROSCIENCE, V92, P1475 VETTER DE, 1991, SYNAPSE, V7, P21, DOI 10.1002/syn.890070104 Wall JT, 2002, BRAIN RES REV, V39, P181, DOI 10.1016/S0165-0173(02)00192-3 WALSH BT, 1972, INT J NEUROSCI, V3, P221, DOI 10.3109/00207457209147026 Wang H, 2009, NEUROSCIENCE, V164, P747, DOI 10.1016/j.neuroscience.2009.08.026 Wang HN, 2011, HEARING RES, V279, P111, DOI 10.1016/j.heares.2011.04.004 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 Wenthold RJ, 1977, BRAIN RES, V138, P279 WENTHOLD RJ, 1978, BRAIN RES, V143, P544, DOI 10.1016/0006-8993(78)90365-7 WENTHOLD RJ, 1987, NEUROSCIENCE, V22, P897, DOI 10.1016/0306-4522(87)92968-X WENTHOLD RJ, 1993, NATO ADV SCI INST SE, V239, P179 WENTHOLD RJ, 1979, BRAIN RES, V162, P338, DOI 10.1016/0006-8993(79)90294-4 WOUTERLOOD FG, 1984, J COMP NEUROL, V227, P136, DOI 10.1002/cne.902270114 Zhang JS, 2003, EXP BRAIN RES, V153, P655, DOI 10.1007/s00221-003-1612-4 Zhang JS, 2003, HEARING RES, V185, P13, DOI 10.1016/S0378-5955(03)00276-4 NR 90 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAR PY 2014 VL 309 BP 44 EP 54 DI 10.1016/j.heares.2013.11.005 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AB5WF UT WOS:000331858700006 PM 24291808 ER PT J AU Zhong, ZW Henry, KS Heinz, MG AF Zhong, Ziwei Henry, Kenneth S. Heinz, Michael G. TI Sensorineural hearing loss amplifies neural coding of envelope information in the central auditory system of chinchillas SO HEARING RESEARCH LA English DT Article ID TEMPORAL FINE-STRUCTURE; FREQUENCY-FOLLOWING RESPONSES; MODULATION TRANSFER-FUNCTIONS; OUTER HAIR-CELLS; LOUDNESS RECRUITMENT; GUINEA-PIG; AMPLITUDE-MODULATION; INFERIOR COLLICULUS; SPEECH-PERCEPTION; IMPAIRED SUBJECTS AB People with sensorineural hearing loss often have substantial difficulty understanding speech under challenging listening conditions. Behavioral studies suggest that reduced sensitivity to the temporal structure of sound may be responsible, but underlying neurophysiological pathologies are incompletely understood. Here, we investigate the effects of noise-induced hearing loss on coding of envelope (ENV) structure in the central auditory system of anesthetized chinchillas. ENV coding wag evaluated non-invasively using auditory evoked potentials recorded from the scalp surface in response to sinusoidally amplitude modulated tones with carrier frequencies of 1, 2, 4, and 8 kHz and a modulation frequency of 140 Hz. Stimuli were presented in quiet and in three levels of white background noise. The latency of scalp-recorded ENV responses was consistent with generation in the auditory midbrain. Hearing loss amplified neural coding of ENV at carrier frequencies of 2 kHz and above. This result may reflect enhanced ENV coding from the periphery and/or an increase in the gain of central auditory neurons. In contrast to expectations, hearing loss was not associated with a stronger adverse effect of increasing masker intensity on ENV coding. The exaggerated neural representation of ENV information shown here at the level of the auditory midbrain helps to explain previous findings of enhanced sensitivity to amplitude modulation in people with hearing loss under some conditions. Furthermore, amplified ENV coding may potentially contribute to speech perception problems in people with cochlear hearing loss by acting as a distraction from more salient acoustic cues, particularly in fluctuating backgrounds. (C) 2013 Elsevier B.V. All rights reserved. C1 [Zhong, Ziwei; Heinz, Michael G.] Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA. [Henry, Kenneth S.; Heinz, Michael G.] Purdue Univ, Dept Speech Language & Hearing Sci, W Lafayette, IN 47907 USA. RP Heinz, MG (reprint author), Purdue Univ, Dept Speech Language & Hearing Sci, 500 Oval Dr, W Lafayette, IN 47907 USA. EM mheinz@purdue.edu FU NIH from the National Institute on Deafness and other Communication Disorders [R01-DC009838, F32-DC012236] FX This work was supported by NIH grants R01-DC009838 to MGH and F32-DC012236 to KSH from the National Institute on Deafness and other Communication Disorders. CR BACON SP, 1992, J SPEECH HEAR RES, V35, P642 Bode H. W., 1945, NETWORK ANAL FEEDBAC CHIMENTO TC, 1990, ELECTROEN CLIN NEURO, V75, P88, DOI 10.1016/0013-4694(90)90156-E CODY AR, 1983, HEARING RES, V9, P55, DOI 10.1016/0378-5955(83)90134-X Dau T, 1999, J ACOUST SOC AM, V106, P2752, DOI 10.1121/1.428103 DOLPHIN WF, 1992, HEARING RES, V58, P70, DOI 10.1016/0378-5955(92)90010-K Finlayson PG, 2009, HEARING RES, V256, P104, DOI 10.1016/j.heares.2009.07.006 Fullgrabe C, 2003, HEARING RES, V178, P35, DOI 10.1016/S0378-5955(03)00027-3 GALBRAITH GC, 1994, ELECTROEN CLIN NEURO, V92, P321, DOI 10.1016/0168-5597(94)90100-7 Galbraith GC, 2000, NEUROSCI LETT, V292, P123, DOI 10.1016/S0304-3940(00)01436-1 GLASBERG BR, 1992, HEARING RES, V64, P81, DOI 10.1016/0378-5955(92)90170-R GLASER EM, 1976, ELECTROEN CLIN NEURO, V40, P25, DOI 10.1016/0013-4694(76)90176-0 HARRISON RV, 1979, ARCH OTO-RHINO-LARYN, V224, P71, DOI 10.1007/BF00455226 Heinz MG, 2010, NEUROPHYSIOLOGICAL BASES OF AUDITORY PERCEPTION, P621, DOI 10.1007/978-1-4419-5686-6_56 Heinz MG, 2004, J NEUROPHYSIOL, V91, P784, DOI 10.1152/jn.00776.2003 Henry KS, 2011, HEARING RES, V280, P236, DOI 10.1016/j.heares.2011.06.002 Henry KS, 2012, NAT NEUROSCI, V15, P1362, DOI 10.1038/nn.3216 Hopkins K, 2008, J ACOUST SOC AM, V123, P1140, DOI 10.1121/1.2824018 Joris PX, 2003, J NEUROSCI, V23, P6345 Kale S, 2010, JARO-J ASSOC RES OTO, V11, P657, DOI 10.1007/s10162-010-0223-6 Kale S, 2012, HEARING RES, V286, P64, DOI 10.1016/j.heares.2012.02.004 Kilman V, 2002, J NEUROSCI, V22, P1328 KIREN T, 1994, ACTA OTO-LARYNGOL, P28 Krishnan A., 2006, AUDITORY EVOKED POTE, P313 Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 KUWADA S, 1986, HEARING RES, V21, P179, DOI 10.1016/0378-5955(86)90038-9 Langner G, 2002, HEARING RES, V168, P110, DOI 10.1016/S0378-5955(02)00367-2 LIBERMAN MC, 1984, HEARING RES, V16, P75, DOI 10.1016/0378-5955(84)90026-1 Littell R., 2006, SAS MIXED MODELS Lorenzi C, 2009, J ACOUST SOC AM, V125, P27, DOI 10.1121/1.2939125 Lorenzi C, 2006, P NATL ACAD SCI USA, V103, P18866, DOI 10.1073/pnas.0607364103 Maison SF, 2000, J NEUROSCI, V20, P4701 Miller RL, 1997, J ACOUST SOC AM, V101, P3602, DOI 10.1121/1.418321 MOORE BCJ, 1993, J ACOUST SOC AM, V94, P2050, DOI 10.1121/1.407478 Moore BCJ, 2008, JARO-J ASSOC RES OTO, V9, P399, DOI 10.1007/s10162-008-0143-x Moore BCJ, 2006, HEARING RES, V222, P16, DOI 10.1016/j.heares.2006.08.007 MOORE BCJ, 1995, BRIT J AUDIOL, V29, P131, DOI 10.3109/03005369509086590 Moore BCJ, 1996, J ACOUST SOC AM, V100, P481, DOI 10.1121/1.415861 Moore BCJ, 2001, J ACOUST SOC AM, V110, P1067, DOI 10.1121/1.1385177 MOORE BCJ, 1992, BRIT J AUDIOL, V26, P229, DOI 10.3109/03005369209076641 Mulders WHAM, 2009, NEUROSCIENCE, V164, P733, DOI 10.1016/j.neuroscience.2009.08.036 Niu YG, 2013, J NEUROSCI RES, V91, P292, DOI 10.1002/jnr.23152 RUGGERO MA, 1991, J NEUROSCI, V11, P1057 Schaette R, 2011, J NEUROSCI, V31, P13452, DOI 10.1523/JNEUROSCI.2156-11.2011 Scheidt RE, 2010, HEARING RES, V269, P23, DOI 10.1016/j.heares.2010.07.009 Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 SMITH JC, 1975, ELECTROEN CLIN NEURO, V39, P465, DOI 10.1016/0013-4694(75)90047-4 SOHMER H, 1977, ELECTROEN CLIN NEURO, V42, P656, DOI 10.1016/0013-4694(77)90282-6 Titze IR, 1994, PRINCIPLES VOICE PRO Turrigiano GG, 1999, TRENDS NEUROSCI, V22, P221, DOI 10.1016/S0166-2236(98)01341-1 Turrigiano GG, 1998, NATURE, V391, P892, DOI 10.1038/36103 WOOLF NK, 1981, HEARING RES, V4, P335, DOI 10.1016/0378-5955(81)90017-4 Young ED, 2012, SPRINGER HANDB AUDIT, V40, P87, DOI 10.1007/978-1-4419-9523-0_6 Zeng FG, 2005, P NATL ACAD SCI USA, V102, P2293, DOI 10.1073/pnas.0406460102 NR 55 TC 1 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAR PY 2014 VL 309 BP 55 EP 62 DI 10.1016/j.heares.2013.11.006 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AB5WF UT WOS:000331858700007 PM 24315815 ER PT J AU Todd, NPM Paillard, AC Kluk, K Whittle, E Colebatch, JG AF Todd, Neil P. M. Paillard, Aurore C. Kluk, Karolina Whittle, Elizabeth Colebatch, James G. TI Vestibular receptors contribute to cortical auditory evoked potentials SO HEARING RESEARCH LA English DT Article ID BONE-CONDUCTED SOUND; LOW-FREQUENCY VIBRATION; INDUCED HEARING-LOSS; MYOGENIC POTENTIALS; CALORIC STIMULATION; HUMAN CORTEX; COMPONENTS; INTENSITY; RESPONSES; THRESHOLD AB Acoustic sensitivity of the vestibular apparatus is well-established, but the contribution of vestibular receptors to the late auditory evoked potentials of cortical origin is unknown. Evoked potentials from 500 Hz tone pips were recorded using 70 channel EEG at several intensities below and above the vestibular acoustic threshold, as determined by vestibular evoked myogenic potentials (VEMPs). In healthy subjects both auditory mid- and long-latency auditory evoked potentials (AEPs), consisting of Na, Pa, N1 and P2 waves, were observed in the sub-threshold conditions. However, in passing through the vestibular threshold, systematic changes were observed in the morphology of the potentials and in the intensity dependence of their amplitude and latency. These changes were absent in a patient without functioning vestibular receptors. In particular, for the healthy subjects there was a fronto-central negativity, which appeared at about 42 ms, referred to as an N42, prior to the AEP NI. Source analysis of both the N42 and N1 indicated involvement of cingulate cortex, as well as bilateral superior temporal cortex. Our findings are best explained by vestibular receptors contributing to what were hitherto considered as purely auditory evoked potentials and in addition tentatively identify a new component that appears to be primarily of vestibular origin. (C) 2013 The Authors. Published by Blsevier B.V. All rights reserved. C1 [Todd, Neil P. M.; Paillard, Aurore C.; Kluk, Karolina; Whittle, Elizabeth] Univ Manchester, Manchester M13 9PL, Lancs, England. [Colebatch, James G.] Univ New S Wales, Sydney, NSW 2052, Australia. RP Todd, NPM (reprint author), Univ Manchester, Fac Life Sci, Manchester M13 9PL, Lancs, England. EM neil.todd@manchester.ac.uk FU Wellcome Trust [WT091961MA] FX The research reported in this article was supported by a grant from the Wellcome Trust (WT091961MA). We are grateful to Sendhil Govender for assistance in recording EEG from the vestibular patient and to Dr M Welgampola and Professor M Halmagyi for their cooperation in the recruitment of the patient. We would like to thank Prof Chris Plack and Dr Selvino de Kort for their comments on an earlier version of this manuscript. We would also like to thank Aisha Mclean for assistance in the preparation of the manuscript. CR Akin FW, 2012, EAR HEARING, V33, P458, DOI 10.1097/AUD.0b013e3182498c5f Antal A, 2008, VISUAL NEUROSCI, V25, P17, DOI 10.1017/S0952523808080024 Balaban CD, 2004, SPR HDB AUD, P286 Barker M., 2012, PLOS ONE, V7 Bickford A.G., 1964, ANN NY ACAD SCI, V194, P112 BLUM PS, 1979, EXP NEUROL, V64, P587, DOI 10.1016/0014-4886(79)90234-6 Brimijoin WO, 2012, I-PERCEPTION, V3, P179, DOI 10.1068/i7173sas COLEBATCH JG, 1994, J NEUROL NEUROSUR PS, V57, P190, DOI 10.1136/jnnp.57.2.190 Curthoys IS, 2006, EXP BRAIN RES, V175, P256, DOI 10.1007/s00221-006-0544-1 de Waele C, 2001, EXP BRAIN RES, V141, P541, DOI 10.1007/s00221-001-0894-7 Dierks T, 1999, PSYCHOPHARMACOLOGY, V146, P101, DOI 10.1007/s002130051094 Emami S.F., 2012, ISRN OTOLARYNGOL, DOI DOI 10.5402/2012/850629 Emami S.F., 2012, ISRN OTOLARYNGOL, DOI DOI 10.5402/2012/246065 Fasold O, 2002, NEUROIMAGE, V17, P1384, DOI 10.1006/nimg.2002.1241 Gallinat J, 2000, PSYCHOPHARMACOLOGY, V148, P404, DOI 10.1007/s002130050070 Guldin WO, 1998, TRENDS NEUROSCI, V21, P254, DOI 10.1016/S0166-2236(97)01211-3 Jones TA, 2011, HEARING RES, V280, P133, DOI 10.1016/j.heares.2011.05.005 Kumar K, 2010, NOISE HEALTH, V12, P191, DOI 10.4103/1463-1741.64973 LACKNER JR, 1974, AEROSPACE MED, V45, P1267 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Lewis E., 1999, COMP HEARING FISH AM Lobel E, 1998, J NEUROPHYSIOL, V80, P2699 Lopez C., 2012, NEUROSCIENCE, V212, P156 Lopez C, 2011, BRAIN RES REV, V67, P119, DOI 10.1016/j.brainresrev.2010.12.002 Manley G.A., 2004, EVOLUTION VERTEBRATE MAURIZI M, 1984, AUDIOLOGY, V23, P569 MCCUE MP, 1994, J NEUROSCI, V14, P6058 McKnight CL, 2013, J ACOUST SOC AM, V133, P136, DOI 10.1121/1.4768801 McNerney KM, 2011, J AM ACAD AUDIOL, V22, P143, DOI 10.3766/jaaa.22.3.3 Meddis R, 2011, J ACOUST SOC AM, V129, P3153, DOI 10.1121/1.3569712 Miyarnoto T, 2007, NEUROSCI LETT, V423, P68, DOI 10.1016/j.neulet.2007.06.036 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x OZDAMAR O, 1983, AUDIOLOGY, V22, P34 Phillips-Silver J, 2008, BRAIN COGNITION, V67, P94, DOI 10.1016/j.bandc.2007.11.007 PICTON TW, 1974, ELECTROEN CLIN NEURO, V36, P179, DOI 10.1016/0013-4694(74)90155-2 Picton TW., 2011, HUMAN AUDITORY EVOKE PROBST T, 1990, NEUROSCI LETT, V108, P255, DOI 10.1016/0304-3940(90)90650-X Rosengren SA, 2006, CLIN NEUROPHYSIOL, V117, P1145, DOI 10.1016/j.clinph.2005.12.026 Rosengren SM, 2005, CLIN NEUROPHYSIOL, V116, P1938, DOI 10.1016/j.clinph.2005.03.019 ROUCOUXHANUS M, 1977, EXP BRAIN RES, V29, P283 Scherg M, 1989, J Cogn Neurosci, V1, P336, DOI 10.1162/jocn.1989.1.4.336 Schlindwein P, 2008, NEUROIMAGE, V39, P19, DOI 10.1016/j.neuroimage.2007.08.016 Smith AT, 2012, CEREB CORTEX, V22, P1068, DOI 10.1093/cercor/bhr179 Sohmer H., 1999, NOISE HEALTH, V2, P41 Stenfelt S, 2000, J ACOUST SOC AM, V107, P422, DOI 10.1121/1.428314 Suzuki M, 2001, COGNITIVE BRAIN RES, V12, P441, DOI 10.1016/S0926-6410(01)00080-5 Tait J., 1932, ANN OTO RHINOL LARYN, V41, P6812 THORNTON AR, 1977, J SPEECH HEAR RES, V20, P81 Todd N, 2001, J ACOUST SOC AM, V110, P380, DOI 10.1121/1.1373662 Todd NPM, 2008, CLIN NEUROPHYSIOL, V119, P1881, DOI 10.1016/j.clinph.2008.03.027 Todd NPM, 2000, J ACOUST SOC AM, V107, P496, DOI 10.1121/1.428317 Todd NPM, 2003, J ACOUST SOC AM, V114, P3264, DOI 10.1121/1.1628249 Todd NPM, 2008, NEUROSCI LETT, V444, P36, DOI 10.1016/j.neulet.2008.08.011 Todd NPM, 2007, J ACOUST SOC AM, V122, P2906, DOI 10.1121/1.2785811 Todd NPM, 2009, NEUROSCI LETT, V451, P175, DOI 10.1016/j.neulet.2008.12.055 Todd NPM, 2010, J APPL PHYSIOL, V109, P53, DOI 10.1152/japplphysiol.01139.2009 Todd NPM, 2004, J ACOUST SOC AM, V115, P3077, DOI 10.1121/1.1736273 Todd NPM, 2007, CLIN NEUROPHYSIOL, V118, P381, DOI 10.1016/j.clinph.2006.09.025 TODD NPM, 1993, MUSIC PERCEPT, V10, P379 Wang YP, 2007, OTOLARYNG HEAD NECK, V137, P607, DOI 10.1016/j.otohns.2007.05.005 YOUNG ED, 1977, ACTA OTO-LARYNGOL, V84, P352, DOI 10.3109/00016487709123977 Zhang AS, 2012, J APPL PHYSIOL, V112, P1279, DOI 10.1152/japplphysiol.01024.2011 Zhang AS, 2011, EXP BRAIN RES, V213, P111, DOI 10.1007/s00221-011-2783-z Zuniga MG, 2012, OTOL NEUROTOL, V33, P1586, DOI 10.1097/MAO.0b013e31826bedbc NR 64 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAR PY 2014 VL 309 BP 63 EP 74 DI 10.1016/j.heares.2013.11.008 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AB5WF UT WOS:000331858700008 PM 24321822 ER PT J AU Anderson, MC Arehart, KH Kates, JM AF Anderson, Melinda C. Arehart, Kathryn H. Kates, James M. TI The effects of noise vocoding on speech quality perception SO HEARING RESEARCH LA English DT Article ID TEMPORAL FINE-STRUCTURE; DIFFERENT FREQUENCY RESPONSES; HEARING-IMPAIRED LISTENERS; SOUND QUALITY; PERCEIVED NATURALNESS; STRUCTURE INFORMATION; NONLINEAR DISTORTION; MUSIC QUALITY; INTELLIGIBILITY; ENVELOPE AB Speech perception depends on access to spectral and temporal acoustic cues. Temporal cues include slowly varying amplitude changes (i.e. temporal envelope, TE) and quickly varying amplitude changes associated with the center frequency of the auditory filter (i.e. temporal fine structure, TFS). This study quantifies the effects of TFS randomization through noise vocoding on the perception of speech quality by parametrically varying the amount of original TFS available above 1500 Hz. The two research aims were: 1) to establish the role of TFS in quality perception, and 2) to determine if the role of TFS in quality perception differs between subjects with normal hearing and subjects with sensorineural hearing loss. Ratings were obtained from 20 subjects (10 with normal hearing and 10 with hearing loss) using an 11-point quality scale. Stimuli were processed in three different ways: 1) A 32-channel noise-excited vocoder with random envelope fluctuations in the noise carrier, 2) a 32-channel noise-excited vocoder with the noise-carrier envelope smoothed, and 3) removal of high-frequency bands. Stimuli were presented in quiet and in babble noise at 18 dB and 12 dB signal-to-noise ratios. TFS randomization had a measurable detrimental effect on quality ratings for speech in quiet and a smaller effect for speech in background babble. Subjects with normal hearing and subjects with sensorineural hearing loss provided similar quality ratings for noise-vocoded speech. (C) 2013 Elsevier B.V. All rights reserved. C1 [Anderson, Melinda C.; Arehart, Kathryn H.; Kates, James M.] Univ Colorado, Boulder, CO 80309 USA. RP Anderson, MC (reprint author), Univ Colorado Hosp, 1635 Aurora Court Suite 6200,Mail Stop F736, Aurora, CO 80045 USA. EM melinda.anderson@uch.edu; kathryn.arehart@colorado.edu; james.kates@colorado.edu FU University of Colorado at Boulder from GN ReSound FX This article is based upon a dissertation submitted to the Graduate School of the University of Colorado at Boulder in partial fulfillment of the requirements of the doctoral degree. This research was supported by a research grant to the University of Colorado at Boulder from GN ReSound. CR Aguilera-Munoz C., 1999, P 6 IEEE INT C EL CI, P741 American National Standards Institute (ANSI), 2004, SPEC AUD ANSI S3 6 Anderson MC, 2009, EURASIP J ADV SIG PR, DOI 10.1155/2009/619805 Arehart KH, 2007, J ACOUST SOC AM, V122, P1150, DOI 10.1121/1.2754061 Arehart KH, 2011, INT J AUDIOL, V50, P177, DOI 10.3109/14992027.2010.539273 Arehart KH, 2010, EAR HEARING, V31, P420, DOI 10.1097/AUD.0b013e3181d3d4f3 Baskent D, 2006, J ACOUST SOC AM, V120, P2908, DOI 10.1121/1.2354017 Beerends JG, 2002, J AUDIO ENG SOC, V50, P765 BYRNE D, 1986, EAR HEARING, V7, P257 COX RM, 1988, EAR HEARING, V9, P198, DOI 10.1097/00003446-198808000-00005 Davies-Venn E, 2007, J AM ACAD AUDIOL, V18, P688, DOI 10.3766/jaaa.18.8.6 Dubno J., 2008, INT HEAR AID RES C L Dudley H, 1939, J ACOUST SOC AM, V11, P169, DOI 10.1121/1.1916020 FOLSTEIN MF, 1975, J PSYCHIAT RES, V12, P189, DOI 10.1016/0022-3956(75)90026-6 Fullgrabe C, 2010, INT J AUDIOL, V49, P741, DOI 10.3109/14992027.2010.495084 GABRIELSSON A, 1988, J SPEECH HEAR RES, V31, P166 GABRIELSSON A, 1990, J ACOUST SOC AM, V88, P1359, DOI 10.1121/1.399713 Glasberg BR, 2006, J ACOUST SOC AM, V120, P585, DOI 10.1121/1.2214151 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Heinz MG, 2009, JARO-J ASSOC RES OTO, V10, P407, DOI 10.1007/s10162-009-0169-8 Hopkins K, 2009, J ACOUST SOC AM, V125, P442, DOI 10.1121/1.3037233 Hopkins K, 2010, J ACOUST SOC AM, V127, P1595, DOI 10.1121/1.3293003 Hopkins K, 2008, J ACOUST SOC AM, V123, P1140, DOI 10.1121/1.2824018 Huber R, 2006, IEEE T AUDIO SPEECH, V14, P1902, DOI 10.1109/TASL.2006.883259 JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982 Kates J.M., 2011, U.S. Patent Application, Patent No. 20110249845 Kates JM, 2010, J AUDIO ENG SOC, V58, P363 Kates JM, 2011, J ACOUST SOC AM, V129, P3981, DOI 10.1121/1.3583552 Kochkin S., 2010, HEAR J, V63, P11 Korhonen P, 2008, J AM ACAD AUDIOL, V19, P639, DOI 10.3766/jaaa.19.8.7 Kulkarni PN, 2012, INT J AUDIOL, V51, P334, DOI 10.3109/14992027.2011.642012 Larson VD, 2000, JAMA-J AM MED ASSOC, V284, P1806, DOI 10.1001/jama.284.14.1806 Lorenzi C, 2006, P NATL ACAD SCI USA, V103, P18866, DOI 10.1073/pnas.0607364103 Ma GL, 2011, IEEE T AUDIO SPEECH, V19, P677, DOI 10.1109/TASL.2010.2057245 Moore BCJ, 2004, HEARING RES, V188, P70, DOI 10.1016/S0378-5955(03)00347-2 Moore BCJ, 2004, J AUDIO ENG SOC, V52, P900 Moore BCJ, 2004, J AUDIO ENG SOC, V52, P1228 Moore BCJ, 2003, J ACOUST SOC AM, V114, P408, DOI 10.1121/1.1577552 Moore BCJ, 2009, J ACOUST SOC AM, V125, P3186, DOI 10.1121/1.3106525 PREMINGER JE, 1995, J SPEECH HEAR RES, V38, P714 Qin MK, 2003, J ACOUST SOC AM, V114, P446, DOI 10.1121/1.1579009 Ricketts TA, 2008, J SPEECH LANG HEAR R, V51, P160, DOI 10.1044/1092-4388(2008/012) Rosenthal S., 1969, IEEE T AUDIO ELECTRO, V17, P227 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Simpson A, 2005, INT J AUDIOL, V44, P281, DOI 10.1080/14992020500060636 Slaney M., 1993, 35 APPL COMP LIB Souza P, 2009, J ACOUST SOC AM, V126, P792, DOI 10.1121/1.3158835 Souza PE, 2013, J SPEECH LANG HEAR R, V56, P1349, DOI 10.1044/1092-4388(2013/12-0151) Stone MA, 2012, J ACOUST SOC AM, V132, P317, DOI 10.1121/1.4725766 Stone MA, 2008, INT J AUDIOL, V47, P737, DOI 10.1080/14992020802290543 Stone MA, 2003, J ACOUST SOC AM, V114, P1023, DOI 10.1121/1.1592160 Tan CT, 2008, INT J AUDIOL, V47, P246, DOI 10.1080/14992020801945493 Tan CT, 2004, J AUDIO ENG SOC, V52, P699 van Buuren RA, 1999, J ACOUST SOC AM, V105, P2903, DOI 10.1121/1.426943 Whitmal NA, 2007, J ACOUST SOC AM, V122, P2376, DOI 10.1121/1.2773993 NR 55 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAR PY 2014 VL 309 BP 75 EP 83 DI 10.1016/j.heares.2013.11.011 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AB5WF UT WOS:000331858700009 PM 24333929 ER PT J AU Pollonini, L Olds, C Abaya, H Bortfeld, H Beauchamp, MS Oghalai, JS AF Pollonini, Luca Olds, Cristen Abaya, Homer Bortfeld, Heather Beauchamp, Michael S. Oghalai, John S. TI Auditory cortex activation to natural speech and simulated cochlear implant speech measured with functional near-infrared spectroscopy SO HEARING RESEARCH LA English DT Article ID SUPERIOR TEMPORAL SULCUS; MOTION ARTIFACT CANCELLATION; CHILDREN; LANGUAGE; FNIRS; INFORMATION; SYSTEM; BRAIN AB The primary goal of most cochlear implant procedures is to improve a patient's ability to discriminate speech. To accomplish this, cochlear implants are programmed so as to maximize speech understanding. However, programming a cochlear implant can be an iterative, labor-intensive process that takes place over months. In this study, we sought to determine whether functional near-infrared spectroscopy (fNIRS), a non-invasive neuroimaging method which is safe to use repeatedly and for extended periods of time, can provide an objective measure of whether a subject is hearing normal speech or distorted speech. We used a 140 channel fNIRS system to measure activation within the auditory cortex in 19 normal hearing subjects while they listed to speech with different levels of intelligibility. Custom software was developed to analyze the data and compute topographic maps from the measured changes in oxyhemoglobin and deoxyhemoglobin concentration. Normal speech reliably evoked the strongest responses within the auditory cortex. Distorted speech produced less region-specific cortical activation. Environmental sounds were used as a control, and they produced the least cortical activation. These data collected using fNIRS are consistent with the fMRI literature and thus demonstrate the feasibility of using this technique to objectively detect differences in cortical responses to speech of different intelligibility. (C) 2013 Elsevier B.V. All rights reserved. C1 [Pollonini, Luca] Univ Houston, Abramson Ctr Future Hlth, Houston, TX 77204 USA. [Pollonini, Luca] Univ Houston, Dept Engn Technol, Houston, TX 77204 USA. [Olds, Cristen; Abaya, Homer; Oghalai, John S.] Stanford Univ, Dept Otolaryngol Head & Neck Surg, Stanford, CA 94305 USA. [Bortfeld, Heather] Univ Connecticut, Dept Psychol, Storrs, CT 06269 USA. [Beauchamp, Michael S.] Univ Texas Hlth Sci Ctr Houston, Dept Neurobiol & Anat, Houston, TX 77030 USA. RP Pollonini, L (reprint author), Univ Houston, Abramson Ctr Future Hlth, 300 Technol Bldg,Suite 123, Houston, TX 77204 USA. EM lpollonini@uh.edu; ceo@stanford.edu; habaya@ohns.stanford.edu; heather.bortfeld@uconn.edu; Michael.S.Beauchamp@uth.tmc.edu; joghalai@ohns.stanford.edu RI Pollonini, Luca/J-9274-2014 OI Pollonini, Luca/0000-0003-2955-6355 FU NIH [R56DC010164, R01DC010075] FX This research was supported by NIH R56DC010164 and R01DC010075. CR Ayaz H, 2010, IEEE ENG MED BIO, P6567, DOI 10.1109/IEMBS.2010.5627113 Beauchamp MS, 2004, NEURON, V41, P809, DOI 10.1016/S0896-6273(04)00070-4 Beauchamp MS, 2008, NEUROIMAGE, V41, P1011, DOI 10.1016/j.neuroimage.2008.03.015 Belin P, 2002, COGNITIVE BRAIN RES, V13, P17, DOI 10.1016/S0926-6410(01)00084-2 Belin P, 2000, NATURE, V403, P309, DOI 10.1038/35002078 Belin P, 2006, PHILOS T R SOC B, V361, P2091, DOI 10.1098/rstb.2006.1933 Bhasin Tanya Karapurkar, 2006, Morbidity and Mortality Weekly Report, V55, P1 Cope M, 1988, Adv Exp Med Biol, V222, P183 Cox RW, 1996, COMPUT BIOMED RES, V29, P162, DOI 10.1006/cbmr.1996.0014 Cui X, 2010, NEUROIMAGE, V49, P3039, DOI 10.1016/j.neuroimage.2009.11.050 Fekete T, 2011, NEUROIMAGE, V56, P2080, DOI 10.1016/j.neuroimage.2011.03.068 Fekete T, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024322 Ferrari M, 2012, NEUROIMAGE, V63, P921, DOI 10.1016/j.neuroimage.2012.03.049 Fischl B, 1999, NEUROIMAGE, V9, P195, DOI 10.1006/nimg.1998.0396 Frost JA, 1999, BRAIN, V122, P199, DOI 10.1093/brain/122.2.199 Gallagher A, 2012, BRAIN LANG, V121, P124, DOI 10.1016/j.bandl.2011.03.006 Huppert TJ, 2009, APPL OPTICS, V48, pD280, DOI 10.1364/AO.48.00D280 Izzetoglu M, 2010, BIOMED ENG ONLINE, V9, DOI 10.1186/1475-925X-9-16 Izzetoglu M, 2005, IEEE T BIO-MED ENG, V52, P934, DOI 10.1109/TBME.2005.845243 Kocsis L, 2006, PHYS MED BIOL, V51, pN91, DOI 10.1088/0031-9155/51/5/N02 Leake PA, 2008, HEARING RES, V242, P86, DOI 10.1016/j.heares.2008.06.002 MIYAMOTO RT, 1994, LARYNGOSCOPE, V104, P1120 Nath AR, 2011, J NEUROSCI, V31, P1704, DOI 10.1523/JNEUROSCI.4853-10.2011 Pei Y., 2007, HUMAN BRAIN MAPPING Plichta MM, 2006, NEUROIMAGE, V31, P116, DOI 10.1016/j.neuroimage.2005.12.008 Quaresima V, 2012, BRAIN LANG, V121, P79, DOI 10.1016/j.bandl.2011.03.009 Robinshaw HM, 1995, BRIT J AUDIOL, V29, P315, DOI 10.3109/03005369509076750 Rossi S, 2012, BRAIN LANG, V121, P152, DOI 10.1016/j.bandl.2011.03.008 Saad ZS, 2012, NEUROIMAGE, V62, P768, DOI 10.1016/j.neuroimage.2011.09.016 Schecklmann M, 2008, NEUROIMAGE, V43, P147, DOI 10.1016/j.neuroimage.2008.06.032 Sevy ABG, 2010, HEARING RES, V270, P39, DOI 10.1016/j.heares.2010.09.010 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Sridhar Divya, 2006, Audiol Neurootol, V11 Suppl 1, P16, DOI 10.1159/000095609 Themelis G., 2004, DEPTH ARTERIAL OSCIL, pWF2 Themelis G, 2007, J BIOMED OPT, V12, DOI 10.1117/1.2710250 Ward B.D., 1998, DECONVOLUTION ANAL F Wilcox T, 2009, NEUROPSYCHOLOGIA, V47, P657, DOI 10.1016/j.neuropsychologia.2008.11.014 Wilcox T, 2008, DEVELOPMENTAL SCI, V11, P361, DOI 10.1111/j.1467-7687.2008.00681.x Ye Jong Chul, 2009, Neuroimage, V44, P428, DOI 10.1016/j.neuroimage.2008.08.036 Yoshinaga-Itano C, 1998, PEDIATRICS, V102, P1161, DOI 10.1542/peds.102.5.1161 Zhang H, 2011, NEUROIMAGE, V55, P607, DOI 10.1016/j.neuroimage.2010.12.007 NR 41 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAR PY 2014 VL 309 BP 84 EP 93 DI 10.1016/j.heares.2013.11.007 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AB5WF UT WOS:000331858700010 PM 24342740 ER PT J AU Dye, MWG Hauser, PC AF Dye, Matthew W. G. Hauser, Peter C. TI Sustained attention, selective attention and cognitive control in deaf and hearing children SO HEARING RESEARCH LA English DT Article ID PERIPHERAL VISUAL SPACE; MOVEMENT DETECTION TASK; LANGUAGE IMPAIRMENT; COCHLEAR IMPLANTS; SPATIAL-DISTRIBUTION; BEHAVIOR PROBLEMS; CONTROL NETWORKS; SPOKEN LANGUAGE; SKILLS; INDIVIDUALS AB Deaf children have been characterized as being impulsive, distractible, and unable to sustain attention. However, past research has tested deaf children born to hearing parents who are likely to have experienced language delays. The purpose of this study was to determine whether an absence of auditory input modulates attentional problems in deaf children with no delayed exposure to language. Two versions of a continuous performance test were administered to 37 deaf children born to Deaf parents and 60 hearing children, all aged 6-13 years. A vigilance task was used to measure sustained attention over the course of several minutes, and a distractibility test provided a measure of the ability to ignore task irrelevant information selective attention. Both tasks provided assessments of cognitive control through analysis of commission errors. The deaf and hearing children did not differ on measures of sustained attention. However, younger deaf children were more distracted by task-irrelevant information in their peripheral visual field, and deaf children produced a higher number of commission errors in the selective attention task. It is argued that this is not likely to be an effect of audition on cognitive processing, but may rather reflect difficulty in endogenous control of reallocated visual attention resources stemming from early profound deafness. (C) 2013 Elsevier B.V. All rights reserved. C1 [Dye, Matthew W. G.] Univ Illinois, Dept Speech & Hearing Sci, Champaign, IL 61820 USA. [Hauser, Peter C.] Natl Tech Inst Deaf, Dept Amer Sign Language & Interpreting Educ, Rochester, NY 14623 USA. RP Dye, MWG (reprint author), Univ Illinois, Dept Speech & Hearing Sci, Champaign, IL 61820 USA. EM mdye@illinois.edu FU NSF [SBE-0541953, SBE-1041725]; [NIDCD R01 DC004418] FX This research was supported by NSF awards SBE-0541953 and SBE-1041725 to the Science of Learning Center on Visual Language and Visual Learning at Gallaudet University, and grant NIDCD R01 DC004418 to Daphne Bavelier and PH. We wish to thank Geo Kartheiser, Rupert Dubler, Kim Scanlon, and Dani Hagemann for recruitment and data collection efforts. CR Arlinger S, 2009, SCAND J PSYCHOL, V50, P371, DOI 10.1111/j.1467-9450.2009.00753.x Barac R, 2012, CHILD DEV, V83, P413, DOI 10.1111/j.1467-8624.2011.01707.x Bavelier D, 2006, TRENDS COGN SCI, V10, P512, DOI 10.1016/j.tics.2006.09.006 Best P., 1974, THESIS WAYNE STATE U Bonvillian J.D., 1983, LANGUAGE SIGN INT PE Buckley D, 2010, VISION RES, V50, P548, DOI 10.1016/j.visres.2009.11.018 Carlson SM, 2008, DEVELOPMENTAL SCI, V11, P282, DOI 10.1111/j.1467-7687.2008.00675.x Chavajay P, 1999, DEV PSYCHOL, V35, P1079, DOI 10.1037//0012-1649.35.4.1079 Chen Q, 2006, BRAIN RES, V1109, P117, DOI 10.1016/j.brainres.2006.06.043 CHESS S, 1980, AM ANN DEAF, V125, P505 Codina C, 2011, DEVELOPMENTAL SCI, V14, P725, DOI 10.1111/j.1467-7687.2010.01017.x Conway CM, 2009, CURR DIR PSYCHOL SCI, V18, P275 Corbett BA, 2006, CHILD NEUROPSYCHOL, V12, P335, DOI 10.1080/09297040500350938 Dye MWG, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005640 Dye MWG, 2010, VISION RES, V50, P452, DOI 10.1016/j.visres.2009.10.010 Dye MWG, 2009, NEUROPSYCHOLOGIA, V47, P1780, DOI 10.1016/j.neuropsychologia.2009.02.002 Dye MWG, 2010, RESTOR NEUROL NEUROS, V28, P181, DOI 10.3233/RNN-2010-0501 Dye M.W.G., 2013, SPRINGER HDB AUDITOR Dye MWG, 2007, NEUROPSYCHOLOGIA, V45, P1801, DOI 10.1016/j.neuropsychologia.2006.12.019 Eabon M.F., 1984, 56 ANN M MIDW PSYCH Ebert KD, 2011, J SPEECH LANG HEAR R, V54, P1372, DOI 10.1044/1092-4388(2011/10-0231) Emmorey K, 2008, PSYCHOL SCI, V19, P1201, DOI 10.1111/j.1467-9280.2008.02224.x Fair DA, 2007, P NATL ACAD SCI USA, V104, P13507, DOI 10.1073/pnas.0705843104 Finneran DA, 2009, J SPEECH LANG HEAR R, V52, P915, DOI 10.1044/1092-4388(2009/07-0053) GARRETSON HB, 1990, J AUTISM DEV DISORD, V20, P101, DOI 10.1007/BF02206860 Gordon M, 1987, TECHNICAL GUIDE GORD Green D. M., 1966, SIGNAL DETECTION THE HARRIS RI, 1978, AM ANN DEAF, V123, P52 Hollingshead A. B., 1975, 4 FACTOR INDEX SOCIA Horn DL, 2005, EAR HEARING, V26, P389, DOI 10.1097/00003446-200508000-00003 Hwang K, 2010, J NEUROSCI, V30, P15535, DOI 10.1523/JNEUROSCI.2825-10.2010 Johnson MH, 2012, TRENDS COGN SCI, V16, P454, DOI 10.1016/j.tics.2012.07.001 Kushalnagar R., 2010, J DEAF STUD DEAF EDU, V15, P263 Kushnerenko E, 2013, FRONT PSYCHOL, V4, DOI 10.3389/fpsyg.2013.00432 Leark R.A., 1999, TOVA TEST VARIABLES Sandler W, 2006, SIGN LANGUAGE AND LINGUISTIC UNIVERSALS, P1, DOI 10.2277/ 0521483956 LOKE WH, 1991, B PSYCHONOMIC SOC, V29, P437 Loots G., 2003, J DEAF STUD DEAF EDU, V8, P31, DOI 10.1093/deafed/8.1.31 Marschark M., 1993, PSYCHOL DEV DEAF CHI Mitchell T.V., 1996, THESIS INDIANA U BLO Mitchell TV, 1996, J CLIN CHILD PSYCHOL, V25, P83, DOI 10.1207/s15374424jccp2501_10 NEVILLE HJ, 1983, BRAIN RES, V266, P127, DOI 10.1016/0006-8993(83)91314-8 NEVILLE HJ, 1987, BRAIN RES, V405, P284, DOI 10.1016/0006-8993(87)90297-6 NEVILLE HJ, 1987, BRAIN RES, V405, P268, DOI 10.1016/0006-8993(87)90296-4 Niparko JK, 2010, JAMA-J AM MED ASSOC, V303, P1498, DOI 10.1001/jama.2010.451 OBRIEN DH, 1987, AM ANN DEAF, V132, P213 Parasnis I., 2001, J SPEECH LANG HEAR R, V46, P1165 Peterson CC, 2000, MIND LANG, V15, P123, DOI 10.1111/1468-0017.00126 PETITTO LA, 1991, SCIENCE, V251, P1493, DOI 10.1126/science.2006424 Proksch J, 2002, J COGNITIVE NEUROSCI, V14, P687, DOI 10.1162/08989290260138591 QUITTNER AL, 1990, J PERS SOC PSYCHOL, V59, P1266, DOI 10.1037//0022-3514.59.6.1266 QUITTNER AL, 1994, PSYCHOL SCI, V5, P347, DOI 10.1111/j.1467-9280.1994.tb00284.x Quittner AL, 2004, ARCH OTOLARYNGOL, V130, P547, DOI 10.1001/archotol.130.5.547 REIVICH RS, 1972, J SPEECH HEAR RES, V15, P93 Ronnberg J., 2008, INT J AUDIOLOGY S2, V47, pS171 Shin MS, 2007, EAR HEARING, V28, p22S, DOI 10.1097/AUD.0b013e318031541b Sladen DP, 2005, J SPEECH LANG HEAR R, V48, P1529, DOI 10.1044/1092-4388(2005/106) Smith L.B., 1998, DEV PSYCHOL, V34, P84 Spaulding TJ, 2008, J SPEECH LANG HEAR R, V51, P16, DOI 10.1044/1092-4388(2008/002) Tharpe AM, 2002, J SPEECH LANG HEAR R, V45, P403, DOI 10.1044/1092-4388(2002/032) Ting JY, 2012, LARYNGOSCOPE, V122, P2808, DOI 10.1002/lary.22149 Tomblin JB, 2005, J SPEECH LANG HEAR R, V48, P853, DOI 10.1044/1092-4388(2005/059) Wendelken C, 2011, DEV COGN NEUROS-NETH, V1, P175, DOI 10.1016/j.dcn.2010.11.001 Wilbur R.B., 2008, SIGN VOICES, P119 Wild CJ, 2012, J NEUROSCI, V32, P14010, DOI 10.1523/JNEUROSCI.1528-12.2012 Yu C, 2011, DEVELOPMENTAL SCI, V14, P165, DOI 10.1111/j.1467-7687.2010.00958.x Yucel E, 2008, INT J PEDIATR OTORHI, V72, P869, DOI [10.1016/j.ijporl.2008.02.017, 10.1016/j.ijport.2008.02.017] NR 67 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAR PY 2014 VL 309 BP 94 EP 102 DI 10.1016/j.heares.2013.12.001 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AB5WF UT WOS:000331858700011 PM 24355653 ER PT J AU Sun, F Zhou, K Wang, SJ Liang, PF Zhu, MZ Qiu, JH AF Sun, Fei Zhou, Ke Wang, Shu-juan Liang, Peng-fei Zhu, Miao-zhang Qiu, Jian-hua TI Expression patterns of atrial natriuretic peptide and its receptors within the cochlear spiral ganglion of the postnatal rat SO HEARING RESEARCH LA English DT Article ID DOPAMINERGIC AMACRINE CELLS; INNER-EAR; GUINEA-PIG; GUANYLYL CYCLASES; C-RECEPTOR; RETINA; LOCALIZATION; SYSTEM; ANP; STIMULATION AB The spiral ganglion, which is primarily composed of spiral ganglion neurons and satellite glial cells, transmits auditory information from sensory hair cells to the central nervous system. Atrial natriuretic peptide (ANP), acting through specific receptors, is a regulatory peptide required for a variety of cardiac, neuronal and glial functions. Although previous studies have provided direct evidence for the presence of ANP and its functional receptors (NPR-A and NPR-C) in the inner ear, their presence within the cochlear spiral ganglion and their regulatory roles during auditory neurotransmission and development is not known. Here we investigated the expression patterns and levels of ANP and its receptors within the cochlear spiral ganglion of the postnatal rat using immunofluorescence and immunoelectron microscopy techniques, reverse transcription-polymerase chain reaction and Western blot analysis. We have demonstrated that ANP and its receptors colocalize in both subtypes of spiral ganglion neurons and in perineuronal satellite glial cells. Furthermore, we have analyzed differential expression levels associated with both mRNA and protein of ANP and its receptors within the rat spiral ganglion during postnatal development. Collectively, our research provides direct evidence for the presence and synthesis of ANP and its receptors in both neuronal and non-neuronal cells within the cochlear spiral ganglion, suggesting possible roles for ANP in modulating neuronal and glial functions, as well as neuron satellite glial cell communication, within the spiral ganglion during auditory neurotransmission and development. (C) 2013 Elsevier B.V. All rights reserved. C1 [Sun, Fei; Zhou, Ke; Wang, Shu-juan; Liang, Peng-fei; Qiu, Jian-hua] Fourth Mil Med Univ, Xijing Hosp, Dept Otolaryngol Head & Neck Surg, Xian 710032, Shaanxi Provinc, Peoples R China. [Sun, Fei; Zhu, Miao-zhang] Fourth Mil Med Univ, Sch Basic Med Sci, Dept Physiol, Xian 710032, Shaanxi Provinc, Peoples R China. [Zhou, Ke] Fourth Mil Med Univ, Xijing Hosp, Dept Clin Lab, Ctr Clin Lab Med PLA, Xian 710032, Shaanxi Provinc, Peoples R China. RP Zhu, MZ (reprint author), Fourth Mil Med Univ, Sch Basic Med Sci, Dept Physiol, Xian 710032, Shaanxi Provinc, Peoples R China. EM zhumz@fmmu.edu.cn; qiujh@fmmu.edu.cn FU National Basic Research Program of China (973 Project) [2011CB504505]; National Natural Science Foundation of China (NSFC) [81120108008, 30930098, 30870902, 81200737, 31271220, 81170911, 81371099, 81271070]; China Postdoctoral Science Foundation [2012M512101, 2013T60954] FX This research was supported by grants from the National Basic Research Program of China (973 Project, No. 2011CB504505), the National Natural Science Foundation of China (NSFC, No. 81120108008, 30930098, 30870902, 81200737, 31271220, 81170911, 81371099 and 81271070) and the China Postdoctoral Science Foundation No. 2012M512101 and 2013T60954. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR Abdelalim EM, 2010, PEPTIDES, V31, P180, DOI 10.1016/j.peptides.2009.10.014 Abdelalim EM, 2008, PEPTIDES, V29, P622, DOI 10.1016/j.peptides.2007.11.021 ANANDSRIVASTAVA MB, 1990, J BIOL CHEM, V265, P8566 ANANDSRIVASTAVA MB, 1993, PHARMACOL REV, V45, P455 Barres BA, 2008, NEURON, V60, P430, DOI 10.1016/j.neuron.2008.10.013 Cao LH, 2008, PROG NEUROBIOL, V84, P234, DOI 10.1016/j.pneurobio.2007.12.003 CHEN HX, 1994, CHINESE MED J-PEKING, V107, P53 DEBOLD AJ, 1981, LIFE SCI, V28, P89, DOI 10.1016/0024-3205(81)90370-2 Dixon DB, 1997, J NEUROSCI, V17, P8945 Furuta H, 1995, HEARING RES, V92, P78, DOI 10.1016/0378-5955(95)00203-0 Hanani M, 2005, BRAIN RES REV, V48, P457, DOI 10.1016/j.brainresrev.2004.09.001 Hanani M, 2010, BRAIN RES REV, V64, P304, DOI 10.1016/j.brainresrev.2010.04.009 Kalisch F, 2006, EXP EYE RES, V83, P962, DOI 10.1016/j.exer.2006.05.003 KOCH T, 1992, HEARING RES, V63, P197, DOI 10.1016/0378-5955(92)90085-2 Krause G, 1997, HEARING RES, V110, P95, DOI 10.1016/S0378-5955(97)00064-6 Kuribayashi K, 2006, BRAIN RES, V1071, P34, DOI 10.1016/j.brainres.2005.11.068 LAMPRECHT J, 1988, ARCH OTO-RHINO-LARYN, V245, P300, DOI 10.1007/BF00464636 LATZKOVITS L, 1993, AM J PHYSIOL, V264, pC603 Levin ER, 1998, NEW ENGL J MED, V339, P321 LEVIN ER, 1991, AM J PHYSIOL, V261, pR453 ZUMGOTTESBERGE AMM, 1991, HEARING RES, V56, P86 Meyer zum Gottesberge A. M., 1989, ACTA OTO-LARYNGOL, V108, P53 ZUMGOTTESBERGE AMM, 1995, ACTA OTO-LARYNGOL, P170 Moriyama N, 2006, BIOCHEM BIOPH RES CO, V350, P322, DOI 10.1016/j.bbrc.2006.09.034 Murthy KS, 2000, AM J PHYSIOL-GASTR L, V278, pG974 Nayagam BA, 2011, HEARING RES, V278, P2, DOI 10.1016/j.heares.2011.04.003 Potter Lincoln R., 2009, V191, P341 Potter LR, 2006, ENDOCR REV, V27, P47, DOI 10.1210/er.2005-0014 Prado J, 2010, NEUROCHEM INT, V57, P367, DOI 10.1016/j.neuint.2010.03.004 Qiao L, 2011, NEUROENDOCRINOL LETT, V32, P187 Richard D, 1996, J NEUROSCI, V16, P7526 Rose RA, 2008, J PHYSIOL-LONDON, V586, P353, DOI 10.1113/jphysiol.2007.144253 Rusznak Z, 2009, PFLUG ARCH EUR J PHY, V457, P1303, DOI 10.1007/s00424-008-0586-2 Sarker MH, 2002, J PHYSIOL-LONDON, V540, P209, DOI 10.1113/physiol.2001.012912 Seebacher T, 1999, HEARING RES, V127, P95, DOI 10.1016/S0378-5955(98)00176-2 Shepherd RK, 2001, AUDIOL NEURO-OTOL, V6, P305, DOI 10.1159/000046843 SUMNERS C, 1994, GLIA, V11, P110, DOI 10.1002/glia.440110206 Sun F, 2013, BRAIN RES BULL, V95, P28, DOI 10.1016/j.brainresbull.2013.04.001 Suzuki M, 1998, MOL BRAIN RES, V55, P165, DOI 10.1016/S0169-328X(98)00016-3 TONG Y, 1990, NEUROPEPTIDES, V16, P63, DOI 10.1016/0143-4179(90)90113-D Vles J. S., 2000, BRAIN RES, V857, P219 Xu GZ, 2010, BRAIN RES BULL, V82, P188, DOI 10.1016/j.brainresbull.2010.03.004 YOON YJ, 1994, ORL J OTO-RHINO-LARY, V56, P73 YOON YJ, 1992, ACTA OTO-LARYNGOL, V112, P604, DOI 10.3109/00016489209137448 NR 44 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAR PY 2014 VL 309 BP 103 EP 112 DI 10.1016/j.heares.2013.11.010 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AB5WF UT WOS:000331858700012 PM 24333928 ER PT J AU Bhargava, P Gaudrain, E Baskent, D AF Bhargava, Pranesh Gaudrain, Etienne Baskent, Deniz TI Top-down restoration of speech in cochlear-implant users SO HEARING RESEARCH LA English DT Article ID NORMAL-HEARING LISTENERS; CALCULATING CORRELATION-COEFFICIENTS; PHONEMIC RESTORATION; PERCEPTUAL RESTORATION; AUDITORY INDUCTION; TEMPORAL CUES; CONTINUITY ILLUSION; GAP DISCRIMINATION; INTERVENING NOISE; ELECTRIC HEARING AB In noisy listening conditions, intelligibility of degraded speech can be enhanced by top-down restoration. Cochlear implant (CI) users have difficulty understanding speech in noisy environments. This could partially be due to reduced top-down restoration of speech, which may be related to the changes that the electrical stimulation imposes on the bottom-up cues. We tested this hypothesis using the phonemic restoration (PhR) paradigm in which speech interrupted with periodic silent intervals is perceived illusorily continuous (continuity illusion or Col) and becomes more intelligible (PhR benefit) when the interruptions are filled with noise bursts. Using meaningful sentences, both Col and PhR benefit were measured in CI users, and compared with those of normal-hearing (NH) listeners presented with normal speech and 8-channel noise-band vocoded speech, acoustically simulating CIs. CI users showed different patterns in both PhR benefit and Col, compared to NH results with or without the noise-band vocoding. However, they were able to use top-down restoration under certain test conditions. This observation supports the idea that changes in bottom-up cues can impose changes to the top down processes needed to enhance intelligibility of degraded speech. The knowledge that CI users seem to be able to do restoration under the right circumstances could be exploited in patient rehabilitation and product development. (C) 2013 Elsevier B.V. All rights reserved. C1 [Bhargava, Pranesh; Gaudrain, Etienne; Baskent, Deniz] Univ Groningen, Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, NL-9700 AB Groningen, Netherlands. [Bhargava, Pranesh; Gaudrain, Etienne; Baskent, Deniz] Univ Groningen, Univ Med Ctr Groningen, Grad Sch Med Sci, Res Sch Behav & Cognit Neurosci, NL-9700 AB Groningen, Netherlands. RP Bhargava, P (reprint author), Univ Med Ctr Groningen, BB21,Postbus 30-001, NL-9700 RB Groningen, Netherlands. EM p.bhargava@umcg.nl; e.p.c.gaudrain@umcg.nl; d.baskent@umcg.nl FU Netherlands Organization for Scientific Research, NWO; Netherlands Organization for Health Research and Development, ZonMw [016.096.397]; University of Groningen; University Medical Center Groningen; Heinsius Houbolt Foundation FX The study was supported by a VIDI grant from the Netherlands Organization for Scientific Research, NWO, and Netherlands Organization for Health Research and Development, ZonMw (grant no. 016.096.397). Further support came from a Rosalind Franklin Fellowship from University of Groningen, University Medical Center Groningen, and funds from Heinsius Houbolt Foundation. We thank our participants for their cooperation, and Ir. Bert Maat, Floor Burgerhof, Esmee Van Der Veen and Marije Sleurink for their valuable assistance. The study is part of the research program of the Otorhinolaryngology Department of University Medical Center Groningen: Healthy Aging and Communication. CR Assmann Peter, 2004, VVolume 18, P231 BASHFORD JA, 1992, PERCEPT PSYCHOPHYS, V51, P211, DOI 10.3758/BF03212247 BASHFORD JA, 1979, J ACOUST SOC AM, V65, pS112, DOI 10.1121/1.2016950 Baskent D, 2010, HEARING RES, V270, P127, DOI 10.1016/j.heares.2010.08.011 Baskent D, 2012, JARO-J ASSOC RES OTO, V13, P683, DOI 10.1007/s10162-012-0334-3 Baskent D, 2009, J ACOUST SOC AM, V125, P3995, DOI 10.1121/1.3125329 Baskent D, 2010, J ACOUST SOC AM, V128, pE169, DOI 10.1121/1.3475794 Baskent D, 2010, HEARING RES, V260, P54, DOI 10.1016/j.heares.2009.11.007 Baskent D, 2005, J ACOUST SOC AM, V117, P1405, DOI 10.1121/1.1856273 Baskent D, 2006, J ACOUST SOC AM, V119, P1156, DOI 10.1121/1.2151825 Benard MR, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058149 Benard M.R., 2013, JASA EL UNPUB Benard M.R., 2013, PERCEPTUAL LEA UNPUB Bertoli S, 2002, CLIN NEUROPHYSIOL, V113, P396, DOI 10.1016/S1388-2457(02)00013-5 Best V, 2008, P NATL ACAD SCI USA, V105, P13174, DOI 10.1073/pnas.0803718105 Bhargava P., 2011, C IMPL AUD PROSTH AS Bhargava P., 2013, INTELLIGIBILIT UNPUB BLAND JM, 1995, BRIT MED J, V310, P446 BLAND JM, 1995, BRIT MED J, V310, P633 Bosman A.J., 1989, THESIS RIJKSUNIVERSI Bregman AS., 1990, AUDITORY SCENE ANAL Carlyon RP, 2002, ACTA ACUST UNITED AC, V88, P408 Carlyon RP, 2004, J ACOUST SOC AM, V116, P3629, DOI 10.1121/1.1811474 Chatterjee M, 2010, J ACOUST SOC AM, V127, pEL37, DOI 10.1121/1.3284544 Clarke J., 2013, C IMPL AUD PROSTH LA Dudley H, 1939, J ACOUST SOC AM, V11, P169, DOI 10.1121/1.1916020 Fishman KE, 1997, J SPEECH LANG HEAR R, V40, P1201 Fogerty D, 2009, J ACOUST SOC AM, V126, P847, DOI 10.1121/1.3159302 Fogerty D, 2012, J ACOUST SOC AM, V131, P1490, DOI 10.1121/1.3676696 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Fu QJ, 2004, JARO-J ASSOC RES OTO, V5, P253, DOI 10.1007/s10162-004-4046-1 Fu QJ, 1998, J ACOUST SOC AM, V104, P3586, DOI 10.1121/1.423941 Gaudrain E, 2013, J ACOUST SOC AM, V133, P502, DOI 10.1121/1.4770243 GORDONSALANT S, 1993, J SPEECH HEAR RES, V36, P1276 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Heinrich A, 2008, J COGNITIVE NEUROSCI, V20, P1737, DOI 10.1162/jocn.2008.20069 Horvath J, 2011, ATTEN PERCEPT PSYCHO, V73, P695, DOI 10.3758/s13414-010-0077-3 HUGGINS AWF, 1964, J ACOUST SOC AM, V36, P1055, DOI 10.1121/1.1919151 Kashino M., 2006, Acoustical Science and Technology, V27, DOI 10.1250/ast.27.318 Kidd GR, 2012, J ACOUST SOC AM, V131, P1434, DOI 10.1121/1.3675975 King AJ, 2007, CURR BIOL, V17, pR799, DOI 10.1016/j.cub.2007.07.013 Lister J, 2002, J ACOUST SOC AM, V111, P2793, DOI 10.1121/1.1476685 Lister J, 2004, J SPEECH LANG HEAR R, V47, P257, DOI 10.1044/1092-4388(2004/021) Loizou PC, 1998, IEEE SIGNAL PROC MAG, V15, P101, DOI 10.1109/79.708543 MILLER GA, 1950, J ACOUST SOC AM, V22, P167, DOI 10.1121/1.1906584 Nelson PB, 2003, J ACOUST SOC AM, V113, P961, DOI 10.1121/1.1531983 Nelson PB, 2004, J ACOUST SOC AM, V115, P2286, DOI 10.1121/1.1703538 Nie K, 2006, EAR HEARING, V27, P208, DOI 10.1097/01.aud.0000202312.31837.25 Petkov CI, 2003, J NEUROSCI, V23, P9155 Pichora-Fuller MK, 2006, J ACOUST SOC AM, V119, P1143, DOI 10.1121/1.2149837 POWERS GL, 1977, J ACOUST SOC AM, V61, P195, DOI 10.1121/1.381255 Qin MK, 2003, J ACOUST SOC AM, V114, P446, DOI 10.1121/1.1579009 REPP BH, 1978, J EXP PSYCHOL HUMAN, V4, P621, DOI 10.1037//0096-1523.4.4.621 REPP BH, 1992, PERCEPT PSYCHOPHYS, V51, P14, DOI 10.3758/BF03205070 Riecke L, 2011, HEARING RES, V277, P152, DOI 10.1016/j.heares.2011.01.013 Riecke L, 2009, HEARING RES, V247, P71, DOI 10.1016/j.heares.2008.10.006 Riecke L, 2012, J NEUROSCI, V32, P8024, DOI 10.1523/JNEUROSCI.0440-12.2012 ROSEN S, 1992, PHILOS T ROY SOC B, V336, P367, DOI 10.1098/rstb.1992.0070 Saija JD, 2014, JARO-J ASSOC RES OTO, V15, P139, DOI 10.1007/s10162-013-0422-z Shahin AJ, 2009, NEUROIMAGE, V44, P1133, DOI 10.1016/j.neuroimage.2008.09.045 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Shinn-Cunningham B., 2013, ICA 2013 MONTR Shinn-Cunningham BG, 2008, TRENDS COGN SCI, V12, P182, DOI 10.1016/j.tics.2008.02.003 Shinn-Cunningham BG, 2008, J ACOUST SOC AM, V123, P295, DOI 10.1121/1.2804701 Srinivasan S, 2005, SPEECH COMMUN, V45, P63, DOI 10.1016/j.specom.2004.09.002 Stephens D, 1996, Scand Audiol Suppl, V43, P57 Stickney GS, 2004, J ACOUST SOC AM, V116, P1081, DOI 10.1121/1.1772399 Stilp CE, 2013, J ACOUST SOC AM, V133, pEL136, DOI 10.1121/1.4776773 Stilp CE, 2010, P NATL ACAD SCI USA, V107, P12387, DOI 10.1073/pnas.0913625107 Strouse A, 1998, J ACOUST SOC AM, V104, P2385, DOI 10.1121/1.423748 STUDEBAKER GA, 1985, J SPEECH HEAR RES, V28, P455 Sugita Y, 1997, NEUROREPORT, V8, P1155, DOI 10.1097/00001756-199703240-00019 Tasell D.J.V., 1992, J ACOUST SOC AM, V92, P1247 THURLOW WR, 1959, J ACOUST SOC AM, V31, P1337, DOI 10.1121/1.1907631 THURLOW W, 1957, AM J PSYCHOL, V70, P653, DOI 10.2307/1419466 VERSCHUURE J, 1983, PERCEPT PSYCHOPHYS, V33, P232, DOI 10.3758/BF03202859 Versfeld NJ, 2000, J ACOUST SOC AM, V107, P1671, DOI 10.1121/1.428451 WARREN RM, 1994, PERCEPT PSYCHOPHYS, V55, P313, DOI 10.3758/BF03207602 WARREN RM, 1984, PSYCHOL BULL, V96, P371 WARREN RM, 1970, SCIENCE, V167, P392, DOI 10.1126/science.167.3917.392 WARREN RM, 1971, PERCEPT PSYCHOPHYS, V9, P358, DOI 10.3758/BF03212667 WARREN RM, 1972, SCIENCE, V176, P1149, DOI 10.1126/science.176.4039.1149 NR 82 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAR PY 2014 VL 309 BP 113 EP 123 DI 10.1016/j.heares.2013.12.003 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AB5WF UT WOS:000331858700013 PM 24368138 ER PT J AU Takada, Y Beyer, LA Swiderski, DL O'Neal, AL Prieskorn, DM Shivatzki, S Avraham, KB Raphael, Y AF Takada, Yohei Beyer, Lisa A. Swiderski, Donald L. O'Neal, Aubrey L. Prieskorn, Diane M. Shivatzki, Shaked Avraham, Karen B. Raphael, Yehoash TI Connexin 26 null mice exhibit spiral ganglion degeneration that can be blocked by BDNF gene therapy SO HEARING RESEARCH LA English DT Article ID SENSORINEURAL HEARING-LOSS; BINDING PROTEIN IMMUNOREACTIVITY; DEAFENED GUINEA-PIGS; AUDITORY BRAIN-STEM; COCHLEAR IMPLANTATION; NEUROTROPHIC FACTOR; C57BL/6J MICE; HAIR-CELLS; INNER-EAR; PEDIATRIC-PATIENTS AB Mutations in the connexin 26 gene (GJB2) are the most common genetic cause of deafness, leading to congenital bilateral non-syndromic sensorineural hearing loss. Here we report the generation of a mouse model for a connexin 26 (Cx26) mutation, in which cre-Sox10 drives excision of the Cx26 gene from non-sensory cells flanking the auditory epithelium. We determined that these conditional knockout mice, designated Gjb2-CKO, have a severe hearing loss. Immunocytochemistry of the auditory epithelium confirmed absence of Cx26 in the non-sensory cells. Histology of the organ of Corti and the spiral ganglion neurons (SGNs) performed at ages 1, 3, or 6 months revealed that in Gjb2-CKO mice, the organ of Corti began to degenerate in the basal cochlear turn at an early stage, and the degeneration rapidly spread to the apex. In addition, the density of SGNs in Rosenthal's canal decreased rapidly along a gradient from the base of the cochlea to the apex, where some SGNs survived until at least 6 months of age. Surviving neurons often clustered together and formed clumps of cells in the canal. We then assessed the influence of brain derived neurotrophic factor (BDNF) gene therapy on the SGNs of Gjb2-CKO mice by inoculating Adenovirus with the BDNF gene insert (Ad.BDNF) into the base of the cochlea via the scala tympani or scala media. We determined that over-expression of BDNF beginning around 1 month of age resulted in a significant rescue of neurons in Rosenthal's canal of the cochlear basal turn but not in the middle or apical portions. This data may be used to design therapies for enhancing the SGN physiological status in all GJB2 patients and especially in a sub-group of GJB2 patients where the hearing loss progresses due to ongoing degeneration of the auditory nerve, thereby improving the outcome of cochlear implant therapy in these ears. (C) 2013 Elsevier B.V. All rights reserved. C1 [Takada, Yohei; Beyer, Lisa A.; Swiderski, Donald L.; O'Neal, Aubrey L.; Prieskorn, Diane M.; Raphael, Yehoash] Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol Head & Neck Surg, Ann Arbor, MI 48109 USA. [Takada, Yohei] Kansai Med Univ, Dept Otolaryngol, Hirakata, Osaka 5731191, Japan. [Shivatzki, Shaked; Avraham, Karen B.] Tel Aviv Univ, Sackler Fac Med, Dept Human Mol Genet & Biochem, IL-69978 Tel Aviv, Israel. [Shivatzki, Shaked; Avraham, Karen B.] Tel Aviv Univ, Sagol Sch Neurosci, IL-69978 Tel Aviv, Israel. RP Raphael, Y (reprint author), Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol Head & Neck Surg, 1150 W Med Ctr, Ann Arbor, MI 48109 USA. EM yoash@umich.edu FU Berte and Alan Hirschfield Foundation; R. Jamison and Betty Williams Professorship; I-CORE Gene Regulation in Complex Human Disease Center [41/11]; NIH/NIDCD [R01-DC010412, R01-DC007634, P30-DC05188, R01-DC011835] FX The Ad.BDNF was kindly provided by Dr. Adriana Di Polo, University of Montreal. We would like to thank Hideto Fukui, Yong Ho Park and Hiu Tung (Candy) Wong for assistance and helpful comments on this paper. This work was supported by the Berte and Alan Hirschfield Foundation (Y.R. and K.B.A.), the R. Jamison and Betty Williams Professorship (Y.R.), I-CORE Gene Regulation in Complex Human Disease Center No. 41/11 (K.B.A.),and by NIH/NIDCD Grants R01-DC010412, R01-DC007634, P30-DC05188 (Y.R.) and R01-DC011835 (K.B.A.). CR Aarnisalo AA, 2000, ORL J OTO-RHINO-LARY, V62, P330, DOI 10.1159/000027764 Abrashkin KA, 2006, HEARING RES, V218, P20, DOI 10.1016/j.heares.2006.04.001 Agterberg MJH, 2008, HEARING RES, V244, P25, DOI 10.1016/j.heares.2008.07.004 Agterberg MJH, 2009, JARO-J ASSOC RES OTO, V10, P355, DOI 10.1007/s10162-009-0170-2 Anselmi F, 2008, P NATL ACAD SCI USA, V105, P18770, DOI [10.1073/pnas.0800793105, 10.1073/pnas.080079310S] Atkinson PJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052338 Bowers WJ, 2002, MOL THER, V6, P12, DOI 10.1006/mthe.2002.0627 Bruzzone R, 1996, EUR J BIOCHEM, V238, P1, DOI 10.1111/j.1432-1033.1996.0001q.x Chikar JA, 2008, HEARING RES, V245, P24, DOI 10.1016/j.heares.2008.08.005 CLOPTON BM, 1980, ANN OTO RHINOL LARYN, V89, P5 Cohen-Salmon M, 2002, CURR BIOL, V12, P1106, DOI 10.1016/S0960-9822(02)00904-1 Crawley BK, 2011, HEARING RES, V280, P201, DOI 10.1016/j.heares.2011.05.015 Crispino G, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023279 Cullen RD, 2004, LARYNGOSCOPE, V114, P1415, DOI 10.1097/00005537-200408000-00019 Denoyelle F, 1999, LANCET, V353, P1298, DOI 10.1016/S0140-6736(98)11071-1 Di Polo A, 1998, P NATL ACAD SCI USA, V95, P3978, DOI 10.1073/pnas.95.7.3978 Dodson HC, 2000, J NEUROCYTOL, V29, P525, DOI 10.1023/A:1007201913730 Duan ML, 2000, P NATL ACAD SCI USA, V97, P7597, DOI 10.1073/pnas.97.13.7597 Fritzsch B, 1999, CELL TISSUE RES, V295, P369, DOI 10.1007/s004410051244 Fukui H, 2012, SCI REP-UK, V2, DOI 10.1038/srep00838 Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542 Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3 Hilgert N, 2009, EUR J HUM GENET, V17, P517, DOI 10.1038/ejhg.2008.201 Hochman JB, 2010, OTOL NEUROTOL, V31, P919, DOI 10.1097/MAO.0b013e3181e3d324 Idrizbegovic E, 2003, HEARING RES, V179, P33, DOI 10.1016/S0378-5955(03)00076-5 Idrizbegovic E, 2004, NEUROBIOL AGING, V25, P1085, DOI 10.1016/j.neuroimaging.2003.11.004 Incesulu A, 1998, ANN OTO RHINOL LARYN, V107, P906 Jun AI, 2000, LARYNGOSCOPE, V110, P269, DOI 10.1097/00005537-200002010-00016 Jyothi V, 2010, J COMP NEUROL, V518, P3254, DOI 10.1002/cne.22398 JYUNG RW, 1989, OTOLARYNG HEAD NECK, V101, P670 Kanzaki S, 2002, J COMP NEUROL, V454, P350, DOI 10.1002/cne.10480 Kho ST, 2000, MOL THER, V2, P368, DOI 10.1006/mthe.2000.0129 Kikuchi Toshihiko, 2000, Medical Electron Microscopy, V33, P51, DOI 10.1007/s007950070001 KOITCHEV K, 1982, ACTA OTO-LARYNGOL, V94, P431, DOI 10.3109/00016488209128931 Kong Y, 2013, CHINESE MED J-PEKING, V126, P1298, DOI 10.3760/cma.j.issn.0366-6999.20123431 Kudo T, 2003, HUM MOL GENET, V12, P995, DOI 10.1093/hmg/ddg116 Kumar NM, 1996, CELL, V84, P381, DOI 10.1016/S0092-8674(00)81282-9 LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4 LINTHICUM FH, 1991, ACTA OTO-LARYNGOL, V111, P327, DOI 10.3109/00016489109137395 Liu XZ, 2001, ANN OTO RHINOL LARYN, V110, P356 Matsuoka T, 2005, NATURE, V436, P347, DOI 10.1038/nature03837 Nakaizumi T, 2004, AUDIOL NEURO-OTOL, V9, P135, DOI 10.1159/000077264 Ohlemiller KK, 2004, J COMP NEUROL, V479, P103, DOI 10.1002/cne.20326 OTTE J, 1978, LARYNGOSCOPE, V88, P1231 Salt AN, 2009, AUDIOL NEURO-OTOL, V14, P350, DOI 10.1159/000241892 Sato T, 2006, BRAIN RES, V1091, P224, DOI 10.1016/j.brainres.2005.12.104 Shibata SB, 2010, EXP NEUROL, V223, P464, DOI 10.1016/j.expneurol.2010.01.011 Snoeckx RL, 2005, AM J HUM GENET, V77, P945, DOI 10.1086/497996 Someya S, 2009, P NATL ACAD SCI USA, V106, P19432, DOI 10.1073/pnas.0908786106 Someya S, 2008, NEUROBIOL AGING, V29, P1080, DOI 10.1016/j.neurobiolaging.2007.01.014 Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011 Stover T, 2000, GENE THER, V7, P377, DOI 10.1038/sj.gt.3301108 Sugawara M, 2005, JARO-J ASSOC RES OTO, V6, P136, DOI 10.1007/s10162-004-5050-1 Sun Y, 2009, J COMP NEUROL, V516, P569, DOI 10.1002/cne.22117 Tarkan O, 2013, J LARYNGOL OTOL, V127, P33, DOI 10.1017/S0022215112002587 Tylstedt S, 1997, ACTA OTO-LARYNGOL, V117, P505, DOI 10.3109/00016489709113429 VANDEWATER TR, 1996, CIBA F SYMP, V196, P162 VandeWater TR, 1996, CIBA F SYMP, V196, P149 Wang YF, 2009, BIOCHEM BIOPH RES CO, V385, P33, DOI 10.1016/j.bbrc.2009.05.023 WEBSTER DB, 1978, OTOLARYNGOLOGY, V86 Willott JF, 2009, HEARING RES, V252, P89, DOI 10.1016/j.heares.2008.12.002 Wise AK, 2011, HEARING RES, V278, P69, DOI 10.1016/j.heares.2011.04.010 Wise AK, 2010, MOL THER, V18, P1111, DOI 10.1038/mt.2010.28 Ylikoski J, 1998, HEARING RES, V124, P17, DOI 10.1016/S0378-5955(98)00095-1 Yoshida H, 2013, AURIS NASUS LARYNX, V40, P435, DOI 10.1016/j.anl.2013.01.006 Yu Q, 2013, J NEUROSCI, V33, P13042, DOI 10.1523/JNEUROSCI.0854-13.2013 Zilberstein Y, 2012, J NEUROSCI, V32, P405, DOI 10.1523/JNEUROSCI.4678-11.2012 NR 67 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAR PY 2014 VL 309 BP 124 EP 135 DI 10.1016/j.heares.2013.11.009 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AB5WF UT WOS:000331858700014 PM 24333301 ER PT J AU Guan, XY Chen, YZ Gan, RZ AF Guan, Xiying Chen, Yongzheng Gan, Rong Z. TI Factors affecting loss of tympanic membrane mobility in acute otitis media model of chinchilla SO HEARING RESEARCH LA English DT Article ID NONTYPABLE HAEMOPHILUS-INFLUENZAE; MIDDLE-EAR FLUID; STREPTOCOCCUS-PNEUMONIAE; STATIC PRESSURE; PARS FLACCIDA; SOUND-TRANSMISSION; OSSICULAR CHAIN; GENE-EXPRESSION; MOUSE MODEL; GUINEA-PIG AB Recently we reported that middle ear pressure (MEP), middle ear effusion (MEE), and ossicular changes each contribute to the loss of tympanic membrane (TM) mobility in a guinea pig model of acute otitis media (AOM) induced by Streptococcus pneumoniae (Guan and Gan, 2013). However, it is not clear how those factors vary along the course of the disease and whether those effects are reproducible in different species. In this study, a chinchilla AOM model was produced by transbullar injection of Haemophilus influenzae. Mobility of the TM at the umbo was measured by laser vibrometry in two treatment groups: 4 days (4D) and 8 days (8D) post inoculation. These time points represent relatively early and later phases of AOM. In each group, the vibration of the umbo was measured at three experimental stages: unopened, pressure-released, and effusion-removed ears. The effects of MEP and MEE and middle ear structural changes were quantified in each group by comparing the TM mobility at one stage with that of the previous stage. Our findings show that the factors affecting TM mobility do change with the disease time course. The MEP was the dominant contributor to reduction of TM mobility in 4D AOM ears, but showed little effect in 8D ears when MEE filled the tympanic cavity. MEE was the primary factor affecting TM mobility loss in 8D ears, but affected the 4D ears only at high frequencies. After the release of MEP and removal of MEE, residual loss of TM mobility was seen mainly at low frequencies in both 4D and 8D ears, and was associated with middle ear structural changes. Our findings establish that the factors contributing to TM mobility loss in the chinchilla ear were similar to those we reported previously for the guinea pig ears with AOM. Outcomes did not appear to differ between the two major bacterial species causing AOM in these animal models. (C) 2014 Elsevier B.V. All rights reserved. C1 [Gan, Rong Z.] Univ Oklahoma, Sch Aerosp & Mech Engn, Norman, OK 73019 USA. Univ Oklahoma, Ctr Bioengn, Norman, OK 73019 USA. RP Gan, RZ (reprint author), Univ Oklahoma, Sch Aerosp & Mech Engn, 865 Asp Ave,Room 200, Norman, OK 73019 USA. EM rgan@ou.edu FU NIH [R01DC011585] FX We thank Dr. Thomas W. Seale and Brett Cole in Department of Pediatrics at University of Oklahoma Health Science Center for their expert technical assistance on Haemophilus influenzae preparation. The authors also thank Dr. Seale and Dr. Mark Wood at Hough Ear Institute for editing this paper. This work was supported by NIH R01DC011585. CR Bakaletz LO, 2009, EXPERT REV VACCINES, V8, P1063, DOI [10.1586/erv.09.63, 10.1586/ERV.09.63] Bakaletz LO, 1999, INFECT IMMUN, V67, P2746 BLUESTONE CD, 1992, PEDIATR INFECT DIS J, V11, pS7, DOI 10.1097/00006454-199208001-00002 Bluestone C.D., 1983, PEDIAT OTOLARYNGOLOG, P419 BROWNING GG, 1978, ANN OTO RHINOL LARYN, V87, P875 CayeThomasen P, 1996, LARYNGOSCOPE, V106, P463 Caye-Thomasen P, 2000, ACTA OTO-LARYNGOL, V120, P810 Dai C, 2008, HEARING RES, V236, P22, DOI 10.1016/j.heares.2007.11.005 Dai C, 2007, HEARING RES, V230, P24, DOI 10.1016/j.heares.2007.03.006 Forbes ML, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001969 Gan RZ, 2006, J ACOUST SOC AM, V120, P3799, DOI 10.1121/1.2372451 Gan RZ, 2013, HEARING RES, V301, P125, DOI 10.1016/j.heares.2013.01.001 Giebink GS, 1999, MICROB DRUG RESIST, V5, P57, DOI 10.1089/mdr.1999.5.57 Gould JM, 2010, PEDIATR REV, V31, P102, DOI 10.1542/pir.31-3-102 Guan XY, 2011, HEARING RES, V277, P96, DOI 10.1016/j.heares.2011.03.003 Guan XY, 2013, JARO-J ASSOC RES OTO, V14, P295, DOI 10.1007/s10162-013-0379-y GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465 HANAMURE Y, 1987, AM J OTOLARYNG, V8, P127, DOI 10.1016/S0196-0709(87)80035-2 Hoa M, 2009, ANN OTO RHINOL LARYN, V118, P292 Hoberman A, 2011, NEW ENGL J MED, V364, P105, DOI 10.1056/NEJMoa0912254 JERGER J, 1970, ARCHIV OTOLARYNGOL, V92, P311 Larsson C, 2003, OTOL NEUROTOL, V24, P358, DOI 10.1097/00129492-200305000-00002 Lee CY, 2001, HEARING RES, V153, P146, DOI 10.1016/S0378-5955(00)00269-0 Lin JZ, 2002, INT J PEDIATR OTORHI, V65, P203, DOI 10.1016/S0165-5876(02)00130-1 Long JP, 2003, INFECT IMMUN, V71, P5531, DOI 10.1128/IAI.71.10.5531-5540.2003 Luo H., 2009, INT J EXP COMP BIOME, V1, P1 MacArthur CJ, 2006, HEARING RES, V219, P12, DOI 10.1016/j.heares.2006.05.012 Mason KM, 2003, INFECT IMMUN, V71, P3454, DOI 10.1128/IAI.71.6.3454-3462.2003 Melhus A, 2003, APMIS, V111, P989, DOI 10.1034/j.1600-0463.2003.1111012.x Morton DJ, 2004, MICROB PATHOGENESIS, V36, P25, DOI 10.1016/j.micpath.2003.08.007 Morton Daniel J, 2012, BMC Res Notes, V5, P327, DOI 10.1186/1756-0500-5-327 NAGUIB MB, 1994, LARYNGOSCOPE, V104, P1003 Nakajima HH, 2005, LARYNGOSCOPE, V115, P147, DOI 10.1097/01.mlg.0000150692.23506.b7 Nakajima HH, 2005, HEARING RES, V204, P60, DOI 10.1016/j.heares.2005.01.002 PARADISE JL, 1976, PEDIATRICS, V58, P198 Ravicz ME, 2004, HEARING RES, V195, P103, DOI 10.1016/j.heares.2004.05.010 Reid SD, 2009, J INFECT DIS, V199, P786, DOI 10.1086/597042 Rosowski JJ, 2008, EAR HEARING, V29, P3 Rosowski JJ, 2002, HEARING RES, V174, P183, DOI 10.1016/S0378-5955(02)00655-X RUGGERO MA, 1990, J ACOUST SOC AM, V87, P1612, DOI 10.1121/1.399409 SUZUKI K, 1994, INFECT IMMUN, V62, P1710 Thornton JL, 2013, JARO-J ASSOC RES OTO, V14, P451, DOI 10.1007/s10162-013-0388-x vonUnge M, 1997, HEARING RES, V106, P123, DOI 10.1016/S0378-5955(97)00008-7 VONUNGE M, 1993, HEARING RES, V70, P229, DOI 10.1016/0378-5955(93)90161-S VRETTAKOS PA, 1988, AM J OTOLARYNG, V9, P58, DOI 10.1016/S0196-0709(88)80009-7 NR 45 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAR PY 2014 VL 309 BP 136 EP 146 DI 10.1016/j.heares.2013.12.005 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AB5WF UT WOS:000331858700015 PM 24406734 ER PT J AU Takanen, M Santala, O Pulkki, V AF Takanen, Marko Santala, Olli Pulkki, Ville TI Visualization of functional count-comparison-based binaural auditory model output SO HEARING RESEARCH LA English DT Article ID LATERAL SUPERIOR OLIVE; INTERAURAL TIME DIFFERENCES; AMPLITUDE-MODULATED SOUNDS; MASKING-LEVEL DIFFERENCES; INFERIOR COLLICULUS; LOW-FREQUENCY; BRAIN-STEM; INTENSITY DIFFERENCES; TEMPORAL DISPARITIES; SOURCE LOCALIZATION AB The count-comparison principle in binaural auditory modeling is based on the assumption that there are nuclei in the mammalian auditory pathway that encode the directional cues in the rate of the output. When this principle is applied, the outputs of the modeled nuclei do not directly result in a topographically organized map of the auditory space that could be monitored as such. Therefore, this article presents a method for visualizing the information from the outputs as well as the nucleus models. The functionality of the auditory model presented here is tested in various binaural listening scenarios, including localization tasks and the discrimination of a target in the presence of distracting sound as well as sound scenarios consisting of multiple simultaneous sound sources. The performance of the model is illustrated with binaural activity maps. The activations seen in the maps are compared to human performance in similar scenarios, and it is shown that the performance of the model is in accordance with the psychoacoustical data. (C) 2013 Elsevier B.V. All rights reserved. C1 [Takanen, Marko; Santala, Olli; Pulkki, Ville] Aalto Univ, Sch Elect Engn, Dept Signal Proc & Acoust, FI-00076 Aalto, Finland. RP Takanen, M (reprint author), Aalto Univ, Sch Elect Engn, Dept Signal Proc & Acoust, POB 13000, FI-00076 Aalto, Finland. EM marko.takanen@aalto.fi; olli.santala@aalto.fi; ville.pulkki@aalto.fi RI Pulkki, Ville/G-2394-2013 FU Academy of Finland; Walter Ahlstrom foundation; Nokia Foundation; European Research Council under the European Community [240453] FX The authors wish to thank Ph.D Sarah Verhulst from Boston University for providing the cochlear model and assisting in its use, Ph.D Ville Sivonen from Cochlear Nordic for providing the head-related transfer functions, Prof. Tapio Lokki from Aalto University for the binaural room impulse responses, and Ph.D Nelli Salminen from Aalto University as well as one anonymous reviewer for providing valuable feedback which greatly improved the manuscript. This work has been supported by the Academy of Finland, Walter Ahlstrom foundation, and the Nokia Foundation. The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement No. 240453. CR Bang & Olufsen, 1992, MUS ARCH, V101 Bech S, 1998, J ACOUST SOC AM, V103, P434, DOI 10.1121/1.421098 Bech S, 1996, J ACOUST SOC AM, V99, P3539, DOI 10.1121/1.414952 BERNSTEIN LR, 1985, J ACOUST SOC AM, V77, P1868, DOI 10.1121/1.391938 Best V, 2007, J ACOUST SOC AM, V121, P1070, DOI 10.1121/1.2407738 Blauert J., 1997, SPATIAL HEARING PSYC, p[37, 140, 164] Blauert J., 2013, TECHNOLOGY BINAURAL BLODGETT HC, 1956, J ACOUST SOC AM, V28, P639, DOI 10.1121/1.1908430 Boerger G., 1965, THESIS TU BERLIN GER Bregman A.S., 1994, AUDITORY SCENE ANAL, P529 BRUGGE JF, 1969, J NEUROPHYSIOL, V32, P1005 Brughera A, 2013, J ACOUST SOC AM, V133, P2839, DOI 10.1121/1.4795778 BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P705, DOI 10.1002/cne.901970410 Calvert GA, 2001, CEREB CORTEX, V11, P1110, DOI 10.1093/cercor/11.12.1110 CANT NB, 1992, HEARING RES, V58, P26, DOI 10.1016/0378-5955(92)90005-8 CARHART R, 1969, J ACOUST SOC AM, V45, P694, DOI 10.1121/1.1911445 CHERRY EC, 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229 Colburn H.S., 1996, SPRINGER HDB AUDITOR, P332 COLBURN HS, 1990, HEARING RES, V49, P335 COLBURN HS, 1977, J ACOUST SOC AM, V61, P525, DOI 10.1121/1.381294 DAVID EE, 1959, J ACOUST SOC AM, V31, P774, DOI 10.1121/1.1907784 Dietz M, 2009, J ACOUST SOC AM, V125, P1622, DOI 10.1121/1.3076045 Dietz M, 2013, P NATL ACAD SCI USA, V110, P15151, DOI 10.1073/pnas.1309712110 DURLACH NI, 1963, J ACOUST SOC AM, V35, P1206, DOI 10.1121/1.1918675 EISENMAN LM, 1974, BRAIN RES, V75, P203, DOI 10.1016/0006-8993(74)90742-2 ELVERLAND HH, 1978, EXP BRAIN RES, V32, P117 Faller C, 2004, J ACOUST SOC AM, V116, P3075, DOI 10.1121/1.1791872 FLANAGAN JL, 1966, J ACOUST SOC AM, V40, P456, DOI 10.1121/1.1910096 Franssen N.V., 1960, THESIS TH DELFT NETH FREYMAN RL, 1991, J ACOUST SOC AM, V90, P874, DOI 10.1121/1.401955 GAIK W, 1993, J ACOUST SOC AM, V94, P98, DOI 10.1121/1.406947 GARDNER MB, 1968, J ACOUST SOC AM, V44, P797, DOI 10.1121/1.1911176 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T GORDON B, 1973, J NEUROPHYSIOL, V36, P157 Grothe B, 2010, PHYSIOL REV, V90, P983, DOI 10.1152/physrev.00026.2009 Grothe B, 2003, NAT REV NEUROSCI, V4, P540, DOI 10.1038/nrn1136 GUINAN JJ, 1972, INT J NEUROSCI, V4, P147 HAFTER ER, 1968, J ACOUST SOC AM, V44, P563, DOI 10.1121/1.1911121 HAFTER ER, 1969, J ACOUST SOC AM, V46, P125, DOI 10.1121/1.1973448 HAN Y, 1993, HEARING RES, V68, P115, DOI 10.1016/0378-5955(93)90070-H HARRIS GG, 1960, J ACOUST SOC AM, V32, P685, DOI 10.1121/1.1908181 HARTMANN WM, 1989, J ACOUST SOC AM, V86, P1366, DOI 10.1121/1.398696 Haustein B.-G., 1970, Hochfrequenztechnik und Elektroakustik, V79 Hawley ML, 1999, J ACOUST SOC AM, V105, P3436, DOI 10.1121/1.424670 HIRSH IJ, 1948, J ACOUST SOC AM, V20, P536, DOI 10.1121/1.1906407 Hirvonen T., 2008, P 124 INT CONV AUD E Irvine D., 1992, MAMMALIAN AUDITORY P, P157 Jackson C. V., 1953, Q J EXPT PSYCHOL, V5, P52, DOI 10.1080/17470215308416626 JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495 Jeffress L.A., 1972, F MODERN AUDITORY TH, VII, P349 Joris PX, 1996, J NEUROPHYSIOL, V76, P2137 Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003 KOHLRAUSCH A, 1986, HEARING RES, V23, P267, DOI 10.1016/0378-5955(86)90115-2 KOLLMEIER B, 1990, J ACOUST SOC AM, V87, P1709, DOI 10.1121/1.399419 Lang AG, 2008, J ACOUST SOC AM, V124, P3120, DOI 10.1121/1.2981041 LINDEMANN W, 1986, J ACOUST SOC AM, V80, P1608, DOI 10.1121/1.394325 Litovsky RY, 1999, J ACOUST SOC AM, V106, P1633, DOI 10.1121/1.427914 Loftus WC, 2004, J COMP NEUROL, V472, P330, DOI 10.1002/cne.20070 MACPHERSON EA, 1991, J AUDIO ENG SOC, V39, P604 Macpherson EA, 2002, J ACOUST SOC AM, V111, P2219, DOI 10.1121/1.1471898 Makela JP, 1996, EXP BRAIN RES, V110, P446 McAlpine D, 2000, J NEUROPHYSIOL, V83, P1356 McAlpine D, 2003, TRENDS NEUROSCI, V26, P347, DOI 10.1016/S0166-2236(03)00140-1 MCFADDEN D, 1976, J ACOUST SOC AM, V59, P634, DOI 10.1121/1.380913 MCGURK H, 1976, NATURE, V264, P746, DOI 10.1038/264746a0 MEDDIS R, 1986, J ACOUST SOC AM, V79, P702, DOI 10.1121/1.393460 MILLS AW, 1958, J ACOUST SOC AM, V30, P237, DOI 10.1121/1.1909553 Moller A.G., 2006, HEARING ANATOMY PHYS, P75 MOORE JK, 1987, HEARING RES, V29, P33, DOI 10.1016/0378-5955(87)90203-6 Oliver DL, 2000, MICROSC RES TECHNIQ, V51, P355, DOI 10.1002/1097-0029(20001115)51:4<355::AID-JEMT5>3.0.CO;2-J OLIVER DL, 1995, J COMP NEUROL, V360, P17, DOI 10.1002/cne.903600103 PALMER AR, 1982, NATURE, V299, P248, DOI 10.1038/299248a0 Park TJ, 2004, J NEUROPHYSIOL, V92, P289, DOI 10.1152/jn.00961.2003 PECK CK, 1987, BRAIN RES, V420, P162, DOI 10.1016/0006-8993(87)90253-8 Pecka M, 2008, J NEUROSCI, V28, P6914, DOI 10.1523/JNEUROSCI.1660-08.2008 PERROTT DR, 1969, J ACOUST SOC AM, V45, P436, DOI 10.1121/1.1911392 Preibisch-Effenberger R., 1965, THESIS TU DRESDEN GE Pulkki V, 2009, ACTA ACUST UNITED AC, V95, P883, DOI 10.3813/AAA.918220 Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800 Rayleigh L., 1907, PHILOS MAG, V13, P214 Salminen N., 2010, J ACOUST SOC AM, V127, P60 SANES DH, 1990, J NEUROSCI, V10, P3494 Santala O, 2011, J ACOUST SOC AM, V129, P1522, DOI 10.1121/1.3533727 SAYERS BM, 1964, J ACOUST SOC AM, V36, P923, DOI 10.1121/1.1919121 SCHEIBEL ME, 1974, EXP NEUROL, V43, P339, DOI 10.1016/0014-4886(74)90175-7 Schwattz I.R., 1992, SUPERIOR OLIVARY COM SHACKLETON TM, 1992, J ACOUST SOC AM, V91, P2276, DOI 10.1121/1.403663 Slaney M., 1993, 35 APPL COMP Slaney M., 1998, 10 INT RES CORP Sondegaard P., 2013, TECHNOLOGY BINAURAL Stecker GC, 2005, PLOS BIOL, V3, P520, DOI 10.1371/journal.pbio.0030078 Stein B. E., 1993, MERGING SENSES Stern Richard M., 1996, Journal of the Acoustical Society of America, V100, P2278, DOI 10.1121/1.417937 Stevens SS, 1936, AM J PSYCHOL, V48, P297, DOI 10.2307/1415748 STROMING.NL, 1971, J COMP NEUROL, V143, P217, DOI 10.1002/cne.901430205 Tahvanainen H., 2011, 6 FOR AC ALB DENM, P2639 Takanen M., 2013, TECHNOLOGY BINAURAL, P333 Tollin DJ, 2003, NEUROSCIENTIST, V9, P127, DOI 10.1177/1073858403252228 Tollin DJ, 2008, J NEUROSCI, V28, P4848, DOI 10.1523/JNEUROSCI.5421-07.2008 Tollin DJ, 2005, J NEUROSCI, V25, P10648, DOI 10.1523/JNEUROSCI.1609-05.2005 TRAHIOTIS C, 1989, J ACOUST SOC AM, V86, P1285, DOI 10.1121/1.398743 TSUCHITA.C, 1967, J ACOUST SOC AM, V42, P794, DOI 10.1121/1.1910651 van BERGEIJK WILLEM A., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1431, DOI 10.1121/1.1918364 Verhulst S, 2012, J ACOUST SOC AM, V132, P3842, DOI 10.1121/1.4763989 von Bekesy G., 1930, PHYS Z, V824-835, P857 von Beleesy G., 1960, MCGRAW HILL SERIES P WARR WB, 1966, EXP NEUROL, V14, P453, DOI 10.1016/0014-4886(66)90130-0 WHITWORTH R, 1961, J ACOUST SOC AM, V33, P925, DOI 10.1121/1.1908849 WIGHTMAN FL, 1992, J ACOUST SOC AM, V91, P1648, DOI 10.1121/1.402445 Wilska A., 1938, THESIS U HELSINKI HE, P1 WITKIN HA, 1952, J EXP PSYCHOL, V43, P58, DOI 10.1037/h0055889 Woodworth R. S., 1954, EXPT PSYCHOL YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 Yin TCT, 2002, SPR HDB AUD, V15, P99 YOST WA, 1981, J ACOUST SOC AM, V70, P397, DOI 10.1121/1.386775 NR 115 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAR PY 2014 VL 309 BP 147 EP 163 DI 10.1016/j.heares.2013.10.004 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AB5WF UT WOS:000331858700016 PM 24513586 ER PT J AU Lerud, KD Almonte, FV Kim, JC Large, EW AF Lerud, Karl D. Almonte, Felix V. Kim, Ji Chul Large, Edward W. TI Mode-locking neurodynamics predict human auditory brainstem responses to musical intervals SO HEARING RESEARCH LA English DT Article ID FREQUENCY-FOLLOWING RESPONSES; CONNECTED NEURAL OSCILLATORS; 2-TONE DISTORTION PRODUCTS; SYNAPTIC ORGANIZATIONS; DYNAMICAL PROPERTIES; INFERIOR COLLICULUS; MAMMALIAN COCHLEA; BASILAR-MEMBRANE; CANONICAL MODEL; DIFFERENCE TONE AB The auditory nervous system is highly nonlinear. Some nonlinear responses arise through active processes in the cochlea, while others may arise in neural populations of the cochlear nucleus, inferior colliculus and higher auditory areas. In humans, auditory brainstem recordings reveal nonlinear population responses to combinations of pure tones, and to musical intervals composed of complex tones. Yet the biophysical origin of central auditory nonlinearities, their signal processing properties, and their relationship to auditory perception remain largely unknown. Both stimulus components and nonlinear resonances are well represented in auditory brainstem nuclei due to neural phase-locking. Recently mode-locking, a generalization of phase-locking that implies an intrinsically nonlinear processing of sound, has been observed in mammalian auditory brainstem nuclei. Here we show that a canonical model of mode-locked neural oscillation predicts the complex nonlinear population responses to musical intervals that have been observed in the human brainstem. The model makes predictions about auditory signal processing and perception that are different from traditional delay-based models, and may provide insight into the nature of auditory population responses. We anticipate that the application of dynamical systems analysis will provide the starting point for generic models of auditory population dynamics, and lead to a deeper understanding of nonlinear auditory signal processing possibly arising in excitatory-inhibitory networks of the central auditory nervous system. This approach has the potential to link neural dynamics with the perception of pitch, music, and speech, and lead to dynamical models of auditory system development. This article is part of a Special Issue entitled . (C) 2013 Elsevier B.V. All rights reserved. C1 [Lerud, Karl D.; Almonte, Felix V.; Kim, Ji Chul; Large, Edward W.] Univ Connecticut, Dept Psychol, Storrs, CT 06269 USA. RP Large, EW (reprint author), Univ Connecticut, Dept Psychol, 406 Babbidge Rd, Storrs, CT 06269 USA. EM edward.large@uconn.edu FU AFOSR [FA9550-07-C0095]; NSF [BCS-1027761] FX This work was supported by AFOSR FA9550-07-C0095 and NSF BCS-1027761. Thanks to Kimi Lee, Erika Skoe, Nina Kraus and Ric Ashley for providing the brainstem data, and for valuable discussions and comments regarding this work. CR Ainsworth M, 2012, NEURON, V75, P572, DOI 10.1016/j.neuron.2012.08.004 Arnold S, 1998, J ACOUST SOC AM, V104, P1565, DOI 10.1121/1.424368 Arnold S, 2000, J ACOUST SOC AM, V107, P1541, DOI 10.1121/1.428439 Bhagat SP, 2004, HEARING RES, V193, P51, DOI 10.1016/j.heares.2004.04.005 Bian L, 2008, J ACOUST SOC AM, V124, P3739, DOI 10.1121/1.3001706 Bidelman GM, 2009, J NEUROSCI, V29, P13165, DOI 10.1523/JNEUROSCI.3900-09.2009 Bruce IC, 2003, J ACOUST SOC AM, V113, P369, DOI 10.1121/1.1519544 Brumberg JC, 2007, BRAIN RES, V1171, P122, DOI 10.1016/j.brainres.2007.07.028 BURNS EM, 1981, J ACOUST SOC AM, V70, P1655, DOI 10.1121/1.387220 BURNS EM, 1976, J ACOUST SOC AM, V60, P863, DOI 10.1121/1.381166 Cartwright JHE, 1999, PHYS REV LETT, V82, P5389, DOI 10.1103/PhysRevLett.82.5389 CASTELLANO MA, 1984, J EXP PSYCHOL GEN, V113, P394, DOI 10.1037//0096-3445.113.3.394 Chang KW, 1997, J ACOUST SOC AM, V102, P1719, DOI 10.1121/1.420082 CHERTOFF ME, 1990, J ACOUST SOC AM, V87, P1248, DOI 10.1121/1.398800 Cooper NP, 1997, J NEUROPHYSIOL, V78, P261 Cousineau M, 2012, P NATL ACAD SCI USA, V109, P19858, DOI 10.1073/pnas.1207989109 de Cheveigne A, 2006, J ACOUST SOC AM, V119, P3908, DOI 10.1121/1.2195291 Dhar S, 2005, J ACOUST SOC AM, V117, P3766, DOI 10.1121/1.1903846 Dhar S, 2009, CLIN NEUROPHYSIOL, V120, P959, DOI 10.1016/j.clinph.2009.02.172 Eguiluz VM, 2000, PHYS REV LETT, V84, P5232, DOI 10.1103/PhysRevLett.84.5232 Escabi MA, 2002, J NEUROSCI, V22, P4114 GALBRAITH GC, 1994, ELECTROEN CLIN NEURO, V92, P321, DOI 10.1016/0168-5597(94)90100-7 GARDI J, 1979, AUDIOLOGY, V18, P494 Gockel HE, 2011, JARO-J ASSOC RES OTO, V12, P767, DOI 10.1007/s10162-011-0284-1 HALL JL, 1974, J ACOUST SOC AM, V56, P1818, DOI 10.1121/1.1903519 Hartmann WM, 1996, J ACOUST SOC AM, V100, P3491, DOI 10.1121/1.417248 HOPPENSTEADT FC, 1997, WEAKLY CONNECTED NEU Hoppensteadt FC, 1996, BIOL CYBERN, V75, P117, DOI 10.1007/s004220050279 Hoppensteadt FC, 1996, BIOL CYBERN, V75, P129, DOI 10.1007/s004220050280 Joris PX, 2011, P NATL ACAD SCI USA, V108, P17516, DOI 10.1073/pnas.1105867108 Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003 Julicher F, 2001, P NATL ACAD SCI USA, V98, P9080, DOI 10.1073/pnas.151257898 Kaernbach C, 1998, J ACOUST SOC AM, V104, P2298, DOI 10.1121/1.423742 Kern A, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.128101 KIKUCHI Y, 2011, HARMONIC PREFERENCE Knight RD, 2001, J ACOUST SOC AM, V109, P1513, DOI 10.1121/1.1354197 Koepsell Kilian, 2010, Front Neurosci, V4, P53, DOI 10.3389/neuro.01.010.2010 Krumhansl C., 1990, COGNITIVE FDN MUSICA KRUMHANSL CL, 1982, PSYCHOL REV, V89, P334, DOI 10.1037/0033-295X.89.4.334 KUJAWA SG, 1995, HEARING RES, V85, P142, DOI 10.1016/0378-5955(95)00041-2 Langner G., 2007, Zeitschrift fur Audiologie, V46 LANGNER G, 1992, HEARING RES, V60, P115, DOI 10.1016/0378-5955(92)90015-F Large EW, 2002, J COMPUT NEUROSCI, V13, P125, DOI 10.1023/A:1020162207511 Large EW, 2010, PHYSICA D, V239, P905, DOI 10.1016/j.physd.2009.11.015 LARGE EW, 1998, P ASS RES OT, V21, P717 LARGE EW, 2011, LECT NOTES ARTIF INT, V6726, P115 Large EW, 2012, ANN NY ACAD SCI, V1252, pE1, DOI 10.1111/j.1749-6632.2012.06594.x LARGE EW, 2011, STUDIES COMPUTATIONA, V328, P193 LARGE EW, NEURODYNAMICS UNPUB Laudanski J, 2010, J NEUROPHYSIOL, V103, P1226, DOI 10.1152/jn.00070.2009 Lee KM, 2009, J NEUROSCI, V29, P5832, DOI 10.1523/JNEUROSCI.6133-08.2009 Lee SG, 2006, PHYS REV E, V73, DOI 10.1103/PhysRevE.73.041924 LICKLIDER JCR, 1951, EXPERIENTIA, V7, P128, DOI 10.1007/BF02156143 Lots IS, 2008, J R SOC INTERFACE, V5, P1429, DOI 10.1098/rsif.2008.0143 LYON I, 2010, CIRC SYST ISCAS P 20, P3809 Magnasco MO, 2003, PHYS REV LETT, V90, DOI 10.1103/PhysRevLett.90.058101 McDermott JH, 2010, CURR BIOL, V20, P1035, DOI 10.1016/j.cub.2010.04.019 Mora T, 2011, J STAT PHYS, V144, P268, DOI 10.1007/s10955-011-0229-4 MURDOCK JA, 2003, NORMAL FORMS UNFOLDI Ospeck M, 2001, BIOPHYS J, V80, P2597 Pandya Pritesh K, 2004, J Am Acad Audiol, V15, P184, DOI 10.3766/jaaa.15.3.2 Perko L. M., 1996, TEXTS APPL MATH, V7 Purcell DW, 2007, J ACOUST SOC AM, V122, P992, DOI 10.1121/1.2751250 RICKMAN MD, 1991, J ACOUST SOC AM, V89, P2818, DOI 10.1121/1.400720 Robles L, 2001, PHYSIOL REV, V81, P1305 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 SCHOUTEN J. F., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1418, DOI 10.1121/1.1918360 SCHWARZ DWF, 1993, ACTA OTO-LARYNGOL, V113, P266, DOI 10.3109/00016489309135807 Skoe E, 2010, EAR HEARING, V31, P302, DOI 10.1097/AUD.0b013e3181cdb272 Stoop R, 2005, PHYSICA A, V351, P175, DOI 10.1016/j.physa.2004.12.019 SUTTER ML, 1991, J NEUROPHYSIOL, V65, P1207 Szalai R, 2013, J ACOUST SOC AM, V133, P323, DOI 10.1121/1.4768868 Varela F, 2001, NAT REV NEUROSCI, V2, P229, DOI 10.1038/35067550 WIGGINS S, 1990, INTRO APPL NONLINEAR Wile D, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000369 WILSON HR, 1973, KYBERNETIK, V13, P55, DOI 10.1007/BF00288786 Zilany MSA, 2006, J ACOUST SOC AM, V120, P1446, DOI 10.1121/1.2225512 Zuckerkandl Victor, 1956, SOUND SYMBOL MUSIC E NR 78 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD FEB PY 2014 VL 308 SI SI BP 41 EP 49 DI 10.1016/j.heares.2013.09.010 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AA9QO UT WOS:000331428200005 PM 24091182 ER PT J AU Trainor, LJ Marie, C Bruce, IC Bidelman, GM AF Trainor, Laurel J. Marie, Celine Bruce, Ian C. Bidelman, Gavin M. TI Explaining the high voice superiority effect in polyphonic music: Evidence from cortical evoked potentials and peripheral auditory models SO HEARING RESEARCH LA English DT Article ID STARLINGS STURNUS-VULGARIS; GOLDFISH CARASSIUS-AURATUS; MISMATCH NEGATIVITY MMN; STREAM SEGREGATION; NERVE FIBERS; COMPLEX TONES; SCENE ANALYSIS; HUMAN BRAIN; PHENOMENOLOGICAL MODEL; JAPANESE MONKEYS AB Natural auditory environments contain multiple simultaneously-sounding objects and the auditory system must parse the incoming complex sound wave they collectively create into parts that represent each of these individual objects. Music often similarly requires processing of more than one voice or stream at the same time, and behavioral studies demonstrate that human listeners show a systematic perceptual bias in processing the highest voice in multi-voiced music. Here, we review studies utilizing event-related brain potentials (ERPs), which support the notions that (1) separate memory traces are formed for two simultaneous voices (even without conscious awareness) in auditory cortex and (2) adults show more robust encoding (i.e., larger ERP responses) to deviant pitches in the higher than in the lower voice, indicating better encoding of the former. Furthermore, infants also show this high-voice superiority effect, suggesting that the perceptual dominance observed across studies might result from neurophysiological characteristics of the peripheral auditory system. Although musically untrained adults show smaller responses in general than musically trained adults, both groups similarly show a more robust cortical representation of the higher than of the lower voice. Finally, years of experience playing a bass-range instrument reduces but does not reverse the high voice superiority effect, indicating that although it can be modified, it is not highly neuroplastic. Results of new modeling experiments examined the possibility that characteristics of middle-ear filtering and cochlear dynamics (e.g., suppression) reflected in auditory nerve firing patterns might account for the higher-voice superiority effect. Simulations show that both place and temporal AN coding schemes well-predict a high-voice superiority across a wide range of interval spacings and registers. Collectively, we infer an innate, peripheral origin for the higher-voice superiority observed in human ERP and psychophysical music listening studies. This article is part of a Special Issue entitled . (C) 2013 Elsevier B.V. All rights reserved. C1 [Trainor, Laurel J.; Marie, Celine] McMaster Univ, Dept Psychol Neurosci & Behav, Hamilton, ON L8S 4K1, Canada. [Trainor, Laurel J.; Marie, Celine; Bruce, Ian C.] McMaster Inst Mus & Mind, Hamilton, ON, Canada. [Trainor, Laurel J.] Baycrest Ctr Geriatr Care, Rotman Res Inst, Toronto, ON, Canada. [Bruce, Ian C.] McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON L8S 4K1, Canada. [Bidelman, Gavin M.] Univ Memphis, Inst Intelligent Syst, Memphis, TN 38152 USA. [Bidelman, Gavin M.] Univ Memphis, Sch Commun Sci & Disorders, Memphis, TN 38152 USA. RP Trainor, LJ (reprint author), McMaster Univ, Dept Psychol Neurosci & Behav, 1280 Main St West, Hamilton, ON L8S 4K1, Canada. EM ljt@mcmaster.ca RI Bruce, Ian/A-1232-2008 OI Bruce, Ian/0000-0002-5169-4538 FU Canadian Institutes of Health Research (CHIR); Natural Sciences and Engineering Research Council of Canada (NSERC); NSERC CREATE grant in Auditory Cognitive Neuroscience FX This research was supported by grants from the Canadian Institutes of Health Research (CHIR) to LJT and from the Natural Sciences and Engineering Research Council of Canada (NSERC) to UT and ICB. CM was supported by a postdoctoral fellowship from the NSERC CREATE grant in Auditory Cognitive Neuroscience. CR Alain C, 2002, J ACOUST SOC AM, V111, P990, DOI 10.1121/1.1434942 Alain C., 2012, SPRINGER HDB AUDITOR, V43, P69 ALDWELL E., 2003, HARMONY VOICE LEADIN, V3rd Bidelman GM, 2009, J NEUROSCI, V29, P13165, DOI 10.1523/JNEUROSCI.3900-09.2009 Bidelman GM, 2011, J ACOUST SOC AM, V130, P1488, DOI 10.1121/1.3605559 BREGMAN AS, 1971, J EXP PSYCHOL, V89, P244, DOI 10.1037/h0031163 Bregman AS., 1990, AUDITORY SCENE ANAL Bruce IC, 2003, J ACOUST SOC AM, V113, P369, DOI 10.1121/1.1519544 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698 Cedolin L, 2005, J NEUROPHYSIOL, V94, P347, DOI 10.1152/jn.01114.2004 COHEN MA, 1995, J ACOUST SOC AM, V98, P862, DOI 10.1121/1.413512 Crawley EJ, 2002, J EXP PSYCHOL HUMAN, V28, P367, DOI 10.1037//0096-1523.28.2.367 DAI HP, 1992, J ACOUST SOC AM, V91, P2845, DOI 10.1121/1.402965 Deike S, 2004, NEUROREPORT, V15, P1511, DOI 10.1097/01.wnr.0000132919.12990.34 DELGUTTE B, 1990, J ACOUST SOC AM, V87, P791, DOI 10.1121/1.398891 DELGUTTE B, 1990, HEARING RES, V49, P225, DOI 10.1016/0378-5955(90)90106-Y DEMANY L, 1982, INFANT BEHAV DEV, V5, P261, DOI 10.1016/S0163-6383(82)80036-2 DEWITT LA, 1987, PERCEPT PSYCHOPHYS, V41, P73, DOI 10.3758/BF03208216 DOWLING WJ, 1973, COGNITIVE PSYCHOL, V5, P322, DOI 10.1016/0010-0285(73)90040-6 Edworthy J., 1981, PSYCHOL MUSIC, V9, P39, DOI 10.1177/03057356810090010701 EGAN JP, 1950, J ACOUST SOC AM, V22, P622, DOI 10.1121/1.1906661 Fassbender C., 1993, THESIS Fay RR, 2000, JARO, V1, P120, DOI 10.1007/s101620010015 Fay RR, 1998, HEARING RES, V120, P69, DOI 10.1016/S0378-5955(98)00058-6 Fishman YI, 2001, HEARING RES, V151, P167, DOI 10.1016/S0378-5955(00)00224-0 Folland NA, 2012, J ACOUST SOC AM, V131, P993, DOI 10.1121/1.3651254 Fujioka T, 2005, J COGNITIVE NEUROSCI, V17, P1578, DOI 10.1162/089892905774597263 Fujioka T, 2008, NEUROREPORT, V19, P361, DOI 10.1097/WNR.0b013e3282f51d91 Glasberg BR, 2002, J AUDIO ENG SOC, V50, P331 GOLDSTEI.JL, 1973, J ACOUST SOC AM, V54, P1496, DOI 10.1121/1.1914448 Griffiths TD, 2004, NAT REV NEUROSCI, V5, P887, DOI 10.1038/nrn1538 Gutschalk A, 2005, J NEUROSCI, V25, P5382, DOI 10.1523/JNEUROSCI.0374-05.2005 HARTMANN WM, 1991, MUSIC PERCEPT, V9, P155 HOUTSMA AJM, 1990, J ACOUST SOC AM, V87, P304, DOI 10.1121/1.399297 HULSE SH, 1995, J EXP PSYCHOL GEN, V124, P409, DOI 10.1037//0096-3445.124.4.409 Hulse SH, 1997, J COMP PSYCHOL, V111, P3, DOI 10.1037/0735-7036.111.1.3 Hulse SH, 2002, ADV STUD BEHAV, V31, P163, DOI 10.1016/S0065-3454(02)80008-0 Huron D, 2001, MUSIC PERCEPT, V19, P1, DOI 10.1525/mp.2001.19.1.1 Ibrahim RA, 2010, NEUROPHYSIOLOGICAL BASES OF AUDITORY PERCEPTION, P429, DOI 10.1007/978-1-4419-5686-6_40 Izumi A, 2002, COGNITION, V82, pB113, DOI 10.1016/S0010-0277(01)00161-5 Izumi A, 2000, J ACOUST SOC AM, V108, P3073, DOI 10.1121/1.1323461 Joris PX, 2011, P NATL ACAD SCI USA, V108, P17516, DOI 10.1073/pnas.1105867108 Lee KM, 2009, J NEUROSCI, V29, P5832, DOI 10.1523/JNEUROSCI.6133-08.2009 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 Marie C, 2013, CEREB CORTEX, V23, P660, DOI 10.1093/cercor/bhs050 Marie C, 2012, PSYCHOMUSICOL MUSIC, V22, P97, DOI DOI 10.1037/A0030858 McAdams S, 1997, J ACOUST SOC AM, V102, P2945, DOI 10.1121/1.420349 McDermott J, 2005, MUSIC PERCEPT, V23, P29, DOI 10.1525/mp.2005.23.1.29 McDermott JH, 2010, CURR BIOL, V20, P1035, DOI 10.1016/j.cub.2010.04.019 Micheyl C, 2007, HEARING RES, V229, P116, DOI 10.1016/j.heares.2007.01.007 Miller RL, 1997, J ACOUST SOC AM, V101, P3602, DOI 10.1121/1.418321 MOORE BCJ, 1973, J ACOUST SOC AM, V54, P610, DOI 10.1121/1.1913640 Moore B. C. J., 1995, HDB PERCEPTION COGNI, V6, P387 Moss CF, 2001, J ACOUST SOC AM, V110, P2207, DOI 10.1121/1.1398051 Naatanen R, 2007, CLIN NEUROPHYSIOL, V118, P2544, DOI 10.1016/j.clinph.2007.04.026 Nager W, 2003, NEUROREPORT, V14, P871, DOI 10.1097/01.wnr.0000069961.11849.3d PALMER C, 1994, PERCEPT PSYCHOPHYS, V56, P301, DOI 10.3758/BF03209764 Pascal J, 1998, J ACOUST SOC AM, V104, P1509, DOI 10.1121/1.424363 Patel AD, 2009, CURR BIOL, V19, P827, DOI 10.1016/j.cub.2009.03.038 Picton TW, 2000, AUDIOL NEURO-OTOL, V5, P111, DOI 10.1159/000013875 PLOMP R, 1965, J ACOUST SOC AM, V38, P548, DOI 10.1121/1.1909741 Rose MM, 2000, J ACOUST SOC AM, V108, P1209, DOI 10.1121/1.1287708 Schachner A, 2009, CURR BIOL, V19, P831, DOI 10.1016/j.cub.2009.03.061 SEMAL C, 1990, MUSIC PERCEPT, V8, P165 Shera CA, 2002, P NATL ACAD SCI USA, V99, P3318, DOI 10.1073/pnas.032675099 Shinozaki N, 2000, NEUROREPORT, V11, P1597, DOI 10.1097/00001756-200006050-00001 Smith NA, 2011, INFANCY, V16, P655, DOI 10.1111/j.1532-7078.2011.00067.x Snyder JS, 2007, PSYCHOL BULL, V133, P780, DOI 10.1037/0033-2909.133.5.780 Snyder JS, 2006, J COGNITIVE NEUROSCI, V18, P1, DOI 10.1162/089892906775250021 Sussman ES, 2005, J ACOUST SOC AM, V117, P1285, DOI [10.1121/1.1854312, 10.1121/1.854312] TERHARDT E, 1982, J ACOUST SOC AM, V71, P679, DOI 10.1121/1.387544 Trainor L, 2008, NATURE, V453, P598, DOI 10.1038/453598a Trainor LJ, 2012, SPRINGER HANDB AUDIT, V42, P223, DOI 10.1007/978-1-4614-1421-6_8 Trainor LJ, 2010, SPRINGER HANDB AUDIT, V36, P89, DOI 10.1007/978-1-4419-6114-3_4 Trainor LJ, 2012, ANN NY ACAD SCI, V1252, P25, DOI 10.1111/j.1749-6632.2012.06444.x Trainor LJ, 2012, PSYCHOL MUSIC, P423 van Noorden, 1977, ASA 90, p[131, 17] van Noorden L. P. A. S., 1975, THESIS EINDHOVEN U T Wilson EC, 2007, J NEUROPHYSIOL, V97, P2230, DOI 10.1152/jn.00788.2006 Winkler I, 2009, TRENDS COGN SCI, V13, P532, DOI 10.1016/j.tics.2009.09.003 Winkler I, 2003, P NATL ACAD SCI USA, V100, P11812, DOI 10.1073/pnas.2031891100 Winkler I, 2005, COGNITIVE BRAIN RES, V25, P291, DOI 10.1016/j.cogbrainres.2005.06.005 Yabe H, 2001, BRAIN RES, V897, P222, DOI 10.1016/S0006-8993(01)02224-7 YOUNG ED, 1986, J ACOUST SOC AM, V79, P426, DOI 10.1121/1.393530 Zenatti A., 1969, MONOGR FRANCAISES PS, V17 Zhang XD, 2001, J ACOUST SOC AM, V109, P648, DOI 10.1121/1.1336503 Zilany MSA, 2007, J ACOUST SOC AM, V122, P402, DOI 10.1121/1.2735117 Zilany MSA, 2009, J ACOUST SOC AM, V126, P2390, DOI 10.1121/1.3238250 Zilany MSA, 2006, J ACOUST SOC AM, V120, P1446, DOI 10.1121/1.2225512 NR 90 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD FEB PY 2014 VL 308 SI SI BP 60 EP 70 DI 10.1016/j.heares.2013.07.014 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AA9QO UT WOS:000331428200007 PM 23916754 ER PT J AU Grube, M Cooper, FE Kumar, S Kelly, T Griffiths, TD AF Grube, Manon Cooper, Freya E. Kumar, Sukhbinder Kelly, Tom Griffiths, Timothy D. TI Exploring the role of auditory analysis in atypical compared to typical language development SO HEARING RESEARCH LA English DT Article ID FAST FORWORD LANGUAGE; SPEECH-PERCEPTION; FREQUENCY DISCRIMINATION; DYSLEXIC LISTENERS; CHILDREN; IMPAIRMENT; DEFICITS; SKILLS; ADULTS; RHYTHM AB The relationship between auditory processing and language skills has been debated for decades. Previous findings have been inconsistent, both in typically developing and impaired subjects, including those with dyslexia or specific language impairment. Whether correlations between auditory and language skills are consistent between different populations has hardly been addressed at all. The present work presents an exploratory approach of testing for patterns of correlations in a range of measures of auditory processing. In a recent study, we reported findings from a large cohort of eleven-year olds on a range of auditory measures and the data supported a specific role for the processing of short sequences in pitch and time in typical language development. Here we tested whether a group of individuals with dyslexic traits (DT group; n = 28) from the same year group would show the same pattern of correlations between auditory and language skills as the typically developing group (TD group; n = 173). Regarding the raw scores, the DT group showed a significantly poorer performance on the language but not the auditory measures, including measures of pitch, time and rhythm, and timbre (modulation). In terms of correlations, there was a tendency to decrease in correlations between short-sequence processing and language skills, contrasted by a significant increase in correlation for basic, single-sound processing, in particular in the domain of modulation. The data support the notion that the fundamental relationship between auditory and language skills might differ in atypical compared to typical language development, with the implication that merging data or drawing inference between populations might be problematic. Further examination of the relationship between both basic sound feature analysis and music-like sound analysis and language skills in impaired populations might allow the development of appropriate training strategies. These might include types of musical training to augment language skills via their common bases in sound sequence analysis. This article is part of a Special Issue entitled . (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved. C1 [Grube, Manon; Cooper, Freya E.; Kumar, Sukhbinder; Kelly, Tom; Griffiths, Timothy D.] Newcastle Univ, Sch Med, Inst Neurosci, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England. RP Grube, M (reprint author), Newcastle Univ, Sch Med, Inst Neurosci, Framlington Pl, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England. EM manon.grube@ncl.ac.uk; sukhbinder.kumar@ncl.ac.uk; t.d.griffiths@ncl.ac.uk FU Wellcome Trust FX The authors are grateful for the invaluable contributions from the participating individuals and all the support from the St. Thomas More Catholic School, Gateshead. They thank Dr J. Foxton for advice on the pitch sequence tasks; and D. Birch, M. Catley, A. McQuaid, J. Sweeney and J. Farran for help with testing; and Dr. Q. Vuong for invaluable help with proofreading. The work was funded by the Wellcome Trust. CR Abrams DA, 2009, J NEUROSCI, V29, P7686, DOI 10.1523/JNEUROSCI.5242-08.2009 Amitay S, 2002, JARO, V3, P302, DOI 10.1007/s101620010093 Bishop DVM, 1999, J SPEECH LANG HEAR R, V42, P1295 Boets B, 2007, NEUROPSYCHOLOGIA, V45, P1608, DOI 10.1016/j.neuropsychologia.2007.01.009 Boyle J, 2010, DEV MED CHILD NEUROL, V52, P994, DOI 10.1111/j.1469-8749.2010.03750.x Chi TS, 1999, J ACOUST SOC AM, V106, P2719, DOI 10.1121/1.428100 Corriveau KH, 2010, J LEARN DISABIL-US, V43, P369, DOI 10.1177/0022219410369071 Drake C, 2000, COGNITION, V77, P251, DOI 10.1016/S0010-0277(00)00106-2 Fey ME, 2011, LANG SPEECH HEAR SER, V42, P246, DOI 10.1044/0161-1461(2010/10-0013) Foxton JM, 2003, NAT NEUROSCI, V6, P343, DOI 10.1038/nn1035 France SJ, 2002, PERCEPT PSYCHOPHYS, V64, P169, DOI 10.3758/BF03195783 Gaab N, 2007, RESTOR NEUROL NEUROS, V25, P295 Gathercole SE, 2001, WORKING MEMORY TEST Ghitza O, 2013, FRONT PSYCHOL, V4, DOI 10.3389/fpsyg.2013.00138 Giraud AL, 2012, NAT NEUROSCI, V15, P511, DOI 10.1038/nn.3063 Given BK, 2008, BRAIN LANG, V106, P83, DOI 10.1016/j.bandl.2007.12.001 Goswami U, 2011, TRENDS COGN SCI, V15, P3, DOI 10.1016/j.tics.2010.10.001 Goswami U, 2013, CORTEX, V49, P1363, DOI 10.1016/j.cortex.2012.05.005 Goswami U, 2002, P NATL ACAD SCI USA, V99, P10911, DOI 10.1073/pnas.122368599 Grabe E, 2002, PHONOL PHONET, V4-1, P515 Grube M, 2012, P ROY SOC B-BIOL SCI, V279, P4496, DOI 10.1098/rspb.2012.1817 Grube M, 2009, CORTEX, V45, P72, DOI 10.1016/j.cortex.2008.01.006 Grube M, 2010, P NATL ACAD SCI USA, V107, P11597, DOI 10.1073/pnas.0910473107 Grube M, 2013, COGN NEUROSCI-UK, V4, P225, DOI 10.1080/17588928.2013.825236 Halliday LF, 2006, J RES READ, V29, P213, DOI 10.1111/j.1467-9817.2006.00286.x Halliday LF, 2006, BRAIN LANG, V97, P200, DOI 10.1016/j.bandl.2005.10.007 Hausen M, 2013, FRONT PSYCHOL, V4, DOI 10.3389/fpsyg.2013.00566 Hickok G, 2007, NAT REV NEUROSCI, V8, P393, DOI 10.1038/nrn2113 Hill NI, 1999, J ACOUST SOC AM, V106, pL53, DOI 10.1121/1.428154 Huss M, 2011, CORTEX, V47, P674, DOI 10.1016/j.cortex.2010.07.010 JUSCZYK PW, 1992, COGNITIVE PSYCHOL, V24, P252, DOI 10.1016/0010-0285(92)90009-Q Jusczyk PW, 1999, TRENDS COGN SCI, V3, P323, DOI 10.1016/S1364-6613(99)01363-7 Kay J., 1992, PALPA PSYCHOLINGUIST KLATT DH, 1976, J ACOUST SOC AM, V59, P1208, DOI 10.1121/1.380986 Lehongre K, 2011, NEURON, V72, P1080, DOI 10.1016/j.neuron.2011.11.002 Lehongre K, 2013, FRONT HUM NEUROSCI, V7, DOI 10.3389/fnhum.2013.00454 Leong V, 2014, HEARING RES, V308, P141, DOI 10.1016/j.heares.2013.07.015 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LEWIS C, 1994, J CHILD PSYCHOL PSYC, V35, P283, DOI 10.1111/j.1469-7610.1994.tb01162.x LIBERMAN AM, 1956, J EXP PSYCHOL, V52, P127, DOI 10.1037/h0041240 London J., 2004, HEARING TIME Lyon GR, 2003, ANN DYSLEXIA, V53, P1, DOI 10.1007/s11881-003-0001-9 Madison G, 2002, PSYCHOL RES-PSYCH FO, V66, P201, DOI 10.1007/s00426-001-0085-y McAnally KI, 1996, P ROY SOC B-BIOL SCI, V263, P961, DOI 10.1098/rspb.1996.0142 Meltzer H, 2000, MENTAL HLTH CHILDREN Metsala JL, 1998, WORD RECOGNITION IN BEGINNING LITERACY, P89 Overy K, 2003, DYSLEXIA, V9, P18, DOI 10.1002/dys.233 Patel AD, 2005, BRAIN COGNITION, V59, P310, DOI 10.1016/j.bandc.2004.10.003 Peretz I, 2003, ANN NY ACAD SCI, V999, P58, DOI 10.1196/annals.1284.006 Poelmans H, 2011, RES DEV DISABIL, V32, P2810, DOI 10.1016/j.ridd.2011.05.025 Poeppel D, 2004, NEUROPSYCHOLOGIA, V42, P183, DOI 10.1016/j.neuropsychologia.2003.07.010 Poeppel D, 2003, SPEECH COMMUN, V41, P245, DOI 10.1016/S0167-6393(02)00107-3 POVEL DJ, 1985, MUSIC PERCEPT, V2, P411 Ramus F, 2003, BRAIN, V126, P841, DOI 10.1093/brain/awg076 Richardson U, 2004, DYSLEXIA, V10, P215, DOI 10.1002/dys.276 Rosen S, 2001, J SPEECH LANG HEAR R, V44, P720, DOI 10.1044/1092-4388(2001/057) Rosen S, 2009, J SPEECH LANG HEAR R, V52, P396, DOI 10.1044/1092-4388(2009/08-0114) ROSEN S, 1992, PHILOS T ROY SOC B, V336, P367, DOI 10.1098/rstb.1992.0070 Rosen S, 2003, J PHONETICS, V31, P509, DOI 10.1016/S0095-4470(03)00046-9 Rouse CE, 2004, ECON EDUC REV, V23, P323, DOI 10.1016/j.econedurev.2003.10.005 Santurette S, 2010, JARO-J ASSOC RES OTO, V11, P515, DOI 10.1007/s10162-010-0216-5 Schonwiesner M, 2009, P NATL ACAD SCI USA, V106, P14611, DOI 10.1073/pnas.0907682106 SCOTT DR, 1982, J ACOUST SOC AM, V71, P996, DOI 10.1121/1.387581 Serniclaes W, 2001, J SPEECH LANG HEAR R, V44, P384, DOI 10.1044/1092-4388(2001/032) SMITH MR, 1989, J SPEECH HEAR RES, V32, P912 Snowling M.J., 2000, DYSLEXIA Strong GK, 2011, J CHILD PSYCHOL PSYC, V52, P224, DOI 10.1111/j.1469-7610.2010.02329.x Talcott JB, 2000, P NATL ACAD SCI USA, V97, P2952, DOI 10.1073/pnas.040546597 TALLAL P, 1980, BRAIN LANG, V9, P182, DOI 10.1016/0093-934X(80)90139-X Temple E, 2003, P NATL ACAD SCI USA, V100, P2860, DOI 10.1073/pnas.0030098100 Thomson JM, 2006, J RES READ, V29, P334, DOI 10.1111/j.1467-9817.2006.00312.x Tomblin JB, 1997, J SPEECH LANG HEAR R, V40, P1245 Troia GA, 2003, CONTEMP EDUC PSYCHOL, V28, P465, DOI 10.1016/S0361-476X(02)00045-0 Vandermosten M, 2010, P NATL ACAD SCI USA, V107, P10389, DOI 10.1073/pnas.0912858107 Vandermosten M, 2011, RES DEV DISABIL, V32, P593, DOI 10.1016/j.ridd.2010.12.015 WATSON BU, 1993, ANN NY ACAD SCI, V682, P418, DOI 10.1111/j.1749-6632.1993.tb23011.x Watson CS, 2003, J LEARN DISABIL-US, V36, P165, DOI 10.1177/002221940303600209 Wechsler D., 2005, WECHSLER INDIVIDUAL Witton C, 1998, CURR BIOL, V8, P791, DOI 10.1016/S0960-9822(98)70320-3 Wright BA, 1997, NATURE, V387, P176, DOI 10.1038/387176a0 Ziegler JC, 2011, J EXP CHILD PSYCHOL, V110, P362, DOI 10.1016/j.jecp.2011.05.001 Ziegler JC, 2012, BRAIN LANG, V120, P265, DOI 10.1016/j.bandl.2011.12.002 Ziegler JC, 2005, P NATL ACAD SCI USA, V102, P14110, DOI 10.1073/pnas.0504446102 Ziegler JC, 2009, DEVELOPMENTAL SCI, V12, P732, DOI 10.1111/j.1467-7687.2009.00817.x NR 84 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD FEB PY 2014 VL 308 SI SI BP 129 EP 140 DI 10.1016/j.heares.2013.09.015 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AA9QO UT WOS:000331428200013 PM 24112877 ER PT J AU Leong, V Goswami, U AF Leong, Victoria Goswami, Usha TI Assessment of rhythmic entrainment at multiple timescales in dyslexia: Evidence for disruption to syllable timing SO HEARING RESEARCH LA English DT Article ID DEVELOPMENTAL DYSLEXIA; NEURONAL OSCILLATIONS; AUDITORY-CORTEX; MUSICAL INTERVENTION; CENTRIC PERSPECTIVE; LINGUISTIC RHYTHM; SPEECH RECEPTION; BEAT PERCEPTION; LEXICAL ACCESS; WORD STRESS AB Developmental dyslexia is associated with rhythmic difficulties, including impaired perception of beat patterns in music and prosodic stress patterns in speech. Spoken prosodic rhythm is cued by slow (<10 Hz) fluctuations in speech signal amplitude. Impaired neural oscillatory tracking of these slow amplitude modulation (AM) patterns is one plausible source of impaired rhythm tracking in dyslexia. Here, we characterise the temporal profile of the dyslexic rhythm deficit by examining rhythmic entrainment at multiple speech timescales. Adult dyslexic participants completed two experiments aimed at testing the perception and production of speech rhythm. In the perception task, participants tapped along to the beat of 4 metrically-regular nursery rhyme sentences. In the production task, participants produced the same 4 sentences in time to a metronome beat. Rhythmic entrainment was assessed using both traditional rhythmic indices and a novel AM-based measure, which utilised 3 dominant AM timescales in the speech signal each associated with a different phonological grain-sized unit (0.9-2.5 Hz, prosodic stress; 2.5-12 Hz, syllables; 12-40 Hz, phonemes). The AM-based measure revealed atypical rhythmic entrainment by dyslexic participants to syllable patterns in speech, in perception and production. In the perception task, both groups showed equally strong phase-locking to Syllable AM patterns, but dyslexic responses were entrained to a significantly earlier oscillatory phase angle than controls. In the production task, dyslexic utterances showed shorter syllable intervals, and differences in Syllable:Phoneme AM cross-frequency synchronisation. Our data support the view that rhythmic entrainment at slow (similar to 5 Hz, Syllable) rates is atypical in dyslexia, suggesting that neural mechanisms for syllable perception and production may also be atypical. These syllable timing deficits could contribute to the atypical development of phonological representations for spoken words, the central cognitive characteristic of developmental dyslexia across languages. This article is part of a Special Issue entitled . (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved. C1 [Leong, Victoria; Goswami, Usha] Univ Cambridge, Dept Psychol, Ctr Neurosci Educ, Cambridge CB2 3EB, England. RP Leong, V (reprint author), Univ Cambridge, Dept Psychol, Ctr Neurosci Educ, Downing St, Cambridge CB2 3EB, England. EM vvec2@cam.ac.uk FU Harold Hyam Wingate Research Scholarship; Medical Research Council [G0902375] FX This research was funded by a Harold Hyam Wingate Research Scholarship to VL for her doctoral work, and by the Medical Research Council, G0902375. CR Abercrombie D, 1967, ELEMENTS GEN PHONETI Ahissar E, 2001, P NATL ACAD SCI USA, V98, P13367, DOI 10.1073/pnas.201400998 ALLEN GD, 1972, LANG SPEECH, V15, P72 ARMITAGE SE, 1980, SCIENCE, V208, P1173, DOI 10.1126/science.7375927 Berens P, 2009, J STAT SOFTWARE, V31 Bhide A, 2013, MIND BRAIN EDUC, V7, P113, DOI 10.1111/mbe.12016 Boersma P., 2009, PRAAT DOING PHONETIC Buzsaki G, 2004, SCIENCE, V304, P1926, DOI 10.1126/science.1099745 Canolty RT, 2010, TRENDS COGN SCI, V14, P506, DOI 10.1016/j.tics.2010.09.001 Cutler A., 1987, Computer Speech and Language, V2, DOI 10.1016/0885-2308(87)90004-0 Cooper G., 1960, RHYTHMIC STRUCTURE M Cooper N, 2002, LANG SPEECH, V45, P207 CRYSTAL TH, 1988, J ACOUST SOC AM, V83, P1553, DOI 10.1121/1.395911 Cummins F, 2009, J PHONETICS, V37, P16, DOI 10.1016/j.wocn.2008.08.003 Cummins F, 1998, J PHONETICS, V26, P145, DOI 10.1006/jpho.1998.0070 CUTLER A, 1988, J EXP PSYCHOL HUMAN, V14, P113, DOI 10.1037/0096-1523.14.1.113 Cutler A, 2005, BLACKW HBK LINGUIST, P264, DOI 10.1002/9780470757024.ch11 DAUER RM, 1983, J PHONETICS, V11, P51 de Bree E, 2006, J RES READ, V29, P304, DOI 10.1111/j.1467-9817.2006.00310.x Dellwo V, 2003, P 15 INT C PHON SCI, P471 Ding N, 2012, P NATL ACAD SCI USA, V109, P11854, DOI 10.1073/pnas.1205381109 DRULLMAN R, 1994, J ACOUST SOC AM, V95, P1053, DOI 10.1121/1.408467 DRULLMAN R, 1994, J ACOUST SOC AM, V95, P2670, DOI 10.1121/1.409836 Echols CH, 1997, J MEM LANG, V36, P202, DOI 10.1006/jmla.1996.2483 FOWLER AE, 1991, PHONOLOGICAL PROCESSES IN LITERACY, P97 FRAISSE P, 1982, PSYCHOL MUSIC, P148 Fredrickson N., 1997, PHONOLOGICAL ASSESSM FRY DB, 1958, LANG SPEECH, V1, P126 Fry D.B., 1955, J ACOUST SOC AM, V26, P138 Gabor D., 1946, Journal of the Institution of Electrical Engineers. III. Radio and Communication Engineering, V93 Ghitza O, 2009, PHONETICA, V66, P113, DOI 10.1159/000208934 Ghitza O, 2011, FRONT PSYCHOL, V2, DOI 10.3389/fpsyg.2011.00130 Giraud AL, 2012, NAT NEUROSCI, V15, P511, DOI 10.1038/nn.3063 Gleitman L. R., 1982, LANG ACQUIS, P3 Golumbic EMZ, 2012, BRAIN LANG, V122, P151, DOI 10.1016/j.bandl.2011.12.010 Goswami U, 2011, TRENDS COGN SCI, V15, P3, DOI 10.1016/j.tics.2010.10.001 Goswami U., 2013, LAB PHONOL, V4, P67, DOI [10.1515/lp-2013-0004, DOI 10.1515/LP-2013-0004] Goswami U, 2011, J COGNITIVE NEUROSCI, V23, P325, DOI 10.1162/jocn.2010.21453 Goswami U, 2013, J MEM LANG, V69, P1, DOI 10.1016/j.jml.2013.03.001 Goswami U, 2010, READ WRIT, V23, P995, DOI 10.1007/s11145-009-9186-6 Goswami U, 2013, CORTEX, V49, P1363, DOI 10.1016/j.cortex.2012.05.005 Goswami U, 2002, P NATL ACAD SCI USA, V99, P10911, DOI 10.1073/pnas.122368599 Grabe E, 2002, PHONOL PHONET, V4-1, P515 Grahn JA, 2009, ANN NY ACAD SCI, V1169, P35, DOI 10.1111/j.1749-6632.2009.04553.x Greenberg S, 2006, UNDERSTANDING SPEECH, P411 Greenberg S, 2003, J PHONETICS, V31, P465, DOI 10.1016/j.wocn.2003.09.005 Greenberg S, 1999, SPEECH COMMUN, V29, P159, DOI 10.1016/S0167-6393(99)00050-3 Hamalainen JA, 2012, NEUROIMAGE, V59, P2952, DOI 10.1016/j.neuroimage.2011.09.075 Hamalainen J.A., 2012, J LEARNING DISABILIT Hayes B., 1995, METRICAL STRESS THEO Henry MJ, 2012, P NATL ACAD SCI USA, V109, P20095, DOI 10.1073/pnas.1213390109 Hirst D. J., 2006, ENCY LANGUAGE LINGUI, P539 Holliman AJ, 2012, J RES READ, V35, P32, DOI 10.1111/j.1467-9817.2010.01459.x Holliman AJ, 2010, EDUC PSYCHOL-UK, V30, P247, DOI 10.1080/01443410903560922 HOUTGAST T, 1985, J ACOUST SOC AM, V77, P1069, DOI 10.1121/1.392224 Huss M, 2011, CORTEX, V47, P674, DOI 10.1016/j.cortex.2010.07.010 Jusczyk PW, 1999, COGNITIVE PSYCHOL, V39, P159, DOI 10.1006/cogp.1999.0716 JUSCZYK PW, 1993, CHILD DEV, V64, P675, DOI 10.1111/j.1467-8624.1993.tb02935.x Kayser C, 2009, NEURON, V61, P597, DOI 10.1016/j.neuron.2009.01.008 KELSO JAS, 1986, J PHONETICS, V14, P29 Kitzen K.R., 2001, THESIS U COLUMBIA, V62, p0460A Kochanski G, 2005, J ACOUST SOC AM, V118, P1038, DOI 10.1121/1.1923349 Kotz SA, 2010, TRENDS COGN SCI, V14, P392, DOI 10.1016/j.tics.2010.06.005 Kralemann B, 2008, PHYS REV E, V77, DOI 10.1103/PhysRevE.77.066205 Kralemann B, 2007, PHYS REV E, V76, DOI 10.1103/PhysRevE.76.055201 Lakatos P, 2005, J NEUROPHYSIOL, V94, P1904, DOI 10.1152/jn.00263.2005 Lakatos P, 2008, SCIENCE, V320, P110, DOI 10.1126/science.1154735 Lehongre K, 2011, NEURON, V72, P1080, DOI 10.1016/j.neuron.2011.11.002 Leong V, 2012, THESIS U CAMBRIDGE Leong V, 2011, J MEM LANG, V64, P59, DOI 10.1016/j.jml.2010.09.003 Leong V., 2011, 13 RHYTHM PERC PROD Lerdahl F., 1983, GENERATIVE THEORY TO LIBERMAN AM, 1985, COGNITION, V21, P1, DOI 10.1016/0010-0277(85)90021-6 LIBERMAN M, 1977, LINGUIST INQ, V8, P249 Luo H, 2007, NEURON, V54, P1001, DOI 10.1016/j.neuron.2007.06.004 Luo H, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000445 MARCUS SM, 1981, PERCEPT PSYCHOPHYS, V30, P247, DOI 10.3758/BF03214280 MARTIN JG, 1972, PSYCHOL REV, V79, P487, DOI 10.1037/h0033467 MORTON J, 1976, PSYCHOL REV, V83, P405, DOI 10.1037//0033-295X.83.5.405 Mundy IR, 2012, J COGN PSYCHOL, V24, P560, DOI 10.1080/20445911.2012.662341 Muneaux M, 2004, NEUROREPORT, V15, P1255, DOI 10.1097/01.wnr.0000127459.31232.c4 Nazzi T, 1998, J EXP PSYCHOL HUMAN, V24, P756, DOI 10.1037//0096-1523.24.3.756 Overy K, 2003, ANN NY ACAD SCI, V999, P497, DOI 10.1196/annals.1284.060 Palva JM, 2005, J NEUROSCI, V25, P3962, DOI 10.1523/JNEUROSCI.4250-04.2005 Pasley BN, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001251 Patel A.D., 1999, P 14 INT C PHON SCI, V1, P405 Pike P., 1945, INTONATION AM ENGLIS Poelmans H, 2011, RES DEV DISABIL, V32, P2810, DOI 10.1016/j.ridd.2011.05.025 Poeppel D, 2003, SPEECH COMMUN, V41, P245, DOI 10.1016/S0167-6393(02)00107-3 Port RF, 2003, J PHONETICS, V31, P599, DOI 10.1016/j.wocn.2003.08.001 Ramus F, 1999, COGNITION, V73, P265, DOI 10.1016/S0010-0277(99)00058-X Repp BH, 2005, PSYCHON B REV, V12, P969, DOI 10.3758/BF03206433 ROSEN S, 1992, PHILOS T ROY SOC B, V336, P367, DOI 10.1098/rstb.1992.0070 Schack B, 2005, BIOL CYBERN, V92, P275, DOI 10.1007/s00422-005-0555-1 SCHANE SA, 1979, LANGUAGE, V55, P559, DOI 10.2307/413318 Schroeder CE, 2008, TRENDS NEUROSCI, V32, P9, DOI 10.1016/j.tins.2008.09.012 Schroeder CE, 2009, TRENDS NEUROSCI, V32, P9, DOI 10.1016/j.tins.2008.09.012 Scott S. K., 1993, THESIS U COLL LONDON Selkirk E., 1986, PHONOLOGY YB, V3, P371 Selkirk E. O., 1984, PHONOLOGY SYNTAX REL SELKIRK EO, 1980, LINGUIST INQ, V11, P563 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Silipo R., 1999, PHON SPONT SPEECH IC Smith AB, 2008, J SPEECH LANG HEAR R, V51, P1300, DOI 10.1044/1092-4388(2008/06-0193) Snowling M.J., 2000, DYSLEXIA Stone MA, 2003, J ACOUST SOC AM, V114, P1023, DOI 10.1121/1.1592160 Suranyi Z, 2009, READ WRIT, V22, P41, DOI 10.1007/s11145-007-9102-x Tass P., 1998, PHYS REV LETT, V81, P3291 Teki S, 2011, J NEUROSCI, V31, P3805, DOI 10.1523/JNEUROSCI.5561-10.2011 Thomson J., 2012, READ WRIT, DOI DOI 10.1007/S11145-012-9359-6.ADVANCE Thomson JM, 2008, J PHYSIOL-PARIS, V102, P120, DOI 10.1016/j.jphysparis.2008.03.007 Thomson JM, 2006, J RES READ, V29, P334, DOI 10.1111/j.1467-9817.2006.00312.x Tilsen S, 2008, J ACOUST SOC AM, V124, pEL34, DOI 10.1121/1.2947626 Treiman R., 1991, PHONOLOGICAL PROCESS Villing R., 2010, THESIS NATL U IRELAN Wechsler D, 1999, WECHSLER ABBREVIATED Wilkinson G.S., 1993, WIDE RANGE ACHIEVEME, V3 Wolff P. H., 2002, READ WRIT, V15, P179, DOI 10.1023/A:1013880723925 Wood C, 1998, EDUC PSYCHOL, V18, P253, DOI 10.1080/0144341980180301 Ziegler JC, 2005, PSYCHOL BULL, V131, P3, DOI 10.1037/0033-2909.131.1.3 NR 120 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD FEB PY 2014 VL 308 SI SI BP 141 EP 161 DI 10.1016/j.heares.2013.07.015 PG 21 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AA9QO UT WOS:000331428200014 PM 23916752 ER PT J AU Alho, K Rinne, T Herron, TJ Woods, DL AF Alho, Kimmo Rinne, Teemu Herron, Timothy J. Woods, David L. TI Stimulus-dependent activations and attention-related modulations in the auditory cortex: A meta-analysis of fMRI studies SO HEARING RESEARCH LA English DT Article ID EVENT-RELATED FMRI; FUNCTIONAL NEUROIMAGING DATA; SUPERIOR TEMPORAL SULCUS; VISUAL ODDBALL TASKS; HUMAN BRAIN; SELECTIVE ATTENTION; SPEECH-PERCEPTION; WORKING-MEMORY; MISMATCH NEGATIVITY; SOUND LOCATION AB We meta-analyzed 115 functional magnetic resonance imaging (fMRI) studies reporting auditory-cortex (AC) coordinates for activations related to active and passive processing of pitch and spatial location of non-speech sounds, as well as to the active and passive speech and voice processing. We aimed at revealing any systematic differences between AC surface locations of these activations by statistically analyzing the activation loci using the open-source Matlab toolbox VAMCA (Visualization and Meta-analysis on Cortical Anatomy). AC activations associated with pitch processing (e.g., active or passive listening to tones with a varying vs. fixed pitch) had median loci in the middle superior temporal gyrus (STG), lateral to Heschl's gyrus. However, median loci of activations due to the processing of infrequent pitch changes in a tone stream were centered in the STG or planum temporale (PT), significantly posterior to the median loci for other types of pitch processing. Median loci of attention-related modulations due to focused attention to pitch (e.g., attending selectively to low or high tones delivered in concurrent sequences) were, in turn, centered in the STG or superior temporal sulcus (STS), posterior to median lad for passive pitch processing. Activations due to spatial processing were centered in the posterior STG or PT, significantly posterior to pitch processing loci (processing of infrequent pitch changes excluded). In the right-hemisphere AC, the median locus of spatial attention-related modulations was in the STS, significantly inferior to the median locus for passive spatial processing. Activations associated with speech processing and those associated with voice processing had indistinguishable median loci at the border of mid-STG and mid-STS. Median loci of attention-related modulations due to attention to speech were in the same mid-STG/STS region. Thus, while attention to the pitch or location of non-speech sounds seems to recruit AC areas less involved in passive pitch or location processing, focused attention to speech predominantly enhances activations in regions that already respond to human vocalizations during passive listening. This suggests that distinct attention mechanisms might be engaged by attention to speech and attention to more elemental auditory features such as tone pitch or location. This article is part of a Special Issue entitled . (C) 2013 Elsevier B.V. All rights reserved. C1 [Alho, Kimmo] Univ Helsinki, Helsinki Coll Adv Studies, FI-00014 Helsinki, Finland. [Alho, Kimmo; Rinne, Teemu] Univ Helsinki, Inst Behav Sci, FI-00014 Helsinki, Finland. [Herron, Timothy J.; Woods, David L.] Vet Affairs Northern Calif Hlth Care Syst, Martinez, CA 94553 USA. [Woods, David L.] Univ Calif Davis, Ctr Neurosci, Dept Neurol, Davis, CA 95618 USA. [Woods, David L.] Univ Calif Davis, Ctr Mind & Brain, Davis, CA 95618 USA. RP Alho, K (reprint author), Univ Helsinki, Helsinki Coll Adv Studies, POB 4, FI-00014 Helsinki, Finland. EM kimmo.alho@helsinki.fi; teemu.rinne@helsinki.fi; tjherron@ebire.org; dlwoods@ucdavis.edu RI Rinne, Teemu/A-6090-2009; Alho, Kimmo/G-2997-2013 OI Rinne, Teemu/0000-0002-3142-9438; FU Academy of Finland [209709, 210186, 260054, 1135900]; US Veterans Affairs Research Service Grant [10889758] FX This research was supported by the Academy of Finland grants 209709, 210186, 260054, and 1135900, and by US Veterans Affairs Research Service Grant 10889758. The cortical surface database applied in the present study was created by Dr. Xiaojian Kang. The content is solely the responsibility of the authors and does not necessarily represent the official views of the agencies. CR Alain C, 2001, P NATL ACAD SCI USA, V98, P12301, DOI 10.1073/pnas.211209098 Alain C., 2005, NEUROIMAGE, V26, P529 Alho K, 2006, BRAIN RES, V1075, P142, DOI 10.1016/j.brainres.2005.11.103 Alho K, 1998, PSYCHOPHYSIOLOGY, V35, P211, DOI 10.1017/S004857729800211X Alho K, 1999, COGNITIVE BRAIN RES, V7, P335, DOI 10.1016/S0926-6410(98)00036-6 Altmann CF, 2007, NEUROIMAGE, V35, P1192, DOI 10.1016/j.neuroimage.2007.01.007 Altmann CF, 2008, NEUROIMAGE, V41, P69, DOI 10.1016/j.neuroimage.2008.02.013 Anticevic A, 2008, NEUROIMAGE, V41, P835, DOI 10.1016/j.neuroimage.2008.02.052 Arnott SR, 2004, NEUROIMAGE, V22, P401, DOI 10.1016/j.neuroimage.2004.01.014 Barker D, 2011, NEUROREPORT, V22, P111, DOI 10.1097/WNR.0b013e328342ba30 Barrett DJK, 2006, NEUROIMAGE, V32, P968, DOI 10.1016/j.neuroimage.2006.03.050 Belin P, 2004, TRENDS COGN SCI, V8, P129, DOI 10.1016/j.tics.2004.01.008 Belin P, 2000, NATURE, V403, P309, DOI 10.1038/35002078 Belizaire G, 2007, NEUROREPORT, V18, P29 Benson RR, 2001, BRAIN LANG, V78, P364, DOI 10.1006/brln.2001.2484 Benson RR, 2006, NEUROIMAGE, V31, P342, DOI 10.1016/j.neuroimage.2005.11.029 Bidet-Caulet A, 2005, NEUROIMAGE, V28, P132, DOI 10.1016/j.neuroimage.2005.06.018 Binder JR, 2000, CEREB CORTEX, V10, P512, DOI 10.1093/cercor/10.5.512 Binder JR, 2004, NAT NEUROSCI, V7, P295, DOI 10.1038/nn1198 Bozic M, 2010, P NATL ACAD SCI USA, V107, P17439, DOI 10.1073/pnas.1000531107 Brechmann A, 2005, CEREB CORTEX, V15, P578, DOI 10.1093/cercor/bhh159 Brechmann A, 2007, CEREB CORTEX, V17, P2544, DOI 10.1093/cercor/bhl160 Brunetti M, 2005, HUM BRAIN MAPP, V26, P251, DOI 10.1002/hbm.20164 Budd TW, 2003, NEUROIMAGE, V20, P1783, DOI 10.1016/j.neuroimaging.2003.07.026 Burton MW, 2006, CORTEX, V42, P644, DOI 10.1016/S0010-9452(08)70400-3 Burton MW, 2000, J COGNITIVE NEUROSCI, V12, P679, DOI 10.1162/089892900562309 Celsis P, 1999, NEUROIMAGE, V9, P135, DOI 10.1006/nimg.1998.0389 Christensen TA, 2008, NEUROREPORT, V19, P1101, DOI 10.1097/WNR.0b013e3283060a9d Costafreda SG, 2009, NEUROIMAGE, V46, P115, DOI 10.1016/j.neuroimage.2009.01.031 Da Costa S, 2013, J NEUROSCI, V33, P1858, DOI 10.1523/JNEUROSCI.4405-12.2013 Davis MH, 2003, J NEUROSCI, V23, P3423 Degerman A, 2008, EUR J NEUROSCI, V27, P3329, DOI 10.1111/j.1460-9568.2008.06286.x Degerman A, 2006, BRAIN RES, V1077, P123, DOI 10.1016/j.brainres.2006.01.025 Deike S, 2004, NEUROREPORT, V15, P1511, DOI 10.1097/01.wnr.0000132919.12990.34 Dick F, 2007, J COGNITIVE NEUROSCI, V19, P799, DOI 10.1162/jocn.2007.19.5.799 Dietrich S, 2007, NEUROREPORT, V18, P1891 Doeller CF, 2003, NEUROIMAGE, V20, P1270, DOI 10.1016/S1053-8119(03)00389-6 Eickhoff SB, 2009, HUM BRAIN MAPP, V30, P2907, DOI 10.1002/hbm.20718 Escera C, 2000, AUDIOL NEURO-OTOL, V5, P151, DOI 10.1159/000013877 Fecteau S, 2004, NEUROIMAGE, V23, P840, DOI 10.1016/j.neuroimage.2004.09.019 Friederici AD, 2010, HUM BRAIN MAPP, V31, P448, DOI 10.1002/hbm.20878 Fruhholz S, 2013, NEUROSCI BIOBEHAV R, V37, P24, DOI 10.1016/j.neubiorev.2012.11.002 Garcia D, 2010, NEUROIMAGE, V51, P808, DOI 10.1016/j.neuroimage.2010.02.079 Giraud AL, 2004, CEREB CORTEX, V14, P247, DOI 10.1093/cercor/bhg124 Griffiths TD, 2000, HUM BRAIN MAPP, V9, P72, DOI 10.1002/(SICI)1097-0193(200002)9:2<72::AID-HBM2>3.0.CO;2-9 Hall DA, 2000, HUM BRAIN MAPP, V10, P107, DOI 10.1002/1097-0193(200007)10:3<107::AID-HBM20>3.0.CO;2-8 Hall DA, 2002, CEREB CORTEX, V12, P140, DOI 10.1093/cercor/12.2.140 Hall DA, 2005, J NEUROPHYSIOL, V94, P3181, DOI 10.1152/jn.00271.2005 Harinen K, 2013, NEUROIMAGE, V77, P279, DOI 10.1016/j.neuroimage.2013.03.064 Hart HC, 2004, HUM BRAIN MAPP, V21, P178, DOI 10.1002/hbm.10156 Hart HC, 2003, HEARING RES, V179, P104, DOI 10.1016/S0378-5955(03)00100-X Heinrich A, 2008, J COGNITIVE NEUROSCI, V20, P1737, DOI 10.1162/jocn.2008.20069 Hill KT, 2010, CEREB CORTEX, V20, P583, DOI 10.1093/cercor/bhp124 HILLYARD SA, 1973, SCIENCE, V182, P177, DOI 10.1126/science.182.4108.177 Hugdahl K, 2003, BRAIN LANG, V85, P37, DOI 10.1016/S0093-934X(02)00500-X Hutchison ER, 2008, NEUROIMAGE, V40, P342, DOI 10.1016/j.neuroimage.2007.10.064 Hyde KL, 2008, NEUROPSYCHOLOGIA, V46, P632, DOI 10.1016/j.neuropsychologia.2007.09.004 Ikeda Y, 2010, NEUROSCI RES, V67, P65, DOI 10.1016/j.neures.2010.02.006 Jacquemot C, 2003, J NEUROSCI, V23, P9541 Jamison HL, 2006, CEREB CORTEX, V16, P1266, DOI 10.1093/cercor/bhj068 Janata P, 2002, COGN AFFECT BEHAV NE, V2, P121, DOI 10.3758/CABN.2.2.121 Jancke L, 2002, HEARING RES, V170, P166, DOI 10.1016/S0378-5955(02)00488-4 Jancke L, 2002, NEUROIMAGE, V15, P733, DOI 10.1006/nimg.2001.1027 Joanisse MF, 2007, NEUROREPORT, V18, P901, DOI 10.1097/WNR.0b013e3281053c4e Johnson JA, 2006, NEUROIMAGE, V31, P1673, DOI 10.1016/j.neuroimage.2006.02.026 JONES DM, 1993, J EXP PSYCHOL LEARN, V19, P369, DOI 10.1037/0278-7393.19.2.369 Kang XJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0045582 Kang XJ, 2007, MAGN RESON IMAGING, V25, P1070, DOI 10.1016/j.mri.2006.12.005 Kiehl KA, 2005, NEUROIMAGE, V25, P899, DOI 10.1016/j.neuroimage.2004.12.035 Kiehl KA, 2001, PSYCHOPHYSIOLOGY, V38, P133, DOI 10.1017/S0048577201981867 Krumbholz K, 2005, EUR J NEUROSCI, V21, P230, DOI 10.1111/j.1460-9568.2004.03836.x Krumbholz K, 2007, J COGNITIVE NEUROSCI, V19, P1721, DOI 10.1162/jocn.2007.19.10.1721 Laird AR, 2010, NEUROIMAGE, V51, P677, DOI 10.1016/j.neuroimage.2010.02.048 Lattner S, 2005, HUM BRAIN MAPP, V24, P11, DOI 10.1002/hbm.20065 Laufer I, 2008, BRAIN STRUCT FUNCT, V212, P427, DOI 10.1007/s00429-007-0167-8 Leaver AM, 2010, J NEUROSCI, V30, P7604, DOI 10.1523/JNEUROSCI.0296-10.2010 Leech R, 2011, BRAIN LANG, V116, P83, DOI 10.1016/j.bandl.2010.11.001 Leff AP, 2009, CORTEX, V45, P517, DOI 10.1016/j.cortex.2007.10.008 Liebenthal E, 2005, CEREB CORTEX, V15, P1621, DOI 10.1093/cercor/bhi040 LoCasto PC, 2004, J COGNITIVE NEUROSCI, V16, P1612, DOI 10.1162/0898929042568433 Loose R, 2003, HUM BRAIN MAPP, V18, P249, DOI 10.1002/hbm.10082 Martinkauppi S, 2000, CEREB CORTEX, V10, P889, DOI 10.1093/cercor/10.9.889 Mayer AR, 2006, NEUROIMAGE, V30, P938, DOI 10.1016/j.neuroimage.2005.10.050 Menon V, 2002, NEUROIMAGE, V17, P1742, DOI 10.1006/nimg.2002.1295 Molholm S, 2005, CEREB CORTEX, V15, P545, DOI 10.1093/cercor/bhh155 Muller BW, 2003, NEUROREPORT, V14, P1597, DOI 10.1097/00001756-200308260-00011 Muller RA, 2001, BRAIN LANG, V76, P70, DOI 10.1006/brln.2000.2398 Naatanen R., 1992, ATTENTION BRAIN FUNC Naatanen R, 2011, PSYCHOPHYSIOLOGY, V48, P4, DOI 10.1111/j.1469-8986.2010.01114.x Naatanen R, 2007, CLIN NEUROPHYSIOL, V118, P2544, DOI 10.1016/j.clinph.2007.04.026 Nakai Toshiharu, 2005, Magn Reson Med Sci, V4, P75, DOI 10.2463/mrms.4.75 Narain C, 2003, CEREB CORTEX, V13, P1362, DOI 10.1093/cercor/bhg083 Obleser J, 2006, HUM BRAIN MAPP, V27, P562, DOI 10.1002/hbm.20201 Obleser J, 2008, J NEUROSCI, V28, P8116, DOI 10.1523/JNEUROSCI.1290-08.2008 Obleser J, 2009, TRENDS COGN SCI, V13, P14, DOI 10.1016/j.tics.2008.09.005 Obleser J, 2007, J NEUROSCI, V27, P2283, DOI 10.1523/JNEUROSCI.4663-06.2007 Opitz B, 1999, PSYCHOPHYSIOLOGY, V36, P142, DOI 10.1017/S0048577299980848 Opitz B, 2005, EUR J NEUROSCI, V21, P531, DOI 10.1111/j.1460-9568.2005.03839.x Opitz B, 2002, NEUROIMAGE, V15, P167, DOI 10.1006/nimg.2001.0970 Osnes B, 2011, BRAIN LANG, V116, P97, DOI 10.1016/j.bandl.2010.10.001 Patterson RD, 2002, NEURON, V36, P767, DOI 10.1016/S0896-6273(02)01060-7 Pavani F, 2002, CURR BIOL, V12, P1584, DOI 10.1016/S0960-9822(02)01143-0 Peelle JE, 2010, CEREB CORTEX, V20, P773, DOI 10.1093/cercor/bhp142 Penagos H, 2004, J NEUROSCI, V24, P6810, DOI 10.1523/JNEUROSCI.0383-04.2004 Petkov CI, 2004, NAT NEUROSCI, V7, P658, DOI 10.1038/nn1256 Petkov CI, 2009, NEUROSCIENTIST, V15, P419, DOI 10.1177/1073858408326430 Rama P, 2005, NEUROIMAGE, V24, P224, DOI 10.1016/j.neuroimage.2004.08.024 Rauschecker JP, 2009, NAT NEUROSCI, V12, P718, DOI 10.1038/nn.2331 Recanzone GH, 2011, ANN NY ACAD SCI, V1224, P96, DOI 10.1111/j.1749-6632.2010.05920.x RIF J, 1991, ELECTROEN CLIN NEURO, V79, P464, DOI 10.1016/0013-4694(91)90166-2 Rimol LM, 2006, NEUROIMAGE, V30, P554, DOI 10.1016/j.neuroimage.2005.10.021 Rimol LM, 2005, NEUROIMAGE, V26, P1059, DOI 10.1016/j.neuroimage.2005.03.028 Rinne T, 2009, J NEUROSCI, V29, P13338, DOI 10.1523/JNEUROSCI.3012-09.2009 Rinne Teemu, 2010, Open Neuroimag J, V4, P187, DOI 10.2174/1874440001004010187 Rinne T, 2012, NEUROIMAGE, V59, P4126, DOI 10.1016/j.neuroimage.2011.10.069 Rinne T, 2008, J NEUROPHYSIOL, V100, P3323, DOI 10.1152/jn.90607.2008 Rinne T, 2005, HUM BRAIN MAPP, V26, P94, DOI 10.1002/hbm.20123 Sabri M, 2004, NEUROIMAGE, V21, P69, DOI 10.1016/j.neuroimage.2003.08.033 Sabri M, 2008, NEUROIMAGE, V39, P1444, DOI 10.1016/j.neuroimage.2007.09.052 Sabri M, 2006, J COGNITIVE NEUROSCI, V18, P689, DOI 10.1162/jocn.2006.18.5.689 Salmi J, 2007, BRAIN STRUCT FUNCT, V212, P181, DOI 10.1007/s00429-007-0152-2 Salmi J, 2009, BRAIN RES, V1286, P155, DOI 10.1016/j.brainres.2009.06.083 Samson F., 2011, FRONTIERS PSYCHOL, V1, P1 Santangelo V, 2010, NEUROIMAGE, V49, P2717, DOI 10.1016/j.neuroimage.2009.10.061 Schirmer A, 2012, NEUROIMAGE, V63, P137, DOI 10.1016/j.neuroimage.2012.06.025 Schlosser MJ, 1998, HUM BRAIN MAPP, V6, P1, DOI 10.1002/(SICI)1097-0193(1998)6:1<1::AID-HBM1>3.0.CO;2-7 Schonwiesner M, 2005, EUR J NEUROSCI, V22, P1521, DOI 10.1111/j.1460-9568.2005.04315.x Sevostianov A, 2002, INT J NEUROSCI, V112, P587, DOI 10.1080/00207450290025671 Sharda M, 2012, NEUROSCIENCE, V214, P49, DOI 10.1016/j.neuroscience.2012.03.053 Shomstein S, 2006, J NEUROSCI, V26, P435, DOI 10.1523/JNEUROSCI.4408-05.2006 Shomstein S, 2004, J NEUROSCI, V24, P10702, DOI 10.1523/JNEUROSCI.2939-04.2004 Shultz S, 2012, J COGNITIVE NEUROSCI, V24, P1224, DOI 10.1162/jocn_a_00208 Sokhi DS, 2005, NEUROIMAGE, V27, P572, DOI 10.1016/j.neuroimage.2005.04.023 Specht K, 2003, NEUROIMAGE, V20, P1944, DOI 10.1016/j.neuroimage.2003.07.034 Specht K, 2005, NEUROSCI LETT, V384, P60, DOI 10.1016/j.neulet.2005.04.057 Stevens AA, 2000, MAGN RESON IMAGING, V18, P495, DOI 10.1016/S0730-725X(00)00128-4 Stevens AA, 2004, COGNITIVE BRAIN RES, V18, P162, DOI 10.1016/j.cogbrainres.2003.10.008 Stewart L, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001470 Strand F, 2008, BRAIN RES, V1212, P48, DOI 10.1016/j.brainres.2008.02.097 Tervaniemi M, 2006, J NEUROSCI, V26, P8647, DOI 10.1523/JNEUROSCI.0995-06.2006 Turkeltaub PE, 2010, BRAIN LANG, V114, P1, DOI 10.1016/j.bandl.2010.03.008 Turkeltaub PE, 2002, NEUROIMAGE, V16, P765, DOI 10.1006/nimg.2002.1131 Uppenkamp S, 2006, NEUROIMAGE, V31, P1284, DOI 10.1016/j.neuroimage.2006.01.004 Vigneau M, 2006, NEUROIMAGE, V30, P1414, DOI 10.1016/j.neuroimage.2005.11.002 Voisin J, 2006, J NEUROSCI, V26, P273, DOI 10.1523/JNEUROSCI.2967-05.2006 Von Kriegstein K, 2004, NEUROIMAGE, V22, P948 von Kriegstein K, 2003, COGNITIVE BRAIN RES, V17, P48, DOI 10.1016/S0926-6410(03)00079-X Vouloumanos A, 2001, J COGNITIVE NEUROSCI, V13, P994, DOI 10.1162/089892901753165890 Warren JD, 2006, NEUROIMAGE, V31, P1389, DOI 10.1016/j.neuroimage.2006.01.034 Warren JD, 2003, P NATL ACAD SCI USA, V100, P10038, DOI 10.1073/pnas.1730682100 Warren JD, 2003, J NEUROSCI, V23, P5799 Warren JD, 2002, NEURON, V34, P139, DOI 10.1016/S0896-6273(02)00637-2 Warren JD, 2005, NEUROIMAGE, V24, P1052, DOI 10.1016/j.neuroimage.2004.10.031 Weissman DH, 2004, J NEUROSCI, V24, P10941, DOI 10.1523/JNEUROSCI.3669-04.2004 WOLDORFF MG, 1993, P NATL ACAD SCI USA, V90, P8722, DOI 10.1073/pnas.90.18.8722 Woods David L, 2010, Front Syst Neurosci, V4, P155, DOI 10.3389/fnsys.2010.00155 Woods DL, 2011, FRONT HUM NEUROSCI, V5, DOI 10.3389/fnhum.2011.00042 Wu CT, 2007, BRAIN RES, V1134, P187, DOI 10.1016/j.brainres.2006.11.088 Yoncheva YN, 2010, CEREB CORTEX, V20, P622, DOI 10.1093/cercor/bhp129 Yoshiura T, 1999, NEUROREPORT, V10, P1683, DOI 10.1097/00001756-199906030-00011 Zaehle T, 2004, EUR J NEUROSCI, V20, P2447, DOI 10.1111/j.1460-9568.2004.03687.x Zatorre RJ, 1999, NEUROIMAGE, V10, P544, DOI 10.1006/nimg.1999.0491 Zevin JD, 2010, J NEUROSCI, V30, P1110, DOI 10.1523/JNEUROSCI.4599-09.2010 NR 163 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JAN PY 2014 VL 307 SI SI BP 29 EP 41 DI 10.1016/j.heares.2013.08.001 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA AA8LU UT WOS:000331347800004 PM 23938208 ER PT J AU Kiani, F Yoganantha, U Tan, CM Meddis, R Schaette, R AF Kiani, Farhait Yoganantha, Ushalline Tan, Christine M. Meddis, Ray Schaette, Roland TI Off-frequency listening in subjects with chronic tinnitus SO HEARING RESEARCH LA English DT Article ID PSYCHOPHYSICAL TUNING CURVES; DORSAL COCHLEAR NUCLEUS; SENSORINEURAL HEARING-LOSS; HAIR CELL LOSS; DEAD REGIONS; COMPUTATIONAL MODEL; NEURONAL HYPERACTIVITY; IMPAIRED LISTENERS; NORMAL AUDIOGRAM; THRESHOLDS AB The occurrence of subjective tinnitus has been linked to cochlear damage, as most tinnitus patients have impaired hearing, and animal studies have shown that the induction of hearing loss can lead to behavioural signs of tinnitus. In tinnitus patients, the pure-tone audiogram is the main source of information about cochlear damage, but hearing thresholds alone may not adequately reflect its magnitude. Etchelecou et al. (2011) reported that the majority of patients with acute tinnitus post impulse noise exposure showed off-frequency listening (OFL), which is not readily observed in pure-tone audiograms. We investigated the possibility of OFL occurring in subjects with chronic tinnitus by testing twenty subjects who had experienced tinnitus for more than a year. OFL was assessed by measuring psychophysical tuning curves using a forward-masking paradigm. OFL occurred in 13 out of 20 subjects, 12 of whom also did not perceive frequencies above 8 kHz. Such unresponsive frequencies (UFs) were also present in three subjects without OFL. The tinnitus spectrum generally reached its highest values at the edge of or within the frequency regions with OFL or UFs, but there was no significant correlation between edge frequencies and the frequency with the highest tinnitus pitch similarity rating. When OFL and UFs were taken as evidence for cochlear dead regions, 16/20 subjects passed the criterion for cochlear dead regions. The remaining four subjects showed neither OFL nor UFs. (C) 2013 Elsevier B.V. All rights reserved. C1 [Kiani, Farhait; Yoganantha, Ushalline; Schaette, Roland] UCL Ear Inst, London WC1X 8EE, England. [Tan, Christine M.; Meddis, Ray] Univ Essex, Dept Psychol, Colchester CO4 3SQ, Essex, England. RP Schaette, R (reprint author), UCL Ear Inst, 332 Grays Inn Rd, London WC1X 8EE, England. EM r.schaette@ucl.ac.uk FU British Tinnitus Association (BTA) FX We would like to thank the editor Brian Moore and two anonymous reviewers for their very helpful comments and suggestions on this manuscript. This study was supported by the British Tinnitus Association (BTA tinnitus research fellowship awarded to R.S.). CR AXELSSON A, 1989, British Journal of Audiology, V23, P53, DOI 10.3109/03005368909077819 Ayache D, 2003, OTOL NEUROTOL, V24, P48, DOI 10.1097/00129492-200301000-00011 BARNEA G, 1990, AUDIOLOGY, V29, P36 Bauer CA, 2008, J NEUROSCI RES, V86, P2564, DOI 10.1002/jnr.21699 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 Choy DS, 2010, J LARYNGOL OTOL, V124, P366, DOI 10.1017/S0022215109992167 Chrostowski M, 2011, J COMPUT NEUROSCI, V30, P279, DOI 10.1007/s10827-010-0256-1 CHUNG DY, 1984, AUDIOLOGY, V23, P441 Davis B, 2004, HEARING RES, V187, P12, DOI 10.1016/S0378-5955(03)00339-3 Dominguez M, 2006, NEURAL COMPUT, V18, P2942, DOI 10.1162/neco.2006.18.12.2942 Epp B, 2012, J ACOUST SOC AM, V132, pEL196, DOI 10.1121/1.4740462 Etchelecou MC, 2011, HEARING RES, V282, P81, DOI 10.1016/j.heares.2011.09.006 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Gu JW, 2012, JARO-J ASSOC RES OTO, V13, P819, DOI 10.1007/s10162-012-0344-1 HALLAM RS, 1988, BRIT J CLIN PSYCHOL, V27, P213 Hallam R.S., 2008, TQ MANUAL TINNITUS Q Heffner HE, 2002, HEARING RES, V170, P83, DOI 10.1016/S0378-5955(02)00343-X Henry J.A., 1999, 6 INT TINN SEM 1999, P51 Huss M, 2003, J ACOUST SOC AM, V114, P3283, DOI 10.1121/1.162400 Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038 Kaltenbach JA, 2002, J NEUROPHYSIOL, V88, P699, DOI 10.1152/jn00893.2001 Kaltenbach JA, 2011, HEARING RES, V276, P52, DOI 10.1016/j.heares.2010.12.003 Kluk K, 2005, HEARING RES, V200, P115, DOI 10.1016/j.heares.2004.09.003 Kluk K, 2004, HEARING RES, V194, P118, DOI 10.1016/j.heares.2004.04.012 Konig O, 2006, HEARING RES, V221, P59, DOI 10.1016/j.heares.2006.07.007 Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 Lecluyse W, 2009, J ACOUST SOC AM, V126, P2570, DOI 10.1121/1.3238248 Lecluyse W., 2013, INT J AUDIOL, DOI DOI 10.3109/14992027.2013.796530.P0STED Lockwood AH, 2002, NEW ENGL J MED, V347, P904, DOI 10.1056/NEJMra013395 Lugli Marco, 2009, Int Tinnitus J, V15, P51 Makary CA, 2011, JARO-J ASSOC RES OTO, V12, P711, DOI 10.1007/s10162-011-0283-2 Meddis R, 2010, NEUROPHYSIOLOGICAL BASES OF AUDITORY PERCEPTION, P631, DOI 10.1007/978-1-4419-5686-6_57 MOORE BCJ, 1978, J ACOUST SOC AM, V63, P524, DOI 10.1121/1.381752 Moore BCJ, 2004, EAR HEARING, V25, P478, DOI 10.1097/01.aud.0000145992.31135.89 Moore BCJ, 2004, EAR HEARING, V25, P98, DOI 10.1097/01.AUD.0000120359.49711.D7 Moore BCJ, 2000, BRIT J AUDIOL, V34, P205 Moore BCJ, 2001, EAR HEARING, V22, P268, DOI 10.1097/00003446-200108000-00002 Mulders WHAM, 2011, J COMP NEUROL, V519, P2637, DOI 10.1002/cne.22644 Nicolas-Puel Cécile, 2002, Int Tinnitus J, V8, P37 Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156 Norena AJ, 2011, NEUROSCI BIOBEHAV R, V35, P1089, DOI 10.1016/j.neubiorev.2010.11.003 Nosrati-Zarenoe R, 2007, ACTA OTO-LARYNGOL, V127, P1168, DOI 10.1080/00016480701242477 Okamoto H, 2010, P NATL ACAD SCI USA, V107, P1207, DOI 10.1073/pnas.0911268107 Parra LC, 2007, J ACOUST SOC AM, V121, P1632, DOI 10.1121/1.2431346 Pepler A., 2012, 3 ANN C EXP SHORT PA Roberts LE, 2008, JARO-J ASSOC RES OTO, V9, P417, DOI 10.1007/s10162-008-0136-9 Sanchez Tanit Ganz, 2005, Braz J Otorhinolaryngol, V71, P427 Schaette R, 2006, EUR J NEUROSCI, V23, P3124, DOI 10.1111/j.1460-9568.04774.x Schaette R, 2008, HEARING RES, V240, P57, DOI 10.1016/j.heares.2008.02.006 Schaette R, 2009, J NEUROPHYSIOL, V101, P3042, DOI 10.1152/jn.91256.2008 Schaette R, 2011, J NEUROSCI, V31, P13452, DOI 10.1523/JNEUROSCI.2156-11.2011 Sek A, 2011, INT J AUDIOL, V50, P237, DOI 10.3109/14992027.2010.550636 Sereda M, 2011, INT J AUDIOL, V50, P303, DOI 10.3109/14992027.2010.551221 Sobrinho Pollyanna G, 2004, Int Tinnitus J, V10, P197 Tan CM, 2013, JARO-J ASSOC RES OTO, V14, P275, DOI 10.1007/s10162-013-0371-6 Tass PA, 2012, RESTOR NEUROL NEUROS, V30, P137, DOI 10.3233/RNN-2012-110218 Tass PA, 2012, BIOL CYBERN, V106, P27, DOI 10.1007/s00422-012-0479-5 Vinay, 2007, EAR HEARING, V28, P231 Weisz N, 2006, HEARING RES, V222, P108, DOI 10.1016/j.heares.2006.09.003 NR 59 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD DEC PY 2013 VL 306 BP 1 EP 10 DI 10.1016/j.heares.2013.08.012 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 260EQ UT WOS:000327578200001 PM 24012951 ER PT J AU Eeg-Olofsson, M Stenfelt, S Taghavi, H Reinfeldt, S Hakansson, B Tengstrand, T Finizia, C AF Eeg-Olofsson, Mans Stenfelt, Stefan Taghavi, Hamidreza Reinfeldt, Sabine Hakansson, Bo Tengstrand, Tomas Finizia, Caterina TI Transmission of bone conducted sound - Correlation between hearing perception and cochlear vibration SO HEARING RESEARCH LA English DT Article ID HUMAN SKULL; TRANSCRANIAL ATTENUATION; MECHANICAL IMPEDANCE; AIR CONDUCTION; MIDDLE-EAR; HUMAN HEAD; STIMULATION; THRESHOLDS; AUDIOMETRY; MOTION AB The vibration velocity of the lateral semicircular canal and the cochlear promontory was measured on 16 subjects with a unilateral middle ear common cavity, using a laser Doppler vibrometer, when the stimulation was by bone conduction (BC). Four stimulation positions were used: three ipsilateral positions and one contralateral position. Masked BC pure tone thresholds were measured with the stimulation at the same four positions. Valid vibration data were obtained at frequencies between 0.3 and 5.0 kHz. Large intersubject variation of the results was found with both methods. The difference in cochlear velocity with BC stimulation at the four positions varied as a function of frequency while the tone thresholds showed a tendency of lower thresholds with stimulation at positions close to the cochlea. The correlation between the vibration velocities of the two measuring sites of the otic capsule was high. Also, relative median data showed similar trends for both vibration and threshold measurements. However, due to the high variability for both vibration and perceptual data, low correlation between the two methods was found at the individual level. The results from this study indicated that human hearing perception from BC sound can be estimated from the measure of cochlear vibrations of the otic capsule. It also showed that vibration measurements of the cochlea in cadaver heads are similar to that measured in live humans. (C) 2013 Elsevier B.V. All rights reserved. C1 [Eeg-Olofsson, Mans; Finizia, Caterina] Gothenburg Univ, Dept Otorhinolaryngol Head & Neck Surg, Sahlgrenska Univ Hosp, Sahlgrenska Acad, S-41345 Gothenburg, Sweden. [Stenfelt, Stefan] Linkoping Univ, Dept Clin & Expt Med, Linkoping, Sweden. [Taghavi, Hamidreza; Reinfeldt, Sabine; Hakansson, Bo] Chalmers, Dept Signals & Syst, S-41296 Gothenburg, Sweden. [Tengstrand, Tomas] Sahlgrens Univ Hosp, Dept Tech Audiol, Gothenburg, Sweden. RP Eeg-Olofsson, M (reprint author), Gothenburg Univ, Dept Otorhinolaryngol Head & Neck Surg, Sahlgrenska Univ Hosp, Sahlgrenska Acad, Grona Straket 5, S-41345 Gothenburg, Sweden. EM manseegolofsson@gmail.com; stefan.stenfelt@liu.se; taghavi@chalmers.se; sabine.reinfeldt@chalmers.se; boh@chalmers.se; tomas.tengstrand@vgregion.se; caterina.finizia@orlss.gu.se FU Health & Medical Care Committee of the Regional Executive Board, Region Vastra Gotaland; Goteborg Medical Society; VINNOVA: Swedish Governmental Agency for Innovation Systems [2009-00190] FX The authors thank Ann-Christine Hermansson for the great help, support and endurance in completing this study. This study is partly supported by "The Health & Medical Care Committee of the Regional Executive Board, Region Vastra Gotaland", "The Goteborg Medical Society" and "VINNOVA: Swedish Governmental Agency for Innovation Systems" (Grant number 2009-00190). The study has partly been presented at "The 12th International Conference on Cochlear Implants and Other Implantable Auditory Technologies; 2012", Baltimore, USA. CR Bekesy G., 1960, EXPT HEARING BUCHMAN E, 1991, J ACOUST SOC AM, V90, P895, DOI 10.1121/1.401956 Eeg-Olofsson M, 2011, OTOL NEUROTOL, V32, P192, DOI 10.1097/MAO.0b013e3182009f16 Eeg-Olofsson M, 2008, INT J AUDIOL, V47, P761, DOI 10.1080/14992020802311216 FLOTTORP G, 1976, J ACOUST SOC AM, V59, P899, DOI 10.1121/1.380949 FRANKE EK, 1956, J ACOUST SOC AM, V28, P1277, DOI 10.1121/1.1908622 GOODHILL V, 1970, ARCHIV OTOLARYNGOL, V91, P250 GURDJIAN ES, 1970, J BIOMECH, V3, P239, DOI 10.1016/0021-9290(70)90025-4 Hakansson B, 1996, J ACOUST SOC AM, V99, P2239 Hakansson B, 2010, INT J AUDIOL, V49, P203, DOI 10.3109/14992020903264462 HAKANSSON B, 1984, SCAND AUDIOL, V13, P3, DOI 10.3109/01050398409076252 HAKANSSON B, 1986, J ACOUST SOC AM, V80, P1065 Hakansson B, 2008, OTOL NEUROTOL, V29, P1132, DOI 10.1097/MAO.0b013e31816fdc90 HAKANSSON B, 1985, ACTA OTO-LARYNGOL, V100, P240, DOI 10.3109/00016488509104786 Hurley R., 1970, J AUD RES, P147 JERLVALL L, 1986, SCAND AUDIOL, V15, P51, DOI 10.3109/01050398609045954 KHALIL TB, 1979, J SOUND VIB, V63, P351, DOI 10.1016/0022-460X(79)90679-5 KHANNA SM, 1976, J ACOUST SOC AM, V60, P139, DOI 10.1121/1.381081 McBride M, 2008, ERGONOMICS, V51, P702, DOI 10.1080/00140130701747509 NOLAN M, 1981, J LARYNGOL OTOL, V95, P597, DOI 10.1017/S0022215100091155 SMITH JB, 1976, J SOUND VIB, V48, P35, DOI 10.1016/0022-460X(76)90369-2 SNYDER JM, 1973, LARYNGOSCOPE, V83, P1847, DOI 10.1288/00005537-197311000-00017 Sohmer H, 2000, HEARING RES, V146, P81, DOI 10.1016/S0378-5955(00)00099-X Stenfelt S, 2002, J ACOUST SOC AM, V111, P947, DOI 10.1121/1.1432977 Stenfelt S, 2011, ADV OTO-RHINO-LARYNG, V71, P10, DOI 10.1159/000323574 Stenfelt S, 2003, J ACOUST SOC AM, V113, P902, DOI 10.1121/1.1534606 Stenfelt S, 2005, OTOL NEUROTOL, V26, P1245, DOI 10.1097/01.mao.0000187236.10842.d5 Stenfelt S, 2004, J ACOUST SOC AM, V115, P797, DOI 10.1121/1.1639903 Stenfelt S, 2004, HEARING RES, V198, P10, DOI 10.1016/j.heares.2004.07.008 Stenfelt S, 2012, OTOL NEUROTOL, V33, P105, DOI 10.1097/MAO.0b013e31823e28ab Stenfelt S, 2005, INT J AUDIOL, V44, P178, DOI 10.1080/14992020500031561 Stenfelt S, 2006, J ACOUST SOC AM, V119, P2848, DOI 10.1121/1.2184225 Stenfelt S, 2003, HEARING RES, V181, P131, DOI 10.1016/S0378-5955(03)00183-7 Stenfelt S, 2005, J ACOUST SOC AM, V118, P2373, DOI 10.1121/1.12005847 Stenfelt S, 2000, J ACOUST SOC AM, V107, P422, DOI 10.1121/1.428314 Stenfelt SPY, 1999, SCAND AUDIOL, V28, P190, DOI 10.1080/010503999424761 STUDEBAKER GA, 1962, J SPEECH HEAR RES, V5, P321 Tjellstrom A, 2001, OTOLARYNG CLIN N AM, V34, P337, DOI 10.1016/S0030-6665(05)70335-2 Tonndorf J., 1966, ACTA OTO-LARYNGOL, V213, P1 TONNDORF J, 1962, J ACOUST SOC AM, V34, P1127, DOI 10.1121/1.1918259 NR 40 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD DEC PY 2013 VL 306 BP 11 EP 20 DI 10.1016/j.heares.2013.08.015 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 260EQ UT WOS:000327578200002 PM 24047594 ER PT J AU Epp, B Yasin, I Verhey, JL AF Epp, Bastian Yasin, Ifat Verhey, Jesko L. TI Objective measures of binaural masking level differences and comodulation masking release based on late auditory evoked potentials SO HEARING RESEARCH LA English DT Article ID TO-NOISE RATIO; MODULATED MASKERS; COCHLEAR NUCLEUS; SOUND INTENSITY; RESPONSES; NEURONS; SIGNALS; CORTEX; ACTIVATION; LOUDNESS AB The audibility of important sounds is often hampered due to the presence of other masking sounds. The present study investigates if a correlate of the audibility of a tone masked by noise is found in late auditory evoked potentials measured from human listeners. The audibility of the target sound at a fixed physical intensity is varied by introducing auditory cues of (i) interaural target signal phase disparity and (ii) coherent masker level fluctuations in different frequency regions. In agreement with previous studies, psychoacoustical experiments showed that both stimulus manipulations result in a masking release (i: binaural masking level difference; ii: comodulation masking release) compared to a condition where those cues are not present. Late auditory evoked potentials (N1, P2) were recorded for the stimuli at a constant masker level, but different signal levels within the same set of listeners who participated in the psychoacoustical experiment. The data indicate differences in N1 and P2 between stimuli with and without interaural phase disparities. However, differences for stimuli with and without coherent masker modulation were only found for P2, i.e., only P2 is sensitive to the increase in audibility, irrespective of the cue that caused the masking release. The amplitude of P2 is consistent with the psychoacoustical finding of an addition of the masking releases when both cues are present. Even though it cannot be concluded where along the auditory pathway the audibility is represented, the P2 component of auditory evoked potentials is a candidate for an objective measure of audibility in the human auditory system. (C) 2013 Elsevier B.V. All rights reserved. C1 [Epp, Bastian] Tech Univ Denmark, Dept Elect Engn, Ctr Appl Hearing Res, DK-2800 Lyngby, Denmark. [Yasin, Ifat] UCL Ear Inst, London WC1X 8EE, England. [Verhey, Jesko L.] Univ Magdeburg, Dept Expt Audiol, D-39120 Magdeburg, Germany. RP Epp, B (reprint author), Tech Univ Denmark, Dept Elect Engn, Ctr Appl Hearing Res, Bldg 352, DK-2800 Lyngby, Denmark. EM bepp@elektro.dtu.dk; i.yasin@ucl.ac.uk; jesko.verhey@med.ovgu.de FU Deutsche Forschungsgemeinschaft [SFB/TRR31]; British Council (German-British Advanced Research Collaboration Award) FX This work was supported by the Deutsche Forschungsgemeinschaft (SFB/TRR31) and by the British Council (German-British Advanced Research Collaboration Award). We would like to thank Helge Luddemann for his support with the EEG data collection and two anonymous Reviewers for helpful comments on previous versions of this manuscript. CR Androulidakis AG, 2006, CLIN NEUROPHYSIOL, V117, P1783, DOI 10.1016/j.clinph.2006.04.011 Asadollahi A., 2006, EUR J NEUROSCI, V32, P606 Billings CJ, 2009, HEARING RES, V254, P15, DOI 10.1016/j.heares.2009.04.002 Epp B, 2009, J ACOUST SOC AM, V126, P2479, DOI 10.1121/1.3205404 Epp B, 2009, J COMPUT NEUROSCI, V26, P393, DOI 10.1007/s10827-008-0118-2 Ernst SMA, 2008, NEUROIMAGE, V43, P321, DOI 10.1016/j.neuroimage.2008.07.046 Ernst SMA, 2010, NEUROIMAGE, V49, P835, DOI 10.1016/j.neuroimage.2009.07.014 Fowler C G, 1996, J Am Acad Audiol, V7, P23 Goense JBM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031589 Hall JW, 2011, J ACOUST SOC AM, V129, P2080, DOI 10.1121/1.3562563 HALL JW, 1984, J ACOUST SOC AM, V76, P50, DOI 10.1121/1.391005 HOKE M, 1984, ELECTROEN CLIN NEURO, V57, P484, DOI 10.1016/0013-4694(84)90078-6 Ishida I.M., 2004, EAR HEARING, V30, P713 Jasper H. H., 1958, ELECTROENCEPHALOGRAP, V10, P371, DOI DOI 10.1016/0013-4694(58)90053-1 JEFFRESS LA, 1956, J ACOUST SOC AM, V28, P416, DOI 10.1121/1.1908346 Jiang D, 1997, J NEUROPHYSIOL, V77, P3085 KEVANISHVILI Z, 1987, SCAND AUDIOL, V16, P3, DOI 10.3109/01050398709042149 Langers DRM, 2007, NEUROIMAGE, V35, P709, DOI 10.1016/j.neuroimage.2006.12.013 Las L, 2005, J NEUROSCI, V25, P1503, DOI 10.1523/JNEUROSCI.4007-04.2005 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Luddemann H, 2009, HEARING RES, V256, P39, DOI 10.1016/j.heares.2009.06.010 Morita T, 2003, CLIN NEUROPHYSIOL, V114, P851, DOI 10.1016/S1388-2457(03)00033-6 MOTT JB, 1990, J ACOUST SOC AM, V88, P2682, DOI 10.1121/1.399987 Nelken I, 1999, NATURE, V397, P154, DOI 10.1038/16456 Neuert V, 2004, J NEUROSCI, V24, P5789, DOI 10.1523/JNEUROSCI.0450-04.2004 Nieder A, 2001, EUR J NEUROSCI, V13, P1033, DOI 10.1046/j.0953-816x.2001.01465.x Piechowiak T, 2007, J ACOUST SOC AM, V121, P2111, DOI 10.1121/1.2534227 Pressnitzer D, 2001, J NEUROSCI, V21, P6377 Puschmann S, 2010, NEUROIMAGE, V49, P1641, DOI 10.1016/j.neuroimage.2009.09.045 Riedel H., 2001, Zeitschrift fur Audiologie, V40 Rohl M, 2012, JARO-J ASSOC RES OTO, V13, P369, DOI 10.1007/s10162-012-0315-6 Ross B, 2007, J NEUROSCI, V27, P11172, DOI 10.1523/JNEUROSCI.1813-07.2007 Rupp A, 2007, HEARING - FROM SENSORY PROCESSING TO PERCEPTION, P125, DOI 10.1007/978-3-540-73009-5_14 Sasaki T, 2005, NEUROIMAGE, V25, P684, DOI 10.1016/j.neuroimage.2004.11.030 Sharbrough F., 1991, CLIN NEUROPHYSIOL, V8, P200, DOI DOI 10.1097/00004691-199104000-00007 Verhey JL, 2003, EXP BRAIN RES, V153, P405, DOI 10.1007/s00221-003-1607-1 Verhey JL, 1999, J ACOUST SOC AM, V106, P2733, DOI 10.1121/1.428101 Wack DS, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041263 Wong WYS, 2004, EAR HEARING, V25, P57, DOI 10.1097/01.AUD.0000111257.11898.64 NR 39 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD DEC PY 2013 VL 306 BP 21 EP 28 DI 10.1016/j.heares.2013.08.013 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 260EQ UT WOS:000327578200003 PM 24047593 ER PT J AU Vermeire, K Landsberger, DM Schleich, P Van de Heyning, PH AF Vermeire, Katrien Landsberger, David M. Schleich, Peter Van de Heyning, Paul H. TI Multidimensional scaling between acoustic and electric stimuli in cochlear implant users with contralateral hearing SO HEARING RESEARCH LA English DT Article ID UNILATERAL DEAFNESS; BINAURAL HEARING; PITCH RANKING; TINNITUS; SPEECH; RECOGNITION; PERCEPTION; FEATURES AB This study investigated the perceptual relationship between acoustic and electric stimuli presented to CI users with functional contralateral hearing. Fourteen subjects with unilateral profound deafness implanted with a MED-EL CI scaled the perceptual differences between pure tones presented to the acoustic hearing ear and electric biphasic pulse trains presented to the implanted ear. The differences were analyzed with a multidimensional scaling (MDS) analysis. Additionally, speech performance in noise was tested using sentence material presented in different spatial configurations while patients listened with both their acoustic hearing and implanted ears. Results of alternating least squares scaling (ALSCAL) analysis consistently demonstrate that a change in place of stimulation is in the same perceptual dimension as a change in acoustic frequency. However, the relative perceptual differences between the acoustic and the electric stimuli varied greatly across subjects. A degree of perceptual separation between acoustic and electric stimulation (quantified by relative dimensional weightings from an INDSCAL analysis) was hypothesized that would indicate a change in perceptual quality, but also be predictive of performance with combined acoustic and electric hearing. Perceptual separation between acoustic and electric stimuli was observed for some subjects. However, no relationship between the degree of perceptual separation and performance was found. (C) 2013 Elsevier B.V. All rights reserved. C1 [Vermeire, Katrien; Schleich, Peter; Van de Heyning, Paul H.] Univ Antwerp, Dept Otorhinolaryngol & Head & Neck Surg, Antwerp Univ Hosp, B-2650 Edegem, Belgium. [Vermeire, Katrien] Univ Innsbruck, C Doppler Lab Act Implantable Syst, Inst Ion Phys & Appl Phys, A-6020 Innsbruck, Austria. [Vermeire, Katrien] Thomas More Univ Coll, B-2018 Antwerp, Belgium. [Landsberger, David M.] House Res Inst, Los Angeles, CA 90057 USA. [Schleich, Peter] MED EL GmbH, A-6020 Innsbruck, Austria. RP Vermeire, K (reprint author), Thomas More Univ Coll, Jozef De Bomstr 11, B-2018 Antwerp, Belgium. EM Katrien.vermeire@thomasmore.be FU Research Foundation Flanders (FWO) [A 7/2 EP B5]; NIH/NIDCD [R01 DC012152]; Med-El Hearing Solutions; TOPBOF in the University of Antwerp [5503] FX This work was supported by grants from Research Foundation Flanders (FWO; A 7/2 EP B5), NIH/NIDCD (R01 DC012152), Med-El Hearing Solutions, and a TOPBOF (5503) in the University of Antwerp. The authors would like to express their thanks and appreciation to the subjects for their time and effort. We gratefully acknowledge contributions from Andrea Nobbe and Ernst Aschbacher. CR Arndt S, 2011, OTOL NEUROTOL, V32, P39, DOI 10.1097/MAO.0b013e3181fcf271 Baumann U, 2006, HEARING RES, V213, P34, DOI 10.1016/j.heares.2005.12.010 Buechner A, 2010, OTOL NEUROTOL, V31, P1381, DOI 10.1097/MAO.0b013e3181e3d353 Busby PA, 2000, J ACOUST SOC AM, V107, P547, DOI 10.1121/1.428353 Ching T Y C, 2007, Trends Amplif, V11, P161, DOI 10.1177/1084713807304357 Collins LM, 1997, J ACOUST SOC AM, V101, P440, DOI 10.1121/1.417989 Collins LM, 2000, J ACOUST SOC AM, V108, P2353, DOI 10.1121/1.1314320 Gantz BJ, 2004, ACTA OTO-LARYNGOL, V124, P344, DOI 10.1080/00016480410016423 Gifford RH, 2007, J SPEECH LANG HEAR R, V50, P835, DOI 10.1044/1092-4388(2007/058) Henshall K R, 2001, J Am Acad Audiol, V12, P478 Kendall D. G., 1971, MATH ARCHAEOLOGICAL, P215 Kong YY, 2005, J ACOUST SOC AM, V117, P1351, DOI 10.1121/1.1857526 Kruskal J. B., 1977, MULTIDIMENSIONAL SCA Landsberger DM, 2012, HEARING RES, V284, P16, DOI 10.1016/j.heares.2011.12.009 Lazard DS, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0038687 Macherey O, 2011, JARO-J ASSOC RES OTO, V12, P233, DOI 10.1007/s10162-010-0248-x McDermott HJ, 2006, HEARING RES, V218, P81, DOI 10.1016/j.heares.2006.05.002 McKay CM, 2005, J ACOUST SOC AM, V118, P386, DOI 10.1121/1.1937349 McKay CM, 1999, J ACOUST SOC AM, V105, P347, DOI 10.1121/1.424553 McKay CM, 1996, J ACOUST SOC AM, V99, P1079, DOI 10.1121/1.414594 Pauka C K, 1989, J Laryngol Otol Suppl, V19, P1 Punte Andrea Kleine, 2011, Cochlear Implants Int, V12 Suppl 1, pS26, DOI 10.1179/146701011X13001035752336 Rader T, 2013, EAR HEARING, V34, P324, DOI 10.1097/AUD.0b013e318272f189 Sucher CM, 2007, HEARING RES, V230, P80, DOI 10.1016/j.heares.2007.05.002 TAKANE Y, 1977, PSYCHOMETRIKA, V42, P7, DOI 10.1007/BF02293745 Tavora-Vieira D, 2013, LARYNGOSCOPE, V123, P1251, DOI 10.1002/lary.23764 TONG YC, 1983, SCIENCE, V219, P993, DOI 10.1126/science.6823564 Van de Heyning Paul, 2008, Ann Otol Rhinol Laryngol, V117, P645 van Wieringen A, 2008, INT J AUDIOL, V47, P348, DOI 10.1080/14992020801895144 Vermeire K, 2009, AUDIOL NEURO-OTOL, V14, P163, DOI 10.1159/000171478 Vermeire K, 2008, HEARING RES, V245, P98, DOI 10.1016/j.heares.2008.09.003 von Ilberg C, 1999, ORL J OTO-RHINO-LARY, V61, P334, DOI 10.1159/000027695 Yang HI, 2013, SCI REP-UK, V3, DOI 10.1038/srep01419 Yoon YS, 2011, INT J AUDIOL, V50, P554, DOI 10.3109/14992027.2011.580785 Young F. W., 1979, ALSCAL 4 USERS GUIDE NR 35 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD DEC PY 2013 VL 306 BP 29 EP 36 DI 10.1016/j.heares.2013.09.004 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 260EQ UT WOS:000327578200004 PM 24055624 ER PT J AU Irving, S Trotter, MI Fallon, JB Millard, RE Shepherd, RK Wise, AK AF Irving, S. Trotter, M. I. Fallon, J. B. Millard, R. E. Shepherd, R. K. Wise, A. K. TI Cochlear implantation for chronic electrical stimulation in the mouse SO HEARING RESEARCH LA English DT Article ID SPIRAL GANGLION NEURONS; SENSORINEURAL HEARING-LOSS; PRIMARY AUDITORY-CORTEX; GUINEA-PIG; NEONATAL DEAFNESS; DEAFENED KITTENS; HAIR-CELLS; NERVE; OTOTOXICITY; SURVIVAL AB The mouse is becoming an increasingly attractive model for auditory research due to the number of genetic deafness models available. These genetic models offer the researcher an array of congenital causes of hearing impairment, and are therefore of high clinical relevance. To date, the use of mice in cochlear implant research has not been possible due to the lack of an intracochlear electrode array and stimulator small enough for murine use, coupled with the difficulty of the surgery in this species. Here, we present a fully-implantable intracochlear electrode stimulator assembly designed for chronic implantation in the mouse. We describe the surgical approach for implantation, as well as presenting the first functional data obtained from intracochlear electrical stimulation in the mouse. (C) 2013 Elsevier B.V. All rights reserved. C1 [Irving, S.; Trotter, M. I.; Fallon, J. B.; Millard, R. E.; Shepherd, R. K.; Wise, A. K.] Bion Inst, Melbourne, Vic, Australia. [Irving, S.] Univ Melbourne, Dept Psychol, Melbourne, Vic 3010, Australia. [Fallon, J. B.; Shepherd, R. K.; Wise, A. K.] Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3010, Australia. [Fallon, J. B.; Shepherd, R. K.; Wise, A. K.] Univ Melbourne, Dept Med Bion, Melbourne, Vic 3010, Australia. RP Shepherd, RK (reprint author), Bion Inst, 384-388 Albert St, East Melbourne, Vic 3002, Australia. EM rshepherd@bionicsinstitute.org RI Wise, Andrew/B-5943-2014; Fallon, James/B-6383-2014 OI Wise, Andrew/0000-0001-9715-8784; FU NIH [HHS-N-263-2007-00053-C]; NHMRC; Royal Victorian Eye and Ear Hospital; Victorian Government FX We would like to thank Helen Feng for electrode manufacture, Jin Xu for surgical assistance and X-ray, Jonathon Kirk from Cochlear Ltd. for the image of the electrode in the epoxy-embedded cochlea, Ms. Nicole Critch, Daphne Do, Amy Morley and Alison Neil for technical assistance and animal maintenance, and Dr. Sue Peirce for veterinary advice. This work was funded by NIH Contract HHS-N-263-2007-00053-C, the NH&MRC and by The Royal Victorian Eye and Ear Hospital. The Bionics Institute acknowledges the support it receives from the Victorian Government via its Operational Infrastructure Support Scheme. CR Ahituv N, 2002, TRENDS MOL MED, V8, P447, DOI 10.1016/S1471-4914(02)02388-2 [Anonymous], 2010, PATHOLOGY EAR Araki S, 1998, LARYNGOSCOPE, V108, P687, DOI 10.1097/00005537-199805000-00012 Black R C, 1983, Acta Otolaryngol Suppl, V399, P5 Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004 Coleman B, 2006, CELL TRANSPLANT, V15, P369, DOI 10.3727/000000006783981819 Coleman B, 2009, J NEUROSCI METH, V176, P144, DOI 10.1016/j.jneumeth.2008.09.007 Eggermont JJ, 2000, HEARING RES, V142, P89, DOI 10.1016/S0378-5955(00)00024-1 Emadi G, 2004, J NEUROPHYSIOL, V91, P474, DOI 10.1152/jn.00446.2003 Fallon JB, 2009, J COMP NEUROL, V512, P101, DOI 10.1002/cne.21886 Hartmann R, 1997, HEARING RES, V112, P115, DOI 10.1016/S0378-5955(97)00114-7 James DP, 2008, AUDIOL NEURO-OTOL, V13, P86, DOI 10.1159/000111780 Klinke R, 1999, SCIENCE, V285, P1729, DOI 10.1126/science.285.5434.1729 Lalwani AK, 2002, AUDIOL NEURO-OTOL, V7, P146, DOI 10.1159/000058300 Landry T.G., 2011, HEARING RES Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3 Li PMMC, 2007, ANN OTO RHINOL LARYN, V116, P731 Lu W, 2005, HEARING RES, V205, P115, DOI 10.1016/j.heares.2005.03.010 Millard RE, 2007, J NEUROSCI METH, V166, P168, DOI 10.1016/j.jneumeth.2007.07.009 Morzaria S, 2004, INT J PEDIATR OTORHI, V68, P1193, DOI 10.1016/j.ijporl.2004.04.013 Muller M, 2005, HEARING RES, V202, P63, DOI 10.1016/j.heares.2004.08.011 Murillo-Cuesta S, 2010, LAB ANIM-UK, V44, P124, DOI 10.1258/la.2009.009046 Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017 ROBERTSON D, 1994, BRAIN RES, V646, P37, DOI 10.1016/0006-8993(94)90055-8 Ryugo DK, 2010, J COMP NEUROL, V518, P1046, DOI 10.1002/cne.22262 Sekiya T, 2012, J NEUROSCI RES, V90, P1924, DOI 10.1002/jnr.23093 Shepherd R., 2011, HEAR RES SHEPHERD RK, 1994, HEARING RES, V81, P150, DOI 10.1016/0378-5955(94)90162-7 Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564 Shepherd RK, 1995, HEARING RES, V92, P131, DOI 10.1016/0378-5955(95)00211-1 SHEPHERD RK, 1985, HEARING RES, V18, P105, DOI 10.1016/0378-5955(85)90001-2 Short KR, 2011, J INFECT DIS, V204, P1857, DOI 10.1093/infdis/jir618 Taylor RR, 2008, JARO-J ASSOC RES OTO, V9, P44, DOI 10.1007/s10162-007-0105-8 Wise AK, 2011, NEUROTHERAPEUTICS, V8, P774, DOI 10.1007/s13311-011-0070-0 Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3 Xu J, 1997, HEARING RES, V105, P1, DOI 10.1016/S0378-5955(96)00193-1 Zilberstein Y, 2012, J NEUROSCI, V32, P405, DOI 10.1523/JNEUROSCI.4678-11.2012 NR 37 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD DEC PY 2013 VL 306 BP 37 EP 45 DI 10.1016/j.heares.2013.09.005 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 260EQ UT WOS:000327578200005 PM 24055621 ER PT J AU Bielefeld, EC AF Bielefeld, Eric C. TI Age-related hearing loss patterns in Fischer 344/NHsd rats with cisplatin-induced hearing loss SO HEARING RESEARCH LA English DT Article ID GERM-CELL CANCER; CIS-DIAMMINEDICHLOROPLATINUM; TESTICULAR CANCER; STRIA VASCULARIS; GUINEA-PIG; OTOTOXICITY; PLATINUM; DEGENERATION; COCHLEAR; CHEMOTHERAPY AB The current study was undertaken to explore the impact of cisplatin ototoxicity at a young adult age on the development of age-related hearing loss, both in terms of age of onset and severity of the hearing loss. For the study, 21 Fischer 344/NHsd rats were tested. All rats were tested for auditory brainstem responses (ABRs) at age 7 months and then 15 of the rats were exposed to 7 mg/kg cisplatin by intraperitoneal infusion. The other 6 rats received saline infusions to serve as controls. Seven of the cisplatin rats were euthanized after an ABR test 7 days after cisplatin exposure to assess acute damage. The other 14 rats were tested monthly until age 18 months. Cisplatin caused acute ABR threshold shift at 30 and 40 kHz, but that acute hearing loss led to less age-related hearing loss at those frequencies. Cisplatin exposure led to a primarily additive interaction with age-related hearing loss at 20 kHz, with some exacerbation of hearing loss at age 16-18 months, along with a larger lesion of missing outer hair cells in the corresponding region of the cochlea. ABR P1 amplitude input output functions were not significantly affected by the cisplatin exposure when controlling for threshold shift. Results indicate that cisplatin ototoxicity and age-related hearing loss interact antagonistically in the cochlear region damaged by cisplatin, and primarily show an additive interaction in the frequencies lower than the focus of the cisplatin damage. (C) 2013 Elsevier B.V. All rights reserved. C1 Ohio State Univ, Dept Speech & Hearing Sci, Columbus, OH 43220 USA. RP Bielefeld, EC (reprint author), Ohio State Univ, Dept Speech & Hearing Sci, 110 Pressey Hall,1070 Carmack Rd, Columbus, OH 43220 USA. EM bielefeld.6@osu.edu CR Bertolini P, 2004, J PEDIAT HEMATOL ONC, V26, P649, DOI 10.1097/01.mph.0000141348.62532.73 Bielefeld Eric C, 2008, J Negat Results Biomed, V7, P4, DOI 10.1186/1477-5751-7-4 Bielefeld EC, 2008, HEARING RES, V241, P26, DOI 10.1016/j.heares.2008.04.006 Bielefeld EC, 2013, ANTI-CANCER DRUG, V24, P43, DOI 10.1097/CAD.0b013e32835739fd BOHEIM K, 1985, ARCH OTO-RHINO-LARYN, V242, P1, DOI 10.1007/BF00464398 Buckiova D, 2007, EXP GERONTOL, V42, P629, DOI 10.1016/j.exger.2007.02.007 Buckiova D, 2006, EXP GERONTOL, V41, P296, DOI 10.1016/j.exger.2005.11.010 Cardinaal RM, 2000, HEARING RES, V144, P135, DOI 10.1016/S0378-5955(00)00059-9 Chen GD, 2009, HEARING RES, V248, P39, DOI 10.1016/j.heares.2008.11.010 Einarsson EJ, 2010, INT J AUDIOL, V49, P765, DOI 10.3109/14992027.2010.485595 Einarsson EJ, 2011, INT J AUDIOL, V50, P642, DOI 10.3109/14992027.2011.585667 Gates GA, 2000, HEARING RES, V141, P220, DOI 10.1016/S0378-5955(99)00223-3 GREGG RW, 1992, J CLIN ONCOL, V10, P795 HANSEN SW, 1992, DAN MED BULL, V39, P391 HANSEN SW, 1989, J CLIN ONCOL, V7, P1457 HAYES DM, 1977, CANCER, V39, P1372, DOI 10.1002/1097-0142(197704)39:4<1372::AID-CNCR2820390404>3.0.CO;2-J HINOJOSA R, 1995, AM J OTOL, V16, P731 KEITHLEY EM, 1992, HEARING RES, V59, P171, DOI 10.1016/0378-5955(92)90113-2 KOMUNE S, 1981, OTOLARYNG HEAD NECK, V89, P275 Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 Kujawa SG, 2006, J NEUROSCI, V26, P2115, DOI 10.1523/JNEUROSCI.4985-05.2006 LAURELL G, 1991, ACTA OTO-LARYNGOL, V111, P891, DOI 10.3109/00016489109138427 Lin HW, 2011, JARO-J ASSOC RES OTO, V12, P605, DOI 10.1007/s10162-011-0277-0 Madasu R, 1997, ARCH OTOLARYNGOL, V123, P978 Meech RP, 1998, HEARING RES, V124, P44, DOI 10.1016/S0378-5955(98)00116-6 Mills JH, 1997, J ACOUST SOC AM, V101, P1681, DOI 10.1121/1.418152 Mills J.H., 1996, SCI BASIS NOISE INDU MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7 OSANTO S, 1992, J CLIN ONCOL, V10, P574 Popelar J, 2006, NEUROBIOL AGING, V27, P490, DOI 10.1016/j.neurobiolaging.2005.03.001 Rao G.N., 1990, PATHOLOGY FISCHER RA, P5 REDDEL RR, 1982, CANCER TREAT REP, V66, P19 Rosenhall U, 2003, Noise Health, V5, P47 STUART NSA, 1990, BRIT J CANCER, V61, P479, DOI 10.1038/bjc.1990.106 TANGE RA, 1984, ARCH OTO-RHINO-LARYN, V239, P41, DOI 10.1007/BF00454261 VANZEIJL LGPM, 1984, ARCH OTO-RHINO-LARYN, V239, P255 NR 36 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD DEC PY 2013 VL 306 BP 46 EP 53 DI 10.1016/j.heares.2013.09.003 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 260EQ UT WOS:000327578200006 PM 24055622 ER PT J AU Deroche, MLD Culling, JF Chatterjee, M AF Deroche, Mickael L. D. Culling, John F. Chatterjee, Monita TI Phase effects in masking by harmonic complexes: Speech recognition SO HEARING RESEARCH LA English DT Article ID HEARING-IMPAIRED LISTENERS; BASILAR-MEMBRANE; PERIPHERAL COMPRESSION; RECEPTION THRESHOLD; IMPULSE RESPONSES; PERIOD PATTERNS; INNER-EAR; NOISE; LEVEL; TONES AB Harmonic complexes that generate highly modulated temporal envelopes on the basilar membrane (BM) mask a tone less effectively than complexes that generate relatively flat temporal envelopes, because the non-linear active gain of the BM selectively amplifies a low-level tone in the dips of a modulated masker envelope. The present study examines a similar effect in speech recognition. Speech reception thresholds (SRTs) were measured for a voice masked by harmonic complexes with partials in sine phase (SP) or in random phase (RP). The masker's fundamental frequency (F0) was 50, 100 or 200 Hz. SRTs were considerably lower for SP than for RP maskers at 50-Hz F0, but the two converged at 100-Hz F0, while at 200-Hz F0, SRTs were a little higher for SP than RP maskers. The results were similar whether the target voice was male or female and whether the masker's spectral profile was flat or speech-shaped. Although listening in the masker dips has been shown to play a large role for artificial stimuli such as Schroeder-phase complexes at high levels, it contributes weakly to speech recognition in the presence of harmonic maskers with different crest factors at more moderate sound levels (65 dB SPL). (C) 2013 Elsevier B.V. All rights reserved. C1 [Deroche, Mickael L. D.] Johns Hopkins Univ, Sch Med, Dept Otolaryngol, Baltimore, MD 21205 USA. [Culling, John F.] Cardiff Univ, Sch Psychol, Cardiff CF10 3AT, S Glam, Wales. [Chatterjee, Monita] Boys Town Natl Res Hosp, Auditory Prostheses & Percept Lab, Omaha, NE 68131 USA. RP Deroche, MLD (reprint author), Johns Hopkins Univ, Sch Med, Dept Otolaryngol, 818 Ross Res Bldg,720 Rutland Ave, Baltimore, MD 21205 USA. EM mderoch2@jhmi.edu RI Culling, John/D-1468-2009 FU NIH [R01DC004786, R01DC004786-08S1, R21DC011905] FX This work was supported by NIH Grants No. R01DC004786, No. R01DC004786-08S1, and No. R21DC011905 to M.C. CR Alcantara JI, 2003, J ACOUST SOC AM, V114, P2158, DOI 10.1121/1.1608959 Buss E, 2009, J ACOUST SOC AM, V125, P1612, DOI 10.1121/1.3075579 Carlyon RP, 1997, J ACOUST SOC AM, V101, P3636, DOI 10.1121/1.418324 Carlyon RP, 1997, J ACOUST SOC AM, V101, P3648, DOI 10.1121/1.418325 Carney LH, 1999, J ACOUST SOC AM, V105, P2384, DOI 10.1121/1.426843 de Laat J. A. P. M., 1983, HEARING PHYSL BASES, P359 deBoer E, 1997, J ACOUST SOC AM, V101, P3583, DOI 10.1121/1.418319 Deroche MLD, 2011, J ACOUST SOC AM, V130, P2855, DOI 10.1121/1.3643812 FESTEN JM, 1990, J ACOUST SOC AM, V88, P1725, DOI 10.1121/1.400247 FLETCHER H, 1950, J ACOUST SOC AM, V22, P89, DOI 10.1121/1.1906605 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Gockel H, 2002, J ACOUST SOC AM, V111, P2759, DOI 10.1121/1.1480422 HARTMANN WM, 1991, J ACOUST SOC AM, V90, P1986, DOI 10.1121/1.401678 Hawley ML, 2004, J ACOUST SOC AM, V115, P833, DOI 10.1121/1.1639908 IEEE, 1969, IEEE T AUDIO ELECTRO, VAE-17, P227 JOHNSTONE BM, 1986, HEARING RES, V22, P147, DOI 10.1016/0378-5955(86)90090-0 KOHLRAUSCH A, 1995, J ACOUST SOC AM, V97, P1817, DOI 10.1121/1.413097 Lentz JJ, 2001, JARO, V2, P408, DOI 10.1007/s101620010045 Oxenham AJ, 2001, J ACOUST SOC AM, V110, P3169, DOI 10.1121/1.1414706 Oxenham AJ, 2001, J ACOUST SOC AM, V110, P1525, DOI 10.1121/1.1394740 Oxenham AJ, 2004, J ACOUST SOC AM, V116, P2248, DOI 10.1121/1.1786852 OXENHAM AJ, 1994, HEARING RES, V80, P105, DOI 10.1016/0378-5955(94)90014-0 PLOMP R, 1979, J ACOUST SOC AM, V66, P1333, DOI 10.1121/1.383554 Recio A., 1998, J ACOUST SOC AM, V103, P1972 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 SCHROEDE.MR, 1970, IEEE T INFORM THEORY, V16, P85, DOI 10.1109/TIT.1970.1054411 SHACKLETON TM, 1994, J ACOUST SOC AM, V95, P3529, DOI 10.1121/1.409970 Shen Y, 2009, J ACOUST SOC AM, V126, P2501, DOI 10.1121/1.3224709 SMITH BK, 1986, J ACOUST SOC AM, V80, P1631, DOI 10.1121/1.394327 SUMMERFIELD Q, 1991, J ACOUST SOC AM, V89, P1364, DOI 10.1121/1.400659 Summers V, 1998, HEARING RES, V118, P139, DOI 10.1016/S0378-5955(98)00030-6 Wojtczak M, 2009, JARO-J ASSOC RES OTO, V10, P595, DOI 10.1007/s10162-009-0180-0 YATES GK, 1990, HEARING RES, V50, P145, DOI 10.1016/0378-5955(90)90041-M NR 33 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD DEC PY 2013 VL 306 BP 54 EP 62 DI 10.1016/j.heares.2013.09.008 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 260EQ UT WOS:000327578200007 PM 24076425 ER PT J AU Ward, JL Buerkle, NP Bee, MA AF Ward, Jessica L. Buerkle, Nathan P. Bee, Mark A. TI Spatial release from masking improves sound pattern discrimination along a biologically relevant pulse-rate continuum in gray treefrogs SO HEARING RESEARCH LA English DT Article ID BUDGERIGARS MELOPSITTACUS-UNDULATUS; SPEECH-RECEPTION THRESHOLD; INDUCED INTERAURAL TIME; COCKTAIL PARTY PROBLEM; HYLA-VERSICOLOR; ACOUSTIC COMMUNICATION; GREY TREEFROGS; DIRECTIONAL HEARING; SIGNAL RECOGNITION; AUDITORY MIDBRAIN AB Many frogs form large choruses during their mating season in which males produce loud advertisement calls to attract females and repel rival males. High background noise levels in these social aggregations can impair vocal perception. In humans, spatial release from masking contributes to our ability to understand speech in noisy social groups. Here, we tested the hypothesis that spatial separation between target signals and 'chorus-shaped noise' improves the ability of female gray treefrogs (Hyla daysoscelis) to perform a behavioral discrimination task based on perceiving differences in the pulsatile structure of advertisement calls. We used two-stimulus choice tests to measure phonotaxis (approach toward sound) in response to calls differing in pulse rate along a biologically relevant continuum between conspecific (50 pulses s(-1)) and heterospecific (20 pulses s(-1)) calls. Signals were presented in quiet, in colocated noise, and in spatially separated noise. In quiet conditions, females exhibited robust preferences for calls with relatively faster pulse rates more typical of conspecific calls. Behavioral discrimination between calls differing in pulse rate was impaired in the presence of colocated noise but similar between quiet and spatially separated noise conditions. Our results indicate that spatial release from energetic masking facilitates a biologically important temporal discrimination task in frogs. We discuss these results in light of previous work on spatial release from masking in frogs and other animals. (C) 2013 Elsevier B.V. All rights reserved. C1 [Ward, Jessica L.; Buerkle, Nathan P.; Bee, Mark A.] Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA. RP Bee, MA (reprint author), Univ Minnesota, Dept Ecol Evolut & Behav, 1987 Upper Buford Circle, St Paul, MN 55108 USA. EM mbee@umn.edu RI Bee, Mark/A-9410-2013 OI Bee, Mark/0000-0002-6770-9730 FU NIDCD [R01 DC009582] FX This work was supported by NIDCD R01 DC009582. We thank, Alejandro Velez for recordings of natural choruses and help generating chorus-shaped noise maskers, Mark Crawford, Madeleine Linck, John Moriarty, Ed Quinn, and Don Pereira for access to frog breeding sites, Sandra Tekmen for organizing collecting crews, and numerous undergraduate research assistants for help collecting and testing frogs. CR Arbogast TL, 2002, J ACOUST SOC AM, V112, P2086, DOI 10.1121/1.1510141 Beckers OM, 2004, J COMP PHYSIOL A, V190, P869, DOI 10.1007/s00359-004-0542-3 Bee MA, 2008, J COMP PSYCHOL, V122, P235, DOI 10.1037/0735-7036.122.3.235 Bee MA, 2007, ANIM BEHAV, V74, P549, DOI 10.1016/j.anbehav.2006.12.012 Bee MA, 2008, ANIM BEHAV, V76, P831, DOI 10.1016/j.anbehav.2008.01.026 Bee MA, 2012, CURR OPIN NEUROBIOL, V22, P301, DOI 10.1016/j.conb.2011.12.014 Bee MA, 2008, ANIM BEHAV, V75, P1781, DOI 10.1016/j.anbehav.2007.10.032 Best V, 2005, J ACOUST SOC AM, V118, P3766, DOI 10.1121/1.2130949 BRONKHORST AW, 1988, J ACOUST SOC AM, V83, P1508, DOI 10.1121/1.395906 BRONKHORST AW, 1992, J ACOUST SOC AM, V92, P3132, DOI 10.1121/1.404209 Bronkhorst AW, 2000, ACUSTICA, V86, P117 Brumm H, 2005, ADV STUD BEHAV, V35, P151, DOI 10.1016/S0065-3454(05)35004-2 Bush SL, 2002, ANIM BEHAV, V63, P7, DOI 10.1006/anbe.2001.1880 CHERRY EC, 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229 Christensen-Dalsgaard J, 2005, SPR HDB AUD, V25, P67, DOI 10.1007/0-387-28863-5_4 Christensen-Dalsgaard J, 2011, HEARING RES, V273, P37, DOI 10.1016/j.heares.2010.08.007 Culling JF, 2004, J ACOUST SOC AM, V116, P1057, DOI [10.1121/1.1772396, 10.1121/17.1772396] Dent ML, 2009, J COMP PSYCHOL, V123, P357, DOI 10.1037/a0016898 DIRKS DD, 1969, J SPEECH HEAR RES, V12, P5 Edwards CJ, 2002, NAT NEUROSCI, V5, P934, DOI 10.1038/nn916 Freyman RL, 1999, J ACOUST SOC AM, V106, P3578, DOI 10.1121/1.428211 Gerhardt H. C., 1995, METHODS COMP PSYCHOA, P209 GERHARDT HC, 1994, COPEIA, P51 Gerhardt HC, 2000, BEHAV ECOL, V11, P663, DOI 10.1093/beheco/11.6.663 GERHARDT HC, 1978, SCIENCE, V199, P992, DOI 10.1126/science.199.4332.992 Gerhardt HC, 2001, ADV STUD BEHAV, V30, P99, DOI 10.1016/S0065-3454(01)80006-1 Gerhardt HC, 2005, EVOLUTION, V59, P395 GERHARDT HC, 1988, J COMP PHYSIOL A, V162, P261, DOI 10.1007/BF00606090 GERHARDT HC, 1975, J COMP PHYSIOL, V102, P1 Gerhardt HC, 2002, ACOUSTIC COMMUNICATI Gerhardt HC, 2008, J EXP BIOL, V211, P2609, DOI 10.1242/jeb.019612 HALL JC, 1994, AM ZOOL, V34, P670 Hardin J. W., 2012, GEN ESTIMATING EQUAT, V2nd Hawley ML, 1999, J ACOUST SOC AM, V105, P3436, DOI 10.1121/1.424670 HIRSH IJ, 1950, J ACOUST SOC AM, V22, P196, DOI 10.1121/1.1906588 Holloway AK, 2006, AM NAT, V167, pE88, DOI 10.1086/501079 Johnson C., 1963, Copeia, V1963, P139, DOI 10.2307/1441281 Kidd G, 2005, ACTA ACUST UNITED AC, V91, P526 Klump Georg M., 1996, P321 Kuczynski MC, 2010, J EXP BIOL, V213, P2840, DOI 10.1242/jeb.044628 Larsen ON, 2006, J COMP PHYSIOL A, V192, P1063, DOI 10.1007/s00359-006-0138-1 Lin WY, 2003, J NEUROSCI, V23, P8143 Lin WY, 2001, J COMP PHYSIOL A, V187, P699, DOI 10.1007/s00359-001-0241-2 Marshall VT, 2006, ANIM BEHAV, V72, P449, DOI 10.1016/j.anbehav.2006.02.001 Mason MJ, 2007, SPR HDB AUD, V28, P147 McDermott JH, 2009, CURR BIOL, V19, pR1024, DOI 10.1016/j.cub.2009.09.005 Michelsen A., 1998, COMP HEARING INSECTS, P341 Nityananda V, 2012, HEARING RES, V285, P86, DOI 10.1016/j.heares.2012.01.003 Nityananda V, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021191 Palmer AR, 2002, ACTA ACUST UNITED AC, V88, P312 Pan W, 2001, BIOMETRICS, V57, P120, DOI 10.1111/j.0006-341X.2001.00120.x Peissig J, 1997, J ACOUST SOC AM, V101, P1660, DOI 10.1121/1.418150 PLOMP R, 1981, ACUSTICA, V48, P325 PTACEK MB, 1994, EVOLUTION, V48, P898, DOI 10.2307/2410495 Ratnam R, 1998, J NEUROPHYSIOL, V80, P2848 Rheinlaender J., 1988, P297 Rice W. R., 1989, AM NAT, V43, P223, DOI DOI 10.2307/2409177 Romer H., ANIMAL COMM IN PRESS Schmidt AKD, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028593 Schul J, 2002, P ROY SOC B-BIOL SCI, V269, P1847, DOI 10.1098/rspb.2002.2092 SCHWARTZ JJ, 1989, J COMP PHYSIOL A, V166, P37 Shinn-Cunningham BG, 2001, J ACOUST SOC AM, V110, P1118, DOI 10.1121/1.1386633 Shinn-Cunningham BG, 2005, ACTA ACUST UNITED AC, V91, P967 Sumer S, 2009, J COMP PHYSIOL A, V195, P463, DOI 10.1007/s00359-009-0424-9 Swanson EM, 2007, CAN J ZOOL, V85, P921, DOI 10.1139/Z07-074 VELEZ A., ANIMAL COMM IN PRESS Velez A, 2010, BEHAV ECOL SOCIOBIOL, V64, P1695, DOI 10.1007/s00265-010-0983-3 Velez A, 2011, ANIM BEHAV, V82, P1319, DOI 10.1016/j.anbehav.2011.09.015 Velez A, 2013, J COMP PSYCHOL, V127, P166, DOI 10.1037/a0030185 Ward JL, 2013, ANIM BEHAV, V86, P231, DOI 10.1016/j.anbehav.2013.05.016 NR 70 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD DEC PY 2013 VL 306 BP 63 EP 75 DI 10.1016/j.heares.2013.09.006 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 260EQ UT WOS:000327578200008 PM 24055623 ER PT J AU Macpherson, EA Sabin, AT AF Macpherson, Ewan A. Sabin, Andrew T. TI Vertical-plane sound localization with distorted spectral cues SO HEARING RESEARCH LA English DT Article ID DORSAL COCHLEAR NUCLEUS; MEDIAN PLANE; BACKGROUND-NOISE; AUDITORY-NERVE; LEVEL; DISCRIMINATION; NOTCHES; CAT; FREQUENCY; ELEVATION AB For human listeners, the primary cues for localization in the vertical plane are provided by the direction-dependent filtering of the pinnae, head, and upper body. Vertical-plane localization generally is accurate for broadband sounds, but when such sounds are presented at near-threshold levels or at high levels with short durations (<20 ms), the apparent location is biased toward the horizontal plane (i.e., elevation gain <1). We tested the hypothesis that these effects result in part from distorted peripheral representations of sound spectra. Human listeners indicated the apparent position of 100-ms, 50-60 dB SPL, wideband noise-burst targets by orienting their heads. The targets were synthesized in virtual auditory space and presented over headphones. Faithfully synthesized targets were interleaved with targets for which the directional transfer function spectral notches were filled in, peaks were leveled off, or the spectral contrast of the entire profile was reduced or expanded. As notches were filled in progressively or peaks leveled progressively, elevation gain decreased in a graded manner similar to that observed as sensation level is reduced below 30 dB or, for brief sounds, increased above 45 dB. As spectral contrast was reduced, gain dropped only at the most extreme reduction (25% of normal). Spectral contrast expansion had little effect. The results are consistent with the hypothesis that loss of representation of spectral features contributes to reduced elevation gain at low and high sound levels. The results also suggest that perceived location depends on a correlation-like spectral matching process that is sensitive to the relative, rather than absolute, across-frequency shape of the spectral profile. (C) 2013 Elsevier B.V. All rights reserved. C1 [Macpherson, Ewan A.; Sabin, Andrew T.] Univ Michigan, Sch Med, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. [Macpherson, Ewan A.] Univ Western Ontario, Natl Ctr Audiol, London, ON N6G 1H1, Canada. [Sabin, Andrew T.] Northwestern Univ, Dept Commun Sci & Disorders, Evanston, IL 60208 USA. [Macpherson, Ewan A.] Univ Western Ontario, London, ON N6G 1H1, Canada. RP Macpherson, EA (reprint author), Univ Western Ontario, Natl Ctr Audiol, 1201 Western Rd, London, ON N6G 1H1, Canada. EM ewan.macpherson@nca.uwo.ca; a-sabin@northwestern.edu FU NIH [R01 DC00420, P30 DC05188] FX The authors are very grateful to Zekiye Onsan, Chris Ellinger, and Dwayne Vaillencourt for administrative and technical assistance; to John Middlebrooks, G. Christopher Stecker, and Ian Harrington for helpful discussions; to John Van Opstal and Joyce Vliegen for providing original data from Vliegen and Van Opstal (2004); and to Brian C.J. Moore and two anonymous reviewers for valuable comments on previous versions of this paper. This work was supported by NIH Grants R01 DC00420 and P30 DC05188. CR Alves-Pinto A, 2005, J ACOUST SOC AM, V118, P2458, DOI 10.1121/1.2032067 BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289 BLAUERT J, 1969, ACUSTICA, V22, P205 BLOOM PJ, 1977, J AUDIO ENG SOC, V25, P560 Brungart D., 2009, IEEE WORKSH APPL SIG, P305 Brungart D. S., 2008, P 14 INT C AUD DISPL Brungart D.S., 2009, J ACOUST SOC AM, V125, P2691 Butler R.A., 1997, BINAURAL SPATIAL HEA, P99 CARLYON RP, 1984, J ACOUST SOC AM, V76, P1369, DOI 10.1121/1.391453 Gai Y, 2013, J NEUROPHYSIOL, V110, P607, DOI 10.1152/jn.01019.2012 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Hammershoi D, 1996, J ACOUST SOC AM, V100, P408 HARTMANN WM, 1993, J ACOUST SOC AM, V94, P2083, DOI 10.1121/1.407481 Hartmann WM, 2010, J ACOUST SOC AM, V127, P3060, DOI 10.1121/1.3372753 Hays W. L., 1988, STATISTICS HEBRANK J, 1974, J ACOUST SOC AM, V56, P1829, DOI 10.1121/1.1903520 Hofman PM, 1998, J ACOUST SOC AM, V103, P2634, DOI 10.1121/1.422784 Iida K, 2007, APPL ACOUST, V68, P835, DOI 10.1016/j.apacoust.2006.07.016 Imig TJ, 2000, J NEUROPHYSIOL, V83, P907 Langendijk E., 2002, THESIS TU DELFT Langendijk EHA, 2002, J ACOUST SOC AM, V112, P1583, DOI 10.1121/1.1501901 Macpherson EA, 2002, J ACOUST SOC AM, V111, P2219, DOI 10.1121/1.1471898 Macpherson E.A., 2008, 23 MIDW M ASS RSE OT Macpherson EA, 1997, J ACOUST SOC AM, V101, p3104A, DOI 10.1121/1.418858 Macpherson EA, 2007, J ACOUST SOC AM, V121, P3677, DOI 10.1121/1.2722048 Macpherson EA, 2000, J ACOUST SOC AM, V108, P1834, DOI 10.1121/1.1310196 Macpherson E.A., 1998, THESIS U WISCONSIN M MIDDLEBROOKS JC, 1992, J ACOUST SOC AM, V92, P2607, DOI 10.1121/1.404400 MIDDLEBROOKS JC, 1989, J ACOUST SOC AM, V86, P89, DOI 10.1121/1.398224 Middlebrooks JC, 1999, J ACOUST SOC AM, V106, P1480, DOI 10.1121/1.427176 MOORE BCJ, 1989, J ACOUST SOC AM, V85, P820, DOI 10.1121/1.397554 Reiss LAJ, 2011, JARO-J ASSOC RES OTO, V12, P71, DOI 10.1007/s10162-010-0232-5 RICE JJ, 1992, HEARING RES, V58, P132, DOI 10.1016/0378-5955(92)90123-5 Sabin AT, 2005, HEARING RES, V199, P124, DOI 10.1016/j.heares.2004.08.001 SACHS MB, 1979, J ACOUST SOC AM, V66, P470, DOI 10.1121/1.383098 SHU ZJ, 1993, NATURE, V364, P721, DOI 10.1038/364721a0 Vliegen J, 2004, J ACOUST SOC AM, V115, P1705, DOI 10.1121/1.1687423 Wightman F. L., 1997, BINAURAL SPATIAL HEA, P1 WIGHTMAN FL, 1989, J ACOUST SOC AM, V85, P858, DOI 10.1121/1.397557 YOUNG ED, 1992, PHILOS T ROY SOC B, V336, P407, DOI 10.1098/rstb.1992.0076 Young ED, 2002, SPR HDB AUD, V15, P160 ZAKARAUSKAS P, 1993, J ACOUST SOC AM, V94, P1323, DOI 10.1121/1.408160 Zhang PX, 2010, HEARING RES, V260, P30, DOI 10.1016/j.heares.2009.11.001 ZHOU B, 1992, J ACOUST SOC AM, V92, P1169, DOI 10.1121/1.404045 NR 44 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD DEC PY 2013 VL 306 BP 76 EP 92 DI 10.1016/j.heares.2013.09.007 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 260EQ UT WOS:000327578200009 PM 24076423 ER PT J AU Hughes, ML Stille, LJ Baudhuin, JL Goehring, JL AF Hughes, Michelle L. Stille, Lisa J. Baudhuin, Jacquelyn L. Goehring, Jenny L. TI ECAP spread of excitation with virtual channels and physical electrodes SO HEARING RESEARCH LA English DT Article ID COCHLEAR IMPLANT RECIPIENTS; PITCH RANKING; NORMAL-HEARING; STIMULATION; SINGLE; RESOLUTION; PATTERNS; USERS; LISTENERS AB The primary goal of this study was to evaluate physiological spatial excitation patterns for stimulation of adjacent physical electrodes and intermediate virtual channels. Two experiments were conducted that utilized electrically evoked compound action potential (ECAP) spread-of-excitation (SOE) functions obtained with the traditional forward-masking subtraction method. These two experiments examined spatial excitation patterns for virtual-channel maskers and probes, respectively. In Experiment 1, ECAP SOE patterns were obtained for maskers applied to physical electrodes and virtual channels to determine whether virtual-channel maskers yield SOE patterns similar to those predicted from physical electrodes. In Experiment 2, spatial separation of SOE functions was compared for two adjacent physical probe electrodes and the intermediate virtual channel to determine the extent to which ECAP SOE patterns for virtual-channel probes are spatially separate from those obtained with physical electrodes. Data were obtained for three electrode regions (basal, middle, apical) for 35 ears implanted with Cochlear (N = 16) or Advanced Bionics (N = 19) devices. Results from Experiment 1 showed no significant difference between predicted and measured ECAP amplitudes for Advanced Bionics subjects. Measured ECAP amplitudes for virtual-channel maskers were significantly larger than the predicted amplitudes for Cochlear subjects; however, the difference was <2 mu V and thus is likely not clinically significant. Results from Experiment 2 showed that the probe set in the apical region demonstrated the least amount of spatial separation amongst SOB functions, which may be attributed to more uniform nerve survival patterns, closer electrode spacing, and/or the tapered geometry of the cochlea. As expected, adjacent physical probes demonstrated greater spatial separation than for comparisons between each physical probe and the intermediate virtual channel. Finally, the virtual-channel SOE functions were generally weighted toward the basal electrode in the pair. (C) 2013 Elsevier B.V. All rights reserved. C1 [Hughes, Michelle L.; Stille, Lisa J.; Baudhuin, Jacquelyn L.; Goehring, Jenny L.] Boys Town Natl Res Hosp, Lied Learning & Technol Ctr, Omaha, NE 68131 USA. RP Hughes, ML (reprint author), Boys Town Natl Res Hosp, Lied Learning & Technol Ctr, 425 North 30th St, Omaha, NE 68131 USA. EM michelle.hughes@boystown.org FU NIH/NIDCD [R01 DC009595, P30 DC04662] FX This research was supported by NIH/NIDCD grants R01 DC009595 and P30 DC04662. The content of this project is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute on Deafness and Other Communication Disorders or the National Institutes of Health. The authors thank Donna Neff, Adam Goulson, Katelyn Glassman, and Gina Diaz for assistance with data collection; Tom Creutz for data-analysis programs; Kanae Nishi for statistical assistance; Bas Van Dijk (Cochlear Europe) and Peter Busby (Cochlear Australia) for Custom-Sound EP Dual Electrode support; and Leo Litvak and Aniket Saoji (Advanced Bionics) for BEDCS support. CR Abbas PJ, 2004, AUDIOL NEURO-OTOL, V9, P203, DOI 10.1159/000078390 Abbas PJ, 1999, EAR HEARING, V20, P45, DOI 10.1097/00003446-199902000-00005 Bonham BH, 2008, HEARING RES, V242, P141, DOI 10.1016/j.heares.2008.03.006 Busby PA, 2008, EAR HEARING, V29, P853, DOI 10.1097/AUD.0b013e318181a878 Busby PA, 2005, EAR HEARING, V26, P504, DOI 10.1097/01.aud.0000179693.32989.84 Choi CTM, 2009, ANN BIOMED ENG, V37, P614, DOI 10.1007/s10439-008-9622-9 Donaldson GS, 2005, J ACOUST SOC AM, V118, P623, DOI 10.1121/1.1937362 Firszt JB, 2007, OTOL NEUROTOL, V28, P629, DOI 10.1097/01.mao.0000281803.36574.bc Frijns JHM, 2009, ACTA OTO-LARYNGOL, V129, P433, DOI 10.1080/00016480802610218 Henry BA, 2005, J ACOUST SOC AM, V118, P1111, DOI 10.1121/1.1944567 Henry BA, 2003, J ACOUST SOC AM, V113, P2861, DOI 10.1121/1.1561900 Hughes ML, 2011, EAR HEARING, V32, P323, DOI 10.1097/AUD.0b013e3182008c56 Hughes ML, 2008, J ACOUST SOC AM, V124, P2711, DOI 10.1121/1.2990710 Hughes ML, 2006, J ACOUST SOC AM, V119, P1527, DOI 10.1121/1.2163273 Koch DB, 2007, EAR HEARING, V28, p38S, DOI 10.1097/AUD.0b013e31803150de Kwon BJ., 2006, J ACOUST SOC AM, V120, pEL1 MCDERMOTT HJ, 1994, J ACOUST SOC AM, V96, P155, DOI 10.1121/1.410475 McKay CM, 1996, J ACOUST SOC AM, V99, P1079, DOI 10.1121/1.414594 Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5 Patrick James F, 2006, Trends Amplif, V10, P175, DOI 10.1177/1084713806296386 Saoji AA, 2009, EAR HEARING, V30, P559, DOI 10.1097/AUD.0b013e3181ab2b6f Snel-Bongers J, 2012, EAR HEARING, V33, P367, DOI 10.1097/AUD.0b013e318234efd5 NR 22 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD DEC PY 2013 VL 306 BP 93 EP 103 DI 10.1016/j.heares.2013.09.014 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 260EQ UT WOS:000327578200010 PM 24095669 ER PT J AU Chen, SX Deng, J Bian, L Li, GL AF Chen, Shixiong Deng, Jun Bian, Lin Li, Guanglin TI Stimulus frequency otoacoustic emissions evoked by swept tones SO HEARING RESEARCH LA English DT Article ID BASILAR-MEMBRANE RESPONSES; TEST-RETEST RELIABILITY; INPUT-OUTPUT FUNCTIONS; DISTORTION-PRODUCT; FINE-STRUCTURE; CHINCHILLA COCHLEA; NORMAL-HEARING; GUINEA-PIG; HUMAN EARS; ORIGIN AB Otoacoustic emissions (OAEs) are soft sounds generated by the cochlea and the measurements of OAEs are useful in detecting cochlear damages. Stimulus frequency otoacoustic emissions (SFOAEs) are evoked by one single tone and they are the most frequency specific in probing functional status of the cochlea than other types of OAEs. However, SFOAEs are currently restricted to research only because of the difficulty and low efficiency of their measurements. To solve these problems, an efficient method of using swept tones to measure SFOAEs was proposed in this study. The swept tones had time-varying frequencies and therefore could efficiently measure SFOAEs over a wide frequency range with a resolution dependent on the sweep rate. A three-interval paradigm and a tracking filter were used to separate the swept-tone SFOAEs from background noises. The reliability of the swept-tone SFOAEs was examined by a repeated-measure design, and the accuracy was evaluated by the comparison with a standard method using pure tones as the stimuli. The pilot results of this study showed that SFOAEs could be measured successfully using swept tones in human ears with normal hearing. The amplitude and phase of the swept-tone SFOAEs were highly reproducible in the repeated measures, and were nearly equivalent to SFOAEs evoked by pure tones under various signal conditions. These findings suggest that the proposed swept-tone SFOAEs could be a useful method in estimating the cochlear functions and developing an efficient approach of OAF measurements to help with accurate hearing diagnoses in the clinic. (C) 2013 Elsevier B.V. All rights reserved. C1 [Chen, Shixiong; Deng, Jun; Li, Guanglin] Chinese Acad Sci, Shenzhen Inst Adv Technol, Inst Biomed & Hlth Engn, Shenzhen 518055, Guangdong, Peoples R China. [Chen, Shixiong; Bian, Lin] Arizona State Univ, Dept Speech & Hearing Sci, Tempe, AZ 85287 USA. RP Chen, SX (reprint author), Chinese Acad Sci, Shenzhen Inst Adv Technol, Inst Biomed & Hlth Engn, Shenzhen 518055, Guangdong, Peoples R China. EM sx.chen@siat.ac.cn; gl.li@siat.ac.cn FU National Institutes of Health [R03 DC006165]; National Natural Science Foundation of China [61203209, 61302037]; Shenzhen Governmental Basic Research Grand [JC201005270295A]; Shenzhen Public Platform for Biomedical Electronics and Health Informatics; Guangdong Innovation Research Team Fund for Low-cost Healthcare Technologies FX We thank Williams Yost, Michael Dorman and Tamiko Azuma for their useful suggestions on this study. This work was supported in part by Grant No R03 DC006165 from the National Institutes of Health, the National Natural Science Foundation of China (Grant No 61203209), the National Natural Science Foundation of China (Grant No 61302037), the Shenzhen Governmental Basic Research Grand (#JC201005270295A), the Shenzhen Public Platform for Biomedical Electronics and Health Informatics and the Guangdong Innovation Research Team Fund for Low-cost Healthcare Technologies. CR Acar M, 2012, J PEDIATR ENDOCR MET, V25, P503, DOI 10.1515/jpem-2012-0062 Allen J.B., 1986, PERIPERY AUDITORY ME, P43 Erenberg A, 1999, PEDIATRICS, V103, P527 AVAN P, 1993, HEARING RES, V70, P109, DOI 10.1016/0378-5955(93)90055-6 Bennett CL, 2010, J ACOUST SOC AM, V128, P1833, DOI 10.1121/1.3467769 Bennett CL, 2010, J ACOUST SOC AM, V127, P2410, DOI 10.1121/1.3279831 Bentsen T, 2011, J ACOUST SOC AM, V129, P3797, DOI 10.1121/1.3575596 Bergevin C, 2011, AIP CONF PROC, V1403, DOI 10.1063/1.3658130 BRASS D, 1991, J ACOUST SOC AM, V90, P2415, DOI 10.1121/1.402046 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Cheatham MA, 2011, AIP CONF PROC, V1403, DOI 10.1063/1.3658115 Choi YS, 2008, J ACOUST SOC AM, V123, P2651, DOI 10.1121/1.2902184 Cueva RA, 2012, OTOLARYNG CLIN N AM, V45, P285, DOI 10.1016/j.otc.2011.12.002 Dhar S, 2002, J ACOUST SOC AM, V112, P2882, DOI 10.1121/1.1516757 Duke T, 2003, PHYS REV LETT, V90, DOI 10.1103/PhysRevLett.90.158101 FRANKLIN DJ, 1992, EAR HEARING, V13, P417 Goodman SS, 2003, HEARING RES, V183, P7, DOI 10.1016/S0378-5955(03)00193-X Finitzo T, 2000, PEDIATRICS, V106, P798 Kalluri R, 2007, J ACOUST SOC AM, V122, P3562, DOI 10.1121/1.2793604 Kalluri R, 2007, J ACOUST SOC AM, V121, P2097, DOI 10.1121/1.2435981 Keefe DH, 1998, J ACOUST SOC AM, V103, P3489, DOI 10.1121/1.423057 Keefe D.H., 1996, J ACOUST SOC AM S1, V99, P2562, DOI 10.1121/1.415026 Keefe DH, 1998, J ACOUST SOC AM, V103, P3499, DOI 10.1121/1.423058 Kemp D. T., 1980, PSYCHOPHYSICAL PHYSL KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 Kemp DT, 2002, BRIT MED BULL, V63, P223, DOI 10.1093/bmb/63.1.223 KEMP DT, 1990, EAR HEARING, V11, P93 Keppler H, 2010, INT J AUDIOL, V49, P99, DOI 10.3109/14992020903300431 KRUGER B, 1987, ACTA OTO-LARYNGOL, V103, P578 Lichtenhan JT, 2012, JARO-J ASSOC RES OTO, V13, P17, DOI 10.1007/s10162-011-0296-x Lineton B, 2003, J ACOUST SOC AM, V114, P883, DOI 10.1121/1.1582176 LINETON B, 2003, EFFECT SUPPRESSION P, V114, P871 Long GR, 2008, J ACOUST SOC AM, V124, P1613, DOI 10.1121/1.2949505 LONSBURYMARTIN BL, 1988, HEARING RES, V33, P69, DOI 10.1016/0378-5955(88)90021-4 Marshall L, 1996, EAR HEARING, V17, P237, DOI 10.1097/00003446-199606000-00007 Muller S, 2001, J AUDIO ENG SOC, V49, P443 Neely ST, 1998, J ACOUST SOC AM, V104, P2925, DOI 10.1121/1.423876 Parazzini M, 2006, IEEE T BIO-MED ENG, V53, P1550, DOI 10.1109/TBME.2006.877804 Parazzini M., 2006, EMBS 06, P2122 Recio A, 1998, J ACOUST SOC AM, V103, P1972, DOI 10.1121/1.421377 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 Schairer KS, 2005, J ACOUST SOC AM, V117, P818, DOI 10.1121/1.1850341 Schairer KS, 2003, J ACOUST SOC AM, V114, P944, DOI 10.1121/1.1592799 Shaffer LA, 2003, EAR HEARING, V24, P367, DOI 10.1097/01.AUD.0000090439.16438.9F Shera CA, 2003, J ACOUST SOC AM, V113, P2762, DOI 10.1121/1.1557211 Shera CA, 2002, P NATL ACAD SCI USA, V99, P3318, DOI 10.1073/pnas.032675099 Shera CA, 2010, JARO-J ASSOC RES OTO, V11, P343, DOI 10.1007/s10162-010-0217-4 Siegel JH, 2005, J ACOUST SOC AM, V118, P2434, DOI 10.1121/1.2005867 Sisto R, 1999, J ACOUST SOC AM, V106, P1893, DOI 10.1121/1.427938 Smith J. O., 2007, INTRO DIGITAL FILTER Talmadge CL, 1999, J ACOUST SOC AM, V105, P275, DOI 10.1121/1.424584 Talmadge CL, 2000, J ACOUST SOC AM, V108, P2911, DOI 10.1121/1.1321012 Valero MD, 2011, HEARING RES, V282, P265, DOI 10.1016/j.heares.2011.07.004 Wagner WG, 2008, EAR HEARING, V29, P378, DOI 10.1097/AUD.0b013e31816906e7 White Karl R, 2005, Am J Audiol, V14, pS186, DOI 10.1044/1059-0889(2005/021) Withnell RH, 1998, J ACOUST SOC AM, V104, P344, DOI 10.1121/1.423243 Yates GK, 1999, HEARING RES, V136, P49, DOI 10.1016/S0378-5955(99)00108-2 ZENNER HP, 1987, BIOCHEM BIOPH RES CO, V149, P304, DOI 10.1016/0006-291X(87)91639-1 Zhao F, 1999, SCAND AUDIOL, V28, P171, DOI 10.1080/010503999424743 ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320 NR 60 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD DEC PY 2013 VL 306 BP 104 EP 114 DI 10.1016/j.heares.2013.09.016 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 260EQ UT WOS:000327578200011 PM 24113114 ER PT J AU Guignard, J Stieger, C Kompis, M Caversaccio, M Arnold, A AF Guignard, Jeremie Stieger, Christof Kompis, Martin Caversaccio, Marco Arnold, Andreas TI Bone conduction in Thiel-embalmed cadaver heads SO HEARING RESEARCH LA English DT Article ID HUMAN MIDDLE-EAR; LASER-DOPPLER-VIBROMETRY; TYMPANIC MEMBRANE; HUMAN SKULL; HEARING-LOSS; TRANSMISSION; MOTION; SOUND; LIVE; STIMULATION AB Introduction: Sound can reach the inner ear via at least two different pathways: air conduction and bone conduction (BC). BC hearing is used clinically for diagnostic purposes and for BC hearing aids. Research on the motion of the human middle ear in response to BC stimulation is typically conducted using cadaver models. We evaluated middle ear motion of Thiel-embalmed whole-head specimens in terms of linearity, reproducibility, and consistency with the reported middle ear motion of living subjects, fresh cadaveric temporal bones, and whole-heads embalmed with a Non-Thiel solution of salts. Methods: We used laser Doppler vibrometry to measure the displacement of the skull, the umbo, the cochlear promontory, the stapes, and the round window in seven ears from four human whole-head specimens embalmed according to Thiel's method. The ears were stimulated with a Baha (R) implanted behind the auricle. Results: The Thiel model shows promontory velocity similar to that reported in the literature for whole-heads embalmed with a Non-Thiel solution of salts (0- to 7-dB difference). The Thiel heads' relative velocity of the stapes with respect to the promontory was similar to that of fresh cadaver temporal bones (0- to 4-dB difference). The velocity of the umbo was comparable in Thiel-embalmed heads and living subjects (0- to 10-dB difference). The skull and all middle ear elements measured responded linearly to different stimulation levels, with an average difference less than 1 dB. The variability of repeated measurements for both short- (2 h; 4 dB) and long-term (4-16 weeks; 6 dB) repetitions in the same ear, and the difference between the two ears of the same donor (approximately 10 dB) were lower than the inter-individual difference (up to 25 dB). Conclusion: Thiel-embalmed human whole-head specimens can be used as an alternative model for the study of human middle ear mechanics secondary to BC stimulation. At some frequencies, differences from living subjects must be considered. (C) 2013 Elsevier B.V. All rights reserved. C1 [Guignard, Jeremie; Caversaccio, Marco; Arnold, Andreas] Univ Bern, ARTORG Ctr, CH-3010 Bern, Switzerland. [Guignard, Jeremie] Univ Bern, Grad Sch Cellular & Biomed Sci, CH-3010 Bern, Switzerland. [Stieger, Christof] Univ Basel Hosp, Dept Otorhinolaryngol, Basel, Switzerland. [Kompis, Martin; Caversaccio, Marco; Arnold, Andreas] Univ Bern, Inselspital, Dept Otorhinolaryngol Head & Neck Surg, CH-3010 Bern, Switzerland. RP Arnold, A (reprint author), Univ Bern, Inselspital, Dept Otorhinolaryngol Head & Neck Surg, Freiburgstr, CH-3010 Bern, Switzerland. EM andreas.arnold@insel.ch FU Swiss Commission for Technology and Innovation [CTI 12593] FX We would like to thank John Rosowski and David Chhan for sharing their umbo velocity data. This work was partly funded by a grant from the Swiss Commission for Technology and Innovation (CTI 12593). CR Arnold A, 2010, HEARING RES, V263, P120, DOI 10.1016/j.heares.2009.12.019 Bekesy G.V., 1980, EXPT HEARING Cheng JT, 2010, HEARING RES, V263, P66, DOI 10.1016/j.heares.2009.12.024 Chien W, 2007, OTOL NEUROTOL, V28, P250, DOI 10.1097/01.mao.0000244370.47320.9a Chien W, 2009, HEARING RES, V249, P54, DOI 10.1016/j.heares.2008.11.011 Chien WD, 2006, AUDIOL NEURO-OTOL, V11, P183, DOI 10.1159/000091815 CURREY JD, 1995, BIOMATERIALS, V16, P1267, DOI 10.1016/0142-9612(95)98135-2 Eeg-Olofsson M, 2008, INT J AUDIOL, V47, P761, DOI 10.1080/14992020802311216 Goode RL, 1996, AM J OTOL, V17, P813 GOODE RL, 1994, AM J OTOL, V15, P145 Hakansson B, 1996, J ACOUST SOC AM, V99, P2239 Hakansson B, 2008, OTOL NEUROTOL, V29, P1132, DOI 10.1097/MAO.0b013e31816fdc90 HAKANSSON B, 1989, SCAND AUDIOL, V18, P91, DOI 10.3109/01050398909070728 Hato N, 2003, AUDIOL NEURO-OTOL, V8, P140, DOI 10.1159/000069475 Heiland KE, 1999, AM J OTOL, V20, P81 Hol MKS, 2004, AUDIOL NEURO-OTOL, V9, P274, DOI 10.1159/000080227 Huber A, 2003, ANN OTO RHINOL LARYN, V112, P348 Huber A, 2001, ANN OTO RHINOL LARYN, V110, P31 Huber AM, 2001, LARYNGOSCOPE, V111, P501, DOI 10.1097/00005537-200103000-00022 Jakob A, 2009, OTOL NEUROTOL, V30, P1049, DOI 10.1097/MAO.0b013e31819e622b Kim N, 2011, JARO-J ASSOC RES OTO, V12, P261, DOI 10.1007/s10162-011-0258-3 McKnight CL, 2013, J ACOUST SOC AM, V133, P136, DOI 10.1121/1.4768801 Pfiffner F., 2010, EAR HEARING, V32, P40 REGER S N, 1960, Ann Otol Rhinol Laryngol, V69, P1179 Roosli C, 2012, HEARING RES, V290, P83, DOI 10.1016/j.heares.2012.04.011 Rosowski JJ, 2008, EAR HEARING, V29, P3 Rosowski JJ, 2003, OTOL NEUROTOL, V24, P165, DOI 10.1097/00129492-200303000-00008 Smith HD, 1943, ARCHIV OTOLARYNGOL, V38, P369 Sohmer H, 2004, HEARING RES, V193, P105, DOI 10.1016/j.heares.2004.03.015 STASCHE N, 1994, ACTA OTO-LARYNGOL, V114, P59, DOI 10.3109/00016489409126017 Stenfelt S, 2002, J ACOUST SOC AM, V111, P947, DOI 10.1121/1.1432977 Stenfelt S, 2003, J ACOUST SOC AM, V113, P902, DOI 10.1121/1.1534606 Stenfelt S, 2005, OTOL NEUROTOL, V26, P1245, DOI 10.1097/01.mao.0000187236.10842.d5 Stenfelt S, 2004, HEARING RES, V198, P10, DOI 10.1016/j.heares.2004.07.008 Stenfelt S, 2005, J ACOUST SOC AM, V118, P2373, DOI 10.1121/1.12005847 Stieger C, 2012, OTOL NEUROTOL, V33, P311, DOI 10.1097/MAO.0b013e3182487de0 THIEL W, 1992, ANN ANAT, V174, P185 Unger Stefan, 2010, Bone, V47, P1048, DOI 10.1016/j.bone.2010.08.012 VLAMING MSMG, 1986, CLIN OTOLARYNGOL, V11, P353, DOI 10.1111/j.1365-2273.1986.tb00137.x Voss SE, 2000, HEARING RES, V150, P43, DOI 10.1016/S0378-5955(00)00177-5 Wazen JJ, 2010, OTOLARYNG HEAD NECK, V142, P554, DOI 10.1016/j.otohns.2009.12.047 NR 41 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD DEC PY 2013 VL 306 BP 115 EP 122 DI 10.1016/j.heares.2013.10.002 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 260EQ UT WOS:000327578200012 PM 24161399 ER PT J AU Bahmer, A Baumann, U AF Bahmer, Andreas Baumann, Uwe TI Effects of electrical pulse polarity shape on intra cochlear neural responses in humans: Triphasic pulses with cathodic second phase SO HEARING RESEARCH LA English DT Article ID COMPOUND ACTION-POTENTIALS; BRAIN-STEM RESPONSES; AMPLITUDE RATIO PAR; AUDITORY-NERVE; MONOPHASIC STIMULATION; CAT; SENSITIVITY; MONOPOLAR; IMPLANTS; FIBERS AB Charge balanced pulses are used in modern cochlear implants to avoid direct current (DC) stimulation that may damage neural tissues. In this context the effect of electrical pulse shape and polarity is still a matter of debate and the most effective pulse shape needs to be determined (Bahmer et al., 2010a; Undurraga et al., 2010; Wieringen et al., 2008; Macherey et al., 2008). Therefore, we conducted electrophysiological measurements, namely electrical compound action potentials (ECAPs) to assess response strength elicited by various pulse shapes and polarities in five cochlear implant recipients (SonataTI100/PulsarCI100 devices, MED-EL Innsbruck). ECAP response strength depending on pulse shape was compared with individual psychophysical thresholds. Results indicated the weakest response amplitude and highest thresholds for symmetric triphasic pulse shapes (with cathodic second phase), and the strongest response amplitude and lowest thresholds for biphasic pulses with anodic first phase. Biphasic pulses with cathodic first phase generated intermediate response amplitude and thresholds. (C) 2013 Elsevier B.V. All rights reserved. C1 [Bahmer, Andreas; Baumann, Uwe] Univ Frankfurt Main, Clin Otolaryngol, D-60590 Frankfurt, Germany. RP Bahmer, A (reprint author), Univ Frankfurt Main, Clin Otolaryngol, D-60590 Frankfurt, Germany. EM andreas.bahmer@kgu.de FU MED-EL (Innsbruck, Austria) FX The work was supported by a grant from MED-EL (Innsbruck, Austria). CR Bahmer A, 2010, J NEUROSCI METH, V191, P66, DOI 10.1016/j.jneumeth.2010.06.008 Bahmer A, 2008, J NEUROSCI METH, V173, P306, DOI 10.1016/j.jneumeth.2008.06.012 Bahmer A, 2010, HEARING RES, V259, P75, DOI 10.1016/j.heares.2009.10.003 Bahmer A, 2012, J NEUROSCI METH, V205, P212, DOI 10.1016/j.jneumeth.2011.12.006 Bahmer A, 2012, J NEUROSCI METH, V205, P202, DOI 10.1016/j.jneumeth.2011.12.005 Bonnet RM, 2004, ACTA OTO-LARYNGOL, V124, P371, DOI 10.1080/00016480410031084 Briaire JJ, 2005, HEARING RES, V205, P143, DOI 10.1016/j.heares.2005.03.020 BROWN MC, 1994, J NEUROPHYSIOL, V71, P1826 BRUMMER SB, 1977, IEEE T BIO-MED ENG, V24, P59, DOI 10.1109/TBME.1977.326218 Cartee L, 2004, INTRACOCHLEAR POTENT Coste RL, 1996, J ACOUST SOC AM, V99, P3099, DOI 10.1121/1.414796 Eddington D.K., 2004, SPEECH PROCESSORS AU HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7 Javel E, 2000, HEARING RES, V140, P45, DOI 10.1016/S0378-5955(99)00186-0 Macherey O, 2008, JARO-J ASSOC RES OTO, V9, P241, DOI 10.1007/s10162-008-0112-4 Macherey O, 2006, JARO-J ASSOC RES OTO, V7, P253, DOI 10.1007/s10162-006-0040-0 Miller CA, 2004, HEARING RES, V198, P75, DOI 10.1016/j.heares.2004.07.005 Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X Miller CA, 1999, HEARING RES, V130, P197, DOI 10.1016/S0378-5955(99)00012-X Rattay F, 2001, HEARING RES, V153, P64, DOI 10.1016/S0378-5955(00)00257-4 Rattay F, 2001, HEARING RES, V153, P43, DOI 10.1016/S0378-5955(00)00256-2 Rattay F, 1999, NEUROSCIENCE, V89, P335, DOI 10.1016/S0306-4522(98)00330-3 Rubinstein JT, 2001, IEEE T BIO-MED ENG, V48, P1065, DOI 10.1109/10.951508 Shepherd RK, 1999, HEARING RES, V130, P171, DOI 10.1016/S0378-5955(99)00011-8 Shepherd RK, 1999, ACTA OTO-LARYNGOL, V119, P674, DOI 10.1080/00016489950180621 Spitzer P., 2007, ART GUIDE INTRO MED Spitzer P., 2010, EAP RECORDING SYSTEM Undurraga J.A., 2013, THESIS KU LEUVEN Undurraga JA, 2010, HEARING RES, V269, P146, DOI 10.1016/j.heares.2010.06.017 Undurraga JA, 2013, JARO-J ASSOC RES OTO, V14, P359, DOI 10.1007/s10162-013-0377-0 Waltzman S. B., 2006, COCHLEAR IMPLANTS Wieringen A., 2008, HEARING RES, V242, P154 Zeng Fan-Gang, 2004, Trends Amplif, V8, P1, DOI 10.1177/108471380400800102 Zierhofer CM, 2000, IEEE T CIRCUITS-II, V47, P408, DOI 10.1109/82.842109 NR 34 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD DEC PY 2013 VL 306 BP 123 EP 130 DI 10.1016/j.heares.2013.10.001 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 260EQ UT WOS:000327578200013 PM 24161948 ER PT J AU Nakamoto, KT Sowick, CS Schofield, BR AF Nakamoto, Kyle T. Sowick, Colleen S. Schofield, Brett R. TI Auditory cortical axons contact commissural cells throughout the guinea pig inferior colliculus SO HEARING RESEARCH LA English DT Article ID MEDIAL GENICULATE-BODY; NITRIC-OXIDE SYNTHASE; DESCENDING PROJECTIONS; COCHLEAR NUCLEUS; NEURONAL RESPONSES; LATERAL LEMNISCUS; GABAERGIC NEURONS; DEFINED REGIONS; BRAIN-STEM; IN-VIVO AB Projections from auditory cortex (AC) affect how cells in both inferior colliculi (IC) respond to acoustic stimuli. The large projection from the AC to the ipsilateral IC is usually credited with the effects in the ipsilateral IC. The circuitry underlying effects in the contralateral IC is less clear. The direct projection from the AC to the contralateral IC is relatively small. An unexplored possibility is that the large ipsilateral cortical projection contacts the substantial number of cells in the ipsilateral IC that project through the commissure to the contralateral IC. Apparent contacts between cortical boutons and commissural cells were identified in the left IC after injection of different fluorescent tracers into the left AC and the right IC. Commissural cells were labeled throughout the left IC, and many (23-34%) appeared to be contacted by cortical axons. In the central nucleus, both disc-shaped and stellate cells were contacted. Antibodies to glutamic acid decarboxylase (GAD) were used to identify GABAergic commissural cells. The majority (>86%) of labeled commissural cells were GAD-immunonegative. Despite low numbers of GAD-immunopositive commissural cells, some of these cells were contacted by cortical boutons. Nonetheless, most cortically contacted commissural cells were GAD-immunonegative (i.e., presumably glutamatergic). We conclude that auditory cortical axons contact primarily excitatory commissural cells in the ipsilateral IC that project to the contralateral IC. These corticocollicular contacts occur in each subdivision of the ipsilateral IC, suggesting involvement of commissural cells throughout the IC. This pathway from AC to commissural cells in the ipsilateral IC - is a prime candidate for the excitatory effects of activation of the auditory cortex on responses in the contralateral IC. Overall this suggests that the auditory corticofugal pathway is integrated with midbrain commissural connections. (C) 2013 Elsevier B.V. All rights reserved. C1 [Nakamoto, Kyle T.; Sowick, Colleen S.; Schofield, Brett R.] Northeast Ohio Med Univ, Dept Anat & Neurobiol, Rootstown, OH 44272 USA. RP Schofield, BR (reprint author), Northeast Ohio Med Univ, Dept Anat & Neurobiol, 4209 St Rt 44,POB 95, Rootstown, OH 44272 USA. EM bschofie@neomed.edu FU NIH [R01 DC04391, 1 F32 DC010958] FX We would like to thank Megan Storey-Workley for expert technical assistance and Dr. W. Chilian for use of his fluorescence macroscope. Dr. J. Mellott provided valuable comments on an early draft of the manuscript. Supported by NIH R01 DC04391 and 1 F32 DC010958. CR ADAMS JC, 1984, BRAIN RES BULL, V13, P585, DOI 10.1016/0361-9230(84)90041-8 AMATO G, 1969, Archivio Italiano di Scienze Mediche Tropicali e di Parassitologia, V53, P291 Anderson LA, 2013, EUR J NEUROSCI, V37, P52, DOI 10.1111/ejn.12018 AOKI E, 1988, BRAIN RES, V442, P63, DOI 10.1016/0006-8993(88)91432-1 Bajo VM, 2007, CEREB CORTEX, V17, P475, DOI 10.1093/cercor/bhj164 Bajo VM, 2005, J COMP NEUROL, V486, P101, DOI 10.1002/cne.20542 Bledsoe SC, 2003, EXP BRAIN RES, V153, P530, DOI 10.1007/s00221-003-1671-6 BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P705, DOI 10.1002/cne.901970410 CALFORD MB, 1983, J NEUROSCI, V3, P2365 Coomes DL, 2004, EUR J NEUROSCI, V19, P2188, DOI 10.1111/j.1460-9568.2004.03317.x Coomes DL, 2005, BRAIN RES, V1042, P62, DOI 10.1016/j.brainres.2005.02.015 Peterson DC, 2007, HEARING RES, V232, P67, DOI 10.1016/j.heares.2007.06.009 Coote EJ, 2008, NEUROSCIENCE, V154, P218, DOI 10.1016/j.neuroscience.2008.02.030 DAWSON TM, 1991, P NATL ACAD SCI USA, V88, P7797, DOI 10.1073/pnas.88.17.7797 Doucet JR, 2003, EXP BRAIN RES, V153, P461, DOI 10.1007/s00221-003-1604-4 Du Y, 2009, EUR J NEUROSCI, V30, P1779, DOI 10.1111/j.1460-9568.2009.06947.x FELICIANO M, 1995, J NEUROCHEM, V65, P1348 Feliciano M. E., 1995, AUDIT NEUROSCI, V1, P287 GonzalezHernandez T, 1996, J COMP NEUROL, V372, P309, DOI 10.1002/(SICI)1096-9861(19960819)372:2<309::AID-CNE11>3.0.CO;2-E Hackett TA, 2011, AUDITORY CORTEX, P117, DOI 10.1007/978-1-4419-0074-6_5 Hernandez O, 2006, NEUROREPORT, V17, P1611, DOI 10.1097/01.wnr.0000236857.70715.be Ito T, 2009, J NEUROSCI, V29, P13860, DOI 10.1523/JNEUROSCI.3454-09.2009 Jacomme AV, 2003, EXP BRAIN RES, V153, P467, DOI 10.1007/s00221-003-1606-2 Jen PHS, 1998, J COMP PHYSIOL A, V183, P683, DOI 10.1007/s003590050291 Kulesza RJ, 2000, JARO, V1, P255, DOI 10.1007/s101620010054 LEDOUX JE, 1985, J COMP NEUROL, V242, P182, DOI 10.1002/cne.902420204 Lim HH, 2007, J NEUROPHYSIOL, V97, P1413, DOI 10.1152/jn.00384.2006 Ma XF, 2001, J NEUROPHYSIOL, V85, P1078 Malmierca MS, 2005, EUR J NEUROSCI, V21, P2701, DOI 10.1111/j.1460-9568.2005.04103.x Malmierca MS, 2003, EXP BRAIN RES, V153, P522, DOI 10.1007/s00221-003-1615-1 MALMIERCA MS, 1995, ANAT EMBRYOL, V191, P343, DOI 10.1007/BF00534687 Malmierca MS, 2009, J COMP NEUROL, V514, P226, DOI 10.1002/cne.21997 MALMIERCA MS, 1995, J COMP NEUROL, V357, P124, DOI 10.1002/cne.903570112 MASSOPUST LC, 1962, EXP NEUROL, V6, P465, DOI 10.1016/0014-4886(62)90072-9 Merchan M, 2005, NEUROSCIENCE, V136, P907, DOI 10.1016/j.neuroscience.2004.12.030 MITANI A, 1983, NEUROSCI LETT, V42, P185, DOI 10.1016/0304-3940(83)90404-4 MOORE DR, 1988, J COMP NEUROL, V269, P342, DOI 10.1002/cne.902690303 Moore DR, 1998, J NEUROPHYSIOL, V80, P2229 Nakamoto KT, 2013, FRONT NEUROANAT, V7, DOI 10.3389/fnana.2013.00013 Nakamoto KT, 2010, J NEUROPHYSIOL, V103, P2050, DOI 10.1152/jn.00451.2009 Nakamoto KT, 2008, J NEUROPHYSIOL, V99, P2347, DOI 10.1152/jn.01326.2007 Okoyama S, 2006, HEARING RES, V218, P72, DOI 10.1016/j.heares.2006.04.004 Oliver DL, 2005, INFERIOR COLLICULUS, P69, DOI 10.1007/0-387-27083-3_2 OLIVER DL, 1994, J COMP NEUROL, V340, P27, DOI 10.1002/cne.903400104 Popelar J, 2003, PHYSIOL RES, V52, P615 POURCHO RG, 1992, NEUROSCIENCE, V46, P643, DOI 10.1016/0306-4522(92)90151-Q Reetz G, 1999, BRAIN RES, V816, P527, DOI 10.1016/S0006-8993(98)01230-X ROUILLER EM, 1985, HEARING RES, V19, P97, DOI 10.1016/0378-5955(85)90114-5 SaintMarie RL, 1996, J COMP NEUROL, V373, P255, DOI 10.1002/(SICI)1096-9861(19960916)373:2<255::AID-CNE8>3.0.CO;2-2 Saldana E, 2005, INFERIOR COLLICULUS, P155, DOI 10.1007/0-387-27083-3_5 Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O SMITH PH, 1992, J NEUROSCI, V12, P3700 Suga N, 2008, J COMP PHYSIOL A, V194, P169, DOI 10.1007/s00359-007-0274-2 SUN X, 1989, BRAIN RES, V495, P1, DOI 10.1016/0006-8993(89)91212-2 SYKA J, 1984, NEUROSCI LETT, V51, P235, DOI 10.1016/0304-3940(84)90557-3 Torterolo P, 1998, NEUROSCI LETT, V249, P172, DOI 10.1016/S0304-3940(98)00367-X Wallace MN, 2002, EXP BRAIN RES, V143, P106, DOI 10.1007/s00221-001-0973-9 Wallace MN, 2000, EXP BRAIN RES, V132, P445, DOI 10.1007/s002210000362 Weedman DL, 1996, BRAIN RES, V706, P97, DOI 10.1016/0006-8993(95)01201-X Weedman DL, 1996, J COMP NEUROL, V371, P311 WILLARD FH, 1984, BRAIN RES, V303, P171, DOI 10.1016/0006-8993(84)90225-7 Winer JA, 2005, INFERIOR COLLICULUS, P231, DOI 10.1007/0-387-27083-3_8 Winer JA, 1998, J COMP NEUROL, V400, P147 Xiong K, 2008, EXP NEUROL, V211, P271, DOI 10.1016/j.expneurol.2008.02.003 Zhang DX, 1998, HEARING RES, V117, P1, DOI 10.1016/S0378-5955(97)00202-5 NR 65 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD DEC PY 2013 VL 306 BP 131 EP 144 DI 10.1016/j.heares.2013.10.003 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 260EQ UT WOS:000327578200014 PM 24140579 ER PT J AU Wrzeszcz, A Reuter, G Nolte, I Lenarz, T Scheper, V AF Wrzeszcz, Antonina Reuter, Guenter Nolte, Ingo Lenarz, Thomas Scheper, Verena TI Spiral ganglion neuron quantification in the guinea pig cochlea using Confocal Laser Scanning Microscopy compared to embedding methods SO HEARING RESEARCH LA English DT Article ID SENSORINEURAL HEARING-LOSS; NEUROTROPHIC FACTOR; AUDITORY NEURONS; CELL SURVIVAL; MOUSE COCHLEA; GROWTH-FACTOR; HAIR-CELLS; DEGENERATION; GDNF; RECONSTRUCTION AB Neuron counting in the cochlea is a crucial but time-consuming operation for which various methods have been developed. To improve simplicity and efficiency, we tested an imaging method of the cochlea, and based on Confocal Laser Scanning Microscopy (CLSM), we visualised Rosenthal's Canal and quantified the spiral ganglion neurons (SGN) within. Cochleae of 8 normal hearing guinea pigs and one implanted with a silicone filament were fixed in paraformaldehyde (PFA), decalcified, dehydrated and cleared in Spalteholz solution. Using the tissue's autofluorescence, CLSM was performed at 100fold magnification generating z-series stacks of about 20 slices of the modiolus. In 5 midmodiolar slices per cochlea the perimeters of the Rosenthal's Canal were surveyed, representative neuron diameters were measured and the neurons first counted manually and then software-assisted. For comparison, 8 normal hearing guinea pig cochleae were embedded in paraffin and examined similarly. The CLSM method has the advantage that the cochleae remain intact as an organ and keep their geometrical structure. Z-stack creation is nearly fully-automatic and frequently repeatable with various objectives and step sizes and without visible bleaching. The tissue shows minimal or no shrinking artefacts and damage typical of embedding and sectioning. As a result, the cells in the cleared cochleae reach an average diameter of 21 gm and a density of about 18 cells/10,000 mu m(2) with no significant difference between the manual and the automatical counts. Subsequently we compared the CLSM data with those generated using the established method of paraffin slides, where the SGN reached a mean density of 9.5 cells/10,000 mu m(2) and a mean soma diameter of 13.6 mu m. We were able to prove that the semi-automatic CLSM method is a simple and effective technique for auditory neuron count. It provides a high grade of tissue preservation and the automatic stack-generation as well as the counter software reduces the effort considerably. In addition this visualisation technique offers the potential to detect the position and orientation of cochlear implants (Cl) within the cochlea and tissue growing in the scala tympani around the CI and at the position of the cochleostomy due to the fact that the implant does not have to be removed to perform histology as in case of the paraffin method. (C) 2013 Elsevier B.V. All rights reserved. C1 [Wrzeszcz, Antonina; Reuter, Guenter; Lenarz, Thomas; Scheper, Verena] Hannover Med Sch, Dept Otolaryngol, D-30625 Hannover, Germany. [Nolte, Ingo] Univ Vet Med Hannover, Small Anim Clin, D-30559 Hannover, Germany. RP Wrzeszcz, A (reprint author), Hannover Med Sch, Dept Otolaryngol, Carl Neuberg Str 1, D-30625 Hannover, Germany. EM wrzeszcz.antonina@mh-hannover.de FU German Research Foundation [SFB Transregio 37] FX Wolfgang Posse It and Dr. Rudolf Bauerfeind, Research Core Unit for Laser Microscopy, Hannover Medical School, Germany, are gratefully acknowledged for providing and supervising the microscopy. This work was funded by the German Research Foundation (SFB Transregio 37, Project A5). CR Agterberg MJH, 2008, HEARING RES, V244, P25, DOI 10.1016/j.heares.2008.07.004 Agterberg MJH, 2009, JARO-J ASSOC RES OTO, V10, P355, DOI 10.1007/s10162-009-0170-2 Bixenstine PJ, 2008, LARYNGOSCOPE, V118, P1217, DOI 10.1097/MLG.0b013e31816ba9cd Borenstein JT, 2011, EXPERT OPIN DRUG DEL, V8, P1161, DOI 10.1517/17425247.2011.588207 Ceschi, 2012, COMMUNICATION CLARKE PGH, 1992, TRENDS NEUROSCI, V15, P211, DOI 10.1016/0166-2236(92)90036-8 COGGESHALL RE, 1992, TRENDS NEUROSCI, V15, P9, DOI 10.1016/0166-2236(92)90339-A de Franceschi CM, 2011, BRAZ J OTORHINOLAR, V77, P728, DOI 10.1590/S1808-86942011000600009 Eickhoff R, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041236 Emmenlauer M, 2009, J MICROSC-OXFORD, V233, P42, DOI 10.1111/j.1365-2818.2008.03094.x Fransson A, 2010, J NEUROTRAUM, V27, P1745, DOI 10.1089/neu.2009.1218 Gardella D, 2003, J NEUROSCI METH, V124, P45, DOI 10.1016/S0165-0270(02)00363-1 Garnham C, 2005, Cochlear Implants Int, V6 Suppl 1, P12, DOI 10.1002/cii.273 Gillespie LN, 2005, EUR J NEUROSCI, V22, P2123, DOI 10.1111/j.1460-9568.2005.04430.x Glueckert R, 2008, J COMP NEUROL, V507, P1602, DOI 10.1002/cne.21619 Haq N., 1988, THESIS U WASHINGTON Hardie NA, 2004, BRAIN RES, V1000, P200, DOI 10.1016/j.brainres.2003.10.071 Hinojosa R, 2011, LARYNGOSCOPE, V121, P2641, DOI 10.1002/lary.22383 Huang LC, 2007, DEVELOPMENT, V134, P2925, DOI 10.1242/dev.001925 Incesulu A, 1998, ANN OTO RHINOL LARYN, V107, P906 Johnson SB, 2011, HEARING RES, V278, P34, DOI 10.1016/j.heares.2011.02.008 Kellerhals B., 1967, ACTA OTO-LARYNGOL, V226, P1 Kellner M, 2012, J APPL PHYSIOL, V113, P975, DOI 10.1152/japplphysiol.00026.2012 LOUSTEAU RJ, 1987, LARYNGOSCOPE, V97, P836 MacDonald GH, 2010, AUDIOL MED, V8, P120, DOI 10.3109/1651386X.2010.502301 MacDonald GH, 2008, HEARING RES, V243, P1, DOI 10.1016/j.heares.2008.05.009 Maruyama J, 2008, NEUROBIOL DIS, V29, P14, DOI 10.1016/j.nbd.2007.07.026 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 OTTE J, 1978, LARYNGOSCOPE, V88, P1231 Pfingst BE, 2011, HEARING RES, V281, P65, DOI 10.1016/j.heares.2011.05.002 Richter CP, 2011, HEARING RES, V278, P43, DOI 10.1016/j.heares.2011.02.003 Scheper V, 2009, J NEUROSCI RES, V87, P1389, DOI 10.1002/jnr.21964 Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564 Sly DJ, 2012, JARO-J ASSOC RES OTO, V13, P1, DOI 10.1007/s10162-011-0297-9 Spalteholz W, 1914, DURCHSICHTIGMACHEN M Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011 Stover T, 2005, OTOL NEUROTOL, V26, P1161 van Ruijven MWM, 2004, HEARING RES, V197, P44, DOI 10.1016/j.heares.2004.07.014 VOIE AH, 1993, J MICROSC-OXFORD, V170, P229 Voie AH, 1995, COMPUT MED IMAG GRAP, V19, P377, DOI 10.1016/0895-6111(95)00034-8 Warnecke A, 2010, NEUROREPORT, V21, P517, DOI 10.1097/WNR.0b013e328339045b WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7 Whitlon DS, 2006, NEUROSCIENCE, V138, P653, DOI 10.1016/j.neuroscience.2005.11.030 Wise AK, 2011, NEUROTHERAPEUTICS, V8, P774, DOI 10.1007/s13311-011-0070-0 Yagi M, 2000, JARO, V1, P315, DOI 10.1007/s101620010011 Ylikoski J, 1998, HEARING RES, V124, P17, DOI 10.1016/S0378-5955(98)00095-1 Zilberstein Y, 2012, J NEUROSCI, V32, P405, DOI 10.1523/JNEUROSCI.4678-11.2012 NR 47 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD DEC PY 2013 VL 306 BP 145 EP 155 DI 10.1016/j.heares.2013.08.002 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 260EQ UT WOS:000327578200015 PM 23968822 ER PT J AU Butler, BE Folland, NA Trainor, LJ AF Butler, Blake E. Folland, Nicole A. Trainor, Laurel J. TI Development of pitch processing: Infants' discrimination of iterated rippled noise stimuli with unresolved spectral content SO HEARING RESEARCH LA English DT Article ID VENTRAL COCHLEAR NUCLEUS; COMPLEX TONES; TEMPORAL REPRESENTATION; MUSIC PERCEPTION; SENSITIVITY; RECOGNITION; COMPONENTS AB Sound frequency is extracted at the level of the cochlea, and is represented by two neural codes: a spectral (place) code that is maintained by tonotopic maps extending into primary auditory cortex, and a temporal code based on the periodicity of action potentials in auditory nerve fibers. To date, little work has examined infants' ability to perceive pitch when spectral content cannot be resolved by cochlear filters; the present experiments do so using high-pass filtered iterated rippled noise (IRN) stimuli. Using a conditioned head-turn paradigm, most 8-month-old infants showed above-chance discrimination of a change from 167 to 200 Hz in the fundamental frequency (F0) of such high-passed filtered IRN stimuli, but only when first exposed to a training target stimulus that emphasized pitch through the addition of a sine wave tone to the IRN stimulus at the F0. However, even after this period of pitch priming, performance was quite poor relative to that found in previous studies using stimuli with resolved spectral content. These results support the idea that 8-month-olds can perceive pitch when only unresolved spectral content is present in the stimulus, but that such processing is not yet robust. (C) 2013 Elsevier B.V. All rights reserved. C1 [Butler, Blake E.; Folland, Nicole A.; Trainor, Laurel J.] McMaster Univ, Dept Psychol Neurosci & Behav, Hamilton, ON L8S 4L8, Canada. RP Trainor, LJ (reprint author), McMaster Univ, Dept Psychol Neurosci & Behav, 1280 Main St W, Hamilton, ON L8S 4L8, Canada. EM ljt@mcmaster.ca FU Natural Sciences and Engineering Research Council of Canada (NSERC); Canadian Institutes of Health Research (CIHR); NSERC FX This research was supported by grants to LIT from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canadian Institutes of Health Research (CIHR) and an NSERC graduate scholarship to BEB. The authors wish to thank Andrea Unrau for assisting with data collection. CR Barker D., 2011, CEREB CORTEX, DOI DOI 10.1093/CERC0R/BHR065 Bregman A. S., 1990, AUDITORY SCENE ANAL, P1 Butler BE, 2012, FRONT PSYCHOL, V3, P1 CLARKSON MG, 1995, J ACOUST SOC AM, V98, P1372, DOI 10.1121/1.413473 CLARKSON MG, 1985, J ACOUST SOC AM, V77, P1521, DOI 10.1121/1.391994 CLARKSON MG, 1995, J ACOUST SOC AM, V98, P148, DOI 10.1121/1.413751 FRICK RW, 1985, PSYCHOL BULL, V97, P412, DOI 10.1037//0033-2909.97.3.412 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Gorga MP, 1996, J ACOUST SOC AM, V100, P968, DOI 10.1121/1.416208 He C, 2009, J NEUROSCI, V29, P7718, DOI 10.1523/JNEUROSCI.0157-09.2009 HOUTSMA AJM, 1990, J ACOUST SOC AM, V87, P304, DOI 10.1121/1.399297 HOUTSMA AJM, 1972, J ACOUST SOC AM, V51, P520, DOI 10.1121/1.1912873 Koelsch S, 2005, TRENDS COGN SCI, V9, P578, DOI 10.1016/j.tics.2005.10.001 MACMILLAN NA, 1985, PSYCHOL BULL, V98, P185, DOI 10.1037/0033-2909.98.1.185 McDermott JH, 2008, CURR OPIN NEUROBIOL, V18, P452, DOI 10.1016/j.conb.2008.09.005 Montgomery CR, 1997, J ACOUST SOC AM, V102, P3665, DOI 10.1121/1.420153 Moore B.C., 2012, INTRO PSYCHOL HEARIN Moore BCJ, 2011, HEARING RES, V276, P88, DOI 10.1016/j.heares.2011.01.003 OLSHO LW, 1982, DEV PSYCHOL, V18, P721 Patterson RD, 1996, J ACOUST SOC AM, V100, P3286, DOI 10.1121/1.417212 PLOMP R, 1967, J ACOUST SOC AM, V41, P1526, DOI 10.1121/1.1910515 Pressnitzer D., 2001, PHYSL PSYCHOPHYSICAL RITSMA RJ, 1962, J ACOUST SOC AM, V34, P1224, DOI 10.1121/1.1918307 RITSMA RJ, 1967, J ACOUST SOC AM, V42, P191, DOI 10.1121/1.1910550 Sayles M, 2008, J NEUROSCI, V28, P11925, DOI 10.1523/JNEUROSCI.3137-08.2008 Song JH, 2011, J COGNITIVE NEUROSCI, V23, P2268, DOI 10.1162/jocn.2010.21556 Trainor L.J., 2010, SPRINGER HDB AUDITOR VANDOMMELEN WA, 1990, LANG SPEECH, V33, P259 WERNEROLSHO L, 1988, J ACOUST SOC AM, V84, P1316 Winter IM, 2001, J PHYSIOL-LONDON, V537, P553, DOI 10.1111/j.1469-7793.2001.00553.x Yost W.A., 2007, FUNDAMENTALS HEARING, P47 NR 31 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2013 VL 304 BP 1 EP 6 DI 10.1016/j.heares.2013.05.009 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 225PM UT WOS:000324974800001 PM 23764671 ER PT J AU Youm, I Youan, BBC AF Youm, Ibrahima Youan, Bi-Botti C. TI Uptake mechanism of Furosemide-loaded pegylated nanoparticles by cochlear cell lines SO HEARING RESEARCH LA English DT Article ID RECEPTOR-MEDIATED ENDOCYTOSIS; POLYMER-DRUG COMPATIBILITY; CENTRAL-NERVOUS-SYSTEM; INDUCED HEARING-LOSS; INNER-EAR; STEM-CELLS; INTRACELLULAR TRAFFICKING; DEPENDENT INTERNALIZATION; PLGA NANOPARTICLES; CANCER-CELLS AB This study tests the hypothesis that pegylated nanoparticles (NPs) could be taken up by the cochlear cells [House Ear Institute-organ of Corti 1 (HEI-OC1) and Stria vascularis K-1 (SVK-1)], through endocytic pathways. Furthermore, the in vitro drug release and the cytotoxicity of Furosemide (FUR)-loaded NPs on these two cochlear cells are investigated. FUR-loaded pegylated NPs are prepared by the emulsion-solvent diffusion method without surfactant. The NPs are characterized for particle mean diameter, polydispersity index (PDI), morphology, percent drug encapsulation efficiency (EE%), and FUR release kinetics. The methyl tetrazolium salt (MTS) and lactate dehydrogenase (LDH) bioassays are used to evaluate in vitro, the cytotoxicity of FUR-loaded NPs and native FUR. The NPs uptake is investigated using confocal microscopy, microplate reader/fluorimetry, and flow cytometry. Spherical NPs with a mean diameter range of 133-210 nm and PDI values varying from 0.037 to 0.41 are produced. The FUR EE% is 86% and the drug is released from the NPs according to the zero-order and Higuchi models. After treatment with blank NPs, the percentage of cell viability and cell death are 95.96% and 8.95%, in HEI-OC1 cells, respectively. The NPs are internalized by HEI-OC1 cells through a clathrin-dependent pathway. In addition, results show that NPs can be taken up via clathrin and cytoskeleton mediated pathways in SVK-1 cells. The internalization of the pegylated NPs can enhance the drug toxicity by necrosis in a dose-dependent and sustained release manner. The formulated NPs provide a promising template for a targeted drug delivery system to the inner ear. (C) 2013 Elsevier B.V. All rights reserved. C1 [Youm, Ibrahima; Youan, Bi-Botti C.] Univ Missouri, Div Pharmaceut Sci, Lab Future Nanomed & Theoret Chronopharmaceut, Kansas City, MO 64108 USA. RP Youan, BBC (reprint author), Univ Missouri, Div Pharmaceut Sci, Lab Future Nanomed & Theoret Chronopharmaceut, Kansas City, MO 64108 USA. EM youanb@umkc.edu CR ARNOLD W, 1981, ACTA OTO-LARYNGOL, V91, P399, DOI 10.3109/00016488109138521 Auffan M, 2009, NAT NANOTECHNOL, V4, P634, DOI 10.1038/nnano.2009.242 Avgoustakis K, 2003, INT J PHARMACEUT, V259, P115, DOI 10.1016/S0378-5173(03)00224-2 Barichello JM, 1999, DRUG DEV IND PHARM, V25, P471, DOI 10.1081/DDC-100102197 Belyantseva I., 1998, ASS RES OT 21 MIDW M Buckiova D, 2012, NANOMEDICINE-UK, V7, P1339, DOI 10.2217/NNM.12.5 Campbell KCM, 2007, HEARING RES, V226, P92, DOI 10.1016/j.heares.2006.11.012 Cederroth CR, 2012, HEARING RES, V292, P83, DOI 10.1016/j.heares.2012.08.011 Chandrasekhar SS, 2000, OTOLARYNG HEAD NECK, V122, P521, DOI 10.1016/S0194-5998(00)70094-5 Chen FQ, 2012, HEARING RES, V284, P33, DOI 10.1016/j.heares.2011.12.007 Cheng J, 2007, BIOMATERIALS, V28, P869, DOI 10.1016/j.biomaterials.2006.09.047 Choi SH, 2002, J COLLOID INTERF SCI, V251, P57, DOI 10.1006/jcis.2002.8427 Douglas KL, 2008, EUR J PHARM BIOPHARM, V68, P676, DOI 10.1016/j.ejpb.2007.09.002 Durrbach A, 1996, J CELL SCI, V109, P457 Dwan'Isa JPL, 2007, PHARMAZIE, V62, P499, DOI 10.1691/ph.2007.7.6273 FEE WE, 1980, LARYNGOSCOPE, V90, P1, DOI 10.1288/00005537-198010001-00001 Feghali JG, 2001, LARYNGOSCOPE, V111, P1147, DOI 10.1097/00005537-200107000-00005 FESSI H, 1989, INT J PHARM, V55, pR1, DOI 10.1016/0378-5173(89)90281-0 Gaikwad A, 2010, INT J PHARMTECH RES, V2, P300 Ge XX, 2007, OTOLARYNG HEAD NECK, V137, P619, DOI 10.1016/j.otohns.2007.04.013 Gorner T, 1999, J CONTROL RELEASE, V57, P259, DOI 10.1016/S0168-3659(98)00121-7 Hackley V., 2001, NATL I STANDARDS TEC Hansen C. M., 1967, J PAINT TECHNOL, V39, P104 Hassanein M, 2011, MOL IMAGING BIOL, V13, P840, DOI 10.1007/s11307-010-0399-5 Hildebrand J. H., 1950, SOLUBILITY NONELECTR, V3rd HOLM PK, 1995, EXP CELL RES, V217, P157, DOI 10.1006/excr.1995.1075 Hu N, 2003, HEARING RES, V185, P77, DOI 10.1016/S0378-5955(03)00261-2 Hughes G.B., 2007, CLIN OTOLOGY, P215 Kalinec GM, 2003, AUDIOL NEURO-OTOL, V8, P177, DOI 10.1159/000071059 Kawashima Y, 1998, EUR J PHARM BIOPHARM, V45, P41, DOI 10.1016/S0939-6411(97)00121-5 Khalil IA, 2006, PHARMACOL REV, V58, P32, DOI 10.1124/pr.58.1.8 Kim HR, 2007, CELL MOL LIFE SCI, V64, P356, DOI 10.1007/s00018-007-6390-x Kros CJ, 1998, NATURE, V394, P281, DOI 10.1038/28401 LENDAHL U, 1990, CELL, V60, P585, DOI 10.1016/0092-8674(90)90662-X Li HZ, 2011, SCI REP-UK, V1, DOI 10.1038/srep00159 Li PY, 2010, BIOMACROMOLECULES, V11, P2576, DOI 10.1021/bm1005195 Liu JB, 2004, J PHARM SCI-US, V93, P132, DOI 10.1002/jps.10533 Lovgren T, 2004, ARTHRITIS RHEUM, V50, P1861, DOI 10.1002/art.20254 MCCABE BF, 1979, ANN OTO RHINOL LARYN, V88, P585 MCKAY R, 1993, CR ACAD SCI III-VIE, V316, P1452 McKay R, 1997, SCIENCE, V276, P66, DOI 10.1126/science.276.5309.66 Mehta RC, 1996, J CONTROL RELEASE, V41, P249, DOI 10.1016/0168-3659(96)01332-6 Mundy DI, 2002, J CELL SCI, V115, P4327, DOI 10.1242/jcs.00117 Nahar M, 2009, PHARM RES-DORD, V26, P2588, DOI 10.1007/s11095-009-9973-4 Olivier JC, 2002, PHARMACEUT RES, V19, P1137, DOI 10.1023/A:1019842024814 Panyam J, 2003, INT J PHARM, V262, P1, DOI 10.1016/S0378-5173(03)00295-3 PARTON RG, 1994, J CELL BIOL, V127, P1199, DOI 10.1083/jcb.127.5.1199 Portis AM, 2010, MICROSC RES TECHNIQ, V73, P878, DOI 10.1002/jemt.20861 Rabinowitz PM, 2000, AM FAM PHYSICIAN, V61, P2749 Rejman J, 2004, BIOCHEM J, V377, P159, DOI 10.1042/BJ20031253 Rejman J, 2004, BBA-BIOMEMBRANES, V1660, P41, DOI 10.1016/j.bbamem.2003.10.011 Rosenholm JM, 2009, ACS NANO, V3, P197, DOI 10.1021/nn800781r Roy S, 2010, INT J PHARMACEUT, V390, P214, DOI 10.1016/j.ijpharm.2010.02.003 Saenz-Robles MT, 2001, ONCOGENE, V20, P7899, DOI 10.1038/sj.onc.1204936 SALISBURY JL, 1980, J CELL BIOL, V87, P132, DOI 10.1083/jcb.87.1.132 Santos-Sacchi J, 2001, HEARING RES, V159, P69, DOI 10.1016/S0378-5955(01)00321-5 Schenderlein S, 2004, INT J PHARM, V286, P19, DOI 10.1016/j.ijpharm.2004.07.034 SCHWEITZER VG, 1993, OTOLARYNG CLIN N AM, V26, P759 Song ZM, 2011, J COLLOID INTERF SCI, V354, P116, DOI 10.1016/j.jcis.2010.10.024 Swan EEL, 2008, ADV DRUG DELIVER REV, V60, P1583, DOI 10.1016/j.addr.2008.08.001 Takemura K, 2004, HEARING RES, V196, P58, DOI 10.1016/j.heares.2004.06.003 Wangemann P., 1996, COCHLEA, P130 Yan F, 2010, NANOMED-NANOTECHNOL, V6, P170, DOI 10.1016/j.nano.2009.05.004 Youm I, 2012, COLLOID SURFACE B, V94, P133, DOI 10.1016/j.colsurfb.2012.01.027 Zhang Y, 2011, INT J PHARMACEUT, V404, P211, DOI 10.1016/j.ijpharm.2010.11.006 Zhang Y, 2011, ACTA OTO-LARYNGOL, V131, P1249, DOI 10.3109/00016489.2011.615066 Zhou J, 2010, J COLLOID INTERF SCI, V345, P241, DOI 10.1016/j.jcis.2010.02.004 Zou J., 2009, EUR J NANOMED, V3, P8 NR 68 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2013 VL 304 BP 7 EP 19 DI 10.1016/j.heares.2013.05.010 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 225PM UT WOS:000324974800002 PM 23747541 ER PT J AU Andeol, G Macpherson, EA Sabin, AT AF Andeol, Guillaume Macpherson, Ewan A. Sabin, Andrew T. TI Sound localization in noise and sensitivity to spectral shape SO HEARING RESEARCH LA English DT Article ID COCHLEAR IMPLANT LISTENERS; EAR TRANSFER-FUNCTIONS; MODULATION DETECTION; FREE-FIELD; INDIVIDUAL-DIFFERENCES; HEADPHONE SIMULATION; FREQUENCY; HEARING; PLANE; FRONT AB Individual differences exist in sound localization performance even for normal-hearing listeners. Some of these differences might be related to acoustical differences in localization cues carried by the head related transfer functions (HRTF). Recent data suggest that individual differences in sound localization performance could also have a perceptual origin. The localization of an auditory target in the up/down and front/back dimensions requires the analysis of the spectral shape of the stimulus. In the present study, we investigated the role of an acoustic factor, the prominence of the spectral shape ("spectral strength") and the role of a perceptual factor, the listener's sensitivity to spectral shape, in individual differences observed in sound localization performance. Spectral strength was computed as the spectral distance between the magnitude spectrum of the HRTFs and a flat spectrum. Sensitivity to spectral shape was evaluated using spectral-modulation thresholds measured with a broadband (0.2-12.8 kHz) or high-frequency (4-16 kHz) carrier and for different spectral modulation frequencies (below 1 cycle/octave, between 1 and 2 cycles/octave, above 2 cycles/octave). Data obtained from 19 young normal-hearing listeners showed that low thresholds for spectral modulation frequency below 1 cycle/octave with a high-frequency carrier were associated with better sound localization performance. No correlation was found between sound localization performance and the spectral strength of the HRTFs. These results suggest that differences in perceptual ability, rather than acoustical differences, contribute to individual differences in sound localization performance in noise. (C) 2013 Authors. Published by Elsevier B.V. All rights reserved. C1 [Andeol, Guillaume] Inst Rech Biomed Armees, Dept Act & Cognit Situat Operat, F-91223 Bretigny Sur Orge, France. [Macpherson, Ewan A.] Univ Western Ontario, Sch Commun Sci & Disorders, London, ON N6G 1H1, Canada. [Macpherson, Ewan A.] Univ Western Ontario, Natl Ctr Audiol, London, ON N6G 1H1, Canada. [Sabin, Andrew T.] Northwestern Univ, Dept Commun Sci & Disorders, Hearing Aid Lab, Evanston, IL 60208 USA. RP Andeol, G (reprint author), Inst Rech Biomed Armees, Dept Act & Cognit Situat Operat, BP 73, F-91223 Bretigny Sur Orge, France. EM guillaume.andeol@irba.fr; ewan.macpherson@nca.uwo.ca; a-sabin@northwestern.edu FU French Procurement Agency (DGA); National Science Foundation (USA); Natural Sciences and Engineering Research Council of Canada; National Institutes of Health (USA) [F31DC9549] FX This work was supported in part by the French Procurement Agency (DGA). Author EM acknowledges funding from the National Science Foundation (USA) and the Natural Sciences and Engineering Research Council of Canada. Author AS acknowledges funding from National Institutes of Health (USA) Grant F31DC9549. We thank Jean Christophe Bouy for help with software development, Lionel Pellieux for HRTF measurements and signal processing manipulations and Brian C.J. Moore, and two anonymous reviewers for many helpful comments. CR Andeol G, 2011, J NEUROSCI, V31, P6759, DOI 10.1523/JNEUROSCI.0248-11.2011 Best V, 2005, ACTA ACUST UNITED AC, V91, P421 Brungart D., 2009, IEEE WORKSH APPL SIG, P305 Brungart D.S., 2009, J ACOUST SOC AM, V125, P2691 BUTLER RA, 1977, J ACOUST SOC AM, V61, P1264, DOI 10.1121/1.381427 Djelani T, 2000, ACUSTICA, V86, P1046 Drennan WR, 2001, J ACOUST SOC AM, V110, P2491, DOI 10.1121/1.1408310 Eddins DA, 2007, J ACOUST SOC AM, V121, P363, DOI 10.1121/1.2382347 GILKEY RH, 1995, BEHAV RES METH INSTR, V27, P1, DOI 10.3758/BF03203614 Good MD, 1996, J ACOUST SOC AM, V99, P1108, DOI 10.1121/1.415233 Henry BA, 2005, J ACOUST SOC AM, V118, P1111, DOI 10.1121/1.1944567 Hofman M, 2003, Exp Brain Res, V148, P458 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Macpherson EA, 2003, J ACOUST SOC AM, V114, P430, DOI 10.1121/1.1582174 Macpherson EA, 2007, J ACOUST SOC AM, V121, P3677, DOI 10.1121/1.2722048 MAKOUS JC, 1990, J ACOUST SOC AM, V87, P2188, DOI 10.1121/1.399186 Middlebrooks JC, 1999, J ACOUST SOC AM, V106, P1493, DOI 10.1121/1.427147 MIDDLEBROOKS JC, 1990, J ACOUST SOC AM, V87, P2149, DOI 10.1121/1.399183 Middlebrooks JC, 1999, J ACOUST SOC AM, V106, P1480, DOI 10.1121/1.427176 Moller H, 1996, J AUDIO ENG SOC, V44, P451 Qian JY, 2008, J ACOUST SOC AM, V123, P302, DOI [10.1121/1.2804698, 10.1121/1.28046981] RIFE DD, 1989, J AUDIO ENG SOC, V37, P419 Sabin A.T., 2005, ASS RES OT ABSTR, V257 Sabin AT, 2012, EXP BRAIN RES, V218, P567, DOI 10.1007/s00221-012-3049-0 Saoji AA, 2009, J ACOUST SOC AM, V126, P955, DOI 10.1121/1.3179670 Shaw E. A. G., 1997, BINAURAL SPATIAL HEA, P25 SHAW EAG, 1974, J ACOUST SOC AM, V56, P1848, DOI 10.1121/1.1903522 Wenzel E. M., 1988, J ACOUST SOC AM, V84, pS79, DOI 10.1121/1.2026486 WENZEL EM, 1993, J ACOUST SOC AM, V94, P111, DOI 10.1121/1.407089 Wightman F, 2005, ACTA ACUST UNITED AC, V91, P429 Wightman F. L., 1997, BINAURAL SPATIAL HEA, P1 WIGHTMAN FL, 1989, J ACOUST SOC AM, V85, P858, DOI 10.1121/1.397557 Wightman FL, 1999, J ACOUST SOC AM, V105, P2841, DOI 10.1121/1.426899 WIGHTMAN FL, 1989, J ACOUST SOC AM, V85, P868, DOI 10.1121/1.397558 Zahorik P, 2006, J ACOUST SOC AM, V120, P343, DOI 10.1121/1.2208429 Zhang PX, 2010, HEARING RES, V260, P30, DOI 10.1016/j.heares.2009.11.001 NR 36 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2013 VL 304 BP 20 EP 27 DI 10.1016/j.heares.2013.06.001 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 225PM UT WOS:000324974800003 PM 23769958 ER PT J AU Gnanateja, GN Ranjan, R Firdose, H Sinha, SK Maruthy, S AF Gnanateja, G. Nike Ranjan, Ranjeet Firdose, Husna Sinha, Sujeet Kumar Maruthy, Sandeep TI Acoustic basis of context dependent brainstem encoding of speech SO HEARING RESEARCH LA English DT Article ID IN-NOISE PERCEPTION; CORTICOFUGAL MODULATION; COMPLEX TONES; LOW PITCH; BAT; RESPONSES; MIDBRAIN; HEARING AB The newfound context dependent brainstem encoding of speech is evidence of online regularity detection and modulation of the sub-cortical responses. We studied the influence of spectral structure of the contextual stimulus on context dependent encoding of speech at the brainstem, in an attempt to understand the acoustic basis for this effect. Fourteen normal hearing adults participated in a randomized true experimental design in whom brainstem responses were recorded. Brainstem responses for a high pass filtered /da/in the context of syllables, that either had same or different spectral structure were compared with each other. The findings suggest that spectral structure is one of the parameters which cue the context dependent sub-cortical encoding of speech. Interestingly, the results also revealed that, brainstem can encode pitch even with negligible acoustic information below the second formant frequency. (C) 2013 Elsevier B.V. All rights reserved. C1 [Gnanateja, G. Nike; Sinha, Sujeet Kumar; Maruthy, Sandeep] All India Inst Speech & Hearing, Dept Audiol, Mysore 570006, Karnataka, India. [Ranjan, Ranjeet] Phonak India Pvt Ltd, Mumbai, Maharashtra, India. [Firdose, Husna] All India Inst Speech & Hearing, Mysore 570006, Karnataka, India. RP Gnanateja, GN (reprint author), All India Inst Speech & Hearing, Dept Audiol, Mysore 570006, Karnataka, India. EM nikegnanateja@gmail.com; ranjanbs3@yahoo.co.in; husna_firdose2002@yahoo.com; sujitks5@gmail.com; msandeepa@gmail.com CR Bartlett EL, 2005, J NEUROPHYSIOL, V94, P83, DOI 10.1152/jn.01124.2004 Boutros NN, 1999, BIOL PSYCHIAT, V45, P917, DOI 10.1016/S0006-3223(98)00253-4 Boutros NN, 2011, BIOL PSYCHIAT, V69, P883, DOI 10.1016/j.biopsych.2010.12.011 Buchsbaum BR, 2009, CEREB CORTEX, V19, P1474, DOI 10.1093/cercor/bhn186 CHAMBERS RD, 1986, J ACOUST SOC AM, V80, P1673, DOI 10.1121/1.394279 Chandrasekaran B, 2009, NEURON, V64, P311, DOI 10.1016/j.neuron.2009.10.006 Gao E, 1998, P NATL ACAD SCI USA, V95, P12663, DOI 10.1073/pnas.95.21.12663 Gnanateja GN, 2012, J ALL INDIA I SPEECH, V31, P215 GREENBERG S, 1987, HEARING RES, V25, P91, DOI 10.1016/0378-5955(87)90083-9 He C., 2009, J NEUROSCI, V2924, P7718 Helenius P, 1999, BRAIN, V122, P907, DOI 10.1093/brain/122.5.907 Hornickel J, 2009, P NATL ACAD SCI USA, V106, P13022, DOI 10.1073/pnas.0901123106 Karhu J., 1997, DUAL CEREBRAL PROCES Krizman J, 2010, AUDIOL NEURO-OTOL, V15, P332, DOI 10.1159/000289572 Large EW, 1999, PSYCHOL REV, V106, P119, DOI 10.1037/0033-295X.106.1.119 Parbery-Clark A, 2011, NEUROPSYCHOLOGIA, V49, P3338, DOI 10.1016/j.neuropsychologia.2011.08.007 Rosburg T, 2004, NEUROSCI LETT, V372, P245, DOI 10.1016/j.neulet.2004.09.047 SCHOUTEN J. F., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1418, DOI 10.1121/1.1918360 Skoe E, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013645 Strait DL, 2011, BEHAV BRAIN FUNCT, V7, DOI 10.1186/1744-9081-7-44 Suga N, 2002, NEURON, V36, P9, DOI 10.1016/S0896-6273(02)00933-9 Winkler I, 2009, TRENDS COGN SCI, V13, P532, DOI 10.1016/j.tics.2009.09.003 Zhang Y., 1997, NATURE, V387 Zhang YF, 1997, J NEUROPHYSIOL, V78, P3489 Zhou XM, 2007, J NEUROPHYSIOL, V98, P2509, DOI 10.1152/jn.00613.2007 NR 25 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2013 VL 304 BP 28 EP 32 DI 10.1016/j.heares.2013.06.002 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 225PM UT WOS:000324974800004 PM 23792077 ER PT J AU Bao, JX Hungerford, M Luxmore, R Ding, DL Qiu, ZY Lei, DB Yang, AZ Liang, RQ Ohlemiller, KK AF Bao, Jianxin Hungerford, Michelle Luxmore, Randi Ding, Dalian Qiu, Ziyu Lei, Debin Yang, Aizhen Liang, Ruqiang Ohlemiller, Kevin K. TI Prophylactic and therapeutic functions of drug combinations against noise-induced hearing loss SO HEARING RESEARCH LA English DT Article ID SPIRAL GANGLION NEURONS; FACTOR-KAPPA-B; CALCIUM-CHANNEL BLOCKER; ACOUSTIC TRAUMA; T-TYPE; GLUCOCORTICOID-RECEPTORS; RESTRAINT STRESS; HAIR-CELLS; INNER-EAR; SUPEROXIDE-DISMUTASE AB Noise is the most common occupational and environmental hazard. Noise-induced hearing loss (NIHL) is the second most common form of sensorineural hearing deficit, after age-related hearing loss (presbycusis). Although promising approaches have been identified for reducing NIHL, currently there are no effective medications to prevent NIHL. Development of an efficacious treatment has been hampered by the complex array of cellular and molecular pathways involved in NIHL We turned this difficulty into an advantage by asking whether NIHL could be effectively prevented by targeting multiple signaling pathways with a combination of drugs already approved by U.S. Food and Drug Administration (FDA). We previously found that antiepileptic drugs blocking T-type calcium channels had both prophylactic and therapeutic effects for NIHL. NIHL can also be reduced by an up-regulation of glucocorticoid (GC) signaling pathways. Based on these findings, we tested a combination therapy for NIHL that included ethosuximide and zonisamide (anticonvulsants) and dexamethasone and methylprednisolone (synthetic GCs) in mice under exposure conditions typically associated with dramatic permanent threshold shifts (PTS). We first examined possible prophylactic effects for each drug when administered alone 2 h before noise, and calculated the median effective dose (ED50). We then tested for synergistic effects of two-drug combinations (anticonvulsant + GC), and identified combinations with the strongest synergy against NIHL, based on a previously established combination index (CI) metric. We repeated similar tests to determine their therapeutic effects when administered the same drugs 24 h after the noise exposure. Our study shows the feasibility of developing pharmacological intervention in multiple pathways, and discovering drug combinations with optimal synergistic effects in preventing permanent NIHL. (C) 2013 Elsevier B.V. All rights reserved. C1 [Bao, Jianxin; Hungerford, Michelle; Luxmore, Randi; Qiu, Ziyu; Lei, Debin; Yang, Aizhen; Liang, Ruqiang; Ohlemiller, Kevin K.] Washington Univ, Sch Med, Dept Otolaryngol, Ctr Aging, St Louis, MO 63110 USA. [Ding, Dalian] SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP Bao, JX (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, Ctr Aging, 4560 Clayton Ave, St Louis, MO 63110 USA. EM jbao@wustl.edu FU National Institute of Health [DC010489, DC011793]; National Organization for Hearing Research Foundation FX We thank Drs. Barbara Bohne and Colleen Garbe Le Prell for their thoughtful suggestions, and Drs. Yixin Chen and Yi Mao for their help of computational simulations. The project was supported by grants to J.B. from the National Institute of Health (DC010489 and DC011793), and the National Organization for Hearing Research Foundation. CR Adamson CL, 2002, J NEUROSCI, V22, P1385 Bao JX, 2004, NAT NEUROSCI, V7, P1250, DOI 10.1038/nn1342 Bao JX, 2005, J NEUROSCI, V25, P3041, DOI 10.1523/JNEUROSCI.5277-04.2005 Bas E., 2008, ACTA OTO-LARYNGOL, V129, P385 Bielefeld EC, 2007, ACTA OTO-LARYNGOL, V127, P914, DOI 10.1080/00016480601110188 Boettcher FA, 1996, LARYNGOSCOPE, V106, P772, DOI 10.1097/00005537-199606000-00020 Boettcher FA, 1998, HEARING RES, V121, P139, DOI 10.1016/S0378-5955(98)00075-6 Page JC, 2002, MIL MED, V167, P48 Boik JC, 2008, STAT MED, V27, P1040, DOI 10.1002/sim.3005 Campbell KCM, 2007, HEARING RES, V226, P92, DOI 10.1016/j.heares.2006.11.012 Canlon B, 2007, HEARING RES, V226, P61, DOI 10.1016/j.heares.2006.05.009 CHOU TC, 1984, ADV ENZYME REGUL, V22, P27, DOI 10.1016/0065-2571(84)90007-4 Chou TC, 2006, PHARMACOL REV, V58, P621, DOI 10.1124/pr.58.3.10 Darrat Ilaaf, 2007, Curr Opin Otolaryngol Head Neck Surg, V15, P358, DOI 10.1097/MOO.0b013e3282efa641 Dodson Kelley M, 2004, Ear Nose Throat J, V83, P394 Errington AC, 2005, CURR TOP MED CHEM, V5, P15, DOI 10.2174/1568026053386872 Fuchs P, 2002, AUDIOL NEURO-OTOL, V7, P40, DOI 10.1159/000046862 Hanaoka BY, 2012, NAT REV RHEUMATOL, V8, P448, DOI 10.1038/nrrheum.2012.85 Hansen MR, 2003, J NEUROSCI RES, V72, P169, DOI 10.1002/jnr.10551 Heinrich UR, 1997, EUR ARCH OTO-RHINO-L, V254, P223, DOI 10.1007/BF00874093 Henderson D., 2003, NOISE HLTH, V3, P33 Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3 Hight NG, 2003, HEARING RES, V179, P21, DOI 10.1016/S0378-5955(03)00067-4 Ison JR, 1997, HEARING RES, V106, P179, DOI 10.1016/S0378-5955(96)00216-X Jin DX, 2009, BRAIN RES, V1277, P3, DOI 10.1016/j.brainres.2009.02.017 Kopke R, 2005, ACTA OTO-LARYNGOL, V125, P235, DOI 10.1080/00016480410023038 Lacinova L, 2000, GEN PHYSIOL BIOPHYS, V19, P121 Lang HN, 2006, J NEUROSCI, V26, P3541, DOI 10.1523/JNEUROSCI.2488-05.2006 Le Prell C G, 2003, Noise Health, V5, P1 Le Prell C.G., 2012, SPRINGER HDB AUDITOR Lee JJ, 2009, STAT BIOPHARM RES, V1, P4, DOI 10.1198/sbr.2009.0001 Lee Soo-Il, 2010, Korean J Anesthesiol, V58, P421, DOI 10.4097/kjae.2010.58.5.421 Le Prell CG, 2007, FREE RADICAL BIO MED, V42, P1454, DOI 10.1016/j.freeradbiomed.2007.02.008 Lynch ED, 2004, LARYNGOSCOPE, V114, P333, DOI 10.1097/00005537-200402000-00029 Lynch ED, 2005, DRUG DISCOV TODAY, V10, P1291, DOI 10.1016/S1359-6446(05)03561-0 MacArthur CJ, 2008, OTOLARYNG HEAD NECK, V139, P646, DOI 10.1016/j.otohns.2008.07.029 McFadden SL, 2005, HEARING RES, V202, P200, DOI 10.1016/j.heares.2004.10.011 McFadden SL, 2001, NOISE HEALTH, V3, P49 Nikonenko I, 2005, MOL PHARMACOL, V68, P84, DOI 10.1124/mol.104.010066 Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5 Ohinata Y, 2003, BRAIN RES, V966, P265, DOI 10.1016/S0006-8993(02)04205-1 Ohlemiller KK, 2000, HEARING RES, V149, P239, DOI 10.1016/S0378-5955(00)00191-X Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043 Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847 Park E, 2008, CAN MED ASSOC J, V178, P1163, DOI 10.1503/cmaj.080282 Paz Z, 2004, AUDIOL NEURO-OTOL, V9, P363, DOI 10.1159/000081409 Peppi M, 2011, J NEUROSCI, V31, P735, DOI 10.1523/JNEUROSCI.3955-10.2011 Perez-Reyes E, 1998, J BIOENERG BIOMEMBR, V30, P313, DOI 10.1023/A:1021981420839 Richman DD, 2001, NATURE, V410, P995, DOI 10.1038/35073673 Rodriguez-Contreras A, 2001, J PHYSIOL-LONDON, V534, P669, DOI 10.1111/j.1469-7793.2001.00669.x Schnee ME, 2003, J PHYSIOL-LONDON, V549, P697, DOI 10.1113/jphysiol.2002.037481 SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 Seixas NS, 2005, OCCUP ENVIRON MED, V62, P309, DOI 10.1136/oem.2004.018143 Sendowski I, 2006, HEARING RES, V221, P119, DOI 10.1016/j.heares.2006.08.010 Shen HY, 2007, HEARING RES, V226, P52, DOI 10.1016/j.heares.2006.12.011 Shen HY, 2011, HEARING RES, V277, P184, DOI 10.1016/j.heares.2011.01.009 Shimazaki T, 2002, ANN OTO RHINOL LARYN, V111, P1133 So HS, 2005, HEARING RES, V204, P127, DOI 10.1016/j.heares.2005.01.011 Tabuchi K, 2006, OTOL NEUROTOL, V27, P1176, DOI 10.1097/01.mao.0000226313.82069.3f Tahera Y, 2006, NEUROREPORT, V17, P879, DOI 10.1097/01.wnr.0000220131.24468.e7 Tahera Y, 2006, ENDOCRINOLOGY, V147, P4430, DOI 10.1210/en.2006-0260 Tahera Y, 2006, J NEUROSCI RES, V83, P1066, DOI 10.1002/jnr.20795 TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865 Triggle DJ, 2006, CURR PHARM DESIGN, V12, P443, DOI 10.2174/138161206775474503 Trune DR, 2012, ANAT REC, V295, P1928, DOI 10.1002/ar.22576 Uemaetomari I, 2009, TOHOKU J EXP MED, V218, P41 Wang Y, 2002, HEARING RES, V165, P96, DOI 10.1016/S0378-5955(02)00289-7 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 Werling LL, 2007, NEUROLOGIST, V13, P272, DOI 10.1097/NRL.0b013e3180f60bd8 Xu J, 2009, J NEUROSCI, V29, P2022, DOI 10.1523/JNEUROSCI.2621-08.2009 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 Yamashita D, 2005, NEUROSCIENCE, V134, P633, DOI 10.1016/j.neuroscience.2005.04.015 Yamashita D, 2004, BRAIN RES, V1019, P201, DOI 10.1016/j.brainres.2004.05.104 Yamasoba T, 1999, BRAIN RES, V815, P317, DOI 10.1016/S0006-8993(98)01100-7 Yoshida N, 1999, J NEUROSCI, V19, P10116 Yunker AMR, 2003, J BIOENERG BIOMEMBR, V35, P533, DOI 10.1023/B:JOBB.0000008024.77488.48 ZUO J, 1995, HEARING RES, V87, P220, DOI 10.1016/0378-5955(95)00092-I NR 78 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2013 VL 304 BP 33 EP 40 DI 10.1016/j.heares.2013.06.004 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 225PM UT WOS:000324974800005 PM 23792074 ER PT J AU Watson, CJ Tempel, BL AF Watson, Claire J. Tempel, Bruce L. TI A new Atp2b2 deafwaddler allele, dfw(i5), interacts strongly with Cdh23 and other auditory modifiers SO HEARING RESEARCH LA English DT Article ID HAIR-CELL STEREOCILIA; MEMBRANE CA2+ ATPASE; HEARING-LOSS; CALCIUM-PUMP; PURKINJE NEURONS; INBRED STRAINS; INNER-EAR; TIP-LINK; MICE; DEAFNESS AB Tight regulation of calcium (Ca2+) concentrations in the stereocilia bundles of auditory hair cells of the inner ear is critical to normal auditory transduction. The plasma membrane Ca2+ ATPase 2 (PMCA2), encoded by the Atp2b2 gene, is the primary mechanism for clearance of Ca2+ from auditory stereocilia, keeping intracellular levels low, and also contributes to maintaining adequate levels of extracellular Ca2+ in the endolymph. This study characterizes a novel null Atp2b2 allele, dfw(i5), by examining cochlear anatomy, vestibular function and auditory physiology in mutant mice. Loss of auditory function in PMCA2 mutants can be attributed to dysregulation of intracellular Ca2+ inside the stereocilia bundles. However, extracellular Ca2+ ions surrounding the stereocilia are also required for rigidity of cadherin 23, a component of the stereocilia tip-link encoded by the Cdh23 gene. This study further resolves the interaction between Atp2b2 and Cdh23 in a gene dosage and frequency-dependent manner, and finds that low frequencies are significantly affected by the interaction. In +/dfw(i5) mice, one mutant copy of Cdh23 is sufficient to cause broad frequency hearing impairment. Additionally, we report another modifying interaction with Atp2b2 on auditory sensitivity, possibly caused by an unidentified hearing loss gene in mice. (C) 2013 Elsevier B.V. All rights reserved. C1 [Watson, Claire J.; Tempel, Bruce L.] Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Dept Pharmacol, Seattle, WA 98195 USA. [Tempel, Bruce L.] Univ Washington, Dept Otolaryngol Head & Neck Surg, Seattle, WA 98195 USA. RP Tempel, BL (reprint author), Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Box 357923, Seattle, WA 98195 USA. EM bltempel@uw.edu FU NIH [RO1 DC02739, P30 DC04661, T32 DC005361, T32 DC000033] FX We would like to thank L. Robinson for maintaining our mouse colonies; A. Peterson, D. Speca and D. Chihara for providing us with the original "Line 70" dfwi5 mouse; D. Cunningham for assistance with scanning electron microscopy techniques; and V. Street for comments on the manuscript. This work was supported by grants from the NIH; RO1 DC02739 (BLT), P30 DC04661 (BLT), T32 DC005361 (CJW) and T32 DC000033 (CJW). CR Beurg M, 2010, J NEUROPHYSIOL, V104, P18, DOI 10.1152/jn.00019.2010 BOCK GR, 1983, ACTA OTO-LARYNGOL, V96, P39, DOI 10.3109/00016488309132873 Bortolozzi M, 2010, J BIOL CHEM, V285, P37693, DOI 10.1074/jbc.M110.170092 Brini M, 2003, J BIOL CHEM, V278, P24500, DOI 10.1074/jbc.M300784200 Burette A, 2003, J COMP NEUROL, V467, P464, DOI 10.1002/cne.10933 Carafoli E, 2002, P NATL ACAD SCI USA, V99, P1115, DOI 10.1073/pnas.032427999 Chen QG, 2012, EUR J NEUROSCI, V36, P2302, DOI 10.1111/j.1460-9568.2012.08159.x Clapham DE, 2007, CELL, V131, P1047, DOI 10.1016/j.cell.2007.11.028 COREY DP, 1979, NATURE, V281, P675, DOI 10.1038/281675a0 Dumont RA, 2001, J NEUROSCI, V21, P5066 Eatock RA, 2000, ANNU REV NEUROSCI, V23, P285, DOI 10.1146/annurev.neuro.23.1.285 Empson RM, 2007, J NEUROSCI, V27, P3753, DOI 10.1523/JNEUROSCI.0069-07.2007 Empson RM, 2010, J PHYSIOL-LONDON, V588, P907, DOI 10.1113/jphysiol.2009.182196 Fettiplace R, 2003, CURR OPIN NEUROBIOL, V13, P446, DOI 10.1016/S0959-4388(03)00094-1 Ficarella R, 2007, P NATL ACAD SCI USA, V104, P1516, DOI 10.1073/pnas.0609775104 Furuta H, 1998, HEARING RES, V123, P10, DOI 10.1016/S0378-5955(98)00091-4 HILFIKER H, 1994, J BIOL CHEM, V269, P26178 Hofacker IL, 2003, NUCLEIC ACIDS RES, V31, P3429, DOI 10.1093/nar/gkg599 Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 Johnson KR, 2006, BRAIN RES, V1091, P79, DOI 10.1016/j.brainres.2006.02.021 Kane KL, 2012, HEARING RES, V283, P80, DOI 10.1016/j.heares.2011.11.007 Kazmierczak P, 2007, NATURE, V449, P87, DOI 10.1038/nature06091 Kiernan AE, 1999, J NEUROCYTOL, V28, P969, DOI 10.1023/A:1007090626294 Kozel PJ, 1998, J BIOL CHEM, V273, P18693, DOI 10.1074/jbc.273.30.18693 Kurnellas MP, 2007, MOL CELL NEUROSCI, V34, P178, DOI 10.1016/j.mcn.2006.10.010 Mammano F, 2007, PHYSIOLOGY, V22, P131, DOI 10.1152/physiol.00040.2006 MAREAN GC, 1995, HEARING RES, V82, P267, DOI 10.1016/0378-5955(94)00183-Q MARSHALL JF, 1979, SCIENCE, V206, P477, DOI 10.1126/science.504992 McCullough BJ, 2007, HEARING RES, V224, P51, DOI 10.1016/j.heares.2006.11.006 McCullough BJ, 2004, HEARING RES, V195, P90, DOI 10.1016/j.heares.2004.05.003 NobenTrauth K, 1997, GENOMICS, V44, P266, DOI 10.1006/geno.1997.4869 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 OHMORI H, 1987, J PHYSIOL-LONDON, V387, P589 Penheiter AR, 2001, HEARING RES, V162, P19, DOI 10.1016/S0378-5955(01)00356-2 Prosen C.A., 1978, OTOLARYNGOLOGY, V86 RYAN A, 1977, ANN OTO RHINOL LARYN, V86, P176 Schultz JM, 2005, NEW ENGL J MED, V352, P1557, DOI 10.1056/NEJMoa043899 Shin JB, 2010, J NEUROSCI, V30, P9683, DOI 10.1523/JNEUROSCI.1541-10.2010 Siemens J, 2004, NATURE, V428, P950, DOI 10.1038/nature02483 Silverstein RS, 2006, NEUROSCIENCE, V141, P245, DOI 10.1106/j.neuroscience.2006.03.036 Speca DJ, 2006, GENES BRAIN BEHAV, V5, P19, DOI 10.1111/j.1601-183X.2005.00127.x Spiden SL, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000238 STAUFFER TP, 1995, J BIOL CHEM, V270, P12184 Stebbins W C, 1979, Am J Otolaryngol, V1, P15, DOI 10.1016/S0196-0709(79)80004-6 Street VA, 1998, NAT GENET, V19, P390 Takahashi K, 1999, BIOCHEM BIOPH RES CO, V261, P773, DOI 10.1006/bbrc.1999.1102 Wood JD, 2004, JARO-J ASSOC RES OTO, V5, P99, DOI 10.1007/s10162-003-4022-1 Yamoah EN, 1998, J NEUROSCI, V18, P610 Zheng QY, 2001, HEARING RES, V154, P45, DOI 10.1016/S0378-5955(01)00215-5 NR 49 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2013 VL 304 BP 41 EP 48 DI 10.1016/j.heares.2013.06.003 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 225PM UT WOS:000324974800006 PM 23792079 ER PT J AU Chang, EW Cheng, JT Roosli, C Kobler, JB Rosowski, JJ Yun, SH AF Chang, Ernest W. Cheng, Jeffrey T. Roeoesli, Christof Kobler, James B. Rosowski, John J. Yun, Seok Hyun TI Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles SO HEARING RESEARCH LA English DT Article ID OPTICAL COHERENCE TOMOGRAPHY; IN-VIVO; HEARING-LOSS; LASER; CHINCHILLA; VELOCITY; SURFACE; EARDRUM; INTERFEROMETRY; FEASIBILITY AB Efficient transfer of sound by the middle ear ossicles is essential for hearing. Various pathologies can impede the transmission of sound and thereby cause conductive hearing loss. Differential diagnosis of ossicular disorders can be challenging since the ossicles are normally hidden behind the tympanic membrane (TM). Here we describe the use of a technique termed optical coherence tomography (OCT) vibrography to view the sound-induced motion of the TM and ossicles simultaneously. With this method, we were able to capture three-dimensional motion of the intact TM and ossicles of the chinchilla ear with nanometer-scale sensitivity at sound frequencies from 0.5 to 5 kHz. The vibration patterns of the TM were complex and highly frequency dependent with mean amplitudes of 70-120 nm at 100 dB sound pressure level. The TM motion was only marginally sensitive to stapes fixation and incus-stapes joint interruption; however, when additional information derived from the simultaneous measurement of ossicular motion was added, it was possible to clearly distinguish these different simulated pathologies. The technique may be applicable to clinical diagnosis in Otology and to basic research in audition and acoustics. (C) 2013 Elsevier B.V. All rights reserved. C1 [Chang, Ernest W.; Yun, Seok Hyun] Massachusetts Gen Hosp, Wellman Ctr Photomed, Boston, MA 02114 USA. [Chang, Ernest W.] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA. [Cheng, Jeffrey T.; Roeoesli, Christof; Rosowski, John J.] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA. [Cheng, Jeffrey T.; Roeoesli, Christof; Rosowski, John J.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. [Roeoesli, Christof] Univ Zurich Hosp, Dept Otorhinolaryngol Head & Neck Surg, Zurich, Switzerland. [Kobler, James B.] Harvard Univ, Sch Med, Dept Surg, Boston, MA 02115 USA. [Kobler, James B.] Massachusetts Gen Hosp, Ctr Laryngeal Surg & Voice Rehabil, Boston, MA 02114 USA. [Rosowski, John J.; Yun, Seok Hyun] Harvard MIT Hlth Sci & Technol, Cambridge, MA USA. [Yun, Seok Hyun] Harvard Univ, Sch Med, Dept Dermatol, Boston, MA 02115 USA. RP Yun, SH (reprint author), Massachusetts Gen Hosp, Wellman Ctr Photomed, 50 Blossom St, Boston, MA 02114 USA. EM John_Rosowski@meei.harvard.edu; syun@hms.harvard.edu FU Center for Biomedical OCT Research and Translation; National Institute of Health [P41EB015903, R01DC00194]; Wellman Center Graduate Student Scholarship FX This work was supported by the Center for Biomedical OCT Research and Translation funded by National Institute of Health (P41EB015903, R01DC00194). E.W.C. acknowledges the Wellman Center Graduate Student Scholarship. CR Ahn YC, 2007, OPT LETT, V32, P1587, DOI 10.1364/OL.32.001587 Athanasiadis-Sismanis A., 2010, GLASSCOCK SHAMBAUGH, P489 Chang EW, 2012, OPT LETT, V37, P3678, DOI 10.1364/OL.37.003678 Chen FY, 2011, NAT NEUROSCI, V14, P770, DOI 10.1038/nn.2827 Cheng JT, 2013, J ACOUST SOC AM, V133, P918, DOI 10.1121/1.4773263 Cheng JT, 2010, HEARING RES, V263, P66, DOI 10.1016/j.heares.2009.12.024 Chien W, 2009, HEARING RES, V249, P54, DOI 10.1016/j.heares.2008.11.011 DEMPSTER JH, 1991, CLIN OTOLARYNGOL, V16, P157, DOI 10.1111/j.1365-2273.1991.tb01967.x Fisch U, 2001, OTOL NEUROTOL, V22, P776, DOI 10.1097/00129492-200111000-00011 FUNNELL WRJ, 1983, J ACOUST SOC AM, V73, P1657, DOI 10.1121/1.389386 Goll E, 2011, J ACOUST SOC AM, V130, P1452, DOI 10.1121/1.3613934 Heermann R, 2002, LARYNGO RHINO OTOL, V81, P400, DOI 10.1055/s-2002-32213 Holley MC, 2005, DRUG DISCOV TODAY, V10, P1269, DOI 10.1016/S1359-6446(05)03595-6 Huber AM, 2001, LARYNGOSCOPE, V111, P501, DOI 10.1097/00005537-200103000-00022 Huber AM, 2011, HNO, V59, P255, DOI 10.1007/s00106-011-2271-6 JERGER J, 1975, ARCH OTOLARYNGOL, V101, P589 Just T, 2009, HNO, V57, P421, DOI 10.1007/s00106-009-1907-2 Kim P, 2010, NAT METHODS, V7, P303, DOI [10.1038/nmeth.1440, 10.1038/NMETH.1440] Klein T, 2011, OPT EXPRESS, V19, P3044, DOI 10.1364/OE.19.003044 Kobler JB, 2010, LARYNGOSCOPE, V120, P1354, DOI 10.1002/lary.20938 Lin J, 2008, ANN OTO RHINOL LARYN, V117, P341 Makita S, 2008, OPT LETT, V33, P836, DOI 10.1364/OL.33.000836 Merchant S.N., 2010, GLASSCOCKSHAMBAUGH S, P49 Nakajima HH, 2012, EAR HEARING, V33, P35, DOI 10.1097/AUD.0b013e31822ccba0 Nakajima HH, 2005, LARYNGOSCOPE, V115, P147, DOI 10.1097/01.mlg.0000150692.23506.b7 Nakajima HH, 2005, HEARING RES, V204, P60, DOI 10.1016/j.heares.2005.01.002 Nguyen CT, 2012, P NATL ACAD SCI USA, V109, P9529, DOI 10.1073/pnas.1201592109 Oh WY, 2010, OPT LETT, V35, P2919, DOI 10.1364/OL.35.002919 Parent P, 2010, HEARING RES, V263, P152, DOI 10.1016/j.heares.2009.12.015 Pitris C, 2001, ARCH OTOLARYNGOL, V127, P637 Ravicz ME, 2010, HEARING RES, V263, P16, DOI 10.1016/j.heares.2009.11.014 Rosowski JJ, 2013, HEARING RES, V301, P44, DOI 10.1016/j.heares.2012.11.022 Rosowski JJ, 2009, HEARING RES, V253, P83, DOI 10.1016/j.heares.2009.03.010 Rosowski JJ, 2008, EAR HEARING, V29, P3 Shanks J, 2009, HDB CLIN AUDIOLOGY, P157 Subhash HM, 2012, J BIOMED OPT, V17, DOI 10.1117/1.JBO.17.6.060505 Tuck-Lee JP, 2008, J ACOUST SOC AM, V124, P348, DOI 10.1121/1.2912438 VRETTAKOS PA, 1988, AM J OTOLARYNG, V9, P58, DOI 10.1016/S0196-0709(88)80009-7 Wada H, 2002, J ACOUST SOC AM, V111, P2189, DOI 10.1121/1.1467671 Yun SH, 2006, NAT MED, V12, P1429, DOI 10.1038/nm1450 Yun SH, 2003, OPT EXPRESS, V11, P2953, DOI 10.1364/OE.11.002953 NR 41 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2013 VL 304 BP 49 EP 56 DI 10.1016/j.heares.2013.06.006 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 225PM UT WOS:000324974800007 PM 23811181 ER PT J AU Carrasco, A Lomber, SG AF Carrasco, Andres Lomber, Stephen G. TI Influence of inter-field communication on neuronal response synchrony across auditory cortex SO HEARING RESEARCH LA English DT Article ID MEDIAL GENICULATE-BODY; CAT VISUAL-CORTEX; CORTICO-CORTICAL CONNECTIONS; STIMULUS-SPECIFIC ADAPTATION; CORTICOCORTICAL CONNECTIONS; FUNCTIONAL-ORGANIZATION; COOLING DEACTIVATION; MACAQUE MONKEYS; TONOTOPIC ORGANIZATION; HORSERADISH-PEROXIDASE AB Sensory information is encoded by cortical neurons in the form of synaptic discharge time and rate level. These neuronal codes generate response patterns across cell assemblies that are crucial to various cognitive functions. Despite pivotal information about structural and cognitive factors involved in the generation of synchronous neuronal responses such as stimulus context, attention, age, cortical depth, sensory experience, and receptive field properties, the influence of cortico-cortical connectivity on the emergence of neuronal response patterns is poorly understood. The present investigation assesses the role of cortico-cortical connectivity in the modulation of neuronal discharge synchrony across auditory cortex cell-assemblies. Acute single-unit recording techniques in combination with reversible cooling deactivation procedures were used in the domestic cat (Fells catus). Recording electrodes were positioned across primary and non-primary auditory fields and neuronal activity was measured before, during, and after synaptic deactivation of adjacent cortical regions in the presence of acoustic stimulation. Cross-correlation functions of simultaneously recorded units were generated and changes in response synchrony levels across cooling conditions were measured. Data analyses revealed significant decreases in response time coincidences between cortical neurons during periods of cortical deactivation. Collectively, the results of the present investigation demonstrate that cortical neurons participate in the modulation of response synchrony levels across neuronal assemblies of primary and non-primary auditory fields. (C) 2013 Elsevier B.V. All rights reserved. C1 [Carrasco, Andres; Lomber, Stephen G.] Univ Western Ontario, Cerebral Syst Lab, London, ON N6A 5C1, Canada. [Carrasco, Andres; Lomber, Stephen G.] Univ Western Ontario, Dept Physiol & Pharmacol, London, ON N6A 5C1, Canada. [Lomber, Stephen G.] Univ Western Ontario, Dept Psychol, London, ON N6A 5C1, Canada. [Lomber, Stephen G.] Univ Western Ontario, Brain & Mind Inst, London, ON N6A 5C1, Canada. [Lomber, Stephen G.] Univ Western Ontario, Natl Ctr Audiol, London, ON N6A 5C1, Canada. RP Lomber, SG (reprint author), Univ Western Ontario, Dept Physiol & Pharmacol, Cerebral Syst Lab, M216 Med Sci Bldg, London, ON N6A 5C1, Canada. EM steve.lomber@uwo.ca RI Lomber, Stephen/B-6820-2015 OI Lomber, Stephen/0000-0002-3001-7909 FU Canadian Institutes of Health Research; Natural Sciences and Engineering Research Council of Canada; Canada Foundation for Innovation FX We thank Pam Nixon for excellent veterinary support and Kevin Barker for his constant help. This work was supported by grants from the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council of Canada, and the Canada Foundation for Innovation. CR ANDERSEN RA, 1980, J COMP NEUROL, V194, P663, DOI 10.1002/cne.901940312 Anderson LA, 2013, EUR J NEUROSCI, V37, P52, DOI 10.1111/ejn.12018 Antunes FM, 2011, J NEUROSCI, V31, P17306, DOI 10.1523/JNEUROSCI.1915-11.2011 Beaver BV, 2001, J AM VET MED ASSOC, V218, P669 BENITA M, 1972, BRAIN RES, V36, P133, DOI 10.1016/0006-8993(72)90771-8 BORDI F, 1994, EXP BRAIN RES, V98, P261, DOI 10.1007/BF00228414 BOWMAN EM, 1988, J COMP NEUROL, V272, P30, DOI 10.1002/cne.902720104 Brosch M, 2002, J NEUROPHYSIOL, V87, P2715, DOI 10.1152/jn.00583.2001 Brosch M, 1999, EUR J NEUROSCI, V11, P3517, DOI 10.1046/j.1460-9568.1999.00770.x BROSCH M, 1995, EUR J NEUROSCI, V7, P86, DOI 10.1111/j.1460-9568.1995.tb01023.x Budinger E, 2000, EUR J NEUROSCI, V12, P2425, DOI 10.1046/j.1460-9568.2000.00142.x CALFORD MB, 1983, J NEUROSCI, V3, P2365 Carrasco A, 2011, J NEUROPHYSIOL, V106, P1166, DOI 10.1152/jn.00940.2010 Carrasco A, 2009, J NEUROSCI, V29, P14323, DOI 10.1523/JNEUROSCI.2905-09.2009 Carrasco A, 2009, J NEUROSCI, V29, P8350, DOI 10.1523/JNEUROSCI.6001-08.2009 Carrasco A, 2010, J NEUROSCI, V30, P1476, DOI 10.1523/JNEUROSCI.5708-09.2009 Cheung SW, 2001, HEARING RES, V156, P115, DOI 10.1016/S0378-5955(01)00272-6 CLAREY JC, 1990, J COMP NEUROL, V301, P304, DOI 10.1002/cne.903010212 Clasca F, 1997, J COMP NEUROL, V384, P456, DOI 10.1002/(SICI)1096-9861(19970804)384:3<456::AID-CNE10>3.0.CO;2-H CODE RA, 1985, J COMP NEUROL, V242, P485, DOI 10.1002/cne.902420404 deCharms RC, 1996, NATURE, V381, P610, DOI 10.1038/381610a0 de la Mothe LA, 2012, ANAT REC, V295, P800, DOI 10.1002/ar.22451 Diamond I T, 1968, Brain Res, V11, P177, DOI 10.1016/0006-8993(68)90080-2 Eggermont JJ, 2000, J NEUROPHYSIOL, V83, P2708 Eggermont JJ, 1996, EXP BRAIN RES, V110, P379 Eggermont JJ, 1998, J NEUROPHYSIOL, V80, P2743 EGGERMONT JJ, 1992, J NEUROPHYSIOL, V68, P1216 Eggermont JJ, 2006, J NEUROPHYSIOL, V96, P746, DOI 10.1152/jn.00059.2006 EGGERMONT JJ, 1995, J NEUROPHYSIOL, V73, P227 ENGEL AK, 1990, EUR J NEUROSCI, V2, P588, DOI 10.1111/j.1460-9568.1990.tb00449.x ENGEL AK, 1991, SCIENCE, V252, P1177, DOI 10.1126/science.252.5009.1177 Erchova IA, 2002, EUR J NEUROSCI, V15, P744, DOI 10.1046/j.0953-816x.2002.01898.x FITZPATRICK KA, 1980, J COMP NEUROL, V192, P589, DOI 10.1002/cne.901920314 GRAY CM, 1989, NATURE, V338, P334, DOI 10.1038/338334a0 Hackett TA, 1998, J COMP NEUROL, V394, P475, DOI 10.1002/(SICI)1096-9861(19980518)394:4<475::AID-CNE6>3.0.CO;2-Z Hackett TA, 1999, BRAIN RES, V817, P45, DOI 10.1016/S0006-8993(98)01182-2 Hackett TA, 2011, HEARING RES, V271, P133, DOI 10.1016/j.heares.2010.01.011 Horsley V, 1908, BRAIN, V31, P45, DOI 10.1093/brain/31.1.45 Imaizumi K, 2004, J NEUROPHYSIOL, V92, P444, DOI 10.1152/jn.01173.2003 IMIG TJ, 1980, J COMP NEUROL, V192, P293, DOI 10.1002/cne.901920208 IMIG TJ, 1978, J COMP NEUROL, V182, P637, DOI 10.1002/cne.901820406 Kaas JH, 2000, P NATL ACAD SCI USA, V97, P11793, DOI 10.1073/pnas.97.22.11793 Kilgard MP, 2007, HEARING RES, V229, P171, DOI 10.1016/j.heares.2007.01.005 KNIGHT PL, 1977, BRAIN RES, V130, P447, DOI 10.1016/0006-8993(77)90108-1 Lee CC, 2008, J COMP NEUROL, V507, P1901, DOI 10.1002/cne.21614 Lee CC, 2008, J COMP NEUROL, V507, P1920, DOI 10.1002/cne.21613 Lomber SG, 1999, J NEUROSCI METH, V86, P179, DOI 10.1016/S0165-0270(98)00165-4 Lomber SG, 2007, HEARING RES, V229, P31, DOI 10.1016/j.heares.2007.01.013 Lomber SG, 1999, J NEUROSCI METH, V86, P109, DOI 10.1016/S0165-0270(98)00160-5 Lomber SG, 1996, VISUAL NEUROSCI, V13, P1143 Lomber SG, 2008, NAT NEUROSCI, V11, P609, DOI 10.1038/nn.2108 LOMBER SG, 1994, P NATL ACAD SCI USA, V91, P2999, DOI 10.1073/pnas.91.8.2999 Lomber SG, 2000, CEREB CORTEX, V10, P1066, DOI 10.1093/cercor/10.11.1066 Malhotra S, 2007, J NEUROPHYSIOL, V97, P26, DOI 10.1152/jn.00720.2006 Mathers DA, 2007, NEUROPHARMACOLOGY, V52, P1160, DOI 10.1016/j.neuropharm.2006.12.004 Mellott JG, 2010, HEARING RES, V267, P119, DOI 10.1016/j.heares.2010.04.003 MERZENICH MM, 1975, J NEUROPHYSIOL, V38, P231 MOREL A, 1993, J COMP NEUROL, V335, P437, DOI 10.1002/cne.903350312 Nakamoto KT, 2008, J NEUROPHYSIOL, V99, P2347, DOI 10.1152/jn.01326.2007 NELSON JI, 1992, VISUAL NEUROSCI, V9, P21 Olfert E.D., 1993, GUIDE CARE USE EXPT Palmer AR, 2007, HEARING RES, V229, P148, DOI 10.1016/j.heares.2006.12.007 Payne BR, 1996, VISUAL NEUROSCI, V13, P805 PERKEL DH, 1967, BIOPHYS J, V7, P419 PHILLIPS DP, 1984, J NEUROPHYSIOL, V51, P147 Rauschecker JP, 1997, J COMP NEUROL, V382, P89 REALE RA, 1980, J COMP NEUROL, V192, P265, DOI 10.1002/cne.901920207 ROUILLER EM, 1991, EXP BRAIN RES, V86, P483 RUTTGERS K, 1990, BRAIN RES, V509, P71, DOI 10.1016/0006-8993(90)90310-8 Schnitzler A, 2005, NAT REV NEUROSCI, V6, P285, DOI 10.1038/nrn1650 SCHREINER CE, 1984, J NEUROPHYSIOL, V51, P1284 Singer W, 1999, NEURON, V24, P49, DOI 10.1016/S0896-6273(00)80821-1 Sporns O, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001049 Sporns O, 2004, NEUROINFORMATICS, V2, P145, DOI 10.1385/NI:2:2:145 Sporns O, 2006, BIOSYSTEMS, V85, P55, DOI 10.1016/j.biosystems.2006.02.008 Thomas H, 2003, BIOL RES, V36, P155, DOI 10.4067/S0716-97602003000200006 Uhlhaas Peter J, 2006, Neuron, V52, P155, DOI 10.1016/j.neuron.2006.09.020 Varela F, 2001, NAT REV NEUROSCI, V2, P229, DOI 10.1038/35067550 WINER JA, 1977, J COMP NEUROL, V176, P387, DOI 10.1002/cne.901760307 Winer JA, 2007, HEARING RES, V229, P3, DOI 10.1016/j.heares.2007.01.017 Yang XF, 2006, NEUROBIOL DIS, V23, P637, DOI 10.1016/j.nbd.2006.05.006 Zhu Z, 2002, J NEUROSCI METH, V115, P45, DOI 10.1016/S0165-0270(01)00529-5 NR 82 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2013 VL 304 BP 57 EP 69 DI 10.1016/j.heares.2013.05.012 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 225PM UT WOS:000324974800008 PM 23791776 ER PT J AU Brown, DJ Chihara, Y Wang, Y AF Brown, D. J. Chihara, Y. Wang, Y. TI Changes in utricular function during artificial endolymph injections in guinea pigs SO HEARING RESEARCH LA English DT Article ID BONE CONDUCTED VIBRATION; EVOKED-POTENTIALS VSEPS; MENIERES-DISEASE; REISSNERS MEMBRANE; COCHLEAR FUNCTION; TEMPORAL BONE; HYDROPS; PATHOPHYSIOLOGY; RESPONSES; SYMPTOMS AB Various theories suggest endolymphatic hydrops may cause a rupture of the membranous labyrinth or may force open the utriculo-saccular duct, resulting in a sudden change in inner ear function. Here, we have used slow injections of artificial endolymph into either scala media or the utricle of anaesthetised guinea pigs to investigate the effects of hydrops. Vestibular function was continuously monitored in addition to the measurements of cochlear function developed in our laboratory (Brown et al. Hear Res, 2013). Scala media injection induced consistent functional changes, which occurred in two stages. Initial changes involved were associated with an increased hydrostatic pressure in scala media that only affected cochlear function. After 3-4 mu l of endolymph had been injected, cochlear function spontaneously recovered, and was often shortly followed by a transient increase or decrease in utricular sensitivity, with the effects varying between animals. Endolymph injection directly into the utricle produced variable effects across animals, although in 2 experiments it produced similar changes as those observed for scala media injections, suggesting that the fluid pathway between scala media and the utricle was continuous in these animals. The mechanism underlying the sudden, spontaneous functional changes is not yet clear, but we tentatively suggest that in some cases it may be caused by the utriculo-saccular duct suddenly opening to alleviate an elevated hydrostatic pressure in the pars inferior, resulting in a change in utricular function due to an increase in its volume. These changes are comparable to the sudden or fluctuating functional changes in Meniere's sufferers, and support the hypothesis that endolymphatic hydrops can directly cause some symptoms of this syndrome. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved. C1 [Brown, D. J.; Chihara, Y.; Wang, Y.] Univ Sydney, Sydney Med Sch, Brain & Mind Res Inst, Camperdown, NSW 2050, Australia. [Chihara, Y.] Natl Tokyo Med Ctr, Natl Inst Sensory Organs, Tokyo, Japan. RP Brown, DJ (reprint author), Univ Sydney, Sydney Med Sch, Brain & Mind Res Inst, 100 Mallett St, Camperdown, NSW 2050, Australia. EM daniel.brown@sydney.edu.au; y-chihara@umin.ac.jp FU NHMRC [APP1044219]; Sydney Medical School Foundation; Meniere's Research Fund Inc. FX This study was supported in part by an NHMRC project grant APP1044219, and by funds held by The Sydney Medical School Foundation, and raised by the Meniere's Research Fund Inc., a not-for-profit organization in NSW, Australia. CR Böhmer A, 1995, Acta Otolaryngol Suppl, V520 Pt 1, P120, DOI 10.3109/00016489509125206 Brown DJ, 2013, HEARING RES, V296, P96, DOI 10.1016/j.heares.2012.12.004 Chihara Y., 2013, EVIDENCE UTRICULAR O Cureoglu S, 2004, OTOLARYNG HEAD NECK, V130, P113, DOI 10.1016/j.otohns.2003.09.008 Curthoys IS, 2006, EXP BRAIN RES, V175, P256, DOI 10.1007/s00221-006-0544-1 DUVALL AJ, 1967, ANN OTO RHINOL LARYN, V76, P688 Gibson WPR, 2010, OTOLARYNG CLIN N AM, V43, P1019, DOI 10.1016/j.otc.2010.05.013 Jones TA, 2011, HEARING RES, V280, P133, DOI 10.1016/j.heares.2011.05.005 Jones TA, 1999, HEARING RES, V136, P75, DOI 10.1016/S0378-5955(99)00110-0 Kakigi Akinobu, 2010, ORL J Otorhinolaryngol Relat Spec, V71 Suppl 1, P16, DOI 10.1159/000265118 Kingma CM, 2010, EUR ARCH OTO-RHINO-L, V267, P1679, DOI 10.1007/s00405-010-1298-8 Kingma CM, 2009, J VESTIBUL RES-EQUIL, V19, P27, DOI 10.3233/VES-2009-0341 Kobayashi T, 1999, AM J OTOL, V20, P179 Manzari L, 2011, EUR ARCH OTO-RHINO-L, V268, P637, DOI 10.1007/s00405-010-1442-5 Manzari L, 2010, CLIN NEUROPHYSIOL, V121, P1092, DOI 10.1016/j.clinph.2010.02.003 Marcon S., 2008, HEAR RES, V237 MARCUS DC, 1983, HEARING RES, V12, P17, DOI 10.1016/0378-5955(83)90116-8 Marcus N.Y., 1987, AM J PHYSL 2, V253, P613 McNeill C, 2009, ACTA OTO-LARYNGOL, V129, P1404, DOI 10.3109/00016480902751672 Merchant SN, 2005, OTOL NEUROTOL, V26, P74, DOI 10.1097/00129492-200501000-00013 PATUZZI R, 1984, HEARING RES, V13, P19, DOI 10.1016/0378-5955(84)90091-1 Plotnik M, 1999, AM J OTOL, V20, P238 Rabbitt RD, 2001, ANN NY ACAD SCI, V942, P313 Salt AN, 2004, HEARING RES, V191, P90, DOI 10.1016/j.heares.2003.12.018 Salt A.N., 2010, OTOLARYNGOL CLIN N A, P43971 SCHUKNECHT HF, 1975, J LARYNGOL OTOL, V89, P985, DOI 10.1017/S0022215100081305 SCHUKNECHT HF, 1976, ARCH OTO-RHINO-LARYN, V212, P253, DOI 10.1007/BF00453673 TONNDORF J, 1983, ACTA OTO-LARYNGOL, V95, P421, DOI 10.3109/00016488309139425 Uzun-Coruhlu H, 2007, HEARING RES, V233, P77, DOI 10.1016/j.heares.2007.07.008 Valk WL, 2004, HEARING RES, V192, P47, DOI 10.1016/j.heares.2003.12.021 Valk WL, 2006, ACTA OTO-LARYNGOL, V126, P1030, DOI 10.1080/00016480600621722 ZENNER HP, 1986, HEARING RES, V22, P83, DOI 10.1016/0378-5955(86)90082-1 ZWICKER E, 1977, J ACOUST SOC AM, V61, P1031, DOI 10.1121/1.381387 NR 33 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2013 VL 304 BP 70 EP 76 DI 10.1016/j.heares.2013.05.011 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 225PM UT WOS:000324974800009 PM 23792075 ER PT J AU McMullan, AR Hambrook, DA Tata, MS AF McMullan, Amanda R. Hambrook, Dillon A. Tata, Matthew S. TI Brain dynamics encode the spectrotemporal boundaries of auditory objects SO HEARING RESEARCH LA English DT Article ID PRIMARY VISUAL-CORTEX; GAMMA-BAND; FUNCTIONAL SPECIALIZATION; NEUROMAGNETIC RESPONSES; STIMULUS SELECTION; EVOKED FIELD; BOTTOM-UP; PITCH; POTENTIALS; MECHANISMS AB Perception of objects in the scene around us is effortless and intuitive, yet entails profound computational challenges. Progress has been made in understanding some mechanisms by which the brain encodes the boundaries and surfaces of visual objects. However, in the auditory domain, these mechanisms are poorly understood. We investigated differences between neural responses to spectrotemporal boundaries in the auditory scene. We used iterated rippled noise to create perceptual boundaries with and without energy transients. In contrast to boundaries marked by energy transients, second-order boundaries were characterized by an absence of early components in the event-related potential. First-order energy boundaries triggered a transient evoked gamma-band response and a well-defined P90 component of the event-related potential, whereas second-order boundaries evoked only the later N1 component. Furthermore, the N1 component was delayed when evoked by second-order boundaries and theta-band electroencephalography activity at this latency exhibited significant phase lag for second-order compared to first-order boundaries. We speculate that boundaries defined by sharp energy transients can be registered by early feed-forward mechanisms. By contrast, boundaries defined only by discontinuities at discrete frequency bands require integration across the tonotopic representation of the frequency spectrum and require time-consuming interaction between auditory areas. (C) 2013 Elsevier B.V. All rights reserved. C1 [McMullan, Amanda R.; Hambrook, Dillon A.; Tata, Matthew S.] Univ Lethbridge, Dept Neurosci, Lethbridge, AB T1K 3M4, Canada. RP McMullan, AR (reprint author), Univ Lethbridge, Dept Neurosci, 4401 Univ Dr W, Lethbridge, AB T1K 3M4, Canada. EM amanda.mcmullan@uleth.ca FU NSERC Canada FX The authors would like to thank Karla Ponjavic-Conte, Jarrod Dowdall, and Sebastian Pavlovic. Research was funded by an NSERC Canada Discovery Grant to Matthew S. Tata. CR Alain C, 2000, FRONT BIOSCI, V5, pD202, DOI 10.2741/Alain Alain C, 2001, P NATL ACAD SCI USA, V98, P12301, DOI 10.1073/pnas.211209098 Alain C, 2001, J EXP PSYCHOL HUMAN, V27, P1072, DOI 10.1037//0096-1523.27.5.1072 Alain C, 2002, J ACOUST SOC AM, V111, P990, DOI 10.1121/1.1434942 Andersen RA, 1997, NEURON, V18, P865, DOI 10.1016/S0896-6273(00)80326-8 Baramidze V, 2006, SIAM J SCI COMPUT, V28, P241, DOI 10.1137/040620722 Barker D, 2011, CEREB CORTEX, V22, P745 BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289 Bosman CA, 2012, NEURON, V75, P875, DOI 10.1016/j.neuron.2012.06.037 Busch NA, 2006, NEUROIMAGE, V29, P1106, DOI 10.1016/j.neuroimage.2005.09.009 Butcher A, 2011, HEARING RES, V272, P58, DOI 10.1016/j.heares.2010.10.019 Chait M, 2006, CEREB CORTEX, V16, P835, DOI 10.1093/cercor/bhj027 Chait M, 2007, J NEUROPHYSIOL, V98, P224, DOI 10.1152/jn.00359.2007 Chait M, 2007, J NEUROSCI, V27, P5207, DOI 10.1523/JNEUROSCI.0318-07.2007 Chait M, 2008, BRAIN RES, V1213, P78, DOI 10.1016/j.brainres.2008.03.050 David O, 2006, NEUROIMAGE, V31, P1580, DOI 10.1016/j.neuroimage.2006.02.034 Delorme A., 2004, EEGLAB MATLAB TOOLBO Doesburg SM, 2005, NEUROREPORT, V16, P1139, DOI 10.1097/00001756-200508010-00001 Dyson BJ, 2004, J ACOUST SOC AM, V115, P280, DOI 10.1121/1.1631945 PANTEV C, 1994, NATO ADV SCI INST SE, V271, P219 Fries P, 2005, TRENDS COGN SCI, V9, P474, DOI 10.1016/j.tics.2005.08.011 Fries P, 2002, J NEUROSCI, V22, P3739 Glasberg BR, 2002, J AUDIO ENG SOC, V50, P331 GOODALE MA, 1992, TRENDS NEUROSCI, V15, P20, DOI 10.1016/0166-2236(92)90344-8 Griffiths TD, 2002, TRENDS NEUROSCI, V25, P348, DOI 10.1016/S0166-2236(02)02191-4 Griffiths TD, 2004, NAT REV NEUROSCI, V5, P887, DOI 10.1038/nrn1538 Hall D.A., 2008, CEREB CORTEX, V19, P576 HARI R, 1987, AUDIOLOGY, V26, P31 HILLYARD SA, 1978, PERCEPT PSYCHOPHYS, V24, P391, DOI 10.3758/BF03199736 HILLYARD SA, 1973, SCIENCE, V182, P177, DOI 10.1126/science.182.4108.177 Hoechstetter K, 2004, BRAIN TOPOGR, V16, P233 Johnson BW, 2006, NEUROREPORT, V17, P389, DOI 10.1097/01.wnr.0000203358.72814.df Johnson BW, 2003, CLIN NEUROPHYSIOL, V114, P2245, DOI 10.1016/S1388-2457(03)00247-5 Krumbholz K, 2003, CEREB CORTEX, V13, P765, DOI 10.1093/cercor/13.7.765 Kubovy M, 2001, COGNITION, V80, P97, DOI 10.1016/S0010-0277(00)00155-4 Lee TS, 2001, P NATL ACAD SCI USA, V98, P1907, DOI 10.1073/pnas.031579998 Lutkenhoner B, 2011, HEARING RES, V272, P85, DOI 10.1016/j.heares.2010.10.013 Luu P, 2005, DETERMINATION HYDROC Mareschal I, 1998, NAT NEUROSCI, V1, P150, DOI 10.1038/401 Marr D., 1982, VISION COMPUTATIONAL McDonald KL, 2005, J ACOUST SOC AM, V118, P1593, DOI 10.1121/1.2000747 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x Niwa M, 2012, J NEUROSCI, V32, P9323, DOI 10.1523/JNEUROSCI.5832-11.2012 Oostenveld R., 2011, FIELDTRIP OPEN SOURC PANTEV C, 1991, P NATL ACAD SCI USA, V88, P8996, DOI 10.1073/pnas.88.20.8996 PFEFFERB.A, 1971, PSYCHOPHYSIOLOGY, V8, P332, DOI 10.1111/j.1469-8986.1971.tb00463.x POLICH J, 1995, BIOL PSYCHOL, V41, P103, DOI 10.1016/0301-0511(95)05130-9 Ponjavic-Conte K.D., 2013, PLOS ONE, V8 Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800 Seither-Preisler A, 2004, EUR J NEUROSCI, V19, P3073, DOI 10.1111/j.1460-9568.2004.03423.x Seither-Preisler A, 2006, HEARING RES, V218, P50, DOI 10.1016/j.heares.2006.04.005 Seither-Preisler A, 2006, HEARING RES, V213, P88, DOI 10.1016/j.heares.2006.01.003 Shahin AJ, 2007, BRAIN TOPOGR, V20, P55, DOI 10.1007/s10548-007-0031-4 SHAPLEY R, 1990, ANNU REV PSYCHOL, V41, P635, DOI 10.1146/annurev.psych.41.1.635 Singer W, 1999, NEURON, V24, P49, DOI 10.1016/S0896-6273(00)80821-1 Snyder JS, 2006, J COGNITIVE NEUROSCI, V18, P1, DOI 10.1162/089892906775250021 Tallon-Baudry C, 1999, TRENDS COGN SCI, V3, P151, DOI 10.1016/S1364-6613(99)01299-1 Tian B, 2001, SCIENCE, V292, P290, DOI 10.1126/science.1058911 UNGAN P, 1989, ELECTROEN CLIN NEURO, V73, P306, DOI 10.1016/0013-4694(89)90109-0 VONDERMALSBURG C, 1986, BIOL CYBERN, V54, P29 Yost WA, 1996, J ACOUST SOC AM, V100, P511, DOI 10.1121/1.415873 Yuval-Greenberg S, 2008, NEURON, V58, P429, DOI 10.1016/j.neuron.2008.03.027 ZEKI S, 1991, J NEUROSCI, V11, P641 Zipser K, 1996, J NEUROSCI, V16, P7376 NR 64 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2013 VL 304 BP 77 EP 90 DI 10.1016/j.heares.2013.06.009 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 225PM UT WOS:000324974800010 PM 23831040 ER PT J AU Du, XP Li, W Gao, XS West, MB Saltzman, WM Cheng, CJ Stewart, C Zheng, J Cheng, WH Kopke, RD AF Du, Xiaoping Li, Wei Gao, Xinsheng West, Matthew B. Saltzman, W. Mark Cheng, Christopher J. Stewart, Charles Zheng, Jie Cheng, Weihua Kopke, Richard D. TI Regeneration of mammalian cochlear and vestibular hair cells through Hes1/Hes5 modulation with siRNA SO HEARING RESEARCH LA English DT Article ID GREEN FLUORESCENT PROTEIN; MATH1 GENE-TRANSFER; GUINEA-PIG COCHLEA; AVIAN INNER-EAR; PLGA NANOPARTICLES; RNA-INTERFERENCE; SUPPORTING CELLS; ACOUSTIC TRAUMA; IN-VITRO; SENSORY EPITHELIA AB The Notch pathway is a cell signaling pathway determining initial specification and subsequent cell fate in the inner ear. Previous studies have suggested that new hair cells (HCs) can be regenerated in the inner ear by manipulating the Notch pathway. In the present study, delivery of siRNA to Hes1 and Hes5 using a transfection reagent or siRNA to Hes1 encapsulated within poly(lactide-co-glycolide acid) (PLGA) nanoparticles increased HC numbers in non-toxin treated organotypic cultures of cochleae and maculae of postnatal day 3 mouse pups. An increase in HCs was also observed in cultured cochleae and maculae of mouse pups pre-conditioned with a HC toxin (4-hydroxy-2-nonenal or neomycin) and then treated with the various siRNA formulations. Treating cochleae with siRNA to Hes1 associated with a transfection reagent or siRNA to Hes1 delivered by PLGA nanoparticles decreased Hes1 mRNA and up-regulated Atoh1 mRNA expression allowing supporting cells (SCs) to acquire a HC fate. Experiments using cochleae and maculae of p27(kip1)/-GFP transgenic mouse pups demonstrated that newly generated HCs trans-differentiated from SCs. Furthermore, PLGA nanoparticles are non-toxic to inner ear tissue, readily taken up by cells within the tissue of interest, and present a synthetic delivery system that is a safe alternative to viral vectors. These results indicate that when delivered using a suitable vehicle, Hes siRNAs are potential therapeutic molecules that may have the capacity to regenerate new HCs in the inner ear and possibly restore human hearing and balance function. (C) 2013 Elsevier B.V. All rights reserved. C1 [Du, Xiaoping; Li, Wei; Gao, Xinsheng; West, Matthew B.; Stewart, Charles; Zheng, Jie; Cheng, Weihua; Kopke, Richard D.] Hough Ear Inst, Oklahoma City, OK 73112 USA. [Kopke, Richard D.] Oklahoma Med Res Fdn, Oklahoma City, OK 73104 USA. [Saltzman, W. Mark; Cheng, Christopher J.] Yale Univ, Dept Biomed Engn, New Haven, CT 06511 USA. RP Kopke, RD (reprint author), Hough Ear Inst, POB 23206, Oklahoma City, OK 73123 USA. EM rkopke@houghear.org FU Hough Ear Institute; Integris Health, Oklahoma City, Oklahoma FX This study was supported by grants from Hough Ear Institute and Integris Health, Oklahoma City, Oklahoma (RDK). The authors would like to thank Dr. Neil Segil at House Ear Institute for providing p27kip1/GFP transgenic mice and Jim Henthorn at the University of Oklahoma Health Science Center for assistance with confocal microscopy. We are also very grateful to Dr. Douglas Cotanche at Boston University School of Medicine for his thoughtful review of and suggestions for this manuscript. CR Adler HJ, 1996, NEUROSCI LETT, V205, P17, DOI 10.1016/0304-3940(96)12367-3 Alvarado DM, 2011, J NEUROSCI, V31, P4535, DOI 10.1523/JNEUROSCI.5456-10.2011 Barnes Allison L, 2007, Biomagn Res Technol, V5, P1, DOI 10.1186/1477-044X-5-1 Batts SA, 2009, HEARING RES, V249, P15, DOI 10.1016/j.heares.2008.12.008 Bergmans Hans, 2008, Environmental Biosafety Research, V7, P1, DOI 10.1051/ebr:2008001 Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837 Bermingham-McDonogh O, 2003, CURR OPIN NEUROBIOL, V13, P119, DOI 10.1016/S0959-4388(03)00018-7 Brigande JV, 2009, NAT NEUROSCI, V12, P679, DOI 10.1038/nn.2311 Cartiera MS, 2009, BIOMATERIALS, V30, P2790, DOI 10.1016/j.biomaterials.2009.01.057 Castanotto D, 2009, NATURE, V457, P426, DOI 10.1038/nature07758 CHALFIE M, 1994, SCIENCE, V263, P802, DOI 10.1126/science.8303295 Chen P, 1999, DEVELOPMENT, V126, P1581 Chene CJ, 2011, BIOMATERIALS, V32, P6194, DOI 10.1016/j.biomaterials.2011.04.053 Collado MS, 2011, J NEUROSCI, V31, P11855, DOI 10.1523/JNEUROSCI.2525-11.2011 CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 Cotanche DA, 2008, J COMMUN DISORD, V41, P421, DOI 10.1016/j.jcomdis.2008.03.004 Cu Y, 2009, MOL PHARMACEUT, V6, P173, DOI 10.1021/mp8001254 Cu Y, 2010, NANOMED-NANOTECHNOL, V6, P334, DOI 10.1016/j.nano.2009.09.001 Cu Y, 2011, J CONTROL RELEASE, V156, P258, DOI 10.1016/j.jconrel.2011.06.036 Davda J, 2002, INT J PHARM, V233, P51, DOI 10.1016/S0378-5173(01)00923-1 Davis ME, 2010, NATURE, V464, P1067, DOI 10.1038/nature08956 Doetzlhofer A, 2006, BRAIN RES, V1091, P282, DOI 10.1016/j.brainres.2006.02.071 Dormer KJ, 2008, J BIOMED NANOTECHNOL, V4, P174, DOI 10.1166/jbn.2008.015 Du XP, 2013, OTOL NEUROTOL, V34, P41, DOI 10.1097/MAO.0b013e318277a40e Duncan LJ, 2006, J COMP NEUROL, V499, P691, DOI 10.1002/cne.21114 Fekete DM, 1998, J NEUROSCI, V18, P7811 FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284 Forge A, 1998, J COMP NEUROL, V397, P69 Gao X., 2010, J NANOTECHNOL ENG ME, DOI DOI 10.1115/1.4002043 Ge XX, 2007, OTOLARYNG HEAD NECK, V137, P619, DOI 10.1016/j.otohns.2007.04.013 Guzman J, 2006, ACTA OTO-LARYNGOL, V126, P685, DOI 10.1080/00016480500492018 Hartman BH, 2009, JARO-J ASSOC RES OTO, V10, P321, DOI 10.1007/s10162-009-0162-2 Hori R, 2007, NEUROREPORT, V18, P1911 Izumikawa M, 2008, HEARING RES, V240, P52, DOI 10.1016/j.heares.2008.02.007 Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193 Jia SP, 2009, J NEUROSCI, V29, P15277, DOI 10.1523/JNEUROSCI.3231-09.2009 JOHNSSON LG, 1976, ANN OTO RHINOL LARYN, V85, P725 Jung JY, 2013, MOL THER, V21, P834, DOI 10.1038/mt.2013.18 KAIN SR, 1995, BIOTECHNIQUES, V19, P650 Kawamoto K, 2003, J NEUROSCI, V23, P4395 Kawamoto K, 2009, HEARING RES, V247, P17, DOI 10.1016/j.heares.2008.08.010 Kelley MW, 2006, NAT REV NEUROSCI, V7, P837, DOI 10.1038/nrn1987 Kiernan AE, 2005, DEVELOPMENT, V132, P4353, DOI 10.1242/dev.02002 Kopke RD, 2006, AUDIOL NEURO-OTOL, V11, P123, DOI 10.1159/000090685 Kopke RD, 2001, P NATL ACAD SCI USA, V98, P5886, DOI 10.1073/pnas.101120898 Laine H, 2010, DEV BIOL, V337, P134, DOI 10.1016/j.ydbio.2009.10.027 Lanford PJ, 1999, NAT GENET, V21, P289 Lin V, 2011, J NEUROSCI, V31, P15329, DOI 10.1523/JNEUROSCI.2057-11.2011 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Lopez I, 1997, INT J DEV NEUROSCI, V15, P447, DOI 10.1016/S0736-5748(96)00103-7 Lowenheim H, 1999, P NATL ACAD SCI USA, V96, P4084, DOI 10.1073/pnas.96.7.4084 Ma EY, 2008, J NEUROSCI, V28, P2261, DOI 10.1523/JNEUROSCI.4372-07.2008 Maeda Y, 2005, HUM MOL GENET, V14, P1641, DOI 10.1093/hmg/ddi172 Minoda R, 2007, HEARING RES, V232, P44, DOI 10.1016/j.heares.2007.06.005 Mizutari K, 2013, NEURON, V77, P58, DOI 10.1016/j.neuron.2012.10.032 Mondalek Fadee G, 2006, J Nanobiotechnology, V4, P4, DOI 10.1186/1477-3155-4-4 Mukherjea D, 2008, J NEUROSCI, V28, P13056, DOI 10.1523/JNEUROSCI.1307-08.2008 Murata J, 2006, J COMP NEUROL, V497, P502, DOI 10.1002/cne.20997 Ozeki M, 2007, J NEUROSCI RES, V85, P515, DOI 10.1002/jnr.21133 Raft S, 2007, DEVELOPMENT, V134, P4405, DOI 10.1242/dev.009118 Riley BB, 1999, DEVELOPMENT, V126, P5669 Ruiz JW, 2006, OTOLARYNG HEAD NECK, V135, P792, DOI 10.1016/j.otohns.2006.05.031 RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101 Rybak LP, 2007, KIDNEY INT, V72, P931, DOI 10.1038/sj.ki.5002434 Salcher EE, 2010, TOP CURR CHEM, V296, P227, DOI 10.1007/128_2010_69 Seibel NM, 2007, ANAL BIOCHEM, V368, P95, DOI 10.1016/j.ab.2007.05.025 Shnerson A, 1981, Brain Res, V254, P77 Shou JY, 2003, MOL CELL NEUROSCI, V23, P169, DOI 10.1016/S1044-7431(03)00066-6 Sinkkonen ST, 2011, SCI REP-UK, V1, DOI 10.1038/srep00026 Sobkowicz HM, 1996, ACTA OTO-LARYNGOL, V116, P257, DOI 10.3109/00016489609137836 Staecker H, 2007, OTOL NEUROTOL, V28, P223, DOI 10.1097/MAO.0b013e31802b3225 Stone JS, 1998, CURR OPIN NEUROL, V11, P17, DOI 10.1097/00019052-199802000-00004 Takebayashi S, 2007, DEV BIOL, V307, P165, DOI 10.1016/j.ydbio.2007.04.035 Tang LS, 2006, DEVELOPMENT, V133, P3683, DOI 10.1242/dev.02536 Tateya T, 2011, DEV BIOL, V352, P329, DOI 10.1016/j.ydbio.2011.01.038 Taylor S, 2010, METHODS, V50, pS1, DOI 10.1016/j.ymeth.2010.01.005 Torchinsky C, 1999, J NEUROCYTOL, V28, P913, DOI 10.1023/A:1007082424477 Walsh RM, 2000, J OTOLARYNGOL, V29, P351 Wang GP, 2010, HEARING RES, V267, P61, DOI 10.1016/j.heares.2010.03.085 Wang Y., 2011, J NANOTECHNOL ENG ME, DOI DOI 10.1115/1A002928 Wassel RA, 2007, COLLOID SURFACE A, V292, P125, DOI 10.1016/j.colsurfa.2006.06.012 Wei XB, 2003, BIOPHYS J, V84, P1317 White PM, 2006, NATURE, V441, P984, DOI 10.1038/nature04849 Whitehead KA, 2009, NAT REV DRUG DISCOV, V8, P129, DOI 10.1038/nrd2742 Woodrow KA, 2009, NAT MATER, V8, P526, DOI [10.1038/nmat2444, 10.1038/NMAT2444] Yamamoto N, 2006, J MOL MED-JMM, V84, P37, DOI 10.1007/s00109-005-0706-9 YLIKOSKI J, 1992, HEARING RES, V60, P80, DOI 10.1016/0378-5955(92)90061-Q Zheng JL, 2000, NAT NEUROSCI, V3, P580 Zheng JL, 2000, DEVELOPMENT, V127, P4551 Zine A, 2001, J NEUROSCI, V21, P4712 Zine A, 2002, HEARING RES, V170, P22, DOI 10.1016/S0378-5955(02)00449-5 NR 91 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2013 VL 304 BP 91 EP 110 DI 10.1016/j.heares.2013.06.011 PG 20 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 225PM UT WOS:000324974800011 PM 23850665 ER PT J AU Corfield, JR Krilow, JM Vande Ligt, MN Iwaniuk, AN AF Corfield, Jeremy R. Krilow, Justin M. Vande Ligt, Maureen N. Iwaniuk, Andrew N. TI A quantitative morphological analysis of the inner ear of galliform birds SO HEARING RESEARCH LA English DT Article ID HAIR CELL REGENERATION; 4-WEEK BODY-WEIGHT; BASILAR PAPILLA; BARN OWL; ACOUSTIC TRAUMA; JAPANESE-QUAIL; SPECIES-DIFFERENCES; COCHLEAR INTEGRITY; COTURNIX QUAIL; HEARING ORGAN AB The function of the inner ear is dependent on its physical structure and there is therefore a strong correspondence between inner ear morphology and hearing capabilities. In this study, we examine the morphology of the inner ear and use this relationship to predict the hearing range and sensitivities of species within the Order Galliformes (chicken, quail and allies). All galliforms share a similar inner ear morphology, which is characterized by gradients in hair cell morphology that are similar to other birds. Most galliforms did have an area of morphologically similar hair cells at the apical end of the BP, indicative of a low frequency specialization. We suggest that, in general, the galliform inner ear is tuned for detecting low frequencies, with most hair cells and more than half of the BP dedicated to frequencies below 1 kHz. Whether this is a specialization or associated with their basal lineage remains to be determined. We also determined that body and brain size are associated with the number of hair cells and basilar papilla length across galliform birds, such that as body size increases, there are correlated increases in BP length and the number of hair cells. Our data therefore corroborate patterns observed across a wide range of bird species and provides significant insight into how species differences in BP morphology evolve and putative relationships with size, vocalizations and life history. (C) 2013 Elsevier B.V. All rights reserved. C1 [Corfield, Jeremy R.; Krilow, Justin M.; Vande Ligt, Maureen N.; Iwaniuk, Andrew N.] Univ Lethbridge, Dept Neurosci, Lethbridge, AB T1K 3M4, Canada. RP Corfield, JR (reprint author), Univ Lethbridge, Dept Neurosci, Lethbridge, AB T1K 3M4, Canada. EM jr.corfield@gmail.com FU NSERC [372237]; [380284-2009] FX We would like to thank Doug Bray and Christine Koppl for their assistance with tissue processing, Grant Duke, Fran Legget and the Lethbridge Research Centre for the use of their scanning electron microscope and four anonymous reviewers for their constructive feedback. We also wish to thank all of the hunters and falconers that assisted us in obtaining specimens in Alberta and New Zealand, in particular, Brent Davidson, Lynn Oliphant and Udo Hannebaum. Funding for this study was provided by an NSERC Discovery Grant (372237) and Accelerator Supplement (380284-2009) to ANI. CR Art JJ, 2006, SPR HDB AUD, V27, P204 AUBIN AE, 1972, CAN J ZOOLOG, V50, P1225, DOI 10.1139/z72-165 AVRAHAM KB, 1995, NAT GENET, V11, P369, DOI 10.1038/ng1295-369 Bryant J, 2002, BRIT MED BULL, V63, P39, DOI 10.1093/bmb/63.1.39 BUCKLEY K, 1985, J CELL BIOL, V100, P1284, DOI 10.1083/jcb.100.4.1284 CHEN L, 1994, HEARING RES, V81, P130, DOI 10.1016/0378-5955(94)90160-0 Collins SA, 1998, ETHOLOGY, V104, P977 Corfield J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023771 Corfield JR, 2012, JARO-J ASSOC RES OTO, V13, P629, DOI 10.1007/s10162-012-0341-4 COUNTER SA, 1986, ACTA OTO-LARYNGOL, V101, P34, DOI 10.3109/00016488609108605 CRAWFORD AC, 1985, J PHYSIOL-LONDON, V364, P359 Dietz MW, 1997, PHYSIOL ZOOL, V70, P493 Dooling R.J., 1995, ADV HEARING RES, P32 Duncan RK, 2001, J ANAT, V198, P103, DOI 10.1046/j.1469-7580.2001.19810103.x Dunning J. B., 2007, CRC HDB AVIAN BODY M Durham D, 2002, HEARING RES, V166, P82, DOI 10.1016/S0378-5955(02)00301-5 Duval C., 2012, J EXP BIOL, V216, P700 Evrard YA, 2004, DEV GENES EVOL, V214, P193, DOI 10.1007/s00427-004-0395-3 Fermin C D, 1997, Cell Vis, V4, P280 FETTIPLACE R, 1987, TRENDS NEUROSCI, V10, P421, DOI 10.1016/0166-2236(87)90013-0 FISCHER FP, 1994, HEARING RES, V73, P1, DOI 10.1016/0378-5955(94)90277-1 FISCHER FP, 1994, SCANNING MICROSCOPY, V8, P351 Fischer FP, 1998, HEARING RES, V121, P112, DOI 10.1016/S0378-5955(98)00072-0 FISCHER FP, 1994, J MORPHOL, V220, P71, DOI 10.1002/jmor.1052200107 FISCHER FP, 1988, HEARING RES, V34, P87, DOI 10.1016/0378-5955(88)90053-6 FISCHER FP, 1992, HEARING RES, V61, P167, DOI 10.1016/0378-5955(92)90048-R Freeman A., 2012, INFRASONIC AUDIBLE S Fuchs P., 1998, PSYCHOPHYSICAL PSYCH, P97 FUCHS PA, 1988, J NEUROSCI, V8, P2460 Garcia M, 2012, ETHOLOGY, V118, P292, DOI 10.1111/j.1439-0310.2011.02011.x GLEICH O, 1989, HEARING RES, V37, P255, DOI 10.1016/0378-5955(89)90026-9 Gleich O, 2004, SPR HDB AUD, V22, P224 Gleich O, 2005, NATURWISSENSCHAFTEN, V92, P595, DOI 10.1007/s00114-005-0050-5 GLEICH O, 1988, HEARING RES, V34, P69, DOI 10.1016/0378-5955(88)90052-4 Gleich O, 2011, HEARING RES, V273, P80, DOI 10.1016/j.heares.2010.01.009 Gleich O, 2000, SPR HDB AUD, V13, P70 GLEICH O, 1994, J MORPHOL, V221, P1, DOI 10.1002/jmor.1052210102 Gubbels SP, 2008, NATURE, V455, P537, DOI 10.1038/nature07265 GULLION GORDON W., 1965, J WILDLIFE MANAGE, V29, P109, DOI 10.2307/3798639 Hayat MA, 2000, PRINCIPLES TECHNIQUE, P564 HEINZ GH, 1970, AUK, V87, P279 HIROKAWA N, 1978, J COMP NEUROL, V181, P361, DOI 10.1002/cne.901810208 Hjorth I, 1970, VILTREVY, V7, P183 JONES SM, 1995, HEARING RES, V82, P149, DOI 10.1016/0378-5955(94)00173-N JORGENSEN JM, 1989, BRAIN BEHAV EVOLUT, V34, P273, DOI 10.1159/000116512 Khaldari M, 2010, POULTRY SCI, V89, P1834, DOI 10.3382/ps.2010-00725 Knipper M, 2000, J NEUROPHYSIOL, V83, P3101 Koppl C, 1997, J ACOUST SOC AM, V101, P1574, DOI 10.1121/1.418145 Koppl C, 2000, HEARING RES, V139, P123, DOI 10.1016/S0378-5955(99)00178-1 KOPPL C, 1993, J COMP PHYSIOL A, V171, P695, DOI 10.1007/BF00213066 Koppl C, 2001, EUR J NEUROSCI, V13, P1889, DOI 10.1046/j.0953-816x.2001.01567.x Koppl C, 1998, HEARING RES, V126, P99, DOI 10.1016/S0378-5955(98)00156-7 Koppl C, 1997, AUDIT NEUROSCI, V3, P313 Lin GF, 2007, BMC DEV BIOL, V7, DOI 10.1186/1471-213X-7-56 Lisney TJ, 2012, J COMP PHYSIOL A, V198, P717, DOI 10.1007/s00359-012-0742-1 Madge S, 2002, PHEASANTS PARTRIDGES Manley GA, 1996, J MORPHOL, V227, P197, DOI 10.1002/(SICI)1097-4687(199602)227:2<197::AID-JMOR6>3.0.CO;2-6 MANLEY GA, 1993, J MORPHOL, V218, P153, DOI 10.1002/jmor.1052180205 MANLEY GA, 1987, SCIENCE, V237, P655, DOI 10.1126/science.3603046 MARKS HL, 1993, POULTRY SCI, V72, P1005 Mills AD, 1997, NEUROSCI BIOBEHAV R, V21, P261, DOI 10.1016/S0149-7634(96)00028-0 Moenig B, 2006, J NEUROSCI METH, V154, P53, DOI 10.1016/j.jneumeth.2005.11.015 Nealen PM, 2005, BRAIN RES, V1032, P50, DOI 10.1016/j.brainres.2004.10.059 NIEMIEC AJ, 1994, HEARING RES, V79, P1, DOI 10.1016/0378-5955(94)90122-8 OKANOYA K, 1987, J COMP PSYCHOL, V101, P7, DOI 10.1037//0735-7036.101.1.7 Ornithology C.L.O., 1999, FIELD GUIDE W BIRD S Ramanathan K, 1999, SCIENCE, V283, P215, DOI 10.1126/science.283.5399.215 RYALS BM, 1990, HEARING RES, V50, P87, DOI 10.1016/0378-5955(90)90035-N RYALS BM, 1988, HEARING RES, V36, P1, DOI 10.1016/0378-5955(88)90133-5 RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101 Ryals BM, 1999, HEARING RES, V131, P71, DOI 10.1016/S0378-5955(99)00022-2 RYALS BM, 1984, ACTA OTO-LARYNGOL, V98, P93, DOI 10.3109/00016488409107539 Saunders JC, 2010, ILAR J, V51, P326 Smittkamp SE, 2002, HEARING RES, V170, P139, DOI 10.1016/S0378-5955(02)00486-0 Takahashi M, 2008, J ETHOL, V26, P375, DOI 10.1007/s10164-007-0078-4 TAKASAKA T, 1971, J ULTRA MOL STRUCT R, V35, P20, DOI 10.1016/S0022-5320(71)80141-7 TANAKA K, 1978, AM J ANAT, V153, P251, DOI 10.1002/aja.1001530206 TILNEY LG, 1983, J CELL BIOL, V96, P807, DOI 10.1083/jcb.96.3.807 TILNEY LG, 1986, HEARING RES, V22, P55, DOI 10.1016/0378-5955(86)90077-8 TILNEY MS, 1987, HEARING RES, V25, P141, DOI 10.1016/0378-5955(87)90087-6 van der Ziel CE, 2001, PHYSIOL BIOCHEM ZOOL, V74, P52, DOI 10.1086/319314 Walsh SA, 2009, P R SOC B, V276, P1355, DOI 10.1098/rspb.2008.1390 Wibowo E, 2009, J COMP NEUROL, V516, P74, DOI 10.1002/cne.22101 NR 83 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD OCT PY 2013 VL 304 BP 111 EP 127 DI 10.1016/j.heares.2013.07.004 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 225PM UT WOS:000324974800012 PM 23871766 ER PT J AU Herrmann, B Henry, MJ Scharinger, M Obleser, J AF Herrmann, Bjoern Henry, Molly J. Scharinger, Mathias Obleser, Jonas TI Auditory filter width affects response magnitude but not frequency specificity in auditory cortex SO HEARING RESEARCH LA English DT Article ID EVENT-RELATED POTENTIALS; AGE-RELATED DIFFERENCES; CORTICAL EVOKED-POTENTIALS; HEARING-IMPAIRED SUBJECTS; INTER-STIMULUS INTERVAL; SHORT-TERM PLASTICITY; MULTIPLE TIME SCALES; NEURAL REPRESENTATION; BRAIN POTENTIALS; SIGNAL-DETECTION AB Spectral analysis of acoustic stimuli occurs in the auditory periphery (termed frequency selectivity) as well as at the level of auditory cortex (termed frequency specificity). Frequency selectivity is commonly investigated using an auditory filter model, while frequency specificity is often investigated as neural adaptation of the N1 response in electroencephalography (EEG). However, the effects of aging on frequency-specific adaptation, and the link between peripheral frequency selectivity and neural frequency specificity have not received much attention. Here, normal hearing younger (20-31 years) and older participants (49-63 years) underwent a psychophysical notched noise experiment to estimate individual auditory filters, and an EEG experiment to investigate frequency-specific adaptation in auditory cortex. The shape of auditory filters was comparable between age groups, and thus shows intact frequency selectivity in normal aging. In auditory cortex, both groups showed N1 frequency-specific neural adaptation effects that similarly varied with the spectral variance in the stimulation, while N1 responses were overall larger for older than younger participants. Importantly, the overall N1 amplitude, but not frequency-specific neural adaptation was correlated with the pass-band of the auditory filter. Thus, the current findings show a dissociation of peripheral frequency selectivity and neural frequency specificity, but suggest that widened auditory filters are compensated for by a response gain in frequency-specific areas of auditory cortex. (C) 2013 Elsevier B.V. All rights reserved. C1 [Herrmann, Bjoern; Henry, Molly J.; Scharinger, Mathias; Obleser, Jonas] Max Planck Inst Human Cognit & Brain Sci, Max Planck Res Grp Auditory Cognit, D-04103 Leipzig, Germany. RP Herrmann, B (reprint author), Max Planck Inst Human Cognit & Brain Sci, Max Planck Res Grp Auditory Cognit, Stephanstr 1A, D-04103 Leipzig, Germany. EM bherrmann@cbs.mpg.de FU Max Planck Society FX The authors were supported by the Max Planck Society (Max Planck Research Group grant to J.O.). We thank Nadine Schlichting for her help with EEG data acquisition and analyses, Nancy Grochol for her help with setting up the psychophysical experiment, and two anonymous reviewers for their helpful comments. CR Amenedo E, 1999, NEUROREPORT, V10, P2383, DOI 10.1097/00001756-199908020-00030 Anderer P, 1996, ELECTROEN CLIN NEURO, V99, P458, DOI 10.1016/S0013-4694(96)96518-9 Bennett IJ, 2004, CLIN NEUROPHYSIOL, V115, P2602, DOI 10.1016/j.clinph.2004.06.011 Bitterman Y, 2008, NATURE, V451, P197, DOI 10.1038/nature06476 Brattico E, 2003, NEUROREPORT, V14, P2489, DOI 10.1097/01.wnr.0000098748.87269.al Brozoski TJ, 2002, J NEUROSCI, V22, P2383 BRUNEAU N, 1985, ELECTROEN CLIN NEURO, V62, P364, DOI 10.1016/0168-5597(85)90045-0 BUTLER RA, 1968, J ACOUST SOC AM, V44, P945, DOI 10.1121/1.1911233 Costa-Faidella J, 2011, PSYCHOPHYSIOLOGY, V48, P774, DOI 10.1111/j.1469-8986.2010.01144.x CZIGLER I, 1992, BIOL PSYCHOL, V33, P195, DOI 10.1016/0301-0511(92)90031-O Dahmen JC, 2010, NEURON, V66, P937, DOI 10.1016/j.neuron.2010.05.018 Dean I, 2008, J NEUROSCI, V28, P6430, DOI 10.1523/JNEUROSCI.0470-08.2008 Dean I, 2005, NAT NEUROSCI, V8, P1684, DOI 10.1038/nn1541 Ehret G, 1997, J COMP PHYSIOL A, V181, P635, DOI 10.1007/s003590050146 Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47 FORD JM, 1979, J GERONTOL, V34, P388 GLASBERG BR, 1986, J ACOUST SOC AM, V79, P1020, DOI 10.1121/1.393374 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T HARI R, 1982, ELECTROEN CLIN NEURO, V54, P561, DOI 10.1016/0013-4694(82)90041-4 Harris KC, 2008, HEARING RES, V243, P47, DOI 10.1016/j.heares.2008.05.005 Harris KC, 2007, HEARING RES, V228, P58, DOI 10.1016/j.heares.2007.01.021 Henry MJ, 2013, MUSIC PERCEPT, V30, P480, DOI 10.1525/MP.2013.30.5.480 Herrmann B, 2013, J NEUROPHYSIOL, V109, P2086, DOI 10.1152/jn.00907.2012 Jaaskelainen IP, 2011, BRAIN RES, V1422, P66, DOI 10.1016/j.brainres.2011.09.031 Jaaskelainen IP, 2007, TRENDS NEUROSCI, V30, P653, DOI 10.1016/j.tins.2007.09.003 Jerger J., 1980, OTOLARYNGOLOGY, P1226 Jurado C, 2010, J ACOUST SOC AM, V128, P3585, DOI 10.1121/1.3504657 Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038 Kauramaki J., 2007, PLOS ONE, V9, P909 Kim JR, 2012, OTOL NEUROTOL, V33, P1105, DOI 10.1097/MAO.0b013e3182659b1e Kisley MA, 2005, COGNITIVE BRAIN RES, V25, P913, DOI 10.1016/j.cogbrainres.2005.09.014 Kvale MN, 2004, J NEUROPHYSIOL, V91, P604, DOI 10.1152/jn.00484.2003 Laffont F., 1989, CLIN NEUROPHYSIOL, V19, P15 Leek MR, 2001, PERCEPT PSYCHOPHYS, V63, P1279, DOI 10.3758/BF03194543 Maess B, 2007, NEUROIMAGE, V37, P561, DOI 10.1016/j.neuroimage.2007.05.040 May P, 1999, J COMPUT NEUROSCI, V6, P99, DOI 10.1023/A:1008896417606 McArthur G, 2002, NEUROREPORT, V13, P1079, DOI 10.1097/00001756-200206120-00021 Moore BC., 2003, INTRO PSYCHOL HEARIN Moore B.C.J., 1986, FREQUENCY SELECTIVIT Moore BCJ, 2005, INT REV NEUROBIOL, V70, P49, DOI 10.1016/S0074-7742(05)70002-7 Moore BCJ, 1996, J ACOUST SOC AM, V99, P542, DOI 10.1121/1.414512 MOORE BCJ, 1992, J ACOUST SOC AM, V91, P2881, DOI 10.1121/1.402925 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x NAATANEN R, 1988, ELECTROEN CLIN NEURO, V69, P523, DOI 10.1016/0013-4694(88)90164-2 Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9 Okamoto H, 2010, J NEUROPHYSIOL, V103, P244, DOI 10.1152/jn.00530.2009 OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4 Oostenveld R, 2011, COMPUT INTEL NEUROSC, DOI 10.1155/2011/156869 PANTEV C, 1988, ELECTROEN CLIN NEURO, V69, P160, DOI 10.1016/0013-4694(88)90211-8 PAPANICOLAOU AC, 1984, NEUROBIOL AGING, V5, P291, DOI 10.1016/0197-4580(84)90005-8 PATTERSON RD, 1976, J ACOUST SOC AM, V59, P640, DOI 10.1121/1.380914 PATTERSON RD, 1982, J ACOUST SOC AM, V72, P1788, DOI 10.1121/1.388652 PETERS RW, 1992, J ACOUST SOC AM, V91, P256, DOI 10.1121/1.402769 PHILLIPS DP, 1994, EXP BRAIN RES, V102, P210 PICTON TW, 1978, ELECTROEN CLIN NEURO, V45, P198, DOI 10.1016/0013-4694(78)90004-4 Pienkowski M, 2011, J NEUROPHYSIOL, V106, P1016, DOI 10.1152/jn.00291.2011 POLICH J, 1988, PAVLOVIAN J BIOL SCI, V23, P35 ROTHMAN HH, 1970, J ACOUST SOC AM, V47, P569, DOI 10.1121/1.1911930 Sadagopan S, 2008, J NEUROSCI, V28, P3415, DOI 10.1523/JNEUROSCI.2743-07.2008 SAMS M, 1994, HEARING RES, V75, P67, DOI 10.1016/0378-5955(94)90057-4 Schiff S, 2008, CLIN NEUROPHYSIOL, V119, P1795, DOI 10.1016/j.clinph.2008.04.007 SCHLAUCH RS, 1991, J ACOUST SOC AM, V90, P1332, DOI 10.1121/1.401925 Soeta Y, 2008, NEUROREPORT, V19, P1709, DOI 10.1097/WNR.0b013e3283177f99 Soeta Y, 2007, NEUROREPORT, V18, P1939 Sommers MS, 1998, J ACOUST SOC AM, V103, P1067, DOI 10.1121/1.421220 SOMMERS MS, 1993, J ACOUST SOC AM, V93, P2903, DOI 10.1121/1.405810 Sutter ML, 2000, J NEUROPHYSIOL, V84, P1012 Tremblay KL, 2003, CLIN NEUROPHYSIOL, V114, P1332, DOI 10.1016/S1388-2457(03)00114-7 Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032 Ulanovsky N, 2004, J NEUROSCI, V24, P10440, DOI 10.1523/JNEUROSCI.1905-04.2004 NR 70 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2013 VL 304 BP 128 EP 136 DI 10.1016/j.heares.2013.07.005 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 225PM UT WOS:000324974800013 PM 23876524 ER PT J AU Shah, SM Patel, CH Feng, AS Kollmar, R AF Shah, S. M. Patel, C. H. Feng, A. S. Kollmar, R. TI Lithium alters the morphology of neurites regenerating from cultured adult spiral ganglion neurons SO HEARING RESEARCH LA English DT Article ID GLYCOGEN-SYNTHASE KINASE-3-BETA; FIBROBLAST-GROWTH-FACTOR; NEUROTROPHIC FACTOR; HEARING IMPAIRMENT; GUINEA-PIG; SIGNALING PATHWAY; SENSORY NEURONS; OUTGROWTH; INHIBITION; COCHLEA AB The small-molecule drug lithium (as a monovalent ion) promotes neurite regeneration and functional recovery, is easy to administer, and is approved for human use to treat bipolar disorder. Lithium exerts its neuritogenic effect mainly by inhibiting glycogen synthase kinase 3, a constitutively-active serine/threonine kinase that is regulated by neurotrophin and "wingless-related MMTV integration site" (Wnt) signaling. In spiral ganglion neurons of the cochlea, the effects of lithium and the function of glycogen synthase kinase 3 have not been investigated. We, therefore, set out to test whether lithium modulates neuritogenesis from adult spiral ganglion neurons. Primary cultures of dissociated spiral ganglion neurons from adult mice were exposed to lithium at concentrations between 0 and 12.5 mM. The resulting neurite morphology and growth-cone appearance were measured in detail by using immunofluorescence microscopy and image analysis. We found that lithium altered the morphology of regenerating neurites and their growth cones in a differential, concentration-dependent fashion. Low concentrations of 0.5-2.5 mM (around the half-maximal inhibitory concentration for glycogen synthase kinase 3 and the recommended therapeutic serum concentration for bipolar disorder) enhanced neurite sprouting and branching. A high concentration of 12.5 mM, in contrast, slowed elongation. As the lithium concentration rose from low to high, the microtubules became increasingly disarranged and the growth cones more arborized. Our results demonstrate that lithium selectively stimulates phases of neuritogenesis that are driven by microtubule reorganization. In contrast, most other drugs that have previously been tested on spiral ganglion neurons are reported to inhibit neurite outgrowth or affect only elongation. Lithium sensitivity is a necessary, but not sufficient condition for the involvement of glycogen synthase kinase 3. Our results are, therefore, consistent with, but do not prove lithium inhibiting glycogen synthase kinase 3 activity in spiral ganglion neurons. Experiments with additional drugs and molecular-genetic tools will be necessary to test whether glycogen synthase kinase 3 regulates neurite regeneration from spiral ganglion neurons, possibly by integrating neurotrophin and Wnt signals at the growth cone. (C) 2013 Elsevier B.V. All rights reserved. C1 [Shah, S. M.; Patel, C. H.; Feng, A. S.; Kollmar, R.] Univ Illinois, Dept Mol & Integrat Physiol, Urbana, IL 61801 USA. [Shah, S. M.; Patel, C. H.; Feng, A. S.; Kollmar, R.] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA. [Shah, S. M.; Feng, A. S.; Kollmar, R.] Univ Illinois, Neurosci Grad Program, Urbana, IL 61801 USA. [Shah, S. M.] Univ Illinois, Med Scholars Program, Urbana, IL 61801 USA. [Kollmar, R.] Suny Downstate Med Ctr, Dept Cell Biol, Brooklyn, NY 11203 USA. [Kollmar, R.] Suny Downstate Med Ctr, Dept Otolaryngol, Brooklyn, NY 11203 USA. RP Kollmar, R (reprint author), Suny Downstate Med Ctr, Dept Cell Biol, 450 Clarkson Ave,Box 5, Brooklyn, NY 11203 USA. EM richard.kollmar@downstate.edu FU National Institute of Mental Health [R01 MH086638]; National Institute on Deafness and Other Communication Disorders [T32 DC006612]; American Otological Society; University of Illinois; Campus Research Board; Mary Jane Neer Fund at the University of Illinois; National Organization for Hearing Research FX We thank Ms. Soon Ki for technical assistance; Dr. William Lytton for access to and Mr. Larry Eberle for system administration on the SUNY Downstate high-performance computing cluster, which is supported by research grant R01 MH086638 from the National Institute of Mental Health to W.L.; Dr. Donna Fekete for sharing unpublished data; and Ms. Olipriya Das, Ms. Roza George, Dr. Byron Kemper, and Dr. Mark Stewart for comments on the manuscript. This work was supported by training grant T32 DC006612 from the National Institute on Deafness and Other Communication Disorders, a medical student training grant from the American Otological Society, and a grant from the Charles M. Goodenberger Fund at the University of Illinois to S.M.S.; by grants from the Campus Research Board and the Mary Jane Neer Fund at the University of Illinois to A.S.F.; and by a research award from the National Organization for Hearing Research to R.K. CR Aletsee C, 2001, JARO, V2, P377, DOI 10.1007/s101620010086 Aletsee C, 2002, HEARING RES, V164, P1, DOI 10.1016/S0378-5955(01)00364-1 Aletsee C, 2002, LARYNGO RHINO OTOL, V81, P189, DOI 10.1055/s-2002-25039 Atkinson PJ, 2011, HEARING RES, V278, P77, DOI 10.1016/j.heares.2011.04.011 Bodmer D, 2002, LARYNGOSCOPE, V112, P2057, DOI 10.1097/00005537-200211000-00028 Brors D, 2003, ACTA OTO-LARYNGOL, V123, P20, DOI 10.1080/003655402/000028055 Chiu CT, 2010, PHARMACOL THERAPEUT, V128, P281, DOI 10.1016/j.pharmthera.2010.07.006 Clark G. M., 2003, COCHLEAR IMPLANTS FU Da Silva JS, 2002, NAT REV NEUROSCI, V3, P694, DOI 10.1038/nrn918 DAVIS AC, 1989, INT J EPIDEMIOL, V18, P911, DOI 10.1093/ije/18.4.911 Dill J, 2008, J NEUROSCI, V28, P8914, DOI 10.1523/JNEUROSCI.1178-08.2008 Fantetti KN, 2011, HEARING RES, V278, P86, DOI 10.1016/j.heares.2011.04.005 Food and Drug Administration, 2012, APPR DRUG PROD THER Gillespie LN, 2005, EUR J NEUROSCI, V22, P2123, DOI 10.1111/j.1460-9568.2005.04430.x Glueckert R, 2008, J COMP NEUROL, V507, P1602, DOI 10.1002/cne.21619 Gordon-Weeks P.R., 2000, NEURONAL GROWTH CONE Grandjean EM, 2009, CNS DRUGS, V23, P225, DOI 10.2165/00023210-200923030-00004 Grandjean EM, 2009, CNS DRUGS, V23, P397, DOI 10.2165/00023210-200923050-00004 Grandjean EM, 2009, CNS DRUGS, V23, P331 Hall AC, 2002, MOL CELL NEUROSCI, V20, P257, DOI 10.1006/mcne.2002.1117 Hall AC, 2000, CELL, V100, P525, DOI 10.1016/S0092-8674(00)80689-3 Hallworth R, 2000, HEARING RES, V148, P161, DOI 10.1016/S0378-5955(00)00149-0 Horner KC, 1998, EUR J NEUROSCI, V10, P1524, DOI 10.1046/j.1460-9568.1998.00196.x Horner KC, 1997, NEUROREPORT, V8, P1341, DOI 10.1097/00001756-199704140-00005 Hur EM, 2010, NAT REV NEUROSCI, V11, P539, DOI 10.1038/nrn2870 Jiang H, 2005, CELL, V120, P123, DOI 10.1016/j.cell.2004.12.033 Kim WY, 2006, NEURON, V52, P981, DOI 10.1016/j.neuron.2006.10.031 Klein PS, 1996, P NATL ACAD SCI USA, V93, P8455, DOI 10.1073/pnas.93.16.8455 Krylova O, 2000, J CELL BIOL, V151, P83, DOI 10.1083/jcb.151.1.83 Krylova O, 2002, NEURON, V35, P1043, DOI 10.1016/S0896-6273(02)00860-7 Lallemend F, 2005, J CELL SCI, V118, P4511, DOI 10.1242/jcs.02572 Lie M, 2010, NEUROSCIENCE, V169, P855, DOI 10.1016/j.neuroscience.2010.05.020 Lucas FR, 1997, DEV BIOL, V192, P31, DOI 10.1006/dbio.1997.8734 Lucas FR, 1998, J CELL SCI, V111, P1351 McKnight RF, 2012, LANCET, V379, P721, DOI 10.1016/S0140-6736(11)61516-X Meijering E, 2004, CYTOM PART A, V58A, P167, DOI 10.1002/cyto.a.20022 Miller JM, 2007, J NEUROSCI RES, V85, P1959, DOI 10.1002/jnr.21320 Mullen LM, 2012, BRAIN RES, V1430, P25, DOI 10.1016/j.brainres.2011.10.054 Owen R, 2003, MOL CELL NEUROSCI, V23, P626, DOI 10.1016/S1044-7431(03)00095-2 Pasquali L, 2010, BEHAV PHARMACOL, V21, P473, DOI 10.1097/FBP.0b013e32833da5da Phiel CJ, 2001, ANNU REV PHARMACOL, V41, P789, DOI 10.1146/annurev.pharmtox.41.1.789 Poulain FE, 2010, MOL CELL NEUROSCI, V43, P15, DOI 10.1016/j.mcn.2009.07.012 Purro SA, 2008, J NEUROSCI, V28, P8644, DOI 10.1523/JNEUROSCI.2320-08.2008 R Core Team, 2012, R LANG ENV STAT COMP Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089 Shah SM, 2009, NEUROSCIENCE, V164, P478, DOI 10.1016/j.neuroscience.2009.08.049 Shibata SB, 2011, HEARING RES, V281, P56, DOI 10.1016/j.heares.2011.04.019 Shibata SB, 2010, EXP NEUROL, V223, P464, DOI 10.1016/j.expneurol.2010.01.011 van Amerongen R, 2009, DEVELOPMENT, V136, P3205, DOI 10.1242/dev.033910 Vieira M, 2007, HEARING RES, V230, P17, DOI 10.1016/j.heares.2007.03.005 Voth DE, 2005, CLIN MICROBIOL REV, V18, P247, DOI 10.1128/CMR.18.2.247-263.2005 Waites CL, 2005, ANNU REV NEUROSCI, V28, P251, DOI 10.1146/annurev.neuro.27.070203.144336 Webber A, 2006, ANAT REC PART A, V288A, P390, DOI 10.1002/ar.a.20299 Wilson DH, 1999, INT J EPIDEMIOL, V28, P247, DOI 10.1093/ije/28.2.247 Wise AK, 2005, J COMP NEUROL, V487, P147, DOI 10.1002/cne.20563 Xu NY, 2012, HEARING RES, V283, P33, DOI 10.1016/j.heares.2011.11.010 Yick LW, 2004, J NEUROTRAUM, V21, P932, DOI 10.1089/0897715041526221 ZIMMERMANN CE, 1995, HEARING RES, V90, P192, DOI 10.1016/0378-5955(95)00165-1 NR 58 TC 2 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2013 VL 304 BP 137 EP 144 DI 10.1016/j.heares.2013.07.001 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 225PM UT WOS:000324974800014 PM 23856237 ER PT J AU Vlajkovic, SM Lin, SCY Wong, ACY Wackrow, B Thorne, PR AF Vlajkovic, Srdjan M. Lin, Shelly Ching-yu Wong, Ann Chi Yan Wackrow, Brad Thorne, Peter R. TI Noise-induced changes in expression levels of NADPH oxidases in the cochlea SO HEARING RESEARCH LA English DT Article ID INDUCED HEARING-LOSS; NOX FAMILY; CISPLATIN; ROLES; BRAIN; RAT; SUPEROXIDE; GENERATION; INHIBITORS; MUTATIONS AB NADPH oxidases are enzymes that transport electrons across the plasma membrane and generate superoxide radical from molecular oxygen. The current study investigated the expression and distribution of NOX/DUOX members of the NADPH oxidase family (NOX1-5 and DUOX1-2) in the rat cochlea and their regulation in response to noise. Wistar rats (8-10 weeks) were exposed for 24 h to band noise (8-12 kHz) at moderate (100 dB) or traumatic (110 dB) sound pressure levels (SPL). Animals exposed to ambient noise (45-55 dB SPL) served as controls. Immunohistochemistly demonstrated predominant expression of all NOX/DUOX isoforms in the sensory and supporting cells of the organ of Corti, with very limited immunoexpression in the lateral wall tissues and spiral ganglion neurons. Noise exposure induced up-regulation of NOX1 and DUOX2 in the cochlea, whereas NOX3 was down-regulated. A significant reduction in the intensity of NOX3 immunolabeling was observed in the inner sulcus region of the cochlea after exposure to noise. Post-exposure inhibition of NADPH oxidases by Diphenyleneiodonium (DPI), a broadly selective NADPH oxidase inhibitor, mitigated noise-induced hearing loss. Conclusion: Noise-induced up-regulation of NOX1 and DUOX2 could be linked to cochlear injury. In contrast, down-regulation of NOX3 may represent an endogenous protective mechanism to reduce oxidative stress in the noise-exposed cochlea. Inhibition of NADPH oxidases is potentially a novel pathway for therapeutic management of noise-induced hearing loss. (C) 2013 Elsevier B.V. All rights reserved. C1 [Vlajkovic, Srdjan M.; Lin, Shelly Ching-yu; Wackrow, Brad; Thorne, Peter R.] Univ Auckland, Dept Physiol, Fac Med & Hlth Sci, Auckland 1142, New Zealand. [Thorne, Peter R.] Univ Auckland, Discipline Audiol, Fac Med & Hlth Sci, Auckland 1142, New Zealand. [Wong, Ann Chi Yan] Univ New S Wales, Sch Med Sci, Translat Neurosci Facil, Sydney, NSW, Australia. RP Vlajkovic, SM (reprint author), Univ Auckland, Dept Physiol, Fac Med & Hlth Sci, Private Bag 92019, Auckland 1142, New Zealand. EM s.vlajkovic@auckland.ac.nz FU University of Auckland Faculty Research Development Fund FX This study was supported by the University of Auckland Faculty Research Development Fund. CR Ago T, 2004, CIRCULATION, V109, P227, DOI 10.1161/01.CIR.0000105680.92873.70 Banfi B, 2004, J BIOL CHEM, V279, P46065, DOI 10.1074/jbc.M403046200 Bedard K, 2007, PHYSIOL REV, V87, P245, DOI 10.1152/physrev.00044.2005 Cheng GJ, 2004, J BIOL CHEM, V279, P34250, DOI 10.1074/jbc.M400660200 Cross R.A., 1986, BIOCHEM J, V237, P111 Forman HJ, 2010, BIOCHEMISTRY-US, V49, P835, DOI 10.1021/bi9020378 HAMERNIK RP, 1984, HEARING RES, V16, P143, DOI 10.1016/0378-5955(84)90004-2 Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3 Infanger DW, 2006, ANTIOXID REDOX SIGN, V8, P1583, DOI 10.1089/ars.2006.8.1583 Irani K, 2000, CIRC RES, V87, P179 Kahles T, 2007, STROKE, V38, P3000, DOI 10.1161/STROKEAHA.107.489765 Kawahara T, 2005, J BIOL CHEM, V280, P31859, DOI 10.1074/jbc.M501882200 Kim HJ, 2010, J NEUROSCI, V30, P3933, DOI 10.1523/JNEUROSCI.6054-09.2010 Kim JA, 2011, EXPERT OPIN THER PAT, V21, P1147, DOI 10.1517/13543776.2011.584870 Krause KH, 2004, JPN J INFECT DIS, V57, pS28 Le Prell CG, 2007, HEARING RES, V226, P22, DOI 10.1016/j.heares.2006.10.006 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Mukherjea D, 2006, NEUROSCIENCE, V139, P733, DOI 10.1016/j.neuroscience.2005.12.044 Mukherjea D, 2010, ANTIOXID REDOX SIGN, V13, P589, DOI 10.1089/ars.2010.3110 Nakano Y, 2007, BIOCHEM J, V403, P97, DOI 10.1042/BJ20060819 Oishi N, 2011, EXPERT OPIN EMERG DR, V16, P235, DOI 10.1517/14728214.2011.552427 Paffenholz R, 2004, GENE DEV, V18, P486, DOI 10.1101/gad.1172504 Rybak LP, 2012, CELL MOL LIFE SCI, V69, P2429, DOI 10.1007/s00018-012-1016-3 Schramm A, 2012, VASC PHARMACOL, V56, P216, DOI 10.1016/j.vph.2012.02.012 Thorne Peter R, 2008, N Z Med J, V121, P33 Ueno N, 2005, J BIOL CHEM, V280, P23328, DOI 10.1074/jbc.M414548200 Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4 Wong ACY, 2010, HEARING RES, V260, P81, DOI 10.1016/j.heares.2009.12.004 Wong ACY, 2012, HISTOCHEM CELL BIOL, V137, P599, DOI 10.1007/s00418-012-0922-7 Yamashita D, 2005, NEUROSCIENCE, V134, P633, DOI 10.1016/j.neuroscience.2005.04.015 Yamashita D, 2004, BRAIN RES, V1019, P201, DOI 10.1016/j.brainres.2004.05.104 NR 31 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2013 VL 304 BP 145 EP 152 DI 10.1016/j.heares.2013.07.012 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 225PM UT WOS:000324974800015 PM 23899412 ER PT J AU Schettino, AE Lauer, AM AF Schettino, Amy E. Lauer, Amanda M. TI The efficiency of design-based stereology in estimating spiral ganglion populations in mice SO HEARING RESEARCH LA English DT Article ID INNER HAIR-CELLS; HEARING-LOSS; NEUROTROPHIC FACTOR; TARGET INNERVATION; SENSORY NEURONS; MOUSE COCHLEA; NOISE; AGE; DEGENERATION; INJURY AB Accurate quantification of cell populations is essential in assessing and evaluating neural survival and degeneration in experimental groups. Estimates obtained through traditional two-dimensional counting methods are heavily biased by the counting parameters in relation to the size and shape of the neurons to be counted, resulting in a large range of inaccurate counts. In contrast, counting every cell in a population can be extremely labor-intensive. The present study hypothesizes that design-based stereology provides estimates of the total number of cochlear spiral ganglion neurons (SGNs) in mice that are comparable to those obtained by other accurate cell-counting methods, such as a serial reconstruction, while being a more efficient method. SGNs are indispensable for relaying auditory information from hair cells to the auditory brainstem, and investigating factors affecting their degeneration provides insight into the physiological basis for the progression of hearing dysfunction. Stereological quantification techniques offer the benefits of efficient sampling that is independent of the size and shape of the SGNs. Population estimates of SGNs in cochleae from young C57 mice with normal-hearing and C57 mice with age-related hearing loss were obtained using the optical fractionator probe and traditional two-dimensional counting methods. The average estimated population of SGNs in normal-hearing mice was 7009, whereas the average estimated population in mice with age-related hearing loss was 5096. The estimated population of SGNs in normal-hearing mice fell within the range of values previously reported in the literature. The reduction in the SGN population in animals with age-related hearing loss was statistically significant. Stereological measurements required less time per section compared to two-dimensional methods while optimizing the amount of cochlear tissue analyzed. These findings demonstrate that design-based stereology provides a practical alternative to other counting methods such as the Abercrombie correction method, which has been shown to notably underestimate cell populations, and. labor-intensive protocols that account for every cell individually. (C) 2013 Elsevier B.V. All rights reserved. C1 [Schettino, Amy E.; Lauer, Amanda M.] Johns Hopkins Univ, Dept Otolaryngol Head & Neck Surg, Ctr Hearing & Balance, Baltimore, MD 21205 USA. [Schettino, Amy E.] Johns Hopkins Univ, Undergrad Program Neurosci, Zanvyl Kreiger Sch Arts & Sci, Baltimore, MD 21205 USA. RP Lauer, AM (reprint author), Johns Hopkins Univ, 515 Traylor Bldg,720 Rutland Ave, Baltimore, MD 21205 USA. EM alauer2@jhmi.edu FU National Institute on Deafness and Other Communication Disorders of the National Institutes of Health [DC012352, DC005211] FX The research reported in this publication was supported by the National Institute on Deafness and Other Communication Disorders of the National Institutes of Health under award numbers DC012352 and DC005211. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We would like to thank Howard Francis for the use of tissue samples from his lab. CR Agerman K, 2003, DEVELOPMENT, V130, P1479, DOI 10.1242/dev.00378 Camarero G, 2001, J NEUROSCI, V21, P7630 Dorph-Petersen KA, 2001, J MICROSC-OXFORD, V204, P232, DOI 10.1046/j.1365-2818.2001.00958.x EHRET G, 1979, J COMP NEUROL, V183, P73, DOI 10.1002/cne.901830107 FARINAS I, 1994, NATURE, V369, P658, DOI 10.1038/369658a0 Francis HW, 2003, HEARING RES, V183, P29, DOI 10.1016/S0378-5955(03)00212-0 Glueckert R, 2008, J COMP NEUROL, V507, P1602, DOI 10.1002/cne.21619 Guillery RW, 2002, J COMP NEUROL, V447, P1, DOI 10.1002/cne.10221 Hequembourg S, 2001, JARO, V2, P118 Ishiyama G, 2011, J NEUROSCI METH, V196, P76, DOI 10.1016/j.jneumeth.2011.01.001 Johnson SB, 2011, HEARING RES, V278, P34, DOI 10.1016/j.heares.2011.02.008 Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 Lauer AM, 2012, NEUROBIOL AGING, V33, P2892, DOI 10.1016/j.neurobiolaging.2012.02.007 LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418 Liebl DJ, 1997, J NEUROSCI, V17, P9113 Luikart BW, 2003, NEUROSCIENCE, V117, P847, DOI 10.1016/S0306-4522(02)00719-4 MacDonald GH, 2010, AUDIOL MED, V8, P120, DOI 10.3109/1651386X.2010.502301 MacDonald GH, 2008, HEARING RES, V243, P1, DOI 10.1016/j.heares.2008.05.009 Mikaelian D.O., 1979, LARYNGOSCOPE, V1, P1 Mouton PR, 2001, PRINCIPLES PRACTICES Ohlemiller KK, 2007, HEARING RES, V224, P34, DOI 10.1016/j.heares.2006.11.005 Parry-Hill M., 2013, MICROSCOPE ALIGNMENT Postigo A, 2002, GENE DEV, V16, P633, DOI 10.1101/gad.217902 Richter CP, 2011, HEARING RES, V278, P43, DOI 10.1016/j.heares.2011.02.003 Shepherd RK, 2008, HEARING RES, V242, P100, DOI 10.1016/j.heares.2007.12.005 Stamataki S, 2006, HEARING RES, V221, P104, DOI 10.1016/j.heares.2006.07.014 von Bartheld CS, 2002, HISTOL HISTOPATHOL, V17, P639 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 Whitlon DS, 2006, NEUROSCIENCE, V138, P653, DOI 10.1016/j.neuroscience.2005.11.030 NR 29 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2013 VL 304 BP 153 EP 158 DI 10.1016/j.heares.2013.07.007 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 225PM UT WOS:000324974800016 PM 23876522 ER PT J AU King, EB Salt, AN Kel, GE Eastwood, HT O'Leary, SJ AF King, E. B. Salt, A. N. Kel, G. E. Eastwood, H. T. O'Leary, S. J. TI Gentamicin administration on the stapes footplate causes greater hearing loss and vestibulotoxicity than round window administration in guinea pigs SO HEARING RESEARCH LA English DT Article ID CHINCHILLA CRISTA-AMPULLARIS; LOCAL-DRUG DELIVERY; HAIR-CELLS; MENIERES-DISEASE; INTRATYMPANIC APPLICATIONS; STAPEDIOVESTIBULAR JOINT; PERILYMPHATIC SCALAE; OTOTOXIC ANTIBIOTICS; MIDDLE-EAR; INNER-EAR AB Clinically, gentamicin has been used extensively to treat the debilitating symptoms of Meniere's disease and is well known for its vestibulotoxic properties. Until recently, it was widely accepted that the round window membrane (RWM) was the primary entry route into the inner ear following intratympanic drug administration. In the current study, gentamicin was delivered to either the RWM or the stapes footplate of guinea pigs (GPs) to assess the associated hearing loss and histopathology associated with each procedure. Vestibulotoxicity of the utricular macula, saccular macula, and crista ampullaris in the posterior semicircular canal were assessed quantitatively with density counts of hair cells, supporting cells, and stereocilia in histological sections. Cochleotoxicity was assessed quantitatively by changes in threshold of auditory brainstem responses (ABR), along with hair cell and spiral ganglion cell counts in the basal and second turns of the cochlea. Animals receiving gentamicin applied to the stapes footplate exhibited markedly higher levels of hearing loss between 8 and 32 kHz, a greater reduction of outer hair cells in the basal turn of the cochlea and fewer normal type I cells in the utricle in the vestibule than those receiving gentamicin on the RWM or saline controls. This suggests that gentamicin more readily enters the ear when applied to the stapes footplate compared with RWM application. These data provide a potential explanation for why gentamicin preferentially ablates vestibular function while preserving hearing following transtympanic administration in humans. (C) 2013 Elsevier B.V. All rights reserved. C1 [King, E. B.; Kel, G. E.; Eastwood, H. T.; O'Leary, S. J.] Univ Melbourne, Dept Otolaryngol, Melbourne, Vic, Australia. [King, E. B.] Bion Inst, Melbourne, Vic, Australia. [Salt, A. N.] Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. RP King, EB (reprint author), Bion Inst, 384-388 Albert St, East Melbourne, Vic 3002, Australia. EM Eking@bionicsinstitute.org FU NIH/NIDCD [DC 01368]; NHMRC [509206]; Garnett Passe & Rodney Williams Memorial Fund FX This authors wish to thank Mrs Maria Clarke and Miss Prudence Neilson for preparing histology slides; Mrs Ruth Gill for preparing figures; Professor Ian Curthoys for their advice; Sue Pierce and Nicole Joy Christie for providing animal husbandry assistance. Alec Salt was supported by NIH/NIDCD research grant DC 01368 and the project was supported by NHMRC 509206, and the Garnett Passe & Rodney Williams Memorial Fund. This study utilized the Australian Phenomics Network Histopathology and Organ Pathology Service, University of Melbourne. CR Alzamil KS, 2000, ANN OTO RHINOL LARYN, V109, P30 Clark G., 2003, COCHLEAR IMPLANTS FU, P71 Dai CF, 2008, HEARING RES, V235, P114, DOI 10.1016/j.heares.2007.10.010 Desai SS, 2005, J NEUROPHYSIOL, V93, P251, DOI 10.1152/jm.00746.2003 FRANKE K, 1977, ARCH OTO-RHINO-LARYN, V217, P331, DOI 10.1007/BF00465550 GOVAERTS PJ, 1990, TOXICOL LETT, V52, P227, DOI 10.1016/0378-4274(90)90033-I Goycoolea M.V., 1998, LARYNGOSCOPE S44, P1 Goycoolea MV, 1997, MICROSC RES TECHNIQ, V36, P201, DOI 10.1002/(SICI)1097-0029(19970201)36:3<201::AID-JEMT8>3.0.CO;2-R Hirvonen TP, 2005, J NEUROPHYSIOL, V93, P643, DOI 10.1152/jn.00160.2004 King EB, 2011, JARO-J ASSOC RES OTO, V12, P741, DOI 10.1007/s10162-011-0280-5 LANGE G, 1977, LARYNG RHINOL OTOL V, V56, P409 Li HZ, 2011, SCI REP-UK, V1, DOI 10.1038/srep00159 LINDEMAN HH, 1969, ACTA OTO-LARYNGOL, V67, P177, DOI 10.3109/00016486909125441 Lopez I, 1997, INT J DEV NEUROSCI, V15, P447, DOI 10.1016/S0736-5748(96)00103-7 Lyford-Pike S, 2007, JARO-J ASSOC RES OTO, V8, P497, DOI 10.1007/s10162-007-0093-8 Merchant SN, 1999, LARYNGOSCOPE, V109, P1560, DOI 10.1097/00005537-199910000-00004 Merchant S.N., 2010, SCHUKNECHTS PATHOLOG, P44 Mikulec AA, 2009, OTOL NEUROTOL, V30, P131, DOI 10.1097/MAO.0b013e318191bff8 Nakagawa T., 1998, EUR ARCH OTO-RHINO-L, V538, P32 Nakagawa T, 1997, EUR ARCH OTO-RHINO-L, V254, P9, DOI 10.1007/BF02630749 Ohashi M, 2006, HEARING RES, V213, P11, DOI 10.1016/j.heares.2005.11.007 Ohashi M, 2005, ACTA HISTOCHEM CYTOC, V38, P387, DOI 10.1267/ahc.38.387 Okumura Akiko, 1993, Okajimas Folia Anatomica Japonica, V69, P385 Plontke SK, 2007, LARYNGOSCOPE, V117, P1191, DOI 10.1097/MLG.0b013e318058a06b Plontke SK, 2011, OTOL NEUROTOL, V32, P183, DOI 10.1097/MAO.0b013e3181f6cb25 Plontke S.K.R., 2002, OTOL NEUROTOL, V23, P67 Quaranta A, 1999, ANN NY ACAD SCI, V884, P410, DOI 10.1111/j.1749-6632.1999.tb08658.x SAIJO S, 1984, ACTA OTO-LARYNGOL, V97, P593, DOI 10.3109/00016488409132937 Salt AN, 2001, HEARING RES, V154, P88, DOI 10.1016/S0378-5955(01)00223-4 SALT AN, 1991, HEARING RES, V56, P37, DOI 10.1016/0378-5955(91)90151-X Salt AN, 2003, HEARING RES, V182, P24, DOI 10.1016/S0378-5955(03)00137-0 Salt AN, 2008, LARYNGOSCOPE, V118, P1793, DOI 10.1097/MLG.0b013e31817d01cd Salt AN, 2012, HEARING RES, V283, P14, DOI 10.1016/j.heares.2011.11.012 SCHACHERN PA, 1984, ARCH OTOLARYNGOL, V110, P15 Shepherd RK, 2004, ARCH OTOLARYNGOL, V130, P518, DOI 10.1001/archotol.130.5.518 Silverstein H, 1999, OTOLARYNG HEAD NECK, V120, P649, DOI 10.1053/hn.1999.v120.a91763 TANAKA K, 1981, ARCH OTO-RHINO-LARYN, V233, P67, DOI 10.1007/BF00464276 TANYERI H, 1995, HEARING RES, V89, P194, DOI 10.1016/0378-5955(95)00137-7 Tsuji K, 2000, Ann Otol Rhinol Laryngol Suppl, V181, P20 Wang Q, 2010, HEARING RES, V268, P250, DOI 10.1016/j.heares.2010.06.008 Wang Q, 2009, JARO-J ASSOC RES OTO, V10, P205, DOI 10.1007/s10162-009-0160-4 Zou J, 2005, AUDIOL NEURO-OTOL, V10, P145, DOI 10.1159/000084024 Zou J, 2012, ANN OTO RHINOL LARYN, V121, P119 NR 43 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2013 VL 304 BP 159 EP 166 DI 10.1016/j.heares.2013.07.013 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 225PM UT WOS:000324974800017 PM 23899413 ER PT J AU Layman, WS Sauceda, MA Zuo, J AF Layman, Wanda S. Sauceda, Mario A. Zuo, Jian TI Epigenetic alterations by NuRD and PRC2 in the neonatal mouse cochlea SO HEARING RESEARCH LA English DT Article ID PLURIPOTENT STEM-CELLS; DNA METHYLATION CHANGES; HAIR-CELLS; SUPPORTING CELLS; HISTONE DEACETYLASES; MAMMALIAN COCHLEA; GENE-EXPRESSION; BREAST-CANCER; IN-VIVO; REPRESSION AB Mammalian cochlear supporting cells remain quiescent at postnatal ages and age-dependent changes in supporting cell proliferative capacity are evident. Ectopic Atoh1 expression in neonatal supporting cells converts only a small percentage of these cells into hair cell-like cells. Despite tremendous potential for therapeutics, cellular reprogramming in the mammalian inner ear remains a slow inefficient process that requires weeks, with most cells failing to reprogram. Cellular reprogramming studies in other tissues have shown that epigenetic inhibitors can significantly improve reprogramming efficiency. Very little is known about epigenetic regulation in the mammalian inner ear, and almost nothing is known about the histone modifications. Histone modifications are vital for proper transcriptional regulation, and aberrant histone modifications can cause defects in the regulation of genes required for normal tissue development and maintenance. Our data indicate that cofactors of repressive complexes such as NuRD and PRC2 are present in the neonatal organ of Corti. These NuRD cofactors are present throughout most of the organ of Corti from E18.5 until P4. By P6, these NuRD cofactors are mostly un-detectable by immunofluorescence and completely lost by P7, but are detectable again at P8 and continue to be present through P21. The PRC2 enzymatic subunit, EZH2 is also highly present from E18.5 to PO in the organ of Corti, but lost between P2 and P4. However, EZH2 staining is evident again throughout the organ of Corti by P6 and persists through P21. Our data provide evidence that HDACs, DNA methyltransferases, histone methyltransferases, and histone demethylases are expressed postnatally within the organ of Corti, and may be targets for drug inhibition to increase the capacity, speed, and efficiency of reprogramming a supporting cell into a hair cell. (C) 2013 Elsevier B.V. All rights reserved. C1 [Layman, Wanda S.; Sauceda, Mario A.; Zuo, Jian] St Jude Childrens Res Hosp, Dept Dev Neurobiol, Memphis, TN 38105 USA. RP Zuo, J (reprint author), St Jude Childrens Res Hosp, Dept Dev Neurobiol, MS323,262 Danny Thomas Pl, Memphis, TN 38105 USA. EM wanda.layman@stjude.org; mario.sauceda@stjude.org; jian.zuo@stjude.org FU National Institutes of Health [DC006471, DC008800, CA21765]; Office of Naval Research [N000140911014, N000141210775, N000 141210191]; American Lebanese Syrian Associated Charities of St. Jude Children's Research Hospital; Hartwell Individual Biomedical Research Award FX This work was supported by grants from the National Institutes of Health (DC006471, DC008800, and CA21765 to J.Z.), the Office of Naval Research (N000140911014, N000141210775, and N000 141210191 to J.Z.), and the American Lebanese Syrian Associated Charities of St. Jude Children's Research Hospital. J.Z. is a recipient of The Hartwell Individual Biomedical Research Award. CR Armstrong L, 2000, MECH DEVELOP, V97, P109, DOI 10.1016/S0925-4773(00)00423-8 Cai Y., 2013, ONCOGENE, DOI DOI 10.1038/0NC.2013.178 Cheng JC, 2003, J NATL CANCER I, V95, P399 Cohen DE, 2011, NAT REV GENET, V12, P243, DOI 10.1038/nrg2938 Cunliffe VT, 2008, CURR OPIN GENET DEV, V18, P404, DOI 10.1016/j.gde.2008.10.001 Driver EC, 2013, DEV BIOL, V376, P86, DOI 10.1016/j.ydbio.2013.01.005 Hanna JH, 2010, CELL, V143, P508, DOI 10.1016/j.cell.2010.10.008 Hayakawa T, 2011, J BIOMED BIOTECHNOL, DOI 10.1155/2011/129383 Hernandez DG, 2011, HUM MOL GENET, V20, P1164, DOI 10.1093/hmg/ddq561 Huangfu DW, 2008, NAT BIOTECHNOL, V26, P795, DOI 10.1038/nbt1418 Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193 Jurkowska RZ, 2011, CHEMBIOCHEM, V12, P206, DOI 10.1002/cbic.201000195 Kelly MC, 2012, J NEUROSCI, V32, P6699, DOI 10.1523/JNEUROSCI.5420-11.2012 Kim K, 2010, NATURE, V467, P285, DOI 10.1038/nature09342 Lai AY, 2011, NAT REV CANCER, V11, P588, DOI 10.1038/nrc3091 Lande-Diner L, 2007, J BIOL CHEM, V282, P12194, DOI 10.1074/jbc.M607838200 LeBoeuf M, 2010, DEV CELL, V19, P807, DOI 10.1016/j.devcel.2010.10.015 Li H, 2009, NATURE, V460, P1136, DOI 10.1038/nature08290 Lister R, 2011, NATURE, V471, P68, DOI 10.1038/nature09798 Liu ZY, 2012, J NEUROSCI, V32, P6600, DOI 10.1523/JNEUROSCI.0818-12.2012 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Maegawa S, 2010, GENOME RES, V20, P332, DOI 10.1101/gr.096826.109 Malgrange B, 2002, MECH DEVELOP, V112, P79, DOI 10.1016/S0925-4773(01)00642-6 McCabe MT, 2012, NATURE, V492, P108, DOI 10.1038/nature11606 Mikkelsen TS, 2008, NATURE, V454, P49, DOI 10.1038/nature07056 Miranda TB, 2007, J CELL PHYSIOL, V213, P384, DOI 10.1002/jcp.21224 Mutai H, 2009, DEV NEUROBIOL, V69, P913, DOI 10.1002/dneu.20746 Oshima K, 2007, JARO-J ASSOC RES OTO, V8, P18, DOI 10.1007/s10162-006-0058-3 Palmieri D, 2009, CLIN CANCER RES, V15, P6148, DOI 10.1158/1078-0432.CCR-09-1039 Papp B, 2011, CELL RES, V21, P486, DOI 10.1038/cr.2011.28 Qureshi IA, 2010, CELL CYCLE, V9, P4477, DOI 10.4161/cc.9.22.13973 Reynolds N, 2012, EMBO J, V31, P593, DOI 10.1038/emboj.2011.431 Ruben R.J., 1967, ACTA OTO-LARYNGOL, V220, P221 Sinkkonen ST, 2011, SCI REP-UK, V1, DOI 10.1038/srep00026 Soldner F, 2009, CELL, V136, P964, DOI 10.1016/j.cell.2009.02.013 Spriggs KA, 2010, MOL CELL, V40, P228, DOI 10.1016/j.molcel.2010.09.028 Vire E, 2006, NATURE, V439, P871, DOI 10.1038/nature04431 Vogel C, 2012, NAT REV GENET, V13, P227, DOI 10.1038/nrg3185 Waldhaus J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036066 Walters BJ, 2013, HEARING RES, V297, P68, DOI 10.1016/j.heares.2012.11.009 Wang JX, 2007, NATURE, V446, P882, DOI 10.1038/nature05671 Wang Y, 2009, CELL, V138, P660, DOI 10.1016/j.cell.2009.05.050 White PM, 2006, NATURE, V441, P984, DOI 10.1038/nature04849 Wilting RH, 2010, EMBO J, V29, P2586, DOI 10.1038/emboj.2010.136 Yamaguchi T, 2010, GENE DEV, V24, P455, DOI 10.1101/gad.552310 Yamanaka S, 2009, CELL, V137, P13, DOI 10.1016/j.cell.2009.03.034 Zheng JL, 2000, NAT NEUROSCI, V3, P580 NR 47 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2013 VL 304 BP 167 EP 178 DI 10.1016/j.heares.2013.07.017 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 225PM UT WOS:000324974800018 PM 23911933 ER PT J AU Eggermont, JJ Munguia, R Shaw, G AF Eggermont, Jos J. Munguia, Raymundo Shaw, Gregory TI Cross-correlations between three units in cat primary auditory cortex SO HEARING RESEARCH LA English DT Article ID NEURAL INTERACTION; SPIKE TRAINS; NEURONS; PATTERNS; DISPLAY; NOISE AB Here we use a modification of the Joint-Pen-Stimulus-Time histogram (JPSTH) to investigate triple correlations between cat auditory cortex neurons. The modified procedure allowed the decomposition of the xy-pair correlation into a part that is due to the correlation of the x and y units with the trigger unit, and a remaining 'pair correlation'. We analyzed 16 sets of 15-minute duration stationary spontaneous recordings in primary auditory cortex (AI) with between 11 and 14 electrodes from 2 arrays of 8 electrodes each that provided spontaneous firing rates above 0.22 sp/s and for which reliable frequency-tuning curves could be obtained and the characteristic frequency (CF) was estimated. Thus we evaluated 11,282 conditional cross-correlation functions. The predictor for the conditional cross-correlation, calculated on the assumption that the trigger unit had no effect on the xy-pair correlation but using the same fraction of xy spikes, was equal to the conventional pair-wise correlation function between units xy. The conditional correlation of the xy-pair due to correlation of the x and/or y unit with the trigger unit decreased with the geometric mean distance of the xy pair to the trigger unit, but was independent of the pair cross-correlation coefficient. The conditional pair correlation coefficient was estimated at 78% of the measured pair correlation coefficient. Assuming a geometric decreasing effect of activities of units on other electrodes on the conditional correlation, we estimated the potential contribution of a large number of contributing units on the measured pair correlation at 35-50 of that correlation. This suggests that conventionally measured pair correlations in auditory cortex under ketamine anesthesia overestimate the 'true pair correlation', likely resulting from massive common input, by potentially up to a factor 2. (C) 2013 Elsevier B.V. All rights reserved. C1 [Eggermont, Jos J.; Munguia, Raymundo; Shaw, Gregory] Univ Calgary, Dept Physiol & Pharmacol, Calgary, AB T2N 1N4, Canada. [Eggermont, Jos J.; Munguia, Raymundo; Shaw, Gregory] Univ Calgary, Dept Psychol, Calgary, AB T2N 1N4, Canada. RP Eggermont, JJ (reprint author), Univ Calgary, Dept Psychol, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. EM eggermon@ucalgary.ca FU Natural Sciences and Engineering Research Council (NSERC) of Canada [NSERC 1206-2010] FX The study was funded by the Natural Sciences and Engineering Research Council (NSERC) of Canada under Grant number NSERC 1206-2010. By the Alberta Heritage Foundation of Medical Research and the Campbell McLaurin chair for Hearing Deficiencies. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR Abeles M, 2001, J NEUROSCI METH, V107, P141, DOI 10.1016/S0165-0270(01)00364-8 ABELES M, 1983, IEEE T BIO-MED ENG, V30, P235, DOI 10.1109/TBME.1983.325226 AERTSEN AMHJ, 1989, J NEUROPHYSIOL, V61, P900 Brody CD, 1999, NEURAL COMPUT, V11, P1537, DOI 10.1162/089976699300016133 BRPSCH M, 1999, EUR J NEUROSCI, V11, P3517 Czanner G, 2005, NEURAL COMPUT, V17, P1456, DOI 10.1162/0899766053723041 DICKSON JW, 1974, J NEUROPHYSIOL, V37, P1239 Eggermont JJ, 2000, J NEUROPHYSIOL, V83, P2708 EGGERMONT JJ, 1994, J NEUROPHYSIOL, V71, P246 EGGERMONT JJ, 1991, J NEUROPHYSIOL, V66, P1549 EGGERMONT JJ, 1992, J NEUROPHYSIOL, V68, P1216 EGGERMONT JJ, 1996, AUDIT NEUROSCI, V2, P76 Eggermont JJ, 2006, J NEUROPHYSIOL, V96, P746, DOI 10.1152/jn.00059.2006 GERSTEIN GL, 1985, J NEUROSCI, V5, P881 Gourevitch B, 2010, J COMPUT NEUROSCI, V29, P253, DOI 10.1007/s10827-009-0149-3 Gourevitch B, 2007, J NEUROSCI METH, V163, P181, DOI 10.1016/j.jneumeth.2007.02.021 Grun S, 2002, NEURAL COMPUT, V14, P43, DOI 10.1162/089976602753284455 Huang CL, 2000, J COMP NEUROL, V427, P302, DOI 10.1002/1096-9861(20001113)427:2<302::AID-CNE10>3.0.CO;2-J Miller LM, 2001, NEURON, V32, P151, DOI 10.1016/S0896-6273(01)00445-7 Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005 PERKEL DH, 1975, BRAIN RES, V100, P271, DOI 10.1016/0006-8993(75)90483-7 Prut Y, 1998, J NEUROPHYSIOL, V79, P2857 Smith MA, 2008, J NEUROSCI, V28, P12591, DOI 10.1523/JNEUROSCI.2929-08.2008 Tomita M, 2005, J NEUROPHYSIOL, V93, P378, DOI 10.1152/jn.00643.2004 NR 24 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2013 VL 304 BP 179 EP 187 DI 10.1016/j.heares.2013.07.019 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 225PM UT WOS:000324974800019 PM 23933479 ER PT J AU Gasparini, F Caicci, F Rigon, F Zaniolo, G Burighel, P Manni, L AF Gasparini, Fabio Caicci, Federico Rigon, Francesca Zaniolo, Giovanna Burighel, Paolo Manni, Lucia TI Cytodifferentiation of hair cells during the development of a basal chordate SO HEARING RESEARCH LA English DT Article ID ASCIDIAN CIONA-INTESTINALIS; VERTEBRATE INNER-EAR; NEURAL CREST; BOTRYLLUS-SCHLOSSERI; NERVOUS-SYSTEM; CORONAL ORGAN; LATERAL-LINE; EVOLUTION; PLACODES; REGENERATION AB Tunicates are unique animals for studying the origin and evolution of vertebrates because they are considered vertebrates' closest living relatives and share the vertebrate body plan and many specific features. Both possess neural placodes, transient thickenings of the cranial ectoderm that give rise to various types of sensory cells, including axonless secondary mechanoreceptors. In vertebrates, these are represented by the hair cells of the inner ear and the lateral line, which have an apical apparatus typically bearing cilia and stereovilli. In tunicates, they are found in the coronal organ, which is a mechanoreceptor located at the base of the oral siphon along the border of the velum and tentacles and is formed of cells bearing a row of cilia and short microvilli. The coronal organ represents the best candidate homolog for the vertebrate lateral line. To further understand the evolution of secondary sensory cells, we analysed the development and cytodifferentiation of coronal cells in the tunicate ascidian Ciona intestinalis for the first time. Here, coronal sensory cells can be identified as early as larval metamorphosis, before tentacles form, as cells with short cilia and microvilli. Sensory cells gradually differentiate, acquiring hair cell features with microvilli containing actin and myosin Vila; in the meantime, the associated supporting cells develop. The coronal organ grows throughout the animal's lifespan, accompanying the growth of the tentacle crown. Anti-phospho Histone H3 immunostaining indicates that both hair cells and supporting cells can proliferate. This finding contributes to the understanding of the evolution of secondary sensory cells, suggesting that both ancestral cell types were able to proliferate and that this property was progressively restricted to supporting cells in vertebrates and definitively lost in mammals. (C) 2013 Elsevier B.V. All rights reserved. C1 [Gasparini, Fabio; Caicci, Federico; Rigon, Francesca; Zaniolo, Giovanna; Burighel, Paolo; Manni, Lucia] Univ Padua, Dipartimento Biol, I-35121 Padua, Italy. RP Caicci, F (reprint author), Univ Padua, Dipartimento Biol, Via U Bassi 58-B, I-35121 Padua, Italy. EM federico.caicci@unipd.it RI Gasparini, Fabio/F-4485-2011 OI Gasparini, Fabio/0000-0002-7574-0834 FU Italian Ministero della Universita e Ricerca Scientifica e Tecnologica; Fondazione Cariparo FX This study was supported by grants from Italian Ministero della Universita e Ricerca Scientifica e Tecnologica and Fondazione Cariparo to LM. The authors would like to thank Mr Ivan Rovato and Miss Michela Rotanti for helping with the acquisition of data. CR Auger H, 2010, DEV BIOL, V339, P374, DOI 10.1016/j.ydbio.2009.12.040 Baker CVH, 2008, J EXP ZOOL PART B, V310B, P370, DOI 10.1002/jez.b.21188 Bassham S, 2005, DEVELOPMENT, V132, P4259, DOI 10.1242/dev.01973 Bone Q., 1998, BIOL PELAGIC TUNICAT Bonnet C, 2012, CURR OPIN NEUROL, V25, P42, DOI 10.1097/WCO.0b013e32834ef8b2 Bouchard M, 2010, BMC DEV BIOL, V10, DOI 10.1186/1471-213X-10-89 Burighel P, 2001, INVERTEBR BIOL, V120, P185, DOI 10.1111/j.1744-7410.2001.tb00123.x Burighel P, 2008, BRAIN RES BULL, V75, P331, DOI 10.1016/j.brainresbull.2007.10.012 Burighel P, 2011, HEARING RES, V273, P14, DOI 10.1016/j.heares.2010.03.087 Burns JC, 2012, J NEUROSCI, V32, P6570, DOI 10.1523/JNEUROSCI.6274-11.2012 Caicci F, 2013, J COMP NEUROL, V521, P2756, DOI 10.1002/cne.23313 Caicci F, 2010, J COMP NEUROL, V518, P547, DOI 10.1002/cne.22222 Caicci F, 2010, CAN J ZOOL, V88, P567, DOI 10.1139/Z10-036 Chiba S, 2004, ZOOL SCI, V21, P285, DOI 10.2108/zsj.21.285 Collado MS, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023861 DALLAI R, 1989, TISSUE CELL, V21, P37, DOI 10.1016/0040-8166(89)90019-0 Delsuc F, 2006, NATURE, V439, P965, DOI 10.1038/nature04336 Donoghue PCJ, 2008, BIOESSAYS, V30, P530, DOI 10.1002/bies.20767 Drummond MC, 2012, HEARING RES, V288, P89, DOI 10.1016/j.heares.2011.12.003 Fritzsch B, 2002, J NEUROBIOL, V53, P143, DOI 10.1002/neu.10098 Frolenkov GI, 2004, NAT REV GENET, V5, P489, DOI 10.1038/nrg1377 Gallagher BC, 1996, DEV BIOL, V175, P95, DOI 10.1006/dbio.1996.0098 Gasparini F, 2008, EVOL DEV, V10, P591, DOI 10.1111/j.1525-142X.2008.00274.x Gibbs MA, 2004, BRAIN BEHAV EVOLUT, V64, P70, DOI 10.1159/000079117 Graham A, 2013, J ANAT, V222, P32, DOI 10.1111/j.1469-7580.2012.01506.x Holland LZ, 2001, J ANAT, V199, P85, DOI 10.1046/j.1469-7580.199.parts1-2.8.x Horie T, 2011, NATURE, V469, P525, DOI 10.1038/nature09631 Jeffery WR, 2008, DEV BIOL, V324, P152, DOI 10.1016/j.ydbio.2008.08.022 KALTENBACH JA, 1994, J COMP NEUROL, V350, P187, DOI 10.1002/cne.903500204 Kennedy HJ, 2012, JARO-J ASSOC RES OTO, V13, P437, DOI 10.1007/s10162-012-0325-4 Liu XL, 2006, J NEUROPATH EXP NEUR, V65, P905, DOI 10.1097/01.jnen.0000235857.79502.c3 Mackie GO, 2006, CAN J ZOOL, V84, P1146, DOI 10.1139/Z06-106 Manley GA, 2008, SENSES COMPREHENSIVE, P1 Manni L, 2004, EVOL DEV, V6, P379, DOI 10.1111/j.1525-142X.2004.04046.x Manni L, 2005, J EXP ZOOL PART B, V304B, P324, DOI 10.1002/jez.21039 Manni L, 2006, J COMP NEUROL, V495, P363, DOI 10.1002/cne.20867 Manni L, 2004, J EXP ZOOL PART B, V302B, P483, DOI 10.1002/jez.b.21013 Nakamura MJ, 2012, DEV BIOL, V372, P274, DOI 10.1016/j.ydbio.2012.09.007 Pan N, 2012, CELL TISSUE RES, V349, P415, DOI 10.1007/s00441-012-1454-0 Pierce ML, 2008, EVOL DEV, V10, P106, DOI 10.1111/j.1525-142X.2007.00217.x PIPERNO G, 1987, J CELL BIOL, V104, P289, DOI 10.1083/jcb.104.2.289 Rigon F, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-112 Schlosser G, 2010, INT REV CEL MOL BIO, V283, P129, DOI 10.1016/S1937-6448(10)83004-7 Schlosser G, 2005, J EXP ZOOL PART B, V304B, P347, DOI 10.1002/jez.b.21055 Sinkkonen ST, 2011, SCI REP-UK, V1, DOI 10.1038/srep00026 Streit A, 2001, J ANAT, V199, P99, DOI 10.1017/S0021878201008263 TILNEY LG, 1986, HEARING RES, V22, P55, DOI 10.1016/0378-5955(86)90077-8 Wagner E, 2012, DEVELOPMENT, V139, P2351, DOI 10.1242/dev.078485 Warchol ME, 2011, HEARING RES, V273, P72, DOI 10.1016/j.heares.2010.05.004 Whitlock KE, 2003, DEV BIOL, V257, P140, DOI 10.1016/S0012-1606(03)00039-3 Zaniolo G, 2002, J COMP NEUROL, V443, P124, DOI 10.1002/cne.10097 Zine A, 1996, BRAIN RES, V721, P49, DOI 10.1016/0006-8993(96)00147-3 NR 52 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2013 VL 304 BP 188 EP 199 DI 10.1016/j.heares.2013.07.006 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 225PM UT WOS:000324974800020 PM 23876523 ER PT J AU Lee, GS Liu, CL Lee, SH AF Lee, Guo-She Liu, Chialin Lee, Shao-Hsuan TI Effects of hearing aid amplification on voice F0 variability in speakers with prelingual hearing loss SO HEARING RESEARCH LA English DT Article ID DELAYED AUDITORY-FEEDBACK; VOCAL FUNDAMENTAL-FREQUENCY; COCHLEAR IMPLANTATION; DEAFENED ADULTS; SPEECH; CHILDREN; RESPONSES AB To investigate the audio-vocal feedback responses of (F0) to hearing amplification in severe-to-profound prelingual hearing loss (SPHL) using power spectral analysis of F0 contour of sustained vowels. Sustained phonations of vowel/a/of seventeen participants with SPHL were acquired with and without hearing-aid amplifications. The vocal intensity was visually fed back to the participants to help controlling the vocal intensity at 65-75 dBA and 85-95 dBA. The F0 contour of the phonations was extracted and submitted to spectral analysis to measure the extent of F0 fluctuations at different frequency ranges. The results showed that both high vocal intensity and hearing-aid amplification significantly improved voice F0 control by reducing the low-frequency fluctuations (low-frequency power, LFP, 0.2-3 Hz) in F0 spectrum. However, the enhanced feedback from higher vocal intensity and/or hearing amplification was not adequate to reduce the LFP to the level of a normal hearing person. Moreover, we found significant and negative correlations between LFP and supra-threshold feedback intensity (phonation intensity hearing threshold level) for the frequencies of 500-2000 Hz. Increased vocal intensity, as well as hearing-aid amplification, improved voice F0 control by reducing the LFP of F0 spectrum, and the subtle changes in voices could be well explored using spectral analysis of F0. (C) 2013 Elsevier B.V. All rights reserved. C1 [Lee, Guo-She] Natl Yang Ming Univ, Fac Med, Sch Med, Taipei 112, Taiwan. [Lee, Guo-She] Taipei City Hosp, Dept Otolaryngol, Ren Ai Branch, Taipei 112, Taiwan. [Liu, Chialin; Lee, Shao-Hsuan] Natl Taipei Univ Nursing & Hlth Sci, Dept Speech & Hearing Disorders & Sci, Taipei, Taiwan. [Lee, Shao-Hsuan] Yong Cheng Rehabil Clin, Taipei, Taiwan. RP Lee, GS (reprint author), Natl Yang Ming Univ, Fac Med, Sch Med, 155,Sec 2,Li Norng St, Taipei 112, Taiwan. EM guosheli@ms12.hinet.net; chialin58@gmail.com; satomilee0701@gmail.com FU National Science Council, Taiwan [NSC 101-2314-B-010-022] FX There was no conflict of interest to disclose in this work. This study was supported by the grant from National Science Council, Taiwan (NSC 101-2314-B-010-022). CR Black JW, 1951, J SPEECH HEAR DISORD, V16, P56 Bolfan-Stosic N, 2007, J OTOLARYNGOL, V36, P120, DOI 10.2310/7070.2007.0009 Burnett TA, 1998, J ACOUST SOC AM, V103, P3153, DOI 10.1121/1.423073 Campisi P, 2000, J OTOLARYNGOL, V29, P302 Coelho Ana Cristina de Castro, 2009, Pro Fono, V21, P7, DOI 10.1590/S0104-56872009000100002 Dejonckere P., 1998, LOGOP PHONIATR VOCO, V23, P79, DOI 10.1080/140154398434239 EGAN JJ, 1975, ARCH OTOLARYNGOL, V101, P557 FAIRBANKS G, 1958, J SPEECH HEAR RES, V1, P12 Fairbanks G, 1955, J SPEECH HEAR DISORD, V20, P333 Hain TC, 2001, J ACOUST SOC AM, V109, P2146, DOI 10.1121/1.1366319 Hamzavi J, 2000, AUDIOLOGY, V39, P102 Higgins Maureen B., 2003, Ear and Hearing, V24, P48, DOI 10.1097/01.AUD.0000051846.71105.AF Higgins MB, 2005, EAR HEARING, V26, P546, DOI 10.1097/01.aud.0000188151.99086.a3 HIGGINS MB, 1994, J SPEECH HEAR RES, V37, P510 Kishon-Rabin L, 1999, J ACOUST SOC AM, V106, P2843, DOI 10.1121/1.428109 Langereis MC, 1998, AUDIOLOGY, V37, P219 Larson CR, 2000, J ACOUST SOC AM, V107, P559, DOI 10.1121/1.428323 Lee G. -S., 2004, J TAIWAN OTOLARYNGOL, V39, P145 Lee GS, 2007, EAR HEARING, V28, P343, DOI 10.1097/AUD.0b013e318047936f Lee GS, 2009, CHINESE J PHYSIOL, V52, P446, DOI 10.4077/CJP.2009.AMH074 Lee GS, 2012, J VOICE, V26, P24, DOI 10.1016/j.jvoice.2010.10.003 Murry T, 1999, J VOICE, V13, P257, DOI 10.1016/S0892-1997(99)80030-7 PICK HL, 1989, J ACOUST SOC AM, V85, P894, DOI 10.1121/1.397561 Sober SJ, 2009, NAT NEUROSCI, V12, P927, DOI 10.1038/nn.2336 Zanini S, 1999, PERCEPT MOTOR SKILL, V89, P1095, DOI 10.2466/PMS.89.7.1095-1109 NR 25 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2013 VL 302 BP 1 EP 8 DI 10.1016/j.heares.2013.04.010 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 186OZ UT WOS:000322055300001 PM 23648550 ER PT J AU Seyyedi, M Eddington, DK Nadol, JB AF Seyyedi, Mohammad Eddington, Donald K. Nadol, Joseph B., Jr. TI Effect of monopolar and bipolar electric stimulation on survival and size of human spiral ganglion cells as studied by postmortem histopathology SO HEARING RESEARCH LA English DT Article ID NEONATALLY DEAFENED CATS; COCHLEAR IMPLANTATION; AUDITORY-NERVE; GUINEA-PIG; NEUROTROPHIC FACTOR; HEARING-LOSS; INNER-EAR; NEURONS; DEGENERATION; PATTERNS AB The spiral ganglion cell (SGC) is the target of electrical stimulation in cochlear implants. This study is designed to test the hypothesis that chronic electrical stimulation tends to preserve SGCs in implanted hearing-impaired ears. A total of 26 pairs of temporal bones were studied from 26 individuals who in life suffered bilateral profound hearing impairment that was symmetric (in degree of impairment and etiology) across ears and then underwent unilateral cochlear implantation. The subjects were divided in two groups by stimulus configuration: bipolar (n = 16) or monopolar (n = 10). The temporal bones were prepared for histological review by standard methods and two measures of SGC status were made by cochlear segment: count and maximal cross-sectional area. Within-subject comparison of the measures between the implanted-stimulated and the unimplanted ears showed: (1) for both stimulus configurations, the mean (across subjects and segments) of the count difference (implanted ear - unimplanted ear) was significantly less than zero; (2) the mean (across subject) count difference for cochlear segments I, II and III (segments with electrode contacts in the implanted ear) was significantly less negative than the mean difference for cochlear segment IV (no electrode in implanted ear) for bipolar but not for monopolar stimulation; (3) neither implantation-stimulation nor stimulus configuration significantly influenced the measures of maximum cross-sectional cell area. The SGC count results are consistent with the hypothesis that implantation results in a propensity across the whole cochlea for SGCs to degenerate and with chronic bipolar stimulation ameliorating this propensity in those cochlear segments with electrodes present. (C) 2013 Elsevier B.V. All rights reserved. C1 [Seyyedi, Mohammad; Eddington, Donald K.; Nadol, Joseph B., Jr.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02114 USA. [Seyyedi, Mohammad; Eddington, Donald K.; Nadol, Joseph B., Jr.] Massachusetts Eye & Ear Infirm, Dept Otolaryngol, Boston, MA 02114 USA. [Seyyedi, Mohammad; Eddington, Donald K.; Nadol, Joseph B., Jr.] Massachusetts Eye & Ear Infirm, Cochlear Implant Res Lab, Boston, MA 02114 USA. [Eddington, Donald K.; Nadol, Joseph B., Jr.] MIT, Speech & Hearing Biosci & Technol Program, Div Hlth Sci & Technol, Cambridge, MA 02139 USA. RP Nadol, JB (reprint author), Massachusetts Eye & Ear Infirm, Dept Otolaryngol, 243 Charles St, Boston, MA 02114 USA. EM joseph_nadol@meei.harvard.edu FU National Institute of Deafness and Other Communication Disorders [R01-DC000152] FX This work was supported by grant R01-DC000152 from the National Institute of Deafness and Other Communication Disorders. CR Agterberg MJH, 2010, HEARING RES, V269, P169, DOI 10.1016/j.heares.2010.06.015 Araki S, 1998, LARYNGOSCOPE, V108, P687, DOI 10.1097/00005537-199805000-00012 Chatterjee M, 1999, J ACOUST SOC AM, V105, P850, DOI 10.1121/1.426274 CHIONG CM, 1993, HEARING RES, V67, P211, DOI 10.1016/0378-5955(93)90249-Z Clark G M, 1988, Acta Otolaryngol Suppl, V448, P1 Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004 Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463 Fayad JN, 2006, LARYNGOSCOPE, V116, P1310, DOI 10.1097/01.mlg.0000227176.09500.28 Fritzsch B, 1999, CELL TISSUE RES, V295, P369, DOI 10.1007/s004410051244 HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7 HINOJOSA R, 1983, ANN NY ACAD SCI, V405, P459, DOI 10.1111/j.1749-6632.1983.tb31662.x HULTCRANTZ M, 1991, HEARING RES, V54, P272, DOI 10.1016/0378-5955(91)90121-O Kanzaki S, 2002, J COMP NEUROL, V454, P350, DOI 10.1002/cne.10480 Khan AM, 2005, ANN OTO RHINOL LARYN, V114, P381 Konigsmark BW, 1970, CONT RES METHODS NEU, P315 Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3 LEAKE PA, 1991, HEARING RES, V54, P251, DOI 10.1016/0378-5955(91)90120-X LEAKE PA, 1995, HEARING RES, V82, P65 LINTHICUM FH, 1991, ACTA OTO-LARYNGOL, V111, P327, DOI 10.3109/00016489109137395 LOUSTEAU RJ, 1987, LARYNGOSCOPE, V97, P836 MARSH MA, 1992, AM J OTOL, V13, P241 McGuinness SL, 2005, OTOL NEUROTOL, V26, P1064, DOI 10.1097/01.mao.0000185063.20081.50 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 Mitchell A, 1997, HEARING RES, V105, P30, DOI 10.1016/S0378-5955(96)00202-X NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411 NADOL JB, 1988, AM J OTOLARYNG, V9, P47, DOI 10.1016/S0196-0709(88)80007-3 NADOL JB, 1990, ANN OTO RHINOL LARYN, V99, P340 OTTE J, 1978, LARYNGOSCOPE, V88, P1231 SCHULNECHT H, 1968, Archives of Otolaryngology, V87, P129 SCHUKNECHT HF, 1953, AMA ARCH OTOLARYNGOL, V58, P377 Seyyedi M, 2011, HEARING RES, V282, P56, DOI 10.1016/j.heares.2011.10.002 SHEPHERD RK, 1994, HEARING RES, V81, P150, DOI 10.1016/0378-5955(94)90162-7 Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683 WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7 Wise AK, 2005, J COMP NEUROL, V487, P147, DOI 10.1002/cne.20563 Xu HX, 2012, ACTA OTO-LARYNGOL, V132, P482, DOI 10.3109/00016489.2011.647361 Xu J, 1997, HEARING RES, V105, P1, DOI 10.1016/S0378-5955(96)00193-1 XU SA, 1993, HEARING RES, V70, P205, DOI 10.1016/0378-5955(93)90159-X YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C ZAPPIA JJ, 1991, ANN OTO RHINOL LARYN, V100, P914 ZIMMERMANN CE, 1995, HEARING RES, V90, P192, DOI 10.1016/0378-5955(95)00165-1 NR 42 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2013 VL 302 BP 9 EP 16 DI 10.1016/j.heares.2013.04.007 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 186OZ UT WOS:000322055300002 PM 23660399 ER PT J AU Wakaoka, T Motohashi, T Hayashi, H Kuze, B Aoki, M Mizuta, K Kunisada, T Ito, Y AF Wakaoka, Takanori Motohashi, Tsutomu Hayashi, Hisamitsu Kuze, Bunya Aoki, Mitsuhiro Mizuta, Keisuke Kunisada, Takahiro Ito, Yatsuji TI Tracing Sox10-expressing cells elucidates the dynamic development of the mouse inner ear SO HEARING RESEARCH LA English DT Article ID TRANSCRIPTION FACTOR SOX10; CREST-DERIVED MELANOCYTES; NEURAL CREST; HIRSCHSPRUNG-DISEASE; STEM-CELLS; DIFFERENTIATION; GENE; MUTATIONS; PLACODE; ORIGIN AB The inner ear is constituted by complicated cochlear and vestibular compartments, which are derived from the otic vesicle, an embryonic structure of ectodermal origin. Although the inner ear development has been analyzed using various techniques, the developmental events have not been fully elucidated because of the intricate structure. We previously developed a Sox10-IRES-Venus mouse designed to express green fluorescent protein under the control of the Sox10 promoter. In the present study, we showed that the Sox10-IRES-Venus mouse enabled the non-destructive visualization and understanding of the morphogenesis during the development of the inner ear. The expression of the transcription factor Sox10 was first observed in the invaginating otic placodal epithelium, and continued to be expressed in the mature inner ear epithelium except for the hair cells and mesenchymal cells. We found that Sox10 was expressed in immature hair cells in the developing inner ear, suggesting that hair cells were generated from the Sox10-expressing prosensory cells. Furthermore, we demonstrated that scattered Sox10-expressing cells existed around the developing inner ear, some of which differentiated into pigmented melanocytes in the stria vascularis, suggesting that they were neural crest cells. Further analyzing the Sox10-IRES-Venus mice would provide important information to better understand the development of the inner ear. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved. C1 [Wakaoka, Takanori; Hayashi, Hisamitsu; Kuze, Bunya; Aoki, Mitsuhiro; Mizuta, Keisuke; Ito, Yatsuji] Gifu Univ, Dept Otolaryngol, Grad Sch Med, Gifu 5011194, Japan. [Motohashi, Tsutomu; Kunisada, Takahiro] Gifu Univ, Dept Tissue & Organ Dev Regenerat & Adv Med Sci, Grad Sch Med, Gifu 5011194, Japan. RP Motohashi, T (reprint author), Gifu Univ, Dept Tissue & Organ Dev Regenerat & Adv Med Sci, Grad Sch Med, 1-1 Yanagido, Gifu 5011194, Japan. EM tmotohas@gifu-u.ac.jp FU Gifu University Research Grant Program FX We thank Drs. Hitomi Aoki and Ken-ichi Tezuka (Department of Tissue and Organ Development) for their technical assistance, and the members of the Department of Otolaryngology for intellectual discussions and critical reading of this manuscript. This study was supported by the Gifu University Research Grant Program. CR Barald KF, 2004, DEVELOPMENT, V131, P4119, DOI 10.1242/dev.01339 Barrionuevo F, 2008, DEV BIOL, V317, P213, DOI 10.1016/j.ydbio.2008.02.011 Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837 Breuskin I, 2010, J NEUROCHEM, V114, P1827, DOI 10.1111/j.1471-4159.2010.06897.x Breuskin I, 2009, DEV BIOL, V335, P327, DOI 10.1016/j.ydbio.2009.09.007 Britsch S, 2001, GENE DEV, V15, P66, DOI 10.1101/gad.186601 CABLE J, 1995, MECH DEVELOP, V50, P139, DOI 10.1016/0925-4773(94)00331-G Cantos R, 2000, P NATL ACAD SCI USA, V97, P11707, DOI 10.1073/pnas.97.22.11707 Chen P, 2002, DEVELOPMENT, V129, P2495 Fekete DM, 1999, TRENDS NEUROSCI, V22, P263, DOI 10.1016/S0166-2236(98)01366-6 FELIX H, 1993, ACTA OTO-LARYNGOL, V113, P321, DOI 10.3109/00016489309135817 Freyer L, 2011, DEVELOPMENT, V138, P5403, DOI 10.1242/dev.069849 Graham A, 2004, DEV DYNAM, V229, P5, DOI 10.1002/dvdy.10442 Herbarth B, 1998, P NATL ACAD SCI USA, V95, P5161, DOI 10.1073/pnas.95.9.5161 Kelley MW, 2007, INT J DEV BIOL, V51, P571, DOI 10.1387/ijdb.072388mk Kelley MW, 2006, NAT REV NEUROSCI, V7, P837, DOI 10.1038/nrn1987 Kim J, 2003, NEURON, V38, P17, DOI 10.1016/S0896-6273(03)00163-6 Kopecky B, 2011, DEV DYNAM, V240, P1373, DOI 10.1002/dvdy.22620 Kopecky B, 2012, DEV DYNAM, V241, P465, DOI 10.1002/dvdy.23736 LeDouarin NM, 1999, NEURAL CREST Lim DJ, 1992, STRUCTURAL DEV COCHL, P33 Ma QF, 1998, NEURON, V20, P469, DOI 10.1016/S0896-6273(00)80988-5 MARTIN P, 1993, DEV BIOL, V159, P549, DOI 10.1006/dbio.1993.1263 Mollaaghababa R, 2003, ONCOGENE, V22, P3024, DOI 10.1038/sj.onc.1206442 Morsli H, 1998, J NEUROSCI, V18, P3327 Motohashi T, 2011, DEV DYNAM, V240, P1681, DOI 10.1002/dvdy.22658 Noramly S, 2002, J NEUROBIOL, V53, P100, DOI 10.1002/neu.10131 Pan N, 2011, HEARING RES, V275, P66, DOI 10.1016/j.heares.2010.12.002 Pingault V, 1998, NAT GENET, V18, P171, DOI 10.1038/ng0298-171 Ruben R. J., 1967, ACTA OTO-LARYNGOL, V220, P1 Rugh R., 1990, MOUSE Salt AN, 2001, ANN NY ACAD SCI, V942, P306 SHER AE, 1971, ACTA OTO-LARYNGOL, P1 SHINOZAKI N, 1980, ACTA OTO-LARYNGOL, V90, P370, DOI 10.3109/00016488009131738 Smeti I, 2011, GENE EXPR PATTERNS, V11, P22, DOI 10.1016/j.gep.2010.08.008 Southard-Smith EM, 1998, NAT GENET, V18, P60, DOI 10.1038/ng0198-60 Stolt CC, 2002, GENE DEV, V16, P165, DOI 10.1101/gad.215802 Tachibana M, 2003, PIGM CELL RES, V16, P448, DOI 10.1034/j.1600-0749.2003.00066.x Torres M, 1998, MECH DEVELOP, V71, P5, DOI 10.1016/S0925-4773(97)00155-X Watanabe K, 2000, MOL BRAIN RES, V84, P141, DOI 10.1016/S0169-328X(00)00236-9 Wegner M, 1999, NUCLEIC ACIDS RES, V27, P1409, DOI 10.1093/nar/27.6.1409 Wegner M, 2005, TRENDS NEUROSCI, V28, P583, DOI 10.1016/j.tins.2005.08.008 NR 42 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2013 VL 302 BP 17 EP 25 DI 10.1016/j.heares.2013.05.003 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 186OZ UT WOS:000322055300003 PM 23684581 ER PT J AU Kimura, Y Kubo, S Koda, H Shigemoto, K Sawabe, M Kitamura, K AF Kimura, Yurika Kubo, Sachiho Koda, Hiroko Shigemoto, Kazuhiro Sawabe, Motoji Kitamura, Ken TI RNA analysis of inner ear cells from formalin fixed paraffin embedded (FFPE) archival human temporal bone section using laser microdissection - A technical report SO HEARING RESEARCH LA English DT Article ID POLYMERASE-CHAIN-REACTION; MITOCHONDRIAL-DNA; QUANTITATIVE-ANALYSIS; EXPRESSION ANALYSIS; TISSUES; MOUSE; AMPLIFICATION; MUTATIONS; SPECIMENS; DEAFNESS AB Objective: Molecular analysis using archival human inner ear specimens is challenging because of the anatomical complexity, long-term fixation, and decalcification. However, this method may provide great benefit for elucidation of otological diseases. Here, we extracted mRNA for RT-PCR from tissues dissected from archival FFPE human inner ears by laser microdissection. Methods: Three human temporal bones obtained at autopsy were fixed in formalin, decalcified by EDTA, and embedded in paraffin. The samples were isolated into spiral ligaments, outer hair cells, spiral ganglion cells, and stria vascularis by laser microdissection. RNA was extracted and heattreated in 10 mM citrate buffer to remove the formalin-derived modification. To identify the sites where COCH and SLC26A5 mRNA were expressed, semi-nested RT-PCR was performed. We also examined how long COCH mRNA could be amplified by semi-nested RT-PCR in archival temporal bone. Results: COCH was expressed in the spiral ligament and stria vascularis. However, SLC26A5 was expressed only in outer hair cells. The maximum base length of COCH mRNA amplified by RT-PCR was 98 bp in 1 case and 123 bp in 2 cases. Conclusion: We detected COCH and SLC26A5 mRNA in specific structures and cells of the inner ear from archival human temporal bone. Our innovative method using laser microdissection and semi-nested RTPCR should advance future RNA study of human inner ear diseases. (C) 2013 Elsevier B.V. All rights reserved. C1 [Kimura, Yurika] Tokyo Metropolitan Geriatr Med Hosp, Dept Otolaryngol, Itabashi Ku, Tokyo 1730015, Japan. [Kimura, Yurika; Kubo, Sachiho; Shigemoto, Kazuhiro] Tokyo Metropolitan Inst Gerontol, Res Team Geriatr Med, Itabashi Ku, Tokyo, Japan. [Koda, Hiroko; Kitamura, Ken] Tokyo Med & Dent Univ, Dept Otolaryngol, Grad Sch, Bunkyo Ku, Tokyo, Japan. [Koda, Hiroko] Ohkubo Hosp, Dept Otolaryngol, Shinjuku Ku, Tokyo, Japan. [Sawabe, Motoji] Tokyo Med & Dent Univ, Grad Sch Hlth Care Sci, Sect Mol Pathol, Tokyo, Japan. RP Kimura, Y (reprint author), Tokyo Metropolitan Geriatr Med Hosp, Dept Otolaryngol, Itabashi Ku, 35-2 Sakae Cho, Tokyo 1730015, Japan. EM kimura@tmghig.jp FU Ministry of Education, Culture, Sport, Science and Technology, Japan [19791250, 21390459, 22659305, 23791953] FX This study was supported by Grants-in-Aid for Scientific Research (Nos. 19791250, 21390459, 22659305, 23791953) from the Ministry of Education, Culture, Sport, Science and Technology, Japan. The authors wish to thank Mr Goto, Mr Mukaiyama, Ms Hasegawa, and all other technicians in the Departments of Pathology of Tokyo Metropolitan Geriatric Hospital for their excellent pathological work. We also express our sincere gratitude to the deceased whose temporal bones contributed to this study. CR Chung JY, 2010, METHODS MOL BIOL, V611, P19, DOI 10.1007/978-1-60327-345-9_2 Everett LA, 2001, HUM MOL GENET, V10, P153, DOI 10.1093/hmg/10.2.153 Farragher SM, 2008, HISTOCHEM CELL BIOL, V130, P435, DOI 10.1007/s00418-008-0479-7 GIBSON F, 1995, NATURE, V374, P62, DOI 10.1038/374062a0 Hall KL, 2007, OTOL NEUROTOL, V28, P116, DOI 10.1097/01.mao.0000235377.70492.c7 Hamatani K, 2006, J HISTOCHEM CYTOCHEM, V54, P773, DOI 10.1369/jhc.5A6859.2006 Kimura Y, 2007, ACTA OTO-LARYNGOL, V127, P1024, DOI 10.1080/00016480701200202 Kimura Y, 2005, ACTA OTO-LARYNGOL, V125, P697, DOI 10.1080/00016480510027510 Koda H, 2010, ACTA OTO-LARYNGOL, V130, P344, DOI [10.1080/00016480903148282, 10.3109/00016480903148282] Lee KH, 1997, LARYNGOSCOPE, V107, P1228, DOI 10.1097/00005537-199709000-00013 Lin JZ, 1999, ACTA OTO-LARYNGOL, V119, P787, DOI 10.1080/00016489950180432 Markaryan A, 2009, LARYNGOSCOPE, V119, P1184, DOI 10.1002/lary.20218 Pagedar NA, 2006, BRAIN RES, V1091, P289, DOI 10.1016/j.brainres.2006.01.057 Robertson NG, 1998, NAT GENET, V20, P299 Schuknecht HF, 1993, PATHOLOGY EAR Takahashi K, 2003, LARYNGOSCOPE, V113, P1362, DOI 10.1097/00005537-200308000-00018 Takahashi M, 2010, ACTA OTO-LARYNGOL, V130, P788, DOI 10.3109/00016480903426626 WACKYM PA, 1993, LARYNGOSCOPE, V103, P583 NR 18 TC 1 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2013 VL 302 BP 26 EP 31 DI 10.1016/j.heares.2013.04.008 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 186OZ UT WOS:000322055300004 PM 23660400 ER PT J AU Vandali, A Sly, D Cowan, R van Hoesel, R AF Vandali, Andrew Sly, David Cowan, Robert van Hoesel, Richard TI Pitch and loudness matching of unmodulated and modulated stimuli in cochlear implantees SO HEARING RESEARCH LA English DT Article ID AUDITORY-NERVE FIBERS; SPEECH PROCESSOR MSP; ELECTRIC PULSE RATES; TEMPORAL PITCH; FUNDAMENTAL-FREQUENCY; MELODY RECOGNITION; MUSIC PERCEPTION; HEARING; RECIPIENTS; AMPLITUDE AB The pitch elicited by unmodulated and amplitude modulated electrical pulse trains was examined with six adult cochlear implantees. In addition, for three of those subjects who had some hearing in their contralateral ear, the pitch of unmodulated electrical pulse trains was compared to that of complex harmonic acoustic tones. In the first experiment, pulse rate discrimination and the effects of place and level differences on pitch were examined for unmodulated pulse trains. General results were consistent with previous studies showing that variations in pulse rate, while holding loudness fixed, elicit changes in pitch at low rates, but become progressively harder to discriminate as rates approach approximately 300 pulses-per-second. Variations in place or level of stimulation generally produced changes in pitch consistent with tonotopic place and spread of excitation. In the second experiment, pitch and loudness of unmodulated pulse trains were compared with those of amplitude modulated stimuli as a function of modulation depth, rate, and shape, and presentation level. The pitch elicited by an amplitude modulated pulse train was generally higher than that of an unmodulated pulse train with a pulse rate equal to the modulation rate, and generally decreased toward that of the unmodulated pulse train as modulation depth or rate increased, or as presentation level decreased. Sharper/narrower modulation produced lower pitch. In the final experiment, the pitch heights of acoustic complex harmonic tones and unmodulated pulse trains were compared. When electrical pulse rate was equal to the fundamental frequency of the acoustic tone, similar pitch heights were elicited. The results from these experiments indicate that F0 rate pitch derived from the temporal envelope in existing clinical cochlear implant strategies may often be higher than that of acoustic harmonic tones at the same F0 in normal hearing, and that pitch growth with increasing F0 may be shallower. The relationship between F0 and rate pitch is expected to be more similar to acoustic stimulation for low F0 rates when using new pitch coding strategies that code F0 information via deep (narrow) amplitude modulation of the stimulus envelope. Although that similarity reduces as F0 approaches the upper limit of rate-pitch discrimination, that limit is reached sooner for the shallow (or broad) modulators used in existing clinical strategies. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved. C1 [Vandali, Andrew; Cowan, Robert; van Hoesel, Richard] Hearing CRC, Carlton, Vic 3053, Australia. [Sly, David] Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3010, Australia. RP Vandali, A (reprint author), Hearing CRC, 550 Swanston St, Carlton, Vic 3053, Australia. EM andrewev@unimelb.edu.au FU Commonwealth of Australia; Victorian Government through its Operational Infrastructure Support Program FX This research was supported by the Commonwealth of Australia through the establishment and operations of the Hearing CRC. In addition, we acknowledge the support that the Bionics Institute receives from the Victorian Government through its Operational Infrastructure Support Program. The authors wish to thank the six recipients who gave their time to participate in this study. Many thanks also to Mark White for his informative comments on the research. Thanks also to Ian Bruce, Leon Heffer, James Fallon, Richard Dowell, and the anonymous reviewers of the manuscript. CR Arnoldner C, 2008, LARYNGOSCOPE, V118, P1630, DOI 10.1097/MLG.0b013e3181799715 Blarney P.J., 1996, HEARING RES, V99, P139 BUSBY PA, 1994, J ACOUST SOC AM, V95, P2658, DOI 10.1121/1.409835 Busby PA, 1997, J ACOUST SOC AM, V101, P1687, DOI 10.1121/1.418178 Carlyon RP, 2010, JARO-J ASSOC RES OTO, V11, P625, DOI 10.1007/s10162-010-0222-7 Carlyon RP, 2002, J ACOUST SOC AM, V112, P621, DOI 10.1121/1.1488660 Carlyon RP, 2010, J ACOUST SOC AM, V127, P2997, DOI 10.1121/1.3372711 Ciocca V, 2002, J ACOUST SOC AM, V111, P2250, DOI 10.1121/1.1471897 Cohen LT, 2009, HEARING RES, V247, P100, DOI 10.1016/j.heares.2008.11.004 Dai HP, 2000, J ACOUST SOC AM, V107, P953, DOI 10.1121/1.428276 DYNES SBC, 1992, HEARING RES, V58, P79, DOI 10.1016/0378-5955(92)90011-B Eddington D K, 1978, Ann Otol Rhinol Laryngol, V87, P1 FOSTER DH, 1991, PSYCHOL BULL, V109, P152, DOI 10.1037/0033-2909.109.1.152 Geurts L, 2001, J ACOUST SOC AM, V109, P713, DOI 10.1121/1.1340650 GFELLER K, 1991, J SPEECH HEAR RES, V34, P916 Gfeller K, 2005, EAR HEARING, V26, P237, DOI 10.1097/00003446-200506000-00001 Green T, 2004, J ACOUST SOC AM, V116, P2298, DOI 10.1121/1.1785611 Green T, 2005, J ACOUST SOC AM, V118, P375, DOI 10.1121/1.1925827 Hartmann R., 1990, COCHLEAR IMPLANTS MO, P135 Henry BA, 2003, J ACOUST SOC AM, V113, P2861, DOI 10.1121/1.1561900 Huang TS, 1996, AM J OTOL, V17, P46 JAVEL E, 1987, ANN OTO RHINOL LARYN, V96, P26 KIANG NYS, 1979, ACTA OTO-LARYNGOL, V87, P204, DOI 10.3109/00016487909126408 Kreft HA, 2004, J ACOUST SOC AM, V115, P1885, DOI 10.1121/1.1701895 Landsberger DM, 2005, J ACOUST SOC AM, V117, P319, DOI 10.1121/1.1830672 Landsberger DM, 2008, J ACOUST SOC AM, V124, pEL21, DOI 10.1121/1.2947624 Laneau J, 2006, AUDIOL NEURO-OTOL, V11, P38, DOI 10.1159/000088853 Leal MC, 2003, ACTA OTO-LARYNGOL, V123, P826, DOI 10.1080/00016480310000386 Lee KYS, 2002, INT J PEDIATR OTORHI, V63, P137, DOI 10.1016/S0165-5876(02)00005-8 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Looi V., 2008, OTORINOLARINGOLOGIA, V58, P169 Looi V, 2004, INT CONGR SER, V1273, P197, DOI 10.1016/j.ics.2004.08.038 Macmillan N.A., 1991, DETECTION THEORY USE, P3 Matsuoka A.J., 1998, 7 NIH NEUR PROSTH PR McDermott Hugh J, 2004, Trends Amplif, V8, P49, DOI 10.1177/108471380400800203 McDermott HJ, 1997, J ACOUST SOC AM, V101, P1622, DOI 10.1121/1.418177 MCKAY CM, 1993, EAR HEARING, V14, P350 MCKAY CM, 1994, J ACOUST SOC AM, V96, P2664, DOI 10.1121/1.411377 MCKAY CM, 1995, J ACOUST SOC AM, V97, P1777, DOI 10.1121/1.412054 McKay C. M., 2000, Acoustics Research Letters Online, V1, DOI 10.1121/1.1318742 McKay CM, 1996, J ACOUST SOC AM, V100, P1081, DOI 10.1121/1.416294 Milczynski M, 2012, HEARING RES, V285, P1, DOI 10.1016/j.heares.2012.02.006 Milczynski M, 2009, J ACOUST SOC AM, V125, P2260, DOI 10.1121/1.3085642 Miller CA, 2001, JARO, V2, P216 Moore B. C., 2005, HDB AUDITORY RES PIT NELSON DA, 1995, J ACOUST SOC AM, V98, P1987, DOI 10.1121/1.413317 PARKINS CW, 1989, HEARING RES, V41, P137, DOI 10.1016/0378-5955(89)90007-5 PFINGST BE, 1994, HEARING RES, V78, P197, DOI 10.1016/0378-5955(94)90026-4 PFINGST BE, 1988, HEARING RES, V34, P243, DOI 10.1016/0378-5955(88)90005-6 PIJL S, 1995, J ACOUST SOC AM, V98, P886, DOI 10.1121/1.413514 Pijl S, 1997, EAR HEARING, V18, P316, DOI 10.1097/00003446-199708000-00006 SELIGMAN PM, 1984, ACTA OTO-LARYNGOL, P135 Shannon R., 1993, COCHLEAR IMPLANTS AU SHANNON RV, 1985, HEARING RES, V18, P135, DOI 10.1016/0378-5955(85)90005-X SHANNON RV, 1992, J ACOUST SOC AM, V91, P2156, DOI 10.1121/1.403807 Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 Shepherd RK, 2004, EUR J NEUROSCI, V20, P3131, DOI 10.1111/j.1460-9568.2004.03809.x SKINNER MW, 1991, EAR HEARING, V12, P3, DOI 10.1097/00003446-199102000-00002 Skinner MW, 1999, EAR HEARING, V20, P443, DOI 10.1097/00003446-199912000-00001 Sly DJ, 2007, EUR J NEUROSCI, V26, P510, DOI 10.1111/j.1460-9568.2007.05678.x Swanson B, 2008, THESIS U MELBOURNE TONG YC, 1983, J ACOUST SOC AM, V74, P73, DOI 10.1121/1.389620 TONG YC, 1985, J ACOUST SOC AM, V77, P1881, DOI 10.1121/1.391939 TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554 Vandali AE, 2011, J ACOUST SOC AM, V129, P4023, DOI 10.1121/1.3573988 Vandali AE, 2012, J ACOUST SOC AM, V132, P392, DOI 10.1121/1.4718452 Vandali AE, 2005, J ACOUST SOC AM, V117, P3126, DOI 10.1121/1.1874632 VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2 van Wieringen A, 2003, J ACOUST SOC AM, V114, P1516, DOI 10.1121/1.1577551 Wilson BS, 1997, AM J OTOL, V18, pS30 Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5 Zhang F, 2007, JARO-J ASSOC RES OTO, V8, P356, DOI 10.1007/s10162-007-0086-7 NR 72 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2013 VL 302 BP 32 EP 49 DI 10.1016/j.heares.2013.05.004 PG 18 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 186OZ UT WOS:000322055300005 PM 23685148 ER PT J AU Sereda, M Adjamian, P Edmondson-Jones, M Palmer, AR Hall, DA AF Sereda, Magdalena Adjamian, Peyman Edmondson-Jones, Mark Palmer, Alan R. Hall, Deborah A. TI Auditory evoked magnetic fields in individuals with tinnitus SO HEARING RESEARCH LA English DT Article ID COCHLEAR HEARING-LOSS; AWAKE GUINEA-PIGS; COMPUTATIONAL MODEL; NOISE EXPOSURE; NEUROMAGNETIC INDICATORS; CORTICAL REORGANIZATION; NEURONAL HYPERACTIVITY; LATERAL INHIBITION; BRAIN-STEM; CORTEX AB Some forms of tinnitus are likely to be perceptual consequences of altered neural activity in the central auditory system triggered by damage to the auditory periphery. Animal studies report changes in the evoked responses after noise exposure or ototoxic drugs in inferior colliculus and auditory cortex. However, human electrophysiological evidence is rather equivocal: increased, reduced or no difference in N1/N1m evoked amplitudes and latencies in tinnitus participants have been reported. The present study used magnetoencephalography to seek evidence for altered evoked responses in people with tinnitus compared to controls (hearing loss matched and normal hearing) in four different stimulus categories (a control tone, a tone corresponding to the audiometric edge, to the dominant tinnitus pitch and a tone within the area of hearing loss). Results revealed that amplitudes of the evoked responses differed depending on the tone category. N1m amplitude to the dominant tinnitus pitch and the frequency within the area of hearing loss were reduced compared to the other two categories. Given that tinnitus pitch is typically within the area of hearing loss, the differences in the evoked responses pattern in tinnitus participants seem to be related more to the hearing loss than to the presence of tinnitus. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved. C1 [Sereda, Magdalena; Edmondson-Jones, Mark; Hall, Deborah A.] Univ Nottingham, Natl Inst Hlth Res Nottingham Hearing Biomed Res, Sch Clin Sci, Nottingham NG1 5DU, England. [Sereda, Magdalena; Adjamian, Peyman; Palmer, Alan R.] MRC Inst Hearing Res, Nottingham NG7 2RD, England. RP Sereda, M (reprint author), NIHR Nottingham Hearing Biomed Res Unit, Ropewalk House,113 Ropewalk, Nottingham NG1 5DU, England. EM Magdalena.Sereda@nottingham.ac.uk; peyman@ihr.mrc.ac.uk; mark.edmondson-jones@nottingham.ac.uk; alan@ihr.mrc.ac.uk; Deborah.Hall@nottingham.ac.uk FU MRC; National Institute for Health Research (NIHR) FX Supported by MRC and the National Institute for Health Research (NIHR). We thank Oliver Zobay for his help in statistical analysis. CR Adjamian P, 2012, JARO-J ASSOC RES OTO, V13, P715, DOI 10.1007/s10162-012-0340-5 Adjamian P, 2009, HEARING RES, V253, P15, DOI 10.1016/j.heares.2009.04.001 [Anonymous], HEAR RES, V147, P261 ATTIAS J, 1993, HEARING RES, V71, P106, DOI 10.1016/0378-5955(93)90026-W Chait M, 2004, NEUROREPORT, V15, P2455, DOI 10.1097/00001756-200411150-00004 COLDINGJORGENSEN E, 1992, ELECTROEN CLIN NEURO, V83, P322, DOI 10.1016/0013-4694(92)90091-U Dietrich V, 2001, HEARING RES, V158, P95, DOI 10.1016/S0378-5955(01)00282-9 Eggermont JJ, 2000, HEARING RES, V142, P89, DOI 10.1016/S0378-5955(00)00024-1 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Fujioka T, 2002, NEUROSCIENCE, V112, P367, DOI 10.1016/S0306-4522(02)00086-6 Gabriel D, 2004, HEARING RES, V197, P55, DOI 10.1016/j.heares.2004.07.015 Gerken GM, 1996, HEARING RES, V97, P75 Godey B, 2001, CLIN NEUROPHYSIOL, V112, P1850, DOI 10.1016/S1388-2457(01)00636-8 Gu JW, 2010, J NEUROPHYSIOL, V104, P3361, DOI 10.1152/jn.00226.2010 Hallam RS, 2004, INT J AUDIOL, V43, P218, DOI 10.1080/14992020400050030 HARRISON RV, 1991, HEARING RES, V54, P11, DOI 10.1016/0378-5955(91)90131-R Henry J A, 1999, J Am Acad Audiol, V10, P261 Hoke ES, 1998, AUDIOL NEURO-OTOL, V3, P300, DOI 10.1159/000013802 HOKE M, 1989, HEARING RES, V37, P281, DOI 10.1016/0378-5955(89)90028-2 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 Jacobson Gary P, 2003, J Am Acad Audiol, V14, P393 JACOBSON GP, 1991, HEARING RES, V56, P44, DOI 10.1016/0378-5955(91)90152-Y Kadner A, 2002, NEUROREPORT, V13, P443, DOI 10.1097/00001756-200203250-00016 Kanno A, 1996, Electroencephalogr Clin Neurophysiol Suppl, V47, P129 Khalfa S, 2002, ORL J OTO-RHINO-LARY, V64, P436, DOI 10.1159/000067570 Kiang N.Y.S., 1969, CIB FDN S SENS HEAR, P241 Kimura M, 1999, HEARING RES, V135, P146, DOI 10.1016/S0378-5955(99)00104-5 Langers D.R., 2011, CEREB CORTEX, DOI DOI 10.1093/CERC0R/BHR282 Langers DRM, 2005, NEUROIMAGE, V28, P490, DOI 10.1016/j.neuroimage.2005.06.024 Lanting CP, 2009, HEARING RES, V255, P1, DOI 10.1016/j.heares.2009.06.009 Llinas R, 2005, TRENDS NEUROSCI, V28, P325, DOI 10.1016/j.tins.2005.04.006 Mayhew SD, 2010, NEUROIMAGE, V49, P849, DOI 10.1016/j.neuroimage.2009.06.080 Melcher JR, 2000, J NEUROPHYSIOL, V83, P1058 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x Naka D, 1999, NEUROSCIENCE, V93, P573, DOI 10.1016/S0306-4522(99)00177-3 Newman CW, 1996, ARCH OTOLARYNGOL, V122, P143 Norena A, 1999, CLIN NEUROPHYSIOL, V110, P666, DOI 10.1016/S1388-2457(98)00034-0 Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156 Norena AJ, 2011, NEUROSCI BIOBEHAV R, V35, P1089, DOI 10.1016/j.neubiorev.2010.11.003 Norena AJ, 2003, J NEUROPHYSIOL, V90, P2387, DOI 10.1152/jn.00139.2003 OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4 Pan T, 2009, INT J AUDIOL, V48, P277, DOI 10.1080/14992020802581974 PANTEV C, 1989, HEARING RES, V40, P261, DOI 10.1016/0378-5955(89)90167-6 Pineda Jaime A, 2008, Int Tinnitus J, V14, P17 Popelar J, 2008, HEARING RES, V245, P82, DOI 10.1016/j.heares.2008.09.002 POPELAR J, 1987, HEARING RES, V26, P239, DOI 10.1016/0378-5955(87)90060-8 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 Roberts LE, 2008, JARO-J ASSOC RES OTO, V9, P417, DOI 10.1007/s10162-008-0136-9 ROBERTS LE, 2006, ACTA OTO-LARYNGOL, V556, P27, DOI DOI 10.1080/03655230600895358 Roberts TPL, 1996, NEUROREPORT, V7, P1138, DOI 10.1097/00001756-199604260-00007 Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 Schaette R, 2006, EUR J NEUROSCI, V23, P3124, DOI 10.1111/j.1460-9568.04774.x Schaette R, 2008, HEARING RES, V240, P57, DOI 10.1016/j.heares.2008.02.006 Schaette R, 2009, J NEUROPHYSIOL, V101, P3042, DOI 10.1152/jn.91256.2008 Schaette R, 2011, J NEUROSCI, V31, P13452, DOI 10.1523/JNEUROSCI.2156-11.2011 Sereda M, 2011, INT J AUDIOL, V50, P303, DOI 10.3109/14992027.2010.551221 Sun W, 2008, NEUROSCIENCE, V156, P374, DOI 10.1016/j.neuroscience.2008.07.040 Syka J, 2000, HEARING RES, V139, P59, DOI 10.1016/S0378-5955(99)00175-6 SYKA J, 1994, HEARING RES, V78, P158, DOI 10.1016/0378-5955(94)90021-3 Talavage TM, 2004, J NEUROPHYSIOL, V91, P1282, DOI 10.1152/jn.01125.2002 VERNON JA, 1987, AM J OTOL, V8, P201 Weisz N, 2005, BRAIN, V128, P2722, DOI 10.1093/brain/awh588 NR 62 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2013 VL 302 BP 50 EP 59 DI 10.1016/j.heares.2013.04.006 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 186OZ UT WOS:000322055300006 PM 23639335 ER PT J AU Akhoun, I McKay, CM El-Deredy, W AF Akhoun, Idrick McKay, Colette M. El-Deredy, Wael TI Electrically evoked compound action potential artifact rejection by independent component analysis: Technique validation SO HEARING RESEARCH LA English DT Article ID COCHLEAR IMPLANT USERS; STIMULUS ARTIFACT; REDUCTION AB The electrically-evoked compound action potential (ECAP) is the synchronous whole auditory nerve activity in response to an electrical stimulus, and can be recorded in situ on cochlear implant (CI) electrodes. A novel procedure (ECAP-ICA) to isolate the ECAP from the stimulation artifact, based on independent component analysis (ICA), is described here. ECAPs with artifact (raw-ECAPs) were sequentially recorded for the same stimulus on 9 different intracochlear recording electrodes. The raw-ECAPs were fed to ICA, which separated them into independent sources. Restricting the ICA projection to 4 independent components did not induce under-fitting and was found to explain most of the raw-data variance. The sources were identified and only the source corresponding to the neural response was retained for artifact-free ECAP reconstruction. The validity of the ECAP-ICA procedure was supported as follows: N-1 and P-1 peaks occurred at usual latencies; and ECAP-ICA and artifact amplitude-growth functions (AGFs) had different slopes. Concatenation of raw-ECAPs from multiple stimulus currents, including some below the ECAP-ICA threshold, improved the source separation process. The main advantage of ECAP-ICA is that use of maskers or alternating polarity stimulation are not needed. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved. C1 [Akhoun, Idrick; McKay, Colette M.; El-Deredy, Wael] Univ Manchester, Sch Psychol Sci, Fac Med & Human Sci, Manchester M13 9PL, Lancs, England. RP McKay, CM (reprint author), Univ Manchester, Audiol & Deafness Res Grp, Ellen Wilkinson Bldg B1-5, Manchester M13 9PL, Lancs, England. EM colette.mckay@manchester.ac.uk FU UK Medical Research Council FX Support for this work was provided by the UK Medical Research Council. The authors would like to thank the patients for their generous time and dedication to this study. Preliminary data for this study were presented at the Conference on Implantable Auditory Prostheses 2009 and 2011. The software and hardware were provided by Cochlear UK. The authors would like to acknowledge the input of three anonymous reviewers for their helpful criticism of this work. We are also indebted to Pavel Prado-Gutierrez, Matthew Fraser and Mahan Azadpour for their assistance. CR Alvarez I, 2008, J NEUROSCI METH, V175, P143, DOI 10.1016/j.jneumeth.2008.08.008 Alvarez I, 2007, J NEUROSCI METH, V165, P95, DOI 10.1016/j.jneumeth.2007.05.028 Bahmer A, 2010, J NEUROSCI METH, V191, P66, DOI 10.1016/j.jneumeth.2010.06.008 BELL AJ, 1995, NEURAL COMPUT, V7, P1129, DOI 10.1162/neco.1995.7.6.1129 BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716 Dees DC, 2005, AUDIOL NEURO-OTOL, V10, P105, DOI 10.1159/000083366 Cardoso JF, 1999, NEURAL COMPUT, V11, P157, DOI 10.1162/089976699300016863 Castaneda-Villa N, 2011, IEEE T BIO-MED ENG, V58, P348, DOI 10.1109/TBME.2010.2072957 Comon P., 1994, SIGNAL PROCESS, V36, P297 Gilley PM, 2006, CLIN NEUROPHYSIOL, V117, P1772, DOI 10.1016/j.clinph.2006.04.018 Hyvarinen A, 2001, INDEPENDENT COMPONEN Hyvarinen A, 2000, NEURAL NETWORKS, V13, P411, DOI 10.1016/S0893-6080(00)00026-5 Klop WMC, 2004, ACTA OTO-LARYNGOL, V124, P137, DOI 10.1080/00016480310016901 Lai Waikong, 2009, Cochlear Implants Int, V10 Suppl 1, P63, DOI 10.1002/cii.388 Lai WK, 2000, AUDIOL NEURO-OTOL, V5, P333, DOI 10.1159/000013899 Miller CA, 2000, EAR HEARING, V21, P280, DOI 10.1097/00003446-200008000-00003 Naik Ganesh R., 2011, Informatica, V35 Viola FC, 2011, PSYCHOPHYSIOLOGY, V48, P1470, DOI 10.1111/j.1469-8986.2011.01224.x NR 18 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2013 VL 302 BP 60 EP 73 DI 10.1016/j.heares.2013.04.005 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 186OZ UT WOS:000322055300007 PM 23632279 ER PT J AU Kraus, KS Ding, D Jiang, H Kermany, MH Mitra, S Salvi, RJ AF Kraus, K. S. Ding, D. Jiang, H. Kermany, M. H. Mitra, S. Salvi, R. J. TI Up-regulation of GAP-43 in the chinchilla ventral cochlear nucleus after carboplatin-induced hearing loss: Correlations with inner hair cell loss and outer hair cell loss SO HEARING RESEARCH LA English DT Article ID AUDITORY BRAIN-STEM; GROWTH-ASSOCIATED PROTEIN-43; RETINAL GANGLION-CELLS; OLIVOCOCHLEAR NEURONS; ACOUSTIC TRAUMA; ADULT-RAT; OTOACOUSTIC EMISSIONS; NEURITE OUTGROWTH; C-JUN; DEGENERATION AB Inner ear damage leads to nerve fiber growth and synaptogenesis in the ventral cochlear nucleus (VCN). In this study, we documented the relationship between hair cell loss patterns and synaptic plasticity in the chinchilla VCN using immunolabeling of the growth associated protein-43 (GAP-43), a protein associated with axon outgrowth and modification of presynaptic endings. Unilateral round window application of carboplatin caused hair cell degeneration in which inner hair cells (IHC) were more vulnerable than outer hair cells (OHC). One month after carboplatin treatment (0.5-5 mg/ml), we observed varying patterns of cochlear hair cell loss and GAP-43 expression in VCN. Both IHC loss and OHC loss were strongly correlated with increased GAP-43 immunolabeling in the ipsilateral VCN. We speculate that two factors might promote the expression of GAP-43 in the VCN; one is the loss of afferent input through IHC or the associated type I auditory nerve fibers. The other occurs when the medial olivocochlear efferent neurons lose their cochlear targets, the OHC, and may as compensation increase their synapse numbers in the VCN. (C) 2013 Elsevier B.V. All rights reserved. C1 [Kraus, K. S.; Ding, D.; Jiang, H.; Kermany, M. H.; Mitra, S.; Salvi, R. J.] SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP Kraus, KS (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA. EM skkraus@buffalo.edu; dding@buffalo.edu; hj5@buffalo.edu; Mohammad.HabibyKermany@roswellpark.org; sucharita.mitra@gmail.com; salvi@buffalo.edu FU NOHR [1068911]; NIH [R01DC009091, 1R01DC009219] FX Supported by NOHR Grant 1068911 and by NIH grant R01DC009091 and 1R01DC009219. CR Azeredo WJ, 1999, HEARING RES, V134, P57, DOI 10.1016/S0378-5955(99)00069-6 BAETGE EE, 1991, NEURON, V6, P21, DOI 10.1016/0896-6273(91)90118-J Benowitz LI, 1997, TRENDS NEUROSCI, V20, P84, DOI 10.1016/S0166-2236(96)10072-2 BENOWITZ LI, 1991, PROG BRAIN RES, V89, P69, DOI 10.1016/S0079-6123(08)61716-1 Benson CG, 1997, SYNAPSE, V25, P243 BENSON TE, 1990, J COMP NEUROL, V295, P52, DOI 10.1002/cne.902950106 Benson TE, 2004, JARO-J ASSOC RES OTO, V5, P111, DOI 10.1007/s10162-003-4012-3 Bilak M, 1997, EXP NEUROL, V147, P256, DOI 10.1006/exnr.1997.6636 Brown M.C., 2008, JARO-J ASSOC RES OTO, V10, P64 BROWN MC, 1987, J COMP NEUROL, V260, P591, DOI 10.1002/cne.902600411 Chaisuksunt V, 2000, NEUROSCIENCE, V100, P87, DOI 10.1016/S0306-4522(00)00254-2 DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 DALLOS P, 1995, SCIENCE, V267, P2006, DOI 10.1126/science.7701325 DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 DEGRAAN PNE, 1985, NEUROSCI LETT, V61, P235, DOI 10.1016/0304-3940(85)90470-7 Dehmel S, 2008, AM J AUDIOL, V17, P193 Ding D., 1998, J AUDIOL SPEECH PATH, V6, P65 Ding DL, 1999, ANN NY ACAD SCI, V884, P152, DOI 10.1111/j.1749-6632.1999.tb08640.x GOSLIN K, 1990, J NEUROSCI, V10, P588 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HOEFFDING V, 1988, BRAIN RES, V449, P104, DOI 10.1016/0006-8993(88)91029-3 Hofstetter P, 1997, HEARING RES, V112, P199, DOI 10.1016/S0378-5955(97)00123-8 Hofstetter P, 1997, AUDIOLOGY, V36, P301 Illing RB, 2005, HEARING RES, V206, P185, DOI 10.1016/j.heares.2005.01.016 Illing RB, 1997, J COMP NEUROL, V382, P116, DOI 10.1002/(SICI)1096-9861(19970526)382:1<116::AID-CNE8>3.0.CO;2-4 JUIZ JM, 1989, HEARING RES, V40, P65, DOI 10.1016/0378-5955(89)90100-7 Kim JN, 1997, HEARING RES, V103, P169, DOI 10.1016/S0378-5955(96)00173-6 Kim JJ, 2004, J NEUROSCI RES, V77, P829, DOI 10.1002/jnr.20211 Kraus KS, 2005, NEUROSCIENCE, V134, P467, DOI 10.1016/j.neuroscience.2005.04.037 Kraus KS, 2011, NEUROSCIENCE, V194, P309, DOI 10.1016/j.neuroscience.2011.07.056 Kraus KS, 2009, HEARING RES, V255, P33, DOI 10.1016/j.heares.2009.05.001 Kraus K.S., 2004, J COMP NEUROL, V475, P169 LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4 Lin HW, 2011, JARO-J ASSOC RES OTO, V12, P605, DOI 10.1007/s10162-011-0277-0 LIN LH, 1992, MOL BRAIN RES, V14, P147, DOI 10.1016/0169-328X(92)90024-6 MAHALIK TJ, 1992, DEV BRAIN RES, V67, P75, DOI 10.1016/0165-3806(92)90027-T McFadden SL, 2004, BRAIN RES, V997, P40, DOI 10.1016/j.brainres.2003.10.031 Meidinger MA, 2006, EUR J NEUROSCI, V23, P3187, DOI 10.1111/j.1460-9568.2006.04853.x Meiri KF, 1998, J NEUROSCI, V18, P10429 Michler SA, 2003, AUDIOL NEURO-OTOL, V8, P190, DOI 10.1159/000071060 Michler SA, 2002, J COMP NEUROL, V451, P250, DOI 10.1002/cne.10348 Morest DK, 1997, HEARING RES, V103, P151, DOI 10.1016/S0378-5955(96)00172-4 MOUNTAIN DC, 1980, SCIENCE, V210, P71, DOI 10.1126/science.7414321 Muly SM, 2002, EXP NEUROL, V177, P202, DOI 10.1006/exnr.2002.7963 NG TF, 1995, J NEUROCYTOL, V24, P487, DOI 10.1007/BF01179974 Reyes S, 2001, HEARING RES, V158, P139, DOI 10.1016/S0378-5955(01)00309-4 Ryugo DK, 1992, MAMMALIAN AUDITORY P, P23 RYUGO DK, 1982, J COMP NEUROL, V210, P239, DOI 10.1002/cne.902100304 SCHADEN H, 1994, J NEUROBIOL, V25, P1570, DOI 10.1002/neu.480251209 Schmitt AB, 1999, NEUROBIOL DIS, V6, P122, DOI 10.1006/nbdi.1998.0231 SCHREYER DJ, 1991, J NEUROSCI, V11, P3738 Shore S, 2007, PROG BRAIN RES, V166, P107, DOI 10.1016/S0079-6123(07)66010-5 SKENE JHP, 1989, ANNU REV NEUROSCI, V12, P127, DOI 10.1146/annurev.neuro.12.1.127 SKENE JHP, 1981, J NEUROSCI, V1, P419 Sobkowicz HM, 2004, SYNAPSE, V52, P299, DOI 10.1002/syn.20026 SPOENDLIN H, 1985, AM J OTOLARYNG, V6, P453, DOI 10.1016/S0196-0709(85)80026-0 Sugawara M, 2005, JARO-J ASSOC RES OTO, V6, P136, DOI 10.1007/s10162-004-5050-1 Takeno S, 1998, AUDIOL NEURO-OTOL, V3, P281, DOI 10.1159/000013800 TAKENO S, 1994, SCANNING MICROSCOPY, V8, P97 TAKENO S, 1994, HEARING RES, V75, P93, DOI 10.1016/0378-5955(94)90060-4 Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 VAUDANO E, 1995, J NEUROSCI, V15, P3594 WAKE M, 1993, J LARYNGOL OTOL, V107, P585, DOI 10.1017/S0022215100123771 WAKE M, 1994, LARYNGOSCOPE, V104, P488 Wang J, 2003, HEARING RES, V181, P65, DOI 10.1016/S0378-5955(03)00176-X Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 Warr WB, 2003, EXP BRAIN RES, V153, P499, DOI 10.1007/s00221-003-1682-3 Weisz C, 2009, NATURE, V461, P1126, DOI 10.1038/nature08487 WENTHOLD RJ, 1977, BRAIN RES, V138, P111, DOI 10.1016/0006-8993(77)90787-9 WHITE JS, 1983, J COMP NEUROL, V219, P203, DOI 10.1002/cne.902190206 Zeng CH, 2012, J NEUROSCI, V32, P15791, DOI 10.1523/JNEUROSCI.2598-12.2012 Zhou Y., 2009, AUDIOL MED, V7, P189, DOI DOI 10.3109/16513860903335795 Zilberstein Y., 2012, J NEUROSCI, V32, P404 NR 73 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2013 VL 302 BP 74 EP 82 DI 10.1016/j.heares.2013.05.002 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 186OZ UT WOS:000322055300008 PM 23707995 ER PT J AU Mc Laughlin, M Valdes, AL Reilly, RB Zeng, FG AF Mc Laughlin, Myles Valdes, Alejandro Lopez Reilly, Richard B. Zeng, Fan-Gang TI Cochlear implant artifact attenuation in late auditory evoked potentials: A single channel approach SO HEARING RESEARCH LA English DT Article ID SPEECH RECOGNITION; NORMAL-HEARING; USERS; RESOLUTION; LISTENERS; STIMULI AB Recent evidence suggests that late auditory evoked potentials (LAEP) provide a useful objective metric of performance in cochlear implant (Cl) subjects. However, the Cl produces a large electrical artifact that contaminates LAEP recordings and confounds their interpretation. Independent component analysis (ICA) has been used in combination with Multi-channel recordings to effectively remove the artifact. The applicability of the ICA approach is limited when only single channel data are needed or available, as is often the case in both clinical and research settings. Here we developed a single-channel, high sample rate (125 kHz), and high bandwidth (0-100 kHz) acquisition system to reduce the CI stimulation artifact. We identified two different artifacts in the recording: 1) a high frequency artifact reflecting the stimulation pulse rate, and 2) a direct current (DC, or pedestal) artifact that showed a non-linear time varying relationship to pulse amplitude. This relationship was well described by a bivariate polynomial. The high frequency artifact was completely attenuated by a 35 Hz low-pass filter for all subjects (n = 22). The DC artifact could be caused by an impedance mismatch. For 27% of subjects tested, no DC artifact was observed when electrode impedances were balanced to within 1 k Omega For the remaining 73% of subjects, the pulse amplitude was used to estimate and then attenuate the DC artifact. Where measurements of pulse amplitude were not available (as with standard low sample rate systems), the DC artifact could be estimated from the stimulus envelope. The present artifact removal approach allows accurate measurement of LAEPs from Cl subjects from single channel recordings, increasing their feasibility and utility as an accessible objective measure of CI function. (C) 2013 Elsevier B.V. All rights reserved. C1 [Mc Laughlin, Myles; Zeng, Fan-Gang] Univ Calif Irvine, Hearing & Speech Lab, Irvine, CA 92697 USA. [Mc Laughlin, Myles; Valdes, Alejandro Lopez; Reilly, Richard B.] Trinity Coll Dublin, Neural Engn Grp, Dublin, Ireland. RP Mc Laughlin, M (reprint author), Univ Calif Irvine, Irvine, CA 92697 USA. EM myles.mclaughlin@uci.edu RI Reilly, Richard/F-7034-2011 OI Reilly, Richard/0000-0001-8578-1245 FU Marie-Curie International Outgoing Fellowship [FP7 IOF 253047] FX We gratefully acknowledge the generosity of John D'Errico for contributing the polyfitn function to the Matlab File Exchange. We thank all the cochlear implant subjects who participated in the experiments. We also thank the two reviewers and the associate editor for their helpful comments and suggestions. This work was partly supported by a Marie-Curie International Outgoing Fellowship (FP7 IOF 253047). CR Beynon A., 2008, 10 INT C COCHL IMPL Beynon A., 2012, 7 INT S OBJ MEAS COC, P24 ELBERLING C, 1984, SCAND AUDIOL, V13, P187, DOI 10.3109/01050398409043059 Firszt Jill B., 2002, Ear and Hearing, V23, P516, DOI 10.1097/00003446-200212000-00003 Fu QJ, 2002, NEUROREPORT, V13, P1635, DOI 10.1097/00001756-200209160-00013 Gilley PM, 2006, CLIN NEUROPHYSIOL, V117, P1772, DOI 10.1016/j.clinph.2006.04.018 Henry BA, 2005, J ACOUST SOC AM, V118, P1111, DOI 10.1121/1.1944567 Henry BA, 2003, J ACOUST SOC AM, V113, P2861, DOI 10.1121/1.1561900 Hofmann M, 2012, JARO-J ASSOC RES OTO, V13, P573, DOI 10.1007/s10162-012-0321-8 Hofmann M, 2010, JARO-J ASSOC RES OTO, V11, P267, DOI 10.1007/s10162-009-0201-z Kelly AS, 2005, CLIN NEUROPHYSIOL, V116, P1235, DOI 10.1016/j.clinph.2005.02.011 Mc Laughlin M., 2013, 36 ANN MIDW M BALT, P184 Mc Laughlin M, 2012, IEEE T NEUR SYS REH, V20, P443, DOI 10.1109/TNSRE.2012.2186982 Miller CA, 2008, HEARING RES, V242, P184, DOI 10.1016/j.heares.2008.04.005 Picton T W, 1976, J Otolaryngol, V6, P90 PICTON TW, 1978, ELECTROEN CLIN NEURO, V45, P186, DOI 10.1016/0013-4694(78)90003-2 Viola FC, 2011, PSYCHOPHYSIOLOGY, V48, P1470, DOI 10.1111/j.1469-8986.2011.01224.x Wable J, 2000, CLIN NEUROPHYSIOL, V111, P743, DOI 10.1016/S1388-2457(99)00298-9 Won JH, 2007, JARO-J ASSOC RES OTO, V8, P384, DOI 10.1007/s10162-007-0085-8 Zeng Fan-Gang, 2008, IEEE Rev Biomed Eng, V1, P115, DOI 10.1109/RBME.2008.2008250 Zhang FW, 2011, HEARING RES, V275, P17, DOI 10.1016/j.heares.2010.11.007 Zhang FW, 2010, INT J AUDIOL, V49, P277, DOI 10.3109/14992020903321759 NR 22 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2013 VL 302 BP 84 EP 95 DI 10.1016/j.heares.2013.05.006 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 186OZ UT WOS:000322055300010 PM 23727626 ER PT J AU Church, MW Zhang, JSS Langford, MM Perrine, SA AF Church, Michael W. Zhang, Jinsheng S. Langford, Megan M. Perrine, Shane A. TI 'Ecstasy' enhances noise-induced hearing loss SO HEARING RESEARCH LA English DT Article ID AUDITORY-EVOKED-POTENTIALS; DORSAL COCHLEAR NUCLEUS; RAT-BRAIN; LONG-TERM; (+/-)3,4-METHYLENEDIOXYMETHAMPHETAMINE MDMA; 3,4-METHYLENEDIOXYMETHAMPHETAMINE MDMA; INFERIOR COLLICULUS; RHESUS-MONKEYS; EXPOSURE; NEUROTOXICITY AB 'Ecstasy' or 3,4-methylenedioxy-N-methamphetamine (MDMA) is an amphetamine abused for its euphoric, empathogenic, hallucinatory, and stimulant effects. It is also used to treat certain psychiatric disorders. Common settings for Ecstasy use are nightclubs and "rave" parties where participants consume MDMA and dance to loud music. One concern with the club setting is that exposure to loud sounds can cause permanent sensorineural hearing loss. Another concern is that consumption of MDMA may enhance such hearing loss. Whereas this latter possibility has not been investigated, this study tested the hypothesis that MDMA enhances noise-induced hearing loss (NIHL) by exposing rats to either MDMA, noise trauma, both MDMA and noise, or neither treatment. MDMA was given in a binge pattern of 5 mg/kg per intraperitoneal injections every 2 h for a total of four injections to animals in the two MDMA-treated groups (MDMA-only and Noise + MDMA). Saline injections were given to the animals in the two non-MDMA groups (Control and Noise-only). Following the final injection, noise trauma was induced by a 10 kHz tone at 120 dB SPL for 1 h to animals in the two noise trauma-treated groups (Noise-only and Noise + MDMA). Hearing loss was assessed by the auditory brainstem response (ABR) and cochlear histology. Results showed that MDMA enhanced NIHL compared to Noise-only and that MDMA alone caused no hearing loss. This implies that "clobbers" and "rave-goers" are exacerbating the amount of NIHL when they consume MDMA and listen to loud sounds. In contrast to earlier reports, the present study found that MDMA by itself caused no changes in the click-evoked ABR's wave latencies or amplitudes. (C) 2013 Elsevier B.V. All rights reserved. C1 [Church, Michael W.; Zhang, Jinsheng S.] Wayne State Univ, Sch Med, Dept Otolaryngol & Head Neck Surg, Detroit, MI 48201 USA. [Church, Michael W.; Zhang, Jinsheng S.] Wayne State Univ, Coll Liberal Arts & Sci, Dept Commun Sci & Disorders, Detroit, MI 48202 USA. [Langford, Megan M.; Perrine, Shane A.] Wayne State Univ, Sch Med, Dept Psychiat & Behav Neurosci, Detroit, MI 48201 USA. RP Church, MW (reprint author), Wayne State Univ, Sch Med, Dept Otolaryngol & Head Neck Surg, CS Mott Ctr, 275 East Hancock, Detroit, MI 48201 USA. EM mchurch@med.wayne.edu FU NIH [R25GM58905-10, K01DA024760-05, 5P30DC005188-10] FX This study was supported by funds from NIH grants R25GM58905-10 (M.W. Church), K01DA024760-05 (S.A. Perrine) and 5P30DC005188-10 (R.A. Altschuler and J.S. Zhang). MDMA was provided at no cost by the National Institute on Drug Abuse Drug Supply Program (Bethesda, MD, USA) to S.A. Perrine. We thank Jennifer Anumba for scoring ABR data, Edward Pace for assisting with the noise exposure, and Drs. Richard Altschuler and Joseph Miller, and Ariane Kanicki and Catherine Martin (Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA) for performing, photographing, and interpreting the cochlear histologies and cytocochleograms. CR Alvarado JC, 2012, NEUROSCI RES, V73, P302, DOI 10.1016/j.neures.2012.05.001 Baker KE, 2007, VASC PHARMACOL, V47, P10, DOI 10.1016/j.vph.2007.03.001 Biezonski DK, 2011, CURR NEUROPHARMACOL, V9, P84, DOI 10.2174/157015911795017146 Bingham C, 1998, NEPHROL DIAL TRANSPL, V13, P2654, DOI 10.1093/ndt/13.10.2654 Chen CJ, 2007, IND HEALTH, V45, P527, DOI 10.2486/indhealth.45.527 Chen GD, 2009, HEARING RES, V254, P25, DOI 10.1016/j.heares.2009.04.005 CHEN TJ, 1991, EXP BRAIN RES, V85, P537 Church MW, 2012, ALCOHOL CLIN EXP RES, V36, P83, DOI 10.1111/j.1530-0277.2011.01594.x Church M W, 1984, Brain Res, V316, P23 Church MW, 2004, JARO-J ASSOC RES OTO, V5, P227, DOI 10.1007/s10162-004-4011-z CODY AR, 1983, HEARING RES, V9, P55, DOI 10.1016/0378-5955(83)90134-X Dafters RI, 1999, PSYCHOPHARMACOLOGY, V145, P82, DOI 10.1007/s002130051035 Darvesh AS, 2005, J PHARMACOL EXP THER, V312, P694, DOI 10.1124/jpet.104.074849 Dehmel S., 2012, FRONT SYST NEUROSCI, V6, P1 Elgoyhen AB, 2009, BIOCHEM PHARMACOL, V78, P712, DOI 10.1016/j.bcp.2009.05.023 Feduccia AA, 2008, BRAIN RES BULL, V77, P189, DOI 10.1016/j.brainresbull.2008.07.007 Fiaschi AI, 2010, CURR PHARM BIOTECHNO, V11, P444 FISCHER C, 1995, J NEUROSCI, V15, P5476 Gamma A, 2000, NEUROREPORT, V11, P157, DOI 10.1097/00001756-200001170-00031 Garcia-Rates S, 2010, TOXICOL APPL PHARM, V244, P344, DOI 10.1016/j.taap.2010.01.014 Gesi M, 2004, MICROSC RES TECHNIQ, V64, P297, DOI 10.1002/jemt.20084 Gesi M, 2002, PHARMACOL TOXICOL, V91, P29, DOI 10.1034/j.1600-0773.2002.910105.x Gourevitch B, 2009, BRAIN RES, V1304, P66, DOI 10.1016/j.brainres.2009.09.041 GRATTON MA, 1990, HEARING RES, V50, P211, DOI 10.1016/0378-5955(90)90046-R Green AR, 2012, BRIT J PHARMACOL, V166, P1523, DOI 10.1111/j.1476-5381.2011.01819.x GREENHOUSE SW, 1959, PSYCHOMETRIKA, V24, P95, DOI 10.1007/BF02289823 Gunderson E, 1997, AM J IND MED, V31, P75 Hemmerle AM, 2012, J COMP NEUROL, V520, P2459, DOI 10.1002/cne.23048 Henry KR, 2003, HEARING RES, V179, P88, DOI 10.1016/S0378-5955(03)00097-2 HENRY KR, 1979, J AM AUDITORY SOC, V4, P173 Hoet P, 2008, CRIT REV TOXICOL, V38, P127, DOI 10.1080/10408440701845443 Hood LI, 1998, CLIN APPL AUDITORY B, p[50, 67] Hurley LM, 2011, HEARING RES, V279, P74, DOI 10.1016/j.heares.2010.12.015 Hyde M.L., 1993, PRINCIPLES APPL AUDI, P47 Institute of Laboratory Animal Resources (U.S.), 2011, GUIDE CARE USE LAB A Jin DX, 2009, BRAIN RES, V1277, P3, DOI 10.1016/j.brainres.2009.02.017 Johnson BN, 2010, J PHARMACOL EXP THER, V335, P180, DOI 10.1124/jpet.110.171322 Johnson EA, 2002, BRAIN RES, V933, P130, DOI 10.1016/S0006-8993(02)02310-7 Johnston L.D., 2011, SECONDARY SCH STUDEN, VI, P24 Kay C, 2011, NEUROBIOL LEARN MEM, V95, P473, DOI 10.1016/j.nlm.2011.02.010 Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 Lendvai B, 2011, NEUROCHEM INT, V59, P150, DOI 10.1016/j.neuint.2011.05.015 Le Prell CG, 2007, HEARING RES, V226, P22, DOI 10.1016/j.heares.2006.10.006 Li HZ, 2009, NOISE HEALTH, V11, P26, DOI 10.4103/1463-1741.45310 Manzoor NF, 2012, J NEUROPHYSIOL, V108, P976, DOI 10.1152/jn.00833.2011 Mithoefer MC, 2013, J PSYCHOPHARMACOL, V27, P28, DOI 10.1177/0269881112456611 MOLLER AR, 1995, LARYNGOSCOPE, V105, P596 Morton AJ, 2001, NEUROREPORT, V12, P3277, DOI 10.1097/00001756-200110290-00026 MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7 Obrocki J, 1999, BRIT J PSYCHIAT, V175, P186, DOI 10.1192/bjp.175.2.186 Papesh MA, 2012, HEARING RES, V283, P89, DOI 10.1016/j.heares.2011.11.004 Perrine SA, 2010, NEUROTOXICOLOGY, V31, P654, DOI 10.1016/j.neuro.2010.08.005 Perrine SA, 2009, NMR BIOMED, V22, P419, DOI 10.1002/nbm.1352 Piper BJ, 2008, NEUROPSYCHOPHARMACOL, V33, P1192, DOI 10.1038/sj.npp.1301491 Rawool V, 2011, NOISE HEALTH, V13, P356, DOI 10.4103/1463-1741.85508 ROSSI GT, 1984, ELECTROEN CLIN NEURO, V57, P143, DOI 10.1016/0013-4694(84)90173-1 Sadhra S, 2002, ANN OCCUP HYG, V46, P455, DOI 10.1093/annhyg/mef051 Santos M A Rocha, 2004, Rev Laryngol Otol Rhinol (Bord), V125, P151 Sarkar S, 2010, CURR PHARM BIOTECHNO, V11, P460 Serra MR, 2005, INT J AUDIOL, V44, P65, DOI 10.1080/14992020400030010 SHAH SN, 1984, EXP NEUROL, V86, P160, DOI 10.1016/0014-4886(84)90076-1 Sharma A, 2001, J LARYNGOL OTOL, V115, P911 Starr A, 2001, EAR HEARING, V22, P91, DOI 10.1097/00003446-200104000-00002 Taffe MA, 2003, PHARMACOL BIOCHEM BE, V76, P141, DOI 10.1016/S0091-3057(03)00217-X Taffe MA, 2001, NEUROPSYCHOPHARMACOL, V24, P230, DOI 10.1016/S0893-133X(00)00185-8 Tanaka F, 2003, HEARING RES, V177, P21, DOI 10.1016/S0378-5955(02)00771-2 Tannahill J.C., 1982, HDB CLIN AUDIOLOGY, P442 Tong L, 2005, HEARING RES, V206, P28, DOI 10.1016/j.heares.2005.03.006 Vanattou-Saifoudine N, 2010, BRIT J PHARMACOL, V160, P860, DOI 10.1111/j.1476-5381.2010.00660.x Vlajkovic SM, 2009, CURR NEUROPHARMACOL, V7, P246, DOI 10.2174/157015909789152155 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 Weir E, 2000, CAN MED ASSOC J, V162, P1843 Williams W, 2010, NOISE HEALTH, V12, P155, DOI 10.4103/1463-1741.64970 YAU JLW, 1994, NEUROSCIENCE, V61, P31, DOI 10.1016/0306-4522(94)90057-4 Zhang JS, 2006, J NEUROSCI RES, V84, P819, DOI 10.1002/jnr.20985 NR 75 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD AUG PY 2013 VL 302 BP 96 EP 106 DI 10.1016/j.heares.2013.05.007 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 186OZ UT WOS:000322055300011 PM 23711768 ER PT J AU Lingner, A Kugler, K Grothe, B Wiegrebe, L AF Lingner, Andrea Kugler, Kathrin Grothe, Benedikt Wiegrebe, Lutz TI Amplitude-modulation detection by gerbils in reverberant sound fields SO HEARING RESEARCH LA English DT Article ID PERCEPTUAL COMPENSATION; SPEECH-INTELLIGIBILITY; MONGOLIAN GERBIL; MERIONES-UNGUICULATUS; PREPULSE INHIBITION; ACOUSTIC STARTLE; ROOM ACOUSTICS; IDENTIFICATION; DETECTABILITY; RECOGNITION AB Reverberation can dramatically reduce the depth of amplitude modulations which are critical for speech intelligibility. Psychophysical experiments indicate that humans' sensitivity to amplitude modulation in reverberation is better than predicted from the acoustic modulation depth at the receiver position. Electrophysiological studies on reverberation in rabbits highlight the contribution of neurons sensitive to interaural correlation. Here, we use a prepulse-inhibition paradigm to quantify the gerbils' amplitude modulation threshold in both anechoic and reverberant virtual environments. Data show that prepulse inhibition provides a reliable method for determining the gerbils' AM sensitivity. However, we find no evidence for perceptual restoration of amplitude modulation in reverberation. Instead, the deterioration of AM sensitivity in reverberant conditions can be quantitatively explained by the reduced modulation depth at the receiver position. We suggest that the lack of perceptual restoration is related to physical properties of the gerbil's ear input signals and inner-ear processing as opposed to shortcomings of their binaural neural processing. (C) 2013 Elsevier B.V. All rights reserved. C1 [Lingner, Andrea; Kugler, Kathrin; Grothe, Benedikt; Wiegrebe, Lutz] Univ Munich, Div Neurobiol, Dept Biol 2, D-82152 Martinsried, Germany. RP Wiegrebe, L (reprint author), Univ Munich, Div Neurobiol, Dept Biol 2, Grosshaderner Str 2-4, D-82152 Martinsried, Germany. EM lingner@zi.biologie.uni-muenchen.de; kugler@bio.lmu.de; grothe@bio.lmu.de; lutzw@lmu.de FU Bernstein Center for Computational Neuroscience in Munich; German Center for Vertigo and Balance Disorder (IFB) FX This work was funded by the Bernstein Center for Computational Neuroscience in Munich and by the German Center for Vertigo and Balance Disorder (IFB). We thank Dr. Sven Schornich for the calculation of the virtual acoustic environment. We are very grateful to the Associate Editor, Brian C.J. Moore, and two anonymous reviewers for very helpful and constructive comments on an earlier version of this paper. CR Brandewie E, 2010, J ACOUST SOC AM, V128, P291, DOI 10.1121/1.3436565 Delgutte B., 2012, ASS RES OTOLARYNGOL Gaese BH, 2009, PHYSIOL BEHAV, V98, P460, DOI 10.1016/j.physbeh.2009.07.014 GRANTHAM DW, 1978, J ACOUST SOC AM, V63, P511, DOI 10.1121/1.381751 GRANTHAM DW, 1982, J ACOUST SOC AM, V72, P1178, DOI 10.1121/1.388326 HOFFMAN HS, 1968, J ACOUST SOC AM, V43, P269, DOI 10.1121/1.1910776 HOUTGAST T, 1980, ACUSTICA, V46, P60 HOUTGAST T, 1973, ACUSTICA, V28, P66 Jons P.X., 2006, J NEUROSCI, V26, P279 Knudsen VO, 1929, J ACOUST SOC AM, V1, P56, DOI 10.1121/1.1901470 Kobayasi KI, 2012, J ACOUST SOC AM, V131, P1622, DOI 10.1121/1.3672693 Lingner A, 2012, JARO-J ASSOC RES OTO, V13, P237, DOI 10.1007/s10162-011-0301-4 Lochner J.P.A., 1961, Acustica, V11 Nielsen JB, 2010, J ACOUST SOC AM, V128, P3088, DOI 10.1121/1.3494508 Plappert CF, 2005, BEHAV BRAIN RES, V162, P307, DOI 10.1016/j.bbr.2005.03.022 REIJMERS LGJE, 1994, BRAIN RES, V667, P144, DOI 10.1016/0006-8993(94)91727-2 SANTON F, 1976, J ACOUST SOC AM, V59, P1399, DOI 10.1121/1.381027 Sayles M, 2008, NEURON, V58, P789, DOI 10.1016/j.neuron.2008.03.029 Shannon RV, 1998, J ACOUST SOC AM, V104, P2467, DOI 10.1121/1.423774 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Siveke I, 2008, J NEUROSCI, V28, P2043, DOI 10.1523/JNEUROSCI.4488-07.2008 Slama M.C.C., 2012, THESIS MIT Srinivasan NK, 2013, J ACOUST SOC AM, V133, pEL33, DOI 10.1121/1.4771978 Ter-Mikaelian M, 2012, BEHAVIOUR, V149, P461, DOI 10.1163/156853912X639778 Vorlander M, 2011, TRENDS AMPLIF, V15, P106, DOI 10.1177/1084713811408348 Walter M., 2012, OPEN J ACOUST, V2, P34 Watkins AJ, 2005, J ACOUST SOC AM, V118, P249, DOI 10.1121/1.1923369 WATKINS AJ, 1991, J ACOUST SOC AM, V90, P2942, DOI 10.1121/1.401769 Wiegrebe L, 2007, J COMP PHYSIOL A, V193, P305, DOI 10.1007/s00359-006-0188-4 Yee BK, 2004, NEUROPSYCHOPHARMACOL, V29, P1865, DOI 10.1038/sj.npp.1300480 Zahorik P., 2011, POMA, V12, P50005 Zahorik P., 2012, POMA, V15, P50002 NR 32 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2013 VL 302 BP 107 EP 112 DI 10.1016/j.heares.2013.04.004 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 186OZ UT WOS:000322055300012 PM 23603513 ER PT J AU Lobarinas, E Salvi, R Ding, DL AF Lobarinas, Edward Salvi, Richard Ding, Dalian TI Insensitivity of the audiogram to carboplatin induced inner hair cell loss in chinchillas SO HEARING RESEARCH LA English DT Article ID PRODUCT OTOACOUSTIC EMISSIONS; PSYCHOPHYSICAL TUNING CURVES; EVOKED-POTENTIAL THRESHOLDS; INDUCED HEARING-LOSS; AUDITORY NEUROPATHY; TREATED CHINCHILLAS; GAP DETECTION; ANIMAL-MODEL; NOISE; DAMAGE AB Noise trauma, aging, and ototoxicity preferentially damage the outer hair cells of the inner ear, leading to increased hearing thresholds and poorer frequency resolution. Whereas outer hair cells make synaptic connections with less than 10% of afferent auditory nerve fibers (type-II), inner hair cells make connections with over 90% of afferents (type-I). Despite these extensive connections, little is known about how selective inner hair cell loss impacts hearing. In chinchillas, moderate to high doses of the anticancer compound carboplatin produce selective inner hair cell and type-I afferent loss with little to no effect on outer hair cells. To determine the effects of carboplatin-induced inner hair cell loss on the most widely used clinical measure of hearing, the audiogram, pure-tone thresholds were determined behaviorally before and after 75 mg/kg carboplatin. Following carboplatin treatment, small effects on audiometric thresholds were observed even with extensive inner hair cell losses that exceed 80%. These results suggest that conventional audiometry is insensitive to inner hair cell loss and that only small populations of inner hair cells appear to be necessary for detecting tonal stimuli in a quiet background. Published by Elsevier B.V. C1 [Lobarinas, Edward] Univ Florida, Dept Speech Language & Hearing Sci, Gainesville, FL 32610 USA. [Salvi, Richard; Ding, Dalian] SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14260 USA. RP Lobarinas, E (reprint author), Univ Florida, Dept Speech Language & Hearing Sci, Gainesville, FL 32610 USA. EM elobarinas@ufl.edu FU National Institute on Deafness and Other Communication Disorders of the National Institutes of Health [R03DC011612, R01DC006630] FX The authors wish to thank the following individuals for their valuable contributions to the successful completion of this project. Dr. Wei Sun and Daniel Stolzberg designed the custom software used for the behavioral studies. Karlee Maerten and Haiyan Jiang provided important technical assistance essential to the completion of the study. Dr. Colleen Le Prell provided valuable assistance in the revisions of this manuscript. Research reported in this publication was supported by the National Institute on Deafness and Other Communication Disorders of the National Institutes of Health under Award Number R03DC011612 (Lobarinas) and R01DC006630 (Salvi). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. CR AHROON WA, 1993, AUDIOLOGY, V32, P244 BLAKESLEE EA, 1978, J ACOUST SOC AM, V63, P876, DOI 10.1121/1.381767 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 CARHART R, 1959, J SPEECH HEAR DISORD, V24, P330 CLARK WW, 1974, J ACOUST SOC AM, V56, P1202, DOI 10.1121/1.1903409 DAVIS RI, 1989, HEARING RES, V41, P1, DOI 10.1016/0378-5955(89)90173-1 Ding D, 1999, Lin Chuang Er Bi Yan Hou Ke Za Zhi, V13, P510 Ding DL, 1999, ANN NY ACAD SCI, V884, P152, DOI 10.1111/j.1749-6632.1999.tb08640.x El-Badry MM, 2007, BRAIN RES, V1134, P122, DOI 10.1016/j.braines.2006.11.078 El-Badry MM, 2009, HEARING RES, V255, P84, DOI 10.1016/j.heares.2009.06.003 Felder E, 1995, HEARING RES, V91, P19, DOI 10.1016/0378-5955(95)00158-1 GIRAUDI D, 1980, J ACOUST SOC AM, V68, P802, DOI 10.1121/1.384818 GIRAUDIPERRY DM, 1982, J ACOUST SOC AM, V72, P1387, DOI 10.1121/1.388444 GRAF CJ, 1992, J ACOUST SOC AM, V91, P1062, DOI 10.1121/1.402632 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Harding GW, 2004, J ACOUST SOC AM, V115, P2207, DOI 10.1121/1.1689961 Harrison RV, 1998, EAR HEARING, V19, P355, DOI 10.1097/00003446-199810000-00002 HEFFNER RS, 1991, HEARING RES, V52, P13, DOI 10.1016/0378-5955(91)90183-A Hofstetter P, 1997, HEARING RES, V112, P199, DOI 10.1016/S0378-5955(97)00123-8 Hofstetter P, 1997, AUDIOLOGY, V36, P301 Jock BM, 1996, HEARING RES, V96, P179, DOI 10.1016/0378-5955(96)00058-5 Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 Le Prell CG, 2004, J ACOUST SOC AM, V116, P1044, DOI 10.1121/1.1772395 Lin HW, 2011, JARO-J ASSOC RES OTO, V12, P605, DOI 10.1007/s10162-011-0277-0 McFadden SL, 1998, HEARING RES, V120, P121, DOI 10.1016/S0378-5955(98)00052-5 McFadden SL, 2001, AUDIOLOGY, V40, P313 MILLER JD, 1970, J ACOUST SOC AM, V48, P513, DOI 10.1121/1.1912166 Moore BCJ, 1999, J ACOUST SOC AM, V106, P2761, DOI 10.1121/1.428133 Qiu CX, 2000, HEARING RES, V139, P153, DOI 10.1016/S0378-5955(99)00171-9 ROBERTSON D, 1984, HEARING RES, V15, P113, DOI 10.1016/0378-5955(84)90042-X RYAN A, 1979, J ACOUST SOC AM, V66, P370, DOI 10.1121/1.383194 SALVI RJ, 1982, J ACOUST SOC AM, V71, P424, DOI 10.1121/1.387445 Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 SALVI RJ, 1978, EXP BRAIN RES, V32, P301 Salvi RJ, 2000, NOISE HEALTH, V2, P9 SCHROTT A, 1989, HEARING RES, V40, P213, DOI 10.1016/0378-5955(89)90162-7 SMITH DW, 1987, HEARING RES, V29, P125, DOI 10.1016/0378-5955(87)90161-4 SMITH DW, 1987, J ACOUST SOC AM, V82, P63, DOI 10.1121/1.395438 Stebbins W C, 1979, Am J Otolaryngol, V1, P15, DOI 10.1016/S0196-0709(79)80004-6 TAKENO S, 1994, SCANNING MICROSCOPY, V8, P97 Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 Wake M, 1996, ACTA OTO-LARYNGOL, V116, P714, DOI 10.3109/00016489609137912 WAKE M, 1993, J LARYNGOL OTOL, V107, P585, DOI 10.1017/S0022215100123771 Wang J, 2000, NEUROREPORT, V11, P1137, DOI 10.1097/00001756-200004070-00045 Wang J, 1997, HEARING RES, V107, P67, DOI 10.1016/S0378-5955(97)00020-8 NR 45 TC 11 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2013 VL 302 BP 113 EP 120 DI 10.1016/j.heares.2013.03.012 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 186OZ UT WOS:000322055300013 PM 23566980 ER PT J AU Parbery-Clark, A Anderson, S Kraus, N AF Parbery-Clark, Alexandra Anderson, Samira Kraus, Nina TI Musicians change their tune: How hearing loss alters the neural code SO HEARING RESEARCH LA English DT Article ID AUDITORY BRAIN-STEM; INFERIOR COLLICULUS NEURONS; SPEECH-IN-NOISE; OLDER-ADULTS; IMPAIRED LISTENERS; PERCEPTUAL SEPARATION; RESPONSE PROPERTIES; SPECTRAL CONTRAST; COCHLEAR DAMAGE; SENSORY LOSS AB Individuals with sensorineural hearing loss have difficulty understanding speech, especially in background noise. This deficit remains even when audibility is restored through amplification, suggesting that mechanisms beyond a reduction in peripheral sensitivity contribute to the perceptual difficulties associated with hearing loss. Given that normal-hearing musicians have enhanced auditory perceptual skills, including speech-in-noise perception, coupled with heightened subcortical responses to speech, we aimed to determine whether similar advantages could be observed in middle-aged adults with hearing loss. Results indicate that musicians with hearing loss, despite self-perceptions of average performance for understanding speech in noise, have a greater ability to hear in noise relative to nonmusicians. This is accompanied by more robust subcortical encoding of sound (e.g., stimulus-to-response correlations and response consistency) as well as more resilient neural responses to speech in the presence of background noise (e.g., neural timing). Musicians with hearing loss also demonstrate unique neural signatures of spectral encoding relative to nonmusicians: enhanced neural encoding of the speech-sound's fundamental frequency but not of its upper harmonics. This stands in contrast to previous outcomes in normal-hearing musicians, who have enhanced encoding of the harmonics but not the fundamental frequency. Taken together, our data suggest that although hearing loss modifies a musician's spectral encoding of speech, the musician advantage for perceiving speech in noise persists in a hearing-impaired population by adaptively strengthening underlying neural mechanisms for speech-in-noise perception. (C) 2013 Elsevier B.V. All rights reserved. C1 [Parbery-Clark, Alexandra; Anderson, Samira; Kraus, Nina] Northwestern Univ, Auditory Neurosci Lab, Evanston, IL 60208 USA. [Parbery-Clark, Alexandra; Anderson, Samira; Kraus, Nina] Northwestern Univ, Dept Commun Sci, Evanston, IL 60208 USA. [Kraus, Nina] Northwestern Univ, Evanston, IL 60208 USA. RP Kraus, N (reprint author), Northwestern Univ, Auditory Neurosci Lab, 2240 Campus Dr, Evanston, IL 60208 USA. EM nkraus@northwestern.edu FU NSF [BCS-1057556] FX The authors wish to thank Dana Strait, Erika Skoe, Trent Nicol and Travis White-Schwoch for comments on an earlier version of this manuscript. This work was supported by NSF BCS-1057556 to NK. CR Aiken SJ, 2008, HEARING RES, V245, P35, DOI 10.1016/j.heares.2008.08.004 Aizawa N, 2006, JARO-J ASSOC RES OTO, V7, P71, DOI 10.1007/s10162-005-0026-3 Anderson S, 2012, J NEUROSCI, V32, P14156, DOI 10.1523/JNEUROSCI.2176-12.2012 Anderson S, 2010, HEARING RES, V270, P151, DOI 10.1016/j.heares.2010.08.001 Anderson S, 2011, EAR HEARING, V32, P750, DOI 10.1097/AUD.0b013e31822229d3 Anderson S, 2013, J SPEECH LANG HEAR R, V56, P31, DOI 10.1044/1092-4388(2012/12-0043) Anderson S, 2010, J NEUROSCI, V30, P4922, DOI 10.1523/JNEUROSCI.0107-10.2010 Assmann P.F., 1987, J ACOUST SOC AM, V82, pS120, DOI 10.1121/1.2024632 Bajo VM, 2010, NAT NEUROSCI, V13, P253, DOI 10.1038/nn.2466 Barsz K, 2007, NEUROSCIENCE, V147, P532, DOI 10.1016/j.neuroscience.2007.04.031 Baumann O, 2010, PSYCHOL RES-PSYCH FO, V74, P110, DOI 10.1007/s00426-008-0185-z Bellgrove MA, 2005, NEUROPSYCHOLOGIA, V43, P1847, DOI 10.1016/j.neuropsychologia.20.05.03.01 Bench J, 1979, Br J Audiol, V13, P108, DOI 10.3109/03005367909078884 Bird J., 1998, PSYCHOPHYSICAL PHYSL, P263 BLAIR JC, 1985, VOLTA REV, V87, P87 Boettcher FA, 2002, J SPEECH LANG HEAR R, V45, P1249, DOI 10.1044/1092-4388(2002/100) BOOTHROYD A, 1984, J SPEECH HEAR RES, V27, P134 BROKX JPL, 1982, J PHONETICS, V10, P23 Bures Z, 2010, EUR J NEUROSCI, V32, P155, DOI 10.1111/j.1460-9568.2010.07280.x BYRNE D, 1986, EAR HEARING, V7, P257 Castellanos FX, 2002, NAT REV NEUROSCI, V3, P617, DOI 10.1038/nrn896 Christian E, 1989, J Gerontol Nurs, V15, P4 CLARKE FR, 1969, J SPEECH HEAR RES, V12, P747 Clinard CG, 2010, HEARING RES, V264, P48, DOI 10.1016/j.heares.2009.11.010 CRANDELL CC, 1993, EAR HEARING, V14, P210 CULLING JF, 1993, J ACOUST SOC AM, V93, P3454, DOI 10.1121/1.405675 Dalton DS, 2003, GERONTOLOGIST, V43, P661 Dong S, 2009, NEUROSCIENCE, V159, P1164, DOI 10.1016/j.neuroscience.2009.01.043 Drullman R, 2004, J ACOUST SOC AM, V116, P3090, DOI 10.1121/1.1802535 DUBNO JR, 1982, J SPEECH HEAR RES, V25, P141 DUBNO JR, 1984, J ACOUST SOC AM, V76, P87, DOI 10.1121/1.391011 Gatehouse S, 2004, INT J AUDIOL, V43, P85, DOI 10.1080/14992020400050014 GLASBERG BR, 1986, J ACOUST SOC AM, V79, P1020, DOI 10.1121/1.393374 Guse L W, 1999, Issues Ment Health Nurs, V20, P527 Harrison RV, 1998, EXP BRAIN RES, V123, P449, DOI 10.1007/s002210050589 Heine C, 2002, DISABIL REHABIL, V24, P763, DOI 10.1080/09638280210129162 Heine C, 2004, AGEING SOC, V24, P113, DOI 10.1017/S0144686X03001491 HELFER KS, 1990, J SPEECH HEAR RES, V33, P149 Hornickel J, 2012, P NATL ACAD SCI USA, V109, P16731, DOI 10.1073/pnas.1206628109 Hultsch DF, 2000, NEUROPSYCHOLOGY, V14, P588, DOI 10.1037/0894-4105.14.4.588 Johnson J.K., QUALITY LIF IN PRESS Konrad-Martin D, 2012, J AM ACAD AUDIOL, V23, P18, DOI 10.3766/jaaa.23.1.3 Kotak VC, 2005, J NEUROSCI, V25, P3908, DOI 10.1523/JNEUROSCI.5169-04.2005 Krampe RT, 1996, J EXP PSYCHOL GEN, V125, P331, DOI 10.1037/0096-3445.125.4.331 Kraus N, 2000, JARO-J ASSOC RES OTO, V1, P33, DOI 10.1007/s101620010004 Kraus N, 2010, NAT REV NEUROSCI, V11, P599, DOI 10.1038/nrn2882 KREIMAN J, 1992, J SPEECH HEAR RES, V35, P512 Kujala T, 2009, BIOL PSYCHOL, V81, P135, DOI 10.1016/j.biopsycho.2009.03.010 LEEK MR, 1987, J ACOUST SOC AM, V81, P148, DOI 10.1121/1.395024 MILLER GA, 1955, J ACOUST SOC AM, V27, P338, DOI 10.1121/1.1907526 Moore B. C. J., 2007, COCHLEAR HEARING LOS NIDCD, 2012, QUICK STAT NILSSON M, 1994, J ACOUST SOC AM, V95, P1085, DOI 10.1121/1.408469 Ohde RN, 2001, J ACOUST SOC AM, V110, P2156, DOI 10.1121/1.1399047 OTTO WC, 1982, AUDIOLOGY, V21, P466 Oxenham Andrew J, 2008, Trends Amplif, V12, P316, DOI 10.1177/1084713808325881 Parbery-Clark A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018082 Parbery-Clark A., 2012, FRONT AGING NEUROSCI, V4, P1 Parbery-Clark A, 2009, EAR HEARING, V30, P653, DOI 10.1097/AUD.0b013e3181b412e9 Parbery-Clark A, 2012, NEUROSCIENCE, V219, P111, DOI 10.1016/j.neuroscience.2012.05.042 Parbery-Clark A, 2009, J NEUROSCI, V29, P14100, DOI 10.1523/JNEUROSCI.3256-09.2009 Parbery-Clark A., 2012, NEUROBIOLOGY AGING, V33 Plyler P N, 2001, J Am Acad Audiol, V12, P523 Reed Charlotte M, 2009, Trends Amplif, V13, P4, DOI 10.1177/1084713808325412 Shinn-Cunningham Barbara G, 2008, Trends Amplif, V12, P283, DOI 10.1177/1084713808325306 Song JH, 2011, J COGNITIVE NEUROSCI, V23, P2268, DOI 10.1162/jocn.2010.21556 Strait DL, 2012, BRAIN LANG, V123, P191, DOI 10.1016/j.bandl.2012.09.001 Strouse A, 1998, J ACOUST SOC AM, V104, P2385, DOI 10.1121/1.423748 Suga N, 2008, J COMP PHYSIOL A, V194, P169, DOI 10.1007/s00359-007-0274-2 Suga N, 2003, NAT REV NEUROSCI, V4, P783, DOI 10.1038/nrn1222 Summers V, 1998, J SPEECH LANG HEAR R, V41, P1294 SUMMERS V, 1994, J ACOUST SOC AM, V95, P3518, DOI 10.1121/1.409969 Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002 TYLER RS, 1984, J ACOUST SOC AM, V76, P1363, DOI 10.1121/1.391452 Vander Werff Kathy R, 2011, Ear Hear, V32, P168, DOI 10.1097/AUD.0b013e3181f534b5 Wang J, 1996, J NEUROPHYSIOL, V75, P171 Wang XQ, 2007, HEARING RES, V229, P81, DOI 10.1016/j.heares.2007.01.019 Wechsler D, 1999, WECHSLER ABBREVIATED Willott J., 2005, INFERIOR COLLICULUS WILLOTT JF, 1991, ACTA OTO-LARYNGOL, P153 WILLOTT JF, 1986, J NEUROPHYSIOL, V56, P391 WILLOTT JF, 1984, BRAIN RES, V309, P159, DOI 10.1016/0006-8993(84)91022-9 Woodcock R. W., 2001, WOODCOCK JOHNSON 3 T YANG LC, 1992, J NEUROPHYSIOL, V68, P1760 Zendel B.R., 2011, PSYCHOL AGING, V27, P410, DOI DOI 10.1037/A0024816 NR 85 TC 6 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2013 VL 302 BP 121 EP 131 DI 10.1016/j.heares.2013.03.009 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 186OZ UT WOS:000322055300014 PM 23566981 ER PT J AU Dong, W Varavva, P Olson, ES AF Dong, Wei Varavva, Polina Olson, Elizabeth S. TI Sound transmission along the ossicular chain in common wild-type laboratory mice SO HEARING RESEARCH LA English DT Article ID COCHLEAR INPUT IMPEDANCE; REVERSE TRANSFER-FUNCTIONS; MIDDLE-EAR FUNCTION; TYMPANIC-MEMBRANE; PRESSURE MEASUREMENTS; HEARING-LOSS; OTOACOUSTIC EMISSIONS; MONGOLIAN GERBIL; TEMPORAL BONE; MOTION AB The use of genetically modified mice can accelerate progress in auditory research. However, the fundamental profile of mouse hearing has not been thoroughly documented. In the current study, we explored mouse middle ear transmission by measuring sound-evoked vibrations at several key points along the ossicular chain using a laser-Doppler vibrometer. Observations were made through an opening in pars flaccida. Simultaneously, the pressure at the tympanic membrane close to the umbo was monitored using a micro-pressure-sensor. Measurements were performed in C57BL mice, which are widely used in hearing research. Our results show that the ossicular local transfer function, defined as the ratio of velocity to the pressure at the tympanic membrane, was like a high-pass filter, almost flat at frequencies above similar to 15 kHz, decreasing rapidly at lower frequencies. There was little phase accumulation along the ossicles. Our results suggested that the mouse ossicles moved almost as a rigid body. Based on these 1-dimensional measurements, the malleus incus-complex primarily rotated around the anatomical axis passing through the gonial termination of the anterior malleus and the short process of the incus, but secondary motions were also present. This article is part of a Special Issue entitled "MEMRO 2012". Published by Elsevier B.V. C1 [Dong, Wei; Varavva, Polina; Olson, Elizabeth S.] Columbia Univ, Dept Otolaryngol Head & Neck Surg, New York, NY 10032 USA. RP Dong, W (reprint author), Columbia Univ, Dept Otolaryngol Head & Neck Surg, P&S 11-452,630 W 168th St, New York, NY 10032 USA. EM wd2015@columbia.edu; pvaravva@gmail.com; eao2004@columbia.edu FU NIDCD; Emil Capita Charitable Foundation FX Supported by the NIDCD and the Emil Capita Charitable Foundation. We thank the two reviewers for improving the presentation. CR Aibara R, 2001, HEARING RES, V152, P100, DOI 10.1016/S0378-5955(00)00240-9 Cheng J.T, 2011, MECH HEAR 2011 WILL Cheng JT, 2010, HEARING RES, V263, P66, DOI 10.1016/j.heares.2009.12.024 Dalhoff E, 2011, HEARING RES, V280, P86, DOI 10.1016/j.heares.2011.04.015 DANCER A, 1980, HEARING RES, V2, P191, DOI 10.1016/0378-5955(80)90057-X de La Rochefoucauld O, 2008, JARO-J ASSOC RES OTO, V9, P161, DOI 10.1007/s10162-008-0115-1 de La Rochefoucauld O, 2010, HEARING RES, V270, P158, DOI 10.1016/j.heares.2010.07.010 de La Rochefoucauld O, 2010, HEARING RES, V263, P9, DOI 10.1016/j.heares.2009.10.014 DECORY L, 1990, LECT NOTES BIOMATH, V87, P270 Decraemer W. F, 2003, P MIDDL EAR MECH RES Decraemer WF, 2007, J ACOUST SOC AM, V121, P2774, DOI 10.1121/1.2709843 Decraemer WF, 2003, JARO, V4, P250, DOI 10.1007/s10162-002-3030-x Doan DE, 1996, HEARING RES, V97, P174, DOI 10.1016/0378-5955(96)00060-3 Dong W, 2012, JARO-J ASSOC RES OTO, V13, P447, DOI 10.1007/s10162-012-0320-9 Dong W, 2006, J NEUROPHYSIOL, V95, P2951, DOI 10.1152/jn.01214.2005 Dong W, 2009, BIOPHYS J, V97, P1233, DOI 10.1016/j.bpj.2009.05.057 Fay JP, 2006, P NATL ACAD SCI USA, V103, P19743, DOI 10.1073/pnas.0603898104 Fleischer G, 1978, Adv Anat Embryol Cell Biol, V55, P3 GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465 Hato N, 2003, AUDIOL NEURO-OTOL, V8, P140, DOI 10.1159/000069475 Heiland KE, 1999, AM J OTOL, V20, P81 Huber AM, 2008, OTOL NEUROTOL, V29, P1187, DOI 10.1097/MAO.0b013e31817ef49b Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Keefe DH, 2007, J ACOUST SOC AM, V121, P978, DOI 10.1121/1.2427128 Keefe DH, 2002, J ACOUST SOC AM, V111, P249, DOI 10.1121/1.1423931 KHANNA SM, 1972, J ACOUST SOC AM, V51, P1904, DOI 10.1121/1.1913050 Lavender D, 2011, HEARING RES, V282, P97, DOI 10.1016/j.heares.2011.09.003 Lee JH, 2009, ANAT HISTOL EMBRYOL, V38, P311, DOI 10.1111/j.1439-0264.2009.00946.x Magnan P, 1997, HEARING RES, V107, P41, DOI 10.1016/S0378-5955(97)00015-4 Nakajima H. H., 2008, JARO-J ASSOC RES OTO, V10, P23 NEDZELNITSKY V, 1980, J ACOUST SOC AM, V68, P1676, DOI 10.1121/1.385200 Olson ES, 1998, J ACOUST SOC AM, V103, P3445, DOI 10.1121/1.423083 Olson ES, 2001, J ACOUST SOC AM, V110, P349, DOI 10.1121/1.1369098 Ouagazzal AM, 2006, BEHAV BRAIN RES, V172, P307, DOI 10.1016/j.bbr.2006.05.018 PLASSMANN W, 1991, BRAIN BEHAV EVOLUT, V38, P115, DOI 10.1159/000114382 Puria S, 1998, J ACOUST SOC AM, V104, P3463, DOI 10.1121/1.423930 Puria S, 2010, HEARING RES, V263, P183, DOI 10.1016/j.heares.2009.10.013 Puria S, 2003, J ACOUST SOC AM, V113, P2773, DOI 10.1121/1.1564018 Puria S, 1997, J ACOUST SOC AM, V101, P2754, DOI 10.1121/1.418563 Qin ZB, 2010, HEARING RES, V263, P93, DOI 10.1016/j.heares.2009.10.002 Ravicz ME, 2008, J ACOUST SOC AM, V124, P363, DOI 10.1121/1.2932061 Rosowski J.J, 2003, SENSORS SENSING BIOL, VXII, P59 Rosowski JJ, 2009, HEARING RES, V253, P83, DOI 10.1016/j.heares.2009.03.010 Rosowski JJ, 2003, JARO, V4, P371, DOI 10.1007/s10162-002-3047-1 Rosowski JJ, 1999, AUDIOL NEURO-OTOL, V4, P129, DOI 10.1159/000013831 SAUNDERS JC, 1982, J COMP PHYSIOL, V146, P517 Slama MCC, 2010, J ACOUST SOC AM, V127, P1397, DOI 10.1121/1.3279830 Teoh SW, 1997, HEARING RES, V106, P39, DOI 10.1016/S0378-5955(97)00002-6 Voss SE, 2004, J ACOUST SOC AM, V116, P2187, DOI 10.1021/1.1785832 Willi UB, 2006, J COMP PHYSIOL A, V192, P267, DOI 10.1007/s00359-005-0070-9 NR 50 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2013 VL 301 SI SI BP 27 EP 34 DI 10.1016/j.heares.2012.11.015 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 165IW UT WOS:000320478100005 PM 23183032 ER PT J AU Koch, M Seidler, H Hellmuth, A Bornitz, M Lasurashvili, N Zahnert, T AF Koch, Martin Seidler, Hannes Hellmuth, Alexander Bornitz, Matthias Lasurashvili, Nikoloz Zahnert, Thomas TI Influence of the middle ear anatomy on the performance of a membrane sensor in the incudostapedial joint gap SO HEARING RESEARCH LA English DT Article ID SENSORINEURAL HEARING-LOSS; DEVICE; RECONSTRUCTION AB There is a great demand for implantable microphones for future generations of implantable hearing aids, especially Cochlea Implants. An implantable middle ear microphone based on a piezoelectric membrane sensor for insertion into the incudostapedial gap is investigated. The sensor is designed to measure the sound-induced forces acting on the center of the membrane. The sensor mechanically couples to the adjacent ossicles via two contact areas, the sensor membrane and the sensor housing. The sensing element is a piezoelectric single crystal bonded on a titanium membrane. The sensor allows a minimally invasive and reversible implantation without removal of ossicles and without additional sensor fixation in the tympanic cavity. This study investigates the implantable microphone sensor and its implantation concept. It intends to quantify the influence of the sensor's insertion position on the achievable microphone sensitivity. The investigation considers anatomical and pathological variations of the middle ear geometry and its space limitations. Temporal bone experiments on a laboratory model show that anatomical and pathological variations of the middle ear geometry can prevent the sensor from being placed optimally within the incudostapedial joint. Beyond scattering of transfer functions due to anatomic variations of individual middle ears there is the impact of variations in the sensor position within the ossicular chain that has a considerable effect on the transfer characteristics of the middle ear microphone. The centering of the sensor between incus and stapes, the direction of insertion (membrane to stapes or to incus) and the effect of additional contact points with surrounding anatomic structures affect the signal yield of the implanted sensor. The presence of additional contact points has a considerably impact on the sensitivity, yet the microphone sensitivity is quite robust against small changes in the positioning of the incus on the sensor. Signal losses can be avoided by adjusting the position of the sensor within the joint. The findings allow the development of an improved surgical insertion technique to ensure maximally achievable signal yield of the membrane sensor in the ISJ and provides valuable knowledge for a future design considerations including sensor miniaturization and geometry. Measurements of the implanted sensor in temporal bone specimens showed a microphone sensitivity in the order of 1 mV/Pa. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2012 Elsevier B.V. All rights reserved. C1 [Koch, Martin; Seidler, Hannes; Bornitz, Matthias; Lasurashvili, Nikoloz; Zahnert, Thomas] Tech Univ Dresden, Otorhinolaryngol Clin, Dept Med, Univ Klin Carl Gustav Carus, D-03107 Dresden, Germany. [Hellmuth, Alexander] MED EL Med Elect, A-6020 Innsbruck, Austria. RP Koch, M (reprint author), Tech Univ Dresden, Otorhinolaryngol Clin, Dept Med, Univ Klin Carl Gustav Carus, Fetscherstr 74,Haus 5, D-03107 Dresden, Germany. EM martin.koch@uniklinikum-dresden.de CR Asai M, 1999, ACTA OTO-LARYNGOL, V119, P356 Backous D.D, 2006, CURRENT OPINION OTOL, V1, P314 Barbara M, 2009, ACTA OTO-LARYNGOL, V129, P429, DOI 10.1080/00016480802593505 Bornitz M, 2010, HEARING RES, V263, P145, DOI 10.1016/j.heares.2010.02.007 Bruschini L, 2010, ACTA OTO-LARYNGOL, V130, P1147, DOI 10.3109/00016481003671244 Clark G. M., 2003, COCHLEAR IMPLANTS FU Fisch U, 1994, TYMPANOPLASTY MASTOI, P25 Gan RZ, 2011, MED ENG PHYS, V33, P330, DOI 10.1016/j.medengphy.2010.10.022 Haynes David S, 2009, Trends Amplif, V13, P206, DOI 10.1177/1084713809346262 Hellmut A, 2012, MEMR 2012 6 INT S MI Neudert M, 2009, OTOL NEUROTOL, V30, P332, DOI 10.1097/MAO.0b013e31819679dd Park WT, 2007, BIOMED MICRODEVICES, V9, P939, DOI 10.1007/s10544-007-9072-4 Rosowski JJ, 2007, AUDIOL NEURO-OTOL, V12, P265, DOI 10.1159/000101474 Todd NW, 2008, LARYNGOSCOPE, V118, P110, DOI 10.1097/MLG.0b013e318155a299 Voss SE, 2000, HEARING RES, V150, P43, DOI 10.1016/S0378-5955(00)00177-5 Yanagihara N, 2001, OTOLARYNG CLIN N AM, V34, P389, DOI 10.1016/S0030-6665(05)70338-8 Zenner HP, 2000, AM J OTOL, V21, P196, DOI 10.1016/S0196-0709(00)80009-5 Zenner HP, 1998, HNO, V46, P844, DOI 10.1007/s001060050324 Zurcher M.A, 2006, INT C NETWORKED SENS, P49 NR 19 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2013 VL 301 SI SI BP 35 EP 43 DI 10.1016/j.heares.2012.12.001 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 165IW UT WOS:000320478100006 PM 23246425 ER PT J AU Rosowski, JJ Dobrev, I Khaleghi, M Lu, WN Cheng, JT Harrington, E Furlong, C AF Rosowski, John J. Dobrev, Ivo Khaleghi, Morteza Lu, Weina Cheng, Jeffrey Tao Harrington, Ellery Furlong, Cosme TI Measurements of three-dimensional shape and sound-induced motion of the chinchilla tympanic membrane SO HEARING RESEARCH LA English DT Article ID WAVE MODEL; EARDRUM; HOLOGRAPHY; SURFACE AB Opto-electronic computer holographic measurements were made of the tympanic membrane (TM) in cadaveric chinchillas. Measurements with two laser wavelengths were used to compute the 3D-shape of the TM. Single laser wavelength measurements locked to eight distinct phases of a tonal stimulus were used to determine the magnitude and the relative phase of the surface displacements. These measurements were made at over 250,000 points on the TM surface. The measured motions contained spatial phase variations consistent with relatively low-order (large spatial frequency) modal motions and smaller magnitude higher-order (smaller spatial frequency) motions that appear to travel, but may also be explained by losses within the membrane. The measurement of shape and thin shell theory allowed us to separate the measured motions into those components orthogonal to the plane of the tympanic ring, and those components within the plane of the tympanic ring based on the 3D-shape. The predicted in-plane motion components are generally smaller than the out-of-plane perpendicular component of motion. Since the derivation of in-plane and out-of plane depended primarily on the membrane shape, the relative sizes of the predicted motion components did not vary with frequency. Summary: A new method for simultaneously measuring the shape and sound-induced motion of the tympanic membrane is utilized to estimate the 3D motion on the membrane surface. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2012 Elsevier B.V. All rights reserved. C1 [Rosowski, John J.; Cheng, Jeffrey Tao; Furlong, Cosme] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA. [Rosowski, John J.; Cheng, Jeffrey Tao; Furlong, Cosme] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. [Dobrev, Ivo; Khaleghi, Morteza; Lu, Weina; Furlong, Cosme] Worcester Polytech Inst, Dept Mech Engn, Worcester, MA 01609 USA. [Dobrev, Ivo; Khaleghi, Morteza; Lu, Weina; Harrington, Ellery; Furlong, Cosme] Worcester Polytech Inst, Ctr Holog Studies & Laser MicromechaTron, Worcester, MA 01609 USA. RP Rosowski, JJ (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, 243 Charles St, Boston, MA 02114 USA. EM John_Rosowski@meei.harvard.edu FU NIDCD; Mittal Foundation FX We thank Mike Ravicz, Jef Aernouts, and Saumil Merchant for significant contributions to this work. This work has been funded by NIDCD grants to JJR, and the Mittal Foundation. CR Aernouts J., 2012, HEAR RES Blayney AW, 1997, ACTA OTO-LARYNGOL, V117, P269, DOI 10.3109/00016489709117785 Chang E.W., NATURE UNPUB Cheng JT, 2010, HEARING RES, V263, P66, DOI 10.1016/j.heares.2009.12.024 Cheng J.T., J ACOUST SO IN PRESS Chhan D, 2013, HEARING RES, V301, P66, DOI 10.1016/j.heares.2012.11.014 de La Rochefoucauld O, 2010, HEARING RES, V263, P9, DOI 10.1016/j.heares.2009.10.014 Decraemer WF, 2008, CHRONIC OTITIS MEDIA, P51 DECRAEMER WF, 1991, HEARING RES, V51, P107, DOI 10.1016/0378-5955(91)90010-7 DIRCKX JJJ, 1992, HEARING RES, V62, P99, DOI 10.1016/0378-5955(92)90206-3 Dirckx JJJ, 2001, HEARING RES, V157, P124, DOI 10.1016/S0378-5955(01)00290-8 Fay J, 2005, J BIOMECH, V38, P1807, DOI 10.1016/j.jbiomech.2004.08.022 Flores-Moreno JM, 2011, SCANNING, V33, P342, DOI 10.1002/sca.20283 Funnell W.R., 1977, J ACOUST SOC AM, V63, P1461 FUNNELL WRJ, 1987, J ACOUST SOC AM, V81, P1851, DOI 10.1121/1.394749 Gan RZ, 2002, OTOL NEUROTOL, V23, P271, DOI 10.1097/00129492-200205000-00008 Goll E, 2011, J ACOUST SOC AM, V130, P1452, DOI 10.1121/1.3613934 Hernandez-Montes MDS, 2009, J BIOMED OPT, V14, DOI 10.1117/1.3153898 Ilgner J., 2012, MEMRO 2012, P39 Jackson R., 2012, MEMRO 2012, P24 KHANNA SM, 1972, J ACOUST SOC AM, V51, P1904, DOI 10.1121/1.1913050 Koike T, 2002, J ACOUST SOC AM, V111, P1306, DOI 10.1121/1.1451073 Kolenovic E., 2004, P 2004 SEM INT C EXP, P470 Love A.E.H., 1888, PHILOS T R SOC A, V17, P491, DOI 10.1098/rsta.1888.0016 Lu W., 2012, THESIS WORCESTER POL Parent P, 2010, HEARING RES, V263, P152, DOI 10.1016/j.heares.2009.12.015 Parenta P, 2007, J ACOUST SOC AM, V122, P918, DOI 10.1121/12747156 Pryputniewicz R.J., 1986, P SOC PHOTO-OPT INS, V673, P250 Puria S, 2010, HEARING RES, V263, P183, DOI 10.1016/j.heares.2009.10.013 RABBITT RD, 1986, J ACOUST SOC AM, V80, P1716, DOI 10.1121/1.394284 Rosowski JJ, 2009, HEARING RES, V253, P83, DOI 10.1016/j.heares.2009.03.010 Rosowski JJ, 2011, OTOL NEUROTOL, V32, P1559, DOI 10.1097/MAO.0b013e31822e94f3 RUGGERO MA, 1990, J ACOUST SOC AM, V87, P1612, DOI 10.1121/1.399409 Saada AS., 1974, ELASTICITY THEORY AP STETSON KA, 1975, APPL OPTICS, V14, P2256, DOI 10.1364/AO.14.002256 Timoshenko S., 1959, THEORY PLATES SHELLS Vest C. M., 1979, HOLOGRAPHIC INTERFER NR 37 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2013 VL 301 SI SI BP 44 EP 52 DI 10.1016/j.heares.2012.11.022 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 165IW UT WOS:000320478100007 PM 23247058 ER PT J AU Gaihede, M Padurariu, S Jacobsen, H De Greef, D Dirckx, JJJ AF Gaihede, Michael Padurariu, Simona Jacobsen, Henrik De Greef, Daniel Dirckx, Joris J. J. TI Eustachian tube pressure equilibration. Temporal analysis of pressure changes based on direct physiological recordings with an intact tympanic membrane SO HEARING RESEARCH LA English DT Article ID MIDDLE-EAR PRESSURE; VIDEO ENDOSCOPY; OTITIS-MEDIA AB Eustachian tube function is important in pressure regulation of the middle ear. The efficacy or magnitude of pressure equilibration by tube openings should be determined by the gradient between middle ear and ambient pressure, but in theory also the duration of the tube opening may play a role. This study employed direct measurements of middle ear pressure in patients, who after parotidectomy had a catheter inserted into the mastoid with a pressure transducer connected. Thus, monitoring of the middle ear pressure in response to experimentally induced pressure changes could be performed under physiological conditions with an intact tympanic membrane. A set of six experiments was performed in four healthy subjects with different pressure deviations, where the counter-regulation was recorded over 10 min's time frames; a total of 75 events of tube openings were recorded. The transducer had a high accuracy of +/- 0.1 daPa, and data were sampled at 10 Hz, so that detailed parameters for each tube opening event could be obtained: the pressure change, the pressure gradient and the duration of the opening were determined. The pressure changes in response to Eustachian tube openings showed significant positive correlation to the pressure gradient and ambient pressure (p < 0.001). However, the duration of the opening time was not related to the pressure gradient (p = 0.16), as well as the pressure change was also not related to the duration of the opening time (p = 034). This meant that the magnitude of a pressure equilibration during tube openings was only determined by the pressure gradient and not variations in the duration of the opening time. Additional correlations were investigated including the pressure change rate. In conclusion, under physiological conditions the opening of the Eustachian tube behaves similarly to a reflex mechanism with relative constant duration. Therefore, in order to equilibrate higher pressure gradients, series of Eustachian tube openings are needed, rather than the tube will open during a longer period of time. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2013 Elsevier B.V. All rights reserved. C1 [Gaihede, Michael; Padurariu, Simona; Jacobsen, Henrik] Aalborg Univ Hosp, Dept Otolaryngol Head & Neck Surg, DK-9000 Aalborg, Denmark. [De Greef, Daniel; Dirckx, Joris J. J.] Univ Antwerp, Lab Biomed Phys, B-2020 Antwerp, Belgium. RP Gaihede, M (reprint author), Aalborg Univ Hosp, Dept Otolaryngol Head & Neck Surg, Hobrovej 18-22, DK-9000 Aalborg, Denmark. EM mlg@rn.dk; s.padurariu@rn.dk; heja@rn.dk; Daniel.DeGreef@ua.ac.be; joris.dirckx@ua.ac.be FU Research Administration of Aalborg Hospital FX Dr. Kjell Tveteras kindly assisted performing some of the parotidectomies for this study. The Research Administration of Aalborg Hospital provided a 2 months fellowship to Simona Padurariu for the analysis of the data. CR Asenov DR, 2010, ACTA OTO-LARYNGOL, V130, P1242, DOI 10.3109/00016489.2010.492481 Bluestone CD, 2004, LARYNGOSCOPE, V114, P1, DOI 10.1097/01.mlg.0000148223.45374.ec Brattmo M, 2003, ACTA OTO-LARYNGOL, V123, P569, DOI 10.1080/00016480310001231 Bunne M, 2000, INT J PEDIATR OTORHI, V52, P131, DOI 10.1016/S0165-5876(00)00281-0 Doyle WJ, 2000, FUNCTION AND MECHANICS OF NORMAL, DISEASED AND RECONSTRUCTED MIDDLE EARS, P3 EDEN AR, 1990, LARYNGOSCOPE, V100, P67 ELNER A, 1971, ACTA OTO-LARYNGOL, V72, P320, DOI 10.3109/00016487109122489 Felding UN, 2003, ACTA OTO-LARYNGOL, V123, P808, DOI 10.1080/00016480310015416 Gaihede M., 2008, CHRONIC OTITIS MEDIA, P227 Gaihede M, 2010, OTOL NEUROTOL, V31, P603, DOI 10.1097/MAO.0b013e3181dd13e2 Jacobsen H, 2007, MIDDLE EAR MECHANICS IN RESEARCH AND OTOLOGY, P26, DOI 10.1142/9789812708694_0004 Mondain M, 1997, LARYNGOSCOPE, V107, P1414, DOI 10.1097/00005537-199710000-00022 Poe DS, 2011, OTOL NEUROTOL, V32, P794, DOI 10.1097/MAO.0b013e31821c6355 Poe DS, 2000, AM J OTOL, V21, P602 Sami SAK, 2009, OTOL NEUROTOL, V30, P649, DOI 10.1097/MAO.0b013e3181a32bd1 Sheer FJ, 2012, MED ENG PHYS, V34, P605, DOI 10.1016/j.medengphy.2011.09.008 Swarts JD, 2011, ANN OTO RHINOL LARYN, V120, P220 Tideholm B, 1996, ACTA OTO-LARYNGOL, V116, P581, DOI 10.3109/00016489609137893 NR 18 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2013 VL 301 SI SI BP 53 EP 59 DI 10.1016/j.heares.2013.01.003 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 165IW UT WOS:000320478100008 PM 23347915 ER PT J AU Cros, O Borga, M Pauwels, E Dirckx, JJJ Gaihede, M AF Cros, Olivier Borga, Magnus Pauwels, Elin Dirckx, Joris J. J. Gaihede, Michael TI Micro-channels in the mastoid anatomy. Indications of a separate blood supply of the air cell system mucosa by micro-CT scanning SO HEARING RESEARCH LA English DT Article ID MIDDLE-EAR; GAS-EXCHANGE; PRESSURE; MODELS AB The mastoid air cell system has traditionally been considered to have a passive role in gas exchange and pressure regulation of the middle ear possibly with some acoustic function. However, more evidence has focused on the mucosa of the mastoid, which may play a more active role in regulation of middle ear pressure. In this study we have applied micro-CT scanning on a series of three human temporal bones. This approach greatly enhances the resolution (40-60 mu m), so that we have discovered anatomical details, which has not been reported earlier. Thus, qualitative analysis using volume rendering has demonstrated notable micro-channels connecting the surface of the compact bone directly to the mastoid air cells as well as forming a network of connections between the air cells. Quantitative analysis on 2D slices was employed to determine the average diameter of these micro-channels (158 mu m; range = 40-440 mu m) as well as their density at a localized area (average = 75 cm(-2); range = 64-97 cm(-2)). These channels are hypothesized to contain a separate vascular supply for the mastoid mucosa. However, future studies of the histological structure of the micro-channels are warranted to confirm the hypothesis. Studies on the mastoid mucosa and its blood supply may improve our knowledge of its physiological properties, which may have important implications for our understanding of the pressure regulation of the middle ear. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2013 Elsevier B.V. All rights reserved. C1 [Cros, Olivier; Gaihede, Michael] Aalborg Univ Hosp, Dept Otolaryngol Head & Neck Surg, Aalborg, Denmark. [Cros, Olivier; Borga, Magnus] Linkoping Univ, Dept Biomed Engn, SE-58185 Linkoping, Sweden. [Cros, Olivier; Borga, Magnus] Linkoping Univ, Ctr Med Image Sci & Visualizat, SE-58185 Linkoping, Sweden. [Pauwels, Elin] Univ Ghent, Dept Phys & Astron, Ctr Xray Tomog, B-9000 Ghent, Belgium. [Dirckx, Joris J. J.] Univ Antwerp, Lab Biomed Phys, Antwerp, Belgium. RP Cros, O (reprint author), Linkoping Univ, Dept Biomed Engn, SE-58185 Linkoping, Sweden. EM olivier.cros@liu.se CR Ars B, 1997, ACTA OTO-LARYNGOL, V117, P704, DOI 10.3109/00016489709113463 Boulpaep EL, 2009, MED PHYSL CELLULAR M, P467 BUYTAERT J.A.N., 2012, ANAT RES INT, V2012, P1 Cinamon U, 2009, EUR ARCH OTO-RHINO-L, V266, P781, DOI 10.1007/s00405-009-0941-8 Cooper D. M. L., 2003, Anatomical Record, V274B, P169, DOI 10.1002/ar.b.10024 Doyle WJ, 2000, FUNCTION AND MECHANICS OF NORMAL, DISEASED AND RECONSTRUCTED MIDDLE EARS, P3 Drebin R. A., 1988, Computer Graphics, V22 Fleischer G., 2010, CONTRIBUTION INT CON, P250 Gaihede M, 2010, OTOL NEUROTOL, V31, P603, DOI 10.1097/MAO.0b013e3181dd13e2 Gulya A.J., 2007, GULYA SCHUKNECHTS AN, P1 Lane J.I., 2009, TEMPORAL BONE IMAGIN, P1 Lee DH, 2010, HEARING RES, V263, P198, DOI 10.1016/j.heares.2010.01.007 Magnuson B, 2003, J LARYNGOL OTOL, V117, P99 Marcusohn Y, 2010, HEARING RES, V265, P11, DOI 10.1016/j.heares.2010.03.078 Masschaele BC, 2007, NUCL INSTRUM METH A, V580, P266, DOI 10.1016/j.nima.2007.05.099 Park MS, 2000, J LARYNGOL OTOL, V114, P93 Sade J, 1997, OTOLARYNG HEAD NECK, V116, P499, DOI 10.1016/S0194-5998(97)70302-4 Salih WHM, 2012, HEARING RES, V284, P1, DOI 10.1016/j.heares.2011.12.004 Vlassenbroeck J, 2007, NUCL INSTRUM METH A, V580, P442, DOI 10.1016/j.nima.2007.05.073 NR 19 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2013 VL 301 SI SI BP 60 EP 65 DI 10.1016/j.heares.2013.03.002 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 165IW UT WOS:000320478100009 PM 23518400 ER PT J AU Chhan, D Roosli, C McKinnon, ML Rosowski, JJ AF Chhan, David Roeoesli, Christof McKinnon, Melissa L. Rosowski, John J. TI Evidence of inner ear contribution in bone conduction in chinchilla SO HEARING RESEARCH LA English DT Article ID MIDDLE-EAR; ADMITTANCE; PRESSURE AB We investigated the contribution of the middle ear to the physiological response to bone conduction stimuli in chinchilla. We measured intracochlear sound pressure in response to air conduction (AC) and bone conduction (BC) stimuli before and after interruption of the ossicular chain at the incudostapedial joint. Interruption of the chain effectively decouples the external and middle ear from the inner ear and significantly reduces the contributions of the outer ear and middle ear to the bone conduction response. With AC stimulation, both the scala vestibuli Psv and scala tympani Pst sound pressures drop by 30-40 dB after the interruption. In BC stimulation, Psv decreases after interruption by about 10-20 dB, but Pst is little affected. This difference in the sensitivity of the BC induced Psv and Pst to ossicular interruption is not consistent with a BC response to ossicular motion, but instead suggests a significant contribution of an inner-ear drive (e.g. cochlear fluid inertia or compressibility) to the BC response. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2012 Elsevier B.V. All rights reserved. C1 [Chhan, David; Rosowski, John J.] MIT, Harvard Mit Div Hlth Sci & Technol, Speech & Hearing Biosci & Technol Program, Cambridge, MA 02139 USA. [Chhan, David; Roeoesli, Christof; McKinnon, Melissa L.; Rosowski, John J.] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA. [Roeoesli, Christof; Rosowski, John J.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. [Roeoesli, Christof] Univ Zurich Hosp, Dept Otorhinolaryngol Head & Neck Surg, Zurich, Switzerland. RP Rosowski, JJ (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA. EM John_Rosowski@meei.harvard.edu CR Barany E, 1938, ACTA OTO-LARYNGOL, V26, P1 HUIZING E H, 1960, Acta Otolaryngol Suppl, V155, P1 KHANNA SM, 1976, J ACOUST SOC AM, V60, P139, DOI 10.1121/1.381081 Kim N, 2011, JARO-J ASSOC RES OTO, V12, P261, DOI 10.1007/s10162-011-0258-3 Olson ES, 1998, J ACOUST SOC AM, V103, P3445, DOI 10.1121/1.423083 Ravicz ME, 2010, HEARING RES, V263, P16, DOI 10.1016/j.heares.2009.11.014 Rosowski JJ, 2006, J COMP PHYSIOL A, V192, P1287, DOI 10.1007/s00359-006-0159-9 Songer JE, 2006, J ACOUST SOC AM, V120, P258, DOI 10.1121/1.2204356 Stenfelt S, 2002, J ACOUST SOC AM, V111, P947, DOI 10.1121/1.1432977 Stenfelt S, 2003, J ACOUST SOC AM, V113, P902, DOI 10.1121/1.1534606 Stenfelt S, 2005, OTOL NEUROTOL, V26, P1245, DOI 10.1097/01.mao.0000187236.10842.d5 TONNDORF J, 1962, J ACOUST SOC AM, V34, P1127, DOI 10.1121/1.1918259 TONNDORF J, 1972, F MODERN AUDITORY TH, V2, P197 Wever EG, 1954, PHYSL ACOUSTICS NR 14 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2013 VL 301 SI SI BP 66 EP 71 DI 10.1016/j.heares.2012.11.014 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 165IW UT WOS:000320478100010 PM 23211609 ER PT J AU Kim, N Steele, CR Puria, S AF Kim, Namkeun Steele, Charles R. Puria, Sunil TI Superior-semicircular-canal dehiscence: Effects of location, shape, and size on sound conduction SO HEARING RESEARCH LA English DT Article ID BASILAR-MEMBRANE; HEARING; MODEL; AIR; CHINCHILLA; EAR; AMPLIFICATION; THRESHOLDS; STIMULI; VERTIGO AB The effects of a superior-semicircular-canal (SSC) dehiscence (SSCD) on hearing sensitivity via the air-conduction (AC) and bone-conduction (BC) pathways were investigated using a three-dimensional finite-element (FE) model of a human middle ear coupled to the inner ear. Dehiscences were modeled by removing a section of the outer bony wall of the SSC and applying a zero-pressure condition to the fluid surface thus exposed. At each frequency, the basilar-membrane velocity, v(BM), was separately calculated for AC and BC stimulation, under both pre- and post-dehiscence conditions. Hearing loss was calculated as the difference in the maximum magnitudes of v(BM) between the pre- and post-dehiscence conditions representing a change in hearing threshold. In this study, BC excitations were simulated by applying rigid-body vibrations to the model along the directions of the (arbitrarily defined) x, y, and z axes of the model. Simulation results are consistent with previous clinical measurements on patients with an SSCD and with results from earlier lumped-element electrical-circuit modeling studies, with the dehiscence decreasing the hearing threshold (i.e., increasing v(BM)) by about 35 dB for BC excitation at low frequencies, while for AC excitation the dehiscence increases the hearing threshold (i.e., decreases v(BM)) by about 15 dB. A new finding from this study is that the initial width (defined as the width of the edge of the dehiscence where the flow of the fluid-motion wave from the oval window meets it for the first time) on the vestibular side of the dehiscence has more of an effect on v(BM) than the area of the dehiscence. Analyses of dehiscence effects using the FE model further predict that changing the direction of the BC excitation should have an effect on v(BM), with v(BM) being about 20 dB lower due to BC excitation parallel to the longitudinal direction of the BM in the hook region (the x direction) as compared to excitations in other directions (y and z). BC excitation in the x direction and with a 'center' dehiscence located midway along the length of the SSC causes a reduction in the anti-symmetric component of the fluid pressure across the BM, as compared to the other directions of BC excitation, which results in a decrease in v(BM) at high frequencies. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2013 Published by Elsevier B.V. C1 [Kim, Namkeun; Steele, Charles R.; Puria, Sunil] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Puria, Sunil] Stanford Univ, Dept Otolaryngol HNS, Stanford, CA 94305 USA. RP Puria, S (reprint author), Stanford Univ, Dept Mech Engn, 496 Lomita Mall, Stanford, CA 94305 USA. EM kimnk@stanford.edu; puria@stanford.edu FU National Institute of Deafness and other Communication Disorders (NIDCD) of the NIH [R01-DC07910, R01-DC05960] FX The authors would like to thank Kevin N. O'Connor for several critical readings of this paper, leading to numerous improvements. Work supported in part by grants R01-DC07910 and R01-DC05960 from the National Institute of Deafness and other Communication Disorders (NIDCD) of the NIH. CR Aibara R, 2001, HEARING RES, V152, P100, DOI 10.1016/S0378-5955(00)00240-9 Attias J, 2011, OTOLARYNG HEAD NECK, V145, P648, DOI 10.1177/0194599811410535 Chien WW, 2011, CURR OPIN NEUROL, V24, P25, DOI 10.1097/WCO.0b013e328341ef88 Chien WW, 2012, OTOL NEUROTOL, V33, P810, DOI 10.1097/MAO.0b013e318248eac4 Cremer PD, 2000, NEUROLOGY, V55, P1833 Gan RZ, 2004, ANN BIOMED ENG, V32, P847, DOI 10.1023/B:ABME.0000030260.22737.53 GUNDERSEN T, 1978, ACTA OTO-LARYNGOL, V86, P225, DOI 10.3109/00016487809124740 Kim N., 2012, THESIS STANFORD U Kim N, 2011, JARO-J ASSOC RES OTO, V12, P261, DOI 10.1007/s10162-011-0258-3 Liu YW, 2010, J ACOUST SOC AM, V127, P2420, DOI 10.1121/1.3337233 Mikulec AA, 2004, OTOL NEUROTOL, V25, P121, DOI 10.1097/00129492-200403000-00007 Minor LB, 2000, AM J OTOL, V21, P9 Minor LB, 1998, ARCH OTOLARYNGOL, V124, P249 Nakajima HH, 2011, AIP CONF PROC, V1403, DOI 10.1063/1.3658069 Niesten M., 2012, ASS RES OT MIDW M SA PETERSON LC, 1950, J ACOUST SOC AM, V22, P369, DOI 10.1121/1.1906615 Popelka GR, 2010, HEARING RES, V263, P85, DOI 10.1016/j.heares.2009.11.002 Rajan GP, 2008, OTOL NEUROTOL, V29, P972, DOI 10.1097/MAO.0b013e31817f7382 Ren TY, 2005, NAT NEUROSCI, V8, P132, DOI 10.1038/nn0205-132 Rosowski JJ, 2004, OTOL NEUROTOL, V25, P323, DOI 10.1097/00129492-200405000-00021 Shera CA, 2007, J ACOUST SOC AM, V122, P2738, DOI 10.1121/1.2783205 Sohmer H, 2004, HEARING RES, V187, P105, DOI 10.1016/S0378-5955(03)00335-6 Songer JE, 2005, HEARING RES, V210, P53, DOI 10.1016/j.heares.2005.07.003 Songer JE, 2010, HEARING RES, V269, P70, DOI 10.1016/j.heares.2010.07.002 Songer JE, 2007, J ACOUST SOC AM, V122, P943, DOI 10.1121/1.2747158 Songer K.E., 2006, J ACOUST SOC AM, V120, P258 Stenfelt S, 2003, HEARING RES, V181, P131, DOI 10.1016/S0378-5955(03)00183-7 Yoon YJ, 2011, BIOPHYS J, V100, P1, DOI 10.1016/j.bpj.2010.11.039 NR 28 TC 4 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2013 VL 301 SI SI BP 72 EP 84 DI 10.1016/j.heares.2013.03.008 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 165IW UT WOS:000320478100011 PM 23562774 ER PT J AU Stenfelt, S Zeitooni, M AF Stenfelt, Stefan Zeitooni, Mehrnaz TI Loudness functions with air and bone conduction stimulation in normal-hearing subjects using a categorical loudness scaling procedure SO HEARING RESEARCH LA English DT Article ID OTOACOUSTIC EMISSIONS; VIBROTACTILE STIMULI; SOUND; TRANSMISSION; FREQUENCY; SUMMATION; REFLEX; THRESHOLDS; PERCEPTION; ULTRASOUND AB In a previous study (Stenfelt and Hakansson, 2002) a loudness balance test between bone conducted (BC) sound and air conducted (AC) sound was performed at frequencies between 0.25 and 4 kHz and at levels corresponding to 30-80 dB HL. The main outcome of that study was that for maintaining equal loudness, the level increase of sound with BC stimulation was less than that of AC stimulation with a ratio between 0.8 and 0.93 dB/dB. However, because it was shown that AC and BC tone cancellation was independent of the stimulation level, the loudness level difference did not originate in differences in basilar membrane stimulation. Therefore, it was speculated that the result could be due to the loudness estimation procedure. To investigate this further, another loudness estimation method (adaptive categorical loudness scaling) was here employed in 20 normal-hearing subjects. The loudness of a low-frequency and a high-frequency noise burst was estimated using the adaptive categorical loudness scaling technique when the stimulation was bilaterally by AC or BC. The sounds where rated on an 11-point scale between inaudible and too loud. The total dynamic range for these sounds was over 80 dB when presented by AC (between inaudible and too loud) and the loudness functions were similar for the low and the high-frequency stimulation. When the stimulation was by BC the loudness functions were steeper and the ratios between the slopes of the AC and BC loudness functions were 0.88 for the low-frequency sound and 0.92 for the high-frequency sound. These results were almost equal to the previous published results using the equal loudness estimation procedure, and it was unlikely that the outcome stems from the loudness estimation procedure itself. One possible mechanism for the result was loudness integration of multi-sensory input. However, no conclusive evidence for such a mechanism could be given by the present study. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2013 Elsevier B.V. All rights reserved. C1 [Stenfelt, Stefan; Zeitooni, Mehrnaz] Linkoping Univ, Dept Clin & Expt Med, S-58185 Linkoping, Sweden. RP Stenfelt, S (reprint author), Linkoping Univ, Dept Clin & Expt Med, S-58185 Linkoping, Sweden. EM stefan.stenfelt@liu.se RI Stenfelt, Stefan/J-9363-2013 OI Stenfelt, Stefan/0000-0003-3350-8997 FU Stingerfonden FX This study was supported by Stingerfonden. CR Aibara R, 2001, HEARING RES, V152, P100, DOI 10.1016/S0378-5955(00)00240-9 Beattie RC, 1998, SCAND AUDIOL, V27, P120, DOI 10.1080/010503998420360 Brand T, 2002, J ACOUST SOC AM, V112, P1597, DOI 10.1121/1.1502902 Brinkmann K., 1983, Z AUDIOLOGIE AUDIOLO, V22, P62 Goodman SS, 2006, JARO-J ASSOC RES OTO, V7, P125, DOI 10.1007/s10162-006-0028-9 HAEFF AV, 1963, SCIENCE, V139, P590, DOI 10.1126/science.139.3555.590 Hakansson B, 1996, J ACOUST SOC AM, V99, P2239 Hakansson BEV, 2003, J ACOUST SOC AM, V113, P818, DOI 10.1121/1.1536633 Hosoi H, 1998, LANCET, V351, P496, DOI 10.1016/S0140-6736(05)78683-9 IEC, 2009, IEC603181 International Organization for Standardization, 1994, ISO3893 International Organization for Standardization, 1998, ISO3891 International Organization for Standardization, 2006, ISO16832 International Organization for Standardization, 2004, ISO3898 IRVINE DRF, 1976, AUDIOLOGY, V15, P433 KHANNA SM, 1976, J ACOUST SOC AM, V60, P139, DOI 10.1121/1.381081 Kim N, 2011, JARO-J ASSOC RES OTO, V12, P261, DOI 10.1007/s10162-011-0258-3 Merchant S., 1996, HEARING RES, P97 Moore BCJ, 1997, J AUDIO ENG SOC, V45, P224 Neuhoff JG, 1999, J EXP PSYCHOL HUMAN, V25, P1050, DOI 10.1037/0096-1523.25.4.1050 Neumann J, 1996, Audiol Neurootol, V1, P359 Nishimura T, 2011, HEARING RES, V277, P176, DOI 10.1016/j.heares.2011.01.004 SCHARF B, 1969, J ACOUST SOC AM, V45, P1193, DOI 10.1121/1.1911590 Sheykholeslami K., 2001, HEARING RES, P160 Sivonen VP, 2006, J ACOUST SOC AM, V119, P2965, DOI 10.1021/1.2184268 Snik A.F., 2005, ANN OTOL RHINOL S12, V114, P1 Sorqvist P, 2012, J COGNITIVE NEUROSCI, V24, P2147 Stenfelt S, 2010, HEARING RES, V263, P243, DOI 10.1016/j.heares.2010.03.044 Stenfelt S, 2011, ADV OTO-RHINO-LARYNG, V71, P10, DOI 10.1159/000323574 Stenfelt S, 2002, HEARING RES, V167, P1, DOI 10.1016/S0378-5955(01)00407-5 Stenfelt S, 2005, OTOL NEUROTOL, V26, P1245, DOI 10.1097/01.mao.0000187236.10842.d5 Stenfelt S, 2009, SCAND J PSYCHOL, V50, P385, DOI 10.1111/j.1467-9450.2009.00748.x Stenfelt S, 2012, OTOL NEUROTOL, V33, P105, DOI 10.1097/MAO.0b013e31823e28ab Stenfelt S, 2007, INT J AUDIOL, V46, P595, DOI 10.1090/14992020701545880 Stenfelt S, 2003, HEARING RES, V181, P131, DOI 10.1016/S0378-5955(03)00183-7 Stenfelt S, 2005, J ACOUST SOC AM, V118, P2373, DOI 10.1121/1.12005847 Stenfelt S, 2007, HEARING RES, V225, P105, DOI 10.1016/j.heares.2006.12.009 von Bekesy G, 1932, ANN PHYS-BERLIN, V13, P111 Watanabe T, 2008, EAR HEARING, V29, P667, DOI 10.1097/AUD.0b013e3181775dde Wilson EC, 2010, J ACOUST SOC AM, V127, P3038, DOI 10.1121/1.3377116 Wilson EC, 2010, J ACOUST SOC AM, V127, P3044, DOI 10.1121/1.3365318 Zhao W, 2010, JARO-J ASSOC RES OTO, V11, P53, DOI 10.1007/s10162-009-0189-4 ZWICKER E, 1991, J ACOUST SOC AM, V89, P756, DOI 10.1121/1.1894635 NR 43 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2013 VL 301 SI SI BP 85 EP 92 DI 10.1016/j.heares.2013.03.010 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 165IW UT WOS:000320478100012 PM 23562775 ER PT J AU Huber, AM Sim, JH Xie, YZ Chatzimichalis, M Ullrich, O Roosli, C AF Huber, A. M. Sim, J. H. Xie, Y. Z. Chatzimichalis, M. Ullrich, O. Roeoesli, C. TI The Bonebridge: Preclinical evaluation of a new transcutaneously-activated bone anchored hearing device SO HEARING RESEARCH LA English DT Article ID CONDUCTED SOUND; TRANSCRANIAL ATTENUATION; FLUID PATHWAY; STIMULATION; TRANSMISSION; IMPLANT; SYSTEM; THRESHOLDS; AUDIOMETRY; TEETH AB Objectives: To assess the functional performance of the Bonebridge (BB, MED-EL), a newly-designed transcutaneous bone conduction implant that allows the skin to remain intact and to compare it with the current clinical model of choice, a percutaneous bone conduction implant (BAHA BP100, Cochlear Bone Anchored Solutions AG). Materials and methods: The devices were compared using two methods: (1) Measurements of cochlear promontory acceleration in five cadaver heads: Accelerations of the cochlear promontories on both ipsilateral and contralateral sides were measured using a Laser Doppler system, with free-field sound stimuli of 90 dB SPL in the frequency range of 0.3-10 kHz (2) Measurements of pure-tone sound field thresholds in 5 normally hearing human adult subjects under a condition of simulated hearing loss. For the latter measurements, the devices were applied to the head using a Softband, and measurements were performed in the frequency range of 0.25-8 kHz. Within investigation comparisons (i.e., in cadavers or listeners) and a cross-comparison analysis of the cadaver and human results were done. Results: Results from the cadaver heads showed that the cochlear promontory acceleration with the BB was higher within 10 dB on the ipsilateral side and lower within 5 dB on the contralateral side than the acceleration with the BAHA, in the frequency range of 0.7-10 kHz. The transcranial attenuation of the acceleration for the BB was greater than for the BAHA within 20 dB. For the sound-field threshold assessments with human subjects, the BB and BAHA showed similar threshold improvements of more than 10 dB HL for the ipsilateral side. For the contralateral side, the threshold improvement with the BB was less than with the BAHA, indicating better separation between ipsilateral and contralateral sides. Conclusions: Preclinical results imply that the BB has functional performance similar to the BAHA and could be beneficial to patients suffering with conductive and mixed hearing losses as well as for those with unilateral impairment. Based on these preliminary results, a carefully designed clinical trial with conservative inclusion criteria can be recommended. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2013 Elsevier B.V. All rights reserved. C1 [Huber, A. M.; Sim, J. H.; Chatzimichalis, M.; Roeoesli, C.] Univ Zurich Hosp, Dept Otorhinolaryngol Head & Neck Surg, CH-8091 Zurich, Switzerland. [Xie, Y. Z.] Fudan Univ, Eye & ENT Hosp, Dept Otorhinolaryngol Head & Neck Surg, Shanghai 200433, Peoples R China. [Ullrich, O.] Univ Zurich, Inst Anat, Zurich, Switzerland. RP Roosli, C (reprint author), Univ Zurich Hosp, Dept Otorhinolaryngol Head & Neck Surg, Frauenklin Str 24, CH-8091 Zurich, Switzerland. EM christof.roeoesli@usz.ch CR D'Eredita R, 2012, OTOLARYNG HEAD NECK, V146, P979, DOI 10.1177/0194599812438042 Dun CAJ, 2011, ADV OTO-RHINO-LARYNG, V71, P22, DOI 10.1159/000323577 Eeg-Olofsson M, 2011, OTOL NEUROTOL, V32, P192, DOI 10.1097/MAO.0b013e3182009f16 Eeg-Olofsson M, 2008, INT J AUDIOL, V47, P761, DOI 10.1080/14992020802311216 Fisch U, 2008, TYMPANOPLASTY MASTOI Hakansson B, 2008, OTOL NEUROTOL, V29, P1132, DOI 10.1097/MAO.0b013e31816fdc90 HOOD J D, 1960, Laryngoscope, V70, P1211, DOI 10.1288/00005537-196009000-00001 HOUGH JVD, 1995, OTOLARYNG CLIN N AM, V28, P43 HURLEY RM, 1970, J AUD RES, V10, P147 ISO 8253-1 Acoustics, 1989, 82531 ISO Ito T, 2011, AUDIOL NEURO-OTOL, V16, P12, DOI 10.1159/000314282 KHANNA SM, 1976, J ACOUST SOC AM, V60, P139, DOI 10.1121/1.381081 Miller RJ, 2010, AM J ORTHOD DENTOFAC, V138, P666, DOI 10.1016/j.ajodo.2010.03.027 Mulla O, 2012, CLIN OTOLARYNGOL, V37, P168, DOI 10.1111/j.1749-4486.2012.02465.x NOLAN M, 1981, J LARYNGOL OTOL, V95, P597, DOI 10.1017/S0022215100091155 Roosli C, 2012, HEARING RES, V290, P83, DOI 10.1016/j.heares.2012.04.011 Scollie Susan, 2005, Trends Amplif, V9, P159, DOI 10.1177/108471380500900403 SNYDER JM, 1973, LARYNGOSCOPE, V83, P1847, DOI 10.1288/00005537-197311000-00017 Sohmer H, 2000, HEARING RES, V146, P81, DOI 10.1016/S0378-5955(00)00099-X Sohmer H, 2004, HEARING RES, V193, P105, DOI 10.1016/j.heares.2004.03.015 Stenfelt S, 2005, OTOL NEUROTOL, V26, P1245, DOI 10.1097/01.mao.0000187236.10842.d5 Stenfelt S, 2012, OTOL NEUROTOL, V33, P105, DOI 10.1097/MAO.0b013e31823e28ab Stenfelt S, 2005, J ACOUST SOC AM, V118, P2373, DOI 10.1121/1.12005847 Stenfelt S, 2000, J ACOUST SOC AM, V107, P422, DOI 10.1121/1.428314 STUDEBAKER GA, 1964, J SPEECH HEAR DISORD, V29, P23 Taghavi H, 2012, OTOL NEUROTOL, V33, P413, DOI 10.1097/MAO.0b013e3182487fc8 THIEL W, 1992, ANN ANAT, V174, P185 Watanabe T, 2008, EAR HEARING, V29, P667, DOI 10.1097/AUD.0b013e3181775dde NR 28 TC 13 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2013 VL 301 SI SI BP 93 EP 99 DI 10.1016/j.heares.2013.02.003 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 165IW UT WOS:000320478100013 PM 23467173 ER PT J AU Gostian, AO Pazen, D Luers, JC Huttenbrink, KB Beutner, D AF Gostian, A. O. Pazen, D. Luers, J. C. Huttenbrink, K. B. Beutner, D. TI Titanium ball joint total ossicular replacement prosthesis - Experimental evaluation and midterm clinical results SO HEARING RESEARCH LA English DT Article ID HUMAN TEMPORAL BONES; PROGNOSTIC-FACTORS; STAPES FOOTPLATE; MIDDLE-EAR; TYMPANOPLASTY; OSSICULOPLASTY; AIR AB During reconstruction of the ossicular chain, there is a need to address the forces and loads caused by the ambient atmospheric pressure variations and the resulting tympanic membrane movements. It is understood that when a rigid middle ear prosthesis is inserted the malleoincudal joint, a keyfactor in controlling pressure variations in the middle ear space is bypassed. In this paper we describe a modified total titanium ossicular replacement prosthesis with an innovative micro ball joint in the headplate which is designed to compensate for tympanic membrane movements caused by atmospheric pressure variations. The characteristics of this modified prosthesis were examined in temporal bone experiments and compared to the standard titanium total ossicular reconstruction prosthesis. Sound-induced stapes footplate movements were investigated by means of a Laser vibrometer and revealed no significant differences between the two prostheses in vitro. Intraoperatively, the insertion of the modified prosthesis required more delicate handling. The angle between the shaft and the headplate was variable and ranged from 60 to 90 degrees as estimated by the surgeon. Twelve consecutive patients were eligible for clinical evaluation. The pure tone average (PTA) air-bone gap after a mean follow up period of 32 months was 18.8 dB. Furthermore, no extrusion, dislocation or other adverse events were observed. We conclude that the modified total ossicular replacement prosthesis with integrated micro ball joint yields similar volume velocities of the stapes footplate in the laboratory experiments compared to the standard rigid prosthesis. The audiological and morphological results are encouraging and show that the mobile prosthesis headplate adjusting to the level of the tympanic membrane is a further step in the development of a physiological middle ear implant. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2012 Elsevier B.V. All rights reserved. C1 [Gostian, A. O.; Pazen, D.; Luers, J. C.; Huttenbrink, K. B.; Beutner, D.] Univ Cologne, Dept Otorhinolaryngol Head & Neck Surg, D-50937 Cologne, Germany. RP Beutner, D (reprint author), Univ Cologne, Dept Otorhinolaryngol Head & Neck Surg, Kerpener Str 62, D-50937 Cologne, Germany. EM dirk.beutner@uk-koeln.de CR Arechvo I, 2012, OTOL NEUROTOL, V33, P60, DOI 10.1097/MAO.0b013e31823c9352 Beutner D, 2010, OTOL NEUROTOL, V31, P105, DOI 10.1097/MAO.0b013e3181be6b48 Beutner D, 2011, OTOL NEUROTOL, V32, P646, DOI 10.1097/MAO.0b013e318213867a Beutner D, 2008, J LARYNGOL OTOL, V122, P682, DOI 10.1017/S0022215108002545 Beutner D., 2009, LARYNGO RHINO OTOL, V88, P32 Committee on Hearing and Equilibrium. Committee on Hearing and Equilibrium guidelines for the evaluation of results of treatment of conductive hearing loss. American Academy of OtolaryngologyY Head and Neck Surgery Foundation Inc, 1995, OTOLARYNGOL HEAD NEC, V113, P186 De Vos C, 2007, OTOL NEUROTOL, V28, P61, DOI 10.1097/01.mao.0000231598.33585.8f Hato N, 2003, AUDIOL NEURO-OTOL, V8, P140, DOI 10.1159/000069475 HUTTENBRINK KB, 1988, ACTA OTO-LARYNGOL, P1 MILEWSKI C, 1993, LARYNGOSCOPE, V103, P1352 Mueller S., 2001, JAES, V49, P443 Murbe D, 2002, LARYNGOSCOPE, V112, P1769 Schmid G, 2009, LARYNGO RHINO OTOL, V88, P782, DOI 10.1055/s-0029-1231047 SHELTON C, 1990, LARYNGOSCOPE, V100, P679 Stenfelt S, 2004, J ACOUST SOC AM, V115, P797, DOI 10.1121/1.1639903 Yung M, 2006, OTOL NEUROTOL, V27, P874, DOI 10.1097/01.mao.0000226305.43951.13 Zhao SQ, 2005, ACTA OTO-LARYNGOL, V125, P33, DOI 10.1080/00016480410018250 NR 17 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2013 VL 301 SI SI BP 100 EP 104 DI 10.1016/j.heares.2012.10.009 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 165IW UT WOS:000320478100014 PM 23142147 ER PT J AU Stieger, C Rosowski, JJ Nakajima, HH AF Stieger, Christof Rosowski, John J. Nakajima, Hideko Heidi TI Comparison of forward (ear-canal) and reverse (round-window) sound stimulation of the cochlea SO HEARING RESEARCH LA English DT Article ID FLOATING MASS TRANSDUCER; MIXED HEARING LOSSES; HUMAN TEMPORAL BONES; HUMAN MIDDLE-EAR; VIBRANT SOUNDBRIDGE; PRESSURE MEASUREMENTS; INPUT IMPEDANCE; IMPLANTATION; VIBROPLASTY; PERFORMANCE AB The cochlea is normally driven with "forward" stimulation, in which sound is introduced to the ear canal. Alternatively, the cochlea can be stimulated at the round window (RW) using an actuator. During RW "reverse" stimulation, the acoustic flow starting at the RW does not necessarily take the same path as during forward stimulation. To understand the differences between forward and reverse stimulation, we measured ear-canal pressure, stapes velocity, RW velocity, and intracochlear pressures in scala vestibuli (SV) and scala tympani (ST) of fresh human temporal bones. During forward stimulation, the cochlear drive (differential pressure across the partition) results from the large difference in magnitude between the pressures of SV and ST, which occurs due to the high compliance of the RW. During reverse stimulation, the relatively high impedance of the middle ear causes the pressures of SV and ST to have similar magnitudes, and the differential pressure results primarily from the difference in phase of the pressures. Furthermore, the sound path differs between forward and reverse stimulation, such that motion through a third window is more significant during reverse stimulation. Additionally, we determined that although stapes velocity is a good estimate of cochlear drive during forward stimulation, it is not a good measure during reverse stimulation. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2012 Elsevier B.V. All rights reserved. C1 [Stieger, Christof; Rosowski, John J.; Nakajima, Hideko Heidi] Harvard Univ, Massachusetts Eye & Ear Infirm, Sch Med, Dept Otol & Laryngol,Eaton Peabody Lab, Boston, MA 02114 USA. [Stieger, Christof] Univ Bern, ARTORG Ctr, Univ Dept ENT Head & Neck Surg, Inselspital, CH-3010 Bern, Switzerland. RP Nakajima, HH (reprint author), Harvard Univ, Massachusetts Eye & Ear Infirm, Sch Med, Dept Otol & Laryngol,Eaton Peabody Lab, 243 Charles St, Boston, MA 02114 USA. EM heidi_nakajima@meei.harvard.edu FU NIH [R03DC011158, R01DC004798] FX We dedicate this paper to Saumil N. Merchant, who was involved throughout this project contributing his insight and support. We thank Julie Merchant, Diane Jones, Mike Ravicz, Melissa McKinnon, Ishmael Stefanov-Wagner, David Chhan, Marlien Niesten, and the staff of the Otolaryngology Department and Eaton Peabody Laboratory at Massachusetts Eye and Ear Infirmary for their generous contributions. This work was carried out in part through the use of MIT's Microsystems Technology Laboratories for the fabrication of the micro fiberoptic pressure sensors. Support was provided by NIH grants R03DC011158 (HHN) and R01DC004798 (SNM). CR Aibara R, 2001, HEARING RES, V152, P100, DOI 10.1016/S0378-5955(00)00240-9 Arnold A, 2010, OTOL NEUROTOL, V31, P122, DOI 10.1097/MAO.0b013e3181c34ee0 Arnold A, 2010, HEARING RES, V263, P120, DOI 10.1016/j.heares.2009.12.019 Baumgartner WD, 2010, ADV OTO-RHINO-LARYNG, V69, P38, DOI 10.1159/000318521 Bernardeschi D, 2011, AUDIOL NEURO-OTOL, V16, P381, DOI 10.1159/000322647 Colletti L, 2011, OTOL NEUROTOL, V32, P108, DOI 10.1097/MAO.0b013e3181ff752a Colletti V, 2006, INT J AUDIOL, V45, P600, DOI 10.1080/14992020600840903 DANCER A, 1980, HEARING RES, V2, P191, DOI 10.1016/0378-5955(80)90057-X Iwasaki S, 2012, ACTA OTO-LARYNGOL, V132, P676, DOI 10.3109/00016489.2011.649492 KRINGLEBOTN M, 1995, J ACOUST SOC AM, V98, P192, DOI 10.1121/1.413746 LYNCH TJ, 1982, J ACOUST SOC AM, V72, P108, DOI 10.1121/1.387995 Mandala M, 2011, OTOL NEUROTOL, V32, P1250, DOI 10.1097/MAO.0b013e31822e9513 Martin C, 2009, OTOL NEUROTOL, V30, P1196, DOI 10.1097/MAO.0b013e3181c34898 Nakajima HH, 2010, OTOL NEUROTOL, V31, P506, DOI 10.1097/MAO.0b013e3181c0ea9f Nakajima HH, 2009, JARO-J ASSOC RES OTO, V10, P23, DOI 10.1007/s10162-008-0150-y Nakajima HH, 2010, HEARING RES, V263, P114, DOI 10.1016/j.heares.2009.11.009 NEDZELNITSKY V, 1980, J ACOUST SOC AM, V68, P1676, DOI 10.1121/1.385200 Olson ES, 1998, J ACOUST SOC AM, V103, P3445, DOI 10.1121/1.423083 Pennings RJE, 2010, OTOL NEUROTOL, V31, P998, DOI 10.1097/MAO.0b013e3181e8fc21 Puria S, 2003, J ACOUST SOC AM, V113, P2773, DOI 10.1121/1.1564018 Rajan GP, 2011, OTOL NEUROTOL, V32, P271, DOI 10.1097/MAO.0b013e318206fda1 Schraven SP, 2011, HEARING RES, V282, P272, DOI 10.1016/j.heares.2011.07.001 Schraven SP, 2012, AUDIOL NEURO-OTOL, V17, P133, DOI 10.1159/000333807 SHERA CA, 1992, J ACOUST SOC AM, V92, P1382, DOI 10.1121/1.403931 Sim JH, 2012, EAR HEARING, V33, pE24, DOI 10.1097/AUD.0b013e318258c7a6 SPINDEL JH, 1995, OTOLARYNG CLIN N AM, V28, P189 Stenfelt S, 2004, J ACOUST SOC AM, V115, P797, DOI 10.1121/1.1639903 Tringali S, 2010, AUDIOL NEURO-OTOL, V15, P291, DOI 10.1159/000283006 Verhaegen VJO, 2012, OTOL NEUROTOL, V33, P297, DOI 10.1097/MAO.0b013e3182487f98 Voss SE, 1996, J ACOUST SOC AM, V100, P1602, DOI 10.1121/1.416062 WEVER EG, 1950, J ACOUST SOC AM, V22, P460, DOI 10.1121/1.1906628 WEVER EG, 1948, ANN OTO RHINOL LARYN, V57, P579 NR 32 TC 13 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2013 VL 301 SI SI BP 105 EP 114 DI 10.1016/j.heares.2012.11.005 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 165IW UT WOS:000320478100015 PM 23159918 ER PT J AU Maier, H Salcher, R Schwab, B Lenarz, T AF Maier, Hannes Salcher, Rolf Schwab, Burkard Lenarz, Thomas TI The effect of static force on round window stimulation with the direct acoustic cochlea stimulator SO HEARING RESEARCH LA English DT Article ID MIDDLE-EAR IMPLANT; FLOATING MASS TRANSDUCER; HUMAN TEMPORAL BONES; HEARING LOSSES; RECONSTRUCTION AB The Direct Acoustic Cochlea Stimulator Partial Implant (DACS PI, Phonak Acoustic Implants SA, Switzerland) is intended to stimulate the cochlea by a conventional stapedotomy piston that is crimped onto the DACS PI artificial incus. An alternative approach to the round window (RW) is successfully done with other devices, having the advantage of being also independent of the existence of middle ear structure (e.g. ossicles). Here the possibility of stimulating the RW with the DACS actuator is investigated including the impact of static force on sound transmission to the cochlea. The maximum equivalent sound pressure output with RW stimulation was determined experimentally in fresh human temporal bones. Experiments were performed in analogy to the ASTM standard (F2504.24930-1) method for the output determination of implantable middle ear hearing devices (IMEHDs) in human cadaveric temporal bones (TBs). ASTM compliant temporal bones were stimulated with a prosthesis having a spherical tip (empty set0.5 mm) attached to the actuator. The stimulation was performed perpendicular to the round window membrane (RWM) at varying position relative to the RW and the resulting static force on the RW membrane was determined. At each position the displacement output of the DACS PI actuator and the stapes footplate (SFP) vibration in response to actuator stimulation was measured with a Laser Doppler Velocimeter (LDV). By comparison of the achieved output at the stapes footplate in response to sound and transducer stimulation the equivalent sound pressure level at the tympanic membrane at 1V(rms) input voltage was calculated assuming that the SFP displacement in both conditions is a measure of perceived loudness, as it is done in the ASTM standard. Ten TB preparations within the acceptance range of the ASTM standard were used for analysis. The actuator driven stapes footplate displacement amplitude as well as the resulting equivalent sound pressure level was highly dependent on the static force applied to the RW. The sound transfer efficiency from the RW to the stapes footplate increased monotonically with increasing static load. At a moderate static force load (approx. 3.9 mN) the obtained average sound equivalent sound pressure level was 102-120 eq. dB SPL @ nominally 1V(rms) input for frequencies <= 4 kHz. At higher frequencies (6-10 kHz) the achieved output dropped to similar to 90 dB SPL. This output was obtained at loading conditions compatible with the actuator safe operating range, although it was possible to increase the output further by increasing the static force load. Our results demonstrate for a first time that static force applied to the RW is crucial for sound transmission efficiency. Further we could show that RW stimulation with the DACS PI actuator is possible having a maximum output that is sufficient to treat moderate and pronounced sensorineural hearing losses (SNHL). This article is part of a Special Issue entitled "MEMRO 2012". (C) 2013 Elsevier B.V. All rights reserved. C1 [Maier, Hannes; Salcher, Rolf; Schwab, Burkard; Lenarz, Thomas] Hannover Med Sch, Inst Audioneurotechnol VIANNA, Dept Expt Otol, ENT Clin, Hannover, Germany. RP Maier, H (reprint author), Hannover Med Sch, Klin Hals Nasen Ohrenheilkunde, Carl Neuberg Str 1, D-30625 Hannover, Germany. EM Maier.Hannes@MH-Hannover.de FU Phonak Acoustic Implants SA, Switzerland; Advanced Bionics FX The authors thank Albrecht Eiber and Christoph Heckeler for discussions. We also thank Andrej Kral for continuous support and the possibility to work in his labs. This work was supported by Phonak Acoustic Implants SA, Switzerland and Advanced Bionics. CR Arnold A, 2010, OTOL NEUROTOL, V31, P122, DOI 10.1097/MAO.0b013e3181c34ee0 ASTM, 2005, STAND PRACT DESCR SY Beltrame AM, 2009, OTOL NEUROTOL, V30, P194, DOI 10.1097/MAO.0b013e318180a495 Bernhard H, 2011, IEEE T BIO-MED ENG, V58, P420, DOI 10.1109/TBME.2010.2087756 Colletti V, 2006, INT J AUDIOL, V45, P600, DOI 10.1080/14992020600840903 Häusler Rudolf, 2008, Audiol Neurootol, V13, P247, DOI 10.1159/000115434 ISHII T, 1995, ACTA OTO-LARYNGOL, P78 Kiefer J, 2006, ORL J OTO-RHINO-LARY, V68, P378, DOI 10.1159/000095282 Lupo JE, 2011, OTOLARYNG HEAD NECK, V145, P641, DOI 10.1177/0194599811409674 Nakajima HH, 2010, OTOL NEUROTOL, V31, P506, DOI 10.1097/MAO.0b013e3181c0ea9f Rosowski JJ, 2007, AUDIOL NEURO-OTOL, V12, P265, DOI 10.1159/000101474 Schraven SP, 2011, HEARING RES, V282, P272, DOI 10.1016/j.heares.2011.07.001 SPINDEL JH, 1995, OTOLARYNG CLIN N AM, V28, P189 Sprinzl GM, 2011, LARYNGO RHINO OTOL, V90, P560, DOI 10.1055/s-0031-1286321 Tringali S, 2010, AUDIOL NEURO-OTOL, V15, P291, DOI 10.1159/000283006 Wollenberg B, 2007, HNO, V55, P349, DOI 10.1007/s00106-007-1540-x NR 16 TC 9 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2013 VL 301 SI SI BP 115 EP 124 DI 10.1016/j.heares.2012.12.010 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 165IW UT WOS:000320478100016 PM 23276731 ER PT J AU Gan, RZ Nakmali, D Zhang, XM AF Gan, Rong Z. Nakmali, Don Zhang, Xiangming TI Dynamic properties of round window membrane in guinea pig otitis media model measured with electromagnetic stimulation SO HEARING RESEARCH LA English DT Article ID HEARING-LOSS; MIDDLE-EAR; PERMEABILITY; MORPHOLOGY; CELLS AB The round window, one of two openings into the cochlea from the middle ear, plays an important role in hearing and is known to be structurally altered during otitis media. However, there have been no published studies systematically describing the changes in biomechanical properties of the round window membrane (RWM) that accompany bacterial otitis media. Here we describe the occurrence of significant changes in the dynamic properties of the RWM between normal guinea pigs and those with acute otitis media (AOM) that are detectable by electromagnetic force stimulation and laser Doppler vibrometry (LDV) measurements. AOM was induced by transbullar injection of streptococcus pneumoniae into the middle ear, and RWM specimens were prepared three days after challenge. Vibration of the RWM induced by coil-magnet coupling was measured by LDV over frequencies of 0.2-40 kHz. The experiment was then simulated in a finite element model, and the inverse-problem solving method was used to determine the complex modulus in the frequency domain and the relaxation modulus in the time domain. Results from 18 ears (9 control ears and 9 AOM ears) established that both the storage modulus and loss modulus of the RWM from ears with AOM were significantly lower than those of RWM from uninfected ears. The average decrease of the storage modulus in AOM ears ranged from 1.5 to 2.2 MPa and the average decrease of the loss modulus was 0.025-0.48 MPa. Our findings suggest that middle ear infection primarily affects the stiffness of the RWM due to the morphological changes that occur in AOM ears. We also conclude that the coil-magnet coupling method for assessment of RWM function may provide a valuable new approach to characterizing the mechanical response of the RWM when reverse driving is selected for middle ear implantable devices. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2013 Elsevier B.V. All rights reserved. C1 [Gan, Rong Z.] Univ Oklahoma, Sch Aerosp & Mech Engn, Norman, OK 73019 USA. Univ Oklahoma, Bioengn Ctr, Norman, OK 73019 USA. RP Gan, RZ (reprint author), Univ Oklahoma, Sch Aerosp & Mech Engn, 865 Asp Ave,Room 200, Norman, OK 73019 USA. EM rgan@ou.edu FU Oklahoma Center for the Advancement of Science and Technology (OCAST) [HR09-033]; NIH [R01DC006632, R01DC011585] FX The authors thank Xiying Guan and Wei Li, current and former graduate students in Biomedical Engineering Lab at the University of Oklahoma for their technical assistance in animal preparation and histology studies. The authors also thank Dr. Betty Tsai at the Department of Otorhinolaryngology and Dr. Thomas Seale at the Department of Pediatrics, University of Oklahoma Health Sciences Center for editing this paper. This work was supported by Oklahoma Center for the Advancement of Science and Technology (OCAST) HR09-033 and NIH R01DC006632 and R01DC011585 grants. CR Bausch AR, 1999, BIOPHYS J, V76, P573 Beltrame AM, 2009, OTOL NEUROTOL, V30, P194, DOI 10.1097/MAO.0b013e318180a495 Buytaert JAN, 2011, JARO-J ASSOC RES OTO, V12, P681, DOI 10.1007/s10162-011-0281-4 CARPENTER AM, 1989, ARCH OTOLARYNGOL, V115, P585 Colletti V, 2009, ACTA OTO-LARYNGOL, V129, P449, DOI 10.1080/00016480802642070 Colletti V, 2006, INT J AUDIOL, V45, P600, DOI 10.1080/14992020600840903 Dai C., 2009, CHANGE COCHLEAR MECH, V32, P984 Ethiraj R., 2003, THESIS U OKLAHOMA Feneberg W, 2004, BIOPHYS J, V87, P1338, DOI 10.1529/biophysj.103.037044 Fung Y.C., 1993, BIOMECHANICS MECH PR GOYCOOLEA MV, 1988, ARCH OTOLARYNGOL, V114, P1247 Goycoolea MV, 1997, MICROSC RES TECHNIQ, V36, P201, DOI 10.1002/(SICI)1097-0029(19970201)36:3<201::AID-JEMT8>3.0.CO;2-R GOYCOOLEA MV, 1995, ACTA OTO-LARYNGOL, V115, P282, DOI 10.3109/00016489509139310 Hellstrom S, 1997, ANN NY ACAD SCI, V830, P110, DOI 10.1111/j.1749-6632.1997.tb51883.x IKEDA K, 1988, ARCH OTOLARYNGOL, V114, P895 Kiefer J, 2006, ORL J OTO-RHINO-LARY, V68, P378, DOI 10.1159/000095282 Machiraju C, 2006, COMPUT METH PROG BIO, V83, P29, DOI 10.1016/j.cmpb.2006.05.004 Nakmali D., 2010, P BMES 2010 ANN M AU Nomura Y, 1984, Adv Otorhinolaryngol, V33, P1 Nordang L, 2001, ORL J OTO-RHINO-LARY, V63, P333, DOI 10.1159/000055770 PAPARELLA MM, 1983, ANN OTO RHINOL LARYN, V92, P629 SAHNI RS, 1987, ARCH OTOLARYNGOL, V113, P630 Schachern P, 2008, ARCH OTOLARYNGOL, V134, P658, DOI 10.1001/archotol.134.6.658 Yoon YJ, 2002, J KOREAN MED SCI, V17, P230 Zhang XM, 2013, MED ENG PHYS, V35, P310, DOI 10.1016/j.medengphy.2012.05.003 Zhang X, 2010, INT J EXP COMPUT BIO, V1, P252, DOI 10.1504/IJECB.2010.03526 NR 26 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2013 VL 301 SI SI BP 125 EP 136 DI 10.1016/j.heares.2013.01.001 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 165IW UT WOS:000320478100017 PM 23333258 ER PT J AU Chung, J Song, WJ Sim, JH Kim, W Oh, SH AF Chung, Juyong Song, Won Joon Sim, Jae Hoon Kim, Wandoo Oh, Seung-Ha TI Optimal ossicular site for maximal vibration transmissions to coupled transducers SO HEARING RESEARCH LA English DT Article ID HUMAN MIDDLE-EAR; HEARING DEVICE; SYSTEM AB Totally implantable middle-ear prosthetic devices, such as the Esteem system (Envoy Medical Corporation), detect vibrational motion of the middle-ear ossicles rather than acoustic stimulation to the eardrum. This eliminates the need for a subcutaneous microphone, which is susceptible to interference by ambient noises. Study of the vibrational characteristics of the human ossicles provides valuable information for determining the site of maximum ossicular motion that would be optimal for attachment of the sensor portion of the prosthesis. In this study, vibrational responses at seven locations on the middle-ear ossicles (i.e., the malleus head, 4 different points on the incus body, middle of the incus long process, tip of the incus long process) in human temporal bones (n = 6) were measured using a laser Doppler vibrometer. The measurements were repeated after separating the incudostapedial joint (ISJ). Measured displacement at each location was normalized with the sound pressure level near the tympanic membrane (TM) for representation in the form of a displacement transfer function (DTF). The normalized squared sum of the DTFs (NSSDTF) was then calculated as a measure of vibration motion through a specific frequency range at the considered sites. The relatively large NSSDTF was observed at the sites on the superior part of the malleus head (MH), on the lateral part of the incus body (IBL), and on the superior part of the incus body near the incudomalleal joint (IBS1) for the frequency ranges of 1-4 kHz and 1-9 kHz, regardless of the condition of the ISJ. This indicates that maximum vibrational motion of the middle-ear is deliverable to the piezoelectric transducer of totally implantable devices through these sites. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2013 Elsevier B.V. All rights reserved. C1 [Chung, Juyong; Oh, Seung-Ha] Seoul Natl Univ, Coll Med, Dept Otorhinolaryngol, Sensory Organ Res Inst,Med Res Ctr, Seoul 110744, South Korea. [Song, Won Joon] Hanbat Natl Univ, Inst Fus Technol Prod, Taejon, South Korea. [Sim, Jae Hoon] Univ Zurich Hosp, Dept Otorhinolaryngol Head & Neck Surg, Zurich, Switzerland. [Kim, Wandoo] Korea Inst Machinery & Mat, Dept Nat Inspired Nanoconvergence Syst, Taejon, South Korea. RP Oh, SH (reprint author), Seoul Natl Univ, Coll Med, Dept Otorhinolaryngol, Sensory Organ Res Inst,Med Res Ctr, 101 Daehak Ro, Seoul 110744, South Korea. EM shaoh@snu.ac.kr FU National Research Foundation, Seoul, Korea [20110001666] FX This study was supported by the National Research Foundation, Seoul, Korea (Grant No. 20110001666). CR Aibara R, 2001, HEARING RES, V152, P100, DOI 10.1016/S0378-5955(00)00240-9 [Anonymous], 2005, 3897 ISO Chen DA, 2004, OTOLARYNG HEAD NECK, V131, P904, DOI 10.1016/j.otohns.2004.05.027 Chien WD, 2006, AUDIOL NEURO-OTOL, V11, P183, DOI 10.1159/000091815 Cohen N, 2007, EAR HEARING, V28, p100S, DOI 10.1097/AUD.0b013e31803150f4 Conoyer JM, 2007, OTOLARYNG HEAD NECK, V137, P757, DOI 10.1016/j.otohns.2007.07.017 Gan Rong Z., 2004, Otology & Neurotology, V25, P423, DOI 10.1097/00129492-200407000-00005 Gelfand S.A., 1981, HEARING INTRO PSYCHO Haynes David S, 2009, Trends Amplif, V13, P206, DOI 10.1177/1084713809346262 Homma K, 2009, J ACOUST SOC AM, V125, P968, DOI 10.1121/1.3056564 KUROKAWA H, 1995, OTOLARYNG HEAD NECK, V113, P349, DOI 10.1016/S0194-5998(95)70067-6 Maniglia AJ, 1999, AM J OTOL, V20, P602 Maurer J, 2010, ADV OTO-RHINO-LARYNG, V69, P59, DOI 10.1159/000318523 Meriot P, 1997, RADIOGRAPHICS, V17, P1445 NISHIHARA S, 1993, OTOLARYNG HEAD NECK, V109, P899 Park WT, 2007, BIOMED MICRODEVICES, V9, P939, DOI 10.1007/s10544-007-9072-4 Puria S, 2010, HEARING RES, V263, P183, DOI 10.1016/j.heares.2009.10.013 SHAW EAG, 1975, EARMOLDS ASS PROBLEM, P24 SIM JH, 2004, 3 INT S MIDDL E MECH, P61 Voss SE, 2000, HEARING RES, V150, P43, DOI 10.1016/S0378-5955(00)00177-5 Wada H, 1998, EAR HEARING, V19, P240, DOI 10.1097/00003446-199806000-00007 Willi UB, 2002, HEARING RES, V174, P32, DOI 10.1016/S0378-5955(02)00632-9 ZHANG LA, 2008, THESIS U MELBOURNE A NR 23 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2013 VL 301 SI SI BP 137 EP 145 DI 10.1016/j.heares.2013.01.007 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 165IW UT WOS:000320478100018 PM 23337694 ER PT J AU Zhang, XM Gan, RZ AF Zhang, Xiangming Gan, Rong Z. TI Finite element modeling of energy absorbance in normal and disordered human ears SO HEARING RESEARCH LA English DT Article ID HUMAN MIDDLE-EAR; CONDUCTIVE HEARING-LOSS; SOUND-TRANSMISSION; OTITIS-MEDIA; REFLECTANCE MEASUREMENTS; TYMPANIC MEMBRANE; ACOUSTIC-IMPEDANCE; ADULTS; EFFUSION; TYMPANOMETRY AB The finite element (FE) model of the human ear has been developed to analyze the middle ear and cochlea function in relation to the ear structures. However, the energy absorbance or energy reflectance used in the research and clinical audiology test has not been reported in the FE model. The relationship between the middle ear structure and the energy absorbance (EA) needs to be identified using the FE model. In this study, a FE model of the human ear, including the ear canal, the middle ear and the spiral cochlea constructed from the histological sections of a human temporal bone, was used to calculate EA. The viscoelastic material properties were applied to the middle ear soft tissues. Three middle ear disorders were simulated in the FE model: otitis media, otosclerosis, and ossicular chain disarticulation. Multi-physics (acoustic, structure, and fluid) coupled analysis was conducted in the model. The FE model was first validated with the published experimental data on the middle ear input impedance and EA of the normal ear. The EA in three disordered ears was obtained from the model and compared with the published results measured in the clinics and the temporal bone experiments. The consistence of the model-derived EA with the published data demonstrates that the FE model is feasible to analyze EA. The effects of middle ear pressure, middle ear effusion, and mechanical properties of soft tissues on EA were estimated and discussed. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2012 Elsevier B.V. All rights reserved. C1 [Gan, Rong Z.] Univ Oklahoma, Sch Aerosp & Mech Engn, Norman, OK 73019 USA. Univ Oklahoma, Bioengn Ctr, Norman, OK 73019 USA. RP Gan, RZ (reprint author), Univ Oklahoma, Sch Aerosp & Mech Engn, 865 Asp Ave,Room 200, Norman, OK 73019 USA. EM rgan@ou.edu FU NIH [R01DC006632, R01DC011585] FX This work was supported by NIH R01DC006632 and R01DC011585. The authors thank Dr. Douglas Keefe and another reviewer for their time and expertise to strengthen the quality of this paper. CR Allen JB, 2005, J REHABIL RES DEV, V42, P63, DOI 10.1682/JRRD.2005.04.0064 CARRIE S, 1992, ACTA OTO-LARYNGOL, V112, P504, DOI 10.3109/00016489209137432 Ellison JC, 2012, LARYNGOSCOPE, V122, P887, DOI 10.1002/lary.23182 Feeney MP, 2009, EAR HEARING, V30, P391, DOI 10.1097/AUD.0b013e3181a283ed Feeney MP, 2003, J SPEECH LANG HEAR R, V46, P901, DOI 10.1044/1092-4388(2003/070) Feeney MP, 2004, J ACOUST SOC AM, V116, P3546, DOI 10.1121/1.1808221 Feng B, 2004, BIOMECH MODEL MECHAN, V3, P33, DOI 10.1007/s10237-004-0044-9 Fung Y.C., 1993, BIOMECHANICS MECH PR Gan RZ, 2007, ANN BIOMED ENG, V35, P2180, DOI 10.1007/s10439-007-9366-y Gan RZ, 2004, ANN BIOMED ENG, V32, P847, DOI 10.1023/B:ABME.0000030260.22737.53 Gan RZ, 2007, J ACOUST SOC AM, V122, P3527, DOI 10.1121/1.2793699 Gan RZ, 2009, J ACOUST SOC AM, V126, P243, DOI 10.1121/1.3129129 Gan RZ, 2011, AIP CONF PROC, V1403, DOI 10.1063/1.3658144 Huber A, 2003, ANN OTO RHINOL LARYN, V112, P348 HUDDE H, 1983, J ACOUST SOC AM, V73, P242, DOI 10.1121/1.388855 Iemoto Y, 2004, JPN J APPL PHYS 1, V43, P401, DOI 10.1143/JJAP.43.401 Keefe D. H., 2009, HDB CLIN AUDIOLOGY, P125 KEEFE DH, 1992, J ACOUST SOC AM, V91, P470, DOI 10.1121/1.402733 KEEFE DH, 1993, J ACOUST SOC AM, V94, P2617, DOI 10.1121/1.407347 Keefe DH, 2003, J ACOUST SOC AM, V114, P3217, DOI 10.1121/1.1625931 Koike T., 2004, MIDDLE EAR MECH RES, P68, DOI 10.1142/9789812703019_0010 KRINGLEBOTN M, 1988, SCAND AUDIOL, V17, P75, DOI 10.3109/01050398809070695 Liu YW, 2008, J ACOUST SOC AM, V124, P3708, DOI 10.1121/1.3001712 Luo H., 2009, J BIOMECH ENG, V131 LUPOVICH P, 1971, ANN OTO RHINOL LARYN, V80, P342 Margolis RH, 1999, J ACOUST SOC AM, V106, P265, DOI 10.1121/1.427055 MCCAIG LF, 1995, JAMA-J AM MED ASSOC, V273, P214, DOI 10.1001/jama.273.3.214 Piskorski P, 1999, J ACOUST SOC AM, V105, P1749, DOI 10.1121/1.426713 RABINOWITZ WM, 1981, J ACOUST SOC AM, V70, P1025, DOI 10.1121/1.386953 Ravicz ME, 2004, HEARING RES, V195, P103, DOI 10.1016/j.heares.2004.05.010 Rovers MM, 2004, LANCET, V363, P465, DOI 10.1016/S0140-6736(04)15495-0 Shahnaz N, 2006, EAR HEARING, V27, P774, DOI 10.1097/01.aud.0000240568.00816.4a Shahnaz N, 2009, EAR HEARING, V30, P219, DOI 10.1097/AUD.0b013e3181976a14 Shaw E.A., 1981, 101 M AC SOC AM OTT Souza C.D., 2004, OTOSCLEROSIS STAPEDE Stepp CE, 2005, J ACOUST SOC AM, V118, P861, DOI 10.1121/1.1974730 STINSON MR, 1982, J ACOUST SOC AM, V72, P766, DOI 10.1121/1.388257 VONUNGE M, 1994, AM J OTOL, V15, P663 Voss S. E., 2012, EAR HEARING, V32, P195 Voss SE, 2000, HEARING RES, V150, P43, DOI 10.1016/S0378-5955(00)00177-5 Voss SE, 2008, EAR HEARING, V29, P651, DOI 10.1097/AUD.0b013e318174f07c VOSS SE, 1994, J ACOUST SOC AM, V95, P372, DOI 10.1121/1.408329 Wang XL, 2007, J ACOUST SOC AM, V122, P906, DOI 10.1121/1.2749417 Zhang X, 2010, INT J EXP COMPUT BIO, V1, P252, DOI 10.1504/IJECB.2010.03526 Zhang X., MED ENG PHY IN PRESS Zhang XM, 2013, ANN BIOMED ENG, V41, P205, DOI 10.1007/s10439-012-0624-2 Zhang XM, 2011, IEEE T BIO-MED ENG, V58, P3024, DOI 10.1109/TBME.2011.2159714 Zhao F, 2009, MED ENG PHYS, V31, P907, DOI 10.1016/j.medengphy.2009.06.009 ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382 NR 49 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2013 VL 301 SI SI BP 146 EP 155 DI 10.1016/j.heares.2012.12.005 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 165IW UT WOS:000320478100019 PM 23274858 ER PT J AU Kim, N Allen, JB AF Kim, Noori Allen, Jont B. TI Two-port network analysis and modeling of a balanced armature receiver SO HEARING RESEARCH LA English DT Article ID IMPEDANCE AB Models for acoustic transducers, such as loudspeakers, mastoid bone-drivers, hearing-aid receivers, etc., are critical elements in many acoustic applications. Acoustic transducers employ two-port models to convert between acoustic and electromagnetic signals. This study analyzes a widely-used commercial hearing-aid receiver ED series, manufactured by Knowles Electronics, Inc. Electromagnetic transducer modeling must consider two key elements: a semi-inductor and a gyrator. The semi-inductor accounts for electromagnetic eddy-currents, the 'skin effect' of a conductor (Vanderkooy, 1989), while the gyrator (McMillan, 1946; Tellegen, 1948) accounts for the anti-reciprocity characteristic [Lenz's law (Hunt, 1954, p. 113)]. Aside from Hunt (1954), no publications we know of have included the gyrator element in their electromagnetic transducer models. The most prevalent method of transducer modeling evokes the mobility method, an ideal transformer instead of a gyrator followed by the dual of the mechanical circuit (Beranek, 1954). The mobility approach greatly complicates the analysis. The present study proposes a novel, simplified and rigorous receiver model. Hunt's two-port parameters, the electrical impedance Z(e)(s), acoustic impedance Z(a)(s) and electro-acoustic transduction coefficient T-a(s), are calculated using ABCD and impedance matrix methods (Van Valkenburg, 1964). The results from electrical input impedance measurements Z(in)(s), which vary with given acoustical loads, are used in the calculation (Weece and Allen, 2010). The hearing-aid receiver transducer model is designed based on energy transformation flow [electric -> mechanic -> acoustic]. The model has been verified with electrical input impedance, diaphragm velocity in vacuo, and output pressure measurements. This receiver model is suitable for designing most electromagnetic transducers and it can ultimately improve the design of hearing-aid devices by providing a simplified yet accurate, physically motivated analysis. This article is part of a Special Issue entitled "MEMRO 2012". Published by Elsevier B.V. C1 [Kim, Noori; Allen, Jont B.] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA. RP Kim, N (reprint author), Univ Illinois, Dept Elect & Comp Engn, 1206 W Green St,2137 Beckman Inst,405 N Mathews, Urbana, IL 61801 USA. EM nkim13@illinois.edu CR BAUER BB, 1953, J ACOUST SOC AM, V25, P867, DOI 10.1121/1.1907209 Beranek LL, 1954, ACOUSTICS Carlin H. J., 1964, NETWORK THEORY INTRO Dodd M., 2004, VOICE COIL IMPEDANCE Hunt F.V., 1954, ELECTROACOUSTICS ANA Jensen J, 2011, J AUDIO ENG SOC, V59, P91 KEEFE DH, 1984, J ACOUST SOC AM, V75, P58, DOI 10.1121/1.390300 Killion M.C., 1992, B AM AUDITORY SOC, V17, P10 MCMILLAN EM, 1946, J ACOUST SOC AM, V18, P344, DOI 10.1121/1.1916372 MOTT EE, 1951, AT&T TECH J, V30, P110 TELLEGEN BDH, 1948, PHILIPS RES REP, V3, P81 Thorborg K., 2007, J AUDIO ENG SOC Van Valkenburg M., 1964, NETWORK ANAL VANDERKOOY J, 1989, J AUDIO ENG SOC, V37, P119 Warren D. M., 2006, J ACOUST SOC AM, V119, P3377 Weece R, 2010, HEARING RES, V263, P216, DOI 10.1016/j.heares.2010.02.013 Wegel R.L., 1921, Journal of the American Institute of Electrical Engineers, V40 NR 17 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2013 VL 301 SI SI BP 156 EP 167 DI 10.1016/j.heares.2013.02.007 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 165IW UT WOS:000320478100020 PM 23485425 ER PT J AU Robinson, SR Nguyen, CT Allen, JB AF Robinson, Sarah R. Nguyen, Cac T. Allen, Jont B. TI Characterizing the ear canal acoustic impedance and reflectance by pole-zero fitting SO HEARING RESEARCH LA English DT Article ID HUMAN MIDDLE-EAR; CONDUCTIVE HEARING-LOSS; TYMPANIC MEMBRANE; UMBO VELOCITY; IN-SITU; RESPONSES; MODEL; VARIABILITY; CALIBRATION; COEFFICIENT AB This study characterizes middle ear complex acoustic reflectance (CAR) and impedance by fitting poles and zeros to real-ear measurements. The goal of this work is to establish a quantitative connection between pole-zero locations and the underlying physical properties of CAR data. Most previous studies have analyzed CAR magnitude; while the magnitude accounts for reflected power, it does not encode latency information. Thus, an analysis that studies the real and imaginary parts of the data together, being more general, should be more powerful. Pole-zero fitting of CAR data is examined using data compiled from various studies, dating back to Voss and Allen (1994). Recent CAR measurements were taken using the Mimosa Acoustics HearID system, which makes complex acoustic impedance and reflectance measurements in the ear canal over a 0.2-6.0 [kHz] frequency range. Pole-zero fits to measurements over this range are achieved with an average RMS relative error of less than 3% with 12 poles. Factoring the reflectance fit into its all-pass and minimum-phase components estimates the effect of the residual ear canal, allowing for comparison of the eardrum impedance and admittance across measurements. It was found that individual CAR magnitude variations for normal middle ears in the 1-4 [kHz] range often give rise to closely-placed pole-zero pairs, and that the locations of the poles and zeros in the s-plane may systematically differ between normal and pathological middle ears. This study establishes a methodology for examining the physical and mathematical properties of CAR using a concise parametric model. Pole-zero modeling accurately parameterizes CAR data, providing a foundation for detection and identification of middle ear pathologies. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2013 Elsevier B.V. All rights reserved. C1 [Robinson, Sarah R.; Nguyen, Cac T.; Allen, Jont B.] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA. RP Robinson, SR (reprint author), 2137 Beckman Inst,MC 251,405 N Mathews Ave, Urbana, IL 61801 USA. EM srrobin2@illinois.edu; tnguyen8@illinois.edu; jontalle@illinois.edu FU National Science Foundation [0903622]; NIH [R01 EB013723] FX Many thanks to the Human Speech Recognition group at UIUC. This material is based upon work supported by the National Science Foundation under Grant No. 0903622, and NIH Bioengineering Research Partnership R01 EB013723, PI: Stephen Boppart. CR Aibara R, 2001, HEARING RES, V152, P100, DOI 10.1016/S0378-5955(00)00240-9 Allen J. B., 1986, PERIPHERAL AUDITORY, P44 Allen JB, 2005, J REHABIL RES DEV, V42, P63, DOI 10.1682/JRRD.2005.04.0064 Brune O., 1931, Journal of Mathematics and Physics, V10 Campbell GA, 1922, BELL SYST TECH J, V1, P1 Claerbout J., 1985, IMAGING EARTHS INTER, P287 Farmer-Fedor BL, 2002, J ACOUST SOC AM, V112, P600, DOI 10.1121/1.1494445 Feeney MP, 2003, J SPEECH LANG HEAR R, V46, P901, DOI 10.1044/1092-4388(2003/070) Fletcher H, 1925, BELL SYST TECH J, V4, P375 Gustavsen B, 1999, IEEE T POWER DELIVER, V14, P1052, DOI 10.1109/61.772353 Hunter LL, 2010, EAR HEARING, V31, P599, DOI 10.1097/AUD.0b013e3181e40ca7 KEEFE DH, 1992, J ACOUST SOC AM, V91, P470, DOI 10.1121/1.402733 KRINGLEBOTN M, 1988, SCAND AUDIOL, V17, P75, DOI 10.3109/01050398809070695 Lundberg KH, 2007, IEEE CONTR SYST MAG, V27, P22, DOI 10.1109/MCS.2007.284506 Nakajima HH, 2012, EAR HEARING, V33, P35, DOI 10.1097/AUD.0b013e31822ccba0 Parent P, 2010, HEARING RES, V263, P152, DOI 10.1016/j.heares.2009.12.015 Puria S, 1998, J ACOUST SOC AM, V104, P3463, DOI 10.1121/1.423930 Rasetshwane DM, 2012, J ACOUST SOC AM, V131, P1863, DOI 10.1121/1.3681923 Recio-Spinoso A, 2011, IEEE T BIO-MED ENG, V58, P1456, DOI 10.1109/TBME.2010.2052254 Rosowski JJ, 2008, EAR HEARING, V29, P3 Rosowski JJ, 2003, OTOL NEUROTOL, V24, P165, DOI 10.1097/00129492-200303000-00008 Rosowski JJ, 2012, EAR HEARING, V33, P19, DOI 10.1097/AUD.0b013e31822ccb76 Scheperle RA, 2008, J ACOUST SOC AM, V124, P288, DOI 10.1121/1.2931953 Van Valkenburg M.E., 1964, MODERN NETWORK SYNTH Voss SE, 2000, HEARING RES, V150, P43, DOI 10.1016/S0378-5955(00)00177-5 Voss SE, 2008, EAR HEARING, V29, P651, DOI 10.1097/AUD.0b013e318174f07c Voss SE, 2012, EAR HEARING, V33, P207, DOI 10.1097/AUD.0b013e31823235b5 VOSS SE, 1994, J ACOUST SOC AM, V95, P372, DOI 10.1121/1.408329 Withnell RH, 2009, J ACOUST SOC AM, V125, P1605, DOI 10.1121/1.3075551 ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382 NR 30 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2013 VL 301 SI SI BP 168 EP 182 DI 10.1016/j.heares.2013.03.004 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 165IW UT WOS:000320478100021 PM 23524141 ER PT J AU Nguyen, CT Robinson, SR Jung, W Novak, MA Boppart, SA Allen, JB AF Nguyen, Cac T. Robinson, Sarah R. Jung, Woonggyu Novak, Michael A. Boppart, Stephen A. Allen, Jont B. TI Investigation of bacterial biofilm in the human middle ear using optical coherence tomography and acoustic measurements SO HEARING RESEARCH LA English DT Article ID CONDUCTIVE HEARING-LOSS; OTITIS-MEDIA; REFLECTANCE MEASUREMENTS; ENERGY REFLECTANCE; CANAL REFLECTANCE; UMBO VELOCITY; IN-VIVO; DISEASE; MUCOSA; TYMPANOMETRY AB Children with chronic otitis media (OM) often have conductive hearing loss which results in communication difficulties and requires surgical treatment. Recent studies have provided clinical evidence that there is a one-to-one correspondence between chronic OM and the presence of a bacterial biofilm behind the tympanic membrane (TM). Here we investigate the acoustic effects of bacterial biofilms, confirmed using optical coherence tomography (OCT), in adult ears. Non-invasive OCT images are collected to visualize the cross-sectional structure of the middle ear, verifying the presence of a biofilm behind the TM. Wideband measurements of acoustic reflectance and impedance (0.2-6 [kHz]) are used to study the acoustic properties of ears with confirmed bacterial biofilms. Compared to known acoustic properties of normal middle ears, each of the ears with a bacterial biofilm has an elevated power reflectance in the 1 to 3 [kHz] range, corresponding to an abnormally small resistance (real part of the impedance). These results provide assistance for the clinical diagnosis of a bacterial biofilm, which could lead to improved treatment of chronic middle ear infection and further understanding of the impact of chronic OM on conductive hearing loss. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2013 Elsevier B.V. All rights reserved. C1 [Nguyen, Cac T.; Robinson, Sarah R.; Jung, Woonggyu; Boppart, Stephen A.; Allen, Jont B.] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA. [Nguyen, Cac T.; Robinson, Sarah R.; Boppart, Stephen A.; Allen, Jont B.] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA. [Boppart, Stephen A.] Univ Illinois, Dept Bioengn, Urbana, IL 61801 USA. [Boppart, Stephen A.] Univ Illinois, Dept Med, Urbana, IL 61801 USA. [Novak, Michael A.] Carle Fdn Hosp, Urbana, IL USA. RP Allen, JB (reprint author), Univ Illinois, Beckman Inst Adv Sci & Technol, 2061 Beckman Inst,MC 251,405 N Mathews Ave, Urbana, IL 61801 USA. EM jontalle@illinois.edu FU National Institutes of Health [NIBIB R01EB013723]; Welch Allyn, Inc.; Blue Highway, Inc.; National Science Foundation [0903622]; STTR award from Office of Naval Research [N00014-11-C-0498] FX This research was supported in part by a Bioengineering Research Partnership grant from the National Institutes of Health (NIBIB R01EB013723, S.A.B.) and research support from Welch Allyn, Inc., and Blue Highway, Inc. (S.A.B.). Additional support was provided by the National Science Foundation under Grant No. 0903622, and an STTR award from Office of Naval Research under the contract number N00014-11-C-0498. We thank Barbara Hall, Katie McGlasson, Pam Leon, Meghan McCoy, and Laura Browning from Cane Foundation Hospital for their assistance in collecting data in the clinic, and Darold Spillman from the Beckman Institute for Advanced Science and Technology for his help in transporting our system between imaging locations. CR Allen J. B., 1986, PERIPHERAL AUDITORY, P44 Allen JB, 2005, J REHABIL RES DEV, V42, P63, DOI 10.1682/JRRD.2005.04.0064 Aparna MSPBD, 2008, BRAZ J INFECT DIS, V12, P526, DOI 10.1590/S1413-86702008000600016 Beers AN, 2010, EAR HEARING, V31, P221, DOI 10.1097/AUD.0b013e3181c00eae Bluestone C. D., 2007, OTITIS MEDIA INFANTS Costerton JW, 1999, SCIENCE, V284, P1318, DOI 10.1126/science.284.5418.1318 Djalilian HR, 2008, OTOL NEUROTOL, V29, P1091, DOI 10.1097/MAO.0b013e31818a08ce Dohar JE, 2005, LARYNGOSCOPE, V115, P1469, DOI 10.1097/01.mlg.0000172036.82897.d4 Ehrlich GD, 2002, JAMA-J AM MED ASSOC, V287, P1710, DOI 10.1001/jama.287.13.1710 Ellison JC, 2012, LARYNGOSCOPE, V122, P887, DOI 10.1002/lary.23182 Feeney MP, 2003, J SPEECH LANG HEAR R, V46, P901, DOI 10.1044/1092-4388(2003/070) Hall-Stoodley L, 2006, JAMA-J AM MED ASSOC, V296, P202, DOI 10.1001/jama.296.2.202 Hunter LL, 2010, EAR HEARING, V31, P599, DOI 10.1097/AUD.0b013e3181e40ca7 Jung W, 2011, IEEE T BIO-MED ENG, V58, P741, DOI 10.1109/TBME.2010.2096816 KEEFE DH, 1992, J ACOUST SOC AM, V91, P470, DOI 10.1121/1.402733 Lim D. J., 1995, Acta Oto-Rhino-Laryngologica Belgica, V49, P101 Macassey E, 2008, J LARYNGOL OTOL, V122, P1273, DOI 10.1017/S0022215108002193 Nakajima HH, 2012, EAR HEARING, V33, P35, DOI 10.1097/AUD.0b013e31822ccba0 Nguyen CT, 2012, P NATL ACAD SCI USA, V109, P9529, DOI 10.1073/pnas.1201592109 Nguyen CT, 2010, BIOMED OPT EXPRESS, V1, P1104 Parsek MR, 2003, ANNU REV MICROBIOL, V57, P677, DOI 10.1146/annurev.micro.57.030502.090720 Piskorski P, 1999, J ACOUST SOC AM, V105, P1749, DOI 10.1121/1.426713 Pitris C, 2001, ARCH OTOLARYNGOL, V127, P637 Robinson SR, 2013, HEARING RES, V301, P168, DOI 10.1016/j.heares.2013.03.004 Rosowski JJ, 2012, EAR HEARING, V33, P19, DOI 10.1097/AUD.0b013e31822ccb76 Shahnaz N, 2009, EAR HEARING, V30, P219, DOI 10.1097/AUD.0b013e3181976a14 Voss SE, 2008, EAR HEARING, V29, P651, DOI 10.1097/AUD.0b013e318174f07c VOSS SE, 1994, J ACOUST SOC AM, V95, P372, DOI 10.1121/1.408329 Xi CW, 2006, J BIOMED OPT, V11, DOI 10.1117/1.2209962 Zysk AM, 2007, J BIOMED OPT, V12, DOI 10.1117/1.2793736 NR 30 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2013 VL 301 SI SI BP 193 EP 200 DI 10.1016/j.heares.2013.04.001 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 165IW UT WOS:000320478100023 PM 23588039 ER PT J AU Lee, SI Conrad, T Jones, SM Lagziel, A Starost, MF Belyantseva, IA Friedman, TB Morell, RJ AF Lee, Sue I. Conrad, Travis Jones, Sherri M. Lagziel, Ayala Starost, Matthew F. Belyantseva, Inna A. Friedman, Thomas B. Morell, Robert J. TI A null mutation of mouse Kcna10 causes significant vestibular and mild hearing dysfunction SO HEARING RESEARCH LA English DT Article ID FAMILIAL MENIERES-DISEASE; VOLTAGE-GATED POTASSIUM; GANGLION-CELLS; K-CHANNEL; EXPRESSION; RAT; AFFERENTS; SUBUNIT; MICE AB KCNA10 is a voltage gated potassium channel that is expressed in the inner ear. The localization and function of KCNA10 was studied in a mutant mouse, B6-Kcna10(TM45), in which the single protein coding exon of Kcna10 was replaced with a beta-galactosidase reporter cassette. Under the regulatory control of the endogenous Kcna10 promoter and enhancers, beta-galactosidase was expressed in hair cells of the vestibular organs and the organ of Corti. KCNA10 expression develops in opposite tonotopic gradients in the inner and outer hair cells. Kcna10(TM45) homozygotes display only a mild elevation in pure tone hearing thresholds as measured by auditory brainstem response (ABR), while heterozygotes are normal. However, Kcna10(TM45) homozygotes have absent vestibular evoked potentials (VsEPs) or elevated VsEP thresholds with prolonged peak latencies, indicating significant vestibular dysfunction despite the lack of any overt imbalance behaviors. Our results suggest that Kcna10 is expressed primarily in hair cells of the inner ear, with little evidence of expression in other organs. The Kcna10(TM45) targeted allele may be a model of human nonsyndromic vestibulopathy. Published by Elsevier B.V. C1 [Lee, Sue I.; Conrad, Travis; Lagziel, Ayala; Belyantseva, Inna A.; Friedman, Thomas B.; Morell, Robert J.] NIDCD, Sect Human Genet, Mol Genet Lab, NIH, Rockville, MD 20850 USA. [Conrad, Travis] Univ Maryland, Dept Hearing & Speech Sci, College Pk, MD 20742 USA. [Jones, Sherri M.] Univ Nebraska, Lincoln, NE USA. [Starost, Matthew F.] NIH, Off Res Serv, Div Vet Resources, Bethesda, MD USA. RP Morell, RJ (reprint author), NIDCD, Sect Human Genet, Mol Genet Lab, NIH, 5 Res Ct,2A-19, Rockville, MD 20850 USA. EM morellr@nidcd.nih.gov FU NIH [R01DC006443]; NIDCD Intramural Research Fund [DC000048-15] FX We thank Drs. Dennis Drayna and Andrew Griffith for their critiques of this study, and Elizabeth Wilson for her assistance in maintaining the Kcna10TM45 colony. This research was supported by NIH grant R01DC006443 (S.M.J.) and NIDCD Intramural Research Fund DC000048-15 (T.B.F.) CR ANNIKO M, 1983, ANAT EMBRYOL, V166, P355, DOI 10.1007/BF00305923 BIRGERSON L, 1987, AM J OTOL, V8, P323 BROWNE DL, 1994, NAT GENET, V8, P136, DOI 10.1038/ng1094-136 Carlisle FA, 2012, GENE EXPR PATTERNS, V12, P172, DOI 10.1016/j.gep.2012.03.001 Eatock R., 2010, J NEUROPHYSIOL, V104, P2034 Eatock RA, 2008, J EXP BIOL, V211, P1764, DOI 10.1242/jeb.017350 Eatock RA, 2011, ANNU REV NEUROSCI, V34, P501, DOI 10.1146/annurev-neuro-061010-113710 Frykholm C, 2006, OTOL NEUROTOL, V27, P681, DOI 10.1097/01.mao.0000226315.27811.c8 Goldberg J M, 1991, Curr Opin Neurobiol, V1, P229, DOI 10.1016/0959-4388(91)90083-J Goodyear RJ, 2012, J NEUROSCI, V32, P2762, DOI 10.1523/JNEUROSCI.3635-11.2012 Gutman GA, 2005, PHARMACOL REV, V57, P473, DOI 10.1124/pr.57.4.10 Iwasaki S, 2012, BRAIN RES, V1429, P29, DOI 10.1016/j.brainres.2011.10.015 Iwasaki S, 2008, J NEUROPHYSIOL, V100, P2192, DOI 10.1152/jn.01240.2007 Jen JC, 2011, ADV OTO-RHINO-LARYNG, V70, P130, DOI 10.1159/000322900 Jones SM, 2011, HEARING RES, V272, P42, DOI 10.1016/j.heares.2010.11.002 Jones SM, 2005, JARO-J ASSOC RES OTO, V6, P297, DOI 10.1007/s10162-005-0009-1 Kleopa KA, 2006, BRAIN, V129, P1570, DOI 10.1093/brain/awl084 Klockars T, 2007, ARCH OTOLARYNGOL, V133, P73, DOI 10.1001/archotol.133.1.73 Lang R, 2000, AM J PHYSIOL-RENAL, V278, pF1013 LENOIR M, 1987, HEARING RES, V29, P265, DOI 10.1016/0378-5955(87)90173-0 Mathews PJ, 2010, NAT NEUROSCI, V13, P601, DOI 10.1038/nn.2530 Morell R., 2006, GENOMICS, V89, P197 Pongs O., 1992, PHYSL REV S4, V72, P69 Smart SL, 1998, NEURON, V20, P809, DOI 10.1016/S0896-6273(00)81018-1 Tian SL, 2002, AM J PHYSIOL-RENAL, V283, pF142, DOI 10.1152/ajprenal.00258.2001 WANG H, 1994, J NEUROSCI, V14, P4588 YAO XQ, 1995, P NATL ACAD SCI USA, V92, P11711, DOI 10.1073/pnas.92.25.11711 Yao XQ, 2002, J AM SOC NEPHROL, V13, P2831, DOI 10.1097/01.ASN.0000036866.37886.C5 NR 28 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2013 VL 300 BP 1 EP 9 DI 10.1016/j.heares.2013.02.009 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 151WZ UT WOS:000319492400001 PM 23528307 ER PT J AU van Beelen, E Schraders, M Huygen, PLM Oostrik, J Plantinga, RF van Drunen, W Collin, RWJ Kooper, DP Pennings, RJE Cremers, CWRJ Kremer, H Kunst, HPM AF van Beelen, E. Schraders, M. Huygen, P. L. M. Oostrik, J. Plantinga, R. F. van Drunen, W. Collin, R. W. J. Kooper, D. P. Pennings, R. J. E. Cremers, C. W. R. J. Kremer, H. Kunst, H. P. M. TI Clinical aspects of an autosomal dominantly inherited hearing impairment linked to the DFNA60 locus on chromosome 2q23.1-2q23.3 SO HEARING RESEARCH LA English DT Article ID MUTATIONS; FAMILY; DNA AB A total of 64 loci for autosomal dominant non-syndromic hearing impairment have been described, and the causative genes have been identified for 24 of these. The present study reports on the clinical characteristics of an autosomal dominantly inherited hearing impairment that is linked to a region within the DFNA60 locus located on chromosome 2 in q22.1-24.1. A pedigree spanning four generations was established with 13 affected individuals. Linkage analysis demonstrated that the locus extended over a 2.96 Mb region flanked by markers D2S2335 and D2S2275. The audiograms mainly showed a distinctive U-shaped configuration. Deterioration of hearing started at a wide age range, from 12 to 40 years. Cross-sectional analysis showed rapid progression of hearing impairment from mild to severe, between the ages of 40 and 60 years, a phenomenon that is also observed in DFNA9 patients. The results of the individual longitudinal analyses were generally in line with those obtained by the cross-sectional analysis. Speech recognition scores related to the level of hearing impairment (PTA(1,2,4) kHz) appeared to be fairly similar to those of presbyacusis patients. It is speculated that hearing impairment starting in mid-life, as shown by DFNA60 patients, could play a role in the development of presbyacusis. Furthermore, speech recognition did not deteriorate appreciably before the sixth decade of life. We conclude that DFNA60 should be considered in hearing impaired patients who undergo a rapid progression in middle age and are negative for DFNA9. Furthermore, cochlear implantation resulted in good rehabilitation in two DFNA60 patients. (C) 2013 Elsevier B.V. All rights reserved. C1 [van Beelen, E.; Schraders, M.; Huygen, P. L. M.; Oostrik, J.; Plantinga, R. F.; van Drunen, W.; Pennings, R. J. E.; Cremers, C. W. R. J.; Kremer, H.; Kunst, H. P. M.] Radboud Univ Nijmegen, Med Ctr, Dept Otorhinolaryngol Head & Neck Surg, NL-6500 HB Nijmegen, Netherlands. [van Beelen, E.; Schraders, M.; Oostrik, J.; Pennings, R. J. E.; Cremers, C. W. R. J.; Kremer, H.; Kunst, H. P. M.] Radboud Univ Nijmegen, Med Ctr, Donders Inst Brain Cognit & Behav, NL-6500 HB Nijmegen, Netherlands. [Schraders, M.; Oostrik, J.; Collin, R. W. J.; Kremer, H.] Radboud Univ Nijmegen, Med Ctr, Nijmegen Ctr Mol Life Sci, NL-6500 HB Nijmegen, Netherlands. [Kooper, D. P.] Reinier de Graaf Hosp, Dept Otorhinolaryngol, NL-2600 GA Delft, Netherlands. [Collin, R. W. J.; Kremer, H.] Radboud Univ Nijmegen, Med Ctr, Dept Human Genet, NL-6500 HB Nijmegen, Netherlands. RP van Beelen, E (reprint author), Radboud Univ Nijmegen, Med Ctr, Dept Otorhinolaryngol Head & Neck Surg, POB 9101, NL-6500 HB Nijmegen, Netherlands. EM E.vanBeelen@kno.umcn.nl; M.Schraders@gen.umcn.nl; P.Huygen@kno.umcn.nl; J.Oostrik@gen.umcn.nl; r.plantinga@cwz.nl; R.Collin@gen.umcn.nl; kooper@rdgg.nl; R.Pennings@kno.umcn.nl; C.Cremers@kno.umcn.nl; H.Kremer@gen.umcn.nl; H.Kunst@kno.umcn.nl RI Kunst, Henricus/J-6456-2012; Pennings, Ronald/J-6651-2012; Kremer, Hannie/F-5126-2010; Collin, Rob/N-3575-2014 FU Heinsius Houbolt Foundation; INTERREG IV A-program Germany-the Netherlands; Oticon Foundation [09-3742]; ZonMW [40-00812-98-09047, 90700388]; Netherlands Genomics Initiative [40-41009-98-9073] FX We are grateful to the families for their participation in this study. The authors wish to thank Myrthe Rouwette for assistance in STR marker analysis. This work was financially supported by grants from the Heinsius Houbolt Foundation (to H.K. and C.C.), the INTERREG IV A-program Germany-the Netherlands (to H.P.M.K.), The Oticon Foundation (09-3742, to H.K.), ZonMW (40-00812-98-09047, to H.K. and 90700388 to R.P.), and the Netherlands Genomics Initiative (40-41009-98-9073, to M.S.). CR [Anonymous], 1984, ISO7029 Bischoff AMLC, 2005, OTOL NEUROTOL, V26, P918, DOI 10.1097/01.mao.0000185048.84641.e3 Collin RWJ, 2008, HUM MUTAT, V29, P545, DOI 10.1002/humu.20693 De Leenheer EMR, 2002, ANN OTO RHINOL LARYN, V111, P267 Hoffmann K, 2005, BIOINFORMATICS, V21, P3565, DOI 10.1093/bioinformatics/bti571 Hughes DC, 1998, GENOMICS, V48, P46, DOI 10.1006/geno.1997.5159 Huygen PL, 2003, AUDIOL MED, V1, P37 Kemperman MH, 2005, OTOL NEUROTOL, V26, P926, DOI 10.1097/01.mao.0000185062.12458.87 Kunst H, 2000, CLIN OTOLARYNGOL, V25, P45, DOI 10.1046/j.1365-2273.2000.00327.x Legan PK, 1997, SEMIN CELL DEV BIOL, V8, P217, DOI 10.1006/scdb.1997.0145 McGuirt WT, 1999, NAT GENET, V23, P413 MILLER SA, 1988, NUCLEIC ACIDS RES, V16, P1215, DOI 10.1093/nar/16.3.1215 Ouyang X.M., 2007, ASS RES OTOLARYNGOL, V30, P68 Smith R.J.H., 2005, HEREDITARY HEARING L Vermeire K, 2006, OTOL NEUROTOL, V27, P44, DOI 10.1097/01.mao.0000187240.33712.01 Weegerink NJD, 2011, ANN OTO RHINOL LARYN, V120, P191 NR 16 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2013 VL 300 BP 10 EP 17 DI 10.1016/j.heares.2013.03.007 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 151WZ UT WOS:000319492400002 PM 23538131 ER PT J AU Anderson, S White-Schwoch, T Parbery-Clark, A Kraus, N AF Anderson, Samira White-Schwoch, Travis Parbery-Clark, Alexandra Kraus, Nina TI A dynamic auditory-cognitive system supports speech-in-noise perception in older adults SO HEARING RESEARCH LA English DT Article ID DORSAL COCHLEAR NUCLEUS; AGE-RELATED DIFFERENCES; HUMAN BRAIN-STEM; HEARING-LOSS; BACKGROUND-NOISE; SPOKEN LANGUAGE; RECOGNITION PERFORMANCE; INDIVIDUAL-DIFFERENCES; MEMORY; LISTENERS AB Understanding speech in noise is one of the most complex activities encountered in everyday life, relying on peripheral hearing, central auditory processing, and cognition. These abilities decline with age, and so older adults are often frustrated by a reduced ability to communicate effectively in noisy environments. Many studies have examined these factors independently; in the last decade, however, the idea of an auditory-cognitive system has emerged, recognizing the need to consider the processing of complex sounds in the context of dynamic neural circuits. Here, we used structural equation modeling to evaluate the interacting contributions of peripheral hearing, central processing, cognitive ability, and life experiences to understanding speech in noise. We recruited 120 older adults (ages 55-79) and evaluated their peripheral hearing status, cognitive skills, and central processing. We also collected demographic measures of life experiences, such as physical activity, intellectual engagement, and musical training. In our model, central processing and cognitive function predicted a significant proportion of variance in the ability to understand speech in noise. To a lesser extent, life experience predicted hearing-in-noise ability through modulation of brainstem function. Peripheral hearing levels did not significantly contribute to the model. Previous musical experience modulated the relative contributions of cognitive ability and lifestyle factors to hearing in noise. Our models demonstrate the complex interactions required to hear in noise and the importance of targeting cognitive function, lifestyle, and central auditory processing in the management of individuals who are having difficulty hearing in noise. (C) 2013 Elsevier B.V. All rights reserved. C1 [Anderson, Samira; White-Schwoch, Travis; Parbery-Clark, Alexandra; Kraus, Nina] Northwestern Univ, Auditory Neurosci Lab, Evanston, IL 60208 USA. [Anderson, Samira; White-Schwoch, Travis; Parbery-Clark, Alexandra; Kraus, Nina] Northwestern Univ, Dept Commun Sci, Evanston, IL 60208 USA. [Kraus, Nina] Northwestern Univ, Dept Neurobiol & Physiol, Evanston, IL 60208 USA. [Kraus, Nina] Northwestern Univ, Dept Otolaryngol, Chicago, IL 60611 USA. [Anderson, Samira] Univ Maryland, Dept Hearing & Speech Sci, College Pk, MD 20742 USA. RP Kraus, N (reprint author), Northwestern Univ, Auditory Neurosci Lab, Evanston, IL 60208 USA. EM nkraus@northwestern.edu FU National Institutes of Health [T32 DC009399-01A10, RO1 DC10016]; Knowles Hearing Center FX We thank the participants who participated in our study and Erika Skoe, Jen Krizman, and Trent Nicol for their comments on the manuscript. We also thank Sarah Drehobl, Hee Jae Choi, and Soo Ho Ahn for their help with data collection and analysis. This work was supported by the National Institutes of Health (T32 DC009399-01A10 & RO1 DC10016) and the Knowles Hearing Center. CR Abrams DA, 2006, J NEUROSCI, V26, P11131, DOI 10.1523/JNEUROSCI.2744-06.2006 Aiken SJ, 2008, HEARING RES, V245, P35, DOI 10.1016/j.heares.2008.08.004 Akeroyd MA, 2008, INT J AUDIOL S2, V47, P53, DOI 10.1080/14992020802301142 Alho K, 2012, EUR J NEUROSCI, V36, P2972, DOI 10.1111/j.1460-9568.2012.08219.x ANDERSON JC, 1988, PSYCHOL BULL, V103, P411, DOI 10.1037/0033-2909.103.3.411 Anderson S, 2012, J NEUROSCI, V32, P14156, DOI 10.1523/JNEUROSCI.2176-12.2012 Anderson S, 2011, EAR HEARING, V32, P750, DOI 10.1097/AUD.0b013e31822229d3 Anderson S, 2013, P NATL ACAD SCI USA, V110, P4357, DOI 10.1073/pnas.1213555110 Anderson S, 2010, J AM ACAD AUDIOL, V21, P575, DOI 10.3766/jaaa.21.9.3 Anderson S, 2010, EUR J NEUROSCI, V32, P1407, DOI 10.1111/j.1460-9568.2010.07409.x Andres P, 2006, NEUROPSYCHOLOGIA, V44, P2564, DOI 10.1016/j.neuropsychologia.2006.05.005 Arlinger S, 2009, SCAND J PSYCHOL, V50, P371, DOI 10.1111/j.1467-9450.2009.00753.x Bajo VM, 2010, NAT NEUROSCI, V13, P253, DOI 10.1038/nn.2466 Bench J, 1979, Br J Audiol, V13, P108, DOI 10.3109/03005367909078884 Bernaards C. A., 2005, EDUC PSYCHOL MEAS, V65, P676, DOI DOI 10.1177/0013164404272507 Berry AS, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011537 Bidebnan GM, 2010, BRAIN RES, V1355, P112, DOI 10.1016/j.brainres.2010.07.100 Bidelman GM, 2009, J COGNITIVE NEUROSCI, V23, P425 Bielak A.A., 2007, J GERONTOL B-PSYCHOL, V62, P331 Bigler ED, 2007, DEV NEUROPSYCHOL, V31, P217 BREGMAN AS, 1971, J EXP PSYCHOL, V89, P244, DOI 10.1037/h0031163 Bregman AS., 1990, AUDITORY SCENE ANAL BYRNE D, 1986, EAR HEARING, V7, P257 Campbell T, 2012, EAR HEARING, V33, P144, DOI 10.1097/AUD.0b013e3182280353 Carcagno S, 2011, JARO-J ASSOC RES OTO, V12, P89, DOI 10.1007/s10162-010-0236-1 Caspary DM, 2005, J NEUROSCI, V25, P10952, DOI 10.1523/JNEUROSCI.2451-05.2005 Ceponiene R, 2005, PSYCHOPHYSIOLOGY, V42, P391, DOI 10.1111/j.1469-8986.2005.00305.x Chan AS, 1998, NATURE, V396, P128, DOI 10.1038/24075 Chandrasekaran B, 2012, J NEUROPHYSIOL, V107, P1325, DOI 10.1152/jn.00923.2011 Chandrasekaran B, 2010, PSYCHOPHYSIOLOGY, V47, P236, DOI 10.1111/j.1469-8986.2009.00928.x Chin W.W., 1998, MIS Q, V22, pvii Cohen J., 2003, APPL MULTIPLE REGRES Cohen MA, 2011, PSYCHON B REV, V18, P586, DOI 10.3758/s13423-011-0074-0 Cox R.M., 2010, J AM ACAD AUDIOL, V21, P121 CRAIG CH, 1992, J SPEECH HEAR RES, V35, P234 Czernochowski D, 2008, NEUROBIOL AGING, V29, P945, DOI 10.1016/j.neurobiolaging.2006.12.017 D'Angiulli A, 2008, NEUROPSYCHOLOGY, V22, P293, DOI 10.1037/0894-4105.22.3.293 de Boer J, 2012, J NEUROPHYSIOL, V107, P1301, DOI 10.1152/jn.00222.2011 Dias R, 1996, NATURE, V380, P69, DOI 10.1038/380069a0 Ding N, 2012, P NATL ACAD SCI USA, V109, P11854, DOI 10.1073/pnas.1205381109 Du Y, 2011, CEREB CORTEX, V21, P698, DOI 10.1093/cercor/bhq136 DUBNO JR, 1984, J ACOUST SOC AM, V76, P87, DOI 10.1121/1.391011 Eckert MA, 2012, JARO-J ASSOC RES OTO, V13, P703, DOI 10.1007/s10162-012-0332-5 Erickson KI, 2011, P NATL ACAD SCI USA, V108, P3017, DOI 10.1073/pnas.1015950108 Fabrigar LR, 2011, EXPLORATORY FACTOR A Farah MJ, 2006, BRAIN RES, V1110, P166, DOI 10.1016/j.brainres.2006.06.072 Finlayson PG, 2002, JARO, V3, P321, DOI 10.1007/s101620020038 Friederici AD, 2000, BRAIN LANG, V74, P289, DOI 10.1006/brln.2000.2313 Fritz JB, 2010, NAT NEUROSCI, V13, P1011, DOI 10.1038/nn.2598 Gajewski B., 2012, FRONT HUM NEUROSCI, V6, P1 Gatehouse S, 2003, INT J AUDIOL, V42, pS77 Gazzaley A, 2005, J COGNITIVE NEUROSCI, V17, P507, DOI 10.1162/0898929053279522 Getzmann S, 2011, BRAIN RES, V1415, P8, DOI 10.1016/j.brainres.2011.08.001 Gordon-Salant S, 2006, J ACOUST SOC AM, V119, P2455, DOI 10.1121/1.2171527 GORDONSALANT S, 1993, J SPEECH HEAR RES, V36, P1276 Gould J.E., 2011, TIME US GREEN SB, 1991, MULTIVAR BEHAV RES, V26, P499, DOI 10.1207/s15327906mbr2603_7 Grose JH, 2010, EAR HEARING, V31, P755, DOI 10.1097/AUD.0b013e3181e627e7 Hall J. W., 2007, NEW HDB AUDITORY EVO Harris KC, 2010, HEARING RES, V264, P21, DOI 10.1016/j.heares.2009.09.017 Harris KC, 2009, J NEUROSCI, V29, P6078, DOI 10.1523/JNEUROSCI.0412-09.2009 Hay JF, 1999, PSYCHOL AGING, V14, P122, DOI 10.1037/0882-7974.14.1.122 Ho YC, 2003, NEUROPSYCHOLOGY, V17, P439, DOI 10.1037/0894-4105.17.3.439 Holt LL, 2008, CURR DIR PSYCHOL SCI, V17, P42, DOI 10.1111/j.1467-8721.2008.00545.x Hornickel J, 2012, P NATL ACAD SCI USA, V109, P16731, DOI 10.1073/pnas.1206628109 Hughes LF, 2010, HEARING RES, V264, P79, DOI 10.1016/j.heares.2009.09.005 Hultsch DF, 1999, PSYCHOL AGING, V14, P245, DOI 10.1037/0882-7974.14.2.245 Humes LE, 2012, J AM ACAD AUDIOL, V23, P635, DOI 10.3766/jaaa.23.8.5 HUMES LE, 1994, J SPEECH HEAR RES, V37, P465 Humes L E, 1996, J Am Acad Audiol, V7, P161 JACOBSEN J., 1985, AUDITORY BRAINSTEM R Jacoby LL, 2012, PSYCHOL AGING, V27, P22, DOI 10.1037/a0025924 Jakobson LS, 2008, MUSIC PERCEPT, V26, P41, DOI 10.1525/MP.2008.26.1.41 Kemp DT, 2002, BRIT MED BULL, V63, P223, DOI 10.1093/bmb/63.1.223 Kerlin JR, 2010, J NEUROSCI, V30, P620, DOI 10.1523/JNEUROSCI.3631-09.2010 Killion MC, 2000, HEARING J, V53, P46 Kraus N., 2013, J SPEECH LANG HEAR R, P1092 Kraus N., J ACOUST SO IN PRESS Kraus N, 2010, NAT REV NEUROSCI, V11, P599, DOI 10.1038/nrn2882 Krishnan A, 2005, COGNITIVE BRAIN RES, V25, P161, DOI 10.1016/j.cogbrainres.2005.05.004 KRISHNAN Ananthanarayan, 2008, J COGNITIVE NEUROSCI, V21, P1092 Krizman J, 2012, P NATL ACAD SCI USA, V109, P7877, DOI 10.1073/pnas.1201575109 Landau SM, 2012, ARCH NEUROL-CHICAGO, V69, P623, DOI 10.1001/archneurol.2011.2748 Lunner T, 2003, INT J AUDIOL, V42, pS49 Luo Y, 2005, J GERONTOL B-PSYCHOL, V60, pS93 Ma XF, 2008, J NEUROPHYSIOL, V100, P1127, DOI 10.1152/jn.90508.2008 Maguire EA, 2000, P NATL ACAD SCI USA, V97, P4398, DOI 10.1073/pnas.070039597 Majno M, 2012, ANN NY ACAD SCI, V1252, P56, DOI [10.1111/j.1749-6632.2012.06498.x, 10.1111/j.1749-6632.2012.06498] Matilainen LE, 2010, CLIN NEUROPHYSIOL, V121, P902, DOI 10.1016/j.clinph.2010.01.007 Mazelova J, 2003, EXP GERONTOL, V38, P87, DOI 10.1016/S0531-5565(02)00155-9 McCoy SL, 2005, Q J EXP PSYCHOL-A, V58, P22, DOI 10.1080/02724980443000151 Mesgarani N, 2012, NATURE, V485, P233, DOI 10.1038/nature11020 Mortensen E. L., EUR J PUBLI IN PRESS, DOI DOI 10.1093/EURPUB/CKS140 Mukari SZMS, 2008, AUDIOL NEURO-OTOL, V13, P328, DOI 10.1159/000128978 Nadel L, 1997, CURR OPIN NEUROBIOL, V7, P217, DOI 10.1016/S0959-4388(97)80010-4 Nahum M, 2008, PLOS BIOL, V6, P978, DOI 10.1371/journal.pbio.0060126 Netz Y, 2011, INT PSYCHOGERIATR, V23, P114, DOI 10.1017/S1041610210000797 NILSSON M, 1994, J ACOUST SOC AM, V95, P1085, DOI 10.1121/1.408469 Parbery-Clark A., 2012, NEUROBIOL AGING, V33, DOI [10.1016/j.neurobiolaging.2011.12.015, DOI 10.1016/J.NEUR0BI0LAGING.2011.12.015] Parbery-Clark A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018082 Parbery-Clark A, 2011, EUR J NEUROSCI, V33, P549, DOI 10.1111/j.1460-9568.2010.07546.x Parbery-Clark A, 2009, J NEUROSCI, V29, P14100, DOI 10.1523/JNEUROSCI.3256-09.2009 Parthasarathy A, 2011, NEUROSCIENCE, V192, P619, DOI 10.1016/j.neuroscience.2011.06.042 Patel AD, 2011, RONTIERS IN PSYCHOLO, V2, P142, DOI [10.3389/fpsyg.2011.00142, DOI 10.3389/FPSYG.2011.00142] Peelle JE, 2011, J NEUROSCI, V31, P12638, DOI 10.1523/JNEUROSCI.2559-11.2011 Pichora-Fuller K., 2008, INT J AUDIOL, V47, pS72, DOI DOI 10.1080/14992020802307404 Pichora-Fuller M., 2003, INT J AUDIOL, V42, P26, DOI 10.3109/14992020309074641 PICHORAFULLER MK, 1995, J ACOUST SOC AM, V97, P593, DOI 10.1121/1.412282 Pichora-Fuller M.K., 2003, INT J AUDIOL S2, V42, P11, DOI DOI 10.3109/14992020309074638 Pichora-Fuller MK, 2006, J ACOUST SOC AM, V119, P1143, DOI 10.1121/1.2149837 Poth EA, 2001, HEARING RES, V161, P81, DOI 10.1016/S0378-5955(01)00352-5 Radua J, 2010, NEUROIMAGE, V49, P939, DOI 10.1016/j.neuroimage.2009.08.030 Raizada R. D. S., 2007, FRONT HUM NEUROSCI, V2 RAYKOV T, 1991, PSYCHOL AGING, V6, P499, DOI 10.1037//0882-7974.6.4.499 Recanzone GH, 2011, HEARING RES, V271, P115, DOI 10.1016/j.heares.2010.03.084 Revelle W, 2009, PSYCHOMETRIKA, V74, P145, DOI 10.1007/s11336-008-9102-z Revelle W., 2012, PSYCH PROCEDURES PER Revit L., 2004, J ACOUST SOC AM, V116, P2405 Rogers CS, 2012, PSYCHOL AGING, V27, P33, DOI 10.1037/a0026231 Rosseel Y, 2012, J STAT SOFTW, V48, P1 Rudner M, 2011, J AM ACAD AUDIOL, V22, P156, DOI 10.3766/jaaa.22.3.4 Ruggles D, 2012, CURR BIOL, V22, P1417, DOI 10.1016/j.cub.2012.05.025 Russo NM, 2010, BEHAV BRAIN FUNCT, V6, DOI 10.1186/1744-9081-6-60 Sachdev P.S., 2011, BIOL PSYCHIAT Salthouse T. A., 2007, HDB AGING COGNITION Salthouse TA, 2006, PERSPECT PSYCHOL SCI, V1, P68, DOI 10.1111/j.1745-6916.2006.00005.x Schatteman TA, 2008, NEUROSCIENCE, V154, P329, DOI 10.1016/j.neuroscience.2008.02.025 Schellenberg EG, 2008, TRENDS COGN SCI, V12, P45, DOI 10.1016/j.tics.2007.11.005 Schellenberg EG, 2005, CURR DIR PSYCHOL SCI, V14, P317, DOI 10.1111/j.0963-7214.2005.00389.x Schvartz KC, 2008, J ACOUST SOC AM, V124, P3972, DOI 10.1121/1.2997434 Shinn-Cunningham Barbara G, 2008, Trends Amplif, V12, P283, DOI 10.1177/1084713808325306 Shtyrov Y, 1998, NEUROSCI LETT, V251, P141, DOI 10.1016/S0304-3940(98)00529-1 Skoe E, 2012, J NEUROSCI, V32, P11507, DOI 10.1523/JNEUROSCI.1949-12.2012 Smith GE, 2009, J AM GERIATR SOC, V57, P594, DOI 10.1111/j.1532-5415.2008.02167.x Song JH, 2012, CEREB CORTEX, V22, P1180, DOI 10.1093/cercor/bhr196 Souza PE, 2007, J AM ACAD AUDIOL, V18, P54, DOI 10.3766/jaaa.18.1.5 Streiner DL, 2003, J PERS ASSESS, V80, P99, DOI 10.1207/S15327752JPA8001_18 SWAAB DF, 1991, NEUROBIOL AGING, V12, P317, DOI 10.1016/0197-4580(91)90008-8 Tierney AT, 2008, EMPIRICAL MUSICOLOGY, V3, P178 Toscano JC, 2010, PSYCHOL SCI, V21, P1532, DOI 10.1177/0956797610384142 Tremblay KL, 2002, NEUROREPORT, V13, P1865, DOI 10.1097/00001756-200210280-00007 Vander Werff Kathy R, 2011, Ear Hear, V32, P168, DOI 10.1097/AUD.0b013e3181f534b5 Van Engen KJ, 2007, J ACOUST SOC AM, V121, P519, DOI 10.1121/1.2400666 Wagner W, 2008, ACTA OTO-LARYNGOL, V128, P53, DOI 10.1080/00016480701361954 Wakin Daniel J., 2012, NY TIMES Walton JP, 1998, J NEUROSCI, V18, P2764 Wilson RH, 2007, J SPEECH LANG HEAR R, V50, P844, DOI 10.1044/1092-4388(2007/059) Wingfield A, 2007, J AM ACAD AUDIOL, V18, P548, DOI 10.3766/jaaa.18.7.3 Wingfield A, 1996, J Am Acad Audiol, V7, P175 Wingfield A, 1999, PSYCHOL AGING, V14, P380, DOI 10.1037//0882-7974.14.3.380 Wingfield A, 2005, CURR DIR PSYCHOL SCI, V14, P144, DOI 10.1111/j.0963-7214.2005.00356.x Wong PCM, 2007, NAT NEUROSCI, V10, P420, DOI 10.1038/nn1872 Wong PCM, 2009, NEUROPSYCHOLOGIA, V47, P693, DOI 10.1016/j.neuropsychologia.2008.11.032 Wong PCM, 2010, EAR HEARING, V31, P471, DOI 10.1097/AUD.0b013e3181d709c2 Woodcock R. W., 2001, WOODCOCK JOHNSON 3 T Working Group on Speech Understanding and Aging, 1988, J ACOUST SOC AM, V83, P859 Zatorre RJ, 2001, CEREB CORTEX, V11, P946, DOI 10.1093/cercor/11.10.946 Zendel BR, 2012, PSYCHOL AGING, V27, P410, DOI 10.1037/a0024816 Zhu J., 1999, WECHSLER ABBREVIATED Zinbarg RE, 2005, PSYCHOMETRIKA, V70, P123, DOI 10.1007/s11336-003-0974-7 NR 160 TC 14 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2013 VL 300 BP 18 EP 32 DI 10.1016/j.heares.2013.03.006 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 151WZ UT WOS:000319492400003 PM 23541911 ER PT J AU Chabot, N Mellott, JG Hall, AJ Tichenoff, EL Lomber, SG AF Chabot, Nicole Mellott, Jeffrey G. Hall, Amee J. Tichenoff, Emily L. Lomber, Stephen G. TI Cerebral origins of the auditory projection to the superior colliculus of the cat SO HEARING RESEARCH LA English DT Article ID MEDIAL GENICULATE-BODY; SOUND-LOCALIZATION; CORTICAL AREAS; HORSERADISH-PEROXIDASE; INFERIOR COLLICULUS; COOLING DEACTIVATION; REVERSIBLE DEACTIVATION; REACTION-PRODUCT; MULTISENSORY INTEGRATION; CORTICOTECTAL INFLUENCES AB The superior colliculus (SC) is critical for directing accurate head and eye movements to visual and acoustic targets. In visual cortex, areas involved in orienting of the head and eyes to a visual stimulus have direct projections to the SC. In auditory cortex of the cat, four areas have been identified to be critical for the accurate orienting of the head and body to an acoustic stimulus. These areas include primary auditory cortex (A1), the posterior auditory field (PAF), the dorsal zone of auditory cortex (DZ), and the auditory field of the anterior ectosylvian sulcus (fAES). Therefore, we hypothesized that these four regions of auditory cortex would have direct projections to the SC. To test this hypothesis, deposits of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) were made into the superficial and deep layers of the SC to label, by means of retrograde transport, the auditory cortical origins of the corticotectal pathway. Bilateral examination of auditory cortex revealed that the vast majority of the labeled cells were located in the hemisphere ipsilateral to the SC injection. In ipsilateral auditory cortex, nearly all the labeled neurons were found in the infragranular layers, predominately in layer V. The largest population of labeled cells was located in the fAES. Few labeled neurons were identified in A1, PAF, or DZ. Thus, in contrast to the visual system, only one of the auditory cortical areas involved in orienting to an acoustic stimulus has a strong direct projection to the SC. Sound localization signals processed in primary (A1) and other non-primary (PAF and DZ) auditory cortices may be transmitted to the SC via a multi-synaptic corticotectal network. (C) 2013 Elsevier B.V. All rights reserved. C1 [Chabot, Nicole; Mellott, Jeffrey G.; Hall, Amee J.; Tichenoff, Emily L.; Lomber, Stephen G.] Univ Western Ontario, Schulich Sch Med & Dent, Dept Physiol & Pharmacol, Cerebral Syst Lab, London, ON N6A 5K8, Canada. [Chabot, Nicole; Mellott, Jeffrey G.; Hall, Amee J.; Tichenoff, Emily L.; Lomber, Stephen G.] Univ Western Ontario, Fac Social Sci, Dept Psychol, Brain & Mind Inst, London, ON N6A 5C2, Canada. RP Lomber, SG (reprint author), Univ Western Ontario, Dept Physiol & Pharmacol, Brain & Mind Inst, Med Sci Bldg,Room 216,1151 Richmond St North, London, ON N6A 5C1, Canada. EM steve.lomber@uwo.ca RI Lomber, Stephen/B-6820-2015 OI Lomber, Stephen/0000-0002-3001-7909 FU Canadian Institutes of Health Research; Natural Science and Engineering Research Council of Canada FX We would like to thank Pam Nixon for the assistance with animal care and Zachary J. Hall and Sam Yi for help with various phases of the project. This work was supported by grants from the Canadian Institutes of Health Research and the Natural Science and Engineering Research Council of Canada. CR ADAMS JC, 1981, J HISTOCHEM CYTOCHEM, V29, P775 ADELSON PD, 1995, DEV BRAIN RES, V86, P81, DOI 10.1016/0165-3806(95)00007-Z MASTERSON RB, 1964, J NEUROPHYSIOL, V27, P15 APTER JT, 1946, J NEUROPHYSIOL, V9, P73 Bajo VM, 2010, FRONT NEUROANAT, V4, DOI 10.3389/fnana.2010.00018 Baldwin MKL, 2012, J COMP NEUROL, V520, P2002, DOI 10.1002/cne.23025 BALEYDIER C, 1977, NEUROSCI LETT, V4, P9, DOI 10.1016/0304-3940(77)90116-1 CADUSSEAU J, 1985, J HIRNFORSCH, V26, P667 CASAGRAN.VA, 1974, J COMP NEUROL, V156, P207, DOI 10.1002/cne.901560206 CLAREY JC, 1990, J COMP NEUROL, V301, P304, DOI 10.1002/cne.903010212 CLARKE S, 1995, EXP BRAIN RES, V104, P534 CLEMO HR, 1984, J NEUROPHYSIOL, V51, P843 CLEMO HR, 1986, J NEUROPHYSIOL, V55, P1352 Collins CE, 2005, ANAT REC PART A, V285A, P619, DOI 10.1002/ar.a.20207 COVEY E, 1987, J COMP NEUROL, V263, P179, DOI 10.1002/cne.902630203 CRABTREE JW, 1989, J COMP NEUROL, V286, P504, DOI 10.1002/cne.902860408 Diamond IT, 1979, PROGR PSYCHOBIOLOGY, V8, P1 Duque A, 2010, CEREB CORTEX, V20, P1020, DOI 10.1093/cercor/bhp164 Edwards S.B., 1980, RETICULAR FORMATION, P193 EDWARDS SB, 1979, J COMP NEUROL, V184, P309, DOI 10.1002/cne.901840207 FRIES W, 1984, J COMP NEUROL, V230, P55, DOI 10.1002/cne.902300106 GRAYBIEL AM, 1975, BRAIN RES, V96, P1, DOI 10.1016/0006-8993(75)90566-1 Hall DA, 2003, CURR BIOL, V13, pR406, DOI 10.1016/S0960-9822(03)00323-3 HARTING JK, 1992, J COMP NEUROL, V324, P379, DOI 10.1002/cne.903240308 HARTING JK, 1976, J COMP NEUROL, V166, P133, DOI 10.1002/cne.901660202 Hess WR, 1946, MON PSYCHIATR NEUROL, V112, P1 HICKS TP, 1986, J COMP NEUROL, V246, P544, DOI 10.1002/cne.902460410 Horsley V, 1908, BRAIN, V31, P45, DOI 10.1093/brain/31.1.45 JENKINS WM, 1984, J NEUROPHYSIOL, V52, P819 Jiang W, 2001, J NEUROPHYSIOL, V85, P506 Jiang W, 2002, J COGNITIVE NEUROSCI, V14, P1240, DOI 10.1162/089892902760807230 Jiang W, 2003, J NEUROPHYSIOL, V90, P2123, DOI 10.1152/jn.00369.2003 KANASEKI T, 1974, J COMP NEUROL, V158, P319, DOI 10.1002/cne.901580307 KAWAMURA K, 1979, EXP BRAIN RES, V35, P161 KELLY JP, 1981, BRAIN RES, V212, P1, DOI 10.1016/0006-8993(81)90027-5 King AJ, 1998, J COMP NEUROL, V390, P342 KUDO M, 1988, BRAIN RES, V463, P352, DOI 10.1016/0006-8993(88)90409-X KUNZLE H, 1995, CEREB CORTEX, V5, P338, DOI 10.1093/cercor/5.4.338 Lee CC, 2013, JARO-J ASSOC RES OTO, V14, P61, DOI 10.1007/s10162-012-0357-9 Lee CC, 2011, HEARING RES, V274, P85, DOI 10.1016/j.heares.2010.05.008 Lee CC, 2008, J COMP NEUROL, V507, P1920, DOI 10.1002/cne.21613 Lomber S.G., 2004, PROJECTIONS POSTERIO Lomber SG, 2007, HEARING RES, V229, P31, DOI 10.1016/j.heares.2007.01.013 Lomber SG, 2007, J NEUROPHYSIOL, V97, P979, DOI 10.1152/jn.00767.2006 Lomber SG, 2001, J COMP NEUROL, V441, P44, DOI 10.1002/cne.1396 Lomber SG, 2008, NAT NEUROSCI, V11, P609, DOI 10.1038/nn.2108 Lomber SG, 2004, J COMP NEUROL, V474, P190, DOI 10.1002/cne.20123 LOMBER SG, 1994, BEHAV BRAIN RES, V64, P25, DOI 10.1016/0166-4328(94)90116-3 Lomber SG, 2002, EXP BRAIN RES, V142, P463, DOI 10.1007/s00221-001-0957-9 Lomber SG, 2000, CEREB CORTEX, V10, P1066, DOI 10.1093/cercor/10.11.1066 Malhotra S, 2007, J NEUROPHYSIOL, V97, P26, DOI 10.1152/jn.00720.2006 Malhotra S, 2004, J NEUROPHYSIOL, V92, P1625, DOI 10.1152/jn.01205.2003 Malhotra S, 2008, J NEUROPHYSIOL, V99, P1628, DOI 10.1152/jn.01228.2007 Manger PR, 2010, BRAIN RES, V1353, P74, DOI 10.1016/j.brainres.2010.07.085 May PJ, 2012, J COMP NEUROL, V520, P2218, DOI 10.1002/cne.23039 Mellott JG, 2010, HEARING RES, V267, P119, DOI 10.1016/j.heares.2010.04.003 MEREDITH MA, 1989, J COMP NEUROL, V289, P687 MEREDITH MA, 1990, J NEUROSCI, V10, P3727 MEREDITH MA, 1986, J NEUROPHYSIOL, V56, P640 MESULAM MM, 1978, J HISTOCHEM CYTOCHEM, V26, P106 Middlebrooks JC, 2005, AUDITORY CORTEX: SYNTHESIS OF HUMAN AND ANIMAL RESEARCH, P225 MIDDLEBROOKS JC, 1984, J NEUROSCI, V4, P2621 Middlebrooks JC, 2002, NAT NEUROSCI, V5, P824, DOI 10.1038/nn0902-824 Middlebrooks JC, 2002, NEUROSCIENTIST, V8, P73 Nodal FR, 2005, J COMP NEUROL, V485, P202, DOI 10.1002/cne.20478 Olfert E.D., 1993, GUIDE CARE USE EXPT Oliver DL, 1992, MAMMALIAN AUDITORY P, P168 OLUCHA F, 1985, J NEUROSCI METH, V13, P131, DOI 10.1016/0165-0270(85)90025-1 PALMER AR, 1982, NATURE, V299, P248, DOI 10.1038/299248a0 Payne BR, 1996, VISUAL NEUROSCI, V13, P805 PECK CK, 1990, J PHYSIOL-LONDON, V421, P79 Perales M, 2006, J COMP NEUROL, V497, P959, DOI 10.1002/cne.20988 Radtke-Schuller S, 2004, ANAT EMBRYOL, V209, P59, DOI 10.1007/s00429-004-0424-z RISS W, 1959, J NEUROPHYSIOL, V22, P374 ROCKLAND KS, 1979, BRAIN RES, V179, P3, DOI 10.1016/0006-8993(79)90485-2 ROSE JE, 1949, J COMP NEUROL, V91, P409, DOI 10.1002/cne.900910305 ROUILLER EM, 1991, EXP BRAIN RES, V86, P483 Sanides F, 1969, J Hirnforsch, V11, P79 SOUSA-PINTO A, 1973, Archives Italiennes de Biologie, V111, P112 SPRAGUE JM, 1965, EXP NEUROL, V11, P115, DOI 10.1016/0014-4886(65)90026-9 Stein B. E., 1993, MERGING SENSES STEIN BE, 1976, BRAIN RES, V118, P469, DOI 10.1016/0006-8993(76)90314-0 STEIN BE, 1978, J NEUROPHYSIOL, V41, P55 STROMING.NL, 1969, EXP NEUROL, V24, P348, DOI 10.1016/0014-4886(69)90141-1 THONG IG, 1986, DEV BRAIN RES, V25, P227, DOI 10.1016/0165-3806(86)90212-9 TORTELLY A, 1980, BRAIN RES, V188, P543, DOI 10.1016/0006-8993(80)90052-9 WALLACE MT, 1994, J NEUROPHYSIOL, V71, P429 WALLACE MT, 1993, J NEUROPHYSIOL, V69, P1797 Wilkinson LK, 1996, EXP BRAIN RES, V112, P1 Winer JA, 1998, J COMP NEUROL, V400, P147 Winer JA, 2002, HEARING RES, V168, P181, DOI 10.1016/S0378-5955(02)00489-6 Winer JA, 2001, J COMP NEUROL, V430, P27 WONGRILEY M, 1979, BRAIN RES, V171, P11, DOI 10.1016/0006-8993(79)90728-5 Zatorre RJ, 2002, NAT NEUROSCI, V5, P905, DOI 10.1038/nn904 NR 94 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2013 VL 300 BP 33 EP 45 DI 10.1016/j.heares.2013.02.008 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 151WZ UT WOS:000319492400004 PM 23500650 ER PT J AU Krishnan, S Leech, R Aydelott, J Dick, F AF Krishnan, Saloni Leech, Robert Aydelott, Jennifer Dick, Frederic TI School-age children's environmental object identification in natural auditory scenes: Effects of masking and contextual congruence SO HEARING RESEARCH LA English DT Article ID INFORMATIONAL MASKING; SPEECH-INTELLIGIBILITY; INDIVIDUAL-DIFFERENCES; LISTENING EFFORT; SPATIAL RELEASE; YOUNG-CHILDREN; HEARING-LOSS; NOISE; ATTENTION; SOUNDS AB This study investigated the development of children's skills in identifying ecologically relevant sound objects within naturalistic listening environments, using a non-linguistic analog of the classic 'cocktail-party' situation. Children aged 7-12.5 years completed a closed-set identification task in which brief, commonly encountered environmental sounds were presented at varying signal-to-noise ratios. To simulate the complexity of real-world acoustic environments, target sounds were embedded in either a single, stereophonically presented scene, or in one of two different scenes, with each scene presented to a single ear. Each target sound was either congruent or incongruent with the auditory context. Identification accuracy improved with increasing age, particularly in trials with low signal-to-noise ratios. Performance was most accurate when target sounds were incongruent with the background scene, and when sounds were presented in a single background scene. The presence of two backgrounds disproportionately disrupted children's performance relative to that of previously tested adults, and reduced children's sensitivity to contextual cues. Successful identification of familiar sounds in complex auditory contexts is the outcome of a protracted learning process, with children reaching adult levels of performance after a decade or more of experience. (C) 2013 Elsevier B.V. All rights reserved. C1 [Krishnan, Saloni; Aydelott, Jennifer; Dick, Frederic] Univ London Birkbeck Coll, Ctr Brain & Cognit Dev, London WC1E 7HX, England. [Leech, Robert] Univ London Imperial Coll Sci Technol & Med, Div Neurosci & Mental Hlth, London, England. RP Krishnan, S (reprint author), Univ London Birkbeck Coll, Ctr Brain & Cognit Dev, Malet St, London WC1E 7HX, England. EM s.krishnan@psychology.bbk.ac.uk; f.dick@bbk.ac.uk FU UK Medical Research Council [G0400341]; Waterloo Foundation FX This work was funded by the UK Medical Research Council (G0400341) and the Waterloo Foundation. The funders had no input into the design or interpretation of the research. We would like to thank Lori Holt and Jason Zevin for comments and suggestions. CR Ahissar M, 2006, NAT NEUROSCI, V9, P1558, DOI 10.1038/nn1800 Alain C, 2003, COGNITIVE BRAIN RES, V16, P210, DOI 10.1016/S0926-6410(02)00275-6 ALLEN P, 1994, J SPEECH HEAR RES, V37, P205 Arnold P, 1999, BRIT J AUDIOL, V33, P171 Ballas JA, 1991, HUM PERFORM, V4, P199, DOI DOI 10.1207/S15327043HUP0403_3 Boersma P., 2009, PRAAT DOING PHONETIC Bonino AY, 2013, EAR HEARING, V34, P3, DOI 10.1097/AUD.0b013e31825e2841 Brainard DH, 1997, SPATIAL VISION, V10, P433, DOI 10.1163/156856897X00357 CHERRY EC, 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229 CHERRY RS, 1981, PERCEPT MOTOR SKILL, V52, P379 Cummings A, 2006, BRAIN RES, V1115, P92, DOI 10.1016/j.brainres.2006.07.050 Dick F, 2007, J COGNITIVE NEUROSCI, V19, P799, DOI 10.1162/jocn.2007.19.5.799 Dick F., 2004, DEVELOPMENTAL SCI, V7, P360 Durlach NI, 2003, J ACOUST SOC AM, V113, P2984, DOI 10.1121/1.1570435 Durlach NI, 2003, J ACOUST SOC AM, V114, P368, DOI 10.1121/1.1577562 ELLIOTT LL, 1979, J ACOUST SOC AM, V66, P651, DOI 10.1121/1.383691 Fallon M, 2002, J ACOUST SOC AM, V111, P2242, DOI [10.1121/1.1466873, 10.1121/1.466873] Fletcher-Watson S, 2009, DEVELOPMENTAL SCI, V12, P438, DOI 10.1111/j.1467-7687.2008.00784.x Goll JC, 2010, BRAIN, V133, P272, DOI 10.1093/brain/awp235 Gomes H, 2000, FRONT BIOSCI, V5, pD108, DOI 10.2741/Gomes Gregg MK, 2009, ATTEN PERCEPT PSYCHO, V71, P607, DOI 10.3758/APP.71.3.607 Gygi B, 2011, J EXP PSYCHOL HUMAN, V37, P551, DOI 10.1037/a0020671 Gygi B., 2007, P 19 INT C AC MADR S Hall JW, 2005, J ACOUST SOC AM, V118, P1605, DOI 10.1121/1.1992675 Henderson JM, 1999, ANNU REV PSYCHOL, V50, P243, DOI 10.1146/annurev.psych.50.1.243 Hicks CB, 2002, J SPEECH LANG HEAR R, V45, P573, DOI 10.1044/1092-4388(2002/046) HISCOCK M, 1980, DEV PSYCHOL, V16, P70, DOI 10.1037//0012-1649.16.1.70 Howard CS, 2010, INT J AUDIOL, V49, P928, DOI 10.3109/14992027.2010.520036 Johnson CE, 2000, J SPEECH LANG HEAR R, V43, P144 Johnstone PM, 2006, J ACOUST SOC AM, V120, P2177, DOI 10.1121/1.2225416 Leech R, 2007, DEVELOPMENTAL SCI, V10, P794, DOI 10.1111/j.1467-7687.2007.00628.x Leech R, 2009, J ACOUST SOC AM, V126, P3147, DOI 10.1121/1.3238160 Leech R, 2011, BRAIN LANG, V116, P83, DOI 10.1016/j.bandl.2010.11.001 Leibold L. J., 2001, SOUND FDN EARL AMPL Litovsky RY, 2005, J ACOUST SOC AM, V117, P3091, DOI 10.1121/1.1873913 Lix LM, 2010, PSYCHOL METHODS, V15, P268, DOI 10.1037/a0017737 Lutfi RA, 2003, PERCEPT PSYCHOPHYS, V65, P396, DOI 10.3758/BF03194571 McDonald JH, 2009, HDB BIOL STAT McFadden B, 2008, LANG SPEECH HEAR SER, V39, P342, DOI 10.1044/0161-1461(2008/032) Moore B.C., 2012, INTRO PSYCHOL HEARIN NIESSEN ME, 2008, INT J SEMANTIC COMPU, V2, P327, DOI DOI 10.1142/S1793351X08000506 NITTROUER S, 1990, J ACOUST SOC AM, V87, P2705, DOI 10.1121/1.399061 Oh EL, 2001, J ACOUST SOC AM, V109, P2888, DOI 10.1121/1.1371764 Pearson D., 1991, J EXP CHILD PSYCHOL, V2, P320 Saygin AP, 2010, NEUROPSYCHOLOGIA, V48, P107, DOI 10.1016/j.neuropsychologia.2009.08.015 Shafiro V, 2012, TRENDS AMPLIF, V16, P83, DOI 10.1177/1084713812454225 Shield B, 2004, J ACOUST SOC AM, V115, P730, DOI 10.1121/1.1635837 Snyder JS, 2012, FRONT PSYCHOL, V3, DOI 10.3389/fpsyg.2012.00015 Sussman E, 2007, HEARING RES, V225, P117, DOI 10.1016/j.heares.2006.12.013 Sussman E, 2009, NEUROPSYCHOLOGIA, V47, P771, DOI 10.1016/j.neuropsychologia.2008.12.007 Sussman E, 2001, COGNITIVE BRAIN RES, V12, P431, DOI 10.1016/S0926-6410(01)00067-2 Sussman ES, 2011, DEV COGN NEUROS-NETH, V1, P351, DOI 10.1016/j.dcn.2011.01.003 Thomas MSC, 2009, J SPEECH LANG HEAR R, V52, P336, DOI 10.1044/1092-4388(2009/07-0144) Underwood G, 2006, Q J EXP PSYCHOL, V59, P1931, DOI 10.1080/17470210500416342 Vo MLH, 2011, ATTEN PERCEPT PSYCHO, V73, P1742, DOI 10.3758/s13414-011-0150-6 Wightman FL, 2003, J ACOUST SOC AM, V113, P3297, DOI 10.1121/1.1570443 Wightman FL, 2010, J ACOUST SOC AM, V128, P270, DOI 10.1121/1.3436536 Wightman FL, 2005, J ACOUST SOC AM, V118, P3164, DOI 10.1121/1.2082567 NR 58 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUN PY 2013 VL 300 BP 46 EP 55 DI 10.1016/j.heares.2013.03.003 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 151WZ UT WOS:000319492400005 PM 23518401 ER PT J AU Rowan, D Papadopoulos, T Edwards, D Holmes, H Hollingdale, A Evans, L Allen, R AF Rowan, Daniel Papadopoulos, Timos Edwards, David Holmes, Hannah Hollingdale, Anna Evans, Leah Allen, Robert TI Identification of the lateral position of a virtual object based on echoes by humans SO HEARING RESEARCH LA English DT Article ID SOUND LOCALIZATION; BLIND SUBJECTS; CUES; ECHOLOCATION; SENSITIVITY; PERCEPTION; THRESHOLD AB Echolocation offers a promising approach to improve the quality of life of people with blindness although little is known about the factors influencing object localisation using a 'searching' strategy. In this paper, we describe a series of experiments using sighted and blind human listeners and a 'virtual auditory space' technique to investigate the effects of the distance and orientation of a reflective object and the effect of stimulus bandwidth on ability to identify the right-versus-left position of the object, with bands of noise and durations from 10-400 ms. We found that performance reduced with increasing object distance. This was more rapid for object orientations where mirror-like reflection paths do not exist to both ears (i.e. most possible orientations); performance with these orientations was indistinguishable from chance at 1.8 m for even the best performing listeners in other conditions. Above-chance performance extended to larger distances when the echo was artificially presented in isolation, as might be achieved in practice by an assistive device. We also found that performance was primarily based on information above 2 kHz. Further research should extend these investigations to include other factors that are relevant to real-life echolocation. (C) 2013 Elsevier B.V. All rights reserved. C1 [Rowan, Daniel; Papadopoulos, Timos; Edwards, David; Holmes, Hannah; Hollingdale, Anna; Evans, Leah; Allen, Robert] Univ Southampton, Inst Sound & Vibrat Res, Southampton SO17 1BJ, Hants, England. [Papadopoulos, Timos] Univ Cyprus, Dept Econ, Nicosia, Cyprus. RP Rowan, D (reprint author), Univ Southampton, Inst Sound & Vibrat Res, Southampton SO17 1BJ, Hants, England. EM d.rowan@southampton.ac.uk FU EPSRC Vacation Bursaries; RCUK studentship through a Basic Technology Programme grant FX Hannah Holmes and Leah Evans were supported by EPSRC Vacation Bursaries; David Edwards was supported by a RCUK studentship through a Basic Technology Programme grant to the Bio-Inspired Acoustical Systems project (www.biasweb.org). Thanks to Rebekah White for help with data collection (Experiment 4b). Boxplots were created using a (modified) template produced by Vertex42 (www.vertex42.com/ExcelTemplates/box-whisker-plot.html). We are extremely grateful to Associate Editor Brian Moore and two anonymous reviewers for their many helpful comments that have improved this manuscript substantially. CR ASHMEAD DH, 1989, PERCEPT PSYCHOPHYS, V46, P425, DOI 10.3758/BF03210857 Bernstein LR, 2004, J ACOUST SOC AM, V115, P3156, DOI 10.1121/1.1719025 Blauert J., 1996, SPATIAL HEARING Chen ZL, 2011, HEARING RES, V282, P204, DOI 10.1016/j.heares.2011.08.001 Despres O, 2005, BRAIN RES, V1041, P56, DOI 10.1016/j.brainres.2005.01.101 Doucet ME, 2005, EXP BRAIN RES, V160, P194, DOI 10.1007/s00221-004-2000-4 Dufour A, 2005, EXP BRAIN RES, V165, P515, DOI 10.1007/s00221-005-2329-3 Ihlefeld A, 2011, J ACOUST SOC AM, V130, P324, DOI 10.1121/1.3596476 Litovsky RY, 1999, J ACOUST SOC AM, V106, P1633, DOI 10.1121/1.427914 MacMillan N. A., 2005, DETECTION THEORY USE Macpherson EA, 2002, J ACOUST SOC AM, V111, P2219, DOI 10.1121/1.1471898 Papadopoulos T, 2011, BIOMED SIGNAL PROCES, V6, P280, DOI 10.1016/j.bspc.2011.03.005 RICE CE, 1967, SCIENCE, V155, P656, DOI 10.1126/science.155.3763.656 Rojas JAM, 2009, ACTA ACUST UNITED AC, V95, P325, DOI 10.3813/AAA.918155 Sabin AT, 2005, HEARING RES, V199, P124, DOI 10.1016/j.heares.2004.08.001 Schenkman BN, 2010, PERCEPTION, V39, P483, DOI 10.1068/p6473 SCHENKMAN BN, 1986, HUM FACTORS, V28, P607 Schenkman BN, 2011, PERCEPTION, V40, P840, DOI 10.1068/p6898 Schnitzler HU, 2001, BIOSCIENCE, V51, P557, DOI 10.1641/0006-3568(2001)051[0557:EBIEB]2.0.CO;2 Schornich S, 2012, JARO-J ASSOC RES OTO, V13, P673, DOI 10.1007/s10162-012-0338-z Teng S., 2011, EXP BRAIN RES, V216, P483 Teng S, 2011, J VISUAL IMPAIR BLIN, V105, P20 Thaler L, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020162 TOBIAS JV, 1959, J ACOUST SOC AM, V31, P1591, DOI 10.1121/1.1907664 Wightman F.L, 2005, ACTA ACUST, V91, P429 WIGHTMAN FL, 1992, J ACOUST SOC AM, V91, P1648, DOI 10.1121/1.402445 NR 26 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD JUN PY 2013 VL 300 BP 56 EP 65 DI 10.1016/j.heares.2013.03.005 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 151WZ UT WOS:000319492400006 PM 23538130 ER PT J AU Song, JJ Punte, AK De Ridder, D Vanneste, S Van de Heyning, P AF Song, Jae-Jin Punte, Andrea Kleine De Ridder, Dirk Vanneste, Sven Van de Heyning, Paul TI Neural substrates predicting improvement of tinnitus after cochlear implantation in patients with single-sided deafness SO HEARING RESEARCH LA English DT Article ID ELECTROMAGNETIC TOMOGRAPHY LORETA; TRANSCRANIAL MAGNETIC STIMULATION; PREFRONTAL CORTEX; FUNCTIONAL CONNECTIVITY; VEGETATIVE STATE; AUDITORY-CORTEX; BRAIN ACTIVITY; SUPPRESSION; LOCALIZATION; RESOLUTION AB Notwithstanding successful reduction of tinnitus after cochlear implantation (CI) in patients with single-sided deafness (SSD) in recent studies, neither the exact mechanism of suppression nor the predictors of the amount of improvement are fully understood yet. We collected quantitative electroencephalography (qEEG) data from nine SSD patients who underwent CI for tinnitus management. By correlating the degree of improvement in tinnitus intensity and tinnitus-related distress with preoperative source-localized qEEG findings and comparing qEEG findings of patients with marked improvement after CI with those with relatively slight improvement with regard to source-localized activity complimented by connectivity analysis, we attempted to find preoperative predictors of tinnitus improvement. Our results showed increased activities of the auditory cortex (AC), posterior cingulate cortex (PCC) and increased functional connectivity between the AC and PCC as negative prognostic factors for the reduction of tinnitus intensity after CI in patients with SSD. Also, relatively increased activity of the right dorsolateral prefrontal cortex and decreased connectivity between distress-related areas such as the orbitofrontal cortex/parahippocampus and sensory-perception areas such as the AC/precuneus were found in patients with relatively slight improvement in tinnitus-related distress as compared with those with marked improvement. The current study suggests that preoperative cortical oscillations can be applied to predict post-CI tinnitus reduction in patients with SSD. (C) 2013 Elsevier B.V. All rights reserved. C1 [Song, Jae-Jin] Seoul Natl Univ Hosp, Dept Otorhinolaryngol Head & Neck Surg, Seoul 110744, South Korea. [Punte, Andrea Kleine; Van de Heyning, Paul] Univ Antwerp Hosp, Brai2n TRI & ENT, Antwerp, Belgium. [De Ridder, Dirk] Univ Otago, Dunedin Sch Med, Dept Surg Sci, Dunedin, New Zealand. [De Ridder, Dirk; Vanneste, Sven; Van de Heyning, Paul] Univ Antwerp, Fac Med, Dept Translat Neurosci, Antwerp, Belgium. [Vanneste, Sven] Univ Texas Dallas, Sch Behav & Brain Sci, Dallas, TX 75230 USA. RP Song, JJ (reprint author), Seoul Natl Univ Hosp, Dept Otorhinolaryngol Head & Neck Surg, Yun Kun Dong 28, Seoul 110744, South Korea. EM jjsong96@gmail.com FU Research Foundation Flanders (FWO); Tinnitus Research Initiative; TOP project University Antwerp; Neurological Foundation of New Zealand; Korean Science and Engineering Foundation (KOSEF); Korean government (MOST) [2012-0030102] FX This work was supported by Research Foundation Flanders (FWO), Tinnitus Research Initiative, TOP project University Antwerp, The Neurological Foundation of New Zealand and the Korean Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MOST) (no. 2012-0030102). CR Alain C, 1998, BRAIN RES, V812, P23, DOI 10.1016/S0006-8993(98)00851-8 Amoodi HA, 2011, LARYNGOSCOPE, V121, P1536, DOI 10.1002/lary.21851 Andersson G, 2009, J AM ACAD AUDIOL, V20, P315, DOI 10.3766/jaaa.20.5.5 Arndt S, 2011, OTOL NEUROTOL, V32, P39, DOI 10.1097/MAO.0b013e3181fcf271 BECK AT, 1984, J CLIN PSYCHOL, V40, P1365, DOI 10.1002/1097-4679(198411)40:6<1365::AID-JCLP2270400615>3.0.CO;2-D Boly M, 2004, ARCH NEUROL-CHICAGO, V61, P233, DOI 10.1001/archneur.61.2.233 Buechner A, 2010, OTOL NEUROTOL, V31, P1381, DOI 10.1097/MAO.0b013e3181e3d353 Davidson RJ, 2003, PSYCHOPHYSIOLOGY, V40, P655, DOI 10.1111/1469-8986.00067 De Ridder D, 2005, OTOL NEUROTOL, V26, P616, DOI 10.1097/01.mao.0000178146.91139.3c De Ridder D, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024273 Del Bo L, 2008, OTOLARYNG HEAD NECK, V139, P391, DOI 10.1016/j.otohns.2008.06.019 De Ridder D, 2011, P NATL ACAD SCI USA, V108, P8075, DOI 10.1073/pnas.1018466108 Dierks T, 2000, CLIN NEUROPHYSIOL, V111, P1817, DOI 10.1016/S1388-2457(00)00427-2 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Faber M, 2012, BRAIN STIMUL, V5, P492, DOI 10.1016/j.brs.2011.09.003 Fuchs M, 2002, CLIN NEUROPHYSIOL, V113, P702, DOI 10.1016/S1388-2457(02)00030-5 Giraud AL, 2001, BRAIN, V124, P1307, DOI 10.1093/brain/124.7.1307 GOEBEL G, 1994, HNO, V42, P166 Heller AJ, 2003, OTOLARYNG CLIN N AM, V36, P239, DOI 10.1016/S0030-6665(02)00160-3 Holmes AP, 1996, J CEREBR BLOOD F MET, V16, P7 JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 JOLIOT M, 1994, P NATL ACAD SCI USA, V91, P11748, DOI 10.1073/pnas.91.24.11748 Joos K, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040544 Kleinjung Tobias, 2009, Cases J, V2, P7462, DOI 10.1186/1757-1626-2-7462 KNIGHT RT, 1989, BRAIN RES, V504, P338, DOI 10.1016/0006-8993(89)91381-4 Kreuzer Peter Michael, 2011, Front Syst Neurosci, V5, P88, DOI 10.3389/fnsys.2011.00088 Krog NH, 2010, J PSYCHOSOM RES, V69, P289, DOI 10.1016/j.jpsychores.2010.03.008 Landgrebe M, 2009, NEUROIMAGE, V46, P213, DOI 10.1016/j.neuroimage.2009.01.069 Langguth B, 2007, PROG BRAIN RES, V166, P525, DOI 10.1016/S0079-6123(07)66050-6 Laureys S, 2000, BRAIN, V123, P1589, DOI 10.1093/brain/123.8.1589 Marco-Pallares J, 2005, NEUROIMAGE, V25, P471, DOI 10.1016/j.neuroimage.2004.11.028 MCKERROW WS, 1991, ANN OTO RHINOL LARYN, V100, P552 Mitchell TV, 2005, NEUROREPORT, V16, P457, DOI 10.1097/00001756-200504040-00008 Muhlnickel W, 1998, P NATL ACAD SCI USA, V95, P10340, DOI 10.1073/pnas.95.17.10340 Mulert C, 2004, NEUROIMAGE, V22, P83, DOI 10.1016/j.neuroimage.2003.10.051 Nichols TE, 2002, HUM BRAIN MAPP, V15, P1, DOI 10.1002/hbm.1058 Norena A, 1999, CLIN NEUROPHYSIOL, V110, P666, DOI 10.1016/S1388-2457(98)00034-0 Norena AJ, 2011, NEUROSCI BIOBEHAV R, V35, P1089, DOI 10.1016/j.neubiorev.2010.11.003 Olbrich S, 2009, NEUROIMAGE, V45, P319, DOI 10.1016/j.neuroimage.2008.11.014 Pascual-Marqui RD, 2002, METHOD FIND EXP CLIN, V24, P5 Pascual-Marqui R.D., 2007, ARXIV07103341 Pascual-Marqui RD, 2007, ARXIV07111455 Pizzagalli D, 2001, AM J PSYCHIAT, V158, P405, DOI 10.1176/appi.ajp.158.3.405 Pizzagalli DA, 2004, MOL PSYCHIATR, V9, P393, DOI 10.1038/sj.mp.4001469 Plewnia C, 2003, ANN NEUROL, V53, P263, DOI 10.1002/ana.10468 Punte Andrea Kleine, 2011, Cochlear Implants Int, V12 Suppl 1, pS26, DOI 10.1179/146701011X13001035752336 Raichle Marcus E, 2007, Neuroimage, V37, P1083, DOI 10.1016/j.neuroimage.2007.02.041 Raichle ME, 2007, NEUROIMAGE, V37, P1097, DOI DOI 10.1016/J.NEUR0IMAGE.2007.02.041 Raichle ME, 2001, P NATL ACAD SCI USA, V98, P676, DOI 10.1073/pnas.98.2.676 Ramos Ángel, 2012, Acta Otorrinolaringol Esp, V63, P15, DOI 10.1016/j.otorri.2011.07.004 Ruckenstein MJ, 2001, OTOL NEUROTOL, V22, P200, DOI 10.1097/00129492-200103000-00014 Schaette R, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035238 Schecklmann M, 2013, HUM BRAIN MAPP, V34, P233, DOI 10.1002/hbm.21426 Schlee W, 2012, BMC NEUROSCI, V13, DOI 10.1186/1471-2202-13-16 Schlee W, 2009, BMC NEUROSCI, V10, DOI 10.1186/1471-2202-10-11 Sekihara K, 2005, NEUROIMAGE, V25, P1056, DOI 10.1016/j.neuroimage.2004.11.051 Sherlin L, 2005, NEUROSCI LETT, V387, P72, DOI 10.1016/j.neulet.2005.06.069 Smits M, 2007, NEURORADIOLOGY, V49, P669, DOI 10.1007/s00234-007-0231-3 Song JJ, 2012, J NUCL MED, V53, P1550, DOI 10.2967/jnumed.112.102939 SOULIERE CR, 1992, ARCH OTOLARYNGOL, V118, P1291 Ursu S, 2011, AM J PSYCHIAT, V168, P276, DOI 10.1176/appi.ajp.2010.09081215 Van de Heyning Paul, 2008, Ann Otol Rhinol Laryngol, V117, P645 van der Loo E, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007396 van der Loo E, 2011, AUTON NEUROSCI-BASIC, V165, P191, DOI 10.1016/j.autneu.2011.06.007 Vanneste S, 2010, NEUROIMAGE, V52, P470, DOI 10.1016/j.neuroimage.2010.04.029 Vanneste Sven, 2012, Front Syst Neurosci, V6, P31, DOI 10.3389/fnsys.2012.00031 Vitacco D, 2002, HUM BRAIN MAPP, V17, P4, DOI 10.1002/hbm.10038 Voisin J, 2006, J NEUROSCI, V26, P273, DOI 10.1523/JNEUROSCI.2967-05.2006 Weisz N, 2005, PLOS MED, V2, P546, DOI 10.1371/journal.pmed.0020153 Weisz N, 2007, PROG BRAIN RES, V166, P61, DOI 10.1016/S0079-6123(07)66006-3 Weisz N, 2007, J NEUROSCI, V27, P1479, DOI 10.1523/JNEUROSCI.3711-06.2007 Worrell GA, 2000, BRAIN TOPOGR, V12, P273, DOI 10.1023/A:1023407521772 Worsley KJ, 2005, PHILOS T ROY SOC B, V360, P913, DOI 10.1098/rstb.2005.1637 Zumsteg D, 2005, NEUROLOGY, V65, P1657, DOI 10.1212/01.wnl.0000184516.32369.1a Zumsteg D, 2006, EPILEPSIA, V47, P1958, DOI 10.1111/j.1528-1167.2006.00824.x NR 75 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2013 VL 299 BP 1 EP 9 DI 10.1016/j.heares.2013.02.001 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 151TS UT WOS:000319483700001 PM 23415916 ER PT J AU Karg, SA Lackner, C Hemmert, W AF Karg, S. A. Lackner, C. Hemmert, W. TI Temporal interaction in electrical hearing elucidates auditory nerve dynamics in humans SO HEARING RESEARCH LA English DT Article ID COCHLEAR IMPLANT USERS; CHANNEL INTERACTIONS; SPEECH RECOGNITION; PULSE-RATE; INTENSITY DISCRIMINATION; MODULATION DETECTION; RESPONSE PROPERTIES; STIMULATION RATE; MEMBRANE; LEVEL AB In cochlear implants, severe limitations arise from electrical crosstalk between channels. Therefore, the current trend in cochlear implants is to increase stimulation rates to encode signals with higher temporal precision. However, the fundamental question: "What is the limit of temporal precision due to inherent neuronal dynamics of the stimulated neurons?" has not yet been resolved. In this study we have developed a double-pulse method and, for the first time, reversed stimulus polarity systematically between consecutive pulses to elucidate subthreshold-induced temporal interaction effects. This method allowed us to determine the time-course of subthreshold temporal interaction in human subjects which identifies the limits of encoded temporal precision. Our results show significant temporal interaction up to 600 mu s inter-pulse interval. In all the cases tested we saw a facilitation effect on threshold. Interaction effects at a 20% below threshold pre-conditioning stimulation showed up to 38% +/- 6% threshold reduction. These results imply that there is significant temporal interaction between two subsequent pulses. This interaction diminishes the precision of amplitude coding. We predict interaction effects on temporal precision and channel interaction. For (interleaved) stimulation with short inter-pulse intervals it is interesting to consider our interaction results; and it may become important to consider them for future coding strategies where high temporal precision is required. In an increasing group of binaural implanted patients this will be the case when interaural time differences are encoded with}is precision. (C) 2013 Elsevier B.V. All rights reserved. C1 [Karg, S. A.; Hemmert, W.] Tech Univ Munich, D-85748 Garching, Germany. [Lackner, C.] Fachhsch Munich, Munich, Germany. RP Karg, SA (reprint author), Tech Univ Munich, Boltzmannstr 11, D-85748 Garching, Germany. EM karg@tum.de FU Bernstein Center for Computational Neuroscience Munich; MED-EL Innsbruck FX This work was supported by the Bernstein Center for Computational Neuroscience Munich and a grant from MED-EL Innsbruck. The Institut fur Ionenphysik und Angewandte Physik, University of Innsbruck provided the research interface RIBII and the ENT-Department of the Klinikum rechts der Isar, Munich helped us to acquire cochlear implant patients and provided a room for our measurements. CR Bierer JA, 2004, JARO-J ASSOC RES OTO, V5, P32, DOI 10.1007/s10162-003-3057-7 Bierer JA, 2002, J NEUROPHYSIOL, V87, P478 Cartee LA, 2000, HEARING RES, V146, P143, DOI 10.1016/S0378-5955(00)00109-X Coste RL, 1996, J ACOUST SOC AM, V99, P3099, DOI 10.1121/1.414796 de Balthasar C, 2003, HEARING RES, V182, P77, DOI 10.1016/S0378-5955(03)00174-6 DETECTION BY, OTOLARYNGOLOGY, V6, P269 Donaldson GS, 2005, J ACOUST SOC AM, V118, P623, DOI 10.1121/1.1937362 Dynes S.B., 1996, DISCHARGE CHARACTERI Eddington D.K., 1994, SPEECH PROCESSORS AU Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Friesen L.M., 2001, EFFECT PULSE RATE PU Fu QJ, 2000, J ACOUST SOC AM, V107, P589, DOI 10.1121/1.428325 Galvin JJ, 2005, JARO-J ASSOC RES OTO, V6, P269, DOI 10.1007/s10162-005-0007-6 Goldwyn JH, 2010, J COMPUT NEUROSCI, V28, P405, DOI 10.1007/s10827-010-0224-9 Javel E, 2000, HEARING RES, V140, P45, DOI 10.1016/S0378-5955(99)00186-0 Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6 Kreft HA, 2004, J ACOUST SOC AM, V116, P2258, DOI 10.1121/1.1786871 Kwon BJ., 2006, J ACOUST SOC AM, V120, pEL1 Litvak LM, 2003, J ACOUST SOC AM, V114, P2066, DOI 10.1121/1.1612492 Liu HL, 2009, IEEE T BIO-MED ENG, V56, P137, DOI 10.1109/TBME.2008.2006013 Matsuoka AJ, 2001, IEEE T BIO-MED ENG, V48, P416, DOI 10.1109/10.915706 MCDERMOTT HJ, 1994, J ACOUST SOC AM, V96, P155, DOI 10.1121/1.410475 McKay CM, 2001, J ACOUST SOC AM, V110, P1514, DOI 10.1121/1.1394222 Middlebrooks JC, 2004, J ACOUST SOC AM, V116, P452, DOI 10.1121/1.1760795 Miller CA, 2011, JARO-J ASSOC RES OTO, V12, P219, DOI 10.1007/s10162-010-0249-9 Miller CA, 2001, JARO, V2, P216 Nelson DA, 1996, J ACOUST SOC AM, V100, P2393, DOI 10.1121/1.417949 Nelson DA, 2001, J ACOUST SOC AM, V109, P2921, DOI 10.1121/1.1371762 Pfingst BE, 2007, J ACOUST SOC AM, V121, P2236, DOI 10.1121/1.2537501 Rothman JS, 2003, J NEUROPHYSIOL, V89, P3097, DOI 10.1152/jn.00127.2002 RUBINSTEIN JT, 1995, BIOPHYS J, V68, P779 Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3 SHANNON RV, 1983, HEARING RES, V12, P1, DOI 10.1016/0378-5955(83)90115-6 Shannon Robert V, 2002, Am J Audiol, V11, P124, DOI 10.1044/1059-0889(2002/013) SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 Shepherd RK, 1999, HEARING RES, V130, P171, DOI 10.1016/S0378-5955(99)00011-8 Svirskis G, 2003, BIOL CYBERN, V89, P333, DOI 10.1007/s00422-003-0438-2 Undurraga JA, 2012, HEARING RES, V290, P21, DOI 10.1016/j.heares.2012.05.003 van Wieringen A, 2008, HEARING RES, V242, P154, DOI 10.1016/j.heares.2008.03.005 VERVEEN AA, 1965, KYBERNETIK, V2, P152 VERVEEN AA, 1968, PR INST ELECTR ELECT, V56, P906, DOI 10.1109/PROC.1968.6443 WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 Zeng Fan-Gang, 2004, Trends Amplif, V8, P1, DOI 10.1177/108471380400800102 Zeng FG, 2002, J ACOUST SOC AM, V111, P377, DOI 10.1121/1.1423926 Zwicker E., 2007, PSYCHOACOUSTICS FACT NR 46 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2013 VL 299 BP 10 EP 18 DI 10.1016/j.heares.2013.01.015 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 151TS UT WOS:000319483700002 PM 23396273 ER PT J AU Reinfeldt, S Stenfelt, S Hakansson, B AF Reinfeldt, Sabine Stenfelt, Stefan Hakansson, Bo TI Estimation of bone conduction skull transmission by hearing thresholds and ear-canal sound pressure SO HEARING RESEARCH LA English DT Article ID MIDDLE-EAR; TRANSCRANIAL ATTENUATION; AIR CONDUCTION; STIMULATION; AUDIOMETRY; VIBRATIONS; PLACEMENT; MOTION AB Bone conduction sound transmission in the human skull and the occlusion effect were estimated from hearing thresholds and ear-canal sound pressure (ECSP) measured by a probe tube microphone when stimulation was at three positions on the skull (ipsilateral mastoid, contralateral mastoid, and forehead). The measurements were done with the ear-canal open as well as occluded by an ear-plug. Depending on the estimation method, transcranial transmission at frequencies below 1 kHz was between -8 and 5 dB, around 0 dB at 1 kHz that decreased with frequency to between -17 and -7 dB at 8 kHz. The forehead transmission was, except at frequencies between 1 and 2 kHz, similar to that proposed in the standard ISO:389-3 (1994) when the threshold measurements were conducted with open ear-canals. Compared with the same measurements using hearing thresholds, the ECSP gave similar transmission results at most frequencies, but differed at 0.5, 0.75, 2 and 3 kHz. One probable reason for the differences between thresholds and ECSP might be a significant perception improvement (lower thresholds) when the stimulation was at the ipsilateral mastoid that was not found at the other positions. This improvement, which also was present in the occlusion effect data, was hypothesized to originate in greater sensitivity of the cochlea for vibration in line with the ipsilateral stimulation direction than from other directions. (C) 2013 Elsevier B.V. All rights reserved. C1 [Reinfeldt, Sabine; Hakansson, Bo] Chalmers, Dept Signals & Syst, Div Signal Proc & Biomed Engn, SE-41296 Gothenburg, Sweden. [Stenfelt, Stefan] Linkoping Univ, Dept Clin & Expt Med, Div Tech Audiol, SE-58183 Linkoping, Sweden. RP Reinfeldt, S (reprint author), Chalmers, Dept Signals & Syst, Div Signal Proc & Biomed Engn, SE-41296 Gothenburg, Sweden. EM sabine.reinfeldt@chalmers.se RI Stenfelt, Stefan/J-9363-2013 OI Stenfelt, Stefan/0000-0003-3350-8997 FU Swedish Research Council [621-2002-5624] FX This study was supported by grant from the Swedish Research Council (621-2002-5624). CR [Anonymous], 1994, ISO3893 [Anonymous], 1998, ISO3891 [Anonymous], 2003, ISO226 [Anonymous], 2010, ISO82531 Barany E, 1938, ACTA OTO-LARYNGOL, V26, P1 Bekesy G., 1960, EXPT HEARING BERGER EH, 1983, J ACOUST SOC AM, V74, P81, DOI 10.1121/1.389621 Dean M S, 2000, Am J Audiol, V9, P131, DOI 10.1044/1059-0889(2000/011) DIRKS DD, 1969, J SPEECH HEAR RES, V12, P725 Eeg-Olofsson M, 2011, OTOL NEUROTOL, V32, P192, DOI 10.1097/MAO.0b013e3182009f16 Eeg-Olofsson M, 2008, INT J AUDIOL, V47, P761, DOI 10.1080/14992020802311216 Freeman S, 2000, HEARING RES, V146, P72, DOI 10.1016/S0378-5955(00)00098-8 GOODHILL V, 1970, ARCHIV OTOLARYNGOL, V91, P250 Hakansson B, 2010, INT J AUDIOL, V49, P203, DOI 10.3109/14992020903264462 Hakansson BEV, 2003, J ACOUST SOC AM, V113, P818, DOI 10.1121/1.1536633 Homma K, 2009, J ACOUST SOC AM, V125, P968, DOI 10.1121/1.3056564 HUIZING E H, 1960, Acta Otolaryngol Suppl, V155, P1 Ito T, 2011, AUDIOL NEURO-OTOL, V16, P12, DOI 10.1159/000314282 Kim N, 2011, JARO-J ASSOC RES OTO, V12, P261, DOI 10.1007/s10162-011-0258-3 KLODD DA, 1977, AUDIOLOGY, V16, P522 NOLAN M, 1981, J LARYNGOL OTOL, V95, P597, DOI 10.1017/S0022215100091155 Reinfeldt S, 2007, J ACOUST SOC AM, V121, P1576, DOI 10.1121/1.2434762 Shipton M S, 1980, Br J Audiol, V14, P86, DOI 10.3109/03005368009078908 Stenfelt S, 2002, J ACOUST SOC AM, V111, P947, DOI 10.1121/1.1432977 Stenfelt S, 2011, ADV OTO-RHINO-LARYNG, V71, P10, DOI 10.1159/000323574 Stenfelt S, 2003, J ACOUST SOC AM, V113, P902, DOI 10.1121/1.1534606 Stenfelt S, 2005, OTOL NEUROTOL, V26, P1245, DOI 10.1097/01.mao.0000187236.10842.d5 Stenfelt S, 2012, OTOL NEUROTOL, V33, P105, DOI 10.1097/MAO.0b013e31823e28ab Stenfelt S, 2007, INT J AUDIOL, V46, P595, DOI 10.1090/14992020701545880 Stenfelt S, 2006, J ACOUST SOC AM, V119, P2848, DOI 10.1121/1.2184225 Stenfelt S, 2003, HEARING RES, V181, P131, DOI 10.1016/S0378-5955(03)00183-7 Stenfelt S, 2005, J ACOUST SOC AM, V118, P2373, DOI 10.1121/1.12005847 Stenfelt S, 2000, J ACOUST SOC AM, V107, P422, DOI 10.1121/1.428314 Stenfelt S, 2007, HEARING RES, V225, P105, DOI 10.1016/j.heares.2006.12.009 STUDEBAKER GA, 1962, J SPEECH HEAR RES, V5, P321 Tonndorf J, 1966, ACTA OTO LARYNGOLO S, P1 von Bekesy G, 1932, ANN PHYS-BERLIN, V13, P111 NR 37 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2013 VL 299 BP 19 EP 28 DI 10.1016/j.heares.2013.01.023 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 151TS UT WOS:000319483700003 PM 23422311 ER PT J AU Srinivasan, AG Padilla, M Shannon, RV Landsberger, DM AF Srinivasan, Arthi G. Padilla, Monica Shannon, Robert V. Landsberger, David M. TI Improving speech perception in noise with current focusing in cochlear implant users SO HEARING RESEARCH LA English DT Article ID VIRTUAL CHANNEL DISCRIMINATION; ELECTRODE CONFIGURATIONS; ELECTRICAL-STIMULATION; SPECTRAL RESOLUTION; ACOUSTIC HEARING; RECOGNITION; LISTENERS; TRIPOLAR; THRESHOLDS; EXCITATION AB Cochlear implant (CI) users typically have excellent speech recognition in quiet but struggle with understanding speech in noise. It is thought that broad current spread from stimulating electrodes causes adjacent electrodes to activate overlapping populations of neurons which results in interactions across adjacent channels. Current focusing has been studied as a way to reduce spread of excitation, and therefore, reduce channel interactions. In particular, partial tripolar stimulation has been shown to reduce spread of excitation relative to monopolar stimulation. However, the crucial question is whether this benefit translates to improvements in speech perception. In this study, we compared speech perception in noise with experimental monopolar and partial tripolar speech processing strategies. The two strategies were matched in terms of number of active electrodes, microphone, filterbanks, stimulation rate and loudness (although both strategies used a lower stimulation rate than typical clinical strategies). The results of this study showed a significant improvement in speech perception in noise with partial tripolar stimulation. All subjects benefited from the current focused speech processing strategy. There was a mean improvement in speech recognition threshold of 2.7 dB in a digits in noise task and a mean improvement of 3 dB in a sentences in noise task with partial tripolar stimulation relative to monopolar stimulation. Although the experimental monopolar strategy was worse than the clinical, presumably due to different microphones, frequency allocations and stimulation rates, the experimental partial-tripolar strategy, which had the same changes, showed no acute deficit relative to the clinical. (C) 2013 Elsevier B.V. All rights reserved. C1 [Srinivasan, Arthi G.; Padilla, Monica; Shannon, Robert V.; Landsberger, David M.] House Res Inst, Dept Commun & Auditory Neurosci, Los Angeles, CA 90057 USA. [Srinivasan, Arthi G.; Shannon, Robert V.] Univ So Calif, Dept Biomed Engn, Los Angeles, CA 90089 USA. RP Srinivasan, AG (reprint author), House Res Inst, Dept Commun & Auditory Neurosci, 2100 West 3rd St, Los Angeles, CA 90057 USA. EM agsriniva@gmail.com FU NIDCD [R01-DC-001526, R03-DC-010064, F31 DC011205] FX This work was supported by NIDCD Grants and Fellowship Numbers: R01-DC-001526, R03-DC-010064, and F31 DC011205. We gratefully acknowledge the CI subjects who participated in this study and Justin Aronoff for help with statistical analyses. CR Aronoff JM, 2011, EAR HEARING, V32, P468, DOI 10.1097/AUD.0b013e31820dd3f0 Berenstein CK, 2008, EAR HEARING, V29, P250 Bierer JA, 2010, EAR HEARING, V31, P247, DOI 10.1097/AUD.0b013e3181c7daf4 Bierer JA, 2007, J ACOUST SOC AM, V121, P1642, DOI 10.1121/1.2436712 Bierer JA, 2002, J NEUROPHYSIOL, V87, P478 Bonham BH, 2008, HEARING RES, V242, P141, DOI 10.1016/j.heares.2008.03.006 Burns E.M., 2001, C IMPL AUD PROSTH PA, V81 Chan JCY, 2008, INT J AUDIOL, V47, P296, DOI 10.1080/14992020802075407 Chatterjee M, 1998, J ACOUST SOC AM, V103, P2565, DOI 10.1121/1.422777 Dorman MF, 1997, J ACOUST SOC AM, V102, P581, DOI 10.1121/1.419731 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Frijns, 2012, COMMUNICATION Fu QJ, 2005, JARO-J ASSOC RES OTO, V6, P19, DOI 10.1007/s10162-004-5024-3 Fu QJ, 2003, J ACOUST SOC AM, V113, P1065, DOI 10.1121/1.1537708 Fu QJ, 1998, J ACOUST SOC AM, V104, P3586, DOI 10.1121/1.423941 Henry BA, 2005, J ACOUST SOC AM, V118, P1111, DOI 10.1121/1.1944567 Hochmair Ingeborg, 2006, Trends Amplif, V10, P201, DOI 10.1177/1084713806296720 Hughes ML, 2006, J ACOUST SOC AM, V119, P1527, DOI 10.1121/1.2163273 Landsberger DM, 2012, HEARING RES, V284, P16, DOI 10.1016/j.heares.2011.12.009 Landsberger DM, 2009, HEARING RES, V254, P34, DOI 10.1016/j.heares.2009.04.007 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Litvak, 2012, COMMUNICATION Litvak LM, 2007, J ACOUST SOC AM, V122, P967, DOI 10.1121/1.2749414 Litvak LM, 2007, J ACOUST SOC AM, V122, P982, DOI 10.1121/1.2749413 Mens LHM, 2005, OTOL NEUROTOL, V26, P957, DOI 10.1097/01.mao.0000185060.74339.9d NILSSON M, 1994, J ACOUST SOC AM, V95, P1085, DOI 10.1121/1.408469 Oba, 2012, COMMUNICATION Oba SI, 2011, EAR HEARING, V32, P573, DOI 10.1097/AUD.0b013e31820fc821 Rosen S, 1999, J ACOUST SOC AM, V106, P3629, DOI 10.1121/1.428215 Saoji AA, 2010, EAR HEARING, V31, P693, DOI 10.1097/AUD.0b013e3181e1d15e Shannon RV, 2004, ACTA OTO-LARYNGOL, V124, P50, DOI 10.1080/03655230410017562 Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a Snyder RL, 2004, JARO-J ASSOC RES OTO, V5, P305, DOI 10.1007/s10162-004-4026-5 Srinivasan AG, 2012, HEARING RES, V286, P19, DOI 10.1016/j.heares.2012.02.011 Srinivasan AG, 2010, HEARING RES, V270, P89, DOI 10.1016/j.heares.2010.09.004 Vandali AE, 2000, EAR HEARING, V21, P608, DOI 10.1097/00003446-200012000-00008 Vermeire K, 2010, ORL J OTO-RHINO-LARY, V72, P305, DOI 10.1159/000319748 Wilson B., 1995, SPEECH PROCESSORS AU WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 Zhu Z., 2011, HEARING RES, V283, P45 Zwolan TA, 1997, J ACOUST SOC AM, V102, P3673, DOI 10.1121/1.420401 NR 41 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2013 VL 299 BP 29 EP 36 DI 10.1016/j.heares.2013.02.004 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 151TS UT WOS:000319483700004 PM 23467170 ER PT J AU Lewald, J Hausmann, M AF Lewald, Joerg Hausmann, Markus TI Effects of sex and age on auditory spatial scene analysis SO HEARING RESEARCH LA English DT Article ID SOUND LOCALIZATION; GENDER-DIFFERENCES; MENTAL ROTATION; HEMISPHERIC-ASYMMETRY; COGNITIVE FUNCTION; MOTION PERCEPTION; SPACE; WOMEN; DECLINE; HEARING AB Recently, it has been demonstrated that men outperform women in spatial analysis of complex auditory scenes (Zundorf et al., 2011). The present study investigated the relation between the effects of ageing and sex on the spatial segregation of concurrent sounds in younger and middle-aged adults. The experimental design allowed simultaneous presentation of target and distractor sound sources at different locations. The resulting spatial "pulling" effect (that is, the bias of target localization toward that of the distractor) was used as a measure of performance. The pulling effect was stronger in middle-aged than younger subjects, and female than male subjects. This indicates lower performance of the middle-aged women in the sensory and attentional mechanisms extracting spatial information about the acoustic event of interest from the auditory scene than both younger and male subjects. Moreover, age-specific differences were most prominent for conditions with targets in right hemispace and distractors in left hemispace, suggesting bilateral asymmetries underlying the effect of ageing. (C) 2013 Elsevier B.V. All rights reserved. C1 [Lewald, Joerg] Ruhr Univ Bochum, Fak Psychol, D-44780 Bochum, Germany. [Lewald, Joerg] Leibniz Res Ctr Working Environm & Human Factors, D-44139 Dortmund, Germany. [Hausmann, Markus] Univ Durham, Dept Psychol, Durham DH1 3LE, England. RP Lewald, J (reprint author), Ruhr Univ Bochum, Fak Psychol, D-44780 Bochum, Germany. EM joerg.lewald@rub.de RI Lewald, Jorg/D-3034-2009; Hausmann, Markus/F-4060-2014 OI Lewald, Jorg/0000-0001-9351-0170; FU Deutsche Forschungsgemeinschaft [FA211/24-1] FX This research was supported by the Deutsche Forschungsgemeinschaft (FA211/24-1). The authors are grateful to Peter Dillmann for preparing the software and part of the electronic equipment, to Katja Brodmann, Christine Friedmann, Alexandra Stobener, Claudia Wolf, and Verena Zimmermann for help with running the experiments, and to Charles A. Heywood and Sophie Hodgetts for valuable comments on an earlier version of the manuscript. The authors especially wish to thank Brian Moore and two anonymous reviewers for their constructive comments and detailed suggestions for improving this paper. CR Abel SM, 2000, J ACOUST SOC AM, V108, P743, DOI 10.1121/1.429607 Barnes LL, 2003, NEUROLOGY, V60, P1777 Barrett-Connor E, 1999, J AM GERIATR SOC, V47, P159 Best V, 2007, J ACOUST SOC AM, V121, P1070, DOI 10.1121/1.2407738 Blauert J., 1983, SPATIAL HEARING PSYC BRAYNE C, 1995, PSYCHOL MED, V25, P673 Bregman A., 1994, AUDITORY SCENE ANAL BURKE KA, 1994, NEUROPSYCHOLOGIA, V32, P1409, DOI 10.1016/0028-3932(94)00074-3 BUTLER RA, 1962, J ACOUST SOC AM, V34, P1100, DOI 10.1121/1.1918252 CHERRY EC, 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229 CRANFORD JL, 1990, J SPEECH HEAR RES, V33, P654 Daselaar S., 2004, COGNITIVE NEUROSCIEN, P325, DOI DOI 10.1093/ACPROF:OSO/9780195156744.003.0014 DOLLINGER SMC, 1995, DEV NEUROPSYCHOL, V11, P215 Elias MF, 1997, EXP AGING RES, V23, P201, DOI 10.1080/03610739708254281 ELIAS MF, 1974, J GERONTOL, V29, P162 GARDNER MB, 1969, J ACOUST SOC AM, V46, P339, DOI 10.1121/1.1911695 Griffiths TD, 1998, NAT NEUROSCI, V1, P74, DOI 10.1038/276 Halpern DF, 1996, DEV REV, V16, P261, DOI 10.1006/drev.1996.0010 Hausmann M, 2003, LATERALITY, V8, P277, DOI 10.1080/13576500244000201 Hausmann M, 1999, BRAIN COGNITION, V41, P263, DOI 10.1006/brcg.1999.1126 Herlitz A, 1997, MEM COGNITION, V25, P801, DOI 10.3758/BF03211324 HERMAN JF, 1983, EXP AGING RES, V9, P83 Hirnstein M, 2007, LATERALITY, V12, P87, DOI 10.1080/13576500600959247 HISCOCK M, 1995, J CLIN EXP NEUROPSYC, V17, P590, DOI 10.1080/01688639508405148 Hornickel J., 2012, HEAR J, V65, P28 Hugdahl K, 2006, NEUROPSYCHOLOGIA, V44, P1575, DOI 10.1016/j.neuropsychologia.2006.01.026 JERGER J, 1994, EAR HEARING, V15, P274, DOI 10.1097/00003446-199408000-00002 Kaiser J, 2000, J NEUROSCI, V20, P6631 KIMURA D, 1992, Scientific American, V267, P118 Kreitewolf J, 2011, NEUROIMAGE, V54, P2340, DOI 10.1016/j.neuroimage.2010.10.031 Lacreuse A, 2005, BEHAV NEUROSCI, V119, P118, DOI 10.1037/0735-7044.119.1.118 LARRABEE GJ, 1993, PSYCHOL AGING, V8, P68, DOI 10.1037/0882-7974.8.1.68 Lee AKC, 2009, J ACOUST SOC AM, V126, P2543, DOI 10.1121/1.3238240 Lewald J, 2000, BEHAV BRAIN RES, V108, P105, DOI 10.1016/S0166-4328(99)00141-2 Lewald J, 1997, BEHAV BRAIN RES, V87, P35, DOI 10.1016/S0166-4328(96)02254-1 Lewald J, 2004, COGNITIVE BRAIN RES, V19, P92, DOI 10.1016/j.cogbrainres.2003.11.005 Li KZH, 2002, NEUROSCI BIOBEHAV R, V26, P777, DOI 10.1016/S0149-7634(02)00073-8 Liederman J., 2010, LANG SPEECH, V54, P33 Litovsky RY, 2001, J ACOUST SOC AM, V109, P346, DOI 10.1121/1.1328792 Maitland SB, 2000, AGING NEUROPSYCHOL C, V7, P32, DOI 10.1076/anec.7.1.32.807 Maylor EA, 2007, ARCH SEX BEHAV, V36, P235, DOI 10.1007/s10508-006-9155-y MCGLONE J, 1980, BEHAV BRAIN SCI, V3, P215 Meinz EJ, 1998, PSYCHON B REV, V5, P56, DOI 10.3758/BF03209457 Mills John H., 2006, Seminars in Hearing, V27, P228, DOI 10.1055/s-2006-954849 Neuhoff JG, 2009, J EXP PSYCHOL HUMAN, V35, P225, DOI 10.1037/a0013159 Ocklenburg S, 2010, BRAIN COGNITION, V72, P210, DOI 10.1016/j.bandc.2009.08.013 ROBERT M, 1990, EXP AGING RES, V16, P123, DOI 10.1080/07340669008251539 Ruggles D, 2012, CURR BIOL, V22, P1417, DOI 10.1016/j.cub.2012.05.025 Siefer A., 2003, ZENTRALBLATT ARBEITS, V53, P346 Simon-Dack SL, 2009, NEUROREPORT, V20, P105, DOI 10.1097/WNR.0b013e32831befc1 Singer T, 2003, PSYCHOL AGING, V18, P318, DOI 10.1037/0882-7974.18.2.318 Stoet G, 2010, Q J EXP PSYCHOL, V63, P633, DOI 10.1080/17470210903464253 van Exel E, 2001, J NEUROL NEUROSUR PS, V71, P29, DOI 10.1136/jnnp.71.1.29 Willott J. F., 1991, AGING AUDITORY SYSTE Woldorff MG, 1999, HUM BRAIN MAPP, V7, P49, DOI 10.1002/(SICI)1097-0193(1999)7:1<49::AID-HBM5>3.0.CO;2-J Zundorf IC, 2011, CORTEX, V47, P741, DOI 10.1016/j.cortex.2010.08.002 NR 56 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2013 VL 299 BP 46 EP 52 DI 10.1016/j.heares.2013.02.005 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 151TS UT WOS:000319483700006 PM 23467172 ER PT J AU Williams, LH Miller, KA Dahl, HHM Manji, SSM AF Williams, Louise H. Miller, Kerry A. Dahl, Hans-Henrik M. Manji, Shehnaaz S. M. TI Characterization of a novel ENU-generated myosin VI mutant mouse strain with congenital deafness and vestibular dysfunction SO HEARING RESEARCH LA English DT Article ID NONSYNDROMIC HEARING-LOSS; COCHLEAR HAIR-CELLS; INNER-EAR; RECESSIVE DEAFNESS; SPLICE-SITE; ADAPTATION MOTOR; GENOME-WIDE; GENE; MUTATION; MYO6 AB Myosin VI (Myo6) is known to play an important role in the mammalian auditory and vestibular systems. We have identified a novel N-ethyl-N-nitrosourea mutagenised mouse strain, charlie, carrying an intronic Myo6 splice site mutation. This mutation (IVS5+5G > A) results in skipping of exon 5, and is predicted to cause a frameshift and premature termination of the protein. We detected essentially no Myo6 transcript in tissue from charlie homozygous mutant mice (Myo6(chl/chl)). Myo6(chl/chl) mice exhibit vestibular dysfunction and profound hearing impairment when first tested at four weeks of age. Analysis of vestibular and cochlear hair cells by scanning electron microscopy and immunohistochemistry revealed highly disorganised hair bundles with irregular orientation and kinocilium position at postnatal stage P2-P3. Within a few weeks, the majority of hair cell stereocilia are missing, or fused and elongated, and degeneration of the sensory epithelium occurs. This novel mouse strain will be an important resource in elucidating the role myosin VI plays in the mammalian auditory system, as well as its non-auditory functions. (C) 2013 Elsevier B.V. All rights reserved. C1 [Williams, Louise H.; Miller, Kerry A.; Dahl, Hans-Henrik M.; Manji, Shehnaaz S. M.] Royal Childrens Hosp, Murdoch Childrens Res Inst, Genet Hearing Res Lab, Parkville, Vic 3052, Australia. [Dahl, Hans-Henrik M.] Univ Melbourne, Dept Paediat, Parkville, Vic 3052, Australia. [Dahl, Hans-Henrik M.; Manji, Shehnaaz S. M.] Univ Melbourne, HEARing Cooperat Res Ctr Audiol Hearing & Speech, Melbourne, Vic 3010, Australia. [Manji, Shehnaaz S. M.] Univ Melbourne, Royal Victorian Eye & Ear Hosp, Dept Otolaryngol, East Melbourne, Vic 3002, Australia. RP Williams, LH (reprint author), Royal Childrens Hosp, Murdoch Childrens Res Inst, Genet Hearing Res Lab, Flemington Rd, Parkville, Vic 3052, Australia. EM louisehwilliams@gmail.com FU NHMRC [284550, 436944]; Victorian Government's Operational Infrastructure Support (OIS) Program; HEARing CRC under the Cooperative Research Centres Program an Australian Government Initiative FX The authors would like to thank Melissa Arnold, Jessica Cardwell, Stephen Mercer and Wendy Hutchison for their technical assistance. Thank you to Simon Crawford for his technical expertise in SEM analysis. This work was supported by NHMRC grants #284550 and #436944, the Victorian Government's Operational Infrastructure Support (OIS) Program and the HEARing CRC, established and supported under the Cooperative Research Centres Program an Australian Government Initiative. H-H. Dahl is an NHMRC Principal Research Fellow. CR Adamek N, 2010, BIOCHEMISTRY-US, V49, P958, DOI 10.1021/bi901803j Adamek N, 2008, P NATL ACAD SCI USA, V105, P5710, DOI 10.1073/pnas.0710520105 Ahmed ZM, 2003, AM J HUM GENET, V72, P1315, DOI 10.1086/375122 Anderson DW, 2000, HUM MOL GENET, V9, P1729, DOI 10.1093/hmg/9.12.1729 AVRAHAM KB, 1995, NAT GENET, V11, P369, DOI 10.1038/ng1295-369 Burset M, 2001, NUCLEIC ACIDS RES, V29, P255, DOI 10.1093/nar/29.1.255 Conter C, 2006, J INHERIT METAB DIS, V29, P135, DOI 10.1007/s10545-006-0202-6 Curtin JA, 2003, CURR BIOL, V13, P1129, DOI 10.1016/S0960-9822(03)00374-9 de Angelis MH, 2000, NAT GENET, V25, P444, DOI 10.1038/78146 Donaudy F, 2004, AM J HUM GENET, V74, P770, DOI 10.1086/383285 Donaudy F, 2003, AM J HUM GENET, V72, P1571, DOI 10.1086/375654 Frank DJ, 2004, CURR OPIN CELL BIOL, V16, P189, DOI 10.1016/j.ceb.2004.02.001 Hardisty RE, 2003, JARO, V4, P130, DOI 10.1007/s10162-002-3015-9 Hasson T, 1997, J CELL BIOL, V137, P1287, DOI 10.1083/jcb.137.6.1287 Hertzano R, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000207 Hilgert N, 2008, EUR J HUM GENET, V16, P593, DOI 10.1038/sj.ejhg.5202000 Kelley PM, 1997, GENOMICS, V40, P73, DOI 10.1006/geno.1996.4545 Kermany MH, 2006, HEARING RES, V220, P76, DOI 10.1016/j.heares.2006.07.011 Kiernan AE, 2001, P NATL ACAD SCI USA, V98, P3873, DOI 10.1073/pnas.071496998 Kiernan AE, 1999, J NEUROCYTOL, V28, P969, DOI 10.1023/A:1007090626294 Lalwani AK, 2000, AM J HUM GENET, V67, P1121 Liburd N, 2001, HUM GENET, V109, P535, DOI 10.1007/s004390100604 Liu XZ, 1997, NAT GENET, V16, P188, DOI 10.1038/ng0697-188 Manji SSM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017607 Manji SSM, 2011, AM J PATHOL, V179, P903, DOI 10.1016/j.ajpath.2011.04.002 Manji SSM, 2012, AM J PATHOL, V180, P1560, DOI 10.1016/j.ajpath.2011.12.034 Marcotti W, 2006, J PHYSIOL-LONDON, V574, P677, DOI 10.1113/jphysiol.2005.095661 Melchionda S, 2001, AM J HUM GENET, V69, P635, DOI 10.1086/323156 Mochizuki E, 2010, EXP ANIM TOKYO, V59, P57 Mohiddin SA, 2004, J MED GENET, V41, P309, DOI 10.1136/jmg.2003.011973 Nolan PM, 2000, NAT GENET, V25, P440, DOI 10.1038/78140 Parker A, 2010, MAMM GENOME, V21, P565, DOI 10.1007/s00335-010-9306-2 Raponi M, 2009, FEBS J, V276, P2060, DOI 10.1111/j.1742-4658.2009.06941.x Reese MG, 1997, J COMPUT BIOL, V4, P311, DOI 10.1089/cmb.1997.4.311 Rhodes CR, 2003, J NEUROCYTOL, V32, P1143, DOI 10.1023/B:NEUR.0000021908.98337.91 Rhodes CR, 2004, MAMM GENOME, V15, P686, DOI 10.1007/s00335-004-2344-x Roux I, 2009, HUM MOL GENET, V18, P4615, DOI 10.1093/hmg/ddp429 Sanggaard KM, 2008, AM J MED GENET A, V146A, P1017, DOI 10.1002/ajmg.a.32174 Schwander M, 2007, J NEUROSCI, V27, P2163, DOI 10.1523/JNEUROSCI.4975-06.2007 Self T, 1999, DEV BIOL, V214, P331, DOI 10.1006/dbio.1999.9424 Self T, 1998, DEVELOPMENT, V125, P557 Tran HTT, 2005, MOL GENET METAB, V85, P213, DOI 10.1016/j.ymgme.2005.03.006 Tsai H, 2001, HUM MOL GENET, V10, P507, DOI 10.1093/hmg/10.5.507 Vreugde S, 2002, NAT GENET, V30, P257, DOI 10.1038/ng848 Walsh T, 2002, P NATL ACAD SCI USA, V99, P7518, DOI 10.1073/pnas.102091699 Whitlon DS, 2001, BRAIN RES PROTOC, V6, P159, DOI 10.1016/S1385-299X(00)00048-9 Zadro C, 2009, BBA-MOL BASIS DIS, V1792, P27, DOI 10.1016/j.bbadis.2008.10.017 NR 47 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2013 VL 299 BP 53 EP 62 DI 10.1016/j.heares.2013.02.006 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 151TS UT WOS:000319483700007 PM 23485424 ER PT J AU Kil, SH Kalinec, F AF Kil, Sung-Hee Kalinec, Federico TI Expression and dexamethasone-induced nuclear translocation of glucocorticoid and mineralocorticoid receptors in guinea pig cochlear cells SO HEARING RESEARCH LA English DT Article ID SPIRAL LIGAMENT FIBROCYTES; MAMMALIAN INNER-EAR; AUTOIMMUNE MICE; RAT HIPPOCAMPUS; BINDING-SITES; PROINFLAMMATORY CYTOKINES; MRL-FAS(LPR) MOUSE; PYRAMIDAL NEURONS; STEROID-HORMONES; PLASMA-MEMBRANE AB Glucocorticoids (GC) are powerful anti-inflammatory agents frequently used to protect the auditory organ against damage associated with a variety of conditions, including noise exposure and ototoxic drugs as well as bacterial and viral infections. In addition to glucocorticoid receptors (GC-R), natural and synthetic GC are known to bind mineralocorticoid receptors (MC-R) with great affinity. We used light and laser scanning confocal microscopy to investigate the expression of GC-R and MC-R in different cell populations of the guinea pig cochlea, and their translocation to different cell compartments after treatment with the synthetic GC dexamethasone. We found expression of both types of receptors in the cytoplasm and nucleus of sensory inner and outer hair cells as well as pillar, Hensen and Deiters cells in the organ of Corti, inner and outer sulcus cells, spiral ganglion neurons and several types of spiral ligament and spiral limbus cells; stria vascularis cells expressed mostly MC-R whereas fibrocytes type IV were positive for GC-R only. GC-R and MC-R were also localized at or near the plasma membrane of pillar cells and outer hair cells, whereas GC-R were found at or near the plasma membrane of Hensen cells only. We investigated the relative levels of receptor expression in the cytoplasm and the nucleus of Hensen cells treated with dexamethasone, and found they varied in a way suggestive of dose-induced translocation. These results suggest that the oto-protective effects of GC could be associated with the concerted activation of genomic and non-genomic, GC-R and MC-R mediated signaling pathways in different regions of the cochlea. (C) 2013 Elsevier B.V. All rights reserved. C1 [Kil, Sung-Hee; Kalinec, Federico] House Res Inst, Div Cell Biol & Genet, Los Angeles, CA 90057 USA. [Kalinec, Federico] Univ So Calif, Keck Sch Med, Dept Cell & Neurobiol, Los Angeles, CA 90033 USA. [Kalinec, Federico] Univ So Calif, Keck Sch Med, Dept Otolaryngol, Los Angeles, CA 90033 USA. RP Kalinec, F (reprint author), House Res Inst, Div Cell Biol & Genet, 2100 West 3rd St, Los Angeles, CA 90057 USA. EM fkalinec@hei.org FU National Institutes of Health [DC010397]; House Research Institute FX This work was supported by National Institutes of Health grant DC010397 and House Research Institute. Its content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the House Research Institute. CR ARRIZA JL, 1987, SCIENCE, V237, P268, DOI 10.1126/science.3037703 Bartholome B, 2004, FASEB J, V18, P70, DOI 10.1096/fj.03-0328com Beavan S, 2001, J BONE MINER RES, V16, P1496, DOI 10.1359/jbmr.2001.16.8.1496 Boldyreff B, 2003, J STEROID BIOCHEM, V85, P375, DOI 10.1016/S0960-0760(03)00202-4 Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223 Cato Andrew C B, 2002, Sci STKE, V2002, pre9, DOI 10.1126/stke.2002.138.re9 CHEN YZ, 1991, NEUROENDOCRINOLOGY, V53, P25, DOI 10.1159/000125791 CLAIRE M, 1993, J MED CHEM, V36, P2404, DOI 10.1021/jm00068a018 Coleman B, 2009, J NEUROSCI METH, V176, P144, DOI 10.1016/j.jneumeth.2008.09.007 DIAMOND DM, 1992, HIPPOCAMPUS, V2, P421, DOI 10.1002/hipo.450020409 Erichsen S, 2001, ACTA OTO-LARYNGOL, V121, P794 Erichsen S, 1996, ACTA OTO-LARYNGOL, V116, P721, DOI 10.3109/00016489609137913 FLOWER RJ, 1988, BRIT J PHARMACOL, V94, P987 Fujioka M, 2006, J NEUROSCI RES, V83, P575, DOI 10.1002/jnr.20764 FURUTA H, 1994, HEARING RES, V78, P175, DOI 10.1016/0378-5955(94)90023-X GAMETCHU B, 1993, FASEB J, V7, P1283 García Berrocal José Ramón, 2008, Acta Otorrinolaringol Esp, V59, P494 Garcia-Berrocal JR, 2007, BRIT J PHARMACOL, V152, P1012, DOI 10.1038/sj.bjp.0707405 GUO Z, 1995, FUNCT NEUROL, V10, P183 Haller J, 2008, FRONT NEUROENDOCRIN, V29, P273, DOI 10.1016/j.yfrne.2007.10.004 Hirose K, 2003, JARO, V4, P339, DOI 10.1007/s10162-002-3036-4 HUA SY, 1989, ENDOCRINOLOGY, V124, P687 Imamura S, 2003, JARO, V4, P176, DOI 10.1007/s10162-002-2036-8 Joels M, 2006, TRENDS PHARMACOL SCI, V27, P244, DOI 10.1016/j.tips.2006.03.007 JOELS M, 1992, NEUROENDOCRINOLOGY, V55, P344, DOI 10.1159/000126135 Joels M, 2008, EUR J PHARMACOL, V583, P312, DOI 10.1016/j.ejphar.2007.11.064 Johnson LR, 2005, NEUROSCIENCE, V136, P289, DOI 10.1016/j.neuroscience.2005.06.050 Kalinec F, 2009, BRIT J PHARMACOL, V158, P1820, DOI 10.1111/j.1476-5381.2009.00473.x Kalinec GM, 2003, AUDIOL NEURO-OTOL, V8, P177, DOI 10.1159/000071059 Karst H, 2005, P NATL ACAD SCI USA, V102, P19204, DOI 10.1073/pnas.0507572102 Kawata M, 1995, NEUROSCI RES, V24, P1, DOI 10.1016/0168-0102(96)81278-8 Kikuchi T, 2000, BRAIN RES REV, V32, P163, DOI 10.1016/S0165-0173(99)00076-4 Komatsuzaki Y, 2005, BIOCHEM BIOPH RES CO, V335, P1002, DOI 10.1016/j.bbrc.2005.07.173 KROZOWSKI ZS, 1983, P NATL ACAD SCI-BIOL, V80, P6056, DOI 10.1073/pnas.80.19.6056 LIPOSITS Z, 1993, J NEUROSCI RES, V35, P14, DOI 10.1002/jnr.490350103 Losel R, 2003, NAT REV MOL CELL BIO, V4, P46, DOI 10.1038/nrm1009 Lou SJ, 1998, BIOCHEM BIOPH RES CO, V244, P403, DOI 10.1006/bbrc.1998.8280 Lowenberg M, 2008, STEROIDS, V73, P1025, DOI 10.1016/j.steroids.2007.12.002 Lupien SJ, 1997, BRAIN RES REV, V24, P1, DOI 10.1016/S0165-0173(97)00004-0 Lupien Sonia J., 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P23, DOI 10.2201/nonlin.003.01.003 Magarinos AM, 1996, J NEUROSCI, V16, P3534 Meltser I, 2011, HEARING RES, V281, P47, DOI 10.1016/j.heares.2011.06.003 Moon SK, 2006, ACTA OTO-LARYNGOL, V126, P564, DOI 10.1080/00016480500452525 MYLES K, 1994, AM J PHYSIOL, V267, pE268 Nin F, 2012, P NATL ACAD SCI USA, V109, P9191, DOI 10.1073/pnas.1120067109 Pascual-Le Tallec L, 2005, MOL ENDOCRINOL, V19, P2211, DOI 10.1210/me.2005-0089 Patuzzi R.B., 2011, HEARING RES, V125, P1 PEARCE D, 1993, SCIENCE, V259, P1161, DOI 10.1126/science.8382376 Pedram A, 2007, J BIOL CHEM, V282, P22278, DOI 10.1074/jbc.M611877200 Perretti M, 2003, NEWS PHYSIOL SCI, V18, P60, DOI 10.1152/nips.01424.2002 PITOVSKI DZ, 1994, HEARING RES, V77, P216, DOI 10.1016/0378-5955(94)90269-0 PITOVSKI DZ, 1993, HEARING RES, V69, P10, DOI 10.1016/0378-5955(93)90088-I Pondugula SR, 2004, AM J PHYSIOL-RENAL, V286, pF1127, DOI 10.1152/ajprenal.00387.2003 Prager EM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014344 Qiu SF, 2010, BIOL PSYCHIAT, V68, P197, DOI 10.1016/j.biopsych.2010.02.013 Rarey KE, 1996, OTOLARYNG HEAD NECK, V115, P38, DOI 10.1016/S0194-5998(96)70133-X RAREY KE, 1989, HEARING RES, V41, P217, DOI 10.1016/0378-5955(89)90013-0 Reichardt HM, 2000, ADV PHARMACOL, V47, P1 REUL JMHM, 1985, ENDOCRINOLOGY, V117, P2505 Ruckenstein MJ, 1999, OTOLARYNG HEAD NECK, V121, P452, DOI 10.1016/S0194-5998(99)70236-6 RUCKENSTEIN MJ, 1993, ACTA OTO-LARYNGOL, V113, P160, DOI 10.3109/00016489309135785 Ruckenstein MJ, 1999, LARYNGOSCOPE, V109, P626, DOI 10.1097/00005537-199904000-00020 RUPPRECHT R, 1993, EUR J PHARM-MOLEC PH, V247, P145, DOI 10.1016/0922-4106(93)90072-H Shimazaki T, 2002, ANN OTO RHINOL LARYN, V111, P1133 SINHA PK, 1995, ACTA OTO-LARYNGOL, V115, P643, DOI 10.3109/00016489509139380 SPICER SS, 1991, HEARING RES, V56, P53, DOI 10.1016/0378-5955(91)90153-Z Tahera Y, 2006, NEUROREPORT, V17, P879, DOI 10.1097/01.wnr.0000220131.24468.e7 Tahera Y, 2006, J NEUROSCI RES, V83, P1066, DOI 10.1002/jnr.20795 Tahera Y, 2007, NEUROBIOL DIS, V25, P189, DOI 10.1016/j.nbd.2006.09.004 TENCATE WJF, 1992, HEARING RES, V60, P199, DOI 10.1016/0378-5955(92)90021-E TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865 Terunuma T, 2003, MOL BRAIN RES, V120, P65, DOI 10.1016/j.molbrainres.2003.10.002 Tornabene SV, 2006, HEARING RES, V222, P115, DOI 10.1016/j.heares.2006.09.004 Trune DR, 2001, HEARING RES, V155, P9, DOI 10.1016/S0378-5955(01)00240-4 Trune DR, 2006, HEARING RES, V212, P22, DOI 10.1016/j.heares.2005.10.006 Trune DR, 1999, HEARING RES, V137, P167, DOI 10.1016/S0378-5955(99)00148-3 Trune DR, 1997, HEARING RES, V105, P57, DOI 10.1016/S0378-5955(96)00191-8 vanSteensel B, 1996, J CELL SCI, V109, P787 Walther A, 2000, MOL CELL, V5, P831, DOI 10.1016/S1097-2765(00)80323-8 Wang CC, 2009, SYNAPSE, V63, P745, DOI 10.1002/syn.20654 Yao XF, 1996, ACTA OTO-LARYNGOL, V116, P493, DOI 10.3109/00016489609137879 Yoshida K, 1999, HEARING RES, V137, P155, DOI 10.1016/S0378-5955(99)00134-3 Zhou JG, 2005, STEROIDS, V70, P407, DOI 10.1016/j.steroids.2005.02.006 ZUO J, 1995, HEARING RES, V87, P220, DOI 10.1016/0378-5955(95)00092-I NR 84 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2013 VL 299 BP 63 EP 78 DI 10.1016/j.heares.2013.01.020 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 151TS UT WOS:000319483700008 PM 23403298 ER PT J AU Qazi, OUR van Dijk, B Moonen, M Wouters, J AF Qazi, Obaid Ur Rehman van Dijk, Bas Moonen, Marc Wouters, Jan TI Understanding the effect of noise on electrical stimulation sequences in cochlear implants and its impact on speech intelligibility SO HEARING RESEARCH LA English DT Article ID NORMAL-HEARING LISTENERS; TIME-FREQUENCY MASKING; RECEPTION THRESHOLDS; FLUCTUATING NOISE; CODING STRATEGIES; BACKGROUND-NOISE; PERCEPTION; REDUCTION; SIGNAL; RECOGNITION AB The present study investigates the most important factors that limit the intelligibility of the cochlear implant (CI) processed speech in noisy environments. The electrical stimulation sequences provided in CIs are affected by the noise in the following three manners. First of all, the natural gaps in the speech are filled, which distorts the low-frequency ON/OFF modulations of the speech signal. Secondly, speech envelopes are distorted to include modulations of both speech and noise. Lastly, the N-of-M type of speech coding strategies may select the noise dominated channels instead of the dominant speech channels at low signal-to-noise ratio's (SNRs). Different stimulation sequences are tested with CI subjects to study how these three noise effects individually limit the intelligibility of the CI processed speech. Tests are also conducted with normal hearing (NH) subjects using vocoded speech to identify any significant differences in the noise reduction requirements and speech distortion limitations between the two subject groups. Results indicate that compared to NH subjects CI subjects can tolerate significantly lower levels of steady state speech shaped noise in the speech gaps but at the same time can tolerate comparable levels of distortions in the speech segments. Furthermore, modulations in the stimulus current level have no effect on speech intelligibility as long as the channel selection remains ideal. Finally, wrong maxima selection together with the introduction of noise in the speech gaps significantly degrades the intelligibility. At low SNRs wrong maxima selection introduces interruptions in the speech and makes it difficult to fuse noisy and interrupted speech signals into a coherent speech stream. (C) 2013 Elsevier B.V. All rights reserved. C1 [Qazi, Obaid Ur Rehman; van Dijk, Bas] Cochlear Technol Ctr, B-2800 Mechelen, Belgium. [Moonen, Marc] Katholieke Univ Leuven, Dept Elect Engn, B-3000 Louvain, Belgium. [Qazi, Obaid Ur Rehman; Wouters, Jan] Katholieke Univ Leuven, Dept Neurosci, B-3000 Louvain, Belgium. RP Qazi, OUR (reprint author), Cochlear Technol Ctr, Schalienhoevedreef 20, B-2800 Mechelen, Belgium. EM oqazi@cochlear.com; Marc.Moonen@esat.kuleuven.be; jan.wouters@med.kuleuven.be RI Wouters, Jan/D-1800-2015 FU EU Marie Curie ITN project AUDIS; Cochlear Technology Centre Belgium FX This research is supported by EU Marie Curie ITN project AUDIS and Cochlear Technology Centre Belgium. The authors are thankful to the test subjects for their patient and enthusiastic participation. We also thank Astrid Van Wieringen, Wim Buyens, Anke Plasmans and Anneke Lenssen for their help during the tests. CR Anzalone MC, 2006, EAR HEARING, V27, P480, DOI 10.1097/01.aud.0000233891.86809.df ASSMANN PF, 1994, J ACOUST SOC AM, V95, P471, DOI 10.1121/1.408342 Bacon SP, 1998, J SPEECH LANG HEAR R, V41, P549 Brungart D.S., 2006, NATURE, V352, P236 Cochlear Technology, 2002, ACE SPEECH COD STRAT Cochlear Technology, 2002, NUCL MATLAB TOOLB 2 Cochlear Technology, 2002, ACE CIS DSP STRAT SO Cooke M, 2006, J ACOUST SOC AM, V119, P1562, DOI 10.1121/1.2166600 Dawson PW, 2011, EAR HEARING, V32, P382, DOI 10.1097/AUD.0b013e318201c200 Dorman MF, 2002, J SPEECH LANG HEAR R, V45, DOI 10.1044/1092-4388(2002/063) FESTEN JM, 1990, J ACOUST SOC AM, V88, P1725, DOI 10.1121/1.400247 Francart T., 2010, INT J AUDIOL, V50, P2 Gnansia D, 2010, HEARING RES, V265, P46, DOI 10.1016/j.heares.2010.02.012 HOCHBERG I, 1992, EAR HEARING, V13, P263 HOWARDJONES PA, 1993, ACUSTICA, V78, P258 HOWARDJONES PA, 1993, J ACOUST SOC AM, V93, P2915, DOI 10.1121/1.405811 Hu Y, 2008, J ACOUST SOC AM, V124, P498, DOI 10.1121/1.2924131 Hwang CF, 2012, AM J OTOLARYNG, V33, P338, DOI 10.1016/j.amjoto.2011.08.011 Kiefer J, 2001, AUDIOLOGY, V40, P32 Li N, 2007, J ACOUST SOC AM, V122, P1165, DOI 10.1121/1.2749454 Li N, 2008, J ACOUST SOC AM, V123, P1673, DOI 10.1121/1.2832617 Loizou PC, 1999, IEEE ENG MED BIOL, V18, P34 Loizou PC, 2005, J ACOUST SOC AM, V118, P2791, DOI 10.1121/1.2065847 Lorenzi C, 2006, P NATL ACAD SCI USA, V103, P18866, DOI 10.1073/pnas.0607364103 Mauger SJ, 2012, J ACOUST SOC AM, V131, P327, DOI 10.1121/1.3665990 MILLER GA, 1950, J ACOUST SOC AM, V22, P167, DOI 10.1121/1.1906584 Moore BCJ, 2003, OTOL NEUROTOL, V24, P243, DOI 10.1097/00129492-200303000-00019 Nelson PB, 2003, J ACOUST SOC AM, V113, P961, DOI 10.1121/1.1531983 NILSSON M, 1994, J ACOUST SOC AM, V95, P1085, DOI 10.1121/1.408469 Peters RW, 1998, J ACOUST SOC AM, V103, P577, DOI 10.1121/1.421128 PLOMP R, 1979, AUDIOLOGY, V18, P43 Qin MK, 2003, J ACOUST SOC AM, V114, P446, DOI 10.1121/1.1579009 Roman N, 2006, J ACOUST SOC AM, V120, P458, DOI 10.1121/1.2204590 Roman N, 2003, J ACOUST SOC AM, V114, P2236, DOI 10.1121/1.1610463 Seligman P, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P139 Skinner MW, 2002, EAR HEARING, V23, P207, DOI 10.1097/00003446-200206000-00005 Stickney GS, 2004, J ACOUST SOC AM, V116, P1081, DOI 10.1121/1.1772399 Summerfield Q., 2004, SPRINGER HDB AUDITOR, V18, P231, DOI 10.1007/0-387-21575-1_5 Qazi OUR, 2012, IEEE T BIO-MED ENG, V59, P1364, DOI 10.1109/TBME.2012.2187650 van Wieringen A, 2008, INT J AUDIOL, V47, P348, DOI 10.1080/14992020801895144 Vary P, 2006, DIGITAL SPEECH TRANS Wang DL, 2009, J ACOUST SOC AM, V125, P2336, DOI 10.1121/1.3083233 Wilson BS, 2008, HEARING RES, V242, P3, DOI 10.1016/j.heares.2008.06.005 Yang LP, 2005, J ACOUST SOC AM, V117, P1001, DOI 10.1121/1.1852873 NR 44 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2013 VL 299 BP 79 EP 87 DI 10.1016/j.heares.2013.01.018 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 151TS UT WOS:000319483700009 PM 23396271 ER PT J AU Oonk, AMM Leijendeckers, JM Lammers, EM Weegerink, NJD Oostrik, J Beynon, AJ Huygen, PLM Kunst, HPM Kremer, H Snik, AFM Pennings, RJE AF Oonk, A. M. M. Leijendeckers, J. M. Lammers, E. M. Weegerink, N. J. D. Oostrik, J. Beynon, A. J. Huygen, P. L. M. Kunst, H. P. M. Kremer, H. Snik, A. F. M. Pennings, R. J. E. TI Progressive hereditary hearing impairment caused by a MYO6 mutation resembles presbyacusis SO HEARING RESEARCH LA English DT Article ID AUTOSOMAL-DOMINANT; MYOSIN-VI; AUDIOMETRIC CHARACTERISTICS; DUTCH FAMILY; AGE; GENE; DEAFNESS; ASSOCIATION; DFNA2/KCNQ4; FEATURES AB Since deafness is the most common sensorineural disorder in humans, better understanding of the underlying causes is necessary to improve counseling and rehabilitation. A Dutch family with autosomal dominantly inherited sensorineural hearing loss was clinically and genetically assessed. The MYO6 gene was selected to be sequenced because of similarities with other, previously described DENA22 phenotypes and a pathogenic c.3610C > T (p.R1204W) mutation was found to co-segregate with the disease. This missense mutation results in a flat configured audiogram with a mild hearing loss, which becomes severe to profound and gently to steeply downsloping later in life. The age-related typical audiograms (ARTA) constructed for this family resemble presbyacusis. Speech audiometry and results of loudness scaling support the hypothesis that the phenotype of this specific MYO6 mutation mimics presbyacusis. (C) 2013 Elsevier B.V. All rights reserved. C1 [Oonk, A. M. M.; Leijendeckers, J. M.; Lammers, E. M.; Weegerink, N. J. D.; Oostrik, J.; Beynon, A. J.; Huygen, P. L. M.; Kunst, H. P. M.; Kremer, H.; Snik, A. F. M.; Pennings, R. J. E.] Radboud Univ Nijmegen, Med Ctr, Dept Otorhinolaryngol Hearing & Genes, NL-6500 HB Nijmegen, Netherlands. [Oonk, A. M. M.; Leijendeckers, J. M.; Kunst, H. P. M.; Snik, A. F. M.; Pennings, R. J. E.] Radboud Univ Nijmegen, Med Ctr, Donders Inst Brain Cognit & Behav, NL-6500 HB Nijmegen, Netherlands. [Oostrik, J.; Kremer, H.] Radboud Univ Nijmegen, Med Ctr, Nijmegen Ctr Mol Life Sci, NL-6500 HB Nijmegen, Netherlands. [Kremer, H.] Radboud Univ Nijmegen, Med Ctr, Dept Human Genet, NL-6500 HB Nijmegen, Netherlands. RP Pennings, RJE (reprint author), Radboud Univ Nijmegen, Med Ctr, Dept Otorhinolaryngol, Postbus 9101, NL-6500 VC Nijmegen, Netherlands. EM a.oonk@kno.umcn.nl; j.leijendeckers@kno.umcn.nl; estherlammers86@hotmail.com; n.weegerink@kno.umcn.nl; j.oostrik@gen.umcn.nl; a.beynon@kno.umcn.nl; p.huygen@kno.umcn.nl; h.kunst@kno.umcn.nl; h.kremer@gen.umcn.nl; a.snik@kno.umcn.nl; r.pennings@kno.umcn.nl RI Kunst, Henricus/J-6456-2012; Pennings, Ronald/J-6651-2012; Snik, Ad/H-8092-2014; Kremer, Hannie/F-5126-2010 FU ZON MW [90700388] FX The authors thank the family members for their participation in this study. This work was funded by ZON MW (to R.P.: 90700388). CR [Anonymous], 2000, 7029 ISO Bischoff AMLC, 2004, AUDIOL NEURO-OTOL, V9, P34, DOI 10.1159/000074185 Bischoff AMLC, 2006, OTOL NEUROTOL, V27, P323, DOI 10.1097/00129492-200604000-00006 Bom SJH, 2001, ARCH OTOLARYNGOL, V127, P1045 Bosman AJ, 1995, AUDIOLOGY, V34, P260 de Heer AMR, 2009, ANN OTO RHINOL LARYN, V118, P313 De Leenheer EMR, 2002, ANN OTO RHINOL LARYN, V111, P267 De Leenheer EMR, 2004, ANN OTO RHINOL LARYN, V113, P922 Hasson T, 1997, J CELL BIOL, V137, P1287, DOI 10.1083/jcb.137.6.1287 Hilgert N, 2009, MUTAT RES-REV MUTAT, V681, P189, DOI 10.1016/j.mrrev.2008.08.002 Hone S W, 2001, Semin Neonatol, V6, P531, DOI 10.1053/siny.2001.0094 Huang Q, 2010, EUR ARCH OTO-RHINO-L, V267, P1179, DOI 10.1007/s00405-010-1270-7 Huygen PL, 2003, AUDIOL MED, V1, P37 Leijendeckers JM, 2009, AUDIOL NEURO-OTOL, V14, P223, DOI 10.1159/000189265 Matsunaga Tatsuo, 2009, Keio Journal of Medicine, V58, P216 Melchionda S, 2001, AM J HUM GENET, V69, P635, DOI 10.1086/323156 Mohiddin SA, 2004, J MED GENET, V41, P309, DOI 10.1136/jmg.2003.011973 Morrell CH, 1996, J ACOUST SOC AM, V100, P1949, DOI 10.1121/1.417906 MORTON NE, 1991, ANN NY ACAD SCI, V630, P16, DOI 10.1111/j.1749-6632.1991.tb19572.x Parving A, 1999, ACTA PAEDIATR, V88, P69, DOI 10.1080/080352599750029439 Pauw RJ, 2008, ARCH OTOLARYNGOL, V134, P294, DOI 10.1001/archotol.134.3.294 Plantinga R.F., 2006, JARO-J ASSOC RES OTO, V8, P1 Rhodes CR, 2004, MAMM GENOME, V15, P686, DOI 10.1007/s00335-004-2344-x Roux I, 2009, HUM MOL GENET, V18, P4615, DOI 10.1093/hmg/ddp429 Sakurai K, 2011, ADV ENZYME REGUL, V51, P171, DOI 10.1016/j.advenzreg.2010.09.014 Sanggaard KM, 2008, AM J MED GENET A, V146A, P1017, DOI 10.1002/ajmg.a.32174 Schraders M, 2010, AM J HUM GENET, V86, P138, DOI 10.1016/j.ajhg.2009.12.017 Schrijver I, 2004, J MOL DIAGN, V6, P275, DOI 10.1016/S1525-1578(10)60522-3 Schultz JM, 2005, NEW ENGL J MED, V352, P1557, DOI 10.1056/NEJMoa043899 Self T, 1999, DEV BIOL, V214, P331, DOI 10.1006/dbio.1999.9424 Shearer AE, 2011, HEARING RES, V282, P1, DOI 10.1016/j.heares.2011.10.001 Street VA, 2008, J VESTIBUL RES-EQUIL, V18, P51 THEUNISSEN EJJM, 1986, CLIN OTOLARYNGOL, V11, P161, DOI 10.1111/j.1365-2273.1986.tb00123.x Topsakal V, 2010, AUDIOL NEURO-OTOL, V15, P211, DOI 10.1159/000255339 Van Eyken E, 2006, HUM MUTAT, V27, P1007, DOI 10.1002/humu.20375 Van Laer L, 2003, EAR HEARING, V24, P275, DOI 10.1097/01.AUD.0000079805.04016.03 Van Laer L, 2008, HUM MOL GENET, V17, P159, DOI 10.1093/hmg/ddm292 Van Laer L, 2010, EUR J HUM GENET, V18, P685, DOI 10.1038/ejhg.2009.234 Willems PJ, 2000, NEW ENGL J MED, V342, P1101, DOI 10.1056/NEJM200004133421506 NR 39 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2013 VL 299 BP 88 EP 98 DI 10.1016/j.heares.2012.12.015 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 151TS UT WOS:000319483700010 PM 23340379 ER PT J AU Zhang, PZ He, Y Jiang, XW Chen, FQ Chen, Y Shi, L Chen, J Chen, X Li, X Xue, T Wang, YF Mi, WJ Qiu, JH AF Zhang, Peng-zhi He, Ya Jiang, Xing-wang Chen, Fu-quan Chen, Yang Shi, Li Chen, Jun Chen, Xin Li, Xu Xue, Tao Wang, Yafei Mi, Wen-juan Qiu, Jian-hua TI Stem cell transplantation via the cochlear lateral wall for replacement of degenerated spiral ganglion neurons SO HEARING RESEARCH LA English DT Article ID SENSORINEURAL HEARING-LOSS; NEURAL PROGENITOR CELLS; AUDITORY-NERVE; INNER-EAR; GUINEA-PIG; COMPLEMENTARY ROLES; OLFACTORY-BULB; GERBIL COCHLEA; TIME-COURSE; FACTOR-I AB Spiral ganglion neurons (SGNs) are poorly regenerated in the mammalian inner ear. Because of this, stem cell transplantation has been used to replace injured SGNs, and several studies have addressed this approach. However, the difficulty of delivering stem cells into the cochlea and encouraging their migration to Rosenthal's canal (RC), where the SGNs are located, severely restricts this therapeutic strategy. In this study, we attempted to establish a new stem cell transplantation route into the cochlea via the cochlear lateral wall (CLW). First, we tested the precision of this route by injecting Fluorogold into the CLW and next assessed its safety by mock surgeries. Then, using a degenerated SGN animal model, we transplanted neural stem cells (NSCs), derived from the olfactory bulb of C57BL/6-green fluorescent protein (GFP) mice, via the CLW route and examined the cells' distribution in the cochlea. We found the CLW transplantation route is precise and safe. In addition, NSCs migrated into RC with a high efficiency and differentiated into neurons in a degenerated SGN rat model after the CLW transplantation. This result revealed that the basilar membrane (BM) may have crevices permitting the migration of NSCs. The result of this study demonstrates a novel route for cell transplantation to the inner ear, which is important for the replacement of degenerated SGNs and may contribute to the treatment of sensorineural hearing loss. (C) 2013 Elsevier B.V. All rights reserved. C1 [Zhang, Peng-zhi; He, Ya; Jiang, Xing-wang; Chen, Fu-quan; Chen, Yang; Shi, Li; Chen, Jun; Chen, Xin; Li, Xu; Xue, Tao; Wang, Yafei; Mi, Wen-juan; Qiu, Jian-hua] Fourth Mil Med Univ, Xijing Hosp, Dept Otolaryngol Head & Neck Surg, Xian 710032, Shaanxi Provinc, Peoples R China. RP Qiu, JH (reprint author), Fourth Mil Med Univ, Xijing Hosp, Dept Otolaryngol Head & Neck Surg, 17 Chang Western Rd, Xian 710032, Shaanxi Provinc, Peoples R China. EM qiujh@fmmu.edu.cn FU National Natural Science Foundation of China [30930098, 81170911, 81271070, 81100713, 2011CB504505, 81120108008] FX This study was supported by the National Natural Science Foundation of China (No. 30930098, 81170911, 81271070, 81100713, 2011CB504505 and 81120108008). The funding agency had no role in the study design, data collection and analysis, the decision to publish or the preparation of the manuscript. CR Altschuler RA, 2008, HEARING RES, V242, P110, DOI 10.1016/j.heares.2008.06.004 AXELSSON A, 1973, ACTA OTO-LARYNGOL, V76, P136, DOI 10.3109/00016487309121492 Barkho BZ, 2008, STEM CELLS, V26, P3139, DOI 10.1634/stemcells.2008-0519 Blamey P, 1996, Audiol Neurootol, V1, P293 Broxmeyer HE, 2005, J EXP MED, V201, P1307, DOI 10.1084/jem.20041385 Carbajal KS, 2010, P NATL ACAD SCI USA, V107, P11068, DOI 10.1073/pnas.1006375107 Chen W, 2012, NATURE, V490, P278, DOI 10.1038/nature11415 Chen Y, 2007, HEARING RES, V228, P3, DOI 10.1016/j.heares.2006.11.014 Coleman B, 2006, CELL TRANSPLANT, V15, P369, DOI 10.3727/000000006783981819 Corrales CE, 2006, J NEUROBIOL, V66, P1489, DOI 10.1002/neu.20310 Duan ML, 2000, P NATL ACAD SCI USA, V97, P7597, DOI 10.1073/pnas.97.13.7597 ERNFORS P, 1995, NEURON, V14, P1153, DOI 10.1016/0896-6273(95)90263-5 Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463 Fish JH, 2001, OTOL NEUROTOL, V22, P170, DOI 10.1097/00129492-200103000-00009 Fu Y, 2012, NEUROTOX RES, V22, P158, DOI 10.1007/s12640-012-9320-0 HALLEN O, 1974, ACTA OTO-LARYNGOL, V78, P309, DOI 10.3109/00016487409126361 Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3 Hu ZQ, 2005, BRAIN RES, V1051, P137, DOI 10.1016/j.brainres.2005.05.016 Hu ZQ, 2004, EXP NEUROL, V185, P7, DOI 10.1016/j.expneurol.2003.09.012 Hu ZQ, 2005, EXP CELL RES, V302, P40, DOI 10.1016/j.yexer.2004.08.023 Iguchi F, 2004, ACTA OTO-LARYNGOL, V124, P43, DOI 10.1080/03655230310016816 Imitola J, 2004, P NATL ACAD SCI USA, V101, P18117, DOI 10.1073/pnas.0408258102 Incesulu A, 1998, ANN OTO RHINOL LARYN, V107, P906 Jongkamonwiwat N, 2010, CURR DRUG TARGETS, V11, P888 JYUNG RW, 1989, OTOLARYNG HEAD NECK, V101, P670 KILENY PR, 1991, ANN OTO RHINOL LARYN, V100, P563 Kilpatrick LA, 2011, OTOLARYNG HEAD NECK, V145, P1007, DOI 10.1177/0194599811416778 Lang H, 2005, JARO-J ASSOC RES OTO, V6, P63, DOI 10.1007/s10162-004-5021-6 Lang HN, 2011, JARO-J ASSOC RES OTO, V12, P151, DOI 10.1007/s10162-010-0244-1 Lang HN, 2008, JARO-J ASSOC RES OTO, V9, P225, DOI 10.1007/s10162-008-0119-x Lapidot T, 2005, BLOOD, V106, P1901, DOI 10.1182/blood-2005-04-1417 Li X, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026728 McFadden SL, 2004, BRAIN RES, V997, P40, DOI 10.1016/j.brainres.2003.10.031 Ogita H, 2009, ORL J OTO-RHINO-LARY, V71, P32, DOI 10.1159/000165915 Ohlemiller Kevin K, 2004, Curr Opin Otolaryngol Head Neck Surg, V12, P439, DOI 10.1097/01.moo.0000134450.99615.22 Okano T, 2005, NEUROREPORT, V16, P1919, DOI 10.1097/01.wnr.0000187628.38010.5b Palmgren B, 2011, BRAIN RES, V1377, P41, DOI 10.1016/j.brainres.2010.12.078 Raphael Y, 2002, BRIT MED BULL, V63, P25, DOI 10.1093/bmb/63.1.25 ROBERSON DW, 1994, AM J OTOL, V15, P28 Rozengurt N, 2003, HEARING RES, V177, P71, DOI 10.1016/S0378-5955(02)00799-2 Schmiedt RA, 2002, JARO, V3, P223, DOI 10.1007/s1016200220017 Sekiya T, 2006, EXP NEUROL, V198, P12, DOI 10.1016/j.expneurol.2005.11.006 Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999 Sun F, 2011, BIOMATERIALS, V32, P8118, DOI 10.1016/j.biomaterials.2011.07.031 Vicario-Abejon C, 2003, J NEUROSCI, V23, P895 Wang LE, 2006, CHINESE MED J-PEKING, V119, P974 WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7 NR 47 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2013 VL 298 BP 1 EP 9 DI 10.1016/j.heares.2013.01.022 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 120GP UT WOS:000317159100001 PM 23403006 ER PT J AU Demany, L Carcagno, S Semal, C AF Demany, Laurent Carcagno, Samuele Semal, Catherine TI The perceptual enhancement of tones by frequency shifts SO HEARING RESEARCH LA English DT Article ID INFORMATIONAL MASKING; AUDITORY ENHANCEMENT; INFERIOR COLLICULUS; SPECTRAL AMPLITUDE; ADAPTATION; THRESHOLDS; PREDICTION; DETECTORS; LOUDNESS; SOUNDS AB In a chord of pure tones with a flat spectral profile, one tone can be perceptually enhanced relative to the other tones by the previous presentation of a slightly different chord. "Intensity enhancement" (IE) is obtained when the component tones of the two chords have the same frequencies, but in the first chord the target of enhancement is attenuated relative to the other tones. "Frequency enhancement" (FE) is obtained when both chords have a flat spectral profile, but the target of enhancement shifts in frequency from the first to the second chord. We report here an experiment in which IE and FE were measured using a task requiring the listener to indicate whether or not the second chord included a tone identical to a subsequent probe tone. The results showed that a global attenuation of the first chord relative to the second chord disrupted IE more than FE. This suggests that the mechanisms of IE and FE are not the same. In accordance with this suggestion, computations of the auditory excitation patterns produced by the chords indicate that the mechanism of IE is not sufficient to explain FE for small frequency shifts. (C) 2013 Elsevier B.V. All rights reserved. C1 [Demany, Laurent] CNRS, Inst Neurosci Cognit & Integrat Aquitaine, F-33076 Bordeaux, France. Univ Bordeaux, F-33076 Bordeaux, France. RP Demany, L (reprint author), CNRS, Inst Neurosci Cognit & Integrat Aquitaine, 146 Rue Leo Saignat, F-33076 Bordeaux, France. EM laurent.demany@u-bordeaux2.fr; samuele.carcagno@u-bordeaux2.fr; catherine.semal@ipb.fr RI Demany, Laurent/D-7984-2014; Semal, Catherine/D-8592-2014 OI Demany, Laurent/0000-0001-5549-9628; Semal, Catherine/0000-0002-2075-6265 FU Agence Nationale de la Recherche [ANR-2010-BLAN-1906-02] FX This work was supported by a grant from the Agence Nationale de la Recherche (ANR-2010-BLAN-1906-02). CR Antunes FM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014071 Bregman AS., 1990, AUDITORY SCENE ANAL Byrne AJ, 2011, J ACOUST SOC AM, V129, P2088, DOI 10.1121/1.3552880 Cao X, 2012, J SPEECH LANG HEAR R, V55, P1135, DOI 10.1044/1092-4388(2011/09-0149) Carcagno S, 2011, J EXP PSYCHOL HUMAN, V37, P1976, DOI 10.1037/a0024321 Carcagno S, BASIC ASPEC IN PRESS Carcagno S, 2012, JARO-J ASSOC RES OTO, V13, P693, DOI 10.1007/s10162-012-0339-y CARLYON RP, 1989, HEARING RES, V41, P223, DOI 10.1016/0378-5955(89)90014-2 Constantino FC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0046167 Cousineau M, 2009, J ACOUST SOC AM, V126, P3179, DOI 10.1121/1.3257206 Demany L, 2010, EXP BRAIN RES, V203, P261, DOI 10.1007/s00221-010-2226-2 Demany L, 2009, J ACOUST SOC AM, V126, P1342, DOI 10.1121/1.3179675 Demany L, 2005, J ACOUST SOC AM, V117, P833, DOI 10.1121/1.1850209 Demany L, 2011, J EXP PSYCHOL HUMAN, V37, P597, DOI 10.1037/a0020368 Erviti M, 2011, J ACOUST SOC AM, V129, P3837, DOI 10.1121/1.3589257 Glasberg BR, 2006, J ACOUST SOC AM, V120, P585, DOI 10.1121/1.2214151 Goupell MJ, 2012, J ACOUST SOC AM, V131, P1007, DOI 10.1121/1.3672650 Green D. M., 1988, PROFILE ANAL AUDITOR Green D. M., 1974, SIGNAL DETECTION THE Hartmann WM, 2006, J ACOUST SOC AM, V120, P2142, DOI 10.1121/1.2228476 Kidd G, 2011, J ACOUST SOC AM, V130, P3926, DOI 10.1121/1.3658442 Malmierca MS, 2009, J NEUROSCI, V29, P5483, DOI 10.1523/JNEUROSCI.4153-08.2009 Moore B.C.J., BASIC ASPEC IN PRESS Moore BCJ, 1997, J AUDIO ENG SOC, V45, P224 Nelson PC, 2010, J NEUROSCI, V30, P6577, DOI 10.1523/JNEUROSCI.0277-10.2010 Richards VM, 2004, J ACOUST SOC AM, V116, P2278, DOI 10.1121/1.1784433 Roberts B, 1998, J ACOUST SOC AM, V103, P3588, DOI 10.1121/1.423086 Schouten JF, 1940, P K NED AKAD WETENSC, V43, P356 Serman M, 2008, J ACOUST SOC AM, V123, P4412, DOI 10.1121/1.2902177 SUMMERFIELD Q, 1987, J ACOUST SOC AM, V81, P700, DOI 10.1121/1.394838 Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032 VIEMEISTER NF, 1982, J ACOUST SOC AM, V71, P1502, DOI 10.1121/1.387849 Viemeister NF, 1980, PSYCHOPHYSICAL PHYSL, P190 Viemeister NF, BASIC ASPEC IN PRESS Wang NY, 2012, J ACOUST SOC AM, V131, pEL421, DOI 10.1121/1.4710838 Wilson JP, 1970, FREQUENCY ANAL PERIO, P303 WRIGHT BA, 1993, J ACOUST SOC AM, V94, P72, DOI 10.1121/1.408215 NR 37 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2013 VL 298 BP 10 EP 16 DI 10.1016/j.heares.2013.01.016 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 120GP UT WOS:000317159100002 PM 23376551 ER PT J AU van Loon, MC Ramekers, D Agterberg, MJH de Groot, JCMJ Grolman, W Klis, SFL Versnel, H AF van Loon, Maarten C. Ramekers, Dyan Agterberg, Martijn J. H. de Groot, John C. M. J. Grolman, Wilko Klis, Sjaak F. L. Versnel, Huib TI Spiral ganglion cell morphology in guinea pigs after deafening and neurotrophic treatment SO HEARING RESEARCH LA English DT Article ID SENSORINEURAL HEARING-LOSS; FIBROBLAST-GROWTH-FACTOR; INNER-EAR; ELECTRICAL-STIMULATION; AUDITORY NEURONS; ETHACRYNIC-ACID; INDUCED DEAFNESS; TIME-COURSE; SURVIVAL; COCHLEA AB It is well known that spiral ganglion cells (SGCs) degenerate in hair-cell-depleted cochleas and that treatment with exogenous neurotrophins can prevent this degeneration. Several studies reported that, in addition, SGC size decreases after deafening and increases after neurotrophic treatment. The dynamics of these cell size changes are not well known. In a first experiment we measured size, shape (circularity) and intracellular density of SGCs in guinea pigs at various moments after deafening (1, 2, 4, 6, and 8 weeks) and at various cochlear locations. In a second experiment, the effect of treatment with brain-derived neurotrophic factor (BDNF) on SGC morphology was investigated at various cochlear locations in deafened guinea pigs. We found that SGC size gradually decreased after deafening in the basal and middle cochlear turns. Already after one week a decrease in size was observed, which was well before the number of SGCs started to decrease. After BDNF treatment SGCs became noticeably larger than normal throughout the cochlea, including the middle and apical turns, whereas an effect on survival of SGCs was primarily observed in the basal turn. Thus, both after deafening and after neurotrophic treatment a change in size occurs before survival is affected. Morphological changes were not restricted to a subpopulation of SGCs. We argue that although changes in cell size and changes in survival might be manifestations of two separate mechanisms, morphological measures such as size, circularity and intracellular density are indicative for survival and degeneration. (C) 2013 Elsevier B.V. All rights reserved. C1 [van Loon, Maarten C.; Ramekers, Dyan; Agterberg, Martijn J. H.; de Groot, John C. M. J.; Grolman, Wilko; Klis, Sjaak F. L.; Versnel, Huib] Univ Med Ctr Utrecht, Rudolf Magnus Inst Neurosci, Dept Otorhinolaryngol & Head & Neck Surg, NL-3508 GA Utrecht, Netherlands. [van Loon, Maarten C.] Vrije Univ Amsterdam, Med Ctr, Dept Otorhinolaryngol & Head & Neck Surg, NL-1007 MB Amsterdam, Netherlands. [Agterberg, Martijn J. H.] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, Dept Biophys, NL-6500 GL Nijmegen, Netherlands. [de Groot, John C. M. J.] Leiden Univ, Med Ctr, Dept Otorhinolaryngol & Head & Neck Surg, NL-2300 RC Leiden, Netherlands. RP Klis, SFL (reprint author), Univ Med Ctr Utrecht, Rudolf Magnus Inst Neurosci, Dept Otorhinolaryngol & Head & Neck Surg, POB 85500, NL-3508 GA Utrecht, Netherlands. EM s.klis@umcutrecht.nl FU Heinsius-Houbolt Foundation; Cochlear(R) FX This study was supported by the Heinsius-Houbolt Foundation and Cochlear (R). We are grateful to Ferry Hendriksen for assisting with histology, and Kelly Maijoor for assisting with surgery. We thank Marinus J.C. Eijkemans (Biostatistics & Research Support, Julius Center) for his advice on statistical analysis. CR Adamson CL, 2002, J NEUROSCI, V22, P1385 Agterberg MJH, 2008, HEARING RES, V244, P25, DOI 10.1016/j.heares.2008.07.004 Agterberg MJH, 2009, JARO-J ASSOC RES OTO, V10, P355, DOI 10.1007/s10162-009-0170-2 BROWN JN, 1993, HEARING RES, V70, P167, DOI 10.1016/0378-5955(93)90155-T BRUMMETT RE, 1979, ARCH OTOLARYNGOL, V105, P240 Camarero G, 2001, J NEUROSCI, V21, P7630 Coggeshall RE, 1996, J COMP NEUROL, V364, P6, DOI 10.1002/(SICI)1096-9861(19960101)364:1<6::AID-CNE2>3.0.CO;2-9 Davis RL, 2003, NEUROSCIENTIST, V9, P311, DOI 10.1177/1073858403251986 Davis RL, 2011, HEARING RES, V276, P34, DOI 10.1016/j.heares.2011.01.014 DEGROOT JCMJ, 1987, ACTA OTO-LARYNGOL, V104, P234, DOI 10.3109/00016488709107323 ERNFORS P, 1995, NEURON, V14, P1153, DOI 10.1016/0896-6273(95)90263-5 Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463 Fritzsch B, 1999, CELL TISSUE RES, V295, P369, DOI 10.1007/s004410051244 Gillespie LN, 2004, NEUROREPORT, V15, P1121, DOI 10.1097/01.wnr.0000125777.04774.c2 Glueckert R, 2008, J COMP NEUROL, V507, P1602, DOI 10.1002/cne.21619 Hahn H, 2012, OTOL NEUROTOL, V33, P660, DOI 10.1097/MAO.0b013e318254501b Havenith S, 2011, HEARING RES, V272, P168, DOI 10.1016/j.heares.2010.10.003 Ito J, 2005, ORL J OTO-RHINO-LARY, V67, P272, DOI 10.1159/000089407 KOITCHEV K, 1982, ACTA OTO-LARYNGOL, V94, P431, DOI 10.3109/00016488209128931 Kurihara M, 2011, GEN COMP ENDOCR, V170, P156, DOI 10.1016/j.ygcen.2010.09.020 LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4 Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3 Leake PA, 2011, J COMP NEUROL, V519, P1526, DOI 10.1002/cne.22582 McFadden SL, 2004, BRAIN RES, V997, P40, DOI 10.1016/j.brainres.2003.10.031 McGuinness SL, 2005, OTOL NEUROTOL, V26, P1064, DOI 10.1097/01.mao.0000185063.20081.50 Miller JM, 2007, J NEUROSCI RES, V85, P1959, DOI 10.1002/jnr.21320 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 Nourski KV, 2004, HEARING RES, V187, P131, DOI 10.1016/S0378-5955(03)00336-8 Prieskorn DM, 2000, HEARING RES, V140, P212, DOI 10.1016/S0378-5955(99)00193-8 Ramekers D, 2012, HEARING RES, V288, P19, DOI 10.1016/j.heares.2012.03.002 Reichardt LF, 2006, PHILOS T R SOC B, V361, P1545, DOI 10.1098/rstb.2006.1894 Richardson RT, 2005, HEARING RES, V204, P37, DOI 10.1016/j.heares.2005.01.001 Richter CP, 2011, HEARING RES, V278, P43, DOI 10.1016/j.heares.2011.02.003 Salt AN, 2009, AUDIOL NEURO-OTOL, V14, P350, DOI 10.1159/000241892 Scheper V, 2009, J NEUROSCI RES, V87, P1389, DOI 10.1002/jnr.21964 Schimmang T, 2003, DEVELOPMENT, V130, P4741, DOI 10.1242/dev.00676 Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564 Shepherd RK, 2004, EUR J NEUROSCI, V20, P3131, DOI 10.1111/j.1460-9568.2004.03809.x Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999 Slepecky N.B., 1996, COCHLEA, V8, P44 Song BN, 2009, ACTA OTO-LARYNGOL, V129, P142, DOI 10.1080/00016480802043949 SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683 Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011 Tsuji J, 1997, J COMP NEUROL, V381, P188 Versnel H, 2007, HEARING RES, V231, P1, DOI 10.1016/j.heares.2007.03.003 WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7 WEST BA, 1973, ARCH OTOLARYNGOL, V98, P32 Wise AK, 2005, J COMP NEUROL, V487, P147, DOI 10.1002/cne.20563 YLIKOSKI J, 1974, ACTA OTO-LARYNGOL, P23 NR 49 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2013 VL 298 BP 17 EP 26 DI 10.1016/j.heares.2013.01.013 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 120GP UT WOS:000317159100003 PM 23361189 ER PT J AU O'Leary, SJ Monksfield, P Kel, G Connolly, T Souter, MA Chang, A Marovic, P O'Leary, JS Richardson, R Eastwood, H AF O'Leary, S. J. Monksfield, P. Kel, G. Connolly, T. Souter, M. A. Chang, A. Marovic, P. O'Leary, J. S. Richardson, R. Eastwood, H. TI Relations between cochlear histopathology and hearing loss in experimental cochlear implantation SO HEARING RESEARCH LA English DT Article ID ROUND WINDOW DEXAMETHASONE; GUINEA-PIG MODEL; RESIDUAL HEARING; TRAUMA; FIBROSIS AB This study reviews the cochlear histology from four hearing preservation cochlear implantation experiments conducted on 73 guinea pigs from our institution, and relates histopathological findings to residual hearing. All guinea pigs had normal hearing prior to surgery and underwent cochlear implantation via a cochleostomy with a silastic-platinum dummy electrode. Pure tone auditory brainstem response (ABR) thresholds from 2 to 32 kHz were recorded prior to surgery, and at one and four weeks post-operatively. The cochleae were then fixed in paraformaldehyde, decalcified, paraffin embedded, and mid-modiolar sections were prepared. The treatment groups were as follows: 1) Systemic dexamethasone, 0.2 mg/kg administered 1 h before implantation, 2) Local dexamethasone, 2% applied topically to the round window for 30 min prior to cochlear implantation, 3) Local n-acetyl cysteine, 200 jig applied topically to the round window for 30 min prior to implantation, 4) inoculation to keyhole-limpet hemocyanin (KLH) prior to implantation, and 5) untreated controls. There was a significant correlation between the extent of the tissue reaction in the cochlea and the presence of foreign body giant cells (FBGCs), new bone formation and injury to the osseous spiral lamina (OSL). The extent of the tissue response, as a percentage of the area of the scala tympani, limited the best hearing that was observed four weeks after cochlear implantation. Poorer hearing at four weeks correlated with a more extensive tissue response, lower outer hair cell (OHC) counts and OSL injury in the basal turn. Progressive hearing loss was also correlated with the extent of tissue response. Hearing at 2 kHz, which corresponds to the region of the second cochlear turn, did not correspond with loco-regional inner hair cell (IHC), OHC or SGC counts. We conclude that cochlear injury is associated with poorer hearing early after implantation. The tissue response is related to indices of cochlear inflammation and injury. An extensive tissue response limits hearing at four weeks, and correlates with progressive hearing loss. These latter effects may be due to inflammation, but would also be consistent with interference of cochlear mechanics. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved. C1 [O'Leary, S. J.; Monksfield, P.; Kel, G.; Connolly, T.; Souter, M. A.; Chang, A.; Marovic, P.; O'Leary, J. S.; Richardson, R.; Eastwood, H.] Univ Melbourne, Royal Victorian Eye & Ear Hosp, Dept Otolaryngol, East Melbourne, Vic 3002, Australia. [Connolly, T.] Geelong Hosp, Geelong, Vic, Australia. [Souter, M. A.] Christchurch Hosp, Christchurch, New Zealand. [Richardson, R.] Bion Inst, East Melbourne, Vic, Australia. RP O'Leary, SJ (reprint author), Univ Melbourne, Royal Victorian Eye & Ear Hosp, Dept Otolaryngol, 2nd Floor,32 Gisborne St, East Melbourne, Vic 3002, Australia. EM sjoleary@unimelb.edu.au; monksfield@talk21.com; gekel@unimelb.edu.au; timothyent@gmail.com; msouter@me.com; achang_tw@yahoo.com; paul.marovic@gmail.com; j.oleary3@unimelb.edu.au; rricharson@bionicsinstitute.org; haydente@unimelb.edu.au FU National Health and Medical Research Council of Australia; Garnett Passe and Rodney Williams Memorial Foundation; John Mitchell Crouch Fellowship; Royal Australasian College of Surgeons; Royal Victorian Eye and Ear Hospital FX Maria Clarke and Prudence Nielsen for preparing the histology material. Helen Feng for making the cochlear electrodes. A/Prof. John Slavin from St. Vincents Health Melbourne for histopathological assessment of the cochleae. Amy Hampson for proofing and preparing of the final figures. The National Health and Medical Research Council of Australia, the Garnett Passe and Rodney Williams Memorial Foundation, the John Mitchell Crouch Fellowship awarded to SOL from the Royal Australasian College of Surgeons and the Royal Victorian Eye and Ear Hospital for funding. CR Anderson JM, 2008, SEMIN IMMUNOL, V20, P86, DOI 10.1016/j.smim.2007.11.004 Barbara M, 2003, J LARYNGOL OTOL, V117, P850 Briggs R J, 2001, Cochlear Implants Int, V2, P135, DOI 10.1002/cii.45 Chang A, 2009, HEARING RES, V255, P67, DOI 10.1016/j.heares.2009.05.010 Choi CH, 2005, HEARING RES, V205, P193, DOI 10.1016/j.heares.2005.03.018 Dinh CT, 2011, NEUROSCIENCE, V188, P157, DOI 10.1016/j.neuroscience.2011.04.061 Eastwood H, 2010, HEARING RES, V259, P24, DOI 10.1016/j.heares.2009.08.010 Eshraghi AA, 2006, OTOL NEUROTOL, V27, P504, DOI 10.1097/00129492-200606000-00012 Eshraghi AA, 2005, OTOL NEUROTOL, V26, P442, DOI 10.1097/01.mao.0000169791.53201.e1 Fayad JN, 2009, OTOLARYNG HEAD NECK, V141, P247, DOI 10.1016/j.otohns.2009.03.031 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Gstoettner Wolfgang K, 2006, Audiol Neurootol, V11 Suppl 1, P49, DOI 10.1159/000095614 Haake SM, 2009, HEARING RES, V255, P22, DOI 10.1016/j.heares.2009.05.003 James DP, 2008, AUDIOL NEURO-OTOL, V13, P86, DOI 10.1159/000111780 Kiefer J, 2006, HEARING RES, V221, P36, DOI 10.1016/j.heares.2006.07.013 Lisnichuk H., 2010, AUDIOL NEURO-OTOL, V16, P137 Maini S, 2009, AUDIOL NEURO-OTOL, V14, P402, DOI 10.1159/000241897 Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883 Nadol Joseph B Jr, 2006, Adv Otorhinolaryngol, V64, P31 Souter M., 2012, OTOLOGY NEUROTOL, V4 Tornabene SV, 2006, HEARING RES, V222, P115, DOI 10.1016/j.heares.2006.09.004 Woodson EA, 2010, ADV OTO-RHINO-LARYNG, V67, P125, DOI 10.1159/000262604 Xu J, 1997, HEARING RES, V105, P1, DOI 10.1016/S0378-5955(96)00193-1 NR 23 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2013 VL 298 BP 27 EP 35 DI 10.1016/j.heares.2013.01.012 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 120GP UT WOS:000317159100004 PM 23396095 ER PT J AU Scott, BH Mishkin, M Yin, PB AF Scott, Brian H. Mishkin, Mortimer Yin, Pingbo TI Effect of acoustic similarity on short-term auditory memory in the monkey SO HEARING RESEARCH LA English DT Article ID CEBUS-APELLA; TEMPORAL CORTEX; PITCH; MACAQUE; TIMBRE; INFORMATION; HIPPOCAMPUS; RETENTION; PRIMATES; AMYGDALA AB Recent evidence suggests that the monkey's short-term memory in audition depends on a passively retained sensory trace as opposed to a trace reactivated from long-term memory for use in working memory. Reliance on a passive sensory trace could render memory particularly susceptible to confusion between sounds that are similar in some acoustic dimension. If so, then in delayed matching-to-sample, the monkey's performance should be predicted by the similarity in the salient acoustic dimension between the sample and subsequent test stimulus, even at very short delays. To test this prediction and isolate the acoustic features relevant to short-term memory, we examined the pattern of errors made by two rhesus monkeys performing a serial, auditory delayed match-to-sample task with interstimulus intervals of 1 s. The analysis revealed that false-alarm errors did indeed result from similarity-based confusion between the sample and the subsequent nonmatch stimuli. Manipulation of the stimuli showed that removal of spectral cues was more disruptive to matching behavior than removal of temporal cues. In addition, the effect of acoustic similarity on false-alarm response was stronger at the first nonmatch stimulus than at the second one. This pattern of errors would be expected if the first nonmatch stimulus overwrote the sample's trace, and suggests that the passively retained trace is not only vulnerable to similarity-based confusion but is also highly susceptible to overwriting. (C) 2013 Elsevier B.V. All rights reserved. C1 [Scott, Brian H.; Mishkin, Mortimer; Yin, Pingbo] NIMH, Neuropsychol Lab, NIH, Bethesda, MD 20892 USA. [Yin, Pingbo] Univ Maryland, Syst Res Inst, Neural Syst Lab, College Pk, MD 20742 USA. RP Scott, BH (reprint author), NIMH, Neuropsychol Lab, NIH, 49 Convent Dr,Room 1B80, Bethesda, MD 20892 USA. EM brianscott@mail.nih.gov; mishkinm@mail.nih.gov; pyin@umd.edu FU Intramural Research Program of the National Institute of Mental Health, National Institutes of Health, National Institutes of Health, Department of Health and Human Services FX We thank Helen Tak, Kathleen Moorhead, Peter Sergo, and Holly Vinal for assistance with animal training and data collection, and Alexander Kloth for programming assistance as well as data collection. This work was supported by the Intramural Research Program of the National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services. CR Boersma Paul, 2012, PRAAT DOING PHONETIC Caclin A, 2006, J COGNITIVE NEUROSCI, V18, P1959, DOI 10.1162/jocn.2006.18.12.1959 Chi T, 2005, J ACOUST SOC AM, V118, P887, DOI 10.1121/1.1945807 Clement S, 1999, J ACOUST SOC AM, V106, P2805, DOI 10.1121/1.428106 Colombo M, 1996, J NEUROSCI, V16, P4501 COLOMBO M, 1986, Q J EXP PSYCHOL-B, V38, P425 DAMATO MR, 1984, CAN J PSYCHOL, V38, P237, DOI 10.1037/h0080825 DAMATO MR, 1988, J EXP PSYCHOL ANIM B, V14, P131, DOI 10.1037/0097-7403.14.2.131 D'Amato M., 1985, ANIM LEARN BEHAV, V14, P375 Demany L., 2007, AUDITORY PERCEPTION, V29, P77, DOI 10.1007/978-0-387-71305-2_4 DEUTSCH D, 1972, SCIENCE, V175, P1020, DOI 10.1126/science.175.4025.1020 Fritz J, 2005, P NATL ACAD SCI USA, V102, P9359, DOI 10.1073/pnas.0503998102 GAFFAN D, 1991, BRAIN, V114, P2133, DOI 10.1093/brain/114.5.2133 Joly O, 2012, CEREB CORTEX, V22, P838, DOI 10.1093/cercor/bhr150 Kusmierek P, 2012, J NEUROPHYSIOL, V107, P1123, DOI 10.1152/jn.00793.2011 Lemus L, 2009, P NATL ACAD SCI USA, V106, P9471, DOI 10.1073/pnas.0904066106 Lewandowsky S, 2009, TRENDS COGN SCI, V13, P120, DOI 10.1016/j.tics.2008.12.003 MAY B, 1988, ANIM BEHAV, V36, P1432, DOI 10.1016/S0003-3472(88)80214-8 MILLER EK, 1993, J NEUROSCI, V13, P1460 MISHKIN M, 1978, NATURE, V273, P297, DOI 10.1038/273297a0 Munoz-Lopez MM, 2010, FRONT NEUROANAT, V4, DOI 10.3389/fnana.2010.00129 MURRAY EA, 1983, BRAIN RES, V270, P340, DOI 10.1016/0006-8993(83)90610-8 Murray EA, 2007, ANNU REV NEUROSCI, V30, P99, DOI 10.1146/annurev.neuro.29.051605.113046 Ng CW, 2009, HEARING RES, V256, P64, DOI 10.1016/j.heares.2009.06.014 Nousak JMK, 1996, COGNITIVE BRAIN RES, V4, P305, DOI 10.1016/S0926-6410(96)00068-7 Scott BH, 2012, P NATL ACAD SCI USA, V109, P12237, DOI 10.1073/pnas.1209685109 SEMAL C, 1991, J ACOUST SOC AM, V89, P2404, DOI 10.1121/1.400928 Starr GE, 1997, J ACOUST SOC AM, V102, P486, DOI 10.1121/1.419722 SUZUKI WA, 1994, J COMP NEUROL, V350, P497, DOI 10.1002/cne.903500402 Wright AA, 1999, J EXP PSYCHOL ANIM B, V25, P284, DOI 10.1037/0097-7403.25.3.284 Yin P, 2008, J NEUROPHYSIOL, V100, P3009, DOI 10.1152/jn.00828.2007 Yin PB, 2010, J ACOUST SOC AM, V127, P1673, DOI 10.1121/1.3290988 NR 32 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2013 VL 298 BP 36 EP 48 DI 10.1016/j.heares.2013.01.011 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 120GP UT WOS:000317159100005 PM 23376550 ER PT J AU Zhang, R Zhang, YB Dai, CF Steyger, PS AF Zhang, Ru Zhang, Yi-Bo Dai, Chun-Fu Steyger, Peter S. TI Temporal and spatial distribution of gentamicin in the peripheral vestibular system after transtympanic administration in guinea pigs SO HEARING RESEARCH LA English DT Article ID EVOKED MYOGENIC POTENTIALS; SENSORY HAIR-CELLS; DARK CELLS; INTRATYMPANIC GENTAMICIN; AMINOGLYCOSIDE ANTIBIOTICS; MENIERES-DISEASE; INNER-EAR; TRANSITIONAL CELLS; CRISTA-AMPULLARIS; LLC-PK1 CELLS AB Background and objective: Transtympanic administration of gentamicin is effective for treating patients with intractable vertigo. This study explored the spatial and temporal distribution of gentamicin in vestibular end-organs after transtympanic administration. Methods: Thirty guinea pigs were transtympanically injected with gentamicin conjugated to Texas Red (GTTR) and their vestibular end-organs examined after various survival periods. Another 9 guinea pigs received GTTR at different doses. Nine animals received Texas Red only and served as controls. We used confocal microscopy to determine the cellular distribution of GTTR in semicircular canal cristae, as well as the utricular and saccular maculae. Results: The most intense GTTR labeling was present in the saccule compared to other vestibular end-organs. GTTR fluorescence was detected predominantly in type I hair cells, type II hair cells and transitional cells after a single transtympanic dose of GiiR (0.1 mg/ml, 0.05 ml), while only weak fluorescence was observed in non-sensory cells such as supporting cells, dark cells and lumenal epithelial cells. Transitional cells displayed intense GTTR fluorescence in the supra-nuclear regions 24 h after transtympanic injection that was retained for at least 4 weeks. A decreasing spatial gradient of MR fluorescence was observed sensory epithelial regions containing central type I to peripheral type I and then type II hair cells in the crista ampullaris, and from striolar to extra-striolar hair cells within the vestibular macula. GTTR fluorescence extended from being restricted to the apical cytoplasm at lower doses to the entire cell body of type I hair cells with increasing dose. GTTR fluorescence reached peak intensities for individual regions of interest within the cristae and maculae between 3 and 7 days after transtympanic injection. Conclusion: The saccular uptake of CUR is greater than other vestibular end-organs after transtympanic injection in the semicircular canals. (C) 2013 Elsevier B.V. All rights reserved. C1 [Zhang, Ru; Zhang, Yi-Bo; Dai, Chun-Fu] Fudan Univ, Eye Ear Nose & Throat Hosp, Dept Otol & Skull Base Surg, Shanghai 200031, Peoples R China. [Steyger, Peter S.] Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, Portland, OR 97239 USA. RP Dai, CF (reprint author), Fudan Univ, Eye Ear Nose & Throat Hosp, Dept Otol & Skull Base Surg, 83 Fen Yang Rd, Shanghai 200031, Peoples R China. EM cfdai66@yahoo.com.cn FU 973 project [2011CB504504]; National Natural Science Foundation [30772398, 81070785, 81170909]; Project on advanced and frontier techniques for Shanghai municipal hospital [SHDC12010119]; NIH-NIDCD [R01 DC04555] FX This study was supported by 973 project (2011CB504504), National Natural Science Foundation (Nos. 30772398, 81070785, and 81170909), Project on advanced and frontier techniques for Shanghai municipal hospital (SHDC12010119). PSS was supported by NIH-NIDCD R01 DC04555. CR Bartolami S, 2011, J NEUROSCI, V31, P16541, DOI 10.1523/JNEUROSCI.2430-11.2011 Becvarovski Z, 2002, LARYNGOSCOPE, V112, P1610, DOI 10.1097/00005537-200209000-00015 BRISMAR H, 1995, J HISTOCHEM CYTOCHEM, V43, P699 Chen JWY, 2000, J NEUROPHYSIOL, V84, P139 Cohen-Kerem R, 2004, LARYNGOSCOPE, V114, P2085, DOI 10.1097/01.mlg.0000149439.43478.24 Cureoglu S, 2003, ARCH OTOLARYNGOL, V129, P626, DOI 10.1001/archotol.129.6.626 Curthoys IS, 2009, ACTA OTORHINOLARYNGO, V29, P179 Dai CF, 2006, HEARING RES, V213, P64, DOI 10.1016/j.heares.2005.11.011 Day AS, 2007, EAR HEARING, V28, P18, DOI 10.1097/01.aud.0000249765.76065.27 de Waele C, 2002, NEUROLOGY, V59, P1442 Dravis C, 2007, HEARING RES, V223, P93, DOI 10.1016/j.heares.2006.10.007 Fiorino F, 2012, OTOL NEUROTOL, V33, P629, DOI 10.1097/MAO.0b013e318248ee1f GE XX, 1993, AM J OTOL, V14, P74 GE XX, 1995, SCANNING MICROSCOPY, V9, P283 Hashino E, 1997, BRAIN RES, V777, P75, DOI 10.1016/S0006-8993(97)00977-3 Hashino E, 1995, BRAIN RES, V704, P135, DOI 10.1016/0006-8993(95)01198-6 HAYASHIDA T, 1985, ARCH OTO-RHINO-LARYN, V242, P257, DOI 10.1007/BF00453548 Helling K, 2007, LARYNGOSCOPE, V117, P2244, DOI 10.1097/MLG.01b013e3181453a3c Hirvonen TP, 2005, J NEUROPHYSIOL, V93, P643, DOI 10.1152/jn.00160.2004 IKEDA M, 1992, J LARYNGOL OTOL, V106, P93, DOI 10.1017/S0022215100118791 Imamura S, 2003, JARO, V4, P176, DOI 10.1007/s10162-002-2036-8 Karasawa T, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.80 Karasawa T, 2011, TOXICOL SCI, V124, P378, DOI 10.1093/toxsci/kfr196 King EB, 2011, JARO-J ASSOC RES OTO, V12, P741, DOI 10.1007/s10162-011-0280-5 Kuo SW, 2005, ANN OTO RHINOL LARYN, V114, P717 Lee JH, 2001, J NEUROSCI, V21, P9168 Leonard RB, 2002, BRAIN RES, V928, P8, DOI 10.1016/S0006-8993(01)03268-1 LINDEMAN HH, 1969, ACTA OTO-LARYNGOL, V67, P177, DOI 10.3109/00016486909125441 Liu WT, 2005, APPL ENVIRON MICROB, V71, P6453, DOI 10.1128/AEM.71.10.6453-6457.2005 Lopez I, 1997, INT J DEV NEUROSCI, V15, P447, DOI 10.1016/S0736-5748(96)00103-7 Lyford-Pike S, 2007, JARO-J ASSOC RES OTO, V8, P497, DOI 10.1007/s10162-007-0093-8 Lysakowski A, 2004, SPR HDB AUD, P57 Manzari L, 2010, EUR ARCH OTO-RHINO-L, V267, P1487, DOI 10.1007/s00405-010-1317-9 Marcotti W, 2005, J PHYSIOL-LONDON, V567, P505, DOI 10.1113/jphysiol.2005.085951 Myrdal SE, 2005, HEARING RES, V204, P156, DOI 10.1016/j.heares.2005.02.002 Nicolas MT, 2004, BRAIN RES, V1017, P46, DOI 10.1016/j.brainres.2004.05.012 OUDAR O, 1988, ANAT REC, V220, P328, DOI 10.1002/ar.1092200316 PARK JC, 1982, AM J OTOLARYNG, V3, P117, DOI 10.1016/S0196-0709(82)80042-2 Pender D.J., 1985, AM J OTOLARYNG, V6, P358 Plontke SK, 2007, LARYNGOSCOPE, V117, P1191, DOI 10.1097/MLG.0b013e318058a06b Roehm P, 2007, HEARING RES, V230, P43, DOI 10.1016/j.heares.2007.04.005 Salt AN, 2012, HEARING RES, V283, P14, DOI 10.1016/j.heares.2011.11.012 Sandoval R, 1998, J AM SOC NEPHROL, V9, P167 Sandoval RM, 2000, AM J PHYSIOL-RENAL, V279, pF884 SCHUKNECHT H F, 1956, Laryngoscope, V66, P859, DOI 10.1288/00005537-195607000-00005 Steyger PS, 2003, JARO-J ASSOC RES OTO, V4, P565, DOI 10.1007/s10162-003-4002-5 Wang Q, 2009, JARO-J ASSOC RES OTO, V10, P205, DOI 10.1007/s10162-009-0160-4 WERSALL J, 1971, ARCH KLIN EXP OHR, V200, P1, DOI 10.1007/BF00302186 Xue JB, 2006, J NEUROPHYSIOL, V95, P171, DOI 10.1152/jn.00800.2005 YOSHIHARA T, 1994, ORL J OTO-RHINO-LARY, V56, P24 Zhai F, 2010, OTOL NEUROTOL, V31, P642, DOI 10.1097/MAO.0b013e3181dbb30e NR 51 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2013 VL 298 BP 49 EP 59 DI 10.1016/j.heares.2013.01.010 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 120GP UT WOS:000317159100006 PM 23380663 ER PT J AU Imennov, NS Won, JH Drennan, WR Jameyson, E Rubinstein, JT AF Imennov, Nikita S. Won, Jong Ho Drennan, Ward R. Jameyson, Elyse Rubinstein, Jay T. TI Detection of acoustic temporal fine structure by cochlear implant listeners: Behavioral results and computational modeling SO HEARING RESEARCH LA English DT Article ID AUDITORY-NERVE RESPONSES; ELECTRICAL-STIMULATION; FREQUENCY-MODULATION; SPEECH RECOGNITION; HARMONIC COMPLEXES; MUSIC PERCEPTION; NORMAL-HEARING; CLINICAL-ASSESSMENT; PITCH PERCEPTION; STRUCTURE CUES AB A test of within-channel detection of acoustic temporal fine structure (aTFS) cues is presented. Eight cochlear implant listeners (CI) were asked to discriminate between two Schroeder-phase (SP) complexes using a two-alternative, forced-choice task. Because differences between the acoustic stimuli are primarily constrained to their aTFS, successful discrimination reflects a combination of the subjects' perception of and the strategy's ability to deliver aTFS cues. Subjects were mapped with single-channel Continuous Interleaved Sampling (CIS) and Simultaneous Analog Stimulation (SAS) strategies. To compare within- and across- channel delivery of aTFS cues, a 16-channel clinical HiRes strategy was also fitted. Throughout testing, SAS consistently outperformed the CIS strategy (p <= 0.002). For SP stimuli with F-0 = 50 Hz, the highest discrimination scores were achieved with the HiRes encoding, followed by scores with the SAS and the CIS strategies, respectively. At 200 Hz, single-channel SAS performed better than HiRes (p = 0.022), demonstrating that under a more challenging testing condition, discrimination performance with a single-channel analog encoding can exceed that of a 16-channel pulsatile strategy. To better understand the intermediate steps of discrimination, a biophysical model was used to examine the neural discharges evoked by the SP stimuli. Discrimination estimates calculated from simulated neural responses successfully tracked the behavioral performance trends of single-channel CI listeners. (C) 2013 Elsevier B.V. All rights reserved. C1 [Imennov, Nikita S.; Rubinstein, Jay T.] Univ Washington, Dept Bioengn, Seattle, WA 98195 USA. [Imennov, Nikita S.; Drennan, Ward R.; Jameyson, Elyse; Rubinstein, Jay T.] Univ Washington, VM Bloedel Hearing Res Ctr, Seattle, WA 98195 USA. [Drennan, Ward R.; Jameyson, Elyse; Rubinstein, Jay T.] Univ Washington, Dept Otolaryngol Head & Neck Surg, Seattle, WA 98195 USA. [Won, Jong Ho] Univ Tennessee, Hlth Sci Ctr, Dept Speech Pathol & Audiol, Knoxville, TN 37996 USA. RP Imennov, NS (reprint author), Univ Washington, Dept Bioengn, Seattle, WA 98195 USA. EM imennov@u.washington.edu; jwon1@uthsc.edu; drennan@u.washington.edu; elysej@u.washington.edu; rubinj@u.washington.edu FU NIH [R01-DC007525, P30-DC004661]; NIH training grant [F31-DC009755, T32-DC005361]; Advanced Bionics Corp. FX This research was supported by NIH grants R01-DC007525, P30-DC004661, NIH training grants F31-DC009755 (JHW), and T32-DC005361 (NSI), as well as by an educational fellowship from Advanced Bionics Corp. Jeff Longnion programmed the original Schroeder-phase discrimination test. CR ARNESEN AR, 1978, J COMP NEUROL, V178, P661, DOI 10.1002/cne.901780405 Brittan-Powell E., 2005, ACOUST SOC AM, V117, P2467 Clark P, 2009, IEEE T SIGNAL PROCES, V57, P4323, DOI 10.1109/TSP.2009.2025107 COVER T. M., 1991, WILEY SERIES TELECOM Dayan P., 2001, THEORETICAL NEUROSCI VANSTEVENINCK RD, 1995, PHILOS T R SOC B, V348, P321 Dooling RJ, 2002, J ACOUST SOC AM, V112, P748, DOI 10.1121/1.1494447 Dooling RJ, 2001, HEARING RES, V152, P159, DOI 10.1016/S0378-5955(00)00249-5 Dorman Michael F., 1996, Journal of the Acoustical Society of America, V99, P1174, DOI 10.1121/1.414600 Drennan WR, 2010, HEARING RES, V262, P1, DOI 10.1016/j.heares.2010.02.003 Drennan WR, 2008, JARO-J ASSOC RES OTO, V9, P138, DOI 10.1007/s10162-007-0107-6 Firszt J.B., 2003, HIRESOLUTION SOUND P Gfeller K., 2002, COCHLEAR IMPLANTS IN, V3, P31, DOI DOI 10.1002/CII.50 Ghitza O, 2001, J ACOUST SOC AM, V110, P1628, DOI 10.1121/1.1396325 Gilbert G, 2006, J ACOUST SOC AM, V119, P2438, DOI 10.1121/1.2173522 Green D. M., 1966, SIGNAL DETECTION THE Grewe J., 2007, PLOS ONE, V2 HAMMING RW, 1950, AT&T TECH J, V29, P147 Heinz MG, 2009, JARO-J ASSOC RES OTO, V10, P407, DOI 10.1007/s10162-009-0169-8 Heinz MG, 2001, NEURAL COMPUT, V13, P2273, DOI 10.1162/089976601750541804 Hopkins K, 2008, J ACOUST SOC AM, V123, P1140, DOI 10.1121/1.2824018 Houghton C, 2008, NEURAL COMPUT, V20, P1495, DOI 10.1162/neco.2007.10-06-350 Hu N, 2010, JARO-J ASSOC RES OTO, V11, P641, DOI 10.1007/s10162-010-0225-4 Huettel LG, 2004, IEEE T BIO-MED ENG, V51, P282, DOI 10.1109/TBME.2003.820395 Imennov NS, 2009, IEEE T BIO-MED ENG, V56, P2493, DOI 10.1109/TBME.2009.2016667 JORIS PX, 1992, J ACOUST SOC AM, V91, P215, DOI 10.1121/1.402757 Jung KH, 2010, ACTA OTO-LARYNGOL, V130, P716, DOI 10.3109/00016480903380521 Kang R, 2009, EAR HEARING, V30, P411, DOI 10.1097/AUD.0b013e3181a61bc0 Koch DB, 2004, AUDIOL NEURO-OTOL, V9, P214, DOI 10.1159/000078391 Kong YY, 2004, EAR HEARING, V25, P173, DOI 10.1097/01.AUD.0000120365.97792.2F Kovacic D, 2009, J ACOUST SOC AM, V126, P762, DOI 10.1121/1.3158855 Kwon BJ, 2006, J ACOUST SOC AM, V120, pEL1, DOI 10.1121/1.2208152 Lauer AM, 2009, JARO-J ASSOC RES OTO, V10, P609, DOI 10.1007/s10162-009-0182-y Li X, 2010, INT CONF ACOUST SPEE, P5462, DOI 10.1109/ICASSP.2010.5494908 LIBERMAN MC, 1984, J COMP NEUROL, V223, P163, DOI 10.1002/cne.902230203 Litvak L.M., 2003, METHOD SYSTEM CONVEY Lorenzi C, 2006, P NATL ACAD SCI USA, V103, P18866, DOI 10.1073/pnas.0607364103 Machens CK, 2001, NEUROCOMPUTING, V38, P263, DOI 10.1016/S0925-2312(01)00382-4 Matsuoka AJ, 2000, HEARING RES, V149, P115, DOI 10.1016/S0378-5955(00)00172-6 MCDERMOTT HJ, 1994, J ACOUST SOC AM, V96, P155, DOI 10.1121/1.410475 Miller CA, 2001, HEARING RES, V151, P79, DOI 10.1016/S0300-2977(00)00082-6 Mino H, 2004, IEEE T BIO-MED ENG, V51, P13, DOI 10.1109/TBME.2003.820383 Moore BCJ, 1996, J ACOUST SOC AM, V100, P2320, DOI 10.1121/1.417941 Moore BCJ, 2008, JARO-J ASSOC RES OTO, V9, P399, DOI 10.1007/s10162-008-0143-x Nelson PB, 2003, J ACOUST SOC AM, V113, P961, DOI 10.1121/1.1531983 Nie K., 2008, OTOHRINOLARYNGOLOGY Nie K, 2008, INT CONF ACOUST SPEE, P4209 Nie KB, 2005, IEEE T BIO-MED ENG, V52, P64, DOI 10.1109/TBME.2004.839799 NIST, 2010, DIG LIB MATH FUNCT R Nobbe A, 2007, ACTA OTO-LARYNGOL, V127, P1266, DOI 10.1080/00016480701253078 PAINTAL AS, 1965, J PHYSIOL-LONDON, V180, P20 PAINTAL AS, 1966, J PHYSIOL-LONDON, V184, P791 Qin MK, 2003, J ACOUST SOC AM, V114, P446, DOI 10.1121/1.1579009 Rieke F., 1997, SPIKES EXPLORING NEU Runge-Samuelson CL, 2004, HEARING RES, V194, P1, DOI 10.1016/j.heares.2004.03.020 RUSHTON WAH, 1951, J PHYSIOL-LONDON, V115, P101 SABERI K, 1995, NATURE, V374, P537, DOI 10.1038/374537a0 SCHROEDE.MR, 1970, IEEE T INFORM THEORY, V16, P85, DOI 10.1109/TIT.1970.1054411 Shannon CE, 1949, MATH THEORY COMMUNIC SHANNON RV, 1992, J ACOUST SOC AM, V91, P2156, DOI 10.1121/1.403807 Sheft S, 2008, J ACOUST SOC AM, V124, P562, DOI 10.1121/1.2918540 Sit JJ, 2007, IEEE T BIO-MED ENG, V54, P138, DOI 10.1109/TBME.2006.883819 Sit JJ, 2008, IEEE PERVAS COMPUT, V7, P40, DOI 10.1109/MPRV.2008.3 Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a Spahr AJ, 2004, ARCH OTOLARYNGOL, V130, P624, DOI 10.1001/archotol.130.5.624 Thomson EE, 2005, NEURAL COMPUT, V17, P741, DOI 10.1162/0899766053429435 TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554 van Rossum MCW, 2001, NEURAL COMPUT, V13, P751 Victor JD, 2005, CURR OPIN NEUROBIOL, V15, P585, DOI 10.1016/j.conb.2005.08.002 White JA, 2000, TRENDS NEUROSCI, V23, P131, DOI 10.1016/S0166-2236(99)01521-0 Wilson BS, 2005, EAR HEARING, V26, p73S, DOI 10.1097/00003446-200508001-00009 WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 Wilson BS, 2008, HEARING RES, V242, P3, DOI 10.1016/j.heares.2008.06.005 Wohlgemuth S, 2007, J NEUROPHYSIOL, V97, P3082, DOI 10.1152/jn.01235.2006 Won JH, 2012, J ACOUST SOC AM, V132, P1113, DOI 10.1121/1.4726013 Xu L, 2003, J ACOUST SOC AM, V114, P3024, DOI 10.1121/1.1623786 Zeng FG, 2005, P NATL ACAD SCI USA, V102, P2293, DOI 10.1073/pnas.0406460102 Zeng FG, 2004, J ACOUST SOC AM, V116, P1351, DOI 10.1121/1.1777938 Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5 NR 79 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD APR PY 2013 VL 298 BP 60 EP 72 DI 10.1016/j.heares.2013.01.004 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 120GP UT WOS:000317159100007 PM 23333260 ER PT J AU Lina, IA Lauer, AM AF Lina, Ioan A. Lauer, Amanda M. TI Rapid measurement of auditory filter shape in mice using the auditory brainstem response and notched noise SO HEARING RESEARCH LA English DT Article ID PSYCHOPHYSICAL TUNING CURVES; FREQUENCY-SELECTIVITY; HEARING THRESHOLDS; CBA/CAJ MICE; MASKING; LEVEL; TONES; KHZ; NONLINEARITIES; SENSITIVITY AB The notched noise method is an effective procedure for measuring frequency resolution and auditory filter shapes in both human and animal models of hearing. Briefly, auditory filter shape and bandwidth estimates are derived from masked thresholds for tones presented in noise containing widening spectral notches. As the spectral notch widens, increasingly less of the noise falls within the auditory filter and the tone becomes more detectible until the notch width exceeds the filter bandwidth. Behavioral procedures have been used for the derivation of notched noise auditory filter shapes in mice; however, the time and effort needed to train and test animals on these tasks renders a constraint on the widespread application of this testing method. As an alternative procedure, we combined relatively non-invasive auditory brainstem response (ABR) measurements and the notched noise method to estimate auditory filters in normal-hearing mice at center frequencies of 8, 11.2, and 16 kHz. A complete set of simultaneous masked thresholds for a particular tone frequency were obtained in about an hour. ABR-derived filter bandwidths broadened with increasing frequency, consistent with previous studies. The ABR notched noise procedure provides a fast alternative to estimating frequency selectivity in mice that is well-suited to high through-put or time-sensitive screening. (C) 2013 Elsevier B.V. All rights reserved. C1 [Lina, Ioan A.; Lauer, Amanda M.] Johns Hopkins Univ, Sch Med, Dept Otolaryngol HNS, Ctr Hearing & Balance, Baltimore, MD 21205 USA. RP Lauer, AM (reprint author), Johns Hopkins Univ, Sch Med, Dept Otolaryngol HNS, Ctr Hearing & Balance, 515 Traylor,720 Rutland Ave, Baltimore, MD 21205 USA. EM alauer2@jhmi.edu FU National Organization for Hearing Research; NIH [DC005211, DC009353] FX This research was supported by the National Organization for Hearing Research and NIH grants DC005211 and DC009353. The funding sources had no role in the study design; data collection, analysis, and interpretation; writing of the report; or the decision to submit the manuscript for publication. We thank Eric Young and Bradford May for discussions regarding the project, and Judy Park and Jessica Stuyvenberg for data collection assistance. CR Allen PD, 2012, J NEUROSCI, V32, P2538, DOI 10.1523/JNEUROSCI.1958-11.2012 BORG E, 1983, ACTA OTO-LARYNGOL, V95, P19, DOI 10.3109/00016488309130911 Chambers AR, 2012, JARO-J ASSOC RES OTO, V13, P209, DOI 10.1007/s10162-011-0306-z Cooper NP, 2006, J PHYSIOL-LONDON, V576, P49, DOI 10.1113/jphysiol.2006.114991 DOOLING RJ, 1985, J COMP PSYCHOL, V99, P226, DOI 10.1037/0735-7036.99.2.226 Dyson ML, 1998, J COMP PHYSIOL A, V182, P695, DOI 10.1007/s003590050214 Finneran JJ, 2002, J ACOUST SOC AM, V112, P322, DOI 10.1121/1.1488652 Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47 Gall MD, 2010, J COMP PHYSIOL A, V196, P559, DOI 10.1007/s00359-010-0543-3 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T GLASBERG BR, 1982, J ACOUST SOC AM, V71, P946, DOI 10.1121/1.387575 Glasberg BR, 2000, J ACOUST SOC AM, V108, P2318, DOI 10.1121/1.1315291 GORGA MP, 1984, J ACOUST SOC AM, V76, P616, DOI 10.1121/1.391158 GREEN DM, 1981, J ACOUST SOC AM, V69, P1758, DOI 10.1121/1.385911 Henry KS, 2010, ANIM BEHAV, V80, P497, DOI 10.1016/j.anbehav.2010.06.012 Henry KS, 2010, FUNCT ECOL, V24, P614, DOI 10.1111/j.1365-2435.2009.01674.x Hicks ML, 1999, J ACOUST SOC AM, V105, P326, DOI 10.1121/1.424526 Jennings SG, 2012, J ACOUST SOC AM, V132, P2497, DOI 10.1121/1.4746029 Joris PX, 2011, P NATL ACAD SCI USA, V108, P17516, DOI 10.1073/pnas.1105867108 Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 Lauer AM, 2009, LAB ANIMAL, V38, P154, DOI 10.1038/laban0509-154 Lauer AM, 2011, JARO-J ASSOC RES OTO, V12, P329, DOI 10.1007/s10162-011-0262-7 Lemmonds D. W., 2012, J ACOUST SOC AM, V132, P1222 Lin J. Y., 1997, J ACOUST SOC AM, V101, P3125 MAREAN GC, 1993, HEARING RES, V71, P125, DOI 10.1016/0378-5955(93)90028-Y May BJ, 2006, J ACOUST SOC AM, V120, P321, DOI 10.1121/1.2203593 May BJ, 2002, HEARING RES, V171, P142, DOI 10.1016/S0378-5955(02)00495-1 MOORE BCJ, 1983, J ACOUST SOC AM, V74, P750, DOI 10.1121/1.389861 NELSON DA, 1990, J ACOUST SOC AM, V88, P2143, DOI 10.1121/1.400111 Ngan EM, 2001, HEARING RES, V156, P44, DOI 10.1016/S0378-5955(01)00264-7 Niemiec A.J., 1990, J ACOUST SOC AM, V88, pS34, DOI 10.1121/1.2028966 Nousak JK, 2005, INT J AUDIOL, V44, P331, DOI 10.1080/14992020500060891 Oxenham AJ, 2006, J ACOUST SOC AM, V119, P444, DOI 10.1121/1.2141359 PATTERSO.RD, 1974, J ACOUST SOC AM, V55, P802, DOI 10.1121/1.1914603 Patterson R.D., 1982, J ACOUST SOC AM, V72, P1788 PENNER MJ, 1972, J MATH PSYCHOL, V9, P286, DOI 10.1016/0022-2496(72)90019-3 Popov VV, 1997, J ACOUST SOC AM, V102, P3795, DOI 10.1121/1.420142 Radziwon KE, 2009, J COMP PHYSIOL A, V195, P961, DOI 10.1007/s00359-009-0472-1 Rosen S, 1998, J ACOUST SOC AM, V103, P2539, DOI 10.1121/1.422775 ROSEN S, 1992, J ACOUST SOC AM, V92, P773, DOI 10.1121/1.403946 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 Ruggero MA, 2005, P NATL ACAD SCI USA, V102, P18614, DOI 10.1073/pnas.0509323102 Satheesh SV, 2012, HUM MOL GENET, V21, P3896, DOI 10.1093/hmg/dds217 Shera CA, 2002, P NATL ACAD SCI USA, V99, P3318, DOI 10.1073/pnas.032675099 Song L, 2008, JARO-J ASSOC RES OTO, V9, P464, DOI 10.1007/s10162-008-0140-0 Song L., 2007, J NEUROPHYSIOL, V99, P344, DOI 10.1152/jn.00983.2007 Stamataki S, 2006, HEARING RES, V221, P104, DOI 10.1016/j.heares.2006.07.014 STAPELLS DR, 1995, EAR HEARING, V16, P361, DOI 10.1097/00003446-199508000-00003 Stapells DR, 1997, AUDIOL NEURO-OTOL, V2, P257 Stapells DR, 2000, J SPEECH LANGUAGE PA, V42, P74 SUGA N, 1976, J COMP PHYSIOL, V106, P111 Tyler R.S., 1984, J ACOUST SOC AM, V81, P1566 Unoki M, 2006, J ACOUST SOC AM, V120, P1474, DOI 10.1121/1.2228539 VANZANTEN GA, 1984, AUDIOLOGY, V23, P253 Walter M., 2012, OPEN J ACOUST, V2, P34 WEBER DL, 1977, J ACOUST SOC AM, V62, P424, DOI 10.1121/1.381542 WENSTRUP JJ, 1984, J COMP PHYSIOL, V155, P91, DOI 10.1007/BF00610934 Yang YM, 2011, J PHYSIOL-LONDON, V589, P4209, DOI 10.1113/jphysiol.2011.208066 ZWISLOCKI J, 1960, J ACOUST SOC AM, V32, P1046, DOI 10.1121/1.1908276 NR 59 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD APR PY 2013 VL 298 BP 73 EP 79 DI 10.1016/j.heares.2013.01.002 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 120GP UT WOS:000317159100008 PM 23347916 ER PT J AU Trujillo, M Carrasco, MM Razak, K AF Trujillo, Michael Carrasco, Maria Magdalena Razak, Khaleel TI Response properties underlying selectivity for the rate of frequency modulated sweeps in the auditory cortex of the mouse SO HEARING RESEARCH LA English DT Article ID SENSORINEURAL HEARING-LOSS; TEMPORAL PROCESSING SPEED; TIME-VARYING STIMULI; INFERIOR COLLICULUS; SOUND DURATION; NEURAL MECHANISMS; VISUAL-CORTEX; COCHLEAR NUCLEUS; PALLID BAT; INHIBITORY MECHANISMS AB This study focused on the response properties underlying selectivity for the rate of frequency modulated (FM) sweeps in the auditory cortex of anesthetized C57b1/6 (C57) mice. Linear downward FM sweeps with rates between 0.08 and 20 kHz/ms were tested. We show that at least two different response properties predict FM rate selectivity: sideband inhibition and duration tuning. Sideband inhibition was determined using the two-tone inhibition paradigm in which excitatory and inhibitory tones were presented with different delays. Sideband inhibition was present in the majority (88%, n = 53) of neurons. The spectrotemporal properties of sideband inhibition predicted rate selectivity and exclusion of the sideband from the sweep reduced/eliminated rate tuning. The second property predictive of sweep rate selectivity was duration tuning for tones. Theoretically, if a neuron is selective for the duration that a sweep spends in the excitatory frequency tuning curve, then rate selectivity will ensue. Duration tuning for excitatory tones was present and predicted rate selectivity in similar to 34% of neurons (n = 97). Both sideband inhibition and duration tuning predicted rate selectivity equally well, but sideband inhibition was present in a larger percentage of neurons suggesting that it is the dominant mechanism in the C57 mouse auditory cortex. Similar mechanisms shape sweep rate selectivity in the auditory system of bats and mice and movement-velocity selectivity in the visual system, suggesting similar solutions to analogous problems across sensory systems. This study provides baseline data on basic spectrotemporal processing in the C57 strain for elucidation of changes that occur in presbycusis. (C) 2013 Elsevier B.V. All rights reserved. C1 Univ Calif Riverside, Neurosci Program, Riverside, CA 92521 USA. [Razak, Khaleel] Univ Calif Riverside, Dept Psychol, Riverside, CA 92521 USA. RP Razak, K (reprint author), Univ Calif Riverside, Dept Psychol, 900 Univ Ave, Riverside, CA 92521 USA. EM khaleel@ucr.edu FU Deafness Research Foundation; University of California, Riverside FX We thank the members of the Razak lab for useful discussions of the data and Dr. Peter Hickmott for feedback on an earlier version of the paper. Funding for this study was provided by the Deafness Research Foundation and University of California, Riverside. CR Atencio CA, 2007, J NEUROPHYSIOL, V98, P2182, DOI 10.1152/jn.00394.2007 Atencio CA, 2008, J NEUROSCI, V28, P3897, DOI 10.1523/JNEUROSCI.5366-07.2008 Barkat TR, 2011, NAT NEUROSCI, V14, P1189, DOI 10.1038/nn.2882 Brand A, 2000, J NEUROPHYSIOL, V84, P1790 Brosch M, 1997, J NEUROPHYSIOL, V77, P923 Brown TA, 2009, J NEUROPHYSIOL, V101, P2017, DOI 10.1152/jn.90931.2008 CALFORD MB, 1995, J NEUROPHYSIOL, V73, P1876 Caspary DM, 2008, J EXP BIOL, V211, P1781, DOI 10.1242/jeb.013581 Casseday JH, 2000, J NEUROPHYSIOL, V84, P1475 CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341 Chen GD, 1998, HEARING RES, V122, P142, DOI 10.1016/S0378-5955(98)00103-8 Cruikshank SJ, 2001, NEUROSCIENCE, V105, P553, DOI 10.1016/S0306-4522(01)00226-3 DUYSEN J, 1985, VISION RES, V25, P171, DOI 10.1016/0042-6989(85)90110-5 DUYSENS J, 1985, J NEUROPHYSIOL, V54, P1068 Duysens J, 1996, VISION RES, V36, P3243, DOI 10.1016/0042-6989(96)00040-5 Ehrlich D, 1997, J NEUROPHYSIOL, V77, P2360 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H Felsheim C, 1996, HEARING RES, V98, P137, DOI 10.1016/0378-5955(96)00078-0 FENG AS, 1990, PROG NEUROBIOL, V34, P313, DOI 10.1016/0301-0082(90)90008-5 Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3 Fuzessery ZM, 1996, J NEUROPHYSIOL, V76, P1059 Fuzessery ZM, 1999, HEARING RES, V137, P137, DOI 10.1016/S0378-5955(99)00133-1 Fuzessery ZM, 2006, J NEUROPHYSIOL, V96, P1320, DOI 10.1152/jn.00021.2006 Galazyuk AV, 1997, J COMP PHYSIOL A, V180, P301, DOI 10.1007/s003590050050 Galindo-Leon EE, 2009, NEURON, V62, P705, DOI 10.1016/j.neuron.2009.05.001 Gittelman JX, 2011, J NEUROPHYSIOL, V106, P2399, DOI 10.1152/jn.00250.2011 Gittelman JX, 2011, J NEUROSCI, V31, P2576, DOI 10.1523/JNEUROSCI.5112-10.2011 Godey B, 2005, J NEUROPHYSIOL, V94, P1299, DOI 10.1152/jn.00950.2004 GOOLER DM, 1992, J NEUROPHYSIOL, V67, P1 Gordon M, 1998, HEARING RES, V122, P97, DOI 10.1016/S0378-5955(98)00087-2 Hall DA, 2000, HUM BRAIN MAPP, V10, P107, DOI 10.1002/1097-0193(200007)10:3<107::AID-HBM20>3.0.CO;2-8 Happel MFK, 2010, J NEUROSCI, V30, P11114, DOI 10.1523/JNEUROSCI.0689-10.2010 Harper NS, 2004, NATURE, V430, P682, DOI 10.1038/nature02768 He JF, 1997, J NEUROSCI, V17, P2615 HEIL P, 1992, HEARING RES, V63, P135, DOI 10.1016/0378-5955(92)90081-W HENRY KR, 1980, AUDIOLOGY, V19, P369 Holmstrom LA, 2010, J NEUROSCI, V30, P802, DOI 10.1523/JNEUROSCI.1964-09.2010 HUNTER KP, 1987, HEARING RES, V30, P207, DOI 10.1016/0378-5955(87)90137-7 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 Kaur S, 2005, NEUROSCIENCE, V134, P1033, DOI 10.1016/j.neuroscience.2005.04.052 Lee HJ, 2002, HEARING RES, V174, P64, DOI 10.1016/S0378-5955(02)00639-1 Linden JF, 2003, J NEUROPHYSIOL, V90, P2660, DOI 10.1152/jn.00751.2002 Linden JF, 2003, CEREB CORTEX, V13, P83, DOI 10.1093/cercor/13.1.83 Liu RC, 2006, BRAIN RES, V1091, P217, DOI 10.1016/j.brainres.2006.02.030 del Campo HNM, 2012, HEARING RES, V294, P31, DOI 10.1016/j.heares.2012.08.017 Mataga N, 2001, J NEUROSCI, V21, P9724 MCMULLEN NT, 1993, BRAIN RES, V620, P317, DOI 10.1016/0006-8993(93)90173-K MENDELSON JR, 1985, BRAIN RES, V327, P331, DOI 10.1016/0006-8993(85)91530-6 Mendelson JR, 2001, HEARING RES, V158, P84, DOI 10.1016/S0378-5955(01)00294-5 Mendelson JR, 2004, HEARING RES, V191, P21, DOI 10.1016/j.heares.2004.01.010 MENDELSON JR, 1993, EXP BRAIN RES, V94, P65 MIDDLEBROOKS JC, 1983, J NEUROSCI, V3, P203 MIKAELIAN DO, 1979, LARYNGOSCOPE, V89, P1 Miller LM, 2001, NEURON, V32, P151, DOI 10.1016/S0896-6273(01)00445-7 MOLLER AR, 1974, J ACOUST SOC AM, V55, P631, DOI 10.1121/1.1914574 Morishita H, 2010, SCIENCE, V330, P1238, DOI 10.1126/science.1195320 Nelken I, 2000, EUR J NEUROSCI, V12, P549, DOI 10.1046/j.1460-9568.2000.00935.x Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 O'Connor DH, 2009, NATURE, V461, P923, DOI 10.1038/nature08539 Ohl FW, 1999, LEARN MEMORY, V6, P347 Ouda L, 2008, EXP GERONTOL, V43, P782, DOI 10.1016/j.exger.2008.04.001 PATEL HH, 1978, J PHYSIOL-LONDON, V284, pP113 PHILLIPS DP, 1985, EXP BRAIN RES, V58, P443 POON PWF, 1991, EXP BRAIN RES, V83, P598 Razak KA, 2009, J NEUROPHYSIOL, V102, P1366, DOI 10.1152/jn.00334.2009 Razak KA, 2006, J NEUROPHYSIOL, V96, P1303, DOI 10.1152/jn.00020.2006 Razak KA, 2008, J NEUROSCI, V28, P9806, DOI 10.1523/JNEUROSCI.1293-08.2008 Razak KA, 2005, J NEUROPHYSIOL, V94, P3573, DOI 10.1152/jn.00816.2004 Ricketts C, 1998, HEARING RES, V123, P27, DOI 10.1016/S0378-5955(98)00086-0 RUGGERO MA, 1992, J NEUROPHYSIOL, V68, P1087 Sadagopan S, 2010, J NEUROSCI, V30, P7314, DOI 10.1523/JNEUROSCI.5072-09.2010 SHAMMA SA, 1993, J NEUROPHYSIOL, V69, P367 SHOFNER WP, 1985, J NEUROPHYSIOL, V54, P917 Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 Stiebler I, 1997, J COMP PHYSIOL A, V181, P559, DOI 10.1007/s003590050140 SUGA N, 1965, NATURE, V206, P890, DOI 10.1038/206890a0 Sugiyama S, 2008, CELL, V134, P508, DOI 10.1016/j.cell.2008.05.054 Sutter ML, 2003, J NEUROPHYSIOL, V90, P2629, DOI 10.1152/jn.00722.2002 Syka J, 2005, HEARING RES, V206, P177, DOI 10.1016/j.heares.2005.01.013 Taberner AM, 2005, J NEUROPHYSIOL, V93, P557, DOI 10.1152/jn.00574.2004 Tian B., 1994, SURGERY, V71 Tian B, 2004, J NEUROPHYSIOL, V92, P2993, DOI 10.1152/jn.00472.2003 Trujillo M, 2011, J NEUROPHYSIOL, V106, P2825, DOI 10.1152/jn.00480.2011 Washington SD, 2008, J NEUROPHYSIOL, V100, P3285, DOI 10.1152/jn.90442.2008 Wehr M, 2005, NEURON, V47, P437, DOI 10.1016/j.neuron.2005.06.009 Wetzel W, 1998, BEHAV BRAIN RES, V91, P29, DOI 10.1016/S0166-4328(97)00099-5 WHITFIEL.IC, 1965, J NEUROPHYSIOL, V28, P655 WILLOTT JF, 1986, J NEUROPHYSIOL, V56, P391 WILLOTT JF, 1993, J COMP NEUROL, V329, P402, DOI 10.1002/cne.903290310 Wu GK, 2008, NEURON, V58, P132, DOI 10.1016/j.neuron.2008.01.035 Zhang LI, 2003, NATURE, V424, P201, DOI 10.1038/nature01796 ZURITA P, 1994, NEUROSCI RES, V19, P303, DOI 10.1016/0168-0102(94)90043-4 NR 93 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2013 VL 298 BP 80 EP 92 DI 10.1016/j.heares.2012.12.013 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 120GP UT WOS:000317159100009 PM 23340378 ER PT J AU Grondin, Y Cotanche, DA Manneberg, O Molina, R Trevino-Villarreal, JH Sepulveda, R Clifford, R Bortoni, ME Forsberg, S LaBrecque, B Altshul, L Brain, JD Jackson, RL Rogers, RA AF Grondin, Yohann Cotanche, Douglas A. Manneberg, Otto Molina, Ramon Trevino-Villarreal, J. Humberto Sepulveda, Rosalinda Clifford, Royce Bortoni, Magda E. Forsberg, Scott LaBrecque, Brian Altshul, Larisa Brain, Joseph D. Jackson, Ronald L. Rogers, Rick A. TI Pulmonary delivery of D-methionine is associated with an increase in ALCAR and glutathione in cochlear fluids SO HEARING RESEARCH LA English DT Article ID INDUCED HEARING-LOSS; ACETYL-L-CARNITINE; INDUCED OTOTOXICITY; N-ACETYLCYSTEINE; ACOUSTIC TRAUMA; DRUG-DELIVERY; FREE-RADICALS; L-CYSTEINE; INNER-EAR; IN-VIVO AB In animals, hearing loss resulting from cochlear mechanosensory cell damage can be mitigated by antioxidants such as D-methionine (D-met) and acetyl-L-carnitine (ALCAR). The systemic routes of administration of these compounds, that must of necessity transit trough the cochlear fluids, may affect the antioxidant levels in the cochlea and the resulting oto-protective effect. In this study, we analyzed the pharmacokinetics of [C-14]D-met in the cochlea and four other tissues after intratracheal (IT), intranasal (IN), and oral by gavage (OG) administration and compared it to intravenous administration (IV). We then analyzed the effect of these four routes on the antioxidant content of the cochlear fluids after D-met or ALCAR administration, by liquid chromatography/mass spectrometry. Our results showed that the concentration of methionine and ALCAR in cochlear fluids significantly increased after their respective systemic administration. Interestingly, D-met administration also contributed to an increase of ALCAR. Our results also showed that the delivery routes differently affected the bioavailability of administered [C-14]D-met as well as the concentrations of methionine, ALCAR and the ratio of oxidized to reduced glutathione. Overall, pulmonary delivery via IT administration achieved high concentrations of methionine, ALCAR, and oxidative-related metabolites in cochlear fluids, in some cases surpassing IV administration, while IN route appeared to be the least efficacious. To our knowledge, this is the first report of the direct measurements of antioxidant levels in cochlear fluids after their systemic administration. This report also demonstrates the validity of the pulmonary administration of antioxidants and highlights the different contributions of D-met and ALCAR allowing to further investigate their impact on oxidative stress in the cochlear microenvironment. (C) 2013 Elsevier B.V. All rights reserved. C1 [Grondin, Yohann; Cotanche, Douglas A.; Molina, Ramon; Trevino-Villarreal, J. Humberto; Sepulveda, Rosalinda; Clifford, Royce; Bortoni, Magda E.; Forsberg, Scott; LaBrecque, Brian; Altshul, Larisa; Brain, Joseph D.; Rogers, Rick A.] Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Mol & Integrat Physiol Sci Program, Boston, MA 02115 USA. [Manneberg, Otto] Sci Life Lab, S-17121 Solna, Sweden. [Clifford, Royce; Jackson, Ronald L.] USN, Med Ctr, Dept Otolaryngol Head & Neck Surg, San Diego, CA 92134 USA. RP Rogers, RA (reprint author), Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Mol & Integrat Physiol Sci Program, 665 Huntington Ave, Boston, MA 02115 USA. EM rogers@hsph.harvard.edu RI Manneberg, Otto/O-7012-2014 OI Manneberg, Otto/0000-0002-4720-2756 FU Office of Naval Research [N000140911104]; Hellmuth Hertz Foundation FX The authors would like to gratefully acknowledge funding from the Office of Naval Research, award# N000140911104 awarded to Dr. Rogers. O.M. acknowledges funding from the Hellmuth Hertz Foundation. The authors would also like to gratefully thank Tom Donaghey for his assistance with the rat assays. We also would like to thank Martin Slade for a critical review of the statistical methodology. CR Alagic Z, 2011, ACTA OTO-LARYNGOL, V131, P802, DOI 10.3109/00016489.2011.564652 Ballatori N, 2009, MOL ASPECTS MED, V30, P13, DOI 10.1016/j.mam.2008.08.004 Bielefeld EC, 2007, ACTA OTO-LARYNGOL, V127, P914, DOI 10.1080/00016480601110188 Bivas-Benita M, 2005, EUR J PHARM BIOPHARM, V61, P214, DOI 10.1016/j.ejpb.2005.04.009 Borchers H.W., 2012, PRACMA PRACTICAL NUM Brain JD, 2007, DIABETES TECHNOL THE, V9, pS4, DOI 10.1089/dia.2007.0228 Burrin DG, 2007, CURR OPIN CLIN NUTR, V10, P63, DOI 10.1097/MCO.0b013e3280115d36 BYRON PR, 1994, J AEROSOL MED, V7, P49, DOI 10.1089/jam.1994.7.49 Campbell K, 2011, HEARING RES, V282, P138, DOI 10.1016/j.heares.2011.08.003 Campbell KCM, 2007, HEARING RES, V226, P92, DOI 10.1016/j.heares.2006.11.012 Choi WS, 2001, P NATL ACAD SCI USA, V98, P11103, DOI 10.1073/pnas.201413798 Circu ML, 2008, FREE RADICAL RES, V42, P689, DOI 10.1080/10715760802317663 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 Clifford RE, 2011, OTOLARYNG HEAD NECK, V145, P999, DOI 10.1177/0194599811414496 Coleman JKM, 2007, HEARING RES, V226, P104, DOI 10.1016/j.heares.2006.08.008 DENEKE SM, 1989, AM J PHYSIOL, V257, pL163 Dever JT, 2006, DRUG METAB DISPOS, V34, P2036, DOI 10.1124/dmd.106.012104 Evans AM, 2003, CLIN PHARMACOKINET, V42, P941, DOI 10.2165/00003088-200342110-00002 Ewert DL, 2012, HEARING RES, V285, P29, DOI 10.1016/j.heares.2012.01.013 Fox J, 2011, R COMPANION APPL REG FREEMAN DM, 1994, HEARING RES, V79, P197, DOI 10.1016/0378-5955(94)90141-4 Goo MJ, 2012, ARCH PHARM RES, V35, P145, DOI 10.1007/s12272-012-0116-9 Gunes D, 2011, CHEMOTHERAPY, V57, P186, DOI 10.1159/000323621 Halsted C.H., 2012, INT J HEPATOL, V2012 Hasegawa H, 2005, J NUTR, V135, P2001 HOFFMAN DW, 1987, HEARING RES, V31, P217, DOI 10.1016/0378-5955(87)90190-0 Hothorn T, 2008, BIOMETRICAL J, V50, P346, DOI 10.1002/bimj.200810425 Jackson R., 2012, ASS RES OTOLARYNGOLO, V35, P729 Jeulin C, 1996, HUM REPROD UPDATE, V2, P87, DOI 10.1093/humupd/2.2.87 Kopke R, 2005, ACTA OTO-LARYNGOL, V125, P235, DOI 10.1080/00016480410023038 Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3 Kopke RD, 2002, LARYNGOSCOPE, V112, P1515, DOI 10.1097/00005537-200209000-00001 Kopke RD, 2007, HEARING RES, V226, P114, DOI 10.1016/j.heares.2006.10.008 Krajcovicova-Kudlackova M, 2000, PHYSIOL RES, V49, P399 Kramer S, 2006, J AM ACAD AUDIOL, V17, P265, DOI 10.3766/jaaa.17.4.5 Labiris NR, 2003, BRIT J CLIN PHARMACO, V56, P588, DOI 10.1046/j.1365-2125.2003.01892.x Lin CY, 2010, HEARING RES, V269, P42, DOI 10.1016/j.heares.2010.07.005 Monostori P, 2009, J CHROMATOGR B, V877, P3331, DOI 10.1016/j.jchromb.2009.06.016 Naviaux RK, 2008, CANCER BIOL THER, V7, P1191 Newman S.P, 2004, AM J DRUG DELIV, V2, P101, DOI 10.2165/00137696-200402020-00003 Obeid R, 2006, FEBS LETT, V580, P2994, DOI 10.1016/j.febslet.2006.04.088 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 Op de Beeck Ken, 2011, Hear Res, V281, P18, DOI 10.1016/j.heares.2011.07.002 Patton John S, 2004, Proc Am Thorac Soc, V1, P338, DOI 10.1513/pats.200409-049TA Patton JS, 2007, NAT REV DRUG DISCOV, V6, P67, DOI 10.1038/nrd2153 PIERSON MG, 1981, HEARING RES, V4, P79, DOI 10.1016/0378-5955(81)90037-X Pinheiro J, 2012, NLME LINEAR NONLINEA Poirrier AL, 2010, CURR MED CHEM, V17, P3591 Pollard K. S., 2012, MULTTEST RESAMPLING Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4 R Core Team, 2012, R LANG ENV STAT COMP Rani PJA, 2001, EXP GERONTOL, V36, P1713, DOI 10.1016/S0531-5565(01)00116-4 Rebouche CJ, 2004, ANN NY ACAD SCI, V1033, P30, DOI 10.1196/annals.1320.003 REBOUCHE CJ, 1980, BIOCHIM BIOPHYS ACTA, V630, P22, DOI 10.1016/0304-4165(80)90133-6 Rebrin I, 2008, ADV DRUG DELIVER REV, V60, P1545, DOI 10.1016/j.addr.2008.06.001 Rybak LP, 2007, HEARING RES, V226, P157, DOI 10.1016/j.heares.2006.09.015 Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4 Shi XR, 2011, HEARING RES, V282, P10, DOI 10.1016/j.heares.2011.08.006 SILVERMAN BW, 1981, J ROY STAT SOC B MET, V43, P97 Southern Illinois University; Department of Defense, 2011, PHAS 2 CLIN TRIAL D Vaz FM, 2002, BIOCHEM J, V361, P417, DOI 10.1042/0264-6021:3610417 VOGT W, 1995, FREE RADICAL BIO MED, V18, P93, DOI 10.1016/0891-5849(94)00158-G Vuyyuri SB, 2008, CLIN CANCER RES, V14, P2161, DOI 10.1158/1078-0432.CCR-07-1954 Vyas TK, 2006, CRIT REV THER DRUG, V23, P319 Wu GY, 2004, J NUTR, V134, P489 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 Yamashita D, 2005, NEUROSCIENCE, V134, P633, DOI 10.1016/j.neuroscience.2005.04.015 NR 67 TC 2 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2013 VL 298 BP 93 EP 103 DI 10.1016/j.heares.2012.12.011 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 120GP UT WOS:000317159100010 PM 23296212 ER PT J AU Mulders, WHAM Robertson, D AF Mulders, W. H. A. M. Robertson, D. TI Development of hyperactivity after acoustic trauma in the guinea pig inferior colliculus SO HEARING RESEARCH LA English DT Article ID DORSAL COCHLEAR NUCLEUS; SPONTANEOUS NEURAL ACTIVITY; THRESHOLD SHIFT; TINNITUS; CHINCHILLAS; PATTERNS; EXPOSURE AB The time of onset of hyperactivity (increased spontaneous firing rates) was investigated by single neuron recording in the inferior colliculus (IC) of guinea pigs subjected to unilateral acoustic trauma (exposure to a loud 10 kHz tone). Hyperactivity was present by 12 h post acoustic trauma whereas data obtained within approximately 4 h of the cessation of acoustic trauma found no evidence of hyperactivity. These data suggest that hyperactivity in the IC begins at some time between 4 and 12 h post trauma and is a relatively rapid plastic event beginning within hours rather than days post cochlear trauma. This is consistent with results reported in the cat auditory cortex (Norena and Eggermont, 2003). Hyperactivity did not show any further systematic increase between 12 h and up to 2 weeks post acoustic trauma. At recovery times of 12 and 24 h hyperactivity was widespread across most regions of the IC but at longer recovery times, it became progressively more restricted to ventral regions corresponding to the regions of the cochlea where there was persistent damage. (C) 2012 Elsevier B.V. All rights reserved. C1 [Mulders, W. H. A. M.; Robertson, D.] Univ Western Australia, Auditory Lab, Sch Anat Physiol & Human Biol, Crawley, WA 6009, Australia. RP Robertson, D (reprint author), Univ Western Australia, Auditory Lab, Sch Anat Physiol & Human Biol, M311,35 Stirling Highway, Crawley, WA 6009, Australia. EM don.robertson@uwa.edu.au FU Action on Hearing Loss (UK); Medical Health and Research Infrastructure Fund (WA); Neurotrauma Research Program; University of Western Australia FX Supported by grants from Action on Hearing Loss (UK), the Medical Health and Research Infrastructure Fund (WA), the Neurotrauma Research Program and the University of Western Australia. The authors are grateful to an anonymous referee of an earlier paper for raising the central issue addressed in this work. CR Bauer CA, 2008, J NEUROSCI RES, V86, P2564, DOI 10.1002/jnr.21699 Brozoski TJ, 2007, HEARING RES, V228, P168, DOI 10.1016/j.heares.2007.02.003 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 CODY AR, 1980, HEARING RES, V3, P3, DOI 10.1016/0378-5955(80)90004-0 Dong SY, 2010, EUR J NEUROSCI, V31, P1616, DOI 10.1111/j.1460-9568.2010.07183.x JOHNSTONE JR, 1979, J ACOUST SOC AM, V65, P254, DOI 10.1121/1.382244 Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038 Kaltenbach JA, 2005, HEARING RES, V206, P200, DOI 10.1016/j.heares.2005.02.013 Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6 Kaltenbach JA, 2008, AM J AUDIOL, V17, pS148, DOI 10.1044/1059-0889(2008/08-0004) Komiya H, 2000, ACTA OTO-LARYNGOL, V120, P750 LIBERMAN MC, 1984, HEARING RES, V16, P33, DOI 10.1016/0378-5955(84)90023-6 Manzoor NF, 2013, HEARING RES, V295, P114, DOI 10.1016/j.heares.2012.04.003 Moore BCJ, 2010, HEARING RES, V261, P51, DOI 10.1016/j.heares.2010.01.003 Mulders WHAM, 2009, NEUROSCIENCE, V164, P733, DOI 10.1016/j.neuroscience.2009.08.036 Mulders WHAM, 2011, NEUROSCIENCE, V192, P753, DOI 10.1016/j.neuroscience.2011.06.046 Mulders WHAM, 2011, J COMP NEUROL, V519, P2637, DOI 10.1002/cne.22644 Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156 Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9 Robertson D., 2013, HEARING RES, V295, P114 SALVI RJ, 1978, EXP BRAIN RES, V32, P301 Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1 Vogler DP, 2011, J NEUROSCI, V31, P6639, DOI 10.1523/JNEUROSCI.6538-10.2011 NR 23 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2013 VL 298 BP 104 EP 108 DI 10.1016/j.heares.2012.12.008 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 120GP UT WOS:000317159100011 PM 23276730 ER PT J AU Saoji, AA Landsberger, DM Padilla, M Litvak, LM AF Saoji, Aniket A. Landsberger, David M. Padilla, Monica Litvak, Leonid M. TI Masking patterns for monopolar and phantom electrode stimulation in cochlear implants SO HEARING RESEARCH LA English DT Article ID MASKED EXCITATION PATTERNS; ELECTRICAL-STIMULATION; PITCH DISCRIMINATION; TUNING CURVES; HEARING; USERS; RECIPIENTS; LISTENERS; CHANNELS; MANIPULATIONS AB Phantom electrode (PE) stimulation consists of out-of-phase stimulation of two electrodes. When presented at the apex of the electrode array, phantom stimulation is known to produce a lower pitch sensation than monopolar (MP) stimulation on the most apical electrode. The ratio of the current between the primary electrode (PEL) and the compensating electrode (CEL) is represented by the coefficient sigma, which ranges from 0 (monopolar) to 1 (full bipolar). The exact mechanism by which PE stimulation produces a lower pitch sensation is unclear. In the present study, unmasked and masked thresholds were obtained using a forward masking paradigm to estimate the spread of current for MP and PE stimulation. Masked thresholds were measured for two phantom electrode configurations (1) PEL = 4, CEL = 5 (lower pitch phantom) and (2) PEL = 4, CEL = 3 (higher pitch phantom). The unmasked thresholds were subtracted from the masked thresholds to obtain masking patterns which were normalized to their peak. The masking patterns reveal (1) differences in the spread of excitation that are consistent with the direction of pitch shift produced by PE stimulation, and (2) narrower spread of electrical excitation for PE stimulation relative to MP stimulation. (C) 2013 Elsevier B.V. All rights reserved. C1 [Saoji, Aniket A.; Litvak, Leonid M.] Adv Bion LLC, Res & Technol Grp, Valencia, CA 91355 USA. [Landsberger, David M.; Padilla, Monica] House Ear Res Inst, Los Angeles, CA 90057 USA. RP Saoji, AA (reprint author), Adv Bion LLC, Res & Technol Grp, 28515 Westinghouse Pl, Valencia, CA 91355 USA. EM AniketS@advancedbionics.com; DLandsberger@hei.org; MPadilla@hei.org; LeonidL@advancedbionics.com FU NIDCD [R01-DC12152, R01-DC-001526, R03-DC-010064] FX The authors would like to thank the cochlear implant patients for their patience and participation in this study. This work was supported by NIDCD Grants R01-DC12152, R01-DC-001526, and R03-DC-010064. CR Berenstein CK, 2008, EAR HEARING, V29, P250 Boex C, 2003, J ACOUST SOC AM, V114, P2058, DOI 10.1121/1.1610452 Bonham B.H., 2008, HEAR RES Chatterjee M, 1998, J ACOUST SOC AM, V103, P2565, DOI 10.1121/1.422777 Chatterjee M, 2006, JARO-J ASSOC RES OTO, V7, P15, DOI 10.1007/s10162-005-0019-2 Cohen L T, 1996, Audiol Neurootol, V1, P278 Cohen LT, 2001, HEARING RES, V155, P63, DOI 10.1016/S0378-5955(01)00248-9 Dingemanse JG, 2006, EAR HEARING, V27, P645, DOI 10.1097/01.aud.0000246683.29611.1b Donaldson GS, 2005, J ACOUST SOC AM, V118, P623, DOI 10.1121/1.1937362 Dorman MF, 1997, AM J OTOL, V18, pS113 Dorman MF, 1998, EAR HEARING, V19, P162, DOI 10.1097/00003446-199804000-00008 Firszt JB, 2007, OTOL NEUROTOL, V28, P629, DOI 10.1097/01.mao.0000281803.36574.bc Girzon G., 1987, THESIS MIT MA Hibbert DB, 2001, J ELECTROCHEM SOC, V148, pE1, DOI 10.1149/1.1344543 Hughes ML, 2009, J ACOUST SOC AM, V125, P247, DOI 10.1121/1.3035842 Koch DB, 2007, EAR HEARING, V28, p38S, DOI 10.1097/AUD.0b013e31803150de Kwon BJ, 2006, J ACOUST SOC AM, V119, P2994, DOI 10.1121/1.2184128 Kwon BJ, 2006, J ACOUST SOC AM, V120, pEL1, DOI 10.1121/1.2208152 Landsberger D, 2011, J ACOUST SOC AM, V130, P1559, DOI 10.1121/1.3613938 Landsberger DM, 2012, HEARING RES, V284, P16, DOI 10.1016/j.heares.2011.12.009 Landsberger DM, 2009, HEARING RES, V254, P34, DOI 10.1016/j.heares.2009.04.007 LIM HH, 1989, J ACOUST SOC AM, V86, P971, DOI 10.1121/1.398732 Litvak LM, 2007, J ACOUST SOC AM, V122, P967, DOI 10.1121/1.2749414 Macherey O, 2012, J ACOUST SOC AM, V131, P2225, DOI 10.1121/1.3677260 Macherey O, 2011, JARO-J ASSOC RES OTO, V12, P233, DOI 10.1007/s10162-010-0248-x MCDERMOTT HJ, 1994, J ACOUST SOC AM, V96, P155, DOI 10.1121/1.410475 MOORE BCJ, 1978, J ACOUST SOC AM, V63, P524, DOI 10.1121/1.381752 NELSON DA, 1984, J ACOUST SOC AM, V75, P1570, DOI 10.1121/1.390866 Pfingst BE, 1997, HEARING RES, V112, P247, DOI 10.1016/S0378-5955(97)00122-6 ROM DM, 1990, BIOMETRIKA, V77, P663, DOI 10.1093/biomet/77.3.663 Saoji AA, 2010, EAR HEARING, V31, P693, DOI 10.1097/AUD.0b013e3181e1d15e SHANNON RV, 1983, HEARING RES, V12, P1, DOI 10.1016/0378-5955(83)90115-6 Skinner MW, 2007, ANN OTO RHINOL LARYN, V116, P2 Srinivasan AG, 2010, HEARING RES, V270, P89, DOI 10.1016/j.heares.2010.09.004 TONG YC, 1986, J ACOUST SOC AM, V79, P1958, DOI 10.1121/1.393203 TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554 Tykocinski M, 2005, OTOL NEUROTOL, V26, P948, DOI 10.1097/01.mao.0000185056.99888.f3 Wilson B., 1994, 7 Q PROGR REPORT SPE Wilson B.S., 1993, COCHLEAR IMPLANTS AU, P35 NR 39 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2013 VL 298 BP 109 EP 116 DI 10.1016/j.heares.2012.12.006 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 120GP UT WOS:000317159100012 PM 23299125 ER PT J AU Zenner, HP Vonthein, R Zenner, B Leuchtweis, R Plontke, SK Torka, W Pogge, S Birbaumer, N AF Zenner, Hans-Peter Vonthein, Reinhard Zenner, Birgit Leuchtweis, Regina Plontke, Stefan K. Torka, Waldemar Pogge, Sandra Birbaumer, Niels TI Standardized tinnitus-specific individual cognitive-behavioral therapy: A controlled outcome study with 286 tinnitus patients SO HEARING RESEARCH LA English DT Article ID RETRAINING THERAPY; MANAGEMENT; SENSITIZATION; ANNOYANCE; MODEL AB Background: Pharmacological treatment of tinnitus cannot be considered well established. Thus, reducing tinnitus severity through behavioral therapy is emerging as a key goal. Methods: A total of 286 patients suffering from persistent and stable tinnitus for four months or longer participated in this controlled clinical multicenter study. The study investigated the efficacy and safety of a standardized treatment involving individual cognitive-behavioral therapy (CBT). Controls were 120 patients waiting to be treated. Therapy was standardized using manualized procedures within the setting of a specifically designed disease management program. The primary outcome measure was the tinnitus change score using an 8-point numeric verbal rating scale. Secondary outcome measures were tinnitus severity as determined by the tinnitus questionnaire score as well as the tinnitus loudness score and the tinnitus annoyance score using 6- and 8-point numeric verbal rating scales, respectively. Following a significant multivariate rank test, these four validated outcome measures were tested in the order given. Results: The primary outcome measure, tinnitus change score, showed an efficacy of treatment with an odds ratio of 3.4 (95% confidence interval, 2.6-4.5). Of the treated patients, 84% showed a tinnitus change score improvement, but only 22% of controls did. The secondary outcome measures of tinnitus questionnaire score, loudness score, and annoyance score improved in the treatment group significantly more than in the control group. In the therapy group, the tinnitus questionnaire score was reduced by 50% from a median of 27 to 13.5; in the control group, no change in median tinnitus questionnaire score was observed. The multivariate endpoint of the primary and secondary outcome measures differed significantly (P < 0.0001) between treatment and control groups. The same was true when univariate scores were considered. Conclusions: A structured tinnitus-specific CBT using standardized tinnitus-specific interventions can be an effective individual therapy for the treatment of patients suffering from tinnitus for at least 4 months. The trial was registered at the ClinicalTrials.gov registry (ID: NCT 00719940). (C) 2012 Published by Elsevier B.V. C1 [Zenner, Hans-Peter; Torka, Waldemar] Univ Tubingen, Med Ctr, Dept Otolaryngol Head & Neck Surg, D-72076 Tubingen, Germany. [Vonthein, Reinhard] Univ Tubingen, Dept Med Biometry, D-72076 Tubingen, Germany. [Zenner, Birgit; Leuchtweis, Regina] Univ Lubeck, Tubingen, Germany. [Plontke, Stefan K.] Halle Univ, Med Ctr, Dept Otolaryngol Head & Neck Surg, Halle, Germany. [Pogge, Sandra] Frankfurt Head Clin, Frankfurt, Germany. [Birbaumer, Niels] Univ Tubingen, Med Ctr, Dept Med Psychol & Behav Neurobiol, D-72076 Tubingen, Germany. [Birbaumer, Niels] Univ Halle, Halle, Germany. [Birbaumer, Niels] Osped San Camillo, IRCCS Inst Ricovero & Curo Carattere Sci, Venice, Italy. RP Zenner, HP (reprint author), Univ Tubingen, Med Ctr, Dept Otolaryngol Head & Neck Surg, Elfriede Aulhorn Str 5, D-72076 Tubingen, Germany. EM hans-peter.zenner@med.uni-tuebingen.de FU Ministry of Research and Technology (BMFT, Project "Deutsches Kompetenznetz Tinnitus"); Mediceon FX The study was supported by grants from the Ministry of Research and Technology (BMFT, Project "Deutsches Kompetenznetz Tinnitus") and from Mediceon. CR [Anonymous], 1996, ICH GUIDELINES GOOD [Anonymous], 1998, ICH GUIDELINES GOOD [Anonymous], 2000, ICH GUIDELINES GOOD AXELSSON A, 1989, British Journal of Audiology, V23, P53, DOI 10.3109/03005368909077819 Birbaumer N., 1993, STRUCTURE EMOTION Caffier PP, 2006, EAR HEARING, V27, P619, DOI 10.1097/01.aud.0000240504.77861.1a Conrad A, 2007, J ANXIETY DISORD, V21, P243, DOI 10.1016/j.janxdis.2006.08.001 Delb W, 2002, HNO, V50, P997, DOI 10.1007/s00106-002-0645-5 Delb W., 2002, TINNITUS Deshaies P., 2011, BURDEN DIS ENV NOISE, P71 Dobie RA, 2003, OTOLARYNG CLIN N AM, V36, P383, DOI 10.1016/S0030-6665(02)00168-8 Dobie RA, 1999, LARYNGOSCOPE, V109, P1202, DOI 10.1097/00005537-199908000-00004 Fritsche G., 1997, PSYCHOL BEHANDLUNG C, P111 General Considerations for Clinical Trials, 1997, ICH GUIDELINES GOOD Georgiewa P, 2006, MED HYPOTHESES, V66, P592, DOI 10.1016/j.mehy.2005.08.050 GOEBEL G, 1994, HNO, V42, P166 HALLAM RS, 1988, BRIT J CLIN PSYCHOL, V27, P213 Hallam RS, 2004, INT J AUDIOL, V43, P218, DOI 10.1080/14992020400050030 HALLAM RS, 1985, ACTA OTO-LARYNGOL, V99, P501 Heller AJ, 2003, OTOLARYNG CLIN N AM, V36, P239, DOI 10.1016/S0030-6665(02)00160-3 Hofmann SG, 2007, J CONSULT CLIN PSYCH, V75, P374, DOI 10.1037/0022-006X.75.3.374 JAKES SC, 1985, AUDIOLOGY, V24, P195 Jastreboff MM, 2007, PROG BRAIN RES, V166, P435, DOI 10.1016/S0079-6123(07)66042-7 JASTREBOFF PJ, 1993, BRIT J AUDIOL, V27, P7, DOI 10.3109/03005369309077884 JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 Jastreboff PJ, 1999, BRIT J AUDIOL, V33, P68 Jastreboff PJ, 2007, PROG BRAIN RES, V166, P415, DOI 10.1016/S0079-6123(07)66040-3 KRONERHERWIG B, 1995, J PSYCHOSOM RES, V39, P153, DOI 10.1016/0022-3999(94)00098-P Kroner-Herwig B, 2003, J PSYCHOSOM RES, V54, P381, DOI 10.1016/S0022-3999(02)00400-2 Martinez-Devesa P., 2010, COCHRANE LIB, V9, P1 Mazurek B, 2006, MED HYPOTHESES, V67, P892, DOI 10.1016/j.mehy.2006.03.040 Moller AR, 2003, OTOLARYNG CLIN N AM, V36, P249, DOI 10.1016/S003-6665(02)00170-6 Noble N., 2007, INT J AUDIOL, V46, P569 Overmier JB, 2002, SCAND J PSYCHOL, V43, P105 PREYER S, 1995, HNO, V43, P338 Rauschecker JP, 2010, NEURON, V66, P819, DOI 10.1016/j.neuron.2010.04.032 Roberts LE, 2010, J NEUROSCI, V30, P14972, DOI 10.1523/JNEUROSCI.4028-10.2010 Tonndorf J., 1977, T SECT OTOLARYNGOL A, V66, P475 Tyler R.S., 1981, CIBA F S, V85, P136 Wittkowski KM, 2004, STAT MED, V23, P1579, DOI 10.1002/sim.1778 Zachriat Claudia, 2004, Cognitive Behaviour Therapy, V33, P187, DOI 10.1080/16506070410029568 Zenner HP, 2005, ACTA OTO-LARYNGOL, V125, P1184, DOI 10.1080/00016480510012282 Zenner HP, 2006, OTOL NEUROTOL, V27, P1054, DOI 10.1097/01.mao.0000231604.64079.77 Zenner H.P., 1994, HOREN Zenner H.P., 2005, HNO PRAXIS HEUTE, V25, P105 Zenner H.-P, 1996, P711 Zenner H.P., 1998, INT TINNITUS J, V4, P109 NR 47 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2013 VL 298 BP 117 EP 125 DI 10.1016/j.heares.2012.11.013 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 120GP UT WOS:000317159100013 PM 23287811 ER PT J AU Song, J Wang, WB Carr, CE Dai, ZD Tang, YZ AF Song, Jing Wang, Wenbo Carr, Catherine E. Dai, Zhendong Tang, Yezhong TI Vestibular nuclei characterized by calcium-binding protein immunoreactivity and tract tracing in Gekko gecko SO HEARING RESEARCH LA English DT Article ID HEN GALLUS-DOMESTICUS; VARANUS-EXANTHEMATICUS; COMPARATIVE MORPHOLOGY; CONDUCTION-VELOCITY; SYNAPTIC ENDINGS; MONITOR LIZARD; BRAIN-STEM; SYSTEM; CONNECTIONS; AFFERENTS AB Immunohistochemical techniques were used to describe the distribution of the calcium binding proteins calretinin, calbindin and parvalbumin as well as synaptic vesicle protein 2 in the vestibular nuclei of the Tokay gecko (Gekko gecko). In addition, tract tracing was used to investigate connections between the vestibular nerves and brainstem nuclei. Seven vestibular nuclei were recognized: the nuclei cerebellaris lateralis (Cerl), vestibularis dorsolateralis (Vedl), ventrolateralis (Vevl), ventromedialis (Vevm), tangentialis (Vetg), ovalis (VeO) and descendens (Veds). Vestibular fibers entered the brainstem with the ascending branch projecting to Vedl and Cerl, the lateral descending branch to Veds, and the medial descending branch to ipsilateral Vevl. Cerl lay most rostral, in the cerebellar peduncle. Vedl, located rostrally, was ventral to the cerebellar peduncle, and consisted of loosely arranged multipolar and monopolar cells. Vevl was found at the level of the vestibular nerve root and contained conspicuously large cells and medium-sized cells. Veds is a large nucleus, the most rostral portion of which is situated lateral and ventral to Vevl, and occupies much of the dorsal brainstem extending caudally through the medulla. VeO is a spherically shaped cell group lateral to the auditory nucleus magnocellularis and dorsal to the caudal part of Vevl. Vevm and Vetg were small in the present study. Except for VeO, all other vestibular nuclei appear directly comparable to counterparts in other reptiles and birds based on their location, cytoarchitecture, and connections, indicating these are conserved features of the vestibular system. (C) 2012 Elsevier B.V. All rights reserved. C1 [Song, Jing; Tang, Yezhong] Chinese Acad Sci, Dept Herpetol, Chengdu Inst Biol, Chengdu 610041, Sichuan, Peoples R China. [Wang, Wenbo; Dai, Zhendong] Nanjing Univ Aeronaut & Astronaut, Nanjing 210016, Jiangsu, Peoples R China. [Carr, Catherine E.] Univ Maryland, Dept Biol, College Pk, MD 20742 USA. RP Tang, YZ (reprint author), Chinese Acad Sci, Dept Herpetol, Chengdu Inst Biol, 9 Sect 4,Renmin Nan Rd, Chengdu 610041, Sichuan, Peoples R China. EM tangyz@cib.ac.cn FU Chinese Academy of Sciences 'Bairenjihua' [KSCX2-YW-R-077]; National Natural Science Foundation of China (NSFC) [61175105]; NIH [DC00436, P30 DC0466] FX We thank all members of the Behavioral Neuroscience Group for their advice and help with this study. Moreover, we gratefully acknowledge Kai Yan and Wen-ru Liang for assistance with histology, Steven E. Brauth for a great help with improvements of manuscript. We also thank the two anonymous referees and the editor for their critical comments and suggestions. This work was supported by grants from Chinese Academy of Sciences 'Bairenjihua' KSCX2-YW-R-077 to Yezhong Tang, by the National Natural Science Foundation of China (NSFC) 61175105 to Wenbo Wang, by NIH DC00436 to Catherine E. Carr, and by NIH P30 DC0466 to the University of Maryland Center for the Evolutionary Biology of Hearing. CR Aerts P, 2000, NETH J ZOOL, V50, P261, DOI 10.1163/156854200505865 Autumn K, 2002, INTEGR COMP BIOL, V42, P1081, DOI 10.1093/icb/42.6.1081 Baizer JS, 2005, EXP BRAIN RES, V164, P78, DOI 10.1007/s00221-004-2211-8 BANGMA GC, 1983, J COMP NEUROL, V220, P453 BARBASHENRY HA, 1988, J COMP NEUROL, V267, P387, DOI 10.1002/cne.902670308 BARBASHENRY HA, 1988, J COMP NEUROL, V277, P234, DOI 10.1002/cne.902770206 Barmack NH, 2003, BRAIN RES BULL, V60, P511, DOI 10.1016/S0361-9230(03)00055-8 BAUMERT M, 1989, EMBO J, V8, P379 BAURLE J, 1994, NEUROSCI LETT, V167, P85, DOI 10.1016/0304-3940(94)91033-2 Belekhova M G, 2004, Dokl Biol Sci, V399, P451, DOI 10.1007/s10630-005-0009-x Belekhova MG, 2008, J EVOL BIOCHEM PHYS+, V44, P354, DOI 10.1134/S0022093008030125 Braun K, 1990, Prog Histochem Cytochem, V21, P1 BRODAL A, 1957, J ANAT, V91, P438 Brodal A, 1972, Prog Brain Res, V37, P31, DOI 10.1016/S0079-6123(08)63892-3 CELIO MR, 1990, NEUROSCIENCE, V35, P375, DOI 10.1016/0306-4522(90)90091-H Christensen-Dalsgaard J, 2011, J NEUROPHYSIOL, V105, P1992, DOI 10.1152/jn.00004.2011 COX RG, 1990, J COMP NEUROL, V297, P564, DOI 10.1002/cne.902970409 CULLHEIM S, 1979, J COMP NEUROL, V188, P679, DOI 10.1002/cne.901880410 DEMEMES D, 1993, CELL TISSUE RES, V274, P487, DOI 10.1007/BF00314545 Desai SS, 2005, J NEUROPHYSIOL, V93, P251, DOI 10.1152/jm.00746.2003 Desai SS, 2005, J NEUROPHYSIOL, V93, P267, DOI 10.1152/jn.00747.2003 Dickman JD, 1996, J COMP NEUROL, V367, P110 Donkelaar H., 1983, ANAT EMBRYOL, V168, P277, DOI 10.1007/BF00315822 Donkelaar H.J., 1987, ADV ANATOMY EMBRYOLO, P1 ELLIS JH, 1991, CELL TISSUE RES, V264, P197, DOI 10.1007/BF00313956 FOSTER RE, 1978, J COMP NEUROL, V178, P783, DOI 10.1002/cne.901780412 Hack N.J., 2000, J NEUROSCI, V20, P1 Hursh JB, 1939, AM J PHYSIOL, V127, P131 Jusufi A, 2008, P NATL ACAD SCI USA, V105, P4215, DOI 10.1073/pnas.0711944105 Kern A, 2009, BRAIN BEHAV EVOLUT, V73, P102, DOI 10.1159/000213646 Kevetter GA, 1997, J COMP NEUROL, V386, P317 Kevetter GA, 1996, J COMP NEUROL, V365, P575 Lohmann C, 1996, J COMP NEUROL, V367, P90, DOI 10.1002/(SICI)1096-9861(19960325)367:1<90::AID-CNE7>3.0.CO;2-E PEUSNER KD, 1980, DEV NEUROSCI-BASEL, V3, P266, DOI 10.1159/000112398 PEUSNER KD, 1984, J COMP NEUROL, V230, P372, DOI 10.1002/cne.902300306 PEUSNER KD, 1981, NEUROSCIENCE, V6, P2335, DOI 10.1016/0306-4522(81)90021-X Popratiloff A, 2007, J COMP NEUROL, V502, P19, DOI 10.1002/cne.21273 RAJAKUMAR N, 1993, BRAIN RES, V607, P47, DOI 10.1016/0006-8993(93)91488-E RAMPRASHAD F, 1986, ACTA OTO-LARYNGOL, P1 Raymond J, 1993, Acta Otolaryngol Suppl, V503, P114 ROGERS JH, 1987, J CELL BIOL, V105, P1343, DOI 10.1083/jcb.105.3.1343 ROGERS JH, 1989, NEUROSCIENCE, V31, P697, DOI 10.1016/0306-4522(89)90434-X Sadjadpour K, 1968, J Hirnforsch, V10, P299 SANS A, 1986, BRAIN RES, V364, P190, DOI 10.1016/0006-8993(86)91003-6 Schwab M.E., 1979, BIOL REPTILIA, V10, P201 SCHWARZ DWF, 1986, ACTA OTO-LARYNGOL, V102, P463, DOI 10.3109/00016488609119432 Straka H, 2003, J NEUROPHYSIOL, V90, P3501, DOI 10.1152/jn.00372.2003 TAKAHASHI TT, 1987, J NEUROSCI, V7, P1843 Tang YZ, 2001, COPEIA, P248 Tellegen AJ, 2001, BRAIN BEHAV EVOLUT, V58, P205, DOI 10.1159/000057564 Walberg F, 1972, Prog Brain Res, V37, P585, DOI 10.1016/S0079-6123(08)63934-5 WOLD JE, 1978, J COMP NEUROL, V179, P393, DOI 10.1002/cne.901790209 WOLD JE, 1979, ARCH ITAL BIOL, V117, P30 WOLD JE, 1979, EXP BRAIN RES, V34, P217 WOLD JE, 1976, ANAT EMBRYOL, V149, P29, DOI 10.1007/BF00315083 Yan K, 2010, J COMP NEUROL, V518, P3409, DOI 10.1002/cne.22428 Zaaf A, 2001, ZOOMORPHOLOGY, V121, P45, DOI 10.1007/s004350100044 NR 57 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2013 VL 296 BP 1 EP 12 DI 10.1016/j.heares.2012.11.011 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 101FW UT WOS:000315761600001 PM 23201031 ER PT J AU Zhao, XY Sun, JL Hu, YJ Yang, Y Zhang, WJ Hu, Y Li, J Sun, Y Zhong, Y Peng, W Zhang, HL Kong, WJ AF Zhao, Xue-Yan Sun, Jin-Li Hu, Yu-Juan Yang, Yang Zhang, Wen-Juan Hu, Yuan Li, Jun Sun, Yu Zhong, Yi Peng, Wei Zhang, Hong-Lian Kong, Wei-Jia TI The effect of overexpression of PGC-1 alpha on the mtDNA4834 common deletion in a rat cochlear marginal cell senescence model SO HEARING RESEARCH LA English DT Article ID MITOCHONDRIAL TRANSCRIPTION FACTOR; NUCLEAR RESPIRATORY FACTORS; STRIA VASCULARIS; HEARING-LOSS; INNER-EAR; GENE-EXPRESSION; TEMPORAL BONE; DNA DELETION; PRESBYCUSIS; COACTIVATOR AB Aging is a natural process usually defined as a progressive loss of function with an accumulation of senescent cells. The clinical manifestations of this process include age-related hearing loss (AHL)/presbycusis. Several investigations indicated the association between a mitochondrial common deletion (CD) (mtDNA 4977-bp deletion in humans, corresponding to 4834-bp deletion in rats) and presbycusis. Previous researches have shown that peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha) is a key regulator of mitochondrial biogenesis and energy metabolism. However, the expression of PGC-1 alpha in the inner ear and the possible effect of PGC-1 alpha on presbycusis are not clear. Our data demonstrated the distribution of PGC-1 alpha and its downstream transcription factors nuclear respiratory factor-1 (NRF-1), mitochondrial transcription factor A (Tfam) and nuclear factor kappa B (NF-kappa B) in marginal cells (MCs) for the first time. To explore the role of PGC-1 alpha in cellular senescence, we established a model of marginal cell senescence harboring the mtDNA4834 common deletion induced by D-galactose. We also found that PGC-1 alpha and its downstream transcription factors compensatorily increased in our cell senescence model. Furthermore, the overexpression of PGC-1 alpha induced by transfection largely increased the expression levels of NRF-1 and TFAM and significantly decreased the expression level of NF-kappa B in the cell senescence model. And the levels of CD, senescent cells and apoptotic cells in the cell model decreased after PGC-1 alpha overexpression. These results suggested that PGC-1 alpha might protect MCs in this cell model from senescence through a nuclear-mitochondrial interaction and against apoptosis. Our study may shed light on the pathogenesis of presbycusis and provide a new therapeutic target for presbycusis. (C) 2012 Elsevier B.V. All rights reserved. C1 [Zhao, Xue-Yan; Sun, Jin-Li; Hu, Yu-Juan; Yang, Yang; Zhang, Wen-Juan; Hu, Yuan; Li, Jun; Sun, Yu; Zhong, Yi; Peng, Wei; Kong, Wei-Jia] Huazhong Univ Sci & Technol, Dept Otolaryngol, Union Hosp, Tongji Med Coll, Wuhan 430022, Peoples R China. [Zhang, Hong-Lian] Huazhong Univ Sci & Technol, Dept Prevent Med & Publ Hlth, Union Hosp, Tongji Med Coll, Wuhan 430022, Peoples R China. [Kong, Wei-Jia] Huazhong Univ Sci & Technol, Inst Otorhinolaryngol, Union Hosp, Tongji Med Coll, Wuhan 430022, Peoples R China. [Kong, Wei-Jia] Minist Educ, Key Lab Neurol Dis, Beijing, Peoples R China. RP Kong, WJ (reprint author), Huazhong Univ Sci & Technol, Dept Otolaryngol, Union Hosp, Tongji Med Coll, Wuhan 430022, Peoples R China. EM zhl_bjk@whuh.com; entwjkong@yahoo.com.cn FU Major State Basic Research Development Program of China (973 program) [2011CB504504]; National Nature Science Foundation of China [30730094, 81230021, 81000409]; Nature Science Foundation of Hubei Province [2010CDB08005] FX This study was supported by grants from the Major State Basic Research Development Program of China (973 program; No. 2011CB504504), the National Nature Science Foundation of China (No. 30730094, 81230021 and 81000409) and the Nature Science Foundation of Hubei Province (No. 2010CDB08005). CR Adler AS, 2007, GENE DEV, V21, P3244, DOI 10.1101/gad.1588507 Alvarez-Guardia D, 2010, CARDIOVASC RES, V87, P449, DOI 10.1093/cvr/cvq080 Bai U, 1997, AM J OTOL, V18, P449 Beinke S, 2004, BIOCHEM J, V382, P393 Bielefeld EC, 2010, HEARING RES, V264, P98, DOI 10.1016/j.heares.2009.09.001 Blagosklonny MV, 2010, AGING-US, V2, P111 Bonawitz ND, 2006, MOL CELL, V24, P813, DOI 10.1016/j.molcel.2006.11.024 Itahana Koji, 2007, Methods Mol Biol, V371, P21 Cannino G, 2007, MITOCHONDRION, V7, P359, DOI 10.1016/j.mito.2007.07.001 Chen B, 2010, BRAIN RES, V1344, P43, DOI 10.1016/j.brainres.2010.04.082 Chetty C, 2008, CANCER RES, V68, P4736, DOI 10.1158/0008-5472.CAN-07-6612 Choi YS, 2002, BBA-GENE STRUCT EXPR, V1574, P200, DOI 10.1016/S0167-4781(01)00361-X Collado M, 2005, NATURE, V436, P642, DOI 10.1038/436642a CUATRECA.P, 1966, SCIENCE, V153, P549, DOI 10.1126/science.153.3735.549 DAVIS H, 1958, AM J PHYSIOL, V195, P251 Du ZD, 2012, HEARING RES, V287, P15, DOI 10.1016/j.heares.2012.04.012 ERMINI M, 1976, GERONTOLOGY, V22, P301 Finck BN, 2006, J CLIN INVEST, V116, P615, DOI 10.1172/JCI27794 FischelGhodsian N, 1997, HEARING RES, V110, P147, DOI 10.1016/S0378-5955(97)00077-4 GOPALAKRISHNAN L, 1995, J BIOL CHEM, V270, P18019 Handschin C, 2006, ENDOCR REV, V27, P728, DOI 10.1210/er.2006-0037 HAYFLICK L, 1961, EXP CELL RES, V25, P585, DOI 10.1016/0014-4827(61)90192-6 Jeyapalan JC, 2008, MECH AGEING DEV, V129, P467, DOI 10.1016/j.mad.2008.04.001 Kelly DP, 2004, GENE DEV, V18, P357, DOI 10.1101/gad.1177604 Kim HN, 1996, ACTA OTO-LARYNGOL, V116, P805, DOI 10.3109/00016489609137930 Knutti D, 2001, TRENDS ENDOCRIN MET, V12, P360, DOI 10.1016/S1043-2760(01)00457-X Kong WJ, 2006, BIOCHEM BIOPH RES CO, V344, P425, DOI 10.1016/j.bbrc.2006.03.060 Kong WJ, 2006, EXP GERONTOL, V41, P628, DOI 10.1016/j.exger.2006.04.008 Labuzek K, 2010, PHARMACOL REP, V62, P827 Lin JD, 2005, CELL METAB, V1, P361, DOI 10.1016/j.cmet.2005.05.004 MELICHAR I, 1992, HEARING RES, V62, P89, DOI 10.1016/0378-5955(92)90205-2 MELICHAR I, 1991, EUR ARCH OTO-RHINO-L, V248, P358 Mendelev N, 2011, MITOCHONDRION, V11, P76, DOI 10.1016/j.mito.2010.07.007 Nicklas JA, 2004, ENVIRON MOL MUTAGEN, V44, P313, DOI 10.1002/em.20050 Nikolaidou-Neokosmidou V, 2006, BIOCHEM J, V398, P439, DOI 10.1042/BJ20060169 Ohlemiller KK, 2010, JARO-J ASSOC RES OTO, V11, P605, DOI 10.1007/s10162-010-0228-1 Ohlemiller KK, 2009, BRAIN RES, V1277, P70, DOI 10.1016/j.brainres.2009.02.079 Ohlemiller KK, 2006, HEARING RES, V220, P10, DOI 10.1016/j.heares.2006.06.012 Puigserver P, 1998, CELL, V92, P829, DOI 10.1016/S0092-8674(00)81410-5 Puigserver P, 2003, ENDOCR REV, V24, P78, DOI 10.1210/er.2002-0012 Puigserver P, 2005, INT J OBESITY, V29, pS5, DOI 10.1038/sj.ijo.0802905 RAREY KE, 1989, HEARING RES, V38, P277, DOI 10.1016/0378-5955(89)90071-3 Scarpulla RC, 2008, PHYSIOL REV, V88, P611, DOI 10.1152/physrev.00025.2007 Scarpulla RC, 2006, J CELL BIOCHEM, V97, P673, DOI 10.1002/jcb.20743 Scarpulla RC, 2008, ANN NY ACAD SCI, V1147, P321, DOI 10.1196/annals.1427.006 Schilling-Toth B, 2011, MUTAT RES-FUND MOL M, V716, P33, DOI 10.1016/j.mrfmmm.2011.07.018 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 SCHUKNEC.HF, 1974, LARYNGOSCOPE, V84, P1777 SCHUKNECHT HF, 1964, ARCHIV OTOLARYNGOL, V80, P369 Sen R, 2010, CSH PERSPECT BIOL, V2, DOI 10.1101/cshperspect.a000257 Song X, 1999, MECH AGEING DEV, V108, P239, DOI 10.1016/S0047-6374(99)00022-6 Spicer SS, 2005, HEARING RES, V205, P225, DOI 10.1016/j.heares.2005.03.022 Terman Alexei, 2005, Heart Lung Circ, V14, P107, DOI 10.1016/j.hlc.2004.12.023 Ueda N, 1998, LARYNGOSCOPE, V108, P580, DOI 10.1097/00005537-199804000-00022 VERMA IM, 1995, GENE DEV, V9, P2723, DOI 10.1101/gad.9.22.2723 VIRBASIUS CMA, 1993, GENE DEV, V7, P2431, DOI 10.1101/gad.7.12a.2431 VIRBASIUS JV, 1994, P NATL ACAD SCI USA, V91, P1309, DOI 10.1073/pnas.91.4.1309 Wu ZD, 1999, CELL, V98, P115, DOI 10.1016/S0092-8674(00)80611-X Zhong Y, 2011, FEBS J, V278, P2500, DOI 10.1111/j.1742-4658.2011.08176.x NR 59 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2013 VL 296 BP 13 EP 24 DI 10.1016/j.heares.2012.11.007 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 101FW UT WOS:000315761600002 PM 23159434 ER PT J AU Kuriki, S Kobayashi, Y Kobayashi, T Tanaka, K Uchikawa, Y AF Kuriki, Shinya Kobayashi, Yusuke Kobayashi, Takanari Tanaka, Keita Uchikawa, Yoshinori TI Steady-state MEG responses elicited by a sequence of amplitude-modulated short tones of different carrier frequencies SO HEARING RESEARCH LA English DT Article ID HUMAN AUDITORY-CORTEX; OCTAVE ILLUSION; BINAURAL INTERACTION; NEURAL MECHANISMS; EVOKED-RESPONSES; MAGNETIC-FIELD; MIDDLE LATENCY; NORMAL-HEARING; PHASE-LOCKING; ORGANIZATION AB The auditory steady-state response (ASSR) is a weak potential or magnetic response elicited by periodic acoustic stimuli with a maximum response at about a 40-Hz periodicity. In most previous studies using amplitude-modulated (AM) tones of stimulus sound, long lasting tones of more than 10 s in length were used. However, characteristics of the ASSR elicited by short AM tones have remained unclear. In this study, we examined magnetoencephalographic (MEG) ASSR using a sequence of sinusoidal AM tones of 0.78 s in length with various tone frequencies of 440-990 Hz in about one octave variation. It was found that the amplitude of the ASSR was invariant with tone frequencies when the level of sound pressure was adjusted along an equal-loudness curve. The amplitude also did not depend on the existence of preceding tone or difference in frequency of the preceding tone. When the sound level of AM tones was changed with tone frequencies in the same range of 440-990 Hz, the amplitude of ASSR varied in a proportional manner to the sound level. These characteristics are favorable for the use of ASSR in studying temporal processing of auditory information in the auditory cortex. The lack of adaptation in the ASSR elicited by a sequence of short tones may be ascribed to the neural activity of widely accepted generator of magnetic ASSR in the primary auditory cortex. (C) 2012 Elsevier B.V. All rights reserved. C1 [Kuriki, Shinya] Tokyo Denki Univ, Res Inst Sci & Technol, Adachi Ku, Tokyo 120855, Japan. [Kobayashi, Yusuke; Kobayashi, Takanari; Tanaka, Keita; Uchikawa, Yoshinori] Tokyo Denki Univ, Sch Sci & Engn, Hatoyama, Saitama 3500394, Japan. RP Kuriki, S (reprint author), Tokyo Denki Univ, Res Inst Sci & Technol, Adachi Ku, Tokyo 120855, Japan. EM skuriki@rcat.dendai.ac.jp FU Ministry of Education, Science and Culture of Japan [B23300169, 07H012] FX Part of this work was supported by Grants-in-Aid for Scientific Research (B23300169) and Strategic Research Project (07H012) for Private University from the Ministry of Education, Science and Culture of Japan. We thank Asuka Otsuka of the National Institute of Advanced Industrial Science and Technology, Osaka for valuable discussions. CR Ahveninen J, 2006, P NATL ACAD SCI USA, V103, P14608, DOI 10.1073/pnas.0510480103 Bartlett EL, 2005, J NEUROPHYSIOL, V94, P83, DOI 10.1152/jn.01124.2004 Budd TW, 1998, INT J PSYCHOPHYSIOL, V31, P51, DOI 10.1016/S0167-8760(98)00040-3 DEUTSCH D, 1975, J ACOUST SOC AM, V57, P1156, DOI 10.1121/1.380573 DEUTSCH D, 1974, NATURE, V251, P307, DOI 10.1038/251307a0 Eggermont JJ, 2002, J NEUROPHYSIOL, V87, P305 Engelien A, 2000, HEARING RES, V148, P153, DOI 10.1016/S0378-5955(00)00148-9 Fujiki N, 2002, J NEUROSCI, V22, P1 Fullerton BC, 2007, J COMP NEUROL, V504, P470, DOI 10.1002/cne.21432 Gabriel D, 2004, HEARING RES, V197, P55, DOI 10.1016/j.heares.2004.07.015 GALABURDA A, 1980, J COMP NEUROL, V190, P597, DOI 10.1002/cne.901900312 GALAMBOS R, 1981, P NATL ACAD SCI-BIOL, V78, P2643, DOI 10.1073/pnas.78.4.2643 GALAMBOS R, 1982, ANN NY ACAD SCI, V388, P722, DOI 10.1111/j.1749-6632.1982.tb50841.x Hackett TA, 2001, J COMP NEUROL, V441, P197, DOI 10.1002/cne.1407 Herdman AT, 2002, BRAIN TOPOGR, V15, P69, DOI 10.1023/A:1021470822922 Jaaskelainen IP, 2004, P NATL ACAD SCI USA, V101, P6809, DOI 10.1073/pnas.0303760101 JOHNSON B W, 1988, Brain Topography, V1, P117, DOI 10.1007/BF01129176 JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982 JORIS PX, 1992, J ACOUST SOC AM, V91, P215, DOI 10.1121/1.402757 Kaneko K, 2003, HEARING RES, V183, P1, DOI 10.1016/S0378-5955(03)00186-2 Krishna BS, 2000, J NEUROPHYSIOL, V84, P255 Kuriki S, 2006, J NEUROSCI, V26, P4046, DOI 10.1523/JNEUROSCI.3907-05.2006 Kuriki S, 1995, HEARING RES, V92, P47, DOI 10.1016/0378-5955(95)00195-6 Lamminmaki S, 2000, NEUROREPORT, V11, P1469, DOI 10.1097/00001756-200005150-00021 Lamminmaki S, 2012, J ACOUST SOC AM, V132, P1747, DOI 10.1121/1.4740474 LEE YS, 1984, BRAIN, V107, P115, DOI 10.1093/brain/107.1.115 Lins OG, 1996, EAR HEARING, V17, P81, DOI 10.1097/00003446-199604000-00001 MAKELA JP, 1987, ELECTROEN CLIN NEURO, V66, P539, DOI 10.1016/0013-4694(87)90101-5 NAATANEN R, 1988, ELECTROEN CLIN NEURO, V69, P523, DOI 10.1016/0013-4694(88)90164-2 Nishimura T, 2004, ACTA OTO-LARYNGOL, V124, P33, DOI 10.1080/03655230410017634 PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X PANTEV C, 1993, ELECTROEN CLIN NEURO, V88, P389, DOI 10.1016/0168-5597(93)90015-H Pantev C, 1996, HEARING RES, V101, P62, DOI 10.1016/S0378-5955(96)00133-5 Patel AD, 2000, NATURE, V404, P80, DOI 10.1038/35003577 Picton Terence W, 2005, J Am Acad Audiol, V16, P140, DOI 10.3766/jaaa.16.3.3 Presacco A, 2010, CLIN NEUROPHYSIOL, V121, P1540, DOI 10.1016/j.clinph.2010.03.020 PREUSS A, 1990, EXP BRAIN RES, V79, P207 REES A, 1986, HEARING RES, V23, P123, DOI 10.1016/0378-5955(86)90009-2 Reite M, 2009, BIPOLAR DISORD, V11, P371, DOI 10.1111/j.1399-5618.2009.00701.x ROMANI GL, 1982, EXP BRAIN RES, V47, P381 Rosburg T, 2010, EXP BRAIN RES, V205, P559, DOI 10.1007/s00221-010-2391-3 Ross B, 2005, J NEUROPHYSIOL, V94, P4082, DOI 10.1152/jn.00469.2005 Ross B, 2002, HEARING RES, V165, P68, DOI 10.1016/S0378-5955(02)00285-X Ross B, 2003, HEARING RES, V186, P57, DOI 10.1016/S0378-5955(03)00299-5 Ross B, 2000, J ACOUST SOC AM, V108, P679, DOI 10.1121/1.429600 Ross J, 1996, NEUROREPORT, V8, P303, DOI 10.1097/00001756-199612200-00060 Scherf F, 2006, INT J AUDIOL, V45, P281, DOI 10.1080/14992020500485684 SCHREINER CE, 1988, HEARING RES, V32, P49, DOI 10.1016/0378-5955(88)90146-3 Simpson MIG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034668 Soeta Y, 2012, HEARING RES, V287, P67, DOI 10.1016/j.heares.2012.03.006 SPYDELL JD, 1985, ELECTROEN CLIN NEURO, V62, P193, DOI 10.1016/0168-5597(85)90014-0 Steinmann I, 2011, NEUROIMAGE, V54, P495, DOI 10.1016/j.neuroimage.2010.07.064 TANSLEY BW, 1983, J ACOUST SOC AM, V74, P765, DOI 10.1121/1.389864 Thaerig S., 2007, INT J PSYCHOPHYSIOL, V67, P235 Wienbruch C, 2006, NEUROIMAGE, V33, P180, DOI 10.1016/j.neuroimage.2006.06.023 NR 55 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2013 VL 296 BP 25 EP 35 DI 10.1016/j.heares.2012.11.002 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 101FW UT WOS:000315761600003 PM 23174483 ER PT J AU Oishi, N Chen, FQ Zheng, HW Sha, SH AF Oishi, Naoki Chen, Fu-Quan Zheng, Hong-Wei Sha, Su-Hua TI Intra-tympanic delivery of short interfering RNA into the adult mouse cochlea SO HEARING RESEARCH LA English DT Article ID INDUCED HEARING-LOSS; INNER-EAR; DRUG-DELIVERY; GENTAMICIN APPLICATION; NADPH OXIDASE; RAT; OTOTOXICITY; HYDROGEL; PROTECTS; THERAPY AB Trans-tympanic injection into the middle ear has long been the standard for local delivery of compounds in experimental studies. Here we demonstrate the advantages of the novel method of intra-tympanic injection through the otic bone for the delivery of compounds or siRNA into the adult mouse cochlea. First, a fluorescently-conjugated scrambled siRNA probe was applied via intra-tympanic injection into the middle ear cavity and was detected in sensory hair cells and nerve fibers as early as 6 h after the injection. The fluorescent probe was also detected in other cells of the organ of Corti, the lateral wall, and in spiral ganglion cells 48 h after the injection. Furthermore, intra-tympanic delivery of Nox3 siRNA successfully reduced immunofluorescence associated with Nox3 in outer hair cells 72 h after injection by 20%. Drug or siRNA delivery via intra-tympanic injection does not compromise the tympanic membrane or interfere with noise-induced hearing loss, while trans-tympanic injections significantly altered the cochlear response to noise exposure. In summary, intra-tympanic injection through the otic bone into the middle ear cavity provides a promising approach for delivery of compounds or siRNA to cochlear hair cells of adult mice, relevant for the study of mechanisms underlying inner ear insults and, specifically, noise-induced hearing loss. (C) 2012 Elsevier B.V. All rights reserved. C1 [Oishi, Naoki] Univ Michigan, Dept Otolaryngol, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. [Chen, Fu-Quan; Zheng, Hong-Wei; Sha, Su-Hua] Med Univ S Carolina, Dept Pathol & Lab Med, Charleston, SC 29414 USA. RP Sha, SH (reprint author), Med Univ S Carolina, Dept Pathol & Lab Med, Charleston, SC 29414 USA. EM shasu@musc.edu FU National Institute on Deafness and Other Communication Disorders, National Institutes of Health [R01 DC009222]; National Center for Research Resources [C06 RR015455]; [C06 RR014516] FX The research project described was supported by grant R01 DC009222 from the National Institute on Deafness and Other Communication Disorders, National Institutes of Health. This work was partially conducted in the Walton Research Building in renovated space supported by grant C06 RR014516. Some animals used in this study were housed in MUSC CRI animal facilities supported by grant C06 RR015455 from the Extramural Research Facilities Program of the National Center for Research Resources. We thank Dr. Jochen Schacht for his valuable comments on the manuscript. CR Assimakopoulos D, 2003, J LARYNGOL OTOL, V117, P10 Banfi B, 2004, J BIOL CHEM, V279, P46065, DOI 10.1074/jbc.M403046200 Borkholder DA, 2008, CURR OPIN OTOLARYNGO, V16, P472, DOI 10.1097/MOO.0b013e32830e20db Coleman JKM, 2007, HEARING RES, V226, P70, DOI 10.1016/j.heares.2006.05.006 Heydt JL, 2004, HEARING RES, V192, P65, DOI 10.1016/j.heares.2004.01.006 Iwai K, 2006, LARYNGOSCOPE, V116, P529, DOI 10.1097/01.mlg.0000200791.77819.eb Kaur T, 2011, CELL DEATH DIS, V2, DOI 10.1038/cddis.2011.63 Lee KY, 2007, OTOL NEUROTOL, V28, P976 Leidenfrost U, 1976, Laryngol Rhinol Otol (Stuttg), V55, P1005 Liu YH, 2005, MOL THER, V12, P725, DOI 10.1016/j.ymthe.2005.03.021 Maeda Y, 2007, NEUROSCI RES, V58, P250, DOI 10.1016/j.neures.2007.03.006 Mikulec AA, 2009, OTOL NEUROTOL, V30, P131, DOI 10.1097/MAO.0b013e318191bff8 Moneim I A, 1996, J Egypt Public Health Assoc, V71, P243 Mukherjea D, 2008, J NEUROSCI, V28, P13056, DOI 10.1523/JNEUROSCI.1307-08.2008 Mukherjea D, 2010, ANTIOXID REDOX SIGN, V13, P589, DOI 10.1089/ars.2010.3110 Oishi N, 2011, EXPERT OPIN EMERG DR, V16, P235, DOI 10.1517/14728214.2011.552427 Plontke SK, 2007, AUDIOL NEURO-OTOL, V12, P37, DOI 10.1159/000097246 Roehm P, 2007, HEARING RES, V230, P43, DOI 10.1016/j.heares.2007.04.005 Seggas I, 2011, OTOL NEUROTOL, V32, P29, DOI 10.1097/MAO.0b013e3181f7aba3 Tamir S, 2010, J OCCUP MED TOXICOL, V5, DOI 10.1186/1745-6673-5-26 Wagner N, 2005, ACTA OTO-LARYNGOL, V125, P340, DOI 10.1080/00016480510026881 Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3 Xu L, 2010, OTOL NEUROTOL, V31, P1115, DOI 10.1097/MAO.0b013e3181eb32d1 NR 23 TC 4 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2013 VL 296 BP 36 EP 41 DI 10.1016/j.heares.2012.10.011 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 101FW UT WOS:000315761600004 PM 23183031 ER PT J AU Heffner, RS Koay, G Heffner, HE AF Heffner, Rickye S. Koay, Gimseong Heffner, Henry E. TI Hearing in American leaf-nosed bats. IV: The Common vampire bat, Desmodus rotundus SO HEARING RESEARCH LA English DT Article ID BIG BROWN BAT; AUDITORY-NERVE FIBERS; EPTESICUS-FUSCUS; SOUND LOCALIZATION; BEHAVIORAL AUDIOGRAMS; ARTIBEUS-JAMAICENSIS; SPECTRAL CUES; ECHOLOCATION; SENSITIVITY; FRUIT AB We behaviorally determined the audiograms of three Common vampire bats (Phyllostomidae, Desmodus rotundus), a species specialized to exist exclusively on blood. The bats were trained to respond to pure tones in a conditioned suppression/avoidance procedure for a blood reward and a mild punisher for failures to detect the tones. Common vampire bats have a hearing range from 716 Hz to 113 kHz at a level of 60 dB. Their best hearing is at 20 kHz where they are slightly more sensitive than other bats, and they have a second peak of good sensitivity at 71 kHz. They have unusually good sensitivity to low frequencies compared to other bats, but are less sensitive to low frequencies than most mammals. Selective pressures affecting high-frequency hearing in bats and mammals in general are discussed. (C) 2012 Elsevier B.V. All rights reserved. C1 [Heffner, Rickye S.; Koay, Gimseong; Heffner, Henry E.] Univ Toledo, Dept Psychol 948, Toledo, OH 43606 USA. RP Heffner, RS (reprint author), Univ Toledo, Dept Psychol 948, 2801 W Bancroft St, Toledo, OH 43606 USA. EM Rickye.Heffner@utoledo.edu; Gim_Koay@yahoo.com; Henry.Heffner@utoledo.edu FU NIH [R15-DC009321] FX Supported by NIH R15-DC009321. CR Barnard S., 2011, DIET FEEDING ENV HOU, V3 DALLAND JI, 1965, SCIENCE, V150, P1185, DOI 10.1126/science.150.3700.1185 FROST SB, 1994, HEARING RES, V76, P67, DOI 10.1016/0378-5955(94)90088-4 FUZESSERY ZM, 1994, J NEUROPHYSIOL, V72, P1061 FUZESSERY ZM, 1993, J COMP PHYSIOL A, V171, P767, DOI 10.1007/BF00213073 Greenhall A.M., 1988, NATURAL HIST VAMPIRE Greenhall R.M., 1983, MAMM SPECIES, V202, P1 Groger U, 2006, BMC BIOL, V4, DOI 10.1186/1741-7007-4-18 HABERSETZER J, 1992, NATURWISSENSCHAFTEN, V79, P462, DOI 10.1007/BF01139198 Heffner H. E., 1995, METHODS COMP PSYCHOA, P73 Heffner H.E., 2008, SENSES COMPREHENSIVE, V3, P55 Heffner RS, 2001, HEARING RES, V157, P138, DOI 10.1016/S0378-5955(01)00298-2 HEFFNER RS, 1993, J COMP NEUROL, V331, P418, DOI 10.1002/cne.903310311 Heffner RS, 2006, HEARING RES, V221, P17, DOI 10.1016/j.heares.2006.06.008 HEFFNER RS, 1982, J COMP PHYSIOL PSYCH, V96, P926, DOI 10.1037/0735-7036.96.6.926 Heffner RS, 2001, J ACOUST SOC AM, V109, P412, DOI 10.1121/1.1329620 HEFFNER RS, 1985, HEARING RES, V19, P85, DOI 10.1016/0378-5955(85)90100-5 Heffner RS, 2003, HEARING RES, V184, P113, DOI 10.1016/S0378-5955(03)00233-8 JOHNSON C. SCOTT, 1967, MAR BIO ACOUSTICS, V2, P247 Jones G, 2006, TRENDS ECOL EVOL, V21, P149, DOI 10.1016/j.tree.2006.01.001 Kalko EKV, 1998, FUNCT ECOL, V12, P364, DOI 10.1046/j.1365-2435.1998.00198.x Koay G, 2003, HEARING RES, V178, P27, DOI 10.1016/S0378-5955(03)00025-X Koay G, 1997, HEARING RES, V105, P202, DOI 10.1016/S0378-5955(96)00208-0 Koay G, 2002, HEARING RES, V171, P96, DOI 10.1016/S0378-5955(02)00458-6 Koay G, 1998, J COMP PSYCHOL, V112, P371, DOI 10.1037/0735-7036.112.4.371 Kuc R, 2009, J ACOUST SOC AM, V125, P3454, DOI 10.1121/1.3097500 KURTEN L, 1982, J COMP PHYSIOL, V146, P223 Kuwabara N, 1999, ACTA CHIROPTEROL, V1, P81 LJUNGBLAD DK, 1982, J ACOUST SOC AM, V72, P1726, DOI 10.1121/1.388666 LONG GR, 1975, J COMP PHYSIOL, V100, P211 Macias S, 2006, HEARING RES, V212, P245, DOI 10.1016/j.heares.2005.12.004 Moller A.R., 2000, HEARING Neuweiler G, 2003, J COMP PHYSIOL A, V189, P245, DOI 10.1007/s00359-003-0406-2 ROSE JE, 1967, J NEUROPHYSIOL, V30, P769 RYAN MJ, 1983, J COMP PHYSIOL, V150, P413 Schmidt S., 1984, Myotis, V21-22, P62 Schmidt U., 1972, ZOOL BEITR, V4, P310 Schmidt U., 1988, P143 SCHMIDT U, 1991, J COMP PHYSIOL A, V168, P45, DOI 10.1007/BF00217102 Taberner AM, 2005, J NEUROPHYSIOL, V93, P557, DOI 10.1152/jn.00574.2004 Vernon J., 1966, J AUD RES, V6, P181 WENSTRUP JJ, 1984, J COMP PHYSIOL, V155, P91, DOI 10.1007/BF00610934 Wotton JM, 2000, J ACOUST SOC AM, V107, P1034, DOI 10.1121/1.428283 Wotton JM, 1997, J ACOUST SOC AM, V101, P1723, DOI 10.1121/1.418271 WOTTON JM, 1995, J ACOUST SOC AM, V98, P1423, DOI 10.1121/1.413410 Yovel Y, 2011, J COMP PHYSIOL A, V197, P515, DOI 10.1007/s00359-011-0639-4 NR 46 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2013 VL 296 BP 42 EP 50 DI 10.1016/j.heares.2012.09.011 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 101FW UT WOS:000315761600005 PM 23194991 ER PT J AU Profant, O Burianova, J Syka, J AF Profant, Oliver Burianova, Jana Syka, Josef TI The response properties of neurons in different fields of the auditory cortex in the rat SO HEARING RESEARCH LA English DT Article ID SPECIES-SPECIFIC VOCALIZATIONS; MEDIAL GENICULATE-BODY; FUNCTIONAL-ORGANIZATION; INFERIOR COLLICULUS; GUINEA-PIG; ALBINO-RAT; PYRAMIDAL NEURONS; IN-VIVO; FREQUENCY REPRESENTATION; AXON TERMINALS AB The auditory cortex (AC) of the rat has been the subject of many studies, yet the details of its functional organization are still not well understood. We describe here the functional organization of the AC in young rats (strain Long Evans, aged 30-35 days, anesthetized with ketamine/xylazine) on the basis of the neuronal responses to acoustic stimuli. Based on the neuronal responses to broad band noise (BBN) and pure tone bursts, the AC may be divided into the primary auditory cortex (AI) and three other core fields: anterior (AAF), suprarhinal (SRAF) and posterior (PAF) as well as an unspecific region (UR) inserted between the AI and AAF. The core fields are surrounded by a belt area. Neurons in the AI, AAF, SRAF and PAF showed well defined characteristic frequencies (CF) in response to pure tone stimulation; in contrast, UR neurons responded only at high intensities without a clear CF. Neurons responding only to BBN stimulation were found mostly in the belt area. The putative borders between the core fields were determined by changes in their tonotopic gradient; however, no tonotopic organization was found in the PAP. Neurons with the shortest response latencies to BBN stimulation were found in layer 4 (L4) and layer 6 (L6) in the AI, while those with the longest latencies in the superficial layers (L1/2) of the belt area. Similar principles of responsiveness were observed when the spike rate in response to BBN stimulation was evaluated, with the highest rate present in L4 of the AI and the lowest in L1/2 of the belt area. According to the shape of the peristimulus time histograms, the responses of neurons in the AC of the rat may be classified as pure onset, sustained, onset-sustained, double peak or late onset. The most dominant in all fields, as well as in all layers, was the pure onset response. Our findings offer further cues for understanding the functional organization of the AC in the rat. (C) 2012 Elsevier B.V. All rights reserved. C1 [Profant, Oliver; Burianova, Jana; Syka, Josef] Acad Sci Czech Republic, Inst Expt Med, Dept Auditory Neurosci, Prague, Czech Republic. [Profant, Oliver] Charles Univ Prague, Fac Hosp Motol, Fac Med 1, Dept Otorhinolaryngol & Head & Neck Surg,Inst Pos, Prague 15006 5, Czech Republic. RP Profant, O (reprint author), Charles Univ Prague, Fac Med 1, Fac Hosp Motol, Dept ENT, V Uvalu 84, Prague 15006 5, Czech Republic. EM profant@biomed.cas.cz RI Syka, Josef/H-3103-2014 FU [GACR P303/12/1347]; [GACR P304/121G069] FX The study was supported by grants GACR P303/12/1347 and GACR P304/121G069. We thank Jan Setnitka, Zbynek Sure and Daniel "Suta for their assistance in this research. CR ABELES M, 1972, BRAIN RES, V42, P337, DOI 10.1016/0006-8993(72)90535-5 AITKIN L, 1994, EXP BRAIN RES, V98, P53 Astl J, 1996, AUDIOLOGY, V35, P335 Bandyopadhyay S, 2010, NAT NEUROSCI, V13, P361, DOI 10.1038/nn.2490 Barbour DL, 2008, J NEUROSCI, V28, P11174, DOI 10.1523/JNEUROSCI.2093-08.2008 Bizley JK, 2005, CEREB CORTEX, V15, P1637, DOI 10.1093/cercor/bhi042 Bonham BH, 2004, J NEUROPHYSIOL, V91, P841, DOI 10.1152/jn.00017.2003 Chang EF, 2005, P NATL ACAD SCI USA, V102, P16460, DOI 10.1073/pnas.0508239102 Cheung SW, 2001, HEARING RES, V156, P115, DOI 10.1016/S0378-5955(01)00272-6 Cheung SW, 2001, J NEUROPHYSIOL, V85, P1732 CLAREY JC, 1994, J NEUROPHYSIOL, V72, P2383 Degenetais E, 2002, CEREB CORTEX, V12, P1, DOI 10.1093/cercor/12.1.1 Doron NN, 2002, J COMP NEUROL, V453, P345, DOI 10.1002/cne.10412 EHRET G, 1985, J COMP PHYSIOL A, V156, P619, DOI 10.1007/BF00619111 GAMES KD, 1988, HEARING RES, V34, P1, DOI 10.1016/0378-5955(88)90047-0 Grecova J, 2009, EUR J NEUROSCI, V29, P1921, DOI 10.1111/j.1460-9568.2009.06739.x He JF, 2002, J NEUROPHYSIOL, V88, P2377, DOI 10.1152/jn.00083.2002 HEIL P, 1994, HEARING RES, V76, P188, DOI 10.1016/0378-5955(94)90099-X Heil P, 2004, CURR OPIN NEUROBIOL, V14, P461, DOI 10.1016/j.conb.2004.07.002 HORIKAWA K, 1988, NEUROSCI RES, V6, P31, DOI 10.1016/0168-0102(88)90004-1 Huetz C, 2011, HEARING RES, V271, P147, DOI 10.1016/j.heares.2010.01.010 Huggenberger S, 2009, CEREB CORTEX, V19, P1008, DOI 10.1093/cercor/bhn143 Jones EG, 2000, P NATL ACAD SCI USA, V97, P5019, DOI 10.1073/pnas.97.10.5019 Kaas JH, 2011, AUDITORY CORTEX, P407, DOI 10.1007/978-1-4419-0074-6_19 Kalatsky VA, 2005, P NATL ACAD SCI USA, V102, P13325, DOI 10.1073/pnas.0505592102 KANG YN, 1994, J NEUROPHYSIOL, V72, P578 Kaur S, 2005, NEUROSCIENCE, V134, P1033, DOI 10.1016/j.neuroscience.2005.04.052 KELLY JB, 1988, J NEUROPHYSIOL, V59, P1756 Kelly J.B., 1990, CEREBRAL CORTEX RAT, P381 Kilgard MP, 1999, HEARING RES, V134, P16, DOI 10.1016/S0378-5955(99)00061-1 Kvasnak E, 2000, PHYSIOL RES, V49, P369 Kwegyir-Afful EE, 2009, J NEUROSCI, V29, P964, DOI 10.1523/JNEUROSCI.3924-08.2009 Linden JF, 2003, CEREB CORTEX, V13, P83, DOI 10.1093/cercor/13.1.83 MERZENICH MM, 1975, J NEUROPHYSIOL, V38, P231 MITANI A, 1985, J COMP NEUROL, V235, P430, DOI 10.1002/cne.902350403 Nelken I, 2005, J COMPUT NEUROSCI, V19, P199, DOI 10.1007/s10827-005-1739-3 Nuding SC, 1999, HEARING RES, V131, P89, DOI 10.1016/S0378-5955(99)00023-4 Nuding SC, 1998, BRAIN RES, V785, P185, DOI 10.1016/S0006-8993(97)01347-4 Ojima H, 2002, CEREB CORTEX, V12, P1079, DOI 10.1093/cercor/12.10.1079 Oliver L.D., 2005, INFERIOR COLLICULUS, P709 Pandya PK, 2008, CEREB CORTEX, V18, P301, DOI 10.1093/cercor/bhm055 Petersen CCH, 2007, NEURON, V56, P339, DOI 10.1016/j.neuron.2007.09.017 Polley DB, 2007, J NEUROPHYSIOL, V97, P3621, DOI 10.1152/jn.01298.2006 PRIETO JJ, 1994, J COMP NEUROL, V344, P383, DOI 10.1002/cne.903440305 Profant O., 2007, 6 C CZECH NEUR SOC P, P65 Pysanenko K., 2010, 47 INN EAR BIOL WORK, P140 Qin L, 2007, J NEUROPHYSIOL, V97, P3421, DOI 10.1152/jn.00184.2007 Recanzone GH, 2000, HEARING RES, V150, P104, DOI 10.1016/S0378-5955(00)00194-5 REDIES H, 1989, J COMP NEUROL, V282, P473, DOI 10.1002/cne.902820402 Reimer A, 2011, CEREB CORTEX, V21, P166, DOI 10.1093/cercor/bhq073 Rothschild G, 2010, NAT NEUROSCI, V13, P353, DOI 10.1038/nn.2484 Rutkowski RG, 2003, HEARING RES, V181, P116, DOI 10.1016/S0378-5955(03)00182-5 Sadagopan S, 2010, J NEUROSCI, V30, P7314, DOI 10.1523/JNEUROSCI.5072-09.2010 Sakata S, 2009, NEURON, V64, P404, DOI 10.1016/j.neuron.2009.09.020 SALLY SL, 1988, J NEUROPHYSIOL, V59, P1627 Scholl B, 2008, J NEUROPHYSIOL, V100, P646, DOI 10.1152/jn.90406.2008 Schreiner CE, 2007, NEURON, V56, P356, DOI 10.1016/j.neuron.2007.10.013 Smith PH, 2001, J COMP NEUROL, V436, P508, DOI 10.1002/cne.1084 Stiebler I, 1997, J COMP PHYSIOL A, V181, P559, DOI 10.1007/s003590050140 SUGA N, 1965, NATURE, V206, P890, DOI 10.1038/206890a0 Sugimoto S, 1997, HEARING RES, V112, P175, DOI 10.1016/S0378-5955(97)00119-6 Suta D, 2003, J NEUROPHYSIOL, V90, P3794, DOI 10.1152/jn.01175.2002 Syka J, 2005, HEARING RES, V206, P177, DOI 10.1016/j.heares.2005.01.013 Tan AYY, 2009, NEUROSCIENCE, V163, P1302, DOI 10.1016/j.neuroscience.2009.07.032 THOMAS H, 1993, EUR J NEUROSCI, V5, P882, DOI 10.1111/j.1460-9568.1993.tb00940.x TURKEWITZ G, 1985, J DEV BEHAV PEDIATR, V6, P302 Valentine PA, 2004, HEARING RES, V196, P119, DOI 10.1016/j.heares.2004.05.011 VANBREDERODE JFM, 1995, J NEUROPHYSIOL, V74, P1149 VOLKOV I O, 1989, Neirofiziologiya, V21, P498 Wallace MN, 2000, EXP BRAIN RES, V132, P445, DOI 10.1007/s002210000362 Wallace MN, 2008, EXP BRAIN RES, V184, P179, DOI 10.1007/s00221-007-1092-z Wang XQ, 2005, NATURE, V435, P341, DOI 10.1038/nature03565 White LE, 2007, NEURON, V56, P327, DOI 10.1016/j.neuron.2007.10.011 Winer JA, 2007, HEARING RES, V229, P3, DOI 10.1016/j.heares.2007.01.017 Winer JA, 1999, J COMP NEUROL, V413, P181 Zhou X, 2008, NEUROSCIENCE, V154, P390, DOI 10.1016/j.neuroscience.2008.01.026 ZILLES K, 1980, ANAT EMBRYOL, V159, P335, DOI 10.1007/BF00317655 Zilles K., 1985, RAT NERVOUS SYSTEM, P375 NR 78 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2013 VL 296 BP 51 EP 59 DI 10.1016/j.heares.2012.11.021 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 101FW UT WOS:000315761600006 PM 23220149 ER PT J AU Zirn, S Hempel, JM Schuster, M Hemmert, W AF Zirn, Stefan Hempel, John-Martin Schuster, Maria Hemmert, Werner TI Comodulation Masking Release induced by controlled electrical stimulation of auditory nerve fibers SO HEARING RESEARCH LA English DT Article ID COCHLEAR IMPLANT LISTENERS; STREAM SEGREGATION; HEARING-LOSS; PSYCHOACOUSTICS; RECOGNITION; MASKERS AB Normal-hearing listeners can perceptually segregate concurrent sound sources, but listeners with significant hearing loss or who wear a Cochlear Implant (CI) lag behind in this ability. Perceptual grouping mechanisms are essential to segregate concurrent sound sources and affect Comodulation Masking Release (CMR). Thus, CMR measurements in CI users could shed light on segregation cues needed for forming and grouping of auditory objects. CMR illustrates the fact that detection of a target sound embedded in a fluctuating masker is improved by the addition of masker energy remote from the target frequency, provided the envelope fluctuations across masker components are coherent. We modified such a CMR experiment to electrically-induced hearing using direct stimulation and measured the effect in 21 CI users. Cluster analysis of our data revealed two groups: one showed no or only small CMR of 0.1 dB +/- 2.7 (N = 14) and a second group achieved a CMR of 10.7 dB +/- 3.2 (N = 7), a value that is close to the enhancement observed in a comparable acoustic experiment in normal-hearing listeners (12.9 dB +/- 2.6, N = 6). Interestingly, we observed that CMR in CI users may relate to hearing etiology and duration of hearing loss pre-implantation. Our study demonstrates for the first time that a substantial minority of cochlear-implant listeners (about a third) can show significant CMR. This outcome motivates the development of physiologically inspired multi-band gain control and/or different coding strategies for these groups in order to better preserve coherent modulation and thus to take advantage of the individual remaining capabilities to analyze spectro-temporal patterns. (C) 2012 Elsevier B.V. All rights reserved. C1 [Zirn, Stefan; Hempel, John-Martin; Schuster, Maria] Univ Munich, Univ Med Ctr, Dept Otolaryngol ENT Head & Neck Surg, D-81377 Munich, Germany. [Hemmert, Werner] Tech Univ Munich, Bioinspired Informat Proc, IMETUM Inst Med Engn, D-85748 Garching, Germany. RP Zirn, S (reprint author), Univ Munich, Univ Med Ctr, Dept Otolaryngol ENT Head & Neck Surg, Marchioninistr 15, D-81377 Munich, Germany. EM Stefan.Zirn@med.uni-muenchen.de; John-Martin.Hempel@med.uni-muenchen.de; Maria-Elke.Schuster@med.uni-muenchen.de; Werner.Hemmert@tum.de FU Cochlear Ltd.; German Federal Ministry of Education and Research within the Munich Bernstein Center of Computational Neuroscience [01GQ1004B]; Dr. H. Hessel [IIR-73] FX This work was supported by Cochlear Ltd., Dr. H. Hessel (IIR-73; CMR in CI users CRDL) and the German Federal Ministry of Education and Research within the Munich Bernstein Center of Computational Neuroscience (reference number 01GQ1004B). We thank Bernhard Seeber for helpful discussions and Dianne Mecklenburg and Josie Wyss for proofreading the manuscript. We also thank two anonymous reviewers for helpful comments. CR Backhaus Klaus, 2006, MULTIVARIATE ANALYSE, V11th Bregman AS., 1990, AUDITORY SCENE ANAL CARRELL TD, 1992, PERCEPT PSYCHOPHYS, V52, P437, DOI 10.3758/BF03206703 Cochlear_Ltd, 2002, NUCL IMPL COMM NIC S Cooper HR, 2009, J ACOUST SOC AM, V126, P1975, DOI 10.1121/1.3203210 Cooper HR, 2007, HEARING RES, V225, P11, DOI 10.1016/j.heares.2006.11.010 Dau T, 2009, J ACOUST SOC AM, V125, P2182, DOI 10.1121/1.3082121 Epp B, 2009, J ACOUST SOC AM, V126, P2479, DOI 10.1121/1.3205404 Epp B, 2009, J COMPUT NEUROSCI, V26, P393, DOI 10.1007/s10827-008-0118-2 Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47 Garadat SN, 2011, HEARING RES, V275, P130, DOI 10.1016/j.heares.2010.12.011 Goldman SA, 2012, J ACOUST SOC AM, V132, P303, DOI 10.1121/1.4726074 GROSE JH, 1992, J ACOUST SOC AM, V91, P1042, DOI 10.1121/1.402630 Grose JH, 1996, J ACOUST SOC AM, V100, P519, DOI 10.1121/1.415864 HALL JW, 1984, J ACOUST SOC AM, V76, P50, DOI 10.1121/1.391005 HALL JW, 1988, J ACOUST SOC AM, V84, P1325, DOI 10.1121/1.396631 Ihlefeld A, 2012, J ACOUST SOC AM, V131, P1315, DOI 10.1121/1.3676701 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Miller AL, 2003, BRAIN RES, V966, P218, DOI 10.1016/S0006-8993(02)04170-7 Moore B.C., 2012, INTRO PSYCHOL HEARIN MOORE B C J, 1990, British Journal of Audiology, V24, P131, DOI 10.3109/03005369009077854 Nelken I, 1999, NATURE, V397, P154, DOI 10.1038/16456 Oxenham Andrew J, 2008, Trends Amplif, V12, P316, DOI 10.1177/1084713808325881 Pierzycki RH, 2010, J ACOUST SOC AM, V128, P3614, DOI 10.1121/1.3500673 Pressnitzer D, 2001, J NEUROSCI, V21, P6377 Qin MK, 2003, J ACOUST SOC AM, V114, P446, DOI 10.1121/1.1579009 Rice S. O., 1954, MATH ANAL RANDOM NOI SCHOONEVELDT GP, 1987, J ACOUST SOC AM, V82, P1944, DOI 10.1121/1.395639 Sharma Anu, 2002, Ear and Hearing, V23, P532, DOI 10.1097/00003446-200212000-00004 Shepherd RK, 2004, EUR J NEUROSCI, V20, P3131, DOI 10.1111/j.1460-9568.2004.03809.x Skinner MW, 2002, EAR HEARING, V23, p2S, DOI 10.1097/00003446-200202001-00002 SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683 Stickney GS, 2004, J ACOUST SOC AM, V116, P1081, DOI 10.1121/1.1772399 Stone MA, 2004, J ACOUST SOC AM, V116, P2311, DOI 10.1121/1.1784447 Verhey J., 2008, Z AUDIOL, V47, P10 Verhey JL, 2012, HEARING RES, V285, P77, DOI 10.1016/j.heares.2012.01.006 Verhey JL, 2003, EXP BRAIN RES, V153, P405, DOI 10.1007/s00221-003-1607-1 Vollmer M, 2007, J NEUROPHYSIOL, V98, P2588, DOI 10.1152/jn.00011.2007 Wilson BS, 2008, HEARING RES, V242, P3, DOI 10.1016/j.heares.2008.06.005 Xiang JJ, 2010, J NEUROSCI, V30, P12084, DOI 10.1523/JNEUROSCI.0827-10.2010 ZENG FG, 1992, HEARING RES, V60, P231, DOI 10.1016/0378-5955(92)90024-H Zirn S., 2010, COMODULATION MASKING NR 42 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2013 VL 296 BP 60 EP 66 DI 10.1016/j.heares.2012.11.023 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 101FW UT WOS:000315761600007 PM 23220120 ER PT J AU Dalhoff, E Turcanu, D Vetesnik, A Gummer, AW AF Dalhoff, Ernst Turcanu, Diana Vetesnik, Ales Gummer, Anthony W. TI Two-source interference as the major reason for auditory-threshold estimation error based on DPOAE input-output functions in normal-hearing subjects SO HEARING RESEARCH LA English DT Article ID PRODUCT OTOACOUSTIC EMISSIONS; ACOUSTIC DISTORTION-PRODUCT; CLINICAL-TEST PERFORMANCE; FINE-STRUCTURE; INPUT/OUTPUT FUNCTIONS; HUMAN EARS; LEVEL; TONE; SENSITIVITY; HUMANS AB Fine structure in the frequency response of distortion product otoacoustic emissions (DPOAEs) can severely limit the usefulness of DPOAEs in estimating auditory thresholds. Here, fine structure is removed by extracting the primary-source DPOAE component using the onset-decomposition technique (Vetesnik et al., 2009) and auditory threshold estimates are compared to those obtained from DPOAEs in response to conventional, continuous two-tone stimulation. Auditory thresholds are predicted using the estimated distortion product thresholds (EDPTs), obtained from linear regression of input-output (I/O) functions of DPOAE pressure amplitude versus second-tone stimulus level (Boege and Janssen, 2002). The accuracy of the auditory-threshold predictions is derived by comparison with measured auditory thresholds. The parameters of the two primary stimulus tones of frequency f(1) and f(2) and levels of L-1 and L-2 are chosen as: f(2)/f(1) = 1.2 with 1.5 <= f(2) <= 2.5 kHz, and L-1 = 0.4L(2) + 39 dB SPL, with 25 <= L-2 <= 65 dB SPL. Data are from 12 normal-hearing subjects with profound DPOAE fine structure. 255 DPOAE I/O functions were measured for each of the two DPOAE paradigms. An EDPT value was accepted as reliable if: 1) the squared correlation coefficient, r(2) >= 0.8, 2) the regression slope, s(I/O) >= 0.2 mu pa/dB, and 3) the standard deviation of the EDPT, sigma(EDPT) <= 10 dB. The proportion of rejected I/O functions was 8% for onset-decomposition DPOAEs, and 25% for continuous-tone DPOAEs. Removal of data points from the saturation region of the DPOAE I/O function by an automated algorithm reduced the rejection rate, to zero for onset-decomposition DPOAEs, but to only 13% for continuous-tone DPOAEs. In the absence of saturated DPOAE responses, auditory thresholds were predicted with standard deviation of only 4 dB for onset-decomposition DPOAEs, but 12 dB for continuous-tone DPOAEs. In 'summary, by extracting the primary-source component of the DPOAE by the method of onset-decomposition it is possible to predict human auditory threshold with hitherto unattainable accuracy. (C) 2013 Elsevier B.V. All rights reserved. C1 [Dalhoff, Ernst; Turcanu, Diana; Vetesnik, Ales; Gummer, Anthony W.] Univ Tubingen, Dept Otolaryngol, Sect Physiol Acoust & Commun, D-72076 Tubingen, Germany. RP Gummer, AW (reprint author), Univ Tubingen, Dept Otolaryngol, Sect Physiol Acoust & Commun, Elfriede Aulhorn Str 5, D-72076 Tubingen, Germany. EM ernst.dalhoff@uni-tuebingen.de; diana.turcanu@uni-tuebingen.de; ales.vetesnik@fjfi.cvut.cz; anthony.gummer@uni-tuebingen.de FU Deutsche Forschungsgemeinschaft [DFG Gu 194/8-1, DFG Da 487/3-1] FX The authors are grateful to the anonymous reviewer, whose suggestions significantly improved this manuscript. Preliminary experiments were supported by a grant from the Deutsche Forschungsgemeinschaft, DFG Gu 194/8-1 and later work by a grant from the Deutsche Forschungsgemeinschaft, DFG Da 487/3-1. CR Avan P, 1997, J ACOUST SOC AM, V101, P2771, DOI 10.1121/1.418564 Boege P, 2002, J ACOUST SOC AM, V111, P1810, DOI 10.1121/1.1460923 Burke SR, 2010, EAR HEARING, V31, P533, DOI 10.1097/AUD.0b013e3181d86b3d Dalhoff E, 2011, AIP CONF PROC, V1403, DOI 10.1063/1.3658096 Dhar S, 2004, EAR HEARING, V25, P573, DOI 10.1097/00003446-200412000-00006 ELLIOTT E, 1958, NATURE, V181, P1076, DOI 10.1038/1811076a0 GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732 Gibra I.N., 1973, PROBABILITY STAT INF, P262 Goldman B, 2006, J ACOUST SOC AM, V120, P2764, DOI 10.1121/1.2258871 GORGA MP, 1993, J ACOUST SOC AM, V94, P2639, DOI 10.1121/1.407348 Gorga MP, 2003, J ACOUST SOC AM, V113, P3275, DOI 10.1121/1.1570433 HE NJ, 1993, J ACOUST SOC AM, V94, P2659, DOI 10.1121/1.407350 Heitmann J, 1998, J ACOUST SOC AM, V103, P1527, DOI 10.1121/1.421290 Johnson TA, 2010, EAR HEARING, V31, P74, DOI 10.1097/AUD.0b013e3181b71924 Johnson TA, 2007, J ACOUST SOC AM, V122, P3539, DOI 10.1121/1.2799474 Johnson TA, 2006, J ACOUST SOC AM, V119, P3896, DOI 10.1121/1.2200048 Kalluri R, 2001, J ACOUST SOC AM, V109, P622, DOI 10.1121/1.1334597 Kemp D. T., 1983, MECH HEARING, P75 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KIMBERLEY BP, 1989, J OTOLARYNGOL, V18, P365 Kirby BJ, 2011, EAR HEARING, V32, P230, DOI 10.1097/AUD.0b013e3181fa5da2 Kummer P, 2006, HNO, V54, P457, DOI 10.1007/s00106-005-1341-z Kummer P, 1998, J ACOUST SOC AM, V103, P3431, DOI 10.1121/1.423054 Kummer P, 2000, HEARING RES, V146, P47, DOI 10.1016/S0378-5955(00)00097-6 LONG GR, 1988, HEARING RES, V36, P125, DOI 10.1016/0378-5955(88)90055-X Long GR, 2008, J ACOUST SOC AM, V124, P1613, DOI 10.1121/1.2949505 Martin GK, 2009, J ACOUST SOC AM, V125, pEL85, DOI 10.1121/1.3073734 Martin GK, 2011, J ACOUST SOC AM, V129, P3090, DOI 10.1121/1.3560123 Martin GK, 2010, J ACOUST SOC AM, V127, P2955, DOI 10.1121/1.3353121 Mauermann M, 2004, J ACOUST SOC AM, V116, P2199, DOI 10.1121/1.1791719 Mauermann M, 2004, J ACOUST SOC AM, V116, P1066, DOI 10.1121/1.1760106 Neely ST, 2009, J ACOUST SOC AM, V126, P728, DOI 10.1121/1.3158859 NELSON DA, 1992, J SPEECH HEAR RES, V35, P1142 Norton SJ, 2000, EAR HEARING, V21, P508, DOI 10.1097/00003446-200010000-00013 Oswald Johann A, 2003, Z Med Phys, V13, P93 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 Shaffer LA, 2006, J AM ACAD AUDIOL, V17, P279, DOI 10.3766/jaaa.17.4.6 Shera CA, 2004, EAR HEARING, V25, P86, DOI 10.1097/01.AUD.0000121200.90211.83 Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 Talmadge CL, 1999, J ACOUST SOC AM, V105, P275, DOI 10.1121/1.424584 Vetesnik A, 2009, HEARING RES, V256, P21, DOI 10.1016/j.heares.2009.06.002 Whitehead ML, 1996, J ACOUST SOC AM, V100, P1663, DOI 10.1121/1.416065 Yates GK, 1999, HEARING RES, V136, P49, DOI 10.1016/S0378-5955(99)00108-2 ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320 NR 44 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2013 VL 296 BP 67 EP 82 DI 10.1016/j.heares.2012.12.003 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 101FW UT WOS:000315761600008 PM 23268357 ER PT J AU Heil, P Verhey, JL Zoefel, B AF Heil, Peter Verhey, Jesko L. Zoefel, Benedikt TI Modelling detection thresholds for sounds repeated at different delays SO HEARING RESEARCH LA English DT Article ID AUDITORY TEMPORAL INTEGRATION; BASILAR-MEMBRANE RESPONSES; FREQUENCY-SELECTIVITY; UNIFYING BASIS; FILTER SHAPES; NERVE FIBERS; ABSOLUTE THRESHOLD; 1ST-SPIKE LATENCY; PHASE-LOCKING; NOTCHED-NOISE AB Detection thresholds for pairs or multiple copies of sounds are better than those for a single sound, an observation commonly interpreted as indicating temporal integration by the auditory system. Detection thresholds for pairs of brief tones depend on the delay between the tones (if short) and on frequency, suggesting frequency-dependent temporal overlap of auditory-filter responses elicited by the two successive stimuli (Krumbholz and Wiegrebe, 1998). The model presented by Krumbholz and Wiegrebe did not account for all aspects of their data, despite its complexity. This study shows that a simple probabilistic model based on Neubauer and Heil (2008) predicts the increase in threshold for short temporal delays as well as the asymptotic behaviour towards longer delays. The model entails (i) a 4th-order gammatone filter with a brief impulse response and thus broad bandwidth (shorter and broader than those of a filter normally assumed), (ii) the formation of stochastic 'spikes' or 'events' whose probability of occurrence is proportional to the filter output (half-wave rectified fine-structure or amplitude envelope), raised to a power of 3, and (iii) probability summation. The same model with the same front-end filter also predicts thresholds for pairs of clicks presented in band-reject noise, measured by Hall and Lummis (1973). The model accurately predicts the magnitudes and the decay of the alternating increase and decrease of thresholds as the delay between the click varies, the small effects of click polarity, and the dependence of thresholds for pairs of clicks with unequal intensities on their temporal order. Finally, we show that this model also correctly predicts the decrease in threshold with increasing number of temporally separated brief sounds, reported in several studies. While the latter data do not constrain the characteristics of the front-end filter, they do confirm the exponent of 3 in the model. Our paper stresses the viability of the model and raises the possibility that the bandwidths of filters estimated with psychophysical techniques may depend more strongly on the experimental paradigms and stimuli than hitherto thought. (C) 2012 Elsevier B.V. All rights reserved. C1 [Heil, Peter; Zoefel, Benedikt] Leibniz Inst Neurobiol, D-39118 Magdeburg, Germany. [Heil, Peter; Verhey, Jesko L.] Ctr Behav Brain Sci, D-39118 Magdeburg, Germany. [Verhey, Jesko L.] Univ Magdeburg, Dept Expt Audiol, D-39120 Magdeburg, Germany. RP Heil, P (reprint author), Leibniz Inst Neurobiol, Brenneckestr 6, D-39118 Magdeburg, Germany. EM peter.heil@lin-magdeburg.de; jesko.verhey@med.ovgu.de; benedikt.zoefel@lin-magdeburg.de FU Deutsche Forschungsgemeinschaft [SFB-TRR 31, A6, B3] FX This study was supported by the Deutsche Forschungsgemeinschaft (SFB-TRR 31, A6 and B3). CR BACON SP, 1986, HEARING RES, V23, P257, DOI 10.1016/0378-5955(86)90114-0 BACON SP, 1985, J ACOUST SOC AM, V78, P1231, DOI 10.1121/1.392891 BACON SP, 1986, J ACOUST SOC AM, V80, P1638, DOI 10.1121/1.394328 CARLYON RP, 1990, J ACOUST SOC AM, V87, P260, DOI 10.1121/1.399293 Chen FY, 2011, NAT NEUROSCI, V14, P770, DOI 10.1038/nn.2827 COOMBS S, 1989, J ACOUST SOC AM, V86, P925, DOI 10.1121/1.398727 DALLOS PJ, 1966, J ACOUST SOC AM, V40, P1160, DOI 10.1121/1.1910201 Dau T, 1997, J ACOUST SOC AM, V102, P2892, DOI 10.1121/1.420344 de Boer E, 1985, TIME RESOLUTION AUDI, P141 Eddins AC, 1999, J SPEECH LANG HEAR R, V42, P516 Eddins David A., 1995, P207, DOI 10.1016/B978-012505626-7/50008-X FAY RR, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P229 FLANAGAN JL, 1961, J ACOUST SOC AM, V33, P1540, DOI 10.1121/1.1908494 GEISLER CD, 1985, J ACOUST SOC AM, V77, P1102, DOI 10.1121/1.392228 GERKEN GM, 1990, J ACOUST SOC AM, V88, P767, DOI 10.1121/1.399726 GERKEN GM, 1966, PERCEPT PSYCHOPHYS, V1, P137, DOI 10.3758/BF03210044 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Green DM, 1985, TIME RESOLUTION AUDI, P122 Guinan JJ, 2008, J ACOUST SOC AM, V124, P1080, DOI 10.1121/1.2949435 HALL JL, 1973, J ACOUST SOC AM, V54, P593, DOI 10.1121/1.1913638 Heil Peter, 2010, Front Synaptic Neurosci, V2, P148, DOI 10.3389/fnsyn.2010.00148 Heil P, 2008, HEARING RES, V238, P25, DOI 10.1016/j.heares.2007.09.014 Heil P., BASIC ASPECTS HEARIN Heil P, 2003, P NATL ACAD SCI USA, V100, P6151, DOI 10.1073/pnas.1030017100 Heil P, 2011, J NEUROSCI, V31, P15424, DOI 10.1523/JNEUROSCI.1638-11.2011 HEIL P, 1991, BRAIN RES, V539, P110, DOI 10.1016/0006-8993(91)90692-O Hohmann V, 2002, ACTA ACUST UNITED AC, V88, P433 MOORE BCJ, 1995, J ACOUST SOC AM, V97, P1175, DOI 10.1121/1.412229 Joris PX, 2011, P NATL ACAD SCI USA, V108, P17516, DOI 10.1073/pnas.1105867108 Kiang NYS, 1965, RES MONOGRAPHS, V35 Koppl C, 1997, J NEUROSCI, V17, P3312 Krumbholz K, 1998, HEARING RES, V124, P155, DOI 10.1016/S0378-5955(98)00134-8 Lopez-Poveda EA, 2001, J ACOUST SOC AM, V110, P3107, DOI 10.1121/1.1416197 Lutkenhoner B, 2011, BRAIN RES, V1385, P206, DOI 10.1016/j.brainres.2011.02.011 Meddis R, 1997, J ACOUST SOC AM, V102, P1811, DOI 10.1121/1.420088 Meddis R, 2011, J ACOUST SOC AM, V129, P3153, DOI 10.1121/1.3569712 Meddis R, 2006, J ACOUST SOC AM, V120, P1192, DOI 10.1121/1.2221413 MOORE BCJ, 1987, J ACOUST SOC AM, V81, P1873, DOI 10.1121/1.394751 Neubauer H, 2008, BRAIN RES, V1220, P208, DOI 10.1016/j.brainres.2007.08.081 Neubauer H, 2004, JARO-J ASSOC RES OTO, V5, P436, DOI 10.1007/s10162-004-5031-4 O'Connor KN, 1999, J ACOUST SOC AM, V106, P954, DOI 10.1121/1.427108 PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X PATTERSON RD, 1976, J ACOUST SOC AM, V59, P640, DOI 10.1121/1.380914 Patterson R.D., 1994, J ACOUST SOC AM, V48, P894 Plack CJ, 2002, ACTA ACUST UNITED AC, V88, P348 PLOMP R, 1959, J ACOUST SOC AM, V31, P749, DOI 10.1121/1.1907781 Qin L, 2003, NEUROSCI RES, V46, P145, DOI 10.1016/S0168-0102(03)00034-8 Recanzone GH, 2008, ANNU REV PSYCHOL, V59, P119, DOI 10.1146/annurev.psych.59.103006.093544 Recio A, 1998, J ACOUST SOC AM, V103, P1972, DOI 10.1121/1.421377 Robles L, 2001, PHYSIOL REV, V81, P1305 Ruggero M. A., 1992, MAMMALIAN AUDITORY P, P34 Ruggero MA, 2005, P NATL ACAD SCI USA, V102, P18614, DOI 10.1073/pnas.0509323102 SHAILER MJ, 1987, J ACOUST SOC AM, V81, P1110, DOI 10.1121/1.394631 Shechter B, 2009, HEARING RES, V256, P118, DOI 10.1016/j.heares.2009.07.005 Shera CA, 2002, P NATL ACAD SCI USA, V99, P3318, DOI 10.1073/pnas.032675099 SOLECKI JM, 1990, J ACOUST SOC AM, V88, P779, DOI 10.1121/1.399727 SRINIVAS.R, 1971, J ACOUST SOC AM, V50, P616, DOI 10.1121/1.1912677 Strickland EA, 2001, J ACOUST SOC AM, V109, P2062, DOI 10.1121/1.1357811 Todd N.P., 1994, P INT C SPOK DIAL PR, P127 Verhey J. L., 2010, OXFORD HDB AUDITORY, P105 VIEMEISTER NF, 1991, J ACOUST SOC AM, V90, P858, DOI 10.1121/1.401953 ZWICKER E, 1972, J ACOUST SOC AM, V52, P699, DOI 10.1121/1.1913161 ZWISLOCKI J, 1962, J ACOUST SOC AM, V34, P1648 ZWISLOCKI J, 1960, J ACOUST SOC AM, V32, P1046, DOI 10.1121/1.1908276 NR 64 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2013 VL 296 BP 83 EP 95 DI 10.1016/j.heares.2012.12.002 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 101FW UT WOS:000315761600009 PM 23268356 ER PT J AU Brown, DJ Chihara, Y Curthoys, IS Wang, Y Bos, M AF Brown, Daniel J. Chihara, Yasuhiro Curthoys, Ian S. Wang, Yuan Bos, Marieke TI Changes in cochlear function during acute endolymphatic hydrops development in guinea pigs SO HEARING RESEARCH LA English DT Article ID EVOKED MYOGENIC POTENTIALS; MENIERES-DISEASE; REISSNERS MEMBRANE; SACCULAR MACULAE; PERILYMPHATIC K+; OPERATING POINT; TEMPORAL BONE; TIME-COURSE; IN-VIVO; PRESSURE AB Previous studies have injected artificial endolymph into scala media in anaesthetized guinea pigs as an acute model of endolymphatic hydrops. Here, we have injected artificial endolymph into scala media in guinea pigs at rates of 40-80 nl/min, whilst monitoring Compound Action Potential (CAP) thresholds, the Summating Potential (SP)/CAP ratio, Cochlear Microphonic (CM) distortion, low-frequency modulated Distortion Product Otoacoustic Emissions (DPOAEs), and the Endocochlear Potential (EP). We found that abrupt recovery of CAP thresholds, SP/CAP ratio, and CM and DPOAE asymmetric distortion could occur several times during a single injection of less than 3 mu l, suggesting that endolymph pressure could periodically decrease while the injection was ongoing. Larger volumes are thought to produce a rupture of the membranous labyrinth, however, our results suggest that multiple injections, each larger than 3 mu l and within 40 min of each other, cause multiple pressure-related changes, which are difficult to be explained on the basis of a simple labyrinth rupture. We have also examined the morphological changes of the temporal bones ex vivo using X-ray micro-tomography. Both the functional changes and the micro-CT images suggest ruptures of the membranous labyrinth may not always be responsible for abrupt changes in inner ear function. Our results provide a new insight into the changes in cochlear function occurring during acute hydrops development, which compares well to the clinical findings observed in Meniere's Disease. We suggest that hydrops development may be a continual process, yet cause discontinuous functional changes due to mechanisms other than a simple rupture of the membranous labyrinth. (C) 2012 Published by Elsevier B.V. C1 [Brown, Daniel J.; Chihara, Yasuhiro; Curthoys, Ian S.; Wang, Yuan] Univ Sydney, Sydney Med Sch, Brain & Mind Res Inst, Camperdown, NSW 2050, Australia. [Bos, Marieke] Utrecht Univ Appl Sci, Inst Life Sci & Chem, Utrecht, Netherlands. RP Brown, DJ (reprint author), Univ Sydney, Sydney Med Sch, Brain & Mind Res Inst, 100 Mallett St, Camperdown, NSW 2050, Australia. EM daniel.brown@sydney.edu.au; y-chihara@umin.ac.jp FU Meniere's Research Fund Inc., NSW, Australia FX This study was supported by the Meniere's Research Fund Inc., a not-for-profit organization in NSW, Australia. CR Abel C, 2009, J NEUROPHYSIOL, V101, P2362, DOI 10.1152/jn.00026.2009 BANCE M, 1991, LARYNGOSCOPE, V101, P197 BROWN DH, 1988, LARYNGOSCOPE, V98, P599 Brown DJ, 2009, J ACOUST SOC AM, V125, P2129, DOI 10.1121/1.3083228 Brown DJ, 2011, HEARING RES, V282, P119, DOI 10.1016/j.heares.2011.09.002 Curthoys IS, 2009, ANN NY ACAD SCI, V1164, P13, DOI 10.1111/j.1749-6632.2008.03729.x DOHLMANN GF, 1976, ARCH OTO-RHINO-LARYN, V212, P301, DOI 10.1007/BF00453678 Flock A, 2003, AUDIOL NEURO-OTOL, V8, P59, DOI 10.1159/000069002 Flock A, 2000, HEARING RES, V150, P175, DOI 10.1016/S0378-5955(00)00198-2 Fridberger A, 1997, ACTA PHYSIOL SCAND, V161, P239, DOI 10.1046/j.1365-201X.1997.00214.x Gibson WPR, 2010, OTOLARYNG CLIN N AM, V43, P1019, DOI 10.1016/j.otc.2010.05.013 Gibson WPR, 1997, OTOLARYNG CLIN N AM, V30, P961 Gurkov R, 2011, EUR ARCH OTO-RHINO-L, V268, P1743, DOI 10.1007/s00405-011-1573-3 Kakigi Akinobu, 2010, ORL J Otorhinolaryngol Relat Spec, V71 Suppl 1, P16, DOI 10.1159/000265118 Kingma CM, 2010, EUR ARCH OTO-RHINO-L, V267, P1679, DOI 10.1007/s00405-010-1298-8 Kingma CM, 2009, J VESTIBUL RES-EQUIL, V19, P27, DOI 10.3233/VES-2009-0341 Manzari L, 2011, EUR ARCH OTO-RHINO-L, V268, P637, DOI 10.1007/s00405-010-1442-5 Manzari L, 2010, CLIN NEUROPHYSIOL, V121, P1092, DOI 10.1016/j.clinph.2010.02.003 Marcon S, 2008, HEARING RES, V237, P76, DOI 10.1016/j.heares.2007.12.011 MARCUS DC, 1983, HEARING RES, V12, P17, DOI 10.1016/0378-5955(83)90116-8 MCCLURE JA, 1981, LARYNGOSCOPE, V91, P1727 McClure J A, 1982, Adv Otorhinolaryngol, V28, P39 McNeill C, 2009, ACTA OTO-LARYNGOL, V129, P1404, DOI 10.3109/00016480902751672 McNeill C, 2009, INT J AUDIOL, V48, P594, DOI 10.1080/14992020802716778 Palomar-Asenjo V, 2006, OTOL NEUROTOL, V27, P945, DOI 10.1097/01.mao.0000231593.03090.23 Patuzzi R, 1998, HEARING RES, V125, P1, DOI 10.1016/S0378-5955(98)00125-7 Patuzzi R, 2002, AUDIOL NEURO-OTOL, V7, P17, DOI 10.1159/000046857 Perez-Garrigues H, 2008, ARCH OTOLARYNGOL, V134, P1149, DOI 10.1001/archotol.134.11.1149 Rabbitt RD, 2001, ANN NY ACAD SCI, V942, P313 Salt AN, 2004, HEARING RES, V191, P90, DOI 10.1016/j.heares.2003.12.018 Salt AN, 2006, J NEUROSCI METH, V153, P121, DOI 10.1016/j.jneumeth.2005.10.008 SALT AN, 1994, HEARING RES, V74, P165, DOI 10.1016/0378-5955(94)90184-8 Salt AN, 2010, OTOLARYNG CLIN N AM, V43, P971, DOI 10.1016/j.otc.2010.05.007 Schuknecht H., 1963, J OTOLARYNGOL SOC AU, V30, P222 SCHUKNECHT HF, 1975, J LARYNGOL OTOL, V89, P985, DOI 10.1017/S0022215100081305 Sirjani DB, 2004, J ACOUST SOC AM, V115, P1219, DOI 10.1121/1.1647479 Stahle J, 1991, Acta Otolaryngol Suppl, V485, P78 TASAKI I, 1952, J NEUROPHYSIOL, V15, P497 Taylor RL, 2012, CEPHALALGIA, V32, P213, DOI 10.1177/0333102411434166 Thorne M, 1999, LARYNGOSCOPE, V109, P1661, DOI 10.1097/00005537-199910000-00021 TONNDORF J, 1983, ACTA OTO-LARYNGOL, V95, P421, DOI 10.3109/00016488309139425 Uzun-Coruhlu H, 2007, HEARING RES, V233, P77, DOI 10.1016/j.heares.2007.07.008 Valk WL, 2004, HEARING RES, V192, P47, DOI 10.1016/j.heares.2003.12.021 Valk WL, 2006, ACTA OTO-LARYNGOL, V126, P1030, DOI 10.1080/00016480600621722 Wong CC., 2012, ACTA OTOLARYNGOL NR 45 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2013 VL 296 BP 96 EP 106 DI 10.1016/j.heares.2012.12.004 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 101FW UT WOS:000315761600010 PM 23270618 ER PT J AU Carrasco, MM Trujillo, M Razak, K AF Carrasco, Maria Magdalena Trujillo, Michael Razak, Khaleel TI Development of response selectivity in the mouse auditory cortex SO HEARING RESEARCH LA English DT Article ID FREQUENCY-MODULATED SWEEPS; MECHANISMS UNDERLYING SELECTIVITY; BAT INFERIOR COLLICULUS; BIG BROWN BAT; RECEPTIVE-FIELDS; PALLID BAT; SOUND DURATION; MOUSTACHED BAT; VISUAL-CORTEX; HEARING-LOSS AB The mouse auditory system contains neurons selective for tone duration and for a narrow range of frequency modulated (FM) sweep rates. Whether such selectivity is developmentally regulated is not known. The main goal of this study was to follow the development of neuronal responses to tones (frequency and duration tuning) and FM sweeps (direction and rate selectivity) in the core auditory cortex (A1 and AAF) of ketamine/xylazine anesthetized C57b1/6 mice. Three groups were compared: postnatal day (P) 15-20, P21-30 and P31-90. Frequency tuning bandwidth decreased during the first month indicating refinement of the excitatory receptive field. Duration tuning for tones did not change during development in terms of categories of tuning types as well as measures of selectivity such as best duration and half-maximal duration. FM rate and direction selectivity were developmentally regulated. Selectivity for linear up and down FM sweeps (0.06-22 kHz/ms) was tested. The best rate and half-maximal rate of neurons categorized as fast- or band-pass selective shifted toward faster rates during development. The percentage of fast-pass selective neurons also increased during development. These data suggest that cortical neurons' discrimination and detection abilities for relatively faster sweep rates improve during development. Although on average, direction selectivity was weak across development, there was a significant shift toward upward sweep selectivity at slow rates. Thus, the C57b1/6 mouse auditory cortex is not adult-like until at least P30. The changes in response selectivity can be explained based on known developmental changes in intrinsic and synaptic properties of mouse auditory cortical neurons. (C) 2012 Elsevier B.V. All rights reserved. C1 [Razak, Khaleel] Univ Calif Riverside, Grad Neurosci Program, Riverside, CA 92521 USA. Univ Calif Riverside, Dept Psychol, Riverside, CA 92521 USA. RP Razak, K (reprint author), Univ Calif Riverside, Grad Neurosci Program, 900 Univ Ave, Riverside, CA 92521 USA. EM khaleel@ucr.edu FU Deafness Research Foundation FX This study was funded by a grant from the Deafness Research Foundation. We thank the members of the Razak lab for useful discussions of the data. CR ARTHUR RM, 1971, J PHYSIOL-LONDON, V212, P593 Atencio CA, 2007, J NEUROPHYSIOL, V98, P2182, DOI 10.1152/jn.00394.2007 Barkat TR, 2011, NAT NEUROSCI, V14, P1189, DOI 10.1038/nn.2882 Brand A, 2000, J NEUROPHYSIOL, V84, P1790 Brown TA, 2009, J NEUROPHYSIOL, V101, P2017, DOI 10.1152/jn.90931.2008 Brown TA, 2010, BRAIN RES, V1309, P29, DOI 10.1016/j.brainres.2009.10.053 CALFORD MB, 1995, J NEUROPHYSIOL, V73, P1876 Campbell RAA, 2010, J NEUROPHYSIOL, V103, P2783, DOI 10.1152/jn.00730.2009 Carrasco MM, 2005, J NEUROPHYSIOL, V94, P1962, DOI 10.1152/jn.00166.2005 CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341 Chang EF, 2005, P NATL ACAD SCI USA, V102, P16460, DOI 10.1073/pnas.0508239102 Chen GD, 1998, HEARING RES, V122, P142, DOI 10.1016/S0378-5955(98)00103-8 Cohen L, 2011, NEURON, V72, P357, DOI 10.1016/j.neuron.2011.08.019 Covey E, 1999, ANNU REV PHYSIOL, V61, P457, DOI 10.1146/annurev.physiol.61.1.457 Demyanenko GP, 2011, J NEUROSCI, V31, P1545, DOI 10.1523/JNEUROSCI.4467-10.2011 de Villers-Sidani E, 2007, J NEUROSCI, V27, P180, DOI 10.1523/JNEUROSCI.3227-06.2007 DeWeese MR, 2003, J NEUROSCI, V23, P7940 Eggermont JJ, 1996, NEUROREPORT, V7, P753, DOI 10.1097/00001756-199602290-00018 EHRET G, 1992, DEV BRAIN RES, V67, P317, DOI 10.1016/0165-3806(92)90233-M Ehrlich D, 1997, J NEUROPHYSIOL, V77, P2360 FAGIOLINI M, 1994, VISION RES, V34, P709, DOI 10.1016/0042-6989(94)90210-0 Felsheim C, 1996, HEARING RES, V98, P137, DOI 10.1016/0378-5955(96)00078-0 Fremouw T, 2005, J NEUROPHYSIOL, V94, P1869, DOI 10.1152/jn.00253.2005 Froemke RC, 2011, NEUROSCI BIOBEHAV R, V35, P2105, DOI 10.1016/j.neubiorev.2011.02.006 Fuzessery ZM, 1999, HEARING RES, V137, P137, DOI 10.1016/S0378-5955(99)00133-1 Fuzessery ZM, 2006, J NEUROPHYSIOL, V96, P1320, DOI 10.1152/jn.00021.2006 Fuzessery ZM, 2011, J COMP PHYSIOL A, V197, P615, DOI 10.1007/s00359-010-0554-0 Galazyuk AV, 1997, J COMP PHYSIOL A, V180, P301, DOI 10.1007/s003590050050 Garcia-Lazaro JA, 2006, CURR BIOL, V16, P264, DOI 10.1016/j.cub.2005.12.013 Gianfranceschi L, 2003, P NATL ACAD SCI USA, V100, P12486, DOI 10.1073/pnas.1934836100 Gittelman JX, 2009, J NEUROSCI, V29, P13030, DOI 10.1523/JNEUROSCI.2477-09.2009 Gordon M, 1998, HEARING RES, V122, P97, DOI 10.1016/S0378-5955(98)00087-2 Grimsley JMS, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017460 Happel MFK, 2010, J NEUROSCI, V30, P11114, DOI 10.1523/JNEUROSCI.0689-10.2010 Harper NS, 2004, NATURE, V430, P682, DOI 10.1038/nature02768 He JF, 1997, J NEUROSCI, V17, P2615 HENRY KR, 1980, AUDIOLOGY, V19, P369 Holmstrom LA, 2010, J NEUROSCI, V30, P802, DOI 10.1523/JNEUROSCI.1964-09.2010 HUBEL DH, 1963, J NEUROPHYSIOL, V26, P994 HUNTER KP, 1987, HEARING RES, V30, P207, DOI 10.1016/0378-5955(87)90137-7 Inan M, 2007, NEUROSCIENTIST, V13, P49, DOI 10.1177/1073858406296257 Insanally MN, 2010, J NEUROPHYSIOL, V103, P2611, DOI 10.1152/jn.00872.2009 Intskirveli I, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026192 Katz LC, 1996, SCIENCE, V274, P1133, DOI 10.1126/science.274.5290.1133 Lee CC, 2011, HEARING RES, V274, P85, DOI 10.1016/j.heares.2010.05.008 Linden JF, 2003, J NEUROPHYSIOL, V90, P2660, DOI 10.1152/jn.00751.2002 Liu RC, 2003, J ACOUST SOC AM, V114, P3412, DOI 10.1121/1.1623787 Luo F, 2008, J NEUROPHYSIOL, V99, P284, DOI 10.1152/jn.00935.2007 MENDELSON JR, 1993, EXP BRAIN RES, V94, P65 Metherate R, 1999, DEV BRAIN RES, V115, P131, DOI 10.1016/S0165-3806(99)00058-9 MIKAELIAN DO, 1979, LARYNGOSCOPE, V89, P1 Miller LM, 2001, NEURON, V32, P151, DOI 10.1016/S0896-6273(01)00445-7 Nelken I, 2000, EUR J NEUROSCI, V12, P549, DOI 10.1046/j.1460-9568.2000.00935.x Ohl FW, 1999, LEARN MEMORY, V6, P347 O'Neill WE, 2002, J NEUROPHYSIOL, V88, P172, DOI 10.1152/jn.00966.2001 Oswald AMM, 2011, CEREB CORTEX, V21, P1351, DOI 10.1093/cercor/bhq214 Oswald AMM, 2008, J NEUROPHYSIOL, V99, P2998, DOI 10.1152/jn.01160.2007 Panksepp JB, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000351 Park SN, 2010, CLIN EXP OTORHINOLAR, V3, P126, DOI 10.3342/ceo.2010.3.3.126 Perez-Gonzalez D, 2006, J NEUROPHYSIOL, V95, P823, DOI 10.1152/jn.00741.2005 Pienkowski M, 2005, J NEUROPHYSIOL, V93, P454, DOI 10.1152/jn.00569.2004 POON PWF, 1991, EXP BRAIN RES, V83, P598 Portfors CV, 2005, NEUROSCIENCE, V136, P1159, DOI 10.1016/j.neuroscience.2005.08.031 Portfors CV, 2011, NEUROSCIENCE, V193, P429, DOI 10.1016/j.neuroscience.2011.07.025 Portfors CV, 2009, NEUROSCIENCE, V162, P486, DOI 10.1016/j.neuroscience.2009.04.056 Ranson A, 2012, P NATL ACAD SCI USA, V109, P1311, DOI 10.1073/pnas.1112204109 Razak KA, 2007, HEARING RES, V228, P69, DOI 10.1016/j.heares.2007.01.020 Razak KA, 2006, J NEUROPHYSIOL, V96, P1303, DOI 10.1152/jn.00020.2006 Razak KA, 2008, P NATL ACAD SCI USA, V105, P4465, DOI 10.1073/pnas.0709504105 Razak KA, 2007, J NEUROSCI, V27, P1769, DOI 10.1523/JNEUROSCI.3851-06.2007 Ricketts C, 1998, HEARING RES, V123, P27, DOI 10.1016/S0378-5955(98)00086-0 Rotschafer SE, 2012, BRAIN RES, V1439, P7, DOI 10.1016/j.brainres.2011.12.041 ROUILLER EM, 1991, EXP BRAIN RES, V86, P483 SAUNDERS JC, 1980, BRAIN RES, V187, P69, DOI 10.1016/0006-8993(80)90495-3 Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 Stern EA, 2001, NEURON, V31, P305, DOI 10.1016/S0896-6273(01)00360-9 Stiebler I, 1997, J COMP PHYSIOL A, V181, P559, DOI 10.1007/s003590050140 Suga N, 1997, J NEUROPHYSIOL, V77, P2098 Sugiyama S, 2008, CELL, V134, P508, DOI 10.1016/j.cell.2008.05.054 Sun YJ, 2010, NATURE, V465, P927, DOI 10.1038/nature09079 Sutter ML, 1999, J NEUROPHYSIOL, V82, P2358 Syka J, 2005, HEARING RES, V206, P177, DOI 10.1016/j.heares.2005.01.013 Taberner AM, 2005, J NEUROPHYSIOL, V93, P557, DOI 10.1152/jn.00574.2004 TIAN B, 1994, J NEUROPHYSIOL, V71, P1959 Torii M, 2012, CEREB CORTEX Trujillo M, 2011, J NEUROPHYSIOL, V106, P2825, DOI 10.1152/jn.00480.2011 Vater M, 2010, J NEUROPHYSIOL, V103, P2339, DOI 10.1152/jn.00517.2009 Vignal C, 2011, J COMP PSYCHOL, V125, P150, DOI 10.1037/a0020865 Walker KMM, 2008, J COGNITIVE NEUROSCI, V20, P135, DOI 10.1162/jocn.2008.20012 Wang J, 2006, BRAIN RES, V1114, P63, DOI 10.1016/j.brainres.2006.07.046 Washington SD, 2008, J NEUROPHYSIOL, V100, P3285, DOI 10.1152/jn.90442.2008 Wetzel W, 1998, BEHAV BRAIN RES, V91, P29, DOI 10.1016/S0166-4328(97)00099-5 WHITFIEL.IC, 1965, J NEUROPHYSIOL, V28, P655 WILLOTT JF, 1986, J NEUROPHYSIOL, V56, P391 WILLOTT JF, 1993, J COMP NEUROL, V329, P402, DOI 10.1002/cne.903290310 Wu GK, 2008, NEURON, V58, P132, DOI 10.1016/j.neuron.2008.01.035 Xu HP, 2011, NEURON, V70, P1115, DOI 10.1016/j.neuron.2011.04.028 Zeng FG, 2005, P NATL ACAD SCI USA, V102, P2293, DOI 10.1073/pnas.0406460102 Zhang LI, 2003, NATURE, V424, P201, DOI 10.1038/nature01796 Zhang LI, 2001, NAT NEUROSCI, V4, P1123, DOI 10.1038/nn745 ZURITA P, 1994, NEUROSCI RES, V19, P303, DOI 10.1016/0168-0102(94)90043-4 NR 101 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD FEB PY 2013 VL 296 BP 107 EP 120 DI 10.1016/j.heares.2012.11.020 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 101FW UT WOS:000315761600011 PM 23261406 ER PT J AU Pienkowski, M Munguia, R Eggermont, JJ AF Pienkowski, Martin Munguia, Raymundo Eggermont, Jos J. TI Effects of passive, moderate-level sound exposure on the mature auditory cortex: Spectral edges, spectrotemporal density, and real-world noise SO HEARING RESEARCH LA English DT Article ID HEARING-LOSS; ACOUSTIC ENVIRONMENT; ADULT CATS; ORGANIZATION; PLASTICITY; REPRESENTATION; MAP; AI AB Persistent, passive exposure of adult cats to bandlimited tone pip ensembles or sharply-filtered white noise at moderate levels (similar to 70 dB SPL) leads to a long-term suppression of spontaneous and sound-evoked activity in the region(s) of primary auditory cortex (AI) normally tuned to the exposure spectrum, and to an enhancement of activity in one or more neighboring regions of AI, all in the apparent absence of hearing loss. Here, we first examined the effects of passive exposure to a more structured, real-world noise, consisting of a mix of power tool and construction sounds. This "factory noise" had less pronounced effects on adult cat AI than our previous random tone pip ensembles and white noise, and these effects appeared limited to the region of AI tuned to frequencies near the sharp factory noise cutoff at 16 kHz. To further investigate the role of sharp spectral edges in passive exposure-induced cortical plasticity, a second group of adult cats was exposed to a tone pip ensemble with a flat spectrum between 2 and 4 kHz and shallow cutoff slopes (12 dB/oct) on either side. Compared to our previous ensemble with the same power in the 2-4 kHz band but very steep slopes, exposure to the overall more intense, sloped stimulus had much weaker effects on AI. Finally, we explored the issue of exposure stimulus spectrotemporal density and found that low aggregate tone pip presentation rates of about one per second sufficed to induce changes in the adult AI similar to those characteristic of our previous, much denser exposures. These results are discussed in light of the putative mechanisms underlying exposure-induced auditory cortical plasticity, and the potential adverse consequences of working or living in moderately noisy environments. (C) 2012 Elsevier B.V. All rights reserved. C1 [Pienkowski, Martin; Munguia, Raymundo; Eggermont, Jos J.] Univ Calgary, Dept Physiol & Pharmacol, Calgary, AB T2N 1N4, Canada. [Pienkowski, Martin; Munguia, Raymundo; Eggermont, Jos J.] Univ Calgary, Dept Psychol, Calgary, AB T2N 1N4, Canada. [Eggermont, Jos J.] Univ Calgary, Hotchkiss Brain Inst, Calgary, AB T2N 1N4, Canada. RP Eggermont, JJ (reprint author), Univ Calgary, Hotchkiss Brain Inst, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. EM eggermon@ucalgary.ca FU Alberta Innovates Health Solutions; National Sciences and Engineering Research Council of Canada; Campbell McLaurin Chair for Hearing Deficiencies FX We thank Greg Shaw for data acquisition software development and support. This work was supported by Alberta Innovates Health Solutions, the National Sciences and Engineering Research Council of Canada, and the Campbell McLaurin Chair for Hearing Deficiencies. CR Bavelier D, 2010, J NEUROSCI, V30, P14964, DOI 10.1523/JNEUROSCI.4812-10.2010 Bonham BH, 2004, J NEUROPHYSIOL, V91, P841, DOI 10.1152/jn.00017.2003 de Villers-Sidani E, 2007, J NEUROSCI, V27, P180, DOI 10.1523/JNEUROSCI.3227-06.2007 Eggermont JJ, 1996, AUDIT NEUROSCI, V2, P309 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 Kaur S, 2004, J NEUROPHYSIOL, V91, P2551, DOI 10.1152/jn.01121.2003 Kim H, 2009, J NEUROSCI, V29, P5163, DOI 10.1523/JNEUROSCI.0365-09.2009 KJELLBERG A, 1990, SCAND J WORK ENV HEA, V16, P29 Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005 Norena AJ, 2006, NAT NEUROSCI, V9, P932, DOI 10.1038/nn1720 Norena AJ, 2008, J NEUROSCI, V28, P8885, DOI 10.1523/JNEUROSCI.2693-08.2008 Pienkowski M, 2011, HEARING RES, V277, P117, DOI 10.1016/j.heares.2011.02.002 Pienkowski M, 2012, EAR HEARING, V33, P305, DOI 10.1097/AUD.0b013e318241e880 Pienkowski M, 2010, HEARING RES, V261, P30, DOI 10.1016/j.heares.2009.12.025 Pienkowski M, 2011, NEUROSCI BIOBEHAV R, V35, P2117, DOI 10.1016/j.neubiorev.2011.02.002 Pienkowski M, 2010, HEARING RES, V268, P151, DOI 10.1016/j.heares.2010.05.016 Pienkowski M, 2009, HEARING RES, V257, P24, DOI 10.1016/j.heares.2009.07.011 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 SCHWABER MK, 1993, AM J OTOL, V14, P252 Stanton SG, 1996, AUDIT NEUROSCI, V2, P97 WALLACE MN, 1991, EXP BRAIN RES, V86, P527 WILLOTT JF, 1993, J COMP NEUROL, V329, P402, DOI 10.1002/cne.903290310 Zhang LI, 2001, NAT NEUROSCI, V4, P1123, DOI 10.1038/nn745 Zhou XM, 2012, NAT COMMUN, V3, DOI 10.1038/ncomms1849 Zhou XM, 2011, J NEUROSCI, V31, P5625, DOI 10.1523/JNEUROSCI.6470-10.2011 NR 25 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2013 VL 296 BP 121 EP 130 DI 10.1016/j.heares.2012.11.006 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 101FW UT WOS:000315761600012 PM 23154196 ER PT J AU Skuk, VG Schweinberger, SR AF Skuk, Verena G. Schweinberger, Stefan R. TI Gender differences in familiar voice identification SO HEARING RESEARCH LA English DT Article ID PERSONALLY KNOWN FACES; CONFIDENCE JUDGMENTS; SEX-DIFFERENCES; RECOGNITION; SPEAKER; DURATION; MEMORY; DISTINCTIVENESS; PHONAGNOSIA; INFORMATION AB We investigated gender differences in the identification of personally familiar voices in a gender-balanced sample of 40 listeners. From various types of utterances, listeners had to identify by name 20 speakers (10 female) among a set of 70 possible classmates who were all 12th grade pupils from the same local secondary school. Mean identification rates were 67% from sentences, and around 35% for an isolated /Hello/ or a VCV syllable. Even from non-verbal harrumphs, speakers were identified with an accuracy of 18%, i.e. highly above chance levels. Substantial individual differences were observed between listeners. Importantly, superior overall performance of female listeners was qualified by an interaction between voice gender and listener gender. Male listeners exhibited an own-gender bias (i.e. better identification for male than female voices), whereas female listeners identified voices of both genders at similar levels. Individual own-gender identification biases were correlated with differences in reported contact to a speaker's voice and voice distinctiveness. Overall, the present study establishes a number of factors that account for substantial individual differences in personal voice identification. (C) 2012 Elsevier B.V. All rights reserved. C1 [Skuk, Verena G.; Schweinberger, Stefan R.] Univ Jena, Inst Psychol, Dept Gen Psychol & Cognit Neurosci, D-07743 Jena, Germany. [Skuk, Verena G.; Schweinberger, Stefan R.] Univ Jena, Inst Psychol, DFG Res Unit Person Percept, D-07743 Jena, Germany. RP Skuk, VG (reprint author), Univ Jena, DFG Res Unit Person Percept, Leutragraben 1, D-07743 Jena, Germany. EM verena.skuk@uni-jena.de FU Deutsche Forschungsgemeinschaft (DFG) [Schw 511/10-1] FX This research was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG) to S.R.S. (grant reference Schw 511/10-1). CR Barsics C, 2011, CONSCIOUS COGN, V20, P303, DOI 10.1016/j.concog.2010.03.008 BARTHOLO.B, 1973, CAN J PSYCHOL, V27, P464, DOI 10.1037/h0082498 Belin P, 2011, BRIT J PSYCHOL, V102, P711, DOI 10.1111/j.2044-8295.2011.02041.x Boersma P., 2001, GLOT INT, V5, P341 Bredart S, 2009, EUR J COGN PSYCHOL, V21, P1013, DOI 10.1080/09541440802591821 BRICKER PD, 1966, J ACOUST SOC AM, V40, P1441, DOI 10.1121/1.1910246 Bull R., 1984, EYEWITNESS TESTIMONY, P92 COMPTON AJ, 1963, J ACOUST SOC AM, V35, P1748, DOI 10.1121/1.1918810 Garrido L, 2009, NEUROPSYCHOLOGIA, V47, P123, DOI 10.1016/j.neuropsychologia.2008.08.003 Goldstein A.G., 1977, PSYCHOL LEGAL PROCES, P223 Hancock PJB, 2000, TRENDS COGN SCI, V4, P330, DOI 10.1016/S1364-6613(00)01519-9 Hanley JR, 2009, MEMORY, V17, P830, DOI 10.1080/09658210903264175 Hanley JR, 1998, Q J EXP PSYCHOL-A, V51, P179 Herzmann G, 2004, PSYCHOPHYSIOLOGY, V41, P688, DOI 10.1111/j.1469-8986.2004.00196.x Huynh H., 1976, J EDUC STATIST, V1, P69, DOI DOI 10.2307/1164736 Ladefoged P., 1980, UCLA WORKING PAPERS, V49, P43 Lavner Y., 2001, INT J SPEECH TECHNOL, V4, P63, DOI 10.1023/A:1009656816383 Lewin C, 2002, BRAIN COGNITION, V50, P121, DOI 10.1016/S0278-2626(02)00016-7 MANN VA, 1979, J EXP CHILD PSYCHOL, V27, P153, DOI 10.1016/0022-0965(79)90067-5 Mullennix JW, 2011, APPL COGNITIVE PSYCH, V25, P29, DOI 10.1002/acp.1635 Neuner F, 2000, BRAIN COGNITION, V44, P342, DOI 10.1006/brcg.1999.1196 Perfect TJ, 2004, APPL COGNITIVE PSYCH, V18, P157, DOI 10.1002/acp.952 Rehnman J, 2007, ACTA PSYCHOL, V124, P344, DOI 10.1016/j.actpsy.2006.04.004 ROEBUCK R, 1993, APPL COGNITIVE PSYCH, V7, P475, DOI 10.1002/acp.2350070603 Russell R, 2009, PSYCHON B REV, V16, P252, DOI 10.3758/PBR.16.2.252 SASLOVE H, 1980, J APPL PSYCHOL, V65, P111, DOI 10.1037/0021-9010.65.1.111 SCHMIDTNIELSEN A, 1985, J ACOUST SOC AM, V77, P658, DOI 10.1121/1.391884 Schweinberger SR, 1997, Q J EXP PSYCHOL-A, V50, P498, DOI 10.1080/027249897391991 Schweinberger SR, 1997, J SPEECH LANG HEAR R, V40, P453 Stankov L, 2009, EUR J PSYCHOL ASSESS, V25, P123, DOI 10.1027/1015-5759.25.2.123 THOMPSON CP, 1985, HUM LEARN, V4, P19 VALENTINE T, 1991, Q J EXP PSYCHOL-A, V43, P161 VALENTINE T, 1986, CAN J PSYCHOL, V40, P300, DOI 10.1037/h0080101 VANLANCKER D, 1985, J PHONETICS, V13, P19 VANLANCKER D, 1987, NEUROPSYCHOLOGIA, V25, P829, DOI 10.1016/0028-3932(87)90120-5 VANLANCKER D, 1985, J PHONETICS, V13, P39 VANLANCKER DR, 1989, J CLIN EXP NEUROPSYC, V11, P665, DOI 10.1080/01688638908400923 Vongphoe M, 2005, J ACOUST SOC AM, V118, P1055, DOI 10.1121/1.1944507 Whittle S, 2011, BIOL PSYCHOL, V87, P319, DOI 10.1016/j.biopsycho.2011.05.003 Wright DB, 2003, ACTA PSYCHOL, V114, P101, DOI 10.1016/S0001-6918(03)00052-0 Yarmey AD, 2001, APPL COGNITIVE PSYCH, V15, P283, DOI 10.1002/acp.702 YARMEY AD, 1992, APPL COGNITIVE PSYCH, V6, P367, DOI 10.1002/acp.2350060502 Zaske R, 2010, HEARING RES, V268, P38, DOI 10.1016/j.heares.2010.04.011 NR 43 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD FEB PY 2013 VL 296 BP 131 EP 140 DI 10.1016/j.heares.2012.11.004 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 101FW UT WOS:000315761600013 PM 23168357 ER PT J AU Vanneste, S van Dongen, M De Vree, B Hiseni, S van der Velden, E Strydis, C Joos, K Norena, A Serdijn, W De Ridder, D AF Vanneste, Sven van Dongen, Marijn De Vree, Bjorn Hiseni, Senad van der Velden, Eddy Strydis, Christos Joos, Kathleen Norena, Arnaud Serdijn, Wouter De Ridder, Dirk TI Does enriched acoustic environment in humans abolish chronic tinnitus clinically and electrophysiologically? A double blind placebo controlled study SO HEARING RESEARCH LA English DT Article ID DEEP BRAIN-STIMULATION; ELECTROMAGNETIC TOMOGRAPHY LORETA; ANTERIOR THALAMUS; AUDITORY-CORTEX; NOISE TRAUMA; PSYCHOLOGICAL DISTRESS; DEPRESSION SCALE; HOSPITAL ANXIETY; HEARING-LOSS; REORGANIZATION AB Animal research has shown that loss of normal acoustic stimulation can increase spontaneous firing in the central auditory system and induce cortical map plasticity. Enriched acoustic environment after noise trauma prevents map plasticity and abolishes neural signs of tinnitus. In humans, the tinnitus spectrum overlaps with the area of hearing loss. Based on these findings it can be hypothesized that stimulating the auditory system by presenting music compensating specifically for the hearing loss might also suppress chronic tinnitus. To verify this hypothesis, a study was conducted in three groups of tinnitus patients. One group listened just to unmodified music (i.e. active control group), one group listened to music spectrally tailored to compensate for their hearing loss, and a third group received music tailored to overcompensate for their hearing loss, associated with one (in presbycusis) or two notches (in audiometric dip) at the edge of hearing loss. Our data indicate that applying overcompensation to the hearing loss worsens the patients' tinnitus loudness, the tinnitus annoyance and their depressive feelings. No significant effects were obtained for the control group or for the compensation group. These clinical findings were associated with an increase in current density within the left dorsal anterior cingulate cortex in the alpha2 frequency band and within the left pregenual anterior cingulate cortex in betal and beta2 frequency band. In addition, a region of interest analysis also demonstrated an associated increase in gamma band activity in the auditory cortex after overcompensation in comparison to baseline measurements. This was, however, not the case for the control or the compensation groups. In conclusion, music therapy compensating for hearing loss is not beneficial in suppressing tinnitus, and overcompensating hearing loss actually worsens tinnitus, both clinically and electrophysiologically. (C) 2012 Elsevier B.V. All rights reserved. C1 [Vanneste, Sven; De Vree, Bjorn; van der Velden, Eddy; Joos, Kathleen; De Ridder, Dirk] Univ Antwerp Hosp, TRI, B-2650 Edegem, Belgium. [Vanneste, Sven; De Vree, Bjorn; van der Velden, Eddy; Joos, Kathleen; De Ridder, Dirk] Univ Antwerp Hosp, Dept Neurosurg, B-2650 Edegem, Belgium. [Vanneste, Sven; Joos, Kathleen] Univ Antwerp, Fac Med, Dept Translat Neurosci, Antwerp, Belgium. [van Dongen, Marijn; Hiseni, Senad; Serdijn, Wouter] Delft Univ Technol, Fac Elect Engn Math & Comp Sci, Elect Res Lab, Biomed Elect Grp, NL-2600 AA Delft, Netherlands. [Strydis, Christos] Erasmus Univ, Erasmus Med Ctr, Dept Neurosci, Rotterdam, Netherlands. [Strydis, Christos] Univ Aix Marseille 1, Integrat & Adapt Neurobiol Lab, Natl Ctr Sci Res, F-13331 Marseille 3, France. RP Vanneste, S (reprint author), Univ Antwerp Hosp, Wilrijkstr 10, B-2650 Edegem, Belgium. EM sven.vanneste@ua.ac.be FU Research Foundation Flanders (FWO); Tinnitus Research Initiative (TRI) FX The authors thank Jan Ost, Bram Van Achteren and Pieter van Looy for their help in preparing this manuscript. This work was supported by Research Foundation Flanders (FWO) and the Tinnitus Research Initiative (TRI). CR ALSTER J, 1993, BIOL PSYCHIAT, V34, P84, DOI 10.1016/0006-3223(93)90260-K Argence M, 2008, EUR J NEUROSCI, V28, P1589, DOI 10.1111/j.1460-9568.2008.06454.x Audiology BSO, 2008, REC PROC PUR TON AIR Baguley DM, 2002, BRIT MED BULL, V63, P195, DOI 10.1093/bmb/63.1.195 BERTRAND O, 1985, ELECTROEN CLIN NEURO, V62, P462, DOI 10.1016/0168-5597(85)90058-9 Congedo M., 2002, EUREKA VERSION 3 0 C Crone NE, 2001, CLIN NEUROPHYSIOL, V112, P565, DOI 10.1016/S1388-2457(00)00545-9 Cronlein T, 2007, PROG BRAIN RES, V166, P227, DOI 10.1016/S0079-6123(07)66021-X De Ridder D, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024273 De Ridder D, 2011, TEXTBOOK OF TINNITUS, P237, DOI 10.1007/978-1-60761-145-5_28 De Ridder D, 2011, J NEUROSURG, V114, P912, DOI 10.3171/2010.11.JNS10335 Dierks T, 2000, CLIN NEUROPHYSIOL, V111, P1817, DOI 10.1016/S1388-2457(00)00427-2 Dobie RA, 2003, OTOLARYNG CLIN N AM, V36, P383, DOI 10.1016/S0030-6665(02)00168-8 Eggermont JJ, 2000, HEARING RES, V142, P89, DOI 10.1016/S0378-5955(00)00024-1 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 FLOR H, 1995, NATURE, V375, P482, DOI 10.1038/375482a0 Fuchs M, 2002, CLIN NEUROPHYSIOL, V113, P702, DOI 10.1016/S1388-2457(02)00030-5 Grulke N, 2005, BONE MARROW TRANSPL, V35, P1107, DOI 10.1038/sj.bmt.1704971 Hallam RS, 2004, INT J AUDIOL, V43, P218, DOI 10.1080/14992020400050030 Hanley Peter J, 2008, Trends Amplif, V12, P210, DOI 10.1177/1084713808319942 Heller AJ, 2003, OTOLARYNG CLIN N AM, V36, P239, DOI 10.1016/S0030-6665(02)00160-3 Jastreboff PJ, 2007, PROG BRAIN RES, V166, P415, DOI 10.1016/S0079-6123(07)66040-3 JOLIOT M, 1994, P NATL ACAD SCI USA, V91, P11748, DOI 10.1073/pnas.91.24.11748 Jurcak V, 2007, NEUROIMAGE, V34, P1600, DOI 10.1016/j.neuroimage.2006.09.024 Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5 Kleine Punte A., 2011, COCHLEAR IMPLANTS TI Langguth B, 2007, PROG BRAIN RES, V166, P221, DOI 10.1016/S0079-6123(07)66020-8 Llinas R, 2005, TRENDS NEUROSCI, V28, P325, DOI 10.1016/j.tins.2005.04.006 Llinas RR, 1999, P NATL ACAD SCI USA, V96, P15222, DOI 10.1073/pnas.96.26.15222 Lorenz I, 2009, NEUROSCI LETT, V453, P225, DOI 10.1016/j.neulet.2009.02.028 Mccue P, 2006, BRIT J CLIN PSYCHOL, V45, P483, DOI 10.1348/014466505X82379 Meeus O, 2011, OTOL NEUROTOL Meeus O, 2009, EUR ARCH OTORHINOLAR Moffat G, 2009, HEARING RES, V254, P82, DOI 10.1016/j.heares.2009.04.016 Muhlnickel W, 1998, P NATL ACAD SCI USA, V95, P10340, DOI 10.1073/pnas.95.17.10340 Mulert C, 2004, NEUROIMAGE, V22, P83, DOI 10.1016/j.neuroimage.2003.10.051 Nichols TE, 2002, HUM BRAIN MAPP, V15, P1, DOI 10.1002/hbm.1058 Norena AJ, 2006, NEUROREPORT, V17, P559, DOI 10.1097/00001756-200604240-00001 Norena AJ, 2007, NEUROREPORT, V18, P1251, DOI 10.1097/WNR.0b013e3282202c35 Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005 Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9 Pascual-Marqui RD, 2002, METHOD FIND EXP CLIN, V24, P5 Pascual-Marqui RD, 2002, METHOD FIND EXP CLIN, V24, P91 Pizzagalli D, 2001, AM J PSYCHIAT, V158, P405, DOI 10.1176/appi.ajp.158.3.405 Pizzagalli DA, 2004, MOL PSYCHIATR, V9, P393, DOI 10.1038/sj.mp.4001469 Punte Andrea Kleine, 2011, Cochlear Implants Int, V12 Suppl 1, pS26, DOI 10.1179/146701011X13001035752336 Robertson D., 2012, HEAR RES Robjant K., 2009, BR J CLIN PSYCHOL Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 Schaette R, 2010, HEARING RES, V269, P95, DOI 10.1016/j.heares.2010.06.022 Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1 Surr R K, 1999, J Am Acad Audiol, V10, P489 Trotrer MI, 2008, J LARYNGOL OTOL, V122, P1052, DOI 10.1017/S002221510800203X Van de Heyning Paul, 2008, Ann Otol Rhinol Laryngol, V117, P645 van Dellen E, 2009, PLOS ONE, V4, P1 van der Loo E, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007396 Vanneste S, 2010, NEUROIMAGE, V52, P470, DOI 10.1016/j.neuroimage.2010.04.029 Vitacco D, 2002, HUM BRAIN MAPP, V17, P4, DOI 10.1002/hbm.10038 Volpe U, 2007, BRAIN RES BULL, V73, P220, DOI 10.1016/j.brainresbull.2007.03.003 Worrell GA, 2000, BRAIN TOPOGR, V12, P273, DOI 10.1023/A:1023407521772 ZIGMOND AS, 1983, ACTA PSYCHIAT SCAND, V67, P361, DOI 10.1111/j.1600-0447.1983.tb09716.x Zumsteg D, 2006, CLIN NEUROPHYSIOL, V117, P1602, DOI 10.1016/j.clinph.2006.04.008 Zumsteg D, 2006, CLIN NEUROPHYSIOL, V117, P192, DOI 10.1016/j.clilnph.2005.09.015 Zumsteg D, 2005, NEUROLOGY, V65, P1657, DOI 10.1212/01.wnl.0000184516.32369.1a Zumsteg D, 2006, EPILEPSIA, V47, P1958, DOI 10.1111/j.1528-1167.2006.00824.x NR 65 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2013 VL 296 BP 141 EP 148 DI 10.1016/j.heares.2012.10.003 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 101FW UT WOS:000315761600014 PM 23104014 ER PT J AU Yankaskas, K AF Yankaskas, Kurt TI Prelude: Noise-induced tinnitus and hearing loss in the military SO HEARING RESEARCH LA English DT Article ID SPEECH-INTELLIGIBILITY; AIRCRAFT NOISE; HEALTH-RISK; ANNOYANCE; DEPRESSION; SEVERITY; PROTECTION; PERSONNEL; VETERANS; EXPOSURE AB Hearing is critical to the performance of military personnel and is integral to the rapid and accurate processing of speech information. Thus, noise-induced hearing loss (NIHL) represents a severe impairment that reduces military effectiveness, safety, and quality of life. With the high levels of noise to which military personnel are exposed and the limited protection afforded by hearing conservation programs, it should be no surprise that annual Veterans Affairs disability payments for tinnitus and hearing loss exceeded $1.2 billion for 2009 and continue to increase. Military personnel work in high-noise environments, yet the Department of Defense (DoD) cannot predict who is susceptible to noise-induced hearing loss and tinnitus. Of those exposed to noise, 80% may also suffer from chronic tinnitus. Despite its prevalence, there are no means to objectively measure the severity of tinnitus in those individuals. A fundamental understanding of the underlying mechanisms of tinnitus and its relation to noise-induced hearing loss is critical. Such an understanding may provide insight to who is at risk for each condition, allow aggressive hearing protection measures in those individuals most at risk, and create areas for treatment for those already suffering from the conditions. The current review will address the scope of the problems of NIHL and tinnitus for the military, discuss the noise environments in which military personnel operate, describe the hearing conservation measures currently in place, and the challenges those programs face. Some recent breakthroughs in NIHL research will be discussed along with some challenges and directions for future research on NIHL and tinnitus. Published by Elsevier B.V. C1 Off Naval Res, Noise Induced Hearing Loss Program, Arlington, VA 22203 USA. RP Yankaskas, K (reprint author), Off Naval Res, Noise Induced Hearing Loss Program, Code 342,875 N Randolph St, Arlington, VA 22203 USA. EM kurt.d.yankaskas@navy.mil CR ABEL SM, 1982, J ACOUST SOC AM, V71, P708, DOI 10.1121/1.387547 ALSTER J, 1993, BIOL PSYCHIAT, V34, P84, DOI 10.1016/0006-3223(93)90260-K AXELSSON A, 1987, ACTA OTO-LARYNGOL, V104, P225, DOI 10.3109/00016488709107322 Beck L.B., 2011, 3 INT STAT SCI M BLA Berger E.H., 2000, J ACOUSTICAL SOC A 2, V108, P2619 Blue-Terry M, 2011, ERGONOMICS, V54, P139, DOI 10.1080/00140139.2010.540354 Brink M, 2008, J ACOUST SOC AM, V124, P2930, DOI 10.1121/1.2977680 Casali JG, 2009, NOISE HEALTH, V11, P69, DOI 10.4103/1463-1741.48564 DOBIE RA, 1992, ACTA OTO-LARYNGOL, V112, P242 Fausti SA, 2009, J REHABIL RES DEV, V46, P797, DOI 10.1682/JRRD.2008.09.0118 Folmer RL, 1999, OTOLARYNG HEAD NECK, V121, P48, DOI 10.1016/S0194-5998(99)70123-3 Garinther G., 1990, ARMY RES DEV ACQ JAN, P1 Geiger M., 2008, NOISE EVALUATION ACQ HALFORD JBS, 1991, J PSYCHOSOM RES, V35, P383, DOI 10.1016/0022-3999(91)90033-K Hallam RS, 2004, INT J AUDIOL, V43, P218, DOI 10.1080/14992020400050030 HAMERNIK RP, 1984, HEARING RES, V13, P229, DOI 10.1016/0378-5955(84)90077-7 Helfer TM, 2010, AM J PREV MED, V38, pS71, DOI 10.1016/j.amepre.2009.10.025 Henry JA, 2009, NOISE HEALTH, V11, P33, DOI 10.4103/1463-1741.45311 Henry James A, 2008, Trends Amplif, V12, P170, DOI 10.1177/1084713808319941 Hoffer M, 2011, 3 INT STAT SCI M BLA Humes L. E., 2005, NOISE MILITARY SERVI ISING H, 1990, INT ARCH OCC ENV HEA, V62, P357, DOI 10.1007/BF00381365 Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193 Langguth B, 2007, PROG BRAIN RES, V166, P221, DOI 10.1016/S0079-6123(07)66020-8 LAZAR JM, 1995, PERCEPT MOTOR SKILL, V80, P739 Lin S, 2008, INT ARCH OCC ENV HEA, V81, P797, DOI 10.1007/s00420-007-0265-1 Mazurek B, 2010, INT J ENV RES PUB HE, V7, P3071, DOI 10.3390/ijerph7083071 Nakashima Ann, 2007, Noise Health, V9, P35 NIOSH, 1998, NIOSH PUBL, V98-102 Norin JA, 2011, EAR HEARING, V32, P642, DOI 10.1097/AUD.0b013e31821478c8 Patterson J.H., 1986, BASIC APPLIED ASPECT, P405 Pepper CB, 2003, ENVIRON MANAGE, V32, P418, DOI 10.1007/s00267-003-3024-4 Phillips Y Y, 1989, Ann Otol Rhinol Laryngol Suppl, V140, P3 Price G R, 1989, Ann Otol Rhinol Laryngol Suppl, V140, P42 Ribera JE, 2004, AVIAT SPACE ENVIR MD, V75, P132 Rossiter S, 2006, J SPEECH LANG HEAR R, V49, P150, DOI 10.1044/1092-4388(2006/012) Roup CM, 2009, AM J AUDIOL, V18, P45, DOI 10.1044/1059-0889(2009/08-0028) Rovig GW, 2004, MIL MED, V169, P429 Saunders GH, 2009, NOISE HEALTH, V11, P14, DOI 10.4103/1463-1741.45308 SKINNER MW, 1980, J ACOUST SOC AM, V67, P306, DOI 10.1121/1.384463 Stephenson M. R., 2000, P 3 ANN US ARM FORC Sullivan M, 1992, Psychiatr Med, V10, P61 US-Navy, 2005, NAV SAF OCC HLTH SOH VA, 2011, ANN BEN REP Van Gerven PWM, 2009, J ACOUST SOC AM, V126, P187, DOI 10.1121/1.3147510 Van Wijngaarden SJ, 2001, AVIAT SPACE ENVIR MD, V72, P1037 Versfeld NJ, 1997, J ACOUST SOC AM, V101, P2677, DOI 10.1121/1.418556 Vignuelle R., 2011, 3 INT STAT SCI M BLA Wilson RH, 2010, J REHABIL RES DEV, V47, P505, DOI 10.1682/JRRD.2009.10.0169 Yankaskas K, 2009, NAV ENV HLTH CTR ANN Zheng JL, 2000, NAT NEUROSCI, V3, P580 NR 51 TC 18 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2013 VL 295 BP 3 EP 8 DI 10.1016/j.heares.2012.04.016 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 098NX UT WOS:000315557100002 PM 22575206 ER PT J AU Canlon, B Theorell, T Hasson, D AF Canlon, Barbara Theorell, Tores Hasson, Dan TI Associations between stress and hearing problems in humans SO HEARING RESEARCH LA English DT Article ID SELF-RATED HEALTH; ACOUSTIC TRAUMA; EMOTIONAL EXHAUSTION; TINNITUS SUFFERERS; THRESHOLD SHIFTS; RESTRAINT STRESS; ALLOSTATIC LOAD; NOISE EXPOSURE; OLDER-ADULTS; RISK-FACTORS AB Hearing problems are a public health issue with prevalence figures far more common than previously estimated. There are well-established risk factors of hearing problems such as age, sex and noise exposure history. Here, we demonstrate additional risk factors, i.e. socioeconomic status and long-term stress exposure that are found to increase the risk of hearing problems. In order to proactively intervene and prevent hearing problems, these newly recognized risk factors need to be taken into consideration. When taking these new risk factors into account, sex differences become even more apparent than previously found. The aim of this review is to summarize our recent findings about the associations between stress and hearing problems. (c) 2012 Elsevier B.V. All rights reserved. C1 [Canlon, Barbara; Hasson, Dan] Karolinska Inst, Dept Physiol & Pharmacol, S-17177 Stockholm, Sweden. [Theorell, Tores; Hasson, Dan] Stockholm Univ, Stress Res Inst, Stockholm, Sweden. [Theorell, Tores] Karolinska Inst, Dept Publ Hlth, S-17177 Stockholm, Sweden. RP Hasson, D (reprint author), Karolinska Inst, Dept Physiol & Pharmacol, S-17177 Stockholm, Sweden. EM dan.hasson@ki.se FU Swedish Research Council; Swedish Council for Working Life and Social Research; Stiftelsen Tysta Skolan; Bliwastiftelsen; AFA Forsakring FX We would like to thank Avesina AB for providing the clinical facilities for the Stress and hearing study. We also wish to thank the participants of the SLOSH study and the entire staff involved in the projects: Dr Martin Benka Wallen, Dr Walter Osika, Professor Hugo Westerlund, Dr Constanze Leineweber, Dr Linda Magnusson Hansson, Agneta Viberg, Susanna Benka, Satu Turunen-Taheri, Renata Bogo, Elin Ljungkvist, Anne-Marie Jakobsson and all the rest of the audiologist team. Our deepest gratitude for the kind and invaluable financial support from the following funding bodies that made these studies and analyses possible: The Swedish Research Council, The Swedish Council for Working Life and Social Research, Stiftelsen Tysta Skolan, Bliwastiftelsen and AFA Forsakring. CR Agrawal Y, 2008, ARCH INTERN MED, V168, P1522, DOI 10.1001/archinte.168.14.1522 Alpini D, 2006, ORL J OTO-RHINO-LARY, V68, P31, DOI 10.1159/000090488 Asplund R, 2003, ARCH GERONTOL GERIAT, V36, P93, DOI 10.1016/S0167-4943(02)00062-6 Asplund R, 2003, ARCH GERONTOL GERIAT, V37, P139, DOI 10.1016/S0167-4943(03)00028-1 Bailis DS, 2003, SOC SCI MED, V56, P203, DOI 10.1016/S0277-9536(02)00020-5 Berne RM, 1993, PHYSIOLOGY Bielefeld EC, 2007, HEARING RES, V223, P11, DOI 10.1016/j.heares.2006.09.010 Bulbul SF, 2009, INT J PEDIATR OTORHI, V73, P1124, DOI 10.1016/j.ijporl.2009.04.018 Calabrese Francesca, 2009, Psychoneuroendocrinology, V34 Suppl 1, pS208, DOI 10.1016/j.psyneuen.2009.05.014 CANLON B, 1988, HEARING RES, V34, P197, DOI 10.1016/0378-5955(88)90107-4 Canlon B, 2007, HEARING RES, V226, P61, DOI 10.1016/j.heares.2006.05.009 CHROUSOS GP, 1992, JAMA-J AM MED ASSOC, V267, P1244, DOI 10.1001/jama.267.9.1244 Ciccone DS, 2003, PSYCHOSOM MED, V65, P268, DOI 10.1097/01.PSY.0000033125.08272.A9 Clauw DJ, 2002, AM J IND MED, V41, P370, DOI 10.1002/ajim.10068 Dalton DS, 2003, GERONTOLOGIST, V43, P661 Daniel E, 2007, J SCHOOL HEALTH, V77, P225, DOI 10.1111/j.1746-1561.2007.00197.x EASTWOOD MR, 1985, BRIT J PSYCHIAT, V147, P552, DOI 10.1192/bjp.147.5.552 Farmer MM, 1997, J HEALTH SOC BEHAV, V38, P298, DOI 10.2307/2955372 Hallberg UE, 2004, EUR J PSYCHOL ASSESS, V20, P320, DOI 10.1027/1015-5759.20.4.320 Hanson LLM, 2008, SCAND J PUBLIC HEALT, V36, P737, DOI 10.1177/1403494808090164 Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6 Hasson D, 2009, J HEALTH PSYCHOL, V14, P568, DOI 10.1177/1359105309103576 Hasson D, 2010, J EPIDEMIOL COMMUN H, V64, P453, DOI 10.1136/jech.2009.095430 Hasson Dan, 2006, Popul Health Metr, V4, P8, DOI 10.1186/1478-7954-4-8 Hasson D, 2011, BMC PUBLIC HEALTH, V11, DOI 10.1186/1471-2458-11-130 Hasson D, 2009, INT J PSYCHOPHYSIOL, V74, P93, DOI 10.1016/j.ijpsycho.2009.07.009 Havard S., 2011, OCCUP ENV MED Hebert S, 2004, HEARING RES, V190, P1, DOI [10.1016/S0378-5955(04)00021-8, 10.1016/S037-5955(04)00021-8] Hebert S, 2007, NEUROSCI LETT, V411, P138, DOI 10.1016/j.neulet.2006.10.028 Hebert S, 2009, INT J HYG ENVIR HEAL, V212, P37, DOI 10.1016/j.ijheh.2007.11.005 Hebert S, 2012, PSYCHOTHER PSYCHOSOM, V81, P324, DOI 10.1159/000335043 Henry JA, 2005, J SPEECH LANG HEAR R, V48, P1204, DOI 10.1044/1092-4388(2005/084) Horner KC, 2001, EUR J NEUROSCI, V13, P405, DOI 10.1046/j.0953-816X.2000.01386.x Horner KC, 2003, NEUROSCI BIOBEHAV R, V27, P437, DOI 10.1016/S0149-7634(03)00071-X HUDSON JI, 1992, AM J MED, V92, P363, DOI 10.1016/0002-9343(92)90265-D Idler EL, 1997, J HEALTH SOC BEHAV, V38, P21, DOI 10.2307/2955359 Ihlebaek C, 2003, OCCUP MED-OXFORD, V53, P270, DOI 10.1093/occmed/kqg060 Job A, 2009, HEARING RES, V251, P10, DOI 10.1016/j.heares.2009.02.008 Kaleta D, 2008, INT J OCCUP MED ENV, V21, P227, DOI 10.2478/v10001-008-0023-y KUK FK, 1990, EAR HEARING, V11, P434, DOI 10.1097/00003446-199012000-00005 Lam DK, 2001, J OROFAC PAIN, V15, P146 Lawrence H P, 2001, Spec Care Dentist, V21, P129, DOI 10.1111/j.1754-4505.2001.tb00242.x LEINO P, 1993, PAIN, V53, P89, DOI 10.1016/0304-3959(93)90060-3 Lekander M, 2004, PSYCHOSOM MED, V66, P559, DOI 10.1097/01.psy.0000130491.95823.94 LIBERMAN MC, 1995, HEARING RES, V90, P158, DOI 10.1016/0378-5955(95)00160-2 Lindstrom M, 2009, HEALTH POLICY, V93, P172, DOI 10.1016/j.healthpol.2009.05.010 Lockwood AH, 1998, NEUROLOGY, V50, P114 Lopez AD, 2006, LANCET, V367, P1747, DOI 10.1016/S0140-6736(06)68770-9 Lusk SL, 2002, ARCH ENVIRON HEALTH, V57, P273 Maslach C., 1996, MASLACH BURNOUT INVE, V3rd Mathers C, 2000, GLOBAL BURDEN DIS, P1 Mathers CD, 2006, PLOS MED, V3, DOI 10.1371/journal.pmed.0030442 McEwen BS, 2000, BRAIN RES, V886, P172, DOI 10.1016/S0006-8993(00)02950-4 McEwen BS, 1998, NEW ENGL J MED, V338, P171 McEwen BS, 1998, ANN NY ACAD SCI, V840, P33, DOI 10.1111/j.1749-6632.1998.tb09546.x McEwen BS, 2011, ANNU REV MED, V62, P431, DOI 10.1146/annurev-med-052209-100430 McNeill K, 2010, J ACOUST SOC AM, V128, P646, DOI 10.1121/1.3458853 Mense Siegfried, 2003, Curr Pain Headache Rep, V7, P419, DOI 10.1007/s11916-003-0057-6 Nelson DI, 2005, AM J IND MED, V48, P446, DOI 10.1002/aijm.20223 Noble RE, 2002, METABOLISM, V51, P37, DOI 10.1053/meta.2002.33190 Ohlemiller KK, 2008, HEARING RES, V245, P5, DOI 10.1016/j.heares.2008.08.007 Olusanya BO, 2006, JAMA-J AM MED ASSOC, V296, P441, DOI 10.1001/jama.296.4.441 PATUZZI RB, 1989, HEARING RES, V39, P189, DOI 10.1016/0378-5955(89)90090-7 Pearson Murphy B.E., 2000, ENCY STRESS, V2, P244 Pikhart H, 2001, J EPIDEMIOL COMMUN H, V55, P624, DOI 10.1136/jech.55.9.624 RAREY KE, 1995, HEARING RES, V82, P135, DOI 10.1016/0378-5955(94)00171-L Saunders GH, 2009, NOISE HEALTH, V11, P14, DOI 10.4103/1463-1741.45308 Schmuziger N, 2006, INT J AUDIOL, V45, P46, DOI 10.1080/14992020500377089 Smith A, 2000, OCCUP MED-OXFORD, V50, P294 Tahera Y, 2006, ENDOCRINOLOGY, V147, P4430, DOI 10.1210/en.2006-0260 Tahera Y, 2007, NEUROBIOL DIS, V25, P189, DOI 10.1016/j.nbd.2006.09.004 Tambs K, 2006, INT J AUDIOL, V45, P309, DOI 10.1080/14992020600582166 Theorell T., 2009, CURRENT PERSPECTIVES, P300 UHLMANN RF, 1989, JAMA-J AM MED ASSOC, V261, P1916, DOI 10.1001/jama.261.13.1916 Ulrich-Lai YM, 2009, NAT REV NEUROSCI, V10, P397, DOI 10.1038/nrn2647 Ursin H, 2001, ANN NY ACAD SCI, V933, P119 Wallhagen MI, 1997, AM J PUBLIC HEALTH, V87, P440, DOI 10.2105/AJPH.87.3.440 Wang Y, 2002, HEARING RES, V165, P96, DOI 10.1016/S0378-5955(02)00289-7 WHO, 2011, BURD DIS ENV NOIS QU Willenberg H.S., 2000, ENCY STRESS, V1, P709 NR 80 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2013 VL 295 BP 9 EP 15 DI 10.1016/j.heares.2012.08.015 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 098NX UT WOS:000315557100003 PM 22982334 ER PT J AU Fournier, P Hebert, S AF Fournier, Philippe Hebert, Sylvie TI Gap detection deficits in humans with tinnitus as assessed with the acoustic startle paradigm: Does tinnitus fill in the gap? SO HEARING RESEARCH LA English DT Article ID PREPULSE INHIBITION; AUDITORY-CORTEX; SLEEP COMPLAINTS; TEMPORAL ACUITY; NEURAL ACTIVITY; HEARING-LOSS; BASE-LINE; REFLEX; NOISE; RATS AB The measurement of tinnitus in humans relies on subjective measures such as self-report, visual analog scales and questionnaires. Gap detection impairments have been tested in animals in an attempt to objectify the presence of tinnitus. The main purpose of this study was to investigate the gap startle paradigm in human participants with high-frequency tinnitus. Fifteen adults with bilateral high-frequency tinnitus but normal hearing at standard frequencies and seventeen matched controls without tinnitus were tested. The psychoacoustic characteristics of the tinnitus spectrum (pitch and loudness) were assessed using novel participant-directed custom-made methods. The startle task consisted of startle-alone, prepulse inhibition and gap-in-noise condition at low- and high-background noise frequencies. All measurements were retested after several months. Data indicate normal prepulse inhibition but higher reactivity to the startle sounds in the tinnitus group in comparison with controls. Most importantly, the tinnitus group displayed a consistent deficit in gap processing at both low- and high-background noise frequencies. All effects were identified consistently and were reproducible at retest. We propose that the higher reactivity to startle might reflect hyperacusis and that the gap deficit might be an index of abnormal cortical auditory processing in tinnitus. (c) 2012 Elsevier B.V. All rights reserved. C1 [Fournier, Philippe; Hebert, Sylvie] Univ Montreal, Fac Med, Ecole Orthophonie & Audiol, Montreal, PQ H3C 3J7, Canada. [Fournier, Philippe; Hebert, Sylvie] Inst Univ Geriatrie Montreal, Ctr Rech, Montreal, PQ, Canada. [Fournier, Philippe; Hebert, Sylvie] Univ Montreal, Int Lab Brain Mus & Sound, BRAMS, Montreal, PQ H3C 3J7, Canada. [Fournier, Philippe; Hebert, Sylvie] McGill Univ, Montreal, PQ H3A 2T5, Canada. RP Hebert, S (reprint author), Univ Montreal, Fac Med, Ecole Orthophonie & Audiol, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada. EM Sylvie.hebert@umontreal.ca FU Institut de la recherche en sante et securite du Travail du Quebec (IRSST); Fondation de la recherche en sante du Quebec (FRSQ) FX We thank Nathanael Lecaude for programming the tasks described in this paper, and Emilie Gosselin for help in the testing of the participants. We are grateful to Dr. Terry D. Blumenthal for his kind and expert advice regarding data analysis of the startle paradigm. We also thank the Reviewers and Editors for their valuable comments on previous versions of this paper. This research was made possible thanks to a Canadian Foundation Innovation (CFI) grant, and a studentship from Institut de la recherche en sante et securite du Travail du Quebec (IRSST) and from Fondation de la recherche en sante du Quebec (FRSQ) to P.F. CR Andersson G, 2003, AURIS NASUS LARYNX, V30, P129, DOI 10.1016/S0385-8146(03)00008-7 Bakker M. J., 2008, J PSYCHIATR NEUROSCI, V34, P314 Bakker MJ, 2011, J PSYCHIATR RES, V45, P796, DOI 10.1016/j.jpsychires.2010.11.006 Bauer CA, 2001, JARO, V2, P54 Beck A.T., 1996, MANUAL BECK DEPRESSI Blumenthal TD, 2005, PSYCHOPHYSIOLOGY, V42, P1, DOI 10.1111/j.1469-8986.2005.00271.x Bowen GP, 2003, CEREB CORTEX, V13, P815, DOI 10.1093/cercor/13.8.815 BRAFF D, 1978, PSYCHOPHYSIOLOGY, V15, P339, DOI 10.1111/j.1469-8986.1978.tb01390.x BUCHTEL HA, 1989, BRAIN LANG, V37, P12, DOI 10.1016/0093-934X(89)90098-9 DAVIS M, 1982, J NEUROSCI, V2, P791 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Eggermont J.J., 2012, HEARING RES Engineer ND, 2011, NATURE, V470, P101, DOI 10.1038/nature09656 Frau R., 2008, INT J NEUROPSYCHOPHA, V11 GRILLON C, 1994, BIOL PSYCHIAT, V35, P431, DOI 10.1016/0006-3223(94)90040-X Grillon C, 1996, PSYCHIAT RES, V64, P169, DOI 10.1016/S0165-1781(96)02942-3 Hairston IS, 2010, EUR J NEUROSCI, V31, P2112, DOI 10.1111/j.1460-9568.2010.07237.x Harrell R. W., 2002, HDB CLIN AUDIOLOGY, P71 Hebert S, 2004, HEARING RES, V190, P1, DOI [10.1016/S0378-5955(04)00021-8, 10.1016/S037-5955(04)00021-8] Hebert S, 2007, NEUROSCI LETT, V411, P138, DOI 10.1016/j.neulet.2006.10.028 Hebert S, 2011, J SLEEP RES, V20, P38, DOI 10.1111/j.1365-2869.2010.00860.x Hebert S., PSYCHOTHERAPY PSYCHO Hebert S., 2012, PLOS ONE Hebert S, 2009, INT J HYG ENVIR HEAL, V212, P37, DOI 10.1016/j.ijheh.2007.11.005 Hebert S, 2007, EAR HEARING, V28, P649 Hiller W, 2007, AUDIOL NEURO-OTOL, V12, P391, DOI 10.1159/000106482 Holgers K-M, 2003, AUDIOLOGICAL MED, V2, P101 Holt A.G., 2010, PLOS ONE, V5, P1 Ison JR, 2007, JARO-J ASSOC RES OTO, V8, P539, DOI 10.1007/s10162-007-0098-3 ISON JR, 1991, BEHAV NEUROSCI, V105, P33, DOI 10.1037//0735-7044.105.1.33 ISON JR, 1982, J COMP PHYSIOL PSYCH, V96, P945, DOI 10.1037/0735-7036.96.6.945 Khalfa S, 2002, ORL J OTO-RHINO-LARY, V64, P436, DOI 10.1159/000067570 Kline P, 2000, HDB PSYCHOL TESTING Koch M, 1999, PROG NEUROBIOL, V59, P107, DOI 10.1016/S0301-0082(98)00098-7 Kraus KS, 2010, NEUROSCIENCE, V167, P1216, DOI 10.1016/j.neuroscience.2010.02.071 Kumari V, 1996, PSYCHOPHARMACOLOGY, V128, P54, DOI 10.1007/s002130050109 Lee YL, 1996, J NEUROSCI, V16, P3775 Li L, 2009, NEUROSCI BIOBEHAV R, V33, P1157, DOI 10.1016/j.neubiorev.2009.02.001 Longenecker RJ, 2011, JARO-J ASSOC RES OTO, V12, P647, DOI 10.1007/s10162-011-0276-1 Mao J.C., 2011, J NEUROTRAUM Middleton JW, 2011, P NATL ACAD SCI USA, V108, P7601, DOI 10.1073/pnas.1100223108 Moore BCJ, 2010, HEARING RES, V261, P51, DOI 10.1016/j.heares.2010.01.003 Muhlnickel W, 1998, P NATL ACAD SCI USA, V95, P10340, DOI 10.1073/pnas.95.17.10340 Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156 Ralli M, 2010, OTOL NEUROTOL, V31, P823, DOI 10.1097/MAO.0b013e3181de4662 Roberts LE, 2008, JARO-J ASSOC RES OTO, V9, P417, DOI 10.1007/s10162-008-0136-9 Schaette R, 2011, J NEUROSCI, V31, P13452, DOI 10.1523/JNEUROSCI.2156-11.2011 Shargorodsky J, 2010, AM J MED, V123, P711, DOI 10.1016/j.amjmed.2010.02.015 SILVERSTEIN LD, 1980, ELECTROEN CLIN NEURO, V48, P406, DOI 10.1016/0013-4694(80)90133-9 Simoens Veerle L, 2012, BMC Ear Nose Throat Disord, V12, P4, DOI 10.1186/1472-6815-12-4 Sun W, 2009, NEUROSCIENCE, V159, P325, DOI 10.1016/j.neuroscience.2008.12.024 Swerdlow NR, 2000, BEHAV PHARMACOL, V11, P185 SWERDLOW NR, 1995, J NEUROL NEUROSUR PS, V58, P192, DOI 10.1136/jnnp.58.2.192 Threlkeld SW, 2008, NEUROREPORT, V19, P893, DOI 10.1097/WNR.0b013e3283013d7e Turner J.G., 2008, AM J AUDIOL, V17, P185 Turner JG, 2006, BEHAV NEUROSCI, V120, P188, DOI 10.1037/0735-7044.120.1.188 Wang H, 2009, NEUROSCIENCE, V164, P747, DOI 10.1016/j.neuroscience.2009.08.026 Weisz N, 2005, BRAIN, V128, P2722, DOI 10.1093/brain/awh588 Yang G, 2007, HEARING RES, V226, P244, DOI 10.1016/j.heares.2006.06.013 Yeomans JS, 2002, NEUROSCI BIOBEHAV R, V26, P1, DOI 10.1016/S0149-7634(01)00057-4 Zhang J., 2010, JARO-J ASSOC RES OTO, V12, P185 NR 61 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2013 VL 295 BP 16 EP 23 DI 10.1016/j.heares.2012.05.011 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 098NX UT WOS:000315557100004 PM 22688322 ER PT J AU Punte, AK De Ridder, D Van de Heyning, P AF Punte, Andrea Kleine De Ridder, Dirk Van de Heyning, Paul TI On the necessity of full length electrical cochlear stimulation to suppress severe tinnitus in single-sided deafness SO HEARING RESEARCH LA English DT Article ID BECK DEPRESSION INVENTORY; PROMONTORY STIMULATION; IMPLANTATION; HEARING; NETWORKS AB Background: Cochlear implantation (CI) has proven in long term prospective trials to reduce significantly incapacitating tinnitus in single sided deafness (SSD). Discussion arises whether electrical stimulation near the round window (RW) is also able to reduce tinnitus. Aim: to assess whether electrical stimulation of the basal first 4 intracochlear electrodes of a CI could sufficiently reduce tinnitus and to compare these results with stimulation with all CI electrodes. Material and methods: 7 patients who met the criteria of severe tinnitus due to SSD were implanted with a Med-El Sonata Ti100 with a FlexSoft (TM) or Flex24 (TM) electrode. After 4 weeks only the basal electrodepair (E12) nearest to the RW was activated. Each week the following pair was activated until the 4th pair. Thereafter all electrodes were activated. Tinnitus was assessed before CI surgery and before each electrode pair was activated. When all electrodes were fitted, evaluation was done after 1, 3 and 6 months. Tinnitus was assessed with Visual Analogue Scale (VAS) for loudness, psychoacoustic tinnitus loudness comparison at 1 kHz and Tinnitus Questionnaire (TQ) for the effect on quality of life. To evaluate the natural evolution, a tightly matched control group with severe tinnitus due to SSD was followed prospectively. Results: All the tinnitus outcome measures remained unchanged with 1, 2, 3 or 4 activated electrode pairs. With complete CI activation, the tinnitus decreased significantly comparable with earlier reports. Pre-implantation the tinnitus loudness was 8.2/10 on the VAS and was reduced to 4.1/10 6 months post-implantation. Psychometrically the loudness level went from 21.7 dB SL (SD: 16.02) to 7.5 dB SL (SD: 5.24) and the TQ from 60/84 to 39/84. The non-implanted group had no decrease of the tinnitus, the average VAS remained stable at 8.9/10 throughout the follow-up period of 6 months. Conclusion: with the current stimulation parameters electrical stimulation in the first 8-10 mm of the basal part of the scala tympani is insufficient to reduce tinnitus. However, stimulation over the complete CI length yields immediate tinnitus reduction confirming earlier results. (c) 2012 Elsevier B.V. All rights reserved. C1 [Punte, Andrea Kleine; Van de Heyning, Paul] Univ Antwerp, Univ Dept Otorhinolaryngol & Head & Neck Surg, Univ Antwerp Hosp, B-2650 Antwerp, Belgium. [De Ridder, Dirk] Univ Antwerp Hosp, Brain Res Ctr Innovat & Interdisciplinary Neuromo, Antwerp, Belgium. RP Punte, AK (reprint author), Univ Antwerp, Univ Dept Otorhinolaryngol & Head & Neck Surg, Univ Antwerp Hosp, Wilrijkstr 10, B-2650 Antwerp, Belgium. EM Andrea.kleine.punte@uza.be CR Arndt S, 2011, OTOL NEUROTOL, V32, P39, DOI 10.1097/MAO.0b013e3181fcf271 Baguley DM, 2007, PROG BRAIN RES, V166, P347, DOI 10.1016/S0079-6123(07)66033-6 BALKANY T, 1987, AM J OTOL, V8, P207 BECK AT, 1984, J CLIN PSYCHOL, V40, P1365, DOI 10.1002/1097-4679(198411)40:6<1365::AID-JCLP2270400615>3.0.CO;2-D Buechner A, 2010, OTOL NEUROTOL, V31, P1381, DOI 10.1097/MAO.0b013e3181e3d353 CAZALS Y, 1978, J AM AUDITORY SOC, V3, P209 Demeester K, 2007, B-ENT, P37 De Ridder D, 2011, P NATL ACAD SCI USA, V108, P8075, DOI 10.1073/pnas.1018466108 De Ridder D, 2007, PROG BRAIN RES, V166, P401, DOI 10.1016/S0079-6123(07)66039-7 Di Nardo W, 2007, EUR ARCH OTO-RHINO-L, V264, P1145, DOI 10.1007/s00405-007-0352-7 GOEBEL G, 1994, HNO, V42, P166 Konopka W, 2001, AURIS NASUS LARYNX, V28, P35, DOI 10.1016/S0385-8146(00)00086-9 Langguth B, 2007, PROG BRAIN RES, V166, P525, DOI 10.1016/S0079-6123(07)66050-6 Langguth B, 2011, WORLD J BIOL PSYCHIA, V12, P489, DOI 10.3109/15622975.2011.575178 Leaver AM, 2011, NEURON, V69, P33, DOI 10.1016/j.neuron.2010.12.002 Lobarinas Edward, 2008, Seminars in Hearing, V29, P333, DOI 10.1055/s-0028-1095893 Lockwood AH, 1998, NEUROLOGY, V50, P114 Moller A, 2010, TXB TINNITUS, P619 Muhlnickel W, 1998, P NATL ACAD SCI USA, V95, P10340, DOI 10.1073/pnas.95.17.10340 Olze H, 2011, LARYNGOSCOPE, V121, P2220, DOI 10.1002/lary.22145 PORTMANN M, 1979, ACTA OTO-LARYNGOL, V87, P294, DOI 10.3109/00016487909126423 Punte Andrea Kleine, 2011, Cochlear Implants Int, V12 Suppl 1, pS26, DOI 10.1179/146701011X13001035752336 Quaranta N, 2008, ACTA OTO-LARYNGOL, V128, P159, DOI 10.1080/00016480701387173 Quaranta N, 2004, INT J AUDIOL, V43, P245, DOI 10.1080/14992020400050033 Ramos Ángel, 2012, Acta Otorrinolaringol Esp, V63, P15, DOI 10.1016/j.otorri.2011.07.004 Robinson Shannon K, 2003, Int Tinnitus J, V9, P97 Rubinstein JT, 2003, OTOL NEUROTOL, V24, P478, DOI 10.1097/00129492-200305000-00021 Steenerson RL, 1999, OTOLARYNG HEAD NECK, V121, P511, DOI 10.1016/S0194-5998(99)70048-3 Steer RA, 1999, GEN HOSP PSYCHIAT, V21, P106, DOI 10.1016/S0163-8343(98)00070-X Van de Heyning Paul, 2008, Ann Otol Rhinol Laryngol, V117, P645 Vanneste S, 2011, EUR J NEUROSCI, V34, P718, DOI 10.1111/j.1460-9568.2011.07793.x Watanabe K, 1997, AUDIOLOGY, V36, P147 Weisz N, 2007, J NEUROSCI, V27, P1479, DOI 10.1523/JNEUROSCI.3711-06.2007 NR 33 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2013 VL 295 BP 24 EP 29 DI 10.1016/j.heares.2012.08.003 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 098NX UT WOS:000315557100005 PM 23418635 ER PT J AU Boyen, K Langers, DRM de Kleine, E van Dijk, P AF Boyen, Kris Langers, Dave R. M. de Kleine, Emile van Dijk, Pim TI Gray matter in the brain: Differences associated with tinnitus and hearing loss SO HEARING RESEARCH LA English DT Article ID POSITRON-EMISSION-TOMOGRAPHY; VOXEL-BASED MORPHOMETRY; LEFT AUDITORY-CORTEX; EPISODIC MEMORY; PET; NETWORKS; FMRI; QUESTIONNAIRE; STIMULATION; ACTIVATION AB Tinnitus, usually associated with hearing loss, is characterized by the perception of sound without an external sound source. The pathophysiology of tinnitus is poorly understood. In the present study, voxel-based morphometiy (VBM) was employed to identify gray matter differences related to hearing loss and tinnitus. VBM was applied to magnetic resonance images of normal-hearing control subjects (n = 24), hearing-impaired subjects without tinnitus (n = 16, HI group) and hearing-impaired subjects with tinnitus (n = 31, HI + T group). This design allowed us to disentangle the gray matter (GM) differences related to hearing loss and tinnitus, respectively. Voxel-based VBM analyses revealed that both HI and HI + T groups, relative to the controls, had GM increases in the superior and middle temporal gyri, and decreases in the superior frontal gyrus, occipital lobe and hypothalamus. We did not find significant GM differences between both patient groups. Subsequent region-of-interest (ROI) analyses of all Brodmann Areas, the cerebellum and the subcortical auditory nuclei showed a GM increase in the left primary auditory cortex of the tinnitus patients compared to the HI and control groups. Moreover, GM decreases were observed in frontal areas and mainly GM increases in limbic areas, both of which occurred for hearing loss irrespective of tinnitus, relative to the controls. These results suggest a specific role of the left primary auditory cortex and the additional involvement of various non-auditory brain structures in tinnitus. Understanding the causal relation between these GM changes and tinnitus will be an important next step in understanding tinnitus mechanisms. (c) 2012 Elsevier B.V. All rights reserved. C1 [Boyen, Kris; Langers, Dave R. M.; de Kleine, Emile; van Dijk, Pim] Univ Groningen, Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, NL-9700 RB Groningen, Netherlands. [Boyen, Kris; Langers, Dave R. M.; de Kleine, Emile; van Dijk, Pim] Univ Groningen, Univ Med Ctr Groningen, Grad Sch Med Sci, Res Sch Behav & Cognit Neurosci, NL-9700 RB Groningen, Netherlands. RP Boyen, K (reprint author), Univ Groningen, Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, POB 30-001, NL-9700 RB Groningen, Netherlands. EM k.boyen@umcg.nl; d.r.m.langers@umcg.nl; e.de.kleine@umcg.nl; p.van.dijk@umcg.nl RI de Kleine, Emile/P-2350-2014 FU American Tinnitus Association (ATA); the Netherlands Organization for Scientific Research (NWO); Heinsius Houbolt Foundation FX This research was supported by the American Tinnitus Association (ATA), the Netherlands Organization for Scientific Research (NWO) and the Heinsius Houbolt Foundation. The study is part of the research program of our department: Communication through Hearing and Speech. CR Adjamian P, 2009, HEARING RES, V253, P15, DOI 10.1016/j.heares.2009.04.001 Andersson G, 2000, ACTA OTO-LARYNGOL, V120, P967, DOI 10.1080/00016480050218717 Arnold W, 1996, ORL J OTO-RHINO-LARY, V58, P195 Ashburner J, 2005, NEUROIMAGE, V26, P839, DOI 10.1016/j.neuroimage.2005.02.018 Ashburner J, 2000, NEUROIMAGE, V11, P805, DOI 10.1006/nimg.2000.0582 Benjamini Y, 2001, BEHAV BRAIN RES, V125, P279, DOI 10.1016/S0166-4328(01)00297-2 BERLINER KI, 1992, AM J OTOL, V13, P13 Burger J, 2011, BRAIN STIMUL, V4, P222, DOI 10.1016/j.brs.2010.11.003 Cruickshanks KJ, 1998, AM J EPIDEMIOL, V148, P879 Dalla Barba G, 1998, CORTEX, V34, P547 de Geus EJC, 2007, BIOL PSYCHIAT, V61, P1062, DOI 10.1016/j.biopsych.2006.07.026 Demeester K, 2009, INT J AUDIOL, V48, P222, DOI 10.1080/14992020802441799 De Ridder D, 2011, P NATL ACAD SCI USA, V108, P8075, DOI 10.1073/pnas.1018466108 Giraud AL, 1999, NEUROREPORT, V10, P1, DOI 10.1097/00001756-199901180-00001 GOEBEL G, 1994, HNO, V42, P166 Good CD, 2001, NEUROIMAGE, V14, P21, DOI 10.1006/nimg.2001.0786 Hebert S, 2007, NEUROSCI LETT, V411, P138, DOI 10.1016/j.neulet.2006.10.028 Hoffmann H. J., 2004, TINNITUS THEORY MANA, P16 House J W, 1981, Ciba Found Symp, V85, P204 Husain FT, 2011, BRAIN RES, V1369, P74, DOI 10.1016/j.brainres.2010.10.095 JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 Khalfa S, 2002, ORL J OTO-RHINO-LARY, V64, P436, DOI 10.1159/000067570 Kraus KS, 2010, NEUROSCIENCE, V167, P1216, DOI 10.1016/j.neuroscience.2010.02.071 Landgrebe M, 2009, NEUROIMAGE, V46, P213, DOI 10.1016/j.neuroimage.2009.01.069 LANGGUTH B, 2006, ACTA OTO-LARYNGOL, V556, P84, DOI DOI 10.1080/03655230600895317 Langguth B, 2011, WORLD J BIOL PSYCHIA, V12, P489, DOI 10.3109/15622975.2011.575178 Lanting CP, 2008, ACTA OTO-LARYNGOL, V128, P415, DOI 10.1080/00016480701793743 Lanting CP, 2009, HEARING RES, V255, P1, DOI 10.1016/j.heares.2009.06.009 Leaver AM, 2011, NEURON, V69, P33, DOI 10.1016/j.neuron.2010.12.002 Lee ACH, 2002, NEUROIMAGE, V16, P724, DOI 10.1006/nimg.2002.1101 Lockwood AH, 2002, NEW ENGL J MED, V347, P904, DOI 10.1056/NEJMra013395 Lockwood AH, 1998, NEUROLOGY, V50, P114 Maldjian JA, 2003, NEUROIMAGE, V19, P1233, DOI 10.1016/S1053-8119(03)00169-1 May A, 2006, CURR OPIN NEUROL, V19, P407, DOI 10.1097/01.wco.0000236622.91495.21 Mechelli A, 2005, CURR MED IMAGING REV, V1, P105, DOI 10.2174/1573405054038726 Melcher JR, 2009, HEARING RES, V257, P63, DOI 10.1016/j.heares.2009.08.005 Melcher JR, 2000, J NEUROPHYSIOL, V83, P1058 Mirz F, 1999, SCAND AUDIOL, V28, P161, DOI 10.1080/010503999424734 Moller A R, 2000, J Am Acad Audiol, V11, P115 Muhlau M, 2006, CEREB CORTEX, V16, P1283, DOI 10.1093/cercor/bhj070 Newman CW, 1996, ARCH OTOLARYNGOL, V122, P143 OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4 Oliver R, 2008, NAT CLIN PRACT NEURO, V4, P306, DOI 10.1038/ncpneuro0794 Rauschecker JP, 2010, NEURON, V66, P819, DOI 10.1016/j.neuron.2010.04.032 Riemann D, 2007, SLEEP, V30, P955 Schneider P, 2009, NEUROIMAGE, V45, P927, DOI 10.1016/j.neuroimage.2008.12.045 Wang HT, 2001, CHINESE MED J-PEKING, V114, P848 NR 47 TC 18 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2013 VL 295 BP 67 EP 78 DI 10.1016/j.heares.2012.02.010 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 098NX UT WOS:000315557100009 PM 22446179 ER PT J AU Melcher, JR Knudson, IM Levine, RA AF Melcher, Jennifer R. Knudson, Inge M. Levine, Robert A. TI Subcallosal brain structure: Correlation with hearing threshold at supra-clinical frequencies (> 8 kHz), but not with tinnitus SO HEARING RESEARCH LA English DT Article ID PSYCHOMETRIC PROPERTIES; INVENTORY; AGE AB This study tested for differences in brain structure between tinnitus and control subjects, focusing on a subcallosal brain region where striking differences have been inconsistently found previously. Voxel-based morphometry (VBM) was used to compare structural MRIs of tinnitus subjects and non-tinnitus controls. Audiograms of all subjects were normal or near-normal at standard clinical frequencies (<= 8 kHz). Mean threshold through 14 kHz, age, sex and handedness were matched between groups. There were no definitive differences between tinnitus and control groups in modulated or unmodulated maps of gray matter (GM) probability (i.e., GM volume and concentration, respectively). However, when the image data were tested for correlations with parameters that were either not measured or not matched between the tinnitus and control groups of previous studies, a notable correlation was found: Threshold at supra-clinical frequencies (above 8 kHz) was negatively correlated with modulated GM probability in ventral posterior cingulate cortex, dorsomedial prefrontal cortex, and a subcallosal region that included ventromedial prefrontal cortex and coincided with previously-reported differences between tinnitus and control subjects. The results suggest an explanation for the discrepant findings in subcallosal brain: threshold at supra-clinical frequencies may have differed systematically between tinnitus and control groups in some studies but not others. The observed correlation between (1) brain structure in regions engaged in cognitive and attentional processes and (2) hearing sensitivity at frequencies generally considered unnecessary for normal human auditory behavior is surprising and worthy of follow up. (c) 2012 Elsevier B.V. All rights reserved. C1 [Melcher, Jennifer R.; Knudson, Inge M.; Levine, Robert A.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. [Melcher, Jennifer R.; Knudson, Inge M.; Levine, Robert A.] Massachusetts Eye & Ear Infirm, Dept Otolaryngol, Boston, MA 02114 USA. [Melcher, Jennifer R.] Harvard Mit Div Hlth Sci & Technol, Speech & Hearing Biosci & Technol Program, Boston, MA USA. RP Melcher, JR (reprint author), Massachusetts Eye & Ear Infirm, Dept Otolaryngol, 243 Charles St, Boston, MA 02114 USA. EM jennifer_melcher@meei.harvard.edu FU Tinnitus Research Consortium; NIH/NIDCD [P30DC005209] FX The authors wish to thank Barbara Norris and Wendy Gu for assistance with data-taking and Barbara Norris for assistance with the figures. Support was provided by the Tinnitus Research Consortium and NIH/NIDCD P30DC005209. CR Ashburner J, 2005, NEUROIMAGE, V26, P839, DOI 10.1016/j.neuroimage.2005.02.018 Ashburner J, 2000, NEUROIMAGE, V11, P805, DOI 10.1006/nimg.2000.0582 Ashburner J, 2007, NEUROIMAGE, V38, P95, DOI 10.1016/j.neuroimage.2007.07.007 BECK AT, 1988, J CONSULT CLIN PSYCH, V56, P893, DOI 10.1037/0022-006X.56.6.893 BECK AT, 1961, ARCH GEN PSYCHIAT, V4, P561 Draganski B, 2010, CURR OPIN NEUROL, V23, P413, DOI 10.1097/WCO.0b013e32833bc59c Good CD, 2001, NEUROIMAGE, V14, P21, DOI 10.1006/nimg.2001.0786 Gu JW, 2010, J NEUROPHYSIOL, V104, P3361, DOI 10.1152/jn.00226.2010 Husain FT, 2011, BRAIN RES, V1369, P74, DOI 10.1016/j.brainres.2010.10.095 Landgrebe M, 2009, NEUROIMAGE, V46, P213, DOI 10.1016/j.neuroimage.2009.01.069 Leaver AM, 2011, NEURON, V69, P33, DOI 10.1016/j.neuron.2010.12.002 Muhlau M, 2006, CEREB CORTEX, V16, P1283, DOI 10.1093/cercor/bhj070 Richardson FM, 2009, BRAIN STRUCT FUNCT, V213, P511, DOI 10.1007/s00429-009-0211-y Salat DH, 2009, NEUROIMAGE, V48, P21, DOI 10.1016/j.neuroimage.2009.06.074 Schneider P, 2009, NEUROIMAGE, V45, P927, DOI 10.1016/j.neuroimage.2008.12.045 Sowell ER, 2007, CEREB CORTEX, V17, P1550, DOI 10.1093/cercor/bhl066 Tyler R. S., 2003, HYPERAKUSIS, V6, P39 WILSON PH, 1991, J SPEECH HEAR RES, V34, P197 Worsley KJ, 1996, HUM BRAIN MAPP, V4, P58, DOI 10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O NR 19 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2013 VL 295 BP 79 EP 86 DI 10.1016/j.heares.2012.03.013 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 098NX UT WOS:000315557100010 PM 22504034 ER PT J AU Golm, D Schmidt-Samoa, C Dechent, P Kroner-Herwig, B AF Golm, Dennis Schmidt-Samoa, Carsten Dechent, Peter Kroener-Herwig, Birgit TI Neural correlates of tinnitus related distress: An fMRI-study SO HEARING RESEARCH LA English DT Article ID TRANSCRANIAL MAGNETIC STIMULATION; INDEPENDENT COMPONENT ANALYSIS; POSITRON-EMISSION-TOMOGRAPHY; BRAIN ACTIVATION; CINGULATE CORTEX; QUESTIONNAIRE; EMOTION; MEMORY; PAIN; DEPRESSION AB Chronic tinnitus affects approximately 5% of the population. Severe distress due to the phantom noise is experienced by 20% of the tinnitus patients. This distress cannot be predicted by psychoacoustic features of the tinnitus. It is commonly assumed that negative cognitive emotional evaluation of the tinnitus and its expected consequences is a major factor that determines the impact of tinnitus-related distress. Models of tinnitus distress and recently conducted research propose differences in limbic, frontal and parietal processing between highly and low distressed tinnitus patients. An experimental paradigm using verbal material to stimulate cognitive emotional processing of tinnitus-related information was conducted. Age and sex matched highly (n = 16) and low (n = 16) distressed tinnitus patients and healthy controls (n = 16) underwent functional magnetic resonance imaging (fMRI) while sentences with neutral, negative or tinnitus-related content were presented. A random effects group analysis was performed on the basis of the general linear model. Tinnitus patients showed stronger activations to tinnitus-related sentences in comparison to neutral sentences than healthy controls in various limbic/emotion processing areas, such as the anterior cingulate cortex, midcingulate cortex, posterior cingulate cortex, retrosplenial cortex and insula and also in frontal areas. Highly and low distressed tinnitus patients differed in terms of activation of the left middle frontal gyrus. A connectivity analysis and correlational analysis between the predictors of the general linear model of relevant contrasts and tinnitus-related distress further supported the idea of a fronto-parietal-cingulate network, which seems to be more active in highly distressed tinnitus patients. This network may present an aspecific distress network. Based on the findings the left middle frontal gyrus and the right medial frontal gyrus are suggested as target regions for neuromodulatory approaches in the treatment of tinnitus. For future studies we recommend the use of idiosyncratic stimulus material. (C) 2012 Elsevier B.V. All rights reserved. C1 [Golm, Dennis; Kroener-Herwig, Birgit] Univ Gottingen, Dept Clin Psychol & Psychotherapy, Georg Elias Mueller Inst Psychol, D-37073 Gottingen, Germany. [Schmidt-Samoa, Carsten; Dechent, Peter] Univ Gottingen, MR Res Neurol & Psychiat, UMG, D-37075 Gottingen, Germany. RP Golm, D (reprint author), Univ Gottingen, Dept Clin Psychol & Psychotherapy, Georg Elias Mueller Inst Psychol, Gosslerstr 14, D-37073 Gottingen, Germany. EM dgolm@psych.uni-goettingen.de; carsten.schmidt-samoa@med.uni-goettingen.de; pdechen@gwdg.de; bkroene@uni-goettingen.de CR Andersson G, 2004, J CLIN PSYCHOL, V60, P171, DOI 10.1002/jclp.10243 Barke A., 2011, J BEHAV THER EXP PSY, V43, P565 Benuzzi F, 2008, J NEUROSCI, V28, P923, DOI 10.1523/JNEUROSCI.4012-07.2008 Bleich-Cohen M., 2006, NEUROREPORT, V17 BRADLEY MM, 1994, J BEHAV THER EXP PSY, V25, P49, DOI 10.1016/0005-7916(94)90063-9 BUCKNER R. L., 2001, HDB FUNCTIONAL NEURO, P27 Cooney RE, 2010, COGN AFFECT BEHAV NE, V10, P470, DOI 10.3758/CABN.10.4.470 Danesh AA, 2003, LECT NOTES ARTIF INT, V2774, P794 Davis A, 2000, TINNITUS HDB, P1 De Ridder D., 2011, PLOS ONE, V6 De Ridder D, 2011, TEXTBOOK OF TINNITUS, P171, DOI 10.1007/978-1-60761-145-5_21 Dolcos F, 2004, NEUROIMAGE, V23, P64, DOI 10.1016/j.neuroimage.2004.05.015 Fabijanska A., 1999, P 6 INT TINN SEM, P569 FORMAN SD, 1995, MAGNET RESON MED, V33, P636, DOI 10.1002/mrm.1910330508 Goebel G, 2001, VERHALTENSMEDIZINISC Goebel G, 1998, TINNITUS FRAGEBOGEN Goebel R, 2006, HUM BRAIN MAPP, V27, P392, DOI 10.1002/hbm.20249 Grafe K, 2004, DIAGNOSTICA, V50, P171, DOI 10.1026/0012-1924.50.4.171 Hallam RS., 1996, MANUAL TINNITUS QUES Henry J A, 2000, J Am Acad Audiol, V11, P138 Henry J.L, 1995, INT TINNITUS J, V1, P85 Herrmann C, 1995, HADS D HOSP ANXIETY Hiller W, 2007, AUDIOL NEURO-OTOL, V12, P391, DOI 10.1159/000106482 HILLER W, 1994, BRIT J CLIN PSYCHOL, V33, P231 Hirata M, 2007, NEUROIMAGE, V35, P420, DOI 10.1016/j.neuroimage.2006.11.025 Hoehn-Saric R, 2004, PSYCHIAT RES-NEUROIM, V131, P11, DOI 10.1016/j.pscychresns.2004.02.003 HOLLON SD, 1980, COGNITIVE THER RES, V4, P383, DOI 10.1007/BF01178214 Jastreboff PJ, 1996, AM J OTOL, V17, P236 Jastreboff P.J., 1990, NEUROSCI RES, V8, P228 KLAGES U, 1989, Z KLIN PSYCHOL PSYCH, V37, P5 Kleinjung T, 2008, OTOLARYNG HEAD NECK, V138, P497, DOI 10.1016/j.otohns.2007.12.022 Kreuzer P.M., 2011, FRONT SYST NEUROSCI, V5, P1 Kroner-Herwig B, 2003, J PSYCHOSOM RES, V54, P381, DOI 10.1016/S0022-3999(02)00400-2 Kross E, 2007, J COGNITIVE NEUROSCI, V19, P945, DOI 10.1162/jocn.2007.19.6.945 Lancaster JL, 1997, HUM BRAIN MAPP, V5, P238, DOI 10.1002/(SICI)1097-0193(1997)5:4<238::AID-HBM6>3.0.CO;2-4 Lancaster JL, 2000, HUM BRAIN MAPP, V10, P120, DOI 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 Landgrebe M, 2008, NEUROIMAGE, V41, P1336, DOI 10.1016/j.neuroimage.2008.04.171 Lockwood AH, 2004, TINNITUS THEORY MANA, P253 Loewe B., 2002, PHQ D GESUNDHEITSFRA Logothetis NK, 2008, NATURE, V453, P869, DOI 10.1038/nature06976 Medford N, 2005, PSYCHIAT RES-NEUROIM, V138, P247, DOI 10.1016/j.pscychresns.2004.10.004 Mertin M., 1997, PSYCHOL BEHANDLUNG C, P15 Mirz F, 1999, HEARING RES, V134, P133, DOI 10.1016/S0378-5955(99)00075-1 Mitchell TV, 2005, NEUROREPORT, V16, P457, DOI 10.1097/00001756-200504040-00008 Moisset X., 2007, NEUROIMAGE, V37, P80 Moller AR, 2011, TEXTBOOK OF TINNITUS, P3, DOI 10.1007/978-1-60761-145-5_1 Mulert C, 2004, EUR ARCH PSY CLIN N, V254, P190, DOI 10.1007/s00406-004-0469-2 Nagai M, 2010, J AM SOC HYPERTENS, V4, P174, DOI 10.1016/j.jash.2010.05.001 Nelting M., 2002, Z KLIN PSYCHOL PSYCH, V31, P47, DOI 10.1026//1616-3443.31.1.47 Nelting M., 2004, GUF GERAUSCHUBEREMPF Palmer KT, 2002, OCCUP ENVIRON MED, V59, P634, DOI 10.1136/oem.59.9.634 Plewnia C, 2007, J NEUROL NEUROSUR PS, V78, P152, DOI 10.1136/jnnp.2006.095612 Pollatos O, 2007, BRAIN RES, V1141, P178, DOI 10.1016/j.brainres.2007.01.026 Rief W, 2005, PSYCHOSOM MED, V67, P833, DOI 10.1097/01.psy.0000174174.38908.c6 Saykin AJ, 1999, BRAIN, V122, P1963, DOI 10.1093/brain/122.10.1963 Schlee W, 2011, TEXTBOOK OF TINNITUS, P161, DOI 10.1007/978-1-60761-145-5_20 Schlee W., 2009, BMC BIOL, V7 Schmithorst VJ, 2004, J MAGN RESON IMAGING, V19, P365, DOI 10.1002/jmri.20009 Schwibbe M., 1994, HDB DEUTSCHSPRACHIGE, P272 Seidler H., 1996, SCHWERHORIGKEIT URSA Shackman AJ, 2011, NAT REV NEUROSCI, V12, P154, DOI 10.1038/nrn2994 Tewes U., 1991, HAWIE R HAMBURG WECH Tomasi D, 2005, NEUROIMAGE, V27, P377, DOI 10.1016/j.neuroimage.2005.04.010 Vanneste S, 2010, NEUROIMAGE, V52, P470, DOI 10.1016/j.neuroimage.2010.04.029 Vanneste S, 2010, EXP BRAIN RES, V202, P779, DOI 10.1007/s00221-010-2183-9 Vogt BA, 2005, NAT REV NEUROSCI, V6, P533, DOI 10.1038/nrn1704 Vogt B.A., 2004, HUMAN NERVOUS SYSTEM, P915, DOI 10.1016/B978-012547626-3/50025-9 Vogt BA, 2003, EUR J NEUROSCI, V18, P3134, DOI 10.1046/j.1460-9568.2003.03034.x Voisin J, 2006, J NEUROSCI, V26, P273, DOI 10.1523/JNEUROSCI.2967-05.2006 von Leupoldt A, 2009, NEUROIMAGE, V48, P200, DOI 10.1016/j.neuroimage.2009.06.015 Wang JJ, 2005, P NATL ACAD SCI USA, V102, P17804, DOI 10.1073/pnas.0503082102 Weissenbacher A, 2009, NEUROIMAGE, V47, P1408, DOI 10.1016/j.neuroimage.2009.05.005 Weisz N, 2005, PLOS MED, V2, P546, DOI 10.1371/journal.pmed.0020153 Zachriat Claudia, 2004, Cognitive Behaviour Therapy, V33, P187, DOI 10.1080/16506070410029568 NR 74 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2013 VL 295 BP 87 EP 99 DI 10.1016/j.heares.2012.03.003 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 098NX UT WOS:000315557100011 PM 22445697 ER PT J AU Manzoor, NF Gao, Y Licari, F Kaltenbach, JA AF Manzoor, N. F. Gao, Y. Licari, F. Kaltenbach, J. A. TI Comparison and contrast of noise-induced hyperactivity in the dorsal cochlear nucleus and inferior colliculus SO HEARING RESEARCH LA English DT Article ID INTENSE SOUND EXPOSURE; INDUCED HEARING-LOSS; CHOLINE-ACETYLTRANSFERASE ACTIVITY; SPONTANEOUS NEURAL ACTIVITY; AUDITORY BRAIN-STEM; ACOUSTIC TRAUMA; GABAERGIC INHIBITION; COMPUTATIONAL MODEL; RESPONSE PROPERTIES; INDUCED TINNITUS AB Induction of hyperactivity in the central auditory system is one of the major physiological hallmarks of animal models of noise-induced tinnitus. Although hyperactivity occurs at various levels of the auditory system, it is not clear to what extent hyperactivity originating in one nucleus contributes to hyperactivity at higher levels of the auditory system. In this study we compared the time courses and tonotopic distribution patterns of hyperactivity in the dorsal cochlear nucleus (DCN) and inferior colliculus (IC). A model of acquisition of hyperactivity in the IC by passive relay from the DCN would predict that the two nuclei show similar time courses and tonotopic profiles of hyperactivity. A model of acquisition of hyperactivity in the IC by compensatory plasticity mechanisms would predict that the IC and DCN would show differences in these features, since each adjusts to changes of spontaneous activity of opposite polarity. To test the role of these two mechanisms, animals were exposed to an intense hyperactivity-inducing tone (10 kHz, 115 dB SPL, 4 h) then studied electrophysiologically at three different post-exposure recovery times (from 1 to 6 weeks after exposure). For each time frame, multiunit spontaneous activity was mapped as a function of location along the tonotopic gradient in the DCN and IC. Comparison of activity profile from the two nuclei showed a similar progression toward increased activity over time and culminated in the development of a central peak of hyperactivity at a similar tonotopic location. These similarities suggest that the shape of the activity profile is determined primarily by passive relay from the cochlear nucleus. However, the absolute levels of activity were generally much lower in the IC than in the DCN, suggesting that the magnitude of hyperactivity is greatly attenuated by inhibition. (C) 2012 Elsevier B.V. All rights reserved. C1 [Manzoor, N. F.; Gao, Y.; Licari, F.; Kaltenbach, J. A.] Cleveland Clin, Dept Neurosci, Cleveland, OH 44195 USA. RP Kaltenbach, JA (reprint author), Cleveland Clin, Dept Neurosci, NE-63,9500 Euclid Ave, Cleveland, OH 44195 USA. EM kaltenj@ccf.org FU NIH [DC009097] FX This work was supported by NIH DC009097. CR Abbott SD, 1999, NEUROSCIENCE, V93, P1375, DOI 10.1016/S0306-4522(99)00300-0 AXELSSON A, 1985, British Journal of Audiology, V19, P271, DOI 10.3109/03005368509078983 Axelsson A, 2000, NOISE HEALTH, V2, P47 Bauer CA, 2008, J NEUROSCI RES, V86, P2564, DOI 10.1002/jnr.21699 Bauer C.A., 2004, HEAD NECK SURG, V12, P413 Benson CG, 1997, SYNAPSE, V25, P243 Bilak M, 1997, EXP NEUROL, V147, P256, DOI 10.1006/exnr.1997.6636 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 Davis KA, 2002, J NEUROPHYSIOL, V87, P1824, DOI 10.1152/jn.00769.2001 Dehmel S, 2012, J NEUROSCI, V32, P1660, DOI 10.1523/JNEUROSCI.4608-11.2012 Desai NS, 2002, NAT NEUROSCI, V5, P783, DOI 10.1038/nn878 Dong S, 2010, BRAIN RES, V1342, P24, DOI 10.1016/j.brainres.2010.04.067 Dong SY, 2010, EUR J NEUROSCI, V31, P1616, DOI 10.1111/j.1460-9568.2010.07183.x Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 FAINGOLD CL, 1993, HEARING RES, V69, P98, DOI 10.1016/0378-5955(93)90097-K Finlayson PG, 2009, HEARING RES, V256, P104, DOI 10.1016/j.heares.2009.07.006 Goel A, 2007, J NEUROSCI, V27, P6692, DOI 10.1523/JNEUROSCI.5038-06.2007 Illing RB, 2005, HEARING RES, V206, P185, DOI 10.1016/j.heares.2005.01.016 Izquierdo MA, 2008, NEUROSCIENCE, V154, P355, DOI 10.1016/j.neuroscience.2008.01.057 Jin YM, 2005, J NEUROSCI RES, V81, P91, DOI 10.1002/jnr.20536 Jin YM, 2006, J NEUROSCI RES, V83, P157, DOI 10.1002/jnr.20706 Jin YM, 2006, HEARING RES, V216, P168, DOI 10.1016/j.heares.2006.02.002 Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038 Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6 Kaltenbach J.A., 2007, PROG BRAIN RES, V166, P89 KALTENBACH JA, 1992, HEARING RES, V60, P205, DOI 10.1016/0378-5955(92)90022-F Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5 Kaltenbach JA, 2002, J NEUROPHYSIOL, V88, P699, DOI 10.1152/jn00893.2001 KALTENBACH JA, 1991, HEARING RES, V51, P149, DOI 10.1016/0378-5955(91)90013-Y Kaltenbach JA, 2011, HEARING RES, V276, P52, DOI 10.1016/j.heares.2010.12.003 Kim J, 2008, NEURON, V58, P925, DOI 10.1016/j.neuron.2008.05.009 Kim JJ, 2004, J NEUROSCI RES, V77, P829, DOI 10.1002/jnr.20211 Knogler LD, 2010, J NEUROSCI, V30, P8871, DOI 10.1523/JNEUROSCI.0880-10.2010 LeBeau FEN, 1996, J NEUROPHYSIOL, V75, P902 LIBERMAN M C, 1978, Acta Oto-Laryngologica Supplement, P1 LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8 Longenecker RJ, 2011, JARO-J ASSOC RES OTO, V12, P647, DOI 10.1007/s10162-011-0276-1 Malmierca MS, 2008, J NEUROSCI, V28, P4767, DOI 10.1523/JNEUROSCI.0238-08.2008 Meltzer NE, 2006, ANAT REC PART A, V288A, P397, DOI 10.1002/ar.a.20300 Middleton JW, 2011, P NATL ACAD SCI USA, V108, P7601, DOI 10.1073/pnas.1100223108 Milbrandt JC, 2000, HEARING RES, V147, P251, DOI 10.1016/S0378-5955(00)00135-0 Mulders WHAM, 2009, NEUROSCIENCE, V164, P733, DOI 10.1016/j.neuroscience.2009.08.036 Muly SM, 2004, J NEUROSCI RES, V75, P585, DOI 10.1002/jnr.20011 Norena AJ, 2006, NEUROREPORT, V17, P559, DOI 10.1097/00001756-200604240-00001 Norena AJ, 2003, J NEUROPHYSIOL, V90, P2387, DOI 10.1152/jn.00139.2003 O'Brien RJ, 1998, NEURON, V21, P1067 POLLAK GD, 1993, HEARING RES, V65, P99, DOI 10.1016/0378-5955(93)90205-F Rachel JD, 2002, HEARING RES, V164, P206, DOI 10.1016/S0378-5955(02)00287-3 Roberts LE, 2010, J NEUROSCI, V30, P14972, DOI 10.1523/JNEUROSCI.4028-10.2010 Schaette R, 2006, EUR J NEUROSCI, V23, P3124, DOI 10.1111/j.1460-9568.04774.x Schaette R, 2008, HEARING RES, V240, P57, DOI 10.1016/j.heares.2008.02.006 Schofield BR, 2006, HEARING RES, V216, P81, DOI 10.1016/j.heares.2006.01.004 Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1 Shore SE, 2008, EUR J NEUROSCI, V27, P155, DOI 10.1111/j.1460-9568.2007.05983.x Stellwagen D, 2006, NATURE, V440, P1054, DOI 10.1038/nature04671 Turrigiano G, 2011, ANNU REV NEUROSCI, V34, P89, DOI 10.1146/annurev-neuro-060909-153238 Turrigiano GG, 1998, NATURE, V391, P892, DOI 10.1038/36103 VATER M, 1992, J COMP PHYSIOL A, V171, P541 Vogler DP, 2011, J NEUROSCI, V31, P6639, DOI 10.1523/JNEUROSCI.6538-10.2011 Wang H, 2009, NEUROSCIENCE, V164, P747, DOI 10.1016/j.neuroscience.2009.08.026 Wang HN, 2011, HEARING RES, V279, P111, DOI 10.1016/j.heares.2011.04.004 Xu H, 2006, HEARING RES, V220, P95, DOI 10.1016/j.heares.2006.07.005 Zacharek MA, 2002, HEARING RES, V172, P137, DOI 10.1016/S0378-5955(02)00575-0 Zeng CH, 2009, J NEUROSCI, V29, P4210, DOI 10.1523/JNEUROSCI.0208-09.2009 Zhang JS, 1998, NEUROSCI LETT, V250, P197, DOI 10.1016/S0304-3940(98)00482-0 Zhang JS, 2006, J NEUROSCI RES, V84, P819, DOI 10.1002/jnr.20985 NR 66 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2013 VL 295 BP 114 EP 123 DI 10.1016/j.heares.2012.04.003 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 098NX UT WOS:000315557100013 PM 22521905 ER PT J AU Robertson, D Bester, C Vogler, D Mulders, WHAM AF Robertson, Donald Bester, Christofer Vogler, Darryl Mulders, Wilhelmina H. A. M. TI Spontaneous hyperactivity in the auditory midbrain: Relationship to afferent input SO HEARING RESEARCH LA English DT Article ID DORSAL COCHLEAR NUCLEUS; SPONTANEOUS NEURAL ACTIVITY; INDUCED HEARING-LOSS; ACOUSTIC TRAUMA; GUINEA-PIG; INFERIOR COLLICULUS; INDUCED TINNITUS; GENE-EXPRESSION; BRAIN-STEM; PLASTICITY AB Hyperactivity in the form of increased spontaneous firing rates of single neurons develops in the guinea pig inferior colliculus (IC) after unilateral loud sound exposures that result in behavioural signs of tinnitus. The hyperactivity is found in those parts of the topographic frequency map in the IC where neurons possess characteristic frequencies (CFs) closely related to the region in the cochlea where lasting sensitivity changes occur as a result of the loud sound exposure. The observed hyperactivity could be endogenous to the IC, or it could be driven by hyperactivity at lower stages of the auditory pathway. In addition to the dorsal cochlear nucleus (DCN) hyperactivity reported by others, specific cell types in the ventral cochlear nucleus (VCN) also show hyperactivity in this animal model suggesting that increased drive from several regions of the lower brainstem could contribute to the observed hyperactivity in the midbrain. In addition, spontaneous afferent drive from the cochlea itself is necessary for the maintenance of hyperactivity up to about 8 weeks post cochlear trauma. After 8 weeks however, IC hyperactivity becomes less dependent on cochlear input, suggesting that central neurons transition from a state of hyperexcitability to a state in which they generate their own endogenous firing. The results suggest that there might be a "therapeutic window" for early-onset tinnitus, using treatments that reduce cochlear afferent firing. (C) 2012 Elsevier B.V. All rights reserved. C1 [Robertson, Donald; Bester, Christofer; Vogler, Darryl; Mulders, Wilhelmina H. A. M.] Univ Western Australia, Sch Anat Physiol & Human Biol, Auditory Lab, Crawley, WA 6009, Australia. RP Robertson, D (reprint author), Univ Western Australia, Sch Anat Physiol & Human Biol, Auditory Lab, M311,35 Stirling Hwy, Crawley, WA 6009, Australia. EM don.robertson@uwa.edu.au FU Action on Hearing Loss; Neurotrauma Research Program; Medical Health and Research Infrastructure Fund; Australian Postgraduate Awards FX This work was supported by grants to D. Robertson and W. Mulders from Action on Hearing Loss, The Neurotrauma Research Program and the Medical Health and Research Infrastructure Fund. C. Bester and D. Vogler are currently recipients of Australian Postgraduate Awards. The authors are grateful to R. Salvi for advice and encouragement, D. Stolzberg for generous technical assistance and donation of the GPIAS software and I. Winter and I.M. Lloyd for providing single neuron software (Neurosound) and microelectrodes. CR Bauer CA, 2008, J NEUROSCI RES, V86, P2564, DOI 10.1002/jnr.21699 Dong S, 2010, BRAIN RES, V1342, P24, DOI 10.1016/j.brainres.2010.04.067 Dong S, 2009, NEUROSCIENCE, V159, P1164, DOI 10.1016/j.neuroscience.2009.01.043 Dong SY, 2010, EUR J NEUROSCI, V31, P1616, DOI 10.1111/j.1460-9568.2010.07183.x Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038 Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6 Kaltenbach JA, 2011, HEARING RES, V276, P52, DOI 10.1016/j.heares.2010.12.003 Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 Mulders WHAM, 2010, J NEUROSCI, V30, P9578, DOI 10.1523/JNEUROSCI.2289-10.2010 Mulders WHAM, 2009, NEUROSCIENCE, V164, P733, DOI 10.1016/j.neuroscience.2009.08.036 Mulders WHAM, 2011, NEUROSCIENCE, V192, P753, DOI 10.1016/j.neuroscience.2011.06.046 Mulders WHAM, 2011, J COMP NEUROL, V519, P2637, DOI 10.1002/cne.22644 Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156 Norena AJ, 2006, NEUROREPORT, V17, P559, DOI 10.1097/00001756-200604240-00001 Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9 Shore SE, 2008, EUR J NEUROSCI, V27, P155, DOI 10.1111/j.1460-9568.2007.05983.x Shore SE, 2011, HEARING RES, V281, P38, DOI 10.1016/j.heares.2011.05.001 Vogler DP, 2011, J NEUROSCI, V31, P6639, DOI 10.1523/JNEUROSCI.6538-10.2011 WINTER IM, 1990, HEARING RES, V44, P161, DOI 10.1016/0378-5955(90)90078-4 Yang G, 2007, HEARING RES, V226, P244, DOI 10.1016/j.heares.2006.06.013 Zacharek MA, 2002, HEARING RES, V172, P137, DOI 10.1016/S0378-5955(02)00575-0 NR 21 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2013 VL 295 BP 124 EP 129 DI 10.1016/j.heares.2012.02.002 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 098NX UT WOS:000315557100014 PM 22349094 ER PT J AU Bauer, CA Kurt, W Sybert, LT Brozoski, TJ AF Bauer, Carol A. Kurt, Wisner Sybert, Lauren T. Brozoski, Thomas J. TI The cerebellum as a novel tinnitus generator SO HEARING RESEARCH LA English DT Article ID DORSAL COCHLEAR NUCLEUS; RESONANCE-IMAGING MEMRI; UNIPOLAR BRUSH CELL; ANIMAL-MODEL; ACOUSTIC-TRAUMA; NEURAL ACTIVITY; AUDITORY INTERACTIONS; INFERIOR COLLICULUS; RAT; BRAIN AB The role of the cerebellum in auditory processing is largely unknown. Recently it was shown that rats with psychophysical evidence of tinnitus had significantly elevated neural activity in the paraflocculus of the cerebellum (PFL), as indicated by functional imaging. It was further shown that PFL activity was not elevated in normal rats listening to a tinnitus-like sound. This suggests that plastic changes in the PFL may underpin chronic tinnitus, i.e., it may serve as a tinnitus generator. Using a rat model of acoustic-trauma-induced tinnitus, the role of the cerebellum was further examined in a series of experiments: The PFL was surgically ablated in animals with established tinnitus; the PFL was surgically ablated in animals before induction of tinnitus; the PFL was reversibly inactivated by chronic lidocaine infusion into the subarcuate fossa of animals with established tinnitus. It was found that PFL ablation eliminated established tinnitus without altering auditory discrimination. Similar to the ablation results, PFL inactivation with lidocaine reversibly eliminated existing tinnitus. In contrast however, PFL ablation before tinnitus induction attenuated, but did not completely eliminate, tinnitus. In a rat model of noise-induced chronic tinnitus, the cerebellar PFL may serve as a sufficient but non-obligatory generator of tinnitus. (C) 2012 Elsevier B.V. All rights reserved. C1 [Bauer, Carol A.; Kurt, Wisner; Sybert, Lauren T.; Brozoski, Thomas J.] So Illinois Univ, Sch Med, Springfield, IL 62794 USA. RP Bauer, CA (reprint author), So Illinois Univ, Sch Med, Dept Surg, POB 19662, Springfield, IL 62794 USA. EM cbauer@siumed.edu FU National Institute on Deafness and Other Communication Disorders [1R01DC009669-01] FX Supported by the National Institute on Deafness and Other Communication Disorders, # 1R01DC009669-01. CR ALBERTI PW, 1987, J OTOLARYNGOL, V16, P34 AZIZI SA, 1985, EXP BRAIN RES, V59, P36 AZIZI SA, 1990, BRAIN RES, V533, P255, DOI 10.1016/0006-8993(90)91347-J Bauer CA, 2008, J NEUROSCI RES, V86, P2564, DOI 10.1002/jnr.21699 Bauer CA, 1999, OTOLARYNG HEAD NECK, V121, P457, DOI 10.1016/S0194-5998(99)70237-8 Bauer CA, 2001, JARO, V2, P54 BERLINER KI, 1992, AM J OTOL, V13, P13 Brozoski T. J., 2011, J ASS RES OTOLARYNGO Brozoski Thomas D., 2008, Seminars in Hearing, V29, P242, DOI 10.1055/s-0028-1082031 Brozoski TJ, 2007, HEARING RES, V228, P168, DOI 10.1016/j.heares.2007.02.003 Brozoski TJ, 2012, JARO-J ASSOC RES OTO, V13, P55, DOI 10.1007/s10162-011-0290-3 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 Brozoski TJ, 2005, HEARING RES, V206, P227, DOI 10.1016/j.heares.2004.12.013 Brozoski TJ, 2007, JARO-J ASSOC RES OTO, V8, P105, DOI 10.1007/s10162-006-0067-2 Dino MR, 2000, NEUROSCIENCE, V98, P625, DOI 10.1016/S0306-4522(00)00123-8 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Eggermont JJ, 1998, HEARING RES, V117, P149, DOI 10.1016/S0378-5955(98)00008-2 EISENMAN LM, 1980, BRAIN RES, V188, P550, DOI 10.1016/0006-8993(80)90053-0 Fiez JA, 1996, CEREB CORTEX, V6, P1, DOI 10.1093/cercor/6.1.1 Griest S E, 1998, AAOHN J, V46, P325 Holt AG, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014260 Ito M, 2006, PROG NEUROBIOL, V78, P272, DOI 10.1016/j.pneurobio.2006.02.006 Ito M, 2008, NAT REV NEUROSCI, V9, P304, DOI 10.1038/nrn2332 Kaltenbach J. A., 1999, ASS RES OT MIDW RES Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038 Kaltenbach JA, 2008, AM J AUDIOL, V17, pS148, DOI 10.1044/1059-0889(2008/08-0004) Langguth B, 2010, NEUROPHYSIOL CLIN, V40, P45, DOI 10.1016/j.neucli.2009.03.001 Lanting CP, 2009, HEARING RES, V255, P1, DOI 10.1016/j.heares.2009.06.009 Levine RA, 2003, EXP BRAIN RES, V153, P643, DOI 10.1007/s00221-003-1747-3 Manohar S, 2012, NEUROSCIENCE, V202, P169, DOI 10.1016/j.neuroscience.2011.12.013 Mirz F, 1999, HEARING RES, V134, P133, DOI 10.1016/S0378-5955(99)00075-1 Morest DK, 1997, HEARING RES, V103, P151, DOI 10.1016/S0378-5955(96)00172-4 MORTIMER JA, 1975, BRAIN RES, V83, P369, DOI 10.1016/0006-8993(75)90831-8 Moruzzi R. D. a. G., 1958, PHYSL PATHOLOGY CERE MUGNAINI E, 1994, J COMP NEUROL, V339, P174, DOI 10.1002/cne.903390203 Mugnaini E, 2011, BRAIN RES REV, V66, P220, DOI 10.1016/j.brainresrev.2010.10.001 Nondahl David M, 2002, J Am Acad Audiol, V13, P323 Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9 Osaki Y, 2005, NEUROREPORT, V16, P1625, DOI 10.1097/01.wnr.0000183899.85277.08 Paul AK, 2009, NEUROIMAGE, V44, P312, DOI 10.1016/j.neuroimage.2008.09.024 Pautler Robia G, 2006, Methods Mol Med, V124, P365 Petacchi A, 2005, HUM BRAIN MAPP, V25, P118, DOI 10.1002/hbm.20137 Rasmussen G., 1990, RES NOTEBOOKS, P1 Rauschecker JP, 2010, NEURON, V66, P819, DOI 10.1016/j.neuron.2010.04.032 Saab CY, 2003, BRAIN RES REV, V42, P85, DOI 10.1016/S0165-0173(03)00151-6 Salvi R., 1982, NEW PERSPECTIVES NOI, P165 SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U Sanchez TG, 2002, AUDIOL NEURO-OTOL, V7, P370, DOI 10.1159/000066155 Sawtell NB, 2010, NEURON, V66, P573, DOI 10.1016/j.neuron.2010.04.018 Schlosser R, 1998, J NEUROL NEUROSUR PS, V64, P492, DOI 10.1136/jnnp.64.4.492 SCHMAHMANN JD, 1991, ARCH NEUROL-CHICAGO, V48, P1178 Schmahmann JD, 1996, HUM BRAIN MAPP, V4, P174, DOI 10.1002/(SICI)1097-0193(1996)4:3<174::AID-HBM3>3.0.CO;2-0 Shulman A, 1999, Int Tinnitus J, V5, P92 Silva AC, 2004, NMR BIOMED, V17, P532, DOI 10.1002/nbm.945 Tan J, 2007, NEUROSCIENCE, V145, P715, DOI 10.1016/j.neuroscience.2006.11.067 Voogd J, 1998, TRENDS NEUROSCI, V21, P370, DOI 10.1016/S0166-2236(98)01318-6 Yang G, 2007, HEARING RES, V226, P244, DOI 10.1016/j.heares.2006.06.013 Yang SC, 2011, P NATL ACAD SCI USA, V108, P14974, DOI 10.1073/pnas.1107998108 Yu X, 2005, NAT NEUROSCI, V8, P961, DOI 10.1038/nn1477 NR 59 TC 10 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2013 VL 295 BP 130 EP 139 DI 10.1016/j.heares.2012.03.009 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 098NX UT WOS:000315557100015 PM 23418634 ER PT J AU Eggermont, JJ AF Eggermont, Jos J. TI Hearing loss, hyperacusis, or tinnitus: What is modeled in animal research? SO HEARING RESEARCH LA English DT Article ID DORSAL COCHLEAR NUCLEUS; PRIMARY AUDITORY-CORTEX; ENRICHED ACOUSTIC ENVIRONMENT; INTENSE SOUND EXPOSURE; NEURAL ACTIVITY; INFERIOR COLLICULUS; NOISE TRAUMA; GUINEA-PIG; HOMEOSTATIC PLASTICITY; PREPULSE INHIBITION AB Animal models of tinnitus require a behavioral correlate thereof. Various conditioned response methods and gap-startle reflex methods are in use and the outcomes generally correspond with putative elec.trophysiological substrates of tinnitus. However, for salicylate-induced tinnitus there is discordance between the behavioral and electrophysiological test results. As a result it is not clear what the various tests are reflecting. A review of the, mostly sub-cortical, neural circuits that underlie the behavioral responses suggests that cortical electrophysiological correlates do not necessarily have to correspond with behavioral ones. Human objective correlates of tinnitus point heavily into cortical network, but not just auditory cortex, correlates of tinnitus. Furthermore, the synaptic mechanisms underlying spontaneous firing rate changes may be different from those involved in driven neural activity. (C) 2012 Elsevier B.V. All rights reserved. C1 [Eggermont, Jos J.] Univ Calgary, Dept Physiol & Pharmacol, Calgary, AB T2N 1N4, Canada. [Eggermont, Jos J.] Univ Calgary, Dept Psychol, Calgary, AB T2N 1N4, Canada. RP Eggermont, JJ (reprint author), Univ Calgary, Dept Psychol, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. EM eggermon@ucalgary.ca FU Alberta Heritage Foundation for Medical Research; Natural Sciences and Engineering Research Council; Campbell McLaurin Chair for Hearing Deficiencies FX This work was supported by the Alberta Heritage Foundation for Medical Research, by the Natural Sciences and Engineering Research Council, and by the Campbell McLaurin Chair for Hearing Deficiencies. Martin Pienkowski and Raymundo Munguia made valuable comments on an earlier version of the manuscript. CR Andersson G, 2000, ACTA OTO-LARYNGOL, V120, P967, DOI 10.1080/00016480050218717 AUGUSTINE GJ, 1991, ANN NY ACAD SCI, V635, P365, DOI 10.1111/j.1749-6632.1991.tb36505.x Bauer CA, 2000, HEARING RES, V147, P175, DOI 10.1016/S0378-5955(00)00130-1 Bauer CA, 2008, J NEUROSCI RES, V86, P2564, DOI 10.1002/jnr.21699 Bauer CA, 2001, JARO, V2, P54 Bowen GP, 2003, CEREB CORTEX, V13, P815, DOI 10.1093/cercor/13.8.815 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 Brozoski TJ, 2005, HEARING RES, V206, P227, DOI 10.1016/j.heares.2004.12.013 BUTLER RA, 1957, J NEUROPHYSIOL, V20, P108 CANLON B, 1995, HEARING RES, V84, P112, DOI 10.1016/0378-5955(95)00020-5 Caperton KK, 2011, OTOL NEUROTOL, V32, P301, DOI 10.1097/MAO.0b013e3182009d46 Cazals Y, 1998, J NEUROPHYSIOL, V80, P2113 Chang H, 2002, HEARING RES, V164, P59, DOI 10.1016/S0378-5955(01)00410-5 Dehaene S, 2006, TRENDS COGN SCI, V10, P204, DOI 10.1016/j.tics.2006.03.007 Dehaene S, 2005, PLOS BIOL, V3, P910, DOI 10.1371/journal.pbio.0030141 De Ridder D, 2011, P NATL ACAD SCI USA, V108, P8075, DOI 10.1073/pnas.1018466108 Dominguez M, 2006, NEURAL COMPUT, V18, P2942, DOI 10.1162/neco.2006.18.12.2942 Du Y, 2011, J NEUROSCI, V31, P13644, DOI 10.1523/JNEUROSCI.1292-11.2011 Eggermont J. J., 2006, REPROGRAMMING CEREBR, P143 Eggermont JJ, 2008, AM J AUDIOL, V17, pS162, DOI 10.1044/1059-0889(2008/07-0025) Eggermont J.J., 2004, TINNITUS THEORY MANA, P171 Eggermont JJ, 2000, HEARING RES, V142, P89, DOI 10.1016/S0378-5955(00)00024-1 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Eggermont JJ, 1998, HEARING RES, V117, P149, DOI 10.1016/S0378-5955(98)00008-2 Engineer ND, 2011, NATURE, V470, P101, DOI 10.1038/nature09656 Estes WK, 1941, J EXP PSYCHOL, V29, P390, DOI 10.1037/h0062283 Evans E F, 1981, Ciba Found Symp, V85, P108 Farrant M, 2005, NAT REV NEUROSCI, V6, P215, DOI 10.1038/nrn1625 Finlayson PG, 2009, HEARING RES, V256, P104, DOI 10.1016/j.heares.2009.07.006 Fredj NB, 2009, NAT NEUROSCI, V12, P751, DOI 10.1038/nn.2317 GOLDBERG JM, 1961, J NEUROPHYSIOL, V24, P119 Guitton MJ, 2003, J NEUROSCI, V23, P3944 HEFFNER H, 1978, J NEUROPHYSIOL, V41, P963 Heffner HE, 2002, HEARING RES, V170, P83, DOI 10.1016/S0378-5955(02)00343-X Hua YF, 2010, NAT NEUROSCI, V13, P1451, DOI 10.1038/nn.2695 Huang ZW, 2005, J NEUROPHYSIOL, V93, P2053, DOI 10.1152/jn.00959.2004 HUNTER KP, 1993, PHYSIOL BEHAV, V54, P1133, DOI 10.1016/0031-9384(93)90337-F ISON JR, 1991, BEHAV NEUROSCI, V105, P33, DOI 10.1037//0735-7044.105.1.33 JASTREBOFF PJ, 1986, J ACOUST SOC AM, V80, P1384, DOI 10.1121/1.394391 JASTREBOFF PJ, 1988, BEHAV NEUROSCI, V102, P811, DOI 10.1037/0735-7044.102.6.811 JASTREBOFF PJ, 1988, LARYNGOSCOPE, V98, P280 Jones EG, 1998, NEUROSCIENCE, V85, P331, DOI 10.1016/S0306-4522(97)00581-2 Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038 Kiang N Y, 1970, Ciba Found Symp, P241 Koch M, 1999, PROG NEUROBIOL, V59, P107, DOI 10.1016/S0301-0082(98)00098-7 KOLB B, 1981, J COMP PHYSIOL PSYCH, V95, P468, DOI 10.1037/h0077784 Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 Li L, 2009, NEUROSCI BIOBEHAV R, V33, P1157, DOI 10.1016/j.neubiorev.2009.02.001 Lissin DV, 1998, P NATL ACAD SCI USA, V95, P7097, DOI 10.1073/pnas.95.12.7097 Lobarinas E, 2004, HEARING RES, V190, P109, DOI 10.1016/S0378-5955(04)00019-X Lu J, 2011, NEUROSCIENCE, V189, P187, DOI 10.1016/j.neuroscience.2011.04.073 Luczak A, 2009, NEURON, V62, P413, DOI 10.1016/j.neuron.2009.03.014 Ma WLD, 2006, HEARING RES, V216, P176, DOI 10.1016/j.heares.2006.03.011 Ma WLD, 2006, HEARING RES, V212, P9, DOI 10.1016/j.heares.2005.10.003 Manabe Y, 1997, HEARING RES, V103, P192, DOI 10.1016/S0378-5955(96)00181-5 Melloni L, 2007, J NEUROSCI, V27, P2858, DOI 10.1523/JNEUROSCI.4623-06.2007 MEYER DR, 1952, J NEUROPHYSIOL, V15, P149 Middleton JW, 2011, P NATL ACAD SCI USA, V108, P7601, DOI 10.1073/pnas.1100223108 Mulders WHAM, 2009, NEUROSCIENCE, V164, P733, DOI 10.1016/j.neuroscience.2009.08.036 Norena AJ, 2006, NEUROREPORT, V17, P559, DOI 10.1097/00001756-200604240-00001 Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005 Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9 Norena AJ, 2003, J NEUROPHYSIOL, V90, P2387, DOI 10.1152/jn.00139.2003 O'Donohue H., 2010, ASS RES OT MIDW M Ochi K, 1996, HEARING RES, V95, P63, DOI 10.1016/0378-5955(96)00019-6 Ohl FW, 1999, LEARN MEMORY, V6, P347 Paul AK, 2009, NEUROIMAGE, V44, P312, DOI 10.1016/j.neuroimage.2008.09.024 Pienkowski M, 2011, HEARING RES, V277, P117, DOI 10.1016/j.heares.2011.02.002 Pienkowski M, 2009, HEARING RES, V257, P24, DOI 10.1016/j.heares.2009.07.011 Plewnia C, 2007, HUM BRAIN MAPP, V28, P238, DOI 10.1002/hbm.20270 Richardson BD, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016508 Roberts LE, 2010, J NEUROSCI, V30, P14972, DOI 10.1523/JNEUROSCI.4028-10.2010 Ruel J, 2008, J NEUROSCI, V28, P7313, DOI 10.1523/JNEUROSCI.5335-07.2008 Ruttiger L, 2003, HEARING RES, V180, P39, DOI 10.1016/S0378-5955(03)00075-3 Schaette R, 2006, EUR J NEUROSCI, V23, P3124, DOI 10.1111/j.1460-9568.04774.x Searchfield GD, 2007, PROG BRAIN RES, V166, P441, DOI 10.1016/S0079-6123(07)66043-9 Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1 Seki S, 2002, HEARING RES, V173, P172, DOI 10.1016/S0378-5955(02)00518-X Singer W, 1999, NEURON, V24, P49, DOI 10.1016/S0896-6273(00)80821-1 Stolzberg D, 2011, NEUROSCIENCE, V180, P157, DOI 10.1016/j.neuroscience.2011.02.005 STYPULKOWSKI PH, 1990, HEARING RES, V46, P113, DOI 10.1016/0378-5955(90)90144-E Sun W, 2009, NEUROSCIENCE, V159, P325, DOI 10.1016/j.neuroscience.2008.12.024 Swerdlow NR, 2001, PSYCHOPHARMACOLOGY, V156, P194 Threlkeld SW, 2008, NEUROREPORT, V19, P893, DOI 10.1097/WNR.0b013e3283013d7e Turner JG, 2006, BEHAV NEUROSCI, V120, P188, DOI 10.1037/0735-7044.120.1.188 Turrigiano GG, 1998, NATURE, V391, P892, DOI 10.1038/36103 Vogler DP, 2011, J NEUROSCI, V31, P6639, DOI 10.1523/JNEUROSCI.6538-10.2011 Vyleta NP, 2011, J NEUROSCI, V31, P4593, DOI 10.1523/JNEUROSCI.6398-10.2011 Wang HN, 2011, HEARING RES, V279, P111, DOI 10.1016/j.heares.2011.04.004 Ward LM, 2011, CONSCIOUS COGN, V20, P464, DOI 10.1016/j.concog.2011.01.007 Wei L, 2010, HEARING RES, V267, P54, DOI 10.1016/j.heares.2010.03.088 Weinberger NM, 1998, NEUROBIOL LEARN MEM, V70, P226, DOI 10.1006/nlme.1998.3850 Weinberger NM, 2004, NAT REV NEUROSCI, V5, P279, DOI 10.1038/nrn1366 Weinberger NM, 2007, LEARN MEMORY, V14, P1, DOI 10.1101/lm.421807 WHISHAW IQ, 1981, J COMP PHYSIOL PSYCH, V95, P85, DOI 10.1037/h0077760 Yang G, 2007, HEARING RES, V226, P244, DOI 10.1016/j.heares.2006.06.013 Yang SC, 2011, P NATL ACAD SCI USA, V108, P14974, DOI 10.1073/pnas.1107998108 Zhang JS, 2006, J NEUROSCI RES, V84, P819, DOI 10.1002/jnr.20985 Zhang X, 2011, NEUROSCIENCE, V172, P232, DOI 10.1016/j.neuroscience.2010.10.073 NR 99 TC 23 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2013 VL 295 BP 140 EP 149 DI 10.1016/j.heares.2012.01.005 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 098NX UT WOS:000315557100016 PM 22330978 ER PT J AU Lobarinas, E Hayes, SH Allman, BL AF Lobarinas, Edward Hayes, Sarah H. Allman, Brian L. TI The gap-startle paradigm for tinnitus screening in animal models: Limitations and optimization SO HEARING RESEARCH LA English DT Article ID SALICYLATE-INDUCED TINNITUS; BEHAVIORAL PARADIGM; NEURAL ACTIVITY; HEARING-LOSS; RATS; SOUND; INHIBITION; PLASTICITY; NOISE; HYPERACTIVITY AB In 2006, Turner and colleagues (Behav. Neurosci., 120:188-195) introduced the gap-startle paradigm as a high-throughput method for tinnitus screening in rats. Under this paradigm, gap detection ability was assessed by determining the level of inhibition of the acoustic startle reflex produced by a short silent gap inserted in an otherwise continuous background sound prior to a loud startling stimulus. Animals with tinnitus were expected to show impaired gap detection ability (i.e., lack of inhibition of the acoustic startle reflex) if the background sound containing the gap was qualitatively similar to the tinnitus pitch. Thus, for the gap-startle paradigm to be a valid tool to screen for tinnitus, a robust startle response from which to inhibit must be present. Because recent studies have demonstrated that the acoustic startle reflex could be dramatically reduced following noise exposure, we endeavored to 1) modify the gap-startle paradigm to be more resilient in the presence of hearing loss, and 2) evaluate whether a reduction in startle reactivity could confound the interpretation of gap prepulse inhibition and lead to errors in screening for tinnitus. In the first experiment, the traditional broadband noise (BBN) startle stimulus was replaced by a bandpass noise in which the sound energy was concentrated in the lower frequencies (5-10 kHz) in order to maintain audibility of the startle stimulus after unilateral high-frequency noise exposure (16 kHz). However, rats stili showed a 57% reduction in startle amplitude to the bandpass noise post-noise exposure. A follow-up experiment on a separate group of rats with transiently-induced conductive hearing loss revealed that startle reactivity was better preserved when the BBN startle stimulus was replaced by a rapid airpuff to the back of the rafs neck. Furthermore, it was found that transient unilateral conductive hearing loss, which was not likely to induce tinnitus, caused an impairment in gap prepulse inhibition as assessed with the traditional BBN gap-startle paradigm, resulting in a false-positive screening for tinnitus. Thus, the present study identifies significant caveats of the traditional gap-startle paradigm, and describes experimental parameters using an airpuff startle stimulus which may help to limit the negative consequences of reduced startle reactivity following noise exposure, thereby allowing researchers to better screen for tinnitus in animals with hearing loss. Published by Elsevier B.V. C1 [Lobarinas, Edward; Hayes, Sarah H.; Allman, Brian L.] SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP Lobarinas, E (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall, Buffalo, NY 14214 USA. EM el24@buffalo.edu FU National Defense Science and Engineering Graduate Fellowship through the U.S. Department of Defense; Tinnitus Research Initiative; National Institute On Deafness and Other Communication Disorders [R03DC011374] FX The authors wish to thank the following individuals for their valuable contributions to the successful completion of this project. As Director of the Center for Hearing and Deafness, Dr. Richard Salvi provided generous support, encouragement and guidance in all aspects of the study, and provided helpful comments on an earlier version of the manuscript Daniel Stolzberg designed the custom software used for the gap-startle paradigm, and provided thought-provoking comments on the interpretation of the data. Carrie Shillitoe-Blair, Laura Lewicki and Carolyn Whitcomb provided technical assistance. Sarah Hayes received support from the National Defense Science and Engineering Graduate Fellowship through the U.S. Department of Defense. This work was supported in part by a generous research grant from the Tinnitus Research Initiative (EL). The project described was supported by Grant Number R03DC011374 (BLA) from the National Institute On Deafness and Other Communication Disorders. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute On Deafness and Other Communication Disorders or the National Institutes of Health. CR Bauer CA, 1999, OTOLARYNG HEAD NECK, V121, P457, DOI 10.1016/S0194-5998(99)70237-8 Bauer CA, 2001, JARO, V2, P54 Cave KM, 2007, MIL MED, V172, P726 Dehmel S, 2012, J NEUROSCI, V32, P1660, DOI 10.1523/JNEUROSCI.4608-11.2012 Engineer ND, 2011, NATURE, V470, P101, DOI 10.1038/nature09656 Goble TJ, 2009, HEARING RES, V253, P52, DOI 10.1016/j.heares.2009.03.002 Guitton MJ, 2003, J NEUROSCI, V23, P3944 Heffner HE, 2005, BEHAV NEUROSCI, V119, P734, DOI 10.1037/0735-7044.119.3.734 Heffner HE, 2011, BEHAV RES METHODS, V43, P577, DOI 10.3758/s13428-011-0061-4 Heffner HE, 2002, HEARING RES, V170, P83, DOI 10.1016/S0378-5955(02)00343-X Holt AG, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014260 ISON JR, 1991, BEHAV NEUROSCI, V105, P33, DOI 10.1037//0735-7044.105.1.33 ISON JR, 1982, J COMP PHYSIOL PSYCH, V96, P945, DOI 10.1037/0735-7036.96.6.945 JASTREBOFF PJ, 1988, LARYNGOSCOPE, V98, P280 Kraus KS, 2010, NEUROSCIENCE, V167, P1216, DOI 10.1016/j.neuroscience.2010.02.071 Li L, 1999, NEUROSCIENCE, V90, P139, DOI 10.1016/S0306-4522(98)00436-9 Lobarinas E., 2012, MODELING BLAST INDUC Lobarinas E, 2004, HEARING RES, V190, P109, DOI 10.1016/S0378-5955(04)00019-X Lobarinas E, 2006, ACTA OTO-LARYNGOL, V126, P13, DOI 10.1080/03655230600895408 Longenecker RJ, 2011, JARO-J ASSOC RES OTO, V12, P647, DOI 10.1007/s10162-011-0276-1 McCombe A, 2001, CLIN OTOLARYNGOL, V26, P388, DOI 10.1046/j.1365-2273.2001.00490.x Middleton JW, 2011, P NATL ACAD SCI USA, V108, P7601, DOI 10.1073/pnas.1100223108 Ruttiger L, 2003, HEARING RES, V180, P39, DOI 10.1016/S0378-5955(03)00075-3 Shargorodsky J, 2010, AM J MED, V123, P711, DOI 10.1016/j.amjmed.2010.02.015 Swerdlow NR, 2000, BEHAV PHARMACOL, V11, P185 Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002 Turner JG, 2008, AM J AUDIOL, V17, pS185, DOI 10.1044/1059-0889(2008/08-0006) Turner JG, 2006, BEHAV NEUROSCI, V120, P188, DOI 10.1037/0735-7044.120.1.188 Varty GB, 1999, BEHAV BRAIN RES, V100, P177, DOI 10.1016/S0166-4328(98)00129-6 Varty GB, 1998, NEUROBIOL AGING, V19, P243, DOI 10.1016/S0197-4580(98)00053-0 Wallhausser-Franke E, 2003, EXP BRAIN RES, V153, P649, DOI 10.1007/s00221-003-1614-2 Wang H, 2009, NEUROSCIENCE, V164, P747, DOI 10.1016/j.neuroscience.2009.08.026 Yang G, 2007, HEARING RES, V226, P244, DOI 10.1016/j.heares.2006.06.013 Yang SC, 2011, P NATL ACAD SCI USA, V108, P14974, DOI 10.1073/pnas.1107998108 Zhang JS, 2011, JARO-J ASSOC RES OTO, V12, P185, DOI 10.1007/s10162-010-0246-z NR 35 TC 19 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2013 VL 295 BP 150 EP 160 DI 10.1016/j.heares.2012.06.001 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 098NX UT WOS:000315557100017 PM 22728305 ER PT J AU Zeng, FG AF Zeng, Fan-Gang TI An active loudness model suggesting tinnitus as increased central noise and hyperacusis as increased nonlinear gain SO HEARING RESEARCH LA English DT Article ID SOUND-LEVEL STATISTICS; INDUCED HEARING-LOSS; AUDITORY-NERVE; AUDIOLOGICAL CHARACTERISTICS; OTOACOUSTIC EMISSIONS; COMPUTATIONAL MODEL; NEURAL ADAPTATION; COCHLEAR IMPLANT; STIMULATION; RECRUITMENT AB The present study uses a systems engineering approach to delineate the relationship between tinnitus and hyperacusis as a result of either hearing loss in the ear or an imbalanced state in the brain. Specifically examined is the input output function, or loudness growth as a function of intensity in both normal and pathological conditions. Tinnitus reduces the output dynamic range by raising the floor, while hyperacusis reduces the input dynamic range by lowering the ceiling or sound tolerance level. Tinnitus does not necessarily steepen the loudness growth function but hyperacusis always does. An active loudness model that consists of an expansion stage following a compression stage can account for these key properties in tinnitus and hyperacusis loudness functions. The active loudness model suggests that tinnitus is a result of increased central noise, while hyperacusis is due to increased nonlinear gain. The active loudness model also generates specific predictions on loudness growth in tinnitus, hyperacusis, hearing loss or any combinations of the three conditions. These predictions need to be verified by experimental data and have explicit implications for treatment of tinnitus and hyperacusis. (C) 2012 Elsevier B.V. All rights reserved. C1 [Zeng, Fan-Gang] Univ Calif Irvine, Dept Anat & Neurobiol, Irvine, CA 92697 USA. [Zeng, Fan-Gang] Univ Calif Irvine, Dept Biomed Engn, Irvine, CA 92697 USA. [Zeng, Fan-Gang] Univ Calif Irvine, Dept Cognit Sci, Irvine, CA 92697 USA. [Zeng, Fan-Gang] Univ Calif Irvine, Dept Otolaryngol Head & Neck Surg, Irvine, CA 92697 USA. RP Zeng, FG (reprint author), Univ Calif Irvine, Ctr Hearing Res, 110 Med Sci E, Irvine, CA 92697 USA. EM fzeng@uci.edu CR Andersson G, 2002, INT J AUDIOL, V41, P545, DOI 10.3109/14992020209056075 Bauer C.A., 2011, EAR HEAR Buus S, 2002, JARO-J ASSOC RES OTO, V3, P120, DOI 10.1007/s101620010084 Cai SQ, 2009, JARO-J ASSOC RES OTO, V10, P5, DOI 10.1007/s10162-008-0142-y CANEVET G, 1985, AUDIOLOGY, V24, P430 Cianfrone G, 2005, Acta Otorhinolaryngol Ital, V25, P3 Darlington CL, 2007, PROG BRAIN RES, V166, P249, DOI 10.1016/S0079-6123(07)66023-3 Dean I, 2008, J NEUROSCI, V28, P6430, DOI 10.1523/JNEUROSCI.0470-08.2008 Dean I, 2005, NAT NEUROSCI, V8, P1684, DOI 10.1038/nn1541 Dehmel S, 2008, AM J AUDIOL, V17, pS193, DOI 10.1044/1059-0889(2008/07-0045) Del Bo L, 2007, PROG BRAIN RES, V166, P341, DOI 10.1016/S0079-6123(07)66032-4 Epstein M, 2005, J ACOUST SOC AM, V117, P263, DOI 10.1121/1.1830670 Fausti SA, 2009, J REHABIL RES DEV, V46, P797, DOI 10.1682/JRRD.2008.09.0118 FLORENTINE M, 1979, HEARING RES, V1, P121, DOI 10.1016/0378-5955(79)90023-6 FORMBY C, 1980, AUDIOLOGY, V19, P519 Formby C, 2008, J ACOUST SOC AM, V123, P3717, DOI 10.1121/1.2935164 Fowler EP, 1928, ARCHIV OTOLARYNGOL, V8, P151 Freeman WJ, 1996, INT J NEURAL SYST, V7, P473, DOI 10.1142/S0129065796000452 Goldstein B, 1996, INT TINNITUS J, V2, P83 GOODWIN PE, 1980, ACTA OTO-LARYNGOL, V90, P353, DOI 10.3109/00016488009131736 HALLAM RS, 1988, BRIT J CLIN PSYCHOL, V27, P213 Heinz MG, 2005, JARO-J ASSOC RES OTO, V6, P91, DOI 10.1007/s10162-004-5043-0 Henkin Y, 2006, ACTA OTO-LARYNGOL, V126, P581, DOI 10.1080/00016480500443391 Henry J A, 1999, J Am Acad Audiol, V10, P261 Hiller W, 2007, AUDIOL NEURO-OTOL, V12, P391, DOI 10.1159/000106482 Hong RS, 2003, OTOL NEUROTOL, V24, P590, DOI 10.1097/00129492-200307000-00010 JASTREBOFF PJ, 1994, HEARING RES, V80, P216, DOI 10.1016/0378-5955(94)90113-9 Jastreboff PJ, 2003, OTOLARYNG CLIN N AM, V36, P321, DOI 10.1016/S0030-6665(02)00172-X Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5 Kaltenbach JA, 2011, HEARING RES, V276, P52, DOI 10.1016/j.heares.2010.12.003 KODAMA A, 1990, ORL J OTO-RHINO-LARY, V52, P156 Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 Langguth B, 2006, ACTA OTO-LARYNGOL, V126, P102, DOI 10.1080/03655230600895457 Launer S, 2003, INT J AUDIOL, V42, P262, DOI 10.3109/14992020309078345 Launer S, 1997, MODELING SENSORINEURAL HEARING LOSS, P175 Marinaro Maria, 2004, Phys Rev E Stat Nonlin Soft Matter Phys, V70, P041909, DOI 10.1103/PhysRevE.70.041909 MARKS LE, 1994, J EXP PSYCHOL HUMAN, V20, P382, DOI 10.1037//0096-1523.20.2.382 MICHEYL C, 1995, BRAIN COGNITION, V29, P127, DOI 10.1006/brcg.1995.1272 Miyamoto RT, 2003, OTOLARYNG CLIN N AM, V36, P345, DOI 10.1016/S0030-6665(02)00165-2 Moore BCJ, 2004, HEARING RES, V188, P70, DOI 10.1016/S0378-5955(03)00347-2 Moore BCJ, 1997, J AUDIO ENG SOC, V45, P224 Moore BCJ, 1996, ACUSTICA, V82, P335 Nelson Jeffrey J, 2004, Ear Nose Throat J, V83, P472 Nieschalk M, 1996, HNO, V44, P577, DOI 10.1007/s001060050057 Norena AJ, 2011, NEUROSCI BIOBEHAV R, V35, P1089, DOI 10.1016/j.neubiorev.2010.11.003 Okamoto H, 2010, P NATL ACAD SCI USA, V107, P1207, DOI 10.1073/pnas.0911268107 Olsen SO, 1999, AUDIOLOGY, V38, P202 PENNER MJ, 1983, J SPEECH HEAR RES, V26, P73 PENNER MJ, 1986, J SPEECH HEAR RES, V29, P400 PENNER MJ, 1986, J SPEECH HEAR RES, V29, P407 Qiu CX, 2000, HEARING RES, V139, P153, DOI 10.1016/S0378-5955(99)00171-9 Rauschecker JP, 2010, NEURON, V66, P819, DOI 10.1016/j.neuron.2010.04.032 Reavis K. M., 2012, J ASS RES OTOLARYNGO REED G F, 1960, AMA Arch Otolaryngol, V71, P84 Roberts LE, 2008, JARO-J ASSOC RES OTO, V9, P417, DOI 10.1007/s10162-008-0136-9 Roberts LE, 2010, J NEUROSCI, V30, P14972, DOI 10.1523/JNEUROSCI.4028-10.2010 Schaette R, 2006, EUR J NEUROSCI, V23, P3124, DOI 10.1111/j.1460-9568.04774.x Schaette R, 2011, J NEUROSCI, V31, P13452, DOI 10.1523/JNEUROSCI.2156-11.2011 SCHARF B, 1966, J ACOUST SOC AM, V40, P71, DOI 10.1121/1.1910066 SCHLAUCH RS, 1992, J ACOUST SOC AM, V92, P758, DOI 10.1121/1.403999 Schlauch RS, 1998, J ACOUST SOC AM, V103, P2010, DOI 10.1121/1.421379 Shargorodsky J, 2010, AM J MED, V123, P711, DOI 10.1016/j.amjmed.2010.02.015 Stevens SS, 1936, PSYCHOL REV, V43, P405, DOI 10.1037/h0058773 Sweetow RW, 2010, J AM ACAD AUDIOL, V21, P461, DOI 10.3766/jaaa.21.7.5 Szczepaniak WS, 1996, EVOKED POTENTIAL, V100, P158, DOI 10.1016/0013-4694(95)00234-0 Tass PA, 2012, BIOL CYBERN, V106, P27, DOI 10.1007/s00422-012-0479-5 Terry A M, 1983, Br J Audiol, V17, P245, DOI 10.3109/03005368309081485 Thorson MJ, 2012, J ACOUST SOC AM, V131, P1282, DOI 10.1121/1.3672654 TYLER RS, 1983, J SPEECH HEAR RES, V26, P59 VERNON J, 1981, J LARYNGOL OTOL, P76 Ward LM, 2009, AM J AUDIOL, V18, P119, DOI 10.1044/1059-0889(2009/07-0033) Wen B, 2009, J NEUROSCI, V29, P13797, DOI 10.1523/JNEUROSCI.5610-08.2009 ZENG FG, 1992, HEARING RES, V60, P231, DOI 10.1016/0378-5955(92)90024-H Zeng FG, 1999, EAR HEARING, V20, P60, DOI 10.1097/00003446-199902000-00006 ZENG FG, 1994, SCIENCE, V264, P564, DOI 10.1126/science.8160013 Zilany MSA, 2010, J NEUROSCI, V30, P10380, DOI 10.1523/JNEUROSCI.0647-10.2010 ZWICKER E, 1965, PSYCHOL REV, V72, P3, DOI 10.1037/h0021703 Zwicker E., 2007, PSYCHOACOUSTICS FACT NR 78 TC 21 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2013 VL 295 BP 172 EP 179 DI 10.1016/j.heares.2012.05.009 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 098NX UT WOS:000315557100019 PM 22641191 ER PT J AU Snow, JB AF Snow, James B., Jr. TI Strategies and accomplishments of the Tinnitus Research Consortium SO HEARING RESEARCH LA English DT Article ID DORSAL COCHLEAR NUCLEUS; TRIGEMINAL GANGLION STIMULATION; INTENSE SOUND; RESPONSES; NEURONS AB The Tinnitus Research Consortium (TRC) is sponsored by a philanthropist who wants to accelerate progress in basic and clinical research on tinnitus. The TRC consists of 12 distinguished auditory scientists who began meeting in 1998 twice a year for brainstorming for new research approaches to tinnitus, developing requests for applications, judging the scientific merit of the applications received and reviewing the progress of funded projects. Through these efforts, common confounding variables in tinnitus research have been identified, and solutions to these problems have been suggested. TRC grants have been made up to $100,000.00 per year for three years. The sponsor had provided $600,000.00 per year; so two new grants could be made each year. The good news is that the sponsor's support has been increased by 50% for 2011 so that three grants have been awarded. Some of the landmark studies supported by the TRC over the last 14 years are reviewed as is the changing conceptualization of the pathogenesis of tinnitus and its management. The effect of strategies of the TRC on the applicants, grantees, scientific field, scientific societies and other funding agencies will be discussed. For example, when the TRC was initiated, sessions devoted to tinnitus research at national scientific meetings were rare. Through the efforts of the TRC, the American Tinnitus Association and the American Academy of Audiology, organizations such as the Association for Research in Otolaryngology and the Society for Neuroscience were encouraged to hold special sessions on tinnitus research. Now such organizations have well attended sessions on tinnitus research each year. The size of the TRC grants, large enough to support a substantial research project, has caused several other voluntary agencies to increase the size of their grants toward the TRC standard. The National Institute on Deafness and Other Communication Disorders and other institutes at the National Institutes of Health have devoted far more emphasis on tinnitus. By supporting sound research on tinnitus and recruiting world-class scientists to the field, the TRC has led in making tinnitus research respectable. (C) 2012 Elsevier B.V. All rights reserved. C1 Tinnitus Res Consortium, West Grove, PA 19390 USA. RP Snow, JB (reprint author), Tinnitus Res Consortium, 327 Greenbriar Lane, West Grove, PA 19390 USA. EM jandssnow@comcast.net FU Robert W. Wilson Charitable Trust FX Dr. Snow receives consultation fees and travel expenses for managing the grant-in-aid program of the Tinnitus Research Consortium and Members of the Tinnitus Research Consortium receive honoraria and travel expenses for participation in the meetings of the Tinnitus Research Consortium from the Robert W. Wilson Charitable Trust. CR Bauer CA, 2006, LARYNGOSCOPE, V116, P675, DOI 10.1097/01.MLG.0000216812.65206.CD Bauer CA, 2011, EAR HEARING, V32, P145, DOI 10.1097/AUD.0b013e3181f5374f Cheung SW, 2010, NEUROSCIENCE, V169, P1768, DOI 10.1016/j.neuroscience.2010.06.007 Husain FT, 2011, BRAIN RES, V1369, P74, DOI 10.1016/j.brainres.2010.10.095 Koehler SD, 2011, EUR J NEUROSCI, V33, P409, DOI 10.1111/j.1460-9568.2010.07547.x Leaver AM, 2011, NEURON, V69, P33, DOI 10.1016/j.neuron.2010.12.002 Levin R, 2004, TINNITUS THEORY MANA, P108 Ma WLD, 2006, HEARING RES, V216, P176, DOI 10.1016/j.heares.2006.03.011 Ma WLD, 2006, HEARING RES, V212, P9, DOI 10.1016/j.heares.2005.10.003 Meikle MB, 2012, EAR HEARING, V33, P153, DOI 10.1097/AUD.0b013e31822f67c0 Melcher JR, 2009, HEARING RES, V257, P63, DOI 10.1016/j.heares.2009.08.005 Mennemeier M.S., BRAIN STIMUL Muhlau M, 2006, CEREB CORTEX, V16, P1283, DOI 10.1093/cercor/bhj070 Rauschecker JP, 2010, NEURON, V66, P819, DOI 10.1016/j.neuron.2010.04.032 Roberts LE, 2010, J NEUROSCI, V30, P14972, DOI 10.1523/JNEUROSCI.4028-10.2010 Robinson SK, 2005, PSYCHOSOM MED, V67, P981, DOI 10.1097/01.psy.0000188479.04891.74 Rubinstein JT, 2003, OTOL NEUROTOL, V24, P478, DOI 10.1097/00129492-200305000-00021 Rubinstein JT, 2004, TINNITUS THEORY MANA, P326 Shore SE, 2003, NEUROSCIENCE, V119, P1085, DOI 10.1016/S0306-4522(03)00207-0 Shore SE, 2008, EUR J NEUROSCI, V27, P155, DOI 10.1111/j.1460-9568.2007.05983.x Shore SE, 2005, EUR J NEUROSCI, V21, P3334, DOI 10.1111/j.1460-9568.2005.04142.x Shore SE, 2006, HEARING RES, V216, P90, DOI 10.1016/j.heares.2006.01.006 Smith JA, 2007, LARYNGOSCOPE, V117, P529, DOI 10.1097/MLG.0b013e31802f4154 Snow JB, 2006, ACTA OTO-LARYNGOL, V126, P89, DOI 10.1080/03655230600895325 Yang G, 2007, HEARING RES, V226, P244, DOI 10.1016/j.heares.2006.06.013 Zacharek MA, 2002, HEARING RES, V172, P137, DOI 10.1016/S0378-5955(02)00575-0 Zhang JS, 2003, EXP BRAIN RES, V153, P655, DOI 10.1007/s00221-003-1612-4 Zhang JS, 2003, HEARING RES, V185, P13, DOI 10.1016/S0378-5955(03)00276-4 NR 28 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2013 VL 295 BP 180 EP 186 DI 10.1016/j.heares.2012.01.001 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 098NX UT WOS:000315557100020 PM 22245715 ER PT J AU Oberfeld, D Stahn, P Kuta, M AF Oberfeld, Daniel Stahn, Patricia Kuta, Martha TI Binaural release from masking in forward-masked intensity discrimination: Evidence for effects of selective attention SO HEARING RESEARCH LA English DT Article ID DICHOTIC-LISTENING CONDITIONS; TEMPORAL MASKING; COCKTAIL PARTY; NONSIMULTANEOUS MASKING; SPEECH-INTELLIGIBILITY; INFORMATIONAL MASKING; BACKWARD-MASKING; IMPAIRED HEARING; INTERAURAL TIME; NOISE AB In a forward-masked intensity discrimination task, we manipulated the perceived lateralization of the masker via variation of the interaural time difference (ITD). The maskers and targets were 500 Hz pure tones with a duration of 30 ms. Standards of 30 and 60 dB SPL were combined with 60 or 90 dB SPL maskers. As expected, the presentation of a forward masker perceived as lateralized to the other side of the head as the target resulted in a significantly smaller elevation of the intensity difference limen than a masker lateralized ipsilaterally. This binaural release from masking in forward-masked intensity discrimination cannot be explained by peripheral mechanisms because varying the ITD leaves the neural representation in the monaural channels (i.e., in the auditory nerve) unaltered. Instead, our results are compatible with the assumption that lateralization differences between masker and target promote object segregation and therefore facilitate object-based selective attention to the target. (C) 2012 Elsevier B.V. All rights reserved. C1 [Oberfeld, Daniel; Stahn, Patricia; Kuta, Martha] Johannes Gutenberg Univ Mainz, Dept Psychol, Sect Expt Psychol, D-55122 Mainz, Germany. RP Oberfeld, D (reprint author), Johannes Gutenberg Univ Mainz, Dept Psychol, Sect Expt Psychol, Wallstr 3, D-55122 Mainz, Germany. EM oberfeld@uni-mainz.de; stahn@uni-mainz.de; kuta@uni-mainz.de RI Oberfeld, Daniel/A-7997-2008 OI Oberfeld, Daniel/0000-0002-6710-3309 FU Deutsche Forschungsgemeinschaft (DFG) [OB 346/4-1] FX This work was supported by a grant from Deutsche Forschungsgemeinschaft (DFG; www.dfg.de) to Daniel Oberfeld (OB 346/4-1: Temporal aspects of auditory intensity processing). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No additional external funding received. We are grateful to Felicitas Klockner, Mahsa Mitchell and Leonie Schmalfuss for their assistance in data collection. CR Alain C, 2000, FRONT BIOSCI, V5, pD202, DOI 10.2741/Alain [Anonymous], 1970, 318 IEC BEKESY GEORG v., 1947, ACTA OTO LARYNGOL [STOCKHOLM], V35, P411, DOI 10.3109/00016484709123756 BERG K, 1976, J ACOUST SOC AM, V60, P173, DOI 10.1121/1.381060 Best V, 2008, P NATL ACAD SCI USA, V105, P13174, DOI 10.1073/pnas.0803718105 Breebaart J, 2001, J ACOUST SOC AM, V110, P1105, DOI 10.1121/1.1383299 Bregman AS., 1990, AUDITORY SCENE ANAL Buss E, 2011, J ACOUST SOC AM, V129, P907, DOI 10.1121/1.3514528 CARLYON RP, 1993, J ACOUST SOC AM, V93, P2886, DOI 10.1121/1.405808 CHERRY EC, 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229 Cohen J., 1988, STAT POWER ANAL BEHA, V2nd COLBURN HS, 1977, J ACOUST SOC AM, V61, P525, DOI 10.1121/1.381294 Dai P, 2011, SPEECH COMMUN, V53, P229, DOI 10.1016/j.specom.2010.09.004 Durlach NI, 2003, J ACOUST SOC AM, V113, P2984, DOI 10.1121/1.1570435 DURLACH NI, 1963, J ACOUST SOC AM, V35, P1206, DOI 10.1121/1.1918675 DURLACH NI, 1969, J ACOUST SOC AM, V46, P372, DOI 10.1121/1.1911699 Gunawan TS, 2010, SPEECH COMMUN, V52, P381, DOI 10.1016/j.specom.2009.12.006 HALL JW, 1992, PHILOS T ROY SOC B, V336, P331, DOI 10.1098/rstb.1992.0066 HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083 Hartmann WM, 2005, SIGNALS SOUND SENSAT Hawley ML, 2004, J ACOUST SOC AM, V115, P833, DOI 10.1121/1.1639908 HIRSH IJ, 1948, J ACOUST SOC AM, V20, P536, DOI 10.1121/1.1906407 HOCHBERG Y, 1988, BIOMETRIKA, V75, P800, DOI 10.1093/biomet/75.4.800 Huynh H., 1976, J EDUC STATIST, V1, P69, DOI DOI 10.2307/1164736 Ihlefeld Antje, 2008, J Acoust Soc Am, V123, P4369, DOI 10.1121/1.2904826 JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495 Jones GL, 2008, J ACOUST SOC AM, V124, P3818, DOI 10.1121/1.2996336 Jones GL, 2011, J ACOUST SOC AM, V130, P1463, DOI 10.1121/1.3613928 Kahneman D., 1981, PERCEPTUAL ORG, P181 Kidd G, 2005, J ACOUST SOC AM, V118, P982, DOI 10.1121/1.1953167 Kohlrausch A., 1994, BINAURAL SPATIAL HEA, P169 Kubovy M, 2001, COGNITION, V80, P97, DOI 10.1016/S0010-0277(00)00155-4 Laback B, 2011, J ACOUST SOC AM, V129, P888, DOI 10.1121/1.3518781 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LICKLIDER JCR, 1948, J ACOUST SOC AM, V20, P150, DOI 10.1121/1.1906358 Lovie P., 1986, NEW DEV STAT PSYCHOL, P45 Moore BCJ, 2002, ACTA ACUST UNITED AC, V88, P320 Moore BCJ, 2012, PHILOS T R SOC B, V367, P919, DOI 10.1098/rstb.2011.0355 Oberfeld D, 2009, J ACOUST SOC AM, V125, P294, DOI 10.1121/1.3021296 Oberfeld D, 2010, NEUROPHYSIOLOGICAL BASES OF AUDITORY PERCEPTION, P99, DOI 10.1007/978-1-4419-5686-6_10 Oberfeld D, 2008, J ACOUST SOC AM, V123, P1571, DOI 10.1121/1.2837284 Oberfeld D, 2007, J ACOUST SOC AM, V121, P2137, DOI 10.1121/1.2710433 PLACK CJ, 1992, J ACOUST SOC AM, V92, P3097, DOI 10.1121/1.404205 Plack CJ, 1996, J ACOUST SOC AM, V100, P1031, DOI 10.1121/1.416289 PLACK CJ, 1995, J ACOUST SOC AM, V97, P1141, DOI 10.1121/1.412227 Plack CJ, 2002, ACTA ACUST UNITED AC, V88, P348 Rennies J, 2011, J ACOUST SOC AM, V130, P2999, DOI 10.1121/1.3641368 Rhebergen KS, 2010, J ACOUST SOC AM, V127, P1570, DOI 10.1121/1.3291000 Savelsbergh G.J., 2004, TIME CONTACT, P355 Schlauch RS, 1999, J ACOUST SOC AM, V105, P822, DOI 10.1121/1.426271 Schlauch RS, 1997, J ACOUST SOC AM, V102, P461, DOI 10.1121/1.419610 Scholl BJ, 2001, COGNITION, V80, P1, DOI 10.1016/S0010-0277(00)00152-9 Shinn-Cunningham BG, 2008, TRENDS COGN SCI, V12, P182, DOI 10.1016/j.tics.2008.02.003 Stahn P., PLOS ONE IN PRESS Stellmack MA, 2007, J ACOUST SOC AM, V122, P1328, DOI 10.1121/1.2756167 Wojtczak M, 2010, J ACOUST SOC AM, V128, P247, DOI 10.1121/1.3436566 YAMA MF, 1992, J ACOUST SOC AM, V91, P327, DOI 10.1121/1.402775 Yates Graeme K., 1995, P41, DOI 10.1016/B978-012505626-7/50004-2 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 YOST WA, 1982, HEARING RES, V7, P247, DOI 10.1016/0378-5955(82)90039-9 ZENG FG, 1992, J ACOUST SOC AM, V92, P782, DOI 10.1121/1.403947 ZENG FG, 1991, HEARING RES, V55, P223, DOI 10.1016/0378-5955(91)90107-K Zeng FG, 1998, J ACOUST SOC AM, V103, P2021, DOI 10.1121/1.421373 Zhang PXY, 2006, J ACOUST SOC AM, V120, P3471, DOI 10.1121/1.2372456 NR 64 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2012 VL 294 IS 1-2 BP 1 EP 9 DI 10.1016/j.heares.2012.09.004 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064PV UT WOS:000313088800001 PM 23010335 ER PT J AU Burke, AJ Hatano, M Kelly, JB AF Burke, Aaron J. Hatano, Miyako Kelly, Jack B. TI Behavioral consequences of unilateral inferior colliculus lesions in the rat SO HEARING RESEARCH LA English DT Article ID AUDITORY-CORTEX LESIONS; BINAURAL EVOKED-RESPONSES; SUPERIOR OLIVARY COMPLEX; FERRET MUSTELA-PUTORIUS; LATERAL LEMNISCUS; SOUND LOCALIZATION; DORSAL NUCLEUS; TONOTOPIC ORGANIZATION; ALBINO-RAT; ANATOMICAL PLASTICITY AB This study was carried out to determine the behavioral sensitivity to sound of rats with unilateral lesions of inferior colliculus (IC) located ipsilateral or contralateral to the projection pathway from one ear. Absolute thresholds for the detection of a broad-band noise burst were compared for rats with a profound conductive hearing loss in one ear and a lesion placed either ipsilateral or contralateral to the normally functioning ear. The rats were trained to make withdrawal responses to avoid a shock when they detected the presence of a noise burst. Sound pressure level was systematically lowered to obtain psychophysical curves from which absolute thresholds could be determined. Complete lesions of the contralateral IC resulted in substantial elevations in absolute threshold relative to normal whereas equivalent lesions of the ipsilateral IC produced relatively little elevation. In neither case did unilateral destruction of the IC produce a total inability to respond to sound. Contralateral IC lesions that included the dorsal nucleus of the lateral lemniscus (DNLL) produced a significantly greater elevation in behavioral thresholds than complete lesions limited to the IC. The results indicate a predominance of the contralateral over the ipsilateral pathway to IC for maintaining normal thresholds. They also indicate that other pathways that bypass the IC are likely involved in detecting the presence of a sound. (C) 2012 Elsevier B.V. All rights reserved. C1 [Burke, Aaron J.; Hatano, Miyako; Kelly, Jack B.] Carleton Univ, Dept Psychol, Lab Sensory Neurosci, Ottawa, ON K1S 5B6, Canada. [Burke, Aaron J.; Hatano, Miyako; Kelly, Jack B.] Carleton Univ, Dept Neurosci, Lab Sensory Neurosci, Ottawa, ON K1S 5B6, Canada. [Hatano, Miyako] Fukui Prefectural Hosp, Dept Otolaryngol Head & Neck Surg, Fukui, Japan. RP Kelly, JB (reprint author), Carleton Univ, Dept Psychol, Lab Sensory Neurosci, Ottawa, ON K1S 5B6, Canada. EM jkelly@connect.carleton.ca FU Natural Sciences and Engineering Research Council of Canada; Hearing Research Foundation of Canada FX This research was supported by grants to JBK from the Natural Sciences and Engineering Research Council of Canada and The Hearing Research Foundation of Canada. The authors would like to thank Teresa Fortin for her important contribution to the study. CR Aitkin L., 1986, AUDITORY MIDBRAIN ST AITKIN LM, 1984, NEUROSCI LETT, V44, P259, DOI 10.1016/0304-3940(84)90032-6 BEYERL BD, 1978, BRAIN RES, V145, P209, DOI 10.1016/0006-8993(78)90858-2 Burger RM, 2001, J NEUROSCI, V21, P4830 Cant NB, 2005, INFERIOR COLLICULUS, P115, DOI 10.1007/0-387-27083-3_3 Casseday JH, 2002, SPR HDB AUD, V15, P238 CASSEDAY JH, 1989, J COMP NEUROL, V287, P247, DOI 10.1002/cne.902870208 Champoux F, 2007, EUR J NEUROSCI, V25, P291, DOI 10.1111/j.1460-9568.2006.05260.x CLOPTON BM, 1977, J NEUROPHYSIOL, V40, P1275 CLOPTON BM, 1973, BRAIN RES, V56, P355, DOI 10.1016/0006-8993(73)90352-1 COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204 Cooke JE, 2007, HEARING RES, V231, P90, DOI 10.1016/j.heares.2007.06.002 Doron NN, 2000, J COMP NEUROL, V425, P257 DRUGA R, 1984, PHYSIOL BOHEMOSLOV, V33, P31 Ehret G, 2005, INFERIOR COLLICULUS, P312, DOI 10.1007/0-387-27083-3_11 Ehret G., 1997, CENTRAL AUDITORY SYS, P259 FLAMMINO F, 1975, J ACOUST SOC AM, V57, P692, DOI 10.1121/1.380494 GALAMBOS R, 1961, AM J PHYSIOL, V200, P23 GLENDENNING KK, 1981, J COMP NEUROL, V197, P673, DOI 10.1002/cne.901970409 Heffner H. E., 1995, METHODS COMP PSYCHOA, P79 HEFFNER HE, 1989, J NEUROPHYSIOL, V62, P789 HEFFNER HE, 1986, J NEUROPHYSIOL, V55, P256 HEFFNER HE, 1990, J NEUROPHYSIOL, V64, P191 HUANG C, 1986, EXP BRAIN RES, V61, P506 Ito M, 2008, HEARING RES, V239, P92, DOI 10.1016/j.heares.2008.01.014 JANE JA, 1965, J COMP NEUROL, V125, P165, DOI 10.1002/cne.901250203 JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987 Kalinina T.E., 1967, NEUROSCI TRANSLAT, V1, P47, DOI 10.1007/BF01124643 KAVANAGH GL, 1986, BEHAV NEUROSCI, V100, P200, DOI 10.1037//0735-7044.100.2.200 KAVANAGH GL, 1988, J NEUROPHYSIOL, V60, P879 Kelly J. B., 2009, ASS RES OTOLARYNGOL, V32, P36 KELLY JB, 1994, J NEUROPHYSIOL, V71, P1078 Kelly JB, 2006, J COMP PSYCHOL, V120, P98, DOI 10.1037/0735-7036.120.2.98 Kelly JB, 2009, J COMP NEUROL, V512, P573, DOI 10.1002/cne.21929 Kelly JB, 1997, HEARING RES, V104, P112, DOI 10.1016/S0378-5955(96)00182-7 KELLY JB, 1980, J NEUROPHYSIOL, V44, P1161 KELLY JB, 1978, BRAIN RES, V145, P315, DOI 10.1016/0006-8993(78)90865-X KELLY JB, 1991, HEARING RES, V56, P273, DOI 10.1016/0378-5955(91)90177-B Kelly JB, 1998, HEARING RES, V116, P43, DOI 10.1016/S0378-5955(97)00195-0 Kelly JB, 2002, HEARING RES, V168, P35, DOI 10.1016/S0378-5955(02)00372-6 KELLY JB, 1985, J NEUROPHYSIOL, V53, P361 Kelly J.B., 1990, CEREBRAL CORTEX RAT, P381 Kidd SA, 1996, J NEUROSCI, V16, P7390 Knight J., 1968, HEARING MECHANISMS V, P207 Kryter KD, 1943, AM J PSYCHOL, V56, P501, DOI 10.2307/1417352 LeDoux J, 2003, CELL MOL NEUROBIOL, V23, P727, DOI 10.1023/A:1025048802629 Lee YL, 1996, J NEUROSCI, V16, P3775 LI L, 1992, J NEUROSCI, V12, P4530 Malmierca MS, 2008, J NEUROSCI, V28, P4767, DOI 10.1523/JNEUROSCI.0238-08.2008 MASTERTO.RB, 1968, J NEUROPHYSIOL, V31, P96 Meloni EG, 1999, PSYCHOPHARMACOLOGY, V144, P373, DOI 10.1007/s002130051020 Meloni EG, 2004, PSYCHOPHARMACOLOGY, V174, P228, DOI 10.1007/s00213-003-1728-z Merchan M.A, 2004, RAT NERVOUS SYSTEM, P999 NIEDER PC, 1965, J NEUROPHYSIOL, V28, P1185 OKOYAMA S, 1995, HEARING RES, V88, P65, DOI 10.1016/0378-5955(95)00100-I OKOYAMA S, 1995, HEARING RES, V88, P71, DOI 10.1016/0378-5955(95)00101-9 Oliver DL, 2005, INFERIOR COLLICULUS, P69, DOI 10.1007/0-387-27083-3_2 Palmer AR, 2005, INFERIOR COLLICULUS, P377, DOI 10.1007/0-387-27083-3_13 PAPEZ JW, 1929, ANAT REC, V42, P60 Paxinos G., 1998, RAT BRAIN STEREOTAXI Pollak GD, 2012, HEARING RES, V288, P47, DOI 10.1016/j.heares.2012.01.011 Pollak GD, 2002, HEARING RES, V168, P60, DOI 10.1016/S0378-5955(02)00362-3 RAAB DH, 1946, AM J PSYCHOL, V59, P59, DOI 10.2307/1416999 Rees A, 2005, INFERIOR COLLICULUS, P346, DOI 10.1007/0-387-27083-3_12 SALLY SL, 1992, BRAIN RES, V572, P5, DOI 10.1016/0006-8993(92)90444-E Schofield BR, 2005, INFERIOR COLLICULUS, P132, DOI 10.1007/0-387-27083-3_4 SHNEIDERMAN A, 1988, J COMP NEUROL, V276, P188, DOI 10.1002/cne.902760204 STARZL TE, 1951, J NEUROPHYSIOL, V14, P479 STROMING.NL, 1970, J COMP NEUROL, V138, P1, DOI 10.1002/cne.901380102 Syka J, 2002, HEARING RES, V172, P151, DOI 10.1016/S0378-5955(02)00578-6 Kelly JB, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P329, DOI 10.1007/978-1-4419-8712-9_31 van Adel BA, 1999, HEARING RES, V130, P115, DOI 10.1016/S0378-5955(98)00226-3 WENSTRUP JJ, 1988, J NEUROPHYSIOL, V60, P1384 WENSTRUP JJ, 1986, J NEUROSCI, V6, P962 Winer JA, 2005, INFERIOR COLLICULUS, P231, DOI 10.1007/0-387-27083-3_8 Winer JA, 1998, J COMP NEUROL, V400, P147 Winer JA, 2005, INFERIOR COLLICULUS, P1, DOI 10.1007/0-387-27083-3_1 Yin TCT, 2005, INFERIOR COLLICULUS, P426, DOI 10.1007/0-387-27083-3_15 Zhang DX, 1998, HEARING RES, V117, P1, DOI 10.1016/S0378-5955(97)00202-5 Zrull MC, 1999, ACTA OTO-LARYNGOL, V119, P326 NR 80 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2012 VL 294 IS 1-2 BP 10 EP 20 DI 10.1016/j.heares.2012.09.003 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064PV UT WOS:000313088800002 PM 23010333 ER PT J AU Guthrie, OW Xu, H AF Guthrie, O'neil W. Xu, Helen TI Noise exposure potentiates the subcellular distribution of nucleotide excision repair proteins within spiral ganglion neurons SO HEARING RESEARCH LA English DT Article ID COMPLEMENTATION GROUP-A; INDUCED HEARING-LOSS; XERODERMA-PIGMENTOSUM; DNA-REPAIR; XPA PROTEIN; INNER-EAR; NUCLEAR TRANSLOCATION; MOLECULAR-MECHANISMS; PROCESSIVITY FACTOR; COCKAYNE-SYNDROME AB Nucleotide excision repair (NER) is a defensive mechanism that limits genomic stress through genetically distinct cascades that employs Cockayne syndrome-A (CSA), the xeroderma pigmentosum-C (XPC) and the xeroderma pigmentosum-A (XPA) proteins. Noise exposure induces stress within the spiral ganglia. Therefore, it was posited that noise exposure would mobilize NER proteins within spiral ganglion neurons. Long-Evans rats were exposed to noise (105 dB SPL/4 h) and cochlear impairment was verified (pre-post DPOAE recordings) then the animals were euthanized via intravascular perfusion for temporal bone harvesting, immunohistochemistry and quantification of intracellular protein distribution. The results revealed that under normal (quiet) conditions the majority (similar to 60%) of spiral ganglion neurons do not express NER proteins, however, a subpopulation (similar to 40%) was NER positive. The overall number of reactive neurons stayed the same following noise exposure but there was significant (p < 0.01) subcellular redistribution of NER proteins. For instance, neurons within the apex exhibited significant (p < 0.01) nuclear accumulation of CSA while neurons within the base revealed significant (p < 0.05) nuclear accumulation of XPC. This spatial heterogeneity suggests a difference in genome defense repertoire between apical and basal coils of the cochlea. Furthermore, noise exposure depleted XPA from the nucleus regardless of location along the cochlear spiral. These findings provide a novel mechanism for interpreting noise-induced neuronal stress. Published by Elsevier B.V. C1 [Guthrie, O'neil W.] Loma Linda Vet Affairs Med Ctr, Res Serv 151, Loma Linda, CA 92357 USA. [Guthrie, O'neil W.; Xu, Helen] Loma Linda Univ, Med Ctr, Sch Med, Dept Otolaryngol & Head & Neck Surg, Loma Linda, CA 92354 USA. RP Guthrie, OW (reprint author), Loma Linda Vet Affairs Med Ctr, Res Serv 151, 11201 Benton St, Loma Linda, CA 92357 USA. EM O'neil.Guthrie@va.gov FU Rehabilitation Research and Development Service of the Office of Research and Development United States Department of Veterans Affairs [C7600-W] FX This work was supported by a CDA-2 (C7600-W) Award from the Rehabilitation Research and Development Service of the Office of Research and Development United States Department of Veterans Affairs. The Loma Linda Veterans Affairs Medical Center provided facilities for conducting the experiments. CR Allen T. C., 1994, LAB METHODS HISTOTEC, P53 Araki M, 2001, J BIOL CHEM, V276, P18665, DOI 10.1074/jbc.M100855200 Balaban CD, 2005, VOLTA REV, V105, P335 Banfi B, 2004, J BIOL CHEM, V279, P46065, DOI 10.1074/jbc.M403046200 Bartels CL, 2007, BIOCHEM BIOPH RES CO, V356, P219, DOI 10.1016/j.bbrc.2007.02.125 Chung CY, 2005, HUM MOL GENET, V14, P1709, DOI 10.1093/hmg/ddi178 Costa RMA, 2003, BIOCHIMIE, V85, P1083, DOI 10.1016/j.biochi.2003.10.017 Dong L, 2010, CANCER RES, V70, P3547, DOI 10.1158/0008-5472.CAN-09-4596 Feng S, 1997, CARCINOGENESIS, V18, P279, DOI 10.1093/carcin/18.2.279 Fousteri M, 2008, CELL RES, V18, P73, DOI 10.1038/cr.2008.6 GANDOLFI A, 1984, ANN NEUROL, V15, P135, DOI 10.1002/ana.410150205 Gillet LCJ, 2006, CHEM REV, V106, P253, DOI 10.1021/cr040483f Guthrie OW, 2008, HEARING RES, V239, P79, DOI 10.1016/j.heares.2008.01.013 Guthrie OW, 2008, ANTICANCER RES, V28, P2637 Guthrie OW, 2010, EAR HEARING, V31, P714, DOI 10.1097/AUD.0b013e3181ddf5a3 Guthrie OW, 2009, J CHEMOTHERAPY, V21, P74 Guthrie OW, 2011, BRAIN RES, V1407, P97, DOI 10.1016/j.brainres.2011.06.044 Guthrie OW, 2008, J MOL HISTOL, V39, P617, DOI 10.1007/s10735-008-9202-1 Hanawalt PC, 2008, NAT REV MOL CELL BIO, V9, P958, DOI 10.1038/nrm2549 Hey T, 2002, BIOCHEMISTRY-US, V41, P6583, DOI 10.1021/bi012202t Ishiyama A, 2001, NEUROSCI LETT, V304, P93, DOI 10.1016/S0304-3940(01)01774-8 Ishiyama G, 2011, J NEUROSCI METH, V196, P76, DOI 10.1016/j.jneumeth.2011.01.001 Jaspers NGJ, 2007, AM J HUM GENET, V80, P457, DOI 10.1086/512486 JOHNSSON LG, 1974, ANN OTO RHINOL LARYN, V83, P294 Kang TH, 2011, NUCLEIC ACIDS RES, V39, P3176, DOI 10.1093/nar/gkq1318 KENYON GS, 1985, BRAIN, V108, P771, DOI 10.1093/brain/108.3.771 Kesseler KJ, 2007, J THEOR BIOL, V249, P361, DOI 10.1016/j.jtbi.2007.07.025 Khan MJ, 2000, EUR ARCH OTO-RHINO-L, V257, P177, DOI 10.1007/s004050050218 Kitahara T, 2005, NEUROSCIENCE, V135, P639, DOI 10.1016/j.neuroscience.2005.06.056 Kitahara T, 2004, HEARING RES, V196, P39, DOI 10.1016/j.heares.2004.02.002 Knudsen NO, 2009, DNA REPAIR, V8, P682, DOI 10.1016/j.dnarep.2009.03.005 Koberle B, 2008, MOL CARCINOGEN, V47, P580, DOI 10.1002/mc.20418 Koberle B, 2006, DNA REPAIR, V5, P641, DOI 10.1016/j.dnarep.2005.12.001 Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 Kujawa SG, 2006, J NEUROSCI, V26, P2115, DOI 10.1523/JNEUROSCI.4985-05.2006 Lambert MW, 2000, BIOCHEM BIOPH RES CO, V271, P782, DOI 10.1006/bbrc.2000.2714 Lawner BE, 1997, INT J DEV NEUROSCI, V15, P601, DOI 10.1016/S0736-5748(96)00115-3 Leake PA, 2011, J COMP NEUROL, V519, P1526, DOI 10.1002/cne.22582 Le Prell CG, 2007, HEARING RES, V226, P22, DOI 10.1016/j.heares.2006.10.006 Li ZK, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028326 Lin HW, 2011, JARO-J ASSOC RES OTO, V12, P605, DOI 10.1007/s10162-011-0277-0 Maillard O, 2008, MUTAT RES-REV MUTAT, V658, P271, DOI 10.1016/j.mrrev.2008.01.007 Makary CA, 2011, JARO-J ASSOC RES OTO, V12, P711, DOI 10.1007/s10162-011-0283-2 Mattiasson G, 2003, NAT MED, V9, P1062, DOI 10.1038/nm903 Mattiasson G, 2003, J NEUROCHEM, V87, P532, DOI 10.1046/j.1471-4159.2003.02026.x MCLEAN IW, 1974, J HISTOCHEM CYTOCHEM, V22, P1077 Mirkin N, 2008, NUCLEIC ACIDS RES, V36, P1792, DOI 10.1093/nar/gkn005 Morita EH, 1996, GENES CELLS, V1, P437, DOI 10.1046/j.1365-2443.1996.d01-252.x Mouton PR, 2002, PRINCIPLES PRACTICES Nitta M, 2000, NUCLEIC ACIDS RES, V28, P4212, DOI 10.1093/nar/28.21.4212 Nouspikel T, 2006, P NATL ACAD SCI USA, V103, P16188, DOI 10.1073/pnas.0607769103 Nouspikel T, 2002, DNA REPAIR, V1, P59, DOI 10.1016/S1568-7864(01)00005-2 Nouspikel T, 2003, BIOESSAYS, V25, P168, DOI 10.1002/bies.10227 Nouspikel T, 2000, MOL CELL BIOL, V20, P1562, DOI 10.1128/MCB.20.5.1562-1570.2000 Oh KS, 2006, HUM MUTAT, V27, P1092, DOI 10.1002/humu.20392 OTTE J, 1978, LARYNGOSCOPE, V88, P1231 Raams A., 2010, PLOS GENET, V6 ROBBINS JH, 1991, BRAIN, V114, P1335, DOI 10.1093/brain/114.3.1335 Schuknecht H. F., 1974, PATHOLOGY EAR SHEMEN LJ, 1984, AM J OTOL, V5, P300 SPOENDLI.H, 1971, ACTA OTO-LARYNGOL, V71, P166, DOI 10.3109/00016487109125346 Sugawara M, 2005, JARO-J ASSOC RES OTO, V6, P136, DOI 10.1007/s10162-004-5050-1 SUZUKA Y, 1988, ACTA OTO-LARYNGOL, P1 Wu X, 2007, ONCOGENE, V26, P757, DOI 10.1038/sj.onc.1209828 Yang SZ, 2008, ANAT REC, V291, P775, DOI 10.1002/ar.20713 Yang ZG, 2006, BIOCHEMISTRY-US, V45, P15921, DOI 10.1021/bi061626q Ying YLM, 2009, HEARING RES, V253, P116, DOI 10.1016/j.heares.2009.04.006 NR 67 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2012 VL 294 IS 1-2 BP 21 EP 30 DI 10.1016/j.heares.2012.09.001 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064PV UT WOS:000313088800003 PM 23022597 ER PT J AU del Campo, HNM Measor, KR Razak, KA AF del Campo, H. N. Martin Measor, K. R. Razak, K. A. TI Parvalbumin immunoreactivity in the auditory cortex of a mouse model of presbycusis SO HEARING RESEARCH LA English DT Article ID FREQUENCY-MODULATED SWEEPS; AGE-RELATED-CHANGES; TEMPORAL PROCESSING SPEED; PRIMARY VISUAL-CORTEX; INFERIOR COLLICULUS; NEURAL MECHANISMS; CORTICAL CIRCUIT; C57BL/6J MICE; HEARING-LOSS; FAST-SPIKING AB Age-related hearing loss (presbycusis) affects 35% of humans older than sixty-five years. Symptoms of presbycusis include impaired discrimination of sounds with fast temporal features, such as those present in speech. Such symptoms likely arise because of central auditory system plasticity, but the underlying components are incompletely characterized. The rapid spiking inhibitory interneurons that co-express the calcium binding protein Parvalbumin (PV) are involved in shaping neural responses to fast spectrotemporal modulations. Here, we examined cortical PV expression in the C57bl/6 (C57) mouse, a strain commonly studied as a presbycusis model. We examined if PV expression showed auditory cortical field- and layer-specific susceptibilities with age. The percentage of PV-expressing cells relative to Nissl-stained cells was counted in the anterior auditory field (AAF) and primary auditory cortex (A1) in three age groups: young (1-2 months), middle-aged (6-8 months) and old (14-20 months). There were significant declines in the percentage of cells expressing PV at a detectable level in layers I-IV of both A1 and AAF in the old mice compared to young mice. In layers V-VI, there was an increase in the percentage of PV-expressing cells in the AAF of the old group. There were no changes in percentage of PV-expressing cells in layers V-VI of A1. These data suggest cortical layer(s)- and field-specific susceptibility of PV+ cells with presbycusis. The results are consistent with the hypothesis that a decline in inhibitory neurotransmission, particularly in the superficial cortical layers, occurs with presbycusis. (C) 2012 Elsevier B.V. All rights reserved. C1 [Razak, K. A.] Univ Calif Riverside, Dept Psychol, Riverside, CA 92521 USA. Univ Calif Riverside, Grad Neurosci Program, Riverside, CA 92521 USA. RP Razak, KA (reprint author), Univ Calif Riverside, Dept Psychol, 900 Univ Ave, Riverside, CA 92521 USA. EM khaleel@ucr.edu FU Deafness Research Foundation FX We thank the members of the Razak lab for reviewing this paper and the Deafness Research Foundation for funding this study. CR Anderson LA, 2009, BRAIN RES, V1252, P130, DOI 10.1016/j.brainres.2008.11.037 Atencio CA, 2009, P NATL ACAD SCI USA, V106, P21894, DOI 10.1073/pnas.0908383106 Atencio CA, 2008, J NEUROSCI, V28, P3897, DOI 10.1523/JNEUROSCI.5366-07.2008 Bartos M, 2007, NAT REV NEUROSCI, V8, P45, DOI 10.1038/nrn2044 Behrens MM, 2007, SCIENCE, V318, P1645, DOI 10.1126/science.1148045 BEST N, 1993, NEUROSCI LETT, V155, P1, DOI 10.1016/0304-3940(93)90660-D Bu J, 2003, EXP NEUROL, V182, P220, DOI 10.1016/S0014-4886(03)00094-3 Buzsaki G, 2004, SCIENCE, V304, P1926, DOI 10.1126/science.1099745 Caspary DM, 2008, J EXP BIOL, V211, P1781, DOI 10.1242/jeb.013581 CAVINESS VS, 1975, J COMP NEUROL, V164, P247, DOI 10.1002/cne.901640207 Chiry O, 2003, EUR J NEUROSCI, V17, P397, DOI 10.1046/j.1460-9568.2003.02430.x Clemo HR, 2003, J CHEM NEUROANAT, V26, P51, DOI 10.1016/S0891-0618(03)00039-5 Cruikshank SJ, 2001, NEUROSCIENCE, V105, P553, DOI 10.1016/S0306-4522(01)00226-3 Desgent S, 2010, NEUROSCIENCE, V171, P1326, DOI 10.1016/j.neuroscience.2010.10.016 de Villers-Sidani E, 2010, P NATL ACAD SCI USA, V107, P13900, DOI 10.1073/pnas.1007885107 Franklin K.B.J., 2008, MOUSE BRAIN STEREOTA, V3rd Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3 Gates G.A., 2009, HEARING CARE ADULTS, P47 Gates GA, 2005, LANCET, V366, P1111, DOI 10.1016/S0140-6736(05)67423-5 Goldshmit Y, 2010, NEUROSCIENCE, V166, P886, DOI 10.1016/j.neuroscience.2009.12.039 GUNDERSEN HJG, 1988, APMIS, V96, P379 HENRY KR, 1980, AUDIOLOGY, V19, P369 Hughes LF, 2010, HEARING RES, V264, P79, DOI 10.1016/j.heares.2009.09.005 Hultcrantz M, 2006, ACTA OTO-LARYNGOL, V126, P10, DOI 10.1080/00016480510038617 HUNTER KP, 1987, HEARING RES, V30, P207, DOI 10.1016/0378-5955(87)90137-7 Idrizbegovic E, 2004, NEUROBIOL AGING, V25, P1085, DOI 10.1016/j.neuroimaging.2003.11.004 Jones EG, 2003, ANN NY ACAD SCI, V999, P218, DOI 10.1196/annals.1284.033 KRZYWKOWSKI P, 1995, NEUROBIOL AGING, V16, P29, DOI 10.1016/0197-4580(95)80005-C Lee HJ, 2002, HEARING RES, V174, P64, DOI 10.1016/S0378-5955(02)00639-1 Linden JF, 2003, J NEUROPHYSIOL, V90, P2660, DOI 10.1152/jn.00751.2002 Ling LL, 2005, NEUROSCIENCE, V132, P1103, DOI 10.1016/j.neuroscience.2004.12.043 Lucas EK, 2010, J NEUROSCI, V30, P7227, DOI 10.1523/JNEUROSCI.0698-10.2010 MCMULLEN NT, 1994, J COMP NEUROL, V349, P493, DOI 10.1002/cne.903490402 Mendelson JR, 2001, HEARING RES, V158, P84, DOI 10.1016/S0378-5955(01)00294-5 Mendelson JR, 2004, HEARING RES, V191, P21, DOI 10.1016/j.heares.2004.01.010 MIETTINEN R, 1993, NEUROSCIENCE, V53, P367, DOI 10.1016/0306-4522(93)90201-P Ohl FW, 1999, LEARN MEMORY, V6, P347 Ouda L, 2008, EXP GERONTOL, V43, P782, DOI 10.1016/j.exger.2008.04.001 Powell SB, 2012, NEUROPHARMACOLOGY, V62, P1322, DOI 10.1016/j.neuropharm.2011.01.049 Razak KA, 2009, J NEUROPHYSIOL, V102, P1366, DOI 10.1152/jn.00334.2009 Razak KA, 2006, J NEUROPHYSIOL, V96, P1303, DOI 10.1152/jn.00020.2006 Razak KA, 2012, J NEUROPHYSIOL, V107, P2202, DOI 10.1152/jn.00922.2011 Sloviter R S, 1991, Hippocampus, V1, P41, DOI 10.1002/hipo.450010106 Sohal VS, 2009, NATURE, V459, P698, DOI 10.1038/nature07991 Suta D, 2011, EXP GERONTOL, V46, P739, DOI 10.1016/j.exger.2011.05.004 Syka J, 2010, HEARING RES, V264, P70, DOI 10.1016/j.heares.2009.11.003 Trujillo M, 2011, J NEUROPHYSIOL, V106, P2825, DOI 10.1152/jn.00480.2011 Walton JP, 1998, J NEUROSCI, V18, P2764 WEINSTEIN BE, 1982, J SPEECH HEAR RES, V25, P593 Wetzel W, 1998, BEHAV BRAIN RES, V91, P29, DOI 10.1016/S0166-4328(97)00099-5 Willard FH, 1983, AUDITORY PSYCHOBIOLO, P201 WILLOTT JF, 1993, J COMP NEUROL, V329, P402, DOI 10.1002/cne.903290310 WREE A, 1983, ANAT EMBRYOL, V166, P333, DOI 10.1007/BF00305922 Wu GK, 2008, NEURON, V58, P132, DOI 10.1016/j.neuron.2008.01.035 Yuan KX, 2011, J NEUROSCI, V31, P13333, DOI 10.1523/JNEUROSCI.1000-11.2011 Zeng FG, 2005, P NATL ACAD SCI USA, V102, P2293, DOI 10.1073/pnas.0406460102 Zhang LI, 2003, NATURE, V424, P201, DOI 10.1038/nature01796 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 58 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2012 VL 294 IS 1-2 BP 31 EP 39 DI 10.1016/j.heares.2012.08.017 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064PV UT WOS:000313088800004 ER PT J AU Zhong, Y Hu, YJ Peng, W Sun, Y Yang, Y Zhao, XY Huang, X Zhang, HL Kong, WJ AF Zhong, Yi Hu, Yujuan Peng, Wei Sun, Yu Yang, Yang Zhao, Xueyan Huang, Xiang Zhang, Honglian Kong, Weijia TI Age-related decline of the cytochrome c oxidase subunit expression in the auditory cortex of the mimetic aging rat model associated with the common deletion SO HEARING RESEARCH LA English DT Article ID MITOCHONDRIAL-DNA DELETION; PRODUCT OTOACOUSTIC EMISSIONS; SENSORINEURAL HEARING-LOSS; D-GALACTOSE; CONTRALATERAL SUPPRESSION; DROSOPHILA-MELANOGASTER; C57BL/6J MICE; MOUSE MODEL; OXIDATIVE DAMAGE; QUANTITATIVE PCR AB The age-related deterioration in the central auditory system is well known to impair the abilities of sound localization and speech perception. However, the mechanisms involved in the age-related central auditory deficiency remain unclear. Previous studies have demonstrated that mitochondrial DNA (mtDNA) deletions accumulated with age in the auditory system. Also, a cytochrome c oxidase (CcO) deficiency has been proposed to be a causal factor in the age-related decline in mitochondrial respiratory activity. This study was designed to explore the changes of CcO activity and to investigate the possible relationship between the mtDNA common deletion (CD) and CcO activity as well as the mRNA expression of CcO subunits in the auditory cortex of D-galactose (D-gal)-induced mimetic aging rats at different ages. Moreover, we explored whether peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM) were involved in the changes of nuclear- and mitochondrial-encoded CcO subunits in the auditory cortex during aging. Our data demonstrated that D-gal-induced mimetic aging rats exhibited an accelerated accumulation of the CD and a gradual decline in the CcO activity in the auditory cortex during the aging process. The reduction in the CcO activity was correlated with the level of CD load in the auditory cortex. The mRNA expression of CcO subunit III was reduced significantly with age in the D-gal-induced mimetic aging rats. In contrast, the decline in the mRNA expression of subunits I and IV was relatively minor. Additionally, significant increases in the mRNA and protein levels of PGC-1 alpha, NRF-1 and TFAM were observed in the auditory cortex of D-gal-induced mimetic aging rats with aging. These findings suggested that the accelerated accumulation of the CD in the auditory cortex may induce a substantial decline in CcO subunit III and lead to a significant decline in the CcO activity progressively with age despite compensatory increases of PGC-1 alpha, NRF-1 and TFAM. Therefore, CcO may be a specific intramitochondrial site of age-related deterioration in the auditory cortex, and CcO subunit III might be a target in the development of presbycusis. (C) 2012 Elsevier B.V. All rights reserved. C1 [Zhong, Yi; Hu, Yujuan; Peng, Wei; Sun, Yu; Yang, Yang; Zhao, Xueyan; Kong, Weijia] Huazhong Univ Sci & Technol, Dept Otorhinolaryngol, Union Hosp, Tongji Med Coll, Wuhan 430022, Peoples R China. [Zhang, Honglian] Huazhong Univ Sci & Technol, Dept Prevent Med & Publ Hlth, Union Hosp, Tongji Med Coll, Wuhan 430022, Peoples R China. [Huang, Xiang; Kong, Weijia] Huazhong Univ Sci & Technol, Inst Otorhinolaryngol, Union Hosp, Tongji Med Coll, Wuhan 430022, Peoples R China. [Kong, Weijia] Minist Educ, Key Lab Neurol Dis, Taipei, Taiwan. RP Kong, WJ (reprint author), Huazhong Univ Sci & Technol, Dept Otorhinolaryngol, Union Hosp, Tongji Med Coll, 1277 Jiefang Ave, Wuhan 430022, Peoples R China. EM zhl_bjk@whuh.com; entwjkong@yahoo.com.cn FU Major State Basic Research Development Program of China (973 Program) [2011CB504504]; National Nature Science Foundation of China [30730094, 81000409]; Natural Science Foundation of Hubei Province of China [2010CDB08005] FX This work was supported by grants from the Major State Basic Research Development Program of China (973 Program) (No. 2011CB504504), the National Nature Science Foundation of China (Nos. 30730094 and 81000409) and the Natural Science Foundation of Hubei Province of China (No. 2010CDB08005). CR Arnold S, 1997, EUR J BIOCHEM, V249, P350, DOI 10.1111/j.1432-1033.1997.t01-1-00350.x Bai UM, 2001, HEARING RES, V154, P73, DOI 10.1016/S0378-5955(01)00221-0 Belevich I, 2006, NATURE, V440, P829, DOI 10.1038/nature04619 CAPALDI RA, 1990, ANNU REV BIOCHEM, V59, P569 Cassano P, 2004, ANN NY ACAD SCI, V1019, P269, DOI 10.1196/annals.1297.045 Chen B, 2010, BRAIN RES, V1344, P43, DOI 10.1016/j.brainres.2010.04.082 Chen B, 2010, MOL BIOL REP, V38, P3635 Chen GD, 2009, HEARING RES, V248, P39, DOI 10.1016/j.heares.2008.11.010 Cui X, 2004, BIOGERONTOLOGY, V5, P317, DOI 10.1007/s10522-004-2570-3 Cui X, 2006, J NEUROSCI RES, V84, P647, DOI 10.1002/jnr.20899 Derave W, 2005, EXP GERONTOL, V40, P562, DOI 10.1016/j.exger.2005.05.005 Dhar SS, 2008, J BIOL CHEM, V283, P3120, DOI 10.1074/jbc.M707587200 Ekstrand MI, 2004, HUM MOL GENET, V13, P935, DOI 10.1093/hmg/ddh109 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H Ferguson M, 2005, BIOCHEM J, V390, P501, DOI 10.1042/BJ20042130 Finck BN, 2006, J CLIN INVEST, V116, P615, DOI 10.1172/JCI27794 Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3 Frisina RD, 2006, HEARING RES, V216, P216, DOI 10.1016/j.heares.2006.02.003 Frisina RD, 2007, J ACOUST SOC AM, V121, pEL29, DOI 10.1121/1.2401226 Gates GA, 2005, LANCET, V366, P1111, DOI 10.1016/S0140-6736(05)67423-5 Geng TY, 2011, AM J PATHOL, V178, P1738, DOI 10.1016/j.ajpath.2011.01.005 Goss JR, 2011, MECH AGEING DEV, V132, P437, DOI [10.1016/j.mad.2011.04.010, 10.1016/j.mad,2011.04.010] Gregg SQ, 2012, HEPATOLOGY, V55, P609, DOI 10.1002/hep.24713 Gruart A., FASEB J Helling S, 2008, MOL CELL PROTEOMICS, V7, P1714, DOI 10.1074/mcp.M800137-MCP200 Ho SC, 2003, BIOGERONTOLOGY, V4, P15, DOI 10.1023/A:1022417102206 Hong O S, 2001, ORL Head Neck Nurs, V19, P7 Howarth A, 2006, POSTGRAD MED J, V82, P166, DOI 10.1136/pgmj.2005.039388 Huttemann M, 2012, BBA-BIOENERGETICS, V1817, P598, DOI 10.1016/j.bbabio.2011.07.001 Jacobson M, 2003, LARYNGOSCOPE, V113, P1707, DOI 10.1097/00005537-200310000-00009 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Khalimonchuk Oleh, 2005, Mitochondrion, V5, P363, DOI 10.1016/j.mito.2005.08.002 Kim SH, 2002, AUDIOL NEURO-OTOL, V7, P348, DOI 10.1159/000066159 Kong WJ, 2006, BIOCHEM BIOPH RES CO, V344, P425, DOI 10.1016/j.bbrc.2006.03.060 Kong WJ, 2006, EXP GERONTOL, V41, P628, DOI 10.1016/j.exger.2006.04.008 Kumar A, 2011, J ASIAN NAT PROD RES, V13, P42, DOI 10.1080/10286020.2010.544253 Kumar A, 2010, FOOD CHEM TOXICOL, V48, P626, DOI 10.1016/j.fct.2009.11.043 Kusunoki T, 2004, AM J OTOLARYNG, V25, P313, DOI 10.1016/j.amjoto.2004.04.002 Lei M, 2008, BIOCHEM BIOPH RES CO, V369, P1082, DOI 10.1016/j.bbrc.2008.02.151 Lin RJ, 2012, LARYNGOSCOPE, V122, P624, DOI 10.1002/lary.22480 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Lu J, 2006, BEHAV BRAIN RES, V171, P251, DOI 10.1016/j.bbr.2006.03.043 Markaryan A, 2009, LARYNGOSCOPE, V119, P1184, DOI 10.1002/lary.20218 Meissner C, 2008, EXP GERONTOL, V43, P645, DOI 10.1016/j.exger.2008.03.004 Napiwotzki J, 1998, BIOL CHEM, V379, P335, DOI 10.1515/bchm.1998.379.3.335 Nicklas JA, 2004, ENVIRON MOL MUTAGEN, V44, P313, DOI 10.1002/em.20050 Nishiyama S, 2010, BIOCHEM BIOPH RES CO, V401, P26, DOI 10.1016/j.bbrc.2010.08.143 Piantadosi CA, 2006, J BIOL CHEM, V281, P324, DOI 10.1074/jbc.M508805200 Ren JC, 2010, BIOCHEM BIOPH RES CO, V401, P64, DOI 10.1016/j.bbrc.2010.09.009 Shoffner J.M., 2001, CURR PROTOC HUM GENE, V9, P1 Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 Stiburek L, 2006, PHYSIOL RES, V55, pS27 Syka J, 2010, HEARING RES, V264, P70, DOI 10.1016/j.heares.2009.11.003 Tadros SF, 2007, NEUROBIOL AGING, V28, P1112, DOI 10.1016/j.neurobiolaging.2006.05.021 Thannickal VJ, 2000, AM J PHYSIOL-LUNG C, V279, pL1005 Uddin MN, 2010, J IMMUNOTOXICOL, V7, P165, DOI 10.3109/15476910903510806 Viveros MP, 2007, NEUROIMMUNOMODULAT, V14, P157, DOI 10.1159/000110640 Walton JP, 1997, J COMP PHYSIOL A, V181, P161, DOI 10.1007/s003590050103 Willott JF, 2009, HEARING RES, V252, P89, DOI 10.1016/j.heares.2008.12.002 Willott JF, 2004, J COMP NEUROL, V472, P358, DOI 10.1002/cne.20065 WILSON DF, 1974, ARCH BIOCHEM BIOPHYS, V163, P491, DOI 10.1016/0003-9861(74)90506-2 WILSON KS, 1990, ARCH BIOCHEM BIOPHYS, V282, P413, DOI 10.1016/0003-9861(90)90137-N Wolf N, 2005, EXP EYE RES, V81, P276, DOI 10.1016/j.exer.2005.01.024 Wu SL, 1995, BIOCHEMISTRY-US, V34, P16298, DOI 10.1021/bi00050a009 Yu-Wai-Man P, 2010, INVEST OPHTH VIS SCI, V51, P3347, DOI 10.1167/iovs.09-4660 Zettel ML, 2007, JARO-J ASSOC RES OTO, V8, P280, DOI 10.1007/s10162-007-0075-x Zhang XL, 2007, PHARMACOL BIOCHEM BE, V88, P64, DOI 10.1016/j.pbb.2007.07.004 Zhong Y, 2011, MUTAT RES-FUND MOL M, V712, P11, DOI 10.1016/j.mrfmmm.2011.03.013 Zhu XX, 2007, J COMP NEUROL, V503, P593, DOI 10.1002/cne.21402 NR 69 TC 6 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2012 VL 294 IS 1-2 BP 40 EP 48 DI 10.1016/j.heares.2012.09.006 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064PV UT WOS:000313088800005 PM 23022596 ER PT J AU Grose, JH Mamo, SK AF Grose, John H. Mamo, Sara K. TI Frequency modulation detection as a measure of temporal processing: Age-related monaural and binaural effects SO HEARING RESEARCH LA English DT Article ID HEARING-IMPAIRED LISTENERS; FINE-STRUCTURE SENSITIVITY; INTERAURAL PHASE; SPEECH RECEPTION; SELECTIVITY; NOISE; CUES; TONE AB The detection of low-rate frequency modulation (FM) carried by a low-frequency tone has been employed as a means of assessing the fidelity of temporal fine structure coding. Detection of low-rate FM can be made more acute, relative to the monaural case, by the addition of a pure tone to the contralateral ear. This study examined whether FM detection in the 500-Hz region could be further improved by using a binaural stimulation mode where the modulator was antiphasic across the two ears. The study also sought to determine whether these dichotic FM conditions were beneficial in identifying the emergence of a temporal fine structure processing deficiency relatively early in the aging process. Young, mid-aged, and older listeners (n = 12 per group) were tested. The results demonstrated better FM acuity in the dichotic task irrespective of listener age. Dichotic FM detection also differentiated between age groups more definitively than diotic detection, especially in terms of distinguishing mid-aged from older listeners. In the group of older listeners, dichotic FM detection was weakly associated with absolute sensitivity to the carrier. In addition, this group failed to show a dichotic benefit in the presence of a marked asymmetry in sensation level across ears. The overall pattern of results suggests that dichotic FM measurements have advantages over monaural measurements for the purposes of assessing age-related temporal processing effects, although a marked asymmetry in absolute thresholds across ears could undermine these advantages. (C) 2012 Elsevier B.V. All rights reserved. C1 [Grose, John H.; Mamo, Sara K.] Univ N Carolina, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC 27599 USA. RP Grose, JH (reprint author), Univ N Carolina, Dept Otolaryngol Head & Neck Surg, G190 Phys Off Bldg,CB 7070,170 Manning Dr, Chapel Hill, NC 27599 USA. EM jhg@med.unc.edu FU NIH NIDCD [R01DC001507] FX This work was supported by NIH NIDCD R01DC001507. The helpful comments of the Associate Editor, Brian C.J. Moore, and two anonymous reviewers are gratefully acknowledged. The manuscript also benefited from constructive discussions with Joseph W. Hall III and Emily Buss. CR Batra R, 1997, J NEUROPHYSIOL, V78, P1237 Buss E, 2004, EAR HEARING, V25, P242, DOI 10.1097/01.AUD.0000130796.93809.09 Clinard CG, 2010, HEARING RES, V264, P48, DOI 10.1016/j.heares.2009.11.010 Dobreva MS, 2011, J NEUROPHYSIOL, V105, P2471, DOI 10.1152/jn.00951.2010 Ernst SMA, 2012, J ACOUST SOC AM, V131, P4722, DOI 10.1121/1.3699233 GREEN GGR, 1976, J PHYSIOL-LONDON, V260, pP49 Grose JH, 2010, EAR HEARING, V31, P755, DOI 10.1097/AUD.0b013e3181e627e7 He NJ, 2007, J ACOUST SOC AM, V122, P467, DOI 10.1121/1.2741208 Hopkins K, 2011, J ACOUST SOC AM, V130, P334, DOI 10.1121/1.3585848 Hopkins K, 2010, INT J AUDIOL, V49, P940, DOI 10.3109/14992027.2010.512613 Lacher-Fougere S, 2005, J ACOUST SOC AM, V118, P2519, DOI 10.1121/1.2032747 Lacher-Fougere S, 1998, AUDIOLOGY, V37, P109 LANGHANS A, 1992, J ACOUST SOC AM, V91, P3456, DOI 10.1121/1.402834 Moore BCJ, 2012, J ACOUST SOC AM, V131, P1003, DOI 10.1121/1.3672808 Moore BCJ, 1996, J ACOUST SOC AM, V100, P2320, DOI 10.1121/1.417941 Moore BCJ, 2002, J ACOUST SOC AM, V111, P327, DOI 10.1121/1.1424871 Moore BCJ, 2012, INT J AUDIOL, V51, P715, DOI 10.3109/14992027.2012.690079 Ross B, 2007, J NEUROSCI, V27, P11172, DOI 10.1523/JNEUROSCI.1813-07.2007 Strelcyk O, 2009, J ACOUST SOC AM, V125, P3328, DOI 10.1121/1.3097469 Witton C, 2000, J ACOUST SOC AM, V108, P1826, DOI 10.1121/1.1310195 NR 20 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2012 VL 294 IS 1-2 BP 49 EP 54 DI 10.1016/j.heares.2012.09.007 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064PV UT WOS:000313088800006 PM 23041187 ER PT J AU Bielefeld, EC Hoglund, EM Feth, LL AF Bielefeld, Eric C. Hoglund, Evelyn M. Feth, Lawrence L. TI Noise-induced changes in cochlear compression in the rat as indexed by forward masking of the auditory brainstem response SO HEARING RESEARCH LA English DT Article ID BASILAR-MEMBRANE NONLINEARITY; TEMPORARY THRESHOLD SHIFTS; INDUCED HEARING-LOSS; OUTER HAIR-CELLS; BEHAVIORAL MEASURE; ACOUSTIC TRAUMA; EXPOSURE; DAMAGE; NERVE AB The current study was undertaken to investigate changes in forward masking patterns using on-frequency and off-frequency maskers of 7 and 10 kHz probes in the Sprague Dawley rat. Off-frequency forward masking growth functions have been shown in humans to be non-linear, while on-frequency functions behave linearly. The non-linear nature of the off-frequency functions is attributable to active processing from the outer hair cells, and was therefore expected to be sensitive to noise-induced cochlear damage. For the study, nine Sprague Dawley rats' auditory brainstem responses (ABRs) were recorded with and without forward maskers. Forward masker-induced changes in latency and amplitude of the initial positive peak of the rats' auditory brainstem responses were assessed with both off-frequency and on-frequency maskers. The rats were then exposed to a noise designed to induce 20 40 dB of permanent threshold shift. Twenty-one days after the noise exposure, the forward masking growth functions were measured to assess noise-induced changes in the off-frequency and on-frequency forward masking patterns. Pre-exposure results showed compressive non-linear masking effects of the off-frequency conditions on both latency and amplitude of the auditory brainstem response. The noise rendered the off-frequency forward masking patterns more linear, consistent with human behavioral findings. On- and off-frequency forward masking growth functions were calculated, and they displayed patterns consistent with human behavioral functions, both prior to noise and after the noise exposure. (C) 2012 Elsevier B.V. All rights reserved. C1 [Bielefeld, Eric C.; Hoglund, Evelyn M.; Feth, Lawrence L.] Ohio State Univ, Dept Speech & Hearing Sci, Columbus, OH 43220 USA. RP Bielefeld, EC (reprint author), Ohio State Univ, Dept Speech & Hearing Sci, 110 Pressey Hall,1070 Carmack Rd, Columbus, OH 43220 USA. EM bielefeld.6@osu.edu RI Bielefeld, Eric/D-2015-2012; Yin, Ming/E-4879-2012 FU Office of Naval Research [N000140911] FX The authors thank Megan Kobel, Anna Kiener, Marie Neel, and Joseph Hribar for their assistance with the development of the test conditions and with data collection. Research was supported by a grant from the Office of Naval Research #N000140911. CR Ahmad M, 2003, HEARING RES, V175, P82, DOI 10.1016/S0378-5955(02)00713-X BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Chen GD, 2009, HEARING RES, V254, P25, DOI 10.1016/j.heares.2009.04.005 Chen GD, 2003, HEARING RES, V177, P81, DOI 10.1016/S0378-5955(02)00802-X Don M, 1998, J ACOUST SOC AM, V104, P2280, DOI 10.1121/1.423741 Duan M L, 1996, Audiol Neurootol, V1, P328 Duan M L, 1996, Audiol Neurootol, V1, P309 Duan M L, 1996, Audiol Neurootol, V1, P320 GORGA MP, 1983, J ACOUST SOC AM, V73, P256, DOI 10.1121/1.388858 HAMERNIK RP, 1984, HEARING RES, V13, P229, DOI 10.1016/0378-5955(84)90077-7 Hamernik R.P., 1986, BASIC APPL ASPECTS N, P69 Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3 Howgate S, 2011, HEARING RES, V277, P78, DOI 10.1016/j.heares.2011.03.009 JEWETT DL, 1971, BRAIN, V94, P681, DOI 10.1093/brain/94.4.681 Lopez-Poveda EA, 2008, J ACOUST SOC AM, V123, P1544, DOI 10.1121/1.2835418 MOLLER AR, 1988, ELECTROEN CLIN NEURO, V71, P198, DOI 10.1016/0168-5597(88)90005-6 MOLLER AR, 1981, BRAIN RES, V207, P184 National Institute for Occupational Safety and Health, 2001, NAT I OCC SAF HLTH F National Institute on Deafness and Other Communication Disorders, 2008, QUICK STAT NEELY ST, 1983, HEARING RES, V9, P123, DOI 10.1016/0378-5955(83)90022-9 Niskar AS, 2001, PEDIATRICS, V108, P40, DOI 10.1542/peds.108.1.40 Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 OXENHAM AJ, 1995, J ACOUST SOC AM, V98, P1921, DOI 10.1121/1.413376 Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3666, DOI 10.1121/1.418327 Patuzzi R, 2002, AUDIOL NEURO-OTOL, V7, P17, DOI 10.1159/000046857 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 RYAN A, 1975, NATURE, V253, P44, DOI 10.1038/253044a0 WALTON JP, 1995, HEARING RES, V88, P19, DOI 10.1016/0378-5955(95)00093-J YAMANE H, 1995, ACTA OTO-LARYNGOL, P87 YATES GK, 1990, HEARING RES, V45, P203, DOI 10.1016/0378-5955(90)90121-5 NR 31 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2012 VL 294 IS 1-2 BP 64 EP 72 DI 10.1016/j.heares.2012.10.007 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064PV UT WOS:000313088800008 PM 23123219 ER PT J AU Buss, E Hall, JW Grose, JH AF Buss, Emily Hall, Joseph W., III Grose, John H. TI Effects of masker envelope irregularities on tone detection in narrowband and broadband noise maskers SO HEARING RESEARCH LA English DT Article ID COMODULATION MASKING RELEASE; AMPLITUDE-MODULATION; TEMPORAL INTEGRATION; INFORMATIONAL MASKING; FREQUENCY; ADAPTATION; TIME; DURATION; BANDWIDTH; MULTIPLE AB Introducing coherent masker envelope modulation to frequency regions neighboring the signal frequency can reduce detection thresholds for a pure-tone signal. Verhey and Ernst (2009) reported that irregular masker modulation conferred greater benefit than regular modulation when the masker was broadband, but that there was no difference when the masker was narrowband. The present study evaluated two possible explanations for this result: one based on modulation adaptation and the other based on the introduction of relatively long-duration modulation minima in the irregular masker modulation condition. The first experiment replicated the results of Verhey and Ernst (2009), but also included conditions in which a 12.5-ms signal was presented in a 12.5-ms modulation minimum, which was exempted from envelope jitter. The second experiment used a continuous masker and suspended jitter during epochs associated with either a 12.5- or 87.5-ms signal. No benefit of masker envelope irregularity before or after the signal was observed in either experiment. These findings are inconsistent with an explanation based on modulation adaptation, implicating instead the introduction of relatively long-duration modulation minima in the large masking release obtained for a long-duration signal in an irregularly modulated masker. (C) 2012 Elsevier B.V. All rights reserved. C1 [Buss, Emily; Hall, Joseph W., III; Grose, John H.] Univ N Carolina, Sch Med, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC 27599 USA. RP Buss, E (reprint author), Univ N Carolina, Sch Med, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC 27599 USA. EM ebuss@med.unc.edu FU NIH NIDCD [RO1-DC007391] FX This work was supported by NIH NIDCD RO1-DC007391. Detailed feedback on this report was provided by Brian Moore and two anonymous reviewers. CR ANSI, 2010, S362010 ANSI Bacon SP, 1997, J ACOUST SOC AM, V101, P1600, DOI 10.1121/1.418175 Bruckert L, 2006, J ACOUST SOC AM, V119, P3542, DOI 10.1121/1.2200696 Buss E, 2009, J ACOUST SOC AM, V126, P2455, DOI 10.1121/1.3224708 BUUS S, 1985, J ACOUST SOC AM, V78, P1958, DOI 10.1121/1.392652 Buus S, 1999, J ACOUST SOC AM, V105, P2466, DOI 10.1121/1.426859 Buus S, 1996, J ACOUST SOC AM, V99, P2288, DOI 10.1121/1.415416 CARLYON RP, 1989, HEARING RES, V42, P37, DOI 10.1016/0378-5955(89)90116-0 Dau T, 1997, J ACOUST SOC AM, V102, P2892, DOI 10.1121/1.420344 Dau T, 2005, AUDITORY SIGNAL PROCESSINGP: PHYSIOLOGY, PSYCHOACOUSTICS, AND MODELS, P335 Durlach NI, 2003, J ACOUST SOC AM, V114, P368, DOI 10.1121/1.1577562 GARNER WR, 1947, J EXP PSYCHOL, V37, P293, DOI 10.1037/h0055734 GERKEN GM, 1990, J ACOUST SOC AM, V88, P767, DOI 10.1121/1.399726 GROSE JH, 1989, J ACOUST SOC AM, V85, P1276, DOI 10.1121/1.397458 GROSE JH, 1993, J ACOUST SOC AM, V93, P2896, DOI 10.1121/1.405809 HICKS ML, 1995, J ACOUST SOC AM, V98, P2504, DOI 10.1121/1.413216 Kawashima T, 2009, J ACOUST SOC AM, V126, pEL123, DOI 10.1121/1.3230676 KAY RH, 1972, J PHYSIOL-LONDON, V225, P657 KIDD G, 1994, J ACOUST SOC AM, V95, P3475, DOI 10.1121/1.410023 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 MCFADDEN D, 1986, J ACOUST SOC AM, V80, P1658, DOI 10.1121/1.394277 MOORE BCJ, 1982, J ACOUST SOC AM, V71, P942, DOI 10.1121/1.387574 Moore BCJ, 2009, J ACOUST SOC AM, V125, P1075, DOI 10.1121/1.3056562 MOORE BCJ, 1988, J ACOUST SOC AM, V83, P1102, DOI 10.1121/1.396055 NEFF DL, 1986, J ACOUST SOC AM, V79, P1519, DOI 10.1121/1.393678 NEFF DL, 1995, J ACOUST SOC AM, V98, P1909, DOI 10.1121/1.414458 Richards VM, 1997, J ACOUST SOC AM, V102, P468, DOI 10.1121/1.419719 SCHOONEVELDT GP, 1989, J ACOUST SOC AM, V85, P273, DOI 10.1121/1.397734 TANSLEY BW, 1983, J ACOUST SOC AM, V74, P765, DOI 10.1121/1.389864 VANDENBRINK WAC, 1990, J ACOUST SOC AM, V88, P1703, DOI 10.1121/1.400245 Verhey JL, 2009, HEARING RES, V253, P97, DOI 10.1016/j.heares.2009.03.011 Verhey JL, 1999, J ACOUST SOC AM, V106, P2733, DOI 10.1121/1.428101 VIEMEISTER NF, 1991, J ACOUST SOC AM, V90, P858, DOI 10.1121/1.401953 Wojtczak M, 2005, J ACOUST SOC AM, V118, P3198, DOI 10.1121/1.2042970 Wojtczak M, 2003, J ACOUST SOC AM, V114, P991, DOI 10.1121/1.1593067 NR 35 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2012 VL 294 IS 1-2 BP 73 EP 81 DI 10.1016/j.heares.2012.10.006 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064PV UT WOS:000313088800009 PM 23117057 ER PT J AU Mahajan, Y McArthur, G AF Mahajan, Yatin McArthur, Genevieve TI Maturation of auditory event-related potentials across adolescence SO HEARING RESEARCH LA English DT Article ID LONG-LATENCY POTENTIALS; EVOKED-POTENTIALS; LANGUAGE IMPAIRMENT; DEVELOPMENTAL-CHANGES; BRAIN MATURATION; INDIVIDUAL-DIFFERENCES; COGNITIVE-DEVELOPMENT; LEARNING-PROBLEMS; NORMAL-CHILDREN; SPEECH STIMULI AB Adolescence is a time of great change in the brain in terms of structure and function. It is possible to track the development of neural function across adolescence using auditory event-related potentials (ERPs). We measured passive auditory ERPs to pure tones and consonant vowel (CV) syllables in 90 children and adolescents aged 10-18 years, as well as 10 adults. With one exception, the pattern of results were the same for tones and speech: Across adolescence, the P1 ERP peak decreased in size and latency, the N1 increased in size and decreased in latency, the P2 remained constant in size, and the N2 decreased in size but remained stable across adolescence. The exception was P2 latency, which increased for speech but remained stable for tones. Interesting step-like changes were observed for N1 latency for both tones and speech stimuli in 15- to 16-year-olds. These may stem from rapid hormonal changes that affect neurotransmitter activity of the ERP-generating neurons. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved. C1 [Mahajan, Yatin; McArthur, Genevieve] Macquarie Univ, ARC Ctr Excellence Cognit & Disorders, Dept Cognit Sci, N Ryde, NSW 2109, Australia. RP Mahajan, Y (reprint author), Macquarie Univ, ARC Ctr Excellence Cognit & Disorders, Dept Cognit Sci, N Ryde, NSW 2109, Australia. EM yatin.mahajan@mq.edu.au FU Macquarie Centre for Cognitive Science; Macquarie University Research Excellence (MQRES) FX This study was funded by Macquarie Centre for Cognitive Science post-graduate fund and supported by Macquarie University Research Excellence (MQRES) scholarship. CR Albrecht R, 2000, CLIN NEUROPHYSIOL, V111, P2268, DOI 10.1016/S1388-2457(00)00464-8 American Electroencephalographic Society, 1994, J CLIN NEUROPHYSIOL, V11, P111, DOI DOI 10.1097/00004691-199401000-00014 BENES FM, 1994, ARCH GEN PSYCHIAT, V51, P477 Bishop DVM, 2007, DEVELOPMENTAL SCI, V10, P576, DOI 10.1111/j.1467-7687.2007.00620.x Bishop DVM, 2005, CORTEX, V41, P327, DOI 10.1016/S0010-9452(08)70270-3 Bishop DVM, 2004, DEVELOPMENTAL SCI, V7, pF11, DOI 10.1111/j.1467-7687.2004.00356.x Bishop DVM, 2007, DEVELOPMENTAL SCI, V10, P565, DOI 10.1111/j.1467-7687.2007.00619.x Ceponiene R, 2009, BRAIN LANG, V110, P107, DOI 10.1016/j.bandl.2009.04.003 COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155 Courchesne E, 1990, EVENT RELATED BRAIN, P210 Cunningham J, 2000, EAR HEARING, V21, P554, DOI 10.1097/00003446-200012000-00003 Eggermont JJ, 2003, ACTA OTO-LARYNGOL, V123, P249, DOI 10.1080/0036554021000028098 ENOKI H, 1993, COGNITIVE BRAIN RES, V1, P161, DOI 10.1016/0926-6410(93)90023-X Fishman YI, 2000, J ACOUST SOC AM, V108, P247, DOI 10.1121/1.429461 FUCHIGAMI T, 1993, DEV MED CHILD NEUROL, V35, P230 Giedd JN, 1999, NAT NEUROSCI, V2, P861, DOI 10.1038/13158 Gilley PM, 2005, CLIN NEUROPHYSIOL, V116, P648, DOI 10.1016/j.clinph.2004.09.009 Gogtay N, 2004, P NATL ACAD SCI USA, V101, P8174, DOI 10.1073/pnas.0402680101 Gomot M., 1998, NEUROIMAGING CHILD N, P113 GOODIN DS, 1978, ELECTROEN CLIN NEURO, V44, P447, DOI 10.1016/0013-4694(78)90029-9 HUTTENLOCHER PR, 1979, BRAIN RES, V163, P195 JOHNSON R, 1989, PSYCHOPHYSIOLOGY, V26, P651, DOI 10.1111/j.1469-8986.1989.tb03167.x Johnstone SJ, 1996, INT J PSYCHOPHYSIOL, V24, P223, DOI 10.1016/S0167-8760(96)00065-7 Kaufman A. S., 1990, KAUFMAN BRIEF INTELL KENDRICK KM, 1979, SCIENCE, V204, P877, DOI 10.1126/science.220709 Key APF, 2005, DEV NEUROPSYCHOL, V27, P183, DOI 10.1207/s15326942dn2702_1 KNIGHT RT, 1988, ELECTROEN CLIN NEURO, V70, P499, DOI 10.1016/0013-4694(88)90148-4 KURTZBERG D, 1984, DEV MED CHILD NEUROL, V26, P466 LANG AH, 1995, EAR HEARING, V16, P118, DOI 10.1097/00003446-199502000-00009 LIEGEOISCHAUVEL C, 1994, ELECTROEN CLIN NEURO, V92, P204, DOI 10.1016/0168-5597(94)90064-7 Luck S.J., 2005, INTRO EVENT RELATED, P121 Mahajan Y, 2011, CLIN NEUROPHYSIOL, V122, P934, DOI 10.1016/j.clinph.2010.08.014 MARTIN L, 1988, ELECTROEN CLIN NEURO, V71, P375, DOI 10.1016/0168-5597(88)90040-8 McArthur G, 2009, DEVELOPMENTAL SCI, V12, P768, DOI 10.1111/j.1467-7687.2008.00804.x McArthur G, 2002, NEUROREPORT, V13, P1079, DOI 10.1097/00001756-200206120-00021 McPherson D.L., 1996, LATE POTENTIALS AUDI, P66 Moore JK, 2001, JARO, V2, P297, DOI 10.1007/s101620010052 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x Neurosoft Inc, 1999, SCAN US GUID Oades RD, 1997, PSYCHOPHYSIOLOGY, V34, P677, DOI 10.1111/j.1469-8986.1997.tb02143.x Pang EW, 2000, CLIN NEUROPHYSIOL, V111, P388, DOI 10.1016/S1388-2457(99)00259-X Paus T, 2005, TRENDS COGN SCI, V9, P60, DOI 10.1016/j.tics.2004.12.008 Ponton CW, 2000, CLIN NEUROPHYSIOL, V111, P220, DOI 10.1016/S1388-2457(99)00236-9 Ceponiene R, 2002, CLIN NEUROPHYSIOL, V113, P870, DOI 10.1016/S1388-2457(02)00078-0 SAR M, 1981, NATURE, V289, P500, DOI 10.1038/289500a0 SATTERFIELD JH, 1988, PSYCHOPHYSIOLOGY, V25, P591, DOI 10.1111/j.1469-8986.1988.tb01895.x SATTERFIELD JH, 1977, ELECTROEN CLIN NEURO, V43, P43, DOI 10.1016/0013-4694(77)90193-6 Scott S.K., 2003, CEREB CORTEX, V13, P1362 SEMLITSCH HV, 1986, PSYCHOPHYSIOLOGY, V23, P695, DOI 10.1111/j.1469-8986.1986.tb00696.x Sharma A, 1997, EVOKED POTENTIAL, V104, P540, DOI 10.1016/S0168-5597(97)00050-6 Sharma A, 2002, NEUROREPORT, V13, P1365, DOI 10.1097/00001756-200207190-00030 Sharma A, 2005, HEARING RES, V203, P134, DOI 10.1016/j.heares.2004.12.010 Sharma M, 2006, CLIN NEUROPHYSIOL, V117, P1130, DOI 10.1016/j.clinph.2006.02.001 Sinkkonen J., 2000, CLIN NEUROPHYSIOL, V110, P1388 Sussman E, 2008, HEARING RES, V236, P61, DOI 10.1016/j.heares.2007.12.001 TONNQUISTUHLEN I, 1995, ELECTROEN CLIN NEURO, V95, P34, DOI 10.1016/0013-4694(95)00044-Y TonnquistUhlen I, 1996, EAR HEARING, V17, P314, DOI 10.1097/00003446-199608000-00003 Trainor LJ, 2008, DEVELOPMENTAL PSYCHOPHYSIOLOGY: THEORY, SYSTEMS, AND METHODS, P69 VERKINDT C, 1995, EVOKED POTENTIAL, V96, P143, DOI 10.1016/0168-5597(94)00242-7 Whitford TJ, 2007, HUM BRAIN MAPP, V28, P228, DOI 10.1002/hbm.20273 Wible B, 2002, CLIN NEUROPHYSIOL, V113, P485, DOI 10.1016/S1388-2457(02)00017-2 Wunderlich JL, 2006, HEARING RES, V212, P212, DOI 10.1016/j.heares.2005.11.008 NR 62 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2012 VL 294 IS 1-2 BP 82 EP 94 DI 10.1016/j.heares.2012.10.005 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064PV UT WOS:000313088800010 PM 23103362 ER PT J AU Leger, AC Moore, BCJ Lorenzi, C AF Leger, Agnes C. Moore, Brian C. J. Lorenzi, Christian TI Abnormal speech processing in frequency regions where absolute thresholds are normal for listeners with high-frequency hearing loss SO HEARING RESEARCH LA English DT Article ID TEMPORAL FINE-STRUCTURE; IMPAIRED LISTENERS; STRUCTURE SENSITIVITY; INTELLIGIBILITY INDEX; RECEPTION THRESHOLD; FLUCTUATING NOISE; AGE; RECOGNITION; SENTENCES; PERCEPTION AB The ability to understand speech in quiet and in a steady noise was measured for 26 listeners with audiometric thresholds below 30 dB HL for frequencies up to 3 kHz and covering a wide range (0-80 dB HL) between 3 and 8 kHz. The stimulus components were restricted to the low (<= 1.5 kHz) and middle (1-3 kHz) frequency regions, where audiometric thresholds were classified clinically as normal or near-normal. Sensitivity to inter-aural phase was measured at 0.5 and 0.75 kHz and otoacoustic emission and brainstem responses were measured. For each frequency region, about half of the listeners with high-frequency hearing loss showed extremely poor intelligibility for speech in quiet and in noise. These deficits could not be accounted for by reduced audibility. Scores for speech in quiet were correlated with age, audiometric thresholds at low and at high frequencies, the amplitude of transient otoacoustic emissions in the mid-frequency region, but not with inter-aural phase discrimination. The results suggest that large speech deficits may be observed in regions of normal or near-normal hearing for hearing-impaired listeners. They also suggest that speech deficits may result from suprathreshold auditory deficits caused by outer hair-cell damage and by factors associated with aging. (C) 2012 Elsevier B.V. All rights reserved. C1 [Leger, Agnes C.; Lorenzi, Christian] Ecole Normale Super, Equipe Audit, Inst Etud Cognit, F-75005 Paris, France. [Leger, Agnes C.; Lorenzi, Christian] Univ Paris 05, Lab Psychol Percept, Paris, France. [Leger, Agnes C.; Lorenzi, Christian] CNRS, UMR 8158, Paris, France. [Moore, Brian C. J.] Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England. RP Leger, AC (reprint author), Ecole Normale Super, Equipe Audit, Inst Etud Cognit, 29 Rue Ulm, F-75005 Paris, France. EM agnes.leger@ens.fr RI Moore, Brian/I-5541-2012; Lorenzi, Christian/F-5310-2012 FU Royal Society [2009R3]; CIFRE grant from ANRT; Neurelec; MRC (UK) [G0701870]; HEARFIN Project from ANR FX This work was supported by a grant from the Royal Society (International joint Project, 2009R3). A.C. Leger was supported by a CIFRE grant from ANRT and Neurelec. B.C.J. Moore was supported by the MRC (UK, grant number G0701870). C. Lorenzi was supported by a grant (HEARFIN Project) from ANR. CR Badri R, 2011, J ACOUST SOC AM, V129, P852, DOI 10.1121/1.3523476 BAER T, 1994, J ACOUST SOC AM, V95, P2277, DOI 10.1121/1.408640 BAER T, 1993, J ACOUST SOC AM, V94, P1229, DOI 10.1121/1.408176 Dau T., 2009, J ACOUST SOC AM, V125, P3328 Desloge JG, 2010, J ACOUST SOC AM, V128, P342, DOI 10.1121/1.3436522 Dubno JR, 2002, J ACOUST SOC AM, V111, P2897, DOI 10.1121/1.1480421 Fullgrabe C., 2012, INT J AUDIOL, V51, P245 Goodman A., 1965, ASHA, V7 Grose JH, 2009, EAR HEARING, V30, P568, DOI 10.1097/AUD.0b013e3181ac128f Grose JH, 2010, EAR HEARING, V31, P755, DOI 10.1097/AUD.0b013e3181e627e7 Hopkins K, 2011, J ACOUST SOC AM, V130, P334, DOI 10.1121/1.3585848 Hopkins K, 2010, INT J AUDIOL, V49, P940, DOI 10.3109/14992027.2010.512613 Horwitz AR, 2002, J ACOUST SOC AM, V111, P409, DOI 10.1121/1.1427357 HUMES LE, 1987, J ACOUST SOC AM, V81, P765, DOI 10.1121/1.394845 Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 Leger AC, 2012, J ACOUST SOC AM, V131, P4114, DOI 10.1121/1.3699265 Leger AC, 2012, J ACOUST SOC AM, V131, P1502, DOI 10.1121/1.3665993 Lorenzi C, 2009, J ACOUST SOC AM, V125, P27, DOI 10.1121/1.2939125 Moore B. C. J., 2007, COCHLEAR HEARING LOS Moore BCJ, 2012, J ACOUST SOC AM, V131, P1003, DOI 10.1121/1.3672808 Moore BCJ, 1998, BRIT J AUDIOL, V32, P317, DOI 10.3109/03005364000000083 Moore BCJ, 2012, INT J AUDIOL, V51, P715, DOI 10.3109/14992027.2012.690079 Neher T, 2012, J ACOUST SOC AM, V131, P2561, DOI 10.1121/1.3689850 Papakonstantinou A, 2011, HEARING RES, V280, P30, DOI 10.1016/j.heares.2011.02.005 Rhebergen KS, 2006, J ACOUST SOC AM, V120, P3988, DOI 10.1121/1.2358008 Rhebergen KS, 2005, J ACOUST SOC AM, V117, P2181, DOI 10.1121/1.1861713 Santurette S, 2007, HEARING RES, V223, P29, DOI 10.1016/j.heares.2006.09.013 Schaette R, 2011, J NEUROSCI, V31, P13452, DOI 10.1523/JNEUROSCI.2156-11.2011 Schmiedt RA, 2010, SPRINGER HANDB AUDIT, V34, P9, DOI 10.1007/978-1-4419-0993-0_2 STARR A, 1991, BRAIN, V114, P1157, DOI 10.1093/brain/114.3.1157 STUDEBAKER GA, 1985, J SPEECH HEAR RES, V28, P455 Warren RM, 2004, J ACOUST SOC AM, V115, P1292, DOI 10.1121/1.1646404 Zeng FG, 2006, J SPEECH LANG HEAR R, V49, P367, DOI 10.1044/1092-4388(2006/029) Zeng FG, 2005, J NEUROPHYSIOL, V93, P3050, DOI 10.1152/jn.00985.2004 ZUREK PM, 1987, J ACOUST SOC AM, V82, P1548, DOI 10.1121/1.395145 NR 35 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2012 VL 294 IS 1-2 BP 95 EP 103 DI 10.1016/j.heares.2012.10.002 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064PV UT WOS:000313088800011 PM 23104012 ER PT J AU Dagnino-Subiabre, A Perez, MA Terreros, G Cheng, MY House, P Sapolsky, R AF Dagnino-Subiabre, Alexies Angel Perez, Miguel Terreros, Gonzalo Cheng, Michelle Y. House, Patrick Sapolsky, Robert TI Corticosterone treatment impairs auditory fear learning and the dendritic morphology of the rat inferior colliculus SO HEARING RESEARCH LA English DT Article ID CHRONIC MILD STRESS; MEDIAL GENICULATE-NUCLEUS; CELL-ADHESION MOLECULES; GLUCOCORTICOID-RECEPTORS; CONDITIONED FEAR; PYRAMIDAL NEURONS; INDUCED ATROPHY; PINEAL-GLAND; AMYGDALA; EXPRESSION AB Stress leads to secretion of the adrenal steroid hormone corticosterone (CORT). The aim of this study was to determine the effects of chronic CORT administration on auditory and visual fear conditioning. Male Sprague-Dawley rats received CORT (400 mg/ml) in their drinking water for 10 consecutive days; this treatment induces stress levels of serum CORT. CORT impaired fear conditioning (F-(1,F-28) = 11.52, p < 0.01) and extinction (F-(1,F-28) = 4.86, p < 0.05) of auditory fear learning, but did not affect visual fear conditioning. In addition, we analyzed the CORT effects on the neuronal morphology of the inferior colliculus (flat neurons, auditory mesencephalon, a key brain area for auditory processing) and superior colliculus (wide-field neurons, related to visual processing) by Golgi stain. CORT decreased dendritic arborization of inferior colliculus neurons by approximately 50%, but did not affect superior colliculus neurons. Thus, CORT had more deleterious effects on the auditory fear processing than the visual system in the brain. (C) 2012 Elsevier B.V. All rights reserved. C1 [Dagnino-Subiabre, Alexies; Angel Perez, Miguel; Terreros, Gonzalo] Univ Valparaiso, Lab Behav Neurobiol, Ctr Neurobiol & Brain Plast, Dept Physiol,Fac Sci, Valparaiso, Chile. [Cheng, Michelle Y.; House, Patrick; Sapolsky, Robert] Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA. [Cheng, Michelle Y.; House, Patrick; Sapolsky, Robert] Stanford Univ, Dept Neurol & Neurol Sci, Stanford, CA 94305 USA. [Cheng, Michelle Y.; House, Patrick; Sapolsky, Robert] Stanford Univ, Dept Neurosurg, Stanford, CA 94305 USA. [Dagnino-Subiabre, Alexies; Angel Perez, Miguel] Univ Catolica Norte, Fac Med, Coquimbo, Chile. RP Dagnino-Subiabre, A (reprint author), Univ Valparaiso, Lab Neurobiol & Conducta, Ctr Neurobiol & Plasticidad Cerebral, Dept Fisiol,Fac Ciencias, Gran Bretana 1111, Valparaiso, Chile. EM alexies.dagnino@uv.cl FU FONDECYT [1100413]; Anillo de Ciencia y Tecnologia [ADI-09] FX This work was supported by FONDECYT No 1100413 and Anillo de Ciencia y Tecnologia No ADI-09 grants (Dagnino-Subiabre). CR Aboitiz F, 2003, BEHAV BRAIN SCI, V26, P535, DOI 10.1017/S0140525X03000128 Ampuero E, 2010, NEUROSCIENCE, V169, P98, DOI 10.1016/j.neuroscience.2010.04.035 Baran SE, 2009, NEUROBIOL LEARN MEM, V91, P321, DOI 10.1016/j.nlm.2008.11.005 Bose M, 2010, SYNAPSE, V64, P97, DOI 10.1002/syn.20710 Bouton ME, 2008, J EXP PSYCHOL ANIM B, V34, P223, DOI 10.1037/0097-7403.34.2.223 Braun AA, 2011, PHARMACOL BIOCHEM BE, V97, P406, DOI 10.1016/j.pbb.2010.09.013 Burghardt NS, 2007, BIOL PSYCHIAT, V62, P1111, DOI 10.1016/j.biopsych.2006.11.023 Choi JS, 2010, LEARN MEMORY, V17, P139, DOI 10.1101/lm.1676610 Conrad CD, 2004, NEUROBIOL LEARN MEM, V81, P185, DOI 10.1016/j.nlm.2004.01.002 Cordero MI, 1998, BEHAV NEUROSCI, V112, P885, DOI 10.1037/0735-7044.112.4.885 Dagnino-Subiabre A, 2005, NEUROSCIENCE, V135, P1067, DOI 10.1016/j.neuroscience.2005.07.032 Dagnino-Subiabre A, 2009, BEHAV BRAIN RES, V203, P88, DOI 10.1016/j.bbr.2009.04.024 Dagnino-Subiabre A, 2006, J NEUROCHEM, V97, P1279, DOI 10.1111/j.1471-4159.2006.03787.x Dagnino-Subiabre A, 2006, BRAIN RES, V1086, P27, DOI 10.1016/j.brainres.2006.02.118 De Kloet ER, 1998, ENDOCR REV, V19, P269, DOI 10.1210/er.19.3.269 Doron NN, 1999, J COMP NEUROL, V412, P383 Gray TS, 1996, CRIT REV NEUROBIOL, V10, P155 Grippo AJ, 2005, PHYSIOL BEHAV, V84, P697, DOI 10.1016/j.physbeh.2005.02.011 Herman JP, 1996, CRIT REV NEUROBIOL, V10, P371 Herman JP, 2003, FRONT NEUROENDOCRIN, V24, P151, DOI 10.1016/j.yfrne.2003.07.001 Hilbig H, 2000, BRAIN RES BULL, V51, P255, DOI 10.1016/S0361-9230(99)00230-0 Hu H, 2010, NEUROSCIENCE, V169, P171, DOI 10.1016/j.neuroscience.2010.04.057 Jadavji NM, 2011, NEUROENDOCRINOLOGY, V94, P278, DOI 10.1159/000329988 Joels M, 2001, J NEUROENDOCRINOL, V13, P657, DOI 10.1046/j.1365-2826.2001.00688.x Kiss JZ, 2001, BRAIN RES REV, V36, P175, DOI 10.1016/S0165-0173(01)00093-5 Kraus KS, 2012, HEARING RES, V288, P34, DOI 10.1016/j.heares.2012.02.009 Kumar G, 2007, PSYCHONEUROENDOCRINO, V32, P834, DOI 10.1016/j.psyneuen.2007.05.011 Lakshminarasimhan H, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0030481 LEDOUX JE, 1990, J NEUROSCI, V10, P1043 LEDOUX JE, 1984, J NEUROSCI, V4, P683 Lin CH, 2009, J NEUROCHEM, V111, P777, DOI 10.1111/j.1471-4159.2009.06364.x Magarinos AM, 1998, BRAIN RES, V809, P314, DOI 10.1016/S0006-8993(98)00882-8 MAGARINOS AM, 1995, NEUROSCIENCE, V69, P83, DOI 10.1016/0306-4522(95)00256-I MALMIERCA MS, 1993, J COMP NEUROL, V333, P1, DOI 10.1002/cne.903330102 MALMIERCA MS, 1995, ANAT EMBRYOL, V191, P343, DOI 10.1007/BF00534687 Malmierca MS, 2011, HEARING RES, V274, P13, DOI 10.1016/j.heares.2010.06.011 Maren S, 2001, J NEUROSCI, V21, part. no. Marsh RA, 2002, J NEUROSCI, V22, P10449 Mazurek B, 2010, HEARING RES, V259, P55, DOI 10.1016/j.heares.2009.10.006 McDonald AJ, 1998, PROG NEUROBIOL, V55, P257, DOI 10.1016/S0301-0082(98)00003-3 McEwen B.S., 2004, EUR NEUROPSYCHOPHARM, V5, P497 McEwen BS, 2007, PHYSIOL REV, V87, P873, DOI 10.1152/physrev.00041.2006 McLaughin KJ, 2010, HIPPOCAMPUS, V20, P768, DOI 10.1002/hipo.20678 Meltser I, 2011, HEARING RES, V281, P47, DOI 10.1016/j.heares.2011.06.003 Meltser I, 2009, J NEUROTRAUM, V26, P1835, DOI 10.1089/neu.2008.0874 Miracle AD, 2006, NEUROBIOL LEARN MEM, V85, P213, DOI 10.1016/j.nlm.2005.10.005 Mitra R, 2008, P NATL ACAD SCI USA, V105, P5573, DOI 10.1073/pnas.0705615105 Monfils MH, 2009, SCIENCE, V324, P951, DOI 10.1126/science.1167975 Mueller D, 2009, PSYCHOPHARMACOLOGY, V204, P599, DOI 10.1007/s00213-009-1491-x Pare D, 2004, J NEUROPHYSIOL, V92, P1, DOI 10.1152/jn.00153.2004 Peruzzi D, 2000, NEUROSCIENCE, V101, P403, DOI 10.1016/S0306-4522(00)00382-1 Poremba A, 2001, J NEUROSCI, V21, P270 Reichardt LF, 2006, PHILOS T R SOC B, V361, P1545, DOI 10.1098/rstb.2006.1894 Sandi C, 2004, NAT REV NEUROSCI, V5, P917, DOI 10.1038/nrn1555 Selye H, 1936, NATURE, V138, P32, DOI 10.1038/138032a0 Shi CJ, 2001, J NEUROSCI, V21, P9844 Simoens VL, 2007, PSYCHOPHYSIOLOGY, V44, P30, DOI 10.1111/j.1469-8986.2006.00476.x Smith Sean M, 2006, Dialogues Clin Neurosci, V8, P383 Stavreva DA, 2009, NAT CELL BIOL, V11, P1093, DOI 10.1038/ncb1922 Sun T, 2010, PHARMACOL BIOCHEM BE, V95, P298, DOI 10.1016/j.pbb.2010.02.005 Tahera Y, 2006, J NEUROSCI RES, V83, P1066, DOI 10.1002/jnr.20795 TENCATE WJF, 1992, HEARING RES, V60, P199, DOI 10.1016/0378-5955(92)90021-E TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865 Ushijima K, 2006, BEHAV BRAIN RES, V173, P326, DOI 10.1016/j.bbr.2006.06.038 Vuong SM, 2010, BEHAV BRAIN RES, V208, P278, DOI 10.1016/j.bbr.2009.11.036 Vyas A, 2002, J NEUROSCI, V22, P6810 WATANABE Y, 1992, HIPPOCAMPUS, V2, P431, DOI 10.1002/hipo.450020410 Wellman CL, 2001, J NEUROBIOL, V49, P245, DOI 10.1002/neu.1079 ZUO J, 1995, HEARING RES, V87, P220, DOI 10.1016/0378-5955(95)00092-I NR 69 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2012 VL 294 IS 1-2 BP 104 EP 113 DI 10.1016/j.heares.2012.09.008 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064PV UT WOS:000313088800012 PM 23088831 ER PT J AU Francart, T McDermott, HJ AF Francart, Tom McDermott, Hugh J. TI Development of a loudness normalisation strategy for combined cochlear implant and acoustic stimulation SO HEARING RESEARCH LA English DT Article ID HEARING-LOSS; MODEL; PERCEPTION; SENSITIVITY; GAIN; AID AB Users of a cochlear implant together with a hearing aid in the non-implanted ear currently use devices that were developed separately and are often fitted separately. This results in very different growth of loudness with level in the two ears, potentially leading to decreased wearing comfort and suboptimal perception of interaural level differences. A loudness equalisation strategy, named 'SCORE bimodal', is proposed. It equalises loudness growth for the two modalities using existing models of loudness for acoustic and electric stimulation, and is suitable for implementation in wearable devices. Loudness balancing experiments were performed with six bimodal listeners to validate the strategy. In a first set of experiments, the function of each loudness model used was validated by balancing the loudness of four harmonic complexes of different bandwidths, ranging from 200 Hz to 1000 Hz, separately for each ear. Both the electric and acoustic loudness models predicted the data well. In a second set of experiments, binaural balancing was done for the same stimuli. It was found that SCORE significantly improved binaural balance. (C) 2012 Elsevier B.V. All rights reserved. C1 [Francart, Tom; McDermott, Hugh J.] Bion Inst, Melbourne, Vic 3002, Australia. [Francart, Tom] Katholieke Univ Leuven, ExpORL, Dept Neurosci, B-3000 Louvain, Belgium. [McDermott, Hugh J.] Univ Melbourne, Melbourne, Vic 3010, Australia. RP Francart, T (reprint author), Katholieke Univ Leuven, ExpORL, Dept Neurosci, Herestr 49,Bus 721, B-3000 Louvain, Belgium. EM tom.francart@med.kuleuven.be; hmcdermott@bionicsinstitute.org FU Fund for Scientific Research of the Flemish Government; Marie Curie International Outgoing Fellowship of the European Commission [PIOF-GA-2009-252730]; Victorian Government through its Operational Infrastructure Support Program FX We are grateful to our subjects, who inexhaustibly and cheerfully participated in numerous test sessions. We thank Ruth English for her help with the psychophysical testing, and Cochlear Ltd for financial support. Hamish Innes-Brown provided valuable feedback on an earlier version of the manuscript. We thank Brian Moore and one anonymous reviewer for their constructive remarks to improve the manuscript. Tom Francart was sponsored by a Post Doctoral Fellowship of the Fund for Scientific Research of the Flemish Government and a Marie Curie International Outgoing Fellowship of the European Commission, grant agreement number PIOF-GA-2009-252730. The Bionics Institute acknowledges the support it receives from the Victorian Government through its Operational Infrastructure Support Program. CR Akeroyd M, 2006, INT J AUDIOL, V45, P25, DOI 10.1080/14992020600782626 ANSI, 1997, S35 ANSI Bregman AS., 1990, AUDITORY SCENE ANAL BYRNE D, 1990, EAR HEARING, V11, P40, DOI 10.1097/00003446-199002000-00009 Ching T Y C, 2007, Trends Amplif, V11, P161, DOI 10.1177/1084713807304357 Ching TYC, 2004, EAR HEARING, V25, P9, DOI 10.1097/01.AUD.0000111261.84611.C8 Dillon H., 2001, HEARING AIDS Francart T, 2008, J NEUROSCI METH, V172, P283, DOI 10.1016/j.jneumeth.2008.04.020 Francart T, 2011, AUDIOL NEURO-OTOL, V16, P82, DOI 10.1159/000313329 Francart T., PLOS ONE IN PRESS Francart T, 2009, JARO-J ASSOC RES OTO, V10, P131, DOI 10.1007/s10162-008-0145-8 Francart T, 2008, AUDIOL NEURO-OTOL, V13, P309, DOI 10.1159/000124279 Glasberg BR, 2002, J AUDIO ENG SOC, V50, P331 JESTEADT W, 1980, PERCEPT PSYCHOPHYS, V28, P85, DOI 10.3758/BF03204321 Launer S, 2003, INT J AUDIOL, V42, P262, DOI 10.3109/14992020309078345 McDermott H, 2009, J NEURAL ENG, V6, DOI 10.1088/1741-2560/6/6/065007 MCDERMOTT HJ, 1992, J ACOUST SOC AM, V91, P3367, DOI 10.1121/1.402826 McDermott HJ, 2003, J ACOUST SOC AM, V114, P2190, DOI 10.1121/1.1612488 McKay CM, 2003, J ACOUST SOC AM, V113, P2054, DOI 10.1121/1.1558378 Moore BCJ, 1997, AUDIT NEUROSCI, V3, P289 Moore B.C., 2012, INTRO PSYCHOL HEARIN Moore BCJ, 2004, HEARING RES, V188, P70, DOI 10.1016/S0378-5955(03)00347-2 Moore BCJ, 2004, EAR HEARING, V25, P98, DOI 10.1097/01.AUD.0000120359.49711.D7 Moore BCJ, 1996, ACUSTICA, V82, P335 Swanson B, 2008, THESIS U MELBOURNE Vandali AE, 2000, EAR HEARING, V21, P608, DOI 10.1097/00003446-200012000-00008 Varsavsky A., IEEE T NEUR IN PRESS Zwicker E., 2007, PSYCHOACOUSTICS FACT NR 28 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2012 VL 294 IS 1-2 BP 114 EP 124 DI 10.1016/j.heares.2012.09.002 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064PV UT WOS:000313088800013 PM 23000118 ER PT J AU Newman, DL Fisher, LM Ohmen, J Parody, R Fong, CT Frisina, ST Mapes, F Eddins, DA Frisina, DR Frisina, RD Friedman, RA AF Newman, Dina L. Fisher, Laurel M. Ohmen, Jeffrey Parody, Robert Fong, Chin-To Frisina, Susan T. Mapes, Frances Eddins, David A. Frisina, D. Robert Frisina, Robert D. Friedman, Rick A. TI GRM7 variants associated with age-related hearing loss based on auditory perception SO HEARING RESEARCH LA English DT Article ID SPEECH RECOGNITION; OLDER-ADULTS; POSTMENOPAUSAL WOMEN; NOISE TEST; IMPAIRMENT; PRESBYCUSIS; THRESHOLDS; COGNITION; GENE; INTELLIGIBILITY AB Age-related hearing impairment (ARHI), or presbycusis, is a common condition of the elderly that results in significant communication difficulties in daily life. Clinically, it has been defined as a progressive loss of sensitivity to sound, starting at the high frequencies, inability to understand speech, lengthening of the minimum discernable temporal gap in sounds, and a decrease in the ability to filter out background noise. The causes of presbycusis are likely a combination of environmental and genetic factors. Previous research into the genetics of presbycusis has focused solely on hearing as measured by pure-tone thresholds. A few loci have been identified, based on a best ear pure-tone average phenotype, as having a likely role in susceptibility to this type of hearing loss; and GRM7 is the only gene that has achieved genome-wide significance. We examined the association of GRM7 variants identified from the previous study, which used an European cohort with Z-scores based on pure-tone thresholds, in a European-American population from Rochester, NY (N = 687), and used novel phenotypes of presbycusis. In the present study mixed modeling analyses were used to explore the relationship of GRM7 haplotype and SNP genotypes with various measures of auditory perception. Here we show that GRM7 alleles are associated primarily with peripheral measures of hearing loss, and particularly with speech detection in older adults. (C) 2012 Elsevier B.V. All rights reserved. C1 [Newman, Dina L.] Rochester Inst Technol, Thomas H Gosnell Sch Life Sci, Rochester, NY 14623 USA. [Fisher, Laurel M.] House Res Inst, Ctr Clin Studies, Los Angeles, CA 90057 USA. [Ohmen, Jeffrey; Friedman, Rick A.] House Res Inst, Cell Biol & Genet Div, Los Angeles, CA 90057 USA. [Parody, Robert] Rochester Inst Technol, John D Hromi Ctr Qual & Appl Stat, Rochester, NY 14623 USA. [Fong, Chin-To] Univ Rochester, Sch Med & Dent, Dept Pediat, Rochester, NY 14642 USA. [Fong, Chin-To] Univ Rochester, Sch Med & Dent, Dept Med Humanities, Rochester, NY 14642 USA. [Fong, Chin-To] Univ Rochester, Sch Med & Dent, Dept Biochem & Biophys, Rochester, NY 14642 USA. [Newman, Dina L.; Frisina, Susan T.; Mapes, Frances; Eddins, David A.; Frisina, D. Robert; Frisina, Robert D.] Rochester Inst Technol, Int Ctr Hearing & Speech Res, Natl Tech Inst Deaf, Rochester, NY 14623 USA. [Eddins, David A.; Frisina, D. Robert; Frisina, Robert D.] Univ S Florida, Global Ctr Hearing & Speech Res, Dept Commun Sci & Disorders, Tampa, FL 33620 USA. [Eddins, David A.; Frisina, D. Robert; Frisina, Robert D.] Univ S Florida, Global Ctr Hearing & Speech Res, Dept Chem & Biomed Engn, Tampa, FL 33620 USA. RP Newman, DL (reprint author), Rochester Inst Technol, Gosnell Sch Life Sci, 153 Lomb Mem Dr, Rochester, NY 14623 USA. EM dina.newman@rit.edu; LFisher@hei.org; JOhmen@hei.org; rjpeqa@rit.edu; ChinTo_Fong@urmc.rochester.edu; stfsusan@aol.com; fray.mapes@yahoo.com; deddins@usf.edu; frisina@usf.edu; rfrisina@usf.edu; RFriedman@hei.org FU National Institutes of Health [NIA: P01-AG009524, K01-AG026394, NIDCD: R01-DC010215]; Seaver Foundation; Schwartz Foundation (House Ear Institute) FX The authors wish to express their gratitude to all the volunteers who participated in the study. Gregory Warnes performed the calculation of SII; Karissa Raish, Dawn Mugrage and numerous undergraduate students at RIT assisted with DNA extraction and archiving of samples; and Elizabeth Hickman provided database support. This work was supported by grants from the National Institutes of Health (NIA: P01-AG009524 and K01-AG026394; NIDCD: R01-DC010215), the Seaver Foundation and the Schwartz Foundation (House Ear Institute). CR Acoustical Society of America, 1998, S351997 ANSI AC SOC Birren J E, 1991, Nebr Symp Motiv, V39, P1 Christensen K, 2001, J AM GERIATR SOC, V49, P1512, DOI 10.1046/j.1532-5415.2001.4911245.x Cruickshanks KJ, 2010, SPRINGER HANDB AUDIT, V34, P259, DOI 10.1007/978-1-4419-0993-0_9 Dalstra JAA, 2005, INT J EPIDEMIOL, V34, P316, DOI 10.1093/ije/dyh386 DeStefano AL, 2003, ARCH OTOLARYNGOL, V129, P285 Dubno JR, 1997, J SPEECH LANG HEAR R, V40, P444 Fitzgibbons P J, 1996, J Am Acad Audiol, V7, P183 Fransen E, 2004, EAR HEARING, V25, P133, DOI 10.1097/01.AUD.0000120362.69077.0B Friedman RA, 2009, HUM MOL GENET, V18, P785, DOI 10.1093/hmg/ddn402 Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3 Frisina ST, 2006, HEARING RES, V211, P103, DOI 10.1016/j.heares.2005.09.002 Garringer HJ, 2006, ARCH OTOLARYNGOL, V132, P506, DOI 10.1001/archotol.132.5.506 Gates GA, 1999, ARCH OTOLARYNGOL, V125, P654 Gordon-Salant S, 2001, J SPEECH LANG HEAR R, V44, P709, DOI 10.1044/1092-4388(2001/056) Guimaraes P, 2006, P NATL ACAD SCI USA, V103, P14246, DOI 10.1073/pnas.0606891103 Harrell Jr FE, 2010, REGRESSION MODELING Helfer KS, 2009, J AM ACAD AUDIOL, V20, P264, DOI 10.3766/jaaa.20.4.6 Hogan A, 2009, J AGING HEALTH, V21, P1098, DOI 10.1177/0898264309347821 Hox J., 2010, MULTILEVEL ANAL TECH Humes LE, 2010, SPRINGER HANDB AUDIT, V34, P211, DOI 10.1007/978-1-4419-0993-0_8 Huyghe JR, 2008, AM J HUM GENET, V83, P401, DOI 10.1016/j.ajhg.2008.08.002 Karlsson KK, 1997, EAR HEARING, V18, P114, DOI 10.1097/00003446-199704000-00003 Kilicdag EB, 2004, AM J OBSTET GYNECOL, V190, P77, DOI 10.1016/j.ajpg.2003.06.001 Kim SH, 2002, OBSTET GYNECOL, V99, P726, DOI 10.1016/S0029-7844(02)01963-4 Lin FR, 2011, J GERONTOL A-BIOL, V66, P1131, DOI 10.1093/gerona/glr115 Lin FR, 2011, NEUROPSYCHOLOGY, V25, P763, DOI 10.1037/a0024238 Mazelova J, 2003, EXP GERONTOL, V38, P87, DOI 10.1016/S0531-5565(02)00155-9 NILSSON M, 1994, J ACOUST SOC AM, V95, P1085, DOI 10.1121/1.408469 Park DC, 2009, ANNU REV PSYCHOL, V60, P173, DOI 10.1146/annurev.psych.59.103006.093656 Parmet Sharon, 2007, JAMA, V298, P130, DOI 10.1001/jama.298.1.130 Pichora-Fuller MK, 2007, HEARING RES, V223, P114, DOI 10.1016/j.heares.2006.10.009 Pichora-Fuller MK, 2003, INT J AUDIOL, V42, pS11 Price K, 2009, HEARING RES, V252, P29, DOI 10.1016/j.heares.2009.02.010 Pujol R, 1990, Acta Otolaryngol Suppl, V476, P32 Rodriguez S, 2009, AM J EPIDEMIOL, V169, P505, DOI 10.1093/aje/kwn359 SCHMIEDT RA, 2010, AGING AUDITORY SYSTE, P31 Schneider BA, 2010, SPRINGER HANDB AUDIT, V34, P167, DOI 10.1007/978-1-4419-0993-0_7 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 Schuknecht HF, 1993, PATHOLOGY EAR SCHUKNECHT HF, 1964, ARCHIV OTOLARYNGOL, V80, P369 SCHUKNECHT H F, 1953, Trans Am Acad Ophthalmol Otolaryngol, V57, P366 Singer J. D., 2003, APPL LONGITUDINAL DA Snell KB, 1997, J ACOUST SOC AM, V101, P2214, DOI 10.1121/1.418205 Soli SD, 2008, INT J AUDIOL, V47, P356, DOI 10.1080/14992020801895136 Stephens M, 2001, AM J HUM GENET, V68, P978, DOI 10.1086/319501 Tadros SF, 2005, HEARING RES, V209, P10, DOI 10.1016/j.heares.2005.05.009 Unal M, 2005, LARYNGOSCOPE, V115, P2238, DOI 10.1097/01.mlg.0000183694.10583.12 Van Eyken E, 2006, HUM MUTAT, V27, P1007, DOI 10.1002/humu.20375 Van Eyken E, 2007, J MED GENET, V44, DOI 10.1136/jmg.2007.049205 Van Laer L, 2008, HUM MOL GENET, V17, P159, DOI 10.1093/hmg/ddm292 Van Laer L, 2010, EUR J HUM GENET, V18, P685, DOI 10.1038/ejhg.2009.234 Vermiglio AJ, 2008, INT J AUDIOL, V47, P386, DOI 10.1080/14992020801908251 West B. T., 2007, LINEAR MIXED MODELS Wiley TL, 2008, J AM ACAD AUDIOL, V19, P281, DOI 10.3766/jaaa.19.4.2 Wingfield A, 2007, J GERONTOL A-BIOL, V62, P1294 NR 56 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2012 VL 294 IS 1-2 BP 125 EP 132 DI 10.1016/j.heares.2012.08.016 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064PV UT WOS:000313088800014 PM 23102807 ER PT J AU Selezneva, E Gorkin, A Mylius, J Noesselt, T Scheich, H Brosch, M AF Selezneva, Elena Gorkin, Alexander Mylius, Judith Noesselt, Toemme Scheich, Henning Brosch, Michael TI Reaction times reflect subjective auditory perception of tone sequences in macaque monkeys SO HEARING RESEARCH LA English DT Article ID STARLINGS STURNUS-VULGARIS; STREAM SEGREGATION; SCENE ANALYSIS; VISUAL-CORTEX; ORGANIZATION; RIVALRY; MOTION AB Perceptually ambiguous stimuli are useful for testing psychological and neuronal models of perceptual organization, e.g. for studying brain processes that underlie sequential segregation and integration. This is because the same stimuli may give rise to different subjective experiences. For humans, a tone sequence that alternates between a low-frequency and a high-frequency tone is perceptually bistable, and can be perceived as one or two streams. In the current study we present a new method based on response times (RTs) which allows identification ambiguous and unambiguous stimuli for subjects who cannot verbally report their subjective experience. We required two macaque monkeys (macaca fascicularis) to detect the termination of a sequence of light flashes which were either presented alone, or synchronized in different ways with a sequence of alternating low and high tones. We found that the monkeys responded faster to the termination of the flash sequence when the tone sequence terminated shortly before the flash sequence and thus predicted the termination of the flash sequence. This RT gain depended on the frequency separation of the tones. RT gains were largest when the frequency separation was small and the tones were presumably heard mainly as one stream. RT gains were smallest when the frequency separation was large and the tones were presumably mainly heard as two streams. RT gain was of intermediate size for intermediate frequency separations. Similar results were obtained from human subjects. We conclude that the observed RT gains reflect the perceptual organization of the tone sequence, and that tone sequences with an intermediate frequency separation, as for humans, are perceptually ambiguous for monkeys. (C) 2012 Elsevier B.V. All rights reserved. C1 [Selezneva, Elena] Leibniz Inst Neurobiol, Special Lab Primate Neurobiol, D-39118 Magdeburg, Germany. [Gorkin, Alexander] Russian Acad Sci, Inst Psychol, Moscow 129366, Russia. [Noesselt, Toemme] Otto Von Guericke Univ, Inst Psychol 2, D-39120 Magdeburg, Germany. RP Selezneva, E (reprint author), Leibniz Inst Neurobiol, Special Lab Primate Neurobiol, Brenneckestr 6, D-39118 Magdeburg, Germany. EM Elena.Selezneva@lin-magdeburg.de FU Deutsche Forschungsgemeinschaft [SFB TR 31, SFB 779] FX We thank C. Bucks for assistance in animal care, C. Micheyl and A. Brechmann for comments on earlier versions of this manuscript, and J. Lovell for improving the English. Supported by the Deutsche Forschungsgemeinschaft (SFB TR 31, SFB 779). CR Bee MA, 2004, J NEUROPHYSIOL, V92, P1088, DOI 10.1152/jn.00884.2003 Benney KS, 2000, J COMP PSYCHOL, V114, P174, DOI 10.1037//0735-7036.114.2.174 Bolognini N, 2005, EXP BRAIN RES, V160, P273, DOI 10.1007/s00221-004-2005-z Bregman AS., 1990, AUDITORY SCENE ANAL BRITTEN KH, 1992, J NEUROSCI, V12, P4745 Brosch M, 2004, COGNITION, V91, P259, DOI 10.1016/j.cognition.2003.09.005 Denham SL, 2006, J PHYSIOLOGY-PARIS, V100, P154, DOI 10.1016/j.jphysparis.2006.09.012 Fay RR, 1998, HEARING RES, V120, P69, DOI 10.1016/S0378-5955(98)00058-6 Fishman YI, 2001, HEARING RES, V151, P167, DOI 10.1016/S0378-5955(00)00224-0 Foxton JM, 2010, COGNITION, V115, P71, DOI 10.1016/j.cognition.2009.11.009 Frassinetti F, 2002, EXP BRAIN RES, V147, P332, DOI 10.1007/s00221-002-1262-y Green D. M., 1966, SIGNAL DETECTION THE Handel S, 2006, PERCEPTUAL COHERENCE Hulse SH, 1997, J COMP PSYCHOL, V111, P3, DOI 10.1037/0735-7036.111.1.3 Izumi A, 2002, COGNITION, V82, pB113, DOI 10.1016/S0010-0277(01)00161-5 Leopold DA, 1996, NATURE, V379, P549, DOI 10.1038/379549a0 LOGOTHETIS NK, 1990, VISION RES, V30, P1409, DOI 10.1016/0042-6989(90)90022-D MacDougall-Shackleton SA, 1998, J ACOUST SOC AM, V103, P3581, DOI 10.1121/1.423063 Marozeau J, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011297 McDonald JJ, 2000, NATURE, V407, P906, DOI 10.1038/35038085 Merlo JL, 2010, AM J PSYCHOL, V123, P413 Micheyl C, 2005, NEURON, V48, P139, DOI 10.1016/j.neuron.2005.08.039 Micheyl C, 2007, HEARING RES, V229, P116, DOI 10.1016/j.heares.2007.01.007 MIEZIN FM, 1981, VISION RES, V21, P177, DOI 10.1016/0042-6989(81)90111-5 Moore BCJ, 2012, PHILOS T R SOC B, V367, P919, DOI 10.1098/rstb.2011.0355 OLEARY A, 1984, PERCEPT PSYCHOPHYS, V35, P565, DOI 10.3758/BF03205954 Pressnitzer D, 2006, CURR BIOL, V16, P1351, DOI 10.1016/j.cub.2006.05.054 Rahne T, 2008, BRAIN RES, V1220, P118, DOI 10.1016/j.brainres.2007.08.011 Rossi S, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001702 Sakata S, 2004, EXP BRAIN RES, V159, P409, DOI 10.1007/s00221-004-1962-6 Schroeder CE, 2009, TRENDS NEUROSCI, V32, P9, DOI 10.1016/j.tins.2008.09.012 Spence C., 2007, Acoustical Science and Technology, V28, DOI 10.1250/ast.28.61 van Noorden L. P. A. S., 1975, THESIS EINDHOVEN U T Vroomen J, 2010, ATTEN PERCEPT PSYCHO, V72, P871, DOI 10.3758/APP.72.4.871 Wilke M, 2006, P NATL ACAD SCI USA, V103, P17507, DOI 10.1073/pnas.0604673103 NR 35 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2012 VL 294 IS 1-2 BP 133 EP 142 DI 10.1016/j.heares.2012.08.014 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064PV UT WOS:000313088800015 PM 22990003 ER PT J AU Rocha-Muniz, CN Befi-Lopes, DM Schochat, E AF Rocha-Muniz, Caroline N. Befi-Lopes, Debora M. Schochat, Eliane TI Investigation of auditory processing disorder and language impairment using the speech-evoked auditory brainstem response SO HEARING RESEARCH LA English DT Article ID FREQUENCY DISCRIMINATION; DEVELOPMENTAL APHASIA; LEARNING-PROBLEMS; STOP CONSONANTS; GAP-DETECTION; CHILDREN; PERCEPTION; DEFICITS; SOUNDS; REPRESENTATION AB This study investigated whether there are differences in the Speech-Evoked Auditory Brainstem Response among children with Typical Development (TD), (Central) Auditory Processing Disorder (C) APD, and Language Impairment (LI). The speech-evoked Auditory Brainstem Response was tested in 57 children (ages 6-12). The children were placed into three groups: TD (n = 18), (C)APD (n = 18) and LI (n = 21). Speech-evoked ABR were elicited using the five-formant syllable/da/. Three dimensions were defined for analysis, including timing, harmonics, and pitch. A comparative analysis of the responses between the typical development children and children with (C)APD and LI revealed abnormal encoding of the speech acoustic features that are characteristics of speech perception in children with (C)APD and LI, although the two groups differed in their abnormalities. While the children with (C)APD might had a greater difficulty distinguishing stimuli based on timing cues, the children with LI had the additional difficulty of distinguishing speech harmonics, which are important to the identification of speech sounds. These data suggested that an inefficient representation of crucial components of speech sounds may contribute to the difficulties with language processing found in children with LI. Furthermore, these findings may indicate that the neural processes mediated by the auditory brainstem differ among children with auditory processing and speech-language disorders. (C) 2012 Elsevier B.V. All rights reserved. C1 [Rocha-Muniz, Caroline N.; Befi-Lopes, Debora M.; Schochat, Eliane] Univ Sao Paulo, Sch Med USP, Sao Paulo, Brazil. RP Rocha-Muniz, CN (reprint author), 58 Evaristo da Silva, BR-06186020 Osasco, SP, Brazil. EM carolrocha@usp.br RI Befi-Lopes, Debora/C-8459-2012; Rocha-Muniz, Caroline/H-9358-2012 FU Sao Paulo Research Foundation - FAPESP FX We would like to thank all the study participants. The author would like to give special thanks to Nina Kraus and Erika Skoe for providing us the Mat lab Analysis Program (Brainstem Toolbox). This study was supported by Sao Paulo Research Foundation - FAPESP. CR Abrams DA, 2006, J NEUROSCI, V26, P11131, DOI 10.1523/JNEUROSCI.2744-06.2006 American Speech-Language-Hearing Association Working Group on Auditory Processing Disorder (ASHA), 2005, CENTR AUD PROC Andrade C. R. F., 2004, ABFW TESTE LINGUAGEM Araujo K., 2007, REV SOC BRASILEIRA F, V12, P263 GATHERCOLE SE, 1990, J MEM LANG, V29, P336, DOI 10.1016/0749-596X(90)90004-J Banai K, 2007, INT J AUDIOL, V46, P524, DOI 10.1080/14992020701383035 Banai K, 2005, J NEUROSCI, V25, P9850, DOI 10.1523/JNEUROSCI.2373-05.2005 Banai K, 2009, CEREB CORTEX, V19, P2699, DOI 10.1093/cercor/bhp024 Banai K, 2008, CURRENT CONTROVERSIE, P269 Basu M, 2009, DEVELOPMENTAL SCI, V13, P77 Bellis T. J., 2002, BRAIN CANT HEAR UNRA Benasich AA, 1996, INFANT BEHAV DEV, V19, P339, DOI 10.1016/S0163-6383(96)90033-8 Benasich AA, 2002, DEV PSYCHOBIOL, V40, P278, DOI 10.1002/dev.10032 Benasich AA, 2002, BEHAV BRAIN RES, V136, P31, DOI 10.1016/S0166-4328(02)00098-0 Billiet CR, 2011, J SPEECH LANG HEAR R, V54, P228, DOI 10.1044/1092-4388(2010/09-0239) Bio-logic S.C, 2005, AUDITORY EVOKED POTE Bishop DVM, 1999, J SPEECH LANG HEAR R, V42, P1295 Bishop DVM, 1996, J CHILD PSYCHOL PSYC, V37, P391, DOI 10.1111/j.1469-7610.1996.tb01420.x Chandrasekaran B, 2010, PSYCHOPHYSIOLOGY, V47, P236, DOI 10.1111/j.1469-8986.2009.00928.x Chermak G, 1997, CENTRAL AUDITORY PRO Chou YM, 1998, J QUAL TECHNOL, V30, P133 Cohen J., 1977, STAT POWER ANAL BEHA Cruttenden Alan, 1997, INTONATION, V2nd Cunningham J, 2001, CLIN NEUROPHYSIOL, V112, P758, DOI 10.1016/S1388-2457(01)00465-5 Dawes P, 2008, INT J PEDIATR OTORHI, V72, P483, DOI 10.1016/j.ijporl.2007.12.007 Dawes P, 2009, INT J LANG COMM DIS, V44, P440, DOI 10.1080/13682820902929073 Dhar S, 2009, CLIN NEUROPHYSIOL, V120, P959, DOI 10.1016/j.clinph.2009.02.172 Duarte W.F, 1999, MATRIZED PROGR COLOR Farmer ME, 1995, PSYCHON B REV, V2, P460, DOI 10.3758/BF03210983 Ferguson MA, 2011, J SPEECH LANG HEAR R, V54, P211, DOI 10.1044/1092-4388(2010/09-0167) Gibbs S, 2004, ED PSYCHOL, V24, P13, DOI 10.1080/0144341032000146412 Glascoe FP, 2000, CHILD CARE HLTH DEV, V26, P137, DOI 10.1046/j.1365-2214.2000.00173.x Gorga M, 1985, AUDITORY BRAINSTEM R, P49 Hall J. W., 2007, NEW HDB AUDITORY EVO Helzer JR, 1996, PERCEPT MOTOR SKILL, V83, P1171 Hickok G, 2007, NAT REV NEUROSCI, V8, P393, DOI 10.1038/nrn2113 Hill PR, 2005, J SPEECH LANG HEAR R, V48, P1136, DOI 10.1044/1092-4388(2005/080) Hood L. J., 1998, CLIN APPL AUDITORY B Hornickel J, 2009, AUDIOL NEURO-OTOL, V14, P198, DOI 10.1159/000188533 Hornickel J, 2009, P NATL ACAD SCI USA, V106, P13022, DOI 10.1073/pnas.0901123106 Hresko W. P., 1999, TEST EARLY LANGUAGE Jasper H. H., 1958, ELECTROENCEPHALOGRAP, V10, P371, DOI DOI 10.1016/0013-4694(58)90053-1 Jerger J, 2002, AUDIOLOGY TODAY, V14 Johnson KL, 2007, J COGNITIVE NEUROSCI, V19, P376, DOI 10.1162/jocn.2007.19.3.376 Johnson KL, 2005, EAR HEARING, V26, P424, DOI 10.1097/01.aud.0000179687.71662.6e Johnson KL, 2008, J NEUROSCI, V28, P4000, DOI 10.1523/JNEUROSCI.0012-08.2008 Karawani H, 2010, INT J AUDIOL, V49, P844, DOI 10.3109/14992027.2010.495083 KATZ J, 1968, J SPEECH HEAR DISORD, V33, P132 King C, 2002, NEUROSCI LETT, V319, P111, DOI 10.1016/S0304-3940(01)02556-3 KLATT DH, 1980, J ACOUST SOC AM, V67, P971, DOI 10.1121/1.383940 Kraus N, 2007, CURR DIR PSYCHOL SCI, V16, P105, DOI 10.1111/j.1467-8721.2007.00485.x Krishnan A, 2010, BRAIN RES, V1313, P124, DOI 10.1016/j.brainres.2009.11.061 Krishnan A, 2002, HEARING RES, V166, P192, DOI 10.1016/S0378-5955(02)00327-1 Krizman J, 2010, AUDIOL NEURO-OTOL, V15, P332, DOI 10.1159/000289572 Leonard L. B., 1998, CHILDREN SPECIFIC LA Liu LF, 2006, J NEUROPHYSIOL, V95, P1926, DOI 10.1152/jn.00497.2005 INAGAKI M, 1987, BRAIN DEV-JPN, V9, P597 LOWE AD, 1965, J SPEECH HEAR RES, V8, P313 Marchman VA, 2002, J SPEECH LANG HEAR R, V45, P983, DOI 10.1044/1092-4388(2002/080) McArthur GM, 2004, COGN NEUROPSYCHOL, V21, P79, DOI 10.1080/02643290342000087 McArthur GM, 2004, J SPEECH LANG HEAR R, V47, P527, DOI 10.1044/1092-4388(2004/041) Mengler ED, 2005, DYSLEXIA, V11, P155, DOI 10.1002/dys.302 Miller CA, 2011, LANG SPEECH HEAR SER, V42, P309, DOI 10.1044/0161-1461(2011/10-0040) Miller CA, 2011, J COMMUN DISORD, V44, P745, DOI 10.1016/j.jcomdis.2011.04.001 Moller AR, 1999, EEG CL N SU, P27 Morselli A., 2003, THESIS U SAO PAULO Musacchia G, 2007, P NATL ACAD SCI USA, V104, P15894, DOI 10.1073/pnas.0701498104 Musiek F, 2007, HDB CENTRAL AUDITORY, VI MUSIEK FE, 1991, AM J OTOL, V12, P109 Musiek F E, 1994, J Am Acad Audiol, V5, P265 O'Neill DK, 2007, J SPEECH LANG HEAR R, V50, P214, DOI 10.1044/1092-4388(2007/017) Phillips D P, 1999, J Am Acad Audiol, V10, P343 Phillips DP, 1998, J ACOUST SOC AM, V103, P2064, DOI 10.1121/1.421353 Phillips DP, 2004, PERCEPTION, V33, P371, DOI 10.1068/p5116 Ponton CW, 2000, CLIN NEUROPHYSIOL, V111, P220, DOI 10.1016/S1388-2457(99)00236-9 Raven J. C., 1986, RAVENS PROGR MATRICE Raven JC, 2002, COLOURED PROGR MATRI Rintelmann W., 1990, HEARING ASSESSMENT, P549 Russo N, 2004, CLIN NEUROPHYSIOL, V115, P2021, DOI 10.1016/j.clinph.2004.04.003 Russo NM, 2005, BEHAV BRAIN RES, V156, P95, DOI 10.1016/j.bbr.2004.05.012 Shinn-Cunningham Barbara G, 2008, Trends Amplif, V12, P283, DOI 10.1177/1084713808325306 Skoe E, 2010, EAR HEARING, V31, P302, DOI 10.1097/AUD.0b013e3181cdb272 Song JH, 2006, AUDIOL NEURO-OTOL, V11, P233, DOI 10.1159/000093058 Starr A., 1988, HDB ELECTROENCEPHALO, V3, P97 Strauss E., 2006, COMPENDIUM NEUROPSYC SUSSMAN JE, 1993, J SPEECH HEAR RES, V36, P1286 TALLAL P, 1974, NEUROPSYCHOLOGIA, V12, P83, DOI 10.1016/0028-3932(74)90030-X TALLAL P, 1973, NATURE, V241, P468, DOI 10.1038/241468a0 TALLAL P, 1980, BRAIN LANG, V9, P182, DOI 10.1016/0093-934X(80)90139-X TALLAL P, 1975, NEUROPSYCHOLOGIA, V13, P69, DOI 10.1016/0028-3932(75)90049-4 Tallal P, 2000, P NATL ACAD SCI USA, V97, P2402, DOI 10.1073/pnas.97.6.2402 Tallal P, 1997, FOUNDATIONS OF READING ACQUISITION AND DYSLEXIA, P49 TALLAL P, 1981, J ACOUST SOC AM, V69, P568, DOI 10.1121/1.385431 Tomblin B, 1995, J SPEECH HEAR RES, V38, P387 Tomblin JB, 1997, J SPEECH LANG HEAR R, V40, P1245 Wible B, 2004, BIOL PSYCHOL, V67, P299, DOI 10.1016/j.biopsycho.2004.02.002 Wible B, 2005, BRAIN, V128, P417, DOI 10.1093/brain/awh367 Wong PCM, 2007, NAT NEUROSCI, V10, P420, DOI 10.1038/nn1872 Wright BA, 1997, NATURE, V387, P176, DOI 10.1038/387176a0 Xiao ZJ, 2002, NAT NEUROSCI, V5, P57, DOI 10.1038/nn786 Xu Y., 2005, COGNITIVE BRAIN RES, V8, P124 Zatorre RJ, 2008, PHILOS T R SOC B, V363, P1087, DOI 10.1098/rstb.2007.2161 NR 102 TC 6 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2012 VL 294 IS 1-2 BP 143 EP 152 DI 10.1016/j.heares.2012.08.008 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064PV UT WOS:000313088800016 PM 22974503 ER PT J AU Vlasits, AL Simon, JA Raible, DW Rubel, EW Owens, KN AF Vlasits, Anna L. Simon, Julian A. Raible, David W. Rubel, Edwin W. Owens, Kelly N. TI Screen of FDA-approved drug library reveals compounds that protect hair cells from aminoglycosides and cisplatin SO HEARING RESEARCH LA English DT Article ID ZEBRAFISH DANIO-RERIO; LATERAL-LINE SYSTEM; GUINEA-PIG COCHLEA; MYOSIN VIIA; MECHANICAL TRANSDUCTION; INDUCED OTOTOXICITY; INNER-EAR; IN-VITRO; DEATH; MOUSE AB Loss of mechanosensory hair cells in the inner ear accounts for many hearing loss and balance disorders. Several beneficial pharmaceutical drugs cause hair cell death as a side effect. These include aminoglycoside antibiotics, such as neomycin, kanamycin and gentamicin, and several cancer chemotherapy drugs, such as cisplatin. Discovering new compounds that protect mammalian hair cells from toxic insults is experimentally difficult because of the inaccessibility of the inner ear. We used the zebrafish lateral line sensory system as an in vivo screening platform to survey a library of FDA-approved pharmaceuticals for compounds that protect hair cells from neomycin, gentamicin, kanamycin and cisplatin. Ten compounds were identified that provide protection from at least two of the four toxins. The resulting compounds fall into several drug classes, including serotonin and dopamine-modulating drugs, adrenergic receptor ligands, and estrogen receptor modulators. The protective compounds show different effects against the different toxins, supporting the idea that each toxin causes hair cell death by distinct, but partially overlapping, mechanisms. Furthermore, some compounds from the same drug classes had different protective properties, suggesting that they might not prevent hair cell death by their known target mechanisms. Some protective compounds blocked gentamicin uptake into hair cells, suggesting that they may block mechanotransduction or other routes of entry. The protective compounds identified in our screen will provide a starting point for studies in mammals as well as further research discovering the cellular signaling pathways that trigger hair cell death. (C) 2012 Elsevier B.V. All rights reserved. C1 [Vlasits, Anna L.; Raible, David W.; Rubel, Edwin W.; Owens, Kelly N.] Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Seattle, WA 98195 USA. [Vlasits, Anna L.; Rubel, Edwin W.; Owens, Kelly N.] Univ Washington, Dept Otolaryngol Head & Neck Surg, Seattle, WA 98195 USA. [Raible, David W.] Univ Washington, Dept Biol Struct, Seattle, WA 98195 USA. [Simon, Julian A.] Fred Hutchinson Canc Res Ctr, Seattle, WA 98109 USA. RP Owens, KN (reprint author), Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Box 357923, Seattle, WA 98195 USA. EM avlasits@berkeley.edu; jsimon@fhcrc.edu; draible@uw.edu; rubel@uw.edu; kowens@u.washington.edu FU NIH/NIDCD [DC05897, DC04661] FX We would like to thank David White and staff for maintenance of the zebrafish facilities, Eli Ocheltree for assistance with tissue culture experiments and Glen MacDonald for advice on microscopy. Funding for this work was provided by NIH/NIDCD grants DC05897 and DC04661. CR Airhart MJ, 2007, NEUROTOXICOL TERATOL, V29, P652, DOI 10.1016/j.ntt.2007.07.005 Alharazneh A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022347 ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X Bian JT, 2002, EUR J PHARMACOL, V453, P159, DOI 10.1016/S0014-2999(02)02421-4 Bokemeyer C, 1998, BRIT J CANCER, V77, P1355, DOI 10.1038/bjc.1998.226 Brummett R.E., 1983, CLIN INFECT DIS, V5, pS294, DOI 10.1093/clinids/5.Supplement_2.S294 Ciarimboli G, 2010, AM J PATHOL, V176, P1169, DOI 10.2353/ajpath.2010.090610 Coffin AB, 2009, HEARING RES, V253, P42, DOI 10.1016/j.heares.2009.03.004 Coffin AB, 2010, ZEBRAFISH, V7, P3, DOI 10.1089/zeb.2009.0639 Coombs S., 1989, MECHANOSENSORY LATER DAVIS BD, 1987, MICROBIOL REV, V51, P341 DULON D, 1986, ANTIMICROB AGENTS CH, V30, P96 Ericson E, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000151 Ernest S, 2000, HUM MOL GENET, V9, P2189, DOI 10.1093/hmg/9.14.2189 Fermin C., 1980, 3 MIDW M ARO FLEISCHMAN RW, 1975, TOXICOL APPL PHARM, V33, P320, DOI 10.1016/0041-008X(75)90098-8 Froehlicher M, 2009, DEV BIOL, V330, P32, DOI 10.1016/j.ydbio.2009.03.005 Gale JE, 2001, J NEUROSCI, V21, P7013 GIARD DJ, 1973, J NATL CANCER I, V51, P1417 Giari L., 2011, J APPL TOXICOL, V32, P293 Harris JA, 2003, JARO, V4, P219, DOI 10.1007/s10162-002-3022-x HELSON L, 1978, CLIN TOXICOL, V13, P469 HINSHAW HC, 1946, AM REV TUBERC PULM, V54, P191 Hirose Y, 2011, JARO-J ASSOC RES OTO, V12, P719, DOI 10.1007/s10162-011-0278-z Ishida S, 2002, P NATL ACAD SCI USA, V99, P14298, DOI 10.1073/pnas.162491399 Iversen L, 2006, BRIT J PHARMACOL, V147, pS82, DOI 10.1038/sj.bjp.0706428 JORGENSEN F, 1988, J PHYSIOL-LONDON, V403, P577 KAUS S, 1992, ACTA OTO-LARYNGOL, V112, P83, DOI 10.3109/00016489209100787 Kohanski MA, 2007, CELL, V130, P797, DOI 10.1016/j.cell.2007.06.049 LOMBARTE A, 1993, HEARING RES, V64, P166, DOI 10.1016/0378-5955(93)90002-I Marcotti W, 2005, J PHYSIOL-LONDON, V567, P505, DOI 10.1113/jphysiol.2005.085951 Meltser I, 2008, J CLIN INVEST, V118, P1563, DOI 10.1172/JCI32796 METCALFE WK, 1985, J COMP NEUROL, V233, P377, DOI 10.1002/cne.902330307 Nakamagoe M, 2010, HEARING RES, V261, P67, DOI 10.1016/j.heares.2010.01.004 Nicolson T, 2005, ANNU REV GENET, V39, P9, DOI 10.1146/annurev.genet.39.073003.105049 Nicolson T, 1998, NEURON, V20, P271, DOI 10.1016/S0896-6273(00)80455-9 Noirot IC, 2009, HEARING RES, V252, P49, DOI 10.1016/j.heares.2009.04.012 Norton WHJ, 2008, J COMP NEUROL, V511, P521, DOI 10.1002/cne.21831 Ou HC, 2007, HEARING RES, V233, P46, DOI 10.1016/j.heares.2007.07.003 Ou HC, 2009, JARO-J ASSOC RES OTO, V10, P191, DOI 10.1007/s10162-009-0158-y Ou HC, 2010, DRUG DISCOV TODAY, V15, P265, DOI 10.1016/j.drudis.2010.01.001 Owens KN, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000020 Owens KN, 2009, HEARING RES, V253, P32, DOI 10.1016/j.heares.2009.03.001 Owens KN, 2007, J COMP NEUROL, V502, P522, DOI 10.1002/cne.21345 Pabla N, 2008, KIDNEY INT, V73, P994, DOI 10.1038/sj.ki.5002786 Raible D., 2011, ASS RES OT ABSTR, V34, P266 Raible DW, 2000, J COMP NEUROL, V421, P189, DOI 10.1002/(SICI)1096-9861(20000529)421:2<189::AID-CNE5>3.0.CO;2-K REDDEL RR, 1982, CANCER TREAT REP, V66, P19 Richardson GP, 1997, J NEUROSCI, V17, P9506 Richardson GP, 1999, ANN NY ACAD SCI, V884, P110 ROSENBERG B, 1985, CANCER, V55, P2303, DOI 10.1002/1097-0142(19850515)55:10<2303::AID-CNCR2820551002>3.0.CO;2-L RUSCH A, 1994, J PHYSIOL-LONDON, V474, P75 Rybak LP, 2007, HEARING RES, V226, P157, DOI 10.1016/j.heares.2006.09.015 Santos F, 2006, HEARING RES, V213, P25, DOI 10.1016/j.heares.2005.12.009 Seiler C, 1999, J NEUROBIOL, V41, P424, DOI 10.1002/(SICI)1097-4695(19991115)41:3<424::AID-NEU10>3.0.CO;2-G Selimoglu E, 2003, YONSEI MED J, V44, P517 SMITH C R, 1977, New England Journal of Medicine, V296, P349, DOI 10.1056/NEJM197702172960701 Stenberg AE, 1999, HEARING RES, V136, P29, DOI 10.1016/S0378-5955(99)00098-2 Steyger PS, 2003, JARO-J ASSOC RES OTO, V4, P565, DOI 10.1007/s10162-003-4002-5 TANG CM, 1988, SCIENCE, V240, P213, DOI 10.1126/science.2451291 Terstappen GC, 2003, NEUROSCI LETT, V346, P85, DOI 10.1016/S0304-3940(03)00574-3 Tingaud-Sequeira A, 2004, GENE EXPR PATTERNS, V4, P561, DOI 10.1016/j.medgep.2004.02.002 Ton C, 2005, HEARING RES, V208, P79, DOI 10.1016/j.heares.2005.05.005 Van Netten S., 2001, NAT NEUROSCI, V5, P41 Wanamaker HH, 1999, AM J OTOL, V20, P457 Wang YH, 2006, TOHOKU J EXP MED, V208, P267, DOI 10.1620/tjem.208.267 Wayne P., 2008, PERFORMANCE STANDARD, P100 Wikler MA, 2006, METHODS DILUTION ANT Williams JA, 2000, HEARING RES, V143, P171, DOI 10.1016/S0378-5955(00)00039-3 Wu WJ, 2002, AUDIOL NEURO-OTOL, V7, P171, DOI 10.1159/000058305 Zhao YD, 1996, P NATL ACAD SCI USA, V93, P15469, DOI 10.1073/pnas.93.26.15469 NR 71 TC 11 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2012 VL 294 IS 1-2 BP 153 EP 165 DI 10.1016/j.heares.2012.08.002 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064PV UT WOS:000313088800017 PM 22967486 ER PT J AU Micheyl, C Xiao, L Oxenham, AJ AF Micheyl, Christophe Xiao, Li Oxenham, Andrew J. TI Characterizing the dependence of pure-tone frequency difference limens on frequency, duration, and level SO HEARING RESEARCH LA English DT Article ID HEARING-IMPAIRED LISTENERS; ONE-PARAMETER DISCRIMINATION; AUDITORY PERFORMANCE LIMITS; SENSATION LEVEL; MODEL; NERVE; INTENSITY; MECHANISMS; SENSITIVITY; MODULATION AB This study examined the relationship between the difference limen for frequency (DLF) of pure tones and three commonly explored stimulus parameters of frequency, duration, and sensation level. Data from 12 published studies of pure-tone frequency discrimination (a total of 583 DLF measurements across 77 normal-hearing listeners) were analyzed using hierarchical (or "mixed-effects") generalized linear models. Model parameters were estimated using two approaches (Bayesian and maximum likelihood). A model in which log-transformed DLFs were predicted using a sum of power-law functions plus a random subject- or group-specific term was found to explain a substantial proportion of the variability in the psychophysical data. The results confirmed earlier findings of an inverse-square-root relationship between log-transformed DLFs and duration, and of an inverse relationship between log(DLF) and sensation level. However, they did not confirm earlier suggestions that log(DLF) increases approximately linearly with the square-root of frequency; instead, the relationship between frequency and log(DLF) was best fitted using a power function of frequency with an exponent of about 0.8. These results, and the comprehensive quantitative analysis of pure-tone frequency discrimination on which they are based, provide a new reference for the quantitative evaluation of models of frequency (or pitch) discrimination. (c) 2012 Elsevier B.V. All rights reserved. C1 [Micheyl, Christophe; Xiao, Li; Oxenham, Andrew J.] Univ Minnesota, Dept Psychol, Auditory Percept & Cognit Lab, Minneapolis, MN 55455 USA. RP Micheyl, C (reprint author), Univ Minnesota, Dept Psychol, Auditory Percept & Cognit Lab, 75 E River Pkwy, Minneapolis, MN 55455 USA. EM cmicheyl@umn.edu; xiaoli19871216@gmail.com; oxenham@umn.edu FU National Institutes of Health [NIH R01 DC05216] FX This work was supported by a grant from the National Institutes of Health (NIH R01 DC05216). The authors would like to thank Dr. B.C.J. Moore, Dr. M.G. Heinz, and an anonymous reviewer for many helpful comments on an earlier version of the manuscript. Dr. Heinz is also acknowledged for helpful discussions concerning his and Siebert's optimal-observer models. CR Amitay S, 2006, J ACOUST SOC AM, V119, P1616, DOI 10.1121/1.2164988 Dai HP, 2011, J ACOUST SOC AM, V130, P263, DOI 10.1121/1.3598448 DAI HP, 1995, HEARING RES, V85, P109, DOI 10.1016/0378-5955(95)00036-4 de Cheveigne A, 2005, SPR HDB AUD, V24, P169 Delhommeau K, 2005, JARO-J ASSOC RES OTO, V6, P171, DOI 10.1007/s10162-005-5055-4 Demidenko E, 2004, MIXED MODELS THEORY Fletcher H., 1953, SPEECH HEARING COMMU FREYMAN RL, 1986, J ACOUST SOC AM, V79, P1034, DOI 10.1121/1.393375 FREYMAN RL, 1987, J SPEECH HEAR RES, V30, P28 FREYMAN RL, 1991, J SPEECH HEAR RES, V34, P1371 Gelman A., 2004, BAYESIAN DATA ANAL Gelman A, 1992, STAT SCI, V7, P457, DOI DOI 10.1214/SS/1177011136 GEMAN S, 1984, IEEE T PATTERN ANAL, V6, P721 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Goldstein J.L., 1977, PSYCHOPHYSICS PHYSL, P337 GOOD IJ, 1979, BIOMETRIKA, V66, P393, DOI 10.1093/biomet/66.2.393 Green D. M., 1966, SIGNAL DETECTION THE Gregory P C, 2005, BAYESIAN LOGICAL DAT HALL JW, 1984, J SPEECH HEAR RES, V27, P252 Hanekom JJ, 2001, HEARING RES, V151, P188, DOI 10.1016/S0378-5955(00)00227-6 HARRIS JD, 1952, J ACOUST SOC AM, V24, P750, DOI 10.1121/1.1906970 Heinz MG, 2001, NEURAL COMPUT, V13, P2317, DOI 10.1162/089976601750541813 Heinz MG, 2001, NEURAL COMPUT, V13, P2273, DOI 10.1162/089976601750541804 Jeffreys H., 1961, THEORY PROBABILITY, V3rd JESTEADT W, 1974, J ACOUST SOC AM, V55, P1266, DOI 10.1121/1.1914696 JESTEADT W, 1977, J ACOUST SOC AM, V61, P1599, DOI 10.1121/1.381446 JESTEADT W, 1975, J ACOUST SOC AM, V57, P1161, DOI 10.1121/1.380574 JESTEADT W, 1977, J ACOUST SOC AM, V61, P169, DOI 10.1121/1.381278 Johnson D.H., 1974, THESIS MIT CAMBRIDGE JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982 KASS RE, 1995, J AM STAT ASSOC, V90, P773, DOI 10.1080/01621459.1995.10476572 Koppl C, 1997, J NEUROSCI, V17, P3312 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Liang C.A., 1961, SOV PHYS ACOUST+, V6, P75 Lunn DJ, 2000, STAT COMPUT, V10, P325, DOI 10.1023/A:1008929526011 MacMillan N. A., 2005, DETECTION THEORY USE Marin J.-M., 2007, BAYESIAN CORE PRACTI McKinney MF, 1999, J ACOUST SOC AM, V106, P2679, DOI 10.1121/1.428098 Micheyl C, 1998, J ACOUST SOC AM, V104, P1039, DOI 10.1121/1.423322 MOORE BCJ, 1973, J ACOUST SOC AM, V54, P610, DOI 10.1121/1.1913640 Moore BC., 2003, INTRO PSYCHOL HEARIN MOORE BCJ, 1989, J ACOUST SOC AM, V86, P1722, DOI 10.1121/1.398603 Moore B.C.J., J ACOUST SO IN PRESS NELSON DA, 1982, J ACOUST SOC AM, V71, P660, DOI 10.1121/1.387541 NELSON DA, 1983, J ACOUST SOC AM, V73, P2117, DOI 10.1121/1.389579 Oetinger R., 1959, Acustica, V9 Oxenham AJ, 2003, JARO-J ASSOC RES OTO, V4, P541, DOI 10.1007/s10162-002-3058-y Oxenham A.J., BASIC ASPECTS HEARIN Pinheiro J. C., 1995, J COMPUTATIONAL GRAP, V4, P12, DOI [10.1080/10618600.1995.10474663, DOI 10.2307/1390625] RONKEN DA, 1971, J ACOUST SOC AM, V49, P1232, DOI 10.1121/1.1912486 Ruggero M.A., 1989, COCHLEAR MECH STRUCT, P259 Scharf B, 1970, FDN MODERN AUDITORY SCHWARZ G, 1978, ANN STAT, V6, P461, DOI 10.1214/aos/1176344136 SEK A, 1995, J ACOUST SOC AM, V97, P2479, DOI 10.1121/1.411968 SEKEY ANDREW, 1963, JOUR ACOUSTICAL SOC AMER, V35, P682, DOI 10.1121/1.1918587 Shower EG, 1931, J ACOUST SOC AM, V3, P275, DOI 10.1121/1.1915561 Siebert W. M., 1968, RECOGNIZING PATTERNS, P104 SIEBERT WM, 1970, PR INST ELECTR ELECT, V58, P723, DOI 10.1109/PROC.1970.7727 Spiegelhalter DJ, 2002, J ROY STAT SOC B, V64, P583, DOI 10.1111/1467-9868.00353 SRULOVICZ P, 1983, J ACOUST SOC AM, V73, P1266, DOI 10.1121/1.389275 TURNER CW, 1982, J SPEECH HEAR RES, V25, P34 WAKEFIELD GH, 1985, J ACOUST SOC AM, V77, P613, DOI 10.1121/1.391879 WIER CC, 1977, J ACOUST SOC AM, V61, P178, DOI 10.1121/1.381251 WIER CC, 1976, PERCEPT PSYCHOPHYS, V19, P75, DOI 10.3758/BF03199389 ZWICKER E, 1957, J ACOUST SOC AM, V29, P548, DOI 10.1121/1.1908963 Zwicker E., 1970, FREQUENCY ANAL PERIO, P376 NR 66 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD OCT PY 2012 VL 292 IS 1-2 BP 1 EP 13 DI 10.1016/j.heares.2012.07.004 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 024GJ UT WOS:000310097400001 PM 22841571 ER PT J AU Andrade, LR Lins, U Farina, M Kachar, B Thalmann, R AF Andrade, Leonardo R. Lins, Ulysses Farina, Marcos Kachar, Bechara Thalmann, Ruediger TI Immunogold TEM of otoconin 90 and otolin - relevance to mineralization of otoconia, and pathogenesis of benign positional vertigo SO HEARING RESEARCH LA English DT Article ID INNER-EAR; MATRIX PROTEINS; MAJOR PROTEIN; OSTEOPOROSIS; OSTEOPENIA; CONTAINS; BALANCE AB Implementation of the deep-etch technique enabled unprecedented definition of substructural elements of otoconia, including the fibrillar meshwork of the inner core with its globular attachments. Subsequently the effects of the principal soluble otoconial protein, otoconin 90, upon calcite crystal growth in vitro were determined, including an increased rate of nucleation, inhibition of growth kinetics and significant morphologic changes. The logical next step, ultrastructural localization of otoconin 90, by means of immunogold TEM in young mature mice, demonstrated a high density of gold particles in the inner core in spite of a relatively low level of mineralization. Here gold particles are typically arranged in oval patterns implying that otoconin 90 is attached to a scaffold consisting of the hexagonal fibrillar meshwork, characteristic of otolin. The level of mineralization is much higher in the outer cortex where mineralized fiber bundles are arranged parallel to the surface. Following decalcification, gold particles, as well as matrix fibrils, presumed to consist of a linear structural phenotype of otolin, are aligned in identical direction, suggesting that they serve as scaffold to guide mineralization mediated by otoconin 90. In the faceted tips, the level of mineralization is highest, even though the density of gold particles is relatively low, conceivably due to the displacement by the dense mineral phase. TEM shows that individual crystallites assemble into iso-oriented columns. Columns are arranged in parallel lamellae which convert into mineralized blocks for hierarchical assembly into the complex otoconial mosaic. Another set of experiments based on immunogold TEM in young mice demonstrates that the fibrils interconnecting otoconia consist of the short chain collagen otolin. By two years of age the superficial layer of mouse otoconia (corresponding to mid-life human) has become demineralized resulting in weakening or loss of anchoring of the fibrils interconnecting otoconia. Consequently, otoconia detached from each other may be released into the endolymphatic space by minor mechanical disturbances. In humans, benign positional vertigo (BPV) is believed to result from translocation of otoconia from the endolymphatic space into the semi-circular canals rendering their receptors susceptible to stimulation by gravity causing severe attacks of vertigo. The combinations of these observations in humans, together with the presented animal experiments, provide a tentative pathogenetic basis of the early stage of BPV. (c) 2012 Elsevier B.V. All rights reserved. C1 [Thalmann, Ruediger] Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. [Andrade, Leonardo R.; Kachar, Bechara] NIDCD, Lab Cell Struct & Dynam, NIH, Bethesda, MD 20892 USA. [Andrade, Leonardo R.; Farina, Marcos] Univ Fed Rio de Janeiro, CCS, Inst Ciencias Biomed, BR-21941590 Rio De Janeiro, RJ, Brazil. [Lins, Ulysses] Univ Fed Rio de Janeiro, CCS, Inst Microbiol Prof Paulo de Goes, BR-21941590 Rio De Janeiro, RJ, Brazil. RP Thalmann, R (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, 660 S Euclid Ave, St Louis, MO 63110 USA. EM thalmannr@ent.wustl.edu RI Andrade, Leonardo/C-9554-2011; Inbeb, Inct/K-2317-2013; Farina, Marcos/I-3744-2014 OI Andrade, Leonardo/0000-0002-0004-5677; FU National Institutes of Health (NIH) Intramural Research Fund [Z01-DC000002-22]; NIH [R21DC 009320, RO1 DC 011614]; FAPERJ; CNPq FX We thank Dr. S. Brian Andrews from NINDS-NIH for the use of the Zeiss 912 analytical TEM. We would also like to thank Endrit Agastra for assistance with the preparation of the manuscript. This work was supported by National Institutes of Health (NIH) Intramural Research Fund Z01-DC000002-22 (B.K.), NIH awards R21DC 009320 and RO1 DC 011614 (RT), and the Brazilian Agencies FAPERJ (UL) and CNPq (MF). CR Agrawal Y, 2009, ARCH INTERN MED, V169, P938, DOI 10.1001/archinternmed.2009.66 ANNIKO M, 1984, ACTA OTO-LARYNGOL, V97, P283, DOI 10.3109/00016488409130990 BALOH RW, 1987, NEUROLOGY, V37, P371 CAMPOS A, 1990, ADV OTO-RHINO-LARYNG, V45, P143 Colfen H, 2010, NAT MATER, V9, P960, DOI 10.1038/nmat2911 Deans MR, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012765 EPLEY JM, 1992, OTOLARYNG HEAD NECK, V107, P399 ERWAY LC, 1986, SCANNING MICROSCOPY, V1986, P1681 Giachelli C M, 2005, Orthod Craniofac Res, V8, P229, DOI 10.1111/j.1601-6343.2005.00345.x HARADA Y, 1977, ACTA OTO-LARYNGOL, V84, P65, DOI 10.3109/00016487709123943 HUNTER GK, 1994, BIOCHEM J, V300, P723 Jeong SH, 2009, NEUROLOGY, V72, P1069, DOI 10.1212/01.wnl.0000345016.33983.e0 KWAN APL, 1991, J CELL BIOL, V114, P597, DOI 10.1083/jcb.114.3.597 Lim D.J., 1983, ANN OTOL RHINOL LA S, V112, P12 Lins U, 2000, J STRUCT BIOL, V131, P67, DOI 10.1006/jsbi.2000.4260 Lu WF, 2010, HEARING RES, V268, P172, DOI 10.1016/j.heares.2010.05.019 MANN S, 1983, PROC R SOC SER B-BIO, V218, P415, DOI 10.1098/rspb.1983.0048 Murayama E, 2005, MECH DEVELOP, V122, P791, DOI 10.1016/j.mod.2005.03.002 Murayama E, 2002, EUR J BIOCHEM, V269, P688, DOI 10.1046/j.0014-2956.2001.02701.x Petralia RS, 1999, METH MOL B, V128, P73 POTE KG, 1993, BIOCHEMISTRY-US, V32, P5017, DOI 10.1021/bi00070a007 ROSS MD, 1976, ANN OTO RHINOL LARYN, V85, P310 SALAMAT MS, 1980, ANN OTO RHINOL LARYN, V89, P229 Thalmann I, 2006, ELECTROPHORESIS, V27, P1598, DOI 10.1002/elps.200500768 Thalmann R, 2001, ANN NY ACAD SCI, V942, P162 Thalmann R, 2011, ACTA OTO-LARYNGOL, V131, P382, DOI 10.3109/00016489.2010.548401 Verpy E, 1999, P NATL ACAD SCI USA, V96, P529, DOI 10.1073/pnas.96.2.529 Vibert D, 2003, ANN OTO RHINOL LARYN, V112, P885 Wang YX, 1998, P NATL ACAD SCI USA, V95, P15345, DOI 10.1073/pnas.95.26.15345 Welgampola MS, 2011, MED J AUSTRALIA, V195, P518, DOI 10.5694/mja11.11001 Yang H, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020498 Zhao X, 2007, DEV BIOL, V304, P508, DOI 10.1016/j.ydbio.2007.01.013 NR 32 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2012 VL 292 IS 1-2 BP 14 EP 25 DI 10.1016/j.heares.2012.07.003 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 024GJ UT WOS:000310097400002 PM 22841569 ER PT J AU Smalt, CJ Krishnan, A Bidelman, GM Ananthakrishnan, S Gandour, JT AF Smalt, Christopher J. Krishnan, Ananthanarayan Bidelman, Gavin M. Ananthakrishnan, Saradha Gandour, Jackson T. TI Distortion products and their influence on representation of pitch-relevant information in the human brainstem for unresolved harmonic complex tones SO HEARING RESEARCH LA English DT Article ID FREQUENCY-FOLLOWING RESPONSES; CUBIC DIFFERENCE TONES; HUMAN AUDITORY BRAIN; ANTEROVENTRAL COCHLEAR NUCLEUS; ITERATED RIPPLED NOISE; STEADY-STATE VOWELS; ACOUSTIC DISTORTION; COMBINATION TONES; FUNDAMENTAL-FREQUENCY; INFERIOR COLLICULUS AB Pitch experiments aimed at evaluating temporal pitch mechanism(s) often utilize complex sounds with only unresolved harmonic components, and a low-pass noise masker to eliminate the potential contribution of audible distortion products to the pitch percept. Herein we examine how: (i) masker induced reduction of neural distortion products (difference tone: DT; and cubic difference tone: CDT) alters the representation of pitch relevant information in the brainstem; and (ii) the pitch salience is altered when distortion products are reduced and/or eliminated. Scalp recorded brainstem frequency following responses (FFR) were recorded in normal hearing individuals using a complex tone with only unresolved harmonics presented in quiet, and in the presence of a low-pass masker at SNRs of +15, +5, and -5 dB. Difference limen for F0 discrimination (F0 DL) was obtained in quiet and in the presence of low-pass noise. Magnitude of DT components (with the exception of components at F0 and 2F0), and the CDT components decreased with increasing masker level. Neural pitch strength decreased with increasing masker level for both the envelope-related (FFRENV) and spectral-related (FFRSPEC) phase-locked activity. Finally, F0 DLs increased with decreasing SNRs suggesting poorer F0 discrimination with reduction of the distortion products. Collectively, these findings support the notion that both DT and CDT, as reflected in the FFRENV and FFRSPEC, respectively, influence both the brainstem representation of pitch relevant information and the pitch salience of the complex sounds. (c) 2012 Elsevier B.V. All rights reserved. C1 [Krishnan, Ananthanarayan; Ananthakrishnan, Saradha; Gandour, Jackson T.] Purdue Univ, Dept Speech Language & Hearing Sci, W Lafayette, IN 47907 USA. [Smalt, Christopher J.] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. [Bidelman, Gavin M.] Baycrest Ctr Geriatr Care, Rotman Res Inst, Toronto, ON M6A 2E1, Canada. RP Krishnan, A (reprint author), Purdue Univ, Dept Speech Language & Hearing Sci, 1353 Heavilon Hall,500 Oval Dr, W Lafayette, IN 47907 USA. EM rkrish@purdue.edu FU NIH [R01DC008549] FX Research supported by NIH R01DC008549 (A.K.). We also profusely thank the two reviewers for their patience and many thoughtful insights that have improved the quality of this manuscript. Reprint requests should be addressed to Ananthanarayan Krishnan, Department of Speech Language Hearing Sciences, Purdue University, West Lafayette, IN, USA 47907-2038, or via email: rkrish@purdue.edu CR Abel C, 2009, J NEUROPHYSIOL, V101, P1560, DOI 10.1152/jn.90805.2008 Aiken SJ, 2008, HEARING RES, V245, P35, DOI 10.1016/j.heares.2008.08.004 Arnold S, 1998, J ACOUST SOC AM, V104, P1565, DOI 10.1121/1.424368 Bernstein JG, 2003, J ACOUST SOC AM, V113, P3323, DOI 10.1121/1.1572146 Bhagat SP, 2004, HEARING RES, V193, P51, DOI 10.1016/j.heares.2004.04.005 BROWN AM, 1987, HEARING RES, V31, P25, DOI 10.1016/0378-5955(87)90211-5 BUUNEN TJF, 1977, J ACOUST SOC AM, V61, P508, DOI 10.1121/1.381292 BUUNEN TJF, 1978, J ACOUST SOC AM, V64, P772, DOI 10.1121/1.382042 BUUNEN TJF, 1974, J ACOUST SOC AM, V55, P297, DOI 10.1121/1.1914501 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698 Carlyon RP, 2002, J ACOUST SOC AM, V112, P621, DOI 10.1121/1.1488660 CHAMBERS RD, 1986, J ACOUST SOC AM, V80, P1673, DOI 10.1121/1.394279 CHERTOFF ME, 1990, J ACOUST SOC AM, V87, P1248, DOI 10.1121/1.398800 CHERTOFF ME, 1992, J SPEECH HEAR RES, V35, P157 CLARK WW, 1984, HEARING RES, V16, P299, DOI 10.1016/0378-5955(84)90119-9 DOLPHIN WF, 1994, J ACOUST SOC AM, V96, P2225, DOI 10.1121/1.411382 Elsisy H, 2008, INT J AUDIOL, V47, P431, DOI 10.1080/14992020801987396 Faulstich M, 1999, J ACOUST SOC AM, V105, P491, DOI 10.1121/1.424586 GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732 GLASER EM, 1976, ELECTROEN CLIN NEURO, V40, P25, DOI 10.1016/0013-4694(76)90176-0 Gockel HE, 2011, JARO-J ASSOC RES OTO, V12, P767, DOI 10.1007/s10162-011-0284-1 GOLDSTEI.JL, 1967, J ACOUST SOC AM, V41, P1603, DOI 10.1121/1.2143682 GOLDSTEI.JL, 1968, PR INST ELECTR ELECT, V56, P981, DOI 10.1109/PROC.1968.6449 GREENBERG S, 1987, HEARING RES, V25, P91, DOI 10.1016/0378-5955(87)90083-9 Grimault N, 2002, PERCEPT PSYCHOPHYS, V64, P189, DOI 10.3758/BF03195785 Hall DA, 2009, CEREB CORTEX, V19, P576, DOI 10.1093/cercor/bhn108 HALL JW, 1979, SCIENCE, V205, P1297, DOI 10.1126/science.472748 HORNER K, 1983, HEARING RES, V11, P343, DOI 10.1016/0378-5955(83)90066-7 HOUTSMA AJM, 1990, J ACOUST SOC AM, V87, P304, DOI 10.1121/1.399297 HOUTSMA AJM, 1972, J ACOUST SOC AM, V51, P520, DOI 10.1121/1.1912873 HUMES LE, 1980, HEARING RES, V2, P115, DOI 10.1016/0378-5955(80)90033-7 Kaernbach C, 2001, J ACOUST SOC AM, V110, P1039, DOI 10.1121/1.1381535 KEMP DT, 1984, HEARING RES, V13, P39, DOI 10.1016/0378-5955(84)90093-5 KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222 KIM DO, 1980, J ACOUST SOC AM, V67, P1704, DOI 10.1121/1.384297 Krishnan A, 2010, BRAIN RES, V1313, P124, DOI 10.1016/j.brainres.2009.11.061 Krishnan A, 2005, COGNITIVE BRAIN RES, V25, P161, DOI 10.1016/j.cogbrainres.2005.05.004 Krishnan A, 2011, HEARING RES, V275, P110, DOI 10.1016/j.heares.2010.12.008 Krishnan A, 2010, BRAIN LANG, V114, P193, DOI 10.1016/j.bandl.2010.05.004 Krishnan A, 2004, HEARING RES, V189, P1, DOI 10.1016/S0378-5955(03)00402-7 Krishnan A, 2009, BRAIN LANG, V110, P135, DOI 10.1016/j.bandl.2009.03.005 Krishnan A, 2009, J COGNITIVE NEUROSCI, V21, P1092, DOI 10.1162/jocn.2009.21077 Krishnan A, 2000, AUDIOL NEURO-OTOL, V5, P312, DOI 10.1159/000013897 Krishnan A, 1999, AUDIOL NEURO-OTOL, V4, P95, DOI 10.1159/000013826 Krishnan A, 2009, NEUROREPORT, V20, P408, DOI 10.1097/WNR.0b013e3283263000 Krishnan A, 2002, HEARING RES, V166, P192, DOI 10.1016/S0378-5955(02)00327-1 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Lonsbury-Martin B L, 1990, Ann Otol Rhinol Laryngol Suppl, V147, P3 LONSBURYMARTIN BL, 1987, HEARING RES, V28, P173, DOI 10.1016/0378-5955(87)90048-7 Marsh J.T., 1974, ELECTROENCEPHALOGR C, V38, P415 MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9 McAlpine D, 2004, J NEUROPHYSIOL, V92, P1295, DOI 10.1152/jn.00034.2004 Meddis R, 1997, J ACOUST SOC AM, V102, P1811, DOI 10.1121/1.420088 Micheyl C, 2010, J ACOUST SOC AM, V128, P1930, DOI 10.1121/1.3478786 Moore BCJ, 2000, J ACOUST SOC AM, V108, P2337, DOI 10.1121/1.1312362 Moore BCJ, 2011, HEARING RES, V276, P88, DOI 10.1016/j.heares.2011.01.003 Oxenham AJ, 2009, J ACOUST SOC AM, V125, P2189, DOI 10.1121/1.3089220 Pandya Pritesh K, 2004, J Am Acad Audiol, V15, P184, DOI 10.3766/jaaa.15.3.2 Plack CJ, 2000, J ACOUST SOC AM, V108, P696, DOI 10.1121/1.429602 PLOMP R, 1967, J ACOUST SOC AM, V41, P1526, DOI 10.1121/1.1910515 Pressnitzer D, 2001, J ACOUST SOC AM, V109, P2074, DOI 10.1121/1.1359797 Purcell DW, 2007, J ACOUST SOC AM, V122, P992, DOI 10.1121/1.2751250 RHODE WS, 1993, HEARING RES, V66, P31, DOI 10.1016/0378-5955(93)90257-2 RICKMAN MD, 1991, J ACOUST SOC AM, V89, P2818, DOI 10.1121/1.400720 Robles L, 1997, J NEUROPHYSIOL, V77, P2385 SCHMIEDT RA, 1986, J ACOUST SOC AM, V79, P1481, DOI 10.1121/1.393675 SCHOUTEN J. F., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1418, DOI 10.1121/1.1918360 SHACKLETON TM, 1994, J ACOUST SOC AM, V95, P3529, DOI 10.1121/1.409970 SMITH JC, 1975, ELECTROEN CLIN NEURO, V39, P465, DOI 10.1016/0013-4694(75)90047-4 SMITH JC, 1978, SCIENCE, V201, P639, DOI 10.1126/science.675250 SMOORENB.GF, 1970, J ACOUST SOC AM, V48, P924, DOI 10.1121/1.1912232 SMOORENB.GF, 1972, J ACOUST SOC AM, V52, P615, DOI 10.1121/1.1913152 SMOORENB.GF, 1972, J ACOUST SOC AM, V52, P603, DOI 10.1121/1.1913151 SMOORENBURG GF, 1976, J ACOUST SOC AM, V59, P945, DOI 10.1121/1.380954 Swaminathan J, 2008, IEEE T BIO-MED ENG, V55, P281, DOI 10.1109/TBME.2007.896592 Swaminathan J, 2008, NEUROREPORT, V19, P1163, DOI 10.1097/WNR.0b013e3283088d31 Wegel RL, 1924, PHYS REV, V23, P266, DOI 10.1103/PhysRev.23.266 Wiegrebe L, 1999, J ACOUST SOC AM, V106, P2709, DOI 10.1121/1.428099 WORDEN FG, 1968, ELECTROEN CLIN NEURO, V25, P42, DOI 10.1016/0013-4694(68)90085-0 Yost WA, 1996, J ACOUST SOC AM, V99, P1066, DOI 10.1121/1.414593 YOUNG ED, 1979, J ACOUST SOC AM, V66, P1381, DOI 10.1121/1.383532 ZWICKER E, 1979, HEARING RES, V1, P283, DOI 10.1016/0378-5955(79)90001-7 ZWICKER E, 1980, HEARING RES, V2, P513, DOI 10.1016/0378-5955(80)90088-X NR 84 TC 5 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2012 VL 292 IS 1-2 BP 26 EP 34 DI 10.1016/j.heares.2012.08.001 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 024GJ UT WOS:000310097400003 PM 22910032 ER PT J AU Guinan, JJ AF Guinan, John J., Jr. TI How are inner hair cells stimulated? Evidence for multiple mechanical drives SO HEARING RESEARCH LA English DT Article ID AUDITORY-NERVE RESPONSES; OLIVOCOCHLEAR-EFFERENT INHIBITION; BASILAR-MEMBRANE RESPONSES; CHRONIC COCHLEAR PATHOLOGY; LOW-FREQUENCY TONES; TECTORIAL MEMBRANE; ELECTRICAL-STIMULATION; HYDRODYNAMIC-FORCES; STEREOCILIA DAMAGE; CHINCHILLA COCHLEA AB Recent studies indicate that the gap over outer hair cells (OHCs) between the reticular lamina (RL) and the tectorial membrane (TM) varies cyclically during low-frequency sounds. Variation in the RL-TM gap produces radial fluid flow in the gap that can drive inner hair cell (IHC) stereocilia. Analysis of RL-TM gap changes reveals three IHC drives in addition to classic SHEAR. For upward basilar-membrane (BM) motion, IHC stereocilia are deflected in the excitatory direction by SHEAR and OHC-MOTILITY, but in the inhibitory direction by TM-PUSH and CILIA-SLANT. Upward BM motion causes OHC somatic contraction which tilts the RL, compresses the RL-TM gap over IHCs and expands the RL-TM gap over OHCs, thereby producing an outward (away from the IHCs) radial fluid flow which is the OHC-MOTILITY drive. For upward BM motion, the force that moves the TM upward also compresses the RL-TM gap over OHCs causing inward radial flow past IHCs which is the TM-PUSH drive. Motions that produce large tilting of OHC stereocilia squeeze the supra-OHC RL-TM gap and caused inward radial flow past IHCs which is the CILIA-SLANT drive. Combinations of these drives explain: (1) the reversal at high sound levels of auditory nerve (AN) initial peak (ANIP) responses to clicks, and medial olivocochlear (MOC) inhibition of ANIP responses below, but not above, the ANIP reversal, (2) dips and phase reversals in AN responses to tones in cats and chinchillas, (3) hypersensitivity and phase reversals in tuning-curve tails after OHC ablation, and (4) MOC inhibition of tail-frequency AN responses. The OHC-MOTILITY drive provides another mechanism, in addition to BM motion amplification, that uses active processes to enhance the output of the cochlea. The ability of these IHC drives to explain previously anomalous data provides strong, although indirect, evidence that these drives are significant and presents a new view of how the cochlea works at frequencies below 3 kHz. (c) 2012 Elsevier B.V. All rights reserved. C1 [Guinan, John J., Jr.] Massachusetts Eye & Ear Infirm, Dept Otolaryngol, Eaton Peabody Lab Auditory Physiol, Boston, MA 02114 USA. [Guinan, John J., Jr.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. [Guinan, John J., Jr.] Harvard MIT Div Hlth Sci & Technol, Speech & Hearing Biosci & Technol Program, Cambridge, MA 02139 USA. RP Guinan, JJ (reprint author), Massachusetts Eye & Ear Infirm, Dept Otolaryngol, Eaton Peabody Lab Auditory Physiol, 243 Charles St, Boston, MA 02114 USA. EM jjg@epl.meei.harvard.edu FU NIH NIDCD [RO1 DC000235, P30 DC005209] FX I thank Dr. Dennis Freedman and Dr. Christopher Shera for comments on an earlier version of the manuscript. Supported by NIH NIDCD RO1 DC000235 and P30 DC005209. CR ALLEN JB, 1980, J ACOUST SOC AM, V68, P1660, DOI 10.1121/1.385198 Baumgart J, 2009, CONCEPTS AND CHALLENGES IN THE BIOPHYSICS OF HEARING, P288, DOI 10.1142/9789812833785_0045 Chadwick RS, 1996, P NATL ACAD SCI USA, V93, P2564, DOI 10.1073/pnas.93.6.2564 Chan DK, 2005, BIOPHYS J, V89, P4382, DOI 10.1529/biophysj.105.070474 Cheatham MA, 2004, J PHYSIOL-LONDON, V560, P821, DOI 10.1113/jphysiol.204.069559 Cheatham MA, 1998, J ACOUST SOC AM, V104, P356, DOI 10.1121/1.423245 Chen FY, 2011, NAT NEUROSCI, V14, P770, DOI 10.1038/nn.2827 Chiaradia C, 2009, CONCEPTS AND CHALLENGES IN THE BIOPHYSICS OF HEARING, P283, DOI 10.1142/9789812833785_0044 Cooper N.P., 2011, ASS RES OT ABSTR, V34 Cooper N.P., 2011, PROGR AUDITORY BIOME, V1403, P396 Cooper N.P., 1997, PHYCHOPHYSICAL PHYSL, P11 Cooper NP, 2006, J PHYSIOL-LONDON, V576, P49, DOI 10.1113/jphysiol.2006.114991 Dallos P, 2008, NEURON, V58, P333, DOI 10.1016/j.neuron.2008.02.028 DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 Dallos P, 2003, JARO, V4, P416, DOI 10.1007/s0162-002-3049-z Eatock RA, 2000, ANNU REV NEUROSCI, V23, P285, DOI 10.1146/annurev.neuro.23.1.285 Echteler SM, 1994, COMP HEARING MAMMALS, P134 FREEMAN DM, 1990, HEARING RES, V48, P31, DOI 10.1016/0378-5955(90)90197-W FREEMAN DM, 1990, HEARING RES, V48, P17, DOI 10.1016/0378-5955(90)90196-V Fridberger A, 2006, Auditory Mechanisms: Processes and Models, P254, DOI 10.1142/9789812773456_0044 Fridberger A, 2002, J NEUROSCI, V22, P9850 Fridberger A, 2006, P NATL ACAD SCI USA, V103, P1918, DOI 10.1073/pnas.0507231103 Ghaffari R, 2007, P NATL ACAD SCI USA, V104, P16510, DOI 10.1073/pnas.0703665104 Ghaffari R., 2010, NATURE COMMUNICATION GIFFORD ML, 1983, J ACOUST SOC AM, V74, P115, DOI 10.1121/1.389728 Glueckert R, 2005, HEARING RES, V199, P40, DOI 10.1016/j.heares.2004.05.006 GRAY PR, 1967, BIOPHYS J, V7, P759, DOI 10.1016/S0006-3495(67)86621-9 Guinan JJ, 2005, J ACOUST SOC AM, V118, P2421, DOI 10.1121/1.2017899 Guinan JJ, 2008, J ACOUST SOC AM, V124, P1080, DOI 10.1121/1.2949435 GUINAN JJ, 1984, J COMP NEUROL, V226, P21, DOI 10.1002/cne.902260103 GUINAN JJ, 1988, HEARING RES, V37, P29, DOI 10.1016/0378-5955(88)90075-5 Guinan JJ, 2009, CONCEPTS AND CHALLENGES IN THE BIOPHYSICS OF HEARING, P155, DOI 10.1142/9789812833785_0024 Guinan Jr J.J., 2011, PROGR AUDITORY BIOME, V1403, P90 Gummer AW, 2006, AUDITORY MECHANISMS: PROCESSES AND MODELS, P17, DOI 10.1142/9789812773456_0002 Gummer AW, 1996, P NATL ACAD SCI USA, V93, P8727, DOI 10.1073/pnas.93.16.8727 Hakizimana P., 2011, ASS RES OT ABSTR, V34, P117 Hakizimana P., 2011, MECH HEARING, V1403 HUBBARD AE, 1990, HEARING RES, V43, P269, DOI 10.1016/0378-5955(90)90234-G Hudspeth AJ, 2000, P NATL ACAD SCI USA, V97, P11765, DOI 10.1073/pnas.97.22.11765 Jacob S, 2011, BIOPHYS J, V100, P2586, DOI 10.1016/j.bpj.2011.05.002 Jia SP, 2005, NAT NEUROSCI, V8, P1028, DOI 10.1038/nn1509 Karavitaki KD, 2007, BIOPHYS J, V92, P3284, DOI 10.1529/biophysj.106.084087 Karavitaki K.D., 2007, BIOPHYS J, V92, P3294 Kennedy HJ, 2006, J NEUROSCI, V26, P2757, DOI 10.1523/JNEUROSCI.3808-05.2006 KIANG NYS, 1990, HEARING RES, V49, P1 KIANG NYS, 1986, HEARING RES, V22, P171 Kim J., 2011, PROGR AUDITORY BIOME, V1403, P50 Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X LIBERMAN MC, 1984, HEARING RES, V16, P75, DOI 10.1016/0378-5955(84)90026-1 Lin T, 2000, J ACOUST SOC AM, V107, P2615, DOI 10.1121/1.428648 Lopez-Poveda EA, 2008, J ACOUST SOC AM, V123, P1544, DOI 10.1121/1.2835418 Lu TK, 2006, HEARING RES, V214, P45, DOI 10.1016/j.heares.2006.01.018 Mountain DC, 1999, HEARING RES, V132, P1, DOI 10.1016/S0378-5955(99)00013-1 Nam H., 2011, PROGR AUDITORY BIOME, V1403, P502 Narayan SS, 1998, SCIENCE, V282, P1882, DOI 10.1126/science.282.5395.1882 NEELY ST, 1993, J ACOUST SOC AM, V94, P137, DOI 10.1121/1.407091 Nowotny M, 2006, P NATL ACAD SCI USA, V103, P2120, DOI 10.1073/pnas.0511125103 Nowotny M, 2011, J ACOUST SOC AM, V130, P3852, DOI 10.1121/1.3651822 Olson ES, 2001, J ACOUST SOC AM, V110, P349, DOI 10.1121/1.1369098 Plack CJ, 1998, J ACOUST SOC AM, V103, P1598, DOI 10.1121/1.421294 Recio A, 1998, J ACOUST SOC AM, V103, P1972, DOI 10.1121/1.421377 Robles L, 2001, PHYSIOL REV, V81, P1305 RUGGERO MA, 1987, J NEUROPHYSIOL, V58, P379 RUGGERO MA, 1986, J ACOUST SOC AM, V80, P1375, DOI 10.1121/1.394390 Ruggero MA, 1996, AUDIT NEUROSCI, V2, P159 Russell IJ, 2007, NAT NEUROSCI, V10, P215, DOI 10.1038/nn1828 Scherer MP, 2004, P NATL ACAD SCI USA, V101, P17652, DOI 10.1073/pnas.0408232101 SELLICK PM, 1982, HEARING RES, V7, P199, DOI 10.1016/0378-5955(82)90014-4 Shoelson B, 2004, BIOPHYS J, V87, P2768, DOI 10.1529/biophysj.104.040774 Slepecky N. B., 1996, COCHLEA, P44 Smith ST, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018161 Stankovic Konstantina M., 1999, Journal of the Acoustical Society of America, V106, P857, DOI 10.1121/1.427102 Stankovic KM, 2000, J ACOUST SOC AM, V108, P664, DOI 10.1121/1.429599 Steele CR, 2005, INT J SOLIDS STRUCT, V42, P5887, DOI 10.1016/j.ijsolstr.2005.03.056 Steele CR, 2009, J MECH MATER STRUCT, V4, P755, DOI 10.2140/jomms.2009.4.755 ter Kuile E., 1900, PFLUGERS ARCH GES PH, V79, P146 van der Heijden M, 2006, J NEUROSCI, V26, P11462, DOI 10.1523/JNEUROSCI.1882-06.2006 Wong JC, 1998, HEARING RES, V123, P61, DOI 10.1016/S0378-5955(98)00098-7 Zilany MSA, 2006, J ACOUST SOC AM, V120, P1446, DOI 10.1121/1.2225512 ZWISLOCKI JJ, 1980, J ACOUST SOC AM, V67, P1679 NR 81 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2012 VL 292 IS 1-2 BP 35 EP 50 DI 10.1016/j.heares.2012.08.005 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 024GJ UT WOS:000310097400004 PM 22959529 ER PT J AU Eppsteiner, RW Shearer, AE Hildebrand, MS DeLuca, AP Ji, HH Dunn, CC Black-Ziegelbein, EA Casavant, TL Braun, TA Scheet, TE Scherer, SE Hansen, MR Gantz, BJ Smith, RJH AF Eppsteiner, Robert W. Shearer, A. Eliot Hildebrand, Michael S. DeLuca, Adam P. Ji, Haihong Dunn, Camille C. Black-Ziegelbein, Elizabeth A. Casavant, Thomas L. Braun, Terry A. Scheetz, Todd E. Scherer, Steven E. Hansen, Marlan R. Gantz, Bruce J. Smith, Richard J. H. TI Prediction of cochlear implant performance by genetic mutation: The spiral ganglion hypothesis SO HEARING RESEARCH LA English DT Article ID NEUROPATHY SPECTRUM DISORDER; ICHTHYOSIS-DEAFNESS SYNDROME; HEREDITARY HEARING-LOSS; LANGE-NIELSEN-SYNDROME; AUDITORY NEUROPATHY; GJB2 GENE; SPEECH-PERCEPTION; GJB2-RELATED DEAFNESS; PROFOUND DEAFNESS; TMPRSS3 MUTATIONS AB Background: Up to 7% of patients with severe-to-profound deafness do not benefit from cochlear implantation. Given the high surgical implantation and clinical management cost of cochlear implantation (>51 million lifetime cost), prospective identification of the worst performers would reduce unnecessary procedures and healthcare costs. Because cochlear implants bypass the membranous labyrinth but rely on the spiral ganglion for functionality, we hypothesize that cochlear implant (CI) performance is dictated in part by the anatomic location of the cochlear pathology that underlies the hearing loss. As a corollary, we hypothesize that because genetic testing can identify sites of cochlear pathology, it may be useful in predicting CI performance. Methods: 29 adult CI recipients with idiopathic adult-onset severe-to-profound hearing loss were studied. DNA samples were subjected to solution-based sequence capture and massively parallel sequencing using the OtoSCOPE (R) platform. The cohort was divided into three CI performance groups (good, intermediate, poor) and genetic causes of deafness were correlated with audiometric data to determine whether there was a gene-specific impact on CI performance. Results: The genetic cause of deafness was determined in 3/29 (10%) individuals. The two poor performers segregated mutations in TMPRSS3, a gene expressed in the spiral ganglion, while the good performer segregated mutations in LOXHD1, a gene expressed in the membranous labyrinth. Comprehensive literature review identified other good performers with mutations in membranous labyrinth-expressed genes; poor performance was associated with spiral ganglion-expressed genes. Conclusions: Our data support the underlying hypothesis that mutations in genes preferentially expressed in the spiral ganglion portend poor CI performance while mutations in genes expressed in the membranous labyrinth portend good CI performance. Although the low mutation rate in known deafness genes in this cohort likely relates to the ascertainment characteristics (postlingual hearing loss in adult CI recipients), these data suggest that genetic testing should be implemented as part of the CI evaluation to test this association prospectively. (c) 2012 Elsevier B.V. All rights reserved. C1 [Eppsteiner, Robert W.; Shearer, A. Eliot; Hildebrand, Michael S.; Ji, Haihong; Dunn, Camille C.; Hansen, Marlan R.; Gantz, Bruce J.; Smith, Richard J. H.] Univ Iowa Hosp & Clin, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA. [Shearer, A. Eliot; Smith, Richard J. H.] Univ Iowa, Carver Coll Med, Dept Mol Physiol & Biophys, Iowa City, IA 52242 USA. [DeLuca, Adam P.; Casavant, Thomas L.; Braun, Terry A.; Scheetz, Todd E.] Univ Iowa, Dept Biomed Engn, Iowa City, IA 52242 USA. [DeLuca, Adam P.; Black-Ziegelbein, Elizabeth A.; Casavant, Thomas L.; Braun, Terry A.; Scheetz, Todd E.] Univ Iowa, Ctr Bioinforrnat & Computat Biol, Iowa City, IA 52242 USA. [Scheetz, Todd E.] Univ Iowa Hosp & Clin, Dept Ophthalmol & Visual Sci, Iowa City, IA 52242 USA. [Scherer, Steven E.] Baylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USA. [Smith, Richard J. H.] Univ Iowa, Interdepartmental PhD Program Genet, Iowa City, IA 52242 USA. RP Smith, RJH (reprint author), Univ Iowa Hosp & Clin, Dept Otolaryngol Head & Neck Surg, 200 Hawkins Dr,21151-A, Iowa City, IA 52242 USA. EM richard-smith@uiowa.edu FU NIDCD [RO1 DC012049, T32 DC00040] FX This research was supported in part by NIDCD RO1 DC012049 (RJHS) and NIDCD T32 DC00040 (RWE0). We would like to acknowledge Richard Gibbs and Donna Muzny for their help with sequencing. CR Angeli SI, 2011, OTOL NEUROTOL, V32, P1437, DOI 10.1097/MAO.0b013e31823387f9 Archbold Sue M, 2009, Cochlear Implants Int, V10, P25, DOI 10.1002/cii.363 Arndt S, 2010, OTOL NEUROTOL, V31, P210, DOI 10.1097/MAO.0b013e3181cc09cd Bauer PW, 2003, LARYNGOSCOPE, V113, P2135, DOI 10.1097/00005537-200312000-00015 Brookes JT, 2008, INT J PEDIATR OTORHI, V72, P121, DOI 10.1016/j.ijporl.2007.08.019 Brownstein Z, 2011, GENOME BIOL, V12, DOI 10.1186/gb-2011-12-9-r89 Cheng AK, 2000, JAMA-J AM MED ASSOC, V284, P850, DOI 10.1001/jama.284.7.850 Chora JRGDM, 2010, INT J PEDIATR OTORHI, V74, P1135, DOI 10.1016/j.ijporl.2010.06.014 Chorbachi R, 2002, INT J PEDIATR OTORHI, V66, P213, DOI 10.1016/S0165-5876(02)00181-7 Choung YH, 2008, INT J PEDIATR OTORHI, V72, P911, DOI 10.1016/j.ijporl.2008.02.023 CLOPTON BM, 1980, ANN OTO RHINOL LARYN, V89, P5 Colletti L, 2011, LARYNGOSCOPE, V121, P2455, DOI 10.1002/lary.22131 Connell SS, 2007, OTOLARYNG HEAD NECK, V137, P596, DOI 10.1016/j.otohns.2007.02.017 Counter PR, 2001, J LARYNGOL OTOL, V115, P730 Cullen RD, 2004, LARYNGOSCOPE, V114, P1415, DOI 10.1097/00005537-200408000-00019 Dahl HHM, 2003, AUDIOL NEURO-OTOL, V8, P263, DOI 10.1159/000071998 Dalamon V, 2009, ACTA OTO-LARYNGOL, V129, P395, DOI 10.1080/00016480802566295 Daneshi A, 2011, J LARYNGOL OTOL, V125, P455, DOI 10.1017/S0022215110002999 de Wolf MJF, 2010, J LARYNGOL OTOL, V124, P86, DOI 10.1017/S0022215109990296 Edvardson S, 2011, AM J MED GENET A, V155A, P1170, DOI 10.1002/ajmg.a.33972 Elbracht M, 2007, J MED GENET, V44, DOI 10.1136/jmg.2007.049122 Fasquelle L, 2011, J BIOL CHEM, V286, P17383, DOI 10.1074/jbc.M110.190652 Fukushima K, 2002, INT J PEDIATR OTORHI, V62, P151, DOI 10.1016/S0165-5876(01)00619-X Gerard JM, 2010, INT J PEDIATR OTORHI, V74, P642, DOI 10.1016/j.ijporl.2010.03.010 Green GE, 2002, AM J MED GENET, V109, P167, DOI 10.1002/ajmg.10330 Grillet N, 2009, AM J HUM GENET, V85, P328, DOI 10.1016/j.ajhg.2009.07.017 GRIMBERG J, 1989, NUCLEIC ACIDS RES, V17, P8390, DOI 10.1093/nar/17.20.8390 Guipponi M, 2002, HUM MOL GENET, V11, P2829, DOI 10.1093/hmg/11.23.2829 Hildebrand MS, 2006, LARYNGOSCOPE, V116, P2211, DOI 10.1097/01.mlg.0000242089.72880.f8 Hutchin T, 2005, CLIN GENET, V68, P506, DOI 10.1111/j.1399-0004.2005.00539.x Karamert R, 2011, INT J PEDIATR OTORHI, V75, P1572, DOI 10.1016/j.ijporl.2011.09.010 Lai R, 2012, J LARYNGOL OTOL, V128, P349, DOI 10.1017/S002221511100346X Lalwani AK, 1997, AUDIOL NEURO-OTOL, V2, P139 Lanson BG, 2007, LARYNGOSCOPE, V117, P1260, DOI 10.1097/MLG.0b013e31806009c9 Lee HK, 2009, CLIN GENET, V75, P572, DOI 10.1111/j.1399-0004.2009.01181.x Li H, 2010, BIOINFORMATICS, V26, P589, DOI 10.1093/bioinformatics/btp698 Liu XZ, 2008, INT J PEDIATR OTORHI, V72, P841, DOI 10.1016/j.ijporl.2008.02.013 Loundon N, 2005, OTOL NEUROTOL, V26, P748, DOI 10.1097/01.mao.0000169044.63970.4a Lustig LR, 2004, ARCH OTOLARYNGOL, V130, P541, DOI 10.1001/archotol.130.5.541 Luxford WM, 2001, OTOLARYNG HEAD NECK, V124, P125, DOI 10.1067/mhn.2001.113035 Makishima T, 2004, OTOL NEUROTOL, V25, P714, DOI 10.1097/00129492-200409000-00011 Mason JC, 2003, LARYNGOSCOPE, V113, P45, DOI 10.1097/00005537-200301000-00009 Matsushiro N, 2002, LARYNGOSCOPE, V112, P255, DOI 10.1097/00005537-200202000-00011 McKenna A, 2010, GENOME RES, V20, P1297, DOI 10.1101/gr.107524.110 Mhatre AN, 2006, J NEUROSCI RES, V84, P809, DOI 10.1002/jnr.20993 Mohr PE, 2000, INT J TECHNOL ASSESS, V16, P1120, DOI 10.1017/S0266462300103162 NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411 Nadol JB, 2001, INT J PEDIATR OTORHI, V61, P1, DOI 10.1016/S0165-5876(01)00546-8 NILSSON M, 1994, J ACOUST SOC AM, V95, P1085, DOI 10.1121/1.408469 Pennings RJE, 2006, LARYNGOSCOPE, V116, P717, DOI 10.1097/01.mlg.0000205167.08415.9e PETERSON GE, 1962, J SPEECH HEAR DISORD, V27, P62 Raine CH, 2008, OTOL NEUROTOL, V29, P221 Reinert J, 2010, INT J PEDIATR OTORHI, V74, P791, DOI 10.1016/j.ijporl.2010.04.002 Rodriguez-Ballesteros M, 2008, HUM MUTAT, V29, P823, DOI 10.1002/humu.20708 Rodriguez-Ballesteros M, 2003, HUM MUTAT, V22, P451, DOI 10.1002/humu.10274 Rouillon I, 2006, INT J PEDIATR OTORHI, V70, P689, DOI 10.1016/j.ijporl.2005.09.006 Roush P, 2011, AM J AUDIOL, V20, P159, DOI 10.1044/1059-0889(2011/10-0032) Rubinstein JT, 1999, AM J OTOL, V20, P445 Santarelli R, 2010, GENOME MED, V2, DOI 10.1186/gm212 Shearer AE, 2010, P NATL ACAD SCI USA, V107, P21104, DOI 10.1073/pnas.1012989107 Siem G, 2008, EAR HEARING, V29, P261 Sinnathuray AR, 2004, OTOL NEUROTOL, V25, P930, DOI 10.1097/00129492-200411000-00012 Sinnathuray AR, 2004, OTOL NEUROTOL, V25, P935, DOI 10.1097/00129492-200411000-00013 Song MH, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024511 Stankovic KM, 2010, ANN OTO RHINOL LARYN, V119, P815 TaitelbaumSwead R, 2006, ARCH OTOLARYNGOL, V132, P495, DOI 10.1001/archotol.132.5.495 Tang W., 2012, GENET TEST MOL BIOMA Teagle HFB, 2010, EAR HEARING, V31, P325, DOI 10.1097/AUD.0b013e3181ce693b Tomblin JB, 1999, J SPEECH LANG HEAR R, V42, P497 Tono T, 2001, ORL J OTO-RHINO-LARY, V63, P25, DOI 10.1159/000055702 Turchetti G, 2011, ACTA OTORHINOLARYNGO, V31, P319 Ulubil SA, 2006, J LARYNGOL OTOL, V120, P230, DOI 10.1017/S002221510500318X Vermeire K, 2006, OTOL NEUROTOL, V27, P44, DOI 10.1097/01.mao.0000187240.33712.01 Vescan A, 2002, J OTOLARYNGOL, V31, P54, DOI 10.2310/7070.2002.19332 Weegerink NJD, 2011, ANN OTO RHINOL LARYN, V120, P191 Weegerink NJD, 2011, JARO-J ASSOC RES OTO, V12, P753, DOI 10.1007/s10162-011-0282-3 Wróbel Maciej, 2008, Cochlear Implants Int, V9, P132, DOI 10.1002/cii.362 Wu CC, 2011, LARYNGOSCOPE, V121, P1287, DOI 10.1002/lary.21751 Wu CC, 2008, ARCH PEDIAT ADOL MED, V162, P269, DOI 10.1001/archpediatrics.2007.59 Yasunaga S, 1999, NAT GENET, V21, P363 Yoshikawa S, 2011, AURIS NASUS LARYNX, V38, P444, DOI 10.1016/j.anl.2010.11.012 NR 81 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2012 VL 292 IS 1-2 BP 51 EP 58 DI 10.1016/j.heares.2012.08.007 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 024GJ UT WOS:000310097400005 PM 22975204 ER PT J AU Oguchi, T Suzuki, N Hashimoto, S Chaudhry, GA Chaudhry, FA Usami, S Ottersen, OP AF Oguchi, Tomohiro Suzuki, Nobuyoshi Hashimoto, Shigenari Chaudhry, Gauhar Ayub Chaudhry, Farrukh Abbas Usami, Shin-ichi Ottersen, Ole Petter TI Inner hair cells of mice express the glutamine transporter SAT1 SO HEARING RESEARCH LA English DT Article ID GUINEA-PIG COCHLEA; ASPARTATE TRANSPORTER; MAMMALIAN COCHLEA; AFFERENT SYNAPSES; RAT ORGAN; LOCALIZATION; NEURONS; SYSTEM; GLAST; ORGANIZATION AB Glutamate has been implicated in signal transmission between inner hair cells and afferent fibers of the organ of Corti. The inner hair cells are enriched in glutamate and the postsynaptic membranes express AMPA glutamate receptors. However, it is not known whether inner hair cells contain a mechanism for glutamate replenishment. Such a mechanism must be in place to sustain glutamate neurotransmission. Here we provide RT-PCR and immunofluorescence data indicating that system A transporter 1 (SLC38A1), which is associated with neuronal glutamine transport and synthesis of the neurotransmitters GABA and glutamate in CNS, is expressed in inner hair cells. It was previously shown that inner hair cells contain glutaminase that converts glutamine to glutamate. Thus, our finding that inner hair cells express a glutamine transporter and the key glutamine metabolizing enzyme glutaminase, provides a mechanism for glutamate replenishment and bolsters the idea that glutamate serves as a transmitter in the peripheral synapse of the auditory system. (C) 2012 Elsevier B.V. All rights reserved. C1 [Oguchi, Tomohiro; Chaudhry, Gauhar Ayub; Chaudhry, Farrukh Abbas; Ottersen, Ole Petter] Univ Oslo, Inst Basic Med Sci, Ctr Mol Biol & Neurosci, N-0317 Oslo, Norway. [Chaudhry, Gauhar Ayub; Chaudhry, Farrukh Abbas] Univ Oslo, Biotechnol Ctr Oslo, N-0317 Oslo, Norway. [Oguchi, Tomohiro; Suzuki, Nobuyoshi; Hashimoto, Shigenari; Usami, Shin-ichi] Shinshu Univ, Dept Otorhinolaryngol, Sch Med, Matsumoto, Nagano 3908621, Japan. RP Ottersen, OP (reprint author), Univ Oslo, Inst Basic Med Sci, Ctr Mol Biol & Neurosci, POB 1105 Blindern, N-0317 Oslo, Norway. EM o.p.ottersen@basalmed.uio.no FU Japan Health Science Foundation; University of Oslo; Shinshu University; Research Council of Norway; Ministry of Education, Science and Culture of Japan FX We gratefully acknowledge financial support by the Japan Health Science Foundation, University of Oslo, Shinshu University, Research Council of Norway, and Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan. The sponsors of this study played no role in the study design; the collection, analysis, and interpretation of data; the writing of the report; nor in the decision to submit the paper for publication. CR Bak LK, 2006, J NEUROCHEM, V98, P641, DOI 10.1111/j.1471-4159.2006.03913.x Boulland JL, 2003, GLIA, V41, P260, DOI 10.1002/glia.10188 Buntup D, 2008, NEUROCHEM RES, V33, P248, DOI 10.1007/s11064-007-9527-2 Chaudhry Farrukh A., 2008, V184, P77 Chaudhry FA, 1999, CELL, V99, P769, DOI 10.1016/S0092-8674(00)81674-8 Chaudhry FA, 2002, J NEUROSCI, V22, P62 Danbolt NC, 2001, PROG NEUROBIOL, V65, P1, DOI 10.1016/S0301-0082(00)00067-8 EYBALIN M, 1990, J ELECTRON MICR TECH, V15, P209, DOI 10.1002/jemt.1060150303 Eybalin M, 1996, HEARING RES, V101, P93, DOI 10.1016/S0378-5955(96)00136-0 Furness DN, 1997, EUR J NEUROSCI, V9, P1961, DOI 10.1111/j.1460-9568.1997.tb00763.x Furness DN, 2003, J NEUROSCI, V23, P11296 Glowatzki E, 2006, J NEUROSCI, V26, P7659, DOI 10.1523/JNEUROSCI.1545-06.2006 Hakuba N, 2000, J NEUROSCI, V20, P8750 Hamdani E.H., 2012, GLIA IN PRESS Jenstad M, 2009, CEREB CORTEX, V19, P1092, DOI 10.1093/cercor/bhn151 Mackenzie B, 2003, J BIOL CHEM, V278, P23720, DOI 10.1074/jbc.M212718200 Matsubara A, 1996, J NEUROSCI, V16, P4457 Ottersen OP, 1998, PROG NEUROBIOL, V54, P127, DOI 10.1016/S0301-0082(97)00054-3 ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X Ruel J, 2008, AM J HUM GENET, V83, P278, DOI 10.1016/j.ajhg.2008.07.008 SAUNDERS JC, 1985, J ACOUST SOC AM, V78, P833, DOI 10.1121/1.392915 Seal RP, 2008, NEURON, V57, P263, DOI 10.1016/j.neuron.2007.11.032 Solbu TT, 2010, FRONT NEUROANAT, V4, DOI 10.3389/neuro.05.001.2010 Takumi Y, 1999, J NEUROCYTOL, V28, P223, DOI 10.1023/A:1007076007642 Takumi Y, 1997, NEUROSCIENCE, V79, P1137, DOI 10.1016/S0306-4522(97)00025-0 THALMANN R, 1985, ACTA OTO-LARYNGOL, V99, P469, DOI 10.3109/00016488509108940 THALMANN R, 1981, LARYNGOSCOPE, V91, P1785 USAMI S, 1992, EXP BRAIN RES, V91, P1 Varoqui H, 2000, J BIOL CHEM, V275, P4049, DOI 10.1074/jbc.275.6.4049 WIET GJ, 1986, HEARING RES, V24, P137, DOI 10.1016/0378-5955(86)90058-4 NR 30 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2012 VL 292 IS 1-2 BP 59 EP 63 DI 10.1016/j.heares.2012.07.005 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 024GJ UT WOS:000310097400006 PM 22841570 ER PT J AU Miller, ME Nasiri, AK Farhangi, PO Farahbakhsh, NA Lopez, IA Narins, PM Simmons, DD AF Miller, Mia E. Nasiri, Arian K. Farhangi, Peyman O. Farahbakhsh, Nasser A. Lopez, Ivan A. Narins, Peter M. Simmons, Dwayne D. TI Evidence for water-permeable channels in auditory hair cells in the leopard frog SO HEARING RESEARCH LA English DT Article ID INNER-EAR; AMPHIBIAN PAPILLA; SLOW MOTILITY; GUINEA-PIG; AQUAPORINS; EXPRESSION; COCHLEA; HEARING AB Auditory hair cells in the amphibian papilla (APHCs) of the leopard frog, Rana pipiens pipiens, have a significantly higher permeability to water than that observed in mammalian hair cells. The insensitivity of water permeability in frog hair cells to extracellular mercury suggests that an amphibian homologue of the water channel aquaporin-4 (AQP4) may mediate water transport in these cells. Using immunocytochemistry, we show that an AQP4-like protein is found in APHCs. Rabbit anti-AQP4 antibody was used in multiple-immunohistochemical staining experiments along with AP hair cell and hair bundle markers in leopard frog and mouse tissue. AQP4 immunoreactivity was found in the basal and apical poles of the APHCs and shows uniform immunoreactivity. This study provides the first identification and localization of an AQP4-like protein in the amphibian inner ear. We also report a more direct measure of hyperosmotically-induced volume changes in APHCs that confirms previous findings. The presence of water channels in anuran APHCs constitutes a novel physiological difference between amphibian and mammalian hair cell structure and function. (C) 2012 Elsevier B.V. All rights reserved. C1 [Nasiri, Arian K.; Farhangi, Peyman O.; Farahbakhsh, Nasser A.; Narins, Peter M.; Simmons, Dwayne D.] Univ Calif Los Angeles, Dept Integrat Biol & Physiol, Los Angeles, CA 90095 USA. [Narins, Peter M.] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA. [Miller, Mia E.; Lopez, Ivan A.] Univ Calif Los Angeles, David Geffen Sch Med, Dept Head & Neck Surg, Los Angeles, CA 90095 USA. [Narins, Peter M.; Simmons, Dwayne D.] Univ Calif Los Angeles, Brain Res Inst, Los Angeles, CA 90095 USA. RP Simmons, DD (reprint author), Univ Calif Los Angeles, Dept Integrat Biol & Physiol, 610 Charles E Young Dr E, Los Angeles, CA 90095 USA. EM dd.simmons@ucla.edu CR Beitz E, 2003, CELL MOL NEUROBIOL, V23, P315, DOI 10.1023/A:1023636620721 Farahbakhsh NA, 2006, HEARING RES, V212, P140, DOI 10.1016/j.heares.2005.11.004 Farahbakhsh NA, 2008, HEARING RES, V241, P7, DOI 10.1016/j.heares.2008.04.007 Farahbakhsh NA, 2011, HEARING RES, V272, P69, DOI 10.1016/j.heares.2010.10.015 FINKELSTEIN A, 1976, J GEN PHYSIOL, V68, P137, DOI 10.1085/jgp.68.2.137 Gomes D, 2009, BBA-BIOMEMBRANES, V1788, P1213, DOI 10.1016/j.bbamem.2009.03.009 Huang DL, 2002, HEARING RES, V165, P85, DOI 10.1016/S0378-5955(02)00288-5 Ishibashi K, 2000, REV PHYSIOL BIOCH P, V141, P1, DOI 10.1007/BFb0119576 Ishibashi K, 2011, AM J PHYSIOL-REG I, V300, pR566, DOI 10.1152/ajpregu.90464.2008 Li J, 2001, J BIOL CHEM, V276, P31233, DOI 10.1074/jbc.M104368200 Lopez IA, 2007, CELL TISSUE RES, V328, P453, DOI 10.1007/s00441-007-0380-z Manley GT, 2000, NAT MED, V6, P159, DOI 10.1038/72256 Merves M, 2003, JARO, V4, P264, DOI 10.1007/s10162-002-3033-7 Mhatre AN, 2002, BIOCHEM BIOPH RES CO, V297, P987, DOI 10.1016/S0006-291X(02)02296-9 Nagelhus EA, 2004, NEUROSCIENCE, V129, P905, DOI 10.1016/j.neuroscience.2004.08.053 Nishimoto G, 2007, AM J PHYSIOL-REG I, V292, pR644, DOI 10.1152/ajpregu.00362.2006 Ratnanather JT, 1996, HEARING RES, V96, P33 Sawada S, 2003, HEARING RES, V181, P15, DOI 10.1016/S0378-5955(03)00131-X Stankovic KM, 1995, AM J PHYSIOL-CELL PH, V269, pC1450 Suzuki M, 2009, COMP BIOCHEM PHYS A, V153, P231, DOI 10.1016/j.cbpa.2009.02.035 Takata K, 2004, PROG HISTOCHEM CYTO, V39, P1, DOI 10.1016/j.proghi.2004.03.001 Takumi Y, 1998, EUR J NEUROSCI, V10, P3584, DOI 10.1046/j.1460-9568.1998.00360.x VERKMAN AS, 1989, AM J PHYSIOL, V257, pC837 Zhi M, 2007, HEARING RES, V228, P95, DOI 10.1016/j.heares.2007.02.007 Zhong SX, 2003, ORL J OTO-RHINO-LARY, V65, P284, DOI 10.1159/000075227 Zichichi R, 2011, BRAIN RES, V1384, P23, DOI 10.1016/j.brainres.2011.02.024 NR 26 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2012 VL 292 IS 1-2 BP 64 EP 70 DI 10.1016/j.heares.2012.08.004 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 024GJ UT WOS:000310097400007 PM 22940201 ER PT J AU Cederholm, JME Froud, KE Wong, ACY Ko, M Ryan, AF Housley, GD AF Cederholm, Jennie M. E. Froud, Kristina E. Wong, Ann C. Y. Ko, Myungseo Ryan, Allen F. Housley, Gary D. TI Differential actions of isoflurane and ketamine-based anaesthetics on cochlear function in the mouse SO HEARING RESEARCH LA English DT Article ID BRAIN-STEM RESPONSE; NICOTINIC ACETYLCHOLINE-RECEPTORS; INHALATIONAL GENERAL-ANESTHETICS; INDUCED HEARING-LOSS; MIDDLE-EAR PRESSURE; ACID TYPE-A; ION CHANNELS; NEUROTRANSMITTER RELEASE; OTOACOUSTIC EMISSIONS; GLYCINE RECEPTORS AB Isoflurane is a volatile inhaled anaesthetic widely used in animal research, with particular utility for hearing research. lsoflurane has been shown to blunt hearing sensitivity compared with the awake state, but little is known about how isoflurane compares with other anaesthetics with regard to hair cell transduction and auditory neurotransmission. The current study was undertaken in C578I/6J and C129/SvEv strains of mice to determine whether isoflurane anaesthesia affects hearing function relative to ketamine-based anaesthesia. Cochlear function and central auditory transmission were assessed using auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE), comparing thresholds and input/output functions over time, for isoflurane vs. ketamine/xylazine/acepromazine anaesthesia. ABR thresholds at the most sensitive region of hearing (16 kHz) were initially higher under isoflurane anaesthesia. This reduced hearing sensitivity worsened over the 1 h study period, and also became evident with broadband click stimulus. Ketamine anaesthesia provided stable ABR thresholds. Although the growth functions were unchanged over time for both anaesthetics, the slopes under isoflurane anaesthesia were significantly less. Cubic (2f(1)-f(2)) DPOAE thresholds and growth functions were initially similar for both anaesthetics. After 60 min, DPOAE thresholds increased for both groups, but this effect was significantly greater with ketamine anaesthesia. The isoflurane-mediated increase in ABR thresholds over time is attributable to action on cochlear nerve activation, evident as a right-shift in the P1-N1 input/output function compared to K/X/A. The ketamine-based anaesthetic produced stable ABR thresholds and gain over time, despite a right-shift in the outer hair cell - mediated DPOAE input/output function. (C) 2012 Elsevier B.V. All rights reserved. C1 [Cederholm, Jennie M. E.; Froud, Kristina E.; Wong, Ann C. Y.; Ko, Myungseo; Housley, Gary D.] Univ New S Wales, Sch Med Sci, Translat Neurosci Facil, Sydney, NSW 2052, Australia. [Cederholm, Jennie M. E.; Froud, Kristina E.; Wong, Ann C. Y.; Ko, Myungseo; Housley, Gary D.] Univ New S Wales, Sch Med Sci, Dept Physiol, Sydney, NSW 2052, Australia. [Ryan, Allen F.] Univ Calif San Diego, Dept Surg, San Diego, CA 92103 USA. [Ryan, Allen F.] Univ Calif San Diego, Dept Neurosci, San Diego, CA 92103 USA. [Ryan, Allen F.] VA Med Ctr, La Jolla, CA USA. RP Housley, GD (reprint author), Univ New S Wales, Sch Med Sci, Translat Neurosci Facil, UNSW Kensington Campus, Sydney, NSW 2052, Australia. EM g.housley@unsw.edu.au FU National Health & Medical Research Council (NHMRC), Australia [APP 630618]; Research Service of the U.S. Veterans Administration FX This study was supported by the National Health & Medical Research Council (NH&MRC), Australia, project grant APP 630618, and the Research Service of the U.S. Veterans Administration. CR Acar B, 2010, ACTA OTORHINOLARYNGO, V30, P285 Alvarado JC, 2012, NEUROSCI RES, V73, P302, DOI 10.1016/j.neures.2012.05.001 Ashmore J, 2008, PHYSIOL REV, V88, P173, DOI 10.1152/physrev.00044.2006 Baldwin R., 1959, MOD VET PRACT, V40, P46 Barkdull GC, 2007, LARYNGOSCOPE, V117, P2174, DOI 10.1097/MLG.0b013e3181461f92 BOARINI DJ, 1984, NEUROSURGERY, V15, P400 Chau PL, 2010, BRIT J PHARMACOL, V161, P288, DOI 10.1111/j.1476-5381.2010.00891.x Chung JW, 2007, ANESTH ANALG, V104, P1404, DOI 10.1213/01.ane.0000261508.24083.6c de Sousa SLM, 2000, ANESTHESIOLOGY, V92, P1055, DOI 10.1097/00000542-200004000-00024 DildyMayfield JE, 1996, J PHARMACOL EXP THER, V276, P1058 DILGER JP, 1994, ANESTHESIOLOGY, V81, P431, DOI 10.1097/00000542-199408000-00022 Downie DL, 1996, BRIT J PHARMACOL, V118, P493 Drexl M, 2004, HEARING RES, V194, P135, DOI 10.1016/j.heares.2004.04.006 Forman SA, 1998, ANESTHESIOLOGY, V88, P1535, DOI 10.1097/00000542-199806000-00018 FRANKS NP, 1984, NATURE, V310, P599, DOI 10.1038/310599a0 Franks NP, 2008, NAT REV NEUROSCI, V9, P370, DOI 10.1038/nrn2372 GREENE SA, 1988, J VET PHARMACOL THER, V11, P295, DOI 10.1111/j.1365-2885.1988.tb00189.x HALL AC, 1994, BRIT J PHARMACOL, V112, P906 HARRISON NL, 1993, MOL PHARMACOL, V44, P628 Hemmings HC, 2009, BRIT J ANAESTH, V103, P61, DOI 10.1093/bja/aep144 Herring BE, 2009, J NEUROPHYSIOL, V102, P1265, DOI 10.1152/jn.00252.2009 Hirota K, 1996, BRIT J ANAESTH, V77, P441 Hirota K, 2011, BRIT J ANAESTH, V107, P123, DOI 10.1093/bja/aer221 ISHIZAKI K, 1995, BRIT J ANAESTH, V75, P636 Karabiyik L, 1996, EUR J ANAESTH, V13, P27 Kemp DT, 2002, BRIT MED BULL, V63, P223, DOI 10.1093/bmb/63.1.223 Kim JU, 2005, LARYNGOSCOPE, V115, P1996, DOI 10.1097/01.mlg.0000180173.81034.4d KURODA Y, 1993, ANESTH ANALG, V77, P795 Legatt AD, 2002, J CLIN NEUROPHYSIOL, V19, P396, DOI 10.1097/00004691-200210000-00003 Liberman LD, 2011, J NEUROSCI, V31, P801, DOI 10.1523/JNEUROSCI.3389-10.2011 LIN LH, 1993, J NEUROCHEM, V60, P1548, DOI 10.1111/j.1471-4159.1993.tb03320.x LO EH, 1991, NEUROSCI LETT, V131, P17, DOI 10.1016/0304-3940(91)90327-P MARTIN DC, 1995, BIOCHEM PHARMACOL, V49, P809, DOI 10.1016/0006-2952(94)00519-R Mascia MP, 1996, BRIT J PHARMACOL, V119, P1331 MIHIC SJ, 1994, MOL PHARMACOL, V46, P851 Minami K, 1998, J BIOL CHEM, V273, P8248, DOI 10.1074/jbc.273.14.8248 MOODY EJ, 1993, BRAIN RES, V615, P101, DOI 10.1016/0006-8993(93)91119-D RIKKE BA, 1995, GENETICS, V139, P901 Ruebhausen MR, 2012, HEARING RES, V287, P25, DOI 10.1016/j.heares.2012.04.005 Santarelli R, 2003, ACTA OTO-LARYNGOL, V123, P176, DOI 10.1080/0036554021000028108 SMITH DI, 1989, ELECTROEN CLIN NEURO, V72, P422, DOI 10.1016/0013-4694(89)90047-3 Stronks HC, 2010, HEARING RES, V260, P20, DOI 10.1016/j.heares.2009.10.015 TUCKER PK, 1992, MAMM GENOME, V3, P254, DOI 10.1007/BF00292153 WACHTEL RE, 1992, BRIT J PHARMACOL, V106, P623 WANG ZX, 1987, HEARING RES, V27, P145 Westphalen RI, 2011, NEUROPHARMACOLOGY, V61, P699, DOI 10.1016/j.neuropharm.2011.05.013 Yamakura T, 2001, ANNU REV PHARMACOL, V41, P23, DOI 10.1146/annurev.pharmtox.41.1.23 Yamakura T, 2000, ANESTHESIOLOGY, V92, P1144, DOI 10.1097/00000542-200004000-00033 YAMAKURA T, 1993, NEUROREPORT, V4, P687, DOI 10.1097/00001756-199306000-00021 Yamakura T, 2001, ANESTHESIOLOGY, V95, P144, DOI 10.1097/00000542-200107000-00025 Yamashita M, 2005, ANESTHESIOLOGY, V102, P76, DOI 10.1097/00000542-200501000-00015 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 52 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2012 VL 292 IS 1-2 BP 71 EP 79 DI 10.1016/j.heares.2012.08.010 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 024GJ UT WOS:000310097400008 PM 22960466 ER PT J AU Smith, PF AF Smith, Paul F. TI Interactions between the vestibular nucleus and the dorsal cochlear nucleus: Implications for tinnitus SO HEARING RESEARCH LA English DT Article ID WHOLE-BODY ROTATION; GUINEA-PIG; CENTRAL PROJECTIONS; MONGOLIAN GERBIL; AUDITORY-SYSTEM; AFFERENT-FIBERS; SELF-MOTION; STIMULATION; INPUTS; NOISE AB The peripheral auditory and vestibular systems are recognised to be closely related anatomically and physiologically; however, less well understood is the interaction of these two sensory systems in the brain. A number of previous studies in different species have reported that the dorsal and ventral cochlear nuclei receive direct projections from the primary vestibular nerve and one previous study had reported projections from the vestibular nucleus to the dorsal cochlear nucleus (DCN) in rabbit. Recently, Barker et al. (2012 PLoS One. 7(5): e35955) have reported new evidence that the lateral vestibular nucleus (LVN) projects to the DCN in rat and that these synapses are mediated by glutamate acting on AMPA and NMDA receptors. These recent findings, in addition to the earlier ones, suggest that the auditory and vestibular systems may be intimately connected centrally as well as peripherally and this may have important implications for disorders such as tinnitus. (C) 2012 Elsevier B.V. All rights reserved. C1 Univ Otago, Sch Med Sci, Dept Pharmacol & Toxicol, Brain Hlth Res Ctr, Dunedin, New Zealand. RP Smith, PF (reprint author), Univ Otago, Sch Med Sci, Dept Pharmacol & Toxicol, Brain Hlth Res Ctr, Dunedin, New Zealand. EM paul.smith@otago.ac.nz CR Baguley DM, 2006, OTOL NEUROTOL, V27, P220, DOI 10.1097/01.mao.0000172412.87778.28 Barker M, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035955 Bukowska D, 2002, CELLS TISSUES ORGANS, V170, P61, DOI 10.1159/000047921 BURIAN M, 1988, NEUROSCI LETT, V84, P13, DOI 10.1016/0304-3940(88)90329-1 BURIAN M, 1989, ARCH OTO-RHINO-LARYN, V246, P238, DOI 10.1007/BF00463563 Cullen KE, 2012, TRENDS NEUROSCI, V35, P185, DOI 10.1016/j.tins.2011.12.001 Dehmel S, 2012, J NEUROSCI, V32, P1660, DOI 10.1523/JNEUROSCI.4608-11.2012 El-Kashlan HK, 2004, HEARING RES, V189, P25, DOI 10.1016/S0378-5955(03)00393-9 Fekete DM, 1999, TRENDS NEUROSCI, V22, P263, DOI 10.1016/S0166-2236(98)01366-6 GSTOETTNER W, 1991, NEUROSCI LETT, V122, P163, DOI 10.1016/0304-3940(91)90848-N GSTOETTNER W, 1992, ACTA OTO-LARYNGOL, V112, P486, DOI 10.3109/00016489209137430 KEVETTER GA, 1986, J COMP NEUROL, V254, P410, DOI 10.1002/cne.902540312 KEVETTER GA, 1989, BRAIN BEHAV EVOLUT, V34, P193, DOI 10.1159/000116505 Kevetter GA, 2004, J VESTIBUL RES-EQUIL, V14, P1 Lackner JR, 2010, EXP BRAIN RES, V202, P513, DOI 10.1007/s00221-009-2149-y Lanting CP, 2010, HEARING RES, V267, P78, DOI 10.1016/j.heares.2010.04.006 Lewald J, 2001, EUR J NEUROSCI, V13, P2268, DOI 10.1046/j.0953-816x.2001.01608.x Lewald J, 2002, EUR J NEUROSCI, V15, P1219, DOI 10.1046/j.1460-9568.2002.01949.x Lewald J, 2000, J NEUROPHYSIOL, V84, P1107 Maklad A, 2003, BRAIN RES BULL, V60, P497, DOI 10.1016/S0361-9230(03)00054-6 Muller F, 2011, CELLS TISSUES ORGANS, V193, P215, DOI 10.1159/000320026 Newlands SD, 2003, J COMP NEUROL, V466, P31, DOI 10.1002/cne.10876 Newlands SD, 2003, BRAIN RES BULL, V60, P475, DOI 10.1016/S0361-9230(03)00051-0 Oertel D, 2004, TRENDS NEUROSCI, V27, P104, DOI 10.1016/j.tins.2003.12.001 Pettorossi VE, 2005, ACTA OTO-LARYNGOL, V125, P524, DOI 10.1080/00016480510028465 Pinchoff RJ, 1998, AM J OTOL, V19, P785 PROBST T, 1990, BEHAV BRAIN RES, V41, P1, DOI 10.1016/0166-4328(90)90048-J Shore SE, 2008, EUR J NEUROSCI, V27, P155, DOI 10.1111/j.1460-9568.2007.05983.x Shore SE, 2011, HEARING RES, V281, P38, DOI 10.1016/j.heares.2011.05.001 Shore SE, 2006, HEARING RES, V216, P90, DOI 10.1016/j.heares.2006.01.006 Van Barneveld DCPBM, 2011, EXP BRAIN RES, V213, P235, DOI 10.1007/s00221-011-2741-9 Van Barneveld DCPBM, 2010, EUR J NEUROSCI, V31, P920, DOI 10.1111/j.1460-9568.2010.07113.x Vanneste S, 2010, EXP BRAIN RES, V204, P283, DOI 10.1007/s00221-010-2304-5 Wilson VJ, 1979, MAMMALIAN VESTIBULAR Zeng C, 2011, NEUROSCIENCE, V176, P142, DOI 10.1016/j.neuroscience.2010.12.010 Zeng CH, 2009, J NEUROSCI, V29, P4210, DOI 10.1523/JNEUROSCI.0208-09.2009 Zhou JX, 2007, J COMP NEUROL, V500, P777, DOI 10.1002/cne.21208 NR 37 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2012 VL 292 IS 1-2 BP 80 EP 82 DI 10.1016/j.heares.2012.08.006 PG 3 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 024GJ UT WOS:000310097400009 PM 22960359 ER PT J AU Needham, K Nayagam, BA Minter, RL O'Leary, SJ AF Needham, Karina Nayagam, Bryony A. Minter, Ricki L. O'Leary, Stephen J. TI Combined application of brain-derived neurotrophic factor and neurotrophin-3 and its impact on spiral ganglion neuron firing properties and hyperpolarization-activated currents SO HEARING RESEARCH LA English DT Article ID SENSORINEURAL HEARING-LOSS; DEVELOPING INNER-EAR; COCHLEAR IMPLANT STIMULATION; PRIMARY AUDITORY NEURONS; CATION CURRENT I(H); GATED HCN CHANNELS; CURRENT I-H; ELECTRICAL-STIMULATION; PHYSIOLOGICAL-FUNCTION; FIBER RESPONSES AB Neurotrophins provide an effective tool for the rescue and regeneration of spiral ganglion neurons (SGNs) following sensorineural hearing loss. However, these nerve growth factors are also potent modulators of ion channel activity and expression, and in the peripheral auditory system brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) have previously been shown to alter the firing properties of auditory neurons and differentially regulate the expression of some potassium channels in vitro. In this study we examined the activity of the hyperpolarization-mediated mixed-cation current (I-h) in early postnatal cultured rat SGNs following exposure to combined BDNF and NT3. Whole-cell patch-clamp recordings made after 1 or 2 days in vitro revealed no change in the firing adaptation of neurons in the presence of BDNF and NT3. Resting membrane potentials were also maintained, but spike latency and firing threshold was subject to regulation by both neurotrophins and time in vitro. Current clamp recordings revealed an activity profile consistent with activation of the hyperpolarization-activated current. Rapid membrane hyperpolarization was followed by a voltage- and time-dependent depolarizing voltage sag. In voltage clamp, membrane hyperpolarization evoked a slowly-activating inward current that was reversibly blocked with cesium and inhibited by ZD7288. The amplitude and current density of I-h was significantly larger in BDNF and NT3 supplemented cultures, but this did not translate to a significant alteration in voltage sag magnitude. Neurotrophins provided at 50 ng/ml produced a hyperpolarizing shift in the voltage-dependence and slower time course of I-h activation compared to SGNs in control groups or cultured with 10 ng/ml BDNF and NT3. Our results indicate that combined BDNF and NT3 increase the activity of hyperpolarization-activated currents and that the voltage-dependence and activation kinetics of I-h in SGNs are sensitive to changes in neurotrophin concentration. In addition, BDNF and NT3 applied together induce a decrease in firing threshold, but does not generate a shift in firing adaptation. (C) 2012 Elsevier B.V. All rights reserved. C1 [Needham, Karina; Nayagam, Bryony A.; Minter, Ricki L.; O'Leary, Stephen J.] Univ Melbourne, Royal Victorian Eye & Ear Hosp, Dept Otolaryngol, Melbourne, Vic 3002, Australia. RP Needham, K (reprint author), Univ Melbourne, Royal Victorian Eye & Ear Hosp, Dept Otolaryngol, Level 2,32 Gisborne St, Melbourne, Vic 3002, Australia. EM k.needham@unimelb.edu.au; b.nayagam@unimelb.edu.au; rminter@unimelb.edu.au; sjoleary@unimelb.edu.au FU Department of Otolaryngology, the University of Melbourne; Garnett Passe and Rodney Williams Memorial Foundation; Royal Victorian Eye and Ear Hospital; William Buckland Foundation (ANZ Charitable Trusts); National Health & Medical Research Council of Australia (NHMRC); NHMRC FX We gratefully acknowledge the assistance of Marc L Brady and John R Brady for valuable engineering support and technical assistance. We also thank the anonymous reviewers for providing constructive comments on an earlier version of the manuscript. Funding for this research was provided by: the Department of Otolaryngology, the University of Melbourne, the Garnett Passe and Rodney Williams Memorial Foundation, the Royal Victorian Eye and Ear Hospital, and the William Buckland Foundation (ANZ Charitable Trusts). B.A. Nayagam is supported by an Australian-Based Biomedical Research Fellowship from the National Health & Medical Research Council of Australia (NH&MRC), and S.J. O'Leary is a recipient of a NH&MRC Practitioner Fellowship. The funding bodies had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR Adamson CL, 2002, J COMP NEUROL, V447, P331, DOI 10.1002/cne.10244 Adamson CL, 2002, J NEUROSCI, V22, P1385 Agterberg M.J., 2009, J ASS RES OTOLARYNGO Bakondi G, 2009, NEUROSCIENCE, V158, P1469, DOI 10.1016/j.neuroscience.2008.10.056 Bal R, 2000, J NEUROPHYSIOL, V84, P806 BANKS MI, 1993, J NEUROPHYSIOL, V70, P1420 Barclay M, 2011, NEURAL DEV, V6, DOI 10.1186/1749-8104-6-33 Bender RA, 2008, PROG NEUROBIOL, V86, P129, DOI 10.1016/j.pneurobio.2008.09.007 Brewster A, 2002, J NEUROSCI, V22, P4591 Cao XJ, 2011, J NEUROPHYSIOL, V106, P630, DOI 10.1152/jn.00015.2010 Chen C, 1997, HEARING RES, V110, P179, DOI 10.1016/S0378-5955(97)00078-6 Coleman B, 2007, EXP CELL RES, V313, P232, DOI 10.1016/j.yexcr.2006.10.010 Cuttle MF, 2001, J PHYSIOL-LONDON, V534, P733, DOI 10.1111/j.1469-7793.2001.00733.x Davis RL, 2011, HEARING RES, V276, P34, DOI 10.1016/j.heares.2011.01.014 de Carrizosa MADL, 2009, J NEUROSCI, V29, P575, DOI 10.1523/JNEUROSCI.5312-08.2009 ERNFORS P, 1992, EUR J NEUROSCI, V4, P1140, DOI 10.1111/j.1460-9568.1992.tb00141.x FARINAS I, 1994, NATURE, V369, P658, DOI 10.1038/369658a0 Fayad JN, 2006, LARYNGOSCOPE, V116, P1310, DOI 10.1097/01.mlg.0000227176.09500.28 Fogle KJ, 2007, J NEUROSCI, V27, P2802, DOI 10.1523/JNEUROSCI.4376-06.2007 Frere SGA, 2004, MOL NEUROBIOL, V30, P279, DOI 10.1385/MN:30:3:279 Fritzsch B, 1997, J NEUROSCI, V17, P6213 George M.S., 2009, NAT NEUROSCI Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542 Gillespie LN, 2004, NEUROREPORT, V15, P1121, DOI 10.1097/01.wnr.0000125777.04774.c2 HAFIDI A, 1993, INT J DEV NEUROSCI, V11, P507, DOI 10.1016/0736-5748(93)90024-8 Hansen MR, 2001, HEARING RES, V161, P87, DOI 10.1016/S0378-5955(01)00360-4 Hansen MR, 2001, J NEUROSCI, V21, P2256 Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3 Hassfurth B, 2009, EUR J NEUROSCI, V30, P1227, DOI 10.1111/j.1460-9568.2009.06925.x Heffer LF, 2010, J NEUROPHYSIOL, V104, P3124, DOI 10.1152/jn.00500.2010 Jagger DJ, 2002, NEUROSCIENCE, V109, P169, DOI 10.1016/S0306-4522(01)00454-7 Jiang YQ, 2008, NEUROCHEM RES, V33, P1979, DOI 10.1007/s11064-008-9717-6 Jimenez C, 1997, NEUROSCIENCE, V77, P673, DOI 10.1016/S0306-4522(96)00505-2 Khurana S, 2011, J NEUROSCI, V31, P8936, DOI 10.1523/JNEUROSCI.1079-11.2011 Lallemend F, 2007, NEUROSCIENCE, V150, P212, DOI 10.1016/j.neuroscience.2007.08.032 Landry TG, 2011, HEARING RES, V282, P303, DOI 10.1016/j.heares.2011.06.007 LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4 Leake PA, 2011, J COMP NEUROL, V519, P1526, DOI 10.1002/cne.22582 Leao KE, 2006, J PHYSIOL-LONDON, V576, P849, DOI 10.1113/jphysiol.2006.114702 Leao KE, 2011, EUR J NEUROSCI, V33, P1462, DOI 10.1111/j.1460-9568.2011.07627.x Leao RN, 2005, EUR J NEUROSCI, V22, P147, DOI 10.1111/j.1460-9568.2005.04185.x LEFEBVRE PP, 1994, NEUROREPORT, V5, P865, DOI 10.1097/00001756-199404000-00003 Lewis AS, 2009, J NEUROSCI, V29, P6250, DOI 10.1523/JNEUROSCI.0856-09.2009 Lin X, 1997, HEARING RES, V108, P157, DOI 10.1016/S0378-5955(97)00050-6 Liu Q, 2007, J NEUROPHYSIOL, V98, P2215, DOI 10.1152/jn.00284.2007 MacLean JN, 2003, NEURON, V37, P109, DOI 10.1016/S0896-6273(02)01104-2 MacLean JN, 2005, J NEUROPHYSIOL, V94, P3601, DOI 10.1152/jn.00281.2005 Malgrange B, 1996, NEUROREPORT, V7, P913, DOI 10.1097/00001756-199603220-00016 Marzella PL, 1999, HEARING RES, V138, P73, DOI 10.1016/S0378-5955(99)00152-5 McGuinness SL, 2005, OTOL NEUROTOL, V26, P1064, DOI 10.1097/01.mao.0000185063.20081.50 Miller CA, 2006, JARO-J ASSOC RES OTO, V7, P195, DOI 10.1007/s10162-006-0036-9 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 Mo ZL, 1997, J NEUROPHYSIOL, V77, P1294 Mo ZL, 2002, J PHYSIOL-LONDON, V542, P763, DOI 10.1113/jphysiol.2002.017202 Mo ZL, 1997, J NEUROPHYSIOL, V78, P3019 Mou K, 1997, J COMP NEUROL, V386, P529 Negm MH, 2008, IEEE ENG MED BIO, P5539, DOI 10.1109/IEMBS.2008.4650469 O'Leary SJ, 2009, J NEURAL ENG, V6, DOI 10.1088/1741-2560/6/5/055002 Pape HC, 1996, ANNU REV PHYSIOL, V58, P299, DOI 10.1146/annurev.physiol.58.1.299 Pettingill LN, 2007, IEEE T BIO-MED ENG, V54, P1138, DOI 10.1109/TBME.2007.895375 Pian P, 2007, PFLUG ARCH EUR J PHY, V455, P125, DOI 10.1007/s00424-007-0295-2 PIRVOLA U, 1992, P NATL ACAD SCI USA, V89, P9915, DOI 10.1073/pnas.89.20.9915 PIRVOLA U, 1994, HEARING RES, V75, P131, DOI 10.1016/0378-5955(94)90064-7 Ramekers D, 2012, HEARING RES, V288, P19, DOI 10.1016/j.heares.2012.03.002 Reichardt LF, 2006, PHILOS T R SOC B, V361, P1545, DOI 10.1098/rstb.2006.1894 Richardson RT, 2006, AUDIOL NEURO-OTOL, V11, P343, DOI 10.1159/000095896 Richichi C, 2008, NEUROBIOL DIS, V29, P297, DOI 10.1016/j.nbd.2007.09.003 Robinson RB, 2003, ANNU REV PHYSIOL, V65, P453, DOI 10.1146/annurev.physiol.65.092101.142734 Rodrigues ARA, 2006, J NEUROPHYSIOL, V95, P76, DOI 10.1152/jn.00624.2005 Roehm Pamela C, 2005, Curr Opin Otolaryngol Head Neck Surg, V13, P294, DOI 10.1097/01.moo.0000180919.68812.b9 Rusznak Z, 2009, PFLUG ARCH EUR J PHY, V457, P1303, DOI 10.1007/s00424-008-0586-2 Santoro B, 2004, J NEUROSCI, V24, P10750, DOI 10.1523/JNEUROSCI.3300-04.2004 Santoro B, 2003, TRENDS NEUROSCI, V26, P550, DOI 10.1016/j.tins.2003.08.003 SCHECTERSON LC, 1994, HEARING RES, V73, P92, DOI 10.1016/0378-5955(94)90286-0 Schimmang T, 2003, DEVELOPMENT, V130, P4741, DOI 10.1242/dev.00676 SCHIMMANG T, 1995, DEVELOPMENT, V121, P3381 Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564 Shepherd RK, 2004, EUR J NEUROSCI, V20, P3131, DOI 10.1111/j.1460-9568.2004.03809.x Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999 SilosSantiago I, 1997, EUR J NEUROSCI, V9, P2045, DOI 10.1111/j.1460-9568.1997.tb01372.x Sly DJ, 2007, EUR J NEUROSCI, V26, P510, DOI 10.1111/j.1460-9568.2007.05678.x Sly DJ, 2012, JARO-J ASSOC RES OTO, V13, P1, DOI 10.1007/s10162-011-0297-9 Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011 Sun W, 2009, NEUROSCIENCE, V164, P1854, DOI 10.1016/j.neuroscience.2009.09.037 Szabo ZS, 2002, EUR J NEUROSCI, V16, P1887, DOI 10.1046/j.1460-9568.2002.02258.x Thoby-Brisson M, 2003, J NEUROSCI, V23, P7685 Wahl-Schott C, 2009, CELL MOL LIFE SCI, V66, P470, DOI 10.1007/s00018-008-8525-0 Wise AK, 2005, J COMP NEUROL, V487, P147, DOI 10.1002/cne.20563 Yamada R, 2005, J NEUROSCI, V25, P8867, DOI 10.1523/JNEUROSCI.2541-05.2005 Yi EY, 2010, J NEUROPHYSIOL, V103, P2532, DOI 10.1152/jn.00506.2009 YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C Youssoufian M, 2007, EUR J NEUROSCI, V25, P1647, DOI 10.1111/j.1460-9568.2007.05428.x ZHENG JL, 1995, J NEUROSCI, V15, P5079 Zhou ZP, 2005, J NEUROSCI, V25, P7558, DOI 10.1523/JNEUROSCI.1735-05.2005 NR 95 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2012 VL 291 IS 1-2 BP 1 EP 14 DI 10.1016/j.heares.2012.07.002 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 004MA UT WOS:000308684600001 PM 22796476 ER PT J AU van Beelen, E Leijendeckers, JM Huygen, PLM Admiraal, RJC Hoefsloot, LH Lichtenbelt, KD Stobe, L Pennings, RJE Leuwer, R Snik, AFM Kunst, HPM AF van Beelen, E. Leijendeckers, J. M. Huygen, P. L. M. Admiraal, R. J. C. Hoefsloot, L. H. Lichtenbelt, K. D. Stoebe, L. Pennings, R. J. E. Leuwer, R. Snik, A. F. M. Kunst, H. P. M. TI Audiometric characteristics of two Dutch families with non-ocular Stickler syndrome (COL11A2) SO HEARING RESEARCH LA English DT Article ID PROGRESSIVE ARTHRO-OPHTHALMOPATHY; HEARING-LOSS; AUTOSOMAL-DOMINANT; OTOSPONDYLOMEGAEPIPHYSEAL DYSPLASIA; AFFECTED MEMBERS; MUTATION; GENE; DFNA13/COL11A2; IMPAIRMENT; PHENOTYPE AB Objective: To evaluate hearing impairment and cochlear function in non-ocular Stickler syndrome. Study design: Multifamily study. Patients & methods: Ten patients from two different families with non-ocular Stickler syndrome (Stickler syndrome type 3) were included. Six members of the first family and four members of the second family participated in this study. Otorhinolaryngologic examinations were performed. Pure-tone and speech audiograms were obtained. Longitudinal analysis was performed. Psychophysical measurements, including loudness scaling, gap detection, difference limen for frequency and speech perception in noise were administered to assess cochlear function at a deeper level. Results: Affected individuals in the first family were carriers of a heterozygous splice donor mutation in the COL11A2 gene. Affected individuals in the second family were carriers of a novel heterozygous missense mutation in COL11A2. Both families showed bilateral, non-progressive hearing impairment with childhood onset. The severity of the hearing impairment exhibited inter- and intrafamilial variability and was mostly mild to moderate. The results of the psychophysical measurements were similar to those previously published for DFNA8/12 (TECTA) and DFNA13 (COL11A2) patients and thus consistent with an intra-cochlear conductive hearing impairment. This is in line with the theory that mutations in COL11A2 affect tectorial membrane function. Conclusion: Hearing impairment in non-ocular Stickler syndrome is characterized by non-progressive hearing loss, present since childhood, and mostly mild to moderate in severity. Psychophysical measurements in non-ocular Stickler patients were suggestive of intra-cochlear conductive hearing impairment. (C) 2012 Elsevier B.V. All rights reserved. C1 [van Beelen, E.; Leijendeckers, J. M.; Huygen, P. L. M.; Admiraal, R. J. C.; Hoefsloot, L. H.; Pennings, R. J. E.; Snik, A. F. M.; Kunst, H. P. M.] Radboud Univ Nijmegen, Med Ctr, Dept Otorhinolaryngol Head & Neck Surg, NL-6500 HB Nijmegen, Netherlands. [van Beelen, E.; Leijendeckers, J. M.; Admiraal, R. J. C.; Pennings, R. J. E.; Snik, A. F. M.; Kunst, H. P. M.] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, NL-6500 HE Nijmegen, Netherlands. [Lichtenbelt, K. D.] Univ Med Ctr Utrecht, Dept Med Genet, NL-3508 AB Utrecht, Netherlands. [Stoebe, L.; Leuwer, R.] HELIOS Hosp, Dept Otorhinolaryngol Head & Neck Surg, D-47805 Krefeld, Germany. [Hoefsloot, L. H.] Radboud Univ Nijmegen, Med Ctr, Dept Human Genet, NL-6500 HB Nijmegen, Netherlands. RP van Beelen, E (reprint author), Radboud Univ Nijmegen, Med Ctr, Dept Otorhinolaryngol Head & Neck Surg, POB 9101, NL-6500 HB Nijmegen, Netherlands. EM E.vanBeelen@kno.umcn.nl; J.Leijendeckers@kno.umcn.nl; P.Huygen@kno.umcn.nl; R.Admiraal@kno.umcn.nl; L.Hoefsloot@gen.umcn.nl; k.d.lichtenbelt@umcutrecht.nl; Lars.Stoebe@helios-kliniken.de; R.Pennings@kno.umcn.nl; rudolf.leuwer@helios-kliniken.de; A.Snik@kno.umcn.nl; H.Kunst@kno.umcn.nl RI Kunst, Henricus/J-6456-2012; Pennings, Ronald/J-6651-2012; Snik, Ad/H-8092-2014 FU INTERREG IVA program of Germany; INTERREG IVA program of the Netherlands FX We would like to thank all of the family members who participated in this study for their cooperation. This study was supported by a grant from the INTERREG IVA program of Germany and the Netherlands. CR Admiraal RJC, 2000, LARYNGOSCOPE, V110, P457, DOI 10.1097/00005537-200003000-00025 Annunen S, 1999, AM J HUM GENET, V65, P974, DOI 10.1086/302585 Avcin T, 2008, J RHEUMATOL, V35, P920 Bosman AJ, 1995, AUDIOLOGY, V34, P260 BRUNNER HG, 1994, HUM MOL GENET, V3, P1561, DOI 10.1093/hmg/3.9.1561 Chen W, 2005, J MED GENET, V42, DOI 10.1136/jmg.2005.032615 De Leenheer EMR, 2002, ANN OTO RHINOL LARYN, V111, P267 De Leenheer EMR, 2004, ANN OTO RHINOL LARYN, V113, P922 Govaerts PJ, 2002, ADV OTO-RHINO-LARYNG, V61, P60 HALL J, 1974, Birth Defects Original Article Series, V10, P157 Harel T, 2005, AM J MED GENET A, V132A, P33, DOI 10.1002/ajmg.a.30371 Kirschhofer K, 1998, CYTOGENET CELL GENET, V82, P126, DOI 10.1159/000015086 Kunst H, 2000, AM J OTOL, V21, P181, DOI 10.1016/S0196-0709(00)80006-X Leijendeckers JM, 2009, AUDIOL NEURO-OTOL, V14, P223, DOI 10.1159/000189265 McGuirt WT, 1999, NAT GENET, V23, P413 MOSER LM, 1987, HNO, V35, P318 Naz S, 2003, J MED GENET, V40, P360, DOI 10.1136/jmg.40.5.360 Pascoe PD, 1988, HEAR FITT THEOR PRAC, P129 Plantinga RF, 2007, JARO-J ASSOC RES OTO, V8, P1, DOI 10.1007/s10162-006-0060-9 PLOMP R, 1979, AUDIOLOGY, V18, P43 Robin NH, 1993, GENEREVIEWS Sirko-Osadsa D, 1998, J PEDIATR-US, V132, P368, DOI 10.1016/S0022-3476(98)70466-4 Snead MP, 1999, J MED GENET, V36, P353 STICKLER GB, 1967, MAYO CLIN PROC, V42, P495 STICKLER GB, 1965, MAYO CLIN PROC, V40, P433 Szymko-Bennett YM, 2001, ARCH OTOLARYNGOL, V127, P1061 vanSteensel MAM, 1997, AM J MED GENET, V70, P315 VIKKULA M, 1995, CELL, V80, P431, DOI 10.1016/0092-8674(95)90493-X Vuoristo MM, 2004, AM J MED GENET A, V130A, P160, DOI 10.1002/ajmg.a.30111 NR 29 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2012 VL 291 IS 1-2 BP 15 EP 23 DI 10.1016/j.heares.2012.07.001 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 004MA UT WOS:000308684600002 PM 22796475 ER PT J AU Fullgrabe, C Moore, BCJ AF Fuellgrabe, Christian Moore, Brian C. J. TI Objective and subjective measures of pure-tone stream segregation based on interaural time differences SO HEARING RESEARCH LA English DT Article ID HEARING-IMPAIRED LISTENERS; TEMPORAL DISCRIMINATION; FUNDAMENTAL-FREQUENCY; SEQUENCES; PERCEPTION; ATTENTION; CUES AB The effect of interaural time differences (ITDs) on stream segregation for successive tone bursts was investigated. Obligatory stream segregation was inferred from the threshold for detecting a rhythmic irregularity in an otherwise isochronous sequence of interleaved "A" and "B" tones (task 1). Subjective stream segregation was evaluated by requiring listeners to indicate whether they heard one or two streams during presentation of a 30-s long sequence (task 2). The A and B tones had equal but opposite ITDs and had the same or different frequencies of 500 and/or 707 Hz. The ITDs ranged from 0 to 2 ms in study 1, and from 0 to 0.5 ms in study 2. Sensitivity on task 1 was poor in both studies when A and B had different frequencies, and was little affected by ITD. Thresholds for the same-frequency conditions worsened somewhat with increasing ITD up to 0.5 ms and then (for study 1) flattened off. There was a small increase in subjective streaming as the ITD was increased up to 0.5 ms, but little streaming for larger ITDs (study 1). We conclude that ITD, at most, has weak effects in producing obligatory and subjective stream segregation. (C) 2012 Elsevier B.V. All rights reserved. C1 [Fuellgrabe, Christian; Moore, Brian C. J.] Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England. RP Fullgrabe, C (reprint author), Nottingham Univ Sect, MRC Inst Hearing Res, Nottingham NG7 2RD, England. EM c.fullgrabe@ihr.mrc.ac.uk; bcjm@cam.ac.uk RI Moore, Brian/I-5541-2012; Fullgrabe, Christian/I-6331-2012 FU Fyssen Foundation (France); MRC (UK) FX This research was supported by a Fyssen Foundation (France) post-doctoral fellowship to C. Fullgrabe, and an MRC (UK) grant to B.C.J. Moore. The authors are indebted to Dr. Thomas Stainsby for help with programming. We thank two reviewers for helpful comments on an earlier version of this paper. CR Akeroyd MA, 2005, J ACOUST SOC AM, V118, P977, DOI 10.1121/1.1945566 ANSTIS S, 1985, J EXP PSYCHOL HUMAN, V11, P257, DOI 10.1037/0096-1523.11.3.257 Beauvois MW, 1997, PERCEPT PSYCHOPHYS, V59, P81, DOI 10.3758/BF03206850 Boehnke SE, 2005, PERCEPT PSYCHOPHYS, V67, P1088, DOI 10.3758/BF03193634 Bregman A. S., 1993, THINKING SOUND COGNI, P10 BREGMAN AS, 1978, J EXP PSYCHOL HUMAN, V4, P380, DOI 10.1037//0096-1523.4.3.380 BREGMAN AS, 1971, J EXP PSYCHOL, V89, P244, DOI 10.1037/h0031163 Bregman AS., 1990, AUDITORY SCENE ANAL BUELL TN, 1991, J ACOUST SOC AM, V90, P3077, DOI 10.1121/1.401782 Carlyon RP, 2001, J EXP PSYCHOL HUMAN, V27, P115, DOI 10.1037//0096-1523.27.1.115 CRAMER EM, 1958, J ACOUST SOC AM, V30, P413, DOI 10.1121/1.1909628 Culling JF, 2000, J EXP PSYCHOL HUMAN, V26, P1760, DOI 10.1037/0096-1523.26.6.1760 Cusack R, 2000, PERCEPT PSYCHOPHYS, V62, P1112, DOI 10.3758/BF03212092 Darwin CJ, 1999, J EXP PSYCHOL HUMAN, V25, P617, DOI 10.1037/0096-1523.25.3.617 DOWLING WJ, 1973, COGNITIVE PSYCHOL, V5, P322, DOI 10.1016/0010-0285(73)90040-6 Gockel H, 1999, J ACOUST SOC AM, V106, P3553, DOI 10.1121/1.428208 Grantham D. Wesley, 1995, P297, DOI 10.1016/B978-012505626-7/50011-X HARTMANN WM, 1991, MUSIC PERCEPT, V9, P155 KUBOVY M, 1974, SCIENCE, V186, P272, DOI 10.1126/science.186.4160.272 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 MILLER GA, 1950, J ACOUST SOC AM, V22, P637, DOI 10.1121/1.1906663 MILLS AW, 1958, J ACOUST SOC AM, V30, P237, DOI 10.1121/1.1909553 Moore BCJ, 2002, ACTA ACUST UNITED AC, V88, P320 Moore BCJ, 2012, PHILOS T R SOC B, V367, P919, DOI 10.1098/rstb.2011.0355 Pressnitzer D, 2006, CURR BIOL, V16, P1351, DOI 10.1016/j.cub.2006.05.054 Roberts B, 2002, J ACOUST SOC AM, V112, P2074, DOI 10.1121/1.1508784 Roberts B, 2008, J EXP PSYCHOL HUMAN, V34, P992, DOI 10.1037/0096-1523.34.4.992 Rose MM, 1997, J ACOUST SOC AM, V102, P1768, DOI 10.1121/1.420108 Snedecor G. W., 1967, STAT METHODS Stainsby TH, 2004, HEARING RES, V192, P119, DOI 10.1016/j.heares.2004.02.003 Stainsby TH, 2011, J ACOUST SOC AM, V130, P904, DOI 10.1121/1.3605540 Stainsby TH, 2004, J ACOUST SOC AM, V115, P1665, DOI [10.1121/1.1650288, 10.1121/1.1650288]] STUDEBAKER GA, 1985, J SPEECH HEAR RES, V28, P455 THURLOW W, 1957, AM J PSYCHOL, V70, P653, DOI 10.2307/1419466 van Noorden L. P. A. S., 1975, THESIS EINDHOVEN U T Vliegen J, 1999, J ACOUST SOC AM, V106, P938, DOI 10.1121/1.427140 Wilson EC, 2007, J NEUROPHYSIOL, V97, P2230, DOI 10.1152/jn.00788.2006 NR 37 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2012 VL 291 IS 1-2 BP 24 EP 33 DI 10.1016/j.heares.2012.06.006 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 004MA UT WOS:000308684600003 PM 22771780 ER PT J AU Thomas, JM Morse, C Kishline, L O'Brien-Lambert, A Simonton, A Miller, KE Covey, E AF Thomas, Jessica M. Morse, Christina Kishline, Lindsey O'Brien-Lambert, Alex Simonton, Ariel Miller, Kimberly E. Covey, Ellen TI Stimulus-specific adaptation in specialized neurons in the inferior colliculus of the big brown bat, Eptesicus fuscus SO HEARING RESEARCH LA English DT Article ID SINUSOIDAL FREQUENCY MODULATIONS; AUDITORY-SYSTEM; CORTEX; RAT AB The inferior colliculus (IC) of the big brown bat (Eptesicus fuscus) contains specialized neurons that respond exclusively to highly specific spectrotemporal patterns such as sinusoidally frequency modulated (SFM) signals or directional frequency modulated sweeps (FM). Other specialized cells with l-shaped frequency response areas (FRAs) are tuned to very narrow frequency bands (1-2 kHz) in an amplitude-tolerant manner. In contrast, non-specialized neurons respond to any stimulus with energy in their frequency response area. IC neurons in several mammalian species, including bats, demonstrate stimulus-specific adaptation (SSA), a reduction in response to a high-probability stimulus. To evaluate the relation between stimulus selectivity and SSA, we presented sounds using an oddball stimulus paradigm and recorded extracellular responses of IC neurons. SFM-selective cells (n = 10), FM-selective cells (n = 7), and cells with I-shaped FRAs (n = 13) did not show SSA under any of the conditions tested (NSSI = 0.009, 0.033, 0.020 respectively). However, non-specialized neurons (n = 52) exhibited various levels of SSA (NSSI = 0.163), with a subset of these cells displaying strong adaptation. These findings suggest that SSA is not a ubiquitous characteristic of all neurons in the bat IC, but is present only in a subset of non-specialized neurons. (C) 2012 Elsevier B.V. All rights reserved. C1 [Thomas, Jessica M.; Morse, Christina; Kishline, Lindsey; O'Brien-Lambert, Alex; Simonton, Ariel; Miller, Kimberly E.; Covey, Ellen] Univ Washington, Dept Psychol, Seattle, WA 98195 USA. RP Covey, E (reprint author), Univ Washington, Dept Psychol, Seattle, WA 98195 USA. EM ecovey@u.washington.edu FU NSF [IOS-0719295]; Auditory Neuroscience Training Grant [5T32DC005361-09] FX We thank Michael Dale Fisher for his many contributions to the project and Brandon Warren for software support. Financial support was provided by the NSF Grant IOS-0719295 (EC) and Auditory Neuroscience Training Grant 5T32DC005361-09 (JMT). CR Anderson LA, 2009, NEUROREPORT, V20, P462, DOI 10.1097/WNR.0b013e328326f5ab Antunes F. M., 2010, PLOS ONE, V5 Brudzynski S.M., 2005, BEHAV GENET, V35, P87 Casseday JH, 1997, J NEUROPHYSIOL, V77, P1595 CASSEDAY JH, 1992, J COMP NEUROL, V319, P34, DOI 10.1002/cne.903190106 Casseday JH, 2002, SPR HDB AUD, V15, P238 Casseday JH, 1996, BRAIN BEHAV EVOLUT, V47, P311, DOI 10.1159/000113249 Covey E, 2005, ANAT REC PART A, V287A, P1103, DOI 10.1002/ar.a.20254 Covey E, 1999, ANNU REV PHYSIOL, V61, P457, DOI 10.1146/annurev.physiol.61.1.457 Farrar D.M., 2005, N AM S BAT RES, V35 Malmierca MS, 2009, J NEUROSCI, V29, P5483, DOI 10.1523/JNEUROSCI.4153-08.2009 Monroy J.A., 2011, J COMP PHYSIOL A, P1 Perez-Gonzalez D, 2005, EUR J NEUROSCI, V22, P2879, DOI 10.1111/j.1460-9568.2005.04472.x SIMMONS JA, 1989, COGNITION, V33, P155, DOI 10.1016/0010-0277(89)90009-7 Simonton A., 2009, STIMULUS SPECIFIC AD Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032 Ulanovsky N, 2004, J NEUROSCI, V24, P10440, DOI 10.1523/JNEUROSCI.1905-04.2004 Yue Q, 2007, J NEUROPHYSIOL, V98, P1364, DOI 10.1152/jn.00432.2007 NR 18 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2012 VL 291 IS 1-2 BP 34 EP 40 DI 10.1016/j.heares.2012.06.004 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 004MA UT WOS:000308684600004 PM 22743044 ER PT J AU Chung, K Nelson, L Teske, M AF Chung, King Nelson, Lance Teske, Melissa TI Noise reduction technologies implemented in head-worn preprocessors for improving cochlear implant performance in reverberant noise fields SO HEARING RESEARCH LA English DT Article ID QUALITY-OF-LIFE; NORMAL-HEARING LISTENERS; DIRECTIONAL MICROPHONES; PHONEME RECOGNITION; SPEECH RECOGNITION; BACKGROUND-NOISE; CHILDREN; AID; AGE; LANGUAGE AB The purpose of this study was to investigate whether a multichannel adaptive directional microphone and a modulation-based noise reduction algorithm could enhance cochlear implant performance in reverberant noise fields. A hearing aid was modified to output electrical signals (ePreprocessor) and a cochlear implant speech processor was modified to receive electrical signals (eProcessor). The ePreprocessor was programmed to flat frequency response and linear amplification. Cochlear implant listeners wore the ePreprocessor-eProcessor system in three reverberant noise fields: 1) one noise source with variable locations: 2) three noise sources with variable locations: and 3) eight evenly spaced noise sources from 0 degrees to 360 degrees. Listeners' speech recognition scores were tested when the ePreprocessor was programmed to omnidirectional microphone (OMNI), omnidirectional microphone plus noise reduction algorithm (OMNI + NR), and adaptive directional microphone plus noise reduction algorithm (ADM + NR). They were also tested with their own cochlear implant speech processor (CI_OMNI) in the three noise fields. Additionally, listeners rated overall sound quality preferences on recordings made in the noise fields. Results indicated that ADM+NR produced the highest speech recognition scores and the most preferable rating in all noise fields. Factors requiring attention in the hearing aid-cochlear implant integration process are discussed. (C) 2012 Elsevier B.V. All rights reserved. C1 [Chung, King] No Illinois Univ, Dept Allied Hlth & Commun Disorders, De Kalb, IL 60115 USA. [Nelson, Lance; Teske, Melissa] Purdue Univ, Dept Speech Language & Hearing Sci, W Lafayette, IN 47906 USA. RP Chung, K (reprint author), No Illinois Univ, Dept Allied Hlth & Commun Disorders, 323 Wirtz Hall, De Kalb, IL 60115 USA. EM kchung@niu.edu FU Oticon Foundation; MED-EL Cooperation FX We would like to thank Scott Kepner and Derek Tully for technical support and Oticon Foundation and MED-EL Cooperation for sponsoring the project. While the study protocol was devised in collaboration with sponsoring organizations, the authors are solely responsible for the interpretation and the presentation of the results in this paper. CR Alcantara JI, 2003, INT J AUDIOL, V42, P34, DOI 10.3109/14992020309056083 Arlinger S, 2003, INT J AUDIOL, V42, pS17 Barton GR, 2005, INT J AUDIOL, V44, P157, DOI 10.1080/14992020500057566 Bentler Ruth, 2006, Trends Amplif, V10, P67 Bentler Ruth A, 2004, Am J Audiol, V13, P73, DOI 10.1044/1059-0889(2004/010) Boymans M, 2000, AUDIOLOGY, V39, P260 Buchner A., 2011, 13 S COCHL IMPL CHIL BURKHARD MD, 1975, J ACOUST SOC AM, V58, P214, DOI 10.1121/1.380648 Chung K, 2009, HEARING RES, V250, P27, DOI 10.1016/j.heares.2009.01.005 Chung K, 2006, J ACOUST SOC AM, V120, P2216, DOI 10.1121/1.2285800 Chung K, 2004, ACOUST RES LETT ONL, V5, P56, DOI 10.1121/1.1666869 Chung K, 2007, J ACOUST SOC AM, V121, P1090, DOI 10.1121/1.2409859 Chung KT, 2004, RADIAT PHYS CHEM, V70, P83, DOI 10.1016/j.radphyschem.2003.12.006 COX RM, 1987, EAR HEARING, V8, pS119, DOI 10.1097/00003446-198710001-00010 Dawson PW, 2011, EAR HEARING, V32, P382, DOI 10.1097/AUD.0b013e318201c200 Dorman MF, 1998, J ACOUST SOC AM, V104, P3583, DOI 10.1121/1.423940 Edwards B.W., 1998, HEAR J, V51, P38 Flynn M., 2004, SYNCRO CONCEPT Fu QJ, 1999, J ACOUST SOC AM, V106, pL18, DOI 10.1121/1.427031 Gates GA, 2005, LANCET, V366, P1111, DOI 10.1016/S0140-6736(05)67423-5 Gifford RH, 2010, J AM ACAD AUDIOL, V21, P441, DOI 10.3766/jaaa.21.7.3 Hicks CB, 2002, J SPEECH LANG HEAR R, V45, P573, DOI 10.1044/1092-4388(2002/046) Hu Y, 2008, J ACOUST SOC AM, V124, P498, DOI 10.1121/1.2924131 Hu Y, 2010, J ACOUST SOC AM, V127, P3689, DOI 10.1121/1.3365256 Johns M., 2002, EFFECTIVE NOISE REDU Kokkinakis K, 2010, J ACOUST SOC AM, V127, P3136, DOI 10.1121/1.3372727 Kuk F, 2002, HEAR J, V55, P34 Latzel M., 2003, HEAR REV, V10, P76 Mauger SJ, 2012, J ACOUST SOC AM, V131, P327, DOI 10.1121/1.3665990 Miyamoto RT, 2008, ACTA OTO-LARYNGOL, V128, P373, DOI 10.1080/00016480701785012 Mueller H Gustav, 2006, Trends Amplif, V10, P83, DOI 10.1177/1084713806289553 Nachtegaal J, 2009, EAR HEARING, V30, P302, DOI 10.1097/AUD.0b013e31819c6e01 Nelson PB, 2003, J ACOUST SOC AM, V113, P961, DOI 10.1121/1.1531983 Nicholas JG, 2007, J SPEECH LANG HEAR R, V50, P1048, DOI 10.1044/1092-4388(2007/073) Nilsson M.J., 1994, J ACOUST SOC AM, V95, P1985 Palmer Catherine V, 2006, Trends Amplif, V10, P95, DOI 10.1177/1084713806289554 Pearsons K.S., 1976, ENV HLTH EFFECTS RES Powers T., 1999, HEAR REV, V3, P36 Ricketts T, 2002, INT J AUDIOL, V41, P100, DOI 10.3109/14992020209090400 Ricketts T A, 2001, Trends Amplif, V5, P139, DOI 10.1177/108471380100500401 Sarampalis A, 2009, J SPEECH LANG HEAR R, V52, P1230, DOI 10.1044/1092-4388(2009/08-0111) Schum DJ, 2003, HEAR J, V56, P32 Spriet A, 2007, EAR HEARING, V28, P62, DOI 10.1097/01.aud.0000252470.54246.54 Stacey PC, 2006, EAR HEARING, V27, P161, DOI 10.1097/01.aud.0000202353.37567.b4 Stickney GS, 2004, J ACOUST SOC AM, V116, P1081, DOI 10.1121/1.1772399 STUDEBAKER GA, 1985, J SPEECH HEAR RES, V28, P455 Tellier N., 2003, HEAR REV, V10, P48 Valente M., 2004, HEAR REV, V11, p[42, 71] Valente M, 1999, Trends Amplif, V4, P112, DOI 10.1177/108471389900400302 Walden B E, 2000, J Am Acad Audiol, V11, P540 Yoshinaga-Itano C, 1998, PEDIATRICS, V102, P1161, DOI 10.1542/peds.102.5.1161 Zeng Fan-Gang, 2008, IEEE Rev Biomed Eng, V1, P115, DOI 10.1109/RBME.2008.2008250 Zeng FG, 1999, EAR HEARING, V20, P60, DOI 10.1097/00003446-199902000-00006 Zhao F, 2008, CLIN OTOLARYNGOL, V33, P427, DOI 10.1111/j.1749-4486.2008.01773.x NR 54 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2012 VL 291 IS 1-2 BP 41 EP 51 DI 10.1016/j.heares.2012.06.003 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 004MA UT WOS:000308684600005 PM 22750449 ER PT J AU Brown, AD Kuznetsova, MS Spain, WJ Stecker, GC AF Brown, Andrew D. Kuznetsova, Marina S. Spain, William J. Stecker, G. Christopher TI Frequency-specific, location-nonspecific adaptation of interaural time difference sensitivity SO HEARING RESEARCH LA English DT Article ID SOUND LOCALIZATION; POTASSIUM CURRENTS; COCHLEAR NUCLEUS; LEVEL; LATERALIZATION; INHIBITION; CUES AB Human listeners' sensitivity to interaural time differences (ITD) was assessed for 1000 Hz tone bursts (500 ms duration) preceded by trains of 500-ms "adapter" tone bursts (7 s total adapter duration, frequencies of 200, 665, 1000, or 1400 Hz) carrying random ITD, or by an equal-duration period of silence. Presentation of the adapter burst train reduced ITD sensitivity in a frequency-specific manner. The observed effect differs from previously described forms of location-specific psychophysical adaptation, as it was produced using a binaurally diffuse sequence of tone bursts (i.e., a location-nonspecific adapter stimulus). Results are discussed in the context of pre-binaural adaptation. (C) 2012 Elsevier B.V. All rights reserved. C1 [Brown, Andrew D.; Stecker, G. Christopher] Univ Washington, Dept Speech & Hearing Sci, Seattle, WA 98105 USA. [Kuznetsova, Marina S.] Univ Washington, Interdisciplinary Grad Program Neurobiol & Behav, Seattle, WA 98105 USA. [Spain, William J.] Vet Affairs Puget Sound Hlth Care Syst, Seattle, WA 98108 USA. RP Brown, AD (reprint author), Univ Washington, Dept Speech & Hearing Sci, 1417 NE 42nd St, Seattle, WA 98105 USA. EM andrewdb@uw.edu; msk@uw.edu; spain@uw.edu; cstecker@uw.edu FU National Institute on Deafness and Other Communication Disorders [NIH] [T32-DC000033, F31-DC010543, F31-DC091763, R03-DC009482]; VA Merit Review FX The authors thank Anna Mamiya and Shiboney Dumo for help with data collection. This work was supported by the National Institute on Deafness and Other Communication Disorders [NIH Grant Nos. T32-DC000033, F31-DC010543 (ADB), F31-DC091763 (MSK), R03-DC009482 (GCS)] and a VA Merit Review (WJS). CR Abolafia JM, 2011, CEREB CORTEX, V21, P977, DOI 10.1093/cercor/bhq163 Adrian ED, 1926, J PHYSIOL-LONDON, V61, P151 Fairhall AL, 2001, NATURE, V412, P787, DOI 10.1038/35090500 Freyman RL, 1997, J ACOUST SOC AM, V101, P1649, DOI 10.1121/1.418149 Getzmann S, 2004, HEARING RES, V191, P14, DOI 10.1016/j.heares.2003.12.020 Grothe B, 2010, PHYSIOL REV, V90, P983, DOI 10.1152/physrev.00026.2009 Grothe B, 2011, HEARING RES, V279, P43, DOI 10.1016/j.heares.2011.03.013 HAFTER ER, 1988, AUDITORY FUNCTION, P647 Hartung K, 2001, J ACOUST SOC AM, V110, P1505, DOI 10.1121/1.1390339 Kapfer C, 2002, NAT NEUROSCI, V5, P247, DOI 10.1038/mm810 Kashino M, 1998, J ACOUST SOC AM, V103, P3597, DOI 10.1121/1.423064 Kuznetsova MS, 2008, J NEUROSCI, V28, P11906, DOI 10.1523/JNEUROSCI.3827-08.2008 Kuznetsova M.S., 2009, ASS RES OTOLARYNGOL, V34, P718 Levitt H., 1971, J ACOUST SOC AM, V98, P1803 Maier JK, 2010, JARO-J ASSOC RES OTO, V11, P319, DOI 10.1007/s10162-009-0200-0 MCFADDEN D, 1973, PERCEPT MOTOR SKILL, V37, P755 MOORE BCJ, 1987, HEARING RES, V28, P209, DOI 10.1016/0378-5955(87)90050-5 Moore D., 2005, INTRO PRACTICE STAT, V4th Nakamoto KT, 2008, J NEUROPHYSIOL, V99, P2347, DOI 10.1152/jn.01326.2007 Pecka M, 2007, J NEUROSCI, V27, P1782, DOI 10.1523/JNEUROSCI.5335-06.2007 Phillips DP, 2005, HEARING RES, V202, P188, DOI [10.1016/j.heares.2004.11.001, 10.1016/j.heres.2004.11.001] Rothman JS, 2003, J NEUROPHYSIOL, V89, P3070, DOI 10.1152/jn.00125.2002 Schnupp JWH, 2009, NAT NEUROSCI, V12, P692, DOI 10.1038/nn.2325 Tollin DJ, 1999, J ACOUST SOC AM, V105, P838, DOI 10.1121/1.426273 WALLACH H, 1949, AM J PSYCHOL, V62, P315, DOI 10.2307/1418275 WICKESBERG RE, 1990, J NEUROSCI, V10, P1762 ZWISLOCKI J, 1956, J ACOUST SOC AM, V28, P860, DOI 10.1121/1.1908495 NR 27 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2012 VL 291 IS 1-2 BP 52 EP 56 DI 10.1016/j.heares.2012.06.002 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 004MA UT WOS:000308684600006 PM 22732693 ER PT J AU Razak, KA AF Razak, K. A. TI Mechanisms underlying azimuth selectivity in the auditory cortex of the pallid bat SO HEARING RESEARCH LA English DT Article ID SOUND PRESSURE LEVEL; INTERAURAL INTENSITY DIFFERENCES; FERRET MUSTELA-PUTORIUS; INFERIOR COLLICULUS; ANTROZOUS-PALLIDUS; CORTICAL-NEURONS; FUNCTIONAL-ORGANIZATION; BINAURAL ORGANIZATION; UNILATERAL ABLATION; TIME DIFFERENCES AB This study focused on mechanisms underlying azimuth selectivity in the primary auditory cortex (A1) of pallid bats. The pallid bat listens to prey-generated noise (5-35 kHz) to localize and hunt terrestrial prey. The region of A1 tuned between 5 and 35 kHz consists of two clusters of neurons distinguished by interaural intensity difference (IID) selectivity: binaurally inhibited (EI) and peaked. The first aim of this study was to use sequential dichotic/free-field stimulation to test the hypothesis that IID is the primary cue underlying azimuth selectivity in neurons tuned in the prey-generated noise frequency band. IID selectivity and ear directionality at the neuron's characteristic frequency (CF) were used to predict azimuth selectivity functions. The predicted azimuth selectivity was compared with the actual azimuth selectivity from the same neurons. Prediction accuracy was similarly high for El neurons and peaked neurons with low CF, whereas predictions were increasingly inaccurate with increasing CF among the peaked neurons. The second aim of this study was to compare azimuth selectivity obtained with noise and CF tones to determine the extent to which stimulus bandwidth influences azimuth selectivity in neurons with different binaural properties. The azimuth selectivity functions were similar for the two stimuli in the majority of El neurons. A greater percentage of peaked neurons showed differences in their azimuth selectivity for noise and tones. This included neurons with mutiple peaks when tested with tones and a single peak when tested with noise. Taken together, data from the two aims suggest that azimuth tuning of El neurons is primarily dictated by IID sensitivity at CF. Peaked neurons, particularly those with high CF, may integrate IID sensitivity across frequency to generate azimuth selectivity for broadband sound. The data are consistent with those found in cat and ferret A1 in that binaurally facilitated neurons depend to a greater extent (compared to EI neurons) on spectral integration of binaural properties to generate azimuth selectivity for broadband stimuli. (c) 2012 Elsevier B.V. All rights reserved. C1 Univ Calif Riverside, Dept Psychol, Grad Program Neurosci, Riverside, CA 92521 USA. RP Razak, KA (reprint author), Univ Calif Riverside, Dept Psychol, Grad Program Neurosci, 900 Univ Ave, Riverside, CA 92521 USA. EM khaleel@ucr.edu FU National Institute on Deafness and Other Communication Disorders Grant [R03 DC009882-01A] FX The study was funded by National Institute on Deafness and Other Communication Disorders Grant (R03 DC009882-01A). I thank Dr. Zoltan Fuzessery for comments on an earlier version of the manuscript. I also thank Kevin Measor, Sarah Rotschafer and two anonymous reviewers for providing feedback on this manuscript. CR AITKIN LM, 1987, J NEUROPHYSIOL, V57, P1185 Barber JR, 2003, J COMP PHYSIOL A, V189, P843, DOI 10.1007/s00359-003-0463-6 BELL GP, 1982, BEHAV ECOL SOCIOBIOL, V10, P217, DOI 10.1007/BF00299688 BRAINARD MS, 1992, J ACOUST SOC AM, V91, P1015, DOI 10.1121/1.402627 BROWN CH, 1980, J ACOUST SOC AM, V68, P127, DOI 10.1121/1.384638 Brugge JF, 1996, J NEUROSCI, V16, P4420 BUTLER RA, 1986, HEARING RES, V21, P67, DOI 10.1016/0378-5955(86)90047-X Casseday J H, 1977, Ann N Y Acad Sci, V299, P255, DOI 10.1111/j.1749-6632.1977.tb41912.x CLAREY JC, 1995, J NEUROPHYSIOL, V74, P961 CLAREY JC, 1994, J NEUROPHYSIOL, V72, P2383 Dingle RN, 2010, HEARING RES, V268, P67, DOI 10.1016/j.heares.2010.04.017 Furukawa S, 2000, J NEUROSCI, V20, P1216 Fuzessery M., 1990, J NEUROPHYSIOL, V63, P1128 Fuzessery ZM, 1996, HEARING RES, V95, P1, DOI 10.1016/0378-5955(95)00223-5 FUZESSERY ZM, 1994, J NEUROPHYSIOL, V72, P1061 FUZESSERY ZM, 1985, J NEUROPHYSIOL, V54, P757 Heffner H E, 1997, Acta Otolaryngol Suppl, V532, P22 Higgins N.C., 2011, J NEUROSCI, V30, P14522 IMIG TJ, 1990, J NEUROPHYSIOL, V63, P1448 IMIG TJ, 1977, BRAIN RES, V138, P241, DOI 10.1016/0006-8993(77)90743-0 IRVINE DRF, 1987, HEARING RES, V30, P169, DOI 10.1016/0378-5955(87)90134-1 Irvine DRF, 1996, J NEUROPHYSIOL, V75, P75 IRVINE DRF, 1990, J NEUROPHYSIOL, V63, P570 JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987 JENKINS WM, 1984, J NEUROPHYSIOL, V52, P819 KAVANAGH GL, 1987, J NEUROPHYSIOL, V57, P1746 KELLY JB, 1994, J NEUROPHYSIOL, V71, P904 KITZES LM, 1980, J COMP NEUROL, V192, P455, DOI 10.1002/cne.901920306 Lohuis TD, 2000, HEARING RES, V143, P43, DOI 10.1016/S0378-5955(00)00021-6 Malhotra S, 2004, J NEUROPHYSIOL, V92, P1625, DOI 10.1152/jn.01205.2003 MARTIN RL, 1987, HEARING RES, V30, P239, DOI 10.1016/0378-5955(87)90140-7 Mendelson JR, 2000, CEREB CORTEX, V10, P32, DOI 10.1093/cercor/10.1.32 MIDDLEBROOKS JC, 1994, SCIENCE, V264, P842, DOI 10.1126/science.8171339 MIDDLEBROOKS JC, 1981, J NEUROSCI, V1, P107 MIDDLEBROOKS JC, 1980, BRAIN RES, V181, P31, DOI 10.1016/0006-8993(80)91257-3 Miller LM, 2009, P NATL ACAD SCI USA, V106, P5931, DOI 10.1073/pnas.0901023106 MOISEFF A, 1981, J NEUROSCI, V1, P40 Mrsic-Flogel TD, 2005, J NEUROPHYSIOL, V93, P3489, DOI 10.1152/jn.00748.2004 Nakamoto KT, 2004, J NEUROPHYSIOL, V91, P118, DOI 10.1152/jn.00171.2003 PALMER AR, 1982, NATURE, V299, P248, DOI 10.1038/299248a0 PARK TJ, 1993, J NEUROSCI, V13, P2050 PHILLIPS DP, 1981, HEARING RES, V4, P299, DOI 10.1016/0378-5955(81)90014-9 RAJAN R, 1990, J NEUROPHYSIOL, V64, P888 Razak KA, 2010, J NEUROPHYSIOL, V104, P517, DOI 10.1152/jn.00294.2010 Razak KA, 2002, J NEUROPHYSIOL, V87, P72 Razak KA, 2007, J COMP NEUROL, V500, P322, DOI 10.1002/cne.21178 Razak KA, 2011, J NEUROSCI, V31, P13848, DOI 10.1523/JNEUROSCI.1937-11.2011 Reale A. A., 1986, J NEUROPHYSIOL, V56, P663 Rutkowski RG, 2000, HEARING RES, V145, P177, DOI 10.1016/S0378-5955(00)00087-3 Schnupp JWH, 2001, NATURE, V414, P200, DOI 10.1038/35102568 SEMPLE MN, 1993, J NEUROPHYSIOL, V69, P462 Stecker GC, 2005, PLOS BIOL, V3, P520, DOI 10.1371/journal.pbio.0030078 TERHUNE JM, 1985, SCAND AUDIOL, V14, P125, DOI 10.3109/01050398509045933 WENSTRUP JJ, 1988, J NEUROPHYSIOL, V60, P1384 WHITFIEL.IC, 1972, J NEUROPHYSIOL, V35, P718 NR 55 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2012 VL 290 IS 1-2 BP 1 EP 12 DI 10.1016/j.heares.2012.05.008 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 983PS UT WOS:000307131800001 PM 22641192 ER PT J AU Parsa, A Webster, P Kalinec, F AF Parsa, Arya Webster, Paul Kalinec, Federico TI Deiters cells tread a narrow path-The Deiters cells-basilar membrane junction- SO HEARING RESEARCH LA English DT Article ID SCANNING-ELECTRON-MICROSCOPY; SUPPORTING CELLS; INNER-EAR; MAMMALIAN ORGAN; CORTI; COCHLEA; STIFFNESS; ACTIN AB Deiters cells extend from the basilar membrane to the reticular lamina and, together with pillar cells and outer hair cells, structurally define the micro-architecture of the organ of Corti. Studying vibrotome sections of the mouse organ of Corti with confocal and scanning electron microscopy we found that the basal pole of every Deiters cell, independently of their position in the organ of Corti and along the cochlear spiral, attached to the basilar membrane within a 15.1 +/- 0.3 mu m-wide stripe running the length of the cochlear spiral adjacent to the row of outer pillar cells. All Deiters cells' basal poles had similar diameter and general morphology, and distributed on the stripe in a precise arrangement with a center-to-center distance of 71 +/- 0.3 mu m between neighbor cells of the same row and 5.9 +/- 0.4 mu m for neighbor cells in adjacent rows. Complete detachment of Deiters cells revealed an elliptical imprint on the top surface of the basilar membrane consisting of a smaller central structure with a very smooth surface surrounded by a rougher area, suggesting the presence of two different: anchoring junctions. These previously unidentified morphological features of Deiters cells could be critical for the mechanical response of the organ of Corti. (c) 012 Elsevier B.V. All rights reserved. C1 [Parsa, Arya; Kalinec, Federico] House Res Inst, Div Cell Biol & Genet, Los Angeles, CA 90057 USA. [Webster, Paul] House Res Inst, Ahmanson Ctr EM & Adv Imaging, Los Angeles, CA 90057 USA. [Webster, Paul; Kalinec, Federico] Univ So Calif, Keck Sch Med, Dept Otolaryngol, Los Angeles, CA 90033 USA. [Kalinec, Federico] Univ So Calif, Keck Sch Med, Dept Cell & Neurobiol, Los Angeles, CA 90033 USA. RP Kalinec, F (reprint author), House Res Inst, Div Cell Biol & Genet, 2100 W 3rd St, Los Angeles, CA 90057 USA. EM fkalinec@hei.org FU National Institutes of Health [DC010146, DC010397]; House Research Institute FX The authors thank Dr. David J. Lim for critically reading the manuscript, and declare no existing or potential conflict of interest. Ahmanson Foundation grants equipped the Imaging Center where much of this work was carried out. This work was supported by National Institutes of Health grants DC010146 and DC010397 and House Research Institute. Its content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the House Research Institute. CR Alberts B., 2002, MOL BIOL CELL, V4th ANGELBOR.C, 1972, ACTA OTO-LARYNGOL, P49 BREDBERG G, 1972, ACTA OTO-LARYNGOL, P3 Cooper NP, 2000, RECENT DEV AUDITORY, P109, DOI 10.1142/9789812793980_0016 DAVIES S, 1987, J MICROSC-OXFORD, V147, P89 Deiters O, 1860, UNTERSUCHUNGEN LAMIN ENGSTROM H, 1953, ACTA OTO-LARYNGOL, V43, P323, DOI 10.3109/00016485309119854 ENGSTROM H, 1958, INT REV CYTOL, V7, P535, DOI 10.1016/S0074-7696(08)62695-9 ENGSTROM H, 1958, Exp Cell Res, V14, P460 FORGE A, 1992, SCANNING MICROSCOPY, V6, P521 Hardie NA, 2004, BRAIN RES, V1000, P200, DOI 10.1016/j.brainres.2003.10.071 Huang LC, 2010, PURINERG SIGNAL, V6, P231, DOI 10.1007/s11302-010-9191-x IURATO S, 1961, Z ZELLFORSCH MIK ANA, V53, P259, DOI 10.1007/BF00339444 KIMURA RS, 1975, INT REV CYTOL, V42, P173, DOI 10.1016/S0074-7696(08)60981-X Naidu RC, 1998, HEARING RES, V124, P124, DOI 10.1016/S0378-5955(98)00133-6 O'Keeffe MG, 2010, PURINERG SIGNAL, V6, P249, DOI 10.1007/s11302-010-9190-y OLSON ES, 1994, J ACOUST SOC AM, V95, P395, DOI 10.1121/1.408331 Olson E.S., 1993, BIOPHYSICS HAIR CELL, P280 Retzius G., 1884, GEHARORGAN WIRBELTHI, V2 Shim K., 2011, J VIS EXP, DOI [10.3791/2793, DOI 10.3791/2793] SLEPECKY N, 1986, CELL TISSUE RES, V245, P229 SLEPECKY N, 1983, HEARING RES, V10, P359, DOI 10.1016/0378-5955(83)90098-9 Slepecky N.B., 1996, COCHLEA, V8, P44 SMITH CA, 1957, AM J ANAT, V100, P337, DOI 10.1002/aja.1001000304 SPICER SS, 1993, ANAT REC, V237, P421, DOI 10.1002/ar.1092370316 NR 25 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2012 VL 290 IS 1-2 BP 13 EP 20 DI 10.1016/j.heares.2012.05.006 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 983PS UT WOS:000307131800002 PM 22633942 ER PT J AU Undurraga, JA Carlyon, RP Macherey, O Wouters, J van Wieringen, A AF Undurraga, Jaime A. Carlyon, Robert P. Macherey, Olivier Wouters, Jan van Wieringen, Astrid TI Spread of excitation varies for different electrical pulse shapes and stimulation modes in cochlear implants SO HEARING RESEARCH LA English DT Article ID BRAIN-STEM RESPONSES; AUDITORY-NERVE; ELECTRODE CONFIGURATION; SPEECH-PERCEPTION; ACTION-POTENTIALS; NUMBER; RECOGNITION; PATTERNS; MASKING; HEARING AB In Cochlear Implants (CI) Bipolar (BP) electrical stimulation has been suggested as a method to reduce the spread of current along the cochlea. However, behavioral measurements in BP mode have shown either similar or worse performance than in Monopolar (MP) mode. This could be explained by a bimodal excitation pattern, with two main excitation peaks at the sites of the stimulating electrodes. We measured the Spread of Excitation (SOE) by means of the Electrically Evoked Compound Action Potential (ECAP), obtained using the forward-masked paradigm. The aim was to measure the bimodality of the excitation and to determine whether it could be reduced by using asymmetric pulses. Three types of maskers shapes were used: Symmetric (SYM), Pseudomonophasic (PS), and Symmetric with a long Inter-Phase Gap (SYM-IPG) pulses. Maskers were presented in BP + 9 (wide), BP + 3 (narrow) and MP (only SYM) mode on fixed electrodes. The SOE obtained with the MP masker showed a main excitation peak close to the masker electrode. Wide SYM maskers produced bimodal excitation patterns showing two peaks close to the electrodes of the masker channel, whereas SYM-IPG maskers showed a single main peak near the electrode for which the masker's second phase (responsible for most of the masking) was anodic. Narrow SYM maskers showed complex and wider excitation patterns than asymmetric stimuli consistent with the overlap of the patterns produced by each channel's electrodes. The masking produced by narrow SYM-IPG and PS stimuli was more pronounced close to the masker electrode for which the effective phase was anodic. These results showed that the anodic polarity is the most effective one in BP mode and that the bimodal patterns produced by SYM maskers could be partially reduced by using asymmetric pulses. (c) 2012 Elsevier B.V. All rights reserved. C1 [Undurraga, Jaime A.; Wouters, Jan; van Wieringen, Astrid] Univ Leuven, KU Leuven, Dept Neurosci, ExpORL, B-3000 Louvain, Belgium. [Carlyon, Robert P.] Cognit & Brain Sci Unit, MRC, Cambridge CB2 7EF, England. [Macherey, Olivier] CNRS, Lab Mecan & Acoust, F-13402 Marseille, France. RP Undurraga, JA (reprint author), Univ Leuven, KU Leuven, Dept Neurosci, ExpORL, Herestr 49 bus 721, B-3000 Louvain, Belgium. EM jaime.undurraga@med.kuleuven.be; bob.carlyon@mrc-cbu.cam.ac.uk; olivier.macherey@mrc-cbu.cam.acuk; jan.wouters@med.kuleuven.be; astrid.vanwieringen@med.kuleuven.be RI Wouters, Jan/D-1800-2015 FU OT grant from the Research Council of the University of Leuven [OT/07/056] FX This research is supported by the OT grant from the Research Council of the University of Leuven (OT/07/056) and is approved by the Local Research Ethics Committee of the University of Leuven/UZ Leuven. CR Briaire JJ, 2005, HEARING RES, V205, P143, DOI 10.1016/j.heares.2005.03.020 BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716 Cartee L, 2004, INTRACOCHLEAR POTENT Chatterjee M, 2006, JARO-J ASSOC RES OTO, V7, P15, DOI 10.1007/s10162-005-0019-2 Chua TEH, 2011, EAR HEARING, V32, P679, DOI 10.1097/AUD.0b013e31821a47df Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0 DON M, 1994, J ACOUST SOC AM, V96, P2746, DOI 10.1121/1.411281 DORMAN M, 1989, EAR HEARING, V10, P288, DOI 10.1097/00003446-198910000-00003 Dorman MF, 1997, AM J OTOL, V18, pS113 Eisen MD, 2005, JARO-J ASSOC RES OTO, V6, P160, DOI 10.1007/s10162-005-5057-2 ELBERLING C, 1984, SCAND AUDIOL, V13, P187, DOI 10.3109/01050398409043059 ELBERLING C, 1985, SCAND AUDIOL, V14, P89, DOI 10.3109/01050398509045928 Fayad JN, 2006, LARYNGOSCOPE, V116, P1310, DOI 10.1097/01.mlg.0000227176.09500.28 Fishman KE, 1997, J SPEECH LANG HEAR R, V40, P1201 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Frijns JHM, 2009, ACTA OTO-LARYNGOL, V129, P433, DOI 10.1080/00016480802610218 Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4 GEIER LL, 1992, EAR HEARING, V13, P340 HOLMES AE, 1987, AM J OTOL, V8, P240 Javel E, 2000, HEARING RES, V140, P45, DOI 10.1016/S0378-5955(99)00186-0 KILENY PR, 1992, AM J OTOL, V13, P117 Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6 Kwon BJ, 2006, J ACOUST SOC AM, V119, P2994, DOI 10.1121/1.2184128 Laneau J, 2004, J ACOUST SOC AM, V116, P3606, DOI 10.1121/1.1823311 LEHNHARDT E, 1992, ORL J OTO-RHINO-LARY, V54, P308 LIM HH, 1989, J ACOUST SOC AM, V86, P971, DOI 10.1121/1.398732 Litvak LM, 2007, J ACOUST SOC AM, V122, P967, DOI 10.1121/1.2749414 Macherey O, 2010, J ACOUST SOC AM, V127, P326, DOI 10.1121/1.3257231 Macherey O, 2011, JARO-J ASSOC RES OTO, V12, P233, DOI 10.1007/s10162-010-0248-x Macherey O, 2008, JARO-J ASSOC RES OTO, V9, P241, DOI 10.1007/s10162-008-0112-4 Macherey O, 2006, JARO-J ASSOC RES OTO, V7, P253, DOI 10.1007/s10162-006-0040-0 Mens LHM, 2005, OTOL NEUROTOL, V26, P957, DOI 10.1097/01.mao.0000185060.74339.9d Miller CA, 2004, HEARING RES, V198, P75, DOI 10.1016/j.heares.2004.07.005 Miller CA, 2003, HEARING RES, V175, P200 Miller CA, 2001, JARO, V2, P216 Miller CA, 1999, HEARING RES, V130, P197, DOI 10.1016/S0378-5955(99)00012-X Morsnowski A, 2006, AUDIOL NEURO-OTOL, V11, P389, DOI 10.1159/000095966 Pfingst BE, 1997, HEARING RES, V112, P247, DOI 10.1016/S0378-5955(97)00122-6 Pfingst BE, 2001, JARO, V2, P87 R Development Core Team, 2011, R LANG ENV STAT COMP Rattay F, 2001, HEARING RES, V153, P43, DOI 10.1016/S0378-5955(00)00256-2 Silva I, 2009, IEEE T BIO-MED ENG, V56, P2123, DOI 10.1109/TBME.2009.2021400 Smith DW, 1997, J ACOUST SOC AM, V102, P2228, DOI 10.1121/1.419636 Snyder RL, 2008, HEARING RES, V235, P23, DOI 10.1016/j.heares.2007.09.013 Undurraga JA, 2010, HEARING RES, V269, P146, DOI 10.1016/j.heares.2010.06.017 Undurraga J.A., 2012, IEEE T BIOM IN PRESS Van Der Baan FH, 2012, INT J AUDIOL, P1 VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5 Zwolan TA, 1996, AM J OTOL, V17, P717 NR 49 TC 5 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2012 VL 290 IS 1-2 BP 21 EP 36 DI 10.1016/j.heares.2012.05.003 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 983PS UT WOS:000307131800003 PM 22583921 ER PT J AU Johnson, LA Della Santina, CC Wang, XQ AF Johnson, Luke A. Della Santina, Charles C. Wang, Xiaoqin TI Temporal bone characterization and cochlear implant feasibility in the common marmoset (Callithrix jacchus) SO HEARING RESEARCH LA English DT Article ID PRIMARY AUDITORY-CORTEX; NEURAL REPRESENTATIONS; POSTNATAL-GROWTH; BASILAR-MEMBRANE; ELECTRODE ARRAY; TYMPANIC SCALAE; PRIMATE; MONKEY; VOCALIZATION; DIMENSIONS AB The marmoset (Callithrix jacchus) is a valuable non-human primate model for studying behavioral and neural mechanisms related to vocal communication. It is also well suited for investigating neural mechanisms related to cochlear implants. The purpose of this study was to characterize marmoset temporal bone anatomy and investigate the feasibility of implanting a multi-channel intracochlear electrode into the marmoset scala tympani. Micro computed tomography (microCT) was used to create high-resolution images of marmoset temporal bones. Cochlear fluid spaces, middle ear ossicles, semicircular canals and the surrounding temporal bone were reconstructed in three-dimensional space. Our results show that the marmoset cochlea is similar to 16.5 mm in length and has similar to 2.8 turns. The cross-sectional area of the scala tympani is greatest (similar to 0.8 mm(2)) at similar to 1.75 mm from the base of the scala, reduces to similar to 0.4 mm(2) at 5 mm from the base, and decreases at a constant rate for the remaining length. Interestingly, this length area profile, when scaled 2.5 times, is similar to the scala tympani of the human cochlea. Given these dimensions, a compatible multi-channel implant electrode was identified. In a cadaveric specimen, this electrode was inserted 3/4 turn into the scala tympani through a cochleostomy at similar to 1 mm apical to the round window. The depth of the most apical electrode band was similar to 8 mm. Our study provides detailed structural anatomy data for the middle and inner ear of the marmoset, and suggests the potential of the marmoset as a new non-human primate model for cochlear implant research. (c) 2012 Elsevier B.V. All rights reserved. C1 [Johnson, Luke A.; Della Santina, Charles C.; Wang, Xiaoqin] Johns Hopkins Univ, Dept Biochem Engn, Baltimore, MD 21205 USA. RP Johnson, LA (reprint author), Johns Hopkins Univ, Dept Biochem Engn, 412 Traylor Res Bldg,720 Rutland Ave, Baltimore, MD 21205 USA. EM luke.johnson@jhu.edu FU Kleberg Foundation; NIH National Institute on Deafness and Other Communication Disorders [F31 DC010321, P30 DC005211] FX This work was supported by a grant from the Kleberg Foundation to X. Wang and grants from the NIH National Institute on Deafness and Other Communication Disorders (F31 DC010321 to L Johnson and P30 DC005211 to the Center for Hearing and Balance at Johns Hopkins). We thank Haoxin Sun for assistance with Amira reconstructions of several temporal bone specimens. We also thank Zach Smith for assistance with obtaining Cochlear Ltd. electrodes, Ben Tsui and Jianhua Yu for help with CT imaging of the electrode-implanted marmoset cochlea, Jenny Estes and Nate Sotuyo for animal care, and Mohamed Lehar, Hakim Hiel and San San Yu for help with histology. CR Bartlett EL, 2011, J NEUROPHYSIOL, V106, P849, DOI 10.1152/jn.00559.2010 Bendor D, 2010, J NEUROPHYSIOL, V103, P1809, DOI 10.1152/jn.00281.2009 Bendor D, 2005, NATURE, V436, P1161, DOI 10.1038/nature03867 Bendor D, 2008, J NEUROPHYSIOL, V100, P888, DOI 10.1152/jn.00884.2007 Bezerra BM, 2008, INT J PRIMATOL, V29, P671, DOI 10.1007/s10764-008-9250-0 Biedron S, 2009, OTOL NEUROTOL, V30, P414, DOI 10.1097/MAO.0b013e3181977b8d Borin Andrei, 2008, Braz J Otorhinolaryngol, V74, P370 Brumm H, 2004, J EXP BIOL, V207, P443, DOI 10.1242/jeb.00768 DAHM MC, 1993, ACTA OTO-LARYNGOL, P1 de la Mothe LA, 2006, J COMP NEUROL, V496, P27, DOI 10.1002/cne.20923 DiMattina C, 2006, J NEUROPHYSIOL, V95, P1244, DOI 10.1152/jn.00818.2005 EBY TL, 1986, ANN OTO RHINOL LARYN, V95, P356 Eliades SJ, 2003, J NEUROPHYSIOL, V89, P2194, DOI 10.1152/jn.00627.2002 Eliades SJ, 2008, NATURE, V453, P1102, DOI 10.1038/nature06910 Eliades SJ, 2005, CEREB CORTEX, V15, P1510, DOI 10.1093/cercor/bhi030 Fallon JB, 2009, HEARING RES, V257, P93, DOI 10.1016/j.heares.2009.08.006 Fay R. R., 1988, HEARING VERTEBRATES Finley C. C., 1990, COCHLEAR IMPLANTS MO, P55 Flohr S, 2010, ANAT REC, V293, P2094, DOI 10.1002/ar.21271 FRIJNS JHM, 1995, HEARING RES, V87, P170, DOI 10.1016/0378-5955(95)00090-Q Gray A.A., 1907, LABYRINTH ANIMALS GREENWOOD D, 1961, J ACOUST SOC AM, V33, P1344, DOI 10.1121/1.1908437 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Gstoettner W, 1999, ACTA OTO-LARYNGOL, V119, P229 Hanekom T, 2001, EAR HEARING, V22, P300, DOI 10.1097/00003446-200108000-00005 Ketten DR, 1998, ANN OTO RHINOL LARYN, V107, P1 Lee CF, 2006, LARYNGOSCOPE, V116, P711, DOI 10.1097/01.mlg.0000204758.15877.34 Liang L, 2002, J NEUROPHYSIOL, V87, P2237, DOI 10.1152/jn.00834.2001 Lu W, 2005, HEARING RES, V205, P115, DOI 10.1016/j.heares.2005.03.010 Miller CT, 2009, J COMP PHYSIOL A, V195, P783, DOI 10.1007/s00359-009-0456-1 Nelson PC, 2010, J NEUROSCI, V30, P6577, DOI 10.1523/JNEUROSCI.0277-10.2010 Osmanski MS, 2011, HEARING RES, V277, P127, DOI 10.1016/j.heares.2011.02.001 Pistorio AL, 2006, J ACOUST SOC AM, V120, P1655, DOI 10.1121/1.2225899 Quam R, 2008, J HUM EVOL, V54, P414, DOI 10.1016/j.jhevol.2007.10.005 Rebscher SJ, 2007, J NEUROSCI METH, V166, P1, DOI 10.1016/j.jneumeth.2007.05.013 Sadagopan S, 2008, J NEUROSCI, V28, P3415, DOI 10.1523/JNEUROSCI.2743-07.2008 Shepherd R, 2011, HEARING RES, V277, P20, DOI 10.1016/j.heares.2011.03.017 SHEPHERD RK, 1995, AM J OTOL, V16, P186 Slee SJ, 2010, HEARING RES, V260, P96, DOI 10.1016/j.heares.2009.12.001 Snyder RL, 2008, HEARING RES, V235, P23, DOI 10.1016/j.heares.2007.09.013 Spoor F, 1998, YEARB PHYS ANTHROPOL, V41, P211 Thorne M, 1999, LARYNGOSCOPE, V109, P1661, DOI 10.1097/00005537-199910000-00021 Valero MD, 2008, HEARING RES, V243, P57, DOI 10.1016/j.heares.2008.05.006 Wang X, 2008, NEUROSCIENCE, V154, P294, DOI 10.1016/j.neuroscience.2008.03.065 Wang XQ, 2007, HEARING RES, V229, P81, DOI 10.1016/j.heares.2007.01.019 Wang XQ, 2000, P NATL ACAD SCI USA, V97, P11843, DOI 10.1073/pnas.97.22.11843 Wang XQ, 1995, J NEUROPHYSIOL, V74, P2685 Watkins PV, 2011, CEREB CORTEX, V21, P178, DOI 10.1093/cercor/bhq079 WEST CD, 1985, J ACOUST SOC AM, V77, P1091, DOI 10.1121/1.392227 Whiten D.M., 2007, THESIS HARVARD MIT D Wysocki J, 1999, HEARING RES, V135, P39, DOI 10.1016/S0378-5955(99)00088-X Wysocki J, 2001, HEARING RES, V161, P1, DOI 10.1016/S0378-5955(01)00314-8 NR 52 TC 3 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2012 VL 290 IS 1-2 BP 37 EP 44 DI 10.1016/j.heares.2012.05.002 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 983PS UT WOS:000307131800004 PM 22583919 ER PT J AU Aernouts, J Aerts, JRM Dirckx, JJJ AF Aernouts, Jef Aerts, Johan R. M. Dirckx, Joris J. J. TI Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements SO HEARING RESEARCH LA English DT Article ID SOFT BIOLOGICAL TISSUES; MIDDLE-EAR; VISCOELASTIC PROPERTIES; STRUCTURAL MODEL; CAT EARDRUM; HOLOGRAPHY; PRESSURE; BEHAVIOR; MALLEUS AB The tympanic membrane is a key component of the human auditory apparatus. Good estimates of tympanic membrane mechanical properties are important to obtain realistic models of middle ear mechanics. Current literature values are almost all derived from direct mechanical tests on cut-out strips. For a biomedical specimen like the tympanic membrane, it is not always possible to harvest strips of uniform and manageable geometry and well-defined size suitable for such mechanical tests. In this work, elastic and viscoelastic properties of human tympanic membrane were determined through indentation testing on the tympanic membrane in situ. Indentation experiments were performed on three specimens with a custom-built apparatus that was also used in previously published works. Two types of indentation tests were performed on each specimen: (i) sinusoidal indentation at 0.2 Hz yielding the quasi-static Young's modulus and (ii) step indentation tests yielding viscoelastic properties in the quasi-static regime (0-20 Hz). In the cyclic indentation experiments (type i), the indentation depth and resulting needle force were recorded. The unloaded shape of the tympanic membrane and the membrane thickness were measured and used to create a specimen-specific finite element model of the experiment. The Young's modulus was then found through optimization of the error between model and experimental data; the values that were found for the three different samples are 2.1 MPa, 4.4 MPa and 2.3 MPa. A sensitivity analysis showed that these values are very sensitive to the thickness used in the models. In the step indentation tests (type ii), force relaxation was measured during 120 s and the relaxation curves were fitted with a 5 parameter Maxwell viscoelastic model. The relaxation curves in the time domain were transformed to complex moduli in the frequency domain, yielding viscoelastic properties in the quasi-static regime only. (c) 2012 Elsevier B.V. All rights reserved. C1 [Aernouts, Jef; Aerts, Johan R. M.; Dirckx, Joris J. J.] Univ Antwerp, Lab Biomed Phys, B-2020 Antwerp, Belgium. RP Aernouts, J (reprint author), Univ Antwerp, Lab Biomed Phys, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. EM jef.aernouts@ua.ac.be FU Agency for Innovation by Science and Technology in Flanders (IWT-Vlaanderen); Hercules Foundation (Hercules Type 1) [AUHA 09/001] FX This work was supported by the Agency for Innovation by Science and Technology in Flanders (IWT-Vlaanderen). We would like to thank Dr. Jean-Marc Gerard of the Brussels Saint-Luc University Hospital (UCL) together with Joris Walraevens of the Cochlear Technology Centre Belgium for putting the temporal bones at our disposal; we would also like to thank Isabel Pintelon of the Laboratory of Cell Biology & Histology at the University of Antwerp for her assistance with the confocal microscopy measurements and Stijn Vandenbroeck from the EMAT laboratory at the University of Antwerp for doing the scanning electron microscopy measurement of the needle tip. The UltraVIEW VoX spinning disk confocal microscope was purchased with support of the Hercules Foundation (Hercules Type 1: AUHA 09/001). CR Aernouts J, 2011, BIOMECH MODEL MECHAN, V10, P727, DOI 10.1007/s10237-010-0269-8 Aernouts J, 2012, J BIOMECH, V45, P919, DOI 10.1016/j.jbiomech.2012.01.023 Aernouts J, 2010, INT J ENG SCI, V48, P599, DOI 10.1016/j.ijengsci.2010.02.001 Bekesy G, 1960, EXPT HEARING Bekesy G.V., 1941, AKUST Z, V6, P1 Buytaert JAN, 2010, OPT LASER ENG, V48, P172, DOI 10.1016/j.optlaseng.2009.03.018 Cheng JT, 2010, HEARING RES, V263, P66, DOI 10.1016/j.heares.2009.12.024 Cheng T, 2007, ANN BIOMED ENG, V35, P305, DOI 10.1007/s10439-006-9227-0 Daphalapurkar NR, 2009, J MECH BEHAV BIOMED, V2, P82, DOI 10.1016/j.jmbbm.2008.05.008 DECRAEMER WF, 1980, J BIOMECH, V13, P463, DOI 10.1016/0021-9290(80)90338-3 DECRAEMER WF, 1980, J BIOMECH, V13, P559, DOI 10.1016/0021-9290(80)90056-1 DIRCKX JJJ, 1992, HEARING RES, V62, P99, DOI 10.1016/0378-5955(92)90206-3 Dirckx JJJ, 2001, HEARING RES, V157, P124, DOI 10.1016/S0378-5955(01)00290-8 Elkhouri N, 2006, JARO-J ASSOC RES OTO, V7, P399, DOI 10.1007/s10162-006-0055-6 Fay J, 2005, J BIOMECH, V38, P1807, DOI 10.1016/j.jbiomech.2004.08.022 Fay JP, 2006, P NATL ACAD SCI USA, V103, P19743, DOI 10.1073/pnas.0603898104 Ferris P, 2000, J BIOMECH, V33, P581, DOI 10.1016/S0021-9290(99)00213-4 Findley WN, 1976, CREEP RELAXATION NON Fung Y. C., 1981, BIOMECHANICS MECH PR FUNNELL WRJ, 1982, ORL J OTO-RHINO-LARY, V44, P181 FUNNELL WRJ, 1987, J ACOUST SOC AM, V81, P1851, DOI 10.1121/1.394749 Gaihede M, 2010, OTOL NEUROTOL, V31, P603, DOI 10.1097/MAO.0b013e3181dd13e2 GRAHAM MD, 1978, ANN OTO RHINOL LARYN, V87, P426 Gulya AJ, 1995, ANATOMY TEMPORAL BON Helmholtz H., 1868, PFLUGER ARCH PHYSL, V1 Kirikae I., 1960, STRUCTURE FUNCTION M Koike T, 2001, JSME INT J C-MECH SY, V44, P1097, DOI 10.1299/jsmec.44.1097 KOJO Y, 1954, J O R L SOC JPN, V57, P115 Kuypers L., 2005, OTOL NEUROTOL, V27, P256 Ladak HM, 2004, J ACOUST SOC AM, V116, P3008, DOI 10.1121/1.1802673 Lee C. F., 2006, BIOMED ENG-APP BAS C, V18, P214 LIM DJ, 1970, ACTA OTO-LARYNGOL, V70, P176 Luo H., 2009, J BIOMECHANICAL ENG, V131 Maas S., 2011, FEBIO FINITE ELEMENT Marcusohn Y, 2006, JARO-J ASSOC RES OTO, V7, P236, DOI 10.1007/s10162-006-0038-7 RUAH CB, 1991, ARCH OTOLARYNGOL, V117, P627 Salih WHM, 2012, HEARING RES, V284, P1, DOI 10.1016/j.heares.2011.12.004 Sun Q, 2002, BIOMECH MODEL MECHAN, V1, P109, DOI 10.1007/s10237-002-0014-z TONNDORF J, 1972, J ACOUST SOC AM, V52, P1221, DOI 10.1121/1.1913236 Tuck-Lee JP, 2008, J ACOUST SOC AM, V124, P348, DOI 10.1121/1.2912438 UEBO K, 1988, EAR RES JPN, V19, P70 Volandri G, 2011, J BIOMECH, V44, P1219, DOI 10.1016/j.jbiomech.2010.12.023 Wang XL, 2007, J ACOUST SOC AM, V122, P906, DOI 10.1121/1.2749417 Zhang W, 2007, BIOMATERIALS, V28, P3579, DOI 10.1016/j.biomaterials.2007.04.040 Zhang X, 2010, INT J EXP COMPUT BIO, V1, P252, DOI 10.1504/IJECB.2010.03526 Zhao F, 2009, MED ENG PHYS, V31, P907, DOI 10.1016/j.medengphy.2009.06.009 NR 46 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2012 VL 290 IS 1-2 BP 45 EP 54 DI 10.1016/j.heares.2012.05.001 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 983PS UT WOS:000307131800005 PM 22583920 ER PT J AU Ben-David, BM Tse, VYY Schneider, BA AF Ben-David, Boaz M. Tse, Vania Y. Y. Schneider, Bruce A. TI Does it take older adults longer than younger adults to perceptually segregate a speech target from a background masker? SO HEARING RESEARCH LA English DT Article ID AUDITORY STREAM SEGREGATION; HEARING-IMPAIRED LISTENERS; TERM-MEMORY PERFORMANCE; INFORMATIONAL MASKING; SPATIAL SEPARATION; SCENE ANALYSIS; NOISE; ATTENTION; PERCEPTION; AGE AB Older adults often find it more difficult than younger adults to attend to a target talker when there are other people talking. One possible reason for this difficulty is that it may take them longer to perceptually segregate the target speech from competing speech. This study investigated age-related differences in the time it takes to segregate target speech from either a speech spectrum noise masker or a babble masker (many people talking simultaneously). Specifically, we employed five different delays (0.1 s-1.1 s) between masker onset and target speech onset. Four signal-to-masker ratios were employed at each delay to determine the 50% thresholds for word recognition accuracy when target words were masked by either speech spectrum noise or multi-talker babble. Thresholds for word recognition decreased exponentially as a function of the masker-word-onset delay, at the same rate for younger and older adults, when the masker was speech spectrum noise. When the masker was babble, thresholds for younger adults decreased exponentially with delay at the same rate as they did when the masker was speech spectrum noise. The word recognition thresholds for older adults, however, did not appear to change over the range of delays explored in this study. In addition, the average difference between word recognition thresholds for younger and older adults (younger adult thresholds < older adult thresholds) was significantly larger when the masker was babble than when it was noise. These results indicate that older adults are as fast as younger adults at separating speech from a steady-state noise masker, but are not as capable as younger adults of taking advantage of the delayed onset of the speech target when the masker is babble. The potential contributions of age-related sensory and cognitive declines to these stream segregation effects are discussed. Finally, we conclude that age-related differences in the timeline for stream segregation contribute to the difficulties older adults experience in listening to speech in a background of babble. (C) 2012 Elsevier B.V. All rights reserved. C1 [Ben-David, Boaz M.] Univ Toronto, Dept Speech Language Pathol, Oral Dynam Lab, Toronto, ON M5G 1V7, Canada. [Ben-David, Boaz M.] Toronto Rehabil Inst, Toronto, ON M5G 2A2, Canada. [Ben-David, Boaz M.; Tse, Vania Y. Y.; Schneider, Bruce A.] Univ Toronto, Ctr Res Biol Commun Syst, Dept Psychol, Mississauga, ON L5L 1C6, Canada. RP Ben-David, BM (reprint author), Univ Toronto, Dept Speech Language Pathol, Oral Dynam Lab, 160-500 Univ Ave, Toronto, ON M5G 1V7, Canada. EM boaz.ben.david@utoronto.ca FU Canadian Institutes of Health Research Grants [STP-53875, MGC-42665, MOP-15359]; Faculty of Arts & Science at the University of Toronto Mississauga; Ontario Neurotrauma Foundation [2008-ABI-PDF-659] FX This study was partially supported by Canadian Institutes of Health Research Grants (STP-53875, MGC-42665, & MOP-15359), and a research opportunity program grant from the Faculty of Arts & Science at the University of Toronto Mississauga. The first author was partially supported by a grant from the Ontario Neurotrauma Foundation (2008-ABI-PDF-659). We wish to thank the following students, Wu Yan (Lulu) Li, Julio Pereira, Marissa Polidori and especially Caterina Leung for their assistance in collecting the data. CR Alain C, 2001, J EXP PSYCHOL HUMAN, V27, P1072, DOI 10.1037//0096-1523.27.5.1072 Alain C., 2006, HDB MODELS HUMAN AGI, P759, DOI DOI 10.1016/B978-012369391-4/50065-5 Balota DA, 2007, BEHAV RES METHODS, V39, P445, DOI 10.3758/BF03193014 Ben-David BM, 2011, BRAIN INJURY, V25, P206, DOI 10.3109/02699052.2010.536197 Ben-David BM, 2011, J SPEECH LANG HEAR R, V54, P243, DOI 10.1044/1092-4388(2010/09-0233) Ben-David BM, 2010, AGING NEUROPSYCHOL C, V17, P730, DOI 10.1080/13825585.2010.510553 Bernstein JGW, 2009, J ACOUST SOC AM, V125, P3358, DOI 10.1121/1.3110132 BILGER RC, 1984, J SPEECH HEAR RES, V27, P32 BREGMAN AS, 1971, J EXP PSYCHOL, V89, P244, DOI 10.1037/h0031163 Bregman AS., 1990, AUDITORY SCENE ANAL Brungart DS, 2001, J ACOUST SOC AM, V110, P2527, DOI 10.1121/1.1408946 Carlyon RP, 2001, J EXP PSYCHOL HUMAN, V27, P115, DOI 10.1037//0096-1523.27.1.115 Carlyon RP, 2003, PERCEPTION, V32, P1393, DOI 10.1068/p5035 Cusack R, 2004, J EXP PSYCHOL HUMAN, V30, P643, DOI 10.1037/0096-1523.30.4.643 Durlach NI, 2003, J ACOUST SOC AM, V114, P368, DOI 10.1121/1.1577562 Ezzatian P., LANG COGNIT IN PRESS Ezzatian P, 2011, EAR HEARING, V32, P84, DOI 10.1097/AUD.0b013e3181ee6b8a Freyman RL, 1999, J ACOUST SOC AM, V106, P3578, DOI 10.1121/1.428211 George ELJ, 2006, J ACOUST SOC AM, V120, P2295, DOI 10.1121/1.2266530 GRANT DA, 1948, PSYCHOL BULL, V45, P427, DOI 10.1037/h0053912 Hasher L., 1988, PSYCHOL LEARN MOTIV, V22, P193, DOI DOI 10.1016/S0079-7421(08)60041-9 Heinrich A, 2011, EAR HEARING, V32, P524, DOI 10.1097/AUD.0b013e31820a0281 Heinrich A, 2008, Q J EXP PSYCHOL, V61, P735, DOI 10.1080/17470210701402372 Helfer KS, 2008, EAR HEARING, V29, P87 Humes LE, 2006, J ACOUST SOC AM, V120, P2926, DOI 10.1121/1.2354070 JERGER J, 1971, ARCHIV OTOLARYNGOL, V93, P573 Li Ang, 2004, Journal of Experimental Psychology Human Perception and Performance, V30, P1077 Lorenzi C, 2006, P NATL ACAD SCI USA, V103, P18866, DOI 10.1073/pnas.0607364103 MCFADDEN D, 1990, J ACOUST SOC AM, V88, P711, DOI 10.1121/1.399774 MILLER GA, 1950, J ACOUST SOC AM, V22, P637, DOI 10.1121/1.1906663 Murphy DR, 2000, PSYCHOL AGING, V15, P323, DOI 10.1037/0882-7974.15.2.323 PICHORAFULLER MK, 1995, J ACOUST SOC AM, V97, P593, DOI 10.1121/1.412282 Raven J.C., 1965, MILL HILL VOCABULARY Salthouse TA, 1996, PSYCHOL REV, V103, P403, DOI 10.1037/0033-295X.103.3.403 Schmiedt RA, 2010, SPRINGER HANDB AUDIT, V34, P9, DOI 10.1007/978-1-4419-0993-0_2 Schneider B. A., 2007, J AM ACAD AUDIOL, V18, P578 Schneider BA, 2010, SPRINGER HANDB AUDIT, V34, P167, DOI 10.1007/978-1-4419-0993-0_7 Simpson SA, 2005, J ACOUST SOC AM, V118, P2775, DOI 10.1121/1.2062650 Singh G, 2008, J ACOUST SOC AM, V124, P1294, DOI 10.1121/1.2949399 Snyder JS, 2006, J COGNITIVE NEUROSCI, V18, P1, DOI 10.1162/089892906775250021 Sussman ES, 2007, PERCEPT PSYCHOPHYS, V69, P136, DOI 10.3758/BF03194460 Van Engen KJ, 2007, J ACOUST SOC AM, V121, P519, DOI 10.1121/1.2400666 Vongpoisal T, 2007, J SPEECH LANG HEAR R, V50, P1139, DOI 10.1044/1092-4388(2007/079) Wagener KC, 2005, INT J AUDIOL, V44, P144, DOI 10.1080/14992020500057517 Wright BA, 1997, J ACOUST SOC AM, V101, P420, DOI 10.1121/1.417987 Yang ZG, 2007, SPEECH COMMUN, V49, P892, DOI 10.1016/j.specom.2007.05.005 ZWICKER E, 1965, J ACOUST SOC AM, V37, P653, DOI 10.1121/1.1909389 NR 47 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2012 VL 290 IS 1-2 BP 55 EP 63 DI 10.1016/j.heares.2012.04.022 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 983PS UT WOS:000307131800006 PM 22609772 ER PT J AU Norman, M Tomscha, K Wehr, M AF Norman, Madeleine Tomscha, Katherine Wehr, Michael TI Isoflurane blocks temporary tinnitus SO HEARING RESEARCH LA English DT Article ID SALICYLATE-INDUCED TINNITUS; RAT INFERIOR COLLICULUS; INDUCED HEARING-LOSS; AUDITORY-CORTEX; ACOUSTIC TRAUMA; NEURAL CHANGES; ANIMAL-MODEL; GUINEA-PIGS; NOISE; MICE AB Temporary tinnitus is a common consequence of noise exposure, and may share important mechanisms with chronic tinnitus. Noise-induced hearing loss is the most prevalent cause of chronic tinnitus. The reversibility of temporary tinnitus offers some practical experimental advantages. We therefore adapted a behavioral method based on gap detection to measure temporary tinnitus following brief acoustic trauma. Although anesthesia is often used during acoustic trauma exposure, many anesthetics can protect against noise-induced hearing loss. Whether anesthesia during acoustic trauma affects temporary tinnitus therefore remains an open question that directly affects experimental design in tinnitus studies. Here we tested whether anesthetizing rats with isoflurane during trauma had any effect on tinnitus. We found that gap-detection deficits, a behavioral measure of tinnitus, were 5 times stronger and lasted 10 times longer when isoflurane was not used. This suggests that isoflurane largely prevents temporary noise-induced tinnitus. (C) 2012 Elsevier B.V. All rights reserved. C1 [Norman, Madeleine; Tomscha, Katherine; Wehr, Michael] 1254 Univ Oregon, Dept Psychol, Inst Neurosci, Eugene, OR 97403 USA. RP Wehr, M (reprint author), 1254 Univ Oregon, Dept Psychol, Inst Neurosci, Eugene, OR 97403 USA. EM wehr@uoregon.edu FU Tinnitus Research Consortium FX This research was supported by the Tinnitus Research Consortium. CR ATHERLEY GR, 1968, J ACOUST SOC AM, V44, P1503, DOI 10.1121/1.1911288 Bauer CA, 2000, HEARING RES, V147, P175, DOI 10.1016/S0378-5955(00)00130-1 Bauer CA, 1999, OTOLARYNG HEAD NECK, V121, P457, DOI 10.1016/S0194-5998(99)70237-8 Bauer CA, 2001, JARO, V2, P54 Brozoski T.J., 2011, JARO-J ASSOC RES OTO, V13, P55 CHERMAK GD, 1987, SCAND AUDIOL, V16, P67, DOI 10.3109/01050398709042158 Chung JW, 2007, ANESTH ANALG, V104, P1404, DOI 10.1213/01.ane.0000261508.24083.6c Cooper J C Jr, 1994, J Am Acad Audiol, V5, P37 DAVIS H, 1950, Acta Otolaryngol Suppl, V88, P1 Eggermont JJ, 2008, AM J AUDIOL, V17, pS162, DOI 10.1044/1059-0889(2008/07-0025) Hemmings HC, 2005, TRENDS PHARMACOL SCI, V26, P503, DOI 10.1016/j.tips.2005.08.006 Holt AG, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014260 Ison JR, 2007, JARO-J ASSOC RES OTO, V8, P539, DOI 10.1007/s10162-007-0098-3 JASTREBOFF PJ, 1988, BEHAV NEUROSCI, V102, P811, DOI 10.1037/0735-7044.102.6.811 Kim JU, 2005, LARYNGOSCOPE, V115, P1996, DOI 10.1097/01.mlg.0000180173.81034.4d Kraus KS, 2010, NEUROSCIENCE, V167, P1216, DOI 10.1016/j.neuroscience.2010.02.071 Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 Lobarinas E, 2004, HEARING RES, V190, P109, DOI 10.1016/S0378-5955(04)00019-X LOEB M, 1967, J ACOUST SOC AM, V42, P453, DOI 10.1121/1.1910600 LONSBURYMARTIN BL, 1978, J NEUROPHYSIOL, V41, P987 Milbrandt JC, 2000, HEARING RES, V147, P251, DOI 10.1016/S0378-5955(00)00135-0 NAKAGAWARA M, 1986, ANESTHESIOLOGY, V64, P4, DOI 10.1097/00000542-198601000-00002 Nondahl David M, 2002, J Am Acad Audiol, V13, P323 Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005 Norena AJ, 2010, NEUROSCIENCE, V166, P1194, DOI 10.1016/j.neuroscience.2009.12.063 Norena AJ, 2003, J NEUROPHYSIOL, V90, P2387, DOI 10.1152/jn.00139.2003 Ralli M, 2010, OTOL NEUROTOL, V31, P823, DOI 10.1097/MAO.0b013e3181de4662 Scholl B, 2008, J NEUROPHYSIOL, V100, P646, DOI 10.1152/jn.90406.2008 Shargorodsky J, 2010, AM J MED, V123, P711, DOI 10.1016/j.amjmed.2010.02.015 Stolzberg D, 2011, NEUROSCIENCE, V180, P157, DOI 10.1016/j.neuroscience.2011.02.005 Stronks HC, 2010, HEARING RES, V260, P20, DOI 10.1016/j.heares.2009.10.015 Sun W, 2009, NEUROSCIENCE, V159, P325, DOI 10.1016/j.neuroscience.2008.12.024 Turner JG, 2008, AM J AUDIOL, V17, pS185, DOI 10.1044/1059-0889(2008/08-0006) Turner JG, 2006, BEHAV NEUROSCI, V120, P188, DOI 10.1037/0735-7044.120.1.188 Vernon J.A, 1995, MECH TINNITUS Yang G, 2007, HEARING RES, V226, P244, DOI 10.1016/j.heares.2006.06.013 Zhang X, 2011, NEUROSCIENCE, V172, P232, DOI 10.1016/j.neuroscience.2010.10.073 NR 37 TC 4 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2012 VL 290 IS 1-2 BP 64 EP 71 DI 10.1016/j.heares.2012.03.015 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 983PS UT WOS:000307131800007 PM 22633941 ER PT J AU Tabuchi, H Borucki, E Berg, BG AF Tabuchi, Hisaaki Borucki, Ewa Berg, Bruce G. TI Effects of randomizing phase on the discrimination between amplitude-modulated and quasi-frequency-modulated tones SO HEARING RESEARCH LA English DT Article ID DISTORTION PRODUCTS F2-F1; CRITICAL BANDWIDTH; LEVEL; REGION; 2F1-F2 AB This study investigated the bandwidth of phase sensitivity. Subjects discriminated amplitude-modulated tones (AM), and quasi-frequency-modulated tones (QFM) in a two-interval, forced-choice task. An adaptive threshold procedure was used to estimate the modulation depth needed to discriminate the stimuli as a function of carrier and modulation frequency. Non-monotonicities in threshold-bandwidth functions were often observed at higher modulation frequencies. The results are discussed in terms of two potential cues: (1) waveform envelope, (2) cubic distortion products. In order to degrade the information obtained from auditory distortions, the phase for the carrier frequency was randomly sampled from a uniform distribution, which diminished the non-monotonicities with minimal effect at lower modulation frequencies. Model simulations demonstrated that phase randomization degrades distortion product cues with only a modest effect on temporal cues. Final results show that maximum bandwidths for phase sensitivity (BWmax) were not proportional to carrier frequencies. (C) 2012 Elsevier B.V. All rights reserved. C1 [Tabuchi, Hisaaki; Borucki, Ewa; Berg, Bruce G.] Univ Calif Irvine, Dept Cognit Sci, Irvine, CA 92697 USA. RP Berg, BG (reprint author), Univ Calif Irvine, Dept Cognit Sci, 2201 Social & Behav Sci,Gateway Bldg, Irvine, CA 92697 USA. EM bgberg@uci.edu FU National Science Foundation [BCS-07464003] FX The authors thank Dr. Virginia Richards, Dr. Mathew Turner, Allison Shim, and reviewers for helpful comments. This work was supported by a grant from the National Science Foundation (BCS-07464003). CR American National Standards Institute (ANSI), 1989, S361989 ANSI Bernstein JGW, 2006, J ACOUST SOC AM, V120, P3929, DOI 10.1121/1.2372452 Borucki E., 2010, J ACOUST SOC AM, V127, P1988 BUUNEN TJF, 1975, ACUSTICA, V34, P98 Buunen T.J.F., 1976, THESIS TH DEFT BUUNEN TJF, 1974, J ACOUST SOC AM, V55, P297, DOI 10.1121/1.1914501 Eddins DA, 1999, J ACOUST SOC AM, V105, P829, DOI 10.1121/1.426272 Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47 FORREST TG, 1987, J ACOUST SOC AM, V82, P1933, DOI 10.1121/1.395689 GOLDSTEI.JL, 1967, J ACOUST SOC AM, V41, P458, DOI 10.1121/1.1910357 GOLDSTEI.JL, 1967, J ACOUST SOC AM, V41, P676, DOI 10.1121/1.1910396 Greenwood DD, 1996, J ACOUST SOC AM, V99, P1029, DOI 10.1121/1.414632 HALL JL, 1972, J ACOUST SOC AM, V51, P1863, DOI 10.1121/1.1913045 HALL JL, 1972, J ACOUST SOC AM, V51, P1872, DOI 10.1121/1.1913046 JESTEADT W, 1977, J ACOUST SOC AM, V61, P169, DOI 10.1121/1.381278 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 Klein SA, 2001, PERCEPT PSYCHOPHYS, V63, P1421, DOI 10.3758/BF03194552 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 MATHES RC, 1947, J ACOUST SOC AM, V19, P780, DOI 10.1121/1.1916623 NELSON DA, 1995, J ACOUST SOC AM, V98, P1969, DOI 10.1121/1.413316 NELSON DA, 1994, J ACOUST SOC AM, V95, P1514, DOI 10.1121/1.408539 Strickland EA, 1997, J ACOUST SOC AM, V102, P1799, DOI 10.1121/1.419617 Strickland EA, 2000, J ACOUST SOC AM, V107, P942, DOI 10.1121/1.428275 VIEMEISTER NF, 1979, J ACOUST SOC AM, V66, P1364, DOI 10.1121/1.383531 Zwicker E, 1999, PSYCHOACOUSTICS FACT ZWICKER E, 1981, J ACOUST SOC AM, V70, P1277, DOI 10.1121/1.387141 NR 26 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2012 VL 290 IS 1-2 BP 72 EP 82 DI 10.1016/j.heares.2012.04.021 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 983PS UT WOS:000307131800008 PM 22609773 ER PT J AU Roosli, C Chhan, D Halpin, C Rosowski, JJ AF Roeoesli, Christof Chhan, David Halpin, Christopher Rosowski, John J. TI Comparison of umbo velocity in air- and bone-conduction SO HEARING RESEARCH LA English DT Article ID DOPPLER VIBROMETER LDV; MIDDLE-EAR; FLUID PATHWAY; HEARING; STIMULATION; THRESHOLDS; MOTION; SOUND; PRESSURE; HUMANS AB This study investigates the ossicular motion produced by bone-conducted (BC) sound in live human ears. Laser Doppler Vibrometry was used to measure air conduction (AC)- and BC-induced umbo velocity (V-U) in both ears of 10 subjects, 20 ears total. Sound pressure in the ear canal (P-EC) was measured simultaneously. For air conduction, V-U at standard hearing threshold level was calculated. For BC, Delta V was defined as the difference between V-U and the tympanic ring velocity (an estimate of the skull velocity measured in the ear canal). Delta V and P-EC at BC standard hearing threshold were calculated. Delta V at standard BC threshold was significantly smaller than Vu at standard AC threshold between 500 Hz and 2000 Hz. Ear canal pressure at BC threshold tended to be smaller than for AC below 3000 Hz (with significant differences at 1000 Hz and 2000 Hz). Our results are most consistent with inertia of the ossicles and cochlear fluid driving BC hearing below 500 Hz, but with other mechanisms playing a significant role at higher frequencies. Sound radiated into the external ear canal might contribute to BC hearing at 3000 Hz and above. (C) 2012 Elsevier B.V. All rights reserved. C1 [Roeoesli, Christof; Chhan, David; Rosowski, John J.] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA. [Roeoesli, Christof; Halpin, Christopher; Rosowski, John J.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. [Roeoesli, Christof] Univ Zurich Hosp, Clin Otorhinolaryngol Head & Neck Surg, CH-8091 Zurich, Switzerland. [Chhan, David; Rosowski, John J.] MIT, Harvard Mit Div Hlth Sci & Technol, Speech & Hearing Biosci & Technol Program, Cambridge, MA 02139 USA. [Halpin, Christopher] Massachusetts Eye & Ear Infirm, Dept Audiol, Boston, MA 02114 USA. RP Roosli, C (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, 243 Charles St, Boston, MA 02114 USA. EM christof_roosli@meei.harvard.edu CR Barany E, 1938, ACTA OTO-LARYNGOL, V26, P1 Bekesy G., 1960, EXPT HEARING Dalhoff E, 2011, HEARING RES, V280, P86, DOI 10.1016/j.heares.2011.04.015 Goode RL, 1996, AM J OTOL, V17, P813 GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465 Hato N, 2003, AUDIOL NEURO-OTOL, V8, P140, DOI 10.1159/000069475 Huber AM, 2001, LARYNGOSCOPE, V111, P501, DOI 10.1097/00005537-200103000-00022 Hulecki LR, 2011, J AM ACAD AUDIOL, V22, P81, DOI 10.3766/jaaa.22.2.3 Ito T, 2011, AUDIOL NEURO-OTOL, V16, P12, DOI 10.1159/000314282 Kim N, 2011, JARO-J ASSOC RES OTO, V12, P261, DOI 10.1007/s10162-011-0258-3 MARGOLIS RH, 1993, EAR HEARING, V14, P3, DOI 10.1097/00003446-199302000-00002 Puria S, 1997, J ACOUST SOC AM, V101, P2754, DOI 10.1121/1.418563 Rosowski J.J., 2011, EAR HEAR Rosowski JJ, 2008, EAR HEARING, V29, P3 Shupak A, 2005, OTOL NEUROTOL, V26, P127, DOI 10.1097/00129492-200501000-00023 Sohmer H, 2000, HEARING RES, V146, P81, DOI 10.1016/S0378-5955(00)00099-X Sohmer H, 2004, HEARING RES, V193, P105, DOI 10.1016/j.heares.2004.03.015 Stenfelt S, 2002, J ACOUST SOC AM, V111, P947, DOI 10.1121/1.1432977 Stenfelt S, 2003, J ACOUST SOC AM, V113, P902, DOI 10.1121/1.1534606 Stenfelt S, 2005, OTOL NEUROTOL, V26, P1245, DOI 10.1097/01.mao.0000187236.10842.d5 Stenfelt S, 2006, J ACOUST SOC AM, V119, P2848, DOI 10.1121/1.2184225 Tonndorf J., 1966, ACTA OTO-LARYNGOL, V213, P1 Vikram K Bhat, 2004, J Otolaryngol, V33, P227 Watanabe T, 2008, EAR HEARING, V29, P667, DOI 10.1097/AUD.0b013e3181775dde Whittemore KR, 2004, HEARING RES, V187, P85, DOI 10.1016/S0378-5955(03)00332-0 NR 25 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2012 VL 290 IS 1-2 BP 83 EP 90 DI 10.1016/j.heares.2012.04.011 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 983PS UT WOS:000307131800009 PM 22609771 ER PT J AU Ranasinghe, KG Carraway, RS Borland, MS Moreno, NA Hanacik, EA Miller, RS Kilgard, MP AF Ranasinghe, Kamalini G. Carraway, Ryan S. Borland, Michael S. Moreno, Nicole A. Hanacik, Elizabeth A. Miller, Robert S. Kilgard, Michael P. TI Speech discrimination after early exposure to pulsed-noise or speech SO HEARING RESEARCH LA English DT Article ID PRIMARY AUDITORY-CORTEX; CORTICAL MAP REORGANIZATION; EARLY LANGUAGE-ACQUISITION; VOWEL-LIKE SOUNDS; CRITICAL PERIOD; PHONEME REPRESENTATIONS; DEAF-CHILDREN; PLASTICITY; BRAIN; EXPERIENCE AB Early experience of structured inputs and complex sound features generate lasting changes in tonotopy and receptive field properties of primary auditory cortex (A1). In this study we tested whether these changes are severe enough to alter neural representations and behavioral discrimination of speech. We exposed two groups of rat pups during the critical period of auditory development to pulsed-noise or speech. Both groups of rats were trained to discriminate speech sounds when they were young adults, and anesthetized neural responses were recorded from A1. The representation of speech in A1 and behavioral discrimination of speech remained robust to altered spectral and temporal characteristics of A1 neurons after pulsed-noise exposure. Exposure to passive speech during early development provided no added advantage in speech sound processing. Speech training increased A1 neuronal firing rate for speech stimuli in naive rats, but did not increase responses in rats that experienced early exposure to pulsed-noise or speech. Our results suggest that speech sound processing is resistant to changes in simple neural response properties caused by manipulating early acoustic environment. (C) 2012 Elsevier B.V. All rights reserved. C1 [Ranasinghe, Kamalini G.; Carraway, Ryan S.; Borland, Michael S.; Moreno, Nicole A.; Hanacik, Elizabeth A.; Miller, Robert S.; Kilgard, Michael P.] GR41 Univ Texas Dallas, Sch Behav & Brain Sci, Richardson, TX 75080 USA. RP Ranasinghe, KG (reprint author), GR41 Univ Texas Dallas, Sch Behav & Brain Sci, 800 W Campbell Rd, Richardson, TX 75080 USA. EM kamalini@utdallas.edu FU National Institute on Deafness and Other Communication Disorders [R01DC010433, R15DC006624] FX The authors would like to thank K. Hau, D. Gunter, R. Cheung, N. Mithani, C. Im, C. Matney, L. Wong, T. Mohhammad, A. Afsar and S. Mahioddin, A. Malik, F. Halipoto, A. Boulom, S. Ahmed, C. Rohloff, A. Ruiz, M. Abrahim and F. Naqvi for their help with behavioral training and physiology experiments. We would also like to thank P. C. Loizou, A. Moller, P. Assmann, and C. Engineer, for their comments and suggestions on earlier versions of the manuscript. The authors also would like to thank Shaowen Bao for the valuable comments provided on presentation of results. We also extend out gratitude to Cathy Steffen for the assistance given in handling young rat pups. This work was supported by Award Numbers R01DC010433 and R15DC006624 from the National Institute on Deafness and Other Communication Disorders. CR Alain C, 2007, CEREB CORTEX, V17, P1074, DOI 10.1093/cercor/bhl018 Bieszczad KM, 2010, P NATL ACAD SCI USA, V107, P3793, DOI 10.1073/pnas.1000159107 Brown M, 2004, CEREB CORTEX, V14, P952, DOI 10.1093/cercor/bhh056 Chang EF, 2010, NAT NEUROSCI, V13, P1428, DOI 10.1038/nn.2641 Chang EF, 2005, P NATL ACAD SCI USA, V102, P16460, DOI 10.1073/pnas.0508239102 Cheour M, 1998, NAT NEUROSCI, V1, P351, DOI 10.1038/1561 Conner JM, 2005, NEURON, V46, P173, DOI 10.1016/j.neuron.2005.03.003 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P866, DOI 10.1121/1.390596 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P879, DOI 10.1121/1.390597 de Villers-Sidani E, 2007, J NEUROSCI, V27, P180, DOI 10.1523/JNEUROSCI.3227-06.2007 DRULLMAN R, 1994, J ACOUST SOC AM, V95, P1053, DOI 10.1121/1.408467 Engineer CT, 2008, NAT NEUROSCI, V11, P603, DOI 10.1038/nn.2109 Engineer CT, 2008, SPEECH SOUND CODING Fishman KE, 1997, J SPEECH LANG HEAR R, V40, P1201 Foffani G, 2004, J NEUROSCI METH, V135, P107, DOI [10.1016/j.jneumeth.2003.12.011, 10.1016/j.neumeth.2003.12.011] Green D. M., 1989, SIGNAL DETECTION THE Han YK, 2007, NAT NEUROSCI, V10, P1191, DOI 10.1038/nn1941 Hoff E, 2003, CHILD DEV, V74, P1368, DOI 10.1111/1467-8624.00612 Insanally MN, 2010, J NEUROPHYSIOL, V103, P2611, DOI 10.1152/jn.00872.2009 Insanally MN, 2009, J NEUROSCI, V29, P5456, DOI 10.1523/JNEUROSCI.5311-08.2009 Irvine DRF, 1996, CLIN EXP PHARMACOL P, V23, P939, DOI 10.1111/j.1440-1681.1996.tb01146.x Kawahara H., 1997, ICASSP APR, V2, P1303 Kilgard MP, 1998, NAT NEUROSCI, V1, P727, DOI 10.1038/3729 Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714 Kim H, 2009, J NEUROSCI, V29, P5163, DOI 10.1523/JNEUROSCI.0365-09.2009 KRAUS N, 1995, J COGNITIVE NEUROSCI, V7, P25, DOI 10.1162/jocn.1995.7.1.25 Kuhl PK, 2010, NEURON, V67, P713, DOI 10.1016/j.neuron.2010.08.038 Kuhl PK, 2004, NAT REV NEUROSCI, V5, P831, DOI 10.1038/nrn1533 Kuhl P.K., 1997, J ACOUST SOC AM, V102, P3135, DOI 10.1121/1.420646 Kuhl PK, 1997, SCIENCE, V277, P684, DOI 10.1126/science.277.5326.684 Kuhl PK, 2003, P NATL ACAD SCI USA, V100, P9096, DOI 10.1073/pnas.1532872100 MILLER GA, 1955, J ACOUST SOC AM, V27, P338, DOI 10.1121/1.1907526 Naatanen R, 1997, NATURE, V385, P432, DOI 10.1038/385432a0 Nicholas JG, 2006, EAR HEARING, V27, P286, DOI 10.1097/01.aud.0000215973.76912.c6 Ohl FW, 1997, P NATL ACAD SCI USA, V94, P9440, DOI 10.1073/pnas.94.17.9440 Pandya PK, 2008, CEREB CORTEX, V18, P301, DOI 10.1093/cercor/bhm055 Perez C.A., CEREB CORTE IN PRESS, DOI [10.1093/cercor/bhs045, DOI 10.1093/CERCOR/BHS045] PISONI DB, 1973, PERCEPT PSYCHOPHYS, V13, P253, DOI 10.3758/BF03214136 Polley DB, 2006, J NEUROSCI, V26, P4970, DOI 10.1523/JNEUROSCI.3771-05.2006 Puckett AC, 2007, J NEUROPHYSIOL, V98, P253, DOI 10.1152/jn.01309.2006 Ranasinghe K.G., NEURAL MECH IN PRESS, DOI [10.1007/s10162-012-0328-1, DOI 10.1007/S10162-012-0328-1] RECANZONE GH, 1993, J NEUROSCI, V13, P87 RECANZONE GH, 1992, J NEUROPHYSIOL, V67, P1071 RECANZONE GH, 1992, J NEUROPHYSIOL, V67, P1057 Reed A, 2011, NEURON, V70, P121, DOI 10.1016/j.neuron.2011.02.038 Rutkowski RG, 2005, P NATL ACAD SCI USA, V102, P13664, DOI 10.1073/pnas.0506838102 SACHS MB, 1979, J ACOUST SOC AM, V66, P470, DOI 10.1121/1.383098 SCHEICH H, 1993, PROG BRAIN RES, V97, P135 Schnupp JWH, 2006, J NEUROSCI, V26, P4785, DOI 10.1523/JNEUROSCI.4330-05.2006 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Shetake JA, 2011, EUR J NEUROSCI, V34, P1823, DOI 10.1111/j.1460-9568.2011.07887.x Svirsky MA, 2004, AUDIOL NEURO-OTOL, V9, P224, DOI 10.1159/000078392 Talwar SK, 2001, J NEUROPHYSIOL, V86, P1555 Tremblay K, 2001, EAR HEARING, V22, P79, DOI 10.1097/00003446-200104000-00001 van Wassenhove V, 2007, J NEUROSCI, V27, P2663, DOI 10.1523/JNEUROSCI.4844-06.2007 Weizman ZO, 2001, DEV PSYCHOL, V37, P265, DOI 10.1037//0012-1649.37.2.265 Yotsumoto Y, 2008, NEURON, V57, P827, DOI 10.1016/j.neuron.2008.02.034 Zhang LI, 2002, P NATL ACAD SCI USA, V99, P2309, DOI 10.1073/pnas.261707398 Zhang LI, 2001, NAT NEUROSCI, V4, P1123, DOI 10.1038/nn745 Zhou XM, 2007, P NATL ACAD SCI USA, V104, P15935, DOI 10.1073/pnas.0707348104 Zhou XM, 2009, NAT NEUROSCI, V12, P26, DOI 10.1038/nn.2239 Zhou XM, 2008, P NATL ACAD SCI USA, V105, P4423, DOI 10.1073/pnas.0800009105 NR 62 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2012 VL 289 IS 1-2 BP 1 EP 12 DI 10.1016/j.heares.2012.04.020 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 967UL UT WOS:000305933200001 PM 22575207 ER PT J AU Roos, MJ May, BJ AF Roos, Matthew J. May, Bradford J. TI Classification of unit types in the anteroventral cochlear nucleus of laboratory mice SO HEARING RESEARCH LA English DT Article ID AUDITORY-NERVE FIBERS; PRIMARY AXOSOMATIC ENDINGS; SPHERICAL BUSHY CELLS; RESPONSE PROPERTIES; CHOPPER UNITS; HORSERADISH-PEROXIDASE; REGULARITY ANALYSIS; DISCHARGE PATTERNS; SINGLE NEURONS; BRAIN-STEM AB This report introduces a system for the objective physiological classification of single-unit activity in the anteroventral cochlear nucleus (AVCN) of anesthetized CBA/129 and CBA/CaJ mice. As in previous studies, the decision criteria are based on the temporal properties of responses to short tone bursts that are visualized in the form of pen-stimulus time histograms (PSTHs). Individual unit types are defined by the statistical distribution of quantifiable metrics that relate to the onset latency, regularity, and adaptation of sound-driven discharge rates. Variations of these properties reflect the unique synaptic organizations and intrinsic membrane properties that dictate the selective tuning of sound coding in the AVCN. When these metrics are applied to the mouse AVCN, responses to best frequency (BF) tones reproduce the major PSTH patterns that have been previously demonstrated in other mammalian species. The consistency of response types in two genetically diverse strains of laboratory mice suggests that the present classification system is appropriate for additional strains with normal peripheral function. The general agreement of present findings to established classifications validates laboratory mice as an adequate model for general principles of mammalian sound coding. Nevertheless, important differences are noted for the reliability of specialized endbulb transmission within the AVCN, suggesting less secure temporal coding in this high-frequency species. (C) 2012 Elsevier B.V. All rights reserved. C1 [May, Bradford J.] Johns Hopkins Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Baltimore, MD 21205 USA. [Roos, Matthew J.] Johns Hopkins Univ, Sch Med, Dept Neurosci, Baltimore, MD 21205 USA. RP May, BJ (reprint author), Johns Hopkins Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, 720 Rutland Ave,521 Taylor Bldg, Baltimore, MD 21205 USA. EM bmay@jhu.edu FU NIDCD [F31 DC010095, P30 DC005211] FX Amanda Lauer conducted the initial assessments of auditory function in CBA/129 mice (auditory brainstem response, distortion product otoacoustic emissions, and acoustic startle responses). This work was supported by NIDCD grants F31 DC010095 and P30 DC005211. CR Antolin J, 2009, J CHEM PHYS, V130, DOI 10.1063/1.3078050 BANKS MI, 1991, J NEUROPHYSIOL, V65, P606 BLACKBURN CC, 1992, J NEUROPHYSIOL, V68, P124 BLACKBURN CC, 1990, J NEUROPHYSIOL, V63, P1191 BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303 Bourk TR, 1976, THESIS MIT CAMBRIDGE BRINER W, 1989, NEUROBIOL AGING, V10, P295, DOI 10.1016/0197-4580(89)90039-0 Cai S., 2007, THESIS J HOPKINS U B Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9 CANT NB, 1979, NEUROSCIENCE, V4, P1909, DOI 10.1016/0306-4522(79)90065-4 CANT NB, 1979, NEUROSCIENCE, V4, P1925, DOI 10.1016/0306-4522(79)90066-6 CANT NB, 1984, HEARING SCI RECENT A, P371 Chase SM, 2007, P NATL ACAD SCI USA, V104, P5175, DOI 10.1073/pnas.0610368104 EVANS EF, 1973, EXP BRAIN RES, V17, P402 Feng J, 2010, J NEUROSCI RES, V88, P86, DOI 10.1002/jnr.22179 Harris JA, 2005, J COMP NEUROL, V493, P460, DOI 10.1002/cne.20776 Jiang D, 1996, J NEUROPHYSIOL, V75, P380 KANE EC, 1973, INT J NEUROSCI, V5, P251, DOI 10.3109/00207457309149485 Kiang NY-s, 1965, DISCHARGE PATTERNS S Kopp-Scheinpflug C, 2002, J NEUROSCI, V22, P11004 Kuenzel T, 2011, J NEUROSCI, V31, P4260, DOI 10.1523/JNEUROSCI.5433-10.2011 Lai Y C, 1994, J Comput Neurosci, V1, P167, DOI 10.1007/BF00961733 Lauer AM, 2009, LAB ANIMAL, V38, P154, DOI 10.1038/laban0509-154 Lauer AM, 2011, JARO-J ASSOC RES OTO, V12, P633, DOI 10.1007/s10162-011-0279-y Lee DJ, 2003, J NEUROCYTOL, V32, P229, DOI 10.1023/B:NEUR.0000010082.99874.14 LIBERMAN MC, 1993, J COMP NEUROL, V327, P17, DOI 10.1002/cne.903270103 Limb CJ, 2000, JARO, V1, P103, DOI 10.1007/sl01620010032 Luo F, 2009, HEARING RES, V257, P75, DOI 10.1016/j.heares.2009.08.002 Malmierca MS, 2010, OXFORD HDB AUDITORY, P9 MANIS PB, 1991, J NEUROSCI, V11, P2865 May BJ, 2011, OTOL NEUROTOL, V32, P1568, DOI 10.1097/MAO.0b013e31823389a1 May BJ, 1998, J NEUROPHYSIOL, V79, P1755 Muniak M.A., J COMP NEUROL UNPUB Oertel D, 2008, NEUROSCIENCE, V154, P77, DOI 10.1016/j.neuroscience.2008.01.085 OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407 Palmer AR, 2003, EXP BRAIN RES, V153, P418, DOI 10.1007/s00221-003-1602-6 Palmer AR, 1996, J NEUROPHYSIOL, V75, P780 Paolini AG, 1999, J NEUROPHYSIOL, V81, P2347 Pearce M, 2001, J NEUROSCI METH, V106, P57, DOI 10.1016/S0165-0270(01)00329-6 PFEIFFER RR, 1966, EXP BRAIN RES, V1, P220 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 RHODE WS, 1983, J COMP NEUROL, V213, P448, DOI 10.1002/cne.902130408 Rhode WS, 2008, NEUROSCIENCE, V154, P87, DOI 10.1016/j.neuroscience.2008.03.013 Roos M.J., 2012, THESIS J HOPKINS U B ROTHMAN JS, 1993, J NEUROPHYSIOL, V70, P2562 RYUGO DK, 1982, J COMP NEUROL, V210, P239, DOI 10.1002/cne.902100304 RYUGO DK, 1991, J COMP NEUROL, V305, P35, DOI 10.1002/cne.903050105 Sayles M, 2010, HEARING RES, V262, P26, DOI 10.1016/j.heares.2010.01.015 SHOFNER WP, 1985, J NEUROPHYSIOL, V54, P917 SMITH PH, 1989, J COMP NEUROL, V282, P595, DOI 10.1002/cne.902820410 Spirou GA, 2005, NEUROSCIENCE, V136, P843, DOI 10.1016/j.neuroscience.2005.08.068 Taberner AM, 2005, J NEUROPHYSIOL, V93, P557, DOI 10.1152/jn.00574.2004 Trussel L.O., 2002, INTEGRATIVE FUNCTION, P72 VANHEUSDEN E, 1983, HEARING RES, V11, P295, DOI 10.1016/0378-5955(83)90064-3 WEBSTER DB, 1982, AM J ANAT, V163, P103, DOI 10.1002/aja.1001630202 WINTER IM, 1995, J NEUROPHYSIOL, V73, P141 Woolf N K, 1985, Brain Res, V349, P131 WU SH, 1984, J NEUROSCI, V4, P1577 Young E. D., 1988, AUDITORY FUNCTION NE, P277 YOUNG ED, 1988, J NEUROPHYSIOL, V60, P1 Youssoufian M, 2008, J COMP NEUROL, V506, P442, DOI 10.1002/cne.21566 NR 61 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2012 VL 289 IS 1-2 BP 13 EP 26 DI 10.1016/j.heares.2012.04.019 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 967UL UT WOS:000305933200002 PM 22579638 ER PT J AU Jacques, BE Dabdoub, A Kelley, MW AF Jacques, Bonnie E. Dabdoub, Alain Kelley, Matthew W. TI Fgf signaling regulates development and transdifferentiation of hair cells and supporting cells in the basilar papilla SO HEARING RESEARCH LA English DT Article ID CHICK INNER-EAR; AUDITORY SENSORY EPITHELIUM; GROWTH-FACTOR RECEPTOR; MAMMALIAN COCHLEA; ACOUSTIC TRAUMA; CELLULAR-DIFFERENTIATION; EXPRESSION PATTERNS; PROSENSORY PATCHES; NONSENSORY REGIONS; NOTCH LIGANDS AB The avian basilar papilla (BP) is a likely homolog of the auditory sensory epithelium of the mammalian cochlea, the organ of Corti. During mammalian development Fibroblast growth factor receptor-3 (Fgfr3) is known to regulate the differentiation of auditory mechanosensory hair cells (HCs) and supporting cells (SCs), both of which are required for sound detection. Fgfr3 is expressed in developing progenitor cells (PCs) and SCs of both the BP and the organ of Corti; however its role in BP development is unknown. Here we utilized an in vitro whole organ embryonic culture system to examine the role of Fgf signaling in the developing avian cochlea. SU5402 (an antagonist of Fgf signaling) was applied to developing BP cultures at different stages to assay the role of Fgf signaling during HC formation. Similar to the observed effects of inhibition of Fgfr3 in the mammalian cochlea, Fgfr inhibition in the developing BP increased the number of HCs that formed. This increase was not associated with increased proliferation, suggesting that inhibition of the Fgf pathway leads to the direct conversion of PCs or supporting cells into HCs, a process known as transdifferentiation. This also implies that Fgf signaling is required to prevent the conversion of PCs and SCs into HCs. The ability of Fgf signaling to inhibit transdifferentiation suggests that its down-regulation may be essential for the initial steps of HC formation, as well as for the maintenance of SC phenotypes. (C) 2012 Published by Elsevier B.V. C1 [Jacques, Bonnie E.; Kelley, Matthew W.] NIDCD, Lab Cochlear Dev, NIH, Porter Neurosci Res Ctr, Bethesda, MD 20892 USA. [Jacques, Bonnie E.; Dabdoub, Alain] UCSD Sch Med, Dept Surg, Div Otolaryngol, La Jolla, CA 92093 USA. [Jacques, Bonnie E.] Univ Maryland, Dept Biol, College Pk, MD 20742 USA. RP Kelley, MW (reprint author), NIDCD, Lab Cochlear Dev, NIH, Porter Neurosci Res Ctr, 35 Convent Dr,Room 2A-100, Bethesda, MD 20892 USA. EM bjacques@ucsd.edu; adabdoub@ucsd.edu; kelleymt@nidcd.nih.gov FU National Institute on Deafness and other Communication Disorders; [P30 CA23100] FX We would like to thank Drs. Douglas Cotanche and Jennifer Stone for reading an earlier version of the manuscript and providing very helpful comments. We would like to thank Dr. Guy Richardson at the University of Sussex for kindly providing the HCA antibody. Some of the images were generated at the UCSD Shared Microscopy Facility, Cancer Center specialized support grant P30 CA23100. This research was supported by funds from the intramural program at the National Institute on Deafness and other Communication Disorders (M.W.K.). CR Adam J, 1998, DEVELOPMENT, V125, P4645 Alvarado DM, 2011, J NEUROSCI, V31, P4535, DOI 10.1523/JNEUROSCI.5456-10.2011 BARTOLAMI S, 1991, J COMP NEUROL, V314, P777, DOI 10.1002/cne.903140410 Basch ML, 2011, J NEUROSCI, V31, P8046, DOI 10.1523/JNEUROSCI.6671-10.2011 Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837 Bermingham-McDonogh O, 2001, DEV BIOL, V238, P247, DOI 10.1006/dbio.2001.0412 Brooker R, 2006, DEVELOPMENT, V133, P1277, DOI 10.1242/dev.02284 Chen L, 1999, J CLIN INVEST, V104, P1517, DOI 10.1172/JCI6690 Chen P, 2002, DEVELOPMENT, V129, P2495 COHEN GM, 1978, ACTA OTO-LARYNGOL, V86, P342, DOI 10.3109/00016487809107513 Colvin JS, 1996, NAT GENET, V12, P390, DOI 10.1038/ng0496-390 CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 Cotanche DA, 2010, HEARING RES, V266, P18, DOI 10.1016/j.heares.2010.04.012 Cotanche D A, 1984, Brain Res, V318, P181 COTANCHE DA, 1987, HEARING RES, V30, P181, DOI 10.1016/0378-5955(87)90135-3 COTANCHE DA, 1983, ARCH OTO-RHINO-LARYN, V237, P191, DOI 10.1007/BF00453723 Dabdoub A, 2008, P NATL ACAD SCI USA, V105, P18396, DOI 10.1073/pnas.0808175105 Daudet N, 2007, DEVELOPMENT, V134, P2369, DOI 10.1242/dev.001842 Daudet N, 2009, DEV BIOL, V326, P86, DOI 10.1016/j.ydbio.2008.10.033 Daudet N, 2005, DEVELOPMENT, V132, P541, DOI 10.1242/dev.01589 Doetzlhofer A, 2009, DEV CELL, V16, P58, DOI 10.1016/j.devcel.2008.11.008 Fekete DM, 1998, J NEUROSCI, V18, P7811 Goodyear R, 1997, J NEUROSCI, V17, P6289 Govindarajan V, 2001, DEVELOPMENT, V128, P1617 HAMBURGER V, 1951, J MORPHOL, V88, P49, DOI 10.1002/jmor.1050880104 Hayashi T, 2008, J NEUROSCI, V28, P5991, DOI 10.1523/JNEUROSCI.1690-08.2008 Hayashi T, 2007, DEV DYNAM, V236, P525, DOI 10.1002/dvdy.21026 Hebert JM, 2011, FRONT NEUROSCI-SWITZ, V5, DOI 10.3389/fnins.2011.00133 Jacques BE, 2007, DEVELOPMENT, V134, P3021, DOI 10.1242/dev.02874 KATAYAMA A, 1989, J COMP NEUROL, V281, P129, DOI 10.1002/cne.902810110 Kiernan AE, 2005, DEVELOPMENT, V132, P4353, DOI 10.1242/dev.02002 Kirjavainen A, 2008, DEV BIOL, V322, P33, DOI 10.1016/j.ydbio.2008.07.004 Lanford PJ, 1999, NAT GENET, V21, P289 Levic S, 2007, P NATL ACAD SCI USA, V104, P19108, DOI 10.1073/pnas.0705927104 Lewis AK, 1998, MECH DEVELOP, V78, P159, DOI 10.1016/S0925-4773(98)00165-8 Li HW, 2005, BMC DEV BIOL, V5, DOI 10.1186/1471-213X-5-16 Ma EY, 2008, J NEUROSCI, V28, P2261, DOI 10.1523/JNEUROSCI.4372-07.2008 Mansour SL, 2009, HUM MOL GENET, V18, P43, DOI 10.1093/hmg/ddn311 Mason JM, 2006, TRENDS CELL BIOL, V16, P45, DOI 10.1016/j.tcb.2005.11.004 Matei V, 2005, DEV DYNAM, V234, P633, DOI 10.1002/dvdy.20551 Mohammadi M, 1997, SCIENCE, V276, P955, DOI 10.1126/science.276.5314.955 Molea D, 1999, J COMP NEUROL, V406, P183 Mueller KL, 2002, J NEUROSCI, V22, P9368 Neves J, 2007, J COMP NEUROL, V503, P487, DOI 10.1002/cne.21299 Ohyama T, 2010, J NEUROSCI, V30, P15044, DOI 10.1523/JNEUROSCI.3547-10.2010 Ornitz DM, 1996, J BIOL CHEM, V271, P15292 Pauley S, 2003, DEV DYNAM, V227, P203, DOI 10.1002/dvdy.10297 PETERS K, 1993, DEV BIOL, V155, P423, DOI 10.1006/dbio.1993.1040 Pickles JO, 1997, DEV NEUROSCI-BASEL, V19, P476, DOI 10.1159/000111245 Pirvola U, 2002, NEURON, V35, P671, DOI 10.1016/S0896-6273(02)00824-3 Pirvola U, 2004, DEV BIOL, V273, P350, DOI 10.1016/j.ydbio.2004.06.010 Pirvola U, 2000, J NEUROSCI, V20, P6125 Pujades C, 2006, DEV BIOL, V292, P55, DOI 10.1016/j.ydbio.2006.01.001 Puligilla C, 2007, DEV DYNAM, V236, P1905, DOI 10.1002/dvdy.21192 Roberson DW, 2004, J NEUROSCI RES, V78, P461, DOI 10.1002/jnr.20271 RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101 Sajan SA, 2007, GENETICS, V177, P631, DOI 10.1534/genetics.107.078584 Sanchez-Calderon H, 2004, GENE EXPR PATTERNS, V4, P659, DOI 10.1016/j.modgep.2004.04.008 Sanchez-Calderon H, 2002, BRAIN RES BULL, V57, P321, DOI 10.1016/S0361-9230(01)00725-0 Schimmang T, 2007, INT J DEV BIOL, V51, P473, DOI 10.1387/ijdb.072334ts Shang JL, 2010, JARO-J ASSOC RES OTO, V11, P203, DOI 10.1007/s10162-009-0206-7 Shim K, 2005, DEV CELL, V8, P553, DOI 10.1016/j.devcel.2005.02.009 Shin JW, 2006, MOL BIOL CELL, V17, P576, DOI 10.1091/mbc.E05-04-0368 Si F, 2003, J NEUROSCI, V23, P10815 Stone JS, 2007, INT J DEV BIOL, V51, P633, DOI 10.1387/ijdb.072408js Stone JS, 2000, J COMP NEUROL, V417, P1, DOI 10.1002/(SICI)1096-9861(20000131)417:1<1::AID-CNE1>3.0.CO;2-E STONE JS, 1991, J COMP NEUROL, V314, P614, DOI 10.1002/cne.903140315 Stone JS, 2003, J COMP NEUROL, V460, P487, DOI 10.1002/cne.10662 TILNEY LG, 1986, DEV BIOL, V116, P100, DOI 10.1016/0012-1606(86)90047-3 UMEMOTO M, 1995, CELL TISSUE RES, V281, P435, DOI 10.1007/s004410050440 White PM, 2006, NATURE, V441, P984, DOI 10.1038/nature04849 WHITEHEAD MC, 1985, NEUROSCIENCE, V14, P277, DOI 10.1016/0306-4522(85)90178-2 Woods C, 2004, NAT NEUROSCI, V7, P1310, DOI 10.1038/nn1349 Wu DK, 1996, J NEUROSCI, V16, P6454 Yamamoto N, 2011, DEV BIOL, V353, P367, DOI 10.1016/j.ydbio.2011.03.016 Yang H, 2010, GENESIS, V48, P407, DOI 10.1002/dvg.20633 NR 76 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2012 VL 289 IS 1-2 BP 27 EP 39 DI 10.1016/j.heares.2012.04.018 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 967UL UT WOS:000305933200003 PM 22575790 ER PT J AU Yoshida, A Yamamoto, N Kinoshita, M Hiroi, N Hiramoto, T Kang, G Trimble, WS Tanigaki, K Nakagawa, T Ito, J AF Yoshida, Atsuhiro Yamamoto, Norio Kinoshita, Makoto Hiroi, Noboru Hiramoto, Takeshi Kang, Gina Trimble, William S. Tanigaki, Kenji Nakagawa, Takayuki Ito, Juichi TI Localization of septin proteins in the mouse cochlea SO HEARING RESEARCH LA English DT Article ID CONNEXIN 26 GENE; MAMMALIAN SEPTIN; SUPPORTING CELLS; INNER-EAR; NEURONS; EXPRESSION; CYTOSKELETON; MICROTUBULES; ORGANIZATION; CYTOKINESIS AB Septins are a family of GTP binding proteins that are well conserved in eukaryotic species except plants. Septins contribute to the lateral compartmentalization of membranes, cortical rigidity, and the regulation of membrane trafficking by associating with membrane lipids, actin, and microtubules. The organ of Corti in the cochlea has pivotal roles in auditory perception and includes two kinds of highly polarized cells, hair and supporting cells, both of which are rich in actin and microtubules. To identify the roles of septins in the cochlea, we analyzed the localization of three septin proteins, septin 4 (SEPT4), septin 5 (SEPT5), and septin 7 (SEPT7) that are abundantly expressed in brain tissues, and also examined auditory functions of Sept4 and Sept5 null mice. SEPT4, SEPT5, and SEPT7 were expressed in inner and outer pillar cells and Deiters' cells but the distribution patterns of each protein in Deiters' cells were different. SEPT4 and SEPT7 were expressed in the phalangeal process where SEPT5 was not detected. In addition to these cells SEPT5 and SEPT7 were co-localized with presynaptic vesicles of efferent nerve terminals. Only SEPT7 was expressed in the cochlea at embryonic stages. Although expression patterns of septin proteins suggested their important roles in the function of the cochlea, both Sept4 and Sept5 null mice had similar auditory functions to their wild type littermates. Immunohistochemical analysis of Sept4 null mice showed that compensatory expression of SEPT5 in the phalangeal process of Deiters' cells may have caused functional compensation of hearing ability in Sept4 null mice. (C) 2012 Elsevier B.V. All rights reserved. C1 [Yoshida, Atsuhiro; Yamamoto, Norio; Nakagawa, Takayuki; Ito, Juichi] Kyoto Univ, Dept Otolaryngol Head & Neck Surg, Grad Sch Med, Sakyo Ku, Kyoto 6068507, Japan. [Kinoshita, Makoto] Nagoya Univ, Div Biol Sci, Grad Sch Sci, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Hiroi, Noboru; Hiramoto, Takeshi; Kang, Gina] Albert Einstein Coll Med, Dept Psychiat & Behav Sci, Bronx, NY 10461 USA. [Hiroi, Noboru; Hiramoto, Takeshi; Kang, Gina] Albert Einstein Coll Med, Dept Neurosci, Bronx, NY 10461 USA. [Hiroi, Noboru; Hiramoto, Takeshi; Kang, Gina] Albert Einstein Coll Med, Dept Genet, Bronx, NY 10461 USA. [Trimble, William S.] Hosp Sick Children, Cell Biol Program, Toronto, ON M5G 1X8, Canada. [Tanigaki, Kenji] Shiga Med Ctr, Res Inst, Shiga 5248524, Japan. RP Yamamoto, N (reprint author), Kyoto Univ, Dept Otolaryngol Head & Neck Surg, Grad Sch Med, Sakyo Ku, 54 Shogoin Kawahara Cho, Kyoto 6068507, Japan. EM yamamoto@ent.kuhp.kyoto-u.ac.jp RI Hiroi, Noboru/E-2215-2013 OI Hiroi, Noboru/0000-0002-6846-5969 FU Ministry of Education, Culture, Sports, Science and Technology in Japan [22791595, 23229009]; Japan Society for Promotion of Science; National Institutes of Health [HD05311]; National Alliance for Research on Schizophrenia and Depression Independent Investigator Award; Maltz Foundation FX This project was supported by a Grant-in-Aid for Young Scientists (B) (22791595) to NY, a Grant-in-Aid for Scientific Research (S) (23229009) to JI from the Ministry of Education, Culture, Sports, Science and Technology in Japan and Japan Society for Promotion of Science, and the National Institutes of Health (HD05311), National Alliance for Research on Schizophrenia and Depression Independent Investigator Award, and the Maltz Foundation to N.H. CR Amin ND, 2008, J NEUROSCI, V28, P3631, DOI 10.1523/JNEUROSCI.0453-08.2008 Beites CL, 1999, NAT NEUROSCI, V2, P434 Blaser S, 2002, FEBS LETT, V519, P169, DOI 10.1016/S0014-5793(02)02749-7 Blaser S, 2003, GENE, V312, P313, DOI 10.1016/S0378-1119(03)00635-8 Buser AM, 2009, MOL CELL NEUROSCI, V40, P156, DOI 10.1016/j.mcn.2008.10.002 Caltagarone J, 1998, NEUROREPORT, V9, P2907, DOI 10.1097/00001756-199808240-00042 Caudron F, 2009, DEV CELL, V16, P493, DOI 10.1016/j.devcel.2009.04.003 Denoyelle F, 1997, HUM MOL GENET, V6, P2173, DOI 10.1093/hmg/6.12.2173 Dent J, 2002, P NATL ACAD SCI USA, V99, P3064, DOI 10.1073/pnas.052715199 Estivill X, 1998, LANCET, V351, P394, DOI 10.1016/S0140-6736(97)11124-2 FEX J, 1986, BRAIN RES, V366, P106, DOI 10.1016/0006-8993(86)91285-0 Fujishima K, 2007, J NEUROCHEM, V102, P77, DOI 10.1111/j.1471-4159.2007.04478.x Gilden J, 2010, CYTOSKELETON, V67, P477, DOI 10.1002/cm.20461 GILLOYZAGA P, 1988, INT J DEV NEUROSCI, V6, P155, DOI 10.1016/0736-5748(88)90040-8 Hall PA, 2005, J PATHOL, V206, P269, DOI 10.1002/path.1789 HARTWELL LH, 1971, EXP CELL RES, V69, P265, DOI 10.1016/0014-4827(71)90223-0 Kikuchi K, 1965, Acta Otolaryngol, V60, P207, DOI 10.3109/00016486509127003 Ihara M, 2005, DEV CELL, V8, P343, DOI 10.1016/j.devcel.2004.12.005 Ihara M, 2007, NEURON, V53, P519, DOI 10.1016/j.neuron.2007.01.019 Joberty G, 2001, NAT CELL BIOL, V3, P861, DOI 10.1038/ncb1001-861 Kartmann B, 2001, J CELL SCI, V114, P839 Kelley PM, 1998, AM J HUM GENET, V62, P792, DOI 10.1086/301807 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 Kinoshita A, 2000, J COMP NEUROL, V428, P223, DOI 10.1002/1096-9861(20001211)428:2<223::AID-CNE3>3.0.CO;2-M Kinoshita M, 2006, CURR OPIN CELL BIOL, V18, P54, DOI 10.1016/j.ceb.2005.12.005 Kinoshita M, 2003, J BIOCHEM, V134, P491, DOI 10.1093/jb/mvg182 Kwitny S, 2010, BIOL REPROD, V82, P669, DOI 10.1095/biolreprod.109.079566 Mistrik P, 2009, CURR OPIN OTOLARYNGO, V17, P394, DOI 10.1097/MOO.0b013e328330366f Nagata K, 2003, J BIOL CHEM, V278, P18538, DOI 10.1074/jbc.M205246200 Nagata K, 2004, J BIOL CHEM, V279, P55895, DOI 10.1074/jbc.M406153200 Pan FF, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148/7/103 Parker MA, 2011, JARO-J ASSOC RES OTO, V12, P471, DOI 10.1007/s10162-011-0265-4 Peng XR, 2002, MOL CELL BIOL, V22, P378, DOI 10.1128/MCB.22.1.378-387.2002 Rio C, 2002, J COMP NEUROL, V442, P156, DOI 10.1002/cne.10085 SADANAGA M, 1995, HEARING RES, V89, P155, DOI 10.1016/0378-5955(95)00133-X Schrott-Fischer A, 2002, HEARING RES, V174, P75, DOI 10.1016/S0378-5955(02)00640-8 Shiga A, 2005, AUDIOL NEURO-OTOL, V10, P97, DOI 10.1159/000083365 SLEPECKY N, 1983, HEARING RES, V10, P359, DOI 10.1016/0378-5955(83)90098-9 Slepecky N. B., 1996, COCHLEA, P44 Surka MC, 2002, MOL BIOL CELL, V13, P3532, DOI 10.1091/mbc.E02-01-0042 Tada T, 2007, CURR BIOL, V17, P1752, DOI 10.1016/j.cub.2007.09.039 Tsang CW, 2011, BIOL CHEM, V392, P739, DOI 10.1515/BC.2011.077 Xie YL, 2007, CURR BIOL, V17, P1746, DOI 10.1016/j.cub.2007.08.042 NR 43 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2012 VL 289 IS 1-2 BP 40 EP 51 DI 10.1016/j.heares.2012.04.015 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 967UL UT WOS:000305933200004 PM 22575789 ER PT J AU Parthasarathy, A Bartlett, E AF Parthasarathy, Aravindakshan Bartlett, Edward TI Two-channel recording of auditory-evoked potentials to detect age-related deficits in temporal processing SO HEARING RESEARCH LA English DT Article ID FREQUENCY-FOLLOWING RESPONSES; AMPLITUDE-MODULATED SOUNDS; BRAIN-STEM RESPONSE; INFERIOR COLLICULUS NEURONS; DORSAL COCHLEAR NUCLEUS; IN-NOISE PERCEPTION; HEARING-LOSS; ELECTRODE PLACEMENT; SPEECH RECOGNITION; MONGOLIAN GERBIL AB Auditory brainstem responses (ABRs), and envelope and frequency following responses (EFRs and FFRs) are widely used to study aberrant auditory processing in conditions such as aging. We have previously reported age-related deficits in auditory processing for rapid amplitude modulation (AM) frequencies using EFRs recorded from a single channel. However, sensitive testing of EFRs along a wide range of modulation frequencies is required to gain a more complete understanding of the auditory processing deficits. In this study, ABRs and EFRs were recorded simultaneously from two electrode configurations in young and old Fischer-344 rats, a common auditory aging model. Analysis shows that the two channels respond most sensitively to complementary AM frequencies. Channel 1, recorded from Fz to mastoid, responds better to faster AM frequencies in the 100-700 Hz range of frequencies, while Channel 2, recorded from the inter-aural line to the mastoid, responds better to slower AM frequencies in the 16 100 Hz range. Simultaneous recording of Channels 1 and 2 using AM stimuli with varying sound levels and modulation depths show that age-related deficits in temporal processing are not present at slower AM frequencies but only at more rapid ones, which would not have been apparent recording from either channel alone. Comparison of EFRs between un-anesthetized and isoflurane-anesthetized recordings in young animals, as well as comparison with previously published ABR waveforms, suggests that the generators of Channel 1 may emphasize more caudal brainstem structures while those of Channel 2 may emphasize more rostral auditory nuclei including the inferior colliculus and the forebrain, with the boundary of separation potentially along the cochlear nucleus/superior olivary complex. Simultaneous two-channel recording of EFRs help to give a more complete understanding of the properties of auditory temporal processing over a wide range of modulation frequencies which is useful in understanding neural representations of sound stimuli in normal, developmental or pathological conditions. (C) 2012 Elsevier B.V. All rights reserved. C1 [Bartlett, Edward] Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47906 USA. [Parthasarathy, Aravindakshan; Bartlett, Edward] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47906 USA. RP Bartlett, E (reprint author), Purdue Univ, Weldon Sch Biomed Engn, 206 S Martin Jischke Dr, W Lafayette, IN 47906 USA. EM ebartle@purdue.edu FU National Institute on Deafness and Other Communicative Disorders [1R01DC011580-01A1]; American Federation for Aging Research (AFAR) FX This work for supported by a grant (1R01DC011580-01A1) from the National Institute on Deafness and Other Communicative Disorders and from the American Federation for Aging Research (AFAR) to EB. The authors would like to thank Christopher Evenson for his help with data collection, and Dr. Ravi Krishnan for his helpful comments and suggestions. CR Aiken SJ, 2008, HEARING RES, V245, P35, DOI 10.1016/j.heares.2008.08.004 Anderson MJ, 2004, HEARING RES, V188, P29, DOI 10.1016/S0378-5955(03)00348-4 Anderson S, 2011, EAR HEARING, V32, P750, DOI 10.1097/AUD.0b013e31822229d3 Argence M, 2006, NEUROSCIENCE, V141, P1193, DOI 10.1016/j.neuroscience.2006.04.058 Arnold S., 2001, M ASS FOR RES IN OT, V112, P590 BACKOFF PM, 1994, HEARING RES, V73, P163, DOI 10.1016/0378-5955(94)90231-3 Banks MI, 1999, ANESTHESIOLOGY, V90, P120, DOI 10.1097/00000542-199901000-00018 Basu M, 2010, DEVELOPMENTAL SCI, V13, P77, DOI 10.1111/j.1467-7687.2009.00849.x BEATTIE RC, 1989, AUDIOLOGY, V28, P1 BEATTIE RC, 1986, J SPEECH HEAR DISORD, V51, P63 Benkwitz C., 2003, GABAA RECEPTOR GAMMA BOETTCHER FA, 1993, HEARING RES, V71, P137, DOI 10.1016/0378-5955(93)90029-Z Boettcher FA, 2001, HEARING RES, V153, P32, DOI 10.1016/S0378-5955(00)00255-0 BUCHWALD JS, 1975, SCIENCE, V189, P382, DOI 10.1126/science.1145206 Buckiova D, 2007, EXP GERONTOL, V42, P629, DOI 10.1016/j.exger.2007.02.007 BURTON MJ, 1992, ACTA OTO-LARYNGOL, V112, P745, DOI 10.3109/00016489209137469 Caspary DM, 2008, J EXP BIOL, V211, P1781, DOI 10.1242/jeb.013581 CASPARY DM, 1990, J NEUROSCI, V10, P2363 Chen GD, 2009, HEARING RES, V248, P39, DOI 10.1016/j.heares.2008.11.010 CHEN TJ, 1991, EXP BRAIN RES, V85, P537 Cheung SW, 2001, HEARING RES, V156, P115, DOI 10.1016/S0378-5955(01)00272-6 Clinard CG, 2010, HEARING RES, V264, P48, DOI 10.1016/j.heares.2009.11.010 COSTA P, 1990, Electromyography and Clinical Neurophysiology, V30, P495 CREUTZFELDT O, 1980, EXP BRAIN RES, V39, P87 DOLPHIN WF, 1992, HEARING RES, V58, P70, DOI 10.1016/0378-5955(92)90010-K DUBNO JR, 1984, J ACOUST SOC AM, V76, P87, DOI 10.1121/1.391011 Finneran JJ, 2007, J COMP PHYSIOL A, V193, P835, DOI 10.1007/s00359-007-0238-6 Fitzgibbons P J, 1996, J Am Acad Audiol, V7, P183 Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3 FUNAI H, 1983, AUDIOLOGY, V22, P9 Galbraith G, 2006, J NEUROSCI METH, V153, P214, DOI 10.1016/j.jneumeth.2005.10.017 GALBRAITH GC, 1994, ELECTROEN CLIN NEURO, V92, P321, DOI 10.1016/0168-5597(94)90100-7 Galbraith GC, 2001, PERCEPT MOTOR SKILL, V92, P99, DOI 10.2466/PMS.92.1.99-106 Galbraith GC, 2000, NEUROSCI LETT, V292, P123, DOI 10.1016/S0304-3940(00)01436-1 HASHIMOTO I, 1981, BRAIN, V104, P841, DOI 10.1093/brain/104.4.841 He NJ, 2008, J ACOUST SOC AM, V124, P3841, DOI 10.1121/1.2998779 Hernandez O, 2005, NEUROSCIENCE, V132, P203, DOI 10.1016/j.neuroscience.2005.01.001 HOORMANN J, 1992, HEARING RES, V59, P179, DOI 10.1016/0378-5955(92)90114-3 Izquierdo MA, 2008, NEUROSCIENCE, V154, P355, DOI 10.1016/j.neuroscience.2008.01.057 Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003 Kaga K, 1997, ACTA OTO-LARYNGOL, V117, P197, DOI 10.3109/00016489709117768 KIREN T, 1994, ACTA OTO-LARYNGOL, P28 Konrad-Martin D, 2012, J AM ACAD AUDIOL, V23, P18, DOI 10.3766/jaaa.23.1.3 Krishnan A, 2010, HEARING RES, V268, P60, DOI 10.1016/j.heares.2010.04.016 Krishnan A, 1999, AUDIOL NEURO-OTOL, V4, P95, DOI 10.1159/000013826 Kuwada Shigeyuki, 2002, J Am Acad Audiol, V13, P188 LEV A, 1972, ARCH KLIN EXP OHR, V201, P79, DOI 10.1007/BF00341066 Lucas JR, 2007, J COMP PHYSIOL A, V193, P201, DOI 10.1007/s00359-006-0180-z Mazelova J, 2002, 6 INT S NEUR NEUR AG, P87 Mendelson JR, 2004, HEARING RES, V191, P21, DOI 10.1016/j.heares.2004.01.010 Parbery-Clark A, 2011, NEUROPSYCHOLOGIA, V49, P3338, DOI 10.1016/j.neuropsychologia.2011.08.007 Parthasarathy A, 2010, FRONT AGING NEUROSCI, V2, DOI 10.3389/fnagi.2010.00152 Parthasarathy A, 2011, NEUROSCIENCE, V192, P619, DOI 10.1016/j.neuroscience.2011.06.042 Ping JL, 2007, J NEUROSCI METH, V161, P11, DOI 10.1016/j.neumeth.2006.10.001 Poth EA, 2002, HEARING RES, V165 PUIL E, 1994, NEUROSCI LETT, V176, P63, DOI 10.1016/0304-3940(94)90872-9 REES A, 1987, HEARING RES, V27, P129, DOI 10.1016/0378-5955(87)90014-1 Ruotsalainen S, 1997, PHARMACOL BIOCHEM BE, V56, P31, DOI 10.1016/S0091-3057(96)00151-7 Santarelli R, 2003, BRAIN RES, V973, P240, DOI 10.1016/S0006-8993(03)02520-4 Schatteman TA, 2008, NEUROSCIENCE, V154, P329, DOI 10.1016/j.neuroscience.2008.02.025 SCHNEIDER BA, 1994, J ACOUST SOC AM, V95, P980, DOI 10.1121/1.408403 Palombi PS, 2001, HEARING RES, V153, P174, DOI 10.1016/S0378-5955(00)00264-1 SNELL KB, 1994, J ACOUST SOC AM, V96, P1458, DOI 10.1121/1.410288 SOHMER H, 1977, ELECTROEN CLIN NEURO, V42, P656, DOI 10.1016/0013-4694(77)90282-6 STOCKARD JJ, 1977, NEUROLOGY, V27, P316 Szalda K, 2005, HEARING RES, V203, P32, DOI 10.1016/j.heares.2004.11.014 Tadros SF, 2007, BRAIN RES, V1127, P1, DOI 10.1016/j.brainres.2006.09.081 Tennigkeit F, 1997, J NEUROPHYSIOL, V78, P591 Ter-Mikaelian M, 2007, J NEUROSCI, V27, P6091, DOI 10.1523/JNEUROSCI.4848-06-2007 Tremblay Kelly L, 2004, J Am Acad Audiol, V15, P226, DOI 10.3766/jaaa.15.3.5 Vander Werff K.R., 2003, 26 MIDW M ASS FOR RE, V26, p[Daytona, 310] Walton JP, 1998, J NEUROSCI, V18, P2764 Warrier CM, 2011, HEARING RES, V282, P108, DOI 10.1016/j.heares.2011.09.001 Zhang HM, 2003, J NEUROPHYSIOL, V90, P477, DOI 10.1152/jn.01084.2002 NR 74 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2012 VL 289 IS 1-2 BP 52 EP 62 DI 10.1016/j.heares.2012.04.014 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 967UL UT WOS:000305933200005 PM 22560961 ER PT J AU McFadden, D Garcia-Sierra, A Hsieh, MD Maloney, MM Champlin, CA Pasanen, EG AF McFadden, Dennis Garcia-Sierra, Adrian Hsieh, Michelle D. Maloney, Mindy M. Champlin, Craig A. Pasanen, Edward G. TI Relationships between otoacoustic emissions and a proxy measure of cochlear length derived from the auditory brainstem response SO HEARING RESEARCH LA English DT Article ID TRAVELING-WAVE; GENDER-DIFFERENCES; SEXUAL ORIENTATION; EVOKED POTENTIALS; HEARING; HUMANS; DELAYS; PHASE; TWINS; MASCULINIZATION AB Brief tones of 1.0 and 8.0 kHz were used to evoke auditory brainstem responses (ABRs), and the differences between the wave-V latencies for those two frequencies were used as a proxy for cochlear length. The tone bursts (8 ms in duration including 2-ms rise/fall times, and 82 dB in level) were, or were not, accompanied by a continuous, moderately intense noise band, highpass filtered immediately above the tone. The proxy values for length were compared with various measures of otoacoustic emissions (OAEs) obtained from the same ears. All the correlations were low, suggesting that cochlear length, as measured by this proxy at least, is not strongly related to the various group and individual differences that exist in OAEs. Female latencies did not differ across the menstrual cycle, and the proxy length measure exhibited no sex difference (either for menses females vs. males or midluteal females vs. males) when the highpass noises were used. However, when the subjects were partitioned into Whites and Non-Whites, a substantial sex difference in cochlear length did emerge for the White group, although the correlations with OAEs remained low. Head size was not highly correlated with any of the ABR measures. (C) 2012 Elsevier B.V. All rights reserved. C1 [McFadden, Dennis; Maloney, Mindy M.; Pasanen, Edward G.] Univ Texas Austin, Dept Psychol, Austin, TX 78712 USA. [McFadden, Dennis; Maloney, Mindy M.; Pasanen, Edward G.] Univ Texas Austin, Ctr Perceptual Syst, Austin, TX 78712 USA. [Hsieh, Michelle D.; Champlin, Craig A.] Univ Texas Austin, Dept Commun Sci & Disorders, Austin, TX 78712 USA. [Garcia-Sierra, Adrian] Univ Washington, Inst Learning & Brain Sci, Seattle, WA 98195 USA. RP McFadden, D (reprint author), Univ Texas Austin, Dept Psychol, 108 E Dean Keeton,A8000, Austin, TX 78712 USA. EM mcfadden@psy.utexas.edu; gasa@u.washington.edu; michelle.d.hsieh@gmail.com; mindymaloney@gmail.com; champlin@austin.utexas.edu; pasanen@psy.utexas.edu FU National Institute on Deafness and other Communication Disorders (NIDCD) [RO1 DC000153] FX This work was supported by a research grant awarded to DM by the National Institute on Deafness and other Communication Disorders (NIDCD; RO1 DC000153). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIDCD or the National Institutes of Health. K.P. Walsh provided valuable assistance at various junctures. He, J.C. Loehlin, D.C. Teas, and T.L. Langford made helpful comments on previous versions of this paper. CR BILGER RC, 1990, J SPEECH HEAR RES, V33, P418 BOHNE BA, 1986, J ACOUST SOC AM, V80, P1729, DOI 10.1121/1.394285 BOHNE BA, 1979, J ACOUST SOC AM, V66, P411, DOI 10.1121/1.383092 Bowman DM, 2000, HEARING RES, V142, P1, DOI 10.1016/S0378-5955(99)00212-9 BURKARD R, 1983, J ACOUST SOC AM, V74, P1214, DOI 10.1121/1.390025 COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155 Dallos R, 1971, J ACOUST SOC AM, V49, P1140 DON M, 1993, J ACOUST SOC AM, V94, P2135, DOI 10.1121/1.407485 ELKINDHIRSCH KE, 1992, HEARING RES, V60, P143, DOI 10.1016/0378-5955(92)90016-G ELKINDHIRSCH KE, 1994, OTOLARYNG HEAD NECK, V110, P46, DOI 10.1016/S0194-5998(94)70791-X ELKINDHIRSCH KE, 1992, HEARING RES, V64, P93, DOI 10.1016/0378-5955(92)90171-I Erixon E, 2008, OTOL NEUROTOL, V30, P14 Goodman SS, 2004, HEARING RES, V188, P57, DOI 10.1016/S0378-5955(03)00375-7 Ketten DR, 1998, ANN OTO RHINOL LARYN, V107, P1 KIMBERLEY BP, 1993, J ACOUST SOC AM, V94, P1343, DOI 10.1121/1.408162 Lin FR, 2012, JARO-J ASSOC RES OTO, V13, P109, DOI 10.1007/s10162-011-0298-8 LONSBURYMARTIN BL, 1988, HEARING RES, V33, P69, DOI 10.1016/0378-5955(88)90021-4 McFadden D, 1996, HEARING RES, V97, P102 McFadden D, 2009, HEARING RES, V252, P37, DOI 10.1016/j.heares.2009.01.002 McFadden D, 1999, J ACOUST SOC AM, V105, P2403, DOI 10.1121/1.426845 McFadden D, 1998, DEV NEUROPSYCHOL, V14, P261 McFadden D, 1998, P NATL ACAD SCI USA, V95, P2709, DOI 10.1073/pnas.95.5.2709 MCFADDEN D, 1983, ANNU REV PSYCHOL, V34, P95, DOI 10.1146/annurev.ps.34.020183.000523 McFadden D, 2010, HEARING RES, V270, P56, DOI 10.1016/j.heares.2010.09.008 McFadden D., J ACOUST SOC A UNPUB MCFADDEN D, 1995, HEARING RES, V85, P181, DOI 10.1016/0378-5955(95)00045-6 McFadden D, 2000, HEARING RES, V142, P23, DOI 10.1016/S0378-5955(00)00002-2 MCFADDEN D, 1993, P NATL ACAD SCI USA, V90, P11900, DOI 10.1073/pnas.90.24.11900 McFadden D, 2008, PERSPECT PSYCHOL SCI, V3, P309, DOI 10.1111/j.1745-6924.2008.00082.x McFadden D, 2011, FRONT NEUROENDOCRIN, V32, P201, DOI 10.1016/j.yfrne.2011.02.001 McFadden D., 2002, ARCH SEX BEHAV, V31, P93 McMinn M.M., 2002, THESIS U TEXAS AUSTI Miller JD, 2007, J ACOUST SOC AM, V121, pEL151, DOI 10.1121/1.2710746 Moulin A, 1996, J ACOUST SOC AM, V100, P1617, DOI 10.1121/1.416063 PARKER D J, 1978, Scandinavian Audiology, V7, P67, DOI 10.3109/01050397809043134 Pasanen EG, 2000, J ACOUST SOC AM, V108, P1105, DOI 10.1121/1.1287026 Ruggero MA, 2007, JARO-J ASSOC RES OTO, V8, P153, DOI 10.1007/s10162-007-0081-z Russell A.F., 1992, THESIS U ILLINOIS UR SATO H, 1991, ACTA OTO-LARYNGOL, V111, P1037, DOI 10.3109/00016489109138447 SCHUBERT ED, 1959, J ACOUST SOC AM, V31, P990, DOI 10.1121/1.1907826 Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 Siegel JH, 2005, J ACOUST SOC AM, V118, P2434, DOI 10.1121/1.2005867 Skinner MW, 2002, JARO-J ASSOC RES OTO, V3, P332, DOI 10.1007/s101620020013 Snihur A.W.K., 2012, NEUROSCI IN PRESS TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V TEAS DONALD C, 1962, JOUR ACOUSTICAL SOC AMER, V34, P1438, DOI 10.1121/1.1918366 TRUNE DR, 1988, HEARING RES, V32, P165, DOI 10.1016/0378-5955(88)90088-3 WHITEHEAD ML, 1993, SCAND AUDIOL, V22, P3, DOI 10.3109/01050399309046012 ZERLIN S, 1969, J ACOUST SOC AM, V46, P1011, DOI 10.1121/1.1911792 NR 49 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2012 VL 289 IS 1-2 BP 63 EP 73 DI 10.1016/j.heares.2012.04.010 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 967UL UT WOS:000305933200006 PM 22546328 ER PT J AU Lewis, RM Hume, CR Stone, JS AF Lewis, Rebecca M. Hume, Clifford R. Stone, Jennifer S. TI Atoh1 expression and function during auditory hair cell regeneration in post-hatch chickens SO HEARING RESEARCH LA English DT Article ID AVIAN INNER-EAR; DEVELOPING NERVOUS-SYSTEM; MATH1 GENE-TRANSFER; MATURE GUINEA-PIGS; SENSORY EPITHELIA; BASILAR PAPILLA; DIRECT TRANSDIFFERENTIATION; MAMMALIAN COCHLEA; NEUROGENIC GENES; ACOUSTIC TRAUMA AB Loss of hair cells in humans leads to irreversible hearing deficits, since auditory hair cells are not replaced. In contrast, hair cells are regenerated in the auditory epithelium of mature birds after damage by non-sensory supporting cells that transdifferentiate into hair cells by mitotic and/or non-mitotic mechanisms. Factors controlling these processes are poorly understood. The basic helix-loop-helix transcription factor ATOH1, is both necessary and sufficient for developmental hair cell differentiation, but it is unclear if it plays the same role in the mitotic and non-mitotic pathways in hair cell regeneration. We examined Atoh1 expression and function during hair cell regeneration in chickens. Atoh1 transcripts were increased in many supporting cells in the damaged auditory epithelium shortly after ototoxin administration and later became restricted to differentiating hair cells. Fate-mapping in vitro using an Atoh1 enhancer reporter demonstrated that only 56% of the supporting cells that spontaneously upregulate Atoh1 enhancer activity after damage acquired the hair cell fate. Inhibition of notch signaling using a gamma secretase antagonist stimulated an increase in Atoh1 reporter activity and induced a higher proportion of supporting cells with Atoh1 activity (73%) to differentiate as hair cells. Forced overexpression of Atoh1 in supporting cells triggered 66% of them to acquire the hair cell fate and nearly tripled their likelihood of cell cycle entry. These findings demonstrate that Atoh1 is broadly upregulated in supporting cells after damage, but a substantial proportion of supporting cells with Atoh1 activation fails to acquire hair cell features, in part due to gamma secretase-dependent activities. (C) 2012 Elsevier B.V. All rights reserved. C1 [Hume, Clifford R.; Stone, Jennifer S.] Univ Washington, Dept Otolaryngol Head & Neck Surg, Virginia Merrill Bloedel Hearing Res Ctr, Seattle, WA 98195 USA. [Lewis, Rebecca M.] Univ Washington, Dept Speech & Hearing Sci, Seattle, WA 98195 USA. RP Stone, JS (reprint author), Univ Washington, Dept Otolaryngol Head & Neck Surg, Virginia Merrill Bloedel Hearing Res Ctr, Box 357923, Seattle, WA 98195 USA. EM stoner@u.washington.edu FU NIH [R01 DC03696, DC006437, T32 DC005361, P30 DC04661] FX We thank Jialin Shang and James Garlick for assistance with electroporation and tissue labeling methods, Debbie Bratt for assistance with plasmid design, Robin Gibson and Tot Bui Nyugen for assistance with plasmid preparations, and Glen MacDonald for assistance with confocal imaging. We thank Ed Rubel for help with data analysis and for other contributions to the manuscript. We are grateful to Fernando Giraldez (University Pompeu Fabra, Barcelona) for donating the construct for chicken Atoh1 RNA probe and to Jane Johnson (University of Texas Southwestern Medical School) for donating the J2Xn-GFP construct for the Atoh1 reporter and anti-ATOH1 antibodies. This work was supported by NIH grants R01 DC03696 (JSS), DC006437 (CH), T32 DC005361 (RML), and P30 DC04661. CR Adler HJ, 1996, NEUROSCI LETT, V205, P17, DOI 10.1016/0304-3940(96)12367-3 Adler HJ, 1997, INT J DEV NEUROSCI, V15, P375, DOI 10.1016/S0736-5748(96)00098-6 Baird RA, 1996, ANN NY ACAD SCI, V781, P59, DOI 10.1111/j.1749-6632.1996.tb15693.x Batts SA, 2009, HEARING RES, V249, P15, DOI 10.1016/j.heares.2008.12.008 Ben-Arie N, 2000, DEVELOPMENT, V127, P1039 BenArie N, 1996, HUM MOL GENET, V5, P1207, DOI 10.1093/hmg/5.9.1207 Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837 Bermingham-McDonogh O, 2003, CURR OPIN NEUROBIOL, V13, P119, DOI 10.1016/S0959-4388(03)00018-7 Bertrand N, 2002, NAT REV NEUROSCI, V3, P517, DOI 10.1038/nrn874 Brignull HR, 2009, BRAIN RES, V1277, P12, DOI 10.1016/j.brainres.2009.02.028 Cafaro J, 2007, DEV DYNAM, V236, P156, DOI 10.1002/dvdy.21023 Castro DS, 2011, CELL CYCLE, V10, P4026, DOI 10.4161/cc.10.23.18578 Chen P, 2002, DEVELOPMENT, V129, P2495 CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 COTANCHE DA, 1987, HEARING RES, V28, P35, DOI 10.1016/0378-5955(87)90151-1 Daudet N, 2009, DEV BIOL, V326, P86, DOI 10.1016/j.ydbio.2008.10.033 Doetzlhofer A, 2009, DEV CELL, V16, P58, DOI 10.1016/j.devcel.2008.11.008 DUCKERT LG, 1990, HEARING RES, V48, P161, DOI 10.1016/0378-5955(90)90206-5 Ebert PJ, 2003, DEVELOPMENT, V130, P1949, DOI 10.1242/dev.00419 Farah MH, 2000, DEVELOPMENT, V127, P693 FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284 Forge A, 1998, J COMP NEUROL, V397, P69 Fritzsch B, 2011, HEARING RES, V276, P16, DOI 10.1016/j.heares.2011.01.007 Goodyear R, 1996, HEARING RES, V96, P167, DOI 10.1016/0378-5955(96)00045-7 Gubbels SP, 2008, NATURE, V455, P537, DOI 10.1038/nature07265 HASHINO E, 1993, J CELL SCI, V105, P23 Hasson T, 1997, J CELL BIOL, V137, P1287, DOI 10.1083/jcb.137.6.1287 Hawkins J E Jr, 1973, Adv Otorhinolaryngol, V20, P125 Helms AW, 2000, DEVELOPMENT, V127, P1185 HENRIQUE D, 1995, NATURE, V375, P787, DOI 10.1038/375787a0 Izumikawa M, 2008, HEARING RES, V240, P52, DOI 10.1016/j.heares.2008.02.007 Jahan I, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011661 JARMAN AP, 1993, CELL, V73, P1307, DOI 10.1016/0092-8674(93)90358-W JARMAN AP, 1993, DEVELOPMENT, V119, P19 JORGENSEN JM, 1988, NATURWISSENSCHAFTEN, V75, P319, DOI 10.1007/BF00367330 Kageyama R, 2008, DEV GROWTH DIFFER, V50, pS97, DOI 10.1111/j.1440-169X.2008.00993.x Kawamoto K, 2003, J NEUROSCI, V23, P4395 Kawamoto K, 2009, HEARING RES, V247, P17, DOI 10.1016/j.heares.2008.08.010 Kruger RP, 1999, J NEUROSCI, V19, P4815 Lanford Pamela J., 2000, JARO Journal of the Association for Research in Otolaryngology, V1, P161, DOI 10.1007/s101620010023 Lewis J, 1996, CURR OPIN NEUROBIOL, V6, P3, DOI 10.1016/S0959-4388(96)80002-X Lin V, 2011, J NEUROSCI, V31, P15329, DOI 10.1523/JNEUROSCI.2057-11.2011 Lumpkin EA, 2003, GENE EXPR PATTERNS, V3, P389, DOI 10.1016/S1567-133X(03)00089-9 Morest DK, 2004, J NEUROSCI RES, V78, P455, DOI 10.1002/jnr.20283 OESTERLE EC, 1993, HEARING RES, V70, P85, DOI 10.1016/0378-5955(93)90054-5 Pujades C, 2006, DEV BIOL, V292, P55, DOI 10.1016/j.ydbio.2006.01.001 Raft S, 2007, DEVELOPMENT, V134, P4405, DOI 10.1242/dev.009118 RAPHAEL Y, 1992, J NEUROCYTOL, V21, P663, DOI 10.1007/BF01191727 ROBERSON DF, 1992, HEARING RES, V57, P166, DOI 10.1016/0378-5955(92)90149-H Roberson DW, 1996, AUDIT NEUROSCI, V2, P195 Roberson DW, 2004, J NEUROSCI RES, V78, P461, DOI 10.1002/jnr.20271 Selkoe D, 2003, ANNU REV NEUROSCI, V26, P565, DOI 10.1146/annurev.neuro.26.041002.131334 Shailam R, 1999, J NEUROCYTOL, V28, P809, DOI 10.1023/A:1007009803095 Shang JL, 2010, JARO-J ASSOC RES OTO, V11, P203, DOI 10.1007/s10162-009-0206-7 Shou JY, 2003, MOL CELL NEUROSCI, V23, P169, DOI 10.1016/S1044-7431(03)00066-6 Staecker H, 2007, OTOL NEUROTOL, V28, P223, DOI 10.1097/MAO.0b013e31802b3225 Stone JS, 2007, INT J DEV BIOL, V51, P633, DOI 10.1387/ijdb.072408js Stone JS, 2000, J COMP NEUROL, V417, P1, DOI 10.1002/(SICI)1096-9861(20000131)417:1<1::AID-CNE1>3.0.CO;2-E STONE JS, 1994, J COMP NEUROL, V341, P50, DOI 10.1002/cne.903410106 Stone JS, 1999, DEVELOPMENT, V126, P961 Woods C, 2004, NAT NEUROSCI, V7, P1310, DOI 10.1038/nn1349 Zhao H, 2008, GENE DEV, V22, P722, DOI 10.1101/gad.1636408 Zhao LD, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023729 Zheng JL, 2000, NAT NEUROSCI, V3, P580 NR 64 TC 16 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2012 VL 289 IS 1-2 BP 74 EP 85 DI 10.1016/j.heares.2012.04.008 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 967UL UT WOS:000305933200007 PM 22543087 ER PT J AU Warnecke, A Sasse, S Wenzel, GI Hoffmann, A Gross, G Paasche, G Scheper, V Reich, U Esser, KH Lenarz, T Stover, T Wissel, K AF Warnecke, Athanasia Sasse, Susanne Wenzel, Gentiana I. Hoffmann, Andrea Gross, Gerhard Paasche, Gerrit Scheper, Verena Reich, Uta Esser, Karl-Heinz Lenarz, Thomas Stoever, Timo Wissel, Kirsten TI Stable release of BDNF from the fibroblast cell line NIH3T3 grown on silicone elastomers enhances survival of spiral ganglion cells in vitro and in vivo SO HEARING RESEARCH LA English DT Article ID DEAFENED GUINEA-PIGS; PROMOTING NEURITE OUTGROWTH; SENSORINEURAL HEARING-LOSS; COCHLEAR GENE-TRANSFER; NEUROTROPHIC FACTOR; ELECTRICAL-STIMULATION; AUDITORY NEURONS; ADENOASSOCIATED VIRUS; INNER-EAR; LENTIVIRAL VECTORS AB The treatment of choice for profound sensorineural hearing loss (SNHL) is direct electrical stimulation of spiral ganglion cells (SGC) via a cochlear implant (CI). The number and excitability of SGC seem to be critical for the success that can be achieved via CI treatment. However, SNHL is associated with degeneration of SGC. Long-term drug delivery to the inner ear for improving SGC survival may be achieved by functionalisation of CI electrodes with cells providing growth factors. Therefore, the capacity of brain-derived neurotrophic factor (BDNF)-secreting NIH3T3 cells grown on cylindrically shaped silicone elastomers (SE) to exert local and sustained neuroprotective effects was assessed in vitro and in vivo. An in vitro model to investigate adhesion and cell growth of lentivirally modified NIH3T3 cells synthesising BDNF on SE was established. The bioactivity of BDNF was characterised by co-cultivation of SGC with cell-coated SE. In addition, cell-coated SE were implanted into deafened guinea pigs. The recombinant NIH3T3 cells proliferated on silicone surfaces during 14 days of cultivation and expressed significantly increasing BDNF levels. Enhanced survival rates and neurite outgrowth of SGC demonstrated the bioactivity of BDNF in vitro. Implantation of SE with adhering BDNF-secreting NIH3T3 cells into the cochleae of systemically deafened guinea pigs induced a significant increase in SGC survival in comparison to SE without cell coating. Our data demonstrate a novel approach of cell-based long-term drug delivery to support SGC survival in vitro and in vivo. This therapeutic strategy - once transferred to cells suitable for clinical application may - improve CI performance. (C) 2012 Elsevier B.V. All rights reserved. C1 [Warnecke, Athanasia; Sasse, Susanne; Wenzel, Gentiana I.; Paasche, Gerrit; Scheper, Verena; Lenarz, Thomas; Stoever, Timo; Wissel, Kirsten] Hannover Med Sch, Dept Otorhinolaryngol Head & Neck Surg, D-30625 Hannover, Germany. [Hoffmann, Andrea; Gross, Gerhard] Helmholtz Ctr Infect Res, Dept Gene Regulat & Differentiat, D-38124 Braunschweig, Germany. [Reich, Uta] Clin & Polyclin Otorhinolaryngol, D-10117 Berlin, Germany. [Esser, Karl-Heinz] Univ Vet Med, Auditory Neuroethol & Neurobiol Lab, Inst Zool, D-30559 Hannover, Germany. RP Wissel, K (reprint author), Hannover Med Sch, Dept Otorhinolaryngol Head & Neck Surg, Carl Neuberg Str 1, D-30625 Hannover, Germany. EM warnecke.athanasia@mh-hannover.de; wissel.kirsten@mh-hannover.de FU German Research Foundation [SFB 599] FX This study was funded by the German Research Foundation (SFB 599, subproject D2). CR Agterberg MJH, 2009, JARO-J ASSOC RES OTO, V10, P355, DOI 10.1007/s10162-009-0170-2 Brigande JV, 2009, NAT NEUROSCI, V12, P679, DOI 10.1038/nn.2311 Chernajovsky Y, 2004, NAT REV IMMUNOL, V4, P800, DOI 10.1038/nri1459 Chikar JA, 2008, HEARING RES, V245, P24, DOI 10.1016/j.heares.2008.08.005 Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004 Coleman B, 2006, CELL TRANSPLANT, V15, P369, DOI 10.3727/000000006783981819 Dazert S, 1998, J CELL PHYSIOL, V177, P123, DOI 10.1002/(SICI)1097-4652(199810)177:1<123::AID-JCP13>3.0.CO;2-E Evans AJ, 2009, J BIOMED MATER RES A, V91A, P241, DOI 10.1002/jbm.a.32228 Fransson A, 2010, J NEUROTRAUM, V27, P1745, DOI 10.1089/neu.2009.1218 Fryer RH, 1997, EXP NEUROL, V148, P616, DOI 10.1006/exnr.1997.6699 Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542 Gillespie LN, 2001, NEUROREPORT, V12, P275, DOI 10.1097/00001756-200102120-00019 GLASS DJ, 1991, CELL, V66, P405, DOI 10.1016/0092-8674(91)90629-D Glueckert R., 2008, J COMP NEUROL, V1, P1602 Goren A, 2010, FASEB J, V24, P22, DOI 10.1096/fj.09-131888 Hegarty JL, 1997, J NEUROSCI, V17, P1959 Huang JH, 2010, J BIOMED MATER RES A, V93A, P164, DOI 10.1002/jbm.a.32511 Ishimoto S, 2002, HEARING RES, V173, P187, DOI 10.1016/S0378-5955(02)00579-8 Ishimoto S, 2003, AUDIOL NEURO-OTOL, V8, P70, DOI 10.1159/000069000 Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193 Jerregard H, 2000, J NEUROCYTOL, V29, P653, DOI 10.1023/A:1010883320683 Jiang H, 1999, J BIOL CHEM, V274, P26209, DOI 10.1074/jbc.274.37.26209 Johnson DG, 2010, IEEE ENG MED BIO, P6441, DOI 10.1109/IEMBS.2010.5627335 Kanzaki S, 2002, J COMP NEUROL, V454, P350, DOI 10.1002/cne.10480 Kho ST, 2000, MOL THER, V2, P368, DOI 10.1006/mthe.2000.0129 Kilpatrick LA, 2011, GENE THER, V18, P569, DOI 10.1038/gt.2010.175 Kishino A, 2001, NEUROREPORT, V12, P1067, DOI 10.1097/00001756-200104170-00040 Lalwani AK, 2002, LARYNGOSCOPE, V112, P1325, DOI 10.1097/00005537-200208000-00001 LEFEBVRE PP, 1991, BRAIN RES, V555, P75, DOI 10.1016/0006-8993(91)90862-P Lenarz Thomas, 2006, Audiol Neurootol, V11 Suppl 1, P34, DOI 10.1159/000095612 Li H., 2002, CHIN OPHTHALMIC RES, V20, P214 Loizou PC, 2003, J ACOUST SOC AM, V114, P475, DOI 10.1121/1.1582861 Lundberg C, 2008, CURR GENE THER, V8, P461, DOI 10.2174/156652308786847996 Marzella PL, 1999, HEARING RES, V138, P73, DOI 10.1016/S0378-5955(99)00152-5 McCall AA, 2010, EAR HEARING, V31, P156, DOI 10.1097/AUD.0b013e3181c351f2 McGuinness SL, 2005, OTOL NEUROTOL, V26, P1064, DOI 10.1097/01.mao.0000185063.20081.50 Miller JM, 2007, J NEUROSCI RES, V85, P1959, DOI 10.1002/jnr.21320 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 Nakaizumi T, 2004, AUDIOL NEURO-OTOL, V9, P135, DOI 10.1159/000077264 Okano T, 2006, MOL THER, V14, P866, DOI 10.1016/j.ymthe.2006.06.012 Pettingill LN, 2008, NEUROSCIENCE, V152, P821, DOI 10.1016/j.neuroscience.2007.11.057 Pettingill L.N., 2011, PLOS ONE, V5 Pincha M, 2010, EXPERT REV VACCINES, V9, P309, DOI [10.1586/erv.10.9, 10.1586/ERV.10.9] Reich U, 2008, J BIOMED MATER RES B, V87B, P146, DOI 10.1002/jbm.b.31084 Rejali D, 2007, HEARING RES, V228, P180, DOI 10.1016/j.heares.2007.02.010 Richardson RT, 2009, BIOMATERIALS, V30, P2614, DOI 10.1016/j.biomaterials.2009.01.015 Salmon P, 2000, MOL THER, V2, P404, DOI 10.1006/mthe.2000.0141 Salt AN, 2005, VOLTA REV, V105, P277 Salt AN, 2005, DRUG DISCOV TODAY, V10, P1299, DOI 10.1016/S1359-6446(05)03574-9 Scheper V, 2009, J NEUROSCI RES, V87, P1389, DOI 10.1002/jnr.21964 Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564 Shepherd RK, 2008, HEARING RES, V242, P100, DOI 10.1016/j.heares.2007.12.005 Shibata SB, 2010, EXP NEUROL, V223, P464, DOI 10.1016/j.expneurol.2010.01.011 Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999 Song B.N., 2008, CHIN MED J ENGL, V5, P1189 Song BN, 2009, ACTA OTO-LARYNGOL, V129, P142, DOI 10.1080/00016480802043949 SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683 Staecker H, 2010, DRUG DISCOV TODAY, V15, P314, DOI 10.1016/j.drudis.2010.02.005 Stover T, 2000, GENE THER, V7, P377, DOI 10.1038/sj.gt.3301108 Wang J, 2007, NEUROREPORT, V18, P1329, DOI 10.1097/WNR.0b013e3282010b16 Warnecke A, 2007, NEUROREPORT, V18, P1683 WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7 Wefstaedt P, 2005, NEUROREPORT, V16, P2011, DOI 10.1097/00001756-200512190-00008 WEST BA, 1973, ARCH OTOLARYNGOL, V98, P32 Wise AK, 2010, MOL THER, V18, P1111, DOI 10.1038/mt.2010.28 Wissel K, 2008, OTOL NEUROTOL, V29, P475, DOI 10.1097/MAO.0b013e318164d110 Yagi M, 2000, JARO, V1, P315, DOI 10.1007/s101620010011 Yamagata T, 2004, J NEUROSCI RES, V78, P75, DOI 10.1002/jnr.20239 NR 68 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2012 VL 289 IS 1-2 BP 86 EP 97 DI 10.1016/j.heares.2012.04.007 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 967UL UT WOS:000305933200008 PM 22564255 ER PT J AU Rimmele, J Schroger, E Bendixen, A AF Rimmele, Johanna Schroeger, Erich Bendixen, Alexandra TI Age-related changes in the use of regular patterns for auditory scene analysis SO HEARING RESEARCH LA English DT Article ID EVENT-RELATED POTENTIALS; MISMATCH NEGATIVITY; STREAM SEGREGATION; RHYTHMIC ATTENTION; VISUAL-ATTENTION; HEARING-LOSS; MEMORY; NOISE; PERCEPTION; RESOLUTION AB A recent approach to auditory processing suggests a close relationship of regularity processing in auditory sensory memory (ASM) and stream segregation, such that within-stream regularities can be used to stabilize stream segregation. The present study investigates age-related changes in how regular patterns are used for auditory scene analysis (ASA), when the stream containing the regularity is attended or unattended. In order to accomplish an intensity level deviant detection task, participants had to segregate the task-relevant pure tone sequence from an irrelevant distractor pure tone sequence, which randomly varied in level. In three conditions a simple spectro-temporal regularity ("Isochronous"), a more complex spectro-temporal regularity ("Rhythmic"), or no regularity ("Random") was embedded in either the attended target sequence (Experiment 1), or the unattended distractor sequence (Experiment 2). When the sequence containing the regularity was attended, older participants showed a similar increase of performance to younger adults in the conditions with regular patterns ("Isochronous" and "Rhythmic") compared to the "Random" condition. In contrast, when the sequence containing the regularity was unattended, older adults showed a specific performance decline compared to younger adults in the "Isochronous" condition. Results suggest a link between impaired automatic processing of regularities in ASM, and age-related deficits in the use of regular patterns for ASA. (C) 2012 Elsevier B.V. All rights reserved. C1 [Rimmele, Johanna] Univ Leipzig, Inst Psychol, BioCog Cognit Incl Biol Psychol, D-04103 Leipzig, Germany. RP Rimmele, J (reprint author), Univ Leipzig, Inst Psychol, BioCog Cognit Incl Biol Psychol, Seeburgstr 14-20, D-04103 Leipzig, Germany. EM rimmele@uni-leipzig.de RI Bendixen, Alexandra/B-3922-2010 FU German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) [DFG 1182]; Reinhart-Koselleck grant FX This research was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) as part of the graduate program "Function of Attention in Cognition" (DFG 1182, scholarship to J.R.) and a Reinhart-Koselleck grant (to E.S.). The experiments were realized using Cogent 2000 developed by the Cogent 2000 team at the FIL and the ICN. The authors thank Andreas Widmann for providing the hearing screen test procedure as well as Marie-Luise Schmidt and Susann Duwe for their help with the data collection. Furthermore, we are grateful to Prof. Dr. Brian Moore and two anonymous reviewers for valuable comments on earlier versions of the manuscript. CR Alain C, 1999, PSYCHOL AGING, V14, P507, DOI 10.1037/0882-7974.14.3.507 Alain C, 2004, PSYCHOL AGING, V19, P125, DOI 10.1037/0882-7974.19.1.125 Alain C, 1999, PSYCHOPHYSIOLOGY, V36, P737, DOI 10.1017/S0048577299980812 Alain C., 2006, HDB MODELS HUMAN AGI, P759, DOI DOI 10.1016/B978-012369391-4/50065-5 Andreou LV, 2011, HEARING RES, V280, P228, DOI 10.1016/j.heares.2011.06.001 Bendixen A, 2010, J ACOUST SOC AM, V128, P3658, DOI 10.1121/1.3500695 Bertoli S, 2002, CLIN NEUROPHYSIOL, V113, P396, DOI 10.1016/S1388-2457(02)00013-5 Best V, 2011, J ACOUST SOC AM, V129, P1616, DOI 10.1121/1.3533733 Boh B, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021458 Bregman AS., 1990, AUDITORY SCENE ANAL Denham SL, 2006, J PHYSIOLOGY-PARIS, V100, P154, DOI 10.1016/j.jphysparis.2006.09.012 Devergie A, 2010, J ACOUST SOC AM, V128, pEL1, DOI 10.1121/1.3436498 Eagleman DM, 2005, J NEUROSCI, V25, P10369, DOI 10.1523/JNEUROSCI.3487-05.2005 Fitzgibbons PJ, 2011, J ACOUST SOC AM, V129, P1490, DOI 10.1121/1.3533728 Folstein M. F., 1990, MINIMENTAL STATUS TE FRENCHSTGEORGE M, 1989, PERCEPT PSYCHOPHYS, V46, P384 Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3 Green D. M., 1966, SIGNAL DETECTION THE Hasher L., 1988, PSYCHOL LEARN MOTIV, V22, P193, DOI DOI 10.1016/S0079-7421(08)60041-9 Hopkins K, 2011, J ACOUST SOC AM, V130, P334, DOI 10.1121/1.3585848 Jones MR, 2006, COGNITIVE PSYCHOL, V53, P59, DOI 10.1016/j.cogpsych.2006.01.003 JONES MR, 1981, J EXP PSYCHOL HUMAN, V7, P1059, DOI 10.1037/0096-1523.7.5.1059 JONES MR, 1976, PSYCHOL REV, V83, P323, DOI 10.1037/0033-295X.83.5.323 KAERNBACH C, 1990, J ACOUST SOC AM, V88, P2645, DOI 10.1121/1.399985 Larsby B, 2005, INT J AUDIOL, V44, P131, DOI 10.1080/14992020500057244 MacMillan N. A., 2005, DETECTION THEORY USE MANTYSALO S, 1987, BIOL PSYCHOL, V24, P183, DOI 10.1016/0301-0511(87)90001-9 Micheyl C, 2010, JARO-J ASSOC RES OTO, V11, P709, DOI 10.1007/s10162-010-0227-2 Moore BC., 2003, INTRO PSYCHOL HEARIN Moore BCJ, 2002, ACTA ACUST UNITED AC, V88, P320 Naatanen R, 2010, BRAIN RES REV, V64, P123, DOI 10.1016/j.brainresrev.2010.03.001 Naatanen R, 2011, PSYCHOPHYSIOLOGY, V48, P4, DOI 10.1111/j.1469-8986.2010.01114.x Pekkonen E, 2000, AUDIOL NEURO-OTOL, V5, P216, DOI 10.1159/000013883 Picton TW, 2000, AUDIOL NEURO-OTOL, V5, P111, DOI 10.1159/000013875 Rajan R, 2008, NEUROSCIENCE, V154, P784, DOI 10.1016/j.neuroscience.2008.03.067 Reuter-Lorenz PA, 2010, J GERONTOL B-PSYCHOL, V65, P405, DOI 10.1093/geronb/gbq035 Rimmele J, 2012, PSYCHOL AGING, V27, P384, DOI 10.1037/a0024866 ROGERS WL, 1993, PERCEPT PSYCHOPHYS, V53, P179, DOI 10.3758/BF03211728 Schroger E, 2007, J PSYCHOPHYSIOL, V21, P138, DOI 10.1027/0269-8803.21.34.138 Shinn-Cunningham BG, 2008, TRENDS COGN SCI, V12, P182, DOI 10.1016/j.tics.2008.02.003 Snyder JS, 2005, COGNITIVE BRAIN RES, V24, P492, DOI 10.1016/j.cogbrainres.2005.03.002 Snyder JS, 2007, CEREB CORTEX, V17, P501, DOI 10.1093/cercor/bhj175 Sussman E, 1998, BRAIN RES, V789, P130, DOI 10.1016/S0006-8993(97)01443-1 TRAINOR LJ, 1989, PERCEPT PSYCHOPHYS, V45, P417, DOI 10.3758/BF03210715 van Norden L. P. A. S, 1975, THESIS TU EINDHOVEN Verhaegen P., 2008, HDB COGNITIVE AGING, P134 Winkler I, 2009, TRENDS COGN SCI, V13, P532, DOI 10.1016/j.tics.2009.09.003 Winkler I, 2012, PHILOS T R SOC B, V367, P1001, DOI 10.1098/rstb.2011.0359 Winkler I, 2003, COGN AFFECT BEHAV NE, V3, P57, DOI 10.3758/CABN.3.1.57 Winkler I, 2003, P NATL ACAD SCI USA, V100, P11812, DOI 10.1073/pnas.2031891100 Winkler I, 2007, J PSYCHOPHYSIOL, V21, P147, DOI 10.1027/0269-8803.21.34.147 Winkler I., LEARN PERCE IN PRESS Yordanova J, 2004, BRAIN, V127, P351, DOI 10.1093/brain/awh042 NR 53 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2012 VL 289 IS 1-2 BP 98 EP 107 DI 10.1016/j.heares.2012.04.006 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 967UL UT WOS:000305933200009 PM 22543088 ER PT J AU Niedermeier, K Braun, S Fauser, C Straubinger, RK Stark, T AF Niedermeier, Katharina Braun, Susanne Fauser, Claudius Straubinger, Reinhard K. Stark, Thomas TI Pneumococcal meningitis post cochlear implantation: Development of an animal model in the guinea pig SO HEARING RESEARCH LA English DT Article ID BACTERIAL-MENINGITIS; STREPTOCOCCUS-PNEUMONIAE; CHILDREN; RISK AB In 2002 an increased number of cochlear implant related meningitis cases was reported by the U. S. Food and Drug Administration (FDA). The most commonly identified causative agent was Streptococcus pneumoniae. Although most cases of meningitis were related to a special electrode design, the risk for post-operative pneumococcal meningitis might nonetheless be enhanced by opening of the cochlea during implantation. In the present study, a threshold model for middle ear inoculation of S. pneumoniae was established in the guinea pig after cochlear implantation to assess the post-operative risk of meningitis. Guinea pigs were implanted unilaterally with a silicone cochlear implant electrode dummy. Five weeks after implantation, animals were challenged via the middle ear with a clinically relevant strain of S. pneumoniae and monitored over a period of five days for signs of meningitis. Meningitis was confirmed by clinical outcome in the animals, histological investigation of brains, as well as by pleocytosis and presence of bacteria in cerebrospinal fluid (CSF). By inoculation of varying numbers of bacteria (between 1 x 10(4) and 1 x 10(9) CFU/ml in 10 mu l), a threshold model was established. The attack rate, pattern and onset of meningitis depended on number of inoculated bacteria. An increased meningitis rate in different experimental groups shows that greater bacterial burden leads to an increased attack rate after intratympanal inoculation. The established animal model provides a potential tool to assess the meningitis risk after cochlear implantation. Its implementation in future studies will allow the investigation of existing and newly developed prostheses for postoperatively infection risk. (C) 2012 Elsevier B.V. All rights reserved. C1 [Niedermeier, Katharina; Stark, Thomas] Tech Univ Munich, Clin Otorhinolaryngol Head & Neck Surg, Klinikum Rechts Isar, D-81675 Munich, Germany. [Braun, Susanne] MED EL Deutschland GmbH, D-82319 Starnberg, Germany. [Fauser, Claudius] HNO Zentrum Regensburg, D-93047 Regensburg, Germany. [Straubinger, Reinhard K.] Ludwig Maximilians Univ Munchen, Inst Infect Dis & Zoonoses, Dept Vet Sci, Fac Vet Med, D-80539 Munich, Germany. RP Niedermeier, K (reprint author), Tech Univ Munich, Clin Otorhinolaryngol Head & Neck Surg, Klinikum Rechts Isar, Ismaninger Str 22, D-81675 Munich, Germany. EM K.Niedermeier@lrz.tum.de; susanne.braun@medel.com; fauser@lrz.tu-muenchen.de; R.Straubinger@lmu.de; t.stark@lrz.tum.de RI Straubinger, Reinhard/D-1719-2010 FU MED-EL research grant (MED-EL GmbH, Innsbruck) FX We acknowledge Dr. Jane M. Opie (Medical Communications Writer at MED-EL GmbH, Innsbruck) for medical writing assistance following the preparation of this manuscript. The authors thank Prof. Dr. med. Uwe Kodel, Department of Neurology, Klinikum Grosshadern, LMU Munich, Germany, for his advice and his support in methodological questions. We also thank Prof. Dr. Sven Hammerschmidt, University of Greifswald, Greifswald, Germany, for providing the pneumococcal strain. This work was supported by a MED-EL research grant (MED-EL GmbH, Innsbruck) and we gratefully acknowledge Carolyn Garnham for her support. CR Biernath KR, 2006, PEDIATRICS, V117, P284, DOI 10.1542/peds.2005-0824 BLANK AL, 1994, ARCH OTOLARYNGOL, V120, P1342 Braun S, 2011, ORL-J OTO-RHIN-LARYN, V73, P219, DOI 10.1159/000329791 Callanan V, 2004, INT J PEDIATR OTORHI, V68, P545, DOI 10.1016/j.ijporl.2003.12.003 Clark G. M., 2003, COCHLEAR IMPLANTS FU Cohen NL, 2010, OTOL NEUROTOL, V31, P1325, DOI 10.1097/MAO.0b013e3181f2ed06 FDA, 2002, PUBL HLTH WEB NOT RI, V2010 Hoffman Olaf, 2009, Ther Adv Neurol Disord, V2, P1, DOI 10.1177/1756285609337975 Lalwani AK, 2012, OTOL NEUROTOL, V33, P93, DOI 10.1097/MAO.0b013e31823dbb08 MOXON ER, 1981, REV INFECT DIS, V3, P354 Reefhuis J, 2003, NEW ENGL J MED, V349, P435, DOI 10.1056/NEJMoa031101 Rubin LG, 2010, OTOL NEUROTOL, V31, P1331, DOI 10.1097/MAO.0b013e3181f2f074 Wei Benjamin P C, 2008, Clin Infect Dis, V46, pe1, DOI 10.1086/524083 Wei BPC, 2006, OTOL NEUROTOL, V27, P1152, DOI 10.1097/01.mao.0000227898.80656.54 Wei B.P.C., 2010, OTOLARYNGOL HEAD NEC, V143, P15 Wei BPC, 2007, ARCH OTOLARYNGOL, V133, P987, DOI 10.1001/archotol.133.10.987 Wei BPC, 2006, OTOL NEUROTOL, V27, P844, DOI 10.1097/01.mao.0000231603.25961.f1 Winter AJ, 1997, INFECT IMMUN, V65, P4411 Wysocki J, 2005, HEARING RES, V199, P103, DOI 10.1016/j.heares.2004.08.008 NR 19 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2012 VL 289 IS 1-2 BP 108 EP 115 DI 10.1016/j.heares.2012.04.002 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 967UL UT WOS:000305933200010 PM 22575208 ER PT J AU Du, ZD Yang, Y Hu, YJ Sun, Y Zhang, SL Peng, W Zhong, Y Huang, X Kong, WJ AF Du, Zhengde Yang, Yang Hu, Yujuan Sun, Yu Zhang, Sulin Peng, Wei Zhong, Yi Huang, Xiang Kong, Weijia TI A long-term high-fat diet increases oxidative stress, mitochondrial damage and apoptosis in the inner ear of D-galactose-induced aging rats SO HEARING RESEARCH LA English DT Article ID UNCOUPLING PROTEINS; GENE-EXPRESSION; HEARING-LOSS; BP DELETION; PHYSIOLOGICAL FUNCTIONS; QUANTITATIVE PCR; COMMON DELETION; SKELETAL-MUSCLE; DNA MUTATIONS; NADPH OXIDASE AB In humans, chronic dyslipidemia associated with elevated triglycerides may reduce auditory function. However, there is little evidence available in the literature concerning the effects of a long-term high-fat diet (HFD) on the inner ears of animals. The purpose of this study was to investigate the effect of 12 month-HFD on the inner ear of Sprague-Dawley rats and on the E.-galactose (D-gal)-induced aging process in the inner ear. We found that 12 month-HFD markedly elevated the auditory brainstem response (ABR) threshold in the high-frequency region. The HFD significantly increased the generation of reactive oxygen species (ROS) and the expressions of NADPH oxidase (NOX) and the uncoupling proteins (UCP). Furthermore, an elevated accumulation of the mitochondrial DNA (mtDNA) common deletion (CD) and mitochondrial ultrastructural changes in the inner ear suggested that there was mitochondrial damage in response to the excessive fat intake. The expression level of cleaved caspase-3 and the number of terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick-end-labelling (TUNEL)-positive cells in the inner ear were increased by the HFD. The effects of D-gal on the inner ears were similar with 12 month-HFD. We found that rats receiving both the HFD and D-gal exhibited a greater shift in the ABR threshold, larger increases in the expression levels of NOX, UCP and cleaved caspase-3 and an increased number of TUNEL-positive cells in the inner ear. The present study demonstrated that HFD may induce oxidative stress, mitochondrial damage and apoptosis in the inner ear, and it provided evidence regarding the link between HFD and an increased risk of age-related hearing loss. (C) 2012 Elsevier B.V. All rights reserved. C1 [Du, Zhengde; Yang, Yang; Hu, Yujuan; Sun, Yu; Zhang, Sulin; Peng, Wei; Zhong, Yi; Kong, Weijia] Huazhong Univ Sci & Technol, Tongji Med Coll, Union Hosp, Dept Otorhinolaryngol, Wuhan 430022, Peoples R China. [Huang, Xiang] Huazhong Univ Sci & Technol, Tongji Med Coll, Union Hosp, Inst Otorhinolaryngol, Wuhan 430022, Peoples R China. RP Kong, WJ (reprint author), Huazhong Univ Sci & Technol, Tongji Med Coll, Union Hosp, Dept Otorhinolaryngol, 1277 Jiefang Ave, Wuhan 430022, Peoples R China. EM entwjkong@yahoo.com.cn FU Major State Basic Research Development Programme of China (973 Programme) [2011CB504504]; National Nature Science Foundation of China [30730094, 81000408, 81000409] FX This work was supported by grants from the Major State Basic Research Development Programme of China (973 Programme) (No. 2011CB504504) and the National Nature Science Foundation of China (Nos. 30730094, 81000408 and 81000409). CR Ballal K, 2010, MOL CELL BIOCHEM, V344, P221, DOI 10.1007/s11010-010-0546-y Banfi B, 2004, J BIOL CHEM, V279, P46065, DOI 10.1074/jbc.M403046200 Bedard K, 2007, PHYSIOL REV, V87, P245, DOI 10.1152/physrev.00044.2005 Brand MD, 2005, CELL METAB, V2, P85, DOI 10.1016/j.cmet.2005.06.002 Bruce KD, 2009, HEPATOLOGY, V50, P1796, DOI 10.1002/hep.23205 Cadenas E, 2000, FREE RADICAL BIO MED, V29, P222, DOI 10.1016/S0891-5849(00)00317-8 Chen B, 2011, MOL BIOL REP, V38, P3635, DOI 10.1007/s11033-010-0476-5 Chen B, 2010, BRAIN RES, V1344, P43, DOI 10.1016/j.brainres.2010.04.082 Cui X, 2006, J NEUROSCI RES, V84, P647, DOI 10.1002/jnr.20899 Druzhyna NM, 2008, MECH AGEING DEV, V129, P383, DOI 10.1016/j.mad.2008.03.002 Echtay KS, 2002, NATURE, V415, P96, DOI 10.1038/415096a Evans MB, 2006, OTOL NEUROTOL, V27, P609, DOI 10.1097/01.mao.0000226286.19295.34 Gopinath B, 2011, J NUTR, V141, P1355, DOI 10.3945/jn.111.138610 Green DR, 2004, SCIENCE, V305, P626, DOI 10.1126/science.1099320 Harman D, 2001, ANN NY ACAD SCI, V928, P1 Hengartner MO, 2000, NATURE, V407, P770, DOI 10.1038/35037710 Hiona A, 2008, EXP GERONTOL, V43, P24, DOI 10.1016/j.exger.2007.10.001 Ho SC, 2003, BIOGERONTOLOGY, V4, P15, DOI 10.1023/A:1022417102206 Hua XD, 2007, LIFE SCI, V80, P1897, DOI 10.1016/j.lfs.2007.02.030 Kartha GK, 2008, ACTA DIABETOL, V45, P75, DOI 10.1007/s00592-008-0025-z Kitahara T, 2005, NEUROSCIENCE, V135, P639, DOI 10.1016/j.neuroscience.2005.06.056 Kitahara T, 2007, NEUROSCI RES, V59, P237, DOI 10.1016/j.neures.2007.07.001 Kong WJ, 2006, BIOCHEM BIOPH RES CO, V344, P425, DOI 10.1016/j.bbrc.2006.03.060 Kong WJ, 2006, EXP GERONTOL, V41, P628, DOI 10.1016/j.exger.2006.04.008 Kujoth GC, 2005, SCIENCE, V309, P481, DOI 10.1126/science.1112125 LEE HC, 1994, BBA-MOL BASIS DIS, V1226, P37, DOI 10.1016/0925-4439(94)90056-6 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Lu J, 2007, BIOCHEM PHARMACOL, V74, P1078, DOI 10.1016/j.bcp.2007.07.007 Markaryan A, 2009, LARYNGOSCOPE, V119, P1184, DOI 10.1002/lary.20218 Meissner C, 2008, EXP GERONTOL, V43, P645, DOI 10.1016/j.exger.2008.03.004 Mohamed SA, 2006, EXP GERONTOL, V41, P508, DOI 10.1016/j.exger.2006.03.014 Mukherjea D., 2010, ANTIOXID REDOX SIGNA Nicklas JA, 2004, ENVIRON MOL MUTAGEN, V44, P313, DOI 10.1002/em.20050 PAULER M, 1988, LARYNGOSCOPE, V98, P754 Poli G, 2004, CURR MED CHEM, V11, P1163 Raha S, 2000, TRENDS BIOCHEM SCI, V25, P502, DOI 10.1016/S0968-0004(00)01674-1 Schuknecht HF, 1993, PATHOLOGY EAR Spankovich C, 2011, J AM ACAD AUDIOL, V22, P49, DOI 10.3766/jaaa.22.1.6 Syka J, 2007, NEUROSCI LETT, V411, P112, DOI 10.1016/j.neulet.2006.10.032 Ueno N, 2005, J BIOL CHEM, V280, P23328, DOI 10.1074/jbc.M414548200 Valko M, 2007, INT J BIOCHEM CELL B, V39, P44, DOI 10.1016/j.biocel.2006.07.001 Vasilyeva ON, 2009, HEARING RES, V249, P44, DOI 10.1016/j.heares.2009.01.007 Wang JA, 2010, NEUROBIOL AGING, V31, P1238, DOI 10.1016/j.neurobiolaging.2008.07.016 Yokota T, 2009, AM J PHYSIOL-HEART C, V297, pH1069, DOI 10.1152/ajpheart.00267.2009 Zhong Y, 2011, MUTAT RES-FUND MOL M, V712, P11, DOI 10.1016/j.mrfmmm.2011.03.013 Zhong Y, 2011, FEBS J, V278, P2500, DOI 10.1111/j.1742-4658.2011.08176.x Zhou XR, 2008, GROWTH HORM IGF RES, V18, P361, DOI 10.1016/j.ghir.2008.01.001 NR 47 TC 19 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2012 VL 287 IS 1-2 BP 15 EP 24 DI 10.1016/j.heares.2012.04.012 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 957YB UT WOS:000305201900004 PM 22543089 ER PT J AU Ruebhausen, MR Brozoski, TJ Bauer, CA AF Ruebhausen, M. R. Brozoski, T. J. Bauer, C. A. TI A comparison of the effects of isoflurane and ketamine anesthesia on auditory brainstem response (ABR) thresholds in rats SO HEARING RESEARCH LA English DT Article ID CEREBRAL BLOOD-FLOW; HALOTHANE; MICE AB The auditory brainstem response (ABR) is an acoustically evoked potential commonly used to determine hearing sensitivity in laboratory animals. Both isoflurane and ketamine/xylazine anesthesia are commonly used to immobilize animals during ABR procedures. Hearing threshold determination is often the primary interest. Although a number of studies have examined the effect of different anesthetics on evoked potential waveforms and growth functions, none have directly compared their effect on ABR hearing threshold estimates. The present study used a within-subject comparison and typical threshold criteria, to examine the effect of isoflurane and ketamine/xylazine on ABR thresholds for clicks and pure-tone stimuli extending from 8 to 32 kHz. At comparable physiological doses, hearing thresholds obtained with isoflurane (1.7% in O-2) were on average elevated across a broad frequency range by greater than 27 dB compared to ketamine/xylazine (ketamine HCl, 50 mg/kg: xylazine, 9 mg/kg). This highly significant threshold effect (F-1,F-6 = 158.3403, p = 3.51 x 10(-22)) demonstrates a substantial difference between general anesthetics on auditory brainstem sensitivity. Potential mechanisms and implications for ABR threshold determination under anesthesia are discussed. (C) 2012 Elsevier B.V. All rights reserved. C1 [Ruebhausen, M. R.; Brozoski, T. J.; Bauer, C. A.] So Illinois Univ, Sch Med, Div Otolaryngol Head & Neck Surg, Springfield, IL 62702 USA. RP Ruebhausen, MR (reprint author), So Illinois Univ, Sch Med, Div Otolaryngol Head & Neck Surg, 801 N Rutledge,Rm 3205, Springfield, IL 62702 USA. EM mruebhausen@siumed.edu; tbrozoski@siumed.edu; cbauer@siumed.edu FU National Institute on Deafness and Other Communication Disorders [1R01DC009669-01] FX We thank K. Wisner, L Sybert and G. Szafranski for their technical assistance. Supported by the National Institute on Deafness and Other Communication Disorders, 1R01DC009669-01. CR Bianchi SL, 2008, NEUROBIOL AGING, V29, P1002, DOI 10.1016/j.neurobiolaging.2007.02.009 BOARINI DJ, 1984, NEUROSURGERY, V15, P400 Brozoski T.J., 2010, NEUR ABSTR, P877 CAVAZZUTI M, 1987, J CEREBR BLOOD F MET, V7, P806 Ferber-Viart C, 1998, HEARING RES, V121, P53, DOI 10.1016/S0378-5955(98)00064-1 Franks NP, 2008, NAT REV NEUROSCI, V9, P370, DOI 10.1038/nrn2372 GELMAN S, 1984, ANESTH ANALG, V63, P557 Gunduz-Bruce H, 2009, BRAIN RES REV, V60, P279, DOI 10.1016/j.brainresrev.2008.07.006 HENEGHAN CPH, 1987, BRIT J ANAESTH, V59, P277, DOI 10.1093/bja/59.3.277 Hirota K, 1996, BRIT J ANAESTH, V77, P441 Kim JU, 2005, LARYNGOSCOPE, V115, P1996, DOI 10.1097/01.mlg.0000180173.81034.4d LO EH, 1991, NEUROSCI LETT, V131, P17, DOI 10.1016/0304-3940(91)90327-P LUTZ PL, 1994, NEUROCHEM RES, V19, P1283, DOI 10.1007/BF01006819 MILLER LP, 1977, NATURE, V266, P847, DOI 10.1038/266847a0 Moller A.R., 2006, HEARING ANATOMY PHYS, P163 PARE WP, 1986, NEUROSCI BIOBEHAV R, V10, P339, DOI 10.1016/0149-7634(86)90017-5 Santarelli R, 2003, ACTA OTO-LARYNGOL, V123, P176, DOI 10.1080/0036554021000028108 SMITH DI, 1989, ELECTROEN CLIN NEURO, V72, P422, DOI 10.1016/0013-4694(89)90047-3 Stronks HC, 2010, HEARING RES, V260, P20, DOI 10.1016/j.heares.2009.10.015 Xie ZC, 2007, J NEUROSCI, V27, P1247, DOI 10.1523/JNEUROSCI.5320-06.2007 YAO H, 1993, STROKE, V24, P577 NR 21 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2012 VL 287 IS 1-2 BP 25 EP 29 DI 10.1016/j.heares.2012.04.005 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 957YB UT WOS:000305201900005 PM 22543090 ER PT J AU Allitt, BJ Morgan, SJ Bell, S Nayagam, DAX Arhatari, B Clark, GM Paolini, AG AF Allitt, B. J. Morgan, S. J. Bell, S. Nayagam, D. A. X. Arhatari, B. Clark, G. M. Paolini, A. G. TI Midbrain responses to micro-stimulation of the cochlea using high density thin-film arrays SO HEARING RESEARCH LA English DT Article ID INTRACOCHLEAR ELECTRICAL-STIMULATION; INFERIOR COLLICULUS; AUDITORY-NERVE; ELECTRODE CONFIGURATION; MUSIC PERCEPTION; IMPLANT USERS; GUINEA-PIG; SPEECH; LANGUAGE; NUCLEUS AB A broader activation of auditory nerve fibres than normal using a cochlear implant contributes to poor frequency discrimination. As cochlear implants also deliver a restricted dynamic range, this hinders the ability to segregate sound sources. Better frequency coding and control over amplitude may be achieved by limiting current spread during electrical stimulation of the cochlea and positioning electrodes closer to the modiolus. Thin-film high density microelectrode arrays and conventional platinum ring electrode arrays were used to stimulate the cochlea of urethane-anaesthetized rats and responses compared. Neurophysiological recordings were taken at 197 multi-unit clusters in the central nucleus of the inferior colliculus (CIC), a site that receives direct monaural innervation from the cochlear nucleus. CIC responses to both the platinum ring and high density electrodes were recorded and differences in activity to changes in stimulation intensity, thresholds and frequency coding of neural activation were examined. The high density electrode array elicited less CIC activity at nonspecific frequency regions than the platinum ring electrode array. The high density electrode array produced significantly lower thresholds and larger dynamic ranges than the platinum ring electrode array when positioned close to the modiolus. These results suggest that a higher density of stimulation sites on electrodes that effectively 'aim' current, combined with placement closer to the modiolus would permit finer control over charge delivery. This may equate to improved frequency specific perception and control over amplitude when using future cochlear implant devices. (C) 2012 Published by Elsevier B.V. C1 [Allitt, B. J.; Morgan, S. J.; Bell, S.; Clark, G. M.; Paolini, A. G.] La Trobe Univ, Sch Psychol Sci, Bundoora, Vic 3086, Australia. [Bell, S.] Univ Toronto, Inst Biomat & Biomed Engn, Toronto, ON, Canada. [Nayagam, D. A. X.] Bion Inst, Melbourne, Australia. [Arhatari, B.] La Trobe Univ, Dept Phys, Bundoora, Vic 3086, Australia. RP Paolini, AG (reprint author), La Trobe Univ, Sch Psychol Sci, Bundoora, Vic 3086, Australia. EM a.paolini@latrobe.edu.au FU ARC Centre of Excellence for Electromaterials Science FX This research was funded by the ARC Centre of Excellence for Electromaterials Science. The authors wish to thank Rosalia Bruzzese for her technical support. We also wish to thank Peter Allitt and Matt Pennell for proof reading. CR ANDERSON DJ, 1989, IEEE T BIO-MED ENG, V36, P693, DOI 10.1109/10.32101 Bavin EL, 2010, LANG SPEECH, V53, P31, DOI 10.1177/0023830909349151 BEEBE X, 1988, IEEE T BIO-MED ENG, V35, P494, DOI 10.1109/10.2122 Bierer JA, 2002, J NEUROPHYSIOL, V87, P478 Bonham BH, 2008, HEARING RES, V242, P141, DOI 10.1016/j.heares.2008.03.006 Boothroyd A., 1993, COCHLEAR IMPLANTS AU, P1 BROWN AM, 1985, J LARYNGOL OTOL, V99, P231, DOI 10.1017/S0022215100096614 Clark G. M., 2003, COCHLEAR IMPLANTS FU CLARK GM, 1981, ACTA OTO-LARYNGOL, V91, P173, DOI 10.3109/00016488109138496 Clark GM, 2006, PHILOS T R SOC B, V361, P791, DOI 10.1098/rstb.2005.1782 CLARK GM, 1983, ANN NY ACAD SCI, V405, P191, DOI 10.1111/j.1749-6632.1983.tb31632.x CLOPTON BM, 1980, ANN OTO RHINOL LARYN, V89, P5 Cohen LT, 2001, HEARING RES, V155, P63, DOI 10.1016/S0378-5955(01)00248-9 Cumming G, 2007, J CELL BIOL, V177, P7, DOI 10.1083/jcb.200611141 DAWSON PW, 1992, J SPEECH HEAR RES, V35, P401 DEUTSCH D, 1991, MUSIC PERCEPT, V8, P335 DiCarlo JJ, 1996, J NEUROSCI METH, V64, P75, DOI 10.1016/0165-0270(95)00113-1 Drennan WR, 2010, HEARING RES, V262, P1, DOI 10.1016/j.heares.2010.02.003 Drennan WR, 2008, J REHABIL RES DEV, V45, P779, DOI 10.1682/JPRD.2007.08.0118 Driscoll VD, 2009, J AM ACAD AUDIOL, V20, P71, DOI 10.3766/jaaa.20.1.7 Hu GN, 2004, IEEE T NEURAL NETWOR, V15, P1135, DOI 10.1109/TNN.2004.832812 Jerger J, 2000, J Am Acad Audiol, V11, P467 Jung KH, 2010, ACTA OTO-LARYNGOL, V130, P716, DOI 10.3109/00016480903380521 Lim HH, 2006, J NEUROPHYSIOL, V96, P975, DOI 10.1152/jn.01112.2005 LIM HH, 1989, J ACOUST SOC AM, V86, P971, DOI 10.1121/1.398732 Lim HH, 2007, J NEUROPHYSIOL, V97, P1413, DOI 10.1152/jn.00384.2006 Lindblom B, 2009, SPEECH COMMUN, V51, P622, DOI 10.1016/j.specom.2008.12.003 Lutfi R., 2008, AUDITORY PERCEPTION, P13 McCreery DB, 2008, HEARING RES, V242, P64, DOI 10.1016/j.heares.2007.11.014 Middlebrooks JC, 2007, JARO-J ASSOC RES OTO, V8, P258, DOI 10.1007/s10162-007-0070-2 Moore B. C. J., 2007, COCHLEAR HEARING LOS Naatanen R, 1999, PSYCHOL BULL, V125, P826, DOI 10.1037/0033-2909.125.6.826 NADOL JB, 1990, HEARING RES, V49, P141, DOI 10.1016/0378-5955(90)90101-T OSBERGER MJ, 1991, AM J OTOL, V12, P151 Paolini AG, 1998, BRAIN RES BULL, V46, P317, DOI 10.1016/S0361-9230(98)00017-3 Parkinson A.J., 2002, EAR HEARING, V23, P41 Patel AD, 1998, MUSIC PERCEPT, V16, P27 Paxinos G., 2007, STEREOTAXIC COORDINA Plomp R, 1976, ASPECTS TONE SENSATI Rielly J.P., 1992, ELECT STIMULATION EL, P231 Robblee L.S., 1986, BIOMEDICAL MAT, V55, P303 Shalit E., 2008, SPR HDB AUD, P9 SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3 Shepherd RK, 2004, EUR J NEUROSCI, V20, P3131, DOI 10.1111/j.1460-9568.2004.03809.x Shivdasani MN, 2008, J NEUROPHYSIOL, V99, P1, DOI 10.1152/jn.00629.2007 Snyder RL, 2008, HEARING RES, V235, P23, DOI 10.1016/j.heares.2007.09.013 Strait DL, 2010, HEARING RES, V261, P22, DOI 10.1016/j.heares.2009.12.021 Tang Q, 2011, J NEURAL ENG, V8, DOI 10.1088/1741-2560/8/4/046029 Tobey E.A., 1993, COCHLEAR IMPLANTS AU, P257 Winer JA, 2005, INFERIOR COLLICULUS, P1, DOI 10.1007/0-387-27083-3_1 Wise KD, 2008, HEARING RES, V242, P22, DOI 10.1016/j.heares.2008.04.002 Xu L, 2008, HEARING RES, V242, P132, DOI 10.1016/j.heares.2007.12.010 ZAPPIA JJ, 1990, OTOLARYNG HEAD NECK, V103, P575 Zatorre RJ, 1999, NEUROIMAGE, V10, P544, DOI 10.1006/nimg.1999.0491 Zeng FG, 1998, NEUROREPORT, V9, P1845, DOI 10.1097/00001756-199806010-00033 NR 55 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2012 VL 287 IS 1-2 BP 30 EP 42 DI 10.1016/j.heares.2012.04.004 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 957YB UT WOS:000305201900006 PM 22531007 ER PT J AU Lee, CC Sherman, SM AF Lee, Charles C. Sherman, S. Murray TI Intrinsic modulators of auditory thalamocortical transmission SO HEARING RESEARCH LA English DT Article ID METABOTROPIC GLUTAMATE RECEPTORS; REPETITIVE STIMULATION; DISTINGUISHING DRIVERS; SYNAPTIC PROPERTIES; VISUAL-CORTEX; BARREL CORTEX; VOLTAGE-CLAMP; IN-VITRO; LAYER 6; NEURONS AB Neurons in layer 4 of the primary auditory cortex receive convergent glutamatergic inputs from thalamic and cortical projections that activate different groups of postsynaptic glutamate receptors. Of particular interest in layer 4 neurons are the Group II metabotropic glutamate receptors (mGluRs), which hyperpolarize neurons postsynaptically via the downstream opening of GIRK channels. This pronounced effect on membrane conductance could influence the neuronal processing of synaptic inputs, such as those from the thalamus, essentially modulating information flow through the thalamocortical pathway. To examine how Group II mGluRs affect thalamocortical transmission, we used an in vitro slice preparation of the auditory thalamocortical pathways in the mouse to examine synaptic transmission under conditions where Group II mGluRs were activated. We found that both pre- and post-synaptic Group II mGluRs are involved in the attenuation of thalamocortical EPSP/Cs. Thus, thalamocortical synaptic transmission is suppressed via the presynaptic reduction of thalamocortical neurotransmitter release and the postsynaptic inhibition of the layer 4 thalamorecipient neurons. This could enable the thalamocortical pathway to autoregulate transmission, via either a gating or gain control mechanism, or both. (C) 2012 Elsevier B.V. All rights reserved. C1 [Lee, Charles C.] Louisiana State Univ, Dept Comparat Biomed Sci, Sch Vet Med, Baton Rouge, LA 70803 USA. [Sherman, S. Murray] Univ Chicago, Dept Neurobiol, Chicago, IL 60608 USA. RP Lee, CC (reprint author), Louisiana State Univ, Dept Comparat Biomed Sci, Sch Vet Med, Baton Rouge, LA 70803 USA. EM cclee@lsu.edu FU NIH/NIDCD [R03 DC 011361, R01 DC 008794] FX We thank Dr. Vytas Byndokas for his valuable assistance with the confocal microscope and image acquisition. This work was supported by NIH/NIDCD grants R03 DC 011361 (CCL) and R01 DC 008794 (SMS). CR AGMON A, 1991, NEUROSCIENCE, V41, P365, DOI 10.1016/0306-4522(91)90333-J Bandrowski AE, 2002, SYNAPSE, V44, P146, DOI 10.1002/syn.10058 Bartlett EL, 2002, NEUROSCIENCE, V113, P957, DOI 10.1016/S0306-4522(02)00240-3 Beaver CJ, 1999, J NEUROPHYSIOL, V82, P86 Cahusac P.M., 1994, EUR J NEUROSCI, V6 Cartmell J, 2000, J NEUROCHEM, V75, P889, DOI 10.1046/j.1471-4159.2000.0750889.x Conn PJ, 1997, ANNU REV PHARMACOL, V37, P205, DOI 10.1146/annurev.pharmtox.37.1.205 Covic EN, 2011, CEREB CORTEX, V21, P2425, DOI 10.1093/cercor/bhr029 Cox CL, 1999, J NEUROSCI, V19, P6694 Cruikshank SJ, 2002, J NEUROPHYSIOL, V87, P361 Dutar P, 2000, J NEUROPHYSIOL, V84, P2284 Farazifard R, 2010, BRAIN RES, V1325, P28, DOI 10.1016/j.brainres.2010.02.021 Flavin HJ, 2000, BRAIN RES, V873, P212, DOI 10.1016/S0006-8993(00)02429-X Gibson JR, 1999, NATURE, V402, P75 Gil Z, 1999, NEURON, V23, P385, DOI 10.1016/S0896-6273(00)80788-6 Hackett TA, 2011, HEARING RES, V274, P129, DOI 10.1016/j.heares.2010.11.001 Lam YW, 2010, CEREB CORTEX, V20, P13, DOI 10.1093/cercor/bhp077 Lee CC, 2010, P NATL ACAD SCI USA, V107, P372, DOI 10.1073/pnas.0907873107 Lee Charles C, 2009, Front Syst Neurosci, V3, P3, DOI 10.3389/neuro.06.003.2009 Lee CC, 2008, J NEUROPHYSIOL, V100, P317, DOI 10.1152/jn.90391.2008 Lee CC, 2009, CEREB CORTEX, V19, P2281, DOI 10.1093/cercor/bhn246 Lee CC, 2008, J COMP NEUROL, V507, P1879, DOI 10.1002/cne.21611 Mateo Z, 2007, NEUROSCIENCE, V146, P1062, DOI 10.1016/j.neuroscience.2007.02.053 Nahmani M, 2005, J COMP NEUROL, V484, P458, DOI 10.1002/cne.20505 Neki A, 1996, NEUROSCI LETT, V202, P197, DOI 10.1016/0304-3940(95)12248-6 Ngomba RT, 2011, EPILEPSIA, V52, P1211, DOI 10.1111/j.1528-1167.2011.03082.x Niswender CM, 2010, ANNU REV PHARMACOL, V50, P295, DOI 10.1146/annurev.pharmtox.011008.145533 Papageorgiou G, 1999, J AM CHEM SOC, V121, P6503, DOI 10.1021/ja990931e Petralia RS, 1996, NEUROSCIENCE, V71, P949, DOI 10.1016/0306-4522(95)00533-1 Reichova I, 2004, J NEUROPHYSIOL, V92, P2185, DOI 10.1152/jn.00322.2004 Richardson RJ, 2009, J NEUROSCI, V29, P6406, DOI 10.1523/JNEUROSCI.0258-09.2009 Rose HJ, 2005, J NEUROPHYSIOL, V94, P2019, DOI 10.1152/jn.00860.2004 Sekizawa S, 2009, J NEUROSCI, V29, P11807, DOI 10.1523/JNEUROSCI.2617-09.2009 Shepherd GMG, 2003, NEURON, V38, P277, DOI 10.1016/S0896-6273(03)00152-1 Sherman SM, 1998, P NATL ACAD SCI USA, V95, P7121, DOI 10.1073/pnas.95.12.7121 Sherman SM, 2006, EXPLORING THALAMUS I SPRUSTON N, 1993, J NEUROPHYSIOL, V70, P781 Thomson AM, 2010, FRONT NEUROANAT, V4, DOI 10.3389/fnana.2010.00013 Webster DB, 1992, MAMMALIAN AUDITORY P, P1 Williams SR, 2008, NAT NEUROSCI, V11, P790, DOI 10.1038/nn.2137 NR 40 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2012 VL 287 IS 1-2 BP 43 EP 50 DI 10.1016/j.heares.2012.04.001 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 957YB UT WOS:000305201900007 PM 22726616 ER PT J AU Bierer, SM Ling, L Nie, KB Fuchs, AF Kaneko, CRS Oxford, T Nowack, AL Shepherd, SJ Rubinstein, JT Phillips, JO AF Bierer, Steven M. Ling, Leo Nie, Kaibao Fuchs, Albert F. Kaneko, Chris R. S. Oxford, Trey Nowack, Amy L. Shepherd, Sarah J. Rubinstein, Jay T. Phillips, James O. TI Auditory outcomes following implantation and electrical stimulation of the semicircular canals SO HEARING RESEARCH LA English DT Article ID COCHLEAR IMPLANT; VESTIBULAR NERVE; RHESUS-MONKEY; EYE-MOVEMENTS; GUINEA-PIGS; PROSTHESIS; HEARING; FREQUENCY; RESPONSES AB We measured auditory brainstem responses (ABRs) in eight Rhesus monkeys after implantation of electrodes in the semicircular canals of one ear, using a multi-channel vestibular prosthesis based on cochlear implant technology. In five animals, click-evoked ABR thresholds in the implanted ear were within 10 dB of thresholds in the non-implanted control ear. Threshold differences in the remaining three animals varied from 18 to 69 dB, indicating mild to severe hearing losses. Click- and tone-evoked ABRs measured in a subset of animals before and after implantation revealed - a comparable pattern of threshold changes. Thresholds obtained five months or more after implantation a period in which the prosthesis regularly delivered electrical stimulation to achieve functional activation of the vestibular system - improved in three animals with no or mild initial hearing loss and increased in a fourth with a moderate hearing loss. These results suggest that, although there is a risk of hearing loss with unilateral vestibular implantation to treat balance disorders, the surgery can be performed in a manner that preserves hearing over an extended period of functional stimulation. (C) 2012 Elsevier B.V. All rights reserved. C1 [Nie, Kaibao; Rubinstein, Jay T.; Phillips, James O.] Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Seattle, WA 98195 USA. [Bierer, Steven M.; Ling, Leo; Nie, Kaibao; Oxford, Trey; Nowack, Amy L.; Shepherd, Sarah J.; Rubinstein, Jay T.; Phillips, James O.] Univ Washington, Dept Otolaryngol Head & Neck Surg, Seattle, WA 98195 USA. [Bierer, Steven M.; Ling, Leo; Fuchs, Albert F.; Kaneko, Chris R. S.; Oxford, Trey; Nowack, Amy L.; Phillips, James O.] Univ Washington, Washington Natl Primate Res Ctr, Seattle, WA 98195 USA. [Fuchs, Albert F.; Kaneko, Chris R. S.] Univ Washington, Dept Physiol & Biophys, Seattle, WA 98195 USA. [Shepherd, Sarah J.] Univ Washington, Dept Speech & Hearing Sci, Seattle, WA 98105 USA. RP Phillips, JO (reprint author), Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, CD 176 CHDD Bldg,Box 357923,1701 Columbia Rd, Seattle, WA 98195 USA. EM sbierer@uw.edu; lling@uw.edu; niek@uw.edu; fuchs@uw.edu; kaneko@uw.edu; treyo@uw.edu; aln@uw.edu; shepsh@uw.edu; rubinj@uw.edu; jop@uw.edu FU National Institute on Deafness and Other Communication Disorders [N01-DC-6-005]; NCRR ITHS [RR00166] FX The authors thank Brandon Warren for development of the ABR software. This research was supported by a contract from the National Institute on Deafness and Other Communication Disorders, N01-DC-6-005 and an NCRR ITHS ignition award, RR00166. The Anspach Effort, Inc. provided surgical drills. CR Bierer S., OTOL NEUROT IN PRESS BREY RH, 1995, AM J OTOL, V16, P424 Coca A., 2007, HEARING RES, V225, P60 daCruz MJ, 1997, OTOLARYNG HEAD NECK, V117, P555, DOI 10.1016/S0194-5998(97)70030-5 Dai CK, 2011, HEARING RES, V277, P204, DOI 10.1016/j.heares.2010.12.021 Davidovics NS, 2011, IEEE T NEUR SYS REH, V19, P84, DOI 10.1109/TNSRE.2010.2065241 Della Santina CC, 2007, IEEE T BIO-MED ENG, V54, P1016, DOI 10.1109/TBME.2007.894629 Enticott JC, 2006, OTOL NEUROTOL, V27, P824, DOI 10.1097/01.mao.0000227903.47483.a6 Farzanegan G, 2010, BRIT J NEUROSURG, V24, P40, DOI 10.3109/02688690903374059 Fuchs AF, 2005, J NEUROPHYSIOL, V94, P4481, DOI 10.1152/jn.00101.2005 Gentine A, 2008, Rev Laryngol Otol Rhinol (Bord), V129, P11 Gong WS, 2002, IEEE T BIO-MED ENG, V49, P175, DOI 10.1109/10.979358 Guyot JP, 2011, ANN OTO RHINOL LARYN, V120, P81 Isaacson DJ, 1999, OTOLARYNG HEAD NECK, V120, P394, DOI 10.1016/S0194-5998(99)70282-2 Krause E, 2010, OTOLARYNG HEAD NECK, V142, P809, DOI 10.1016/j.otohns.2010.01.017 Lasky RE, 1999, HEARING RES, V136, P35, DOI 10.1016/S0378-5955(99)00100-8 Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3 Lewis RF, 2002, J VESTIBUL RES-EQUIL, V12, P87 Merfeld DM, 2007, IEEE T BIO-MED ENG, V54, P1005, DOI 10.1109/TBME.2007.891943 Nie KB, 2011, OTOL NEUROTOL, V32, P88, DOI 10.1097/MAO.0b013e3181f6ca45 PARNES LS, 1985, J OTOLARYNGOL, V14, P145 Smouha EE, 1999, OTOLARYNG HEAD NECK, V120, P146, DOI 10.1016/S0194-5998(99)70398-0 SOUDIJN ER, 1976, ANN OTO RHINOL LARYN, V85, P1 Spezio ML, 2000, HEARING RES, V144, P73, DOI 10.1016/S0378-5955(00)00050-2 Tang S, 2009, ACTA OTO-LARYNGOL, V129, P481, DOI 10.1080/00016480802252243 Torre P., 2004, NEUROBIOL AGING, V2, P945 Tran H., 2011, EAR HEARING, V33, P118 Wall C, 2007, ANN OTO RHINOL LARYN, V116, P369 NR 28 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2012 VL 287 IS 1-2 BP 51 EP 56 DI 10.1016/j.heares.2012.03.012 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 957YB UT WOS:000305201900008 PM 22504025 ER PT J AU Hatano, M Ito, M Yoshizaki, T Kelly, JB AF Hatano, Miyako Ito, Makoto Yoshizaki, Tomokazu Kelly, Jack B. TI Changes in projections to the inferior colliculus following early hearing loss in rats SO HEARING RESEARCH LA English DT Article ID SUPERIOR OLIVARY COMPLEX; GERBIL MERIONES-UNGUICULATUS; UNILATERAL COCHLEAR ABLATION; STEM AUDITORY NUCLEI; LATERAL LEMNISCUS; BRAIN-STEM; DORSAL NUCLEUS; REMOVAL; IMPLANTATION; ORGANIZATION AB The purpose of this study was to investigate the effects of early hearing loss on the anatomy of the central auditory system, specifically, the ascending projections to the inferior colliculus (IC). We compared normal animals with animals deafened during early development by administration of amikacin, an ototoxic antibiotic that is known to destroy the hair cells in the inner ear. The amikacin was injected subcutaneously every day from postnatal days P7 to P16. A retrograde tract tracer, Fluoro-Gold (FG), was then injected unilaterally directly into the IC at either 4 weeks of age or 12 weeks of age. After axonal transport the animals were sacrificed and their brains were prepared for histology. The FG labeled neurons in the cochlear nucleus (CN) and the dorsal nucleus of lateral lemniscus (DNLL) were counted for each of the animals in the two age groups. For deaf animals sacrificed at 4 weeks of age there was a significant reduction in the number of FG labeled neurons that was limited to the ventral CN ipsilateral to the tracer injection. For deaf animals sacrificed at 12 weeks of age, however, there was a significant decrease in the number of labeled cells in both dorsal and ventral CN on both sides of the brain. In DNLL there was no change in the number or pattern of labeled neurons. The results show that neonatal deafness reduces the number of labeled neurons projecting from the CN to the IC with the effect being more evident during later stages of deafness. In contrast, there are no significant changes in the projections from DNLL to IC. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved. C1 [Hatano, Miyako] Fukui Prefectural Hosp, Dept Otolaryngol Head & Neck Surg, Fukui 9108526, Japan. [Ito, Makoto; Yoshizaki, Tomokazu] Kanazawa Univ, Grad Sch Med Sci, Div Neurosci, Dept Otolaryngol Head & Neck Surg, Kanazawa, Ishikawa 9201192, Japan. [Kelly, Jack B.] Carleton Univ, Dept Psychol, Inst Neurosci, Ottawa, ON K1S 5B6, Canada. RP Hatano, M (reprint author), Fukui Prefectural Hosp, Dept Otolaryngol Head & Neck Surg, 2-8-1 Yotsui, Fukui 9108526, Japan. EM miyakohatano@gmail.com CR Aitkin L., 1986, AUDITORY MIDBRAIN ST BORN DE, 1985, J COMP NEUROL, V231, P435, DOI 10.1002/cne.902310403 Cant NB, 2005, INFERIOR COLLICULUS, P115, DOI 10.1007/0-387-27083-3_3 Cant NB, 2008, NEUROSCIENCE, V154, P206, DOI 10.1016/j.neuroscience.2008.02.015 Cant NB, 2006, J COMP NEUROL, V495, P511, DOI 10.1002/cne.20888 Cant NB, 2007, J COMP NEUROL, V503, P432, DOI 10.1002/cne.21391 Casseday JH, 2002, SPR HDB AUD, V15, P238 Dorn A.L., 2010, NATURE, V465, P932 Ehret G., 1997, CENTRAL AUDITORY SYS, P259 Franklin SR, 2006, NEUROSCIENCE, V143, P105, DOI 10.1016/j.neuroscience.2006.07.039 Franklin SR, 2008, NEUROSCIENCE, V154, P346, DOI 10.1016/j.neuroscience.2008.02.011 Govaerts PJ, 2002, OTOL NEUROTOL, V23, P885, DOI 10.1097/00129492-200211000-00013 Hashisaki G T, 1989, J Comp Neurol, V283, P5 Kelly JB, 2009, J COMP NEUROL, V512, P573, DOI 10.1002/cne.21929 Kelly JB, 1998, HEARING RES, V116, P43, DOI 10.1016/S0378-5955(97)00195-0 KITZES LM, 1995, J COMP NEUROL, V353, P341, DOI 10.1002/cne.903530303 Kral Andrej, 2006, Adv Otorhinolaryngol, V64, P89 LENOIR M, 1983, ACTA OTO-LARYNGOL, P1 Marianowski R, 2000, HEARING RES, V150, P1, DOI 10.1016/S0378-5955(00)00166-0 MOORE DR, 1988, J COMP NEUROL, V272, P503, DOI 10.1002/cne.902720405 MOORE DR, 1985, J COMP NEUROL, V240, P180, DOI 10.1002/cne.902400208 Mostafapour SP, 2000, J COMP NEUROL, V426, P561, DOI 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G NORDEEN KW, 1983, J COMP NEUROL, V214, P144, DOI 10.1002/cne.902140204 O'Donoghue GM, 2000, LANCET, V356, P466, DOI 10.1016/S0140-6736(00)02555-1 RUSSELL FA, 1995, J COMP NEUROL, V352, P607, DOI 10.1002/cne.903520409 Ryugo DK, 2005, SCIENCE, V310, P1490, DOI 10.1126/science.1119419 Schofield BR, 2005, INFERIOR COLLICULUS, P132, DOI 10.1007/0-387-27083-3_4 Brunso-Bechtold JK, 2005, INFERIOR COLLICULUS, P537, DOI 10.1007/0-387-27083-3_18 Sharma Anu, 2002, Ear and Hearing, V23, P532, DOI 10.1097/00003446-200212000-00004 Shepherd K.S., 2006, COCHLEAR IMPLANT, P25 TRUNE DR, 1982, J COMP NEUROL, V209, P409, DOI 10.1002/cne.902090410 WEBSTER DB, 1977, ARCH OTOLARYNGOL, V103, P392 Winer JA, 2005, INFERIOR COLLICULUS, P1, DOI 10.1007/0-387-27083-3_1 NR 33 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2012 VL 287 IS 1-2 BP 57 EP 66 DI 10.1016/j.heares.2012.03.011 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 957YB UT WOS:000305201900009 PM 22726617 ER PT J AU Soeta, Y Nakagawa, S AF Soeta, Yoshiharu Nakagawa, Seiji TI Auditory evoked responses in human auditory cortex to the variation of sound intensity in an ongoing tone SO HEARING RESEARCH LA English DT Article ID NEUROMAGNETIC EVIDENCE; MAGNETIC-FIELDS; HUMAN-BRAIN; TONOTOPIC ORGANIZATION; STIMULUS-INTENSITY; SENSORY MEMORY; TEMPORAL INTEGRATION; FMRI ACTIVATION; COMPLEX SOUNDS; HESCHLS GYRUS AB In daily life, variations of sound intensity, frequency, and other auditory parameters, can be perceived as transitions from one sound to another. The neural mechanisms underlying the processing of intensity change are currently unclear. The present study sought to clarify the effects of frequency and initial sound pressure level (SPL) on the auditory evoked response elicited by sounds of different SPL We examined responses approximately 100 ms after an SPL change (the N1m'). Experiment 1 examined the effects of frequency on the N1m'. Experiment 2 examined the effects of initial SPL on the N1m'. The results revealed that N1m' amplitude increased with greater SPL changes. The increase in N1m' amplitude with increasing SPL was almost constant for low frequency sounds (250 and 1000 Hz); however, this increase was reduced for high frequency sounds (4000 Hz). The increase in N1m' amplitude was reduced with high initial SPL. The pattern of amplitude change may reflect a difference in activation in the auditory nerve and/or primary auditory cortex. (C) 2012 Elsevier B.V. All rights reserved. C1 [Soeta, Yoshiharu; Nakagawa, Seiji] Natl Inst Adv Ind Sci & Technol, Hlth Res Inst, Ikeda, Osaka 5638577, Japan. RP Soeta, Y (reprint author), Natl Inst Adv Ind Sci & Technol, Hlth Res Inst, 1-8-31 Midorigaoka, Ikeda, Osaka 5638577, Japan. EM y.soeta@aist.go.jp FU Japan Society for the Promotion of Science [23686086] FX This work was supported by a Grant-in-Aid for Young Scientists (A) from the Japan Society for the Promotion of Science (23686086). CR Antonoro F., 1969, J ACOUST SOC AM, V46, P1433 ASHMEAD DH, 1995, J EXP PSYCHOL HUMAN, V21, P239, DOI 10.1037/0096-1523.21.2.239 Bach DR, 2008, CEREB CORTEX, V18, P145, DOI 10.1093/cercor/bhm040 BAK CK, 1985, ELECTROEN CLIN NEURO, V61, P141, DOI 10.1016/0013-4694(85)91053-3 Biermann S, 2000, J NEUROPHYSIOL, V84, P2426 Bilecen D, 2002, NEUROIMAGE, V17, P710, DOI 10.1006/nimg.2002.1133 Boemio A, 2005, NAT NEUROSCI, V8, P389, DOI 10.1038/nn1409 CAMPBELL RA, 1967, J ACOUST SOC AM, V42, P972, DOI 10.1121/1.1910705 Cansino S, 2003, HUM BRAIN MAPP, V20, P71, DOI 10.1002/hbm.10132 DAVIS H, 1968, J ACOUST SOC AM, V43, P431, DOI 10.1121/1.1910849 Dimitrijevic A, 2009, CLIN NEUROPHYSIOL, V120, P374, DOI 10.1016/j.clinph.2008.11.009 ELBERLING C, 1982, ACTA NEUROL SCAND, V65, P553 Ernst SMA, 2008, NEUROIMAGE, V43, P321, DOI 10.1016/j.neuroimage.2008.07.046 Fujioka T, 2003, EUR J NEUROSCI, V18, P432, DOI 10.1046/j.1460-9568.2003.02769.x GREEN DM, 1969, J ACOUST SOC AM, V46, P939, DOI 10.1121/1.1911813 GREEN DM, 1979, J ACOUST SOC AM, V66, P1051, DOI 10.1121/1.383324 Hall DA, 2001, J ACOUST SOC AM, V109, P1559, DOI 10.1121/1.1345697 HAMALAINEN M, 1993, REV MOD PHYS, V65, P413, DOI 10.1103/RevModPhys.65.413 Harris KC, 2007, HEARING RES, V228, P58, DOI 10.1016/j.heares.2007.01.021 Hart HC, 2002, HEARING RES, V171, P177, DOI 10.1016/S0378-5955(02)00498-7 Hine J, 2007, CLIN NEUROPHYSIOL, V118, P1274, DOI 10.1016/j.clinph.2007.03.012 Jancke L, 1998, NEUROPSYCHOLOGIA, V36, P875, DOI 10.1016/S0028-3932(98)00019-0 JERGER J, 1970, ARCHIV OTOLARYNGOL, V91, P433 Kanno A, 1996, No To Shinkei, V48, P240 KNIGHT RT, 1980, ELECTROEN CLIN NEURO, V50, P112, DOI 10.1016/0013-4694(80)90328-4 KNIGHT RT, 1988, ELECTROEN CLIN NEURO, V70, P499, DOI 10.1016/0013-4694(88)90148-4 Krumbholz K, 2003, CEREB CORTEX, V13, P765, DOI 10.1093/cercor/13.7.765 Langers DRM, 2007, NEUROIMAGE, V35, P709, DOI 10.1016/j.neuroimage.2006.12.013 Loveless N, 1996, EVOKED POTENTIAL, V100, P220, DOI 10.1016/0168-5597(95)00271-5 LOVELESS NE, 1993, BIOL PSYCHOL, V35, P1, DOI 10.1016/0301-0511(93)90088-P Lutkenhoner B, 2007, HEARING RES, V228, P188, DOI 10.1016/j.heares.2007.02.011 Lutkenhoner B, 1998, AUDIOL NEURO-OTOL, V3, P191, DOI 10.1159/000013790 Martin BA, 2000, J ACOUST SOC AM, V107, P2155, DOI 10.1121/1.428556 MCCANDLE.GA, 1970, J SPEECH HEAR RES, V13, P624 McEvoy L, 1997, PSYCHOPHYSIOLOGY, V34, P308, DOI 10.1111/j.1469-8986.1997.tb02401.x Michalewski HJ, 2009, CLIN NEUROPHYSIOL, V120, P1352, DOI 10.1016/j.clinph.2009.05.013 Neuhoff JG, 1998, NATURE, V395, P123, DOI 10.1038/25862 PANTEV C, 1995, ELECTROEN CLIN NEURO, V94, P26, DOI 10.1016/0013-4694(94)00209-4 PANTEV C, 1988, ELECTROEN CLIN NEURO, V69, P160, DOI 10.1016/0013-4694(88)90211-8 PANTEV C, 1989, ELECTROEN CLIN NEURO, V72, P225, DOI 10.1016/0013-4694(89)90247-2 PANTEV C, 1989, SCIENCE, V246, P486, DOI 10.1126/science.2814476 PHILLIPS DP, 1987, J ACOUST SOC AM, V82, P1, DOI 10.1121/1.395547 REITE M, 1982, ELECTROEN CLIN NEURO, V54, P147, DOI 10.1016/0013-4694(82)90156-0 ROBINSON DW, 1956, BRIT J APPL PHYS, V7, P166, DOI 10.1088/0508-3443/7/5/302 ROMANI GL, 1982, SCIENCE, V216, P1339, DOI 10.1126/science.7079770 ROSENBLUM LD, 1987, PERCEPTION, V16, P175, DOI 10.1068/p160175 Ross B, 1999, AUDIOL NEURO-OTOL, V4, P12, DOI 10.1159/000013816 SAMS M, 1993, J COGNITIVE NEUROSCI, V5, P363, DOI 10.1162/jocn.1993.5.3.363 SAMSON S, 1994, NEUROPSYCHOLOGIA, V32, P231, DOI 10.1016/0028-3932(94)90008-6 Schonwiesner M, 2005, ANN NY ACAD SCI, V1060, P89, DOI 10.1196/annals.1360.051 Seither-Preisler A, 2004, EUR J NEUROSCI, V19, P3073, DOI 10.1111/j.1460-9568.2004.03423.x Seither-Preisler A, 2003, AUDIOL NEURO-OTOL, V8, P322, DOI 10.1159/000073517 SIDTIS JJ, 1981, NEUROPSYCHOLOGIA, V19, P103, DOI 10.1016/0028-3932(81)90050-6 SIDTIS JJ, 1980, NEUROPSYCHOLOGIA, V18, P321, DOI 10.1016/0028-3932(80)90127-X Sigalovsky IS, 2006, HEARING RES, V215, P67, DOI 10.1016/j.heares.2006.03.002 Soeta Y, 2006, HEARING RES, V222, P125, DOI 10.1016/j.heares.2006.09.005 Soeta Y, 2009, NEUROREPORT, V20, P548, DOI 10.1097/WNR.0b013e32832a6f15 Soeta Y, 2010, NEUROREPORT, V21, P1157, DOI 10.1097/WNR.0b013e328340ccde Spoor A., 1969, INT AUDIOL, V8, P410, DOI 10.3109/05384916909079086 Stufflebeam SM, 1998, NEUROREPORT, V9, P91, DOI 10.1097/00001756-199801050-00018 Suzuki Y, 2004, J ACOUST SOC AM, V116, P918, DOI 10.1121/1.1763601 Tervaniemi M, 2003, BRAIN RES REV, V43, P231, DOI 10.1016/j.brainresrev.2003.08.004 THORNTON AR, 1977, J SPEECH HEAR RES, V20, P81 TURNER CW, 1989, J ACOUST SOC AM, V86, P109, DOI 10.1121/1.398329 VASAMA JP, 1995, ACTA OTO-LARYNGOL, V115, P616, DOI 10.3109/00016489509139376 WINTER IM, 1991, J ACOUST SOC AM, V90, P1958, DOI 10.1121/1.401675 YAMAMOTO T, 1988, P NATL ACAD SCI USA, V85, P8732, DOI 10.1073/pnas.85.22.8732 Yetkin FZ, 2004, LARYNGOSCOPE, V114, P512, DOI 10.1097/00005537-200403000-00024 Zatorre RJ, 2001, ANN NY ACAD SCI, V930, P193 Zatorre RJ, 2002, TRENDS COGN SCI, V6, P37, DOI 10.1016/S1364-6613(00)01816-7 Zwicker E., 1990, PSYCHOACOUSTICS FACT, P17 NR 71 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2012 VL 287 IS 1-2 BP 67 EP 75 DI 10.1016/j.heares.2012.03.006 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 957YB UT WOS:000305201900010 PM 22726618 ER PT J AU Fredelake, S Hohmann, V AF Fredelake, Stefan Hohmann, Volker TI Factors affecting predicted speech intelligibility with cochlear implants in an auditory model for electrical stimulation SO HEARING RESEARCH LA English DT Article ID SENSORINEURAL HEARING-LOSS; SPOKEN WORD RECOGNITION; NEURAL EXCITATION; STOCHASTIC-MODEL; NERVE; PERFORMANCE; PERCEPTION; THRESHOLD; LISTENERS; MASKING AB A model of the auditory response to stimulation with cochlear implants (Cls) was used to predict speech intelligibility in electric hearing. The model consists of an auditory nerve cell population that generates delta pulses as action potentials in response to temporal and spatial excitation with a simulated Cl signal processing strategy. The auditory nerve cells are modeled with a leaky integrate-and-fire model with membrane noise. Refractory behavior is introduced by raising the threshold potential with an exponentially decreasing function. Furthermore, the action potentials are delayed to account for latency and jitter. The action potentials are further processed by a central model stage, which includes spatial and temporal integration, resulting in an internal representation of the sound presented. Multiplicative noise is included in the internal representations to limit resolution. Internal representations of complete word sets for a sentence intelligibility test were computed and classified using a Dynamic-Time-Warping classifier to quantify information content and to estimate speech intelligibility. The number of auditory nerve cells, the spatial spread of the electrodes' electric field, and the internal noise intensity were found to have a major impact on the modeled speech intelligibility, whereas the influence of refractory behavior, membrane noise, and latency and jitter was minor. (C) 2012 Elsevier B.V. All rights reserved. C1 [Fredelake, Stefan; Hohmann, Volker] Carl von Ossietzky Univ Oldenburg, D-26111 Oldenburg, Germany. RP Fredelake, S (reprint author), European Res Ctr, Feodor Lynen Str 35, D-30625 Hannover, Germany. EM stefan.fredelake@advancedbionics.com FU Audiologie-Initiative Niedersachsen FX We thank Birger Kollmeier, Tim Jurgens, and Tamas Harczos for their substantial support. We would also like to thank the Audiologie-Initiative Niedersachsen for funding the research reported in this paper. We thank Jennifer Trumpler for improving the language. CR Brand T., 2004, 7 JAHR DTSCH GES AUD Brand T, 2002, J ACOUST SOC AM, V111, P2801, DOI 10.1121/1.1479152 Bruce IC, 1999, IEEE T BIO-MED ENG, V46, P617, DOI 10.1109/10.764938 Bruce IC, 1999, IEEE T BIO-MED ENG, V46, P630, DOI 10.1109/10.764939 BUSBY PA, 1994, J ACOUST SOC AM, V95, P2658, DOI 10.1121/1.409835 Chatterjee M, 1999, J ACOUST SOC AM, V105, P1853, DOI 10.1121/1.426722 Cohen LT, 2009, HEARING RES, V248, P1, DOI 10.1016/j.heares.2008.11.007 Cohen LT, 2009, HEARING RES, V248, P15, DOI 10.1016/j.heares.2008.11.008 Cohen LT, 2009, HEARING RES, V247, P100, DOI 10.1016/j.heares.2008.11.004 Cohen LT, 2009, HEARING RES, V247, P112, DOI 10.1016/j.heares.2008.11.002 Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0 Cohen LT, 2009, HEARING RES, V247, P87, DOI 10.1016/j.heares.2008.11.003 COLOMBO J, 1987, HEARING RES, V31, P287, DOI 10.1016/0378-5955(87)90197-3 Cooper NP., 2004, SPRINGER HDB AUDITOR, V17 Dau T, 1996, J ACOUST SOC AM, V99, P3615, DOI 10.1121/1.414959 Dynes S.B.C., 1996, THESIS MIT Fayad JN, 2006, LARYNGOSCOPE, V116, P1310, DOI 10.1097/01.mlg.0000227176.09500.28 Finley CC, 2008, OTOL NEUROTOL, V29, P920, DOI 10.1097/MAO.0b013e318184f492 FRIJNS JHM, 1995, HEARING RES, V87, P170, DOI 10.1016/0378-5955(95)00090-Q Fu QJ, 2002, NEUROREPORT, V13, P1635, DOI 10.1097/00001756-200209160-00013 Gerstner W., 2002, SPIKING NEURON MODEL Goldwyn JH, 2010, J COMPUT NEUROSCI, V28, P405, DOI 10.1007/s10827-010-0224-9 Goldwyn J.H., 2011, C IMPL AUD PROTH AS Gomaa NA, 2003, EAR HEARING, V24, P539, DOI 10.1097/01.AUD.0000100208.26628.2D Hamacher V., 2004, THESIS RWTH AACHEN Haumann S., 2010, 13 JAHR DTSCH GES AU Heffer LF, 2010, J NEUROPHYSIOL, V104, P3124, DOI 10.1152/jn.00500.2010 Hey M., 2010, 13 JAHR DTSCH GES AU Heydebrand G, 2007, AUDIOL NEURO-OTOL, V12, P254, DOI 10.1159/000101473 Holden L. K., 2011, C IMPL AUD PROSTH AS Imennov NS, 2009, IEEE T BIO-MED ENG, V56, P2493, DOI 10.1109/TBME.2009.2016667 Jayel E., 1990, COCHLEAR IMPLANTS MO, P247 Jurgens T, 2009, J ACOUST SOC AM, V126, P2635, DOI 10.1121/1.3224721 Jurgens T., 2010, P ANN C INT SPEECH C, P2478 Li FP, 2010, J ACOUST SOC AM, V127, P2599, DOI 10.1121/1.3295689 Miller CA, 1999, HEARING RES, V135, P1, DOI 10.1016/S0378-5955(99)00081-7 Miller CA, 1999, HEARING RES, V130, P197, DOI 10.1016/S0378-5955(99)00012-X Mino H, 2004, IEEE T BIO-MED ENG, V51, P13, DOI 10.1109/TBME.2003.820383 Mino H, 2006, IEEE T NEUR SYS REH, V14, P273, DOI 10.1109/TNSRE.2006.881590 Muller-Deile J, 2009, VERFAHREN ANPASSUNG Rattay F, 2001, HEARING RES, V153, P43, DOI 10.1016/S0378-5955(00)00256-2 Reilly JP, 1992, ELECT STIMULATION EL Rubinstein JT, 1999, AM J OTOL, V20, P445 SAKOE H, 1978, IEEE T ACOUST SPEECH, V26, P43, DOI 10.1109/TASSP.1978.1163055 Saunders E, 2002, EAR HEARING, V23, p28S, DOI 10.1097/00003446-200202001-00004 SHANNON RV, 1990, HEARING RES, V47, P159, DOI 10.1016/0378-5955(90)90173-M Shepherd RK, 2004, EUR J NEUROSCI, V20, P3131, DOI 10.1111/j.1460-9568.2004.03809.x Shpak T, 2004, ACTA OTO-LARYNGOL, V124, P679, DOI 10.1080/00016480310002168 Stadler S., 2009, EURASIP J ADV SIGNAL Vandali AE, 2000, EAR HEARING, V21, P608, DOI 10.1097/00003446-200012000-00008 van Dijk JE, 1999, AUDIOLOGY, V38, P109 Wagener K, 1999, Z AUDIOL, V38, P44 Wagener K, 1999, Z AUDIOL, V38, P4 Wagener K., 1999, Z AUDIOL, V38, P86 Wagener KC, 2005, INT J AUDIOL, V44, P144, DOI 10.1080/14992020500057517 Yost W.A., 2000, FUNDAMENTALS HEARING Zekveld AA, 2007, J SPEECH LANG HEAR R, V50, P576, DOI 10.1044/1092-4388(2007/040) Zhou XM, 2000, J COMP PHYSIOL A, V186, P389, DOI 10.1007/s003590050438 NR 58 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2012 VL 287 IS 1-2 BP 76 EP 90 DI 10.1016/j.heares.2012.03.005 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 957YB UT WOS:000305201900011 PM 22465681 ER PT J AU Drexl, M Gurkov, R Krause, E AF Drexl, Markus Guerkov, Robert Krause, Eike TI Low-frequency modulated quadratic and cubic distortion product otoacoustic emissions in humans SO HEARING RESEARCH LA English DT Article ID POSTEXPOSURE RESPONSIVENESS; ENDOLYMPHATIC HYDROPS; COCHLEAR AMPLIFIER; AUDITORY SYSTEM; OPERATING POINT; TRANSDUCER; DPOAE; ORIGIN; EAR; SENSITIZATION AB Previous studies have used low-frequency tones to modulate distortion product otoacoustic emissions (DPOAEs). The cubic DPOAE (CDPOAE) is mostly chosen because amplitudes sufficient for modulation can be evoked with moderate sound pressure levels. Quadratic DPOAEs (QDPOAEs) however, are more sensitive to minute changes of the cochlear operating point (OP) and are better suited to assess changes of the cochlear OP. Here, we compare the properties of low-frequency (30 Hz, 80-120 dB SPL) modulated CDPOAE and QDPOAEs evoked with f(2) = 2 and 5 kHz in human subjects with normal hearing. The modulation depth was quantified with the modulation index (MI), a measure which considers both amplitude and phase. Modulated CDPOAEs evoked with f(2) = 2 kHz have amplitude maxima at the zero crossings and amplitude minima at the extremes of the biasing tone (BT) which correlate positively with the BT level. CDPOAEs evoked with f(2) = 5 kHz were recorded during biasing in exactly the same way as described before. At the highest BT levels used (120 dB SPL), very little modulation could be detected. Not only the depth, but also the shape of the QDPOAE modulation pattern is correlated with the BT level. At moderate BT levels (about 90-100 dB SPL) QDPOAEs evoked with f(2) = 5 kHz show one amplitude notch around the zero crossing of the positive going flank of the BT (a single modulation pattern). At and above a BT level of about 105 dB SPL, the pattern reverses and shows a double modulation pattern. At the highest BT level used (120 dB SPL), quadratic MIs exceed cubic MIs (2.0 +/- 0.5 and 0.97 +/- 0.06, respectively). Patterns of low-frequency modulated QDPOAEs in humans are similar to the modulation seen in animal studies and as predicted by mathematical models. Human low-frequency modulated QDPOAEs are ideally suited to estimate cochlear OP shifts because of their high sensitivity to the OP shift. (C) 2012 Elsevier B.V. All rights reserved. C1 [Drexl, Markus; Guerkov, Robert; Krause, Eike] Univ Munich, Integrated Ctr Res & Treatment Vertigo Balance &, D-81377 Munich, Germany. RP Drexl, M (reprint author), Univ Munich, Integrated Ctr Res & Treatment Vertigo Balance &, Marchioninistr 15, D-81377 Munich, Germany. EM markus.drexl@med.uni-muenchen.de; robert.guerkov@med.uni-muenchen.de; eike.krause@med.uni-muenchen.de RI Gurkov, Robert/K-3536-2013 OI Gurkov, Robert/0000-0002-4195-149X FU German Federal Ministry of Education and Research [IFBLMU TR-F9] FX This study was funded by the German Federal Ministry of Education and Research, project IFBLMU TR-F9. We would also like to thank Professor Lutz Wiegrebe for his technical support, and Professor Manfred Kossl, Thomas Weddell and Dr Andrei Lukashkin for helpful comments on this manuscript. CR Abel C, 2009, J NEUROPHYSIOL, V101, P2362, DOI 10.1152/jn.00026.2009 Bian L, 2002, J ACOUST SOC AM, V112, P198, DOI 10.1121/1.1488943 Bian L, 2004, J ACOUST SOC AM, V115, P2159, DOI 10.1121/1.1690081 Bian L, 2004, J ACOUST SOC AM, V116, P3559, DOI 10.1121/1.1819501 Bian L, 2008, J ACOUST SOC AM, V124, P3739, DOI 10.1121/1.3001706 Bian L, 2007, J ACOUST SOC AM, V122, P1681, DOI 10.1121/1.2764467 BROWN AM, 1984, HEARING RES, V13, P29, DOI 10.1016/0378-5955(84)90092-3 Brown AM, 1996, J ACOUST SOC AM, V100, P3260, DOI 10.1121/1.417209 Brown DJ, 2009, J ACOUST SOC AM, V125, P2129, DOI 10.1121/1.3083228 Brown DJ, 2011, HEARING RES, V282, P119, DOI 10.1016/j.heares.2011.09.002 CRAWFORD AC, 1989, J PHYSIOL-LONDON, V419, P405 Frank G., 1996, HEARING RES, V98, P115 Frank G, 1997, HEARING RES, V113, P57, DOI 10.1016/S0378-5955(97)00131-7 Hensel J, 2007, HEARING RES, V233, P67, DOI 10.1016/j.heares.2007.07.004 Hirschfelder A, 2005, HNO, V53, P612, DOI 10.1007/s00106-004-1171-4 HUGHES JR, 1954, J ACOUST SOC AM, V26, P1064, DOI 10.1121/1.1907450 Janssen T, 2006, ORL J OTO-RHINO-LARY, V68, P334, DOI 10.1159/000095275 Janssen T, 1998, J ACOUST SOC AM, V103, P3418, DOI 10.1121/1.423053 KEMP DT, 1980, HEARING RES, V2, P533, DOI 10.1016/0378-5955(80)90091-X Kemp DT, 2002, BRIT MED BULL, V63, P223, DOI 10.1093/bmb/63.1.223 KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0 Kirk DL, 1997, HEARING RES, V112, P69, DOI 10.1016/S0378-5955(97)00104-4 Kirk DL, 1997, HEARING RES, V112, P49, DOI 10.1016/S0378-5955(97)00105-6 Lukashkin AN, 1998, J ACOUST SOC AM, V103, P973, DOI 10.1121/1.421214 Lukashkin AN, 2005, HEARING RES, V203, P45, DOI 10.1016/j.heares.2004.11.011 Marquardt T, 2007, J ACOUST SOC AM, V121, P3628, DOI 10.1121/1.2722506 MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9 Moulin A, 2000, J ACOUST SOC AM, V107, P1460, DOI 10.1121/1.428433 NOFFSING.PD, 1970, J ACOUST SOC AM, V47, P552, DOI 10.1121/1.1911928 NOFFSING.PD, 1970, J ACOUST SOC AM, V47, P546, DOI 10.1121/1.1911927 Rotter A, 2008, EUR ARCH OTO-RHINO-L, V265, P643, DOI 10.1007/s00405-007-0520-9 Salt AN, 2010, HEARING RES, V268, P12, DOI 10.1016/j.heares.2010.06.007 Scholz G, 1999, HEARING RES, V130, P189, DOI 10.1016/S0378-5955(99)00010-6 SIEGEL JH, 1994, HEARING RES, V80, P146, DOI 10.1016/0378-5955(94)90106-6 Sirjani DB, 2004, J ACOUST SOC AM, V115, P1219, DOI 10.1121/1.1647479 Verpy E, 2008, NATURE, V456, P255, DOI 10.1038/nature07380 NR 36 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2012 VL 287 IS 1-2 BP 91 EP 101 DI 10.1016/j.heares.2012.03.004 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 957YB UT WOS:000305201900012 PM 22465462 ER PT J AU Macias, S Mora, EC Hechavarria, JC Kossl, M AF Macias, Silvio Mora, Emanuel C. Hechavarria, Julio C. Koessl, Manfred TI Properties of echo delay-tuning receptive fields in the inferior colliculus of the mustached bat SO HEARING RESEARCH LA English DT Article ID COMBINATION-SENSITIVE NEURONS; COMPLEX AUDITORY RESPONSES; MEDIAL GENICULATE-BODY; BIG BROWN BAT; TARGET RANGE; GLYCINERGIC INHIBITION; ECHOLOCATING BAT; MUSTACHED BAT; TUNED NEURONS; CORTEX AB One role of the inferior colliculus (IC) in bats is to create neuronal delay-tuning, which is used for the estimation of target distance in the echolocating bat's auditory system. In this study, we describe response properties of IC delay-tuned neurons of the mustached bat (Pteronotus parnellii) and compare it with those of delay-tuned neurons of the auditory cortex (AC). We also address the question if frequency content of the stimulus (pure-tone (PT) or frequency-modulated (FM) pairs stimulation) affects combination-sensitive interaction in the same neuron. Sharpness and sensitivity of delay-tuned neurons in the IC are similar to those described in the AC. However, in contrast to cortical responses, in collicular neurons the delay at which the neurons show the maximum response does not change with changes in echo level. This tolerance to changes in the echo level seems to be a property of collicular delay-tuned neurons, which is modified along the ascending auditory pathway. In the IC we found neurons that showed a facilitated delay-tuned response when stimulated with FM components and did not show any delay-tuning with PT stimulation. This result suggests that not only is echo delay-tuning generated in the IC but also its FM-specificity observed in the cortex could be created to some extent in the IC and then topographically organized at higher levels. (C) 2012 Elsevier B.V. All rights reserved. C1 [Macias, Silvio; Mora, Emanuel C.] Univ Havana, Dept Anim & Human Biol, Fac Biol, Havana 10400, Cuba. [Hechavarria, Julio C.; Koessl, Manfred] Goethe Univ Frankfurt, Inst Zellbiol & Neurowissensch, D-60323 Frankfurt, Germany. RP Macias, S (reprint author), Univ Havana, Dept Anim & Human Biol, Fac Biol, Calle 25,455 Entre J e I Vedado, Havana 10400, Cuba. EM silvio@fbio.uh.cu FU Deutscher Akademisher Austausch Dienst (DAAD); Deutsche Forschungsgemeinschaft (DFG) FX This work was supported by fellowships from the Deutscher Akademisher Austausch Dienst (DAAD) to Silvio Macias, and the Deutsche Forschungsgemeinschaft (DFG). We thank Dr. Jeffrey Wenstrup for his comments on an earlier version of the manuscript. CR Abel C, 2009, J NEUROPHYSIOL, V101, P1560, DOI 10.1152/jn.90805.2008 Casseday JH, 1996, BRAIN BEHAV EVOLUT, V47, P311, DOI 10.1159/000113249 COVEY E, 1987, J COMP NEUROL, V263, P179, DOI 10.1002/cne.902630203 DEAR SP, 1995, J NEUROPHYSIOL, V73, P1084 Fremouw T, 2005, J NEUROPHYSIOL, V94, P1869, DOI 10.1152/jn.00253.2005 Griffin DR, 1958, LISTENING DARK Hagemann C, 2010, J NEUROPHYSIOL, V103, P322, DOI 10.1152/jn.00595.2009 Hagemann C, 2011, J COMP PHYSIOL A, V197, P605, DOI 10.1007/s00359-010-0530-8 HAPLEA S, 1994, J COMP PHYSIOL A, V174, P671 Harris R, 2000, J NEUROPHYSIOL, V84, P401 KANWAL JS, 1994, J ACOUST SOC AM, V96, P1229, DOI 10.1121/1.410273 Lewicki MS, 1998, NETWORK-COMP NEURAL, V9, pR53, DOI 10.1088/0954-898X/9/4/001 Macias S, 2011, J NEUROPHYSIOL, V106, P3119, DOI 10.1152/jn.00294.2011 MITTMANN DH, 1995, HEARING RES, V90, P185, DOI 10.1016/0378-5955(95)00164-X Nataraj K, 2005, J NEUROPHYSIOL, V93, P3294, DOI 10.1152/jn.01152.2004 Nataraj K, 2006, J NEUROPHYSIOL, V95, P2179, DOI 10.1152/jn.01148.2005 O'Neill W. E., 1995, HEARING BATS, P416 OLSEN JF, 1991, J NEUROPHYSIOL, V65, P1275 ONEILL WE, 1979, SCIENCE, V203, P69, DOI 10.1126/science.758681 ONEILL WE, 1982, J NEUROSCI, V2, P17 Peterson DC, 2008, J NEUROPHYSIOL, V100, P629, DOI 10.1152/jn.90390.2008 Portfors C. V., 2004, ECHOLOCATION BATS DO, P141 Portfors CV, 2001, JARO, V2, P104, DOI 10.1007/s101620010057 Portfors CV, 1999, J NEUROPHYSIOL, V82, P1326 Sanchez JT, 2008, J NEUROSCI, V28, P80, DOI 10.1523/JNEUROSCI.3572-07.2008 SIMMONS JA, 1971, SCIENCE, V171, P925, DOI 10.1126/science.171.3974.925 SUGA N, 1979, SCIENCE, V206, P351, DOI 10.1126/science.482944 SUGA N, 1983, J NEUROPHYSIOL, V49, P1573 SUGA N, 1989, J EXP BIOL, V146, P277 SULLIVAN WE, 1982, J NEUROPHYSIOL, V48, P1011 TANIGUCHI I, 1986, J COMP PHYSIOL A, V159, P331, DOI 10.1007/BF00603979 Wenstrup JJ, 1999, J NEUROPHYSIOL, V82, P2528 Wenstrup JJ, 2011, NEUROSCI BIOBEHAV R, V35, P2073, DOI 10.1016/j.neubiorev.2010.12.015 Wenstrup JJ, 2001, J NEUROSCI, V21 Yan J, 1996, HEARING RES, V93, P102, DOI 10.1016/0378-5955(95)00209-X Yavuzoglu A, 2011, J NEUROSCI, V31, P14424, DOI 10.1523/JNEUROSCI.3529-11.2011 NR 36 TC 7 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2012 VL 286 IS 1-2 BP 1 EP 8 DI 10.1016/j.heares.2012.02.013 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 936ZZ UT WOS:000303630100001 PM 22446180 ER PT J AU Agterberg, MJH Snik, AFM Hol, MKS Van Wanrooij, MM Van Opstal, AJ AF Agterberg, Martijn J. H. Snik, Ad F. M. Hol, Myrthe K. S. Van Wanrooij, Marc M. Van Opstal, A. John TI Contribution of monaural and binaural cues to sound localization in listeners with acquired unilateral conductive hearing loss: Improved directional hearing with a bone-conduction device SO HEARING RESEARCH LA English DT Article ID PINNA CUES; AID; DISCRIMINATION; CHILDREN AB Sound localization in the horizontal (azimuth) plane relies mainly on interaural time differences (ITDs) and interaural level differences (ILDs). Both are distorted in listeners with acquired unilateral conductive hearing loss (UCHL), reducing their ability to localize sound. Several studies demonstrated that UCHL listeners had some ability to localize sound in azimuth. To test whether listeners with acquired UCHL use strongly perturbed binaural difference cues, we measured localization while they listened with a sound-attenuating earmuff over their impaired ear. We also tested the potential use of monaural pinna-induced spectral-shape cues for localization in azimuth and elevation, by filling the cavities of the pinna of their better-hearing ear with a mould. These conditions were tested while a bone-conduction device (BCD), fitted to all UCHL listeners in order to provide hearing from the impaired side, was turned off. We varied stimulus presentation levels to investigate whether UCHL listeners were using sound level as an azimuth cue. Furthermore, we examined whether horizontal sound-localization abilities improved when listeners used their BCD. Ten control listeners without hearing loss demonstrated a significant decrease in their localization abilities when they listened with a monaural plug and muff. In 4/13 UCHL listeners we observed good horizontal localization of 65 dB SPL broadband noises with their BCD turned off. Localization was strongly impaired when the impaired ear was covered with the muff. The mould in the good ear of listeners with UCHL deteriorated the localization of broadband sounds presented at 45 dB SPL. This demonstrates that they used pinna cues to localize sounds presented at low levels. Our data demonstrate that UCHL listeners have learned to adapt their localization strategies under a wide variety of hearing conditions and that sound-localization abilities improved with their BCD turned on. (C) 2012 Elsevier B.V. All rights reserved. C1 [Agterberg, Martijn J. H.; Van Wanrooij, Marc M.; Van Opstal, A. John] Radboud Univ Nijmegen, Dept Biophys, Donders Inst Brain Cognit & Behav, NL-6500 HB Nijmegen, Netherlands. [Agterberg, Martijn J. H.; Snik, Ad F. M.; Hol, Myrthe K. S.] Radboud Univ Nijmegen, Dept Otorhinolaryngol, Donders Inst Brain Cognit & Behav, Med Ctr, NL-6500 HB Nijmegen, Netherlands. RP Agterberg, MJH (reprint author), Radboud Univ Nijmegen, Dept Biophys, Donders Inst Brain Cognit & Behav, POB 9101, NL-6500 HB Nijmegen, Netherlands. EM m.agterberg@donders.ru.nl RI van Opstal, John/D-1907-2010; van Wanrooij, Marc/J-3385-2012; Agterberg, Martijn/K-2956-2012; Snik, Ad/H-8092-2014 OI van Wanrooij, Marc/0000-0003-4180-1835; FU William Demants og Hustru Ida Emilies Fond; Dutch Organization for Scientific Research, through a VICI [ALW/VICI 865.05.003]; Radboud University Nijmegen; Donders Centre for Neuroscience; Department of Otorhinolaryngology at the Radboud University Medical Centre Nijmegen FX We thank H. Kleijnen, L Van Bolderen and G. Windau for their technical support. We would like to thank the associate editor, Brian Moore, and the anonymous reviewers for their useful comments and suggestions for improving the manuscript. This research was funded by the William Demants og Hustru Ida Emilies Fond and the Dutch Organization for Scientific Research, through a VICI grant within Earth and Life Sciences (project grant ALW/VICI 865.05.003; AJVO, MMVW), the Radboud University Nijmegen (AJVO), the Donders Centre for Neuroscience (MJHA), and the Department of Otorhinolaryngology at the Radboud University Medical Centre Nijmegen (AFMS, MKSH). CR Agterberg MJH, 2011, ADV OTO-RHINO-LARYNG, V71, P84, DOI 10.1159/000323587 Agterberg MJH, 2011, JARO-J ASSOC RES OTO, V12, P1, DOI 10.1007/s10162-010-0235-2 ALGAZI V., 2001, CIPIC HRTF DATABASE, P99, DOI DOI 10.1155/S1463924601000141 [Anonymous], 1991, 48691 DIN ISO BATTEAU DW, 1967, PROC R SOC SER B-BIO, V168, P158, DOI 10.1098/rspb.1967.0058 Blauert J., 1997, SPATIAL HEARING PSYC Bremen P, 2010, J NEUROSCI, V30, P194, DOI 10.1523/JNEUROSCI.2982-09.2010 Colburn H S, 1982, Scand Audiol Suppl, V15, P27 Grothe B, 2010, PHYSIOL REV, V90, P983, DOI 10.1152/physrev.00026.2009 HAUSLER R, 1983, ACTA OTO-LARYNGOL, P1 Hofman PM, 1998, J ACOUST SOC AM, V103, P2634, DOI 10.1121/1.422784 Hol MKS, 2005, AUDIOL NEURO-OTOL, V10, P159, DOI 10.1159/000084026 HUMES LE, 1980, AUDIOLOGY, V19, P508 Kacelnik O, 2006, PLOS BIOL, V4, P627, DOI 10.1371/journal.pbio.0040071 Kumpik DP, 2010, J NEUROSCI, V30, P4883, DOI 10.1523/JNEUROSCI.5488-09.2010 MIDDLEBROOKS JC, 1992, J ACOUST SOC AM, V92, P2607, DOI 10.1121/1.404400 MIDDLEBROOKS JC, 1991, ANNU REV PSYCHOL, V42, P135, DOI 10.1146/annurev.ps.42.020191.001031 NEWTON VE, 1981, J LARYNGOL OTOL, V95, P41, DOI 10.1017/S0022215100090381 Priwin C, 2007, INT J PEDIATR OTORHI, V71, P135, DOI 10.1016/j.ijporl.2006.09.014 ROBINSON DA, 1963, IEEE T BIO-MED ENG, VBM10, P137, DOI 10.1109/TBMEL.1963.4322822 Shub DE, 2008, J ACOUST SOC AM, V124, P3132, DOI 10.1121/1.2981634 SLATTERY WH, 1994, HEARING RES, V75, P38, DOI 10.1016/0378-5955(94)90053-1 Snik AFM, 2002, OTOL NEUROTOL, V23, P61, DOI 10.1097/00129492-200201000-00015 Stenfelt S, 2012, OTOL NEUROTOL, V33, P105, DOI 10.1097/MAO.0b013e31823e28ab Stenfelt S, 2005, INT J AUDIOL, V44, P178, DOI 10.1080/14992020500031561 Stenfelt S, 2005, J ACOUST SOC AM, V118, P2373, DOI 10.1121/1.12005847 Van Wanrooij MM, 2007, J NEUROPHYSIOL, V97, P715, DOI 10.1152/jn.00260.2006 Van Wanrooij MM, 2004, J NEUROSCI, V24, P4163, DOI 10.1523/JNEUROSCI.0048-04.2004 Wazen JJ, 2001, LARYNGOSCOPE, V111, P955, DOI 10.1097/00005537-200106000-00005 WEBSTER DB, 1983, EXP NEUROL, V79, P130, DOI 10.1016/0014-4886(83)90384-9 WEBSTER DB, 1983, HEARING RES, V12, P145, DOI 10.1016/0378-5955(83)90123-5 WILMINGTON D, 1994, HEARING RES, V74, P99, DOI 10.1016/0378-5955(94)90179-1 NR 32 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2012 VL 286 IS 1-2 BP 9 EP 18 DI 10.1016/j.heares.2012.02.012 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 936ZZ UT WOS:000303630100002 PM 22616091 ER PT J AU Srinivasan, AG Shannon, RV Landsberger, DM AF Srinivasan, Arthi G. Shannon, Robert V. Landsberger, David M. TI Improving virtual channel discrimination in a multi-channel context SO HEARING RESEARCH LA English DT Article ID COCHLEAR IMPLANT USERS; INTRACOCHLEAR ELECTRIC-STIMULATION; SPEECH CODING STRATEGY; SPECTRAL RESOLUTION; NORMAL-HEARING; TEMPORAL CUES; PLACE-PITCH; RECOGNITION; PERCEPTION; RECIPIENTS AB Improving spectral resolution in cochlear implants is key to improving performance in difficult listening conditions (e.g. speech in noise, music, etc.). Current focusing might reduce channel interaction, thereby increasing spectral resolution. Previous studies have shown that combining current steering and current focusing reduces spread of excitation and improves virtual channel discrimination in a single-channel context. It is unclear whether the single-channel benefits from current focusing extend to a multi-channel context, in which the physical and perceptual interference of multiple stimulated channels might overwhelm the benefits of improved spectral resolution. In this study, signal discrimination was measured with and without current focusing, in the presence of competing stimuli on nearby electrodes. Results showed that signal discrimination was consistently better with current focusing than without, regardless of the amplitude of the competing stimuli. Therefore, combining current steering and current focusing may provide more effective spectral cues than are currently available. (C) 2012 Elsevier B.V. All rights reserved. C1 [Srinivasan, Arthi G.; Shannon, Robert V.; Landsberger, David M.] House Res Inst, Dept Commun & Auditory Neurosci, Los Angeles, CA 90057 USA. [Srinivasan, Arthi G.; Shannon, Robert V.] Univ So Calif, Dept Biomed Engn, Los Angeles, CA 90089 USA. RP Srinivasan, AG (reprint author), House Res Inst, Dept Commun & Auditory Neurosci, 2100 W 3rd St, Los Angeles, CA 90057 USA. EM asrinivasan@hei.org FU NIDCD [R01-DC-001526, R03-DC-010064, F31 DC011205-01] FX This work was supported by NIDCD Grants and Fellowship Numbers: R01-DC-001526, R03-DC-010064, and F31 DC011205-01. We gratefully acknowledge the CI subjects who participated in this study. We also thank John J. Galvin III for editorial help. CR Berenstein CK, 2008, EAR HEARING, V29, P250 Bierer JA, 2010, EAR HEARING, V31, P247, DOI 10.1097/AUD.0b013e3181c7daf4 Bierer JA, 2002, J NEUROPHYSIOL, V87, P478 Brendel M, 2008, OTOL NEUROTOL, V29, P199, DOI 10.1097/mao.0b013e31816335c6 Briaire JJ, 2000, HEARING RES, V148, P18, DOI 10.1016/S0378-5955(00)00104-0 Busby PA, 2008, EAR HEARING, V29, P853, DOI 10.1097/AUD.0b013e318181a878 Donaldson GS, 2005, J ACOUST SOC AM, V118, P623, DOI 10.1121/1.1937362 Donaldson GS, 2011, EAR HEARING, V32, P238, DOI 10.1097/AUD.0b013e3181fb8390 Firszt JB, 2007, OTOL NEUROTOL, V28, P629, DOI 10.1097/01.mao.0000281803.36574.bc Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Fu QJ, 2005, JARO-J ASSOC RES OTO, V6, P19, DOI 10.1007/s10162-004-5024-3 Fu QJ, 2005, J ACOUST SOC AM, V118, P1711, DOI 10.1121/1.1985024 Fu QJ, 1998, J ACOUST SOC AM, V104, P3586, DOI 10.1121/1.423941 Henry BA, 2005, J ACOUST SOC AM, V118, P1111, DOI 10.1121/1.1944567 Henry BA, 2003, J ACOUST SOC AM, V113, P2861, DOI 10.1121/1.1561900 Henry BA, 2000, J ACOUST SOC AM, V108, P1269, DOI 10.1121/1.1287711 Holden LK, 2002, EAR HEARING, V23, P463, DOI 10.1097/01.AUD.0000034718.53595.99 Hughes ML, 2006, J ACOUST SOC AM, V119, P1527, DOI 10.1121/1.2163273 Landsberger DM, 2012, HEARING RES, V284, P16, DOI 10.1016/j.heares.2011.12.009 Landsberger DM, 2009, HEARING RES, V254, P34, DOI 10.1016/j.heares.2009.04.007 Lazard DS, 2010, ACTA OTO-LARYNGOL, V130, P1267, DOI 10.3109/00016481003769972 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Litvak LM, 2007, J ACOUST SOC AM, V122, P967, DOI 10.1121/1.2749414 Litvak LM, 2007, J ACOUST SOC AM, V122, P982, DOI 10.1121/1.2749413 Loizou P.C., 2001, J ACOUST SOC AM, V110, P1619 Luo Xin, 2010, J Acoust Soc Am, V128, P1215, DOI 10.1121/1.3474237 NELSON DA, 1995, J ACOUST SOC AM, V98, P1987, DOI 10.1121/1.413317 Saoji AA, 2009, EAR HEARING, V30, P559, DOI 10.1097/AUD.0b013e3181ab2b6f Saoji AA, 2010, EAR HEARING, V31, P693, DOI 10.1097/AUD.0b013e3181e1d15e Shannon Robert V, 2004, Acta Otolaryngol Suppl, P50 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a Snyder RL, 2004, JARO-J ASSOC RES OTO, V5, P305, DOI 10.1007/s10162-004-4026-5 Spelman F A, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P131 Srinivasan AG, 2010, HEARING RES, V270, P89, DOI 10.1016/j.heares.2010.09.004 Throckmorton CS, 1999, J ACOUST SOC AM, V105, P861, DOI 10.1121/1.426275 Vandali AE, 2000, EAR HEARING, V21, P608, DOI 10.1097/00003446-200012000-00008 van den Honert C, 2007, J ACOUST SOC AM, V121, P3703, DOI 10.1121/1.2722047 WHITFORD LA, 1995, ACTA OTO-LARYNGOL, V115, P629, DOI 10.3109/00016489509139378 Won JH, 2007, JARO-J ASSOC RES OTO, V8, P384, DOI 10.1007/s10162-007-0085-8 Xu L, 2005, J ACOUST SOC AM, V117, P3255, DOI 10.1121/.1.1886405 Zwolan TA, 1997, J ACOUST SOC AM, V102, P3673, DOI 10.1121/1.420401 NR 42 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2012 VL 286 IS 1-2 BP 19 EP 29 DI 10.1016/j.heares.2012.02.011 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 936ZZ UT WOS:000303630100003 PM 22616092 ER PT J AU Geven, LI Wit, HP de Kleine, E van Dijk, P AF Geven, Leontien I. Wit, Hero P. de Kleine, Emile van Dijk, Pim TI Wavelet analysis demonstrates no abnormality in contralateral suppression of otoacoustic emissions in tinnitus patients SO HEARING RESEARCH LA English DT Article ID EFFERENT AUDITORY-SYSTEM; NORMAL-HEARING; REFLEX THRESHOLD; HUMANS; FREQUENCY; REFLECTANCE; MECHANISMS; EARS AB The efferent auditory system is thought to play a role in the origin of tinnitus. Part of this system can be tested in humans with contralateral suppression of otoacoustic emissions. Stimulation of the medial olivocochlear efferent system is responsible for this reduction of otoacoustic emissions after contralateral acoustic stimulation. Previous research on patients with tinnitus showed inconclusive results. With wavelet analysis both time and frequency information of the emission can be analysed and compared. Contralateral suppression of otoacoustic emissions was therefore measured in tinnitus patients (n = 26) and normal subjects (n = 37) and analysed using wavelets. No significant difference in suppression was found between the tinnitus patients and the control group. (C) 2012 Elsevier B.V. All rights reserved. C1 [Geven, Leontien I.; Wit, Hero P.; de Kleine, Emile; van Dijk, Pim] Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, NL-9700 RB Groningen, Netherlands. [Geven, Leontien I.; de Kleine, Emile; van Dijk, Pim] Univ Groningen, Grad Sch Med Sci, Res Sch Behav & Cognit Neurosci, Groningen, Netherlands. RP Geven, LI (reprint author), Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, POB 30-001, NL-9700 RB Groningen, Netherlands. EM l.i.geven@umcg.nl RI Van Dijk, Pim/E-8019-2010; de Kleine, Emile/P-2350-2014 OI Van Dijk, Pim/0000-0002-8023-7571; FU Heinsius Houbolt Foundation FX This study was supported by the Heinsius Houbolt Foundation and is part of the research program of our department: Communication through Hearing and Speech. CR Attias J, 1996, ACTA OTO-LARYNGOL, V116, P534, DOI 10.3109/00016489609137885 Bauer Carol A, 2004, Curr Opin Otolaryngol Head Neck Surg, V12, P413, DOI 10.1097/01.moo.0000134443.29853.09 Ceranic BJ, 1998, J NEUROL NEUROSUR PS, V65, P523, DOI 10.1136/jnnp.65.4.523 CHERYCROZE S, 1994, BRIT J AUDIOL, V28, P13, DOI 10.3109/03005369409077909 CHERYCROZE S, 1994, BRIT J AUDIOL, V28, P255, DOI 10.3109/03005369409086575 Cohen J., 1988, STAT POWER ANAL BEHA, V2nd COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E De Ceulaer G, 2001, OTOL NEUROTOL, V22, P350, DOI 10.1097/00129492-200105000-00013 Fávero Mariana Lopes, 2006, Rev. Bras. Otorrinolaringol., V72, P223, DOI 10.1590/S0034-72992006000200012 Feeney MP, 2001, EAR HEARING, V22, P316, DOI 10.1097/00003446-200108000-00006 Feeney MP, 2004, EAR HEARING, V25, P421, DOI 10.1097/01.aud.0000145110.60657.73 Geven LI, 2011, OTOL NEUROTOL, V32, P315, DOI 10.1097/MAO.0b013e3181fcf180 Giraud AL, 1995, BRAIN RES, V705, P15, DOI 10.1016/0006-8993(95)01091-2 GRAHAM RL, 1994, BRIT J AUDIOL, V28, P235, DOI 10.3109/03005369409086573 Guinan JJ, 2006, EAR HEARING, V27, P589, DOI 10.1097/01.aud.0000240507.83072.e7 Hood LJ, 1996, HEARING RES, V101, P113, DOI 10.1016/S0378-5955(96)00138-4 JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 Lind O, 1996, SCAND AUDIOL, V25, P167, DOI 10.3109/01050399609048000 Moller AR, 2007, PROG BRAIN RES, V166, P3, DOI 10.1016/S0079-6123(07)66001-4 Morand N, 2000, HEARING RES, V145, P52, DOI 10.1016/S0378-5955(00)00069-1 Mulders WHAM, 2010, J NEUROSCI, V30, P9578, DOI 10.1523/JNEUROSCI.2289-10.2010 Paglialonga A, 2011, AURIS NASUS LARYNX, V38, P33, DOI 10.1016/j.anl.2010.04.006 PRIEVE BA, 1993, J ACOUST SOC AM, V93, P3308, DOI 10.1121/1.405715 Riga M, 2007, OTOL NEUROTOL, V28, P185, DOI 10.1097/MAO.0b013e31802e2a14 Roberts LE, 2010, J NEUROSCI, V10, P14972 Sun XM, 2008, HEARING RES, V237, P66, DOI 10.1016/j.heares.2007.12.004 Tognola G, 1998, IEEE T BIO-MED ENG, V45, P686, DOI 10.1109/10.678603 Tognola G, 1997, HEARING RES, V106, P112, DOI 10.1016/S0378-5955(97)00007-5 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 Winer JA, 2006, HEARING RES, V212, P1, DOI 10.1016/j.heares.2005.06.014 WIT HP, 1994, HEARING RES, V73, P141, DOI 10.1016/0378-5955(94)90228-3 NR 31 TC 3 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2012 VL 286 IS 1-2 BP 30 EP 40 DI 10.1016/j.heares.2012.02.008 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 936ZZ UT WOS:000303630100004 PM 22387429 ER PT J AU Patel, CR Redhead, C Cervi, AL Zhang, HM AF Patel, Chirag R. Redhead, Carmela Cervi, Andrea L. Zhang, Huiming TI Neural sensitivity to novel sounds in the rat's dorsal cortex of the inferior colliculus as revealed by evoked local field potentials SO HEARING RESEARCH LA English DT Article ID STIMULUS-SPECIFIC ADAPTATION; POSTSYNAPTIC GABA(B) RECEPTORS; PRIMARY AUDITORY-CORTEX; MEDIAL GENICULATE-BODY; DESCENDING PROJECTIONS; CORTICAL-NEURONS; CENTRAL NUCLEUS; GUINEA-PIG; CAT; RESPONSES AB Evoked local field potentials in response to contralaterally presented tone bursts were recorded from the rat's dorsal cortex of the inferior colliculus (ICd). An oddball stimulus paradigm was used to study the sensitivity of ensembles of neurons in the ICd to novel sounds. Our recordings indicate that neuron ensembles in the ICd display stimulus-specific adaptation when a large contrast in both frequency and probability of occurrence exists between the two tone bursts used for generating an oddball paradigm. A local field potential evoked by a tone burst presented as a deviant stimulus has a larger amplitude than that evoked by the same sound presented as a standard stimulus. The difference between the two responses occurs after the initial rising phases of their predominant deflections. The degree of stimulus-specific adaptation increases with the rate of sound presentation up to 8/s, the highest rate used in this study. A comparison between our results and those from previous studies suggests that differences exist between responses to oddball paradigms in the ICd and those in the primary auditory cortex, a major source of projection to the ICd. These differences suggest that local mechanisms exist in the ICd for suppressing neural responses to frequently presented sounds and enhancing responses to rarely presented sounds. Thus, the ICd may serve as an important component of an integrative circuit in the brain for detecting novel sounds in the acoustic environment. (C) 2012 Elsevier B.V. All rights reserved. C1 [Patel, Chirag R.; Redhead, Carmela; Cervi, Andrea L.; Zhang, Huiming] Univ Windsor, Dept Biol Sci, Windsor, ON N9B 3P4, Canada. RP Zhang, HM (reprint author), Univ Windsor, Dept Biol Sci, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada. EM hzhang@uwindsor.ca FU Natural Sciences and Engineering Research Council (NSERC) of Canada FX This research was supported by a grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada to HZ. We would like to thank Dr. Alan Lomax for comments on an early draft of the manuscript. We also would like to thank Lena Jamal for helping with histological procedures and Rebecca Philipose for helping with data analyses. CR AITKIN L, 1994, EXP BRAIN RES, V98, P53 Antunes FM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014071 Bajo VM, 2007, CEREB CORTEX, V17, P475, DOI 10.1093/cercor/bhj164 Binns KE, 1997, J PHYSIOL-LONDON, V504, P629, DOI 10.1111/j.1469-7793.1997.629bd.x Bledsoe SC, 2003, EXP BRAIN RES, V153, P530, DOI 10.1007/s00221-003-1671-6 Burger RM, 1998, J NEUROPHYSIOL, V80, P1686 Burkard B.F., 1999, J ACOUST SOC AM, V106, P304 Burkard R. F., 2006, AUDITORY EVOKED POTE CAIRD D, 1985, ELECTROEN CLIN NEURO, V61, P50, DOI 10.1016/0013-4694(85)91072-7 Cant NB, 2008, NEUROSCIENCE, V154, P206, DOI 10.1016/j.neuroscience.2008.02.015 COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204 Druga R, 1997, PHYSIOL RES, V46, P215 Farley BJ, 2010, J NEUROSCI, V30, P16475, DOI 10.1523/JNEUROSCI.2793-10.2010 Goense JBM, 2008, CURR BIOL, V18, P631, DOI 10.1016/j.cub.2008.03.054 GONZALEZHERNANDEZ TH, 1987, J HIRNFORSCH, V28, P315 HAVEY DC, 1980, ELECTROEN CLIN NEURO, V48, P249, DOI 10.1016/0013-4694(80)90313-2 HERBERT H, 1991, J COMP NEUROL, V304, P103, DOI 10.1002/cne.903040108 HERRERA M, 1994, ARCH ITAL BIOL, V132, P147 Jamal L, 2011, NEUROSCIENCE, V181, P243, DOI 10.1016/j.neuroscience.2011.02.050 Kelly JB, 2005, INFERIOR COLLICULUS, P248, DOI 10.1007/0-387-27083-3_9 KUDO M, 1978, BRAIN RES, V155, P113, DOI 10.1016/0006-8993(78)90310-4 Loftus WC, 2008, NEUROSCIENCE, V154, P196, DOI 10.1016/j.neuroscience.2008.01.019 Logothetis NK, 2008, NATURE, V453, P869, DOI 10.1038/nature06976 Logothetis NK, 2003, J NEUROSCI, V23, P3963 Lumani A, 2010, BRAIN RES, V1351, P115, DOI 10.1016/j.brainres.2010.06.066 Malmierca M. S., 2010, AUDITORY CORTEX, P189 Malmierca MS, 2009, J NEUROSCI, V29, P5483, DOI 10.1523/JNEUROSCI.4153-08.2009 MALMIERCA MS, 1993, J COMP NEUROL, V333, P1, DOI 10.1002/cne.903330102 Malmierca M.S., 2004, RAT NERVOUS SYSTEM, P997 MALMIERCA MS, 1995, ANAT EMBRYOL, V191, P343, DOI 10.1007/BF00534687 Malmierca MS, 2009, J COMP NEUROL, V514, P226, DOI 10.1002/cne.21997 Malmierca MS, 2011, HEARING RES, V274, P13, DOI 10.1016/j.heares.2010.06.011 MALMIERCA MS, 1995, J COMP NEUROL, V357, P124, DOI 10.1002/cne.903570112 MILBRANDT JC, 1994, NEUROBIOL AGING, V15, P699, DOI 10.1016/0197-4580(94)90051-5 MITZDORF U, 1987, INT J NEUROSCI, V33, P33 MITZDORF U, 1985, PHYSIOL REV, V65, P37 Oliver DL, 2005, INFERIOR COLLICULUS, P69, DOI 10.1007/0-387-27083-3_2 Palombi PS, 1996, HEARING RES, V100, P41, DOI 10.1016/0378-5955(96)00115-3 Perez-Gonzalez D, 2005, EUR J NEUROSCI, V22, P2879, DOI 10.1111/j.1460-9568.2005.04472.x Pienkowski M, 2009, NEUROREPORT, V20, P1198, DOI 10.1097/WNR.0b013e32832f812c Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O SALDANA E, 1992, J COMP NEUROL, V319, P417, DOI 10.1002/cne.903190308 Sanderson MI, 2000, J NEUROPHYSIOL, V83, P1840 Scanziani M, 2000, NEURON, V25, P673, DOI 10.1016/S0896-6273(00)81069-7 SMITH PH, 1992, J NEUROSCI, V12, P3700 SONTHEIMER D, 1985, ELECTROEN CLIN NEURO, V61, P539, DOI 10.1016/0013-4694(85)90973-3 Sun H, 2009, NEUROSCIENCE, V160, P198, DOI 10.1016/j.neuroscience.2009.02.011 Sun HY, 2008, BRAIN RES, V1226, P70, DOI 10.1016/j.brainres.2008.06.010 Syka J, 2000, EXP BRAIN RES, V133, P254, DOI 10.1007/s002210000426 SYKA J, 1984, NEUROSCI LETT, V51, P235, DOI 10.1016/0304-3940(84)90557-3 Szymanski FD, 2009, J NEUROPHYSIOL, V102, P1483, DOI 10.1152/jn.00240.2009 Taaseh N, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023369 Torterolo R, 1998, NEUROSCI LETT, V249, P172 Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032 Ulanovsky N, 2004, J NEUROSCI, V24, P10440, DOI 10.1523/JNEUROSCI.1905-04.2004 Vogt KE, 1999, P NATL ACAD SCI USA, V96, P1118, DOI 10.1073/pnas.96.3.1118 von der Behrens W, 2009, J NEUROSCI, V29, P13837, DOI 10.1523/JNEUROSCI.3475-09.2009 WENSTRUP JJ, 1994, J COMP NEUROL, V346, P207, DOI 10.1002/cne.903460204 WILLARD FH, 1983, NEUROSCIENCE, V10, P1203, DOI 10.1016/0306-4522(83)90109-4 Winer JA, 2002, HEARING RES, V168, P181, DOI 10.1016/S0378-5955(02)00489-6 NR 60 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2012 VL 286 IS 1-2 BP 41 EP 54 DI 10.1016/j.heares.2012.02.007 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 936ZZ UT WOS:000303630100005 PM 22406035 ER PT J AU Wang, XR Zhang, XM Du, JT Jiang, HY AF Wang, Xian-Ren Zhang, Xue-Mei Du, Jintao Jiang, Hongyan TI MicroRNA-182 regulates otocyst-derived cell differentiation and targets T-box1 gene SO HEARING RESEARCH LA English DT Article ID MOUSE INNER-EAR; PROGRESSIVE HEARING-LOSS; HAIR-CELLS; STEM-CELLS; EXPRESSION; MIR-96; TBX1; FATE; MICE; MORPHOGENESIS AB Background: Recently, in vitro and in vivo models have identified that microRNAs (miRNAs), which are extensively expressed in the inner ear, play important roles in inner ear development and function. However, the function of miRNA in vertebrate tissue is not well understood. Results: The current study used an in vitro model of embryonic mouse inner ear in a stem/progenitor cell culture to demonstrate that: 1) miR-182 is expressed during differentiation of inner ear stem/progenitor cell into a hair cell-like fate, 2) ectopic miR-182 promotes inner ear stem/progenitor cell differentiation into a hair cell-like fate, and 3) the function of miR-182 may be associated with its putative target Tbx1, a transcription factors that have been implicated in inner ear development and hair cell fate. Conclusions: Our findings suggest that miR-182 could regulate inner ear progenitor cell differentiation and that miRNAs are important regulators of hair cell differentiation, providing new targets for hair cell repair. (C) 2012 Elsevier B.V. All rights reserved. C1 [Wang, Xian-Ren; Zhang, Xue-Mei; Du, Jintao; Jiang, Hongyan] Sun Yat Sen Univ, Dept Otorhinolaryngol, Affiliated Hosp 1, Guangzhou 510080, Guangdong, Peoples R China. [Wang, Xian-Ren; Zhang, Xue-Mei; Du, Jintao; Jiang, Hongyan] Sun Yat Sen Univ, Inst Otorhinolaryngol, Guangzhou 510080, Guangdong, Peoples R China. RP Jiang, HY (reprint author), Sun Yat Sen Univ, Dept Otorhinolaryngol, Affiliated Hosp 1, 58 Zhongshan Rd, Guangzhou 510080, Guangdong, Peoples R China. EM jhongy@mail.sysu.edu.cn FU National Basic Research Program of China [2011CB504502]; Key Nature Fund of Guangdong Province [8251008901000016]; National Natural Science Fund of China [30973306] FX This work was support by grants from the National Basic Research Program of China (2011CB504502), Key Nature Fund of Guangdong Province (8251008901000016), and the National Natural Science Fund of China (30973306). CR Bartel DP, 2004, CELL, V116, P281, DOI 10.1016/S0092-8674(04)00045-5 Betel D, 2008, NUCLEIC ACIDS RES, V36, pD149, DOI 10.1093/nar/gkm995 Bok J, 2011, P NATL ACAD SCI USA, V108, P161, DOI 10.1073/pnas.1010547108 Braunstein EM, 2008, JARO-J ASSOC RES OTO, V9, P33, DOI 10.1007/s10162-008-0110-6 Brown ST, 2003, CURR TOP DEV BIOL, V57, P115, DOI 10.1016/S0070-2153(03)57004-1 Chen CF, 2005, NUCLEIC ACIDS RES, V33, DOI 10.1093/nar/gni178 Clop A, 2006, NAT GENET, V38, P813, DOI 10.1038/ng1810 Diensthuber M., 2009, J ASS RES OTOLARYNGO Edge ASB, 2008, CURR OPIN NEUROBIOL, V18, P377, DOI 10.1016/j.conb.2008.10.001 Friedman LM, 2009, P NATL ACAD SCI USA, V106, P7915, DOI 10.1073/pnas.0812446106 Friedman RC, 2009, GENOME RES, V19, P92, DOI 10.1101/gr.082701.108 Frucht CS, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011502 Funke B, 2001, HUM MOL GENET, V10, P2549, DOI 10.1093/hmg/10.22.2549 He TC, 1998, P NATL ACAD SCI USA, V95, P2509, DOI 10.1073/pnas.95.5.2509 Kelley MW, 2006, NAT REV NEUROSCI, V7, P837, DOI 10.1038/nrn1987 Krek A, 2005, NAT GENET, V37, P495, DOI 10.1038/ng1536 Kuhn S, 2011, P NATL ACAD SCI USA, V108, P2355, DOI 10.1073/pnas.1016646108 Lee RC, 2001, SCIENCE, V294, P862, DOI 10.1126/science.1065329 Lewis BP, 2005, CELL, V120, P15, DOI 10.1016/j.cell.2004.12.035 Lewis MA, 2009, NAT GENET, V41, P614, DOI 10.1038/ng.369 Li HQ, 2010, J NEUROSCI, V30, P3254, DOI 10.1523/JNEUROSCI.4948-09.2010 Li HW, 2003, NAT MED, V9, P1293, DOI 10.1038/nm925 Mencia A, 2009, NAT GENET, V41, P609, DOI 10.1038/ng.355 Oshima Kazuo, 2009, V493, P141, DOI 10.1007/978-1-59745-523-7_9 Raft S, 2004, DEVELOPMENT, V131, P1801, DOI 10.1242/dev.01067 Sacheli R, 2009, GENE EXPR PATTERNS, V9, P364, DOI 10.1016/j.gep.2009.01.003 Soukup GA, 2009, DEV BIOL, V328, P328, DOI 10.1016/j.ydbio.2009.01.037 Vitelli F, 2003, HUM MOL GENET, V12, P2041, DOI 10.1093/hmg/ddg216 Wang XR, 2010, NEUROREPORT, V21, P611, DOI 10.1097/WNR.0b013e328338864b Wang ZM, 2006, NEUROREPORT, V17, P767, DOI 10.1097/01.wnr.0000215781.22345.8b Weston MD, 2006, BRAIN RES, V1111, P95, DOI 10.1016/j.brainres.2006.07.006 Weston MD, 2011, DEV DYNAM, V240, P808, DOI 10.1002/dvdy.22591 Xu HS, 2007, DEV BIOL, V302, P670, DOI 10.1016/j.ydbio.2006.10.002 Yang BF, 2007, NAT MED, V13, P486, DOI 10.1038/nm1569 NR 34 TC 6 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2012 VL 286 IS 1-2 BP 55 EP 63 DI 10.1016/j.heares.2012.02.005 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 936ZZ UT WOS:000303630100006 PM 22381690 ER PT J AU Kale, S Heinz, MG AF Kale, Sushrut Heinz, Michael G. TI Temporal modulation transfer functions measured from auditory-nerve responses following sensorineural hearing loss SO HEARING RESEARCH LA English DT Article ID CHRONIC COCHLEAR PATHOLOGY; BROAD-BAND NOISE; TUNING CURVES; IMPAIRED LISTENERS; STEREOCILIA DAMAGE; ACOUSTIC TRAUMA; GUINEA-PIG; HAIR CELL; AMPLITUDE; FIBERS AB The ability of auditory-nerve (AN) fibers to encode modulation frequencies, as characterized by temporal modulation transfer functions (TMTFs), generally shows a low-pass shape with a cut-off frequency that increases with fiber characteristic frequency (CF). Because AN-fiber bandwidth increases with CF, this result has been interpreted to suggest that peripheral filtering has a significant effect on limiting the encoding of higher modulation frequencies. Sensorineural hearing loss (SNHL), which is typically associated with broadened tuning, is thus predicted to increase the range of modulation frequencies encoded; however, perceptual studies have generally not supported this prediction. The present study sought to determine whether the range of modulation frequencies encoded by AN fibers is affected by SNHL, and whether the effects of SNHL on envelope coding are similar at all modulation frequencies within the TMTF passband. Modulation response gain for sinusoidally amplitude modulated (SAM) tones was measured as a function of modulation frequency, with the carrier frequency placed at fiber CF. TMTFs were compared between normal-hearing chinchillas and chinchillas with a noise-induced hearing loss for which AN fibers had significantly broadened tuning. Synchrony and phase responses for individual SAM tone components were quantified to explore a variety of factors that can influence modulation coding. Modulation gain was found to be higher than normal in noise-exposed fibers across the entire range of modulation frequencies encoded by AN fibers. The range of modulation frequencies encoded by noise-exposed AN fibers was not affected by SNHL, as quantified by TMTF 3- and 10-dB cut-off frequencies. These results suggest that physiological factors other than peripheral filtering may have a significant role in determining the range of modulation frequencies encoded in AN fibers. Furthermore, these neural data may help to explain the lack of a consistent association between perceptual measures of temporal resolution and degraded frequency selectivity. (C) 2012 Elsevier B.V. All rights reserved. C1 [Heinz, Michael G.] Purdue Univ, Dept Speech Language & Hearing Sci, W Lafayette, IN 47907 USA. [Kale, Sushrut; Heinz, Michael G.] Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA. RP Heinz, MG (reprint author), Purdue Univ, Dept Speech Language & Hearing Sci, 500 Oval Dr, W Lafayette, IN 47907 USA. EM sushrut.kale@gmail.com; mheinz@purdue.edu FU National Institutes of Health (NIH)/National Institute on Deafness and Other Communication Disorders (NIDCD) [R03DC07348, R01DC009838]; American Hearing Research Foundation FX This research was supported by grants R03DC07348 and R01DC009838 from the National Institutes of Health (NIH)/National Institute on Deafness and Other Communication Disorders (NIDCD). Support from the American Hearing Research Foundation also contributed to this work. CR BACON SP, 1992, J SPEECH HEAR RES, V35, P642 BACON SP, 1985, AUDIOLOGY, V24, P117 Bruce IC, 2003, J ACOUST SOC AM, V113, P369, DOI 10.1121/1.1519544 Chintanpalli A, 2007, J ACOUST SOC AM, V122, pEL203, DOI 10.1121/1.2794880 FORMBY C, 1987, AUDIOLOGY, V26, P89 Fullgrabe C, 2003, HEARING RES, V178, P35, DOI 10.1016/S0378-5955(03)00027-3 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 He NJ, 2008, J ACOUST SOC AM, V124, P3841, DOI 10.1121/1.2998779 Heinz MG, 2010, NEUROPHYSIOLOGICAL BASES OF AUDITORY PERCEPTION, P621, DOI 10.1007/978-1-4419-5686-6_56 Heinz MG, 2004, J NEUROPHYSIOL, V91, P784, DOI 10.1152/jn.00776.2003 JAVEL E, 1980, J ACOUST SOC AM, V68, P133, DOI 10.1121/1.384639 JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982 JORIS PX, 1992, J ACOUST SOC AM, V91, P215, DOI 10.1121/1.402757 Joris PX, 2003, J NEUROSCI, V23, P6345 Kale S, 2010, JARO-J ASSOC RES OTO, V11, P657, DOI 10.1007/s10162-010-0223-6 LIBERMAN MC, 1984, HEARING RES, V16, P33, DOI 10.1016/0378-5955(84)90023-6 LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8 Louage DHG, 2004, J NEUROPHYSIOL, V91, P2051, DOI 10.1152/jn.00816.2003 Mardia K, 2000, DIRECTIONAL STAT Marean GC, 1998, J ACOUST SOC AM, V103, P3567, DOI 10.1121/1.423085 Miller RL, 1997, J ACOUST SOC AM, V101, P3602, DOI 10.1121/1.418321 MOLLER AR, 1972, ACTA PHYSIOL SCAND, V86, P223, DOI 10.1111/j.1748-1716.1972.tb05328.x Moore BCJ, 1996, J ACOUST SOC AM, V100, P481, DOI 10.1121/1.415861 Moore BCJ, 2001, J ACOUST SOC AM, V110, P1067, DOI 10.1121/1.1385177 MOORE BCJ, 1992, BRIT J AUDIOL, V26, P229, DOI 10.3109/03005369209076641 PALMER AR, 1982, ARCH OTO-RHINO-LARYN, V236, P197, DOI 10.1007/BF00454039 Parthasarathy A, 2010, FRONT AGING NEUROSCI, V2, DOI 10.3389/fnagi.2010.00152 REES A, 1989, J ACOUST SOC AM, V85, P1978, DOI 10.1121/1.397851 RUGGERO MA, 1991, J NEUROSCI, V11, P1057 Scheidt RE, 2010, HEARING RES, V269, P23, DOI 10.1016/j.heares.2010.07.009 Schmiedt RA, 2002, J NEUROSCI, V22, P9643 SEWELL WF, 1984, HEARING RES, V14, P305, DOI 10.1016/0378-5955(84)90057-1 Temchin AN, 2010, JARO-J ASSOC RES OTO, V11, P297, DOI 10.1007/s10162-009-0197-4 Zilany MSA, 2009, J ACOUST SOC AM, V126, P2390, DOI 10.1121/1.3238250 NR 35 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2012 VL 286 IS 1-2 BP 64 EP 75 DI 10.1016/j.heares.2012.02.004 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 936ZZ UT WOS:000303630100007 PM 22366500 ER PT J AU Milczynski, M Chang, JE Wouters, J van Wieringen, A AF Milczynski, Matthias Chang, Janice Erica Wouters, Jan van Wieringen, Astrid TI Perception of Mandarin Chinese with cochlear implants using enhanced temporal pitch cues SO HEARING RESEARCH LA English DT Article ID SOUND-PROCESSING STRATEGIES; TONE RECOGNITION; SPEECH-PERCEPTION; CONCURRENT-VOWEL; PERIODICITY CUES; ELECTRIC HEARING; CODING STRATEGY; MODULATION; USERS; NOISE AB A cochlear implant (Cl) signal processing strategy named F0 modulation (F0mod) was compared with the advanced combination encoder (ACE) strategy in a group of four post-lingually deafened Mandarin Chinese speaking Cl listeners. F0 provides an enhanced temporal pitch cue by amplitude modulating the multichannel electrical stimulation pattern at the fundamental frequency (F0) of the incoming speech signal. Word and sentence recognition tests were carried out in quiet and in noise. The responses for the word-recognition test were further segmented into phoneme and tone scores. Off-line implementations of ACE and F0mod were used, and electrical stimulation patterns were directly streamed to the CI subject's implant. To focus on the feasibility of enhanced temporal cues for tonal language perception, idealized PO information that was extracted from speech tokens in quiet was used in the F0mod processing of speech-in-noise mixtures. The results indicated significantly better lexical tone perception with the F0mod strategy than with ACE for the male voice (p < 0.05). No significant differences in sentence recognition were found between F0mod and ACE. (C) 2012 Elsevier B.V. All rights reserved. C1 [Milczynski, Matthias; Wouters, Jan; van Wieringen, Astrid] Katholieke Univ Leuven, Dept Neurosci, ExpORL, B-3000 Louvain, Belgium. [Chang, Janice Erica] UC Irvine, HESP, Irvine, CA 92697 USA. RP Milczynski, M (reprint author), Katholieke Univ Leuven, Dept Neurosci, ExpORL, O&N 2,Herestr 49 Bus 721, B-3000 Louvain, Belgium. EM matthias.milczynski@gmail.com RI Wouters, Jan/D-1800-2015 FU Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT) [050445, 080304]; Cochlear Ltd.; US Department of Health and Human Services, National Institutes of Health (NIH) [1R01-DC008858, P30-DC008369]; C-TEC, Beijing FX Special thanks are given to all anonymous reviewers for their thorough and very helpful comments on two previous versions of this manuscript. We particularly would like to give credit to the associate editor Prof. Brian Moore for his detailed comments, suggestions and corrections. In addition, we would like to thank Cochlear Ltd. and all employees at C-TEC, Beijing for their support and help in setting up the local study. Special thanks go to Mary-Beth Brinson, Brendan Mason, Lucy Lu, Denise Lee, Qi Liang, Peggy Lu and C-TEC director Ms. Wang. We also thank Wim Buyens, Bas Van Dijk and Jan Poppeliers for local technical support in Belgium. This study was partly supported by the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT) Project No. 050445 and 080304 and was partly sponsored by Cochlear Ltd. We particularly want to thank Prof. Dr. Fan-Gang Zeng from the Hearing and Speech Lab (HESP, UC Irvine, CA, USA) for providing the speech material used in the present study and for facilitating a pilot study. In summer 2009, Matthias Milczynski gathered preliminary data from two Mandarin-speaking CI users at HESP. The contributions of Janice Chang to the pilot study were supported by the US Department of Health and Human Services, National Institutes of Health grants (NIH) Project No. 1R01-DC008858 and P30-DC008369. Finally, we would like to express our thanks to the CI subjects for their commitment and dedication. CR Bagshaw P., 1993, P EUR C SPEECH COMM, P1003 Boersma P., 2001, GLOT INT, V5, P341 Boersma P., 1993, P I PHONETIC SCI, V17, P97 Carlyon RP, 2002, J ACOUST SOC AM, V112, P621, DOI 10.1121/1.1488660 Carlyon RP, 2007, JARO-J ASSOC RES OTO, V8, P119, DOI 10.1007/s10162-006-0068-1 CHALIKIA MH, 1989, PERCEPT PSYCHOPHYS, V46, P487, DOI 10.3758/BF03210865 Chang YT, 2009, OTOL NEUROTOL, V30, P750, DOI 10.1097/MAO.0b013e3181b286b2 Chatterjee M, 2003, J ACOUST SOC AM, V113, P2042, DOI 10.1121/1.1555613 Chen TH, 2008, J ACOUST SOC AM, V123, P2356, DOI 10.1121/1.2839004 Chu WC, 2003, SPEECH CODING ALGORI de Cheveigne A, 2002, J ACOUST SOC AM, V111, P1917, DOI 10.1121/1.1458024 DUBNOWSKI JJ, 1976, IEEE T ACOUST SPEECH, V24, P2, DOI 10.1109/TASSP.1976.1162765 Flanagan J., 1966, J ACOUST SOC AM, V38, P1493 Fu QJ, 2004, EAR HEARING, V25, P501, DOI 10.1097/01.aud.0000145125.50433.19 Gordon R. G., 2005, ETHNOLOGUE LANGUAGES Hamilton N, 2007, INT J AUDIOL, V46, P244, DOI 10.1080/14992020601053340 Han DM, 2009, EAR HEARING, V30, P169, DOI 10.1097/AUD.0b013e31819342cf Kong YY, 2009, J ACOUST SOC AM, V125, P1649, DOI 10.1121/1.3068457 Kong YY, 2006, J ACOUST SOC AM, V120, P2830, DOI 10.1121/1.2346009 Laneau J, 2006, AUDIOL NEURO-OTOL, V11, P38, DOI 10.1159/000088853 Luo X, 2008, EAR HEARING, V29, P957, DOI 10.1097/AUD.0b013e3181888f61 Luo X, 2009, HEARING RES, V256, P75, DOI 10.1016/j.heares.2009.07.001 Luo X, 2009, J ACOUST SOC AM, V125, P3223, DOI 10.1121/1.3106534 Macherey O, 2011, JARO-J ASSOC RES OTO, V12, P233, DOI 10.1007/s10162-010-0248-x Martin R, 2001, IEEE T SPEECH AUDI P, V9, P504, DOI 10.1109/89.928915 MCKAY CM, 1994, J ACOUST SOC AM, V96, P2664, DOI 10.1121/1.411377 Milczynski M., 2011, THESIS KATHOLIEKE U Milczynski M, 2009, J ACOUST SOC AM, V125, P2260, DOI 10.1121/1.3085642 Nie KB, 2005, IEEE T BIO-MED ENG, V52, P64, DOI 10.1109/TBME.2004.839799 Richardson LM, 1998, J ACOUST SOC AM, V104, P442, DOI 10.1121/1.423248 Schimmel SM, 2008, INT CONF ACOUST SPEE, P4201, DOI 10.1109/ICASSP.2008.4518581 SHANNON RV, 1992, J ACOUST SOC AM, V91, P2156, DOI 10.1121/1.403807 SONDHI MM, 1968, IEEE T ACOUST SPEECH, VAU16, P262, DOI 10.1109/TAU.1968.1161986 Swanson B. A., 2008, THESIS U MELBOURNE A TONG YC, 1983, J ACOUST SOC AM, V74, P73, DOI 10.1121/1.389620 TONG YC, 1979, J LARYNGOL OTOL, V93, P679, DOI 10.1017/S0022215100087545 Vandali AE, 2011, J ACOUST SOC AM, V129, P4023, DOI 10.1121/1.3573988 Vandali AE, 2000, EAR HEARING, V21, P608, DOI 10.1097/00003446-200012000-00008 Vandali AE, 2005, J ACOUST SOC AM, V117, P3126, DOI 10.1121/1.1874632 van Wieringen A, 2008, INT J AUDIOL, V47, P348, DOI 10.1080/14992020801895144 Vary P, 2006, DIGITAL SPEECH TRANS Wei CG, 2007, EAR HEARING, V28, p62S, DOI 10.1097/AUD.0b013e318031512c Wei CG, 2004, HEARING RES, V197, P87, DOI 10.1016/j.heares.2004.06.002 WHALEN DH, 1992, PHONETICA, V49, P25 WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 Wong L.L., 2007, EAR HEARING, V28, P70 Wong LLN, 2008, INT J AUDIOL, V47, P337, DOI 10.1080/14992020802070788 Wong LLN, 2005, EAR HEARING, V26, P276, DOI 10.1097/00003446-200506000-00004 Xu L, 2002, J ACOUST SOC AM, V112, P247, DOI 10.1121/1.1487843 Yuan M, 2009, J ACOUST SOC AM, V126, P327, DOI 10.1121/1.3117447 NR 50 TC 12 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2012 VL 285 IS 1-2 BP 1 EP 12 DI 10.1016/j.heares.2012.02.006 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 920WN UT WOS:000302439600001 PM 22361414 ER PT J AU Guo, CK Wang, Y Zhou, T Yu, H Zhang, WJ Kong, WJ AF Guo, Chang-Kai Wang, Yi Zhou, Tao Yu, Hong Zhang, Wen-Juan Kong, Wei-Jia TI M2 muscarinic ACh receptors sensitive BK channels mediate cholinergic inhibition of type II vestibular hair cells SO HEARING RESEARCH LA English DT Article ID BETA-GAMMA-SUBUNITS; CA2+-ACTIVATED K+ CHANNELS; GUINEA-PIG; ACETYLCHOLINE-RECEPTOR; ADENYLYL-CYCLASE; MOLECULAR CHARACTERIZATION; VENTRICULAR MYOCYTES; SIGNAL-TRANSDUCTION; RATTUS-NORVEGICUS; MESSENGER-RNAS AB There are two types of hair cells in the sensory epithelium of vestibular end organ. Type II vestibular hair cell (VHC II) is innervated by the efferent nerve endings, which employ a cholinergic inhibition mediated by SK channels through the activation of alpha 9-containing nAChR. Our previous studies demonstrated that a BK-type cholinergic inhibition was present in guinea pig VHCs II, which may be mediated by an unknown mAChR. In this study. BK channel activities triggered by ACh were studied to determine the mAChR subtype and function. We found the BK channel was insensitive to alpha 9-containing nAChR antagonists and m1, m3, m4 muscarinic antagonists, but potently inhibited by the m2 muscarinic antagonist. Muscarinic agonists could mimic the effect of ACh and be blocked by m2 antagonist. cAMP analog activated the BK current and adenyl cyclase (AC) inhibitor inhibited the ACh response. Inhibitor of Gi alpha subunit failed to affect the BK current, but inhibitor of Gi alpha and Gi beta gamma subunits showed a potent inhibition to these currents. Our findings provide the physiological evidence that mAChRs may locate in guinea pig VHCs II, and m2 mAChRs may play a dominant role in BK-type cholinergic inhibition. The activation of m2 mAChRs may stimulate Gi beta gamma-mediated excitation of AC/CAMP activities and lead to the phosphorylation of Ca2+ channels, resulting in the influx of Ca2+ and opening of the BK channel. (C) 2012 Elsevier B.V. All rights reserved. C1 [Guo, Chang-Kai; Wang, Yi; Zhou, Tao; Yu, Hong; Zhang, Wen-Juan; Kong, Wei-Jia] Huazhong Univ Sci & Technol, Tongji Med Coll, Union Hosp, Dept Otolaryngol, Wuhan 430022, Peoples R China. RP Kong, WJ (reprint author), Huazhong Univ Sci & Technol, Tongji Med Coll, Union Hosp, Dept Otolaryngol, Wuhan 430022, Peoples R China. EM entwjkong@yahoo.com.cn FU Nature Science Foundation of China [30700934, 30730094, 30872865]; National Eleventh Five-Year Project for Scientific and Technological Development of China [2007BAI18B13] FX Funded by the Nature Science Foundation of China (Grant 30700934, 30730094 and 30872865), and the National Eleventh Five-Year Project for Scientific and Technological Development of China (2007BAI18B13). The authors declare that they have no competing financial interests. CR Anderson AD, 1997, BRAIN RES, V778, P409, DOI 10.1016/S0006-8993(97)01121-9 ASCHER P, 1979, J PHYSIOL-LONDON, V295, P139 Belevych AE, 2000, J PHYSIOL-LONDON, V528, P279, DOI 10.1111/j.1469-7793.2000.00279.x Belevych AE, 2001, J PHYSIOL-LONDON, V536, P677, DOI 10.1111/j.1469-7793.2001.00677.x Brichta AM, 2000, J NEUROPHYSIOL, V83, P1224 CHEN JQ, 1995, SCIENCE, V268, P1166, DOI 10.1126/science.7761832 Cioffi JA, 2005, MOL BRAIN RES, V137, P89, DOI 10.1016/j.molbrainres.2005.02.024 Cioffi JA, 2003, ACTA OTO-LARYNGOL, V123, P1027, DOI 10.1080/00016480310000773 CLAPHAM DE, 1993, NATURE, V365, P403, DOI 10.1038/365403a0 Derbenev AV, 2005, J NEUROPHYSIOL, V94, P3134, DOI 10.1152/jn.00131.2005 ELGOYHEN AB, 1994, CELL, V79, P705, DOI 10.1016/0092-8674(94)90555-X Elgoyhen AB, 2001, P NATL ACAD SCI USA, V98, P3501, DOI 10.1073/pnas.051622798 FEDERMAN AD, 1992, NATURE, V356, P159, DOI 10.1038/356159a0 FELDER CC, 1995, FASEB J, V9, P619 Glowatzki E, 2000, SCIENCE, V288, P2366, DOI 10.1126/science.288.5475.2366 GUTH PS, 1986, ACTA OTO-LARYNGOL, V102, P194, DOI 10.3109/00016488609108666 Guth PS, 1998, PROG NEUROBIOL, V54, P193, DOI 10.1016/S0301-0082(97)00068-3 Holt JC, 2003, J NEUROPHYSIOL, V90, P1526, DOI 10.1152/jn.00273.2002 Holt JC, 2001, HEARING RES, V152, P25, DOI 10.1016/S0378-5955(00)00225-2 Ishiyama A, 1997, AM J OTOL, V18, P648 Jagger DJ, 1999, PFLUG ARCH EUR J PHY, V437, P409, DOI 10.1007/s004240050795 JONES SVP, 1991, MOL PHARMACOL, V40, P242 Kong WJ, 2007, BRAIN RES, V1129, P110, DOI 10.1016/j.brainres.2006.10.043 Kong WJ, 2006, BRAIN RES, V1102, P103, DOI 10.1016/j.brainres.2006.04.107 Kong WJ, 2005, HEARING RES, V209, P1, DOI 10.1016/j.heares.2005.06.001 Krejci A, 2002, MOL PHARMACOL, V61, P1267, DOI 10.1124/mol.61.6.1267 Krejci A, 2004, PHYSIOL RES, V53, pS131 Li GQ, 2007, NEUROSCIENCE, V146, P384, DOI 10.1016/j.neuroscience.2007.02.019 McIntosh JM, 2005, J BIOL CHEM, V280, P30107, DOI 10.1074/jbc.M504102200 Molenaar P., 1980, PROGR PHARM, V3, P39 Oliver D, 2000, NEURON, V26, P595, DOI 10.1016/S0896-6273(00)81197-6 PRIGIONI I, 1983, BRAIN RES, V269, P83, DOI 10.1016/0006-8993(83)90964-2 SCARFONE E, 1991, CELL TISSUE RES, V266, P51, DOI 10.1007/BF00678710 Schweizer FE, 2009, J COMP NEUROL, V517, P134, DOI 10.1002/cne.22148 SHIGEMOTO T, 1991, J PHYSIOL-LONDON, V442, P669 STEINACKER A, 1988, HEARING RES, V35, P265, DOI 10.1016/0378-5955(88)90123-2 Sunahara RK, 1996, ANNU REV PHARMACOL, V36, P461 TANG WJ, 1991, SCIENCE, V254, P1500, DOI 10.1126/science.1962211 Verbitsky M, 2000, NEUROPHARMACOLOGY, V39, P2515, DOI 10.1016/S0028-3908(00)00124-6 Wackym PA, 2005, J VESTIBUL RES-EQUIL, V15, P11 Wackym PA, 2000, BRAIN RES, V859, P378, DOI 10.1016/S0006-8993(00)02007-2 Wackym PA, 1996, CELL BIOL INT, V20, P187, DOI 10.1006/cbir.1996.0023 Wersinger E, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013836 YOSHIDA N, 1994, BRAIN RES, V644, P90, DOI 10.1016/0006-8993(94)90351-4 Zhou XB, 2008, J BIOL CHEM, V283, P21036, DOI 10.1074/jbc.M800447200 NR 45 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2012 VL 285 IS 1-2 BP 13 EP 19 DI 10.1016/j.heares.2012.02.003 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 920WN UT WOS:000302439600002 PM 22366501 ER PT J AU Bergevin, C Fulcher, A Richmond, S Velenovsky, D Lee, J AF Bergevin, Christopher Fulcher, Analydia Richmond, Susan Velenovsky, David Lee, Jungmee TI Interrelationships between spontaneous and low-level stimulus-frequency otoacoustic emissions in humans SO HEARING RESEARCH LA English DT Article ID OTO-ACOUSTIC EMISSIONS; COHERENT REFLECTION; DISTORTION PRODUCTS; NONHUMAN PRIMATE; EXTERNAL TONES; FINE-STRUCTURE; HUMAN EARS; MICROSTRUCTURE; THRESHOLD; COCHLEA AB It has been proposed that OAEs be classified not on the basis of the stimuli used to evoke them, but on the mechanisms that produce them (Shera and Guinan, 1999). One branch of this taxonomy focuses on a coherent reflection model and explicitly describes interrelationships between spontaneous emissions (SOAEs) and stimulus-frequency emissions (SFOAEs). The present study empirically examines SOAEs and SFOAEs from individual ears within the context of model predictions, using a low stimulus level (20 dB SPL) to evoke SFOAEs. Emissions were recorded from ears of normal-hearing young adults, both with and without prominent SOAE activity. When spontaneous activity was observed, SFOAEs demonstrated a localized increase about the SOAE peaks. The converse was not necessarily true though, i.e., robust SFOAEs could be measured where no SOAE peaks were observed. There was no significant difference in SFOAE phase-gradient delays between those with and without observable SOAE activity. However, delays were larger for a 20 dB SPL stimulus level than those previously reported for 40 dB SPL. The total amount of SFOAE phase accumulation occurring between adjacent SOAE peaks tended to cluster about an integral number of cycles. Overall, the present data appear congruous with predictions stemming from the coherent reflection model and support the notion that such comparisons ideally are made with emissions evoked using relatively lower stimulus levels. Published by Elsevier B.V. C1 [Bergevin, Christopher] Columbia Univ, Dept Otolaryngol Head & Neck Surg, New York, NY 10032 USA. [Fulcher, Analydia; Richmond, Susan; Velenovsky, David] Univ Arizona, Dept Speech Language & Hearing Sci, Tucson, AZ 85705 USA. [Lee, Jungmee] Northwestern Univ, Roxelyn & Richard Pepper Dept Commun Sci & Disord, Evanston, IL 60208 USA. RP Bergevin, C (reprint author), Columbia Univ, Dept Otolaryngol Head & Neck Surg, 630 W 168th St P&S 11-452, New York, NY 10032 USA. EM dolemitecb@gmail.com FU Howard Hughes Medical Inst. [52003749]; National Science Foundation Div. of Mathematical Sciences [0602173]; American Speech-Language-Hearing Foundation FX Comments from Karolina Charaziak, James Dewey, Radha Kalluri, Glenis Long, and the reviewers on the manuscript are greatly appreciated. Christopher Shera in particular provided valuable constructive/critical feedback. Financial support came from the Howard Hughes Medical Inst. (52003749) and National Science Foundation Div. of Mathematical Sciences (0602173) and the American Speech-Language-Hearing Foundation New Century Scholars Research Grant (awarded to the last author). We would like to thank Benjamin Smith for technical support. CR Bentsen T, 2011, J ACOUST SOC AM, V129, P3797, DOI 10.1121/1.3575596 Bergevin C, 2010, J ACOUST SOC AM, V127, P2398, DOI 10.1121/1.3303977 Bergevin C, 2011, JARO-J ASSOC RES OTO, V12, P203, DOI 10.1007/s10162-010-0253-0 Bergevin C, 2010, BIOPHYS J, V99, P1064, DOI 10.1016/j.bpj.2010.06.012 Bergevin C., 2011, WHAT FIRE IS MINE EA Bergevin C, 2007, THESIS MIT BIALEK W, 1984, PHYS LETT A, V104, P173, DOI 10.1016/0375-9601(84)90371-2 BURNS EM, 1984, HEARING RES, V16, P271, DOI 10.1016/0378-5955(84)90116-3 Burns EM, 2009, J ACOUST SOC AM, V125, P3166, DOI 10.1121/1.3097768 BURNS EM, 1992, J ACOUST SOC AM, V91, P1571, DOI 10.1121/1.402438 Chiappe ME, 2007, J NEUROSCI, V27, P11978, DOI 10.1523/JNEUROSCI.3679-07.2007 Choi YS, 2008, J ACOUST SOC AM, V123, P2651, DOI 10.1121/1.2902184 Cooper N., 2011, WHAT FIRE IS MINE EA ELLIOTT E, 1958, NATURE, V181, P1076, DOI 10.1038/1811076a0 Epp B, 2010, J ACOUST SOC AM, V128, P1870, DOI 10.1121/1.3479755 Goodman SS, 2003, HEARING RES, V183, P7, DOI 10.1016/S0378-5955(03)00193-X Joris PX, 2011, P NATL ACAD SCI USA, V108, P17516, DOI 10.1073/pnas.1105867108 Kalluri R, 2007, J ACOUST SOC AM, V122, P3562, DOI 10.1121/1.2793604 Kalluri R, 2007, J ACOUST SOC AM, V121, P2097, DOI 10.1121/1.2435981 Keefe DH, 2008, J ACOUST SOC AM, V123, P1479, DOI 10.1121/1.2828209 KEMP DT, 1980, HEARING RES, V2, P533, DOI 10.1016/0378-5955(80)90091-X KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222 KOPPL C, 1994, HEARING RES, V72, P159, DOI 10.1016/0378-5955(94)90215-1 Koppl C., 1995, ADV HEARING RES KULAWIEC JT, 1995, EAR HEARING, V16, P515 Lee J, 2012, HEARING RES, V283, P24, DOI 10.1016/j.heares.2011.11.011 Lineton B, 2009, J ACOUST SOC AM, V125, P1558, DOI 10.1121/1.3068452 LONG GR, 1988, J ACOUST SOC AM, V84, P1343, DOI 10.1121/1.396633 LONG GR, 1988, HEARING RES, V36, P125, DOI 10.1016/0378-5955(88)90055-X Long GR, 1997, J ACOUST SOC AM, V102, P2831, DOI 10.1121/1.420339 LONSBURYMARTIN BL, 1988, HEARING RES, V33, P69, DOI 10.1016/0378-5955(88)90021-4 Manley GA, 2001, J NEUROPHYSIOL, V86, P541 MARTIN GK, 1988, HEARING RES, V33, P49, DOI 10.1016/0378-5955(88)90020-2 MCFADDEN D, 1984, J ACOUST SOC AM, V76, P443, DOI 10.1121/1.391585 MOULIN A, 1993, HEARING RES, V65, P216, DOI 10.1016/0378-5955(93)90215-M MURPHY WJ, 1995, J ACOUST SOC AM, V97, P3711, DOI 10.1121/1.412388 NEELY ST, 1988, J ACOUST SOC AM, V83, P652, DOI 10.1121/1.396542 PEAKE WT, 1980, J ACOUST SOC AM, V67, P1736, DOI 10.1121/1.384300 PROBST R, 1986, HEARING RES, V21, P261, DOI 10.1016/0378-5955(86)90224-8 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 Schairer KS, 2006, J ACOUST SOC AM, V120, P901, DOI 10.1121/1.2214147 Shera CA, 2003, J ACOUST SOC AM, V113, P2762, DOI 10.1121/1.1557211 SHERA CA, 1993, J ACOUST SOC AM, V93, P3333, DOI 10.1121/1.405717 Shera CA, 2003, J ACOUST SOC AM, V114, P244, DOI 10.1121/1.1575750 Shera CA, 2002, P NATL ACAD SCI USA, V99, P3318, DOI 10.1073/pnas.032675099 Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 Siegel JH, 2005, J ACOUST SOC AM, V118, P2434, DOI 10.1121/1.2005867 Sisto R, 2007, J ACOUST SOC AM, V122, P3554, DOI 10.1121/1.2799498 Sisto R, 2007, J ACOUST SOC AM, V122, P2183, DOI 10.1121/1.2769981 Stewart CE, 2000, P NATL ACAD SCI USA, V97, P454, DOI 10.1073/pnas.97.1.454 Talmadge C., 1993, BIOPHYSICS HAIR CELL, P25 Talmadge CL, 2000, J ACOUST SOC AM, V108, P2911, DOI 10.1121/1.1321012 TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V Talmadge CL, 1998, J ACOUST SOC AM, V104, P1517, DOI 10.1121/1.424364 THOMAS IB, 1975, J ACOUST SOC AM, V57, pS26, DOI 10.1121/1.1995148 van Dijk P, 2011, JARO-J ASSOC RES OTO, V12, P13, DOI 10.1007/s10162-010-0241-4 vanHengel PWJ, 1996, J ACOUST SOC AM, V99, P3566, DOI 10.1121/1.414955 WHITEHEAD ML, 1991, HEARING RES, V53, P269, DOI 10.1016/0378-5955(91)90060-M WHITEHEAD ML, 1993, SCAND AUDIOL, V22, P3, DOI 10.3109/01050399309046012 ZUREK PM, 1981, J ACOUST SOC AM, V69, P514, DOI 10.1121/1.385481 ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320 ZWICKER E, 1984, J ACOUST SOC AM, V75, P1148, DOI 10.1121/1.390763 ZWICKER E, 1990, ADV AUDIOL, V7, P63 NR 65 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2012 VL 285 IS 1-2 BP 20 EP 28 DI 10.1016/j.heares.2012.02.001 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 920WN UT WOS:000302439600003 PM 22509533 ER PT J AU Ewert, DL Lu, JZ Li, W Du, XP Floyd, R Kopke, R AF Ewert, Donald L. Lu, Jianzhong Li, Wei Du, Xiaoping Floyd, Robert Kopke, Richard TI Antioxidant treatment reduces blast-induced cochlear damage and hearing loss SO HEARING RESEARCH LA English DT Article ID TRAUMATIC BRAIN-INJURY; IMPULSE NOISE BLAST; OXIDATIVE STRESS; TYMPANIC-MEMBRANE; N-ACETYLCYSTEINE; AUDITORY-SYSTEM; OVERPRESSURE; EXPOSURE; NXY-059; MODEL AB Exposure to blast overpressure has become one of the hazards of both military and civilian life in many parts of the world due to war and terrorist activity. Auditory damage is one of the primary sequela of blast trauma, affecting immediate situational awareness and causing permanent hearing loss. Protecting against blast exposure is limited by the inability to anticipate the timing of these exposures, particularly those caused by terrorists. Therefore a therapeutic regimen is desirable that is able to ameliorate auditory damage when administered after a blast exposure has occurred. The purpose of this study was to determine if administration of a combination of antioxidants 2,4-disulfonyl alpha-phenyl tertiary butyl nitrone (HPN-07) and N-acetylcysteine (NAC) beginning 1 h after blast exposure could reduce both temporary and permanent hearing loss. To this end, a blast simulator was developed and the operational conditions established for exposing rats to blast overpressures comparable to those encountered in an open-field blast of 14 pounds per square inch (psi). This blast model produced reproducible blast overpressures that resulted in physiological and physical damage to the auditory system that was proportional to the number and amplitude of the blasts. After exposure to 3 consecutive 14 psi blasts 100% of anesthetized rats had permanent hearing loss as determined at 21 days post exposure by auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) testing. Animals treated with HPN-07 and NAC after blast exposure showed a significant reduction in ABR threshold shifts and DPOAE level shifts at 2-16 kHz with significant reduction in inner hair cell (IHC) and outer hair cell (OHC) loss across the 5-36 kHz region of the cochlea compared with control animals. The time course of changes in the auditory system was documented at 3 h, 24 h, 7 day and 21 day after blast exposure. At 3 h after blast exposure the auditory brainstem response (ABR) threshold shifts were elevated by 60 dB in both treated and control groups. A partial recovery of to 35 dB was observed at 24 h in the controls, indicative of a temporary threshold shift (ITS) and there was essentially no further recovery by 21 days representing a permanent threshold shift (PTS) of about 30 dB. Antioxidant treatment increased the amount of both us and PTS recovery relative to controls by 10 and 20 dB respectively. Distortion product otoacoustic emission (DPOAE) reached a maximum level shift of 25-30 dB measured in both control and treated groups at 3 h after blast exposure. These levels did not change by day 21 in the control group but in the treatment group the level shifts began to decline at 24 h until by day 21 they were 10-20 dB below that of the controls. Loss of cochlear hair cells measured at 21 day after blast exposure was mostly in the outer hair cells (OHC) and broadly distributed across the basilar membrane, consistent with the distribution of loss of frequency responses as measured by ABR and DPOAE analysis and typical of blast-induced damage. OHC loss progressively increased after blast exposure reaching an average loss of 32% in the control group and 10% in the treated group at 21 days. These findings provide the first evidence that a combination of antioxidants, HPN-07 and NAC, can both enhance ITS recovery and prevent PTS by reducing damage to the mechanical and neural components of the auditory system when administered shortly after blast exposure. (C) 2012 Elsevier B.V. All rights reserved. C1 [Ewert, Donald L.; Lu, Jianzhong; Li, Wei; Du, Xiaoping; Kopke, Richard] Hough Ear Inst, Oklahoma City, OK 73112 USA. [Floyd, Robert; Kopke, Richard] Oklahoma Med Res Fdn, Oklahoma City, OK 73104 USA. [Kopke, Richard] Univ Oklahoma, Hlth Sci Ctr, Dept Physiol, Oklahoma City, OK 73014 USA. [Kopke, Richard] Univ Oklahoma, Hlth Sci Ctr, Dept Otolaryngol, Oklahoma City, OK 73014 USA. RP Kopke, R (reprint author), Hough Ear Inst, 3400 NW 56th St, Oklahoma City, OK 73112 USA. EM dewert@houghear.org; jlu@houghear.org; weili@houghear.org; Xiaoping.du@houghear.org; robert-floyd@omrf.org; rkopke@houghear.org FU US Department of Navy, Office of Naval Research [N00014-09-1-0999] FX The authors appreciate the efforts of Joel Young in the design and construction of the blast simulator and of Dr. Ning Hu and Dr. Charles Stewart and Weihua Cheng for their outstanding technical assistance. This research was supported by grant N00014-09-1-0999 from the US Department of Navy, Office of Naval Research. CR Abi-Hachem Ralph N, 2010, Recent Pat CNS Drug Discov, V5, P147 Cave KM, 2007, MIL MED, V172, P726 Cernak I, 2010, J CEREBR BLOOD F MET, V30, P255, DOI 10.1038/jcbfm.2009.203 Chavko M, 2009, SHOCK, V32, P325, DOI 10.1097/SHK.0b013e31819c38f1 Chen G.Q, 2008, MEDIAT INFLAMM, P1 Cheng JM, 2010, J NEUROL SCI, V294, P23, DOI 10.1016/j.jns.2010.04.010 Choi CH, 2008, FREE RADICAL BIO MED, V44, P1772, DOI 10.1016/j.freeradbiomed.2008.02.005 Clausen F, 2008, J NEUROTRAUM, V25, P1449, DOI 10.1089/neu.2008.0585 Elsayed NM, 2000, TOXICOLOGY, V155, P91, DOI 10.1016/S0300-483X(00)00281-X Elsayed NM, 2003, TOXICOLOGY, V189, P63, DOI 10.1016/S0300-483X(03)00153-7 Fausti SA, 2009, J REHABIL RES DEV, V46, P797, DOI 10.1682/JRRD.2008.09.0118 Floyd R. A., 2008, FREE RADIC BIOL MED, V15, P1361 GARTH RJN, 1994, J LARYNGOL OTOL, V108, P925 Gondusky JS, 2005, MIL MED, V170, P546 Haase GM, 2011, AM J OTOLARYNG, V32, P55, DOI 10.1016/j.amjoto.2009.09.002 HAMERNIK RP, 1987, J ACOUST SOC AM, V81, P1118, DOI 10.1121/1.394632 HAMERNIK RP, 1991, J ACOUST SOC AM, V90, P197, DOI 10.1121/1.402344 Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3 HENRY WR, 1995, HEARING RES, V84, P81, DOI 10.1016/0378-5955(95)00014-U Hoffer M.E., 2010, NEUROTRAUMA LETT JAFFIN JH, 1987, J TRAUMA, V27, P349, DOI 10.1097/00005373-198704000-00002 JENSEN JH, 1993, ACTA OTO-LARYNGOL, V113, P62, DOI 10.3109/00016489309135768 Kopke R, 2005, ACTA OTO-LARYNGOL, V125, P235, DOI 10.1080/00016480410023038 Kopke RD, 2007, HEARING RES, V226, P114, DOI 10.1016/j.heares.2006.10.008 Kujawa S.G., 2009, J NEUROSCI, V11, P14077 LONG JB, 2008, J NEUROTRAUM, V26, P827 Lyden PD, 2007, STROKE, V38, P2262, DOI 10.1161/STROKEAHA.106.472746 Maj R.H., 1989, ANN OTO RHINOL LARYN, V98, P9 Nageris Ben I., 2008, Journal of Basic and Clinical Physiology and Pharmacology, V19, P185 Nilsson D, 2007, J CLIN PHARMACOL, V47, P264, DOI 10.1177/0091270006293752 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 Patterson JH, 1997, TOXICOLOGY, V121, P29, DOI 10.1016/S0300-483X(97)03653-6 PRICE GR, 1989, J ACOUST SOC AM, V85, P1245, DOI 10.1121/1.397455 Richmond DR, 1989, ANN OTO RHINOL LARYN, V140, P35 Roberto M, 1989, Ann Otol Rhinol Laryngol Suppl, V140, P23 Svetlov SI, 2010, J TRAUMA, V69, P795, DOI 10.1097/TA.0b013e3181bbd885 Wu AG, 2006, EXP NEUROL, V197, P309, DOI 10.1016/j.expneurol.2005.09.004 Xiong Y, 1999, J NEUROTRAUM, V16, P1067, DOI 10.1089/neu.1999.16.1067 Xydakis MS, 2007, NEW ENGL J MED, V357, P830, DOI 10.1056/NEJMc076071 YLIKOSKI J, 1987, ACTA OTO-LARYNGOL, V103, P415 NR 40 TC 17 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2012 VL 285 IS 1-2 BP 29 EP 39 DI 10.1016/j.heares.2012.01.013 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 920WN UT WOS:000302439600004 PM 22326291 ER PT J AU Grose, JH Buss, E Hall, JW AF Grose, John H. Buss, Emily Hall, Joseph W., III TI Binaural beat salience SO HEARING RESEARCH LA English DT Article ID HIGH-FREQUENCIES; DISPARITIES; CARRIERS; LIMITS; TONES AB Previous studies of binaural beats have noted individual variability and response lability, but little attention has been paid to the salience of the binaural beat percept. The purpose of this study was to gauge the strength of the binaural beat percept by matching its salience to that of sinusoidal amplitude modulation (SAM), and to then compare rate discrimination for the two types of fluctuation. Rate discrimination was measured for standard rates of 4, 8, 16, and 32 Hz - all in the 500-Hz carrier region. Twelve normal-hearing adults participated in this study. The results indicated that discrimination acuity for binaural beats is similar to that for SAM tones whose depths of modulation have been adjusted to provide equivalent modulation salience. The matched-salience SAM tones had relatively shallow depths of modulation, suggesting that the perceptual strength of binaural beats is relatively weak, although all listeners perceived them. The Weber fraction for detection of an increase in binaural beat rate is roughly constant across beat rates, at least for rates above 4 Hz, as is rate discrimination for SAM tones. (C) 2012 Elsevier B.V. All rights reserved. C1 [Grose, John H.; Buss, Emily; Hall, Joseph W., III] Univ N Carolina, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC 27519 USA. RP Grose, JH (reprint author), UNC CH, Dept OHNS, G190 Phys Off Bldg,CB 7070,170 Manning Dr, Chapel Hill, NC 27599 USA. EM jhg@med.unc.edu FU NIH NIDCD [R01DC001507] FX The assistance of Sara Mamo in data collection is gratefully acknowledged. This work was supported by NIH NIDCD R01DC001507. CR Akeroyd MA, 2010, J ACOUST SOC AM, V128, P3301, DOI 10.1121/1.3505122 Bernstein LR, 1996, J ACOUST SOC AM, V99, P1670, DOI 10.1121/1.414689 Dietz M, 2008, BRAIN RES, V1220, P234, DOI 10.1016/j.brainres.2007.09.026 Fitzpatrick DC, 2009, JARO-J ASSOC RES OTO, V10, P579, DOI 10.1007/s10162-009-0177-8 FRITZE W, 1985, ARCH OTO-RHINO-LARYN, V242, P301, DOI 10.1007/BF00453554 Grantham W., 1978, J ACOUST SOC AM, V63, P511 GROEN J J, 1964, Acta Otolaryngol, V57, P224, DOI 10.3109/00016486409137078 GU X, 1995, J ACOUST SOC AM, V97, P701, DOI 10.1121/1.412294 He NJ, 2008, J ACOUST SOC AM, V124, P3841, DOI 10.1121/1.2998779 KUWADA S, 1979, SCIENCE, V206, P586, DOI 10.1126/science.493964 LEE JM, 1994, J ACOUST SOC AM, V96, P2140, DOI 10.1121/1.410156 LICKLIDER JCR, 1950, J ACOUST SOC AM, V22, P468, DOI 10.1121/1.1906629 MCFADDEN D, 1975, SCIENCE, V190, P394, DOI 10.1126/science.1179219 PERROTT DR, 1969, J ACOUST SOC AM, V46, P1477, DOI 10.1121/1.1911890 PERROTT DR, 1970, J ACOUST SOC AM, V47, P663, DOI 10.1121/1.1911946 PERROTT DR, 1977, J ACOUST SOC AM, V61, P1288, DOI 10.1121/1.381430 RUTSCHMA.J, 1965, J ACOUST SOC AM, V38, P759, DOI 10.1121/1.1909802 Schwarz DWF, 2005, CLIN NEUROPHYSIOL, V116, P658, DOI 10.1016/j.clinph.2004.09.014 Siveke I, 2008, J NEUROSCI, V28, P2043, DOI 10.1523/JNEUROSCI.4488-07.2008 Stewart GW, 1917, PHYS REV, V9, P502, DOI 10.1103/PhysRev.9.502 TOBIAS JV, 1963, J ACOUST SOC AM, V35, P1442, DOI 10.1121/1.1918710 Tobias J.V., 1965, INT AUDIOL, V4, P179, DOI 10.3109/05384916509074132 Tobias J.V., 1972, FDN MODERN AUDITORY, V2, P463 Wever E. G., 1949, THEORY HEARING NR 24 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2012 VL 285 IS 1-2 BP 40 EP 45 DI 10.1016/j.heares.2012.01.012 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 920WN UT WOS:000302439600005 PM 22326292 ER PT J AU Hughes, ML Castioni, EE Goehring, JL Baudhuin, JL AF Hughes, Michelle L. Castioni, Erin E. Goehring, Jenny L. Baudhuin, Jacquelyn L. TI Temporal response properties of the auditory nerve: Data from human cochlear-implant recipients SO HEARING RESEARCH LA English DT Article ID ELECTRIC PULSE TRAINS; STIMULATION RATE; SPEECH RECOGNITION; NEURAL RESPONSE; C-LEVELS; FIBERS; CAT; REFRACTORINESS; SYSTEM; USERS AB The primary goal of this study was to characterize the variability in auditory-nerve temporal response patterns obtained with the electrically evoked compound action potential (ECAP) within and across a relatively large group of cochlear-implant recipients. ECAPs were recorded in response to each of 21 pulses in a pulse train for five rates (900, 1200, 1800, 2400, and 3500 pps) and three cochlear regions (basal, middle, and apical). An alternating amplitude pattern was typically observed across the pulse train for slower rates, reflecting refractory properties of individual nerve fibers. For faster rates, the alternation ceased and overall amplitudes were substantially lower relative to the first pulse in the train, reflecting cross-fiber desynchronization. The following specific parameters were examined: (1) the rate at which the alternating pattern ceased (termed stochastic rate), (2) the alternation depth and the rate at which the maximum alternation occurred, and (3) the average normalized ECAP amplitude across the pulse train (measure of overall adaptation/desynchronization). Data from 29 ears showed that stochastic rates for the group spanned the entire range of rates tested. The majority of subjects (79%) had different stochastic rates across the three cochlear regions. The stochastic rate occurred most frequently at 2400 pps for basal and middle electrodes, and at 3500 pps for apical electrodes. Stimulus level was significantly correlated with stochastic rate, where higher levels yielded faster stochastic rates. The maximum alternation depth averaged 19% of the amplitude for the first pulse. Maximum alternation occurred most often at 1800 pps for basal and apical electrodes, and at 1200 pps for middle electrodes. These differences suggest some independence between alternation depth and stochastic rate. Finally, the overall amount of adaptation or desynchronization ranged from 63% (for 900 pps) to 23% (for 3500 pps) of the amplitude for the first pulse. Differences in temporal response properties across the cochlea within subjects may have implications for developing new speech-processing strategies that employ varied rates across the array. (C) 2012 Elsevier B.V. All rights reserved. C1 [Hughes, Michelle L.; Castioni, Erin E.; Goehring, Jenny L.; Baudhuin, Jacquelyn L.] Boys Town Natl Res Hosp, Lied Learning & Technol Ctr, Omaha, NE 68131 USA. RP Hughes, ML (reprint author), Boys Town Natl Res Hosp, Lied Learning & Technol Ctr, 425 N 30th St, Omaha, NE 68131 USA. EM michelle.hughes@boystown.org FU NIH/NIDCD [R01 DC009595, T35 DC008757, P30 DC04662] FX This research was supported by NIH/NIDCDR01 DC009595,T35 DC008757, and P30 DC04662. The content of this project is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute on Deafness and Other Communication Disorders or the National Institutes of Health. The authors thank Tom Creutz for data-analysis programs; Leo Litvak (Advanced Bionics) for BEDCS support; and Lisa Stille, Katelyn Rosemond, Donna Neff, Adam Goulson, Alex Helbig, and Gina Diaz for assistance with data collection. We also thank two anonymous reviewers for valuable feedback on an earlier version of this manuscript. CR Abbas PJ, 1999, EAR HEARING, V20, P45, DOI 10.1097/00003446-199902000-00005 ARNESEN AR, 1978, J COMP NEUROL, V178, P661, DOI 10.1002/cne.901780405 Botros A, 2010, EAR HEARING, V31, P380, DOI 10.1097/AUD.0b013e3181cb41aa Brill SM, 1997, AM J OTOL, V18, pS104 Finley C., 1997, SPEECH PROCESSORS AU Friesen LM, 2005, AUDIOL NEURO-OTOL, V10, P169, DOI 10.1159/000084027 Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4 Fu QJ, 2002, NEUROREPORT, V13, P1635, DOI 10.1097/00001756-200209160-00013 Hay-McCutcheon MJ, 2005, J ACOUST SOC AM, V118, P2444, DOI 10.1121/1.2035593 Hochmair Ingeborg, 2006, Trends Amplif, V10, P201, DOI 10.1177/1084713806296720 Holden LK, 2002, EAR HEARING, V23, P463, DOI 10.1097/01.AUD.0000034718.53595.99 Holstad BA, 2009, EAR HEARING, V30, P115, DOI 10.1097/AUD.0b013e3181906c0f Hughes ML, 2009, J ACOUST SOC AM, V125, P247, DOI 10.1121/1.3035842 Javel E, 2000, HEARING RES, V140, P45, DOI 10.1016/S0378-5955(99)00186-0 Kiefer J., 2000, COCHLEAR IMPLANTS LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677 LIBERMAN MC, 1980, HEARING RES, V3, P45, DOI 10.1016/0378-5955(80)90007-6 Litvak LM, 2003, J ACOUST SOC AM, V114, P2066, DOI 10.1121/1.1612492 Loizou PC, 2000, J ACOUST SOC AM, V108, P790, DOI 10.1121/1.429612 Luo X, 2008, EAR HEARING, V29, P957, DOI 10.1097/AUD.0b013e3181888f61 Matsuoka AJ, 2001, IEEE T BIO-MED ENG, V48, P416, DOI 10.1109/10.915706 Miller CA, 2008, JARO-J ASSOC RES OTO, V9, P122, DOI 10.1007/s10162-007-0108-5 Miller CA, 2001, JARO, V2, P216 Mino H, 2004, IEEE T BIO-MED ENG, V51, P13, DOI 10.1109/TBME.2003.820383 Mino H, 2006, IEEE T NEUR SYS REH, V14, P273, DOI 10.1109/TNSRE.2006.881590 Morsnowski A, 2006, AUDIOL NEURO-OTOL, V11, P389, DOI 10.1159/000095966 MULLER M, 1991, HEARING RES, V57, P63, DOI 10.1016/0378-5955(91)90075-K Ng M., 2000, COCHLEAR IMPLANTS PR Potts LG, 2007, EAR HEARING, V28, P495, DOI 10.1097/AUD.0b013e31806dc16e RANCK JB, 1975, BRAIN RES, V98, P417, DOI 10.1016/0006-8993(75)90364-9 RATTAY F, 1986, IEEE T BIO-MED ENG, V33, P974, DOI 10.1109/TBME.1986.325670 RHODE WS, 1985, HEARING RES, V18, P159, DOI 10.1016/0378-5955(85)90008-5 Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3 Sagi E, 2009, J SPEECH LANG HEAR R, V52, P385, DOI [10.1044/1092-4388(2008/07-0219), 10.1044/1092-4388(2008/07-0219] TYKOCINSKI M, 1995, HEARING RES, V88, P124, DOI 10.1016/0378-5955(95)00108-G Vandali AE, 2000, EAR HEARING, V21, P608, DOI 10.1097/00003446-200012000-00008 van Dijk B, 2007, EAR HEARING, V28, P558, DOI 10.1097/AUD.0b013e31806dc1d1 Wilson B. S., 1997, AM J OTOL, V18, P30 WILSON BS, 1995, AM J OTOL, V16, P669 Woo J, 2010, JARO-J ASSOC RES OTO, V11, P283, DOI 10.1007/s10162-009-0199-2 Zhang F, 2007, JARO-J ASSOC RES OTO, V8, P356, DOI 10.1007/s10162-007-0086-7 NR 41 TC 7 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2012 VL 285 IS 1-2 BP 46 EP 57 DI 10.1016/j.heares.2012.01.010 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 920WN UT WOS:000302439600006 PM 22326590 ER PT J AU Kilian, EC Lutman, ME Montelpare, WJ Thyer, NJ AF Kilian, Edward C. Lutman, Mark E. Montelpare, William J. Thyer, Nicholas J. TI A mechanism for simultaneous suppression of tone burst-evoked otoacoustic emissions SO HEARING RESEARCH LA English DT Article ID NONLINEAR TEMPORAL INTERACTIONS; BASILAR-MEMBRANE; ACOUSTIC EMISSIONS; 2-TONE SUPPRESSION; COCHLEAR MECHANICS; AUDITORY FILTER; NORMAL-HEARING; FINE-STRUCTURE; GUINEA-PIG; HUMAN EARS AB Tone burst-evoked otoacoustic emission (TBOAE) components in response to a 1 kHz tone burst are suppressed by the simultaneous presence of tone bursts at higher frequencies. To date, the underlying cause of this "simultaneous suppression" of TBOAEs is unclear. This paper describes a potential mechanism based on local nonlinear interactions between basilar membrane (BM) travelling waves, and tests the extent to which it is able to account for this specific suppression phenomenon. A simple mathematical model based on local nonlinear interactions was developed, and its predictions for a range of tone burst pairs were compared to corresponding TBOAE suppression data recorded from fourteen normally hearing human ears at a level of 60 dB p.e. SPL Model predictions and mean TBOAE suppression data showed close agreement for all pairs of tone bursts. These results suggest that simultaneous suppression of TBOAEs can be explained solely in terms of the local nonlinear interaction-based mechanism. However, the involvement of other mechanisms, involving components generated at places basal to their characteristic place along the BM, cannot be excluded. (C) 2012 Elsevier B.V. All rights reserved. C1 [Kilian, Edward C.; Montelpare, William J.; Thyer, Nicholas J.] Univ Leeds, Sch Healthcare, Acad Unit Clin & Rehabil Sci, Leeds LS2 9UT, W Yorkshire, England. [Lutman, Mark E.] Univ Southampton, Inst Sound & Vibrat Res, Southampton SO9 5NH, Hants, England. RP Kilian, EC (reprint author), Univ Leeds, Sch Healthcare, Acad Unit Clin & Rehabil Sci, Woodhouse Lane, Leeds LS2 9UT, W Yorkshire, England. EM e.killan@leeds.ac.uk CR Avan P, 1997, J ACOUST SOC AM, V101, P2771, DOI 10.1121/1.418564 BRASS D, 1993, J ACOUST SOC AM, V93, P920, DOI 10.1121/1.405453 Carvalho S, 2003, HEARING RES, V175, P215, DOI 10.1016/S0378-5955(02)00745-1 Cooper NP, 1996, AUDIT NEUROSCI, V3, P123 Epstein M, 2005, J ACOUST SOC AM, V117, P263, DOI 10.1121/1.1830670 Goodman SS, 2003, HEARING RES, V183, P7, DOI 10.1016/S0378-5955(03)00193-X Goodman SS, 2009, J ACOUST SOC AM, V125, P1014, DOI 10.1121/1.3056566 Hall J., 2000, HDB OTOACOUSTIC EMIS Harte JM, 2005, HEARING RES, V207, P99, DOI 10.1016/j.heares.2005.04.008 Irino T, 1997, J ACOUST SOC AM, V101, P412, DOI 10.1121/1.417975 Irino T, 2001, J ACOUST SOC AM, V109, P2008, DOI 10.1121/1.1367253 Irino T, 2006, IEEE T AUDIO SPEECH, V14, P2222, DOI 10.1109/TASL.2006.874669 Jedrzejczak WW, 2008, HEARING RES, V235, P80, DOI 10.1016/j.heares.2007.10.005 Kalluri R, 2007, J ACOUST SOC AM, V121, P2097, DOI 10.1121/1.2435981 Kapadia S, 2001, BRIT J AUDIOL, V35, P103 Kapadia S, 2000, HEARING RES, V146, P89, DOI 10.1016/S0378-5955(00)00102-7 Kapadia S, 2000, HEARING RES, V146, P101, DOI 10.1016/S0378-5955(00)00103-9 Keefe DH, 2008, J ACOUST SOC AM, V123, P1479, DOI 10.1121/1.2828209 KEMP DT, 1980, HEARING RES, V2, P213, DOI 10.1016/0378-5955(80)90059-3 Killan EC, 2006, HEARING RES, V212, P65, DOI 10.1016/j.heares.2005.10.010 Kolston PJ, 2000, HEARING RES, V145, P25, DOI 10.1016/S0378-5955(00)00067-8 KULAWIEC JT, 1995, EAR HEARING, V16, P515 Lineton B, 2006, HEARING RES, V219, P24, DOI 10.1016/j.heares.2006.05.005 Lineton B, 2003, J ACOUST SOC AM, V114, P871, DOI 10.1121/1.1582437 Murnane Owen D, 2003, J Am Acad Audiol, V14, P525, DOI 10.3766/jaaa.14.9.8 NEELY ST, 1986, J ACOUST SOC AM, V79, P1472, DOI 10.1121/1.393674 NORTON SJ, 1987, J ACOUST SOC AM, V81, P1860, DOI 10.1121/1.394750 Notaro G, 2007, J ACOUST SOC AM, V122, P3576, DOI 10.1121/1.2799924 Nuttall AL, 1996, J ACOUST SOC AM, V99, P1556, DOI 10.1121/1.414732 Prieve BA, 1996, J ACOUST SOC AM, V99, P3077, DOI 10.1121/1.414794 PROBST R, 1986, HEARING RES, V21, P261, DOI 10.1016/0378-5955(86)90224-8 Rhode WS, 2000, J ACOUST SOC AM, V107, P3317, DOI 10.1121/1.429404 Robinette M.S., 2002, OTOACOUSTIC EMISSION RUTTEN WLC, 1980, HEARING RES, V2, P263, DOI 10.1016/0378-5955(80)90062-3 Shera CA, 2004, EAR HEARING, V25, P86, DOI 10.1097/01.AUD.0000121200.90211.83 Siegel JH, 2005, J ACOUST SOC AM, V118, P2434, DOI 10.1121/1.2005867 Sisto R, 2008, J ACOUST SOC AM, V124, P2995, DOI 10.1121/1.2990711 Talmadge CL, 2000, J ACOUST SOC AM, V108, P2911, DOI 10.1121/1.1321012 TAVARTKILADZE GA, 1994, BRIT J AUDIOL, V28, P193, DOI 10.3109/03005369409086568 WILSON JP, 1980, HEARING RES, V2, P233, DOI 10.1016/0378-5955(80)90060-X Withnell RH, 2008, J ACOUST SOC AM, V123, P212, DOI 10.1121/1.2804635 Withnell R.H., 1998, J ACOUST SOC AM, V105, P782 XU L, 1994, HEARING RES, V74, P173 Yates GK, 1999, HEARING RES, V136, P49, DOI 10.1016/S0378-5955(99)00108-2 Yoshikawa H, 2000, HEARING RES, V148, P95, DOI 10.1016/S0378-5955(00)00144-1 Zettner EM, 2003, J ACOUST SOC AM, V113, P2031, DOI 10.1121/1.1560191 ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320 NR 47 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2012 VL 285 IS 1-2 BP 58 EP 64 DI 10.1016/j.heares.2012.01.008 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 920WN UT WOS:000302439600007 ER PT J AU Guest, M Boggess, M Attia, J AF Guest, Maya Boggess, May Attia, John TI Relative risk of elevated hearing threshold compared to ISO1999 normative populations for Royal Australian Air Force male personnel SO HEARING RESEARCH LA English DT Article ID NUTRITION EXAMINATION SURVEY; OCCUPATIONAL NOISE EXPOSURE; F-111 MAINTENANCE WORKERS; SHOAMP GENERAL HEALTH; AUDIOMETRIC NOTCH; ADULT-POPULATION; NATIONAL-HEALTH; IMPAIRMENT; REGRESSION; AGE AB Objective: This paper introduces a new method to calculate relative risks of elevated hearing thresholds, at various ages and frequencies, between a study population and ISO1999:2003: Annex A Screened, Annex B Unscreened and ISO1999 Section 5.3 adjustment for noise exposure using Annex A Screened data. We demonstrate this method on a study population of male Royal Australian Air Force personnel. Study Design: Using a retrospective cohort design, hearing thresholds were assessed in 583 F-111 aircraft maintenance personnel, 377 technical-trade comparisons and 492 non-technical comparisons using pure-tone audiometry. A quantile regression model was used determine whether an association exists between median hearing thresholds and F-111 maintenance, adjusting for possible confounders. The new method involves using quantile regression models with bootstrapped standard errors to estimate percentiles for the study population and thus determine the probability of a greater than 25 dB hearing threshold. This was done for the three ISO datasets as follows; for the ISO1999 Annex A screened population data the formula provided allows the calculation of these probabilities. ISO1999 Annex B unscreened population data only provides the values for the 10th, 50th and 90th percentiles at ages 30, 40, 50 and 60 only, therefore it was necessary to fit a curve to these values in order to estimate the probabilities. For 1501999 Section 5.3 adjustment for noise exposure population we used the Annex A screened population data plus the formula. The probabilities were then divided to give the relative risks of a greater than 25 dB hearing threshold, at various ages and frequencies. Results: While no difference was observed between the three groups, the model identified a number of significant confounders, namely tinnitus, smoking, diabetes and the use of anti-depressant medications. Relative risks were high at frequencies 2 kHz and less for the study population of all ages compared to ISO A screened data. The increased relative risks at 4 and 6 kHz give the appearance of a "noise notch" for ages 30 and 40 years. The comparison with the ISO B unscreened data are significantly less than one for frequencies above 2 kHz, particularly for young men and greater than one less than 2 kHz. The relative risks for the comparison to the ISO A screened data with ISO 5.3 adjustments, are highest for young men decreasing with age, with the highest relative risk are at frequencies less than 2 kHz. Conclusions: This paper demonstrates a new method for quantifying the probability of a clinically relevant hearing loss and the relative risk of the loss due to a risk factor. Prior to this, researchers were reduced to simplistic methods such as visual comparison of deciles which did not enable the estimation of risk. The new method can use all observed hearing thresholds per study participant, adjust for known confounding factors such age and gender, and calculate the relative risk of a clinically relevant increase in hearing threshold due to a risk factor of interest. (C) 2012 Elsevier B.V. All rights reserved. C1 [Guest, Maya] Univ Newcastle, Sch Hlth Sci, Fac Hlth, Callaghan, NSW 2308, Australia. [Boggess, May] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA. RP Guest, M (reprint author), Univ Newcastle, Sch Hlth Sci, Fac Hlth, Hunter Bldg,Univ Dr, Callaghan, NSW 2308, Australia. EM maya.guest@newcastle.edu.au RI D'ESTE, CATHERINE/G-7392-2013; Attia, John/F-5376-2013 OI Attia, John/0000-0001-9800-1308 FU Commonwealth Department of Defence FX The Study of Health Outcomes in Aircraft Maintenance Personnel was funded by the Commonwealth Department of Defence and administered by the Department of Veterans' Affairs. Study investigators would particularly like to thank all participants of the SHOAMP for their time and patience. CR Agrawal Y, 2008, ARCH INTERN MED, V168, P1522, DOI 10.1001/archinte.168.14.1522 Agrawal Y, 2010, EAR HEARING, V31, P234, DOI 10.1097/AUD.0b013e3181c6b9fd Albera R, 2010, EUR ARCH OTO-RHINO-L, V267, P665, DOI 10.1007/s00405-009-1096-3 Andrews G, 2001, AUST NZ J PUBL HEAL, V25, P494, DOI 10.1111/j.1467-842X.2001.tb00310.x [Anonymous], 2000, 7029 ISO Attia JR, 2006, J OCCUP ENVIRON MED, V48, P682, DOI 10.1097/01.jom.0000205985.00559.84 Bainbridge KE, 2010, DIABETES CARE, V33, P811, DOI 10.2337/dc09-1193 Barlow C, 2011, MED PROBL PERFORM AR, V26, P96 BERGSTROM B, 1986, SCAND AUDIOL, V15, P227, DOI 10.3109/01050398609042148 Borchgrevink H M, 2005, Noise Health, V7, P1 Campo P., 2000, NOISE HEALTH, V3, P49 CLARK WW, 1992, J ACOUST SOC AM, V91, P3064, DOI 10.1121/1.402943 Coles R.R., 2000, CLIN OTOLARYNGOL ALL, V25, P265 D'Este C., 2004, GEN HLTH MED STUDY Dobie R.A., 1997, J ACOUST SOC AM, V101, P2734 Dobie RA, 2006, EAR HEARING, V27, P526, DOI 10.1097/01.aud.0000233863.39603.f5 Efron B., 1993, INTRO BOOTSTRAP Engdahl B, 2005, INT J AUDIOL, V44, P213, DOI 10.1080/14992020500057731 Frisina ST, 2006, HEARING RES, V211, P103, DOI 10.1016/j.heares.2005.09.002 Ganong W.F., 2003, REV MED PHYSL, P173 GOLDBERG JO, 1986, J CLIN PSYCHOL, V42, P792, DOI 10.1002/1097-4679(198609)42:5<792::AID-JCLP2270420519>3.0.CO;2-8 Gopal KV, 2004, INT J AUDIOL, V43, P493, DOI 10.1080/14992020400050063 Gopinath B, 2009, ARCH INTERN MED, V169, P415, DOI 10.1001/archinternmed.2008.597 Guest M, 2010, AM J IND MED, V53, P1159, DOI 10.1002/ajim.20867 Havia M, 2002, AURIS NASUS LARYNX, V29, P115, DOI 10.1016/S0385-8146(01)00142-0 Health National, 2001, AUSTR ALC GUID HLTH HENSELMAN LW, 1995, EAR HEARING, V16, P382, DOI 10.1097/00003446-199508000-00005 HISCOCK CK, 1994, J PSYCHOPATHOL BEHAV, V16, P95, DOI 10.1007/BF02232721 Hoffman HJ, 2010, EAR HEARING, V31, P725, DOI 10.1097/AUD.0b013e3181e9770e Horowitz JL, 1998, ECONOMETRICA, V66, P1327, DOI 10.2307/2999619 International Organisation for Standardisation, 2003, ISO1999 Jirojwong Sansnee, 2005, Southeast Asian Journal of Tropical Medicine and Public Health, V36, P1048 Jokitulppo J, 2006, MIL MED, V171, P112 Kaufman LR, 2005, J OCCUP ENVIRON MED, V47, P212, DOI 10.1097/01.jom.0000155710.28289.0e Kauppinen T, 1998, AM J IND MED, V33, P409, DOI 10.1002/(SICI)1097-0274(199804)33:4<409::AID-AJIM12>3.3.CO;2-F Kim J, 2005, IND HEALTH, V43, P567, DOI 10.2486/indhealth.43.567 KOENKER R, 1978, ECONOMETRICA, V46, P33, DOI 10.2307/1913643 Kuronen P, 2004, INT J AUDIOL, V43, P79, DOI 10.1080/14992020400050013 Martines F, 2010, AURIS NASUS LARYNX, V37, P685, DOI 10.1016/j.anl.2010.03.008 May JJ, 2000, AM J IND MED, V37, P112, DOI 10.1002/(SICI)1097-0274(200001)37:1<112::AID-AJIM9>3.0.CO;2-# McBride D, 2001, SCAND AUDIOL, V30, P106, DOI 10.1080/010503901300112211 McBride DI, 2001, OCCUP ENVIRON MED, V58, P46, DOI 10.1136/oem.58.1.46 Monley P., 1996, AUST J AUDIOL, V16, P57 Monzani D, 2008, ACTA OTORHINOLARYNGO, V28, P61 Nakanishi N, 2000, J OCCUP ENVIRON MED, V42, P1045, DOI 10.1097/00043764-200011000-00001 Narula SC, 1999, STAT MED, V18, P1401, DOI 10.1002/(SICI)1097-0258(19990615)18:11<1401::AID-SIM136>3.3.CO;2-7 Nomura K, 2005, INT ARCH OCC ENV HEA, V78, P178, DOI 10.1007/s00420-005-0604-z Prasher Deepak, 2005, Noise Health, V7, P31 Prince MM, 1997, J ACOUST SOC AM, V101, P950, DOI 10.1121/1.418053 Prince MM, 2003, J ACOUST SOC AM, V113, P871, DOI 10.1121/1.1536635 Rabinowitz PM, 2006, EAR HEARING, V27, P742, DOI 10.1097/01.aud.0000240544.79254.bc Rey A, 1964, EXAMEN CLIN PSYCHOL ROSLER G, 1994, SCAND AUDIOL, V23, P13, DOI 10.3109/01050399409047483 ROYSTER JD, 1991, J ACOUST SOC AM, V89, P2793, DOI 10.1121/1.400719 Schmuziger N, 2006, EAR HEARING, V27, P321, DOI 10.1097/01.aud.0000224737.34907.5e Schofield PW, 2006, NEUROTOXICOLOGY, V27, P852, DOI 10.1016/j.neuro.2006.02.002 Seixas NS, 2005, OCCUP ENVIRON MED, V62, P309, DOI 10.1136/oem.2004.018143 SMITH TL, 1995, LARYNGOSCOPE, V105, P236, DOI 10.1288/00005537-199503000-00002 StataCorp, 2009, STATA STAT SOFTW Steurer M, 1998, AUDIOLOGY, V37, P38 Tadros SF, 2007, NEUROBIOL AGING, V28, P1112, DOI 10.1016/j.neurobiolaging.2006.05.021 TAY HL, 1995, CLIN OTOLARYNGOL, V20, P130, DOI 10.1111/j.1365-2273.1995.tb00029.x Taylor W., 1965, J ACOUST SOC AM, V32, P135 Toppila E, 2011, NOISE HEALTH, V13, P45, DOI 10.4103/1463-1741.74001 Vicente-Torres MA, 2003, HEARING RES, V182, P43, DOI 10.1016/S0378-5955(03)00140-0 Wagstaff AS, 2009, AVIAT SPACE ENVIR MD, V80, P857, DOI 10.3357/ASEM.1991.2009 Weiss A.A., 1988, MISCELLANEA, P517 NR 67 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2012 VL 285 IS 1-2 BP 65 EP 76 DI 10.1016/j.heares.2012.01.007 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 920WN UT WOS:000302439600008 PM 22326290 ER PT J AU Verhey, JL Ernst, SMA Yasin, I AF Verhey, Jesko L. Ernst, Stephan M. A. Yasin, Ifat TI Effects of sequential streaming on auditory masking using psychoacoustics and auditory evoked potentials SO HEARING RESEARCH LA English DT Article ID VENTRAL COCHLEAR NUCLEUS; MISMATCH NEGATIVITY MMN; BRAIN POTENTIALS; SIGNAL FREQUENCY; RELEASE CMR; COMODULATION; CORTEX; ATTENTION; NOISE; SOUND AB The present study was aimed at investigating the relationship between the mismatch negativity (MMN) and psychoacoustical effects of sequential streaming on comodulation masking release (CMR). The influence of sequential streaming on CMR was investigated using a psychoacoustical alternative forced-choice procedure and electroencephalography (EEG) for the same group of subjects. The psychoacoustical data showed, that adding precursors comprising of only off-signal-frequency maskers abolished the CMR. Complementary EEG data showed an MMN irrespective of the masker envelope correlation across frequency when only the off-signal-frequency masker components were present. The addition of such precursors promotes a separation of the on- and off-frequency masker components into distinct auditory objects preventing the auditory system from using comodulation as an additional cue. A frequency-specific adaptation changing the representation of the flanking bands in the streaming conditions may also contribute to the reduction of CMR in the stream conditions, however, it is unlikely that adaptation is the primary reason for the streaming effect. A neurophysiological correlate of sequential streaming was found in EEG data using MMN, but the magnitude of the MMN was not correlated with the audibility of the signal in CMR experiments. Dipole source analysis indicated different cortical regions involved in processing auditory streaming and modulation detection. In particular, neural sources for processing auditory streaming include cortical regions involved in decision-making. (C) 2012 Elsevier B.V. All rights reserved. C1 [Yasin, Ifat] UCL Ear Inst, London WC1X 8EE, England. [Verhey, Jesko L.] Univ Magdeburg, Dept Expt Audiol, D-39120 Magdeburg, Germany. [Ernst, Stephan M. A.] Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England. RP Yasin, I (reprint author), UCL Ear Inst, 332 Grays Inn Rd, London WC1X 8EE, England. EM jesko.verhey@med.ovgu.de; Stephan.ernst@uni-oldenburg.de; i.yasin@ucl.ac.uk FU British Council Advanced Research Collaboration (ARC); Deutsche Akademischer Austausch Dienst (DAAD) FX This work was supported by the British Council Advanced Research Collaboration (ARC) award and the Deutsche Akademischer Austausch Dienst (DAAD). CR Alain C, 2002, J ACOUST SOC AM, V111, P990, DOI 10.1121/1.1434942 Androulidakis AG, 2006, CLIN NEUROPHYSIOL, V117, P1783, DOI 10.1016/j.clinph.2006.04.011 Bendixen A, 2010, NEUROIMAGE, V50, P285, DOI 10.1016/j.neuroimage.2009.12.037 Bleeck S, 2008, NEUROSCIENCE, V154, P139, DOI 10.1016/j.neuroscience.2008.03.020 Bruder J, 2011, INT J PSYCHOPHYSIOL, V79, P106, DOI 10.1016/j.ijpsycho.2010.09.008 Burton MW, 2000, J COGNITIVE NEUROSCI, V12, P679, DOI 10.1162/089892900562309 Buschermohle M, 2007, BIOL CYBERN, V97, P397, DOI 10.1007/s00422-007-0179-8 CARRELL TD, 1992, PERCEPT PSYCHOPHYS, V52, P437, DOI 10.3758/BF03206703 Dau T, 2009, J ACOUST SOC AM, V125, P2182, DOI 10.1121/1.3082121 Dau T., 2004, AUDITORY SIGNAL PROC, P285 Dien J, 1998, BEHAV RES METH INS C, V30, P34, DOI 10.3758/BF03209414 Draganova R, 2009, BMC NEUROSCI, V10, DOI 10.1186/1471-2202-10-143 Eckert MA, 2009, HUM BRAIN MAPP, V30, P2530, DOI 10.1002/hbm.20688 EDDINS DA, 1994, J ACOUST SOC AM, V96, P3432, DOI 10.1121/1.411450 Ernst SMA, 2008, BRAIN RES, V1220, P246, DOI 10.1016/j.brainres.2007.08.013 Ernst S.M.A., 2006, J ACOUST SOC AM, V120, P384 Ernst SMA, 2010, NEUROIMAGE, V49, P835, DOI 10.1016/j.neuroimage.2009.07.014 Ernst SMA, 2010, J ACOUST SOC AM, V128, P300, DOI 10.1121/1.3397582 Friedman D, 2001, NEUROSCI BIOBEHAV R, V25, P355, DOI 10.1016/S0149-7634(01)00019-7 Griffiths TD, 1998, NAT NEUROSCI, V1, P74, DOI 10.1038/276 Grimm S, 2011, PSYCHOPHYSIOLOGY, V48, P377, DOI 10.1111/j.1469-8986.2010.01073.x GROSE JH, 1993, J ACOUST SOC AM, V93, P2896, DOI 10.1121/1.405809 Gutschalk A, 2005, J NEUROSCI, V25, P5382, DOI 10.1523/JNEUROSCI.0374-05.2005 Hall JW, 1996, J ACOUST SOC AM, V100, P2365, DOI 10.1121/1.417946 HALL JW, 1984, J ACOUST SOC AM, V76, P50, DOI 10.1121/1.391005 Hautus MJ, 2005, J ACOUST SOC AM, V117, P275, DOI 10.1121/1.1828499 Hideki O., 2010, NEUROIMAGE, V49, P1024 Jaaskelainen IP, 2004, P NATL ACAD SCI USA, V101, P6809, DOI 10.1073/pnas.0303760101 Klein C, 1999, BIOL PSYCHIAT, V45, P1612, DOI 10.1016/S0006-3223(98)00254-6 Klink KB, 2010, JARO-J ASSOC RES OTO, V11, P79, DOI 10.1007/s10162-009-0186-7 Kumar S, 2007, PLOS COMPUT BIOL, V3, P977, DOI 10.1371/journal.pcbi.0030100 Las L, 2005, J NEUROSCI, V25, P1503, DOI 10.1523/JNEUROSCI.4007-04.2005 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 MARKS LE, 1991, J EXP PSYCHOL HUMAN, V17, P986, DOI 10.1037/0096-1523.17.4.986 MCFADDEN D, 1986, J ACOUST SOC AM, V80, P1658, DOI 10.1121/1.394277 Naatanen R, 2000, INT J PSYCHOPHYSIOL, V37, P3, DOI 10.1016/S0167-8760(00)00091-X Naatanen R, 2005, PSYCHOPHYSIOLOGY, V42, P25, DOI 10.1111/j.1469-8986.2005.00256.x Naatanen R, 1999, PSYCHOL BULL, V125, P826, DOI 10.1037/0033-2909.125.6.826 Nelken I, 1999, NATURE, V397, P154, DOI 10.1038/16456 Neuert V, 2004, J NEUROSCI, V24, P5789, DOI 10.1523/JNEUROSCI.0450-04.2004 Neuert V, 2005, J NEUROPHYSIOL, V93, P2766, DOI 10.1152/jn.00774.2004 Obleser J, 2006, HUM BRAIN MAPP, V27, P562, DOI 10.1002/hbm.20201 Piechowiak T., 2007, J ACOUST SOC AM, V21, P2111 Plummer C, 2007, CLIN NEUROPHYSIOL, V118, P2344, DOI 10.1016/j.clinph.2007.08.016 Pressnitzer D, 2001, J NEUROSCI, V21, P6377 Pugh KR, 1996, NEUROIMAGE, V4, P159, DOI 10.1006/nimg.1996.0067 Rauschecker JP, 2009, NAT NEUROSCI, V12, P718, DOI 10.1038/nn.2331 Rauschecker JP, 2005, ANN NY ACAD SCI, V1060, P125, DOI 10.1196/annals.1360.009 Rupp A, 2007, HEARING - FROM SENSORY PROCESSING TO PERCEPTION, P125, DOI 10.1007/978-3-540-73009-5_14 SCHOONEVELDT GP, 1987, J ACOUST SOC AM, V82, P1944, DOI 10.1121/1.395639 SEMLITSCH HV, 1986, PSYCHOPHYSIOLOGY, V23, P695, DOI 10.1111/j.1469-8986.1986.tb00696.x SUMMERFIELD Q, 1987, J ACOUST SOC AM, V81, P700, DOI 10.1121/1.394838 Sussman E, 1999, PSYCHOPHYSIOLOGY, V36, P22, DOI 10.1017/S0048577299971056 Sussman ES, 2007, PERCEPT PSYCHOPHYS, V69, P136, DOI 10.3758/BF03194460 Talaraich P., 1988, STEREOTACTICCOPLANAR Tzourio N, 1997, NEUROIMAGE, V5, P63, DOI 10.1006/nimg.1996.0252 Verhey JL, 2009, HEARING RES, V253, P97, DOI 10.1016/j.heares.2009.03.011 Verhey JL, 2003, EXP BRAIN RES, V153, P405, DOI 10.1007/s00221-003-1607-1 Verhey JL, 1999, J ACOUST SOC AM, V106, P2733, DOI 10.1121/1.428101 Wagner E, 2006, J ACOUST SOC AM, V119, P1012, DOI 10.1021/1.2159430 Winkler I, 2005, COGNITIVE BRAIN RES, V25, P291, DOI 10.1016/j.cogbrainres.2005.06.005 Xiang JJ, 2010, J NEUROSCI, V30, P12084, DOI 10.1523/JNEUROSCI.0827-10.2010 Yasin I, 2007, NEUROPSYCHOLOGIA, V45, P2718, DOI 10.1016/j.neuropsychologia.2007.04.009 NR 63 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2012 VL 285 IS 1-2 BP 77 EP 85 DI 10.1016/j.heares.2012.01.006 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 920WN UT WOS:000302439600009 PM 22326589 ER PT J AU Nityananda, V Bee, MA AF Nityananda, Vivek Bee, Mark A. TI Spatial release from masking in a free-field source identification task by gray treefrogs SO HEARING RESEARCH LA English DT Article ID BUDGERIGARS MELOPSITTACUS-UNDULATUS; SPEECH-RECEPTION THRESHOLD; COCKTAIL PARTY PROBLEM; FROG HYLA-VERSICOLOR; CHORUS-SHAPED NOISE; 2 FREQUENCY BANDS; GREY TREEFROGS; DIRECTIONAL HEARING; ACOUSTIC-SIGNALS; MATE CHOICE AB Humans and other animals often communicate acoustically in noisy social groups, in which the background noise generated by other individuals can mask signals of interest. When listening to speech in the presence of speech-like noise, humans experience a release from auditory masking when target and masker are spatially separated. We investigated spatial release from masking (SRM) in a free-field call recognition task in Cope's gray treefrog (Hyla chlysoscelis). In this species, reproduction requires that females successfully detect, recognize, and localize a conspecific male in the noisy social environment of a breeding chorus. Using no-choice phonotaxis assays, we measured females' signal recognition thresholds in response to a target signal (an advertisement call) in the presence and absence of chorus-shaped noise. Females experienced about 3 dB of masking release, compared with a co-localized condition, when the masker was displaced 90 degrees in azimuth from the target. The magnitude of masking release was independent of the spectral composition of the target (carriers of 1.3 kHz, 2.6 kHz, or both). Our results indicate that frogs experience a modest degree of spatial unmasking when performing a call recognition task in the free-field, and suggest that variation in signal spectral content has small effects on both source identification and spatial unmasking. We discuss these results in the context of spatial unmasking in vertebrates and call recognition in frogs. (C) 2012 Elsevier B.V. All rights reserved. C1 [Nityananda, Vivek; Bee, Mark A.] Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA. RP Bee, MA (reprint author), Univ Minnesota, Dept Ecol Evolut & Behav, 100 Ecol,1987 Upper Buford Circle, St Paul, MN 55108 USA. EM v.nityananda@qmul.ac.uk; mbee@umn.edu RI Bee, Mark/A-9410-2013 OI Bee, Mark/0000-0002-6770-9730 FU NIDCD [DC009582] FX This work was supported by NIDCD DC009582. We thank, Alejandro Velez for recordings of natural choruses and help generating chorus-shaped maskers, Mark Crawford, Madeleine Linck, John Moriarty, Ed Quinn, and Don Pereira for access to frog breeding sites, and Nate Buerkle, Brian Chicoine, Jenna Cook, Cally Espegard, Sarah Feingold, Noah Gordon, Nick Hein, Katie Heino, Johanna Henly, Shannon Hinrichs, Joe Kleinschmidt, Betsy Linehan-Skillings, James Mertz, Cathleen Nguyen, Steffen Peterson, Abby Rapacz-Van Neuren, Alejandro Velez, and especially Sandra Tekmen for help collecting and testing frogs. CR ARAK A, 1983, NATURE, V306, P261, DOI 10.1038/306261a0 Beckers OM, 2004, J COMP PHYSIOL A, V190, P869, DOI 10.1007/s00359-004-0542-3 Bee MA, 2008, J COMP PSYCHOL, V122, P235, DOI 10.1037/0735-7036.122.3.235 Bee MA, 2007, ANIM BEHAV, V74, P549, DOI 10.1016/j.anbehav.2006.12.012 Bee MA, 2008, ANIM BEHAV, V76, P831, DOI 10.1016/j.anbehav.2008.01.026 Bee MA, 2009, J ACOUST SOC AM, V126, P2788, DOI 10.1121/1.3224707 Bee MA, 2008, ANIM BEHAV, V76, P845, DOI 10.1016/j.anbehav.2008.01.029 Bee MA, 2007, ANIM BEHAV, V74, P1765, DOI 10.1016/j.anbehav.2007.03.019 Bee M.A., 2010, J COMP PSYCHOL, V124 Bee M.A., J ACOUSTICA IN PRESS Bee MA, 2008, ANIM BEHAV, V75, P1781, DOI 10.1016/j.anbehav.2007.10.032 Bronkhorst AW, 2000, ACUSTICA, V86, P117 Bush SL, 2002, ANIM BEHAV, V63, P7, DOI 10.1006/anbe.2001.1880 CAPRANIC.RR, 1966, J ACOUST SOC AM, V40, P1131, DOI 10.1121/1.1910198 Capranica RR, 1965, EVOKED VOCAL RESPONS CHERRY EC, 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229 Christensen-Dalsgaard J, 2005, SPR HDB AUD, V25, P67, DOI 10.1007/0-387-28863-5_4 Christensen-Dalsgaard J, 2008, BRAIN RES BULL, V75, P365, DOI 10.1016/j.brainresbull.2007.10.044 Christensen-Dalsgaard J, 2011, HEARING RES, V273, P37, DOI 10.1016/j.heares.2010.08.007 Christie K, 2010, J COMP PHYSIOL A, V196, P569, DOI 10.1007/s00359-010-0544-2 Dent ML, 2009, J COMP PSYCHOL, V123, P357, DOI 10.1037/a0016898 Dent ML, 1997, BEHAV NEUROSCI, V111, P590 Fay RR, 2000, HEARING RES, V149, P1, DOI 10.1016/S0378-5955(00)00168-4 FELLERS GM, 1979, ANIM BEHAV, V27, P107, DOI 10.1016/0003-3472(79)90131-3 Feng A.S., 2007, HEARING SOUND COMMUN, P323 FENG AS, 1981, HEARING RES, V5, P201, DOI 10.1016/0378-5955(81)90046-0 FUZESSERY ZM, 1982, J COMP PHYSIOL, V146, P471 FUZESSERY ZM, 1983, J COMP PHYSIOL, V150, P333 Gerhardt H. C., 1995, METHODS COMP PSYCHOA, P209 Gerhardt H. Carl, 2001, P73 Gerhardt HC, 2000, BEHAV ECOL, V11, P663, DOI 10.1093/beheco/11.6.663 GERHARDT HC, 1981, J COMP PHYSIOL, V144, P9 Gerhardt HC, 2007, SPR HDB AUD, V28, P113 GERHARDT HC, 1988, ANIM BEHAV, V36, P1247, DOI 10.1016/S0003-3472(88)80090-3 Gerhardt HC, 2005, ANIM BEHAV, V70, P39, DOI 10.1016/j.anbehav.200409.021 GERHARDT HC, 1976, NATURE, V261, P692, DOI 10.1038/261692a0 Gerhardt HC, 2007, J EXP BIOL, V210, P2990, DOI 10.1242/jeb.006312 GERHARDT HC, 1975, J COMP PHYSIOL, V102, P1 Gerhardt HC, 2002, ACOUSTIC COMMUNICATI Gilkey RH, 1995, HUM FACTORS, V37, P835, DOI 10.1518/001872095778995580 HILLERY CM, 1984, COPEIA, P844 Hoffman HS, 1996, BEHAV RES METH INSTR, V28, P357, DOI 10.3758/BF03200513 Holt MM, 2007, J ACOUST SOC AM, V121, P1219, DOI 10.1121/1.2404929 HOY RR, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P115 Hulse SH, 2002, ADV STUD BEHAV, V31, P163, DOI 10.1016/S0065-3454(02)80008-0 Ison JR, 1998, J ACOUST SOC AM, V104, P1689, DOI 10.1121/1.424381 JORGENSEN MB, 1991, J COMP PHYSIOL A, V169, P177, DOI 10.1007/BF00215864 JORGENSEN MB, 1991, J COMP PHYSIOL A, V169, P591 Kidd G, 1998, J ACOUST SOC AM, V104, P422, DOI 10.1121/1.423246 Kroodsma DE, 2001, ANIM BEHAV, V61, P1029, DOI 10.1006/anbe.2000.1676 Larsen ON, 2006, J COMP PHYSIOL A, V192, P1063, DOI 10.1007/s00359-006-0138-1 Lin WY, 2003, J NEUROSCI, V23, P8143 Lin WY, 2001, J COMP PHYSIOL A, V187, P699, DOI 10.1007/s00359-001-0241-2 Litovsky RY, 2005, J ACOUST SOC AM, V117, P3091, DOI 10.1121/1.1873913 Manley G.A., 2004, EVOLUTION VERTEBRATE Marshall VT, 2006, ANIM BEHAV, V72, P449, DOI 10.1016/j.anbehav.2006.02.001 McDermott JH, 2009, CURR BIOL, V19, pR1024, DOI 10.1016/j.cub.2009.09.005 MCGREGOR PK, 1992, NATO ADV SCI I A-LIF, V228, P1 MUDRY KM, 1987, J COMP PHYSIOL A, V160, P477, DOI 10.1007/BF00615081 MUDRY KM, 1987, J COMP PHYSIOL A, V161, P407, DOI 10.1007/BF00603966 Narins P.M., 1988, P511 NARINS PM, 1982, J COMP PHYSIOL, V147, P439 Nityananda V, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021191 PLOMP R, 1979, AUDIOLOGY, V18, P43 PLOMP R, 1978, J ACOUST SOC AM, V63, P533, DOI 10.1121/1.381753 PLOMP R, 1979, J ACOUST SOC AM, V66, P1333, DOI 10.1121/1.383554 Popper AN, 1997, BRAIN BEHAV EVOLUT, V50, P213 PTACEK MB, 1994, EVOLUTION, V48, P898, DOI 10.2307/2410495 Ratnam R, 1998, J NEUROPHYSIOL, V80, P2848 RHEINLAENDER J, 1979, J COMP PHYSIOL, V133, P247 Richardson C, 2010, P ROY SOC B-BIOL SCI, V277, P1247, DOI 10.1098/rspb.2009.1836 SABERI K, 1991, J ACOUST SOC AM, V90, P1355, DOI 10.1121/1.401927 SANTON F, 1987, ACUSTICA, V63, P222 Schnupp JWH, 2009, NAT NEUROSCI, V12, P692, DOI 10.1038/nn.2325 Schul J, 2002, P ROY SOC B-BIOL SCI, V269, P1847, DOI 10.1098/rspb.2002.2092 Schwartz J.J., 1995, AUDIT NEUROSCI, V1, P195 SCHWARTZ JJ, 1987, EVOLUTION, V41, P461, DOI 10.2307/2409249 SCHWARTZ JJ, 1989, J COMP PHYSIOL A, V166, P37 Schwartz JJ, 2001, BEHAV ECOL SOCIOBIOL, V49, P443, DOI 10.1007/s002650100317 Shinn-Cunningham BG, 2005, ACTA ACUST UNITED AC, V91, P967 Simmons A. M., 1995, METHODS COMP PSYCHOA, P197 Simmons D.D., 2007, HEARING SOUND COMMUN, V29, P184 Swanson EM, 2007, CAN J ZOOL, V85, P921, DOI 10.1139/Z07-074 TURNBULL SD, 1994, CAN J ZOOL, V72, P1863, DOI 10.1139/z94-253 Velez A, 2010, BEHAV ECOL SOCIOBIOL, V64, P1695, DOI 10.1007/s00265-010-0983-3 Velez A, 2011, ANIM BEHAV, V82, P1319, DOI 10.1016/j.anbehav.2011.09.015 Webster DB, 1992, EVOLUTIONARY BIOL HE Wollerman L, 2002, ANIM BEHAV, V63, P15, DOI 10.1006/anbe.2001.1885 Wollerman L, 1999, ANIM BEHAV, V57, P529, DOI 10.1006/anbe.1998.1013 Zakon H.H., 1988, P125 NR 90 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2012 VL 285 IS 1-2 BP 86 EP 97 DI 10.1016/j.heares.2012.01.003 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 920WN UT WOS:000302439600010 PM 22240459 ER PT J AU Salih, WHM Buytaert, JAN Aerts, JRM Vanderniepen, P Dierick, M Dirckx, JJJ AF Salih, Wasil H. M. Buytaert, Jan A. N. Aerts, Johan R. M. Vanderniepen, Pieter Dierick, Manuel Dirckx, Joris J. J. TI Open access high-resolution 3D morphology models of cat, gerbil, rabbit, rat and human ossicular chains SO HEARING RESEARCH LA English DT Article ID HUMAN MIDDLE-EAR; FINITE-ELEMENT-METHOD; HIGH-FREQUENCY HEARING; MALLEUS-INCUS-COMPLEX; OTITIS-MEDIA; TYMPANIC-MEMBRANE; MONGOLIAN GERBIL; DYNAMIC-BEHAVIOR; CT DATASETS; EARDRUM AB High-resolution 3D morphology models of cat, gerbil, rabbit, rat and human ossicular chains are presented. The models are based on high-resolution CT measurements. The resolution of the CT images, from which the models are segmented, varies from 5.6 to 33.5 mu m. Models are freely available in different formats at our website (http://www.ua.ac.be/bimef/models) for research and educational purposes. (C) 2011 Elsevier B.V. All rights reserved. C1 [Salih, Wasil H. M.; Buytaert, Jan A. N.; Aerts, Johan R. M.; Dirckx, Joris J. J.] Univ Antwerp, Lab BioMed Phys, B-2020 Antwerp, Belgium. [Vanderniepen, Pieter; Dierick, Manuel] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. RP Buytaert, JAN (reprint author), Univ Antwerp, Lab BioMed Phys, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. EM wasil.hashim@ua.ac.be; jan.buytaert@ua.ac.be RI Buytaert, Jan/C-4064-2009 FU Research Foundation - Flanders (FWO-Vlaanderen); Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen) FX This work was supported by the Research Foundation - Flanders (FWO-Vlaanderen) and the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). We thank the Temporal Bone Foundation - Belgium and Bernard Ars for the juvenile human sample, and the Cochlear Technology Center - Belgium for the adult human sample. CR Aernouts J., BIOMECH MOD IN PRESS Aerts JRM, 2010, HEARING RES, V263, P26, DOI 10.1016/j.heares.2009.12.022 Bast T. H., 1949, TEMPORAL BONE EAR Beer HJ, 1999, AUDIOL NEURO-OTOL, V4, P156, DOI 10.1159/000013835 Blayney AW, 1997, ACTA OTO-LARYNGOL, V117, P269, DOI 10.3109/00016489709117785 Buytaert JAN, 2011, JARO-J ASSOC RES OTO, V12, P681, DOI 10.1007/s10162-011-0281-4 DECRAEMER WF, 1989, HEARING RES, V38, P1, DOI 10.1016/0378-5955(89)90123-8 Decraemer W.F., 2002, P SOC PHOTO-OPT INS, P148 Decraemer WF, 2003, JARO, V4, P250, DOI 10.1007/s10162-002-3030-x Dirckx JJJ, 2006, JARO-J ASSOC RES OTO, V7, P339, DOI 10.1007/s10162-006-0048-5 Eiber A, 1999, AUDIOL NEURO-OTOL, V4, P178, DOI 10.1159/000013838 Elkhouri N, 2006, JARO-J ASSOC RES OTO, V7, P399, DOI 10.1007/s10162-006-0055-6 Fay R. R., 1988, HEARING VERTEBRATES Franz Burkhard, 2008, Int Tinnitus J, V14, P101 FULGHUM RS, 1982, INFECT IMMUN, V36, P802 FUNNELL WRJ, 1992, J ACOUST SOC AM, V91, P2082, DOI 10.1121/1.403694 Funnell WRJ, 2005, JARO-J ASSOC RES OTO, V6, P9, DOI 10.1007/s10162-004-5016-3 FUNNELL WRJ, 1983, J ACOUST SOC AM, V73, P1657, DOI 10.1121/1.389386 FUNNELL WRJ, 1987, J ACOUST SOC AM, V81, P1851, DOI 10.1121/1.394749 Gan RZ, 2004, ANN BIOMED ENG, V32, P847, DOI 10.1023/B:ABME.0000030260.22737.53 GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465 HEMILA S, 1995, HEARING RES, V85, P31, DOI 10.1016/0378-5955(95)00031-X Keen J., 1927, J LARYNGOL OTOL, V42, P174, DOI 10.1017/S0022215100030127 Koike T, 2002, J ACOUST SOC AM, V111, P1306, DOI 10.1121/1.1451073 Ladak HM, 1996, J ACOUST SOC AM, V100, P933, DOI 10.1121/1.416205 Lee C. F., 2006, BIOMED ENG-APP BAS C, V18, P214 Lee DH, 2010, HEARING RES, V263, P198, DOI 10.1016/j.heares.2010.01.007 Marcusohn Y, 2011, HEARING RES, V272, P148, DOI 10.1016/j.heares.2010.10.005 Masschaele BC, 2007, NUCL INSTRUM METH A, V580, P266, DOI 10.1016/j.nima.2007.05.099 Mikhael C.S., 2004, 28 ANN C CAN MED BIO, P126 NUMMELA S, 1995, HEARING RES, V85, P18, DOI 10.1016/0378-5955(95)00030-8 Ogura M, 2008, AURIS NASUS LARYNX, V35, P338, DOI 10.1016/j.anl.2007.09.009 OLSZEWSKI J, 1990, ANAT ANZEIGER, V171, P187 Prendergast PJ, 1999, AUDIOL NEURO-OTOL, V4, P185, DOI 10.1159/000013839 Puria S, 2010, HEARING RES, V263, P183, DOI 10.1016/j.heares.2009.10.013 Rodt T, 2002, NEURORADIOLOGY, V44, P783, DOI 10.1007/s00234-002-0784-0 Rosowski JJ, 1999, AUDIOL NEURO-OTOL, V4, P129, DOI 10.1159/000013831 Ruf I, 2009, MAMM BIOL, V74, P100, DOI 10.1016/j.mambio.2008.01.002 Schuknecht H. F., 1974, PATHOLOGY EAR Sim JH, 2008, JARO-J ASSOC RES OTO, V9, P5, DOI 10.1007/s10162-007-0103-x Stenfelt S, 2008, INT J AUDIOL, V47, pS10, DOI 10.1080/14992020802307396 Sun Q, 2002, BIOMECH MODEL MECHAN, V1, P109, DOI 10.1007/s10237-002-0014-z Unur E, 2002, ERCIYES MED J, V24, P57 Von Unge M, 2009, ACTA OTO-LARYNGOL, V129, P261, DOI 10.1080/00016480802239091 WADA H, 1992, J ACOUST SOC AM, V92, P3157, DOI 10.1121/1.404211 Wang HB, 2006, OTOL NEUROTOL, V27, P452, DOI 10.1097/00129492-200606000-00004 Zhao F, 2009, MED ENG PHYS, V31, P907, DOI 10.1016/j.medengphy.2009.06.009 NR 47 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2012 VL 284 IS 1-2 BP 1 EP 5 DI 10.1016/j.heares.2011.12.004 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 915SQ UT WOS:000302048100001 PM 22186087 ER PT J AU Viola, FC De Vos, M Hine, J Sandmann, P Bleeck, S Eyles, J Debener, S AF Viola, Filipa Campos De Vos, Maarten Hine, Jemma Sandmann, Pascale Bleeck, Stefan Eyles, Julie Debener, Stefan TI Semi-automatic attenuation of cochlear implant artifacts for the evaluation of late auditory evoked potentials SO HEARING RESEARCH LA English DT Article ID INDEPENDENT COMPONENT ANALYSIS; SPEECH-PERCEPTION; BRAIN DYNAMICS; EEG ARTIFACT; USERS; RECIPIENTS; CHILDREN AB Electrical artifacts caused by the cochlear implant (Cl) contaminate electroencephalographic (EEG) recordings from implanted individuals and corrupt auditory evoked potentials (AEPs). Independent component analysis (ICA) is efficient in attenuating the electrical Cl artifact and AEPs can be successfully reconstructed. However the manual selection of Cl artifact related independent components (ICs) obtained with ICA is unsatisfactory, since it contains expert-choices and is time consuming. We developed a new procedure to evaluate temporal and topographical properties of ICs and semiautomatically select those components representing electrical Cl artifact. The Cl Artifact Correction (CIAC) algorithm was tested on EEG data from two different studies. The first consists of published datasets from 18 Cl users listening to environmental sounds. Compared to the manual IC selection performed by an expert the sensitivity of CIAC was 91.7% and the specificity 92.3%. After CIAC-based attenuation of Cl artifacts, a high correlation between age and N1-P2 peak-to-peak amplitude was observed in the AEPs, replicating previously reported findings and further confirming the algorithm's validity. In the second study AEPs in response to pure tone and white noise stimuli from 12 Cl users that had also participated in the other study were evaluated. Cl artifacts were attenuated based on the IC selection performed semi-automatically by C1AC and manually by one expert. Again, a correlation between N1 amplitude and age was found. Moreover, a high test-retest reliability for AEP N1 amplitudes and latencies suggested that CIAC-based attenuation reliably preserves plausible individual response characteristics. We conclude that C1AC enables the objective and efficient attenuation of the Cl artifact in EEG recordings, as it provided a reasonable reconstruction of individual AEPs. The systematic pattern of individual differences in N1 amplitudes and latencies observed with different stimuli at different sessions, strongly suggests that C1AC can overcome the electrical artifact problem. Thus CIAC facilitates the use of cortical AEPs as an objective measurement of auditory rehabilitation. (C) 2012 Elsevier B.V. All rights reserved. C1 [Viola, Filipa Campos; De Vos, Maarten; Sandmann, Pascale; Debener, Stefan] Carl von Ossietzky Univ Oldenburg, Dept Psychol, Neuropsychol Lab, D-26111 Oldenburg, Germany. [De Vos, Maarten] Katholieke Univ Leuven, Dept Elect Engn ESAT SCD, Louvain, Belgium. [Hine, Jemma] Univ Southampton, Sch Med, Southampton SO9 5NH, Hants, England. [Bleeck, Stefan; Eyles, Julie] Univ Southampton, Inst Sound & Vibrat Res, Southampton SO9 5NH, Hants, England. [Debener, Stefan] Univ Hosp Jena, Dept Neurol, Biomagnet Ctr, Jena, Germany. RP Debener, S (reprint author), Carl von Ossietzky Univ Oldenburg, Dept Psychol, Neuropsychol Lab, D-26111 Oldenburg, Germany. EM stefan.debener@uni-oldenburg.de RI Bleeck, Stefan/A-1178-2013 FU Fundacao para a Ciencia e Tecnologia, Lisbon, Portugal [SFRH/BD/37662/2007]; Alexander von-Humboldt stipendium; Swiss National Science Foundation [PBZHP3-128462] FX F.C.V. was funded by the Fundacao para a Ciencia e Tecnologia, Lisbon, Portugal (SFRH/BD/37662/2007). M.D.V. was supported by a Alexander von-Humboldt stipendium. P.S. was supported by the Swiss National Science Foundation (grant number PBZHP3-128462). The authors would like to thank A. Barks for assistance with recording the data and J.D. Thorne for helpful discussions. CR Debener S, 2010, SIMULTANEOUS EEG FMR, P121 Debener S, 2008, PSYCHOPHYSIOLOGY, V45, P20, DOI 10.1111/j.1469-8986.2007.00610.x Delorme A, 2007, NEUROIMAGE, V34, P1443, DOI 10.1016/j.neuroimage.2006.11.004 Delorme A, 2004, J NEUROSCI METH, V134, P9, DOI 10.1016/j.jneumeth.2003.10.009 Friesen LM, 2010, HEARING RES, V259, P95, DOI 10.1016/j.heares.2009.10.012 Gilley PM, 2006, CLIN NEUROPHYSIOL, V117, P1772, DOI 10.1016/j.clinph.2006.04.018 Gilley PM, 2008, BRAIN RES, V1239, P56, DOI 10.1016/j.brainres.2008.08.026 Gramann K, 2010, J COGNITIVE NEUROSCI, V22, P2836, DOI 10.1162/jocn.2009.21369 Henkin Y, 2009, AUDIOL NEURO-OTOL, V14, P39, DOI 10.1159/000153434 Kelly AS, 2005, CLIN NEUROPHYSIOL, V116, P1235, DOI 10.1016/j.clinph.2005.02.011 Kileny PR, 2007, EAR HEARING, V28, p124S, DOI 10.1097/AUD.0b013e318031549d Koelsch S, 2004, CLIN NEUROPHYSIOL, V115, P966, DOI 10.1016/j.clinph.2003.11.032 Lonka E, 2004, AUDIOL NEURO-OTOL, V9, P160, DOI 10.1159/000077265 Makeig S, 2004, TRENDS COGN SCI, V8, P204, DOI 10.1016/j.tics.2004.03.008 McNeill Celene, 2009, Cochlear Implants Int, V10 Suppl 1, P78, DOI 10.1002/cii.391 Mognon A, 2010, PSYCHOPHYSIOLOGY Moore DR, 2009, NAT NEUROSCI, V12, P686, DOI 10.1038/nn.2326 Nolan H, 2010, J NEUROSCI METH, V192, P152, DOI 10.1016/j.jneumeth.2010.07.015 Onton J, 2006, NEUROSCI BIOBEHAV R, V30, P808, DOI 10.1016/j.neubiorev.2006.06.007 Oostenveld R, 2002, HUM BRAIN MAPP, V17, P179, DOI 10.1002/hbm.10061 Pantev C, 2006, CEREB CORTEX, V16, P31, DOI 10.1093/cercor/bhi081 Sandmann P, 2010, CLIN NEUROPHYSIOL, V121, P2070, DOI 10.1016/j.clinph.2010.04.032 Sandmann P, 2009, BRAIN, V132, P1967, DOI 10.1093/brain/awp034 Sharma A, 2005, HEARING RES, V203, P134, DOI 10.1016/j.heares.2004.12.010 Viola FC, 2009, CLIN NEUROPHYSIOL, V120, P868, DOI 10.1016/j.clinph.2009.01.015 Viola FC, 2011, PSYCHOPHYSIOLOGY, V48, P1470, DOI 10.1111/j.1469-8986.2011.01224.x Walhovd KB, 2002, INT J PSYCHOPHYSIOL, V46, P29, DOI 10.1016/S0167-8760(02)00039-9 Wilson BS, 2008, HEARING RES, V242, P3, DOI 10.1016/j.heares.2008.06.005 Wong DDE, 2009, IEEE T BIO-MED ENG, V56, P2851, DOI 10.1109/TBME.2009.2029239 Zhang FW, 2011, HEARING RES, V275, P17, DOI 10.1016/j.heares.2010.11.007 Zhang FW, 2010, INT J AUDIOL, V49, P277, DOI 10.3109/14992020903321759 NR 31 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2012 VL 284 IS 1-2 BP 6 EP 15 DI 10.1016/j.heares.2011.12.010 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 915SQ UT WOS:000302048100002 PM 22234161 ER PT J AU Landsberger, DM Padilla, M Srinivasan, AG AF Landsberger, David M. Padilla, Monica Srinivasan, Arthi G. TI Reducing current spread using current focusing in cochlear implant users SO HEARING RESEARCH LA English DT Article ID AUDITORY CORTICAL IMAGES; ELECTRODE CONFIGURATION; ELECTRICAL-STIMULATION; SPECTRAL RESOLUTION; SPEECH-PERCEPTION; INFERIOR COLLICULUS; PARTIAL TRIPOLAR; EXCITATION; NOISE; RECOGNITION AB Cochlear implant performance in difficult listening situations is limited by channel interactions. It is known that partial tripolar (PTP) stimulation reduces the spread of excitation (SOE). However, the greater the degree of current focusing, the greater the absolute current required to maintain a fixed loudness. As current increases, so does SOE. In experiment 1, the SOE for equally loud stimuli with different degrees of current focusing is measured via a forward-masking procedure. Results suggest that at a fixed loudness, some but not all patients have a reduced SOE with PTP stimulation. Therefore, it seems likely that a PTP speech processing strategy could improve spectral resolution for only those patients with a reduced SOE. In experiment 2, the ability to discriminate different levels of current focusing was measured. In experiment 3, patients subjectively scaled verbal descriptors of stimuli of various levels of current focusing. Both discrimination and scaling of verbal descriptors correlated well with SOE reduction, suggesting that either technique have the potential to be used clinically to quickly predict which patients would receive benefit from a current focusing strategy. (C) 2012 Elsevier B.V. All rights reserved. C1 [Landsberger, David M.; Padilla, Monica; Srinivasan, Arthi G.] House Res Inst, Dept Commun & Auditory Neurosci, Los Angeles, CA 90057 USA. [Srinivasan, Arthi G.] Univ So Calif, Dept Biomed Engn, Los Angeles, CA 90089 USA. RP Landsberger, DM (reprint author), House Res Inst, Dept Commun & Auditory Neurosci, 2100 W 3rd St, Los Angeles, CA 90057 USA. EM dlandsberger@hei.org CR Arenberg JG, 2000, JARO, V1, P183, DOI 10.1007/sl01620010036 Berenstein CK, 2008, EAR HEARING, V29, P250 Berenstein C.K., 2007, COMMUNICATION Bierer JA, 2010, EAR HEARING, V31, P247, DOI 10.1097/AUD.0b013e3181c7daf4 Bierer JA, 2010, HEARING RES, V270, P134, DOI 10.1016/j.heares.2010.08.006 Bierer JA, 2007, J ACOUST SOC AM, V121, P1642, DOI 10.1121/1.2436712 Bierer JA, 2002, J NEUROPHYSIOL, V87, P478 Bingabr M, 2008, HEARING RES, V241, P73, DOI 10.1016/j.heares.2008.04.012 Bonham BH, 2008, HEARING RES, V242, P141, DOI 10.1016/j.heares.2008.03.006 Briaire JJ, 2000, HEARING RES, V148, P18, DOI 10.1016/S0378-5955(00)00104-0 Chatterjee M, 1998, J ACOUST SOC AM, V103, P2565, DOI 10.1121/1.422777 Filipo R, 2004, ACTA OTO-LARYNGOL, V124, P368, DOI 10.1080/00016480410016324 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Fu QJ, 2005, JARO-J ASSOC RES OTO, V6, P19, DOI 10.1007/s10162-004-5024-3 Fu QJ, 1998, J ACOUST SOC AM, V104, P3586, DOI 10.1121/1.423941 Geurts L, 2004, J ACOUST SOC AM, V115, P844, DOI 10.1121/1.1642623 HACKER MJ, 1979, PERCEPT PSYCHOPHYS, V26, P168, DOI 10.3758/BF03208311 JESTEADT W, 1980, PERCEPT PSYCHOPHYS, V28, P85, DOI 10.3758/BF03204321 Jolly CN, 1996, IEEE T BIO-MED ENG, V43, P857, DOI 10.1109/10.508549 Koch DB, 2007, EAR HEARING, V28, p38S, DOI 10.1097/AUD.0b013e31803150de Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6 Kwon BJ, 2006, J ACOUST SOC AM, V119, P2994, DOI 10.1121/1.2184128 Landsberger DM, 2009, HEARING RES, V254, P34, DOI 10.1016/j.heares.2009.04.007 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Litvak LM, 2007, J ACOUST SOC AM, V122, P967, DOI 10.1121/1.2749414 Marzalek M.S., 2007, EFFECTS MULTIELECTRO MCDERMOTT HJ, 1994, J ACOUST SOC AM, V96, P155, DOI 10.1121/1.410475 Mens LHM, 2005, OTOL NEUROTOL, V26, P957, DOI 10.1097/01.mao.0000185060.74339.9d Pfingst BE, 2001, JARO, V2, P87 Saoji A.A., 2007, COMMUNICATION Shannon Robert V, 2004, Acta Otolaryngol Suppl, P50 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a Snyder RL, 2004, JARO-J ASSOC RES OTO, V5, P305, DOI 10.1007/s10162-004-4026-5 Spelman F A, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P131 Srinivasan AG, 2010, HEARING RES, V270, P89, DOI 10.1016/j.heares.2010.09.004 Vandali AE, 2000, EAR HEARING, V21, P608, DOI 10.1097/00003446-200012000-00008 NR 37 TC 24 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2012 VL 284 IS 1-2 BP 16 EP 24 DI 10.1016/j.heares.2011.12.009 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 915SQ UT WOS:000302048100003 PM 22230370 ER PT J AU Zhou, N Xu, L Pfingst, BE AF Zhou, Ning Xu, Li Pfingst, Bryan E. TI Characteristics of detection thresholds and maximum comfortable loudness levels as a function of pulse rate in human cochlear implant users SO HEARING RESEARCH LA English DT Article ID PULSATILE ELECTRICAL-STIMULATION; MODULATION DETECTION; INTENSITY DISCRIMINATION; ELECTRODE CONFIGURATION; TEMPORAL INTEGRATION; NEURAL DEGENERATION; SPEECH-PERCEPTION; POSITION; SYSTEM; RECOGNITION AB The ability of an implanted ear to integrate multiple pulses, as measured by the slopes of detection threshold level (T level) versus pulse rate functions, may reflect cochlear health in the cochlea, as suggested by previous animal studies (Kang et al., 2010; Pfingst et al., 2011). In the current study, we examined the slopes of T level versus pulse rate functions in human subjects with cochlear implants. Typically, T levels decrease as a function of pulse rate, consistent with a multipulse integration mechanism. The magnitudes of the slopes of the T level versus pulse rate functions obtained from the human subjects were comparable to those reported in the animal studies. The slopes varied across stimulation sites, but did not change systematically along the tonotopic axis. This suggests that the slopes are dependent on local conditions near the individual stimulation sites. The characteristics of these functions were also similar to those found in animals in that the slopes for higher pulse rates were steeper than those for the lower pulse rates, consistent with a combined effect of multipulse integration and cumulative partial depolarization mechanisms at rates above 1000 pps. The maximum comfortable loudness level (C level) versus pulse rate functions were also examined to determine the effect of level on the slopes. Slopes of C-level functions were shallower than those for the T-level functions and were not correlated with those of the T-level functions, so the mechanisms underlying these two functions are probably not identical. The slopes of the T- or C-level functions were not dependent on stimulus-current level. Based on these results, we suggest that slopes of T level versus pulse rate functions might be a useful measure for estimating nerve survival in the cochlea in regions close to the stimulation sites. (C) 2012 Elsevier B.V. All rights reserved. C1 [Zhou, Ning; Xu, Li; Pfingst, Bryan E.] Univ Michigan, Dept Otolaryngol, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. [Xu, Li] Ohio Univ, Sch Rehabil & Commun Sci, Athens, OH 45701 USA. RP Pfingst, BE (reprint author), Univ Michigan, Dept Otolaryngol, Kresge Hearing Res Inst, 1301 E Ann St, Ann Arbor, MI 48109 USA. EM bpfingst@umich.edu FU NIH/NIDCD [R01 DC004312, R01 DC010786, T32 DC00011] FX We express appreciation to Catherine Thompson for assistance with subject recruitment and data collection and to our research subjects for their cheerful participation in this work. The work was supported by NIH/NIDCD grants R01 DC004312, R01 DC010786 and T32 DC00011. CR Chatterjee M, 2003, J ACOUST SOC AM, V113, P2042, DOI 10.1121/1.1555613 Chatterjee Monita, 2000, Journal of the Acoustical Society of America, V107, P1637, DOI 10.1121/1.428448 Donaldson GS, 1997, J ACOUST SOC AM, V101, P3706, DOI 10.1121/1.418330 Fu QJ, 2005, HEARING RES, V202, P55, DOI 10.1016/j.heares.2004.10.004 Galvin JJ, 2005, JARO-J ASSOC RES OTO, V6, P269, DOI 10.1007/s10162-005-0007-6 Galvin JJ, 2009, HEARING RES, V250, P46, DOI 10.1016/j.heares.2009.01.009 Garadat SN, 2011, HEARING RES, V275, P130, DOI 10.1016/j.heares.2010.12.011 GERKEN GM, 1990, J ACOUST SOC AM, V88, P767, DOI 10.1121/1.399726 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HINOJOSA R, 1980, ARCH OTOLARYNGOL, V106, P193 Holden LK, 2002, EAR HEARING, V23, P463, DOI 10.1097/01.AUD.0000034718.53595.99 Johnson L., 1981, Alaska Department of Fish and Game Final Report, P1 Kang SY, 2010, JARO-J ASSOC RES OTO, V11, P245, DOI 10.1007/s10162-009-0194-7 Kreft HA, 2004, J ACOUST SOC AM, V116, P2258, DOI 10.1121/1.1786871 Kreft HA, 2004, J ACOUST SOC AM, V115, P1885, DOI 10.1121/1.1701895 Loizou PC, 2000, J ACOUST SOC AM, V108, P790, DOI 10.1121/1.429612 Long C. J., 2010, OBJ MEAS AUD IMPL 6 McKay CM, 1998, J ACOUST SOC AM, V104, P1061, DOI 10.1121/1.423316 McKay CM, 2001, J ACOUST SOC AM, V110, P1514, DOI 10.1121/1.1394222 Middlebrooks JC, 2004, J ACOUST SOC AM, V116, P452, DOI 10.1121/1.1760795 Middlebrooks JC, 2008, J NEUROPHYSIOL, V100, P92, DOI 10.1152/jn.01114.2007 Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5 Pfingst BE, 2011, J ACOUST SOC AM, V130, P3954, DOI 10.1121/1.3651820 Pfingst BE, 2007, J ACOUST SOC AM, V121, P2236, DOI 10.1121/1.2537501 PFINGST BE, 1993, J ACOUST SOC AM, V94, P1287, DOI 10.1121/1.408155 Pfingst BE, 2004, JARO-J ASSOC RES OTO, V5, P11, DOI 10.1007/s10162-003-3051-0 Plant K, 2007, EAR HEARING, V28, P381, DOI 10.1097/AUD.0b013e31804793ac Roland JT, 2000, AM J OTOL, V21, P218, DOI 10.1016/S0196-0709(00)80012-5 Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3 Saunders C.E., 2002, EAR HEARING, V23, p28S SHANNON RV, 1985, HEARING RES, V18, P135, DOI 10.1016/0378-5955(85)90005-X Shannon RV, 2011, AUDIOL NEURO-OTOL, V16, P113, DOI 10.1159/000315115 SHANNON RV, 1989, HEARING RES, V40, P197, DOI 10.1016/0378-5955(89)90160-3 Skinner MW, 2002, JARO-J ASSOC RES OTO, V3, P332, DOI 10.1007/s101620020013 Skinner M W, 2000, J Am Acad Audiol, V11, P203 Tykocinski M, 2000, AM J OTOL, V21, P205, DOI 10.1016/S0196-0709(00)80010-1 Vandali AE, 2000, EAR HEARING, V21, P608, DOI 10.1097/00003446-200012000-00008 Verschuur CA, 2005, INT J AUDIOL, V44, P58, DOI 10.1080/14992020400022488 ZENG FG, 1994, SCIENCE, V264, P564, DOI 10.1126/science.8160013 NR 39 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2012 VL 284 IS 1-2 BP 25 EP 32 DI 10.1016/j.heares.2011.12.008 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 915SQ UT WOS:000302048100004 PM 22245714 ER PT J AU Chen, FQ Hill, K Guan, YJ Schacht, J Sha, SH AF Chen, Fu-Quan Hill, Kayla Guan, Ya-Jun Schacht, Jochen Sha, Su-Hua TI Activation of apoptotic pathways in the absence of cell death in an inner-ear immortomouse cell line SO HEARING RESEARCH LA English DT Article ID HAIR-CELLS; IN-VITRO; MOUSE; OTOTOXICITY; GENTAMICIN; FIBROBLASTS; CASPASES; NEOMYCIN; ORGAN; CORTI AB Aminoglycoside antibiotics and cisplatin (CDDP) are the major ototoxins of clinical medicine due to their capacity to cause significant and permanent hearing loss by targeting the mammalian sensory cells. Understanding the pathogenesis of damage is the first step in designing effective prevention of drug-induced hearing loss. In-vitro systems greatly enhance the efficiency of biochemical and molecular investigations through ease of access and manipulation. HEI-OC1, an inner ear cell line derived from the immortomouse, expresses markers for auditory sensory cells and, therefore, is a potential tool to study the ototoxic mechanisms of drugs like aminoglycoside antibiotics and CDDP HEI-OC1 cells (and also HeLa cells) efficiently take up fluorescently tagged gentamicin and respond to drug treatment with changes in cell death and survival signaling pathways. Within hours, the c-Jun N-terminal kinase pathway and the transcription factor AP-1 were activated and at later times, the "executioner caspase", caspase-3. These responses were robust and elicited by both gentamicin and kanamycin. However, despite the initiation of apoptotic pathways and transient changes in nuclear morphology, cell death was not observed following aminoglycoside treatment, while administration of CDDP led to significant cell death as determined by flow cytometric measurements: beta-galactosidase analysis ruled out senescence in gentamicin-treated cells. The ability to withstand treatment with aminoglycosides but not with CDDP suggests that this cell line might be helpful in providing some insight into the differential actions of the two ototoxic drugs. (C) 2011 Elsevier B.V. All rights reserved. C1 [Chen, Fu-Quan; Hill, Kayla; Sha, Su-Hua] Med Univ S Carolina, Coll Med, Dept Pathol & Lab Med, Charleston, SC 29425 USA. [Guan, Ya-Jun; Schacht, Jochen] Univ Michigan, Dept Otolaryngol, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. [Chen, Fu-Quan] Fourth Mil Med Univ, Xijing Hosp, Dept Otolaryngol Head & Neck Surg, Xian 710032, Peoples R China. RP Sha, SH (reprint author), Med Univ S Carolina, Coll Med, Dept Pathol & Lab Med, 39 Sabin St, Charleston, SC 29425 USA. EM shasu@musc.edu FU National Center for Research Resources [C06 RR014516]; Cancer Center [P30 CA138313]; National Institute on Deafness and Other Communication Disorders, National Institutes of Health [R01 DC-03685, P30 DC-05188] FX This work was partially conducted in Walton Research Building renovated space supported by grant C06 RR014516 from the National Center for Research Resources. Imaging facilities for partial work in this research were supported, in part, by the Cancer Center Support Grant P30 CA138313 to the Hollings Cancer Center, Medical University of South Carolina. The research project described was supported by grant R01 DC-03685 and a core center grant P30 DC-05188 from the National Institute on Deafness and Other Communication Disorders, National Institutes of Health. CR Alharazneh A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022347 Barber RD, 2000, MOL NEUROBIOL, V21, P161 Bertolaso L, 2003, AUDIOL NEURO-OTOL, V8, P38, DOI 10.1159/000067890 Chen FQ, 2009, J NEUROCHEM, V108, P1226, DOI 10.1111/j.1471-4159.2009.05871.x Chen QM, 2000, BIOCHEM J, V347, P543, DOI 10.1042/0264-6021:3470543 Choung YH, 2009, NEUROSCIENCE, V161, P214, DOI 10.1016/j.neuroscience.2009.02.085 Cunningham LL, 2004, J NEUROBIOL, V60, P89, DOI 10.1002/neu.20006 Cunningham LL, 2002, J NEUROSCI, V22, P8532 D'Amelio M, 2010, Cell Death Differ, V17, P1104, DOI 10.1038/cdd.2009.180 DIMRI GP, 1995, P NATL ACAD SCI USA, V92, P9363, DOI 10.1073/pnas.92.20.9363 El Mouedden M, 2000, TOXICOL SCI, V56, P229, DOI 10.1093/toxsci/56.1.229 Feinstein-Rotkopf Y, 2009, APOPTOSIS, V14, P980, DOI 10.1007/s10495-009-0346-6 Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X Germiller JA, 2004, DEV DYNAM, V231, P815, DOI 10.1002/dvdy.20186 Helyer R, 2007, EUR J NEUROSCI, V25, P957, DOI 10.1111/j.1460-9568.2007.05338.x JAT PS, 1991, P NATL ACAD SCI USA, V88, P5096, DOI 10.1073/pnas.88.12.5096 Jiang H, 2006, CELL DEATH DIFFER, V13, P20, DOI 10.1038/sj.cdd.4401706 Jiang HY, 2005, J NEUROSCI RES, V79, P644, DOI 10.1002/jnr.20392 Kalinec GM, 2003, AUDIOL NEURO-OTOL, V8, P177, DOI 10.1159/000071059 Kuranaga E, 2007, TRENDS CELL BIOL, V17, P135, DOI 10.1016/j.tcb.2007.01.001 Lee J. E., 2004, ACTA OTO-LARYNGOL, V551, P69 LENDAHL U, 1990, TRENDS NEUROSCI, V13, P132, DOI 10.1016/0166-2236(90)90004-T Rybak L.P., 2008, SPR HDB AUD, P219 Saenz-Robles MT, 2001, ONCOGENE, V20, P7899, DOI 10.1038/sj.onc.1204936 Seigel G M, 1999, Mol Vis, V5, P4 Stennicke HR, 1998, BBA-PROTEIN STRUCT M, V1387, P17, DOI 10.1016/S0167-4838(98)00133-2 Xie J, 2011, HEARING RES, V281, P28, DOI 10.1016/j.heares.2011.05.008 Yikoski J., 2002, HEARING RES, V166, P33 NR 28 TC 10 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2012 VL 284 IS 1-2 BP 33 EP 41 DI 10.1016/j.heares.2011.12.007 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 915SQ UT WOS:000302048100005 PM 22240458 ER PT J AU Kundu, S Munjal, C Tyagi, N Sen, U Tyagi, AC Tyagi, SC AF Kundu, Soumi Munjal, Charu Tyagi, Neetu Sen, Utpal Tyagi, Aaron C. Tyagi, Suresh C. TI Folic acid improves inner ear vascularization in hyperhomocysteinemic mice SO HEARING RESEARCH LA English DT Article ID HEARING-LOSS; BLOOD-FLOW; ENDOTHELIAL DYSFUNCTION; GENE POLYMORPHISMS; STRIA VASCULARIS; ETA RECEPTORS; COCHLEAR; FOLATE; HOMOCYSTEINE; ENDOLYMPH AB More than 29 million adults in the United States have been diagnosed with hearing loss. Interestingly, elevated homocysteine (Hcy) levels, known as hyperhomocysteinemia (HHcy), are also associated with impaired hearing. However, the associated mechanism remains obscure. The collagen receptor such as discoidin domain receptor 1 and matrix metalloproteinase (MMP) play a significant role in inner ear structure and function. We hypothesize that HHcy increases hearing thresholds by compromise in inner ear vasculature resulted from impaired Hcy metabolism, increased oxidative stress, collagen IVa and collagen Ia turnover. The treatment with folic acid (FA) protects elevated hearing thresholds and prevents reduction in vessel density by lowering abundant collagen deposition and oxidative stress in inner ear. To test this hypothesis we employed 8 weeks old male wild type (WT), cystathionine-beta-synthase heterozygote knockout (CBS+/-) mice, WT + FA (0.0057 mu g/g/day, equivalent to a 400 mu g/70 kg/day human dose in drinking water); and CBS(+/-) +FA. The mice were treated for four weeks. The hearing thresholds were determined by recording the auditory brainstem responses. Integrity of vessels was analyzed by perfusion of horseradish peroxidase (HRP) tracer. Endothelial permeability was assessed, which indicated restoration of HRP leakage by FA treatment. A total Hcy level was increased in stria vascularis (SV) and spiral ligament (SL) of CBS+/- mice which was lowered by FA. Interestingly, FA treatment lowered Col IVa Immunostaining by affecting its turnover. The levels of MMP-2, -9, methylenetetrahydrofolate reductase (MTHFR) and cystathione gamma lyase (CSE) were measured by Western blot analysis. The oxidative stress was high in SV and SL of CBS+/- compared to WT however the treatment with FA lowered oxidative stress in CBS+/- mice. These data suggested that hearing loss in CBS+/- mice was primarily due to leakage in inner ear circulation, also partly by induced collagen imbalance, increase in Hcy and oxidative stress in inner ear. (C) 2011 Elsevier B.V. All rights reserved. C1 [Munjal, Charu; Tyagi, Neetu; Sen, Utpal; Tyagi, Aaron C.; Tyagi, Suresh C.] Univ Louisville, Dept Physiol & Biophys, Sch Med, Louisville, KY 40202 USA. [Kundu, Soumi] Uppsala Univ, Dept Genet & Pathol, Rudbecklab PLAN 3 C11, S-75185 Uppsala, Sweden. RP Tyagi, N (reprint author), Univ Louisville, Hlth Sci Ctr, Dept Physiol & Biophys, A-1115, Louisville, KY 40292 USA. EM n0tyag01@louisville.edu FU NIH [HL-71010, NS51568] FX This work was supported by NIH grants: HL-71010 and NS51568 to SCT. CR ANGELBORG C, 1985, ANN OTO RHINOL LARYN, V94, P181 Banfi B, 2004, J BIOL CHEM, V279, P46065, DOI 10.1074/jbc.M403046200 Capaccio P, 2005, GENET MED, V7, P206, DOI 10.1097/01.GIM.0000157817.92509.45 Clarke ZL, 2006, EUR J PHARMACOL, V551, P92, DOI 10.1016/j.ejphar.2006.08.085 Cohen-Salmon M, 2007, P NATL ACAD SCI USA, V104, P6229, DOI 10.1073/pnas.0605108104 Gates GA, 2005, LANCET, V366, P1111, DOI 10.1016/S0140-6736(05)67423-5 Gopinath B, 2010, J NUTR, V140, P1469, DOI 10.3945/jn.110.122010 Hausler R, 2000, ACTA OTO-LARYNGOL, V120, P689 Kumar M, 2008, NEUROCHEM INT, V53, P214, DOI 10.1016/j.neuint.2008.07.008 Kundu S, 2009, MOL CELL BIOCHEM, V332, P215, DOI 10.1007/s11010-009-0194-2 Lauhio A., 2010, ANN MED Liu D, 1988, Zhonghua Er Bi Yan Hou Ke Za Zhi, V23, P342 Mees K, 2002, LARYNGO RHINO OTOL, V81, P465, DOI 10.1055/s-2002-33290 Miller A, 2002, AM J HYPERTENS, V15, P157, DOI 10.1016/S0895-7061(01)02286-5 Mujumdar VS, 2000, J CELL PHYSIOL, V183, P28, DOI 10.1002/(SICI)1097-4652(200004)183:1<28::AID-JCP4>3.0.CO;2-O Munjal C, 2011, MOL CELL BIOCHEM, V348, P99, DOI 10.1007/s11010-010-0643-y NAKAI Y, 1992, SCANNING MICROSCOPY, V6, P1097 Nakai Y., 1992, SCANNING MICROSCOPY, V6, P1103 Polyzos SA, 2010, J BONE MINER METAB, V28, P314, DOI 10.1007/s00774-009-0131-1 Qipshidze N, 2010, J CELL PHYSL QUIRK WS, 1995, AM J OTOL, V16, P322 SAKAGAMI M, 1984, ACTA OTO-LARYNGOL, P256 Scherer EQ, 2001, J MEMBRANE BIOL, V182, P183, DOI 10.1007/s00232-001-0041-1 Scherer EQ, 2002, ADV OTO-RHINO-LARYNG, V59, P58 Setz C, 2011, NEUROSCIENCE, V181, P28, DOI 10.1016/j.neuroscience.2011.02.043 STERKERS O, 1982, AM J PHYSIOL, V243, pF173 STERKERS O, 1982, AM J OTOLARYNG, V3, P367, DOI 10.1016/S0196-0709(82)80012-4 Symons JD, 2006, ARTERIOSCL THROM VAS, V26, P814, DOI 10.1161/01.ATV.0000204408.01416.16 Uchida Y, 2011, BMC MED GENET, V12, DOI 10.1186/1471-2350-12-35 Wangemann P, 2002, ADV OTO-RHINO-LARYNG, V59, P51 Woo MS, 2008, J NEUROCHEM, V106, P770, DOI 10.1111/j.1471-4159.2008.05430.x Zhen PP, 2011, ATHEROSCLEROSIS, V215, P309, DOI 10.1016/j.atherosclerosis.2010.12.029 zum Gottesberge AMM, 2008, LAB INVEST, V88, P27, DOI 10.1038/labinvest.3700692 zum Gottesberge AMM, 2005, HISTOCHEM CELL BIOL, V124, P507, DOI 10.1007/s00418-005-0027-7 NR 34 TC 2 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2012 VL 284 IS 1-2 BP 42 EP 51 DI 10.1016/j.heares.2011.12.006 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 915SQ UT WOS:000302048100006 PM 22222235 ER PT J AU Hornickel, J Knowles, E Kraus, N AF Hornickel, Jane Knowles, Erica Kraus, Nina TI Test-retest consistency of speech-evoked auditory brainstem responses in typically-developing children SO HEARING RESEARCH LA English DT Article ID IN-NOISE PERCEPTION; PITCH; EXPERIENCE; DIFFERENTIATION; REPRESENTATION; MATURATION; PLASTICITY; LATENCY; SOUNDS; MUSIC AB The click-evoked auditory brainstem response (ABR) is widely used in clinical settings, partly due to its predictability and high test-retest consistency. More recently, the speech-evoked ABR has been used to evaluate subcortical processing of complex signals, allowing for the objective assessment of biological processes underlying auditory function and auditory processing deficits not revealed by responses to clicks. Test-retest reliability of some components of speech-evoked ABRs has been shown for adults and children over the course of months. However, a systematic study of the consistency of the speech-evoked brainstem response in school-age children has not been conducted. In the present study, speech-evoked ABRs were collected from 26 typically-developing children (ages 8-13) at two time points separated by one year. ABRs were collected for /da/ presented in quiet and in a 6-talker babble background noise. Test-retest consistency of response timing, spectral encoding, and signal-to-noise ratio was assessed. Response timing and spectral encoding were highly replicable over the course of one year. The consistency of response timing and spectral encoding found for the speech-evoked ABRs of typically-developing children suggests that the speech-evoked ABR may be a unique tool for research and clinical assessment of auditory function, particularly with respect to auditory-based communication skills. (C) 2011 Elsevier B.V. All rights reserved. C1 [Hornickel, Jane; Knowles, Erica; Kraus, Nina] Northwestern Univ, Dept Commun Sci & Disorders, Auditory Neurosci Lab, Evanston, IL 60208 USA. [Kraus, Nina] Northwestern Univ, Dept Neurobiol & Physiol, Evanston, IL 60208 USA. [Kraus, Nina] Northwestern Univ, Dept Otolaryngol, Evanston, IL 60208 USA. RP Hornickel, J (reprint author), Northwestern Univ, Dept Commun Sci & Disorders, Auditory Neurosci Lab, 2240 Campus Dr, Evanston, IL 60208 USA. EM j-hornickel@northwestern.edu FU National Institutes of Health [R01DC01510]; Hugh Knowles Center of Northwestern University FX This work was supported by the National Institutes of Health (R01DC01510) and the Hugh Knowles Center of Northwestern University. The authors would like to thank Steven Zecker for his advisement, Dana Strait, Samira Anderson, and Trent Nicol for their review of the manuscript and the children and their families for participating. CR Aiken SJ, 2008, HEARING RES, V245, P35, DOI 10.1016/j.heares.2008.08.004 Anderson S, 2010, HEARING RES, V270, P151, DOI 10.1016/j.heares.2010.08.001 Anderson S, 2010, J NEUROSCI, V30, P4922, DOI 10.1523/JNEUROSCI.0107-10.2010 Banai K, 2009, CEREB CORTEX, V19, P2699, DOI 10.1093/cercor/bhp024 Campbell T, 2012, EAR HEARING, V33, P144, DOI 10.1097/AUD.0b013e3182280353 Carcagno S, 2011, JARO-J ASSOC RES OTO, V12, P89, DOI 10.1007/s10162-010-0236-1 EDWARDS RM, 1982, ELECTROEN CLIN NEURO, V53, P125, DOI 10.1016/0013-4694(82)90018-9 Gorga M, 1985, AUDITORY BRAINSTEM R, P49 Graven S, 2008, NEWBORN INFANT NURS, V8, P187, DOI DOI 10.1053/J.NAINR.2008.10.010 Hall J., 2006, NEW HDB AUDITORY EVO Hood L. J., 1998, CLIN APPL AUDITORY B Hornickel J, 2009, P NATL ACAD SCI USA, V106, P13022, DOI 10.1073/pnas.0901123106 Hornickel J, 2011, BEHAV BRAIN RES, V216, P597, DOI 10.1016/j.bbr.2010.08.051 ISSA A, 1995, INT J PEDIATR OTORHI, V32, P35, DOI 10.1016/0165-5876(94)01110-J Johnson KL, 2008, J NEUROSCI, V28, P4000, DOI 10.1523/JNEUROSCI.0012-08.2008 KLATT DH, 1980, J ACOUST SOC AM, V67, P971, DOI 10.1121/1.383940 Kraus N, 2010, NAT REV NEUROSCI, V11, P599, DOI 10.1038/nrn2882 Krishnan A, 2005, COGNITIVE BRAIN RES, V25, P161, DOI 10.1016/j.cogbrainres.2005.05.004 LAUTER JL, 1992, BRIT J AUDIOL, V26, P245, DOI 10.3109/03005369209076643 McGrew K., 2001, TECHNICAL MANUAL WOO Musacchia G, 2007, P NATL ACAD SCI USA, V104, P15894, DOI 10.1073/pnas.0701498104 Musiek FE, 2007, AUDITORY EVOKED POTE, P291 Nunnally J. C., 1959, TESTS MEASUREMENTS A Ponton CW, 2000, CLIN NEUROPHYSIOL, V111, P220, DOI 10.1016/S1388-2457(99)00236-9 Russo N, 2004, CLIN NEUROPHYSIOL, V115, P2021, DOI 10.1016/j.clinph.2004.04.003 Russo NM, 2010, BEHAV BRAIN FUNCT, V6, DOI 10.1186/1744-9081-6-60 Russo NM, 2005, BEHAV BRAIN RES, V156, P95, DOI 10.1016/j.bbr.2004.05.012 SALAMY A, 1984, J CLIN NEUROPHYSIOL, V1, P293, DOI 10.1097/00004691-198407000-00003 Sininger Y. S., 2007, AUDITORY EVOKED POTE, P254 Skoe E, 2010, EAR HEARING, V31, P302, DOI 10.1097/AUD.0b013e3181cdb272 Skoe E, 2011, J NEUROSCI METH, V196, P308, DOI 10.1016/j.jneumeth.2011.01.020 Song JH, 2011, J COGNITIVE NEUROSCI, V23, P2268, DOI 10.1162/jocn.2010.21556 Song JH, 2011, CLIN NEUROPHYSIOL, V122, P346, DOI 10.1016/j.clinph.2010.07.009 Song JH, 2011, CEREB CORTEX, V122, P1890 Syntrillium Software: Syntrillium Software Corporation, 2003, SYNTR SOFTW SYNTR SO Torgensen J. K., 1999, TEST WORD READING EF Torgesen J. K., 1999, EXAMINERS MANUAL TES TUSA RJ, 1994, NEUROLOGY, V44, P528 Wagner R. K., 1999, EXAMINERS MANUAL COM Wible B, 2004, BIOL PSYCHOL, V67, P299, DOI 10.1016/j.biopsycho.2004.02.002 Woerner C., 1999, WECHSLER ABBREVIATED Wong PCM, 2007, NAT NEUROSCI, V10, P420, DOI 10.1038/nn1872 Xu YS, 2006, NEUROREPORT, V17, P1601, DOI 10.1097/01.wnr.0000236865.31705.3a NR 43 TC 13 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2012 VL 284 IS 1-2 BP 52 EP 58 DI 10.1016/j.heares.2011.12.005 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 915SQ UT WOS:000302048100007 PM 22197852 ER PT J AU Banai, K Fisher, S Ganot, R AF Banai, Karen Fisher, Shirley Ganot, Ron TI The effects of context and musical training on auditory temporal-interval discrimination SO HEARING RESEARCH LA English DT Article ID FREQUENCY DISCRIMINATION; DURATION DISCRIMINATION; REVERSE HIERARCHIES; INTRINSIC MODELS; PITCH; PERCEPTION; TIME; SYSTEM; SOUNDS; CORTEX AB Non sensory factors such as stimulus context and musical experience are known to influence auditory frequency discrimination, but whether the context effect extends to auditory temporal processing remains unknown. Whether individual experiences such as musical training alter the context effect is also unknown. The goal of the present study was therefore to investigate the effects of stimulus context and musical experience on auditory temporal-interval discrimination. In experiment 1, temporal-interval discrimination was compared between fixed context conditions in which a single base temporal interval was presented repeatedly across all trials and variable context conditions in which one of two base intervals was randomly presented on each trial. Discrimination was significantly better in the fixed than in the variable context conditions. In experiment 2 temporal discrimination thresholds of musicians and non-musicians were compared across 3 conditions: a fixed context condition in which the target interval was presented repeatedly across trials, and two variable context conditions differing in the frequencies used for the tones marking the temporal intervals. Musicians outperformed non-musicians on all 3 conditions, but the effects of context were similar for the two groups. Overall, it appears that, like frequency discrimination, temporal-interval discrimination benefits from having a fixed reference. Musical experience, while improving performance, did not alter the context effect, suggesting that improved discrimination skills among musicians are probably not an outcome of more sensitive contextual facilitation or predictive coding mechanisms. (C) 2011 Elsevier B.V. All rights reserved. C1 [Banai, Karen; Fisher, Shirley; Ganot, Ron] Univ Haifa, Dept Commun Sci & Disorders, IL-31905 Haifa, Israel. RP Banai, K (reprint author), Univ Haifa, Dept Commun Sci & Disorders, IL-31905 Haifa, Israel. EM kbanai@research.haifa.ac.il FU Israel Science Foundation [LHSI 1842/07]; Marie Curie fellowship [IRG 224763] FX We thank Beverly Wright for helpful discussions of these data, Brian Moore and two anonymous reviewers for comments on a previous version of the manuscript, and Liraz Weissbrod and Oved Izhaki for help with the collection of data for experiment 1. This work was supported by the Israel Science Foundation (LHSI 1842/07) and a Marie Curie fellowship (IRG 224763). Ron Ganot and Shirley Fisher conducted experiment 2 as part of an undergraduate research project mentored by Karen Banai. CR Ahissar M., 2009, LEARNING PERCEPTION, V1, P115, DOI [DOI 10.1556/LP.1.2009.1.9, 10.1556/LP.1.2009.1.9] Ahissar M, 2006, NAT NEUROSCI, V9, P1558, DOI 10.1038/nn1800 Ahissar M, 2009, PHILOS T R SOC B, V364, P285, DOI 10.1098/rstb.2008.0253 Baldeweg T, 2006, TRENDS COGN SCI, V10, P93, DOI 10.1016/j.tics.2006.01.010 Banai K., 2007, DAILY TRAINING REQ A Banai K, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019769 Banai K, 2010, NEUROSCIENCE, V165, P436, DOI 10.1016/j.neuroscience.2009.10.060 Best V, 2008, P NATL ACAD SCI USA, V105, P13174, DOI 10.1073/pnas.0803718105 Bialystok E, 2009, J EXP PSYCHOL HUMAN, V35, P565, DOI 10.1037/a0012735 Bidelman GM, 2011, EUR J NEUROSCI, V33, P530, DOI 10.1111/j.1460-9568.2010.07527.x Bitterman Y, 2008, NATURE, V451, P197, DOI 10.1038/nature06476 Chan AS, 1998, NATURE, V396, P128, DOI 10.1038/24075 Chandrasekaran B, 2009, NEURON, V64, P311, DOI 10.1016/j.neuron.2009.10.006 CREELMAN CD, 1979, J EXP PSYCHOL HUMAN, V5, P146, DOI 10.1037//0096-1523.5.1.146 DIVENYI PL, 1978, PERCEPT PSYCHOPHYS, V24, P429, DOI 10.3758/BF03199740 DONCHIN E, 1981, PSYCHOPHYSIOLOGY, V18, P493, DOI 10.1111/j.1469-8986.1981.tb01815.x Geiser E, 2009, CORTEX, V45, P93, DOI 10.1016/j.cortex.2007.09.010 Harris JA, 2006, PLOS ONE, V1, DOI 10.1371/journal.pone.0000100 HARRIS JD, 1948, AM J PSYCHOL, V61, P309, DOI 10.2307/1417151 Hochstein S, 2002, NEURON, V36, P791, DOI 10.1016/S0896-6273(02)01091-7 Ivry RB, 2008, TRENDS COGN SCI, V12, P273, DOI 10.1016/j.tics.2008.04.002 Karmarkar UR, 2003, LEARN MEMORY, V10, P141, DOI 10.1101/lm.55503 Karmarkar UR, 2007, NEURON, V53, P427, DOI 10.1016/j.neuron.2007.01.006 Kishon-Rabin Liat, 2001, Journal of Basic and Clinical Physiology and Pharmacology, V12, P125 Kraus N, 2010, NAT REV NEUROSCI, V11, P599, DOI 10.1038/nrn2882 Kristjansson A, 2010, ATTEN PERCEPT PSYCHO, V72, P5, DOI 10.3758/APP.72.1.5 Lapid E, 2008, PERCEPT PSYCHOPHYS, V70, P291, DOI 10.3758/PP.70.2.291 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Lockwood AH, 1999, CEREB CORTEX, V9, P65, DOI 10.1093/cercor/9.1.65 Luck S. J., 2005, INTRO EVENT RELATED Mauk MD, 2004, ANNU REV NEUROSCI, V27, P307, DOI 10.1146/annurev.neuro.27.070203.144247 Micheyl C, 2006, HEARING RES, V219, P36, DOI 10.1016/j.heares.2006.05.004 Nahum M, 2008, PLOS BIOL, V6, P978, DOI 10.1371/journal.pbio.0060126 Nahum M, 2010, J NEUROSCI, V30, P1128, DOI 10.1523/JNEUROSCI.1781-09.2010 PANTEV C, 1989, SCIENCE, V246, P486, DOI 10.1126/science.2814476 Parbery-Clark A, 2009, EAR HEARING, V30, P653, DOI 10.1097/AUD.0b013e3181b412e9 Parbery-Clark A, 2009, J NEUROSCI, V29, P14100, DOI 10.1523/JNEUROSCI.3256-09.2009 Prince JB, 2009, J EXP PSYCHOL HUMAN, V35, P1598, DOI 10.1037/a0016456 Rammsayer T, 2006, MUSIC PERCEPT, V24, P37, DOI 10.1525/mp.2006.24.1.37 RAMMSAYER TH, 1991, PERCEPT PSYCHOPHYS, V50, P565, DOI 10.3758/BF03207541 Spencer RMC, 2009, PHILOS T R SOC B, V364, P1853, DOI 10.1098/rstb.2009.0024 Strait DL, 2011, FRONT PSYCHOL, V2, DOI 10.3389/fpsyg.2011.00113 Strait DL, 2010, HEARING RES, V261, P22, DOI 10.1016/j.heares.2009.12.021 Todorovic A, 2011, J NEUROSCI, V31, P9118, DOI 10.1523/JNEUROSCI.1425-11.2011 Tsaliach Inbal, 2010, Journal of Basic and Clinical Physiology and Pharmacology, V21, P221 Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032 Wright BA, 2010, J NEUROSCI, V30, P11635, DOI 10.1523/JNEUROSCI.1441-10.2010 Wright BA, 1997, J NEUROSCI, V17, P3956 Wright BA, 2007, EXP BRAIN RES, V180, P727, DOI 10.1007/s00221-007-0898-z NR 49 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2012 VL 284 IS 1-2 BP 59 EP 66 DI 10.1016/j.heares.2011.12.002 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 915SQ UT WOS:000302048100008 PM 22200608 ER PT J AU Buck, LMJ Winter, MJ Redfern, WS Whitfield, TT AF Buck, Lauren M. J. Winter, Matthew J. Redfern, William S. Whitfield, Tanya T. TI Ototoxin-induced cellular damage in neuromasts disrupts lateral line function in larval zebrafish SO HEARING RESEARCH LA English DT Article ID GOLDFISH CARASSIUS-AURATUS; DICENTRARCHUS-LABRAX L.; RANDOMIZED PHASE-III; DANIO-RERIO; HAIR-CELLS; BEHAVIORAL-CHARACTERISTICS; CADMIUM EXPOSURE; STARTLE RESPONSE; LUNG-CANCER; INNER-EAR AB The ototoxicity of a number of marketed drugs is well documented, and there is an absence of convenient techniques to identify and eliminate this unwanted effect at a pre-clinical stage. We have assessed the validity of the larval zebrafish, or more specifically its lateral line neuromast hair cells, as a microplatescale in vivo surrogate model of mammalian inner ear hair cell responses to ototoxin exposure. Here we describe an investigation of the pathological and functional consequences of hair cell loss in lateral line neuromasts of larval zebrafish after exposure to a range of well known human and non-human mammalian ototoxins. Using a previously described histological assay, we show that hair cell damage occurs in a concentration-dependent fashion following exposure to representatives from a range of drug classes, including the aminoglycoside antibiotics, salicylates and platinum-based chemotherapeutics, as well as a heavy metal. Furthermore, we detail the optimisation of a semi-automated method to analyse the stereotypical startle response in larval zebrafish, and use this to assess the impact of hair cell damage on hearing function in these animals. Functional assessment revealed robust and significant attenuation of the innate startle, rheotactic and avoidance responses of 5 day old zebrafish larvae after treatment with a number of compounds previously shown to induce hair cell damage and loss. Interestingly, a startle reflex (albeit reduced) was still present even after the apparent complete loss of lateral line hair cell fluorescence, suggesting some involvement of the inner ear as well as the lateral line neuromast hair cells in this reflex response. Collectively, these data provide evidence to support the use of the zebrafish as a pre-clinical indicator of drug-induced histological and functional ototoxicity. (C) 2011 Elsevier B.V. All rights reserved. C1 [Buck, Lauren M. J.; Winter, Matthew J.] AstraZeneca Safety Hlth & Environm, Brixham Environm Lab, Freshwater Quarry TQ5 8BA, Brixham, England. [Buck, Lauren M. J.; Whitfield, Tanya T.] Univ Sheffield, MRC Ctr Dev & Biomed Genet, Sheffield S10 2TN, S Yorkshire, England. [Buck, Lauren M. J.; Whitfield, Tanya T.] Univ Sheffield, Dept Biomed Sci, Sheffield S10 2TN, S Yorkshire, England. [Redfern, William S.] AstraZeneca R&D, Safety Assessment UK, Macclesfield SK10 4TG, Cheshire, England. RP Winter, MJ (reprint author), AstraZeneca Safety Hlth & Environm, Brixham Environm Lab, Freshwater Quarry TQ5 8BA, Brixham, England. EM Matthew.Winter@astrazeneca.com; t.whitfield@sheffield.ac.uk FU BBSRC CASE (IPG) [BB/G529424/1]; MRC [G0700091]; Wellcome Trust [GR077544AIA] FX This work was funded by a BBSRC CASE (IPG) award to LMJB between AstraZeneca and TTW (BB/G529424/1). We are grateful to Alan Sharpe and Nick Monk for help with the statistical analyses. We thank the BEL engineering department, Pete Nicholson and Robert Chandler for technical assistance, and aquarium staff at both the MRC CDBG Sheffield and at BEL aquaria for expert care of the zebrafish. We thank Viewpoint Inc. for their equipment, expertise and advice. The MRC CDBG zebrafish aquaria and imaging facilities were supported by the MRC (G0700091), with additional support from the Wellcome Trust (GR077544AIA). CR AHL, 2011, ACT HEAR LOSS ARNOLD GP, 1974, BIOL REV, V49, P515, DOI 10.1111/j.1469-185X.1974.tb01173.x Baker CF, 2001, ENVIRON BIOL FISH, V62, P455, DOI 10.1023/A:1012290912326 Bang PI, 2002, J NEUROSCI METH, V118, P177, DOI 10.1016/S0165-0270(02)00118-8 Best JD, 2008, NEUROPSYCHOPHARMACOL, V33, P1206, DOI 10.1038/sj.npp.1301489 Bever MM, 2002, DEV DYNAM, V223, P536, DOI 10.1002/dvdy.10062 Blaxter J.H.S., 1989, P481 Brack CL, 2012, J CLIN NEUROSCI, V19, P333, DOI 10.1016/j.jocn.2011.06.008 Brignull HR, 2009, BRAIN RES, V1277, P12, DOI 10.1016/j.brainres.2009.02.028 Brunton L. L., 2006, GOODMAN GILMANS PHAR Burgess HA, 2007, J NEUROSCI, V27, P4984, DOI 10.1523/JNEUROSCI.0615-07.2007 Burgess HA, 2009, GENES BRAIN BEHAV, V8, P500, DOI 10.1111/j.1601-183X.2009.00499.x Burgess Harold A., 2008, Briefings in Functional Genomics & Proteomics, V7, P474, DOI 10.1093/bfgp/eln039 Chiu LL, 2008, JARO-J ASSOC RES OTO, V9, P178, DOI 10.1007/s10162-008-0118-y Coffin AB, 2009, HEARING RES, V253, P42, DOI 10.1016/j.heares.2009.03.004 Coffin AB, 2010, ZEBRAFISH, V7, P3, DOI 10.1089/zeb.2009.0639 Colucci G, 2002, CANCER, V94, P902, DOI 10.1002/cncr.10323 Crino L, 1999, J CLIN ONCOL, V17, P3522 Crino L, 1999, J CLIN ONCOL, V17, P2081 DIJKGRAAF S, 1963, BIOL REV, V38, P51, DOI 10.1111/j.1469-185X.1963.tb00654.x Domenici P, 2010, J EXP ZOOL PART A, V313A, P59, DOI 10.1002/jez.580 Faucher K, 2008, ENVIRON POLLUT, V151, P148, DOI 10.1016/j.envpol.2007.02.017 Faucher K, 2006, AQUAT TOXICOL, V76, P278, DOI 10.1016/j.aquatox.2005.10.004 FAY RR, 1974, J EXP BIOL, V61, P243 Froehlicher M, 2009, AQUAT TOXICOL, V95, P307, DOI 10.1016/j.aquatox.2009.04.007 Ghysen A, 2004, CURR OPIN NEUROBIOL, V14, P67, DOI 10.1016/j.conb.2004.01.012 Guthrie OW, 2008, TOXICOLOGY, V249, P91, DOI 10.1016/j.tox.2008.04.015 Harris JA, 2003, JARO, V4, P219, DOI 10.1007/s10162-002-3022-x Hernandez PP, 2006, HEARING RES, V213, P1, DOI 10.1016/j.heares.2005.10.015 Hirose Y., 2011, J ASS RES OTOLARYNGO, V6 Johnson A, 2007, AQUAT TOXICOL, V84, P431, DOI 10.1016/j.aquatox.2007.07.003 Joint Formulary Committee, 2011, BRIT NAT FORM KAUS S, 1987, ACTA OTO-LARYNGOL, V103, P291, DOI 10.3109/00016488709107796 KIMMEL CB, 1995, DEV DYNAM, V203, P253 KIMMEL CB, 1980, J COMP PHYSIOL, V140, P343 KIMMEL CB, 1974, DEV PSYCHOBIOL, V7, P47, DOI 10.1002/dev.420070109 Lee Nam-Su, 2004, Cancer Res Treat, V36, P173, DOI 10.4143/crt.2004.36.3.173 Linbo TL, 2006, ENVIRON TOXICOL CHEM, V25, P597, DOI 10.1897/05-241R.1 Liu KS, 1999, NEURON, V23, P325, DOI 10.1016/S0896-6273(00)80783-7 MATSUURA S, 1971, JPN J PHYSIOL, V21, P579 McHenry MJ, 2009, BIOL LETTERS, V5, P477, DOI 10.1098/rsbl.2009.0048 METCALFE WK, 1985, J COMP NEUROL, V233, P377, DOI 10.1002/cne.902330307 Metcalfe W.K., 1989, P147 Mo W, 2010, BMC NEUROSCI, V11, DOI 10.1186/1471-2202-11-110 Montgomery JC, 1997, NATURE, V389, P960, DOI 10.1038/40135 Murakami SL, 2003, HEARING RES, V186, P47, DOI 10.1016/S0378-5955(03)00259-4 Nusslein-Volhard C., 2002, ZEBRAFISH PRACTICAL Olivari FA, 2008, BRAIN RES, V1244, P1, DOI 10.1016/j.brainres.2008.09.050 Ou HC, 2007, HEARING RES, V233, P46, DOI 10.1016/j.heares.2007.07.003 Ou HC, 2009, JARO-J ASSOC RES OTO, V10, P191, DOI 10.1007/s10162-009-0158-y Ou HC, 2010, DRUG DISCOV TODAY, V15, P265, DOI 10.1016/j.drudis.2010.01.001 Owens KN, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000020 Owens KN, 2009, HEARING RES, V253, P32, DOI 10.1016/j.heares.2009.03.001 Owens KN, 2007, J COMP NEUROL, V502, P522, DOI 10.1002/cne.21345 Palumbo A, 2010, BLOOD, V115, P1873, DOI 10.1182/blood-2009-09-241737 Pinguet F, 2000, CLIN CANCER RES, V6, P57 PRESTAYKO AW, 1979, CANCER TREAT REV, V6, P17, DOI 10.1016/S0305-7372(79)80057-2 Raible DW, 2000, J COMP NEUROL, V421, P189, DOI 10.1002/(SICI)1096-9861(20000529)421:2<189::AID-CNE5>3.0.CO;2-K Ramcharitar J, 2010, J APPL TOXICOL, V30, P536, DOI 10.1002/jat.1523 Ramcharitar JU, 2010, J CLIN NEUROSCI, V17, P103, DOI 10.1016/j.jocn.2009.08.003 Rankin CH, 2009, NEUROBIOL LEARN MEM, V92, P135, DOI 10.1016/j.nlm.2008.09.012 Redfern William S., 2008, Journal of Pharmacological and Toxicological Methods, V58, P110, DOI 10.1016/j.vascn.2008.05.006 RELLER LB, 1973, ANTIMICROB AGENTS CH, V3, P488 RIBNER BS, 1983, J ANTIMICROB CHEMOTH, V12, P387, DOI 10.1093/jac/12.4.387 Rice C, 2011, AQUAT TOXICOL, V105, P600, DOI 10.1016/j.aquatox.2011.08.014 Richards F. M., 2008, Journal of Pharmacological and Toxicological Methods, V58, P50, DOI 10.1016/j.vascn.2008.04.002 Rybak LP, 2007, HEARING RES, V226, P157, DOI 10.1016/j.heares.2006.09.015 RYBAK LP, 1986, ANNU REV PHARMACOL, V26, P79 Rybak LP, 2007, KIDNEY INT, V72, P931, DOI 10.1038/sj.ki.5002434 Salvo F, 2007, J ANTIMICROB CHEMOTH, V60, P121, DOI 10.1093/jac/dkm111 Sandler A, 1999, Oncologist, V4, P241 Santos F, 2006, HEARING RES, V213, P25, DOI 10.1016/j.heares.2005.12.009 Schacht J, 2006, AUDIOL NEURO-OTOL, V11, P1, DOI 10.1159/000088850 Seligmann H, 1996, DRUG SAFETY, V14, P198 THOMPSON RF, 1966, PSYCHOL REV, V73, P16, DOI 10.1037/h0022681 Ton C, 2005, HEARING RES, V208, P79, DOI 10.1016/j.heares.2005.05.005 Van Trump WJ, 2010, HEARING RES, V261, P42, DOI 10.1016/j.heares.2010.01.001 von der Maase H, 1999, ANN ONCOL, V10, P1461, DOI 10.1023/A:1008331111654 Weber DN, 2006, J FISH BIOL, V69, P75, DOI 10.1111/j.1095-8649.2006.01068.x Whitfield TT, 2002, J NEUROBIOL, V53, P157, DOI 10.1002/neu.10123 Whitfield TT, 2002, DEV DYNAM, V223, P427, DOI 10.1002/dvdy.10073 Winter Matthew J., 2008, Journal of Pharmacological and Toxicological Methods, V57, P176, DOI 10.1016/j.vascn.2008.01.004 Xiao T, 2005, DEVELOPMENT, V132, P2955, DOI 10.1242/dev.01861 Zeddies DG, 2005, J EXP BIOL, V208, P1363, DOI 10.1242/jeb.01534 NR 84 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2012 VL 284 IS 1-2 BP 67 EP 81 DI 10.1016/j.heares.2011.12.001 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 915SQ UT WOS:000302048100009 PM 22183155 ER PT J AU Eiber, A Huber, AM Lauxmann, M Chatzimichalis, M Sequeira, D Sim, JH AF Eiber, Albrecht Huber, Alexander M. Lauxmann, Michael Chatzimichalis, Michail Sequeira, Damien Sim, Jae Hoon TI Contribution of complex stapes motion to cochlea activation SO HEARING RESEARCH LA English DT Article ID HUMAN TEMPORAL BONES; SOUND-TRANSMISSION; MIDDLE-EAR; GERBIL; FOOTPLATE; PRESSURE; VELOCITY; SYSTEM AB Classic theories of hearing have considered only a translational component (piston-like component) of the stapes motion as being the effective stimulus for cochlear activation and thus the sensation of hearing. Our previous study (Huber et al., 2008) qualitatively showed that rotational components around the long and short axes of the footplate (rocking-like components) lead to cochlear activation as well. In this study, the contribution of the piston-like and rocking-like components of the stapes motion to cochlea activation was quantitatively investigated with measurements in live guinea pigs and a related mathematical description. The isolated stapes in anesthetized guinea pigs was stimulated by a three-axis piezoelectric actuator, and 3-D motions of the stapes and compound action potential (CAP) of the cochlea were measured simultaneously. The measured values were used to fit a hypothesis of the CAP as a linear combination of the logarithms of the piston-like and rocking-like components. Both the piston-like and rocking-like components activate cochlear responses when they exceed certain thresholds. These thresholds as well as the relation between CAP and intensity of the motion component were different for piston-like and rocking-like components. The threshold was found to be higher and the sensitivity lower for the rocking-like component than the corresponding values for the piston-like component. The influence of the rocking-like component was secondary in cases of piston-dominant motions of the stapes although it may become significant for low amplitudes of the piston-like component. (C) 2011 Elsevier B.V. All rights reserved. C1 [Sim, Jae Hoon] Univ Zurich Hosp, Dept Otorhinolaryngol Head & Neck Surg, CH-8091 Zurich, Switzerland. [Eiber, Albrecht; Lauxmann, Michael] Univ Stuttgart, D-7000 Stuttgart, Germany. RP Sim, JH (reprint author), Univ Zurich Hosp, Dept Otorhinolaryngol Head & Neck Surg, Frauenklin Str 24, CH-8091 Zurich, Switzerland. EM JaeHoon.Sim@usz.ch RI Huber, Alexander/A-2693-2009 OI Huber, Alexander/0000-0002-8888-8483 FU SNF [31000-120237]; DFG [El 231/4-2] FX This work was supported by SNF Grant No. 31000-120237 and DFG Grant El 231/4-2. CR Asai M, 1999, ACTA OTO-LARYNGOL, V119, P356 Bekesy G, 1960, EXPT HEARING Breuninger C., 2008, THESIS U STUTTGART S Dallos P., 1973, AUDITORY PERIPHERY B de La Rochefoucauld O, 2008, JARO-J ASSOC RES OTO, V9, P161, DOI 10.1007/s10162-008-0115-1 Decraemer W., 1999, FUNCTION MECH NORMAL, P23 Decraemer WF, 2007, J ACOUST SOC AM, V121, P2774, DOI 10.1121/1.2709843 Dodson J.M., 2001, THESIS U MICHIGAN AN Eiber A, 2007, MIDDLE EAR MECHANICS IN RESEARCH AND OTOLOGY, P123, DOI 10.1142/9789812708694_0016 Gundersen T, 1971, PROSTHESES OSSICULAR GYO K, 1987, ACTA OTO-LARYNGOL, V103, P87, DOI 10.3109/00016488709134702 Hato N, 2003, AUDIOL NEURO-OTOL, V8, P140, DOI 10.1159/000069475 Huber AM, 2008, OTOL NEUROTOL, V29, P1187, DOI 10.1097/MAO.0b013e31817ef49b Kirikae I., 1960, STRUCTURE FUNCTION M Kolston PJ, 1996, J ACOUST SOC AM, V99, P455, DOI 10.1121/1.414557 Lim KM, 2002, HEARING RES, V170, P190, DOI 10.1016/S0378-5955(02)00491-4 Linder TE, 2003, OTOL NEUROTOL, V24, P259, DOI 10.1097/00129492-200303000-00021 Ombredanne M, 1968, Ann Otolaryngol Chir Cervicofac, V85, P369 Pozrikidis C, 2008, J FLUID STRUCT, V24, P336, DOI 10.1016/j.jfluidstructs.2007.08.006 Ravicz ME, 2008, J ACOUST SOC AM, V124, P363, DOI 10.1121/1.2932061 RICHARDS SH, 1981, CLIN OTOLARYNGOL, V6, P265, DOI 10.1111/j.1365-2273.1981.tb01546.x Schmiedt R.A., 1979, AUDITORY INVESTIGATI, P211 SHERA CA, 1992, J ACOUST SOC AM, V92, P1382, DOI 10.1121/1.403931 Sim JH, 2010, HEARING RES, V270, P4, DOI 10.1016/j.heares.2010.08.009 Sim JH, 2010, JARO-J ASSOC RES OTO, V11, P329, DOI 10.1007/s10162-010-0207-6 Stenfelt S, 2005, J ACOUST SOC AM, V118, P2373, DOI 10.1121/1.12005847 Voss SE, 2000, HEARING RES, V150, P43, DOI 10.1016/S0378-5955(00)00177-5 NR 27 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2012 VL 284 IS 1-2 BP 82 EP 92 DI 10.1016/j.heares.2011.11.008 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 915SQ UT WOS:000302048100010 PM 22155337 ER PT J AU Du, XP Chen, KJ Choi, CH Li, W Cheng, WH Stewart, C Hu, N Floyd, RA Kopke, RD AF Du, Xiaoping Chen, Kejian Choi, Chul-Hee Li, Wei Cheng, Weihua Stewart, Charles Hu, Ning Floyd, Robert A. Kopke, Richard D. TI Selective degeneration of synapses in the dorsal cochlear nucleus of chinchilla following acoustic trauma and effects of antioxidant treatment SO HEARING RESEARCH LA English DT Article ID INDUCED HEARING-LOSS; COMPLEX-SPIKING NEURONS; PRIMARY AUDITORY-CORTEX; HAIR CELL LOSS; GUINEA-PIG; SYNAPTOPHYSIN IMMUNOREACTIVITY; SYNAPTIC ENDINGS; NOISE EXPOSURE; INTENSE SOUND; SPATIAL REPRESENTATION AB The purpose of this study was to reveal synaptic plasticity within the dorsal cochlear nucleus (DCN) as a result of noise trauma and to determine whether effective antioxidant protection to the cochlea can also impact plasticity changes in the DCN. Expression of synapse activity markers (synaptophysin and precerebellin) and ultrastructure of synapses were examined in the DCN of chinchilla 10 days after a 105 dB SPL octave-band noise (centered at 4 kHz, 6 h) exposure. One group of chinchilla was treated with a combination of antioxidants (4-hydroxy phenyl N-tert-butylnitrone, N-acetyl-L-cysteine and acetyl-L-carnitine) beginning 4 h after noise exposure. Down-regulated synaptophysin and precerebellin expression, as well as selective degeneration of nerve terminals surrounding cartwheel cells and their primary dendrites were found in the fusiform soma layer in the middle region of the DCN of the noise exposure group. Antioxidant treatment significantly reduced synaptic plasticity changes surrounding cartwheel cells. Results of this study provide further evidence of acoustic trauma-induced neural plasticity in the DCN and suggest that loss of input to cartwheel cells may be an important factor contributing to the emergence of hyperactivity in the DCN after noise exposure. Results further suggest that early antioxidant treatment for acoustic trauma not only rescues cochlear hair cells, but also has impact on central auditory structures. (C) 2011 Elsevier B.V. All rights reserved. C1 [Du, Xiaoping; Chen, Kejian; Choi, Chul-Hee; Li, Wei; Cheng, Weihua; Stewart, Charles; Hu, Ning; Kopke, Richard D.] Hough Ear Inst, Oklahoma City, OK 73123 USA. [Stewart, Charles; Floyd, Robert A.] Oklahoma Med Res Fdn, Expt Therapeut Res Program, Oklahoma City, OK 73104 USA. [Kopke, Richard D.] Univ Oklahoma, Hlth Sci Ctr, Dept Physiol, Oklahoma City, OK 73104 USA. [Kopke, Richard D.] Univ Oklahoma, Hlth Sci Ctr, Dept Otolaryngol, Oklahoma City, OK 73104 USA. RP Kopke, RD (reprint author), Hough Ear Inst, POB 23206, Oklahoma City, OK 73123 USA. EM rkopke@houghear.org FU Office of Naval Research (ONR) and Integris Health, Oklahoma City, Oklahoma FX This study was supported by grants (N00014-08-1-0484) from the Office of Naval Research (ONR) and Integris Health, Oklahoma City, Oklahoma (RDK). The authors would like to thank Joe Wilkerson in Core Facility for Imaging at the Oklahoma Medical Research Foundation for assistance in TEM. The authors wish like to thank Dr. James Kaltenbach for his thoughtful review of and suggestions for this manuscript. CR Aarnisalo AA, 2000, ORL J OTO-RHINO-LARY, V62, P330, DOI 10.1159/000027764 Basta D, 2005, NEUROSCI LETT, V381, P199, DOI 10.1016/j.neulet.2005.02.034 Bauer CA, 2007, J NEUROSCI RES, V85, P1489, DOI 10.1002/jnr.21259 Benson CG, 1997, SYNAPSE, V25, P243 Berrebi AS, 1998, NEUROSCIENCE, V83, P535 BERREBI AS, 1990, J NEUROCYTOL, V19, P643, DOI 10.1007/BF01188033 BERREBI AS, 1991, ANAT EMBRYOL, V183, P427 Bilak M, 1997, EXP NEUROL, V147, P256, DOI 10.1006/exnr.1997.6636 BROCK TO, 1987, J NEUROSCI, V7, P931 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 Brozoski TJ, 2005, HEARING RES, V206, P227, DOI 10.1016/j.heares.2004.12.013 BURIAN M, 1988, NEUROSCI LETT, V84, P13, DOI 10.1016/0304-3940(88)90329-1 Calhoun ME, 1996, J NEUROCYTOL, V25, P821, DOI 10.1007/BF02284844 Caspary DM, 2005, J NEUROSCI, V25, P10952, DOI 10.1523/JNEUROSCI.2451-05.2005 Chang H, 2002, HEARING RES, V164, P59, DOI 10.1016/S0378-5955(01)00410-5 Choi CH, 2008, FREE RADICAL BIO MED, V44, P1772, DOI 10.1016/j.freeradbiomed.2008.02.005 Davis KA, 1997, J NEUROSCI, V17, P6798 DeFelipe J, 1997, CEREB CORTEX, V7, P619, DOI 10.1093/cercor/7.7.619 Du XS, 2011, FIXED POINT THEORY A, DOI 10.1155/2011/563136 ELDREDGE DH, 1981, J ACOUST SOC AM, V69, P1091, DOI 10.1121/1.385688 Elinos-Calderon D, 2009, EXP BRAIN RES, V197, P287, DOI 10.1007/s00221-009-1913-3 Finlayson PG, 2009, HEARING RES, V256, P104, DOI 10.1016/j.heares.2009.07.006 FRIAUF E, 1992, EUR J NEUROSCI, V4, P798, DOI 10.1111/j.1460-9568.1992.tb00190.x Fuentes-Santamaria V, 2007, NEUROSCIENCE, V148, P1033, DOI 10.1016/j.neuroscience.2007.07.026 Gil-Loyzaga P, 1998, HISTOL HISTOPATHOL, V13, P415 Golding NL, 1997, J NEUROPHYSIOL, V78, P248 Golding NL, 1996, J NEUROSCI, V16, P2208 Groschel M, 2010, J NEUROTRAUM, V27, P1499, DOI 10.1089/neu.2009.1246 Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6 Heffner HE, 2002, HEARING RES, V170, P83, DOI 10.1016/S0378-5955(02)00343-X Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3 Hirai H, 2005, NAT NEUROSCI, V8, P1534, DOI 10.1038/nn1576 House J W, 1981, Ciba Found Symp, V85, P204 Idrizbegovic E, 1998, BRAIN RES, V800, P86, DOI 10.1016/S0006-8993(98)00504-6 ITOH K, 1987, BRAIN RES, V400, P145, DOI 10.1016/0006-8993(87)90662-7 Ito-Ishida A, 2008, J NEUROSCI, V28, P5920, DOI 10.1523/JNEUROSCI.1030-08.2008 JAHN R, 1985, P NATL ACAD SCI USA, V82, P4137, DOI 10.1073/pnas.82.12.4137 Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038 Kaltenbach JA, 2005, HEARING RES, V206, P200, DOI 10.1016/j.heares.2005.02.013 Kaltenbach JA, 2008, AM J AUDIOL, V17, pS148, DOI 10.1044/1059-0889(2008/08-0004) KALTENBACH JA, 1987, EXP NEUROL, V96, P406, DOI 10.1016/0014-4886(87)90058-6 Kaltenbach JA, 2007, HEARING RES, V226, P232, DOI 10.1016/j.heares.2006.07.001 Kaltenbach JA, 2002, J NEUROPHYSIOL, V88, P699, DOI 10.1152/jn00893.2001 Kaltenbach James A, 2006, Acta Otolaryngol Suppl, P20 KIANG NYS, 1976, ANN OTO RHINOL LARYN, V85, P752 Kim JN, 1997, HEARING RES, V103, P169, DOI 10.1016/S0378-5955(96)00173-6 Kim JJ, 2004, J NEUROSCI RES, V77, P798, DOI 10.1002/jnr.20213 Kim JJ, 2004, J NEUROSCI RES, V77, P817, DOI 10.1002/jnr.20212 Kim JJ, 2004, J NEUROSCI RES, V77, P829, DOI 10.1002/jnr.20211 Kopke RD, 2002, LARYNGOSCOPE, V112, P1515, DOI 10.1097/00005537-200209000-00001 Kopke RD, 2007, HEARING RES, V226, P114, DOI 10.1016/j.heares.2006.10.008 Kraus KS, 2010, NEUROSCIENCE, V167, P1216, DOI 10.1016/j.neuroscience.2010.02.071 La Prell C.G., 2007, HEARING RES, V226, P22 MANIS PB, 1994, J COMP NEUROL, V348, P261, DOI 10.1002/cne.903480208 MASLIAH E, 1991, EXP NEUROL, V113, P131, DOI 10.1016/0014-4886(91)90169-D Matsuda K, 2010, SCIENCE, V328, P363, DOI 10.1126/science.1185152 Melamed SB, 2000, AUDIOLOGY, V39, P24 Miura E, 2009, EUR J NEUROSCI, V29, P693, DOI 10.1111/j.1460-9568.2009.06632.x Morest DK, 1998, MICROSC RES TECHNIQ, V41, P205 MUGNAINI E, 1988, SYNAPSE, V2, P125, DOI 10.1002/syn.890020204 Muly SM, 2004, J NEUROSCI RES, V75, P585, DOI 10.1002/jnr.20011 Muly SM, 2002, EXP NEUROL, V177, P202, DOI 10.1006/exnr.2002.7963 Nelson DI, 2005, AM J IND MED, V48, P446, DOI 10.1002/aijm.20223 Ohinata Y, 2000, HEARING RES, V146, P28, DOI 10.1016/S0378-5955(00)00096-4 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 Portfors CV, 2007, J NEUROPHYSIOL, V98, P744, DOI 10.1152/jn.01356.2006 Pulec JL, 1995, ENT-EAR NOSE THROAT, V74, P470 ROUILLER EM, 1992, NEUROSCI LETT, V144, P19, DOI 10.1016/0304-3940(92)90706-D Rubio ME, 2004, J COMP NEUROL, V477, P253, DOI 10.1002/cne.20249 RYAN AF, 1988, HEARING RES, V36, P181, DOI 10.1016/0378-5955(88)90060-3 Saint Marie RL, 1999, HEARING RES, V128, P70, DOI 10.1016/S0378-5955(98)00188-9 Saljo A, 2002, J NEUROTRAUM, V19, P985, DOI 10.1089/089771502320317131 Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 Saunders GH, 2009, NOISE HEALTH, V11, P14, DOI 10.4103/1463-1741.45308 SCHULZ JB, 1995, J NEUROCHEM, V64, P2239 Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1 Sekiya T, 2009, EXP NEUROL, V218, P117, DOI 10.1016/j.expneurol.2009.04.014 SLEMMON JR, 1985, P NATL ACAD SCI USA, V82, P7145, DOI 10.1073/pnas.82.20.7145 SLEPECKY N, 1986, HEARING RES, V22, P307, DOI 10.1016/0378-5955(86)90107-3 SPIROU GA, 1993, J COMP NEUROL, V329, P36, DOI 10.1002/cne.903290104 Sziklai I, 2004, EUR ARCH OTO-RHINO-L, V261, P517, DOI 10.1007/s00405-004-0745-9 Tastekin A, 2005, BRAIN DEV-JPN, V27, P570, DOI 10.1016/j.braindev.2005.02.006 THEOPOLD HM, 1975, ARCH OTO-RHINO-LARYN, V209, P247, DOI 10.1007/BF00456545 TONNDORF J, 1987, HEARING RES, V28, P271, DOI 10.1016/0378-5955(87)90054-2 URADE Y, 1991, P NATL ACAD SCI USA, V88, P1069, DOI 10.1073/pnas.88.3.1069 Urano S, 1997, EUR J BIOCHEM, V245, P64, DOI 10.1111/j.1432-1033.1997.00064.x WALAAS SI, 1988, SYNAPSE, V2, P516, DOI 10.1002/syn.890020507 Wang H, 2009, NEUROSCIENCE, V164, P747, DOI 10.1016/j.neuroscience.2009.08.026 Weedman DL, 1996, J COMP NEUROL, V369, P345 WIEDENMANN B, 1985, CELL, V41, P1017, DOI 10.1016/S0092-8674(85)80082-9 WILLOTT JF, 1994, HEARING RES, V74, P1, DOI 10.1016/0378-5955(94)90171-6 WOUTERLOOD FG, 1984, J COMP NEUROL, V227, P136, DOI 10.1002/cne.902270114 YAJIMA Y, 1989, EXP BRAIN RES, V75, P381 Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 Zacharek MA, 2002, HEARING RES, V172, P137, DOI 10.1016/S0378-5955(02)00575-0 Zanelli SA, 2005, ANN NY ACAD SCI, V1053, P153, DOI 10.1196/annals.1344.013 Zheng YW, 2011, EXP BRAIN RES, V210, P477, DOI 10.1007/s00221-010-2491-0 NR 98 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2012 VL 283 IS 1-2 BP 1 EP 13 DI 10.1016/j.heares.2011.11.013 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 908FH UT WOS:000301475300001 PM 22178982 ER PT J AU Salt, AN King, EB Hartsock, JJ Gill, RM O'Leary, SJ AF Salt, Alec N. King, Elisha B. Hartsock, Jared J. Gill, Ruth M. O'Leary, Stephen J. TI Marker entry into vestibular perilymph via the stapes following applications to the round window niche of guinea pigs SO HEARING RESEARCH LA English DT Article ID INNER-EAR; SCALA TYMPANI; DRUG-DELIVERY; INTRATYMPANIC APPLICATIONS; CONCENTRATION GRADIENT; RADIAL COMMUNICATION; COCHLEAR APEX; OTITIS-MEDIA; MEMBRANE; PERMEABILITY AB It has been widely believed that drug entry from the middle ear into perilymph occurs primarily via the round window (RW) membrane. Entry into scala vestibuli (SV) was thought to be dominated by local, inter-scala communication between scala tympani (ST) and SV through permeable tissues such as the spiral ligament. In the present study, the distribution of the ionic marker trimethylphenylammonium (TMPA) was compared following intracochlear injections or applications to the RW niche, with or without occlusion of the RW membrane or stapes area. Perilymph TMPA concentrations were monitored either in real time with TMPA-selective microelectrodes sealed into ST and SV, or by the collection of sequential perilymph samples from the lateral semi-circular canal. Local inter-scala communication of TMPA was confirmed by measuring SV and ST concentrations following direct injections into perilymph of ST. Application of TMPA to the RW niche also showed a predominant entry into ST, with distribution to SV presumed to occur secondarily. When the RW membrane was occluded by a silicone plug, RW niche irrigation produced higher concentrations in SV compared to ST, confirming direct TMPA entry into the vestibule in the region of the stapes. The proportion of TMPA entering by the two routes was quantified by perilymph sampling from the lateral semi-circular canal. The TMPA levels of initial samples (originating from the vestibule) were markedly lower when the stapes area was occluded with silicone. These data were interpreted using a simulation program that incorporates all the major fluid and tissue compartments of the cochlea and vestibular systems. From this analysis it was estimated that 65% of total TMPA entered through the RW membrane and 35% entered the vestibule directly in the vicinity of the stapes. Direct entry of drugs into the vestibule is relevant to inner ear fluid pharmacokinetics and to the growing field of intratympanic drug delivery. (C) 2011 Elsevier B.V. All rights reserved. C1 [Salt, Alec N.; Hartsock, Jared J.; Gill, Ruth M.] Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. [King, Elisha B.; O'Leary, Stephen J.] Univ Melbourne, Dept Otolaryngol, Melbourne, Vic, Australia. RP Salt, AN (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, Box 8115,660 S Euclid Ave, St Louis, MO 63110 USA. EM salta@ent.wustl.edu FU NIDCD, NIH [DC01368] FX This work was supported by research grant DC01368 from NIDCD, NIH. Dr. Salt is a member of the Scientific Advisory Board of Otonomy, Inc. and may receive income based on equity holdings. Otonomy did not financially support this study. CR Becvarovski Z, 2002, LARYNGOSCOPE, V112, P1610, DOI 10.1097/00005537-200209000-00015 Bird RA., 2011, OTOL NEUROTOL, V32, P933 GOYCOOLEA MV, 1980, LARYNGOSCOPE, V90, P1387 GOYCOOLEA MV, 1980, ARCH OTOLARYNGOL, V106, P430 Goycoolea MV, 1997, MICROSC RES TECHNIQ, V36, P201, DOI 10.1002/(SICI)1097-0029(19970201)36:3<201::AID-JEMT8>3.0.CO;2-R Hoffer ME, 2001, LARYNGOSCOPE, V111, P1343, DOI 10.1097/00005537-200108000-00007 HOFT J, 1969, ARCH KLIN EXP OHR, V193, P128, DOI 10.1007/BF00401701 Imamura S, 2003, JARO, V4, P196, DOI 10.1007/s10162-002-2037-7 King EB, 2011, JARO-J ASSOC RES OTO, V12, P741, DOI 10.1007/s10162-011-0280-5 LUNDMAN L, 1987, ACTA OTO-LARYNGOL, P41 Mikulec AA, 2009, OTOL NEUROTOL, V30, P131, DOI 10.1097/MAO.0b013e318191bff8 Mikulec AA, 2008, OTOL NEUROTOL, V29, P1020, DOI 10.1097/MAO.0b013e31818658ea Mynatt R, 2006, JARO-J ASSOC RES OTO, V7, P182, DOI 10.1007/a10162-0006-0034-y Plontke SK, 2008, OTOL NEUROTOL, V29, P401, DOI 10.1097/MAO.0b013e318161aaae Plontke SK, 2007, LARYNGOSCOPE, V117, P1191, DOI 10.1097/MLG.0b013e318058a06b Plontke SKR, 2002, OTOL NEUROTOL, V23, P967, DOI 10.1097/00129492-200211000-00026 Rauch SD, 2011, JAMA-J AM MED ASSOC, V305, P2071, DOI 10.1001/jama.2011.679 SAIJO S, 1984, ACTA OTO-LARYNGOL, V97, P593, DOI 10.3109/00016488409132937 Salt A. N., 2011, 34 MIDW RES M ARO BA Salt AN, 2001, HEARING RES, V154, P88, DOI 10.1016/S0378-5955(01)00223-4 Salt AN, 2006, J NEUROSCI METH, V153, P121, DOI 10.1016/j.jneumeth.2005.10.008 Salt AN, 2005, DRUG DISCOV TODAY, V10, P1299, DOI 10.1016/S1359-6446(05)03574-9 SALT AN, 1991, HEARING RES, V56, P37, DOI 10.1016/0378-5955(91)90151-X Salt AN, 2008, LARYNGOSCOPE, V118, P1793, DOI 10.1097/MLG.0b013e31817d01cd SALT AN, 1991, HEARING RES, V56, P29, DOI 10.1016/0378-5955(91)90150-8 SMITH BM, 1979, OTOLARYNG HEAD NECK, V87, P888 TANAKA K, 1981, ARCH OTO-RHINO-LARYN, V233, P67, DOI 10.1007/BF00464276 Yoshioka M, 2009, OTOL NEUROTOL, V30, P645, DOI 10.1097/MAO.0b013e31819bda66 Zou J, 2010, OTOL NEUROTOL, V31, P637, DOI 10.1097/MAO.0b013e3181d2f095 Zou J, 2005, AUDIOL NEURO-OTOL, V10, P145, DOI 10.1159/000084024 NR 30 TC 11 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2012 VL 283 IS 1-2 BP 14 EP 23 DI 10.1016/j.heares.2011.11.012 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 908FH UT WOS:000301475300002 PM 22178981 ER PT J AU Lee, J Long, G AF Lee, Jungmee Long, Glenis TI Stimulus characteristics which lessen the impact of threshold fine structure on estimates of hearing status SO HEARING RESEARCH LA English DT Article ID SPONTANEOUS OTOACOUSTIC EMISSIONS; DISTORTION-PRODUCT; MICROSTRUCTURE; PERCEPTION; FREQUENCY; QUIET AB When hearing thresholds are measured with high-frequency resolution there is a pseudo-periodic variation in thresholds across frequency of up to 15-20 dB. This variation is called threshold fine structure (previously referred to as threshold microstructure). Consequently, estimates of auditory status based on threshold measures can depend greatly on the specific frequency evaluated. The impact of threshold fine structure on the prediction of auditory status was examined by measuring detection thresholds of pure tones (providing an indication of threshold fine structure) and comparing them with thresholds obtained using linear sweeps, sinusoidally frequency modulated tones, and narrow-band noise. Spontaneous otoacoustic emissions (SOAEs) were also obtained to confirm the established relationship between threshold fine structure and SOAEs. Thresholds obtained using linear sweeps and narrow-band noise provided stable threshold estimates indicating that such threshold estimates were less influenced by threshold fine structure. Consequently, thresholds obtained with these stimuli may provide estimates of cochlear status less dependent of the exact frequency being evaluated, permitting better prediction of performance on other psychoacoustic measures (such as cochlear tuning and loudness perception) and the properties of their more objective measures (such as otoacoustic emissions). Published by Elsevier B.V. C1 [Lee, Jungmee] Northwestern Univ, Roxelyn & Richard Pepper Dept Commun Sci & Disord, Evanston, IL 60208 USA. [Long, Glenis] CUNY, Grad Ctr, New York, NY 10016 USA. RP Lee, J (reprint author), Northwestern Univ, Roxelyn & Richard Pepper Dept Commun Sci & Disord, 2-256 Frances Searle,2240 Campus Dr, Evanston, IL 60208 USA. EM jmlee6@northwestern.edu FU PSC-CUNY; National Institute on Disability and Rehabilitation Research, U.S. Department of Education, Rehabilitation Engineering Research Center Hearing Enhancement FX The authors would like to thank Changmo Jeung for his help on data collection. Special thanks to Brian Moore, James Dewey, Gayla Poling, and two anonymous reviewers for their valuable comments on an earlier version of this manuscript. This study was funded by PSC-CUNY and the National Institute on Disability and Rehabilitation Research, U.S. Department of Education, Rehabilitation Engineering Research Center Hearing Enhancement. CR Epp E., 2010, J ACOUST SOC AM, V128, P1870 Franklin C, 2009, EAR HEARING, V30, P485, DOI 10.1097/AUD.0b013e3181a16366 FURST M, 1992, J ACOUST SOC AM, V91, P1003, DOI 10.1121/1.402626 Gorga M.P., 2007, OTOACOUSTIC EMISSION, P243 Gorga MP, 2005, EAR HEARING, V26, P593, DOI 10.1097/01.aud.0000188108.08713.6c HAMILL TA, 1986, J COMMUN DISORD, V19, P227, DOI 10.1016/0021-9924(86)90012-2 HE NJ, 1993, J ACOUST SOC AM, V94, P2659, DOI 10.1121/1.407350 Heise SJ, 2009, J ACOUST SOC AM, V125, pEL33, DOI 10.1121/1.3040031 Heise SJ, 2008, INT J AUDIOL, V47, P520, DOI 10.1080/14992020802089473 Johannesen PT, 2008, J ACOUST SOC AM, V124, P2149, DOI 10.1121/1.2968692 Johannesen PT, 2010, J ACOUST SOC AM, V127, P3602, DOI 10.1121/1.3377087 Kapadia S, 1999, AUDIOLOGY, V38, P257 Kemp DT, 1979, SCAND AUDIOL S, V9, P35 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LONG GR, 1988, J ACOUST SOC AM, V84, P1343, DOI 10.1121/1.396633 LONG GR, 1991, J ACOUST SOC AM, V89, P1201, DOI 10.1121/1.400651 LONG GR, 1988, HEARING RES, V36, P125, DOI 10.1016/0378-5955(88)90055-X Long GR, 1997, J ACOUST SOC AM, V102, P2831, DOI 10.1121/1.420339 Long GR, 2008, J ACOUST SOC AM, V124, P1613, DOI 10.1121/1.2949505 LONG GR, 1984, HEARING RES, V15, P73, DOI 10.1016/0378-5955(84)90227-2 Mauermann M, 2004, J ACOUST SOC AM, V116, P2199, DOI 10.1121/1.1791719 Mauermann M, 2004, J ACOUST SOC AM, V116, P1066, DOI 10.1121/1.1760106 Nelson DA, 2001, J ACOUST SOC AM, V110, P2045, DOI 10.1121/1.1404439 Orchik D.J., 1977, J AM AUDIOL SOC, V3, P214 SCHLOTH E, 1983, ACUSTICA, V53, P250 Stephens M.M., 1977, J AM AUDIOL SOC, V3, P221 TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V Talmadge CL, 1998, J ACOUST SOC AM, V104, P1517, DOI 10.1121/1.424364 Zhou X, 2011, HEARING RES, V277, P107, DOI 10.1016/j.heares.2011.02.006 ZWICKER E, 1984, J ACOUST SOC AM, V75, P1148, DOI 10.1121/1.390763 ZWICKER E, 1986, AUDITORY FREQUENCY S, P49 NR 31 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2012 VL 283 IS 1-2 BP 24 EP 32 DI 10.1016/j.heares.2011.11.011 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 908FH UT WOS:000301475300003 PM 22178980 ER PT J AU Xu, NY Engbers, J Khaja, S Xu, LJ Clark, JJ Hansen, MR AF Xu, Ningyong Engbers, Jonathan Khaja, Sobia Xu, Linjing Clark, J. Jason Hansen, Marlan R. TI Influence of cAMP and protein kinase A on neurite length from spiral ganglion neurons SO HEARING RESEARCH LA English DT Article ID CHRONIC ELECTRICAL-STIMULATION; GROWTH CONE GUIDANCE; NEUROTROPHIC FACTORS; AUDITORY NEURONS; IN-VITRO; COCHLEAR IMPLANTATION; CYCLIC-NUCLEOTIDES; AXON GROWTH; HAIR-CELLS; INNER-EAR AB Regrowth of peripheral spiral ganglion neuron (SGN) fibers is a primary objective in efforts to improve cochlear implant outcomes and to potentially reinnervate regenerated hair cells. Cyclic adenosine monophosphate (cAMP) regulates neurite growth and guidance via activation of protein kinase A (PKA) and Exchange Protein directly Activated by Cylic AMP (Epac). Here we explored the effects of cAMP signaling on SGN neurite length in vitro. We find that the cAMP analog, cpt-cAMP, exerts a biphasic effect on neurite length; increasing length at lower concentrations and reducing length at higher concentrations. This biphasic response occurs in cultures plated on laminin, fibronectin, or tenascin C suggesting that it is not substrate dependent. cpt-cAMP also reduces SGN neurite branching. The Epac-specific agonist, 8-pCPT-2'-O-Me-cAMP, does not alter SGN neurite length. Constitutively active PKA isoforms strongly inhibit SGN neurite length similar to higher levels of cAMP. Chronic membrane depolarization activates PICA in SGNs and also inhibits SGN neurite length. However, inhibition of PKA fails to rescue neurite length in depolarized cultures implying that activation of PKA is not necessary for the inhibition of SGN neurite length by chronic depolarization. Expression of constitutively active phosphatidylinositol 3-kinase, but not c-Jun N-terminal kinase, isoforms partially rescues SGN neurite length in the presence of activated PKA. Taken together, these results suggest that activation of cAMP/PKA represents a potential strategy to enhance SGN fiber elongation following deafness; however such therapies will likely require careful titration so as to promote rather than inhibit nerve fiber regeneration. (C) 2011 Elsevier B.V. All rights reserved. C1 [Xu, Ningyong; Engbers, Jonathan; Khaja, Sobia; Xu, Linjing; Clark, J. Jason; Hansen, Marlan R.] Univ Iowa, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA. RP Hansen, MR (reprint author), Univ Iowa Hosp & Clin, Dept Otolaryngol Head & Neck Surg, 200 Hawkins Dr, Iowa City, IA 52242 USA. EM marlan-hansen@uiowa.edu FU NIDCD [K08 DC006211, RO1 DC009801, P30 DC010362] FX Support: NIDCD K08 DC006211, RO1 DC009801, and P30 DC010362. CR Aglah C, 2008, NEUROPHARMACOLOGY, V55, P8, DOI 10.1016/j.neuropharm.2008.04.005 Agterberg MJH, 2010, HEARING RES, V269, P169, DOI 10.1016/j.heares.2010.06.015 Alam SA, 2007, J COMP NEUROL, V503, P832, DOI 10.1002/cne.21430 Aletsee C, 2001, JARO, V2, P377, DOI 10.1007/s101620010086 Altschuler RA, 1999, ANN NY ACAD SCI, V884, P305, DOI 10.1111/j.1749-6632.1999.tb08650.x Atkinson P.J., 2011, HEARING RES Bao JX, 2010, HEARING RES, V264, P93, DOI 10.1016/j.heares.2009.10.009 Bianchi L. M., 2004, Current Drug Targets - CNS and Neurological Disorders, V3, P195, DOI 10.2174/1568007043337454 Boer JC, 2009, J NEUROSCI, V29, P5711, DOI 10.1523/JNEUROSCI.0433-09.2009 Bok J, 2007, MOL CELL NEUROSCI, V36, P13, DOI 10.1016/j.mcn.2007.05.008 Bok J, 2003, J NEUROSCI, V23, P777 Cai D, 2001, J NEUROSCI, V21, P4731 Christensen AE, 2003, J BIOL CHEM, V278, P35394, DOI 10.1074/jbc.M302179200 Dodson HC, 2000, J NEUROCYTOL, V29, P525, DOI 10.1023/A:1007201913730 Enserink JM, 2002, NAT CELL BIOL, V4, P901, DOI 10.1038/ncb874 Fritzsch B, 1997, TRENDS NEUROSCI, V20, P159, DOI 10.1016/S0166-2236(96)01007-7 Fujioka T, 2004, J NEUROSCI, V24, P319, DOI 10.1523/JNEUROSCI.1065.03.2004 Gillespie LN, 2005, EUR J NEUROSCI, V22, P2123, DOI 10.1111/j.1460-9568.2005.04430.x Goldwyn JH, 2010, HEARING RES, V268, P93, DOI 10.1016/j.heares.2010.05.005 Gomaa NA, 2003, EAR HEARING, V24, P539, DOI 10.1097/01.AUD.0000100208.26628.2D Han JZ, 2007, J CELL BIOL, V176, P101, DOI 10.1083/jcb.200607128 Hansen MR, 2003, J NEUROSCI RES, V72, P169, DOI 10.1002/jnr.10551 Hansen MR, 2001, J NEUROSCI, V21, P2256 Hansen MR, 2007, DEV NEUROBIOL, V67, P316, DOI 10.1002/dneu.20346 Hanson MG, 1998, J NEUROSCI, V18, P7361 Hegarty JL, 1997, J NEUROSCI, V17, P1959 Jeon EJ, 2011, NEUROSCIENCE, V177, P321, DOI 10.1016/j.neuroscience.2011.01.014 Kang GX, 2003, J BIOL CHEM, V278, P8279, DOI 10.1074/jbc.M211682200 Kao HT, 2002, NAT NEUROSCI, V5, P431, DOI 10.1038/nn840 Khan AM, 2005, ANN OTO RHINOL LARYN, V114, P381 Kopperud R, 2003, FEBS LETT, V546, P121, DOI 10.1016/S0014-5793(03)00563-5 Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3 Lee JE, 2003, LARYNGOSCOPE, V113, P994, DOI 10.1097/00005537-200306000-00015 LEFEBVRE PP, 1994, NEUROREPORT, V5, P865, DOI 10.1097/00001756-199404000-00003 Lemons ML, 2006, EXP NEUROL, V202, P324, DOI 10.1016/j.expneurol.2006.06.008 Li SF, 2010, HEARING RES, V267, P111, DOI 10.1016/j.heares.2010.04.004 LINTHICUM FH, 1991, AM J OTOL, V12, P245 Linthicum FH, 2009, OTOL NEUROTOL, V30, P418, DOI 10.1097/MAO.0b013e31819a8827 Malgrange B, 1996, NEUROREPORT, V7, P913, DOI 10.1097/00001756-199603220-00016 McGuinness SL, 2005, OTOL NEUROTOL, V26, P1064, DOI 10.1097/01.mao.0000185063.20081.50 Miller AL, 2003, BRAIN RES, V966, P218, DOI 10.1016/S0006-8993(02)04170-7 Miller JM, 2007, J NEUROSCI RES, V85, P1959, DOI 10.1002/jnr.21320 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 Ming GL, 1997, NEURON, V19, P1225, DOI 10.1016/S0896-6273(00)80414-6 MONASTERSKY GM, 1984, EXP NEUROL, V85, P152, DOI 10.1016/0014-4886(84)90169-9 Mou K, 1997, J COMP NEUROL, V386, P529 Murray AJ, 2008, MOL CELL NEUROSCI, V38, P578, DOI 10.1016/j.mcn.2008.05.006 Murray AJ, 2009, J NEUROSCI, V29, P15434, DOI 10.1523/JNEUROSCI.3071-09.2009 NADOL JB, 1990, HEARING RES, V49, P141, DOI 10.1016/0378-5955(90)90101-T Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883 Neumann S, 2002, NEURON, V34, P885, DOI 10.1016/S0896-6273(02)00702-X Pettingill LN, 2007, IEEE T BIO-MED ENG, V54, P1138, DOI 10.1109/TBME.2007.895375 Renton JP, 2010, J NEUROSCI RES, V88, P2239, DOI 10.1002/jnr.22381 Richardson RT, 2009, BIOMATERIALS, V30, P2614, DOI 10.1016/j.biomaterials.2009.01.015 Roehm Pamela C, 2005, Curr Opin Otolaryngol Head Neck Surg, V13, P294, DOI 10.1097/01.moo.0000180919.68812.b9 Roehm PC, 2008, MOL CELL NEUROSCI, V37, P376, DOI 10.1016/j.mcn.2007.10.014 Rubinstein Jay T, 2004, Curr Opin Otolaryngol Head Neck Surg, V12, P444, DOI 10.1097/01.moo.0000134452.24819.c0 SEAMON KB, 1983, J MED CHEM, V26, P436, DOI 10.1021/jm00357a021 Shabb JB, 2001, CHEM REV, V101, P2381, DOI 10.1021/cr000236l Shelly M, 2010, SCIENCE, V327, P547, DOI 10.1126/science.1179735 SHEPHERD RK, 1994, HEARING RES, V81, P150, DOI 10.1016/0378-5955(94)90162-7 Shibata SB, 2010, EXP NEUROL, V223, P464, DOI 10.1016/j.expneurol.2010.01.011 Song HJ, 1998, SCIENCE, V281, P1515, DOI 10.1126/science.281.5382.1515 Song HJ, 1997, NATURE, V388, P275 SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683 Staecker H, 2010, EXP NEUROL, V226, P1, DOI 10.1016/j.expneurol.2010.07.012 Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011 White JA, 2000, HEARING RES, V141, P12, DOI 10.1016/S0378-5955(99)00204-X Whitlon DS, 2006, NEUROSCIENCE, V138, P653, DOI 10.1016/j.neuroscience.2005.11.030 Wise AK, 2010, MOL THER, V18, P1111, DOI 10.1038/mt.2010.28 Xu L, 2008, HEARING RES, V242, P132, DOI 10.1016/j.heares.2007.12.010 Zha XM, 2001, HEARING RES, V156, P53, DOI 10.1016/S0378-5955(01)00267-2 ZIMMERMANN CE, 1995, HEARING RES, V90, P192, DOI 10.1016/0378-5955(95)00165-1 NR 73 TC 11 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2012 VL 283 IS 1-2 BP 33 EP 44 DI 10.1016/j.heares.2011.11.010 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 908FH UT WOS:000301475300004 PM 22154930 ER PT J AU Zhu, ZY Tang, Q Zeng, FG Guan, T Ye, DT AF Zhu, Ziyan Tang, Qing Zeng, Fan-Gang Guan, Tian Ye, Datian TI Cochlear-implant spatial selectivity with monopolar, bipolar and tripolar stimulation SO HEARING RESEARCH LA English DT Article ID INTRACOCHLEAR ELECTRICAL-STIMULATION; PSYCHOPHYSICAL TUNING CURVES; MASKED EXCITATION PATTERNS; ELECTRODE-NEURON INTERFACE; AUDITORY CORTICAL IMAGES; SPEECH-RECOGNITION; INFERIOR COLLICULUS; CHANNEL INTERACTION; LOUDNESS GROWTH; SPECTRAL-RIPPLE AB Sharp spatial selectivity is critical to auditory performance, particularly in pitch-related tasks. Most contemporary cochlear implants have employed monopolar stimulation that produces broad electric fields, which presumably contribute to poor pitch and pitch-related performance by implant users. Bipolar or tripolar stimulation can generate focused electric fields but requires higher current to reach threshold and, more interestingly, has not produced any apparent improvement in cochlear-implant performance. The present study addressed this dilemma by measuring psychophysical and physiological spatial selectivity with both broad and focused stimulations in the same cohort of subjects. Different current levels were adjusted by systematically measuring loudness growth for each stimulus, each stimulation mode, and in each subject. Both psychophysical and physiological measures showed that, although focused stimulation produced significantly sharper spatial tuning than monopolar stimulation, it could shift the tuning position or even split the tuning tips. The altered tuning with focused stimulation is interpreted as a result of poor electrode-to-neuron interface in the cochlea, and is suggested to be mainly responsible for the lack of consistent improvement in implant performance. A linear model could satisfactorily quantify the psychophysical and physiological data and derive the tuning width. Significant correlation was found between the individual physiological and psychophysical tuning widths, and the correlation was improved by log-linearly transforming the physiological data to predict the psychophysical data. Because the physiological measure took only one-tenth of the time of the psychophysical measure, the present model is of high clinical significance in terms of predicting and improving cochlear-implant performance. (C) 2011 Elsevier B.V. All rights reserved. C1 [Zhu, Ziyan; Ye, Datian] Tsinghua Univ, Sch Med, Dept Biomed Engn, Beijing 100084, Peoples R China. [Zhu, Ziyan; Guan, Tian; Ye, Datian] Tsinghua Univ, Grad Sch Shenzhen, Biomed Engn Res Ctr, Shenzhen 518055, Guangdong, Peoples R China. [Zhu, Ziyan; Tang, Qing; Zeng, Fan-Gang] Univ Calif Irvine, Dept Biomed Engn, Irvine, CA 92697 USA. RP Zhu, ZY (reprint author), Tsinghua Univ, Sch Med, Dept Biomed Engn, Beijing 100084, Peoples R China. EM zhuzy05@mails.tsinghua.edu.cn; fzeng@uci.edu; yedt6386@sz.tsinghua.edu.cn RI Zeng, Fan-Gang/G-4875-2012 FU NIH [R01-DC008858, P30-DC008369]; Ministry of Education of China, and the Natural Science Fund of China [30800234, 60871083] FX The authors thank all subjects for their time and dedication. The authors also thank Matthew Chang, Grace Hunter and two anonymous reviewers for comments on the manuscript. The experiments were supported by the NIH grants (R01-DC008858 and P30-DC008369), the Scholarship of the Ministry of Education of China, and the Natural Science Fund of China (30800234 and 60871083). CR Abbas PJ, 2004, AUDIOL NEURO-OTOL, V9, P203, DOI 10.1159/000078390 Abbas PJ, 1999, EAR HEARING, V20, P45, DOI 10.1097/00003446-199902000-00005 BEKESY GEORG v., 1952, ACTA OTO LARYNGOL, V42, P197, DOI 10.3109/00016485209120346 Berenstein CK, 2010, HEARING RES, V270, P28, DOI 10.1016/j.heares.2010.10.001 Berenstein CK, 2008, EAR HEARING, V29, P250 Bierer JA, 2010, EAR HEARING, V31, P247, DOI 10.1097/AUD.0b013e3181c7daf4 Bierer JA, 2010, HEARING RES, V270, P134, DOI 10.1016/j.heares.2010.08.006 Bierer JA, 2002, J NEUROPHYSIOL, V87, P478 Boex C, 2003, J ACOUST SOC AM, V114, P2058, DOI 10.1121/1.1610452 Bonham BH, 2008, HEARING RES, V242, P141, DOI 10.1016/j.heares.2008.03.006 Brown CJ, 2000, EAR HEARING, V21, P151, DOI 10.1097/00003446-200004000-00009 Chatterjee M, 1998, J ACOUST SOC AM, V103, P2565, DOI 10.1121/1.422777 Chatterjee M, 2006, JARO-J ASSOC RES OTO, V7, P15, DOI 10.1007/s10162-005-0019-2 CHISTOVICH L. A., 1957, BIOFIZIKA [TRANSL], V2, P714 Chua TEH, 2011, EAR HEARING, V32, P679, DOI 10.1097/AUD.0b013e31821a47df Cohen LT, 2001, HEARING RES, V155, P63, DOI 10.1016/S0378-5955(01)00248-9 Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0 Cullington HE, 2010, EAR HEARING, V31, P70, DOI 10.1097/AUD.0b013e3181bc7722 DESAUVAGE RC, 1983, J ACOUST SOC AM, V73, P616 Dillier N, 2002, ANN OTO RHINOL LARYN, V111, P407 Dingemanse JG, 2006, EAR HEARING, V27, P645, DOI 10.1097/01.aud.0000246683.29611.1b Donaldson GS, 1997, J ACOUST SOC AM, V101, P3706, DOI 10.1121/1.418330 Donaldson GS, 2011, EAR HEARING, V32, P238, DOI 10.1097/AUD.0b013e3181fb8390 Eisen MD, 2005, JARO-J ASSOC RES OTO, V6, P160, DOI 10.1007/s10162-005-5057-2 Eisen MD, 2004, EAR HEARING, V25, P528, DOI 10.1097/00003446-200412000-00002 Finley CC, 2008, OTOL NEUROTOL, V29, P920, DOI 10.1097/MAO.0b013e318184f492 Fishman KE, 1997, J SPEECH LANG HEAR R, V40, P1201 Fletcher H, 1935, J FRANKL INST, V220, P405, DOI 10.1016/S0016-0032(35)90128-4 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Fu QJ, 2005, HEARING RES, V202, P55, DOI 10.1016/j.heares.2004.10.004 Gartner L, 2010, ACTA OTO-LARYNGOL, V130, P724, DOI 10.3109/00016480903380539 Goldwyn JH, 2010, HEARING RES, V268, P93, DOI 10.1016/j.heares.2010.05.005 Helmholtz H, 1877, SENSATIONS TONE Henry BA, 2003, J ACOUST SOC AM, V113, P2861, DOI 10.1121/1.1561900 Hughes ML, 2010, EAR HEARING, V31, P679, DOI 10.1097/AUD.0b013e3181e1d19e Hughes ML, 2008, EAR HEARING, V29, P435, DOI 10.1097/AUD.0b013e31816a0d3d Jolly CN, 1996, IEEE T BIO-MED ENG, V43, P857, DOI 10.1109/10.508549 Ketten DR, 1998, ANN OTO RHINOL LARYN, V107, P1 Khan AM, 2005, HEARING RES, V205, P83, DOI 10.1016/j.heares.2005.03.003 Koch DB, 2004, AUDIOL NEURO-OTOL, V9, P214, DOI 10.1159/000078391 Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6 Kwon BJ, 2006, J ACOUST SOC AM, V119, P2994, DOI 10.1121/1.2184128 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X LIM HH, 1989, J ACOUST SOC AM, V86, P971, DOI 10.1121/1.398732 LINTHICUM FH, 1991, AM J OTOL, V12, P245 Litvak LM, 2007, J ACOUST SOC AM, V122, P967, DOI 10.1121/1.2749414 Litvak LM, 2007, J ACOUST SOC AM, V122, P982, DOI 10.1121/1.2749413 Mens LHM, 2005, OTOL NEUROTOL, V26, P957, DOI 10.1097/01.mao.0000185060.74339.9d Middlebrooks JC, 2002, J NEUROPHYSIOL, V87, P493 Miller CA, 2003, HEARING RES, V175, P200 Miller CA, 2000, EAR HEARING, V21, P280, DOI 10.1097/00003446-200008000-00003 MOORE BCJ, 1986, J ACOUST SOC AM, V80, P93, DOI 10.1121/1.394087 Moore BCJ, 2001, EAR HEARING, V22, P268, DOI 10.1097/00003446-200108000-00002 Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883 Nelson DA, 2002, J ACOUST SOC AM, V112, P2932, DOI 10.1121/1.1514935 Nelson DA, 2008, J ACOUST SOC AM, V123, P1522, DOI 10.1121/1.2836786 Pfingst BE, 2001, JARO, V2, P87 Pfingst BE, 2004, JARO-J ASSOC RES OTO, V5, P11, DOI 10.1007/s10162-003-3051-0 Pickles JO, 1988, INTRO PHYSL HEARING PLOMP R, 1964, J ACOUST SOC AM, V36, P1628, DOI 10.1121/1.1919256 Ruggero M A, 1992, Curr Opin Neurobiol, V2, P449, DOI 10.1016/0959-4388(92)90179-O Saoji AA, 2009, EAR HEARING, V30, P559, DOI 10.1097/AUD.0b013e3181ab2b6f SHANNON RV, 1983, HEARING RES, V12, P1, DOI 10.1016/0378-5955(83)90115-6 SHANNON RV, 1985, HEARING RES, V18, P135, DOI 10.1016/0378-5955(85)90005-X Shannon RV, 1998, J ACOUST SOC AM, V104, P2467, DOI 10.1121/1.423774 SMALL AM, 1959, J ACOUST SOC AM, V31, P1619, DOI 10.1121/1.1907670 Snyder RL, 2008, HEARING RES, V235, P23, DOI 10.1016/j.heares.2007.09.013 Somdas MA, 2007, AUDIOL NEURO-OTOL, V12, P277, DOI 10.1159/000103208 Spoendlin H., 1984, ANN OTOL RHINO S112, V112 Srinivasan AG, 2010, HEARING RES, V270, P89, DOI 10.1016/j.heares.2010.09.004 Tang Q, 2011, J NEURAL ENG, V8, DOI 10.1088/1741-2560/8/4/046029 TASAKI I, 1954, J NEUROPHYSIOL, V17, P97 TERAYAMA Y, 1979, ACTA OTO-LARYNGOL, V88, P27, DOI 10.3109/00016487909137136 Throckmorton CS, 1999, J ACOUST SOC AM, V105, P861, DOI 10.1121/1.426275 Tykocinski M, 2001, OTOL NEUROTOL, V22, P33, DOI 10.1097/00129492-200101000-00007 VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5 Vanpoucke F, 2004, OTOL NEUROTOL, V25, P282, DOI 10.1097/00129492-200405000-00014 Vollmer M, 2007, J NEUROPHYSIOL, V98, P2588, DOI 10.1152/jn.00011.2007 Wardrop P, 2005, HEARING RES, V203, P68, DOI 10.1016/j.heares.2004.11.007 WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 Won JH, 2007, JARO-J ASSOC RES OTO, V8, P384, DOI 10.1007/s10162-007-0085-8 Zeng Fan-Gang, 2004, Trends Amplif, V8, P1, DOI 10.1177/108471380400800102 ZENG FG, 1992, HEARING RES, V60, P231, DOI 10.1016/0378-5955(92)90024-H Zeng FG, 2011, HEARING RES, V277, P61, DOI 10.1016/j.heares.2011.03.010 Zeng FG, 1998, NEUROREPORT, V9, P1845, DOI 10.1097/00001756-199806010-00033 ZENG FG, 1994, SCIENCE, V264, P564, DOI 10.1126/science.8160013 Zhu Ziyan, 2010, Journal of Tsinghua University (Science and Technology), V50 Zwicker E., 1974, FACTS MODELS HEARING NR 89 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2012 VL 283 IS 1-2 BP 45 EP 58 DI 10.1016/j.heares.2011.11.005 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 908FH UT WOS:000301475300005 PM 22138630 ER PT J AU Fraser, M McKay, CM AF Fraser, Matthew McKay, Colette M. TI Temporal modulation transfer functions in cochlear implantees using a method that limits overall loudness cues SO HEARING RESEARCH LA English DT Article ID AMPLITUDE-MODULATION; INTENSITY DISCRIMINATION; ELECTRIC HEARING; STIMULATION RATE; PULSE-RATE; LISTENERS; LEVEL; USERS; THRESHOLDS; CARRIERS AB Temporal modulation transfer functions (TMTFs) were measured for six users of cochlear implants, using different carrier rates and levels. Unlike most previous studies investigating modulation detection, the experimental design limited potential effects of overall loudness cues. Psychometric functions (percent correct discrimination of modulated from unmodulated stimuli versus modulation depth) were obtained. For each modulation depth, each modulated stimulus was loudness balanced to the unmodulated reference stimulus, and level jitter was applied in the discrimination task. The loudness-balance data showed that the modulated stimuli were louder than the unmodulated reference stimuli with the same average current, thus confirming the need to limit loudness cues when measuring modulation detection. TMTFs measured in this way had a low-pass characteristic, with a cut-off frequency (at comfortably loud levels) similar to that for normal-hearing listeners. A reduction in level caused degradation in modulation detection efficiency and a lower-cut-off frequency (i.e. poorer temporal resolution). An increase in carrier rate also led to a degradation in modulation detection efficiency, but only at lower levels or higher modulation frequencies. When detection thresholds were expressed as a proportion of dynamic range, there was no effect of carrier rate for the lowest modulation frequency (50 Hz) at either level. (C) 2011 Elsevier B.V. All rights reserved. C1 [Fraser, Matthew; McKay, Colette M.] Univ Manchester, Sch Psychol Sci, Manchester M13 9PL, Lancs, England. RP McKay, CM (reprint author), Univ Manchester, Sch Psychol Sci, B15,Ellen Wilkinson Bldg, Manchester M13 9PL, Lancs, England. EM matthew.fraser@manchester.ac.uk; colette.mckay@manchester.ac.uk FU UK Medical Research Council; MRC Cognition and Brain Sciences Unit in Cambridge, UK FX This study was supported by a project grant from the UK Medical Research Council. We thank Hugh McDermott for helpful comments on an earlier version of the manuscript, and three reviewers for constructive suggestions. We thank the six participants for the donation of their time to this research. The SPEAR processor was developed at the Cooperative Research Centre for Hearing in Melbourne, Australia, and the ImPReS software was developed at the University of Melbourne, Australia, with support from the MRC Cognition and Brain Sciences Unit in Cambridge, UK. CR BUSBY PA, 1993, J ACOUST SOC AM, V94, P124, DOI 10.1121/1.408212 CAZALS Y, 1994, J ACOUST SOC AM, V96, P2048, DOI 10.1121/1.410146 Chatterjee M, 2005, J ACOUST SOC AM, V118, P993, DOI 10.1121/1.1929258 Chatterjee M, 2011, J ACOUST SOC AM, V130, P1567, DOI 10.1121/1.3621445 Chatterjee M, 2001, JARO, V2, P159, DOI 10.1007/s101620010079 Dai HP, 2010, ATTEN PERCEPT PSYCHO, V72, P538, DOI 10.3758/APP.72.2.538 Dau T, 1997, J ACOUST SOC AM, V102, P2892, DOI 10.1121/1.420344 Donaldson GS, 2000, J ACOUST SOC AM, V108, P760, DOI 10.1121/1.429609 Fu QJ, 2002, NEUROREPORT, V13, P1635, DOI 10.1097/00001756-200209160-00013 Galvin JJ, 2005, JARO-J ASSOC RES OTO, V6, P269, DOI 10.1007/s10162-005-0007-6 Galvin JJ, 2009, HEARING RES, V250, P46, DOI 10.1016/j.heares.2009.01.009 Kohlrausch A, 2000, J ACOUST SOC AM, V108, P723, DOI 10.1121/1.429605 MCKAY CM, 1994, J ACOUST SOC AM, V96, P2664, DOI 10.1121/1.411377 McKay CM, 2010, JARO-J ASSOC RES OTO, V11, P101, DOI 10.1007/s10162-009-0188-5 McKay CM, 2003, J ACOUST SOC AM, V113, P2054, DOI 10.1121/1.1558378 Middlebrooks JC, 2008, J NEUROPHYSIOL, V100, P92, DOI 10.1152/jn.01114.2007 Nelson DA, 1996, J ACOUST SOC AM, V100, P2393, DOI 10.1121/1.417949 Pfingst BE, 2007, J ACOUST SOC AM, V121, P2236, DOI 10.1121/1.2537501 Pfingst BE, 2008, J ACOUST SOC AM, V123, P1054, DOI 10.1121/1.2828051 Rubinstein Jay T, 2003, Ann Otol Rhinol Laryngol Suppl, V191, P14 SHANNON RV, 1992, J ACOUST SOC AM, V91, P2156, DOI 10.1121/1.403807 VIEMEISTER NF, 1979, J ACOUST SOC AM, V66, P1364, DOI 10.1121/1.383531 Zhang CY, 1997, J ACOUST SOC AM, V102, P2925, DOI 10.1121/1.420347 NR 23 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2012 VL 283 IS 1-2 BP 59 EP 69 DI 10.1016/j.heares.2011.11.009 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 908FH UT WOS:000301475300006 PM 22146425 ER PT J AU Arch, VS Simmons, DD Quinones, PM Feng, AS Jiang, JP Stuart, BL Shen, JX Blair, C Narins, PM AF Arch, Victoria S. Simmons, Dwayne D. Quinones, Patricia M. Feng, Albert S. Jiang, Jianping Stuart, Bryan L. Shen, Jun-Xian Blair, Chris Narins, Peter M. TI Inner ear morphological correlates of ultrasonic hearing in frogs SO HEARING RESEARCH LA English DT Article ID BULLFROG AMPHIBIAN PAPILLA; PRODUCT OTOACOUSTIC EMISSIONS; AUDITORY HAIR-CELLS; BASILAR PAPILLA; ANURAN AMPHIBIANS; RANA-CATESBEIANA; TONOTOPIC ORGANIZATION; ELECTRICAL RESONANCE; QUANTITATIVE LIGHT; PERIPHERAL ORIGINS AB Three species of anuran amphibians (Odorrana torrnota, Odorrana livida and Huia cavitympanum) have recently been found to detect ultrasounds. We employed immunohistochemistry and confocal microscopy to examine several morphometrics of the inner ear of these ultrasonically sensitive species. We compared morphological data collected from the ultrasound-detecting species with data from Rana pipiens, a frog with a typical anuran upper cut-off frequency of similar to 3 kHz. In addition, we examined the ears of two species of Lao torrent frogs, Odorrana chloronota and Amolops daorum, that live in an acoustic environment approximating those of ultrasonically sensitive frogs. Our results suggest that the three ultrasound-detecting species have converged on small-scale functional modifications of the basilar papilla (BP), the high-frequency hearing organ in the frog inner ear. These modifications include: 1. reduced BP chamber volume, 2. reduced tectorial membrane mass, 3. reduced hair bundle length, and 4. reduced hair cell soma length. While none of these factors on its own could account for the US sensitivity of the inner ears of these species, the combination of these factors appears to extend their hearing bandwidth, and facilitate high-frequency/ultrasound detection. These modifications are also seen in the ears of 0. chloronota, suggesting that this species is a candidate for high-frequency hearing sensitivity. These data form the foundation for future functional work probing the physiological bases of ultrasound detection by a non-mammalian ear. (C) 2011 Elsevier B.V. All rights reserved. C1 [Simmons, Dwayne D.; Blair, Chris; Narins, Peter M.] Univ Calif Los Angeles, Dept Integrat Biol & Physiol, Los Angeles, CA 90095 USA. [Arch, Victoria S.] Abbott Vasc Inc, Santa Clara, CA 95054 USA. [Arch, Victoria S.; Narins, Peter M.] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA. [Quinones, Patricia M.] Univ Calif Los Angeles, David Geffen Sch Med, Dept Neurobiol, Los Angeles, CA 90095 USA. [Feng, Albert S.] Univ Illinois, Dept Mol & Integrat Physiol, Urbana, IL 61801 USA. [Jiang, Jianping] Chinese Acad Sci, Chengdu Inst Biol, Chengdu 610041, Sichuan, Peoples R China. [Stuart, Bryan L.] N Carolina Museum Nat Sci, Raleigh, NC 27601 USA. [Shen, Jun-Xian] Chinese Acad Sci, Inst Biophys, State Key Lab Brain & Cognit Sci, Beijing 100101, Peoples R China. RP Narins, PM (reprint author), Univ Calif Los Angeles, Dept Integrat Biol & Physiol, 621 Charles E Young Dr S, Los Angeles, CA 90095 USA. EM pnarins@ucla.edu CR Arch VS, 2008, BIOL LETTERS, V4, P19, DOI 10.1098/rsbl.2007.0494 Arch VS, 2008, ANIM BEHAV, V76, P1423, DOI 10.1016/j.anbehav.2008.05.012 Arch VS, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005413 AUTHIER S, 1995, HEARING RES, V82, P1 Bain RH, 2003, AM MUS NOVIT, P1, DOI 10.1206/0003-0082(2003)417<0001:CSOACF>2.0.CO;2 BAIRD IL, 1974, BRAIN BEHAV EVOLUT, V10, P11, DOI 10.1159/000124300 BOHNE BA, 1985, J ACOUST SOC AM, V77, P153, DOI 10.1121/1.392279 Capranica R.R., 1976, P551 Capranica R.R., 1977, J ACOUST SOC AM, V6, P536 Dooling R. J., 2000, COMP HEARING BIRDS R, P308 Echteler SM, 1994, COMP HEARING MAMMALS, P134 Fei L., 1999, ATLAS AMPHIBIANS CHI Feng AS, 2006, NATURE, V440, P333, DOI 10.1038/nature04416 FENG AS, 1981, HEARING RES, V5, P201, DOI 10.1016/0378-5955(81)90046-0 Feng AS, 2002, NATURWISSENSCHAFTEN, V89, P352, DOI 10.1007/s00144-002-0335-x FENG AS, 1975, J COMP PHYSIOL, V100, P221 Fettiplace R, 1999, ANNU REV PHYSIOL, V61, P809, DOI 10.1146/annurev.physiol.61.1.809 Flock A., 1977, PSYCHOPHYSICS PHYSL, P15 Flock A., 1982, REPRESENTATION SPEEC, P1 Fuchs P.A., 1988, J NEUROSCI, V8, P2460 GEISLER CD, 1964, J MORPHOL, V114, P43, DOI 10.1002/jmor.1051140103 Gridi-Papp M, 2008, P NATL ACAD SCI USA, V105, P11014, DOI 10.1073/pnas.0802210105 HACKNEY CM, 1993, HEARING RES, V69, P163, DOI 10.1016/0378-5955(93)90104-9 Heffner H. E., 1998, COMP PSYCHOL HDB, P290 Heffner H.E., 2007, SENSES COMPREHENSIVE, P55 HILLERY CM, 1984, SCIENCE, V225, P1037, DOI 10.1126/science.6474164 HILLERY CM, 1987, HEARING RES, V25, P233, DOI 10.1016/0378-5955(87)90095-5 Iurato S, 1967, SUBMICROSCOPIC STRUC KOPPL C, 1995, HEARING RES, V82, P14 Lewis E.R., 1983, SCANNING ELECTRON MI, V1983, P189 LEWIS ER, 1975, BRAIN RES, V83, P35, DOI 10.1016/0006-8993(75)90856-2 Lewis E.R., 1992, J COMP PHYSIOL A, V17, P421 LEWIS ER, 1982, SCIENCE, V215, P1641, DOI 10.1126/science.6978525 LEWIS ER, 1982, J COMP PHYSIOL, V145, P437 LEWIS ER, 1976, BRAIN BEHAV EVOLUT, V13, P196, DOI 10.1159/000123810 LIM DJ, 1980, J ACOUST SOC AM, V67, P1686, DOI 10.1121/1.384295 LOFTUSHI.JJ, 1970, J ACOUST SOC AM, V47, P1131, DOI 10.1121/1.1912015 LOMBARD RE, 1979, BIOL J LINN SOC, V11, P19, DOI 10.1111/j.1095-8312.1979.tb00027.x Mann DA, 2001, J ACOUST SOC AM, V109, P3048, DOI 10.1121/1.1368406 Meenderink SWF, 2005, J ACOUST SOC AM, V117, P3165, DOI 10.1121/1.1871752 MEGELA AL, 1982, J ACOUST SOC AM, V71, P641, DOI 10.1121/1.387538 MULROY MJ, 1974, BRAIN BEHAV EVOLUT, V10, P69, DOI 10.1159/000124303 Narins P.M., 1983, HEARING PHYSL BASES, P70 Narins PM, 2004, J ACOUST SOC AM, V115, P910, DOI 10.1121/1.1636851 NARINS PM, 1990, BIOSCIENCE, V40, P268, DOI 10.2307/1311263 PITCHFORD S, 1987, HEARING RES, V27, P75, DOI 10.1016/0378-5955(87)90027-X Purgue AP, 2000, J COMP PHYSIOL A, V186, P489, DOI 10.1007/s003590050447 Purgue AP, 2000, J COMP PHYSIOL A, V186, P481, DOI 10.1007/s003590050446 R Development Core Team, 2004, R R FDN STAT COMP RONKEN DA, 1990, HEARING RES, V47, P63, DOI 10.1016/0378-5955(90)90167-N Schoffelen RLM, 2009, JARO-J ASSOC RES OTO, V10, P309, DOI 10.1007/s10162-009-0167-x SHOFNER WP, 1984, J COMP NEUROL, V224, P141, DOI 10.1002/cne.902240113 SHOFNER WP, 1981, J EXP BIOL, V93, P181 SHOFNER WP, 1983, HEARING RES, V11, P103, DOI 10.1016/0378-5955(83)90048-5 SIMMONS DD, 1994, HEARING RES, V80, P71, DOI 10.1016/0378-5955(94)90010-8 Smotherman MS, 2000, J EXP BIOL, V203, P2237 Smotherman MS, 1998, J NEUROPHYSIOL, V79, P312 Smotherman MS, 1999, HEARING RES, V132, P117, DOI 10.1016/S0378-5955(99)00047-7 Smotherman MS, 1999, J NEUROSCI, V19, P5275 Strelioff D., 1982, SOC NEUR ABSTR, V8, P40 Stuart BL, 2008, MOL PHYLOGENET EVOL, V46, P49, DOI 10.1016/j.ympev.2007.09.016 SUGIHARA I, 1989, J NEUROPHYSIOL, V62, P1330 TILNEY LG, 1983, J CELL BIOL, V96, P807, DOI 10.1083/jcb.96.3.807 TURNER RG, 1981, SCIENCE, V213, P1519, DOI 10.1126/science.7280673 Van Dijk P, 2006, Auditory Mechanisms: Processes and Models, P332, DOI 10.1142/9789812773456_0055 van Dijk P, 2001, HEARING RES, V153, P14, DOI 10.1016/S0378-5955(00)00251-3 Wada T., 1923, AM ANATOMIC MEMOIRS, P1 Weyer E. G., 1973, J MORPHOL, V141, P461 Weyer E.G., 1985, AMPHIBIAN EAR WILCZYNSKI W, 1984, PROG NEUROBIOL, V22, P1, DOI 10.1016/0301-0082(84)90016-9 Yang D., 1991, FIELDIANA ZOOLOGY, V63 YU XL, 1991, J COMP PHYSIOL A, V169, P241, DOI 10.1007/BF00215871 ZWISLOCKI JJ, 1980, HEARING RES, V2, P171, DOI 10.1016/0378-5955(80)90055-6 ZWISLOCKI JJ, 1980, J ACOUST SOC AM, V67, P1679 NR 74 TC 2 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2012 VL 283 IS 1-2 BP 70 EP 79 DI 10.1016/j.heares.2011.11.006 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 908FH UT WOS:000301475300007 PM 22146424 ER PT J AU Kane, KL Longo-Guess, CM Gagnon, LH Ding, DL Salvi, RJ Johnson, KR AF Kane, Kelly L. Longo-Guess, Chantal M. Gagnon, Leona H. Ding, Dalian Salvi, Richard J. Johnson, Kenneth R. TI Genetic background effects on age-related hearing loss associated with Cdh23 variants in mice SO HEARING RESEARCH LA English DT Article ID C57BL/6 SUBSTRAINS; HAIR-CELLS; MOUSE; PRESBYCUSIS; CBA; SUSCEPTIBILITY; INHERITANCE; CADHERIN-23; IMPAIRMENT; STRAINS AB Inbred strain variants of the Cdh23 gene have been shown to influence the onset and progression of agerelated hearing loss (AHL) in mice. In linkage backcrosses, the recessive Cdh23 allele (ahl) of the C57BL/6J strain, when homozygous, confers increased susceptibility to AHL, while the dominant allele (Ahl+) of the CBA/CaJ strain confers resistance. To determine the isolated effects of these alleles on different strain backgrounds, we produced the reciprocal congenic strains B6.CBACa-Cdh23(Ahl+) and CBACa.B6-Cdh23(ahl) and tested 15-30 mice from each for hearing loss progression. ABR thresholds for 8 kHz, 16 kHz, and 32 kHz pure-tone stimuli were measured at 3, 6, 9, 12, 15 and 18 months of age and compared with agematched mice of the C57BL/6J and CBA/CaJ parental strains. Mice of the C57BL/6N strain, which is the source of embryonic stem cells for the large International Knockout Mouse Consortium, were also tested for comparisons with C57BL/6J mice. Mice of the C57BL/6J and C57BL/6N strains exhibited identical hearing loss profiles: their 32 kHz ABR thresholds were significantly higher than those of CBA/CaJ and congenic strain mice by 6 months of age, and their 16 kHz thresholds were significantly higher by 12 months. Thresholds of the CBA/CaJ, the B6.CBACa-Cdh23(Ahl+), and the CBACa.B6-Cdh23ahl strain mice differed little from one another and only slightly increased throughout the 18-month test period. Hearing loss, which corresponded well with cochlear hair cell loss, was most profound in the C57BL/61 and C57BL/ 6NJ strains. These results indicate that the CBA/CaJ-derived Cdh23(Ahl+) allele dramatically lessens hearing loss and hair cell death in an otherwise C57BL/6J genetic background, but that the C57BL/6J-derived Cdh23(ahl) allele has little effect on hearing loss in an otherwise CBA/CaJ background. We conclude that although Cdh23(ahl) homozygosity is necessary, it is not by itself sufficient to account for the accelerated hearing loss of C57BL/6J mice. (C) 2011 Elsevier By. All rights reserved. C1 [Kane, Kelly L.; Longo-Guess, Chantal M.; Gagnon, Leona H.; Johnson, Kenneth R.] Jackson Lab, Bar Harbor, ME 04609 USA. [Ding, Dalian; Salvi, Richard J.] SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP Johnson, KR (reprint author), Jackson Lab, 600 Main St, Bar Harbor, ME 04609 USA. EM ken.johnson@jax.org FU National Institutes of Health (NIH), National Institute on Deafness and Other Communication Disorders (NIDCD) [DC005827]; NIH National Cancer Institute [CA34196] FX We thank Patsy Nishina and David Bergstrom of The Jackson Laboratory for their critical review of this manuscript. We also thank Sandra Gray for her skilled mouse colony management and assistance in the development of the congenic strains. This research was supported by RO1 grant DC005827 (KRJ) from the National Institutes of Health (NIH), National Institute on Deafness and Other Communication Disorders (NIDCD). The Jackson Laboratory institutional shared services are supported by NIH National Cancer Institute support grant CA34196. CR Alagramam KN, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019183 Bared A, 2010, OTOLARYNG HEAD NECK, V143, P263, DOI 10.1016/j.otohns.2010.03.024 Bielefeld EC, 2010, HEARING RES, V264, P98, DOI 10.1016/j.heares.2009.09.001 Bryant CD, 2008, J NEUROGENET, V22, P315, DOI 10.1080/01677060802357388 Dalton DS, 2003, GERONTOLOGIST, V43, P661 DeStefano AL, 2003, ARCH OTOLARYNGOL, V129, P285 Ding DL, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P189, DOI 10.1201/9781420038736.ch13 Ding DL, 1999, AUDIOL NEURO-OTOL, V4, P55, DOI 10.1159/000013822 Friedman RA, 2009, HUM MOL GENET, V18, P785, DOI 10.1093/hmg/ddn402 Garringer HJ, 2006, ARCH OTOLARYNGOL, V132, P506, DOI 10.1001/archotol.132.5.506 HENRY KR, 1980, AUDIOLOGY, V19, P369 Hequembourg S, 2001, JARO, V2, P118 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Johnson K.R., 2010, HEAR RES Kazmierczak P, 2007, NATURE, V449, P87, DOI 10.1038/nature06091 Keithley EM, 2004, HEARING RES, V188, P21, DOI 10.1016/S0378-5955(03)00365-4 Lang H, 2002, HEARING RES, V172, P118, DOI 10.1016/S0378-5955(02)00552-X Latoche JR, 2011, HEARING RES, V275, P150, DOI 10.1016/j.heares.2010.12.017 LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418 Mikaelian D.O., 1979, LARYNGOSCOPE, V34, P1 Muller M, 2005, HEARING RES, V202, P63, DOI 10.1016/j.heares.2004.08.011 Nicholson A, 2010, OBESITY, V18, P1902, DOI 10.1038/oby.2009.477 Noben-Trauth K, 2009, BRAIN RES, V1277, P42, DOI 10.1016/j.brainres.2009.02.012 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 Ohlemiller KK, 2010, JARO-J ASSOC RES OTO, V11, P605, DOI 10.1007/s10162-010-0228-1 Ohlemiller KK, 2009, BRAIN RES, V1277, P70, DOI 10.1016/j.brainres.2009.02.079 Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017 Rodriguez-Paris J, 2008, ANN CLIN LAB SCI, V38, P352 Schwander M, 2009, P NATL ACAD SCI USA, V106, P5252, DOI 10.1073/pnas.0900691106 Someya S, 2009, P NATL ACAD SCI USA, V106, P19432, DOI 10.1073/pnas.0908786106 Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 Unal M, 2005, LARYNGOSCOPE, V115, P2238, DOI 10.1097/01.mlg.0000183694.10583.12 Wang J., 2008, NEUROBIOL AGING, V31, P1238 WILLOTT JF, 1986, J NEUROPHYSIOL, V56, P391 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 Zheng QY, 2009, NEUROBIOL AGING, V30, P1693, DOI 10.1016/j.neurobiolaging.2007.12.011 NR 36 TC 13 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2012 VL 283 IS 1-2 BP 80 EP 88 DI 10.1016/j.heares.2011.11.007 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 908FH UT WOS:000301475300008 PM 22138310 ER PT J AU Papesh, MA Hurley, LM AF Papesh, Melissa A. Hurley, Laura M. TI Plasticity of serotonergic innervation of the inferior colliculus in mice following acoustic trauma SO HEARING RESEARCH LA English DT Article ID SPONTANEOUS NEURAL ACTIVITY; INHIBITORY POSTSYNAPTIC CURRENTS; DORSAL COCHLEAR NUCLEUS; CENTRAL AUDITORY-SYSTEM; ADULT VISUAL-CORTEX; HEARING-LOSS; EVOKED-POTENTIALS; BRAIN-STEM; INDUCED TINNITUS; NOISE EXPOSURE AB Acoustic trauma often results in permanent damage to the cochlea, triggering changes in processing within central auditory structures such as the inferior colliculus (IC). The serotonergic neuromodulatory system, present in the IC, is responsive to chronic changes in the activity of sensory systems. The current study investigated whether the density of serotonergic innervation in the IC is changed following acoustic trauma. The trauma stimulus consisted of an 8 kHz pure tone presented at a level of 113 dB SPL for six consecutive hours to anesthetized CBAJJ mice. Following a minimum recovery period of three weeks, serotonergic fibers were visualized via histochemical techniques targeting the serotonin reuptake transporter (SERT) and quantified using stereologic probes. SERT-positive fiber densities were then compared between the traumatized and protected hemispheres of unilaterally traumatized subjects and those of controls. A significant effect of acoustic trauma was found between the hemispheres of unilaterally traumatized subjects such that the IC contralateral to the ear of exposure contained a lower density of SERT-positive fibers than the IC ipsilateral to acoustic trauma. No significant difference in density was found between the hemispheres of control subjects. Additional dimensions of variability in serotonergic fibers were seen among subdivisions of the IC and with age. The central IC had a slightly but significantly lowered density of serotonergic fibers than other subdivisions of the IC, and serotonergic fibers also declined with age. Overall, the results indicate that acoustic trauma is capable of producing modest but significant decreases in the density of serotonergic fibers innervating the IC. (C) 2011 Elsevier B.V. All rights reserved. C1 [Hurley, Laura M.] Indiana Univ, Dept Biol, Ctr Integrat Study Anim Behav, Bloomington, IN 47405 USA. [Papesh, Melissa A.] Indiana Univ, Dept Speech & Hearing Sci, Bloomington, IN 47405 USA. RP Hurley, LM (reprint author), Indiana Univ, Dept Biol, Ctr Integrat Study Anim Behav, 1001 E 3rd St, Bloomington, IN 47405 USA. EM mwoods@indiana.edu; lhurley@indiana.edu FU Indiana University's Faculty FX The authors would like to thank Abby Howenstein and Katherine Knisely for their help in running experiments and with data analysis. We would also like to thank Robert Withnell and William Shofner their time, expertise, and helpful comments on the manuscript. This project is supported by a grant from Indiana University's Faculty Research Support Program. CR Abbott SD, 1999, NEUROSCIENCE, V93, P1375, DOI 10.1016/S0306-4522(99)00300-0 Baroncelli L, 2010, EXP NEUROL, V226, P100, DOI 10.1016/j.expneurol.2010.08.009 Barsz K, 2007, NEUROSCIENCE, V147, P532, DOI 10.1016/j.neuroscience.2007.04.031 Bartels H, 2007, OTOL NEUROTOL, V28, P178, DOI 10.1097/MAO.0b013e31802b3248 Basta Dietmar, 2005, Neurosci Lett, V374, P74, DOI 10.1016/j.neulet.2004.11.002 Bledsoe SC, 1995, NEUROREPORT, V7, P225, DOI 10.1097/00001756-199512000-00054 Bohorquez A, 2009, HEARING RES, V251, P29, DOI 10.1016/j.heares.2009.02.006 Calhoun Michael E., 2001, Journal of Chemical Neuroanatomy, V21, P257, DOI 10.1016/S0891-0618(01)00093-X COLES RB, 1982, J EXP BIOL, V101, P337 Cransac H, 1996, HEARING RES, V100, P150, DOI 10.1016/0378-5955(96)00116-5 DAVIS M, 1980, SCIENCE, V209, P521, DOI 10.1126/science.7394520 DAVIS RI, 1989, HEARING RES, V41, P1, DOI 10.1016/0378-5955(89)90173-1 Dong S, 2010, BRAIN RES, V1342, P24, DOI 10.1016/j.brainres.2010.04.067 Dong S., 2010, EUR J NEUROSCI, V31, P16 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Eggermont JJ, 1998, HEARING RES, V117, P149, DOI 10.1016/S0378-5955(98)00008-2 Eldredge D H, 1973, Adv Otorhinolaryngol, V20, P64 Esaki T, 2005, P NATL ACAD SCI USA, V102, P5582, DOI 10.1073/pnas.0501509102 Hall IC, 2010, J EXP BIOL, V213, P1009, DOI 10.1242/jeb.035956 Hall IC, 2007, HEARING RES, V228, P82, DOI 10.1016/j.heares.2007.01.023 Hall IC, 2011, BEHAV NEUROSCI, V125, P501, DOI 10.1037/a0024426 Holt AG, 2005, J NEUROCHEM, V93, P1069, DOI 10.1111/j.1471-4159.2005.03090.x Hurley LM, 2008, J NEUROPHYSIOL, V100, P1656, DOI 10.1152/jn.90536.2008 Hurley LM, 2011, HEARING RES, V279, P74, DOI 10.1016/j.heares.2010.12.015 Hurley LM, 1999, J NEUROSCI, V19, P8071 Hurley LM, 2007, BRAIN RES, V1181, P21, DOI 10.1016/j.brainres.2007.08.053 Hurley LM, 2001, J NEUROPHYSIOL, V85, P828 Hurley LM, 2006, J NEUROPHYSIOL, V96, P2177, DOI 10.1152/jn.00046.2006 Hurley LM, 2001, J COMP NEUROL, V435, P78, DOI 10.1002/cne.1194 Johnson RG, 1998, J PHARMACOL EXP THER, V285, P643 Kaiser A., 1997, J SCI NEW YORK, P71 Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6 Kelley NH, 1937, J EXP PSYCHOL, V21, P211, DOI 10.1037/h0055019 KLEPPER A, 1991, BRAIN RES, V557, P190, DOI 10.1016/0006-8993(91)90134-H Komiya H, 2000, ACTA OTO-LARYNGOL, V120, P750 Kreczmanski P, 2009, ACTA NEUROPATHOL, V117, P409, DOI 10.1007/s00401-009-0482-7 LI HS, 1992, ACTA OTO-LARYNGOL, V112, P956, DOI 10.3109/00016489209137496 LIBERMAN MC, 1978, ACTA OTO-LARYNGOL, P5 LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8 Lombion S., 2007, PROG NEUROPSYCHOPHAR, V32, P629 Ma WLD, 2006, HEARING RES, V212, P9, DOI 10.1016/j.heares.2005.10.003 Mamounas LA, 2000, J NEUROSCI, V20, P771 MARRIAGE J, 1995, J LARYNGOL OTOL, V109, P915 Maya-Vetencourt JF, 2008, SCIENCE, V320, P385, DOI 10.1126/science.1150516 MELICHAR I, 1980, Hearing Research, V2, P55, DOI 10.1016/0378-5955(80)90016-7 Michler SA, 2002, J COMP NEUROL, V451, P250, DOI 10.1002/cne.10348 Milbrandt JC, 2000, HEARING RES, V147, P251, DOI 10.1016/S0378-5955(00)00135-0 Moller AR, 2006, PROG BRAIN RES, V157, P365, DOI 10.1016/S0079-6123(06)57022-0 Mossop JE, 2000, HEARING RES, V147, P183, DOI 10.1016/S0378-5955(00)00054-X Nathan PJ, 2006, HUM PSYCHOPHARM CLIN, V21, P47, DOI 10.1002/hup.740 Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9 Normann C, 2007, BIOL PSYCHIAT, V62, P373, DOI 10.1016/j.biopsych.2006.10.006 Okamoto K, 2002, PAIN, V99, P133, DOI 10.1016/S0304-3959(02)00070-2 Paxinos G., 2004, MOUSE BRAIN STEREOTA Peruzzi D, 2004, BRAIN RES, V998, P247, DOI 10.1016/j.brainres.2003.10.059 Portfors CV, 2009, NEUROSCIENCE, V162, P486, DOI 10.1016/j.neuroscience.2009.04.056 PRISCO S, 1994, J PHARMACOL EXP THER, V271, P83 Qu Y, 2000, NEUROSCIENCE, V101, P863, DOI 10.1016/S0306-4522(00)00441-3 Rachel JD, 2002, HEARING RES, V164, P206, DOI 10.1016/S0378-5955(02)00287-3 ROMAND R, 1990, DEV BRAIN RES, V54, P221, DOI 10.1016/0165-3806(90)90145-O SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 Salvinelli F, 2003, MED HYPOTHESES, V61, P446, DOI 10.1016/S0306-9877(03)00194-4 Schaette R, 2006, EUR J NEUROSCI, V23, P3124, DOI 10.1111/j.1460-9568.04774.x Shamy JL, 2007, J COMP NEUROL, V502, P192, DOI 10.1002/cne.21313 Simpson JJ, 2000, HEARING RES, V145, P1, DOI 10.1016/S0378-5955(00)00093-9 Smith GS, 1997, AM J PSYCHIAT, V154, P490 SOHMER H, 1980, ELECTROEN CLIN NEURO, V49, P506, DOI 10.1016/0013-4694(80)90393-4 SUGISAWA T, 1994, EUR ARCH OTO-RHINO-L, V251, P154 Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812 Szczepaniak WS, 1996, EVOKED POTENTIAL, V100, P158, DOI 10.1016/0013-4694(95)00234-0 SZCZEPANIAK WS, 1995, NEUROSCI LETT, V196, P77, DOI 10.1016/0304-3940(95)11851-M Tadros SF, 2007, NEUROBIOL AGING, V28, P1112, DOI 10.1016/j.neurobiolaging.2006.05.021 Tan J, 2007, NEUROSCIENCE, V145, P715, DOI 10.1016/j.neuroscience.2006.11.067 Thompson AM, 2004, NEUROSCI LETT, V356, P179, DOI 10.1016/j.neulet.2003.11.052 THOMPSON GC, 1994, OTOLARYNG HEAD NECK, V110, P93, DOI 10.1016/S0194-5998(94)70797-9 Tong L, 2005, HEARING RES, V206, P28, DOI 10.1016/j.heares.2005.03.006 Vale C, 2004, EUR J NEUROSCI, V20, P2133, DOI 10.1111/j.1460-9568.2004.03679.x Vale C, 2002, EUR J NEUROSCI, V16, P2394, DOI 10.1046/j.1460-9568.2002.02302.x Wang HT, 2008, HEARING RES, V236, P42, DOI 10.1016/j.heares.2007.11.015 Wang HT, 2006, HEARING RES, V215, P77, DOI 10.1016/j.heares.2006.03.004 Wang JA, 2002, HEARING RES, V168, P238, DOI 10.1016/S0378-5955(02)00360-X WILLOTT JF, 1982, SCIENCE, V216, P1331, DOI 10.1126/science.7079767 WILLOTT JF, 1974, J COMP PHYSIOL PSYCH, V86, P1, DOI 10.1037/h0035922 Yang G, 2007, HEARING RES, V226, P244, DOI 10.1016/j.heares.2006.06.013 Zeng SJ, 2007, BRAIN BEHAV EVOLUT, V70, P1, DOI 10.1159/000101066 NR 86 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2012 VL 283 IS 1-2 BP 89 EP 97 DI 10.1016/j.heares.2011.11.004 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 908FH UT WOS:000301475300009 PM 22101024 ER PT J AU Pilati, N Large, C Forsythe, ID Hamann, M AF Pilati, Nadia Large, Charles Forsythe, Ian D. Hamann, Martine TI Acoustic over-exposure triggers burst firing in dorsal cochlear nucleus fusiform cells SO HEARING RESEARCH LA English DT Article ID SPONTANEOUS NEURAL ACTIVITY; KV3.1 POTASSIUM CHANNEL; AUDITORY-NERVE FIBERS; INDUCED HEARING-LOSS; GATED K+ CHANNELS; NEURONAL EXCITABILITY; RESPONSE PROPERTIES; INDUCED TINNITUS; THRESHOLD SHIFT; INTENSE SOUND AB Acoustic over-exposure (AOE) triggers deafness in animals and humans and provokes auditory nerve degeneration. Weeks after exposure there is an increase in the cellular excitability within the dorsal cochlear nucleus (DCN) and this is considered as a possible neural correlate of tinnitus. The origin of this DCN hyperactivity phenomenon is still unknown but it is associated with neurons lying within the fusiform cell layer. Here we investigated changes of excitability within identified fusiform cells following AOE. Wistar rats were exposed to a loud (110 dB SPL) single tone (14.8 kHz) for 4 h. Auditory brainstem response recordings performed 3-4 days after AOE showed that the hearing thresholds were significantly elevated by about 20-30 dB SPL for frequencies above 15 kHz. Control fusiform cells fired with a regular firing pattern as assessed by the coefficient of variation of the inter-spike interval distribution of 0.19 +/- 0.11 (n = 5). Three to four days after AOE, 40% of fusiform cells exhibited irregular bursting discharge patterns (coefficient of variation of the inter-spike interval distribution of 1.8 + 0.6, n = 5: p < 0.05). Additionally the maximal firing following step current injections was reduced in these cells (from 83 +/- 11 Hz, n = 5 in unexposed condition to 43 +/- 6 Hz, n = 5 after AOE) and this was accompanied by an increased firing gain (from 0.09 0.01 Hz/pA, n = 5 in unexposed condition to 0.56 0.25 Hz/pA, n = 5 after AOE). Current and voltage clamp recordings suggest that the presence of bursts in fusiform cells is related to a down regulation of high voltage activated potassium currents. In conclusion we showed that AOE triggers deafness at early stages and this is correlated with profound changes in the firing pattern and frequency of the DCN major output fusiform cells. The changes here described could represent the initial network imbalance prior to the emergence of tinnitus. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved. C1 [Pilati, Nadia; Hamann, Martine] Univ Leicester, Dept Cell Physiol & Pharmacol, Leicester LE1 9HN, Leics, England. [Large, Charles] GlaxoSmithKline SpA, Neurosci CEDD, I-37135 Verona, Italy. [Forsythe, Ian D.] Univ Leicester, MRC Toxicol Unit, Leicester LE1 9HN, Leics, England. RP Hamann, M (reprint author), Univ Leicester, Dept Cell Physiol & Pharmacol, Maurice Shock Med Sci Bldg,Univ Rd, Leicester LE1 9HN, Leics, England. EM mh86@le.ac.uk FU GlaxoSmithKline; Wellcome Trust; Royal Society, Medisearch and Deafness Research UK FX This project was supported by GlaxoSmithKline, Wellcome Trust, Royal Society, Medisearch and Deafness Research UK. We thank Dr M. Mulheran and the Biomedical Services of the University of Leicester for helpful advice and Dr J. Kaltenbach for insightful discussions. CR Barnes-Davies M, 2004, EUR J NEUROSCI, V19, P325, DOI 10.1111/j.1460-9568.2003.03133.x BARRS DM, 1984, AM J OTOL, V5, P269 Brew HM, 1995, J NEUROSCI, V15, P8011 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 Buzsaki G, 2002, CEREB CORTEX, V12, P893, DOI 10.1093/cercor/12.9.893 CALVIN WH, 1968, J NEUROPHYSIOL, V31, P574 Chance FS, 2002, NEURON, V35, P773, DOI 10.1016/S0896-6273(02)00820-6 Chang H, 2002, HEARING RES, V164, P59, DOI 10.1016/S0378-5955(01)00410-5 Chen K, 1999, NEUROSCIENCE, V90, P1043, DOI 10.1016/S0306-4522(98)00503-X Chen KJ, 1998, BRAIN RES, V783, P219, DOI 10.1016/S0006-8993(97)01348-6 DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 DAVIES E, 1994, BRIT J AUDIOL, V28, P125, DOI 10.3109/03005369409086559 Ding J, 1999, J NEUROPHYSIOL, V82, P3434 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Ehrenberger Klaus, 2005, Int Tinnitus J, V11, P34 Finlayson PG, 2009, HEARING RES, V256, P104, DOI 10.1016/j.heares.2009.07.006 Friedland DR, 2007, HEARING RES, V228, P31, DOI 10.1016/j.heares.2007.01.024 GEALDOR M, 1993, HEARING RES, V69, P236, DOI 10.1016/0378-5955(93)90113-F GRISSMER S, 1994, MOL PHARMACOL, V45, P1227 Hancock KE, 2002, J NEUROPHYSIOL, V87, P2505, DOI 10.1152/jn00342.2001 HIRSCH JA, 1988, J PHYSIOL-LONDON, V396, P535 Holt GR, 1997, NEURAL COMPUT, V9, P1001, DOI 10.1162/neco.1997.9.5.1001 Hopkins WF, 1998, J PHARMACOL EXP THER, V285, P1051 Johnston J, 2010, J PHYSIOL-LONDON, V588, P3187, DOI 10.1113/jphysiol.2010.191973 Kaltenbach J.A., 2002, ABS ASS RES OTOLARYN, V25 Kaltenbach JA, 2007, PROG BRAIN RES, V166, P89, DOI 10.1016/S0079-6123(07)66009-9 Kaltenbach JA, 2008, AM J AUDIOL, V17, pS148, DOI 10.1044/1059-0889(2008/08-0004) Kaltenbach JA, 1998, HEARING RES, V124, P78, DOI 10.1016/S0378-5955(98)00119-1 KIANG NYS, 1965, ANN OTO RHINOL LARYN, V74, P463 Koch C., 1999, BIOPHYSICS COMPUTATI Komiya H, 2000, ACTA OTO-LARYNGOL, V120, P750 Lau D, 2000, J NEUROSCI, V20, P9071 Leao KE, 2010, EUR J NEUROSCI, V32, P1658, DOI 10.1111/j.1460-9568.2010.07437.x Leao RN, 2006, J PHYSIOL-LONDON, V571, P563, DOI 10.1113/jphysiol.2005.098780 Lien CC, 2003, J NEUROSCI, V23, P2058 LOEB M, 1967, J ACOUST SOC AM, V42, P453, DOI 10.1121/1.1910600 Ma WLD, 2006, HEARING RES, V212, P9, DOI 10.1016/j.heares.2005.10.003 MANIS PB, 1990, J NEUROSCI, V10, P2338 MANIS PB, 1994, J COMP NEUROL, V348, P261, DOI 10.1002/cne.903480208 Middleton JW, 2011, P NATL ACAD SCI USA, V108, P7601, DOI 10.1073/pnas.1100223108 Murashita H, 2006, HEARING RES, V214, P1, DOI 10.1016/j.heares.2005.12.008 Nicolas-Puel Cécile, 2002, Int Tinnitus J, V8, P37 Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9 OERTEL D, 1989, J COMP NEUROL, V283, P228, DOI 10.1002/cne.902830206 Oertel D, 2004, TRENDS NEUROSCI, V27, P104, DOI 10.1016/j.tins.2003.12.001 PIERSON M, 1992, EPILEPSY RES, V13, P35, DOI 10.1016/0920-1211(92)90005-E Pilati N, 2008, J HISTOCHEM CYTOCHEM, V56, P539, DOI 10.1369/jhc.2008.950246 Roberts LE, 2010, J NEUROSCI, V30, P14972, DOI 10.1523/JNEUROSCI.4028-10.2010 Rudy B, 2001, TRENDS NEUROSCI, V24, P517, DOI 10.1016/S0166-2236(00)01892-0 Rybalko N, 2011, PHYSIOL BEHAV, V102, P453, DOI 10.1016/j.physbeh.2010.12.010 SALVI RJ, 1983, HEARING RES, V10, P37, DOI 10.1016/0378-5955(83)90017-5 Sanes DH, 2011, HEARING RES, V279, P140, DOI 10.1016/j.heares.2011.03.015 Schaette R, 2009, J NEUROPHYSIOL, V101, P3042, DOI 10.1152/jn.91256.2008 Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1 Shore SE, 2008, EUR J NEUROSCI, V27, P155, DOI 10.1111/j.1460-9568.2007.05983.x SMITH RL, 1980, HEARING RES, V2, P123, DOI 10.1016/0378-5955(80)90034-9 Song P, 2005, NAT NEUROSCI, V8, P1335, DOI 10.1038/nn1533 Steinert JR, 2011, NEURON, V71, P291, DOI 10.1016/j.neuron.2011.05.037 THEOPOLD HM, 1985, LARYNGO RHINO OTOL, V64, P609, DOI 10.1055/s-2007-1008218 Timofeev I, 2010, NEUROSCIENTIST, V16, P19, DOI 10.1177/1073858409333545 Topolnik L, 2003, EUR J NEUROSCI, V18, P486, DOI 10.1046/j.1460-9568.2003.02742.x Trellakis S, 2007, PROG BRAIN RES, V166, P303, DOI 10.1016/S0079-6123(07)66028-2 TURRIGIANO G, 1995, J NEUROSCI, V15, P3640 Turrigiano GG, 1999, TRENDS NEUROSCI, V22, P221, DOI 10.1016/S0166-2236(98)01341-1 von Hehn CAA, 2004, J NEUROSCI, V24, P1936, DOI 10.1523/JNEUROSCI.4554-03.2004 Waller HJ, 1996, HEARING RES, V98, P169, DOI 10.1016/0378-5955(96)00090-1 Wang LY, 1998, J PHYSIOL-LONDON, V509, P183, DOI 10.1111/j.1469-7793.1998.183bo.x Witsell DL, 2007, OTOL NEUROTOL, V28, P11, DOI 10.1097/01.mao.0000235967.53474.93 YAJIMA Y, 1989, EXP BRAIN RES, V75, P381 Zacharek MA, 2002, HEARING RES, V172, P137, DOI 10.1016/S0378-5955(02)00575-0 Zhang JS, 1998, NEUROSCI LETT, V250, P197, DOI 10.1016/S0304-3940(98)00482-0 ZHANG S, 1994, J NEUROPHYSIOL, V71, P914 NR 72 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2012 VL 283 IS 1-2 BP 98 EP 106 DI 10.1016/j.heares.2011.10.008 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 908FH UT WOS:000301475300010 PM 22085487 ER PT J AU Werner, M Van De Water, TR Andersson, T Arnoldsson, G Berggren, D AF Werner, Mimmi Van De Water, Thomas R. Andersson, Therese Arnoldsson, Goran Berggren, Diana TI Morphological and morphometric characteristics of vestibular hair cells and support cells in long term cultures of rat utricle explants SO HEARING RESEARCH LA English DT Article ID CHINCHILLA CRISTA-AMPULLARIS; MARROW-DERIVED CELLS; MATH1 GENE-TRANSFER; STEM-CELLS; INNER-EAR; UTRICULAR MACULA; ACOUSTIC TRAUMA; SENSORY CELLS; HEARING-LOSS; REGENERATION AB A method for long term culture of utricular macula explants is demonstrated to be stable and reproducible over a period of 28 days in vitro (DIV). This culture system for four-day-old rat utricular maculae is potentially suitable for studies of hair cell loss, repair and regeneration processes as they occur in postnatal mammalian inner ear sensory epithelia. The cellular events that occur within utricular macula hair cell epithelia during 28 days of culture are documented from serial sections. Vestibular hair cells (HCs) and supporting cells (SCs) were systematically counted using light microscopy (LM) and the assistance of morphometric computer software. Ultrastructural observations were made with transmission electron microscopy (TEM) for describing the changes in the fine detailed morphological characteristics that occurred in the explants related to time in vitro. After 2 DIV the density of HCs was 77%, at 21 DIV it was 69%, and at 28 DIV it was 52% of HCs present at explantation. Between 2 DIV and 28 DIV there was a 1.7% decrease of the vestibular macula HC density per DIV. The corresponding decrease of SC density within the utricular explants was less than 1% per DIV. The overall morphology of the epithelia, i.e. relationship of HCs to SCs, was well preserved during the first two weeks in culture. After this time a slight deterioration of the epithelia was observed and although type 1 and type 11 HCs were identified by TEM observations, these two HC types could no longer be distinguished from one another by LM observations. In preparations cultured for 21 DIV. SC nuclei were located more apical and further away from the basal membrane compared to their position in macula explants fixed immediately after dissection. The loss of cells that occurred was probably due to expulsion from the apical (i.e. lumina]) surface of the sensory epithelia, but no lesions of the apical lining or ruptures of the basal membrane were observed. There were no significant changes in the volume of the vestibular HC comprising macular epithelium during the observation period of 28 DIV. (C) 2011 Elsevier B.V. All rights reserved. C1 [Werner, Mimmi; Andersson, Therese; Berggren, Diana] Umea Univ, Dept Clin Sci Otolaryngol, Umea, Sweden. [Van De Water, Thomas R.] Univ Miami, Miller Sch Med, Univ Miami Ear Inst, Dept Otolaryngol,Cochlear Implant Res Program, Miami, FL 33136 USA. [Arnoldsson, Goran] Umea Univ, Dept Stat, S-90187 Umea, Sweden. RP Berggren, D (reprint author), Umea Univ, Dept Clin Sci Otolaryngol, Umea, Sweden. EM Diana.Berggren@ent.umu.se FU Swedish Research Council [2006-5159]; Foundation Tysta Skolan; Acta stiftelsen and the Medical Faculty of the University of Umea FX The skilful technical assistance of Mrs. Kristina Forsgren and Mr. Anders Asplund, statistical support of Associate Professor Hans Stenlund and valuable discussions with Associate Professor Per Sta.1, is gratefully acknowledged. This work was supported by the Swedish Research Council, (2006-5159) the Foundation Tysta Skolan, Acta stiftelsen and the Medical Faculty of the University of Umea. CR Adler HJ, 1996, NEUROSCI LETT, V205, P17, DOI 10.1016/0304-3940(96)12367-3 Alvarez-Dolado M, 2003, NATURE, V425, P968, DOI 10.1038/nature02069 BAGGERSJOBACK D, 1984, ANN OTO RHINOL LARYN, V93, P89 Bahmad F, 2007, LARYNGOSCOPE, V117, P1202, DOI 10.1097/MLG.0b013e3180581944 Berggren D, 2003, HEARING RES, V180, P114, DOI 10.1016/S0378-5955(03)00112-6 Burns J, 2008, J COMP NEUROL, V511, P396, DOI 10.1002/cne.21849 CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 Cotanche DA, 2008, J COMMUN DISORD, V41, P421, DOI 10.1016/j.jcomdis.2008.03.004 Cunningham LL, 2006, JARO-J ASSOC RES OTO, V7, P299, DOI 10.1007/s10162-006-0043-x Forge A, 1997, SEMIN CELL DEV BIOL, V8, P225, DOI 10.1006/scdb.1997.0147 FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284 Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X Gale JE, 2002, J NEUROBIOL, V50, P81, DOI 10.1002/neu.10002 Gu RD, 2007, EUR J NEUROSCI, V25, P1363, DOI 10.1111/j.1460-9568.2007.05414.x Gundersen HJG, 1999, J MICROSC-OXFORD, V193, P199, DOI 10.1046/j.1365-2818.1999.00457.x Holley MC, 2005, DRUG DISCOV TODAY, V10, P1269, DOI 10.1016/S1359-6446(05)03595-6 Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193 Jones JE, 1996, J NEUROSCI, V16, P649 Kawamoto K, 2003, J NEUROSCI, V23, P4395 Kawamoto K, 2009, HEARING RES, V247, P17, DOI 10.1016/j.heares.2008.08.010 KING DG, 1982, STAIN TECHNOL, V57, P307 Kirkegaard M, 2005, J COMP NEUROL, V492, P132, DOI 10.1002/cne.20736 Kopke RD, 2001, P NATL ACAD SCI USA, V98, P5886, DOI 10.1073/pnas.101120898 Li HW, 2003, NAT MED, V9, P1293, DOI 10.1038/nm925 Lopez I, 1997, INT J DEV NEUROSCI, V15, P447, DOI 10.1016/S0736-5748(96)00103-7 Martinez-Monedero R, 2006, J NEUROBIOL, V66, P319, DOI 10.1002/neu.20232 Matsui JI, 2005, J REHABIL RES DEV, V42, P187, DOI 10.1682/JRRD.2005.01.0008 Oshima K, 2007, JARO-J ASSOC RES OTO, V8, P18, DOI 10.1007/s10162-006-0058-3 Pinheiro J. C., 2000, MIXED EFFECTS MODELS Popper AN, 2000, PHILOS T ROY SOC B, V355, P1277, DOI 10.1098/rstb.2000.0683 Praetorius M, 2010, ACTA OTO-LARYNGOL, V130, P215, DOI 10.3109/00016480903019251 Qun LX, 1999, ANN NY ACAD SCI, V884, P292, DOI 10.1111/j.1749-6632.1999.tb08649.x R Development Core Team, 2010, R LANG ENV STAT COMP Rask-Andersen H, 2010, ADV OTO-RHINO-LARYNG, V67, P14, DOI 10.1159/000262593 Rizvi AZ, 2006, P NATL ACAD SCI USA, V103, P6321, DOI 10.1073/pnas.0508593103 Ross MD, 2000, ACTA OTO-LARYNGOL, V120, P490, DOI 10.1080/000164800750045983 RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101 Severinsen SA, 2008, HEARING RES, V236, P33, DOI 10.1016/j.heares.2007.11.009 Staecker H, 2007, OTOL NEUROTOL, V28, P223, DOI 10.1097/MAO.0b013e31802b3225 TANYERI H, 1995, HEARING RES, V89, P194, DOI 10.1016/0378-5955(95)00137-7 Van De Water T., 1976, ANN OTOL RHINOL S33, V85, P1 Warchol ME, 1996, J NEUROSCI, V16, P5466 Wersall J., 1961, ACTA OTOLARYNGO S163, V163, P25 Willenbring H, 2005, BRIT J SURG, V92, P923, DOI 10.1002/bjs.5110 Yoshida T, 2007, NEUROSCIENCE, V145, P923, DOI 10.1016/j.neuroscience.2006.12.067 NR 45 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2012 VL 283 IS 1-2 BP 107 EP 116 DI 10.1016/j.heares.2011.11.003 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 908FH UT WOS:000301475300011 PM 22127330 ER PT J AU Koike, T Sakamoto, C Sakashita, T Hayashi, K Kanzaki, S Ogawa, K AF Koike, Takuji Sakamoto, Chiaki Sakashita, Tasuku Hayashi, Ken Kanzaki, Sho Ogawa, Kaoru TI Effects of a perilymphatic fistula on the passive vibration response of the basilar membrane SO HEARING RESEARCH LA English DT Article ID HUMAN TEMPORAL BONES; HEARING-LOSS; COCHLEAR MODEL; ELEMENT MODEL; PATHOPHYSIOLOGY; MECHANICS; PRESSURE; STIMULI; DAMAGE; CAT AB In this study, a three-dimensional finite-element model of the passive human cochlea was created. Dynamic behavior of the basilar membrane caused by the vibration of the stapes footplate was analyzed considering a fluid-structure interaction with the cochlear fluid. Next, the effects of a perilymphatic fistula (PLF) on the vibration of the cochlea were examined by making a small hole on the wall of the cochlea model. Even if a PLF existed in the scala vestibuli, a traveling wave was generated on the basilar membrane. When a PLF existed at the basal end of the cochlea, the shape of the traveling wave envelope showed no remarkable change, but the maximum amplitude became smaller at the entire frequency range from 0.5 to 5 kHz and decreased with decreasing frequency. in contrast, when a PLF existed at the second turn of the cochlea, the traveling wave envelope showed a notch at the position of the PLF and the maximum amplitude also became smaller. This model assists in elucidating the mechanisms of hearing loss due to a PLF from the view of dynamics. (C) 2011 Elsevier B.V. All rights reserved. C1 [Koike, Takuji; Sakamoto, Chiaki; Sakashita, Tasuku] Univ Electrocommun, Grad Sch Informat & Engn, Dept Mech Engn & Intelligent Syst, Chofu, Tokyo 1828585, Japan. [Hayashi, Ken] Shinkawa Clin, Dept Otolaryngol, Kanagawa, Japan. [Kanzaki, Sho; Ogawa, Kaoru] Keio Univ, Sch Med, Dept Otolaryngol, Tokyo 160, Japan. RP Koike, T (reprint author), Univ Electrocommun, Grad Sch Informat & Engn, Dept Mech Engn & Intelligent Syst, 1-5-1 Chofugaoka, Chofu, Tokyo 1828585, Japan. EM koike@mce.uec.ac.jp RI Kanzaki, Sho/B-3100-2014 OI Kanzaki, Sho/0000-0001-9056-0850 FU Ministry of Education, Culture, Sports, Science & Technology in Japan FX This work was supported by a Grants-in-Aid for Scientific Research (C) from the Ministry of Education, Culture, Sports, Science & Technology in Japan. We thank the section editor Anthony Gummer and the anonymous reviewers for their constructive and helpful comments and suggestions. CR Andoh M, 2004, J ACOUST SOC AM, V116, P417, DOI 10.1121/1.1763599 Andoh Masayoshi, 2005, J Acoust Soc Am, V118, P1554, DOI 10.1121/1.2000770 Becvarovski Zoran, 2004, Ear Nose Throat J, V83, P18 Bohnke F, 1999, ORL J OTO-RHINO-LARY, V61, P305, DOI 10.1159/000027688 CABEZUDO LM, 1978, ACTA OTO-LARYNGOL, V86, P160, DOI 10.3109/00016487809124733 Dreiling FJ, 2002, HEARING RES, V166, P166, DOI 10.1016/S0378-5955(02)00314-3 Fleischer M, 2010, J ACOUST SOC AM, V127, P2973, DOI 10.1121/1.3372752 Foster PK, 2002, HEARING RES, V167, P175, DOI 10.1016/S0378-5955(02)00389-1 Goto F, 2001, AURIS NASUS LARYNX, V28, P29, DOI 10.1016/S0385-8146(00)00089-4 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 IGARASHI M, 1986, ACTA OTO-LARYNGOL, V101, P161, DOI 10.3109/00016488609132823 Ikezono T, 2010, AUDIOL NEURO-OTOL, V15, P168, DOI 10.1159/000241097 IURATO SALVATORE, 1962, JOUR ACOUSTICAL SOC AMER, V34, P1386, DOI 10.1121/1.1918355 KELLY JP, 1984, HEARING RES, V16, P109, DOI 10.1016/0378-5955(84)90001-7 Koike T, 2002, J ACOUST SOC AM, V111, P1306, DOI 10.1121/1.1451073 LEONARD DGB, 1984, J ACOUST SOC AM, V75, P515, DOI 10.1121/1.390485 LIGHTHILL J, 1981, J FLUID MECH, V106, P149, DOI 10.1017/S0022112081001560 Lim KM, 2002, HEARING RES, V170, P190, DOI 10.1016/S0378-5955(02)00491-4 Lim YS, 2005, MED ENG PHYS, V27, P695, DOI 10.1016/j.medengphy.2004.12.009 Manoussaki D, 2000, SIAM J APPL MATH, V61, P369, DOI 10.1137/S0036139999358404 Meaud J, 2010, J ACOUST SOC AM, V127, P1411, DOI 10.1121/1.3290995 Merchant SN, 1996, HEARING RES, V97, P30 Merchant SN, 2008, OTOL NEUROTOL, V29, P282, DOI 10.1097/mao.0b013e318161ab24 Merchant SN, 2005, OTOL NEUROTOL, V26, P151, DOI 10.1097/00129492-200503000-00004 NISHIOKA I, 1986, AM J OTOL, V7, P430 NOMURA Y, 1986, AM J OTOLARYNG, V7, P267, DOI 10.1016/S0196-0709(86)80049-7 NOMURA Y, 1992, ACTA OTO-LARYNGOL, V112, P186 Parthasarathi AA, 2000, J ACOUST SOC AM, V107, P474, DOI 10.1121/1.428352 Ramamoorthy S, 2007, J ACOUST SOC AM, V121, P2758, DOI 10.1121/1.2713725 Ren TY, 2002, P NATL ACAD SCI USA, V99, P17101, DOI 10.1073/pnas.262663699 Schweitzer L, 1996, HEARING RES, V97, P84 SIMMONS FB, 1979, LARYNGOSCOPE, V89, P59 Skrodzka EB, 2005, APPL ACOUST, V66, P1321, DOI 10.1016/j.apacoust.2005.04.006 STEELE CR, 1979, J ACOUST SOC AM, V65, P1001, DOI 10.1121/1.382569 Stenfelt S, 2003, HEARING RES, V181, P131, DOI 10.1016/S0378-5955(03)00183-7 ULEHLOVA L, 1987, HEARING RES, V28, P149, DOI 10.1016/0378-5955(87)90045-1 WEISSKOPF A, 1978, LARYNGOSCOPE, V88, P389, DOI 10.1288/00005537-197803000-00002 Wever E. G., 1949, THEORY HEARING Yoon YJ, 2007, J ACOUST SOC AM, V122, P952, DOI 10.1121/1.2747162 NR 39 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2012 VL 283 IS 1-2 BP 117 EP 125 DI 10.1016/j.heares.2011.10.006 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 908FH UT WOS:000301475300012 PM 22115725 ER PT J AU Alain, C McDonald, K Van Roon, P AF Alain, Claude McDonald, Kelly Van Roon, Patricia TI Effects of age and background noise on processing a mistuned harmonic in an otherwise periodic complex sound SO HEARING RESEARCH LA English DT Article ID HUMAN AUDITORY-CORTEX; OTOACOUSTIC EMISSIONS; CONTRALATERAL SUPPRESSION; INHIBITORY CONTROL; GAP DETECTION; HEARING-LOSS; NEURAL REPRESENTATION; SPEECH RECOGNITION; VOLUME MEASUREMENT; OLDER-ADULTS AB Older adults presented with short (i.e., 40 ms) harmonic complex tones show a reduced likelihood of hearing the mistuned harmonic as a separate sound. Here, we examined whether this age difference for the mistuned harmonic would generalize to a longer signal duration (i.e., 200 ms). We measured auditory evoked fields (AEFs) using magnetoencephalography while young and older adults were presented with harmonic complex tones that either had all partials of the tones in tune (single sound object) or contained a 4 or 16% mistuned harmonic (dual sound objects). The auditory stimuli were presented in isolation or embedded in low or moderate levels of continuous white noise. For each participant, we modeled the AEFs with a pair of dipoles in the superior temporal plane and examined the effects of age and noise on the amplitude and latency of the resulting source waveforms. The present study reveals similar noise-induced increases in N1 m and object-related negativity in young and older adults which may be mediated via efferent feedback connections and/or changes in the temporal window of integration. We observed less age-related differences in concurrent sound segregation for stimuli that matched the duration of the temporal integration window of auditory perception (i.e., similar to 200 ms) than for short duration sounds (i.e., 40 ms). Possible explanations for this duration-dependent age-related decline in concurrent sound perception are a general slowing in auditory processing and/or lengthening of the temporal integration window. (C) 2011 Elsevier B.V. All rights reserved. C1 [Alain, Claude; McDonald, Kelly; Van Roon, Patricia] Baycrest Ctr Geriatr Care, Rotman Res Inst, Toronto, ON M6A 2E1, Canada. [Alain, Claude] Univ Toronto, Dept Psychol, Toronto, ON M8V 2S4, Canada. [Alain, Claude] Univ Toronto, Inst Med Sci, Toronto, ON M8V 2S4, Canada. RP Alain, C (reprint author), Baycrest Ctr Geriatr Care, Rotman Res Inst, 3560 Bathurst St, Toronto, ON M6A 2E1, Canada. EM calain@rotman-baycrest.on.ca FU Canadian Institutes of Health Research; Natural Sciences and Engineering Research Council of Canada FX This research was supported by grants from the Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council of Canada. We also like to thank the two reviewers and the Associate Editor (Brian Moore) for insightful comments. CR Alain C, 1999, PSYCHOL AGING, V14, P507, DOI 10.1037/0882-7974.14.3.507 Alain C, 2004, PSYCHOL AGING, V19, P125, DOI 10.1037/0882-7974.19.1.125 Alain C, 2007, J NEUROSCI, V27, P1308, DOI 10.1523/JNEUROSCI.5433-06.2007 Alain C, 2001, J ACOUST SOC AM, V109, P2211, DOI 10.1121/1.1367243 Alain C, 2001, J EXP PSYCHOL HUMAN, V27, P1072, DOI 10.1037//0096-1523.27.5.1072 Alain C, 2009, EUR J NEUROSCI, V30, P132, DOI 10.1111/j.1460-9568.2009.06792.x ALHO K, 1994, ELECTROEN CLIN NEURO, V91, P353, DOI 10.1016/0013-4694(94)00173-1 Arnott SR, 2011, BRAIN RES, V1387, P116, DOI 10.1016/j.brainres.2011.02.062 Bergeson T. R., 2001, Canadian Acoustics, V29 BERLIN CI, 1993, HEARING RES, V71, P1, DOI 10.1016/0378-5955(93)90015-S Billings CJ, 2009, HEARING RES, V254, P15, DOI 10.1016/j.heares.2009.04.002 Caspary DM, 2005, J NEUROSCI, V25, P10952, DOI 10.1523/JNEUROSCI.2451-05.2005 Chao LL, 1997, CEREB CORTEX, V7, P63, DOI 10.1093/cercor/7.1.63 CHERYCROZE S, 1993, HEARING RES, V68, P53, DOI 10.1016/0378-5955(93)90064-8 COWAN N, 1984, PSYCHOL BULL, V96, P341, DOI 10.1037/0033-2909.96.2.341 DUQUESNOY AJ, 1983, J ACOUST SOC AM, V74, P1136, DOI 10.1121/1.390037 Emmer Michele B, 2006, J Acoust Soc Am, V120, P1467, DOI 10.1121/1.2221415 Finkel D, 2007, PSYCHOL AGING, V22, P558, DOI 10.1037/0882-7974.22.3.558 Fitzgibbons PJ, 2007, J ACOUST SOC AM, V122, P458, DOI 10.1121/1.2739409 DUQUESNOY AJ, 1983, J ACOUST SOC AM, V74, P739, DOI 10.1121/1.389859 Garrett DD, 2011, J NEUROSCI, V31, P4496, DOI 10.1523/JNEUROSCI.5641-10.2011 Gazzaley A, 2005, NAT NEUROSCI, V8, P1298, DOI 10.1038/nn1543 Gleich O, 2007, HEARING RES, V224, P101, DOI 10.1016/j.heares.2006.12.002 GORDONSALANT S, 1993, J SPEECH HEAR RES, V36, P1276 Grady CL, 2008, ANN NY ACAD SCI, V1124, P127, DOI 10.1196/annals.1440.009 Grube M, 2003, EXP BRAIN RES, V153, P637, DOI 10.1007/s00221-003-1640-0 HARI R, 1988, EXP BRAIN RES, V71, P87 Huang Y, 2009, J EXP PSYCHOL HUMAN, V35, P1618, DOI 10.1037/a0015791 Humes LE, 2009, ATTEN PERCEPT PSYCHO, V71, P860, DOI 10.3758/APP.71.4.860 Keppler H, 2010, CLIN NEUROPHYSIOL, V121, P359, DOI 10.1016/j.clinph.2009.11.003 Killion MC, 2004, J ACOUST SOC AM, V116, P2395, DOI 10.1121/1.1784440 Kim SH, 2002, AUDIOL NEURO-OTOL, V7, P348, DOI 10.1159/000066159 KNIGHT RT, 1989, BRAIN RES, V504, P338, DOI 10.1016/0006-8993(89)91381-4 Kovacevic S, 2005, NEUROREPORT, V16, P1075, DOI 10.1097/00001756-200507130-00009 Leonard CM, 1998, CEREB CORTEX, V8, P397, DOI 10.1093/cercor/8.5.397 Lister JJ, 2011, INT J AUDIOL, V50, P211, DOI 10.3109/14992027.2010.526967 Matilainen LE, 2010, CLIN NEUROPHYSIOL, V121, P902, DOI 10.1016/j.clinph.2010.01.007 MOORE BCJ, 1986, J ACOUST SOC AM, V80, P479, DOI 10.1121/1.394043 Morita T, 2006, BRAIN RES, V1087, P151, DOI 10.1016/j.brainres.2006.03.004 MOULIN A, 1992, ACTA OTO-LARYNGOL, V112, P210 Okamoto H, 2007, BMC BIOL, V5, DOI 10.1186/1741-7007-5-52 Ostroff JM, 2003, HEARING RES, V181, P1, DOI 10.1016/S0378-5955(03)00113-8 Pantev C, 1998, AUDIOL NEURO-OTOL, V3, P183, DOI 10.1159/000013789 Parbery-Clark A, 2011, EUR J NEUROSCI, V33, P549, DOI 10.1111/j.1460-9568.2010.07546.x PEKKONEN E, 1995, NEUROREPORT, V6, P1803, DOI 10.1097/00001756-199509000-00023 Penhune VB, 1996, CEREB CORTEX, V6, P661, DOI 10.1093/cercor/6.5.661 Pettigrew Catharine M, 2004, J Am Acad Audiol, V15, P469, DOI 10.3766/jaaa.15.7.2 PICHORAFULLER MK, 1995, J ACOUST SOC AM, V97, P593, DOI 10.1121/1.412282 Pichora-Fuller MK, 2006, J ACOUST SOC AM, V119, P1143, DOI 10.1121/1.2149837 Rademacher J, 2001, NEUROIMAGE, V13, P669, DOI 10.1006/nimg.2000.0714 Ross B, 2009, NEUROIMAGE, V47, P678, DOI 10.1016/j.neuroimage.2009.04.051 Ross B, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010101 Salthouse TA, 1996, PSYCHOL REV, V103, P403, DOI 10.1037/0033-295X.103.3.403 SARVAS J, 1987, PHYS MED BIOL, V32, P11, DOI 10.1088/0031-9155/32/1/004 Schneider BA, 2000, PSYCHOL AGING, V15, P110, DOI 10.1037//0882-7974.15.1.110 Schneider BA, 1999, J ACOUST SOC AM, V106, P371, DOI 10.1121/1.427062 SCHNEIDER BA, 1994, J ACOUST SOC AM, V95, P980, DOI 10.1121/1.408403 Shtyrov Y, 1999, NEUROREPORT, V10, P2189, DOI 10.1097/00001756-199907130-00034 Snyder JS, 2005, COGNITIVE BRAIN RES, V24, P492, DOI 10.1016/j.cogbrainres.2005.03.002 Soros P, 2009, BMC NEUROSCI, V10, DOI 10.1186/1471-2202-10-34 Tremblay KL, 2002, NEUROREPORT, V13, P1865, DOI 10.1097/00001756-200210280-00007 Tremblay KL, 2003, CLIN NEUROPHYSIOL, V114, P1332, DOI 10.1016/S1388-2457(03)00114-7 West R, 2000, PSYCHOPHYSIOLOGY, V37, P179, DOI 10.1017/S0048577200981460 West RL, 1996, PSYCHOL BULL, V120, P272, DOI 10.1037/0033-2909.120.2.272 Whiting KA, 1998, EAR HEARING, V19, P218, DOI 10.1097/00003446-199806000-00005 WILLIAMS EA, 1994, ACTA OTO-LARYNGOL, V114, P121, DOI 10.3109/00016489409126029 Yilmaz ST, 2007, J LARYNGOL OTOL, V121, P1029 Zhu XX, 2007, J COMP NEUROL, V503, P593, DOI 10.1002/cne.21402 NR 68 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2012 VL 283 IS 1-2 BP 126 EP 135 DI 10.1016/j.heares.2011.10.007 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 908FH UT WOS:000301475300013 PM 22101023 ER PT J AU Wu, MH Li, HH Gao, YY Lei, M Teng, XB Wu, XH Li, L AF Wu, Meihong Li, Huahui Gao, Yayue Lei, Ming Teng, Xiangbin Wu, Xihong Li, Liang TI Adding irrelevant information to the content prime reduces the prime-induced unmasking effect on speech recognition SO HEARING RESEARCH LA English DT Article ID PERCEIVED SPATIAL SEPARATION; OLDER-ADULTS; SELECTIVE ATTENTION; ENERGETIC MASKING; CHINESE SPEECH; CUES; RELEASE; YOUNGER; NOISE; COMPREHENSION AB Presenting the early part of a nonsense sentence in quiet improves recognition of the last keyword of the sentence in a masker, especially a speech masker. This priming effect depends on higher-order processing of the prime information during target-masker segregation. This study investigated whether introducing irrelevant content information into the prime reduces the priming effect. The results showed that presenting the first four syllables (not including the second and third keywords) of the threekeyword target sentence in quiet significantly improved recognition of the second and third keywords in a two-talker-speech masker but not a noise masker, relative to the no-priming condition. Increasing the prime content from four to eight syllables (including the first and second keywords of the target sentence) further improved recognition of the third keyword in either the noise or speech masker. However, if the last four syllables of the eight-syllable prime were replaced by four irrelevant syllables (which did not occur in the target sentence), all the prime-induced speech-recognition improvements disappeared. Thus, knowing the early part of the target sentence mainly reduces informational masking of target speech, possibly by helping listeners attend to the target speech. Increasing the informative content of the prime further improves target-speech recognition probably by reducing the processing load. The reduction of the priming effect by adding irrelevant information to the prime is not due to introducing additional masking of the target speech. (C) 2011 Elsevier B.V. All rights reserved. C1 [Wu, Meihong; Li, Huahui; Gao, Yayue; Lei, Ming; Teng, Xiangbin; Wu, Xihong; Li, Liang] Peking Univ, Dept Machine Intelligence, Speech & Hearing Res Ctr, Key Lab Machine Percept,Minist Educ, Beijing 100871, Peoples R China. [Wu, Meihong; Li, Huahui; Gao, Yayue; Lei, Ming; Teng, Xiangbin; Wu, Xihong; Li, Liang] Peking Univ, Dept Psychol, Speech & Hearing Res Ctr, Key Lab Machine Percept,Minist Educ, Beijing 100871, Peoples R China. RP Wu, XH (reprint author), Peking Univ, Dept Machine Intelligence, Speech & Hearing Res Ctr, Key Lab Machine Percept,Minist Educ, Beijing 100871, Peoples R China. EM wxh@cis.pku.edu.cn; liangli@pku.edu.cn FU National Basic Research Program of China [2009CB320901]; National Natural Science Foundation of China [30670704, 90920302, 60811140086]; Chinese Ministry of Education [20090001110050]; Peking University FX This work was supported by the "973" National Basic Research Program of China (2009CB320901), the National Natural Science Foundation of China (30670704; 90920302; 60811140086), the Chinese Ministry of Education (20090001110050), and "985" grants from Peking University. We would like to express our sincere thanks to the Associate Editor, Dr. Brian Moore, and the two anonymous reviewers for their numerous helpful comments and suggestions for improving this manuscript. CR Agus TR, 2009, J ACOUST SOC AM, V126, P1926, DOI 10.1121/1.3205403 Arbogast TL, 2002, J ACOUST SOC AM, V112, P2086, DOI 10.1121/1.1510141 BADDELEY A, 1981, COGNITION, V10, P17, DOI 10.1016/0010-0277(81)90020-2 Best V, 2008, P NATL ACAD SCI USA, V105, P13174, DOI 10.1073/pnas.0803718105 Best V, 2007, JARO-J ASSOC RES OTO, V8, P294, DOI 10.1007/s10162-007-0073-z Brungart DS, 2001, J ACOUST SOC AM, V110, P2527, DOI 10.1121/1.1408946 Cao SY, 2011, J ACOUST SOC AM, V129, P2227, DOI 10.1121/1.3559707 Darwin CJ, 2000, J ACOUST SOC AM, V108, P335, DOI 10.1121/1.429468 Darwin CJ, 2000, J ACOUST SOC AM, V107, P970, DOI 10.1121/1.428278 Ezzatian P, 2011, EAR HEARING, V32, P84, DOI 10.1097/AUD.0b013e3181ee6b8a Freyman RL, 1999, J ACOUST SOC AM, V106, P3578, DOI 10.1121/1.428211 Freyman RL, 2004, J ACOUST SOC AM, V115, P2246, DOI 10.1121/1.689343 Fukada T., 1992, P ICASSP, P137, DOI 10.1109/ICASSP.1992.225953 Grant KW, 2000, J ACOUST SOC AM, V108, P1197, DOI 10.1121/1.1288668 Hasher L., 1988, PSYCHOL LEARN MOTIV, V22, P193, DOI DOI 10.1016/S0079-7421(08)60041-9 Helfer KS, 2009, J ACOUST SOC AM, V125, P447, DOI 10.1121/1.3035837 Helfer KS, 1997, J SPEECH LANG HEAR R, V40, P432 Helfer KS, 2005, J ACOUST SOC AM, V117, P842, DOI [10.1121/1.1836832, 10.1121/1.183682] Helfer KS, 2008, EAR HEARING, V29, P87 Huang Y, 2010, EAR HEARING, V31, P579, DOI 10.1097/AUD.0b013e3181db6dc2 Huang Y, 2009, J EXP PSYCHOL HUMAN, V35, P1618, DOI 10.1037/a0015791 Huang Y, 2008, HEARING RES, V244, P51, DOI 10.1016/j.heares.2008.07.006 Kidd G, 2005, J ACOUST SOC AM, V118, P3804, DOI 10.1121/1.2109187 King S., 2009, P BLIZZ CHALL WORKSH Li L, 2004, J EXP PSYCHOL HUMAN, V30, P1077, DOI 10.1037/0096-1523.30.6.1077 Newman RS, 2007, J PHONETICS, V35, P85, DOI 10.1016/j.wocn.2005.10.004 Rakerd B, 2006, J ACOUST SOC AM, V119, P1597, DOI 10.1121/1.2161438 Rosenblum LD, 1996, J SPEECH HEAR RES, V39, P1159 Rudmann DS, 2003, HUM FACTORS, V45, P329, DOI 10.1518/hfes.45.2.329.27237 Schneider B. A., 2007, J AM ACAD AUDIOL, V18, P578 SUMBY WH, 1954, J ACOUST SOC AM, V26, P212, DOI 10.1121/1.1907309 Summerfleld A. Q., 1979, PHONETICA, V36, P314 Wolfram S., 1991, MATH SYSTEM DOING MA, P1 Wu XH, 2005, HEARING RES, V199, P1, DOI 10.1016/j.heares.2004.03.010 Yang ZG, 2007, SPEECH COMMUN, V49, P892, DOI 10.1016/j.specom.2007.05.005 Yoshimura T., 1999, P EUROSPEECH, V5, P2347 Zen H., 2007, P 6 ISCA WORKSH SPEE Zen HG, 2007, IEICE T INF SYST, VE90D, P325, DOI 10.1093/ietisy/e90-d.1.325 NR 38 TC 1 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2012 VL 283 IS 1-2 BP 136 EP 143 DI 10.1016/j.heares.2011.11.001 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 908FH UT WOS:000301475300014 PM 22101022 ER PT J AU Witt, KM Bockman, CS Dang, HK Gruber, DD Wangemann, P Scofield, MA AF Witt, Kelly M. Bockman, Charles S. Dang, Herbert K. Gruber, Daniel D. Wangemann, Philine Scofield, Margaret A. TI Molecular and pharmacological characteristics of the gerbil alpha(1a)-adrenergic receptor SO HEARING RESEARCH LA English DT Article ID COCHLEAR BLOOD-FLOW; SPIRAL MODIOLAR ARTERY; GLAND ACINAR-CELLS; ALPHA(1)-ADRENOCEPTOR SUBTYPES; ALPHA-1-ADRENERGIC RECEPTORS; ADRENERGIC-RECEPTORS; GUINEA-PIG; EXPRESSION; BINDING; CLONING AB The spiral modiolar artery supplies blood and essential nutrients to the cochlea. Our previous functional study indicates the alpha(1A)-adrenergic receptor subtype mediates vasoconstriction of the gerbil spiral modiolar artery. Although the gerbil cochlea is often used as a model in hearing research, the molecular and pharmacological characteristics of the cloned gerbil alpha(1a)-adrenergic receptor have not been determined. Thus we cloned, expressed and characterized the gerbil aia-adrenergic receptor and then compared its molecular and pharmacological properties to those of other mammalian alpha(1a)-adrenergic receptors. The cDNA clone contained 1404 nucleotides, which encoded a 467 amino acid peptide with a deduced sequence having 96.8, 96.4 and 91.6% identity to rat, mouse and human alpha(1a)-receptors, respectively. We transiently transfected the a15-adrenergic receptor into COS-1 cells and determined its pharmacological characteristics by [H-3]prazosin binding. Unlabeled prazosin had a K-i of 0.89 +/- 0.1 nM. The am-adrenergic receptor-selective antagonists, 5-methylurapidil and WB-4101, bound with high affinity and had K-i values of 4.9 +/- 1 and 1.0 +/- 0.1 nM, respectively. BMY-7378, an ai D-adrenergic receptorselective antagonist, bound with low affinity (260 +/- 60 nM). The 91.6% amino acid sequence identity and K-iS of the cloned gerbil alpha(1a)-adrenergic receptor are similar to those of the human al a-adrenergic receptor clone. These results show that the gerbil aia-adrenergic receptor is representative of the human laic adrenergic receptor, lending validity to the use of the gerbil spiral modiolar artery as a model in studies of vascular disorders of the cochlea. (C) 2011 Elsevier B.V. All rights reserved. C1 [Witt, Kelly M.; Bockman, Charles S.; Dang, Herbert K.; Scofield, Margaret A.] Creighton Univ, Dept Pharmacol, Omaha, NE 68178 USA. [Gruber, Daniel D.] Creighton Univ, Dept Biomed Sci, Omaha, NE 68178 USA. [Wangemann, Philine] Kansas State Univ, Dept Anat & Physiol, Manhattan, KS 66506 USA. RP Scofield, MA (reprint author), Creighton Univ, Dept Pharmacol, 2500 Calif Plaza, Omaha, NE 68178 USA. EM kellymwitt@hotmail.com; cbockman@creighton.edu; hekdang@gmail.com; ddgruber1@gmail.com; wange@vet.k-state.edu; mscof@creighton.edu RI Wangemann, Philine/N-2826-2013 CR BILLETT TE, 1989, HEARING RES, V41, P189, DOI 10.1016/0378-5955(89)90010-5 Bockman CS, 2004, J PHARMACOL EXP THER, V311, P364, DOI 10.1124/jpet.104.066399 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1006/abio.1976.9999 Bruchas MR, 2008, EUR J PHARMACOL, V578, P349, DOI 10.1016/j.ejphar.2007.09.029 CARLISLE L, 1990, HEARING RES, V43, P107, DOI 10.1016/0378-5955(90)90219-F CHENG Y, 1973, BIOCHEM PHARMACOL, V22, P3099 Furchgott RF, 1966, ADV DRUG RES, V3, P21 GOETZ AS, 1995, EUR J PHARMACOL, V272, pR5, DOI 10.1016/0014-2999(94)00751-R GROSS G, 1988, EUR J PHARMACOL, V151, P333, DOI 10.1016/0014-2999(88)90819-9 Gruber DD, 1998, HEARING RES, V119, P113, DOI 10.1016/S0378-5955(98)00036-7 HAN C, 1987, MOL PHARMACOL, V32, P505 HIEBLE JP, 1995, PHARMACOL REV, V47, P267 HIRASAWA A, 1993, BIOCHEM BIOPH RES CO, V195, P902, DOI 10.1006/bbrc.1993.2130 Iwasaki S, 1997, HEARING RES, V108, P55, DOI 10.1016/S0378-5955(97)00045-2 Koga K, 2003, J COMP NEUROL, V456, P105, DOI 10.1002/cne.10479 KOZAK M, 1987, NUCLEIC ACIDS RES, V15, P8125, DOI 10.1093/nar/15.20.8125 LOMASNEY JW, 1991, J BIOL CHEM, V266, P6365 Mom T, 1999, BRAIN RES PROTOC, V4, P249, DOI 10.1016/S1385-299X(99)00026-4 MORROW AL, 1986, MOL PHARMACOL, V29, P321 Nakashima T, 2003, BRAIN RES REV, V43, P17, DOI 10.1016/S0165-0173(03)00189-9 OHLSEN KA, 1991, CIRC RES, V69, P509 Patel S, 2001, BRAIN RES PROTOC, V8, P191, DOI 10.1016/S1385-299X(01)00110-6 PORTER JE, 1992, J PHARMACOL EXP THER, V263, P1062 RUFFOLO RR, 1982, J AUTON PHARMACOL, V2, P277, DOI 10.1111/j.1474-8673.1982.tb00520.x SCHWINN DA, 1995, J PHARMACOL EXP THER, V272, P134 SCOFIELD MA, 1995, J PHARMACOL EXP THER, V275, P1035 Seidman MD, 1999, ANN NY ACAD SCI, V884, P226, DOI 10.1111/j.1749-6632.1999.tb08644.x SHIKOWITZ MJ, 1991, MED CLIN N AM, V75, P1239 Waugh DJJ, 2001, J BIOL CHEM, V276, P25366, DOI 10.1074/jbc.M103152200 WEINBERG DH, 1994, BIOCHEM BIOPH RES CO, V201, P1296, DOI 10.1006/bbrc.1994.1845 Xiao L, 1998, BRIT J PHARMACOL, V124, P213, DOI 10.1038/sj.bjp.0701812 Yang M, 1998, J PHARMACOL EXP THER, V286, P841 Zhong HY, 1999, EUR J PHARMACOL, V375, P261, DOI 10.1016/S0014-2999(99)00222-8 NR 33 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2012 VL 283 IS 1-2 BP 144 EP 150 DI 10.1016/j.heares.2011.11.002 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 908FH UT WOS:000301475300015 PM 22101021 ER PT J AU Haugas, M Lillevali, K Salminen, M AF Haugas, Maarja Lillevaeli, Kersti Salminen, Marjo TI Defects in sensory organ morphogenesis and generation of cochlear hair cells in Gata3-deficient mouse embryos SO HEARING RESEARCH LA English DT Article ID INNER-EAR DEVELOPMENT; TRANSCRIPTION FACTOR GATA-3; MAMMALIAN COCHLEA; FATE DETERMINATION; CELLULAR-DIFFERENTIATION; OVERLAPPING EXPRESSION; TARGETED DISRUPTION; PERIOTIC MESENCHYME; PROSENSORY DOMAINS; NERVOUS-SYSTEM AB The development of the inner ear sensory epithelia involves a complex network of transcription factors and signaling pathways and the whole process is not yet entirely understood. GATA3 is a DNA-binding factor that is necessary for otic morphogenesis and without GATA3 variable defects have been observed already at early stages in mouse embryos. In the less severe phenotypes, one small oval shaped vesicle is formed whereas in the more severe cases, the otic epithelium becomes disrupted and the endolymphatic domain becomes separated from the rest of the otic epithelium. Despite these defects, the early sensory fate specification occurs in Gata3-/- otic epithelium. However, due to the early lethality of Gata3-deficient embryos, the later morphogenesis and sensory development have remained unclear. To gain information of these later processes we produced drug-rescued Gata3-/- embryos that survived up to late gestation. In these older Gata3-/- embryos, a similar variability was observed as earlier. In the more severely affected ears, the development of the separate endolymphatic domain arrested completely whereas the remaining vesicle formed an empty cavity with variable forms, but without any distinguishable otic compartments or morphologically distinct sensory organs. However, the dorsal part of this vesicle was able to adopt a sensory fate and to produce some hair cells. In the less severe cases of Gata3-/- ears, distinct utricular, saccular and cochlear compartments were present and hair cells could be detected in the vestibular sensory epithelia. Although clear cristae and maculae formed, the morphology and size of these sensory areas were abnormal and they remained often un-separated. In contrast to the vestibule, the cochlear sensory compartment remained more immature and no hair or supporting cells could be detected. Our results suggest that GATA3 is critical for normal vestibular and cochlear morphogenesis and that it is especially important for cochlear sensory differentiation. (C) 2011 Elsevier B.V. All rights reserved. C1 [Haugas, Maarja; Salminen, Marjo] Univ Helsinki, Dept Vet Biosci, Helsinki 00790, Finland. [Lillevaeli, Kersti] Univ Tartu, Dept Dev Biol, Tartu, Estonia. [Lillevaeli, Kersti] Univ Tartu, Dept Physiol, Tartu, Estonia. RP Salminen, M (reprint author), Univ Helsinki, Dept Vet Biosci, Agnes Sjobergin Katu 2, Helsinki 00790, Finland. EM maarja.haugas@helsinki.fi; kersti@ebc.ee; marjo.salminen@helsinki.fi FU Finnish Academy; EU [MEST-CT-2005-020546]; Sigrid Juselius Foundation; Estonian Ministry of Education and Research [SF0180019s11] FX This study was funded by the Finnish Academy, by the EU Marie Curie Early Stage Training Action MEST-CT-2005-020546, by the Sigrid Juselius Foundation and by a Grant from the Estonian Ministry of Education and Research (SF0180019s11). We are grateful to Raija Savolainen for expert technical assistance and Mall Kure for help with the semi-thin sectioning. The vivarium of the Institute of Molecular and Cell Biology, University of Tartu and especially Side Kask, Side Habak and Kaire Tsaro are acknowledged for providing the rescued Gata3 gene targeted embryos. CR Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837 Bermingham-McDonogh O, 2006, J COMP NEUROL, V496, P172, DOI 10.1002/cne.20944 Bermingham-McDonogh O, 2003, CURR OPIN NEUROBIOL, V13, P119, DOI 10.1016/S0959-4388(03)00018-7 Bouchard M, 2010, BMC DEV BIOL, V10, DOI 10.1186/1471-213X-10-89 Braunstein EM, 2008, JARO-J ASSOC RES OTO, V9, P33, DOI 10.1007/s10162-008-0110-6 Brooker R, 2006, DEVELOPMENT, V133, P1277, DOI 10.1242/dev.02284 Bryant J, 2002, BRIT MED BULL, V63, P39, DOI 10.1093/bmb/63.1.39 Burton Q, 2004, DEV BIOL, V272, P161, DOI 10.1016/j.ydbio.2004.04.024 Chang W, 2004, DEVELOPMENT, V131, P4201, DOI 10.1242/dev.01292 Chatterjee S., 2010, BMC GENET, V16, P68 Chen P, 2002, DEVELOPMENT, V129, P2495 Chen P, 1999, DEVELOPMENT, V126, P1581 Christophorou NAD, 2010, DEV BIOL, V345, P180, DOI 10.1016/j.ydbio.2010.07.007 Cotanche DA, 2010, HEARING RES, V266, P18, DOI 10.1016/j.heares.2010.04.012 Dabdoub A, 2008, P NATL ACAD SCI USA, V105, P18396, DOI 10.1073/pnas.0808175105 DECHESNE CJ, 1994, J COMP NEUROL, V346, P517, DOI 10.1002/cne.903460405 Doetzlhofer A, 2004, DEV BIOL, V272, P432, DOI 10.1016/j.ydbio.2004.05.013 Duncan JS, 2011, INT J DEV BIOL, V55, P297, DOI 10.1387/ijdb.103178jd Erkman L, 1996, NATURE, V381, P603, DOI 10.1038/381603a0 Everett LA, 2001, HUM MOL GENET, V10, P153, DOI 10.1093/hmg/10.2.153 Fekete DM, 2002, CURR OPIN NEUROBIOL, V12, P35, DOI 10.1016/S0959-4388(02)00287-8 Friedman LM, 2007, INT J DEV BIOL, V51, P609, DOI 10.1387/ijdb.072365lf Grote D, 2006, DEVELOPMENT, V133, P53, DOI 10.1242/dev.02184 Hartman BH, 2010, P NATL ACAD SCI USA, V107, P15792, DOI 10.1073/pnas.1002827107 Hatch EP, 2007, DEVELOPMENT, V134, P3615, DOI 10.1242/dev.006627 Haugas M, 2010, DEV DYNAM, V239, P2452, DOI 10.1002/dvdy.22373 Hayashi T, 2008, J NEUROSCI, V28, P5991, DOI 10.1523/JNEUROSCI.1690-08.2008 Hayashi T, 2007, DEV DYNAM, V236, P525, DOI 10.1002/dvdy.21026 Hendriks RW, 1999, EUR J IMMUNOL, V29, P1912, DOI 10.1002/(SICI)1521-4141(199906)29:06<1912::AID-IMMU1912>3.0.CO;2-D Hulander M, 2003, DEVELOPMENT, V130, P2013, DOI 10.1242/dev.00376 Hume CR, 2007, GENE EXPR PATTERNS, V7, P798, DOI 10.1016/j.modgep.2007.05.002 HUMPHREY CD, 1974, STAIN TECHNOL, V49, P9 Hwang CH, 2009, DEV DYNAM, V238, P2725, DOI 10.1002/dvdy.22111 Jacques BE, 2007, DEVELOPMENT, V134, P3021, DOI 10.1242/dev.02874 Kamaid A, 2010, J NEUROSCI, V30, P11426, DOI 10.1523/JNEUROSCI.2570-10.2010 Karis A, 2001, J COMP NEUROL, V429, P615, DOI 10.1002/1096-9861(20010122)429:4<615::AID-CNE8>3.0.CO;2-F Kaufman CK, 2003, GENE DEV, V17, P2108, DOI 10.1101/gad.1115203 Kelley MW, 2006, BRAIN RES, V1091, P172, DOI 10.1016/j.brainres.2006.02.062 Kelley MW, 2007, INT J DEV BIOL, V51, P571, DOI 10.1387/ijdb.072388mk Kiernan AE, 2006, PLOS GENET, V2, P27, DOI 10.1371/journal.pgen.0020004 Kiernan AE, 2005, NATURE, V434, P1031, DOI 10.1038/nature03487 Kiernan AE, 2001, P NATL ACAD SCI USA, V98, P3873, DOI 10.1073/pnas.071496998 Kim HM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014041 Kirjavainen A, 2008, DEV BIOL, V322, P33, DOI 10.1016/j.ydbio.2008.07.004 Koo SK, 2009, DEV BIOL, V333, P14, DOI 10.1016/j.ydbio.2009.06.016 Kopecky B, 2011, DEV DYNAM, V240, P1373, DOI 10.1002/dvdy.22620 Lawoko-Kerali G, 2002, J COMP NEUROL, V442, P378, DOI 10.1002/cne.10088 Lee YS, 2006, DEVELOPMENT, V133, P2817, DOI 10.1242/dev.02453 Lillevali K, 2007, DEV DYNAM, V236, P306, DOI 10.1002/dvdy.21011 Lillevali K, 2006, MECH DEVELOP, V123, P415, DOI 10.1016/j.mod.2006.04.007 Lillevali K, 2004, DEV DYNAM, V231, P775, DOI 10.1002/dvdy.20185 Lim KC, 2000, NAT GENET, V25, P209 Lin ZS, 2005, DEVELOPMENT, V132, P2309, DOI 10.1242/dev.01804 Mak ACY, 2009, GENE EXPR PATTERNS, V9, P444, DOI 10.1016/j.gep.2009.04.003 Milo M, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007144 Montcouquiol M, 2003, J NEUROSCI, V23, P9469 Morrison A, 1999, MECH DEVELOP, V84, P169, DOI 10.1016/S0925-4773(99)00066-0 Morsli H, 1998, J NEUROSCI, V18, P3327 Nesbit MA, 2004, J BIOL CHEM, V279, P22624, DOI 10.1074/jbc.M401797200 Nichols DH, 2008, CELL TISSUE RES, V334, P339, DOI 10.1007/s00441-008-0709-2 Noramly S, 2002, J NEUROBIOL, V53, P100, DOI 10.1002/neu.10131 Ohyama T, 2010, J NEUROSCI, V30, P15044, DOI 10.1523/JNEUROSCI.3547-10.2010 Pan W, 2010, P NATL ACAD SCI USA, V107, P15798, DOI 10.1073/pnas.1003089107 PANDOLFI PP, 1995, NAT GENET, V11, P40, DOI 10.1038/ng0995-40 Pasqualetti M, 2001, NAT GENET, V29, P34, DOI 10.1038/ng702 Patient RK, 2002, CURR OPIN GENET DEV, V12, P416, DOI 10.1016/S0959-437X(02)00319-2 Pauley S, 2003, DEV DYNAM, V227, P203, DOI 10.1002/dvdy.10297 Piatto Vânia B., 2005, Rev. Bras. Otorrinolaringol., V71, P216, DOI 10.1590/S0034-72992005000200016 Pirvola U, 2004, DEV BIOL, V273, P350, DOI 10.1016/j.ydbio.2004.06.010 Puligilla C, 2009, CURR OPIN GENET DEV, V19, P368, DOI 10.1016/j.gde.2009.06.004 Ruben R. J., 1967, ACTA OTO-LARYNGOL, V220, P1 Salminen M, 2000, DEVELOPMENT, V127, P13 Salminen M, 1998, DEV DYNAM, V212, P326, DOI 10.1002/(SICI)1097-0177(199806)212:2<326::AID-AJA17>3.0.CO;2-1 ten Berge D, 1998, DEVELOPMENT, V125, P3831 Torres MA, 1996, DEVELOPMENT, V122, P3381 van der Wees J, 2004, NEUROBIOL DIS, V16, P169, DOI 10.1016/j.nbd.2004.02.004 Van Esch H, 2000, NATURE, V406, P419, DOI 10.1038/35019088 Woods C, 2004, NAT NEUROSCI, V7, P1310, DOI 10.1038/nn1349 Xiang MQ, 1997, P NATL ACAD SCI USA, V94, P9445, DOI 10.1073/pnas.94.17.9445 Xiang MQ, 1998, DEVELOPMENT, V125, P3935 Xu HS, 2007, DEV BIOL, V302, P670, DOI 10.1016/j.ydbio.2006.10.002 Zheng JL, 1997, J NEUROSCI, V17, P8270 Zou D, 2008, HUM MOL GENET, V17, P3340, DOI 10.1093/hmg/ddn229 NR 83 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2012 VL 283 IS 1-2 BP 151 EP 161 DI 10.1016/j.heares.2011.10.010 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 908FH UT WOS:000301475300016 PM 22094003 ER PT J AU Brimijoin, WO McShefferty, D Akeroyd, MA AF Brimijoin, W. Owen McShefferty, David Akeroyd, Michael A. TI Undirected head movements of listeners with asymmetrical hearing impairment during a speech-in-noise task SO HEARING RESEARCH LA English DT Article ID SOUND LOCALIZATION; INTELLIGIBILITY; TARGETS AB It has long been understood that the level of a sound at the ear is dependent on head orientation, but the way in which listeners move their heads during listening has remained largely unstudied. Given the task of understanding a speech signal in the presence of a simultaneous noise, listeners could potentially use head orientation to either maximize the level of the signal in their better ear, or to maximize the signalto-noise ratio in their better ear. To establish what head orientation strategy listeners use in a speech comprehension task, we used an infrared motion-tracking system to measure the head movements of 36 listeners with large (>16 dB) differences in hearing threshold between their left and right ears. We engaged listeners in a difficult task of understanding sentences presented at the same time as a spatially separated background noise. We found that they tended to orient their heads so as to maximize the level of the target sentence in their better ear, irrespective of the position of the background noise. This is not ideal orientation behavior from the perspective of maximizing the signal-to-noise ratio (SNR) at the ear, but is a simple, easily implemented strategy that is often effective in an environment where the spatial position of multiple noise sources may be difficult or impossible to determine. (C) 2011 Elsevier B.V. All rights reserved. C1 [Brimijoin, W. Owen; McShefferty, David; Akeroyd, Michael A.] Glasgow Royal Infirm, MRC Inst Hearing Res, Scottish Sect, Glasgow G31 2ER, Lanark, Scotland. RP Brimijoin, WO (reprint author), Glasgow Royal Infirm, MRC Inst Hearing Res, Scottish Sect, 16 Alexandra Parade, Glasgow G31 2ER, Lanark, Scotland. EM owen@ihr.gla.ac.uk RI Akeroyd, Michael/N-3978-2014 OI Akeroyd, Michael/0000-0002-7182-9209 FU Medical Research Council and the Chief Scientist Office (Scotland) FX We thank John Culling for providing the monaural speech intelligibility model; we would also like to thank the editor and two anonymous reviewers. All research was funded by the Medical Research Council and the Chief Scientist Office (Scotland). CR ANSI, 1997, S351997 ANSI Berens P., 2009, J STAT SOFTW, V30, P1 Blauert J., 1983, SPATIAL HEARING Brimijoin WO, 2010, J ACOUST SOC AM, V127, P3678, DOI 10.1121/1.3409488 Ching TYC, 2009, J SPEECH LANG HEAR R, V52, P1241, DOI 10.1044/1092-4388(2009/08-0261) Dreschler WA, 2001, AUDIOLOGY, V40, P148 ERBER NP, 1969, J SPEECH HEAR RES, V12, P423 FRENCH NR, 1947, J ACOUST SOC AM, V19, P90, DOI 10.1121/1.1916407 Fuller JH, 1996, J VESTIBUL RES-EQUIL, V6, P1 FULLER JH, 1992, EXP BRAIN RES, V92, P152 GARDNER WG, 1995, J ACOUST SOC AM, V97, P3907, DOI 10.1121/1.412407 Grant KW, 2001, J ACOUST SOC AM, V109, P2272, DOI 10.1121/1.1362687 GUITTON D, 1987, J NEUROPHYSIOL, V58, P427 Harrison D, 1988, J APPL STAT, V15, P197, DOI DOI 10.1080/02664768800000026 HAWKINS JE, 1950, J ACOUST SOC AM, V22, P6, DOI 10.1121/1.1906581 KENDON A, 1967, ACTA PSYCHOL, V26, P22, DOI 10.1016/0001-6918(67)90005-4 Lavandier M, 2010, J ACOUST SOC AM, V127, P387, DOI 10.1121/1.3268612 MACLEOD A, 1987, British Journal of Audiology, V21, P131, DOI 10.3109/03005368709077786 MUIR D, 1979, CHILD DEV, V50, P431, DOI 10.1111/j.1467-8624.1979.tb04125.x Rhebergen KS, 2005, J ACOUST SOC AM, V117, P2181, DOI 10.1121/1.1861713 Schwartz JL, 2004, COGNITION, V93, pB69, DOI 10.1016/j.cognition.2004.01.006 Simpson BD, 2005, HUM FACTORS, V47, P188, DOI 10.1518/0018720053653866 Smeele PMT, 1998, J EXP PSYCHOL HUMAN, V24, P1232, DOI 10.1037//0096-1523.24.4.1232 SOKOLOV EN, 1963, ANNU REV PHYSIOL, V25, P545, DOI 10.1146/annurev.ph.25.030163.002553 SUMBY WH, 1954, J ACOUST SOC AM, V26, P212, DOI 10.1121/1.1907309 THURLOW WR, 1967, J ACOUST SOC AM, V42, P489, DOI 10.1121/1.1910605 Wightman FL, 1999, J ACOUST SOC AM, V105, P2841, DOI 10.1121/1.426899 Young PT, 1931, J EXP PSYCHOL, V14, P95, DOI 10.1037/h0075721 NR 28 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2012 VL 283 IS 1-2 BP 162 EP 168 DI 10.1016/j.heares.2011.10.009 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 908FH UT WOS:000301475300017 PM 22079774 ER PT J AU Zhang, YB Zhang, R Zhang, WF Steyger, PS Dai, CF AF Zhang, Yi-Bo Zhang, Ru Zhang, Wei-Feng Steyger, Peter S. Dai, Chun-Fu TI Uptake of gentamicin by vestibular efferent neurons and superior olivary complex after transtympanic administration in guinea pigs SO HEARING RESEARCH LA English DT Article ID RETROGRADE AXONAL-TRANSPORT; INTRATYMPANIC GENTAMICIN; MENIERES-DISEASE; COCHLEAR NUCLEUS; HAIR-CELLS; SYSTEMIC APPLICATION; INNER-EAR; DOXORUBICIN; CHINCHILLA; AFFERENTS AB Transtympanic administration of gentamicin is a widely accepted and effective approach for treating patients with intractable vertigo. Previous studies have demonstrated the uptake, distribution and effects of gentamicin in peripheral vestibular and cochlear structures after transtympanic injection. However, little is known about whether transtympanically administered gentamicin is trafficked into more central auditory and vestibular structures and its effect on these structures. In this study, we used immunofluorescence to determine the distribution of gentamicin within the auditory and vestibular brainstem. We observed gentamicin immunolabeling bilaterally in the vestibular efferent neurons, and in the superior olivary complex, and ipsilaterally in the cochlear nucleus 24 h after transtympanic administration of gentamicin, and that the drug could still be detected in these locations 30 days after injection. In contrast, no gentamicin labeling was detected in the vestibular nuclear complex. In the vestibular efferent neurons and superior olivary complex, gentamicin labeling was detected in the cytoplasm and cell processes, while in the cochlear nucleus gentamicin is mainly localized outside and adjacent to the cell bodies of neurons. Nerve fibers in cochlear nucleus, root of eighth nerve, as well as descending pathways from the superior olivary complex, are also immunolabeled with gentamicin continuously. Based on these data, we hypothesize that retrograde axonal transport of gentamicin is responsible for the distribution of gentamicin in these efferent nuclei including vestibular efferent.neurons and superior olivary complex and anterograde axonal transport into the ipsilateral cochlear nucleus. (C) 2011 Elsevier B.V. All rights reserved. C1 [Zhang, Yi-Bo; Zhang, Ru; Dai, Chun-Fu] Fudan Univ, Eye Ear Nose & Throat Hosp, Dept Otol & Skull Base Surg, Shanghai 200031, Peoples R China. [Zhang, Wei-Feng] Shanghai Jiao Tong Univ, Ruijin Hosp, Dept Neurosurg, Shanghai 200025, Peoples R China. [Steyger, Peter S.] Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, Portland, OR 97239 USA. RP Dai, CF (reprint author), Fudan Univ, Eye Ear Nose & Throat Hosp, Dept Otol & Skull Base Surg, Shanghai 200031, Peoples R China. EM cfdai66@yahoo.com.cn FU Educational Ministry of China [NCET-06-0369]; National Natural Science Foundation [30772398, 81070785]; Shanghai Municipal Hospital [SHDC12010119]; 973 Project [2011CB504504]; National Institute of Deafness and Other Communication Disorders [DC 04555] FX This study was supported by Educational Ministry of China (No: NCET-06-0369); National Natural Science Foundation (No. 30772398, No. 81070785); Project on Advanced and Frontier Techniques for Shanghai Municipal Hospital (SHDC12010119); 973 Project (2011CB504504), and National Institute of Deafness and Other Communication Disorders (DC 04555, PSS). CR Alberts B., 2002, MOL BIOL CELL, V4th ANDERSON PN, 1981, J ANAT, V133, P371 Aran JM, 1999, ANN NY ACAD SCI, V884, P60, DOI 10.1111/j.1749-6632.1999.tb08636.x BIGOTTE L, 1982, NEUROSCI LETT, V32, P217, DOI 10.1016/0304-3940(82)90296-8 Bodmer D, 2007, OTOL NEUROTOL, V28, P1140 Chia SH, 2004, OTOL NEUROTOL, V25, P544, DOI 10.1097/00129492-200407000-00023 Curtis R, 1998, MOL CELL NEUROSCI, V12, P105, DOI 10.1006/mcne.1998.0704 Dai CF, 2006, HEARING RES, V213, P64, DOI 10.1016/j.heares.2005.11.011 Furman JM, 2005, J NEUROL NEUROSUR PS, V76, P1, DOI 10.1136/jnnp.2004.048926 Hennig AK, 1998, J NEUROSCI, V18, P3282 Hirvonen TP, 2005, J NEUROPHYSIOL, V93, P643, DOI 10.1152/jn.00160.2004 Hong SH, 2006, HEARING RES, V211, P46, DOI 10.1016/j.heares.2005.08.009 Imamura S, 2003, JARO, V4, P176, DOI 10.1007/s10162-002-2036-8 Lima da Costa D, 1998, Audiology, V37, P151 LIPPE WR, 1991, HEARING RES, V51, P193, DOI 10.1016/0378-5955(91)90036-9 Lyford-Pike S, 2007, JARO-J ASSOC RES OTO, V8, P497, DOI 10.1007/s10162-007-0093-8 Moller A.R, 2006, HEARING ANATOMY PHYS, P89 Rogers NJ, 1998, ANN OTO RHINOL LARYN, V107, P337 Myrdal SE, 2005, HEARING RES, V204, P156, DOI 10.1016/j.heares.2005.02.002 Ng D, 2011, LARYNGOSCOPE, V121, P492, DOI 10.1002/lary.21279 OLDFIELD BJ, 1977, NEUROSCI LETT, V6, P135, DOI 10.1016/0304-3940(77)90008-8 Postema RJ, 2008, ACTA OTO-LARYNGOL, V128, P876, DOI 10.1080/00016480701762458 Reuss S, 2000, MICROSC RES TECHNIQ, V51, P303, DOI 10.1002/1097-0029(20001115)51:4<303::AID-JEMT1>3.0.CO;2-B Roehm P, 2007, HEARING RES, V230, P43, DOI 10.1016/j.heares.2007.04.005 Rosen JH, 1998, BRAIN RES, V813, P177, DOI 10.1016/S0006-8993(98)00972-X SCHUKNECHT H F, 1956, Laryngoscope, V66, P859, DOI 10.1288/00005537-195607000-00005 SHUMILINA V F, 1986, Neirofiziologiya, V18, P738 SIDENIUS P, 1981, DIABETOLOGIA, V20, P110, DOI 10.1007/BF00262011 Theopold H M, 1976, Laryngol Rhinol Otol (Stuttg), V55, P786 VANDERKOOY D, 1985, NEUROSCI LETT, V53, P215, DOI 10.1016/0304-3940(85)90188-0 Xu M, 2009, ACTA OTO-LARYNGOL, V129, P745, DOI 10.1080/00016480802454716 Zhai F, 2010, OTOL NEUROTOL, V31, P642, DOI 10.1097/MAO.0b013e3181dbb30e Zhu XX, 2007, J COMP NEUROL, V503, P593, DOI 10.1002/cne.21402 NR 33 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2012 VL 283 IS 1-2 BP 169 EP 179 DI 10.1016/j.heares.2011.10.003 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 908FH UT WOS:000301475300018 PM 22063470 ER PT J AU Chordekar, S Kriksunov, L Kishon-Rabin, L Adelman, C Sohmer, H AF Chordekar, Shai Kriksunov, Leonid Kishon-Rabin, Liat Adelman, Cahtia Sohmer, Haim TI Mutual cancellation between tones presented by air conduction, by bone conduction and by non-osseous (soft tissue) bone conduction SO HEARING RESEARCH LA English DT Article ID STIMULATION; THRESHOLDS; LENGTH; SOUND; EAR AB Auditory sensation can be elicited not only by air conducted (AC) sound or bone conducted (BC) sound, but also by stimulation of soft tissue (STC) sites on the head and neck relatively distant from deeply underlying bone. Tone stimulation by paired combinations of AC with BC (mastoid) and/or with soft tissue conduction produce the same pitch sensation, mutual masking and beats. The present study was designed to determine whether they can also cancel each other. The study was conducted on ten normal hearing subjects. Tones at 2 kHz were presented in paired combinations by AC (insert earphone), by BC (bone vibrator) at the mastoid, and by the same bone vibrator to several STC sites; e.g. the neck, the sterno-cleido-mastoid muscle, the eye, and under the chin, shifting the phases between the pairs. Subjects reported changes in loudness and cancellation. The phase for cancellation differed across subjects. Neck muscle manipulations (changes in head position) led to alterations in the phase at which cancellation was reported. Cancellation was also achieved between pairs of tones to two STC sites. The differing phases for cancellation across subjects and the change in phase accompanying different head positions may be due to the different acoustic impedances of the several tissues in the head and neck. A major component of auditory stimulation by STC may not induce actual skull bone vibrations and may not involve bulk fluid volume displacements. (C) 2011 Elsevier B.V. All rights reserved. C1 [Chordekar, Shai; Kishon-Rabin, Liat] Tel Aviv Univ, Sackler Fac Med, Dept Commun Disorders, Tel Aviv, Israel. [Kriksunov, Leonid; Adelman, Cahtia; Sohmer, Haim] Hadassah Acad Coll, Dept Commun Disorders, IL-91010 Jerusalem, Israel. [Kriksunov, Leonid] Ozen Kashevet Hearing Clin, Jerusalem, Israel. [Adelman, Cahtia] Hadassah Univ Hosp, Speech & Hearing Ctr, IL-91120 Jerusalem, Israel. [Sohmer, Haim] Hebrew Univ Jerusalem, Hadassah Med Sch, Inst Med Res Israel Canada, Dept Med Neurobiol Physiol, IL-91120 Jerusalem, Israel. RP Sohmer, H (reprint author), Hebrew Univ Jerusalem, Hadassah Med Sch, Dept Physiol, POB 12272, IL-91120 Jerusalem, Israel. EM haims@ekmd.huji.ac.il CR Adelman C., EUR ARCH OT IN PRESS Baun J., 2004, PHYS PRINCIPLES GEN Bekesy G., 1960, EXPT HEARING Clavier OH, 2010, HEARING RES, V263, P224, DOI 10.1016/j.heares.2010.03.004 Dean M S, 2000, Am J Audiol, V9, P131, DOI 10.1044/1059-0889(2000/011) Freeman S, 2000, HEARING RES, V146, P72, DOI 10.1016/S0378-5955(00)00098-8 GRIFFITHS RI, 1987, J NEUROSCI METH, V21, P159, DOI 10.1016/0165-0270(87)90113-0 Hossain M.Z., 2009, P SPIE HYVARINE.J, 1968, SCIENCE, V162, P1130, DOI 10.1126/science.162.3858.1130 Ito T, 2011, AUDIOL NEURO-OTOL, V16, P12, DOI 10.1159/000314282 Lowy K, 1942, J ACOUST SOC AM, P156 OBRIEN PD, 1995, CIRCULATION, V91, P171 Perez R, 2011, HEARING RES, V280, P82, DOI 10.1016/j.heares.2011.04.007 Sohmer H, 2000, HEARING RES, V146, P81, DOI 10.1016/S0378-5955(00)00099-X Stenfelt S, 2005, OTOL NEUROTOL, V26, P1245, DOI 10.1097/01.mao.0000187236.10842.d5 Stenfelt S, 2007, HEARING RES, V225, P105, DOI 10.1016/j.heares.2006.12.009 TONNDORF J, 1962, J ACOUST SOC AM, V34, P1127, DOI 10.1121/1.1918259 Topchyan A, 2006, ULTRASONICS, V44, P259, DOI 10.1016/j.ultras.2006.02.003 Tsai V, 2005, OTOL NEUROTOL, V26, P1138, DOI 10.1097/01.mao.0000179996.82402.e0 Vento B. A., 2009, HDB CLIN AUDIOLOGY von Bekesy G, 1932, ANN PHYS-BERLIN, V13, P111 Watanabe T, 2008, EAR HEARING, V29, P667, DOI 10.1097/AUD.0b013e3181775dde Wever EG, 1954, PHYSL ACOUSTICS Yacullo W.S, 2009, HDB CLIN AUDIOLOGY ZWISLOCKI J, 1953, J ACOUST SOC AM, V25, P986, DOI 10.1121/1.1907231 NR 25 TC 9 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2012 VL 283 IS 1-2 BP 180 EP 184 DI 10.1016/j.heares.2011.10.004 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 908FH UT WOS:000301475300019 PM 22037489 ER PT J AU Poznyakovskiy, AA Zahnert, T Kalaidzidis, Y Lazurashvili, N Schmidt, R Hardtke, HJ Fischer, B Yarin, YM AF Poznyakovskiy, Anton A. Zahnert, Thomas Kalaidzidis, Yannis Lazurashvili, Nikoloz Schmidt, Rolf Hardtke, Hans-Juergen Fischer, Bjoern Yarin, Yury M. TI A segmentation method to obtain a complete geometry model of the hearing organ SO HEARING RESEARCH LA English DT Article ID 3-DIMENSIONAL RECONSTRUCTION; INNER-EAR; ULTRASOUND IMAGES; BASILAR-MEMBRANE; DEFORMABLE MODEL; MEDICAL IMAGES; IN-VIVO; DIMENSIONS; COCHLEA; QUANTIFICATION AB We present a method for obtaining a complete geometry model of the fluid chambers of cochlea (scalae) from tomography images. An accurate segmentation of cochlea is problematic due to the low contrast of the inner membranes of scalae. Our method of 3D segmentation is based on dynamic resampling of an original image stack to achieve a perpendicular cross-section of the scalae on all sections. Subsequently, perpendicular cross-section is being segmented using 2D active contours. The center of mass of the contour is extracted and used to predict further course of scalae centerline by Kalman filter. Cross-section contours are subsequently assembled to the total geometry model. This method has been applied to CT images, but we expect that it could be used for segmentation of strongly curved low-contrast tubular objects recorded with other tomography techniques. (C) 2011 Elsevier B.V. All rights reserved. C1 [Poznyakovskiy, Anton A.; Zahnert, Thomas; Lazurashvili, Nikoloz; Yarin, Yury M.] Univ Klinikum Dresden, Dept Med, Clin Oto Rhino Laryngol, D-01307 Dresden, Germany. [Kalaidzidis, Yannis] Max Planck Inst Mol & Cell Biol, D-01307 Dresden, Germany. [Kalaidzidis, Yannis] Moscow MV Lomonosov State Univ, Belozersky Inst Phys Chem Biol, Moscow 117189, Russia. [Schmidt, Rolf; Hardtke, Hans-Juergen] Tech Univ Dresden, Dept Mech Engn, Inst Solid Mech, D-01307 Dresden, Germany. [Fischer, Bjoern] Fraunhofer Inst Nondestruct Testing, Dresden Branch IZFP, D-01109 Dresden, Germany. RP Poznyakovskiy, AA (reprint author), Univ Klinikum Dresden, Dept Med, Clin Oto Rhino Laryngol, Fetscherstr 74, D-01307 Dresden, Germany. EM anton.poznyakovskiy@uniklinikumdresden.de CR Baker G., 2004, P INT C PATT REC 200 Baker G, 2004, LECT NOTES ARTIF INT, V3339, P74 Barratt DC, 2004, IEEE T MED IMAGING, V23, P567, DOI 10.1109/TMI.2004.825601 Behrens T, 2003, IEEE T SYST MAN CY B, V33, P554, DOI 10.1109/TSMCB.2003.814305 Cerveri P., 2003, HUM MOVEMENT SCI, V22, P337 Coskun AU, 2003, CATHETER CARDIO INTE, V60, P67, DOI 10.1002/ccd.10594 Fleischer M, 2010, J ACOUST SOC AM, V127, P2973, DOI 10.1121/1.3372752 Frangi A. F., 2000, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737), DOI 10.1109/MMBIA.2000.852367 Frimmel H, 2005, MED PHYS, V32, P2665, DOI 10.1118/1.1990288 Ghiz AF, 2001, HEARING RES, V162, P105, DOI 10.1016/S0378-5955(01)00375-6 Giannoglou GD, 2007, COMPUT BIOL MED, V37, P1292, DOI 10.1016/j.compbiomed.2006.12.003 Givelberg E, 2003, J COMPUT PHYS, V191, P377, DOI 10.1016/S0021-9991(03)00319-X Grover D, 2008, J R SOC INTERFACE, V5, P1181, DOI 10.1098/rsif.2007.1333 Guerrero J, 2007, IEEE T MED IMAGING, V26, P1079, DOI 10.1109/TMI.2007.899180 Halvorsen K, 2008, J BIOMECH ENG-T ASME, V130, DOI 10.1115/1.2838035 Hardy M, 1938, AM J ANAT, V62, P291, DOI 10.1002/aja.1000620204 HATSUSHIKA S, 1990, ANN OTO RHINOL LARYN, V99, P871 Hofman R, 2009, J VESTIBUL RES-EQUIL, V19, P21, DOI 10.3233/VES-2009-0346 Kalaidzidis Y., 2009, J MATH BIOL, V2009, P57 Kalman R.E, 1960, J BASIC ENG, V82, P35, DOI DOI 10.1115/1.3662552 Kang DJ, 1999, PATTERN RECOGN LETT, V20, P507 KASS M, 1987, INT J COMPUT VISION, V1, P321 Lee CF, 2010, ANN BIOMED ENG, V38, P1719, DOI 10.1007/s10439-010-9961-1 Lesage D, 2009, MED IMAGE ANAL, V13, P819, DOI 10.1016/j.media.2009.07.011 Li R., 2003, P DIG IM COMP TECH A, P243 Li SF, 2006, ORL J OTO-RHINO-LARY, V68, P302, DOI 10.1159/000094378 Lui B., 2007, BRAIN STRUCT FUNCT, V212, P223 McNames J., 2006, C P IEEE ENG MED BIO, P3708 Meshik X., 2009, OTOL NEUROTOL, V31, P58 Noble JH, 2010, PROC SPIE, V7623, DOI 10.1117/12.844747 PERONA P, 1990, IEEE T PATTERN ANAL, V12, P629, DOI 10.1109/34.56205 Poznyakovskiy AA, 2008, HEARING RES, V243, P95, DOI 10.1016/j.heares.2008.06.008 Sadleir RJT, 2005, COMPUT MED IMAG GRAP, V29, P251, DOI 10.1016/j.compmedimag.2004.10.002 Thorne M, 1999, LARYNGOSCOPE, V109, P1661, DOI 10.1097/00005537-199910000-00021 Valverde FL, 2004, COMPUT METH PROG BIO, V73, P233, DOI 10.1016/S0169-2607(03)00043-9 Voie AH, 1995, COMPUT MED IMAG GRAP, V19, P377, DOI 10.1016/0895-6111(95)00034-8 Wada H, 1998, HEARING RES, V120, P1, DOI 10.1016/S0378-5955(98)00007-0 Wang HX, 2006, PEPTIDES, V27, P27, DOI 10.1016/j.peptides.2005.06.009 Wang Y., 2008, C P IEEE ENG MED BIO, P1720 Worz S, 2007, IEEE T IMAGE PROCESS, V16, P1994, DOI 10.1109/TIP.2007.901204 Wysocki J, 1999, HEARING RES, V135, P39, DOI 10.1016/S0378-5955(99)00088-X Xianfen Diao, 2005, Conf Proc IEEE Eng Med Biol Soc, V6, P6285 Yim PJ, 2001, IEEE T MED IMAGING, V20, P1411, DOI 10.1109/42.974935 Yoo K S, 2001, J Digit Imaging, V14, P173 Yoo SK, 2000, IEEE T INF TECHNOL B, V4, P144, DOI 10.1109/4233.845207 ZRUNEK M, 1981, ARCH OTO-RHINO-LARYN, V233, P99, DOI 10.1007/BF00464279 NR 46 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 25 EP 34 DI 10.1016/j.heares.2011.06.009 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300003 PM 21782915 ER PT J AU Petacchi, A Kaernbach, C Ratnam, R Bower, JM AF Petacchi, Augusto Kaernbach, Christian Ratnam, Rama Bower, James M. TI Increased activation of the human cerebellum during pitch discrimination: A positron emission tomography (PET) study SO HEARING RESEARCH LA English DT Article ID SCANNER BACKGROUND-NOISE; POSTEROVENTRAL COCHLEAR NUCLEUS; PERIPHERAL TACTILE STIMULATION; VERBAL WORKING-MEMORY; HUMAN AUDITORY-CORTEX; CEREBRAL-BLOOD-FLOW; GRANULE CELL LAYER; FREQUENCY DISCRIMINATION; INFERIOR COLLICULUS; COMPLEX TONES AB Recent years have seen a growing debate concerning the function of the cerebellum. Here we used a pitch discrimination task and PET to test for cerebellar involvement in the active control of sensory data acquisition. Specifically, we predicted greater cerebellar activity during active pitch discrimination compared to passive listening, with the greatest activity when pitch discrimination was most difficult. Ten healthy subjects were trained to discriminate deviant tones presented with a slightly higher pitch than a standard tone, using a Go/No Go paradigm. To ensure that discrimination performance was matched across subjects, individual psychometric curves were assessed beforehand using a two-step psychoacoustic procedure. Subjects were scanned while resting in the absence of any sounds, while passively listening to standard tones, and while detecting deviant tones slightly higher in pitch among these standard tones at four different performance levels. Consistent with our predictions, 1) passive listening alone elicited cerebellar activity (lobule IX), 2) cerebellar activity increased during pitch discrimination as compared to passive listening (crus I and II, lobules VI, VIIB, and VIIIB), and 3) this increase was correlated with the difficulty of the discrimination task (lobules V, VI, and IX). These results complement recent findings showing pitch discrimination deficits in cerebellar patients (Parsons et al., 2009) and further support a role for the cerebellum in sensory data acquisition. The data are discussed in the light of anatomical and physiological evidence functionally connecting auditory system and cerebellum. (C) 2011 Elsevier B.V. All rights reserved. C1 [Petacchi, Augusto; Bower, James M.] Univ Texas Hlth Sci Ctr San Antonio, Res Imaging Inst, San Antonio, TX 78229 USA. [Kaernbach, Christian] Univ Kiel, Dept Psychol, D-24098 Kiel, Germany. [Ratnam, Rama; Bower, James M.] Univ Texas San Antonio, Dept Biol, San Antonio, TX USA. RP Petacchi, A (reprint author), Univ Texas Hlth Sci Ctr San Antonio, Res Imaging Inst, 7703 Floyd Curl Dr, San Antonio, TX 78229 USA. EM petacchi@uthscsa.edu FU UTSA-CRSGP FX We are grateful to Shalini Narayana for useful comments, to Don Robin for discussions, to Michelle Valero for review of the manuscript, and to Krystal Franklin, Jack Lancaster, and Frank Zamarripa for assistance with analysis software. This work was supported by a UTSA-CRSGP grant to Rama Ratnam. CR Ackermann H, 2007, CEREBELLUM, V6, P202, DOI 10.1080/14734220701266742 Ackermann H, 2001, NEUROREPORT, V12, P4087, DOI 10.1097/00001756-200112210-00045 Ackermann H, 2008, TRENDS NEUROSCI, V31, P265, DOI 10.1016/j.tins.2008.02.011 AITKIN LM, 1975, J NEUROPHYSIOL, V38, P418 AKSHOOMOFF NA, 1992, BEHAV NEUROSCI, V106, P731, DOI 10.1037//0735-7044.106.5.731 Akshoomoff N.A., 1997, CEREBELLUM COGNITION, P575 ALBUS J S, 1971, Mathematical Biosciences, V10, P25, DOI 10.1016/0025-5564(71)90051-4 Allen G, 1997, SCIENCE, V275, P1940, DOI 10.1126/science.275.5308.1940 Andersen BB, 2003, J COMP NEUROL, V466, P356, DOI 10.1002/cne.10884 Andreasen NC, 2008, BIOL PSYCHIAT, V64, P81, DOI 10.1016/j.biopsych.2008.01.003 AZIZI SA, 1985, EXP BRAIN RES, V59, P36 AZIZI SA, 1990, BRAIN RES, V533, P255, DOI 10.1016/0006-8993(90)91347-J Barker D, 2011, CEREB CORTEX, DOI [10.1093/cercor/bhr065, DOI 10.1093/CERCOR/BHR065] Baumann O, 2010, J NEUROSCI, V30, P4489, DOI 10.1523/JNEUROSCI.5661-09.2010 Belin P, 1999, NEUROIMAGE, V10, P417, DOI 10.1006/nimg.1999.0480 Belin P, 2002, NEUROPSYCHOLOGIA, V40, P1956, DOI 10.1016/S0028-3932(02)00062-3 Belin P, 1998, J NEUROSCI, V18, P6388 Bellebaum C, 2007, CEREBELLUM, V6, P184, DOI 10.1080/14734220601169707 Bendor D, 2005, NATURE, V436, P1161, DOI 10.1038/nature03867 Ben-Yehudah G, 2007, CEREBELLUM, V6, P193, DOI 10.1080/14734220701286195 Bower J, 2003, SCI AM, V289, P50 BOWER JM, 1990, J COMP NEUROL, V302, P768, DOI 10.1002/cne.903020409 Bower JM, 2002, ANN NY ACAD SCI, V978, P135, DOI 10.1111/j.1749-6632.2002.tb07562.x Bower JM, 1997, PROGR BRAIN RES, V114, P483, DOI 10.1016/S0079-6123(08)63381-6 Bower JM, 2011, ANN NY ACAD SCI, V1225, P130, DOI 10.1111/j.1749-6632.2011.06020.x BOWER JM, 1983, J NEUROPHYSIOL, V49, P745 Bower J.M., 1997, CEREBELLUM COGNITION, P490 Braitenberg V, 1967, Prog Brain Res, V25, P334 Braitenberg V, 1983, J THEORET NEUROBIOL, V2, P237 Braitenberg V, 1997, BEHAV BRAIN SCI, V20, P229, DOI 10.1017/S0140525X9700143X BRODAL A, 1946, J COMP NEUROL, V84, P31, DOI 10.1002/cne.900840105 BRODAL P, 1979, NEUROSCIENCE, V4, P193, DOI 10.1016/0306-4522(79)90082-4 Brown IE, 2002, J NEUROSCI, V22, P6819 Brown IE, 2001, J COMP NEUROL, V429, P59, DOI 10.1002/1096-9861(20000101)429:1<59::AID-CNE5>3.0.CO;2-3 Brozoski TJ, 2007, HEARING RES, V228, P168, DOI 10.1016/j.heares.2007.02.003 Bueti D, 2008, J COGNITIVE NEUROSCI, V20, P204, DOI 10.1162/jocn.2008.20017 Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698 Casini L, 1999, NEUROPSYCHOLOGY, V13, P10, DOI 10.1037/0894-4105.13.1.10 Cedolin L, 2010, J NEUROSCI, V30, P12712, DOI 10.1523/JNEUROSCI.6365-09.2010 Cedolin L, 2005, J NEUROPHYSIOL, V94, P347, DOI 10.1152/jn.01114.2004 Cerf-Ducastel B, 2001, CHEM SENSES, V26, P625, DOI 10.1093/chemse/26.6.625 Christian KM, 2005, BEHAV NEUROSCI, V119, P526, DOI 10.1037/0735-7044.119.2.526 CLARKE PGH, 1974, J PHYSIOL-LONDON, V243, P267 CRISPINO L, 1984, P NATL ACAD SCI-BIOL, V81, P2917, DOI 10.1073/pnas.81.9.2917 de Cheveigne A., 2005, PITCH NEURAL CODING, P169 De Venecia RK, 2005, J COMP NEUROL, V487, P345, DOI 10.1002/cne.20550 Dimitrova A, 2006, NEUROIMAGE, V30, P12, DOI 10.1016/j.neuroimage.2005.09.020 Dimitrova A, 2002, NEUROIMAGE, V17, P240, DOI 10.1006/nimg.2002.1124 EARLE AM, 1974, J COMP NEUROL, V154, P117, DOI 10.1002/cne.901540202 Eickhoff SB, 2009, HUM BRAIN MAPP, V30, P2907, DOI 10.1002/hbm.20718 Ferdon S, 2003, NEUROIMAGE, V20, P12, DOI 10.1016/S1053-8119(03)00276-3 FOLSTEIN MF, 1975, J PSYCHIAT RES, V12, P189, DOI 10.1016/0022-3956(75)90026-6 FOX PT, 1984, J NEUROPHYSIOL, V51, P1109 Fox PT, 2006, HUM BRAIN MAPP, V27, P478, DOI 10.1002/hbm.20192 FOX PT, 1989, J NUCL MED, V30, P141 Fox PT, 2000, BRAIN, V123, P1985, DOI 10.1093/brain/123.10.1985 FOX PT, 1988, J CEREBR BLOOD F MET, V8, P642 Gaab N, 2003, NEUROREPORT, V14, P2291, DOI 10.1097/01.wnr.0000093587.33576.f7 Gaab N, 2007, HUM BRAIN MAPP, V28, P703, DOI 10.1002/hbm.20298 Gaab N, 2003, NEUROIMAGE, V19, P1417, DOI 10.1016/S1053-8119(03)00224-6 Gaab N, 2008, HUM BRAIN MAPP, V29, P858, DOI 10.1002/hbm.20578 Gaab N, 2007, HUM BRAIN MAPP, V28, P721, DOI 10.1002/hbm.20299 GACEK RR, 1973, EXP NEUROL, V41, P101, DOI 10.1016/0014-4886(73)90183-0 Gao JH, 1996, SCIENCE, V272, P545, DOI 10.1126/science.272.5261.545 Gottwald B, 2003, NEUROPSYCHOLOGIA, V41, P1452, DOI 10.1016/S0028-3932(03)00090-3 Green D. M., 1989, SIGNAL DETECTION THE Griffiths TD, 1998, NAT NEUROSCI, V1, P74, DOI 10.1038/276 Griffiths TD, 1999, NEUROREPORT, V10, P3825, DOI 10.1097/00001756-199912160-00019 Griffiths TD, 2000, HUM BRAIN MAPP, V9, P72, DOI 10.1002/(SICI)1097-0193(200002)9:2<72::AID-HBM2>3.0.CO;2-9 Groff JA, 2003, J NEUROPHYSIOL, V90, P3178, DOI 10.1152/jn.00537.2003 Habas C, 2009, J NEUROSCI, V29, P8586, DOI 10.1523/JNEUROSCI.1868-09.2009 Hall DA, 2006, EUR J NEUROSCI, V24, P3601, DOI 10.1111/j.1460-9568.2006.05240.x Hall DA, 1999, HUM BRAIN MAPP, V7, P213, DOI 10.1002/(SICI)1097-0193(1999)7:3<213::AID-HBM5>3.0.CO;2-N Hallett M, 1997, INT REV NEUROBIOL, V41, P297 Harrington DL, 2004, BRAIN, V127, P561, DOI 10.1093/brain/awh065 Harris D.J., 1952, J ACOUST SOC AM, V24, P750 Hartmann MJ, 2001, J NEUROSCI, V21, P3549 Helton WS, 2010, NEUROPSYCHOLOGIA, V48, P1683, DOI 10.1016/j.neuropsychologia.2010.02.014 Holcomb HH, 1998, CEREB CORTEX, V8, P534, DOI 10.1093/cercor/8.6.534 HUANG C, 1990, EXP BRAIN RES, V81, P377 HUANG CM, 1985, BRAIN RES, V335, P121, DOI 10.1016/0006-8993(85)90282-3 Huang CM, 2007, ALCOHOL CLIN EXP RES, V31, P336, DOI 10.1111/j.1530-0277.2006.00309.x HUANG CM, 1982, BRAIN RES, V244, P1, DOI 10.1016/0006-8993(82)90897-6 HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 Hyde KL, 2008, NEUROPSYCHOLOGIA, V46, P632, DOI 10.1016/j.neuropsychologia.2007.09.004 Ito M, 1984, CEREBELLUM NEURAL CO Ito M, 2008, NAT REV NEUROSCI, V9, P304, DOI 10.1038/nrn2332 Ivry R. B., 2000, NEW COGNITIVE NEUROS, P999 Ivry RB, 2008, TRENDS COGN SCI, V12, P273, DOI 10.1016/j.tics.2008.04.002 Ivry RB, 2002, ANN NY ACAD SCI, V978, P302, DOI 10.1111/j.1749-6632.2002.tb07576.x Ivry R B, 1989, J Cogn Neurosci, V1, P136, DOI 10.1162/jocn.1989.1.2.136 Jancke L, 2000, COGNITIVE BRAIN RES, V10, P51, DOI 10.1016/S0926-6410(00)00022-7 JEN PHS, 1980, BRAIN RES, V196, P502, DOI 10.1016/0006-8993(80)90415-1 Jenkinson M, 2002, NEUROIMAGE, V17, P825, DOI 10.1006/nimg.2002.1132 Jenkinson M, 2005, 11 ANN M ORG HUM BRA JESTEADT W, 1974, J ACOUST SOC AM, V55, P1266, DOI 10.1121/1.1914696 JESTEADT W, 1975, J ACOUST SOC AM, V57, P1161, DOI 10.1121/1.380574 Johnsrude IS, 2000, BRAIN, V123, P155, DOI 10.1093/brain/123.1.155 JUEPTNER M, 1995, NEUROLOGY, V45, P1540 KAERNBACH C, 1990, J ACOUST SOC AM, V88, P2645, DOI 10.1121/1.399985 Krienen FM, 2009, CEREB CORTEX, V19, P2485, DOI 10.1093/cercor/bhp135 Lancaster JL, 2007, HUM BRAIN MAPP, V28, P1194, DOI 10.1002/hbm.20345 Lancaster JL, 1995, HUM BRAIN MAPP, V3, P209, DOI 10.1002/hbm.460030305 Lancaster JL, 2000, HUM BRAIN MAPP, V10, P120, DOI 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 Lancaster JL, 1999, J NUCL MED, V40, P942 Lanting CP, 2009, HEARING RES, V255, P1, DOI 10.1016/j.heares.2009.06.009 Lanting CP, 2010, HEARING RES, V267, P78, DOI 10.1016/j.heares.2010.04.006 Larsen JO, 2000, J COMP NEUROL, V428, P213 Le TH, 1998, J NEUROPHYSIOL, V79, P1535 Liu YJ, 2000, HUM BRAIN MAPP, V10, P147, DOI 10.1002/1097-0193(200008)10:4<147::AID-HBM10>3.0.CO;2-U Liu YY, 1999, NATURE, V400, P364 LLINAS RR, 1991, LIFE SCI R, V50, P223 Llinas R., 1984, CEREBELLAR FUNCTIONS, P170 MacMillan N. A., 2005, DETECTION THEORY USE Mangels JA, 1998, COGNITIVE BRAIN RES, V7, P15, DOI 10.1016/S0926-6410(98)00005-6 Manto M, 2008, CEREBELLUM, V7, P505, DOI 10.1007/s12311-008-0063-7 MARR D, 1969, J PHYSIOL-LONDON, V202, P437 Mathiak K, 2002, J COGNITIVE NEUROSCI, V14, P902, DOI 10.1162/089892902760191126 Mathiak K, 2004, NEUROIMAGE, V21, P154, DOI 10.1016/j.neuroimage.2003.09.036 MINTUN MA, 1989, J CEREBR BLOOD F MET, V9, P96 Morest DK, 1997, HEARING RES, V103, P151, DOI 10.1016/S0378-5955(96)00172-4 MORI S, 1993, BEHAV BRAIN RES, V59, P33, DOI 10.1016/0166-4328(93)90149-K Morissette J, 1996, EXP BRAIN RES, V109, P240 NELSON DA, 1986, J ACOUST SOC AM, V79, P799, DOI 10.1121/1.393470 NELSON DA, 1983, J ACOUST SOC AM, V73, P2117, DOI 10.1121/1.389579 Nichelli P, 1996, NEUROPSYCHOLOGIA, V34, P863, DOI 10.1016/0028-3932(96)00001-2 OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4 Oxenham A.J., 2008, TRENDS AMPLIF, V12, P313 PARDO JV, 1991, NATURE, V349, P61, DOI 10.1038/349061a0 Parsons LM, 2009, BRAIN RES, V1303, P84, DOI 10.1016/j.brainres.2009.09.052 Parsons LM, 1997, LEARN MEMORY, V4, P49, DOI 10.1101/lm.4.1.49 Pastor MA, 2008, J NEUROPHYSIOL, V100, P1699, DOI 10.1152/jn.01156.2007 Patterson RD, 2002, NEURON, V36, P767, DOI 10.1016/S0896-6273(02)01060-7 Paus T, 1997, J COGNITIVE NEUROSCI, V9, P392, DOI 10.1162/jocn.1997.9.3.392 Petacchi A, 2005, HUM BRAIN MAPP, V25, P118, DOI 10.1002/hbm.20137 Ramnani N, 2006, NAT REV NEUROSCI, V7, P511, DOI 10.1038/nrn1953 Rao SM, 1997, J NEUROSCI, V17, P5528 Rapoport M, 2000, J NEUROPSYCH CLIN N, V12, P193, DOI 10.1176/appi.neuropsych.12.2.193 Ravizza SM, 2006, BRAIN, V129, P306, DOI 10.1093/brain/awh685 REID MD, 1975, COMP BIOCHEM PHYSIOL, V50, P259, DOI 10.1016/0300-9629(75)90008-0 RHODE WS, 1995, J ACOUST SOC AM, V97, P2414, DOI 10.1121/1.411963 Rossi G, 1967, Acta Otolaryngol, V63, P166, DOI 10.3109/00016486709128745 Sayles M, 2008, J NEUROSCI, V28, P11925, DOI 10.1523/JNEUROSCI.3137-08.2008 Schlerf JE, 2007, CEREBELLUM, V6, P221, DOI 10.1080/14734220701370643 Schmahmann J, 1997, CEREBELLUM COGNITION Schmahmann J. D., 2000, MRI ATLAS HUMAN CERE Schofield BR, 1999, J COMP NEUROL, V409, P210, DOI 10.1002/(SICI)1096-9861(19990628)409:2<210::AID-CNE3>3.0.CO;2-A Schulze K, 2009, BMC NEUROSCI, V10, DOI 10.1186/1471-2202-10-106 SEK A, 1995, J ACOUST SOC AM, V97, P2479, DOI 10.1121/1.411968 Sevostianov A, 2002, INT J NEUROSCI, V112, P587, DOI 10.1080/00207450290025671 Shulman A, 1999, Int Tinnitus J, V5, P92 Shulman Abraham, 2010, Int Tinnitus J, V16, P73 Shulman Abraham, 2009, Int Tinnitus J, V15, P5 Shumway C, 2005, J NEUROPHYSIOL, V94, P2630, DOI 10.1152/jn.00161.2005 Smith SM, 2002, HUM BRAIN MAPP, V17, P143, DOI 10.1002/hbm.10062 Snider RS, 1944, J NEUROPHYSIOL, V7, P331 Sobel N, 1998, J NEUROSCI, V18, P8990 Spencer RMC, 2005, BRAIN COGNITION, V58, P84, DOI 10.1016/j.bandc.2004.09.010 Stoodley CJ, 2012, CEREBELLUM, V11, P352, DOI 10.1007/s12311-011-0260-7 Strick PL, 2009, ANNU REV NEUROSCI, V32, P413, DOI 10.1146/annurev.neuro.31.060407.125606 Sturm W, 2004, NEUROPSYCHOLOGIA, V42, P563, DOI 10.1016/j.neuropsychologia.2003.11.004 SUN D, 1990, J COMP PHYSIOL A, V166, P477 SUN XD, 1983, BRAIN RES, V271, P162, DOI 10.1016/0006-8993(83)91378-1 Talairach J., 1988, COPLANAR STEREOTAXIC THACH WT, 1992, ANNU REV NEUROSCI, V15, P403, DOI 10.1146/annurev.neuro.15.1.403 Thach WT, 1998, NEUROBIOL LEARN MEM, V70, P177, DOI 10.1006/nlme.1998.3846 Thach WT, 1997, CEREBELLUM COGNITION, P600 Thakral PP, 2009, BRAIN RES, V1302, P157, DOI 10.1016/j.brainres.2009.09.031 THOMPSON AM, 1993, J COMP NEUROL, V335, P402, DOI 10.1002/cne.903350309 THOMPSON AM, 1991, J COMP NEUROL, V303, P267, DOI 10.1002/cne.903030209 Tramo MJ, 2002, J NEUROPHYSIOL, V87, P122 Turkeltaub PE, 2002, NEUROIMAGE, V16, P765, DOI 10.1006/nimg.2002.1131 TURNER CW, 1982, J SPEECH HEAR RES, V25, P34 VELLUTI R, 1979, BRAIN RES BULL, V4, P621, DOI 10.1016/0361-9230(79)90103-5 Vokaer M, 2002, NEUROLOGY, V58, P967 Walker KMM, 2011, HEARING RES, V271, P74, DOI 10.1016/j.heares.2010.04.015 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 WIER CC, 1977, J ACOUST SOC AM, V61, P178, DOI 10.1121/1.381251 Winter IM, 2003, SPEECH COMMUN, V41, P135, DOI 10.1016/S0167-6393(02)00098-5 WOLFE JW, 1972, EXP NEUROL, V36, P295, DOI 10.1016/0014-4886(72)90025-8 Wolfe J.W., 1975, OTOLARYNGOL, V80, P143 Wolpert DM, 1998, TRENDS COGN SCI, V2, P338, DOI 10.1016/S1364-6613(98)01221-2 Wolpert DM, 2003, PHILOS T R SOC B, V358, P593, DOI 10.1098/rstb.2002.1238 Woodruff-Pak DS, 2010, P NATL ACAD SCI USA, V107, P1624, DOI 10.1073/pnas.0914207107 WoodruffPak DS, 1996, NEUROPSYCHOLOGY, V10, P443 XI MC, 1994, NEUROREPORT, V5, P1567, DOI 10.1097/00001756-199408150-00006 Zatorre RJ, 1999, NEUROIMAGE, V10, P544, DOI 10.1006/nimg.1999.0491 ZATORRE RJ, 1992, SCIENCE, V256, P846, DOI 10.1126/science.1589767 ZATORRE RJ, 1994, J NEUROSCI, V14, P1908 NR 191 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 35 EP 48 DI 10.1016/j.heares.2011.09.008 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300004 PM 22000998 ER PT J AU Liu, C Jin, SH AF Liu, Chang Jin, Su-Hyun TI Audibility of American English vowels produced by English-, Chinese-, and Korean-native speakers in long-term speech-shaped noise SO HEARING RESEARCH LA English DT Article ID EXCITATION PATTERNS; FOREIGN ACCENT; INTELLIGIBILITY; PERCEPTION; FORMULAS; HEARING; LEVEL AB The purpose of this study was to evaluate whether there were significant differences in audibility of American English vowels in noise produced by non-native and native speakers. Detection thresholds for 12 English vowels with equalized durations of 170 ms produced by 10 English-, Chinese- and Korean-native speakers were measured for young normal-hearing English-native listeners in the presence of speech-shaped noise presented at 70 dB SPL. Similar patterns of vowel detection thresholds as a function of the vowel category were found for native and non-native speakers, with the highest thresholds for /u/ and /u/ and lowest thresholds for /i/ and /e/. In addition, vowel detection thresholds for non-native speakers were significantly lower and showed greater speaker variability than those for native speakers. Thresholds for vowel detection predicted from an excitation-pattern model corresponded well to behavioral thresholds, implying that vowel detection was primarily determined by the vowel spectrum regardless of speaker language background. Both behavioral and predicted thresholds showed that vowel audibility was similar or even better for non-native speakers than for native speakers, indicating that vowel audibility did not account for non-native speakers' lower-than-native intelligibility in noise. Effects of non-native speakers' English proficiency level on vowel audibility are discussed. (C) 2011 Elsevier B.V. All rights reserved. C1 [Liu, Chang; Jin, Su-Hyun] Univ Texas Austin, Dept Commun Sci & Disorders, Austin, TX 78712 USA. RP Liu, C (reprint author), Univ Texas Austin, Dept Commun Sci & Disorders, 1 Univ Stn,A1100, Austin, TX 78712 USA. EM changliu@mail.utexas.edu; shjin@mail.utexas.edu FU University of Texas at Austin FX The authors would like to thank Sangeeta Kamdar for her help in data collection. Special thanks are given to Craig Champlin for his comments on this study and manuscript. The authors are also grateful to Brian C. J. Moore and the two anonymous reviewers for their constructive comments and suggestions on the earlier drafts of this manuscript. This research was supported by a University of Texas at Austin Research Grant. CR ANSI, 2004, S362004 ANSI Bent T, 2003, J ACOUST SOC AM, V114, P1600, DOI 10.1121/1.1603234 Bent T., 2004, J ACOUST SOC AM, V116, P2604 Bradlow AR, 2008, COGNITION, V106, P707, DOI 10.1016/j.cognition.2007.04.005 Chen Y, 2001, CLIN LINGUIST PHONET, V15, P427 Chen Z., 2011, HEAR RES Dalby J., 2009, J ACOUST SOC AM, V125, P2776 Eddins D.A., 2008, J ACOUST SOC AM, V123, P539 FLEGE JE, 1988, J ACOUST SOC AM, V84, P70, DOI 10.1121/1.396876 Flege J.E., 1995, SPEECH PERCEPTION LI, P223 Fletcher H., 1929, SPEECH HEARING GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Glasberg BR, 2001, HEARING RES, V155, P41, DOI 10.1016/S0378-5955(01)00244-1 Jin S-H., 2009, J ACOUST SOC AM, V125, P2727 KALIKOW DN, 1977, J ACOUST SOC AM, V61, P1337, DOI 10.1121/1.381436 KEWLEYPORT D, 1991, J ACOUST SOC AM, V89, P820, DOI 10.1121/1.1894642 Kiefte M, 2010, J ACOUST SOC AM, V127, P2611, DOI 10.1121/1.3353124 Kiefte M, 2005, J ACOUST SOC AM, V117, P1395, DOI 10.1121/1.1861158 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 MOORE BCJ, 1983, J ACOUST SOC AM, V74, P750, DOI 10.1121/1.389861 Moore BCJ, 2004, HEARING RES, V188, P70, DOI 10.1016/S0378-5955(03)00347-2 MOORE BCJ, 1987, HEARING RES, V28, P209, DOI 10.1016/0378-5955(87)90050-5 Munro M. J., 1998, STUDIES 2 LANGUAGE A, V20, P139 MUNRO MJ, 1995, LANG LEARN, V45, P73, DOI 10.1111/j.1467-1770.1995.tb00963.x NABELEK AK, 1992, J ACOUST SOC AM, V92, P1228 Rogers CL, 2004, LANG SPEECH, V47, P139 Rogers C.L., 1997, THESIS INDIANA U BLO Skovenborg E., 2004, AUD ENG SOC 117 CONV Tiffany WR, 1953, J SPEECH HEAR DISORD, V18, P379 Yang BG, 1996, J PHONETICS, V24, P245, DOI 10.1006/jpho.1996.0013 Zwicker E., 1999, SPRINGER SERIES INFO, V22 NR 31 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 49 EP 55 DI 10.1016/j.heares.2011.08.013 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300005 PM 21920420 ER PT J AU Seyyedi, M Eddington, DK Nadol, JB AF Seyyedi, Mohammad Eddington, Donald K. Nadol, Joseph B., Jr. TI Interaural comparison of spiral ganglion cell counts in profound deafness SO HEARING RESEARCH LA English DT Article ID COCHLEAR IMPLANTATION; CHARGE SYNDROME; HISTOPATHOLOGY AB Objectives: This study is designed to measure the degree to which spiral ganglion cell (SGC) survival in the left and right ears is similar in profoundly hearing-impaired human patients with symmetric (right/left) etiology and sensitivity. This is of interest because a small difference between ears would imply that one ear could be used as a control ear in temporal bone studies evaluating the impact on SGC survival of a medical intervention in the other ear. Materials and methods: Forty-two temporal bones from 21 individuals with bilaterally symmetric profound hearing impairment were studied. Both ears in each individual were impaired by the same etiology. Rosenthal's canal was reconstructed in two dimensions and segmental and total SGCs were counted. Correlation analysis and t-tests were used to compare segmental and total counts of left and right ears. Statistical power calculations illustrate how the results can be used to estimate the effect size (right/left difference in SGC count) that can be reliably identified as a function of sample size. Results: Left counts (segmental and total) were significantly correlated with those in the right ears (p < 0.01) and the coefficients of determination for segments 1 to 4 and total count were respectively 0.64, 0.91, 0.93, 0.91 and 0.98. The hypothesis that mean segmental and total counts of right and left are the same could not be rejected by paired t-test. Conclusion: The variance in the between-ear difference across the temporal bones studied indicates that useful effect sizes can be reliably identified using subject numbers that are practical for temporal bone studies. For instance, there is 95% likelihood that an interaural difference in SGC count of approximately 1000 cells associated with a treatment/manipulation of one ear will be reliably detected in a bilaterally-symmetric profound hearing loss population of temporal bones from approximately 10 subjects. (C) 2011 Elsevier B.V. All rights reserved. C1 [Seyyedi, Mohammad; Eddington, Donald K.; Nadol, Joseph B., Jr.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02114 USA. [Seyyedi, Mohammad; Eddington, Donald K.; Nadol, Joseph B., Jr.] Massachusetts Eye & Ear Infirm, Dept Otolaryngol, Boston, MA 02114 USA. [Seyyedi, Mohammad; Eddington, Donald K.; Nadol, Joseph B., Jr.] Massachusetts Eye & Ear Infirm, Cochlear Implant Res Lab, Boston, MA 02114 USA. [Eddington, Donald K.; Nadol, Joseph B., Jr.] MIT, Div Hlth Sci & Technol, Speech & Hearing Biosci & Technol Program, Cambridge, MA 02139 USA. RP Nadol, JB (reprint author), Harvard Univ, Sch Med, Dept Otol & Laryngol, 243 Charles St, Boston, MA 02114 USA. EM joseph_nadol@meei.harvard.edu FU National Institute of Deafness and Other Communication Disorders [R01-DC00152] FX This work was supported by grant R01-DC00152 from the National Institute of Deafness and Other Communication Disorders. CR Amiel J, 2001, AM J MED GENET, V99, P124, DOI 10.1002/1096-8628(20010301)99:2<124::AID-AJMG1114>3.0.CO;2-9 Arndt S, 2010, OTOL NEUROTOL, V31, P67, DOI 10.1097/MAO.0b013e3181c0e972 Fayad JN, 2006, LARYNGOSCOPE, V116, P1310, DOI 10.1097/01.mlg.0000227176.09500.28 GUILD STACY R., 1932, ACTA OTO LARYNGOL, V17, P207, DOI 10.3109/00016483209129041 HINOJOSA R, 1983, ANN NY ACAD SCI, V405, P459, DOI 10.1111/j.1749-6632.1983.tb31662.x Khan AM, 2005, ANN OTO RHINOL LARYN, V114, P381 Konigsmark BW, 1970, CONT RES METHODS NEU, P315 NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411 NADOL JB, 1988, AM J OTOLARYNG, V9, P47, DOI 10.1016/S0196-0709(88)80007-3 OTTE J, 1978, LARYNGOSCOPE, V88, P1231 SCHULNECHT H, 1968, Archives of Otolaryngology, V87, P129 SCHUKNECHT HF, 1953, AMA ARCH OTOLARYNGOL, V58, P377 NR 12 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 56 EP 62 DI 10.1016/j.heares.2011.10.002 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300006 PM 22008826 ER PT J AU Beyer, LA Galano, MM Nair, TS Kommareddi, PK Sha, SH Raphael, Y Carey, TE AF Beyer, Lisa A. Galano, Maria M. Nair, Thankam S. Kommareddi, Pavan K. Sha, Su-Hua Raphael, Yehoash Carey, Thomas E. TI Age-related changes in expression of CTL2/SLC44A2 and its isoforms in the mouse inner ear SO HEARING RESEARCH LA English DT Article ID TRANSPORTER-LIKE PROTEINS; INDUCED HEARING-LOSS; ELECTRIC LOBE; CBA/J MOUSE; ANTIBODY; COCHLEA; AUTOANTIBODIES; SUPPRESSOR; PATHOLOGY; JAGGED1 AB The membrane glycoprotein CTL2/SLC44A2 is expressed by supporting cells in the inner ear and has been identified as a target of antibodies that may induce auto-immune hearing loss. To determine if CTI2/SLC44A2 also has roles in inner ear development and to distinguish between isoform-specific roles, we assessed age-related changes in expression of CTL2/SLC44A2 isoforms and protein in the developing murine inner ear. We determined that both isoform p1 and isoform p2 (named for the upstream p1 and proximal p2 promoters that control alternate exons 1a and 1b) were robustly expressed as early as E14 and persisted during embryonic development, but after birth the p1 isoform fell to barely detectable levels while isoform p2 levels were maintained. This trend continued and became even more apparent later in post,natal development and remained in mature ears until at least 6 weeks of age. In aged (18mo old) mice, the level of isoform p1 transcripts rose again to levels similar to the p2 isoform like that seen early in development. At the earliest stage examined, CTL2/SLC44A2 protein was expressed in both immature supporting cells and immature sensory cells, but after birth expression in the sensory cells declined in both the utricle and cochlea and by day P1 expression of CTL2/SLC44A2 was restricted to supporting cells. The changes we observed in isoform distribution are indicative of differential developmental roles and age related changes between the two isoforms of CTL2/SLC44A2 in the inner ear. (C) 2011 Elsevier B.V. All rights reserved. C1 [Beyer, Lisa A.; Galano, Maria M.; Nair, Thankam S.; Kommareddi, Pavan K.; Sha, Su-Hua; Raphael, Yehoash; Carey, Thomas E.] Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. [Sha, Su-Hua] Med Univ S Carolina, Dept Pathol & Lab Med, Charleston, SC 29425 USA. RP Carey, TE (reprint author), Univ Michigan, Kresge Hearing Res Inst, 1150 W Med Ctr Dr, Ann Arbor, MI 48109 USA. EM careyte@umich.edu FU Townsend Family Fund; Taubman Institute; Williams Professorship; NIH NIDCD [DC03686, DC05188] FX This study was supported by the Townsend Family Fund, The Taubman Institute, the Williams Professorship, and by NIH NIDCD grants DC03686 and DC05188. The authors are indebted to Donald Swiderski for his expert assistance with the final figures. CR Abrashkin KA, 2006, HEARING RES, V218, P20, DOI 10.1016/j.heares.2006.04.001 Artavanis-Tsakonas S, 1999, SCIENCE, V284, P770, DOI 10.1126/science.284.5415.770 Batts SA, 2009, HEARING RES, V249, P15, DOI 10.1016/j.heares.2008.12.008 Brooker R, 2006, DEVELOPMENT, V133, P1277, DOI 10.1242/dev.02284 Disher MJ, 1997, ANN NY ACAD SCI, V830, P253, DOI 10.1111/j.1749-6632.1997.tb51896.x Hartman BH, 2009, JARO-J ASSOC RES OTO, V10, P321, DOI 10.1007/s10162-009-0162-2 Kelly MC, 2009, CURR OPIN NEUROBIOL, V19, P395, DOI 10.1016/j.conb.2009.07.010 Kiernan AE, 2001, P NATL ACAD SCI USA, V98, P3873, DOI 10.1073/pnas.071496998 Kommareddi PK, 2009, LARYNGOSCOPE, V119, P924, DOI 10.1002/lary.20136 Kommareddi P.K., 2010, PROTEIN J Kommareddi PK, 2007, JARO-J ASSOC RES OTO, V8, P435, DOI 10.1007/s10162-007-0099-2 NAIR TS, 1995, HEARING RES, V83, P101, DOI 10.1016/0378-5955(94)00194-U Nair TS, 1997, HEARING RES, V107, P93, DOI 10.1016/S0378-5955(97)00024-5 Nair TS, 1999, HEARING RES, V129, P50, DOI 10.1016/S0378-5955(98)00220-2 Nair TS, 2004, J NEUROSCI, V24, P1772, DOI 10.1523/JNEUROSCI.5063-03.2004 O'Regan S, 2003, NEUROCHEM RES, V28, P551, DOI 10.1023/A:1022877524469 O'Regan S, 2000, P NATL ACAD SCI USA, V97, P1835, DOI 10.1073/pnas.030339697 Raphael Y, 2002, BRIT MED BULL, V63, P25, DOI 10.1093/bmb/63.1.25 Sha SH, 2008, HEARING RES, V243, P87, DOI 10.1016/j.heares.2008.06.001 Sha SH, 2010, HEARING RES, V264, P86, DOI 10.1016/j.heares.2009.09.002 Traiffort E, 2005, J NEUROCHEM, V92, P1116, DOI 10.1111/j.1471-4159.2004.02962.x Wang GP, 2010, HEARING RES, V267, P61, DOI 10.1016/j.heares.2010.03.085 ZAJIC G, 1991, HEARING RES, V52, P59, DOI 10.1016/0378-5955(91)90187-E NR 23 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 63 EP 68 DI 10.1016/j.heares.2011.09.004 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300007 PM 21986210 ER PT J AU Chen, ZL Hu, GS Glasberg, BR Moore, BCJ AF Chen, Zhangli Hu, Guangshu Glasberg, Brian R. Moore, Brian C. J. TI A new model for calculating auditory excitation patterns and loudness for cases of cochlear hearing loss SO HEARING RESEARCH LA English DT Article ID PSYCHOPHYSICAL TUNING CURVES; BASILAR-MEMBRANE NONLINEARITY; DEAD REGIONS; FREQUENCY-SELECTIVITY; IMPAIRED LISTENERS; FILTER SHAPES; NOTCHED-NOISE; SUMMATION; PERCEPTION; THRESHOLD AB A model for calculating auditory excitation patterns and loudness for steady sounds for normal hearing is extended to deal with cochlear hearing loss. The filters used in the model have a double ROEX-shape, the gain of the narrow active filter being controlled by the output of the broad passive filter. It is assumed that the hearing loss at each audiometric frequency can be partitioned into a loss due to dysfunction of outer hair cells (OHCs) and a loss due to dysfunction of inner hair cells (IHCs). OHC loss is modeled by decreasing the maximum gain of the active filter, which results in increased absolute threshold, reduced compressive nonlinearity and reduced frequency selectivity. IHC loss is modeled by a level-dependent attenuation of excitation level, which results in elevated absolute threshold. The magnitude of OHC loss and IHC loss can be derived from measures of loudness recruitment and the measured absolute threshold, using an iterative procedure. The model accurately fits loudness recruitment data obtained using subjects with unilateral or highly asymmetric cochlear hearing loss who were required to make loudness matches between tones presented alternately to the two ears. With the same parameters, the model predicted loudness matches between narrowband and broadband sound reasonably well, reflecting loudness summation. The model can also predict when a dead region is present. (C) 2011 Elsevier B.V. All rights reserved. C1 [Chen, Zhangli; Glasberg, Brian R.; Moore, Brian C. J.] Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England. [Chen, Zhangli; Hu, Guangshu] Tsinghua Univ, Sch Med, Dept Biomed Engn, Beijing 100084, Peoples R China. RP Moore, BCJ (reprint author), Univ Cambridge, Dept Expt Psychol, Downing St, Cambridge CB2 3EB, England. EM bcjm@cam.ac.uk RI Moore, Brian/I-5541-2012 FU China Scholarship Council; National Natural Science Foundation of China; Tsinghua-Yu-Yuan Medical Sciences Fund; Medical Research Council (UK) FX Author Chen was a visiting PhD student in the laboratory of author Moore, sponsored by the China Scholarship Council. The work of authors Chen and Hu was supported by the National Natural Science Foundation of China and Tsinghua-Yu-Yuan Medical Sciences Fund. The work of authors Glasberg and Moore was supported by the Medical Research Council (UK). CR Aazh H., 2007, J AM ACAD AUDIOL, V18, P96 Aibara R, 2001, HEARING RES, V152, P100, DOI 10.1016/S0378-5955(00)00240-9 [Anonymous], 2003, 226 ISO [Anonymous], 2005, 3897 ISO [Anonymous], 2007, S342007 ANSI Baker R. J., 1998, PSYCHOPHYSICAL PHYSL, P81 Baker RJ, 2002, J ACOUST SOC AM, V111, P1330, DOI 10.1121/1.1448516 BONDING P, 1980, AUDIOLOGY, V19, P57 Bonding P, 1979, Br J Audiol, V13, P23, DOI 10.3109/03005367909078871 Chalupper J, 2002, ACTA ACUST UNITED AC, V88, P378 Chen ZL, 2011, HEARING RES, V282, P69, DOI 10.1016/j.heares.2011.09.007 COOPER NP, 1995, HEARING RES, V82, P225, DOI 10.1016/0378-5955(94)00180-X Florentine M, 1996, J ACOUST SOC AM, V99, P1633, DOI 10.1121/1.415236 FLORENTINE M, 1979, HEARING RES, V1, P121, DOI 10.1016/0378-5955(79)90023-6 FLORENTINE M, 1983, J ACOUST SOC AM, V73, P961, DOI 10.1121/1.389021 Fowler EP, 1936, ARCHIV OTOLARYNGOL, V24, P731 Glasberg BR, 2006, J ACOUST SOC AM, V120, P585, DOI 10.1121/1.2214151 GLASBERG BR, 1986, J ACOUST SOC AM, V79, P1020, DOI 10.1121/1.393374 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Glasberg BR, 2000, J ACOUST SOC AM, V108, P2318, DOI 10.1121/1.1315291 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HUMES LE, 1992, ADV BIOSCI, V83, P617 Jurado C, 2011, J ACOUST SOC AM, V129, P3166, DOI 10.1121/1.3560535 Kluk K, 2006, INT J AUDIOL, V45, P463, DOI 10.1080/14992020600753189 Launer S, 1997, MODELING SENSORINEURAL HEARING LOSS, P175 Launer S., 1995, THESIS OLDENBURG GER Liberman M.C., 1984, HEARING RES, V16, P54 Moore B. C. J., 1996, PSYCHOACOUSTICS SPEE, P7 Moore B. C. J., 2007, COCHLEAR HEARING LOS Moore BCJ, 1997, AUDIT NEUROSCI, V3, P289 Moore B C, 2001, Trends Amplif, V5, P1, DOI 10.1177/108471380100500102 Moore B C, 1986, Scand Audiol Suppl, V25, P139 Moore BC., 2003, INTRO PSYCHOL HEARIN Moore BCJ, 2004, HEARING RES, V188, P70, DOI 10.1016/S0378-5955(03)00347-2 Moore BCJ, 1997, J AUDIO ENG SOC, V45, P224 Moore BCJ, 2004, EAR HEARING, V25, P478, DOI 10.1097/01.aud.0000145992.31135.89 Moore BCJ, 1998, PSYCHOL REV, V105, P108, DOI 10.1037/0033-295X.105.1.108 Moore BCJ, 2004, J ACOUST SOC AM, V115, P3103, DOI 10.1121/1.1738839 Moore BCJ, 2004, EAR HEARING, V25, P98, DOI 10.1097/01.AUD.0000120359.49711.D7 Moore BCJ, 1999, J ACOUST SOC AM, V106, P898, DOI 10.1121/1.427105 Moore BCJ, 2000, BRIT J AUDIOL, V34, P205 Moore BCJ, 1999, J ACOUST SOC AM, V106, P2761, DOI 10.1121/1.428133 Moore BCJ, 2001, EAR HEARING, V22, P268, DOI 10.1097/00003446-200108000-00002 Nelson DA, 2001, J ACOUST SOC AM, V110, P2045, DOI 10.1121/1.1404439 Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3666, DOI 10.1121/1.418327 PATTERSON RD, 1982, J ACOUST SOC AM, V72, P1788, DOI 10.1121/1.388652 Plack CJ, 2004, J ACOUST SOC AM, V115, P1684, DOI 10.1121/1.1675812 Plack CJ, 2000, J ACOUST SOC AM, V107, P501, DOI 10.1121/1.428318 Puria S, 1997, J ACOUST SOC AM, V101, P2754, DOI 10.1121/1.418563 ROBLES L, 1986, J ACOUST SOC AM, V80, P1364, DOI 10.1121/1.394389 Robles L, 2001, PHYSIOL REV, V81, P1305 SCHARF B, 1966, J ACOUST SOC AM, V40, P71, DOI 10.1121/1.1910066 Schmiedt RA, 1996, HEARING RES, V102, P125, DOI 10.1016/S0378-5955(96)00154-2 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 Schuknecht HF, 1993, PATHOLOGY EAR Steinberg JC, 1937, J ACOUST SOC AM, V9, P11, DOI 10.1121/1.1915905 THORNTON AR, 1980, J ACOUST SOC AM, V67, P638, DOI 10.1121/1.383888 Vinay, 2007, EAR HEARING, V28, P231 Yasin I, 2005, J ACOUST SOC AM, V118, P2498, DOI 10.1121/1.2035594 ZWICKER E, 1965, PSYCHOL REV, V72, P3, DOI 10.1037/h0021703 ZWICKER E, 1957, J ACOUST SOC AM, V29, P548, DOI 10.1121/1.1908963 NR 61 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 69 EP 80 DI 10.1016/j.heares.2011.09.007 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300008 PM 21983133 ER PT J AU Etchelecou, MC Coulet, O Derkenne, R Tomasi, M Norena, AJ AF Etchelecou, M. -C. Coulet, O. Derkenne, R. Tomasi, M. Norena, A. J. TI Temporary off-frequency listening after noise trauma SO HEARING RESEARCH LA English DT Article ID INDUCED HEARING-LOSS; PSYCHOPHYSICAL TUNING CURVES; INFERIOR COLLICULUS NEURONS; DORSAL COCHLEAR NUCLEUS; ENRICHED ACOUSTIC ENVIRONMENT; PRIMATE SOMATOSENSORY CORTEX; SPONTANEOUS NEURAL ACTIVITY; PERMANENT THRESHOLD SHIFT; SPIRAL GANGLION LESIONS; PRIMARY AUDITORY-CORTEX AB Hearing loss is routinely estimated from the audiogram, even though this measure gives only a rough approximation of hearing. Indeed, cochlear regions functioning poorly, if at all, called dead regions, are not detected by a simple audiogram. To detect cochlear dead regions, additional measurements of psychophysical tuning curves or thresholds in background noise (TEN test) are required. A first aim of this study was to assess the presence of dead regions after impulse noise trauma using psychophysical tuning curves. The procedure we used was based on a compromise between the need to collect reliable estimates of psychophysical tuning curves and the limited time available to obtain these estimates in a hospital setting. Psychophysical tuning curves were measured using simultaneous masking with a 2-alternative forced choice paradigm, where the target was randomly placed in one of the two masker presentations. It is well known that some components of noise-induced hearing loss are reversible. A second aim of this study was to examine the potential recovery of dead regions after acoustic trauma. A third issue addressed in this article was the relationship between noise-induced dead regions and tinnitus. We found that 70% of the subjects had dead regions after noise trauma, while 88% reported tinnitus. Moreover, we found that the extent of dead regions probably diminished in about 50% of subjects, which highlights the ability of the human auditory system to recover from noise-induced hearing loss. (C) 2011 Elsevier B.V. All rights reserved. C1 [Norena, A. J.] Univ Aix Marseille 1, UMR CNRS 6149, Ctr St Charles, F-13331 Marseille 03, France. [Etchelecou, M. -C.; Coulet, O.; Derkenne, R.; Tomasi, M.] Laveran Hosp, F-13013 Marseille, France. RP Norena, AJ (reprint author), Univ Aix Marseille 1, UMR CNRS 6149, Ctr St Charles, Pole 3C,Case B,3 Pl Victor Hugo, F-13331 Marseille 03, France. EM arnaud.norena@univ-provence.fr FU Agence Nationale de la Recherche [06-Neuro-021-01]; Tinnitus Research Initiative; France Acouphene FX This work was supported by a grant from "Agence Nationale de la Recherche" (no. 06-Neuro-021-01), the Tinnitus Research Initiative and France Acouphene. We thank Brandon Farley for proof reading the English, and Brian Moore and two anonymous reviewers for their comments on an earlier version of this manuscript. CR Abaamrane L, 2009, HEARING RES, V247, P137, DOI 10.1016/j.heares.2008.11.005 Alcantara JI, 2002, HEARING RES, V165, P103, DOI 10.1016/S0378-5955(02)00291-5 ATHERLEY GR, 1968, J ACOUST SOC AM, V44, P1503, DOI 10.1121/1.1911288 Avan P, 2005, HEARING RES, V209, P68, DOI 10.1016/j.heares.2005.06.008 AXELSSON A, 1989, British Journal of Audiology, V23, P53, DOI 10.3109/03005368909077819 Axelsson A, 2000, NOISE HEALTH, V2, P47 Baer T, 2002, J ACOUST SOC AM, V112, P1133, DOI 10.1121/1.1498853 Baer T, 2007, J ACOUST SOC AM, V122, P542 Beagley H A, 1965, Acta Otolaryngol, V60, P479, DOI 10.3109/00016486509127031 BORG E, 1989, J ACOUST SOC AM, V86, P1776, DOI 10.1121/1.398609 CALFORD MB, 1993, NEUROSCIENCE, V55, P953, DOI 10.1016/0306-4522(93)90310-C Calford MB, 2002, NEUROSCIENCE, V111, P709, DOI 10.1016/S0306-4522(02)00022-2 Daniel E, 2007, J SCHOOL HEALTH, V77, P225, DOI 10.1111/j.1746-1561.2007.00197.x Demeester K, 2007, B-ENT, V3 Suppl 7, P37 Eggermont JJ, 2008, AM J AUDIOL, V17, pS162, DOI 10.1044/1059-0889(2008/07-0025) Feldman DE, 2009, ANNU REV NEUROSCI, V32, P33, DOI 10.1146/annurev.neuro.051508.135516 Flock A, 1999, J NEUROSCI, V19, P4498 FLORENTINE M, 1983, J ACOUST SOC AM, V73, P961, DOI 10.1121/1.389021 Folmer RL, 1999, OTOLARYNG HEAD NECK, V121, P48, DOI 10.1016/S0194-5998(99)70123-3 Folmer RL, 2000, AM J OTOLARYNG, V21, P287, DOI 10.1053/ajot.2000.9871 FUKUSHIMA N, 1990, HEARING RES, V50, P107, DOI 10.1016/0378-5955(90)90037-P Garraghty PE, 2006, J COMP NEUROL, V497, P636, DOI 10.1002/cne.21018 Garraghty PE, 1996, J COMP NEUROL, V367, P319, DOI 10.1002/(SICI)1096-9861(19960401)367:2<319::AID-CNE12>3.0.CO;2-L HATCH M, 1991, HEARING RES, V56, P265, DOI 10.1016/0378-5955(91)90176-A HAWKINS JE, 1972, LARYNGOSCOPE, V82, P1091, DOI 10.1288/00005537-197207000-00001 Heinz MG, 2004, J NEUROPHYSIOL, V91, P784, DOI 10.1152/jn.00776.2003 HENDERSON D, 1986, J ACOUST SOC AM, V80, P569, DOI 10.1121/1.394052 Henry JA, 1999, P 6 INT TINN SEM, P51 Holtmaat A, 2009, NAT REV NEUROSCI, V10, P647, DOI 10.1038/nrn2699 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 Jacono AA, 1998, HEARING RES, V117, P31, DOI 10.1016/S0378-5955(97)00214-1 Kaltenbach JA, 2005, HEARING RES, V206, P200, DOI 10.1016/j.heares.2005.02.013 Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6 Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5 Kluk K, 2006, INT J AUDIOL, V45, P463, DOI 10.1080/14992020600753189 Kluk K, 2006, HEARING RES, V222, P1, DOI 10.1016/j.heares.2006.06.020 Kluk K, 2005, HEARING RES, V200, P115, DOI 10.1016/j.heares.2004.09.003 Konig O, 2006, HEARING RES, V221, P59, DOI 10.1016/j.heares.2006.07.007 Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x Kujawa S.G., 2009, J NEUROSCI, V11, P14077 Kujawa SG, 2006, J NEUROSCI, V26, P2115, DOI 10.1523/JNEUROSCI.4985-05.2006 Kuokkanen J, 2000, ACTA OTO-LARYNGOL, P132 Kuokkanen J, 1997, ACTA OTO-LARYNGOL, P80 Lamm K, 2000, HEARING RES, V141, P199, DOI 10.1016/S0378-5955(00)00005-8 Lamm K, 1998, HEARING RES, V115, P149, DOI 10.1016/S0378-5955(97)00186-X LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8 LOEB M, 1967, J ACOUST SOC AM, V42, P453, DOI 10.1121/1.1910600 McFeely WJ, 1999, OTOLARYNG HEAD NECK, V121, P367, DOI 10.1016/S0194-5998(99)70222-6 Moffat G, 2009, HEARING RES, V254, P82, DOI 10.1016/j.heares.2009.04.016 Moore B.C.J., 1995, PERCEPTUAL CONSEQUEN Moore BCJ, 2009, BRAIN, V132, P524, DOI 10.1093/brain/awn308 Moore BCJ, 2004, EAR HEARING, V25, P98, DOI 10.1097/01.AUD.0000120359.49711.D7 Moore BCJ, 2000, BRIT J AUDIOL, V34, P205 Moore BCJ, 2001, EAR HEARING, V22, P268, DOI 10.1097/00003446-200108000-00002 Mrena R, 2004, ACTA OTO-LARYNGOL, V124, P946, DOI 10.1080/00016480310017045 Mulders W.H.A.M., 2009, NEUROSCIENCE, V1, P733 MULROY MJ, 1984, SCAN ELECTRON MICROS, P831 Nelson S.B., 2008, NEURON, V6, P477 Niu XZ, 2004, AUDIOL NEURO-OTOL, V9, P265, DOI 10.1159/000080226 Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156 Norena AJ, 2006, NEUROREPORT, V17, P559, DOI 10.1097/00001756-200604240-00001 Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005 Norena A.J., 2007, NEUROREPORT, V6, P1251 Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9 Norena AJ, 2011, NEUROSCI BIOBEHAV R, V35, P1089, DOI 10.1016/j.neubiorev.2010.11.003 Norena AJ, 2003, J NEUROPHYSIOL, V90, P2387, DOI 10.1152/jn.00139.2003 Norena A.J., 2010, NEUROSCIENCE, V14, P1194 Nottet JB, 2006, LARYNGOSCOPE, V116, P970, DOI 10.1097/01.MLG.0000216823.77995.13 Passchier-Vermeer Willy, 2000, Environmental Health Perspectives, V108, P123, DOI 10.2307/3454637 Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037 PUEL JL, 1995, CR ACAD SCI III-VIE, V318, P67 Pujol R, 1999, ANN NY ACAD SCI, V884, P249, DOI 10.1111/j.1749-6632.1999.tb08646.x Rajan R, 1998, NAT NEUROSCI, V1, P138, DOI 10.1038/388 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 RAREY KE, 1993, HEARING RES, V64, P205, DOI 10.1016/0378-5955(93)90007-N Roberts LE, 2008, JARO-J ASSOC RES OTO, V9, P417, DOI 10.1007/s10162-008-0136-9 ROBERTS LE, 2006, ACTA OTO-LARYNGOL, V556, P27, DOI DOI 10.1080/03655230600895358 ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 SAUNDERS JC, 1991, J ACOUST SOC AM, V90, P136, DOI 10.1121/1.401307 Schaette R, 2009, J NEUROPHYSIOL, V101, P3042, DOI 10.1152/jn.91256.2008 Schreiber BE, 2010, LANCET, V375, P1203, DOI 10.1016/S0140-6736(09)62071-7 Seki S, 2002, HEARING RES, V173, P172, DOI 10.1016/S0378-5955(02)00518-X Shargorodsky J, 2010, AM J MED, V123, P711, DOI 10.1016/j.amjmed.2010.02.015 Snyder RL, 2000, HEARING RES, V147, P200, DOI 10.1016/S0378-5955(00)00132-5 Snyder RL, 2002, J NEUROPHYSIOL, V87, P434 Snyder RL, 2008, HEARING RES, V246, P59, DOI 10.1016/j.heares.2008.09.010 SPOENDLIN H, 1985, J OTOLARYNGOL, V14, P282 SPOENDLI.H, 1971, ACTA OTO-LARYNGOL, V71, P166, DOI 10.3109/00016487109125346 Summers V, 2003, EAR HEARING, V24, P133, DOI 10.1097/01.AUD.0000058148.27540.D9 Tahera Y, 2006, J NEUROSCI RES, V83, P1066, DOI 10.1002/jnr.20795 Takahashi K, 1996, ACTA OTO-LARYNGOL, V116, P209, DOI 10.3109/00016489609137825 TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865 THORNE PR, 1989, ACTA OTO-LARYNGOL, V107, P71, DOI 10.3109/00016488909127481 TYLER RS, 1983, J SPEECH HEAR DISORD, V48, P150 Vickers DA, 2001, J ACOUST SOC AM, V110, P1164, DOI 10.1121/1.1381534 Vinay, 2007, EAR HEARING, V28, P231 Vinay B. T., 2008, J ACOUST SOC AM, V123, P606 Wang J, 1996, J NEUROPHYSIOL, V75, P171 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 Weisz N, 2006, HEARING RES, V222, P108, DOI 10.1016/j.heares.2006.09.003 NR 103 TC 6 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 81 EP 91 DI 10.1016/j.heares.2011.09.006 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300009 PM 21986211 ER PT J AU Jung, HH Chang, J Yang, JY Choi, J Im, GJ Chae, SW AF Jung, Hak Hyun Chang, Jiwon Yang, Ji Yoon Choi, June Im, Gi Jung Chae, Sung Won TI Protective role of antidiabetic drug metformin against gentamicin induced apoptosis in auditory cell line SO HEARING RESEARCH LA English DT Article ID MITOCHONDRIAL PERMEABILITY TRANSITION; IN-VITRO; GUINEA-PIGS; OTOTOXICITY; COCHLEAR; DEATH; MECHANISM; MEMBRANE; DISEASE AB Besides their prominent function in cellular energy metabolism, the central role of mitochondria has been focused on control of cellular death in last decades. The mitochondrial permeability transition pore (PIP) is involved in the intrinsic pathway of apoptosis via the release of cytochrome c into cytosol. Metformin, a drug widely used in the treatment of type II diabetes, has recently received attention owing to new findings regarding its effect on apoptosis through mitochondria] permeability transition and cytochrome c release. The modulation of PIP is still unknown, but calcium is certainly the most important known inducer. In the present study, the preventive effects of metformin on gentamicin ototoxicity were investigated through the changes of intracellular calcium concentrations using calcium imaging in HEI-OC1 cells. Calcium imaging traced the changes of intracellular calcium concentration after the application of 50 mM of gentamicin in both 100 uM of metformin pretreated group and non-pretreated group. These calcium reactions were compared and analyzed with the results of cell viability test. Hoechst staining, intracellular reactive oxygen species level and expression of caspase-3, and poly-ADP-ribose polymerase (PARP). Continuous increase of intracellular calcium concentration (increase of 380/340 ratio) occurred after application of 50 mM of gentamicin. However, there was no change of intracellular calcium concentration in 100 uM metformin pretreated group. Cell viability was significantly higher in 100 uM metformin pretreated group and also, metformin pretreated HEI-OC1 cells produced less ROS that gentamicin alone treated group. Gentamicin increased cleaved PARP and caspase-3, but metformin inhibited the expression of caspase-3 and cleavage of PARP. This study demonstrated that metformin prevented gentamicin induced apoptosis through the calcium modulating and ROS reducing anti-apoptotic effects. (C) 2011 Elsevier B.V. All rights reserved. C1 [Jung, Hak Hyun; Chang, Jiwon; Yang, Ji Yoon; Choi, June; Im, Gi Jung; Chae, Sung Won] Korea Univ, Coll Med, Dept Otolaryngol Head & Neck Surg, Seoul 136705, South Korea. RP Jung, HH (reprint author), Korea Univ, Coll Med, Dept Otolaryngol Head & Neck Surg, Anam Dong 5 Ga 126-1, Seoul 136705, South Korea. EM ranccoon@naver.com RI Choi, June/E-7063-2013 FU Brain Korea 21 FX This study was supported by Brain Korea 21. CR ARGAUD D, 1993, EUR J BIOCHEM, V213, P1341, DOI 10.1111/j.1432-1033.1993.tb17886.x Bernardi P, 2006, FEBS J, V273, P2077, DOI 10.1111/j.1742-4658.2006.05213.x Bernardi P, 1999, EUR J BIOCHEM, V264, P687, DOI 10.1046/j.1432-1327.1999.00725.x Cottet-Rousselle C., 2011, CELL DEATH DIS MAR, V24, pe134 Dehne N, 2002, HEARING RES, V169, P47, DOI 10.1016/S0378-5955(02)00338-6 Ding DL, 2002, HEARING RES, V164, P115, DOI 10.1016/S0378-5955(01)00417-8 El-Mir MY, 2008, J MOL NEUROSCI, V34, P77, DOI 10.1007/s12031-007-9002-1 Fontaine E, 1998, J BIOL CHEM, V273, P12662, DOI 10.1074/jbc.273.20.12662 Guigas B, 2004, BIOCHEM J, V382, P877 Hirose K, 1999, ANN NY ACAD SCI, V884, P389, DOI 10.1111/j.1749-6632.1999.tb08657.x HUNDAL HS, 1992, ENDOCRINOLOGY, V131, P1165, DOI 10.1210/en.131.3.1165 Hundal RS, 2000, DIABETES, V49, P2063, DOI 10.2337/diabetes.49.12.2063 Jacotot E, 1999, ANN NY ACAD SCI, V887, P18 Kalinec GM, 2003, AUDIOL NEURO-OTOL, V8, P177, DOI 10.1159/000071059 Kalkandelen S, 2002, J INT MED RES, V30, P406 Lustig LR, 2004, OTOLARYNG CLIN N AM, V37, P1001, DOI 10.1016/j.otc.2004.04.001 MACGLASHAN D, 1989, J CELL BIOL, V109, P123, DOI 10.1083/jcb.109.1.123 McMurtrie EB, 1997, GENOMICS, V45, P623, DOI 10.1006/geno.1997.4959 Morales AI, 2010, KIDNEY INT, V77, P861, DOI 10.1038/ki.2010.11 NEDZELSKI JM, 1992, AM J OTOL, V13, P18 Roland Jr IT, 1998, OTOLARYNGOLOGY HEAD, P3186 Roland Peter S, 2004, Ear Nose Throat J, V83, P15 Rybak Leonard P, 2003, Curr Opin Otolaryngol Head Neck Surg, V11, P328, DOI 10.1097/00020840-200310000-00004 Selimoglu E, 2003, YONSEI MED J, V44, P517 Selimoglu E, 2007, CURR PHARM DESIGN, V13, P119, DOI 10.2174/138161207779313731 Strupp M, 2001, CURR OPIN NEUROL, V14, P11, DOI 10.1097/00019052-200102000-00003 NR 26 TC 16 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 92 EP 96 DI 10.1016/j.heares.2011.09.005 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300010 ER PT J AU Lavender, D Taraskin, SN Mason, MJ AF Lavender, Danielle Taraskin, Sergei N. Mason, Matthew J. TI Mass distribution and rotational inertia of "microtype" and "freely mobile" middle ear ossicles in rodents SO HEARING RESEARCH LA English DT Article ID HIGH-FREQUENCY HEARING; GOLDEN MOLES CHRYSOCHLORIDAE; MALLEUS-INCUS-COMPLEX; SOUND-TRANSMISSION; TYMPANIC-MEMBRANE; EVOLUTION; APPARATUS; MAMMALS; GERBIL AB The middle ears of seven species of rodents, including four hamster species, were examined under light microscopy and through micro-CT imaging. Hamsters were found to possess a spectrum of ossicular morphologies ranging from something approaching "freely mobile" (Mesocricetus) to something nearer the "microtype" (Cricetulus), although no hamster has an orbicular apophysis of the malleus. Rats, mice and Calomyscus were found to have typically microtype ossicles. To explore the functional effects of these morphological differences, CT scan data were used to calculate the magnitudes of the moments of inertia and positions of the centres of mass and principal rotational axes for the malleus-incus complexes. Microtype species were found to have much greater ossicular inertias, relative to size, about the "anatomical axis" extending between anterior process of the malleus and short process of the incus: ossicular centres of mass were displaced further from this axis. Calculated inertial values were then put into an existing model of middle ear function (Hemila et al., 1995), in order to see whether the more accurate data would improve predictions of upper hearing limits. For the rat and mouse they did, but this was not so for the hamster Mesocricetus. This might indicate that the inner rather than the middle ear limits hearing in this species, or might simply reflect other shortcomings of the model. Functional differences appear to exist even among rodent ears of the same general type, but the adaptive significance of these differences remains enigmatic. (C) 2011 Elsevier B.V. All rights reserved. C1 [Lavender, Danielle; Mason, Matthew J.] Univ Cambridge, Dept Physiol Dev & Neurosci, Cambridge CB2 3EG, England. [Taraskin, Sergei N.] Univ Cambridge, St Catharines Coll, Cambridge CB2 3EG, England. [Taraskin, Sergei N.] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England. RP Mason, MJ (reprint author), Univ Cambridge, Dept Physiol Dev & Neurosci, Downing St, Cambridge CB2 3EG, England. EM mjm68@hermes.cam.ac.uk FU Department of Physiology, Development & Neuroscience, University of Cambridge FX The authors wish to thank Alan Heaver of the Department of Engineering for his help in producing the CT scans and Norman Fleck for the use of his scanner. We thank the Department of Zoology for the use of the electrobalance and Peter Tuck for translations. Special thanks are due to Simon's Rodents of Abbotsley, Cambridgeshire and to Russell Tofts for their kind provision of specimens. We are indebted to John Rosowski and to a second, anonymous, reviewer for their valuable comments. This paper is based in part on an Honours dissertation (DL), supported by the Department of Physiology, Development & Neuroscience, University of Cambridge. CR Akache F, 2007, AUDIOL NEURO-OTOL, V12, P49, DOI 10.1159/000097247 Argyle EC, 2008, J MAMMAL, V89, P1447, DOI 10.1644/07-MAMM-A-401.1 Barany E, 1938, ACTA OTO-LARYNGOL, V26, P1 BURDA H, 1992, J MORPHOL, V214, P49, DOI 10.1002/jmor.1052140104 Corbet G.B., 1991, WORLD LIST MAMMALIAN Dahmann H, 1929, Z HALS NASEN OHRENH, V24, P462 DECRAEMER WF, 1994, HEARING RES, V72, P1, DOI 10.1016/0378-5955(94)90199-6 Fleischer G., 1978, Advances in Anatomy Embryology and Cell Biology, V55, P1 FLEISCHER G, 1973, Saeugetierkundliche Mitteilungen, V21, P131 Heffner RS, 2001, HEARING RES, V157, P138, DOI 10.1016/S0378-5955(01)00298-2 Hemila S, 2006, J ACOUST SOC AM, V120, P3463, DOI 10.1121/1.2372712 HEMILA S, 1995, HEARING RES, V85, P31, DOI 10.1016/0378-5955(95)00031-X Mason MJ, 2003, J ZOOL, V260, P391, DOI 10.1017/S095283690300387X Mason MJ, 1999, THESIS U CAMBRIDGE C Mason MJ, 2001, J ZOOL, V255, P467 Mason MJ, 2006, J MORPHOL, V267, P678, DOI 10.1002/jmor.10430 Mason MJ, 2004, J MAMMAL, V85, P797, DOI 10.1644/BEL-102 Mason MJ, 2006, J COMP PHYSIOL A, V192, P1349, DOI 10.1007/s00359-006-0163-0 Nummela S, 1999, HEARING RES, V133, P61, DOI 10.1016/S0378-5955(99)00053-2 Nummela Sirpa, 1997, Comments on Theoretical Biology, V4, P387 Overstreet EH, 2002, J ACOUST SOC AM, V111, P261, DOI 10.1121/1.1420382 PAVLINOV IY, 1980, ZOOL ZH, V59, P312 Puria S, 2010, HEARING RES, V263, P183, DOI 10.1016/j.heares.2009.10.013 Ravicz ME, 2008, J ACOUST SOC AM, V124, P363, DOI 10.1121/1.2932061 RELKIN EM, 1980, ACTA OTO-LARYNGOL, V90, P6, DOI 10.3109/00016488009131692 Rosowski I.J, 1992, EVOLUTIONARY BIOL HE, P615 Rosowski JJ, 2006, J COMP PHYSIOL A, V192, P1287, DOI 10.1007/s00359-006-0159-9 Ruggero MA, 2002, P NATL ACAD SCI USA, V99, P13206, DOI 10.1073/pnas.202492699 SAUNDERS JC, 1982, J COMP PHYSIOL, V146, P517 Sim JH, 2007, J MECH MATER STRUCT, V2, P1515, DOI 10.2140/jomms.2007.2.1515 Willi UB, 2002, HEARING RES, V174, P32, DOI 10.1016/S0378-5955(02)00632-9 Wilson D.E., 2005, MAMMAL SPECIES WORLD WILSON JP, 1983, HEARING RES, V10, P1, DOI 10.1016/0378-5955(83)90015-1 ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382 NR 34 TC 7 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 97 EP 107 DI 10.1016/j.heares.2011.09.003 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300011 PM 21951489 ER PT J AU Warrier, CM Abrams, DA Nicol, TG Kraus, N AF Warrier, Catherine M. Abrams, Daniel A. Nicol, Trent G. Kraus, Nina TI Inferior colliculus contributions to phase encoding of stop consonants in an animal model SO HEARING RESEARCH LA English DT Article ID AUDITORY BRAIN-STEM; FREQUENCY-FOLLOWING RESPONSES; MIDDLE LATENCY RESPONSE; IN-NOISE PERCEPTION; GUINEA-PIG; TEMPORAL-LOBE; SPEECH; CHILDREN; DIFFERENTIATION; REPRESENTATION AB The human auditory brainstem is known to be exquisitely sensitive to fine-grained spectro-temporal differences between speech sound contrasts, and the ability of the brainstem to discriminate between these contrasts is important for speech perception. Recent work has described a novel method for translating brainstem timing differences in response to speech contrasts into frequency-specific phase differentials. Results from this method have shown that the human brainstem response is surprisingly sensitive to phase differences inherent to the stimuli across a wide extent of the spectrum. Here we use an animal model of the auditory brainstem to examine whether the stimulus-specific phase signatures measured in human brainstem responses represent an epiphenomenon associated with far-field (i.e., scalp-recorded) measurement of neural activity, or alternatively whether these specific activity patterns are also evident in auditory nuclei that contribute to the scalp-recorded response, thereby representing a more fundamental temporal processing phenomenon. Responses in anaesthetized guinea pigs to three minimally-contrasting consonant-vowel stimuli were collected simultaneously from the cortical surface vertex and directly from central nucleus of the inferior colliculus (ICc), measuring volume conducted neural activity and multiunit, near-field activity, respectively. Guinea pig surface responses were similar to human scalp-recorded responses to identical stimuli in gross morphology as well as phase characteristics. Moreover, surface-recorded potentials shared many phase characteristics with near-field ICc activity. Response phase differences were prominent during formant transition periods, reflecting spectro-temporal differences between syllables, and showed more subtle differences during the identical steady state periods. ICc encoded stimulus distinctions over a broader frequency range, with differences apparent in the highest frequency ranges analyzed, up to 3000 Hz. Based on the similarity of phase encoding across sites, and the consistency and sensitivity of response phase measured within ICc, results suggest that a general property of the auditory system is a high degree of sensitivity to fine-grained phase information inherent to complex acoustical stimuli. Furthermore, results suggest that temporal encoding in ICc contributes to temporal features measured in speech-evoked scalp-recorded responses. (C) 2011 Elsevier B.V. All rights reserved. C1 [Warrier, Catherine M.; Abrams, Daniel A.; Nicol, Trent G.; Kraus, Nina] Northwestern Univ, Auditory Neurosci Lab, Roxelyn & Richard Pepper Dept Commun Sci & Disord, Evanston, IL 60208 USA. [Kraus, Nina] Northwestern Univ, Dept Neurobiol & Physiol, Evanston, IL 60208 USA. [Kraus, Nina] Northwestern Univ, Dept Otolaryngol, Evanston, IL 60208 USA. RP Warrier, CM (reprint author), Northwestern Univ, Auditory Neurosci Lab, Roxelyn & Richard Pepper Dept Commun Sci & Disord, Frances Searle Bldg,2240 Campus Dr, Evanston, IL 60208 USA. EM cwarrier@northwestern.edu FU National Institutes of Health (NIH) [R01 DC01510]; National Organization for Hearing Research (NOHR) [340-B208] FX This work was supported by the National Institutes of Health (NIH: R01 DC01510) and the National Organization for Hearing Research (NOHR: 340-B208). CR Abrams DA, 2011, HEARING RES, V272, P125, DOI 10.1016/j.heares.2010.10.009 Akhoun I, 2008, CLIN NEUROPHYSIOL, V119, P922, DOI 10.1016/j.clinph.2007.12.010 Banai K., 2009, READING SUBCORTICAL Chandrasekaran B, 2010, PSYCHOPHYSIOLOGY, V47, P236, DOI 10.1111/j.1469-8986.2009.00928.x Chandrasekaran B, 2009, NEURON, V64, P311, DOI 10.1016/j.neuron.2009.10.006 Cunningham J, 2002, HEARING RES, V169, P97, DOI 10.1016/S0378-5955(02)00344-1 Dau T, 2003, J ACOUST SOC AM, V113, P936, DOI 10.1121/1.1534833 Hornickel J, 2009, AUDIOL NEURO-OTOL, V14, P198, DOI 10.1159/000188533 Hornickel J, 2009, P NATL ACAD SCI USA, V106, P13022, DOI 10.1073/pnas.0901123106 Hornickel J, 2011, BEHAV BRAIN RES, V216, P597, DOI 10.1016/j.bbr.2010.08.051 John MS, 2000, HEARING RES, V141, P57, DOI 10.1016/S0378-5955(99)00209-9 Johnson KL, 2008, J NEUROSCI, V28, P4000, DOI 10.1523/JNEUROSCI.0012-08.2008 Johnson KL, 2008, CLIN NEUROPHYSIOL, V119, P2623, DOI 10.1016/j.clinph.2008.07.277 Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003 King C, 2002, NEUROSCI LETT, V319, P111, DOI 10.1016/S0304-3940(01)02556-3 King C, 1999, NEUROSCI LETT, V267, P89, DOI 10.1016/S0304-3940(99)00336-5 KLATT DH, 1980, J ACOUST SOC AM, V67, P971, DOI 10.1121/1.383940 KRAUS N, 1992, BRAIN RES, V587, P186, DOI 10.1016/0006-8993(92)90996-M KRAUS N, 1988, ELECTROEN CLIN NEURO, V70, P541, DOI 10.1016/0013-4694(88)90152-6 Kraus N, 2007, CURR DIR PSYCHOL SCI, V16, P105, DOI 10.1111/j.1467-8721.2007.00485.x KRAUS N, 1994, J NEUROPHYSIOL, V72, P1270 KRAUS N, 1994, J ACOUST SOC AM, V96, P2758, DOI 10.1121/1.411282 KRAUS N, 1985, ELECTROEN CLIN NEURO, V62, P219, DOI 10.1016/0168-5597(85)90017-6 Krishnan A, 2005, COGNITIVE BRAIN RES, V25, P161, DOI 10.1016/j.cogbrainres.2005.05.004 Krishnan A, 2002, HEARING RES, V166, P192, DOI 10.1016/S0378-5955(02)00327-1 Liberman A.M., 1954, PSYCHOL MONOGR, V68 Liu LF, 2006, J NEUROPHYSIOL, V95, P1926, DOI 10.1152/jn.00497.2005 MARSH JT, 1974, ELECTROEN CLIN NEURO, V36, P415, DOI 10.1016/0013-4694(74)90192-8 McGee T, 1996, J ACOUST SOC AM, V99, P3606, DOI 10.1121/1.414958 Musacchia G, 2007, P NATL ACAD SCI USA, V104, P15894, DOI 10.1073/pnas.0701498104 REES A, 1988, J ACOUST SOC AM, V83, P1488, DOI 10.1121/1.395904 Skoe E, 2011, J NEUROSCI METH, V196, P308, DOI 10.1016/j.jneumeth.2011.01.020 SMITH JC, 1975, ELECTROEN CLIN NEURO, V39, P465, DOI 10.1016/0013-4694(75)90047-4 Song JH, 2008, AUDIOL NEURO-OTOL, V13, P335, DOI 10.1159/000132689 Syka J, 2000, EXP BRAIN RES, V133, P254, DOI 10.1007/s002210000426 Vander Werff Kathy R, 2011, Ear Hear, V32, P168, DOI 10.1097/AUD.0b013e3181f534b5 WATANABE T, 1978, J ACOUST SOC AM, V64, P333, DOI 10.1121/1.381952 WOOD CC, 1981, CAN J PSYCHOL, V35, P113, DOI 10.1037/h0081149 NR 38 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 108 EP 118 DI 10.1016/j.heares.2011.09.001 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300012 PM 21945200 ER PT J AU Brown, DJ Gibson, WPR AF Brown, Daniel J. Gibson, William P. R. TI On the differential diagnosis of Meniere's disease using low-frequency acoustic biasing of the 2f1-f2 DPOAE SO HEARING RESEARCH LA English DT Article ID PRODUCT OTOACOUSTIC EMISSIONS; ENDOLYMPHATIC HYDROPS; OPERATING POINT; CELL MOTILITY; HAIR-CELLS; EAR; MODEL; DISPLACEMENT; CALIBRATION; MODULATION AB We have cyclically suppressed the 2f1-12 distortion product otoacoustic emission (DPOAE) with low-frequency tones (17-97 Hz) as a way of differentially diagnosing the endolymphatic hydrops assumed to be associated with Meniere's syndrome. Round-window electrocochleography (ECochG) was performed in subjects with sensorineural hearing loss (SNHL) on the day of DPOAE testing, and from which the amplitude of the summating potential (SP) was measured, to support the diagnosis of Meniere's syndrome based on symptoms. To summarize and compare the cyclic patterns of DPOAE modulation in these groups we have used the simplest model of DPOAE generation and modulation, by assuming that the DPOAEs were generated by a 1st-order Boltzmann nonlinearity so that the magnitude of the 2f1-f2 DPOAE resembled the 3rd derivative cif the Boltzmann function. We have also assumed that the modulation of the DPOAEs by the low-frequency tones was simply due to a sinusoidal change in the operating point on the Boltzmann nonlinearity. We have found the cyclic DPOAE modulation to be different in subjects with Meniere's syndrome (n = 16) when compared to the patterns in normal subjects (n = 16) and in other control subjects with non-Meniere's SNHL and/or vestibular disorders (n = 13). The DPOAEs of normal and non-Meniere's ears were suppressed more during negative ear canal pressure than during positive ear canal pressure. By contrast, DPOAE modulation in Meniere's ears with abnormal ECochG was greatest during positive ear canal pressures. This test may provide a tool for diagnosing Meniere's in the early stages, and might be used to investigate the pathological mechanism underlying the hearing symptoms of this. syndrome. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved. C1 [Brown, Daniel J.] Univ Sydney, Brain & Mind Res Inst, Sydney Med Sch, Camperdown, NSW 2050, Australia. RP Brown, DJ (reprint author), Univ Sydney, Brain & Mind Res Inst, Sydney Med Sch, 100 Mallett St, Camperdown, NSW 2050, Australia. EM daniel.brown@sydney.edu.au; wpr_gibson@bigpond.com FU Grace Kathleen Fanton Bequest; Garnett Passe and Rodney Williams Foundation [R9403]; Meniere's Research Fund Inc. in Australia FX This study was funded by a Grace Kathleen Fanton Bequest, provided by the Garnett Passe and Rodney Williams Foundation (project code R9403), and Dr Brown's salary was supported by the Meniere's Research Fund Inc. in Australia. We would also like to thank Professor Alec Salt from Washington University and Dr Robert Patuzzi from The University of Western Australia for their significant contributions to this study. CR Bian L, 2006, J ACOUST SOC AM, V119, P3872, DOI 10.1121/1.2200068 Bian L, 2007, J ACOUST SOC AM, V122, P1681, DOI 10.1121/1.2764467 Bowman DM, 1998, HEARING RES, V119, P14, DOI 10.1016/S0378-5955(98)00041-0 Brown DJ, 2009, J ACOUST SOC AM, V125, P2129, DOI 10.1121/1.3083228 BROWNELL WE, 1984, SCANNING ELECTRON MI, V3, P1401 DALLOS P, 1970, J ACOUST SOC AM, V48, P489, DOI 10.1121/1.1912163 FERRARO JA, 1985, ARCH OTOLARYNGOL, V111, P71 FLOCK A, 1986, ARCH OTO-RHINO-LARYN, V243, P83, DOI 10.1007/BF00453755 Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4 Gibson William P R, 2009, Acta Otolaryngol Suppl, P38, DOI 10.1080/00016480902729843 Hensel J, 2007, HEARING RES, V233, P67, DOI 10.1016/j.heares.2007.07.004 Hirschfelder A, 2005, HNO, V53, P612, DOI 10.1007/s00106-004-1171-4 JARAMILLO F, 1993, P NATL ACAD SCI USA, V90, P1330, DOI 10.1073/pnas.90.4.1330 Lukashkin AN, 2005, HEARING RES, V203, P45, DOI 10.1016/j.heares.2004.11.011 Marquardt T, 2007, J ACOUST SOC AM, V121, P3628, DOI 10.1121/1.2722506 MONSELL EM, 1995, OTOLARYNG HEAD NECK, V113, P181 Mrowinski D, 1996, Audiol Neurootol, V1, P125 O'Beirne GA, 2007, HEARING RES, V234, P29, DOI 10.1016/j.heares.2007.09.008 Rotter A, 2008, EUR ARCH OTO-RHINO-L, V265, P643, DOI 10.1007/s00405-007-0520-9 Salt A.N., 2010, HEARING RES, V1, P12 SANTOS-SACCHI J, 1991, J NEUROSCI, V11, P3096 Scheperle RA, 2008, J ACOUST SOC AM, V124, P288, DOI 10.1121/1.2931953 Scholz G, 1999, HEARING RES, V130, P189, DOI 10.1016/S0378-5955(99)00010-6 SIEGEL JH, 1994, J ACOUST SOC AM, V95, P2589, DOI 10.1121/1.409829 WEISS TF, 1985, HEARING RES, V20, P175, DOI 10.1016/0378-5955(85)90167-4 ZWICKER E, 1986, J ACOUST SOC AM, V80, P163, DOI 10.1121/1.394177 ZWICKER E, 1977, J ACOUST SOC AM, V61, P1031, DOI 10.1121/1.381387 NR 27 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 119 EP 127 DI 10.1016/j.heares.2011.09.002 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300013 PM 21944944 ER PT J AU Garinis, A Werner, L Abdala, C AF Garinis, Angela Werner, Lynne Abdala, Carolina TI The relationship between MOC reflex and masked threshold SO HEARING RESEARCH LA English DT Article ID PRODUCT OTOACOUSTIC EMISSIONS; CROSSED OLIVOCOCHLEAR BUNDLE; IN-NOISE INTELLIGIBILITY; MEDIAL EFFERENT SYSTEM; OUTER HAIR-CELLS; FINE-STRUCTURE; INFORMATIONAL MASKING; NORMAL-HEARING; CONTRALATERAL SUPPRESSION; MULTICOMPONENT MASKERS AB Otoacoustic emission (OAE) amplitude can be reduced by acoustic stimulation. This effect is produced by the medial olivocochlear (MOC) reflex. Past studies have shown that the MOC reflex is related to listening in noise and attention. In the present study, the relationship between strength of the contralateral MOC reflex and masked threshold was investigated in 19 adults. Detection thresholds were determined for 1000-Hz, 300-ms tone presented simultaneously with one repetition of a 300-ms masker in an ongoing train of masker bursts. Three masking conditions were tested: 1) broadband noise 2) a fixed-frequency 4-tone complex masker and 3) a random-frequency 4-tone complex masker. Broadband noise was expected to produce energetic masking and the tonal maskers were expected to produce informational masking in some listeners. DPOAEs were recorded at fine frequency intervals from 500 to 4000 Hz, with and without contralateral acoustic stimulation. MOC reflex strength was estimated as a reduction in baseline level and a shift in frequency of DPOAE fine-structure maxima near 1000-Hz. MOC reflex and psychophysical testing were completed in separate sessions. Individuals with poorer thresholds in broadband noise and in random-frequency maskers were found to have stronger MOC reflexes. (C) 2011 Elsevier B.V. All rights reserved. C1 [Garinis, Angela; Werner, Lynne] Univ Washington, Dept Speech & Hearing Sci, Seattle, WA 98105 USA. [Abdala, Carolina] House Res Inst, Los Angeles, CA 90057 USA. RP Garinis, A (reprint author), Univ Washington, Dept Speech & Hearing Sci, 1417 NE 42nd St, Seattle, WA 98105 USA. EM agarinis@u.washington.edu FU National Institutes of Health [R01 DC000396, R01 DC003552, T32 DC005361, P30 DC004661] FX Supported in part by research grants R01 DC000396, R01 DC003552, T32 DC005361 and P30 DC004661 from the National Institutes of Health. The authors would like to express their gratitude to Ashley L Flad for data analysis and Ping Luo for programming contributions. CR Abdala C, 2011, J ACOUST SOC AM, V129, P3123, DOI 10.1121/1.3573992 Abdala C, 2009, J ACOUST SOC AM, V125, P1584, DOI 10.1121/1.3068442 Abdala C, 1999, J ACOUST SOC AM, V105, P2392, DOI 10.1121/1.426844 Bhagat SP, 2010, NEUROSCI LETT, V485, P94, DOI 10.1016/j.neulet.2010.08.069 Bonino A.Y., 2008, J ACOUST SOC AM, V124, P321 BUUS S, 1986, J ACOUST SOC AM, V80, P1646, DOI 10.1121/1.394329 COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E de Boer J, 2008, J NEUROSCI, V28, P4929, DOI 10.1523/JNEUROSCI.0902-08.2008 Deeter R, 2009, J ACOUST SOC AM, V126, P2413, DOI 10.1121/1.3224716 Dhar S, 2002, J ACOUST SOC AM, V112, P2882, DOI 10.1121/1.1516757 DOLAN DF, 1988, J ACOUST SOC AM, V83, P1081, DOI 10.1121/1.396052 Feeney MP, 2003, J SPEECH LANG HEAR R, V46, P128, DOI 10.1044/1092-4388(2003/010) FEX J, 1967, J ACOUST SOC AM, V41, P666, DOI 10.1121/1.1910395 FRANCIS HW, 1993, HEARING RES, V64, P184, DOI 10.1016/0378-5955(93)90004-K Francis NA, 2010, HEARING RES, V267, P36, DOI 10.1016/j.heares.2010.04.009 FROEHLICH P, 1993, PHYSIOL BEHAV, V53, P679, DOI 10.1016/0031-9384(93)90173-D Garinis A.C., J SPEECH LA IN PRESS GIARD MH, 1994, BRAIN RES, V633, P353, DOI 10.1016/0006-8993(94)91561-X Giraud AL, 1997, NEUROREPORT, V8, P1779 Guinan JJ, 2006, EAR HEARING, V27, P589, DOI 10.1097/01.aud.0000240507.83072.e7 Guinan JJ, 2010, CURR OPIN OTOLARYNGO, V18, P447, DOI 10.1097/MOO.0b013e32833e05d6 HADI AS, 1994, J ROY STAT SOC B MET, V56, P393 Harkrider AW, 2009, J AM ACAD AUDIOL, V20, P208, DOI 10.3766/jaaa.20.3.7 Hartmann WM, 2002, J ACOUST SOC AM, V112, P1037, DOI 10.1121/1.1500759 KAWASE T, 1993, J NEUROPHYSIOL, V70, P2533 Keefe DH, 2010, HEARING RES, V263, P52, DOI 10.1016/j.heares.2009.09.008 Kim SH, 2002, AUDIOL NEURO-OTOL, V7, P348, DOI 10.1159/000066159 Kujawa SG, 2001, JARO, V2, P268, DOI 10.1007/s101620010047 Kumar UA, 2004, EAR HEARING, V25, P142, DOI 10.1097/01.AUD.0000120363.56591.E6 Leibold LJ, 2006, J ACOUST SOC AM, V119, P3960, DOI 10.1121/1.2200150 Leibold LJ, 2010, J ACOUST SOC AM, V127, P2441, DOI 10.1121/1.3298588 Leibold LJ, 2009, J ACOUST SOC AM, V125, P2200, DOI 10.1121/1.3087435 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1 LIBERMAN MC, 1988, J NEUROPHYSIOL, V60, P1779 Long GR, 2008, J ACOUST SOC AM, V124, P1613, DOI 10.1121/1.2949505 May BJ, 2004, ARCH OTOLARYNGOL, V130, P660, DOI 10.1001/archotol.130.5.660 Micheyl C., 1996, J ACOUST SOC AM, V99, P1064 MICHEYL C, 1995, ACTA OTO-LARYNGOL, V115, P178, DOI 10.3109/00016489509139286 Moore BCJ, 1997, J AUDIO ENG SOC, V45, P224 MOUNTAIN DC, 1980, SCIENCE, V210, P71, DOI 10.1126/science.7414321 NEFF DL, 1995, J ACOUST SOC AM, V98, P125, DOI 10.1121/1.413748 NEFF DL, 1987, PERCEPT PSYCHOPHYS, V41, P409, DOI 10.3758/BF03203033 Oxenham AJ, 2003, J ACOUST SOC AM, V114, P1543, DOI 10.1121/1.1598197 Perrot X, 2006, CEREB CORTEX, V16, P941, DOI 10.1093/cercor/bhj035 Pollack I., 1975, J ACOUST SOC AM S1, V57, P5, DOI 10.1121%2F1.1995329 PUEL JL, 1990, J ACOUST SOC AM, V87, P1630, DOI 10.1121/1.399410 Reuter K, 2006, J ACOUST SOC AM, V120, P270, DOI 10.1121/1.2205130 ROBERTSON D, 1985, HEARING RES, V20, P63, DOI 10.1016/0378-5955(85)90059-0 Scharf B, 1997, HEARING RES, V103, P101, DOI 10.1016/S0378-5955(96)00168-2 SCHARF B, 1994, HEARING RES, V75, P11, DOI 10.1016/0378-5955(94)90051-5 SCHLAUCH RS, 1991, J ACOUST SOC AM, V90, P1332, DOI 10.1121/1.401925 SCHMIDT S, 1991, J ACOUST SOC AM, V89, P1324, DOI 10.1121/1.400656 Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 Siegel J., 2009, ASS RES OTOLARY 0214 Talmadge CL, 1999, J ACOUST SOC AM, V105, P275, DOI 10.1121/1.424584 Tan MN, 2008, HEARING RES, V241, P18, DOI 10.1016/j.heares.2008.04.003 Thiers FA, 2002, JARO, V3, P269, DOI 10.1007/s101620020024 Wagner W, 2008, ACTA OTO-LARYNGOL, V128, P53, DOI 10.1080/00016480701361954 WINSLOW RL, 1988, HEARING RES, V35, P165, DOI 10.1016/0378-5955(88)90116-5 Zeng FG, 2000, HEARING RES, V142, P102, DOI 10.1016/S0378-5955(00)00011-3 ZWICKER E, 1965, J ACOUST SOC AM, V38, P132, DOI 10.1121/1.1909588 NR 62 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 128 EP 137 DI 10.1016/j.heares.2011.08.007 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300014 PM 21878379 ER PT J AU Campbell, K Claussen, A Meech, R Verhulst, S Fox, D Hughes, L AF Campbell, Kathleen Claussen, Alex Meech, Robert Verhulst, Steven Fox, Daniel Hughes, Larry TI D-methionine (D-met) significantly rescues noise-induced hearing loss: Timing studies SO HEARING RESEARCH LA English DT Article ID INTENSE NOISE; FREE-RADICALS; OXIDATIVE STRESS; THRESHOLD SHIFT; PROTECTION; EXPOSURE; GLUTATHIONE; CHINCHILLA; APOPTOSIS; COCHLEA AB We have previously reported rescue from noise-induced auditory brainstem response (ABR) threshold shifts with D-methionine (D-met) administration 1 h after noise exposure. The present study investigated further D-met rescue intervals at 3, 5 and 7 h post-noise exposure. Chinchillas laniger were exposed to a 6 h 105 dB sound pressure level (dB SPL) octave band noise (OBN) and then administered D-met i.p. starting 3, 5, or 7 h after noise exposure: controls received saline i.p. immediately after noise exposure. ABR assessments were performed at baseline and on post-exposure days 1 and 21. Outer hair cell (OHC) loss was measured in cochleae obtained at sacrifice 21 days post-exposure. Administration of D-met starting at any of the delay times of 3-7 h post-noise exposure significantly reduced day 21 ABR threshold shift at 2 and 4 kHz and OHC loss at all hair cell regions measured (2, 4, 6 and 8 kHz). ABR threshold shifts in the control group at 6 and 8 kHz were only 8 and 11 dB respectively allowing little opportunity to observe protection at those 2 frequencies. (C) 2011 Elsevier B.V. All rights reserved. C1 [Campbell, Kathleen; Claussen, Alex; Meech, Robert; Fox, Daniel; Hughes, Larry] So Illinois Univ, Sch Med, Dept Surg, Div Otolaryngol, Springfield, IL 62794 USA. [Verhulst, Steven] So Illinois Univ, Sch Med, Dept Stat & Res Consulting, Springfield, IL 62794 USA. RP Campbell, K (reprint author), So Illinois Univ, Sch Med, Dept Surg, Div Otolaryngol, POB 19629, Springfield, IL 62794 USA. EM kcampbell@siumed.edu FU Illinois Excellence in Academic Medicine Grant Program; Mentored Professional Enrichment Experience Program FX The authors would like to thank the Illinois Excellence in Academic Medicine Grant Program and the Mentored Professional Enrichment Experience Program for their financial support of this research. CR Berger EH, 2003, J ACOUST SOC AM, V114, P1955, DOI 10.1121/1.1605415 Bielefeld EC, 2007, ACTA OTO-LARYNGOL, V127, P914, DOI 10.1080/00016480601110188 Bielefeld EC, 2005, HEARING RES, V207, P35, DOI 10.1016/j.heares.2005.03.025 Campbell Kathleen C M, 2003, J Am Acad Audiol, V14, P144 Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9 Campbell KCM, 2007, HEARING RES, V226, P92, DOI 10.1016/j.heares.2006.11.012 Cheng PW, 2008, EAR HEARING, V29, P65 Clerici WJ, 1996, HEARING RES, V101, P14, DOI 10.1016/S0378-5955(96)00126-8 Coleman JKM, 2007, HEARING RES, V226, P104, DOI 10.1016/j.heares.2006.08.008 Duan ML, 2004, HEARING RES, V192, P1, DOI 10.1016/j.heares.2004.02.005 ELDREDGE DH, 1981, J ACOUST SOC AM, V69, P1091, DOI 10.1121/1.385688 Evans P, 1999, ANN NY ACAD SCI, V884, P19, DOI 10.1111/j.1749-6632.1999.tb08633.x Ghibelli L, 1998, FASEB J, V12, P479 Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3 Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3 Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1 KAJI H, 1987, RES COMMUN CHEM PATH, V56, P101 KIES C, 1975, J NUTR, V105, P809 Kopke R, 2005, ACTA OTO-LARYNGOL, V125, P235, DOI 10.1080/00016480410023038 Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3 Kopke RD, 2002, LARYNGOSCOPE, V112, P1515, DOI 10.1097/00005537-200209000-00001 Kopke RD, 2007, HEARING RES, V226, P114, DOI 10.1016/j.heares.2006.10.008 Le Prell CG, 2007, FREE RADICAL BIO MED, V42, P1454, DOI 10.1016/j.freeradbiomed.2007.02.008 Lu SC, 1999, FASEB J, V13, P1169 Lynch ED, 2004, LARYNGOSCOPE, V114, P333, DOI 10.1097/00005537-200402000-00029 Mcllwain DS, 2008, AM J PUBLIC HEALTH, V98, P2167, DOI 10.2105/AJPH.2007.128504 MEYER GJ, 1985, EUR J NUCL MED, V10, P373 Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5 Ohinata Y, 2000, HEARING RES, V146, P28, DOI 10.1016/S0378-5955(00)00096-4 Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847 Samson J, 2008, NEUROSCIENCE, V152, P146, DOI 10.1016/j.neuroscience.2007.11.015 Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4 Simon HU, 2000, APOPTOSIS, V5, P415, DOI 10.1023/A:1009616228304 STEGINK LD, 1986, J NUTR, V116, P1185 Tanaka K, 2005, EUR J PHARMACOL, V522, P116, DOI 10.1016/j.ejphar.2005.08.026 Trost RP, 2007, MIL MED, V172, P426 Van Campen LE, 2002, HEARING RES, V164, P29, DOI 10.1016/S0378-5955(01)00391-4 VOGT W, 1995, FREE RADICAL BIO MED, V18, P93, DOI 10.1016/0891-5849(94)00158-G YAMANE H, 1995, ACTA OTO-LARYNGOL, P87 Yamashita D, 2005, NEUROSCIENCE, V134, P633, DOI 10.1016/j.neuroscience.2005.04.015 Yamashita D, 2004, BRAIN RES, V1019, P201, DOI 10.1016/j.brainres.2004.05.104 Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6 NR 44 TC 13 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 138 EP 144 DI 10.1016/j.heares.2011.08.003 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300015 PM 21924333 ER PT J AU Tierney, A Parbery-Clark, A Skoe, E Kraus, N AF Tierney, A. Parbery-Clark, A. Skoe, E. Kraus, N. TI Frequency-dependent effects of background noise on subcortical response timing SO HEARING RESEARCH LA English DT Article ID BRAIN-STEM RESPONSES; BA-VERTICAL-BAR; INFERIOR COLLICULUS; SPEECH; MASKING; PERCEPTION; CHILDREN; LATENCY; SOUNDS; POTENTIALS AB The addition of background noise to an auditory signal delays brainstem response timing. This effect has been extensively documented using manual peak selection. Peak picking, however, is impractical for large-scale studies of spectrotemporally complex stimuli, and leaves open the question of whether noise-induced delays are frequency-dependent or occur across the frequency spectrum. Here we use an automated, objective method to examine phase shifts between auditory brainstem responses to a speech sound (/da/) presented with and without background noise. We predicted that shifts in neural response timing would also be reflected in frequency-specific phase shifts. Our results indicate that the addition of background noise causes phase shifts across the subcortical response spectrum (70-1000 Hz). However, this noise-induced delay is not uniform such that some frequency bands show greater shifts than others: low-frequency phase shifts (300-500 Hz) are largest during the response to the consonant-vowel formant transition (/d/), while high-frequency shifts (720-1000 Hz) predominate during the response to the steady-state vowel (/a/). Most importantly, phase shifts occurring in specific frequency bands correlate strongly with shifts in the latencies of the predominant peaks in the auditory brainstem response, while phase shifts in other frequency bands do not. This finding confirms the validity of phase shift detection as an objective measure of timing differences and reveals that this method detects noise-induced shifts in timing that may not be captured by traditional peak latency measurements. (C) 2011 Elsevier B.V. All rights reserved. C1 [Tierney, A.; Parbery-Clark, A.; Skoe, E.; Kraus, N.] Northwestern Univ, Auditory Neurosci Lab, Evanston, IL 60208 USA. [Parbery-Clark, A.; Skoe, E.; Kraus, N.] Northwestern Univ, Dept Commun Sci, Evanston, IL 60208 USA. [Kraus, N.] Northwestern Univ, Inst Neurosci, Evanston, IL 60208 USA. [Kraus, N.] Northwestern Univ, Dept Neurobiol & Physiol, Evanston, IL 60208 USA. [Kraus, N.] Northwestern Univ, Dept Otolaryngol, Chicago, IL 60611 USA. RP Kraus, N (reprint author), Northwestern Univ, Auditory Neurosci Lab, 2240 Campus Dr, Evanston, IL 60208 USA. EM nkraus@northwestern.edu RI Parbery-Clark, Alexandra/G-2966-2012 FU NIH [DC009399]; NSF [0842376]; Hugh Knowles Center FX This research was funded in part by NIH DC009399, NSF 0842376 and the Hugh Knowles Center. The authors thank Carrie Lam and Emily Hittner for their assistance with peak picking, and all of the participants for their time. CR Aiken SJ, 2008, HEARING RES, V245, P35, DOI 10.1016/j.heares.2008.08.004 Akhoun I, 2008, CLIN NEUROPHYSIOL, V119, P922, DOI 10.1016/j.clinph.2007.12.010 Akhoun I, 2008, J NEUROSCI METH, V175, P196, DOI 10.1016/j.jneumeth.2008.07.026 ANANTHANARAYAN AK, 1992, EAR HEARING, V13, P228, DOI 10.1097/00003446-199208000-00003 Anderson S, 2010, TRENDS AMPLIF, V14, P73, DOI 10.1177/1084713810380227 Anderson S, 2010, J NEUROSCI, V30, P4922, DOI 10.1523/JNEUROSCI.0107-10.2010 Bidebnan GM, 2010, BRAIN RES, V1355, P112, DOI 10.1016/j.brainres.2010.07.100 Billings CJ, 2009, HEARING RES, V254, P15, DOI 10.1016/j.heares.2009.04.002 BRANDT J, 1980, BRAIN LANG, V9, P324, DOI 10.1016/0093-934X(80)90152-2 Brown L., 1997, TEST NONVERBAL INTEL BURKARD R, 1983, J ACOUST SOC AM, V74, P1204, DOI 10.1121/1.390024 Burkard Robert F, 2002, Am J Audiol, V11, P13, DOI 10.1044/1059-0889(2002/004) Cunningham J, 2002, HEARING RES, V169, P97, DOI 10.1016/S0378-5955(02)00344-1 Cunningham J, 2001, CLIN NEUROPHYSIOL, V112, P758, DOI 10.1016/S1388-2457(01)00465-5 DON M, 1977, ANN OTO RHINOL LARYN, V86, P186 Gorga M, 1985, AUDITORY BRAINSTEM R, P49 GOTT PS, 1989, ELECTROEN CLIN NEURO, V74, P131, DOI 10.1016/0168-5597(89)90018-X Hornickel J, 2011, BEHAV BRAIN RES, V216, P597, DOI 10.1016/j.bbr.2010.08.051 John MS, 2000, HEARING RES, V141, P57, DOI 10.1016/S0378-5955(99)00209-9 Klatt D., 1980, J ACOUST SOC AM, V67, P13 KUWADA S, 1984, J NEUROPHYSIOL, V51, P1306 Li XM, 2011, J ACOUST SOC AM, V129, pEL21, DOI 10.1121/1.3528775 Liu LF, 2006, J NEUROPHYSIOL, V95, P1926, DOI 10.1152/jn.00497.2005 Martin BA, 1999, J SPEECH LANG HEAR R, V42, P271 Miller G., 1954, J ACOUST SOC AM, V27, P338 Nishi K, 2010, J ACOUST SOC AM, V127, P3177, DOI 10.1121/1.3377080 Parbery-Clark A, 2011, EUR J NEUROSCI, V33, P549, DOI 10.1111/j.1460-9568.2010.07546.x Parbery-Clark A, 2009, J NEUROSCI, V29, P14100, DOI 10.1523/JNEUROSCI.3256-09.2009 Russo N, 2004, CLIN NEUROPHYSIOL, V115, P2021, DOI 10.1016/j.clinph.2004.04.003 Russo N, 2009, DEVELOPMENTAL SCI, V12, P557, DOI 10.1111/j.1467-7687.2008.00790.x Skoe E, 2011, J NEUROSCI METH, V196, P308, DOI 10.1016/j.jneumeth.2011.01.020 Smiljanic R, 2005, J ACOUST SOC AM, V118, P1677, DOI 10.1121/1.2000788 Song JH, 2011, J COGNITIVE NEUROSCI, V23, P2268, DOI 10.1162/jocn.2010.21556 THUMMLER I, 1981, SCAND AUDIOL, V10, P255, DOI 10.3109/01050398109076189 Warder C., HEARING RES IN PRESS Warrier CM, 2004, EXP BRAIN RES, V157, P431, DOI 10.1007/s00221-004-1857-6 Whiting KA, 1998, EAR HEARING, V19, P218, DOI 10.1097/00003446-199806000-00005 YAMADA O, 1979, AUDIOLOGY, V18, P381 NR 38 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 145 EP 150 DI 10.1016/j.heares.2011.08.014 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300016 PM 21907782 ER PT J AU Martini, M Canella, R Prigioni, I Russo, G Tavazzani, E Fesce, R Rossi, ML AF Martini, Marta Canella, Rita Prigioni, Ivo Russo, Giancarlo Tavazzani, Elisa Fesce, Riccardo Rossi, Maria Lisa TI Acute effects of gentamicin on the ionic currents of semicircular canal hair cells in the frog SO HEARING RESEARCH LA English DT Article ID RIBOSOMAL-RNA GENE; AMINOGLYCOSIDE ANTIBIOTICS; GUINEA-PIG; INTRATYMPANIC GENTAMICIN; CALCIUM; PHARMACOKINETICS; TRANSDUCTION; LABYRINTH; DEAFNESS; TRANSMISSION AB The effects of acute gentamicin application on hair cells isolated from the frog semicircular canals have been tested by using the patch-clamp technique in the whole-cell configuration. Extracellular gentamicin (1 mM) mostly affected the Ca(2+) macrocurrent, I(ca), and the Ca-dependent K(+) current, I(KCa). The drug, applied to the hair cell basolateral membrane through a fast perfusion system, produced a rapid and relevant decrease (similar to 34%) of I(Ca) amplitude, without apparently affecting its activation-deactivation kinetics. The I(KCa) component of the delayed I(KD) was similarly affected: peak and steady-state mean amplitudes were significantly reduced, by about 47 and 54%, respectively, whereas the time constant of the mono-exponential current rising phase did not change. The Ca(2+) independent fraction of I(KD), I(KV), and the fast IA current were unaffected. Transduction channels (permeable to and blocked by gentamicin) are not available in the isolated hair cell, so the effect of intracellular gentamicin was tested by applying the drug through the patch pipette (1 mM in the pipette): again, it significantly reduced both I(Ca) and amplitude, without affecting currents kinetics. IA properties were also unaffected. The drug did not affect the onset and removal of IKD inactivation, although the changes were scaled to the reduced IKD amplitude. From these observations, it is expected that hair cells exposed to gentamicin 'in vivo' become unresponsive to physiological stimulation (block of the transduction channels) and transmitter release at the cytoneural junction be drastically depressed due to reduced Ca(2+) inflow. In particular, functional impairment ensues much earlier than biochemical events that lead to hair cell apoptosis. (C) 2011 Elsevier B.V. All rights reserved. C1 [Martini, Marta; Canella, Rita; Rossi, Maria Lisa] Univ Ferrara, Dipartimento Biol & Evoluz, Sez Fisiol & Biofis, I-44121 Ferrara, Italy. [Prigioni, Ivo; Russo, Giancarlo; Tavazzani, Elisa] Univ Pavia, Dipartimento Fisiol, I-27100 Pavia, Italy. [Fesce, Riccardo] Univ Insubria, Ctr Ric Neurosci, I-21052 Busto Arsizio, VA, Italy. [Fesce, Riccardo] Ist Sci San Raffaele, Div Neurosci, Milan, Italy. RP Rossi, ML (reprint author), Univ Ferrara, Dipartimento Biol & Evoluz, Sez Fisiol & Biofis, Via Borsari 46, I-44121 Ferrara, Italy. EM mrm@unife.it; cnr@unife.it; ivo.prigioni@unipv.it; giancarlo.susso@unipv.it; elisa.tavazzani@unpv.it; riccardo.fesce@uninsubria.it; rsm@unife.it RI Rossi, Maria Lisa/D-4251-2011 FU Ministero della Universita e della Ricerca Scientifica e Tecnologica [200785RCZZ_001, 200785RCZZ_002] FX We thank Prof. Oscar Sacchi for help and advice. This study was supported by grants from the Ministero della Universita e della Ricerca Scientifica e Tecnologica within the national research project PRIN 2007 (200785RCZZ_001 I.P. and 200785RCZZ_002 M.L.R.). CR BACINO C, 1995, PHARMACOGENETICS, V5, P165, DOI 10.1097/00008571-199506000-00005 Becvarovski Z, 2002, LARYNGOSCOPE, V112, P1163, DOI 10.1097/00005537-200207000-00004 Blanchet C, 2000, J PHYSIOL-LONDON, V525, P641, DOI 10.1111/j.1469-7793.2000.t01-1-00641.x DEGROOT JCMJ, 1990, HEARING RES, V50, P35, DOI 10.1016/0378-5955(90)90031-J DENK W, 1992, J NEUROPHYSIOL, V68, P927 DULON D, 1989, J NEUROSCI RES, V24, P338, DOI 10.1002/jnr.490240226 DULON D, 1995, PFLUG ARCH EUR J PHY, V430, P365, DOI 10.1007/BF00373911 DULON D, 1993, CR ACAD SCI III-VIE, V316, P682 ERNST A, 1994, BRAIN RES, V636, P153, DOI 10.1016/0006-8993(94)90191-0 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 Groves AK, 2010, EXP BIOL MED, V235, P434, DOI 10.1258/ebm.2009.009281 Guan-Min H, 2004, LARYNGOSCOPE, V114, P1184, DOI 10.1097/00005537-200407000-00010 Hashino E, 1995, BRAIN RES, V704, P135, DOI 10.1016/0006-8993(95)01198-6 Henkel AW, 1996, CURR OPIN NEUROBIOL, V6, P350, DOI 10.1016/S0959-4388(96)80119-X Hibi T, 2001, ACTA OTO-LARYNGOL, V121, P336, DOI 10.1080/000164801300102699 Hirvonen TP, 2005, J NEUROPHYSIOL, V93, P643, DOI 10.1152/jn.00160.2004 HUY PTB, 1986, J CLIN INVEST, V77, P1492 HUY PTB, 1981, J INFECT DIS, V143, P476 KIMITSUKI T, 1993, BRAIN RES, V624, P143, DOI 10.1016/0006-8993(93)90072-U KOHLHEPP SJ, 1982, ANTIMICROB AGENTS CH, V21, P668 KROESE ABA, 1989, HEARING RES, V37, P203, DOI 10.1016/0378-5955(89)90023-3 KUMANA CR, 1994, DRUGS, V47, P902, DOI 10.2165/00003495-199447060-00004 Lin Xi, 1993, Journal of Neurophysiology (Bethesda), V70, P1593 Lyford-Pike S, 2007, JARO-J ASSOC RES OTO, V8, P497, DOI 10.1007/s10162-007-0093-8 Marcotti W, 2005, J PHYSIOL-LONDON, V567, P505, DOI 10.1113/jphysiol.2005.085951 Martini M, 2009, AM J PHYSIOL-REG I, V296, pR1585, DOI 10.1152/ajpregu.90981.2008 Martini M, 2009, PFLUG ARCH EUR J PHY, V457, P1327, DOI 10.1007/s00424-008-0598-y Martini M, 2004, HEARING RES, V195, P67, DOI 10.1016/j.heares.2004.05.009 Martini M, 2002, EUR J NEUROSCI, V16, P1647, DOI 10.1046/j.1460-9568.2002.02234x Martini M, 2000, BIOPHYS J, V78, P1240 Matz G, 2004, OTOLARYNG HEAD NECK, V130, pS79, DOI 10.1016/j.otohns.2003.12.007 OHMORI H, 1985, J PHYSIOL-LONDON, V359, P189 Owens KN, 2009, HEARING RES, V253, P32, DOI 10.1016/j.heares.2009.03.001 Pappas S, 2006, INT J CLIN PRACT, V60, P1115, DOI 10.1111/j.1742-1241.2006.01005.x PREZANT TR, 1993, NAT GENET, V4, P289, DOI 10.1038/ng0793-289 Ricci A, 2002, J NEUROPHYSIOL, V87, P1738, DOI 10.1152/jn.00574.2001 Rossi ML, 2010, AM J PHYSIOL-REG I, V298, pR439, DOI 10.1152/ajpregu.00673.2009 Martini M, 2007, EUR BIOPHYS J BIOPHY, V36, P779, DOI 10.1007/s00249-007-0172-0 ROSSI ML, 1994, J PHYSIOL-LONDON, V478, P17 Russo G, 2009, NEUROSCIENCE, V163, P1327, DOI 10.1016/j.neuroscience.2009.07.026 Salt AN, 2005, DRUG DISCOV TODAY, V10, P1299, DOI 10.1016/S1359-6446(05)03574-9 Tan CT, 2001, HEARING RES, V154, P81, DOI 10.1016/S0378-5955(01)00222-2 Wang Q, 2009, JARO-J ASSOC RES OTO, V10, P205, DOI 10.1007/s10162-009-0160-4 Warchol ME, 2011, HEARING RES, V273, P72, DOI 10.1016/j.heares.2010.05.004 WEBSTER J C, 1970, Transactions of the American Academy of Ophthalmology and Oto-Laryngology, V74, P1155 Youssef TE, 1998, AM J OTOL, V19, P435 Zhao H, 2004, AM J HUM GENET, V74, P139, DOI 10.1086/381133 NR 47 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 151 EP 160 DI 10.1016/j.heares.2011.08.011 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300017 PM 21906667 ER PT J AU Pillai, JA Siegel, JH AF Pillai, Jagan A. Siegel, Jonathan H. TI Interaction of Tamoxifen and noise-induced damage to the cochlea SO HEARING RESEARCH LA English DT Article ID HORMONE REPLACEMENT THERAPY; LOUD SOUND EXPOSURE; HIGH-DOSE TAMOXIFEN; PHASE-I TRIAL; INNER-EAR; ESTROGEN-RECEPTORS; ACOUSTIC OVERSTIMULATION; CHLORIDE CHANNELS; BREAST-CANCER; MICE AB Tamoxifen has been used extensively in the treatment of breast cancer and other neoplasms. In addition to its well-known action on estrogen receptors it is also known to acutely block chloride channels that participate in cell volume regulation. Tamoxifen's role in preventing cochlear outer hair cell (OHC) swelling in vitro suggested that OHC swelling noted following noise exposure could potentially be a therapeutic target for Tamoxifen in its role as a chloride channel blocker to help prevent noise-induced hearing loss. To investigate this possibility, the effects of exposure to Tamoxifen on physiologic measures of cochlear function in the presence and absence of subsequent noise exposure were studied. Male Mongolian gerbils (2-4 months old) were randomly assigned to different groups. Tamoxifen at similar to 10 mg/kg was administered to one of the groups. Five hours later they were exposed to a one-third octave band of noise centered at 8 kHz in a sound-isolation chamber for 30 min at 108 dB SPL Compound action potential (CAP) thresholds and distortion product otoacoustic emission (DPOAE) levels were measured 30-35 days following noise exposure. Tamoxifen administration did not produce any changes in CAP thresholds and DPOAE levels when administered by itself in the absence of noise. Tamoxifen causes a significant increase in CAP thresholds from 8 to 15 kHz following noise exposure compared to CAP thresholds in animals exposed to noise alone. No significant differences were seen in the DPOAE levels in the f(2) = 8-15 kHz frequency range where maximum noise-induced increases in CAP thresholds were seen. Contrary to our original expectation, it is concluded that Tamoxifen potentiates the degree of damage to the cochlea resulting from noise exposure. (C) 2011 Elsevier B.V. All rights reserved. C1 [Pillai, Jagan A.; Siegel, Jonathan H.] Northwestern Univ, Dept Commun Sci & Disorders, Evanston, IL 60208 USA. RP Pillai, JA (reprint author), VA San Diego Med Ctr, Dept Neurol, 3350 La Jolla Village Dr, San Diego, CA 92122 USA. EM jaganpillai@gmail.com; j-siegel@northwestern.edu FU NIH [R01 DC03416] FX This work was completed as a thesis by the first author submitted in partial fulfillment of the Doctor of Philosophy degree from the Department of Communication Sciences and Disorders at Northwestern University. We thank the dissertation committee members Mario Ruggero and Peter Dallos for their invaluable insights into this work. This research was supported by NIH grant R01 DC03416 awarded to the second author. CR Abdullaev IF, 2006, J PHYSIOL-LONDON, V572, P677, DOI 10.1113/jphysiol.2005.103820 ARAN JM, 1995, OTOLARYNG HEAD NECK, V112, P133, DOI 10.1016/S0194-5998(95)70313-6 BOETTCHER FA, 1987, EAR HEARING, V8, P192, DOI 10.1097/00003446-198708000-00003 Bohne B.A., 1976, EFFECTS NOISE HEARIN, P41 Bohne BA, 2007, HEARING RES, V223, P61, DOI 10.1016/j.heares.2006.10.004 Cardoso CMP, 2001, TOXICOL APPL PHARM, V176, P145, DOI 10.1006/taap.2001.9265 Charitidi K, 2009, HEARING RES, V252, P71, DOI 10.1016/j.heares.2008.12.009 CHIODO AA, 1994, EUR ARCH OTO-RHINO-L, V251, P375 CODY AR, 1981, J ACOUST SOC AM, V70, P707, DOI 10.1121/1.386906 Silva MMC, 2000, BBA-BIOMEMBRANES, V1464, P49 Custodio JBA, 1998, TOXICOL APPL PHARM, V152, P10, DOI 10.1006/taap.1998.8510 DALLOS P, 1969, J ACOUST SOC AM, V46, P356, DOI 10.1121/1.1911697 Duan D, 1997, NATURE, V390, P417 Duan DD, 2011, ACTA PHARMACOL SIN, V32, P675, DOI 10.1038/aps.2011.30 Fadden Mc, 1985, NATO ASI SERIES Hederstierna C, 2007, ACTA OTO-LARYNGOL, V127, P149, DOI 10.1080/00016480600794446 Jenkins V, 2009, BREAST, V18, P279, DOI 10.1016/j.breast.2009.07.004 Jordan VC, 2001, ANN NY ACAD SCI, V952, P60 Kilicdag EB, 2004, AM J OBSTET GYNECOL, V190, P77, DOI 10.1016/j.ajpg.2003.06.001 Mandlekar S, 2001, APOPTOSIS, V6, P469, DOI 10.1023/A:1012437607881 Marques D.M., 1975, J ACOUST SOC AM, V57, pS1 Mattsson JL, 2000, TOXICOL PATHOL, V28, P137, DOI 10.1177/019262330002800117 Mc Clay EF, 2001, MELANOMA RES, V11, P309 Meltser I, 2008, J CLIN INVEST, V118, P1563, DOI 10.1172/JCI32796 Morest DK, 1998, MICROSC RES TECHNIQ, V41, P205 Motohashi R, 2010, ACTA OTO-LARYNGOL, V130, P204, DOI 10.3109/00016480903016570 Neely ET., 1993, TECH MEMO BOYS TOWN OHLEMILLER KK, 1992, HEARING RES, V63, P79, DOI 10.1016/0378-5955(92)90076-Y Ou HC, 2000, HEARING RES, V145, P111, DOI 10.1016/S0378-5955(00)00081-2 Overstreet EH, 2003, AUDIOL NEURO-OTOL, V8, P19, DOI 10.1159/000067892 Pearce M, 2001, J NEUROSCI METH, V106, P57, DOI 10.1016/S0165-0270(01)00329-6 Perez EA, 2003, CANCER INVEST, V21, P1, DOI 10.1081/CNV-120016397 ROBINSON SP, 1991, DRUG METAB DISPOS, V19, P36 Sardini A, 2003, BBA-BIOMEMBRANES, V1618, P153, DOI 10.1016/j.bbamem.2003.10.008 SCHMIEDT RA, 1986, J ACOUST SOC AM, V79, P1481, DOI 10.1121/1.393675 Shughrue PJ, 1997, ENDOCRINOLOGY, V138, P5476, DOI 10.1210/en.138.12.5476 Siegel J.H., 2001, ASS RES OTOLARYNGOL Silva I, 2000, NEUROSCI LETT, V291, P183, DOI 10.1016/S0304-3940(00)01410-5 Simonoska R, 2009, J ENDOCRINOL, V201, P397, DOI 10.1677/JOE-09-0060 SPOENDLI.H, 1971, ACTA OTO-LARYNGOL, V71, P166, DOI 10.3109/00016487109125346 Stenberg AE, 2001, HEARING RES, V157, P87, DOI 10.1016/S0378-5955(01)00280-5 Strachan D, 1996, J LARYNGOL OTOL, V110, P1148 Thompson SK, 2006, OTOLARYNG HEAD NECK, V135, P100, DOI 10.1016/j.otohns.2006.02.004 THORNE PR, 1989, ACTA OTO-LARYNGOL, V107, P71, DOI 10.3109/00016488909127481 THORNE PR, 1987, HEARING RES, V27, P1, DOI 10.1016/0378-5955(87)90021-9 TRUMP DL, 1992, J NATL CANCER I, V84, P1811, DOI 10.1093/jnci/84.23.1811 Veliskova J, 2000, EPILEPSIA, V41, pS30, DOI 10.1111/j.1528-1157.2000.tb01553.x YUAN H, 1995, ENDOCRINOLOGY, V136, P96, DOI 10.1210/en.136.1.96 NR 48 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 161 EP 166 DI 10.1016/j.heares.2011.08.012 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300018 PM 21907781 ER PT J AU Weegerink, NJD Huygen, PLM Schraders, M Kremer, H Pennings, RJE Kunst, HPM AF Weegerink, N. J. D. Huygen, P. L. M. Schraders, M. Kremer, H. Pennings, R. J. E. Kunst, H. P. M. TI Variable degrees of hearing impairment in a Dutch DFNX4 (DFN6) family SO HEARING RESEARCH LA English DT Article ID VESTIBULAR FEATURES; DFNA15 FAMILY; MUTATION; POU4F3; DEAFNESS; PROTEIN; SMPX; GENE AB Objective: Investigation of the audiometric characteristics of a large Dutch DFNX4 family with a p.Glu72X mutation in the SMPX gene. Patients and methods: Sixty family members participated in this study and examination consisted of medical history, otoscopy, pure tone and speech audiometry. Linkage and mutation analysis revealed a pathogenic mutation in the SMPX gene. Results: All 25 mutation carriers exhibited hearing impairment, except one woman aged 25 years. The men (n = 10) showed more severe hearing impairment than the women (n = 14) and already at a younger age. The age of onset according to history was 2-10 years (mean: 3.3 years) in men and 3-48 years (mean: 26.4 years) in women. In the men, severe threshold deterioration mainly occurred during the first two decades of life, especially at the higher frequencies. The women showed milder threshold deterioration and more pronounced across-subjects and individual inter-aural variation, especially at 2-8 kHz. Longitudinal linear regression analysis demonstrated significant progression of at least two frequencies in five individuals (3 men and 2 women). The speech recognition scores of the mutation carriers with hearing impairment were decreased at relatively young ages compared to a reference group of patients with only presbycusis, especially in men. However, all these patients tended to have better speech recognition scores than the presbycusis patients at matching PTA(1,2,4) (kHz) levels. Conclusion: This study demonstrates the phenotypic heterogeneity in this large family with an X-linked pattern of inherited sensorineural hearing impairment. The men showed more severe hearing impairment at a younger age with more pronounced progression during the first two decades of life, while women demonstrated less severe hearing impairment with more gradual progression and a wider variation in age of onset, degree of hearing impairment and inter-aural asymmetry in thresholds. (C) 2011 Elsevier B.V. All rights reserved. C1 [Weegerink, N. J. D.; Huygen, P. L. M.; Schraders, M.; Kremer, H.; Pennings, R. J. E.; Kunst, H. P. M.] Radboud Univ Nijmegen, Med Ctr, Dept Otorhinolaryngol Head & Neck Surg, NL-6500 NB Nijmegen, Netherlands. [Weegerink, N. J. D.; Schraders, M.; Kremer, H.; Pennings, R. J. E.; Kunst, H. P. M.] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, NL-6500 NB Nijmegen, Netherlands. [Schraders, M.; Kremer, H.] Radboud Univ Nijmegen, Nijmegen Ctr Mol Life Sci, NL-6500 NB Nijmegen, Netherlands. [Kremer, H.] Radboud Univ Nijmegen, Dept Human Genet, Med Ctr, NL-6500 NB Nijmegen, Netherlands. RP Weegerink, NJD (reprint author), Radboud Univ Nijmegen, Med Ctr, Dept Otorhinolaryngol Head & Neck Surg, POB 9101, NL-6500 NB Nijmegen, Netherlands. EM N.Weegerink@kno.umcn.nl; P.Huygen@kno.umcn.nl; M.Schraders@antrg.umcn.nl; H.Kremer@antrg.umcn.nl; R.Pennings@kno.umcn.nl; H.Kunst@kno.umcn.nl RI Kremer, Hannie/F-5126-2010; Kunst, Henricus/J-6456-2012; Pennings, Ronald/J-6651-2012 FU Heinsius Houbolt foundation; INTERREG IV A- Germany - the Netherlands FX This study was supported by a grant from the Heinsius Houbolt foundation and by a grant from the INTERREG IV A-program Germany - the Netherlands. CR Bischoff A.M., 2006, OTOL NEUROTOL, V27, P23 Bischoff AMLC, 2004, AUDIOL NEURO-OTOL, V9, P34, DOI 10.1159/000074185 Bom SJH, 2001, ARCH OTOLARYNGOL, V127, P1045 De Leenheer E.M., 2002, ANN OTO RHINOL LARYN, V11, P1267 de Heer AMR, 2009, ANN OTO RHINOL LARYN, V118, P313 de Heer AMR, 2011, AUDIOL NEURO-OTOL, V16, P93, DOI 10.1159/000313282 de Heer AMR, 2009, ANN OTO RHINOL LARYN, V118, P382 Del Castillo I., 1996, HUM MOL GENET, V51, P383 del Castillo I, 2000, ADV OTO-RHINO-LARYNG, V56, P200 Frydman M, 2000, ARCH OTOLARYNGOL, V126, P633 Hilgert N, 2009, MUTAT RES-REV MUTAT, V681, P189, DOI 10.1016/j.mrrev.2008.08.002 Huebner AK, 2011, AM J HUM GENET, V88, P621, DOI 10.1016/j.ajhg.2011.04.007 Huygen P.L.M., 2003, AUDIOL MED, V1, P137 International Standards Organization (ISO), 1984, 7029 ISO LYON MF, 1961, NATURE, V190, P372, DOI 10.1038/190372a0 Marres H, 1997, ARCH OTOLARYNGOL, V123, P573 Pauw RJ, 2008, ARCH OTOLARYNGOL, V134, P294, DOI 10.1001/archotol.134.3.294 Petersen MB, 2008, CLIN GENET, V73, P14, DOI 10.1111/j.1399-0004.2007.00913.x Schraders M, 2011, AM J HUM GENET, V88, P628, DOI 10.1016/j.ajhg.2011.04.012 Smith RJH, 2008, DEAFNESS HEREDITARY Street VA, 2008, J VESTIBUL RES-EQUIL, V18, P51 Tamagawa Y, 2002, LARYNGOSCOPE, V112, P292, DOI 10.1097/00005537-200202000-00017 VanCamp G, 1997, AM J HUM GENET, V60, P758 van Drunen FJW, 2009, AUDIOL NEURO-OTOL, V14, P303, DOI 10.1159/000212109 NR 24 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 167 EP 177 DI 10.1016/j.heares.2011.08.010 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300019 PM 21893181 ER PT J AU Sun, W Manohar, S Jayaram, A Kumaraguru, A Fu, Q Li, J Allman, B AF Sun, Wei Manohar, Senthilvelan Jayaram, Aditi Kumaraguru, Anand Fu, Qiang Li, Ji Allman, Brian TI Early age conductive hearing loss causes audiogenic seizure and hyperacusis behavior SO HEARING RESEARCH LA English DT Article ID BALB-C MICE; OTITIS-MEDIA; WILLIAMS-SYNDROME; INFERIOR COLLICULUS; AUDITORY-CORTEX; SUSCEPTIBILITY; DEPRIVATION; PREVALENCE; RATS; ABNORMALITIES AB Recent clinical reports found a high incidence of recurrent otitis media in children suffering hyperacusis, a marked intolerance to an otherwise ordinary environmental sound. However, it is unclear whether the conductive hearing loss caused by otitis media in early age will affect sound tolerance later in life. Thus, we have tested the effects of tympanic membrane (TM) damage at an early age on sound perception development in rats. Two weeks after the TM perforation, more than 80% of the rats showed audiogenic seizure (AGS) when exposed to loud sound (120 dB SPL white noise, <1 min). The susceptibility of AGS lasted at least sixteen weeks after the TM damage, even the hearing loss recovered. The TM damaged rats also showed significantly enhanced acoustic startle responses compared to the rats without TM damage. These results suggest that early age conductive hearing loss may cause an impaired sound tolerance during development. In addition, the AGS can be suppressed by the treatment of vigabatrin, acute injections (250 mg/kg) or oral intakes (60 mg/kg/day for 7 days), an antiepileptic drug that inhibits the catabolism of GABA. c-Fos staining showed a strong staining in the inferior colliculus (IC) in the TM damaged rats, not in the control rats, after exposed to loud sound, indicating a hyper-excitability in the IC during AGS. These results indicate that early age conductive hearing loss can impair sound tolerance by reducing GABA inhibition in the IC, which may be related to hyperacusis seen in children with otitis media. Published by Elsevier B.V. C1 [Sun, Wei; Manohar, Senthilvelan; Jayaram, Aditi; Kumaraguru, Anand; Allman, Brian] SUNY Buffalo, Ctr Hearing & Deafness, Dept Communicat Disorders & Sci, Buffalo, NY 14214 USA. [Fu, Qiang; Li, Ji] SUNY Buffalo, Dept Pharmacol & Toxicol, Buffalo, NY 14214 USA. RP Sun, W (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, Dept Communicat Disorders & Sci, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA. EM weisun@buffalo.edu FU Action on Hearing Loss [G42]; National Institute of Health [R03 DC008685] FX This project was supported by Action on Hearing Loss (G42) and National Institute of Health (R03 DC008685). CR AMOILS CP, 1992, OTOLARYNG HEAD NECK, V106, P47 Bigelow DC, 1998, ANN OTO RHINOL LARYN, V107, P928 Chakravarty DN, 1999, EXP NEUROL, V157, P135, DOI 10.1006/exnr.1999.7047 Chang EF, 2003, SCIENCE, V300, P498, DOI 10.1126/science.1082163 CHEN CS, 1978, EXP NEUROL, V60, P400, DOI 10.1016/0014-4886(78)90094-8 CHEN CS, 1973, EXP NEUROL, V39, P277, DOI 10.1016/0014-4886(73)90230-6 Coelho CB, 2007, PROG BRAIN RES, V166, P169, DOI 10.1016/S0079-6123(07)66015-4 de Villers-Sidani E, 2008, NAT NEUROSCI, V11, P957, DOI 10.1038/nn.2144 FRIAUF E, 1992, EUR J NEUROSCI, V4, P798, DOI 10.1111/j.1460-9568.1992.tb00190.x GATES GR, 1973, EXP NEUROL, V38, P488, DOI 10.1016/0014-4886(73)90170-2 Gothelf D, 2006, NEUROLOGY, V66, P390, DOI 10.1212/01.wnl.0000196643.35395.5f Gu JW, 2010, J NEUROPHYSIOL, V104, P3361, DOI 10.1152/jn.00226.2010 Ison JR, 2007, JARO-J ASSOC RES OTO, V8, P539, DOI 10.1007/s10162-007-0098-3 Johnston LC, 2004, PEDIATRICS, V114, pE58, DOI 10.1542/peds.114.1.e58 KLEIN AJ, 1990, J SPEECH HEAR DISORD, V55, P339 Klein BD, 2004, EPILEPSY RES, V62, P13, DOI 10.1016/j.eplepsyres.2004.06.007 Kral A, 2002, CEREB CORTEX, V12, P797, DOI 10.1093/cercor/12.8.797 Kristjansson S, 2010, ACTA PAEDIATR, V99, P867, DOI 10.1111/j.1651-2227.2009.01637.x Kwon J, 1997, EPILEPSY RES, V27, P89, DOI 10.1016/S0920-1211(97)01024-3 Lanphear BP, 1997, PEDIATRICS, V99, part. no., DOI 10.1542/peds.99.3.e1 Lasisi AO, 2008, EUR ARCH OTO-RHINO-L, V265, P765, DOI 10.1007/s00405-007-0544-1 Martines F, 2010, EUR ARCH OTO-RHINO-L, V267, P709, DOI 10.1007/s00405-009-1131-4 MCGINN MD, 1973, NATURE-NEW BIOL, V244, P255 Miani C, 2001, EUR ARCH OTO-RHINO-L, V258, P341, DOI 10.1007/s004050100364 O'Leary SJ, 2009, MED J AUSTRALIA, V191, pS65 PIERSON M, 1992, EPILEPSY RES, V13, P35, DOI 10.1016/0920-1211(92)90005-E Popescu MV, 2010, NEURON, V65, P718, DOI 10.1016/j.neuron.2010.02.019 STEVENS SS, 1955, J ACOUST SOC AM, V27, P815, DOI 10.1121/1.1908048 Sun W, 2009, NEUROSCIENCE, V159, P325, DOI 10.1016/j.neuroscience.2008.12.024 Takesian AE, 2010, J NEUROSCI, V30, P2716, DOI 10.1523/JNEUROSCI.3903-09.2010 Turner JG, 2008, AM J AUDIOL, V17, pS185, DOI 10.1044/1059-0889(2008/08-0006) Willmore LJ, 2009, EPILEPSIA, V50, P163, DOI 10.1111/j.1528-1167.2008.01988.x Xu H, 2007, J NEUROSCI, V27, P9417, DOI 10.1523/JNEUROSCI.1992-07.2007 NR 33 TC 5 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 178 EP 183 DI 10.1016/j.heares.2011.08.004 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300020 PM 21872651 ER PT J AU Hurd, EA Adams, ME Layman, WS Swiderski, DL Beyer, LA Halsey, KE Benson, JM Gong, TW Dolan, DF Raphael, Y Martin, DM AF Hurd, Elizabeth A. Adams, Meredith E. Layman, Wanda S. Swiderski, Donald L. Beyer, Lisa A. Halsey, Karin E. Benson, Jennifer M. Gong, Tzy-Wen Dolan, David F. Raphael, Yehoash Martin, Donna M. TI Mature middle and inner ears express Chd7 and exhibit distinctive pathologies in a mouse model of CHARGE syndrome SO HEARING RESEARCH LA English DT Article ID HIGHLY MUTABLE LOCUS; HEARING-LOSS; TEMPORAL BONE; PHENOTYPIC SPECTRUM; HAIR-CELLS; ASSOCIATION; MICE; GENE; DEFECTS; MUTATIONS AB Heterozygous mutations in the gene encoding chromodomain-DNA-binding-protein 7 (CHD7) cause CHARGE syndrome, a multiple anomaly condition which includes vestibular dysfunction and hearing loss. Mice with heterozygous Chd7 mutations exhibit semicircular canal dysgenesis and abnormal inner ear neurogenesis, and are an excellent model of CHARGE syndrome. Here we characterized Chd7 expression in mature middle and inner ears, analyzed morphological features of mutant ears and tested whether Chd7 mutant mice have altered responses to noise exposure and correlated those responses to inner and middle ear structure. We found that Chd7 is highly expressed in mature inner and outer hair cells, spiral ganglion neurons, vestibular sensory epithelia and middle ear ossicles. There were no obvious defects in individual hair cell morphology by Prestin immunostaining or scanning electron microscopy, and cochlear innervation appeared normal in Chd7(Gt/+) mice. Hearing thresholds by auditory brainstem response (ABR) testing were elevated at 4 and 16 kHz in Chd7(Gt/+) mice, and there were reduced distortion product otoacoustic emissions (DPOAE). Exposure of Chd7(Gt/+) mice to broadband noise resulted in variable degrees of hair cell loss which inversely correlated with severity of stapedial defects. The degrees of hair cell loss and threshold shifts after noise exposure were more severe in wild type mice than in mutants. Together, these data indicate that Chd7(Gt/+) mice have combined conductive and sensorineural hearing loss, correlating with changes in both middle and inner ears. (C) 2011 Elsevier B.V. All rights reserved. C1 [Hurd, Elizabeth A.; Martin, Donna M.] Univ Michigan, Dept Pediat, Ann Arbor, MI 48109 USA. [Layman, Wanda S.; Martin, Donna M.] Univ Michigan, Dept Human Genet, Ann Arbor, MI 48109 USA. [Adams, Meredith E.] Univ Michigan, Dept Otolaryngol Head & Neck Surg, Ann Arbor, MI 48109 USA. [Swiderski, Donald L.; Beyer, Lisa A.; Halsey, Karin E.; Benson, Jennifer M.; Gong, Tzy-Wen; Dolan, David F.; Raphael, Yehoash] Univ Michigan, Dept Otolaryngol, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Martin, DM (reprint author), Univ Michigan, Dept Pediat, 3520A MSRB 1,1500 W Med Ctr Dr, Ann Arbor, MI 48109 USA. EM lizhurd@umich.edu; meadams@umn.edu; layman@umich.edu; dlswider@umich.edu; lbeyer@umich.edu; khalsey@umich.edu; matuszew@umich.edu; tzywen@umich.edu; ddolan@umich.edu; yoash@umich.edu; donnamm@umich.edu FU Williams Professorship; A. Alfred Taubman Medical Research Institute; Berte and Alan Hirschfield Foundation; NOHR; NIH/NIDCD [P30 DC05188, R01 DC009410] FX This work was supported by the Williams Professorship, the A. Alfred Taubman Medical Research Institute and the Berte and Alan Hirschfield Foundation (Y.R), NOHR (D.M.M), and NIH/NIDCD grants P30 DC05188 (Y.R and D.F.D) and R01 DC009410 (D.M.M and Y.R). CR Abadie V, 2000, EUR J PEDIATR, V159, P569, DOI 10.1007/s004319900409 Adams ME, 2007, J COMP NEUROL, V504, P519, DOI 10.1002/cne.21460 Admiraal RJC, 1997, INT J PEDIATR OTORHI, V39, P205, DOI 10.1016/S0165-5876(96)01489-9 Amiel J, 2001, AM J MED GENET, V99, P124, DOI 10.1002/1096-8628(20010301)99:2<124::AID-AJMG1114>3.0.CO;2-9 Arnold JS, 2006, HUM MOL GENET, V15, P1629, DOI 10.1093/hmg/ddl084 Bergman JEH, 2010, EUR J HUM GENET, V18, P171, DOI 10.1038/ejhg.2009.158 Beyer LA, 2000, J NEUROCYTOL, V29, P227, DOI 10.1023/A:1026515619443 Bosman EA, 2005, HUM MOL GENET, V14, P3463, DOI 10.1093/hmg/ddi375 Calvert JA, 2011, MAMM GENOME, V22, P290, DOI 10.1007/s00335-011-9324-8 Dallos P, 2008, CURR OPIN NEUROBIOL, V18, P370, DOI 10.1016/j.conb.2008.08.016 Desai U, 2010, J CRANIOFAC SURG, V21, P1411, DOI 10.1097/SCS.0b013e3181ebcf58 Dhooge I, 1998, ANN OTO RHINOL LARYN, V107, P935 EDWARDS BM, 1995, INT J PEDIATR OTORHI, V33, P23, DOI 10.1016/0165-5876(95)01188-H Edwards BM, 2002, PEDIATRICS, V110, P119, DOI 10.1542/peds.110.1.119 Fekete DM, 1999, TRENDS NEUROSCI, V22, P263, DOI 10.1016/S0166-2236(98)01366-6 Funke B, 2001, HUM MOL GENET, V10, P2549, DOI 10.1093/hmg/10.22.2549 Gao XC, 2007, AM J HUM GENET, V80, P957, DOI 10.1086/513571 Gehr DD, 2004, HEARING RES, V193, P9, DOI 10.1016/j.heares.2004.03.018 Glueckert R, 2010, AM J MED GENET A, V152A, P665, DOI 10.1002/ajmg.a.33321 GUYOT JP, 1987, ARCH OTOLARYNGOL, V113, P321 Haginomori SI, 2002, ANN OTO RHINOL LARYN, V111, P397 Harding GW, 2005, HEARING RES, V204, P90, DOI 10.1016/j.heares.2005.01.004 Hawker K, 2005, INT J AUDIOL, V44, P171, DOI 10.1080/14992020500057434 Hurd EA, 2010, DEVELOPMENT, V137, P3139, DOI 10.1242/dev.047894 Hurd EA, 2007, MAMM GENOME, V18, P94, DOI 10.1007/s00335-006-0107-6 Jongmans MCJ, 2006, J MED GENET, V43, P306, DOI 10.1136/jmg.2005.036061 Karolyi IJ, 2007, MAMM GENOME, V18, P596, DOI 10.1007/s00335-007-9038-0 Kiernan AE, 2002, MAMM GENOME, V13, P142, DOI 10.1007/s0033501-2088-9 Lalani SR, 2006, AM J HUM GENET, V78, P303, DOI 10.1086/500273 Lanson BG, 2007, LARYNGOSCOPE, V117, P1260, DOI 10.1097/MLG.0b013e31806009c9 Layman WS, 2011, HUM MOL GENET, V20, P3138, DOI 10.1093/hmg/ddr216 Layman WS, 2009, HUM MOL GENET, V18, P1909, DOI 10.1093/hmg/ddp112 Lemmerling M, 1998, NEURORADIOLOGY, V40, P462 Lenz D.R., 2010, AUDIOL MED, P1 Martin D.M, 2010, PLOS GENET, V6 MATSUO I, 1995, GENE DEV, V9, P2646, DOI 10.1101/gad.9.21.2646 Moraes F, 2005, MECH DEVELOP, V122, P199, DOI 10.1016/j.mod.2004.10.004 MORGAN D, 1993, ARCH OTOLARYNGOL, V119, P49 Morimoto AK, 2006, AM J NEURORADIOL, V27, P1663 Morsli H, 1999, DEVELOPMENT, V126, P2335 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 Nolen LD, 2006, AM J MED GENET A, V140A, P1711, DOI 10.1002/ajmg.a.31335 OSBORNE MP, 1991, SCANNING MICROSCOPY, V5, P555 PARK K, 1992, AM J OTOLARYNG, V13, P93, DOI 10.1016/0196-0709(92)90005-E Pau H, 2004, OTOL NEUROTOL, V25, P707, DOI 10.1097/00129492-200409000-00010 Qin ZB, 2010, HEARING RES, V263, P93, DOI 10.1016/j.heares.2009.10.002 Randall V, 2009, J CLIN INVEST, V119, P3301, DOI 10.1172/JCI37561 Reyes MRT, 1999, INT J PEDIATR OTORHI, V47, P227, DOI 10.1016/S0165-5876(98)00180-3 Sanlaville D, 2006, J MED GENET, V43, P211, DOI 10.1136/jmg.2005.036160 Shah UK, 1998, INT J PEDIATR OTORHI, V44, P139, DOI 10.1016/S0165-5876(98)00064-0 Takada I, 2007, NAT CELL BIOL, V9, P1273, DOI 10.1038/ncb1647 Tellier AL, 1998, AM J MED GENET, V76, P402, DOI 10.1002/(SICI)1096-8628(19980413)76:5<402::AID-AJMG7>3.0.CO;2-O THELIN JW, 1986, INT J PEDIATR OTORHI, V12, P145, DOI 10.1016/S0165-5876(86)80072-6 Vissers LELM, 2004, NAT GENET, V36, P955, DOI 10.1038/ng1407 Wiener-Vacher SR, 1999, ARCH OTOLARYNGOL, V125, P342 WRIGHT CG, 1986, ANN OTO RHINOL LARYN, V95, P480 Wright EMMB, 2009, EUR J MED GENET, V52, P239, DOI 10.1016/j.ejmg.2009.03.017 Zentner GE, 2010, AM J MED GENET A, V152A, P674, DOI 10.1002/ajmg.a.33323 NR 58 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 184 EP 195 DI 10.1016/j.heares.2011.08.005 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300021 PM 21875659 ER PT J AU Ding, DL He, JC Allman, BL Yu, DZ Jiang, HY Seigel, GM Salvi, RJ AF Ding, Dalian He, Jingchun Allman, Brian L. Yu, Dongzhen Jiang, Haiyan Seigel, Gail M. Salvi, Richard J. TI Cisplatin ototoxicity in rat cochlear organotypic cultures SO HEARING RESEARCH LA English DT Article ID ORGANIC CATION TRANSPORTER-2; GUINEA-PIG COCHLEA; COPPER TRANSPORTER; HAIR-CELLS; CELLULAR ACCUMULATION; PROTECTS COCHLEAR; CTR1; NEPHROTOXICITY; CHILDREN; GENTAMICIN AB Ototoxicity is a dose-limiting side effect of chemotherapeutic treatment with cisplatin. In a series of experiments on neonatal rat cochlear organotypic cultures, the extent of damage induced by a broad range of cisplatin treatment concentrations was examined. Paradoxically, it was found that hair cell loss was greater following 48 h exposure to low (10, 50 and 100 mu M) versus high (400 and 1000 mu M) concentrations of cisplatin; these findings indicate that hair cells possess intrinsic resistance to high levels of extracellular cisplatin. Using cisplatin conjugated to Alexa Fluor 488, it was found that cisplatin is readily taken up by hair cells at low concentrations, but is largely excluded at high concentrations. Recent studies indicate that the major influx of cisplatin into hair cells occurs via the copper transporter, Ctr1, whereas ATP7A and ATP7B are copper pumps responsible for cisplatin sequestration and efflux. Using immunolabeling procedures for these copper trafficking proteins, it was found that Ctr1 and ATP7B were localized in the hair cells, whereas ATP7A showed extensive labeling in the pillar cells in the organ of Corti. Additional experiments confirmed the protective effect of copper sulfate and cimetidine in attenuating cisplatin-induced hair cell loss. However, because neither copper sulfate nor cimetidine provided complete protection against cisplatin, and high levels of copper sulfate itself were found to be ototoxic, it is suggested that future therapeutic efforts may benefit from a combination of pharmacological treatments which seek to not only limit the uptake of cisplatin into cochlear cells but also increase its efflux. (C) 2011 Elsevier B.V. All rights reserved. C1 [Ding, Dalian; Allman, Brian L.; Jiang, Haiyan; Seigel, Gail M.; Salvi, Richard J.] SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. [Ding, Dalian; Allman, Brian L.; Seigel, Gail M.; Salvi, Richard J.] SUNY Buffalo, Dept Communicat Disorders & Sci, Buffalo, NY 14214 USA. [He, Jingchun; Yu, Dongzhen] Shanghai Jiao Tong Univ, Peoples Hosp 6, Dept Otolaryngol, Shanghai, Peoples R China. RP Allman, BL (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA. EM brianall@buffalo.edu FU National Institutes of Health [5R01DC006630-05]; Research to Prevent Blindness [R21CA127061]; National Cancer Institute [U54CA143876] FX This research was supported in part by National Institutes of Health grant 5R01DC006630-05. GMS is supported by R21CA127061, a departmental challenge grant from Research to Prevent Blindness and U54CA143876 from the National Cancer Institute. The content is solely the responsibility of the author and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health. Our special thanks to Dhruba J Barali for providing us the Alexa Flur 488-labeled cisplatin, and to Donald E. Coling for preparing the negative control Alexa probe and providing helpful comments during manuscript preparation. We thank Weidong Qi, Yong Fu, Yongqi Li, Lei Wei and Raquel Lima for technical support. CR BROCK PR, 1991, MED PEDIATR ONCOL, V19, P295, DOI 10.1002/mpo.2950190415 Cardinaal RM, 2000, HEARING RES, V144, P135, DOI 10.1016/S0378-5955(00)00059-9 Chen YS, 1999, ANGEW CHEM INT EDIT, V38, P1768, DOI 10.1002/(SICI)1521-3773(19990614)38:12<1768::AID-ANIE1768>3.0.CO;2-6 Ciarimboli G, 2010, AM J PATHOL, V176, P1169, DOI 10.2353/ajpath.2010.090610 Ciarimboli G, 2005, AM J PATHOL, V167, P1477, DOI 10.1016/S0002-9440(10)61234-5 Coradini PP, 2007, J PEDIAT HEMATOL ONC, V29, P355, DOI 10.1097/MPH.0b013e318059c220 Ding D., 2008, CHIN J OTOL, V6, P125 Ding D., 2009, ABSTR ASS RES OT, V119, P41 Ding D., 2009, ABSTR ASS RES OT, V121, P42 Ding DL, 2002, HEARING RES, V164, P115, DOI 10.1016/S0378-5955(01)00417-8 Di Nicolantonio F, 2003, RECENT RES CANCER, V161, P73 Holzer AK, 2006, MOL PHARMACOL, V70, P1390, DOI 10.1124/mol.106.022624 Howell SB, 2010, MOL PHARMACOL, V77, P887, DOI 10.1124/mol.109.063172 Ishida S, 2002, P NATL ACAD SCI USA, V99, P14298, DOI 10.1073/pnas.162491399 KIMITSUKI T, 1993, HEARING RES, V71, P64, DOI 10.1016/0378-5955(93)90021-R Larson CA, 2009, MOL PHARMACOL, V75, P324, DOI 10.1124/mol.108.052381 Li Y, 2004, EUR J CANCER, V40, P2445, DOI 10.1016/j.ejca.2003.08.009 McFadden SL, 2003, TOXICOL APPL PHARM, V186, P46, DOI 10.1016/S0041-008X(02)00017-0 Meyers JR, 2003, J NEUROSCI, V23, P4054 More SS, 2010, J NEUROSCI, V30, P9500, DOI 10.1523/JNEUROSCI.1544-10.2010 Pabla N, 2009, AM J PHYSIOL-RENAL, V296, pF505, DOI 10.1152/ajprenal.90545.2008 Qi WD, 2008, HEARING RES, V236, P52, DOI 10.1016/j.heares.2007.12.002 Rybak LP, 2009, TOHOKU J EXP MED, V219, P177, DOI 10.1620/tjem.219.177 Safaei R, 2006, CANCER LETT, V234, P34, DOI 10.1016/j.canlet.2005.07.046 Salvi R., 2009, ABSTR ASS RES OT, V756, P256 Skinner R, 2004, EUR J CANCER, V40, P2352, DOI 10.1016/j.ejca.2004.08.002 van Ruijven MWM, 2004, HEARING RES, V197, P44, DOI 10.1016/j.heares.2004.07.014 Wei L, 2010, NEUROSCIENCE, V168, P288, DOI 10.1016/j.neuroscience.2010.03.015 NR 28 TC 24 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 196 EP 203 DI 10.1016/j.heares.2011.08.002 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300022 PM 21854840 ER PT J AU Chen, ZL Hue, GS Glasberg, BR Moore, BCJ AF Chen, Zhangli Hue, Guangshu Glasberg, Brian R. Moore, Brian C. J. TI A new method of calculating auditory excitation patterns and loudness for steady sounds SO HEARING RESEARCH LA English DT Article ID PSYCHOPHYSICAL TUNING CURVES; FREQUENCY-SELECTIVITY; BINAURAL LOUDNESS; NOTCHED-NOISE; FILTER NONLINEARITY; 2-TONE INHIBITION; LEVEL CONTOURS; CRITICAL BANDS; NERVE FIBERS; PURE-TONES AB A new method for calculating auditory excitation patterns and loudness for steady sounds is described. The method is based on a nonlinear filterbank in which each filter is the sum of a broad passive filter and a sharp active filter. All filters have a rounded-exponential shape. For each center frequency (CF), the gain of the active filter is controlled by the output of the passive filter. The parameters of the model were derived from large sets of previously published notched-noise masking data obtained from human subjects. Excitation patterns derived using the new filterbank include the effects of basilar membrane compression. Loudness can be calculated as the area under the excitation pattern when plotted in intensity-like units on an ERB(N)-number (Cam) scale; no transformation from excitation to specific loudness is required. The method predicts the standard equal-loudness contours and loudness as a function of bandwidth with good accuracy. With some additional assumptions, the method also gives reasonably accurate predictions of partial loudness. (C) 2011 Elsevier B.V. All rights reserved. C1 [Chen, Zhangli; Glasberg, Brian R.; Moore, Brian C. J.] Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England. [Chen, Zhangli; Hue, Guangshu] Tsinghua Univ, Sch Med, Dept Biomed Engn, Beijing 100084, Peoples R China. RP Moore, BCJ (reprint author), Univ Cambridge, Dept Expt Psychol, Downing St, Cambridge CB2 3EB, England. EM bcjm@cam.ac.uk RI Moore, Brian/I-5541-2012 FU China Scholarship Council; National Natural Science Foundation of China; Tsinghua-Yu-Yuan Medical Sciences Fund; Medical Research Council (UK) FX Author Chen was a visiting PhD student in the laboratory of author Moore, sponsored by the China Scholarship Council. The work of authors Chen and Hu was supported by the National Natural Science Foundation of China and Tsinghua-Yu-Yuan Medical Sciences Fund. The work of authors Glasberg and Moore was supported by the Medical Research Council (UK). We thank Masashi Unoki for providing his software and data and Ray Meddis for helpful discussions. We also thank three reviewers for helpful comments. CR Aibara R, 2001, HEARING RES, V152, P100, DOI 10.1016/S0378-5955(00)00240-9 [Anonymous], 2003, 226 ISO [Anonymous], 2005, 3897 ISO [Anonymous], 1991, 45631 DIN [Anonymous], 2007, S342007 ANSI ARTHUR RM, 1971, J PHYSIOL-LONDON, V212, P593 Baker R. J., 1998, PSYCHOPHYSICAL PHYSL, P81 Baker RJ, 2006, J ACOUST SOC AM, V119, P454, DOI 10.1121/1.2139100 Baumgarte F, 1997, P 1997 IEEE ASSP WOR, P1 BUUS S, 1986, J ACOUST SOC AM, V80, P1646, DOI 10.1121/1.394329 Buus S, 1998, J ACOUST SOC AM, V104, P399, DOI 10.1121/1.423295 Charbonneau J., 2009, INTER NOISE, P4730 DUIFHUIS H, 1980, J ACOUST SOC AM, V67, P914, DOI 10.1121/1.383971 Epstein M, 2009, EAR HEARING, V30, P234, DOI 10.1097/AUD.0b013e3181976993 Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47 Fletcher H, 1933, J ACOUST SOC AM, V5, P82, DOI 10.1121/1.1915637 Gabriel B, 1997, ACUSTICA, V83, P670 Glasberg B. R., 1999, PSYCHOPHYSICS PHYSL, P143 Glasberg BR, 2006, J ACOUST SOC AM, V120, P585, DOI 10.1121/1.2214151 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Glasberg BR, 2000, J ACOUST SOC AM, V108, P2318, DOI 10.1121/1.1315291 GLASBERG BR, 1984, J ACOUST SOC AM, V76, P419, DOI 10.1121/1.391584 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HARTMANN WM, 1997, SIGNALS SOUND SENSAT HELLMAN RP, 1976, J ACOUST SOC AM, V60, P672, DOI 10.1121/1.381138 HELLMAN RP, 1961, J ACOUST SOC AM, V33, P687, DOI 10.1121/1.1908764 Houtgast T, 1974, THESIS FREE U AMSTER HOUTGAST T, 1973, ACUSTICA, V29, P168 Jurado C, 2011, J ACOUST SOC AM, V129, P3166, DOI 10.1121/1.3560535 Jurado C, 2010, J ACOUST SOC AM, V128, P3585, DOI 10.1121/1.3504657 Kluk K, 2004, HEARING RES, V194, P118, DOI 10.1016/j.heares.2004.04.012 Lopez-Poveda EA, 2001, J ACOUST SOC AM, V110, P3107, DOI 10.1121/1.1416197 MARKS LE, 1978, J ACOUST SOC AM, V64, P107, DOI 10.1121/1.381976 Meddis R, 2001, J ACOUST SOC AM, V109, P2852, DOI 10.1121/1.1370357 MOORE BCJ, 1983, J ACOUST SOC AM, V74, P750, DOI 10.1121/1.389861 Moore B C, 1986, Scand Audiol Suppl, V25, P139 Moore BC., 2003, INTRO PSYCHOL HEARIN MOORE BCJ, 1978, J ACOUST SOC AM, V63, P524, DOI 10.1121/1.381752 Moore BCJ, 2007, J ACOUST SOC AM, V121, P1604, DOI 10.1121/1.2431331 Moore BCJ, 1997, J AUDIO ENG SOC, V45, P224 MOORE BCJ, 1987, HEARING RES, V28, P209, DOI 10.1016/0378-5955(87)90050-5 PATTERSO.RD, 1974, J ACOUST SOC AM, V55, P802, DOI 10.1121/1.1914603 PATTERSON RD, 1976, J ACOUST SOC AM, V59, P640, DOI 10.1121/1.380914 PATTERSON RD, 1982, J ACOUST SOC AM, V72, P1788, DOI 10.1121/1.388652 Patterson RD, 1986, FREQUENCY SELECTIVIT, P123 Patterson RD, 2003, J ACOUST SOC AM, V114, P1529, DOI 10.1121/1.1600720 Plack Christopher J., 1995, P123, DOI 10.1016/B978-012505626-7/50006-6 POLLACK I, 1949, AM J PSYCHOL, V62, P412, DOI 10.2307/1418283 Puria S, 1997, J ACOUST SOC AM, V101, P2754, DOI 10.1121/1.418563 ROBLES L, 1986, J ACOUST SOC AM, V80, P1364, DOI 10.1121/1.394389 Robles L, 2001, PHYSIOL REV, V81, P1305 Rosen S, 1998, J ACOUST SOC AM, V103, P2539, DOI 10.1121/1.422775 ROSEN S, 1992, J ACOUST SOC AM, V92, P773, DOI 10.1121/1.403946 ROSEN S, 1992, ADV BIOSCI, V83, P171 SACHS MB, 1968, J ACOUST SOC AM, V43, P1120, DOI 10.1121/1.1910947 SCHARF B, 1964, ACUSTICA, V14, P16 SCHARF B, 1961, PSYCHOL BULL, V58, P205, DOI 10.1037/h0049235 SHANNON RV, 1976, J ACOUST SOC AM, V59, P1460, DOI 10.1121/1.381007 Sivonen VP, 2006, J ACOUST SOC AM, V119, P2965, DOI 10.1021/1.2184268 Sivonen VP, 2011, SPRINGER HANDB AUDIT, V37, P169, DOI 10.1007/978-1-4419-6712-1_7 Suzuki Y, 2004, J ACOUST SOC AM, V116, P918, DOI 10.1121/1.1763601 Unoki M, 2006, J ACOUST SOC AM, V120, P1474, DOI 10.1121/1.2228539 VIEMEISTER NF, 1988, J ACOUST SOC AM, V84, P172, DOI 10.1121/1.396961 Vogten LL, 1974, FACTS MODELS HEARING, P142 VOGTEN LLM, 1978, J ACOUST SOC AM, V63, P1520, DOI 10.1121/1.381846 Whilby S, 2006, J ACOUST SOC AM, V119, P3931, DOI 10.1121/1.2193813 Yasin I, 2005, J ACOUST SOC AM, V118, P2498, DOI 10.1121/1.2035594 Zhang XD, 2001, J ACOUST SOC AM, V109, P648, DOI 10.1121/1.1336503 ZWICKER E, 1961, J ACOUST SOC AM, V33, P248, DOI 10.1121/1.1908630 Zwicker E., 1958, ACUSTICA, V8, P237 ZWICKER E, 1965, PSYCHOL REV, V72, P3, DOI 10.1037/h0021703 Zwicker E., 1963, Acustica, V13 ZWICKER E, 1991, J ACOUST SOC AM, V89, P756, DOI 10.1121/1.1894635 ZWICKER E, 1957, J ACOUST SOC AM, V29, P548, DOI 10.1121/1.1908963 Zwicker E., 1970, FREQUENCY ANAL PERIO, P376 Zwicker E., 1956, ACUSTICA, V6, P356 NR 76 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 204 EP 215 DI 10.1016/j.heares.2011.08.001 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300023 PM 21851853 ER PT J AU Altmann, CF Klein, C Heinemann, LV Wibral, M Gaese, BH Kaiser, J AF Altmann, Christian F. Klein, Carsten Heinemann, Linda V. Wibral, Michael Gaese, Bernhard H. Kaiser, Jochen TI Repetition of complex frequency-modulated sweeps enhances neuromagnetic responses in the human auditory cortex SO HEARING RESEARCH LA English DT Article ID MECHANISMS UNDERLYING SELECTIVITY; EVENT-RELATED POTENTIALS; MISMATCH NEGATIVITY; NEURAL REPRESENTATIONS; SENSORY MEMORY; NATURAL SOUNDS; HUMAN BRAIN; ADAPTATION; DIRECTION; PERCEPTION AB Frequency modulations (FM) play a decisive role in our everyday communication. To investigate the processing of FM direction we measured change-related auditory cortex responses with human magnetoencephalography. First, we tested for FM direction selectivity by presenting FM sweeps with the same FM directions in a repeated series (RS). These series were interrupted by a deviant with the opposite FM direction. Second, we tested for the representation of abstract rules and presented series of FM sweeps with alternating FM directions (AS). The AS series were interrupted by a deviant which was a repetition of the series' last FM sweep but broke the alternating pattern. For the RS, the deviant did not evoke significant change-related responses in the auditory cortex. However, for the first stimulus after the deviant, significantly stronger responses compared to standards were observed bilaterally in the auditory cortex at about 200 ms after stimulus onset. For the AS, we observed a similar bilateral change-related signal enhancement for a deviant FM sweep breaking the alternating series. Since this response enhancement occurred for both RS and AS even after a single FM sweep repetition, we conclude that these activities represent local signal enhancements rather than change-related responses due to abstract rule violation. In sum, our data indicate repetition enhancement due to spectro-temporal interactions between successive complex FM sweeps. These enhancement effects were observed for the first but not further repetitions suggesting a second-order repetition suppression of the initial repetition enhancement. (C) 2011 Elsevier B.V. All rights reserved. C1 [Altmann, Christian F.] Kyoto Univ, Career Path Promot Unit Young Life Scientists, Sakyo Ku, Kyoto 6068501, Japan. [Altmann, Christian F.; Klein, Carsten; Heinemann, Linda V.; Kaiser, Jochen] Goethe Univ Frankfurt, Inst Med Psychol, D-60528 Frankfurt, Germany. [Altmann, Christian F.] Kyoto Univ, Grad Sch Med, Human Brain Res Ctr, Kyoto 6068507, Japan. [Klein, Carsten; Gaese, Bernhard H.] Goethe Univ Frankfurt, Inst Cell Biol & Neurosci, D-60528 Frankfurt, Germany. [Wibral, Michael] Goethe Univ Frankfurt, Brain Imaging Ctr, Magnetoencephalog Unit, D-60528 Frankfurt, Germany. RP Altmann, CF (reprint author), Kyoto Univ, Career Path Promot Unit Young Life Scientists, Sakyo Ku, Yoshida Konoe Cho, Kyoto 6068501, Japan. EM altmann@cp.kyoto-u.ac.jp FU Deutsche Forschungsgemeinschaft (DFG) [AL 1074/2-1] FX We are most grateful for helpful comments on an earlier version of this manuscript from Torsten Baldeweg and for support by Deutsche Forschungsgemeinschaft (DFG AL 1074/2-1). CR Altmann CF, 2007, NEUROIMAGE, V35, P1192, DOI 10.1016/j.neuroimage.2007.01.007 Altmann CF, 2008, CEREB CORTEX, V18, P1350, DOI 10.1093/cercor/bhm166 Bailey PJ, 2002, BRIT MED BULL, V63, P135, DOI 10.1093/bmb/63.1.135 Baldeweg T, 2006, TRENDS COGN SCI, V10, P93, DOI 10.1016/j.tics.2006.01.010 Bartlett EL, 2005, J NEUROPHYSIOL, V94, P83, DOI 10.1152/jn.01124.2004 Brosch M, 2008, EXP BRAIN RES, V184, P349, DOI 10.1007/s00221-007-1109-7 Carral V, 2005, NEUROREPORT, V16, P301, DOI 10.1097/00001756-200502280-00020 Efron B., 1994, INTRO BOOTSTRAP Fishman Y.I., 2001, HEARING RES, V151, P161 Gaab N, 2007, RESTOR NEUROL NEUROS, V25, P295 GARDNER RB, 1979, J ACOUST SOC AM, V66, P704, DOI 10.1121/1.383220 Haenschel C, 2005, J NEUROSCI, V25, P10494, DOI 10.1523/JNEUROSCI.1227-05.2005 Heinemann LV, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0015548 HOLM S, 1979, SCAND J STAT, V6, P65 Horvath J, 2001, COGNITIVE BRAIN RES, V12, P131, DOI 10.1016/S0926-6410(01)00038-6 Horvath J, 2004, NEUROSCI LETT, V368, P157, DOI 10.1016/j.neulet.2004.07.004 Hoshiyama M, 2007, EUR J NEUROSCI, V25, P854, DOI 10.1111/j.1460-9568.2007.05315.x Kaan E, 2007, BRAIN RES, V1148, P113, DOI 10.1016/j.brainres.2007.02.019 Kanwal JS, 2007, FRONT BIOSCI, V12, P4621, DOI 10.2741/2413 KAWASAKI M, 1988, J NEUROPHYSIOL, V59, P623 Liang L, 2002, J NEUROPHYSIOL, V87, P2237, DOI 10.1152/jn.00834.2001 LIBERMAN AM, 1989, SCIENCE, V243, P489, DOI 10.1126/science.2643163 List A, 2007, BRAIN RES, V1153, P122, DOI 10.1016/j.brainres.2007.03.040 Loveless N, 1996, EVOKED POTENTIAL, V100, P220, DOI 10.1016/0168-5597(95)00271-5 LOVELESS N, 1989, ELECTROEN CLIN NEURO, V74, P217, DOI 10.1016/0013-4694(89)90008-4 Luo H, 2007, HEARING RES, V224, P75, DOI 10.1016/j.heares.2006.11.007 NAATANEN R, 1988, ELECTROEN CLIN NEURO, V69, P523, DOI 10.1016/0013-4694(88)90164-2 NAATANEN R, 1978, ACTA PSYCHOL, V42, P313, DOI 10.1016/0001-6918(78)90006-9 Naatanen R, 2007, CLIN NEUROPHYSIOL, V118, P2544, DOI 10.1016/j.clinph.2007.04.026 Okamoto H, 2010, J NEUROPHYSIOL, V103, P244, DOI 10.1152/jn.00530.2009 Paavilainen P, 2003, NEUROREPORT, V14, P715, DOI 10.1097/01.wnr.0000064985.96259.ce PARDO PJ, 1993, NEUROSCI LETT, V159, P43, DOI 10.1016/0304-3940(93)90794-L Pollak GD, 2011, HEARING RES, V273, P134, DOI 10.1016/j.heares.2010.03.083 Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800 Razak KA, 2006, J NEUROPHYSIOL, V96, P1303, DOI 10.1152/jn.00020.2006 Razak KA, 2008, J NEUROSCI, V28, P9806, DOI 10.1523/JNEUROSCI.1293-08.2008 SAMS M, 1985, ELECTROEN CLIN NEURO, V62, P437, DOI 10.1016/0168-5597(85)90054-1 SAMS M, 1991, NEUROSCI LETT, V121, P43, DOI 10.1016/0304-3940(91)90645-A Shechter B, 2006, HEARING RES, V221, P91, DOI 10.1016/j.heares.2006.08.002 SHEPARD RN, 1964, J ACOUST SOC AM, V36, P2346, DOI 10.1121/1.1919362 Talairach J., 1988, COPLANAR STEREOTAXIC Tallal P, 1997, FOUNDATIONS OF READING ACQUISITION AND DYSLEXIA, P49 TERVANIEMI M, 1994, NEUROREPORT, V5, P844, DOI 10.1097/00001756-199403000-00027 Tian B, 2004, J NEUROPHYSIOL, V92, P2993, DOI 10.1152/jn.00472.2003 TIITINEN H, 1993, PSYCHOPHYSIOLOGY, V30, P537, DOI 10.1111/j.1469-8986.1993.tb02078.x Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032 Ulanovsky N, 2004, J NEUROSCI, V24, P10440, DOI 10.1523/JNEUROSCI.1905-04.2004 Witton C, 1998, CURR BIOL, V8, P791, DOI 10.1016/S0960-9822(98)70320-3 Yang LJ, 2008, CHINESE MED J-PEKING, V121, P2429 Zhang LI, 2003, NATURE, V424, P201, DOI 10.1038/nature01796 NR 50 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 216 EP 224 DI 10.1016/j.heares.2011.07.008 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300024 PM 21839158 ER PT J AU Deroche, MLD Culling, JF AF Deroche, Mickael L. D. Culling, John F. TI Narrow noise band detection in a complex masker: Masking level difference due to harmonicity SO HEARING RESEARCH LA English DT Article ID CONCURRENT VOWEL IDENTIFICATION; DIFFERENT FUNDAMENTAL FREQUENCIES; PERCEPTUAL SEPARATION; PERIOD PATTERNS; WITHIN-CHANNEL; INNER-EAR; PHASE; TONES; CANCELLATION; MODEL AB Three experiments investigated listeners ability to detect a narrow band of noise, centered on one partial of a random-phase complex tone, as a function of inharmonicity. Inharmonicity was generated by randomly mistuning the partial frequencies from a 100-Hz fundamental frequency (FO). In experiment 1, masked detection thresholds were lower when the masker was harmonic than when it was inharmonic for target bands in the range 0.5-2.5 kHz. The presence of this masking level difference due to harmonicity (HMLD) in regions of resolved partials and the reduction of the HMLD with increasing center frequency did not support the idea that HMLD was primarily caused by the envelope modulations produced by the beating of unresolved partials within an auditory filter. In experiment 2, masker mistunings ranging beyond 12% of the FO disrupted the HMLD while smaller mistunings gave thresholds similar to a harmonic masker. In experiment 3, all partials contributed to some extent to the HMLD, but the harmonicity of partials neighboring the target had a greater influence than distant partials. The observed HMLDs can best be accounted for by a mechanism of harmonic cancellation. (C) 2011 Elsevier B.V. All rights reserved. C1 [Deroche, Mickael L. D.] Univ Maryland, Cochlear Implants & Psychophys Lab, Dept Hearing & Speech Sci, College Pk, MD 20742 USA. [Culling, John F.] Cardiff Univ, Sch Psychol, Cardiff CF10 3AT, S Glam, Wales. RP Deroche, MLD (reprint author), Univ Maryland, Cochlear Implants & Psychophys Lab, Dept Hearing & Speech Sci, College Pk, MD 20742 USA. EM mderoche@hesp.umd.edu RI Culling, John/D-1468-2009 FU UK EPSRC FX This work was supported by the UK EPSRC. We would like to thank the reviewers of this article as well as those of previous versions for their thorough comments. CR Alcantara JI, 2003, J ACOUST SOC AM, V114, P2158, DOI 10.1121/1.1608959 American National Standards Institute, 1997, METH CALC SPEECH INT ASSMANN PF, 1990, J ACOUST SOC AM, V88, P680, DOI 10.1121/1.399772 Bird J., 1998, PSYCHOPHYSICAL PHYSL, P263 BROKX JPL, 1982, J PHONETICS, V10, P23 Brunstrom JM, 1998, J ACOUST SOC AM, V104, P3511, DOI 10.1121/1.423934 Carlyon RP, 1997, J ACOUST SOC AM, V101, P3636, DOI 10.1121/1.418324 Carlyon RP, 1997, J ACOUST SOC AM, V101, P3648, DOI 10.1121/1.418325 CHALIKIA MH, 1993, PERCEPT PSYCHOPHYS, V53, P125, DOI 10.3758/BF03211722 CULLING JF, 1993, J ACOUST SOC AM, V93, P3454, DOI 10.1121/1.405675 DECHEVEIGNE A, 1995, J ACOUST SOC AM, V97, P3736 deCheveigne A, 1997, J ACOUST SOC AM, V101, P2839, DOI 10.1121/1.418517 deCheveigne A, 1997, J ACOUST SOC AM, V101, P2848, DOI 10.1121/1.419476 DECHEVEIGNE A, 1993, J ACOUST SOC AM, V93, P3271 deCheveigne A, 1997, J ACOUST SOC AM, V101, P2857, DOI 10.1121/1.419480 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Gockel H, 2002, J ACOUST SOC AM, V111, P2759, DOI 10.1121/1.1480422 JOHNSTONE BM, 1986, HEARING RES, V22, P147, DOI 10.1016/0378-5955(86)90090-0 KOHLRAUSCH A, 1995, J ACOUST SOC AM, V97, P1817, DOI 10.1121/1.413097 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LICKLIDER JCR, 1951, EXPERIENTIA, V7, P128, DOI 10.1007/BF02156143 MEDDIS R, 1992, J ACOUST SOC AM, V91, P233, DOI 10.1121/1.402767 Mehrgardt S., 1983, HEARING PHYSL BASES MOORE BCJ, 1985, J ACOUST SOC AM, V77, P1853, DOI 10.1121/1.391936 MOORE BCJ, 1985, J ACOUST SOC AM, V77, P1861, DOI 10.1121/1.391937 Oxenham AJ, 2001, J ACOUST SOC AM, V110, P3169, DOI 10.1121/1.1414706 OXENHAM AJ, 1994, HEARING RES, V80, P105, DOI 10.1016/0378-5955(94)90014-0 PARSONS TW, 1976, J ACOUST SOC AM, V60, P911, DOI 10.1121/1.381172 Roberts B, 2006, HEARING RES, V222, P79, DOI 10.1016/j.heares.2006.08.013 Rossi-Katz JA, 2005, J ACOUST SOC AM, V118, P2588, DOI 10.1121/1.2031975 Scheffers M. T. M., 1983, THESIS RIJKSUNIVERSI SMITH BK, 1986, J ACOUST SOC AM, V80, P1631, DOI 10.1121/1.394327 Summerfield Q., 1992, J ACOUST SOC AM, V92, P2317, DOI 10.1121/1.405031 SUMMERFIELD Q, 1991, J ACOUST SOC AM, V89, P1364, DOI 10.1121/1.400659 Summers V, 1998, HEARING RES, V118, P139, DOI 10.1016/S0378-5955(98)00030-6 Treurniet WC, 2001, J ACOUST SOC AM, V109, P306, DOI 10.1121/1.1328791 Treurniet WC, 2001, J ACOUST SOC AM, V110, P1267, DOI 10.1121/1.1391245 Verhey JL, 1999, J ACOUST SOC AM, V106, P2733, DOI 10.1121/1.428101 YATES GK, 1990, HEARING RES, V50, P145, DOI 10.1016/0378-5955(90)90041-M NR 39 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 225 EP 235 DI 10.1016/j.heares.2011.07.005 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300025 PM 21820501 ER PT J AU Moon, IS So, JH Jung, YM Lee, WS Kim, EY Choi, JH Kim, CH Choi, JY AF Moon, In Seok So, Ju-Hoon Jung, Young-Mi Lee, Won-Sang Kim, Eun Young Choi, Jung-Hwa Kim, Cheol-Hee Choi, Jae Young TI Fucoidan promotes mechanosensory hair cell regeneration following amino glycoside-induced cell death SO HEARING RESEARCH LA English DT Article ID ZEBRAFISH LATERAL-LINE; AMINOGLYCOSIDE TOXICITY; INNER-EAR; GENES; NOTCH; OTOTOXICITY; COCHLEA; HEARING; SCREEN; MODEL AB Objective: Lateral line system of the zebrafish is a useful model for study of hair cell toxicity and regeneration. We found that low molecular weight fucoidan (LMWF) stimulated the regeneration of mechanosensory hair cells after neomycin-induced cell death in zebrafish lateral line. The aims of this study were to quantify the regenerative effects of LMWF and determine their relationship to the Notch and FGF signaling pathways. Methods: Wild-type zebrafish and three different transgenic zebrafish lines (Pou4f3::GFP, scm1::GFP, and E720::GFP) were used. At 4.5-6 days post-fertilization, lateral line hair cells of larvae were eliminated using neomycin (500 mu M). Larvae were then treated with LMWF. Neuromasts were observed using confocal microscopy. Stereocilia morphology was observed using scanning electron microscopy, and the location and status of regeneration was assessed using 5-bromo-2-deoxyuridine (BrdU) incorporation. Results: Hair cells damaged by neomycin treatment regenerated faster in wild-type and Pou4f3::GFP larvae treated with LMWF (50 mu g/ml) than in untreated controls. LMWF also enhanced the regeneration of supporting cells in scm1::GFP and E720::GFP larvae. Increased numbers of BrdU-labeled cells were found after LMWF treatment in neuromast regions corresponding to internal and peripheral supporting cells. The effect of LMWF was mimicked by the Notch signaling inhibitor N[N-(3,5-difluorophenacetyl)1-alanyl]-5-phenylglycine t-butyl ester (DAPT), but the effects of LMWF and DAPT were not additive. Conclusion: LMWF enhances the regeneration of hair cells damaged by neomycin. The mechanism may involve the Notch signaling pathway. LMWF shows promise as a therapeutic agent for hearing and balance disorders. (C) 2011 Elsevier B.V. All rights reserved. C1 [So, Ju-Hoon; Choi, Jung-Hwa; Kim, Cheol-Hee] Chungnam Natl Univ, Dept Biol, Taejon, South Korea. [So, Ju-Hoon; Choi, Jung-Hwa; Kim, Cheol-Hee] Chungnam Natl Univ, GRAST, Taejon, South Korea. [Moon, In Seok] Chung Ang Univ, Dept Otorhinolaryngol Head & Neck Surg, Coll Med, Seoul 156756, South Korea. [Jung, Young-Mi] Kyoungpook Natl Univ, Dept Genet Engn, Coll Nat Sci, Taegu, South Korea. [Lee, Won-Sang; Kim, Eun Young; Choi, Jae Young] Yonsei Univ, Dept Otorhinolaryngol Head & Neck Surg, Coll Med, Seoul 120749, South Korea. RP Kim, CH (reprint author), Chungnam Natl Univ, Dept Biol, Taejon, South Korea. EM zebrakim@cnu.ac.kr; jychoi@yuhs.ac RI Kim, Cheol-Hee/F-6278-2013 FU Korean Healthcare Technology R&D Project for Health, Welfare & Family Affairs, Republic of Korea [A090496]; National Research Foundation of Korea (NRF) through National Core Research Center for Nanomedical Technology [R15-2004-024-00000-0]; NRF; Ministry of Education. Science and Technology [20100024645] FX This study was supported by a grant of the Korean Healthcare Technology R&D Project for Health, Welfare & Family Affairs, Republic of Korea (A090496) and National Research Foundation of Korea (NRF) through National Core Research Center for Nanomedical Technology (R15-2004-024-00000-0) and a Basic Science Research Program through the NRF funded by the Ministry of Education. Science and Technology (20100024645). CR Adler HJ, 1996, NEUROSCI LETT, V205, P17, DOI 10.1016/0304-3940(96)12367-3 BAIRD RA, 1993, HEARING RES, V65, P164, DOI 10.1016/0378-5955(93)90211-I Behra M, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000455 Changotade SIT, 2008, J BIOMED MATER RES A, V87A, P666, DOI 10.1002/jbm.a.31819 Chiu LL, 2008, JARO-J ASSOC RES OTO, V9, P178, DOI 10.1007/s10162-008-0118-y Fukuta K, 2008, J PHARM PHARMACOL, V60, P499, DOI 10.1211/jpp.60.4.0013 Harris JA, 2003, JARO, V4, P219, DOI 10.1007/s10162-002-3022-x Hori R, 2007, NEUROREPORT, V18, P1911 Itoh M, 2001, MECH DEVELOP, V102, P263, DOI 10.1016/S0925-4773(01)00308-2 Jung Y.M., 2008, OFF J KOREAN SOC TOX, V24, P79 Jung Y.M., 2007, BIOAVILABLE FUCOIDAN Kang DH, 2009, J MED CHEM, V52, P3093, DOI 10.1021/jm8014734 Kim CH, 2008, APOPTOSIS, V13, P1184, DOI 10.1007/s10495-008-0242-5 Kim KR, 2005, EUR J PHARMACOL, V528, P37, DOI 10.1016/j.ejphar.2005.10.027 Li B, 2008, MOLECULES, V13, P1671, DOI 10.3390/molecules13081671 LIPPE WR, 1991, HEARING RES, V56, P203, DOI 10.1016/0378-5955(91)90171-5 Luyt CE, 2003, J PHARMACOL EXP THER, V305, P24, DOI 10.1124/jpet.102.046144 Ma EY, 2008, J NEUROSCI, V28, P2261, DOI 10.1523/JNEUROSCI.4372-07.2008 Ma EY, 2009, CURR BIOL, V19, pR381, DOI 10.1016/j.cub.2009.03.057 Millimaki BB, 2007, DEVELOPMENT, V134, P295, DOI 10.1242/dev.02734 Nechiporuk A, 2008, SCIENCE, V320, P1774, DOI 10.1126/science.1156547 Nicolson T, 2005, ANNU REV GENET, V39, P9, DOI 10.1146/annurev.genet.39.073003.105049 Owens KN, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000020 Parinov S, 2004, DEV DYNAM, V231, P449, DOI 10.1002/dvdy.20157 RUBEL EW, 1995, SCIENCE, V267, P701, DOI 10.1126/science.7839150 Ruben R. J., 1967, ACTA OTO-LARYNGOL, V220, P1 Rybak LP, 2007, KIDNEY INT, V72, P931, DOI 10.1038/sj.ki.5002434 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 Stone JS, 2000, P NATL ACAD SCI USA, V97, P11714, DOI 10.1073/pnas.97.22.11714 Sweeney EA, 2002, BLOOD, V99, P44, DOI 10.1182/blood.V99.1.44 Ton C, 2005, HEARING RES, V208, P79, DOI 10.1016/j.heares.2005.05.005 Wang J, 2009, INT J BIOL MACROMOL, V44, P170, DOI 10.1016/j.ijbiomac.2008.11.010 Westerfield M., 2000, ZEBRAFISH BOOK GUIDE, V4th Whitfield TT, 2002, J NEUROBIOL, V53, P157, DOI 10.1002/neu.10123 Xiao T, 2005, DEVELOPMENT, V132, P2955, DOI 10.1242/dev.01861 NR 35 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 236 EP 242 DI 10.1016/j.heares.2011.07.007 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300026 PM 21810458 ER PT J AU Weegerink, NJD Schraders, M Leijendeckers, J Slieker, K Huygen, PLM Hoefsloot, L Oostrik, J Pennings, RJE Simon, A Snik, A Kremer, H Kunst, HPM AF Weegerink, N. J. D. Schraders, M. Leijendeckers, J. Slieker, K. Huygen, P. L. M. Hoefsloot, L. Oostrik, J. Pennings, R. J. E. Simon, A. Snik, A. Kremer, H. Kunst, H. P. M. TI Audiometric characteristics of a Dutch family with Muckle-Wells syndrome SO HEARING RESEARCH LA English DT Article ID HEREDITARY PERIODIC FEVER; RICH REPEAT DOMAIN; NF-KAPPA-B; AUTOINFLAMMATORY SYNDROMES; ARTICULAR SYNDROME; CIAS1 MUTATIONS; AA AMYLOIDOSIS; INTERLEUKIN-1-BETA SECRETION; SPEECH RECEPTION; AFFECTED MEMBERS AB Description of the audiometric and vestibular characteristics of a Dutch family with Muckle-Wells syndrome (MWS). Examination of all family members consisted of pure tone audiometry, otoscopy and genetic analysis. In addition, a selected group underwent speech audiometry, vestibulo-ocular examination, acoustic reflex testing and tests assessing loudness scaling, gap detection, difference limen for frequency and speech perception in noise. Linear regression analyses were performed on the audiometric data. Six clinically affected family members participated in this study and all were carriers of a p.Tyr859His mutation in the NLPR3 gene. Most affected family members reported bilateral, slowly progressive hearing impairment since childhood. Hearing impairment started at the high frequencies and the low- and mid-frequency threshold values deteriorated with advancing age. Annual threshold deterioration (ATD) ranged from 1.3 to 1.9 dB/year with the highest values at the lower frequencies. Longitudinal linear regression analysis demonstrated significant progression for a number of frequencies in five individuals. Speech recognition scores were clearly affected. However, these individuals tended to have higher speech recognition scores than presbyacusis patients at similar PTA(1.2.4) (kHz) levels. The loudness growth curves were steeper than those found in individuals with normal hearing, except for one family member (individual IV:6). Suprathreshold measurements, such as difference limen for frequency (DLf), gap detection and particularly speech perception in noise were within the normal range or at least close to data obtained in two groups of patients with a so-called conductive type of hearing loss, situated in the cochlea. Hearing impairment in MWS is variable and shows resemblance to previously described intra-cochlear conductive hearing impairment. This could be helpful in elucidating the pathogenesis of hearing impairment in MWS. Other associated symptoms of MWS were mild and nonspecific in the present family. Therefore, even without any obvious syndromic features, MWS can be the cause of sensorineural hearing impairment, especially when combined with (mild) skin rash and musculoskeletal symptoms. An early diagnosis of MWS is essential to prevent irreversible damage from amyloidosis. The effect of IL-1/beta inhibitors on hearing impairment is more controversial, but an early start of treatment seems to be essential. Therefore, our results are of importance in patient care and counselling. (C) 2011 Elsevier B.V. All rights reserved. C1 [Weegerink, N. J. D.; Schraders, M.; Leijendeckers, J.; Huygen, P. L. M.; Hoefsloot, L.; Oostrik, J.; Pennings, R. J. E.; Snik, A.; Kremer, H.; Kunst, H. P. M.] Radboud Univ Nijmegen, Dept Otorhinolaryngol Head & Neck Surg, Med Ctr, NL-6500 HB Nijmegen, Netherlands. [Weegerink, N. J. D.; Schraders, M.; Leijendeckers, J.; Oostrik, J.; Pennings, R. J. E.; Snik, A.; Kremer, H.; Kunst, H. P. M.] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, NL-6500 HB Nijmegen, Netherlands. [Schraders, M.; Oostrik, J.; Kremer, H.] Radboud Univ Nijmegen, Nijmegen Ctr Mol Life Sci, NL-6500 HB Nijmegen, Netherlands. [Slieker, K.; Simon, A.] Radboud Univ Nijmegen, Dept Internal Med, Med Ctr, NL-6500 HB Nijmegen, Netherlands. [Hoefsloot, L.; Kremer, H.] Radboud Univ Nijmegen, Dept Human Genet, Med Ctr, NL-6500 HB Nijmegen, Netherlands. RP Weegerink, NJD (reprint author), Radboud Univ Nijmegen, Dept Otorhinolaryngol Head & Neck Surg, Med Ctr, POB 9101, NL-6500 HB Nijmegen, Netherlands. EM N.Weegerink@kno.umcn.nl; M.Schraders@antrg.umcn.nl; J.Leijendeckers@kno.umcn.nl; K.Slieker@aig.umcn.nl; P.Huygen@kno.umcn.nl; L.Hoefsloot@antrg.umcn.nl; J.Oostrik@antrg.umcn.nl; R.Pennings@kno.umcn.nl; A.Simon@aig.umcn.nl; A.Snik@kno.umcn.nl; H.Kremer@antrg.umcn.nl; H.Kunst@kno.umcn.nl RI Simon, Anna/D-3757-2009; Kremer, Hannie/F-5126-2010; Kunst, Henricus/J-6456-2012; Pennings, Ronald/J-6651-2012; Snik, Ad/H-8092-2014 OI Simon, Anna/0000-0002-6141-7921; FU Heinsius Houbolt foundation; INTERREG IV A-program Germany-the Netherlands FX This study was supported by a grant from the Heinsius Houbolt foundation and by a grant from the INTERREG IV A-program Germany-the Netherlands. CR Aganna E, 2002, ARTHRITIS RHEUM, V46, P2445, DOI 10.1002/art.10509 Aganna E, 2004, GENES IMMUN, V5, P289, DOI 10.1038/sj.gene.6364070 Agostini L, 2004, IMMUNITY, V20, P319, DOI 10.1016/S1074-7613(04)00046-9 Aksentijevich I, 2007, ARTHRITIS RHEUM, V56, P1273, DOI 10.1002/art.22491 Albrecht M, 2003, FEBS LETT, V554, P520, DOI 10.1016/S0014-5793(03)01222-5 Alves Fátima R A, 2005, Braz J Otorhinolaryngol, V71, P813 Arostegui JI, 2004, ARTHRITIS RHEUM, V50, P4045, DOI 10.1002/art.20633 Biswas D, 2010, INT J PEDIATR OTORHI, V74, P553, DOI [10.1016/j.ijporl.2010.02.023, 10.1016/j.ijpor1.2010.02.023] Brydges SD, 2009, IMMUNITY, V30, P875, DOI 10.1016/j.immuni.2009.05.005 Cuisset L, 1999, AM J HUM GENET, V65, P1054, DOI 10.1086/302589 Dalgic B, 2007, PEDIATR NEPHROL, V22, P1391, DOI 10.1007/s00467-007-0500-8 De Leenheer EMR, 2002, ANN OTO RHINOL LARYN, V111, P267 De Leenheer EMR, 2004, ANN OTO RHINOL LARYN, V113, P922 Dode C, 2002, AM J HUM GENET, V70, P1498, DOI 10.1086/340786 Dode C, 2003, J NEPHROL, V16, P435 Dowds TA, 2004, J BIOL CHEM, V279, P21924, DOI 10.1074/jbc.M401178200 Feldmann J, 2002, AM J HUM GENET, V71, P198, DOI 10.1086/341357 Frenkel J, 2004, ARTHRITIS RHEUM, V50, P2719, DOI 10.1002/art.20295 Gattorno M, 2007, ARTHRITIS RHEUM, V56, P3138, DOI 10.1002/art.22842 Hawkins PN, 2004, ARTHRITIS RHEUM-US, V50, P607, DOI 10.1002/art.20033 Hawkins PN, 2003, NEW ENGL J MED, V348, P2583, DOI 10.1056/NEJM200306193482523 Hentgen V, 2005, J RHEUMATOL, V32, P747 Hoffman HM, 2001, NAT GENET, V29, P301, DOI 10.1038/ng756 Huygen PL, 2003, AUDIOL MED, V1, P37 International Organization for Standardization, 1984, 7029 ISO Jeru I, 2006, ARTHRITIS RHEUM, V54, P508, DOI 10.1002/art.21618 Jeru I, 2010, ARTHRITIS RHEUM-US, V62, P1176, DOI 10.1002/art.27326 Koike Ryuji, 2007, Mod Rheumatol, V17, P496, DOI 10.1007/s10165-007-0616-5 Kummerle-Deschner JB, 2010, ARTHRITIS RHEUM-US, V62, P3783, DOI 10.1002/art.27696 Latz E, 2010, CURR OPIN IMMUNOL, V22, P28, DOI 10.1016/j.coi.2009.12.004 LEGENT F, 1976, ANN OTO-LAR CHIR C-F, V93, P355 Leslie KS, 2006, ARCH DERMATOL, V142, P1591, DOI 10.1001/archderm.142.12.1591 Maksimovic L, 2008, RHEUMATOLOGY, V47, P309, DOI 10.1093/rheumatology/kem318 Manji GA, 2002, J BIOL CHEM, V277, P11570, DOI 10.1074/jbc.M112208200 Marres H, 1997, ARCH OTOLARYNGOL, V123, P573 Matsushima N, 2005, CELL MOL LIFE SCI, V62, P2771, DOI 10.1007/s00018-005-5187-z McDermott MF, 2000, ARTHRITIS RHEUM, V43, P2034, DOI 10.1002/1529-0131(200009)43:9<2034::AID-ANR14>3.0.CO;2-J Meng GX, 2010, EUR J IMMUNOL, V40, P649, DOI 10.1002/eji.200940191 Meng GX, 2009, IMMUNITY, V30, P860, DOI 10.1016/j.immuni.2009.04.012 Merchant SN, 2004, LARYNGOSCOPE, V114, P1609, DOI 10.1097/00005537-200409000-00020 Mirault T, 2006, ARTHRITIS RHEUM, V54, P1697, DOI 10.1002/art.21807 Moon I.S., 2008, ACTA OTO-LARYNGOL, V129, P932 MOSER LM, 1987, HNO, V35, P318 MUCKLE TJ, 1962, Q J MED, V31, P235 Neven B, 2004, BLOOD, V103, P2809, DOI 10.1182/blood-2003-07-2531 O'Connor W, 2003, J IMMUNOL, V171, P6329 Plantinga RF, 2007, JARO-J ASSOC RES OTO, V8, P1, DOI 10.1007/s10162-006-0060-9 PLOMP R, 1979, AUDIOLOGY, V18, P43 Rynne M, 2006, ANN RHEUM DIS, V65, P533, DOI 10.1136/ard.2005.038091 Sanchez GAM, 2009, DEV MED CHILD NEUROL, V51, P420, DOI 10.1111/j.1469-8749.2009.03336.x Schroder K, 2010, CELL, V140, P821, DOI 10.1016/j.cell.2010.01.040 SMOORENBURG GF, 1992, J ACOUST SOC AM, V91, P421, DOI 10.1121/1.402729 Sutterwala FS, 2006, IMMUNITY, V24, P317, DOI 10.1016/j.immuni.2006.02.004 Kuemmerle-Deschner JB, 2011, ARTHRITIS RHEUM-US, V63, P840, DOI 10.1002/art.30149 van der Hilst JCH, 2005, CLIN EXP MED, V5, P87, DOI 10.1007/s10238-005-0071-6 Yamazaki T, 2008, ARTHRITIS RHEUM, V58, P864, DOI 10.1002/art.23261 NR 56 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 243 EP 251 DI 10.1016/j.heares.2011.07.006 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300027 PM 21810457 ER PT J AU Seldran, F Micheyl, C Truy, E Berger-Vachon, C Thai-Van, H Gallego, S AF Seldran, Fabien Micheyl, Christophe Truy, Eric Berger-Vachon, Christian Thai-Van, Hung Gallego, Stephane TI A model-based analysis of the "combined-stimulation advantage" SO HEARING RESEARCH LA English DT Article ID LOW-FREQUENCY SPEECH; USE HEARING-AIDS; ELECTRIC HEARING; ACOUSTIC HEARING; FUNDAMENTAL-FREQUENCY; PERCEPTUAL SEPARATION; COCHLEAR IMPLANTS; WORD RECOGNITION; OPPOSITE EARS; NOISE AB Improvements in speech-recognition performance resulting from the addition of low-frequency information to electric (or vocoded) signals have attracted considerable interest in recent years. An important question is whether these improvements reflect a form of constructive perceptual interaction-whereby acoustic cues enhance the perception of electric or vocoded signals-or whether they can be explained without assuming any interaction. To address this question, speech-recognition performance was measured in 24 normal-hearing listeners using lowpass-filtered, vocoded, and "combined" (lowpass + vocoded) words presented either in quiet or in a realistic background (cafeteria noise), for different signal-to-noise ratios, different lowpass-filter cutoff frequencies, and different numbers of vocoder bands. The results of these measures were then compared to the predictions of three models of cue combination, including a "probability-summation" model and two Gaussian signal detection theory (SDT) models one (the "independent-noises" model) involving pre-combination noises, and the other (the "late-noise" model) involving post-combination noise. Consistent with previous findings, speech-recognition performance with combined stimulation was significantly higher than performance with vocoded or lowpass stimuli alone, and it was also higher than predicted by the probability-summation model. The two Gaussian-SOT models could account quantitatively for the data. Moreover, a Bayesian model-comparison procedure demonstrated that, given the data, these two models were far more likely than the probability-summation model. Since these models do not involve any constructive-interaction mechanism, this demonstrates that constructive interactions are not needed to explain the combined-stimulation benefits measured in this study. It will be important for future studies to investigate whether this conclusion generalizes to other test conditions, including real EAS, and to further test the assumptions of these different models of the combined-stimulation advantage. (C) 2011 Elsevier B.V. All rights reserved. C1 [Seldran, Fabien; Truy, Eric; Berger-Vachon, Christian; Thai-Van, Hung; Gallego, Stephane] Lyon Neurosci Res Ctr, INSERM, PACS Team Speech Audiol Commun Hlth, U1028, F-69000 Lyon, France. [Seldran, Fabien; Truy, Eric; Berger-Vachon, Christian; Thai-Van, Hung; Gallego, Stephane] Lyon Neurosci Res Ctr, INSERM, PACS Team Speech Audiol Commun Hlth, CNRS,UMR5292, F-69000 Lyon, France. [Seldran, Fabien; Truy, Eric; Berger-Vachon, Christian; Thai-Van, Hung; Gallego, Stephane] Univ Lyon 1, F-69000 Lyon, France. [Seldran, Fabien] Vibrant Med El Hearing Technol GmbH, F-06906 Sophia Antipolis, France. [Micheyl, Christophe] Univ Minnesota, Dept Psychol, Minneapolis, MN 55455 USA. [Truy, Eric; Thai-Van, Hung] Hop Edouard Herriot, Audiol & ENT Dept, F-69437 Lyon, France. RP Seldran, F (reprint author), Hop Edouard Herriot, INSERM, CNRS, Ctr Rech Neurosci Lyon,Equipe Audit,U1028,UMR5292, Pavil U,Pl Arsonval, F-69437 Lyon 03, France. EM fseldran@yahoo.fr; cmicheyl@umn.edu; eric.truy@chu-lyon.fr; christian.berger-vachon@univ-lyon1.fr; hthaivan@gmail.com; sgallego@hotmail.fr FU Vibrant Med-El France [CIFRE 266/2007]; French National Center for Scientific Research (CNRS); NIH [R01 DC05216]; "Laboratoire Audition Conseil" (22 rue Constantine, Lyon 69001, France) FX This work was supported by Vibrant Med-El France (Doctoral Research Grant CIFRE 266/2007 to F.S.), the French National Center for Scientific Research (CNRS), NIH R01 DC05216 (author C.M.) and "Laboratoire Audition Conseil" (22 rue Constantine, Lyon 69001, France) Dr. Christopher Brown and an anonymous reviewer provided useful comments on an earlier version of the manuscript. CR Baskent D, 2010, HEARING RES, V270, P127, DOI 10.1016/j.heares.2010.08.011 Bishop C. M., 2006, PATTERN RECOGNITION BOOTHROYD A, 1988, J ACOUST SOC AM, V84, P101, DOI 10.1121/1.396976 BRAIDA LD, 1991, Q J EXP PSYCHOL-A, V43, P647 BROKX JPL, 1982, J PHONETICS, V10, P23 Brown CA, 2010, HEARING RES, V266, P52, DOI 10.1016/j.heares.2009.08.011 Brown CA, 2009, J ACOUST SOC AM, V125, P1658, DOI 10.1121/1.3068441 Brown CA, 2009, EAR HEARING, V30, P489, DOI 10.1097/AUD.0b013e3181ab2b87 Buchner A, 2009, AUDIOL NEURO-OTOL, V14, P8, DOI 10.1159/000206490 Carlyon RP, 1996, J ACOUST SOC AM, V99, P517, DOI 10.1121/1.414510 Carroll J, 2007, HEARING RES, V231, P42, DOI 10.1016/j.heares.2007.05.004 Chang JE, 2006, IEEE T BIO-MED ENG, V53, P2598, DOI 10.1109/TBME.2006.883793 Chen F, 2010, EAR HEARING, V31, P259, DOI 10.1097/AUD.0b013e3181c7db17 Ching TYC, 2004, EAR HEARING, V25, P9, DOI 10.1097/01.AUD.0000111261.84611.C8 CULLING JF, 1993, J ACOUST SOC AM, V93, P3454, DOI 10.1121/1.405675 Cullington HE, 2011, EAR HEARING, V32, P16, DOI 10.1097/AUD.0b013e3181edfbd2 Dorman MF, 2005, EAR HEARING, V26, P371, DOI 10.1097/00003446-200508000-00001 FAULKNER A, 1990, British Journal of Audiology, V24, P381, DOI 10.3109/03005369009076579 Fletcher H., 1953, SPEECH HEARING COMMU Fournier J. E., 1951, AUDIOMETRIE VOCALE Gantz Bruce J, 2006, Audiol Neurootol, V11 Suppl 1, P63, DOI 10.1159/000095616 Gantz Bruce J, 2004, Cochlear Implants Int, V5 Suppl 1, P8, DOI 10.1002/cii.147 Gantz BJ, 2004, ACTA OTO-LARYNGOL, V124, P344, DOI 10.1080/00016480410016423 Gantz BJ, 2003, LARYNGOSCOPE, V113, P1726, DOI 10.1097/00005537-200310000-00012 Gelman A, 1995, BAYESIAN DATA ANAL Gfeller Kate E, 2006, Audiol Neurootol, V11 Suppl 1, P12, DOI 10.1159/000095608 Green D. M., 1966, SIGNAL DETECTION THE Green D.M., 1958, 81 U MICH EL DEF GRO GREEN DM, 1991, PERCEPT PSYCHOPHYS, V49, P100, DOI 10.3758/BF03211621 Jaynes E. T., 2003, PROBABILITY THEORY L Jeffreys H., 1961, THEORY PROBABILITY, V3rd Jordan M. I., 1999, LEARNING GRAPHICAL M Kong YY, 2005, J ACOUST SOC AM, V117, P1351, DOI 10.1121/1.1857526 Kong YY, 2011, J SPEECH LANG HEAR R, V54, P959, DOI 10.1044/1092-4388(2010/10-0197) Kong YY, 2007, J ACOUST SOC AM, V121, P3717, DOI 10.1121/1.2717408 KRYTER KD, 1962, J ACOUST SOC AM, V34, P1689, DOI 10.1121/1.1909094 Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 Li N, 2008, J ACOUST SOC AM, V123, P2287, DOI 10.1121/1.2839013 Mackay D. J. C., 2003, INFORM THEORY INFERE MacMillan N. A., 2005, DETECTION THEORY USE Micheyl C., REVISITING EVI UNPUB Mok M, 2006, J SPEECH LANG HEAR R, V49, P338, DOI 10.1044/1092-4388(2006/027) MOORE B C J, 1985, British Journal of Audiology, V19, P189, DOI 10.3109/03005368509078973 Moore BCJ, 1997, BRIT J AUDIOL, V31, P227 Müsch H, 2001, J Acoust Soc Am, V109, P2896, DOI 10.1121/1.1371971 NITTROUER S, 1990, J ACOUST SOC AM, V87, P2705, DOI 10.1121/1.399061 PELLI DG, 1985, J OPT SOC AM A, V2, P1508, DOI 10.1364/JOSAA.2.001508 Pirenne MH, 1943, NATURE, V152, P698, DOI 10.1038/152698a0 Qin MK, 2006, J ACOUST SOC AM, V119, P2417, DOI 10.1121/1.2178719 Ronan D, 2004, J ACOUST SOC AM, V116, P1749, DOI 10.1121/1.1777858 Rouder JN, 2005, PSYCHON B REV, V12, P573, DOI 10.3758/BF03196750 Treisman M, 1998, PSYCHOL METHODS, V3, P252, DOI 10.1037/1082-989X.3.2.252 Turner CW, 2004, J ACOUST SOC AM, V115, P1729, DOI 10.1121/1.1687425 Tyler R. S., 1986, FREQUENCY SELECTIVIT, P309 Uchanski RM, 1998, PERCEPT PSYCHOPHYS, V60, P533, DOI 10.3758/BF03206044 von Ilberg C, 1999, ORL J OTO-RHINO-LARY, V61, P334, DOI 10.1159/000027695 Wickens T., 2001, ELEMENTARY SIGNAL DE NR 57 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 252 EP 264 DI 10.1016/j.heares.2011.06.004 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300028 PM 21801823 ER PT J AU Valero, MD Ratnam, R AF Valero, Michelle D. Ratnam, Rama TI Reliability of distortion-product otoacoustic emissions in the common marmoset (Callithrix jacchus) SO HEARING RESEARCH LA English DT Article ID TEST-RETEST RELIABILITY; NORMAL-HEARING; MACACA-MULATTA; REPEATABILITY; PROGESTERONE; VARIABILITY; ESTROGEN; HUMANS; CYCLE; EARS AB This study examines the test-retest reliability of distortion-product otoacoustic emissions (DPOAEs) in ketamine-anesthetized common marmosets (Callithrix jacchus). DPOAE gain functions were measured at 16 f(2)-frequencies between 3 and 24 kHz. Test-retest reliability was assessed at the following time intervals: (1) Interleaved, in which two gain functions were obtained at each frequency before advancing to the next frequency, (2) Immediate, wherein one gain function was collected at all f(2)-frequencies and the retest was immediately performed without removing the probe tip, (3) Short-term, in which the retest followed a 10-min period with the probe removed, and (4) Long-term, wherein the retest was performed at least one week after the initial test. Reliability was assessed using four correlation coefficients used in the literature. Test-retest reliability was best in the interleaved interval and worst in the short-term interval. In general, reliability was best when primary-tone levels were high. Correlation coefficients decreased at frequencies above 12-kHz in the short-term and long-term intervals, but the decrease was more substantial in females than in males in the long-term interval. At frequencies below 12 kHz, same-day measurements (2, 3) were less repeatable, regardless of whether the probe was removed, which may be due to time under anesthesia. These results have implications for DPOAE studies where repeated measures are required and when treatment or group differences are small. (C) 2011 Elsevier B.V. All rights reserved. C1 [Valero, Michelle D.; Ratnam, Rama] Univ Texas San Antonio, Dept Biol, San Antonio, TX 78249 USA. RP Valero, MD (reprint author), Univ Texas San Antonio, Dept Biol, San Antonio, TX 78249 USA. EM michelle.valero@utsa.edu FU National Institute on Deafness and other Communication Disorders (NIDCD) [R03DC009050, DC00153] FX This work was supported by a research grant (R03DC009050) from the National Institute on Deafness and other Communication Disorders (NIDCD). The authors are grateful for the data acquisition software provided by Edward Pasanen, from Dennis McFadden's lab, which was written while supported by research grant DC00153 from the NIDCD. Figures were made on lgorPro software. We are thankful to the reviewers, the Specialized Neuroscience Research Program (SNRP) at UTSA, and Pamella Tijerina for the helpful suggestions made on earlier versions of this manuscript. We also thank Donna Layne-Colon and the staff at TBRI, who take great care of our marmoset colony. CR Allen J. B, 1990, USER MANUAL CUBDIS D Al-Mana D, 2010, HEARING RES, V268, P114, DOI 10.1016/j.heares.2010.05.007 Beattie RC, 2003, INT J AUDIOL, V42, P348, DOI 10.3109/14992020309101328 Cacace AT, 1996, J SPEECH HEAR RES, V39, P1138 Dreisbach LE, 2006, EAR HEARING, V27, P466, DOI 10.1097/01.aud.0000233892.37803.1a Fisher R. A., 1938, STAT METHODS RES WOR FRANKLIN DJ, 1992, EAR HEARING, V13, P417 Garner CA, 2008, J ACOUST SOC AM, V124, P1054, DOI 10.1121/1.2939126 Guimaraes P, 2006, P NATL ACAD SCI USA, V103, P14246, DOI 10.1073/pnas.0606891103 Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6 HARLOW CR, 1983, J ZOOL, V201, P273 Keppler H, 2010, INT J AUDIOL, V49, P99, DOI 10.3109/14992020903300431 LASKY RE, 1995, HEARING RES, V89, P35, DOI 10.1016/0378-5955(95)00120-1 McFadden D, 1998, J ACOUST SOC AM, V104, P1555, DOI 10.1121/1.424366 McFadden D, 2009, J ACOUST SOC AM, V125, P239, DOI 10.1121/1.3037231 McGraw KO, 1996, PSYCHOL METHODS, V1, P30, DOI 10.1037/1082-989X.1.4.390 Ng I.H., 2005, AUDIOL MED, V3, P108, DOI 10.1080/16513860510028284 Parazzini M, 2006, Conf Proc IEEE Eng Med Biol Soc, V1, P2122 PARK JY, 1995, HEARING RES, V86, P147, DOI 10.1016/0378-5955(95)00065-C Price K, 2009, HEARING RES, V252, P29, DOI 10.1016/j.heares.2009.02.010 Rasmussen AN, 2005, INT J AUDIOL, V44, P237, DOI 10.1080/14992020500057640 ROEDE J, 1993, AUDIOLOGY, V32, P273 Saltzman W, 2009, P R SOC B, V276, P389, DOI 10.1098/rspb.2008.1374 Silvestri A, 2007, REPRODUCTION, V134, P341, DOI 10.1530/REP-06-0266 Sockalingam R, 2007, INT J AUDIOL, V46, P351, DOI 10.1080/14992020701311168 Stuart A, 2009, J SPEECH LANG HEAR R, V52, P671, DOI 10.1044/1092-4388(2008/08-0118) Valero MD, 2008, HEARING RES, V243, P57, DOI 10.1016/j.heares.2008.05.006 Wagner WG, 2008, EAR HEARING, V29, P378, DOI 10.1097/AUD.0b013e31816906e7 Yellin M W, 1999, J Am Acad Audiol, V10, P400 Zhao F, 1999, SCAND AUDIOL, V28, P171, DOI 10.1080/010503999424743 NR 30 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 265 EP 271 DI 10.1016/j.heares.2011.07.004 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300029 PM 21801824 ER PT J AU Schraven, SP Hirt, B Gummer, AW Zenner, HP Dalhoff, E AF Schraven, Sebastian P. Hirt, Bernhard Gummer, Anthony W. Zenner, Hans-Peter Dalhoff, Ernst TI Controlled round-window stimulation in human temporal bones yielding reproducible and functionally relevant stapedial responses SO HEARING RESEARCH LA English DT Article ID MIDDLE-EAR IMPLANT; SOUND-PRESSURE MEASUREMENTS; FLOATING MASS TRANSDUCER; MIXED HEARING LOSSES; VIBRANT SOUNDBRIDGE; COCHLEA; RECONSTRUCTION; CONDUCTION; TRANSMISSION; PERFORMANCE AB Stimulation of the round window (RW) has gained increasing clinical importance. Clinical, as well as human temporal bone and in-vivo animal studies show considerable variability. The influence of RW stimulation on the cochlea remains unclear. We designed a human temporal-bone study with controlled direct mechanical stimulation of the RW membrane to identify conditions for successful RW stimulation. Eight human temporal bones were stimulated on the RW by piezoelectric stack actuators with cylindrical aluminium rods of diameter 0.5 mm and with either flat or 30 degrees inclined top surface. Using a dedicated two-stage positioning protocol for the actuator, we achieved highly reproducible measurements of the stimulus vibration at the RW and of the resultant vibration of the stapes footplate. The reverse transmission, characterized by the displacement ratio of the stapes-footplate relative to the actuator tip on the RW membrane, yielded an average displacement ratio of 0.089 up to 12 kHz when the actuator was coupled without angular misalignment to the RW membrane. The results suggest that 90-mu m pretension of the RW membrane is essential for optimum and reproducible RW stimulation. The displacements are shown to be roughly consistent with the equal-volume displacement hypothesis under specific assumptions about the displacement mode of the RW membrane. It is further suggested that the large inter-patient variability in the effectiveness of RW stimulation might be due primarily to the success of coupling, rather than to the variability of functionally relevant anatomical parameters. (C) 2011 Elsevier B.V. All rights reserved. C1 [Schraven, Sebastian P.; Hirt, Bernhard; Gummer, Anthony W.; Zenner, Hans-Peter; Dalhoff, Ernst] Univ Tubingen, Dept Otolaryngol, Sect Physiol Acoust & Commun, Tubingen Hearing Res Ctr THRC, D-72076 Tubingen, Germany. [Hirt, Bernhard] Univ Tubingen, Inst Anat, D-72076 Tubingen, Germany. RP Dalhoff, E (reprint author), Univ Tubingen, Dept Otolaryngol, Sect Physiol Acoust & Commun, Tubingen Hearing Res Ctr THRC, Elfriede Aulhorn Str 5, D-72076 Tubingen, Germany. EM sebastian.schraven@med.uni-tuebingen.de; bernhard.hirt@klinikum.uni-tuebingen.de; anthony.gummer@uni-tuebingen.de; hans-peter.zenner@med.uni-tuebingen.de; ernst.dalhoff@uni-tuebingen.de FU German Ministry of Education and Research (BMBF) FX This work was supported by the German Ministry of Education and Research (BMBF). CR Arnold A, 2010, HEARING RES, V263, P120, DOI 10.1016/j.heares.2009.12.019 Baumgartner WD, 2010, ADV OTO-RHINO-LARYNG, V69, P38, DOI 10.1159/000318521 Beltrame AM, 2009, OTOL NEUROTOL, V30, P194, DOI 10.1097/MAO.0b013e318180a495 Boeheim K, 2010, OTOL NEUROTOL, V31, P424, DOI 10.1097/MAO.0b013e3181cabd42 Colletti V, 2009, ACTA OTO-LARYNGOL, V129, P449, DOI 10.1080/00016480802642070 Colletti V, 2006, INT J AUDIOL, V45, P600, DOI 10.1080/14992020600840903 Cuda D, 2009, OTOL NEUROTOL, V30, P782, DOI 10.1097/MAO.0b013e3181b04d4d Dalhoff E, 2007, P NATL ACAD SCI USA, V104, P1546, DOI 10.1073/pnas.0610185103 Frenzel H, 2009, LARYNGOSCOPE, V119, P67, DOI 10.1002/lary.20036 Gisselson L, 2011, ARCHIV OHR USW HEILK, V166, P411 Kiefer J, 2006, ORL J OTO-RHINO-LARY, V68, P378, DOI 10.1159/000095282 KRINGLEBOTN M, 1995, J ACOUST SOC AM, V98, P192, DOI 10.1121/1.413746 Linder T, 2009, OTOL NEUROTOL, V30, P41, DOI 10.1097/MAO.0b013e31818be812 Lupo JE, 2009, OTOL NEUROTOL, V30, P1215, DOI 10.1097/MAO.0b013e3181bc3c06 Nakajima HH, 2010, OTOL NEUROTOL, V31, P506, DOI 10.1097/MAO.0b013e3181c0ea9f Nakajima HH, 2010, HEARING RES, V263, P114, DOI 10.1016/j.heares.2009.11.009 NUMMELA S, 1995, HEARING RES, V85, P18, DOI 10.1016/0378-5955(95)00030-8 OKUNO H, 1988, ACTA OTO-LARYNGOL, V106, P55, DOI 10.3109/00016488809107371 Pennings RJE, 2010, OTOL NEUROTOL, V31, P998, DOI 10.1097/MAO.0b013e3181e8fc21 Puria S, 1997, J ACOUST SOC AM, V101, P2754, DOI 10.1121/1.418563 Rodriguez Jorge J, 1997, HNO, V45, P997, DOI 10.1007/s001060050185 Rodriguez Jorge Jesus, 2006, Laryngoscope, V116, P473 RUGGERO MA, 1990, J ACOUST SOC AM, V87, P1612, DOI 10.1121/1.399409 SHERA CA, 1992, J ACOUST SOC AM, V92, P1382, DOI 10.1121/1.403931 Songer JE, 2007, J ACOUST SOC AM, V122, P932, DOI 10.1121/1.2747157 Stenfelt S, 2004, J ACOUST SOC AM, V115, P797, DOI 10.1121/1.1639903 Streitberger C, 2009, Rev Laryngol Otol Rhinol (Bord), V130, P83 TONNDORF J, 1962, ANN OTO RHINOL LARYN, V71, P5 Tringali S, 2010, AUDIOL NEURO-OTOL, V15, P291, DOI 10.1159/000283006 Voss SE, 2000, HEARING RES, V150, P43, DOI 10.1016/S0378-5955(00)00177-5 Voss SE, 1996, J ACOUST SOC AM, V100, P1602, DOI 10.1121/1.416062 WEVER EG, 1950, J ACOUST SOC AM, V22, P460, DOI 10.1121/1.1906628 WEVER EG, 1948, ARCH OTOLARYNGOL, V48, P19 Wollenberg B, 2007, HNO, V55, P349, DOI 10.1007/s00106-007-1540-x ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382 NR 35 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 272 EP 282 DI 10.1016/j.heares.2011.07.001 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300030 PM 21798325 ER PT J AU Zaske, R Schweinberger, SR AF Zaeske, Romi Schweinberger, Stefan R. TI You are only as old as you sound: Auditory aftereffects in vocal age perception SO HEARING RESEARCH LA English DT Article ID HEARING-LOSS; HANDICAP PRINCIPLE; VOICE PERCEPTION; ADAPTATION; FACES; RECOGNITION; SPEAKERS; SPEECH; ATTRACTIVENESS; PREFERENCES AB High-level adaptation not only biases the perception of faces, but also causes transient distortions in auditory perception of non-linguistic voice information about gender, identity, and emotional intonation. Here we report a novel auditory aftereffect in perceiving vocal age: age estimates were elevated in age-morphed test voices when preceded by adaptor voices of young speakers (similar to 20 yrs), compared to old adaptor voices (similar to 70 yrs). This vocal age aftereffect (VAAE) complements a recently reported face aftereffect (Schweinberger et al., 2010) and points to selective neuronal coding of vocal age. Intriguingly, post-adaptation assessment revealed that VAAEs could persist for minutes after adaptation, although reduced in magnitude. As an important qualification, VAAEs during post-adaptation were modulated by gender congruency between speaker and listener. For both male and female listeners, VAAEs were much reduced for test voices of opposite gender. Overall, this study establishes a new auditory aftereffect in the perception of vocal age. We offer a tentative sociobiological explanation for the differential, gender-dependent recovery from vocal age adaptation. (C) 2011 Elsevier B.V. All rights reserved. C1 [Zaeske, Romi; Schweinberger, Stefan R.] Univ Jena, Dept Gen Psychol & Cognit Neurosci, Inst Psychol, D-07743 Jena, Germany. [Schweinberger, Stefan R.] Univ Jena, DFG Res Unit Person Percept, Inst Psychol, D-07743 Jena, Germany. RP Zaske, R (reprint author), Univ Jena, Dept Gen Psychol & Cognit Neurosci, Inst Psychol, Steiger 3-1, D-07743 Jena, Germany. EM romi.zaeske@uni-jena.de RI Schweinberger, Stefan/A-1860-2009 FU Deutsche Forschungsgemeinschaft (DFG) [Schw 511/10-1] FX Supported in part by the Deutsche Forschungsgemeinschaft (DFG; grant Schw 511/10-1) in the context of the DFG Research Unit Person Perception (FOR1097). The authors thank Janis Etzel and Sina Schneider for help in data acquisition and Christoph Casper for stimulus editing. CR Andics A, 2010, NEUROIMAGE, V52, P1528, DOI 10.1016/j.neuroimage.2010.05.048 Anstis S, 1998, TRENDS COGN SCI, V2, P111, DOI 10.1016/S1364-6613(98)01142-5 Apicella CL, 2007, BIOLOGY LETT, V3, P682, DOI 10.1098/rsbl.2007.0410 Belin P, 2004, TRENDS COGN SCI, V8, P129, DOI 10.1016/j.tics.2004.01.008 Bestelmeyer PEG, 2010, COGNITION, V117, P217, DOI 10.1016/j.cognition.2010.08.008 Bruckert L, 2006, P ROY SOC B-BIOL SCI, V273, P83, DOI 10.1098/rspb.2005.3265 Collins SA, 2000, ANIM BEHAV, V60, P773, DOI 10.1006/anbe.2000.1523 Eppley B.D., 2001, CONT ISSUES COMMUNIC, V28, P5 Feinberg DR, 2005, ANIM BEHAV, V69, P561, DOI 10.1016/j.anbehav.2004.06.012 Feinberg DR, 2008, EVOL ANTHROPOL, V17, P112, DOI 10.1002/evan.20166 Frisina RD, 2009, ANN NY ACAD SCI, V1170, P708, DOI 10.1111/j.1749-6632.2009.03931.x Frisina ST, 2006, HEARING RES, V211, P103, DOI 10.1016/j.heares.2005.09.002 Gonzalez J, 2003, PERCEPT MOTOR SKILL, V96, P297, DOI 10.2466/PMS.96.1.297-304 Gopinath B, 2009, ARCH INTERN MED, V169, P415, DOI 10.1001/archinternmed.2008.597 Harnsberger James D, 2008, J Voice, V22, P58, DOI 10.1016/j.jvoice.2006.07.004 Harnsberger JD, 2010, J VOICE, V24, P523, DOI 10.1016/j.jvoice.2009.01.003 HARTMAN DE, 1979, J COMMUN DISORD, V12, P53, DOI 10.1016/0021-9924(79)90021-2 Hughes SM, 2004, EVOL HUM BEHAV, V25, P295, DOI 10.1016/j.evolhumbehav.2004.06.001 Huntley R, 1987, J VOICE, V1, P49, DOI DOI 10.1016/S0892-1997(87)80024-3 Huynh H., 1976, J EDUC STATIST, V1, P69, DOI DOI 10.2307/1164736 JOHNSTONE RA, 1995, BIOL REV, V70, P1, DOI 10.1111/j.1469-185X.1995.tb01439.x Jones BC, 2010, ANIM BEHAV, V79, P57, DOI 10.1016/j.anbehav.2009.10.003 Kawahara H., 2009, P APSIPA SAPP, P111 Kawahara H., 2003, ICASSP 2003, P256 KENRICK DT, 1992, BEHAV BRAIN SCI, V15, P75 Kovacs G, 2006, CEREB CORTEX, V16, P742, DOI 10.1093/cercor/bhj020 Krauss RM, 2002, J EXP SOC PSYCHOL, V38, P618, DOI 10.1016/S0022-1031(02)00510-3 Lai M., CORTEX IN PRESS LASS NJ, 1976, J ACOUST SOC AM, V60, P700, DOI 10.1121/1.381142 Leopold DA, 2001, NAT NEUROSCI, V4, P89, DOI 10.1038/82947 Linville SE, 1987, J VOICE, V1, P44, DOI 10.1016/S0892-1997(87)80023-1 Pichora-Fuller M.K., 2003, INT J AUDIOLOGY S2, V42 PTACEK PH, 1966, J SPEECH HEAR RES, V9, P273 RYAN WJ, 1974, J COMMUN DISORD, V7, P181, DOI 10.1016/0021-9924(74)90030-6 Saxton TK, 2009, EVOL HUM BEHAV, V30, P398, DOI 10.1016/j.evolhumbehav.2009.06.004 Schweinberger SR, 2010, VISION RES, V50, P2570, DOI 10.1016/j.visres.2010.08.017 Schweinberger SR, 2008, CURR BIOL, V18, P684, DOI 10.1016/j.cub.2008.04.015 SHIPP T, 1969, J SPEECH HEAR RES, V12, P703 von Kriegstein K, 2008, P NATL ACAD SCI USA, V105, P6747, DOI 10.1073/pnas.0710826105 Webster MA, 2004, NATURE, V428, P557, DOI 10.1038/nature02420 ZAHAVI A, 1977, J THEOR BIOL, V67, P603, DOI 10.1016/0022-5193(77)90061-3 Zaske R, 2010, HEARING RES, V268, P38, DOI 10.1016/j.heares.2010.04.011 Zaske R, 2009, EUR J NEUROSCI, V30, P527, DOI 10.1111/j.1460-9568.2009.06839.x NR 43 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 283 EP 288 DI 10.1016/j.heares.2011.06.008 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300031 PM 21771649 ER PT J AU Moreno, LE Rajguru, SM Matic, AI Yerram, N Robinson, AM Hwang, M Stock, S Richter, CP AF Moreno, Laura E. Rajguru, Suhrud M. Matic, Agnella Izzo Yerram, Nitin Robinson, Alan M. Hwang, Margaret Stock, Stuart Richter, Claus-Peter TI Infrared neural stimulation: Beam path in the guinea pig cochlea SO HEARING RESEARCH LA English DT Article ID NERVE CUFF ELECTRODES; HUMAN INNER-EAR; HARD X-RAYS; ELECTRICAL-STIMULATION; OPTICAL-PROPERTIES; INFERIOR COLLICULUS; PERIPHERAL-NERVE; ACTIVATION; IMPLANT; TISSUE AB It has been demonstrated that INS can be utilized to stimulate spiral ganglion cells in the cochlea. Although neural stimulation can be achieved without direct contact of the radiation source and the tissue, the presence of fluids or bone between the target structure and the radiation source may lead to absorption or scattering of the radiation, which may limit the efficacy of INS. The present study demonstrates the neural structures in the radiation beam path that can be stimulated. Histological reconstructions and microCT of guinea pig cochleae stimulated with an infrared laser suggest that the orientation of the beam from the optical fiber determined the site of stimulation in the cochlea. Best frequencies of the INS-evoked neural responses obtained from the central nucleus of the inferior colliculus matched the histological sites in the spiral ganglion. (C) 2011 Elsevier B.V. All rights reserved. C1 [Moreno, Laura E.; Rajguru, Suhrud M.; Matic, Agnella Izzo; Yerram, Nitin; Robinson, Alan M.; Hwang, Margaret; Richter, Claus-Peter] Northwestern Univ, Dept Otolaryngol, Feinberg Sch Med, Chicago, IL 60611 USA. [Richter, Claus-Peter] Northwestern Univ, Hugh Knowles Ctr, Evanston, IL USA. [Stock, Stuart] Northwestern Univ, Dept Mol Pharmacol & Biol Chem, Feinberg Sch Med, Chicago, IL 60611 USA. RP Richter, CP (reprint author), Northwestern Univ, Dept Otolaryngol, Feinberg Sch Med, 303 E Chicago Ave,Searle Bldg 12-561, Chicago, IL 60611 USA. EM cri529@northwestern.edu FU National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Department of Health and Human Services [HHSN260-2006-00006-C/NIH, N01-DC-6-0006] FX This project has been funded with federal funds from the National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN260-2006-00006-C/NIH No. N01-DC-6-0006. We thank Northwestern University MicroCT facility for use of the microCT. CR ANTONIO A, 1949, NATURE, V163, P604, DOI 10.1038/163604a0 Bekesy G., 1960, EXPT HEARING Bierer JA, 2002, J NEUROPHYSIOL, V87, P478 BOWMAN BR, 1985, ANN BIOMED ENG, V13, P75, DOI 10.1007/BF02371251 BRUMMER SB, 1983, ANN NY ACAD SCI, V405, P159, DOI 10.1111/j.1749-6632.1983.tb31628.x FALK M, 1966, CAN J CHEMISTRY, V44, P1699, DOI 10.1139/v66-255 FIRBANK M, 1993, PHYS MED BIOL, V38, P503, DOI 10.1088/0031-9155/38/4/002 Glueckert R, 2011, AM J MED GENET A, V152A, P665 Green D. M., 1966, SIGNAL DETECTION THE Grill WM, 2009, ANNU REV BIOMED ENG, V11, P1, DOI 10.1146/annurev-bioeng-061008-124927 Grill WM, 2000, J BIOMED MATER RES, V50, P215 HALE GM, 1973, APPL OPTICS, V12, P555, DOI 10.1364/AO.12.000555 Hofman R, 2009, J MICROSC-OXFORD, V233, P251, DOI 10.1111/j.1365-2818.2009.03115.x Izzo AD, 2007, J BIOMED OPT, V12, DOI 10.1117/1.2714296 Izzo A.D., 2006, SPIE, V6078 Izzo AD, 2008, BIOPHYS J, V94, P3159, DOI 10.1529/biophysj.107.117150 Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6 Lareida A, 2009, J MICROSC-OXFORD, V234, P95, DOI 10.1111/j.1365-2818.2009.03143.x Larsen JO, 1998, ACTA NEUROPATHOL, V96, P365 LEFURGE T, 1991, ANN BIOMED ENG, V19, P197, DOI 10.1007/BF02368469 MERZENIC.MM, 1974, BRAIN RES, V77, P397, DOI 10.1016/0006-8993(74)90630-1 Middlebrooks JC, 2007, JARO-J ASSOC RES OTO, V8, P258, DOI 10.1007/s10162-007-0070-2 Muller M, 1996, FREQUENZ INTENSITATS Palmer AR, 1996, J NEUROPHYSIOL, V75, P780 Polasek KH, 2009, IEEE T NEUR SYS REH, V17, P428, DOI 10.1109/TNSRE.2009.2032603 Rau C, 2006, MICROSC RES TECHNIQ, V69, P660, DOI 10.1002/jemt.20336 Richter CP, 2009, MICROSC RES TECHNIQ, V72, P902, DOI 10.1002/jemt.20728 Richter CP, 2011, LASER PHOTONICS REV, V5, P68, DOI 10.1002/lpor.200900044 ROBERTSON D, 1984, HEARING RES, V15, P113, DOI 10.1016/0378-5955(84)90042-X Smith S.S., 2011, P SPIE C Smith ZM, 2007, JARO-J ASSOC RES OTO, V8, P134, DOI 10.1007/s10162-006-0069-0 Snyder RL, 2004, JARO-J ASSOC RES OTO, V5, P305, DOI 10.1007/s10162-004-4026-5 Snyder RL, 2008, HEARING RES, V235, P23, DOI 10.1016/j.heares.2007.09.013 SNYDER RL, 1990, HEARING RES, V50, P7, DOI 10.1016/0378-5955(90)90030-S Stock SR, 2009, MICROCOMPUTED TOMOGR Teudt IU, 2007, J NEUROSCI METH, V162, P187, DOI 10.1016/j.jneumeth.2007.01.012 Teudt IU, 2007, LARYNGOSCOPE, V117, P1641, DOI 10.1097/M1LG.0b013e318074ec00 Teudt I.U., T BIOMED EN IN PRESS Tsuji J, 1997, J COMP NEUROL, V381, P188 Ugnell AO, 1997, MED ENG PHYS, V19, P630, DOI 10.1016/S1350-4533(97)00015-5 Veraart C, 1998, BRAIN RES, V813, P181, DOI 10.1016/S0006-8993(98)00977-9 VERAART C, 1993, IEEE T BIO-MED ENG, V40, P640, DOI 10.1109/10.237694 Vogel U, 1999, ORL J OTO-RHINO-LARY, V61, P259, DOI 10.1159/000027683 WALSH JT, 1994, LASER SURG MED, V15, P295, DOI 10.1002/lsm.1900150310 Wells J, 2005, J BIOMED OPT, V10, DOI 10.1117/1.2121772 Wells J, 2007, BIOPHYS J, V93, P2567, DOI 10.1529/biophysj.107.104786 Wenzel GI, 2009, J BIOMED OPT, V14, DOI 10.1117/1.3174389 Zhang KY, 2009, OPT EXPRESS, V17, P23037, DOI 10.1364/OE.17.023037 NR 48 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 289 EP 302 DI 10.1016/j.heares.2011.06.006 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300032 PM 21763410 ER PT J AU Landry, TG Wise, AK Fallon, JB Shepherd, RK AF Landry, Thomas G. Wise, Andrew K. Fallon, James B. Shepherd, Robert K. TI Spiral ganglion neuron survival and function in the deafened cochlea following chronic neurotrophic treatment SO HEARING RESEARCH LA English DT Article ID CHRONIC ELECTRICAL-STIMULATION; SENSORINEURAL HEARING-LOSS; GUINEA-PIG COCHLEA; FIBROBLAST-GROWTH-FACTOR; QUALITY-OF-LIFE; HAIR CELL LOSS; AUDITORY-NERVE; NEONATAL DEAFNESS; MENTAL DISTRESS; DENTATE GYRUS AB Cochlear implants electrically stimulate residual spiral ganglion neurons (SGNs) to provide auditory cues for the severe-profoundly deaf. However, SGNs gradually degenerate following cochlear hair cell loss, leaving fewer neurons available for stimulation. Providing an exogenous supply of neurotrophins (NTs) has been shown to prevent SGN degeneration, and when combined with chronic intracochlear electrical stimulation (ES) following a short period of deafness (5 days), may also promote the formation of new neurons. The present study assessed the histopathological response of guinea pig cochleae treated with NTs (brain-derived neurotrophic factor and neurotrophin-3) with and without ES over a four week period, initiated two weeks after deafening. Results were compared to both NT alone and artificial perilymph (AP) treated animals. AP/ES treated animals exhibited no evidence of SGN rescue compared with untreated deafened controls. In contrast, NT administration showed a significant SGN rescue effect in the lower and middle cochlear turns (two-way ANOVA, p < 0.05) compared with AP-treated control animals. ES in combination with NT did not enhance SGN survival compared with NT alone. SGN function was assessed by measuring electrically-evoked auditory brainstem response (EABR) thresholds. EABR thresholds following NT treatment were significantly lower than animals treated with AP (two-way ANOVA, p = 0.033). Finally, the potential for induced neurogenesis following the combined treatment was investigated using a marker of DNA synthesis. However, no evidence of neurogenesis was observed in the SGN population. The results indicate that chronic NT delivery to the cochlea may be beneficial to cochlear implant patients by increasing the number of viable SGNs and decreasing activation thresholds compared to chronic ES alone. (C) 2011 Elsevier B.V. All rights reserved. C1 [Landry, Thomas G.; Wise, Andrew K.; Fallon, James B.; Shepherd, Robert K.] St Vincents Hosp, Bion Inst, Fitzroy, Vic 3065, Australia. [Landry, Thomas G.; Wise, Andrew K.; Fallon, James B.; Shepherd, Robert K.] Univ Melbourne, Parkville, Vic 3052, Australia. RP Shepherd, RK (reprint author), Bion Inst, 384-388 Albert St, Melbourne, Vic 3002, Australia. EM rshepherd@bionicsinstitute.org RI Fallon, James/B-5211-2012; Shepherd, Robert/I-6276-2012; Wise, Andrew/B-5943-2014; Fallon, James/B-6383-2014 OI Wise, Andrew/0000-0001-9715-8784; FU National Institute on Deafness and Other Communication disorders (National Institutes of Health) [HHS-N-263-2007-00053-C]; The Bionics Institute; The Mabel Kent Scholarship; Victorian Government FX This study was funded by the National Institute on Deafness and Other Communication disorders (National Institutes of Health contract HHS-N-263-2007-00053-C), The Bartholomew Reardon PhD Scholarship (The Bionics Institute), and The Mabel Kent Scholarship. The Bionics Institute acknowledges the support it receives from the Victorian Government through its Operational Infrastructure Support Program. Many thanks to Mrs. M. Clarke and Ms. P. Nielsen for H & E staining, Mrs. H. Feng for implant manufacturing and contributions to cochlear implant design, Mr. R. Millard for technical support, Mrs. A. Neil for surgical assistance, and Dr. J. Xu for X-ray photography and contributions to cochlear implant design. CR Abrous DN, 2005, PHYSIOL REV, V85, P523, DOI 10.1152/physrev.00055.2003 Adamson CL, 2002, J NEUROSCI, V22, P1385 Agterberg MJH, 2010, HEARING RES, V269, P169, DOI 10.1016/j.heares.2010.06.015 Agterberg MJH, 2008, HEARING RES, V244, P25, DOI 10.1016/j.heares.2008.07.004 Agterberg MJH, 2009, JARO-J ASSOC RES OTO, V10, P355, DOI 10.1007/s10162-009-0170-2 Araki S, 1998, LARYNGOSCOPE, V108, P687, DOI 10.1097/00005537-199805000-00012 BOND M, 2009, HEALTH TECHNOL ASSES, V13, P1 Choi CH, 2005, HEARING RES, V205, P193, DOI 10.1016/j.heares.2005.03.018 Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004 Coleman B, 2009, J NEUROSCI METH, V176, P144, DOI 10.1016/j.jneumeth.2008.09.007 de Graaf R, 2002, PSYCHOSOM MED, V64, P61 Dodson HC, 2000, J NEUROCYTOL, V29, P525, DOI 10.1023/A:1007201913730 DOLBEARE F, 1995, HISTOCHEM J, V27, P339 Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463 Fallon JB, 2009, J COMP NEUROL, V512, P101, DOI 10.1002/cne.21886 Fellinger J, 2005, SOC PSYCH PSYCH EPID, V40, P737, DOI 10.1007/s00127-005-0936-8 Fritzsch B, 2004, PROG BRAIN RES, V146, P265, DOI 10.1016/S0079-6123(03)46017-2 Garcia-Verdugo J, 1998, J NEUROBIOL, V36, P234, DOI 10.1002/(SICI)1097-4695(199808)36:2<234::AID-NEU10>3.0.CO;2-E Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542 Gillespie LN, 2004, NEUROREPORT, V15, P1121, DOI 10.1097/01.wnr.0000125777.04774.c2 Glueckert R, 2008, J COMP NEUROL, V507, P1602, DOI 10.1002/cne.21619 Guidi S, 2005, HIPPOCAMPUS, V15, P285, DOI 10.1002/hipo.20050 HARRIS JP, 1995, ARCH OTOLARYNGOL, V121, P398 HARTSHORN DO, 1991, OTOLARYNG HEAD NECK, V104, P311 Heine VM, 2004, NEUROBIOL AGING, V25, P361, DOI 10.1016/S0197-4580(03)00090-3 Kanzaki S, 2002, J COMP NEUROL, V454, P350, DOI 10.1002/cne.10480 Kass L, 2000, EUR J HISTOCHEM, V44, P185 Kim LS, 2010, AURIS NASUS LARYNX, V37, P6, DOI 10.1016/j.anl.2009.09.011 LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4 Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3 LEAKE PA, 1992, HEARING RES, V64, P99, DOI 10.1016/0378-5955(92)90172-J LEAKE PA, 1991, HEARING RES, V54, P251, DOI 10.1016/0378-5955(91)90120-X Li L, 1999, HEARING RES, V133, P27, DOI 10.1016/S0378-5955(99)00043-X MCDERMOTT HJ, 1992, J ACOUST SOC AM, V91, P3367, DOI 10.1121/1.402826 McGuinness SL, 2005, OTOL NEUROTOL, V26, P1064, DOI 10.1097/01.mao.0000185063.20081.50 MCNEAL DR, 1976, IEEE T BIO-MED ENG, V23, P329, DOI 10.1109/TBME.1976.324593 Miller AL, 2001, HEARING RES, V151, P1, DOI 10.1016/S0378-5955(00)00226-4 Miller JM, 2007, J NEUROSCI RES, V85, P1959, DOI 10.1002/jnr.21320 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 Mitchell A, 1997, HEARING RES, V105, P30, DOI 10.1016/S0378-5955(96)00202-X Miura M, 2002, ANN OTO RHINOL LARYN, V111, P1059 Mohr PE, 2000, INT J TECHNOL ASSESS, V16, P1120, DOI 10.1017/S0266462300103162 NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411 O'Hara JR, 2007, CELL TISSUE RES, V329, P433, DOI 10.1007/s00441-007-0430-6 Rask-Andersen H, 2005, HEARING RES, V203, P180, DOI 10.1016/j.heares.2004.12.005 Richardson RT, 2005, HEARING RES, V204, P37, DOI 10.1016/j.heares.2005.01.001 RUSHTON WAH, 1951, J PHYSIOL-LONDON, V115, P101 Seligman PM, 2004, NEUROPROSTHETICS THE, P878 SHEPHERD RK, 1994, HEARING RES, V81, P150, DOI 10.1016/0378-5955(94)90162-7 Shepherd R. K., 2006, COCHLEAR IMPLANTS, P25 Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564 Shepherd RK, 2008, HEARING RES, V242, P100, DOI 10.1016/j.heares.2007.12.005 Shepherd RK, 2002, HEARING RES, V172, P92, DOI 10.1016/S0378-5955(02)00517-8 Shimada A, 2008, J IMMUNOL METHODS, V339, P11, DOI 10.1016/j.jim.2008.07.013 Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999 Skaper SD, 2008, CNS NEUROL DISORD-DR, V7, P46, DOI 10.2174/187152708783885174 Spoendlin H, 1984, Ann Otol Rhinol Laryngol Suppl, V112, P76 Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011 Stankovic K, 2004, J NEUROSCI, V24, P8651, DOI 10.1523/JNEUROSCI.0733-04.2004 Sugawara M, 2005, JARO-J ASSOC RES OTO, V6, P136, DOI 10.1007/s10162-004-5050-1 Takeno S, 1998, AUDIOL NEURO-OTOL, V3, P281, DOI 10.1159/000013800 Tan J, 2006, AM J PATHOL, V169, P528, DOI 10.2353/ajpath.2006.060122 Versnel H, 2007, HEARING RES, V231, P1, DOI 10.1016/j.heares.2007.03.003 Vollmer M, 2007, J NEUROPHYSIOL, V98, P2588, DOI 10.1152/jn.00011.2007 Wei D, 2007, DEV NEUROBIOL, V67, P108, DOI 10.1002/neu.20336 Wise AK, 2010, MOL THER, V18, P1111, DOI 10.1038/mt.2010.28 Wise AK, 2005, J COMP NEUROL, V487, P147, DOI 10.1002/cne.20563 World Health Organization, 2010, DEFN HEAR IMP Xu J, 1997, HEARING RES, V105, P1, DOI 10.1016/S0378-5955(96)00193-1 YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C ZIMMERMANN CE, 1995, HEARING RES, V90, P192, DOI 10.1016/0378-5955(95)00165-1 NR 71 TC 16 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2011 VL 282 IS 1-2 BP 303 EP 313 DI 10.1016/j.heares.2011.06.007 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871FW UT WOS:000298724300033 PM 21762764 ER PT J AU Lenz, DR Avraham, KB AF Lenz, Danielle R. Avraham, Karen B. TI Hereditary hearing loss: From human mutation to mechanism SO HEARING RESEARCH LA English DT Article ID ACTIN BINDING-PROTEIN; LINKED MIXED DEAFNESS; HAIR-CELLS; INNER-EAR; RECESSIVE DEAFNESS; GENE-EXPRESSION; MOUSE MODELS; APOPTOSIS; TRIOBP; MIR-96 AB The genetic heterogeneity of hereditary hearing loss is thus far represented by hundreds of genes encoding a large variety of proteins. Mutations in these genes have been discovered for patients with different modes of inheritance and types of hearing loss, ranging from syndromic to non-syndromic and mild to profound. In many cases, the mechanisms whereby the mutations lead to hearing loss have been partly elucidated using cell culture systems and mouse and other animal models. The discovery of the genes has completely changed the practice of genetic counseling in this area, providing potential diagnosis in many cases that can be coupled with clinical phenotypes and offer predictive information for families. In this review we provide three examples of gene discovery in families with hereditary hearing loss, all associated with elucidation of some of the mechanisms leading to hair cell degeneration and pathology of deafness. (C) 2011 Published by Elsevier B.V. C1 [Lenz, Danielle R.; Avraham, Karen B.] Tel Aviv Univ, Sackler Fac Med, Dept Human Mol Genet & Biochem, IL-69978 Tel Aviv, Israel. RP Avraham, KB (reprint author), Tel Aviv Univ, Sackler Fac Med, Dept Human Mol Genet & Biochem, IL-69978 Tel Aviv, Israel. EM karena@post.tau.ac.il FU National Institutes of Health (NIDCD) [R01DC005641]; Israel Science Foundation [1486/07]; European Commission [037188]; Israel Ministry of Health; Israel Ministry of Science and Technology FX Research in Karen Avraham's laboratory is funded by the National Institutes of Health (NIDCD) R01DC005641, Israel Science Foundation Grant 1486/07, European Commission FP6 Integrated Project Eumodic 037188, and the Israel Ministry of Health. DL's fellowship is funded by the Israel Ministry of Science and Technology. We are indebted to our collaborators and colleagues for our work together over the years, as well as the patients who so willingly took part in the studies. We thank Inna Belyantseva, Jing Chen, Thomas Friedman, Mary-Claire King, Walter Marcotti, Miguel Angel Moreno-Pelayo and Karen Steel for sharing figures with us. CR Bartel DP, 2004, CELL, V116, P281, DOI 10.1016/S0092-8674(04)00045-5 Beurel E, 2006, PROG NEUROBIOL, V79, P173, DOI 10.1016/j.pneurobio.2006.07.006 Brownstein Z, 2009, PEDIATR RES, V66, P128, DOI 10.1203/PDR.0b013e3181aabd7f Carlton VEH, 2003, NAT GENET, V34, P91, DOI 10.1038/ng1147 DEKOK YJM, 1995, SCIENCE, V267, P685, DOI 10.1126/science.7839145 Dror AA, 2010, NEURON, V68, P293, DOI 10.1016/j.neuron.2010.10.011 FLOCK A, 1977, J CELL BIOL, V75, P339, DOI 10.1083/jcb.75.2.339 Friedman LM, 2007, INT J DEV BIOL, V51, P609, DOI 10.1387/ijdb.072365lf Gorlin R.J., 1995, HEREDITARY HEARING L Grimson A, 2007, MOL CELL, V27, P91, DOI 10.1016/j.molcel.2007.06.017 GUILFORD P, 1994, NAT GENET, V6, P24, DOI 10.1038/ng0194-24 Guo HL, 2010, NATURE, V466, P835, DOI 10.1038/nature09267 Hildebrand MS, 2010, AM J MED GENET A, V152A, P646, DOI 10.1002/ajmg.a.33299 Hilgert N, 2008, CLIN GENET, V74, P223, DOI 10.1111/j.1399-0004.2008.01053.x Housley GD, 2006, J MEMBRANE BIOL, V209, P89, DOI 10.1007/s00232-005-0835-7 Karavitaki KD, 2006, Auditory Mechanisms: Processes and Models, P286, DOI 10.1142/9789812773456_0048 Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0 Kimberling WJ, 2010, GENET MED, V12, P512, DOI 10.1097/GIM.0b013e3181e5afb8 Kitajiri S, 2010, CELL, V141, P786, DOI 10.1016/j.cell.2010.03.049 Kong JH, 2008, J PHYSIOL-LONDON, V586, P5471, DOI 10.1113/jphysiol.2008.160077 Kuhn S, 2011, P NATL ACAD SCI USA, V108, P2355, DOI 10.1073/pnas.1016646108 Leibovici M, 2008, CURR TOP DEV BIOL, V84, P385, DOI 10.1016/S0070-2153(08)00608-X LEON PE, 1992, P NATL ACAD SCI USA, V89, P5181, DOI 10.1073/pnas.89.11.5181 Lewis MA, 2009, NAT GENET, V41, P614, DOI 10.1038/ng.369 Linseman DA, 2004, J NEUROSCI, V24, P9993, DOI 10.1523/JNEUROSCI.2057-04.2004 Lynch ED, 1997, SCIENCE, V278, P1315, DOI 10.1126/science.278.5341.1315 Marcotti W, 2004, J PHYSIOL-LONDON, V560, P691, DOI 10.1113/jphysiol.2004.072868 Mencia A, 2009, NAT GENET, V41, P609, DOI 10.1038/ng.355 Metzker ML, 2010, NAT REV GENET, V11, P31, DOI 10.1038/nrg2626 Nuutinen U, 2009, LEUKEMIA RES, V33, P1714, DOI 10.1016/j.leukres.2009.06.004 Oshima K, 2010, CELL, V141, P704, DOI 10.1016/j.cell.2010.03.035 Park HJ, 2009, HEARING RES, V257, P53, DOI 10.1016/j.heares.2009.08.001 Pierce ML, 2008, EVOL DEV, V10, P106, DOI 10.1111/j.1525-142X.2007.00217.x Purdy KR, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.058105 Rabionet R, 2000, HUM GENET, V106, P40, DOI 10.1007/s004390051007 Rehm HL, 2005, SEMIN PERINATOL, V29, P173, DOI 10.1053/j.semperi.2004.12.002 Riazuddin S, 2006, AM J HUM GENET, V78, P137, DOI 10.1086/499164 Richardson GP, 2011, ANNU REV PHYSIOL, V73, P311, DOI 10.1146/annurev-physiol-012110-142228 Seipel K, 2001, J CELL SCI, V114, P389 Shahin H, 2006, AM J HUM GENET, V78, P144, DOI 10.1086/499495 Shearer AE, 2010, P NATL ACAD SCI USA, V107, P21104, DOI 10.1073/pnas.1012989107 Shibata SB, 2010, J COMMUN DISORD, V43, P295, DOI 10.1016/j.jcomdis.2010.04.001 Someya S, 2010, MECH AGEING DEV, V131, P480, DOI 10.1016/j.mad.2010.04.006 Someya S, 2009, P NATL ACAD SCI USA, V106, P19432, DOI 10.1073/pnas.0908786106 Tadros SF, 2008, APOPTOSIS, V13, P1303, DOI 10.1007/s10495-008-0266-x Tapia R, 2009, MOL BIOL CELL, V20, P1102, DOI 10.1091/mbc.E08-03-0277 Traweger A, 2008, DIFFERENTIATION, V76, P99, DOI 10.1111/j.1432-0436.2007.00227.x WALLIS C, 1988, GENOMICS, V3, P299, DOI 10.1016/0888-7543(88)90119-X Walsh T, 2010, AM J HUM GENET, V87, P101, DOI 10.1016/j.ajhg.2010.05.011 Walsh T.D., 2000, 50 ANN M AM SOC HUM Weston MD, 2006, BRAIN RES, V1111, P95, DOI 10.1016/j.brainres.2006.07.006 Wienholds E, 2005, SCIENCE, V309, P310, DOI 10.1126/science.1114519 Xu JL, 2008, MOL CELL BIOL, V28, P1669, DOI 10.1128/MCB.00891-07 NR 53 TC 14 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2011 VL 281 IS 1-2 SI SI BP 3 EP 10 DI 10.1016/j.heares.2011.05.021 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 853ML UT WOS:000297430300002 PM 21664957 ER PT J AU Griffith, AJ Wangemann, P AF Griffith, Andrew J. Wangemann, Philine TI Hearing loss associated with enlargement of the vestibular aqueduct: Mechanistic insights from clinical phenotypes, genotypes, and mouse models SO HEARING RESEARCH LA English DT Article ID PENDRED-SYNDROME GENE; CONGENITAL CYTOMEGALOVIRUS-INFECTION; COCHLEAR ENDOLYMPH; INNER-EAR; CARBONIC-ANHYDRASE; SLC26A4 MUTATION; PDS MUTATIONS; K+ SECRETION; GUINEA-PIG; DEAFNESS AB Enlargement of the vestibular aqueduct (EVA) is one of the most common inner ear malformations associated with sensorineural hearing loss in children. The delayed onset and progressive nature of this phenotype offer a window of opportunity to prevent or retard progression of hearing loss. EVA is not the direct cause of hearing loss in these patients, but rather is a radiologic marker for some underlying pathogenetic defect. Mutations of the SLC26A4 gene are a common cause of EVA. Studies of an Slc26a4 knockout mouse demonstrate that acidification and enlargement of the scala media are early events in the pathogenesis of deafness. The enlargement is driven by fluid secretion in the vestibular labyrinth and a failure of fluid absorption in the embryonic endolymphatic sac. Elucidating the mechanism of hearing loss may offer clues to potential therapeutic strategies. Published by Elsevier B.V. C1 [Griffith, Andrew J.] Natl Inst Deafness & Other Commun Disorders, Otolaryngol Branch, Rockville, MD 20850 USA. [Wangemann, Philine] Kansas State Univ, Dept Anat & Physiol, Manhattan, KS 66506 USA. RP Griffith, AJ (reprint author), Natl Inst Deafness & Other Commun Disorders, Otolaryngol Branch, 5 Res Court, Rockville, MD 20850 USA. EM griffita@nidcd.nih.gov RI Wangemann, Philine/N-2826-2013 FU NIH [Z01-DC-000060]; Kansas State University FX The authors are supported by NIH intramural research fund Z01-DC-000060 (A.J.G.) and Kansas State University (P.W.). We thank our colleagues for critical review of this manuscript. Figs. 1 and 2 were provided by the National Institute on Deafness and Other Communication Disorders. CR Anwar S, 2009, J HUM GENET, V54, P266, DOI 10.1038/jhg.2009.21 Arjmand EM, 2004, ARCH OTOLARYNGOL, V130, P1169, DOI 10.1001/archotol.130.10.1169 Azaiez H, 2007, HUM GENET, V122, P451, DOI 10.1007/s00439-007-0415-2 BAUMAN NM, 1994, J PEDIATR-US, V124, P71, DOI 10.1016/S0022-3476(94)70256-X Belenky W M, 1993, Ear Nose Throat J, V72, P746 BERGSTROM L, 1980, ANN OTO RHINOL LARYN, V89, P135 BOSHER SK, 1978, NATURE, V273, P377, DOI 10.1038/273377a0 Bradley D.J., 1994, SCIENCE, V91, P439 Campbell C, 2001, HUM MUTAT, V17, P403, DOI 10.1002/humu.1116 Campos-Barros A., 2000, SCIENCE, V97, P1287 Chang Q, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0004088 Cheung CY, 2005, J SOC GYNECOL INVEST, V12, P558, DOI 10.1016/j.jsgi.2005.08.008 Choi BY, 2009, HUM MUTAT, V30, P1471, DOI 10.1002/humu.21098 Choi BY, 2009, HUM MUTAT, V30, P599, DOI 10.1002/humu.20884 Choi BY, 2009, J MED GENET, V46, P856, DOI 10.1136/jmg.2009.067892 Dahle A J, 2000, J Am Acad Audiol, V11, P283 DAS VK, 1987, J LARYNGOL OTOL, V101, P721, DOI 10.1017/S0022215100102592 Dou Hongwei, 2004, Journal of Histochemistry & Cytochemistry, V52, P1377, DOI 10.1369/jhc.3A6228.2004 Dror AA, 2010, J BIOL CHEM, V285, P21724, DOI 10.1074/jbc.M110.120188 Everett LA, 1997, NAT GENET, V17, P411, DOI 10.1038/ng1297-411 Everett LA, 2001, HUM MOL GENET, V10, P153, DOI 10.1093/hmg/10.2.153 FRASER GR, 1965, ANN HUM GENET, V28, P201 Govaerts PJ, 1999, INT J PEDIATR OTORHI, V51, P157, DOI 10.1016/S0165-5876(99)00268-2 Griffith AJ, 1996, LARYNGOSCOPE, V106, P960, DOI 10.1097/00005537-199608000-00009 Hulander M, 2003, DEVELOPMENT, V130, P2013, DOI 10.1242/dev.00376 IKEDA K, 1987, HEARING RES, V26, P117, DOI 10.1016/0378-5955(87)90040-2 IKEDA K, 1987, HEARING RES, V31, P211, DOI 10.1016/0378-5955(87)90189-4 JACKLER RK, 1989, LARYNGOSCOPE, V99, P1238 Jonard L, 2010, INT J PEDIATR OTORHI, V74, P1049, DOI 10.1016/j.ijporl.2010.06.002 Kim HM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014041 Kim HM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017949 King KA, 2010, LARYNGOSCOPE, V120, P384, DOI 10.1002/lary.20722 Lemmerling KM., 1997, RADIOLOGY, V204, P213 LEVENSON MJ, 1989, ARCH OTOLARYNGOL, V115, P54 Lin CY, 2005, AURIS NASUS LARYNX, V32, P99, DOI 10.1016/j.anl.2004.11.001 Mansour S.L, 2005, DEV INNER EAR, P43 Marcus DC, 2002, AM J PHYSIOL-CELL PH, V282, pC403 Merchant SN, 2005, OTOL NEUROTOL, V26, P74, DOI 10.1097/00129492-200501000-00013 Merchant SN, 2007, ANN OTO RHINOL LARYN, V116, P532 MORGANS ME, 1958, LANCET, V1, P607 Nakashima T, 2000, AM J OTOL, V21, P671 Ng L, 2009, ENDOCRINOLOGY, V150, P1952, DOI 10.1210/en.2008-1419 Park HJ, 2003, J MED GENET, V40, P242, DOI 10.1136/jmg.40.4.242 Park HJ, 2005, CLIN GENET, V67, P160, DOI 10.1111/j.1399-0004.2004.00386.x Pendred V, 1896, LANCET, V2, P532 Pera A, 2008, EUR J HUM GENET, V16, P888, DOI 10.1038/ejhg.2008.30 Phelps PD, 1998, CLIN RADIOL, V53, P268, DOI 10.1016/S0009-9260(98)80125-6 Pryor SP, 2005, ARCH OTOLARYNGOL, V131, P388, DOI 10.1001/archotol.131.5.388 Pryor SP, 2005, J MED GENET, V42, P159, DOI 10.1136/jmg.2004.024208 Reardon W, 2000, QJM-MON J ASSOC PHYS, V93, P99, DOI 10.1093/qjmed/93.2.99 Royaux IE, 2003, JARO, V4, P394, DOI 10.1007/s10162-002-3052-4 Royaux IE, 2001, P NATL ACAD SCI USA, V98, P4221, DOI 10.1073/pnas.071516798 Royaux IE, 2000, ENDOCRINOLOGY, V141, P839, DOI 10.1210/en.141.2.839 Scott DA, 1999, NAT GENET, V21, P440 Singh R, 2008, AM J PHYSIOL-RENAL, V294, pF139, DOI 10.1152/ajprenal.00433.2007 Soleimani M, 2001, AM J PHYSIOL-RENAL, V280, pF356 STERKERS O, 1984, AM J PHYSIOL, V246, pF47 Tanaka F, 2004, HEARING RES, V187, P44, DOI 10.1016/S0378-5955(03)00330-7 TANAKA Y, 1980, HEARING RES, V2, P431, DOI 10.1016/0378-5955(80)90079-9 Unsold B, 2000, PFLUG ARCH EUR J PHY, V441, P368, DOI 10.1007/s004240000434 Usami S, 1999, HUM GENET, V104, P188, DOI 10.1007/s004390050933 VALVASSORI GE, 1978, LARYNGOSCOPE, V88, P723 Vennekens R, 2001, PFLUG ARCH EUR J PHY, V442, P237, DOI 10.1007/s004240100517 Wang YF, 2009, BIOCHEM BIOPH RES CO, V385, P33, DOI 10.1016/j.bbrc.2009.05.023 Wangemann P, 2006, J PHYSIOL-LONDON, V576, P11, DOI 10.1113/jphysiol.2006.112888 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S Wangemann P, 2004, BMC MED, V2, DOI 10.1186/1741-7015-2-30 Wangemann P, 2009, AM J PHYSIOL-RENAL, V297, pF1435, DOI 10.1152/ajprenal.00011.2009 Wangemann P, 2007, AM J PHYSIOL-RENAL, V292, pF1345, DOI 10.1152/ajprenal.00487.2006 Wangemann P, 1996, HEARING RES, V100, P201, DOI 10.1016/0378-5955(96)00127-X Wilson DF, 1997, AM J OTOL, V18, P106 Wilson DF, 1997, AM J OTOL, V18, P101 Wu CC, 2010, AUDIOL NEURO-OTOL, V15, P57, DOI 10.1159/000231567 Yang T, 2007, AM J HUM GENET, V80, P1055, DOI 10.1086/518314 Yang T, 2009, AM J HUM GENET, V84, P651, DOI 10.1016/j.ajhg.2009.04.014 Yuan Y, 2009, J TRANSL MED, V7, DOI 10.1186/1479-5876-7-79 Zhang YP, 2005, P NATL ACAD SCI USA, V102, P15201, DOI 10.1073/pnas.0501859102 NR 77 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD NOV PY 2011 VL 281 IS 1-2 SI SI BP 11 EP 17 DI 10.1016/j.heares.2011.05.009 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 853ML UT WOS:000297430300003 PM 21669267 ER PT J AU de Beeck, KO Schacht, J Van Camp, G AF de Beeck, Ken Op Schacht, Jochen Van Camp, Guy TI Apoptosis in acquired and genetic hearing impairment: The programmed death of the hair cell SO HEARING RESEARCH LA English DT Article ID CISPLATIN-INDUCED OTOTOXICITY; VESTIBULAR SENSORY EPITHELIA; GENTAMICIN-INDUCED COCHLEAR; NOISE-INDUCED APOPTOSIS; GUINEA-PIG; INNER-EAR; INTENSE NOISE; D-METHIONINE; DFNA5 GENE; IN-VIVO AB Apoptosis is an important physiological process. Normally, a healthy cell maintains a delicate balance between pro- and anti-apoptotic factors, allowing it to live and proliferate. It is thus not surprising that disturbance of this delicate balance may result in disease. It is a well known fact that apoptosis also contributes to several acquired forms of hearing impairment. Noise-induced hearing loss is the result of prolonged exposure to excessive noise, triggering apoptosis in terminally differentiated sensory hair cells. Moreover, hearing loss caused by the use of therapeutic drugs such as aminoglycoside antibiotics and cisplatin potentially may result in the activation of apoptosis in sensory hair cells leading to hearing loss due to the "ototoxicity" of the drugs. Finally, apoptosis is a key contributor to the development of presbycusis, age-related hearing loss. Recently, several mutations in apoptosis genes were identified as the cause of monogenic hearing impairment. These genes are TJP2, DFNA5 and MSRB3. This implies that apoptosis not only contributes to the pathology of acquired forms of hearing impairment, but also to genetic hearing impairment as well. We believe that these genes constitute a new functional class within the hearing loss field. Here, the contribution of apoptosis in the pathology of both acquired and genetic hearing impairment is reviewed. (C) 2011 Elsevier B.V. All rights reserved. C1 [de Beeck, Ken Op; Van Camp, Guy] Univ Antwerp, Dept Biomed Sci, Ctr Med Genet, B-2610 Antwerp, Belgium. [de Beeck, Ken Op; Van Camp, Guy] Univ Antwerp Hosp, Ctr Med Genet, Antwerp, Belgium. [Schacht, Jochen] Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Van Camp, G (reprint author), Univ Pl 1, B-2610 Antwerp, Belgium. EM guy.vancamp@ua.ac.be RI Van Camp, Guy/F-3386-2013 OI Van Camp, Guy/0000-0001-5105-9000 FU 'Fonds voor Wetenschappelijk Onderzoek Vlaanderen' (FWO) [G.0245.10N]; National Institute for Deafness and Other Communication Disorders, National Institutes of Health [R01 DC003685] FX This work was supported by the 'Fonds voor Wetenschappelijk Onderzoek Vlaanderen' (FWO grant G.0245.10N). K.O.D.B. holds a predoctoral research position with the 'Instituut voor de Aanmoediging van Innovatie door Wetenschap en Technologie in Vlaanderen (IWT)'. Dr. Schacht's research on drug-induced hearing loss is supported by grant R01 DC003685 from the National Institute for Deafness and Other Communication Disorders, National Institutes of Health. CR Ahmed ZM, 2011, AM J HUM GENET, V88, P19, DOI 10.1016/j.ajhg.2010.11.010 Ahn JH, 2005, BIOCHEM BIOPH RES CO, V335, P485, DOI 10.1016/j.bbrc.2005.07.114 Akino K, 2007, CANCER SCI, V98, P88, DOI 10.1111/j.1349-7006.2006.00351.x Alam SA, 2000, HEARING RES, V141, P28, DOI 10.1016/S0378-5955(99)00211-7 Arslan E, 1999, ANN NY ACAD SCI, V884, P1 Banfi B, 2004, J BIOL CHEM, V279, P46065, DOI 10.1074/jbc.M403046200 Bischoff AMLC, 2004, AUDIOL NEURO-OTOL, V9, P34, DOI 10.1159/000074185 Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9 Campbell KCM, 2007, HEARING RES, V226, P92, DOI 10.1016/j.heares.2006.11.012 Chen Y, 2007, HEARING RES, V226, P178, DOI 10.1016/j.heares.2006.05.008 Cheng J, 2007, CLIN GENET, V72, P471, DOI 10.1111/j.1399-0004.2007.00889.x CHURCH MW, 1995, HEARING RES, V86, P195, DOI 10.1016/0378-5955(95)00066-D Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 Dehne N, 2001, TOXICOL APPL PHARM, V174, P27, DOI 10.1006/taap.2001.9171 Dehne N, 2002, HEARING RES, V169, P47, DOI 10.1016/S0378-5955(02)00338-6 Dickey CA, 2004, NEUROSCI LETT, V366, P10, DOI 10.1016/j.neulet.2004.04.089 ESTREM SA, 1981, OTOLARYNG HEAD NECK, V89, P638 Ettaiche M, 1999, INVEST OPHTH VIS SCI, V40, P729 Fetoni AR, 2010, NEUROSCIENCE, V169, P1575, DOI 10.1016/j.neuroscience.2010.06.022 Fetoni AR, 2009, BRAIN RES, V1257, P108, DOI 10.1016/j.brainres.2008.12.027 FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2 Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X FUJIKANE T, 2009, BREAST CANC RES TREA Gates GA, 2005, LANCET, V366, P1111, DOI 10.1016/S0140-6736(05)67423-5 HAMERNIK RP, 1984, HEARING RES, V13, P229, DOI 10.1016/0378-5955(84)90077-7 Han WJ, 2006, HEARING RES, V211, P85, DOI 10.1016/j.heares.2005.10.004 Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3 Hight NG, 2003, HEARING RES, V179, P21, DOI 10.1016/S0378-5955(03)00067-4 Hill GW, 2008, OTOL NEUROTOL, V29, P1005, DOI 10.1097/MAO.0b013e31818599d5 Hong SH, 2006, HEARING RES, V211, P46, DOI 10.1016/j.heares.2005.08.009 Hu BH, 2002, HEARING RES, V172, P1, DOI 10.1016/S0378-5955(01)00361-6 Hu BH, 2009, NEUROSCIENCE, V161, P915, DOI 10.1016/j.neuroscience.2009.03.072 Hu BH, 2000, ACTA OTO-LARYNGOL, V120, P19, DOI 10.1080/000164800760370774 Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1 Humes HD, 1999, ANN NY ACAD SCI, V884, P15 Jiang H, 2006, CELL DEATH DIFFER, V13, P20, DOI 10.1038/sj.cdd.4401706 Jiang H, 2007, NEUROBIOL AGING, V28, P1605, DOI 10.1016/j.neurobiolaging.2006.06.025 Jiang HY, 2005, J NEUROSCI RES, V79, P644, DOI 10.1002/jnr.20392 Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 Kalinec GM, 2005, P NATL ACAD SCI USA, V102, P16019, DOI 10.1073/pnas.0508053102 Kawamoto K, 2004, MOL THER, V9, P173, DOI 10.1016/j.ymthe.2003.11.020 KERR JFR, 1972, BRIT J CANCER, V26, P239, DOI 10.1038/bjc.1972.33 Kim MS, 2008, BIOCHEM BIOPH RES CO, V370, P38, DOI 10.1016/j.bbrc.2008.03.026 Kim MS, 2008, ONCOGENE, V27, P3624, DOI 10.1038/sj.onc.1211021 Kopke RD, 1997, AM J OTOL, V18, P559 Lage H, 2001, FEBS LETT, V494, P54, DOI 10.1016/S0014-5793(01)02304-3 Lang-Lazdunski L, 2000, EUR J CARDIO-THORAC, V18, P174, DOI 10.1016/S1010-7940(00)00430-9 LAURELL G, 1989, HEARING RES, V38, P27, DOI 10.1016/0378-5955(89)90125-1 Lee JE, 2003, LARYNGOSCOPE, V113, P994, DOI 10.1097/00005537-200306000-00015 Lesniak W, 2005, CHEM RES TOXICOL, V18, P357, DOI 10.1021/tx0496946 LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307 Lo YYC, 1996, J BIOL CHEM, V271, P15703 MARAZITA ML, 1993, AM J MED GENET, V46, P486, DOI 10.1002/ajmg.1320460504 Masuda Yoshiko, 2006, J Hum Genet, V51, P652, DOI 10.1007/s10038-006-0004-6 Mielke K, 2000, PROG NEUROBIOL, V61, P45, DOI 10.1016/S0301-0082(99)00042-8 Mukherjea D, 2006, NEUROSCIENCE, V139, P733, DOI 10.1016/j.neuroscience.2005.12.044 Musial-Bright L, 2011, CHILD NERV SYST, V27, P407, DOI 10.1007/s00381-010-1300-1 Nakagawa T, 1998, EUR ARCH OTO-RHINO-L, V255, P127, DOI 10.1007/s004050050027 Nakamagoe M, 2010, HEARING RES, V261, P67, DOI 10.1016/j.heares.2010.01.004 Nelson DI, 2005, AM J IND MED, V48, P446, DOI 10.1002/aijm.20223 Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2 Niu XZ, 2003, NEUROREPORT, V14, P1025, DOI 10.1097/01.wnr.0000070830.57864.32 Ohinata Y, 2003, BRAIN RES, V966, P265, DOI 10.1016/S0006-8993(02)04205-1 Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 OPDEBEECK K, 2011, EUR J HUM GENET Pirvola U, 2000, J NEUROSCI, V20, P43 Ries P. W., 1994, VITAL HLTH STAT, V10, P1 Rybak LP, 2007, HEARING RES, V226, P157, DOI 10.1016/j.heares.2006.09.015 Rybak LP, 2007, KIDNEY INT, V72, P931, DOI 10.1038/sj.ki.5002434 SAUNDERS JC, 1985, J ACOUST SOC AM, V78, P833, DOI 10.1121/1.392915 Sergi B, 2006, NEUROREPORT, V17, P857, DOI 10.1097/01.wnr.0000221834.18470.8c Sha SH, 1999, FREE RADICAL BIO MED, V26, P341, DOI 10.1016/S0891-5849(98)00207-X Sha SH, 2009, HEARING RES, V254, P92, DOI 10.1016/j.heares.2009.04.019 Sha SH, 2008, HEARING RES, V243, P87, DOI 10.1016/j.heares.2008.06.001 Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4 Shim HJ, 2009, ACTA OTO-LARYNGOL, V129, P233, DOI 10.1080/00016480802226155 SLEPECKY N, 1986, HEARING RES, V22, P307, DOI 10.1016/0378-5955(86)90107-3 Someya S, 2007, NEUROBIOL AGING, V28, P1613, DOI 10.1016/j.neurobiolaging.2006.06.024 Someya S, 2010, MECH AGEING DEV, V131, P480, DOI 10.1016/j.mad.2010.04.006 Someya S, 2009, P NATL ACAD SCI USA, V106, P19432, DOI 10.1073/pnas.0908786106 Song BB, 1998, FREE RADICAL BIO MED, V25, P189, DOI 10.1016/S0891-5849(98)00037-9 Suzuki M, 2008, ACTA OTO-LARYNGOL, V128, P724, DOI 10.1080/00016480701714244 Tabuchi K, 2007, NEUROSCIENCE, V149, P213, DOI 10.1016/j.neuroscience.2007.06.061 Tadros SF, 2008, APOPTOSIS, V13, P1303, DOI 10.1007/s10495-008-0266-x Tanaka K, 2005, EUR J PHARMACOL, V522, P116, DOI 10.1016/j.ejphar.2005.08.026 Tsutsumishita Y, 1998, BIOCHEM BIOPH RES CO, V242, P310, DOI 10.1006/bbrc.1997.7962 Usami S, 1997, BRAIN RES, V747, P147, DOI 10.1016/S0006-8993(96)01243-7 Van Laer L, 1998, NAT GENET, V20, P194 Van Laer L, 2004, J MED GENET, V41, P401, DOI 10.1136/jmg.2003.015073 Vicente-Torres MA, 2006, J NEUROSCI RES, V83, P1564, DOI 10.1002/jnr.20832 Walsh T, 2010, AM J HUM GENET, V87, P101, DOI 10.1016/j.ajhg.2010.05.011 Wang J, 2002, NEUROSCIENCE, V111, P635 Wang J, 2007, MOL PHARMACOL, V71, P654, DOI 10.1124/mol.106.028936 Wu YJ, 2005, J PHARMACOL EXP THER, V312, P424, DOI 10.1124/jpet.104.075119 Yamashita D, 2005, NEUROSCIENCE, V134, P633, DOI 10.1016/j.neuroscience.2005.04.015 Yamashita D, 2004, NEUROREPORT, V15, P2719 Yamashita D, 2004, BRAIN RES, V1019, P201, DOI 10.1016/j.brainres.2004.05.104 Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015 Ylikoski J, 2002, HEARING RES, V163, P71, DOI 10.1016/S0378-5955(01)00380-X Yu CA, 2003, GENOMICS, V82, P575, DOI 10.1016/S0888-7543(03)00175-7 NR 101 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2011 VL 281 IS 1-2 SI SI BP 18 EP 27 DI 10.1016/j.heares.2011.07.002 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 853ML UT WOS:000297430300004 ER PT J AU Xie, J Talaska, AE Schacht, J AF Xie, Jing Talaska, Andra E. Schacht, Jochen TI New developments in aminoglycoside therapy and ototoxicity SO HEARING RESEARCH LA English DT Article ID HAIR CELL-DEATH; CYSTIC-FIBROSIS PATIENTS; PIG INNER-EAR; ATTENUATE GENTAMICIN OTOTOXICITY; PREMATURE STOP MUTATIONS; INDUCED HEARING-LOSS; GUINEA-PIG; IN-VIVO; ULTRASTRUCTURAL-LOCALIZATION; ANTIBACTERIAL ACTIVITY AB After almost seven decades in clinical use, aminoglycoside antibiotics still remain indispensible drugs for acute infections and specific indications such as tuberculosis or the containment of pseudomonas bacteria in patients with cystic fibrosis. The review will describe the pathology and pathophysiology of aminoglycoside-induced auditory and vestibular toxicity in humans and experimental animals and explore contemporary views of the mechanisms of cell death. It will also outline the current state of protective therapy and recent advances in the development of aminoglycoside derivatives with low toxicity profiles for antimicrobial treatment and for stop-codon suppression in the attenuation of genetic disorders. (C) 2011 Elsevier B.V. All rights reserved. C1 [Xie, Jing; Talaska, Andra E.; Schacht, Jochen] Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Schacht, J (reprint author), Univ Michigan, Kresge Hearing Res Inst, Room 5315,Med Sci Bldg 1,1150 W Med Ctr Dr, Ann Arbor, MI 48109 USA. EM schacht@umich.edu FU National Institute for Deafness and Other Communication Disorders, National Institutes of Health [R01 DC003685] FX Dr. Schacht's research on drug-induced hearing loss is supported by grant R01 DC003685 from the National Institute for Deafness and Other Communication Disorders, National Institutes of Health. CR ALMALKY G, 2011, AUDIO, V50, P112 American Academy of Audiology, 2009, POS STAT CLIN PRACT Armstrong ES, 2010, CURR OPIN MICROBIOL, V13, P565, DOI 10.1016/j.mib.2010.09.004 *ASLHA, 2010, EV BAS SYST REV ESBR Avent ML, 2011, INTERN MED J, V41, P441, DOI 10.1111/j.1445-5994.2011.02452.x Balakin KV, 2007, ANTI-CANCER AGENT ME, V7, P576 Barto Tara Lynn, 2010, Hosp Pract (1995), V38, P26 Barton-Davis ER, 1999, J CLIN INVEST, V104, P375, DOI 10.1172/JCI7866 Battaglia A, 2003, NEUROSCIENCE, V122, P1025, DOI 10.1016/j.neuroscience.2003.08.041 Behnoud F, 2009, SAUDI MED J, V30, P1165 Bera S, 2010, BIOORG MED CHEM LETT, V20, P3031, DOI 10.1016/j.bmcl.2010.03.116 Bottger EC, 2001, EMBO REP, V2, P318, DOI 10.1093/embo-reports/kve062 BRAZIL OV, 1957, J PHARMACOL EXP THER, V120, P452 Bremner JB, 2007, CURR MED CHEM, V14, P1459, DOI 10.2174/092986707780831168 BURKE JF, 1985, NUCLEIC ACIDS RES, V13, P6265, DOI 10.1093/nar/13.17.6265 Caminero JA, 2010, LANCET INFECT DIS, V10, P621, DOI 10.1016/S1473-3099(10)70139-0 CAUSSE R, 1949, CR SOC BIOL, V143, P619 Chen F, 2008, ABSTR ASSN RES OTOLA, V31, P50 Chen FQ, 2009, J NEUROCHEM, V108, P1226, DOI 10.1111/j.1471-4159.2009.05871.x Choung YH, 2009, NEUROSCIENCE, V161, P214, DOI 10.1016/j.neuroscience.2009.02.085 Chung WH, 2006, JARO-J ASSOC RES OTO, V7, P373, DOI 10.1007/s10162-006-0050-y Clancy JP, 2001, AM J RESP CRIT CARE, V163, P1683 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 Darrouzet J, 1974, Rev Laryngol Otol Rhinol (Bord), V95, P601 Davies JC, 2007, BRIT MED J, V335, P1255, DOI 10.1136/bmj.39391.713229.AD DEGROOT JCMJ, 1990, HEARING RES, V50, P35, DOI 10.1016/0378-5955(90)90031-J de Jager P, 2002, INT J TUBERC LUNG D, V6, P622 Dotan ZA, 2003, ANESTH ANALG, V96, P750, DOI 10.1213/01.ANE.0000050280.59508.70 DUGGAL P, 2007, BMC EAR NOSE THROAT, V12, P1 Eshraghi AA, 2007, HEARING RES, V226, P168, DOI 10.1016/j.heares.2006.09.008 EUSTICE DC, 1984, BIOCHEMISTRY-US, V23, P1462, DOI 10.1021/bi00302a019 Fausti S A, 1992, J Am Acad Audiol, V3, P397 FEE WE, 1980, LARYNGOSCOPE, V90, P1, DOI 10.1288/00005537-198010001-00001 Feldman L, 2007, KIDNEY INT, V72, P359, DOI 10.1038/sj.ki.5002295 Frederiksen B, 1996, PEDIATR PULM, V21, P153, DOI 10.1002/(SICI)1099-0496(199603)21:3<153::AID-PPUL1>3.0.CO;2-R GILBERT DN, 2004, MANDELL DOUGLAS BENN, P328 GREER LG, 2008, INFECT DIS OBSTET GY Gulbay BE, 2006, RESP MED, V100, P1834, DOI 10.1016/j.rmed.2006.01.014 Hainrichson M, 2005, BIOORGAN MED CHEM, V13, P5797, DOI 10.1016/j.bmc.2005.05.058 Hashino E, 1997, BRAIN RES, V777, P75, DOI 10.1016/S0006-8993(97)00977-3 HAWKINS JE, 1973, AUDIOLOGY, V12, P383 Haydel SE, 2010, PHARMACEUTICALS, V3, P2268, DOI DOI 10.3390/PH3072268 HELLER J, 1984, International Urology and Nephrology, V16, P243, DOI 10.1007/BF02082570 HIEL H, 1992, HEARING RES, V57, P157, DOI 10.1016/0378-5955(92)90148-G HINOJOSA R, 1987, J INFECT DIS, V156, P448 HINSHAW HC, 1945, P STAFF M MAYO CLIN, V20, P313 Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4 Howard MT, 2004, ANN NEUROL, V55, P422, DOI 10.1002/ana.20052 Huizing E H, 1987, Acta Otolaryngol Suppl, V436, P117 Imamura S, 2003, JARO, V4, P176, DOI 10.1007/s10162-002-2036-8 Ishihara K, 2003, EUR J BIOCHEM, V270, P3461, DOI 10.1046/j.1432-1033.2003.03740.x Jiang H, 2006, CELL DEATH DIFFER, V13, P20, DOI 10.1038/sj.cdd.4401706 Jiang H, 2006, J NEUROCHEM, V99, P269, DOI 10.1111/j.1471-4159.2006.04117.x Jiang H, 2006, J NEUROSCI RES, V83, P1544, DOI 10.1002/jnr.20833 Jiang HY, 2005, J NEUROSCI RES, V79, P644, DOI 10.1002/jnr.20392 Kaplan DM, 2000, LARYNGOSCOPE, V110, P1298, DOI 10.1097/00005537-200008000-00014 Kaufman RJ, 1999, J CLIN INVEST, V104, P367, DOI 10.1172/JCI8055 Kaul M, 2006, J AM CHEM SOC, V128, P1261, DOI 10.1021/ja056159z Kawamoto K, 2004, MOL THER, V9, P173, DOI 10.1016/j.ymthe.2003.11.020 Kerem E, 2008, LANCET, V372, P719, DOI 10.1016/S0140-6736(08)61168-X Kharkheli E., 2007, GEORGIAN MED NEWS, V146, P14 KIES C, 1975, J NUTR, V105, P809 Kirkwood Allison, 2007, J Obstet Gynaecol Can, V29, P140 Leitner MG, 2011, MOL PHARMACOL, V79, P51, DOI 10.1124/mol.110.068130 LENOIR M, 1983, ACTA OTO-LARYNGOL, P1 LERNER SA, 1986, AM J MED, V80, P98, DOI 10.1016/0002-9343(86)90486-9 LIM DJ, 1986, AM J OTOLARYNG, V7, P73, DOI 10.1016/S0196-0709(86)80037-0 LODHI S, 1980, BIOCHEM PHARMACOL, V29, P597, DOI 10.1016/0006-2952(80)90382-2 Lyell DJ, 2010, OBSTET GYNECOL, V115, P344, DOI 10.1097/AOG.0b013e3181cb5c0e Magnet S, 2005, CHEM REV, V105, P477, DOI 10.1021/cr0301088 Malik V, 2010, ANN NEUROL, V67, P771, DOI 10.1002/ana.22024 Marcotti W, 2005, J PHYSIOL-LONDON, V567, P505, DOI 10.1113/jphysiol.2005.085951 MAROT M, 1980, HEARING RES, V2, P111, DOI 10.1016/0378-5955(80)90032-5 Mizuta K, 1999, HEARING RES, V129, P83, DOI 10.1016/S0378-5955(98)00221-4 MOESTRUP SK, 1995, J CLIN INVEST, V96, P1404, DOI 10.1172/JCI118176 Mohtat D, 2010, SEMIN NEPHROL, V30, P468, DOI 10.1016/j.semnephrol.2010.07.004 MOORE RD, 1984, J INFECT DIS, V149, P23 Mulheran M, 2001, ANTIMICROB AGENTS CH, V45, P2502, DOI 10.1128/AAC.45.9.2502-2509.2001 Myrdal SE, 2005, HEARING RES, V204, P170, DOI 10.1016/j.heares.2005.02.005 Nudelman I, 2009, J MED CHEM, V52, P2836, DOI 10.1021/jm801640k ORSULAKOVA A, 1976, J NEUROCHEM, V26, P285, DOI 10.1111/j.1471-4159.1976.tb04478.x Ou HC, 2010, DRUG DISCOV TODAY, V15, P265, DOI 10.1016/j.drudis.2010.01.001 PARADELIS AG, 1988, METHOD FIND EXP CLIN, V10, P687 Pfannenstiel SC, 2009, AUDIOL NEURO-OTOL, V14, P254, DOI 10.1159/000192953 Pirvola U, 2000, J NEUROSCI, V20, P43 Pokrovskaya V, 2010, METHOD ENZYMOL, V478, P437, DOI 10.1016/S0076-6879(10)78021-6 PREZANT TR, 1993, NAT GENET, V4, P289, DOI 10.1038/ng0793-289 Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4 Radigan Elizabeth A, 2010, J Intensive Care Med, V25, P327, DOI 10.1177/0885066610377968 Ramesh G, 2004, KIDNEY INT, V65, P490, DOI 10.1111/j.1523-1755.2004.00413.x RASMUSSE.F, 1969, SCAND J RESPIR DIS, V50, P61 Richardson GP, 1997, J NEUROSCI, V17, P9506 Ryals B, 1997, HEARING RES, V112, P44, DOI 10.1016/S0378-5955(97)00094-4 Rybak LP, 2005, DRUG DISCOV TODAY, V10, P1313, DOI 10.1016/S1359-6446(05)03552-X Saunders JE, 2009, OTOLARYNG HEAD NECK, V140, P103, DOI 10.1016/j.otohns.2008.09.027 SCHACHT J, 1979, ARCH OTO-RHINO-LARYN, V224, P129, DOI 10.1007/BF00455236 SCHIEVE LA, 1994, AM J PUBLIC HEALTH, V84, P405, DOI 10.2105/AJPH.84.3.405 Selimoglu E, 2003, YONSEI MED J, V44, P517 Sha SH, 1999, FREE RADICAL BIO MED, V26, P341, DOI 10.1016/S0891-5849(98)00207-X Sha SH, 2006, NEW ENGL J MED, V354, P1856, DOI 10.1056/NEJMc053428 Sha SH, 1999, LAB INVEST, V79, P807 Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4 Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 Sleat D E, 2001, Eur J Paediatr Neurol, V5 Suppl A, P57, DOI 10.1053/ejpn.2000.0436 Sobel ML, 2003, ANTIMICROB AGENTS CH, V47, P3202, DOI 10.1128/AAC.47.10.3202-3207.2003 Song BB, 1998, FREE RADICAL BIO MED, V25, P189, DOI 10.1016/S0891-5849(98)00037-9 Song BB, 1996, HEARING RES, V94, P87, DOI 10.1016/0378-5955(96)00003-2 STEBBINS WC, 1969, ANN OTO RHINOL LARYN, V78, P1007 Streetman DS, 2001, PHARMACOTHERAPY, V21, P443, DOI 10.1592/phco.21.5.443.34490 Sundar S, 2007, NEW ENGL J MED, V356, P2571, DOI 10.1056/NEJMoa066536 Taleb M, 2009, CELL STRESS CHAPERON, V14, P427, DOI 10.1007/s12192-008-0097-2 Thakur CP, 2008, INDIAN J MED RES, V127, P489 Tsuji K, 2000, Ann Otol Rhinol Laryngol Suppl, V181, P20 Wagner KR, 2001, ANN NEUROL, V49, P706, DOI 10.1002/ana.1023 Wang J, 2003, J NEUROSCI, V23, P8596 WERSALL J, 1969, J INFECT DIS, V119, P410 WILLIAMS SE, 1987, BIOCHEM PHARMACOL, V36, P89, DOI 10.1016/0006-2952(87)90385-6 Wilschanski M, 2003, NEW ENGL J MED, V349, P1433, DOI 10.1056/NEJMoa022170 Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3 Yagi M, 1999, HUM GENE THER, V10, P813, DOI 10.1089/10430349950018562 Ylikoski J, 2002, HEARING RES, V166, P33, DOI 10.1016/S0378-5955(01)00388-4 NR 121 TC 44 Z9 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2011 VL 281 IS 1-2 SI SI BP 28 EP 37 DI 10.1016/j.heares.2011.05.008 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 853ML UT WOS:000297430300005 PM 21640178 ER PT J AU Shore, SE AF Shore, S. E. TI Plasticity of somatosensory inputs to the cochlear nucleus - Implications for tinnitus SO HEARING RESEARCH LA English DT Article ID TIMING-DEPENDENT PLASTICITY; VESICULAR GLUTAMATE TRANSPORTERS; TRIGEMINAL GANGLION STIMULATION; INTENSE SOUND EXPOSURE; GUINEA-PIG; INFERIOR COLLICULUS; DISCHARGE PATTERNS; PYRAMIDAL CELLS; AUDITORY-CORTEX; UNIT RESPONSES AB This chapter reviews evidence for functional connections of the somatosensory and auditory systems at the very lowest levels of the nervous system. Neural inputs from the dosal root and trigeminal ganglia, as well as their brain stem nuclei, cuneate, gracillis and trigeminal, terminate in the cochlear nuclei. Terminations are primarily in the shell regions surrounding the cochlear nuclei but some terminals are found in the magnocellular regions of cochlear nucleus. The effects of stimulating these inputs on multisensory integration are shown as short and long-term, both suppressive and enhancing. Evidence that these projections are glutamatergic and are altered after cochlear damage is provided in the light of probable influences on the modulation and generation of tinnitus. (C) 2011 Elsevier B.V. All rights reserved. C1 Univ Michigan, Dept Otolaryngol, Ann Arbor, MI 48109 USA. RP Shore, SE (reprint author), Univ Michigan, Dept Otolaryngol, 1150 W Med Ctr, Ann Arbor, MI 48109 USA. EM sushore@umich.edu FU NIH [NIDCD R01 004825, P30 DC 05188]; Tinnitus Research Consortium; Tinnitus Research Initiative FX This work was supported by NIH Grants NIDCD R01 004825 and P30 DC 05188 and the Tinnitus Research Consortium and the Tinnitus Research Initiative. We thank Ben Yates for expert graphical assistance. CR Allman BL, 2009, P NATL ACAD SCI USA, V106, P5925, DOI 10.1073/pnas.0809483106 Bauer CA, 2008, J NEUROSCI RES Bledsoe SC, 2009, J NEUROPHYSIOL, V102, P886, DOI 10.1152/jn.91003.2008 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 Caclin A, 2002, PERCEPT PSYCHOPHYS, V64, P616, DOI 10.3758/BF03194730 CASPARY DM, 1987, BRAIN RES, V417, P273, DOI 10.1016/0006-8993(87)90452-5 Davis KA, 1996, J NEUROPHYSIOL, V76, P3012 Dehmel S, 2008, AM J AUDIOL, V17, pS193, DOI 10.1044/1059-0889(2008/07-0045) DEHMEL S, 2011, ABSTR ASS RES OT, V34, P437 Dehmel S, 2008, AM J AUDIOL, V17, P193 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Eggermont JJ, 2005, DRUG DISCOV TODAY, V10, P1283, DOI 10.1016/S1359-6446(05)03542-7 Finlayson PG, 2009, HEARING RES, V256, P104, DOI 10.1016/j.heares.2009.07.006 Fremeau RT, 2004, SCIENCE, V304, P1815, DOI 10.1126/science.1097468 Fujino K, 2003, P NATL ACAD SCI USA, V100, P265, DOI 10.1073/pnas.0135345100 Gras C, 2002, J NEUROSCI, V22, P5442 HACKNEY CM, 1990, ANAT EMBRYOL, V182, P123 Haenggeli CA, 2005, J COMP NEUROL, V484, P191, DOI 10.1002/cne.20466 Herzog E, 2001, J NEUROSCI, V21, part. no. Ito T, 2009, P NATL ACAD SCI USA, V106, P1245, DOI 10.1073/pnas.0810063106 Jain R, 2006, NEUROSCI LETT, V395, P71, DOI 10.1016/j.neulet.2005.10.077 Kaltenbach JA, 2008, AM J AUDIOL, V17, pS148, DOI 10.1044/1059-0889(2008/08-0004) Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5 Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57 Kaneko T, 2002, J COMP NEUROL, V444, P39, DOI 10.1002/cne.10129 KANOLD PO, 2011, J NEUROPHYSIOL Kanold PO, 2001, J NEUROPHYSIOL, V85, P523 Kanold PO, 2005, J NEUROPHYSIOL, V93, P2887, DOI 10.1152/jn.00910.2004 KANOLD PO, 2010, J NEUROPHYSIOL Kanold PO, 2001, J NEUROSCI, V21, P7848 Kanold PO, 1999, J NEUROSCI, V19, P2195 Koehler SD, 2011, EUR J NEUROSCI, V33, P409, DOI 10.1111/j.1460-9568.2010.07547.x Lanting CP, 2010, HEARING RES, V267, P78, DOI 10.1016/j.heares.2010.04.006 Levine RA, 1999, AM J OTOLARYNG, V20, P351, DOI 10.1016/S0196-0709(99)90074-1 Lewald J, 1999, EXP BRAIN RES, V125, P389, DOI 10.1007/s002210050695 Lockwood AH, 2002, NEW ENGL J MED, V347, P904, DOI 10.1056/NEJMra013395 LOEB M, 1967, J ACOUST SOC AM, V42, P453, DOI 10.1121/1.1910600 Masuda N, 2007, J COMPUT NEUROSCI, V22, P327, DOI 10.1007/s10827-007-0022-1 McBain CJ, 2008, PROG BRAIN RES, V169, P225, DOI 10.1016/S0079-6123(07)00013-1 Moore BCJ, 2010, HEARING RES, V261, P51, DOI 10.1016/j.heares.2010.01.003 Mulders WHAM, 2009, NEUROSCIENCE, V164, P733, DOI 10.1016/j.neuroscience.2009.08.036 Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156 ODONAHUE H, 2010, ARO, V33, P240 Pinchoff RJ, 1998, AM J OTOL, V19, P785 Roberts LE, 2008, JARO-J ASSOC RES OTO, V9, P417, DOI 10.1007/s10162-008-0136-9 Roberts PD, 2006, NEUROCOMPUTING, V69, P1191, DOI 10.1016/j.neucom.2005.12.073 RUBINSTEIN B, 1990, Journal of Craniomandibular Disorders, V4, P186 Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 Schaette R, 2009, J NEUROPHYSIOL, V101, P3042, DOI 10.1152/jn.91256.2008 Schurmann M, 2004, J ACOUST SOC AM, V115, P830, DOI 10.1121/1.1639909 Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1 SHORE RE, 2005, TINNITUS THEORY MANA, P125 SHORE RE, 2008, EUR J NEUROSCI, V27, P155 Shore S, 2007, PROG BRAIN RES, V166, P107, DOI 10.1016/S0079-6123(07)66010-5 Shore SE, 2003, NEUROSCIENCE, V119, P1085, DOI 10.1016/S0306-4522(03)00207-0 Shore SE, 2000, J COMP NEUROL, V419, P271, DOI 10.1002/(SICI)1096-9861(20000410)419:3<271::AID-CNE1>3.0.CO;2-M Shore SE, 2005, EUR J NEUROSCI, V21, P3334, DOI 10.1111/j.1460-9568.2005.04142.x Takahashi YK, 2009, PHYS REV E, V79, DOI 10.1103/PhysRevE.79.051904 Takamori S, 2001, J NEUROSCI, V21 Tzounopoulos T, 2007, NEURON, V54, P291, DOI 10.1016/j.neuron.2007.03.026 Tzounopoulos T, 2004, NAT NEUROSCI, V7, P719, DOI 10.1038/nn1272 VANHEUSDEN E, 1983, HEARING RES, V11, P295, DOI 10.1016/0378-5955(83)90064-3 Varoqui H, 2002, J NEUROSCI, V22, P142 Wallen-Mackenzie A, 2010, UPSALA J MED SCI, V115, P11, DOI 10.3109/03009730903572073 Wang H, 2009, NEUROSCIENCE, V164, P747, DOI 10.1016/j.neuroscience.2009.08.026 Weisz N, 2006, HEARING RES, V222, P108, DOI 10.1016/j.heares.2006.09.003 Zacharek MA, 2002, HEARING RES, V172, P137, DOI 10.1016/S0378-5955(02)00575-0 Zeng C, 2011, NEUROSCIENCE, V176, P142, DOI 10.1016/j.neuroscience.2010.12.010 Zeng CH, 2009, J NEUROSCI, V29, P4210, DOI 10.1523/JNEUROSCI.0208-09.2009 Zhan XP, 2006, J COMP NEUROL, V496, P335, DOI 10.1002/cne.20917 Zhang J, 2008, J NEUROSCI RES, V86, P1178, DOI 10.1002/jnr.21560 Zhou JX, 2007, J COMP NEUROL, V500, P777, DOI 10.1002/cne.21208 Zhou JX, 2004, J NEUROSCI RES, V78, P901, DOI 10.1002/jnr.20343 Zhou JX, 2006, J COMP NEUROL, V495, P100, DOI 10.1002/cne.20863 NR 74 TC 19 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2011 VL 281 IS 1-2 SI SI BP 38 EP 46 DI 10.1016/j.heares.2011.05.001 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 853ML UT WOS:000297430300006 PM 21620940 ER PT J AU Meltser, I Canlon, B AF Meltser, Inna Canlon, Barbara TI Protecting the auditory system with glucocorticoids SO HEARING RESEARCH LA English DT Article ID NF-KAPPA-B; INDUCED HEARING-LOSS; GUINEA-PIG COCHLEA; INNER-EAR; ACOUSTIC TRAUMA; RECEPTOR EXPRESSION; RESTRAINT STRESS; NOISE EXPOSURE; HAIR-CELLS; RAT-BRAIN AB Glucocorticoids are hormones released following stress-related events and function to maintain homeostasis. Glucocorticoid receptors localize, among others, to hair cells, spiral ligament and spiral ganglion neurons. Glucocorticoid receptor-induced protection against acoustic trauma is found by i) pretreatment with glucocorticoid agonists; ii) acute restraint stress; and iii) sound conditioning. In contrast, glucocorticoid receptor antagonists exacerbate hearing loss. These findings have important clinical significance since synthetic glucocorticoids are commonly used to treat hearing loss. However, this treatment has limited success since hearing improvement is often not maintained once the treatment has ended, a fact that reduces the overall appeal for this treatment. It must be realized that despite the widespread use of glucocorticoids to treat hearing disorders, the molecular mechanisms underlying this treatment are not well characterized. This review will give insight into some physiological and biochemical mechanisms underlying glucocorticoid treatment for preventing hearing loss. (C) 2011 Elsevier B.V. All rights reserved. C1 [Meltser, Inna; Canlon, Barbara] Karolinska Inst, Dept Physiol & Pharmacol, S-17177 Stockholm, Sweden. RP Canlon, B (reprint author), Karolinska Inst, Dept Physiol & Pharmacol, S-17177 Stockholm, Sweden. EM Barbara.Canlon@ki.se CR Agerman K, 2003, NEUROREPORT, V14, P2183, DOI 10.1097/01.wnr.0000095710.83808.57 Ahlbom E, 2000, P NATL ACAD SCI USA, V97, P14726, DOI 10.1073/pnas.260501697 Albensi BC, 2000, SYNAPSE, V35, P151 Barker DJP, 1998, CLIN SCI, V95, P115, DOI 10.1042/CS19980019 BEATO M, 1989, J STEROID BIOCHEM, V32, P737, DOI 10.1016/0022-4731(89)90521-9 Buijs RM, 2003, J ENDOCRINOL, V177, P17, DOI 10.1677/joe.0.1770017 CANLON B, 1988, HEARING RES, V34, P197, DOI 10.1016/0378-5955(88)90107-4 Canlon B, 2003, EUR J NEUROSCI, V17, P2035, DOI 10.1046/j.1460-9568.2003.02641.x Carlsson PI, 2005, HEARING RES, V202, P87, DOI 10.1016/j.heares.2004.09.005 Chaouloff F, 2011, FRONT NEUROENDOCRIN, V32, P25, DOI 10.1016/j.yfrne.2010.07.004 Coleman JKM, 2007, HEARING RES, V226, P70, DOI 10.1016/j.heares.2006.05.006 Conway-Campbell BL, 2007, ENDOCRINOLOGY, V148, P5470, DOI 10.1210/en.2007-0585 Datson NA, 2008, EUR J PHARMACOL, V583, P272, DOI 10.1016/j.ejphar.2007.11.070 DEKLOET R, 1975, ENDOCRINOLOGY, V96, P598 Dinh CT, 2008, NEUROSCIENCE, V157, P405, DOI 10.1016/j.neuroscience.2008.09.012 DONG Y, 1988, MOL ENDOCRINOL, V2, P1256 Eastwood H, 2010, HEARING RES, V265, P25, DOI 10.1016/j.heares.2010.03.006 Erdmann G, 2008, J NEUROENDOCRINOL, V20, P655, DOI 10.1111/j.1365-2826.2008.01717.x FRANK L, 1985, PEDIATRICS, V75, P569 FREDELIUS L, 1990, ACTA OTO-LARYNGOL, V109, P76, DOI 10.3109/00016489009107417 George DL, 2009, NAT REV RHEUMATOL, V5, P505, DOI 10.1038/nrrheum.2009.150 Gloddek B, 2002, ADV OTO-RHINO-LARYNG, V59, P75 Godfrey KM, 1998, EUR J OBSTET GYN R B, V78, P141, DOI 10.1016/S0301-2115(98)00060-8 Gross KL, 2009, MOL CELL ENDOCRINOL, V300, P7, DOI 10.1016/j.mce.2008.10.001 Haake SM, 2009, HEARING RES, V255, P22, DOI 10.1016/j.heares.2009.05.003 Haller J, 2008, FRONT NEUROENDOCRIN, V29, P273, DOI 10.1016/j.yfrne.2007.10.004 Hamanoue M, 1999, MOL CELL NEUROSCI, V14, P28, DOI 10.1006/mcne.1999.0770 Henley DE, 2011, NEUROSCIENCE, V180, P1, DOI 10.1016/j.neuroscience.2011.02.053 Henry KR, 2004, HEARING RES, V190, P141, DOI 10.1016/S0378-5955(03)00401-5 Herman JP, 1997, TRENDS NEUROSCI, V20, P78, DOI 10.1016/S0166-2236(96)10069-2 Hirose K, 2005, J COMP NEUROL, V489, P180, DOI 10.1002/cne.20619 HOLSON RR, 1995, NEUROTOXICOL TERATOL, V17, P393, DOI 10.1016/0892-0362(94)00074-N Hossain A, 2008, ENDOCRINOLOGY, V149, P6356, DOI 10.1210/en.2008-0388 HUTCHISON KA, 1993, ANN NY ACAD SCI, V684, P35, DOI 10.1111/j.1749-6632.1993.tb32269.x Jiang HY, 2005, J NEUROSCI RES, V79, P644, DOI 10.1002/jnr.20392 Johansson-Haque K, 2008, J MOL ENDOCRINOL, V41, P239, DOI 10.1677/JME-08-0015 Kalinec F, 2009, BRIT J PHARMACOL, V158, P1820, DOI 10.1111/j.1476-5381.2009.00473.x Kaltschmidt B, 2009, CSH PERSPECT BIOL, V1, DOI 10.1101/cshperspect.a001271 Kassel O, 2007, MOL CELL ENDOCRINOL, V275, P13, DOI 10.1016/j.mce.2007.07.003 KATTNER E, 1992, J PERINAT MED, V20, P449, DOI 10.1515/jpme.1992.20.6.449 Kim SH, 2009, AM J PHYSIOL-CELL PH, V296, pC544, DOI 10.1152/ajpcell.00338.2008 Lang HN, 2006, J NEUROSCI, V26, P3541, DOI 10.1523/JNEUROSCI.2488-05.2006 Lautermann J, 1997, HEARING RES, V114, P75, DOI 10.1016/S0378-5955(97)00154-8 Lee JH, 2002, AUDIOL NEURO-OTOL, V7, P100, DOI 10.1159/000057657 Lipsky RH, 2001, J NEUROCHEM, V78, P254, DOI 10.1046/j.1471-4159.2001.00386.x Lorenz RR, 2002, J NEUROIMMUNOL, V130, P173, DOI 10.1016/S0165-5728(02)00190-X Lowenberg M, 2008, STEROIDS, V73, P1025, DOI 10.1016/j.steroids.2007.12.002 Maeda K, 2005, HEARING RES, V202, P154, DOI 10.1016/j.heares.2004.08.022 Malkoski SP, 1999, MOL ENDOCRINOL, V13, P1629, DOI 10.1210/me.13.10.1629 Marini AM, 2004, RESTOR NEUROL NEUROS, V22, P121 MELTSER I, 2009, NEUROSCIENCE Meltser I, 2009, J NEUROTRAUM, V26, P1835, DOI 10.1089/neu.2008.0874 Mills CD, 1999, HEARING RES, V128, P75, DOI 10.1016/S0378-5955(98)00190-7 MITCHELL C, 1989, HEARING RES, V40, P75, DOI 10.1016/0378-5955(89)90101-9 MIYAKITA T, 1992, HEARING RES, V60, P149, DOI 10.1016/0378-5955(92)90017-H Murai N, 2008, J NEUROTRAUM, V25, P72, DOI 10.1089/neu.2007.0346 Nimkarn S, 2009, MOL CELL ENDOCRINOL, V300, P192, DOI 10.1016/j.mce.2008.11.027 Peppi M, 2011, J NEUROSCI, V31, P735, DOI 10.1523/JNEUROSCI.3955-10.2011 Pouyatos B, 2007, HEARING RES, V224, P61, DOI 10.1016/j.heares.2006.11.009 QUIRK WS, 1994, HEARING RES, V80, P119, DOI 10.1016/0378-5955(94)90015-9 QUIRK WS, 1994, HEARING RES, V74, P217, DOI 10.1016/0378-5955(94)90189-9 Rabinowitz PM, 2002, HEARING RES, V173, P164, DOI 10.1016/S0378-5955(02)00350-7 Ramkumar V, 2004, HEARING RES, V188, P47, DOI 10.1016/S0378-5955(03)00344-7 RAREY KE, 1993, HEARING RES, V64, P205, DOI 10.1016/0378-5955(93)90007-N Reichardt LF, 2006, PHILOS T R SOC B, V361, P1545, DOI 10.1098/rstb.2006.1894 REUL JMHM, 1985, ENDOCRINOLOGY, V117, P2505 ROSEWICZ S, 1988, J BIOL CHEM, V263, P2581 RYAN AF, 1994, HEARING RES, V72, P23, DOI 10.1016/0378-5955(94)90201-1 Schaaf MJM, 2002, J STEROID BIOCHEM, V83, P37, DOI 10.1016/S0960-0760(02)00263-7 Schoneveld OJLM, 2004, BBA-GENE STRUCT EXPR, V1680, P114, DOI 10.1016/j.bbaexp.2004.09.004 Seckl JR, 1998, CLIN PERINATOL, V25, P939 Seckl JR, 2004, ANN NY ACAD SCI, V1032, P63, DOI 10.1196/annals.1314.006 Selivanova O, 2007, ORL J OTO-RHINO-LARY, V69, P277, DOI 10.1159/000103871 Sendowski I, 2006, HEARING RES, V221, P119, DOI 10.1016/j.heares.2006.08.010 Shimazaki T, 2002, ANN OTO RHINOL LARYN, V111, P1133 Staecker H, 2002, ACTA OTO-LARYNGOL, V122, P684, DOI 10.1080/000164802320396402 Stohr T, 1998, PHARMACOL BIOCHEM BE, V59, P799, DOI 10.1016/S0091-3057(97)00541-8 Tahera Y, 2006, NEUROREPORT, V17, P879, DOI 10.1097/01.wnr.0000220131.24468.e7 Tahera Y, 2006, ENDOCRINOLOGY, V147, P4430, DOI 10.1210/en.2006-0260 Tahera Y, 2006, J NEUROSCI RES, V83, P1066, DOI 10.1002/jnr.20795 Tahera Y, 2007, NEUROBIOL DIS, V25, P189, DOI 10.1016/j.nbd.2006.09.004 TENCATE WJF, 1992, HEARING RES, V60, P199, DOI 10.1016/0378-5955(92)90021-E TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865 Toldy A, 2005, BRAIN RES BULL, V65, P487, DOI 10.1016/j.brainresbull.2005.02.028 Tronche F, 1999, NAT GENET, V23, P99, DOI 10.1038/12703 Trune DR, 2002, HEARING RES, V167, P170, DOI 10.1016/S0378-5955(02)00384-2 Turner JD, 2010, BIOCHEM PHARMACOL, V80, P1860, DOI 10.1016/j.bcp.2010.06.037 UNO H, 1990, DEV BRAIN RES, V53, P157, DOI 10.1016/0165-3806(90)90002-G Van Campen LE, 2002, HEARING RES, V164, P29, DOI 10.1016/S0378-5955(01)00391-4 Walker BR, 2006, ANN NY ACAD SCI, V1083, P165, DOI 10.1196/annals.1367.012 Walker JJ, 2010, J NEUROENDOCRINOL, V22, P1226, DOI 10.1111/j.1365-2826.2010.02087.x Wang J, 2007, MOL PHARMACOL, V71, P654, DOI 10.1124/mol.106.028936 Wang Y, 2002, HEARING RES, V165, P96, DOI 10.1016/S0378-5955(02)00289-7 Welberg LAM, 2001, J NEUROENDOCRINOL, V13, P113, DOI 10.1046/j.1365-2826.2001.00601.x Yamamoto Y, 2004, TRENDS BIOCHEM SCI, V29, P72, DOI 10.1016/j.tibs.2003.12.003 Yoshida N, 2000, HEARING RES, V148, P213, DOI 10.1016/S0378-5955(00)00161-1 Yoshida N, 1999, J NEUROSCI, V19, P10116 Yukawa H, 2005, NEUROSCIENCE, V130, P485, DOI 10.1016/j.neuroscience.2004.09.037 Zou J, 2005, HEARING RES, V202, P13, DOI 10.1016/j.heares.2004.10.008 ZUO J, 1995, HEARING RES, V87, P220, DOI 10.1016/0378-5955(95)00092-I NR 100 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2011 VL 281 IS 1-2 SI SI BP 47 EP 55 DI 10.1016/j.heares.2011.06.003 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 853ML UT WOS:000297430300007 PM 21718769 ER PT J AU Shibata, SB Budenz, CL Bowling, SA Pfingst, BE Raphael, Y AF Shibata, Seiji B. Budenz, Cameron L. Bowling, Sara A. Pfingst, Bryan E. Raphael, Yehoash TI Nerve maintenance and regeneration in the damaged cochlea SO HEARING RESEARCH LA English DT Article ID SPIRAL GANGLION NEURONS; HAIR CELL LOSS; CHRONIC ELECTRICAL-STIMULATION; SENSORINEURAL HEARING-LOSS; DEAFENED GUINEA-PIGS; ELEMENTS FOLLOWING DISRUPTION; AUDITORY NEUROPATHY AUNA1; FACTOR GENE-THERAPY; CNS WHITE MATTER; NEUROTROPHIC FACTOR AB Following the onset of sensorineural hearing loss, degeneration of mechanosensitive hair cells and spiral ganglion cells (SGCs) in humans and animals occurs to variable degrees, with a trend for greater neural degeneration with greater duration of deafness. Emergence of the cochlear implant prosthesis has provided much needed aid to many hearing impaired patients and has become a well-recognized therapy worldwide. However, ongoing peripheral nerve fiber regression and subsequent degeneration of SGC bodies can reduce the neural targets of cochlear implant stimulation and diminish its function. There is increasing interest in bio-engineering approaches that aim to enhance cochlear implant efficacy by preventing SGC body degeneration and/or regenerating peripheral nerve fibers into the deaf sensory epithelium. We review the advancements in maintaining and regenerating nerves in damaged animal cochleae, with an emphasis on the therapeutic capacity of neurotrophic factors delivered to the inner ear after an insult. Additionally, we summarize the histological process of neuronal degeneration in the inner ear and describe different animal models that have been employed to study this mechanism. Research on enhancing the biological infrastructure of the deafened cochlea in order to improve cochlear implant efficacy is of immediate clinical importance. (C) 2011 Elsevier B.V. All rights reserved. C1 [Shibata, Seiji B.; Budenz, Cameron L.; Bowling, Sara A.; Pfingst, Bryan E.; Raphael, Yehoash] Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, Ann Arbor, MI 48109 USA. RP Raphael, Y (reprint author), Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, 1150 W Med Cntr Dr, Ann Arbor, MI 48109 USA. EM yoash@umich.edu FU A. Alfred Taubman Medical Research Institute; Berte and Alan Hirschfield Foundation; R. Jamison and Betty Williams Professorship, MedEl; NIH/NIDCD [R01 DC01634, R01 DC007634, T32 DC005356, P30 DC05188] FX We thank Donald Swiderski and Hiu Tung Wong for images and helpful comments. Our work is supported by the A. Alfred Taubman Medical Research Institute, the Berte and Alan Hirschfield Foundation, the R. Jamison and Betty Williams Professorship, MedEl, and NIH/NIDCD Grants R01 DC01634, R01 DC007634, T32 DC005356 and P30 DC05188. CR ABRASHKIN MA, 2006, HEARING RES, V218, P20 Agterberg MJH, 2010, HEARING RES, V269, P169, DOI 10.1016/j.heares.2010.06.015 Agterberg MJH, 2008, HEARING RES, V244, P25, DOI 10.1016/j.heares.2008.07.004 Agterberg MJH, 2009, JARO-J ASSOC RES OTO, V10, P355, DOI 10.1007/s10162-009-0170-2 ANNIKO M, 1983, ACTA OTO-LARYNGOL, V95, P263, DOI 10.3109/00016488309130943 AVILA MA, 1993, DEV BIOL, V159, P266, DOI 10.1006/dbio.1993.1239 Bankiewicz KS, 2006, MOL THER, V14, P564, DOI 10.1016/j.ymthe.2006.05.005 Bellamkonda RV, 2006, BIOMATERIALS, V27, P3515, DOI 10.1016/j.biomaterials.2006.02.030 BICHLER E, 1983, ARCH OTO-RHINO-LARYN, V237, P201, DOI 10.1007/BF00453725 BLACK RC, 1983, ANN NY ACAD SCI, V405, P137, DOI 10.1111/j.1749-6632.1983.tb31626.x BLACK RC, 1981, IEEE T BIO-MED ENG, V28, P721, DOI 10.1109/TBME.1981.324668 Bledsoe SC, 1995, NEUROREPORT, V7, P225, DOI 10.1097/00001756-199512000-00054 Bohne BA, 2000, AM J OTOL, V21, P505 BOHNE BA, 1992, LARYNGOSCOPE, V102, P693, DOI 10.1288/00005537-199206000-00017 Bomze HM, 2001, NAT NEUROSCI, V4, P38 BORG E, 1983, HEARING RES, V11, P1, DOI 10.1016/0378-5955(83)90040-0 Bowers WJ, 2002, MOL THER, V6, P12, DOI 10.1006/mthe.2002.0627 Briaire JJ, 2006, HEARING RES, V214, P17, DOI 10.1016/j.heares.2006.01.015 Brushart TM, 1998, J NEUROSCI, V18, P8674 Buss E, 2002, OTOL NEUROTOL, V23, P328, DOI 10.1097/00129492-200205000-00017 CARONI P, 1988, J CELL BIOL, V106, P1281, DOI 10.1083/jcb.106.4.1281 CARONI P, 1988, NEURON, V1, P85, DOI 10.1016/0896-6273(88)90212-7 Chen I, 2010, JARO-J ASSOC RES OTO, V11, P587, DOI 10.1007/s10162-010-0234-3 Cheng C, 2002, NEUROSCIENCE, V115, P321, DOI 10.1016/S0306-4522(02)00291-9 Chikar JA, 2008, HEARING RES, V245, P24, DOI 10.1016/j.heares.2008.08.005 Cohen LT, 2006, HEARING RES, V212, P160, DOI 10.1016/j.heares.2005.11.005 Cohen LT, 2005, INT J AUDIOL, V44, P559, DOI 10.1080/14992020500258743 Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0 Delmaghani S, 2006, NAT GENET, V38, P770, DOI 10.1038/ng1829 DESPRES G, 1994, ACTA OTO-LARYNGOL, V114, P377, DOI 10.3109/00016489409126073 Di Polo A, 1998, P NATL ACAD SCI USA, V95, P3978, DOI 10.1073/pnas.95.7.3978 Dodson HC, 1997, J NEUROCYTOL, V26, P541, DOI 10.1023/A:1015434524040 Dodson HC, 2000, J NEUROCYTOL, V29, P525, DOI 10.1023/A:1007201913730 Dorman MF, 1998, J ACOUST SOC AM, V104, P3583, DOI 10.1121/1.423940 Duan ML, 2002, NEUROREPORT, V13, P1295 Eiberger J, 2006, GLIA, V53, P601, DOI 10.1002/glia.20315 Ernfors P, 1995, INT J DEV BIOL, V39, P799 Fitzgerald MB, 2007, ACTA OTO-LARYNGOL, V127, P378, DOI 10.1080/00016480701258671 FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012 Fritzsch B, 2004, PROG BRAIN RES, V146, P265, DOI 10.1016/S0079-6123(03)46017-2 Fritzsch B, 1997, SEMIN CELL DEV BIOL, V8, P277, DOI 10.1006/scdb.1997.0144 Fu SY, 1997, MOL NEUROBIOL, V14, P67, DOI 10.1007/BF02740621 Gibson WPR, 2007, EAR HEARING, V28, p102S, DOI 10.1097/AUD.0b013e3180315392 Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542 Glueckert R, 2008, J COMP NEUROL, V507, P1602, DOI 10.1002/cne.21619 Grati FR, 2009, AM J MED GENET A, V149A, P906, DOI 10.1002/ajmg.a.32754 Hansen MR, 2001, HEARING RES, V161, P87, DOI 10.1016/S0378-5955(01)00360-4 Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3 HARTSHORN DO, 1991, OTOLARYNG HEAD NECK, V104, P311 Hawkins J E Jr, 1973, Adv Otorhinolaryngol, V20, P125 Hildebrand MS, 2008, MOL THER, V16, P224, DOI 10.1038/sj.mt.6300351 Hughes ML, 2006, J ACOUST SOC AM, V119, P1538, DOI 10.1121/1.2164969 Izumikawa M, 2008, HEARING RES, V240, P52, DOI 10.1016/j.heares.2008.02.007 Jessen KR, 2005, NAT REV NEUROSCI, V6, P671, DOI 10.1038/nrn1746 JOHNSSON LG, 1974, ANN OTO RHINOL LARYN, V83, P294 JOHNSSON LG, 1972, LARYNGOSCOPE, V82, P1105, DOI 10.1288/00005537-197207000-00002 Kang SY, 2010, JARO-J ASSOC RES OTO, V11, P245, DOI 10.1007/s10162-009-0194-7 Kanzaki S, 2002, J COMP NEUROL, V454, P350, DOI 10.1002/cne.10480 KIANG NYS, 1982, SCIENCE, V217, P175, DOI 10.1126/science.7089553 Kim TB, 2004, J MED GENET, V41, P872, DOI 10.1136/jmg.2004.020628 Kim YH, 2007, CELL CYCLE, V6, P612, DOI 10.4161/cc.6.5.3929 Kong YY, 2004, EAR HEARING, V25, P173, DOI 10.1097/01.AUD.0000120365.97792.2F Kraus N, 2000, JARO-J ASSOC RES OTO, V1, P33, DOI 10.1007/s101620010004 Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 Lalwani AK, 1998, GENE THER, V5, P277, DOI 10.1038/sj.gt.3300573 Lang H, 2005, JARO-J ASSOC RES OTO, V6, P63, DOI 10.1007/s10162-004-5021-6 Lang HN, 2011, JARO-J ASSOC RES OTO, V12, P151, DOI 10.1007/s10162-010-0244-1 Lawner BE, 1997, INT J DEV NEUROSCI, V15, P601, DOI 10.1016/S0736-5748(96)00115-3 LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4 Li L, 1999, HEARING RES, V133, P27, DOI 10.1016/S0378-5955(99)00043-X LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309 LIBERMAN MC, 1980, HEARING RES, V3, P189, DOI 10.1016/0378-5955(80)90046-5 LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1 Madden C, 2002, OTOL NEUROTOL, V23, P163, DOI 10.1097/00129492-200203000-00011 Mason JC, 2003, LARYNGOSCOPE, V113, P45, DOI 10.1097/00005537-200301000-00009 Matsuoka AJ, 2007, LARYNGOSCOPE, V117, P1629, DOI 10.1097/M1LG.0b013e3I806bf282 Medd AM, 2000, EXP NEUROL, V162, P390, DOI 10.1006/exnr.2000.7353 Miller AL, 2001, HEARING RES, V151, P1, DOI 10.1016/S0378-5955(00)00226-4 Miller J M, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P57 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 Mitchell A, 1997, HEARING RES, V105, P30, DOI 10.1016/S0378-5955(96)00202-X Morris JK, 2006, BRAIN RES, V1091, P186, DOI 10.1016/j.brainres.2006.02.090 NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411 Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5 Nadol Joseph B Jr, 2006, Adv Otorhinolaryngol, V64, P31 Nakaizumi T, 2004, AUDIOL NEURO-OTOL, V9, P135, DOI 10.1159/000077264 O'Leary SJ, 2009, J NEURAL ENG, V6, DOI 10.1088/1741-2560/6/5/055002 Pawlowski KS, 2006, JARO-J ASSOC RES OTO, V7, P83, DOI 10.1007/a10162-005-0024-5 PFINGST BE, 1981, ACTA OTO-LARYNGOL, V92, P1, DOI 10.3109/00016488109133232 Praetorius M, 2002, AUDIOL NEURO-OTOL, V7, P324, DOI 10.1159/000066157 Rance G, 2009, INT J AUDIOL, V48, P313, DOI 10.1080/14992020802665959 Rance G, 2008, OTOL NEUROTOL, V29, P179, DOI 10.1097/mao.0b013e31815e92fd Raphael Y, 2003, BRAIN RES BULL, V60, P397, DOI 10.1016/S0361-9230(03)00047-9 RAPHAEL Y, 1991, HEARING RES, V51, P173, DOI 10.1016/0378-5955(91)90034-7 ROBERSON DW, 1994, AM J OTOL, V15, P28 ROMAND MR, 1990, J ELECTRON MICR TECH, V15, P144, DOI 10.1002/jemt.1060150206 ROMAND R, 1982, J COMP NEUROL, V204, P1, DOI 10.1002/cne.902040102 Romanos J, 2009, J HUM GENET, V54, P382, DOI 10.1038/jhg.2009.45 Ryugo DK, 1998, J COMP NEUROL, V397, P532, DOI 10.1002/(SICI)1096-9861(19980810)397:4<532::AID-CNE6>3.0.CO;2-2 SAVIO T, 1989, J NEUROSCI, V9, P1126 Schmiedt RA, 2002, JARO, V3, P223, DOI 10.1007/s1016200220017 SCHNELL L, 1994, NATURE, V367, P170, DOI 10.1038/367170a0 Schoen CJ, 2010, P NATL ACAD SCI USA, V107, P13396, DOI 10.1073/pnas.1003027107 Schwab JM, 2005, ARCH NEUROL-CHICAGO, V62, P1561, DOI 10.1001/archneur.62.10.1561 SCHWAB ME, 1985, J NEUROSCI, V5, P2415 Shallop JK, 2001, LARYNGOSCOPE, V111, P555, DOI 10.1097/00005537-200104000-00001 SHEPHERD RK, 1994, HEARING RES, V81, P150, DOI 10.1016/0378-5955(94)90162-7 Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 Shepherd RK, 2008, HEARING RES, V242, P100, DOI 10.1016/j.heares.2007.12.005 Shibata SB, 2010, EXP NEUROL, V223, P464, DOI 10.1016/j.expneurol.2010.01.011 Shibata SB, 2007, BRAIN RES, V1144, P74, DOI 10.1016/j.brainres.2007.01.090 SMITH CA, 1963, ANN OTO RHINOL LARYN, V72, P489 Snyder RL, 2008, HEARING RES, V235, P23, DOI 10.1016/j.heares.2007.09.013 SOILEAU LC, 1987, J NEUROSCI, V7, P4176 SPOENDLI.H, 1969, ACTA OTO-LARYNGOL, V67, P239, DOI 10.3109/00016486909125448 SPOENDLIN H, 1979, ACTA OTO-LARYNGOL, V87, P381, DOI 10.3109/00016487909126437 SPOENDLIN H, 1981, ACTA OTO-LARYNGOL, V91, P451, DOI 10.3109/00016488109138527 Spoendlin H, 1966, Fortschr Hals Nasen Ohrenheilkd, V13, P1 SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683 SPOENDLIN H, 1976, ACTA OTO-LARYNGOL, V81, P228, DOI 10.3109/00016487609119954 STAECKER H, 2010, EXP NEUROL Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011 Staecker H, 1998, OTOLARYNG HEAD NECK, V119, P7, DOI 10.1016/S0194-5998(98)70194-9 Starr A, 1996, BRAIN, V119, P741, DOI 10.1093/brain/119.3.741 Starr A, 2004, JARO-J ASSOC RES OTO, V5, P411, DOI 10.1007/s10162-004-5014-5 Strominger RN, 1995, HEARING RES, V92, P52, DOI 10.1016/0378-5955(95)00196-4 Sugawara M, 2005, JARO-J ASSOC RES OTO, V6, P136, DOI 10.1007/s10162-004-5050-1 Tang WX, 2006, J NEUROSCI, V26, P1991, DOI 10.1523/JNEUROSCI.5055-05.2006 Teagle HFB, 2010, EAR HEARING, V31, P325, DOI 10.1097/AUD.0b013e3181ce693b TERAYAMA Y, 1979, ACTA OTO-LARYNGOL, V88, P27, DOI 10.3109/00016487909137136 TERAYAMA Y, 1977, ACTA OTO-LARYNGOL, V83, P291, DOI 10.3109/00016487709128848 TORVIK A, 1975, BRAIN RES, V95, P519, DOI 10.1016/0006-8993(75)90125-0 Trautwein P G, 2000, J Am Acad Audiol, V11, P309 Tuszynski MH, 2005, NAT MED, V11, P551, DOI 10.1038/nm1239 VANDEWATER TR, 1996, CIBA F SYMP, V196, P162 VandeWater TR, 1996, CIBA F SYMP, V196, P149 Varga R, 2003, J MED GENET, V40, P45, DOI 10.1136/jmg.40.1.45 Walton J, 2008, OTOL NEUROTOL, V29, P302, DOI 10.1097/MAO.0b013e318164d0f6 Wang J, 2003, HEARING RES, V181, P65, DOI 10.1016/S0378-5955(03)00176-X WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 WEBSTER DB, 1982, BRAIN RES, V244, P356, DOI 10.1016/0006-8993(82)90097-X WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7 Whitilon DS, 2009, NEUROSCIENCE, V161, P227, DOI 10.1016/j.neuroscience.2009.03.044 Wise AK, 2010, MOL THER, V18, P1111, DOI 10.1038/mt.2010.28 Wise AK, 2005, J COMP NEUROL, V487, P147, DOI 10.1002/cne.20563 WORTHINGTON DW, 1980, EAR HEARING, V1, P281, DOI 10.1097/00003446-198009000-00009 Xu L, 2003, J ACOUST SOC AM, V114, P3024, DOI 10.1121/1.1623786 Yagi M, 2000, JARO, V1, P315, DOI 10.1007/s101620010011 Zeng CH, 2009, J NEUROSCI, V29, P4210, DOI 10.1523/JNEUROSCI.0208-09.2009 Zeng FG, 1999, NEUROREPORT, V10, P3429, DOI 10.1097/00001756-199911080-00031 NR 152 TC 15 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2011 VL 281 IS 1-2 SI SI BP 56 EP 64 DI 10.1016/j.heares.2011.04.019 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 853ML UT WOS:000297430300008 PM 21596129 ER PT J AU Pfingst, BE Bowling, SA Colesa, DJ Garadat, SN Raphael, Y Shibata, SB Strahl, SB Su, GL Zhou, N AF Pfingst, Bryan E. Bowling, Sara A. Colesa, Deborah J. Garadat, Soha N. Raphael, Yehoash Shibata, Seiji B. Strahl, Stefan B. Su, Gina L. Zhou, Ning TI Cochlear infrastructure for electrical hearing SO HEARING RESEARCH LA English DT Article ID SPIRAL GANGLION-CELLS; DEAFENED GUINEA-PIGS; MODULATION DETECTION; AUDITORY-NERVE; IMPLANT USERS; 8TH NERVE; DETECTION THRESHOLDS; NEUROTROPHIC FACTOR; SPEECH RECOGNITION; PULSE-RATE AB Although the cochlear implant is already the world's most successful neural prosthesis, opportunities for further improvement abound. Promising areas of current research include work on improving the biological infrastructure in the implanted cochlea to optimize reception of cochlear implant stimulation and on designing the pattern of electrical stimulation to take maximal advantage of conditions in the implanted cochlea. In this review we summarize what is currently known about conditions in the cochlea of deaf, implanted humans and then review recent work from our animal laboratory investigating the effects of preserving or reinnervating tissues on psychophysical and electrophysiological measures of implant function. Additionally we review work from our human laboratory on optimizing the pattern of electrical stimulation to better utilize strengths in the cochlear infrastructure. Histological studies of human temporal bones from implant users and from people who would have been candidates for implants show a range of pathologic conditions including spiral ganglion cell counts ranging from approximately 2% to 92% of normal and partial hair cell survival in some cases. To duplicate these conditions in a guinea pig model, we use a variety of deafening and implantation procedures as well as post-deafening therapies designed to protect neurons and/or regenerate neurites. Across populations of human patients, relationships between nerve survival and functional measures such as speech have been difficult to demonstrate, possibly due to the numerous subject variables that can affect implant function and the elapsed time between functional measures and postmortem histology. However, psychophysical studies across stimulation sites within individual human subjects suggest that biological conditions near the implanted electrodes contribute significantly to implant function, and this is supported by studies in animal models comparing histological findings to psychophysical and electrophysiological data. Results of these studies support the efforts to improve the biological infrastructure in the implanted ear and guide strategies which optimize stimulation patterns to match patient-specific conditions in the cochlea. (C) 2011 Elsevier B.V. All rights reserved. C1 [Pfingst, Bryan E.; Bowling, Sara A.; Colesa, Deborah J.; Garadat, Soha N.; Raphael, Yehoash; Shibata, Seiji B.; Strahl, Stefan B.; Su, Gina L.; Zhou, Ning] Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, Ann Arbor, MI 48109 USA. [Strahl, Stefan B.] MED EL GmbH, R&D Worldwide Headquarters, A-6020 Innsbruck, Austria. RP Pfingst, BE (reprint author), Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, Room 4605,Med Sci 2,1150 W Med Ctr Dr, Ann Arbor, MI 48109 USA. EM bpfingst@umich.edu FU NIDCD [R01s DC010786, DC010412, DC007634, DC004312, F32 DC010318, T32 DC000011, P30 DC005188]; MED-EL Corporation FX This work was supported financially in large part by research grants from the NIDCD (R01s DC010786, DC010412, DC007634, & DC004312), a research contract from MED-EL Corporation, and training grants from NIDCD (F32 DC010318 & T32 DC000011). We gratefully acknowledge the assistance from core facilities supported by NIDCD P30 DC005188 which included support for electronics, computer and machine shops: Chris Ellinger, David Rodgers, Dwayne Vailliencourt and Jim Wiler. Special thanks to the Electrophysiology Core directed by Dr. David Dolan which performed the ESA recordings under the expert guidance of Karin Halsey and to Don Swiderski and Lisa Beyer in the Raphael laboratory for histological preparation. We appreciate the equipment, software and personnel time provided by Cochlear Corporation which facilitated work done in both the human and animal laboratories; particular thanks to Chris van den Honert, Barbara Buck and Colin Irwin from Cochlear Corporation. Thanks to Ariana Di Polo for providing the viral constructs. Consistently helpful review and guidance from Carolyn Garnham at MED-EL and from our clinical faculty, particularly Terry Zwolan and Caroline Arnedt is greatly appreciated. CR Agterberg MJH, 2008, HEARING RES, V244, P25, DOI 10.1016/j.heares.2008.07.004 Anderson DJ, 2008, HEARING RES, V242, P31, DOI 10.1016/j.heares.2008.01.010 Bierer JA, 2007, J ACOUST SOC AM, V121, P1642, DOI 10.1121/1.2436712 Chikar JA, 2008, HEARING RES, V245, P24, DOI 10.1016/j.heares.2008.08.005 DOLAN DF, 1990, J ACOUST SOC AM, V87, P2621, DOI 10.1121/1.399054 Donaldson GS, 1997, J ACOUST SOC AM, V101, P3706, DOI 10.1121/1.418330 Fayad JN, 2009, OTOLARYNG HEAD NECK, V141, P247, DOI 10.1016/j.otohns.2009.03.031 Fayad JN, 2006, LARYNGOSCOPE, V116, P1310, DOI 10.1097/01.mlg.0000227176.09500.28 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Galvin JJ, 2005, JARO-J ASSOC RES OTO, V6, P269, DOI 10.1007/s10162-005-0007-6 GARADAT S, 2011, ASS RES OT ABST, V34 Garadat SN, 2011, HEARING RES, V275, P130, DOI 10.1016/j.heares.2010.12.011 HALL RD, 1990, HEARING RES, V45, P123, DOI 10.1016/0378-5955(90)90188-U HINOJOSA R, 1983, ANN NY ACAD SCI, V405, P459, DOI 10.1111/j.1749-6632.1983.tb31662.x Hu N, 2003, HEARING RES, V185, P77, DOI 10.1016/S0378-5955(03)00261-2 Incesulu A, 1998, ANN OTO RHINOL LARYN, V107, P906 Johnsson L G, 1981, Acta Otolaryngol Suppl, V383, P1 JOHNSSON LG, 1974, ANN OTO RHINOL LARYN, V83, P294 JOHNSSON LG, 1967, ARCHIV OTOLARYNGOL, V85, P599 JYUNG RW, 1989, OTOLARYNG HEAD NECK, V101, P670 Kang SY, 2010, JARO-J ASSOC RES OTO, V11, P245, DOI 10.1007/s10162-009-0194-7 Kawano A, 1998, ACTA OTO-LARYNGOL, V118, P313 Khan AM, 2005, LARYNGOSCOPE, V115, P672, DOI 10.1097/01.mlg.0000161335.62139.80 Khan AM, 2005, ANN OTO RHINOL LARYN, V114, P381 Kim JR, 2010, OTOL NEUROTOL, V31, P1041, DOI 10.1097/MAO.0b013e3181ec1d92 Middlebrooks JC, 2004, J ACOUST SOC AM, V116, P452, DOI 10.1121/1.1760795 Middlebrooks JC, 2002, J NEUROPHYSIOL, V87, P493 Miller AL, 2001, HEARING RES, V151, P1, DOI 10.1016/S0378-5955(00)00226-4 Miller JM, 2002, AUDIOL NEURO-OTOL, V7, P175, DOI 10.1159/000058306 Mitchell A, 1997, HEARING RES, V105, P30, DOI 10.1016/S0378-5955(96)00202-X Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5 Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883 OTTE J, 1978, LARYNGOSCOPE, V88, P1231 PFINGST BE, 2010, ASS RES OT ABST, V33, P118 Pfingst BE, 2007, J ACOUST SOC AM, V121, P2236, DOI 10.1121/1.2537501 Pfingst BE, 2008, J ACOUST SOC AM, V123, P1054, DOI 10.1121/1.2828051 Pfingst BE, 2004, JARO-J ASSOC RES OTO, V5, P11, DOI 10.1007/s10162-003-3051-0 PFINGST BE, 2011, J ACOUST SO IN PRESS, V129 Raphael Y., 1998, CURR OPIN OTOLARYNGO, V6, P311, DOI 10.1097/00020840-199810000-00005 Scheper V, 2009, J NEUROSCI RES, V87, P1389, DOI 10.1002/jnr.21964 SCHUKNECHT H F, 1953, Trans Am Acad Ophthalmol Otolaryngol, V57, P366 Searchfield GD, 2004, HEARING RES, V192, P23, DOI 10.1016/j.heares.2004.02.006 Shibata SB, 2010, EXP NEUROL, V223, P464, DOI 10.1016/j.expneurol.2010.01.011 SHIBATA SB, HEAR RES IN PRESS SMITH L, 1983, ANN OTO RHINOL LARYN, V92, P19 Spoendlin H, 1966, Fortschr Hals Nasen Ohrenheilkd, V13, P1 Stebbins WC, 1970, ANIMAL PSYCHOPHYSICS Su GL, 2008, HEARING RES, V241, P64, DOI 10.1016/j.heares.2008.04.011 WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7 Wise AK, 2010, MOL THER, V18, P1111, DOI 10.1038/mt.2010.28 Wise AK, 2005, J COMP NEUROL, V487, P147, DOI 10.1002/cne.20563 Wise KD, 2008, HEARING RES, V242, P22, DOI 10.1016/j.heares.2008.04.002 ZIMMERMANN CE, 1995, HEARING RES, V90, P192, DOI 10.1016/0378-5955(95)00165-1 Zwolan TA, 1997, J ACOUST SOC AM, V102, P3673, DOI 10.1121/1.420401 NR 54 TC 18 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2011 VL 281 IS 1-2 SI SI BP 65 EP 73 DI 10.1016/j.heares.2011.05.002 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 853ML UT WOS:000297430300009 PM 21605648 ER PT J AU Dai, CK Fridman, GY Davidovics, NS Chiang, B Ahn, JH Della Santina, CC AF Dai, Chenkai Fridman, Gene Y. Davidovics, Natan S. Chiang, Bryce Ahn, Joong Ho Della Santina, Charles C. TI Restoration of 3D vestibular sensation in rhesus monkeys using a multichannel vestibular prosthesis SO HEARING RESEARCH LA English DT Article ID HORIZONTAL VESTIBULOOCULAR REFLEX; HIGH-ACCELERATION ROTATIONS; SCLERAL SEARCH COIL; UNILATERAL LABYRINTHECTOMY; INTRATYMPANIC GENTAMICIN; ELECTRICAL-STIMULATION; SQUIRREL-MONKEY; MULTIMODAL INTEGRATION; SEMICIRCULAR CANALS; MENIERES-DISEASE AB Profound bilateral loss of vestibular hair cell function can cause chronically disabling loss of balance and inability to maintain stable vision during head and body movements. We have previously shown that chinchillas rendered bilaterally vestibular-deficient via intratympanic administration of the ototoxic antibiotic gentamicin regain a more nearly normal 3-dimensional vestibulo-ocular reflex (3D VOR) when head motion information sensed by a head-mounted multichannel vestibular prosthesis (MVP) is encoded via rate-modulated pulsatile stimulation of vestibular nerve branches. Despite significant improvement versus the unaided condition, animals still exhibited some 3D VOR misalignment (i.e., the 3D axis of eye movement responses did not precisely align with the axis of head rotation), presumably due to current spread between a given ampullary nerve's stimulating electrode(s) and afferent fibers in non-targeted branches of the vestibular nerve. Assuming that effects of current spread depend on relative orientation and separation between nerve branches, anatomic differences between chinchilla and human labyrinths may limit the extent to which results in chinchillas accurately predict MVP performance in humans. In this report, we describe the MVP-evoked 3D VOR measured in alert rhesus monkeys, which have labyrinths that are larger than chinchillas and temporal bone anatomy more similar to humans. Electrodes were implanted in five monkeys treated with intratympanic gentamicin to bilaterally ablate vestibular hair cell mechanosensitivity. Eye movements mediated by the 3D VOR were recorded during passive sinusoidal (0.2-5 Hz, peak 50 degrees/s) and acceleration-step (1000 degrees/s(2) to 150 degrees/s) whole-body rotations in darkness about each semicircular canal axis. During constant 100 pulse/s stimulation (i.e., MVP powered ON but set to stimulate each ampullary nerve at a constant mean baseline rate not modulated by head motion), 3D VOR responses to head rotation exhibited profoundly low gain [(mean eye velocity amplitude)/(mean head velocity amplitude) < 0.1] and large misalignment between ideal and actual eye movements. In contrast, motion-modulated sinusoidal MVP stimuli elicited a 3D VOR with gain 0.4-0.7 and axis misalignment of 21-38 degrees, and responses to high-acceleration transient head rotations exhibited gain and asymmetry closer to those of unilaterally gentamicin-treated animals (i.e., with one intact labyrinth) than to bilaterally gentamicin-treated animals without MVP stimulation. In comparison to responses observed under similar conditions in chinchillas, acute responses to MVP stimulation in rhesus macaque monkeys were slightly better aligned to the desired rotation axis. Responses during combined rotation and prosthetic stimulation were greater than when either stimulus was presented alone, suggesting that the central nervous system uses MVP input in the context of multisensory integration. Considering the similarity in temporal bone anatomy and VOR performance between rhesus monkeys and humans, these observations suggest that an MVP will likely restore a useful level of vestibular sensation and gaze stabilization in humans. (C) 2011 Elsevier B.V. All rights reserved. C1 [Della Santina, Charles C.] Johns Hopkins Univ, Sch Med, Vestibular NeuroEngn Lab, Dept Otolaryngol Head & Neck Surg, Baltimore, MD 21205 USA. [Chiang, Bryce; Della Santina, Charles C.] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA. RP Della Santina, CC (reprint author), Johns Hopkins Univ, Sch Med, Vestibular NeuroEngn Lab, Dept Otolaryngol Head & Neck Surg, 720 Rutland Ave,Ross Bldg Rm 830, Baltimore, MD 21205 USA. EM charley.dellasantina@jhu.edu FU United States National Institutes of Health/National Institute on Deafness and Other Communication Disorders (NIH/NIDCD) [R01DC0255, R01DC2390, K08DC6216, 5F32DC009917] FX We thank Lani Swarthout for assistance with animal care. This research was supported by the United States National Institutes of Health/National Institute on Deafness and Other Communication Disorders (NIH/NIDCD) grants R01DC0255, R01DC2390, K08DC6216, and 5F32DC009917. Disclosures: inventor status on university-assigned patents related to MVP technology (GYF, BC, CCDS); equity interest in Labyrinth Devices LLC (CCDS). CR ANGELAKI DE, 1994, J NEUROPHYSIOL, V71, P1222 BLANKS RHI, 1985, BRAIN RES, V340, P315, DOI 10.1016/0006-8993(85)90928-X Carey J. P., 2005, CUMMINGS OTOLARYNGOL, P3115 Carey JP, 2002, JARO, V3, P430, DOI 10.1007/s101620010053 Chiang B, 2011, IEEE T NEUR SYS REH, V19, P588, DOI 10.1109/TNSRE.2011.2164937 DAI C, 2010, HEAR RES 1231 Dai CK, 2011, EXP BRAIN RES, V210, P595, DOI 10.1007/s00221-011-2591-5 Davidovics NS, 2011, IEEE T NEUR SYS REH, V19, P84, DOI 10.1109/TNSRE.2010.2065241 Della Santina Charles, 2005, Conf Proc IEEE Eng Med Biol Soc, V7, P7380 Della Santina CC, 2007, IEEE T BIO-MED ENG, V54, P1016, DOI 10.1109/TBME.2007.894629 Della Santina CC, 2002, ARCH OTOLARYNGOL, V128, P1044 FETTER M, 1988, J NEUROPHYSIOL, V59, P370 Fridman GY, 2010, JARO-J ASSOC RES OTO, V11, P367, DOI 10.1007/s10162-010-0208-5 Gillespie MB, 1999, LARYNGOSCOPE, V109, P35, DOI 10.1097/00005537-199901000-00008 Grunbauer WM, 1998, NEUROREPORT, V9, P1807 HALMAGYI GM, 1988, ARCH NEUROL-CHICAGO, V45, P737 HASLWANTER T, 1995, VISION RES, V35, P1727, DOI 10.1016/0042-6989(94)00257-M HEPP K, 1990, COMMUN MATH PHYS, V132, P285, DOI 10.1007/BF02278012 Hirvonen TP, 2005, J NEUROPHYSIOL, V93, P643, DOI 10.1152/jn.00160.2004 Hullar TE, 2006, HEARING RES, V213, P17, DOI 10.1016/j.heares.2005.11.009 Lasker DM, 2000, J NEUROPHYSIOL, V83, P2482 Lewis RF, 2010, J NEUROPHYSIOL, V103, P1066, DOI 10.1152/jn.00241.2009 Lyford-Pike S, 2007, JARO-J ASSOC RES OTO, V8, P497, DOI 10.1007/s10162-007-0093-8 Migliaccio AA, 2010, J PHYSIOL-LONDON, V588, P3855, DOI 10.1113/jphysiol.2010.196287 Migliaccio AA, 2004, EXP BRAIN RES, V159, P433, DOI 10.1007/s00221-004-1974-2 Migliaccio A. A., 1999, Australasian Physical and Engineering Sciences in Medicine, V22, P73 Minor LB, 1998, JAMA-J AM MED ASSOC, V279, P541, DOI 10.1001/jama.279.7.541 Minor LB, 1999, J NEUROPHYSIOL, V82, P1254 Nguyen KD, 2009, LARYNGOSCOPE, V119, P792, DOI 10.1002/lary.20055 RAMPRASHAD F, 1984, AM J ANAT, V169, P295, DOI 10.1002/aja.1001690306 REMMEL RS, 1984, IEEE T BIO-MED ENG, V31, P388, DOI 10.1109/TBME.1984.325352 ROBINSON DA, 1963, IEEE T BIO-MED ENG, VBM10, P137, DOI 10.1109/TBMEL.1963.4322822 Sadeghi SG, 2011, J NEUROPHYSIOL, V105, P661, DOI 10.1152/jn.00788.2010 Sadeghi SG, 2010, J NEUROSCI, V30, P10158, DOI 10.1523/JNEUROSCI.1368-10.2010 SADEGHI SG, 2011, J NEUROSCI, V30, P10158 Sadeghi SG, 2007, J NEUROPHYSIOL, V97, P1503, DOI 10.1152/jn.00829.2006 Sadeghi SG, 2006, EXP BRAIN RES, V175, P471, DOI 10.1007/s00221-006-0567-7 STRAUMANN D, 1995, VISION RES, V35, P3321, DOI 10.1016/0042-6989(95)00091-R TWEED D, 1990, VISION RES, V30, P97, DOI 10.1016/0042-6989(90)90130-D NR 39 TC 17 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2011 VL 281 IS 1-2 SI SI BP 74 EP 83 DI 10.1016/j.heares.2011.08.008 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 853ML UT WOS:000297430300010 PM 21888961 ER PT J AU Papakonstantinou, A Strelcyk, O Dau, T AF Papakonstantinou, Alexandra Strelcyk, Olaf Dau, Torsten TI Relations between perceptual measures of temporal processing, auditory-evoked brainstem responses and speech intelligibility in noise SO HEARING RESEARCH LA English DT Article ID HEARING-IMPAIRED LISTENERS; FREQUENCY-DISCRIMINATION; FINE-STRUCTURE; MODULATION DETECTION; PSYCHOPHYSICAL DATA; BINAURAL HEARING; RECEPTION; PSYCHOACOUSTICS; RECOGNITION; SELECTIVITY AB This study investigates behavioural and objective measures of temporal auditory processing and their relation to the ability to understand speech in noise. The experiments were carried out on a homogeneous group of seven hearing-impaired listeners with normal sensitivity at low frequencies (up to 1 kHz) and steeply sloping hearing losses above 1 kHz. For comparison, data were also collected for five normal-hearing listeners. Temporal processing was addressed at low frequencies by means of psychoacoustical frequency discrimination, binaural masked detection and amplitude modulation (AM) detection. In addition, auditory brainstem responses (ABRs) to clicks and broadband rising chirps were recorded. Furthermore, speech reception thresholds (SRTs) were determined for Danish sentences in speech-shaped noise. The main findings were: (1) SRTs were neither correlated with hearing sensitivity as reflected in the audiogram nor with the AM detection thresholds which represent an envelope-based measure of temporal resolution; (2) SRTs were correlated with frequency discrimination and binaural masked detection which are associated with temporal fine-structure coding; (3) The wave-V thresholds for the chirp-evoked ABRs indicated a relation to SRTs and the ability to process temporal fine structure. Overall, the results demonstrate the importance of low-frequency temporal processing for speech reception which can be affected even if pure-tone sensitivity is close to normal. (c) 2011 Published by Elsevier B.V. C1 [Strelcyk, Olaf; Dau, Torsten] Tech Univ Denmark, Ctr Appl Hearing Res, Dept Elect Engn, DK-2800 Lyngby, Denmark. [Papakonstantinou, Alexandra] Carl von Ossietzky Univ Oldenburg, Int Grad Res Training Grp Neurosensory Sci & Syst, D-2611 Oldenburg, Germany. RP Dau, T (reprint author), Tech Univ Denmark, Ctr Appl Hearing Res, Dept Elect Engn, DK-2800 Lyngby, Denmark. EM tdau@elektro.dtu.dk FU GN ReSound; Oticon; Widex FX This study was supported by GN ReSound, Oticon and Widex. We thank Arne Norby Rasmussen of the Rigshospitalet Copenhagen for his technical assistance in the measurements and his contribution in providing us with suitable test listeners. We also thank the associate editor Fan-Gang Zeng and the two anonymous reviewers for their constructive and helpful comments and suggestions. CR [Anonymous], 2004, 3898 ISO BACON SP, 1992, J SPEECH HEAR RES, V35, P642 Bronkhorst AW, 2000, ACUSTICA, V86, P117 Buss E, 2004, EAR HEARING, V25, P242, DOI 10.1097/01.AUD.0000130796.93809.09 Carney LH, 2002, ACTA ACUST UNITED AC, V88, P334 Christiansen T. U., 2007, HEARING SENSORY PROC, P515 CHRISTIANSEN TU, 2005, 21 DAN S, P585 Dau T, 2000, J ACOUST SOC AM, V107, P1530, DOI 10.1121/1.428438 Dau T, 2003, J ACOUST SOC AM, V113, P936, DOI 10.1121/1.1534833 DEBOER E, 1980, PHYS REP, V62, P87, DOI 10.1016/0370-1573(80)90100-3 DENG L, 1987, J ACOUST SOC AM, V82, P2001, DOI 10.1121/1.395644 Don M, 1998, J ACOUST SOC AM, V104, P2280, DOI 10.1121/1.423741 DRESCHLER WA, 1980, J ACOUST SOC AM, V68, P1608, DOI 10.1121/1.385215 DRESCHLER WA, 1985, J ACOUST SOC AM, V78, P1261, DOI 10.1121/1.392895 DRULLMAN R, 1994, J ACOUST SOC AM, V95, P2670, DOI 10.1121/1.409836 DUBNO JR, 1990, ACTA OTO-LARYNGOL, P23 Elberling C, 2007, J ACOUST SOC AM, V122, P2772, DOI 10.1121/1.2783985 Felder E, 1995, HEARING RES, V91, P19, DOI 10.1016/0378-5955(95)00158-1 FESTEN JM, 1983, J ACOUST SOC AM, V73, P652, DOI 10.1121/1.388957 FITZGIBBONS PJ, 1982, J ACOUST SOC AM, V72, P761, DOI 10.1121/1.388256 Fobel O, 2004, J ACOUST SOC AM, V116, P2213, DOI 10.1121/1.1787523 FREYMAN RL, 1991, J SPEECH HEAR RES, V34, P1371 GABRIEL KJ, 1992, J ACOUST SOC AM, V91, P336, DOI 10.1121/1.402776 Glasberg B R, 1989, Scand Audiol Suppl, V32, P1 GLASBERG BR, 1986, J ACOUST SOC AM, V79, P1020, DOI 10.1121/1.393374 HALL JW, 1984, J SPEECH HEAR RES, V27, P145 HELFER KS, 1990, J SPEECH HEAR RES, V33, P149 Hopkins K, 2008, J ACOUST SOC AM, V123, P1140, DOI 10.1121/1.2824018 HUMES LE, 1987, J ACOUST SOC AM, V81, P765, DOI 10.1121/1.394845 Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 LEE LW, 1995, J ACOUST SOC AM, V97, P3345, DOI 10.1121/1.412760 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Lorenzi C, 2006, P NATL ACAD SCI USA, V103, P18866, DOI 10.1073/pnas.0607364103 Moore B.C.J., 1995, PERCEPTUAL CONSEQUEN Moore BCJ, 2002, J ACOUST SOC AM, V111, P327, DOI 10.1121/1.1424871 NOORDHOEK, 2001, J ACOUST SOC AM, V109, P1197 OTTE J, 1978, LARYNGOSCOPE, V88, P1231 PICHORA-FULLER K M, 1992, Journal of the Acoustical Society of America, V91, P2129 PLOMP R, 1978, J ACOUST SOC AM, V63, P533, DOI 10.1121/1.381753 PLOMP R, 1994, EAR HEARING, V15, P2 Rance G, 2004, EAR HEARING, V25, P34, DOI 10.1097/01.AUD.0000111259.59690.B8 Ross B, 2007, J NEUROSCI, V27, P11172, DOI 10.1523/JNEUROSCI.1813-07.2007 Schneider BA, 2002, CAN J EXP PSYCHOL, V56, P139, DOI 10.1037/h0087392 SEK A, 1995, J ACOUST SOC AM, V97, P2479, DOI 10.1121/1.411968 STEENEKEN HJM, 1980, J ACOUST SOC AM, V67, P318, DOI 10.1121/1.384464 Strelcyk O, 2009, J ACOUST SOC AM, V126, P1878, DOI 10.1121/1.3203310 Strelcyk O, 2009, J ACOUST SOC AM, V125, P3328, DOI 10.1121/1.3097469 Strouse A, 1998, J ACOUST SOC AM, V104, P2385, DOI 10.1121/1.423748 TAKAHASHI GA, 1992, J SPEECH HEAR RES, V35, P1410 TURNER CW, 1982, J SPEECH HEAR RES, V25, P34 TYLER RS, 1986, J SPEECH HEAR RES, V29, P282 TYLER RS, 1983, J ACOUST SOC AM, V74, P1190, DOI 10.1121/1.390043 TYLER RS, 1982, J ACOUST SOC AM, V72, P740, DOI 10.1121/1.388254 VANROOIJ JCGM, 1990, J ACOUST SOC AM, V88, P2611, DOI 10.1121/1.399981 Wagener K, 2003, INT J AUDIOL, V42, P10, DOI 10.3109/14992020309056080 Wegner O, 2002, J ACOUST SOC AM, V111, P1318, DOI 10.1121/1.1433805 Zeng FG, 2005, J NEUROPHYSIOL, V93, P3050, DOI 10.1152/jn.00985.2004 ZUREK PM, 1987, J ACOUST SOC AM, V82, P1548, DOI 10.1121/1.395145 ZUREK PM, 1981, J SPEECH HEAR RES, V24, P108 NR 59 TC 7 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2011 VL 280 IS 1-2 BP 30 EP 37 DI 10.1016/j.heares.2011.02.005 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 834XG UT WOS:000295997200004 PM 21354285 ER PT J AU Meredith, MA Lomber, SG AF Meredith, M. Alex Lomber, Stephen G. TI Somatosensory and visual crossmodal plasticity in the anterior auditory field of early-deaf cats SO HEARING RESEARCH LA English DT Article ID DORSAL COCHLEAR NUCLEUS; DARK-REARED CATS; INFERIOR COLLICULUS; HEARING-LOSS; MONOCULAR DEPRIVATION; MODAL PLASTICITY; CEREBRAL-CORTEX; BRAIN-STEM; RETINOTOPIC ORGANIZATION; PROLONGED SENSITIVITY AB It is well known that the post-natal loss of sensory input in one modality can result in crossmodal reorganization of the deprived cortical areas, but deafness fails to induce crossmodal effects in cat primary auditory cortex (A1). Because the core auditory regions (A1, and anterior auditory field AAF) are arranged as separate, parallel processors, it cannot be assumed that early-deafness affects one in the same manner as the other. The present experiments were conducted to determine if crossmodal effects occur in the anterior auditory field (AAF). Using mature cats (n = 3), ototoxically deafened postnatally, single-unit recordings were made in the gyral and sulcal portions of the AAF. In contrast to the auditory responsivity found in the hearing controls, none of the neurons in early-deafened AAF were activated by auditory stimulation. Instead, the majority (78%) were activated by somatosensory cues, while fewer were driven by visual stimulation (44%; values include unisensory and bimodal neurons). Somatosensory responses could be activated from all locations on the body surface but most often occurred on the head, were often bilateral (e.g., occupied portions of both sides of the body), and were primarily excited by low-threshold hair receptors. Visual receptive fields were large, collectively represented the contralateral visual field, and exhibited conventional response properties such as movement direction and velocity preferences. These results indicate that, following post-natal deafness, both somatosensory and visual modalities participate in crossmodal reinnervation of the AAF, consistent with the growing literature that documents deafness-induced crossmodal plasticity outside A1. (c) 2011 Elsevier B.V. All rights reserved. C1 [Meredith, M. Alex] Virginia Commonwealth Univ, Dept Anat & Neurobiol, Sch Med, Richmond, VA 23298 USA. [Lomber, Stephen G.] Univ Western Ontario, Dept Physiol & Pharmacol, London, ON N6A 5K8, Canada. [Lomber, Stephen G.] Univ Western Ontario, Dept Psychol, Ctr Brain & Mind, London, ON N6A 5K8, Canada. RP Meredith, MA (reprint author), Virginia Commonwealth Univ, Dept Anat & Neurobiol, Sch Med, Richmond, VA 23298 USA. EM mameredi@vcu.edu RI Lomber, Stephen/B-6820-2015 OI Lomber, Stephen/0000-0002-3001-7909 FU National Institutes of Health [NS-039640]; Jeffress Foundation; Canadian Institutes of Health Research FX We thank Dr. RK Shepherd for advice on ototoxic procedures, and Drs. S Shapiro and A Rice for their technical assistance with the ABRs. We thank Drs. D Mitchell and L Merabet for helpful discussions concerning this manuscript. Supported by grants from the National Institutes of Health (NS-039640) and the Jeffress Foundation (MAM) and the Canadian Institutes of Health Research (SGL). These sponsors had no role in the design, conduct or publication of this study. CR AITKIN LM, 1981, J COMP NEUROL, V196, P25, DOI 10.1002/cne.901960104 Allman BL, 2009, P NATL ACAD SCI USA, V106, P5925, DOI 10.1073/pnas.0809483106 Allman BL, 2009, BRAIN TOPOGR, V21, P157, DOI 10.1007/s10548-009-0088-3 Auer ET, 2007, NEUROREPORT, V18, P645, DOI 10.1097/WNR.0b013e3280d943b9 Bavelier D, 2002, NAT REV NEUROSCI, V3, P443, DOI 10.1038/nrn848 Bavelier D, 2000, J NEUROSCI, V20, P1 BUDINGER E, 2006, NEUROSCIENCE, V28, P1064 BURTON H, 1984, J COMP NEUROL, V225, P527, DOI 10.1002/cne.902250405 Carrasco A, 2009, J NEUROSCI, V29, P8350, DOI 10.1523/JNEUROSCI.6001-08.2009 Chang EF, 2003, SCIENCE, V300, P498, DOI 10.1126/science.1082163 Clemo HR, 2007, J COMP NEUROL, V503, P110, DOI 10.1002/cne.21378 CYNADER M, 1980, BRAIN RES, V191, P545, DOI 10.1016/0006-8993(80)91303-7 CYNADER M, 1980, J NEUROPHYSIOL, V43, P1026 Dinse HR, 1997, AM J OTOL, V18, pS17 Dinse HR, 2003, SPEECH COMMUN, V41, P201, DOI 10.1016/S0167-6393(02)00104-8 Fallon JB, 2009, J COMP NEUROL, V512, P101, DOI 10.1002/cne.21886 Finney EM, 2001, NAT NEUROSCI, V4, P1171, DOI 10.1038/nn763 Foxe JJ, 2000, COGNITIVE BRAIN RES, V10, P77, DOI 10.1016/S0926-6410(00)00024-0 FROST DO, 1985, NATURE, V317, P162, DOI 10.1038/317162a0 He HY, 2006, J NEUROSCI, V26, P2951, DOI 10.1523/JNEUROSCI.5554-05.2006 He HY, 2007, NAT NEUROSCI, V10, P1134, DOI 10.1038/nn1965 Hickok G, 1997, HUM BRAIN MAPP, V5, P437, DOI 10.1002/(SICI)1097-0193(1997)5:6<437::AID-HBM4>3.0.CO;2-4 HUBEL DH, 1965, J NEUROPHYSIOL, V28, P229 Hunt DL, 2006, NEUROSCIENCE, V139, P1507, DOI 10.1016/j.neuroscience.2006.01.023 Imaizumi K, 2004, J NEUROPHYSIOL, V92, P444, DOI 10.1152/jn.01173.2003 IMIG TJ, 1980, J COMP NEUROL, V192, P293, DOI 10.1002/cne.901920208 KAAS JH, 1979, SCIENCE, V204, P521, DOI 10.1126/science.107591 Kanold PO, 2001, J NEUROSCI, V21, P7848 Kayser C, 2008, CEREB CORTEX, V18, P1560, DOI 10.1093/cercor/bhm187 King AJ, 1999, EUR J NEUROSCI, V11, P3945, DOI 10.1046/j.1460-9568.1999.00821.x KITZES LM, 1985, J NEUROPHYSIOL, V53, P1483 KNIGHT PL, 1977, BRAIN RES, V130, P447, DOI 10.1016/0006-8993(77)90108-1 KORTE M, 1993, J NEUROPHYSIOL, V70, P1717 Kral A, 2000, CEREB CORTEX, V10, P714, DOI 10.1093/cercor/10.7.714 Kral A, 2005, CEREB CORTEX, V15, P552, DOI 10.1093/cercor/bhh156 Kral A, 2007, INT J AUDIOL, V46, P479, DOI 10.1080/14992020701383027 Kral A, 2007, BRAIN RES REV, V56, P259, DOI 10.1016/j.brainresrev.2007.07.021 Kral A, 2003, EXP BRAIN RES, V153, P605, DOI 10.1007/s00221-003-1609-z Lee CC, 2004, CEREB CORTEX, V14, P441, DOI 10.1093/cercor/bhh006 Lee CC, 2005, CEREB CORTEX, V15, P1804, DOI 10.1093/cercor/bhi057 Levanen S, 2001, NEUROSCI LETT, V301, P75, DOI 10.1016/S0304-3940(01)01597-X Lomber SG, 2010, NAT NEUROSCI, V13, P1421, DOI 10.1038/nn.2653 Mellott JG, 2010, HEARING RES, V267, P119, DOI 10.1016/j.heares.2010.04.003 Merabet LB, 2010, NAT REV NEUROSCI, V11, P44, DOI 10.1038/nrn2758 MEREDITH MA, P NATL ACA IN PRESS MEREDITH MA, 2009, SOC NEUR ABSTR MERZENICH MM, 1975, J NEUROPHYSIOL, V38, P231 MIDDLEBROOKS JC, 1980, BRAIN RES, V181, P31, DOI 10.1016/0006-8993(80)91257-3 MOORE DR, 1994, J COMP NEUROL, V339, P301, DOI 10.1002/cne.903390209 MOORE DR, 1995, J COMP NEUROL, V357, P204, DOI 10.1002/cne.903570203 MOWER GD, 1985, J COMP NEUROL, V235, P448, DOI 10.1002/cne.902350404 MOWER GD, 1983, SCIENCE, V221, P178, DOI 10.1126/science.6857278 MOWER GD, 1991, DEV BRAIN RES, V58, P151, DOI 10.1016/0165-3806(91)90001-Y OLSON CR, 1987, J COMP NEUROL, V261, P277, DOI 10.1002/cne.902610209 ORBAN GA, 1980, EXP BRAIN RES, V39, P177 PHILLIPS DP, 1982, BRAIN RES, V248, P237, DOI 10.1016/0006-8993(82)90581-9 Piche M, 2007, NEUROSCIENCE, V145, P1144, DOI 10.1016/j.neuroscience.2006.12.050 Raggio MW, 1999, J NEUROPHYSIOL, V82, P3506 RAUSCHECKER JP, 1993, J NEUROSCI, V13, P4538 RAUSCHECKER JP, 1995, TRENDS NEUROSCI, V18, P36, DOI 10.1016/0166-2236(95)93948-W RAUSCHECKER JP, 1994, EUR J NEUROSCI, V6, P149, DOI 10.1111/j.1460-9568.1994.tb00256.x REALE RA, 1980, J COMP NEUROL, V192, P265, DOI 10.1002/cne.901920207 ROE AW, 1992, J NEUROSCI, V12, P3651 ROUILLER EM, 1991, EXP BRAIN RES, V86, P483 Sanchez-Vives MV, 2006, PROG BRAIN RES, V155, P287, DOI 10.1016/S0079-6123(06)55017-4 Sarro EC, 2008, CEREB CORTEX, V18, P2855, DOI 10.1093/cercor/bhn044 Scannell JW, 1996, J NEUROPHYSIOL, V76, P895 Shepherd RK, 2001, AUDIOL NEURO-OTOL, V6, P305, DOI 10.1159/000046843 SHIPLEY C, 1980, BRAIN RES, V182, P313, DOI 10.1016/0006-8993(80)91191-9 Shore SE, 2000, J COMP NEUROL, V419, P271, DOI 10.1002/(SICI)1096-9861(20000410)419:3<271::AID-CNE1>3.0.CO;2-M Shore SE, 2008, EUR J NEUROSCI, V27, P155, DOI 10.1111/j.1460-9568.2007.05983.x STEIN BE, 1993, PROG BRAIN RES, V95, P79, DOI 10.1016/S0079-6123(08)60359-3 SUR M, 1988, SCIENCE, V242, P1437, DOI 10.1126/science.2462279 Tillein J, 2010, CEREB CORTEX, V20, P492, DOI 10.1093/cercor/bhp222 TIMNEY B, 1980, J NEUROPHYSIOL, V43, P1041 TUSA RJ, 1979, J COMP NEUROL, V185, P657, DOI 10.1002/cne.901850405 Wandell BA, 2009, NAT REV NEUROSCI, V10, P873, DOI 10.1038/nrn2741 Xu H, 2007, J NEUROSCI, V27, P9417, DOI 10.1523/JNEUROSCI.1992-07.2007 XU SA, 1993, HEARING RES, V70, P205, DOI 10.1016/0378-5955(93)90159-X NR 79 TC 18 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2011 VL 280 IS 1-2 BP 38 EP 47 DI 10.1016/j.heares.2011.02.004 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 834XG UT WOS:000295997200005 PM 21354286 ER PT J AU Wang, XL Hu, YJ Wang, ZL Shi, H AF Wang, Xuelin Hu, Yujin Wang, Zhenlong Shi, Hong TI Finite element analysis of the coupling between ossicular chain and mass loading for evaluation of implantable hearing device SO HEARING RESEARCH LA English DT Article ID MIDDLE-EAR FUNCTION; SOUND-TRANSMISSION; TEMPORAL BONES; TRANSDUCER; OSSICLES; MODEL; DESIGN; SYSTEM; AID AB Finite element (FE) model is used to analyze the coupling effects between ossicular chain and transducer of implantable middle-ear hearing devices. The mass loading of the transducer is attached to the long process of the incus in the form of floating mass transducer (FMT) or applied near the incus-stapes joint by a magnet of contactless electromagnetic transducer (CLT). By changing placement of the transducer, crimping connection and damping parameter of the crimping mechanism, theoretical performances of the transducers were investigated on mechanical characteristics in two aspects: (1) displacement change at the stapes footplate, which describes the change in hearing due to placement of the transducer; (2) the equivalent pressure output of the transducer, which relates the footplate displacement driven by transducer to the sound pressure applied to a normal ear to produce that displacement. For the FMT with a less tight crimping connection or low supporting rigidity, a large drop of the sound-induced stapes displacement occurs at a specific frequency, with a peak reduction about 25.8 dB. A tight connection or high supporting rigidity shifts the drop of the stapes displacement to higher frequency. For the CLT, an electromagnetic transducer of 25 mg placed near the incus-stapes joint produces a maximum decrease of the stapes displacement around 16.5 dB. The equivalent sound pressure output and electromagnetic force requirement are proposed to produce the stapes displacement equivalent to that ear canal sound stimulus. The drop of the footplate displacement caused by mass loading effect can be recovered by the transducer stimulation over frequency range from 1500 Hz to 4000 Hz. The FE analysis reveals that enhancing the coupling stiffness between the clip and the ossicular chain is much helpful for maximizing the efficiency of the transducer stimulation. (c) 2011 Elsevier B.V. All rights reserved. C1 [Wang, Xuelin; Hu, Yujin; Wang, Zhenlong] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Hubei, Peoples R China. [Shi, Hong] Huazhong Univ Sci & Technol, Dept Otorhinolaryngol, Union Hosp, Tongji Med Coll, Wuhan 430022, Hubei, Peoples R China. RP Wang, XL (reprint author), Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, 1037 Luoyu Rd, Wuhan 430074, Hubei, Peoples R China. EM wangxl@mail.hust.edu.cn FU National Natural Science Foundation of China [30870605]; Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education of Ministry FX This work was supported by the National Natural Science Foundation of China (Grant No.30870605) and by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education of Ministry. We would like to thank the anonymous reviewers for valuable comments and suggestions. CR ABEL EW, 2004, MIDDLE EAR MECH RES, P145, DOI 10.1142/9789812703019_0021 Aibara R, 2001, HEARING RES, V152, P100, DOI 10.1016/S0378-5955(00)00240-9 Asai M, 1999, ACTA OTO-LARYNGOL, V119, P356 Bornitz M, 2010, HEARING RES, V263, P145, DOI 10.1016/j.heares.2010.02.007 CHENG T, 2007, THESIS U OKLAHIMA COUNTER P, 2008, P I MECH ENG H, V226, P837 Gan RZ, 2004, ANN BIOMED ENG, V32, P847, DOI 10.1023/B:ABME.0000030260.22737.53 Gan RZ, 2007, J ACOUST SOC AM, V122, P3527, DOI 10.1121/1.2793699 Gan RZ, 2001, ANN OTO RHINOL LARYN, V110, P478 Gan RZ, 2010, HEARING RES, V263, P138, DOI 10.1016/j.heares.2009.09.003 GOODE RL, 1995, OTOLARYNG CLIN N AM, V28, P1 Hamanishi S, 2004, IEEE T MAGN, V40, P3387, DOI 10.1109/TMAG.2004.834190 Homma K, 2009, J ACOUST SOC AM, V125, P968, DOI 10.1121/1.3056564 Hong EP, 2009, MECHATRONICS, V19, P965, DOI 10.1016/j.mechatronics.2009.07.001 Hough JVD, 2000, FUNCTION AND MECHANICS OF NORMAL, DISEASED AND RECONSTRUCTED MIDDLE EARS, P353 Huber AM, 2006, OTOL NEUROTOL, V27, P1104, DOI 10.1097/01.mao.0000244352.49824.e6 KO WH, 1995, OTOLARYNG CLIN N AM, V28, P29 MANIGLIA AJ, 1996, ENT-EAR NOSE THROAT, V76, P333 Meister H, 1999, EUR ARCH OTO-RHINO-L, V256, P122, DOI 10.1007/s004050050123 Needham AJ, 2005, OTOL NEUROTOL, V26, P218, DOI 10.1097/00129492-200503000-00015 NISHIHARA S, 1993, OTOLARYNG HEAD NECK, V109, P899 Park IY, 2011, HEARING RES, V272, P187, DOI [10.1016/j.heares.2010.10.017, 10.1016/j.heares.2010.10.17] Perkins R, 2010, HEARING RES, V263, P104, DOI 10.1016/j.heares.2010.01.012 Rosowski JJ, 2007, AUDIOL NEURO-OTOL, V12, P265, DOI 10.1159/000101474 Singiresu S. R., 1995, MECH VIBRATIONS Snik A, 2004, CLIN OTOLARYNGOL, V29, P5, DOI 10.1111/j.1365-2273.2004.00749.x Stieger C, 2004, COMPUT BIOL MED, V34, P141, DOI 10.1016/S0010-4825(03)00042-8 SUZUKI JI, 1995, OTOLARYNG CLIN N AM, V28, P99 Tsai MH, 2011, J ALLOY COMPD, V509, P813, DOI 10.1016/j.jallcom.2010.09.098 Wang XL, 2007, J ACOUST SOC AM, V122, P906, DOI 10.1121/1.2749417 Yanagihara Naoaki, 1997, Auris Nasus Larynx, V24, P91, DOI 10.1016/S0385-8146(96)00025-9 Zenner HP, 2000, AM J OTOL, V21, P196, DOI 10.1016/S0196-0709(00)80009-5 NR 32 TC 6 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2011 VL 280 IS 1-2 BP 48 EP 57 DI 10.1016/j.heares.2011.04.012 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 834XG UT WOS:000295997200006 PM 21554941 ER PT J AU Bertoli, S Probst, R Bodmer, D AF Bertoli, Sibylle Probst, Rudolf Bodmer, Daniel TI Late auditory evoked potentials in elderly long-term hearing-aid users with unilateral or bilateral fittings SO HEARING RESEARCH LA English DT Article ID FREQUENCY DISCRIMINATION; LATE-ONSET; MONAURAL AMPLIFICATION; SPEECH-INTELLIGIBILITY; BEHAVIORAL MEASURES; IMPAIRED LISTENERS; PRESENTATION LEVEL; NEURAL PLASTICITY; COCHLEAR DAMAGE; TIME-COURSE AB This study investigated the effects of long-term unilateral and bilateral amplification on central auditory processing in elderly people with symmetrical hearing loss using late auditory evoked potentials. It was hypothesized that in the unilateral setting stimulation of the aided ear would yield an acclimatization effect with larger amplitudes and shorter latencies of the components P1, N1 and P2 compared to those of the unaided ear. Auditory evoked potentials were elicited by 500, 1000 and 2000 Hz pure tones at 55, 70 and 85 dB SPL presentation level delivered either to the left or right ear. Unilaterally and bilaterally fitted experienced hearing-aid users and a control group of normally hearing adults, all aged at least 60 years, participated. The responses of the unilateral hearing-aid users did not differ significantly for any of the components P1, N1 or P2 between the aided and unaided ears, but a significant interaction between ear and frequency was present for P2 amplitudes. P2 amplitudes were significantly smaller for the 0.5- and 1-kHz stimuli and tended to be larger for the 2-kHz stimulus in the aided ear suggesting an acclimatization effect. Larger P2 amplitudes were observed in the unilaterally fitted group, which was interpreted as a correlate of more effortful auditory processing in unilaterally fitted people. (c) 2011 Elsevier B.V. All rights reserved. C1 [Bertoli, Sibylle; Bodmer, Daniel] Univ Basel Hosp, Dept Otorhinolaryngol, CH-4031 Basel, Switzerland. [Probst, Rudolf] Univ Zurich Hosp, Dept Otorhinolaryngol, CH-8091 Zurich, Switzerland. RP Bertoli, S (reprint author), Univ Basel Hosp, Dept Otorhinolaryngol, Petersgraben 4, CH-4031 Basel, Switzerland. EM sbertoli@uhbs.ch; rudolf.probst@usz.ch; dbodmer@uhbs.ch CR Alain C, 2008, CLIN NEUROPHYSIOL, V119, P356, DOI 10.1016/j.clinph.2007.10.024 Amenedo E, 1999, NEUROREPORT, V10, P2383, DOI 10.1097/00001756-199908020-00030 Arlinger S, 1996, EAR HEARING, V17, pS87, DOI 10.1097/00003446-199617031-00009 Atienza M, 2002, LEARN MEMORY, V9, P138, DOI 10.1101/lm.46502 BALFOUR PB, 1992, EAR HEARING, V13, P331 Bertoli S, 2009, INT J AUDIOL, V48, P183, DOI 10.1080/14992020802572627 Bertoli S, 2010, INT J AUDIOL, V49, P333, DOI 10.3109/14992020903473431 Bertoli S, 2005, JARO-J ASSOC RES OTO, V6, P207, DOI 10.1007/s10162-005-0002-y Bosnyak DJ, 2004, CEREB CORTEX, V14, P1088, DOI 10.1093/cercor/bhh068 Byrne D, 1992, J Am Acad Audiol, V3, P369 Ceponiene R, 2008, BRAIN RES, V1215, P53, DOI 10.1016/j.brainres.2008.02.010 Ceponiene R, 2009, BRAIN LANG, V110, P107, DOI 10.1016/j.bandl.2009.04.003 Crowley K, 2002, CLIN NEUROPHYSIOL, V113, P1615, DOI 10.1016/S1388-2457(02)00237-7 Crowley KE, 2004, CLIN NEUROPHYSIOL, V115, P732, DOI 10.1016/j.clinph.2003.11.021 DRESCHLER WA, 1994, AUDIOLOGISCHE AKUSTI, V5, P12 ERDMAN SA, 1981, EAR HEARING, V2, P225, DOI 10.1097/00003446-198109000-00009 FRISINA RD, 2005, INFERIOR COLLICULUS Gabriel D, 2006, HEARING RES, V213, P49, DOI 10.1016/j.heares.2005.12.007 Gatehouse S., 1996, PSYCHOACOUSTICS SPEE, P319 GATEHOUSE S, 1989, J ACOUST SOC AM, V86, P2103, DOI 10.1121/1.398469 GELFAND SA, 1987, SCAND AUDIOL, V16, P201, DOI 10.3109/01050398709074941 HAHLBROCK K H, 1953, Arch Ohren Nasen Kehlkopfheilkd, V162, P394, DOI 10.1007/BF02105664 Hanss J, 2009, BMC NEUROSCI, V10, DOI 10.1186/1471-2202-10-23 Hine J, 2007, CLIN NEUROPHYSIOL, V118, P1274, DOI 10.1016/j.clinph.2007.03.012 Hutchinson KM, 1997, SCAND AUDIOL, V26, P177, DOI 10.3109/01050399709074991 Hyde M, 1997, AUDIOL NEURO-OTOL, V2, P281 KALIKOW DN, 1977, J ACOUST SOC AM, V61, P1337, DOI 10.1121/1.381436 Kobler S, 2002, INT J AUDIOL, V41, P395, DOI 10.3109/14992020209090416 Kobler S, 2001, SCAND AUDIOL, V30, P223, DOI 10.1080/01050390152704742 Korczak PA, 2005, EAR HEARING, V26, P165, DOI 10.1097/00003446-200504000-00005 LEEUW AR, 1991, AUDIOLOGY, V30, P330 McDermott HJ, 1998, J ACOUST SOC AM, V104, P2314, DOI 10.1121/1.423744 MOORE BCJ, 1992, EAR HEARING, V13, P349 Munro Kevin J, 2008, Trends Amplif, V12, P254, DOI 10.1177/1084713808323483 Munro KJ, 2003, J ACOUST SOC AM, V114, P484, DOI 10.1121/1.1577556 Munro KJ, 2007, NEUROREPORT, V18, P1871 Munro KJ, 2007, NEUROREPORT, V18, P1237, DOI 10.1097/WNR.0b013e32822025f4 NABELEK AK, 1981, J SPEECH HEAR RES, V24, P375 Neuman AC, 1996, EAR HEARING, V17, pS3, DOI 10.1097/00003446-199617031-00002 Noble W, 2006, INT J AUDIOL, V45, P172, DOI 10.1080/14992020500376933 Oates PA, 2002, EAR HEARING, V23, P399, DOI 10.1097/01.AUD.0000034777.12562.31 Philibert B, 2005, HEARING RES, V205, P131, DOI 10.1016/j.heares.2005.03.013 POLEN S B, 1984, Seminars in Hearing, V5, P127, DOI 10.1055/s-0028-1095227 PUNCH JL, 1991, EAR HEARING, V12, P205, DOI 10.1097/00003446-199106000-00008 Reinke KS, 2003, COGNITIVE BRAIN RES, V17, P781, DOI 10.1016/S0926-6410(03)00202-7 ROBINSON K, 1995, J ACOUST SOC AM, V97, P1183, DOI 10.1121/1.412230 Robinson K, 1996, J ACOUST SOC AM, V99, P1255, DOI 10.1121/1.414637 Ross B, 2009, HEARING RES, V248, P48, DOI 10.1016/j.heares.2008.11.012 Sheehan KA, 2005, COGNITIVE BRAIN RES, V25, P547, DOI 10.1016/j.cogbrainres.2005.08.007 SILMAN S, 1984, J ACOUST SOC AM, V76, P1357, DOI 10.1121/1.391451 STEPHENS SDG, 1991, J ROY SOC MED, V84, P267 Thai-Van H, 2007, HEARING RES, V233, P14, DOI 10.1016/j.heares.2007.06.003 Thai-Van H., 2009, AUDIOL MED, V7, P55 Thai-Van H, 2002, BRAIN, V125, P524, DOI 10.1093/brain/awf044 Thalmann B., 2000, NEUROBIOL AGING, V21, P30, DOI 10.1016/S0197-4580(00)82810-9 Tong YX, 2009, BRAIN RES, V1297, P80, DOI 10.1016/j.brainres.2009.07.089 Tremblay K, 2001, EAR HEARING, V22, P79, DOI 10.1097/00003446-200104000-00001 Tremblay KL, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010283 Tremblay KL, 2009, CLIN NEUROPHYSIOL, V120, P128, DOI 10.1016/j.clinph.2008.10.005 Tremblay KL, 2002, J SPEECH LANG HEAR R, V45, P564, DOI 10.1044/1092-4388(2002/045) Tremblay KL, 2003, CLIN NEUROPHYSIOL, V114, P1332, DOI 10.1016/S1388-2457(03)00114-7 TSCHOPP K, 1994, SCAND AUDIOL, V23, P241, DOI 10.3109/01050399409047515 WELSH KA, 1994, NEUROLOGY, V44, P609 NR 63 TC 3 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2011 VL 280 IS 1-2 BP 58 EP 69 DI 10.1016/j.heares.2011.04.013 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 834XG UT WOS:000295997200007 PM 21569828 ER PT J AU Imaizumi, K Priebe, NJ Cheung, SW Schreiner, CE AF Imaizumi, Kazuo Priebe, Nicholas J. Cheung, Steven W. Schreiner, Christoph E. TI Spatial organization of repetition rate processing in cat anterior auditory field SO HEARING RESEARCH LA English DT Article ID AMPLITUDE-MODULATED SOUNDS; FUNCTIONAL-ORGANIZATION; DEPENDENT PLASTICITY; TEMPORAL INFORMATION; RESPONSE PROPERTIES; RECEPTIVE-FIELDS; CORTEX; REPRESENTATION; MECHANISMS; MONKEY AB Auditory cortex updates incoming information on a segment by segment basis for human speech and animal communication. Measuring repetition rate transfer functions (RRTFs) captures temporal responses to repetitive sounds. In this study, we used repetitive click trains to describe the spatial distribution of RRTF responses in cat anterior auditory field (AAF) and to discern potential variations in local temporal processing capacity. A majority of RRTF filters are band-pass. Temporal parameters estimated from RRTFs and corrected for characteristic frequency or latency dependencies are non-homogeneously distributed across AAF. Unlike the shallow global gradient observed in spectral receptive field parameters, transitions from loci with high to low temporal parameters are steep. Quantitative spatial analysis suggests non-uniform, circumscribed local organization for temporal pattern processing superimposed on global organization for spectral processing in cat AAF. (c) 2011 Elsevier B.V. All rights reserved. C1 [Imaizumi, Kazuo] Louisiana State Univ, Ctr Neurosci, Hlth Sci Ctr, New Orleans, LA 70112 USA. [Imaizumi, Kazuo; Cheung, Steven W.; Schreiner, Christoph E.] Univ Calif San Francisco, Coleman Mem Lab, WM Keck Ctr Integrat Neurosci, San Francisco, CA 94143 USA. [Imaizumi, Kazuo; Cheung, Steven W.; Schreiner, Christoph E.] Univ Calif San Francisco, Dept Otolaryngol Head & Neck Surg, San Francisco, CA 94143 USA. [Priebe, Nicholas J.] Univ Texas Austin, Neurobiol Sect, Ctr Perceptual Syst, Sch Biol Sci, Austin, TX 78712 USA. RP Imaizumi, K (reprint author), Louisiana State Univ, Ctr Neurosci, Hlth Sci Ctr, 2020 Gravier St, New Orleans, LA 70112 USA. EM kimaiz@lsuhsc.edu FU National Institute of Heath (NIH) [DC-002260, MH-77970, EY019288]; Veterans Affairs Merit Review; Hearing Research Inc.; Coleman Memorial Fund; Pew Charitable Trust FX We thank B. Philibert for her help in data collection and C. Atencio for his support in implementing the spatial analysis. This work was supported by National Institute of Heath (NIH) Grants DC-002260 and MH-77970 to C.E.S., Veterans Affairs Merit Review to S.W.C., Hearing Research Inc., and the Coleman Memorial Fund. N.J.P. was supported by NIH grant EY019288 and the Pew Charitable Trust. CR Bao SW, 2004, NAT NEUROSCI, V7, P974, DOI 10.1038/nn1293 BARNES WH, 2003, SOC NEUR ABSTR, V28 Beitel RE, 2003, P NATL ACAD SCI USA, V100, P11070, DOI 10.1073/pnas.1334187100 Bieser A, 1996, EXP BRAIN RES, V108, P273 Bizley JK, 2005, CEREB CORTEX, V15, P1637, DOI 10.1093/cercor/bhi042 Chang EF, 2005, P NATL ACAD SCI USA, V102, P16460, DOI 10.1073/pnas.0508239102 Cheung SW, 2001, HEARING RES, V156, P115, DOI 10.1016/S0378-5955(01)00272-6 Cheung SW, 2001, J NEUROPHYSIOL, V85, P1732 Cliff A.D., 1973, SPATIAL AUTOCORRELAT De Ribaupierre F, 1972, Brain Res, V48, P185, DOI 10.1016/0006-8993(72)90178-3 de la Mothe LA, 2006, J COMP NEUROL, V496, P72, DOI 10.1002/cne.20924 EGGERMONT, 1998, J NEUROPHYSIOL, V80, P2743 Eggermont JJ, 2000, J NEUROPHYSIOL, V83, P2708 Eggermont JJ, 1996, AUDIT NEUROSCI, V2, P309 Eggermont JJ, 2001, HEARING RES, V157, P1, DOI 10.1016/S0378-5955(01)00259-3 Fritz J, 2005, HEARING RES, V206, P159, DOI 10.1016/j.heares.2005.01.015 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 GOLDSTEIN MH, 1959, J ACOUST SOC AM, V31, P356, DOI 10.1121/1.1907724 Heil P, 1997, J NEUROPHYSIOL, V77, P2616 Hromadka T, 2007, HEARING RES, V229, P180, DOI 10.1016/j.heares.2007.01.002 Huang CL, 2000, J COMP NEUROL, V427, P302, DOI 10.1002/1096-9861(20001113)427:2<302::AID-CNE10>3.0.CO;2-J Imaizumi K, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011531 Imaizumi K, 2007, J NEUROPHYSIOL, V98, P2933, DOI 10.1152/jn.00511.2007 Imaizumi K, 2005, AUDITORY CORTEX: SYNTHESIS OF HUMAN AND ANIMAL RESEARCH, P95 Imaizumi K, 2004, J NEUROPHYSIOL, V92, P444, DOI 10.1152/jn.01173.2003 Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003 Kaas JH, 2011, AUDITORY CORTEX, P407, DOI 10.1007/978-1-4419-0074-6_19 Kajikawa Y, 2005, J NEUROPHYSIOL, V93, P22, DOI 10.1152/jn.00248.2004 Kilgard MP, 1998, NAT NEUROSCI, V1, P727, DOI 10.1038/3729 Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714 Kilgard MP, 1999, HEARING RES, V134, P16, DOI 10.1016/S0378-5955(99)00061-1 KNIGHT PL, 1977, BRAIN RES, V130, P447, DOI 10.1016/0006-8993(77)90108-1 KOWALSKI N, 1995, J NEUROPHYSIOL, V73, P1513 Kusmierek P, 2009, J NEUROPHYSIOL, V102, P1606, DOI 10.1152/jn.00167.2009 Langner Gerald, 2009, Front Integr Neurosci, V3, P27, DOI 10.3389/neuro.07.027.2009 Lee CC, 2004, CEREB CORTEX, V14, P441, DOI 10.1093/cercor/bhh006 Liang L, 2002, J NEUROPHYSIOL, V87, P2237, DOI 10.1152/jn.00834.2001 Linden JF, 2003, J NEUROPHYSIOL, V90, P2660, DOI 10.1152/jn.00751.2002 Lomber SG, 2008, NAT NEUROSCI, V11, P609, DOI 10.1038/nn.2108 Lu T, 2000, J NEUROPHYSIOL, V84, P236 Malhotra S, 2004, J NEUROPHYSIOL, V92, P1625, DOI 10.1152/jn.01205.2003 Malone BJ, 2007, J NEUROPHYSIOL, V98, P1451, DOI 10.1152/jn.01203.2006 Mardia K. V., 1972, STAT DIRECTIONAL DAT Miller LM, 2001, NEURON, V32, P151, DOI 10.1016/S0896-6273(01)00445-7 PHILLIPS DP, 1990, J ACOUST SOC AM, V88, P1403, DOI 10.1121/1.399718 Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800 Read HL, 2001, P NATL ACAD SCI USA, V98, P8042, DOI 10.1073/pnas.131591898 Recanzone GH, 2010, BEHAV BRAIN RES, V206, P1, DOI 10.1016/j.bbr.2009.08.015 Romanski LM, 1999, NAT NEUROSCI, V2, P1131, DOI 10.1038/16056 Rutkowski RG, 2003, HEARING RES, V181, P116, DOI 10.1016/S0378-5955(03)00182-5 SCHREINER CE, 1988, HEARING RES, V32, P49, DOI 10.1016/0378-5955(88)90146-3 Schreiner CE, 1996, J NEUROPHYSIOL, V75, P1283 Schreiner CE, 2007, NEURON, V56, P356, DOI 10.1016/j.neuron.2007.10.013 SCHREINER CE, 1986, HEARING RES, V21, P227, DOI 10.1016/0378-5955(86)90221-2 Ter-Mikaelian M, 2007, J NEUROSCI, V27, P6091, DOI 10.1523/JNEUROSCI.4848-06-2007 TIAN B, 1994, J NEUROPHYSIOL, V71, P1959 Wang X, 2008, Neuroscience, V157, P484, DOI 10.1016/j.neuroscience.2008.07.050 Wang XQ, 2003, SPEECH COMMUN, V41, P107, DOI 10.1016/S0167-6393(02)00097-3 Wehr M, 2005, NEURON, V47, P437, DOI 10.1016/j.neuron.2005.06.009 NR 59 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2011 VL 280 IS 1-2 BP 70 EP 81 DI 10.1016/j.heares.2011.04.008 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 834XG UT WOS:000295997200008 PM 21569829 ER PT J AU Perez, R Adelman, C Sohmer, H AF Perez, Ronen Adelman, Cahtia Sohmer, Haim TI Bone conduction activation through soft tissues following complete immobilization of the ossicular chain, stapes footplate and round window SO HEARING RESEARCH LA English DT Article ID AUDITORY-THRESHOLDS; TRANSMISSION; HEARING; SOUND; EAR; OTOSCLEROSIS; STIMULATION; COCHLEA; PATHWAY; ATRESIA AB Classically it has been thought that bone conduction activation at the mastoid leads to relative motion between the stapes footplate and the oval window due to inertial and to compression (distortion) mechanisms. However, several recent clinical findings and experimental manipulations may point to additional mechanisms. These manipulations were extended in the present study. In ten fat sand rats, following obliteration of one ear, auditory nerve brainstem evoked response (ABR) thresholds were recorded in response to broad band click stimuli, either air conducted (AC) through insert earphones or bone conducted (BC) delivered directly to the exposed skull bone. Following this, the entire ossicular chain, stapes footplate and round window were completely immobilized with super glue, leading to a mean AC threshold elevation of 44 dB, but to a mean BC threshold change (elevation) of only 3.5 dB. In this state of complete immobilization, the bone vibrator was applied to a pool of saline in the surgical area and ABR was elicited with a mean threshold which was not significantly different from that of the BC threshold. When the bone vibrator was then applied to the eye without touching the bone at the orbit, the resulting ABR threshold was about 20 dB greater than the BC threshold. In conclusion, BC stimulation can activate the cochlea without two mobile windows. Furthermore, the cochlea can be activated by a fluid pathway and by application of a bone vibrator to non-osseous sites (soft tissue conduction). (c) 2011 Elsevier B.V. All rights reserved. C1 [Perez, Ronen] Shaare Zedek Med Ctr, Dept Otolaryngol & Head & Neck Surg, IL-91031 Jerusalem, Israel. [Adelman, Cahtia] Hadassah Univ Hosp, Speech & Hearing Ctr, IL-91120 Jerusalem, Israel. [Sohmer, Haim] Hebrew Univ Jerusalem, Hadassah Med Sch, Inst Med Res Israel Canada, Dept Med Neurobiol Physiol, IL-91120 Jerusalem, Israel. RP Sohmer, H (reprint author), Hebrew Univ Jerusalem, Hadassah Med Sch, Dept Physiol, POB 12272, IL-91120 Jerusalem, Israel. EM perezro@internet-zahav.net; cahtiaa@hadassah.org.il; haims@ekmd.huji.ac.il RI Yin, Ming/E-4879-2012 CR Adelman C., EUR ARCH OT IN PRESS Borrmann A, 2007, EUR ARCH OTO-RHINO-L, V264, P1103, DOI 10.1007/s00405-007-0305-1 Chordekar S, 2010, J BASIC CLIN PHYSL P, V21, P273 Dean M S, 2000, Am J Audiol, V9, P131, DOI 10.1044/1059-0889(2000/011) Freeman S, 2000, HEARING RES, V146, P72, DOI 10.1016/S0378-5955(00)00098-8 Huber AM, 2008, OTOL NEUROTOL, V29, P1187, DOI 10.1097/MAO.0b013e31817ef49b Ito T, 2011, AUDIOL NEURO-OTOL, V16, P12, DOI 10.1159/000314282 Linder TE, 2003, OTOL NEUROTOL, V24, P259, DOI 10.1097/00129492-200303000-00021 MELZER P, 1984, HEARING RES, V15, P187, DOI 10.1016/0378-5955(84)90050-9 Perez R, 2011, ANN OTO RHINOL LARYN, V120, P66 Perez Ronen, 2009, Journal of Basic and Clinical Physiology and Pharmacology, V20, P197 Robles L, 2001, PHYSIOL REV, V81, P1305 Sichel JY, 1999, J OTOLARYNGOL, V28, P217 Sohmer H, 2000, HEARING RES, V146, P81, DOI 10.1016/S0378-5955(00)00099-X Sohmer H, 2004, HEARING RES, V187, P105, DOI 10.1016/S0378-5955(03)00335-6 Stenfelt S, 2005, OTOL NEUROTOL, V26, P1245, DOI 10.1097/01.mao.0000187236.10842.d5 Stenfelt S, 2005, J ACOUST SOC AM, V118, P2373, DOI 10.1121/1.12005847 TONNDORF J, 1962, J ACOUST SOC AM, V34, P1127, DOI 10.1121/1.1918259 Tsai V, 2005, OTOL NEUROTOL, V26, P1138, DOI 10.1097/01.mao.0000179996.82402.e0 Vento B. A., 2009, HDB CLIN AUDIOLOGY Vincent R, 2006, OTOL NEUROTOL, V27, pS25, DOI 10.1097/01.mao.0000235311.80066.df Watanabe T, 2008, EAR HEARING, V29, P667, DOI 10.1097/AUD.0b013e3181775dde Yacullo W.S, 2009, HDB CLIN AUDIOLOGY NR 23 TC 10 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2011 VL 280 IS 1-2 BP 82 EP 85 DI 10.1016/j.heares.2011.04.007 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 834XG UT WOS:000295997200009 PM 21569827 ER PT J AU Dalhoff, E Turcanu, D Gummer, AW AF Dalhoff, Ernst Turcanu, Diana Gummer, Anthony W. TI Forward and reverse transfer functions of the middle ear based on pressure and velocity DPOAEs with implications for differential hearing diagnosis SO HEARING RESEARCH LA English DT Article ID PRODUCT-OTOACOUSTIC-EMISSION; COCHLEAR INPUT IMPEDANCE; HIGH-FREQUENCY HEARING; TYMPANIC-MEMBRANE; GUINEA-PIG; ACOUSTIC PRESSURE; SOUND PRESSURE; THRESHOLD ESTIMATION; CLINICAL UTILITY; GROWTH-BEHAVIOR AB Recently it was shown that distortion product otoacoustic emissions (DPOAEs) can be measured as vibration of the human tympanic membrane in vivo, and proposed to use these vibration DPOAEs to support a differential diagnosis of middle-ear and cochlear pathologies. Here, we investigate how the reverse transfer function (r-TF), defined as the ratio of DPOAE-velocity of the umbo to DPOAE-pressure in the ear canal, can be used to diagnose the state of the middle ear. Anaesthetized guinea pigs served as the experimental animal. Sound was delivered free-field and the vibration of the umbo measured with a laser Doppler vibrometer (LDV). Sound pressure was measured 2-3 mm from the tympanic membrane with a probe-tube microphone. The forward transfer function (f-TF) of umbo velocity relative to ear-canal pressure was obtained by stimulating with multi-tone pressure. The r-TF was assembled from DPOAE components generated in response to acoustic stimulation with two stimulus tones of frequencies f(1) and f(2); f(2)/f(1) was constant at 1.2. The r-TF was plotted as function of DPOAE frequencies; they ranged from 1.7 kHz to 23 kHz. The r-TF showed a characteristic shape with an anti-resonance around 8 kHz as its most salient feature. The data were interpreted with the aid of a middle-ear transmission-line model taken from the literature for the cat and adapted to the guinea pig. Parameters were estimated with a three-step fitting algorithm. Importantly, the r-TF is governed by only half of the 15 independent, free parameters of the model. The parameters estimated from the r-TF were used to estimate the other half of the parameters from the f-TF. The use of r-TF data - in addition to f-TF data - allowed robust estimates of the middle-ear parameters to be obtained. The results highlight the potential of using vibration DPOAEs for ascertaining the functionality of the middle ear and, therefore, for supporting a differential diagnosis of middle-ear and cochlear pathologies. (c) 2011 Elsevier B.V. All rights reserved. C1 [Dalhoff, Ernst; Turcanu, Diana; Gummer, Anthony W.] Univ Tubingen, Dept Otolaryngol, Sect Physiol Acoust & Commun, Tubingen, Germany. RP Gummer, AW (reprint author), Univ Tubingen, Dept Otolaryngol, Sect Physiol Acoust & Commun, Elfriede Aulhorn Str 5, Tubingen, Germany. EM ernst.dalhoff@uni-tuebingen.de; diana.turcanu@uni-tuebingen.de; anthony.gummer@uni-tuebingen.de FU German Research Council DFG [Gu 194/8-1,2] FX We thank J.J. Rosowski and an anonymous second reviewer for helpful comments on the manuscript. This work was supported by the German Research Council DFG Gu 194/8-1,2 for which we are most grateful. CR Abramowitz M., 1972, HDB MATH FUNCTIONS Aerts JRM, 2010, HEARING RES, V263, P26, DOI 10.1016/j.heares.2009.12.022 Aibara R, 2001, HEARING RES, V152, P100, DOI 10.1016/S0378-5955(00)00240-9 ALLEN JB, 1992, J ACOUST SOC AM, V92, P178, DOI 10.1121/1.404281 Avan P, 1998, EUR J NEUROSCI, V10, P1764, DOI 10.1046/j.1460-9568.1998.00188.x Beranek LL, 1954, ACOUSTICS Boege P, 2002, J ACOUST SOC AM, V111, P1810, DOI 10.1121/1.1460923 BROWN AM, 1990, J ACOUST SOC AM, V88, P840, DOI 10.1121/1.399733 BUUNEN TJF, 1981, J ACOUST SOC AM, V69, P744, DOI 10.1121/1.385574 CHAN JCK, 1990, J ACOUST SOC AM, V87, P1237, DOI 10.1121/1.398799 Dalhoff E, 2007, P NATL ACAD SCI USA, V104, P1546, DOI 10.1073/pnas.0610185103 DALHOFF E, 2008, ASS RES OTOLARYNGOL, V31, P537 Dalhoff E, 2009, CONCEPTS AND CHALLENGES IN THE BIOPHYSICS OF HEARING, P15, DOI 10.1142/9789812833785_0003 DANCER A, 1980, HEARING RES, V2, P191, DOI 10.1016/0378-5955(80)90057-X de La Rochefoucauld O, 2008, JARO-J ASSOC RES OTO, V9, P161, DOI 10.1007/s10162-008-0115-1 de La Rochefoucauld O, 2010, HEARING RES, V263, P9, DOI 10.1016/j.heares.2009.10.014 de Boer E, 2005, J ACOUST SOC AM, V117, P1260, DOI 10.1121/1.1856229 DECRAEMER WF, 1991, HEARING RES, V54, P305, DOI 10.1016/0378-5955(91)90124-R Decraemer WF, 2007, J ACOUST SOC AM, V121, P2774, DOI 10.1121/1.2709843 Dong W, 2006, J NEUROPHYSIOL, V95, P2951, DOI 10.1152/jn.01214.2005 Dong W, 2008, J ACOUST SOC AM, V123, P222, DOI 10.1121/1.2816566 Farmer-Fedor BL, 2002, J ACOUST SOC AM, V112, P600, DOI 10.1121/1.1494445 Fay JP, 2006, P NATL ACAD SCI USA, V103, P19743, DOI 10.1073/pnas.0603898104 FERNANDEZ C, 1952, J ACOUST SOC AM, V24, P519 Gehr DD, 2004, HEARING RES, V193, P9, DOI 10.1016/j.heares.2004.03.018 GOODE RL, 1994, AM J OTOL, V15, P145 Gorga MP, 2003, J ACOUST SOC AM, V113, P3275, DOI 10.1121/1.1570433 GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465 Guitton MJ, 2004, NEUROREPORT, V15, P1379, DOI 10.1097/01.wnr.0000131672.15566.64 HEMILA S, 1995, HEARING RES, V85, P31, DOI 10.1016/0378-5955(95)00031-X Huang GT, 1997, J ACOUST SOC AM, V101, P1532, DOI 10.1121/1.418107 Huber AM, 2001, LARYNGOSCOPE, V111, P501, DOI 10.1097/00005537-200103000-00022 HUDDE H, 1983, J ACOUST SOC AM, V73, P242, DOI 10.1121/1.388855 Janssen T, 2005, J ACOUST SOC AM, V117, P2969, DOI 10.1121/1.1853101 JOHNSTONE JR, 1979, J ACOUST SOC AM, V65, P254, DOI 10.1121/1.382244 JORGE JR, 2000, THESIS E KARLS U TUB Keefe DH, 2007, J ACOUST SOC AM, V121, P978, DOI 10.1121/1.2427128 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KRINGLEBOTN M, 1995, J ACOUST SOC AM, V98, P192, DOI 10.1121/1.413746 Kummer P, 2006, HNO, V54, P457, DOI 10.1007/s00106-005-1341-z Kummer P, 1998, J ACOUST SOC AM, V103, P3431, DOI 10.1121/1.423054 Kummer P, 2000, HEARING RES, V146, P47, DOI 10.1016/S0378-5955(00)00097-6 Lukashkin AN, 2002, J ACOUST SOC AM, V112, P1561, DOI 10.1121/1.1502903 LYNCH TJ, 1982, J ACOUST SOC AM, V72, P108, DOI 10.1121/1.387995 Magnan P, 1999, AUDIOL NEURO-OTOL, V4, P123, DOI 10.1159/000013830 Magnan P, 1997, HEARING RES, V107, P41, DOI 10.1016/S0378-5955(97)00015-4 MASSEY GA, 1968, PR INST ELECTR ELECT, V56, P2157, DOI 10.1109/PROC.1968.6829 Michaelis CE, 2004, HEARING RES, V189, P58, DOI 10.1016/S0378-5955(03)00373-3 Nakajima HH, 2005, LARYNGOSCOPE, V115, P147, DOI 10.1097/01.mlg.0000150692.23506.b7 Nakajima HH, 2005, HEARING RES, V204, P60, DOI 10.1016/j.heares.2005.01.002 NUMMELA S, 1995, HEARING RES, V85, P18, DOI 10.1016/0378-5955(95)00030-8 O'Connor KN, 2008, J ACOUST SOC AM, V123, P197, DOI 10.1121/1.2817358 Olson ES, 1998, J ACOUST SOC AM, V103, P3445, DOI 10.1121/1.423083 Parent P, 2010, HEARING RES, V263, P152, DOI 10.1016/j.heares.2009.12.015 Parenta P, 2007, J ACOUST SOC AM, V122, P918, DOI 10.1121/12747156 PEAKE WT, 1992, HEARING RES, V57, P245, DOI 10.1016/0378-5955(92)90155-G PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 Puria S, 1998, J ACOUST SOC AM, V104, P3463, DOI 10.1121/1.423930 Puria S, 2010, HEARING RES, V263, P183, DOI 10.1016/j.heares.2009.10.013 Puria S, 2003, J ACOUST SOC AM, V113, P2773, DOI 10.1121/1.1564018 PURIA S, 1991, J ACOUST SOC AM, V89, P287, DOI 10.1121/1.400675 Qin ZB, 2010, HEARING RES, V263, P93, DOI 10.1016/j.heares.2009.10.002 Ravicz ME, 2008, J ACOUST SOC AM, V124, P363, DOI 10.1121/1.2932061 Ravicz ME, 2007, J ACOUST SOC AM, V122, P2154, DOI 10.1121/1.2769625 Rosowski JJ, 2008, EAR HEARING, V29, P3 Rosowski JJ, 2003, OTOL NEUROTOL, V24, P165, DOI 10.1097/00129492-200303000-00008 Ruggero MA, 2002, P NATL ACAD SCI USA, V99, P13206, DOI 10.1073/pnas.202492699 Schmuziger N, 2006, J ACOUST SOC AM, V119, P1937, DOI 10.1121/1.2180531 Shaw BAG, 1974, HDB SENSORY PHYSL, VV/1, P455 Shera CA, 2004, EAR HEARING, V25, P86, DOI 10.1097/01.AUD.0000121200.90211.83 Shera CA, 2007, J ACOUST SOC AM, V121, P1003, DOI 10.1121/1.2404620 Siegel J. H., 2002, OTOACOUSTIC EMISSION, P416 TIELEMANS JLM, 2001, THESIS E KARLS U TUB Turcanu D, 2009, HEARING RES, V251, P17, DOI 10.1016/j.heares.2009.02.005 Vetesnik A, 2009, HEARING RES, V256, P21, DOI 10.1016/j.heares.2009.06.002 Voss SE, 2004, J ACOUST SOC AM, V116, P2187, DOI 10.1021/1.1785832 VOSS SE, 1994, J ACOUST SOC AM, V95, P372, DOI 10.1121/1.408329 Withnell RH, 1998, J ACOUST SOC AM, V104, P350, DOI 10.1121/1.423292 Withnell RH, 2003, HEARING RES, V178, P106, DOI 10.1016/S0378-5955(03)00064-9 Wysocki Jarosław, 2005, Folia Morphol (Warsz), V64, P145 ZEMPLENYI J, 1985, J ACOUST SOC AM, V78, P2146, DOI 10.1121/1.392676 ZUERCHER JC, 1988, J ACOUST SOC AM, V83, P1653, DOI 10.1121/1.395920 ZWISLOCKI J, 1963, J ACOUST SOC AM, V35, P1034, DOI 10.1121/1.1918650 ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382 NR 84 TC 6 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2011 VL 280 IS 1-2 BP 86 EP 99 DI 10.1016/j.heares.2011.04.015 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 834XG UT WOS:000295997200010 PM 21624450 ER PT J AU Irving, S Moore, DR AF Irving, Samuel Moore, David R. TI Training sound localization in normal hearing listeners with and without a unilateral ear plug SO HEARING RESEARCH LA English DT Article ID SENSITIVE PERIOD; OPTIC TECTUM; BARN OWL; CUES; IMPAIRMENT; PLASTICITY; HUMANS; ALTERS; SPACE; NOISE AB Surprisingly little is known about the ability of adult human listeners to learn to localize sounds in the free field. In this study, we presented broadband noise bursts at 24 equally spaced locations in a 360 degrees horizontal plane in both normal-hearing conditions and when listeners were fitted with a unilateral earplug. Localization improvement was found over the initial four training sessions, prior to plug insertion which produced an immediate and profound impairment in localization, particularly on the side of the plug. Subsequent training with the plug in place over the next 5 days showed continually improving performance (learning) up to the 4th day. Following plug removal, localization immediately returned to pre-plug levels. These results showed that task-specific training can improve localization ability in normal-hearing conditions and that training also improves performance during a unilateral conductive hearing loss. It has been suggested that the process of learning is due to a gradual reweighting of the available cues to develop a new location map. The return to preplug learning performance suggests that the original location map is preserved despite the formation of a new map, and is in agreement with other reported findings. (c) 2011 Elsevier B.V. All rights reserved. C1 [Irving, Samuel; Moore, David R.] MRC Inst Hearing Res, Nottingham NG7 2RD, England. RP Moore, DR (reprint author), MRC Inst Hearing Res, Univ Pk, Nottingham NG7 2RD, England. EM davem@ihr.mrc.ac.uk FU Medical Research Council; MRC FX The authors would like to thank Tim Folkard, Dave Bullock and Angie Killoran for technical assistance, Mark Edmondson-Jones for statistical guidance, Quentin Summerfield for advice on experimental design, John Van Opstal for comments on the draft paper, and the reviewers and Section Editor (Dan Sanes) for generous help during the publication process. This work was funded by the intramural programme of the Medical Research Council and by an MRC Studentship to SI. CR Abel SM, 2004, APPL ACOUST, V65, P229, DOI 10.1016/j.apacoust.2003.10.003 AGTERBERG MJ, 2010, J ASS RES OTOLARYNGO Amitay S, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009816 Amitay S, 2005, PERCEPT PSYCHOPHYS, V67, P691, DOI 10.3758/BF03193525 BAUER RW, 1966, J ACOUST SOC AM, V40, P441, DOI 10.1121/1.1910093 Blauert J., 1997, SPATIAL HEARING PSYC BUTLER RA, 1987, PERCEPT PSYCHOPHYS, V41, P1, DOI 10.3758/BF03208206 CARLILE S, 1990, J ACOUST SOC AM, V88, P2196, DOI 10.1121/1.400116 DURLACH NI, 1981, AUDIOLOGY, V20, P181 EDMONDSONJONES M, 2010, HEARING RES, V267, P4 Florentine M, 1976, J Am Audiol Soc, V1, P243 Gold JI, 1999, J NEUROPHYSIOL, V82, P2197 Hartley DEH, 2003, HEARING RES, V177, P53, DOI 10.1016/S0378-5955(02)00797-9 HARTMANN WM, 1983, J ACOUST SOC AM, V74, P1380, DOI 10.1121/1.390163 Hawkey DJC, 2004, NAT NEUROSCI, V7, P1055, DOI 10.1038/nn1315 HELD RICHARD, 1955, AMER JOUR PSYCHOL, V68, P526, DOI 10.2307/1418782 Hofman PM, 1998, NAT NEUROSCI, V1, P417, DOI 10.1038/1633 Irving S, 2011, J NEUROSCI, V31, P2493, DOI 10.1523/JNEUROSCI.2679-10.2011 JAVER AR, 1995, J OTOLARYNGOL, V24, P111 Kacelnik O, 2006, PLOS BIOL, V4, P627, DOI 10.1371/journal.pbio.0040071 King AJ, 2001, AUDIOL NEURO-OTOL, V6, P182, DOI 10.1159/000046829 King AJ, 2009, PHILOS T R SOC B, V364, P331, DOI 10.1098/rstb.2008.0230 King AJ, 2000, P NATL ACAD SCI USA, V97, P11821, DOI 10.1073/pnas.97.22.11821 KNUDSEN EI, 1984, J NEUROSCI, V4, P1001 KNUDSEN EI, 1985, J NEUROSCI, V5, P3094 Kumpik DP, 2010, J NEUROSCI, V30, P4883, DOI 10.1523/JNEUROSCI.5488-09.2010 Mardia K, 2000, DIRECTIONAL STAT McPartland JL, 1997, HEARING RES, V113, P165, DOI 10.1016/S0378-5955(97)00142-1 MIDDLEBROOKS JC, 1991, ANNU REV PSYCHOL, V42, P135, DOI 10.1146/annurev.ps.42.020191.001031 MOORE DR, 2004, SPRINGER HDB AUDITOR, P96 Moore DR, 2005, BRAIN LANG, V94, P72, DOI 10.1016/j.bundl.2004.11.009 Noble W, 2006, INT J AUDIOL, V45, P172, DOI 10.1080/14992020500376933 Perrett S, 1997, PERCEPT PSYCHOPHYS, V59, P1018, DOI 10.3758/BF03205517 Recanzone GH, 1998, J ACOUST SOC AM, V103, P1085, DOI 10.1121/1.421222 Shinn-Cunningham BG, 1998, J ACOUST SOC AM, V103, P3667, DOI 10.1121/1.423107 Shinn-Cunningham BG, 1998, J ACOUST SOC AM, V103, P3656, DOI 10.1121/1.423088 SHINNCUNNINGHAM BG, 2000, INT C AUD DISPL ATL SLATTERY WH, 1994, HEARING RES, V75, P38, DOI 10.1016/0378-5955(94)90053-1 Van Wanrooij MM, 2007, J NEUROPHYSIOL, V97, P715, DOI 10.1152/jn.00260.2006 Van Wanrooij MM, 2005, J NEUROSCI, V25, P5413, DOI 10.1523/JNEUROSCI.0850-05.2005 Van Wanrooij MM, 2004, J NEUROSCI, V24, P4163, DOI 10.1523/JNEUROSCI.0048-04.2004 Wright B. A., 2006, INT J AUDIOL, V45, P92, DOI DOI 10.1080/14992020600783004 NR 42 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2011 VL 280 IS 1-2 BP 100 EP 108 DI 10.1016/j.heares.2011.04.020 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 834XG UT WOS:000295997200011 PM 21640176 ER PT J AU Wotton, JM Ferragamo, MJ AF Wotton, J. M. Ferragamo, M. J. TI A model of anuran auditory periphery reveals frequency-dependent adaptation to be a contributing mechanism for two-tone suppression and amplitude modulation coding SO HEARING RESEARCH LA English DT Article ID NERVE-FIBERS; HAIR-CELLS; BASILAR-MEMBRANE; DORSAL MEDULLARY; RANA-CATESBEIANA; GOLDFISH; SYSTEM; FROG; RESPONSES; BULLFROG AB Anuran auditory nerve fibers (ANF) tuned to low frequencies display unusual frequency-dependent adaptation which results in a more phasic response to signals above best frequency (BF) and a more tonic response to signals below. A network model of the first two layers of the anuran auditory system was used to test the contribution of this dynamic peripheral adaptation on two-tone suppression and amplitude modulation (AM) tuning. The model included a peripheral sandwich component, leaky-integrate-and-fire cells and adaptation was implemented by means of a non-linear increase in threshold weighted by the signal frequency. The results of simulations showed that frequency-dependent adaptation was both necessary and sufficient to produce high-frequency-side two-tone suppression for the ANF and cells of the dorsal medullary nucleus (DMN). It seems likely that both suppression and this dynamic adaptation share a common mechanism. The response of ANFs to AM signals was influenced by adaptation and carrier frequency. Vector strength synchronization to an AM signal improved with increased adaptation. The spike rate response to a carrier at BF was the expected flat function with AM rate. However, for non-BF carrier frequencies the response showed a weak band-pass pattern due to the influence of signal sidebands and adaptation. The DMN received inputs from three ANFs and when the frequency tuning of inputs was near the carrier, then the rate response was a low-pass or all-pass shape. When most of the inputs were biased above or below the carrier, then band-pass responses were observed. Frequency-dependent adaptation enhanced the band-pass tuning for AM rate, particularly when the response of the inputs was predominantly phasic for a given carrier. Different combinations of inputs can therefore bias a DMN cell to be especially well suited to detect specific ranges of AM rates for a particular carrier frequency. Such selection of inputs would clearly be advantageous to the frog in recognizing distinct spectral and temporal parameters in communication calls. (c) 2011 Elsevier B.V. All rights reserved. C1 [Wotton, J. M.; Ferragamo, M. J.] Gustavus Adolphus Coll, Program Neurosci, St Peter, MN 56082 USA. RP Wotton, JM (reprint author), Gustavus Adolphus Coll, Program Neurosci, 800 W Coll Ave, St Peter, MN 56082 USA. EM jwotton2@gac.edu CR Capranica R.R., 1980, P139 CARNEY LH, 1993, J ACOUST SOC AM, V93, P401, DOI 10.1121/1.405620 COOMBS S, 1987, J ACOUST SOC AM, V81, P1025, DOI 10.1121/1.395113 CRAWFORD AC, 1981, J PHYSIOL-LONDON, V315, P317 Dayan P., 2001, THEORETICAL NEUROSCI EGGERMONT JJ, 1993, HEARING RES, V66, P177, DOI 10.1016/0378-5955(93)90139-R EGGERMONT JJ, 1985, HEARING RES, V18, P57, DOI 10.1016/0378-5955(85)90110-8 FAY RR, 1978, J ACOUST SOC AM, V63, P136, DOI 10.1121/1.381705 FAY RR, 1986, NATO ASI SER, P137 FAY RR, 1986, J ACOUST SOC AM, V79, P1883, DOI 10.1121/1.393196 FAY RR, 1985, J ACOUST SOC AM, V78, P1296, DOI 10.1121/1.392899 FENG AS, 1990, PROG NEUROBIOL, V34, P313, DOI 10.1016/0301-0082(90)90008-5 FENG AS, 1975, J COMP PHYSIOL, V100, P221 FENG AS, 1991, J NEUROPHYSIOL, V65, P424 FRISINA RD, 1985, EXP BRAIN RES, V60, P417 FUZESSERY ZM, 1983, J COMP PHYSIOL, V150, P107 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 HALL JC, 1991, J NEUROPHYSIOL, V66, P955 Julicher F, 2001, P NATL ACAD SCI USA, V98, P9080, DOI 10.1073/pnas.151257898 Lewis ER, 1999, COMP HEARING FISH AM, P101 LEWIS ER, 1986, AUDITORY FREQUENCY S, P129 Lumpkin EA, 1998, J NEUROSCI, V18, P6300 MEGELA AL, 1981, J NEUROPHYSIOL, V46, P465 MEGELA AL, 1984, J ACOUST SOC AM, V75, P1155, DOI 10.1121/1.390764 Ricci AJ, 1997, J PHYSIOL-LONDON, V501, P111, DOI 10.1111/j.1469-7793.1997.111bo.x ROBLES L, 1991, NATURE, V349, P413, DOI 10.1038/349413a0 RUGGERO MA, 1992, J NEUROPHYSIOL, V68, P1087 Ryan MJ, 2001, ANURAN COMMUNICATION Simmons AM, 1996, AUDIT NEUROSCI, V2, P109 SLANEY M, 1993, APPLE COMPUTER TECHN, V35, P1 Smotherman MS, 2000, J EXP BIOL, V203, P2237 VANDIJK P, 1994, J ACOUST SOC AM, V95, P904, DOI 10.1121/1.410009 VANSTOKKUM IHM, 1989, HEARING RES, V41, P71, DOI 10.1016/0378-5955(89)90180-9 Zakon H.H., 1988, P125 NR 35 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2011 VL 280 IS 1-2 BP 109 EP 121 DI 10.1016/j.heares.2011.04.014 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 834XG UT WOS:000295997200012 PM 21565263 ER PT J AU Campo, P Venet, T Rumeau, C Thomas, A Rieger, B Cour, C Cosnier, F Parietti-Winkler, C AF Campo, Pierre Venet, Thomas Rumeau, Cecile Thomas, Aurelie Rieger, Benoit Cour, Chantal Cosnier, Frederic Parietti-Winkler, Cecile TI Impact of noise or styrene exposure on the kinetics of presbycusis SO HEARING RESEARCH LA English DT Article ID INDUCED HEARING-LOSS; POSTNATAL-DEVELOPMENT; TECTORIAL MEMBRANE; RAT COCHLEA; OTOTOXICITY; DPOAE; EAR; AGE AB Presbycusis, or age-related hearing loss is a growing problem as the general population ages. In this longitudinal study, the influence of noise or styrene exposure on presbycusis was investigated in Brown Norway rats. Animals were exposed at 6 months of age, either to a band noise centered at 8 kHz at a Lex,8h = 85 dB (86.2 dB SPL for 6 h), or to 300 ppm of styrene for 6 h per day, five days per week, for four weeks. Cubic distortion product otoacoustic emissions (2f1-f2 DPOAEs) were used to test the capacity of the auditory receptor over the lifespan of the animals. 2f1-f2DPOAE measurements are easy to implement and efficiently track the age-related deterioration of mid- and high-frequencies. They are good indicators of temporary auditory threshold shift, especially with a level of primaries close to 60 dB SPL Post-exposure hearing defects are best identified using moderate, rather than high, levels of primaries. Like many aging humans, aging rats lose sensitivity to high-frequencies faster than to medium-frequencies. Although the results obtained with the styrene exposure were not entirely conclusive, histopathological data showed the presbycusis process to be enhanced. Noise-exposed rats exhibit a loss of spiral ganglion cells from 12 months and a 7 dB drop in 2f1-f2DPOAEs at 24 months, indicating that even moderate-intensity noise can accelerate the presbycusis process. Even though the results obtained with the styrene exposure are less conclusive, the histopathological data show an enhancement of the presbycusis process. (c) 2011 Elsevier B.V. All rights reserved. C1 [Campo, Pierre; Venet, Thomas; Rumeau, Cecile; Thomas, Aurelie; Rieger, Benoit; Cour, Chantal; Cosnier, Frederic] Inst Natl Rech & Secur, F-54519 Vandoeuvre Les Nancy, France. [Parietti-Winkler, Cecile] CHU Hop Cent, Serv ORL & Chirurg Cervico Faciale, Nancy, France. [Parietti-Winkler, Cecile] Nancy Univ, Fac Med, INSERM, U954, Nancy, France. RP Campo, P (reprint author), Inst Natl Rech & Secur, Rue Morvan,CS 60027, F-54519 Vandoeuvre Les Nancy, France. EM Pierre.campo@inrs.fr FU "Institut National de Recherche et de Securite" (INRS, France) FX This work was supported by the "Institut National de Recherche et de Securite" (INRS, France). CR BORG E, 1982, HEARING RES, V8, P110 Campo P, 2003, Noise Health, V5, P1 GUNDERSEN HJG, 1988, APMIS, V96, P857 Hall RD, 1997, HEARING RES, V103, P75, DOI 10.1016/S0378-5955(96)00166-9 Henley C, 1989, HEARING RES, V43, P141 HENLEY CM, 1995, BRAIN RES REV, V20, P68, DOI 10.1016/0165-0173(94)00006-B KEITHLEY EM, 1992, HEARING RES, V59, P171, DOI 10.1016/0378-5955(92)90113-2 Lataye R, 2000, HEARING RES, V139, P86, DOI 10.1016/S0378-5955(99)00174-4 LENOIR M, 1986, BASIC APPLIED ASPECT, P227 LENOIR M, 1987, ANAT EMBRYOL, V175, P477, DOI 10.1007/BF00309683 LONSBURYMARTIN BL, 1991, J ACOUST SOC AM, V89, P1749, DOI 10.1121/1.401009 McFadden SL, 1998, HEARING RES, V117, P81, DOI 10.1016/S0378-5955(98)00013-6 McFadden SL, 1997, HEARING RES, V111, P114, DOI 10.1016/S0378-5955(97)00099-3 Miller JM, 1998, SCAND AUDIOL, V27, P53 Mills J.H., 2001, NOISE INDUCED HEARIN, P497 MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7 Oeken J, 2000, ACTA OTO-LARYNGOL, V120, P396 Pouyatos B, 2002, HEARING RES, V165, P156, DOI 10.1016/S0378-5955(02)00298-8 ROSENHALL U, 1990, EAR HEARING, V11, P257, DOI 10.1097/00003446-199008000-00002 ROTH B, 1992, ANAT EMBRYOL, V185, P559, DOI 10.1007/BF00185615 Rybalko N, 2001, HEARING RES, V155, P32, DOI 10.1016/S0378-5955(01)00245-3 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 SUN JC, 1994, LARYNGOSCOPE, V104, P1251 Venet T, 2011, TOXICOL SCI, V119, P146, DOI 10.1093/toxsci/kfq312 Whitlon DS, 1999, HEARING RES, V137, P43, DOI 10.1016/S0378-5955(99)00136-7 OFF J EUR UNION L, V42 OFF J EUR UNION L, V358 NR 27 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2011 VL 280 IS 1-2 BP 122 EP 132 DI 10.1016/j.heares.2011.04.016 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 834XG UT WOS:000295997200013 PM 21616132 ER PT J AU Jones, TA Jones, SM Vijayakumar, S Brugeaud, A Bothwell, M Chabbert, C AF Jones, Timothy A. Jones, Sherri M. Vijayakumar, Sarath Brugeaud, Aurore Bothwell, Marcella Chabbert, Christian TI The adequate stimulus for mammalian linear vestibular evoked potentials (VsEPs) SO HEARING RESEARCH LA English DT Article ID INNERVATING SEMICIRCULAR CANALS; GRAVITY RECEPTOR FUNCTION; SQUIRREL-MONKEY; DISCHARGE PROPERTIES; CRISTAE-AMPULLARES; OTOLITH ORGANS; MOUSE STRAINS; RESPONSES; ACCELERATION; PHYSIOLOGY AB Short latency linear vestibular sensory evoked potentials (VsEPs) provide a means to objectively and directly assess the function of gravity receptors in mammals and birds. The importance of this functional measure is illustrated by its use in studies of the genetic basis of vestibular function and disease. Head motion is the stimulus for the VsEP. In the bird, it has been established that neurons mediating the linear VsEP respond collectively to the rate of change in linear acceleration during head movement (i.e. jerk) rather than peak acceleration. The kinematic element of motion responsible for triggering mammalian VsEPs has not been characterized in detail. Here we tested the hypothesis that jerk is the kinematic component of head motion responsible for VsEP characteristics. VsEP amplitudes and latencies changed systematically when peak acceleration level was held constant and jerk level was varied from similar to 0.9-4.6 g/ms. In contrast, responses remained relatively constant when kinematic jerk was held constant and peak acceleration was varied from similar to 0.9 to 5.5 g in mice and similar to 0.44 to 2.75 g in rats. Thus the mammalian VsEP depends on jerk levels and not peak acceleration. We conclude that kinematic jerk is the adequate stimulus for the mammalian VsEP. This sheds light on the behavior of neurons generating the response. The results also provide the basis for standardizing the reporting of stimulus levels, which is key to ensuring that response characteristics reported in the literature by many laboratories can be effectively compared and interpreted. (c) 2011 Elsevier B.V. All rights reserved. C1 [Jones, Timothy A.; Jones, Sherri M.; Vijayakumar, Sarath; Brugeaud, Aurore] E Carolina Univ, Dept Commun Sci & Disorders, Greenville, NC 27858 USA. [Brugeaud, Aurore; Chabbert, Christian] INSERM, Inst Neurosci Montpellier, U1051, F-34090 Montpellier, France. [Bothwell, Marcella] Univ Missouri, Dept Otolaryngol HNS, Columbia, MO 65212 USA. [Chabbert, Christian] Univ Calif San Diego, San Diego, CA 92123 USA. [Chabbert, Christian] Rady Childrens Hosp San Diego, San Diego, CA 92123 USA. RP Jones, TA (reprint author), E Carolina Univ, Dept Commun Sci & Disorders, Mail Stop 668, Greenville, NC 27858 USA. EM jonesti@ecu.edu; jonessh@ecu.edu; vijayakumars@ecu.edu; aurore.brugeaud@sensorion-pharma.com; mbothwell@rchsd.org; christian.chabbert@inserm.fr FU NASA Life Sciences Research [NAG5-4607]; NASA RPG: Human Health From Earth to Space [NIH R01-DC006443]; The French Space Agency [NIH R01 DC04477]; French Ministry of Research and New Technologies FX This work was supported by NASA Life Sciences Research: NAG5-4607 (taj, smj); NASA RPG: Human Health From Earth to Space (taj), NIH R01-DC006443 (smj); NIH R01 DC04477 (smj, taj), The French Space Agency and the French Ministry of Research and New Technologies (ab, cc). CR Alagramam KN, 2005, JARO-J ASSOC RES OTO, V6, P106, DOI 10.1007/s10162-005-5032-3 ANDERSON JH, 1978, EXP BRAIN RES, V32, P491 BOHMER A, 1995, AM J OTOL, V16, P498 BOTHWELL M, 1997, AM ACAD OTOL HEAD NE Correia M. J., 1981, VESTIBULAR SYSTEM FU, P280 DICKMAN JD, 1989, J NEUROPHYSIOL, V62, P1090 FERNANDE.C, 1971, J NEUROPHYSIOL, V34, P661 FERNANDE.C, 1972, J NEUROPHYSIOL, V35, P978 FERNANDEZ C, 1976, J NEUROPHYSIOL, V39, P996 GOLDBERG JM, 1990, HEARING RES, V49, P89, DOI 10.1016/0378-5955(90)90097-9 GOLDBERG JM, 1990, J NEUROPHYSIOL, V63, P781 GOLDBERG JM, 1971, J NEUROPHYSIOL, V34, P676 Jones SM, 1997, J COMP PHYSIOL A, V180, P631, DOI 10.1007/s003590050079 Jones SM, 1998, HEARING RES, V121, P161, DOI 10.1016/S0378-5955(98)00074-4 Jones SM, 1999, HEARING RES, V135, P56, DOI 10.1016/S0378-5955(99)00090-8 Jones SM, 2002, J NEUROSCI METH, V118, P23, DOI 10.1016/S0165-0270(02)00125-5 Jones SM, 2005, JARO-J ASSOC RES OTO, V6, P297, DOI 10.1007/s10162-005-0009-1 Jones SM, 2004, HEARING RES, V191, P34, DOI 10.1016/j.heares.2004.01.008 Jones SM, 2008, BALANCE FUNCTION ASS, P379 Jones SM, 2006, BRAIN RES, V1091, P40, DOI 10.1016/j.brainres.2006.01.066 JONES TA, 1992, ELECTROEN CLIN NEURO, V82, P377, DOI 10.1016/0013-4694(92)90007-5 Jones TA, 1998, J VESTIBUL RES-EQUIL, V8, P253 Jones TA, 2007, AUDITORY EVOKED POTE, P622 Jones TA, 2008, JARO-J ASSOC RES OTO, V9, P490, DOI 10.1007/s10162-008-0132-0 JONES TA, 1989, AM J OTOLARYNG, V10, P327, DOI 10.1016/0196-0709(89)90108-7 Jones TA, 1999, HEARING RES, V136, P75, DOI 10.1016/S0378-5955(99)00110-0 LANGE ME, 1988, THESIS U NEBRASKA LANGE ME, 1989, ASGSB B, V3, P31 LANGE ME, 1990, ASS RES OTOL, V343 Lewis E R, 1994, J Vestib Res, V4, P189 LYSAKOWSKI A, 1995, J NEUROPHYSIOL, V73, P1270 MYERS SF, 1991, BRAIN RES, V543, P36, DOI 10.1016/0006-8993(91)91045-3 NAZARETH AM, 1991, ASGSB B, V5, P40 Nazareth AM, 1998, J VESTIBUL RES-EQUIL, V8, P233 NAZARETH AM, 1991, THESIS U NEBRASKA ME Plotnik M, 1997, EVOKED POTENTIAL, V104, P522, DOI 10.1016/S0168-5597(97)00062-2 Rabbitt Richard D., 2004, VVolume 19, P153 WEISLEDER P, 1990, ELECTROEN CLIN NEURO, V76, P362, DOI 10.1016/0013-4694(90)90037-K NR 38 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2011 VL 280 IS 1-2 BP 133 EP 140 DI 10.1016/j.heares.2011.05.005 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 834XG UT WOS:000295997200014 PM 21664446 ER PT J AU Ohlemiller, KK Rice, MER Rosen, AD Montgomery, SC Gagnon, PM AF Ohlemiller, Kevin K. Rice, Mary E. Rybak Rosen, Allyson D. Montgomery, Scott C. Gagnon, Patricia M. TI Protection by low-dose kanamycin against noise-induced hearing loss in mice: Dependence on dosing regimen and genetic background SO HEARING RESEARCH LA English DT Article ID ISCHEMIC TOLERANCE; ACOUSTIC TRAUMA; MOUSE COCHLEA; INBRED STRAINS; C57BL/6J MICE; LATERAL WALL; CBA/J MOUSE; OTOTOXICITY; AGE; INJURY AB We recently demonstrated that sub-chronic low-dose kanamycin (KM, 300 mg/kg sc, 2 x/day, 10 days) dramatically reduces permanent noise-induced hearing loss (NIHL) and hair cell loss in 1 month old CBA/J mice (Fernandez et al., 2010, J. Assoc. Res. Otolaryngol. 11, 235-244). Protection by KM remained for at least 48 h after the last dose, and appeared to involve a cumulative effect of multiple doses as part of a preconditioning process. The first month of life lies within the early 'sensitive period' for both cochlear noise and ototoxic injury in mice, and CBA/J mice appear exquisitely vulnerable to noise during this period (Ohlemiller et al., 2011: Hearing Res. 272, 13-20). From our initial data, we could not rule out 1) that less rigorous treatment protocols than the intensive one we applied may be equally-or more-protective; 2) that protection by KM is tightly linked to processes unique to the sensitive period for noise or ototoxins; or 3) that protection by KM is exclusive to CBA/J mice. The present experiments address these questions by varying the number and timing of fixed doses (300 mg/kg sc) of KM, as well as the age at treatment in CBA/J mice. We also tested for protection in young C57BL/6J (B6) mice. We find that nearly complete protection against at least 2 h of intense (110 dB SPL) broadband noise can be observed in CBA/J mice at least for ages up to 1 year. Reducing dosing frequency to as little as once every other day (a four-fold decrease in dosing frequency) appeared as protective as twice per day. However, reducing the number of doses to just 1 or 2, followed by noise 24 or 48 h later greatly reduced protection. Notably, hearing thresholds and hair cells in young B6 mice appeared completely unprotected by the same regimen that dramatically protects CBA/J mice. We conclude that protective effects of KM against NIHL in CBA/J mice can be engaged by a wide range of dosing regimens, and are not exclusive to the sensitive period for noise or ototoxins. While we cannot presently judge the generality of protection across genetic backgrounds, it appears not to be universal, since B6 showed no benefit. Classical genetic approaches based on CBA/J x B6 crosses may reveal loci critical to protective cascades engaged by kanamycin and perhaps other preconditioners. Their human analogs may partly determine who is at elevated risk of acquired hearing loss. (c) 2011 Elsevier B.V. All rights reserved. C1 [Ohlemiller, Kevin K.; Gagnon, Patricia M.] Washington Univ, Sch Med, Fay & Carl Simons Ctr Biol Hearing & Deafness, Dept Otolaryngol, St Louis, MO 63110 USA. [Ohlemiller, Kevin K.; Rice, Mary E. Rybak; Rosen, Allyson D.] Washington Univ, Sch Med, Program Audiol & Commun Sci, St Louis, MO 63130 USA. [Montgomery, Scott C.] St Louis Univ, Sch Med, St Louis, MO 63103 USA. RP Ohlemiller, KK (reprint author), Washington Univ, Sch Med, Fay & Carl Simons Ctr Biol Hearing & Deafness, Dept Otolaryngol, 660 S Euclid, St Louis, MO 63110 USA. EM kohlemiller@wustl.edu FU WUSM Department of Otolaryngology [P30 DC004665, P30 NS057105, R01 DC03454, R01 DC08321, TL1 RR024995, T35 DC008765] FX Supported by P30 DC004665 (R.Chole), P30 NS057105 (D. Holtzman), R01 DC03454 (KKO), R01 DC08321 (KKO), TL1 RR024995, T35 DC008765, WUSM Department of Otolaryngology. CR BERNARD PA, 1981, LARYNGOSCOPE, V91, P1985 Canlon B, 2007, HEARING RES, V226, P1, DOI 10.1016/j.heares.2007.02.006 Chance MR, 2010, HUM MOL GENET, V19, P1515, DOI 10.1093/hmg/ddq025 CHEN CS, 1983, ARCH OTO-RHINO-LARYN, V238, P217, DOI 10.1007/BF00453932 Chen F, 2008, ABSTR ASSN RES OTOLA, V31, P50 Davis RR, 2001, HEARING RES, V155, P82, DOI 10.1016/S0378-5955(01)00250-7 Dirnagl U, 2003, TRENDS NEUROSCI, V26, P248, DOI 10.1016/S0166-2236(03)00071-7 Eisen A, 2004, ATHEROSCLEROSIS, V172, P201, DOI 10.1016/S0021-9150(03)00238-7 Erway LC, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P56 Fernandez EA, 2010, JARO-J ASSOC RES OTO, V11, P235, DOI 10.1007/s10162-009-0204-9 FOX RR, 1997, HDB GENETICALLY STAN, P95467 Gagnon PM, 2007, HEARING RES, V226, P79, DOI 10.1016/j.heares.2006.09.006 Gidday JM, 2006, NAT REV NEUROSCI, V7, P437, DOI 10.1038/nrn1927 HENLEY CM, 1995, BRAIN RES REV, V20, P68, DOI 10.1016/0165-0173(94)00006-B HENRY KR, 1981, ARCH OTOLARYNGOL, V107, P92 HENRY KR, 1982, BEHAV GENET, V12, P563, DOI 10.1007/BF01070410 HENRY KR, 1982, HEARING RES, V8, P285, DOI 10.1016/0378-5955(82)90020-X Hirose K, 2003, JARO, V4, P339, DOI 10.1007/s10162-002-3036-4 Jiang HY, 2005, J NEUROSCI RES, V79, P644, DOI 10.1002/jnr.20392 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 Lehotsky J, 2009, ANAT REC, V292, P2002, DOI 10.1002/ar.20970 Li H S, 1992, Scand Audiol Suppl, V36, P1 LI HS, 1992, ACTA OTO-LARYNGOL, V112, P956, DOI 10.3109/00016489209137496 Li HZ, 2009, NOISE HEALTH, V11, P26, DOI 10.4103/1463-1741.45310 Matsunobu T, 2009, ACTA OTO-LARYNGOL, V129, P18, DOI 10.1080/00016480902933056 Muller M, 2005, HEARING RES, V202, P63, DOI 10.1016/j.heares.2004.08.011 Niu XZ, 2002, ADV OTO-RHINO-LARYNG, V59, P96 Ohlemiller KK, 2010, JARO-J ASSOC RES OTO, V11, P605, DOI 10.1007/s10162-010-0228-1 Ohlemiller KK, 2000, HEARING RES, V149, P239, DOI 10.1016/S0378-5955(00)00191-X Ohlemiller KK, 2007, HEARING RES, V224, P34, DOI 10.1016/j.heares.2006.11.005 Ohlemiller KK, 2008, HEARING RES, V245, P5, DOI 10.1016/j.heares.2008.08.007 Ohlemiller KK, 2009, BRAIN RES, V1277, P70, DOI 10.1016/j.brainres.2009.02.079 Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017 Ohlemiller KK, 2011, HEARING RES, V272, P13, DOI 10.1016/j.heares.2010.11.006 Ou HC, 2000, HEARING RES, V145, P111, DOI 10.1016/S0378-5955(00)00081-2 Peppi M, 2011, J NEUROSCI, V31, P735, DOI 10.1523/JNEUROSCI.3955-10.2011 Pujol R, 1992, NOISE INDUCED HEARIN, P196 Ran RQ, 2005, DEV NEUROSCI-BASEL, V27, P87, DOI 10.1159/000085979 Rybak Leonard P, 2007, Curr Opin Otolaryngol Head Neck Surg, V15, P364, DOI 10.1097/MOO.0b013e3282eee452 SAUNDERS JC, 1982, ENVIRON HEALTH PERSP, V44, P63, DOI 10.2307/3429477 Sha SH, 2008, HEARING RES, V243, P87, DOI 10.1016/j.heares.2008.06.001 Shi XR, 2007, HEARING RES, V224, P1, DOI 10.1016/j.heares.2006.10.011 So H, 2008, JARO-J ASSOC RES OTO, V9, P290, DOI 10.1007/s10162-008-0126-y Taleb M, 2009, CELL STRESS CHAPERON, V14, P427, DOI 10.1007/s12192-008-0097-2 Wang Y, 2002, HEARING RES, V165, P96, DOI 10.1016/S0378-5955(02)00289-7 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 Willott J. F., 1991, AGING AUDITORY SYSTE Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3 Yamamoto H, 2009, J NEUROSCI RES, V87, P1832, DOI 10.1002/jnr.22018 Yoshida N, 2000, HEARING RES, V148, P213, DOI 10.1016/S0378-5955(00)00161-1 Yoshida N, 1999, J NEUROSCI, V19, P10116 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 53 TC 3 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2011 VL 280 IS 1-2 BP 141 EP 147 DI 10.1016/j.heares.2011.05.007 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 834XG UT WOS:000295997200015 PM 21645602 ER PT J AU Terakado, M Kumagami, H Takahashi, H AF Terakado, Mariko Kumagami, Hidetaka Takahashi, Haruo TI Distribution of glucocorticoid receptors and 11 beta-hydroxysteroid dehydrogenase isoforms in the rat inner ear SO HEARING RESEARCH LA English DT Article ID CANAL DUCT EPITHELIUM; 11-BETA-HYDROXYSTEROID DEHYDROGENASE; STRIA VASCULARIS; SODIUM-TRANSPORT; LEYDIG-CELLS; COCHLEA; DEXAMETHASONE; LOCALIZATION; NA,K-ATPASE; ABSENCE AB 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) is an enzyme complex responsible for the conversion of hormonally active cortisol to inactive cortisone, and two isoforms of the enzyme (11 beta-HSD1 and 11 beta-HSD2) have been cloned and characterized. An immunohistochemical study was performed to determine the precise distribution of glucocorticoid receptors (GRs) and the isoforms of 11 beta-HSD in the rat (postnatal day 1, 4, 10, and adult). lmmunoreactivity of GRs was detected in the stria vascularis (SV), the outer hair cells (OHCs), the inner hair cells (IHCs), the spiral ligament (SLig), the spiral limbus (SLib), the spiral ganglion cells (SGCs). Reissner's membrane (RM), the cochlear nerve (CN), the vestibular hair cells (VHCs), the dark cells (DCs), and the vestibular nerve (VN) in the rats. lmmunostaining of 11 beta-HSD1 was observed in almost all the tissues in the cochlea and the vestibule except SLig, SLib, SGCs, CN, VHCs, and VN during all developmental stages, whereas, immunoreactivity of 11 beta-HSD2 was not detected in any of the inner ear tissues. A polymerase chain reaction (PCR) study was also performed on GRs, 11 beta-HSD1, and 11 beta-HSD2 in the OC, SV and vestibule of the postnatal rats, and revealed that mRNAs were detected in all those and tissues in all the developmental days of postnatal days 1, 4, and 10. This data indicates that expression of GRs and 11 beta-HSD isoforms in the inner ear is tissue and age-specific, and that different local steroid regulation by GRs and the isoforms of 11 beta-HSD is present in each part of the inner ear. (c) 2011 Elsevier B.V. All rights reserved. C1 [Terakado, Mariko; Kumagami, Hidetaka; Takahashi, Haruo] Nagasaki Univ, Grad Sch Biomed Sci, Dept Otolaryngol Head & Neck Surg, Nagasaki 8528501, Japan. RP Terakado, M (reprint author), Nagasaki Univ, Grad Sch Biomed Sci, Dept Otolaryngol Head & Neck Surg, Sakamoto 1-7-1, Nagasaki 8528501, Japan. EM terakado@nagasaki-u.ac.jp CR Brewer JA, 2002, J IMMUNOL, V169, P1309 CURTIS LM, 1993, EUR ARCH OTO-RHINO-L, V250, P265 Derfoul A, 1998, J BIOL CHEM, V273, P20702, DOI 10.1074/jbc.273.33.20702 Draper N, 2005, J ENDOCRINOL, V186, P251, DOI 10.1677/joe.1.06019 Embark HM, 2003, PFLUG ARCH EUR J PHY, V445, P601, DOI 10.1007/s00424-002-0982-y Erichsen S, 1998, HEARING RES, V124, P146, DOI 10.1016/S0378-5955(98)00117-8 Falkenstein E, 2000, PHARMACOL REV, V52, P513 Ge RS, 2005, ENDOCRINOLOGY, V146, P2657, DOI 10.1210/en.2005-0046 Haake SM, 2009, HEARING RES, V255, P22, DOI 10.1016/j.heares.2009.05.003 Hargunani CA, 2006, OTOL NEUROTOL, V27, P564, DOI 10.1097/00129492-200606000-00021 Hatou S, 2009, CURR EYE RES, V34, P347, DOI 10.1080/02713680902829624 Honda Y, 2008, J STEROID BIOCHEM, V108, P91, DOI 10.1016/j.jsbm6.2007.07.003 Hu GX, 2008, STEROIDS, V73, P1018, DOI 10.1016/j.steroids.2007.12.020 Johnson LR, 2005, NEUROSCIENCE, V136, P289, DOI 10.1016/j.neuroscience.2005.06.050 KAWATA M, 2001, ARCH HISTOL CYTOL, V64, P53 Kim SH, 2009, AM J PHYSIOL-CELL PH, V296, pC544, DOI 10.1152/ajpcell.00338.2008 Lee JH, 2002, AUDIOL NEURO-OTOL, V7, P100, DOI 10.1159/000057657 Lohuis PJFM, 2000, HEARING RES, V143, P189, DOI 10.1016/S0378-5955(00)00043-5 LOHUIS PJFM, 1990, ACTA OTO-LARYNGOL, V110, P348, DOI 10.3109/00016489009107454 Lowenheim H, 1999, P NATL ACAD SCI USA, V96, P4084, DOI 10.1073/pnas.96.7.4084 Mazurek B, 2010, HEARING RES, V259, P55, DOI 10.1016/j.heares.2009.10.006 Meltser I, 2009, J NEUROTRAUM, V26, P1835, DOI 10.1089/neu.2008.0874 Mistrik P, 2009, CURR OPIN OTOLARYNGO, V17, P394, DOI 10.1097/MOO.0b013e328330366f MOORE FL, 1995, RECEPTOR, V5, P21 Niu NF, 2009, J CLIN ENDOCR METAB, V94, P3072, DOI 10.1210/jc.2008-2109 Oppermann UCT, 1997, EUR J BIOCHEM, V249, P355, DOI 10.1111/j.1432-1033.1997.t01-1-00355.x PITOVSKI DZ, 1993, BRAIN RES, V601, P273, DOI 10.1016/0006-8993(93)91720-D Pondugula SR, 2006, PHYSIOL GENOMICS, V24, P114, DOI 10.1152/physiolgenomics.00006.2005 Pondugula SR, 2004, AM J PHYSIOL-RENAL, V286, pF1127, DOI 10.1152/ajprenal.00387.2003 Raddatz D, 1996, HEPATOLOGY, V24, P928 RAREY KE, 1989, ARCH OTOLARYNGOL, V115, P817 Rarey KE, 1996, OTOLARYNG HEAD NECK, V115, P38, DOI 10.1016/S0194-5998(96)70133-X Sarabdjitsingh RA, 2009, BRAIN RES, V1249, P43, DOI 10.1016/j.brainres.2008.10.048 Seckl JR, 2004, CURR OPIN PHARMACOL, V4, P597, DOI 10.1016/j.coph.2004.09.001 Shimazaki T, 2002, ANN OTO RHINOL LARYN, V111, P1133 Tahera Y, 2006, ENDOCRINOLOGY, V147, P4430, DOI 10.1210/en.2006-0260 Tahera Y, 2007, NEUROBIOL DIS, V25, P189, DOI 10.1016/j.nbd.2006.09.004 Taura A, 2006, BRAIN RES, V1098, P33, DOI 10.1016/j.brainres.2006.04.090 Ten Cate Wouter-Jan F., 1994, American Journal of Physiology, V266, pE269 TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865 tenCate WJF, 1997, ACTA OTO-LARYNGOL, V117, P841 Terunuma T, 2001, HEARING RES, V151, P121, DOI 10.1016/S0378-5955(00)00218-5 ZUO J, 1995, HEARING RES, V87, P220, DOI 10.1016/0378-5955(95)00092-I NR 43 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2011 VL 280 IS 1-2 BP 148 EP 156 DI 10.1016/j.heares.2011.05.006 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 834XG UT WOS:000295997200016 PM 21669268 ER PT J AU Luo, B Wang, HT Su, YY Wu, SH Chen, L AF Luo, Bin Wang, Hai-Tao Su, Yan-Yan Wu, Shu-Hui Chen, Lin TI Activation of presynaptic GABA(B) receptors modulates GABAergic and glutamatergic inputs to the medial geniculate body SO HEARING RESEARCH LA English DT Article ID CENTRAL-NERVOUS-SYSTEM; RAT GLOBUS-PALLIDUS; INFERIOR COLLICULUS; CORTICAL ACTIVATION; AUDITORY THALAMUS; COCHLEAR NUCLEUS; NEURONS; INHIBITION; RESPONSES; LOCALIZATION AB The medial geniculate body (MGB) receives ascending inputs from the inferior colliculus and descending inputs from the auditory cortex. In the present study, we intended to determine whether activation of presynaptic GABA(B) receptors modulates GABAergic and glutamatergic inputs to the MGB with whole-cell patch-clamp recordings in brain slices of the rat. To evoke a synaptic response, we electrically stimulated the ascending and descending inputs to MGB neurons with bipolar electrodes placed on the brachium of the inferior colliculus and the superior thalamic radiation. To isolate presynaptic mechanisms, we blocked the effects of postsynaptic GABA(B) receptors by filling recording electrodes with the internal solution containing cesium and QX-314. The activation of presynaptic GABA(B) receptors by exogenous agonist was shown to modulate synaptic inputs to the MGB as demonstrated by that (1) baclofen, a GABA(B) receptor agonist, reversibly suppressed both inhibitory postsynaptic currents (IPSCs) and excitatory postsynaptic currents (EPSCs) and this suppressive effect could be blocked by CGP35348, a GABA(B) receptor antagonist, (2) baclofen significantly increased the ratio of IPSCs or EPSCs elicited by paired-pulse stimulation, and (3) baclofen depressed EPSCs and IPSCs in response to repetitive stimulation. The activation of presynaptic GABA(B) receptors by endogenously released GABA was shown to modulate the synaptic transmission as demonstrated by that CGP55845, another GABA(B) receptor antagonist, increased the ratio of IPSCs to paired-pulse stimulation in young (P8-10) rats, although not in juvenile (P15-18) rats. Our study provides electrophysiological evidence for the presence of functional presynaptic GABA(B) receptors in the MGB and suggests an age-dependent role of these receptors in the synaptic transmission in this central auditory region. (c) 2011 Elsevier B.V. All rights reserved. C1 [Luo, Bin; Wang, Hai-Tao; Su, Yan-Yan; Chen, Lin] Univ Sci & Technol China, Auditory Res Lab, Sch Life Sci, Hefei 230027, Peoples R China. [Luo, Bin; Wang, Hai-Tao; Su, Yan-Yan; Chen, Lin] Univ Sci & Technol China, Auditory Res Lab, Sch Life Sci, CAS Key Lab Brain Funct & Dis, Hefei 230027, Peoples R China. [Wang, Hai-Tao] Hong Kong Polytech Univ, Dept Rehabil Sci, Hong Kong, Hong Kong, Peoples R China. [Wu, Shu-Hui] Carleton Univ, Dept Neurosci, Ottawa, ON K1S 5B6, Canada. RP Chen, L (reprint author), Univ Sci & Technol China, Auditory Res Lab, Sch Life Sci, Hefei 230027, Peoples R China. EM linchen@ustc.edu.cn RI Chen, Lin/N-8327-2013 OI Chen, Lin/0000-0002-5847-2989 FU National Basic Research Program of China [2011CB504506, 2007CB512306]; National Natural Science Foundation of China [30970977, 30730041]; CAS [KSCX1-YW-R-36] FX We thank Dr. Bin Hu and Mr. Lifeng Zhang for their constructive suggestions and technical assistance. This work was supported by the National Basic Research Program of China (Grants 2011CB504506 and 2007CB512306), the National Natural Science Foundation of China (Grants 30970977 and 30730041) and the CAS Knowledge Innovation Project (Grant KSCX1-YW-R-36). CR Arcelli P, 1997, BRAIN RES BULL, V42, P27, DOI 10.1016/S0361-9230(96)00107-4 Aroniadou-Anderjaska V, 2000, J NEUROPHYSIOL, V84, P1194 Bartlett EL, 1999, J NEUROPHYSIOL, V81, P1999 Bettler B, 2004, PHYSIOL REV, V84, P835, DOI 10.1152/physrev.00036.2003. CASPARY DM, 1984, HEARING RES, V13, P113, DOI 10.1016/0378-5955(84)90102-3 Chen L, 2004, J COMP NEUROL, V474, P340, DOI 10.1002/cne.20143 CHU DCM, 1990, NEUROSCIENCE, V34, P341, DOI 10.1016/0306-4522(90)90144-S Fritschy JM, 1999, EUR J NEUROSCI, V11, P761, DOI 10.1046/j.1460-9568.1999.00481.x Fubara BM, 1996, J COMP NEUROL, V369, P83 He JF, 1997, J NEUROPHYSIOL, V77, P896 He JF, 2002, J NEUROPHYSIOL, V88, P1040, DOI 10.1152/jn00014.2002 Ikeda SR, 1996, NATURE, V380, P255, DOI 10.1038/380255a0 Jursky F, 1996, J NEUROCHEM, V67, P857 Kaneda K, 2005, J NEUROPHYSIOL, V94, P1104, DOI 10.1152/jn.00255.2005 Kaupmann K, 1997, NATURE, V386, P239, DOI 10.1038/386239a0 KUDO M, 1978, BRAIN RES, V155, P113, DOI 10.1016/0006-8993(78)90310-4 Kulik A, 2002, EUR J NEUROSCI, V15, P291, DOI 10.1046/j.0953-816x.2001.01855.x Lei SB, 2003, J PHYSIOL-LONDON, V546, P439, DOI 10.1113/jphysiol.2002.034017 Lujan R, 2004, J COMP NEUROL, V475, P36, DOI 10.1002/cne.20160 Luscher C, 1997, NEURON, V19, P687, DOI 10.1016/S0896-6273(00)80381-5 Ma CL, 2002, NEUROSCIENCE, V114, P207, DOI 10.1016/S0306-4522(02)00130-6 Magnusson AK, 2008, NEURON, V59, P125, DOI 10.1016/j.neuron.2008.05.011 Margeta-Mitrovic M, 1999, J COMP NEUROL, V405, P299, DOI 10.1002/(SICI)1096-9861(19990315)405:3<299::AID-CNE2>3.0.CO;2-6 MINTZ IM, 1993, NEURON, V10, P889, DOI 10.1016/0896-6273(93)90204-5 MOLLER AR, 1986, HEARING RES, V24, P203, DOI 10.1016/0378-5955(86)90019-5 Paxinos G, 1986, RAT BRAIN STEREOTAXI, V2nd Perez-Garci E, 2006, NEURON, V50, P603, DOI 10.1016/j.neuron.2006.04.019 Peruzzi D, 1997, J NEUROSCI, V17, P3766 Porter JT, 2004, J NEUROPHYSIOL, V92, P2762, DOI 10.1152/jn.00196.2004 REES A, 1983, HEARING RES, V10, P301, DOI 10.1016/0378-5955(83)90095-3 ROUILLER EM, 1985, NEUROSCI LETT, V53, P227, DOI 10.1016/0304-3940(85)90190-9 ROUILLER EM, 1991, HEARING RES, V56, P179, DOI 10.1016/0378-5955(91)90168-9 Smith PH, 2007, J NEUROPHYSIOL, V98, P681, DOI 10.1152/jn.00235.2007 Sun H, 2006, NEUROSCI LETT, V399, P151, DOI 10.1016/j.neulet.2006.01.049 SZCZEPANIAK WS, 1995, ANN OTO RHINOL LARYN, V104, P399 Szczepaniak WS, 1996, HEARING RES, V97, P46 Takahashi T, 1998, J NEUROSCI, V18, P3138 Takesian AE, 2010, J NEUROSCI, V30, P2716, DOI 10.1523/JNEUROSCI.3903-09.2010 Tang ZQ, 2009, J NEUROPHYSIOL, V102, P1672, DOI 10.1152/jn.00419.2009 Tennigkeit F, 1998, HEARING RES, V122, P18, DOI 10.1016/S0378-5955(98)00083-5 Thompson SE, 2006, NEUROSIGNALS, V15, P202, DOI 10.1159/000098515 Thomson AM, 2000, TRENDS NEUROSCI, V23, P305, DOI 10.1016/S0166-2236(00)01580-0 Vaughn MD, 1996, NEUROPHARMACOLOGY, V35, P1761, DOI 10.1016/S0028-3908(96)00143-8 Vigot R, 2006, NEURON, V50, P589, DOI 10.1016/j.neuron.2006.04.014 Winer JA, 1996, P NATL ACAD SCI USA, V93, P8005, DOI 10.1073/pnas.93.15.8005 Winer JA, 1996, P NATL ACAD SCI USA, V93, P3083, DOI 10.1073/pnas.93.7.3083 WINER JA, 1987, J COMP NEUROL, V257, P282, DOI 10.1002/cne.902570212 Wu LG, 1997, TRENDS NEUROSCI, V20, P204, DOI 10.1016/S0166-2236(96)01015-6 Wu SH, 2004, J NEUROSCI, V24, P4625, DOI 10.1523/JNEUROSCI.0318-04.2004 Zhang HM, 2003, J NEUROPHYSIOL, V90, P477, DOI 10.1152/jn.01084.2002 Zhang YF, 1997, J NEUROPHYSIOL, V78, P3489 Zhang Z, 2008, J NEUROPHYSIOL, V99, P2938, DOI 10.1152/jn.00002.2008 NR 52 TC 5 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2011 VL 280 IS 1-2 BP 157 EP 165 DI 10.1016/j.heares.2011.05.018 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 834XG UT WOS:000295997200017 PM 21664264 ER PT J AU Westen, AA Dekker, DMT Briaire, JJ Frijns, JHM AF Westen, A. A. Dekker, D. M. T. Briaire, J. J. Frijns, J. H. M. TI Stimulus level effects on neural excitation and eCAP amplitude SO HEARING RESEARCH LA English DT Article ID NERVE ACTION-POTENTIALS; COCHLEAR IMPLANT USERS; ELECTRICAL-STIMULATION; RESPONSES; PATTERNS; MODELS; CAT AB The common assumption that the electrically evoked compound action potential (eCAP) has a linear relationship with the number of excited nerve fibres is derived from the acoustical unitary response concept. This study tests the validity of this hypothesis for electrical stimulation. Five guinea pigs were implanted with the tip of a human HiFocus electrode. eCAPs were measured with the forward masking paradigm, using anodic- and cathodic-leading biphasic current pulses and the inter-pulse interval was varied. Masker and probe amplitudes were varied either individually or simultaneously. Surprisingly, at high levels decreasing eCAP amplitudes were measured with increasing stimulus current. In search for an explanation, the experimental conditions were implemented in our 3D computational model of the implanted guinea pig cochlea to perform a functional comparison. In the final experiment, with fixed inter-pulse interval (IPI) and anodic-leading pulses, increasing stimulus currents showed growing numbers of excited nerve fibres and decreasing eCAP amplitudes at high levels, again. While simulating the relative contribution of single fibres to the overall eCAP, an explanation for this could be found in a waveform change in the modelled single fibre action potentials at high levels. We conclude that highly stimulated nerve fibres have another contribution to the eCAP response than lower stimulated fibres, which leads to a reduction of the eCAP amplitude at high levels. (c) 2011 Elsevier B.V. All rights reserved. C1 [Westen, A. A.; Dekker, D. M. T.; Briaire, J. J.; Frijns, J. H. M.] Leiden Univ, Med Ctr, ENT Dept, NL-2300 RC Leiden, Netherlands. RP Frijns, JHM (reprint author), Leiden Univ, Med Ctr, ENT Dept, POB 9600, NL-2300 RC Leiden, Netherlands. EM J.H.M.Frijns@LUMC.nl RI Briaire, Jeroen/A-7972-2008 OI Briaire, Jeroen/0000-0003-4302-817X FU Heinsius-Houbolt fund FX This research was financially supported by grants from the Heinsius-Houbolt fund. We would like to thank Ruud van den Hooff for his contributions to this study. CR Abbas PJ, 2004, AUDIOL NEURO-OTOL, V9, P203, DOI 10.1159/000078390 *ADV BION CORP, 2003, HIRESOLUTION BION EA, P65 BREDBERG G, 1968, ACTA OTOLARYNGO S236 Briaire JJ, 2005, HEARING RES, V205, P143, DOI 10.1016/j.heares.2005.03.020 Briaire JJ, 2000, HEARING RES, V148, P18, DOI 10.1016/S0378-5955(00)00104-0 Brown CJ, 2000, EAR HEARING, V21, P151, DOI 10.1097/00003446-200004000-00009 BROWN CJ, 1990, J ACOUST SOC AM, V88, P2205, DOI 10.1121/1.400117 BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716 BROWN MC, 1994, J NEUROPHYSIOL, V71, P1826 Cafarelli Dees D, 2005, Audiol Neurootol, V10, P105, DOI 10.1159/000083366 Eisen MD, 2004, EAR HEARING, V25, P528, DOI 10.1097/00003446-200412000-00002 FERNANDEZ C, 1952, J ACOUST SOC AM, V24, P519 Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012 FRIJNS JHM, 1994, J MED ENG TECHNOL, V18, P54, DOI 10.3109/03091909409030229 Frijns JHM, 2009, ACTA OTO-LARYNGOL, V129, P433, DOI 10.1080/00016480802610218 FRIJNS JHM, 1995, HEARING RES, V87, P170, DOI 10.1016/0378-5955(95)00090-Q Frijns JHM, 2003, ACTA OTO-LARYNGOL, V123, P138, DOI 10.1080/0036554021000028126 FRIJNS JHM, 1994, IEEE T BIO-MED ENG, V41, P556, DOI 10.1109/10.293243 Frijns JHM, 2002, EAR HEARING, V23, P184, DOI 10.1097/00003446-200206000-00003 GOLDSTEIN MH, 1958, J ACOUST SOC AM, V30, P107, DOI 10.1121/1.1909497 Gordon KA, 2004, EAR HEARING, V25, P447, DOI 10.1097/01.aud.0000146178.84065.b3 Haenggeli A, 1998, AUDIOLOGY, V37, P353 Klop WMC, 2004, ACTA OTO-LARYNGOL, V124, P137, DOI 10.1080/00016480310016901 LAI WK, 2004, NRT COOKBOOK VERSION Mason S, 2004, INT J AUDIOL, V43, pS33 Matsuoka AJ, 2001, IEEE T BIO-MED ENG, V48, P416, DOI 10.1109/10.915706 Miller CA, 2004, HEARING RES, V198, P75, DOI 10.1016/j.heares.2004.07.005 Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X PATRICK J, 2005, 10 S COCHL IMPL CHIL, P49 Rubinstein JT, 2004, INT J AUDIOL, V43, pS3 SCHOONHOVEN R, 1991, CRIT REV BIOMED ENG, V19, P47 NR 31 TC 1 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2011 VL 280 IS 1-2 BP 166 EP 176 DI 10.1016/j.heares.2011.05.014 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 834XG UT WOS:000295997200018 PM 21664959 ER PT J AU Jurgens, T Kollmeier, B Brand, T Ewert, SD AF Juergens, Tim Kollmeier, Birger Brand, Thomas Ewert, Stephan D. TI Assessment of auditory nonlinearity for listeners with different hearing losses using temporal masking and categorical loudness scaling SO HEARING RESEARCH LA English DT Article ID MEMBRANE RESPONSE FUNCTIONS; IMPAIRED LISTENERS; COMPRESSION; PERCEPTION; MODEL; FREQUENCY; THRESHOLD AB A dysfunction or loss of outer hair cells (OHC) and inner hair cells (IHC), assumed to be present in sensorineural hearing-impaired listeners, affects the processing of sound both at and above the listeners' hearing threshold. A loss of OHC may be responsible for a reduction of cochlear gain, apparent in the input/output function of the basilar membrane and steeper-than-normal growth of loudness with level (recruitment). IHC loss is typically assumed to cause a level-independent loss of sensitivity. In the current study, parameters reflecting individual auditory processing were estimated using two psychoacoustic measurement techniques. Hearing loss presumably attributable to IHC damage and low-level (cochlear) gain were estimated using temporal masking curves (TMC). Hearing loss attributable to OHC (HLOHC) was estimated using adaptive categorical loudness scaling (ACALOS) and by fitting a loudness model to measured loudness functions. In a group of listeners with thresholds ranging from normal to mild-to-moderately impaired, the loss in low-level gain derived from TMC was found to be equivalent with HLOHC estimates inferred from ACALOS. Furthermore, HLOHC estimates obtained using both measurement techniques were highly consistent. Overall, the two methods provide consistent measures of auditory nonlinearity in individual listeners, with ACALOS offering better time efficiency. (c) 2011 Elsevier B.V. All rights reserved. C1 [Juergens, Tim; Kollmeier, Birger; Brand, Thomas; Ewert, Stephan D.] Carl von Ossietzky Univ Oldenburg, D-26111 Oldenburg, Germany. RP Jurgens, T (reprint author), Carl von Ossietzky Univ Oldenburg, D-26111 Oldenburg, Germany. EM tim.juergens@uni-oldenburg.de FU Deutsche Forschungsgemeinschaft (DFG) [SFB TRR 31]; BMBF FX The authors would like to thank Muge Kaya and Kerstin Sommer from Horzentrum Oldenburg and Angela Josupeit, who performed the measurements. Special thanks go to Christopher Plack, Magdalena Wojtczak, and one anonymous reviewer for many helpful comments on earlier versions of the manuscript, for very fruitful discussions, and valuable suggestions. We are grateful to Mani Swaminathan and Paul Nelson for proofreading. This study was supported by the Deutsche Forschungsgemeinschaft (DFG, SFB TRR 31 "The active auditory system") and the BMBF project "Model-based hearing aids". CR ALLEN JB, 1990, J ACOUST SOC AM, V88, P745, DOI 10.1121/1.399778 Al-Salim SC, 2010, EAR HEARING, V31, P567, DOI 10.1097/AUD.0b013e3181da4d15 [Anonymous], 2006, 16832 ISO Anweiler AK, 2006, J ACOUST SOC AM, V119, P2919, DOI 10.1121/1.2184224 Appell J., 2002, THESIS CARLVONOSSIET Brand T, 2002, J ACOUST SOC AM, V112, P1597, DOI 10.1121/1.1502902 Brand T, 2001, AUDIOLOGY, V40, P92 Chalupper J, 2002, ACTA ACUST UNITED AC, V88, P378 Derleth R.-P., 1999, THESIS CARLVONOSSIET Derleth RP, 2001, HEARING RES, V159, P132, DOI 10.1016/S0378-5955(01)00322-7 Elberling C, 1999, J Am Acad Audiol, V10, P248 Flannery B. P., 1992, NUMERICAL RECIPES C FOWLER EP, 1950, LARYNGOSCOPE, V60, P680 GLASBERG BR, 1992, HEARING RES, V64, P81, DOI 10.1016/0378-5955(92)90170-R HELLMAN RP, 1961, J ACOUST SOC AM, V33, P687, DOI 10.1121/1.1908764 IEC 60645-1, 2002, 606451 IEC STAND INT Jepsen ML, 2011, J ACOUST SOC AM, V129, P262, DOI 10.1121/1.3518768 Jurgens T, 2009, J ACOUST SOC AM, V126, P2635, DOI 10.1121/1.3224721 Kiessling J., 1993, AUDIOL AKUST, V32, P100 Kollmeier B., 1999, PSYCHOPHYSICS PHYSL, P211 Kollmeier B., 1997, HORFLACHENSKALIERUNG Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 Launer S., 1995, THESIS CARLVONOSSIET Launer S, 1997, MODELING SENSORINEURAL HEARING LOSS, P175 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Lopez-Poveda EA, 2005, HEARING RES, V205, P172, DOI 10.1016/j.heares.2005.03.015 Lopez-Poveda EA, 2008, J ACOUST SOC AM, V123, P1544, DOI 10.1121/1.2835418 MARQUARDT DW, 1963, J SOC IND APPL MATH, V11, P431 Mauermann M, 2004, J ACOUST SOC AM, V116, P1066, DOI 10.1121/1.1760106 Meddis R., 2010, 15 INT S HEAR SAL SP, P631 Merchan M. A., 2009, AUDIOL MED, V7, P22 Moore B., 1998, COCHLEAR HEARING LOS Moore BCJ, 1997, AUDIT NEUROSCI, V3, P289 Moore BCJ, 2004, HEARING RES, V188, P70, DOI 10.1016/S0378-5955(03)00347-2 Moore BCJ, 1999, J ACOUST SOC AM, V106, P2761, DOI 10.1121/1.428133 Nelson DA, 2001, J ACOUST SOC AM, V110, P2045, DOI 10.1121/1.1404439 Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3666, DOI 10.1121/1.418327 Plack CJ, 2004, J ACOUST SOC AM, V115, P1684, DOI 10.1121/1.1675812 Plack C.J., 2010, BEHAV MEASURE COCHLE Rohdenburg T., 2008, P IEEE INT C AC SPEE, P2449 Rosengard P.S., 2005, J ACOUST SOC AM, V117, P3028 Sachs L, 1999, ANGEW STAT Steinberg JC, 1937, J ACOUST SOC AM, V9, P11, DOI 10.1121/1.1915905 STEVENS SS, 1957, PSYCHOL REV, V64, P153, DOI 10.1037/h0046162 Wojtczak M, 2009, J ACOUST SOC AM, V125, P270, DOI 10.1121/1.3023063 Wojtczak M, 2010, J ACOUST SOC AM, V128, P247, DOI 10.1121/1.3436566 Yasin I, 2003, J ACOUST SOC AM, V114, P322, DOI 10.1121/1.1579003 ZWICKER E, 1977, J ACOUST SOC AM, V62, P675, DOI 10.1121/1.381580 NR 48 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2011 VL 280 IS 1-2 BP 177 EP 191 DI 10.1016/j.heares.2011.05.016 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 834XG UT WOS:000295997200019 PM 21669269 ER PT J AU Heng, J Cantarero, G Elhilali, M Limb, CJ AF Heng, Joseph Cantarero, Gabriela Elhilali, Mounya Limb, Charles J. TI Impaired perception of temporal fine structure and musical timbre in cochlear implant users SO HEARING RESEARCH LA English DT Article ID CONDITIONING PULSE TRAINS; AUDITORY-NERVE; SPEECH-PERCEPTION; PITCH PERCEPTION; STRUCTURE CUES; ENVELOPE; STIMULATION; FREQUENCY; HEARING; INFORMATION AB Cochlear implant (CI) users demonstrate severe limitations in perceiving musical timbre, a psychoacoustic feature of sound responsible for 'tone color' and one's ability to identify a musical instrument. The reasons for this limitation remain poorly understood. In this study, we sought to examine the relative contributions of temporal envelope and fine structure for timbre judgments, in light of the fact that speech processing strategies employed by CI systems typically employ envelope extraction algorithms. We synthesized "instrumental chimeras" that systematically combined variable amounts of envelope and fine structure in 25% increments from two different source instruments with either sustained or percussive envelopes. CI users and normal hearing (NH) subjects were presented with 150 chimeras and asked to determine which instrument the chimera more closely resembled in a single-interval two-alternative forced choice task. By combining instruments with similar and dissimilar envelopes, we controlled the valence of envelope for timbre identification and compensated for envelope reconstruction from fine structure information. Our results show that NH subjects utilize envelope and fine structure interchangeably, whereas CI subjects demonstrate overwhelming reliance on temporal envelope. When chimeras were created from dissimilar envelope instrument pairs. NH subjects utilized a combination of envelope (p = 0.008) and fine structure information (p = 0.009) to make timbre judgments. In contrast, CI users utilized envelope information almost exclusively to make timbre judgments (p < 0.001) and ignored fine structure information (p = 0.908). Interestingly, when the value of envelope as a cue was reduced, both NH subjects and CI users utilized fine structure information to make timbre judgments (p < 0.001). although the effect was quite weak in CI users. Our findings confirm that impairments in fine structure processing underlie poor perception of musical timbre in CI users. (c) 2011 Elsevier By. All rights reserved. C1 [Heng, Joseph; Cantarero, Gabriela; Limb, Charles J.] Johns Hopkins Univ Hosp, Dept Otolaryngol Head & Neck Surg, Baltimore, MD 21287 USA. [Elhilali, Mounya] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA. RP Limb, CJ (reprint author), Johns Hopkins Univ Hosp, Dept Otolaryngol Head & Neck Surg, Baltimore, MD 21287 USA. EM climb@jhmi.edu RI Elhilali, Mounya/A-3396-2010 OI Elhilali, Mounya/0000-0003-2597-738X CR Ansi PT, 1973, PSYCHOACOUSTICAL TER Caclin A, 2006, J COGNITIVE NEUROSCI, V18, P1959, DOI 10.1162/jocn.2006.18.12.1959 DUGUNDJI J, 1958, IRE T INFORM THEOR, V4, P53, DOI 10.1109/TIT.1958.1057435 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Gfeller Kate, 2002, Cochlear Implants Int, V3, P29, DOI 10.1002/cii.50 Gfeller K, 2000, J Am Acad Audiol, V11, P390 Gfeller Kate, 2002, Annals of Otology Rhinology and Laryngology, V111, P349 Ghitza O, 2001, J ACOUST SOC AM, V110, P1628, DOI 10.1121/1.1396325 Gilbert G, 2006, J ACOUST SOC AM, V119, P2438, DOI 10.1121/1.2173522 GREY JM, 1977, J ACOUST SOC AM, V61, P1270, DOI 10.1121/1.381428 Gunawan D, 2008, J ACOUST SOC AM, V123, P500, DOI 10.1121/1.2817339 Hong RS, 2003, J ACOUST SOC AM, V114, P3327, DOI 10.1121/1.1623785 Hong RS, 2006, OTOL NEUROTOL, V27, P50, DOI 10.1097/01.mao.0000187045.73791.db Hong RS, 2003, OTOL NEUROTOL, V24, P590, DOI 10.1097/00129492-200307000-00010 Huss M, 2005, J ACOUST SOC AM, V117, P3841, DOI 10.1121/1.1920167 Jolly CN, 1996, IEEE T BIO-MED ENG, V43, P857, DOI 10.1109/10.508549 JORIS PX, 1992, J ACOUST SOC AM, V91, P215, DOI 10.1121/1.402757 Kong YY, 2004, EAR HEARING, V25, P173, DOI 10.1097/01.AUD.0000120365.97792.2F KRUMHANSL CL, 1989, INT CONGR SER, V846, P43 Laneau J, 2006, AUDIOL NEURO-OTOL, V11, P38, DOI 10.1159/000088853 LICKLIDER JCR, 1948, J ACOUST SOC AM, V20, P42, DOI 10.1121/1.1906346 Litvak LM, 2003, J ACOUST SOC AM, V114, P2079, DOI 10.1121/1.1612493 Litvak LM, 2003, J ACOUST SOC AM, V114, P2066, DOI 10.1121/1.1612492 Liu S, 2006, J ACOUST SOC AM, V120, P424, DOI 10.1121/1.2208427 LOGAN BF, 1977, AT&T TECH J, V56, P487 Marozeau J, 2003, J ACOUST SOC AM, V114, P2946, DOI 10.1121/1.1618239 MCADAMS S, 1995, PSYCHOL RES-PSYCH FO, V58, P177, DOI 10.1007/BF00419633 McDermott Hugh J, 2004, Trends Amplif, V8, P49, DOI 10.1177/108471380400800203 McDermott H.J., 2004, P 8 INT COCHL IMPL C Moore BCJ, 2005, SPR HDB AUD, V24, P234 Nimmons GL, 2008, OTOL NEUROTOL, V29, P149 Nogueira W, 2005, EURASIP J APPL SIG P, V2005, P3044, DOI 10.1155/ASP.2005.3044 Oxenham AJ, 2004, P NATL ACAD SCI USA, V101, P1421, DOI 10.1073/pnas.0306958101 PAPOULIS A, 1983, IEEE T ACOUST SPEECH, V31, P96, DOI 10.1109/TASSP.1983.1164046 Plomp R., 1983, ROLE MODULATION HEAR, P270 Reiss LAJ, 2007, JARO-J ASSOC RES OTO, V8, P241, DOI 10.1007/s10162-007-0077-8 ROSEN S, 1992, PHILOS T ROY SOC B, V336, P367, DOI 10.1098/rstb.1992.0070 Ruffin C., 2007, ASS RES OT MIDW M 20 Samson S, 1997, CAN J EXP PSYCHOL, V51, P307, DOI 10.1037/1196-1961.51.4.307 SCHIMMEL S, 2005, P ICASSP PHIL US MAY, V1, P221, DOI 10.1109/ICASSP.2005.1415090 Shamma S, 2000, J ACOUST SOC AM, V107, P2631, DOI 10.1121/1.428649 Sheft S, 2008, J ACOUST SOC AM, V124, P562, DOI 10.1121/1.2918540 Shepherd RK, 1999, HEARING RES, V130, P171, DOI 10.1016/S0378-5955(99)00011-8 Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a VOELCKER HB, 1966, PR INST ELECTR ELECT, V54, P340, DOI 10.1109/PROC.1966.4695 Von Helmholtz Hermann, 1895, SENSATIONS TONE PHYS Wilson BS, 2004, SPR HDB AUD, V20, P14 Xu L, 2003, J ACOUST SOC AM, V114, P3024, DOI 10.1121/1.1623786 Zeng FG, 2004, J ACOUST SOC AM, V116, P1351, DOI 10.1121/1.1777938 NR 49 TC 12 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2011 VL 280 IS 1-2 BP 192 EP 200 DI 10.1016/j.heares.2011.05.017 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 834XG UT WOS:000295997200020 PM 21664263 ER PT J AU Crawley, BK Keithley, EM AF Crawley, Brianna K. Keithley, Elizabeth M. TI Effects of mitochondrial mutations on hearing and cochlear pathology with age SO HEARING RESEARCH LA English DT Article ID MTDNA MUTATIONS; DNA-POLYMERASE; THRESHOLD SHIFT; TEMPORAL BONE; MUTATOR MICE; PRESBYCUSIS; MOUSE; DELETIONS; SYSTEM AB Age-related hearing loss is a multi-factorial process involving genetic and environmental factors, including exposure to noise and ototoxic agents, as well as pathological processes. Among these is the accumulation of mitochondrial DNA mutations and deletions. The creation of a transgenic mouse with a loss-of-function deletion of the nuclear gene that encodes the polymerase required to repair damaged mitochondria! DNA (PolgA) enabled evaluation of age-related cochlear pathology associated with random mitochondrial DNA deletions that accrue over the lifespan of the mouse. In comparison with their wild-type or heterozygous counterparts, animals with mutated DNA polymerase gamma developed hearing loss most rapidly. Any loss of mitochondria! DNA polymerase function however, resulted in detrimental effects, as evidenced by hearing tests and histological investigation of transgenic heterozygotes. Cochlear pathology in transgenic animals at 10 months of age included loss of neurons and clumping of surviving neurons in the apical turn of the spiral ganglion. Mitochondrial mutations in young animals, on the other hand, were protective against the development of temporary threshold shift in response to relatively low level noise exposure. This supports the idea that temporary threshold shifts are the result of an active process involving mitochondria and respiratory chain activity. Our results indicate that mitochondrial mutation and deletion can certainly contribute to the development of an aging phenotype, specifically age-related hearing loss. (c) 2011 Elsevier B.V. All rights reserved. C1 [Crawley, Brianna K.; Keithley, Elizabeth M.] Univ Calif San Diego, Div Otolaryngol Head & Neck Surg, La Jolla, CA 92093 USA. [Keithley, Elizabeth M.] San Diego VA Med Ctr, San Diego, CA 92161 USA. RP Keithley, EM (reprint author), Univ Calif San Diego, Div Otolaryngol Head & Neck Surg, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM ekeithley@ucsd.edu FU Office of Research and Development, Department of Veterans Affairs FX The authors wish to thank Drs. Greg Kujoth and Tomas Prolla from the University of Wisconsin, who generously provided us with PolgA mice to establish our colony. We thank Dr. Peter Billings for establishing our colony and developing the genotyping assay, Sid Raghaven for assistance with performing hearing tests and histological assays and Andy Nguyen and Tina Patel for assistance with histology. This work was supported by the Office of Research and Development, Department of Veterans Affairs. CR Ames BN, 2004, ANN NY ACAD SCI, V1019, P406, DOI 10.1196/annals.1297.073 Bai U, 1997, AM J OTOL, V18, P449 Bailey LJ, 2009, NUCLEIC ACIDS RES, V37, P2327, DOI 10.1093/nar/gkp091 Bielefeld EC, 2005, HEARING RES, V207, P35, DOI 10.1016/j.heares.2005.03.025 Edgar D, 2009, CELL METAB, V10, P131, DOI 10.1016/j.cmet.2009.06.010 FischelGhodsian N, 1997, HEARING RES, V110, P147, DOI 10.1016/S0378-5955(97)00077-4 Gates GA, 2005, LANCET, V366, P1111, DOI 10.1016/S0140-6736(05)67423-5 Keithley EM, 2004, HEARING RES, V188, P21, DOI 10.1016/S0378-5955(03)00365-4 Kujoth GC, 2008, EXP GERONTOL, V43, P20, DOI 10.1016/j.exger.2007.09.010 Kujoth GC, 2005, SCIENCE, V309, P481, DOI 10.1126/science.1112125 Le Prell CG, 2007, HEARING RES, V226, P22, DOI 10.1016/j.heares.2006.10.006 Lin CY, 2009, HEARING RES, V257, P8, DOI 10.1016/j.heares.2009.07.008 MIKAELIA.DO, 1974, ACTA OTO-LARYNGOL, V77, P327, DOI 10.3109/00016487409124632 Niu X, 2007, EXP CELL RES, V313, P3924, DOI 10.1016/j.yexcr.2007.05.029 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 RYAN A F, 1991, Molecular and Cellular Neuroscience, V2, P179, DOI 10.1016/1044-7431(91)90011-C SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 SEIDMAN MD, 2004, ACTA OTO-LARYNGOL, V552, P16 Someya S, 2008, NEUROBIOL AGING, V29, P1080, DOI 10.1016/j.neurobiolaging.2007.01.014 Trifunovic A, 2004, NATURE, V429, P417, DOI 10.1038/nature02517 Trifunovic A, 2005, P NATL ACAD SCI USA, V102, P17993, DOI 10.1073/pnas.0508886102 Vermulst M, 2008, NAT GENET, V40, P392, DOI 10.1038/ng.95 Vermulst M, 2009, CELL METAB, V10, P437, DOI 10.1016/j.cmet.2009.11.001 Vlajkovic SM, 2009, CURR NEUROPHARMACOL, V7, P246, DOI 10.2174/157015909789152155 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 WEBSTER DB, 1985, HEARING RES, V18, P19, DOI 10.1016/0378-5955(85)90107-8 WONGRILEY M, 1979, BRAIN RES, V171, P11, DOI 10.1016/0006-8993(79)90728-5 Yamasoba T, 2005, NEUROSCI LETT, V380, P234, DOI 10.1016/j.neulet.2005.01.047 Yamasoba T, 2007, HEARING RES, V226, P185, DOI 10.1016/j.heares.2006.06.004 NR 29 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2011 VL 280 IS 1-2 BP 201 EP 208 DI 10.1016/j.heares.2011.05.015 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 834XG UT WOS:000295997200021 PM 21664445 ER PT J AU Kitani, R Kakehata, S Kalinec, F AF Kitani, Rei Kakehata, Seiji Kalinec, Federico TI Motile responses of cochlear outer hair cells stimulated with an alternating electrical field SO HEARING RESEARCH LA English DT Article ID GUINEA-PIG COCHLEA; CRYSTALLINE ACTIN TUBES; MEMBRANE CAPACITANCE; VOLTAGE-DEPENDENCE; LANTHANIDE IONS; GATING CHARGE; SHAPE CHANGES; SALICYLATE; GADOLINIUM; ELECTROMOTILITY AB The goal of the present study was to evaluate and characterize the motile responses of guinea pig OHCs, stimulated at frequencies varying from 50 Hz to 4 kHz, using high-definition, high-speed video recording and fully automatic image analysis software. Cells stimulated in continuous, burst and sweeping modes with an external alternating electrical field showed robust fast and slow motility, which were dependent on frequency, mode and intensity of stimulation. In response to continuous stimulation, electromotile amplitude ranged from 0.3% to 3.2% of total cell length, whereas cell length usually decreased in amounts varying from 0.1% to 4.3%. Electromotile amplitude in OHCs stimulated with square wave's sweeps was near constant up to 200 Hz, progressively decreased between 200 Hz and 2 kHz, and then remained constant up to 4 kHz. In continuous and burst modes electromotility followed cycle-by-cycle the electrical stimulus, but it required 1-2 s to fully develop and reach maximal amplitude. Instead, slow cell length changes started about 0.6 s after the beginning and continuously developed up to 3 s after the end of electrical stimulation. Incubation of OHCs with 10 mM salicylate affected electromotility but not slow motility, whereas incubation with 3 mM gadolinium affected both. Thus, combination of external electrical stimulation, high-speed video recording and advanced image analysis software provides information about OHC motile responses at acoustic frequencies with an unprecedented detail, opening new areas of research in the field of OHC mechanics. (c) 2011 Elsevier B.V. All rights reserved. C1 [Kitani, Rei; Kalinec, Federico] House Ear Res Inst, Div Cell Biol & Genet, Los Angeles, CA 90057 USA. [Kakehata, Seiji] Hirosaki Univ, Sch Med, Dept Otolaryngol, Aomori 0368562, Japan. [Kalinec, Federico] Univ So Calif, Dept Cell & Neurobiol, Keck Sch Med, Los Angeles, CA 90033 USA. [Kalinec, Federico] Univ So Calif, Dept Otolaryngol, Keck Sch Med, Los Angeles, CA 90033 USA. RP Kalinec, F (reprint author), House Ear Res Inst, Div Cell Biol & Genet, 2100 W 3rd St, Los Angeles, CA 90057 USA. EM fkalinec@hei.org FU National Institutes of Health [R01DC10146-01/R01DC010397-01]; NIDCD [P30 DC006276]; HEI FX Work supported by National Institutes of Health Grants R01DC10146-01/R01DC010397-01, NIDCD P30 DC006276 Research Core, and HEI. Its content is solely responsibility of the authors and do not necessarily represent the official views of NIH or HEI. CR Ashmore J, 2008, PHYSIOL REV, V88, P173, DOI 10.1152/physrev.00044.2006 ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 BARDEN JA, 1978, BIOCHIM BIOPHYS ACTA, V537, P417, DOI 10.1016/0005-2795(78)90526-3 BARDEN JA, 1979, BIOCHEM BIOPH RES CO, V86, P529, DOI 10.1016/0006-291X(79)91746-7 BARDEN JA, 1980, BIOCHIM BIOPHYS ACTA, V624, P163, DOI 10.1016/0005-2795(80)90235-4 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Caldwell RA, 1998, AM J PHYSIOL-CELL PH, V275, pC619 Cheng Y, 1999, BBA-BIOMEMBRANES, V1421, P249, DOI 10.1016/S0005-2736(99)00125-X Chesarone MA, 2009, CURR OPIN CELL BIOL, V21, P28, DOI 10.1016/j.ceb.2008.12.001 CURMI PMG, 1982, EUR J BIOCHEM, V122, P239, DOI 10.1111/j.1432-1033.1982.tb05872.x DALLOS P, 1993, J NEUROPHYSIOL, V70, P299 Dallos P, 2002, NAT REV MOL CELL BIO, V3, P104, DOI 10.1038/nrm730 DALLOS P, 1995, SCIENCE, V268, P1420, DOI 10.1126/science.7770765 DALLOS P, 1995, SCIENCE, V267, P2006, DOI 10.1126/science.7701325 DIELER R, 1991, J NEUROCYTOL, V20, P637, DOI 10.1007/BF01187066 DOSREMEDIOS CG, 1980, BIOCHIM BIOPHYS ACTA, V624, P174, DOI 10.1016/0005-2795(80)90236-6 Ermakov YA, 2001, BIOPHYS J, V80, P1851 EVANS BN, 1991, HEARING RES, V52, P288, DOI 10.1016/0378-5955(91)90019-6 Evans B.N., 1989, COCHLEAR MECHANISMS, P205 Frank G, 1999, P NATL ACAD SCI USA, V96, P4420, DOI 10.1073/pnas.96.8.4420 Frolenkov GI, 1997, BIOPHYS J, V73, P1665 Geddes L.A., 1989, PRINCIPLES APPL BIOM GITTER AH, 1995, EUR ARCH OTO-RHINO-L, V252, P15 Higashida C, 2004, SCIENCE, V303, P2007, DOI 10.1126/science.1093923 IWASA KH, 1989, HEARING RES, V40, P247, DOI 10.1016/0378-5955(89)90165-2 IWASA KH, 1993, BIOPHYS J, V65, P492 KACHAR B, 1986, NATURE, V322, P365, DOI 10.1038/322365a0 Kakehata S, 1996, J NEUROSCI, V16, P4881 KAKEHATA S, 1995, BIOPHYS J, V68, P2190 KITANI R, J VIS EXP IN PRESS Matsumoto N, 2005, BIOPHYS J, V89, P4343, DOI 10.1529/biophysj.105.064626 Matsumoto N, 2005, HEARING RES, V208, P1, DOI 10.1016/j.heares.2005.03.030 Matsumoto N, 2010, BIOPHYS J, V99, P2067, DOI 10.1016/j.bpj.2010.08.015 OHNISHI S, 1992, AM J PHYSIOL, V263, pC1088 Paavilainen VO, 2004, TRENDS CELL BIOL, V14, P386, DOI 10.1016/j.tcb.2004.05.002 Revenu C., 2004, NAT REV MOL CELL BIO, V5, P1, DOI DOI 10.1038/NRM1437 Sachs F, 2010, PHYSIOLOGY, V25, P50, DOI 10.1152/physiol.00042.2009 SANTOS-SACCHI J, 1991, J NEUROSCI, V11, P3096 Santos-Sacchi J, 1998, J PHYSIOL-LONDON, V510, P225, DOI 10.1111/j.1469-7793.1998.225bz.x SANTOS-SACCHI J, 1992, J NEUROSCI, V12, P1906 Serghei A, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.184301 SHEHATA WE, 1991, ACTA OTO-LARYNGOL, V111, P707, DOI 10.3109/00016489109138403 TUNSTALL MJ, 1995, J PHYSIOL-LONDON, V485, P739 ZAJIC G, 1987, HEARING RES, V26, P249, DOI 10.1016/0378-5955(87)90061-X NR 44 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2011 VL 280 IS 1-2 BP 209 EP 218 DI 10.1016/j.heares.2011.05.013 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 834XG UT WOS:000295997200022 PM 21664265 ER PT J AU Banai, K Sabin, AT Wright, BA AF Banai, Karen Sabin, Andrew T. Wright, Beverly A. TI Separable developmental trajectories for the abilities to detect auditory amplitude and frequency modulation SO HEARING RESEARCH LA English DT Article ID SPEECH RECOGNITION; TEMPORAL RESOLUTION; PRESCHOOL-CHILDREN; WORKING-MEMORY; DISCRIMINATION; MATURATION; DYSLEXIA; SOUNDS; ADAPTATION; PERCEPTION AB Amplitude modulation (AM) and frequency modulation (FM) are inherent components of most natural sounds. The ability to detect these modulations, considered critical for normal auditory and speech perception, improves over the course of development. However, the extent to which the development of AM and FM detection skills follow different trajectories, and therefore can be attributed to the maturation of separate processes, remains unclear. Here we explored the relationship between the developmental trajectories for the detection of sinusoidal AM and FM in a cross-sectional design employing children aged 8-10 and 11-12 years and adults. For FM of tonal carriers, both average performance (mean) and performance consistency (within-listener standard deviation) were adult-like in the 8-10 y/o. In contrast, in the same listeners, average performance for AM of wideband noise carriers was still not adult-like in the 11-12 y/o, though performance consistency was already mature in the 8-10 y/o. Among the children there were no significant correlations for either measure between the degrees of maturity for AM and FM detection. These differences in developmental trajectory between the two modulation cues and between average detection thresholds and performance consistency suggest that at least partially distinct processes may underlie the development of AM and FM detection as well as the abilities to detect modulation and to do so consistently. (c) 2011 Elsevier B.V. All rights reserved. C1 [Banai, Karen] Univ Haifa, Dept Commun Sci & Disorders, IL-31905 Haifa, Israel. [Sabin, Andrew T.; Wright, Beverly A.] Northwestern Univ, Dept Commun Sci & Disorders, Evanston, IL 60208 USA. RP Banai, K (reprint author), Univ Haifa, Dept Commun Sci & Disorders, IL-31905 Haifa, Israel. EM kbanai@research.haifa.ac.il FU NIH/NIDCD [F32DC008052, R01DC004453]; Hugh Knowles Center for Clinical and Basic Science in Hearing and its Disorders (Northwestern University); Israeli Council for Higher Education FX This work was supported by NIH/NIDCD (F32DC008052 and R01DC004453), the Hugh Knowles Center for Clinical and Basic Science in Hearing and its Disorders (Northwestern University) and by an Alon Fellowship from the Israeli Council for Higher Education. Brian Moore and two anonymous reviewers provided helpful comments on this paper. CR ALLEN P, 1989, J SPEECH HEAR RES, V32, P317 Banai K, 2006, CEREB CORTEX, V16, P1718, DOI 10.1093/cercor/bhj107 Banai Karen, 2008, Journal of Basic and Clinical Physiology and Pharmacology, V19, P209 Boets B, 2006, BRAIN LANG, V97, P64, DOI 10.1016/j.bandl.2005.07.026 Chen HB, 2004, J ACOUST SOC AM, V116, P2269, DOI 10.1121/1.1785833 Clement S, 1999, J ACOUST SOC AM, V106, P2805, DOI 10.1121/1.428106 Dawes P, 2008, J SPEECH LANG HEAR R, V51, P1002, DOI 10.1044/1092-4388(2008/073) Dimitrijevic A, 2001, EAR HEARING, V22, P100, DOI 10.1097/00003446-200104000-00003 Eddins DA, 1999, J ACOUST SOC AM, V105, P829, DOI 10.1121/1.426272 FROMBY C, 1988, J ACOUST SOC AM, V84, P545 Gomes H, 1999, DEV PSYCHOL, V35, P294, DOI 10.1037//0012-1649.35.1.294 GROSE JH, 1993, J SPEECH HEAR RES, V36, P351 HALL JW, 1994, J ACOUST SOC AM, V96, P150, DOI 10.1121/1.410474 Halliday LF, 2008, J ACOUST SOC AM, V123, P4393, DOI 10.1121/1.2890749 Hart HC, 2003, CEREB CORTEX, V13, P773, DOI 10.1093/cercor/13.7.773 Hartley DEH, 2000, J SPEECH LANG HEAR R, V43, P1402 HUYCK JJ, 2011, DEVELOPMENTAL SCI, V13, P614 JENSEN JK, 1993, PSYCHOL SCI, V4, P104, DOI 10.1111/j.1467-9280.1993.tb00469.x KELLER TA, 1994, DEV PSYCHOL, V30, P855, DOI 10.1037/0012-1649.30.6.855 Lorenzi C, 2000, J SPEECH LANG HEAR R, V43, P1367 MAXTON AB, 1982, EAR HEARING, V3, P301 MOORE BCJ, 1995, J ACOUST SOC AM, V97, P2468, DOI 10.1121/1.411967 MOORE BCJ, 1994, J ACOUST SOC AM, V96, P726, DOI 10.1121/1.410311 Moore DR, 2008, HEARING RES, V238, P147, DOI 10.1016/j.heares.2007.11.013 Moore JK, 2007, INT J AUDIOL, V46, P460, DOI 10.1080/14992020701383019 Nelken I, 2008, CURR OPIN NEUROBIOL, V18, P413, DOI 10.1016/j.conb.2008.08.014 Pa J, 2008, J COGNITIVE NEUROSCI, V20, P2198, DOI 10.1162/jocn.2008.20154 Pasternak T, 2005, NAT REV NEUROSCI, V6, P97, DOI 10.1038/nrn1603 REGAN D, 1979, J ACOUST SOC AM, V65, P1249, DOI 10.1121/1.382792 Ronnberg J, 2004, COGNITIVE BRAIN RES, V20, P165, DOI 10.1016/j.cogbrainres.2004.03.002 SABERI K, 1995, NATURE, V374, P537, DOI 10.1038/374537a0 Sarro EC, 2010, DEV NEUROBIOL, V70, P636, DOI 10.1002/dneu.20801 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Stickney GS, 2005, J ACOUST SOC AM, V118, P2412, DOI 10.1121/1.2031967 Sussman E, 2008, HEARING RES, V236, P61, DOI 10.1016/j.heares.2007.12.001 Sutcliffe P, 2005, J EXP CHILD PSYCHOL, V91, P249, DOI 10.1016/j.jecp.2005.03.004 Talcott JB, 2000, P NATL ACAD SCI USA, V97, P2952, DOI 10.1073/pnas.040546597 TANSLEY BW, 1983, J ACOUST SOC AM, V74, P765, DOI 10.1121/1.389864 WIGHTMAN F, 1989, CHILD DEV, V60, P611, DOI 10.1111/j.1467-8624.1989.tb02742.x Wightman FL, 2010, J ACOUST SOC AM, V128, P270, DOI 10.1121/1.3436536 Wright BA, 2004, P NATL ACAD SCI USA, V101, P9942, DOI 10.1073/pnas.0401825101 Zeng FG, 2005, P NATL ACAD SCI USA, V102, P2293, DOI 10.1073/pnas.0406460102 NR 42 TC 10 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2011 VL 280 IS 1-2 BP 219 EP 227 DI 10.1016/j.heares.2011.05.019 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 834XG UT WOS:000295997200023 PM 21664958 ER PT J AU Andreou, LV Kashino, M Chait, M AF Andreou, Lefkothea-Vasiliki Kashino, Makio Chait, Maria TI The role of temporal regularity in auditory segregation SO HEARING RESEARCH LA English DT Article ID STREAM SEGREGATION; PERCEPTUAL ORGANIZATION; INFORMATIONAL MASKING; RHYTHMIC ATTENTION; TONE SEQUENCES; HUMAN BRAIN; TIME; INTEGRATION; SOUND; RESPONSES AB The idea that predictive modelling and extraction of regularities plays a pivotal role in auditory segregation has recently attracted considerable attention. The present study investigated the effect of one basic form of regularity, rhythmic regularity, on auditory stream segregation. We departed from the classic streaming paradigm and developed a new stimulus, Rand-AB, consisting of two, concurrently presented, temporally uncorrelated, tone sequences (with frequencies A and B). To evaluate segregation, we used an objective measure of the extent to which listeners are able to selectively attend to one of the sequences in the presence of the other. Performance was quantified on a difficult pattern detection task which involves detecting a rarely occurring pattern of amplitude modulation applied to three consecutive A or B tones. In all cases the attended sequence was temporally irregular (with a random inter-tone-interval (ITI) between 100 and 400 ms) and the regularity status of the competing sequence was set to one of four conditions: (1) random ITI between 100 and 400 ms (2) isochronous with ITI = 400 ms. (3) isochronous with ITI = 250 ms (equal to the mean rate of the attended sequence) (4) isochronous with ITI = 100 ms. For a frequency separation of 2 (but not 4) semi tones we observed improved performance in conditions (3) and (4) relative to (1), suggesting that stream segregation is facilitated when the distracter sequence is temporally regular, but that the effect of temporal regularity as a cue for segregation is limited to relatively fast rates and to situations where frequency separation is insufficient for segregation. These findings provide new evidence to support models of streaming that involve segregation based on the formation of predictive models. (c) 2011 Elsevier B.V. All rights reserved. C1 [Andreou, Lefkothea-Vasiliki; Chait, Maria] UCL Ear Inst, London WC1X 8EE, England. [Kashino, Makio] NTT Corp, NTT Commun Sci Labs, Atsugi, Kanagawa, Japan. RP Chait, M (reprint author), UCL Ear Inst, 332 Grays Inn Rd, London WC1X 8EE, England. EM m.chait@ucl.ac.uk FU Deafness Research UK fellowship FX This study was supported by a Deafness Research UK fellowship to MC. We thank Alain de Cheveigne and Daniel Pressnitzer for comments and discussion. CR Barnes R, 2000, COGNITIVE PSYCHOL, V41, P254, DOI 10.1006/cogp.2000.0738 Bendixen A, 2010, J ACOUST SOC AM, V128, P3658, DOI 10.1121/1.3500695 Bey C, 2002, PERCEPT PSYCHOPHYS, V64, P844, DOI 10.3758/BF03194750 BOLTZ MG, 1993, MEM COGNITION, V21, P853, DOI 10.3758/BF03202753 BREGMAN AS, 1975, J EXP PSYCHOL HUMAN, V1, P263, DOI 10.1037//0096-1523.1.3.263 Bregman AS., 1990, AUDITORY SCENE ANAL Carlyon RP, 2004, TRENDS COGN SCI, V8, P465, DOI 10.1016/j.tics.2004.08.008 Coull JT, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000166 COWAN N, 1984, PSYCHOL BULL, V96, P341, DOI 10.1037/0033-2909.96.2.341 Denham SL, 2010, NEUROPHYSIOLOGICAL BASES OF AUDITORY PERCEPTION, P477, DOI 10.1007/978-1-4419-5686-6_44 Denham SL, 2006, J PHYSIOLOGY-PARIS, V100, P154, DOI 10.1016/j.jphysparis.2006.09.012 Devergie A, 2010, J ACOUST SOC AM, V128, pEL1, DOI 10.1121/1.3436498 Drake C, 2000, COGNITION, V77, P251, DOI 10.1016/S0010-0277(00)00106-2 Elhilali M, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000129 FRENCHSTGEORGE M, 1989, PERCEPT PSYCHOPHYS, V46, P384 Green D. M., 1966, SIGNAL DETECTION THE GREENHOUSE SW, 1959, PSYCHOMETRIKA, V24, P95, DOI 10.1007/BF02289823 Gutschalk A, 2008, PLOS BIOL, V6, P1156, DOI 10.1371/journal.pbio.0060138 HARTMANN WM, 1991, MUSIC PERCEPT, V9, P155 Honing H, 2009, ANN NY ACAD SCI, V1169, P93, DOI 10.1111/j.1749-6632.2009.04761.x HUGGINS AWF, 1975, PERCEPT PSYCHOPHYS, V18, P149, DOI 10.3758/BF03204103 JONES MR, 1989, PSYCHOL REV, V96, P459, DOI 10.1037//0033-295X.96.3.459 Jones MR, 2002, PSYCHOL SCI, V13, P313, DOI 10.1111/1467-9280.00458 Jones MR, 2006, COGNITIVE PSYCHOL, V53, P59, DOI 10.1016/j.cogpsych.2006.01.003 JONES MR, 1981, J EXP PSYCHOL HUMAN, V7, P1059, DOI 10.1037/0096-1523.7.5.1059 JONES MR, 1976, PSYCHOL REV, V83, P323, DOI 10.1037/0033-295X.83.5.323 JONES MR, 1982, PERCEPT PSYCHOPHYS, V32, P211, DOI 10.3758/BF03206225 KIDD G, 1994, J ACOUST SOC AM, V95, P3475, DOI 10.1121/1.410023 Kondo HM, 2009, J NEUROSCI, V29, P12695, DOI 10.1523/JNEUROSCI.1549-09.2009 Lange K, 2010, INT J PSYCHOPHYSIOL, V78, P231, DOI 10.1016/j.ijpsycho.2010.08.003 Large EW, 1999, PSYCHOL REV, V106, P119, DOI 10.1037/0033-295X.106.1.119 LPAS Van Noorden, 1975, TEMPORAL COHERENCE P McAuley JD, 2006, J EXP PSYCHOL GEN, V135, P348, DOI 10.1037/0096-3445.135.3.348 MICHEYL C, 2007, HEARING SENSORY PROC, V6, P267 MICHEYL C, 2004, AUDITORY SIGNAL PROC, P203 Micheyl C, 2005, NEURON, V48, P139, DOI 10.1016/j.neuron.2005.08.039 Micheyl C, 2007, HEARING RES, V229, P116, DOI 10.1016/j.heares.2007.01.007 Micheyl C, 2010, JARO-J ASSOC RES OTO, V11, P709, DOI 10.1007/s10162-010-0227-2 Moore BCJ, 2002, ACTA ACUST UNITED AC, V88, P320 Poeppel D, 2003, SPEECH COMMUN, V41, P245, DOI 10.1016/S0167-6393(02)00107-3 Pressnitzer D, 2008, CURR BIOL, V18, P1124, DOI 10.1016/j.cub.2008.06.053 Pressnitzer D, 2006, CURR BIOL, V16, P1351, DOI 10.1016/j.cub.2006.05.054 ROGERS WL, 1993, PERCEPT PSYCHOPHYS, V53, P179, DOI 10.3758/BF03211728 Rose MM, 1997, J ACOUST SOC AM, V102, P1768, DOI 10.1121/1.420108 Shamma SA, 2010, CURR OPIN NEUROBIOL, V20, P361, DOI 10.1016/j.conb.2010.03.009 Snyder JS, 2007, PSYCHOL BULL, V133, P780, DOI 10.1037/0033-2909.133.5.780 Tecchio F, 2000, EXP BRAIN RES, V135, P222, DOI 10.1007/s002210000507 Teki S, 2011, J NEUROSCI, V31, P164, DOI 10.1523/JNEUROSCI.3788-10.2011 Teki S, 2011, J NEUROSCI, V31, P3805, DOI 10.1523/JNEUROSCI.5561-10.2011 Winkler I, 2009, TRENDS COGN SCI, V13, P532, DOI 10.1016/j.tics.2009.09.003 Yabe H, 1998, PSYCHOPHYSIOLOGY, V35, P615, DOI 10.1017/S0048577298000183 YABE H, 1999, CLIN NEUROPHYSIO S49, P166 NR 52 TC 18 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2011 VL 280 IS 1-2 BP 228 EP 235 DI 10.1016/j.heares.2011.06.001 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 834XG UT WOS:000295997200024 PM 21683778 ER PT J AU Henry, KS Kale, S Scheidt, RE Heinz, MG AF Henry, Kenneth S. Kale, Sushrut Scheidt, Ryan E. Heinz, Michael G. TI Auditory brainstem responses predict auditory nerve fiber thresholds and frequency selectivity in hearing impaired chinchillas SO HEARING RESEARCH LA English DT Article ID HAIR CELL LOSS; CHRONIC COCHLEAR PATHOLOGY; TUNING CURVES; NOISE; LATENCIES; DAMAGE; INNER; SHIFT; REFLEX; VARIABILITY AB Noninvasive auditory brainstem responses (ABRs) are commonly used to assess cochlear pathology in both clinical and research environments. In the current study, we evaluated the relationship between ABR characteristics and more direct measures of cochlear function. We recorded ABRs and auditory nerve (AN) single-unit responses in seven chinchillas with noise-induced hearing loss. ABRs were recorded for 1-8 kHz tone burst stimuli both before and several weeks after 4 h of exposure to a 115 dB SPL, 50 Hz band of noise with a center frequency of 2 kHz. Shifts in ABR characteristics (threshold, wave I amplitude, and wave I latency) following hearing loss were compared to AN-fiber tuning curve properties (threshold and frequency selectivity) in the same animals. As expected, noise exposure generally resulted in an increase in ABR threshold and decrease in wave I amplitude at equal SPL Wave I amplitude at equal sensation level (SL), however, was similar before and after noise exposure. In addition, noise exposure resulted in decreases in ABR wave I latency at equal SL and, to a lesser extent, at equal SPL. The shifts in ABR characteristics were significantly related to AN-fiber tuning curve properties in the same animal at the same frequency. Larger shifts in ABR thresholds and ABR wave I amplitude at equal SPL were associated with greater AN threshold elevation. Larger reductions in ABR wave I latency at equal SL on the other hand, were associated with greater loss of AN frequency selectivity. This result is consistent with linear systems theory, which predicts shorter time delays for broader peripheral frequency tuning. Taken together with other studies, our results affirm that ABR thresholds and wave I amplitude provide useful estimates of cochlear sensitivity. Furthermore, comparisons of ABR wave I latency to normative data at the same SL may prove useful for detecting and characterizing loss of cochlear frequency selectivity. (c) 2011 Elsevier B.V. All rights reserved. C1 [Henry, Kenneth S.; Heinz, Michael G.] Purdue Univ, Dept Speech Language & Hearing Sci, W Lafayette, IN 47907 USA. [Kale, Sushrut; Heinz, Michael G.] Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA. [Scheidt, Ryan E.] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. RP Heinz, MG (reprint author), Purdue Univ, Dept Speech Language & Hearing Sci, W Lafayette, IN 47907 USA. EM mheinz@purdue.edu FU NIH [R01-DC009838] FX This research was supported by NIH Grant# R01-DC009838. We thank Jon Boley, Skyler Jennings, Beth Strickland, and Michael Walls for valuable comments on the manuscript. CR ATTIAS J, 1984, AUDIOLOGY, V23, P498 BORG E, 1983, ACTA OTO-LARYNGOL, V96, P361, DOI 10.3109/00016488309132721 BUCHWALD JS, 1975, SCIENCE, V189, P382, DOI 10.1126/science.1145206 Chintanpalli A, 2007, J ACOUST SOC AM, V122, pEL203, DOI 10.1121/1.2794880 Chung JW, 2007, ANESTH ANALG, V104, P1404, DOI 10.1213/01.ane.0000261508.24083.6c CHURCH MW, 1987, ELECTROEN CLIN NEURO, V67, P570, DOI 10.1016/0013-4694(87)90060-5 CODY AR, 1983, HEARING RES, V9, P55, DOI 10.1016/0378-5955(83)90134-X CODY AR, 1981, J ACOUST SOC AM, V70, P707, DOI 10.1121/1.386906 COOK RO, 1982, DEV PSYCHOBIOL, V15, P95, DOI 10.1002/dev.420150202 Crumling MA, 2007, JARO-J ASSOC RES OTO, V8, P54, DOI 10.1007/s10162-006-0061-8 DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 de Boer E., 1996, COCHLEA, P258 Don M, 1998, J ACOUST SOC AM, V104, P2280, DOI 10.1121/1.423741 DOYLE WJ, 1985, ELECTROEN CLIN NEURO, V60, P258, DOI 10.1016/0013-4694(85)90040-9 Goldstein JL, 1971, PHYSL AUDITORY SYSTE, P133 GORGA MP, 1985, EAR HEARING, V6, P105, DOI 10.1097/00003446-198503000-00008 Gourevitch B, 2009, BRAIN RES, V1304, P66, DOI 10.1016/j.brainres.2009.09.041 Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6 Heinz MG, 2005, JARO-J ASSOC RES OTO, V6, P91, DOI 10.1007/s10162-004-5043-0 Heinz MG, 2010, NEUROPHYSIOLOGICAL BASES OF AUDITORY PERCEPTION, P621, DOI 10.1007/978-1-4419-5686-6_56 Henry KS, 2010, ANIM BEHAV, V80, P497, DOI 10.1016/j.anbehav.2010.06.012 Hofstetter P, 1997, HEARING RES, V112, P199, DOI 10.1016/S0378-5955(97)00123-8 Kale S, 2010, JARO-J ASSOC RES OTO, V11, P657, DOI 10.1007/s10162-010-0223-6 Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 LIBERMAN MC, 1984, HEARING RES, V16, P33, DOI 10.1016/0378-5955(84)90023-6 LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X Littell R., 2006, SAS MIXED MODELS Maison SF, 2000, J NEUROSCI, V20, P4701 Moore BCJ, 2000, BRIT J AUDIOL, V34, P205 Ngan EM, 2001, HEARING RES, V156, P44, DOI 10.1016/S0378-5955(01)00264-7 Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X Nousak JK, 2005, INT J AUDIOL, V44, P331, DOI 10.1080/14992020500060891 RUGGERO MA, 1994, AUDIOLOGY, V33, P131 SALVI RJ, 1979, HEARING RES, V1, P237, DOI 10.1016/0378-5955(79)90017-0 Scheidt RE, 2010, HEARING RES, V269, P23, DOI 10.1016/j.heares.2010.07.009 Shera CA, 2008, J ACOUST SOC AM, V124, P381, DOI 10.1121/1.2917805 Shera CA, 2010, JARO-J ASSOC RES OTO, V11, P343, DOI 10.1007/s10162-010-0217-4 Strelcyk O, 2009, J ACOUST SOC AM, V126, P1878, DOI 10.1121/1.3203310 THOMPSON GC, 1984, ARCH OTOLARYNGOL, V110, P22 Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 WANG CY, 1972, J ACOUST SOC AM, V52, P1678, DOI 10.1121/1.1913302 Wang J, 1997, HEARING RES, V107, P67, DOI 10.1016/S0378-5955(97)00020-8 NR 42 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2011 VL 280 IS 1-2 BP 236 EP 244 DI 10.1016/j.heares.2011.06.002 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 834XG UT WOS:000295997200025 PM 21699970 ER PT J AU Wersinger, E Fuchs, PA AF Wersinger, Eric Fuchs, Paul Albert TI Modulation of hair cell efferents SO HEARING RESEARCH LA English DT Article ID GUINEA-PIG COCHLEA; CA2+-ACTIVATED K+ CHANNELS; NICOTINIC CHOLINERGIC-RECEPTOR; ACTIVATED POTASSIUM CHANNELS; SINGLE OLIVOCOCHLEAR NEURONS; NITRIC-OXIDE SYNTHASE; ENKEPHALIN-LIKE IMMUNOREACTIVITY; RAT NEUROMUSCULAR-JUNCTIONS; CALCIUM SIGNAL TRANSMISSION; AUDITORY-NERVE FIBERS AB Outer hair cells (OHCs) amplify the sound-evoked motion of the basilar membrane to enhance acoustic sensitivity and frequency selectivity. Medial olivocochlear (MOC) efferents inhibit OHCs to reduce the sound-evoked response of cochlear afferent neurons. OHC inhibition occurs through the activation of postsynaptic alpha 9 alpha 10 nicotinic receptors tightly coupled to calcium-dependent SK2 channels that hyperpolarize the hair cell. MOC neurons are cholinergic but a number of other neurotransmitters and neuromodulators have been proposed to participate in efferent transmission, with emerging evidence for both pre- and postsynaptic effects. Cochlear inhibition in vivo is maximized by repetitive activation of the efferents, reflecting facilitation and summation of transmitter release onto outer hair cells. This review summarizes recent studies on cellular and molecular mechanisms of cholinergic inhibition and the regulation of those molecular components, in particular the involvement of intracellular calcium. Facilitation at the efferent synapse is compared in a variety of animals, as well as other possible mechanisms of modulation of ACh release. These results suggest that short-term plasticity contributes to effective cholinergic inhibition of hair cells. (C) 2011 Elsevier B.V. All rights reserved. C1 [Wersinger, Eric; Fuchs, Paul Albert] Johns Hopkins Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Ctr Hearing & Balance, Baltimore, MD 21205 USA. [Wersinger, Eric; Fuchs, Paul Albert] Johns Hopkins Univ, Sch Med, Ctr Sensory Biol, Baltimore, MD 21205 USA. RP Wersinger, E (reprint author), Johns Hopkins Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Ctr Hearing & Balance, Baltimore, MD 21205 USA. EM ewersin2@jhmi.edu FU National Institute on Deafness and Other Communication Disorders [R01DC001508]; Center for Hearing and Balance at Johns Hopkins University [P30DC005211] FX This work was supported by grants from the National Institute on Deafness and Other Communication Disorders to P. A. F. (R01DC001508) and the Center for Hearing and Balance at Johns Hopkins University (P30DC005211). CR Allen D, 2007, J NEUROSCI, V27, P2369, DOI 10.1523/JNEUROSCI.3565-06.2007 Almanza A, 2007, J NEUROPHYSIOL, V97, P1188, DOI 10.1152/jn.00849.2006 ALTSCHULER RA, 1985, HEARING RES, V17, P249, DOI 10.1016/0378-5955(85)90069-3 ALTSCHULER RA, 1984, HEARING RES, V16, P17, DOI 10.1016/0378-5955(84)90022-4 Arnaudeau S, 2001, J BIOL CHEM, V276, P29430, DOI 10.1074/jbc.M103274200 ART JJ, 1985, J PHYSIOL-LONDON, V360, P397 ART JJ, 1984, J PHYSIOL-LONDON, V356, P525 Ashmore J, 2008, PHYSIOL REV, V88, P173, DOI 10.1152/physrev.00044.2006 ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 ASHMORE JF, 1983, J SUBMICR CYTOL PATH, V15, P163 BALLESTERO J, 2010, ASS RES OT M BARTOLAMI S, 1993, BRAIN RES, V626, P200, DOI 10.1016/0006-8993(93)90580-G Batta TJ, 2004, EUR J NEUROSCI, V20, P3364, DOI 10.1111/j.1460-9568.2004.03797.x Berridge MJ, 1998, NEURON, V21, P13, DOI 10.1016/S0896-6273(00)80510-3 Bildl W, 2004, NEURON, V43, P847, DOI 10.1016/j.neuron.2004.08.033 Blanchet C, 1996, J NEUROSCI, V16, P2574 BOBBIN RP, 1990, HEARING RES, V47, P39, DOI 10.1016/0378-5955(90)90165-L BOBBIN RP, 1990, HEARING RES, V46, P83, DOI 10.1016/0378-5955(90)90141-B Bobbin RP, 2002, HEARING RES, V174, P172, DOI 10.1016/S0378-5955(02)00654-8 Bond CT, 2005, CURR OPIN NEUROBIOL, V15, P305, DOI 10.1016/j.conb.2005.05.001 Brown GC, 2000, ACTA PHYSIOL SCAND, V168, P667, DOI 10.1046/j.1365-201x.2000.00718.x Brown GC, 1999, BIOCHEM SOC SYMP, V66, P17 BROWN MC, 1984, J PHYSIOL-LONDON, V354, P625 Brown MC, 1998, J NEUROPHYSIOL, V79, P3077 BROWN MC, 1983, SCIENCE, V222, P69, DOI 10.1126/science.6623058 Brown MC, 1998, J NEUROPHYSIOL, V79, P3088 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Bruce LL, 2000, J COMP NEUROL, V423, P532, DOI 10.1002/1096-9861(20000731)423:3<532::AID-CNE14>3.0.CO;2-T Cai X, 2004, NEURON, V44, P351, DOI 10.1016/j.neuron.2004.09.026 Capogna M, 1998, PHARMACOL THERAPEUT, V77, P203, DOI 10.1016/S0163-7258(97)00162-9 Catterall WA, 2008, NEURON, V59, P882, DOI 10.1016/j.neuron.2008.09.005 Chen JWY, 2000, J NEUROPHYSIOL, V84, P139 Kirk EC, 2003, JARO-J ASSOC RES OTO, V4, P445 CHURCHILL J. A., 1956, LARYNGOSCOPE, V66, P1 Colegrove SL, 2000, J GEN PHYSIOL, V115, P351, DOI 10.1085/jgp.115.3.351 Cooper NP, 2003, J PHYSIOL-LONDON, V548, P307, DOI 10.1113/jphysiol.2003.039081 Cooper NP, 2006, J PHYSIOL-LONDON, V576, P49, DOI 10.1113/jphysiol.2006.114991 Dallos P, 1997, J NEUROSCI, V17, P2212 DESANMARTIN JZ, 2010, J NEUROSCI, V3, P12157 DRESCHER DG, 1993, J NEUROCHEM, V61, P1167, DOI 10.1111/j.1471-4159.1993.tb03638.x Dulon D, 1998, EUR J NEUROSCI, V10, P907, DOI 10.1046/j.1460-9568.1998.00098.x ELGOYHEN AB, 1994, CELL, V79, P705, DOI 10.1016/0092-8674(94)90555-X Elgoyhen AB, 2001, P NATL ACAD SCI USA, V98, P3501, DOI 10.1073/pnas.051622798 Engel J, 2006, NEUROSCIENCE, V143, P837, DOI 10.1016/j.neuroscience.2006.08.060 ENGSTROM H, 1958, Exp Cell Res, V14, P460 Evans MG, 1996, J PHYSIOL-LONDON, V491, P563 Evans MG, 1996, HEARING RES, V101, P1, DOI 10.1016/S0378-5955(96)00107-4 Evans MG, 2000, CELL CALCIUM, V28, P195, DOI 10.1054/ceca.2000.0145 EYBALIN M, 1993, PHYSIOL REV, V73, P309 Faber ES, 2009, CELL BIOCHEM BIOPHYS, V55, P127, DOI 10.1007/s12013-009-9062-7 Faber ESL, 2007, CLIN EXP PHARMACOL P, V34, P1077, DOI 10.1111/j.1440-1681.2007.04725.x Faber ESL, 2008, J NEUROSCI, V28, P10803, DOI 10.1523/JNEUROSCI.1796-08.2008 Fessenden JD, 1998, HEARING RES, V118, P168, DOI 10.1016/S0378-5955(98)00027-6 FESSENDEN JD, 1994, BRAIN RES, V668, P9, DOI 10.1016/0006-8993(94)90505-3 FEX J, 1984, HEARING RES, V15, P123, DOI 10.1016/0378-5955(84)90043-1 FEX J, 1976, BRAIN RES, V109, P575, DOI 10.1016/0006-8993(76)90036-6 FEX J, 1981, P NATL ACAD SCI-BIOL, V78, P1255, DOI 10.1073/pnas.78.2.1255 Fill M, 2002, PHYSIOL REV, V82, P893, DOI 10.1152/physrev.00013.2002 FLOCK A, 1973, J PHYSIOL-LONDON, V235, P591 FLOCK A, 1976, J PHYSIOL-LONDON, V257, P45 FUCHS PA, 1992, P ROY SOC B-BIOL SCI, V248, P35, DOI 10.1098/rspb.1992.0039 FUCHS PA, 1992, J NEUROSCI, V12, P800 GALAMBOS R, 1956, J NEUROPHYSIOL, V19, P424 GIFFORD ML, 1987, HEARING RES, V29, P179, DOI 10.1016/0378-5955(87)90166-3 GITTER AH, 1992, EUR ARCH OTO-RHINO-L, V249, P62 Glowatzki E, 2000, SCIENCE, V288, P2366, DOI 10.1126/science.288.5475.2366 Gomez-Casati ME, 2009, JARO-J ASSOC RES OTO, V10, P221, DOI 10.1007/s10162-009-0164-0 Gomez-Casati ME, 2005, J PHYSIOL-LONDON, V566, P103, DOI 10.1113/jphysiol.2005.087155 Goutman JD, 2005, J PHYSIOL-LONDON, V566, P49, DOI 10.1113/jphysiol.2005.087460 Grant L, 2006, HEARING RES, V219, P101, DOI 10.1016/j.heares.2006.06.002 Grimes WN, 2009, NAT NEUROSCI, V12, P585, DOI 10.1038/nn.2302 Guinan JJ, 2006, EAR HEARING, V27, P589, DOI 10.1097/01.aud.0000240507.83072.e7 Guinan JJ, 1996, J ACOUST SOC AM, V100, P1680, DOI 10.1121/1.416066 Gunter TE, 2004, FEBS LETT, V567, P96, DOI 10.1016/j.febslet.2004.03.071 Hackney CM, 2005, J NEUROSCI, V25, P7867, DOI 10.1523/JNEUROSCI.1196-05.2005 He DZZ, 2003, J NEUROSCI, V23, P9089 HEILBRONN E, 1995, NEUROCHEM INT, V27, P301, DOI 10.1016/0197-0186(95)00011-V Hess A, 1998, BRAIN RES, V813, P97, DOI 10.1016/S0006-8993(98)00997-4 HILLE B, 1994, TRENDS NEUROSCI, V17, P531, DOI 10.1016/0166-2236(94)90157-0 HILLE B, 1992, NEURON, V9, P187, DOI 10.1016/0896-6273(92)90158-A HOFFMAN DW, 1984, BRAIN RES, V322, P59, DOI 10.1016/0006-8993(84)91180-6 HOFFMAN DW, 1985, HEARING RES, V17, P47, DOI 10.1016/0378-5955(85)90129-7 HOUSLEY GD, 1990, HEARING RES, V43, P121, DOI 10.1016/0378-5955(90)90221-A Ikeda SR, 1996, NATURE, V380, P255, DOI 10.1038/380255a0 ISSA NP, 1994, P NATL ACAD SCI USA, V91, P7578, DOI 10.1073/pnas.91.16.7578 Iwasaki S, 2000, J NEUROSCI, V20, P59 Johnson SL, 2007, J PHYSIOL-LONDON, V583, P631, DOI 10.1113/jphysiol.2007.136630 KAKEHATA S, 1993, J PHYSIOL-LONDON, V463, P227 KATZ B, 1968, J PHYSIOL-LONDON, V195, P481 Katz E, 2004, J NEUROSCI, V24, P7814, DOI 10.1523/JNEUROSCI.2102-04.2004 Khan KM, 2002, NEUROSCIENCE, V111, P291, DOI 10.1016/S0306-4522(02)00020-9 Knaus HG, 1996, J NEUROSCI, V16, P955 Kohler M, 1996, SCIENCE, V273, P1709, DOI 10.1126/science.273.5282.1709 Kong JH, 2008, J PHYSIOL-LONDON, V586, P5471, DOI 10.1113/jphysiol.2008.160077 Kujawa SG, 1997, J NEUROPHYSIOL, V78, P3095 Kurc M, 1998, HEARING RES, V116, P1, DOI 10.1016/S0378-5955(97)00183-4 LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309 Liberman MC, 2000, J COMP NEUROL, V423, P132 LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1 LIBERMAN MC, 1988, J NEUROPHYSIOL, V60, P1779 Lioudyno M, 2004, J NEUROSCI, V24, P11160, DOI 10.1523/JNEUROSCI.3674-04.2004 Lioudyno MI, 2002, MOL CELL NEUROSCI, V20, P695, DOI 10.1006/mcne.2002.1150 Lv P, 2010, J NEUROPHYSIOL, V103, P2494, DOI 10.1152/jn.00017.2010 Lysakowski A, 2000, J COMP NEUROL, V427, P508, DOI 10.1002/1096-9861(20001127)427:4<508::AID-CNE2>3.0.CO;2-L Maingret F, 2008, NEURON, V59, P439, DOI 10.1016/j.neuron.2008.05.026 Maison SF, 2003, J COMP NEUROL, V455, P406, DOI 10.1002/cne.10490 Maison SF, 2006, J NEUROSCI, V26, P10315, DOI 10.1523/JNEUROSCI.2395-06.2006 Maison SF, 2003, J NEUROPHYSIOL, V90, P2941, DOI 10.1152/jn.00596.2003 Maison SF, 2010, J NEUROSCI, V30, P6751, DOI 10.1523/JNEUROSCI.5080-09.2010 Maison SF, 2002, J NEUROSCI, V22, P10838 Maison SF, 2000, J NEUROSCI, V20, P4701 Maison SF, 2009, JARO-J ASSOC RES OTO, V10, P50, DOI 10.1007/s10162-008-0138-7 Malli R, 2005, J BIOL CHEM, V280, P12114, DOI 10.1074/jbc.M409353200 May BJ, 2002, HEARING RES, V171, P142, DOI 10.1016/S0378-5955(02)00495-1 Misonou H, 2006, J COMP NEUROL, V496, P289, DOI 10.1002/cne.20931 Murthy V, 2009, MOL CELL NEUROSCI, V40, P39, DOI 10.1016/j.mcn.2008.08.011 Murugasu E, 1996, J NEUROSCI, V16, P325 Mustafa AK, 2009, SCI SIGNAL, V2, DOI 10.1126/scisignal.268re2 NADOL JB, 1981, ANN OTO RHINOL LARYN, V90, P12 NADOL JB, 1984, ANN OTO RHINOL LARYN, V93, P247 NADOL JB, 1994, HEARING RES, V81, P49, DOI 10.1016/0378-5955(94)90152-X Nassar A, 2000, J BIOL CHEM, V275, P23661, DOI 10.1074/jbc.M000457200 Nenov AP, 1996, HEARING RES, V101, P149, DOI 10.1016/S0378-5955(96)00143-8 Nie LP, 2004, J NEUROPHYSIOL, V91, P1536, DOI 10.1152/jn.00630.2003 NORRIS CH, 1974, ACTA OTO-LARYNGOL, V77, P318, DOI 10.3109/00016487409124631 Oliver D, 2000, NEURON, V26, P595, DOI 10.1016/S0896-6273(00)81197-6 Pacher P, 2000, J PHYSIOL-LONDON, V529, P553, DOI 10.1111/j.1469-7793.2000.00553.x Parekh AB, 1997, PHYSIOL REV, V77, P901 PARK Y, 1994, J PHYSIOL-LONDON, V481, P555 Patterson RL, 1999, CELL, V98, P487, DOI 10.1016/S0092-8674(00)81977-7 Plazas PV, 2005, J NEUROSCI, V25, P10905, DOI 10.1523/JNEUROSCI.3805-05.2005 PLINKERT PK, 1989, ARCH OTO-RHINO-LARYN, V246, P417, DOI 10.1007/BF00464301 PLINKERT PK, 1993, EUR ARCH OTO-RHINO-L, V250, P351 Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3 Pujol R, 1982, Brain Res, V255, P151 Putney JW, 2006, CURR BIOL, V16, pR812, DOI 10.1016/j.cub.2006.08.040 Rabbitt RD, 2009, PLOS COMPUT BIOL, V5, DOI 10.1371/journal.pcbi.1000444 RAJAN R, 1988, BRAIN RES, V459, P241, DOI 10.1016/0006-8993(88)90640-3 RAJAN R, 1991, HEARING RES, V53, P153, DOI 10.1016/0378-5955(91)90222-U RAJAN R, 1995, J NEUROPHYSIOL, V74, P598 Rajan R, 2000, J NEUROSCI, V20, P6684 REITER ER, 1995, J NEUROPHYSIOL, V73, P506 Rizzuto R, 1998, SCIENCE, V280, P1763, DOI 10.1126/science.280.5370.1763 ROBERTS WM, 1990, J NEUROSCI, V10, P3664 ROBERTSON D, 1985, HEARING RES, V20, P63, DOI 10.1016/0378-5955(85)90059-0 ROBITAILLE R, 1993, J PHYSIOLOGY-PARIS, V87, P15, DOI 10.1016/0928-4257(93)90020-T Siri MDR, 1999, J PHYSIOL-LONDON, V514, P533, DOI 10.1111/j.1469-7793.1999.533ae.x Rosato-Siri MD, 2002, EUR J NEUROSCI, V15, P1874, DOI 10.1046/j.1460-9568.2002.02015.x ROSENBLUTH J, 1962, J CELL BIOL, V13, P405, DOI 10.1083/jcb.13.3.405 Ruel J, 2007, HEARING RES, V227, P19, DOI 10.1016/j.heares.2006.08.017 RUSSELL IJ, 1971, J EXP BIOL, V54, P643 Russell IJ, 1997, J ACOUST SOC AM, V102, P1734, DOI 10.1121/1.420083 Ruttiger L, 2004, P NATL ACAD SCI USA, V101, P12922, DOI 10.1073/pnas.0402660101 SAFIEDDINE S, 1992, EUR J NEUROSCI, V4, P981, DOI 10.1111/j.1460-9568.1992.tb00124.x Safieddine S, 1996, MOL BRAIN RES, V40, P127 Safieddine S, 1997, EUR J NEUROSCI, V9, P356, DOI 10.1111/j.1460-9568.1997.tb01405.x SAITO K, 1980, J ULTRA MOL STRUCT R, V71, P222, DOI 10.1016/S0022-5320(80)90108-2 Sen M, 2007, VISUAL NEUROSCI, V24, P663, DOI 10.1017/S0952523807070551 Shi XR, 2002, HEARING RES, V164, P49 Shi X, 2007, FREE RADICAL RES, V41, P1313, DOI 10.1080/10715760701687117 Shi XR, 2001, HEARING RES, V153, P23, DOI 10.1016/S0378-5955(00)00254-9 SHIGEMOTO T, 1991, J PHYSIOL-LONDON, V442, P669 Simmons DD, 2002, J NEUROBIOL, V53, P228, DOI 10.1002/neu.10130 SMITH CA, 1961, J ULTRA MOL STRUCT R, V5, P523, DOI 10.1016/S0022-5320(61)80025-7 SOBKOWICZ HM, 1989, J NEUROCYTOL, V18, P209, DOI 10.1007/BF01206663 Soh H, 2002, BIOPHYS J, V83, P2528 Sridhar TS, 1997, J NEUROSCI, V17, P428 SRIDHAR TS, 1995, J NEUROSCI, V15, P3667 Stocker M, 1999, P NATL ACAD SCI USA, V96, P4662, DOI 10.1073/pnas.96.8.4662 Szalai G, 2000, J BIOL CHEM, V275, P15305, DOI 10.1074/jbc.275.20.15305 Sziklai I, 1996, HEARING RES, V95, P87, DOI 10.1016/0378-5955(96)00026-3 Taranda J, 2009, PLOS BIOL, V7, P71, DOI 10.1371/journal.pbio.1000018 Thiers FA, 2008, JARO-J ASSOC RES OTO, V9, P477, DOI 10.1007/s10162-008-0135-x Tritsch NX, 2010, J NEUROSCI, V30, P1539, DOI 10.1523/JNEUROSCI.3875-09.2010 Tritsch NX, 2010, NAT NEUROSCI, V13, P1050, DOI 10.1038/nn.2604 Turcan S, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009058 Verkhratsky A, 2005, PHYSIOL REV, V85, P201, DOI 10.1152/physrev.00004.2004 VETTER DE, 1991, SYNAPSE, V7, P21, DOI 10.1002/syn.890070104 Vetter DE, 1999, NEURON, V23, P93, DOI 10.1016/S0896-6273(00)80756-4 Vetter DE, 2007, P NATL ACAD SCI USA, V104, P20594, DOI 10.1073/pnas.0708545105 Waka N, 2003, HISTOL HISTOPATHOL, V18, P1115 Walsh EJ, 1998, J NEUROSCI, V18, P3859 Wang ZW, 2008, MOL NEUROBIOL, V38, P153, DOI 10.1007/s12035-008-8039-7 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 WEDEMEYER C, 2010, ASS RES OT M Weisstaub N, 2002, HEARING RES, V167, P122, DOI 10.1016/S0378-5955(02)00380-5 Wersinger E, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013836 WHITLON DS, 1989, J NEUROCYTOL, V18, P505, DOI 10.1007/BF01474546 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P966, DOI 10.1121/1.1912235 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P950, DOI 10.1121/1.1912234 Xia XM, 1998, NATURE, V395, P503 YAMAMOTO T, 1991, SYNAPSE, V8, P119, DOI 10.1002/syn.890080206 Yuhas WA, 1999, J COMP PHYSIOL A, V185, P455, DOI 10.1007/s003590050406 Zucker RS, 2002, ANNU REV PHYSIOL, V64, P355, DOI 10.1146/annurev.physiol.64.092501.114547 NR 194 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2011 VL 279 IS 1-2 SI SI BP 1 EP 12 DI 10.1016/j.heares.2010.12.018 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 830OQ UT WOS:000295666700001 PM 21187136 ER PT J AU MacLeod, KM AF MacLeod, Katrina M. TI Short-term synaptic plasticity and intensity coding SO HEARING RESEARCH LA English DT Article ID AUDITORY BRAIN-STEM; COCHLEAR NUCLEUS ANGULARIS; INTERAURAL TIME DIFFERENCE; SUPERIOR OLIVARY NUCLEUS; IMPROVES COINCIDENCE DETECTION; NEURONAL CALCIUM SENSOR-1; LATERAL LEMNISCAL NUCLEI; PURKINJE-CELL SYNAPSE; OWL TYTO-ALBA; BARN OWL AB Alterations in synaptic strength over short time scales, termed short-term synaptic plasticity, can gate the flow of information through neural circuits. Different information can be extracted from the same presynaptic spike train depending on the activity- and time-dependent properties of the plasticity at a given synapse. The parallel processing in the brain stem auditory pathways provides an excellent model system for investigating the functional implications of short-term plasticity in neural coding. We review recent evidence that short-term plasticity differs in different pathways with a special emphasis on the 'intensity' pathway. While short-term depression dominates the 'timing' pathway, the intensity pathway is characterized by a balance of short-term depression and facilitation that allows linear transmission of rate-coded intensity information. Target-specific regulation of presynaptic plasticity mechanisms underlies the differential expression of depression and facilitation. The potential contribution of short-term plasticity to different aspects of 'intensity'-related information processing, such as interaural level/intensity difference coding, amplitude modulation coding, and intensity-dependent gain control coding, is discussed. (C) 2011 Elsevier B.V. All rights reserved. C1 [MacLeod, Katrina M.] Univ Maryland, Dept Biol, College Pk, MD 20742 USA. [MacLeod, Katrina M.] Univ Maryland, Neurosci & Cognit Sci Program, College Pk, MD 20742 USA. RP MacLeod, KM (reprint author), Univ Maryland, Dept Biol, Biol Psychol Bldg 4244, College Pk, MD 20742 USA. EM macleod@umd.edu RI MacLeod, Katrina/F-4595-2015 CR Abbott LF, 1997, SCIENCE, V275, P220 Abbott LF, 2004, NATURE, V431, P796, DOI 10.1038/nature03010 ADOLPHS R, 1993, J NEUROSCI, V13, P3647 ARENDS JJA, 1986, BRAIN RES, V398, P375, DOI 10.1016/0006-8993(86)91499-X Atluri PP, 1996, J NEUROSCI, V16, P5661 Babalian AL, 2003, EXP BRAIN RES, V153, P452, DOI 10.1007/s00221-003-1619-x Beierlein M, 2003, J NEUROPHYSIOL, V90, P2987, DOI 10.1152/jn.00283.2003 Boudreau CE, 2005, J NEUROSCI, V25, P7179, DOI 10.1523/JNEUROSCI.1445-05.2005 Brenowitz S, 2001, J NEUROSCI, V21, P9487 Brenowitz S, 2001, J NEUROSCI, V21, P1857 Burger RM, 2005, J COMP NEUROL, V481, P6, DOI 10.1002/ce.20334 Caillard O, 2000, P NATL ACAD SCI USA, V97, P13372, DOI 10.1073/pnas.230362997 Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9 Cao XJ, 2010, J NEUROPHYSIOL, V104, P2308, DOI 10.1152/jn.00451.2010 Cao XJ, 2008, J COMP NEUROL, V510, P297, DOI 10.1002/cne.21788 Carandini M, 2002, J NEUROSCI, V22, P10053 Carr CE, 2002, BRAIN BEHAV EVOLUT, V59, P294, DOI 10.1159/000063565 CARR CE, 1991, J COMP NEUROL, V314, P306, DOI 10.1002/cne.903140208 CARR CE, 1990, J NEUROSCI, V10, P3227 Chance FS, 1998, J NEUROSCI, V18, P4785 Chung S, 2002, NEURON, V34, P437, DOI 10.1016/S0896-6273(02)00659-1 CONLEE JW, 1986, BRAIN RES, V367, P96, DOI 10.1016/0006-8993(86)91583-0 Cook DL, 2003, NATURE, V421, P66, DOI 10.1038/nature01248 Cuttle MF, 1998, J PHYSIOL-LONDON, V512, P723, DOI 10.1111/j.1469-7793.1998.723bd.x Dingledine R, 1999, PHARMACOL REV, V51, P7 Dittman JS, 1998, J NEUROSCI, V18, P6147 Dittman JS, 2000, J NEUROSCI, V20, P1374 Felmy F, 2003, NEURON, V37, P801, DOI 10.1016/S0896-6273(03)00085-0 FRISINA RD, 1985, EXP BRAIN RES, V60, P417 Frisina RD, 2001, HEARING RES, V158, P1, DOI 10.1016/S0378-5955(01)00296-9 FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y FRISINA RD, 1990, HEARING RES, V44, P123, DOI 10.1016/0378-5955(90)90075-Z Fuhrmann G, 2002, J NEUROPHYSIOL, V87, P140 FUJITA I, 1991, J NEUROSCI, V11, P722 Fukui I, 2003, J PHYSIOL-LONDON, V548, P219 Gardner SM, 1999, J NEUROSCI, V19, P8721 Gardner SM, 2001, J NEUROSCI, V21, P7428 GEIGER JRP, 1995, NEURON, V15, P193, DOI 10.1016/0896-6273(95)90076-4 GLEICH O, 1995, HEARING RES, V82, P81 Inchauspe CG, 2007, J PHYSIOL-LONDON, V584, P835, DOI 10.1113/jphysiol.2007.139683 Grande LA, 2005, PHYSIOLOGY, V20, P201, DOI 10.1152/physiol.00006.2005 Griesinger CB, 2005, NATURE, V435, P212, DOI 10.1038/nature03567 Hermann J, 2007, J NEUROPHYSIOL, V98, P807, DOI 10.1152/jn.00355.2007 HEWITT MJ, 1992, J ACOUST SOC AM, V91, P2096, DOI 10.1121/1.403696 Hosoi N, 2007, J NEUROSCI, V27, P14286, DOI 10.1523/JNEUROSCI.4122-07.2007 Hyson RL, 2005, PHYSIOL BEHAV, V86, P297, DOI 10.1016/j.physbeh.2005.08.003 Inchauspe CG, 2004, J NEUROSCI, V24, P10379, DOI 10.1523/JNEUROSCI.2104-04.2004 Iwasaki S, 2001, J PHYSIOL-LONDON, V534, P861, DOI 10.1111/j.1469-7793.2001.00861.x Joris P, 2007, TRENDS NEUROSCI, V30, P70, DOI 10.1016/j.tins.2006.12.004 Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003 KNUDSEN EI, 1977, SCIENCE, V198, P1278, DOI 10.1126/science.929202 KONISHI M, 1985, J ACOUST SOC AM, V78, P360, DOI 10.1121/1.392499 Konishi M, 2003, ANNU REV NEUROSCI, V26, P31, DOI 10.1146/annurev.neuro.26.041002.131123 Koppl C, 2003, J NEUROPHYSIOL, V89, P2313, DOI 10.1152/jn.00635.2002 Krutzfeldt NOE, 2010, J COMP NEUROL, V518, P2109, DOI 10.1002/cne.22334 Krutzfeldt NOE, 2010, J COMP NEUROL, V518, P2135, DOI 10.1002/cne.22324 Kuba H, 2002, J PHYSIOL-LONDON, V540, P529, DOI 10.1113/jphysiol.2001.013365 Kuba H, 2002, EUR J NEUROSCI, V15, P984, DOI 10.1046/j.1460-9568.2002.01933.x Kubke MF, 1999, J COMP NEUROL, V415, P189, DOI 10.1002/(SICI)1096-9861(19991213)415:2<189::AID-CNE4>3.0.CO;2-E Kuo SP, 2009, J NEUROSCI, V29, P9625, DOI 10.1523/JNEUROSCI.0103-09.2009 LACHICA EA, 1994, J COMP NEUROL, V348, P403, DOI 10.1002/cne.903480307 Levin MD, 1997, J COMP NEUROL, V378, P239, DOI 10.1002/(SICI)1096-9861(19970210)378:2<239::AID-CNE7>3.0.CO;2-4 Lorteije JAM, 2009, J NEUROSCI, V29, P13770, DOI 10.1523/JNEUROSCI.3285-09.2009 Lu Y, 2009, NEUROSCIENCE, V164, P1009, DOI 10.1016/j.neuroscience.2009.09.013 MacLeod KM, 2005, J NEUROPHYSIOL, V93, P2520, DOI 10.1152/jn.00898.2004 MacLeod KM, 2007, J NEUROPHYSIOL, V97, P2863, DOI 10.1152/jn.01030.2006 MacLeod KM, 2007, PROG BRAIN RES, V165, P123, DOI 10.1016/S0079-6123(06)65008-5 MacLeod KM, 2011, BIOL CYBERN, V104, P209, DOI 10.1007/s00422-011-0428-8 MANLEY GA, 1988, J NEUROSCI, V8, P2665 Markram H, 2004, NAT REV NEUROSCI, V5, P793, DOI 10.1038/nrn1519 Markram H, 1998, NEUROBIOL LEARN MEM, V70, P101, DOI 10.1006/nlme.1998.3841 McAlpine D, 2003, TRENDS NEUROSCI, V26, P347, DOI 10.1016/S0166-2236(03)00140-1 MOGDANS J, 1994, HEARING RES, V74, P148, DOI 10.1016/0378-5955(94)90183-X MOISEFF A, 1983, J NEUROSCI, V3, P2553 MOLLER AR, 1973, BASIC MECH HEARING, P593 MOLLER AR, 1976, ACTA PHYSIOL SCAND, V98, P157, DOI 10.1111/j.1748-1716.1976.tb00235.x Monsivais P, 2000, J NEUROSCI, V20, P2954 MOSBACHER J, 1994, SCIENCE, V266, P1059, DOI 10.1126/science.7973663 Muller M, 2007, J NEUROSCI, V27, P2261, DOI 10.1523/JNEUROSCI.5582-06.2007 Nishino E, 2008, J NEUROSCI, V28, P7153, DOI 10.1523/JNEUROSCI.4398-07.2008 Oertel D, 1999, ANNU REV PHYSIOL, V61, P497, DOI 10.1146/annurev.physiol.61.1.497 Otis TS, 1996, J NEUROSCI, V16, P1634 Parks TN, 2000, HEARING RES, V147, P77, DOI 10.1016/S0378-5955(00)00122-2 Pena JL, 1996, J NEUROSCI, V16, P7046 Petralia RS, 2000, HEARING RES, V147, P59, DOI 10.1016/S0378-5955(00)00120-9 Puelles L., 2007, CHICK BRAIN STEREOTA RAMAN IM, 1994, J NEUROSCI, V14, P4998 Reyes A, 1998, NAT NEUROSCI, V1, P279 RHODE WS, 1994, HEARING RES, V77, P43, DOI 10.1016/0378-5955(94)90252-6 RHODE WS, 1994, J NEUROPHYSIOL, V71, P1797 ROUILLER EM, 1986, J COMP NEUROL, V249, P261, DOI 10.1002/cne.902490210 Ryugo DK, 2003, BRAIN RES BULL, V60, P435, DOI 10.1016/S0361-9230(03)00049-2 Sakaba T, 2001, NEURON, V32, P1119, DOI 10.1016/S0896-6273(01)00543-8 Saunders JC, 2002, J NEUROPHYSIOL, V88, P2887, DOI 10.1152/jn.00381.2002 SCHNEGGENBURGER IT, 2002, TRENDS NEUROSCI, V25, P206 Sippy T, 2003, NAT NEUROSCI, V6, P1031, DOI 10.1038/nn1117 SIVARAMAKRISHNAN S, 1995, J NEUROSCI, V15, P6576 Smith AJ, 2000, J PHYSIOL-LONDON, V529, P681, DOI 10.1111/j.1469-7793.2000.00681.x Soares D, 2001, J COMP NEUROL, V429, P192, DOI 10.1002/1096-9861(20000108)429:2<192::AID-CNE2>3.0.CO;2-5 Soares D, 2002, J NEUROPHYSIOL, V88, P152, DOI 10.1152/jn.00674.2001 Sugden SG, 2002, J NEUROBIOL, V52, P189, DOI 10.1002/neu.10078 SULLIVAN WE, 1985, J NEUROPHYSIOL, V53, P201 SULLIVAN WE, 1984, J NEUROSCI, V4, P1787 Sun HY, 2005, J PHYSIOL-LONDON, V568, P815, DOI 10.1113/jphysiol.2005.093948 TAKAHASHI T, 1984, J NEUROSCI, V4, P1781 TAKAHASHI TT, 1988, J COMP NEUROL, V274, P212, DOI 10.1002/cne.902740207 Taschenberger H, 2002, NEURON, V36, P1127, DOI 10.1016/S0896-6273(02)01137-6 Taschenberger H, 2000, J NEUROSCI, V20, P9162 Tollin DJ, 2008, J NEUROSCI, V28, P4848, DOI 10.1523/JNEUROSCI.5421-07.2008 Trussell LO, 1999, ANNU REV PHYSIOL, V61, P477, DOI 10.1146/annurev.physiol.61.1.477 Tsujimoto T, 2002, SCIENCE, V295, P2276, DOI 10.1126/science.1068278 Usrey WM, 2000, J NEUROSCI, V20, P5461 Viete S, 1997, J NEUROSCI, V17, P1815 von Gersdorff H, 2002, NAT REV NEUROSCI, V3, P53, DOI 10.1038/nrn705 Wang LY, 1998, NATURE, V394, P384, DOI 10.1038/28645 WANG XQ, 1992, PHILOS T ROY SOC B, V336, P399, DOI 10.1098/rstb.1992.0074 Wang Y, 2008, J NEUROPHYSIOL, V100, P1255, DOI 10.1152/jn.90715.2008 Wild JM, 2010, J COMP NEUROL, V518, P2149, DOI 10.1002/cne.22325 Winslow R. L., 1987, AUDITORY PROCESSING, P212 Wong AYC, 2003, J NEUROSCI, V23, P4868 Woolley SMN, 2005, J NEUROPHYSIOL, V94, P1143, DOI 10.1152/jn.01064.2004 Yang H, 2008, J NEUROPHYSIOL, V99, P2510, DOI 10.1152/jn.01293.2007 Yang LC, 1999, J NEUROSCI, V19, P2313 Young ED, 2008, NEUROSCIENCE, V154, P127, DOI 10.1016/j.neuroscience.2008.01.036 ZHANG S, 1994, J PHYSIOL-LONDON, V480, P123 Zucker RS, 1999, CURR OPIN NEUROBIOL, V9, P305, DOI 10.1016/S0959-4388(99)80045-2 Zucker RS, 2002, ANNU REV PHYSIOL, V64, P355, DOI 10.1146/annurev.physiol.64.092501.114547 NR 127 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2011 VL 279 IS 1-2 SI SI BP 13 EP 21 DI 10.1016/j.heares.2011.03.001 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 830OQ UT WOS:000295666700002 PM 21397676 ER PT J AU Kopp-Scheinpflug, C Steinert, JR Forsythe, ID AF Kopp-Scheinpflug, Cornelia Steinert, Joern R. Forsythe, Ian D. TI Modulation and control of synaptic transmission across the MNTB SO HEARING RESEARCH LA English DT Article ID PRESYNAPTIC CALCIUM CURRENT; ANTEROVENTRAL COCHLEAR NUCLEUS; METABOTROPIC GLUTAMATE-RECEPTOR; MAMMALIAN CENTRAL SYNAPSE; CENTRAL AUDITORY SYNAPSE; KV3.1 POTASSIUM CHANNEL; LATERAL SUPERIOR OLIVE; SHORT-TERM PLASTICITY; RAT MEDIAL NUCLEUS; TRAPEZOID BODY AB The aim of this review is to consider the various forms and functions of transmission across the calyx of Held/MNTB synapse and how its modulation might contribute to auditory processing. The calyx of Held synapse is the largest synapse in the mammalian brain which uses the conventional excitatory synaptic transmitter, glutamate. It is sometimes portrayed as the 'ultimate' in synaptic signalling: it is a synaptic relay in which a single axon forms one synaptic terminal onto one specific target neuron. Questions that are often raised are: :Why does such a large and secure synapse need any form of modulation? Surely it is built simply to guarantee firing an action potential in the target neuron? If this synapse is so secure. why is a synapse needed at all?" Investigating these questions explains some general limitations of transmission at synapses and provides insight into the ionic basis of neuronal function by bringing together in vivo and in vitro approaches. We will start by defining the firing behaviour of MNTB neurons in vitro (in response to synaptic stimulation or current injection) and in vivo (in response to sound) and examining the reasons for different types of firing under the two conditions. Then we will consider some of the mechanisms by which transmission can be regulated. We will finish by discussing the following hypothesis: modulation and adaptation of presynaptic and postsynaptic conductances at the calyx of Held relay synapse are aimed at maximising the security of sound onset encoding while providing secondary information on frequency spectrum, harmonic envelope and duration of sound throughout the later part of the response. (C) 2011 Elsevier B.V. All rights reserved. C1 [Kopp-Scheinpflug, Cornelia; Steinert, Joern R.; Forsythe, Ian D.] Univ Leicester, MRC Toxicol Unit, Leicester LE1 9HN, Leics, England. RP Forsythe, ID (reprint author), Univ Leicester, MRC Toxicol Unit, Hodgkin Bldg, Leicester LE1 9HN, Leics, England. EM idf@le.ac.uk RI Steinert, Joern/A-6678-2008 FU Medical Research Council, UK FX This work was supported by the Medical Research Council, UK. CR ADAMS JC, 1990, HEARING RES, V49, P281, DOI 10.1016/0378-5955(90)90109-3 Awatramani GB, 2004, J NEUROSCI, V24, P2643, DOI 10.1523/JNEUROSCI.5144-03.2004 BANKS MI, 1992, J NEUROSCI, V12, P2819 BARNESDAVIES M, 1995, J PHYSIOL-LONDON, V488, P387 Barnes-Davies M, 2001, HEARING RES, V162, P134, DOI 10.1016/S0378-5955(01)00378-1 Billups B, 2005, J PHYSIOL-LONDON, V565, P885, DOI 10.1113/jphysiol.2005.086736 Borst JGG, 1998, J PHYSIOL-LONDON, V513, P149, DOI 10.1111/j.1469-7793.1998.149by.x Borst JGG, 2010, TRENDS NEUROSCI, V33, P259, DOI 10.1016/j.tins.2010.03.003 Borst JGG, 1995, J PHYSIOL-LONDON, V489, P825 Brenowitz S, 2001, J NEUROSCI, V21, P1857 Brew HM, 1995, J NEUROSCI, V15, P8011 Brew HM, 2007, J NEUROPHYSIOL, V98, P1501, DOI 10.1152/jn.00640.2006 Brew HM, 2003, J PHYSIOL-LONDON, V548, P1, DOI 10.1113/jphysiol.2002.035568 Brown MR, 2011, HEARING RES, V279, P32, DOI 10.1016/j.heares.2011.03.004 Cuttle MF, 1998, J PHYSIOL-LONDON, V512, P723, DOI 10.1111/j.1469-7793.1998.723bd.x Dehmel S, 2010, HEARING RES, V268, P234, DOI 10.1016/j.heares.2010.06.005 Devaux J, 2003, J NEUROSCI, V23, P4509 Dodson PD, 2003, J PHYSIOL-LONDON, V550, P27, DOI 10.1113/jphysiol.2003.046250 Dolphin AC, 2003, PHARMACOL REV, V55, P607, DOI 10.1124/pr.55.4.3 Durand DM, 2010, PHILOS T R SOC B, V365, P2347, DOI 10.1098/rstb.2010.0050 Elezgarai I, 2003, NEUROSCIENCE, V118, P889, DOI 10.1016/S0306-4522(03)00068-X Elezgarai I, 1999, J COMP NEUROL, V411, P431, DOI 10.1002/(SICI)1096-9861(19990830)411:3<431::AID-CNE6>3.0.CO;2-R Englitz B, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007014 Forsythe ID, 1998, NEURON, V20, P797, DOI 10.1016/S0896-6273(00)81017-X FORSYTHE ID, 1994, J PHYSIOL-LONDON, V479, P381 Grothe B, 2010, PHYSIOL REV, V90, P983, DOI 10.1152/physrev.00026.2009 GUINAN JJ, 1990, HEARING RES, V49, P321, DOI 10.1016/0378-5955(90)90111-2 Habets RLP, 2005, J PHYSIOL-LONDON, V564, P173, DOI 10.1113/jphysiol.2004.079160 Hennig MH, 2008, J PHYSIOL-LONDON, V586, P3129, DOI 10.1113/jphysiol.2008.152124 Hermann J, 2007, J NEUROPHYSIOL, V98, P807, DOI 10.1152/jn.00355.2007 Huang H, 2008, NEURON, V60, P975, DOI 10.1016/j.neuron.2008.10.052 Inchauspe CG, 2004, J NEUROSCI, V24, P10379, DOI 10.1523/JNEUROSCI.2104-04.2004 Isaacson JS, 1998, J NEUROPHYSIOL, V80, P1571 Ishikawa T, 2003, J NEUROSCI, V23, P10445 Ishikawa T, 2005, J PHYSIOL-LONDON, V568, P199, DOI 10.1113/jphysiol.2005.089912 Johnston J, 2010, J PHYSIOL-LONDON, V588, P3187, DOI 10.1113/jphysiol.2010.191973 Johnston J, 2008, J PHYSIOL-LONDON, V586, P3493, DOI 10.1113/jphysiol.2008.153734 Johnston J, 2009, J NEUROSCI METH, V183, P158, DOI 10.1016/j.jneumeth.2009.06.025 JORIS PX, 1994, J NEUROPHYSIOL, V71, P1022 JORIS PX, 1994, J NEUROPHYSIOL, V71, P1037 Joris PX, 1998, J NEUROPHYSIOL, V79, P253 Joshi I, 2004, J NEUROSCI, V24, P183, DOI 10.1523/JNEUROSCI.1074-03.2004 Kajikawa Y, 2001, P NATL ACAD SCI USA, V98, P8054, DOI 10.1073/pnas.141031298 KARCZ A, 2011, J PHYSL Kimura M, 2003, J PHYSIOL-LONDON, V553, P415, DOI 10.1113/jphysiol.2003.048371 Klug A, 2006, J NEUROPHYSIOL, V96, P1547, DOI 10.1152/jn.01381.2005 Kopp-Scheinpflug C, 2008, NEUROSCIENCE, V154, P160, DOI 10.1016/j.neuroscience.2008.01.088 Kopp-Scheinpflug C, 2008, NEUROSCIENCE, V157, P432, DOI 10.1016/j.neuroscience.2008.08.068 Kopp-Scheinpflug C, 2003, JARO, V4, P1, DOI 10.1007/s10162-002-2010-5 Kopp-Scheinpflug C, 2002, J NEUROSCI, V22, P11004 Korogod N, 2005, J NEUROSCI, V25, P5127, DOI 10.1523/JNEUROSCI.1295-05.2005 Kushmerick C, 2004, J NEUROSCI, V24, P5955, DOI 10.1523/JNEUROSCI.0768-04.2004 KUWABARA N, 1991, J COMP NEUROL, V314, P707, DOI 10.1002/cne.903140406 Leao KE, 2010, EUR J NEUROSCI, V32, P1658, DOI 10.1111/j.1460-9568.2010.07437.x Leao RM, 2002, J NEUROPHYSIOL, V87, P2297, DOI 10.1152/jn.00761.2001 Leao RM, 2005, J NEUROSCI, V25, P3724, DOI 10.1523/JNEUROSCI.3983-04.2005 Lim R, 2000, J PHYSIOL-LONDON, V525, P447, DOI 10.1111/j.1469-7793.2000.t01-1-00447.x LIPPE WR, 1994, J NEUROSCI, V14, P1486 Lorteije JAM, 2009, J NEUROSCI, V29, P13770, DOI 10.1523/JNEUROSCI.3285-09.2009 Lu T, 2008, NEURON, V57, P524, DOI 10.1016/j.neuron.2007.12.010 Mc Laughlin M, 2008, J NEUROSCI, V28, P10206, DOI 10.1523/JNEUROSCI.2735-08.2008 Moulder KL, 2006, NEUROSCIENTIST, V12, P11, DOI 10.1177/1073858405282431 Neher E, 2006, PFLUG ARCH EUR J PHY, V453, P261, DOI 10.1007/s00424-006-0143-9 Paolini AG, 2001, HEARING RES, V159, P101, DOI 10.1016/S0378-5955(01)00327-6 PARADISO K, 2007, J VISUALIZED EXPT, V244 Price GD, 2006, J NEUROSCI, V26, P11432, DOI 10.1523/JNEUROSCI.1660-06.2006 Rasband MN, 2004, J NEUROSCI RES, V76, P749, DOI 10.1002/jnr.20073 Rasband MN, 2001, DEV BIOL, V236, P5, DOI 10.1006/dbio.2001.0326 Rhode WS, 2008, NEUROSCIENCE, V154, P87, DOI 10.1016/j.neuroscience.2008.03.013 Sakmann B, 2006, PFLUG ARCH EUR J PHY, V453, P249, DOI 10.1007/s00424-006-0172-4 Scheuss V, 2002, J NEUROSCI, V22, P728 SCHMIEDT RA, 1989, HEARING RES, V42, P23, DOI 10.1016/0378-5955(89)90115-9 Schneggenburger R, 2002, TRENDS NEUROSCI, V25, P206, DOI 10.1016/S0166-2236(02)02139-2 Schneggenburger R, 2006, CELL TISSUE RES, V326, P311, DOI 10.1007/s00441-006-0272-7 Smith PH, 1998, J NEUROPHYSIOL, V79, P3127 Song P, 2005, NAT NEUROSCI, V8, P1335, DOI 10.1038/nn1533 Spirou GA, 2008, NEUROSCIENCE, V154, P171, DOI 10.1016/j.neuroscience.2008.04.002 Steinert JR, 2010, J PHYSIOL-LONDON, V588, P447, DOI 10.1113/jphysiol.2009.184317 Steinert JR, 2008, NEURON, V60, P642, DOI 10.1016/j.neuron.2008.08.025 Steinert JR, 2010, NEUROSCIENTIST, V16, P435, DOI 10.1177/1073858410366481 Strumbos JG, 2010, NEUROSCIENCE, V167, P567, DOI 10.1016/j.neuroscience.2010.02.046 Taberner AM, 2005, J NEUROPHYSIOL, V93, P557, DOI 10.1152/jn.00574.2004 Takahashi T, 1998, J NEUROSCI, V18, P3138 Takahashi T, 1996, SCIENCE, V274, P594, DOI 10.1126/science.274.5287.594 Taschenberger H, 2000, J NEUROSCI, V20, P9162 Tollin DJ, 2005, J NEUROSCI, V25, P10648, DOI 10.1523/JNEUROSCI.1609-05.2005 Tolnai S, 2008, EUR J NEUROSCI, V27, P3191, DOI 10.1111/j.1460-9568.2008.06292.x Tritsch NX, 2007, NATURE, V450, P50, DOI 10.1038/nature06233 Turecek R, 2001, NATURE, V411, P587, DOI 10.1038/35079084 Typlt M, 2010, EUR J NEUROSCI, V31, P1574, DOI 10.1111/j.1460-9568.2010.07188.x Vacher H, 2008, PHYSIOL REV, V88, P1407, DOI 10.1152/physrev.00002.2008 Viitanen T, 2010, J PHYSIOL-LONDON, V588, P1527, DOI 10.1113/jphysiol.2009.181826 vonGersdorff H, 1997, J NEUROSCI, V17, P8137 WANG H, 1993, NATURE, V365, P75, DOI 10.1038/365075a0 Wang LY, 1998, J PHYSIOL-LONDON, V509, P183, DOI 10.1111/j.1469-7793.1998.183bo.x Wang Y, 2010, HEARING RES, V270, P101, DOI 10.1016/j.heares.2010.09.003 Weston MC, 2006, NAT STRUCT MOL BIOL, V13, P1120, DOI 10.1038/nsmb1178 Wong AYC, 2003, J NEUROSCI, V23, P4868 Wong AYC, 2006, J NEUROPHYSIOL, V95, P3336, DOI 10.1152/jn.jn.00694.2005 Yang H, 2009, J NEUROPHYSIOL, V102, P1699, DOI 10.1152/jn.00072.2009 Yang H, 2008, J NEUROPHYSIOL, V99, P2510, DOI 10.1152/jn.01293.2007 Young SM, 2009, NEURON, V63, P482, DOI 10.1016/j.neuron.2009.07.028 Youssoufian M, 2005, J NEUROPHYSIOL, V94, P3168, DOI 10.1152/jn.00342.2005 Zhou L, 2001, J NEUROPHYSIOL, V85, P197 NR 104 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2011 VL 279 IS 1-2 SI SI BP 22 EP 31 DI 10.1016/j.heares.2011.02.007 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 830OQ UT WOS:000295666700003 PM 21397677 ER PT J AU Brown, MR Kaczmarek, LK AF Brown, Maile R. Kaczmarek, Leonard K. TI Potassium channel modulation and auditory processing SO HEARING RESEARCH LA English DT Article ID X MENTAL-RETARDATION; AUTISM SPECTRUM DISORDERS; LATERAL SUPERIOR OLIVE; RAT MEDIAL NUCLEUS; FREQUENCY FIRING NEURONS; BRAIN-STEM NEURONS; TRAPEZOID BODY; DIFFERENTIAL EXPRESSION; PRESYNAPTIC TERMINALS; SYNAPTIC PLASTICITY AB For accurate processing of auditory information, neurons in auditory brainstem nuclei have to fire at high rates with high temporal accuracy. These two requirements can only be fulfilled when the intrinsic electrical properties of these neurons are matched to the pattern of incoming synaptic stimulation. This review article focuses on three families of potassium channels that are critical to shaping the firing pattern and accuracy of neurons. Changes in the auditory environment can trigger very rapid changes in the phosphorylation state of potassium channels in auditory brainstem nuclei. Longer lasting changes in the auditory environment produce changes in the rates of translation and transcription of genes encoding these channels. A key protein that plays a role in setting the overall sensitivity of the auditory system to sound stimuli is FMRP (Fragile X Mental Retardation Protein), which binds channels directly and also regulates the translation of mRNAs for the channels. (C) 2011 Elsevier B.V. All rights reserved. C1 [Kaczmarek, Leonard K.] Yale Univ, Sch Med, Dept Pharmacol, New Haven, CT 06520 USA. Yale Univ, Sch Med, Dept Cellular & Mol Physiol, New Haven, CT 06520 USA. RP Kaczmarek, LK (reprint author), Yale Univ, Sch Med, Dept Pharmacol, 333 Cedar St, New Haven, CT 06520 USA. EM leonard.kaczmarek@yale.edu CR Alcantara JI, 2004, J CHILD PSYCHOL PSYC, V45, P1107, DOI 10.1111/j.1469-7610.2004.t01-1-00303.x BANKS MI, 1992, J NEUROSCI, V12, P2819 Bassell GJ, 2008, NEURON, V60, P201, DOI 10.1016/j.neuron.2008.10.004 Bhattacharjee A, 2002, J COMP NEUROL, V454, P241, DOI 10.1002/cne.10439 Bhattacharjee A, 2003, J NEUROSCI, V23, P11681 Bhattacharjee Arin, 2005, J Comp Neurol, V484, P80, DOI 10.1002/cne.20462 Borst JGG, 1995, J PHYSIOL-LONDON, V489, P825 Borst JGG, 1996, NATURE, V383, P431, DOI 10.1038/383431a0 Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a Brew HM, 2005, HEARING RES, V206, P116, DOI 10.1016/j.heares.2004.12.012 Brew HM, 1995, J NEUROSCI, V15, P8011 Brew HM, 2003, J PHYSIOL-LONDON, V548, P1, DOI 10.1113/jphysiol.2002.035568 Brown MR, 2010, NAT NEUROSCI, V13, P819, DOI 10.1038/nn.2563 BROWNELL WE, 1975, BRAIN RES, V94, P413, DOI 10.1016/0006-8993(75)90226-7 Chen HJ, 2009, J NEUROSCI, V29, P5654, DOI 10.1523/JNEUROSCI.5978-08.2009 Cramer KS, 2005, HEARING RES, V206, P42, DOI 10.1016/j.heares.2004.11.024 Darnell JC, 2001, CELL, V107, P489, DOI 10.1016/S0092-8674(01)00566-9 Desai R, 2008, J BIOL CHEM, V283, P22283, DOI 10.1074/jbc.M801663200 Dodson PD, 2003, J PHYSIOL-LONDON, V550, P27, DOI 10.1113/jphysiol.2003.046250 Dodson PD, 2002, J NEUROSCI, V22, P6953 Fadool DA, 2004, NEURON, V41, P389, DOI 10.1016/S0896-6273(03)00844-4 FORSYTHE ID, 1994, J PHYSIOL-LONDON, V479, P381 Gan L, 1999, J NEUROCHEM, V73, P1350, DOI 10.1046/j.1471-4159.1999.0731350.x Gan L, 1998, J NEUROBIOL, V37, P69, DOI 10.1002/(SICI)1097-4695(199810)37:1<69::AID-NEU6>3.0.CO;2-6 Gan L, 1996, J BIOL CHEM, V271, P5859 Gazula VR, 2010, J COMP NEUROL, V518, P3205, DOI 10.1002/cne.22393 Grigg JJ, 2000, HEARING RES, V140, P77, DOI 10.1016/S0378-5955(99)00187-2 Hagerman RJ, 2009, PEDIATRICS, V123, P378, DOI 10.1542/peds.2008-0317 Hall SS, 2009, J NEURODEV DISORD, V1, P91, DOI 10.1007/s11689-009-9007-x HANSON DM, 1986, AM J MED GENET, V23, P195, DOI 10.1002/ajmg.1320230114 Hardman RM, 2009, J PHYSIOL-LONDON, V587, P2487, DOI 10.1113/jphysiol.2009.170548 Hille B., 2001, ION CHANNELS EXCITAB HODGKIN AL, 1952, J PHYSIOL-LONDON, V117, P500 Huber KM, 2002, P NATL ACAD SCI USA, V99, P7746, DOI 10.1073/pnas.122205699 Johnston J, 2010, J PHYSIOL-LONDON, V588, P3187, DOI 10.1113/jphysiol.2010.191973 Johnston J, 2008, J PHYSIOL-LONDON, V586, P3493, DOI 10.1113/jphysiol.2008.153734 Joiner WJ, 1998, NAT NEUROSCI, V1, P462, DOI 10.1038/2176 Joris PX, 1996, J NEUROPHYSIOL, V76, P2137 JORIS PX, 1995, J NEUROPHYSIOL, V73, P1043 Kaczmarek LK, 2005, HEARING RES, V206, P133, DOI 10.1016/j.heares.2004.11.023 Kaczmarek LK, 2010, J PHYSIOL-LONDON, V588, P1387, DOI 10.1113/jphysiol.2010.189712 Kaczmarek LK, 2006, NAT REV NEUROSCI, V7, P761, DOI 10.1038/nrn1988 KANEMASA T, 1995, J NEUROPHYSIOL, V74, P207 Kopp-Scheinpflug C, 2003, J NEUROSCI, V23, P9199 Kopp-Scheinpflug C, 2003, JARO, V4, P1, DOI 10.1007/s10162-002-2010-5 Laggerbauer B, 2001, HUM MOL GENET, V10, P329, DOI 10.1093/hmg/10.4.329 Leao KE, 2010, EUR J NEUROSCI, V32, P1658, DOI 10.1111/j.1460-9568.2010.07437.x Leao RN, 2006, J PHYSIOL-LONDON, V571, P563, DOI 10.1113/jphysiol.2005.098780 Li W, 2001, J COMP NEUROL, V437, P196, DOI 10.1002/cne.1279 Li ZZ, 2001, NUCLEIC ACIDS RES, V29, P2276, DOI 10.1093/nar/29.11.2276 Liu SQJ, 1998, J NEUROSCI, V18, P2881 Liu SQJ, 1998, J NEUROSCI, V18, P8758 Macica CM, 2003, J NEUROSCI, V23, P1133 Macica CM, 2001, J NEUROSCI, V21, P1160 MANIS PB, 1991, J NEUROSCI, V11, P2865 Martina M, 1998, J NEUROSCI, V18, P8111 Massengill JL, 1997, J NEUROSCI, V17, P3136 McDonald AJ, 2006, NEUROSCIENCE, V138, P537, DOI 10.1016/j.neuroscience.2005.11.047 Miller LJ, 1999, AM J MED GENET, V83, P268, DOI 10.1002/(SICI)1096-8628(19990402)83:4<268::AID-AJMG7>3.3.CO;2-B MOORE MJ, 1983, J NEUROSCI, V3, P237 MOREST D. KENT, 1968, BRAIN RES, V9, P288, DOI 10.1016/0006-8993(68)90235-7 Mossbridge JA, 2006, J NEUROSCI, V26, P12708, DOI 10.1523/JNEUROSCI.2254-06.2006 Munte TF, 2001, NATURE, V409, P580, DOI 10.1038/35054668 Nager W, 2003, COGNITIVE BRAIN RES, V17, P83, DOI 10.1016/S0926-6410(03)00083-1 Oertel D, 1999, ANNU REV PHYSIOL, V61, P497, DOI 10.1146/annurev.physiol.61.1.497 PERNEY TM, 1992, J NEUROPHYSIOL, V68, P756 Perney TM, 1997, J COMP NEUROL, V386, P178 Pfeiffer BE, 2009, NEUROSCIENTIST, V15, P549, DOI 10.1177/1073858409333075 Polley DB, 2006, J NEUROSCI, V26, P4970, DOI 10.1523/JNEUROSCI.3771-05.2006 Rathouz M, 1998, J NEUROPHYSIOL, V80, P2824 Russo N, 2009, DEVELOPMENTAL SCI, V12, P557, DOI 10.1111/j.1467-7687.2008.00790.x Russo N, 2009, J AUTISM DEV DISORD, V39, P1185, DOI 10.1007/s10803-009-0737-0 Russo NM, 2008, CLIN NEUROPHYSIOL, V119, P1720, DOI 10.1016/j.clinph.2008.01.108 Schneggenburger R, 2006, CELL TISSUE RES, V326, P311, DOI 10.1007/s00441-006-0272-7 Smith PH, 1998, J NEUROPHYSIOL, V79, P3127 Song P, 2005, NAT NEUROSCI, V8, P1335, DOI 10.1038/nn1533 Song P, 2006, J BIOL CHEM, V281, P15582, DOI 10.1074/jbc.M512866200 Steinert JR, 2008, NEURON, V60, P642, DOI 10.1016/j.neuron.2008.08.025 Strumbos JG, 2010, J NEUROSCI, V30, P10263, DOI 10.1523/JNEUROSCI.1125-10.2010 Strumbos JG, 2010, NEUROSCIENCE, V167, P567, DOI 10.1016/j.neuroscience.2010.02.046 SWANSON R, 1990, NEURON, V4, P929, DOI 10.1016/0896-6273(90)90146-7 Taschenberger H, 2002, NEURON, V36, P1127, DOI 10.1016/S0896-6273(02)01137-6 Taschenberger H, 2000, J NEUROSCI, V20, P9162 Tharpe AM, 2006, EAR HEARING, V27, P430, DOI 10.1097/01.aud.0000224981.60575.d8 Tong HX, 2010, J PHYSIOL-LONDON, V588, P1451, DOI 10.1113/jphysiol.2009.186676 Trussell LO, 1999, ANNU REV PHYSIOL, V61, P477, DOI 10.1146/annurev.physiol.61.1.477 von Hehn CAA, 2004, J NEUROSCI, V24, P1936, DOI 10.1523/JNEUROSCI.4554-03.2004 Wang LY, 1998, NATURE, V394, P384, DOI 10.1038/28645 Wang LY, 1998, P NATL ACAD SCI USA, V95, P1882, DOI 10.1073/pnas.95.4.1882 Wang LY, 1998, J PHYSIOL-LONDON, V509, P183, DOI 10.1111/j.1469-7793.1998.183bo.x WEISER M, 1995, J NEUROSCI, V15, P4298 WU SH, 1993, HEARING RES, V68, P189 Yang B, 2007, J NEUROSCI, V27, P2617, DOI 10.1523/JNEUROSCI5308-06.2007 Yang B, 2006, NEUROPHARMACOLOGY, V51, P896, DOI 10.1016/j.neuropharm.2006.06.003 Yuan A, 2003, NEURON, V37, P765, DOI 10.1016/S0896-6273(03)00096-5 Zukin RS, 2009, FRONT NEURAL CIRCUIT, V3, DOI 10.3389/neuro.04.014.2009 NR 96 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2011 VL 279 IS 1-2 SI SI BP 32 EP 42 DI 10.1016/j.heares.2011.03.004 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 830OQ UT WOS:000295666700004 PM 21414395 ER PT J AU Grothe, B Koch, U AF Grothe, Benedikt Koch, Ursula TI Dynamics of binaural processing in the mammalian sound localization pathway - The role of GABA(B) receptors SO HEARING RESEARCH LA English DT Article ID AUDITORY BRAIN-STEM; LATERAL SUPERIOR OLIVE; NUCLEUS MAGNOCELLULARIS NEURONS; INHIBITORY SYNAPTIC DEPRESSION; INTERAURAL TIME; TRAPEZOID BODY; MEDIAL NUCLEUS; GLYCINERGIC INHIBITION; COINCIDENCE DETECTION; GABAERGIC INHIBITION AB The initial binaural processing in the superior olive represents the fastest computation known in the entire mammalian brain. Although the binaural system has to perform under very different and often highly dynamic acoustic conditions, the integration of binaural information in the superior olivary complex (SOC) has not been considered to be adaptive or dynamic itself. Recent evidence, however, shows that the initial processing of interaural level and interaural time differences relies on well-adjusted interactions of both the excitatory and the inhibitory projections, respectively. Under static conditions, these inputs seem to be tightly balanced, but may also require dynamic adjustment for proper function when the acoustic environment changes. GABA(B) receptors are at least one mechanism rendering the system more dynamic than considered so far. A comprehensive description of how binaural processing in the SOC is dynamically regulated by GABA(B) receptors in adults and in early development is important for understanding how spatial auditory processing changes with acoustic context. (C) 2011 Published by Elsevier B.V. C1 [Grothe, Benedikt; Koch, Ursula] Univ Munich, Dept Biol 2, Div Neurobiol, D-82152 Martinsried, Germany. RP Grothe, B (reprint author), Univ Munich, Dept Biol 2, Div Neurobiol, Grosshaderner Str 2-4, D-82152 Martinsried, Germany. EM grothe@zi.biologie.uni-muenchen.de; koch@bio.uni-muenchen.de RI Grothe, Benedikt/A-7877-2010 CR ADAMS JC, 1990, HEARING RES, V49, P281, DOI 10.1016/0378-5955(90)90109-3 Balakrishnan V, 2003, J NEUROSCI, V23, P4134 Billups B, 2005, J PHYSIOL-LONDON, V565, P885, DOI 10.1113/jphysiol.2005.086736 Blauert J., 1996, SPATIAL HEARING Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a Brenowitz S, 1998, NEURON, V20, P135, DOI 10.1016/S0896-6273(00)80441-9 Burger RM, 2005, J COMP NEUROL, V489, P11, DOI 10.1002/cne.20607 Burger RM, 2005, J COMP NEUROL, V481, P6, DOI 10.1002/ce.20334 CANT NB, 1992, HEARING RES, V58, P26, DOI 10.1016/0378-5955(92)90005-8 Caspary DM, 2008, J EXP BIOL, V211, P1781, DOI 10.1242/jeb.013581 CHANDA S, 2010, J NEUROPHYSIOL, V103, P2063 Chang EH, 2003, J NEUROPHYSIOL, V90, P1479, DOI 10.1152/jn.00386.2003 Couchman K, 2010, J NEUROSCI, V30, P17111, DOI 10.1523/JNEUROSCI.1760-10.2010 Dahmen JC, 2010, NEURON, V66, P937, DOI 10.1016/j.neuron.2010.05.018 Finlayson PG, 1997, HEARING RES, V103, P1, DOI 10.1016/S0378-5955(96)00158-X Fukui I, 2010, J NEUROSCI, V30, P12075, DOI 10.1523/JNEUROSCI.1484-10.2010 Funabiki K, 1998, J PHYSIOL-LONDON, V508, P851, DOI 10.1111/j.1469-7793.1998.851bp.x GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 GROTHE B, 1993, J NEUROPHYSIOL, V69, P1192 Grothe B, 2010, PHYSIOL REV, V90, P983, DOI 10.1152/physrev.00026.2009 HARNISCHFEGER G, 1985, J NEUROPHYSIOL, V53, P89 Hassfurth B, 2010, J NEUROSCI, V30, P9715, DOI 10.1523/JNEUROSCI.1552-10.2010 HEISE I, 2005, SOC NEUR M 2005 HELFERT RH, 1989, BRAIN RES, V501, P269, DOI 10.1016/0006-8993(89)90644-6 Hermann J, 2007, J NEUROPHYSIOL, V98, P807, DOI 10.1152/jn.00355.2007 Hirono M, 2001, NAT NEUROSCI, V4, P1207, DOI 10.1038/nn764 HUANG HY, 1989, EUR J PHARMACOL, V169, P115 Isaacson JS, 1998, J NEUROPHYSIOL, V80, P1571 Joris P, 2007, TRENDS NEUROSCI, V30, P70, DOI 10.1016/j.tins.2006.12.004 Kakazu Y, 1999, J NEUROSCI, V19, P2843 KANDLER K, 1995, J NEUROSCI, V15, P6890 Kapfer C, 2002, NAT NEUROSCI, V5, P247, DOI 10.1038/mm810 Karayannis T, 2010, J NEUROSCI, V30, P9898, DOI 10.1523/JNEUROSCI.5883-09.2010 KISS A, 1983, EXP BRAIN RES, V52, P315 Koch U, 2009, CURR OPIN NEUROBIOL, V19, P305, DOI 10.1016/j.conb.2009.03.006 Kopp-Scheinpflug C, 2008, NEUROSCIENCE, V154, P160, DOI 10.1016/j.neuroscience.2008.01.088 Kopp-Scheinpflug C, 2003, JARO, V4, P1, DOI 10.1007/s10162-002-2010-5 Korada S, 1999, J COMP NEUROL, V409, P664, DOI 10.1002/(SICI)1096-9861(19990712)409:4<664::AID-CNE10>3.0.CO;2-S Kornau HC, 2006, CELL TISSUE RES, V326, P517, DOI 10.1007/s00441-006-0264-7 Kotak VC, 2000, J NEUROSCI, V20, P5820 Kotak VC, 1998, J NEUROSCI, V18, P4646 Kotak VC, 2001, J NEUROPHYSIOL, V86, P536 Kullmann PHM, 2002, EUR J NEUROSCI, V15, P1093, DOI 10.1046/j.1460-9568.2002.01946.x Lee S, 2010, SCIENCE, V330, P790, DOI 10.1126/science.1184334 Lim R, 2000, J PHYSIOL-LONDON, V525, P447, DOI 10.1111/j.1469-7793.2000.t01-1-00447.x Lohrke S, 2005, EUR J NEUROSCI, V22, P2708, DOI 10.1111/j.1460-9568.2005.04465.x Lorteije JAM, 2009, J NEUROSCI, V29, P13770, DOI 10.1523/JNEUROSCI.3285-09.2009 Lu Y, 2005, J NEUROPHYSIOL, V93, P1429, DOI 10.1152/jn.00786.2004 Magnusson AK, 2005, J PHYSIOL-LONDON, V568, P497, DOI 10.1113/jphysiol.2005.094763 Magnusson AK, 2008, NEURON, V59, P125, DOI 10.1016/j.neuron.2008.05.011 Mc Laughlin M, 2008, J NEUROSCI, V28, P10206, DOI 10.1523/JNEUROSCI.2735-08.2008 Meffin H, 2009, J ACOUST SOC AM, V126, P2437, DOI 10.1121/1.3238239 Monsivais P, 2000, J NEUROSCI, V20, P2954 MOORE MJ, 1983, J NEUROSCI, V3, P237 Nabekura J, 2004, NAT NEUROSCI, V7, P17, DOI 10.1038/nn1170 Nishimaki T, 2007, EUR J NEUROSCI, V26, P323, DOI 10.1111/j.1460-9568.2007.05656.x Nishino E, 2008, J NEUROSCI, V28, P7153, DOI 10.1523/JNEUROSCI.4398-07.2008 Olah S, 2009, NATURE, V461, P1278, DOI 10.1038/nature08503 Park TJ, 2008, HEARING RES, V238, P58, DOI 10.1016/j.heares.2007.10.009 Park TJ, 1996, J NEUROSCI, V16, P6554 Pecka M, 2008, J NEUROSCI, V28, P6914, DOI 10.1523/JNEUROSCI.1660-08.2008 Rives ML, 2009, EMBO J, V28, P2195, DOI 10.1038/emboj.2009.177 ROBERTS RC, 1987, J COMP NEUROL, V258, P267, DOI 10.1002/cne.902580207 Sakaba T, 2003, NATURE, V424, P775, DOI 10.1038/nature01859 SCHWARTZ IR, 1976, ANAT REC, V184 Smith AJ, 2000, J PHYSIOL-LONDON, V529, P681, DOI 10.1111/j.1469-7793.2000.00681.x Sodickson DL, 1996, J NEUROSCI, V16, P6374 Sonntag M, 2009, J NEUROSCI, V29, P9510, DOI 10.1523/JNEUROSCI.1377-09.2009 Spirou GA, 1998, J COMP NEUROL, V398, P257, DOI 10.1002/(SICI)1096-9861(19980824)398:2<257::AID-CNE7>3.0.CO;2-# Takahashi T, 1998, J NEUROSCI, V18, P3138 Tang ZQ, 2009, J NEUROPHYSIOL, V102, P1672, DOI 10.1152/jn.00419.2009 Tollin DJ, 2005, J NEUROSCI, V25, P10648, DOI 10.1523/JNEUROSCI.1609-05.2005 Ulrich D, 2007, CURR OPIN NEUROBIOL, V17, P298, DOI 10.1016/j.conb.2007.04.001 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 NR 74 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2011 VL 279 IS 1-2 SI SI BP 43 EP 50 DI 10.1016/j.heares.2011.03.013 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 830OQ UT WOS:000295666700005 PM 21447375 ER PT J AU Klug, A AF Klug, Achim TI Short-term synaptic plasticity in the auditory brain stem by using in-vivo-like stimulation parameters SO HEARING RESEARCH LA English DT Article ID TRANSMITTER RELEASE RATES; ANTEROVENTRAL COCHLEAR NUCLEUS; SUPERIOR OLIVARY COMPLEX; NATURAL SPIKE TRAINS; CAT TRAPEZOID BODY; CALYX-TYPE SYNAPSE; HELD SYNAPSE; MEDIAL NUCLEUS; POSTTETANIC POTENTIATION; GLUTAMATE RECEPTORS AB Reduced systems such as brain slices offer a powerful approach to study the physiology of auditory neurons in great detail. However, when studying auditory nuclei in reduced systems such as brain slices, especially highly active auditory brain stem nuclei, one has to be aware that the unphysiological lack of activity in the reduced system compared to the in-vivo situation has a number of important effects on the neurons under investigation, and thus on the data that are measured. Most importantly, the lack of chronic activity in the slice preparation has important effects on the properties of short-term plasticity of the synapses. The main purpose of this article is to discuss how spontaneous activity in auditory neurons, or the lack thereof, can affect the data measured. (C) 2011 Elsevier B.V. All rights reserved. C1 Univ Colorado Denver, Dept Physiol & Biophys, Aurora, CO 80045 USA. RP Klug, A (reprint author), Univ Colorado Denver, Dept Physiol & Biophys, POB 6511,MS 8307, Aurora, CO 80045 USA. EM Achim.klug@ucdenver.edu CR BARNESDAVIES M, 1995, J PHYSIOL-LONDON, V488, P387 BETZ WJ, 1970, J PHYSIOL-LONDON, V206, P629 Bollmann JH, 2000, SCIENCE, V289, P953, DOI 10.1126/science.289.5481.953 Borst JGG, 1999, J PHYSIOL-LONDON, V521, P123, DOI 10.1111/j.1469-7793.1999.00123.x Borst JGG, 2010, TRENDS NEUROSCI, V33, P259, DOI 10.1016/j.tins.2010.03.003 Borst JGG, 1996, NATURE, V383, P431, DOI 10.1038/383431a0 Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a BROWNELL WE, 1975, BRAIN RES, V94, P413, DOI 10.1016/0006-8993(75)90226-7 BRUGGE JF, 1978, ANNU REV NEUROSCI, V1, P363, DOI 10.1146/annurev.ne.01.030178.002051 Burnashev N, 2005, CELL CALCIUM, V37, P489, DOI 10.1016/j.ceca.2005.01.003 CAIRD D, 1983, EXP BRAIN RES, V52, P385 Cheng Q, 2008, NEURON, V57, P171, DOI 10.1016/j.neuron.2008.01.004 de Lange RPJ, 2003, J NEUROSCI, V23, P10164 Dittman J, 2009, ANNU REV CELL DEV BI, V25, P133, DOI 10.1146/annurev.cellbio.042308.113302 Evans MG, 2006, J PHYSIOL-LONDON, V576, P3, DOI 10.1113/jphysiol.2006.118927 Forsythe ID, 1998, NEURON, V20, P797, DOI 10.1016/S0896-6273(00)81017-X Fuchs P, 2008, J NEUROPHYSIOL, V100, P1695, DOI 10.1152/jn.90838.2008 GEISLER CD, 1985, J ACOUST SOC AM, V77, P1102, DOI 10.1121/1.392228 GOLDBERG JAY M., 1968, J NEUROPHYSIOL, V31, P639 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 GOLDBERG JM, 1973, BRAIN RES, V64, P35, DOI 10.1016/0006-8993(73)90169-8 Groemer TW, 2007, NAT NEUROSCI, V10, P145, DOI 10.1038/nn1831 Habets RLP, 2006, J NEUROPHYSIOL, V96, P2868, DOI 10.1152/jn.00427.2006 Habets RLP, 2005, J PHYSIOL-LONDON, V564, P173, DOI 10.1113/jphysiol.2004.079160 Heil P, 2007, J NEUROSCI, V27, P8457, DOI 10.1523/JNEUROSCI.1512-07.2007 Hennig MH, 2008, J PHYSIOL-LONDON, V586, P3129, DOI 10.1113/jphysiol.2008.152124 Hermann J, 2007, J NEUROPHYSIOL, V98, P807, DOI 10.1152/jn.00355.2007 Hermann J, 2009, J NEUROPHYSIOL, V101, P20, DOI 10.1152/jn.90243.2008 Hosoi N, 2007, J NEUROSCI, V27, P14286, DOI 10.1523/JNEUROSCI.4122-07.2007 HUDSPETH AJ, 1994, NEURON, V12, P1, DOI 10.1016/0896-6273(94)90147-3 HUDSPETH AJ, 1989, NATURE, V341, P397, DOI 10.1038/341397a0 Hudspeth AJ, 1997, NEURON, V19, P947, DOI 10.1016/S0896-6273(00)80385-2 IRVINE DRF, 1992, PHYSL AUDITORY BRAIN, V2, P153 Jahn R, 2006, NAT REV MOL CELL BIO, V7, P631, DOI 10.1038/nrm2002 JAHN R, 1990, J PHYSIOL-PARIS, V84, P128 JONES HC, 1988, J PHYSIOL-LONDON, V402, P579 JONES HC, 1992, PROG BRAIN RES, V91, P123 JORIS PX, 1994, J NEUROPHYSIOL, V71, P1022 Kadner A, 2006, J NEUROPHYSIOL, V95, P1499, DOI 10.1152/jn.00902.2005 Kandaswamy U, 2010, J NEUROSCI, V30, P15904, DOI 10.1523/JNEUROSCI.4050-10.2010 KATZ B, 1965, PROC R SOC SER B-BIO, V161, P483, DOI 10.1098/rspb.1965.0016 Kiang NY-s, 1965, DISCHARGE PATTERNS S Klug Achim, 2006, P132 Klyachko VA, 2006, PLOS BIOL, V4, P1187, DOI 10.1371/journal.pbio.0040207 Kopp-Scheinpflug C, 2003, JARO, V4, P1, DOI 10.1007/s10162-002-2010-5 Korogod N, 2005, J NEUROSCI, V25, P5127, DOI 10.1523/JNEUROSCI.1295-05.2005 Kushmerick C, 2006, J NEUROSCI, V26, P1366, DOI 10.1523/JNEUROSCI.3889-05.2006 Kushmerick C, 2004, J NEUROSCI, V24, P5955, DOI 10.1523/JNEUROSCI.0768-04.2004 Lang Thorsten, 2008, V184, P107 Lee JS, 2008, J NEUROSCI, V28, P7945, DOI 10.1523/JNEUROSCI.2165-08.2008 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 LILEY AW, 1953, J NEUROPHYSIOL, V16, P509 LoGiudice L, 2007, TRAFFIC, V8, P1123, DOI 10.1111/j.1600-0854.2007.00591.x Lorteije JAM, 2009, J NEUROSCI, V29, P13770, DOI 10.1523/JNEUROSCI.3285-09.2009 MacLeod KM, 2007, J NEUROPHYSIOL, V97, P2863, DOI 10.1152/jn.01030.2006 Mc Laughlin M, 2008, J NEUROSCI, V28, P10206, DOI 10.1523/JNEUROSCI.2735-08.2008 Meyer AC, 2001, J NEUROSCI, V21, P7889 MOORE MJ, 1983, J NEUROSCI, V3, P237 Muller M, 2008, J PHYSIOL-LONDON, V586, P5503, DOI 10.1113/jphysiol.2008.155838 Muller M, 2010, J NEUROSCI, V30, P2007, DOI 10.1523/JNEUROSCI.4378-09.2010 Neher E, 2001, J NEUROSCI, V21, P444 Neher E, 2008, NEURON, V59, P861, DOI 10.1016/j.neuron.2008.08.019 Neher E, 2001, J NEUROSCI, V21, P9638 Postlethwaite M, 2007, J PHYSIOL-LONDON, V579, P69, DOI 10.1113/jphysiol.2006.123612 Rizzoli SO, 2005, NAT REV NEUROSCI, V6, P57, DOI 10.1038/nrn1583 ROBERTS WM, 1988, ANNU REV CELL BIOL, V4, P63, DOI 10.1146/annurev.cb.04.110188.000431 Sakaba T, 2001, J NEUROSCI, V21, P462 Sakaba T, 2001, NEURON, V32, P1119, DOI 10.1016/S0896-6273(01)00543-8 Satzler K, 2002, J NEUROSCI, V22, P10567 Schneggenburger R, 2000, NATURE, V406, P889, DOI 10.1038/35022702 Schneggenburger R, 1999, NEURON, V23, P399, DOI 10.1016/S0896-6273(00)80789-8 Schneggenburger R, 2005, CURR OPIN NEUROBIOL, V15, P266, DOI 10.1016/j.conb.2005.05.006 Schneggenburger R, 2002, TRENDS NEUROSCI, V25, P206, DOI 10.1016/S0166-2236(02)02139-2 Schneggenburger R, 2006, CELL TISSUE RES, V326, P311, DOI 10.1007/s00441-006-0272-7 Schwarz DWF, 1997, HEARING RES, V114, P127, DOI 10.1016/S0378-5955(97)00162-7 Smith PH, 1998, J NEUROPHYSIOL, V79, P3127 Smith SM, 2008, TRENDS NEUROSCI, V31, P559, DOI 10.1016/j.tins.2008.08.005 SOMMER I, 1993, EXP BRAIN RES, V95, P223 SPANGLER KM, 1985, J COMP NEUROL, V238, P249, DOI 10.1002/cne.902380302 Spirou GA, 2005, NEUROSCIENCE, V136, P843, DOI 10.1016/j.neuroscience.2005.08.068 SPIROU GA, 1990, J NEUROPHYSIOL, V63, P1169 SUDHOF TC, 1993, PROG BRAIN RES, V98, P235 Sun JY, 2001, NEURON, V30, P171, DOI 10.1016/S0896-6273(01)00271-9 Taschenberger H, 2002, NEURON, V36, P1127, DOI 10.1016/S0896-6273(02)01137-6 Taschenberger H, 2000, J NEUROSCI, V20, P9162 Trommershauser J, 2003, BIOPHYS J, V84, P1563 TRUSSELL LO, 1988, P NATL ACAD SCI USA, V85, P4562, DOI 10.1073/pnas.85.12.4562-a TRUSSELL LO, 1989, NEURON, V3, P209, DOI 10.1016/0896-6273(89)90034-2 Trussell LO, 1999, ANNU REV PHYSIOL, V61, P477, DOI 10.1146/annurev.physiol.61.1.477 Trussell LO, 2002, CURR OPIN NEUROBIOL, V12, P400, DOI 10.1016/S0959-4388(02)00335-5 Tsujimoto T, 2002, SCIENCE, V295, P2276, DOI 10.1126/science.1068278 vonGersdorff H, 1997, J NEUROSCI, V17, P8137 von Gersdorff H, 2002, NAT REV NEUROSCI, V3, P53, DOI 10.1038/nrn705 Wang LY, 1998, NATURE, V394, P384, DOI 10.1038/28645 Wang Y, 2010, HEARING RES, V270, P101, DOI 10.1016/j.heares.2010.09.003 Wang Y, 2008, J NEUROPHYSIOL, V100, P1255, DOI 10.1152/jn.90715.2008 Weis S, 1999, BIOPHYS J, V77, P2418, DOI 10.1016/S0006-3495(99)77079-7 Wilkinson RS, 2004, TRENDS NEUROSCI, V27, P171, DOI 10.1016/j.tins.2004.01.011 Wong AYC, 2003, J NEUROSCI, V23, P4868 Wu LG, 1999, NEURON, V23, P821, DOI 10.1016/S0896-6273(01)80039-8 WU SH, 1993, HEARING RES, V68, P189 XUE L, 2010, J PHYSL Yost W. A., 2008, SPRINGER HDB AUDITOR, V29 NR 103 TC 3 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2011 VL 279 IS 1-2 SI SI BP 51 EP 59 DI 10.1016/j.heares.2011.05.011 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 830OQ UT WOS:000295666700006 PM 21640177 ER PT J AU Reyes, AD AF Reyes, Alex D. TI Synaptic short-term plasticity in auditory cortical circuits SO HEARING RESEARCH LA English DT Article ID PRIMARY VISUAL-CORTEX; NEOCORTICAL PYRAMIDAL NEURONS; IN-VITRO; THALAMOCORTICAL SYNAPSES; NEUROTRANSMITTER RELEASE; GAIN-CONTROL; LAYER 2/3; DEPRESSION; RAT; MODULATION AB The auditory system must be able to adapt to changing acoustic environment and still maintain accurate representation of signals. Mechanistically, this is a difficult task because the responsiveness of a large heterogeneous population of interconnected neurons must be adjusted properly and precisely. Synaptic short-term plasticity (STP) is widely regarded as a viable mechanism for adaptive processes. Although the cellular mechanism for STP is well characterized, the overall effect on information processing at the network level is poorly understood. The main challenge is that there are many cell types in auditory cortex, each of which exhibit different forms and degrees of STP. In this article, I will review the basic properties of STP in auditory cortical circuits and discuss the possible impact on signal processing. (C) 2011 Elsevier B.V. All rights reserved. C1 NYU, Ctr Neural Sci, New York, NY 10003 USA. RP Reyes, AD (reprint author), NYU, Ctr Neural Sci, New York, NY 10003 USA. EM reyes@cns.nyu.edu FU NIH [DC005787-01A1] FX Supported by NIH DC005787-01A1. The author wishes to thank R.B. Levy for helpful comments. CR Abbott LF, 1997, SCIENCE, V275, P220 Abbott LF, 2004, NATURE, V431, P796, DOI 10.1038/nature03010 Ascoli GA, 2008, NAT REV NEUROSCI, V9, P557, DOI 10.1038/nrn2402 Atzori M, 2001, NAT NEUROSCI, V4, P1230, DOI 10.1038/nn760 Bartlett EL, 2005, J NEUROPHYSIOL, V94, P83, DOI 10.1152/jn.01124.2004 Borst JGG, 2010, TRENDS NEUROSCI, V33, P259, DOI 10.1016/j.tins.2010.03.003 Boudreau CE, 2005, J NEUROSCI, V25, P7179, DOI 10.1523/JNEUROSCI.1445-05.2005 Brosch M, 1999, J NEUROPHYSIOL, V82, P1542 Brosch M, 2000, CEREB CORTEX, V10, P1155, DOI 10.1093/cercor/10.12.1155 Castro-Alamancos MA, 2002, J PHYSIOL-LONDON, V541, P319, DOI 10.1113/jphysiol.2002.016857 Chattopadhyaya B, 2004, J NEUROSCI, V24, P9598, DOI 10.1523/JNEUROSCI.1851-04.2004 Cook DL, 2003, NATURE, V421, P66, DOI 10.1038/nature01248 CREUTZFELDT O, 1980, EXP BRAIN RES, V39, P87 Cruikshank SJ, 2001, NEUROSCIENCE, V105, P553, DOI 10.1016/S0306-4522(01)00226-3 Cruikshank SJ, 2002, J NEUROPHYSIOL, V87, P361 David SV, 2009, J NEUROSCI, V29, P3374, DOI 10.1523/JNEUROSCI.5249-08.2009 de la Rocha J, 2008, J NEUROSCI, V28, P9151, DOI 10.1523/JNEUROSCI.1789-08.2008 Hromadka T, 2008, PLOS BIOL, V6, P124, DOI 10.1371/journal.pbio.0060016 Dittman JS, 2000, J NEUROSCI, V20, P1374 Eggermont JJ, 1999, J NEUROSCI, V19, P2780 Ehret G, 1976, J Am Audiol Soc, V1, P179 Feldmeyer D, 2006, J PHYSIOL-LONDON, V575, P583, DOI 10.1113/jphysiol.2006.105106 Hsieh CY, 2000, BRAIN RES, V880, P51, DOI 10.1016/S0006-8993(00)02766-9 KAWAGUCHI Y, 1995, J NEUROSCI, V15, P2638 Lee CC, 2008, J NEUROPHYSIOL, V100, P317, DOI 10.1152/jn.90391.2008 Levy RB, 2008, BRAIN RES, V1215, P97, DOI 10.1016/j.brainres.2008.03.067 LEVY RB, 2009, SOC NEUR ABST Ma YY, 2006, J NEUROSCI, V26, P5069, DOI 10.1523/JNEUROSCI.0661-06.2006 Malone BJ, 2002, J NEUROSCI, V22, P4625 Markram H, 1998, P NATL ACAD SCI USA, V95, P5323, DOI 10.1073/pnas.95.9.5323 Markram H, 1998, NEUROBIOL LEARN MEM, V70, P101, DOI 10.1006/nlme.1998.3841 McGarry LM, 2010, FRONT NEURAL CIRCUIT, V4, DOI 10.3389/fncir.2010.00012 Metherate R, 1999, EXP BRAIN RES, V126, P160, DOI 10.1007/s002210050726 Naud R, 2008, BIOL CYBERN, V99, P335, DOI 10.1007/s00422-008-0264-7 Neher E, 2008, NEURON, V59, P861, DOI 10.1016/j.neuron.2008.08.019 OSWALD AM, 2010, CEREB CORTEX Oswald AMM, 2009, J NEUROSCI, V29, P10321, DOI 10.1523/JNEUROSCI.1703-09.2009 Oswald AMM, 2008, J NEUROPHYSIOL, V99, P2998, DOI 10.1152/jn.01160.2007 Oswald AMM, 2006, CURR OPIN NEUROBIOL, V16, P371, DOI 10.1016/j.conb.2006.06.015 Recanzone GH, 2000, HEARING RES, V150, P104, DOI 10.1016/S0378-5955(00)00194-5 Reig R, 2006, CEREB CORTEX, V16, P688, DOI 10.1093/cercor/bhj014 Reyes A, 1999, J NEUROSCI, V19, P3827 Reyes A, 1998, NAT NEUROSCI, V1, P279 Rose HJ, 2001, NEUROSCIENCE, V106, P331, DOI 10.1016/S0306-4522(01)00282-2 Rose HJ, 2005, J NEUROPHYSIOL, V94, P2019, DOI 10.1152/jn.00860.2004 Rothman JS, 2009, NATURE, V457, P1015, DOI 10.1038/nature07604 Salgado H, 2011, HEARING RES, V271, P26, DOI 10.1016/j.heares.2010.08.014 SALGADO H, 2010, CEREB CORTEX, V21, P212 Takesian AE, 2010, J NEUROSCI, V30, P2716, DOI 10.1523/JNEUROSCI.3903-09.2010 Tan AYY, 2004, J NEUROPHYSIOL, V92, P630, DOI 10.1152/jn.01020.2003 Tan AYY, 2009, NEUROSCIENCE, V163, P1302, DOI 10.1016/j.neuroscience.2009.07.032 Tan AYY, 2007, NEUROSCIENCE, V146, P449, DOI 10.1016/j.neuroscience.2007.01.019 Theyel BB, 2010, NEUROREPORT, V21, P861, DOI 10.1097/WNR.0b013e32833d7cec Thomson AM, 2002, CEREB CORTEX, V12, P936, DOI 10.1093/cercor/12.9.936 Tsodyks MV, 1997, P NATL ACAD SCI USA, V94, P719, DOI 10.1073/pnas.94.2.719 Varela JA, 1997, J NEUROSCI, V17, P7926 Viaene AN, 2011, J NEUROPHYSIOL, V105, P279, DOI 10.1152/jn.00747.2010 WATKINS PV, 2010, HEAR RES Wehr M, 2005, NEURON, V47, P437, DOI 10.1016/j.neuron.2005.06.009 Xu H, 2007, J NEUROSCI, V27, P9417, DOI 10.1523/JNEUROSCI.1992-07.2007 Zhang LI, 2003, NATURE, V424, P201, DOI 10.1038/nature01796 Zucker RS, 2002, ANNU REV PHYSIOL, V64, P355, DOI 10.1146/annurev.physiol.64.092501.114547 NR 62 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2011 VL 279 IS 1-2 SI SI BP 60 EP 66 DI 10.1016/j.heares.2011.04.017 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 830OQ UT WOS:000295666700007 PM 21586318 ER PT J AU Zhao, YJ Rubio, M Tzounopoulos, T AF Zhao, Yanjun Rubio, Maria Tzounopoulos, Thanos TI Mechanisms underlying input-specific expression of endocannabinoid-mediated synaptic plasticity in the dorsal cochlear nucleus SO HEARING RESEARCH LA English DT Article ID TIMING-DEPENDENT PLASTICITY; DEPOLARIZATION-INDUCED SUPPRESSION; CEREBELLAR PURKINJE-CELLS; ENDOGENOUS CANNABINOIDS; GLUTAMATE RECEPTORS; PYRAMIDAL CELLS; DIFFERENTIAL DISTRIBUTION; SYNAPSES; NEURONS; INHIBITION AB A hallmark of brain organization is the integration of primary and modulatory pathways by principal neurons. Primary sensory inputs are usually not plastic, while modulatory inputs converging to the same principal neuron can be plastic. However, the mechanisms determining this input-specific expression of synaptic plasticity remain unknown. We investigated this problem in the dorsal cochlear nucleus (DCN), where principal cells integrate primary auditory nerve input with plastic, parallel fiber input. Our previous DCN studies have shown that parallel fiber inputs exhibit short- and long-term plasticities mediated by endocannabinoid signaling. Here we show that auditory nerve inputs to principal cells do not show short- or long-term endocannabinoid-mediated synaptic plasticity. Electrophysiological and electron microscopy studies indicate that input specificity arises from selective expression of presynaptic cannabinoid (CBI) receptors in parallel fiber terminals, but not in auditory nerve terminals. However, pairing of parallel fiber activity with auditory nerve activity elicits plasticity in parallel fiber inputs, thus suggesting a role for synaptic plasticity in multisensory integration. (C) 2011 Elsevier B.V. All rights reserved. C1 [Zhao, Yanjun; Rubio, Maria; Tzounopoulos, Thanos] Univ Pittsburgh, Sch Med, Dept Otolaryngol, Pittsburgh, PA 15261 USA. [Rubio, Maria; Tzounopoulos, Thanos] Univ Pittsburgh, Sch Med, Dept Neurobiol, Pittsburgh, PA 15261 USA. [Tzounopoulos, Thanos] Univ Pittsburgh & Carnegie Mellon, Ctr Neural Basis Cognit, Pittsburgh, PA 15213 USA. RP Tzounopoulos, T (reprint author), Univ Pittsburgh, Sch Med, Dept Otolaryngol, Biomed Sci Tower 3,3501 5h Ave,Room 10021, Pittsburgh, PA 15261 USA. EM thanos@pitt.edu FU National Institute for Deafness and Communication Disorders [R01 DC-007905] FX This work was supported by National Institute for Deafness and Communication Disorders Grants R01 DC-007905 to T. Tzounopoulos and DC-006881 to M. Rubio. CR Amaral D G, 1993, Curr Opin Neurobiol, V3, P225, DOI 10.1016/0959-4388(93)90214-J Bastian J, 2004, NEURON, V41, P767, DOI 10.1016/S0896-6273(04)00071-6 Bell CC, 1997, NATURE, V387, P278, DOI 10.1038/387278a0 Berman NJ, 1999, J EXP BIOL, V202, P1243 Brenowitz SD, 2006, J NEUROSCI, V26, P6841, DOI 10.1523/JNEUROSCI.1280-06.2006 Chevaleyre V, 2006, ANNU REV NEUROSCI, V29, P37, DOI 10.1146/annurev.neuro.29.051605.112834 COLBERT CM, 1992, J NEUROPHYSIOL, V68, P1 Crick F, 1998, NATURE, V391, P245, DOI 10.1038/34584 Dan Y, 2006, PHYSIOL REV, V86, P1033, DOI 10.1152/physrev.00030.2005 DOLLER HJ, 1985, BRAIN RES, V333, P305, DOI 10.1016/0006-8993(85)91584-7 Doucet JR, 2003, J COMP NEUROL, V461, P452, DOI 10.1002/cne.10722 Feldman DE, 2005, SCIENCE, V310, P810, DOI 10.1126/science.1115807 Freund TF, 2003, PHYSIOL REV, V83, P1017, DOI 10.1152/physrev.00004.2003 Fujino K, 2003, P NATL ACAD SCI USA, V100, P265, DOI 10.1073/pnas.0135345100 Fukudome Y, 2004, EUR J NEUROSCI, V19, P2682, DOI 10.1111/j.1460-9568.2004.03384.x Harvey-Girard E, 2010, J NEUROSCI, V30, P6152, DOI 10.1523/JNEUROSCI.0303-10.2010 Hashimotodani Y, 2007, NEUROSCIENTIST, V13, P127, DOI 10.1177/1073858409296716 Ito M, 2001, PHYSIOL REV, V81, P1143 KANE EC, 1974, ANAT REC, V179, P67, DOI 10.1002/ar.1091790106 Kim J, 2002, J NEUROSCI, V22, P10182 Kreitzer AC, 2001, NEURON, V29, P717, DOI 10.1016/S0896-6273(01)00246-X Kreitzer AC, 2001, J NEUROSCI, V21, part. no. Larkum ME, 2009, SCIENCE, V325, P756, DOI 10.1126/science.1171958 LLANO I, 1991, NEURON, V6, P565, DOI 10.1016/0896-6273(91)90059-9 MANIS PB, 1994, J COMP NEUROL, V348, P261, DOI 10.1002/cne.903480208 Markram H, 1998, P NATL ACAD SCI USA, V95, P5323, DOI 10.1073/pnas.95.9.5323 Narushima M, 2007, J NEUROSCI, V27, P496, DOI 10.1523/JNEUROSCI.4644-06.2007 OERTEL D, 1990, J COMP NEUROL, V295, P136, DOI 10.1002/cne.902950112 Oertel D, 2004, TRENDS NEUROSCI, V27, P104, DOI 10.1016/j.tins.2003.12.001 Ohno-Shosaku T, 2002, EUR J NEUROSCI, V15, P953, DOI 10.1046/j.1460-9568.2002.01929.x Ohno-Shosaku T, 2001, NEURON, V29, P729, DOI 10.1016/S0896-6273(01)00247-1 Petreanu L, 2009, NATURE, V457, P1142, DOI 10.1038/nature07709 Piomelli D, 2003, NAT REV NEUROSCI, V4, P873, DOI 10.1038/nrn1247 PITLER TA, 1994, NEURON, V13, P1447 Pouille F, 2004, NATURE, V429, P717, DOI 10.1038/nature02615 Reyes A, 1998, NAT NEUROSCI, V1, P279 Rozov A, 2001, J PHYSIOL-LONDON, V531, P807, DOI 10.1111/j.1469-7793.2001.0807h.x Rubio ME, 2004, J COMP NEUROL, V477, P253, DOI 10.1002/cne.20249 Rubio ME, 2006, HEARING RES, V216, P154, DOI 10.1016/j.heares.2006.03.007 Rubio ME, 1997, NEURON, V18, P939, DOI 10.1016/S0896-6273(00)80333-5 Rubio ME, 1999, J NEUROSCI, V19, P5549 RYUGO DK, 1993, J COMP NEUROL, V329, P20, DOI 10.1002/cne.903290103 Shepherd G., 1990, SYNAPTIC ORG BRAIN Sherman SM, 1998, P NATL ACAD SCI USA, V95, P7121, DOI 10.1073/pnas.95.12.7121 Shore SE, 2005, EUR J NEUROSCI, V21, P3334, DOI 10.1111/j.1460-9568.2005.04142.x SMITH PH, 1985, J COMP NEUROL, V237, P127, DOI 10.1002/cne.902370110 Thomson AM, 1997, J PHYSIOL-LONDON, V502, P131, DOI 10.1111/j.1469-7793.1997.131bl.x Toth K, 2000, J NEUROSCI, V20, P8279 Tzounopoulos T, 2007, NEURON, V54, P291, DOI 10.1016/j.neuron.2007.03.026 Tzounopoulos T, 2004, NAT NEUROSCI, V7, P719, DOI 10.1038/nn1272 Uchigashima M, 2007, J NEUROSCI, V27, P3663, DOI 10.1523/JNEUROSCI.0448-07.2007 Wallace MT, 2007, J NEUROPHYSIOL, V97, P921, DOI 10.1152/jn.00497.2006 Whiting B, 2009, NEUROSCIENCE, V163, P1264, DOI 10.1016/j.neuroscience.2009.07.049 Wilson RI, 2001, NATURE, V410, P588, DOI 10.1038/35069076 Yao HS, 2001, NEURON, V32, P315, DOI 10.1016/S0896-6273(01)00460-3 ZHANG S, 1993, J NEUROPHYSIOL, V69, P1384 Zhao YJ, 2011, J NEUROSCI, V31, P3158, DOI 10.1523/JNEUROSCI.5303-10.2011 Zhao YJ, 2009, J NEUROPHYSIOL, V101, P2434, DOI 10.1152/jn.00047.2009 NR 58 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2011 VL 279 IS 1-2 SI SI BP 67 EP 73 DI 10.1016/j.heares.2011.03.007 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 830OQ UT WOS:000295666700008 PM 21426926 ER PT J AU Hurley, LM Hall, IC AF Hurley, L. M. Hall, I. C. TI Context-dependent modulation of auditory processing by serotonin SO HEARING RESEARCH LA English DT Article ID DORSAL RAPHE NUCLEUS; SUPERIOR OLIVARY COMPLEX; RAT INFERIOR COLLICULUS; ACTIVATED CATION CURRENT; IN-VIVO MICRODIALYSIS; COCHLEAR NUCLEUS; 5-HT RECEPTORS; CEREBRAL-CORTEX; MESSENGER-RNA; MONOAMINERGIC INNERVATION AB Context-dependent plasticity in auditory processing is achieved in part by physiological mechanisms that link behavioral state to neural responses to sound. The neuromodulator serotonin has many characteristics suitable for such a role. Serotonergic neurons are extrinsic to the auditory system but send projections to most auditory regions. These projections release serotonin during particular behavioral contexts. Heightened levels of behavioral arousal and specific extrinsic events, including stressful or social events, increase serotonin availability in the auditory system. Although the release of serotonin is likely to be relatively diffuse, highly specific effects of serotonin on auditory neural circuitry are achieved through the localization of serotonergic projections, and through a large array of receptor types that are expressed by specific subsets of auditory neurons. Through this array, serotonin enacts plasticity in auditory processing in multiple ways. Serotonin changes the responses of auditory neurons to input through the alteration of intrinsic and synaptic properties, and alters both short- and long-term forms of plasticity. The infrastructure of the serotonergic system itself is also plastic, responding to age and cochlear trauma. These diverse findings support a view of serotonin as a widespread mechanism for behaviorally relevant plasticity in the regulation of auditory processing. This view also accommodates models of how the same regulatory mechanism can have pathological consequences for auditory processing. (C) 2011 Elsevier B.V. All rights reserved. C1 [Hurley, L. M.] Indiana Univ, Bloomington, IN 47405 USA. [Hall, I. C.] Columbia Univ, Fairchild Ctr 901, New York, NY 10027 USA. RP Hurley, LM (reprint author), Indiana Univ, Jordan Hall Biol,1001 E 3rd St, Bloomington, IN 47405 USA. EM lhurley@indiana.edu CR Abrams JK, 2004, ANN NY ACAD SCI, V1018, P46, DOI 10.1196/annals.1296.005 Adell A, 2002, BRAIN RES REV, V39, P154, DOI 10.1016/S0165-0173(02)00182-0 Barnes NM, 1999, NEUROPHARMACOLOGY, V38, P1083, DOI 10.1016/S0028-3908(99)00010-6 Basura GJ, 2008, HEARING RES, V244, P45, DOI 10.1016/j.heares.2008.07.009 BEAUDET A, 1981, J PHYSIOL-PARIS, V77, P193 Bohorquez A, 2009, HEARING RES, V251, P29, DOI 10.1016/j.heares.2009.02.006 BOUTELLE MG, 1990, J NEUROSCI METH, V34, P151, DOI 10.1016/0165-0270(90)90053-I Bunin MA, 1998, J NEUROSCI, V18, P4854 CAMPBELL MJ, 1987, J COMP NEUROL, V261, P209, DOI 10.1002/cne.902610204 CELADA P, 1993, N-S ARCH PHARMACOL, V347, P583, DOI 10.1007/BF00166940 CHALMERS DT, 1991, BRAIN RES, V561, P51, DOI 10.1016/0006-8993(91)90748-K Clement HW, 1998, J NEURAL TRANSM, V105, P1155, DOI 10.1007/s007020050119 CRANSAC H, 1995, HEARING RES, V90, P65, DOI 10.1016/0378-5955(95)00147-X Cransac H, 1996, HEARING RES, V100, P150, DOI 10.1016/0378-5955(96)00116-5 Cransac H, 1998, HEARING RES, V118, P151, DOI 10.1016/S0378-5955(98)00031-8 Cuccurazzu B, 2008, NEUROSCI LETT, V439, P70, DOI 10.1016/j.neulet.2008.04.094 Dahlin A, 2007, NEUROSCIENCE, V146, P1193, DOI 10.1016/j.neuroscience.2007.01.072 DeFelipe J, 1991, CEREB CORTEX, V1, P117, DOI 10.1093/cercor/1.2.117 EBERT U, 1992, NEUROSCI LETT, V145, P51, DOI 10.1016/0304-3940(92)90201-H Edagawa Y, 2001, J NEUROSCI, V21, P1532 Edwards DH, 2002, BRAIN BEHAV EVOLUT, V60, P360, DOI 10.1159/000067789 Faingold C.L., 1991, NEUROBIOLOGY HEARING, P223 Fitzgerald KK, 1999, J NEUROPHYSIOL, V81, P2743 FITZPATRICK D, 1989, J COMP NEUROL, V288, P647, DOI 10.1002/cne.902880411 Gasser PJ, 2009, J COMP NEUROL, V512, P529, DOI 10.1002/cne.21921 GilLoyzaga P, 1997, NEUROREPORT, V8, P3519, DOI 10.1097/00001756-199711100-00020 Grahn RE, 1999, BRAIN RES, V826, P35, DOI 10.1016/S0006-8993(99)01208-1 Gu Q, 2002, NEUROSCIENCE, V111, P815, DOI 10.1016/S0306-4522(02)00026-X Hall IC, 2010, J EXP BIOL, V213, P1009, DOI 10.1242/jeb.035956 HALL IC, 2011, BEHAV NEURO IN PRESS Hannon J, 2008, BEHAV BRAIN RES, V195, P198, DOI 10.1016/j.bbr.2008.03.020 Harris-Warrick RM, 2010, FRONT BEHAV NEUROSCI, V4, ppii47 Hayley S, 2001, BRAIN RES, V892, P293, DOI 10.1016/S0006-8993(00)03262-5 Hegerl U, 2001, J AFFECT DISORDERS, V62, P93, DOI 10.1016/S0165-0327(00)00353-0 HEYM J, 1982, BRAIN RES, V251, P259, DOI 10.1016/0006-8993(82)90743-0 Holmstrom LA, 2010, J NEUROSCI, V30, P802, DOI 10.1523/JNEUROSCI.1964-09.2010 Holt AG, 2005, J NEUROCHEM, V93, P1069, DOI 10.1111/j.1471-4159.2005.03090.x Holy TE, 2005, PLOS BIOL, V3, P2177, DOI 10.1371/journal.pbio.0030386 Hoyer D, 2002, PHARMACOL BIOCHEM BE, V71, P533, DOI 10.1016/S0091-3057(01)00746-8 Hurley LM, 2008, J NEUROPHYSIOL, V100, P1656, DOI 10.1152/jn.90536.2008 Hurley LM, 2005, J NEUROSCI, V25, P7876, DOI 10.1523/JNEUROSCI.1178-05.2005 Hurley LM, 1999, J NEUROSCI, V19, P8071 Hurley LM, 2007, BRAIN RES, V1181, P21, DOI 10.1016/j.brainres.2007.08.053 HURLEY LM, 2003, IN VIVO NEUROMODULAT Hurley LM, 2001, J NEUROPHYSIOL, V85, P828 Hurley LM, 2004, CURR OPIN NEUROBIOL, V14, P488, DOI 10.1016/j.conb.2004.06.007 Hurley LM, 2006, J NEUROPHYSIOL, V96, P2177, DOI 10.1152/jn.00046.2006 Hurley LM, 2001, J COMP NEUROL, V435, P78, DOI 10.1002/cne.1194 Hurley LM, 2005, J COMP PHYSIOL A, V191, P535, DOI 10.1007/s00359-005-0623-y Jacobs B. L., 1999, NEUROPSYCHOPHARMACOL, V21, P9 JACOBS BL, 1992, PHYSIOL REV, V72, P165 Ji WQ, 2007, J NEUROSCI, V27, P4910, DOI 10.1523/JNEUROSCI.5528-06.2007 Johnson RG, 1998, J PHARMACOL EXP THER, V285, P643 Kaiser A, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P71, DOI 10.1007/978-1-4419-8712-9_7 Katz PS, 1998, ANN NY ACAD SCI, V860, P181, DOI 10.1111/j.1749-6632.1998.tb09048.x Kawano H, 1996, NEUROSCI LETT, V212, P143, DOI 10.1016/0304-3940(96)12795-6 KIEHN O, 1992, J NEUROPHYSIOL, V68, P485 Kim DO, 2003, EXP BRAIN RES, V153, P514, DOI 10.1007/s00221-003-1617-z KLEPPER A, 1991, BRAIN RES, V557, P190, DOI 10.1016/0006-8993(91)90134-H Klug A, 2002, J NEUROPHYSIOL, V88, P1941, DOI 10.1152/jn.00260.2002 KNUDSEN DP, 2010, BRAIN LANG KOSOFSKY BE, 1987, SYNAPSE, V1, P153, DOI 10.1002/syn.890010204 Kranz GS, 2010, NEUROSCIENCE, V166, P1023, DOI 10.1016/j.neuroscience.2010.01.036 LAVOIE B, 1991, J COMP NEUROL, V312, P1, DOI 10.1002/cne.903120102 Lee HS, 2003, BRAIN RES, V963, P57, DOI 10.1016/S0006-8993(02)03841-6 LEMOAL M, 1979, BRAIN RES, V167, P1, DOI 10.1016/0006-8993(79)90259-2 LEWIS DA, 1986, HUM NEUROBIOL, V5, P181 Liu JX, 2003, HEARING RES, V175, P45, DOI 10.1016/S0378-5955(02)00708-6 Liu S, 2007, NEUROSCIENCE, V146, P1677, DOI 10.1016/j.neuroscience.2007.02.064 Luo XY, 2003, DEV NEUROSCI-BASEL, V25, P173, DOI 10.1159/000072266 Manunta Y, 2004, J NEUROPHYSIOL, V92, P1445, DOI 10.1152/jn.00079.2004 Manunta Y, 1997, EUR J NEUROSCI, V9, P833, DOI 10.1111/j.1460-9568.1997.tb01433.x MARRIAGE J, 1995, J LARYNGOL OTOL, V109, P915 MAS M, 1995, BRAIN RES, V675, P13, DOI 10.1016/0006-8993(95)00029-P MCCORMICK DA, 1990, J PHYSIOL-LONDON, V431, P319 MELO LL, 1995, PHARMACOL BIOCHEM BE, V51, P317, DOI 10.1016/0091-3057(94)00387-X Mendlin A, 1996, J NEUROCHEM, V67, P617 Mesce KA, 2002, BRAIN BEHAV EVOLUT, V60, P339, DOI 10.1159/000067793 Miko IJ, 2009, HEARING RES, V251, P39, DOI 10.1016/j.heares.2009.02.003 Mitsushima D, 2006, EUR J NEUROSCI, V24, P3245, DOI 10.1111/j.1460-9568.2006.05214.x Mizutani H, 2006, EUR J NEUROSCI, V24, P1946, DOI 10.1111/j.1460-9568.2006.05063.x Monckton JE, 2002, J NEUROPHYSIOL, V87, P2124, DOI 10.1152/jn.00650.2001 Muller CP, 2007, NEUROPHARMACOLOGY, V52, P854, DOI 10.1016/j.neuropharm.2006.10.002 PAPADOPOULOS GC, 1991, PROG NEUROBIOL, V36, P195, DOI 10.1016/0301-0082(91)90030-5 PAPE HC, 1989, NATURE, V340, P715, DOI 10.1038/340715a0 PEROUTKA SJ, 1994, SYNAPSE, V18, P241, DOI 10.1002/syn.890180310 Peroutka Stephen J., 1995, Trends in Neurosciences, V18, P68, DOI 10.1016/0166-2236(95)93875-X Peruzzi D, 2004, BRAIN RES, V998, P247, DOI 10.1016/j.brainres.2003.10.059 Peyron C, 1998, NEUROSCIENCE, V82, P443 POMPEIANO M, 1994, MOL BRAIN RES, V23, P163, DOI 10.1016/0169-328X(94)90223-2 POMPEIANO M, 1992, J NEUROSCI, V12, P440 Portas CM, 2000, PROG NEUROBIOL, V60, P13, DOI 10.1016/S0301-0082(98)00097-5 Pum ME, 2008, NEUROSCIENCE, V153, P361, DOI 10.1016/j.neuroscience.2008.02.029 Ramsey LCB, 2010, EUR J NEUROSCI, V32, P368, DOI 10.1111/j.1460-9568.2010.07299.x Rao D, 2010, J NEUROPHYSIOL, V104, P2693, DOI 10.1152/jn.01092.2009 Robinson S, 2007, PROG BRAIN RES, V166, P263, DOI 10.1016/S0079-6123(07)66024-5 Rueter LE, 1996, BRAIN RES, V739, P57, DOI 10.1016/S0006-8993(96)00809-8 Sakurai A, 2006, J NEUROSCI, V26, P2010, DOI 10.1523/JNEUROSCI.2599-05.2006 Sari Y, 2004, NEUROSCI BIOBEHAV R, V28, P565, DOI 10.1016/j.neubiorev.2004.08.008 Simpson JJ, 2000, HEARING RES, V145, P1, DOI 10.1016/S0378-5955(00)00093-9 Smith DG, 2006, BRAIN RES, V1114, P24, DOI 10.1016/j.brainres.2006.07.058 Stark H, 1997, J NEUROCHEM, V68, P691 STEINBUSCH HWM, 1981, NEUROSCIENCE, V6, P557, DOI 10.1016/0306-4522(81)90146-9 Tadros SF, 2007, NEUROBIOL AGING, V28, P1112, DOI 10.1016/j.neurobiolaging.2006.05.021 Takase LF, 2008, BRAIN RES, V1200, P10, DOI 10.1016/j.brainres.2008.01.036 Thompson AM, 2006, BRAIN RES, V1122, P122, DOI 10.1016/j.brainres.2006.08.126 THOMPSON AM, 1995, J COMP NEUROL, V351, P104, DOI 10.1002/cne.903510110 Thompson AM, 2002, HEARING RES, V164, P77, DOI 10.1016/S0378-5955(01)00413-0 Thompson AM, 2004, NEUROSCI LETT, V356, P179, DOI 10.1016/j.neulet.2003.11.052 Thompson AM, 2001, BRAIN RES, V907, P195, DOI 10.1016/S0006-8993(01)02483-0 Thompson AM, 2009, BRAIN RES, V1253, P60, DOI 10.1016/j.brainres.2008.11.054 Thompson AM, 2000, MICROSC RES TECHNIQ, V51, P330, DOI 10.1002/1097-0029(20001115)51:4<330::AID-JEMT4>3.0.CO;2-X THOMPSON GC, 1994, OTOLARYNG HEAD NECK, V110, P93, DOI 10.1016/S0194-5998(94)70797-9 TO ZP, 1995, BRIT J PHARMACOL, V115, P107 TRULSON ME, 1985, LIFE SCI, V37, P2199, DOI 10.1016/0024-3205(85)90572-7 VAHABZADEH A, 1994, EUR J NEUROSCI, V6, P1205, DOI 10.1111/j.1460-9568.1994.tb00619.x Verge D, 2000, J CHEM NEUROANAT, V18, P41, DOI 10.1016/S0891-0618(99)00050-2 Vertes RP, 2010, BRAIN STRUCT FUNCT, V215, P1, DOI 10.1007/s00429-010-0249-x Viemari JC, 2009, RESP PHYSIOL NEUROBI, V168, P69, DOI 10.1016/j.resp.2009.03.011 VU DH, 1992, J COMP NEUROL, V317, P156, DOI 10.1002/cne.903170205 WAEBER C, 1994, NEUROPHARMACOLOGY, V33, P527, DOI 10.1016/0028-3908(94)90084-1 Wang HT, 2008, HEARING RES, V236, P42, DOI 10.1016/j.heares.2007.11.015 Wang XY, 1997, HEARING RES, V106, P20, DOI 10.1016/S0378-5955(96)00211-0 Waterhouse BD, 2004, BRAIN RES, V1000, P183, DOI 10.1016/j.brainres.2003.11.030 White SA, 2006, J NEUROSCI, V26, P10376, DOI 10.1523/JNEUROSCI.3379-06.2006 WILLARD FH, 1984, BRAIN RES BULL, V12, P253, DOI 10.1016/0361-9230(84)90053-4 WRIGHT DE, 1995, J COMP NEUROL, V351, P357, DOI 10.1002/cne.903510304 Xiang ZX, 2003, J NEUROPHYSIOL, V89, P1278, DOI 10.1152/jn.00533.2002 Ye Y, 2001, Acta Otolaryngol, V121, P284 Zeng SJ, 2007, BRAIN BEHAV EVOLUT, V70, P1, DOI 10.1159/000101066 ZHANG B, 1994, J EXP BIOL, V190, P55 NR 131 TC 17 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD SEP PY 2011 VL 279 IS 1-2 SI SI BP 74 EP 84 DI 10.1016/j.heares.2010.12.015 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 830OQ UT WOS:000295666700009 PM 21187135 ER PT J AU Schofield, BR Motts, SD Mellott, JG AF Schofield, Brett R. Motts, Susan D. Mellott, Jeffrey G. TI Cholinergic cells of the pontomesencephalic tegmentum: Connections with auditory structures from cochlear nucleus to cortex SO HEARING RESEARCH LA English DT Article ID LATERAL GENICULATE NUCLEI; RAT INFERIOR COLLICULUS; BRAIN-STEM CORE; PEDUNCULOPONTINE NUCLEUS; PREPULSE INHIBITION; GUINEA-PIG; SUPERIOR OLIVE; NITRIC-OXIDE; ACETYLTRANSFERASE ACTIVITY; ACETYLCHOLINE-RECEPTORS AB Acetylcholine (ACh) is a neuromodulator that is likely to play a role in plasticity as well as other phenomena at many sites in the auditory system. The auditory cortex receives cholinergic innervation from the basal forebrain, whereas the cochlea receives cholinergic innervation from the superior olivary complex. Much of the remainder of the auditory pathways receives innervation from the pedunculopontine and laterodorsal tegmental nuclei, two nuclei referred to collectively as the pontomesencephalic tegmentum (PMT). The PMT provides the major source of ACh to the auditory thalamus and the midbrain, and is a substantial source (in addition to the superior olivary complex) of ACh in the cochlear nucleus. Individual cholinergic cells in the PMT often have axon branches that innervate multiple auditory nuclei, including nuclei on both sides of the brain as well as nuclei at multiple levels of the auditory system. The auditory cortex has direct axonal projections to the PMT cells, including cholinergic cells that project to the inferior colliculus or cochlear nucleus. The divergent projections of PMT cholinergic cells suggest widespread effects on the auditory pathways. These effects are likely to include plasticity as well as novelty detection, sensory gating, reward behavior, arousal and attention. Descending projections from the forebrain, including the auditory cortex, are likely to provide a high level of cognitive input to these cholinergic effects. Dysfunction associated with the cholinergic system may play a role in disorders such as tinnitus and schizophrenia. (C) 2011 Elsevier B.V. All rights reserved. C1 [Schofield, Brett R.; Motts, Susan D.; Mellott, Jeffrey G.] Northeastern Ohio Univ Coll Med & Pharm, Coll Med, Dept Anat & Neurobiol, Rootstown, OH 44272 USA. [Schofield, Brett R.; Motts, Susan D.] Kent State Univ, Sch Biomed Sci, Kent, OH 44242 USA. RP Schofield, BR (reprint author), Northeastern Ohio Univ Coll Med & Pharm, Coll Med, Dept Anat & Neurobiol, POB 95, Rootstown, OH 44272 USA. EM bschofie@neoucom.edu; smotts@neoucom.edu; jmellott@neoucom.edu FU NIH [DC04391, DC05277] FX The work that was completed in the authors' lab was supported by NIH DC04391 and DC05277. We gratefully acknowledge technical assistance from Colleen Sowick, Megan Storey-Workley and Arkadiusz Slusarczyk. Kyle T. Nakamoto provided many helpful discussions through the course of the experiments as well as critical feedback on an earlier version of the manuscript. CR ALTSCHULER RA, 2010, OXFORD HDB AUDITORY, V2, P65 Bajo VM, 2010, NAT NEUROSCI, V13, P253, DOI 10.1038/nn.2466 Bastuji H, 2002, INT J PSYCHOPHYSIOL, V46, P243, DOI 10.1016/S0167-8760(02)00116-2 Behrens EG, 2002, BRAIN RES, V955, P34, DOI 10.1016/S0006-8993(02)03351-6 Billet S, 1999, BRAIN RES, V847, P121, DOI 10.1016/S0006-8993(99)01900-9 Bosch D, 2008, NEUROSCIENCE, V155, P326, DOI 10.1016/j.neuroscience.2008.04.018 Boucetta S, 2009, J NEUROSCI, V29, P4664, DOI 10.1523/JNEUROSCI.5502-08.2009 Braff DL, 2001, PSYCHOPHARMACOLOGY, V156, P234, DOI 10.1007/s002130100810 BROWN MC, 1993, J COMP NEUROL, V337, P600, DOI 10.1002/cne.903370406 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 Brozoski TJ, 2005, HEARING RES, V206, P227, DOI 10.1016/j.heares.2004.12.013 Caspary DM, 2008, J EXP BIOL, V211, P1781, DOI 10.1242/jeb.013581 CASPARY DM, 1983, EXP NEUROL, V82, P491, DOI 10.1016/0014-4886(83)90419-3 Chen J, 2006, PSYCHOPHARMACOLOGY, V184, P514, DOI 10.1007/s00213-005-0252-8 CLARKE PBS, 1985, J NEUROSCI, V5, P1307 COMIS SD, 1968, J NEUROPHYSIOL, V31, P62 CORNWALL J, 1990, BRAIN RES BULL, V25, P271, DOI 10.1016/0361-9230(90)90072-8 CURTIS DR, 1961, J NEUROPHYSIOL, V24, P80 Deco G, 2009, EUR J NEUROSCI, V30, P347, DOI 10.1111/j.1460-9568.2009.06833.x Eggermont JJ, 1998, HEARING RES, V117, P149, DOI 10.1016/S0378-5955(98)00008-2 FARLEY GR, 1983, HEARING RES, V11, P73, DOI 10.1016/0378-5955(83)90046-1 Fujino K, 2001, J NEUROSCI, V21, P7372 GARCIARILL E, 1991, PROG NEUROBIOL, V36, P363, DOI 10.1016/0301-0082(91)90016-T Geyer MA, 2001, PSYCHOPHARMACOLOGY, V156, P117, DOI 10.1007/s002130100811 GLENDENNING KK, 1988, J COMP NEUROL, V275, P288, DOI 10.1002/cne.902750210 GODFREY DA, 1987, HEARING RES, V28, P253, DOI 10.1016/0378-5955(87)90053-0 Godfrey DA, 2000, HEARING RES, V150, P189, DOI 10.1016/S0378-5955(00)00199-4 Goldstein-Daruech N, 2002, HEARING RES, V168, P174, DOI 10.1016/S0378-5955(02)00364-7 GRAHAM FK, 1975, PSYCHOPHYSIOLOGY, V12, P238, DOI 10.1111/j.1469-8986.1975.tb01284.x Habbicht H, 1996, BRAIN RES, V724, P169, DOI 10.1016/0006-8993(96)00224-7 HALLANGER AE, 1987, J COMP NEUROL, V262, P105, DOI 10.1002/cne.902620109 Happe HK, 1998, J COMP NEUROL, V397, P163, DOI 10.1002/(SICI)1096-9861(19980727)397:2<163::AID-CNE2>3.0.CO;2-Z HE J, 2010, OXFORD HDB AUDITORY, V2, P247 HENDERSON Z, 1991, J COMP NEUROL, V314, P147, DOI 10.1002/cne.903140114 HOFFMAN HS, 1980, PSYCHOL REV, V87, P175, DOI 10.1037/0033-295X.87.2.175 Holt AG, 2005, J NEUROCHEM, V93, P1069, DOI 10.1111/j.1471-4159.2005.03090.x Hurley LM, 2004, CURR OPIN NEUROBIOL, V14, P488, DOI 10.1016/j.conb.2004.06.007 Irvine D.R.F., 2010, OXFORD HDB AUDITORY, V2, P387 Jenkinson N, 2009, MOVEMENT DISORD, V24, P319, DOI 10.1002/mds.22189 Ji WQ, 2001, J NEUROPHYSIOL, V86, P211 Ji WQ, 2009, J NEUROPHYSIOL, V102, P941, DOI 10.1152/jn.00222.2009 Ji WQ, 2003, J NEUROPHYSIOL, V90, P1904, DOI 10.1152/jn.00363.2003 Ji WQ, 2005, J NEUROPHYSIOL, V94, P1199, DOI 10.1152/jn.00112.2005 Jin YM, 2006, HEARING RES, V216, P168, DOI 10.1016/j.heares.2006.02.002 Jones B. E., 2003, FRONT BIOSCI, V8, P438 JONES BE, 1990, J COMP NEUROL, V295, P485, DOI 10.1002/cne.902950311 JOURDAIN A, 1989, BRAIN RES, V505, P55, DOI 10.1016/0006-8993(89)90115-7 Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5 Kamke MR, 2005, HEARING RES, V206, P89, DOI 10.1016/j.heares.2004.12.014 Keuroghlian AS, 2007, PROG NEUROBIOL, V82, P109, DOI 10.1016/j.pneurobio.2007.03.005 KLEPPER A, 1991, BRAIN RES, V557, P190, DOI 10.1016/0006-8993(91)90134-H KOCH M, 1993, EXP BRAIN RES, V97, P71 Koch M, 1999, PROG NEUROBIOL, V59, P107, DOI 10.1016/S0301-0082(98)00098-7 KOYAMA Y, 1994, NEUROSCIENCE, V63, P1021, DOI 10.1016/0306-4522(94)90569-X LEONARD CS, 1995, J COMP NEUROL, V362, P411, DOI 10.1002/cne.903620309 Li L, 2009, NEUROSCI BIOBEHAV R, V33, P1157, DOI 10.1016/j.neubiorev.2009.02.001 Malmierca MS, 2009, J NEUROSCI, V29, P5483, DOI 10.1523/JNEUROSCI.4153-08.2009 Manaye KF, 1999, NEUROSCIENCE, V89, P759, DOI 10.1016/S0306-4522(98)00380-7 MCCORMICK DA, 1987, J PHYSIOL-LONDON, V392, P147 Mena-Segovia J, 2009, J COMP NEUROL, V515, P397, DOI 10.1002/cne.22065 Metherate R, 2011, NEUROSCI BIOBEHAV R, V35, P2058, DOI 10.1016/j.neubiorev.2010.11.010 Metherate R, 2004, PROG BRAIN RES, V145, P143, DOI 10.1016/S0079-6123(03)45010-3 Miko IJ, 2009, HEARING RES, V251, P39, DOI 10.1016/j.heares.2009.02.003 Morley BJ, 2004, JARO-J ASSOC RES OTO, V5, P391, DOI 10.1007/s10162-004-5015-4 Morley BJ, 2000, HEARING RES, V147, P104, DOI 10.1016/S0378-5955(00)00124-6 Motts SD, 2010, FRONT NEUROANAT, V4, DOI 10.3389/fnana.2010.00137 Motts SD, 2008, NEUROSCIENCE, V154, P186, DOI 10.1016/j.neuroscience.2007.12.017 Motts SD, 2009, NEUROSCIENCE, V160, P103, DOI 10.1016/j.neuroscience.2009.02.036 MOTTS SD, 2005, ASS RES OTOLARYNGOL, V28, P242 MOTTS SD, 2009, 2009 NEUR M PLANN Mulders WHAM, 2000, HEARING RES, V144, P65, DOI 10.1016/S0378-5955(00)00046-0 Nakamoto KT, 2008, J NEUROPHYSIOL, V99, P2347, DOI 10.1152/jn.01326.2007 Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9 OSWALD I, 1960, BRAIN, V83, P440, DOI 10.1093/brain/83.3.440 Pan WX, 2005, J NEUROSCI, V25, P4725, DOI 10.1523/JNEUROSCI.0277-05.2005 PEDEMONTE M, 1994, ARCH ITAL BIOL, V132, P165 PENA JL, 1992, ARCH ITAL BIOL, V130, P179 Pena JL, 1999, BRAIN RES, V816, P463, DOI 10.1016/S0006-8993(98)01194-9 Perez-Gonzalez D, 2005, EUR J NEUROSCI, V22, P2879, DOI 10.1111/j.1460-9568.2005.04472.x RAZA A, 1994, HEARING RES, V77, P221, DOI 10.1016/0378-5955(94)90270-4 REESE NB, 1995, BRAIN RES BULL, V37, P257, DOI 10.1016/0361-9230(95)00002-V REESE NB, 1995, PROG NEUROBIOL, V47, P105, DOI 10.1016/0301-0082(95)00023-O REESE NB, 1995, BRAIN RES BULL, V37, P265, DOI 10.1016/0361-9230(95)00001-U Rotter A, 1979, Brain Res, V180, P167 Ruby P, 2008, J COGNITIVE NEUROSCI, V20, P296, DOI 10.1162/jocn.2008.20023 Ruggiero DA, 1997, BRAIN RES, V760, P272, DOI 10.1016/S0006-8993(97)00397-1 Rye DB, 1997, SLEEP, V20, P757 Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 SATOH K, 1986, J COMP NEUROL, V253, P277, DOI 10.1002/cne.902530302 SCHOFIELD BR, 2011, ASS RES OT IN PRESS Schofield BR, 2009, BRAIN RES BULL, V80, P163, DOI 10.1016/j.brainresbull.2009.06.015 Schofield BR, 2010, NEUROSCIENCE, V166, P231, DOI 10.1016/j.neuroscience.2009.12.008 Schofield B.R., 2010, OXFORD HDB AUDITORY, V2, P43 SEMBA K, 1992, J COMP NEUROL, V323, P387, DOI 10.1002/cne.903230307 SESACK SR, 1989, J COMP NEUROL, V290, P213, DOI 10.1002/cne.902900205 SHERRIFF FE, 1994, NEUROSCIENCE, V58, P627, DOI 10.1016/0306-4522(94)90086-8 SHUTE CCD, 1967, BRAIN, V90, P497, DOI 10.1093/brain/90.3.497 SMITH Y, 1988, EXP BRAIN RES, V70, P166 Steinert JR, 2010, NEUROSCIENTIST, V16, P435, DOI 10.1177/1073858410366481 STEININGER TL, 1992, J COMP NEUROL, V321, P515, DOI 10.1002/cne.903210403 STERIADE M, 1991, P NATL ACAD SCI USA, V88, P4396, DOI 10.1073/pnas.88.10.4396 STERIADE M, 1988, NEUROSCIENCE, V25, P47, DOI 10.1016/0306-4522(88)90006-1 Suga N, 2008, J COMP PHYSIOL A, V194, P169, DOI 10.1007/s00359-007-0274-2 Swerdlow NR, 2001, PSYCHOPHARMACOLOGY, V156, P194 Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002 Takakusaki K, 2008, BRAIN RES REV, V57, P192, DOI 10.1016/j.brainresrev.2007.06.024 Timofeeva E, 2005, J NEUROSCI, V25, P9135, DOI 10.1523/JNEUROSCI.3073-05.2005 Tong L, 2005, HEARING RES, V206, P28, DOI 10.1016/j.heares.2005.03.006 TURLEJSKI K, 1994, NEUROSCIENCE, V60, P521, DOI 10.1016/0306-4522(94)90262-3 Tzounopoulos Thanos, 2008, AM J AUDIOL, V17, P170 Vincent SR, 2000, J CHEM NEUROANAT, V18, P23, DOI 10.1016/S0891-0618(99)00048-4 Wang HL, 2009, EUR J NEUROSCI, V29, P340, DOI 10.1111/j.1460-9568.2008.06576.x Wang X, 2007, BRAIN RES, V1167, P80, DOI 10.1016/j.brainres.2007.07.002 WATANABE T, 1973, JPN J PHYSIOL, V23, P291 Winkowski DE, 2008, NEURON, V60, P698, DOI 10.1016/j.neuron.2008.09.013 WINN P, 2008, PARKINSONISM RELAT D, V14, P194 WOOLF NJ, 1989, BRAIN RES BULL, V23, P519, DOI 10.1016/0361-9230(89)90197-4 WREE A, 1981, ANAT EMBRYOL, V162, P81, DOI 10.1007/BF00318096 Xiong Y, 2009, NEUROSCI BIOBEHAV R, V33, P1178, DOI 10.1016/j.neubiorev.2008.10.006 Yeomans JS, 2006, NEUROSCIENCE, V142, P921, DOI 10.1016/j.neuroscience.2006.06.025 Yigit M, 2003, NEUROPHARMACOLOGY, V45, P504, DOI 10.1016/S0028-3908(03)00197-7 NR 121 TC 13 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2011 VL 279 IS 1-2 SI SI BP 85 EP 95 DI 10.1016/j.heares.2010.12.019 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 830OQ UT WOS:000295666700010 PM 21195150 ER PT J AU Friauf, E Rust, MB Schulenborg, T Hirtz, JJ AF Friauf, Eckhard Rust, Marco B. Schulenborg, Thomas Hirtz, Jan J. TI Chloride cotransporters, chloride homeostasis, and synaptic inhibition in the developing auditory system SO HEARING RESEARCH LA English DT Article ID K-CL COTRANSPORTER; LATERAL SUPERIOR OLIVE; EXPERIENCE-DEPENDENT REFINEMENT; ANTEROVENTRAL COCHLEAR NUCLEUS; HYPERPOLARIZING GLYCINE ACTION; GERBIL MERIONES-UNGUICULATUS; IMMATURE NEOCORTICAL NEURONS; REDUCED SEIZURE THRESHOLD; TEMPORAL-LOBE EPILEPSY; ALANINE-RICH KINASE AB The role of glycine and GABA as inhibitory neurotransmitters in the adult vertebrate nervous system has been well characterized in a variety of model systems, including the auditory, which is particularly well suited for analyzing inhibitory neurotransmission. However, a full understanding of glycinergic and GABAergic transmission requires profound knowledge of how the precise organization of such synapses emerges. Likewise, the role of glycinergic and GABAergic signaling during development, including the dynamic changes in regulation of cytosolic chloride via chloride cotransporters, needs to be thoroughly understood. Recent literature has elucidated the developmental expression of many of the molecular components that comprise the inhibitory synaptic phenotype. An equally important focus of research has revealed the critical role of glycinergic and GABAergic signaling in sculpting different developmental aspects in the auditory system. This review examines the current literature detailing the expression patterns and function (chapter 1), as well as the regulation and pharmacology of chloride cotransporters (chapter 2). Of particular importance is the ontogeny of glycinergic and GABAergic transmission (chapter 3). The review also surveys the recent work on the signaling role of these two major inhibitory neurotransmitters in the developing auditory system (chapter 4) and concludes with an overview of areas for further research (chapter 5). (C) 2011 Elsevier B.V. All rights reserved. C1 [Friauf, Eckhard; Rust, Marco B.; Schulenborg, Thomas; Hirtz, Jan J.] Univ Kaiserslautern, Dept Biol, Anim Physiol Grp, D-67653 Kaiserslautern, Germany. RP Friauf, E (reprint author), Univ Kaiserslautern, Dept Biol, Anim Physiol Grp, POB 3049, D-67653 Kaiserslautern, Germany. EM eckhard.friauf@biologie.uni-kl.de RI Friauf, Eckhard/D-7529-2012; Schulenborg, Thomas/N-7672-2013 OI Friauf, Eckhard/0000-0002-1833-1698; Schulenborg, Thomas/0000-0003-1928-9441 FU German Research Foundation DFG [Fr772/8, Fr1784/10]; Research Initiative Membrane Biology FX This work was supported by the German Research Foundation DFG (Grants Fr772/8 and Fr1784/10) and the Research Initiative Membrane Biology. CR Abbas L, 2009, DEVELOPMENT, V136, P2837, DOI 10.1242/dev.034215 Adragna NC, 2004, J MEMBRANE BIOL, V201, P109, DOI 10.1007/s00232-004-0695-6 Aguado F, 2003, DEVELOPMENT, V130, P1267, DOI 10.1242/dev.00351 Akerman CJ, 2006, J NEUROSCI, V26, P5117, DOI 10.1523/JNEUROSCI.0319-06.2006 ALVAREZLEEFMANS FJ, 1988, J PHYSIOL-LONDON, V406, P225 AlvarezLeefmans FJ, 2009, PHYSIOLOGY AND PATHOLOGY OF CHLORIDE TRANSPORTERS AND CHANNELS IN THE NERVOUS SYSTEM: FROM MOLECULES TO DISEASES, P1 ASBURY MJ, 1972, BRIT MED J, V1, P211 Awatramani GB, 2005, J NEUROPHYSIOL, V93, P819, DOI 10.1152/jn.00798.2004 Backus KH, 1998, J PHYSIOL-LONDON, V507, P783, DOI 10.1111/j.1469-7793.1998.783bs.x Balakrishnan V, 2003, J NEUROSCI, V23, P4134 Banke TG, 2006, J NEUROSCI, V26, P11720, DOI 10.1523/JNEUROSCI.2887-06.2006 Batra R, 2002, HEARING RES, V168, P90, DOI 10.1016/S0378-5955(02)00368-4 Becker M, 2003, CELL TISSUE RES, V312, P155, DOI 10.1007/s00441-003-0713-5 Belenky MA, 2010, NEUROSCIENCE, V165, P1519, DOI 10.1016/j.neuroscience.2009.11.040 BENARI Y, 1989, J PHYSIOL-LONDON, V416, P303 Ben-Ari Y, 2002, NAT REV NEUROSCI, V3, P728, DOI 10.1038/nrn920 Ben-Ari Y, 2007, PHYSIOL REV, V87, P1215, DOI 10.1152/physrev.00017.2006 BENDER KJ, 2011, NEUROPHARMACOLOGY Berglund K, 2008, BRAIN CELL BIOL, V36, P101, DOI 10.1007/s11068-008-9031-x Blaesse P, 2009, NEURON, V61, P820, DOI 10.1016/j.neuron.2009.03.003 Blaesse P, 2006, J NEUROSCI, V26, P10407, DOI 10.1523/JNEUROSCI.3257-06.2006 Boettger T, 2003, EMBO J, V22, P5422, DOI 10.1093/emboj/cdg519 Bonislawski DP, 2007, NEUROBIOL DIS, V25, P163, DOI 10.1016/j.nbd.2006.09.002 Boulenguez P, 2010, NAT MED, V16, P302, DOI 10.1038/nm.2107 Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a Burger RM, 2005, J COMP NEUROL, V481, P6, DOI 10.1002/ce.20334 CAIRD D, 1983, EXP BRAIN RES, V52, P385 Campos ML, 2001, NEUROSCIENCE, V102, P625, DOI 10.1016/S0306-4522(00)00525-X Cancedda L, 2007, J NEUROSCI, V27, P5224, DOI 10.1523/JNEUROSCI.5169-06.2007 Carrascal L, 2005, BRAIN RES REV, V49, P377, DOI 10.1016/j.brainresrev.2005.02.003 Caspary DM, 1991, NEUROBIOLOGY HEARING, P141 CHALPHIN AV, 2010, FRONT MOL NEUROSCI, V3, P1 Chen G, 1996, J PHYSIOL-LONDON, V494, P451 CHERUBINI E, 1991, TRENDS NEUROSCI, V14, P515, DOI 10.1016/0166-2236(91)90003-D Chudotvorova I, 2005, J PHYSIOL-LONDON, V566, P671, DOI 10.1113/jphysiol.2005.089821 CLARK GM, 1969, BRAIN RES, V14, P293, DOI 10.1016/0006-8993(69)90111-5 Clayton GH, 1998, DEV BRAIN RES, V109, P281, DOI 10.1016/S0165-3806(98)00078-9 CODE RA, 1991, HEARING RES, V54, P281, DOI 10.1016/0378-5955(91)90122-P Coull JAM, 2003, NATURE, V424, P938, DOI 10.1038/nature01868 Crouch JJ, 1997, J HISTOCHEM CYTOCHEM, V45, P773 Daigle ND, 2009, J CELL PHYSIOL, V220, P680, DOI 10.1002/jcp.21814 Dasika VK, 2005, J NEUROPHYSIOL, V94, P400, DOI 10.1152/jn.01065.2004 DeFazio RA, 2000, J NEUROSCI, V20, P8069 Delpire E, 2000, NEWS PHYSIOL SCI, V15, P309 Delpire E, 1999, NAT GENET, V22, P192, DOI 10.1038/9713 Delpire E, 2009, P NATL ACAD SCI USA, V106, P5383, DOI 10.1073/pnas.0812756106 Delpire E, 2008, BIOCHEM J, V409, P321, DOI 10.1042/BJ20071324 Delpy A, 2008, J PHYSIOL-LONDON, V586, P1059, DOI 10.1113/jphysiol.2007.146993 DIETZEL I, 1980, EXP BRAIN RES, V40, P432 Dixon MJ, 1999, HUM MOL GENET, V8, P1579, DOI 10.1093/hmg/8.8.1579 Duan L, 2009, J PHYSIOL-LONDON, V587, P4063, DOI 10.1113/jphysiol.2009.174797 Dzhala VI, 2010, J NEUROSCI, V30, P11745, DOI 10.1523/JNEUROSCI.1769-10.2010 Dzhala VI, 2005, NAT MED, V11, P1205, DOI 10.1038/nm1301 ECCLES JC, 1964, SCIENCE, V145, P1140, DOI 10.1126/science.145.3637.1140 Ehrlich I, 1999, J PHYSIOL-LONDON, V520, P121, DOI 10.1111/j.1469-7793.1999.00121.x Flagella M, 1999, J BIOL CHEM, V274, P26946, DOI 10.1074/jbc.274.38.26946 Flatman PW, 2008, CURR OPIN NEPHROL HY, V17, P186, DOI 10.1097/MNH.0b013e3282f5244e Frech MJ, 1999, J NEUROBIOL, V40, P386, DOI 10.1002/(SICI)1097-4695(19990905)40:3<386::AID-NEU10>3.0.CO;2-D FRELIN C, 1986, BIOCHEM BIOPH RES CO, V134, P326, DOI 10.1016/0006-291X(86)90566-8 Friauf E, 2008, EUR J NEUROSCI, V28, P2371, DOI 10.1111/j.1460-9568.2008.06528.x Gagnon KBE, 2006, AM J PHYSIOL-CELL PH, V290, pC134, DOI 10.1152/ajpcell.00037.2005 Galeffi F, 2004, J NEUROSCI, V24, P4478, DOI 10.1523/JNEUROSCI.0755-04.2004 Gamba G, 2005, PHYSIOL REV, V85, P423, DOI 10.1152/physrev.00011.2004 GAMBA G, 1993, P NATL ACAD SCI USA, V90, P2749, DOI 10.1073/pnas.90.7.2749 Ganguly K, 2001, CELL, V105, P521, DOI 10.1016/S0092-8674(01)00341-5 GARAY RP, 1988, MOL PHARMACOL, V33, P696 Garg P, 2007, AM J PHYSIOL-HEART C, V292, pH2100, DOI 10.1152/ajpheart.01402.2006 Ge SY, 2007, TRENDS NEUROSCI, V30, P1, DOI 10.1016/j.tins.2006.11.001 Ge SY, 2006, NATURE, V439, P589, DOI 10.1038/nature04404 Gillespie DC, 2005, NAT NEUROSCI, V8, P332, DOI 10.1038/nn1397 Gimenez I, 2006, CURR OPIN NEPHROL HY, V15, P517 Gleich O, 1998, CELL TISSUE RES, V293, P207, DOI 10.1007/s004410051113 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 Golding NL, 1996, J NEUROSCI, V16, P2208 Gonzalez-Islas C, 2009, J NEUROPHYSIOL, V101, P507, DOI 10.1152/jn.90986.2008 Granados-Soto V, 2005, PAIN, V114, P231, DOI 10.1016/j.pain.2004.12.023 Green JS, 2005, J NEUROPHYSIOL, V94, P3826, DOI 10.1152/jn.00601.2005 GROTHE B, 1993, J NEUROPHYSIOL, V69, P1192 Grothe B, 2003, NAT REV NEUROSCI, V4, P1 GUINAN JJ, 1972, INT J NEUROSCI, V4, P147 Gulacsi A, 2003, J NEUROSCI, V23, P8237 Gulledge AT, 2003, NEURON, V37, P299, DOI 10.1016/S0896-6273(02)01146-7 Haas M, 1998, J BIOENERG BIOMEMBR, V30, P161, DOI 10.1023/A:1020521308985 Hannaert P, 2002, N-S ARCH PHARMACOL, V365, P193, DOI 10.1007/s00210-001-0521-y Hartmann AM, 2009, J NEUROCHEM, V111, P321, DOI 10.1111/j.1471-4159.2009.06343.x Hebert SC, 2004, PFLUG ARCH EUR J PHY, V447, P580, DOI 10.1007/s00424-003-1066-3 Hentschke M, 2006, MOL CELL BIOL, V26, P182, DOI 10.1128/MCB.1.182-191.2006 Hershfinkel M, 2009, NAT NEUROSCI, V12, P725, DOI 10.1038/nn.2316 Holmgren CD, 2010, J NEUROCHEM, V112, P900, DOI 10.1111/j.1471-4159.2009.06506.x HOMMA T, 1990, AM J PHYSIOL, V258, pC862 Horn Z, 2010, EUR J NEUROSCI, V31, P2142, DOI 10.1111/j.1460-9568.2010.07258.x HOWARD HC, 2002, NAT GENET, P1 Howard MA, 2007, J NEUROSCI, V27, P2112, DOI 10.1523/JNEUROSCI.5266-06.2007 Howard MA, 2010, J NEUROSCI, V30, P12063, DOI 10.1523/JNEUROSCI.1840-10.2010 Huang B, 1996, VISUAL NEUROSCI, V13, P441 Huberfeld G, 2007, J NEUROSCI, V27, P9866, DOI 10.1523/JNEUROSCI.2761-07.2007 Hubner CA, 2001, MECH DEVELOP, V102, P267, DOI 10.1016/S0925-4773(01)00309-4 Hubner CA, 2001, NEURON, V30, P515, DOI 10.1016/S0896-6273(01)00297-5 HYSON RL, 1995, BRAIN RES, V677, P117, DOI 10.1016/0006-8993(95)00130-I INGRAM T T, 1964, Br Med J, V2, P1640 Inoue K, 2004, FEBS LETT, V564, P131, DOI 10.1016/S0014-5793(04)00328-X Inoue K, 2006, J NEUROCHEM, V96, P598, DOI 10.1111/j.1471-4159.2005.03560.x Irvine D. R. F., 1986, PROGR SENSORY PHYSL, V7 Ito T, 2009, J NEUROSCI, V29, P13860, DOI 10.1523/JNEUROSCI.3454-09.2009 JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495 Joris P, 2007, TRENDS NEUROSCI, V30, P70, DOI 10.1016/j.tins.2006.12.004 Joris PX, 1998, NEURON, V21, P1235, DOI 10.1016/S0896-6273(00)80643-1 KAHLE KT, 2008, NAT CLIN PRACT NEURO, V4, P491 Kahle KT, 2010, BBA-MOL BASIS DIS, V1802, P1150, DOI 10.1016/j.bbadis.2010.07.009 Kakazu Y, 1999, J NEUROSCI, V19, P2843 KAKIGI A, 2008, AURIS NASUS LARYNX, V36, P135 KANDLER K, 1995, J NEUROSCI, V15, P6890 Kandler K, 2004, CURR OPIN NEUROBIOL, V14, P96, DOI 10.1016/j.conb.2004.01.017 Kandler K, 2005, TRENDS NEUROSCI, V28, P290, DOI 10.1016/j.tins.2005.04.007 Kapfer C, 2002, NAT NEUROSCI, V5, P247, DOI 10.1038/mm810 Karadsheh MF, 2001, J NEUROPHYSIOL, V85, P995 Kelly JB, 2005, INFERIOR COLLICULUS, P248, DOI 10.1007/0-387-27083-3_9 Kelly JB, 1997, HEARING RES, V104, P112, DOI 10.1016/S0378-5955(96)00182-7 Kelsch W, 2001, J NEUROSCI, V21, P8339 Khirug S, 2005, EUR J NEUROSCI, V21, P899, DOI 10.1111/j.1460-9568.2005.03886.x Kim G, 2010, NEUROSCIENCE, V171, P924, DOI 10.1016/j.neuroscience.2010.09.054 Kim G, 2003, NAT NEUROSCI, V6, P282, DOI 10.1038/nn1015 Kim Y, 2009, J NEUROSCI, V29, P11495, DOI 10.1523/JNEUROSCI.1086-09.2009 Kirmse K, 2010, J NEUROSCI, V30, P16002, DOI 10.1523/JNEUROSCI.2534-10.2010 Korada S, 1999, J COMP NEUROL, V409, P664, DOI 10.1002/(SICI)1096-9861(19990712)409:4<664::AID-CNE10>3.0.CO;2-S Kotak VC, 2003, BIOL CYBERN, V89, P363, DOI 10.1007/s00422-003-0441-7 Kotak VC, 2000, J NEUROSCI, V20, P5820 Kotak VC, 1998, J NEUROSCI, V18, P4646 Kuba H, 2002, J PHYSIOL-LONDON, V540, P529, DOI 10.1113/jphysiol.2001.013365 Kullmann PHM, 2008, NEUROSCIENCE, V154, P338, DOI 10.1016/j.neuroscience.2008.02.026 Kullmann PHM, 2002, EUR J NEUROSCI, V15, P1093, DOI 10.1046/j.1460-9568.2002.01946.x Kullmann PHM, 2001, DEV BRAIN RES, V131, P143, DOI 10.1016/S0165-3806(01)00271-1 Kuner T, 2000, NEURON, V27, P447, DOI 10.1016/S0896-6273(00)00056-8 Kungel M, 1997, DEV BRAIN RES, V102, P157, DOI 10.1016/S0165-3806(97)00087-4 Kuo SP, 2009, J NEUROSCI, V29, P9625, DOI 10.1523/JNEUROSCI.0103-09.2009 Kutscher A, 2009, J NEUROPHYSIOL, V101, P3135, DOI 10.1152/jn.00766.2007 Lauf PK, 1980, BIOCHEM BIOPH RES CO, V70, P221 LAUF PK, 1992, AM J PHYSIOL, V263, pC917 LAUF PK, 1984, J MEMBRANE BIOL, V77, P57, DOI 10.1007/BF01871100 Lee H, 2005, EUR J NEUROSCI, V21, P2593, DOI 10.1111/j.1460-9568.2005.04084.x Legendre P, 2001, CELL MOL LIFE SCI, V58, P760, DOI 10.1007/PL00000899 LEUNG S, 1994, J BIOL CHEM, V269, P10581 Li H, 2007, NEURON, V56, P1019, DOI 10.1016/j.neuron.2007.10.039 Liu ZP, 2006, SCIENCE, V314, P1610, DOI 10.1126/science.1134246 Lohrke S, 2005, EUR J NEUROSCI, V22, P2708, DOI 10.1111/j.1460-9568.2005.04465.x Lu J, 1999, J NEUROBIOL, V39, P558, DOI 10.1002/(SICI)1097-4695(19990615)39:4<558::AID-NEU9>3.0.CO;2-5 Lu T, 2001, J PHYSIOL-LONDON, V535, P125, DOI 10.1111/j.1469-7793.2001.t01-1-00125.x LUHMANN HJ, 1991, J NEUROPHYSIOL, V65, P247 Lujan R, 2008, NEUROSCIENCE, V154, P315, DOI 10.1016/j.neuroscience.2008.03.027 Lynch JW, 2009, NEUROPHARMACOLOGY, V56, P303, DOI 10.1016/j.neuropharm.2008.07.034 Lytle C., 2003, RED CELL MEMBRANE TR, P173 Lytle C, 1998, AM J PHYSIOL-CELL PH, V274, pC299 Lytle C, 1996, AM J PHYSIOL-CELL PH, V270, pC437 Malmierca MS, 2003, INT REV NEUROBIOL, V56, P147, DOI 10.1016/S0074-7742(03)56005-6 Marcus DC, 2009, PHYSIOLOGY AND PATHOLOGY OF CHLORIDE TRANSPORTERS AND CHANNELS IN THE NERVOUS SYSTEM: FROM MOLECULES TO DISEASES, P425 Marty A, 2005, TRENDS NEUROSCI, V28, P284, DOI 10.1016/j.tins.2005.04.003 MCBAIN CJ, 1990, SCIENCE, V249, P674, DOI 10.1126/science.2382142 Mercado A, 2000, J BIOL CHEM, V275, P30326, DOI 10.1074/jbc.M003112200 Merchan M, 2005, NEUROSCIENCE, V136, P907, DOI 10.1016/j.neuroscience.2004.12.030 Milenkovic I, 2007, J NEUROPHYSIOL, V98, P1634, DOI 10.1152/jn.01150.2006 Monsivais P, 2001, J NEUROSCI, V21, P7823 MORALESAZA A, 2004, NEUROBIOL DIS, V17, P62 Mount DB, 1999, J BIOL CHEM, V274, P16355, DOI 10.1074/jbc.274.23.16355 Nabekura J, 2004, NAT NEUROSCI, V7, P17, DOI 10.1038/nn1170 Nabekura J, 2002, J NEUROSCI, V22, P4412 Nakahata Y, 2010, BRAIN RES, V1345, P19, DOI 10.1016/j.brainres.2010.05.052 Noh J, 2010, NAT NEUROSCI, V13, P232, DOI 10.1038/nn.2478 OBERHOFER M, 2007, THESIS U KAISERSLAUT, P1 O'Donovan KJ, 1999, TRENDS NEUROSCI, V22, P167, DOI 10.1016/S0166-2236(98)01343-5 OLIVER DL, 1994, J COMP NEUROL, V340, P27, DOI 10.1002/cne.903400104 Owens DF, 2002, NAT REV NEUROSCI, V3, P715, DOI 10.1038/nrn919 Pace AJ, 2000, J CLIN INVEST, V105, P441, DOI 10.1172/JCI8553 Pace AJ, 2001, HEARING RES, V156, P17, DOI 10.1016/S0378-5955(01)00263-5 Palma E, 2006, P NATL ACAD SCI USA, V103, P8465, DOI 10.1073/pnas.0602979103 Palmer AR, 2004, CURR OPIN NEUROBIOL, V14, P457, DOI 10.1016/j.conb.2004.06.001 Payne JA, 1996, J BIOL CHEM, V271, P16245 Payne JA, 2003, TRENDS NEUROSCI, V26, P199, DOI 10.1016/S0166-2236(03)00068-7 PAYNE JA, 1997, AM J PHYSIOL, V273, pC1515 Pecka M, 2007, J NEUROSCI, V27, P1782, DOI 10.1523/JNEUROSCI.5335-06.2007 Pecka M, 2008, J NEUROSCI, V28, P6914, DOI 10.1523/JNEUROSCI.1660-08.2008 PERKINS RE, 1973, J COMP NEUROL, V148, P387, DOI 10.1002/cne.901480306 Piechotta K, 2003, J BIOL CHEM, V278, P52848, DOI 10.1074/jbc.M309436200 Piechotta K, 2002, J BIOL CHEM, V277, P50812, DOI 10.1074/jbc.M208108200 Price TJ, 2009, BRAIN RES REV, V60, P149, DOI 10.1016/j.brainresrev.2008.12.015 REICHLING DB, 1994, J PHYSIOL-LONDON, V476, P411 Reynolds A, 2008, J NEUROSCI, V28, P1588, DOI 10.1523/JNEUROSCI.3791-07.2008 Rheims S, 2009, J NEUROCHEM, V110, P1330, DOI 10.1111/j.1471-4159.2009.06230.x Rietzel HJ, 1998, J COMP NEUROL, V390, P20 Riquelme R, 2001, J COMP NEUROL, V432, P409, DOI 10.1002/cne.1111 Rivera C, 1999, NATURE, V397, P251 Rivera C, 2002, J CELL BIOL, V159, P747, DOI 10.1083/jcb.200209011 Rivera C, 2004, J NEUROSCI, V24, P4683, DOI 10.1523/JNEUROSCI.5265-03.2004 RUEGG UT, 1989, TRENDS PHARMACOL SCI, V10, P218, DOI 10.1016/0165-6147(89)90263-0 Russell JM, 2009, PHYSIOLOGY AND PATHOLOGY OF CHLORIDE TRANSPORTERS AND CHANNELS IN THE NERVOUS SYSTEM: FROM MOLECULES TO DISEASES, P17 Russell JM, 2000, PHYSIOL REV, V80, P211 Ruusuvuori E, 2010, J NEUROSCI, V30, P15638, DOI 10.1523/JNEUROSCI.3355-10.2010 Sakaguchi N, 1998, HEARING RES, V118, P114, DOI 10.1016/S0378-5955(98)00022-7 Sanes DH, 2000, HEARING RES, V147, P46, DOI 10.1016/S0378-5955(00)00119-2 Sanes DH, 2009, CURR OPIN NEUROBIOL, V19, P188, DOI 10.1016/j.conb.2009.05.014 SANES DH, 1992, NEUROREPORT, V3, P323, DOI 10.1097/00001756-199204000-00008 SANES DH, 1991, J NEUROBIOL, V22, P837, DOI 10.1002/neu.480220805 SANES DH, 1992, J COMP NEUROL, V321, P637, DOI 10.1002/cne.903210410 SANES DH, 1988, J NEUROSCI, V8, P682 SANES DH, 1992, DEV BRAIN RES, V67, P47, DOI 10.1016/0165-3806(92)90024-Q SANES DH, 1993, EUR J NEUROSCI, V5, P570, DOI 10.1111/j.1460-9568.1993.tb00522.x SAUNDERS JC, 1973, BRAIN RES, V63, P59, DOI 10.1016/0006-8993(73)90076-0 Seidl AH, 2005, J NEUROPHYSIOL, V94, P1028, DOI 10.1152/jn.01143.2004 Sensi SL, 2004, CURR MOL MED, V4, P87, DOI 10.2174/1566524043479211 Shibata S, 2004, NEUROSCI RES, V48, P211, DOI 10.1016/j.neures.2003.10.011 SHNEIDERMAN A, 1993, J NEUROCHEM, V60, P72, DOI 10.1111/j.1471-4159.1993.tb05824.x SHNEIDERMAN A, 1988, J COMP NEUROL, V276, P188, DOI 10.1002/cne.902760204 Singer JH, 1998, J NEUROPHYSIOL, V80, P2608 Smith AJ, 2000, J PHYSIOL-LONDON, V529, P681, DOI 10.1111/j.1469-7793.2000.00681.x Stein V, 2004, J COMP NEUROL, V468, P57, DOI 10.1002/cne.10983 Stil A, 2009, NEUROSCIENCE, V164, P809, DOI 10.1016/j.neuroscience.2009.08.035 Sung KW, 2000, J NEUROSCI, V20, P7531 SUVITAYAVAT W, 1994, AM J PHYSIOL, V266, pC284 Tabor KM, 2011, J COMP NEUROL, V519, P358, DOI 10.1002/cne.22523 Tang ZQ, 2009, J NEUROPHYSIOL, V102, P1672, DOI 10.1152/jn.00419.2009 Tanis JE, 2009, J NEUROSCI, V29, P9943, DOI 10.1523/JNEUROSCI.1989-09.2009 Tornberg J, 2005, EUR J NEUROSCI, V21, P1327, DOI 10.1111/j.1460-9568.2005.03959.x Toyoda H, 2003, J NEUROPHYSIOL, V89, P1353, DOI 10.1152/jn.00721.2002 Turecek R, 2002, P NATL ACAD SCI USA, V99, P13884, DOI 10.1073/pnas.212419699 Turecek R, 2001, NATURE, V411, P587, DOI 10.1038/35079084 Tyzio R, 2011, J NEUROSCI, V31, P34, DOI 10.1523/JNEUROSCI.3314-10.2011 Tzounopoulos T, 2004, NAT NEUROSCI, V7, P719, DOI 10.1038/nn1272 Uvarov P, 2006, J NEUROSCI, V26, P13463, DOI 10.1523/JNEUROSCI.4731-06.2006 Uvarov P, 2005, J NEUROCHEM, V95, P1144, DOI 10.1111/j.1471-4159.2005.03434.x Vale C, 2000, J NEUROSCI, V20, P1912 Vale C, 2004, EUR J NEUROSCI, V20, P2133, DOI 10.1111/j.1460-9568.2004.03679.x Vale C, 2002, EUR J NEUROSCI, V16, P2394, DOI 10.1046/j.1460-9568.2002.02302.x Vale C, 2005, HEARING RES, V206, P107, DOI 10.1016/j.heares.2005.03.012 Vale C, 2003, J NEUROSCI, V23, P7516 Vater M, 1997, CELL TISSUE RES, V289, P223, DOI 10.1007/s004410050869 Vilen H, 2001, TRANSGENIC RES, V10, P69, DOI 10.1023/A:1008959231644 Wake H, 2007, J NEUROSCI, V27, P1642, DOI 10.1523/JNEUROSCI.3104-06.2007 Walters ZS, 2009, J PHYSIOL-LONDON, V587, P521, DOI 10.1113/jphysiol.2008.161562 Wang DD, 2008, J NEUROSCI, V28, P5547, DOI 10.1523/JNEUROSCI.5599-07.2008 WANG DD, 2010, CEREB CORTEX Watanabe M, 2009, J BIOL CHEM, V284, P27980, DOI 10.1074/jbc.M109.043620 Wenthold RJ, 1991, NEUROBIOLOGY HEARING, P121 Werthat F, 2008, DEV NEUROBIOL, V68, P1454, DOI 10.1002/dneu.20660 WICKESBERG RE, 1990, J NEUROSCI, V10, P1762 WOJTOWICZ JM, 1982, BRAIN RES, V18, P173 Woo NS, 2002, HIPPOCAMPUS, V12, P258, DOI 10.1002/hipo.10014 Woodin MA, 2003, NEURON, V39, P807, DOI 10.1016/S0896-6273(03)00507-5 WU WI, 1992, J NEUROSCI, V12, P3935 XU JC, 1994, P NATL ACAD SCI USA, V91, P2201, DOI 10.1073/pnas.91.6.2201 Yamada J, 2004, J PHYSIOL-LONDON, V557, P829, DOI 10.1113/jphysiol.2004.062471 Yang K, 2008, NEUROSCI LETT, V441, P205, DOI 10.1016/j.neulet.2008.06.038 Yeo M, 2009, J NEUROSCI, V29, P14652, DOI 10.1523/JNEUROSCI.2934-09.2009 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 Yin T. C. T, 2002, INTEGRATIVE FUNCTION, P99 YUSTE R, 1991, NEURON, V6, P333, DOI 10.1016/0896-6273(91)90243-S Zhang D, 2010, J BIOMOL SCREEN, V15, P177, DOI 10.1177/1087057109355708 Zhang LL, 2007, J NEUROPHYSIOL, V98, P266, DOI 10.1152/jn.00288.2007 Zhou Y, 2005, J NEUROSCI, V25, P3046, DOI 10.1523/JNEUROSCI.3064-04.2005 Zhu L, 2008, EPILEPSY RES, V79, P201, DOI 10.1016/j.eplepsyres.2008.02.005 Zhu L, 2005, J NEUROPHYSIOL, V93, P1557, DOI 10.1152/jn.00616.2004 NR 259 TC 8 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD SEP PY 2011 VL 279 IS 1-2 SI SI BP 96 EP 110 DI 10.1016/j.heares.2011.05.012 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 830OQ UT WOS:000295666700011 PM 21683130 ER PT J AU Wang, HN Brozoski, TJ Caspary, DM AF Wang, Hongning Brozoski, Thomas J. Caspary, Donald M. TI Inhibitory neurotransmission in animal models of tinnitus: Maladaptive plasticity SO HEARING RESEARCH LA English DT Article ID DORSAL COCHLEAR NUCLEUS; AGE-RELATED-CHANGES; RAT INFERIOR COLLICULUS; INTENSE SOUND EXPOSURE; STEM AUDITORY NUCLEI; RECEPTOR SUBUNIT COMPOSITION; SPONTANEOUS NEURAL ACTIVITY; ACOUSTIC TRAUMA; BRAIN-STEM; RESPONSE PROPERTIES AB Tinnitus is a phantom auditory sensation experienced by up to 14% of the United States population with a smaller percentage experiencing decreased quality of life. A compelling hypothesis is that tinnitus results from a maladaptive plastic net down-regulation of inhibitory amino acid neurotransmission in the central auditory pathway. This loss of inhibition may be a compensatory response to loss of afferent input such as that caused by acoustic insult and/or age-related hearing loss, the most common causes of tinnitus in people. Compensatory plastic changes may result in pathologic neural activity that underpins tinnitus. The neural correlates include increased spontaneous spiking, increased bursting and decreased variance of inter-spike intervals. This review will examine evidence for chronic plastic neuropathic changes in the central auditory system of animals with psychophysically-defined tinnitus. Neurochemical studies will focus on plastic tinnitus-related changes of inhibitory glycinergic neurotransmission in the adult dorsal cochlear nucleus (DCN). Electrophysiological studies will focus on functional changes in the DCN and inferior colliculus (IC). Tinnitus was associated with increased spontaneous activity and altered response properties of fusiform cells, the major output neurons of DCN. Coincident with these physiologic alterations were changes in glycine receptor (GlyR) subunit composition, its anchoring/trafficking protein, gephyrin and the number and affinity of membrane GlyRs revealed by receptor binding. In the IC, the primary afferent target of DCN fusiform cells, multi-dimensional alterations in unit-spontaneous activity (rate, burst rate, bursting pattern) were found in animals with behavioral evidence of chronic tinnitus more than 9 months following the acoustic/cochlear insult. In contrast, immediately following an intense sound exposure, acute alterations in IC spontaneous activity resembled chronic tinnitus-related changes but were not identical. This suggests that long-term neuroplastic changes responsible for chronic tinnitus are likely to be responsible for its persistence. A clear understanding of tinnitus-related plasticity in the central auditory system and its associated neurochemistry may help define unique targets for therapeutic drug development. (C) 2011 Elsevier B.V. All rights reserved. C1 [Wang, Hongning; Caspary, Donald M.] So Illinois Univ, Sch Med, Dept Pharmacol, Springfield, IL 62794 USA. [Brozoski, Thomas J.] So Illinois Univ, Sch Med, Dept Surg, Springfield, IL 62794 USA. RP Caspary, DM (reprint author), So Illinois Univ, Sch Med, Dept Pharmacol, POB 19629, Springfield, IL 62794 USA. EM dcaspary@siumed.edu FU NIH [RO1DC00151, R01DC008532, RO1DC04803, RO1DC009669] FX We thank Judith Bryan and Lynne Ling for helpful editing. This research is supported by NIH Grant RO1DC00151 (DMC), R01DC008532 (DMC), RO1DC04803 (TJB) and RO1DC009669 (TJB). CR Ahmad N, 2004, DRUG AGING, V21, P297, DOI 10.2165/00002512-200421050-00002 Bauer CA, 2008, J NEUROSCI RES, V86, P2564, DOI 10.1002/jnr.21699 BEYERL BD, 1978, BRAIN RES, V145, P209, DOI 10.1016/0006-8993(78)90858-2 Brozoski TJ, 2007, HEARING RES, V228, P168, DOI 10.1016/j.heares.2007.02.003 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 Brozoski TJ, 2005, HEARING RES, V206, P227, DOI 10.1016/j.heares.2004.12.013 Burianova J, 2009, EXP GERONTOL, V44, P161, DOI 10.1016/j.exger.2008.09.012 Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9 Caspary DM, 2008, J EXP BIOL, V211, P1781, DOI 10.1242/jeb.013581 CASPARY DM, 1990, J NEUROSCI, V10, P2363 Caspary DM, 1999, NEUROSCIENCE, V93, P307, DOI 10.1016/S0306-4522(99)00121-9 Caspary DM, 2005, J NEUROSCI, V25, P10952, DOI 10.1523/JNEUROSCI.2451-05.2005 CASPARY DM, 1987, BRAIN RES, V417, P273, DOI 10.1016/0006-8993(87)90452-5 Chang H, 2002, HEARING RES, V164, P59, DOI 10.1016/S0378-5955(01)00410-5 CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O Davis KA, 2000, J NEUROPHYSIOL, V83, P926 Dobie RA, 2003, OTOLARYNG CLIN N AM, V36, P383, DOI 10.1016/S0030-6665(02)00168-8 Dong S, 2010, BRAIN RES, V1342, P24, DOI 10.1016/j.brainres.2010.04.067 Dong S, 2009, NEUROSCIENCE, V159, P1164, DOI 10.1016/j.neuroscience.2009.01.043 Dong SY, 2010, EUR J NEUROSCI, V31, P1616, DOI 10.1111/j.1460-9568.2010.07183.x Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Finlayson PG, 2009, HEARING RES, V256, P104, DOI 10.1016/j.heares.2009.07.006 Fritschy JM, 2008, TRENDS NEUROSCI, V31, P257, DOI 10.1016/j.tins.2008.02.006 GonzalezHernandez T, 1996, J COMP NEUROL, V372, P309, DOI 10.1002/(SICI)1096-9861(19960819)372:2<309::AID-CNE11>3.0.CO;2-E Grudzinska J, 2005, NEURON, V45, P727, DOI 10.1016/j.neuron.2005.01.028 Holt AG, 2005, J NEUROCHEM, V93, P1069, DOI 10.1111/j.1471-4159.2005.03090.x Holt AG, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014260 Imig TJ, 2005, J COMP NEUROL, V490, P391, DOI 10.1002/cne.20674 Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6 Kaltenbach JA, 2007, PROG BRAIN RES, V166, P89, DOI 10.1016/S0079-6123(07)66009-9 Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5 Kaltenbach JA, 1998, HEARING RES, V124, P78, DOI 10.1016/S0378-5955(98)00119-1 KIRSCH J, 1993, BRAIN RES, V621, P301, DOI 10.1016/0006-8993(93)90120-C Kneussel M, 2007, BIOL CELL, V99, P297, DOI 10.1042/BC20060120 Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 Llano DA, 2000, BIOL CYBERN, V83, P419, DOI 10.1007/s004220000174 Ma WLD, 2006, HEARING RES, V216, P176, DOI 10.1016/j.heares.2006.03.011 Ma WLD, 2006, HEARING RES, V212, P9, DOI 10.1016/j.heares.2005.10.003 Maas C, 2006, J CELL BIOL, V172, P441, DOI 10.1083/jcb.200506066 Marciano E, 2003, INT J AUDIOL, V42, P4, DOI 10.3109/14992020309056079 Melcher JR, 2009, HEARING RES, V257, P63, DOI 10.1016/j.heares.2009.08.005 Melcher JR, 2000, J NEUROPHYSIOL, V83, P1058 MILBRANDT JC, 1995, NEUROSCIENCE, V67, P713, DOI 10.1016/0306-4522(95)00082-T Milbrandt JC, 1997, J COMP NEUROL, V379, P455, DOI 10.1002/(SICI)1096-9861(19970317)379:3<455::AID-CNE10>3.0.CO;2-F Milbrandt JC, 2000, HEARING RES, V147, P251, DOI 10.1016/S0378-5955(00)00135-0 Milbrandt JC, 1996, NEUROSCIENCE, V73, P449, DOI 10.1016/0306-4522(96)00050-4 Mulders WHAM, 2009, NEUROSCIENCE, V164, P733, DOI 10.1016/j.neuroscience.2009.08.036 Potashner SJ, 2000, HEARING RES, V147, P125, DOI 10.1016/S0378-5955(00)00126-X Quirk WS, 1996, OTOLARYNG HEAD NECK, V114, P613, DOI 10.1016/S0194-5998(96)70255-3 Roberts LE, 2010, J NEUROSCI, V30, P14972, DOI 10.1523/JNEUROSCI.4028-10.2010 SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U SALVI RJ, 1978, EXP BRAIN RES, V32, P301 Seidman MD, 1996, OTOLARYNG CLIN N AM, V29, P455 SHNEIDERMAN A, 1988, J COMP NEUROL, V276, P188, DOI 10.1002/cne.902760204 SHORE EE, 2008, EUR J NEUROSCI, V27, P155 Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812 Suneja SK, 1998, EXP NEUROL, V154, P473, DOI 10.1006/exnr.1998.6946 SZCZEPANIAK WS, 1995, NEUROSCI LETT, V196, P77, DOI 10.1016/0304-3940(95)11851-M TRILLER A, 1985, J CELL BIOL, V101, P683, DOI 10.1083/jcb.101.2.683 Turner JG, 2006, BEHAV NEUROSCI, V120, P188, DOI 10.1037/0735-7044.120.1.188 Vale C, 2004, EUR J NEUROSCI, V20, P2133, DOI 10.1111/j.1460-9568.2004.03679.x Wang H, 2009, NEUROSCIENCE, V160, P227, DOI 10.1016/j.neuroscience.2009.01.079 Wang H, 2009, NEUROSCIENCE, V164, P747, DOI 10.1016/j.neuroscience.2009.08.026 Wang J, 1996, J NEUROPHYSIOL, V75, P171 Wang JA, 2002, HEARING RES, V168, P238, DOI 10.1016/S0378-5955(02)00360-X Willott JF, 1997, J COMP NEUROL, V385, P405 WILLOTT JF, 1982, SCIENCE, V216, P1331, DOI 10.1126/science.7079767 Winer J.A., 2005, INFERIOR COLLICULUS Zhang JS, 1998, NEUROSCI LETT, V250, P197, DOI 10.1016/S0304-3940(98)00482-0 Zoger S, 2001, AUDIOLOGY, V40, P133 NR 70 TC 34 Z9 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2011 VL 279 IS 1-2 SI SI BP 111 EP 117 DI 10.1016/j.heares.2011.04.004 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 830OQ UT WOS:000295666700012 PM 21527325 ER PT J AU O'Neil, JN Connelly, CJ Limb, CJ Ryugo, DK AF O'Neil, Jahn N. Connelly, Catherine J. Limb, Charles J. Ryugo, David K. TI Synaptic morphology and the influence of auditory experience SO HEARING RESEARCH LA English DT Article ID ANTEROVENTRAL COCHLEAR NUCLEUS; MEDIAL SUPERIOR OLIVE; DEAF WHITE CATS; INTRACOCHLEAR ELECTRICAL-STIMULATION; INTERAURAL TIME DIFFERENCE; PRIMARY AXOSOMATIC ENDINGS; SPIRAL GANGLION NEURONS; INFERIOR COLLICULUS; BRAIN-STEM; CONGENITAL DEAFNESS AB The auditory experience is crucial for the normal development and maturation of brain structure and the maintenance of the auditory pathways. The specific aims of this review are (i) to provide a brief background of the synaptic morphology of the endbulb of Held in hearing and deaf animals; (ii) to argue the importance of this large synaptic ending in linking neural activity along ascending pathways to environmental acoustic events; (iii) to describe how the re-introduction of electrical activity changes this synapse; and (iv) to examine how changes at the endbulb synapse initiate trans-synaptic changes in ascending auditory projections to the superior olivary complex, the inferior complex, and the auditory cortex. (C) 2011 Elsevier B.V. All rights reserved. C1 [Ryugo, David K.] St Vincents Hosp, Garvan Inst Med Res, Program Neurosci, Darlinghurst, NSW 2010, Australia. [O'Neil, Jahn N.; Connelly, Catherine J.; Limb, Charles J.; Ryugo, David K.] Johns Hopkins Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Baltimore, MD 21205 USA. [Ryugo, David K.] Johns Hopkins Univ, Sch Med, Dept Neurosci, Baltimore, MD 21205 USA. RP Ryugo, DK (reprint author), St Vincents Hosp, Garvan Inst Med Res, Program Neurosci, Darlinghurst, NSW 2010, Australia. EM d.ryugo@garvan.org.au FU NIH [DC000232]; Advanced Bionics Corporation; New South Wales, Australia FX The authors are supported by NIH grant DC000232, a grant from Advanced Bionics Corporation, and a Life Science Research Award from New South Wales, Australia. CR ADAMS JC, 1986, ARCH OTOLARYNGOL, V112, P1253 ADAMS JC, 1987, J COMP NEUROL, V262, P375, DOI 10.1002/cne.902620305 ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305 ALTSCHULER RA, 1984, BRAIN RES, V291, P173, DOI 10.1016/0006-8993(84)90667-X ANDERSEN RA, 1980, J COMP NEUROL, V194, P649, DOI 10.1002/cne.901940311 Asako M, 2005, J NEUROSCI RES, V81, P102, DOI 10.1002/jnr.20542 Babalian AL, 2003, EXP BRAIN RES, V153, P452, DOI 10.1007/s00221-003-1619-x BAKER CA, 2010, FRONT NEUROANAT, V4, P1 BLACKBURN CC, 1990, J NEUROPHYSIOL, V63, P1191 Bledsoe SC, 1995, NEUROREPORT, V7, P225, DOI 10.1097/00001756-199512000-00054 Bosher S. K., 1967, J LARYNGOL OTOL, V80, P222 BOSHER SK, 1965, PROC R SOC SER B-BIO, V162, P147, DOI 10.1098/rspb.1965.0030 BOUDREAU JC, 1968, J NEUROPHYSIOL, V31, P442 BOYNE AF, 1975, J CELL BIOL, V67, P814, DOI 10.1083/jcb.67.3.814 Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a BRAWER JR, 1975, J COMP NEUROL, V160, P491, DOI 10.1002/cne.901600406 Brighton P, 1991, ANN NY ACAD SCI, V630, P152 BROWNER RH, 1988, HEARING RES, V33, P257, DOI 10.1016/0378-5955(88)90156-6 Buras ED, 2006, J COMP NEUROL, V494, P179, DOI 10.1002/cne.20795 BURWEN SJ, 1977, J CELL BIOL, V74, P690, DOI 10.1083/jcb.74.3.690 BUSBY PA, 1993, J ACOUST SOC AM, V93, P1058, DOI 10.1121/1.405554 BUSBY PA, 1992, AUDIOLOGY, V31, P95 Busby PA, 1999, J ACOUST SOC AM, V105, P1841, DOI 10.1121/1.426721 CANT NB, 1992, HEARING RES, V58, P26, DOI 10.1016/0378-5955(92)90005-8 CANT NB, 1979, NEUROSCIENCE, V4, P1925, DOI 10.1016/0306-4522(79)90066-6 CANT NB, 1986, J COMP NEUROL, V247, P457, DOI 10.1002/cne.902470406 Carr CE, 1996, J COMP NEUROL, V373, P467, DOI 10.1002/(SICI)1096-9861(19960930)373:4<467::AID-CNE1>3.0.CO;2-# Carr CE, 2004, J PHYSIOLOGY-PARIS, V98, P99, DOI 10.1016/j.jphysparis.2004.03.003 CARR CE, 1991, J COMP NEUROL, V314, P306, DOI 10.1002/cne.903140208 Chang EF, 2003, SCIENCE, V300, P498, DOI 10.1126/science.1082163 Chen I, 2010, JARO-J ASSOC RES OTO, V11, P587, DOI 10.1007/s10162-010-0234-3 Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004 Couchman K, 2010, J NEUROSCI, V30, P17111, DOI 10.1523/JNEUROSCI.1760-10.2010 DEOL MS, 1970, PROC R SOC SER B-BIO, V175, P201, DOI 10.1098/rspb.1970.0019 FERRARA ML, 1983, VET REC, V112, P344 Fitzpatrick DC, 1997, NATURE, V388, P871, DOI 10.1038/42246 Francis HW, 2000, HEARING RES, V149, P91, DOI 10.1016/S0378-5955(00)00165-9 FRIAUF E, 1990, NEUROSCI LETT, V120, P58, DOI 10.1016/0304-3940(90)90167-8 GANTZ BJ, 1994, AM J OTOL S2, P1 Gillespie DC, 2005, NAT NEUROSCI, V8, P332, DOI 10.1038/nn1397 GROTHE B, 1993, J NEUROPHYSIOL, V69, P1192 Grothe B, 2000, PROG NEUROBIOL, V61, P581, DOI 10.1016/S0301-0082(99)00068-4 GROTHE B, 1994, J NEUROSCI, V14, P1701 GULLEY RL, 1978, J COMP NEUROL, V180, P707, DOI 10.1002/cne.901800405 GULLEY RL, 1977, J CELL BIOL, V75, P837, DOI 10.1083/jcb.75.3.837 Hackney CM, 1996, EUR J NEUROSCI, V8, P79, DOI 10.1111/j.1460-9568.1996.tb01169.x Hancock KE, 2010, J NEUROSCI, V30, P14068, DOI 10.1523/JNEUROSCI.3213-10.2010 Hartmann R, 1997, HEARING RES, V112, P115, DOI 10.1016/S0378-5955(97)00114-7 Heid S, 1997, HEARING RES, V110, P191, DOI 10.1016/S0378-5955(97)00074-9 Heid S, 1998, HEARING RES, V115, P101, DOI 10.1016/S0378-5955(97)00182-2 Held H, 1893, ARCH ANAT PHYSL ANAT, V3+4, P201 HEUSER JE, 1973, J CELL BIOL, V57, P315, DOI 10.1083/jcb.57.2.315 HOLLMANN M, 1994, ANNU REV NEUROSCI, V17, P31, DOI 10.1146/annurev.ne.17.030194.000335 HULTCRANTZ M, 1991, HEARING RES, V54, P272, DOI 10.1016/0378-5955(91)90121-O HUNTER C, 1993, J NEUROSCI, V13, P1932 JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495 JHAVERI S, 1982, NEUROSCIENCE, V7, P837, DOI 10.1016/0306-4522(82)90046-X Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5 KANDLER K, 1995, J NEUROSCI, V15, P6890 Kandler K, 2009, NAT NEUROSCI, V12, P711, DOI 10.1038/nn.2332 Kandler K, 2004, CURR OPIN NEUROBIOL, V14, P96, DOI 10.1016/j.conb.2004.01.017 Kapfer C, 2002, NAT NEUROSCI, V5, P247, DOI 10.1038/mm810 Kiang NY-s, 1965, DISCHARGE PATTERNS S Kim G, 2003, NAT NEUROSCI, V6, P282, DOI 10.1038/nn1015 Klinke R, 2001, AUDIOL NEURO-OTOL, V6, P203, DOI 10.1159/000046833 Klinke R, 1999, SCIENCE, V285, P1729, DOI 10.1126/science.285.5434.1729 KOERBER KC, 1966, EXP NEUROL, V16, P119, DOI 10.1016/0014-4886(66)90091-4 KOLSTON J, 1992, ANAT EMBRYOL, V186, P443 KONISHI M, 1985, ANNU REV NEUROSCI, V8, P125 Kral A, 2000, CEREB CORTEX, V10, P714, DOI 10.1093/cercor/10.7.714 Kral A, 2002, CEREB CORTEX, V12, P797, DOI 10.1093/cercor/12.8.797 Kral A, 2001, AUDIOL NEURO-OTOL, V6, P346, DOI 10.1159/000046845 Kretzmer EA, 2004, ARCH OTOLARYNGOL, V130, P499, DOI 10.1001/archotol.130.5.499 KUWABARA N, 1992, J COMP NEUROL, V324, P522, DOI 10.1002/cne.903240406 LARSEN SA, 1992, EXP NEUROL, V115, P151, DOI 10.1016/0014-4886(92)90240-Q LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4 Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3 Lee DJ, 2003, J NEUROCYTOL, V32, P229, DOI 10.1023/B:NEUR.0000010082.99874.14 LENN NJ, 1966, AM J ANAT, V118, P375, DOI 10.1002/aja.1001180205 Limb CJ, 2000, JARO, V1, P103, DOI 10.1007/sl01620010032 Linthicum FH, 2009, OTOL NEUROTOL, V30, P418, DOI 10.1097/MAO.0b013e31819a8827 Lorente de No R, 1981, PRIMARY ACOUSTIC NUC LORENZ K, 1935, J ORNITHOLOGIE, V83 LUSTIG LR, 1994, HEARING RES, V74, P29, DOI 10.1016/0378-5955(94)90173-2 MAIR IWS, 1973, ACTA OTOLARYNG S314, P1 MANIS PB, 1991, J NEUROSCI, V11, P2865 MARTIN MR, 1985, HEARING RES, V20, P215, DOI 10.1016/0378-5955(85)90026-7 McAlpine D, 2001, NAT NEUROSCI, V4, P396, DOI 10.1038/86049 MCMULLEN NT, 1988, EXP BRAIN RES, V72, P195, DOI 10.1007/BF00248516 MCMULLEN NT, 1988, J COMP NEUROL, V267, P92, DOI 10.1002/cne.902670107 MOISEFF A, 1981, J NEUROSCI, V1, P40 MOORE DR, 1985, J COMP NEUROL, V240, P180, DOI 10.1002/cne.902400208 Moore JK, 1997, ANN OTO RHINOL LARYN, V106, P385 MOORE MJ, 1983, J NEUROSCI, V3, P237 MOREST DK, 1984, J COMP NEUROL, V222, P209, DOI 10.1002/cne.902220206 Mossop JE, 2000, HEARING RES, V147, P183, DOI 10.1016/S0378-5955(00)00054-X NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411 NEISES GR, 1982, ANAT REC, V204, P271, DOI 10.1002/ar.1092040312 NI DF, 1993, ACTA OTO-LARYNGOL, V113, P489, DOI 10.3109/00016489309135851 Nicol MJ, 2002, J PHYSIOL-LONDON, V539, P713, DOI 10.1013/jphysiol.2001.012972 NORDEEN KW, 1983, J COMP NEUROL, V214, P131, DOI 10.1002/cne.902140203 NORDEEN KW, 1983, J COMP NEUROL, V214, P144, DOI 10.1002/cne.902140204 OERTEL D, 1983, J NEUROSCI, V3, P2043 Oleskevich S, 2004, J PHYSIOL-LONDON, V560, P709, DOI 10.1113/jphysiol.2004.066652 O'Neil JN, 2010, J COMP NEUROL, V518, P2382, DOI 10.1002/cne.22339 ONEIL JN, 2011, ASS RES OT ABST OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407 Parks T.N., 2004, PLASTICITY AUDITORY Pecka M, 2008, J NEUROSCI, V28, P6914, DOI 10.1523/JNEUROSCI.1660-08.2008 Petralia RS, 2000, HEARING RES, V147, P59, DOI 10.1016/S0378-5955(00)00120-9 PFEIFFER RR, 1966, SCIENCE, V154, P667, DOI 10.1126/science.154.3749.667 QUITTNER AL, 1991, AM J OTOL, V12, P89 Ramon, 1909, HISTOLOGIE SYSTEME N Rauschecker JP, 2002, SCIENCE, V295, P1025, DOI 10.1126/science.1067796 REBILLARD M, 1981, HEARING RES, V5, P189, DOI 10.1016/0378-5955(81)90045-9 REBILLARD M, 1981, HEARING RES, V5, P179, DOI 10.1016/0378-5955(81)90044-7 Redd EE, 2000, HEARING RES, V147, P160, DOI 10.1016/S0378-5955(00)00129-5 REES S, 1985, BRAIN RES, V325, P370, DOI 10.1016/0006-8993(85)90343-9 Rietzel HJ, 1998, J COMP NEUROL, V390, P20 ROBARDS MJ, 1979, J COMP NEUROL, V184, P547, DOI 10.1002/cne.901840308 Robbins AM, 2006, COCHLEAR IMPLANTS, P153 ROMAND R, 1978, BRAIN RES, V148, P43, DOI 10.1016/0006-8993(78)90377-3 ROTH GL, 1978, J COMP NEUROL, V182, P661, DOI 10.1002/cne.901820407 RUSSELL FA, 1995, J COMP NEUROL, V352, P607, DOI 10.1002/cne.903520409 Ryugo D. K., 2009, COCHLEAR IMPLANTS PR, P19 RYUGO DK, 1981, BRAIN RES, V210, P342, DOI 10.1016/0006-8993(81)90907-0 Ryugo DK, 1997, J COMP NEUROL, V385, P230, DOI 10.1002/(SICI)1096-9861(19970825)385:2<230::AID-CNE4>3.0.CO;2-2 RYUGO DK, 1982, J COMP NEUROL, V210, P239, DOI 10.1002/cne.902100304 Ryugo DK, 2010, J COMP NEUROL, V518, P1046, DOI 10.1002/cne.22262 Ryugo DK, 2003, BRAIN RES BULL, V60, P435, DOI 10.1016/S0361-9230(03)00049-2 RYUGO DK, 1991, J COMP NEUROL, V305, P35, DOI 10.1002/cne.903050105 Ryugo DK, 2005, SCIENCE, V310, P1490, DOI 10.1126/science.1119419 Ryugo DK, 1998, J COMP NEUROL, V397, P532, DOI 10.1002/(SICI)1096-9861(19980810)397:4<532::AID-CNE6>3.0.CO;2-2 Ryugo DK, 2006, HEARING RES, V216, P100, DOI 10.1016/j.heares.2006.01.007 Ryugo DK, 1996, J COMP NEUROL, V365, P141, DOI 10.1002/(SICI)1096-9861(19960129)365:1<141::AID-CNE11>3.0.CO;2-T Saada AA, 1996, BRAIN RES, V736, P315, DOI 10.1016/0006-8993(96)00719-6 Safieddine S, 1997, J NEUROSCI, V17, P7523 SANES DH, 1993, J NEUROSCI, V13, P2627 Sanes DH, 2000, HEARING RES, V147, P46, DOI 10.1016/S0378-5955(00)00119-2 SANES DH, 1990, J NEUROSCI, V10, P3494 Sanes DH, 2009, CURR OPIN NEUROBIOL, V19, P188, DOI 10.1016/j.conb.2009.05.014 SANES DH, 1991, J NEUROBIOL, V22, P837, DOI 10.1002/neu.480220805 SANES DH, 1992, J COMP NEUROL, V321, P637, DOI 10.1002/cne.903210410 SANES DH, 1988, J NEUROSCI, V8, P682 SANES DH, 1987, J NEUROSCI, V7, P3793 SANES DH, 1993, EUR J NEUROSCI, V5, P570, DOI 10.1111/j.1460-9568.1993.tb00522.x SCHEIBE A, 1885, Z OHRENHEILKD, V27, P95 SCHEIBE A, 1982, ARCH OTOLARYNGOL, V21, P12 SCHWARTZ IR, 1982, ACTA OTO-LARYNGOL, V93, P9, DOI 10.3109/00016488209130847 SCHWEITZER L, 1991, NEUROTOXICOL TERATOL, V13, P189, DOI 10.1016/0892-0362(91)90010-T Shepherd R. K., 2006, COCHLEAR IMPLANTS, P25 Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 Shepherd RK, 1999, HEARING RES, V130, P171, DOI 10.1016/S0378-5955(99)00011-8 Sly DJ, 2007, EUR J NEUROSCI, V26, P510, DOI 10.1111/j.1460-9568.2007.05678.x SMITH PH, 1993, J COMP NEUROL, V331, P245, DOI 10.1002/cne.903310208 SNYDER R, 1995, J NEUROPHYSIOL, V73, P449 Snyder RL, 2000, J NEUROPHYSIOL, V84, P166 SNYDER RL, 1990, HEARING RES, V50, P7, DOI 10.1016/0378-5955(90)90030-S Stakhovskaya O, 2008, HEARING RES, V243, P69, DOI 10.1016/j.heares.2008.05.007 SUGA F, 1970, LARYNGOSCOPE, V80, P80, DOI 10.1288/00005537-197001000-00007 Syka J, 2000, EXP BRAIN RES, V133, P254, DOI 10.1007/s002210000426 SZPIR MR, 1990, J COMP NEUROL, V295, P530, DOI 10.1002/cne.902950403 Tillein J, 2010, CEREB CORTEX, V20, P492, DOI 10.1093/cercor/bhp222 TIRKO NN, 2009, MIDW RES M ASS RES O Tollin DJ, 2003, NEUROSCIENTIST, V9, P127, DOI 10.1177/1073858403252228 Tsuji J, 1997, J COMP NEUROL, V381, P188 Tyler R, 1997, Scand Audiol Suppl, V46, P65 Tyler RS, 1996, EAR HEARING, V17, pS38, DOI 10.1097/00003446-199617031-00005 VANDERLO.H, 1973, SCIENCE, V179, P395, DOI 10.1126/science.179.4071.395 van Hoesel RJM, 2007, J ACOUST SOC AM, V121, P2192, DOI 10.1121/1.2537300 van Hoesel RJM, 2004, AUDIOL NEURO-OTOL, V9, P234, DOI 10.1159/000078393 Vollmer M, 2005, J NEUROPHYSIOL, V93, P3339, DOI 10.1152/jn.00900.2004 Walmsley B, 2006, J PHYSIOL-LONDON, V572, P313, DOI 10.1113/jphysiol.2006.104851 WALTZMAN SB, 1993, OTOLARYNG HEAD NECK, V108, P329 WALTZMAN SB, 1994, AM J OTOL, V15, P9 Waltzman SB, 1997, AM J OTOL, V18, P342 WANG TX, 1998, J NEUROSCI, V18, P1148 Wang Y, 2006, JARO-J ASSOC RES OTO, V7, P412, DOI 10.1007/s10162-006-0052-9 Wang Y, 2005, J NEUROPHYSIOL, V94, P1814, DOI 10.1152/jn.00374.2005 WELLER WL, 1975, BRAIN RES, V83, P504 Werthat F, 2008, DEV NEUROBIOL, V68, P1454, DOI 10.1002/dneu.20660 WEST CD, 1973, J COMP NEUROL, V151, P377, DOI 10.1002/cne.901510406 Winer JA, 2005, HEARING RES, V207, P1, DOI 10.1016/j.heares.2005.06.007 WOJCIK SM, 2004, P NATL ACAD SCI USA, V101, P158 WU SH, 1994, HEARING RES, V73, P57 YIN DC, 1990, J NEUROPHYSIOL, V64, P465 YOUNG SR, 1986, J COMP NEUROL, V254, P425, DOI 10.1002/cne.902540402 Zeng CH, 2009, J NEUROSCI, V29, P4210, DOI 10.1523/JNEUROSCI.0208-09.2009 ZHOU L, 2007, J COMP NEUROL, V500, P777 Zhou X, 2008, NEUROSCIENCE, V154, P390, DOI 10.1016/j.neuroscience.2008.01.026 NR 190 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2011 VL 279 IS 1-2 SI SI BP 118 EP 130 DI 10.1016/j.heares.2011.01.019 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 830OQ UT WOS:000295666700013 PM 21310226 ER PT J AU Wang, Y O'Donohue, H Manis, P AF Wang, Yong O'Donohue, Heather Manis, Paul TI Short-term plasticity and auditory processing in the ventral cochlear nucleus of normal and hearing-impaired animals SO HEARING RESEARCH LA English DT Article ID GLUTAMATE-RECEPTOR DESENSITIZATION; PRESYNAPTIC CALCIUM CURRENT; SYNAPTIC AMPA RECEPTORS; CALYX-TYPE SYNAPSE; BRAIN-STEM; NERVE-FIBERS; BUSHY CELLS; HELD SYNAPSE; ULTRASTRUCTURAL ANALYSIS; CHARACTERISTIC FREQUENCY AB The dynamics of synaptic transmission between neurons plays a major role in neural information processing. In the cochlear nucleus, auditory nerve synapses have a relatively high release probability and show pronounced, synaptic depression that, in conjunction with the variability of interspike intervals, shapes the information transmitted to the postsynaptic cells. Cellular mechanisms have been best analyzed at the endbulb synapses, revealing that the recent history of presynaptic activity plays a complex, non-linear, role in regulating release. Emerging evidence suggests that the dynamics of synaptic function differs according to the target neuron within the cochlear nucleus. One consequence of hearing loss is changes in evoked release at surviving auditory nerve synapses, and in some situations spontaneous release is greatly enhanced. In contrast, even with cochlear ablation, postsynaptic excitability is less affected. The existing evidence suggests that different modes of hearing loss can result in different dynamic patterns of synaptic transmission between the auditory nerve and postsynaptic neurons. These changes in dynamics in turn will affect the efficacy with which different kinds of information about the acoustic environment can be processed by the parallel pathways in the cochlear nucleus. (C) 2011 Elsevier B.V. All rights reserved. C1 [O'Donohue, Heather; Manis, Paul] Univ N Carolina, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC 27599 USA. [Wang, Yong] Univ Utah, Sch Med 3C120, Neurosci Program, Salt Lake City, UT 84132 USA. [Wang, Yong] Univ Utah, Sch Med 3C120, Div Otolaryngol, Salt Lake City, UT 84132 USA. RP Manis, P (reprint author), Univ N Carolina, Dept Otolaryngol Head & Neck Surg, G127 Phys Off Bldg,CB 7070, Chapel Hill, NC 27599 USA. EM yong.wang@hsc.utah.edu; pmanis@med.unc.edu FU NIH [R03DC008190, R01DC004551] FX This work was supported by NIH grants R03DC008190 to YW and R01DC004551 (PBM, HAO). We would also like to thank an anonymous reviewer for some very constructive suggestions. CR Abbott LF, 2004, NATURE, V431, P796, DOI 10.1038/nature03010 BARNESDAVIES M, 1995, J PHYSIOL-LONDON, V488, P387 Bellingham MC, 1999, NEURON, V23, P159, DOI 10.1016/S0896-6273(00)80762-X Belousov AB, 2001, J NEUROSCI, V21, P2015 Benowitz LI, 1997, TRENDS NEUROSCI, V20, P84, DOI 10.1016/S0166-2236(96)10072-2 Blatow M, 2003, NEURON, V38, P79, DOI 10.1016/S0896-6273(03)00196-X Bollmann JH, 2005, NAT NEUROSCI, V8, P426, DOI 10.1038/nn1417 Brenowitz S, 2001, J NEUROSCI, V21, P9487 Brenowitz S, 1998, NEURON, V20, P135, DOI 10.1016/S0896-6273(00)80441-9 Cai SQ, 2009, JARO-J ASSOC RES OTO, V10, P5, DOI 10.1007/s10162-008-0142-y Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9 CAO XJ, 2010, J NEUROPHYSIOL Cao XJ, 2008, J COMP NEUROL, V510, P297, DOI 10.1002/cne.21788 Cao XJ, 2007, J NEUROPHYSIOL, V97, P3961, DOI 10.1152/jn.00052.2007 CASPARY DM, 1983, EXP NEUROL, V82, P491, DOI 10.1016/0014-4886(83)90419-3 Cens T, 2006, PROG BIOPHYS MOL BIO, V90, P104, DOI 10.1016/j.pbiomolbio.2005.05.013 Chanda S, 2010, J NEUROPHYSIOL, V104, P2063, DOI 10.1152/jn.00474.2010 Chanda S, 2010, J NEUROPHYSIOL, V103, P1915, DOI 10.1152/jn.00751.2009 Cook DL, 2003, NATURE, V421, P66, DOI 10.1038/nature01248 Dittman JS, 2000, J NEUROSCI, V20, P1374 Englitz B, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007014 Forsythe ID, 1998, NEURON, V20, P797, DOI 10.1016/S0896-6273(00)81017-X Francis HW, 2000, HEARING RES, V149, P91, DOI 10.1016/S0378-5955(00)00165-9 Fuhrmann G, 2002, J NEUROPHYSIOL, V87, P140 Fujino K, 2001, J NEUROSCI, V21, P7372 Fukui I, 2006, J NEUROPHYSIOL, V96, P633, DOI 10.1152/jn.00916.2005 Gardner SM, 1999, J NEUROSCI, V19, P8721 Grande LA, 2005, PHYSIOLOGY, V20, P201, DOI 10.1152/physiol.00006.2005 Grant L, 2008, J NEUROPHYSIOL, V99, P2183, DOI 10.1152/jn.01174.2007 Habets RLP, 2006, J NEUROPHYSIOL, V96, P2868, DOI 10.1152/jn.00427.2006 Hermann J, 2007, J NEUROPHYSIOL, V98, P807, DOI 10.1152/jn.00355.2007 Hermann J, 2009, J NEUROPHYSIOL, V101, P20, DOI 10.1152/jn.90243.2008 Illing RB, 1997, J COMP NEUROL, V382, P116, DOI 10.1002/(SICI)1096-9861(19970526)382:1<116::AID-CNE8>3.0.CO;2-4 ISAACSON JS, 1995, J NEUROPHYSIOL, V73, P964 Ishikawa T, 2001, J PHYSIOL-LONDON, V533, P423, DOI 10.1111/j.1469-7793.2001.0423a.x Jin YM, 2005, J NEUROSCI RES, V81, P91, DOI 10.1002/jnr.20536 JONES HC, 1988, J PHYSIOL-LONDON, V402, P579 JORIS PX, 1994, J NEUROPHYSIOL, V71, P1022 Kiang NY-s, 1965, DISCHARGE PATTERNS S Kopp-Scheinpflug C, 2003, JARO, V4, P1, DOI 10.1007/s10162-002-2010-5 Kopp-Scheinpflug C, 2002, J NEUROSCI, V22, P11004 Kraus KS, 2004, J COMP NEUROL, V475, P374, DOI 10.1002/cne.2080 Lee A, 2000, J NEUROSCI, V20, P6830 Lee DJ, 2003, J NEUROCYTOL, V32, P229, DOI 10.1023/B:NEUR.0000010082.99874.14 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 LIBERMAN MC, 1991, J COMP NEUROL, V313, P240, DOI 10.1002/cne.903130205 Lorteije JAM, 2009, J NEUROSCI, V29, P13770, DOI 10.1523/JNEUROSCI.3285-09.2009 Lu T, 2007, J NEUROSCI, V27, P808, DOI 10.1523/JNEUROSCI.4871-06.2007 Lu Y, 2007, J NEUROPHYSIOL, V97, P635, DOI 10.1152/jn.00915.2006 MacLeod KM, 2007, J NEUROPHYSIOL, V97, P2863, DOI 10.1152/jn.01030.2006 Mancilla JG, 2009, J NEUROPHYSIOL, V102, P1287, DOI 10.1152/jn.91272.2008 Marianowski R, 2000, HEARING RES, V150, P1, DOI 10.1016/S0378-5955(00)00166-0 Markram H, 1998, P NATL ACAD SCI USA, V95, P5323, DOI 10.1073/pnas.95.9.5323 Michler SA, 2002, J COMP NEUROL, V451, P250, DOI 10.1002/cne.10348 Mostafapour SP, 2000, J COMP NEUROL, V426, P561, DOI 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G Muly SM, 2004, J NEUROSCI RES, V75, P585, DOI 10.1002/jnr.20011 OERTEL D, 1985, J ACOUST SOC AM, V78, P328, DOI 10.1121/1.392494 Oertel D, 2001, AUDIOL NEURO-OTOL, V6, P161, DOI 10.1159/000046825 OHLEMILLER KK, 1991, J ACOUST SOC AM, V90, P274, DOI 10.1121/1.401298 Oleskevich S, 2000, J PHYSIOL-LONDON, V524, P513, DOI 10.1111/j.1469-7793.2000.00513.x Oleskevich S, 2002, J PHYSIOL-LONDON, V540, P447, DOI 10.1113/jphysiol.2001.013821 PATNEAU DK, 1993, J NEUROSCI, V13, P3496 Potashner SJ, 1997, EXP NEUROL, V148, P222, DOI 10.1006/exnr.1997.6641 Pressnitzer D, 2001, J NEUROSCI, V21, P6377 RAMAN IM, 1995, BIOPHYS J, V68, P137 Rich AW, 2010, LARYNGOSCOPE, V120, P2047, DOI 10.1002/lary.21106 Rothman JS, 1996, AUDIT NEUROSCI, V2, P47 Rothman JS, 2003, J NEUROPHYSIOL, V89, P3097, DOI 10.1152/jn.00127.2002 ROTHMAN JS, 1993, J NEUROPHYSIOL, V70, P2562 Rubio ME, 2006, HEARING RES, V216, P154, DOI 10.1016/j.heares.2006.03.007 Ryugo DK, 1997, J COMP NEUROL, V385, P230, DOI 10.1002/(SICI)1096-9861(19970825)385:2<230::AID-CNE4>3.0.CO;2-2 SACHS MB, 1974, J ACOUST SOC AM, V56, P1835, DOI 10.1121/1.1903521 Sakaba T, 2001, NEURON, V32, P1119, DOI 10.1016/S0896-6273(01)00543-8 Sato K, 2000, HEARING RES, V147, P137, DOI 10.1016/S0378-5955(00)00127-1 Scheuss V, 2006, J NEUROSCI, V26, P8183, DOI 10.1523/JNEUROSCI.1962-06.2006 Spirou GA, 2005, NEUROSCIENCE, V136, P843, DOI 10.1016/j.neuroscience.2005.08.068 SPIROU GA, 1990, J NEUROPHYSIOL, V63, P1169 Sumner CJ, 2005, J NEUROPHYSIOL, V94, P4234, DOI 10.1152/jn.00401.2005 Sun LY, 2009, MAGNESIUM RES, V22, P266, DOI 10.1684/mrh.2009.0186 Suneja SK, 2000, EXP NEUROL, V165, P355, DOI 10.1006/exnr.2000.7471 Taberner AM, 2005, J NEUROPHYSIOL, V93, P557, DOI 10.1152/jn.00574.2004 TRUSSELL LO, 1989, NEURON, V3, P209, DOI 10.1016/0896-6273(89)90034-2 TRUSSELL LO, 1993, NEURON, V10, P1185, DOI 10.1016/0896-6273(93)90066-Z Tucci DL, 2002, JARO, V3, P89, DOI 10.1007/s101620010091 Tucci DL, 2001, HEARING RES, V155, P124, DOI 10.1016/S0378-5955(01)00256-8 Typlt M, 2010, EUR J NEUROSCI, V31, P1574, DOI 10.1111/j.1460-9568.2010.07188.x Wang LY, 1998, NATURE, V394, P384, DOI 10.1038/28645 Wang Y, 2006, JARO-J ASSOC RES OTO, V7, P412, DOI 10.1007/s10162-006-0052-9 Wang Y, 2010, HEARING RES, V270, P101, DOI 10.1016/j.heares.2010.09.003 Wang Y, 2005, J NEUROPHYSIOL, V94, P1814, DOI 10.1152/jn.00374.2005 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 Wang Y, 2008, J NEUROPHYSIOL, V100, P1255, DOI 10.1152/jn.90715.2008 Wang YX, 1998, J NEUROSCI, V18, P1148 WENTHOLD RJ, 1979, BRAIN RES, V162, P338, DOI 10.1016/0006-8993(79)90294-4 WENTHOLD RJ, 1977, BRAIN RES, V138, P111, DOI 10.1016/0006-8993(77)90787-9 Whiting B, 2009, NEUROSCIENCE, V163, P1264, DOI 10.1016/j.neuroscience.2009.07.049 WINTER IM, 1990, HEARING RES, V45, P191, DOI 10.1016/0378-5955(90)90120-E Wong AYC, 2003, J NEUROSCI, V23, P4868 Xu JH, 2005, NEURON, V46, P633, DOI 10.1016/j.neuron.2005.03.024 Xu-Friedman MA, 2005, J NEUROPHYSIOL, V94, P2526, DOI 10.1152/jn.01308.2004 YAMADA KA, 1993, J NEUROSCI, V13, P3904 Yang H, 2009, J NEUROPHYSIOL, V102, P1699, DOI 10.1152/jn.00072.2009 Yang H, 2008, J NEUROPHYSIOL, V99, P2510, DOI 10.1152/jn.01293.2007 Yang H, 2010, J NEUROSCI, V30, P11466, DOI 10.1523/JNEUROSCI.2300-10.2010 Zirpel L, 2000, J NEUROSCI, V20, P6267 NR 105 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2011 VL 279 IS 1-2 SI SI BP 131 EP 139 DI 10.1016/j.heares.2011.04.018 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 830OQ UT WOS:000295666700014 PM 21586317 ER PT J AU Sanes, DH Kotak, VC AF Sanes, Dan H. Kotak, Vibhakar C. TI Developmental plasticity of auditory cortical inhibitory synapses SO HEARING RESEARCH LA English DT Article ID CONDUCTIVE HEARING-LOSS; RECEPTOR ORGAN DAMAGE; PRIMARY VISUAL-CORTEX; INFERIOR COLLICULUS; SYNAPTIC CURRENTS; THALAMOCORTICAL ACTIVATION; POSTNATAL-DEVELOPMENT; TEMPORAL INTEGRATION; GABAERGIC INHIBITION; NEUROTROPHIC FACTOR AB Functional inhibitory synapses form in auditory cortex well before the onset of normal hearing. However, their properties change dramatically during normal development, and many of these maturational events are delayed by hearing loss. Here, we review recent findings on the developmental plasticity of inhibitory synapse strength, kinetics, and GABAA receptor localization in auditory cortex. Although hearing loss generally leads to a reduction of inhibitory strength, this depends on the type of presynaptic interneuron. Furthermore, plasticity of inhibitory synapses also depends on the postsynaptic target. Hearing loss leads reduced GABAA receptor localization to the membrane of excitatory, but not inhibitory neurons. A reduction in normal activity in development can also affect the use-dependent plasticity of inhibitory synapses. Even moderate hearing loss can disrupt inhibitory short- and long-term synaptic plasticity. Thus, the cortex did not compensate for the loss of inhibition in the brainstem, but rather exacerbated the response to hearing loss by further reducing inhibitory drive. Together, these results demonstrate that inhibitory synapses are exceptionally dynamic during development, and deafness-induced perturbation of inhibitory properties may have a profound impact on auditory processing. (C) 2011 Elsevier B.V. All rights reserved. C1 [Sanes, Dan H.; Kotak, Vibhakar C.] NYU, Ctr Neural Sci, New York, NY 10003 USA. [Sanes, Dan H.] NYU, Dept Biol, New York, NY 10003 USA. RP Sanes, DH (reprint author), NYU, Ctr Neural Sci, New York, NY 10003 USA. EM sanes@cns.nyu.edu FU [DC006864]; [DC011284] FX Supported by DC006864 and DC011284 (DHS and VCK). CR Abidin I, 2008, J PHYSIOL-LONDON, V586, P1885, DOI 10.1113/jphysiol.2007.148627 Abraham WC, 1996, TRENDS NEUROSCI, V19, P126, DOI 10.1016/S0166-2236(96)80018-X Atencio CA, 2008, J NEUROSCI, V28, P3897, DOI 10.1523/JNEUROSCI.5366-07.2008 Bacci A, 2003, J NEUROSCI, V23, P9664 BACON SP, 1992, J SPEECH HEAR RES, V35, P642 Banks MI, 2002, J NEUROPHYSIOL, V88, P3097, DOI 10.1152/jn.00026.2002 Bartley AF, 2008, J NEUROPHYSIOL, V100, P1983, DOI 10.1152/jn.90635.2008 Beierlein M, 2003, J NEUROPHYSIOL, V90, P2987, DOI 10.1152/jn.00283.2003 Beierlein M, 2000, NAT NEUROSCI, V3, P904 BOCK GR, 1974, BRAIN RES, V76, P150, DOI 10.1016/0006-8993(74)90521-6 BORN DE, 1991, BRAIN RES, V557, P37, DOI 10.1016/0006-8993(91)90113-A Bosman LWJ, 2005, J NEUROPHYSIOL, V94, P338, DOI 10.1152/jn.00084.2005 Budinger E, 2006, NEUROSCIENCE, V143, P1065, DOI 10.1016/j.neuroscience.2006.08.035 Budinger E, 2000, EUR J NEUROSCI, V12, P2425, DOI 10.1046/j.1460-9568.2000.00142.x Buus S, 2002, JARO-J ASSOC RES OTO, V3, P120, DOI 10.1007/s101620010084 CALFORD MB, 1993, NEUROSCIENCE, V55, P953, DOI 10.1016/0306-4522(93)90310-C Caspary DM, 2008, J EXP BIOL, V211, P1781, DOI 10.1242/jeb.013581 CHAGNACAMITAI Y, 1989, J NEUROPHYSIOL, V61, P747 Chang EF, 2005, P NATL ACAD SCI USA, V102, P16460, DOI 10.1073/pnas.0508239102 Chen QC, 2000, HEARING RES, V150, P161, DOI 10.1016/S0378-5955(00)00197-0 Cook RD, 2002, HEARING RES, V164, P127, DOI 10.1016/S0378-5955(01)00424-5 CRUIKSHANK, 2002, J NEUROPHYSIOL, V87, P361 Cruikshank SJ, 2007, NAT NEUROSCI, V10, P462, DOI 10.1038/nn1861 DEFELIPE J, 1992, PROG NEUROBIOL, V39, P563, DOI 10.1016/0301-0082(92)90015-7 Di Cristo G, 2004, NAT NEUROSCI, V7, P1184, DOI 10.1038/nn1334 Dorrn AL, 2010, NATURE, V465, P932, DOI 10.1038/nature09119 Edden RAE, 2009, J NEUROSCI, V29, P15721, DOI 10.1523/JNEUROSCI.4426-09.2009 Ehlers MD, 2003, NAT NEUROSCI, V6, P231, DOI 10.1038/nn1013 Fallon JB, 2008, HEARING RES, V238, P110, DOI 10.1016/j.heares.2007.08.004 FLORENTINE M, 1988, J ACOUST SOC AM, V84, P195, DOI 10.1121/1.396964 Foeller E, 2001, JARO, V2, P279 FORMBY C, 1987, AUDIOLOGY, V26, P89 Fuchs JL, 1998, J COMP NEUROL, V395, P209 Gabernet L, 2005, NEURON, V48, P165 Gibson JR, 1999, NATURE, V402, P75 GLASBERG BR, 1990, SCAND AUDIOL S32 Gleich O, 2003, NEUROREPORT, V14, P1877, DOI 10.1097/01.wnr.0000089569.45990.74 Gupta A, 2000, SCIENCE, V287, P273, DOI 10.1126/science.287.5451.273 Hong EJ, 2008, NEURON, V60, P610, DOI 10.1016/j.neuron.2008.09.024 Huang ZJ, 1999, CELL, V98, P739, DOI 10.1016/S0092-8674(00)81509-3 Huntsman MM, 2006, J PHYSIOL-LONDON, V572, P459, DOI 10.1113/jphysiol.2006.106617 Ing T, 2007, EUR J NEUROSCI, V25, P723, DOI 10.1111/j.1460-9568.2007.05331.x Kaas JH, 2000, P NATL ACAD SCI USA, V97, P11793, DOI 10.1073/pnas.97.22.11793 Kandler K, 2009, NAT NEUROSCI, V12, P711, DOI 10.1038/nn.2332 Kaur S, 2004, J NEUROPHYSIOL, V91, P2551, DOI 10.1152/jn.01121.2003 Kimura M, 1999, HEARING RES, V135, P146, DOI 10.1016/S0378-5955(99)00104-5 KOERBER KC, 1966, EXP NEUROL, V16, P119, DOI 10.1016/0014-4886(66)90091-4 Kohara K, 2007, J NEUROSCI, V27, P7234, DOI 10.1523/JNEUROSCI.1943-07.2007 Kotak VC, 2008, CEREB CORTEX, V18, P2098, DOI 10.1093/cercor/bhm233 Kotak VC, 2005, J NEUROSCI, V25, P3908, DOI 10.1523/JNEUROSCI.5169-04.2005 Kotak VC, 1996, J NEUROSCI, V16, P1836 Kral A, 2000, CEREB CORTEX, V10, P714, DOI 10.1093/cercor/10.7.714 Lauer AM, 2007, J ACOUST SOC AM, V122, P3615, DOI 10.1121/1.2799482 LAURIE DJ, 1992, J NEUROSCI, V12, P4151 Lee DS, 2001, NATURE, V409, P149, DOI 10.1038/35051653 Leventhal AG, 2003, SCIENCE, V300, P812, DOI 10.1126/science.1082874 Liu BH, 2007, NAT NEUROSCI, V10, P1594, DOI 10.1038/nn2012 Ma WP, 2010, J NEUROSCI, V30, P14371, DOI 10.1523/JNEUROSCI.3248-10.2010 Maffei A, 2004, NAT NEUROSCI, V7, P1353, DOI 10.1038/nn1351 Marder E, 2002, BIOESSAYS, V24, P1145, DOI 10.1002/bies.10185 Markram H, 2004, NAT REV NEUROSCI, V5, P793, DOI 10.1038/nrn1519 Mockett Bruce G., 2008, Journal of Integrative Neuroscience, V7, P315, DOI 10.1142/S0219635208001782 Mody I, 2004, TRENDS NEUROSCI, V27, P569, DOI 10.1016/j.tins.2004.07.002 Mohler H, 2006, CELL TISSUE RES, V326, P505, DOI 10.1007/s00441-006-0284-3 MULLER CM, 1988, J NEUROPHYSIOL, V59, P1673 Neubauer H, 2004, JARO-J ASSOC RES OTO, V5, P436, DOI 10.1007/s10162-004-5031-4 Norena AJ, 2003, J NEUROPHYSIOL, V90, P2387, DOI 10.1152/jn.00139.2003 Nusser Z, 1997, NEURON, V19, P697, DOI 10.1016/S0896-6273(00)80382-7 Oswald AMM, 2008, J NEUROPHYSIOL, V99, P2998, DOI 10.1152/jn.01160.2007 Qiu CX, 2000, HEARING RES, V139, P153, DOI 10.1016/S0378-5955(99)00171-9 Raggio MW, 1999, J NEUROPHYSIOL, V82, P3506 Rajan R, 1998, NAT NEUROSCI, V1, P138, DOI 10.1038/388 Rajan R, 2001, CEREB CORTEX, V11, P171, DOI 10.1093/cercor/11.2.171 Rao D, 2010, J NEUROPHYSIOL, V104, P2693, DOI 10.1152/jn.01092.2009 Razak KA, 2008, P NATL ACAD SCI USA, V105, P4465, DOI 10.1073/pnas.0709504105 Razak KA, 2007, J NEUROSCI, V27, P1769, DOI 10.1523/JNEUROSCI.3851-06.2007 SANES DH, 2009, DEV PLASTICITY INHIB Sarro EC, 2008, CEREB CORTEX, V18, P2855, DOI 10.1093/cercor/bhn044 Scholl B, 2008, J NEUROPHYSIOL, V100, P646, DOI 10.1152/jn.90406.2008 Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1 Shepherd RK, 1999, J NEUROPHYSIOL, V82, P1363 SHUZ A, 1989, J COMP NEUROL, V286, P442 Silberberg G, 2008, CURR OPIN NEUROBIOL, V18, P332, DOI 10.1016/j.conb.2008.08.009 Slutsky I, 2004, NEURON, V44, P835, DOI 10.1016/j.neuron.2004.11.013 Sun YJ, 2010, NATURE, V465, P927, DOI 10.1038/nature09079 Swadlow HA, 1998, J NEUROPHYSIOL, V79, P567 Takesian AE, 2009, FUTURE NEUROL, V4, P331, DOI 10.2217/fnl.09.5 Takesian AE, 2010, J NEUROSCI, V30, P2716, DOI 10.1523/JNEUROSCI.3903-09.2010 Tan ZJ, 2008, P NATL ACAD SCI USA, V105, P2187, DOI 10.1073/pnas.0710628105 Thiagarajan TC, 2007, NEUROPHARMACOLOGY, V52, P156, DOI 10.1016/j.neuropharm.2006.07.030 Tia S, 1996, J NEUROSCI, V16, P3630 Tierney TS, 1997, J COMP NEUROL, V387, P421 Tucci DL, 2001, HEARING RES, V155, P124, DOI 10.1016/S0378-5955(01)00256-8 Tucci DL, 1999, LARYNGOSCOPE, V109, P1359, DOI 10.1097/00005537-199909000-00001 Turrigiano G, 2007, CURR OPIN NEUROBIOL, V17, P318, DOI 10.1016/j.conb.2007.04.004 Vale C, 2000, J NEUROSCI, V20, P1912 Vale C, 2002, EUR J NEUROSCI, V16, P2394, DOI 10.1046/j.1460-9568.2002.02302.x Vicini S, 2001, J NEUROSCI, V21, P3009 Wang J, 2000, NEUROREPORT, V11, P1137, DOI 10.1097/00001756-200004070-00045 WANG J, 2002, BRAIN RES, V19, P219 Wehr M, 2005, NEURON, V47, P437, DOI 10.1016/j.neuron.2005.06.009 Wu GK, 2008, NEURON, V58, P132, DOI 10.1016/j.neuron.2008.01.035 Xu H, 2010, J NEUROSCI, V30, P331, DOI 10.1523/JNEUROSCI.4554-09.2010 Xu H, 2007, J NEUROSCI, V27, P9417, DOI 10.1523/JNEUROSCI.1992-07.2007 Yu X, 2005, NAT NEUROSCI, V8, P961, DOI 10.1038/nn1477 NR 105 TC 18 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2011 VL 279 IS 1-2 SI SI BP 140 EP 148 DI 10.1016/j.heares.2011.03.015 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 830OQ UT WOS:000295666700015 PM 21463668 ER PT J AU Froemke, RC Martins, ARO AF Froemke, Robert C. Martins, Ana Raquel O. TI Spectrotemporal dynamics of auditory cortical synaptic receptive field plasticity SO HEARING RESEARCH LA English DT Article ID LONG-TERM DEPRESSION; PRIMARY VISUAL-CORTEX; BASAL FOREBRAIN ACTIVATION; CRITICAL-PERIOD PLASTICITY; NUCLEUS BASALIS; SOMATOSENSORY CORTEX; DIRECTION SELECTIVITY; PHYSIOLOGICAL MEMORY; INHIBITION UNDERLIES; CEREBRAL-CORTEX AB The nervous system must dynamically represent sensory information in order for animals to perceive and operate within a complex, changing environment. Receptive field plasticity in the auditory cortex allows cortical networks to organize around salient features of the sensory environment during postnatal development, and then subsequently refine these representations depending on behavioral context later in life. Here we review the major features of auditory cortical receptive field plasticity in young and adult animals, focusing on modifications to frequency tuning of synaptic inputs. Alteration in the patterns of acoustic input, including sensory deprivation and tonal exposure, leads to rapid adjustments of excitatory and inhibitory strengths that collectively determine the suprathreshold tuning curves of cortical neurons. Long-term cortical plasticity also requires co-activation of subcortical neuromodulatory control nuclei such as the cholinergic nucleus basalis, particularly in adults. Regardless of developmental stage, regulation of inhibition seems to be a general mechanism by which changes in sensory experience and neuromodulatory state can remodel cortical receptive fields. We discuss recent findings suggesting that the microdynamics of synaptic receptive field plasticity unfold as a multi-phase set of distinct phenomena, initiated by disrupting the balance between excitation and inhibition, and eventually leading to wide-scale changes to many synapses throughout the cortex. These changes are coordinated to enhance the representations of newly-significant stimuli, possibly for improved signal processing and language learning in humans. (C) 2011 Elsevier B.V. All rights reserved. C1 [Froemke, Robert C.; Martins, Ana Raquel O.] NYU, Dept Otolaryngol, Mol Neurobiol Program,Sch Med, Helen & Martin Kimmel Ctr Biol & Med,Skirball Ins, New York, NY 10016 USA. [Froemke, Robert C.; Martins, Ana Raquel O.] NYU, Dept Physiol, Mol Neurobiol Program,Sch Med, Helen & Martin Kimmel Ctr Biol & Med,Skirball Ins, New York, NY 10016 USA. [Froemke, Robert C.; Martins, Ana Raquel O.] NYU, Dept Neurosci, Mol Neurobiol Program,Sch Med, Helen & Martin Kimmel Ctr Biol & Med,Skirball Ins, New York, NY 10016 USA. [Martins, Ana Raquel O.] Univ Coimbra, Ctr Neurosci & Cell Biol, PhD Programme Expt Biol & Biomed, P-3000 Coimbra, Portugal. RP Froemke, RC (reprint author), NYU, Dept Otolaryngol, Mol Neurobiol Program,Sch Med, Helen & Martin Kimmel Ctr Biol & Med,Skirball Ins, 550 1St Ave, New York, NY 10016 USA. EM robert.froemke@med.nyu.edu CR ARTOLA A, 1990, NATURE, V347, P69, DOI 10.1038/347069a0 Asari H, 2009, J NEUROPHYSIOL, V102, P2638, DOI 10.1152/jn.00577.2009 Ascoli GA, 2008, NAT REV NEUROSCI, V9, P557, DOI 10.1038/nrn2402 Bakin JS, 1996, P NATL ACAD SCI USA, V93, P11219, DOI 10.1073/pnas.93.20.11219 Bao SW, 2001, NATURE, V412, P79, DOI 10.1038/35083586 BEAR MF, 1986, NATURE, V320, P172, DOI 10.1038/320172a0 Buonomano DV, 1998, ANNU REV NEUROSCI, V21, P149, DOI 10.1146/annurev.neuro.21.1.149 CALFORD MB, 1988, NATURE, V332, P446, DOI 10.1038/332446a0 Caspary DM, 2008, J EXP BIOL, V211, P1781, DOI 10.1242/jeb.013581 Chang EF, 2003, SCIENCE, V300, P498, DOI 10.1126/science.1082163 Chang EF, 2005, P NATL ACAD SCI USA, V102, P16460, DOI 10.1073/pnas.0508239102 Choi SY, 2005, J NEUROSCI, V25, P11433, DOI 10.1523/JNEUROSCI.4084-05.2005 Dahmen Johannes C, 2008, J Neurosci, V28, P13629, DOI 10.1523/JNEUROSCI.4429-08.2008 Desai NS, 2002, NAT NEUROSCI, V5, P783, DOI 10.1038/nn878 de Villers-Sidani E, 2007, J NEUROSCI, V27, P180, DOI 10.1523/JNEUROSCI.3227-06.2007 de Villers-Sidani E, 2010, P NATL ACAD SCI USA, V107, P13900, DOI 10.1073/pnas.1007885107 DIAMOND ME, 1994, SCIENCE, V265, P1885, DOI 10.1126/science.8091215 Disney AA, 2007, NEURON, V56, P701, DOI 10.1016/j.neuron.2007.09.034 Dorrn AL, 2010, NATURE, V465, P932, DOI 10.1038/nature09119 DOUGLAS RJ, 1991, J PHYSIOL-LONDON, V440, P659 EDELINE JM, 2010, HEARING RES Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Eisenberg LS, 2007, EAR HEARING, V28, P766 Engert F, 1997, NATURE, V388, P279 Eysel UT, 1999, RESTOR NEUROL NEUROS, V15, P153 Feldman DE, 2009, ANNU REV NEUROSCI, V32, P33, DOI 10.1146/annurev.neuro.051508.135516 FERSTER D, 1986, J NEUROSCI, V6, P1284 Frenkel MY, 2004, NEURON, V44, P917, DOI 10.1016/j.neuron.2004.12.003 Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141 Fritz JB, 2005, J NEUROSCI, V25, P7623, DOI 10.1523/JNEUROSCI.1318-05.2005 FROEMKE RC, 2011, NEUROSCIENCE BI 0215 Froemke RC, 2006, J NEUROPHYSIOL, V95, P1620, DOI 10.1152/jn.00910.2005 Froemke RC, 2002, NATURE, V416, P433, DOI 10.1038/416433a Froemke RC, 2007, NATURE, V450, P425, DOI 10.1038/nature06289 GILBERT CD, 1992, NATURE, V356, P150, DOI 10.1038/356150a0 Giocomo LM, 2007, MOL NEUROBIOL, V36, P184, DOI 10.1007/s12035-007-0032-z Goard M, 2009, NAT NEUROSCI, V12, P1444, DOI 10.1038/nn.2402 Gu Q, 2002, NEUROSCIENCE, V111, P815, DOI 10.1016/S0306-4522(02)00026-X Han YK, 2007, NAT NEUROSCI, V10, P1191, DOI 10.1038/nn1941 Harvey CD, 2007, NATURE, V450, P1195, DOI 10.1038/nature06416 Hausser M, 2003, CURR OPIN NEUROBIOL, V13, P372, DOI 10.1016/S0959-4388(03)00075-8 He HY, 2004, J NEUROCHEM, V90, P1186, DOI 10.1111/j.1471-4159.2004.02590.x Henny P, 2008, EUR J NEUROSCI, V27, P654, DOI 10.1111/j.1460-9568.2008.06029.x Hensch TK, 2004, ANNU REV NEUROSCI, V27, P549, DOI 10.1146/annurev.neuro.27.070203.144327 Hensch TK, 2005, NAT REV NEUROSCI, V6, P877, DOI 10.1038/nrn1787 Herrero JL, 2008, NATURE, V454, P1110, DOI 10.1038/nature07141 Hirsch JA, 2003, CEREB CORTEX, V13, P63, DOI 10.1093/cercor/13.1.63 Huang ZJ, 1999, CELL, V98, P739, DOI 10.1016/S0092-8674(00)81509-3 Huberman AD, 2008, ANNU REV NEUROSCI, V31, P479, DOI 10.1146/annurev.neuro.31.060407.125533 Insanally MN, 2009, J NEUROSCI, V29, P5456, DOI 10.1523/JNEUROSCI.5311-08.2009 Ivenshitz M, 2006, J NEUROSCI, V26, P1199, DOI 10.1523/JNEUROSCI.2964-05.2006 Katz LC, 1996, SCIENCE, V274, P1133, DOI 10.1126/science.274.5290.1133 Kaur S, 2004, J NEUROPHYSIOL, V91, P2551, DOI 10.1152/jn.01121.2003 Kenet T, 2007, P NATL ACAD SCI USA, V104, P7646, DOI 10.1073/pnas.0701944104 Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714 Kotak VC, 2005, J NEUROSCI, V25, P3908, DOI 10.1523/JNEUROSCI.5169-04.2005 Kruglikov I, 2008, NEURON, V58, P911, DOI 10.1016/j.neuron.2008.04.024 Lin SC, 2008, NEURON, V59, P138, DOI 10.1016/j.neuron.2008.04.031 Lin YX, 2008, NATURE, V455, P1198, DOI 10.1038/nature07319 Liu BH, 2007, NAT NEUROSCI, V10, P1594, DOI 10.1038/nn2012 Losonczy A, 2008, NATURE, V452, P436, DOI 10.1038/nature06725 Lu YM, 2000, NEURON, V26, P197, DOI 10.1016/S0896-6273(00)81150-2 LUND RD, 1977, J COMP NEUROL, V173, P289, DOI 10.1002/cne.901730206 Ma XF, 2005, P NATL ACAD SCI USA, V102, P9335, DOI 10.1073/pnas.0503851102 Maffei A, 2004, NAT NEUROSCI, V7, P1353, DOI 10.1038/nn1351 Markram H, 1997, SCIENCE, V275, P213, DOI 10.1126/science.275.5297.213 Meliza CD, 2006, NEURON, V49, P183, DOI 10.1016/j.neuron.2005.12.009 Mesulam MM, 1998, J PHYSIOLOGY-PARIS, V92, P293, DOI 10.1016/S0928-4257(98)80036-3 Metherate R, 2005, HEARING RES, V206, P146, DOI 10.1016/j.heares.2005.01.014 METHERATE R, 1993, SYNAPSE, V14, P132, DOI 10.1002/syn.890140206 METHERATE R, 1992, J NEUROSCI, V12, P4701 Monier C, 2003, NEURON, V37, P663, DOI 10.1016/S0896-6273(03)00064-3 Morishita H, 2010, SCIENCE, V330, P1238, DOI 10.1126/science.1195320 Nowak LG, 2010, J NEUROPHYSIOL, V103, P677, DOI 10.1152/jn.90946.2008 Oswald AMM, 2008, J NEUROPHYSIOL, V99, P2998, DOI 10.1152/jn.01160.2007 Parikh V, 2007, NEURON, V56, P141, DOI 10.1016/j.neuron.2007.08.025 Pei X, 1991, Neuroreport, V2, P485 Popescu MV, 2010, NEURON, V65, P718, DOI 10.1016/j.neuron.2010.02.019 Pouget A, 1999, NEURAL COMPUT, V11, P85, DOI 10.1162/089976699300016818 Raggio MW, 1999, J NEUROPHYSIOL, V82, P3506 Ramanathan D, 2009, J NEUROSCI, V29, P5992, DOI 10.1523/JNEUROSCI.0230-09.2009 Rasmusson DD, 2000, BEHAV BRAIN RES, V115, P205, DOI 10.1016/S0166-4328(00)00259-X RASMUSSON DD, 1988, EXP BRAIN RES, V70, P276 RAZAK KA, 2007, J NEUROSCI, V14, P1769 Royer S, 2003, NATURE, V422, P518, DOI 10.1038/nature01530 Rubenstein JLR, 2003, GENES BRAIN BEHAV, V2, P255, DOI 10.1046/j.1601-183X.2003.00037.x SALLY SL, 1988, J NEUROPHYSIOL, V59, P1627 SANES DH, 1983, SCIENCE, V221, P1183, DOI 10.1126/science.6612332 Sanes DH, 2009, CURR OPIN NEUROBIOL, V19, P188, DOI 10.1016/j.conb.2009.05.014 Sarro EC, 2008, CEREB CORTEX, V18, P2855, DOI 10.1093/cercor/bhn044 Sarter M, 2005, NAT REV NEUROSCI, V6, P48, DOI 10.1038/nrn1588 Scanziani M, 1996, NATURE, V380, P446, DOI 10.1038/380446a0 Scholl B, 2008, J NEUROPHYSIOL, V100, P646, DOI 10.1152/jn.90406.2008 Schummers J, 2002, NEURON, V36, P969, DOI 10.1016/S0896-6273(02)01012-7 Seol GH, 2007, NEURON, V55, P919, DOI 10.1016/j.neuron.2007.08.013 Silver MA, 2008, NEURON, V60, P904, DOI 10.1016/j.neuron.2008.09.038 SNYDER RL, 1990, HEARING RES, V50, P7, DOI 10.1016/0378-5955(90)90030-S Sohya K, 2007, J NEUROSCI, V27, P2145, DOI 10.1523/JNEUROSCI.4641-06.2007 Southwell DG, 2010, SCIENCE, V327, P1145, DOI 10.1126/science.1183962 Sun YJ, 2010, NATURE, V465, P927, DOI 10.1038/nature09079 Takesian AE, 2009, FUTURE NEUROL, V4, P331, DOI 10.2217/fnl.09.5 Tan AYY, 2009, NEUROSCIENCE, V163, P1302, DOI 10.1016/j.neuroscience.2009.07.032 Trachtenberg JT, 2000, SCIENCE, V287, P2029, DOI 10.1126/science.287.5460.2029 Turner JG, 2005, J NEUROPHYSIOL, V94, P2738, DOI 10.1152/jn.00362.2005 Tzounopoulos T, 2004, NAT NEUROSCI, V7, P719, DOI 10.1038/nn1272 Vale C, 2002, EUR J NEUROSCI, V16, P2394, DOI 10.1046/j.1460-9568.2002.02302.x VOLKOV IO, 1991, NEUROSCIENCE, V43, P307, DOI 10.1016/0306-4522(91)90295-Y Wehr M, 2005, NEURON, V47, P437, DOI 10.1016/j.neuron.2005.06.009 Wehr M, 2003, NATURE, V426, P442, DOI 10.1038/nature02116 Weinberger NM, 1998, NEUROBIOL LEARN MEM, V70, P226, DOI 10.1006/nlme.1998.3850 Weinberger NM, 2007, HEARING RES, V229, P54, DOI 10.1016/j.heares.2007.01.004 Willott JF, 2005, INFERIOR COLLICULUS, P585, DOI 10.1007/0-387-27083-3_20 Winer J.A., 1992, Springer Handbook of Auditory Research, V1, P222 WOODY CD, 1987, BRAIN RES, V424, P193, DOI 10.1016/0006-8993(87)91210-8 Xiang ZX, 1998, SCIENCE, V281, P985, DOI 10.1126/science.281.5379.985 Yan J, 2005, EUR J NEUROSCI, V21, P563, DOI 10.1111/j.1460-9568.2005.03878.x YUAN K, 2010, SOC NEUR ABSTR, V482, P13 Zeitler DM, 2008, OTOL NEUROTOL, V29, P314 Zhang KC, 1999, NEURAL COMPUT, V11, P75, DOI 10.1162/089976699300016809 Zhang LI, 2003, NATURE, V424, P201, DOI 10.1038/nature01796 Zhang LI, 2001, NAT NEUROSCI, V4, P1123, DOI 10.1038/nn745 Zhou X, 2008, NEUROSCIENCE, V154, P390, DOI 10.1016/j.neuroscience.2008.01.026 NR 122 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2011 VL 279 IS 1-2 SI SI BP 149 EP 161 DI 10.1016/j.heares.2011.03.005 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 830OQ UT WOS:000295666700016 PM 21426927 ER PT J AU Nayagam, BA Muniak, MA Ryugo, DK AF Nayagam, Bryony A. Muniak, Michael A. Ryugo, David K. TI The spiral ganglion: Connecting the peripheral and central auditory systems SO HEARING RESEARCH LA English DT Article ID ANTEROVENTRAL COCHLEAR NUCLEUS; OUTER HAIR-CELLS; GUINEA-PIG COCHLEA; NEURONS IN-VITRO; CHRONIC ELECTRICAL-STIMULATION; DEAF WHITE CATS; NEUROFILAMENT TRIPLET PROTEINS; INTERMEDIATE-FILAMENT PROTEINS; UNANESTHETIZED DECEREBRATE CAT; MUTANT SUPEROXIDE-DISMUTASE AB In mammals, the initial bridge between the physical world of sound and perception of that sound is established by neurons of the spiral ganglion. The cell bodies of these neurons give rise to peripheral processes that contact acoustic receptors in the organ of Corti, and the central processes collect together to form the auditory nerve that projects into the brain. In order to better understand hearing at this initial stage, we need to know the following about spiral ganglion neurons: (1) their cell biology including cytoplasmic, cytoskeletal, and membrane properties, (2) their peripheral and central connections including synaptic structure; (3) the nature of their neural signaling; and (4) their capacity for plasticity and rehabilitation. In this report, we will update the progress on these topics and indicate important issues still awaiting resolution. (C) 2011 Elsevier B.V. All rights reserved. C1 [Nayagam, Bryony A.] Univ Melbourne, Dept Otolaryngol, Melbourne, Vic, Australia. [Muniak, Michael A.; Ryugo, David K.] Johns Hopkins Univ, Dept Neurosci, Baltimore, MD USA. [Ryugo, David K.] Johns Hopkins Univ, Dept Otolaryngol Head & Neck Surg, Baltimore, MD USA. [Ryugo, David K.] Garvan Inst, Darlinghurst, NSW, Australia. RP Ryugo, DK (reprint author), St Vincents Hosp, Garvan Inst Med Res, 384 Victoria St, Darlinghurst, NSW 2010, Australia. EM d.ryugo@garvan.org.au FU NIH [DC000232, DC004395]; Office for Medical and Scientific Research, New South Wales; Advanced Bionics Corporation; National Health and Medical Research Council of Australia; University of Melbourne; Garnett Passe and Rodney Williams Memorial Foundation; Royal Victorian Eye and Ear Hospital FX We are grateful to those researchers who contributed data to this article. We were supported in part by NIH grants DC000232, DC004395, a Life Sciences Research Award from the Office for Medical and Scientific Research, New South Wales, a grant from Advanced Bionics Corporation, the National Health and Medical Research Council of Australia, The University of Melbourne, The Garnett Passe and Rodney Williams Memorial Foundation, and the Royal Victorian Eye and Ear Hospital. CR ADAMO NJ, 1973, J NEUROCYTOL, V2, P91, DOI 10.1007/BF01099211 ADAMS JC, 1986, ARCH OTOLARYNGOL, V112, P1253 Agterberg MJH, 2009, JARO-J ASSOC RES OTO, V10, P355, DOI 10.1007/s10162-009-0170-2 ALVING BM, 1971, BRAIN RES, V25, P229, DOI 10.1016/0006-8993(71)90435-5 Araki S, 1998, LARYNGOSCOPE, V108, P687, DOI 10.1097/00005537-199805000-00012 BERGLUND AM, 1986, BRAIN RES, V383, P327, DOI 10.1016/0006-8993(86)90034-X BERGLUND AM, 1991, J COMP NEUROL, V306, P393, DOI 10.1002/cne.903060304 BERGLUND AM, 1994, HEARING RES, V75, P121, DOI 10.1016/0378-5955(94)90063-9 BERGLUND AM, 1987, J COMP NEUROL, V255, P560, DOI 10.1002/cne.902550408 Bianchi LM, 1996, DEVELOPMENT, V122, P1965 BICHLER E, 1983, ARCH OTO-RHINO-LARYN, V237, P201, DOI 10.1007/BF00453725 BOURK TR, 1981, HEARING RES, V4, P215, DOI 10.1016/0378-5955(81)90008-3 BRAWER JR, 1975, J COMP NEUROL, V160, P491, DOI 10.1002/cne.901600406 Bredberg G, 1968, ACTA OTO-LARYNGOL, V236, P1 BROWN MC, 1987, J COMP NEUROL, V260, P591, DOI 10.1002/cne.902600411 BROWN MC, 1988, J COMP NEUROL, V278, P581, DOI 10.1002/cne.902780409 BRUNS V, 1980, HEARING RES, V3, P27, DOI 10.1016/0378-5955(80)90006-4 Burgess BJ, 1997, HEARING RES, V108, P74, DOI 10.1016/S0378-5955(97)00040-3 CANT NB, 1979, NEUROSCIENCE, V4, P1925, DOI 10.1016/0306-4522(79)90066-6 CARDEN MJ, 1987, J NEUROSCI, V7, P3489 Carr CE, 1996, J COMP NEUROL, V373, P467, DOI 10.1002/(SICI)1096-9861(19960930)373:4<467::AID-CNE1>3.0.CO;2-# Chen I, 2010, JARO-J ASSOC RES OTO, V11, P587, DOI 10.1007/s10162-010-0234-3 Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004 COLE JS, 1994, J NEUROSCI, V14, P6956 Couillard-Despres S, 1998, P NATL ACAD SCI USA, V95, P9626, DOI 10.1073/pnas.95.16.9626 DAU J, 1989, HEARING RES, V42, P253, DOI 10.1016/0378-5955(89)90149-4 Davis RL, 2003, NEUROSCIENTIST, V9, P311, DOI 10.1177/1073858403251986 Ehret G, 1983, AUDITORY PSYCHOBIOLO, P169 EHRET G, 1977, J COMP PHYSIOL, V122, P65 EHRET G, 1979, ACTA OTO-LARYNGOL, V87, P28, DOI 10.3109/00016487909126384 ERNFORS P, 1995, NEURON, V14, P1153, DOI 10.1016/0896-6273(95)90263-5 ERNFORS P, 1994, NATURE, V368, P147, DOI 10.1038/368147a0 Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463 ERNFORS R, 1992, EUR J NEUROSCI, V4, P1140 ESCURAT M, 1990, J NEUROSCI, V10, P764 Farinas I, 2001, J NEUROSCI, V21, P6170 FARINAS I, 1994, NATURE, V369, P658, DOI 10.1038/369658a0 Fechner FP, 2001, J COMP NEUROL, V429, P289, DOI 10.1002/1096-9861(20000108)429:2<289::AID-CNE9>3.0.CO;2-Z Fechner FP, 1998, J COMP NEUROL, V400, P299, DOI 10.1002/(SICI)1096-9861(19981026)400:3<299::AID-CNE1>3.0.CO;2-3 FEKETE DM, 1984, J COMP NEUROL, V229, P432, DOI 10.1002/cne.902290311 FIRBAS W, 1972, Monatsschrift fuer Ohrenheilkunde und Laryngo-Rhinologie, V106, P105 Firbas W, 1970, Monatsschr Ohrenheilkd Laryngorhinol, V104, P241 FRANCIS HW, 1993, HEARING RES, V64, P184, DOI 10.1016/0378-5955(93)90004-K Fritzsch B, 1997, TRENDS NEUROSCI, V20, P159, DOI 10.1016/S0166-2236(96)01007-7 Fritzsch B, 1997, J NEUROSCI, V17, P6213 GACEK RR, 1961, ANAT REC, V139, P455, DOI 10.1002/ar.1091390402 Ghoshal S, 1997, J NEUROPHYSIOL, V77, P2083 Ghoshal S, 1996, ACTA OTO-LARYNGOL, V116, P280, DOI 10.3109/00016489609137841 Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542 Gillespie LN, 2001, NEUROREPORT, V12, P275, DOI 10.1097/00001756-200102120-00019 Gillespie LN, 2004, NEUROREPORT, V15, P1121, DOI 10.1097/01.wnr.0000125777.04774.c2 GORHAM JD, 1990, DEV BRAIN RES, V57, P235, DOI 10.1016/0165-3806(90)90049-5 Gotow T, 1999, EUR J NEUROSCI, V11, P3893, DOI 10.1046/j.1460-9568.1999.00820.x GOYCOOLEA MV, 1990, LARYNGOSCOPE, V100, P19, DOI 10.1288/00005537-199002001-00002 GRAY EG, 1963, J ANAT, V97, P101 HAFIDI A, 1990, J COMP NEUROL, V300, P153, DOI 10.1002/cne.903000202 HAFIDI A, 1993, INT J DEV NEUROSCI, V11, P507, DOI 10.1016/0736-5748(93)90024-8 Hafidi A, 1998, BRAIN RES, V805, P181, DOI 10.1016/S0006-8993(98)00448-X Hall RD, 1997, HEARING RES, V103, P75, DOI 10.1016/S0378-5955(96)00166-9 Hansen MR, 2001, J NEUROSCI, V21, P2256 Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3 Hartnick CJ, 1996, J NEUROBIOL, V30, P246, DOI 10.1002/(SICI)1097-4695(199606)30:2<246::AID-NEU6>3.0.CO;2-5 HARTSHORN DO, 1991, OTOLARYNG HEAD NECK, V104, P311 Held H., 1926, HDB NORMALEN PATHOLO, P467 Held H, 1893, ARCH ANAT PHYSL ANAT, V3+4, P201 HOFFMAN PN, 1975, J CELL BIOL, V66, P351, DOI 10.1083/jcb.66.2.351 HOWE HA, 1934, J COMP NEUROL, V62, P73 Huang LC, 2007, DEVELOPMENT, V134, P2925, DOI 10.1242/dev.001925 JHAVERI S, 1982, NEUROSCIENCE, V7, P837, DOI 10.1016/0306-4522(82)90046-X Kanzaki S, 2002, J COMP NEUROL, V454, P350, DOI 10.1002/cne.10480 KAWASE T, 1992, J COMP NEUROL, V319, P312, DOI 10.1002/cne.903190210 KEITHLEY EM, 1987, J ACOUST SOC AM, V81, P1036, DOI 10.1121/1.394675 KEITHLEY EM, 1979, J COMP NEUROL, V188, P429, DOI 10.1002/cne.901880306 KELLERHALS B, 1967, ACTA OTOLARYNGOL S22, V64, P5 KIANG NYS, 1982, SCIENCE, V217, P175, DOI 10.1126/science.7089553 Kiang NY-s, 1965, DISCHARGE PATTERNS S Kiang N.Y.S., 1984, P143 KIMURA R S, 1979, Annals of Otology Rhinology and Laryngology, V88, P1 KIMURA RS, 1987, ACTA OTO-LARYNGOL, P1 KIMURA RS, 1976, ANN OTO RHINOL LARYN, V85, P791 KUIJPERS W, 1991, HEARING RES, V52, P133, DOI 10.1016/0378-5955(91)90193-D Ladhams A, 1996, J COMP NEUROL, V366, P335, DOI 10.1002/(SICI)1096-9861(19960304)366:2<335::AID-CNE11>3.0.CO;2-O Lariviere RC, 2004, J NEUROBIOL, V58, P131, DOI 10.1002/neu.10270 Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3 LEAKE PA, 1991, HEARING RES, V54, P251, DOI 10.1016/0378-5955(91)90120-X LEAKE PA, 1993, J COMP NEUROL, V333, P257, DOI 10.1002/cne.903330211 Lee DJ, 2003, J NEUROCYTOL, V32, P229, DOI 10.1023/B:NEUR.0000010082.99874.14 LEFEBVRE RP, 1994, NEUROREPORT, V5, P865 LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677 LIBERMAN MC, 1980, HEARING RES, V3, P45, DOI 10.1016/0378-5955(80)90007-6 LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309 LIBERMAN MC, 1984, J COMP NEUROL, V223, P163, DOI 10.1002/cne.902230203 LIBERMAN MC, 1985, J ACOUST SOC AM, V78, P312, DOI 10.1121/1.392492 LIBERMAN MC, 1991, J COMP NEUROL, V313, P240, DOI 10.1002/cne.903130205 Limb CJ, 2000, JARO, V1, P103, DOI 10.1007/sl01620010032 Lorente de No R, 1981, PRIMARY ACOUSTIC NUC Malgrange B, 1996, NEUROREPORT, V7, P913, DOI 10.1097/00001756-199603220-00016 Marzella PL, 1999, HEARING RES, V138, P73, DOI 10.1016/S0378-5955(99)00152-5 Marzella PL, 1997, NEUROREPORT, V8, P1641, DOI 10.1097/00001756-199705060-00017 McGuinness SL, 2005, OTOL NEUROTOL, V26, P1064, DOI 10.1097/01.mao.0000185063.20081.50 MerchanPerez A, 1996, J COMP NEUROL, V371, P208, DOI 10.1002/(SICI)1096-9861(19960722)371:2<208::AID-CNE2>3.0.CO;2-6 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 Minichiello L, 1995, DEVELOPMENT, V121, P4067 MISTRIK P, 2011, P ASS RES OT BALT MD Mitchell A, 1997, HEARING RES, V105, P30, DOI 10.1016/S0378-5955(96)00202-X MULLER M, 1991, HEARING RES, V56, P1, DOI 10.1016/0378-5955(91)90147-2 Muller M, 2005, HEARING RES, V202, P63, DOI 10.1016/j.heares.2004.08.011 MULLER M, 1990, EXP BRAIN RES, V81, P140 Muniak MA, 2011, P ASS RES OT BALT MD MUNZER FT, 1931, Z MIKROSKOPISCH ANAT, V24, P286 NADOL JB, 1981, ANN OTO RHINOL LARYN, V90, P12 Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5 NADOL JB, 1988, AM J OTOLARYNG, V9, P47, DOI 10.1016/S0196-0709(88)80007-3 NADOL JB, 1990, ANN OTO RHINOL LARYN, V99, P340 NEEDHAM K, 2010, P FRONT OT MELB VIC, P55 Nguyen MD, 2000, P NATL ACAD SCI USA, V97, P12306, DOI 10.1073/pnas.97.22.12306 Oleskevich S, 2004, J PHYSIOL-LONDON, V560, P709, DOI 10.1113/jphysiol.2004.066652 Oleskevich S, 2002, J PHYSIOL-LONDON, V540, P447, DOI 10.1113/jphysiol.2001.013821 O'Neil JN, 2010, J COMP NEUROL, V518, P2382, DOI 10.1002/cne.22339 OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407 OTA CY, 1980, ACTA OTO-LARYNGOL, V89, P53, DOI 10.3109/00016488009127108 PERKINS RE, 1975, J COMP NEUROL, V163, P129, DOI 10.1002/cne.901630202 Perrot R, 2008, MOL NEUROBIOL, V38, P27, DOI 10.1007/s12035-008-8033-0 PFEIFFER RR, 1966, SCIENCE, V154, P667, DOI 10.1126/science.154.3749.667 PIRVOLA U, 1992, P NATL ACAD SCI USA, V89, P9915, DOI 10.1073/pnas.89.20.9915 PIRVOLA U, 1991, HEARING RES, V52, P345, DOI 10.1016/0378-5955(91)90024-4 RAMPRASHAD F, 1978, J COMP NEUROL, V178, P347, DOI 10.1002/cne.901780209 Rasmusen GL, 1940, LARYNGOSCOPE, V50, P67 REES S, 1985, BRAIN RES, V325, P370, DOI 10.1016/0006-8993(85)90343-9 RETZIUS G, 1884, GEHOROGAN WIRBELTIER, V2 Richardson RT, 2005, HEARING RES, V204, P37, DOI 10.1016/j.heares.2005.01.001 Rivas A, 2005, P ASS RES OT NEW ORL ROBERTSON D, 1984, HEARING RES, V15, P113, DOI 10.1016/0378-5955(84)90042-X ROMAND MR, 1987, ACTA OTO-LARYNGOL, V104, P29, DOI 10.3109/00016488709109044 ROMAND R, 1988, BRAIN RES, V462, P167, DOI 10.1016/0006-8993(88)90601-4 ROMAND R, 1984, ACTA OTO-LARYNGOL, V97, P239, DOI 10.3109/00016488409130985 ROMAND R, 1990, HEARING RES, V49, P119, DOI 10.1016/0378-5955(90)90099-B ROSENBLUTH J, 1962, J CELL BIOL, V12, P329, DOI 10.1083/jcb.12.2.329 Rowland KC, 2000, J NEUROSCI, V20, P9135 Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849 RUGGERO MA, 1982, HEARING RES, V8, P339, DOI 10.1016/0378-5955(82)90023-5 Ryugo DK, 1997, J COMP NEUROL, V385, P230, DOI 10.1002/(SICI)1096-9861(19970825)385:2<230::AID-CNE4>3.0.CO;2-2 RYUGO DK, 1982, J COMP NEUROL, V210, P239, DOI 10.1002/cne.902100304 Ryugo DK, 2003, BRAIN RES BULL, V60, P435, DOI 10.1016/S0361-9230(03)00049-2 Ryugo DK, 2008, NEUROSCIENCE, V154, P114, DOI 10.1016/j.neuroscience.2007.10.052 RYUGO DK, 1991, J COMP NEUROL, V308, P209, DOI 10.1002/cne.903080208 Ryugo DK, 2005, SCIENCE, V310, P1490, DOI 10.1126/science.1119419 Ryugo DK, 1998, J COMP NEUROL, V397, P532, DOI 10.1002/(SICI)1096-9861(19980810)397:4<532::AID-CNE6>3.0.CO;2-2 Ryugo DK, 1996, J COMP NEUROL, V365, P141, DOI 10.1002/(SICI)1096-9861(19960129)365:1<141::AID-CNE11>3.0.CO;2-T SCHIMMANG T, 1995, DEVELOPMENT, V121, P3381 SCOTT D, 1985, J BIOL CHEM, V260, P736 SENTO S, 1989, J COMP NEUROL, V280, P553, DOI 10.1002/cne.902800406 SHAH SB, 1995, AM J OTOL, V16, P310 SHAW G, 1982, NATURE, V298, P277, DOI 10.1038/298277a0 Shea TB, 2004, J CELL SCI, V117, P933, DOI 10.1242/jcs.00785 Shea TB, 2003, TRENDS NEUROSCI, V26, P397, DOI 10.1016/S0166-2236(03)00199-1 Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564 Shepherd RK, 2001, AUDIOL NEURO-OTOL, V6, P305, DOI 10.1159/000046843 Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999 SIMMONS DD, 1988, J COMP NEUROL, V270, P145, DOI 10.1002/cne.902700112 Smith C A, 1973, Adv Otorhinolaryngol, V20, P296 SMITH CA, 1961, J ULTRA MOL STRUCT R, V5, P523, DOI 10.1016/S0022-5320(61)80025-7 SMITH CA, 1975, ANN OTO RHINOL LARYN, V84, P443 SMITH PH, 1993, J COMP NEUROL, V331, P245, DOI 10.1002/cne.903310208 SOBKOWICZ HM, 1993, J NEUROCYTOL, V22, P979, DOI 10.1007/BF01218355 Spirou GA, 1998, J COMP NEUROL, V398, P257, DOI 10.1002/(SICI)1096-9861(19980824)398:2<257::AID-CNE7>3.0.CO;2-# SPOENDLI.H, 1969, ACTA OTO-LARYNGOL, V67, P239, DOI 10.3109/00016486909125448 SPOENDLIN H, 1981, ACTA OTO-LARYNGOL, V91, P451, DOI 10.3109/00016488109138527 SPOENDLIN H, 1988, ACTA OTO-LARYNGOL, V105, P403, DOI 10.3109/00016488809119493 SPOENDLIN H, 1973, P185 SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683 SPOENDLI.H, 1971, ARCH KLIN EXP OHR, V200, P275, DOI 10.1007/BF00373310 STAECKER H, 1995, NEUROREPORT, V6, P1533 Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011 Staecker H, 1998, OTOLARYNG HEAD NECK, V119, P7, DOI 10.1016/S0194-5998(98)70194-9 Tessarollo L, 1997, P NATL ACAD SCI USA, V94, P14776, DOI 10.1073/pnas.94.26.14776 Thiers FA, 2002, JARO, V3, P269, DOI 10.1007/s101620020024 Thiers FA, 2000, HEARING RES, V150, P119, DOI 10.1016/S0378-5955(00)00193-3 Thiers FA, 2008, JARO-J ASSOC RES OTO, V9, P477, DOI 10.1007/s10162-008-0135-x THOMSEN E, 1966, ACTA OTOLARYNGOL S, V224 Tonnaer ELGM, 2010, HEARING RES, V267, P27, DOI 10.1016/j.heares.2010.03.090 Weisz C, 2009, NATURE, V461, P1126, DOI 10.1038/nature08487 Whitlon DS, 2006, NEUROSCIENCE, V138, P653, DOI 10.1016/j.neuroscience.2005.11.030 Whitlon DS, 2007, NEUROSCIENCE, V146, P833, DOI 10.1016/j.neuroscience.2007.01.036 Wise AK, 2005, J COMP NEUROL, V487, P147, DOI 10.1002/cne.20563 Yamagata T, 2004, J NEUROSCI RES, V78, P75, DOI 10.1002/jnr.20239 Ye Y, 2000, J COMP NEUROL, V420, P127 Ylikoski J, 1998, HEARING RES, V124, P17, DOI 10.1016/S0378-5955(98)00095-1 YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C Zheng JL, 1996, EUR J NEUROSCI, V8, P1897, DOI 10.1111/j.1460-9568.1996.tb01333.x ZIMMERMANN CE, 1995, HEARING RES, V90, P192, DOI 10.1016/0378-5955(95)00165-1 NR 191 TC 28 Z9 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2011 VL 278 IS 1-2 SI SI BP 2 EP 20 DI 10.1016/j.heares.2011.04.003 PG 19 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 815GY UT WOS:000294515300002 PM 21530629 ER PT J AU Yang, T Kersigo, J Jahan, I Pan, N Fritzsch, B AF Yang, Tian Kersigo, Jennifer Jahan, Israt Pan, Ning Fritzsch, Bernd TI The molecular basis of making spiral ganglion neurons and connecting them to hair cells of the organ of Corti SO HEARING RESEARCH LA English DT Article ID MAMMALIAN INNER-EAR; NULL MUTANT MICE; SENSORY EPITHELIA; IN-VIVO; DISORGANIZED INNERVATION; TRANSCRIPTION FACTORS; COCHLEAR INNERVATION; AUDITORY DEVELOPMENT; NEUROTROPHIC FACTOR; SYSTEM DEVELOPMENT AB The bipolar spiral ganglion neurons apparently delaminate from the growing cochlear duct and migrate to Rosenthal's canal. They project radial fibers to innervate the organ of Corti (type I neurons to inner hair cells, type II neurons to outer hair cells) and also project tonotopically to the cochlear nuclei. The early differentiation of these neurons requires transcription factors to regulate migration, pathfinding and survival. Neurog1 null mice lack formation of neurons. Neurod1 null mice show massive neuronal death combined with aberrant central and peripheral projections. Prox1 protein is necessary for proper type II neuron process navigation, which is also affected by the neurotrophins Bdnf and Ntf3. Neurotrophin null mutants show specific patterns of neuronal loss along the cochlea but remaining neurons compensate by expanding their target area. All neurotrophin mutants have reduced radial fiber growth proportional to the degree of loss of neurotrophin alleles. This suggests a simple dose response effect of neurotrophin concentration. Keeping overall concentration constant, but misexpressing one neurotrophin under regulatory control of another one results in exuberant fiber growth not only of vestibular fibers to the cochlea but also of spiral ganglion neurons to outer hair cells suggesting different effectiveness of neurotrophins for spiral ganglion neurite growth. Finally, we report here for the first time that losing all neurons in double null mutants affects extension of the cochlear duct and leads to formation of extra rows of outer hair cells in the apex, possibly by disrupting the interaction of the spiral ganglion with the elongating cochlea. (C) 2011 Elsevier B.V. All rights reserved. C1 [Yang, Tian; Kersigo, Jennifer; Jahan, Israt; Pan, Ning; Fritzsch, Bernd] Univ Iowa, Dept Biol, Coll Liberal Arts & Sci, Iowa City, IA 52242 USA. RP Fritzsch, B (reprint author), Univ Iowa, Dept Biol, Coll Liberal Arts & Sci, 143 BB, Iowa City, IA 52242 USA. EM bernd-fritzsch@uiowa.edu FU NIH [R01 DC 005590, P30 DC010362] FX This work was supported by a NIH grant (R01 DC 005590) to B.F. and in part by P30 DC010362. We express our thanks to Drs. Ma, Tessarollo, Farinas, Reichardt and Ernfors for sharing mouse lines and reagents. We thank the Roy J Carver Foundation for the support of the Confocal Imaging Facility. CR Adam J, 1998, DEVELOPMENT, V125, P4645 Agerman K, 2003, DEVELOPMENT, V130, P1479, DOI 10.1242/dev.00378 Appler JM, 2011, PROG NEUROBIOL, V93, P488, DOI 10.1016/j.pneurobio.2011.01.004 Barclay M, 2010, NEUROSCI LETT, V478, P51, DOI 10.1016/j.neulet.2010.01.063 Battisti AC, 2008, DEV DYNAM, V237, P476, DOI 10.1002/dvdy.21429 Bianchi LM, 2005, JARO-J ASSOC RES OTO, V6, P355, DOI 10.1007/s10162-005-0013-8 Bianchi LM, 1996, DEVELOPMENT, V122, P1965 BOUCHARD M, 2010, BMC DEV BIOL Brooker R, 2006, DEVELOPMENT, V133, P1277, DOI 10.1242/dev.02284 Brors D, 2003, J COMP NEUROL, V462, P90, DOI 10.1002/cne.10707 Bruce LL, 1997, INT J DEV NEUROSCI, V15, P671, DOI 10.1016/S0736-5748(96)00120-7 Brunelli S, 2003, GENE EXPR PATTERNS, V3, P755, DOI 10.1016/S1567-133X(03)00135-2 Coppola V, 2001, DEVELOPMENT, V128, P4315 DAMICOMARTEL A, 1983, AM J ANAT, V166, P445, DOI 10.1002/aja.1001660406 Davies D, 2007, J COMP NEUROL, V502, P673, DOI 10.1002/cne.21302 Davis RL, 2003, NEUROSCIENTIST, V9, P311, DOI 10.1177/1073858403251986 ERNFORS P, 1995, NEURON, V14, P1153, DOI 10.1016/0896-6273(95)90263-5 Esteban PF, 2006, J CELL BIOL, V173, P291, DOI 10.1083/jcb.200512013 Farinas I, 2001, J NEUROSCI, V21, P6170 Fekete DM, 2007, INT J DEV BIOL, V51, P549, DOI 10.1387/ijdb.072341df Finzsch M, 2010, J CELL BIOL, V189, P701, DOI 10.1083/jcb.200912142 Flores-Otero J, 2007, J NEUROSCI, V27, P14023, DOI 10.1523/JNEUROSCI.3219-07.2007 Fritzsch B, 2010, CELL MOL LIFE SCI, V67, P3089, DOI 10.1007/s00018-010-0403-x Fritzsch B, 2005, DEV DYNAM, V233, P570, DOI 10.1002/dvdy.20370 Fritzsch B, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009377 Fritzsch B, 2002, J NEUROBIOL, V53, P143, DOI 10.1002/neu.10098 Fritzsch B, 2004, PROG BRAIN RES, V146, P265, DOI 10.1016/S0079-6123(03)46017-2 Fritzsch B, 2005, BRAIN RES BULL, V66, P249, DOI 10.1016/j.brainresbull.2005.05.016 Fritzsch B, 2006, BIOESSAYS, V28, P1181, DOI 10.1002/bies.20502 Fritzsch B, 2005, HEARING RES, V206, P52, DOI 10.1016/j.heares.2004.11.025 Fritzsch B, 2003, BRAIN RES BULL, V60, P423, DOI 10.1016/S0361-9230(03)00048-0 Fritzsch B, 2006, INT J COMP PSYCHOL, V19, P1 Fritzsch B, 1997, J NEUROSCI, V17, P6213 Galabova-Kovacs G, 2010, METHODS MOL BIOL, V661, P421, DOI 10.1007/978-1-60761-795-2_26 Garcia-Bellido A, 2009, GENETICS, V182, P631, DOI 10.1534/genetics.109.104083 Gaspard N, 2010, CURR OPIN NEUROBIOL, V20, P37, DOI 10.1016/j.conb.2009.12.001 GINZBERG RD, 1983, HEARING RES, V10, P227, DOI 10.1016/0378-5955(83)90056-4 Grabocka E, 2009, CANCER CELL, V16, P85, DOI 10.1016/j.ccr.2009.07.012 Grimsley-Myers CM, 2009, J NEUROSCI, V29, P15859, DOI 10.1523/JNEUROSCI.3998-09.2009 Gu CH, 2003, DEV CELL, V5, P45, DOI 10.1016/S1534-5807(03)00169-2 Heng JIT, 2008, NATURE, V455, P114, DOI 10.1038/nature07198 Hossain WA, 2008, J NEUROSCI RES, V86, P2376, DOI 10.1002/jnr.21685 Huang EJ, 2001, DEVELOPMENT, V128, P2421 Huang LC, 2007, DEVELOPMENT, V134, P2925, DOI 10.1242/dev.001925 Jahan I, 2010, CELL TISSUE RES, V341, P95, DOI 10.1007/s00441-010-0984-6 Jahan I, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011661 Karis A, 2001, J COMP NEUROL, V429, P615, DOI 10.1002/1096-9861(20010122)429:4<615::AID-CNE8>3.0.CO;2-F Katayama K, 2009, PLOS ONE, V4, pA151, DOI 10.1371/journal.pone.0007786 Kelly MC, 2009, CURR OPIN NEUROBIOL, V19, P395, DOI 10.1016/j.conb.2009.07.010 KERN F, 2010, BR J CANC Kim WY, 2001, DEVELOPMENT, V128, P417 Kondo T, 2008, P NATL ACAD SCI USA, V105, P5780, DOI 10.1073/pnas.0708704105 KOPECKY B, 2011, DEV DYNAM, V240, P808 Koppel I, 2010, GENESIS, V48, P214, DOI 10.1002/dvg.20606 Koundakjian EJ, 2007, J NEUROSCI, V27, P14078, DOI 10.1523/JNEUROSCI.3765-07.2007 Kruger M, 2006, EUR J NEUROSCI, V24, P1581, DOI 10.1111/j.1460-9568.2006.05051.x Lallemend F, 2007, NEUROSCIENCE, V150, P212, DOI 10.1016/j.neuroscience.2007.08.032 Lawoko-Kerali G, 2002, J COMP NEUROL, V442, P378, DOI 10.1002/cne.10088 Leake PA, 2008, JARO-J ASSOC RES OTO, V9, P349, DOI 10.1007/s10162-008-0127-x Lie M, 2010, NEUROSCIENCE, V169, P855, DOI 10.1016/j.neuroscience.2010.05.020 Liu M, 2000, GENE DEV, V14, P2839, DOI 10.1101/gad.840500 Luberg K, 2010, J NEUROCHEM, V113, P952, DOI 10.1111/j.1471-4159.2010.06662.x Luo ZX, 2011, P ROY SOC B-BIOL SCI, V278, P28, DOI 10.1098/rspb.2010.1148 Ma QF, 1998, NEURON, V20, P469, DOI 10.1016/S0896-6273(00)80988-5 Ma QF, 2000, JARO, V1, P129, DOI 10.1007/sl01620010017 Magarinos M, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014435 Markus A, 2002, NEURON, V35, P65, DOI 10.1016/S0896-6273(02)00752-3 Matei V, 2005, DEV DYNAM, V234, P633, DOI 10.1002/dvdy.20551 Migeotte I, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000442 Morris JK, 2006, BRAIN RES, V1091, P186, DOI 10.1016/j.brainres.2006.02.090 Muller M, 2003, DEVELOPMENT, V130, P5815, DOI 10.1242/dev.00815 Naka H, 2008, NAT NEUROSCI, V11, P1014, DOI 10.1038/nn.2168 Nichols DH, 2008, CELL TISSUE RES, V334, P339, DOI 10.1007/s00441-008-0709-2 Ohsawa R, 2008, BRAIN RES, V1192, P90, DOI 10.1016/j.brainres.2007.04.014 Ohyama T, 2010, J NEUROSCI, V30, P15044, DOI 10.1523/JNEUROSCI.3547-10.2010 PACARY E, 2011, NEURON, V24, P1069 Pan N, 2011, HEARING RES, V275, P66, DOI 10.1016/j.heares.2010.12.002 Pan W, 2010, P NATL ACAD SCI USA, V107, P15798, DOI 10.1073/pnas.1003089107 Parra LM, 2010, NAT NEUROSCI, V13, P29, DOI 10.1038/nn.2457 Pauley S, 2006, DEV DYNAM, V235, P2470, DOI 10.1002/dvdy.20839 Pauley S, 2003, DEV DYNAM, V227, P203, DOI 10.1002/dvdy.10297 PELJTO M, 2011, CURR OPIN NEUROBIOL, V218, P43 PIRVOLA U, 1992, P NATL ACAD SCI USA, V89, P9915, DOI 10.1073/pnas.89.20.9915 Postigo A, 2002, GENE DEV, V16, P633, DOI 10.1101/gad.217902 Puligilla C, 2007, DEV DYNAM, V236, P1905, DOI 10.1002/dvdy.21192 Puligilla C, 2010, J NEUROSCI, V30, P714, DOI 10.1523/JNEUROSCI.3852-09.2010 Qian Y, 2001, GENE DEV, V15, P2533, DOI 10.1101/gad.921501 Qu YB, 2010, J NEUROSCI, V30, P9392, DOI 10.1523/JNEUROSCI.0124-10.2010 Raft S, 2004, DEVELOPMENT, V131, P1801, DOI 10.1242/dev.01067 Raft S, 2007, DEVELOPMENT, V134, P4405, DOI 10.1242/dev.009118 Riccomagno MM, 2005, GENE DEV, V19, P1612, DOI 10.1101/gad.1303905 Romand R, 2008, J COMP NEUROL, V508, P879, DOI [10.1002/cne.21707, 10.1002/ene.21707] Rontal DA, 2003, J COMP NEUROL, V467, P509, DOI 10.1002/cne.10931 Ross SE, 2010, NEURON, V65, P886, DOI 10.1016/j.neuron.2010.02.025 Roy S, 2010, SCIENCE Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849 Ruben R. J., 1967, ACTA OTO-LARYNGOL, V220, P1 Schimmang T, 2003, DEVELOPMENT, V130, P4741, DOI 10.1242/dev.00676 Schreiner D, 2010, P NATL ACAD SCI USA, V107, P14893, DOI 10.1073/pnas.1004526107 Sciarretta C, 2010, BMC DEV BIOL, V10, DOI 10.1186/1471-213X-10-103 SilosSantiago I, 1997, EUR J NEUROSCI, V9, P2045, DOI 10.1111/j.1460-9568.1997.tb01372.x Tang LS, 2006, DEVELOPMENT, V133, P3683, DOI 10.1242/dev.02536 Tessarollo L, 2004, J NEUROSCI, V24, P2575, DOI 10.1523/JNEUROSCI.5514-03.2004 TESSAROLLO L, 1994, P NATL ACAD SCI USA, V91, P11844, DOI 10.1073/pnas.91.25.11844 van Heumen WRA, 2000, HEARING RES, V139, P42, DOI 10.1016/S0378-5955(99)00158-6 Webber A, 2006, ANAT REC PART A, V288A, P390, DOI 10.1002/ar.a.20299 WHITLON DS, 2011, ARO MIDW M Whitlon DS, 2007, NEUROSCIENCE, V146, P833, DOI 10.1016/j.neuroscience.2007.01.036 Xiang MQ, 2003, BMC NEUROSCI, V4, DOI 10.1186/1471-2202-4-2 Zheng JL, 2000, NAT NEUROSCI, V3, P580 Zhong J, 2007, NAT NEUROSCI, V10, P598, DOI 10.1038/1898 Zhou ZP, 2005, J NEUROSCI, V25, P7558, DOI 10.1523/JNEUROSCI.1735-05.2005 Zou D, 2008, HUM MOL GENET, V17, P3340, DOI 10.1093/hmg/ddn229 Zou D, 2004, DEVELOPMENT, V131, P5561, DOI 10.1242/dev.01437 NR 114 TC 30 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2011 VL 278 IS 1-2 SI SI BP 21 EP 33 DI 10.1016/j.heares.2011.03.002 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 815GY UT WOS:000294515300003 PM 21414397 ER PT J AU Johnson, SB Schmitz, HM Santi, PA AF Johnson, Shane B. Schmitz, Heather M. Santi, Peter A. TI TSLIM imaging and a morphometric analysis of the mouse spiral ganglion SO HEARING RESEARCH LA English DT Article ID QUANTITATIVE-ANALYSIS; AUDITORY-NERVE; FREQUENCY MAP; HOUSE-MOUSE; TARGET INNERVATION; SENSORY NEURONS; MUS-MUSCULUS; COCHLEA; MICE; MICROSCOPY AB Thin-sheet laser imaging microscopy (TSLIM) was used to serially section five whole cochleas from 4-wk-old CBA/JCr mice. Three-dimensional reconstructions of Rosenthal's canal (RC) were produced in order to measure canal length and volume, to generate orthogonal cross sections for area measurements, and to determine spiral ganglion neuron (SGN) number. RC length averaged 2.0 mm +/- 0.04 (SEM) as measured along the centroid of the canal compared to an average basilar membrane (BM) length of 5.9 +/- 0.05 (SEM). RC volume averaged 0.036 mm(3) +/- 0.009 (SEM). Significant increases in the radial area of RC were observed at the base (13%), middle (62%), and apex (90%) of its length. The total number of spiral ganglion neurons (SGNs) in RC in each of the five animals averaged 8626 +/- 96 (SEM). SGN number increased at the expanded regions of RC. Increased area and cell number at the base and apex are likely related to extensions of the organ of Corti past the length of RC in these areas. The increase in area and cell number in the middle of the RC appears to be related to the most sensitive frequency region of the organ of Corti. Volume imaging or tomography of the cochlea as provided by TSLIM has the potential to be an efficient and accurate semi-automated method for the quantitative assessment of the number of SGNs and hair cells of the organ of Corti. (C) 2011 Elsevier B.V. All rights reserved. C1 [Johnson, Shane B.; Schmitz, Heather M.; Santi, Peter A.] Univ Minnesota, Dept Otolaryngol, Minneapolis, MN 55455 USA. RP Johnson, SB (reprint author), Univ Minnesota, Dept Otolaryngol, 2001 6th St SE, Minneapolis, MN 55455 USA. EM john6638@umn.edu FU National Institute for Deafness and Communication Disorders (NIDCD) [RO1DC007588, DC007588-03S1] FX Funding for this study was provided by the National Institute for Deafness and Communication Disorders (NIDCD) grants RO1DC007588 and DC007588-03S1 to PAS. CR ABERCROMBIE M, 1946, ANAT REC, V94, P239, DOI 10.1002/ar.1090940210 BERGLUND AM, 1987, J COMP NEUROL, V255, P560, DOI 10.1002/cne.902550408 BROWN MC, 1988, J COMP NEUROL, V278, P581, DOI 10.1002/cne.902780409 Camarero G, 2001, J NEUROSCI, V21, P7630 Dazert S, 1996, HEARING RES, V100, P101, DOI 10.1016/0378-5955(96)00100-1 Dodt HU, 2007, NAT METHODS, V4, P331, DOI 10.1038/NMETH1036 Echteler SM, 2000, J COMP NEUROL, V425, P436 Ehret G, 1983, AUDITORY PSYCHOBIOLO, P169 EHRET G, 1977, J COMP PHYSIOL, V122, P65 EHRET G, 1975, J COMP PHYSIOL, V103, P329 EHRET G, 1979, J COMP NEUROL, V183, P73, DOI 10.1002/cne.901830107 Eichenbaum KD, 2005, BIOTECHNIQUES, V39, P487, DOI 10.2144/000112003 FARINAS I, 1994, NATURE, V369, P658, DOI 10.1038/369658a0 Huang B, 2008, NAT METHODS, V5, P1047, DOI 10.1038/nmeth.1274 KEITHLEY EM, 1987, J ACOUST SOC AM, V81, P1036, DOI 10.1121/1.394675 KEITHLEY EM, 1983, HEARING RES, V12, P381, DOI 10.1016/0378-5955(83)90007-2 KEITHLEY EM, 1979, J COMP NEUROL, V188, P429, DOI 10.1002/cne.901880306 Keller PJ, 2008, SCIENCE, V322, P1065, DOI 10.1126/science.1162493 LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677 LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309 LIBERMAN MC, 1982, SCIENCE, V216, P1239, DOI 10.1126/science.7079757 LIBERMAN MC, 1984, J COMP NEUROL, V223, P163, DOI 10.1002/cne.902230203 Liebl DJ, 1997, J NEUROSCI, V17, P9113 Liu Q, 2007, J NEUROPHYSIOL, V98, P2215, DOI 10.1152/jn.00284.2007 Luikart BW, 2003, NEUROSCIENCE, V117, P847, DOI 10.1016/S0306-4522(02)00719-4 Muller M, 2005, HEARING RES, V202, P63, DOI 10.1016/j.heares.2004.08.011 Ou HC, 2000, HEARING RES, V145, P123, DOI 10.1016/S0378-5955(00)00082-4 POLLAK A, 1987, ACTA OTO-LARYNGOL, P37 Postigo A, 2002, GENE DEV, V16, P633, DOI 10.1101/gad.217902 Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849 Santi PA, 2009, BIOTECHNIQUES, V46, P287, DOI 10.2144/000113087 Santi PA, 2011, J HISTOCHEM CYTOCHEM, V59, P129, DOI 10.1369/0022155410394857 Sato M., 2000, Proceedings the Eighth Pacific Conference on Computer Graphics and Applications, DOI 10.1109/PCCGA.2000.883951 SCHACHT R, 2010, BIOMED OPT EXPRESS, V1, P598 Skinner MW, 2007, ANN OTO RHINOL LARYN, V116, P1 SPOENDLIN H, 1979, ACTA OTO-LARYNGOL, V87, P381, DOI 10.3109/00016487909126437 SPOENDLI.H, 1972, ACTA OTO-LARYNGOL, V73, P235, DOI 10.3109/00016487209138937 VOIE AH, 1993, J MICROSC-OXFORD, V170, P229 WEBSTER DB, 1985, HEARING RES, V18, P19, DOI 10.1016/0378-5955(85)90107-8 Whitlon DS, 2006, NEUROSCIENCE, V138, P653, DOI 10.1016/j.neuroscience.2005.11.030 WILLOTT JF, 1987, J COMP NEUROL, V260, P472, DOI 10.1002/cne.902600312 NR 41 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2011 VL 278 IS 1-2 SI SI BP 34 EP 42 DI 10.1016/j.heares.2011.02.008 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 815GY UT WOS:000294515300004 PM 21420476 ER PT J AU Richter, CP Kumar, G Webster, E Banas, SK Whitlon, DS AF Richter, C. -P. Kumar, G. Webster, E. Banas, S. K. Whitlon, D. S. TI Unbiased counting of neurons in the cochlea of developing gerbils SO HEARING RESEARCH LA English DT Article ID GANGLION-CELL COUNTS; SPIRAL GANGLION; STEREOLOGICAL METHODS; PATHOLOGICAL RESEARCH; TARGET INNERVATION; AUDITORY NEURONS; SENSORY NEURONS; MICE; NUMBER; HYPOTHYROIDISM AB Accurate counting of neurons in the cochlea has a significant impact on the interpretation of research and clinically relevant data. However, reports of numbers of neurons in the spiral ganglion are widely variable across studies, even within the same species. We suggest that the implementation of a more standardized, unbiased counting method will improve the consistency and accuracy of neuron counts and will impact scientific interpretations. To test this view, we compared, in different ways, the numbers of neurons in the spiral ganglia of developing gerbils, previously reported to decrease by 22-27% between birth and age 7 days. Cochleae from gerbils, aged newborn, 7 days, 20 days, 1.5 years and 2.5 years were embedded in Araldite and serially sectioned at 5 pm. A computer based stereological method was used to unambiguously count every neuron in serial sections, either throughout the entire cochlea, or in a 100-mu m segment of the cochlea. No significant changes in neuron numbers during cochlear maturation were found. We demonstrate that in methods using sampling of sections, the identity of the starting section and the interval between sections impacts the variability of the estimate of neuron numbers. In addition, we show that packing density differs between the newborn and seven-day old animals. The data demonstrate that variability in counting methods and the comparison of non-uniform samples can lead to neuron number estimates that show differences where none exist. We propose that a standardized counting protocol be implemented across studies and suggest possible approaches to different types of comparisons between neurons of spiral ganglia from different sources. (C) 2011 Published by Elsevier B.V. C1 [Richter, C. -P.; Kumar, G.; Webster, E.; Banas, S. K.; Whitlon, D. S.] Northwestern Univ, Feinberg Sch Med, Dept Otolaryngol, Chicago, IL 60611 USA. [Richter, C. -P.] Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA. [Richter, C. -P.; Whitlon, D. S.] Northwestern Univ, Dept Commun Sci & Disorders, Hugh Knowles Ctr, Evanston, IL 60208 USA. [Whitlon, D. S.] Northwestern Univ, Interdept Neurosci Program, Chicago, IL 60611 USA. RP Richter, CP (reprint author), Northwestern Univ, Feinberg Sch Med, Dept Otolaryngol Head & Neck Surg, 303 E Chicago Ave,Searle 12-561, Chicago, IL 60611 USA. EM cri529@northwestern.edu FU American Hearing Research Foundation; Hugh Knowles Center, Northwestern University; Department of Otolaryngology, Northwestern University FX This project has been supported by the American Hearing Research Foundation, the Hugh Knowles Center, Northwestern University, and the Department of Otolaryngology, Northwestern University. CR ABERCROMBIE M, 1946, ANAT REC, V94, P239, DOI 10.1002/ar.1090940210 Agerman K, 2003, DEVELOPMENT, V130, P1479, DOI 10.1242/dev.00378 Benes FM, 2001, TRENDS NEUROSCI, V24, P11, DOI 10.1016/S0166-2236(00)01660-X Camarero G, 2001, J NEUROSCI, V21, P7630 Chen I, 2010, JARO-J ASSOC RES OTO, V11, P587, DOI 10.1007/s10162-010-0234-3 Coggeshall RE, 1996, J COMP NEUROL, V364, P6, DOI 10.1002/(SICI)1096-9861(19960101)364:1<6::AID-CNE2>3.0.CO;2-9 COGGESHALL RE, 1992, TRENDS NEUROSCI, V15, P9, DOI 10.1016/0166-2236(92)90339-A Echteler SM, 2000, J COMP NEUROL, V425, P436 FARINAS I, 1994, NATURE, V369, P658, DOI 10.1038/369658a0 Goto Noboru, 2006, Hum Cell, V19, P49, DOI 10.1111/j.1749-0774.2006.00013.x GUNDERSEN HJG, 1988, J MICROSC-OXFORD, V151, P3 GUNDERSEN HJG, 1988, APMIS, V96, P379 GUNDERSEN HJG, 1988, APMIS, V96, P857 Hedreen JC, 1998, ANAT REC, V250, P373, DOI 10.1002/(SICI)1097-0185(199803)250:3<373::AID-AR12>3.0.CO;2-L HINOJOSA R, 1985, ACTA OTO-LARYNGOL, V99, P8, DOI 10.3109/00016488509119139 HOWE HA, 1934, J COMP NEUROL, V62, P73 Ishiyama A, 2001, NEUROSCI LETT, V304, P93, DOI 10.1016/S0304-3940(01)01774-8 JENSEN EBV, 1993, J MICROSC-OXFORD, V170, P35 KEITHLEY EM, 1979, J COMP NEUROL, V188, P429, DOI 10.1002/cne.901880306 King MA, 2002, METHODS, V28, P293, DOI 10.1016/S1046-2023(02)00235-9 KONIGSMA.BW, 1969, JOHNS HOPKINS MED J, V125, P146 Lareida A, 2009, J MICROSC-OXFORD, V234, P95, DOI 10.1111/j.1365-2818.2009.03143.x Liebl DJ, 1997, J NEUROSCI, V17, P9113 LINDERSTROMLANG K, 1935, COMPTES RENDUS LAB C, V20, P66 Luikart BW, 2003, NEUROSCIENCE, V117, P847, DOI 10.1016/S0306-4522(02)00719-4 MAIR IW, 1973, ACTA OTO-LARYNGOL, V314, P1048 PARK CJ, 1990, HEARING RES, V48, P275 Postigo A, 2002, GENE DEV, V16, P633, DOI 10.1101/gad.217902 Richter CP, 2008, HEARING RES, V242, P42, DOI [10.1016/j.heares.2008.01.011, 10.1016/j.heares.2008.01.01] Richter CP, 2009, MICROSC RES TECHNIQ, V72, P902, DOI 10.1002/jemt.20728 Rueda J, 2003, NEUROSCI RES, V45, P401, DOI 10.1016/S0168-0102(03)00009-9 RUEDA J, 1987, ACTA OTO-LARYNGOL, V104, P417, DOI 10.3109/00016488709128269 SANTI P, 2010, ABSTR ASS RES OT, V33, P101 Saper CB, 1996, J COMP NEUROL, V364, P5 SCHUKNECHT HF, 1960, NEURAL MECHANISMS AU, P76 SCHUKNECHT HF, 1953, AMA ARCH OTOLARYNGOL, V58, P377 Stark Anette K., 2005, Current Alzheimer Research, V2, P449, DOI 10.2174/156720505774330528 STERIO DC, 1984, J MICROSC-OXFORD, V134, P127 Tandrup T, 1997, J MICROSC-OXFORD, V186, P108, DOI 10.1046/j.1365-2818.1997.2070765.x UZIEL A, 1983, HEARING RES, V11, P203, DOI 10.1016/0378-5955(83)90079-5 WEBSTER DB, 1985, HEARING RES, V18, P19, DOI 10.1016/0378-5955(85)90107-8 West MJ, 2002, PROG BRAIN RES, V135, P43 West MJ, 1999, TRENDS NEUROSCI, V22, P51, DOI 10.1016/S0166-2236(98)01362-9 Whitlon DS, 2006, NEUROSCIENCE, V138, P653, DOI 10.1016/j.neuroscience.2005.11.030 NR 44 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2011 VL 278 IS 1-2 SI SI BP 43 EP 51 DI 10.1016/j.heares.2011.02.003 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 815GY UT WOS:000294515300005 PM 21329751 ER PT J AU Chen, WC Xue, HZ Hsu, Y Liu, Q Patel, S Davis, RL AF Chen, Wei Chun Xue, Hui Zhong Hsu, Yun (Lucy) Liu, Qing Patel, Shail Davis, Robin L. TI Complex distribution patterns of voltage-gated calcium channel alpha-subunits in the spiral ganglion SO HEARING RESEARCH LA English DT Article ID CA2+ CHANNELS; SCHWANN-CELLS; POTASSIUM CHANNELS; FIRING PATTERNS; AUDITORY-NERVE; COCHLEAR NERVE; MOUSE COCHLEA; HAIR-CELLS; NEURONS; RAT AB As with other elements of the peripheral auditory system, spiral ganglion neurons display specializations that vary as a function of location along the tonotopic axis. Previous work has shown that voltage-gated K(+) channels and synaptic proteins show graded changes in their density that confers rapid responsiveness to neurons in the high frequency, basal region of the cochlea and slower, more maintained responsiveness to neurons in the low frequency, apical region of the cochlea. In order to understand how voltage-gated calcium channels (VGCCs) may contribute to these diverse phenotypes, we identified the VGCC alpha-subunits expressed in the ganglion, investigated aspects of Ca(2+)-dependent neuronal firing patterns, and mapped the intracellular and intercellular distributions of seven VGCC alpha-subunits in the spiral ganglion in vitro. Initial experiments with qRT-PCR showed that eight of the ten known VGCC alpha-subunits were expressed in the ganglion and electrophysiological analysis revealed firing patterns that were consistent with the presence of both LVA and HVA Ca(2+) channels. Moreover, we were able to study seven of the alpha-subunits with immunocytochemistry, and we found that all were present in spiral ganglion neurons, three of which were neuron-specific (Ca(V)1.3, Ca(V)2.2, and Ca(V)3.3). Further characterization of neuron-specific alpha-subunits showed that Ca(V)1.3 and Ca(V)3.3 were tonotopically-distributed, whereas Ca(V)2.2 was uniformly distributed in apical and basal neurons. Multiple VGCC alpha-subunits were also immunolocalized to Schwann cells, having distinct intracellular localizations, and, significantly, appearing to distinguish putative compact (Ca(V)2.3, Ca(V)3.1) from loose (Ca(V)1.2) myelin. Electrophysiological evaluation of spiral ganglion neurons in the presence of TEA revealed Ca(2+) plateau potentials with slopes that varied proportionately with the cochlear region from which neurons were isolated. Because afterhyperpolarizations were minimal or absent under these conditions, we hypothesize that differential density and/or kinetics of one or more of the VGCC alpha-subunits could account for observed tonotopic differences. These experiments have set the stage for defining the clear multiplicity of functional control in neurons and Schwann cells of the spiral ganglion. (C) 2011 Elsevier B.V. All rights reserved. C1 [Davis, Robin L.] Rutgers State Univ, Dept Cell Biol & Neurosci, Nelson Labs, Piscataway, NJ 08854 USA. [Hsu, Yun (Lucy)] Rutgers State Univ, Dept Biochem & Microbiol, New Brunswick, NJ 08901 USA. [Patel, Shail] Univ Med & Dent New Jersey, New Jersey Med Sch, Newark, NJ 07746 USA. RP Davis, RL (reprint author), Rutgers State Univ, Dept Cell Biol & Neurosci, Nelson Labs, 604 Allison Rd, Piscataway, NJ 08854 USA. EM rldavis@rci.rutgers.edu FU NIH NIDCD [R01 DC-0856] FX We thank Edmund Lee for his help in manuscript preparation and data analysis and Dr. Mark R. Plummer for a critical reading of this manuscript. Work was supported by NIH NIDCD R01 DC-0856. CR Adamson CL, 2002, J COMP NEUROL, V447, P331, DOI 10.1002/cne.10244 Adamson CL, 2002, J NEUROSCI, V22, P1385 Arimura N, 2007, NAT REV NEUROSCI, V8, P194, DOI 10.1038/nrn2056 Avila T, 2009, CELL MOL NEUROBIOL, V29, P1265, DOI 10.1007/s10571-009-9422-2 Baker MD, 2002, PROG BIOPHYS MOL BIO, V78, P83, DOI 10.1016/S0079-6107(02)00007-X Bean BP, 2007, NAT REV NEUROSCI, V8, P451, DOI 10.1038/nrn2148 Blanchart A, 2006, J COMP NEUROL, V496, P529, DOI 10.1002/cne.20941 Cao XJ, 2005, J NEUROPHYSIOL, V94, P821, DOI 10.1152/jn.01049.2004 Catterall WA, 2005, PHARMACOL REV, V57, P411, DOI 10.1124/pr.57.4.5 Chen WC, 2006, HEARING RES, V222, P89, DOI 10.1016/j.heares.2006.09.002 Coleman B, 2007, STEM CELLS, V25, P2685, DOI 10.1634/stemcells.2007-0393 Crumling MA, 2005, SYNAPSE, V58, P243, DOI 10.1002/syn.20204 Davis RL, 2003, NEUROSCIENTIST, V9, P311, DOI 10.1177/1073858403251986 DAVIS RL, HEAR RES UNPUB DeSilva TM, 2009, J NEUROSCI, V29, P7898, DOI 10.1523/JNEUROSCI.6129-08.2009 Dolphin AC, 2009, CURR OPIN NEUROBIOL, V19, P237, DOI 10.1016/j.conb.2009.06.006 FLORESOTERO J, 2010, J COMP NEUROL, DOI DOI 10.1002/CNE22576 Flores-Otero J, 2007, J NEUROSCI, V27, P14023, DOI 10.1523/JNEUROSCI.3219-07.2007 French RJ, 2005, IEEE T NANOBIOSCI, V4, P58, DOI 10.1109/TNB.2004.842500 Ginzinger DG, 2002, EXP HEMATOL, V30, P503, DOI 10.1016/S0301-472X(02)00806-8 GOEDERT M, 1991, TRENDS NEUROSCI, V14, P193, DOI 10.1016/0166-2236(91)90105-4 Gray AC, 2007, CELL CALCIUM, V42, P409, DOI 10.1016/j.ceca.2007.04.003 Green GE, 1996, J NEUROCHEM, V67, P37 Hisashi K, 1995, HEARING RES, V91, P196, DOI 10.1016/0378-5955(95)00191-3 Hossain WA, 2005, J NEUROSCI, V25, P6857, DOI 10.1523/JNEUROSCI.0123-05.2005 Jimenez C, 1997, NEUROSCIENCE, V77, P673, DOI 10.1016/S0306-4522(96)00505-2 Johnson SL, 2008, J PHYSIOL-LONDON, V586, P1029, DOI 10.1113/jphysiol.2007.145219 Joris P, 2007, TRENDS NEUROSCI, V30, P70, DOI 10.1016/j.tins.2006.12.004 Jurkat-Rott K, 2004, J PHYSIOL-LONDON, V554, P609, DOI 10.1113/jphysiol.2003.052712 KIANG NYS, 1965, DISCHARGE PATTERNS S, V35 Kollmar R, 1997, P NATL ACAD SCI USA, V94, P14883, DOI 10.1073/pnas.94.26.14883 Koschak A, 2001, J BIOL CHEM, V276, P22100, DOI 10.1074/jbc.M101469200 LIBERMAN MC, 1982, SCIENCE, V216, P1239, DOI 10.1126/science.7079757 Lipscombe D, 2004, J NEUROPHYSIOL, V92, P2633, DOI 10.1152/jn.00486.2004 LIU Q, 2010, ABSTR ASS RES OT, V33, P741 Liu Q, 2007, J NEUROPHYSIOL, V98, P2215, DOI 10.1152/jn.00284.2007 Loane DJ, 2007, J CELL SCI, V120, P985, DOI 10.1242/jcs.03399 Lopez I, 2003, CELL TISSUE RES, V313, P177, DOI 10.1007/s00441-003-0759-4 MASON WT, 1984, EXP BRAIN RES, V56, P135 Mathie A, 1998, GEN PHARMACOL, V30, P13, DOI 10.1016/S0306-3623(97)00034-7 Mo ZL, 1997, J NEUROPHYSIOL, V77, P1294 Mo ZL, 1997, J NEUROPHYSIOL, V78, P3019 Muller M, 2005, NEUROREPORT, V16, P1183 Nikitina E, 2007, J PHYSIOL-LONDON, V580, P523, DOI 10.1113/jphysiol.2006.126128 OGATA N, 1991, J NEUROSCI METH, V39, P175, DOI 10.1016/0165-0270(91)90083-C Pettingill LN, 2007, IEEE T BIO-MED ENG, V54, P1138, DOI 10.1109/TBME.2007.895375 Platzer J, 2000, CELL, V102, P89, DOI 10.1016/S0092-8674(00)00013-1 Reid MA, 2004, J NEUROSCI, V24, P733, DOI 10.1523/JNEUROSCI.3923-03.2004 ROSENBLUTH J, 1962, J CELL BIOL, V12, P329, DOI 10.1083/jcb.12.2.329 Rusznak Z, 2009, PFLUG ARCH EUR J PHY, V457, P1303, DOI 10.1007/s00424-008-0586-2 Ryugo DK, 1992, MAMMALIAN AUDITORY P, P23 SALZER JL, 1980, J CELL BIOL, V84, P739, DOI 10.1083/jcb.84.3.739 Singh A, 2008, J BIOL CHEM, V283, P20733, DOI 10.1074/jbc.M802254200 Stocker M, 2004, NAT REV NEUROSCI, V5, P758, DOI 10.1038/nrn1516 STORM JF, 1987, J PHYSIOL-LONDON, V385, P733 Stotz SC, 2000, J BIOL CHEM, V275, P24575, DOI 10.1074/jbc.M000399200 Sun XL, 2003, J NEUROSCI, V23, P3639 Sundgren-Andersson AK, 1998, BRAIN RES, V783, P194, DOI 10.1016/S0006-8993(97)01342-5 Taberner AM, 2005, J NEUROPHYSIOL, V93, P557, DOI 10.1152/jn.00574.2004 Toesca A, 1996, NEUROSCI LETT, V221, P21, DOI 10.1016/S0304-3940(96)13273-0 Westenbroek RE, 2004, J NEUROSCI RES, V75, P371, DOI 10.1002/jnr.10863 Whitlon DS, 2010, NEUROSCIENCE, V171, P23, DOI 10.1016/j.neuroscience.2010.08.069 YAMAGUCHI K, 1990, J PHYSIOL-LONDON, V420, P185 Zhang D, 2006, J BIOL CHEM, V281, P22332, DOI 10.1074/jbc.M511288200 NR 64 TC 12 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2011 VL 278 IS 1-2 SI SI BP 52 EP 68 DI 10.1016/j.heares.2011.01.016 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 815GY UT WOS:000294515300006 PM 21281707 ER PT J AU Wise, AK Tu, T Atkinson, PJ Flynn, BO Sgro, BE Hume, C O'Leary, SJ Shepherd, RK Richardson, RT AF Wise, Andrew K. Tu, Tian Atkinson, Patrick J. Flynn, Brianna O. Sgro, Beatrice E. Hume, Cliff O'Leary, Stephen J. Shepherd, Robert K. Richardson, Rachael T. TI The effect of deafness duration on neurotrophin gene therapy for spiral ganglion neuron protection SO HEARING RESEARCH LA English DT Article ID SENSORINEURAL HEARING-LOSS; DEAFENED GUINEA-PIGS; HAIR CELL LOSS; IN-VIVO; AUDITORY NEURONS; INNER-EAR; ELECTRICAL-STIMULATION; ADENOASSOCIATED VIRUS; BRAIN-STEM; SURVIVAL AB A cochlear implant can restore hearing function by electrically exciting spiral ganglion neurons (SGNs) in the deaf cochlea. However, following deafness SGNs undergo progressive degeneration ultimately leading to their death. One significant cause of SGN degeneration is the loss of neurotrophic support that is normally provided by cells within the organ of Corti (OC). The administration of exogenous neurotrophins (NTs) can protect SGNs from degeneration but the effects are short-lived once the source of NTs has been exhausted. NT gene therapy, whereby cells within the cochlea are transfected with genes enabling them to produce NTs, is one strategy for providing a cellular source of NTs that may provide long-term support for SGNs. As the SGNs normally innervate sensory cells within the OC, targeting residual OC cells for gene therapy in the deaf cochlea may provide a source of NTs for SGN protection and targeted regrowth of their peripheral fibers. However, the continual degeneration of the OC over extended periods of deafness may deplete the cellular targets for NT gene therapy and hence limit the effectiveness of this method in preventing SGN loss. This study examined the effects of deafness duration on the efficacy of NT gene therapy in preventing SGN loss in guinea pigs that were systemically deafened with aminoglycosides. Adenoviral vectors containing green fluorescent protein (GFP) with or without genes for Brain Derived Neurotrophic Factor (BDNF) and Neurotrophin-3 (NT3) were injected into the scala media (SM) compartment of cochleae that had been deafened for one, four or eight weeks prior to the viral injection. The results showed that viral transfection of cells within the SM was still possible even after severe degeneration of the OC. Supporting cells (pillar and Deiters' cells), cells within the stria vascularis, the spiral ligament, endosteal cells lining the scala compartments and interdental cells in the spiral limbus were transfected. However, the level of transfection was remarkably lower following longer durations of deafness. There was a significant increase in SGN survival in the entire basal turn for cochleae that received NT gene therapy compared to the untreated contralateral control cochleae for the one week deaf group. In the four week deaf group significant SGN survival was observed in the lower basal turn only. There was no increase in SGN survival for the eight week deaf group in any cochlear region. These findings indicated that the efficacy of NT gene therapy diminished with increasing durations of deafness leading to reduced benefits in terms of SGN protection. Clinically, there remains a window of opportunity in which NT gene therapy can provide ongoing trophic support for SGNs. (C) 2011 Elsevier B.V. All rights reserved. C1 [Wise, Andrew K.; Tu, Tian; Atkinson, Patrick J.; Flynn, Brianna O.; Sgro, Beatrice E.; O'Leary, Stephen J.; Shepherd, Robert K.; Richardson, Rachael T.] Bion Ear Inst, Melbourne, Vic 3002, Australia. [Wise, Andrew K.; Tu, Tian; Atkinson, Patrick J.; O'Leary, Stephen J.; Shepherd, Robert K.; Richardson, Rachael T.] Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3010, Australia. [Hume, Cliff] Univ Washington, Dept Otolaryngol Head & Neck Surg, Seattle, WA 98195 USA. RP Wise, AK (reprint author), Bion Ear Inst, 384-388 Albert St, Melbourne, Vic 3002, Australia. EM awise@bionicear.org RI Shepherd, Robert/I-6276-2012; Wise, Andrew/B-5943-2014 OI Wise, Andrew/0000-0001-9715-8784 FU Royal National Institute for Deaf People; Garnett Passe and Rodney Williams Memorial Foundation; NIDCD [HHS-N-263-2007-00053-c, NIDCD DC-006437, NIDCD P30 DC-0466]; NICHHD [P30 HD-02774]; University of Melbourne Department of Otolaryngology; Hearing Regeneration Initiative and Veterans' Hospital Administration; State Government of Victoria FX The authors would like to acknowledge the funding support from the Royal National Institute for Deaf People, the Garnett Passe and Rodney Williams Memorial Foundation, NIDCD HHS-N-263-2007-00053-c, NIDCD DC-006437, NIDCD P30 DC-04661, NICHHD P30 HD-02774, the University of Melbourne Department of Otolaryngology and the Hearing Regeneration Initiative and Veterans' Hospital Administration. The authors would like to acknowledge the support from the State Government of Victoria's Operational Infrastructure Program. CR Agterberg MJH, 2008, HEARING RES, V244, P25, DOI 10.1016/j.heares.2008.07.004 Agterberg MJH, 2009, JARO-J ASSOC RES OTO, V10, P355, DOI 10.1007/s10162-009-0170-2 Altschuler RA, 1999, ANN NY ACAD SCI, V884, P305, DOI 10.1111/j.1749-6632.1999.tb08650.x Chikar JA, 2008, HEARING RES, V245, P24, DOI 10.1016/j.heares.2008.08.005 Coyne CB, 2005, ADV DRUG DELIVER REV, V57, P869, DOI 10.1016/j.addr.2005.01.007 ERNFORS P, 1992, EUR J NEUROSCI, V4, P1140, DOI 10.1111/j.1460-9568.1992.tb00141.x ERNFORS R, 1996, NAT MED, V2, P463 Fritzsch B, 1997, TRENDS NEUROSCI, V20, P159, DOI 10.1016/S0166-2236(96)01007-7 Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542 Gillespie LN, 2004, NEUROREPORT, V15, P1121, DOI 10.1097/01.wnr.0000125777.04774.c2 Glueckert R, 2008, J COMP NEUROL, V507, P1602, DOI 10.1002/cne.21619 Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3 Lalwani AK, 2002, LARYNGOSCOPE, V112, P1325, DOI 10.1097/00005537-200208000-00001 Lalwani AK, 1998, GENE THER, V5, P277, DOI 10.1038/sj.gt.3300573 McGuinness SL, 2005, OTOL NEUROTOL, V26, P1064, DOI 10.1097/01.mao.0000185063.20081.50 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 Mittereder N, 1996, J VIROL, V70, P7498 NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411 Nakaizumi T, 2004, AUDIOL NEURO-OTOL, V9, P135, DOI 10.1159/000077264 Pettingill LN, 2007, IEEE T BIO-MED ENG, V54, P1138, DOI 10.1109/TBME.2007.895375 Sellick P, 2008, J NEUROSCI METH, V167, P237, DOI 10.1016/j.jneurneth.2007.08.026 Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564 Shepherd RK, 2008, HEARING RES, V242, P100, DOI 10.1016/j.heares.2007.12.005 SHEPHERD RK, 1985, HEARING RES, V18, P105, DOI 10.1016/0378-5955(85)90001-2 Shibata SB, 2010, EXP NEUROL, V223, P464, DOI 10.1016/j.expneurol.2010.01.011 Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011 Staecker H, 1998, OTOLARYNG HEAD NECK, V119, P7, DOI 10.1016/S0194-5998(98)70194-9 Stankovic K, 2004, J NEUROSCI, V24, P8651, DOI 10.1523/JNEUROSCI.0733-04.2004 Waehler R, 2007, NAT REV GENET, V8, P573, DOI 10.1038/nrg2141 WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7 Wise AK, 2010, MOL THER, V18, P1111, DOI 10.1038/mt.2010.28 Wise AK, 2005, J COMP NEUROL, V487, P147, DOI 10.1002/cne.20563 Yagi M, 2000, JARO, V1, P315, DOI 10.1007/s101620010011 YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C NR 34 TC 14 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2011 VL 278 IS 1-2 SI SI BP 69 EP 76 DI 10.1016/j.heares.2011.04.010 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 815GY UT WOS:000294515300007 PM 21557994 ER PT J AU Atkinson, PJ Cho, CH Hansen, MR Green, SH AF Atkinson, Patrick J. Cho, Chang-Hyun Hansen, Marlan R. Green, Steven H. TI Activity of all JNK isoforms contributes to neurite growth in spiral ganglion neurons SO HEARING RESEARCH LA English DT Article ID N-TERMINAL KINASE; LEUCINE-ZIPPER KINASE; C-JUN; SYMPATHETIC NEURONS; SIGNAL-TRANSDUCTION; MAP KINASES; CELL-DEATH; IN-VIVO; BRAIN-DEVELOPMENT; CORTICAL-NEURONS AB Jun N-terminal kinase (JNK) is a multifunctional protein kinase crucial for neuronal apoptosis as well as neurite growth. We have previously shown that JNK activity is correlated with spiral ganglion neuron (SGN) apoptosis following hair cell loss in rats (Alam et al., 2007) implying that JNK inhibition may have therapeutic potential to protect SGNs in deaf individuals. Here we investigated the role of JNK in neurite outgrowth from cultured neonatal rat and mouse SGNs. We show that JNK is required for initial growth of neurites and for continued extension of already established neurites. The effect of JNK inhibition on neurite growth is rapid and is also rapidly reversible after washout of the inhibitor. Using phosphoJNK immunoreactivity as an indicator, we show that JNK is activated in growth cones within 30 min after transfer to medium lacking neurotrophic stimuli (5 K medium) but activation in the nucleus and soma requires hours. By transfecting epitope-tagged JNK1, JNK2, or JNK3 isoforms into SCNs, we found that all are present in the nucleus and cytoplasm and that there is no preferential redistribution to the nucleus after transfer to 5 K medium. Cotransfection of dominant-negative (dn) JNK1 and JNK2 into SGNs reduced neurite growth, although transfection of dnJNK1 or dnJNK2 alone had no significant effect. SGNs cultured from JNK3(-/-) mice showed reduced neurite growth that was further reduced by transfection of dnJNK1 and dnJNK2. This indicates that all three JNK isoforms promote SGN neurite growth although there may be functional redundancy between JNK1 and JNK2. (C) 2011 Elsevier B.V. All rights reserved. C1 [Atkinson, Patrick J.; Green, Steven H.] Univ Iowa, Dept Biol, Iowa City, IA 52242 USA. [Hansen, Marlan R.; Green, Steven H.] Univ Iowa, Dept Otolaryngol, Iowa City, IA 52242 USA. [Cho, Chang-Hyun] Gachon Univ Med & Sci, Grad Sch, Dept Otolayngol Head & Neck Surg, Inchon, South Korea. RP Green, SH (reprint author), Univ Iowa, Dept Biol, 143 Biol Bldg, Iowa City, IA 52242 USA. EM steven-green@uiowa.edu FU NIH [R01 DC02961, KO8 DC006211-01A1, P30 DC010362] FX Support for this study was from NIH grants R01 DC02961 (S.H.G.) and KO8 DC006211-01A1 (M.R.H.) and P30 DC010362. We thank Catherine Kane and Simrit Sodhi for technical assistance. CR Alam SA, 2007, J COMP NEUROL, V503, P832, DOI 10.1002/cne.21430 Amagasaki K, 2006, J BIOL CHEM, V281, P22173, DOI 10.1074/jbc.M513307200 Barnat M, 2010, J NEUROSCI, V30, P7804, DOI 10.1523/JNEUROSCI.0372-10.2010 Benediktsson AM, 2005, J NEUROSCI METH, V141, P41, DOI 10.1016/j.jneumeth.2004.05.013 Bennett BL, 2001, P NATL ACAD SCI USA, V98, P13681, DOI 10.1073/pnas.251194298 Bjorkblom B, 2005, J NEUROSCI, V25, P6350, DOI 10.1523/JNEUROSCI.1517-05.2005 Bjorkblom B, 2008, J BIOL CHEM, V283, P19704, DOI 10.1074/jbc.M707744200 Bodmer D, 2002, LARYNGOSCOPE, V112, P2057, DOI 10.1097/00005537-200211000-00028 Bogoyevitch MA, 2006, BIOESSAYS, V28, P923, DOI 10.1002/bies.20458 Bogoyevitch MA, 2004, BBA-PROTEINS PROTEOM, V1697, P89, DOI 10.1016/j.bbapap.2003.11.016 Bok J, 2007, MOL CELL NEUROSCI, V36, P13, DOI 10.1016/j.mcn.2007.05.008 Bruckner SR, 2001, J NEUROCHEM, V78, P298, DOI 10.1046/j.1471-4159.2001.00400.x Carboni S, 2004, J PHARMACOL EXP THER, V310, P25, DOI 10.1124/jpet.103.064246 Chang LF, 2003, DEV CELL, V4, P521, DOI 10.1016/S1534-5807(03)00094-7 Chen XQ, 2008, J NEUROSCI, V28, P672, DOI 10.1523/JNEUROSCI.2132-07.2008 Chow CW, 2000, MOL CELL BIOL, V20, P5227, DOI 10.1128/MCB.20.14.5227-5234.2000 Coffey ET, 2000, J NEUROSCI, V20, P7602 Dajas-Ballador F, 2008, CURR BIOL, V18, P221, DOI 10.1016/j.cub.2008.01.025 Davis RJ, 2000, CELL, V103, P239, DOI 10.1016/S0092-8674(00)00116-1 Eilers A, 1998, J NEUROSCI, V18, P1713 Eminel S, 2008, J NEUROCHEM, V104, P957, DOI 10.1111/j.1471-4159.2007.05101.x Green SH, 2008, AUDITORY TRAUMA PROT Ham J, 2000, BIOCHEM PHARMACOL, V60, P1015, DOI 10.1016/S0006-2952(00)00372-5 HAM J, 1995, NEURON, V14, P927, DOI 10.1016/0896-6273(95)90331-3 Han SY, 2002, J BIOL CHEM, V277, P47167, DOI 10.1074/jbc.M204270200 Hirai S, 2006, J NEUROSCI, V26, P11992, DOI 10.1523/JNEUROSCI.2272-06.2006 Huang C, 2004, J CELL SCI, V117, P4619, DOI 10.1242/jcs.01481 Huang C, 2004, CELL CYCLE, V3, P4 Ip YT, 1998, CURR OPIN CELL BIOL, V10, P205, DOI 10.1016/S0955-0674(98)80143-9 Keramaris E, 2005, J BIOL CHEM, V280, P1132, DOI 10.1074/jbc.M410127200 Kuan CY, 2003, P NATL ACAD SCI USA, V100, P15184, DOI 10.1073/pnas.2336254100 Kuan CY, 1999, NEURON, V22, P667, DOI 10.1016/S0896-6273(00)80727-8 Lindwall C, 2005, EXP NEUROL, V196, P184, DOI 10.1016/j.expneurol.2005.07.022 Lindwall C, 2005, NEUROREPORT, V16, P1655, DOI 10.1097/01.wnr.0000183324.75499.fc Morrison DK, 2003, ANNU REV CELL DEV BI, V19, P91, DOI 10.1146/annurev.cellbio.19.111401.091942 Namgung U, 2001, TOXICOL APPL PHARM, V174, P130, DOI 10.1006/taap.2001.9200 Oliva AA, 2006, J NEUROSCI, V26, P9462, DOI 10.1523/JNEUROSCI.2625-06.2006 Roehm Pamela C, 2005, Curr Opin Otolaryngol Head Neck Surg, V13, P294, DOI 10.1097/01.moo.0000180919.68812.b9 Smadja-Lamere N, 2008, J BIOL CHEM, V283, P34352, DOI 10.1074/jbc.M803364200 Tararuk T, 2006, J CELL BIOL, V173, P265, DOI 10.1083/jcb.200511055 Waetzig V, 2006, PROG NEUROBIOL, V80, P84, DOI 10.1016/j.pneurobio.2006.08.002 Wang LH, 2004, ANNU REV PHARMACOL, V44, P451, DOI 10.1146/annurev.pharmtox.44.101802.121840 Weston CR, 2002, CURR OPIN GENET DEV, V12, P14, DOI 10.1016/S0959-437X(01)00258-1 Widmann C, 1999, PHYSIOL REV, V79, P143 Yang DD, 1997, NATURE, V389, P865, DOI 10.1038/39899 Zha XM, 2001, HEARING RES, V156, P53, DOI 10.1016/S0378-5955(01)00267-2 NR 46 TC 7 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2011 VL 278 IS 1-2 SI SI BP 77 EP 85 DI 10.1016/j.heares.2011.04.011 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 815GY UT WOS:000294515300008 PM 21554942 ER PT J AU Fantetti, KN Zou, YM Fekete, DM AF Fantetti, Kristen N. Zou, Yimin Fekete, Donna M. TI Wnts and Wnt inhibitors do not influence axon outgrowth from chicken statoacoustic ganglion neurons SO HEARING RESEARCH LA English DT Article ID DEVELOPING INNER-EAR; GENE-EXPRESSION; COMMISSURAL AXONS; NERVE-FIBERS; BASAL LAMINA; GUIDANCE; INNERVATION; PATTERNS; COCHLEA; GROWTH AB The peripheral growth cones of statoacoustic ganglion (SAG) neurons are presumed to sense molecular cues to navigate to their sensory targets during development. Based on previously reported expression data for Frizzled receptors, Wnt ligands, and Wnt inhibitors, we hypothesized that some members of the Wnt morphogen family may function as repulsive cues for SAG neurites. The responses of SAG neurons to mammalian Writs -1, -4, -5a, -6, and -7b, and the Wnt inhibitors sFRP -1, -2, and -3, were tested in vitro by growing SAG explants from embryonic day 4 (E4) chicken embryos for two days in 3D collagen gels. Average neurite length and density were quantified to determine effects on neurite outgrowth. SAG neurites were strongly repelled by human Sema3E, demonstrating SAG neurons are responsive under these assay conditions. In contrast, SAG neurons showed no changes in neurite outgrowth when cultured in the presence of Wnts and Wnt inhibitors. As an alternative approach, Wnt4 and Wnt5a were also tested in vivo by injecting retroviruses encoding these genes into the chicken otocyst on E3. On E6, no differences were evident in the peripheral projections of SAG axons terminating in infected sensory organs as compared to uninfected organs on the contralateral side of the same embryo. For all Wnt sources, bioactivity was confirmed on E6 chick spinal cord explants by observing enhanced axon outgrowth, as reported previously in the mouse. These results suggest that the tested Wnts do not play a role in guiding peripheral axons in the chicken inner ear. (C) 2011 Elsevier B.V. All rights reserved. C1 [Fantetti, Kristen N.; Fekete, Donna M.] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. [Zou, Yimin] Univ Calif San Diego, Div Biol Sci, Sect Neurobiol, La Jolla, CA 92093 USA. RP Fekete, DM (reprint author), Purdue Univ, Dept Biol Sci, 915 W State St, W Lafayette, IN 47907 USA. EM kfantett@purdue.edu; yzou@ucsd.edu; dfekete@purdue.edu FU National Institutes of Health [RO1DC002756]; Purdue Research Foundation; NICHD FX This work was funded by National Institutes of Health Grant RO1DC002756 and the Purdue Research Foundation. We thank Kirsten Luethy for assistance with histology and data analysis, Cliff Tabin for providing the RCAS viruses, and Sherry Harbin, Joanne Kuske, and Seth Kreger for advice and technical assistance.The 39.4D5 Islet-1 antibody developed by T.M. Jessel and S. Brenner-Morton, the AMV-3C2 developed by D. Boettinger and the 9E10 myc antibody developed by J.M. Bishop were obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biology, Iowa City, IA 52242. CR Battisti AC, 2008, DEV DYNAM, V237, P476, DOI 10.1002/dvdy.21429 BIANCHI LM, 1993, DEV BIOL, V159, P353, DOI 10.1006/dbio.1993.1247 Bianchi LM, 2002, EUR J NEUROSCI, V16, P1499, DOI 10.1046/j.1460-9568.2002.02248.x Bovolenta P, 2006, DEVELOPMENT, V133, P4399, DOI 10.1242/dev.02592 Charron F, 2005, DEVELOPMENT, V132, P2251, DOI 10.1242/dev.01830 Dalby B, 2004, METHODS, V33, P95, DOI 10.1016/j.ymeth.2003.11.023 DAMICOMARTEL A, 1982, AM J ANAT, V163, P351, DOI 10.1002/aja.1001630407 Evans AR, 2007, DEV NEUROBIOL, V67, P1721, DOI 10.1002/dneu.20540 Fekete DM, 2007, INT J DEV BIOL, V51, P549, DOI 10.1387/ijdb.072341df Fritzsch B, 2005, HEARING RES, V206, P52, DOI 10.1016/j.heares.2004.11.025 Fritzsch B, 2003, BRAIN RES BULL, V60, P423, DOI 10.1016/S0361-9230(03)00048-0 GAVRIELI Y, 1992, J CELL BIOL, V119, P493, DOI 10.1083/jcb.119.3.493 Gu CH, 2003, DEV CELL, V5, P45, DOI 10.1016/S1534-5807(03)00169-2 Hall AC, 2000, CELL, V100, P525, DOI 10.1016/S0092-8674(00)80689-3 HAMBURGER V, 1951, J MORPHOL, V88, P49, DOI 10.1002/jmor.1050880104 Hartmann C, 2000, DEVELOPMENT, V127, P3141 HEMOND SG, 1991, DEV BRAIN RES, V61, P87, DOI 10.1016/0165-3806(91)90117-2 HEMOND SG, 1991, ANAT EMBRYOL, V184, P1, DOI 10.1007/BF01744256 Homburger SA, 1996, DEV DYNAM, V206, P112, DOI 10.1002/(SICI)1097-0177(199605)206:1<112::AID-AJA10>3.0.CO;2-7 KENNEDY TE, 1994, CELL, V78, P425, DOI 10.1016/0092-8674(94)90421-9 Li HW, 2004, J COMP NEUROL, V477, P1, DOI 10.1002/cne.20190 Liu YB, 2005, NAT NEUROSCI, V8, P1151, DOI 10.1038/nn1520 Lyuksyutova AI, 2003, SCIENCE, V302, P1984, DOI 10.1126/science.1089610 Morgan BA, 1996, METHOD CELL BIOL, V51, P185, DOI 10.1016/S0091-679X(08)60629-9 Neves J, 2007, J COMP NEUROL, V503, P487, DOI 10.1002/cne.21299 Rodriguez J, 2005, NAT NEUROSCI, V8, P1301, DOI 10.1038/nn1547 Sanchez-Calderon H, 2004, GENE EXPR PATTERNS, V4, P659, DOI 10.1016/j.modgep.2004.04.008 Sienknecht UJ, 2008, J COMP NEUROL, V510, P378, DOI 10.1002/cne.21791 Sienknecht UJ, 2009, J COMP NEUROL, V517, P751, DOI 10.1002/cne.22169 Tessarollo L, 2004, J NEUROSCI, V24, P2575, DOI 10.1523/JNEUROSCI.5514-03.2004 WHITEHEAD MC, 1985, NEUROSCIENCE, V14, P255, DOI 10.1016/0306-4522(85)90177-0 Whitilon DS, 2009, NEUROSCIENCE, V161, P227, DOI 10.1016/j.neuroscience.2009.03.044 Wolf AM, 2008, J NEUROSCI, V28, P3456, DOI 10.1523/JNEUROSCI.0029-08.2008 Zou Yimin, 2000, Cell, V102, P363, DOI 10.1016/S0092-8674(00)00041-6 Zou YM, 2007, CURR OPIN NEUROBIOL, V17, P22, DOI 10.1016/j.conb.2007.01.006 NR 35 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2011 VL 278 IS 1-2 SI SI BP 86 EP 95 DI 10.1016/j.heares.2011.04.005 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 815GY UT WOS:000294515300009 PM 21530628 ER PT J AU Clarke, JC Tuft, BW Clinger, JD Levine, R Figueroa, LS Guymon, CA Hansen, MR AF Clarke, Joseph C. Tuft, Bradley W. Clinger, John D. Levine, Rachel Figueroa, Lucas Sievens Guymon, C. Allan Hansen, Marlan R. TI Micropatterned methacrylate polymers direct spiral ganglion neurite and Schwann cell growth SO HEARING RESEARCH LA English DT Article ID IN-VITRO; NEUROTROPHIC FACTORS; COATED ELECTRODES; COCHLEAR NEURONS; OUTGROWTH; ALIGNMENT; SURFACES; DELIVERY; NERVE; DEPOLARIZATION AB Significant advances in the functional outcomes achieved with cochlear implantation will likely require tissue-engineering approaches to improve the neural prosthesis interface. One strategy is to direct spiral ganglion neuron (SGN) axon growth in a highly organized fashion to approximate or contact stimulating electrodes. Here we assessed the ability of micropatterns induced by photopolymerization in methacrylate (MA) polymer systems to direct cultured neonatal rat SGN neurite growth and alignment of SG Schwann cells (SGSCs). SGN survival and neurite length were comparable among various polymer compositions. Remarkably, there was no significant difference in SGN survival or neurite length between laminin and non-laminin coated MA polymer substrates, suggesting high biocompatibility with SG tissue. Micropatterning with photopolymerization generated microchannels with a ridge periodicity of 50 mu m and channel depths of 0.6-1.0 mu m. SGN neurites grew within the grooves of the microchannels. These topographies strongly induced alignment of dissociated SGN neurites and SGSCs to parallel the pattern. By contrast, fibroblasts failed to align with the micropattern suggesting cell specific responses to topographical cues. SGN neurites extending from explants turned to parallel the pattern as they encountered the microchannels. The extent of turning was significantly correlated with angle at which the neurite initially encountered the pattern. These results indicate that SGN neurites respond to microtopographical features and that these features can be used to direct neurite growth in a highly organized fashion. (C) 2011 Elsevier B.V. All rights reserved. C1 [Clarke, Joseph C.; Clinger, John D.; Hansen, Marlan R.] Univ Iowa Hosp & Clin, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA. [Tuft, Bradley W.; Levine, Rachel; Figueroa, Lucas Sievens; Guymon, C. Allan] Univ Iowa, Dept Chem & Biochem Engn, Iowa City, IA 52242 USA. RP Hansen, MR (reprint author), Univ Iowa Hosp & Clin, Dept Otolaryngol Head & Neck Surg, 2PFP,200 Hawkins Dr, Iowa City, IA 52242 USA. EM marlan-hansen@uiowa.edu FU National Center for Research Resources (NCRR) [UL1RR024979]; National Institutes of Health (NIH); American Hearing Research Foundation (AHRF) FX This work was supported by Grant Number UL1RR024979 from the National Center for Research Resources (NCRR), a part of the National Institutes of Health (NIH) and a grant from the American Hearing Research Foundation (AHRF). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the CTSA, NIH, or AHRF. CR Alam SA, 2007, J COMP NEUROL, V503, P832, DOI 10.1002/cne.21430 Altschuler RA, 1999, ANN NY ACAD SCI, V884, P305, DOI 10.1111/j.1749-6632.1999.tb08650.x Apple DJ, 1996, SURV OPHTHALMOL, V40, P279, DOI 10.1016/S0039-6257(96)82003-0 Bostrom M., 2009, AUDIOL NEURO-OTOL, V15, P175 Branch DW, 2001, BIOMATERIALS, V22, P1035, DOI 10.1016/S0142-9612(00)00343-4 Branch DW, 1998, MED BIOL ENG COMPUT, V36, P135, DOI 10.1007/BF02522871 Brors D, 2003, J COMP NEUROL, V462, P90, DOI 10.1002/cne.10707 Brors D, 2002, HEARING RES, V167, P110, DOI 10.1016/S0378-5955(02)00355-6 Bryant SJ, 2004, ANN BIOMED ENG, V32, P407, DOI 10.1023/B:ABME.0000017535.00602.ca Bryant SJ, 2007, BIOMATERIALS, V28, P2978, DOI 10.1016/j.biomaterials.2006.11.033 CLARK P, 1991, J CELL SCI, V99, P73 Curtis A, 1997, BIOMATERIALS, V18, P1573, DOI 10.1016/S0142-9612(97)00144-0 Dalby MJ, 2003, EXP CELL RES, V284, P274, DOI 10.1016/S0014-4827(02)00053-8 Danneman PJ, 1997, LAB ANIM SCI, V47, P386 Dazert S, 1998, J CELL PHYSIOL, V177, P123, DOI 10.1002/(SICI)1097-4652(199810)177:1<123::AID-JCP13>3.0.CO;2-E DUNN GA, 1986, J CELL SCI, V83, P313 Evans AJ, 2009, J BIOMED MATER RES A, V91A, P241, DOI 10.1002/jbm.a.32228 EVANS AR, 2007, DEV NEUROBIOLOGY Foley JD, 2005, BIOMATERIALS, V26, P3639, DOI 10.1016/j.biomaterials.2004.09.048 Fozdar DY, 2010, BIOFABRICATION, V2, DOI 10.1088/1758-5082/2/3/035005 Gustavsson P, 2007, BIOMATERIALS, V28, P1141, DOI 10.1016/j.biomaterials.2006.10.028 Hansen MR, 2001, HEARING RES, V161, P87, DOI 10.1016/S0378-5955(01)00360-4 Hansen MR, 2001, J NEUROSCI, V21, P2256 Hegarty JL, 1997, J NEUROSCI, V17, P1959 Hsu SH, 2005, BIOTECHNOL BIOENG, V92, P579, DOI 10.1002/bit.20634 Hsu SH, 2007, BIOMED MICRODEVICES, V9, P665, DOI 10.1007/s10544-007-9068-0 Johansson F, 2006, BIOMATERIALS, V27, P1251, DOI 10.1016/j.niomaterials.2005.07.047 Kapoor Y, 2009, BIOMATERIALS, V30, P867, DOI 10.1016/j.biomaterials.2008.10.032 Kenny SM, 2003, J MATER SCI-MATER M, V14, P923, DOI 10.1023/A:1026394530192 Kim SH, 2007, J BIOMAT SCI-POLYM E, V18, P609, DOI 10.1163/156856207780852514 LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4 Lee TY, 2005, MACROMOLECULES, V38, P7529, DOI 10.1021/ma050852p Miller C, 2001, TISSUE ENG, V7, P705, DOI 10.1089/107632701753337663 Miller JM, 2007, J NEUROSCI RES, V85, P1959, DOI 10.1002/jnr.21320 Oliva AA, 2003, NEUROCHEM RES, V28, P1639 Paasche G, 2009, OTOL NEUROTOL, V30, P592, DOI 10.1097/MAO.0b013e3181ab8fba Pameijer Cornelis H, 2010, Dent Clin North Am, V54, P325, DOI 10.1016/j.cden.2009.12.004 Pettingill LN, 2007, IEEE T BIO-MED ENG, V54, P1138, DOI 10.1109/TBME.2007.895375 PHIFER CB, 1986, PHYSIOL BEHAV, V38, P887, DOI 10.1016/0031-9384(86)90058-2 Quick DJ, 2003, PHARM RES, V20, P1730, DOI 10.1023/B:PHAM.0000003368.66471.6a RATNER BD, 2004, INTRO MAT MED, P10 Rebscher SJ, 2008, J REHABIL RES DEV, V45, P731, DOI 10.1682/JRRD.2007.08.0119 Richardson RT, 2009, BIOMATERIALS, V30, P2614, DOI 10.1016/j.biomaterials.2009.01.015 RIDLEY N, 1951, T OPHTH SOC UK OXF O, P617 Roehm PC, 2008, MOL CELL NEUROSCI, V37, P376, DOI 10.1016/j.mcn.2007.10.014 ROEHM RC, 2005, CURRENT OPINION OTOL, V13, P294 Rubinstein Jay T, 2004, Curr Opin Otolaryngol Head Neck Surg, V12, P444, DOI 10.1097/01.moo.0000134452.24819.c0 Schmalenberg KE, 2005, BIOMATERIALS, V26, P1423, DOI 10.1016/j.biomaterials.2004.04.046 Shannon Robert V, 2004, Acta Otolaryngol Suppl, P50 Song M, 2007, ANN BIOMED ENG, V35, P1812, DOI 10.1007/s10439-007-9348-0 SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683 Tykocinski M, 2005, OTOL NEUROTOL, V26, P948, DOI 10.1097/01.mao.0000185056.99888.f3 Uludag H, 2000, ADV DRUG DELIVER REV, V42, P29, DOI 10.1016/S0169-409X(00)00053-3 Whitilon DS, 2009, NEUROSCIENCE, V161, P227, DOI 10.1016/j.neuroscience.2009.03.044 Wise AK, 2010, MOL THER, V18, P1111, DOI 10.1038/mt.2010.28 Wise AK, 2005, J COMP NEUROL, V487, P147, DOI 10.1002/cne.20563 Wittig JH, 2005, J NEUROSCI METH, V144, P79, DOI 10.1016/j.jneumeth.2004.10.010 NR 57 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2011 VL 278 IS 1-2 SI SI BP 96 EP 105 DI 10.1016/j.heares.2011.05.004 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 815GY UT WOS:000294515300010 PM 21616131 ER PT J AU Lei, DB Gao, X Perez, P Ohlemiller, KK Chen, CC Campbell, KP Hood, AY Bao, JX AF Lei, Debin Gao, Xia Perez, Philip Ohlemiller, Kevin K. Chen, Chien-Chang Campbell, Kevin P. Hood, Aizhen Yang Bao, Jianxin TI Anti-epileptic drugs delay age-related loss of spiral ganglion neurons via T-type calcium channel SO HEARING RESEARCH LA English DT Article ID HEARING-LOSS; CA2+ CHANNELS; C57BL/6 MICE; BRAIN; LIFE; HOMEOSTASIS; EXPRESSION; BLOCKERS; DISEASE; COCHLEA AB Loss of spiral ganglion neurons is a major cause of age-related hearing loss (presbycusis). Despite being the third most prevalent condition afflicting elderly persons, there are no known medications to prevent presbycusis. Because calcium signaling has long been implicated in age-related neuronal death, we investigated T-type calcium channels. This family is comprised of three members (Ca(v)3.1, Ca(v)3.2, and Ca(v)3.3), based on their respective main pore-forming alpha subunits: alpha 1G, alpha 1H, and all. In the present study, we report a significant delay of age-related loss of cochlear function and preservation of spiral ganglion neurons in alpha 1H null and heterozygous mice, clearly demonstrating an important role for Ca(v)3.2 in age-related neuronal loss. Furthermore, we show that anticonvulsant drugs from a family of T-type calcium channel blockers can significantly preserve spiral ganglion neurons during aging. To our knowledge, this is the first report of drugs capable of diminishing age-related loss of spiral ganglion neurons. (C) 2011 Elsevier B.V. All rights reserved. C1 [Lei, Debin; Perez, Philip; Ohlemiller, Kevin K.; Hood, Aizhen Yang; Bao, Jianxin] Washington Univ, Dept Otolaryngol, Sch Med, St Louis, MO 63110 USA. [Lei, Debin; Perez, Philip; Hood, Aizhen Yang; Bao, Jianxin] Washington Univ, Ctr Aging, Sch Med, St Louis, MO 63110 USA. [Bao, Jianxin] Washington Univ, Div Biol & Biomed Sci, Sch Med, St Louis, MO 63110 USA. [Bao, Jianxin] Washington Univ, Neurosci Program, Sch Med, St Louis, MO 63110 USA. [Gao, Xia] Nanjing Univ, Dept Otolaryngol, Affiliated Drum Tower Hosp, Sch Med, Nanjing 210008, Peoples R China. [Chen, Chien-Chang; Campbell, Kevin P.] Univ Iowa, Howard Hughes Med Inst, Iowa City, IA USA. [Campbell, Kevin P.] Univ Iowa, Dept Mol Physiol & Biophys, Iowa City, IA USA. [Campbell, Kevin P.] Univ Iowa, Dept Neurol, Iowa City, IA USA. [Campbell, Kevin P.] Univ Iowa, Dept Internal Med, Iowa City, IA USA. RP Bao, JX (reprint author), Washington Univ, Dept Otolaryngol, Sch Med, 4560 Clayton Ave, St Louis, MO 63110 USA. EM jbao@wustl.edu RI Chen, Chien-Chang/D-2023-2015 FU National Organization for Hearing Research Foundation; NIH NIA [R01AG024250]; NIH NIDCD [R21DC010489, P30DC004665]; NIH NINDS [P30NS057105] FX We thank R. Chole, K. Evason, and K. Kornfeld for helpful discussions. We are also grateful to B. Bohne, R. Davis, D. Dickman, and D. Whitlon for providing comments on the manuscript. This work was supported by grants from the National Organization for Hearing Research Foundation, NIH NIA (R01AG024250), and NIH NIDCD (R21DC010489) to J.B., and core grants from NIH NIDCD (P30DC004665) and NIH NINDS (P30NS057105). CR Bao JX, 2004, NAT NEUROSCI, V7, P1250, DOI 10.1038/nn1342 Bao JX, 2010, HEARING RES, V264, P93, DOI 10.1016/j.heares.2009.10.009 Bao JX, 2005, J NEUROSCI, V25, P3041, DOI 10.1523/JNEUROSCI.5277-04.2005 Barton ME, 2001, EPILEPSY RES, V47, P217, DOI 10.1016/S0920-1211(01)00302-3 Buchholz JN, 2007, AGING CELL, V6, P285, DOI 10.1111/j.1474-9726.2007.00298.x Chen CC, 2003, SCIENCE, V302, P1416, DOI 10.1126/science.1089268 EHRET G, 1979, J COMP NEUROL, V183, P73, DOI 10.1002/cne.901830107 Errington AC, 2005, CURR TOP MED CHEM, V5, P15, DOI 10.2174/1568026053386872 Evason K, 2005, SCIENCE, V307, P258, DOI 10.1126/science.1105299 Foster TC, 2007, AGING CELL, V6, P319, DOI 10.1111/j.1474-9726.2007.00283.x Fritzsch B, 2004, PROG BRAIN RES, V146, P265, DOI 10.1016/S0079-6123(03)46017-2 Gates GA, 2005, LANCET, V366, P1111, DOI 10.1016/S0140-6736(05)67423-5 GATES GA, 1993, ARCH OTOLARYNGOL, V119, P156 Ison JR, 2007, JARO-J ASSOC RES OTO, V8, P539, DOI 10.1007/s10162-007-0098-3 Kim J, 2011, J NEUROSCI, V31, P4063, DOI 10.1523/JNEUROSCI.4493-10.2011 Lacinova L., 2004, Current Drug Targets - CNS and Neurological Disorders, V3, P105, DOI 10.2174/1568007043482543 Lee SW, 2007, J PHYSIOL-LONDON, V583, P909, DOI 10.1113/jphysiol.2007.135582 Lopez I, 2003, CELL TISSUE RES, V313, P177, DOI 10.1007/s00441-003-0759-4 Mills JH, 1999, ANN NY ACAD SCI, V884, P381, DOI 10.1111/j.1749-6632.1999.tb08656.x Morrison JH, 1997, SCIENCE, V278, P412, DOI 10.1126/science.278.5337.412 Nie L, 2008, J NEUROPHYSIOL, V100, P2287, DOI 10.1152/jn.90707.2008 Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017 Ohlemiller Kevin K., 2008, V31, P145 Perez-Reyes E, 2003, PHYSIOL REV, V83, P117, DOI 10.1152/physrev.00018.2002 Perez-Reyes E, 1998, NATURE, V391, P896, DOI 10.1038/36110 Rattner A, 2006, NAT REV NEUROSCI, V7, P860, DOI 10.1038/nrn2007 Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849 Schacht J, 2005, AUDIOL NEURO-OTOL, V10, P243, DOI 10.1159/000086524 Shen HY, 2007, HEARING RES, V226, P52, DOI 10.1016/j.heares.2006.12.011 Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 Talley EM, 1999, J NEUROSCI, V19, P1895 Thibault O, 2007, AGING CELL, V6, P307, DOI 10.1111/j.1474-9726.2007.00295.x Thrasivoulou C, 2006, AGING CELL, V5, P247, DOI 10.1111/j.1474-9726.2006.00214.x Toescu EC, 2004, TRENDS NEUROSCI, V27, P614, DOI 10.1016/j.tins.2004.07.010 Wildburger NC, 2009, MOL NEURODEGENER, V4, DOI 10.1186/1750-1326-4-44 Yunker AMR, 2003, J BIOENERG BIOMEMBR, V35, P533, DOI 10.1023/B:JOBB.0000008024.77488.48 Zettel ML, 2003, HEARING RES, V183, P57, DOI 10.1016/S0378-5955(03)00216-8 Zettel ML, 1997, J COMP NEUROL, V386, P92, DOI 10.1002/(SICI)1096-9861(19970915)386:1<92::AID-CNE9>3.0.CO;2-8 Zhang YF, 1996, EPILEPSY RES, V23, P15, DOI 10.1016/0920-1211(95)00079-8 NR 39 TC 8 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2011 VL 278 IS 1-2 SI SI BP 106 EP 112 DI 10.1016/j.heares.2011.05.010 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 815GY UT WOS:000294515300011 PM 21640179 ER PT J AU Shepherd, R Verhoeven, K Xu, J Risi, F Fallon, J Wise, A AF Shepherd, Robert Verhoeven, Kristien Xu, Jin Risi, Frank Fallon, James Wise, Andrew TI An improved cochlear implant electrode array for use in experimental studies SO HEARING RESEARCH LA English DT Article ID SENSORINEURAL HEARING-LOSS; SCALA TYMPANI ELECTRODE; SPIRAL GANGLION NEURONS; PRIMARY AUDITORY-CORTEX; ELECTRICAL-STIMULATION; NEONATAL DEAFNESS; NERVE; CATS; PLASTICITY; DESIGN AB Experimental studies play an important role in establishing the safety and efficacy of cochlear implants and they continue to provide insight into a new generation of electrode arrays and stimulation strategies. One drawback has been the limited depth of insertion of an electrode array in experimental animals. We compared the insertion depth and trauma associated with the insertion of Cochlear Ltd's Hybrid-L (HL) array with a standard 8 ring array in cat cochleae. Both arrays were inserted into cadaver cochleae and an X-ray recorded their anatomical location. The implanted cochlea was serially sectioned and photographed at 300 mu m intervals for evidence of electrode insertion trauma. Subsequently two cats were chronically implanted with HL arrays and electrically-evoked potentials recorded over a three month period. Mean insertion depth for the HL arrays was 334.8 degrees (SD = 21 degrees; n = 4) versus 175.5 degrees (SD = 6 degrees; n = 2) for the standard array. This relates to similar to 10.5 mm and 6 mm respectively. A similar insertion depth was measured in a chronically implanted animal with an HL array. Histology from each cadaver cochleae showed that the electrode array was always located in the scala tympani; there was no evidence of electrode insertion trauma to the basilar membrane, the osseous spiral lamina or the spiral ligament. Finally, evoked potential data from the chronically implanted animals exhibited significantly lower thresholds compared with animals implanted with a standard 8 ring array, with electrical thresholds remaining stable over a three-month observation period. Cochlear Ltd's HL electrode array can be safely inserted similar to 50% of the length of the cat scala tympani, placing the tip of the array close to the 4 kHz place. This insertion depth is considerably greater than is routinely achieved using a standard 8-ring electrode array (similar to 12 kHz place). The HL array evokes low thresholds that remain stable over three months of implantation. This electrode array has potential application in a broad area of cochlear implant related research. (C) 2011 Elsevier B.V. All rights reserved. C1 [Shepherd, Robert; Xu, Jin; Fallon, James; Wise, Andrew] Bion Ear Inst, Melbourne, Vic, Australia. [Shepherd, Robert; Xu, Jin; Fallon, James; Wise, Andrew] Univ Melbourne, Parkville, Vic 3052, Australia. [Verhoeven, Kristien] Cochlear Technol Ctr Europe Belgium, Mechelen, Belgium. [Risi, Frank] Cochlear Ltd, Sydney, NSW, Australia. RP Shepherd, R (reprint author), 384-388 Albert St, Melbourne, Vic 3002, Australia. EM rshepherd@bionicear.org RI Fallon, James/B-5211-2012; Shepherd, Robert/I-6276-2012; Wise, Andrew/B-5943-2014; Fallon, James/B-6383-2014 OI Wise, Andrew/0000-0001-9715-8784; FU National Institutes of Health NIDCD [HHS-N-263-2007-00053-C]; Cochlear Ltd; NH&MRC of the Australian Government; Victorian State Government FX We are grateful for funding support from the National Institutes of Health NIDCD (HHS-N-263-2007-00053-C), Cochlear Ltd, the NH&MRC of the Australian Government and the Victorian State Government through their Operational Infrastructure Support scheme. We thank Ms. Helen Feng and Godofredo Timbol for their contributions to this study and acknowledge the HEARing Cooperative Research Centre for access to the Microfocus X-ray Imaging facility. CR Briggs Robert J S, 2006, Audiol Neurootol, V11 Suppl 1, P42, DOI 10.1159/000095613 BROWN M, 1992, HEARING RES, V59, P224, DOI 10.1016/0378-5955(92)90119-8 CLARK GM, 1983, ANN NY ACAD SCI, V405, P191, DOI 10.1111/j.1749-6632.1983.tb31632.x Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004 Fallon JB, 2009, HEARING RES, V257, P93, DOI 10.1016/j.heares.2009.08.006 Fallon JB, 2009, J COMP NEUROL, V512, P101, DOI 10.1002/cne.21886 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Hartley DEH, 2010, J NEUROSCI METH, V190, P214, DOI 10.1016/j.jneumeth.2010.05.014 Hartmann R, 1997, HEARING RES, V112, P115, DOI 10.1016/S0378-5955(97)00114-7 HARTSHORN DO, 1991, OTOLARYNG HEAD NECK, V104, P311 HATSUSHIKA S, 1990, ANN OTO RHINOL LARYN, V99, P871 HOCHMAIRDESOYER IJ, 1980, IEEE T BIO-MED ENG, V27, P44, DOI 10.1109/TBME.1980.326691 Hsu WC, 2001, J COMP NEUROL, V438, P226, DOI 10.1002/cne.1311 IGARASHI M, 1968, J SPEECH HEAR RES, V11, P229 Klinke R, 1999, SCIENCE, V285, P1729, DOI 10.1126/science.285.5434.1729 Kral A, 2002, CEREB CORTEX, V12, P797, DOI 10.1093/cercor/12.8.797 LEAKE PA, 1991, HEARING RES, V54, P251, DOI 10.1016/0378-5955(91)90120-X Leake PA, 2000, HEARING RES, V147, P221, DOI 10.1016/S0378-5955(00)00133-7 LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677 Miller CA, 1995, HEARING RES, V92, P85, DOI 10.1016/0378-5955(95)00204-9 Rebscher SJ, 2008, J REHABIL RES DEV, V45, P731, DOI 10.1682/JRRD.2007.08.0119 Rebscher SJ, 2007, J NEUROSCI METH, V166, P1, DOI 10.1016/j.jneumeth.2007.05.013 Ryugo DK, 2010, J COMP NEUROL, V518, P1046, DOI 10.1002/cne.22262 Ryugo DK, 2005, SCIENCE, V310, P1490, DOI 10.1126/science.1119419 SALT AN, 2010, COCHLEAR FLUIDS RES Saoji AA, 2009, EAR HEARING, V30, P559, DOI 10.1097/AUD.0b013e3181ab2b6f Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564 Shepherd Robert K, 2006, Adv Otorhinolaryngol, V64, P186 Shepherd R K, 1983, Acta Otolaryngol Suppl, V399, P19 Shepherd RK, 2004, EUR J NEUROSCI, V20, P3131, DOI 10.1111/j.1460-9568.2004.03809.x Tykocinski M, 2000, AM J OTOL, V21, P205, DOI 10.1016/S0196-0709(00)80010-1 van den Honert C, 2007, J ACOUST SOC AM, V121, P3703, DOI 10.1121/1.2722047 Xu J, 2000, AM J OTOL, V21, P49, DOI 10.1016/S0196-0709(00)80112-X Xu Jin, 2009, Cochlear Implants Int, V10 Suppl 1, P115, DOI 10.1002/cii.404 Xu J, 2001, OTOL NEUROTOL, V22, P862, DOI 10.1097/00129492-200111000-00026 Xu Jin, 2005, Cochlear Implants Int, V6 Suppl 1, P8, DOI 10.1002/cii.271 Xu J, 1997, HEARING RES, V105, P1, DOI 10.1016/S0378-5955(96)00193-1 Zierhofer CM, 2008, IEEE T BIO-MED ENG, V55, P1907, DOI 10.1109/TBME.2008.919839 NR 38 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2011 VL 277 IS 1-2 BP 20 EP 27 DI 10.1016/j.heares.2011.03.017 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 805KZ UT WOS:000293726600003 PM 21540098 ER PT J AU Sheffield, AM Gubbels, SP Hildebrand, MS Newton, SS Chiorini, JA Di Pasquale, G Smith, RJH AF Sheffield, Abraham M. Gubbels, Samuel P. Hildebrand, Michael S. Newton, Stephen S. Chiorini, John A. Di Pasquale, Giovanni Smith, Richard J. H. TI Viral vector tropism for supporting cells in the developing murine cochlea SO HEARING RESEARCH LA English DT Article ID MEDIATED GENE-TRANSFER; MAMMALIAN INNER-EAR; ADENOASSOCIATED VIRUS TYPE-2; GUINEA-PIG COCHLEA; HEARING-LOSS; IN-VIVO; HAIR-CELLS; CONNEXIN 26; SENSORINEURAL DEAFNESS; TRANSGENE EXPRESSION AB Gene-based therapeutics are being developed as novel treatments for genetic hearing loss. One roadblock to effective gene therapy is the identification of vectors which will safely deliver therapeutics to targeted cells. The cellular heterogeneity that exists within the cochlea makes viral tropism a vital consideration for effective inner ear gene therapy. There are compelling reasons to identify a viral vector with tropism for organ of Corti supporting cells. Supporting cells are the primary expression site of connexin 26 gap junction proteins that are mutated in the most common form of congenital genetic deafness (DFNB1). Supporting cells are also primary targets for inducing hair cell regeneration. Since many genetic forms of deafness are congenital it is necessary to administer gene transfer-based therapeutics prior to the onset of significant hearing loss. We have used transuterine microinjection of the fetal murine otocyst to investigate viral tropism in the developing inner ear. For the first time we have characterized viral tropism for supporting cells following in utero delivery to their progenitors. We report the inner ear tropism and potential ototoxicity of three previously untested vectors: early-generation adenovirus (Ad5.CMV.GFP), advanced-generation adenovirus (Adf.11D) and bovine adeno-associated virus (BAAV.CMV.GFP). Adenovirus showed robust tropism for organ of Corti supporting cells throughout the cochlea but induced increased ABR thresholds indicating ototoxicity. BAAV also showed tropism for organ of Corti supporting cells, with preferential transduction toward the cochlear apex. Additionally, BAAV readily transduced spiral ganglion neurons. Importantly, the BAAV-injected ears exhibited normal hearing at 5 weeks of age when compared to non-injected ears. Our results support the use of BAAV for safe and efficient targeting of supporting cell progenitors in the developing murine inner ear. (C) 2011 Elsevier B.V. All rights reserved. C1 [Sheffield, Abraham M.; Hildebrand, Michael S.; Newton, Stephen S.; Smith, Richard J. H.] Univ Iowa, Dept Otolaryngol, Iowa City, IA 52242 USA. [Gubbels, Samuel P.] Univ Wisconsin, Dept Surg, Div Otolaryngol, Madison, WI USA. [Chiorini, John A.; Di Pasquale, Giovanni] Natl Inst Dent & Craniofacial Res, Mol Physiol & Therapeut Branch, NIH, Bethesda, MD USA. RP Smith, RJH (reprint author), Univ Iowa, Dept Otolaryngol, Iowa City, IA 52242 USA. EM richard-smith@uiowa.edu FU NIH - NIDCD [DC003544]; Royal National Institute for Deaf People (RJHS); NIH-NCRR-CTSA [1UL1RR025011] FX We would like to acknowledge Dr. Douglas Brough (GenVec Inc., Gaithersburg, MD, USA) for providing the Adf.11D vector as well as valuable discussion; The University of Iowa Gene Transfer Vector Core for preparation of Ad5.CMV.GFP; Dr. Marlan Hansen (U. of Iowa, Iowa City, IA, USA) for assistance with images and cochlear dissections; Penny Harding (U. of Iowa, Iowa City, IA, USA) for cryosectioning cochleae. No researchers involved in this study report a conflict of interest. This research was supported in part by grants from the NIH - NIDCD (DC003544) and The Royal National Institute for Deaf People (RJHS). SPG is supported by NIH-NCRR-CTSA 1UL1RR025011 (PI-Marc K. Drezner, MD). CR Ahmad S, 2007, P NATL ACAD SCI USA, V104, P1337, DOI 10.1073/pnas.0606855104 BALLANA E, 2008, NEUROSCI LETT Bedrosian JC, 2006, MOL THER, V14, P328, DOI 10.1016/j.ymthe.2006.04.003 Brigande John V., 2009, V493, P125, DOI 10.1007/978-1-59745-523-7_8 Cohen-Salmon M, 2002, CURR BIOL, V12, P1106, DOI 10.1016/S0960-9822(02)00904-1 Dazert S, 2001, HEARING RES, V151, P30, DOI 10.1016/S0378-5955(00)00189-1 del Castillo I, 2002, NEW ENGL J MED, V346, P243, DOI 10.1056/NEJMoa012052 Derby ML, 1999, HEARING RES, V134, P1, DOI 10.1016/S0378-5955(99)00045-3 Di Pasquale G, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009336 Di Pasquale G, 2005, MOL THER, V11, P849, DOI 10.1016/j.ymthe.2005.02.004 Di Pasquale G, 2003, NAT MED, V9, P1306, DOI 10.1038/nm929 Gubbels SP, 2008, NATURE, V455, P537, DOI 10.1038/nature07265 Heathcote K, 2000, J MED GENET, V37, P50, DOI 10.1136/jmg.37.1.50 Hildebrand MS, 2008, MOL THER, V16, P224, DOI 10.1038/sj.mt.6300351 Hilgert N, 2009, CURR MOL MED, V9, P546 Holt JR, 1999, J NEUROPHYSIOL, V81, P1881 Holt JR, 2002, AUDIOL NEURO-OTOL, V7, P157, DOI 10.1159/000058302 Husseman J, 2009, ADV OTO-RHINO-LARYNG, V66, P37, DOI 10.1159/000218206 Ishimoto S, 2002, HEARING RES, V173, P187, DOI 10.1016/S0378-5955(02)00579-8 Ishimoto S, 2003, AUDIOL NEURO-OTOL, V8, P70, DOI 10.1159/000069000 Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193 Jero J, 2001, HUM GENE THER, V12, P539, DOI 10.1089/104303401300042465 JUHN SK, 1981, ANN OTO RHINOL LARYN, V90, P135 Kaludov N, 2001, J VIROL, V75, P6884, DOI 10.1128/JVI.75.15.6884-6893.2001 Kaludov N, 2002, HUM GENE THER, V13, P1235, DOI 10.1089/104303402320139014 Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0 Kochhar A, 2007, GENET MED, V9, P393, DOI 10.1097/GIM.0b013e3180980bd0 Kudo T, 2003, HUM MOL GENET, V12, P995, DOI 10.1093/hmg/ddg116 Lalwani AK, 1996, GENE THER, V3, P588 Lalwani AK, 2002, AUDIOL NEURO-OTOL, V7, P146, DOI 10.1159/000058300 Liu HS, 1999, BIOCHEM BIOPH RES CO, V260, P712, DOI 10.1006/bbrc.1999.0954 Luebke AE, 2001, GENE THER, V8, P789, DOI 10.1038/sj.gt.3301445 Luebke AE, 2009, ADV OTO-RHINO-LARYNG, V66, P87, DOI 10.1159/000218209 Luebke AE, 2001, HUM GENE THER, V12, P773, DOI 10.1089/104303401750148702 Maestrini E, 1999, HUM MOL GENET, V8, P1237, DOI 10.1093/hmg/8.7.1237 MAGUCHI S, 1991, Auris Nasus Larynx, V18, P1 Martinez AD, 2009, ANTIOXID REDOX SIGN, V11, P309, DOI 10.1089/ars.2008.2138 Nickel R, 2008, CURR OPIN OTOLARYNGO, V16, P452, DOI 10.1097/MOO.0b013e32830e20b0 Ortolano S, 2008, P NATL ACAD SCI USA, V105, P18776, DOI 10.1073/pnas.0800831105 PARKER M, 2010, J VIS EXP Petit C, 2001, ANNU REV GENET, V35, P589, DOI 10.1146/annurev.genet.35.102401.091224 Praetorius M, 2003, ORL J OTO-RHINO-LARY, V65, P211, DOI 10.1159/000073117 Praetorius M, 2002, AUDIOL NEURO-OTOL, V7, P324, DOI 10.1159/000066157 RUBEN RJ, 1967, ARCHIV OTOLARYNGOL, V86, P32 SANTI PA, 1994, J HISTOCHEM CYTOCHEM, V42, P705 Sato Takashi, 2009, Acta Otolaryngol Suppl, P12 Schmidt M, 2006, J VIROL, V80, P5516, DOI 10.1128/JVI.02393-05 SHER AE, 1971, ACTA OTO-LARYNGOL, P1 Shibata SB, 2009, GENE THER, V16, P990, DOI 10.1038/gt.2009.57 Shou JY, 2003, MOL CELL NEUROSCI, V23, P169, DOI 10.1016/S1044-7431(03)00066-6 Staecker H, 2007, OTOL NEUROTOL, V28, P223, DOI 10.1097/MAO.0b013e31802b3225 Staecker H, 2004, OTOLARYNG CLIN N AM, V37, P1091, DOI 10.1016/j.otc.2004.05.001 Summerford C, 1998, J VIROL, V72, P1438 Teubner B, 2003, HUM MOL GENET, V12, P13, DOI 10.1093/hmg/ddg001 VANCAMP G, 2010, HEREDITARY HEARING van Steensel MAM, 2002, J INVEST DERMATOL, V118, P724, DOI 10.1046/j.1523-1747.2002.01735.x Vasquez EC, 1998, EXP NEUROL, V154, P353, DOI 10.1006/exnr.1998.6917 Whitlon DS, 2001, BRAIN RES PROTOC, V6, P159, DOI 10.1016/S1385-299X(00)00048-9 Yamasoba T, 1999, HUM GENE THER, V10, P769, DOI 10.1089/10430349950018526 Yoshikawa M, 2009, P NATL ACAD SCI USA, V106, P9483, DOI 10.1073/pnas.0903279106 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 61 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2011 VL 277 IS 1-2 BP 28 EP 36 DI 10.1016/j.heares.2011.03.016 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 805KZ UT WOS:000293726600004 PM 21530627 ER PT J AU O'Connor, KN Johnson, JS Niwa, M Noriega, NC Marshall, EA Sutter, ML AF O'Connor, Kevin N. Johnson, Jeffrey S. Niwa, Mamiko Noriega, Nigel C. Marshall, Elizabeth A. Sutter, Mitchell L. TI Amplitude modulation detection as a function of modulation frequency and stimulus duration: Comparisons between macaques and humans SO HEARING RESEARCH LA English DT Article ID AUDITORY INTENSITY DISCRIMINATION; MONKEYS MACACA-MULATTA; TEMPORAL INTEGRATION; MELOPSITTACUS-UNDULATUS; SIGNAL DURATION; NOISE; RESTRICTION; SENSITIVITY; THRESHOLDS; GOLDFISH AB Previous observations show that humans outperform non-human primates on some temporally-based auditory discrimination tasks, suggesting there are species differences in the proficiency of auditory temporal processing among primates. To further resolve these differences we compared the abilities of rhesus macaques and humans to detect sine-amplitude modulation (AM) of a broad-band noise carrier as a function of both AM frequency (2.5 Hz-2 kHz) and signal duration (50-800 ms), under similar testing conditions. Using a go/no-go AM detection task, we found that macaques were less sensitive than humans at the lower frequencies and shorter durations tested but were as, or slightly more, sensitive at higher frequencies and longer durations. Humans had broader AM tuning functions, with lower frequency regions of peak sensitivity (10-60 Hz) than macaques (30-120 Hz). These results support the notion that there are species differences in temporal processing among primates, and underscore the importance of stimulus duration when making cross-species comparisons for temporally-based tasks. (C) 2011 Elsevier B.V. All rights reserved. C1 [O'Connor, Kevin N.; Johnson, Jeffrey S.; Niwa, Mamiko; Noriega, Nigel C.; Marshall, Elizabeth A.; Sutter, Mitchell L.] UC Davis, Ctr Neurosci, Davis, CA 95616 USA. [O'Connor, Kevin N.; Noriega, Nigel C.; Sutter, Mitchell L.] UC Davis, Dept Neurobiol Physiol & Behav, Davis, CA 95616 USA. RP O'Connor, KN (reprint author), UC Davis, Ctr Neurosci, 1544 Newton Ct, Davis, CA 95616 USA. EM knoconnor@gmail.com FU NIH: NIDCD [DCO2514, T32 DC008072] FX We thank Zachary Cline-Egri for assistance in testing macaque subjects, and James Engle and Xochi Navarro for performing the ABR tests. This work was supported by the NIH: NIDCD Grant DCO2514 and T32 DC008072. CR CHAPMAN CJ, 1974, J EXP BIOL, V61, P521 CLACK TD, 1966, J ACOUST SOC AM, V40, P1140, DOI 10.1121/1.1910199 CLOPTON BM, 1972, J EXP ANAL BEHAV, V17, P473, DOI 10.1901/jeab.1972.17-473 Dai C, 2010, HEAR RES Dau T, 1997, J ACOUST SOC AM, V102, P2906, DOI 10.1121/1.420345 Dau T, 1997, J ACOUST SOC AM, V102, P2892, DOI 10.1121/1.420344 Dent ML, 2002, J COMP PHYSIOL A, V187, P937, DOI 10.1007/s00359-001-0259-5 DOOLING RJ, 1985, J ACOUST SOC AM, V77, P1917, DOI 10.1121/1.391835 Dooling R. J., 2000, COMP HEARING BIRDS R, P308 DOOLING RJ, 1975, J ACOUST SOC AM, V58, P1308, DOI 10.1121/1.380813 EHRET G, 1975, J COMP PHYSIOL, V102, P321 Fay R. R., 1988, HEARING VERTEBRATES FAY RR, 1985, J ACOUST SOC AM, V78, P1296, DOI 10.1121/1.392899 FORREST TG, 1987, J ACOUST SOC AM, V82, P1933, DOI 10.1121/1.395689 Fowler CG, 2002, HEARING RES, V169, P24, DOI 10.1016/S0378-5955(02)00335-0 Green D. M., 1974, SIGNAL DETECTION THE Greenberg S, 2004, IEICE T INF SYST, VE87D, P1059 HACK MH, 1971, J COMP PHYSIOL PSYCH, V74, P315, DOI 10.1037/h0030356 HIENZ RD, 1980, J COMP PHYSIOL PSYCH, V94, P993, DOI 10.1037/h0077734 HOPP SL, 1992, J COMP PSYCHOL, V106, P128, DOI 10.1037/0735-7036.106.2.128 JACOBS DW, 1967, ANIM BEHAV, V15, P324, DOI 10.1016/0003-3472(67)90019-X KAY RH, 1972, J PHYSIOL-LONDON, V225, P657 Kelly JB, 2006, J COMP PSYCHOL, V120, P98, DOI 10.1037/0735-7036.120.2.98 KLUMP GM, 1991, HEARING RES, V52, P1, DOI 10.1016/0378-5955(91)90182-9 Lee J, 1997, J ACOUST SOC AM, V101, P3688, DOI 10.1121/1.418329 Luce D. R., 1959, INDIVIDUAL CHOICE BE MOODY DB, 1994, J ACOUST SOC AM, V95, P3499, DOI 10.1121/1.409967 O'Connor KN, 2000, J COMP PHYSIOL A, V186, P903, DOI 10.1007/s003590000145 O'Connor KN, 1999, J ACOUST SOC AM, V106, P954, DOI 10.1121/1.427108 ROSENZWEIG M, 1946, AM J PSYCHOL, V59, P127, DOI 10.2307/1417002 SALVI RJ, 1982, J ACOUST SOC AM, V71, P424, DOI 10.1121/1.387445 SHEFT S, 1990, J ACOUST SOC AM, V88, P796, DOI 10.1121/1.399729 SINNOTT JM, 1993, J ACOUST SOC AM, V93, P1541, DOI 10.1121/1.406812 Sinnott JM, 1997, J ACOUST SOC AM, V102, P588, DOI 10.1121/1.419732 SINNOTT JM, 1987, J ACOUST SOC AM, V82, P465, DOI 10.1121/1.395447 SINNOTT JM, 1985, J ACOUST SOC AM, V78, P1977, DOI 10.1121/1.392654 STEENEKEN HJM, 1980, J ACOUST SOC AM, V67, P318, DOI 10.1121/1.384464 TERMAN M, 1970, J EXP ANAL BEHAV, V13, P145, DOI 10.1901/jeab.1970.13-145 Torre P, 2004, NEUROBIOL AGING, V25, P945, DOI 10.1016/j.neurobiolaging.2003.09.006 VIEMEISTER NF, 1979, J ACOUST SOC AM, V66, P1364, DOI 10.1121/1.383531 Yin PB, 2011, J NEUROPHYSIOL, V105, P582, DOI 10.1152/jn.00621.2010 NR 41 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2011 VL 277 IS 1-2 BP 37 EP 43 DI 10.1016/j.heares.2011.03.014 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 805KZ UT WOS:000293726600005 PM 21457768 ER PT J AU Osen, KK Furness, DN Hackney, CM AF Osen, Kirsten K. Furness, David N. Hackney, Carole M. TI The border between the central and the peripheral nervous system in the cat cochlear nerve: A light and scanning electron microscopical study SO HEARING RESEARCH LA English DT Article ID ADULT SPINAL-CORD; TRANSITIONAL ZONE; FUNCTIONAL REGENERATION; FIBER REGENERATION; AUDITORY-NERVE; HEARING-LOSS; DORSAL-ROOT; HEAD-INJURY; RAT; NUCLEUS AB The transition between the central (CNS) and peripheral nervous system (PNS) in cranial and spinal nerve roots, referred to here as the CNS PNS border, is of relevance to nerve root disorders and factors that affect peripheral-central regeneration. Here, this border is described in the cat cochlear nerve using light microscopical sections, and scanning electron microscopy of the CNS PNS interfaces exposed by fracture of the nerve either prior to or following critical point drying. The CNS PNS border represents an abrupt change in type of myelin, supporting elements, and vascularization. Because central myelin is formed by oligodendrocytes and peripheral myelin by Schwann cells, the myelinated fibers are as a rule equipped with a node of Ranvier at the border passage. The border is shallower and smoother in cat cochlear nerve than expected from other nerves, and the borderline nodes are largely in register. The loose endoneurial connective tissue of the PNS compartment is closed at the border by a compact glial membrane, the mantle zone, of the CNS compartment. The mantle zone is penetrated by the nerve fibers, but is otherwise composed of astrocytes and their interwoven processes like the external limiting membrane of the brain surface with which it is continuous. The distal surface of the mantle zone is covered by a fenestrated basal lamina. Only occasional vessels traverse the border. From an anatomical point of view, the border might be expected to be a weak point along the cochlear nerve and thus vulnerable to trauma. In mature animals, the CNS-PNS border presents a barrier to regrowth of regenerating nerve fibers and to invasion of the CNS by Schwann cells. An understanding of this region in the cochlear nerve is therefore relevant to head injuries that lead to hearing loss, to surgery on acoustic Schwannomas, and to the possibility of cochlear nerve regeneration. (C) 2011 Elsevier B.V. All rights reserved. C1 [Furness, David N.] Keele Univ, Sch Life Sci, Inst Sci & Technol Med, Keele ST5 5BG, Staffs, England. [Osen, Kirsten K.] Univ Oslo, Inst Anat, Oslo, Norway. [Hackney, Carole M.] Univ Sheffield, Dept Biomed Sci, Sheffield S10 2TN, S Yorkshire, England. RP Furness, DN (reprint author), Keele Univ, Sch Life Sci, Inst Sci & Technol Med, Keele ST5 5BG, Staffs, England. EM coa14@keele.ac.uk FU Henry Smith Charity FX The experimental part of this study, including the scanning electron microscopy, was performed at the Institute of Medical Biology, University of Tromso, Norway, in the 1970s. We dedicate this article to the late Atle Ronning Arnesen, Ear Nose and Throat Department, Oslo City Hospital (now Oslo University Hospital), who participated in the experiments. We are indebted to Enrico Mugnaini, Department of Behavioral Sciences, University of Connecticut (now at Northwestern University Institute of Neuroscience), for his early advice, particularly with respect to the fixation procedure. DNF was supported by the Henry Smith Charity. CR Altschuler RA, 2008, HEARING RES, V242, P110, DOI 10.1016/j.heares.2008.06.004 ARNESEN AR, 1978, J COMP NEUROL, V178, P661, DOI 10.1002/cne.901780405 Bao JX, 2010, HEARING RES, V264, P93, DOI 10.1016/j.heares.2009.10.009 Berthold C H, 1977, Acta Physiol Scand Suppl, V446, P23 Berthold C H, 1977, Acta Physiol Scand Suppl, V446, P73 BRIGHTMA.MW, 1969, J CELL BIOL, V40, P648, DOI 10.1083/jcb.40.3.648 BRIGHTMA.MW, 1965, AM J ANAT, V117, P193, DOI 10.1002/aja.1001170204 Carlstedt T, 1997, J ANAT, V190, P51, DOI 10.1046/j.1469-7580.1997.19010051.x CARLSTEDT T, 1989, BRAIN RES BULL, V22, P93, DOI 10.1016/0361-9230(89)90133-0 Carlstedt T, 1977, Acta Physiol Scand Suppl, V446, P5 Chen Y, 2007, HEARING RES, V228, P3, DOI 10.1016/j.heares.2006.11.014 DALCANTO MC, 1984, AM J PATHOL, V116, P30 Duncan ID, 1997, J ANAT, V191, P318 Flood PR, 1975, SCANNING ELECTRON MI, P287 Fraher J, 2002, J ANAT, V200, P415, DOI 10.1046/j.1469-7580.2002.00037.x FRAHER JP, 1992, PROG NEUROBIOL, V38, P261, DOI 10.1016/0301-0082(92)90022-7 Fraher JP, 2000, J ANAT, V196, P137 Geuna Stefano, 2010, Italian Journal of Anatomy and Embryology, V115, P91 Guevara N, 2008, EUR ARCH OTO-RHINO-L, V265, P397, DOI 10.1007/s00405-007-0471-1 JACOBS JM, 1988, J ANAT, V157, P153 Kim PD, 2010, MICROSURG, V30, P392, DOI 10.1002/micr.20760 LIVESEY FJ, 1992, NEUROPATH APPL NEURO, V18, P376, DOI 10.1111/j.1365-2990.1992.tb00799.x MAKISHIMA K, 1975, ARCH OTOLARYNGOL, V101, P426 MATSUNAGA T, 1995, ACTA OTO-LARYNGOL, P149 Nash M, 2009, MOL NEUROBIOL, V40, P224, DOI 10.1007/s12035-009-8083-y O'Brien D, 2001, J NEUROCYTOL, V30, P11, DOI 10.1023/A:1011961106703 OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407 OSEN KK, 1991, J NEUROCYTOL, V20, P17, DOI 10.1007/BF01187131 OSEN KK, 1979, J ULTRA MOL STRUCT R, V69, P148 PEKER S, 2006, NEUROSURGERY, V60, pE582 PETTERSSON CAV, 1993, ACTA NEUROPATHOL, V86, P636 PODOSHIN L, 1975, ARCH OTOLARYNGOL, V101, P15 Ramer MS, 2000, NATURE, V403, P312, DOI 10.1038/35002084 Remahl IN, 1998, J NEUROCYTOL, V27, P85, DOI 10.1023/A:1006943221434 ROSS MD, 1971, AM J ANAT, V130, P73, DOI 10.1002/aja.1001300106 SCHUKNECHT HF, 1951, ANN OTO RHINOL LARYN, V60, P273 SEKIYA T, 1987, J NEUROSURG, V67, P244, DOI 10.3171/jns.1987.67.2.0244 Shibata SB, 2010, EXP NEUROL, V223, P464, DOI 10.1016/j.expneurol.2010.01.011 Skinner HA, 1931, ARCH NEURO PSYCHIATR, V25, P356 Słoniewski P, 1999, Folia Morphol (Warsz), V58, P37 SPOENDLI.H, 1969, ACTA OTO-LARYNGOL, V67, P239, DOI 10.3109/00016486909125448 SPOENDLI.H, 1972, ACTA OTO-LARYNGOL, V73, P235, DOI 10.3109/00016487209138937 Steinmetz MP, 2005, J NEUROSCI, V25, P8066, DOI 10.1523/JNEUROSCI.2111-05.2005 Tang XQ, 2007, J NEUROSCI, V27, P6068, DOI 10.1523/JNEUROSCI.1442-07.2007 Tarlov IM, 1937, ARCH NEURO PSYCHIATR, V37, P555 THOMSEN R, 1887, VIRCHOWS ARCH PATH A, V109, P459 Tomii M, 2003, J NEUROSURG, V99, P121, DOI 10.3171/jns.2003.99.1.0121 WAGNER HJ, 1982, ANAT EMBRYO BERL, V166, P427 NR 48 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2011 VL 277 IS 1-2 BP 44 EP 53 DI 10.1016/j.heares.2011.03.012 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 805KZ UT WOS:000293726600006 PM 21447373 ER PT J AU Mazurek, B Amarjargal, N Haupt, H Fuchs, J Olze, H Machulik, A Gross, J AF Mazurek, Birgit Amarjargal, Nyamaa Haupt, Heidemarie Fuchs, Julia Olze, Heidi Machulik, Astrid Gross, Johann TI Expression of genes implicated in oxidative stress in the cochlea of newborn rats SO HEARING RESEARCH LA English DT Article ID TIME RT-PCR; STRIA VASCULARIS; INDUCED APOPTOSIS; HEME OXYGENASE; GUINEA-PIG; CELL-DEATH; HYPOXIA; CULTURES; MONOXIDE; GLUCOSE AB Oxidative stress is an important mechanism inducing ototoxicity-, age- and noise-induced hearing loss. To better understand this phenomenon, we examined cochlear tissues for the expression of following genes involved directly or indirectly in the oxidative stress response: glyceraldehyde-3-phosphate dehydrogenase (Gapdh); solute carrier family-2 (facilitated glucose transporter), member-1 (Slc2a1); heme oxygenase-1 (Hmox1); heme oxygenase-2 (Hmox2); inducible nitric oxide synthase-2 (Nos2); transferrin (Tf); transferrin receptor (Tfrc); glutathione S-transferase A3 (Gsta3) and metallothionein-1a (Mt1a). Cochlear tissues were dissected from the p3-p5 Wistar rats, divided into the organ of Corti (OC), modiolus (MOD) and stria vascularis together with spiral ligament (SV + SL) and processed immediately or cultured under normoxic conditions or a short-term, mild hypoxia followed by re-oxygenation. After 24 h, explants were collected and total RNA isolated, transcribed and amplified in the real time RT-PCR. We found all genes listed above expressed in the freshly isolated cochlear tissues. In the OC and MOD, Slc2a1, Tf, and Mt1a were expressed on a lower level than in the SV + SL In the OC, Hmox1 was expressed on a lower level than in the MOD and SV + SL Hypoxic and normoxic cultures increased the transcript number of Gapdh, Slc2a1 and Hmox1 in all cochlear tissues. The expression of Nos2, Tf, Gsta3 and Mt1a increased in a tissue-specific manner. In the SV + SL Mt1a expression decreased after normoxic and hypoxic conditions. Taken together, using real time RT-PCR, our results imply that oxidative stress may be an important component of cochlear injury during the developing period. In spite of the immaturity of the tissue, a differential response of antioxidant enzymes/proteins with respect to the pathway, the expression levels and regions was observed. (C) 2011 Elsevier B.V. All rights reserved. C1 [Mazurek, Birgit; Amarjargal, Nyamaa; Haupt, Heidemarie; Fuchs, Julia; Machulik, Astrid; Gross, Johann] Charite, Dept Otorhinolaryngol CCM, Mol Biol Res Lab, D-10117 Berlin, Germany. [Olze, Heidi] Charite, Dept Otorhinolaryngol CVK, D-10117 Berlin, Germany. RP Mazurek, B (reprint author), Charite, Dept Otorhinolaryngol, Tinnitus Ctr, Charitepl 1, D-10117 Berlin, Germany. EM birgit.mazurek@charite.de CR Abraham NG, 2008, PHARMACOL REV, V60, P79, DOI 10.1124/pr.107.07104 Cai L, 2006, J AM COLL CARDIOL, V48, P1688, DOI 10.1016/j.jacc.2006.07.022 CARLILE S, 1992, AVIAT SPACE ENVIR MD, V63, P1093 Carlsson PI, 2005, HEARING RES, V202, P87, DOI 10.1016/j.heares.2004.09.005 Cheng AG, 1999, BRAIN RES, V850, P234, DOI 10.1016/S0006-8993(99)01983-6 Chen-Roetling J, 2011, NEUROPHARMACOLOGY, V60, P423, DOI 10.1016/j.neuropharm.2010.10.015 Chung HT, 2008, METHOD ENZYMOL, V441, P329, DOI 10.1016/S0076-6879(08)01218-4 Datta J, 2007, CANCER RES, V67, P2736, DOI 10.1158/0008-5472.CAN-06-4433 Dehne N, 2000, HEARING RES, V143, P162, DOI 10.1016/S0378-5955(00)00036-8 Elbirt KK, 1999, P ASSOC AM PHYSICIAN, V111, P438 Forstermann U, 2008, NAT CLIN PRACT CARD, V5, P338, DOI 10.1038/ncpcardio1211 Gao J, 1999, J NEURAL TRANSM, V106, P111, DOI 10.1007/s007020050143 Gates GA, 2005, LANCET, V366, P1111, DOI 10.1016/S0140-6736(05)67423-5 GRATTON MA, 1992, PIGM CELL RES, V5, P30, DOI 10.1111/j.1600-0749.1992.tb00779.x Gross J, 2009, Prague Med Rep, V110, P310 GROSS J, 2005, MOL GRUNDLAGEN HYPOX, P573, DOI 10.1007/3-540-26524-4_21 Gross J, 2007, BRAIN RES, V1162, P56, DOI 10.1016/j.brainres.2007.05.061 Gross J, 2008, GROWTH FACTORS, V26, P180, DOI 10.1080/08977190802194317 Hamamura K, 2008, CELL BIOL INT, V32, P1238, DOI 10.1016/j.cellbi.2008.07.007 Hanbauer I, 2000, ANN NY ACAD SCI, V899, P182 Haq F, 2003, MUTAT RES-FUND MOL M, V533, P211, DOI 10.1016/j.mrfmmm.2003.07.014 Hayes JD, 2005, ANNU REV PHARMACOL, V45, P51, DOI 10.1146/annurev.pharmtox.45.120403.095857 Hayes JD, 2000, PHARMACOLOGY, V61, P154, DOI 10.1159/000028396 Hoshijima H, 2002, HEARING RES, V171, P32, DOI 10.1016/S0378-5955(02)00328-3 ITO M, 1993, HEARING RES, V71, P230, DOI 10.1016/0378-5955(93)90039-4 Jang J, 2011, J MICROBIOL BIOTECHN, V21, P100, DOI 10.4014/jmb.1006.06006 Khan M, 2010, NEUROSCI LETT, V479, P249, DOI 10.1016/j.neulet.2010.05.072 Kim HJ, 2006, FREE RADICAL BIO MED, V40, P1810, DOI 10.1016/j.freeradbiomed.2006.01.018 Langabeer SE, 2002, LEUKEMIA, V16, P393, DOI 10.1038/sj/leu/2402392 Lopez IA, 2008, NEUROSCIENCE, V151, P854, DOI 10.1016/j.neuroscience.2007.10.053 Lowenheim H, 1999, HEARING RES, V128, P16, DOI 10.1016/S0378-5955(98)00181-6 Lu S, 2002, BBA-GENE STRUCT EXPR, V1574, P152, DOI 10.1016/S0167-4781(01)00359-1 Matsunami T, 2006, CELL COMMUN ADHES, V13, P93, DOI 10.1080/15419060600631805 Mazurek B, 2006, HNO, V54, P689, DOI 10.1007/s00106-005-1371-6 Noraberg J, 1999, BRAIN RES PROTOC, V3, P278, DOI 10.1016/S1385-299X(98)00050-6 Ohlemiller KK, 2004, J COMP NEUROL, V479, P103, DOI 10.1002/cne.20326 Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017 Pfaffl MW, 2002, NUCLEIC ACIDS RES, V30, DOI 10.1093/nar/30.9.e36 Pfaffl MW, 2001, NUCLEIC ACIDS RES, V29, DOI 10.1093/nar/29.9.e45 Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3 Ryter SW, 2006, PHYSIOL REV, V86, P583, DOI 10.1152/physrev.00011.2005 Shi XR, 2003, BRAIN RES, V967, P1, DOI 10.1016/S00066-8993(02)04090-8 Sorond FA, 2000, ANTIOXID REDOX SIGN, V2, P421, DOI 10.1089/15230860050192206 Watts RN, 2001, J BIOL CHEM, V276, P4724, DOI 10.1074/jbc.M006318200 West AK, 2008, NEUROTOXICOLOGY, V29, P489, DOI 10.1016/j.neuro.2007.12.006 Whitlon DS, 1999, HEARING RES, V137, P43, DOI 10.1016/S0378-5955(99)00136-7 Williams KJ, 2002, ONCOGENE, V21, P282, DOI 10.1038/sj.onc.1205047 Yoshihara T, 1999, ACTA OTO-LARYNGOL, V119, P336 NR 48 TC 8 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2011 VL 277 IS 1-2 BP 54 EP 60 DI 10.1016/j.heares.2011.03.011 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 805KZ UT WOS:000293726600007 PM 21447374 ER PT J AU Zeng, FG Tang, Q Dimitrijevic, A Starr, A Larky, J Blevins, NH AF Zeng, Fan-Gang Tang, Qing Dimitrijevic, Andrew Starr, Arnold Larky, Jannine Blevins, Nikolas H. TI Tinnitus suppression by low-rate electric stimulation and its electrophysiological mechanisms SO HEARING RESEARCH LA English DT Article ID AUDITORY-CORTEX; LATERAL INHIBITION; POTENTIALS; NEUROSCIENCE; PERCEPTION; GENERATION; MANAGEMENT; RESPONSES; HEARING AB Tinnitus is a phantom sensation of sound in the absence of external stimulation. However, external stimulation, particularly electric stimulation via a cochlear implant, has been shown to suppress tinnitus. Different from traditional methods of delivering speech sounds or high-rate (>2000 Hz) stimulation, the present study found a unique unilaterally-deafened cochlear implant subject whose tinnitus was completely suppressed by a low-rate (<100 Hz) stimulus, delivered at a level softer than tinnitus to the apical part of the cochlea. Taking advantage of this novel finding, the present study compared both event-related and spontaneous cortical activities in the same subject between the tinnitus-present and tinnitus-suppressed states. Compared with the results obtained in the tinnitus-present state, the low-rate stimulus reduced cortical N100 potentials while increasing the spontaneous alpha power in the auditory cortex. These results are consistent with previous neurophysiological studies employing subjects with and without tinnitus and shed light on both tinnitus mechanism and treatment. (C) 2011 Elsevier B.V. All rights reserved. C1 [Zeng, Fan-Gang; Tang, Qing] Univ Calif Irvine, Dept Otolaryngol Head & Neck Surg, Irvine, CA 92697 USA. [Dimitrijevic, Andrew; Starr, Arnold] Univ Calif Irvine, Dept Neurol, Irvine, CA 92697 USA. [Larky, Jannine; Blevins, Nikolas H.] Stanford Univ, Dept Otolaryngol Head & Neck Surg, Stanford, CA 94305 USA. RP Zeng, FG (reprint author), Univ Calif Irvine, Dept Otolaryngol Head & Neck Surg, 110 Med Sci E, Irvine, CA 92697 USA. EM fzeng@uci.edu RI Zeng, Fan-Gang/G-4875-2012 FU American Tinnitus Association; National Institutes of Health [RO1 DC008858, P30 DC008369] FX We thank the subject for his spirited and cooperative participation in the present study. This work was first reported at the 2007 Midwinter Meeting of The Association for Research in Otolaryngology in Denver, CO and supported in part by a grant from the American Tinnitus Association and National Institutes of Health (RO1 DC008858 and P30 DC008369). CR ALTHAUS J, 1886, LANCET, V128, P205, DOI 10.1016/S0140-6736(00)49789-8 ATTIAS J, 1993, HEARING RES, V71, P106, DOI 10.1016/0378-5955(93)90026-W Delorme A, 2004, J NEUROSCI METH, V134, P9, DOI 10.1016/j.jneumeth.2003.10.009 Diesch E, 2010, NEUROSCIENCE, V167, P540, DOI 10.1016/j.neuroscience.2010.02.003 Dimitrijevic A, 2008, CLIN NEUROPHYSIOL, V119, P2111, DOI 10.1016/j.clinph.2008.06.002 DON M, 1978, J ACOUST SOC AM, V63, P1084, DOI 10.1121/1.381816 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Gerken GM, 1996, HEARING RES, V97, P75 Gilley PM, 2008, BRAIN RES, V1239, P56, DOI 10.1016/j.brainres.2008.08.026 Hanslmayr S, 2007, CEREB CORTEX, V17, P1, DOI 10.1093/cercor/bhj129 Hazell J W, 1981, Br J Audiol, V15, P223, DOI 10.3109/03005368109081442 Henry JA, 2005, J SPEECH LANG HEAR R, V48, P1204, DOI 10.1044/1092-4388(2005/084) Ito J, 1997, OTOLARYNG HEAD NECK, V117, P701, DOI 10.1016/S0194-5998(97)70056-1 Jacobson Gary P, 2003, J Am Acad Audiol, V14, P393 Jastreboff MM, 2007, PROG BRAIN RES, V166, P435, DOI 10.1016/S0079-6123(07)66042-7 JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 Kadner A, 2002, NEUROREPORT, V13, P443, DOI 10.1097/00001756-200203250-00016 Kaltenbach JA, 2005, HEARING RES, V206, P200, DOI 10.1016/j.heares.2005.02.013 KIANG NYS, 1972, ANN OTO RHINOL LARYN, V81, P714 Kleinjung Tobias, 2009, Cases J, V2, P7462, DOI 10.1186/1757-1626-2-7462 Llinas RR, 1999, P NATL ACAD SCI USA, V96, P15222, DOI 10.1073/pnas.96.26.15222 Lockwood AH, 2002, NEW ENGL J MED, V347, P904, DOI 10.1056/NEJMra013395 Lu T, 2001, NAT NEUROSCI, V4, P1131, DOI 10.1038/nn737 Maris E, 2007, J NEUROSCI METH, V164, P177, DOI 10.1016/j.jneumeth.2007.03.024 Middlebrooks JC, 2008, J NEUROPHYSIOL, V100, P92, DOI 10.1152/jn.01114.2007 Miyamoto R, 1997, INT TINNITUS J, V3, P35 Osaki Y, 2005, NEUROREPORT, V16, P1625, DOI 10.1097/01.wnr.0000183899.85277.08 Pan T, 2009, AM J AUDIOL, V18, P144, DOI 10.1044/1059-0889(2009/07-0042) Rauschecker JP, 2010, NEURON, V66, P819, DOI 10.1016/j.neuron.2010.04.032 Roberts LE, 2010, J NEUROSCI, V30, P14972, DOI 10.1523/JNEUROSCI.4028-10.2010 ROBERTS LE, 2006, ACTA OTO-LARYNGOL, V556, P27, DOI DOI 10.1080/03655230600895358 Rubinstein JT, 2003, OTOL NEUROTOL, V24, P478, DOI 10.1097/00129492-200305000-00021 Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3 Snyder RL, 2000, J NEUROPHYSIOL, V84, P166 Tang Q, 2006, JARO-J ASSOC RES OTO, V7, P59, DOI 10.1007/s10162-005-0023-6 Van de Heyning Paul, 2008, Ann Otol Rhinol Laryngol, V117, P645 Vernon J A, 2000, J Am Acad Audiol, V11, P293 Weisz N, 2007, J NEUROSCI, V27, P1479, DOI 10.1523/JNEUROSCI.3711-06.2007 Weisz N., 2005, PLOS MED, V2, DOI DOI 10.1371/J0URNAL.PMED.0020153 NR 39 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2011 VL 277 IS 1-2 BP 61 EP 66 DI 10.1016/j.heares.2011.03.010 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 805KZ UT WOS:000293726600008 PM 21447376 ER PT J AU Olulade, O Hu, S Gonzalez-Castillo, J Tamer, GG Luh, WM Ulmer, JL Talavage, TM AF Olulade, O. Hu, S. Gonzalez-Castillo, J. Tamer, G. G., Jr. Luh, W. -M. Ulmer, J. L. Talavage, T. M. TI Assessment of temporal state-dependent interactions between auditory fMRI responses to desired and undesired acoustic sources SO HEARING RESEARCH LA English DT Article ID EVENT-RELATED FMRI; FUNCTIONAL MRI; HEMODYNAMIC-RESPONSES; BOLD RESPONSE; HUMAN BRAIN; VOLUME MEASUREMENT; CORTICAL AREAS; GRADIENT NOISE; SCANNER NOISE; CORTEX AB A confounding factor in auditory functional magnetic resonance imaging (fMRI) experiments is the presence of the acoustic noise inherently associated with the echo planar imaging acquisition technique. Previous studies have demonstrated that this noise can induce unwanted neuronal responses that can mask stimulus-induced responses. Similarly, activation accumulated over multiple stimuli has been demonstrated to elevate the baseline, thus reducing the dynamic range available for subsequent responses. To best evaluate responses to auditory stimuli, it is necessary to account for the presence of all recent acoustic stimulation, beginning with an understanding of the attenuating effects brought about by interaction between and among induced unwanted neuronal responses, and responses to desired auditory stimuli. This study focuses on the characterization of the duration of this temporal memory and qualitative assessment of the associated response attenuation. Two experimental parameters - inter-stimulus interval (ISI) and repetition time (TR) - were varied during an fMRI experiment in which participants were asked to passively attend to an auditory stimulus. Results present evidence of a state-dependent interaction between induced responses. As expected, attenuating effects of these interactions become less significant as TR and ISI increase and in contrast to previous work, persist up to 18s after a stimulus presentation. (C) 2011 Elsevier B.V. All rights reserved. C1 [Olulade, O.; Talavage, T. M.] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. [Olulade, O.] Georgetown Univ, Med Ctr, Ctr Study Learning, Washington, DC 20007 USA. [Hu, S.] USA, Res Lab, Adelphi, MD USA. [Gonzalez-Castillo, J.; Tamer, G. G., Jr.; Talavage, T. M.] Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA. [Luh, W. -M.] NIMH, Funct MRI Facil, NIH, Bethesda, MD 20892 USA. [Ulmer, J. L.] Med Coll Wisconsin, Dept Radiol, Milwaukee, WI 53226 USA. RP Olulade, O (reprint author), Purdue Univ, Sch Elect & Comp Engn, EE Bldg,465 Northwestern Ave, W Lafayette, IN 47907 USA. EM oao24@georgetown.edu; shuowen.hu@us.army.mil; javier.gonzalez-castillo@nih.gov; gtamer@purdue.edu; luhw@mail.nih.gov; julmer@mcw.edu; tmt@ecn.purdue.edu RI Gonzalez-Castillo, Javier/B-6903-2012 FU NIH [R01EB003990]; National Institute of Mental Health FX The authors wish to thank Dr. Robert W. Prost and Cathy S. Marszalkowski for their assistance in the execution of this project. This research was supported in part by NIH grant R01EB003990 and the Intramural Research Program of the National Institute of Mental Health. CR AIRAS M, 1999, J ACOUST SOC AM, V105, P1371, DOI 10.1121/1.426488 Arnott SR, 2004, NEUROIMAGE, V22, P401, DOI 10.1016/j.neuroimage.2004.01.014 Bandettini PA, 1998, MAGNET RESON MED, V39, P410, DOI 10.1002/mrm.1910390311 Belin P, 1999, NEUROIMAGE, V10, P417, DOI 10.1006/nimg.1999.0480 BIRN RM, 2001, P INT SOC MAGN RESON, V1219 Birn RM, 2001, NEUROIMAGE, V14, P817, DOI 10.1006/nimg.2001.0873 Burock MA, 1998, NEUROREPORT, V9, P3735, DOI 10.1097/00001756-199811160-00030 Buxton RB, 1998, MAGNET RESON MED, V39, P855, DOI 10.1002/mrm.1910390602 Chambers J, 2001, J ACOUST SOC AM, V110, P3041, DOI 10.1121/1.1408948 Cohen ER, 2002, J CEREBR BLOOD F MET, V22, P1042 Cox RW, 1996, COMPUT BIOMED RES, V29, P162, DOI 10.1006/cbmr.1996.0014 Dale AM, 1997, HUM BRAIN MAPP, V5, P329, DOI 10.1002/(SICI)1097-0193(1997)5:5<329::AID-HBM1>3.0.CO;2-5 Davis TL, 1998, P NATL ACAD SCI USA, V95, P1834, DOI 10.1073/pnas.95.4.1834 Edelstein WA, 2002, MAGN RESON IMAGING, V20, P155, DOI 10.1016/S0730-725X(02)00475-7 Edelstein WA, 2005, MAGNET RESON MED, V53, P1013, DOI 10.1002/mrm.20472 Eden GF, 1999, MAGNET RESON MED, V41, P13, DOI 10.1002/(SICI)1522-2594(199901)41:1<13::AID-MRM4>3.0.CO;2-T Edmister WB, 1999, HUM BRAIN MAPP, V7, P89, DOI 10.1002/(SICI)1097-0193(1999)7:2<89::AID-HBM2>3.0.CO;2-N Elliott MR, 1999, MAGNET RESON MED, V41, P1230, DOI 10.1002/(SICI)1522-2594(199906)41:6<1230::AID-MRM20>3.0.CO;2-1 GALABURDA A, 1980, J COMP NEUROL, V221, P169 Garcia D, 2010, NEUROIMAGE, V51, P808, DOI 10.1016/j.neuroimage.2010.02.079 Glover GH, 1999, NEUROIMAGE, V9, P416, DOI 10.1006/nimg.1998.0419 Hackett TA, 2001, J COMP NEUROL, V441, P197, DOI 10.1002/cne.1407 Hall DA, 2000, MAGNET RESON MED, V43, P601, DOI 10.1002/(SICI)1522-2594(200004)43:4<601::AID-MRM16>3.0.CO;2-R Hall DA, 2009, J ACOUST SOC AM, V125, P347, DOI 10.1121/1.3021437 Hall DA, 1999, HUM BRAIN MAPP, V7, P213, DOI 10.1002/(SICI)1097-0193(1999)7:3<213::AID-HBM5>3.0.CO;2-N Handwerker DA, 2004, NEUROIMAGE, V21, P1639, DOI 10.1016/j.neuroimage.2003.11.029 Harms MP, 2002, J NEUROPHYSIOL, V88, P1433, DOI 10.1152/jn.00156.2002 Heckman GM, 2007, NEUROIMAGE, V34, P651, DOI 10.1016/j.neuroimage.2006.09.038 Hu SW, 2009, J MAGN RESON IMAGING, V29, P1234, DOI 10.1002/jmri.21767 Hu SW, 2010, NEUROIMAGE, V49, P3027, DOI 10.1016/j.neuroimage.2009.11.051 Kearns M, 1999, NEURAL COMPUT, V11, P1427, DOI 10.1162/089976699300016304 KWONG KK, 1992, P NATL ACAD SCI USA, V89, P5675, DOI 10.1073/pnas.89.12.5675 LANGE N, 1997, J ROY STAT SOC C-APP, V46, P1, DOI 10.1111/1467-9876.00046 Langers DRM, 2005, MAGNET RESON MED, V53, P49, DOI 10.1002/mrm.20315 Le TH, 2001, MAGNET RESON MED, V45, P254, DOI 10.1002/1522-2594(200102)45:2<254::AID-MRM1034>3.0.CO;2-J Lindquist MA, 2009, NEUROIMAGE, V45, pS187, DOI 10.1016/j.neuroimage.2008.10.065 Mandeville JB, 1999, J CEREBR BLOOD F MET, V19, P679 Mechelli A, 2001, NEUROIMAGE, V14, P862, DOI 10.1006/nimg.2001.0876 Moelker A, 2003, HUM BRAIN MAPP, V20, P123, DOI 10.1002/hbm.10134 Novitski N, 2001, NEUROIMAGE, V14, P244, DOI 10.1006/nimg.2001.0797 Penhune VB, 1996, CEREB CORTEX, V6, P661, DOI 10.1093/cercor/6.5.661 Rademacher J, 2001, NEUROIMAGE, V13, P669, DOI 10.1006/nimg.2000.0714 Ravicz ME, 2001, J ACOUST SOC AM, V109, P216, DOI 10.1121/1.1326083 Ryan T. P., 1998, HDB STAT METHODS ENG Scarff CJ, 2004, HUM BRAIN MAPP, V22, P341, DOI 10.1002/hbm.20043 Schmithorst VJ, 2004, MAGNET RESON MED, V51, P399, DOI 10.1002/mrm.10706 Soltysik DA, 2004, NEUROIMAGE, V22, P1117, DOI 10.1016/j.neuroimage.2004.03.024 Talavage TM, 1999, HUM BRAIN MAPP, V7, P79, DOI 10.1002/(SICI)1097-0193(1999)7:2<79::AID-HBM1>3.0.CO;2-R Talavage TM, 2000, HEARING RES, V150, P225, DOI 10.1016/S0378-5955(00)00203-3 Talavage TM, 2004, HUM BRAIN MAPP, V22, P216, DOI 10.1002/hbm.20029 Talavage TM, 2004, J NEUROPHYSIOL, V91, P1282, DOI 10.1152/jn.01125.2002 TAYLOR LT, 2005, SCHIZOPHR RES, V73, P235 TSENG GHC, 2004, P 26 INT C IEEE EMBS Vazquez AL, 2006, NEUROIMAGE, V32, P1642, DOI 10.1016/j.neuroimage.2006.04.195 Vazquez AL, 1998, NEUROIMAGE, V7, P108, DOI 10.1006/nimg.1997.0316 Wallace MN, 2002, EXP BRAIN RES, V143, P499, DOI 10.1007/s00221-002-1014-z Zhao FQ, 2007, NEUROIMAGE, V34, P1084, DOI 10.1016/j.neuroimage.2006.10.016 NR 57 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2011 VL 277 IS 1-2 BP 67 EP 77 DI 10.1016/j.heares.2011.03.008 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 805KZ UT WOS:000293726600009 PM 21426929 ER PT J AU Howgate, S Plack, CJ AF Howgate, Stella Plack, Christopher J. TI A behavioral measure of the cochlear changes underlying temporary threshold shifts SO HEARING RESEARCH LA English DT Article ID OUTER HAIR-CELLS; INDUCED HEARING-LOSS; BASILAR-MEMBRANE; GUINEA-PIG; NOISE EXPOSURE; TRANSDUCTION CHANNELS; AUDITORY COMPRESSION; LOUD SOUND; LONG-TERM; LISTENERS AB It is well documented that exposure to recreational noise may result in a temporary threshold shift (TTS) due to cochlear dysfunction. A forward-masking paradigm was used to estimate the relative contribution of inner hair cell (IHC) and outer hair cell (OHC) dysfunction to ITS. Eighteen normal-hearing adults completed a test battery before, immediately after, and one week after attending a loud music venue. Personal dosimeters recorded mean equivalent exposure levels of 99.0 dB A. Shortly after exposure, there was an average TTS of 10.8 dB at 4 kHz, and an average reduction in the estimated gain provided by the OHCs of 11.5 dB. Gain reduction correlated significantly with ITS. The results suggest that OHC dysfunction can account almost entirely for the raised thresholds. For the test battery conducted a week after exposure, all measures showed recovery to pre-exposure values. (C) 2011 Elsevier B.V All rights reserved. C1 [Plack, Christopher J.] Univ Manchester, Human Commun & Deafness Div, Manchester M13 9PL, Lancs, England. [Howgate, Stella] Sunderland Royal Hosp, Dept Audiol, Sunderland, Tyne & Wear, England. RP Plack, CJ (reprint author), Univ Manchester, Human Commun & Deafness Div, Ellen Wilkinson Bldg,Rm B1-23, Manchester M13 9PL, Lancs, England. EM chris.plack@manchester.ac.uk FU BBSRC (UK) [BB/D012953/1] FX The research was supported by BBSRC (UK) grant BB/D012953/1. We are grateful for comments from the Associate Editor (Brian Moore) and an anonymous reviewer. Colette McKay also provided helpful comments on an earlier version of this manuscript. We thank Keith Wilbraham, Kevin Munro, Richard Baker, and Hedwig Gockel for their help with various aspects of this work. The program for fitting the regression line in Fig. 6 was provided by Brian Glasberg. CR ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 AXELSSON A, 1978, Scandinavian Audiology, V7, P127, DOI 10.3109/01050397809076279 Backus BC, 2006, J ACOUST SOC AM, V119, P2889, DOI 10.1121/1.2169918 Bray A, 2004, J LARYNGOL OTOL, V118, P123 British Society of Audiology, 1992, BRIT J AUDIOL, V26, P255 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Chen YS, 2003, ORL J OTO-RHINO-LARY, V65, P266, DOI 10.1159/000075224 CODY AR, 1988, HEARING RES, V35, P59, DOI 10.1016/0378-5955(88)90040-8 DRAKELEE AB, 1992, J ROY SOC MED, V85, P617 Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47 Health and Safety Executive, 2005, CONTR NOIS WORK REG *HLTH SAF EX, 2005, FIN REG IMP ASS CONT JERGER J, 1970, J SPEECH HEAR RES, V13, P221 JOHNSTONE BM, 1989, J PHYSIOL-LONDON, V408, P77 JOHNSTONE BM, 1986, HEARING RES, V22, P147, DOI 10.1016/0378-5955(86)90090-0 Kim JS, 2005, OTOLARYNG HEAD NECK, V133, P619, DOI 10.1016/j.otohns.2005.06.012 Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 Kujawa SG, 2006, J NEUROSCI, V26, P2115, DOI 10.1523/JNEUROSCI.4985-05.2006 Levine S, 1998, LARYNGOSCOPE, V108, P993, DOI 10.1097/00005537-199807000-00008 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Lopez-Poveda EA, 2003, J ACOUST SOC AM, V113, P951, DOI 10.1121/1.1534838 Lopez-Poveda EA, 2008, J ACOUST SOC AM, V123, P1544, DOI 10.1121/1.2835418 Moore B. C. J., 2007, COCHLEAR HEARING LOS Moore BC., 2003, INTRO PSYCHOL HEARIN Nelson DA, 2001, J ACOUST SOC AM, V110, P2045, DOI 10.1121/1.1404439 NORTON SJ, 1987, J ACOUST SOC AM, V82, P80, DOI 10.1121/1.395440 OLOUGHLIN BJ, 1981, J ACOUST SOC AM, V69, P1119, DOI 10.1121/1.385691 Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3666, DOI 10.1121/1.418327 Patuzzi R, 1998, HEARING RES, V125, P39, DOI 10.1016/S0378-5955(98)00127-0 Patuzzi R, 1998, HEARING RES, V125, P17, DOI 10.1016/S0378-5955(98)00126-9 Plack CJ, 2004, J ACOUST SOC AM, V115, P1684, DOI 10.1121/1.1675812 Plack CJ, 2010, J ACOUST SOC AM, V128, P771, DOI 10.1121/1.3455844 Plack CJ, 2003, JARO, V4, P405, DOI 10.1007/s10162-002-3056-0 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 RUGGERO MA, 1991, J NEUROSCI, V11, P1057 RUPP RR, 1969, CLIN PEDIATR, V8, P60, DOI 10.1177/000992286900800204 Sadhra S, 2002, ANN OCCUP HYG, V46, P455, DOI 10.1093/annhyg/mef051 SALT AN, 1979, HEARING RES, V1, P343, DOI 10.1016/0378-5955(79)90005-4 Schmuziger N, 2007, EAR HEARING, V28, P643, DOI 10.1097/AUD.0b013e31812f7144 Schmuziger N, 2004, EAR HEARING, V25, P127, DOI 10.1097/01.AUD.0000120361.87401.C8 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 Serra MR, 2005, INT J AUDIOL, V44, P65, DOI 10.1080/14992020400030010 Stone MA, 2008, INT J AUDIOL, V47, P737, DOI 10.1080/14992020802290543 Tin L L, 2000, Asia Pac J Public Health, V12, P37 ULRICH RF, 1974, ACTA OTO-LARYNGOL, V77, P51, DOI 10.3109/00016487409124597 Vinck BM, 1999, AUDIOLOGY, V38, P44 Zheng XY, 1997, HEARING RES, V113, P76, DOI 10.1016/S0378-5955(97)00127-5 NR 48 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2011 VL 277 IS 1-2 BP 78 EP 87 DI 10.1016/j.heares.2011.03.009 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 805KZ UT WOS:000293726600010 PM 21439366 ER PT J AU Avan, P Giraudet, F Chauveau, B Gilain, L Mom, T AF Avan, Paul Giraudet, Fabrice Chauveau, Bertrand Gilain, Laurent Mom, Thierry TI Unstable distortion-product otoacoustic emission phase in Meniere's disease SO HEARING RESEARCH LA English DT Article ID INNER-EAR PRESSURE; TYMPANIC MEMBRANE DISPLACEMENT; HUMAN COCHLEAR AQUEDUCT; PASS NOISE MASKING; ENDOLYMPHATIC HYDROPS; OPERATING POINT; HEARING-LOSS; MIDDLE-EAR; GUINEA-PIG; DIAGNOSTIC-TEST AB The presence of endolymphatic hydrops as a marker of Meniere's disease (MD) suggests abnormal pressure in the intralabyrinthine compartments of patients and excessive stiffness of sound-sensitive structures. Otoacoustic emissions (OAEs) have been reported to respond to changes in the ear's stiffness, including those produced by intracranial pressure steps, by a characteristic phase shift around 1 kHz, thereby suggesting a noninvasive means of monitoring MD. Here, body tilt was used for modulating intracranial pressure in forty-one patients with definite MD who were tentatively measured at two stages, with and without active symptoms. Their distortion-product OAEs (DPOAEs) were dynamically monitored around 1 kHz every few seconds in response to body tilt. In a control sample of thirty normal ears, the maximum phase rotation of DPOAEs produced by body tilt was between -18 degrees and +37 degrees. In MD ears with the complete set of symptoms, the posture-induced phase shifts in 32 out of 35 tests fell outside the normative interval, and in 10 tests, although DPOAEs were well above noise floor, their phase was always so abnormally erratic that body tilt produced hardly any additional effect. When MD ears were asymptomatic, nine out of 32 posture tests were abnormal. The excessive DPOAE phase shift is consistent with either a too stiff cochlear partition or a displacement of the operating point of outer hair cells by endolymphatic hydrops. (C) 2011 Elsevier B.V. All rights reserved. C1 [Avan, Paul; Giraudet, Fabrice; Chauveau, Bertrand; Gilain, Laurent; Mom, Thierry] Univ Auvergne, Sch Med, Lab Sensory Biophys, EA 2667, F-63000 Clermont Ferrand, France. RP Avan, P (reprint author), Univ Auvergne, Sch Med, Lab Sensory Biophys, EA 2667, F-63000 Clermont Ferrand, France. EM paul.avan@u-clermont1.fr FU Fondation de l'Avenir [ET8-488] FX This work was funded by Fondation de l'Avenir (grant ET8-488). We also thank the company Echodia for specific software developments and ANR Emergence-Tec 2008 (Project Audiapic) for supporting the development of hardware. CR ANDREWS JC, 1995, OTOLARYNG HEAD NECK, V112, P78 Avan P, 2003, J ACOUST SOC AM, V113, P430, DOI 10.1121/1.1525285 Avan P, 2000, HEARING RES, V140, P189, DOI 10.1016/S0378-5955(99)00201-4 Bouccara D, 1998, AUDIOLOGY, V37, P255 Braun M, 1996, HEARING RES, V97, P1 Brown DJ, 2009, J ACOUST SOC AM, V125, P2129, DOI 10.1121/1.3083228 Buki B, 1996, HEARING RES, V94, P125, DOI 10.1016/0378-5955(96)00015-9 CHAPMAN PH, 1990, NEUROSURGERY, V26, P181 Cianfrone G, 2000, SCAND AUDIOL, V29, P111, DOI 10.1080/010503900424525 Claes GME, 2008, EUR ARCH OTO-RHINO-L, V265, P517, DOI 10.1007/s00405-007-0486-7 Committee on Hearing and Equilibirum, 1995, OTOLARYNGOL HEAD NEC, V113, P181 de Kleine E, 2001, J ACOUST SOC AM, V110, P973, DOI 10.1121/1.1381025 Densert B, 1997, AM J OTOL, V18, P726 De Valck CFJ, 2007, OTOL NEUROTOL, V28, P700, DOI 10.1097/01.mao.0000281806.82315.84 Don M, 2005, OTOL NEUROTOL, V26, P711, DOI 10.1097/01.mao.0000169042.25734.97 Ferraro JA, 2006, J AM ACAD AUDIOL, V17, P45, DOI 10.3766/jaaa.17.1.6 Fetterman BL, 2001, LARYNGOSCOPE, V111, P946, DOI 10.1097/00005537-200106000-00004 Flock A, 2000, HEARING RES, V150, P175, DOI 10.1016/S0378-5955(00)00198-2 FLOTTORP G, 1980, HEARING RES, V2, P407, DOI 10.1016/0378-5955(80)90075-1 Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4 Franco-Vidal V, 2005, OTOL NEUROTOL, V26, P723, DOI 10.1097/01.mao.0000178136.81729.7c FRAYSSE BG, 1980, ANN OTO RHINOL LARYN, V89, P2 GIBSON WPR, 1983, OTOLARYNG CLIN N AM, V16, P59 Gopen Q, 1997, HEARING RES, V107, P9, DOI 10.1016/S0378-5955(97)00017-8 Hallpike C S, 1938, Proc R Soc Med, V31, P1317 HORNER K, 1989, HEARING RES, V43, P71, DOI 10.1016/0378-5955(89)90060-9 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 Levine S, 1998, LARYNGOSCOPE, V108, P993, DOI 10.1097/00005537-199807000-00008 LUTMAN ME, 1979, J SOUND VIB, V64, P133, DOI 10.1016/0022-460X(79)90578-9 Magliulo G, 2001, LARYNGOSCOPE, V111, P102, DOI 10.1097/00005537-200101000-00018 Marchbanks RJ, 1982, HEARING AID J, V35, P14 Mateijsen DJM, 2001, EUR ARCH OTO-RHINO-L, V258, P1, DOI 10.1007/PL00007515 Meniere P, 1861, GAZ MED PARIS, V16, P597 Merchant SN, 2005, OTOL NEUROTOL, V26, P74, DOI 10.1097/00129492-200501000-00013 Mom T, 2009, HEARING RES, V250, P38, DOI 10.1016/j.heares.2009.01.008 OHLMS LA, 1991, OTOLARYNG HEAD NECK, V104, P159 OKUBO H, 1995, ACTA OTO-LARYNGOL, P97 OKUNO T, 1987, ANN OTO RHINOL LARYN, V96, P438 Salt AN, 2004, JARO-J ASSOC RES OTO, V5, P203, DOI 10.1007/s10162-003-4032-z Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 Shimbles S, 2005, ACT NEUR S, V95, P197 Sirjani DB, 2004, J ACOUST SOC AM, V115, P1219, DOI 10.1121/1.1647479 THORNTON ARD, 1991, SCAND AUDIOL, V20, P13, DOI 10.3109/01050399109070784 TONNDORF J, 1976, ARCH OTO-RHINO-LARYN, V212, P293, DOI 10.1007/BF00453677 TONNDORF J., 1957, ANN OTOL RHINOL AND LARYNGOL, V66, P766 Traboulsi R, 2007, HEARING RES, V233, P30, DOI 10.1016/j.heares.2007.06.012 Valk WL, 2004, HEARING RES, V192, P47, DOI 10.1016/j.heares.2003.12.021 Wit HP, 1999, HEARING RES, V132, P131, DOI 10.1016/S0378-5955(99)00048-9 Yamakawa K., 1938, P 42 ANN M OT SOC JA, V44, P2310 ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382 NR 50 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2011 VL 277 IS 1-2 BP 88 EP 95 DI 10.1016/j.heares.2011.03.006 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 805KZ UT WOS:000293726600011 PM 21426928 ER PT J AU Guan, XY Gan, RZ AF Guan, Xiying Gan, Rong Z. TI Effect of middle ear fluid on sound transmission and auditory brainstem response in guinea pigs SO HEARING RESEARCH LA English DT Article ID FLACCIDA DISPLACEMENT PATTERN; HUMAN TEMPORAL BONES; OTITIS-MEDIA; HEARING-LOSS; EFFUSION MODEL; TYMPANOMETRY; GERBIL; ACCURACY; MOTION AB Combined measurements of middle ear transfer function and auditory brainstem response (ABR) in live guinea pigs with middle ear effusion (MEE) are reported in this paper. The MEE model was created by injecting saline into the middle ear cavity. Vibrations of the tympanic membrane (TM), the tip of the incus, and the round window membrane (RWM) were measured with a laser vibrometer at frequencies of 0.2-40 kHz when the middle ear fluid increased from 0 to 02 ml (i.e., full fill of the cavity). The click and pure tone ABRs were recorded as the middle ear fluid increased. Fluid introduction reduced mobility of the TM, incus and RWM mainly at high frequencies (f > 1 kHz). The magnitude of this reduction was related to the volume of fluid. The displacement transmission ratio of the TM to incus varied with frequency and fluid level. The volume displacement ratio of the oval window to round window was approximately 1.0 over most frequencies. Elevation of ABR thresholds and prolongation of ABR latencies were observed as fluid level increased. Reduction of TM displacement correlated well with elevation of ABR threshold at 0.5-8 kHz. Alterations in the ratio of ossicular displacements before and after fluid induction are consistent with fluid-induced changes in complex ossicular motions. (C) 2011 Elsevier B.V. All rights reserved. C1 [Gan, Rong Z.] Univ Oklahoma, Sch Aerosp & Mech Engn, Norman, OK 73019 USA. Univ Oklahoma, Ctr Bioengn, Norman, OK 73019 USA. RP Gan, RZ (reprint author), Univ Oklahoma, Sch Aerosp & Mech Engn, 865 Asp Ave,Room 200, Norman, OK 73019 USA. EM rgan@ou.edu FU Oklahoma Center for the Advancement of Science and Technology [HR06-036, HR09-033]; NIH/NIDCD [R01DC006632] FX This work was supported by Oklahoma Center for the Advancement of Science and Technology (HR06-036 and HR09-033) and NIH/NIDCD R01DC006632. The authors thank Wei Li, MS, former student in BME lab at University of Oklahoma, and Don Nakmali at Hough Ear Institute for their expert technical assistance. The authors also thank Dr. Thomas Seale at the University of Oklahoma Health Sciences Center for editing this paper. Two anonymous reviewers are gratefully acknowledged for their great suggestions to improve the paper. CR BEERY QC, 1975, ANN OTO RHINOL LARYN, V84, P56 BLUESTONE CD, 1983, PEDIAT OTOLARYNGOLOG, P421 BLUESTON.CD, 1973, LARYNGOSCOPE, V83, P594, DOI 10.1288/00005537-197304000-00015 Burkard R.F., 2007, AUDITORY EVOKED POTE, P229 Chien WD, 2006, AUDIOL NEURO-OTOL, V11, P183, DOI 10.1159/000091815 Dai C, 2008, HEARING RES, V243, P78, DOI 10.1016/j.heares.2008.05.010 Dai CK, 2007, OTOL NEUROTOL, V28, P551, DOI 10.1097/mao.0b013e318033f008 Decraemer WF, 2004, PROCEEDINGS OF THE 3RD SYMPOSIUM ON MIDDLE EAR MECHANICS IN RESEARCH AND OTOLOGY, P3 Dirks DD, 2000, EAR: COMPREHENSIVE OTOLOGY, P223 Francon M., 1966, OPTICAL INTERFEROMET Gaihede M, 2005, OTOL NEUROTOL, V26, P5, DOI 10.1097/00129492-200501000-00003 Gan RZ, 2006, J ACOUST SOC AM, V120, P3799, DOI 10.1121/1.2372451 Gan RZ, 2001, ANN OTO RHINOL LARYN, V110, P478 GIEBINK GS, 1978, ANNU REV MED, V29, P285, DOI 10.1146/annurev.me.29.020178.001441 Hato N, 2003, AUDIOL NEURO-OTOL, V8, P140, DOI 10.1159/000069475 Heiland KE, 1999, AM J OTOL, V20, P81 Larsson C, 2003, OTOL NEUROTOL, V24, P358, DOI 10.1097/00129492-200305000-00002 Larsson C, 2005, OTOL NEUROTOL, V26, P337, DOI 10.1097/01.mao.0000169770.31292.75 MANLEY GA, 1974, J ACOUST SOC AM, V56, P571, DOI 10.1121/1.1903292 Petrova P, 2006, OTOL NEUROTOL, V27, P734, DOI 10.1097/01.mao.0000226296.28704.de Qin ZB, 2010, HEARING RES, V263, P93, DOI 10.1016/j.heares.2009.10.002 Ravicz ME, 2004, HEARING RES, V195, P103, DOI 10.1016/j.heares.2004.05.010 SHANKS J, 1991, OTOLARYNG CLIN N AM, V24, P299 Stenfelt S, 2004, J ACOUST SOC AM, V115, P797, DOI 10.1121/1.1639903 Turcanu D, 2009, HEARING RES, V251, P17, DOI 10.1016/j.heares.2009.02.005 VONUNGE M, 1995, HEARING RES, V82, P184, DOI 10.1016/0378-5955(94)00017-K WEYER EG, 1982, PHYSL ACOUSTICS Wysocki Jarosław, 2005, Folia Morphol (Warsz), V64, P145 NR 28 TC 8 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2011 VL 277 IS 1-2 BP 96 EP 106 DI 10.1016/j.heares.2011.03.003 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 805KZ UT WOS:000293726600012 PM 21414396 ER PT J AU Zhou, X Henin, S Long, GR Parra, LC AF Zhou, Xiang Henin, Simon Long, Glenis R. Parra, Lucas C. TI Impaired cochlear function correlates with the presence of tinnitus and its estimated spectral profile SO HEARING RESEARCH LA English DT Article ID PRODUCT OTOACOUSTIC EMISSION; HEARING-LOSS; AUDITORY-SENSITIVITY; GROWTH-BEHAVIOR; MECHANISMS; HYPERACTIVITY; NEUROSCIENCE; DPOAE; MODEL; PITCH AB The presence of tinnitus often coincides with hearing loss. It has been argued that reduced peripheral input leads to frequency-specific increase in neuronal gains resulting in tinnitus-related hyper-activity. Following this gain-adaptation hypothesis, impaired cochlear function should be predictive of the presence and spectral characteristics of tinnitus. To assess cochlear function, perceptual thresholds and distortion product otoacoustic emissions (DPOAEs) were measured with high frequency resolution for subjects with tinnitus and non-tinnitus control subjects (N = 29 and N = 18) with and without hearing loss. Subjects with tinnitus also provided a 'tinnitus likeness spectrum' by rating the similarity of their tinnitus to tones at various frequencies. On average, subjects with tinnitus had elevated thresholds. reduced DPOAE, and increased slope of the DPOAE input-output function in the range from 4 to 10 kHz. These measures were strongly correlated and were equally predictive of the presence of tinnitus. Subjects with a pronounced edge to their hearing loss profile were very likely to have tinnitus. In the group average, the tinnitus likeness spectrum was correlated with perceptual thresholds (r = 0.98, p < 0.01), confirming previous reports. For 19 of 29 of subjects, perceptual thresholds were correlated with the tinnitus likeness ratings across frequencies and this correlation was significantly improved when low input-level DPOAE were included as an additional variable (r = 0.83 +/- 0.09, N = 19). Thus, cochlear function is strongly associated with the tinnitus percept and measures of cochlear function using DPOAEs provide additional diagnostic information over perceptual thresholds alone. Published by Elsevier B.V. C1 [Zhou, Xiang; Parra, Lucas C.] CUNY City Coll, Dept Biomed Engn, New York, NY 10031 USA. [Henin, Simon; Long, Glenis R.] CUNY, Grad Ctr, New York, NY 10016 USA. RP Parra, LC (reprint author), CUNY City Coll, Dept Biomed Engn, New York, NY 10031 USA. EM xzhou1@gc.cuny.edu; shenin@gc.cuny.edu; glong@gc.cuny.edu; parra@ccny.cuny.edu RI Zhou, Xiang/D-9614-2011 CR Baguley DM, 2002, BRIT MED BULL, V63, P195, DOI 10.1093/bmb/63.1.195 Bartnik Grazyna, 2009, Otolaryngol Pol, V63, P171, DOI 10.1016/S0030-6657(09)70102-7 Boege P, 2002, J ACOUST SOC AM, V111, P1810, DOI 10.1121/1.1460923 Davis PB, 2008, ENT-EAR NOSE THROAT, V87, P330 DELONG ER, 1988, BIOMETRICS, V44, P837, DOI 10.2307/2531595 Dominguez M, 2006, NEURAL COMPUT, V18, P2942, DOI 10.1162/neco.2006.18.12.2942 Duda R. O., 2001, PATTERN CLASSIFICATI Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Formby C, 2003, J ACOUST SOC AM, V114, P55, DOI 10.1121/1.1582860 Hanley Peter J, 2008, Trends Amplif, V12, P210, DOI 10.1177/1084713808319942 Hesse Gerhard, 2005, Int Tinnitus J, V11, P6 Janssen T, 1998, J ACOUST SOC AM, V103, P3418, DOI 10.1121/1.423053 Kaltenbach JA, 2008, AM J AUDIOL, V17, pS148, DOI 10.1044/1059-0889(2008/08-0004) Konig O, 2006, HEARING RES, V221, P59, DOI 10.1016/j.heares.2006.07.007 Kummer P, 1998, J ACOUST SOC AM, V103, P3431, DOI 10.1121/1.423054 LONG GR, 1988, HEARING RES, V36, P125, DOI 10.1016/0378-5955(88)90055-X Long GR, 2008, J ACOUST SOC AM, V124, P1613, DOI 10.1121/1.2949505 Mauermann M, 2004, J ACOUST SOC AM, V116, P2199, DOI 10.1121/1.1791719 MCCLISH DK, 1989, MED DECIS MAKING, V9, P190, DOI 10.1177/0272989X8900900307 McCullagh P., 1989, GEN LINEAR MODELS Moffat G, 2009, HEARING RES, V254, P82, DOI 10.1016/j.heares.2009.04.016 Montgomery D C, 2006, INTRO LINEAR REGRESS Moore BCJ, 2010, HEARING RES, V261, P51, DOI 10.1016/j.heares.2010.01.003 NEELY ST, 2007, SPRINGER HDB AUDITOR, V30, P381 Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156 Norena AJ, 2007, NEUROREPORT, V18, P1251, DOI 10.1097/WNR.0b013e3282202c35 Ozimek E, 2006, J ACOUST SOC AM, V119, P527, DOI 10.1121/1.2141297 Parra LC, 2007, J ACOUST SOC AM, V121, P1632, DOI 10.1121/1.2431346 Penner M.J., 1995, INT TINNITUS J, V1, P79 Rauschecker JP, 2010, NEURON, V66, P819, DOI 10.1016/j.neuron.2010.04.032 Rieke F, 1999, SPIKES EXPLORING NEU Roberts LE, 2008, JARO-J ASSOC RES OTO, V9, P417, DOI 10.1007/s10162-008-0136-9 Roberts LE, 2010, J NEUROSCI, V30, P14972, DOI 10.1523/JNEUROSCI.4028-10.2010 Rosengard PS, 2005, J ACOUST SOC AM, V117, P3028, DOI 10.1121/1.1883367 Savastano M, 2009, INT J PEDIATR OTORHI, V73, pS13, DOI 10.1016/S0165-5876(09)70003-5 Schaette R, 2010, HEARING RES, V269, P95, DOI 10.1016/j.heares.2010.06.022 Schaette R, 2009, J NEUROPHYSIOL, V101, P3042, DOI 10.1152/jn.91256.2008 Shera CA, 2004, EAR HEARING, V25, P86, DOI 10.1097/01.AUD.0000121200.90211.83 Sztuka A, 2010, AURIS NASUS LARYNX, V37, P55, DOI 10.1016/j.anl.2009.05.001 Vesterager V, 1997, BRIT MED J, V314, P728 WILSON PH, 1991, J SPEECH HEAR RES, V34, P197 Zhou X, 2010, J ACOUST SOC AM, V127, P970, DOI 10.1121/1.3277156 NR 42 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2011 VL 277 IS 1-2 BP 107 EP 116 DI 10.1016/j.heares.2011.02.006 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 805KZ UT WOS:000293726600013 PM 21376109 ER PT J AU Pienkowski, M Munguia, R Eggermont, JJ AF Pienkowski, Martin Munguia, Raymundo Eggermont, Jos J. TI Passive exposure of adult cats to bandlimited tone pip ensembles or noise leads to long-term response suppression in auditory cortex SO HEARING RESEARCH LA English DT Article ID CORTICAL MAP REORGANIZATION; CRITICAL PERIOD; 2-TONE SUPPRESSION; HOMEOSTATIC PLASTICITY; ACOUSTIC ENVIRONMENT; BASILAR-MEMBRANE; HEARING-LOSS; GUINEA-PIG; ORGANIZATION; HABITUATION AB We have recently demonstrated that persistent, passive exposure of adult cats to bandlimited tone pip ensembles at moderate intensities (similar to 70 dB SPL) leads to a long-term suppression of neural activity in auditory cortex, in the absence of hearing loss. With wideband ensembles (4-20 kHz), the suppression is limited to the exposure frequency range; with narrowband ensembles (2-4 kHz, or third-octave bands centered at 4 and 16 kHz), suppression occurs not only within but also well beyond the exposure range, at least in primary auditory cortex (Al). (In secondary cortex (All) suppression remains limited mostly to the exposure range even for narrowband ensembles.) We report here on two additional experiments. First, we demonstrate suppression in both Al and All upon exposure to 4-20 kHz bandlimited noise, thus generalizing our previous results obtained with tonal ensembles. However, we found a somewhat different suppression pattern with noise. Whereas 4-20 kHz tone exposure produced relatively uniform suppression over the 4-20 kHz range, save for a small local minimum at similar to 10 kHz, 4-20 kHz noise produced maximal suppression over similar to 4-10 kHz, which then progressively weakened with frequency up to 20 kHz. Second, we outline the time course of the emergence of response suppression in Al, using the above-mentioned pair of third-octave bands as the exposure stimulus. Suppression emerged relatively rapidly, within a week of exposure onset, and was initially confined to frequencies close to the 4 and 16 kHz stimulus bands. Over the course of several more weeks, the suppression broadened to cover the entire 4-16 kHz range. We discuss these new findings with reference to the putative mechanisms underlying exposure-induced auditory cortical plasticity. (C) 2011 Elsevier B.V. All rights reserved. C1 [Pienkowski, Martin; Munguia, Raymundo; Eggermont, Jos J.] Univ Calgary, Dept Psychol, Calgary, AB T2N 1N4, Canada. [Pienkowski, Martin; Munguia, Raymundo; Eggermont, Jos J.] Univ Calgary, Dept Physiol, Calgary, AB T2N 1N4, Canada. [Pienkowski, Martin; Munguia, Raymundo; Eggermont, Jos J.] Univ Calgary, Dept Pharmacol, Calgary, AB T2N 1N4, Canada. RP Eggermont, JJ (reprint author), Univ Calgary, Dept Psychol, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. EM eggermon@ucalgary.ca FU Alberta Heritage Foundation for Medical Research; National Sciences and Engineering Research Council of Canada; Campbell McLaurin Chair for Hearing Deficiencies FX We thank Greg Shaw for data acquisition software development and support. This work was supported by the Alberta Heritage Foundation for Medical Research, the National Sciences and Engineering Research Council of Canada, and the Campbell McLaurin Chair for Hearing Deficiencies. CR Bakin JS, 1996, P NATL ACAD SCI USA, V93, P11219, DOI 10.1073/pnas.93.20.11219 BAKIN JS, 1990, BRAIN RES, V536, P271, DOI 10.1016/0006-8993(90)90035-A BAO S, 2003, J NEUROSCI, V23, P1065 Bao SW, 2004, NAT NEUROSCI, V7, P974, DOI 10.1038/nn1293 Bonham BH, 2004, J NEUROPHYSIOL, V91, P841, DOI 10.1152/jn.00017.2003 Brattico E, 2005, CLIN NEUROPHYSIOL, V116, P190, DOI 10.1016/j.clinph.2004.07.030 Carrasco A, 2010, J NEUROSCI, V30, P1476, DOI 10.1523/JNEUROSCI.5708-09.2009 CASTELLUCCI VF, 1978, SCIENCE, V202, P1306, DOI 10.1126/science.214854 Chang EF, 2003, SCIENCE, V300, P498, DOI 10.1126/science.1082163 CONDON CD, 1991, BEHAV NEUROSCI, V105, P416 de Villers-Sidani E, 2007, J NEUROSCI, V27, P180, DOI 10.1523/JNEUROSCI.3227-06.2007 de Villers-Sidani E, 2008, NAT NEUROSCI, V11, P957, DOI 10.1038/nn.2144 EGAN JP, 1950, J ACOUST SOC AM, V22, P622, DOI 10.1121/1.1906661 Eggermont JJ, 1996, AUDIT NEUROSCI, V2, P309 Formby C, 2003, J ACOUST SOC AM, V114, P55, DOI 10.1121/1.1582860 GARDNER MJ, 1986, BRIT MED J, V292, P746 GEISLER CD, 1990, HEARING RES, V44, P241, DOI 10.1016/0378-5955(90)90084-3 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6 KJELLBERG A, 1990, SCAND J WORK ENV HEA, V16, P29 Kujala T, 2004, PSYCHOPHYSIOLOGY, V41, P875, DOI 10.1111/j.1469-8986.2004.00244.x MOVSHON JA, 1979, NATURE, V278, P850, DOI 10.1038/278850a0 MUSICANT AD, 1990, J ACOUST SOC AM, V87, P757, DOI 10.1121/1.399545 Norena A, 2002, HEARING RES, V166, P202, DOI 10.1016/S0378-5955(02)00329-5 Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005 Norena AJ, 2006, NAT NEUROSCI, V9, P932, DOI 10.1038/nn1720 Pienkowski M, 2009, HEARING RES, V253, P107, DOI 10.1016/j.heares.2009.03.013 Pienkowski M, 2010, HEARING RES, V261, P30, DOI 10.1016/j.heares.2009.12.025 Pienkowski M, 2010, HEARING RES, V268, P151, DOI 10.1016/j.heares.2010.05.016 Pienkowski M, 2009, HEARING RES, V257, P24, DOI 10.1016/j.heares.2009.07.011 Polley DB, 2006, J NEUROSCI, V26, P4970, DOI 10.1523/JNEUROSCI.3771-05.2006 RHODE WS, 1993, HEARING RES, V66, P31, DOI 10.1016/0378-5955(93)90257-2 Robinson BL, 2009, CURR OPIN NEUROBIOL, V19, P402, DOI 10.1016/j.conb.2009.07.006 RUGGERO MA, 1992, J NEUROPHYSIOL, V68, P1087 Sakai M, 2007, BEHAV BRAIN RES, V181, P1, DOI 10.1016/j.bbr.2007.03.016 Schaette R, 2006, EUR J NEUROSCI, V23, P3124, DOI 10.1111/j.1460-9568.04774.x SCHREINER CE, 1984, J NEUROPHYSIOL, V51, P1284 Turrigiano GG, 1999, TRENDS NEUROSCI, V22, P221, DOI 10.1016/S0166-2236(98)01341-1 Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032 Zhang LI, 2002, P NATL ACAD SCI USA, V99, P2309, DOI 10.1073/pnas.261707398 Zhou XM, 2007, P NATL ACAD SCI USA, V104, P15935, DOI 10.1073/pnas.0707348104 NR 41 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2011 VL 277 IS 1-2 BP 117 EP 126 DI 10.1016/j.heares.2011.02.002 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 805KZ UT WOS:000293726600014 PM 21316436 ER PT J AU Osmanski, MS Wang, XQ AF Osmanski, Michael S. Wang, Xiaoqin TI Measurement of absolute auditory thresholds in the common marmoset (Callithrix jacchus) SO HEARING RESEARCH LA English DT Article ID MONKEY SAIMIRI-SCIUREUS; PURE-TONE THRESHOLDS; LEAF-NOSED BATS; BIG BROWN BAT; PHEE CALLS; SOUND LOCALIZATION; ACOUSTIC STRUCTURE; EPTESICUS-FUSCUS; MACACA-FUSCATA; CORTEX AB The common marmoset is a small, arboreal, New World primate that has emerged as a promising non-human model system in auditory neuroscience. A complete understanding of the neuroethology of auditory processing in marmosets will include behavioral work examining how sounds are perceived by these animals. However, there have been few studies of the marmoset's hearing and perceptual abilities and the audiogram of this species has not been measured using modern psychophysical methods. The present experiment pairs psychophysics with an operant conditioning technique to examine perception of pure tone stimuli by marmosets using an active behavioral paradigm. Subjects were trained to lick at a feeding tube when they detected a sound. Correct responses provided access to a food reward. Pure tones of varying intensities were presented to subjects using the method of constant stimuli. Behavioral thresholds were calculated for each animal based on hit rate - threshold was defined by the tone intensity that the animal correctly identified 50% of the time. Results show that marmoset hearing is comparable to that of other New World monkeys, with a hearing range extending from about 125 Hz up to 36 kHz and a sensitivity peak around 7 kHz. (C) 2011 Elsevier B.V. All rights reserved. C1 [Osmanski, Michael S.; Wang, Xiaoqin] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Lab Auditory Neurophysiol, Baltimore, MD 21205 USA. RP Osmanski, MS (reprint author), Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Lab Auditory Neurophysiol, Baltimore, MD 21205 USA. EM michael.osmanski@jhu.edu; xiaoqin.wang@jhu.edu FU NIH [DC003180, DC005808, DC008578] FX We would like to thank Jenny Estes and Nathaniel Sotuyo for their generous help with animal care. We also thank Marcus Jeschke, Amanda Lauer, and an anonymous reviewer for their many helpful and insightful comments on the manuscript. Finally, we thank Rhiannon Desideri, Meredith Maguire, and Smita Mohan for their assistance in performing the experiments. This work was supported by NIH grants DC003180, DC005808, and DC008578. CR AGAMAITE JA, 1997, THESIS J HOPKINS U B AITKIN LM, 1986, J COMP NEUROL, V252 ANDREW R. J., 1963, BEHAVIOUR, V20, P1, DOI 10.1163/156853963X00220 BEECHER MD, 1974, J ACOUST SOC AM, V55, P196, DOI 10.1121/1.1928152 BEECHER MD, 1974, J COMP PHYSIOL PSYCH, V86, P898, DOI 10.1037/h0036416 Bendor D, 2006, CURR OPIN NEUROBIOL, V16, P391, DOI 10.1016/j.conb.2006.07.001 Bendor D, 2010, J NEUROPHYSIOL, V103, P1809, DOI 10.1152/jn.00281.2009 Bendor D, 2005, NATURE, V436, P1161, DOI 10.1038/nature03867 Bendor D, 2008, J NEUROPHYSIOL, V100, P888, DOI 10.1152/jn.00884.2007 BROWN CH, 1984, ANIM BEHAV, V32, P66, DOI 10.1016/S0003-3472(84)80325-5 DALLAND JI, 1965, J AUD RES, V5, P95 DiMattina C, 2006, J NEUROPHYSIOL, V95, P1244, DOI 10.1152/jn.00818.2005 Dooling R. J., 1995, METHODS COMP PSYCHOA, P161 Dooling R. J., 2000, COMP HEARING BIRDS R, P308 ELDER J, 1933, PSYCHOL BULL, V30, P547 Elder JH, 1935, AM J PHYSIOL, V112, P109 Elder JH, 1934, J COMP PSYCHOL, V17, P157, DOI 10.1037/h0073798 Eliades SJ, 2003, J NEUROPHYSIOL, V89, P2194, DOI 10.1152/jn.00627.2002 Eliades SJ, 2008, NATURE, V453, P1102, DOI 10.1038/nature06910 Eliades SJ, 2005, CEREB CORTEX, V15, P1510, DOI 10.1093/cercor/bhi030 EPPLE G, 1968, FOLIA PRIMATOL, V8, P1, DOI 10.1159/000155129 Fay R. R., 1988, HEARING VERTEBRATES FUJITA S, 1965, J ACOUST SOC AM, V37, P139, DOI 10.1121/1.2143403 Gerhardt H. Carl, 2001, P73 Gescheider G. A., 1985, PSYCHOPHYSICS METHOD GREEN S, 1975, J EXP ANAL BEHAV, V23, P255, DOI 10.1901/jeab.1975.23-255 Harris JD, 1943, J COMP PSYCHOL, V35, P255, DOI 10.1037/h0060357 Heffner RS, 2004, ANAT REC PART A, V281A, P1111, DOI 10.1002/ar.a.20117 Heffner RS, 1996, HEARING RES, V99, P13, DOI 10.1016/S0378-5955(96)00074-3 Heffner RS, 2003, HEARING RES, V184, P113, DOI 10.1016/S0378-5955(03)00233-8 HEINZ RD, 1982, HEARING RES, V8, P71 Jackson LL, 1999, J ACOUST SOC AM, V106, P3017, DOI 10.1121/1.428121 JEN PHS, 1988, HEARING RES, V34, P101, DOI 10.1016/0378-5955(88)90098-6 Koay G, 2003, HEARING RES, V178, P27, DOI 10.1016/S0378-5955(03)00025-X Koay G, 1997, HEARING RES, V105, P202, DOI 10.1016/S0378-5955(96)00208-0 LONG GR, 1975, J COMP PHYSIOL, V100, P211 Miller CT, 2006, J COMP PHYSIOL A, V192, P27, DOI 10.1007/s00359-005-0043-z Miller CT, 2010, AM J PRIMATOL, V72, P974, DOI 10.1002/ajp.20854 Miller CT, 2009, ANIM BEHAV, V78, P1195, DOI 10.1016/j.anbehav.2009.07.038 Miller CT, 2009, J COMP PHYSIOL A, V195, P783, DOI 10.1007/s00359-009-0456-1 Miller E. H., 1982, ACOUSTIC COMMUNICATI, V2, P95 NARINS PM, 1976, SCIENCE, V192, P378, DOI 10.1126/science.1257772 NARINS PM, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P439 NEWMAN JD, 2003, PRIMATE AUDITION ETH, V13, P198 NIEMIEC AJ, 1995, METHODS COMP PSYCHOA, P65 Norcross JL, 1999, AM J PRIMATOL, V49, P165, DOI 10.1002/(SICI)1098-2345(199910)49:2<165::AID-AJP7>3.0.CO;2-S NORCROSS JL, 1993, AM J PRIMATOL, V30, P37, DOI 10.1002/ajp.1350300104 NORCROSS JL, 1994, AM J PRIMATOL, V33, P15, DOI 10.1002/ajp.1350330103 OKANOYA K, 1987, J COMP PSYCHOL, V101, P7, DOI 10.1037//0735-7036.101.1.7 OWREN MJ, 1988, J COMP PSYCHOL, V102, P99 PFINGST BE, 1978, HEARING RES, V1, P43, DOI 10.1016/0378-5955(78)90008-4 Pistorio AL, 2006, J ACOUST SOC AM, V120, P1655, DOI 10.1121/1.2225899 RECANZONE GH, 1991, BEHAV RES METH INSTR, V23, P357 RICE JJ, 1992, HEARING RES, V58, P132, DOI 10.1016/0378-5955(92)90123-5 RYAN MJ, 1992, AM NAT, V139, P1370, DOI 10.1086/285391 Sadagopan S, 2008, J NEUROSCI, V28, P3415, DOI 10.1523/JNEUROSCI.2743-07.2008 Sasaki E, 2009, NATURE, V459, P523, DOI 10.1038/nature08090 Seiden H. R., 1957, THESIS PRINCETON U P SERAFIN JV, 1982, J ACOUST SOC AM, V71, P1513, DOI 10.1121/1.387851 SINNOTT JM, 1985, J ACOUST SOC AM, V78, P1977, DOI 10.1121/1.392654 STEBBINS WC, 1971, BEHAVIOR NONHUMAN PR, V3, P159 STEBBINS WC, 1978, RECENT ADV PRIMATOL, P703 Stebbins WC, 1970, ANIMAL PSYCHOPHYSICS STEBBINS WC, 1966, SCIENCE, V153, P1646, DOI 10.1126/science.153.3744.1646-a STEBBINS WC, 1973, AM J PHYS ANTHROPOL, V38, P357, DOI 10.1002/ajpa.1330380233 Wang XQ, 2007, HEARING RES, V229, P81, DOI 10.1016/j.heares.2007.01.019 Wang XQ, 2000, P NATL ACAD SCI USA, V97, P11843, DOI 10.1073/pnas.97.22.11843 Wang XQ, 2001, J NEUROPHYSIOL, V86, P2616 Watkins PV, 2008, NAT NEUROSCI, V11, P1259, DOI 10.1038/nn.2201 Watkins PV, 2011, CEREB CORTEX, V21, P178, DOI 10.1093/cercor/bhq079 WIERNICKE A, 2001, J COMP PHYSIOL A, V187, P189 WINTER P, 1966, EXP BRAIN RES, V1, P359 WOTTON JM, 1995, J ACOUST SOC AM, V98, P1423, DOI 10.1121/1.413410 NR 73 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2011 VL 277 IS 1-2 BP 127 EP 133 DI 10.1016/j.heares.2011.02.001 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 805KZ UT WOS:000293726600015 PM 21303689 ER PT J AU Grimsley, JMS Palmer, AR Wallace, MN AF Grimsley, J. M. S. Palmer, A. R. Wallace, M. N. TI Age differences in the purr call distinguished by units in the adult guinea pig primary auditory cortex SO HEARING RESEARCH LA English DT Article ID SPECIES-SPECIFIC VOCALIZATIONS; VOCAL-TRACT LENGTH; CONSPECIFIC VOCALIZATIONS; HONEST ADVERTISEMENT; REPRESENTATION; RESPONSES; FREQUENCY; MARMOSET; SIZE; CAT AB Many communication calls contain information about the physical characteristics of the calling animal. During maturation of the guinea pig purr call the pitch becomes lower as the fundamental frequency progressively decreases from 476 to 261 Hz on average. Neurons in the primary auditory cortex (AI) often respond strongly to the purr and we postulated that some of them are capable of distinguishing between purr calls of different pitch. Consequently four pitch-shifted versions of a single call were used as stimuli. Many units in AI (79/182) responded to the purr call either with an onset response or with multiple bursts of firing that were time-locked to the phrases of the call. All had a characteristic frequency <= 5 kHz. Both types of unit altered their firing rate in response to pitch-shifted versions of the call. Of the responsive units, 41% (32/79) had a firing rate locked to the stimulus envelope that was at least 50% higher for one version of the call than any other. Some (14/32) had a preference that could be predicted from their frequency response area while others (18/32) were not predictable. We conclude that about 18% of stimulus-driven cells at the low-frequency end of AI are very sensitive to age-related changes in the purr call. (C) 2011 Elsevier B.V. All rights reserved. C1 [Grimsley, J. M. S.; Palmer, A. R.; Wallace, M. N.] MRC Inst Hearing Res, Nottingham NG7 2RD, England. RP Wallace, MN (reprint author), MRC Inst Hearing Res, Univ Pk, Nottingham NG7 2RD, England. EM markw@ihr.mrc.ac.uk CR ARVOLA A, 1974, Annales Zoologici Fennici, V11, P1 Bendor D, 2005, NATURE, V436, P1161, DOI 10.1038/nature03867 BERRYMAN JC, 1981, BEHAV NEURAL BIOL, V31, P476, DOI 10.1016/S0163-1047(81)91572-7 BERRYMAN JC, 1976, Z TIERPSYCHOL, V41, P80 Bizley JK, 2010, NEUROSCIENTIST, V16, P453, DOI 10.1177/1073858410371009 Bryant GA, 2009, BIOL LETTERS, V5, P12, DOI 10.1098/rsbl.2008.0507 BULLOCK DC, 1988, MED BIOL ENG COMPUT, V26, P669, DOI 10.1007/BF02447511 Charlton BD, 2009, ANIM BEHAV, V78, P893, DOI 10.1016/j.anbehav.2009.06.029 CLUTTONBROCK TH, 1979, BEHAVIOUR, V69, P145, DOI 10.1163/156853979X00449 Darwin C., 1871, DESCENT MAN SELECTIO de la Mothe LA, 2006, J COMP NEUROL, V496, P27, DOI 10.1002/cne.20923 Fant G., 1960, ACOUSTIC THEORY SPEE Fitch WT, 1997, J ACOUST SOC AM, V102, P1213, DOI 10.1121/1.421048 FITCH WT, 1995, AM J PRIMATOL, V37, P191, DOI 10.1002/ajp.1350370303 Gehr DD, 2000, HEARING RES, V150, P27, DOI 10.1016/S0378-5955(00)00170-2 Geissler DB, 2004, EUR J NEUROSCI, V19, P1027, DOI 10.1111/j.1460-9568.2004.03205.x Gourevitch B, 2007, J NEUROPHYSIOL, V97, P144, DOI 10.1152/jn.00807.2006 HALL DA, 2009, CEREB CORTEX, V19, P543 Harper L. V., 1976, BIOL GUINEA PIG, P31 HOLLIEN H, 1994, J ACOUST SOC AM, V96, P2646, DOI 10.1121/1.411275 Huetz C, 2009, J NEUROSCI, V29, P334, DOI 10.1523/JNEUROSCI.3269-08.2009 Kaas JH, 1998, AUDIOL NEURO-OTOL, V3, P73, DOI 10.1159/000013783 Lin FG, 2010, J NEUROPHYSIOL, V104, P3588, DOI 10.1152/jn.00295.2010 Monticelli PE, 2004, AN ACAD BRAS CIENC, V76, P368, DOI 10.1590/S0001-37652004000200027 Philibert B, 2005, HEARING RES, V209, P97, DOI 10.1016/j.heares.2005.07.004 Romanski LM, 2005, J NEUROPHYSIOL, V93, P734, DOI 10.1152/jn.00675.2004 Rood J.P., 1972, Animal Behav Monogr, V5, P1 Siemers BM, 2005, ACTA CHIROPTEROL, V7, P259, DOI 10.3161/1733-5329(2005)7[259:ISISAO]2.0.CO;2 Smith DRR, 2005, J ACOUST SOC AM, V118, P3177, DOI 10.1121/1.2047107 Suta D, 2007, EXP BRAIN RES, V183, P377, DOI 10.1007/s00221-007-1056-3 Suta J, 2003, J NEUROPHYSIOL, V90, P3794 Syka J, 2005, HEARING RES, V206, P177, DOI 10.1016/j.heares.2005.01.013 Tian B, 2001, SCIENCE, V292, P290, DOI 10.1126/science.1058911 von Kriegstein K, 2006, NEUROIMAGE, V32, P368, DOI 10.1016/j.neuroimage.2006.02.045 Wallace MN, 2005, NEUROREPORT, V16, P2001, DOI 10.1097/00001756-200512190-00006 Wallace MN, 2011, HEARING RES, V274, P142, DOI 10.1016/j.heares.2010.05.012 Wallace MN, 2002, EXP BRAIN RES, V143, P106, DOI 10.1007/s00221-001-0973-9 Wallace MN, 2008, EXP BRAIN RES, V184, P179, DOI 10.1007/s00221-007-1092-z Wallace MN, 2005, HEARING RES, V204, P115, DOI 10.1016/j.heares.2005.01.007 Wallace MN, 2009, EXP BRAIN RES, V194, P395, DOI 10.1007/s00221-009-1714-8 Wang XQ, 1995, J NEUROPHYSIOL, V74, P2685 Wang XQ, 2001, J NEUROPHYSIOL, V86, P2616 Wang XQ, 2005, NATURE, V435, P341, DOI 10.1038/nature03565 NR 43 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2011 VL 277 IS 1-2 BP 134 EP 142 DI 10.1016/j.heares.2011.01.018 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 805KZ UT WOS:000293726600016 PM 21296136 ER PT J AU Hsieh, IH Petrosyan, A Goncalves, OF Hickok, G Saberi, K AF Hsieh, I-Hui Petrosyan, Agavni Goncalves, Oscar F. Hickok, Gregory Saberi, Kourosh TI Observer weighting of interaural cues in positive and negative envelope slopes of amplitude-modulated waveforms SO HEARING RESEARCH LA English DT Article ID AUDITORY-NERVE FIBERS; SOUND LOCALIZATION; INFERIOR COLLICULUS; HIGH-FREQUENCIES; CLICK-TRAINS; INTERCLICK INTERVAL; COMPLEX WAVEFORMS; ECHO SUPPRESSION; RAMPED SINUSOIDS; BINAURAL BEATS AB The auditory system can encode interaural delays in highpass-filtered complex sounds by phase locking to their slowly modulating envelopes. Spectrotemporal analysis of interaurally time-delayed highpass waveforms reveals the presence of a concomitant interaural level cue. The current study systematically investigated the contribution of time and concomitant level cues carried by positive and negative envelope slopes of a modified sinusoidally amplitude-modulated (SAM) high-frequency carrier. The waveforms were generated from concatenation of individual modulation cycles whose envelope peaks were extended by the desired interaural delay, allowing independent control of delays in the positive and negative modulation slopes. In experiment 1, thresholds were measured using a 2-interval forced-choice adaptive task for interaural delays in either the positive or negative modulation slopes. In a control condition, thresholds were measured for a standard SAM tone. In experiment 2, decision weights were estimated using a multiple-observation correlational method in a single-interval forced-choice task for interaural delays carried simultaneously by the positive, and independently, negative slopes of the modulation envelope. In experiment 3, decision weights were measured for groups of 3 modulation cycles at the start, middle, and end of the waveform to determine the influence of onset dominance or recency effects. Results were consistent across experiments: thresholds were equal for the positive and negative modulation slopes. Decision weights were positive and equal for the time cue in the positive and negative envelope slopes. Weights were also larger for modulations cycles near the waveform onset. Weights estimated for the concomitant interaural level cue were positive for the positive envelope slope and negative for the negative slope, consistent with exclusive use of time cues. (C) 2011 Elsevier B.V. All rights reserved. C1 [Hsieh, I-Hui] Natl Cent Univ, Inst Cognit Neurosci, Jhongli 32001, Taoyuan County, Taiwan. [Petrosyan, Agavni; Goncalves, Oscar F.] Univ Minho, Sch Psychol, Neuropsychophysiol Lab CIPsi, Braga, Portugal. [Hickok, Gregory; Saberi, Kourosh] Univ Calif Irvine, Dept Cognit Sci, Irvine, CA 92697 USA. RP Hsieh, IH (reprint author), Natl Cent Univ, Inst Cognit Neurosci, Jhongli 32001, Taoyuan County, Taiwan. EM ihsieh@ncu.edu.tw RI Goncalves, Oscar/G-5278-2010 OI Goncalves, Oscar/0000-0003-2735-9155 FU National Science Council, Taiwan [NSC 98-2410-H-008-081-MY3, NIH R01DC009659] FX We thank Virginia M. Richards and Bruce G. Berg for helpful discussions. We also thank Brian C. J. Moore and an anonymous reviewer for their insightful comments on an earlier draft of the manuscript. Work supported by grants from the National Science Council, Taiwan NSC 98-2410-H-008-081-MY3 and NIH R01DC009659. CR Ashmead DH, 1999, J REHABIL RES DEV, V36, P313 BERG BG, 1989, J ACOUST SOC AM, V86, P1743, DOI 10.1121/1.398605 Bernstein LR, 1996, J ACOUST SOC AM, V99, P1670, DOI 10.1121/1.414689 Brown AD, 2010, J ACOUST SOC AM, V128, P332, DOI 10.1121/1.3436540 Brungart DS, 2005, J ACOUST SOC AM, V118, P3241, DOI 10.1121/1.2082557 Champoux F, 2009, EAR HEARING, V30, P377, DOI 10.1097/AUD.0b013e31819c3e84 CLIFTON RK, 1981, CHILD DEV, V52, P833, DOI 10.1111/j.1467-8624.1981.tb03121.x CLIFTON RK, 1987, J ACOUST SOC AM, V82, P1834, DOI 10.1121/1.395802 Clifton RK, 2002, PERCEPT PSYCHOPHYS, V64, P180, DOI 10.3758/BF03195784 CROW G, 1980, HEARING RES, V3, P147, DOI 10.1016/0378-5955(80)90042-8 DEBOER E, 1978, J ACOUST SOC AM, V63, P115, DOI 10.1121/1.381704 DIVENYI PL, 1992, J ACOUST SOC AM, V91, P1078, DOI 10.1121/1.402634 DOMNITZ RH, 1973, J ACOUST SOC AM, V58, P510 Dreyer A, 2006, J NEUROPHYSIOL, V96, P2327, DOI 10.1152/jn.00326.2006 FEDDERSEN WE, 1957, J ACOUST SOC AM, V29, P988, DOI 10.1121/1.1909356 Freyman RL, 2010, J ACOUST SOC AM, V128, P320, DOI 10.1121/1.3436560 Freyman RL, 1997, J ACOUST SOC AM, V101, P1649, DOI 10.1121/1.418149 Grantham DW, 1996, J ACOUST SOC AM, V99, P1118, DOI 10.1121/1.414596 Hafter E. R., 1984, DYNAMIC ASPECTS NEOC, P425 HAFTER ER, 1983, J ACOUST SOC AM, V73, P644, DOI 10.1121/1.388956 HENNING GB, 1974, J ACOUST SOC AM, V55, P84, DOI 10.1121/1.1928135 HOLDSWORTH J, 1988, 2341 APU MED RES COU Hsieh IH, 2010, J SPEECH LANG HEAR R, V53, P1417, DOI 10.1044/1092-4388(2010/09-0206) Keen R, 2009, J ACOUST SOC AM, V125, P3243, DOI 10.1121/1.3097472 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Lin T, 2004, J ACOUST SOC AM, V116, P405, DOI 10.1121/1.1753294 Lu T, 2001, J NEUROPHYSIOL, V85, P2364 MCFADDEN D, 1975, SCIENCE, V190, P394, DOI 10.1126/science.1179219 MEDDIS R, 1990, J ACOUST SOC AM, V87, P1813, DOI 10.1121/1.399379 Neuert V, 2001, HEARING RES, V159, P36, DOI 10.1016/S0378-5955(01)00318-5 NUETZEL JM, 1981, J ACOUST SOC AM, V69, P1112, DOI 10.1121/1.385690 NUETZEL JM, 1976, J ACOUST SOC AM, V60, P1339, DOI 10.1121/1.381227 Pressnitzer D, 2000, HEARING RES, V149, P155, DOI 10.1016/S0378-5955(00)00175-1 Rayleigh,, 1907, PHILOS MAG, V13, P214, DOI 10.1080/14786440709463595 Recio A, 1998, J ACOUST SOC AM, V103, P1972, DOI 10.1121/1.421377 REES A, 1983, HEARING RES, V10, P301, DOI 10.1016/0378-5955(83)90095-3 RICHARDS VM, 1994, J ACOUST SOC AM, V95, P423, DOI 10.1121/1.408336 SABERI K, 1995, NATURE, V374, P537, DOI 10.1038/374537a0 Saberi K, 1996, PERCEPT PSYCHOPHYS, V58, P1037, DOI 10.3758/BF03206831 Saberi K, 2003, J ACOUST SOC AM, V114, P420, DOI 10.1121/1.1578079 Saberi K, 1998, J ACOUST SOC AM, V103, P2551, DOI 10.1121/1.422776 Saberi K., 1997, BINAURAL SPATIAL HEA, P315 SABERI K, 1990, J ACOUST SOC AM, V88, P2639, DOI 10.1121/1.399984 SABERI K, 1995, J ACOUST SOC AM, V98, P1803, DOI 10.1121/1.413379 SABERI K, 1995, ACUSTICA, V81, P272 Sek A, 2010, J ACOUST SOC AM, V127, P2451, DOI 10.1121/1.3327798 Slaney M., 1998, 1998010 INT RES CORP Stecker GC, 2002, J ACOUST SOC AM, V112, P1046, DOI 10.1121/1.1497366 Stecker GC, 2009, J ACOUST SOC AM, V125, P3914, DOI 10.1121/1.3124776 Stecker GC, 2010, J ACOUST SOC AM, V127, P3092, DOI 10.1121/1.3377088 Temchin AN, 2005, J NEUROPHYSIOL, V93, P3635, DOI 10.1152/jn.00885.2004 TOBIAS JV, 1959, J ACOUST SOC AM, V31, P1595, DOI 10.1121/1.1907665 WALLACH H, 1949, AM J PSYCHOL, V62, P315, DOI 10.2307/1418275 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 YOST WA, 1976, J ACOUST SOC AM, V60, P178, DOI 10.1121/1.381061 YOST WA, 1971, J ACOUST SOC AM, V50, P1526, DOI 10.1121/1.1912806 ZUREK PM, 1980, J ACOUST SOC AM, V67, P952, DOI 10.1121/1.383974 Zurek PM, 2003, PERCEPT PSYCHOPHYS, V65, P95, DOI 10.3758/BF03194786 NR 58 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2011 VL 277 IS 1-2 BP 143 EP 151 DI 10.1016/j.heares.2011.01.008 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 805KZ UT WOS:000293726600017 PM 21272630 ER PT J AU Riecke, L Micheyl, C Vanbussel, M Schreiner, CS Mendelsohn, D Formisano, E AF Riecke, Lars Micheyl, Christophe Vanbussel, Mieke Schreiner, Claudia S. Mendelsohn, Daniel Formisano, Elia TI Recalibration of the auditory continuity illusion: Sensory and decisional effects SO HEARING RESEARCH LA English DT Article ID HEARING ILLUSORY SOUNDS; SELECTIVE ADAPTATION; PERCEPTUAL TRANSFORMATIONS; PSYCHOPHYSICAL EVIDENCE; SPEECH CATEGORIZATION; PHONEMIC RESTORATION; STREAM SEGREGATION; NEURAL MECHANISMS; TONE SEQUENCES; AWAKE MACAQUES AB An interrupted sound can be perceived as continuous when noise masks the interruption, creating an illusion of continuity. Recent findings have shown that adaptor sounds preceding an ambiguous target sound can influence listeners' rating of target continuity. However, it remains unclear whether these aftereffects on perceived continuity influence sensory processes, decisional processes (i.e., criterion shifts), or both. The present study addressed this question. Results show that the target sound was more likely to be rated as 'continuous' when preceded by adaptors that were perceived as clearly discontinuous than when it was preceded by adaptors that were heard (illusorily or veridically) as continuous. Detection-theory analyses indicated that these contrastive aftereffects reflect a combination of sensory and decisional processes. The contrastive sensory aftereffect persisted even when adaptors and targets were presented to opposite ears, suggesting a neural origin in structures that receive binaural inputs. Finally, physically identical but perceptually ambiguous adaptors that were rated as 'continuous' induced more reports of target continuity than adaptors that were rated as 'discontinuous'. This assimilative aftereffect was purely decisional. These findings confirm that judgments of auditory continuity can be influenced by preceding events, and reveal that these aftereffects have both sensory and decisional components. (C) 2011 Elsevier B.V. All rights reserved. C1 [Riecke, Lars; Vanbussel, Mieke; Formisano, Elia] Maastricht Univ, Fac Psychol & Neurosci, Maastricht, Netherlands. [Micheyl, Christophe] Univ Minnesota, Dept Psychol, Minneapolis, MN 55455 USA. [Schreiner, Claudia S.] Res Ctr Julich, Inst Neurosci & Med, Julich, Germany. [Mendelsohn, Daniel] Univ Western Ontario, Schulich Sch Med & Dent, London, ON N6A 3K7, Canada. RP Riecke, L (reprint author), Maastricht Univ, Fac Psychol & Neurosci, Univ Singel 40, Maastricht, Netherlands. EM l.riecke@maastrichtuniversity.nl FU Netherlands Organization for Scientific Research (NWO) [05104020]; NIH [R01 DC007657] FX This work was supported by the Netherlands Organization for Scientific Research (NWO) Cognitie programma Grant 05104020. The authors thank Andrew Oxenham for useful discussions. Author CM is supported by an NIH grant (R01 DC007657). CR Aravamudhan R, 2008, J ACOUST SOC AM, V124, P1695, DOI 10.1121/1.2956482 Bartlett EL, 2005, J NEUROPHYSIOL, V94, P83, DOI 10.1152/jn.01124.2004 BASHFORD JA, 1987, PERCEPT PSYCHOPHYS, V42, P114, DOI 10.3758/BF03210499 BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289 BENNETT KB, 1984, PERCEPT PSYCHOPHYS, V35, P570, DOI 10.3758/BF03205955 Blake R., 1994, PERCEPTION, V3rd Braaten RE, 1999, PSYCHOL SCI, V10, P162, DOI 10.1111/1467-9280.00125 BREGMAN AS, 1978, J EXP PSYCHOL HUMAN, V4, P380, DOI 10.1037//0096-1523.4.3.380 BREGMAN AS, 1977, CAN J PSYCHOL, V31, P151, DOI 10.1037/h0081658 Bregman AS., 1990, AUDITORY SCENE ANAL Brosch M, 1997, J NEUROPHYSIOL, V77, P923 Brown GS, 2005, BEHAV RES METHODS, V37, P436, DOI 10.3758/BF03192712 CIOCCA V, 1987, PERCEPT PSYCHOPHYS, V42, P476, DOI 10.3758/BF03209755 CONDON CD, 1991, BEHAV NEUROSCI, V105, P416 Creelman C. D., 1991, DETECTION THEORY USE Davis KA, 2005, JARO-J ASSOC RES OTO, V6, P280, DOI 10.1007/s10162-005-0008-5 DIEHL RL, 1978, J EXP PSYCHOL HUMAN, V4, P599, DOI 10.1037//0096-1523.4.4.599 EIMAS PD, 1973, COGNITIVE PSYCHOL, V4, P99, DOI 10.1016/0010-0285(73)90006-6 ELMAN JL, 1979, J ACOUST SOC AM, V65, P190, DOI 10.1121/1.382235 FECHNER G, 1960, ELEMENTS PSYCHOPHYSI Frissen I, 2003, ACTA PSYCHOL, V113, P315, DOI 10.1016/S0001-6918(03)00043-X Frissen I, 2005, ACTA PSYCHOL, V118, P93, DOI 10.1016/j.actpsy.2004.10.004 Gold JI, 2007, ANNU REV NEUROSCI, V30, P535, DOI 10.1146/annurev.neuro.29.051605.113038 Green D. M., 1966, SIGNAL DETECTION THE GREEN GGR, 1974, J PHYSIOL-LONDON, V241, pP29 Heinrich A, 2008, J COGNITIVE NEUROSCI, V20, P1737, DOI 10.1162/jocn.2008.20069 Holt LL, 2005, PSYCHOL SCI, V16, P305, DOI 10.1111/j.0956-7976.2005.01532.x Holt LL, 2006, J ACOUST SOC AM, V120, P2801, DOI 10.1121/1.2354071 HOUTGAST T, 1972, J ACOUST SOC AM, V51, P1885, DOI 10.1121/1.1913048 Husain FT, 2005, J COGNITIVE NEUROSCI, V17, P1275, DOI 10.1162/0898929055002472 JESTEADT W, 1977, J EXP PSYCHOL HUMAN, V3, P92, DOI 10.1037//0096-1523.3.1.92 Jones M, 2003, J EXP PSYCHOL LEARN, V29, P626, DOI 10.1037/0278-7393.29.4.626 Jones M, 2006, J EXP PSYCHOL LEARN, V32, P316, DOI 10.1037/0278-7393.32.3.316 King AJ, 2009, NAT NEUROSCI, V12, P698, DOI 10.1038/nn.2308 KLUENDER KR, 1992, PERCEPT PSYCHOPHYS, V51, P231, DOI 10.3758/BF03212249 Komatsu H, 2006, NAT REV NEUROSCI, V7, P220, DOI 10.1038/nrn1869 Malone BJ, 2002, J NEUROSCI, V22, P4625 Mapes-Riordan D, 1999, J ACOUST SOC AM, V106, P3506, DOI 10.1121/1.428203 MARKS LE, 1993, J EXP PSYCHOL HUMAN, V19, P227, DOI 10.1037//0096-1523.19.2.227 Micheyl C, 2003, J COGNITIVE NEUROSCI, V15, P747, DOI 10.1162/089892903322307456 Micheyl C, 2005, NEURON, V48, P139, DOI 10.1016/j.neuron.2005.08.039 Miller CT, 2001, NAT NEUROSCI, V4, P783, DOI 10.1038/90481 MILLER GA, 1950, J ACOUST SOC AM, V22, P167, DOI 10.1121/1.1906584 Morgan MJ, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000256 MORI S, 1995, PERCEPT PSYCHOPHYS, V57, P1065, DOI 10.3758/BF03205465 Pessoa L., 2003, FILLING IN PERCEPTUA Petkov CI, 2007, NEURON, V54, P153, DOI 10.1016/j.neuron.2007.02.031 PETKOV CI, 2010, EVOLUTIONARY CONSERV Petkov CI, 2003, J NEUROSCI, V23, P9155 PETZOLD P, 1981, J EXP PSYCHOL HUMAN, V7, P1371, DOI 10.1037//0096-1523.7.6.1371 Phillips DP, 2002, HEARING RES, V167, P192, DOI 10.1016/S0378-5955(02)00393-3 Phillips DP, 2005, HEARING RES, V202, P188, DOI [10.1016/j.heares.2004.11.001, 10.1016/j.heres.2004.11.001] RANKIN KM, 1991, CHEM SENSES, V16, P617, DOI 10.1093/chemse/16.6.617 Recanzone GH, 2008, ANNU REV PSYCHOL, V59, P119, DOI 10.1146/annurev.psych.59.103006.093544 Riecke L, 2009, HEARING RES, V247, P71, DOI 10.1016/j.heares.2008.10.006 Riecke L, 2007, J NEUROSCI, V27, P12684, DOI 10.1523/JNEUROSCI.2713-07.2007 Riecke L, 2009, NEURON, V64, P550, DOI 10.1016/j.neuron.2009.10.016 SAMUEL AG, 1981, J EXP PSYCHOL GEN, V110, P474, DOI 10.1037/0096-3445.110.4.474 Samuel AG, 1997, COGNITIVE PSYCHOL, V32, P97, DOI 10.1006/cogp.1997.0646 Samuel AG, 1998, PERCEPT PSYCHOPHYS, V60, P503, DOI 10.3758/BF03206870 SAWUSCH JR, 1981, J EXP PSYCHOL HUMAN, V7, P408, DOI 10.1037//0096-1523.7.2.408 Scharf B, 2002, J ACOUST SOC AM, V112, P807, DOI 10.1121/1.1500755 SCHELLENBERG EG, 1994, PERCEPT PSYCHOPHYS, V56, P472, DOI 10.3758/BF03206738 SCHIFFERSTEIN HNJ, 1992, PERCEPT PSYCHOPHYS, V52, P243, DOI 10.3758/BF03209142 SCHREINER C, 1980, HEARING RES, V3, P265, DOI 10.1016/0378-5955(80)90022-2 Schweinberger SR, 2008, CURR BIOL, V18, P684, DOI 10.1016/j.cub.2008.04.015 Seeba F, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005974 Shahin AJ, 2009, NEUROIMAGE, V44, P1133, DOI 10.1016/j.neuroimage.2008.09.045 SHEPARD RN, 1957, PSYCHOMETRIKA, V22, P325, DOI 10.1007/BF02288967 Shimojo S, 2001, SCIENCE, V293, P1677, DOI 10.1126/science.1060161 SIMON HJ, 1978, J ACOUST SOC AM, V64, P1338, DOI 10.1121/1.382101 Sivonen P, 2006, BRAIN RES, V1121, P177, DOI 10.1016/j.brainres.2006.08.123 Snyder JS, 2009, PSYCHOPHYSIOLOGY, V46, P1208, DOI 10.1111/j.1469-8986.2009.00870.x Snyder JS, 2009, J EXP PSYCHOL HUMAN, V35, P1232, DOI 10.1037/a0012741 Snyder JS, 2008, J EXP PSYCHOL HUMAN, V34, P1007, DOI 10.1037/0096-1523.34.4.1007 Stewart N, 2002, J EXP PSYCHOL LEARN, V28, P3, DOI 10.1037//0278-7393.28.1.3 Sugita Y, 1997, NEUROREPORT, V8, P1155, DOI 10.1097/00001756-199703240-00019 TANSLEY BW, 1983, J ACOUST SOC AM, V74, P765, DOI 10.1121/1.389864 THURLOW W, 1957, AM J PSYCHOL, V70, P653, DOI 10.2307/1419466 TREISMAN M, 1984, J EXP PSYCHOL GEN, V113, P443, DOI 10.1037/0096-3445.113.3.443 Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032 Ulanovsky N, 2004, J NEUROSCI, V24, P10440, DOI 10.1523/JNEUROSCI.1905-04.2004 VERPLANCK WS, 1952, J EXP PSYCHOL, V44, P273, DOI 10.1037/h0054948 VERSCHUURE J, 1983, PERCEPT PSYCHOPHYS, V33, P232, DOI 10.3758/BF03202859 WAKEFIELD GH, 1984, J ACOUST SOC AM, V75, P1588, DOI 10.1121/1.390808 WARD LM, 1971, PERCEPT PSYCHOPHYS, V9, P73, DOI 10.3758/BF03213031 Warren R. M., 1999, AUDITORY PERCEPTION WARREN RM, 1970, SCIENCE, V167, P392, DOI 10.1126/science.167.3917.392 WARREN RM, 1972, SCIENCE, V176, P1149, DOI 10.1126/science.176.4039.1149 Werner-Reiss U, 2006, EXP BRAIN RES, V168, P272, DOI 10.1007/s00221-005-0184-x Wickens Thomas, 2002, ELEMENTARY SIGNAL DE NR 91 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2011 VL 277 IS 1-2 BP 152 EP 162 DI 10.1016/j.heares.2011.01.013 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 805KZ UT WOS:000293726600018 PM 21276844 ER PT J AU Couchman, K Garrett, A Deardorff, AS Rattay, F Resatz, S Fyffe, R Walmsley, B Leao, RN AF Couchman, Kiri Garrett, Andrew Deardorff, Adam S. Rattay, Frank Resatz, Susanne Fyffe, Robert Walmsley, Bruce Leao, Richardson N. TI Lateral superior olive function in congenital deafness SO HEARING RESEARCH LA English DT Article ID AUDITORY BRAIN-STEM; HUMAN COCHLEAR NEURON; GLYCINERGIC TRANSMISSION; SYNAPTIC TRANSMISSION; COMPUTATIONAL MODEL; COTRANSPORTER KCC2; CL-REGULATION; DN/DN MOUSE; MICE; CELLS AB The development of cochlear ilmplants for the treatment of patients with profound hearing loss has advanced considerably in the last few decades, particularly in the field of speech comprehension. However, attempts to provide not only sound decoding but also spatial hearing are limited by our understanding of circuit adaptations in the absence of auditory input. Here we investigate the lateral superior olive (LSO), a nucleus involved in interaural level difference (ILD) processing in the auditory brainstem using a mouse model of congenital deafness (the dn/dn mouse). An electrophysiological investigation of principal neurons of the LSO from the dn/dn mouse reveals a higher than normal proportion of single spiking (SS) neurons, and an increase in the hyperpolarisation-activated I(h) current. However, inhibitory glycinergic input to the LSO appears to develop normally both pre and postsynaptically in dn/dn mice despite the absence of auditory nerve activity. In combination with previous electrophysiological findings from the dn/do mouse, we also compile a simple Hodgkin and Huxley circuit model in order to investigate possible computational deficits in ILD processing resulting from congenital hearing loss. We find that the predominance of SS neurons in the dn/dn LSO may compensate for upstream modifications and help to maintain a functioning ILD circuit in the dn/dn mouse. This could have clinical repercussions on the development of stimulation paradigms for spatial hearing with cochlear implants. (C) 2011 Elsevier B.V. All rights reserved. C1 [Leao, Richardson N.] Uppsala Univ, Dept Neurosci, Neurodynam Lab, S-75124 Uppsala, Sweden. [Couchman, Kiri; Garrett, Andrew; Walmsley, Bruce] Australian Natl Univ, John Curtin Sch Med Res, Div Neurosci, Canberra, ACT 2601, Australia. [Deardorff, Adam S.; Fyffe, Robert] Wright State Univ, Boonshoft Sch Med, Dayton, OH 45435 USA. [Rattay, Frank; Resatz, Susanne] Vienna Univ Technol, TU BIOMED, A-1040 Vienna, Austria. [Leao, Richardson N.] Univ Fed Rio Grande do Norte, Inst Brain, BR-59072970 Natal, RN, Brazil. RP Leao, RN (reprint author), Uppsala Univ, Dept Neurosci, Neurodynam Lab, Husargatan 3, S-75124 Uppsala, Sweden. EM Richardson.Leao@neuro.uu.se RI Couchman, Kiri/B-5302-2013; Rattay, Frank/A-2231-2015 OI Couchman, Kiri/0000-0001-6805-0002; Rattay, Frank/0000-0002-2819-8827 FU International Human Frontier Science Program Organisation; Kjell och Marta Beijers Foundation FX RNL is supported by a long-term fellowship from the International Human Frontier Science Program Organisation and a grant from the Kjell och Marta Beijers Foundation. CR Aguado F, 2003, DEVELOPMENT, V130, P1267, DOI 10.1242/dev.00351 ALVAREZ AJ, 1997, J COMP NEUROL, V379, P150 Amini B, 1999, J NEUROPHYSIOL, V82, P2249 Awatramani GB, 2005, J NEUROPHYSIOL, V93, P819, DOI 10.1152/jn.00798.2004 Barnes-Davies M, 2004, EUR J NEUROSCI, V19, P325, DOI 10.1111/j.1460-9568.2003.03133.x BOCK GR, 1982, BRAIN RES, V239, P608, DOI 10.1016/0006-8993(82)90536-4 Boulanger L, 1999, NAT NEUROSCI, V2, P346 BRUNSOBECHTOLD JK, 1994, HEARING RES, V77, P99, DOI 10.1016/0378-5955(94)90257-7 CANT NB, 1984, J COMP NEUROL, V227, P63, DOI 10.1002/cne.902270108 Clements JD, 1997, BIOPHYS J, V73, P220 DURHAM D, 1989, HEARING RES, V43, P39, DOI 10.1016/0378-5955(89)90057-9 Ehrlich I, 1999, J PHYSIOL-LONDON, V520, P121, DOI 10.1111/j.1469-7793.1999.00121.x Geiman Eric J., 2000, Journal of Comparative Neurology, V426, P130, DOI 10.1002/1096-9861(20001009)426:1<130::AID-CNE9>3.0.CO;2-7 Geiman EJ, 2002, J COMP NEUROL, V444, P275, DOI 10.1002/cne.10148 Graham BP, 2001, NEUROCOMPUTING, V38, P37, DOI 10.1016/S0925-2312(01)00476-3 Hanson MG, 2004, NEURON, V43, P687, DOI 10.1016/j.neuron.2004.08.018 HELFERT RH, 1992, J COMP NEUROL, V323, P305, DOI 10.1002/cne.903230302 Kamiya K, 2001, BRAIN RES, V901, P296, DOI 10.1016/S0006-8993(01)02300-9 Kotak VC, 1998, J NEUROSCI, V18, P4646 Kotak VC, 2005, J NEUROSCI, V25, P3908, DOI 10.1523/JNEUROSCI.5169-04.2005 Kurima K, 2002, NAT GENET, V30, P277, DOI 10.1038/ng842 Leao KE, 2006, J PHYSIOL-LONDON, V576, P849, DOI 10.1113/jphysiol.2006.114702 Leao RN, 2006, EUR J NEUROSCI, V24, P1137, DOI 10.1111/j.1460-9568.2006.04982.x Leao RN, 2006, J PHYSIOL-LONDON, V571, P563, DOI 10.1113/jphysiol.2005.098780 Leao RN, 2004, J NEUROPHYSIOL, V91, P1006, DOI 10.1152/jn.00771.2003 Leao RN, 2005, P ROY SOC B-BIOL SCI, V272, P2551, DOI 10.1098/rspb.2005.3258 Leao RN, 2004, J PHYSIOL-LONDON, V559, P25, DOI 10.1113/jphysiol.2004.067421 Lim R, 1999, J PHYSIOL-LONDON, V516, P505, DOI 10.1111/j.1469-7793.1999.0505v.x Marcotti W, 2006, J PHYSIOL-LONDON, V574, P677, DOI 10.1113/jphysiol.2005.095661 Moody WJ, 2005, PHYSIOL REV, V85, P883, DOI 10.1152/physrev.00017.2004 Noh J, 2010, NAT NEUROSCI, V13, P232, DOI 10.1038/nn.2478 Nopp P, 2004, EAR HEARING, V25, P205, DOI 10.1097/01.AUD.0000130793.20444.50 Oleskevich S, 2004, J PHYSIOL-LONDON, V560, P709, DOI 10.1113/jphysiol.2004.066652 Oleskevich S, 2002, J PHYSIOL-LONDON, V540, P447, DOI 10.1113/jphysiol.2001.013821 Oleskevich S, 1999, J NEUROPHYSIOL, V82, P312 Otsu Y, 2004, J NEUROSCI, V24, P420, DOI 10.1523/JNEUROSCI.4452-03.2004 PUJOL R, 1983, HEARING RES, V12, P57, DOI 10.1016/0378-5955(83)90118-1 RATTAY F, 1993, IEEE T BIO-MED ENG, V40, P1201, DOI 10.1109/10.250575 Rattay F, 2001, HEARING RES, V153, P64, DOI 10.1016/S0378-5955(00)00257-4 Rattay F, 1997, ARTIF ORGANS, V21, P213 Rattay F, 2001, HEARING RES, V153, P43, DOI 10.1016/S0378-5955(00)00256-2 Rivera C, 2004, J NEUROSCI, V24, P4683, DOI 10.1523/JNEUROSCI.5265-03.2004 ROTHMAN JS, 1993, J NEUROPHYSIOL, V70, P2562 RYALS BM, 1991, AM J OTOL, V12, P22 Shibata S, 2004, NEUROSCI RES, V48, P211, DOI 10.1016/j.neures.2003.10.011 Smith AJ, 2000, J PHYSIOL-LONDON, V529, P681, DOI 10.1111/j.1469-7793.2000.00681.x STEEL KP, 1980, NATURE, V288, P159, DOI 10.1038/288159a0 Vanhatalo S, 2005, EUR J NEUROSCI, V22, P2799, DOI 10.1111/j.1460-9568.2005.04459.x van Hoesel RJM, 2003, J ACOUST SOC AM, V113, P1617, DOI 10.1121/1.1539520 Verheugen JAH, 1999, J NEUROSCI, V19, P2546 Walmsley B, 2006, J PHYSIOL-LONDON, V572, P313, DOI 10.1113/jphysiol.2006.104851 WU SH, 1995, J NEUROPHYSIOL, V73, P256 Yang HM, 2004, INT J PEDIATR OTORHI, V68, P1185, DOI 10.1016/j.ijporl.2004.04.011 YIN TC, 2002, INTEGRATIVE FUNCTION, V15, P431 Youssoufian M, 2008, J COMP NEUROL, V506, P442, DOI 10.1002/cne.21566 Zacksenhouse M, 1998, J NEUROPHYSIOL, V79, P3098 NR 56 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2011 VL 277 IS 1-2 BP 163 EP 175 DI 10.1016/j.heares.2011.01.012 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 805KZ UT WOS:000293726600019 PM 21276842 ER PT J AU Nishimura, T Okayasu, T Uratani, Y Fukuda, F Saito, O Hosoi, H AF Nishimura, Tadashi Okayasu, Tadao Uratani, Yuka Fukuda, Fumi Saito, Osamu Hosoi, Hiroshi TI Peripheral perception mechanism of ultrasonic hearing SO HEARING RESEARCH LA English DT Article ID BONE-CONDUCTED ULTRASOUND; EVOKED MYOGENIC POTENTIALS; IMPAIRED LISTENERS; AUDITORY-CORTEX; SPEECH; MASKING AB Ultrasound can be perceived by bone conduction, and its characteristics differ from those of air-conducted audible sound (ACAS) in some respects. Despite many studies on ultrasonic hearing, the details have not yet been clarified. In this study, to elucidate the perception mechanism, the masking of bone-conducted ultrasound (BCU) produced by ACAS and the sensitivity of BCU in hearing impaired subjects were evaluated. We found that BCU was masked by high frequency ACAS, especially in the frequency range of 10-14 kHz. The most effective masker frequency depended on masker intensity. For hearing impaired subjects, the pure tone thresholds at 1-8 kHz and the maximum audible frequencies at cut-off intensities of 70-100 dB HL were significantly associated with the BCU threshold (p < 0.01 or p < 0.05). No subjects with estimated total loss of the inner hair cell system in the cochlear basal turn could hear BCU. These results suggest the peripheral perceptual region to be located in the cochlea. The results of masking show the faster excitation spread to the lower frequency range, depending on the intensity. This faster excitation spread may be due to nonlinearity in cochlear mechanics, which may work even without cochlear amplifier, and induce unique characteristics of BCU. (C) 2011 Elsevier B.V. All rights reserved. C1 [Nishimura, Tadashi; Okayasu, Tadao; Uratani, Yuka; Fukuda, Fumi; Saito, Osamu; Hosoi, Hiroshi] Nara Med Univ, Dept Otolaryngol & Head & Neck Surg, Nara 6348522, Japan. RP Nishimura, T (reprint author), Nara Med Univ, Dept Otolaryngol & Head & Neck Surg, 840 Shijo Cho Kashihara, Nara 6348522, Japan. EM t-nishim@naramed-u.ac.jp FU Japan Society for the Promotion of Science (JSPS) [20791217] FX This study was supported by Grant-in-Aid for Young Scientists (B) (20791217) from Japan Society for the Promotion of Science (JSPS). We thank anonymous reviewers for assistance and helpful comments on an earlier version of this paper. CR BELLUCCI RICHARD J., 1962, ANN OTOL RHINOL AND LARYNGOL, V71, P719 COLEBATCH JG, 1994, J NEUROL NEUROSUR PS, V57, P190, DOI 10.1136/jnnp.57.2.190 CORSO JF, 1963, J ACOUST SOC AM, V35, P1738, DOI 10.1121/1.1918804 DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 DEATHERAGE BH, 1954, J ACOUST SOC AM, V26, P582, DOI 10.1121/1.1907379 DIEROFF HG, 1975, ARCH OTO-RHINO-LARYN, V209, P277, DOI 10.1007/BF00456548 DOBIE RA, 1992, SCIENCE, V255, P1584, DOI 10.1126/science.1549785 DOYLE PJ, 1991, J OTOLARYNGOL, V20, P204 EGAN JP, 1950, J ACOUST SOC AM, V22, P622, DOI 10.1121/1.1906661 Fujimoto K, 2005, HEARING RES, V204, P210, DOI 10.1016/j.heares.2005.02.004 GAVREAU V, 1948, CR HEBD ACAD SCI, V226, P2053 HAEFF AV, 1963, SCIENCE, V139, P590, DOI 10.1126/science.139.3555.590 Harris FP, 2002, OTOACOUSTIC EMISSION, P213 Hosoi H, 1998, LANCET, V351, P496, DOI 10.1016/S0140-6736(05)78683-9 Imaizumi S, 2001, NEUROREPORT, V12, P583, DOI 10.1097/00001756-200103050-00030 LENHARDT ML, 1991, SCIENCE, V253, P82, DOI 10.1126/science.2063208 NELSON DA, 1991, J SPEECH HEAR RES, V34, P1233 Nishimura T, 2002, NEUROSCI LETT, V327, P119, DOI 10.1016/S0304-3940(02)00409-3 NISHIMURA T, 2009, ACTA OTO-LARYNGOL, V562, P28 Nishimura T, 2003, HEARING RES, V175, P171, DOI 10.1016/S0378-5955(02)00735-9 Noordhoek IM, 2000, J ACOUST SOC AM, V107, P1685, DOI 10.1121/1.428452 OHYAMA K, 1987, ACTA OTO-LARYNGOL, P73 Okamoto Y, 2005, HEARING RES, V208, P107, DOI 10.1016/j.heares.2005.05.007 Ozeki H, 1999, ORL J OTO-RHINO-LARY, V61, P80, DOI 10.1159/000027646 PUMPHREY RJ, 1950, NATURE, V166, P571, DOI 10.1038/166571b0 ROBERTSON DD, 1995, J OTOLARYNGOL, V24, P3 Russell IJ, 1997, P NATL ACAD SCI USA, V94, P2660, DOI 10.1073/pnas.94.6.2660 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 STELMACHOWICZ PG, 1987, J ACOUST SOC AM, V81, P1881, DOI 10.1121/1.394752 Wegel R. L., 1932, ANN OTO RHINOL LARYN, V41, P740 Yamashita A, 2010, NEUROREPORT, V21, P119, DOI 10.1097/WNR.0b013e328334f196 YAMASHITA A, 2009, ACTA OTO-LARYNGOL, V562, P34 Yamashita A, 2008, NEUROSCI LETT, V438, P260, DOI 10.1016/j.neulet.2008.03.086 NR 33 TC 7 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2011 VL 277 IS 1-2 BP 176 EP 183 DI 10.1016/j.heares.2011.01.004 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 805KZ UT WOS:000293726600020 PM 21238563 ER PT J AU Shen, HY Lin, ZY Lei, DB Han, J Ohlemiller, KK Bao, JX AF Shen, Haiyan Lin, Zhaoyu Lei, Debin Han, Josiah Ohlemiller, Kevin K. Bao, Jianxin TI Old mice lacking high-affinity nicotine receptors resist acoustic trauma SO HEARING RESEARCH LA English DT Article ID INDUCED HEARING-LOSS; GUINEA-PIG COCHLEA; INNER-EAR; GLUCOCORTICOID-RECEPTORS; CHOLINERGIC-RECEPTORS; AUDITORY-SENSITIVITY; MEDIATED PROTECTION; MAMMALIAN COCHLEA; RESTRAINT STRESS; MOUSE COCHLEA AB There is presently no clearly effective preventative medication against noise-induced hearing loss (NIHL). However, negative feedback systems that presumably evolved to modulate the sensitivity of the organ of Corti may incidentally confer protection. One feedback system implicated in protection from NIHL involves synaptic connections between the lateral olivocochlear efferent terminals and the afferent fibers of spiral ganglion neurons (SGNs). These connections operate via high-affinity nicotinic acetylcholine receptors containing the beta 2 subunit. We unexpectedly observed protection from NIHL in 9-month old knockout mice lacking the beta 2 subunit (beta 2(-/-)); however, the same protection was not observed in 2-month old beta 2(-/-) mice. This enigmatic observation led to the discovery that protection from acoustic trauma in older beta 2(-/-) mice is mainly mediated by an age-related increase of corticosterone, not disruption of efferent cholinergic transmission. Significant protection of inner hair cells after acoustic trauma in beta 2(-/-) mice was linked to the activation of glucocorticoid signaling pathways. However, significant loss of SGNs was observed in animals with chronically high systemic levels of corticosterone. These results suggested a "double-edge sword" nature of glucocorticoid signaling in neuronal protection, and a need for caution regarding when to apply synthetic glucocorticoid drugs to treat neural injury such as accompanies acoustic trauma. (C) 2011 Elsevier B.V. All rights reserved. C1 [Shen, Haiyan; Lin, Zhaoyu; Lei, Debin; Han, Josiah; Ohlemiller, Kevin K.; Bao, Jianxin] Washington Univ, Dept Otolaryngol, Fay & Carl Simons Ctr Hearing Res, St Louis, MO 63110 USA. [Shen, Haiyan; Lin, Zhaoyu] Nanjing Univ, Model Anim Res Ctr, Nanjing 210061, Peoples R China. [Bao, Jianxin] Washington Univ, Ctr Aging, Sch Med, St Louis, MO 63110 USA. RP Bao, JX (reprint author), Washington Univ, Dept Otolaryngol, Fay & Carl Simons Ctr Hearing Res, 4560 Clayton Ave, St Louis, MO 63110 USA. EM jbao@wustl.edu FU National Institute on Deafness and Other Communication Disorders [R21DC010489, P30DC004665]; National Institute on Aging [R01AG024250] FX We are grateful to Drs. Charles Liberman and Stephane Maison for valuable suggestions and sharing preliminary data. We thank Drs. Barbara Bohne and Nobuo Suga for critical reading of the manuscript. Research was supported by the National Institute on Deafness and Other Communication Disorders (R21DC010489; P30DC004665) and the National Institute on Aging (R01AG024250). CR Bao JX, 2005, J NEUROSCI, V25, P3041, DOI 10.1523/JNEUROSCI.5277-04.2005 Canlon B, 2007, HEARING RES, V226, P61, DOI 10.1016/j.heares.2006.05.009 DALDIN C, 1995, EUR ARCH OTO-RHINO-L, V252, P270 Darrow KN, 2007, J NEUROPHYSIOL, V97, P1775, DOI 10.1152/jn.00955.2006 *DHHS, 2009, HLTH PEOPL 2010 UND Drescher DG, 1995, COMP BIOCHEM PHYS C, V112, P267, DOI 10.1016/0742-8413(95)02020-9 Elgoyhen AB, 2009, BIOCHEM PHARMACOL, V78, P712, DOI 10.1016/j.bcp.2009.05.023 Erichsen S, 2001, HEARING RES, V160, P37, DOI 10.1016/S0378-5955(01)00317-3 EYBALIN M, 1993, PHYSIOL REV, V73, P309 Gaddnas H, 2000, BEHAV BRAIN RES, V113, P65, DOI 10.1016/S0166-4328(00)00201-1 Hirose Y, 2007, NEUROSCI LETT, V413, P63, DOI 10.1016/j.neulet.2006.11.029 HOUSLEY GD, 1994, HEARING RES, V75, P47, DOI 10.1016/0378-5955(94)90054-X HUGHES J, 1993, CLIN EXP DERMATOL, V18, P373, DOI 10.1111/j.1365-2230.1993.tb02222.x Jin DX, 2009, BRAIN RES, V1277, P3, DOI 10.1016/j.brainres.2009.02.017 KIRCH DG, 1992, J PHARM PHARMACOL, V44, P89 Kopke R, 2005, ACTA OTO-LARYNGOL, V125, P235, DOI 10.1080/00016480410023038 Kujawa SG, 1997, J NEUROPHYSIOL, V78, P3095 Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 LANDFIELD PW, 1978, SCIENCE, V202, P1098, DOI 10.1126/science.715460 Lefebvre PP, 2002, AUDIOL NEURO-OTOL, V7, P165, DOI 10.1159/000058304 Le Prell CG, 2007, HEARING RES, V226, P22, DOI 10.1016/j.heares.2006.10.006 Lynch ED, 2005, DRUG DISCOV TODAY, V10, P1291, DOI 10.1016/S1359-6446(05)03561-0 Maison SF, 2007, J NEUROPHYSIOL, V97, P3269, DOI 10.1152/jn.00067.2007 MCCABE BF, 1979, ANN OTO RHINOL LARYN, V88, P585 McEwen BS, 2008, EUR J PHARMACOL, V583, P174, DOI [10.1016/j.ejphar.2007.11.071, 10.1016/j.ejphar.2007.11.07t] Morley BJ, 1998, MOL BRAIN RES, V53, P78, DOI 10.1016/S0169-328X(97)00272-6 Nadol JB, 1996, AM J OTOL, V17, P312 Niu XZ, 2002, ADV OTO-RHINO-LARYNG, V59, P96 Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X Ohlemiller KK, 2000, HEARING RES, V149, P239, DOI 10.1016/S0378-5955(00)00191-X Ohlemiller KK, 2008, HEARING RES, V245, P5, DOI 10.1016/j.heares.2008.08.007 Paz Z, 2004, AUDIOL NEURO-OTOL, V9, P363, DOI 10.1159/000081409 Phillips JM, 2007, NEUROSCIENCE, V144, P1314, DOI 10.1016/j.neuroscience.2006.11.003 Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037 Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3 Quaranta A, 1998, Scand Audiol Suppl, V48, P75 Rabenstein RL, 2006, PSYCHOPHARMACOLOGY, V189, P395, DOI 10.1007/s00213-006-0568-z RAJAN R, 1988, J NEUROPHYSIOL, V60, P569 REITER ER, 1995, J NEUROPHYSIOL, V73, P506 REUL JMHM, 1985, ENDOCRINOLOGY, V117, P2505 ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X Ruel J, 2001, EUR J NEUROSCI, V14, P977, DOI 10.1046/j.0953-816x.2001.01721.x SAPOLSKY RM, 1986, J NEUROSCI, V6, P2240 Shen HY, 2007, HEARING RES, V226, P52, DOI 10.1016/j.heares.2006.12.011 Shimazaki T, 2002, ANN OTO RHINOL LARYN, V111, P1133 Tahera Y, 2006, ENDOCRINOLOGY, V147, P4430, DOI 10.1210/en.2006-0260 Tahera Y, 2006, J NEUROSCI RES, V83, P1066, DOI 10.1002/jnr.20795 Takahashi K, 1996, ACTA OTO-LARYNGOL, V116, P209, DOI 10.3109/00016489609137825 Takemura K, 2004, HEARING RES, V196, P58, DOI 10.1016/j.heares.2004.06.003 Wang Y, 2002, HEARING RES, V165, P96, DOI 10.1016/S0378-5955(02)00289-7 Yoshida N, 1999, J NEUROSCI, V19, P10116 Zoli M, 1999, EMBO J, V18, P1235, DOI 10.1093/emboj/18.5.1235 NR 52 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2011 VL 277 IS 1-2 BP 184 EP 191 DI 10.1016/j.heares.2011.01.009 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 805KZ UT WOS:000293726600021 PM 21272629 ER PT J AU Buchholz, JM AF Buchholz, Joerg M. TI A quantitative analysis of spectral mechanisms involved in auditory detection of coloration by a single wall reflection SO HEARING RESEARCH LA English DT Article ID PHASE SENSITIVITY; MODEL STRUCTURE; COMPUTER-MODEL; VIRTUAL PITCH; COMPLEX TONES; MASKING MODEL; NOISE; PERCEPTION; PERIPHERY; FREQUENCY AB Coloration detection thresholds (CDTs) were measured for a single reflection as a function of spectral content and reflection delay for diotic stimulus presentation. The direct sound was a 320-ms long burst of bandpass-filtered noise with varying lower and upper cut-off frequencies. The resulting threshold data revealed that: (I) sensitivity decreases with decreasing bandwidth and increasing reflection delay and (2) high-frequency components contribute less to detection than low-frequency components. The auditory processes that may be involved in coloration detection (CD) are discussed in terms of a spectrum-based auditory model, which is conceptually similar to the pattern-transformation model of pitch (Wightman, 1973). Hence, the model derives an auto-correlation function of the input stimulus by applying a frequency analysis to an auditory representation of the power spectrum. It was found that, to successfully describe the quantitative behavior of the CDT data, three important mechanisms need to be included: (1) auditory bandpass filters with a narrower bandwidth than classic Gammatone filters, the increase in spectral resolution was here linked to cochlear suppression, (2) a spectral contrast enhancement process that reflects neural inhibition mechanisms, and (3) integration of information across auditory frequency bands. (C) 2011 Elsevier B.V. All rights reserved. C1 [Buchholz, Joerg M.] Natl Acoust Labs, Chatswood, NSW 2067, Australia. [Buchholz, Joerg M.] Macquarie Univ, Dept Linguist Audiol, N Ryde, NSW 2109, Australia. RP Buchholz, JM (reprint author), Natl Acoust Labs, 126 Greville St, Chatswood, NSW 2067, Australia. EM Jorg.Buchholz@nal.gov.au CR ANDO Y, 1982, J ACOUST SOC AM, V71, P616, DOI 10.1121/1.387534 ATAL BS, 1962, 4 INT C AC COP BILSEN FA, 1970, J ACOUST SOC AM, V47, P469, DOI 10.1121/1.1911916 BILSEN FA, 1969, ACUSTICA, V22, P63 Blauert J., 1997, SPATIAL HEARING PSYC Bradley JS, 2003, J ACOUST SOC AM, V113, P3233, DOI 10.1121/1.1570439 Breebaart J, 2001, J ACOUST SOC AM, V110, P1074, DOI 10.1121/1.1383297 Buchholz JM, 2007, HEARING RES, V232, P52, DOI 10.1016/j.heares.2007.06.008 Buchholz JM, 2004, ACTA ACUST UNITED AC, V90, P873 BUUS S, 1986, J ACOUST SOC AM, V80, P1646, DOI 10.1121/1.394329 COHEN MA, 1995, J ACOUST SOC AM, V98, P862, DOI 10.1121/1.413512 Dau T, 1996, J ACOUST SOC AM, V99, P3615, DOI 10.1121/1.414959 de Cheveigne A., 2005, PITCH NEURAL CODING, P169 DURLACH NI, 1986, J ACOUST SOC AM, V80, P63, DOI 10.1121/1.394084 Eddins DA, 2007, J ACOUST SOC AM, V121, P363, DOI 10.1121/1.2382347 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T GOLDSTEI.JL, 1973, J ACOUST SOC AM, V54, P1496, DOI 10.1121/1.1914448 Green D. M., 1988, PROFILE ANAL AUDITOR HAAS H, 1951, ACUSTICA, V1, P49 Hant JJ, 1997, J ACOUST SOC AM, V101, P2789, DOI 10.1121/1.418565 Hant JJ, 2003, SPEECH COMMUN, V40, P291, DOI 10.1016/S0167-6393(02)00068-7 Hartmann W. M., 1998, SIGNALS SOUND SENSAT KAERNBACH C, 1991, PERCEPT PSYCHOPHYS, V49, P227, DOI 10.3758/BF03214307 KATES JM, 1985, J ACOUST SOC AM, V77, P1529, DOI 10.1121/1.391995 LICKLIDER JCR, 1951, EXPERIENTIA, V7, P128, DOI 10.1007/BF02156143 Litovsky RY, 1999, J ACOUST SOC AM, V106, P1633, DOI 10.1121/1.427914 MEDDIS R, 1991, J ACOUST SOC AM, V89, P2883, DOI 10.1121/1.400726 MEDDIS R, 1991, J ACOUST SOC AM, V89, P2866, DOI 10.1121/1.400725 Moore BCJ, 2004, J AUDIO ENG SOC, V52, P900 Moore B.C.J., 1986, FREQUENCY SELECTIVIT Oxenham AJ, 2003, JARO-J ASSOC RES OTO, V4, P541, DOI 10.1007/s10162-002-3058-y Patterson R.D., 1988, 2341 APU Pickles JO, 2008, INTRO PHYSL HEARING Piechowiak T, 2007, J ACOUST SOC AM, V121, P2111, DOI 10.1121/1.2534227 Plack C. J., 2005, PITCH NEURAL CODING Plack CJ, 1998, J ACOUST SOC AM, V103, P1598, DOI 10.1121/1.421294 Plack C.J., 2005, PITCH NEURAL CODING, P7 Ruggero MA, 2005, P NATL ACAD SCI USA, V102, P18614, DOI 10.1073/pnas.0509323102 SALOMONS AM, 1995, THESIS U DELFT NETHE Shera CA, 2002, P NATL ACAD SCI USA, V99, P3318, DOI 10.1073/pnas.032675099 TERHARDT E, 1974, J ACOUST SOC AM, V55, P1061, DOI 10.1121/1.1914648 WIGHTMAN FL, 1973, J ACOUST SOC AM, V54, P407, DOI 10.1121/1.1913592 Yost WA, 1996, J ACOUST SOC AM, V100, P3329, DOI 10.1121/1.416973 YOST WA, 1982, J ACOUST SOC AM, V72, P416, DOI 10.1121/1.388094 ZUREK PM, 1979, J ACOUST SOC AM, V66, P1750, DOI 10.1121/1.383648 Zwicker E, 1999, PSYCHOACOUSTICS FACT NR 46 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2011 VL 277 IS 1-2 BP 192 EP 203 DI 10.1016/j.heares.2011.01.002 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 805KZ UT WOS:000293726600022 PM 21236325 ER PT J AU Dai, CK Fridman, GY Della Santina, CC AF Dai, Chenkai Fridman, Gene Y. Della Santina, Charles C. TI Effects of vestibular prosthesis electrode implantation and stimulation on hearing in rhesus monkeys SO HEARING RESEARCH LA English DT Article ID HIGH-ACCELERATION ROTATIONS; SEMICIRCULAR CANAL PROSTHESIS; PRODUCT OTOACOUSTIC EMISSIONS; VESTIBULOOCULAR REFLEX; SQUIRREL-MONKEY; MACACA-MULATTA; ELECTRICAL-STIMULATION; RESPONSES; LABYRINTHECTOMY AB To investigate the effects of vestibular prosthesis electrode implantation and activation on hearing in rhesus monkeys, we measured auditory brainstem responses (ABR) and distortion product otoacoustic emissions (DPOAE) in four rhesus monkeys before and after unilateral implantation of vestibular prosthesis electrodes in each of 3 left semicircular canals (SCC). Each of the 3 left SCCs were implanted with electrodes via a transmastoid approach. Right ears, which served as controls, were not surgically manipulated. Hearing tests were conducted before implantation (BI) and then 4 weeks post-implantation both without electrical stimulation (NS) and with electrical stimulation (S). During the latter condition, prosthetic electrical stimuli encoding 3 dimensions of head angular velocity were delivered to the 3 ampullary branches of the left vestibular nerve via each of 3 electrode pairs of a multichannel vestibular prosthesis. Electrical stimuli comprised charge-balanced biphasic pulses at a baseline rate of 94 pulses/s, with pulse frequency modulated from 48 to 222 pulses/s by head angular velocity. ABR hearing thresholds to clicks and tone pips at 1, 2, and 4 kHz increased by 5-10 dB from BI to NS and increased another similar to 5 dB from NS to S in implanted ears. No significant change was seen in right ears. DPOAE amplitudes decreased by 2-14 dB from BI to NS in implanted ears. There was a slight but insignificant decrease of DPOAE amplitude and a corresponding increase of DPOAE/Noise floor ratio between NS and S in implanted ears. Vestibular prosthesis electrode implantation and activation have small but measurable effects on hearing in rhesus monkeys. Coupled with the clinical observation that patients with cochlear implants only rarely exhibit signs of vestibular injury or spurious vestibular nerve stimulation, these results suggest that although implantation and activation of multichannel vestibular prosthesis electrodes in human will carry a risk of hearing loss, that loss is not likely to be severe. (C) 2010 Elsevier B.V. All rights reserved. C1 [Dai, Chenkai; Fridman, Gene Y.; Della Santina, Charles C.] Johns Hopkins Sch Med, Vestibular NeuroEngn Lab, Baltimore, MD 21205 USA. [Dai, Chenkai; Fridman, Gene Y.; Della Santina, Charles C.] Johns Hopkins Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Baltimore, MD 21205 USA. [Della Santina, Charles C.] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA. RP Della Santina, CC (reprint author), Johns Hopkins Sch Med, Vestibular NeuroEngn Lab, 720 Rutland Ave,Ross Bldg,Rm 830, Baltimore, MD 21205 USA. EM charley.dellasantina@jhu.edu FU United States National Institute on Deafness and Other Communication Disorders [R01DC9255, R01DC2390] FX This research was supported by unrestricted grants from the United States National Institute on Deafness and Other Communication Disorders, grants R01DC9255 and R01DC2390. We thank Lani Swarthout for assistance with ABR measurements. DPOAE were collected with aid from Colleen Ryan-Bane and Alicia White. CR BLANKS RHI, 1985, BRAIN RES, V340, P315, DOI 10.1016/0006-8993(85)90928-X CHIANG B, 2011, IEEE T NEUR IN PRESS DAVIDOVICS NS, 2010, IEEE T NEURAL S 0902 Della Santina Charles C, 2010, Cochlear Implants Int, V11 Suppl 2, P2, DOI 10.1179/146701010X12726366068454 Della Santina CC, 2007, IEEE T BIO-MED ENG, V54, P1016, DOI 10.1109/TBME.2007.894629 Della Santina CC, 2005, JARO-J ASSOC RES OTO, V6, P191, DOI 10.1007/s10162-005-0003-x EPLEY J M, 1980, Otolaryngology - Head and Neck Surgery, V88, P304 Fridman GY, 2010, JARO-J ASSOC RES OTO, V11, P367, DOI 10.1007/s10162-010-0208-5 Gacek RR, 2002, ORL J OTO-RHINO-LARY, V64, P397, DOI 10.1159/000067572 Gong WS, 2000, ANN BIOMED ENG, V28, P572, DOI 10.1114/1.293 Gong WS, 2002, IEEE T BIO-MED ENG, V49, P175, DOI 10.1109/10.979358 HASLWANTER T, 1995, VISION RES, V35, P1727, DOI 10.1016/0042-6989(94)00257-M HAYDEN RP, 2008, ASS RES OT ANN M PHO HEPP K, 1990, COMMUN MATH PHYS, V132, P285, DOI 10.1007/BF02278012 Lasker DM, 2000, J NEUROPHYSIOL, V83, P2482 LASKY RE, 1995, HEARING RES, V89, P35, DOI 10.1016/0378-5955(95)00120-1 MARTIN GK, 1988, HEARING RES, V33, P49, DOI 10.1016/0378-5955(88)90020-2 Migliaccio AA, 2004, EXP BRAIN RES, V159, P433, DOI 10.1007/s00221-004-1974-2 Migliaccio A. A., 1999, Australasian Physical and Engineering Sciences in Medicine, V22, P73 MINOR LB, 1991, J NEUROSCI, V11, P1636 Minor LB, 1999, J NEUROPHYSIOL, V82, P1254 PAIGE GD, 1991, J NEUROPHYSIOL, V65, P1170 PARK JY, 1995, HEARING RES, V86, P147, DOI 10.1016/0378-5955(95)00065-C REMMEL RS, 1984, IEEE T BIO-MED ENG, V31, P388, DOI 10.1109/TBME.1984.325352 Sadeghi SG, 2007, J NEUROPHYSIOL, V97, P1503, DOI 10.1152/jn.00829.2006 STRAUMANN D, 1995, VISION RES, V35, P3321, DOI 10.1016/0042-6989(95)00091-R Tang S, 2009, ACTA OTO-LARYNGOL, V129, P481, DOI 10.1080/00016480802252243 Tien HC, 2002, OTOLARYNG HEAD NECK, V127, P260, DOI 10.1067/mhn.2002.128555 Torre P, 2004, NEUROBIOL AGING, V25, P945, DOI 10.1016/j.neurobiolaging.2003.09.006 NR 29 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2011 VL 277 IS 1-2 BP 204 EP 210 DI 10.1016/j.heares.2010.12.021 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 805KZ UT WOS:000293726600023 PM 21195755 ER PT J AU Gratton, MA Eleftheriadou, A Garcia, J Verduzco, E Martin, GK Martin, BLL Vazquez, AE AF Gratton, Michael Anne Eleftheriadou, Anna Garcia, Jerel Verduzco, Esteban Martin, Glen K. Martin, Brenda L. Lonsbury Vazquez, Ana E. TI Noise-induced changes in gene expression in the cochleae of mice differing in their susceptibility to noise damage SO HEARING RESEARCH LA English DT Article ID INDUCED HEARING-LOSS; GUINEA-PIG COCHLEA; NF-KAPPA-B; AUDITORY HAIR-CELLS; ACOUSTIC TRAUMA; INNER-EAR; RAT COCHLEA; OXIDATIVE STRESS; POSTMITOTIC STATE; MOUSE COCHLEA AB The molecular mechanisms underlying the vast differences between individuals in their susceptibility to noise-induced hearing loss (NIHL) are unknown. The present study demonstrated that the effects of noise over-exposure on the expression of molecules likely to be important in the development of NIHL differ among inbred mouse strains having distinct susceptibilities to NIHL including B6 (B6.CAST) and 129 (129X1/SvJ and 129S1/SvImJ) mice. The noise-exposure protocol produced a loss of 40 dB in hearing sensitivity in susceptible B6 mice, but no loss for the two resistant 129 substrains. Analysis of gene expression in the membranous labyrinth 6 h following noise exposure revealed upregulation of transcription factors in both the susceptible and resistant strains. However, a significant induction of genes involved in cell-survival pathways such as the heat shock proteins HSP70 and HSP40, growth arrest and DNA-damage-inducible protein 45 beta(CADD45 beta), and CDK-interacting protein 1 (p21(ciP1)) was detected only in the resistant mice. Moreover, in 129 mice significant upregulation of HSP70, GADD45 beta, and p21(Cip1) was confirmed at the protein level. Since the functions of these proteins include roles in potent anti-apoptotic cellular pathways, their upregulation may contribute to protection from NIHL in the resistant 129 mice. (C) 2010 Elsevier B.V. All rights reserved. C1 [Garcia, Jerel; Verduzco, Esteban; Vazquez, Ana E.] Univ Calif Davis, Dept Otolaryngol, Davis, CA 95618 USA. [Garcia, Jerel; Verduzco, Esteban; Vazquez, Ana E.] Univ Calif Davis, Ctr Neurosci, Davis, CA 95618 USA. [Gratton, Michael Anne] Univ Penn, Dept Otorhinolaryngol, Philadelphia, PA 19104 USA. [Eleftheriadou, Anna] G Gennimatas Hosp, Dept Otorhinolaryngol, Athens, Greece. [Martin, Glen K.; Martin, Brenda L. Lonsbury] VA Loma Linda Healthcare Syst, Res Serv, Loma Linda, CA USA. [Martin, Glen K.] Loma Linda Univ, Dept Otolaryngol Head & Neck Surg, Loma Linda, CA 92350 USA. RP Vazquez, AE (reprint author), Univ Calif Davis, Dept Otolaryngol, Davis, CA 95618 USA. EM avazquez@ucdavis.edu FU Public Health Service NIH-NIDCD [DC006442, DC005578] FX We would like to thank Barden B. Stagner for assistance with the preparation of the illustrations. This research was supported by the Public Health Service NIH-NIDCD grants DC006442 (MAG) and DC005578 (AEV). CR Ahn JH, 2005, BIOCHEM BIOPH RES CO, V335, P485, DOI 10.1016/j.bbrc.2005.07.114 Ajiro K, 2000, J BIOL CHEM, V275, P439, DOI 10.1074/jbc.275.1.439 Besson A, 2008, DEV CELL, V14, P159, DOI [10.1016/j.devcel.2008.01.013, 10.1016/j.devce1.2008.01.013] Bohne BA, 2007, HEARING RES, V223, P61, DOI 10.1016/j.heares.2006.10.004 Candreia C, 2004, HEARING RES, V194, P109, DOI 10.1016/j.heares.2004.04.007 Chen P, 2003, NAT CELL BIOL, V5, P422, DOI 10.1038/ncb976 Cho YS, 2004, MOL BRAIN RES, V130, P134, DOI 10.1016/j.molbrainres.2004.07.017 Davis R R, 2003, Noise Health, V5, P19 DERIJARD B, 1994, CELL, V76, P1025, DOI 10.1016/0092-8674(94)90380-8 De Smaele E, 2001, NATURE, V414, P308, DOI 10.1038/35104560 Engström H, 1970, Ciba Found Symp, P127 Fortunato G, 2004, CLIN CHEM, V50, P2012, DOI 10.1373/clinchem.2004.037788 Frazer KA, 2007, NATURE, V448, P1050, DOI 10.1038/nature06067 FREDELIUS L, 1988, ACTA OTO-LARYNGOL, V106, P373, DOI 10.3109/00016488809122260 FREDELIUS L, 1990, ACTA OTO-LARYNGOL, V109, P76, DOI 10.3109/00016489009107417 Garcia J, 2002, EMBO J, V21, P5151, DOI 10.1093/emboj/cdf488 Gower VC, 1997, LARYNGOSCOPE, V107, P228, DOI 10.1097/00005537-199702000-00016 Harding GW, 2005, HEARING RES, V204, P90, DOI 10.1016/j.heares.2005.01.004 Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3 Hirose K, 2005, J COMP NEUROL, V489, P180, DOI 10.1002/cne.20619 Hotson AN, 2009, J IMMUNOL, V182, P7558, DOI 10.4049/jimmunol.0803666 Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1 Jacono AA, 1998, HEARING RES, V117, P31, DOI 10.1016/S0378-5955(97)00214-1 Jimenez AM, 2001, JARO, V2, P233 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X KEARSEY JM, 1995, ONCOGENE, V11, P1675 Kirkegaard M, 2006, NEUROSCIENCE, V142, P425, DOI 10.1016/j.neuroscience.2006.06.037 Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x KYRIAKIS JM, 1994, NATURE, V369, P156, DOI 10.1038/369156a0 Laine H, 2007, J NEUROSCI, V27, P1434, DOI 10.1523/JNEUROSCI.4956-06.2007 Lee SH, 2004, STROKE, V35, P2195, DOI 10.1161/01.STR.0000136150.73891.14 Leonova EV, 2002, HEARING RES, V163, P61, DOI 10.1016/S0378-5955(01)00379-3 LIM HH, 1993, HEARING RES, V69, P146 Lomax MI, 2001, NOISE HEALTH, V3, P19 Mantela J, 2005, DEVELOPMENT, V132, P2377, DOI 10.1242/dev.01834 Matsumori Y, 2005, J CEREBR BLOOD F MET, V25, P899, DOI 10.1038/sj.jcbfm.9600080 Matsumori Y, 2006, STROKE, V37, P507, DOI 10.1161/01.STR.0000199057.00365.20 Miyao M, 2008, LARYNGOSCOPE, V118, P1801, DOI 10.1097/MLG.0b013e31817e2c27 NEELY JG, 1991, HEARING RES, V52, P403, DOI 10.1016/0378-5955(91)90028-8 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 Ogita K, 2000, NEUROREPORT, V11, P859, DOI 10.1097/00001756-200003200-00040 Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5 Ohlemiller KK, 2007, HEARING RES, V224, P34, DOI 10.1016/j.heares.2006.11.005 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847 O'Reilly MA, 2005, ANTIOXID REDOX SIGN, V7, P108, DOI 10.1089/ars.2005.7.108 O'Reilly MA, 2001, AM J RESP CELL MOL, V24, P703 Ou HC, 2000, HEARING RES, V145, P111, DOI 10.1016/S0378-5955(00)00081-2 PAPA S, 2007, J BIOL CHEM Papa S, 2004, NAT CELL BIOL, V6, P146, DOI 10.1038/ncb1093 Pirvola U, 2000, J NEUROSCI, V20, P43 Scarpidis U, 2003, OTOL NEUROTOL, V24, P409, DOI 10.1097/00129492-200305000-00011 Shizuki K, 2002, NEUROSCI LETT, V320, P73, DOI 10.1016/S0304-3940(02)00059-9 Sliwińiska-Kowalska Mariola, 2006, Pol Merkur Lekarski, V21, P384 Sliwinska-Kwalska Mariola, 2006, International Journal of Occupational Medicine and Environmental Health, V19, P235, DOI 10.2478/v10001-006-0029-2 Sliwinska-Kowalska M, 2008, AM J HUM BIOL, V20, P481, DOI 10.1002/ajhb.20744 Stankovic K, 2004, J NEUROSCI, V24, P8651, DOI 10.1523/JNEUROSCI.0733-04.2004 Sugawara M, 2005, JARO-J ASSOC RES OTO, V6, P136, DOI 10.1007/s10162-004-5050-1 Sutherland KD, 2007, CELL CYCLE, V6, P799 Taggart R.T., 2001, NOISE HEALTH, V3, P1 Tornabene SV, 2006, HEARING RES, V222, P115, DOI 10.1016/j.heares.2006.09.004 Van Laer L, 2006, HUM MUTAT, V27, P786, DOI 10.1002/humu.20360 Wang J, 2007, MOL PHARMACOL, V71, P654, DOI 10.1124/mol.106.028936 Wang J, 2003, J NEUROSCI, V23, P8596 Wang T, 2005, J BIOL CHEM, V280, P12593, DOI 10.1074/jbc.M410982200 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 Wu MX, 2003, APOPTOSIS, V8, P11, DOI 10.1023/A:1021688600370 YAMANE H, 1995, ACTA OTO-LARYNGOL, P87 Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015 Yoshida N, 2000, HEARING RES, V141, P97, DOI 10.1016/S0378-5955(99)00210-5 Zaman K, 1999, J NEUROSCI, V19, P9821 Zhang Y, 2002, P NATL ACAD SCI USA, V99, P878 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 Zhu YL, 2002, INVEST OPHTH VIS SCI, V43, P1903 Zine A., 2004, Current Drug Targets - CNS and Neurological Disorders, V3, P325, DOI 10.2174/1568007043337166 NR 75 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2011 VL 277 IS 1-2 BP 211 EP 226 DI 10.1016/j.heares.2010.12.014 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 805KZ UT WOS:000293726600024 PM 21187137 ER PT J AU Trune, DR Larrain, BE Hausman, FA Kempton, JB MacArthur, CJ AF Trune, Dennis R. Larrain, Barbara E. Hausman, Frances A. Kempton, J. Beth MacArthur, Carol J. TI Simultaneous measurement of multiple ear proteins with multiplex ELISA assays SO HEARING RESEARCH LA English DT Article ID BEAD ARRAY ASSAYS; IMMUNOASSAY; SENSITIVITY; VALIDATION; CYTOKINES; COCHLEAR; TISSUES; RAT AB A recent advancement in enzyme-linked immunosorbent assay (ELISA) technology is the multiplex antibody array that measures multiple proteins simultaneously within a single sample. This allows reduction in sample volume, time, labor, and material costs, while increasing sensitivity over single ELISA. Current multiplex platforms include planar-based systems using microplates or slides, or bead-based suspension assay with microspheres. To determine the applicability of this technology for ear research, we used 3 different multiplex ELISA-based immunoassay arrays from 4 different companies to measure cytokine levels in mouse middle and inner ear tissue lysate extracts 24 h following trans-tympanic Haemophilus influenzae inoculation. Middle and inner ear tissue lysates were analyzed using testing services from Quansys Biosciences, Aushon Biosystems SearchLight (both microplate-based), MILLIPLEX MAP Sample (bead-based), and a RayBiotech, Inc (slide-based) kit. Samples were assayed in duplicate or triplicate. Results were compared to determine their relative sensitivity and reliability for measures of cytokines related to inflammation. The cytokine pg/ml amounts varied among the multiplex assays, so a comparison also was made of the mean fold increase in cytokines from untreated controls. Several cytokines and chemokines were elevated, the extent dependent upon the assay sensitivity. Those most significantly elevated were IL-1 alpha, IL-1 beta, IL-6, TNF alpha, VEGF, and IL-8/MIP-2. The results of the multiplex systems were compared with single ELISA kits (IL-1 beta, IL-6) to assess sensitivity over the traditional method. Overall, the Quansys Biosciences and SearchLight arrays showed the greatest sensitivity, both employing the same multiplex methodology of a spotted array within a microplate well with chemiluminescent detection. They also were more sensitive than the traditional single ELISA performed with commercial kits and matched gene expression changes determined by quantitative RT-PCR. The Quansys array showed a limit of detection for ear IL-6 down to 2-4 pg/ml, indicating it is sufficiently sensitive to detect ear proteins present in low concentrations. Thus, the multiplex ELISA procedures appear suitable and reliable for the study of hearing related proteins, providing accurate, quantitative, reproducible results with considerable improvement in sensitivity and economy. (C) 2010 Elsevier B.V. All rights reserved. C1 [Trune, Dennis R.; Larrain, Barbara E.; Hausman, Frances A.; Kempton, J. Beth; MacArthur, Carol J.] Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, Dept Otolaryngol Head & Neck Surg, Portland, OR 97239 USA. RP Trune, DR (reprint author), Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, Dept Otolaryngol Head & Neck Surg, 3181 SW Sam Jackson Pk Rd,Mail Code NRC04, Portland, OR 97239 USA. EM truned@ohsu.edu FU NIH-NIDCD [R01 DC009455, R01 DC005593] FX The authors thank Ms. Paige Kruger for assistance in the ELISA technique. Research supported by NIH-NIDCD R01 DC009455 and R01 DC005593 (DRT). CR Backen AC, 2009, J IMMUNOL METHODS, V342, P106, DOI 10.1016/j.jim.2009.01.003 CURTIS LM, 1993, EUR ARCH OTO-RHINO-L, V250, P265 de Jager W, 2006, METHODS, V38, P294, DOI 10.1016/j.ymeth.2005.11.008 Elshal MF, 2006, METHODS, V38, P317, DOI 10.1016/j.ymeth.2005.11.010 Khan SS, 2004, CYTOM PART B-CLIN CY, V61B, P35, DOI 10.1002/cyto.b.20021 Lash GE, 2006, J IMMUNOL METHODS, V309, P205, DOI 10.1016/j.jim.2005.12.007 Leng SX, 2008, J GERONTOL A-BIOL, V63, P879 Liew M, 2007, BIOTECHNIQUES, V42, P327, DOI 10.2144/000112332 MacArthur CJ, 2006, HEARING RES, V219, P12, DOI 10.1016/j.heares.2006.05.012 MACARTHUR CJ, LARYNGOSCOP IN PRESS Ray CA, 2005, J PHARMACEUT BIOMED, V36, P1037, DOI 10.1016/j.jpba.2004.05.024 TENCATE WJF, 1992, HEARING RES, V60, P199, DOI 10.1016/0378-5955(92)90021-E Wingren Christer, 2009, V509, P57, DOI 10.1007/978-1-59745-372-1_5 Young Howard A., 2009, V511, P85, DOI 10.1007/978-1-59745-447-6_4 NR 14 TC 11 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2011 VL 275 IS 1-2 BP 1 EP 7 DI 10.1016/j.heares.2010.11.009 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 776WY UT WOS:000291572300001 PM 21144888 ER PT J AU Brown, TA Harrison, RV AF Brown, Trecia A. Harrison, Robert V. TI Neuronal responses in chinchilla auditory cortex after postnatal exposure to frequency-modulated tones SO HEARING RESEARCH LA English DT Article ID CRITICAL PERIOD; RECEPTIVE-FIELDS; SELECTIVITY; RAT; SWEEPS; ORGANIZATION; ENVIRONMENT; COLLICULUS; RECORDINGS; DIRECTION AB Early postnatal exposure to an abnormal acoustic environment has been shown to significantly influence the behaviour of neurons in the auditory cortex. In the present study, we ask if sustained neonatal exposure to an FM sweep affects the development of responses to tonal and FM stimuli in chinchilla auditory cortex. Newborn chinchilla pups were exposed continuously to an upward linear FM sweep (0.1-20 kHz) at 0.05 kHz/ms for 4 weeks. Neuronal responses to pure tones and bidirectional linear FM sweeps (range: 0.1-20 kHz; speeds: 0.05-0.82 kHz/ms) were assessed in anesthetized animals following the exposure period as well as in age-matched controls (P28). We hypothesized that constant FM exposure would increase the response selectivity of cortical neurons to the environmental FM sweep. However, our results show that while tonal response latencies increased after the exposure period (p < 0.0001, one-way ANOVA), the exposure stimulus had minimal effect on neuronal direction sensitivity and decreased neuronal selectivity for any of the presented FM sweep speeds (p < 0.05, one-way ANOVA). We therefore suggest that the development of FM direction sensitivity is experience-independent while normal acoustic experience may be required to maintain FM speed tuning. (C) 2010 Elsevier B.V. All rights reserved. C1 [Brown, Trecia A.; Harrison, Robert V.] Hosp Sick Children, Neurosci & Mental Hlth Div, Auditory Sci Lab, Toronto, ON M5G 1X8, Canada. [Brown, Trecia A.; Harrison, Robert V.] Univ Toronto, Dept Physiol, Toronto, ON M5S 1A8, Canada. [Harrison, Robert V.] Univ Toronto, Dept Otolaryngol Head & Neck Surg, Toronto, ON M5S 1A8, Canada. RP Brown, TA (reprint author), Hosp Sick Children, Neurosci & Mental Hlth Div, Auditory Sci Lab, McMaster Bldg,Room 3005,555 Univ Ave, Toronto, ON M5G 1X8, Canada. EM trecia.brown@utoronto.ca FU Canadian Institutes for Health Research; Masonic Foundation of Ontario; Natural Sciences and Engineering Research Council FX This work was supported by grants from the Canadian Institutes for Health Research, the Masonic Foundation of Ontario and the Natural Sciences and Engineering Research Council. CR Atencio CA, 2007, J NEUROPHYSIOL, V98, P2182, DOI 10.1152/jn.00394.2007 BANKMAN IN, 1993, IEEE T BIO-MED ENG, V40, P836, DOI 10.1109/10.238472 BLAKEMOR.C, 1970, NATURE, V228, P477, DOI 10.1038/228477a0 BLATCHLEY BJ, 1987, DEV BRAIN RES, V32, P75, DOI 10.1016/0165-3806(87)90140-4 Brown TA, 2009, J NEUROPHYSIOL, V101, P2017, DOI 10.1152/jn.90931.2008 Brown TA, 2010, BRAIN RES, V1309, P29, DOI 10.1016/j.brainres.2009.10.053 Chang EF, 2003, SCIENCE, V300, P498, DOI 10.1126/science.1082163 Chang EF, 2005, P NATL ACAD SCI USA, V102, P16460, DOI 10.1073/pnas.0508239102 CLOPTON BM, 1976, J NEUROPHYSIOL, V39, P1081 Csicsvari J, 1998, NEURON, V21, P179, DOI 10.1016/S0896-6273(00)80525-5 CYNADER M, 1975, EXP BRAIN RES, V22, P267 de Villers-Sidani E, 2007, J NEUROSCI, V27, P180, DOI 10.1523/JNEUROSCI.3227-06.2007 de Villers-Sidani E, 2008, NAT NEUROSCI, V11, P957, DOI 10.1038/nn.2144 GEALDOR M, 1993, HEARING RES, V69, P236, DOI 10.1016/0378-5955(93)90113-F GERSTEIN GL, 1960, BIOPHYS J, V1, P15 Godey B, 2005, J NEUROPHYSIOL, V94, P1299, DOI 10.1152/jn.00950.2004 Gordon M, 1998, HEARING RES, V122, P97, DOI 10.1016/S0378-5955(98)00087-2 Insanally MN, 2009, J NEUROSCI, V29, P5456, DOI 10.1523/JNEUROSCI.5311-08.2009 Kotak VC, 2005, J NEUROSCI, V25, P3908, DOI 10.1523/JNEUROSCI.5169-04.2005 MENDELSON JR, 1985, BRAIN RES, V327, P331, DOI 10.1016/0006-8993(85)91530-6 Nelken I, 2000, EUR J NEUROSCI, V12, P549, DOI 10.1046/j.1460-9568.2000.00935.x PERKEL DH, 1967, BIOPHYS J, V7, P391 Pienkowski M, 2005, J NEUROPHYSIOL, V93, P454, DOI 10.1152/jn.00569.2004 Razak KA, 2008, P NATL ACAD SCI USA, V105, P4465, DOI 10.1073/pnas.0709504105 Razak KA, 2007, J NEUROSCI, V27, P1769, DOI 10.1523/JNEUROSCI.3851-06.2007 Rutishauser U, 2006, J NEUROSCI METH, V154, P204, DOI 10.1016/j.jneumeth.2005.12.033 Sanes DH, 2009, CURR OPIN NEUROBIOL, V19, P188, DOI 10.1016/j.conb.2009.05.014 Stanton SG, 1996, AUDIT NEUROSCI, V2, P97 Zhang LI, 2002, P NATL ACAD SCI USA, V99, P2309, DOI 10.1073/pnas.261707398 Zhang LI, 2001, NAT NEUROSCI, V4, P1123, DOI 10.1038/nn745 NR 30 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2011 VL 275 IS 1-2 BP 8 EP 16 DI 10.1016/j.heares.2010.11.008 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 776WY UT WOS:000291572300002 PM 21144889 ER PT J AU Zhang, FW Hammer, T Banks, HL Benson, C Xiang, J Fu, QJ AF Zhang, Fawen Hammer, Theresa Banks, Holly-Lolan Benson, Chelsea Xiang, Jing Fu, Qian-Jie TI Mismatch negativity and adaptation measures of the late auditory evoked potential in cochlear implant users SO HEARING RESEARCH LA English DT Article ID EVENT-RELATED POTENTIALS; SHORT-TERM ADAPTATION; UNANESTHETIZED DECEREBRATE CAT; STIMULUS-SPECIFIC ADAPTATION; BRAIN-STEM RESPONSES; SIMULATED ECHOES; NUCLEUS NEURONS; NERVE FIBERS; CLICK-PAIRS; INTERSTIMULUS-INTERVAL AB A better understanding of the neural correlates of large variability in cochlear implant (CI) patients' speech performance may allow us to find solutions to further improve Cl benefits. The present study examined the mismatch negativity (MMN) and the adaptation of the late auditory evoked potential (LAEP) in 10 CI users. The speech syllable /da/ and 1-kHz tone burst were used to examine the LAEP adaptation. The amount of LAEP adaptation was calculated according to the averaged N1-P2 amplitude for the LAEPs evoked by the last 3 stimuli and the amplitude evoked by the first stimulus. For the MMN recordings, the standard stimulus (1-kHz tone) and the deviant stimulus (2-kHz tone) were presented in an oddball condition. Additionally, the deviants alone were presented in a control condition. The MMN was derived by subtracting the response to the deviants in the control condition from the oddball condition. Results showed that good Cl performers displayed a more prominent LAEP adaptation than moderate-to-poor performers. Speech performance was significantly correlated to the amount of LAEP adaptation for the 1-kHz tone bursts. Good performers displayed large MMNs and moderate-to-poor performers had small or absent MMNs. The abnormal electrophysiological findings in moderate-to-poor performers suggest that long-term deafness may cause damage not only at the auditory cortical level, but also at the cognitive level. (C) 2010 Elsevier B.V. All rights reserved. C1 [Zhang, Fawen; Hammer, Theresa; Banks, Holly-Lolan; Benson, Chelsea] Univ Cincinnati, Dept Commun Sci & Disorders, Cincinnati, OH 45221 USA. [Xiang, Jing] Cincinnati Childrens Hosp Med Ctr, Dept Pediat & Neurol, Cincinnati, OH USA. [Fu, Qian-Jie] House Ear Res Inst, Los Angeles, CA USA. RP Zhang, FW (reprint author), Univ Cincinnati, Dept Commun Sci & Disorders, Cincinnati, OH 45221 USA. EM Fawen.Zhang@uc.edu FU National Institute of Health (NIH) [1R15DC011004-01] FX The authors thank all participants in this research. The authors also thank John J. Galvin III for editorial assistance. This project is partially sponsored by National Institute of Health (NIH 1R15DC011004-01). CR ABBAS PJ, 1984, HEARING RES, V14, P29, DOI 10.1016/0378-5955(84)90066-2 Anderson LA, 2009, J NEUROSCI, V29, P7359, DOI 10.1523/JNEUROSCI.0793-09.2009 Babalian AL, 2003, EXP BRAIN RES, V153, P452, DOI 10.1007/s00221-003-1619-x Baldeweg T, 2006, TRENDS COGN SCI, V10, P93, DOI 10.1016/j.tics.2006.01.010 BARRY RJ, 1992, INT J PSYCHOPHYSIOL, V13, P9, DOI 10.1016/0167-8760(92)90014-3 BOETTCHER FA, 1990, HEARING RES, V48, P125, DOI 10.1016/0378-5955(90)90203-2 BOTTCHERGANDOR C, 1992, PSYCHOPHYSIOLOGY, V29, P546, DOI 10.1111/j.1469-8986.1992.tb02028.x BOURBON WT, 1987, ELECTROEN CLIN NEURO, V66, P160 Budd TW, 1998, INT J PSYCHOPHYSIOL, V31, P51, DOI 10.1016/S0167-8760(98)00040-3 Burkard R, 1996, J ACOUST SOC AM, V100, P978, DOI 10.1121/1.416209 BUTLER RA, 1968, J ACOUST SOC AM, V44, P945, DOI 10.1121/1.1911233 CHIMENTO TC, 1991, J ACOUST SOC AM, V90, P263, DOI 10.1121/1.401296 DAVIS H, 1966, J ACOUST SOC AM, V39, P109, DOI 10.1121/1.1909858 Debener S, 2008, PSYCHOPHYSIOLOGY, V45, P20, DOI 10.1111/j.1469-8986.2007.00610.x Delgutte B., 1997, HDB PHONETIC SCI, P507 Delorme A, 2004, J NEUROSCI METH, V134, P9, DOI 10.1016/j.jneumeth.2003.10.009 Doeller CF, 2003, NEUROIMAGE, V20, P1270, DOI 10.1016/S1053-8119(03)00389-6 Fitzpatrick DC, 1999, J ACOUST SOC AM, V106, P3460, DOI 10.1121/1.428199 Friston KJ, 2002, PROG NEUROBIOL, V68, P113, DOI 10.1016/S0301-0082(02)00076-X FRUHSTOR.H, 1970, ELECTROEN CLIN NEURO, V28, P153, DOI 10.1016/0013-4694(70)90183-5 FRUHSTOR.H, 1971, ELECTROEN CLIN NEURO, V30, P306, DOI 10.1016/0013-4694(71)90113-1 Fu QJ, 2005, JARO-J ASSOC RES OTO, V6, P180, DOI 10.1007/s10162-005-5061-6 Garrido MI, 2009, CLIN NEUROPHYSIOL, V120, P453, DOI 10.1016/j.clinph.2008.11.029 Garrido MI, 2008, NEUROIMAGE, V42, P936, DOI 10.1016/j.neuroimage.2008.05.018 GIARD MH, 1990, PSYCHOPHYSIOLOGY, V27, P627, DOI 10.1111/j.1469-8986.1990.tb03184.x Gilley PM, 2006, CLIN NEUROPHYSIOL, V117, P1772, DOI 10.1016/j.clinph.2006.04.018 Green K M J, 2007, Cochlear Implants Int, V8, P1, DOI 10.1002/cii.326 Groenen P, 1996, Audiol Neurootol, V1, P112 Hagemann D, 2001, PSYCHOPHYSIOLOGY, V38, P847, DOI 10.1017/S0048577201001081 HARI R, 1982, ELECTROEN CLIN NEURO, V54, P561, DOI 10.1016/0013-4694(82)90041-4 HARI R, 1992, ELECTROEN CLIN NEURO, V82, P152, DOI 10.1016/0013-4694(92)90159-F Hoppe U, 2001, SCAND AUDIOL, V30, P119, DOI 10.1080/010503901300112239 Hoshiyama M, 2007, EUR J NEUROSCI, V25, P854, DOI 10.1111/j.1460-9568.2007.05315.x Jaaskelainen IP, 2004, P NATL ACAD SCI USA, V101, P6809, DOI 10.1073/pnas.0303760101 Jacobsen T, 2003, NEUROSCI LETT, V344, P79, DOI 10.1016/S0304-3940(03)00408-7 Johnson EK, 2008, J ACOUST SOC AM, V123, pEL144, DOI 10.1121/1.2908407 Johnson KL, 2005, EAR HEARING, V26, P424, DOI 10.1097/01.aud.0000179687.71662.6e Kelly AS, 2005, CLIN NEUROPHYSIOL, V116, P1235, DOI 10.1016/j.clinph.2005.02.011 KRAUS N, 1993, HEARING RES, V65, P118, DOI 10.1016/0378-5955(93)90206-G KRAUS N, 1992, EAR HEARING, V13, P158, DOI 10.1097/00003446-199206000-00004 LANG AH, 1995, EAR HEARING, V16, P118, DOI 10.1097/00003446-199502000-00009 Lee JS, 2003, J NUCL MED, V44, P1435 Levanen S, 1996, CEREB CORTEX, V6, P288, DOI 10.1093/cercor/6.2.288 Litvak LM, 2003, J ACOUST SOC AM, V114, P2066, DOI 10.1121/1.1612492 Loquet G, 2004, AUDIOL NEURO-OTOL, V9, P144, DOI 10.1159/000077266 Lunner T, 2003, INT J AUDIOL, V42, pS49 May PJC, 2010, PSYCHOPHYSIOLOGY, V47, P66, DOI 10.1111/j.1469-8986.2009.00856.x McNeill Celene, 2007, Cochlear Implants Int, V8, P189, DOI 10.1002/cii.343 MEGELA AL, 1979, J COMP PHYSIOL PSYCH, V93, P1154, DOI 10.1037/h0077630 Miller CA, 2001, JARO, V2, P216 NAATANEN R, 1989, NEUROSCI LETT, V107, P347, DOI 10.1016/0304-3940(89)90844-6 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x Naatanen R, 2004, PSYCHOPHYSIOLOGY, V41, P660, DOI 10.1111/j.1469-8986.2004.00182.x Naatanen R, 2005, PSYCHOPHYSIOLOGY, V42, P25, DOI 10.1111/j.1469-8986.2005.00256.x Naatanen R, 1999, PSYCHOL BULL, V125, P826, DOI 10.1037/0033-2909.125.6.826 Naatanen R, 2007, CLIN NEUROPHYSIOL, V118, P2544, DOI 10.1016/j.clinph.2007.04.026 Nikjeh DA, 2009, EAR HEARING, V30, P432, DOI 10.1097/AUD.0b013e3181a61bf2 Opitz B, 2002, NEUROIMAGE, V15, P167, DOI 10.1006/nimg.2001.0970 Parham K, 1996, J NEUROPHYSIOL, V76, P17 Parham K, 1998, HEARING RES, V125, P131, DOI 10.1016/S0378-5955(98)00140-3 Petermann M, 2009, HEARING RES, V247, P128, DOI 10.1016/j.heares.2008.11.001 Pisoni D. B., 2003, EAR HEAR S1, V24, P106 Pisoni D B, 2000, Ann Otol Rhinol Laryngol Suppl, V185, P92 Ponton CW, 2000, AUDIOL NEURO-OTOL, V5, P167, DOI 10.1159/000013878 PROSSER S, 1981, ARCH OTO-RHINO-LARYN, V233, P179, DOI 10.1007/BF00453642 Rajan R, 2010, EUR J NEUROSCI, V31, P1999, DOI 10.1111/j.1460-9568.2010.07214.x Rinne T, 2000, NEUROIMAGE, V12, P14, DOI 10.1006/nimg.2000.0591 RITTER W, 1968, ELECTROEN CLIN NEURO, V25, P550, DOI 10.1016/0013-4694(68)90234-4 Roman S, 2005, HEARING RES, V201, P10, DOI 10.1016/j.heares.2004.08.021 Rosburg T, 2004, CLIN NEUROPHYSIOL, V115, P906, DOI 10.1016/j.clinph.2003.11.039 Sharma A, 2007, INT J AUDIOL, V46, P494, DOI 10.1080/14992020701524836 Sharma A, 2002, NEUROREPORT, V13, P1365, DOI 10.1097/00001756-200207190-00030 SHORE SE, 1995, HEARING RES, V82, P31 Singh S, 2004, EAR HEARING, V25, P598, DOI 10.1097/00003446-200412000-00008 SMITH RL, 1982, BIOL CYBERN, V44, P107, DOI 10.1007/BF00317970 SMITH RL, 1977, J NEUROPHYSIOL, V40, P1098 SOUCEK S, 1992, SCAND AUDIOL, V21, P149, DOI 10.3109/01050399209045995 Sussman E, 2001, COGNITIVE BRAIN RES, V12, P431, DOI 10.1016/S0926-6410(01)00067-2 THORNTON ARD, 1993, BRIT J AUDIOL, V27, P205, DOI 10.3109/03005369309076694 Titterington J, 2003, Cochlear Implants Int, V4 Suppl 1, P70, DOI 10.1002/cii.114 Tremblay K, 1998, NEUROREPORT, V9, P3557 Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032 Ulanovsky N, 2004, J NEUROSCI, V24, P10440, DOI 10.1523/JNEUROSCI.1905-04.2004 Valente M, 1997, J Am Acad Audiol, V8, P59 von der Behrens W, 2009, J NEUROSCI, V29, P13837, DOI 10.1523/JNEUROSCI.3475-09.2009 Wable J, 2000, CLIN NEUROPHYSIOL, V111, P743, DOI 10.1016/S1388-2457(99)00298-9 WALTON JP, 1995, HEARING RES, V88, P19, DOI 10.1016/0378-5955(95)00093-J Wass M, 2008, SCAND J PSYCHOL, V49, P559, DOI 10.1111/j.1467-9450.2008.00680.x WESTERMAN LA, 1984, HEARING RES, V15, P249, DOI 10.1016/0378-5955(84)90032-7 Zeng Fan-Gang, 2004, Trends Amplif, V8, P1, DOI 10.1177/108471380400800102 Zhang F, 2009, J AM ACAD AUDIOL, V20, P239, DOI 10.3766/jaaa.20.4.4 Zhang FW, 2009, J AM ACAD AUDIOL, V20, P397, DOI 10.3766/jaaa.20.7.2 Zhang FW, 2010, INT J AUDIOL, V49, P277, DOI 10.3109/14992020903321759 Zhang XD, 2005, J ACOUST SOC AM, V118, P1540, DOI 10.1121/1.1993148 ZHOU RZ, 1995, HEARING RES, V88, P98, DOI 10.1016/0378-5955(95)00105-D NR 95 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2011 VL 275 IS 1-2 BP 17 EP 29 DI 10.1016/j.heares.2010.11.007 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 776WY UT WOS:000291572300003 PM 21129468 ER PT J AU Watkins, PV Barbour, DL AF Watkins, Paul V. Barbour, Dennis L. TI Rate-level responses in awake marmoset auditory cortex SO HEARING RESEARCH LA English DT Article ID DORSAL COCHLEAR NUCLEUS; SINGLE-UNIT RESPONSES; AMPLITUDE-SPECTRUM REPRESENTATION; INFERIOR COLLICULUS; FUNCTIONAL-ORGANIZATION; POSTERIOR FIELD; TONE INTENSITY; NEURONS; CAT; NOISE AB Investigations of auditory neuronal firing rate as a function of sound level have revealed a wide variety of rate-level function shapes, including neurons with nonmonotonic or level-tuned functions. These neurons have an unclear role in auditory processing but have been found to be quite common. In the present study of awake marmoset primary auditory cortex (A1) neurons, 56% (305 out of 544), when stimulated with tones at the highest sound level tested, exhibited a decrement in driven rate of at least 50% from the maximum. These nonmonotonic neurons demonstrated significantly lower response thresholds than monotonic neurons, although both populations exhibited thresholds skewed toward lower values. Nonmonotonic neurons significantly outnumbered monotonic neurons in the frequency range 6-13 kHz, which is the frequency range containing most marmoset vocalization energy. Spontaneous rate was inversely correlated with threshold in both populations, and spontaneous rates of nonmonotonic neurons had significantly lower values than spontaneous rates of monotonic neurons, although distributions of maximum driven rates were not significantly different. Finally, monotonicity was found to be organized within electrode penetrations like characteristic frequency but with less structure. These findings are consistent with the hypothesis that nonmonotonic neurons play a unique role in representing sound level, particularly at the lowest sound levels and for complex vocalizations. (C) 2010 Elsevier B.V. All rights reserved. C1 [Watkins, Paul V.; Barbour, Dennis L.] Washington Univ, Dept Biomed Engn, Lab Sensory Neurosci & Neuroengn, St Louis, MO 63130 USA. RP Barbour, DL (reprint author), Washington Univ, Dept Biomed Engn, Lab Sensory Neurosci & Neuroengn, One Brookings Dr,Campus Box 1097,Uncas Whitaker H, St Louis, MO 63130 USA. EM dbarbour@biomed.wustl.edu FU McDonnell Foundation for Higher Brain Function; National Institutes of Health [R01-DC009215] FX This work was supported by The McDonnell Foundation for Higher Brain Function and the National Institutes of Health grant R01-DC009215. CR ABELES M, 1970, J NEUROPHYSIOL, V33, P172 AITKIN L, 1991, J NEUROPHYSIOL, V65, P383 Chen TL, 2010, BRAIN RES, V1319, P175, DOI 10.1016/j.brainres.2010.01.012 Cheung SW, 2001, J NEUROPHYSIOL, V85, P1732 CLAREY JC, 1994, J NEUROPHYSIOL, V72, P2383 Davis KA, 2003, JARO, V4, P148, DOI 10.1007/s10162-002-2002-5 Dean I, 2005, NAT NEUROSCI, V8, P1684, DOI 10.1038/nn1541 de la Rocha J, 2008, J NEUROSCI, V28, P9151, DOI 10.1523/JNEUROSCI.1789-08.2008 Hromadka T, 2008, PLOS BIOL, V6, P124, DOI 10.1371/journal.pbio.0060016 DiMattina C, 2006, J NEUROPHYSIOL, V95, P1244, DOI 10.1152/jn.00818.2005 Doron NN, 2002, J COMP NEUROL, V453, P345, DOI 10.1002/cne.10412 FAINGOLD CL, 1991, HEARING RES, V52, P201, DOI 10.1016/0378-5955(91)90200-S GEISLER CD, 1985, J ACOUST SOC AM, V77, P1102, DOI 10.1121/1.392228 HEIL P, 1994, HEARING RES, V76, P188, DOI 10.1016/0378-5955(94)90099-X Imaizumi K, 2004, J NEUROPHYSIOL, V92, P444, DOI 10.1152/jn.01173.2003 Kiang NY-s, 1965, DISCHARGE PATTERNS S KIANG NYS, 1976, ANN OTO RHINOL LARYN, V85, P752 Langford E, 2001, AM STAT, V55, P322, DOI 10.1198/000313001753272286 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 Nakamoto KT, 2004, J NEUROPHYSIOL, V91, P118, DOI 10.1152/jn.00171.2003 Nelken I, 1997, J NEUROPHYSIOL, V78, P790 PFINGST BE, 1981, J NEUROPHYSIOL, V45, P16 Philibert B, 2005, J COMP NEUROL, V487, P391, DOI 10.1002/cne.20581 PHILLIPS DP, 1995, J NEUROPHYSIOL, V73, P674 PHILLIPS DP, 1990, BEHAV BRAIN RES, V37, P197, DOI 10.1016/0166-4328(90)90132-X PHILLIPS DP, 1981, J NEUROPHYSIOL, V45, P48 PHILLIPS DP, 1994, EXP BRAIN RES, V102, P210 Polley DB, 2007, J NEUROPHYSIOL, V97, P3621, DOI 10.1152/jn.01298.2006 Polley DB, 2006, J NEUROSCI, V26, P4970, DOI 10.1523/JNEUROSCI.3771-05.2006 Polley DB, 2004, P NATL ACAD SCI USA, V101, P16351, DOI 10.1073/pnas.0407586101 Ramachandran R, 1999, J NEUROPHYSIOL, V82, P152 Recanzone GH, 2000, J NEUROPHYSIOL, V83, P2315 Recanzone GH, 1999, J COMP NEUROL, V415, P460, DOI 10.1002/(SICI)1096-9861(19991227)415:4<460::AID-CNE4>3.0.CO;2-F Recanzone GH, 2000, HEARING RES, V150, P104, DOI 10.1016/S0378-5955(00)00194-5 REES A, 1988, J ACOUST SOC AM, V83, P1488, DOI 10.1121/1.395904 RHODE WS, 1985, HEARING RES, V18, P159, DOI 10.1016/0378-5955(85)90008-5 ROSE JE, 1963, J NEUROPHYSIOL, V26, P295 RYAN A, 1978, EXP BRAIN RES, V32, P389 Sadagopan S, 2008, J NEUROSCI, V28, P3415, DOI 10.1523/JNEUROSCI.2743-07.2008 SCHALK TB, 1980, J ACOUST SOC AM, V67, P903, DOI 10.1121/1.383970 SCHREINER CE, 1992, EXP BRAIN RES, V92, P105 SEIDEN HR, 1957, HAPALE JACCHUS SEMPLE MN, 1985, J NEUROPHYSIOL, V53, P1467 SHAMMA SA, 1985, HEARING RES, V19, P1, DOI 10.1016/0378-5955(85)90094-2 SHAMMA SA, 2003, HDB BRAIN THEORY NEU, P122 Sivaramakrishnan S, 2004, J NEUROSCI, V24, P5031, DOI 10.1523/JNEUROSCI.0357-04.2004 Spirou GA, 1999, J NEUROPHYSIOL, V82, P648 SPIROU GA, 1991, J NEUROPHYSIOL, V66, P1750 SUGA N, 1982, J NEUROPHYSIOL, V47, P225 SUGA N, 1977, SCIENCE, V196, P64, DOI 10.1126/science.190681 Sutter ML, 2003, J NEUROPHYSIOL, V90, P2629, DOI 10.1152/jn.00722.2002 SUTTER ML, 1995, J NEUROPHYSIOL, V73, P190 Tan AYY, 2007, NEUROSCIENCE, V146, P449, DOI 10.1016/j.neuroscience.2007.01.019 Wang JA, 2002, BRAIN RES, V944, P219, DOI 10.1016/S0006-8993(02)02926-8 Watkins PV, 2008, NAT NEUROSCI, V11, P1259, DOI 10.1038/nn.2201 Watkins PV, 2011, CEREB CORTEX, V21, P178, DOI 10.1093/cercor/bhq079 Watkins PV, 2009, BIOL CYBERN, V100, P231, DOI 10.1007/s00422-009-0294-9 Wehr M, 2003, NATURE, V426, P442, DOI 10.1038/nature02116 Wu GY, 2006, NEURON, V52, P705, DOI 10.1016/j.neuron.2006.10.009 Young E. D., 2002, INTEGRATIVE FUNCTION, P160 YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282 NR 61 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2011 VL 275 IS 1-2 BP 30 EP 42 DI 10.1016/j.heares.2010.11.011 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 776WY UT WOS:000291572300004 PM 21145961 ER PT J AU Chen, HC Sytwu, HK Chang, JL Wang, HW Chen, HK Kang, BH Liu, DW Chen, CH Chao, TT Wang, CH AF Chen, Hsin-Chien Sytwu, Huey-Kang Chang, Junn-Liang Wang, Hsing-Won Chen, Hang-Kang Kang, Bor-Hwang Liu, Dai-Wei Chen, Chi-Huang Chao, Ting-Ting Wang, Chih-Hung TI Hypoxia enhances the stemness markers of cochlear stem/progenitor cells and expands sphere formation through activation of hypoxia-inducible factor-1alpha SO HEARING RESEARCH LA English DT Article ID OXYGEN CONCENTRATION; INNER-EAR; HAIR-CELLS; IN-VITRO; PROGENITOR CELLS; LOWERED OXYGEN; MOUSE; PROLIFERATION; DIFFERENTIATION; EXPRESSION AB Unlike neural stem cells that maintain populations in the adult brains of both rodents and humans, cochlear stem cells appear to diminish in number after birth and may become quiescent in adult mammalian cochleae. Hypoxia has been observed to promote an undifferentiated cell state in various stem cell populations; however, little is known about such an effect on cochlear stem/progenitor cells (SPCs). The aims of this study were to assess the effect of hypoxia on cochlear SPCs and to examine the impact of hypoxia-inducible factor-1alpha (Hif-1a) on regulating such an effect. Our data demonstrate that hypoxic culturing for 24 h significantly increased sphere formation and viability of cochlear SPCs compared with those cultured under normoxic conditions. Concurrent with these proliferation promotion effects are changes in the expression of multiple stemness and cell-cycle quiescent associated gene targets, including Abcg2, nestin, p27(Kip1) and Vegf. Knockdown of Hif-1a expression by small-interfering RNA inhibited hypoxia-induced cochlear SPC expansion and resulted in downregulation of Vegf, Abcg2, and nestin and upregulation of p27(Kip1) gene expression. These results suggest that Hif-1a plays an important role in the stimulation of the proliferation of cochlear SPCs, which confers a great benefit of expanding cochlear SPCs via hypoxic conditions. (C) 2010 Elsevier B.V. All rights reserved. C1 [Chen, Hsin-Chien; Wang, Hsing-Won; Chen, Hang-Kang; Kang, Bor-Hwang; Chao, Ting-Ting; Wang, Chih-Hung] Tri Serv Gen Hosp, Natl Def Med Ctr, Dept Otolaryngol Head & Neck Surg, Taipei 114, Taiwan. [Chen, Hsin-Chien; Wang, Chih-Hung] Natl Def Med Ctr, Grad Inst Med Sci, Taipei, Taiwan. [Sytwu, Huey-Kang; Wang, Chih-Hung] Natl Def Med Ctr, Inst Microbiol & Immunol, Taipei, Taiwan. [Chang, Junn-Liang] Taoyuan Armed Forces Gen Hosp, Dept Pathol & Lab Med, Tao Yuan, Taiwan. [Chang, Junn-Liang] Ming Chuan Univ, Dept Biomed Engn, Tao Yuan, Taiwan. [Kang, Bor-Hwang] Natl Def Med Ctr, Inst Undersea & Hyperbar Med, Taipei, Taiwan. [Liu, Dai-Wei] Buddhist Tzu Chi Gen Hosp, Dept Radiat Oncol, Hualien, Taiwan. [Liu, Dai-Wei] Tzu Chi Univ, Dept Radiol, Hualien, Taiwan. [Chen, Chi-Huang] Tri Serv Gen Hosp, Natl Def Med Ctr, Dept Obstet & Gynecol, Taipei 114, Taiwan. RP Wang, CH (reprint author), Tri Serv Gen Hosp, Natl Def Med Ctr, Dept Otolaryngol Head & Neck Surg, Taipei 114, Taiwan. EM chw@ms3.hinet.net FU National Science Council, Taiwan (NSC) [NSC 98-2314-B-016-017-MY3]; Tri-Service General Hospital (TSGH) [C99-40, C99-42]; DOD, Taiwan, ROC [98-11-05, 99-09-01, 99-10-05] FX This work was supported in part by grants from the National Science Council, Taiwan (NSC 98-2314-B-016-017-MY3), Tri-Service General Hospital (TSGH C99-40 and C99-42) and National Defense Medical Research grants, Taiwan, ROC (DOD 98-11-05, DOD 99-09-01, and DOD 99-10-05). CR Bauer S, 2009, ANN NY ACAD SCI, V1153, P48, DOI 10.1111/j.1749-6632.2009.03986.x Breuskin I, 2008, HEARING RES, V236, P1, DOI 10.1016/j.heares.2007.08.007 Carmeliet P, 1998, NATURE, V394, P485, DOI 10.1038/28867 Chen P, 1999, DEVELOPMENT, V126, P1581 Choi KS, 2003, J BIOCHEM MOL BIOL, V36, P120 CIPOLLESCHI MG, 1993, BLOOD, V82, P2031 Cipolleschi MG, 2000, LEUKEMIA, V14, P735, DOI 10.1038/sj.leu.2401744 Diensthuber M, 2009, JARO-J ASSOC RES OTO, V10, P173, DOI 10.1007/s10162-009-0161-3 Dumoulin JCM, 1999, HUM REPROD, V14, P465, DOI 10.1093/humrep/14.2.465 Felling RJ, 2006, J NEUROSCI, V26, P4359, DOI 10.1523/JNEUROSCI.1898-05.2006 Gagnon PM, 2007, HEARING RES, V226, P79, DOI 10.1016/j.heares.2006.09.006 Gibbons J, 2006, CLONING STEM CELLS, V8, P117, DOI 10.1089/clo.2006.8.117 Grayson WL, 2006, J CELL PHYSIOL, V207, P331, DOI 10.1002/jcp.20571 Gustafsson MV, 2005, DEV CELL, V9, P617, DOI 10.1016/j.devcel.2005.09.010 Huang YH, 2009, FASEB J, V23, P2076, DOI 10.1096/fj.08-121939 Koay EJ, 2008, OSTEOARTHR CARTILAGE, V16, P1450, DOI 10.1016/j.joca.2008.04.007 KRANENBURG, 1995, J CELL BIOL, V131, P227 Krishnamurthy P, 2004, J BIOL CHEM, V279, P24218, DOI 10.1074/jbc.M313599200 Lamm K, 2000, HEARING RES, V141, P199, DOI 10.1016/S0378-5955(00)00005-8 LENDAHL U, 1990, CELL, V60, P585, DOI 10.1016/0092-8674(90)90662-X Li HW, 2003, NAT MED, V9, P1293, DOI 10.1038/nm925 Lopez IA, 2004, INT J DEV NEUROSCI, V22, P205, DOI 10.1016/j.ijdevneu.2004.04.006 Lu HM, 2009, FEBS J, V276, P7291, DOI 10.1111/j.1742-4658.2009.07441.x Malgrange B, 2002, MECH DEVELOP, V112, P79, DOI 10.1016/S0925-4773(01)00642-6 Malladi P, 2006, AM J PHYSIOL-CELL PH, V290, pC1139, DOI 10.1152/ajpcell.00415.2005 Mellodew K, 2004, DEV BRAIN RES, V151, P13, DOI 10.1016/j.devbrainres.2004.03.018 Miyashita H, 2007, INVEST OPHTH VIS SCI, V48, P3586, DOI 10.1167/iovs.07-0077 Orsi NM, 2001, MOL REPROD DEV, V59, P44, DOI 10.1002/mrd.1006 Oshima K, 2007, JARO-J ASSOC RES OTO, V8, P18, DOI 10.1007/s10162-006-0058-3 PACKER L, 1977, NATURE, V267, P423, DOI 10.1038/267423a0 Panchision DM, 2009, J CELL PHYSIOL, V220, P562, DOI 10.1002/jcp.21812 Rask-Andersen H, 2005, HEARING RES, V203, P180, DOI 10.1016/j.heares.2004.12.005 Ruben R. J., 1967, ACTA OTO-LARYNGOL, V220, P1 Sahly I, 1997, ANAT EMBRYOL, V196, P159, DOI 10.1007/s004290050088 Savary E, 2007, STEM CELLS, V25, P332, DOI 10.1634/stemcells.2006-0303 Savary E, 2008, MECH DEVELOP, V125, P674, DOI 10.1016/j.mod.2008.05.001 Simon MC, 2008, NAT REV MOL CELL BIO, V9, P285, DOI 10.1038/nrm2354 Studer L, 2000, J NEUROSCI, V20, P7377 Tarui T, 2005, CEREB CORTEX, V15, P1343, DOI 10.1093/cercor/bhi017 THOMPSON JGE, 1990, J REPROD FERTIL, V89, P573 Wang XL, 2007, NEUROREPORT, V18, P1753 White PM, 2006, NATURE, V441, P984, DOI 10.1038/nature04849 WING DA, 1988, BIOCHEM BIOPH RES CO, V153, P952, DOI 10.1016/S0006-291X(88)81320-2 Yang Z, 2006, NEUROSCIENCE, V139, P555, DOI 10.1016/j.neuroscience.2005.12.059 Yerukhimovich MV, 2007, DEV NEUROSCI-BASEL, V29, P251, DOI 10.1159/000096415 Yoshida Y, 2009, CELL STEM CELL, V5, P237, DOI 10.1016/j.stem.2009.08.001 Yun Z, 2002, DEV CELL, V2, P331, DOI 10.1016/S1534-5807(02)00131-4 Zhang CP, 2006, NEUROSIGNALS, V15, P259, DOI 10.1159/000103385 Zhou S, 2001, NAT MED, V7, P1028, DOI 10.1038/nm0901-1028 NR 49 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2011 VL 275 IS 1-2 BP 43 EP 52 DI 10.1016/j.heares.2010.12.004 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 776WY UT WOS:000291572300005 PM 21147209 ER PT J AU Miller, K Covey, E AF Miller, Kimberly Covey, Ellen TI Comparison of auditory responses in the medial geniculate and pontine gray of the big brown bat, Eptesicus fuscus SO HEARING RESEARCH LA English DT Article ID SOUND PRESSURE TRANSFORMATION; COMBINATION-SENSITIVE NEURONS; INFERIOR COLLICULUS; MOUSTACHED BAT; ECHOLOCATING BATS; HORSESHOE BAT; BODY; PROJECTIONS; NUCLEI; CONNECTIONS AB The inferior colliculus has been well studied for its role of transmitting information from the brainstem to the thalamocortical system. However, it is also the source of a major pathway to the cerebellum, via the pontine gray (PG). We compared auditory responses from single neurons in the medial geniculate body (MGB) and PG of the awake big brown bat. MGB neurons were selective for a variety of stimulus types whereas PG neurons only responded to pure tones or simple FM sweeps. Best frequencies (BF) in MGB ranged from 8 kHz to > 80 kHz. BFs of PG neurons were all above 20 kHz with a high proportion above 60 kHz. The mean response latency was 19 ms for MGB neurons and 11 ms for PG neurons. MGB and PG contained neurons with a variety of discharge patterns but the most striking difference was the proportion of neurons with responses that lasted longer than the stimulus duration (MGB 13%, PG 58%). Both nuclei contained duration-sensitive neurons; the majority of those in MGB were band pass whereas in the PG they were long pass. Over half of the neurons in both nuclei were binaural. Differences between these nuclei are consistent with the idea that the thalamocortical pathway performs integration over time for cognitive analysis, thereby increasing selectivity and lengthening latency, while the colliculo-pontine pathway, which is more concerned with sensory-motor control, provides rapid input and a lasting trace of an auditory event. (C) 2010 Elsevier B.V. All rights reserved. C1 [Miller, Kimberly; Covey, Ellen] Univ Washington, Dept Psychol, Seattle, WA 98195 USA. RP Covey, E (reprint author), Univ Washington, Dept Psychol, Box 351525, Seattle, WA 98195 USA. EM ecovey@u.washington.edu FU NIH [DC-00287]; NSF [IOS-0719295] FX Research supported by NIH grant DC-00287 and NSF grant IOS-0719295. CR AAS JE, 1989, J COMP NEUROL, V282, P331, DOI 10.1002/cne.902820303 ANDERSEN RA, 1980, J COMP NEUROL, V194, P649, DOI 10.1002/cne.901940311 Bergan JF, 2009, J NEUROPHYSIOL, V101, P2924, DOI 10.1152/jn.91313.2008 Casseday JH, 2000, J NEUROPHYSIOL, V84, P1475 CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341 Covey E, 1999, ANNU REV PHYSIOL, V61, P457, DOI 10.1146/annurev.physiol.61.1.457 Covey E, 2003, SPEECH COMMUN, V41, P151, DOI [10.1016/S0167-6393(02)00100-0, 10.1016/S0167-6392(02)00100-0] Ehrlich D, 1997, J NEUROPHYSIOL, V77, P2360 Faure PA, 2003, J NEUROSCI, V23, P3052 Frederiksen E., 1977, BRUEL KJAER TECHNICA, P3 FRISINA RD, 1989, J COMP NEUROL, V284, P85, DOI 10.1002/cne.902840107 FUZESSERY ZM, 1990, J NEUROPHYSIOL, V63, P1128 HASHIKAWA T, 1983, J COMP NEUROL, V219, P241, DOI 10.1002/cne.902190209 Jakobsen L, 2010, P NATL ACAD SCI USA, V107, P13930, DOI 10.1073/pnas.1006630107 JEN PHS, 1988, HEARING RES, V34, P101, DOI 10.1016/0378-5955(88)90098-6 KAMADA T, 1990, BRAIN RES, V528, P123, DOI 10.1016/0006-8993(90)90203-N KAMADA T, 1992, BRAIN RES, V575, P187, DOI 10.1016/0006-8993(92)90079-O Llano DA, 1999, J COMP PHYSIOL A, V184, P371, DOI 10.1007/s003590050336 Malmierca MS, 2009, J NEUROSCI, V29, P5483, DOI 10.1523/JNEUROSCI.4153-08.2009 Metzger RR, 2006, J NEUROSCI, V26, P7468, DOI 10.1523/JNEUROSCI.5401-05.2006 MIHAILOFF GA, 1989, J COMP NEUROL, V282, P617, DOI 10.1002/cne.902820411 Miller KE, 2005, NEUROSCIENCE, V136, P895, DOI 10.1016/j.neuroscience.2005.04.032 Nakamoto KT, 2004, J NEUROPHYSIOL, V91, P118, DOI 10.1152/jn.00171.2003 OBRIST MK, 1993, J EXP BIOL, V180, P119 OLSEN JF, 1991, J NEUROPHYSIOL, V65, P1275 OLSEN JF, 1991, J NEUROPHYSIOL, V65, P1254 Perez-Gonzalez D, 2005, EUR J NEUROSCI, V22, P2879, DOI 10.1111/j.1460-9568.2005.04472.x Razak KA, 2007, J COMP NEUROL, V500, P322, DOI 10.1002/cne.21178 SCHULLER G, 1991, EUR J NEUROSCI, V3, P648, DOI 10.1111/j.1460-9568.1991.tb00851.x SCHWEIZER H, 1981, J COMP NEUROL, V201, P25, DOI 10.1002/cne.902010104 Shen JX, 1997, J COMP PHYSIOL A, V181, P591, DOI 10.1007/s003590050142 STAPELLS DR, 1981, EAR HEARING, V2, P20 Surlykke A, 2009, P R SOC B, V276, P853, DOI 10.1098/rspb.2008.1505 Thompson AM, 2006, BRAIN RES, V1100, P104, DOI 10.1016/j.brainres.2006.05.014 WENSTRUP JJ, 1994, J COMP NEUROL, V346, P207, DOI 10.1002/cne.903460204 Wenstrup JJ, 1999, J NEUROPHYSIOL, V82, P2528 Winer JA, 2005, TRENDS NEUROSCI, V28, P255, DOI 10.1016/j.tins.2005.03.009 WINER JA, 1994, J COMP NEUROL, V346, P183, DOI 10.1002/cne.903460203 WU MI, 1995, HEARING RES, V85, P155, DOI 10.1016/0378-5955(95)00042-3 NR 39 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2011 VL 275 IS 1-2 BP 53 EP 65 DI 10.1016/j.heares.2010.12.001 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 776WY UT WOS:000291572300006 PM 21145384 ER PT J AU Pan, N Jahan, I Kersigo, J Kopecky, B Santi, P Johnson, S Schmitz, H Fritzsch, B AF Pan, Ning Jahan, Israt Kersigo, Jennifer Kopecky, Benjamin Santi, Peter Johnson, Shane Schmitz, Heather Fritzsch, Bernd TI Conditional deletion of Atoh1 using Pax2-Cre results in viable mice without differentiated cochlear hair cells that have lost most of the organ of Corti SO HEARING RESEARCH LA English DT Article ID MAMMALIAN INNER-EAR; SENSORY EPITHELIA; SPIRAL GANGLION; OLIVOCOCHLEAR NEURONS; GENE-TRANSFER; MUTANT MICE; BRAIN-STEM; CYCLE EXIT; NULL MICE; MATH1 AB Atonal homolog1 (Atoh1, formerly Math1) is a crucial bHLH transcription factor for inner ear hair cell differentiation. Its absence in embryos results in complete absence of mature hair cells at birth and its misexpression can generate extra hair cells. Thus Atoh1 may be both necessary and sufficient for hair cell differentiation in the ear. Atoh1 null mice die at birth and have some undifferentiated cells in sensory epithelia carrying Atoh1 markers. The fate of these undifferentiated cells in neonates is unknown due to lethality. We use Tg(Pax2-Cre) to delete foxed Atoh1 in the inner ear. This generates viable conditional knockout (CKO) mice for studying the postnatal development of the inner ear without differentiated hair cells. Using in situ hybridization we find that Tg(Pax2-Cre) recombines the foxed Atoh1 prior to detectable Atoh1 expression. Only the posterior canal crista has Atoh1 expressing hair cells due to incomplete recombination. Most of the organ of Corti cells are lost in CKO mice via late embryonic cell death. Marker genes indicate that the organ of Corti is reduced to two rows of cells wedged between flanking markers of the organ of Corti (Fgf10 and Bmp4). These two rows of cells (instead of five rows of supporting cells) are positive for Prox1 in neonates. By postnatal day 14 (P14), the remaining cells of the organ of Corti are transformed into a flat epithelium with no distinction of any specific cell type. However, some of the remaining organ of Corti cells express Myo7a at late postnatal stages and are innervated by remaining afferent fibers. Initial growth of afferents and efferents in embryos shows no difference between control mice and Tg(Pax2-Cre)::Atoh1 CKO mice. Most afferents and efferents are lost in the CKO mutant before birth, except for the apex and few fibers in the base. Afferents focus their projections on patches that express the prosensory specifying gene, Sox2. This pattern of innervation by sensory neurons is maintained at least until P14, but fibers target the few Myo7a positive cells found in later stages. (C) 2010 Elsevier B.V. All rights reserved. C1 [Pan, Ning; Jahan, Israt; Kersigo, Jennifer; Kopecky, Benjamin; Fritzsch, Bernd] Univ Iowa, Dept Biol, Iowa City, IA 52242 USA. [Santi, Peter; Johnson, Shane; Schmitz, Heather] Univ Minnesota, Dept Otolaryngol, Minneapolis, MN USA. RP Fritzsch, B (reprint author), Univ Iowa, Dept Biol, 143 BB, Iowa City, IA 52242 USA. EM bernd-fritzsch@uiowa.edu RI Duncan, Jeremy/K-7230-2013 OI Duncan, Jeremy/0000-0002-5555-3273 FU NIH [R01 DC 005590]; Capita Foundation; NIDCD [RO1DC007588, DC007588-03S1]; Roy. J. Carver foundation; Office of the Vice President for Research (OVPR) FX This work was supported by a NIH grant (R01 DC 005590) to B.F. TSLIM imaging for mouse cochlea was provided by funding from the Capita Foundation and the NIDCD (RO1DC007588 and DC007588-03S1) to P. S. We express our thanks to Dr. Huda Zoghbi for providing the foxed Atoh1 mice and Dr. T. Ohyama and A. Groves for providing the Tg(Pax2-cre) line used for this study. We wish to thank the following people for providing the plasmids used for our in situ hybridization experiments: Dr. Zoghbi (Atoh1), Dr. Tessarollo (Bdnf), Dr. Wu (Bmp4), Dr. Hogan (Fgf10), Dr. Engel (Gata3), Dr. Lee (Neurod1), Dr. Ma (Neurog1), and Dr. Cheah (Sox2). We also thank C. Donahue for extensive help with genotyping. The Leica TCS SP5 confocal microscope was purchased in part with a grant from the Roy. J. Carver foundation. We thank the Office of the Vice President for Research (OVPR) for support. CR ANNIKO M, 1988, ARCH OTO-RHINO-LARYN, V245, P155, DOI 10.1007/BF00464018 Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837 Bermingham NA, 2001, NEURON, V30, P411, DOI 10.1016/S0896-6273(01)00305-1 Bermingham-McDonogh O, 2006, J COMP NEUROL, V496, P172, DOI 10.1002/cne.20944 CAMPBELL JP, 1988, HEARING RES, V35, P271, DOI 10.1016/0378-5955(88)90124-4 Chen P, 2002, DEVELOPMENT, V129, P2495 Dabdoub A, 2008, P NATL ACAD SCI USA, V105, P18396, DOI 10.1073/pnas.0808175105 DELCERRO M, 1980, MICROSC ACTA, V83, P117 Doetzlhofer A, 2009, DEV CELL, V16, P58, DOI 10.1016/j.devcel.2008.11.008 Du XP, 2007, DEV BIOL, V305, P430, DOI 10.1016/j.ydbio.2007.02.028 Farinas I, 2001, J NEUROSCI, V21, P6170 Flora A, 2009, SCIENCE, V326, P1424, DOI 10.1126/science.1181453 Fritzsch B, 2010, CELL MOL LIFE SCI, V67, P3089, DOI 10.1007/s00018-010-0403-x Fritzsch B, 2005, DEV DYNAM, V233, P570, DOI 10.1002/dvdy.20370 Fritzsch B, 2010, PLOS ONE, V5, P1 Fritzsch B, 2004, PROG BRAIN RES, V146, P265, DOI 10.1016/S0079-6123(03)46017-2 Fritzsch B, 2005, BRAIN RES BULL, V66, P249, DOI 10.1016/j.brainresbull.2005.05.016 Fritzsch B, 1997, J NEUROSCI, V17, P6213 GHYSEN A, 1979, DEV BIOL, V70, P438, DOI 10.1016/0012-1606(79)90037-X Ghysen A, 2000, TRENDS GENET, V16, P221, DOI 10.1016/S0168-9525(99)01969-1 Gubbels SP, 2008, NATURE, V455, P537, DOI 10.1038/nature07265 Hayashi T, 2008, J NEUROSCI, V28, P5991, DOI 10.1523/JNEUROSCI.1690-08.2008 Hebert JM, 2000, DEV BIOL, V222, P296, DOI 10.1006/dbio.2000.9732 Hertzano R, 2004, HUM MOL GENET, V13, P2143, DOI 10.1093/hmg/ddh218 Hwang CH, 2010, DEV DYNAM, V239, P505, DOI 10.1002/dvdy.22200 Izumikawa M, 2008, HEARING RES, V240, P52, DOI 10.1016/j.heares.2008.02.007 Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193 Jahan I, 2010, CELL TISSUE RES, V341, P95, DOI 10.1007/s00441-010-0984-6 Jahan I, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011661 Kageyama R, 2009, CURR OPIN CELL BIOL, V21, P733, DOI 10.1016/j.ceb.2009.08.009 Karis A, 2001, J COMP NEUROL, V429, P615, DOI 10.1002/1096-9861(20010122)429:4<615::AID-CNE8>3.0.CO;2-F Kawamoto K, 2003, J NEUROSCI, V23, P4395 Kelley MW, 2009, CURR OPIN OTOLARYNGO, V17, P381, DOI 10.1097/MOO.0b013e3283303347 Kelley MW, 2006, NAT REV NEUROSCI, V7, P837, DOI 10.1038/nrn1987 Kiernan AE, 2006, PLOS GENET, V2, P27, DOI 10.1371/journal.pgen.0020004 Kiernan AE, 2005, NATURE, V434, P1031, DOI 10.1038/nature03487 Krijnen PAJ, 2010, J MOL CELL CARDIOL, V49, P781, DOI 10.1016/j.yjmcc.2010.07.017 Lawoko-Kerali G, 2004, MECH DEVELOP, V121, P287, DOI 10.1016/j.mod.2003.12.006 Lee YS, 2006, DEVELOPMENT, V133, P2817, DOI 10.1242/dev.02453 Linthicum FH, 2009, OTOL NEUROTOL, V30, P418, DOI 10.1097/MAO.0b013e31819a8827 Ma QF, 1998, NEURON, V20, P469, DOI 10.1016/S0896-6273(00)80988-5 Ma QF, 2000, JARO, V1, P129, DOI 10.1007/sl01620010017 Mak ACY, 2009, GENE EXPR PATTERNS, V9, P444, DOI 10.1016/j.gep.2009.04.003 Maricich SM, 2009, J NEUROSCI, V29, P11123, DOI 10.1523/JNEUROSCI.2232-09.2009 Matei V, 2005, DEV DYNAM, V234, P633, DOI 10.1002/dvdy.20551 Morris JK, 2006, BRAIN RES, V1091, P186, DOI 10.1016/j.brainres.2006.02.090 Morsli H, 1998, J NEUROSCI, V18, P3327 Nadol Joseph B Jr, 2006, Adv Otorhinolaryngol, V64, P31 Ohyama T, 2010, J NEUROSCI, V30, P15044, DOI 10.1523/JNEUROSCI.3547-10.2010 Ohyama T, 2004, GENESIS, V38, P195, DOI 10.1002/gene.20017 Pan N, 2009, CELL TISSUE RES, V337, P407, DOI 10.1007/s00441-009-0826-6 Pauley S, 2008, PANMINERVA MED, V50, P41 Pauley S, 2006, DEV DYNAM, V235, P2470, DOI 10.1002/dvdy.20839 Pauley S, 2003, DEV DYNAM, V227, P203, DOI 10.1002/dvdy.10297 PIRVOLA U, 1992, P NATL ACAD SCI USA, V89, P9915, DOI 10.1073/pnas.89.20.9915 Pirvola U, 2000, J NEUROSCI, V20, P6125 Praetorius M, 2010, ACTA OTO-LARYNGOL, V130, P215, DOI 10.3109/00016480903019251 Raft S, 2007, DEVELOPMENT, V134, P4405, DOI 10.1242/dev.009118 Ray SK, 2007, MOL CELL BIOL, V27, P7839, DOI 10.1128/MCB.00438-07 Rose MF, 2009, NEURON, V64, P341, DOI 10.1016/j.neuron.2009.10.023 Santi PA, 2009, BIOTECHNIQUES, V46, P287, DOI 10.2144/000113087 Sato M, 2000, MECH DEVELOP, V93, P127, DOI 10.1016/S0925-4773(00)00282-3 Shibata SB, 2010, EXP NEUROL, V223, P464, DOI 10.1016/j.expneurol.2010.01.011 Shroyer NF, 2007, GASTROENTEROLOGY, V132, P2478, DOI 10.1053/j.gastro.2007.03.047 Soukup GA, 2009, DEV BIOL, V328, P328, DOI 10.1016/j.ydbio.2009.01.037 Spoendlin H, 1990, ACTA OTO-LARYNGOL, V470, P69 SPOENDLIN H, 1990, ACTA OTO-LARYNGOL, P61 Tonniges J, 2010, J MICROSC-OXFORD, V239, P117, DOI 10.1111/j.1365-2818.2009.03363.x Van Esch H, 2001, CELL MOL LIFE SCI, V58, P1296, DOI 10.1007/PL00000940 Woods C, 2004, NAT NEUROSCI, V7, P1310, DOI 10.1038/nn1349 Xiang MQ, 2003, BMC NEUROSCI, V4, DOI 10.1186/1471-2202-4-2 Yang H, 2010, GENESIS, V48, P407, DOI 10.1002/dvg.20633 Zheng JL, 2000, NAT NEUROSCI, V3, P580 Zou D, 2008, HUM MOL GENET, V17, P3340, DOI 10.1093/hmg/ddn229 NR 74 TC 40 Z9 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2011 VL 275 IS 1-2 BP 66 EP 80 DI 10.1016/j.heares.2010.12.002 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 776WY UT WOS:000291572300007 PM 21146598 ER PT J AU Verver, EJJ Freriks, K Thomeer, HGXM Huygen, PLM Pennings, RJE Alfen-van der Velden, AAEM Timmers, HJ Otten, BJ Cremers, CWRJ Kunst, HPM AF Verver, E. J. J. Freriks, K. Thomeer, H. G. X. M. Huygen, P. L. M. Pennings, R. J. E. Alfen-van der Velden, A. A. E. M. Timmers, H. J. Otten, B. J. Cremers, C. W. R. J. Kunst, H. P. M. TI Ear and hearing problems in relation to karyotype in children with Turner syndrome SO HEARING RESEARCH LA English DT Article ID RECURRENCE RATES; OTOLOGIC DISEASE; OTITIS-MEDIA; CHOLESTEATOMA; WOMEN; PREVALENCE; FEATURES; ESTROGEN AB The aim of the study was to report otologic and audiologic characteristics in a group of children with Turner syndrome (TS) and correlate these findings to karyotype. Additionally, we give recommendations for the otologic care of these children. Sixty children (age 1.7-21.2 years) were included in this retrospective study. Medical history and karyotypes were recorded and otologic and audiologic evaluation was performed. A history of recurrent otitis media was reported in 41/60 (68%) children and 3/60 (5%) had suffered from cholesteatoma. Audiometric data in 56 children revealed that normal hearing was only present in 33/112 (29%) ears. All other ears 79/112 (71%) were classified in five different audiometric categories for hearing loss. Hearing thresholds in general appeared to be about 10-11 dB worse in children with a monosomy 45,X or isochromosome (both have a total deletion of the short (p) arm of the X-chromosome) compared to those having a mosaicism or structural anomaly (partial deletion, or total deletion in only a few cells). Our findings support the hypothesis that hearing can be affected by loss of the p-arm of the X-chromosome. It is for the first time that a relation between hearing problems and karyotype is statistically confirmed in a large group of children with TS. (C) 2010 Elsevier B.V. All rights reserved. C1 [Verver, E. J. J.; Thomeer, H. G. X. M.; Huygen, P. L. M.; Pennings, R. J. E.; Cremers, C. W. R. J.; Kunst, H. P. M.] Radboud Univ Nijmegen Med Ctr, Dept Otorhinolaryngol, NL-6500 HB Nijmegen, Netherlands. [Freriks, K.; Timmers, H. J.] Radboud Univ Nijmegen Med Ctr, Dept Endocrinol, NL-6500 HB Nijmegen, Netherlands. [Alfen-van der Velden, A. A. E. M.; Otten, B. J.] Radboud Univ Nijmegen Med Ctr, Dept Pediat Endocrinol, NL-6500 HB Nijmegen, Netherlands. RP Verver, EJJ (reprint author), Radboud Univ Nijmegen Med Ctr, Dept Otorhinolaryngol, POB 9101, NL-6500 HB Nijmegen, Netherlands. EM evaverver@hotmail.com RI Kunst, Henricus/J-6456-2012; Pennings, Ronald/J-6651-2012 CR ANDERSON H, 1969, ACTA OTOLARYNGOL S, V26 Barrenas ML, 2000, HEARING RES, V144, P21, DOI 10.1016/S0378-5955(00)00040-X Barrenas ML, 1999, HEARING RES, V138, P163, DOI 10.1016/S0378-5955(99)00162-8 Beckman A, 2004, INT J AUDIOL, V43, P533, DOI 10.1080/14992020400050068 COHEN D, 1989, AM J OTOL, V10, P456 Dhooge IJM, 2005, OTOL NEUROTOL, V26, P145, DOI 10.1097/00129492-200503000-00003 FILIPSSO.R, 1965, ACTA ENDOCRINOL-COP, V48, P91 Gawron W, 2008, INT J PEDIATR OTORHI, V72, P575, DOI 10.1016/j.ijporl.2008.01.021 Gravholt CH, 2004, EUR J ENDOCRINOL, V151, P657, DOI 10.1530/eje.0.1510657 Gungor N, 2000, EUR J PEDIATR, V159, P740, DOI 10.1007/PL00008338 Hall JE, 2009, INT J PEDIATR OTORHI, V73, P57, DOI 10.1016/j.ijporl.2008.09.022 HALL JG, 1990, PEDIATR CLIN N AM, V37, P1421 Hederstierna C, 2009, ACTA OTO-LARYNGOL, V129, P1434, DOI 10.3109/00016480902741962 HULTCRANTZ M, 1994, HEARING RES, V76, P127, DOI 10.1016/0378-5955(94)90094-9 Hultcrantz M, 2006, ACTA OTO-LARYNGOL, V126, P10, DOI 10.1080/00016480510038617 Hultcrantz M, 1997, HEARING RES, V103, P69, DOI 10.1016/S0378-5955(96)00165-7 Hultcrantz M, 2003, ACTA OTO-LARYNGOL, V123, P253, DOI 10.1080/00016480310001097 King KA, 2007, EAR HEARING, V28, P831 Makishima T, 2009, INT J PEDIATR OTORHI, V73, P1564, DOI 10.1016/j.ijporl.2009.08.005 Midtbo M, 1996, EUR J ORTHODONT, V18, P215 Morimoto N, 2006, J PEDIATR-US, V149, P697, DOI 10.1016/j.jpeds.2006.06.071 Parkin M, 2009, INT J PEDIATR OTORHI, V73, P243, DOI 10.1016/j.ijporl.2008.10.012 Ranke MB, 2001, LANCET, V358, P309, DOI 10.1016/S0140-6736(01)05487-3 SCULERATI N, 1990, ARCH OTOLARYNGOL, V116, P704 Sculerati N, 1996, LARYNGOSCOPE, V106, P992, DOI 10.1097/00005537-199608000-00015 Serra A, 2003, INT J PEDIATR OTORHI, V67, P841, DOI 10.1016/S0165-5876(03)00069-7 Stangerup SE, 1998, J LARYNGOL OTOL, V112, P742 Stangerup SE, 2000, OTOLARYNG HEAD NECK, V123, P283, DOI 10.1067/mhn.2000.104666 STANGERUP SE, 1994, EUR ARCH OTO-RHINO-L, V251, P399 Stangerup SE, 1999, INT J PEDIATR OTORHI, V49, pS69, DOI 10.1016/S0165-5876(99)00136-6 Stenberg AE, 2001, HEARING RES, V157, P87, DOI 10.1016/S0378-5955(01)00280-5 Stenberg AE, 1998, HEARING RES, V124, P85, DOI 10.1016/S0378-5955(98)00113-0 Sybert VP, 2004, NEW ENGL J MED, V351, P1227, DOI 10.1056/NEJMra030360 Van Borsel J, 1999, J COMMUN DISORD, V32, P435, DOI 10.1016/S0021-9924(99)00020-9 WATKIN PM, 1989, J LARYNGOL OTOL, V103, P731, DOI 10.1017/S0022215100109934 NR 35 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2011 VL 275 IS 1-2 BP 81 EP 88 DI 10.1016/j.heares.2010.12.007 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 776WY UT WOS:000291572300008 PM 21147207 ER PT J AU Carney, LH Sarkar, S Abrams, KS Idrobo, F AF Carney, Laurel H. Sarkar, Srijata Abrams, Kristina S. Idrobo, Fabio TI Sound-localization ability of the Mongolian gerbil (Meriones unguiculatus) in a task with a simplified response map SO HEARING RESEARCH LA English DT Article ID LATERAL SUPERIOR OLIVE; DIFFERENCE DISCRIMINATION THRESHOLDS; INTERAURAL TIME DIFFERENCES; INFERIOR COLLICULUS; SINGLE NEURONS; RAPID ACQUISITION; AUDITORY STIMULI; PHASE DISPARITY; FREQUENCY; SENSITIVITY AB The characterization of ability in behavioral sound-localization tasks is an important aspect of understanding how the brain encodes and processes sound location information. In a few species, both physiological and behavioral results related to sound localization are available. In the Mongolian gerbil, physiological sensitivity to interaural time differences in the auditory brainstem is comparable to that reported in other species; however, the gerbil has been reported to have relatively poor behavioral localization performance as compared with several other species. In this study, the behavioral performance of the gerbil for sound localization was re-examined using a task that involved a simpler response map than in previously published studies. In the current task, the animal directly approached the speaker on each trial, thus the response map was simpler than the 90 degrees-right vs. 90 degrees-left response required in previous studies of localization and source discrimination. Although the general performance across a group of animals was more consistent in the task with the simpler response map, the sound-localization ability replicated that previously reported. These results are consistent with the previous reports that sound-localization performance in gerbil is poor with respect to other species that have comparable neural sensitivity to interaural cues. (C) 2010 Elsevier B.V. All rights reserved. C1 [Carney, Laurel H.] Univ Rochester, Dept Biomed Engn, Rochester, NY 14642 USA. [Carney, Laurel H.; Sarkar, Srijata; Abrams, Kristina S.] Syracuse Univ, Inst Sensory Res, Syracuse, NY 13244 USA. [Carney, Laurel H.; Sarkar, Srijata] Syracuse Univ, Dept Biomed &Chem Engn, Syracuse, NY 13244 USA. [Carney, Laurel H.] Syracuse Univ, Dept Elect Engn & Comp Sci, Syracuse, NY 13244 USA. [Carney, Laurel H.; Abrams, Kristina S.] Univ Rochester, Dept Neurobiol & Anat, Rochester, NY 14642 USA. [Idrobo, Fabio] Boston Univ, Dept Psychol, Boston, MA 02215 USA. RP Carney, LH (reprint author), Univ Rochester, Dept Biomed Engn, 601 Elmwood Ave,Box 603, Rochester, NY 14642 USA. EM laurel.carney@rochester.edu FU NIDCD [R01-01641] FX Dr. Rickye Heffner provided experimental data from the Heffner and Heffner (1988b) study and instructive comments related to operant training of the gerbils. Numerous helpful comments on the manuscript were provided by members of our Lab Writing Workshop. We gratefully acknowledge the care that our animals receive in the Laboratory Animal Resource facilities in the Institute for Sensory Research. This work was supported by NIDCD R01-01641. CR Batra R, 1997, J NEUROPHYSIOL, V78, P1222 Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a DOWNEY P, 1975, J EXP ANAL BEHAV, V23, P265, DOI 10.1901/jeab.1975.23-265 DOWNEY P, 1972, J EXP ANAL BEHAV, V18, P453, DOI 10.1901/jeab.1972.18-453 Ebert CS, 2008, HEARING RES, V235, P134, DOI 10.1016/j.heares.2007.11.003 GANDY R, 1995, ASS RES OT ABS, V64 Hancock KE, 2004, J NEUROSCI, V24, P7110, DOI 10.1523/JNEUROSCI.0762-04.2004 HARRISON JM, 1992, J ACOUST SOC AM, V92, P1331, DOI 10.1121/1.403927 HARRISON JM, 1971, J EXP ANAL BEHAV, V15, P379, DOI 10.1901/jeab.1971.15-379 HEFFNER H, 1980, J ACOUST SOC AM, V68, P1584, DOI 10.1121/1.385213 HEFFNER RS, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P691 HEFFNER RS, 1988, BEHAV NEUROSCI, V102, P422, DOI 10.1037/0735-7044.102.3.422 Heffner RS, 1997, ACTA OTO-LARYNGOL, P46 HEFFNER RS, 1988, HEARING RES, V36, P221, DOI 10.1016/0378-5955(88)90064-0 KUWADA S, 1987, J NEUROPHYSIOL, V57, P1338 LANGFORD TL, 1984, HEARING RES, V15, P39, DOI 10.1016/0378-5955(84)90223-5 Lesica NA, 2010, J NEUROSCI, V30, P11696, DOI 10.1523/JNEUROSCI.0846-10.2010 MacMillan N. A., 2005, DETECTION THEORY USE Maier JK, 2008, BRAIN RES, V1220, P47, DOI 10.1016/j.brainres.2008.01.083 Maier JK, 2006, J ACOUST SOC AM, V119, P1029, DOI 10.1021/1.2159429 Maki K, 2005, J ACOUST SOC AM, V118, P872, DOI 10.1121/1.1944647 McAlpine D, 2001, NAT NEUROSCI, V4, P396, DOI 10.1038/86049 McAlpine D, 1996, HEARING RES, V97, P136 SANES DH, 1988, J NEUROSCI, V8, P682 Shackleton TM, 2003, J NEUROSCI, V23, P716 SINNOTT JM, 1992, HEARING RES, V59, P205, DOI 10.1016/0378-5955(92)90117-6 Skottun BC, 2001, P NATL ACAD SCI USA, V98, P14050, DOI 10.1073/pnas.241513998 Spitzer MW, 1998, J NEUROPHYSIOL, V80, P3062 SPITZER MW, 1995, J NEUROPHYSIOL, V73, P1668 Tollin DJ, 2003, NEUROSCIENTIST, V9, P127, DOI 10.1177/1073858403252228 Tollin DJ, 2008, J NEUROSCI, V28, P4848, DOI 10.1523/JNEUROSCI.5421-07.2008 Tollin DJ, 2005, J NEUROPHYSIOL, V93, P1223, DOI 10.1152/jn.00747.2004 Tsai JJ, 2010, J NEUROPHYSIOL, V103, P875, DOI 10.1152/jn.00911.2009 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 NR 34 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2011 VL 275 IS 1-2 BP 89 EP 95 DI 10.1016/j.heares.2010.12.006 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 776WY UT WOS:000291572300009 PM 21147208 ER PT J AU Jelfs, S Culling, JF Lavandier, M AF Jelfs, Sam Culling, John F. Lavandier, Mathieu TI Revision and validation of a binaural model for speech intelligibility in noise SO HEARING RESEARCH LA English DT Article ID HEARING-IMPAIRED LISTENERS; INDUCED INTERAURAL TIME; SPATIAL UNMASKING; LEVEL DIFFERENCES; RECEPTION THRESHOLD; CANCELLATION THEORY; REVERBERATION; PREDICTION; MASKING; EQUALIZATION AB Lavandier and Culling [Lavandier, M. and Culling, J. F. 2010. Prediction of binaural speech intelligibility against noise in rooms. J. Acoust. Soc. Am. 127, 387-399] demonstrated a method of predicting human speech reception thresholds for speech in combined noise and reverberation. An updated version of the model is presented, which is substantially more computationally efficient. The updated model makes similar predictions for the SRT data considered by Lavandier and Culling, which tested the model's ability to predict effects of binaural unmasking and room colouration. In addition, we show here that the model accurately predicts the effects of headshadow and reproduces a range of data sets from the literature, including situations with multiple interfering sounds in anechoic conditions. (C) 2011 Elsevier B.V. All rights reserved. C1 [Culling, John F.] Cardiff Univ, Sch Psychol, Cardiff CF10 3AT, S Glam, Wales. [Jelfs, Sam] Cardiff Univ, Welsh Sch Architecture, Cardiff CF10 3NB, S Glam, Wales. [Lavandier, Mathieu] Univ Lyon, Ecole Natl Travaux Publ Etat, CNRS, Dept Genie Civil & Batiment, F-69518 Vaulx En Velin, France. RP Culling, JF (reprint author), Cardiff Univ, Sch Psychol, Tower Bldg,Pk Pl, Cardiff CF10 3AT, S Glam, Wales. EM Cullingj@cf.ac.uk RI Culling, John/D-1468-2009; Lavandier, Mathieu/A-4153-2011 CR Akeroyd MA, 2004, J ACOUST SOC AM, V116, P1135, DOI 10.1121/1.1768959 ANSI, 1997, S3 5 METH CALC SPEEC Babinet M, 1837, CR HEBD ACAD SCI, V4, P638 Beutelmann R, 2006, J ACOUST SOC AM, V120, P331, DOI 10.1121/1.2202888 Beutelmann R, 2010, J ACOUST SOC AM, V127, P2479, DOI 10.1121/1.3295575 Beutelmann R, 2009, J ACOUST SOC AM, V126, P1359, DOI 10.1121/1.3177266 Blauert J., 1998, J ACOUST SOC AM, V103, P3082, DOI 10.1121/1.422910 BRONKHORST AW, 1988, J ACOUST SOC AM, V83, P1508, DOI 10.1121/1.395906 Culling JF, 2005, J ACOUST SOC AM, V118, P552, DOI 10.1121/1.1925967 Culling JF, 1996, BEHAV RES METH INSTR, V28, P376, DOI 10.3758/BF03200517 Culling JF, 2004, J ACOUST SOC AM, V116, P1057, DOI [10.1121/1.1772396, 10.1121/17.1772396] Culling JF, 2007, J ACOUST SOC AM, V122, P2803, DOI 10.1121/1.2785035 de Laat J. A. P. M., 1983, HEARING PHYSL BASES, P359 Duda RO, 1998, J ACOUST SOC AM, V104, P3048, DOI 10.1121/1.423886 DURLACH NI, 1963, J ACOUST SOC AM, V35, P1206, DOI 10.1121/1.1918675 Durlach N.I., 1972, F MODERN AUDITORY TH, P371 Edmonds BA, 2006, J ACOUST SOC AM, V120, P1539, DOI 10.1121/1.2228573 Edmonds BA, 2005, J ACOUST SOC AM, V117, P3069, DOI 10.1121/1.1880752 Edmonds BA, 2005, ACTA ACUST UNITED AC, V91, P546 Gardner B., 1994, HRTF MEASUREMENTS KE Hawley ML, 2004, J ACOUST SOC AM, V115, P833, DOI 10.1121/1.1639908 HIRSH IJ, 1948, J ACOUST SOC AM, V20, P536, DOI 10.1121/1.1906407 HOUTGAST T, 1985, J ACOUST SOC AM, V77, P1069, DOI 10.1121/1.392224 IEEE, 1969, ELECTRO, V17, P227 Kidd G, 2005, ACTA ACUST UNITED AC, V91, P526 Kollmeier B, 1997, J ACOUST SOC AM, V102, P2412, DOI 10.1121/1.419624 Lavandier M, 2007, J ACOUST SOC AM, V122, P1713, DOI 10.1121/1.2764469 Lavandier M, 2008, J ACOUST SOC AM, V123, P2237, DOI 10.1121/1.2871943 Lavandier M, 2010, J ACOUST SOC AM, V127, P387, DOI 10.1121/1.3268612 LEVITT H, 1967, J ACOUST SOC AM, V42, P820, DOI 10.1121/1.1910654 LICKLIDER JCR, 1948, J ACOUST SOC AM, V20, P150, DOI 10.1121/1.1906358 MOORE BCJ, 1983, J ACOUST SOC AM, V74, P750, DOI 10.1121/1.389861 Patterson R., 1987, I ACOUSTICS SPEECH G Patterson R., 1988, SPIRAL VOS FINAL REP Peissig J, 1997, J ACOUST SOC AM, V101, P1660, DOI 10.1121/1.418150 PLOMP R, 1979, AUDIOLOGY, V18, P43 Plomp R., 1976, Acustica, V34 Posselt C., 1986, P 12 INT C AC TOR, V1, pB1 Rayleigh Lord, 1880, PHILOS MAG, V9, P278 Shinn-Cunningham BG, 2005, ACTA ACUST UNITED AC, V91, P967 Summers V, 1998, HEARING RES, V118, P139, DOI 10.1016/S0378-5955(98)00030-6 van Wijngaarden SJ, 2008, J ACOUST SOC AM, V123, P4514, DOI 10.1121/1.2905245 vom Hovel H., 1984, THESIS RTWH AACHEN Wan R., ACOUST SOC AM Wesselkamp M., 1992, MODERNE VERFAHREN SP, P330 Wesselkamp M., 1994, THESIS Zurek P. M., 1993, ACOUSTICAL FACTORS A, P255 NR 47 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2011 VL 275 IS 1-2 BP 96 EP 104 DI 10.1016/j.heares.2010.12.005 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 776WY UT WOS:000291572300010 PM 21156201 ER PT J AU Carpinelli, MR Wise, AK Burt, RA AF Carpinelli, Marina R. Wise, Andrew K. Burt, Rachel A. TI Vitamin D-deficient diet rescues hearing loss in Klotho mice SO HEARING RESEARCH LA English DT Article ID MOUSE; GENE; EXPRESSION; APOPTOSIS; STRAINS AB Klotho-deficient mice exhibit a premature aging syndrome, a feature of which is mild hearing loss. In the present study, the hearing phenotype of Klotho mice was characterized to better determine how well this phenotype resembles presbycusis in humans. It was demonstrated that Klotho animals have auditory-evoked brainstem response (ABR) threshold shifts of 14-18 dB in response to pure tone stimuli of 4, 8, 16 and 32 kHz, and similarly, in response to clicks; however, cochlear histology and spiral ganglion neuron density appeared normal in these mice. It was further demonstrated that a vitamin D-deficient diet normalizes serum calcitriol (1,25(OH)(2)D(3)) levels and prevents hearing loss in Klotho mice. It is concluded that hearing loss in Klotho mice is caused by elevated renal 1 alpha-hydroxylase expression and consequent excessive production of calcitriol. These findings implicate the vitamin D metabolic pathway in hearing loss and pose questions as to the mechanism by which elevated calcitriol levels mediate such hearing loss. (C) 2010 Elsevier B.V. All rights reserved. C1 [Carpinelli, Marina R.; Burt, Rachel A.] Walter & Eliza Hall Inst Med Res, Parkville, Vic 3050, Australia. [Carpinelli, Marina R.; Burt, Rachel A.] Univ Melbourne, Hearing Cooperat Res Ctr, Melbourne, Vic 3010, Australia. [Wise, Andrew K.] Bion Ear Inst, Melbourne, Vic 3002, Australia. RP Carpinelli, MR (reprint author), Walter & Eliza Hall Inst Med Res, 1G Royal Parade, Parkville, Vic 3050, Australia. EM carpinelli@wehi.edu.au; awise@bionicear.org; burt@wehi.edu.au RI Wise, Andrew/B-5943-2014 OI Wise, Andrew/0000-0001-9715-8784 FU HEARing CRC under Australian Government; National Institute of Health; National Institute for Deafness and Communication Disorders [HHS-N-263-2007-00053-C] FX The authors acknowledge the financial support of the HEARing CRC, established and supported under the Australian Government's Cooperative Research Centres Program. AKW is supported by a grant from the National Institute of Health and National Institute for Deafness and Communication Disorders (HHS-N-263-2007-00053-C). Dr James Fallon wrote the Igor procedure file used for ABR analysis. Prof Howard Morris provided useful discussion. CR Abramoff M. D., 2004, IMAGE PROCESSING IMA, V11, P36 Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004 COHEN HN, 1979, LANCET, V1, P985 Frisina RD, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P339, DOI 10.1201/9781420038736.ch24 HENRY KR, 1980, AUDIOLOGY, V19, P369 Jimenez AM, 1999, HEARING RES, V138, P91, DOI 10.1016/S0378-5955(99)00154-9 Kamemori M, 2002, HEARING RES, V171, P103, DOI 10.1016/S0378-5955(02)00483-5 Kuroo M, 1997, NATURE, V390, P45, DOI 10.1038/36285 Kurosu H, 2005, SCIENCE, V309, P1829, DOI 10.1126/science.1112766 Medici D, 2008, J CELL BIOL, V182, P459, DOI 10.1083/jcb.200803024 Rasband W. S., 1997, IMAGEJ Shimada T, 2004, J BONE MINER RES, V19, P429, DOI 10.1359/JBMR.0301264 Someya S, 2009, P NATL ACAD SCI USA, V106, P19432, DOI 10.1073/pnas.0908786106 Tsujikawa H, 2003, MOL ENDOCRINOL, V17, P2393, DOI 10.1210/me.2003-0048 Urakawa I, 2006, NATURE, V444, P770, DOI 10.1038/nature05315 Vieth R, 2001, AM J CLIN NUTR, V73, P288 Yoshida T, 2002, ENDOCRINOLOGY, V143, P683, DOI 10.1210/en.143.2.683 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 18 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2011 VL 275 IS 1-2 BP 105 EP 109 DI 10.1016/j.heares.2010.12.009 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 776WY UT WOS:000291572300011 PM 21167925 ER PT J AU Krishnan, A Plack, CJ AF Krishnan, Ananthanarayan Plack, Christopher J. TI Neural encoding in the human brainstem relevant to the pitch of complex tones SO HEARING RESEARCH LA English DT Article ID FREQUENCY-FOLLOWING RESPONSES; ITERATED RIPPLED NOISE; FUNDAMENTAL-FREQUENCY; COCHLEAR NUCLEUS; AUDITORY-NERVE; TIME-DOMAIN; TEMPORAL REPRESENTATION; UNRESOLVED HARMONICS; UNITARY MODEL; VOWEL SOUNDS AB Psychoacoustic studies have shown that complex tones containing resolved harmonics evoke stronger pitches than complex tones with only unresolved harmonics. Also, unresolved harmonics presented in alternating sine and cosine (ALT) phase produce a doubling of pitch. We examine here whether the temporal pattern of phase-locked neural activity reflected in the scalp recorded human frequency following response (FFR) preserves information relevant to pitch strength, and to the doubling of pitch for ALT stimuli. Results revealed stronger neural periodicity strength for resolved stimuli, although the effect of resolvability was weak compared to the effect observed behaviorally; autocorrelation functions and FFR spectra suggest a different pattern of phase-locked neural activity for ALT stimuli with resolved and unresolved harmonics consistent with the doubling of pitch observed in our behavioral estimates; and the temporal pattern of neural activity underlying pitch encoding appears to be similar at the auditory nerve (auditory nerve model response) and the rostral brainstem level (FFR). These findings suggest that the phase-locked neural activity reflected in the scalp recorded FFR preserves neural information relevant to pitch that could serve as an electrophysiological correlate of the behavioral pitch measure. The scalp recorded FFR may provide for a non-invasive analytic tool to evaluate neural encoding of complex sounds in humans. (C) 2010 Elsevier B.V. All rights reserved. C1 [Krishnan, Ananthanarayan] Purdue Univ, Dept Speech Language Hearing Sci, W Lafayette, IN 47907 USA. [Plack, Christopher J.] Univ Manchester, Sch Psychol Sci, Human Commun & Deafness Div, Manchester M13 9PL, Lancs, England. RP Krishnan, A (reprint author), Purdue Univ, Dept Speech Language Hearing Sci, 1353 Heavilon Hall,500 Oval Dr, W Lafayette, IN 47907 USA. EM rkrish@purdue.edu; chris.plack@manchester.ac.uk FU University of Lancaster, UK; BBSRC (UK) [BB/D012953/1]; NIH [R01, DC 008549] FX Research supported by a grant from the University of Lancaster, UK; BBSRC (UK) grant BB/D012953/1 (C.P.) and by NIH R01, DC 008549 (A.K.). We would also like to thank Gavin Bidelman and Chris Smalt for their invaluable help in data analysis, and an anonymous reviewer for constructive comments on an earlier version of the manuscript. Reprint requests should be addressed to Ananthanarayan Krishnan, Department of Speech Language Hearing Sciences, Purdue University, West Lafayette, IN, USA 47907-2038, or via email: rkrish@purdue.edu CR Aiken SJ, 2008, HEARING RES, V245, P35, DOI 10.1016/j.heares.2008.08.004 BERNSTEIN J, 2003, J ACOUST SOC AM, V113, P2290 Bernstein JG, 2003, J ACOUST SOC AM, V113, P3323, DOI 10.1121/1.1572146 Bernstein JGW, 2008, J ACOUST SOC AM, V124, P1653, DOI 10.1121/1.2956484 Bernstein JGW, 2005, J ACOUST SOC AM, V117, P3816, DOI 10.1121/1.1904268 BREGMAN AS, 1990, CAN J PSYCHOL, V44, P400, DOI 10.1037/h0084255 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698 Carlyon RP, 1998, J ACOUST SOC AM, V104, P1118, DOI 10.1121/1.423319 CARLYON RP, 1994, J ACOUST SOC AM, V95, P3541, DOI 10.1121/1.409971 Cedolin L, 2005, J NEUROPHYSIOL, V94, P347, DOI 10.1152/jn.01114.2004 DARWIN CJ, 1995, J ACOUST SOC AM, V98, P880, DOI 10.1121/1.413513 DEBOER E, 1976, HDB SENSORY PHYSL, V5, P479 EVANS EF, 1978, AUDIOLOGY, V17, P369 EVANS EF, 1983, HEARING PHYSL BASES, P140 GLASER EM, 1976, ELECTROEN CLIN NEURO, V40, P25, DOI 10.1016/0013-4694(76)90176-0 GREENBERG S, 1987, HEARING RES, V25, P91, DOI 10.1016/0378-5955(87)90083-9 HORST JW, 1990, J ACOUST SOC AM, V88, P2656, DOI 10.1121/1.399986 HOUTSMA AJM, 1990, J ACOUST SOC AM, V87, P304, DOI 10.1121/1.399297 Krishnan A, 2005, COGNITIVE BRAIN RES, V25, P161, DOI 10.1016/j.cogbrainres.2005.05.004 Krishnan A, 2004, HEARING RES, V189, P1, DOI 10.1016/S0378-5955(03)00402-7 Krishnan A, 2009, BRAIN LANG, V110, P135, DOI 10.1016/j.bandl.2009.03.005 Krishnan A, 2010, J NEUROLINGUIST, V23, P81, DOI 10.1016/j.jneuroling.2009.09.001 Krishnan A, 2009, J COGNITIVE NEUROSCI, V21, P1092, DOI 10.1162/jocn.2009.21077 Krishnan A, 2000, AUDIOL NEURO-OTOL, V5, P312, DOI 10.1159/000013897 Krishnan A, 1999, AUDIOL NEURO-OTOL, V4, P95, DOI 10.1159/000013826 Krishnan A, 2009, NEUROREPORT, V20, P408, DOI 10.1097/WNR.0b013e3283263000 Krishnan A, 2002, HEARING RES, V166, P192, DOI 10.1016/S0378-5955(02)00327-1 LANGNER G, 1983, EXP BRAIN RES, V52, P333 Larsen E, 2008, J NEUROPHYSIOL, V100, P1301, DOI 10.1152/jn.01361.2007 LICKLIDER JCR, 1951, EXPERIENTIA, V7, P128, DOI 10.1007/BF02156143 LUNDEEN C, 1984, J ACOUST SOC AM, V75, P1578, DOI 10.1121/1.390867 MARSH JT, 1974, ELECTROEN CLIN NEURO, V36, P415, DOI 10.1016/0013-4694(74)90192-8 MEDDIS R, 1991, J ACOUST SOC AM, P1862 Meddis R, 1997, J ACOUST SOC AM, V102, P1811, DOI 10.1121/1.420088 Moore B. C. J., 1989, INTRO PSYCHOL HEARIN PALMER AR, 1990, J ACOUST SOC AM, V88, P1412, DOI 10.1121/1.400329 PALMER AR, 1993, NATO ADV SCI INST SE, V239, P373 PALMER AR, 1992, ADV BIOSCI, V83, P231 PATTERSON RD, 1995, J ACOUST SOC AM, V98, P1890, DOI 10.1121/1.414456 PLOMP R, 1964, J ACOUST SOC AM, V36, P1628, DOI 10.1121/1.1919256 RHODE WS, 1995, J ACOUST SOC AM, V97, P2414, DOI 10.1121/1.411963 RITSMA RJ, 1964, J ACOUST SOC AM, V36, P1637, DOI 10.1121/1.1919257 Sayles M, 2008, NEURON, V58, P789, DOI 10.1016/j.neuron.2008.03.029 Shackleton TM, 2009, JARO-J ASSOC RES OTO, V10, P76, DOI 10.1007/s10162-008-0149-4 SHACKLETON TM, 1994, J ACOUST SOC AM, V95, P3529, DOI 10.1121/1.409970 SHOFNER WP, 1991, J ACOUST SOC AM, V90, P2450, DOI 10.1121/1.402049 SMITH JC, 1975, ELECTROEN CLIN NEURO, V39, P465, DOI 10.1016/0013-4694(75)90047-4 Swaminathan J, 2008, IEEE T BIO-MED ENG, V55, P281, DOI 10.1109/TBME.2007.896592 Swaminathan J, 2008, NEUROREPORT, V19, P1163, DOI 10.1097/WNR.0b013e3283088d31 Winter IM, 2003, SPEECH COMMUN, V41, P135, DOI 10.1016/S0167-6393(02)00098-5 WORDEN FG, 1968, ELECTROEN CLIN NEURO, V25, P42, DOI 10.1016/0013-4694(68)90085-0 Yost WA, 1996, J ACOUST SOC AM, V99, P1066, DOI 10.1121/1.414593 Yost WA, 1996, J ACOUST SOC AM, V100, P511, DOI 10.1121/1.415873 NR 54 TC 12 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2011 VL 275 IS 1-2 BP 110 EP 119 DI 10.1016/j.heares.2010.12.008 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 776WY UT WOS:000291572300012 PM 21167923 ER PT J AU Massida, Z Belin, P James, C Rouger, J Fraysse, B Barone, P Deguine, O AF Massida, Z. Belin, P. James, C. Rouger, J. Fraysse, B. Barone, P. Deguine, O. TI Voice discrimination in cochlear-implanted deaf subjects SO HEARING RESEARCH LA English DT Article ID NOISE VOCODED SPEECH; SPECTRALLY REDUCED SPEECH; NORMAL-HEARING LISTENERS; CROSS-MODAL PLASTICITY; HUMAN AUDITORY-CORTEX; VOCAL-TRACT; ENVIRONMENTAL SOUNDS; TEMPORAL CUES; INDIVIDUAL-DIFFERENCES; ELECTRIC HEARING AB The human voice is important for social communication because voices carry speech and other information such as a person's physical characteristics and affective state. Further restricted temporal cortical regions are specifically involved in voice processing. In cochlear-implanted deaf patients, the processor alters the spectral cues which are crucial for the perception of the paralinguistic information of human voices. The aim of this study was to assess the abilities of voice discrimination in cochlear-implant (Cl) users and in normal-hearing subjects (NHS) using a Cl simulation (vocoder). In NHS the performance in voice discrimination decreased when reducing the spectral information by decreasing the number of channels of the vocoder. In Cl patients with different delays after implantation we observed a strong impairment in voice discrimination at time of activation of the neuroprosthesis. No significant improvement can be detected in patients after two years of experience of the implant while they have reached a higher level of recovery of speech perception, suggesting a dissociation in the dynamic of functional recuperation of speech and voice processing. In addition to the lack of spectral cues due to the implant processor, we hypothesized that the origin of such deficit could derive from a crossmodal reorganization of the temporal voice areas in Cl patients. (C) 2010 Elsevier B.V. All rights reserved. C1 [Barone, P.] Univ Toulouse 3, CNRS, Fac Med Rangueil, Ctr Rech Cerveau & Cognit,UMR 5549, F-31062 Toulouse 9, France. [Massida, Z.; Rouger, J.; Barone, P.; Deguine, O.] Univ Toulouse 3, Univ Toulouse, F-31062 Toulouse, France. [Belin, P.] Univ Glasgow, Dept Psychol, Voice Neurocognit Lab, Glasgow G12 8QB, Lanark, Scotland. [Belin, P.] Univ Glasgow, Ctr Cognit Neuroimaging, Glasgow G12 8QB, Lanark, Scotland. [James, C.] Cochlear France SAS, F-31100 Toulouse, France. [James, C.; Fraysse, B.; Deguine, O.] Serv Otorhinolaryngol & Otoneurol, F-31059 Toulouse 9, France. RP Barone, P (reprint author), Univ Toulouse 3, CNRS, Fac Med Rangueil, Ctr Rech Cerveau & Cognit,UMR 5549, 113 Route Narbonne, F-31062 Toulouse 9, France. EM pascal.barone@cerco.ups-tlse.fr RI Barone, Pascal/A-4008-2009; Imhof, Margarete/F-8471-2011; DEGUINE, Olivier/A-6999-2011 FU Cifre Convention [979/2006]; ANR [ANR-06-Neuro-021-04]; CNRS FX We thank the cochlear-implanted and normally hearing subjects for their participation in this study, Marie-Laurence Laborde for help in collecting the data, C. Marlot for help in bibliography. This work was supported by a Cifre Convention to ZM (Cochlear France SAS-ANRT No979/2006), the ANR Hearing Loss (ANR-06-Neuro-021-04) and the recurrent funding of the CNRS. CR AREHART KH, 2010, J SPEECH LANGUAGE HE Arpesella Marisa, 2008, Ig Sanita Pubbl, V64, P611 Belin P, 2002, COGNITIVE BRAIN RES, V13, P17, DOI 10.1016/S0926-6410(01)00084-2 Belin P, 2004, TRENDS COGN SCI, V8, P129, DOI 10.1016/j.tics.2004.01.008 Belin P, 2000, NATURE, V403, P309, DOI 10.1038/35002078 Belin P, 2003, NEUROREPORT, V14, P2105, DOI 10.1097/00001756-200311140-00019 Belin P, 2006, PHILOS T R SOC B, V361, P2091, DOI 10.1098/rstb.2006.1933 BURNS EM, 1976, J ACOUST SOC AM, V60, P863, DOI 10.1121/1.381166 Chatterjee M, 2008, HEARING RES, V235, P143, DOI 10.1016/j.heares.2007.11.004 Cleary M, 2005, J SPEECH LANG HEAR R, V48, P204, DOI 10.1044/1092-4388(2005/015) Cleary Miranda, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P113 Coez A, 2008, J NUCL MED, V49, P60, DOI 10.2967/jnumed.107.044545 David EE, 2003, OTOL NEUROTOL, V24, P228, DOI 10.1097/00129492-200303000-00017 Donnelly PJ, 2009, J ACOUST SOC AM, V126, pEL128, DOI 10.1121/1.3239464 Elliott TM, 2009, PLOS COMPUT BIOL, V5, DOI 10.1371/journal.pcbi.1000302 Erler Susan F, 2002, Am J Audiol, V11, P83, DOI 10.1044/1059-0889(2002/020) Fitch WT, 1999, J ACOUST SOC AM, V106, P1511, DOI 10.1121/1.427148 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Fu QJ, 2004, JARO-J ASSOC RES OTO, V5, P253, DOI 10.1007/s10162-004-4046-1 Fu QJ, 2005, J ACOUST SOC AM, V118, P1711, DOI 10.1121/1.1985024 GAVER WW, 1993, ECOL PSYCHOL, V5, P1, DOI 10.1207/s15326969eco0501_1 Gfeller K, 2007, EAR HEARING, V28, P412, DOI 10.1097/AUD.0b013e3180479318 Giraud AL, 2001, NEURON, V30, P657, DOI 10.1016/S0896-6273(01)00318-X Gonzalez J, 2005, J ACOUST SOC AM, V118, P461, DOI 10.1121/1.1928892 Gratton Michael Anne, 2003, Curr Opin Otolaryngol Head Neck Surg, V11, P367, DOI 10.1097/00020840-200310000-00010 Green D. M., 1966, SIGNAL DETECTION THE Green T, 2002, J ACOUST SOC AM, V112, P2155, DOI 10.1121/1.1506688 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Gygi B, 2007, PERCEPT PSYCHOPHYS, V69, P839, DOI 10.3758/BF03193921 Hailstone JC, 2010, NEUROPSYCHOLOGIA, V48, P1104, DOI 10.1016/j.neuropsychologia.2009.12.011 KARLIN JE, 1942, PSYCHOMETRIKA, V7 Kidd GR, 2007, J ACOUST SOC AM, V122, P418, DOI 10.1121/1.2743154 Kishon-Rabin Liat, 2009, Journal of Basic and Clinical Physiology and Pharmacology, V20, P219 Kovacic D, 2009, J ACOUST SOC AM, V126, P762, DOI 10.1121/1.3158855 Lee DS, 2001, NATURE, V409, P149, DOI 10.1038/35051653 Loebach JL, 2006, HEARING RES, V213, P130, DOI 10.1016/j.heares.2006.01.011 Loebach JL, 2008, J ACOUST SOC AM, V123, P1126, DOI 10.1121/1.2823453 Loebach JL, 2008, HEARING RES, V241, P87, DOI 10.1016/j.heares.2008.05.002 Loizou PC, 1999, J ACOUST SOC AM, V106, P2097, DOI 10.1121/1.427954 Lorenzi C, 2006, P NATL ACAD SCI USA, V103, P18866, DOI 10.1073/pnas.0607364103 Luo X, 2008, EAR HEARING, V29, P957, DOI 10.1097/AUD.0b013e3181888f61 Luo X., 2007, TRENDS AMPLIF, V11, P301, DOI DOI 10.1177/1084713807305301 MARX M, 2010, 11 INT C COCHL IMPL MASSIDA Z, 2008, 6 FENS GEN Moore BCJ, 2008, PHILOS T R SOC B, V363, P917, DOI 10.1098/rstb.2007.2195 MULDER HE, 1992, ACTA OTO-LARYNGOL, V112, P946, DOI 10.3109/00016489209137495 Neuner F, 2000, BRAIN COGNITION, V44, P342, DOI 10.1006/brcg.1999.1196 Obleser J, 2008, J NEUROSCI, V28, P8116, DOI 10.1523/JNEUROSCI.1290-08.2008 Oishi N, 2010, OTOLARYNG HEAD NECK, V142, P565, DOI 10.1016/j.otohns.2009.12.006 Proops D W, 1999, J Laryngol Otol Suppl, V24, P5 Reed CM, 2005, EAR HEARING, V26, P48, DOI 10.1097/00003446-200502000-00005 Roers F, 2009, J VOICE, V23, P408, DOI 10.1016/j.jvoice.2007.12.003 Rouger J, 2007, P NATL ACAD SCI USA, V104, P7295, DOI 10.1073/pnas.0609419104 ROUGER J, 2007, PERCEPTION AUDIOVISU Rouger J, 2008, BRAIN RES, V1188, P87, DOI 10.1016/j.brainres.2007.10.049 Scott SK, 2000, BRAIN, V123, P2400, DOI 10.1093/brain/123.12.2400 Scott SK, 2006, J ACOUST SOC AM, V120, P1075, DOI 10.1121/1.2216725 SEIDMAN MD, 2004, ACTA OTO-LARYNGOL, V552, P16 Shafiro V, 2008, EAR HEARING, V29, P401, DOI 10.1097/AUD.0b013e31816a0cf1 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Smith DRR, 2007, J ACOUST SOC AM, V122, P3628, DOI 10.1121/1.2799507 Spahr AJ, 2004, ARCH OTOLARYNGOL, V130, P624, DOI 10.1001/archotol.130.5.624 Story BH, 2001, J ACOUST SOC AM, V109, P1651, DOI 10.1121/1.1352085 Strelnikov K, 2009, NEUROPSYCHOLOGIA, V47, P972, DOI 10.1016/j.neuropsychologia.2008.10.017 Surprenant AM, 2001, J ACOUST SOC AM, V110, P2085, DOI 10.1121/1.1404973 Takemoto H, 2006, J ACOUST SOC AM, V120, P2228, DOI 10.1121/1.2261270 TANNER WP, 1954, PSYCHOL REV, V61, P401, DOI 10.1037/h0058700 TYEMURRAY N, 1992, EAR HEARING, V13, P200, DOI 10.1097/00003446-199206000-00010 Toner J, 2004, EAR HEARING, V25, P310, DOI 10.1097/01.AUD.0000134549.48718.53 Van Lancker D R, 1982, Brain Cogn, V1, P185, DOI 10.1016/0278-2626(82)90016-1 VANLANCKER DR, 1989, J CLIN EXP NEUROPSYC, V11, P665, DOI 10.1080/01688638908400923 Vongphoe M, 2005, J ACOUST SOC AM, V118, P1055, DOI 10.1121/1.1944507 Vouloumanos A, 2009, P NATL ACAD SCI USA, V106, P18867, DOI 10.1073/pnas.0906049106 Warren JD, 2006, NEUROIMAGE, V31, P1389, DOI 10.1016/j.neuroimage.2006.01.034 Xu L, 2002, J ACOUST SOC AM, V112, P247, DOI 10.1121/1.1487843 Xue SA, 2006, J VOICE, V20, P391, DOI 10.1016/j.jvoice.2005.05.001 Zatorre RJ, 2001, CEREB CORTEX, V11, P946, DOI 10.1093/cercor/11.10.946 Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5 NR 78 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2011 VL 275 IS 1-2 BP 120 EP 129 DI 10.1016/j.heares.2010.12.010 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 776WY UT WOS:000291572300013 PM 21167924 ER PT J AU Garadat, SN Pfingst, BE AF Garadat, Soha N. Pfingst, Bryan E. TI Relationship between gap detection thresholds and loudness in cochlear-implant users SO HEARING RESEARCH LA English DT Article ID OUTER HAIR-CELLS; MODULATION DETECTION; SPEECH RECOGNITION; INTENSITY DISCRIMINATION; ELECTRICAL-STIMULATION; AUDITORY-NERVE; STIMULUS LEVEL; ELECTRODE CONFIGURATION; SITE; CONSEQUENCES AB Gap detection threshold (GOT) is a commonly used measure of temporal acuity in cochlear-implant (CI) recipients. This measure, like other measures of temporal acuity, shows considerable variation across subjects and also varies across stimulation sites within subjects. The aims of this study were (1) to determine whether across-site variation in GDTs would be reduced or maintained with increased stimulation levels; (2) to determine whether across-site variation in GDTs at low stimulation levels was related to differences in loudness percepts at those same levels; and (3) to determine whether matching loudness levels could reduce across-site differences in GDTs. Thresholds and maximum comfortable loudness levels were measured in postlingually deaf adults using all available sites in their electrode arrays. All sites were then surveyed at 30% of the dynamic range (DR) to examine across-site variation. Two sites with the largest difference in GDTs were then selected and for those two sites GDTs were measured at multiple levels of the DR (10%, 30%, 50%, 70%, and 90%). Stimuli consisted of 500 ms trains of symmetric-biphasic pulses, 40 mu s/phase, presented at a rate of 1000 pps using a monopolar (MP1+2) electrode configuration. To examine perceptual differences in loudness, the selected sites were loudness-matched at the same levels of the DR. Variations in GDTs and loudness patterns were observed across stimulation sites and across subjects. Variations in GDTs across sites tended to decrease with increasing stimulation levels. For the majority of the subjects, stimuli at a given level in %DR were perceived louder at sites with better GDTs than those presented at the same level in %DR at sites with poorer GDTs. These results suggest that loudness is a contributing factor to across-site variation in GDTs and that Cl fittings based on more detailed loudness matching could reduce across-site variation and improve perceptual acuity. (C) 2010 Elsevier B.V. All rights reserved. C1 [Garadat, Soha N.; Pfingst, Bryan E.] Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, Ann Arbor, MI 49109 USA. RP Pfingst, BE (reprint author), Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, Room 4605 Med Sci 2,1150 W Med Ctr Dr, Ann Arbor, MI 49109 USA. EM bpfingst@umich.edu FU NIH/NIDCD [R01 DC004312, R01 DC010786, T32 DC00011, F32 DC010318] FX This work was supported by NIH/NIDCD grants R01 DC004312, R01 DC010786, T32 DC00011, and F32 DC010318. CR Bierer JA, 2002, J NEUROPHYSIOL, V87, P478 BURKHOLDERJUHAS.R, 2008, ASS RES OT ABST, V31, P295 Busby PA, 1999, J ACOUST SOC AM, V105, P1841, DOI 10.1121/1.426721 Chatterjee M, 1998, J ACOUST SOC AM, V103, P2565, DOI 10.1121/1.422777 Chatterjee M, 1998, J ACOUST SOC AM, V103, P2515, DOI 10.1121/1.422772 Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0 FORMBY C, 1986, J SPEECH HEAR RES, V29, P413 Fourcin A J, 1979, Br J Audiol, V13, P85, DOI 10.3109/03005367909078883 Franck KH, 2003, JARO, V4, P49, DOI 10.1007/s10162-002-2047-5 Fu QJ, 2002, NEUROREPORT, V13, P1635, DOI 10.1097/00001756-200209160-00013 Galvin JJ, 2005, JARO-J ASSOC RES OTO, V6, P269, DOI 10.1007/s10162-005-0007-6 Galvin JJ, 2009, HEARING RES, V250, P46, DOI 10.1016/j.heares.2009.01.009 Hanekom JJ, 1998, J ACOUST SOC AM, V104, P2372, DOI 10.1121/1.423772 Javel E, 2000, J ACOUST SOC AM, V107, P908, DOI 10.1121/1.428269 KIANG NYS, 1972, ANN OTO RHINOL LARYN, V81, P714 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 MCKAY CM, 2004, AUDITORY PROSTHESES, P286 Moore BCJ, 1998, PSYCHOL REV, V105, P108, DOI 10.1037/0033-295X.105.1.108 Moore BCJ, 1996, EAR HEARING, V17, P133, DOI 10.1097/00003446-199604000-00007 MOORE BCJ, 1988, J ACOUST SOC AM, V83, P1093, DOI 10.1121/1.396054 Morris DJ, 2000, JARO, V1, P211, DOI 10.1007/s101620010022 MUCHNIK C, 1994, SCAND AUDIOL, V23, P105, DOI 10.3109/01050399409047493 MULLER CG, 1983, ANN NY ACAD SCI, V405, P412, DOI 10.1111/j.1749-6632.1983.tb31654.x Pfingst BE, 2004, AUDIOL NEURO-OTOL, V9, P341, DOI 10.1159/000081283 Pfingst BE, 2007, J ACOUST SOC AM, V121, P2236, DOI 10.1121/1.2537501 PFINGST BE, 1994, HEARING RES, V78, P197, DOI 10.1016/0378-5955(94)90026-4 Pfingst BE, 2008, J ACOUST SOC AM, V123, P1054, DOI 10.1121/1.2828051 Pfingst BE, 2004, JARO-J ASSOC RES OTO, V5, P11, DOI 10.1007/s10162-003-3051-0 PREECE JP, 1989, J SPEECH HEAR RES, V32, P849 PROSEN CA, 1981, SCIENCE, V212, P1286, DOI 10.1126/science.7233219 RYAN A, 1975, NATURE, V253, P44, DOI 10.1038/253044a0 Sagi E, 2009, J SPEECH LANG HEAR R, V52, P385, DOI [10.1044/1092-4388(2008/07-0219), 10.1044/1092-4388(2008/07-0219] SHANNON RV, 1983, HEARING RES, V11, P157, DOI 10.1016/0378-5955(83)90077-1 SHANNON RV, 1989, J ACOUST SOC AM, V85, P2587, DOI 10.1121/1.397753 SHANNON RV, 1992, J ACOUST SOC AM, V91, P2156, DOI 10.1121/1.403807 Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 Skinner MW, 1999, J SPEECH LANG HEAR R, V42, P814 Skinner MW, 1997, J ACOUST SOC AM, V101, P3766, DOI 10.1121/1.418383 Snyder RL, 2004, JARO-J ASSOC RES OTO, V5, P305, DOI 10.1007/s10162-004-4026-5 Swanson B, 2004, NUCL MATLAB TOOLBOX VANWIERINGEN VJ, 1999, J ACOUST SOC AM, V106, P1925 NR 41 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2011 VL 275 IS 1-2 BP 130 EP 138 DI 10.1016/j.heares.2010.12.011 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 776WY UT WOS:000291572300014 PM 21168479 ER PT J AU Wang, MY Wu, XH Li, L Schneider, BA AF Wang, Mengyuan Wu, Xihong Li, Liang Schneider, Bruce A. TI The effects of age and interaural delay on detecting a change in interaural correlation: The role of temporal jitter SO HEARING RESEARCH LA English DT Article ID MASKING-LEVEL DIFFERENCES; OLDER-ADULTS; PRECEDENCE; SEGREGATION; NOISE; INTELLIGIBILITY; LOCALIZATION; RECOGNITION; SUPPRESSION; ATTENTION AB Duration thresholds for detecting a change in interaural correlation (from 0 to 1, or from 1 to 0) in the initial portion of a 1-second, broadband noise (0-10 kHz) were determined for younger and older adults in a two-interval, two-alternative forced choice paradigm as a function of the interaural delay between the noise bursts presented to each ear. When the interaural delay was 0 ms, older adults found it harder to detect a change in correlation from 0 to 1 than from 1 to 0. For younger adults, however, this pattern was reversed. For interaural delays greater than 0 ms, both younger adults and older adults found it easier to detect a change in interaural correlation from 0 to 1 for short interaural delays (1 ms) with the reverse being true for longer interaural delays (5 ms). It is shown that this pattern of results is expected if temporal jitter (loss of neural synchrony in the auditory system) increases with age and with interaural delay. The implications of these results for age-related changes in stream segregation are discussed. (C) 2010 Elsevier B.V. All rights reserved. C1 [Schneider, Bruce A.] Univ Toronto, Ctr Res Biol Commun Syst, Dept Psychol, Mississauga, ON L5L 1C6, Canada. [Wang, Mengyuan; Wu, Xihong; Li, Liang] Peking Univ, Speech & Hearing Res Ctr, Natl Key Ctr Machine Percept, Dept Psychol, Beijing 100871, Peoples R China. RP Schneider, BA (reprint author), Univ Toronto, Ctr Res Biol Commun Syst, Dept Psychol, Mississauga, ON L5L 1C6, Canada. EM liangli@pku.edu.cn; bruce.schneider@utoronto.ca FU Natural Sciences and Engineering Research Council of Canada [RPIN 9172]; Canadian Institutes of Health Research [CCI-85674]; "973" National Basic Research Program of China [2009CB320901]; National Science Foundation of China [60545030, 30670704, 30711120563]; Chinese Ministry of Education [20090001110050] FX This work was supported by a Natural Sciences and Engineering Research Council of Canada Grant (RPIN 9172), a Canadian Institutes of Health Research Grant (CCI-85674), the "973" National Basic Research Program of China (2009CB320901), National Science Foundation of China Grants (60545030, 30670704, 30711120563), and the Chinese Ministry of Education (20090001110050). CR Akeroyd MA, 1999, J ACOUST SOC AM, V105, P2807, DOI 10.1121/1.426897 Alain C, 2007, J NEUROSCI, V27, P1308, DOI 10.1523/JNEUROSCI.5433-06.2007 Alain C, 1996, J GERONTOL B-PSYCHOL, V51, pP91 ANSI, 2004, ANSIS36 Bernstein LR, 2001, J ACOUST SOC AM, V109, P1604, DOI 10.1121/1.1354203 BLAUERT J, 1986, J ACOUST SOC AM, V79, P806, DOI 10.1121/1.393471 Bregman AS., 1990, AUDITORY SCENE ANAL Carlyon RP, 2001, J EXP PSYCHOL HUMAN, V27, P115, DOI 10.1037//0096-1523.27.1.115 DANEMAN M, 1980, J VERB LEARN VERB BE, V19, P450, DOI 10.1016/S0022-5371(80)90312-6 Durlach N.I., 1972, F MODERN AUDITORY TH, P371 EDDINS DA, 2010, SPRINGER HDB AUDITOR, P135 Grose JH, 2010, EAR HEARING, V31, P755, DOI 10.1097/AUD.0b013e3181e627e7 HAAS H, 1951, ACUSTICA, V1, P49 Hasher L., 1988, PSYCHOL LEARN MOTIV, V22, P193, DOI DOI 10.1016/S0079-7421(08)60041-9 Heinrich A, 2011, Q J EXP PSYCHOL, V64, P186, DOI 10.1080/17470218.2010.492621 Heinrich A, 2008, Q J EXP PSYCHOL, V61, P735, DOI 10.1080/17470210701402372 Huang Y, 2009, J ACOUST SOC AM, V126, P300, DOI 10.1121/1.3147504 Huang Y, 2008, HEARING RES, V244, P51, DOI 10.1016/j.heares.2008.07.006 Humes LE, 2006, J ACOUST SOC AM, V120, P2926, DOI 10.1121/1.2354070 Li L, 2004, J EXP PSYCHOL HUMAN, V30, P1077, DOI 10.1037/0096-1523.30.6.1077 Li L, 2005, HEARING RES, V202, P235, DOI 10.1016/j.heures.2004.10.007 Li L, 2009, EAR HEARING, V30, P273, DOI 10.1097/AUD.0b013e318198703d Litovsky RY, 2001, J ACOUST SOC AM, V109, P346, DOI 10.1121/1.1328792 Litovsky RY, 1999, J ACOUST SOC AM, V106, P1633, DOI 10.1121/1.427914 MacDonald EN, 2010, HEARING RES, V261, P63, DOI 10.1016/j.heares.2010.01.005 MOORE BCJ, 1988, J ACOUST SOC AM, V83, P1102, DOI 10.1121/1.396055 KATHLEEN M, 1991, J SPEECH HEAR RES, V34, P1410 PICHORAFULLER MK, 1992, J ACOUST SOC AM, V91, P2129, DOI 10.1121/1.403673 Pichora-Fuller MK, 2007, HEARING RES, V223, P114, DOI 10.1016/j.heares.2006.10.009 Pichora-Fuller MK, 1998, PERCEPT PSYCHOPHYS, V60, P1197, DOI 10.3758/BF03206169 Rakerd B, 2000, J ACOUST SOC AM, V107, P1061, DOI 10.1121/1.428287 Schmiedt R. A., 2010, SPRINGER HDB AUDITOR, P9 Schneider B. A., 2010, SPRINGER HDB AUDITOR, P167 SCHNEIDER BA, 1989, J ACOUST SOC AM, V86, P1756, DOI 10.1121/1.398607 Schneider Bruce A., 2001, Seminars in Hearing, V22, P227, DOI 10.1055/s-2001-15628 Snyder JS, 2005, COGNITIVE BRAIN RES, V24, P492, DOI 10.1016/j.cogbrainres.2005.03.002 Vongpoisal T, 2007, J SPEECH LANG HEAR R, V50, P1139, DOI 10.1044/1092-4388(2007/079) Wagener KC, 2005, INT J AUDIOL, V44, P144, DOI 10.1080/14992020500057517 WALLACH H, 1949, AM J PSYCHOL, V62, P315, DOI 10.2307/1418275 Zurek P. M., 1987, DIRECTIONAL HEARING, P85, DOI 10.1007/978-1-4612-4738-8_4 NR 40 TC 5 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2011 VL 275 IS 1-2 BP 139 EP 149 DI 10.1016/j.heares.2010.12.013 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 776WY UT WOS:000291572300015 PM 21184818 ER PT J AU Latoche, JR Neely, HR Noben-Trauth, K AF Latoche, Joseph R. Neely, Harold R. Noben-Trauth, Konrad TI Polygenic inheritance of sensorineural hearing loss (Snhl2, -3, and -4) and organ of Corti patterning defect in the ALR/LtJ mouse strain SO HEARING RESEARCH LA English DT Article ID PRODUCT OTOACOUSTIC EMISSIONS; QUANTITATIVE TRAIT LOCI; MAMMALIAN INNER-EAR; INBRED STRAINS; EARLY-ONSET; DBA/2J MICE; CELL FATE; IMPAIRMENT; MODEL; POLARITY AB Progressive sensorineural hearing loss in humans is a common and debilitating impairment. Sensorineural deafness in inbred strains of mice is a similarly common and genetically diverse phenotype providing experimental models to study the underlying genetics and the biological effects of the risk factors. Here, we report that ALR/LtJ mice develop early-onset profound sensorineural hearing loss as evidenced by high-to-low frequency hearing threshold shifts, absent distortion-product otoacoustic emissions, and normal endocochlear potentials. Linkage analyses of a segregating backcross revealed three novel quantitative trait loci named sensorineural hearing loss (Snhl) -2, -3, and -4. The QTLs achieved very high LOD scores with markers on chromosome 1 (Snhl2, LOD: 12), chromosome 6 (Snhl3, LOD: 24) and chromosome 10 (Snhl4, LOD: 11). Together, they explained 90% of the phenotypic variance. While Snhl2 and Snhl3 affected hearing thresholds across a broad range of test frequencies, Snhl4 caused primarily high-frequency hearing loss. The hearing impairment is accompanied by an organ of Corti patterning defect that is characterized by the ectopic expression of supernumerary outer hair cells organized in rows along the abneural site of the sensory epithelium in the presence of unaltered planar polarity and otherwise normal cochlear duct morphology. Cloning the Snhl2, -3, and -4 genes in the ALR/LtJ mice may provide important genetic and mechanistic insights into the pathology of human progressive sensorineural deafness. Published by Elsevier B.V. C1 [Latoche, Joseph R.; Neely, Harold R.; Noben-Trauth, Konrad] Natl Inst Deafness & Other Commun Disorders, Neurogenet Sect, Mol Biol Lab, NIH, Rockville, MD 20850 USA. RP Noben-Trauth, K (reprint author), Natl Inst Deafness & Other Commun Disorders, Neurogenet Sect, Mol Biol Lab, NIH, 5 Res Court, Rockville, MD 20850 USA. EM nobentk@nidcd.nih.gov FU Division of Intramural Research at NIDCD FX We thank Glen Martin for help with DPOAEs and Daniel Marcus for advice on EP measurements. We thank Alain Dabdoub and Feng Qian for their comments on the manuscript. The Division of Intramural Research at NIDCD funded this work. CR Ali G, 2006, CLIN GENET, V69, P429, DOI 10.1111/j.1399-0004.2006.00611.x Chen Z, 2008, J NEUROSCI, V28, P6633, DOI 10.1523/JNEUROSCI.1280-08.2008 Drayton M, 2006, HEARING RES, V212, P128, DOI 10.1016/j.heares.2005.11.006 Eichler EE, 2010, NAT REV GENET, V11, P446, DOI 10.1038/nrg2809 Jimenez AM, 1999, HEARING RES, V138, P91, DOI 10.1016/S0378-5955(99)00154-9 Johnson KR, 2002, GENOMICS, V80, P461, DOI [10.1006/geno.2002.6858, 10.1016/S0888-7543(02)96858-8] Johnson KR, 2005, GENOMICS, V85, P582, DOI 10.1016/j.ygeno.2005.02.006 Johnson KR, 2008, GENOMICS, V92, P219, DOI 10.1016/j.ygeno.2008.06.007 Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 Johnson KR, 2006, BRAIN RES, V1091, P79, DOI 10.1016/j.brainres.2006.02.021 Kiernan AE, 2005, DEVELOPMENT, V132, P4353, DOI 10.1242/dev.02002 Konings A, 2009, EAR HEARING, V30, P151, DOI 10.1097/AUD.0b013e3181987080 Lu XW, 2004, NATURE, V430, P93, DOI 10.1038/nature02677 Manly KF, 2001, MAMM GENOME, V12, P930, DOI 10.1007/s00335-001-1016-3 Mansour SL, 2009, HUM MOL GENET, V18, P43, DOI 10.1093/hmg/ddn311 Martin GK, 2007, HEARING RES, V234, P59, DOI 10.1016/j.heares.2007.09.002 Mashimo T, 2006, MAMM GENOME, V17, P841, DOI 10.1007/s00335-004-2438-5 McClellan J, 2010, CELL, V141, P210, DOI 10.1016/j.cell.2010.03.032 Montcouquiol M, 2003, NATURE, V423, P173, DOI 10.1038/nature01618 *NIDCD, 2010, STAT EP Noben-Trauth K, 2009, BRAIN RES, V1277, P42, DOI 10.1016/j.brainres.2009.02.012 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 Ohlemiller KK, 2006, HEARING RES, V220, P10, DOI 10.1016/j.heares.2006.06.012 Pauley S, 2006, DEV DYNAM, V235, P2470, DOI 10.1002/dvdy.20839 Petkov PM, 2005, PLOS GENET, V1, P312, DOI 10.1371/journal.pgen.0010033 Sage C, 2005, SCIENCE, V307, P1114, DOI 10.1126/science.1106642 Shim K, 2005, DEV CELL, V8, P553, DOI 10.1016/j.devcel.2005.02.009 Shin JB, 2010, J NEUROSCI, V30, P9683, DOI 10.1523/JNEUROSCI.1541-10.2010 Thys M, 2009, OTOL NEUROTOL, V30, P1021, DOI 10.1097/MAO.0b013e3181a86509 Van Eyken E, 2007, AUDIOL NEURO-OTOL, V12, P345, DOI 10.1159/000106478 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 31 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2011 VL 275 IS 1-2 BP 150 EP 159 DI 10.1016/j.heares.2010.12.017 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 776WY UT WOS:000291572300016 PM 21185929 ER PT J AU Song, Y Mellott, JG Winer, JA AF Song, Yohan Mellott, Jeffrey G. Winer, Jeffery A. TI Microvascular organization of the cat inferior colliculus SO HEARING RESEARCH LA English DT Article ID CEREBRAL-BLOOD-FLOW; GERBIL MERIONES-UNGUICULATUS; SUPERIOR OLIVARY COMPLEX; CENTRAL AUDITORY-SYSTEM; PRIMATE VISUAL-CORTEX; CAPILLARY DENSITY; COCHLEAR NUCLEUS; GUINEA-PIG; POSTNATAL-DEVELOPMENT; NEURONAL ARCHITECTURE AB Brain neural activity depends critically on the blood supply to a given structure. The blood supply can differ within and between divisions, which may have functional significance. We analyzed the microvascular organization of the cat inferior colliculus (IC) to determine if the capillary distribution is homogenous throughout. The IC consists of the central nucleus (CN), the dorsal cortex (DC), and the lateral cortex (LC), each with different roles in auditory behavior and perception. Plastic-embedded tissue was studied from adult cats in 1-mu m thick semi-thin sections stained with toluidine blue; tissue was sampled from the IC in a caudal rostral series of sections. The architectonic subdivisions were drawn independently based on Golgi impregnations. We used the nearest neighbor distance (NND) method to quantify capillary density between subdivisions. Overall, the distribution of capillary density was non-homogenous across the IC. We found significant capillary NND differences between the CN and LC (Mann Whitney test; p <= 0.05), CN and DC (Mann Whitney test; p <= 0.05), and LC and DC (Mann Whitney test; p <= 0.05). The CN had the lowest NND values among all three divisions, indicating the highest capillary density. NND values changed gradually as analysis moved from the center of the IC towards the periphery. The significantly higher microvascular density in the CN may imply that the lemniscal auditory pathway has higher levels of blood flow and metabolic activity than non-lemniscal areas of the IC. The non-homogenous microvascular organization of the IC supports parcellation schemes that delineate three major subdivisions and confirms that the borders between the three regions are not sharp. (C) 2010 Elsevier B.V. All rights reserved. C1 [Song, Yohan; Mellott, Jeffrey G.; Winer, Jeffery A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Div Neurobiol, Berkeley, CA 94720 USA. RP Mellott, JG (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Div Neurobiol, Room 289 Life Sci Addit, Berkeley, CA 94720 USA. EM jeff_mellott@berkeley.edu FU USPHS [R01DC02319-29] FX We thank Jason Chung for his help with plotting blood vessels, David Larue and Katie Smith for technical assistance, and Karl Rohe for statistical assistance. We give special thanks to Dr. Nell Cant and Dr. Doug Oliver whose detailed and thoughtful comments refined the presentation of this study. Supported by USPHS Grant R01DC02319-29. CR AITKIN L, 1994, EXP BRAIN RES, V98, P53 AITKIN L, 1984, NEUROSCI LETT, V1, P315 AITKIN LM, 1981, J COMP NEUROL, V196, P25, DOI 10.1002/cne.901960104 AITKIN LM, 1975, J NEUROPHYSIOL, V38, P1196 ANDREW DLE, 1989, AM J ANAT, V186, P389, DOI 10.1002/aja.1001860408 Baborie A, 2006, NEUROSCI LETT, V404, P20, DOI 10.1016/j.neulet.2006.05.008 BAR T, 1972, Z ZELLFORSCH MIK ANA, V133, P231, DOI 10.1007/BF00307145 BERMAN AL, 1968, CYTOARCHITECTONIC AT BLACK JE, 1991, EXP NEUROL, V111, P204, DOI 10.1016/0014-4886(91)90008-Z BOROWSKY IW, 1989, J COMP NEUROL, V288, P401, DOI 10.1002/cne.902880304 Buxton RB, 1997, J CEREBR BLOOD F MET, V17, P64 Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9 Cant NB, 2005, INFERIOR COLLICULUS Cant NB, 2008, NEUROSCIENCE, V154, P206, DOI 10.1016/j.neuroscience.2008.02.015 Cant NB, 2006, J COMP NEUROL, V495, P511, DOI 10.1002/cne.20888 Chernock ML, 2004, HEARING RES, V188, P12, DOI 10.1016/S0378-5955(03)00340-X COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204 CONRADI NG, 1980, ACTA NEUROPATHOL, V50, P131 Coote EJ, 2008, NEUROSCIENCE, V154, P218, DOI 10.1016/j.neuroscience.2008.02.030 COX SB, 1993, J CEREBR BLOOD F MET, V13, P899 Craigie EH, 1921, J COMP NEUROL, V33, P193, DOI 10.1002/cne.900330302 Craigie EH, 1920, J COMP NEUROL, V31, P429, DOI 10.1002/cne.900310504 DIAMOND IT, 1969, BRAIN RES, V15, P305, DOI 10.1016/0006-8993(69)90160-7 Dunning HS, 1937, J COMP NEUROL, V67, P433, DOI 10.1002/cne.900670305 Fonta C, 2002, CEREB CORTEX, V12, P199, DOI 10.1093/cercor/12.2.199 Gerrits RJ, 2000, BRAIN RES, V864, P205, DOI 10.1016/S0006-8993(00)02142-9 Goense JBM, 2007, MAGN RESON IMAGING, V25, P740, DOI 10.1016/j.mri.2007.02.013 GONZALEZLIMA F, 1994, BRAIN RES, V660, P34, DOI 10.1016/0006-8993(94)90836-2 Grivas I, 2003, BRAIN RES, V971, P245, DOI 10.1016/S0006-8993(03)02475-2 GROSS PM, 1987, J CEREBR BLOOD F MET, V7, P154 Harrison RV, 2002, CEREB CORTEX, V12, P225, DOI 10.1093/cercor/12.3.225 Harting JK, 2000, BRAIN RES, V881, P244 HERBERT H, 1991, J COMP NEUROL, V304, P103, DOI 10.1002/cne.903040108 Irvine D.R.F., 1986, Progress in Sensory Physiology, V7, P1 Jain R, 2006, NEUROSCI LETT, V395, P71, DOI 10.1016/j.neulet.2005.10.077 JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987 Jones M, 2004, NEUROIMAGE, V22, P956, DOI 10.1016/j.neuroimage.2004.02.007 Larue DT, 1996, J NEUROSCI METH, V64, P69, DOI 10.1016/0165-0270(95)00111-5 Loftus WC, 2008, NEUROSCIENCE, V154, P196, DOI 10.1016/j.neuroscience.2008.01.019 Logothetis NK, 2008, NATURE, V453, P869, DOI 10.1038/nature06976 LUND HF, 1985, ANAT EMBRYOL, V171, P1 Malmierca MS, 2008, J NEUROSCI, V28, P4767, DOI 10.1523/JNEUROSCI.0238-08.2008 Malonek D, 1996, SCIENCE, V272, P551, DOI 10.1126/science.272.5261.551 MASAMOTO K, 2003, BRAIN RES, P66 MATO M, 1979, EXPERIENTIA, V55, P501 MERZENIC.MM, 1974, BRAIN RES, V77, P397, DOI 10.1016/0006-8993(74)90630-1 Michaloudi H, 2005, DEV BRAIN RES, V155, P60, DOI 10.1016/j.devbrainres.2004.11.007 Michaloudi H, 2003, DEV BRAIN RES, V140, P269, DOI 10.1016/S0165-3806(02)00613-2 MOREST DK, 1984, J COMP NEUROL, V222, P209, DOI 10.1002/cne.902220206 Nemoto M, 1997, ADV EXP MED BIOL, V428, P521 OLIVER DL, 1984, J COMP NEUROL, V222, P237, DOI 10.1002/cne.902220207 Oliver DL, 1999, NEUROSCIENCE, V93, P643, DOI 10.1016/S0306-4522(99)00143-8 Oliver DL, 2005, INFERIOR COLLICULUS OLIVER DL, 1997, J COMP NEUROL, V23, P7438 Paloff AM, 1998, J BRAIN RES, V39, P231 RAMON, 1909, NERF ACOUSTIQUE SA B RIDDLE DR, 1993, J NEUROSCI, V13, P4193 ROSE JE, 1963, J NEUROPHYSIOL, V26, P294 SCHNEIDERMAN A, 1987, J COMP NEUROL, V266, P519 SCHOFIELD BR, 1992, J COMP NEUROL, V317, P438, DOI 10.1002/cne.903170409 Schofield BR, 1996, HEARING RES, V102, P1, DOI 10.1016/S0378-5955(96)00121-9 Schreiner CE, 1997, NATURE, V388, P383, DOI 10.1038/41106 SERVIERE J, 1984, J COMP NEUROL, V228, P463, DOI 10.1002/cne.902280403 Shtoyerman E, 2000, J NEUROSCI, V20, P8111 SONG Y, 2009, MID WINT M, P159 Tieman SB, 2004, BRAIN RES, V998, P100, DOI 10.1016/j.brainres.2003.11.023 TUOR UI, 1994, J COMP NEUROL, V342, P439, DOI 10.1002/cne.903420310 Weber B, 2008, CEREB CORTEX, V18, P2318, DOI 10.1093/cercor/bhm259 Weibel E.R., 1979, STEREOLOGICAL METHOD, V1, P1 Winer JA, 1998, J COMP NEUROL, V400, P147 Winer J.A., 2005, INFERIOR COLLICULUS Woolsey TA, 1996, CEREB CORTEX, V6, P647, DOI 10.1093/cercor/6.5.647 YU BP, 1994, ACTA ANAT, V149, P128 ZHENG D, 1991, J NEUROSCI, V11, P2622 Zhou JX, 2006, J COMP NEUROL, V495, P100, DOI 10.1002/cne.20863 NR 75 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2011 VL 274 IS 1-2 SI SI BP 5 EP 12 DI 10.1016/j.heares.2010.02.014 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 757LG UT WOS:000290085900003 PM 20206676 ER PT J AU Malmierca, MS Blackstad, TW Osen, KK AF Malmierca, Manuel S. Blackstad, Theodor W. Osen, Kirsten K. TI Computer-assisted 3-D reconstructions of Golgi-impregnated neurons in the cortical regions of the inferior colliculus of rat SO HEARING RESEARCH LA English DT Article ID MEDIAL GENICULATE-BODY; AUDITORY-CORTEX AI; VENTRAL COCHLEAR NUCLEUS; BAT PTERONOTUS-PARNELLII; LATERAL SUPERIOR OLIVE; GUINEA-PIG; RESPONSE PROPERTIES; GABAERGIC NEURONS; MERIONES-UNGUICULATUS; QUANTITATIVE-ANALYSIS AB The inferior colliculus (IC) is the main auditory nucleus in the midbrain. This auditory center is made of a central nucleus (CNIC) characterized by a distinct laminar organization that is surrounded by cortical regions. The neuronal types in the CNIC are well established but thus far, the neuronal composition and functional roles of the cortical regions are not fully appreciated. As dendritic architecture is critical for the synaptic integrative properties of neurons, a detailed analysis of the dendritic architecture of the neurons in the collicular cortical regions should shed light on our understanding of their roles in collicular function. In the present study, we have used the del Rio-Hortega Golgi procedure to impregnate individual neurons within the IC. Rat brains were embedded in resin and sectioned serially to allow quantitative 3-D analyses of single neurons or groups of neurons. Our results demonstrate that the cortical regions of the IC are made up of unique sets of neuronal types and that there is an interdigitation of dendrites at the cortical borders. This latter feature may have led to difficulty in delineating a sharp border between the CNIC and cortical regions in previous studies. The quantitative analysis further demonstrates that there are significant differences in many of the dendritic parameters tested when compared to the neurons from the CNIC. Moreover, we observed that the neuronal populations of the cortical regions vary from the laminar pattern of the CNIC and from each other. Since the main organizing principle of the CNIC is the laminar organization of 'flat' neurons, evidence that cortical IC regions lack flat neurons supports the subdivision schema presented here. (C) 2010 Elsevier B.V. All rights reserved. C1 [Malmierca, Manuel S.] Univ Salamanca, Auditory Neurophysiol Unit, Inst Neurosci Castilla & Leon, Salamanca 37007, Spain. [Malmierca, Manuel S.] Univ Salamanca, Dept Cell Biol & Pathol, Fac Med, Salamanca 37007, Spain. [Blackstad, Theodor W.; Osen, Kirsten K.] Univ Oslo, Dept Anat, Inst Basic Med Sci, N-0317 Oslo, Norway. RP Malmierca, MS (reprint author), Univ Salamanca, Auditory Neurophysiol Unit, Inst Neurosci Castilla & Leon, C Pintor Fernando Gallego 1, Salamanca 37007, Spain. EM msm@usal.es RI 2011, Secribsal/D-9425-2012; Malmierca, Manuel/K-9285-2014 OI Malmierca, Manuel/0000-0003-0168-7572 FU Spanish MEC [BFU2009-07286]; EU [EUI2009-04083]; JCYL-UE [GR221] FX We thank Drs. Adrian Rees and Douglas Oliver for critical comments on a previous version and we are most grateful to an anonymous reviewer for her/his constructive criticisms. Ms. Flora Antunes proofread a previous version and Dr. David Perez-Gonzalez and Mr. Jorge Martin helped on fig. 9. Financial support was provided by the Spanish MEC (BFU2009-07286), EU (EUI2009-04083) and JCYL-UE (GR221) to MSM. CR ADAMS JC, 1979, STAIN TECHNOL, V54, P225 AITKIN LM, 1975, J NEUROPHYSIOL, V38, P1196 Altschuler RA, 2008, NEUROSCIENCE, V154, P226, DOI 10.1016/j.neuroscience.2008.03.036 BALOYANNIS, 2009, ACTA OTO-LARYNGOL, V129, P416 Baloyannis SJ, 2005, J NEUROL SCI, V229, P51, DOI 10.1016/j.jns.2004.11.025 Bartlett EL, 2000, NEUROSCIENCE, V100, P811, DOI 10.1016/S0306-4522(00)00340-7 BLACKSTAD TW, 1993, COMPUT BIOL MED, V23, P227, DOI 10.1016/0010-4825(93)90023-T BLACKSTAD TW, 1984, NEUROSCIENCE, V13, P827, DOI 10.1016/0306-4522(84)90099-X BLACKSTA.TW, 1970, J COMP NEUROL, V138, P433, DOI 10.1002/cne.901380404 Bose M, 2010, SYNAPSE, V64, P97, DOI 10.1002/syn.20710 BRAWER JR, 1974, J COMP NEUROL, V155, P251, DOI 10.1002/cne.901550302 Cant NB, 2008, NEUROSCIENCE, V154, P206, DOI 10.1016/j.neuroscience.2008.02.015 Cant NB, 2007, J COMP NEUROL, V503, P432, DOI 10.1002/cne.21391 Cetas JS, 2002, J COMP NEUROL, V445, P78, DOI 10.1002/cne.10164 Chernock ML, 2004, HEARING RES, V188, P12, DOI 10.1016/S0378-5955(03)00340-X CLAIBORNE BJ, 1990, J COMP NEUROL, V302, P206, DOI 10.1002/cne.903020203 COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204 Coomes DL, 2004, HEARING RES, V191, P67, DOI 10.1016/j.heares.2004.01.009 Coote EJ, 2008, NEUROSCIENCE, V154, P218, DOI 10.1016/j.neuroscience.2008.02.030 Dehmel S, 2008, AM J AUDIOL, V17, pS193, DOI 10.1044/1059-0889(2008/07-0045) FAYELUND H, 1985, ANAT EMBRYOL, V171, P1, DOI 10.1007/BF00319050 GODFREY DA, 1975, J COMP NEUROL, V162, P247, DOI 10.1002/cne.901620206 Golgi C., 1873, GAZZ MED ITAL LOMBAR, V33, P244 Hernandez O, 2006, NEUROREPORT, V17, P1611, DOI 10.1097/01.wnr.0000236857.70715.be Hernandez O, 2005, NEUROSCIENCE, V132, P203, DOI 10.1016/j.neuroscience.2005.01.001 Ito T, 2009, J NEUROSCI, V29, P13860, DOI 10.1523/JNEUROSCI.3454-09.2009 Jain R, 2006, NEUROSCI LETT, V395, P71, DOI 10.1016/j.neulet.2005.10.077 KARAGULLE T, 1990, THESIS U OSLO Kulesza RJ, 2007, HEARING RES, V225, P80, DOI 10.1016/j.heares.2006.12.006 Loftus WC, 2008, NEUROSCIENCE, V154, P196, DOI 10.1016/j.neuroscience.2008.01.019 Lorke DE, 2003, CELL MOL NEUROBIOL, V23, P143, DOI 10.1023/A:1022993704617 Malmierca M. S., 1991, THESIS U SALAMANCA Malmierca MS, 2005, NEUROSCIENCE, V136, P883, DOI 10.1016/j.neuroscience.2005.04.040 Malmierca MS, 2009, J NEUROSCI, V29, P5483, DOI 10.1523/JNEUROSCI.4153-08.2009 MALMIERCA MS, 1993, J COMP NEUROL, V333, P1, DOI 10.1002/cne.903330102 Malmierca MS, 2008, J NEUROSCI, V28, P4767, DOI 10.1523/JNEUROSCI.0238-08.2008 Malmierca MS, 2003, INT REV NEUROBIOL, V56, P147, DOI 10.1016/S0074-7742(03)56005-6 Malmierca MS, 1996, HEARING RES, V93, P167, DOI 10.1016/0378-5955(95)00227-8 MALMIERCA MS, 1995, ANAT EMBRYOL, V191, P343, DOI 10.1007/BF00534687 Malmierca MS, 2009, J COMP NEUROL, V514, P226, DOI 10.1002/cne.21997 MALMIERCA MS, 1995, J COMP NEUROL, V357, P124, DOI 10.1002/cne.903570112 MCCOWN TJ, 1991, DEV BRAIN RES, V59, P1, DOI 10.1016/0165-3806(91)90022-B MEININGER V, 1986, NEUROSCIENCE, V17, P1159, DOI 10.1016/0306-4522(86)90085-0 Dardennes R, 1984, Brain Res, V318, P159 MEININGER V, 1981, J COMP NEUROL, V200, P339, DOI 10.1002/cne.902000305 Merchan M, 2005, NEUROSCIENCE, V136, P907, DOI 10.1016/j.neuroscience.2004.12.030 MOREST DK, 1984, J COMP NEUROL, V222, P209, DOI 10.1002/cne.902220206 OLIVER DL, 1984, J COMP NEUROL, V222, P237, DOI 10.1002/cne.902220207 OLIVER DL, 1991, J COMP NEUROL, V303, P75, DOI 10.1002/cne.903030108 OLIVER DL, 1994, J COMP NEUROL, V340, P27, DOI 10.1002/cne.903400104 OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407 Osen KK, 1983, MECH HEARING, P83 Ota Y, 2004, J NEUROPHYSIOL, V91, P2185, DOI 10.1152/jn.01155.2003 OTTERSEN OP, 1984, J COMP NEUROL, V229, P374, DOI 10.1002/cne.902290308 Palmer AR, 1996, J NEUROPHYSIOL, V75, P780 Palombi PS, 1996, HEARING RES, V100, P41, DOI 10.1016/0378-5955(96)00115-3 PERCHERON G, 1979, NEUROSCI LETT, V14, P287, DOI 10.1016/0304-3940(79)96163-9 Perez-Gonzalez D, 2006, J NEUROPHYSIOL, V95, P823, DOI 10.1152/jn.00741.2005 Perez-Gonzalez D, 2005, EUR J NEUROSCI, V22, P2879, DOI 10.1111/j.1460-9568.2005.04472.x Peruzzi D, 1997, J NEUROSCI, V17, P3766 RAMON, 1902, CONTINUACION REV TRI, V1 SANES DH, 1992, DEV BRAIN RES, V67, P47, DOI 10.1016/0165-3806(92)90024-Q SANES DH, 1990, J COMP NEUROL, V294, P443, DOI 10.1002/cne.902940312 Schofield BR, 2001, J COMP NEUROL, V429, P206, DOI 10.1002/1096-9861(20000108)429:2<206::AID-CNE3>3.0.CO;2-X Schofield BR, 1999, J COMP NEUROL, V409, P210, DOI 10.1002/(SICI)1096-9861(19990628)409:2<210::AID-CNE3>3.0.CO;2-A Shore SE, 2006, HEARING RES, V216, P90, DOI 10.1016/j.heares.2006.01.006 SIEGEL S, 1988, NONPARAMETRIC STAT B, P106 SMITH PH, 1992, J NEUROSCI, V12, P3700 Syka J, 2000, EXP BRAIN RES, V133, P254, DOI 10.1007/s002210000426 TRUNE DR, 1982, J COMP NEUROL, V209, P425, DOI 10.1002/cne.902090411 UYLINGS HBM, 1986, J NEUROSCI METH, V18, P127, DOI 10.1016/0165-0270(86)90116-0 VANPELT J, 1992, B MATH BIOL, V54, P759, DOI 10.1016/S0092-8240(05)80142-9 WEST MJ, 1980, BRAIN RES REV, V2, P317, DOI 10.1016/0165-0173(80)90012-0 Willard FH, 1983, AUDITORY PSYCHOBIOLO, P201 WILLARD FH, 1983, NEUROSCIENCE, V10, P1203, DOI 10.1016/0306-4522(83)90109-4 WINER JA, 1984, HEARING RES, V15, P225, DOI 10.1016/0378-5955(84)90031-5 Winer JA, 1996, P NATL ACAD SCI USA, V93, P8005, DOI 10.1073/pnas.93.15.8005 WINER JA, 1985, J COMP NEUROL, V238, P10, DOI 10.1002/cne.902380103 WINER JA, 1994, J COMP NEUROL, V346, P183, DOI 10.1002/cne.903460203 Winer JA, 1999, HEARING RES, V130, P19, DOI 10.1016/S0378-5955(98)00216-0 Winer JA, 2001, J COMP NEUROL, V434, P379, DOI 10.1002/cne.1183 Winer JA, 1996, P NATL ACAD SCI USA, V93, P3083, DOI 10.1073/pnas.93.7.3083 WINER JA, 1984, NEUROSCIENCE, V13, P395, DOI 10.1016/0306-4522(84)90239-2 WINER JA, 1984, J COMP NEUROL, V229, P476, DOI 10.1002/cne.902290404 WINER JA, 1988, J COMP NEUROL, V274, P422, DOI 10.1002/cne.902740310 WINER JA, 1983, J COMP NEUROL, V221, P1, DOI 10.1002/cne.902210102 WINER JA, 1984, J COMP NEUROL, V224, P344 WINER JA, 1994, J COMP NEUROL, V346, P161, DOI 10.1002/cne.903460202 WINER JA, 1984, J COMP NEUROL, V224, P535, DOI 10.1002/cne.902240405 WINER JA, 1984, J COMP NEUROL, V229, P512, DOI 10.1002/cne.902290406 YELNIK J, 1983, J NEUROSCI METH, V9, P115, DOI 10.1016/0165-0270(83)90125-5 Zhou JX, 2006, J COMP NEUROL, V495, P100, DOI 10.1002/cne.20863 NR 92 TC 19 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2011 VL 274 IS 1-2 SI SI BP 13 EP 26 DI 10.1016/j.heares.2010.06.011 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 757LG UT WOS:000290085900004 PM 20600744 ER PT J AU Pollak, GD Xie, RL Gittelman, JX Andoni, S Li, N AF Pollak, George D. Xie, Ruili Gittelman, Joshua X. Andoni, Sari Li, Na TI The dominance of inhibition in the inferior colliculus SO HEARING RESEARCH LA English DT Article ID FREQUENCY-MODULATED SWEEPS; PRIMARY AUDITORY-CORTEX; BIG BROWN BAT; MECHANISMS UNDERLYING SELECTIVITY; DORSAL COCHLEAR NUCLEUS; SPECIES-SPECIFIC CALLS; WHOLE-CELL RECORDINGS; FREE-TAILED BATS; LATERAL LEMNISCUS; GLYCINERGIC INHIBITION AB Almost all of the processing that occurs in the various lower auditory nuclei converges upon a common target in the central nucleus of the inferior colliculus (ICc) thus making the ICc the nexus of the auditory system. A variety of new response properties are formed in the ICc through the interactions among the excitatory and inhibitory inputs that converge upon it. Here we review studies that illustrate the dominant role inhibition plays in the ICc. We begin by reviewing studies of tuning curves and show how inhibition shapes the variety of tuning curves in the ICc through sideband inhibition. We then show how inhibition shapes selective response properties for complex signals, focusing on selectivity for the sweep direction of frequency modulations (FM). In the final section we consider results from in vivo whole-cell recordings that show how parameters of the incoming excitation and inhibition interact to shape directional selectivity. We show that post-synaptic potentials (PSPs) evoked by different signals can be similar but evoke markedly different spike-counts. In these cases, spike threshold acts as a non-linear amplifier that converts small differences in PSPs into large differences in spike output. Such differences between the inputs to a cell compared to the outputs from the same cell suggest that highly selective discharge properties can be created by only minor adjustments in the synaptic strengths evoked by one or both signals. These findings also suggest that plasticity of response features may be achieved with far less modifications in circuitry than previously supposed. (C) 2010 Elsevier B.V. All rights reserved. C1 [Pollak, George D.; Xie, Ruili; Gittelman, Joshua X.; Andoni, Sari; Li, Na] Univ Texas Austin, Neurobiol Sect, Austin, TX 78712 USA. [Xie, Ruili] Univ N Carolina, Dept Otolaryngol, Chapel Hill, NC 27599 USA. RP Pollak, GD (reprint author), Univ Texas Austin, Neurobiol Sect, 337 Patterson Lab Bldg, Austin, TX 78712 USA. EM gpollak@mail.utexas.edu; ruili_xie@med.unc.edu; jxg@mail.utexas.edu; andoni@mail.utexas.edu; nalibat@mail.utexas.edu FU NIH [DC007856] FX Supported by NIH Grant DC007856. CR ADAMS JC, 1984, BRAIN RES BULL, V13, P585, DOI 10.1016/0361-9230(84)90041-8 Andoni S, 2007, J NEUROSCI, V27, P4882, DOI 10.1523/JNEUROSCI.4342-06.2007 Bajo VM, 1999, J COMP NEUROL, V407, P349, DOI 10.1002/(SICI)1096-9861(19990510)407:3<349::AID-CNE4>3.0.CO;2-5 Bauer EE, 2002, J NEUROPHYSIOL, V88, P1955, DOI 10.1152/jn.00261.2002 Bohn KM, 2008, J ACOUST SOC AM, V124, P1838, DOI 10.1121/1.2953314 Brimijoin WO, 2005, HEARING RES, V210, P63, DOI 10.1016/j.heares.2005.07.005 Burger RM, 2001, J NEUROSCI, V21, P4830 Casseday JH, 1997, J NEUROPHYSIOL, V77, P1595 Casseday JH, 2000, J NEUROPHYSIOL, V84, P1475 Casseday JH, 2002, SPR HDB AUD, V15, P238 CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341 Covey E, 1996, J NEUROSCI, V16, P3009 Covey E, 1999, ANNU REV PHYSIOL, V61, P457, DOI 10.1146/annurev.physiol.61.1.457 Davis KA, 2003, JARO, V4, P148, DOI 10.1007/s10162-002-2002-5 Davis KA, 2002, J NEUROPHYSIOL, V87, P1824, DOI 10.1152/jn.00769.2001 Depireux DA, 2001, J NEUROPHYSIOL, V85, P1220 Doupe AJ, 1999, ANNU REV NEUROSCI, V22, P567, DOI 10.1146/annurev.neuro.22.1.567 FAINGOLD CL, 1991, HEARING RES, V52, P201, DOI 10.1016/0378-5955(91)90200-S FAINGOLD CL, 1993, HEARING RES, V69, P98, DOI 10.1016/0378-5955(93)90097-K Felsheim C, 1996, HEARING RES, V98, P137, DOI 10.1016/0378-5955(96)00078-0 FENG AS, 1985, J COMP NEUROL, V235, P529, DOI 10.1002/cne.902350410 FUZESSERY ZM, 1994, J NEUROPHYSIOL, V72, P1061 Fuzessery ZM, 1996, J NEUROPHYSIOL, V76, P1059 Fuzessery ZM, 2006, J NEUROPHYSIOL, V96, P1320, DOI 10.1152/jn.00021.2006 Gaese BH, 2006, JARO-J ASSOC RES OTO, V7, P48, DOI 10.1007/s10162-005-0022-7 Gittelman JX, 2009, J NEUROSCI, V29, P13030, DOI 10.1523/JNEUROSCI.2477-09.2009 GLENDENNING KK, 1992, J COMP NEUROL, V319, P100, DOI 10.1002/cne.903190110 GOLDING NL, 1995, J NEUROSCI, V15, P3138 Gordon M, 1998, HEARING RES, V122, P97, DOI 10.1016/S0378-5955(98)00087-2 Holmstrom L, 2007, J NEUROPHYSIOL, V98, P3461, DOI 10.1152/jn.00638.2007 Holy TE, 2005, PLOS BIOL, V3, P2177, DOI 10.1371/journal.pbio.0030386 KANWAL JS, 1994, J ACOUST SOC AM, V96, P1229, DOI 10.1121/1.410273 Klein DJ, 2000, J COMPUT NEUROSCI, V9, P85, DOI 10.1023/A:1008990412183 Klug A, 2002, J NEUROPHYSIOL, V88, P1941, DOI 10.1152/jn.00260.2002 Koch U, 1998, J NEUROPHYSIOL, V80, P71 LeBeau FEN, 1996, J NEUROPHYSIOL, V75, P902 LeBeau FEN, 2001, J NEUROSCI, V21, P7303 LI L, 1992, J NEUROSCI, V12, P4530 Malmierca MS, 2005, NEUROSCIENCE, V136, P883, DOI 10.1016/j.neuroscience.2005.04.040 Malmierca MS, 2005, EUR J NEUROSCI, V21, P2701, DOI 10.1111/j.1460-9568.2005.04103.x Malmierca MS, 2003, EXP BRAIN RES, V153, P522, DOI 10.1007/s00221-003-1615-1 Malmierca MS, 1998, J NEUROSCI, V18, P10603 NATARAJ K, 2005, J NEUROPHYSIOL Nelken I, 2000, EUR J NEUROSCI, V12, P549, DOI 10.1046/j.1460-9568.2000.00935.x Oliver DL, 1992, MAMMALIAN AUDITORY P, P168 ONEILL WE, 1982, J NEUROSCI, V2, P17 Palombi PS, 1996, J NEUROPHYSIOL, V75, P2211 PARK TJ, 1993, J NEUROSCI, V13, P2050 PARK TJ, 1993, J NEUROSCI, V13, P5172 PARK TJ, 1994, J NEUROPHYSIOL, V72, P1080 Pecka M, 2007, J NEUROSCI, V27, P1782, DOI 10.1523/JNEUROSCI.5335-06.2007 Pollak G. D., 1986, NEURAL BASIS ECHOLOC POLLAK GD, 1993, HEARING RES, V65, P99, DOI 10.1016/0378-5955(93)90205-F POLLAK GD, 1995, SPRINGER HDB AUDITOR, V11, P481 POON PWF, 1991, EXP BRAIN RES, V83, P598 Poon PWF, 2000, BIOSYSTEMS, V58, P229, DOI 10.1016/S0303-2647(00)00127-1 Portfors CV, 2005, NEUROSCIENCE, V136, P1159, DOI 10.1016/j.neuroscience.2005.08.031 Portfors CV, 2009, NEUROSCIENCE, V162, P486, DOI 10.1016/j.neuroscience.2009.04.056 Priebe NJ, 2005, NEURON, V45, P133, DOI 10.1016/j.neuron.2004.12.024 RALL W, 1969, BIOPHYS J, V9, P1483 Razak KA, 2006, J NEUROPHYSIOL, V96, P1303, DOI 10.1152/jn.00020.2006 Razak KA, 2008, J NEUROSCI, V28, P9806, DOI 10.1523/JNEUROSCI.1293-08.2008 RAZAK KA, 2009, J NEUROPHYSIOL Riquelme R, 2001, J COMP NEUROL, V432, P409, DOI 10.1002/cne.1111 RYAN MJ, 1983, J COMP PHYSIOL, V150, P217 Sanchez JT, 2007, J NEUROSCI, V27, P1954, DOI 10.1523/JNEUROSCI.2894-06.2007 Sanchez JT, 2008, J NEUROSCI, V28, P80, DOI 10.1523/JNEUROSCI.3572-07.2008 SEMPLE MN, 1980, EXP BRAIN RES, V41, P19 Bohn KM, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006746 SUGA N, 1965, J PHYSIOL-LONDON, V179, P26 SUGA N, 1968, J PHYSIOL-LONDON, V198, P51 Suga N., 1973, BASIC MECH HEARING, P675 SUGA N, 1973, J ACOUST SOC AM, V54, P174, DOI 10.1121/1.1913561 SUGA N, 1983, J NEUROPHYSIOL, V49, P1573 Suta D, 2003, J NEUROPHYSIOL, V90, P3794, DOI 10.1152/jn.01175.2002 Vater M, 1997, CELL TISSUE RES, V289, P223, DOI 10.1007/s004410050869 Voytenko SV, 2007, J NEUROPHYSIOL, V97, P1368, DOI 10.1152/jn.00976.2006 Wang XQ, 1995, J NEUROPHYSIOL, V74, P2685 Wenstrup JJ, 2001, J NEUROSCI, V21 WINER JA, 1995, J COMP NEUROL, V355, P317, DOI 10.1002/cne.903550302 Xie R, 2008, NEUROSCIENCE, V154, P245, DOI 10.1016/j.neuroscience.2008.02.039 Xie R, 2007, J NEUROSCI, V27, P9469, DOI 10.1523/JNEUROSCI.2865-07.2007 Xie RL, 2005, J NEUROPHYSIOL, V94, P4019, DOI 10.1152/jn.00688.2005 YANG LC, 1992, J NEUROPHYSIOL, V68, P1760 Yue Q, 2007, J NEUROPHYSIOL, V98, P1364, DOI 10.1152/jn.00432.2007 Zhang LI, 2003, NATURE, V424, P201, DOI 10.1038/nature01796 NR 86 TC 20 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2011 VL 274 IS 1-2 SI SI BP 27 EP 39 DI 10.1016/j.heares.2010.05.010 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 757LG UT WOS:000290085900005 PM 20685288 ER PT J AU Ojima, H Murakami, K AF Ojima, Hisayuki Murakami, Kunio TI Triadic synaptic interactions of large corticothalamic terminals in non-lemniscal thalamic nuclei of the cat auditory system SO HEARING RESEARCH LA English DT Article ID MEDIAL GENICULATE-BODY; DORSAL LATERAL GENICULATE; PHASEOLUS-VULGARIS-LEUKOAGGLUTININ; ELECTRON-MICROSCOPIC ANALYSIS; INFERIOR COLLICULUS; RETICULAR NUCLEUS; PHA-L; AXON TERMINALS; BARREL CORTEX; CORTICOCORTICAL COMMUNICATION AB Large corticothalamic (CT) terminals, presumed to originate from cortical layer 5 pyramidal cells, are distributed predominantly in non-specific thalamic nuclei in mammals. In the auditory system, little is known about whether these CT projections participate in the synaptic aggregation referred to as the triad. We studied synaptic interactions of these terminals with neuronal elements in one of the auditory non-lemniscal thalamic nuclei, the dorsal nucleus of the medial geniculate complex (MGC), in cats. After injections of an anterograde tracer in the primary auditory cortex, areas containing labeled large terminals were examined using an electron microscope. It was revealed that a fraction of large CT terminals participated in complicated synaptic arrangements: labeled terminals making synaptic contacts with vesicle-free dendrites, probably of thalamic principal neurons, and/or vesicle-filled neuronal profiles, probably of presynaptic dendrites (PSDs) of interneurons. In reconstructions or even in single sections, we found that these synaptic connections participated in triadic arrangements. Thus, PSDs postsynaptic to the labeled CT terminals were in turn presynaptic to the vesicle-free dendrites. (C) 2010 Elsevier B.V. All rights reserved. C1 [Ojima, Hisayuki] Tokyo Med & Dent Univ, Grad Sch Med & Dent Sci, Bunkyo Ku, Tokyo 1138749, Japan. [Ojima, Hisayuki; Murakami, Kunio] Toho Univ, Sch Med, Dept Anat, Tokyo 1438540, Japan. RP Ojima, H (reprint author), Tokyo Med & Dent Univ, Grad Sch Med & Dent Sci, Bunkyo Ku, 1-5-45 Yushima, Tokyo 1138749, Japan. EM yojima.cnb@tmd.ac.jpe; kunim@med.toho-u.ac.jpe CR ANDERSEN RA, 1980, J COMP NEUROL, V191, P479, DOI 10.1002/cne.901910310 Arcelli P, 1997, BRAIN RES BULL, V42, P27, DOI 10.1016/S0361-9230(96)00107-4 BAJO VM, 1995, HEARING RES, V83, P161, DOI 10.1016/0378-5955(94)00199-Z Bajo VM, 2007, CEREB CORTEX, V17, P475, DOI 10.1093/cercor/bhj164 Bartlett EL, 1999, J NEUROPHYSIOL, V81, P1999 Bartlett EL, 2000, NEUROSCIENCE, V100, P811, DOI 10.1016/S0306-4522(00)00340-7 BOURASSA J, 1995, NEUROSCIENCE, V66, P253, DOI 10.1016/0306-4522(95)00009-8 BOURASSA J, 1995, EUR J NEUROSCI, V7, P19, DOI 10.1111/j.1460-9568.1995.tb01016.x Chomiak T, 2008, J NEUROPHYSIOL, V100, P327, DOI 10.1152/jn.90392.2008 CUCCHIARO JB, 1991, J COMP NEUROL, V310, P316, DOI 10.1002/cne.903100304 DESCHENES M, 1994, BRAIN RES, V664, P215, DOI 10.1016/0006-8993(94)91974-7 Feig S, 1998, J COMP NEUROL, V395, P281, DOI 10.1002/(SICI)1096-9861(19980808)395:3<281::AID-CNE2>3.0.CO;2-Z Guillery RW, 1995, J ANAT, V187, P583 Guillery RW, 2001, J COMP NEUROL, V438, P66, DOI 10.1002/cne.1302 GUILLERY RW, 1969, Z ZELLFORSCH MIK ANA, V96, P1, DOI 10.1007/BF00321474 Hazama M, 2004, NEUROSCIENCE, V124, P655, DOI 10.1016/j.neuroscience.2003.12.027 HOOGLAND PV, 1991, EXP BRAIN RES, V87, P159 HOOGLAND PV, 1987, EXP BRAIN RES, V68, P73 HU B, 1994, J PHYSIOL-LONDON, V479, P217 Huppe-Gourgues F, 2006, J COMP NEUROL, V497, P847, DOI 10.1002/cne.21024 JONES EG, 1969, PROC R SOC SER B-BIO, V172, P153, DOI 10.1098/rspb.1969.0017 Jones EG, 2007, THALAMUS JONES EG, 1969, PROC R SOC SER B-BIO, V172, P173, DOI 10.1098/rspb.1969.0018 Kakei S, 2001, J COMP NEUROL, V437, P170, DOI 10.1002/cne.1277 KELLY JP, 1981, BRAIN RES, V212, P1, DOI 10.1016/0006-8993(81)90027-5 Kimura A, 2005, NEUROSCIENCE, V135, P1325, DOI 10.1016/j.neuroscience.2005.06.089 KUDO M, 1980, J COMP NEUROL, V191, P545, DOI 10.1002/cne.901910403 Kuroda M, 1993, J Hirnforsch, V34, P417 LI J, 2003, J NEUROPHYSIOL, V290, P3429 Li JL, 2003, J COMP NEUROL, V460, P394, DOI 10.1002/cne.10646 LIU XB, 1995, J COMP NEUROL, V352, P187, DOI 10.1002/cne.903520203 Llano DA, 2008, J COMP NEUROL, V507, P1209, DOI 10.1002/cne.21602 MONTERO VM, 1983, EXP BRAIN RES, V51, P338 MONTERO VM, 1981, NEUROSCIENCE, V6, P2561, DOI 10.1016/0306-4522(81)90102-0 OGREN MP, 1979, J COMP NEUROL, V188, P179, DOI 10.1002/cne.901880113 Ohyama J, 1997, J COMP NEUROL, V389, P453 OJIMA H, 1994, CEREB CORTEX, V4, P646, DOI 10.1093/cercor/4.6.646 Ojima H, 2002, CEREB CORTEX, V12, P1079, DOI 10.1093/cercor/12.10.1079 Ojima H, 1996, NEUROSCI LETT, V208, P57, DOI 10.1016/0304-3940(96)12538-6 OJIMA H, 1992, Cerebral Cortex, V2, P197, DOI 10.1093/cercor/2.3.197 Ojima H, 2010, CEREB CORTEX, V20, P339, DOI 10.1093/cercor/bhp103 Peruzzi D, 1997, J NEUROSCI, V17, P3766 ROBSON JA, 1977, J COMP NEUROL, V173, P389, DOI 10.1002/cne.901730211 ROCKLAND KS, 1994, NEUROREPORT, V5, P1865, DOI 10.1097/00001756-199410000-00006 Rouiller EM, 1998, J COMP NEUROL, V396, P169, DOI 10.1002/(SICI)1096-9861(19980629)396:2<169::AID-CNE3>3.0.CO;2-Z ROUILLER EM, 1991, HEARING RES, V56, P179, DOI 10.1016/0378-5955(91)90168-9 ROUILLER EM, 1991, NEUROSCI LETT, V125, P93, DOI 10.1016/0304-3940(91)90139-K Rouiller EM, 2004, NEUROSCI LETT, V358, P49, DOI 10.1016/j.neulet.2004.01.008 ROUILLER EM, 1990, NEUROSCI LETT, V108, P29, DOI 10.1016/0304-3940(90)90701-A Rouiller EM, 2000, BRAIN RES BULL, V53, P727, DOI 10.1016/S0361-9230(00)00364-6 SAINTMARIE EL, 1997, BRAIN RES, V765, P173 SCHWARTZ ML, 1991, J COMP NEUROL, V309, P289, DOI 10.1002/cne.903090302 Sherman S. M., 2006, EXPLORING THALAMUS Smith PH, 2007, J NEUROPHYSIOL, V98, P681, DOI 10.1152/jn.00235.2007 SZENTAGOTHAI J, 1963, ACTA ANAT, V55, P166 Takayanagi M, 2006, NEUROSCIENCE, V142, P769, DOI 10.1016/j.neuroscience.2006.06.048 THOMPSON GC, 1985, BRAIN RES, V339, P119, DOI 10.1016/0006-8993(85)90628-6 Van Horn SC, 2004, J COMP NEUROL, V475, P406, DOI 10.1002/cne.20187 Veinante P, 2000, J COMP NEUROL, V424, P197, DOI 10.1002/1096-9861(20000821)424:2<197::AID-CNE1>3.0.CO;2-6 Vidnyanszky Z, 1996, EXP BRAIN RES, V109, P63 Wanaverbecq N, 2008, J NEUROSCI, V28, P11848, DOI 10.1523/JNEUROSCI.3183-08.2008 Winer JA, 1998, J COMP NEUROL, V400, P147 Winer JA, 1996, P NATL ACAD SCI USA, V93, P8005, DOI 10.1073/pnas.93.15.8005 WINER JA, 1988, J COMP NEUROL, V278, P47, DOI 10.1002/cne.902780104 Winer JA, 2001, J COMP NEUROL, V430, P27 Winer JA, 1996, P NATL ACAD SCI USA, V93, P3083, DOI 10.1073/pnas.93.7.3083 Winer JA, 1999, J COMP NEUROL, V413, P181 Zikopoulos B, 2006, J NEUROSCI, V26, P7348, DOI 10.1523/JNEUROSCI.5511-05.2006 NR 68 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2011 VL 274 IS 1-2 SI SI BP 40 EP 47 DI 10.1016/j.heares.2010.05.009 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 757LG UT WOS:000290085900006 PM 20685244 ER PT J AU Anderson, LA Linden, JF AF Anderson, Lucy A. Linden, Jennifer F. TI Physiological differences between histologically defined subdivisions in the mouse auditory thalamus SO HEARING RESEARCH LA English DT Article ID MEDIAL GENICULATE-BODY; DORSAL COCHLEAR NUCLEUS; PHASE-LOCKED RESPONSES; FUNCTIONAL-ORGANIZATION; SINGLE UNITS; TONOTOPIC ORGANIZATION; INFERIOR COLLICULUS; GUINEA-PIG; ASCENDING PROJECTIONS; CYTOCHROME-OXIDASE AB The auditory thalamic area includes the medial geniculate body (MGB) and the lateral part of the posterior thalamic nucleus (Pol). The MGB can be subdivided into a ventral subdivision, forming part of the lemniscal (primary) auditory pathway, and medial and dorsal subdivisions, traditionally considered (alongside the Pol) part of the non-lemniscal (secondary) pathway. However, physiological studies of the auditory thalamus have suggested that the Pol may be more appropriately characterised as part of the lemniscal pathway, while the medial MGB may be part of a third (polysensory) pathway, with characteristics of lemniscal and non-lemniscal areas. We document physiological properties of neurons in histologically identified areas of the MGB and Pol in the anaesthetised mouse, and present evidence in favour of a distinctive role for medial MGB in central auditory processing. In particular, medial MGB contains a greater proportion of neurons with short first-spike latencies and high response probabilities than either the ventral or dorsal MGB, despite having low spontaneous rates. Therefore, medial MGB neurons appear to fire more reliably in response to auditory input than neurons in even the lemniscal, ventral subdivision. Additionally, responses in the Pol are more similar to those in the ventral MGB than the dorsal MGB. (C) 2011 Elsevier B.V. All rights reserved. C1 [Anderson, Lucy A.; Linden, Jennifer F.] UCL, Ear Inst, London WC1X 8EE, England. [Linden, Jennifer F.] UCL, Dept Neurosci Physiol & Pharmacol, London WC1E 6BT, England. RP Linden, JF (reprint author), UCL, Ear Inst, 332 Grays Inn Rd, London WC1X 8EE, England. EM lucy.anderson@ucl.ac.uk; j.linden@ucl.ac.uk FU Gatsby Charitable Foundation [GAT2579, GAT2623]; Deafness Research UK [412:UEI:JL]; Wellcome Trust [084364/Z/07/Z] FX This work was supported by grants from the Gatsby Charitable Foundation (GAT2579 and GAT2623), Deafness Research UK (412:UEI:JL), and the Wellcome Trust (084364/Z/07/Z). CR AITKIN LM, 1966, J NEUROPHYSIOL, V29, P109 AITKIN LM, 1973, J NEUROPHYSIOL, V36, P275 ANDERSEN RA, 1980, J COMP NEUROL, V194, P663, DOI 10.1002/cne.901940312 ANDERSEN RA, 1980, J COMP NEUROL, V194, P649, DOI 10.1002/cne.901940311 Anderson LA, 2009, J NEUROSCI, V29, P7359, DOI 10.1523/JNEUROSCI.0793-09.2009 Anderson LA, 2007, HEARING RES, V228, P156, DOI 10.1016/j.heares.2007.02.005 Anderson LA, 2009, NEUROREPORT, V20, P462, DOI 10.1097/WNR.0b013e328326f5ab Anderson LA, 2006, EUR J NEUROSCI, V24, P491, DOI 10.1111/j.1460-9568.2006.04930.x Anderson LA, 2009, BRAIN RES, V1252, P130, DOI 10.1016/j.brainres.2008.11.037 ANDERSON LA, 2005, RESPONSES AMPLITUDE BAEUERLE P, 2009, STIMULUS SPECIFIC AD BORDI F, 1994, EXP BRAIN RES, V98, P275, DOI 10.1007/BF00228415 BORDI F, 1994, EXP BRAIN RES, V98, P261, DOI 10.1007/BF00228414 BULLOCK DC, 1988, MED BIOL ENG COMPUT, V26, P669, DOI 10.1007/BF02447511 CALFORD MB, 1983, J NEUROSCI, V3, P2350 CALFORD MB, 1983, J NEUROSCI, V3, P2365 CALFORD MB, 1983, HEARING RES, V11, P395, DOI 10.1016/0378-5955(83)90070-9 Cant NB, 2007, J COMP NEUROL, V503, P432, DOI 10.1002/cne.21391 Cruikshank SJ, 2001, NEUROSCIENCE, V105, P553, DOI 10.1016/S0306-4522(01)00226-3 deRibaupierre F, 1997, CENTRAL AUDITORY SYS, P317 Doron NN, 2000, J COMP NEUROL, V425, P257 Edeline JM, 1999, HEARING RES, V131, P135, DOI 10.1016/S0378-5955(99)00026-X Edeline JM, 1999, PROG NEUROBIOL, V57, P165 GONZALEZLIMA F, 1994, NEUROSCIENCE, V63, P559, DOI 10.1016/0306-4522(94)90550-9 Hackett TA, 1998, J COMP NEUROL, V400, P271, DOI 10.1002/(SICI)1096-9861(19981019)400:2<271::AID-CNE8>3.0.CO;2-6 Hu B, 2003, EXP BRAIN RES, V153, P543, DOI 10.1007/s00221-003-1611-5 IMIG TJ, 1985, J NEUROPHYSIOL, V53, P836 Jones EG, 1985, THALAMUS Kimura A, 2003, NEUROSCIENCE, V117, P1003, DOI 10.1016/S0306-4522(02)00949-1 Komura Y, 2001, NATURE, V412, P546, DOI 10.1038/35087595 Komura Y, 2005, NAT NEUROSCI, V8, P1203, DOI 10.1038/nn1528 KRAUS N, 1994, J NEUROPHYSIOL, V72, P1270 KUDO M, 1980, J COMP NEUROL, V191, P545, DOI 10.1002/cne.901910403 Lee CC, 2010, P NATL ACAD SCI USA, V107, P372, DOI 10.1073/pnas.0907873107 Linden JF, 2003, J NEUROPHYSIOL, V90, P2660, DOI 10.1152/jn.00751.2002 Linke R, 1999, EUR J NEUROSCI, V11, P187, DOI 10.1046/j.1460-9568.1999.00422.x Lu E, 2009, HEARING RES, V257, P16, DOI 10.1016/j.heares.2009.07.009 Malmierca MS, 2002, J NEUROSCI, V22, P10891 MOREL A, 1987, EXP BRAIN RES, V69, P24 MOREST DK, 1964, J ANAT, V98, P611 Oliver DL, 1992, MAMMALIAN AUDITORY P, P168 PHILLIPS DP, 1979, J NEUROPHYSIOL, V42, P123 POLLEY DB, 2010, ORG EXPERIENCE DEPEN REDIES H, 1991, EXP BRAIN RES, V86, P384 RODRIGUESDAGAEFF C, 1989, HEARING RES, V39, P103, DOI 10.1016/0378-5955(89)90085-3 ROUILLER E, 1981, HEARING RES, V5, P81, DOI 10.1016/0378-5955(81)90028-9 ROUILLER E, 1979, HEARING RES, V1, P213, DOI 10.1016/0378-5955(79)90015-7 ROUILLER EM, 1985, HEARING RES, V19, P97, DOI 10.1016/0378-5955(85)90114-5 ROUILLER EM, 1989, HEARING RES, V39, P127, DOI 10.1016/0378-5955(89)90086-5 Rouiller EM, 1997, CENTRAL AUDITORY SYS, P3 RYUGO DK, 1976, EXP NEUROL, V51, P377, DOI 10.1016/0014-4886(76)90262-4 Smith PH, 2006, J COMP NEUROL, V496, P314, DOI 10.1002/cne.20913 STROMINGER NL, 1977, J COMP NEUROL, V172, P349, DOI 10.1002/cne.901720210 Wallace MN, 2007, J NEUROPHYSIOL, V98, P1941, DOI 10.1152/jn.00697.2007 WHITLEY JM, 1984, J COMP NEUROL, V229, P257, DOI 10.1002/cne.902290210 Winer JA, 2005, TRENDS NEUROSCI, V28, P255, DOI 10.1016/j.tins.2005.03.009 Winer JA, 1999, HEARING RES, V130, P19, DOI 10.1016/S0378-5955(98)00216-0 Winer JA, 1992, MAMMALIAN AUDITORY P, P222 ZURITA P, 1994, NEUROSCI RES, V19, P303, DOI 10.1016/0168-0102(94)90043-4 NR 59 TC 10 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2011 VL 274 IS 1-2 SI SI BP 48 EP 60 DI 10.1016/j.heares.2010.12.016 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 757LG UT WOS:000290085900007 PM 21185928 ER PT J AU Weinberger, NM AF Weinberger, Norman M. TI The medial geniculate, not the amygdala, as the root of auditory fear conditioning SO HEARING RESEARCH LA English DT Article ID RECEPTIVE-FIELD PLASTICITY; UNCONDITIONED STIMULUS PATHWAYS; PARALAMINAR THALAMIC NUCLEI; BAT PTERONOTUS-PARNELLII; LONG-TERM POTENTIATION; IBOTENIC ACID LESIONS; LATERAL AMYGDALA; HEART-RATE; INFERIOR COLLICULUS; POSTERIOR THALAMUS AB The neural basis of auditory fear conditioning (AFC) is almost universally believed to be the amygdala, where auditory fear memories are reputedly acquired and stored. This widely-accepted amygdala model holds that the auditory conditioned stimulus (CS) and the nociceptive unconditioned stimulus (US) first converge in the lateral nucleus of the amygdala (AL), and are projected independently to it from the medial division of the medial geniculate nucleus (MGm) and the adjacent posterior intralaminar nucleus (PIN), which serve merely as sensory relays. However, the four criteria that are used to support the AL model, (a) CS US convergence, (b) associative plasticity, (c) LTP and (d) lesion-induced learning impairment, are also met by the MGm/PIN. Synaptic and molecular approaches supporting the AL also implicate the MGm/PIN. As both the AL and its preceding MGm/PIN are critically involved, we propose that the latter be considered the "root" of AFC. (C) 2010 Elsevier B.V. All rights reserved. C1 Univ Calif Irvine, Qureshey Res Lab 309, Ctr Neurobiol Learning & Memory, Dept Neurobiol & Behav, Irvine, CA 92697 USA. RP Weinberger, NM (reprint author), Univ Calif Irvine, Qureshey Res Lab 309, Ctr Neurobiol Learning & Memory, Dept Neurobiol & Behav, Irvine, CA 92697 USA. EM nmweinbe@uci.edu FU National Institutes of Health/National Institute on Deafness and Other Communication Disorders (NIDCD) [DC-02938, DC-05592, DC-010013] FX I thank Gabriel K. Hui and Jacquie Weinberger for assistance and Gabriel A. Elias for illuminating conversations. This research was supported by research grants from the National Institutes of Health/National Institute on Deafness and Other Communication Disorders (NIDCD), DC-02938, DC-05592 and DC-010013. CR AITKIN LM, 1973, J NEUROPHYSIOL, V36, P275 AITKIN LM, 1972, J NEUROPHYSIOL, V35, P365 Amorapanth P, 2000, NAT NEUROSCI, V3, P74 ANDERSEN RA, 1980, J COMP NEUROL, V194, P663, DOI 10.1002/cne.901940312 Apergis-Schoute AM, 2005, J NEUROSCI, V25, P5730, DOI 10.1523/JNEUROSCI.0096-05.2005 BAKIN JS, 1990, BRAIN RES, V536, P271, DOI 10.1016/0006-8993(90)90035-A BARNETT EM, 1995, J NEUROSCI, V15, P2972 BIRT D, 1979, BRAIN RES, V167, P129, DOI 10.1016/0006-8993(79)90268-3 BIRT D, 1981, J NEUROPHYSIOL, V46, P1039 Blair HT, 2003, ANN NY ACAD SCI, V985, P485 BLUM PS, 1979, EXP BRAIN RES, V34, P1 Boatman JA, 2006, EUR J NEUROSCI, V24, P894, DOI 10.1111/j.1460-9568.2006.04965.x Boivie J, 1971, Exp Brain Res, V112, P331 BORDI F, 1994, EXP BRAIN RES, V98, P275, DOI 10.1007/BF00228415 BORDI F, 1994, EXP BRAIN RES, V98, P261, DOI 10.1007/BF00228414 BORDI F, 1992, J NEUROSCI, V12, P2493 BORDI F, 1993, BEHAV NEUROSCI, V107, P757, DOI 10.1037/0735-7044.107.5.757 BRANDNER S, 1990, J NEUROSCI, V10, P50 BRINKHUS HB, 1979, NEUROSCI LETT, V15, P37, DOI 10.1016/0304-3940(79)91526-X BUCHWALD JS, 1966, PHYSIOL BEHAV, V1, P11, DOI 10.1016/0031-9384(66)90037-0 CALFORD MB, 1981, J NEUROPHYSIOL, V45, P1013 CAMPEAU S, 1995, J NEUROSCI, V15, P2312 CARSTENS E, 1980, EXP NEUROL, V70, P392, DOI 10.1016/0014-4886(80)90036-9 Cetas JS, 2001, HEARING RES, V155, P113, DOI 10.1016/S0378-5955(01)00257-X CHISHOLM JS, 1999, DEATH HOPE SEX STEPS, P89 CLERICI WJ, 1990, J COMP NEUROL, V297, P14, DOI 10.1002/cne.902970103 CLUGNET MC, 1990, J NEUROSCI, V10, P1055 CLUGNET MC, 1988, SOC NEUR ABSTR, V14, P1227 CLUGNET MC, 1990, J NEUROSCI, V10, P2818 CRUIKSHANK SJ, 1992, BEHAV NEUROSCI, V106, P471, DOI 10.1037/0735-7044.106.3.471 DISTERHOFT JF, 1976, J NEUROPHYSIOL, V39, P266 EDELINE JM, 1988, BEHAV NEURAL BIOL, V50, P61, DOI 10.1016/S0163-1047(88)90780-7 EDELINE JM, 1990, BEHAV BRAIN RES, V39, P145, DOI 10.1016/0166-4328(90)90101-J EDELINE JM, 1990, BRAIN RES, V529, P109, DOI 10.1016/0006-8993(90)90817-U EDELINE JM, 1992, BEHAV NEUROSCI, V106, P81, DOI 10.1037//0735-7044.106.1.81 Edeline JM, 2002, NEUROBIOL LEARN MEM, V78, P100, DOI 10.1006/nlme.2001.4035 Fanselow MS, 2005, ANNU REV PSYCHOL, V56, P207, DOI 10.1146/annurev.psych.56.091103.070213 Fanselow MS, 1999, NEURON, V23, P229, DOI 10.1016/S0896-6273(00)80775-8 FEHR FS, 1965, J PSYCHOSOM RES, V8, P441, DOI 10.1016/0022-3999(65)90086-3 GABRIEL M, 1975, SCIENCE, V189, P1108, DOI 10.1126/science.1162365 GABRIEL M, 1976, PHYSIOL PSYCHOL, V4, P124 GALAMBOS R, 1956, SCIENCE, V123, P376, DOI 10.1126/science.123.3192.376 GALLAGHER M, 1980, PHARMACOL BIOCHEM BE, V12, P419, DOI 10.1016/0091-3057(80)90047-7 GERREN RA, 1983, BRAIN RES, V265, P138, DOI 10.1016/0006-8993(83)91344-6 HALAS ES, 1970, ELECTROEN CLIN NEURO, V28, P468, DOI 10.1016/0013-4694(70)90272-5 Han JH, 2008, LEARN MEMORY, V15, P443, DOI 10.1101/lm.993608 Hennevin E, 2005, BEHAV NEUROSCI, V119, P1277, DOI 10.1037/0735-7044.119.5.1277 HENNEVIN E, 1993, BEHAV NEUROSCI, V107, P1018 Hennevin E, 1998, BEHAV NEUROSCI, V112, P839, DOI 10.1037//0735-7044.112.4.839 Hennevin E., 1992, Society for Neuroscience Abstracts, V18, P1064 Herkenham M, 1986, CEREB CORTEX, V5, P403 HERKENHAM M, 1980, SCIENCE, V207, P532, DOI 10.1126/science.7352263 Huang CL, 2000, J COMP NEUROL, V427, P302, DOI 10.1002/1096-9861(20001113)427:2<302::AID-CNE10>3.0.CO;2-J IMIG TJ, 1983, ANNU REV NEUROSCI, V6, P95, DOI 10.1146/annurev.ne.06.030183.000523 IMIG TJ, 1985, J NEUROPHYSIOL, V53, P309 JARRELL TW, 1986, BRAIN RES, V374, P126, DOI 10.1016/0006-8993(86)90401-4 JARRELL TW, 1987, BRAIN RES, V412, P285, DOI 10.1016/0006-8993(87)91135-8 JARRELL TW, 1986, BRAIN RES, V382, P199, DOI 10.1016/0006-8993(86)90133-2 JORDAN H, 1973, J COMP NEUROL, V148, P469, DOI 10.1002/cne.901480405 KANDEL ER, 2006, SEARCH MEMORY EMERGE, P343 KHOREVIN VI, 1980, NEUROPHYSIOLOGY+, V12, P241 Killcross S, 1997, NATURE, V388, P377, DOI 10.1038/41097 Kimura A, 2003, NEUROSCIENCE, V117, P1003, DOI 10.1016/S0306-4522(02)00949-1 Kimura A, 2005, NEUROSCIENCE, V135, P1325, DOI 10.1016/j.neuroscience.2005.06.089 KUDO M, 1986, J COMP NEUROL, V245, P176, DOI 10.1002/cne.902450205 KUDO M, 1980, J COMP NEUROL, V191, P545, DOI 10.1002/cne.901910403 Lanuza E, 2004, NEUROSCIENCE, V125, P305, DOI 10.1016/j.neuroscience.2003.12.034 Lanuza E, 2008, NEUROSCIENCE, V155, P959, DOI 10.1016/j.neuroscience.2008.06.028 LeDoux J. E., 1990, LEARNING COMPUTATION, P3 LeDoux J E, 1992, Curr Opin Neurobiol, V2, P191, DOI 10.1016/0959-4388(92)90011-9 Ledoux JE, 1997, PHILOS T ROY SOC B, V352, P1719 LeDoux JE, 2000, ANNU REV NEUROSCI, V23, P155, DOI 10.1146/annurev.neuro.23.1.155 LEDOUX JE, 1993, ANN NY ACAD SCI, V702, P149, DOI 10.1111/j.1749-6632.1993.tb17246.x LEDOUX JE, 1987, J COMP NEUROL, V264, P123, DOI 10.1002/cne.902640110 LEDOUX JE, 1986, NEUROSCIENCE, V17, P615, DOI 10.1016/0306-4522(86)90034-5 LEDOUX JE, 1993, BEHAV BRAIN RES, V58, P69, DOI 10.1016/0166-4328(93)90091-4 LEDOUX JE, 1995, ANNU REV PSYCHOL, V46, P209, DOI 10.1146/annurev.psych.46.1.209 LEDOUX JE, 1985, J COMP NEUROL, V242, P182, DOI 10.1002/cne.902420204 LEDOUX JE, 1994, SCI AM, V270, P50 LEDOUX JE, 1990, J NEUROSCI, V10, P1062 LEDOUX JE, 1984, J NEUROSCI, V4, P683 LEDOUX JE, 1986, INTEGRATIVE PSYCHIAT, V4, P237 Lehmann H, 2000, BEHAV NEUROSCI, V114, P107, DOI 10.1037//0735-7044.114.1.107 LENNARTZ RC, 1992, BEHAV NEUROSCI, V106, P484, DOI 10.1037/0735-7044.106.3.484 Linke R, 2000, EXP BRAIN RES, V134, P520, DOI 10.1007/s002210000475 Linke R, 1999, EUR J NEUROSCI, V11, P187, DOI 10.1046/j.1460-9568.1999.00422.x Linke R, 2000, CEREB CORTEX, V10, P753, DOI 10.1093/cercor/10.8.753 Linke R, 1999, EXP BRAIN RES, V127, P314, DOI 10.1007/s002210050801 LIPPE WR, 1973, EXP NEUROL, V39, P507, DOI 10.1016/0014-4886(73)90035-6 LIPPE WR, 1973, EXP NEUROL, V40, P431, DOI 10.1016/0014-4886(73)90085-X LOVE JA, 1969, CAN J PHYSIOL PHARM, V47, P881 Maho C, 2002, BEHAV NEUROSCI, V116, P807, DOI 10.1037//0735-7044.116.5.807 Maren S, 2003, EUR J NEUROSCI, V18, P3080, DOI 10.1046/j.1460-9568.2003.03030.x Maren S, 2004, NAT REV NEUROSCI, V5, P844, DOI 10.1038/nrn1535 Maren S, 2001, J NEUROSCI, V21, part. no. Maren S, 2001, ANNU REV NEUROSCI, V24, P897, DOI 10.1146/annurev.neuro.24.1.897 MCCABE PM, 1993, BRAIN RES, V619, P291, DOI 10.1016/0006-8993(93)91623-Z McEchron MD, 1996, J NEUROSCI, V16, P1273 MCECHRON MD, 1995, BRAIN RES, V682, P157, DOI 10.1016/0006-8993(95)00331-J McGaugh JL, 2002, NEUROBIOL LEARN MEM, V78, P539, DOI 10.1006/nlme.2002.4082 McGaugh JL, 2004, ANNU REV NEUROSCI, V27, P1, DOI 10.1146/annurev.neuro.27.070203.144157 McKernan MG, 1997, NATURE, V390, P607 Medina JF, 2002, NAT REV NEUROSCI, V3, P122, DOI 10.1038/nrn728 MERZENICH MM, 1982, CORTICAL SENSORY ORG, P43 Mineka S, 2008, ACTA PSYCHOL, V127, P567, DOI 10.1016/j.actpsy.2007.11.007 MOREST DK, 1965, J ANAT, V99, P611 MOREST DK, 1965, J ANAT, V99, P143 MOREST DK, 1986, ADV ANAT EMBRYOL CEL, V97, P1 MOREST DK, 1964, J ANAT, V98, P611 Morris JS, 1998, P ROY SOC B-BIOL SCI, V265, P649 NIIMI K, 1984, NEUROSCI LETT, V45, P223, DOI 10.1016/0304-3940(84)90103-4 NIIMI K, 1974, EXP BRAIN RES, V19, P326 OBRIEN PG, 2008, PSYCHIAT MENTAL HLTH, P70 OBRIST PA, 1968, J EXP PSYCHOL, V77, P180, DOI 10.1037/h0025814 OConnor KN, 1997, EXP BRAIN RES, V113, P534, DOI 10.1007/PL00005605 OLIVER DL, 1978, J COMP NEUROL, V182, P423, DOI 10.1002/cne.901820305 OLIVER DL, 1975, BRAIN RES, V86, P217, DOI 10.1016/0006-8993(75)90698-8 Pape HC, 2010, PHYSIOL REV, V90, P419, DOI 10.1152/physrev.00037.2009 Parsons RG, 2006, NEUROSCIENCE, V141, P1163, DOI 10.1016/j.neuroscience.2006.04.078 PESCHANSKI M, 1981, EXP NEUROL, V72, P226, DOI 10.1016/0014-4886(81)90140-0 Phelps EA, 2005, NEURON, V48, P175, DOI 10.1016/j.neuron.2005.09.025 PINEL JPJ, 2003, BIOPSYCHOLOGY, P454 Poremba A, 1997, J NEUROSCI, V17, P8645 Poremba A, 2001, J NEUROSCI, V21, P270 POWELL DA, 1976, PSYCHOPHYSIOLOGY, V13, P441, DOI 10.1111/j.1469-8986.1976.tb00858.x POWELL EW, 1969, J COMP NEUROL, V136, P183, DOI 10.1002/cne.901360205 RACZKOWSKI D, 1976, BRAIN RES, V101, P345, DOI 10.1016/0006-8993(76)90275-4 RAFFAELE R, 1969, Archivio Italiano di Scienze Mediche Tropicali e di Parassitologia, V53, P149 REDIES H, 1989, J COMP NEUROL, V282, P489, DOI 10.1002/cne.902820403 RESCORLA RA, 1988, AM PSYCHOL, V43, P151, DOI 10.1037/0003-066X.43.3.151 RESCORLA RA, 1988, ANNU REV NEUROSCI, V11, P329 Rodrigues SM, 2009, ANNU REV NEUROSCI, V32, P289, DOI 10.1146/annurev.neuro.051508.135620 ROMANSKI LM, 1992, J NEUROSCI, V12, P4501 ROMANSKI LM, 1993, CEREB CORTEX, V3, P499, DOI 10.1093/cercor/3.6.499 Rosen Jeffrey B, 2004, Behav Cogn Neurosci Rev, V3, P23, DOI 10.1177/1534582304265945 ROUCOUXHANUS M, 1977, EXP BRAIN RES, V29, P283 ROUILLER EM, 1991, HEARING RES, V56, P179, DOI 10.1016/0378-5955(91)90168-9 RYUGO DK, 1974, BRAIN RES, V82, P173, DOI 10.1016/0006-8993(74)90903-2 RYUGO DK, 1978, BEHAV BIOL, V22, P275, DOI 10.1016/S0091-6773(78)92351-9 SCHEEL M, 1988, ANAT EMBRYOL, V179, P181, DOI 10.1007/BF00304700 Scheich H, 2007, HEARING RES, V229, P213, DOI 10.1016/j.heares.2007.01.025 SELDEN NRW, 1991, NEUROSCIENCE, V42, P335, DOI 10.1016/0306-4522(91)90379-3 SOMMERSM.JA, 1970, ELECTROEN CLIN NEURO, V29, P383, DOI 10.1016/0013-4694(70)90046-5 Suga N, 2008, LEARN MEMORY, V15, P198, DOI 10.1101/lm.791408 SUPPLE WF, 1989, BEHAV NEUROSCI, V103, P1276 Talk A, 2004, BEHAV NEUROSCI, V118, P944, DOI 10.1037/0935-7044.118.5.944 TRANEL D, 1993, J COGNITIVE NEUROSCI, V5, P79, DOI 10.1162/jocn.1993.5.1.79 Vazdarjanova A, 1998, P NATL ACAD SCI USA, V95, P15003, DOI 10.1073/pnas.95.25.15003 WEINBERGER NM, 1982, ADV BEHAV BIOL, V26, P697 WEINBERGER NM, 1995, BEHAV NEUROSCI, V109, P10, DOI 10.1037/0735-7044.109.1.10 Weinberger NM, 2007, LEARN MEMORY, V14, P1, DOI 10.1101/lm.421807 WEINBERG.NM, 1972, EXP NEUROL, V36, P46, DOI 10.1016/0014-4886(72)90135-5 WEINBERGER NM, 1987, PROG NEUROBIOL, V29, P1, DOI 10.1016/0301-0082(87)90014-1 Weinberger NM, 2008, LEARN MEMORY, V15, P202, DOI 10.1101/lm.914208 WENSTRUP JJ, 1994, J COMP NEUROL, V346, P207, DOI 10.1002/cne.903460204 WEPSIC JG, 1966, EXP NEUROL, V15, P299, DOI 10.1016/0014-4886(66)90053-7 WHITLEY JM, 1984, J COMP NEUROL, V229, P257, DOI 10.1002/cne.902290210 WHITLOCK DG, 1961, EXP NEUROL, V3, P240, DOI 10.1016/0014-4886(61)90015-2 Wilensky AE, 2006, J NEUROSCI, V26, P12387, DOI 10.1523/JNEUROSCI.4316-06.2006 WINER JA, 1984, HEARING RES, V15, P225, DOI 10.1016/0378-5955(84)90031-5 Winer JA, 2005, TRENDS NEUROSCI, V28, P255, DOI 10.1016/j.tins.2005.03.009 WINER JA, 1983, J NEUROSCI, V3, P2629 Winer JA, 2006, HEARING RES, V212, P1, DOI 10.1016/j.heares.2005.06.014 Winer JA, 1999, HEARING RES, V130, P42, DOI 10.1016/S0378-5955(98)00217-2 WINER JA, 1984, ADV ANATOMY EMBRYOLO, P1 WINER JA, 1994, J COMP NEUROL, V346, P183, DOI 10.1002/cne.903460203 Winer JA, 1999, HEARING RES, V130, P19, DOI 10.1016/S0378-5955(98)00216-0 WINER JA, 1984, NEUROSCIENCE, V13, P395, DOI 10.1016/0306-4522(84)90239-2 WINER JA, 1987, J COMP NEUROL, V257, P282, DOI 10.1002/cne.902570212 WINER JA, 1983, J COMP NEUROL, V221, P1, DOI 10.1002/cne.902210102 WINER JA, 1994, J COMP NEUROL, V346, P161, DOI 10.1002/cne.903460202 WINER JA, 1985, ADV ANAT EMBRYOL CEL, V86, P1 Zhang XJ, 2005, J NEUROPHYSIOL, V93, P2552, DOI 10.1152/jn.01237.2004 NR 173 TC 30 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2011 VL 274 IS 1-2 SI SI BP 61 EP 74 DI 10.1016/j.heares.2010.03.093 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 757LG UT WOS:000290085900008 PM 20466051 ER PT J AU Edeline, JM Manunta, Y Hennevin, E AF Edeline, Jean-Marc Manunta, Yves Hennevin, Elizabeth TI Induction of selective plasticity in the frequency tuning of auditory cortex and auditory thalamus neurons by locus coeruleus stimulation SO HEARING RESEARCH LA English DT Article ID RECEPTIVE-FIELD PLASTICITY; LATERAL GENICULATE-NUCLEUS; SUPERIOR OLIVARY COMPLEX; TONE-EVOKED RESPONSES; SLOW-WAVE SLEEP; ELECTRICAL-STIMULATION; CEREBRAL-CORTEX; ELECTROENCEPHALOGRAPHIC ACTIVITY; CORTICAL PLASTICITY; CERULEUS ACTIVATION AB Neurons in primary sensory cortices display selective receptive field plasticity in behavioral situations ranging from classical conditioning to attentional tasks, and it is generally assumed that neuromodulators promote this plasticity. Studies have shown that pairing a pure-tone and a stimulation of the nucleus basalis magnocellularis mimics the selective receptive field facilitations described after classical conditioning. Here, we evaluated the consequences of repeated pairings between a particular sound frequency and a phasic stimulation of locus coeruleus (LC) on the frequency tuning of auditory thalamus and auditory cortex neurons. Selective alterations for the paired frequency were observed for more than 30% of the cells recorded both in cortex and in thalamus. There were as much selective increases as selective decreases at the cortical level, whereas selective increases were prevailing at the thalamic level. Selective changes usually persisted 15 min after pairing in cortex; they dissipated in thalamus, and so did the general increases in both structures. In animals with stimulation sites outside the LC, pairing induced either general changes or no effect. These results indicate that the selective plasticity induced in the frequency tuning of auditory cortex neurons by LC stimulation is bidirectional, thereby suggesting that noradrenergic activation can contribute to the different forms of plasticity observed after distinct behavioral paradigms. (C) 2010 Elsevier B.V. All rights reserved. C1 [Edeline, Jean-Marc] CNRS, CNPS, UMR 8195, F-91405 Orsay, France. Univ Paris 11, F-91405 Orsay, France. RP Edeline, JM (reprint author), CNRS, CNPS, UMR 8195, Batiment 446, F-91405 Orsay, France. EM jean-marc.edeline@u-psud.fr CR ASTONJONES G, 1981, J NEUROSCI, V1, P876 ASTONJONES G, 1981, J NEUROSCI, V1, P887 Bakin JS, 1996, P NATL ACAD SCI USA, V93, P11219, DOI 10.1073/pnas.93.20.11219 Bao SW, 2003, P NATL ACAD SCI USA, V100, P1405, DOI 10.1073/pnas.0337527100 Bao SW, 2001, NATURE, V412, P79, DOI 10.1038/35083586 BERRIDGE CW, 1993, NEUROSCIENCE, V55, P381, DOI 10.1016/0306-4522(93)90507-C Berridge CW, 2003, BRAIN RES REV, V42, P33, DOI 10.1016/S0165-0173(03)00143-7 BERRIDGE CW, 1991, J NEUROSCI, V11, P3135 Bjordahl TS, 1998, BEHAV NEUROSCI, V112, P467, DOI 10.1037/0735-7044.112.3.467 Branchereau P, 1996, SYNAPSE, V22, P313 Brown RAM, 2005, J NEUROSCI, V25, P1985, DOI 10.1053/JNEUROSCI.4307-04-2005 CEDARBAUM JM, 1978, LIFE SCI, V23, P1383, DOI 10.1016/0024-3205(78)90398-3 Cruikshank SJ, 2001, BRAIN RES, V891, P78, DOI 10.1016/S0006-8993(00)03197-8 Devilbiss DM, 2004, J NEUROSCI, V24, P10773, DOI 10.1523/JNEUROSCI.1573-04.2004 DIAMOND DM, 1989, BEHAV NEUROSCI, V103, P471, DOI 10.1037/0735-7044.103.3.471 Dimyan MA, 1999, BEHAV NEUROSCI, V113, P691, DOI 10.1037/0735-7044.113.4.691 Edeline JM, 1999, HEARING RES, V131, P135, DOI 10.1016/S0378-5955(99)00026-X Edeline JM, 2000, J NEUROPHYSIOL, V84, P934 EDELINE JM, 1994, EXP BRAIN RES, V97, P373 Edeline JM, 2003, EXP BRAIN RES, V153, P554, DOI 10.1007/s00221-003-1608-0 Edeline JM, 2001, EUR J NEUROSCI, V14, P1865, DOI 10.1046/j.0953-816x.2001.01821.x Edeline JM, 1999, PROG NEUROBIOL, V57, P165 EDELINE JM, 1994, BRAIN RES, V636, P333, DOI 10.1016/0006-8993(94)91033-2 Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141 Fritz J, 2005, HEARING RES, V206, P159, DOI 10.1016/j.heares.2005.01.015 Fritz JB, 2005, J NEUROSCI, V25, P7623, DOI 10.1523/JNEUROSCI.1318-05.2005 Fritz JB, 2007, HEARING RES, V229, P186, DOI 10.1016/j.heares.2007.01.009 Gu Q, 2002, NEUROSCIENCE, V111, P815, DOI 10.1016/S0306-4522(02)00026-X HARS B, 1993, NEUROSCIENCE, V56, P61, DOI 10.1016/0306-4522(93)90562-T HOLDEFER RN, 1994, EXP BRAIN RES, V100, P444, DOI 10.1007/BF02738404 HOLETS VR, 1988, NEUROSCIENCE, V24, P893, DOI 10.1016/0306-4522(88)90076-0 KAYAMA Y, 1982, NEUROSCIENCE, V7, P655, DOI 10.1016/0306-4522(82)90071-9 Kilgard MP, 1998, NAT NEUROSCI, V1, P727, DOI 10.1038/3729 Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714 KLEPPER A, 1991, BRAIN RES, V557, P190, DOI 10.1016/0006-8993(91)90134-H KROMER LF, 1980, ANAT EMBRYOL, V158, P227, DOI 10.1007/BF00315908 Lecas JC, 2004, EUR J NEUROSCI, V19, P2519, DOI 10.1111/j.0953-816X.2004.03341.x Lecas JC, 2001, CR ACAD SCI III-VIE, V324, P33, DOI 10.1016/S0764-4469(00)01276-2 Manunta Y, 2000, NEUROREPORT, V11, P23, DOI 10.1097/00001756-200001170-00005 Manunta Y, 2004, J NEUROPHYSIOL, V92, P1445, DOI 10.1152/jn.00079.2004 Manunta Y, 1998, EXP BRAIN RES, V118, P361, DOI 10.1007/s002210050290 Manunta Y, 1997, EUR J NEUROSCI, V9, P833, DOI 10.1111/j.1460-9568.1997.tb01433.x Manunta Y, 1999, EUR J NEUROSCI, V11, P2134, DOI 10.1046/j.1460-9568.1999.00633.x Massaux A, 2004, J NEUROPHYSIOL, V91, P2117, DOI 10.1152/jn.00970.2003 MCCORMICK DA, 1992, PROG NEUROBIOL, V39, P337, DOI 10.1016/0301-0082(92)90012-4 McCormick DA, 1997, ANNU REV NEUROSCI, V20, P185, DOI 10.1146/annurev.neuro.20.1.185 MELANDER T, 1986, J COMP NEUROL, V248, P475, DOI 10.1002/cne.902480404 Metherate R, 2005, HEARING RES, V206, P146, DOI 10.1016/j.heares.2005.01.014 METHERATE R, 1990, SYNAPSE, V6, P133, DOI 10.1002/syn.890060204 METHERATE R, 1989, BRAIN RES, V480, P372, DOI 10.1016/0006-8993(89)90210-2 MOORE RY, 1989, J CHEM NEUROANAT, V2, P95 Mulders WHAM, 2001, J CHEM NEUROANAT, V21, P313, DOI 10.1016/S0891-0618(01)00118-1 OLPE HR, 1980, BRAIN RES, V186, P9, DOI 10.1016/0006-8993(80)90251-6 Otazu GH, 2009, NAT NEUROSCI, V12, P646, DOI 10.1038/nn.2306 PAXINOS G, 1986, RAT BRAIN STEREOTAXI, pR8 Rasmusson DD, 2000, BEHAV BRAIN RES, V115, P205, DOI 10.1016/S0166-4328(00)00259-X ROGAWSKI MA, 1982, BRAIN RES, V250, P31, DOI 10.1016/0006-8993(82)90950-7 ROGAWSKI MA, 1980, NATURE, V287, P731, DOI 10.1038/287731a0 SATO H, 1989, J NEUROPHYSIOL, V62, P946 Shulz DE, 2003, J PHYSIOL-PARIS, V97, P431, DOI 10.1016/j.jphysparis.2004.01.001 Snow PJ, 1999, ARCH ITAL BIOL, V137, P1 Thompson AM, 2000, MICROSC RES TECHNIQ, V51, P330, DOI 10.1002/1097-0029(20001115)51:4<330::AID-JEMT4>3.0.CO;2-X Waterhouse BD, 1998, BRAIN RES, V790, P33, DOI 10.1016/S0006-8993(98)00117-6 Weinberger NM, 2003, NEUROBIOL LEARN MEM, V80, P268, DOI 10.1016/S1074-7427(03)00072-8 Weinberger NM, 2004, NAT REV NEUROSCI, V5, P279, DOI 10.1038/nrn1366 NR 65 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2011 VL 274 IS 1-2 SI SI BP 75 EP 84 DI 10.1016/j.heares.2010.08.005 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 757LG UT WOS:000290085900009 PM 20709165 ER PT J AU Read, HL Nauen, DW Escabi, MA Miller, LM Schreiner, CE Winer, JA AF Read, Heather L. Nauen, David W. Escabi, Monty A. Miller, Lee M. Schreiner, Christoph E. Winer, Jeffery A. TI Distinct core thalamocortical pathways to central and dorsal primary auditory cortex SO HEARING RESEARCH LA English DT Article ID MEDIAL GENICULATE-BODY; SOUND PRESSURE LEVEL; RESPONSE PROPERTIES; FUNCTIONAL-ORGANIZATION; TONOTOPIC ORGANIZATION; MODULAR ORGANIZATION; SPECTRAL INTEGRATION; BALANCED INHIBITION; VENTRAL DIVISION; SINGLE UNITS AB The cat primary auditory cortex (AI) is usually assumed to form one continuous functional region. However, the dorsal and central parts of the AI iso-frequency domain contain neurons that have distinct response properties to acoustic stimuli. In this study, we asked whether neurons projecting to dorsal versus central regions of AI originate in different parts of the medial geniculate body (MGB). Spike rate responses to variations in the sound level and frequency of pure tones were used to measure characteristic frequency (CF) and frequency resolution. These were mapped with high spatial density in order to place retrograde tracers into matching frequency regions of the central narrow-band region (cNB) and dorsal AI. Labeled neurons projecting to these two parts of AI were concentrated in the middle and rostral thirds of the MGB, respectively. There was little evidence that differences in dorsal and central AI function could be due to convergent input from cells outside the ventral division of the MGB (MGBv). Instead, inputs arising from different locations along the caudal-to-rostral dimension of MGBv represent potential sources of response differences between central and dorsal sub-regions of AI. Published by Elsevier B.V. C1 [Read, Heather L.; Nauen, David W.; Escabi, Monty A.; Miller, Lee M.; Schreiner, Christoph E.] Univ Calif San Francisco, WM Keck Ctr Integrat Neurosci, San Francisco, CA 94143 USA. [Winer, Jeffery A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Div Neurobiol, Berkeley, CA 94720 USA. RP Read, HL (reprint author), Univ Connecticut, Dept Psychol & Biomed Engn, Storrs, CT 06269 USA. EM heather.read@uconn.edu FU NIH [DC02260, DC008171, DC006397, DC02319] FX We would all like to commend our mentor and friend. Jeff, for the time and knowledge and great sense of humor he generously shared with us. He was always meticulous, cautious and careful in his approach and yet delighted and enthusiastic with every new discovery in the laboratory. Jeff had the ability to visualize and compare neural structures across species that is the province of great comparative anatomists. He was a gifted and patient teacher. His insight continues to guide us and will influence generations to come. The later work was supported by Grants NIH DC02260 (CES), DC008171 (LMM), DC006397 (MAE & HLR) and DC02319 (JAW). CR BASBAUM AI, 1987, J COMP NEUROL, V261, P306, DOI 10.1002/cne.902610211 Bendor D, 2008, J NEUROPHYSIOL, V100, P888, DOI 10.1152/jn.00884.2007 BENYISHAI R, 1995, P NATL ACAD SCI USA, V92, P3844, DOI 10.1073/pnas.92.9.3844 BERMAN EG, 1982, THALAMUS BASAL TELEN Bizley JK, 2005, CEREB CORTEX, V15, P1637, DOI 10.1093/cercor/bhi042 CALFORD MB, 1983, J NEUROSCI, V3, P2350 Cant NB, 2007, J COMP NEUROL, V503, P432, DOI 10.1002/cne.21391 Cetas JS, 2001, HEARING RES, V155, P113, DOI 10.1016/S0378-5955(01)00257-X de la Rocha J, 2008, J NEUROSCI, V28, P9151, DOI 10.1523/JNEUROSCI.1789-08.2008 Ehret G, 1997, J COMP PHYSIOL A, V181, P635, DOI 10.1007/s003590050146 Escabi MA, 2005, INT REV NEUROBIOL, V70, P207, DOI 10.1016/S0074-7742(05)70007-6 Griffiths TD, 2004, NAT REV NEUROSCI, V5, P887, DOI 10.1038/nrn1538 Hackett TA, 2001, J COMP NEUROL, V441, P197, DOI 10.1002/cne.1407 Hackett T.A., 2010, HEAR RES He JF, 1998, J COMP NEUROL, V400, P334, DOI 10.1002/(SICI)1096-9861(19981026)400:3<334::AID-CNE4>3.0.CO;2-9 HIGGINS NC, J NEUROSCI UNPUB Imaizumi K, 2007, J NEUROPHYSIOL, V98, P2933, DOI 10.1152/jn.00511.2007 Imaizumi K, 2004, J NEUROPHYSIOL, V92, P444, DOI 10.1152/jn.01173.2003 IMIG TJ, 1985, J NEUROPHYSIOL, V53, P309 Inoue T, 2006, J NEUROPHYSIOL, V96, P1746, DOI 10.1152/jn.00301.2006 Kalatsky VA, 2005, P NATL ACAD SCI USA, V102, P13325, DOI 10.1073/pnas.0505592102 King AJ, 2009, NAT NEUROSCI, V12, P698, DOI 10.1038/nn.2308 Lee CC, 2004, CEREB CORTEX, V14, P441, DOI 10.1093/cercor/bhh006 Lee CC, 2008, J COMP NEUROL, V507, P1879, DOI 10.1002/cne.21611 Lee CC, 2005, CEREB CORTEX, V15, P1804, DOI 10.1093/cercor/bhi057 Liu BH, 2007, NAT NEUROSCI, V10, P1594, DOI 10.1038/nn2012 LUPPI PH, 1990, BRAIN RES, V534, P209, DOI 10.1016/0006-8993(90)90131-T MENDELSON JR, 1993, EXP BRAIN RES, V94, P65 MIDDLEBROOKS JC, 1983, J NEUROSCI, V3, P203 Miller LM, 2001, NEURON, V32, P151, DOI 10.1016/S0896-6273(01)00445-7 MOREL A, 1987, J COMP NEUROL, V265, P119, DOI 10.1002/cne.902650109 MOREST DK, 1964, J ANAT, V98, P611 Nakamoto KT, 2004, J NEUROPHYSIOL, V91, P118, DOI 10.1152/jn.00171.2003 PHILLIPS DP, 1994, EXP BRAIN RES, V102, P210 POLLEY DB, 2007, J NEUROPHYSIOL Rauschecker JP, 1997, J COMP NEUROL, V382, P89 Read HL, 2008, NEUROSCIENCE, V152, P151, DOI 10.1016/j.neuroscience.2007.11.026 Read HL, 2001, P NATL ACAD SCI USA, V98, P8042, DOI 10.1073/pnas.131591898 REALE RA, 1980, J COMP NEUROL, V192, P265, DOI 10.1002/cne.901920207 Recanzone GH, 2000, J NEUROPHYSIOL, V83, P2315 REDIES H, 1989, J COMP NEUROL, V282, P489, DOI 10.1002/cne.902820403 RODRIGUESDAGAEFF C, 1989, HEARING RES, V39, P103, DOI 10.1016/0378-5955(89)90085-3 ROUILLER EM, 1989, HEARING RES, V39, P127, DOI 10.1016/0378-5955(89)90086-5 Schreiner CE, 2007, NEURON, V56, P356, DOI 10.1016/j.neuron.2007.10.013 Schreiner CE, 2000, ANNU REV NEUROSCI, V23, P501, DOI 10.1146/annurev.neuro.23.1.501 SCHREINER CE, 1990, J NEUROPHYSIOL, V64, P1442 SEMPLE MN, 1993, J NEUROPHYSIOL, V69, P449 SEMPLE MN, 1993, J NEUROPHYSIOL, V69, P462 Series P, 2004, NAT NEUROSCI, V7, P1129, DOI 10.1038/nn1321 STORACE DA, 2010, J COMP NEUROL Storace DA, 2010, J COMP NEUROL, V518, P1630, DOI 10.1002/cne.22345 Tan AYY, 2004, J NEUROPHYSIOL, V92, P630, DOI 10.1152/jn.01020.2003 Wehr M, 2003, NATURE, V426, P442, DOI 10.1038/nature02116 Winer JA, 1999, HEARING RES, V130, P19, DOI 10.1016/S0378-5955(98)00216-0 WINER JA, 1985, ADV ANAT EMBRYOL CEL, V86, P1 Wu GK, 2008, NEURON, V58, P132, DOI 10.1016/j.neuron.2008.01.035 NR 56 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2011 VL 274 IS 1-2 SI SI BP 95 EP 104 DI 10.1016/j.heares.2010.11.010 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 757LG UT WOS:000290085900011 PM 21145383 ER PT J AU Winer, JA Bui, LA Hong, JH Prieto, JJ Larue, DT AF Winer, Jeffery A. Bui, Lynne A. Hong, Jane H. Prieto, Jorge J. Larue, David T. TI GABAergic organization of the auditory cortex in the mustached bat (Pteronotus p. parnellii) SO HEARING RESEARCH LA English DT Article ID GABA-IMMUNOREACTIVE NEURONS; MEDIAL GENICULATE-BODY; GLUTAMIC-ACID DECARBOXYLASE; GAMMA-AMINOBUTYRIC-ACID; SENSORY-MOTOR CORTEX; CAT VISUAL-CORTEX; STRIATE CORTEX; CORTICOTHALAMIC CELLS; SYNAPTIC ORGANIZATION; LAMINAR DISTRIBUTION AB The structure and distribution of neurons and axon terminals (puncta) immunostained for gamma-aminobutyric acid (GABA) in the parietotemporal neocortex of the mustached bat (Pteronotus p. parnellii) was studied. The types of GABAergic neurons and puncta (putative terminals) were analyzed, and the immunocytochemical patterns were compared to those in cat auditory cortex (AC). The classic map of mustached bat primary auditory cortex (AI) corresponds to a belt of granular six-layered cortex on the temporal convexity. This area encompasses the Doppler-shifted constant frequency 60 kHz domain (DSCF) described in physiological investigations, as well as its flanking, low-frequency, posterior field (Alp) and the anterior high-frequency region (Ala). Many types of GABAergic neurons correspond to those in cat primary AC. However, the bat had a significantly lower proportion of such cells in five of the six layers. The classes of GABAergic neurons in most layers were small, medium-sized, and large multipolar cells, and bipolar and bitufted neurons. Types found in only one or two layers included horizontal cells (layers I and VI) or extraverted multipolar neurons (layer II). Only layer IV had comparable percentages (similar to 26%), suggesting that the GABAergic influence on lemniscal thalamocortical input is conserved phylogenetically. While the cellular basis for GABAergic cortical processing may reflect shared neural circuits and common modes of inhibitory processing, laminar differences could underlie adaptations specific to microchioptera. (C) 2010 Elsevier B.V. All rights reserved. C1 [Winer, Jeffery A.; Bui, Lynne A.; Hong, Jane H.; Larue, David T.] Univ Calif Berkeley, Dept Mol & Cell Biol, Div Neurobiol, Berkeley, CA 94720 USA. [Prieto, Jorge J.] Univ Miguel Hernandez, Dept Anat & Histol, San Juan, Alicante, Spain. RP Larue, DT (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Div Neurobiol, Berkeley, CA 94720 USA. EM dtlarue@berkeley.edu FU United States Public Health Service [RO1 DC02319-29] FX We thank Dr. D. E. Schmechel for GAD antiserum and Dr. R. J. Wenthold for antiserum to GABA-conjugate. We are grateful to Dr. N. Suga and Dr. W. E. O'Neill for their assistance and helpful comments on our interpretation of mustached bat auditory cortex physiological organization. Portions of this study were submitted as an undergraduate honors thesis by Dr. L A. Bui at the University of California at Berkeley. Dr. M. Beneyto graciously helped with Figs. 6 and 7. This research was supported by United States Public Health Service grant RO1 DC02319-29. CR ABERCROMBIE N, 1946, ANAT REC, V94, P239 ADAMS JC, 1981, J HISTOCHEM CYTOCHEM, V29, P775 ALLOWAY KD, 1989, EXP BRAIN RES, V78, P514 Arcelli P, 1997, BRAIN RES BULL, V42, P27, DOI 10.1016/S0361-9230(96)00107-4 Briggs F, 2001, J NEUROSCI, V21, P3600 COBAS A, 1987, J NEUROCYTOL, V16, P843, DOI 10.1007/BF01611990 CODE RA, 1985, J COMP NEUROL, V242, P485, DOI 10.1002/cne.902420404 Crook JM, 1997, VISUAL NEUROSCI, V14, P141 DEFELIPE J, 1986, NEUROSCIENCE, V17, P991, DOI 10.1016/0306-4522(86)90075-8 DEMEULEMEESTER H, 1988, J NEUROSCI, V8, P988 FARINAS I, 1991, J COMP NEUROL, V304, P70, DOI 10.1002/cne.903040106 FARINAS I, 1991, J COMP NEUROL, V304, P53, DOI 10.1002/cne.903040105 FITZPATRICK D, 1987, J COMP NEUROL, V264, P73, DOI 10.1002/cne.902640107 FITZPATRICK DC, 1994, BRAIN BEHAV EVOLUT, V43, P79, DOI 10.1159/000113626 Fitzpatrick DC, 1998, J COMP NEUROL, V391, P366 HENDRY SHC, 1983, J NEUROCYTOL, V12, P639, DOI 10.1007/BF01181528 HENDRY SHC, 1987, J NEUROSCI, V7, P1503 HORNUNG JP, 1994, ANAT EMBRYOL, V189, P139 Horton JC, 2005, PHILOS T ROY SOC B, V360, P837, DOI 10.1098/rstb.2005.1623 Houser C. R., 1984, CEREB CORTEX, V2, P63 HOUSER CR, 1983, J NEUROCYTOL, V12, P617, DOI 10.1007/BF01181527 HSU SM, 1981, J HISTOCHEM CYTOCHEM, V29, P577 Kawaguchi Y, 1996, J NEUROSCI, V16, P2701 KELLER A, 1987, J COMP NEUROL, V262, P1, DOI 10.1002/cne.902620102 KISVARDAY ZF, 1990, BRAIN, V113, P793, DOI 10.1093/brain/113.3.793 Larue DT, 1996, J NEUROSCI METH, V68, P125, DOI 10.1016/0165-0270(96)00048-9 LIN CS, 1986, J COMP NEUROL, V244, P369, DOI 10.1002/cne.902440309 Liu W, 1997, J COMP PHYSIOL A, V181, P599, DOI 10.1007/s003590050143 MARTIN KAC, 1989, J COMP NEUROL, V282, P404, DOI 10.1002/cne.902820307 MATSUBARA JA, 1987, BRAIN RES BULL, V18, P121, DOI 10.1016/0361-9230(87)90040-2 MEINECKE DL, 1987, J COMP NEUROL, V261, P388, DOI 10.1002/cne.902610305 MERZENICH MM, 1975, J NEUROPHYSIOL, V38, P231 MUGNAINI E, 1983, J HISTOCHEM CYTOCHEM, V31, P1435 OERTEL WH, 1981, NEUROSCIENCE, V6, P2725 OERTEL WH, 1981, NEUROSCIENCE, V6, P2689, DOI 10.1016/0306-4522(81)90113-5 OLSEN JF, 1986, THESIS WASHINGTON U PETERS A, 1993, CEREB CORTEX, V3, P69, DOI 10.1093/cercor/3.1.69 PRIETO JJ, 1994, J COMP NEUROL, V344, P349, DOI 10.1002/cne.903440304 PRIETO JJ, 1994, J COMP NEUROL, V344, P383, DOI 10.1002/cne.903440305 Prieto JJ, 1999, J COMP NEUROL, V404, P332, DOI 10.1002/(SICI)1096-9861(19990215)404:3<332::AID-CNE5>3.0.CO;2-R REBLET C, 1992, EUR J NEUROSCI, V4, P221, DOI 10.1111/j.1460-9568.1992.tb00870.x RIQUIMAROUX H, 1992, J NEUROPHYSIOL, V68, P1613 RIQUIMAROUX H, 1991, SCIENCE, V251, P565, DOI 10.1126/science.1990432 ROBERTS RC, 1985, BRAIN RES, V361, P324, DOI 10.1016/0006-8993(85)91303-4 SCHIFFMANN S, 1988, BRAIN RES, V442, P270, DOI 10.1016/0006-8993(88)91512-0 Smith PH, 2001, J COMP NEUROL, V436, P508, DOI 10.1002/cne.1084 SOMOGYI P, 1985, J HISTOCHEM CYTOCHEM, V33, P240 SOMOGYI P, 1983, NEUROSCIENCE, V9, P475, DOI 10.1016/0306-4522(83)90167-7 SOUSA-PINTO A, 1973, Archives Italiennes de Biologie, V111, P112 STERNBERGER LA, 1979, J HISTOCHEM CYTOCHEM, V27, P1424 SUGA N, 1985, J NEUROPHYSIOL, V53, P1109 SUGA N, 1984, TRENDS NEUROSCI, V7, P20, DOI 10.1016/S0166-2236(84)80183-6 SUGA N, 1990, J NEUROPHYSIOL, V64, P225 WILLINGHAM MC, 1984, J HISTOCHEM CYTOCHEM, V32, P455 Winer JA, 2005, INFERIOR COLLICULUS, P231, DOI 10.1007/0-387-27083-3_8 Winer J.A., 1992, Springer Handbook of Auditory Research, V1, P222 WINER JA, 1986, NEUROSCIENCE, V19, P771, DOI 10.1016/0306-4522(86)90298-8 WINER JA, 1988, J COMP NEUROL, V278, P47, DOI 10.1002/cne.902780104 Winer JA, 2001, J COMP NEUROL, V434, P379, DOI 10.1002/cne.1183 Winer JA, 1996, P NATL ACAD SCI USA, V93, P3083, DOI 10.1073/pnas.93.7.3083 WINER JA, 1989, NEUROSCIENCE, V33, P499, DOI 10.1016/0306-4522(89)90402-8 WINER JA, 1992, J COMP NEUROL, V319, P172, DOI 10.1002/cne.903190114 WINER JA, 1995, J COMP NEUROL, V355, P317, DOI 10.1002/cne.903550302 WINER JA, 1984, J COMP NEUROL, V224, P535, DOI 10.1002/cne.902240405 WINER JA, 1985, ADV ANAT EMBRYOL CEL, V86, P1 WINGUTH SD, 1986, J COMP NEUROL, V248, P36, DOI 10.1002/cne.902480104 Xiao ZJ, 2002, P NATL ACAD SCI USA, V99, P15743, DOI 10.1073/pnas.242606699 NR 67 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2011 VL 274 IS 1-2 SI SI BP 105 EP 120 DI 10.1016/j.heares.2010.05.020 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 757LG UT WOS:000290085900012 PM 20594984 ER PT J AU Yuan, KX Fink, KL Winer, JA Schreiner, CE AF Yuan, Kexin Fink, Kathren L. Winer, Jeffery A. Schreiner, Christoph E. TI Local connection patterns of parvalbumin-positive inhibitory interneurons in rat primary auditory cortex SO HEARING RESEARCH LA English DT Article ID CALCIUM-BINDING PROTEINS; GABAERGIC NEURONS; STRIATE CORTEX; FAST-SPIKING; VERTICAL ORGANIZATION; INTRINSIC CONNECTIONS; MODULAR ORGANIZATION; BALANCED INHIBITION; PROJECTION NEURONS; RETROGRADE TRACER AB In the auditory cortex (AC). GABAergic neurons constitute approximately 15-25% of all neurons. GABAergic cells are present in all sensory modalities and essential for modulating sensory receptive fields. Parvalbumin (PV) positive cells represent the largest sub-group of the GABAergic population in auditory neocortex. We investigated the projection pattern of PV cells in rat primary auditory cortex (AI) with a retrograde tracer (wheat germ apo-HRP conjugated to gold [WAHG]) and immunocytochemistry for PV. All AC layers except layer I contained cells double-labeled for PV and WAHG. All co-localized PV+ cells were within 2 mm of the injection site, regardless of laminar origin. Most (ca. 90%) of the colocalized PV cells were within 500 mu m of the injection site in both dorsal-ventral and rostral-caudal dimension of the auditory core region. WAHG-only cells declined less rapidly with distance and were found up to 6 mm from the deposit sites. WAHG-only labeled cells in the medial geniculate body were in ventral division loci compatible with an injection in AI. Differences in the range and direction of the distribution pattern of co-localized PV+ cells and WAHG-only cells in AI express distinct functional convergence patterns for the two cell populations. (C) 2010 Published by Elsevier B.V. C1 [Yuan, Kexin; Schreiner, Christoph E.] Univ Calif San Francisco, Dept Otolaryngol, Coleman Mem Lab, San Francisco, CA 94143 USA. [Yuan, Kexin; Schreiner, Christoph E.] Univ Calif San Francisco, Dept Otolaryngol, WM Keck Fdn Ctr Integrat Neurosci, San Francisco, CA 94143 USA. [Yuan, Kexin; Fink, Kathren L.; Winer, Jeffery A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Schreiner, CE (reprint author), Univ Calif San Francisco, Dept Otolaryngol, Coleman Mem Lab, San Francisco, CA 94143 USA. EM kexin@phy.ucsf.edu; thekfink@gmail.com; chris@phy.ucsf.edu FU NIDCD [R01DC02319, R01DC02260] FX We thank David Larue and Katie Dorsch for technical assistance and Weichen Xu for assistance in data collection and analysis. We also thank Peter Ohara for useful comments on our original manuscript. This work was supported by NIDCD grants R01DC02319 (J.A.W.) and R01DC02260 (C.E.S.). CR ALBUS K, 1994, EUR J NEUROSCI, V6, P779, DOI 10.1111/j.1460-9568.1994.tb00989.x ALBUS K, 1991, EXP BRAIN RES, V85, P235 Atencio CA, 2008, J NEUROSCI, V28, P3897, DOI 10.1523/JNEUROSCI.5366-07.2008 BASBAUM AI, 1989, J HISTOCHEM CYTOCHEM, V37, P1811 BASBAUM AI, 1987, J COMP NEUROL, V261, P306, DOI 10.1002/cne.902610211 Bastianelli E, 2003, CEREBELLUM, V2, P242, DOI 10.1080/14734220310022289 Cardin JA, 2009, NATURE, V459, P663, DOI 10.1038/nature08002 DEFELIPE J, 1985, J NEUROSCI, V5, P3246 DELRIO JA, 1994, DEV BRAIN RES, V81, P247, DOI 10.1016/0165-3806(94)90311-5 Fabri M, 1996, NEUROSCIENCE, V72, P435, DOI 10.1016/0306-4522(95)00568-4 Froemke RC, 2007, NATURE, V450, P425, DOI 10.1038/nature06289 GREENWOO.DD, 1965, J NEUROPHYSIOL, V28, P863 HENDRY SHC, 1991, BRAIN RES, V543, P45, DOI 10.1016/0006-8993(91)91046-4 Higo S, 2007, J COMP NEUROL, V503, P421, DOI 10.1002/cne.21395 Hof PR, 1999, J CHEM NEUROANAT, V16, P77, DOI 10.1016/S0891-0618(98)00065-9 Jinno S, 2006, NEUROSCI RES, V56, P229, DOI 10.1016/j.neures.2006.07.007 Jones EG, 1998, NEUROSCIENCE, V85, P331, DOI 10.1016/S0306-4522(97)00581-2 Mallet N, 2005, J NEUROSCI, V25, P3857, DOI 10.1523/NEUROSCI.5027-04.2005 Markram H, 2004, NAT REV NEUROSCI, V5, P793, DOI 10.1038/nrn1519 MATSUBARA JA, 1988, PROG BRAIN RES, V75, P163 MATSUBARA JA, 1992, BRAIN RES, V583, P161 MCMULLEN NT, 1994, J COMP NEUROL, V349, P493, DOI 10.1002/cne.903490402 Monyer H, 2004, TRENDS NEUROSCI, V27, P90, DOI 10.1016/j.tins.2003.12.008 MUGNAINI E, 1985, HDB CHEM NEUROANA 11, V4 PHILLIPS DP, 1995, J NEUROPHYSIOL, V73, P674 Polley DB, 2007, J NEUROPHYSIOL, V97, P3621, DOI 10.1152/jn.01298.2006 PRIETO JJ, 1994, J COMP NEUROL, V344, P349, DOI 10.1002/cne.903440304 Read HL, 2001, P NATL ACAD SCI USA, V98, P8042, DOI 10.1073/pnas.131591898 REALE RA, 1983, P NATL ACAD SCI-BIOL, V80, P5449, DOI 10.1073/pnas.80.17.5449 SCHREINER CE, 1992, EXP BRAIN RES, V92, P105 Schreiner CE, 2000, ANNU REV NEUROSCI, V23, P501, DOI 10.1146/annurev.neuro.23.1.501 Schwaller Beat, 2002, Cerebellum, V1, P241, DOI 10.1080/147342202320883551 Sohal VS, 2009, NATURE, V459, P698, DOI 10.1038/nature07991 SOMOGYI P, 1981, NATURE, V294, P761, DOI 10.1038/294761a0 SOMOGYI P, 1983, P NATL ACAD SCI-BIOL, V80, P2385, DOI 10.1073/pnas.80.8.2385 Sutter ML, 1999, J NEUROPHYSIOL, V82, P2358 Tamamaki N, 2003, J COMP NEUROL, V467, P60, DOI 10.1002/cne.10905 Tan AYY, 2007, NEUROSCIENCE, V146, P449, DOI 10.1016/j.neuroscience.2007.01.019 Tomioka R, 2007, J COMP NEUROL, V505, P526, DOI 10.1002/cne.21504 Tomioka R, 2005, EUR J NEUROSCI, V21, P1587, DOI 10.1111/j.1460-9568.2005.03989.x Wehr M, 2003, NATURE, V426, P442, DOI 10.1038/nature02116 Winer JA, 1999, HEARING RES, V130, P42, DOI 10.1016/S0378-5955(98)00217-2 Wu GK, 2008, NEURON, V58, P132, DOI 10.1016/j.neuron.2008.01.035 Wu GY, 2006, NEURON, V52, P705, DOI 10.1016/j.neuron.2006.10.009 Zhang LI, 2003, NATURE, V424, P201, DOI 10.1038/nature01796 ZILLES K, 1985, ANAT EMBRYOL, V172, P255, DOI 10.1007/BF00318973 NR 46 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2011 VL 274 IS 1-2 SI SI BP 121 EP 128 DI 10.1016/j.heares.2010.06.014 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 757LG UT WOS:000290085900013 PM 20600741 ER PT J AU Wallace, MN Coomber, B Sumner, CJ Grimsley, JMS Shackleton, TM Palmer, AR AF Wallace, M. N. Coomber, B. Sumner, C. J. Grimsley, J. M. S. Shackleton, T. M. Palmer, A. R. TI Location of cells giving phase-locked responses to pure tones in the primary auditory cortex SO HEARING RESEARCH LA English DT Article ID MEDIAL GENICULATE-BODY; LOW-FREQUENCY TONES; GUINEA-PIG; THALAMOCORTICAL SYSTEM; COLUMNAR ORGANIZATION; REPRESENTATION; SOUND; LOCALIZATION; SENSITIVITY; PROJECTIONS AB Phase-locked responses to pure tones have previously been described in the primary auditory cortex (AI) of the guinea pig. They are interesting because they show that some cells may use a temporal code for representing sounds of 60-300 Hz rather than the rate or place mechanisms used over most of AI. Our previous study had shown that the phase-locked responses were grouped together, but it was not clear whether they were in separate minicolumns or a larger macrocolumn. We now show that the phase-locked cells are arranged in a macrocolumn within AI that forms a subdivision of the isofrequency bands. Phase-locked responses were recorded from 158 multiunits using silicon based multiprobes with four shanks. The phase-locked units gave the strongest response in layers III/IV but phase-locked units were also recorded in layers II. V and VI. The column included cells with characteristic frequencies of 80 Hz-1.3 kHz (0.5-0.8 mm long) and was about 0.5 mm wide. It was located at a constant position at the intersection of the coronal plane 1 mm caudal to bregma and the suture that forms the lateral edge of the parietal bone. (C) 2010 Elsevier B.V. All rights reserved. C1 [Wallace, M. N.; Coomber, B.; Sumner, C. J.; Grimsley, J. M. S.; Shackleton, T. M.; Palmer, A. R.] MRC Inst Hearing Res, Nottingham NG7 2RD, England. RP Wallace, MN (reprint author), MRC Inst Hearing Res, Univ Pk, Nottingham NG7 2RD, England. EM markw@ihr.mrc.ac.uk FU NIH/NCRR [P41 RR09754] FX Silicon probes were generously provided by the University of Michigan Center for Neural Communication Technology sponsored by NIH/NCRR grant P41 RR09754. We want to thank O Zobay for statistical help and Dr JWH Schnupp for sending us a copy of Brainware. CR ABELES M, 1970, J NEUROPHYSIOL, V33, P172 Ahissar E, 2001, P NATL ACAD SCI USA, V98, P13367, DOI 10.1073/pnas.201400998 Bendor D, 2005, NATURE, V436, P1161, DOI 10.1038/nature03867 deRibaupierre F, 1997, CENTRAL AUDITORY SYS, P317 Douglas RJ, 2004, ANNU REV NEUROSCI, V27, P419, DOI 10.1146/annurev.neuro.27.070203.144152 Eggermont JJ, 2001, HEARING RES, V157, P1, DOI 10.1016/S0378-5955(01)00259-3 Elhilali M, 2004, J NEUROSCI, V24, P1159, DOI 10.1523/JNEUROSCI.3825-03.2004 Fitzpatrick DC, 2000, J NEUROSCI, V20, P1605 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 Haidarliu S, 1997, J COMP NEUROL, V385, P515, DOI 10.1002/(SICI)1096-9861(19970908)385:4<515::AID-CNE3>3.0.CO;2-6 HASHIKAWA T, 1995, J COMP NEUROL, V362, P195, DOI 10.1002/cne.903620204 He JF, 1998, J COMP NEUROL, V400, P334, DOI 10.1002/(SICI)1096-9861(19981026)400:3<334::AID-CNE4>3.0.CO;2-9 Huetz C, 2009, J NEUROSCI, V29, P334, DOI 10.1523/JNEUROSCI.3269-08.2009 Kimura A, 2003, NEUROSCIENCE, V117, P1003, DOI 10.1016/S0306-4522(02)00949-1 KUNKEL P., 1964, Zeitschrift fur Tierpsychologie, V21, P602 Mardia K. V., 1972, STAT DIRECTIONAL DAT McAlpine D, 1996, HEARING RES, V97, P136 MIDDLEBROOKS JC, 1983, J NEUROSCI, V3, P203 Mountcastle VB, 1997, BRAIN, V120, P701, DOI 10.1093/brain/120.4.701 MOUNTCAS.VB, 1969, J NEUROPHYSIOL, V32, P452 REDIES H, 1989, J COMP NEUROL, V282, P489, DOI 10.1002/cne.902820403 Rood J.P., 1972, Animal Behav Monogr, V5, P1 ROSE JE, 1949, J COMP NEUROL, V91, P441, DOI 10.1002/cne.900910306 ROUILLER E, 1979, HEARING RES, V1, P213, DOI 10.1016/0378-5955(79)90015-7 Scott BH, 2009, J NEUROPHYSIOL, V101, P1781, DOI 10.1152/jn.00678.2007 Smith PH, 2001, J COMP NEUROL, V436, P508, DOI 10.1002/cne.1084 STEINSCHNEIDER M, 1980, BRAIN RES, V198, P75, DOI 10.1016/0006-8993(80)90345-5 Stiebler I, 1997, J COMP PHYSIOL A, V181, P559, DOI 10.1007/s003590050140 Tiesinga P, 2008, NAT REV NEUROSCI, V9, P97, DOI 10.1038/nrn2315 Velenovsky DS, 2003, J NEUROSCI, V23, P308 Wallace MN, 2000, EXP BRAIN RES, V132, P445, DOI 10.1007/s002210000362 Wallace MN, 2008, EXP BRAIN RES, V184, P179, DOI 10.1007/s00221-007-1092-z Wallace MN, 2007, J NEUROPHYSIOL, V98, P1941, DOI 10.1152/jn.00697.2007 Wallace MN, 2000, NEUROREPORT, V11, P3989, DOI 10.1097/00001756-200012180-00017 Wallace MN, 2005, HEARING RES, V204, P115, DOI 10.1016/j.heares.2005.01.007 Wallace MN, 2009, EXP BRAIN RES, V194, P395, DOI 10.1007/s00221-009-1714-8 Wallace MN, 2002, HEARING RES, V172, P160, DOI 10.1016/S0378-5955(02)00580-4 Wang X, 2008, NEUROSCIENCE, V154, P294, DOI 10.1016/j.neuroscience.2008.03.065 Wang XQ, 2005, NATURE, V435, P341, DOI 10.1038/nature03565 Winer JA, 1992, MAMMALIAN AUDITORY P, P222 NR 40 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2011 VL 274 IS 1-2 SI SI BP 142 EP 151 DI 10.1016/j.heares.2010.05.012 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 757LG UT WOS:000290085900015 PM 20630479 ER PT J AU Nadrowski, B Effertz, T Senthilan, PR Gopfert, MC AF Nadrowski, Bjoern Effertz, Thomas Senthilan, Pingkalai R. Goepfert, Martin C. TI Antennal hearing in insects - New findings, new questions SO HEARING RESEARCH LA English DT Article ID HAIR-BUNDLE MOTILITY; FEMALE AEDES-AEGYPTI; DROSOPHILA-MELANOGASTER; JOHNSTONS ORGAN; INNER-EAR; CHORDOTONAL ORGANS; MECHANOSENSORY TRANSDUCTION; MECHANICAL STIMULATION; AUDITORY-SENSITIVITY; MAMMALIAN COCHLEA AB Mosquitoes, certain Drosophila species, and honey bees use Johnston's organ in their antennae to detect the wing-beat sounds of conspecifics. Recent studies on these insects have provided novel insights into the intricacies of insect hearing and sound communication, with main discoveries including transduction and amplification mechanisms as known from vertebrate hearing, functional and molecular diversifications of mechanosensory cells, and complex mating duets that challenge the frequency-limits of insect antennal ears. This review discusses these recent advances and outlines potential avenues for future research. (C) 2010 Elsevier B.V. All rights reserved. C1 [Nadrowski, Bjoern; Effertz, Thomas; Senthilan, Pingkalai R.; Goepfert, Martin C.] Univ Gottingen, Dept Cellular Neurobiol, Max Planck Inst Expt Med, D-37075 Gottingen, Germany. RP Gopfert, MC (reprint author), Univ Gottingen, Dept Cellular Neurobiol, Max Planck Inst Expt Med, Hermann Rein Str 3, D-37075 Gottingen, Germany. EM mgoepfe@gwdg.de RI Nadrowski, Bjorn/D-4979-2012; Senthilan, Pingkalai/A-3466-2013 FU Volkswagen Stiftung; Deutsche Forschungsgemeinschaft [GO 1092/1-1]; BMBF Bernstein Network for Computational Neuroscience FX Supported by the Volkswagen Stiftung (B.N., M.C.G.), the Deutsche Forschungsgemeinschaft (GO 1092/1-1), and the BMBF Bernstein Network for Computational Neuroscience (M.C.G.). CR Ai H, 2007, J COMP NEUROL, V502, P1030, DOI 10.1002/cne.21341 Albert JT, 2007, FLY, V1, P238 ALBERT JT, 2006, NATURE PROTOCOLS, DOI DOI 10.1038/NPROT.2006.364 Albert JT, 2007, CURR BIOL, V17, P1000, DOI 10.1016/j.cub.2007.05.004 Albert JT, 2007, J PHYSIOL-LONDON, V580, P451, DOI 10.1113/jphysiol.2007.127993 Ashmore J, 2004, CURR BIOL, V14, pR403, DOI 10.1016/j.cub.2004.05.025 Avitabile D, 2010, J R SOC INTERFACE, V7, P105, DOI 10.1098/rsif.2009.0091 Baker JD, 2004, DEVELOPMENT, V131, P3411, DOI 10.1242/dev.01229 Bechstedt S, 2008, CURR BIOL, V18, pR869, DOI 10.1016/j.cub.2008.07.069 BELTON P, 1994, J AM MOSQUITO CONTR, V10, P297 Belton P., 1974, ANAL INSECT BEHAV, P139 Bender JA, 2009, CURR BIOL, V19, pR186, DOI 10.1016/j.cub.2008.12.024 BENNETCL.HC, 1971, NATURE, V234, P255, DOI 10.1038/234255a0 Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837 Boekhoff-Falk G, 2005, DEV DYNAM, V232, P550, DOI 10.1002/dvdy.20207 BOO KS, 1975, J INSECT PHYSIOL, V21, P1129, DOI 10.1016/0022-1910(75)90126-2 BOO K S, 1975, International Journal of Insect Morphology and Embryology, V4, P549, DOI 10.1016/0020-7322(75)90031-8 Budick SA, 2007, J EXP BIOL, V210, P4092, DOI 10.1242/jeb.006502 BURNET B, 1971, ANIM BEHAV, V19, P409, DOI 10.1016/S0003-3472(71)80025-8 Camalet S, 2000, P NATL ACAD SCI USA, V97, P3183, DOI 10.1073/pnas.97.7.3183 Camhi JM, 1999, J EXP BIOL, V202, P631 Cator LJ, 2009, SCIENCE, V323, P1077, DOI 10.1126/science.1166541 Chen FY, 2009, J ACOUST SOC AM, V125, P11, DOI 10.1121/1.2950090 Chung YD, 2001, NEURON, V29, P415, DOI 10.1016/S0896-6273(01)00215-X CLEMENTS AN, 1999, BIOL MOSQUITOES, V2, P55 COREY DP, 1983, J NEUROSCI, V3, P962 CROSSLEY SA, 1995, ANIM BEHAV, V50, P827, DOI 10.1016/0003-3472(95)80142-1 Dong PDS, 2003, P NATL ACAD SCI USA, V100, P10293, DOI 10.1073/pnas.1836391100 DRELLER C, 1993, J COMP PHYSIOL A, V173, P275, DOI 10.1007/BF00212691 Eatock RA, 2009, NATURE, V458, P156, DOI 10.1038/458156a Ebacher DJS, 2007, FLY, V1, P86 Eberl DF, 2007, INT J DEV BIOL, V51, P679, DOI 10.1387/ijdb.072364de Eberl DF, 1997, P NATL ACAD SCI USA, V94, P14837, DOI 10.1073/pnas.94.26.14837 Eberl DF, 2000, J NEUROSCI, V20, P5981 Eddison M, 2000, P NATL ACAD SCI USA, V97, P11692, DOI 10.1073/pnas.97.22.11692 EDERY I, 2009, NEURON, V64, P251 Eguiluz VM, 2000, PHYS REV LETT, V84, P5232, DOI 10.1103/PhysRevLett.84.5232 Elliott SL, 2005, MOL BIOL CELL, V16, P891 ESCH H, 1961, Z VERGL PHYSIOL, V45, P1, DOI 10.1007/BF00297754 EWING AW, 1978, PHYSIOL ENTOMOL, V3, P33, DOI 10.1111/j.1365-3032.1978.tb00129.x Field LH, 1998, ADV INSECT PHYSIOL, V27, P1, DOI 10.1016/S0065-2806(08)60013-2 Fritzsch B, 2006, BRAIN RES, V1091, P151, DOI 10.1016/j.brainres.2006.02.078 Gibson G, 2006, CURR BIOL, V16, P1311, DOI 10.1016/j.cub.2006.05.053 Giribet G, 2001, NATURE, V413, P157, DOI 10.1038/35093097 Gleason JM, 2005, BEHAV GENET, V35, P265, DOI 10.1007/s10519-005-3219-y Gong ZF, 2004, J NEUROSCI, V24, P9059, DOI 10.1523/JNEUROSCI.1645-04.2004 Gopfert MC, 2001, P ROY SOC B-BIOL SCI, V268, P333, DOI 10.1098/rspb.2000.1376 Gopfert MC, 2005, P NATL ACAD SCI USA, V102, P325, DOI 10.1073/pnas.0405741102 Goepfert Martin C., 2008, V30, P191 Gopfert MC, 2002, J EXP BIOL, V205, P1199 Gopfert MC, 2006, NAT NEUROSCI, V9, P999, DOI 10.1038/nn1735 Gopfert MC, 2003, P NATL ACAD SCI USA, V100, P5514, DOI 10.1073/pnas.0737564100 Gopfert MC, 2001, NATURE, V411, P908, DOI 10.1038/35082144 Gopfert MC, 2002, DEV DYNAM, V225, P106, DOI 10.1002/dvdy.10136 Gopfert MC, 1999, J EXP BIOL, V202, P2727 GOPFERT MC, 2008, AUDITION SENSES COMP, V3, P293 Guidi GM, 1998, J PHYS CHEM A, V102, P7813, DOI 10.1021/jp982394a Han YG, 2003, CURR BIOL, V13, P1679, DOI 10.1016/j.cub.2003.08.034 Hassan BA, 2000, GENE DEV, V14, P1852 Hedwig B., 2008, SENSES COMPREHENSIVE, V3, P525 HEINZEL G, 1987, J COMP PHYSIOL A, V161, P671 Hennig W., 1981, INSECT PHYLOGENY HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0 HUDSPETH AJ, 1979, P NATL ACAD SCI USA, V76, P1506, DOI 10.1073/pnas.76.3.1506 Hudspeth AJ, 2008, NEURON, V59, P530, DOI 10.1016/j.neuron.2008.07.012 Jackson JC, 2006, P NATL ACAD SCI USA, V103, P16734, DOI 10.1073/pnas.0606319103 Jackson JC, 2009, P NATL ACAD SCI USA, V106, P10177, DOI 10.1073/pnas.0901727106 JARMAN AP, 1993, CELL, V73, P1307, DOI 10.1016/0092-8674(93)90358-W JARMAN AP, 1995, DEVELOPMENT, V121, P2019 JOHNSTON C, 1955, J MICROSC SCI, V3, P97 Kamikouchi A, 2006, J COMP NEUROL, V499, P317, DOI 10.1002/cne.21075 Kamikouchi A, 2009, NATURE, V458, P165, DOI 10.1038/nature07810 KAVLIE RG, 2007, DROS RES C, V48, pC642 KERNAN M, 1994, NEURON, V12, P1195, DOI 10.1016/0896-6273(94)90437-5 Kernan MJ, 2007, PFLUG ARCH EUR J PHY, V454, P703, DOI 10.1007/s00424-007-0263-x Kim J, 2003, NATURE, V424, P81, DOI 10.1038/nature01733 KIRCHNER WH, 1988, NATURWISSENSCHAFTEN, V75, P629, DOI 10.1007/BF00366482 Kossl M, 2008, J COMP PHYSIOL A, V194, P597, DOI 10.1007/s00359-008-0344-0 Lee E, 2008, CURR BIOL, V18, P1899, DOI 10.1016/j.cub.2008.11.020 Lu QH, 2009, INTEGR COMP BIOL, V49, P674, DOI 10.1093/icb/icp072 Lukashkin AN, 2007, CURR BIOL, V17, P1340, DOI 10.1016/j.cub.2007.06.061 MANNING A, 1967, SCIENCE, V158, P136, DOI 10.1126/science.158.3797.136 Martin P, 2001, P NATL ACAD SCI USA, V98, P14386, DOI 10.1073/pnas.251530498 Martin P, 2003, J NEUROSCI, V23, P4533 Martin P, 2001, P NATL ACAD SCI USA, V98, P14380, DOI 10.1073/pnas.251530598 MICHELSEN A, 1986, BEHAV ECOL SOCIOBIOL, V18, P207, DOI 10.1007/BF00290824 Millimaki BB, 2007, DEVELOPMENT, V134, P295, DOI 10.1242/dev.02734 Nadrowski B, 2009, CURR OPIN OTOLARYNGO, V17, P400, DOI 10.1097/MOO.0b013e3283303443 Nadrowski B, 2004, P NATL ACAD SCI USA, V101, P12195, DOI 10.1073/pnas.0403020101 Nadrowski Bjoern, 2009, Communicative & Integrative Biology, V2, P7 Nadrowski B, 2008, CURR BIOL, V18, P1365, DOI 10.1016/j.cub.2008.07.095 Robert D, 2002, J INSECT PHYSIOL, V48, P189, DOI 10.1016/S0022-1910(01)00163-9 Robert D, 2009, CURR BIOL, V19, pR446, DOI 10.1016/j.cub.2009.04.021 ROBERT D, 2008, SENSES COMPREHENSIVE, V3, P725 ROTH LM, 1948, AM MIDL NAT, V40, P265, DOI 10.2307/2421604 Sane SP, 2007, SCIENCE, V315, P863, DOI 10.1126/science.1133598 Sarpal R, 2003, CURR BIOL, V13, P1687, DOI 10.1016/j.cub.2003.09.025 Sehadova H, 2009, NEURON, V64, P251, DOI 10.1016/j.neuron.2009.08.026 Shin JB, 2005, P NATL ACAD SCI USA, V102, P12572, DOI 10.1073/pnas.0502403102 SHOREY HH, 1962, SCIENCE, V137, P677, DOI 10.1126/science.137.3531.677 Sidi S, 2003, SCIENCE, V301, P96, DOI 10.1126/science.1084370 Staudacher EM, 2005, ADV INSECT PHYSIOL, V32, P49, DOI 10.1016/S0065-2806(05)32002-9 Stoop R, 2006, EUR BIOPHYS J BIOPHY, V35, P511, DOI 10.1007/s00249-006-0059-5 Sun YS, 2009, P NATL ACAD SCI USA, V106, P13606, DOI 10.1073/pnas.0906377106 Tauber E, 2003, BEHAV PROCESS, V64, P197, DOI 10.1016/S0376-6357(03)00135-9 Tinevez JY, 2007, BIOPHYS J, V93, P4053, DOI 10.1529/biophysj.107.108498 Tischner H., 1955, ZOOL ANZ S, V18, P453 Todi SV, 2004, MICROSC RES TECHNIQ, V63, P388, DOI 10.1002/jemt.20053 TOWNE WF, 1989, SCIENCE, V244, P686, DOI 10.1126/science.244.4905.686 Tsujiuchi S, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000234 Uga S, 1965, J ELECTRON MICROSC, V14, P173 Von Schilcher F., 1976, Animal Behav, V24, P18, DOI 10.1016/S0003-3472(76)80095-4 Walker RG, 2000, SCIENCE, V287, P2229, DOI 10.1126/science.287.5461.2229 Wang VY, 2002, CURR BIOL, V12, P1611, DOI 10.1016/S0960-9822(02)01144-2 Warren B, 2009, CURR BIOL, V19, P485, DOI 10.1016/j.cub.2009.01.059 Weber T, 2003, P NATL ACAD SCI USA, V100, P7690, DOI 10.1073/pnas.1330557100 WISHART G., 1959, CANADIAN ENT, V91, P181 Yack JE, 2004, MICROSC RES TECHNIQ, V63, P315, DOI 10.1002/jemt.20051 Yack JE, 2008, SENSES COMPREHENSIVE, V3, P35 Yorozu S, 2009, NATURE, V458, P201, DOI 10.1038/nature07843 NR 120 TC 13 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2011 VL 273 IS 1-2 SI SI BP 7 EP 13 DI 10.1016/j.heares.2010.03.092 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 751HM UT WOS:000289608100002 PM 20430076 ER PT J AU Burighel, P Caicci, F Manni, L AF Burighel, P. Caicci, F. Manni, L. TI Hair cells in non-vertebrate models: Lower chordates and molluscs SO HEARING RESEARCH LA English DT Article ID NEURAL CREST; SENSORY CELLS; AMPHIOXUS BRANCHIOSTOMA; EVOLUTIONARY ORIGIN; CIONA-INTESTINALIS; BOTRYLLUS-SCHLOSSERI; TUNICATA-ASCIDIACEA; NERVOUS-SYSTEM; PLACODES; INSIGHTS AB The study of hair cells in invertebrates is important, because it can shed light on the debated question about the evolutionary origin of vertebrate hair cells. Here, we review the morphology and significance of hair cells in two groups of invertebrates, the lower chordates (tunicates and cephalochordates) and the molluscs. These taxa possess complex mechanoreceptor organs based on both primary (sensory neurons) and/or secondary, axonless, sensory cells, bearing various apical specializations. Compared with vertebrates, these taxa show interesting examples of convergent evolution and possible homologies of sensory systems. For example, the "lateral line organ" of Octopoda and Decapoda, composed of primary sensory cells aligned on the arms and the head, is considered a classic example of convergent evolution to mechanoreception. Similarly, in ascidians, the cupular organ, formed of primary sensory cells embedded in a gelatinous cupula, is seen as an analog of neuromasts in vertebrates. However, the coronal organ of the oral siphon of ascidians, represented by a line of secondary sensory cells with a hair bundle also comprising graded stereovilli, is currently the best candidate for tracing the evolutionary origin of the vertebrate octavo-lateralis system. Several features, such as embryological origin, position, gene expression and morphology, support this hypothesis. (C) 2010 Elsevier B.V. All rights reserved. C1 [Burighel, P.; Caicci, F.; Manni, L.] Univ Padua, Dept Biol, I-35131 Padua, Italy. RP Burighel, P (reprint author), Univ Padua, Dept Biol, Via U Bassi 58-B, I-35131 Padua, Italy. EM paolo.burighel@unipd.it; federico.caicci@unipd.it; lucia.manni@unipd.it FU Italian Ministero della Universita e Ricerca Scientifica e Tecnologica FX This study was supported by grants from the Italian Ministero della Universita e Ricerca Scientifica e Tecnologica to P.B. and LM. CR BAATRUP E, 1981, ACTA ZOOL-STOCKHOLM, V62, P147 Baker CVH, 2005, J EXP ZOOL PART B, V304B, P269, DOI 10.1002/jez.b.21060 Bassham S, 2008, BMC BIOL, V6, DOI 10.1186/1741-7007-6-35 Bassham S, 2005, DEVELOPMENT, V132, P4259, DOI 10.1242/dev.01973 Benito-Gutierrez E, 2005, DEVELOPMENT, V132, P2191, DOI 10.1242/dev.01803 Boekhoff-Falk G, 2005, DEV DYNAM, V232, P550, DOI 10.1002/dvdy.20207 Bone Q., 1982, P473 BONE Q, 1975, BIOL BULL-US, V149, P267, DOI 10.2307/1540527 Bone Q., 1998, P55 BONE Q, 1978, J ZOOL, V186, P417 Budelmann B.-U., 1989, P607 BUDELMANN BU, 1994, J EXP BIOL, V187, P245 Budelmann Bernd U., 1997, P119 BUDELMANN BU, 1987, PHILOS T ROY SOC B, V315, P305, DOI 10.1098/rstb.1987.0010 Burighel P, 1998, J COMP NEUROL, V394, P230, DOI 10.1002/(SICI)1096-9861(19980504)394:2<230::AID-CNE7>3.0.CO;2-3 Burighel P, 2008, BRAIN RES BULL, V75, P331, DOI 10.1016/j.brainresbull.2007.10.012 BURIGHEL R, 2003, J COMP NEUROL, V461, P236 Caicci F, 2007, HEARING RES, V231, P63, DOI 10.1016/j.heares.2007.05.007 Coffin A., 2004, EVOLUTION VERTEBRATE, P55 Delsuc E, 2006, NATURE, V439, P965 Dufour HD, 2006, P NATL ACAD SCI USA, V103, P8727, DOI 10.1073/pnas.0600805103 FIALAMEDIONI A, 1974, MAR BIOL, V28, P199, DOI 10.1007/BF00387298 Fritzsch B, 2007, INT J DEV BIOL, V51, P663, DOI 10.1387/ijdb.072367bf HALL BK, 2009, EVOLUTIONARY ORIGINS, P117 Holland LZ, 2009, NAT REV NEUROSCI, V10, P736, DOI 10.1038/nrn2703 Holland ND, 2002, ACTA ZOOL-STOCKHOLM, V83, P309, DOI 10.1046/j.1463-6395.2002.00120.x Hu MY, 2009, COMP BIOCHEM PHYS A, V153, P278, DOI 10.1016/j.cbpa.2009.02.040 Jeffery WR, 2007, SEMIN CELL DEV BIOL, V18, P481, DOI 10.1016/j.semcdb.2007.04.005 Jeffery WR, 2006, J EXP ZOOL PART B, V306B, P470, DOI 10.1002/jez.b.21109 KALTENBACH SL, 2009, EVOL DEV, V11, P145 Kourakis MJ, 2007, DEV BIOL, V312, P245, DOI 10.1016/j.ydbio.2007.09.020 Koyama H, 2008, ZOOL SCI, V25, P919, DOI 10.2108/zsj.25.919 Lacalli TC, 1999, ACTA ZOOL-STOCKHOLM, V80, P125, DOI 10.1046/j.1463-6395.1999.80220005.x Lacalli TC, 2004, BRAIN BEHAV EVOLUT, V64, P148, DOI 10.1159/000079744 Mackie GO, 2004, INVERTEBR BIOL, V123, P269 Mackie GO, 2006, CAN J ZOOL, V84, P1146, DOI 10.1139/Z06-106 Mackie GO, 2003, BRAIN BEHAV EVOLUT, V61, P45, DOI 10.1159/000068878 Mackie GO, 2005, CAN J ZOOL, V83, P151, DOI 10.1139/Z04-177 MANLEY GA, 2008, SENSES COMPREHENSIVE, V3, P1 Manni L, 2007, DEV DYNAM, V236, P335, DOI 10.1002/dvdy.21037 Manni L, 2004, EVOL DEV, V6, P379, DOI 10.1111/j.1525-142X.2004.04046.x Manni L, 2005, J EXP ZOOL PART B, V304B, P324, DOI 10.1002/jez.21039 MANNI L, 2001, EVOL DEV, V3, P287 Manni L, 2006, J COMP NEUROL, V495, P363, DOI 10.1002/cne.20867 Manni L, 2004, J EXP ZOOL PART B, V302B, P483, DOI 10.1002/jez.b.21013 Mazet F, 2005, DEV BIOL, V282, P494, DOI 10.1016/j.ydbio.2005.02.021 Meulemans D, 2007, INT J BIOL SCI, V3, P356 Neumeister H, 1997, PHILOS T ROY SOC B, V352, P1565 NORTHCUTT RG, 1983, Q REV BIOL, V58, P1, DOI 10.1086/413055 Passamaneck YJ, 2005, DEV DYNAM, V233, P1, DOI 10.1002/dvdy.20300 Rasmussen SLK, 2007, GENESIS, V45, P113, DOI 10.1002/dvg.20278 Satoh N, 2005, GENE DEV, V19, P2407, DOI 10.1101/gad.1365805 Schlosser G, 2008, BIOESSAYS, V30, P659, DOI 10.1002/bies.20775 Shimeld SM, 2000, P NATL ACAD SCI USA, V97, P4449, DOI 10.1073/pnas.97.9.4449 Wada H, 1996, NATURE, V384, P123, DOI 10.1038/384123a0 Wada H, 1998, DEVELOPMENT, V125, P1113 Yu JK, 2008, GENOME RES, V18, P1127, DOI 10.1101/gr.076208.108 NR 57 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2011 VL 273 IS 1-2 SI SI BP 14 EP 24 DI 10.1016/j.heares.2010.03.087 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 751HM UT WOS:000289608100003 PM 20430071 ER PT J AU Popper, AN Fay, RR AF Popper, Arthur N. Fay, Richard R. TI Rethinking sound detection by fishes SO HEARING RESEARCH LA English DT Article ID GOLDFISH CARASSIUS-AURATUS; HAIR CELL; INNER-EAR; ULTRASOUND DETECTION; LATERAL-LINE; AUDITORY-SYSTEM; TELEOST FISHES; GADUS-MORHUA; HEARING; FIELD AB In this paper we reconsider the designation of fishes as being either "hearing specialists" or "hearing generalists," and recommend dropping the terms. We argue that this classification is only vaguely and variously defined in the literature, and that these terms often have unclear and different meaning to different investigators. Furthermore, we make the argument that the ancestral, and most common, mode of hearing in fishes involves sensitivity to acoustic particle motion via direct inertial stimulation of the otolith organ(s). Moreover, any possible pressure sensitivity is the result of the presence of an air bubble (e.g., the swim bladder), and that hearing sensitivity may be enhanced by the fish having a specific connection between the inner ear to a bubble of air. There are data showing that some fish species have a sensitivity to both pressure and motion that is frequency dependent. Thus such species could not possibly be termed as either hearing "generalists" or specialists," and many more species probably could be classified in this way as well. Furthermore, we propose that the term "specialization" be reserved for cases in which a species has some kind of morphological connection or close continuity between the inner ear and an air bubble that affects behavioral sensitivity to sound pressure (i.e., an otophysic connection). (C) 2009 Elsevier B.V. All rights reserved. C1 [Popper, Arthur N.] Univ Maryland, Dept Biol, College Pk, MD 20742 USA. [Popper, Arthur N.] Univ Maryland, Ctr Comparat & Evolutionary Biol Hearing, College Pk, MD 20742 USA. [Fay, Richard R.] Loyola Univ Chicago, Parmly Hearing Inst, Chicago, IL 60626 USA. [Fay, Richard R.] Loyola Univ Chicago, Dept Psychol, Chicago, IL 60626 USA. RP Popper, AN (reprint author), Univ Maryland, Dept Biol, College Pk, MD 20742 USA. EM apopper@umd.edu; rfay@luc.edu CR AUSTIN ME, 2005, J ACOUST SOC AM, V117, P2625 BANNER ARNOLD, 1967, P265 Bass Andrew H., 2008, V32, P253, DOI 10.1007/978-0-387-73029-5_8 BRAUN CB, 2007, FISH BIOACOUSTICS, P99 CHAPMAN CJ, 1974, COMP BIOCHEM PHYSIOL, V47, P371, DOI 10.1016/0300-9629(74)90082-6 CHAPMAN CJ, 1974, J EXP BIOL, V61, P521 CHAPMAN CJ, 1973, J COMP PHYSIOL, V85, P147, DOI 10.1007/BF00696473 Coffin A., 2004, EVOLUTION VERTEBRATE, P55 Coombs S, 1996, J COMP PHYSIOL A, V178, P359 COOMBS S, 1979, J COMP PHYSIOL, V132, P203 COOMBS S, 1989, J ACOUST SOC AM, V85, P2185, DOI 10.1121/1.397867 Corwin J.T., 1981, HEARING SOUND COMMUN, P81 CORWIN JT, 1983, J COMP NEUROL, V217, P345, DOI 10.1002/cne.902170309 DeVRIES H., 1950, ACTA OTO LARYNGOL, V38, P262, DOI 10.3109/00016485009118384 DIJKGRAAF S, 1960, PROC R SOC SER B-BIO, V152, P51, DOI 10.1098/rspb.1960.0022 ENGER PS, 1966, COMP BIOCHEM PHYSIOL, V18, P859, DOI 10.1016/0010-406X(66)90218-0 Fay R. R., 1999, COMP HEARING FISH AM, P269 Fay R. R., 1988, HEARING VERTEBRATES FAY R, 1969, J AUD RES, V9, P112 Fay Richard R., 2002, Bioacoustics, V12, P172 FAY RR, 1974, J EXP BIOL, V61, P243 Fay RR, 1997, HEARING RES, V111, P1, DOI 10.1016/S0378-5955(97)00083-X FAY RR, 1975, J EXP BIOL, V62, P379 Fay Richard R., 2008, V32, P49 Fletcher LB, 2001, J EXP BIOL, V204, P175 Frisch K. von, 1932, Z VERGL PHYSIOL, V17, P686 HAWKINS AD, 1978, J FISH BIOL, V13, P655, DOI 10.1111/j.1095-8649.1978.tb03480.x Higgs DM, 2002, JARO, V3, P174, DOI 10.1007/s101620020035 Higgs DM, 2004, J EXP BIOL, V207, P155, DOI 10.1242/jeb.00735 JERKO H, 1989, J COMP PHYSIOL A, V165, P455, DOI 10.1007/BF00611234 LOMBARTE A, 1994, J COMP NEUROL, V345, P419, DOI 10.1002/cne.903450308 LOMBARTE A, 1993, HEARING RES, V64, P166, DOI 10.1016/0378-5955(93)90002-I Lu Z, 1996, J COMP PHYSIOL A, V179, P227 Manley GA, 2008, SENSES COMPREHENSIVE, P1 Mann DA, 2001, J ACOUST SOC AM, V109, P3048, DOI 10.1121/1.1368406 Mann DA, 1997, NATURE, V389, P341, DOI 10.1038/38636 Morse PM, 1948, VIBRATION SOUND MYRBERG AA, 1980, J COMP PHYSIOL, V140, P135 Parker G. H., 1902, B US FISH COMM, V22, P45 Parker GH, 1903, AM NAT, V37, P185, DOI 10.1086/278274 Parvulescu A, 1964, MARINE BIOACOUSTICS, P87 Platt C., 1981, HEARING SOUND COMMUN, P3 PLATT C, 1977, J COMP NEUROL, V172, P283, DOI 10.1002/cne.901720207 Platt C., 1983, P89 POGGENDORF D, 1952, Z VERGL PHYSIOL, V34, P222, DOI 10.1007/BF00298202 POPPER AN, 1977, J MORPHOL, V153, P397, DOI 10.1002/jmor.1051530306 Popper A.N., 1983, P125 POPPER AN, 1972, J ACOUST SOC AM, V52, P1714, DOI 10.1121/1.1913305 Popper Arthur N., 2003, P3, DOI 10.1007/978-0-387-22628-6_1 Popper Arthur N., 2008, V32, P17 POPPER AN, 1973, J ACOUST SOC AM, V53, P1515, DOI 10.1121/1.1913496 POPPER AN, 1980, AM J ANAT, V157, P115, DOI 10.1002/aja.1001570202 POPPER AN, 1984, HEARING RES, V15, P133, DOI 10.1016/0378-5955(84)90044-3 POPPER A N, 1970, Animal Behaviour, V18, P552, DOI 10.1016/0003-3472(70)90052-7 Popper AN, 2005, J ACOUST SOC AM, V117, P3958, DOI 10.1121/1.1904386 POPPER AN, 1981, J COMP PHYSIOL, V144, P27 POPPER AN, 1982, AM ZOOL, V22, P311 Popper AN, 2005, MAR FRESHWATER RES, V56, P497, DOI 10.1071/MF04267 Ramcharitar JU, 2006, J ACOUST SOC AM, V119, P439, DOI 10.1121/1.2139068 RETZIUS G, 1981, GEHORORGAN WIRBELTHI, V1 ROGERS PH, 1988, J ACOUST SOC AM, V83, P338, DOI 10.1121/1.396444 Sand O, 2000, PHILOS T ROY SOC B, V355, P1295 SAND O, 1986, J EXP BIOL, V125, P197 SCHUIJF A, 1972, NETH J ZOOL, V22, P19 SCHUIJF A, 1975, J COMP PHYSIOL, V98, P307 Smith ME, 2006, J EXP BIOL, V209, P4193, DOI 10.1242/jeb.02490 STIPETIC E., 1939, ZEITSCHR VERGLEICH PHYSIOL, V26, P740, DOI 10.1007/BF00341099 Von Frisch K, 1936, BIOL REV CAMB PHILOS, V11, P210 Webb J.F., 2008, FISH BIOACOUSTICS Weber E. H., 1820, AURE ANIMALIUM AQUAT, P134 Wilson M, 2009, J EXP BIOL, V212, P3422, DOI 10.1242/jeb.033340 ZEDDIES DG, 2009, J ACOUST SOC AM, V125, P2488 NR 72 TC 65 Z9 67 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2011 VL 273 IS 1-2 SI SI BP 25 EP 36 DI 10.1016/j.heares.2009.12.023 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 751HM UT WOS:000289608100004 PM 20034550 ER PT J AU Manley, GA AF Manley, Geoffrey A. TI Lizard auditory papillae: An evolutionary kaleidoscope SO HEARING RESEARCH LA English DT Article ID SPONTANEOUS OTOACOUSTIC EMISSIONS; BASILAR PAPILLA; BOBTAIL LIZARD; GEKKO-GECKO; NERVE-FIBERS; TOKAY GECKO; HAIR-CELLS; TILIQUA-RUGOSA; HEARING; MODEL AB The evolutionary processes that modified the structure and function of lizard auditory papillae during the separation of the familial lineages during the Jurassic have resulted in a remarkable variety of family-typical papillae. These papillae vary structurally in their size, in the patterns of the distribution of hair-cell types, in the presence or absence of sub-papillae and in the configurations of the tectorial membranes. Functional differences, however, are much smaller than the structural variations might lead one to expect. To some extent, differences in innervation patterns and tectorial configurations compensate for 10-fold differences in papillar length. Nonetheless, although lizards with tiny papillae are able to maintain frequency-selective and relatively sensitive hearing, the best selectivity and most sensitive hearing is found in the largest and most complex papillae. Fundamental considerations of the tonotopic organisation of papillae leads to a likely scheme mapping the evolution of the hearing organs found in modern lizard families. (C) 2010 Elsevier B.V. All rights reserved. C1 Tech Univ Munich, Lehrstuhl Zool, D-85350 Freising Weihenstephan, Germany. RP Manley, GA (reprint author), Tech Univ Munich, Lehrstuhl Zool, Liesel Beckmann Str 4,Hochfeldweg 2, D-85350 Freising Weihenstephan, Germany. EM geoffrey.manley@wzw.tum.de CR AUTHIER S, 1995, HEARING RES, V82, P1 Chiappe ME, 2007, J NEUROSCI, V27, P11978, DOI 10.1523/JNEUROSCI.3679-07.2007 Christensen-Dalsgaard J, 2005, J EXP BIOL, V208, P1209, DOI 10.1242/jeb.01511 Christensen-Dalsgaard J, 2008, JARO-J ASSOC RES OTO, V9, P407, DOI 10.1007/s10162-008-0130-2 EATOCK RA, 1981, J COMP PHYSIOL, V142, P203 HOLTON T, 1983, J PHYSIOL-LONDON, V345, P241 KOPPL C, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P489 KOPPL C, 1988, HEARING RES, V35, P209, DOI 10.1016/0378-5955(88)90119-0 KOPPL C, 1994, HEARING RES, V72, P159, DOI 10.1016/0378-5955(94)90215-1 KOPPL C, 1993, HEARING RES, V71, P157, DOI 10.1016/0378-5955(93)90031-U KOPPL C, 1995, HEARING RES, V82, P14 Lee MSY, 1998, BIOL J LINN SOC, V65, P369, DOI 10.1111/j.1095-8312.1998.tb01148.x Manley GA, 2006, HEARING RES, V212, P33, DOI 10.1016/j.heares.2005.10.007 Manley G. A., 2004, EVOLUTION VERTEBRATE, P1 Manley GA, 1997, J ACOUST SOC AM, V102, P1049, DOI 10.1121/1.419858 MANLEY GA, 1989, MECH HEARING, P143 MANLEY GA, 1990, J COMP PHYSIOL A, V167, P89, DOI 10.1007/BF00192409 Manley GA, 2004, HEARING RES, V189, P41, DOI 10.1016/S0378-5955(03)00367-8 MANLEY GA, 1977, J COMP PHYSIOL, V118, P249 Manley GA, 2002, J NEUROBIOL, V53, P202, DOI 10.1002/neu.10115 Manley GA, 1999, HEARING RES, V131, P107, DOI 10.1016/S0378-5955(99)00021-0 Manley Geoffrey A., 2000, V13, P139 Manley GA, 1997, DIVERSITY AUDITORY M, P32 Manley GA, 2000, P NATL ACAD SCI USA, V97, P11736, DOI 10.1073/pnas.97.22.11736 MANLEY GA, 1990, PERPHERAL HEARING ME Manley GA, 1996, J ACOUST SOC AM, V99, P1588, DOI 10.1121/1.414680 Manley GA, 2010, J EXP BIOL, V213, P1876, DOI 10.1242/jeb.040196 MILLER MR, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P463 SCHMIDT RS, 1964, COPEIA, V3, P542 SHUTE CCD, 1953, P ZOOL SOC LOND, V123, P695 TURNER RG, 1987, HEARING RES, V26, P287, DOI 10.1016/0378-5955(87)90064-5 Vicario S, 2003, MOL PHYLOGENET EVOL, V26, P243, DOI 10.1016/S1055-7903(02)00313-5 Vidal N, 2009, CR BIOL, V332, P129, DOI 10.1016/j.crvi.2008.07.010 Weyer E. G., 1978, REPTILE EAR NR 34 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAR PY 2011 VL 273 IS 1-2 SI SI BP 59 EP 64 DI 10.1016/j.heares.2010.02.015 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 751HM UT WOS:000289608100007 PM 20435117 ER PT J AU Koppl, C AF Koeppl, Christine TI Birds - same thing, but different? Convergent evolution in the avian and mammalian auditory systems provides informative comparative models SO HEARING RESEARCH LA English DT Article ID RATE-INTENSITY-FUNCTIONS; NERVE FIBERS; BASILAR-MEMBRANE; LEVEL FUNCTIONS; HAIR-CELLS; COCHLEAR AMPLIFIER; PRIMARY AFFERENTS; SOMATIC MOTILITY; INNER-EAR; BARN OWL AB Birds have been and continue to be enlightening, comparative models in auditory research. This review highlights their particular appeal as a vertebrate group that evolved independently a similar division of labour to that seen in the mammalian cochlea, between classic sensory hair cells and hair cells specialising in amplification. Through studying both the similarities and differences between the avian and mammalian inner ear, profound insights into the principles of operation of such a divided system may be gained. For example, the prevailing model of the relationship between basilar-membrane displacement and afferent rate-level functions in mammals is reinforced by characteristic differences observed in birds, which correlate with known differences in basilar-papilla mechanics. Furthermore, birds arguably represent the most extreme case of hair cells using bundle motility for mechanical amplification at high frequencies, up to about 10 kHz. They should thus be informative for elucidating the operation and possibly the limitations of this ancestral amplifying mechanism at high frequencies. (C) 2010 Elsevier B.V. All rights reserved. C1 Carl von Ossietzky Univ Oldenburg, Fac 5, IBU, D-26111 Oldenburg, Germany. RP Koppl, C (reprint author), Carl von Ossietzky Univ Oldenburg, Fac 5, IBU, D-26111 Oldenburg, Germany. EM christine.koeppl@uni-oldenburg.de CR Carroll R. L., 1988, VERTEBRATE PALEONTOL, P698 CHANDLER JP, 1984, J COMP NEUROL, V222, P506, DOI 10.1002/cne.902220405 Clack J, 2004, EVOLUTION VERTEBRATE, P128 Clack J. A., 1997, Brain Behavior and Evolution, V50, P198, DOI 10.1159/000113334 Cooper Nigel P., 2008, V30, P39 Dallos P., 1996, COCHLEA, P1 DALLOS P, 2008, CURR OPIN NEUROBIOL, V18, P1 FISCHER FP, 1994, SCANNING MICROSCOPY, V8, P351 FRITZSCH B, 1987, NATURE, V327, P153, DOI 10.1038/327153a0 Fuchs P., 1998, PSYCHOPHYSICAL PSYCH, P97 GLEICH O, 1989, HEARING RES, V37, P255, DOI 10.1016/0378-5955(89)90026-9 GLEICH O, 2000, COMP HEARING BIRDS R, P70 GUMMER AW, 1987, HEARING RES, V29, P63, DOI 10.1016/0378-5955(87)90206-1 He DZZ, 2003, J PHYSIOL-LONDON, V546, P511, DOI 10.1113/jphysiol.2002.026070 Hudspeth AJ, 2008, NEURON, V59, P530, DOI 10.1016/j.neuron.2008.07.012 Khimich D, 2005, NATURE, V434, P889, DOI 10.1038/nature03418 Koppl C, 1999, J NEUROSCI, V19, P9674 KOPPL C, AUDITORY VE IN PRESS Koppl C, 2004, J COMP NEUROL, V479, P149, DOI 10.1002/cne.20311 Koppl C, 2009, CONCEPTS AND CHALLENGES IN THE BIOPHYSICS OF HEARING, P444, DOI 10.1142/9789812833785_0073 LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309 Manley G. A., 2004, EVOLUTION VERTEBRATE, P1 Manley GA, 1998, CURR OPIN NEUROBIOL, V8, P468, DOI 10.1016/S0959-4388(98)80033-0 Manley GA, 2001, J NEUROPHYSIOL, V86, P541 MANLEY GA, 1995, ADV HEARING RES, P219 MANLEY GA, 1989, J COMP PHYSIOL A, V164, P289, DOI 10.1007/BF00612989 Manley GA, 1999, HEARING RES, V138, P1, DOI 10.1016/S0378-5955(99)00126-4 Manley GA, 2010, HEARING RES, V263, P3, DOI 10.1016/j.heares.2009.09.004 Martin Pascal, 2008, V30, P93 MartinezDunst C, 1997, J NEUROSCI, V17, P9133 MULLER M, 1991, HEARING RES, V57, P71, DOI 10.1016/0378-5955(91)90076-L Neubauer H, 2009, J NEUROPHYSIOL, V101, P3169, DOI 10.1152/jn.90779.2008 Nouvian R, 2006, J MEMBRANE BIOL, V209, P153, DOI 10.1007/s00232-005-0854-4 POPPER AN, 1990, HEARING RES, V46, P211, DOI 10.1016/0378-5955(90)90003-8 Raphael Y, 2003, BRAIN RES BULL, V60, P397, DOI 10.1016/S0361-9230(03)00047-9 RICHTER CP, 1995, HEARING RES, V83, P19, DOI 10.1016/0378-5955(94)00186-T Robertson D, 2009, CLIN EXP PHARMACOL P, V36, P603, DOI 10.1111/j.1440-1681.2009.05185.x Russell Ian J., 2008, V30, P343 SACHS MB, 1989, HEARING RES, V41, P61, DOI 10.1016/0378-5955(89)90179-2 SACHS MB, 1974, J ACOUST SOC AM, V56, P1835, DOI 10.1121/1.1903521 Saunders JC, 2002, J NEUROPHYSIOL, V88, P2887, DOI 10.1152/jn.00381.2002 Slepecky N. B., 1996, COCHLEA, P44 Smolders JWT, 1995, HEARING RES, V92, P151, DOI 10.1016/0378-5955(95)00214-6 Steele C.R., 1996, DIVERSITY AUDITORY M, P455 Sul B, 2009, BIOPHYS J, V97, P2653, DOI 10.1016/j.bpj.2009.08.039 Taberner AM, 2005, J NEUROPHYSIOL, V93, P557, DOI 10.1152/jn.00574.2004 WEGNER N, 1982, ACTA ZOOL-STOCKHOLM, V63, P133 WEYER EG, 1974, HDB SENSORY PHYSL, P423 WILSON JP, 1985, HEARING RES, V18, P1, DOI 10.1016/0378-5955(85)90105-4 WINTER IM, 1990, HEARING RES, V45, P191, DOI 10.1016/0378-5955(90)90120-E Wittig JH, 2008, J NEUROPHYSIOL, V100, P1724, DOI 10.1152/jn.90322.2008 Yates GK, 2000, J ACOUST SOC AM, V107, P2143, DOI 10.1121/1.428496 YATES GK, 1990, HEARING RES, V50, P145, DOI 10.1016/0378-5955(90)90041-M YATES GK, 1990, LECT NOTES BIOMATH, V87, P106 NR 54 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2011 VL 273 IS 1-2 SI SI BP 65 EP 71 DI 10.1016/j.heares.2010.03.095 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 751HM UT WOS:000289608100008 PM 20430083 ER PT J AU Warchol, ME AF Warchol, Mark E. TI Sensory regeneration in the vertebrate inner ear: Differences at the levels of cells and species SO HEARING RESEARCH LA English DT Article ID AVIAN AUDITORY EPITHELIUM; VESTIBULAR OTOLITH ORGANS; LIZARD PODARCIS-SICULA; ZEBRAFISH LATERAL-LINE; MATURE GUINEA-PIGS; HAIR-CELL; ACOUSTIC TRAUMA; STEM-CELLS; GENTAMICIN OTOTOXICITY; FISH EAR AB The ears of nonmammalian vertebrates are capable of regenerating sensory hair cells after acoustic trauma or ototoxic injury. In contrast, the mammalian inner ear lacks regenerative ability and the loss of hair cells results in permanent deficits in hearing and balance. Comparative observations across all vertebrate classes suggest that regenerative ability was a stem trait and was lost during the course of mammalian evolution. This review provides an overview of regeneration and post-embryonic growth in the vertebrate ear. It is suggested that the lack of regeneration in the mammalian ear was the result of a trade-off between phenotypic plasticity of supporting cells and sensitive high frequency hearing. (C) 2010 Published by Elsevier B.V. C1 Washington Univ, Sch Med, Fay & Carl Simons Ctr Biol Hearing & Deafness, Dept Otolaryngol, St Louis, MO 63110 USA. RP Warchol, ME (reprint author), Washington Univ, Sch Med, Fay & Carl Simons Ctr Biol Hearing & Deafness, Dept Otolaryngol, 660 S Euclid Ave,Box 8115, St Louis, MO 63110 USA. EM warcholm@ent.wustl.edu FU NIDCD/NIH [DC006283]; NIH [P30 DC04665] FX Regeneration research in the author's lab is supported by grant DC006283 from the NIDCD/NIH. Additional support for imaging is provided by NIH grant P30 DC04665. CR Avallone B, 2008, HEARING RES, V235, P15, DOI 10.1016/j.heares.2007.09.009 Avallone B, 2003, HEARING RES, V178, P79, DOI 10.1016/S0378-5955(03)00040-6 Baird RA, 1996, ANN NY ACAD SCI, V781, P59, DOI 10.1111/j.1749-6632.1996.tb15693.x Baird RA, 2000, P NATL ACAD SCI USA, V97, P11722, DOI 10.1073/pnas.97.22.11722 BAIRD RA, 1993, HEARING RES, V65, P164, DOI 10.1016/0378-5955(93)90211-I Bermingham-McDonogh O, 2003, CURR OPIN NEUROBIOL, V13, P119, DOI 10.1016/S0959-4388(03)00018-7 Brigande JV, 2009, NAT NEUROSCI, V12, P679, DOI 10.1038/nn.2311 Brignull HR, 2009, BRAIN RES, V1277, P12, DOI 10.1016/j.brainres.2009.02.028 Burns J, 2008, J COMP NEUROL, V511, P396, DOI 10.1002/cne.21849 Calof AL, 1996, J NEUROBIOL, V30, P67 Chen P, 1999, DEVELOPMENT, V126, P1581 CORWIN JT, 1981, J COMP NEUROL, V201, P541, DOI 10.1002/cne.902010406 CORWIN JT, 1985, P NATL ACAD SCI USA, V82, P3911, DOI 10.1073/pnas.82.11.3911 CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 CORWIN JT, 1983, J COMP NEUROL, V217, P345, DOI 10.1002/cne.902170309 Dallos P, 2008, CURR OPIN NEUROBIOL, V18, P370, DOI 10.1016/j.conb.2008.08.016 Dooling RJ, 1997, P NATL ACAD SCI USA, V94, P14206, DOI 10.1073/pnas.94.25.14206 Duncan LJ, 2006, J COMP NEUROL, V499, P691, DOI 10.1002/cne.21114 Faucher K, 2009, INT J AUDIOL, V48, P456, DOI 10.1080/14992020902738029 FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284 Forge A, 1998, J COMP NEUROL, V397, P69 GALE JE, 2000, JARO-J ASSOC RES OTO, P1172 Gu RD, 2007, EUR J NEUROSCI, V25, P1363, DOI 10.1111/j.1460-9568.2007.05414.x Harris JA, 2003, JARO, V4, P219, DOI 10.1007/s10162-002-3022-x Hawkins RD, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000525 Hawkins RD, 2003, HUM MOL GENET, V12, P1261, DOI 10.1093/hmg/ddg150 Hernandez PP, 2007, DEV NEUROBIOL, V67, P637, DOI 10.1002/dneu.20386 Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193 Jones JE, 1996, J NEUROSCI, V16, P649 JONES JE, 1993, J NEUROSCI, V13, P1022 JORGENSEN JM, 1995, P ROY SOC B-BIOL SCI, V260, P183, DOI 10.1098/rspb.1995.0078 JORGENSEN JM, 1988, NATURWISSENSCHAFTEN, V75, P319, DOI 10.1007/BF00367330 Kawamoto K, 2009, HEARING RES, V247, P17, DOI 10.1016/j.heares.2008.08.010 Kelley MW, 2009, CURR OPIN OTOLARYNGO, V17, P381, DOI 10.1097/MOO.0b013e3283303347 Kil J, 1997, HEARING RES, V114, P117, DOI 10.1016/S0378-5955(97)00166-4 Kirkegaard M, 2000, NATURWISSENSCHAFTEN, V87, P83, DOI 10.1007/s001140050015 LAMBERT PR, 1994, LARYNGOSCOPE, V104, P701 Lambert PR, 1997, AM J OTOL, V18, P637 LEWIS ER, 1973, J MORPHOL, V139, P351, DOI 10.1002/jmor.1051390305 Li HW, 2003, NAT MED, V9, P1293, DOI 10.1038/nm925 LIM DJ, 1986, HEARING RES, V22, P117, DOI 10.1016/0378-5955(86)90089-4 Lopez-Schier H, 2006, P NATL ACAD SCI USA, V103, P18615, DOI 10.1073/pnas.0608536103 Lowenheim H, 1999, P NATL ACAD SCI USA, V96, P4084, DOI 10.1073/pnas.96.7.4084 Ma EY, 2008, J NEUROSCI, V28, P2261, DOI 10.1523/JNEUROSCI.4372-07.2008 Mammoto T, 2010, DEVELOPMENT, V137, P1407, DOI 10.1242/dev.024166 Manley GA, 2002, J NEUROBIOL, V53, P202, DOI 10.1002/neu.10115 Matsui JI, 2002, J NEUROSCI, V22, P1218 Oakley B, 2004, J NEUROCYTOL, V33, P631, DOI 10.1007/s11068-005-3332-0 Oesterle EC, 2003, J COMP NEUROL, V463, P177, DOI 10.1002/cne.10756 Oshima K, 2007, JARO-J ASSOC RES OTO, V8, P18, DOI 10.1007/s10162-006-0058-3 POPPER AN, 1984, HEARING RES, V15, P133, DOI 10.1016/0378-5955(84)90044-3 POPPER AN, 1990, HEARING RES, V45, P33, DOI 10.1016/0378-5955(90)90180-W Reh TA, 1998, J NEUROBIOL, V36, P206, DOI 10.1002/(SICI)1097-4695(199808)36:2<206::AID-NEU8>3.0.CO;2-5 ROBERSON DW, 1994, AM J OTOL, V15, P28 Roberson DW, 2004, J NEUROSCI RES, V78, P461, DOI 10.1002/jnr.20271 RUBEL EW, 1995, SCIENCE, V267, P701, DOI 10.1126/science.7839150 RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101 Sage C, 2005, SCIENCE, V307, P1114, DOI 10.1126/science.1106642 Slattery EL, 2010, J NEUROSCI, V30, P3473, DOI 10.1523/JNEUROSCI.4316-09.2010 Stone JS, 2007, INT J DEV BIOL, V51, P633, DOI 10.1387/ijdb.072408js Stone JS, 1999, J NEUROCYTOL, V28, P863, DOI 10.1023/A:1007022205821 Stone LS, 1937, J COMP NEUROL, V68, P83, DOI 10.1002/cne.900680105 WARCHOL ME, 1993, SCIENCE, V259, P1619, DOI 10.1126/science.8456285 Warchol ME, 1996, J NEUROSCI, V16, P5466 Warchol ME, 2002, J NEUROSCI, V22, P2607 Williams JA, 2000, HEARING RES, V143, P171, DOI 10.1016/S0378-5955(00)00039-3 Woolley SMN, 2002, J NEUROSCI, V22, P7774 YAMASHITA H, 1995, P NATL ACAD SCI USA, V92, P3152, DOI 10.1073/pnas.92.8.3152 Yamasoba T, 2006, CELL TISSUE RES, V325, P23, DOI 10.1007/s00441-006-0157-9 Zupanc GKH, 2008, J PHYSIOL-PARIS, V102, P357, DOI 10.1016/j.jphysparis.2008.10.007 NR 70 TC 34 Z9 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAR PY 2011 VL 273 IS 1-2 SI SI BP 72 EP 79 DI 10.1016/j.heares.2010.05.004 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 751HM UT WOS:000289608100009 PM 20488231 ER PT J AU Gleich, O Langemann, U AF Gleich, O. Langemann, U. TI Auditory capabilities of birds in relation to the structural diversity of the basilar papilla SO HEARING RESEARCH LA English DT Article ID OWL TYTO-ALBA; INFRASOUND SENSITIVE NEURONS; CANARY SERINUS-CANARIUS; BARN OWL; COCHLEAR INTEGRITY; CRITICAL BANDS; MIDDLE EARS; INNER-EAR; THRESHOLDS; HEARING AB The basilar papilla length increases systematically with body mass for 41 species from more than 10 avian orders and this relation does not differ between phylogenetic groups. Audiograms of 25 non-strigiform and 12 owl species, normalized relative to best frequency and best threshold, were used to compare audiogram shapes. The analysis revealed that the high frequency flank of the audiogram was remarkably similar across non-strigiform species. The high-frequency limit was on average 1.1 octaves above the best frequency, the low-frequency flank was less steep and showed much more species dependent variability. Audiogram shape in owls was much more variable. Morphological gradients along the basilar papilla revealed a small species dependent variability for the basal region of the basilar papilla and an increasing degree of variability towards the apex. In non-strigiform species, frequency selectivity for 2 and 4 kHz varied systematically with the space on the basilar papilla devoted to processing the corresponding frequency range. Space on the papilla did not vary systematically with frequency selectivity at 1 kHz. This difference between test frequencies might be related to the transition from electrical hair-cell tuning, that dominates below 1-2 kHz, to micromechanical tuning at higher frequencies. (C) 2010 Elsevier B.V. All rights reserved. C1 [Gleich, O.] Univ Regensburg, ENT Dept, D-93042 Regensburg, Germany. [Langemann, U.] Carl von Ossietzky Univ Oldenburg, D-26129 Oldenburg, Germany. RP Gleich, O (reprint author), Univ Regensburg, ENT Dept, Franz Joseph Strauss Allee 11, D-93042 Regensburg, Germany. EM otto.gleich@klinik.uni-regensburg.de; ulrike.langemann@uni-oldenburg.de FU DFG [SFB/TRR 31] FX Roots of the basic concept for a comparative analysis of structure-function relationships of the avian inner ear reach back to research within the SFB 204 "Gehor" that was funded by the DFG from 1983 to 1997. The collaboration between O.G. and U.L. was funded by the DFG within the SFB/TRR 31 "The active auditory system". We thank G.A. Manley and two anonymous reviewers for helpful suggestions for improving the initial version of the manuscript. CR COLES RB, 1988, J COMP PHYSIOL A, V163, P117, DOI 10.1007/BF00612002 DOOLING RJ, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P545 Durham D, 2002, HEARING RES, V166, P82, DOI 10.1016/S0378-5955(02)00301-5 Dyson ML, 1998, J COMP PHYSIOL A, V182, P695, DOI 10.1007/s003590050214 FAY RR, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P229 Feduccia A., 1980, AGE BIRDS FEDUCCIA A, 1995, SCIENCE, V267, P637, DOI 10.1126/science.267.5198.637 FISCHER FP, 1994, SCANNING MICROSCOPY, V8, P351 Fischer FP, 1998, HEARING RES, V121, P112, DOI 10.1016/S0378-5955(98)00072-0 FISCHER FP, 1992, J MORPHOL, V213, P225, DOI 10.1002/jmor.1052130207 FISCHER FP, 1988, HEARING RES, V34, P87, DOI 10.1016/0378-5955(88)90053-6 FISCHER FP, 1992, HEARING RES, V61, P167, DOI 10.1016/0378-5955(92)90048-R GLEICH O, 1995, HEARING RES, V82, P100 Gleich O, 2005, NATURWISSENSCHAFTEN, V92, P595, DOI 10.1007/s00114-005-0050-5 GLEICH O, 1988, HEARING RES, V34, P69, DOI 10.1016/0378-5955(88)90052-4 GLEICH O, 2004, EVOLUTION VERTEBRATE, P225 GLEICH O, 2000, COMP HEARING BIRDS R, P70 GLEICH O, 1994, J MORPHOL, V221, P1, DOI 10.1002/jmor.1052210102 GRAY AA, 2008, LABYRINTH ANIMALS IN, V2 GUMMER AW, 1987, HEARING RES, V29, P63, DOI 10.1016/0378-5955(87)90206-1 HEFFNER RS, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P691 HIENZ RD, 1987, J COMP PSYCHOL, V101, P16, DOI 10.1037/0735-7036.101.1.16 Jensen KK, 2006, J ACOUST SOC AM, V119, P1269, DOI 10.1121/1.2159431 Kipper S, 2006, ANIM BEHAV, V71, P211, DOI 10.1016/j.anbehav.2005.04.011 KONISHI M, 1979, SCIENCE, V204, P425, DOI 10.1126/science.441731 KONISHI M, 1993, SCI AM, V268, P66 Koppl C, 2007, J COMP PHYSIOL A, V193, P601, DOI 10.1007/s00359-007-0215-0 Koppl C, 1997, J ACOUST SOC AM, V101, P1574, DOI 10.1121/1.418145 KOPPL C, 1998, PSYCHOPHYSICAL PHYSL, P153 Koppl C, 2000, HEARING RES, V139, P123, DOI 10.1016/S0378-5955(99)00178-1 Koppl C, 1997, J NEUROPHYSIOL, V77, P364 KOPPL C, 1993, J COMP PHYSIOL A, V171, P695, DOI 10.1007/BF00213066 KREITHEN ML, 1979, J COMP PHYSIOL, V129, P1 LANGEMANN U, 1995, HEARING RES, V84, P167, DOI 10.1016/0378-5955(95)00023-W LAVIGNEREBILLARD M, 1985, J COMP NEUROL, V238, P340, DOI 10.1002/cne.902380308 LOHR B, 2006, ABSTR ASS RES OTOLAR, V29, P323 Manley GA, 1996, J MORPHOL, V227, P197, DOI 10.1002/(SICI)1097-4687(199602)227:2<197::AID-JMOR6>3.0.CO;2-6 Manley GA, 2000, P NATL ACAD SCI USA, V97, P11736, DOI 10.1073/pnas.97.22.11736 Manley GA, 2010, HEARING RES, V263, P3, DOI 10.1016/j.heares.2009.09.004 OKANOYA K, 1987, J COMP PSYCHOL, V101, P213, DOI 10.1037/0735-7036.101.2.213 OKANOYA K, 1987, J COMP PSYCHOL, V101, P7, DOI 10.1037//0735-7036.101.1.7 OKANOYA K, 1985, J ACOUST SOC AM, V78, P1170, DOI 10.1121/1.392885 OLSEN SL, 1985, AVIAN BIOL, V8, P79 PATUZZI RB, 1991, HEARING RES, V53, P57, DOI 10.1016/0378-5955(91)90214-T REBILLARD G, 1981, BRAIN RES, V229, P15, DOI 10.1016/0006-8993(81)90741-1 SALVI RJ, 1992, J COMP PHYSIOL A, V170, P227 Saunders J. C., 2000, COMP HEARING BIRDS R, P13 SAUNDERS JC, 1978, J COMP PHYSIOL, V125, P359 SAUNDERS SS, 1993, J ACOUST SOC AM, V94, P83, DOI 10.1121/1.406945 SCHERMULY L, 1990, HEARING RES, V48, P69, DOI 10.1016/0378-5955(90)90199-Y SCHERMULY L, 1990, J COMP PHYSIOL A, V166, P355 Smittkamp SE, 2002, HEARING RES, V170, P139, DOI 10.1016/S0378-5955(02)00486-0 TAKASAKA T, 1971, J ULTRA MOL STRUCT R, V35, P20, DOI 10.1016/S0022-5320(71)80141-7 Thomassen HA, 2007, HEARING RES, V225, P25, DOI 10.1016/j.heares.2006.11.013 Walsh SA, 2009, P R SOC B, V276, P1355, DOI 10.1098/rspb.2008.1390 WARCHOL ME, 1989, J COMP PHYSIOL A, V166, P83 Wright TF, 2003, J COMP PSYCHOL, V117, P87, DOI 10.1037/0735-7036.117.1.87 NR 57 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAR PY 2011 VL 273 IS 1-2 SI SI BP 80 EP 88 DI 10.1016/j.heares.2010.01.009 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 751HM UT WOS:000289608100010 PM 20116420 ER PT J AU Vater, M Kossl, M AF Vater, Marianne Koessl, Manfred TI Comparative aspects of cochlear functional organization in mammals SO HEARING RESEARCH LA English DT Article ID PLACE-FREQUENCY MAP; OUTER HAIR-CELLS; ACOUSTIC DISTORTION PRODUCTS; PTERONOTUS-P-PARNELLII; GREATER HORSESHOE BAT; AUDITORY-NERVE FIBERS; AFRICAN MOLE-RAT; CF-FM BAT; TECTORIAL MEMBRANE; BASILAR-MEMBRANE AB This review addresses the functional organization of the mammalian cochlea under a comparative and evolutionary perspective. A comparison of the monotreme cochlea with that of marsupial and placental mammals highlights important evolutionary steps towards a hearing organ dedicated to process higher frequencies and a larger frequency range than found in non-mammalian vertebrates. Among placental mammals, there are numerous cochlear specializations which relate to hearing range in adaptation to specific habitats that are superimposed on a common basic design. These are illustrated by examples of specialist ears which evolved excellent high frequency hearing and echolocation (bats and dolphins) and by the example of subterranean rodents with ears devoted to processing low frequencies. Furthermore, structural functional correlations important for tonotopic cochlear organization and predictions of hearing capabilities are discussed. (C) 2010 Elsevier B.V. All rights reserved. C1 [Vater, Marianne] Univ Potsdam, Inst Biochem & Biol, D-14476 Golm, Germany. [Koessl, Manfred] AK Neurobiol & Biosensor, Inst Zellbiol & Neurowissensch, D-60323 Frankfurt, Germany. RP Vater, M (reprint author), Univ Potsdam, Inst Biochem & Biol, Karl Liebknecht Str 26, D-14476 Golm, Germany. EM vater@uni-potsdam.de; koessl@bio.uni-frankfurt.de CR Ashmore J, 2008, PHYSIOL REV, V88, P173, DOI 10.1152/physrev.00044.2006 Au W. W. L., 1993, SONAR DOLPHINS Begall S, 2007, SUBTERRANEAN RODENTS: NEWS FROM UNDERGROUND, P97, DOI 10.1007/978-3-540-69276-8_9 Bekesy G., 1960, EXPT HEARING Berglund AM, 1996, HEARING RES, V94, P31, DOI 10.1016/0378-5955(95)00231-6 BRUNS V, 1976, J COMP PHYSIOL, V106, P87 BRUNS V, 1980, HEARING RES, V3, P27, DOI 10.1016/0378-5955(80)90006-4 BRUNS V, 1980, ANAT EMBRYOL, V161, P29, DOI 10.1007/BF00304667 BRUNS V, 1988, HEARING RES, P1 BRUNS V, 1976, J COMP PHYSIOL, V106, P77 BURDA H, 1984, Vestnik Ceskoslovenske Spolecnosti Zoologicke, V48, P9 BURDA H, 1988, J MORPHOL, V198, P103 CABEZUDO LM, 1978, ACTA OTO-LARYNGOL, V86, P160, DOI 10.3109/00016487809124733 Dallos P., 1996, COCHLEA, P1 Dallos P, 2008, NEURON, V58, P333, DOI 10.1016/j.neuron.2008.02.028 Dallos P, 2006, J PHYSIOL-LONDON, V576, P37, DOI 10.1113/jphysiol.2006.114652 DANNHOF BJ, 1993, HEARING RES, V66, P8, DOI 10.1016/0378-5955(93)90255-Y DANNHOF BJ, 1991, HEARING RES, V53, P253, DOI 10.1016/0378-5955(91)90059-I DANNHOF BJ, 1991, NATURWISSENSCHAFTEN, V78, P570, DOI 10.1007/BF01134454 Dierkes K, 2008, P NATL ACAD SCI USA, V105, P18669, DOI 10.1073/pnas.0805752105 Echteler SM, 1994, COMP HEARING MAMMALS, P134 ELDREDGE DH, 1981, J ACOUST SOC AM, V69, P1091, DOI 10.1121/1.385688 Emadi G, 2004, J NEUROPHYSIOL, V91, P474, DOI 10.1152/jn.00446.2003 Fay R. R., 1988, HEARING VERTEBRATES FERNANDEZ C, 1963, J COMP NEUROL, P151 FERNANDEZ C, 1952, J ACOUST SOC AM, V24, P519 Fettiplace R, 2006, NAT REV NEUROSCI, V7, P19, DOI 10.1038/nrn1828 Fox RC, 1997, ZOOL J LINN SOC-LOND, V121, P249 FURNESS DN, 2008, SENSES COMPREHENSIVE, V3, P107 GATES GR, 1974, J ACOUST SOC AM, V56, P152, DOI 10.1121/1.1903246 Ghaffari R, 2007, P NATL ACAD SCI USA, V104, P16510, DOI 10.1073/pnas.0703665104 Greenwood DD, 1996, HEARING RES, V94, P157, DOI 10.1016/0378-5955(95)00229-4 GREENWOOD D, 1961, J ACOUST SOC AM, V33, P1344, DOI 10.1121/1.1908437 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Gueta R, 2006, P NATL ACAD SCI USA, V103, P14790, DOI 10.1073/pnas.0603429103 Gummer AW, 1996, P NATL ACAD SCI USA, V93, P8727, DOI 10.1073/pnas.93.16.8727 HABERSETZER J, 1992, NATURWISSENSCHAFTEN, V79, P462, DOI 10.1007/BF01139198 HEFFNER HE, 2008, HIGH FREQUENCY HEARI, V3, P55 Heffner RS, 2001, HEARING RES, V157, P138, DOI 10.1016/S0378-5955(01)00298-2 Heffner RS, 2004, ANAT REC PART A, V281A, P1111, DOI 10.1002/ar.a.20117 HEFFNER RS, 1992, HEARING RES, V62, P206, DOI 10.1016/0378-5955(92)90188-S HEFFNER RS, 1982, J COMP PHYSIOL PSYCH, V96, P926, DOI 10.1037/0735-7036.96.6.926 Heffner RS, 2003, HEARING RES, V184, P113, DOI 10.1016/S0378-5955(03)00233-8 HENSON MM, 1977, ANAT REC, V187, P767 HENSON MM, 1973, J ACOUST SOC AM, V53, P1739, DOI 10.1121/1.1913529 HENSON MM, 1991, HEARING RES, V56, P122, DOI 10.1016/0378-5955(91)90161-2 HENSON MM, 1988, HEARING RES, V35, P237, DOI 10.1016/0378-5955(88)90121-9 Ketten D.R., 2000, HEARING WHALES DOLPH, P43 Ketten D.R., 1994, IEEE P UNDERWATER AC, V1, P264 Kirk EC, 2009, ANAT REC, V292, P765, DOI 10.1002/ar.20907 KOSSL M, 1985, J COMP PHYSIOL A, V157, P687, DOI 10.1007/BF01351362 KOSSL M, 1995, P NATL ACAD SCI USA, V92, P276, DOI 10.1073/pnas.92.1.276 Kossl M, 1996, J COMP PHYSIOL A, V178, P427 Kossl M, 1996, HEARING RES, V94, P78, DOI 10.1016/0378-5955(96)00006-8 Kossl M, 1995, HEARING BATS, P191 Ladhams A, 1996, J COMP NEUROL, V366, P335, DOI 10.1002/(SICI)1096-9861(19960304)366:2<335::AID-CNE11>3.0.CO;2-O Lagarde MMM, 2008, NAT NEUROSCI, V11, P746, DOI 10.1038/nn.2129 LePage EL, 2003, J ACOUST SOC AM, V114, P896, DOI 10.1121/1.1587150 Lewis ER, 1985, VERTEBRATE INNER EAR Li Y, 2010, CURR BIOL, V20, pR55, DOI 10.1016/j.cub.2009.11.042 LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677 LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309 LIM DJ, 1986, HEARING RES, V22, P117, DOI 10.1016/0378-5955(86)90089-4 Liu Y, 2010, CURR BIOL, V20, pR53, DOI 10.1016/j.cub.2009.11.058 LONG GR, 1975, J COMP PHYSIOL, V100, P211 Lukashkin AN, 2007, J ACOUST SOC AM, V121, P337, DOI 10.1121/1.2390670 Luo ZX, 2007, NATURE, V450, P1011, DOI 10.1038/nature06277 MANLEY GA, 1971, NATURE, V230, P506, DOI 10.1038/230506a0 Manley G. A., 1973, EVOLUTION, V26, P608, DOI DOI 10.2307/2407057 Manley GA, 2000, P NATL ACAD SCI USA, V97, P11736, DOI 10.1073/pnas.97.22.11736 MANLEY GA, 2009, HEARING RES, P6013 Manoussaki D, 2008, P NATL ACAD SCI USA, V105, P6162, DOI 10.1073/pnas.0710037105 MENG J, 1995, NATURE, V377, P141, DOI 10.1038/377141a0 Meyer AC, 2009, NAT NEUROSCI, V12, P444, DOI 10.1038/nn.2293 Mills DM, 2001, JARO-J ASSOC RES OTO, V2, P130, DOI 10.1007/s101620010059 Moggi-Cecchi J, 2002, J HUM EVOL, V42, P259, DOI 10.1006/jhev.2001.0524 MORGAN YV, 1994, HEARING RES, V79, P74, DOI 10.1016/0378-5955(94)90128-7 MULLER M, 1991, HEARING RES, V56, P191, DOI 10.1016/0378-5955(91)90169-A Muller M, 2005, HEARING RES, V202, P63, DOI 10.1016/j.heares.2004.08.011 Muller M, 1996, HEARING RES, V94, P148, DOI 10.1016/0378-5955(95)00230-8 MULLER M, 1993, HEARING RES, V67, P198, DOI 10.1016/0378-5955(93)90247-X Muller M, 2005, NEUROREPORT, V16, P1183 MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7 MULLER M, 1992, J COMP PHYSIOL A, V171, P469 NADOL JB, 1981, ANN OTO RHINOL LARYN, V90, P12 Naidu RC, 2007, J ACOUST SOC AM, V121, P994, DOI 10.1121/1.2404916 NEUWEILER G, 1990, PHYSIOL REV, V70, P615 Okoruwa OE, 2008, EVOL DEV, V10, P300, DOI 10.1111/j.1525-142X.2008.00239.x Ou HC, 2000, HEARING RES, V145, P123, DOI 10.1016/S0378-5955(00)00082-4 Parks SE, 2007, ANAT REC, V290, P734, DOI 10.1002/ar.20527 PLASSMANN W, 1987, BRAIN BEHAV EVOLUT, V30, P82, DOI 10.1159/000118639 Raphael Y, 2003, BRAIN RES BULL, V60, P397, DOI 10.1016/S0361-9230(03)00047-9 RAPHAEL Y, 1991, J COMP NEUROL, V314, P367, DOI 10.1002/cne.903140211 Retzius G, 1881, GEHORORGAN WIRBELTIE, V1 Retzius G., 1884, GEHORORGAN WIRBELTIE, V2 Richardson GP, 2008, CURR OPIN OTOLARYNGO, V16, P458, DOI 10.1097/MOO.0b013e32830e20c4 Richter CP, 2007, BIOPHYS J, V93, P2265, DOI 10.1529/biophysj.106.094474 Robles L., 2008, SENSES COMPREHENSIVE, V3, P413 Robles L, 2001, PHYSIOL REV, V81, P1305 Russell IJ, 2007, NAT NEUROSCI, V10, P215, DOI 10.1038/nn1828 Russell IJ, 1999, J NEUROPHYSIOL, V82, P676 RUSSELL IJ, 2008, SENSES COMPREHENSIVE, V3, P314 Schnitzler HU, 2003, TRENDS ECOL EVOL, V18, P386, DOI 10.1016/S0169-5347(03)00185-X Slepecky N. B., 1996, COCHLEA, P44 Southall Brandon L., 2007, Aquatic Mammals, V33, pI SPICER SS, 1994, HEARING RES, V79, P161, DOI 10.1016/0378-5955(94)90137-6 SPOENDLI.H, 1972, ACTA OTO-LARYNGOL, V73, P235, DOI 10.3109/00016487209138937 Thiers FA, 2008, JARO-J ASSOC RES OTO, V9, P477, DOI 10.1007/s10162-008-0135-x Thorne M, 1999, LARYNGOSCOPE, V109, P1661, DOI 10.1097/00005537-199910000-00021 Tsuji J, 1997, J COMP NEUROL, V381, P188 VATER M, 1985, J COMP PHYSIOL A, V157, P671, DOI 10.1007/BF01351361 VATER M, 1992, J COMP NEUROL, V318, P380, DOI 10.1002/cne.903180404 Vater M, 1996, HEARING RES, V94, P63, DOI 10.1016/0378-5955(96)00005-6 VATER M, 2004, ECHOLOCATION BATS DO, P99 Vater M., 2004, EVOLUTION VERTEBRATE, P256 VATER M, 1992, J COMP NEUROL, V318, P367, DOI 10.1002/cne.903180403 Vetter DE, 2007, P NATL ACAD SCI USA, V104, P20594, DOI 10.1073/pnas.0708545105 Wartzok Douglas, 1999, P117 WEBSTER DB, 1977, J MORPHOL, V152, P153, DOI 10.1002/jmor.1051520203 WEST CD, 1985, J ACOUST SOC AM, V77, P1091, DOI 10.1121/1.392227 WEVER EG, 1971, P NATL ACAD SCI USA, V68, P2908, DOI 10.1073/pnas.68.12.2908 XIE DH, 1993, HEARING RES, V66, P81, DOI 10.1016/0378-5955(93)90262-Y Ye Y, 2000, J COMP NEUROL, V420, P127 ZOOK JM, 1989, J COMP NEUROL, V290, P243, DOI 10.1002/cne.902900206 ZWISLOCKI JJ, 1979, SCIENCE, V204, P639, DOI 10.1126/science.432671 NR 125 TC 18 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2011 VL 273 IS 1-2 SI SI BP 89 EP 99 DI 10.1016/j.heares.2010.05.018 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 751HM UT WOS:000289608100011 PM 20630478 ER PT J AU Pollak, GD Gittelman, JX Li, N Xie, RL AF Pollak, George D. Gittelman, Joshua X. Li, Na Xie, Ruili TI Inhibitory projections from the ventral nucleus of the lateral lemniscus and superior paraolivary nucleus create directional selectivity of frequency modulations in the inferior colliculus: A comparison of bats with other mammals SO HEARING RESEARCH LA English DT Article ID BIG BROWN BAT; SPECIES-SPECIFIC CALLS; WHOLE-CELL RECORDINGS; PHYSIOLOGICAL-RESPONSE PROPERTIES; DORSAL COCHLEAR NUCLEUS; CENTRAL AUDITORY-SYSTEM; MULTIPLE SOUND SOURCES; FREE-TAILED BATS; EPTESICUS-FUSCUS; BRAIN-STEM AB This review considers four auditory brainstem nuclear groups and shows how studies of both bats and other mammals have provided insights into their response properties and the impact of their convergence in the inferior colliculus (IC). The four groups are octopus cells in the cochlear nucleus, their connections with the ventral nucleus of the lateral lemniscus (VNLL) and the superior paraolivary nucleus (SPON), and the connections of the VNLL and SPON with the IC. The theme is that the response properties of neurons in the SPUN and VNLL map closely onto the synaptic response features of a unique subpopulation of cells in the IC of bats whose inputs are dominated by inhibition. We propose that the convergence of VNLL and SPUN inputs generates the tuning of thee IC cells, their unique temporal responses to tones, and their directional selectivities for frequency modulated (FM) sweeps. Other IC neurons form directional properties in other ways, showing that selective response properties are formed in multiple ways. In the final section we discuss why multiple formations of common response properties could amplify differences in population activity patterns evoked by signals that have similar spectrotemporal features. (C) 2010 Elsevier B.V. All rights reserved. C1 [Pollak, George D.; Gittelman, Joshua X.; Li, Na; Xie, Ruili] Univ Texas Austin, Neurobiol Sect, Austin, TX 78712 USA. [Xie, Ruili] Univ N Carolina, Dept Otolaryngol, Chapel Hill, NC 27599 USA. RP Pollak, GD (reprint author), Univ Texas Austin, Neurobiol Sect, 337 Patterson Lab Bldg, Austin, TX 78712 USA. EM gpollak@mail.utexas.edu; jxg@mail.utexas.edu; nalibat@mail.utexas.edu; ruili_xie@med.unc.edu FU NIH [DC007856] FX Supported by NIH Grant DC007856. We thank Nace Golding for his helpful comments. CR Adams JC, 1997, AUDIT NEUROSCI, V3, P335 Andoni S, 2007, J NEUROSCI, V27, P4882, DOI 10.1523/JNEUROSCI.4342-06.2007 Barber JR, 2003, J COMP PHYSIOL A, V189, P843, DOI 10.1007/s00359-003-0463-6 Bauer EE, 2002, J NEUROPHYSIOL, V88, P1955, DOI 10.1152/jn.00261.2002 Behrend O, 2002, J NEUROPHYSIOL, V87, P2915, DOI 10.1152/jn.01018.2002 Bohn KM, 2008, J ACOUST SOC AM, V124, P1838, DOI 10.1121/1.2953314 Burger RM, 2001, J NEUROSCI, V21, P4830 CANT NB, 1992, MAMMALIAN AUDITORY P, P11 Casseday JH, 2002, SPR HDB AUD, V15, P238 Coomes DL, 2004, HEARING RES, V191, P67, DOI 10.1016/j.heares.2004.01.009 COVEY E, 1986, J NEUROSCI, V6, P2926 COVEY E, 1991, J NEUROSCI, V11, P3456 Davis KA, 2003, JARO, V4, P148, DOI 10.1007/s10162-002-2002-5 Davis KA, 2002, J NEUROPHYSIOL, V87, P1824, DOI 10.1152/jn.00769.2001 Dehmel S, 2002, HEARING RES, V172, P18, DOI 10.1016/S0378-5955(02)00353-2 FAINGOLD CL, 1991, HEARING RES, V52, P201, DOI 10.1016/0378-5955(91)90200-S FAINGOLD CL, 1993, HEARING RES, V69, P98, DOI 10.1016/0378-5955(93)90097-K Felix RA, 2007, HEARING RES, V228, P212, DOI 10.1016/j.heares.2007.02.009 FENG AS, 1985, J COMP NEUROL, V235, P529, DOI 10.1002/cne.902350410 FITZPATRICK KA, 1975, J COMP NEUROL, V164, P185, DOI 10.1002/cne.901640204 FRIAUF E, 1988, EXP BRAIN RES, V73, P263 Fuzessery ZM, 1996, J NEUROPHYSIOL, V76, P1059 Fuzessery ZM, 2006, J NEUROPHYSIOL, V96, P1320, DOI 10.1152/jn.00021.2006 Geniec P, 1971, Acta Otolaryngol Suppl, V295, P1 Gittelman JX, 2009, J NEUROSCI, V29, P13030, DOI 10.1523/JNEUROSCI.2477-09.2009 GOLDING NL, 1995, J NEUROSCI, V15, P3138 Golding NL, 1999, J NEUROSCI, V19, P2897 Gordon M, 1998, HEARING RES, V122, P97, DOI 10.1016/S0378-5955(98)00087-2 Grothe B, 2000, MICROSC RES TECHNIQ, V51, P382, DOI 10.1002/1097-0029(20001115)51:4<382::AID-JEMT7>3.0.CO;2-7 Grothe B, 1996, J COMP PHYSIOL A, V179, P89 GROTHE B, 1994, J COMP NEUROL, V343, P630, DOI 10.1002/cne.903430412 HAPLEA S, 1994, J COMP PHYSIOL A, V174, P671 Huffman RF, 1998, HEARING RES, V126, P161, DOI 10.1016/S0378-5955(98)00165-8 Kadner A, 2008, NEUROSCIENCE, V151, P868, DOI 10.1016/j.neuroscience.2007.11.008 Klug A, 2002, J NEUROPHYSIOL, V88, P1941, DOI 10.1152/jn.00260.2002 KLUG A, 1995, J NEUROPHYSIOL, V74, P1701 Kulesza RJ, 2003, J NEUROPHYSIOL, V89, P2299, DOI 10.1152/jn.00547.2002 Kulesza RJ, 2007, J NEUROPHYSIOL, V97, P1610, DOI 10.1152/jn.00613.2006 Kulesza RJ, 2000, JARO, V1, P255, DOI 10.1007/s101620010054 Kuwabara N, 1999, BRAIN RES, V846, P59, DOI 10.1016/S0006-8993(99)01942-3 KUWABARA N, 1992, ABSTR SOC NEUROSCI, V18, P193 LeBeau FEN, 2001, J NEUROSCI, V21, P7303 LI L, 1992, J NEUROSCI, V12, P4530 MAGNUSSON A, 2010, ASS RES OTOLARYNGOL, V768, P263 MALMIERCA MS, 1995, ANAT EMBRYOL, V191, P343, DOI 10.1007/BF00534687 MALMIERCA MS, 1995, J COMP NEUROL, V357, P124, DOI 10.1002/cne.903570112 MEININGER V, 1986, NEUROSCIENCE, V17, P1159, DOI 10.1016/0306-4522(86)90085-0 Merchan M, 2005, NEUROSCIENCE, V136, P907, DOI 10.1016/j.neuroscience.2004.12.030 Miller KE, 2005, NEUROSCIENCE, V136, P895, DOI 10.1016/j.neuroscience.2005.04.032 MOREST DK, 1984, J COMP NEUROL, V222, P209, DOI 10.1002/cne.902220206 Nayagam DAX, 2005, J NEUROPHYSIOL, V94, P1651, DOI 10.1152/jn.00167.2005 NEUWEILER G, 1990, PHYSIOL REV, V70, P615 Oertel D, 2000, P NATL ACAD SCI USA, V97, P11773, DOI 10.1073/pnas.97.22.11773 Oertel D, 1999, ANNU REV PHYSIOL, V61, P497, DOI 10.1146/annurev.physiol.61.1.497 Oertel D, 2002, SPR HDB AUD, V15, P207 Oertel D, 1991, Curr Opin Neurobiol, V1, P221, DOI 10.1016/0959-4388(91)90082-I OLIVER DL, 1984, J COMP NEUROL, V222, P237, DOI 10.1002/cne.902220207 Oliver DL, 1997, J COMP NEUROL, V382, P215, DOI 10.1002/(SICI)1096-9861(19970602)382:2<215::AID-CNE6>3.0.CO;2-6 OLIVER DL, 1995, J COMP NEUROL, V360, P17, DOI 10.1002/cne.903600103 Oliver DL, 1992, MAMMALIAN AUDITORY P, P168 OLIVER DL, 1994, J COMP NEUROL, V340, P27, DOI 10.1002/cne.903400104 OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407 PARK TJ, 1993, J NEUROSCI, V13, P2050 PARK TJ, 1993, J NEUROSCI, V13, P5172 Pecka M, 2007, J NEUROSCI, V27, P1782, DOI 10.1523/JNEUROSCI.5335-06.2007 Pollak G. D., 1986, NEURAL BASIS ECHOLOC POLLAK GD, 1993, HEARING RES, V65, P99, DOI 10.1016/0378-5955(93)90205-F Pollak GD, 2003, TRENDS NEUROSCI, V26, P33, DOI 10.1016/S0166-2236(02)00009-7 POLLAK GD, 1995, SPRINGER HDB AUDITOR, V11, P481 POLLAK GD, 1981, J NEUROPHYSIOL, V46, P605 Pollak GD, 2003, INT REV NEUROBIOL, V56, P83, DOI 10.1016/S0074-7742(03)56003-2 Pollak GD, 2002, HEARING RES, V168, P60, DOI 10.1016/S0378-5955(02)00362-3 POON PWF, 1991, EXP BRAIN RES, V83, P598 RALL W, 1969, BIOPHYS J, V9, P1483 Ramachandran R, 1999, J NEUROPHYSIOL, V82, P152 Rhode WS, 1992, MAMMALIAN AUDITORY P, P94 RHODE WS, 1983, J COMP NEUROL, V213, P448, DOI 10.1002/cne.902130408 ROBERTS RC, 1987, J COMP NEUROL, V258, P267, DOI 10.1002/cne.902580207 ROCKEL AJ, 1973, J COMP NEUROL, V147, P61, DOI 10.1002/cne.901470104 ROCKEL AJ, 1973, J COMP NEUROL, V147, P11, DOI 10.1002/cne.901470103 Rosenberger MH, 2003, J COMP NEUROL, V462, P101, DOI 10.1002/cne.10713 ROSS LS, 1988, J COMP NEUROL, V270, P488, DOI 10.1002/cne.902700403 ROSS LS, 1989, J NEUROSCI, V9, P2819 Saldana E, 2009, NEUROSCIENCE, V163, P372, DOI 10.1016/j.neuroscience.2009.06.030 SALDANA E, 1992, J COMP NEUROL, V319, P417, DOI 10.1002/cne.903190308 Saldana E, 2000, ANAT EMBRYOL, V202, P265, DOI 10.1007/s004290000109 SCHEINPFLUG C, 2010, ASS RES OTOLARYNGOL, V769, P263 SCHOFIELD BR, 1991, J COMP NEUROL, V312, P68, DOI 10.1002/cne.903120106 SCHOFIELD BR, 1995, J COMP NEUROL, V360, P135, DOI 10.1002/cne.903600110 Sivaramakrishnan S, 2001, J NEUROSCI, V21, P2861 Bohn KM, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006746 STOTLER WA, 1953, J COMP NEUROL, V98, P401, DOI 10.1002/cne.900980303 SUGA N, 1965, J PHYSIOL-LONDON, V179, P26 Tan ML, 2007, J NEUROPHYSIOL, V98, P443, DOI 10.1152/jn.01273.2006 Thompson AM, 2000, MICROSC RES TECHNIQ, V51, P330, DOI 10.1002/1097-0029(20001115)51:4<330::AID-JEMT4>3.0.CO;2-X Trussell LO, 1999, ANNU REV PHYSIOL, V61, P477, DOI 10.1146/annurev.physiol.61.1.477 VATER M, 1985, J COMP PHYSIOL A, V157, P671, DOI 10.1007/BF01351361 VATER M, 1990, J COMP NEUROL, V292, P373, DOI 10.1002/cne.902920305 Vater M, 1997, CELL TISSUE RES, V289, P223, DOI 10.1007/s004410050869 WENSTRUP JJ, 1988, J NEUROPHYSIOL, V60, P1384 Winer JA, 1996, P NATL ACAD SCI USA, V93, P8005, DOI 10.1073/pnas.93.15.8005 WINER JA, 1995, J COMP NEUROL, V355, P317, DOI 10.1002/cne.903550302 Xie R, 2008, NEUROSCIENCE, V154, P245, DOI 10.1016/j.neuroscience.2008.02.039 Xie R, 2007, J NEUROSCI, V27, P9469, DOI 10.1523/JNEUROSCI.2865-07.2007 Xie RL, 2005, J NEUROPHYSIOL, V94, P4019, DOI 10.1152/jn.00688.2005 YANG LC, 1992, J NEUROPHYSIOL, V68, P1760 Yue Q, 2007, J NEUROPHYSIOL, V98, P1364, DOI 10.1152/jn.00432.2007 ZOOK JM, 1985, J COMP NEUROL, V231, P530, DOI 10.1002/cne.902310410 NR 108 TC 14 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2011 VL 273 IS 1-2 SI SI BP 134 EP 144 DI 10.1016/j.heares.2010.03.083 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 751HM UT WOS:000289608100015 PM 20451594 ER PT J AU Christensen-Dalsgaard, J AF Christensen-Dalsgaard, Jakob TI Vertebrate pressure-gradient receivers SO HEARING RESEARCH LA English DT Article ID INTERAURAL TIME DIFFERENCES; DORSAL MEDULLARY NUCLEUS; MAMMALIAN MIDDLE-EAR; RANA-TEMPORARIA L; DIRECTIONAL HEARING; SOUND LOCALIZATION; LIZARD EAR; FROG; EVOLUTION; BIOPHYSICS AB The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum and strongly dependent on interaural transmission attenuation. Even though the tympanic middle ear has originated independently in the major tetrapod groups, in each group the ancestral condition probably was that the two middle ears were exposed in the mouth cavity with relatively high interaural transmission. Recent vertebrates form a continuum from perfect interaural transmission (0 dB in a certain frequency band) and pronounced eardrum directionality (30-40 dB) in the lizards, over somewhat attenuated transmission and limited directionality in birds and frogs, to the strongly attenuated interaural transmission and functionally isolated pressure receiver ears in the mammals. Since some of the binaural interaction already takes place at the eardrum in animals with strongly coupled ears, producing enhanced interaural time and level differences, the subsequent neural processing may be simpler. In robotic simulations of lizards, simple binaural subtraction (El cells, found in brainstem nuclei of both frogs and lizards) produces strongly lateralized responses that are sufficient for steering the animal robustly to sound sources. (C) 2010 Elsevier B.V. All rights reserved. C1 Univ So Denmark, Inst Biol, DK-5230 Odense M, Denmark. RP Christensen-Dalsgaard, J (reprint author), Univ So Denmark, Inst Biol, Campusvej 55, DK-5230 Odense M, Denmark. EM jcd@biology.sdu.dk RI Christensen-Dalsgaard, Jakob/G-9947-2012 OI Christensen-Dalsgaard, Jakob/0000-0002-6075-3819 FU Danish Natural Science Research Council FX Supported by the Danish Natural Science Research Council. CR AERTSEN AMHJ, 1986, HEARING RES, V21, P17, DOI 10.1016/0378-5955(86)90043-2 ALLIN EF, 1975, J MORPHOL, V147, P403, DOI 10.1002/jmor.1051470404 Autrum Hansjochem, 1940, ZEITSCHR VERGLEICH PHYSIOL, V28, P326, DOI 10.1007/BF00342439 CALFORD MB, 1988, J COMP PHYSIOL A, V162, P491, DOI 10.1007/BF00612514 Carr CE, 2009, J NEUROSCI, V29, P7978, DOI 10.1523/JNEUROSCI.6154-08.2009 Christensen-Dalsgaard J, 2005, J EXP BIOL, V208, P1209, DOI 10.1242/jeb.01511 Christensen-Dalsgaard J., 2005, SOUND SOURCE LOCALIZ, P67, DOI DOI 10.1007/0-387-28863-5 Christensen-Dalsgaard J, 2008, JARO-J ASSOC RES OTO, V9, P407, DOI 10.1007/s10162-008-0130-2 Christensen-Dalsgaard J, 2008, BRAIN RES BULL, V75, P365, DOI 10.1016/j.brainresbull.2007.10.044 CHRISTENSENDALSGAARD J, 1995, J COMP PHYSIOL A, V176, P317 Christensen-Dalsgaard J, 2005, BRAIN RES BULL, V66, P522, DOI 10.1016/j.brainresbull.2005.03.005 CHRISTENSENDALS.J, 2010, ASS RES OTOLARYNGOL, V33, P51 Clack J. A., 1997, Brain Behavior and Evolution, V50, P198, DOI 10.1159/000113334 Feng AS, 2008, J COMP PHYSIOL A, V194, P159, DOI 10.1007/s00359-007-0267-1 FENG AS, 2007, SENSES COMPREHENSIVE, V3, P217 FENG AS, 1986, BRAIN RES, V367, P183, DOI 10.1016/0006-8993(86)91591-X Fletcher NJC, 1992, ACOUSTIC SYSTEMS BIO Gaffney E.S., 1983, Journal of Vertebrate Paleontology, V3, P25, DOI 10.1080/02724634.1983.10011953 Gridi-Papp M, 2008, P NATL ACAD SCI USA, V105, P11013 HEFFNER RS, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P691 HILL KG, 1980, J EXP BIOL, V86, P135 HYSON RL, 1994, HEARING RES, V81, P109, DOI 10.1016/0378-5955(94)90158-9 JASLOW AP, 1988, WILEY S NB, P69 JORGENSEN MB, 1991, J COMP PHYSIOL A, V168, P223 JORGENSEN MB, 1991, J COMP PHYSIOL A, V169, P591 Joris P, 2007, TRENDS NEUROSCI, V30, P70, DOI 10.1016/j.tins.2006.12.004 Klump G., 2000, COMP HEARING BIRDS R, P249 KLUMP GM, 1989, NATURWISSENSCHAFTEN, V76, P35, DOI 10.1007/BF00368312 KLUMP GM, 1991, J COMP PHYSIOL A, V170, P243 Konishi M, 2000, COMP BIOCHEM PHYS A, V126, P459, DOI 10.1016/S1095-6433(00)00232-4 Koppl C, 2009, CURR BIOL, V19, pR635, DOI 10.1016/j.cub.2009.05.035 Koppl C, 2008, BIOL CYBERN, V98, P541, DOI 10.1007/s00422-008-0220-6 LARSEN ON, 1995, NERVOUS SYSTEMS BEHA, P313 Larsen ON, 1997, DIVERSITY AUDITORY M, P11 Larsen ON, 2006, J COMP PHYSIOL A, V192, P1063, DOI 10.1007/s00359-006-0138-1 LEWIS ER, 1999, COMP HEARING FISH AM, P218 Manley G. A., 1990, PERIPHERAL HEARING M Manley GA, 2002, J NEUROBIOL, V53, P202, DOI 10.1002/neu.10115 MANLEY GA, 1981, PROGR SENSORY PHYSL, V2, P49 Manley G. A., 1973, EVOLUTION, V26, P608, DOI DOI 10.2307/2407057 Manley GA, 2010, HEARING RES, V263, P3, DOI 10.1016/j.heares.2009.09.004 Michelsen A, 2008, BIOINSPIR BIOMIM, V3, DOI 10.1088/1748-3182/3/1/011001 MOISEFF A, 1981, J NEUROSCI, V1, P40 NARINS PM, 1988, P NATL ACAD SCI USA, V85, P1255 NOVACEK MJ, 1977, MAMMAL REV, V7, P131, DOI 10.1111/j.1365-2907.1977.tb00366.x PALMER AR, 1984, J THEOR BIOL, V110, P205, DOI 10.1016/S0022-5193(84)80053-3 PETTIGREW JD, 1990, NEUROL NEUR, V56, P179 PINDER AC, 1993, P ROY SOC LOND B BIO, V219, P371 ROSOWSKI JJ, 1980, J COMP PHYSIOL, V136, P183 Rowe T, 1996, SCIENCE, V273, P651, DOI 10.1126/science.273.5275.651 SEGALL W, 1970, Fieldiana Zoology, V51, P169 Shaikh D, 2009, LECT NOTES COMPUT SC, V5602, P439, DOI 10.1007/978-3-642-02267-8_47 SZPIR MR, 1990, J COMP NEUROL, V295, P530, DOI 10.1002/cne.902950403 VLAMING MSMG, 1984, HEARING RES, V14, P191, DOI 10.1016/0378-5955(84)90018-2 Vossen C, 2010, J ACOUST SOC AM, V128, P909, DOI 10.1121/1.3455853 Weyer E. G., 1978, REPTILE EAR Weyer E.G., 1985, AMPHIBIAN EAR Zhang H, 1999, J COMP PHYSIOL A, V184, P85, DOI 10.1007/s003590050308 ZHANG L, 2006, LECT NOTES ARTIF INT, V4096, P65 NR 59 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAR PY 2011 VL 273 IS 1-2 SI SI BP 37 EP 45 DI 10.1016/j.heares.2010.08.007 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 751HM UT WOS:000289608100005 PM 20727396 ER PT J AU Van Dijk, P Mason, MJ Schoffelen, RLM Narins, PM Meenderink, SWF AF Van Dijk, Pim Mason, Matthew J. Schoffelen, Richard L. M. Narins, Peter M. Meenderink, Sebastiaan W. F. TI Mechanics of the frog ear SO HEARING RESEARCH LA English DT Article ID BULLFROG RANA-CATESBEIANA; PRODUCT OTOACOUSTIC EMISSIONS; WIENER-KERNEL ANALYSIS; NORTHERN LEOPARD FROG; AUDITORY-NERVE FIBERS; INNER-EAR; MIDDLE-EAR; TEMPERATURE-DEPENDENCE; AMPHIBIAN PAPILLA; COHERENT REFLECTION AB The frog inner ear contains three regions that are sensitive to airborne sound and which are functionally distinct. (1) The responses of nerve fibres innervating the low-frequency, rostral part of the amphibian papilla (AP) are complex. Electrical tuning of hair cells presumably contributes to the frequency selectivity of these responses. (2) The caudal part of the AP covers the mid-frequency portion of the frog's auditory range. It shares the ability to generate both evoked and spontaneous otoacoustic emissions with the mammalian cochlea and other vertebrate ears. (3) The basilar papilla functions mainly as a single auditory filter. Its simple anatomy and function provide a model system for testing hypotheses concerning emission generation. Group delays of stimulus-frequency otoacoustic emissions (SFOAEs) from the basilar papilla are accounted for by assuming that they result from forward and reverse transmission through the middle ear, a mechanical delay due to tectorial membrane filtering and a rapid forward and reverse propagation through the inner ear fluids, with negligible delay. (C) 2010 Elsevier B.V. All rights reserved. C1 [Van Dijk, Pim; Schoffelen, Richard L. M.] Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, Groningen, Netherlands. [Van Dijk, Pim; Schoffelen, Richard L. M.] Univ Groningen, Sch Behav & Cognit Neurosci, NL-9700 AB Groningen, Netherlands. [Mason, Matthew J.] Univ Cambridge, Dept Physiol Dev & Neurosci, Cambridge CB2 1TN, England. [Schoffelen, Richard L. M.] Univ Med Ctr Utrecht, Dept Med Technol & Clin Phys, Utrecht, Netherlands. [Narins, Peter M.] Univ Calif Los Angeles, Dept Physiol Sci, Los Angeles, CA USA. [Narins, Peter M.] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA USA. [Meenderink, Sebastiaan W. F.] Erasmus MC, Dept Neurosci, Rotterdam, Netherlands. RP Van Dijk, P (reprint author), Univ Med Ctr Gronigen, Dept Otorhinolaryngol Head & Neck Surg, POB 30-001, NL-9700 RB Groningen, Netherlands. EM p.van.dijk@med.umcg.nl RI Van Dijk, Pim/E-8019-2010 OI Van Dijk, Pim/0000-0002-8023-7571 FU Netherlands Organisation for Scientific Research (NWO); Heinsius Houbolt Foundation; NIH [DC00222] FX We thank Mike Smotherman for discussions on the role of electrical tuning of hair cells in auditory frequency selectivity. We thank Hans Segenhout for discussions regarding the anatomy of the anuran inner ear. This work was supported by the Netherlands Organisation for Scientific Research (NWO) to P.v.D., R.L.M. and S.W.F.M., the Heinsius Houbolt Foundation to P.v.D. and R.LM., and NIH Grant No. DC00222 to P.M.N. CR BECKER RP, 1977, CELL TISSUE RES, V175, P449 BENEDIX JH, 1994, J ACOUST SOC AM, V96, P2738, DOI 10.1121/1.411280 Bergevin C, 2008, J COMP PHYSIOL A, V194, P665, DOI 10.1007/s00359-008-0338-y Capranica R.R., 1980, P139 Dong W, 2006, J NEUROPHYSIOL, V95, P2951, DOI 10.1152/jn.01214.2005 EHRET G, 1980, J COMP PHYSIOL, V141, P1 FENG AS, 1975, J COMP PHYSIOL, V100, P221 FOX JH, 1995, BRAIN BEHAV EVOLUT, V45, P327, DOI 10.1159/000113560 FRISHKOP.LS, 1968, PR INST ELECTR ELECT, V56, P969, DOI 10.1109/PROC.1968.6448 FRISHKOPF LS, 1963, J ACOUST SOC AM, V35, P1219, DOI 10.1121/1.1918676 GRIDIPAPP M, 2008, P NATL ACAD SCI USA, V105, P2729 HETHERINGTON TE, 1985, J EXP ZOOL, V235, P27, DOI 10.1002/jez.1402350105 HETHERINGTON TE, 1988, J COMP PHYSIOL A, V163, P43, DOI 10.1007/BF00611995 HETHERINGTON TE, 1994, J ACOUST SOC AM, V95, P2122, DOI 10.1121/1.408673 HETHERINGTON TE, 1987, J EXP BIOL, P189 HETHERINGTON TE, 1986, J MORPHOL, V190, P43, DOI 10.1002/jmor.1051900105 HILLERY CM, 1984, SCIENCE, V225, P1037, DOI 10.1126/science.6474164 Jorgensen MB, 1998, J COMP PHYSIOL A, V182, P59 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KOPPL C, 1993, HEARING RES, V71, P157, DOI 10.1016/0378-5955(93)90031-U KORENBERG MJ, 1973, P 10 ANN ROCK MOUNT, P47 Lewis E.R., 1983, SCANNING ELECTRON MI, V1983, P189 LEWIS ER, 1982, SCIENCE, V215, P1641, DOI 10.1126/science.6978525 Lewis ER, 1999, COMP HEARING FISH AM, P101 LEWIS ER, 1992, J COMP PHYSL, V171, P469 LEWIS ER, 1982, J COMP PHYSIOL, V145, P437 LEWIS ER, 1981, NEUROSCI LETT, V21, P131, DOI 10.1016/0304-3940(81)90370-0 LI CW, 1974, SCAN ELECT MICROSC, V1974, P791 Manley Geoffrey A., 2008, V30, P211 MANLEY GA, 1990, J COMP PHYSIOL A, V167, P129, DOI 10.1007/BF00192412 Mason MJ, 2003, BRAIN BEHAV EVOLUT, V61, P91, DOI 10.1159/000069354 Mason MJ, 2007, SPR HDB AUD, V28, P147 Mason MJ, 2002, J EXP BIOL, V205, P3167 Mason MJ, 2002, J EXP BIOL, V205, P3153 Meenderink SWF, 2006, HEARING RES, V220, P67, DOI 10.1016/j.heares.2006.07.009 Meenderink SWF, 2010, BIOL LETTERS, V6, P278, DOI 10.1098/rsbl.2009.0763 Meenderink SWF, 2007, J ACOUST SOC AM, V121, P344, DOI 10.1121/1.2382458 Meenderink SWF, 2006, JARO-J ASSOC RES OTO, V7, P246, DOI 10.1007/s10162-006-0039-6 Meenderink SWF, 2005, JARO-J ASSOC RES OTO, V6, P37, DOI 10.1007/s10162-004-5019-0 NARINS PM, 1980, BRAIN BEHAV EVOLUT, V17, P48, DOI 10.1159/000121790 NARINS PM, 1983, HEARING PHYSL BASES, V183, P70 PALMER AR, 1982, J PHYSIOL-LONDON, V324, pP66 PITCHFORD S, 1987, HEARING RES, V27, P75, DOI 10.1016/0378-5955(87)90027-X Purgue AP, 2000, J COMP PHYSIOL A, V186, P489, DOI 10.1007/s003590050447 Purgue AP, 2000, J COMP PHYSIOL A, V186, P481, DOI 10.1007/s003590050446 Recio-Spinoso A, 2005, J NEUROPHYSIOL, V93, P3615, DOI 10.1152/jn.00882.2004 RONKEN DA, 1991, J ACOUST SOC AM, V90, P2428, DOI 10.1121/1.402047 RONKEN DA, 1990, HEARING RES, V47, P63, DOI 10.1016/0378-5955(90)90167-N RUGGERO MA, 1987, J NEUROPHYSIOL, V58, P379 Schetzen M., 1989, VOLTERRA WIENER THEO SCHOFFELEN RLM, 2009, THESIS U GRONINGEN Schoffelen RLM, 2008, J COMP PHYSIOL A, V194, P417, DOI 10.1007/s00359-008-0327-1 Schoffelen RLM, 2009, JARO-J ASSOC RES OTO, V10, P309, DOI 10.1007/s10162-009-0167-x Shera CA, 2003, J ACOUST SOC AM, V113, P2762, DOI 10.1121/1.1557211 Shera CA, 2008, J ACOUST SOC AM, V124, P381, DOI 10.1121/1.2917805 SHOFNER WP, 1981, J EXP BIOL, V93, P181 Siegel JH, 2005, J ACOUST SOC AM, V118, P2434, DOI 10.1121/1.2005867 Smotherman MS, 2000, J EXP BIOL, V203, P2237 Smotherman MS, 1999, J NEUROSCI, V19, P5275 TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V vanDijk P, 1997, HEARING RES, V114, P229, DOI 10.1016/S0378-5955(97)00168-8 vanDijk P, 1997, HEARING RES, V114, P243, DOI 10.1016/S0378-5955(97)00169-X van Dijk P, 2003, J ACOUST SOC AM, V114, P2044, DOI 10.1121/1.1608957 vanDijk P, 1996, HEARING RES, V101, P102 VANDIJK P, 1989, HEARING RES, V42, P273, DOI 10.1016/0378-5955(89)90151-2 VANDIJK P, 1994, J ACOUST SOC AM, V95, P904, DOI 10.1121/1.410009 van Dijk P, 2001, HEARING RES, V153, P14, DOI 10.1016/S0378-5955(00)00251-3 Weyer E. G., 1973, J MORPHOL, V141, P461 Weyer E.G., 1985, AMPHIBIAN EAR Yamada WM, 1999, HEARING RES, V130, P155, DOI 10.1016/S0378-5955(99)00005-2 NR 70 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAR PY 2011 VL 273 IS 1-2 SI SI BP 46 EP 58 DI 10.1016/j.heares.2010.02.004 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 751HM UT WOS:000289608100006 PM 20149854 ER PT J AU Elgoyhen, AB Franchini, LF AF Belen Elgoyhen, Ana Franchini, Lucia F. TI Prestin and the cholinergic receptor of hair cells: Positively-selected proteins in mammals SO HEARING RESEARCH LA English DT Article ID NICOTINIC ACETYLCHOLINE-RECEPTOR; CODON-SUBSTITUTION MODELS; CA2+-ACTIVATED K+ CHANNELS; GUINEA-PIG COCHLEA; MOTOR PROTEIN; ION-CHANNEL; PHARMACOLOGICAL-PROPERTIES; SYNAPTIC-TRANSMISSION; INTRACELLULAR CA2+; ADAPTIVE EVOLUTION AB The hair cells of the vertebrate inner ear posses active mechanical processes to amplify their inputs. The stereocilia bundle of various vertebrate animals can produce active movements. Though standard stereocilia-based mechanisms to promote amplification persist in mammals, an additional radically different mechanism evolved: the so-called somatic electromotility which refers to the elongation/contraction of the outer hair cells' (OHC) cylindrical cell body in response to membrane voltage changes. Somatic electromotility in OHCs, as the basis for cochlear amplification, is a mammalian novelty and it is largely dependent upon the properties of the unique motor protein prestin. We review recent literature which has demonstrated that although the gene encoding prestin is present in all vertebrate species, mammalian prestin has been under positive selective pressure to acquire motor properties, probably rendering it fit to serve somatic motility in outer hair cells. Moreover, we discuss data which indicates that a modified alpha 10 nicotinic cholinergic receptor subunit has co-evolved in mammals, most likely to give the auditory feedback system the capability to control somatic electromotility. (C) 2010 Elsevier B.V. All rights reserved. C1 [Belen Elgoyhen, Ana; Franchini, Lucia F.] Consejo Nacl Invest Cient & Tecn, Inst Invest Ingn Genet & Biol Mol, RA-1428 Buenos Aires, DF, Argentina. [Belen Elgoyhen, Ana] Univ Buenos Aires, Fac Med, Dept Farmacol, RA-1121 Buenos Aires, DF, Argentina. RP Elgoyhen, AB (reprint author), INGEBI, Vuelta Obligado 2490, RA-1428 Buenos Aires, DF, Argentina. EM elgoyhen@dna.uba.ar; franchini@dna.uba.ar FU National Institutes of Deafness and other Communication Disorders (NIDCD) [R01DC001508]; Howard Hughes Medical Institute; Tinnitus Research Initiative; ANPCyT (Argentina); University of Buenos Aires (Argentina); ANPCyT; CONICET (Argentina) FX We want to thank Geoffrey Manley for his comments on the manuscript. A.B.E. is supported by the National Institutes of Deafness and other Communication Disorders (NIDCD) Grant R01DC001508, an International Research Scholar Grant from the Howard Hughes Medical Institute, the Tinnitus Research Initiative, Research Grants from ANPCyT (Argentina) and the University of Buenos Aires (Argentina). L.F.F. is supported by a Research Grant from ANPCyT and CONICET (Argentina). CR Adler HJ, 2003, HEARING RES, V184, P27, DOI 10.1016/S0378-5955(03)00192-8 Albert JT, 2007, J PHYSIOL-LONDON, V580, P451, DOI 10.1113/jphysiol.2007.127993 Ashmore J, 2008, PHYSIOL REV, V88, P173, DOI 10.1152/physrev.00044.2006 ASSAD JA, 1992, J NEUROSCI, V12, P3291 Bekesy G., 1960, EXPT HEARING Blanchet C, 1996, J NEUROSCI, V16, P2574 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Chan DK, 2005, NAT NEUROSCI, V8, P149, DOI 10.1038/nn1385 CHANGEUX JP, 1987, TRENDS PHARMACOL SCI, V8, P459, DOI 10.1016/0165-6147(87)90039-3 Chen C, 1996, HEARING RES, V98, P9, DOI 10.1016/0378-5955(96)00049-4 CRAWFORD AC, 1985, J PHYSIOL-LONDON, V364, P359 Dallos P, 2008, NEURON, V58, P333, DOI 10.1016/j.neuron.2008.02.028 Dallos P, 1997, J NEUROSCI, V17, P2212 Dallos P, 2006, J PHYSIOL-LONDON, V576, P37, DOI 10.1113/jphysiol.2006.114652 Dallos P, 2008, CURR OPIN NEUROBIOL, V18, P370, DOI 10.1016/j.conb.2008.08.016 DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 Deak L, 2005, J PHYSIOL-LONDON, V563, P483, DOI 10.1113/jphysiol.2004.078857 Dent JA, 2006, J MOL EVOL, V62, P523, DOI 10.1007/s00239-005-0018-2 DOI T, 1993, HEARING RES, V67, P179, DOI 10.1016/0378-5955(93)90245-V Dulon D, 1998, EUR J NEUROSCI, V10, P907, DOI 10.1046/j.1460-9568.1998.00098.x Dulon D, 1996, EUR J NEUROSCI, V8, P1945, DOI 10.1111/j.1460-9568.1996.tb01338.x ELGOYHEN AB, 1994, CELL, V79, P705, DOI 10.1016/0092-8674(94)90555-X Elgoyhen AB, 2009, BIOCHEM PHARMACOL, V78, P712, DOI 10.1016/j.bcp.2009.05.023 Elgoyhen AB, 2001, P NATL ACAD SCI USA, V98, P3501, DOI 10.1073/pnas.051622798 EROSTEGUI C, 1994, HEARING RES, V74, P135, DOI 10.1016/0378-5955(94)90182-1 Evans MG, 1996, J PHYSIOL-LONDON, V491, P563 EYBALIN M, 1993, PHYSIOL REV, V73, P309 Fettiplace R, 2006, J PHYSIOL-LONDON, V576, P29, DOI 10.1113/jphysiol.2006.115949 Franchini LF, 2006, MOL PHYLOGENET EVOL, V41, P622, DOI 10.1016/j.ympev.2006.05.042 FRINGS S, 1995, NEURON, V15, P169, DOI 10.1016/0896-6273(95)90074-8 Fritzsch B, 1996, ANN NY ACAD SCI, V781, P21, DOI 10.1111/j.1749-6632.1996.tb15690.x Fritzsch B, 1999, SING AUDIOL TEXTBK, P31 Frolenkov GI, 2003, CELL CALCIUM, V33, P185, DOI 10.1016/S0143-4160(02)00228-2 FUCHS PA, 1992, P ROY SOC B-BIOL SCI, V248, P35, DOI 10.1098/rspb.1992.0039 FUCHS PA, 1992, J NEUROSCI, V12, P800 Fuchs PA, 1996, CURR OPIN NEUROBIOL, V6, P514, DOI 10.1016/S0959-4388(96)80058-4 GALZI JL, 1991, ANNU REV PHARMACOL, V31, P37 Gao JG, 2007, P NATL ACAD SCI USA, V104, P12542, DOI 10.1073/pnas.0700356104 Geleoc GSG, 2003, TRENDS NEUROSCI, V26, P115, DOI 10.1016/S0166-2236(03)00030-4 GOLD T, 1948, PROC R SOC SER B-BIO, V135, P492, DOI 10.1098/rspb.1948.0025 Guinan Jr J.J., 1996, COCHLEA, P435 GULLEY RL, 1977, ANAT REC, V189, P109, DOI 10.1002/ar.1091890108 He DZZ, 1999, J NEUROPHYSIOL, V81, P1162 HOUSLEY GD, 1991, P ROY SOC B-BIOL SCI, V244, P161, DOI 10.1098/rspb.1991.0065 HOUSLEY GD, 1990, HEARING RES, V43, P121, DOI 10.1016/0378-5955(90)90221-A HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0 Hudspeth AJ, 2008, NEURON, V59, P530, DOI 10.1016/j.neuron.2008.07.012 Jia SP, 2005, NAT NEUROSCI, V8, P1028, DOI 10.1038/nn1509 KAISER A, 1994, J NEUROPHYSIOL, V72, P2966 Kaiser A, 1996, J COMP NEUROL, V374, P108 KAKEHATA S, 1993, J PHYSIOL-LONDON, V463, P227 Karlin A, 2002, NAT REV NEUROSCI, V3, P102, DOI 10.1038/nrn731 Katz E, 2004, J NEUROSCI, V24, P7814, DOI 10.1523/JNEUROSCI.2102-04.2004 Katz E, 2000, HEARING RES, V141, P117, DOI 10.1016/S0378-5955(99)00214-2 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 Kennedy HJ, 2005, NATURE, V433, P880, DOI 10.1038/nature03367 LENOVERE N, 1995, J MOL EVOL, V40, P155 Le Novere N, 2002, J NEUROBIOL, V53, P447, DOI 10.1002/neu.10153 Li G, 2008, P NATL ACAD SCI USA, V105, P13959, DOI 10.1073/pnas.0802097105 Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 Lioudyno M, 2004, J NEUROSCI, V24, P11160, DOI 10.1523/JNEUROSCI.3674-04.2004 Lohi H, 2000, GENOMICS, V70, P102, DOI 10.1006/geno.2000.6355 Ludwig J, 2001, P NATL ACAD SCI USA, V98, P4178, DOI 10.1073/pnas.071613498 Lustig LR, 2001, GENOMICS, V73, P272, DOI 10.1006/geno.2000.6503 Manley GA, 1998, CURR OPIN NEUROBIOL, V8, P468, DOI 10.1016/S0959-4388(98)80033-0 Manley GA, 2001, P NATL ACAD SCI USA, V98, P2826, DOI 10.1073/pnas.041604998 Manley GA, 2001, J NEUROPHYSIOL, V86, P541 Manley GA, 2000, P NATL ACAD SCI USA, V97, P11736, DOI 10.1073/pnas.97.22.11736 Martin P, 1999, P NATL ACAD SCI USA, V96, P14306, DOI 10.1073/pnas.96.25.14306 Martin P, 2001, P NATL ACAD SCI USA, V98, P14386, DOI 10.1073/pnas.251530498 Martin P, 2003, J NEUROSCI, V23, P4533 MAYER ML, 1987, J PHYSIOL-LONDON, V394, P501 McNiven AI, 1996, AUDIT NEUROSCI, V2, P63 MEREDITH GE, 1987, J COMP NEUROL, V265, P494, DOI 10.1002/cne.902650404 Mount DB, 2004, PFLUG ARCH EUR J PHY, V447, P710, DOI 10.1007/s00424-003-1090-3 MOUNTAIN DC, 1980, SCIENCE, V210, P71, DOI 10.1126/science.7414321 Muallem D, 2006, BIOPHYS J, V90, P4035, DOI 10.1529/biophysj.105.073254 Navaratnam D, 2005, BIOPHYS J, V89, P3345, DOI 10.1529/biophysj.105.068759 NEI M, 1986, MOL BIOL EVOL, V3, P418 Okoruwa OE, 2008, EVOL DEV, V10, P300, DOI 10.1111/j.1525-142X.2008.00239.x Oliver D, 2001, SCIENCE, V292, P2340, DOI 10.1126/science.1060939 Oliver D, 2000, NEURON, V26, P595, DOI 10.1016/S0896-6273(00)81197-6 ORTELLS MO, 1995, TRENDS NEUROSCI, V18, P121, DOI 10.1016/0166-2236(95)93887-4 Plazas PV, 2005, J NEUROSCI, V25, P10905, DOI 10.1523/JNEUROSCI.3805-05.2005 Rajagopalan L, 2006, J NEUROSCI, V26, P12727, DOI 10.1523/JNEUROSCI.2734-06.2006 Rasmussen G.L, 1955, AM J PHYSIOL, V183, P653 Ricci AJ, 2000, J NEUROSCI, V20, P7131 ROBERTS BL, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P185 Rothlin CV, 1999, MOL PHARMACOL, V55, P248 Rothlin CV, 2003, MOL PHARMACOL, V63, P1067, DOI 10.1124/mol.63.5.1067 Rothlin CV, 2000, NEUROPHARMACOLOGY, V39, P2525, DOI 10.1016/S0028-3908(00)00056-3 Schaechinger TJ, 2007, P NATL ACAD SCI USA, V104, P7693, DOI 10.1073/pnas.0608583104 SCHWARZ IE, 1981, J COMP NEUROL, V196, P1, DOI 10.1002/cne.901960102 Sgard F, 2002, MOL PHARMACOL, V61, P150, DOI 10.1124/mol.61.1.150 SHIGEMOTO T, 1990, J PHYSIOL-LONDON, V420, P127 SHIGEMOTO T, 1991, J PHYSIOL-LONDON, V442, P669 SIEGEL JH, 1982, HEARING RES, V6, P171, DOI 10.1016/0378-5955(82)90052-1 Simmons DD, 2002, J NEUROBIOL, V53, P228, DOI 10.1002/neu.10130 Sridhar TS, 1997, J NEUROSCI, V17, P428 Sziklai I, 2001, ACTA OTO-LARYNGOL, V121, P153 Tsunoyama K, 1998, MOL BIOL EVOL, V15, P518 Verbitsky M, 2000, NEUROPHARMACOLOGY, V39, P2515, DOI 10.1016/S0028-3908(00)00124-6 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 Weber T, 2003, P NATL ACAD SCI USA, V100, P7690, DOI 10.1073/pnas.1330557100 Weisstaub N, 2002, HEARING RES, V167, P122, DOI 10.1016/S0378-5955(02)00380-5 Yang ZH, 2002, MOL BIOL EVOL, V19, P49 Yang ZH, 1998, MOL BIOL EVOL, V15, P568 Yang ZH, 2000, GENETICS, V155, P431 Yang ZH, 1997, COMPUT APPL BIOSCI, V13, P555 Yang ZH, 2002, MOL BIOL EVOL, V19, P908 YOSHIDA N, 1994, BRAIN RES, V644, P90, DOI 10.1016/0006-8993(94)90351-4 Young JM, 2002, HUM MOL GENET, V11, P1153, DOI 10.1093/hmg/11.10.1153 Zheng J, 2005, J CELL SCI, V118, P2987, DOI 10.1242/jcs.02431 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 Zheng J, 2006, J BIOL CHEM, V281, P19916, DOI 10.1074/jbc.M513854200 Zheng J, 2001, NEUROREPORT, V12, P1929, DOI 10.1097/00001756-200107030-00032 NR 116 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAR PY 2011 VL 273 IS 1-2 SI SI BP 100 EP 108 DI 10.1016/j.heares.2009.12.028 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 751HM UT WOS:000289608100012 PM 20056140 ER PT J AU Peng, AW Ricci, AJ AF Peng, Anthony W. Ricci, Anthony J. TI Somatic motility and hair bundle mechanics, are both necessary for cochlear amplification? SO HEARING RESEARCH LA English DT Article ID SPONTANEOUS OTOACOUSTIC EMISSIONS; SCANNING-ELECTRON-MICROSCOPE; AUDITORY-NERVE FIBERS; PLASMA-MEMBRANE CA2+-ATPASE; PRESTIN KNOCKOUT MICE; RED-EARED TURTLE; OWL TYTO-ALBA; BASILAR PAPILLA; MECHANOELECTRICAL TRANSDUCTION; TECTORIAL MEMBRANE AB Hearing organs have evolved to detect sounds across several orders of magnitude of both intensity and frequency. Detection limits are at the atomic level despite the energy associated with sound being limited thermodynamically. Several mechanisms have evolved to account for the remarkable frequency selectivity, dynamic range, and sensitivity of these various hearing organs, together termed the active process or cochlear amplifier. Similarities between hearing organs of disparate species provides insight into the factors driving the development of the cochlear amplifier. These properties include: a tonotopic map, the emergence of a two hair cell system, the separation of efferent and afferent innervations, the role of the tectorial membrane, and the shift from intrinsic tuning and amplification to a more end organ driven process. Two major contributors to the active process are hair bundle mechanics and outer hair cell electromotility, the former present in all hair cell organs tested, the latter only present in mammalian cochlear outer hair cells. Both of these processes have advantages and disadvantages, and how these processes interact to generate the active process in the mammalian system is highly disputed. A hypothesis is put forth suggesting that hair bundle mechanics provides amplification and filtering in most hair cells, while in mammalian cochlea, outer hair cell motility provides the amplification on a cycle by cycle basis driven by the hair bundle that provides frequency selectivity (in concert with the tectorial membrane) and compressive nonlinearity. Separating components of the active process may provide additional sites for regulation of this process. (C) 2010 Elsevier B.V. All rights reserved. C1 [Ricci, Anthony J.] Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA. [Peng, Anthony W.; Ricci, Anthony J.] Stanford Univ, Dept Otolaryngol, Stanford, CA 94305 USA. RP Ricci, AJ (reprint author), Stanford Univ, Dept Mol & Cellular Physiol, 300 Pasteur Dr,Edwards Bldg R145, Stanford, CA 94305 USA. EM aricci@stanford.edu FU NIDCD [RO1DC003896] FX Thanks to Ham Farris for discussions on insect hearing and higher order functions. Thanks to Geoff Manley for his expertise in the details of the comparative aspects of hearing. This work was supported by NIDCD funding to AJR, RO1DC003896. CR Ahmed ZM, 2006, J NEUROSCI, V26, P7022, DOI 10.1523/JNEUROSCI.1163-06.2006 Arch VS, 2008, BIOL LETTERS, V4, P19, DOI 10.1098/rsbl.2007.0494 Arch VS, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005413 ART JJ, 1987, J PHYSIOL-LONDON, V385, P207 Ashmore J, 2008, PHYSIOL REV, V88, P173, DOI 10.1152/physrev.00044.2006 ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 AUTHIER S, 1995, HEARING RES, V82, P1 Benser ME, 1996, J NEUROSCI, V16, P5629 Beurg M, 2009, NAT NEUROSCI, V12, P553, DOI 10.1038/nn.2295 Beurg M, 2008, BIOPHYS J, V94, P2639, DOI 10.1529/biophysj.107.123257 Beurg M, 2006, J NEUROSCI, V26, P10992, DOI 10.1523/JNEUROSCI.2188-06.2006 BIALEK W, 1987, ANNU REV BIOPHYS BIO, V16, P455 BIALEK W, 1985, PHYS REV LETT, V54, P725, DOI 10.1103/PhysRevLett.54.725 Bozovic D, 2003, P NATL ACAD SCI USA, V100, P958, DOI 10.1073/pnas.0337433100 BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Chan DK, 2005, NAT NEUROSCI, V8, P149, DOI 10.1038/nn1385 Cheatham MA, 2004, J PHYSIOL-LONDON, V560, P821, DOI 10.1113/jphysiol.204.069559 Chiappe ME, 2007, J NEUROSCI, V27, P11978, DOI 10.1523/JNEUROSCI.3679-07.2007 CRAWFORD AC, 1985, J PHYSIOL-LONDON, V364, P359 CRAWFORD AC, 1981, J PHYSIOL-LONDON, V312, P377 CRAWFORD AC, 1978, J PHYSIOL-LONDON, V284, pP120 CRAWFORD AC, 1980, J PHYSIOL-LONDON, V306, P79 CRAWFORD AC, 1989, J PHYSIOL-LONDON, V419, P405 DALLOS P, 1985, J NEUROSCI, V5, P1591 Dallos P, 2008, NEURON, V58, P333, DOI 10.1016/j.neuron.2008.02.028 DALLOS P, 1993, J NEUROPHYSIOL, V70, P299 DALLOS P, 1995, SCIENCE, V267, P2006, DOI 10.1126/science.7701325 Dallos P, 2008, CURR OPIN NEUROBIOL, V18, P370, DOI 10.1016/j.conb.2008.08.016 DAVIS RI, 1989, HEARING RES, V41, P1, DOI 10.1016/0378-5955(89)90173-1 DEVRIES HL, 1948, PHYSICA, V14, P48, DOI 10.1016/0031-8914(48)90060-3 DEVRIES H, 1948, ACTA OTO-LARYNGOL, V36, P230, DOI 10.3109/00016484809123781 Dierkes K, 2008, P NATL ACAD SCI USA, V105, P18669, DOI 10.1073/pnas.0805752105 Dumont RA, 2001, J NEUROSCI, V21, P5066 Eatock RA, 2000, ANNU REV NEUROSCI, V23, P285, DOI 10.1146/annurev.neuro.23.1.285 EATOCK RA, 1993, J NEUROSCI, V13, P1767 EATOCK RA, 1987, J NEUROSCI, V7, P2821 EHRET G, 1979, J COMP NEUROL, V183, P73, DOI 10.1002/cne.901830107 Farris HE, 2006, J NEUROSCI, V26, P12526, DOI 10.1523/JNEUROSCI.3569-06.2006 Farris HE, 2000, J ACOUST SOC AM, V107, P1727, DOI 10.1121/1.428398 Faure PA, 2000, J EXP BIOL, V203, P3225 FAY RR, 1988, HEARING VERTEBRATES, V3 Feng AS, 2006, NATURE, V440, P333, DOI 10.1038/nature04416 Fettiplace R, 2001, TRENDS NEUROSCI, V24, P169, DOI 10.1016/S0166-2236(00)01740-9 FETTIPLACE R, 2006, J PHYSL Fettiplace R, 1999, ANNU REV PHYSIOL, V61, P809, DOI 10.1146/annurev.physiol.61.1.809 FETTIPLACE R, 1978, PROC R SOC SER B-BIO, V203, P209, DOI 10.1098/rspb.1978.0101 Fettiplace R, 2006, NAT REV NEUROSCI, V7, P19, DOI 10.1038/nrn1828 FISCHER FP, 1994, HEARING RES, V73, P1, DOI 10.1016/0378-5955(94)90277-1 Fischer FP, 1998, HEARING RES, V121, P112, DOI 10.1016/S0378-5955(98)00072-0 FISCHER FP, 1988, HEARING RES, V34, P87, DOI 10.1016/0378-5955(88)90053-6 Frank G, 1999, P NATL ACAD SCI USA, V96, P4420, DOI 10.1073/pnas.96.8.4420 FUCHS PA, 1988, J NEUROSCI, V8, P2460 FUCHS PA, 1988, J COMP PHYSIOL A, V164, P151, DOI 10.1007/BF00603947 Gillespie PG, 2004, ANNU REV PHYSIOL, V66, P521, DOI 10.1146/annurev.physiol.66.032102.112842 GLEICH O, 1988, HEARING RES, V34, P69, DOI 10.1016/0378-5955(88)90052-4 GLEICH O, 2000, COMP HEARING BIRDS R, P70 Gopfert MC, 2003, P NATL ACAD SCI USA, V100, P5514, DOI 10.1073/pnas.0737564100 Grati M, 2006, J NEUROSCI, V26, P6386, DOI 10.1523/JNEUROSCI.1215-06.2006 GUMMER AW, 1987, HEARING RES, V29, P63, DOI 10.1016/0378-5955(87)90206-1 Gummer AW, 1996, P NATL ACAD SCI USA, V93, P8727, DOI 10.1073/pnas.93.16.8727 HACKNEY CM, 1993, HEARING RES, V69, P163, DOI 10.1016/0378-5955(93)90104-9 Hackney CM, 2005, J NEUROSCI, V25, P7867, DOI 10.1523/JNEUROSCI.1196-05.2005 HARRIS GG, 1968, J ACOUST SOC AM, V44, P176, DOI 10.1121/1.1911052 He DZZ, 2003, J PHYSIOL-LONDON, V546, P511, DOI 10.1113/jphysiol.2002.026070 He DZZ, 2004, NATURE, V429, P766, DOI 10.1038/nature02591 Holt JR, 2002, CELL, V108, P371, DOI 10.1016/S0092-8674(02)00629-3 HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0 Hudspeth A, 2005, CR BIOL, V328, P155, DOI 10.1016/j.crvi.2004.12.003 HUDSPETH AJ, 1988, J PHYSIOL-LONDON, V400, P275 HUDSPETH AJ, 1985, SCIENCE, V230, P745, DOI 10.1126/science.2414845 Hudspeth AJ, 2000, P NATL ACAD SCI USA, V97, P11765, DOI 10.1073/pnas.97.22.11765 HUDSPETH AJ, 1979, P NATL ACAD SCI USA, V76, P1506, DOI 10.1073/pnas.76.3.1506 Hudspeth AJ, 2008, NEURON, V59, P530, DOI 10.1016/j.neuron.2008.07.012 HUDSPETH AJ, 1982, J NEUROSCI, V2, P1 HUDSPETH AJ, 1977, P NATL ACAD SCI USA, V74, P2407, DOI 10.1073/pnas.74.6.2407 INDRESANO AA, 2003, J ACOUST SOC AM, V96, P2216 Jaramillo F, 1998, NAT NEUROSCI, V1, P384, DOI 10.1038/1597 JARAMILLO F, 1991, NEURON, V7, P409, DOI 10.1016/0896-6273(91)90293-9 JARAMILLO F, 1993, P NATL ACAD SCI USA, V90, P1330, DOI 10.1073/pnas.90.4.1330 Jia SP, 2005, NAT NEUROSCI, V8, P1028, DOI 10.1038/nn1509 JOHNSTONE BM, 1986, HEARING RES, V22, P147, DOI 10.1016/0378-5955(86)90090-0 Jones EMC, 1999, J PHYSIOL-LONDON, V518, P653, DOI 10.1111/j.1469-7793.1999.0653p.x Kazmierczak P, 2007, NATURE, V449, P87, DOI 10.1038/nature06091 KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0 Kennedy HJ, 2005, NATURE, V433, P880, DOI 10.1038/nature03367 Kennedy HJ, 2006, J NEUROSCI, V26, P2757, DOI 10.1523/JNEUROSCI.3808-05.2006 Kennedy HJ, 2003, NAT NEUROSCI, V6, P832, DOI 10.1038/nn1089 Koppl C, 1997, J NEUROPHYSIOL, V77, P364 KOPPL C, 1993, HEARING RES, V71, P157, DOI 10.1016/0378-5955(93)90031-U Koppl C, 2004, J COMP NEUROL, V479, P149, DOI 10.1002/cne.20311 KOPPL C, 1995, HEARING RES, V82, P14 Kossl M, 2008, J COMP PHYSIOL A, V194, P597, DOI 10.1007/s00359-008-0344-0 Lagarde MMM, 2008, NAT NEUROSCI, V11, P746, DOI 10.1038/nn.2129 Legan PK, 2000, NEURON, V28, P273, DOI 10.1016/S0896-6273(00)00102-1 LEWIS ER, 1984, SCAN ELECTR MICROSC, V4, P1899 Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 Liberman MC, 2004, J ACOUST SOC AM, V116, P1649, DOI 10.1121/1.1775275 LIM DJ, 1980, J ACOUST SOC AM, V67, P1686, DOI 10.1121/1.384295 Manley G., 2000, COMP HEARING BIRDS R, P139 Manley G. A., 1990, PERIPHERAL HEARING M MANLEY GA, 1987, HEARING RES, V26, P257, DOI 10.1016/0378-5955(87)90062-1 MANLEY GA, 1988, HEARING RES, V33, P181, DOI 10.1016/0378-5955(88)90031-7 Manley GA, 1998, CURR OPIN NEUROBIOL, V8, P468, DOI 10.1016/S0959-4388(98)80033-0 Manley GA, 1997, J ACOUST SOC AM, V102, P1049, DOI 10.1121/1.419858 Manley GA, 2001, P NATL ACAD SCI USA, V98, P2826, DOI 10.1073/pnas.041604998 MANLEY GA, 1990, J COMP PHYSIOL A, V167, P89, DOI 10.1007/BF00192409 MANLEY GA, 2008, SENSES COMPREHENSIVE, V3, P1 Manley GA, 2001, J NEUROPHYSIOL, V86, P541 Manley GA, 2000, P NATL ACAD SCI USA, V97, P11736, DOI 10.1073/pnas.97.22.11736 Manley GA, 1996, J ACOUST SOC AM, V99, P1588, DOI 10.1121/1.414680 Manley GA, 2008, HEARING RES, V238, P3, DOI 10.1016/j.heares.2007.09.011 Martin P, 1999, P NATL ACAD SCI USA, V96, P14306, DOI 10.1073/pnas.96.25.14306 Martin P, 2001, P NATL ACAD SCI USA, V98, P14386, DOI 10.1073/pnas.251530498 Martin P, 2003, J NEUROSCI, V23, P4533 Martin P, 2000, P NATL ACAD SCI USA, V97, P12026, DOI 10.1073/pnas.210389497 Mason AC, 2004, MICROSC RES TECHNIQ, V63, P338, DOI 10.1002/jemt.20050 MEGELASIMMONS A, 1985, J ACOUST SOC AM, V78, P1236, DOI 10.1121/1.392892 MILLER MR, 1978, J MORPHOL, V156, P381, DOI 10.1002/jmor.1051560305 MILLER MR, 1978, AM J ANAT, V151, P409, DOI 10.1002/aja.1001510306 MILLER MR, 1973, AM J ANAT, V138, P301, DOI 10.1002/aja.1001380303 Moore B. C., 2004, INTRO PSYCHOL HEARIN MORRISON D, 1975, ACTA OTO-LARYNGOL, V79, P11, DOI 10.3109/00016487509124649 MULROY MJ, 1987, HEARING RES, V25, P11, DOI 10.1016/0378-5955(87)90075-X Nam JH, 2008, BIOPHYS J, V95, P4948, DOI 10.1529/biophysj.108.138560 Oghalai JS, 1998, J NEUROPHYSIOL, V79, P2235 OLDFIELD BP, 1988, TRENDS NEUROSCI, V11, P267, DOI 10.1016/0166-2236(88)90108-7 OLDFIELD BP, 1986, J COMP PHYSIOL A, V159, P457, DOI 10.1007/BF00604165 PATUZZI RB, 1991, HEARING RES, V53, P57, DOI 10.1016/0378-5955(91)90214-T PICKLES JO, 1984, HEARING RES, V14, P245, DOI 10.1016/0378-5955(84)90053-4 PICKLES JO, 1984, HEARING RES, V15, P103, DOI 10.1016/0378-5955(84)90041-8 PITCHFORD S, 1987, HEARING RES, V27, P75, DOI 10.1016/0378-5955(87)90027-X Popper AN, 2006, HEARING SOUND COMMUN, P184 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 RHODE WS, 1978, J ACOUST SOC AM, V64, P158, DOI 10.1121/1.381981 RHODE WS, 1974, J ACOUST SOC AM, V55, P588, DOI 10.1121/1.1914569 RHODE WS, 1971, J ACOUST SOC AM, V49, P1218, DOI 10.1121/1.1912485 Ricci AJ, 2000, J NEUROSCI, V20, P7131 Ricci AJ, 2003, NEURON, V40, P983, DOI 10.1016/S0896-6273(03)00721-9 Ricci AJ, 1997, J PHYSIOL-LONDON, V501, P111, DOI 10.1111/j.1469-7793.1997.111bo.x Ricci AJ, 1998, J NEUROSCI, V18, P8261 Ricci AJ, 2005, J NEUROSCI, V25, P7831, DOI 10.1523/JNEUROSCI.1127-05.2005 Ricci AJ, 2002, J NEUROSCI, V22, P44 Richter CP, 2007, BIOPHYS J, V93, P2265, DOI 10.1529/biophysj.106.094474 ROMER H, 1983, NATURE, V306, P60, DOI 10.1038/306060a0 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 RUGGERO MA, 1990, J ACOUST SOC AM, V87, P1612, DOI 10.1121/1.399409 RUGGERO MA, 1991, HEARING RES, V51, P215, DOI 10.1016/0378-5955(91)90038-B RUSSELL IJ, 1989, HEARING RES, V43, P55, DOI 10.1016/0378-5955(89)90059-2 Russell IJ, 2007, NAT NEUROSCI, V10, P215, DOI 10.1038/nn1828 Rybalchenko V, 2003, J PHYSIOL-LONDON, V547, P873, DOI 10.1113/jphysiol.2002.036434 SALVI RJ, 1992, J COMP PHYSIOL A, V170, P227 SANTOS-SACCHI J, 1991, J NEUROSCI, V11, P3096 SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X Schoffelen RLM, 2008, J COMP PHYSIOL A, V194, P417, DOI 10.1007/s00359-008-0327-1 Shen JX, 2008, NATURE, V453, P914, DOI 10.1038/nature06719 SHOTWELL SL, 1981, ANN NY ACAD SCI, V374, P1, DOI 10.1111/j.1749-6632.1981.tb30854.x Siemens J, 2004, NATURE, V428, P950, DOI 10.1038/nature02483 SLIFER EH, 1975, J NEUROCYTOL, V4, P419, DOI 10.1007/BF01261373 SNEARY MG, 1988, J COMP NEUROL, V276, P573, DOI 10.1002/cne.902760410 SNEARY MG, 1988, J COMP NEUROL, V276, P588, DOI 10.1002/cne.902760411 Stauffer EA, 2005, NEURON, V47, P541, DOI 10.1016/j.neuron.2005.07.024 Stewart CE, 2000, P NATL ACAD SCI USA, V97, P454, DOI 10.1073/pnas.97.1.454 STIEBLER IB, 1990, HEARING RES, V46, P63, DOI 10.1016/0378-5955(90)90140-K Stumpner A, 2006, J COMP PHYSIOL A, V192, P1359, DOI 10.1007/s00359-006-0164-z Sul B, 2009, BIOPHYS J, V97, P2653, DOI 10.1016/j.bpj.2009.08.039 Taberner AM, 2005, J NEUROPHYSIOL, V93, P557, DOI 10.1152/jn.00574.2004 TANAKA K, 1978, AM J ANAT, V153, P251, DOI 10.1002/aja.1001530206 Taschenberger G, 1997, HEARING RES, V110, P61, DOI 10.1016/S0378-5955(97)00070-1 TILNEY LG, 1983, J CELL BIOL, V96, P807, DOI 10.1083/jcb.96.3.807 TILNEY MS, 1987, HEARING RES, V25, P141, DOI 10.1016/0378-5955(87)90087-6 VANDIJK P, 1989, HEARING RES, V42, P273, DOI 10.1016/0378-5955(89)90151-2 Waguespack J, 2007, J NEUROSCI, V27, P13890, DOI 10.1523/JNEUROSCI.2159-07.2007 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 Warr WB, 1997, HEARING RES, V108, P89, DOI 10.1016/S0378-5955(97)00044-0 WEAVER SP, 1994, HEARING RES, V76, P1, DOI 10.1016/0378-5955(94)90081-7 WEYER EG, 1967, J MORPHOL, V122, P307 Wibowo E, 2009, J COMP NEUROL, V516, P74, DOI 10.1002/cne.22101 Wu XD, 2004, MOL BRAIN RES, V126, P30, DOI 10.1016/j.molbrainres.2004.03.020 WU YC, 1995, PROG BIOPHYS MOL BIO, V63, P131, DOI 10.1016/0079-6107(95)00002-5 Wu YC, 1999, J NEUROPHYSIOL, V82, P2171 Yack JE, 2004, MICROSC RES TECHNIQ, V63, P315, DOI 10.1002/jemt.20051 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 NR 183 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAR PY 2011 VL 273 IS 1-2 SI SI BP 109 EP 122 DI 10.1016/j.heares.2010.03.094 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 751HM UT WOS:000289608100013 PM 20430075 ER PT J AU Nagel, K Kim, G McLendon, H Doupe, A AF Nagel, Katherine Kim, Gunsoo McLendon, Helen Doupe, Allison TI A bird brain's view of auditory processing and perception SO HEARING RESEARCH LA English DT Article ID MALE ZEBRA FINCHES; INDIVIDUAL VOCAL RECOGNITION; CONTEXT-DEPENDENT CHANGES; INFERIOR TEMPORAL CORTEX; FIELD-L-COMPLEX; NATURAL SOUNDS; FUNCTIONAL-ORGANIZATION; RECEPTIVE-FIELDS; CORTICAL DISCRIMINATION; CAUDAL TELENCEPHALON AB By studying the primary forebrain auditory area of songbirds, field L, using a song-inspired synthetic stimulus and reverse correlation techniques, we found a surprisingly systematic organization of this area, with nearly all neurons narrowly tuned along the spectral dimension, the temporal dimension, or both; there were virtually no strongly orientation-sensitive cells, and in the areas that we recorded, cells broadly tuned in both time and frequency were rare. In addition, cells responsive to fast temporal frequencies predominated only in the field L input layer, suggesting that neurons with fast and slow responses are concentrated in different regions. Together with other songbird data and work from chicks and mammals, these findings suggest that sampling a range of temporal and spectral modulations, rather than orientation in time-frequency space, is the organizing principle of forebrain auditory sensitivity. We then examined the role of these acoustic parameters important to field L organization in a behavioral task. Birds' categorization of songs fell off rapidly when songs were altered in frequency, but, despite the temporal sensitivity of field L neurons, the same birds generalized well to songs that were significantly changed in timing. These behavioral data point out that we cannot assume that animals use the information present in particular neurons without specifically testing perception. (C) 2010 Elsevier B.V. All rights reserved. C1 [Doupe, Allison] Univ Calif San Francisco, Dept Physiol, San Francisco, CA 94143 USA. [Nagel, Katherine; Kim, Gunsoo; McLendon, Helen; Doupe, Allison] Univ Calif San Francisco, Keck Ctr Integrat Neurosci, San Francisco, CA 94143 USA. [Nagel, Katherine] Harvard Univ, Sch Med, Dept Neurobiol, Boston, MA 02115 USA. RP Doupe, A (reprint author), Univ Calif San Francisco, Dept Physiol, Box 0444,513 Parnassus Ave, San Francisco, CA 94143 USA. EM Katherine_Nagel@hms.harvard.edu; gkim@phy.ucsf.edu; helen@phy.ucsf.edu; ajd@phy.ucsf.edu FU NIH [NS34835, DC04975, MH055987]; Howard Hughes Medical Institute FX The work described in this paper was supported by NIH grants NS34835, DC04975, and MH055987 to AJD, and a Howard Hughes Medical Institute fellowship to KN. All animal experiments were approved by the University of California, San Francisco IACUC. CR AMIN N, 2008, SELECTIVITY NATURAL Atencio CA, 2009, P NATL ACAD SCI USA, V106, P21894, DOI 10.1073/pnas.0908383106 AVEDANO C, 2004, SPEECH PROCESSING AU BEECHER MD, 1994, P NATL ACAD SCI USA, V91, P1450, DOI 10.1073/pnas.91.4.1450 BRENOWITZ EA, 1991, SCIENCE, V251, P303, DOI 10.1126/science.1987645 Chi T, 2005, J ACOUST SOC AM, V118, P887, DOI 10.1121/1.1945807 Cooper BG, 2006, J NEUROPHYSIOL, V95, P3798, DOI 10.1152/jn.01123.2005 Cousillas H, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002194 Cousillas H, 2006, NATURWISSENSCHAFTEN, V93, P588, DOI 10.1007/s00114-006-0148-4 Depireux DA, 2001, J NEUROPHYSIOL, V85, P1220 DOOLING RJ, 2000, COMP HEARING Dooling RJ, 2002, J ACOUST SOC AM, V112, P748, DOI 10.1121/1.1494447 Doupe AJ, 1999, ANNU REV NEUROSCI, V22, P567, DOI 10.1146/annurev.neuro.22.1.567 Doupe AJ, 1997, J NEUROSCI, V17, P1147 EGGERMONT JJ, 1983, Q REV BIOPHYS, V16, P341 Escabi MA, 2003, J NEUROSCI, V23, P11489 FLANAGAN RM, 1966, BELL SYST TECH J, V1493, P1509 FORTUNE ES, 1992, J COMP NEUROL, V325, P388, DOI 10.1002/cne.903250306 FORTUNE ES, 1995, J COMP NEUROL, V360, P413, DOI 10.1002/cne.903600305 Freedman DJ, 2001, SCIENCE, V291, P312, DOI 10.1126/science.291.5502.312 Gehr DD, 1999, NEUROREPORT, V10, P375, DOI 10.1097/00001756-199902050-00030 Gentner TQ, 2003, NATURE, V424, P669, DOI 10.1038/nature01731 Gentner TQ, 1998, ANIM BEHAV, V56, P579, DOI 10.1006/anbe.1998.0810 Gentner TQ, 2000, J NEUROBIOL, V42, P117, DOI 10.1002/(SICI)1097-4695(200001)42:1<117::AID-NEU11>3.0.CO;2-M Gentner TQ, 2004, ANN NY ACAD SCI, V1016, P282, DOI 10.1196/annals.1298.008 GLAZE CM, 2006, J NEUROSCI, V18, P3 Glaze CM, 2006, J NEUROSCI, V26, P991, DOI 10.1523/JNEUROSCI.3387-05.2006 HEIL P, 1992, J COMP NEUROL, V322, P548, DOI 10.1002/cne.903220409 HEIL P, 1992, J COMP PHYSIOL A, V171, P583 HEIL P, 1985, EXP BRAIN RES, V58, P532 HEIL P, 1991, BRAIN RES, V539, P110, DOI 10.1016/0006-8993(91)90692-O HEIL P, 1991, BRAIN RES, V539, P121, DOI 10.1016/0006-8993(91)90693-P Hsu A, 2004, J NEUROSCI, V24, P9201, DOI 10.1523/JNEUROSCI.2449-04.2004 Hung CP, 2005, SCIENCE, V310, P863, DOI 10.1126/science.1117593 Insanally MN, 2009, J NEUROSCI, V29, P5456, DOI 10.1523/JNEUROSCI.5311-08.2009 Kao MH, 2006, J NEUROPHYSIOL, V96, P1441, DOI 10.1152/jn.01138.2005 Kim KJ, 2001, J NEUROSCI, V21, P287 KONISHI M, 1985, ANNU REV NEUROSCI, V8, P125 Konishi M, 2000, COMP BIOCHEM PHYS A, V126, P459, DOI 10.1016/S1095-6433(00)00232-4 Konishi M, 1990, Harvey Lect, V86, P47 Kreiman G, 2006, NEURON, V49, P433, DOI 10.1016/j.neuron.2005.12.019 Kroodsma D. E., 1982, ACOUSTIC COMMUNICATI Kruse AA, 2004, NEUROBIOL LEARN MEM, V82, P99, DOI 10.1016/j.nlm.2004.05.001 Larson E, 2009, J NEUROPHYSIOL, V101, P323, DOI 10.1152/jn.90664.2008 LEWICKI MS, 1995, P NATL ACAD SCI USA, V92, P5582, DOI 10.1073/pnas.92.12.5582 Lohr B, 2006, J COMP PSYCHOL, V120, P239, DOI 10.1037/0735-7036.120.3.239 Lu T, 2001, NAT NEUROSCI, V4, P1131, DOI 10.1038/nn737 MacDougall-Shackleton SA, 1998, NEUROREPORT, V9, P3047, DOI 10.1097/00001756-199809140-00024 Machens CK, 2004, J NEUROSCI, V24, P1089, DOI 10.1523/JNEUROSCI.4445-03.2004 MARGOLIASH D, 1983, J NEUROSCI, V3, P1039 MARGOLIASH D, 1992, J NEUROSCI, V12, P4309 MELLO C, 1995, J NEUROSCI, V15, P6919 Miller LM, 2002, J NEUROPHYSIOL, V87, P516 Mooney R, 2009, CURR OPIN NEUROBIOL, V19, P654, DOI 10.1016/j.conb.2009.10.004 Mooney R, 2000, J NEUROSCI, V20, P5420 Nagel KI, 2008, NEURON, V58, P938, DOI 10.1016/j.neuron.2008.04.028 Nagel KI, 2010, J NEUROPHYSIOL, V104, P1426, DOI 10.1152/jn.00028.2010 Nagel KI, 2006, NEURON, V51, P845, DOI 10.1016/j.neuron.2006.08.030 Narayan R, 2006, J NEUROPHYSIOL, V96, P252, DOI 10.1152/jn.01257.2005 NELSON DA, 1989, SCIENCE, V244, P976, DOI 10.1126/science.2727689 NELSON DA, 1989, J COMP PSYCHOL, V103, P171, DOI 10.1037/0735-7036.103.2.171 NOTTEBOHM F, 1976, J COMP NEUROL, V165, P457, DOI 10.1002/cne.901650405 O'Shaughnessy D., 1986, IEEE ASSP Magazine, V3, DOI 10.1109/MASSP.1986.1165388 Reiner A, 2004, ANN NY ACAD SCI, V1016, P77, DOI 10.1196/annals.1298.013 Ringach D, 2004, COGNITIVE SCI, V28, P147, DOI 10.1016/j.cogsci.2003.11.003 Ringach DL, 2002, J VISION, V2, P12, DOI 10.1167/2.1.2 Rosen MJ, 2003, NEURON, V39, P177, DOI 10.1016/S0896-6273(03)00357-X SCHEICH H, 1979, CELL TISSUE RES, V204, P17 Searcy WA, 1999, DESIGN OF ANIMAL COMMUNICATION, P577 Sen K, 2001, J NEUROPHYSIOL, V86, P1445 Sharpee TO, 2006, NATURE, V439, P936, DOI 10.1038/nature04519 Sheft S, 2008, J ACOUST SOC AM, V124, P562, DOI 10.1121/1.2918540 Simon JZ, 2007, NEURAL COMPUT, V19, P583, DOI 10.1162/neco.2007.19.3.583 Singh NC, 2003, J ACOUST SOC AM, V114, P3394, DOI 10.1121/1.1624067 Soderstrom K, 2004, J NEUROSCI, V24, P10013, DOI 10.1523/JNEUROSCI.3298-04.2004 STODDARD PK, 1991, BEHAV ECOL SOCIOBIOL, V29, P211, DOI 10.1007/BF00166403 Stripling R, 1997, J NEUROSCI, V17, P3883 Terleph TA, 2006, J NEUROBIOL, V66, P281, DOI 10.1002/neu.20219 Theunissen FE, 2000, J NEUROSCI, V20, P2315 Theunissen FE, 2006, CURR OPIN NEUROBIOL, V16, P400, DOI 10.1016/j.conb.2006.07.003 Vates GE, 1996, J COMP NEUROL, V366, P613, DOI 10.1002/(SICI)1096-9861(19960318)366:4<613::AID-CNE5>3.0.CO;2-7 Vignal C, 2008, BEHAV PROCESS, V77, P191, DOI 10.1016/j.beproc.2007.09.003 WALDEN BE, 1978, J SPEECH HEAR RES, V21, P265 Wang L, 2007, J NEUROSCI, V27, P582, DOI 10.1523/JNEUROSCI.3699-06.2007 Wang XQ, 2005, NATURE, V435, P341, DOI 10.1038/nature03565 WILD JM, 1993, J COMP NEUROL, V337, P32 WOOLLEY SM, 2005, NAT NEUROSCI, P1371 Woolley SMN, 2006, J NEUROSCI, V26, P2499, DOI 10.1523/JNEUROSCI.3731-05.2006 Woolley SMN, 2009, J NEUROSCI, V29, P2780, DOI 10.1523/JNEUROSCI.2042-08.2009 Zann R, 1996, ZEBRA FINCH SYNTHESI Zeigler H. P., 2008, NEUROSCIENCE BIRDSON NR 91 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAR PY 2011 VL 273 IS 1-2 SI SI BP 123 EP 133 DI 10.1016/j.heares.2010.08.008 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 751HM UT WOS:000289608100014 PM 20851756 ER PT J AU Bhutta, MF Hedge, EA Parker, A Cheeseman, MT Brown, SDM AF Bhutta, Mahmood F. Hedge, Elizabeth A. Parker, Andrew Cheeseman, Michael T. Brown, Stephen D. M. TI Oto-endoscopy: A reliable and validated technique for phenotyping otitis media in the mouse SO HEARING RESEARCH LA English DT Article ID MIDDLE-EAR EFFUSION; FUNCTIONAL ANNOTATION; GENE; DIAGNOSIS; POLYMORPHISMS; HERITABILITY; ASSOCIATION; ACCURACY; GENOME; SUSCEPTIBILITY AB The mouse is a widely used model for investigating the pathophysiological and genetic bases of otitis media (OM). It has proven a valuable tool for investigating the multifactorial bases of OM including the role of pathogens, anatomical factors, inflammatory mediators and susceptibility loci. However, straightforward and robust phenotyping tools for identifying murine otitis media are lacking, which has precluded for example the identification of mice with OM in genetic screens without resorting to time-consuming histopathology. We have set out to develop a phenotyping platform for the detection of OM in mice utilizing oto-endoscopy. We have applied the technique to a cohort of mice genetically susceptible to chronic otitis media. We show that oto-endoscopy is a safe, reliable and valid method for detecting otitis media in the mouse and discuss its utility in screens to identify novel genes involved with susceptibility to OM. (C) 2010 Elsevier B.V. All rights reserved. C1 [Bhutta, Mahmood F.; Hedge, Elizabeth A.; Parker, Andrew; Cheeseman, Michael T.; Brown, Stephen D. M.] MRC, Mammalian Genet Unit, Harwell OX11 ORD, Oxon, England. [Bhutta, Mahmood F.] Univ Oxford, John Radcliffe Hosp, Nuffield Dept Surg Sci, Oxford OX3 9DU, England. [Hedge, Elizabeth A.] Kings Coll London, Sch Med, London SE1 1UL, England. RP Bhutta, MF (reprint author), MRC, Mammalian Genet Unit, Harwell Sci & Innovat Campus, Harwell OX11 ORD, Oxon, England. EM m.bhutta@har.mrc.ac.uk FU MRC Harwell; RNID FX Thanks to Hilda Tateossian and ward 4 staff for providing the mice, to necropsy and histology for tissue processing, and to Steve Thomas and Anki Wessling for artwork. Funding was provided by MRC Harwell and by a summer studentship grant from RNID. CR Austin CP, 2004, NAT GENET, V36, P921, DOI 10.1038/ng0904-921 Auwerx J, 2004, NAT GENET, V36, P925, DOI 10.1038/ng0904-925 Blomgren K, 2005, INT J PEDIATR OTORHI, V69, P295, DOI 10.1016/j.ijporl.2004.09.012 Brown SDM, 2005, NAT GENET, V37, P1155, DOI 10.1038/ng1105-1155 Brown SDM, 2009, ANNU REV GENET, V43, P305, DOI 10.1146/annurev-genet-102108-134143 Casselbrant M, 2003, EVIDENCE BASED OTITI, P147 Casselbrant ML, 2004, ARCH OTOLARYNGOL, V130, P273, DOI 10.1001/archotol.130.3.273 Casselbrant ML, 1999, JAMA-J AM MED ASSOC, V282, P2125, DOI 10.1001/jama.282.22.2125 Daly KA, 2004, AM J HUM GENET, V75, P988, DOI 10.1086/426061 Emonts M, 2007, PEDIATRICS, V120, P814, DOI 10.1542/peds.2007-0524 Emonts M, 2007, PEDIATRICS, V120, pE317, DOI 10.1542/peds.2006-1390 FIELDS MJ, 1993, NEW ZEAL MED J, V106, P386 Gelfand S., 2001, ESSENTIALS AUDIOLOGY Hardisty RE, 2003, JARO, V4, P130, DOI 10.1007/s10162-002-3015-9 Hardisty-Hughes RE, 2006, HUM MOL GENET, V15, P3273, DOI 10.1093/hmg/ddl403 Hardisty-Hughes RE, 2010, NAT PROTOC, V5, P177, DOI 10.1038/nprot.2009.204 Jero J, 2001, ACTA OTO-LARYNGOL, V121, P585, DOI 10.1080/000164801316878863 KARMA PH, 1989, INT J PEDIATR OTORHI, V17, P37, DOI 10.1016/0165-5876(89)90292-9 Kubba H, 2000, CLIN OTOLARYNGOL, V25, P181, DOI 10.1046/j.1365-2273.2000.00350.x Kvaerner KJ, 1997, ANN OTO RHINOL LARYN, V106, P624 Lee DH, 2004, J KOREAN MED SCI, V19, P739 MURRAY CJL, 1996, GLOBAL BURDEN DIS, P433 Paparella MM, 2002, ORL J OTO-RHINO-LARY, V64, P65, DOI 10.1159/000057783 Parkinson N, 2006, PLOS GENET, V2, P1556, DOI 10.1371/journal.pgen.0020149 Patel JA, 2006, PEDIATRICS, V118, P2273, DOI 10.1542/peds.2006-0764 Pettigrew MM, 2006, BMC MED GENET, V7, DOI 10.1186/1471-2350-7-68 Rovers M, 2002, AM J EPIDEMIOL, V155, P958, DOI 10.1093/aje/155.10.958 Ryan AF, 2006, BRAIN RES, V1091, P3, DOI 10.1016/j.brainres.2006.02.004 SALE M, 2008, 31 ANN MIDW RES M AS Segade F, 2006, ARCH OTOLARYNGOL, V132, P729, DOI 10.1001/archotol.132.7.729 Shiao AS, 2005, INT J PEDIATR OTORHI, V69, P1497, DOI 10.1016/j.ijporl.2005.03.041 Takata GS, 2003, PEDIATRICS, V112, P1379, DOI 10.1542/peds.112.6.1379 Tateossian Hilda, 2009, Pathogenetics, V2, P5, DOI 10.1186/1755-8417-2-5 Wiertsema SP, 2006, CLIN VACCINE IMMUNOL, V13, P892, DOI 10.1128/CVI.00100-06 Wiertsema SP, 2006, J ALLERGY CLIN IMMUN, V117, P1344, DOI 10.1016/j.jaci.2006.01.031 Wiertsema SP, 2006, VACCINE, V24, P792, DOI 10.1016/j.vaccine.2005.08.029 World Health Organization, 2004, CHRON SUPP OT MED BU Young DE, 2009, INT J PEDIATR OTORHI, V73, P825, DOI 10.1016/j.ijporl.2009.02.012 Zheng QY, 2006, BRAIN RES, V1091, P9, DOI 10.1016/j.brainres.2006.01.046 Zheng QY, 2007, HEARING RES, V231, P23, DOI 10.1016/j.heares.2007.05.011 NR 40 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2011 VL 272 IS 1-2 BP 5 EP 12 DI 10.1016/j.heares.2010.09.002 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 735ME UT WOS:000288418100002 PM 20870016 ER PT J AU Ohlemiller, KK Rice, MER Rellinger, EA Ortmann, AJ AF Ohlemiller, Kevin K. Rice, Mary E. Rybak Rellinger, Erin A. Ortmann, Amanda J. TI Divergence of noise vulnerability in cochleae of young CBA/J and CBA/CaJ mice SO HEARING RESEARCH LA English DT Article ID INDUCED HEARING-LOSS; ACOUSTIC TRAUMA; INBRED STRAINS; AMINOGLYCOSIDE OTOTOXICITY; SENSITIVE PERIOD; AUDITORY TRAUMA; MOUSE COCHLEA; LATERAL WALL; GUINEA-PIGS; INNER-EAR AB CBA/CaJ and CBA/J inbred mouse strains appear relatively resistant to age- and noise-related cochlear pathology, and constitute the predominant 'good hearing' control strains in mouse studies of hearing and deafness. These strains have often been treated as nearly equivalent in their hearing characteristics, and have even been mixed in some studies. Nevertheless, we recently showed that their trajectories with regard to age-associated cochlear pathology diverge after one year of age (Ohlemiller et al., 2010a). We also recently reported that they show quite different susceptibility to cochlear noise injury during the 'sensitive period' of heightened vulnerability to noise common to many models, CBA/J being far more vulnerable than CBA/CaJ (Fernandez et al., 2010 J. Assoc. Res. Otolaryngol. 11:235-244). Here we explore this relation in a side-by-side comparison of the effect of varying noise exposure duration in young (6 week) and older (6 month) CBA/J and CBA/CaJ mice, and in F1 hybrids formed from these. Both the extent of permanent noise-induced threshold shifts (NIPTS) and the probability of a defined NIPTS were determined as exposure to intense broadband noise (4-45 kHz, 110 dB SPL) increased by factors of two from 7 s to 4 h. At 6 months of age the two strains appeared very similar by both measures. At 6 weeks of age, however, both the extent and probability of NIPTS grew much more rapidly with noise duration in CBA/J than in CBA/CaJ. The 'threshold' exposure duration for NIPTS was < 1.0 min in CBA/J versus > 4.0 min in CBA/CaJ. F1 hybrid mice showed both NIPTS and hair cell loss similar to that in CBA/J. This suggests that dominant-acting alleles at unknown loci distinguish CBA/J from CBA/CaJ. These loci have novel effects on hearing phenotype, as they come into play only during the sensitive period, and may encode factors that demarcate this period. Since the cochlear cells whose fragility defines the early window appear to be hair cells, these loci may principally impact the mechanical or metabolic resiliency of hair cells or the organ of Corti. (C) 2010 Elsevier B.V. All rights reserved. C1 [Ohlemiller, Kevin K.; Rice, Mary E. Rybak; Rellinger, Erin A.; Ortmann, Amanda J.] Washington Univ, Sch Med, Program Audiol & Commun Sci, St Louis, MO 63130 USA. [Ohlemiller, Kevin K.] Washington Univ, Sch Med, Dept Otolaryngol, Fay & Carl Simons Ctr Biol Hearing & Deafness, St Louis, MO 63110 USA. RP Ohlemiller, KK (reprint author), Washington Univ, Sch Med, Program Audiol & Commun Sci, St Louis, MO 63130 USA. EM kohlemiller@wustl.edu FU WUSM Department of Otolaryngology [P30 DC004665, P30 NS057105, R01 DC03454, R01 DC008321] FX Thanks to P.M. Gagnon for technical assistance. Supported by P30 DC004665 (R. Chole), P30 NS057105 (D. Holtzman), R01 DC03454 (KKO), R01 DC008321 (KKO), WUSM Department of Otolaryngology. CR BERNARD PA, 1981, LARYNGOSCOPE, V91, P1985 Bohne B.A., 1982, NEW PERSPECTIVES NOI, P283 Bult CJ, 2008, NUCLEIC ACIDS RES, V36, pD724, DOI 10.1093/nar/gkm961 Clark JA, 1996, HEARING RES, V99, P119, DOI 10.1016/S0378-5955(96)00092-5 Davis RR, 1999, HEARING RES, V134, P9, DOI 10.1016/S0378-5955(99)00060-X Davis RR, 2001, HEARING RES, V155, P82, DOI 10.1016/S0378-5955(01)00250-7 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H Erway LC, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P56 FALK SA, 1974, LARYNGOSCOPE, V84, P444, DOI 10.1288/00005537-197403000-00008 Fernandez EA, 2010, JARO-J ASSOC RES OTO, V11, P235, DOI 10.1007/s10162-009-0204-9 FINNEY DJ, 1985, ARCH TOXICOL, V56, P215, DOI 10.1007/BF00295156 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 FOX RR, 1997, HDB GENETICALLY STAN, P95467 FREDELIUS L, 1987, HEARING RES, V30, P157, DOI 10.1016/0378-5955(87)90133-X Freeman S, 1999, AUDIOL NEURO-OTOL, V4, P207, DOI 10.1159/000013844 Gagnon PM, 2007, HEARING RES, V226, P79, DOI 10.1016/j.heares.2006.09.006 HENLEY CM, 1995, BRAIN RES REV, V20, P68, DOI 10.1016/0165-0173(94)00006-B HENRY KR, 1984, BEHAV NEUROSCI, V98, P1073, DOI 10.1037/0735-7044.98.6.1073 HENRY KR, 1983, AUDIOLOGY, V22, P372 HENRY KR, 1992, AUDIOLOGY, V31, P181 HENRY KR, 1981, ARCH OTOLARYNGOL, V107, P92 HENRY KR, 1982, BEHAV GENET, V12, P563, DOI 10.1007/BF01070410 HENRY KR, 1982, HEARING RES, V8, P285, DOI 10.1016/0378-5955(82)90020-X Hirose K, 2003, JARO, V4, P339, DOI 10.1007/s10162-002-3036-4 Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 KALTENBACH JA, 1992, HEARING RES, V60, P205, DOI 10.1016/0378-5955(92)90022-F Kent WDT, 2002, J OTOLARYNGOL, V31, P355, DOI 10.2310/7070.2002.34358 Konings A, 2009, EAR HEARING, V30, P151, DOI 10.1097/AUD.0b013e3181987080 Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009 Kujawa SG, 2006, J NEUROSCI, V26, P2115, DOI 10.1523/JNEUROSCI.4985-05.2006 LI HS, 1992, ACTA OTO-LARYNGOL, V112, P956, DOI 10.3109/00016489209137496 Li HZ, 2009, NOISE HEALTH, V11, P26, DOI 10.4103/1463-1741.45310 Muller M, 2005, HEARING RES, V202, P63, DOI 10.1016/j.heares.2004.08.011 Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X Ohlemiller KK, 2010, JARO-J ASSOC RES OTO, V11, P605, DOI 10.1007/s10162-010-0228-1 Ohlemiller KK, 2000, HEARING RES, V149, P239, DOI 10.1016/S0378-5955(00)00191-X Ohlemiller KK, 2007, HEARING RES, V224, P34, DOI 10.1016/j.heares.2006.11.005 Ohlemiller KK, 2008, HEARING RES, V245, P5, DOI 10.1016/j.heares.2008.08.007 Ohlemiller KK, 2010, HEARING RES, V260, P47, DOI 10.1016/j.heares.2009.11.006 Ohlemiller KK, 2011, JARO-J ASSOC RES OTO, V12, P45, DOI 10.1007/s10162-010-0238-z Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017 Ohlemiller Kevin K., 2008, V31, P145 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 ORTMANN AJ, 2004, ABSTR ASS RES OTOLAR, V27, P168 Pawelczyk M, 2009, ANN HUM GENET, V73, P411, DOI 10.1111/j.1469-1809.2009.00521.x Perletti G, 2008, MOL MED REP, V1, P3 PRICE GR, 1976, J ACOUST SOC AM, V60, P886, DOI 10.1121/1.381169 Pujol R, 1992, NOISE INDUCED HEARIN, P196 Rodriguez-Paris J, 2008, ANN CLIN LAB SCI, V38, P352 Rybak Leonard P, 2007, Curr Opin Otolaryngol Head Neck Surg, V15, P364, DOI 10.1097/MOO.0b013e3282eee452 Rybalko N, 2001, HEARING RES, V155, P32, DOI 10.1016/S0378-5955(01)00245-3 SAUNDERS JC, 1982, ENVIRON HEALTH PERSP, V44, P63, DOI 10.2307/3429477 SPOENDLI.H, 1973, ACTA OTO-LARYNGOL, V75, P220, DOI 10.3109/00016487309139699 SPOENDLI.H, 1971, ACTA OTO-LARYNGOL, V71, P166, DOI 10.3109/00016487109125346 STANEK R, 1977, T AM ACAD OPHTHALMOL, V84, P465 Van Eyken E, 2007, AUDIOL NEURO-OTOL, V12, P345, DOI 10.1159/000106478 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 Whitlon DS, 1999, HEARING RES, V137, P43, DOI 10.1016/S0378-5955(99)00136-7 Willott J. F., 1991, AGING AUDITORY SYSTE Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3 Yoshida N, 2000, HEARING RES, V141, P97, DOI 10.1016/S0378-5955(99)00210-5 ZELCK U, 1993, EUR ARCH OTO-RHINO-L, V250, P218 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 63 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2011 VL 272 IS 1-2 BP 13 EP 20 DI 10.1016/j.heares.2010.11.006 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 735ME UT WOS:000288418100003 PM 21108998 ER PT J AU Getzrnann, S Lewald, J AF Getzrnann, Stephan Lewald, Joerg TI The effect of spatial adaptation on auditory motion processing SO HEARING RESEARCH LA English DT Article ID INFERIOR COLLICULUS; SOUND MOTION; HUMAN BRAIN; SUPERIOR COLLICULUS; NEURAL CODE; SPACE; NEURONS; REPRESENTATION; FIELDS; CUES AB The effect of acoustic pre-stimulation on cortical processing of subsequent sound motion was investigated in free-field space, using electroencephalography and a psychophysical motion-discrimination task. Subjects heard sound stimuli that moved from a central position (0 degrees) to the left or right. The onset of motion was preceded by either stationary sound at 0 degrees or spatially scattered sound on the left (0 to 32), right (0-32 degrees), or both (-32 to 32 degrees) sides. Following stationary sound, the start of auditory motion elicited a motion-specific onset response as described in previous studies. Following scattered sound, the amplitude of the motion-onset response was lower and reaction times in motion discrimination were longer than with the stationary pre-stimulus. Both these effects were most pronounced when the pre-stimulation by scattered sound was on the same side as the motion, whereas effects were only weak when pre-stimuli and motion were on different sides. These results are compatible with the view that spatial adaptation plays a role in auditory motion perception, and that motion processing could be triggered by release of adaptation of populations of location-specific neurons. (C) 2010 Elsevier B.V. All rights reserved. C1 [Getzrnann, Stephan; Lewald, Joerg] Leibniz Res Ctr Working Environm & Human Factors, D-44139 Dortmund, Germany. [Getzrnann, Stephan; Lewald, Joerg] Ruhr Univ Bochum, Fac Psychol, Dept Cognit Psychol, D-44780 Bochum, Germany. RP Getzrnann, S (reprint author), Leibniz Res Ctr Working Environm & Human Factors, Ardeystr 67, D-44139 Dortmund, Germany. EM stephan.getzmann@rub.de RI Lewald, Jorg/D-3034-2009 OI Lewald, Jorg/0000-0001-9351-0170 FU Deutsche Forschungsgemeinschaft [Ge1920/2-2, Fa211/24-1] FX The authors are especially grateful to Ines Mombrei and Jens Kreitewolf for their help in running the experiments, to Peter Dillmann for preparing parts of the electronic equipment and software, to Sven Hoffmann for performing statistical analyses, and to Michael Falkenstein and three anonymous reviewers for valuable comments on an earlier draft of the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft (Ge1920/2-2; Fa211/24-1). CR Ahveninen J, 2006, P NATL ACAD SCI USA, V103, P14608, DOI 10.1073/pnas.0510480103 AITKIN LM, 1985, J NEUROPHYSIOL, V53, P43 ALTMAN JA, 1990, ELECTROEN CLIN NEURO, V75, P323, DOI 10.1016/0013-4694(90)90110-6 BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289 BINNS KE, 1992, BRAIN RES, V589, P231, DOI 10.1016/0006-8993(92)91282-J Blauert J., 1997, SPATIAL HEARING PSYC Ducommun CY, 2002, NEUROIMAGE, V16, P76, DOI 10.1006/nimg.2002.1062 Getzmann S, 2010, HEARING RES, V259, P44, DOI 10.1016/j.heares.2009.09.021 Getzmann S, 2008, HEARING RES, V246, P44, DOI 10.1016/j.heares.2008.09.007 Getzmann S, 2009, NEUROPSYCHOLOGIA, V47, P2625, DOI 10.1016/j.neuropsychologia.2009.05.012 Getzmann S, 2010, J NEUROPHYSIOL, V103, P1896, DOI 10.1152/jn.00333.2009 GRANTHAM DW, 1986, J ACOUST SOC AM, V79, P1939, DOI 10.1121/1.393201 GRATTON G, 1983, ELECTROEN CLIN NEURO, V55, P468, DOI 10.1016/0013-4694(83)90135-9 Groh JM, 2003, J COGNITIVE NEUROSCI, V15, P1217, DOI 10.1162/089892903322598166 Ingham NJ, 2001, J NEUROPHYSIOL, V85, P23 Jerger James, 2002, J Am Acad Audiol, V13, P59 KING AJ, 1987, J NEUROPHYSIOL, V57, P596 KNUDSEN EI, 1978, SCIENCE, V200, P795, DOI 10.1126/science.644324 Krumbholz K, 2005, EUR J NEUROSCI, V21, P230, DOI 10.1111/j.1460-9568.2004.03836.x Krumbholz K, 2007, J NEUROPHYSIOL, V97, P1649, DOI 10.1152/jn.00560.2006 LEWALD J, 1990, EXP BRAIN RES, V82, P423 Lewald J, 2009, NEUROPSYCHOLOGIA, V47, P962, DOI 10.1016/j.neuropsychologia.2008.10.016 LEWALD J, NEUROPSYCHO IN PRESS Makela JP, 1996, EXP BRAIN RES, V110, P446 McAlpine D, 2001, NAT NEUROSCI, V4, P396, DOI 10.1038/86049 McAlpine D, 2000, J NEUROPHYSIOL, V83, P1356 McAlpine D, 2002, J NEUROSCI, V22, P1443 MIDDLEBROOKS JC, 1984, J NEUROSCI, V4, P2621 MOISEFF A, 1992, J NEUROPHYSIOL, V67, P1428 NAKAYAMA K, 1985, VISION RES, V25, P625, DOI 10.1016/0042-6989(85)90171-3 PALMER AR, 1982, NATURE, V299, P248, DOI 10.1038/299248a0 Pavani F, 2002, CURR BIOL, V12, P1584, DOI 10.1016/S0960-9822(02)01143-0 Salminen NH, 2010, BRAIN RES, V1306, P93, DOI 10.1016/j.brainres.2009.09.095 Smith KR, 2007, BRAIN RES, V1150, P94, DOI 10.1016/j.brainres.2007.03.003 Smith KR, 2004, NEUROREPORT, V15, P1523, DOI 10.1097/01.wnr.0000130233.43788.4b SPITZER MW, 1991, SCIENCE, V254, P721, DOI 10.1126/science.1948053 Stein B. E., 1993, MERGING SENSES Xiang J, 2002, CLIN NEUROPHYSIOL, V113, P1, DOI 10.1016/S1388-2457(01)00709-X Yabe H, 2001, BRAIN RES, V897, P222, DOI 10.1016/S0006-8993(01)02224-7 Yabe H, 1998, PSYCHOPHYSIOLOGY, V35, P615, DOI 10.1017/S0048577298000183 ZEKI S, 1991, BRAIN, V114, P811, DOI 10.1093/brain/114.2.811 NR 41 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2011 VL 272 IS 1-2 BP 21 EP 29 DI 10.1016/j.heares.2010.11.005 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 735ME UT WOS:000288418100004 PM 21108997 ER PT J AU Lupo, JE Koka, K Thornton, JL Tollin, DJ AF Lupo, J. Eric Koka, Kanthaiah Thornton, Jennifer L. Tollin, Daniel J. TI The effects of experimentally induced conductive hearing loss on spectral and temporal aspects of sound transmission through the ear SO HEARING RESEARCH LA English DT Article ID INTERAURAL TIME DIFFERENCES; YOUNG GUINEA-PIGS; AUDITORY BRAIN-STEM; OTITIS-MEDIA; INFERIOR COLLICULUS; BINAURAL HEARING; BARN OWL; LOCALIZATION CUES; MONAURAL LOCALIZATION; COCHLEAR NUCLEUS AB Conductive hearing loss (CHL) is known to produce hearing deficits, including deficits in sound localization ability. The differences in sound intensities and timing experienced between the two tympanic membranes are important cues to sound localization (ILD and ITD, respectively). Although much is known about the effect of CHL on hearing levels, little investigation has been conducted into the actual impact of CHL on sound location cues. This study investigated effects of CHL induced by earplugs on cochlear microphonic (CM) amplitude and timing and their corresponding effect on the ILD and ITD location cues. Acoustic and CM measurements were made in 5 chinchillas before and after earplug insertion, and again after earplug removal using pure tones (500 Hz to 24 kHz). ILDs in the unoccluded condition demonstrated position and frequency dependence where peak far-lateral ILDs approached 30 dB for high frequencies. Unoccluded ear ITD cues demonstrated positional and frequency dependence with increased ITD cue for both decreasing frequency (+/- 420 mu s at 500 Hz, +/- 310 mu s for 1-4 kHz) and increasingly lateral sound source locations. Occlusion of the ear canal with foam plugs resulted in a mild, frequency-dependent conductive hearing loss of 10-38 dB (mean 31 +/- 3.9 dB) leading to a concomitant frequency dependent increase in ILDs at all source locations. The effective ITDs increased in a frequency dependent manner with ear occlusion as a direct result of the acoustic properties of the plugging material, the latter confirmed via acoustical measurements using a model ear canal with varying volumes of acoustic foam. Upon ear plugging with acoustic foam, a mild CHL is induced. Furthermore, the CHL induced by acoustic foam results in substantial changes in the magnitudes of both the ITD and ILD cues to sound location. (C) 2010 Elsevier B.V. All rights reserved. C1 [Lupo, J. Eric; Tollin, Daniel J.] Univ Colorado Denver, Dept Otolaryngol, Aurora, CO 80045 USA. [Koka, Kanthaiah; Thornton, Jennifer L.; Tollin, Daniel J.] Univ Colorado Denver, Dept Physiol & Biophys, Aurora, CO 80045 USA. [Thornton, Jennifer L.; Tollin, Daniel J.] Univ Colorado Denver, Sch Med, Neurosci Training Program, Aurora, CO 80045 USA. RP Lupo, JE (reprint author), Univ Colorado Denver, Dept Otolaryngol, 12631 E 17th Ave Mail Stop B205,POB 6511, Aurora, CO 80045 USA. EM james.lupo@ucdenver.edu FU National Institutes of Deafness and Other Communicative Disorders [R01DC006865]; National Organization of Hearing Research; American Academy of Otolaryngology-Head and Neck Surgery Foundation (AAO-HNSF); National Institute of Child Health and Human Development [5T32HD041697-08]; NIH [P30 NS048154-05] FX This work was supported by a National Institutes of Deafness and Other Communicative Disorders Grant (R01DC006865) and the Evie & Ron Krancer Grant in Auditory Science from the National Organization of Hearing Research to DJT. Support was also provided by an American Academy of Otolaryngology-Head and Neck Surgery Foundation (AAO-HNSF) resident research grant to JEL and a Neuroscience Training Grant to JLT (National Institute of Child Health and Human Development grant 5T32HD041697-08). We thank Dr. Michael Hall for preparing custom laboratory hardware (supported by NIH grant P30 NS048154-05). CR Asbjornsen A, 2000, DEV MED CHILD NEUROL, V42, P481, DOI 10.1017/S001216220000089X Bennett KE, 2001, ARCH DIS CHILD, V85, P91, DOI 10.1136/adc.85.2.91 Berger EH, 2003, J ACOUST SOC AM, V114, P1955, DOI 10.1121/1.1605415 Blauert J., 1997, SPATIAL HEARING PSYC BLUESTON.CD, 1973, LARYNGOSCOPE, V83, P594, DOI 10.1288/00005537-197304000-00015 BRUGGE JF, 1985, HEARING RES, V20, P275, DOI 10.1016/0378-5955(85)90032-2 BUTLER RA, 1990, PERCEPTION, V19, P241, DOI 10.1068/p190241 CALFORD MB, 1986, J NEUROPHYSIOL, V55, P587 CARLILE S, 1987, HEARING RES, V31, P111, DOI 10.1016/0378-5955(87)90117-1 CARLILE S, 1994, J NEUROPHYSIOL, V71, P785 CLEMENTS M, 1978, J COMP PHYSIOL PSYCH, V92, P34, DOI 10.1037/h0077424 CLOPTON BM, 1978, EXP BRAIN RES, V32, P39 COLEMAN JR, 1979, EXP NEUROL, V64, P553, DOI 10.1016/0014-4886(79)90231-0 COLES RB, 1986, J EXP BIOL, V121, P371 DALLOS P, 1971, J ACOUST SOC AM, V49, P1140, DOI 10.1121/1.1912475 Dallos P., 1973, AUDITORY PERIPHERY B Duda RO, 1998, J ACOUST SOC AM, V104, P3048, DOI 10.1121/1.423886 Fisher H G, 1968, Acta Otolaryngol, V66, P213, DOI 10.3109/00016486809126288 FUZESSERY ZM, 1985, J NEUROPHYSIOL, V54, P757 GERHARDT KJ, 1987, EAR HEARING, V8, P316, DOI 10.1097/00003446-198712000-00005 Gouma P, 2011, EUR ARCH OTO-RHINO-L, V268, P63, DOI 10.1007/s00405-010-1346-4 Gravel JS, 2000, J SPEECH LANG HEAR R, V43, P631 GRAVEL JS, 1992, J SPEECH HEAR RES, V35, P588 HALL JW, 1986, ANN OTO RHINOL LARYN, V95, P525 HALL JW, 1995, HEARING RES, V84, P91, DOI 10.1016/0378-5955(95)00016-W HALL JW, 1998, EAR HEARING, V19, P220 Hartley DEH, 2003, HEARING RES, V177, P53, DOI 10.1016/S0378-5955(02)00797-9 HAUSLER R, 1983, ACTA OTO-LARYNGOL, P1 HEFFNER RS, 1991, HEARING RES, V52, P13, DOI 10.1016/0378-5955(91)90183-A HEFFNER RS, 1994, HEARING RES, V80, P247, DOI 10.1016/0378-5955(94)90116-3 HOGAN SC, 1995, BRIT J AUDIOL, V29, P56 Hogan SCM, 2003, JARO, V4, P123, DOI 10.1007/s10162-002-3007-9 HYSON RL, 1994, HEARING RES, V81, P109, DOI 10.1016/0378-5955(94)90158-9 Kacelnik O, 2006, PLOS BIOL, V4, P627, DOI 10.1371/journal.pbio.0040071 Kanick SC, 2006, ACTA OTO-LARYNGOL, V126, P1252, DOI 10.1080/00016480600794420 Keller CH, 1998, HEARING RES, V118, P13, DOI 10.1016/S0378-5955(98)00014-8 King AJ, 2000, P NATL ACAD SCI USA, V97, P11821, DOI 10.1073/pnas.97.22.11821 KNUDSEN EI, 1984, J NEUROSCI, V4, P1001 KNUDSEN EI, 1984, J NEUROSCI, V4, P1012 Knudsen EI, 1999, J COMP PHYSIOL A, V185, P305, DOI 10.1007/s003590050391 Koka K, 2008, J ACOUST SOC AM, V123, P4297, DOI 10.1121/1.2916587 Koka K, 2011, HEARING RES, V272, P135, DOI 10.1016/j.heares.2010.10.007 KOLPE W, 2003, SEMINARS HEARING, V4, P289 KUHN GF, 1977, J ACOUST SOC AM, V62, P157, DOI 10.1121/1.381498 Kumpik DP, 2010, J NEUROSCI, V30, P4883, DOI 10.1523/JNEUROSCI.5488-09.2010 LASKA M, 1992, EUR ARCH OTO-RHINO-L, V249, P325 Maki K, 2005, J ACOUST SOC AM, V118, P872, DOI 10.1121/1.1944647 MARSH RR, 1985, INT J PEDIATR OTORHI, V9, P115, DOI 10.1016/S0165-5876(85)80011-2 McAlpine D, 1997, J NEUROPHYSIOL, V78, P767 McPartland JL, 1997, HEARING RES, V113, P165, DOI 10.1016/S0378-5955(97)00142-1 MEHRGARDT S, 1977, J ACOUST SOC AM, V61, P1567, DOI 10.1121/1.381470 MOISEFF A, 1989, J COMP PHYSIOL A, V164, P629, DOI 10.1007/BF00614505 Moore DR, 1999, J NEUROSCI, V19, P8704 MOORE DR, 1989, J NEUROSCI, V9, P1213 Moore DR, 2003, INT J PEDIATR OTORHI, V67, pS63, DOI 10.1016/j.ijport.2003.08.015 MOORE DR, 1991, AUDIOLOGY, V30, P91 MUSICANT AD, 1984, HEARING RES, V14, P185, DOI 10.1016/0378-5955(84)90017-0 OLDFIELD SR, 1986, PERCEPTION, V15, P67, DOI 10.1068/p150067 Paradise JL, 1997, PEDIATRICS, V99, P318, DOI 10.1542/peds.99.3.318 Parsons CH, 1999, J NEUROPHYSIOL, V82, P2294 PATTERSON JH, 1991, 9116 USAARL PILLSBURY HC, 1991, ARCH OTOLARYNGOL, V117, P718 Popescu MV, 2010, NEURON, V65, P718, DOI 10.1016/j.neuron.2010.02.019 Ravicz ME, 2004, HEARING RES, V195, P103, DOI 10.1016/j.heares.2004.05.010 REALE RA, 1987, DEV BRAIN RES, V34, P281, DOI 10.1016/0165-3806(87)90215-X RIFE DD, 1989, J AUDIO ENG SOC, V37, P419 ROTH GL, 1980, J ACOUST SOC AM, V68, P1643, DOI 10.1121/1.385196 Schnupp JWH, 1998, J NEUROPHYSIOL, V79, P1053 SCHOONHOVEN R, 2007, RESPONSES COCHLEA AU, P180 SHAW EAG, 1974, J ACOUST SOC AM, V56, P1848, DOI 10.1121/1.1903522 Shekelle P, 2003, AHRQ PUBLICATION, V03-E023 SILVA PA, 1986, J LEARN DISABIL, V19, P165 SILVERMAN MS, 1977, J NEUROPHYSIOL, V40, P1266 SLATTERY WH, 1994, HEARING RES, V75, P38, DOI 10.1016/0378-5955(94)90053-1 Slee SJ, 2010, HEARING RES, V260, P96, DOI 10.1016/j.heares.2009.12.001 Sterbing SJ, 2003, J NEUROPHYSIOL, V90, P2648, DOI 10.1152/jn.00348.2003 TEELE DW, 1990, J INFECT DIS, V162, P685 TOLLIN DJ, 2010, OXFORD HDB DEV BEHAV, P262 Tollin DJ, 2009, J ACOUST SOC AM, V126, P3125, DOI 10.1121/1.3257234 TORRES AI, 2010, CUMMINGS OTOLARYNGOL, pCH143 Tucci DL, 2001, HEARING RES, V155, P124, DOI 10.1016/S0378-5955(01)00256-8 Van Wanrooij MM, 2007, J NEUROPHYSIOL, V97, P715, DOI 10.1152/jn.00260.2006 VOLMAN SF, 1989, J NEUROSCI, V9, P3083 VRETTAKOS PA, 1988, AM J OTOLARYNG, V9, P58, DOI 10.1016/S0196-0709(88)80009-7 WALGER M, 1993, EUR ARCH OTO-RHINO-L, V250, P362 WEBSTER DB, 1977, ARCH OTOLARYNGOL, V103, P392 WEBSTER DB, 1988, HEARING RES, V32, P185, DOI 10.1016/0378-5955(88)90090-1 WEIDERHOLD ML, 1980, ANN OTO RHINOL LARYN, V89, P185 WELSH LW, 1983, LARYNGOSCOPE, V93, P1569, DOI 10.1288/00005537-198312000-00010 WEVER EG, 1954, PHYSL ACOUSTICS, P137 WIGHTMAN FL, 1992, J ACOUST SOC AM, V91, P1648, DOI 10.1121/1.402445 Winskel H, 2006, BRIT J EDUC PSYCHOL, V76, P727, DOI 10.1348/000709905X68312 Woodworth R. S., 1938, EXPT PSYCHOL Xu H, 2007, J NEUROSCI, V27, P9417, DOI 10.1523/JNEUROSCI.1992-07.2007 Yoshinaga-Itano C, 1998, PEDIATRICS, V102, P1161, DOI 10.1542/peds.102.5.1161 NR 95 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2011 VL 272 IS 1-2 BP 30 EP 41 DI 10.1016/j.heares.2010.11.003 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 735ME UT WOS:000288418100005 ER PT J AU Butcher, A Govenlock, SW Tata, MS AF Butcher, Andrew Govenlock, Stanley W. Tata, Matthew S. TI A lateralized auditory evoked potential elicited when auditory objects are defined by spatial motion SO HEARING RESEARCH LA English DT Article ID FIGURE-GROUND SEGREGATION; BRAIN POTENTIALS; VISUAL-CORTEX; MISMATCH NEGATIVITY; PHYSIOLOGICAL-RESPONSES; PERCEPTUAL SEGREGATION; PLANUM TEMPORALE; COHERENT MOTION; SOUND LOCATION; DICHOTIC PITCH AB Scene analysis involves the process of segmenting a field of overlapping objects from each other and from the background. It is a fundamental stage of perception in both vision and hearing. The auditory system encodes complex cues that allow listeners to find boundaries between sequential objects, even when no gap of silence exists between them. In this sense, object perception in hearing is similar to perceiving visual objects defined by isoluminant color, motion or binocular disparity. Motion is one such cue: when a moving sound abruptly disappears from one location and instantly reappears somewhere else, the listener perceives two sequential auditory objects. Smooth reversals of motion direction do not produce this segmentation. We investigated the brain electrical responses evoked by this spatial segmentation cue and compared them to the familiar auditory evoked potential elicited by sound onsets. Segmentation events evoke a pattern of negative and positive deflections that are unlike those evoked by onsets. We identified a negative component in the waveform - the Lateralized Object-Related Negativity generated by the hemisphere contralateral to the side on which the new sound appears. The relationship between this component and similar components found in related paradigms is considered. (C) 2010 Elsevier B.V. All rights reserved. C1 [Butcher, Andrew; Tata, Matthew S.] Univ Lethbridge, Lethbridge, AB T1K 3M4, Canada. [Govenlock, Stanley W.] McMaster Univ, Hamilton, ON L8S 4L8, Canada. RP Tata, MS (reprint author), Univ Lethbridge, 4401 Univ Dr, Lethbridge, AB T1K 3M4, Canada. EM matthew.tata@uleth.ca FU NSERC Canada FX The authors would like to thank Jarrod Dowdall, Greg Christie, Karla Ponjavic and Wendy Maines for assistance with data collection. This research was funded by an NSERC Canada Discovery Grant to M.S.T. CR Alain C, 2000, FRONT BIOSCI, V5, pD202, DOI 10.2741/Alain Alain C, 2001, P NATL ACAD SCI USA, V98, P12301, DOI 10.1073/pnas.211209098 Alain C, 2001, J EXP PSYCHOL HUMAN, V27, P1072, DOI 10.1037//0096-1523.27.5.1072 Alain C, 2003, J COGNITIVE NEUROSCI, V15, P1063, DOI 10.1162/089892903770007443 Alain C, 2002, J ACOUST SOC AM, V111, P990, DOI 10.1121/1.1434942 Belin P, 2000, NAT NEUROSCI, V3, P965, DOI 10.1038/79890 Boersma P., 2010, PRAAT DOING PHONETIC Bourne JA, 2002, CEREB CORTEX, V12, P1132, DOI 10.1093/cercor/12.11.1132 Bregman AS., 1990, AUDITORY SCENE ANAL Darwin CJ, 1997, TRENDS COGN SCI, V1, P327, DOI 10.1016/S1364-6613(97)01097-8 Dougherty RF, 1998, NEUROREPORT, V9, P3001, DOI 10.1097/00001756-199809140-00015 Dyson BJ, 2004, J ACOUST SOC AM, V115, P280, DOI 10.1121/1.1631945 Egeth HE, 1997, ANNU REV PSYCHOL, V48, P269, DOI 10.1146/annurev.psych.48.1.269 Fishbach A, 2001, J NEUROPHYSIOL, V85, P2303 Fishbach A, 2003, J NEUROPHYSIOL, V90, P3663, DOI 10.1152/jn.00654.2003 Griffiths TD, 2002, TRENDS NEUROSCI, V25, P348, DOI 10.1016/S0166-2236(02)02191-4 Griffiths TD, 2004, NAT REV NEUROSCI, V5, P887, DOI 10.1038/nrn1538 HALLIDAY R, 1978, ELECTROEN CLIN NEURO, V45, P118, DOI 10.1016/0013-4694(78)90350-4 Hautus MJ, 2005, J ACOUST SOC AM, V117, P275, DOI 10.1121/1.1828499 Heinen K, 2005, NEUROREPORT, V16, P1483, DOI 10.1097/01.wnr.0000175611.26485.c8 Herdener M, 2007, NEUROIMAGE, V36, P194, DOI 10.1016/j.neuroimage.2007.01.050 JOHNSON BW, 2004, NEUROL CLIN NEUROPHY, P33 Johnson BW, 2006, NEUROREPORT, V17, P389, DOI 10.1097/01.wnr.0000203358.72814.df Johnson BW, 2007, PSYCHOPHYSIOLOGY, V44, P541, DOI 10.1111/j.1469-8986.200700535.x Johnson BW, 2003, CLIN NEUROPHYSIOL, V114, P2245, DOI 10.1016/S1388-2457(03)00247-5 JONES SJ, 1991, ELECTROEN CLIN NEURO, V80, P146, DOI 10.1016/0168-5597(91)90152-N Krumbholz K, 2003, CEREB CORTEX, V13, P765, DOI 10.1093/cercor/13.7.765 Kubovy M, 2001, COGNITION, V80, P97, DOI 10.1016/S0010-0277(00)00155-4 LAMME VAF, 1993, VISUAL NEUROSCI, V10, P781 Lamme VAF, 2000, TRENDS NEUROSCI, V23, P571, DOI 10.1016/S0166-2236(00)01657-X LAMME VAF, 1995, J NEUROSCI, V15, P1605 Lamme VAF, 1998, CURR OPIN NEUROBIOL, V8, P529, DOI 10.1016/S0959-4388(98)80042-1 Machens CK, 2003, J NEUROPHYSIOL, V90, P3581, DOI 10.1152/jn.00832.2003 McDonald KL, 2005, J ACOUST SOC AM, V118, P1593, DOI 10.1121/1.2000747 MCEVOY LK, 1990, AUDIOLOGY, V29, P163 Naatanen R., 1992, ATTENTION BRAIN FUNC Obrig H., 2010, FRONT NEUROENERG, V2, P1 PAAVILAINEN P, 1989, ELECTROEN CLIN NEURO, V73, P129, DOI 10.1016/0013-4694(89)90192-2 Peterhans E, 2005, EUR J NEUROSCI, V21, P1091, DOI 10.1111/j.1460-9568.2005.03919.x Picton TW, 2000, AUDIOL NEURO-OTOL, V5, P111, DOI 10.1159/000013875 Pulkki V, 1997, J AUDIO ENG SOC, V45, P456 Rademacher J, 2001, NEUROIMAGE, V13, P669, DOI 10.1006/nimg.2000.0714 Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800 Roelfsema PR, 2002, J COGNITIVE NEUROSCI, V14, P525, DOI 10.1162/08989290260045756 Rogers WL, 1998, PERCEPT PSYCHOPHYS, V60, P1216, DOI 10.3758/BF03206171 Schroger E, 1996, NEUROREPORT, V7, P3005, DOI 10.1097/00001756-199611250-00041 Seither-Preisler A, 2004, EUR J NEUROSCI, V19, P3073, DOI 10.1111/j.1460-9568.2004.03423.x Seither-Preisler A, 2006, HEARING RES, V218, P50, DOI 10.1016/j.heares.2006.04.005 Sonnadara RR, 2006, BRAIN RES, V1071, P175, DOI 10.1016/j.brainres.2005.11.088 Steinhauer K, 1999, NAT NEUROSCI, V2, P191, DOI 10.1038/5757 Tata MS, 2005, EXP BRAIN RES, V167, P481, DOI 10.1007/s00221-005-0183-y Tata MS, 2005, NEUROPSYCHOLOGIA, V43, P509, DOI 10.1016/j.neuropsychologia.2004.07.019 UNGAN P, 1989, ELECTROEN CLIN NEURO, V73, P306, DOI 10.1016/0013-4694(89)90109-0 Westbury CF, 1999, CEREB CORTEX, V9, P392, DOI 10.1093/cercor/9.4.392 YANTIS S, 1984, J EXP PSYCHOL HUMAN, V10, P601, DOI 10.1037/0096-1523.10.5.601 YANTIS S, 1990, J EXP PSYCHOL HUMAN, V16, P812, DOI 10.1037/0096-1523.16.4.812 NR 56 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2011 VL 272 IS 1-2 BP 58 EP 68 DI 10.1016/j.heares.2010.10.019 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 735ME UT WOS:000288418100008 PM 21056097 ER PT J AU Lutkenhoner, B Seither-Preisler, A Krumbholz, K Patterson, RD AF Luetkenhoener, Bernd Seither-Preisler, Annemarie Krumbholz, Katrin Patterson, Roy D. TI Auditory cortex tracks the temporal regularity of sustained noisy sounds SO HEARING RESEARCH LA English DT Article ID ITERATED RIPPLED NOISE; HUMAN-BRAIN; MAGNETIC-FIELDS; NEUROMAGNETIC RESPONSES; INTERAURAL CORRELATION; PITCH STRENGTH; HESCHLS GYRUS; EVOKED FIELD; ONSET; TONE AB Neuroimaging studies have revealed dramatic asymmetries between the responses to temporally regular and irregular sounds in the antero-lateral part of Heschl's gyrus. For example, the magneto-encephalography (MEG) study of Krumbholz et al. [Cereb. Cortex 13, 765-772 (2003)] showed that the transition from a noise to a similar noise with sufficient temporal regularity to provoke a pitch evoked a pronounced temporal-regularity onset response (TRon response), whereas a comparable transition in the reverse direction revealed essentially no temporal-regularity offset response (TRoff response). The current paper presents a follow-up study in which the asymmetry is examined with much greater power, and the results suggest an intriguing reinterpretation of the onset/offset asymmetry. The TR-related activity in auditory cortex appears to be composed of a transient (TRon) and a TR-related sustained response (TRsus), with a highly variable TRon/TRsus amplitude ratio. The TRoff response is generally dominated by the break-down of the TRsus activity, which occurs so rapidly as to preclude the involvement of higher-level cortical processing. The time course of the TR-related activity suggests that TR processing might be involved in monitoring the environment and alerting the brain to the onset and offset of behaviourally relevant, animate sources. (C) 2010 Elsevier B.V. All rights reserved. C1 [Luetkenhoener, Bernd] Munster Univ Hosp, ENT Clin, Sect Expt Audiol, D-48129 Munster, Germany. [Seither-Preisler, Annemarie] Graz Univ, Dept Psychol, Cognit Sci Sect, Graz, Austria. [Krumbholz, Katrin] MRC, Inst Hearing, Nottingham, England. [Patterson, Roy D.] Univ Cambridge, Dept Physiol Dev & Neurosci, Ctr Neural Basis Hearing, Cambridge, England. RP Lutkenhoner, B (reprint author), Munster Univ Hosp, ENT Clin, Sect Expt Audiol, Kardinal Von Galen Ring 10, D-48129 Munster, Germany. EM Lutkenh@uni-muenster.de FU Deutsche Forschungsgesellschaft (DFG) [Lu342/4-2]; UK Medical Research Council [G9900369]; Austrian Academy of Sciences [524] FX Work supported by the Deutsche Forschungsgesellschaft (DFG) under grant Lu342/4-2, the UK Medical Research Council under grant G9900369, and the Austrian Academy of Sciences as APART project 524. CR Bendor D, 2005, NATURE, V436, P1161, DOI 10.1038/nature03867 BILSEN FA, 1966, ACUSTICA, V17, P295 Budd TW, 1998, INT J PSYCHOPHYSIOL, V31, P51, DOI 10.1016/S0167-8760(98)00040-3 Chait M, 2007, J NEUROPHYSIOL, V98, P224, DOI 10.1152/jn.00359.2007 Chait M, 2005, J NEUROSCI, V25, P8518, DOI 10.1523/JNEUROSCI.1266-05.2005 Chait M, 2007, J NEUROSCI, V27, P5207, DOI 10.1523/JNEUROSCI.0318-07.2007 Chait M, 2008, BRAIN RES, V1213, P78, DOI 10.1016/j.brainres.2008.03.050 Eggermont JJ, 2001, HEARING RES, V157, P1, DOI 10.1016/S0378-5955(01)00259-3 Griffiths TD, 2010, CURR BIOL, V20, P1128, DOI 10.1016/j.cub.2010.04.044 Griffiths TD, 2001, NAT NEUROSCI, V4, P633, DOI 10.1038/88459 Griffiths TD, 1998, NAT NEUROSCI, V1, P422, DOI 10.1038/1637 Gutschalk A, 2007, CEREB CORTEX, V17, P552, DOI 10.1093/cercor/bhj180 Gutschalk A, 2002, NEUROIMAGE, V15, P207, DOI 10.1006/nimg.2001.0949 Hall DA, 2009, CEREB CORTEX, V19, P576, DOI 10.1093/cercor/bhn108 HARI R, 1980, EXP BRAIN RES, V40, P237 HARI R, 1987, AUDIOLOGY, V26, P31 JOUTSINIEMI SL, 1989, AUDIOLOGY, V28, P325 JULESZ B, 1976, BIOL CYBERN, V23, P25, DOI 10.1007/BF00344148 KAUKORANTA E, 1987, EXP BRAIN RES, V69, P19 Krumbholz K, 2003, CEREB CORTEX, V13, P765, DOI 10.1093/cercor/13.7.765 Lammertmann C, 2001, CLIN NEUROPHYSIOL, V112, P499, DOI 10.1016/S1388-2457(00)00551-4 Lutkenhoner B, 2010, NEUROIMAGE, V52, P86, DOI 10.1016/j.neuroimage.2010.03.053 Lutkenhoner B, 2001, AUDIOL NEURO-OTOL, V6, P263, DOI 10.1159/000046132 Lutkenhoner B, 1998, ELECTROEN CLIN NEURO, V106, P322, DOI 10.1016/S0013-4694(97)00139-9 Lutkenhoner B, 1999, RECENT ADV BIOMAGNET, P256 Pardo PJ, 1999, NEUROREPORT, V10, P3081, DOI 10.1097/00001756-199909290-00038 Patterson RD, 1996, J ACOUST SOC AM, V100, P3286, DOI 10.1121/1.417212 Patterson RD, 2002, NEURON, V36, P767, DOI 10.1016/S0896-6273(02)01060-7 Penagos H, 2004, J NEUROSCI, V24, P6810, DOI 10.1523/JNEUROSCI.0383-04.2004 PFEFFERB.A, 1971, PSYCHOPHYSIOLOGY, V8, P332, DOI 10.1111/j.1469-8986.1971.tb00463.x PICTON TW, 1978, ELECTROEN CLIN NEURO, V45, P198, DOI 10.1016/0013-4694(78)90004-4 PICTON TW, 1978, ELECTROEN CLIN NEURO, V45, P186, DOI 10.1016/0013-4694(78)90003-2 RUPP A, 2004, AUDITORY SIGNAL PROC, P145 Schonwiesner M, 2008, EXP BRAIN RES, V187, P97, DOI 10.1007/s00221-008-1286-z Seither-Preisler A, 2004, EUR J NEUROSCI, V19, P3073, DOI 10.1111/j.1460-9568.2004.03423.x Seither-Preisler A, 2006, HEARING RES, V218, P50, DOI 10.1016/j.heares.2006.04.005 Takahashi H, 2004, NEUROREPORT, V15, P1565, DOI 10.1097/01.wnr.0000134848.63755.5c Warren JD, 2003, P NATL ACAD SCI USA, V100, P10038, DOI 10.1073/pnas.1730682100 Yost WA, 1996, J ACOUST SOC AM, V99, P1066, DOI 10.1121/1.414593 Yost WA, 1996, J ACOUST SOC AM, V100, P3329, DOI 10.1121/1.416973 Yost WA, 1996, J ACOUST SOC AM, V100, P511, DOI 10.1121/1.415873 NR 41 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2011 VL 272 IS 1-2 BP 85 EP 94 DI 10.1016/j.heares.2010.10.013 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 735ME UT WOS:000288418100010 PM 21073933 ER PT J AU Stronks, HC Versnel, H Prijs, VF Grolman, W Klis, SFL AF Stronks, H. Christiaan Versnel, Huib Prijs, Vera F. Grolman, Wilko Klis, Sjaak F. L. TI Effects of electrical stimulation on the acoustically evoked auditory-nerve response in guinea pigs with a high-frequency hearing loss SO HEARING RESEARCH LA English DT Article ID BASILAR-MEMBRANE MOTION; SPIRAL GANGLION NEURONS; COCHLEAR IMPLANT; ETHACRYNIC-ACID; ELECTROACOUSTIC STIMULATION; TUNING CURVES; KANAMYCIN; FIBERS; CAT; DEGENERATION AB Criteria for cochlear implantation keep expanding and people with substantial residual low-frequency hearing are considered candidates for implantation nowadays. Therefore, electro-acoustical stimulation in the same ear (EAS) is receiving increasing interest. We have investigated the effects of intracochlear electrical stimulation on acoustically evoked auditory-nerve activity, using a forward masking paradigm. The stimulation electrode was placed in the basal turn of the cochlea. Compound action potential (CAP) recordings were performed in guinea pigs with severe high-frequency hearing loss and in normal-hearing control animals. In normal-hearing animals, electrical stimulation generally suppressed CAPs, especially at high acoustic frequencies (8 and 16 kHz) and low sound levels. At low frequencies (0.5 and 1 kHz), suppression was observed only at high sound levels. In animals with a high-frequency hearing loss, suppression of CAPs at low frequencies was substantially less compared to control animals, even at high current levels and temporal overlap of acoustic and electric stimuli. Hence, effects of electrical stimulation substantially differed between normal-hearing animals and animals with a high-frequency hearing loss. These findings stress the need for a proper animal model when investigating EAS. We conclude that in case of high-frequency loss, the basal part of the cochlea can be stimulated electrically with little effect on responses to low-frequency acoustic stimuli. (C) 2010 Elsevier B.V. All rights reserved. C1 [Stronks, H. Christiaan; Versnel, Huib; Prijs, Vera F.; Grolman, Wilko; Klis, Sjaak F. L.] Univ Med Ctr Utrecht, Rudolf Magnus Inst Neurosci, Dept Otorhinolaryngol Head & Neck Surg, NL-3508 GA Utrecht, Netherlands. RP Klis, SFL (reprint author), Univ Med Ctr Utrecht, Rudolf Magnus Inst Neurosci, Dept Otorhinolaryngol Head & Neck Surg, Room G-02-531,POB 85500, NL-3508 GA Utrecht, Netherlands. EM h.stronk1@jhmi.edu; h.versnel@umcutrecht.nl; v.prijs@umcutrecht.nl; w.grolman@umcutrecht.nl; s.klis@umcutrecht.nl FU Heinsius-Houbolt Fund FX This study was supported by the Heinsius-Houbolt Fund. The authors wish to thank John de Groot, Theognosia Chimona and Ferry Hendriksen for performing the histology. The authors are grateful to Rene van de Vosse for his technical assistance and for developing the data acquisition and analysis software. Rik Mansvelt Beck is thanked for his technical assistance. CR ABBAS PJ, 2004, COCHLEAR IMPLANTS AU, P149 Adunka O, 2004, LARYNGOSCOPE, V114, P1237, DOI 10.1097/00005537-200407000-00018 Agterberg MJH, 2010, HEARING RES, V269, P169, DOI 10.1016/j.heares.2010.06.015 BALL L L, 1982, Journal of Auditory Research, V22, P107 Biedron S, 2009, OTOL NEUROTOL, V30, P414, DOI 10.1097/MAO.0b013e3181977b8d BRUMMETT RE, 1979, ARCH OTOLARYNGOL, V105, P240 Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004 Cohen NL, 2004, AUDIOL NEURO-OTOL, V9, P197, DOI 10.1159/000078389 DEGROOT JCMJ, 1987, ACTA OTO-LARYNGOL, V104, P234, DOI 10.3109/00016488709107323 DESAUVAGE RC, 1983, J ACOUST SOC AM, V73, P616 Dodson HC, 1997, J NEUROCYTOL, V26, P541, DOI 10.1023/A:1015434524040 EGGERMONT JJ, 1976, J ACOUST SOC AM, V60, P1132, DOI 10.1121/1.381214 EVANS EF, 1972, J PHYSIOL-LONDON, V226, P263 Fraysse B, 2006, OTOL NEUROTOL, V27, P624, DOI 10.1097/01.mao.0000226289.04048.0f Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012 Gantz Bruce J, 2006, Audiol Neurootol, V11 Suppl 1, P63, DOI 10.1159/000095616 Gantz BJ, 2005, LARYNGOSCOPE, V115, P796, DOI 10.1097/01.MLG.0000157695.07536.D2 Gantz BJ, 2009, AUDIOL NEURO-OTOL, V14, P32, DOI 10.1159/000206493 GOLDSTEIN MH, 1958, J ACOUST SOC AM, V30, P107, DOI 10.1121/1.1909497 Gstoettner WK, 2008, ACTA OTO-LARYNGOL, V128, P968, DOI 10.1080/00016480701805471 JAVEL E, 1994, HEARING RES, V81, P167, DOI 10.1016/0378-5955(94)90163-5 KIANG NYS, 1967, J ACOUST SOC AM, V42, P1341, DOI 10.1121/1.1910723 KIRK DL, 1994, HEARING RES, V74, P38, DOI 10.1016/0378-5955(94)90174-0 Macherey O, 2008, JARO-J ASSOC RES OTO, V9, P241, DOI 10.1007/s10162-008-0112-4 McAnally KI, 1997, HEARING RES, V106, P146, DOI 10.1016/S0378-5955(97)00012-9 Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X Nuttall AL, 1995, HEARING RES, V92, P170, DOI 10.1016/0378-5955(95)00216-2 Olson AD, 2008, J AM ACAD AUDIOL, V19, P657, DOI 10.3766/jaaa.19.9.2 Romand R, 1984, ULTRASTRUCTURAL ATLA, P165 Stengs CHM, 1997, HEARING RES, V111, P103, DOI 10.1016/S0378-5955(97)00095-6 Stronks HC, 2010, HEARING RES, V259, P64, DOI 10.1016/j.heares.2009.10.004 Stronks HC, 2010, HEARING RES, V260, P20, DOI 10.1016/j.heares.2009.10.015 Talbot KN, 2008, CLIN OTOLARYNGOL, V33, P536, DOI 10.1111/j.1749-4486.2008.01822.x Turner C, 2008, J REHABIL RES DEV, V45, P769, DOI 10.1682/JRRD.2007.05.0065 Turner CW, 2008, HEARING RES, V242, P164, DOI 10.1016/j.heares.2007.11.008 VANDEELEN GW, 1986, ACTA OTO-LARYNGOL, V101, P207, DOI 10.3109/00016488609132829 VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5 van Ruijven MWM, 2004, HEARING RES, V197, P44, DOI 10.1016/j.heares.2004.07.014 Versnel H, 2007, HEARING RES, V231, P1, DOI 10.1016/j.heares.2007.03.003 WEST BA, 1973, ARCH OTOLARYNGOL, V98, P32 WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 Wilson BS, 2008, J REHABIL RES DEV, V45, P695, DOI 10.1682/JRRD.2007.10.0173 Wysocki J, 2005, HEARING RES, V199, P103, DOI 10.1016/j.heares.2004.08.008 XU SA, 1993, HEARING RES, V70, P205, DOI 10.1016/0378-5955(93)90159-X XUE SW, 1995, J ACOUST SOC AM, V97, P3030, DOI 10.1121/1.413103 NR 45 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2011 VL 272 IS 1-2 BP 95 EP 107 DI 10.1016/j.heares.2010.10.012 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 735ME UT WOS:000288418100011 PM 21044671 ER PT J AU Hirose, K Sato, E AF Hirose, Keiko Sato, Eisuke TI Comparative analysis of combination kanamycin-furosemide versus kanamycin alone in the mouse cochlea SO HEARING RESEARCH LA English DT Article ID HAIR CELL-DEATH; AMINOGLYCOSIDE-INDUCED OTOTOXICITY; BUMETANIDE-INDUCED ENLARGEMENT; VESTIBULAR SENSORY EPITHELIA; STRIA VASCULARIS; ETHACRYNIC-ACID; INNER-EAR; GUINEA-PIGS; AUDITORY-NERVE; HEARING-LOSS AB Combinations of aminoglycosides and loop diuretics have been known to have a synergistic effect in ototoxic injury. Because murine hair cells are relatively resistant to ototoxicity compared to those of other mammals, investigators have turned to combination therapies to create ototoxic lesions in the mouse inner ear. In this paper, we perform a systematic comparison of hearing thresholds, hair cell damage and monocyte migration into the mouse cochlea after kanamycin versus combined kanamycin/furosemide and explore the pathophysiology of enhanced hair cell loss in aminoglycoside ototoxicity in the presence of loop diuretic. Combined kanamycin-furosemide resulted in elevation of threshold not only in the high frequencies, but across all frequencies with more extensive loss of outer hair cells when compared to kanamycin alone. The stria vascularis was severely atrophied and stellate cells in the spiral limbus were missing in kanamycin-furosemide exposed mice while these changes were not observed in mice receiving kanamycin alone. Monocytes and macrophages were recruited in large numbers to the spiral ligament and spiral ganglion in these mice. Combination therapy resulted in a greater number of macrophages in total, and many more macrophages were present further apically when compared to mice given kanamycin alone. Combined kanamycin-furosemide provides an effective method of addressing the relative resistance to ototoxicity that is observed in most mouse strains. As the mouse becomes increasingly more common in studies of hearing loss, and combination therapies gain popularity, recognition of the overall effects of combined aminoglycoside-loop diuretic therapy will be critical to interpretation of the interventions that follow. (C) 2010 Published by Elsevier B.V. C1 [Hirose, Keiko] Washington Univ, Dept Otolaryngol, St Louis, MO 63110 USA. [Sato, Eisuke] Nagoya Univ, Sch Med, Dept Otorhinolaryngol, Nagoya, Aichi 466, Japan. RP Hirose, K (reprint author), Washington Univ, Dept Otolaryngol, 660 S Euclid Ave,Campus Box 8115, St Louis, MO 63110 USA. EM keiko_hirose@post.harvard.edu FU NIH [K08 DC005761]; Triple T Foundation; Nancy Lerner Fisher FX We thank Dr. Grahame Kidd for his assistance with confocal microscopy and Elizabeth H. Shick for her technical assistance. This work was funded by NIH grant K08 DC005761 and a grant from the Triple T Foundation and by Nancy Lerner Fisher. CR Abrashkin KA, 2006, HEARING RES, V218, P20, DOI 10.1016/j.heares.2006.04.001 Agterberg MJH, 2008, HEARING RES, V244, P25, DOI 10.1016/j.heares.2008.07.004 Alam SA, 1998, TOHOKU J EXP MED, V186, P79, DOI 10.1620/tjem.186.79 ARNOLD W, 1981, ACTA OTO-LARYNGOL, V91, P399, DOI 10.3109/00016488109138521 ASAKUMA S, 1980, OTOLARYNG HEAD NECK, V88, P188 Azuma H, 2002, ACTA OTO-LARYNGOL, V122, P816, DOI 10.1080/003655402/000028051 BOCK GR, 1983, HEARING RES, V9, P255, DOI 10.1016/0378-5955(83)90030-8 BRUMMETT RE, 1981, REV INFECT DIS, V3, pS216 BRUMMETT RE, 1979, ARCH OTOLARYNGOL, V105, P240 Campbell KCM, 2007, HEARING RES, V226, P92, DOI 10.1016/j.heares.2006.11.012 Cheng Alan G, 2005, Curr Opin Otolaryngol Head Neck Surg, V13, P343, DOI 10.1097/01.moo.0000186799.45377.63 Coffin AB, 2009, HEARING RES, V253, P42, DOI 10.1016/j.heares.2009.03.004 Cunningham LL, 2004, J NEUROBIOL, V60, P89, DOI 10.1002/neu.20006 Cunningham LL, 2002, J NEUROSCI, V22, P8532 Dai CF, 2008, HEARING RES, V235, P114, DOI 10.1016/j.heares.2007.10.010 Dai CF, 2006, HEARING RES, V213, P64, DOI 10.1016/j.heares.2005.11.011 DEGROOT JCMJ, 1990, HEARING RES, V50, P35, DOI 10.1016/0378-5955(90)90031-J Ehret G, 1983, AUDITORY PSYCHOBIOLO, P169 Forge A, 1981, Scand Audiol Suppl, V14 Suppl, P173 Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X FORGE A, 1987, HEARING RES, V31, P253, DOI 10.1016/0378-5955(87)90195-X GRATACAP B, 1985, ACTA OTO-LARYNGOL, V99, P339, DOI 10.3109/00016488509108920 Hartman BH, 2009, JARO-J ASSOC RES OTO, V10, P321, DOI 10.1007/s10162-009-0162-2 Hashino E, 2000, BRAIN RES, V887, P90, DOI 10.1016/S0006-8993(00)02971-1 Hequembourg S, 2001, JARO, V2, P118 HIEL H, 1992, HEARING RES, V57, P157, DOI 10.1016/0378-5955(92)90148-G Higashiyama K, 2003, HEARING RES, V186, P1, DOI 10.1016/S0378-5955(03)00226-0 Hirose K, 2005, J COMP NEUROL, V489, P180, DOI 10.1002/cne.20619 Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4 Imamura S, 2003, JARO, V4, P196, DOI 10.1007/s10162-002-2037-7 Jiang HY, 2005, J NEUROSCI RES, V79, P644, DOI 10.1002/jnr.20392 KAKA JS, 1984, DRUG INTEL CLIN PHAR, V18, P235 Karasawa T, 2008, J CELL SCI, V121, P2871, DOI 10.1242/jcs.023705 Kawamoto K, 2004, MOL THER, V9, P173, DOI 10.1016/j.ymthe.2003.11.020 KOMUNE S, 1982, ARCH OTOLARYNGOL, V108, P334 Lang H, 2003, JARO, V4, P164, DOI 10.1007/s10162-002-2056-4 LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307 Matsui JI, 2002, J NEUROSCI, V22, P1218 MihelicRapp M, 1996, EUR ARCH OTO-RHINO-L, V253, P411 Oesterle EC, 2008, JARO-J ASSOC RES OTO, V9, P65, DOI 10.1007/s10162-007-0106-7 OHTANI I, 1978, ORL J OTO-RHINO-LARY, V40, P53 PIKE DA, 1980, HEARING RES, V3, P79, DOI 10.1016/0378-5955(80)90009-X RICHARDSON GP, 1991, HEARING RES, V53, P293, DOI 10.1016/0378-5955(91)90062-E Rizzi Mark Douglas, 2007, Curr Opin Otolaryngol Head Neck Surg, V15, P352, DOI 10.1097/MOO.0b013e3282ef772d Rybak LP, 2005, DRUG DISCOV TODAY, V10, P1313, DOI 10.1016/S1359-6446(05)03552-X RYBAK LP, 1991, EUR ARCH OTO-RHINO-L, V248, P353 RYBAK LP, 1993, OTOLARYNG CLIN N AM, V26, P829 Ryugo DK, 2010, J COMP NEUROL, V518, P1046, DOI 10.1002/cne.22262 Sakaguchi N, 1998, HEARING RES, V118, P114, DOI 10.1016/S0378-5955(98)00022-7 SANTI PA, 1983, HEARING RES, V12, P151, DOI 10.1016/0378-5955(83)90103-X Schatz A, 1944, P SOC EXP BIOL MED, V55, P66 SEWELL WF, 1984, HEARING RES, V14, P305, DOI 10.1016/0378-5955(84)90057-1 SHEPHERD RK, 1994, HEARING RES, V81, P150, DOI 10.1016/0378-5955(94)90162-7 Stone JS, 1996, J NEUROSCI, V16, P6157 Tabuchi K, 2007, NEUROSCIENCE, V149, P213, DOI 10.1016/j.neuroscience.2007.06.061 Taylor RR, 2008, JARO-J ASSOC RES OTO, V9, P44, DOI 10.1007/s10162-007-0105-8 HUY PTB, 1983, HEARING RES, V11, P191, DOI 10.1016/0378-5955(83)90078-3 Versnel H, 2007, HEARING RES, V231, P1, DOI 10.1016/j.heares.2007.03.003 Wang J, 2003, J NEUROSCI, V23, P8596 Wang Q, 2009, JARO-J ASSOC RES OTO, V10, P205, DOI 10.1007/s10162-009-0160-4 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 WARCHOL ME, 2010, HEAR RES WEISLEDER P, 1993, J COMP NEUROL, V331, P97, DOI 10.1002/cne.903310106 Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3 XU SA, 1993, HEARING RES, V70, P205, DOI 10.1016/0378-5955(93)90159-X NR 65 TC 12 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2011 VL 272 IS 1-2 BP 108 EP 116 DI 10.1016/j.heares.2010.10.011 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 735ME UT WOS:000288418100012 PM 21044672 ER PT J AU Marcusohn, Y Dirckx, JJJ AF Marcusohn, Yael Dirckx, Joris J. J. TI Postnatal development of the middle ear in New Zealand White rabbits: Ossicles and tympanic ring SO HEARING RESEARCH LA English DT Article ID HUMAN TEMPORAL BONE; STRUCTURAL MATURATION; CONDUCTING APPARATUS; MONGOLIAN GERBIL; MEMBRANE; HEARING; MOUSE; RAT AB We studied the postnatal development of the middle ear (ME) in New Zealand White rabbits. Bullae were scanned using a desktop X-ray microtomograph and 3D models of the ME ossicles as well as the tympanic ring (TR) were prepared. In 0,1, 2 days old rabbits the ossification process was incomplete. We can therefore present quantitative data obtained from older rabbits (ages: 4-180 days) and a qualitative description at the earlier ages. For a number of the measured parameters an exponential curve could be fitted to the data, and the time constant (at which 63% of the final value was obtained) was calculated. The length of the manubrium increased rapidly in a period of about 15 postnatal days, from 1.73 mm to 4.08 mm. The distance between the tip of the malleus and the TR increased rapidly until day 30, from nearly 0 to 1.40 mm. The increase of the surface area within the TR was small as compared to inter-specimen variance, but the ratio [tympanic membrane area]/[TR area] clearly increased (from 1.00 to 1.11), with a time constant of 8.3 days. The area of the stapes footplate (FP) increased rapidly in about 15 days (from 0.72 mm(2) to 1.49 mm(2), time constant 4.8 days). The TR was nearly developed at birth whereas the stapes footplate was quite underdeveloped. The distance between the tip of the malleus and the incudomallear rotation axis increased rapidly until day 20 and varied between 3.47 mm and 5.00 mm. The distance between the tip of the incus and the rotation axis increased until day 133, from 1.39 mm to 1.69 mm. Our study shows that in rabbits the ME is underdeveloped at birth and that the functional geometry develops over the same time course as the ability to hear. The conical shape of the tympanic membrane (TM) is formed by retraction and growth of the manubrium, mainly during the first 40 days after birth. (C) 2010 Elsevier B.V. All rights reserved. C1 [Marcusohn, Yael; Dirckx, Joris J. J.] Univ Antwerp, Lab Biomed Phys, B-2020 Antwerp, Belgium. RP Dirckx, JJJ (reprint author), Univ Antwerp, Lab Biomed Phys, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. EM joris.dirckx@ua.ac.be CR Aernouts J, 2010, HEARING RES, V263, P177, DOI 10.1016/j.heares.2009.09.007 Anggard L., 1965, ACTA OTOLARYNGOLOGIC, V203, P1 ARS B, 1989, J LARYNGOL OTOL, V103, P16, DOI 10.1017/S0022215100107947 COHEN YE, 1992, HEARING RES, V62, P187, DOI 10.1016/0378-5955(92)90185-P DECRAEMER W, 2000, ARO ABS, V408 DECRAEMER WF, 1991, HEARING RES, V51, P107, DOI 10.1016/0378-5955(91)90010-7 Decraemer WF, 2003, JARO, V4, P250, DOI 10.1007/s10162-002-3030-x Dirckx JJJ, 2001, HEARING RES, V157, P124, DOI 10.1016/S0378-5955(01)00290-8 EBY TL, 1986, ANN OTO RHINOL LARYN, V95, P356 Fay J, 2005, J BIOMECH, V38, P1807, DOI 10.1016/j.jbiomech.2004.08.022 FOSS I, 1974, ACTA OTO-LARYNGOL, V77, P202, DOI 10.3109/00016487409124618 HEFFNER H, 1980, J ACOUST SOC AM, V68, P1584, DOI 10.1121/1.385213 HUANGFU M, 1983, J MORPHOL, V176, P249, DOI 10.1002/jmor.1051760302 Overstreet EH, 2002, J ACOUST SOC AM, V111, P261, DOI 10.1121/1.1420382 Puria S, 2010, HEARING RES, V263, P183, DOI 10.1016/j.heares.2009.10.013 SCHONFELDER J, 1990, ANAT ANZEIGER, V170, P213 Schönfelder J, 1985, Gegenbaurs Morphol Jahrb, V131, P31 THOMAS JP, 1990, OTOLARYNG HEAD NECK, V103, P427 Whyte J, 2008, HISTOL HISTOPATHOL, V23, P1049 Whyte JR, 2002, CELLS TISSUES ORGANS, V171, P241, DOI 10.1159/000063124 WHYTE OJR, 2008, ACTA OTORRINOLARINGO, V59, P384, DOI 10.1016/S0001-6519(08)75986-7 Yokoyama T, 1999, LARYNGOSCOPE, V109, P927, DOI 10.1097/00005537-199906000-00016 ZIMMER WM, 1994, ANAT REC, V239, P475, DOI 10.1002/ar.1092390413 NR 23 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2011 VL 272 IS 1-2 BP 148 EP 156 DI 10.1016/j.heares.2010.10.005 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 735ME UT WOS:000288418100016 PM 20969938 ER PT J AU Paglialonga, A Barozzi, S Brambilla, D Soi, D Cesarani, A Gagliardi, C Comiotto, E Spreafico, E Tognola, G AF Paglialonga, Alessia Barozzi, Stefania Brambilla, Daniele Soi, Daniela Cesarani, Antonio Gagliardi, Chiara Comiotto, Elisabetta Spreafico, Emanuela Tognola, Gabriella TI Cochlear active mechanisms in young normal-hearing subjects affected by Williams syndrome: Time-frequency analysis of otoacoustic emissions SO HEARING RESEARCH LA English DT Article ID GUINEA-PIG COCHLEA; OUTER HAIR-CELLS; BEUREN-SYNDROME; ELASTIC FIBERS; DEVELOPMENTAL DISORDER; WAVELET ANALYSIS; FINE-STRUCTURE; HYPERACUSIS; CHILDREN; INDIVIDUALS AB The aim of this study was to investigate the functionality of cochlear active mechanisms in normal-hearing subjects affected by Williams syndrome (WS). Transient evoked otoacoustic emissions (TEOAEs) were recorded in a group of young WS subjects and a group of typically developing control subjects, all having normal-hearing thresholds and normal middle-ear functionality. We also analysed the narrow-band frequency components of TEOAEs, extracted from the broad-band TEOAE recordings by using a time frequency analysis algorithm based on the Wavelet transform. We observed that TEOAEs and the frequency components extracted from TEOAEs measured in WS subjects had significantly lower energy compared to the controls. Also, the narrow-band frequency components of TEOAEs measured in WS subjects had slightly increased latency compared to the controls. Overall, results would suggest a subtle (i.e., sub-clinical) dysfunction of the cochlear active mechanisms in WS subjects with otherwise normal hearing. Also, results point out the relevance of using otoacoustic emissions in the audiological evaluation and monitoring of WS subjects to early identify possible subtle auditory dysfunctions, before the onset of mild or moderate hearing loss that could exacerbate language or cognitive impairments associated with WS. (C) 2010 Elsevier B.V. All rights reserved. C1 [Paglialonga, Alessia; Tognola, Gabriella] Consiglio Nazl Ric ISIB CNR, Ist Ingn Biomed, I-20133 Milan, Italy. [Barozzi, Stefania; Soi, Daniela; Cesarani, Antonio] Univ Milan, Audiol Unit, Dept Specialist Surg Sci, Fdn IRCCS Ca Granda,Osped Maggiore Policlin, I-20122 Milan, Italy. [Brambilla, Daniele; Comiotto, Elisabetta; Spreafico, Emanuela] IRCCS Eugenio Medea, Serv Audiofonol, I-23842 Bosisio Parini, Lecco, Italy. [Gagliardi, Chiara] IRCCS Eugenio Medea, Unit Neurorehabil 1, I-23842 Bosisio Parini, Lecco, Italy. RP Tognola, G (reprint author), Politecn Milan, Consiglio Nazl Ric, Dipartimento Bioingn, Ist Ingn Biomed, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy. EM alessia.paglialonga@polimi.it; stefania.barozzi@unimi.it; daniele.brambilla@bp.lnf.it; danisoi@yahoo.it; antonio.cesarani@unimi.it; chiara.gagliardi@bp.lnf.it; elisabetta.comiotto@bp.lnf.it; emanuela.spreafico@bp.lnf.it; gabriella.tognola@polimi.it RI Paglialonga, Alessia/F-9847-2010; Tognola, Gabriella/B-9025-2015 OI Paglialonga, Alessia/0000-0002-1341-2560; CR Cunniff C, 2001, PEDIATRICS, V107, P1192 American Academy of Pediatrics, 2002, PEDIATRICS, V109, P329 American Psychiatric Association, 2000, DIAGN STAT MAN MENT, P49 American Speech-Language-Hearing Association (ASHA), 2005, GUID MAN PUR TON THR Andoh M, 2004, J ACOUST SOC AM, V116, P417, DOI 10.1121/1.1763599 Arteaga-Solis E, 2000, CELL STRUCT FUNCT, V25, P69, DOI 10.1247/csf.25.69 Ashmore J, 2010, HEARING RES, V266, P1, DOI 10.1016/j.heares.2010.05.001 Attias Joseph, 2008, Journal of Basic and Clinical Physiology and Pharmacology, V19, P193 Bellugi U, 2000, J COGNITIVE NEUROSCI, V12, P7, DOI 10.1162/089892900561959 Bess FH, 1998, EAR HEARING, V19, P339, DOI 10.1097/00003446-199810000-00001 BORG I, 1995, J MED GENET, V32, P692, DOI 10.1136/jmg.32.9.692 BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 Cherniske EM, 2004, AM J MED GENET A, V131A, P255, DOI 10.1002/ajmg.a.30400 Cohen J., 1988, STAT POWER ANAL BEHA, P19 DALLOS P, 1992, J NEUROSCI, V12, P4575 Dodd HF, 2009, J MENT HEALTH RES IN, V2, P89, DOI 10.1080/19315860902725867 Dridi SM, 1999, AM J MED GENET, V87, P134, DOI 10.1002/(SICI)1096-8628(19991119)87:2<134::AID-AJMG4>3.0.CO;2-R Dykens EM, 2003, DEV NEUROPSYCHOL, V23, P291, DOI 10.1207/S15326942DN231&2_13 EWART AK, 1993, NAT GENET, V5, P11, DOI 10.1038/ng0993-11 FRANZ P, 1993, ACTA OTO-LARYNGOL, V113, P755, DOI 10.3109/00016489309135896 Frigerio E, 2006, NEUROPSYCHOLOGIA, V44, P254, DOI 10.1016/j.neuropsychologia.2005.05.008 GELFAND SA, 2008, ESSENTIALS AUDIOLOGY, P225 GORGA MP, 1993, J ACOUST SOC AM, V93, P2050, DOI 10.1121/1.406691 Gothelf D, 2006, NEUROLOGY, V66, P390, DOI 10.1212/01.wnl.0000196643.35395.5f GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Gronski TJ, 1997, J BIOL CHEM, V272, P12189, DOI 10.1074/jbc.272.18.12189 Hammond TH, 1998, OTOLARYNG HEAD NECK, V119, P314, DOI 10.1016/S0194-5998(98)70071-3 HARRIS FP, 1991, AUDIOLOGY, V30, P135 Hopyan T, 2001, CHILD NEUROPSYCHOL, V7, P42, DOI 10.1076/chin.7.1.42.3147 Jedrzejczak WW, 2005, HEARING RES, V205, P249, DOI 10.1016/j.heares.2005.03.024 JERGER C, 1970, ARCH OTOLARYNGOL, V92, P311 Johnson LB, 2001, J OTOLARYNGOL, V30, P90, DOI 10.2310/7070.2001.20811 Katori Y, 1996, CELL TISSUE RES, V284, P473, DOI 10.1007/s004410050608 Kemp DT, 2002, BRIT MED BULL, V63, P223, DOI 10.1093/bmb/63.1.223 Kielty CM, 2002, J CELL SCI, V115, P2817 Kitamura Y, 2002, HEARING RES, V174, P142, DOI 10.1016/S0378-5955(02)00651-2 KLEIN AJ, 1990, J SPEECH HEAR DISORD, V55, P339 Levitin DJ, 2005, ANN NY ACAD SCI, V1060, P325, DOI 10.1196/annals.1360.027 Levitin DJ, 2005, J CHILD PSYCHOL PSYC, V46, P514, DOI 10.1111/j.1469-7610.2004.00376.x Leyfer O, 2009, J NEURODEV DISORD, V1, P4, DOI 10.1007/s11689-009-9003-1 Leyfer OT, 2006, AM J MED GENET B, V141B, P615, DOI 10.1002/ajmg.b.30344 Lucertini M, 2002, J ACOUST SOC AM, V111, P972, DOI 10.1121/1.1432979 MALLAT SG, 1989, IEEE T PATTERN ANAL, V11, P674, DOI 10.1109/34.192463 Marler JA, 2006, MIDW M ASS RES OT BA Marler JA, 2005, AM J MED GENET A, V138A, P318, DOI 10.1002/ajmg.a.30970 Marler JA, 2010, AM J MED GENET C, V154C, P249, DOI 10.1002/ajmg.c.30262 Marozas V, 2006, IEEE T BIO-MED ENG, V53, P1586, DOI 10.1109/TBME.2006.876626 Martens MA, 2008, J CHILD PSYCHOL PSYC, V49, P576, DOI 10.1111/j.1469-7610.2008.01887.x MATSUNE S, 1992, ANN OTO RHINOL LARYN, V101, P163 Mervis CB, 1999, EMORY S COG, P193 Mervis CB, 2000, MENT RETARD DEV D R, V6, P148 Mervis CB, 1999, AM J HUM GENET, V65, P1222, DOI 10.1086/302633 Meyer J, 1998, J NEUROSCI, V18, P6748 Meyer J, 2005, HEARING RES, V202, P97, DOI 10.1016/j.heares.2004.11.013 MEYERSON MD, 1987, DEV MED CHILD NEUROL, V29, P258 MIKUNI H, 1994, ARCH HISTOL CYTOL, V57, P187, DOI 10.1679/aohc.57.187 Moleti A, 2008, J ACOUST SOC AM, V124, P2984, DOI 10.1121/1.2977737 Moleti A, 2005, J ACOUST SOC AM, V118, P1576, DOI 10.1121/1.2000769 Morris CA, 1999, HANDBOOK OF NEURODEVELOPMENTAL AND GENETIC DISORDERS IN CHILDREN, P555 NIGAM A, 1994, J LARYNGOL OTOL, V108, P494 OSBORNE MP, 1990, ACTA OTO-LARYNGOL, V110, P37, DOI 10.3109/00016489009122513 Oxenham AJ, 2003, EAR HEARING, V24, P352, DOI 10.1097/01.AUD.0000090470.73934.78 Paglialonga A, 2007, J ACOUST SOC AM, V122, P2174, DOI 10.1121/1.2773944 Paglialonga A, 2011, AURIS NASUS LARYNX, V38, P33, DOI 10.1016/j.anl.2010.04.006 Phillips CE, 2004, CORTEX, V40, P85, DOI 10.1016/S0010-9452(08)70922-5 PLINKERT PK, 1994, EUR ARCH OTO-RHINO-L, V251, P95 Pober BR, 2008, J CLIN INVEST, V118, P1606, DOI 10.1172/JCI35309 Pober BR, 2010, NEW ENGL J MED, V362, P239, DOI 10.1056/NEJMra0903074 Pober BR, 1996, CHILD ADOL PSYCH CL, V5, P929 Porter MA, 2006, DEV NEUROPSYCHOL, V30, P771, DOI 10.1207/s15326942dn3003_1 PREUS M, 1984, CLIN GENET, V25, P422 PREYER S, 1995, HEARING RES, V89, P187, DOI 10.1016/0378-5955(95)00136-5 PRIEVE BA, 1993, J ACOUST SOC AM, V93, P3308, DOI 10.1121/1.405715 PROBST R, 1993, BRIT J AUDIOL, V27, P85, DOI 10.3109/03005369309077896 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 ROBINETTE MS, 2002, OTOACOUSTIC EMISSION, P156 Schubert C, 2009, CELL MOL LIFE SCI, V66, P1178, DOI 10.1007/s00018-008-8401-y Shanks J, 2009, HDB CLIN AUDIOLOGY, P157 Shera CA, 2005, J ACOUST SOC AM, V118, P287, DOI 10.1121/1.1895025 Sisto R, 2002, J ACOUST SOC AM, V111, P297, DOI 10.1121/1.1428547 Stromme P, 2002, J CHILD NEUROL, V17, P269, DOI 10.1177/088307380201700406 TAKUMIDA M, 1993, ORL J OTO-RHINO-LARY, V55, P77 TOGNOLA G, 2001, SCAND AUDIOL S, V52, P135 Tognola G, 1998, IEEE T BIO-MED ENG, V45, P686, DOI 10.1109/10.678603 Tognola G, 1999, AUDIOLOGY, V38, P243 Tognola G, 1997, HEARING RES, V106, P112, DOI 10.1016/S0378-5955(97)00007-5 Tognola G, 2005, HEARING RES, V199, P71, DOI 10.1016/j.heares.2004.08.005 Urban Z, 2000, PEDIATR DERMATOL, V17, P12, DOI 10.1046/j.1525-1470.2000.01703.x VanBorsel J, 1997, GENET COUNSEL, V8, P121 Watts CR, 2008, CLIN LINGUIST PHONET, V22, P199, DOI 10.1080/02699200701803361 WECHSLER D, 1967, PRESCHOOL PRIMARY SC WECHSLER D, 1974, INTELLIGENCE SCALE C Wechsler D, 1981, ADULT INTELLIGENCE S WIT HP, 1994, HEARING RES, V73, P141, DOI 10.1016/0378-5955(94)90228-3 World Health Organization, 2008, GRAD HEAR IMP YAN SD, 1988, ACTA ANAT, V131, P332 Yang LP, 2002, MED BIOL ENG COMPUT, V40, P34, DOI 10.1007/BF02347693 Zarchi Omer, 2010, Isr J Psychiatry Relat Sci, V47, P125 Zhang ZG, 2008, HEARING RES, V243, P18, DOI 10.1016/j.heares.2008.07.002 NR 99 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2011 VL 272 IS 1-2 BP 157 EP 167 DI 10.1016/j.heares.2010.10.004 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 735ME UT WOS:000288418100017 PM 20969939 ER PT J AU Park, IY Shimizu, Y O'Connor, KN Puria, S Cho, JH AF Park, Il-Yong Shimizu, Yoshitaka O'Connor, Kevin N. Puria, Sunil Cho, Jin-Ho TI Comparisons of electromagnetic and piezoelectric floating-mass transducers in human cadaveric temporal bones SO HEARING RESEARCH LA English DT Article ID EAR HEARING DEVICES; IMPLANT; DESIGN; SYSTEM AB Electromagnetic floating-mass transducers for implantable middle-ear hearing devices (IMEHDs) afford the advantages of a simple surgical implantation procedure and easy attachment to the ossicles. However, their shortcomings include susceptibility to interference from environmental electromagnetic fields, relatively high current consumption, and a limited ability to output high-frequency vibrations. To address these limitations, a piezoelectric floating-mass transducer (PFMT) has recently been developed. This paper presents the results of a comparative study of these two types of vibration transducer developed for IMEHDs. The differential electromagnetic floating-mass transducer (DFMT) and the PFMT were implanted in two different sets of three cadaveric human temporal bones. The resulting stapes displacements were measured and compared on the basis of the ASTM standard for describing the output characteristics of IMEHDs. The experimental results show that the PFMT can produce significantly higher equivalent sound pressure levels above 3 kHz, due to the flat response of the PFMT, than can the DFMT. Thus, it is expected that the PFMT can be utilized to compensate for high-frequency sensorineural hearing loss. (C) 2010 Published by Elsevier B.V. C1 [Cho, Jin-Ho] Kyungpook Natl Univ, Sch Elect & Comp Sci, Taegu, South Korea. [Park, Il-Yong] Dankook Univ, Coll Med, Dept Biomed Engn, Cheonan, South Korea. [Cho, Jin-Ho] Kyungpook Natl Univ, Adv Res Ctr Recovery Human Sensibil, Taegu, South Korea. [O'Connor, Kevin N.; Puria, Sunil] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Shimizu, Yoshitaka; O'Connor, Kevin N.; Puria, Sunil] Dept Otolaryngol Head & Neck Surg, Stanford, CA 94305 USA. [Shimizu, Yoshitaka; O'Connor, Kevin N.; Puria, Sunil] Palo Alto Vet Adm, Palo Alto, CA 94304 USA. RP Cho, JH (reprint author), Kyungpook Natl Univ, Sch Elect & Comp Sci, Taegu, South Korea. EM jhcho@ee.knu.ac.kr FU Ministry for Health, Welfare & Family Affairs, Republic of Korea [A092106] FX This study was supported by a grant of the Korea Healthcare technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea. (A092106) CR Aibara R, 2001, HEARING RES, V152, P100, DOI 10.1016/S0378-5955(00)00240-9 Backous Douglas D, 2006, Curr Opin Otolaryngol Head Neck Surg, V14, P314, DOI 10.1097/01.moo.0000244187.66807.30 Ball G. R., 1996, United States Patent, Patent No. [5.554.096, 5554096] Chien WD, 2006, AUDIOL NEURO-OTOL, V11, P183, DOI 10.1159/000091815 CHO JH, 2004, Patent No. 6735318 DIETZ TG, 1997, TRANSDUCERS, V97, P433 *FDA, 2000, APPR LETT VIBR SOUND Gan RZ, 2004, ANN BIOMED ENG, V32, P847, DOI 10.1023/B:ABME.0000030260.22737.53 Gelfand S, 2004, HEARING INTRO PSYCHO GOODE RL, 1995, OTOLARYNG CLIN N AM, V28, P141 Hong EP, 2007, IEICE T FUND ELECTR, VE90A, P1620, DOI 10.1093/ietfec/e90-a.8.1620 Hough JVD, 2002, OTOL NEUROTOL, V23, P895, DOI 10.1097/00129492-200211000-00015 Jenkins HA, 2007, OTOLARYNG HEAD NECK, V137, P206, DOI 10.1016/j.otohns.2007.03.012 Kim MK, 2006, SENSOR ACTUAT A-PHYS, V130, P234, DOI 10.1016/j.sna.2006.01.038 Moore BCJ, 2008, EAR HEARING, V29, P907, DOI 10.1097/AUD.0b013e31818246f6 Needham AJ, 2005, OTOL NEUROTOL, V26, P218, DOI 10.1097/00129492-200503000-00015 O'Connor KN, 2008, LARYNGOSCOPE, V118, P483, DOI 10.1097/MLG.0b013e31815b0d9f Rosowski JJ, 2007, AUDIOL NEURO-OTOL, V12, P265, DOI 10.1159/000101474 Song BS, 2002, IEICE T ELECTRON, VE85C, P1374 W Ko, 1987, P 9 ANN C IEEE ENG M, P13 Wang ZG, 2002, MECHATRONICS, V12, P3, DOI 10.1016/S0957-4158(00)00067-2 YANAGIHARA N, 2006, COCHLEAR IMPLANTS IN, V5, P186 YANAGIHARA N, 1995, OTOLARYNG CLIN N AM, V28, P85 Zenner HP, 2001, OTOLARYNG CLIN N AM, V34, P417, DOI 10.1016/S0030-6665(05)70340-6 NR 24 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2011 VL 272 IS 1-2 BP 187 EP 192 DI 10.1016/j.heares.2010.10.17 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 735ME UT WOS:000288418100020 PM 21055459 ER PT J AU Jones, SM Robertson, NG Given, S Giersch, ABS Liberman, MC Morton, CC AF Jones, Sherri M. Robertson, Nahid G. Given, Shelly Giersch, Anne B. S. Liberman, M. Charles Morton, Cynthia C. TI Hearing and vestibular deficits in the Coch(-/-) null mouse model: Comparison to the Coch(G88E/G88E) mouse and to DFNA9 hearing and balance disorder SO HEARING RESEARCH LA English DT Article ID COCH GENE; MENIERES-DISEASE; VWFA2 DOMAIN; MUTATION; MICE; DYSFUNCTION; DEAFNESS; INHERITANCE; POTENTIALS; FAMILIES AB Two mouse models, the Coch(G88E/G88E) or "knock-in" and the Coch(-/-) or "knock-out" (Coch null), have been developed to study the human late-onset, progressive, sensorineural hearing loss and vestibular dysfunction known as DFNA9. This disorder results from missense and in-frame deletion mutations in COCH (coagulation factor C homology), encoding cochlin, the most abundantly detected protein in the inner ear. We have performed hearing and vestibular analyses by auditory brainstem response (ABR) and vestibular evoked potential (VsEP) testing of the Coch(-/-) and Coch(G88E/G88E) mouse models. Both Coch(-/-) and Coch(G88E/G88E) mice show substantially elevated ABRs at 21 months of age, but only at the highest frequency tested for the former and all frequencies for the latter. At 21 months, 9 of 11 Coch(-/-) mice and 4 of 8 Coch(G88E/G88E) mice have absent ABRs. Interestingly Coch(-/+) mice do not show hearing deficits, in contrast to Coch(G88E/+), which demonstrate elevated ABR thresholds similar to homozyotes. These results corroborate the DFNA9 autosomal dominant mode of inheritance, in addition to the observation that haploinsufficiency of Coch does not result in impaired hearing. Vestibular evoked potential (VsEP) thresholds were analyzed using a two factor ANOVA (Age X Genotype). Elevated VsEP thresholds are detected in Coch(-/-) mice at 13 and 21 months, the two ages tested, and as early as seven months in the coch(G88E/G88E) mice. These results indicate that in both mouse models, vestibular function is compromised before cochlear function. Analysis and comparison of hearing and vestibular function in these two DFNA9 mouse models, where deficits occur at such an advanced age, provide insight into the pathology of DFNA9 and age-related hearing loss and vestibular dysfunction as well as an opportunity to investigate potential interventional therapies. (C) 2010 Elsevier B.V. All rights reserved. C1 [Jones, Sherri M.] E Carolina Univ, Dept Commun Sci & Disorders, Greenville, NC USA. [Robertson, Nahid G.; Morton, Cynthia C.] Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Obstet Gynecol & Reprod Biol, Boston, MA 02115 USA. [Given, Shelly] E Carolina Univ, Brody Sch Med, Greenville, NC USA. [Giersch, Anne B. S.; Morton, Cynthia C.] Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Pathol, Boston, MA 02115 USA. [Liberman, M. Charles] Harvard Univ, Massachusetts Eye & Ear Infirm, Sch Med, Dept Otol & Laryngol,Eaton Peabody Lab, Boston, MA 02115 USA. RP Morton, CC (reprint author), Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Ob Gyn, 77 Ave Louis Pasteur,NRB 160, Boston, MA 02115 USA. EM cmorton@partners.org FU National Institutes of Health [R01 DC006443, R01 DC03402, R01 DC00188, P30 DC05209] FX The authors would like to thank T. Lever, K. Mills, and J. Pierce for assistance with data collection and tissue preparation. This research was supported by the National Institutes of Health (R01 DC006443 to S.M.J., R01 DC03402 to C.C.M., and R01 DC00188 and P30 DC05209 to M.C.L.). CR Baek JI, 2010, CLIN GENET, V77, P399, DOI 10.1111/j.1399-0004.2009.01362.x Baek MJ, 2006, J IMMUNOL, V177, P4203 Bischoff AMLC, 2005, OTOL NEUROTOL, V26, P918, DOI 10.1097/01.mao.0000185048.84641.e3 Boulassel MR, 2001, OTOL NEUROTOL, V22, P614, DOI 10.1097/00129492-200109000-00009 Collin RWJ, 2006, AM J MED GENET A, V140A, P1791, DOI 10.1002/ajmg.a.31354 de Kok YJM, 1999, HUM MOL GENET, V8, P361, DOI 10.1093/hmg/8.2.361 Fransen E, 1999, HUM MOL GENET, V8, P1425, DOI 10.1093/hmg/8.8.1425 Jones SM, 1999, HEARING RES, V135, P56, DOI 10.1016/S0378-5955(99)00090-8 Jones SM, 2002, J NEUROSCI METH, V118, P23, DOI 10.1016/S0165-0270(02)00125-5 Jones SM, 2004, HEARING RES, V191, P34, DOI 10.1016/j.heares.2004.01.008 Jones TA, 1999, HEARING RES, V136, P75, DOI 10.1016/S0378-5955(99)00110-0 Kamarinos M, 2001, Hum Mutat, V17, P351, DOI 10.1002/humu.37 Kemperman MH, 2005, OTOL NEUROTOL, V26, P926, DOI 10.1097/01.mao.0000185062.12458.87 Kharkovets T, 2006, EMBO J, V25, P642, DOI 10.1038/sj.emboj.7600951 Kujoth GC, 2005, SCIENCE, V309, P481, DOI 10.1126/science.1112125 Maison SF, 2006, J NEUROSCI, V26, P10315, DOI 10.1523/JNEUROSCI.2395-06.2006 Maison SF, 2010, J NEUROSCI, V30, P6751, DOI 10.1523/JNEUROSCI.5080-09.2010 Makishima T, 2005, HUM GENET, V118, P29, DOI 10.1007/s00439-005-0001-4 Muller M, 2005, HEARING RES, V202, P63, DOI 10.1016/j.heares.2004.08.011 Nagy I, 2004, J MED GENET, V41, DOI 10.1136/jmg.2003.012286 Noben-Trauth K, 2009, BRAIN RES, V1277, P42, DOI 10.1016/j.brainres.2009.02.012 Pauw RJ, 2007, ANN OTO RHINOL LARYN, V116, P349 Robertson NG, 1998, NAT GENET, V20, P299 Robertson NG, 2008, HUM MOL GENET, V17, P3426, DOI 10.1093/hmg/ddn236 Street VA, 2005, AM J MED GENET A, V139A, P86, DOI 10.1002/ajmg.a.30980 Suzuki N, 2005, NEUROSCI RES, V51, P293, DOI 10.1016/j.neures.2004.12.001 Tebo AE, 2006, CLIN EXP IMMUNOL, V146, P427, DOI 10.1111/j.1365-2249.2006.03227.x Usami S, 2003, EUR J HUM GENET, V11, P744, DOI 10.1038/sj.ejhg.5201043 Yao JH, 2010, J BIOL CHEM, V285, P14909, DOI 10.1074/jbc.M110.106724 Yuan HJ, 2008, CLIN GENET, V73, P391, DOI 10.1111/j.1399-0004.2008.00972.x Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 Zheng QY, 2005, HUM MOL GENET, V14, P103, DOI 10.1093/hmg/ddi010 NR 32 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2011 VL 272 IS 1-2 BP 42 EP 48 DI 10.1016/j.heares.2010.11.002 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 735ME UT WOS:000288418100006 PM 21073934 ER PT J AU Carzoli, KL Hyson, RL AF Carzoli, Kathryn L. Hyson, Richard L. TI In vivo analysis of the role of metabotropic glutamate receptors in the afferent regulation of chick cochlear nucleus neurons SO HEARING RESEARCH LA English DT Article ID STEM AUDITORY NUCLEI; ACTIVITY-DEPENDENT REGULATION; RIBOSOMAL-RNA EPITOPE; PROTEIN-SYNTHESIS; TRANSNEURONAL REGULATION; MAGNOCELLULARIS NEURONS; INTRACELLULAR CALCIUM; SYNAPTIC-TRANSMISSION; N-MAGNOCELLULARIS; ACTIVITY BLOCKADE AB Cochlea removal results in the death of approximately 20-30% of neurons in the chick nucleus magnocellularis (NM). One early event in NM neuronal degradation is the disruption of their ribosomes. This can be visualized in the first few hours following cochlea removal using Y10B, an antibody that recognizes ribosomal RNA. Previous studies using a brain slice preparation suggest that maintenance of ribosomal integrity in NM neurons requires metabotropic glutamate receptor (mGluR) activation. Isolating the brain slice in vitro, however, may eliminate other potential sources of trophic support and only allows for evaluation of the early changes that occur in NM neurons following deafferentation. Consequently, it is not known if mGluR activation is truly required for the maintenance of NM neurons in the intact system. The current experiments evaluated the importance of mGluRs in vivo. The effects of short-term receptor blockade were assessed through Y10B labeling and the effects of long-term blockade were assessed through stereological counting of NM neurons in Nissl-stained tissue. mGluR antagonists or vehicle were administered intracerebroventricularly following unilateral cochlea removal. Vehicle-treated subjects replicated the previously reported effects of cochlea removal, showing lighter Y10B labeling and fewer Nissl-stained NM neurons on the deafened side of the brain. Blockade of mGluRs prevented the rapid activity-dependent difference in Y10B labeling, and in some cases, had the reverse effect, yielding lighter labeling of NM neurons on the intact side of the brain. Similarly, mGluR blockade over longer survival periods resulted in a reduction in number of cells on both intact and deafferented sides of the brain, and in some cases, yielded a reverse effect of fewer neurons on the intact side versus deafened side. These data are consistent with in vitro findings and suggest that mGluR activation plays a vital role in the afferent maintenance of NM neurons. (C) 2010 Elsevier B.V. All rights reserved. C1 [Carzoli, Kathryn L.; Hyson, Richard L.] Florida State Univ, Dept Psychol, Program Neurosci, Tallahassee, FL 32306 USA. RP Hyson, RL (reprint author), Florida State Univ, Dept Psychol, Program Neurosci, Tallahassee, FL 32306 USA. EM hyson@psy.fsu.edu FU PHS [DC 000858] FX Research supported by PHS grant DC 000858. The authors would like to thank Jessica Santollo, Ph.D., for her assistance in developing the cannulation procedure. CR BORN DE, 1991, BRAIN RES, V557, P37, DOI 10.1016/0006-8993(91)90113-A BORN DE, 1985, J COMP NEUROL, V231, P435, DOI 10.1002/cne.902310403 Bruno V, 1998, PROG BRAIN RES, V116, P209, DOI 10.1016/S0079-6123(08)60439-2 Bruno V, 1997, J NEUROSCI, V17, P1891 CANADY KS, 1994, J NEUROSCI, V14, P5973 CANADY KS, 1992, J NEUROSCI, V12, P1001 Conn PJ, 1997, ANNU REV PHARMACOL, V37, P205, DOI 10.1146/annurev.pharmtox.37.1.205 DANTONI S, 2008, NEUROCHEM RES FRAZIER LL, 1988, J COMP NEUROL, V269, P355, DOI 10.1002/cne.902690304 GARDEN GA, 1994, J NEUROSCI, V14, P1994 GARDEN GA, 1995, MOL CELL NEUROSCI, V6, P293, DOI 10.1006/mcne.1995.1023 Hyson RL, 1997, BRAIN RES, V749, P61, DOI 10.1016/S0006-8993(96)01160-2 HYSON RL, 1995, BRAIN RES, V672, P196, DOI 10.1016/0006-8993(94)01390-4 HYSON RL, 1989, J NEUROSCI, V9, P2835 Hyson RL, 1998, BRAIN RES, V809, P214, DOI 10.1016/S0006-8993(98)00873-7 Kato BM, 1996, J NEUROPHYSIOL, V76, P646 LACHICA EA, 1995, J NEUROSCI, V15, P1724 Liu QS, 2004, NEURON GLIA BIOL, V1, P307, DOI 10.1017/S1740925X05000190 Lu Y, 2007, J NEUROPHYSIOL, V97, P1018, DOI 10.1152/jn.00883.2006 Lu Y, 2005, J NEUROPHYSIOL, V93, P1418, DOI 10.1152/jn.00659.2004 Maiese K, 2000, J NEUROSCI RES, V62, P257, DOI 10.1002/1097-4547(20001015)62:2<257::AID-JNR10>3.0.CO;2-H MONYER H, 1992, NEURON, V967 NEMETH EF, 1983, NEUROSCI LETT, V40, P39, DOI 10.1016/0304-3940(83)90089-7 Nicholas AH, 2004, BRAIN RES, V1014, P110, DOI 10.1016/j.braines.2004.03.066 Nucci C, 2003, EUR J OPHTHALMOL, V13, pS36 PARKS TN, 1978, J COMP NEUROL, V180, P439, DOI 10.1002/cne.901800303 Puelles L., 2007, CHICK BRAIN STEREOTA RUBEL EW, 1992, J COMP NEUROL, V318, P415, DOI 10.1002/cne.903180406 RUBEL E W, 1991, Brain Dysfunction, V4, P55 RUBEL EW, 1975, J COMP NEUROL, V164, P411, DOI 10.1002/cne.901640403 STEWARD O, 1985, J COMP NEUROL, V231, P385, DOI 10.1002/cne.902310308 VANDERLO.H, 1973, SCIENCE, V179, P395, DOI 10.1126/science.179.4071.395 ZIRPEL L, 1995, J NEUROPHYSIOL, V74, P1355 Zirpel L, 1998, J NEUROPHYSIOL, V79, P2288 Zirpel L, 1996, J NEUROPHYSIOL, V76, P4127 Zirpel L, 2000, J NEUROSCI, V20, P6267 NR 36 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2011 VL 272 IS 1-2 BP 49 EP 57 DI 10.1016/j.heares.2010.10.020 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 735ME UT WOS:000288418100007 PM 21059385 ER PT J AU Farahbakhsh, NA Zelaya, JE Narins, PM AF Farahbakhsh, Nasser A. Zelaya, Jaime E. Narins, Peter M. TI Osmotic properties of auditory hair cells in the leopard frog: Evidence for water-permeable channels SO HEARING RESEARCH LA English DT Article ID ISOVOLUMETRIC REGULATION; ANURAN AMPHIBIANS; VOLUME REGULATION; PROXIMAL TUBULES; SLOW MOTILITY; MECHANISMS; DEHYDRATION; AQUAPORINS; EXPRESSION; PAPILLA AB When amphibian papillar hair cells (APHCs) of the leopard frog, Rana pipiens pipiens, are osmotically challenged, they exhibit a characteristically asymmetric (rectifying) response: small decreases (5%, or less) in the extracellular solution's osmolarity do not significantly affect the cells' volume; larger decreases produce a relatively slow volume increase in APHCs, while exposure to a hyperosmotic medium leads to rapid shrinking of these cells. Furthermore, the rate of volume change appears to be a function of the rate of extracellular osmotic change. These characteristics make the application of methods devised for the estimation of the osmotic permeability coefficient (P-f ) for semipermeable membranes - i.e., those with significant permeability only to water - to APHC membrane rather futile. We have, therefore, devised a method that takes both the permeability to solutes as well as the kinetics of the osmolarity change into consideration, in order to obtain estimates of P-f that are to a large degree independent of these factors. We have compared the new and earlier methods. Using the new method, we have estimated the P-f of APHCs' plasma membrane to be in the 10(-2)-cm/s range, and thus significantly larger than those reported for lipid bilayers. APHC's membrane P-f appears to be cell-size independent and insensitive to extracellular mercury. These results suggest that APHCs express water-permeable channels in their plasma membrane. Furthermore, we suggest that asymmetric and rate dependent shape changes produced by osmolarity changes in APHCs imply the presence of significant permeability to solutes. The significance of transmembrane solute transport and water channel expression in amphibian auditory hair cells is discussed. (C) 2010 Elsevier B.V. All rights reserved. C1 [Farahbakhsh, Nasser A.; Zelaya, Jaime E.; Narins, Peter M.] Univ Calif Los Angeles, Dept Integrat Biol & Physiol, Los Angeles, CA 90095 USA. [Narins, Peter M.] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA. RP Farahbakhsh, NA (reprint author), Univ Calif Los Angeles, Dept Integrat Biol & Physiol, 621 Charles E Young Dr S, Los Angeles, CA 90095 USA. EM farahbak@ucla.edu FU National Institutes of Health [DC-00222] FX This work was supported by National Institutes of Health Grant DC-00222 CR Belyantseva IA, 2000, J NEUROSCI, V20, part. no. Bentley PJ, 2002, ENDOCRINES OSMOREGUL BERNARD C, 1986, J PHYSIOL-LONDON, V371, P17 CAREY MB, 1993, HEARING RES, V70, P216, DOI 10.1016/0378-5955(93)90160-3 CHERTOFF ME, 1994, AM J PHYSIOL, V266, pC467 DULON D, 1992, AM J OTOL, V13, P108 ECHEVARRIA M, 1992, J GEN PHYSIOL, V99, P573, DOI 10.1085/jgp.99.4.573 Farahbakhsh NA, 2006, HEARING RES, V212, P140, DOI 10.1016/j.heares.2005.11.004 Farahbakhsh NA, 2008, HEARING RES, V241, P7, DOI 10.1016/j.heares.2008.04.007 FARAHBAKHSH NA, 2010, ARO ABSTR, V33, P29 FARMER REL, 1970, BIOCHIM BIOPHYS ACTA, V196, P53, DOI 10.1016/0005-2736(70)90165-3 Grosse T, 2001, PFLUG ARCH EUR J PHY, V442, P297 HILLMAN SS, 1980, COPEIA, P125, DOI 10.2307/1444142 Hoffmann EK, 2009, PHYSIOL REV, V89, P193, DOI 10.1152/physrev.00037.2007 Ishibashi K, 2009, CLIN EXP NEPHROL, V13, P107, DOI 10.1007/s10157-008-0118-6 KEDEM O, 1958, BIOCHIM BIOPHYS ACTA, V27, P229, DOI 10.1016/0006-3002(58)90330-5 Lakowicz J. R., 1983, PRINCIPLES FLUORESCE Lohr JW, 2000, NEUROSCI LETT, V286, P5, DOI 10.1016/S0304-3940(00)01098-3 LOHR JW, 1986, J CLIN INVEST, V78, P1165, DOI 10.1172/JCI112698 LOHR JW, 1990, RENAL PHYSIOL BIOCH, V13, P233 Manley GA, 2000, P NATL ACAD SCI USA, V97, P11736, DOI 10.1073/pnas.97.22.11736 MILLER M, 2010, ARO ABSTR, V33, P217 Nishimoto G, 2007, AM J PHYSIOL-REG I, V292, pR644, DOI 10.1152/ajpregu.00362.2006 PROBSTEIN GP, 1994, PHYSIOCHEMICAL HYDRO Quesada O, 2000, ADV EXP MED BIOL, V483, P219 Ratnanather JT, 1996, HEARING RES, V96, P33 Souza MM, 2000, CELL BIOL INT, V24, P713, DOI 10.1006/cbir.2000.0554 Suzuki M, 2009, COMP BIOCHEM PHYS A, V153, P231, DOI 10.1016/j.cbpa.2009.02.035 VanDriessche W, 1997, AM J PHYSIOL-CELL PH, V272, pC1890 VERKMAN AS, 1989, AM J PHYSIOL, V257, pC837 Yang BX, 1997, J BIOL CHEM, V272, P16140, DOI 10.1074/jbc.272.26.16140 Zhi M, 2007, HEARING RES, V228, P95, DOI 10.1016/j.heares.2007.02.007 NR 32 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2011 VL 272 IS 1-2 BP 69 EP 84 DI 10.1016/j.heares.2010.10.015 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 735ME UT WOS:000288418100009 PM 21044674 ER PT J AU Wu, T Song, L Shi, X Jiang, Z Santos-Sacchi, J Nuttall, AL AF Wu, T. Song, L. Shi, X. Jiang, Z. Santos-Sacchi, J. Nuttall, A. L. TI Effect of capsaicin on potassium conductance and electromotility of the guinea pig outer hair cell SO HEARING RESEARCH LA English DT Article ID MAMMALIAN COCHLEAR AMPLIFICATION; MOUSE INNER-EAR; VOLTAGE-DEPENDENCE; AUDITORY PATHWAY; IONIC CURRENTS; K+ CURRENTS; KCNQ4; MOTILITY; CHANNEL; EXPRESSION AB Capsaicin, the classic activator of TRPV-1 channels in primary sensory neurons, evokes nociception. Interestingly, auditory reception is also modulated by this chemical, possibly by direct actions on outer hair cells (OHCs). Surprisingly, we find two novel actions of capsaicin unrelated to TRPV-1 channels, which likely contribute to its auditory effects in vivo. First, capsaicin is a potent blocker of OHC K conductances (I(K) and I(K,n)). Second, capsaicin substantially alters OHC nonlinear capacitance, the signature of electromotility - a basis of cochlear amplification. These new findings of capsaicin have ramifications for our understanding of the pharmacological properties of OHC IK, IK,n and electromotility and for interpretation of capsaicin pharmacological actions. (C) 2010 Elsevier B.V. All rights reserved. C1 [Wu, T.; Shi, X.; Jiang, Z.; Nuttall, A. L.] Oregon Hlth & Sci Univ, Dept Otolaryngol Head & Neck Surg, Oregon Hearing Res Ctr, Portland, OR 97239 USA. [Song, L.; Santos-Sacchi, J.] Yale Univ, Sch Med, New Haven, CT 06510 USA. [Nuttall, A. L.] Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. [Nuttall, A. L.] Shanghai Jiao Tong Univ, Renji Hosp, Dept Otolaryngol, Shanghai 200030, Peoples R China. RP Nuttall, AL (reprint author), Oregon Hlth & Sci Univ, Dept Otolaryngol Head & Neck Surg, Oregon Hearing Res Ctr, NRC04,3181 SW Sam Jackson Pk Rd, Portland, OR 97239 USA. EM nuttall@ohsu.edu FU NIH [DC 005983, DC 000141, DC 000273, DC 008130, DC 004716, DC 010844, DC 008888-02, DC 008888-02S1] FX NIH grants DC 005983, DC 000141 (ALN), DC 000273 (JSS), DC 008130 (JSS), DC 004716 (JZG) DC 010844 (XS), DC 008888-02(XS), DC 008888-02S1 (XS). CR ASHMORE JF, 1986, NATURE, V322, P368, DOI 10.1038/322368a0 BROWNELL WE, 1984, SCANNING ELECTRON MI, V3, P1401 Caterina MJ, 1997, NATURE, V389, P816 Chambard JM, 2005, PFLUG ARCH EUR J PHY, V450, P34, DOI 10.1007/s00424-004-1366-2 Dallos P, 2008, NEURON, V58, P333, DOI 10.1016/j.neuron.2008.02.028 Grimm C, 2007, P NATL ACAD SCI USA, V104, P19583, DOI 10.1073/pnas.0709846104 GRISSMER S, 1994, MOL PHARMACOL, V45, P1227 He DZZ, 2006, J MEMBRANE BIOL, V209, P119, DOI 10.1007/s00232-005-0833-9 Holt JR, 2007, J NEUROSCI, V27, P8940, DOI 10.1523/JNEUROSCI.2085-07.2007 Housley GD, 2006, J MEMBRANE BIOL, V209, P89, DOI 10.1007/s00232-005-0835-7 HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73 Ishibashi T, 2008, ACTA OTO-LARYNGOL, V128, P1286, DOI 10.1080/00016480801938958 Jagger DJ, 1999, PFLUG ARCH EUR J PHY, V437, P409, DOI 10.1007/s004240050795 JAGGER DJ, 1999, PFLUGERS ARCH, V427, P368 KAKEHATA S, 1995, BIOPHYS J, V68, P2190 Kharkovets T, 2006, EMBO J, V25, P642, DOI 10.1038/sj.emboj.7600951 Kharkovets T, 2000, P NATL ACAD SCI USA, V97, P4333, DOI 10.1073/pnas.97.8.4333 Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 Mammano F, 1996, J PHYSIOL-LONDON, V496, P639 MAMMANO F, 1995, PFLUG ARCH EUR J PHY, V430, P745, DOI 10.1007/BF00386170 Marcotti W, 1999, HEARING RES, V135, P113, DOI 10.1016/S0378-5955(99)00097-0 Mukherjea D, 2008, J NEUROSCI, V28, P13056, DOI 10.1523/JNEUROSCI.1307-08.2008 Oliver D, 2001, SCIENCE, V292, P2340, DOI 10.1126/science.1060939 Rennie KJ, 2001, AM J PHYSIOL-CELL PH, V280, pC473 Rybalchenko V, 2003, J PHYSIOL-LONDON, V547, P873, DOI 10.1113/jphysiol.2002.036434 SANTOS-SACCHI J, 1991, J NEUROSCI, V11, P3096 Santos-Sacchi J, 2006, J NEUROSCI, V26, P3992, DOI 10.1523/JNEUROSCI.4548-05.2006 Santos-Sacchi J, 1998, J PHYSIOL-LONDON, V510, P225, DOI 10.1111/j.1469-7793.1998.225bz.x SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X Santos-Sacchi J, 2003, CURR OPIN NEUROBIOL, V13, P459, DOI 10.1016/S0959-4388(03)00100-4 Santos-Sacchi J, 1997, BIOPHYS J, V73, P1424 Song L, 2005, BIOPHYS J, V88, P2350, DOI 10.1529/biophysj.104.053579 Szallasi A, 1999, PHARMACOL REV, V51, P159 Wu T, 2010, J NEUROPHYSIOL, V103, P1969, DOI 10.1152/jn.01057.2009 Xu TH, 2007, J BIOL CHEM, V282, P23899, DOI 10.1074/jbc.M702108200 Zheng JF, 2003, J NEUROPHYSIOL, V90, P444, DOI 10.1152/jn.00919.2002 NR 36 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2011 VL 272 IS 1-2 BP 117 EP 124 DI 10.1016/j.heares.2010.10.010 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 735ME UT WOS:000288418100013 PM 21044673 ER PT J AU Abrams, DA Nicol, T Zecker, S Kraus, N AF Abrams, Daniel A. Nicol, Trent Zecker, Steven Kraus, Nina TI A possible role for a paralemniscal auditory pathway in the coding of slow temporal information SO HEARING RESEARCH LA English DT Article ID MEDIAL GENICULATE-BODY; AMPLITUDE-MODULATED SOUNDS; GUINEA-PIG; THALAMOCORTICAL SYSTEM; MARMOSET MONKEYS; NEURAL RESPONSES; CORTICAL FIELDS; BELT REGIONS; DORSAL ZONE; CORTEX AB Low-frequency temporal information present in speech is critical for normal perception, however the neural mechanism underlying the differentiation of slow rates in acoustic signals is not known. Data from the rat trigeminal system suggest that the paralemniscal pathway may be specifically tuned to code low-frequency temporal information. We tested whether this phenomenon occurs in the auditory system by measuring the representation of temporal rate in lemniscal and paralemniscal auditory thalamus and cortex in guinea pig. Similar to the trigeminal system, responses measured in auditory thalamus indicate that slow rates are differentially represented in a paralemniscal pathway. In cortex, both lemniscal and paralemniscal neurons indicated sensitivity to slow rates. We speculate that a paralemniscal pathway in the auditory system may be specifically tuned to code low-frequency temporal information present in acoustic signals. These data suggest that somatosensory and auditory modalities have parallel sub-cortical pathways that separately process slow rates and the spatial representation of the sensory periphery. (C) 2010 Elsevier B.V. All rights reserved. C1 [Abrams, Daniel A.; Nicol, Trent; Zecker, Steven; Kraus, Nina] Northwestern Univ, Dept Commun Sci, Auditory Neurosci Lab, Evanston, IL 60208 USA. [Kraus, Nina] Northwestern Univ, Dept Neurobiol & Physiol, Evanston, IL 60208 USA. [Kraus, Nina] Northwestern Univ, Dept Otolaryngol, Evanston, IL 60208 USA. RP Abrams, DA (reprint author), Stanford Cognit & Syst Neurosci Lab, 780 Welch Rd,Room 201, Palo Alto, CA 94304 USA. EM daa@stanford.edu FU National Institutes of Health [R01 DC01510]; National Organization for Hearing Research [340-B208] FX This work is supported by the National Institutes of Health grant R01 DC01510 and National Organization for Hearing Research grant 340-B208. We thank E. Ahissar for critical reviews of this manuscript and C. Warder for assistance with data collection. CR Abrams DA, 2008, J NEUROSCI, V28, P3958, DOI 10.1523/JNEUROSCI.0187-08.2008 Abrams DA, 2009, J NEUROSCI, V29, P7686, DOI 10.1523/JNEUROSCI.5242-08.2009 Abrams DA, 2010, CLIN NEUROPHYSIOL, V121, P1343, DOI 10.1016/j.clinph.2010.02.158 Ahissar E, 1997, P NATL ACAD SCI USA, V94, P11633, DOI 10.1073/pnas.94.21.11633 Ahissar E, 2005, AUDITORY CORTEX: SYNTHESIS OF HUMAN AND ANIMAL RESEARCH, P295 Ahissar E, 2000, NATURE, V406, P302, DOI 10.1038/35018568 Ahissar E, 2001, Prog Brain Res, V130, P75 Anderson LA, 2009, J NEUROSCI, V29, P7359, DOI 10.1523/JNEUROSCI.0793-09.2009 Anderson SE, 2006, HEARING RES, V213, P107, DOI 10.1016/j.heares.2005.12.011 Bartlett EL, 2007, J NEUROPHYSIOL, V97, P1005, DOI 10.1152/jn.00593.2006 Bieser A, 1996, EXP BRAIN RES, V108, P273 Castro-Alamancos MA, 2002, J PHYSIOL-LONDON, V539, P567, DOI 10.1013/jphysiol.2001.013283 CREUTZFELDT O, 1980, EXP BRAIN RES, V39, P87 Cunningham J, 2002, HEARING RES, V169, P97, DOI 10.1016/S0378-5955(02)00344-1 de la Mothe LA, 2006, J COMP NEUROL, V496, P27, DOI 10.1002/cne.20923 de la Mothe LA, 2006, J COMP NEUROL, V496, P72, DOI 10.1002/cne.20924 DIAMOND ME, 1992, CONCEPT NEUROSCI, V3, P55 DRULLMAN R, 1994, J ACOUST SOC AM, V95, P1053, DOI 10.1121/1.408467 EGGERMONT JJ, 1991, HEARING RES, V56, P153, DOI 10.1016/0378-5955(91)90165-6 Eggermont JJ, 1998, J NEUROPHYSIOL, V80, P2743 EGGERMONT JJ, 1992, HEARING RES, V61, P1, DOI 10.1016/0378-5955(92)90029-M Eggermont JJ, 2002, J NEUROPHYSIOL, V87, P305 EGGERMONT JJ, 1995, J NEUROPHYSIOL, V73, P227 GOLDSTEIN JM, 1959, J ACOUST SOC AM, V31, P356 He JF, 2003, J NEUROPHYSIOL, V89, P367, DOI 10.1152/jn.00593.2002 He JF, 2002, J NEUROPHYSIOL, V88, P2377, DOI 10.1152/jn.00083.2002 He JF, 1997, J NEUROSCI, V17, P2615 He JF, 2003, J NEUROSCI, V23, P8281 He JF, 1998, J COMP NEUROL, V400, P334, DOI 10.1002/(SICI)1096-9861(19981026)400:3<334::AID-CNE4>3.0.CO;2-9 HU B, 1994, J PHYSIOL-LONDON, V479, P217 Huetz C, 2009, J NEUROSCI, V29, P334, DOI 10.1523/JNEUROSCI.3269-08.2009 King C, 1999, NEUROSCI LETT, V267, P89, DOI 10.1016/S0304-3940(99)00336-5 Kosaki H, 1997, J COMP NEUROL, V386, P304 Lu T, 2001, NAT NEUROSCI, V4, P1131, DOI 10.1038/nn737 Lu T, 2000, J NEUROPHYSIOL, V84, P236 McGee T, 1996, J ACOUST SOC AM, V99, P3606, DOI 10.1121/1.414958 Miller LM, 2002, J NEUROPHYSIOL, V87, P516 PHILLIPS DP, 1989, J ACOUST SOC AM, V85, P2537, DOI 10.1121/1.397748 PREUSS A, 1990, EXP BRAIN RES, V79, P207 Rauschecker JP, 1997, J COMP NEUROL, V382, P89 REDIES H, 1989, J COMP NEUROL, V282, P473, DOI 10.1002/cne.902820402 REDIES H, 1989, J COMP NEUROL, V282, P489, DOI 10.1002/cne.902820403 REDIES H, 1991, EXP BRAIN RES, V86, P384 ROSEN S, 1992, PHILOS T ROY SOC B, V336, P367, DOI 10.1098/rstb.1992.0070 ROUILLER E, 1981, HEARING RES, V5, P81, DOI 10.1016/0378-5955(81)90028-9 ROUILLER E, 1982, EXP BRAIN RES, V48, P323 Sosnik R, 2001, J NEUROPHYSIOL, V86, P339 Steinschneider M, 1998, J ACOUST SOC AM, V104, P2935, DOI 10.1121/1.423877 Suta D, 2003, J NEUROPHYSIOL, V90, P3794, DOI 10.1152/jn.01175.2002 Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032 Ulanovsky N, 2004, J NEUROSCI, V24, P10440, DOI 10.1523/JNEUROSCI.1905-04.2004 VERNIER VG, 1957, AM J PHYSIOL, V188, P233 Wallace MN, 2000, EXP BRAIN RES, V132, P445, DOI 10.1007/s002210000362 Wang X, 2008, Neuroscience, V157, P484, DOI 10.1016/j.neuroscience.2008.07.050 WOOLSEY TA, 1997, ENZY NEUROSCIENCE, P195 Yu XJ, 2009, NAT NEUROSCI, V12, P1165, DOI 10.1038/nn.2373 Yu XJ, 2009, J NEUROPHYSIOL, V101, P980, DOI 10.1152/jn.91130.2008 NR 57 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2011 VL 272 IS 1-2 BP 125 EP 134 DI 10.1016/j.heares.2010.10.009 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 735ME UT WOS:000288418100014 PM 21094680 ER PT J AU Koka, K Jones, HG Thornton, JL Lupo, JE Tollin, DJ AF Koka, Kanthaiah Jones, Heath G. Thornton, Jennifer L. Lupo, J. Eric Tollin, Daniel J. TI Sound pressure transformations by the head and pinnae of the adult Chinchilla (Chinchilla lanigera) SO HEARING RESEARCH LA English DT Article ID LATERAL SUPERIOR OLIVE; EAR TRANSFER-FUNCTIONS; INTERAURAL TIME DIFFERENCES; EXTERNAL-EAR; SPECTRAL CUES; INDIVIDUAL-DIFFERENCES; INFERIOR COLLICULUS; AUDITORY-CORTEX; GUINEA-PIG; POSTNATAL-DEVELOPMENT AB There are three main cues to sound location: the interaural differences in time (ITD) and level (ILD) as well as the monaural spectral shape cues. These cues are generated by the spatial- and frequency-dependent filtering of propagating sound waves by the head and external ears. Although the chinchilla has been used for decades to study the anatomy, physiology, and psychophysics of audition, including binaural and spatial hearing, little is actually known about the sound pressure transformations by the head and pinnae and the resulting sound localization cues available to them. Here, we measured the directional transfer functions (DIFs), the directional components of the head-related transfer functions, for 9 adult chinchillas. The resulting localization cues were computed from the DTFs. In the frontal hemisphere, spectral notch cues were present for frequencies from similar to 6-18 kHz. In general, the frequency corresponding to the notch increased with increases in source elevation as well as in azimuth towards the ipsilateral ear. The ILDs demonstrated a strong correlation with source azimuth and frequency. The maximum ILDs were < 10 dB for frequencies < 5 kHz, and ranged from 10-30 dB for the frequencies > 5 kHz. The maximum ITDs were dependent on frequency, yielding 236 mu s at 4 kHz and 336 mu s at 250 Hz. Removal of the pinnae eliminated the spectral notch cues, reduced the acoustic gain and the ILDs, altered the acoustic axis, and reduced the ITDs. (C) 2010 Elsevier B.V. All rights reserved. C1 [Koka, Kanthaiah; Jones, Heath G.; Thornton, Jennifer L.; Tollin, Daniel J.] Univ Colorado, Sch Med, Dept Physiol & Biophys, Aurora, CO USA. [Jones, Heath G.; Thornton, Jennifer L.; Tollin, Daniel J.] Univ Colorado, Sch Med, Neurosci Training Program, Aurora, CO USA. [Lupo, J. Eric; Tollin, Daniel J.] Univ Colorado, Sch Med, Dept Otolaryngol, Aurora, CO USA. RP Koka, K (reprint author), Univ Colorado Denver, Dept Physiol & Biophys, Mail Stop 8307,Box 6511,12800 E 19th Ave, Aurora, CO 80045 USA. EM kanthaiah.koka@ucdenver.edu FU National Institutes of Deafness and Other Communicative Disorders [R01DC006865]; National Institute of Child Health and Human Development [5T32HD041697]; Advanced Training in Basic Neuroscience [NINDS T32NS007083]; NIDCD NRSA [F31DC011198]; American Academy of Otolaryngology-Head and Neck Surgery Foundation (AAO-HNSF); NIH [P30 NS041854-05] FX This work was supported by National Institutes of Deafness and Other Communicative Disorders Grant R01DC006865 to DJT. Support was also provided by the Neuroscience Training Grant (National Institute of Child Health and Human Development grant 5T32HD041697), the Advanced Training in Basic Neuroscience Grant (NINDS T32NS007083 to HGJ), an NIDCD NRSA (F31DC011198 to JLT), and by an American Academy of Otolaryngology-Head and Neck Surgery Foundation (AAO-HNSF)Resident research grant to JEL. We thank Dr. Michael Hall for preparing custom hardware (supported by NIH grant P30 NS041854-05) and Scott Baird for drawings. CR Aytekin M, 2004, J ACOUST SOC AM, V116, P3594, DOI [10.1121/1.1811412, 10.1121/1.1811412]] BENSON DA, 1976, BRAIN RES, V103, P313, DOI 10.1016/0006-8993(76)90801-5 Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a Bugayevskiy LM, 1995, MAP PROJECTIONS REFE CALFORD MB, 1984, HEARING RES, V14, P13, DOI 10.1016/0378-5955(84)90064-9 CARLILE S, 1990, J ACOUST SOC AM, V88, P2180, DOI 10.1121/1.400115 CARLILE S, 1987, HEARING RES, V31, P111, DOI 10.1016/0378-5955(87)90117-1 CARLILE S, 1994, J NEUROPHYSIOL, V71, P785 CHEN QC, 1995, J EXP BIOL, V198, P2007 COLES RB, 1986, J EXP BIOL, V121, P371 Duda RO, 1998, J ACOUST SOC AM, V104, P3048, DOI 10.1121/1.423886 Ebert CS, 2008, HEARING RES, V235, P134, DOI 10.1016/j.heares.2007.11.003 FINLAYSON PG, 1991, J NEUROPHYSIOL, V65, P598 FINLAYSON PG, 1989, HEARING RES, V38, P221, DOI 10.1016/0378-5955(89)90067-1 Firzlaff U, 2003, HEARING RES, V181, P27, DOI 10.1016/S0378-5955(03)00164-3 Fuzessery ZM, 1996, HEARING RES, V95, P1, DOI 10.1016/0378-5955(95)00223-5 HARRISON JM, 1970, J ACOUST SOC AM, V47, P1509, DOI 10.1121/1.1912082 HEFFNER RS, 1995, HEARING RES, V88, P190, DOI 10.1016/0378-5955(95)00112-H Heffner RS, 1996, HEARING RES, V99, P13, DOI 10.1016/S0378-5955(96)00074-3 HEFFNER RS, 1991, HEARING RES, V52, P13, DOI 10.1016/0378-5955(91)90183-A HEFFNER RS, 1994, HEARING RES, V80, P247, DOI 10.1016/0378-5955(94)90116-3 IRVINE DRF, 1987, HEARING RES, V26, P267, DOI 10.1016/0378-5955(87)90063-3 JEN PHS, 1988, HEARING RES, V34, P101, DOI 10.1016/0378-5955(88)90098-6 Keller CH, 1998, HEARING RES, V118, P13, DOI 10.1016/S0378-5955(98)00014-8 KELLY JB, 1980, J NEUROPHYSIOL, V44, P1161 Kinsler LE, 1982, FUNDAMENTALS ACOUSTI Koka K, 2010, HEARING RES, V263, P128, DOI 10.1016/j.heares.2009.08.009 Koka K, 2008, J ACOUST SOC AM, V123, P4297, DOI 10.1121/1.2916587 KUHN GF, 1977, J ACOUST SOC AM, V62, P157, DOI 10.1121/1.381498 LANGFORD TL, 1984, HEARING RES, V15, P39, DOI 10.1016/0378-5955(84)90223-5 Leong P, 1998, J NEUROSCI METH, V80, P191, DOI 10.1016/S0165-0270(97)00201-X Long GR, 1994, COMP HEARING MAMMALS, P18 Maki K, 2005, J ACOUST SOC AM, V118, P872, DOI 10.1121/1.1944647 MARTIN RL, 1989, HEARING RES, V38, P289, DOI 10.1016/0378-5955(89)90072-5 McAlpine D, 2003, TRENDS NEUROSCI, V26, P347, DOI 10.1016/S0166-2236(03)00140-1 McFadden SL, 1998, HEARING RES, V120, P121, DOI 10.1016/S0378-5955(98)00052-5 MIDDLEBROOKS JC, 1989, J ACOUST SOC AM, V86, P89, DOI 10.1121/1.398224 MIDDLEBROOKS JC, 1990, J ACOUST SOC AM, V87, P2149, DOI 10.1121/1.399183 Middlebrooks JC, 1999, J ACOUST SOC AM, V106, P1480, DOI 10.1121/1.427176 MIDDLEBROOKS JC, 1981, J NEUROSCI, V1, P107 MIDDLEBROOKS JC, 1987, J NEUROPHYSIOL, V57, P672 MOISEFF A, 1989, J ACOUST SOC AM, V59, P1222 MOORE DR, 1979, ACTA OTO-LARYNGOL, V87, P434, DOI 10.3109/00016487909126447 Morest DK, 1997, HEARING RES, V103, P151, DOI 10.1016/S0378-5955(96)00172-4 Murphy WJ, 1998, J ACOUST SOC AM, V103, P1951, DOI 10.1121/1.421376 MUSICANT AD, 1990, J ACOUST SOC AM, V87, P757, DOI 10.1121/1.399545 MUSICANT AD, 1984, HEARING RES, V14, P185, DOI 10.1016/0378-5955(84)90017-0 Nuding SC, 1999, HEARING RES, V131, P89, DOI 10.1016/S0378-5955(99)00023-4 OBRIST MK, 1993, J EXP BIOL, V180, P119 PALMER AR, 1985, HEARING RES, V17, P267, DOI 10.1016/0378-5955(85)90071-1 Parsons CH, 1999, J NEUROPHYSIOL, V82, P2294 PHILLIPS DP, 1982, HEARING RES, V8, P13, DOI 10.1016/0378-5955(82)90031-4 Pienkowski M, 2005, J NEUROPHYSIOL, V93, P454, DOI 10.1152/jn.00569.2004 Puria S, 2010, HEARING RES, V263, P183, DOI 10.1016/j.heares.2009.10.013 RICE JJ, 1992, HEARING RES, V58, P132, DOI 10.1016/0378-5955(92)90123-5 RIFE DD, 1989, J AUDIO ENG SOC, V37, P419 ROSOWSKI JJ, 1991, J ACOUST SOC AM, V90, P124, DOI 10.1121/1.401306 Rosowski J.J., 1994, COMP HEARING MAMMALS, P172 ROTH GL, 1980, J ACOUST SOC AM, V68, P1643, DOI 10.1121/1.385196 RUGGERO MA, 1983, J ACOUST SOC AM, V73, P2096, DOI 10.1121/1.389577 Ruggero MA, 2002, P NATL ACAD SCI USA, V99, P13206, DOI 10.1073/pnas.202492699 Schnupp JWH, 2003, J ACOUST SOC AM, V113, P2021, DOI 10.1121/1.1547460 Schnupp JWH, 1998, J NEUROPHYSIOL, V79, P1053 Shaw E. A. G., 1982, LOCALIZATION SOUND T, P30 SHAW EAG, 1968, J ACOUST SOC AM, V44, P240, DOI 10.1121/1.1911059 Slee SJ, 2010, HEARING RES, V260, P96, DOI 10.1016/j.heares.2009.12.001 Songer JE, 2006, J ACOUST SOC AM, V120, P258, DOI 10.1121/1.2204356 Spezio ML, 2000, HEARING RES, V144, P73, DOI 10.1016/S0378-5955(00)00050-2 Sterbing SJ, 2003, J NEUROPHYSIOL, V90, P2648, DOI 10.1152/jn.00348.2003 Tollin DJ, 2003, J NEUROPHYSIOL, V90, P525, DOI 10.1152/jn.00107.2003 Tollin DJ, 2003, NEUROSCIENTIST, V9, P127, DOI 10.1177/1073858403252228 Tollin DJ, 2008, J NEUROSCI, V28, P4848, DOI 10.1523/JNEUROSCI.5421-07.2008 Tollin DJ, 2009, J NEUROPHYSIOL, V101, P1258, DOI 10.1152/jn.90977.2008 Tollin DJ, 2009, J ACOUST SOC AM, V125, P980, DOI 10.1121/1.3058630 Tollin DJ, 2009, J ACOUST SOC AM, V126, P3125, DOI 10.1121/1.3257234 VONBISMA.G, 1967, J ACOUST SOC AM, V42, P1156, DOI 10.1121/1.2143914 VONBISMARK G, 1967, THESIS MIT WAKEFORD OS, 1974, J ACOUST SOC AM, V55, P1223 Wiener F M, 1966, Acta Otolaryngol, V61, P255, DOI 10.3109/00016486609127062 WIGHTMAN FL, 1989, J ACOUST SOC AM, V85, P858, DOI 10.1121/1.397557 Woodworth R. S., 1938, EXPT PSYCHOL WOTTON JM, 1995, J ACOUST SOC AM, V98, P1423, DOI 10.1121/1.413410 Xu L, 2000, J ACOUST SOC AM, V107, P1451, DOI 10.1121/1.428432 Young ED, 1996, J ACOUST SOC AM, V99, P3064, DOI 10.1121/1.414883 NR 84 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2011 VL 272 IS 1-2 BP 135 EP 147 DI 10.1016/j.heares.2010.10.007 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 735ME UT WOS:000288418100015 PM 20971180 ER PT J AU Havenith, S Versnel, H Agterberg, MJH de Groot, JCMJ Sedee, RJ Grolman, W Klis, SFL AF Havenith, Sarah Versnel, Huib Agterberg, Martijn J. H. de Groot, John C. M. J. Sedee, Robert-Jan Grolman, Wilko Klis, Sjaak F. L. TI Spiral ganglion cell survival after round window membrane application of brain-derived neurotrophic factor using gelfoam as carrier SO HEARING RESEARCH LA English DT Article ID DEAFENED GUINEA-PIGS; SENSORINEURAL HEARING-LOSS; FIBROBLAST-GROWTH-FACTOR; LOCAL-DRUG DELIVERY; NEURONS IN-VIVO; INNER-EAR; ELECTRICAL-STIMULATION; AUDITORY NEURONS; MENIERES-DISEASE; COCHLEAR NEURONS AB Several studies have shown that treatment with various neurotrophins protects spiral ganglion cells (SGCs) from degeneration in hair-cell deprived cochleas. In most of these studies the neurotrophins are delivered by means of intracochlear delivery methods. Recently, other application methods that might be more suited in cochlear implant patients have been developed. We have examined if round window membrane application of gelfoam infiltrated with a neurotrophin resulted in SGC survival in deafened guinea pigs. Two weeks after deafening, gelfoam cubes infiltrated with 6 mu g of brain-derived neurotrophic factor (BDNF) were deposited onto the round window membrane of the right cochleas. Electric pulses were delivered through an electrode positioned within the round window niche to electrically evoke auditory brainstem responses (eABRs). Two or four weeks after deposition of the gelfoam all cochleas were histologically examined. We found that local BDNF treatment enhances the survival of SGCs in the basal cochlear turn after two and four weeks. The treatment had no effect on SGC size or shape. In animals treated with BDNF, eABR amplitudes were smaller than in normal-hearing control animals and similar to those in deafened controls. We conclude that BDNF delivered by means of local gelfoam application provides a protective effect, which is limited compared to intracochlear delivery methods. (C) 2010 Elsevier B.V. All rights reserved. C1 [Havenith, Sarah; Versnel, Huib; Agterberg, Martijn J. H.; de Groot, John C. M. J.; Sedee, Robert-Jan; Grolman, Wilko; Klis, Sjaak F. L.] Univ Med Ctr Utrecht, Dept Otorhinolaryngol Head & Neck Surg, Rudolf Magnus Inst Neurosci, NL-3508 GA Utrecht, Netherlands. [Agterberg, Martijn J. H.] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, Dept Biophys, Nijmegen, Netherlands. RP Klis, SFL (reprint author), Univ Med Ctr Utrecht, Dept Otorhinolaryngol Head & Neck Surg, Rudolf Magnus Inst Neurosci, Room G-02-531,POB 85500, NL-3508 GA Utrecht, Netherlands. EM s.klis@umcutrecht.nl RI Agterberg, Martijn/K-2956-2012 FU Heinsius-Houbolt Fund FX This work was supported by the Heinsius-Houbolt Fund, the Netherlands. The authors thank Rik Mansvelt-Beck and Rene van de Vosse for technical support and Ferry Hendriksen for assistance with the histology. CR AGTERBERG MJH, 2008, HEARING RES, V224, P25 Agterberg MJH, 2009, JARO-J ASSOC RES OTO, V10, P355, DOI 10.1007/s10162-009-0170-2 Boleas-Aguirre MS, 2008, OTOL NEUROTOL, V29, P33, DOI 10.1097/mao.0b013e31815dbafc Chikar JA, 2008, HEARING RES, V245, P24, DOI 10.1016/j.heares.2008.08.005 DEGROOT JCMJ, 1987, ACTA OTO-LARYNGOL, V104, P234, DOI 10.3109/00016488709107323 Endo T, 2005, LARYNGOSCOPE, V115, P2016, DOI 10.1097/01.mlg.0000183020.32435.59 ERNFORS P, 1995, NEURON, V14, P1153, DOI 10.1016/0896-6273(95)90263-5 Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463 Fritzsch B, 1999, CELL TISSUE RES, V295, P369, DOI 10.1007/s004410051244 Fritzsch B, 2004, PROG BRAIN RES, V146, P265, DOI 10.1016/S0079-6123(03)46017-2 Garduno-Anaya MA, 2005, OTOLARYNG HEAD NECK, V133, P285, DOI 10.1016/j.otohns.2005.05.010 Ghiz AF, 2001, HEARING RES, V162, P105, DOI 10.1016/S0378-5955(01)00375-6 Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542 Gillespie LN, 2004, NEUROREPORT, V15, P1121, DOI 10.1097/01.wnr.0000125777.04774.c2 Glueckert R, 2008, J COMP NEUROL, V507, P1602, DOI 10.1002/cne.21619 Goycoolea MV, 1997, MICROSC RES TECHNIQ, V36, P201, DOI 10.1002/(SICI)1097-0029(19970201)36:3<201::AID-JEMT8>3.0.CO;2-R Guitton MJ, 2003, J NEUROSCI, V23, P3944 HALL RD, 1990, HEARING RES, V45, P123, DOI 10.1016/0378-5955(90)90188-U Ito J, 2005, ORL J OTO-RHINO-LARY, V67, P272, DOI 10.1159/000089407 Klis SFL, 2000, NEUROREPORT, V11, P623, DOI 10.1097/00001756-200002280-00037 Lalwani AK, 2002, LARYNGOSCOPE, V112, P1325, DOI 10.1097/00005537-200208000-00001 Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3 Lefebvre PP, 2002, ACTA OTO-LARYNGOL, V122, P698, DOI 10.1080/003655402/000028037 Maruyama J, 2007, NEUROBIOL DIS, V25, P309, DOI 10.1016/j.nbd.2006.09.012 Maruyama J, 2008, NEUROBIOL DIS, V29, P14, DOI 10.1016/j.nbd.2007.07.026 McCall AA, 2010, EAR HEARING, V31, P156, DOI 10.1097/AUD.0b013e3181c351f2 McGuinness SL, 2005, OTOL NEUROTOL, V26, P1064, DOI 10.1097/01.mao.0000185063.20081.50 Mikulec AA, 2009, OTOL NEUROTOL, V30, P131, DOI 10.1097/MAO.0b013e318191bff8 Miller JM, 2007, J NEUROSCI RES, V85, P1959, DOI 10.1002/jnr.21320 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 Mitchell A, 1997, HEARING RES, V105, P30, DOI 10.1016/S0378-5955(96)00202-X Nakaizumi T, 2004, AUDIOL NEURO-OTOL, V9, P135, DOI 10.1159/000077264 Noushi F, 2005, OTOL NEUROTOL, V26, P528, DOI 10.1097/01.mao.0000169780.84588.a5 Pettingill LN, 2007, IEEE T BIO-MED ENG, V54, P1138, DOI 10.1109/TBME.2007.895375 Rejali D, 2007, HEARING RES, V228, P180, DOI 10.1016/j.heares.2007.02.010 Richardson RT, 2005, HEARING RES, V204, P37, DOI 10.1016/j.heares.2005.01.001 Richardson RT, 2006, AUDIOL NEURO-OTOL, V11, P343, DOI 10.1159/000095896 Richardson RT, 2009, BIOMATERIALS, V30, P2614, DOI 10.1016/j.biomaterials.2009.01.015 Saber A, 2009, EAR HEARING, V30, P81, DOI 10.1097/AUD.0b013e31818ff98e Sajjadi H, 2008, LANCET, V372, P406, DOI 10.1016/S0140-6736(08)61161-7 Salt AN, 2001, HEARING RES, V154, P88, DOI 10.1016/S0378-5955(01)00223-4 Salt AN, 2009, AUDIOL NEURO-OTOL, V14, P350, DOI 10.1159/000241892 Scheper V, 2009, J NEUROSCI RES, V87, P1389, DOI 10.1002/jnr.21964 Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564 Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999 Silverstein H, 1999, OTOLARYNG HEAD NECK, V120, P649, DOI 10.1053/hn.1999.v120.a91763 Silverstein H, 1996, Ear Nose Throat J, V75, P468 Slattery WH, 2005, OTOLARYNG HEAD NECK, V133, P251, DOI 10.1016/j.otohns.2005.05.015 Sly DJ, 2007, EUR J NEUROSCI, V26, P510, DOI 10.1111/j.1460-9568.2007.05678.x SMITH L, 1983, ANN OTO RHINOL LARYN, V92, P19 Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011 Staecker H, 1998, OTOLARYNG HEAD NECK, V119, P7, DOI 10.1016/S0194-5998(98)70194-9 VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5 Versnel H, 2007, HEARING RES, V231, P1, DOI 10.1016/j.heares.2007.03.003 WEST BA, 1973, ARCH OTOLARYNGOL, V98, P32 Wise AK, 2005, J COMP NEUROL, V487, P147, DOI 10.1002/cne.20563 Yamagata T, 2004, J NEUROSCI RES, V78, P75, DOI 10.1002/jnr.20239 NR 57 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2011 VL 272 IS 1-2 BP 168 EP 177 DI 10.1016/j.heares.2010.10.003 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 735ME UT WOS:000288418100018 PM 20969940 ER PT J AU Temchin, AN Recio-Spinoso, A Ruggero, MA AF Temchin, Andrei N. Recio-Spinoso, Alberto Ruggero, Mario A. TI Timing of cochlear responses inferred from frequency-threshold tuning curves of auditory-nerve fibers SO HEARING RESEARCH LA English DT Article ID BASILAR-MEMBRANE VIBRATIONS; MECHANICAL WAVE-FORM; CHINCHILLA COCHLEA; IMPULSE RESPONSES; IN-VIVO; REGION; GLIDES; TONES; BASE; FUROSEMIDE AB Links between frequency tuning and timing were explored in the responses to sound of auditory-nerve fibers. Synthetic transfer functions were constructed by combining filter functions, derived via minimum-phase computations from average frequency-threshold tuning curves of chinchilla auditory-nerve fibers with high spontaneous activity (Temchin et al., 2008), and signal-front delays specified by the latencies of basilar-membrane and auditory-nerve fiber responses to intense clicks (Temchin et al., 2005). The transfer functions predict several features of the phase-frequency curves of cochlear responses to tones, including their shape transitions in the regions with characteristic frequencies of 1 kHz and 3-4 kHz (Temchin and Ruggero, 2010). The transfer functions also predict the shapes of cochlear impulse responses, including the polarities of their frequency sweeps and their transition at characteristic frequencies around 1 kHz. Predictions are especially accurate for characteristic frequencies < 1 kHz. (C) 2010 Elsevier B.V. All rights reserved. C1 [Temchin, Andrei N.; Ruggero, Mario A.] Northwestern Univ, Dept Commun Sci & Disorders, Hugh Knowles Ctr, Evanston, IL 60208 USA. [Recio-Spinoso, Alberto] Univ Castilla La Mancha, Inst Invest Discapacidades Neurol, Albacete 02006, Spain. RP Ruggero, MA (reprint author), Northwestern Univ, Dept Commun Sci & Disorders, Hugh Knowles Ctr, 2240 Campus Dr, Evanston, IL 60208 USA. EM mruggero@northwestern.edu RI Recio-Spinoso, Alberto/F-7744-2013 FU NIH [2 R01 DC000419-20A2]; Hugh Knowles Center FX We thank Nigel Cooper for his comments on a previous version of this paper. We were supported by grants from the NIH (2 R01 DC000419-20A2) and the Hugh Knowles Center. CR Bode H. W., 1945, NETWORK ANAL FEEDBAC Carney LH, 1999, J ACOUST SOC AM, V105, P2384, DOI 10.1121/1.426843 COOPER NP, 1994, HEARING RES, V78, P221, DOI 10.1016/0378-5955(94)90028-0 deBoer E, 1997, J ACOUST SOC AM, V102, P3810, DOI 10.1121/1.420356 deBoer E, 1997, J ACOUST SOC AM, V101, P3583, DOI 10.1121/1.418319 DEBOER E, 1996, ASS RES OT MIDW M AB, V19, P57 de Boer E, 2000, J ACOUST SOC AM, V107, P1497, DOI 10.1121/1.428436 Goldstein JL, 1971, PHYSL AUDITORY SYSTE, P133 HUANG S, 2010, ASS RES OT MIDW M, V33, P255 IEEE, 1979, PROGR DIG SIGN PROC Lyon R. F., 1997, DIVERSITY AUDITORY M, P205 MOLLER AR, 1979, ACUSTICA, V41, P258 Muller M, 2010, HEARING RES, V268, P184, DOI 10.1016/j.heares.2010.05.021 Narayan SS, 2000, RECENT DEV AUDITORY, P95, DOI 10.1142/9789812793980_0014 Narayan SS, 1998, SCIENCE, V282, P1882, DOI 10.1126/science.282.5395.1882 Oppenheim A. V., 1975, DIGITAL SIGNAL PROCE Overstreet EH, 2002, J PHYSIOL-LONDON, V545, P279, DOI 10.1113/jphysiol.2002.025205 Papoulis A., 1977, SIGNAL ANAL Papoulis A., 1962, FOURIER INTEGRAL ITS Recio A, 2000, J ACOUST SOC AM, V108, P2281, DOI 10.1121/1.1318898 Recio A, 1998, J ACOUST SOC AM, V103, P1972, DOI 10.1121/1.421377 Recio-Spinoso A, 2009, JARO-J ASSOC RES OTO, V10, P471, DOI 10.1007/s10162-009-0172-0 RECIOSPINOSO A, 2010, IEEE T BIOM IN PRESS Recio-Spinoso A, 2005, J NEUROPHYSIOL, V93, P3615, DOI 10.1152/jn.00882.2004 Rhode WS, 1996, AUDIT NEUROSCI, V3, P101 Rhode WS, 2007, J ACOUST SOC AM, V121, P2792, DOI 10.1121/1.2718397 Rhode WS, 2000, J ACOUST SOC AM, V107, P3317, DOI 10.1121/1.429404 Robles L, 2001, PHYSIOL REV, V81, P1305 Ruggero MA, 2000, P NATL ACAD SCI USA, V97, P11744, DOI 10.1073/pnas.97.22.11744 RUGGERO MA, 1987, J NEUROPHYSIOL, V58, P379 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 Ruggero MA, 2007, JARO-J ASSOC RES OTO, V8, P153, DOI 10.1007/s10162-007-0081-z RUGGERO MA, 2007, MIDDLE EAR MECH RES RUGGERO MA, 1991, J NEUROSCI, V11, P1057 SEWELL WF, 1984, HEARING RES, V14, P305, DOI 10.1016/0378-5955(84)90057-1 Shera CA, 2001, J ACOUST SOC AM, V109, P2023, DOI 10.1121/1.1366372 Tan Q, 2003, J ACOUST SOC AM, V114, P2007, DOI 10.1121/1.1608963 Temchin AN, 2005, J NEUROPHYSIOL, V93, P3635, DOI 10.1152/jn.00885.2004 Temchin AN, 2010, JARO-J ASSOC RES OTO, V11, P297, DOI 10.1007/s10162-009-0197-4 TEMCHIN AN, 2009, ASS RES OT MIDW M, V32, P209 Temchin AN, 2008, J NEUROPHYSIOL, V100, P2889, DOI 10.1152/jn.90637.2008 Zinn C, 2000, HEARING RES, V142, P159, DOI 10.1016/S0378-5955(00)00012-5 Zweig G, 1976, Cold Spring Harb Symp Quant Biol, V40, P619 NR 43 TC 6 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2011 VL 272 IS 1-2 BP 178 EP 186 DI 10.1016/j.heares.2010.10.002 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 735ME UT WOS:000288418100019 PM 20951191 ER PT J AU Scheich, H Brechmann, A Brosch, M Budinger, E Ohl, FW Selezneva, E Stark, H Tischmeyer, W Wetzel, W AF Scheich, Henning Brechmann, Andre Brosch, Michael Budinger, Eike Ohl, Frank W. Selezneva, Elena Stark, Holger Tischmeyer, Wolfgang Wetzel, Wolfram TI Behavioral semantics of learning and crossmodal processing in auditory cortex: The semantic processor concept SO HEARING RESEARCH LA English DT Article ID FREQUENCY-MODULATED TONES; CORTICAL RECEPTIVE-FIELDS; SHORT-TERM-MEMORY; MONGOLIAN GERBIL; DEPENDENT MEMORY; NUCLEUS BASALIS; CONTRAST SENSITIVITY; DISCRIMINATION TASK; MOTOR THEORY; PLASTICITY AB Two phenomena of auditory cortex activity have recently attracted attention, namely that the primary field can show different types of learning-related changes of sound representation and that during learning even this early auditory cortex is under strong multimodal influence. Based on neuronal recordings in animal auditory cortex during instrumental tasks, in this review we put forward the hypothesis that these two phenomena serve to derive the task-specific meaning of sounds by associative learning. To understand the implications of this tenet, it is helpful to realize how a behavioral meaning is usually derived for novel environmental sounds. For this purpose, associations with other sensory, e.g. visual, information are mandatory to develop a connection between a sound and its behaviorally relevant cause and/or the context of sound occurrence. This makes it plausible that in instrumental tasks various non-auditory sensory and procedural contingencies of sound generation become co-represented by neuronal firing in auditory cortex. Information related to reward or to avoidance of discomfort during task learning, that is essentially non-auditory, is also co-represented. The reinforcement influence points to the dopaminergic internal reward system, the local role of which for memory consolidation in auditory cortex is well-established. Thus, during a trial of task performance, the neuronal responses to the sounds are embedded in a sequence of representations of such non-auditory information. The embedded auditory responses show task-related modulations of auditory responses falling into types that correspond to three basic logical classifications that may be performed with a perceptual item, i.e. from simple detection to discrimination, and categorization. This hierarchy of classifications determine the semantic "same-different" relationships among sounds. Different cognitive classifications appear to be a consequence of learning task and lead to a recruitment of different excitatory and inhibitory mechanisms and to distinct spatiotemporal metrics of map activation to represent a sound. The described non-auditory firing and modulations of auditory responses suggest that auditory cortex, by collecting all necessary information, functions as a "semantic processor" deducing the task-specific meaning of sounds by learning. (C) 2010 Published by Elsevier B.V. C1 [Scheich, Henning; Brechmann, Andre; Brosch, Michael; Budinger, Eike; Ohl, Frank W.; Selezneva, Elena; Stark, Holger; Tischmeyer, Wolfgang; Wetzel, Wolfram] Leibniz Inst Neurobiol, D-39118 Magdeburg, Germany. RP Scheich, H (reprint author), Leibniz Inst Neurobiol, Brenneckestr 6, D-39118 Magdeburg, Germany. EM henning.scheich@ifn-magdeburg.de FU Deutsche Forschungsgemeinschaft [SFB 779, SFB/TRR 62, FB/TRR 31]; BMBF [01GW0621]; German Center for Neurodegenerative Diseases (DZNE) FX Supported by intramural funding, the Deutsche Forschungsgemeinschaft (SFB 779, SFB/TRR 62, and SFB/TRR 31), BMBF (grant 01GW0621), and German Center for Neurodegenerative Diseases (DZNE). CR Ahissar M, 2009, PHILOS T R SOC B, V364, P285, DOI 10.1098/rstb.2008.0253 Atiani S, 2009, NEURON, V61, P467, DOI 10.1016/j.neuron.2008.12.027 Bakin JS, 1996, P NATL ACAD SCI USA, V93, P11219, DOI 10.1073/pnas.93.20.11219 Bangert M, 2001, ANN NY ACAD SCI, V930, P425 Bao SW, 2001, NATURE, V412, P79, DOI 10.1038/35083586 Bizley JK, 2007, CEREB CORTEX, V17, P2172, DOI 10.1093/cercor/bhl128 Brechmann A, 2005, CEREB CORTEX, V15, P578, DOI 10.1093/cercor/bhh159 Brechmann A, 2007, CEREB CORTEX, V17, P2544, DOI 10.1093/cercor/bhl160 Brosch M, 2005, J NEUROSCI, V25, P6797, DOI 10.1523/JNEUROSCI.1571-05.2005 Brosch M, 2011, HEARING RES, V271, P66, DOI 10.1016/j.heares.2010.05.003 Brown M, 2004, CEREB CORTEX, V14, P952, DOI 10.1093/cercor/bhh056 Budinger E, 2006, NEUROSCIENCE, V143, P1065, DOI 10.1016/j.neuroscience.2006.08.035 Budinger E, 2000, EUR J NEUROSCI, V12, P2452, DOI 10.1046/j.1460-9568.2000.00143.x Budinger E, 2009, HEARING RES, V258, P16, DOI 10.1016/j.heares.2009.04.021 Budinger E, 2008, BRAIN RES, V1220, P2, DOI 10.1016/j.brainres.2007.07.084 Cahill L, 1996, NEUROBIOL LEARN MEM, V65, P213, DOI 10.1006/nlme.1996.0026 Cappe C, 2009, HEARING RES, V258, P28, DOI 10.1016/j.heares.2009.04.017 COHEN MR, 1962, INTRO LOGIC EDELINE JM, 1994, EXP BRAIN RES, V97, P373 EDELINE JM, 1993, BEHAV NEUROSCI, V107, P539 Ernst SMA, 2008, BRAIN RES, V1220, P246, DOI 10.1016/j.brainres.2007.08.013 Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141 Fritz JB, 2007, J NEUROPHYSIOL, V98, P2337, DOI 10.1152/jn.00552.2007 Fuster Joaquin M., 1997, PREFRONTAL CORTEX AN Galantucci B, 2006, PSYCHON B REV, V13, P361, DOI 10.3758/BF03193857 Ghazanfar AA, 2006, TRENDS COGN SCI, V10, P278, DOI 10.1016/j.tics.2006.04.008 Goard M, 2009, NAT NEUROSCI, V12, P1444, DOI 10.1038/nn.2402 Harper NS, 2004, NATURE, V430, P682, DOI 10.1038/nature02768 Heffner H. E., 1995, METHODS COMP PSYCHOA, P79 Ilango A, 2010, NEUROSCIENCE, V166, P752, DOI 10.1016/j.neuroscience.2010.01.010 Irvine DRF, 2005, INT REV NEUROBIOL, V70, P435, DOI 10.1016/S0074-7742(05)70013-1 Jeschke M, 2008, BRAIN RES, V1220, P70, DOI 10.1016/j.brainres.2007.10.047 Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714 Kraus M, 2002, LEARN MEMORY, V9, P293, DOI 10.1101/lm.47502 Lenz D, 2008, BRAIN RES, V1220, P81, DOI 10.1016/j.brainres.2007.10.053 LIBERMAN AM, 1985, COGNITION, V21, P1, DOI 10.1016/0010-0277(85)90021-6 MCGURK H, 1976, NATURE, V264, P746, DOI 10.1038/264746a0 Metherate R, 2004, PROG BRAIN RES, V145, P143, DOI 10.1016/S0079-6123(03)45010-3 MOORE B C J, 1990, British Journal of Audiology, V24, P131, DOI 10.3109/03005369009077854 Ohl FW, 1996, EUR J NEUROSCI, V8, P1001, DOI 10.1111/j.1460-9568.1996.tb01587.x Ohl FW, 2001, NATURE, V412, P733, DOI 10.1038/35089076 Ohl FW, 1997, J COMP PHYSIOL A, V181, P685, DOI 10.1007/s003590050150 Ohl FW, 2005, CURR OPIN NEUROBIOL, V15, P470, DOI 10.1016/j.conb.2005.07.002 Ohl FW, 1999, LEARN MEMORY, V6, P347 PARENT A, 1995, BRAIN RES REV, V20, P91, DOI 10.1016/0165-0173(94)00007-C RECANZONE GH, 1993, J NEUROSCI, V13, P87 Rothe T, 2009, BRAIN RES, V1297, P143, DOI 10.1016/j.brainres.2009.08.055 SATTER M, 2005, BRAIN RES REV, V48, P98 Scheich H, 2007, HEARING RES, V229, P213, DOI 10.1016/j.heares.2007.01.025 Schicknick H, 2008, CEREB CORTEX, V18, P2646, DOI 10.1093/cercor/bhn026 Schicknick H, 2006, NEUROPHARMACOLOGY, V50, P671, DOI 10.1016/j.neuropharm.2005.11.013 Schroeder CE, 2001, J NEUROPHYSIOL, V85, P1322 Schroeder CE, 2002, COGNITIVE BRAIN RES, V14, P187, DOI 10.1016/S0926-6410(02)00073-3 Schultz W, 2007, ANNU REV NEUROSCI, V30, P259, DOI 10.1146/annurev.neuro.28.061604.135722 Selezneva E, 2006, CURR BIOL, V16, P2428, DOI 10.1016/j.cub.2006.10.027 Shamma S, 2008, PLOS BIOL, V6, P1141, DOI 10.1371/journal.pbio.0060155 Shumake J, 2010, J NEUROSCI, V30, P5876, DOI 10.1523/JNEUROSCI.3604-09.2010 Smiley JF, 2009, HEARING RES, V258, P37, DOI 10.1016/j.heares.2009.06.019 Stark H, 2004, NEUROSCIENCE, V126, P21, DOI 10.1016/j.neuroscience.2004.02.026 Stark H, 1997, J NEUROCHEM, V68, P691 Thiele A, 2009, NAT NEUROSCI, V12, P1359, DOI 10.1038/nn1109-1359 Tischmeyer W, 2003, EUR J NEUROSCI, V18, P942, DOI 10.1046/j.1460-9568.2003.02820.x VONHOLST E, 1950, NATURWISSENSCHAFTEN, V37, P464 Weinberger NM, 2003, NEUROBIOL LEARN MEM, V80, P268, DOI 10.1016/S1074-7427(03)00072-8 Weinberger NM, 2004, NAT REV NEUROSCI, V5, P279, DOI 10.1038/nrn1366 Wetzel W, 1998, NEUROSCI LETT, V252, P115, DOI 10.1016/S0304-3940(98)00561-8 Wise RA, 2004, NAT REV NEUROSCI, V5, P483, DOI 10.1038/nrn1406 Witte RS, 2005, COGNITIVE BRAIN RES, V23, P171, DOI 10.1016/j.cogbrainres.2004.10.018 NR 68 TC 21 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2011 VL 271 IS 1-2 SI SI BP 3 EP 15 DI 10.1016/j.heares.2010.10.006 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 717VH UT WOS:000287075000002 PM 20971178 ER PT J AU Rauschecker, JP AF Rauschecker, Josef P. TI An expanded role for the dorsal auditory pathway in sensorimotor control and integration SO HEARING RESEARCH LA English DT Article ID SOUND-LOCALIZATION BEHAVIOR; SUPERIOR TEMPORAL GYRUS; HUMAN PLANUM TEMPORALE; RHESUS-MONKEY; SPEECH PRODUCTION; MACAQUE MONKEYS; CONDUCTION APHASIA; CORTICAL-NEURONS; PARIETAL CORTEX; COMPLEX SOUNDS AB The dual-pathway model of auditory cortical processing assumes that two largely segregated processing streams originating in the lateral belt subserve the two main functions of hearing: identification of auditory "objects", including speech; and localization of sounds in space (Rauschecker and Tian, 2000). Evidence has accumulated, chiefly from work in humans and nonhuman primates, that an antero-ventral pathway supports the former function, whereas a postero-dorsal stream supports the latter, i.e processing of space and motion-in-space. In addition, the postero-dorsal stream has also been postulated to subserve some functions of speech and language in humans. A recent review (Rauschecker and Scott, 2009) has proposed the possibility that both functions of the postero-dorsal pathway can be subsumed under the same structural forward model: an efference copy sent from prefrontal and premotor cortex provides the basis for "optimal state estimation" in the inferior parietal lobe and in sensory areas of the posterior auditory cortex. The current article corroborates this model by adding and discussing recent evidence. (C) 2010 Elsevier B.V. All rights reserved. C1 [Rauschecker, Josef P.] Georgetown Univ, Dept Physiol & Biophys, Med Ctr, Lab Integrat Neurosci & Cognit, Washington, DC 20057 USA. [Rauschecker, Josef P.] Aalto Univ Sch Sci & Technol, Mind & Brain Lab, Ctr Excellence Computat Complex Syst Res, FI-00076 Aalto, Finland. RP Rauschecker, JP (reprint author), Georgetown Univ, Dept Physiol & Biophys, Med Ctr, Lab Integrat Neurosci & Cognit, New Res Bldg,Room WP19, Washington, DC 20057 USA. EM rauschej@georgetown.edu RI Rauschecker, Josef/A-4120-2013 FU National Institutes of Health [R01 NS052494]; Cognitive Neuroscience Initiative of the National Science Foundation [BCS-0519127]; NSF [OISE-0730255] FX The present chapter draws from the following prior publications: Rauschecker (2007); Rauschecker and Scott (2009). The author's work was supported by grants from the National Institutes of Health (R01 NS052494), the Cognitive Neuroscience Initiative of the National Science Foundation (BCS-0519127), and the NSF PIRE program (OISE-0730255). I would like to thank Priyanka Chablani for help with editing and David Klemm for help with graphics. CR Aboitiz F, 2006, BRAIN LANG, V98, P40, DOI 10.1016/j.bandl.2006.01.006 Ahveninen J, 2006, P NATL ACAD SCI USA, V103, P14608, DOI 10.1073/pnas.0510480103 Alain C, 2001, P NATL ACAD SCI USA, V98, P12301, DOI 10.1073/pnas.211209098 Andersen RA, 2009, NEURON, V63, P568, DOI 10.1016/j.neuron.2009.08.028 Arnott SR, 2004, NEUROIMAGE, V22, P401, DOI 10.1016/j.neuroimage.2004.01.014 BADDELEY A, 1984, Q J EXP PSYCHOL-A, V36, P233 Bar M, 2006, P NATL ACAD SCI USA, V103, P449, DOI 10.1073/pnas.0507062103 Battellil L, 2008, CURR OPIN NEUROBIOL, V18, P120, DOI 10.1016/j.conb.2008.08.004 Bedny M, 2008, J NEUROSCI, V28, P11347, DOI 10.1523/JNEUROSCI.3039-08.2008 Belin P, 2000, NAT NEUROSCI, V3, P965, DOI 10.1038/79890 Belin P, 2000, NATURE, V403, P309, DOI 10.1038/35002078 Bernal B, 2009, BRAIN, V132, P2309, DOI 10.1093/brain/awp206 Binder JR, 2000, CEREB CORTEX, V10, P512, DOI 10.1093/cercor/10.5.512 Binder JR, 2004, NAT NEUROSCI, V7, P295, DOI 10.1038/nn1198 Blakemore SJ, 1998, NAT NEUROSCI, V1, P635, DOI 10.1038/2870 Broca P., 1861, B SOC ANAT PARIS, V36, P330 Brosch M, 2005, J NEUROSCI, V25, P6797, DOI 10.1523/JNEUROSCI.1571-05.2005 Brunetti M, 2005, HUM BRAIN MAPP, V26, P251, DOI 10.1002/hbm.20164 Buchsbaum BR, 2008, J COGNITIVE NEUROSCI, V20, P762, DOI 10.1162/jocn.2008.20501 Bushara KO, 1999, NAT NEUROSCI, V2, P759 CAPLAN D, 1992, Q J EXP PSYCHOL-A, V45, P177 Chen JL, 2008, CEREB CORTEX, V18, P2844, DOI 10.1093/cercor/bhn042 CHEVILLET M, 2007, SOC NEUROSCI, V33 Clarke S, 2000, NEUROPSYCHOLOGIA, V38, P797, DOI 10.1016/S0028-3932(99)00141-4 Cohen YE, 2009, P NATL ACAD SCI USA, V106, P20045, DOI 10.1073/pnas.0907248106 Colby CL, 1999, ANNU REV NEUROSCI, V22, P319, DOI 10.1146/annurev.neuro.22.1.319 Curio G, 2000, HUM BRAIN MAPP, V9, P183, DOI 10.1002/(SICI)1097-0193(200004)9:4<183::AID-HBM1>3.0.CO;2-Z Cusack R, 2005, J COGNITIVE NEUROSCI, V17, P641, DOI 10.1162/0898929053467541 DAMASIO H, 1980, BRAIN, V103, P337, DOI 10.1093/brain/103.2.337 Davis B, 2009, J NEUROSCI, V29, P3182, DOI 10.1523/JNEUROSCI.5793-08.2009 Degerman A, 2006, BRAIN RES, V1077, P123, DOI 10.1016/j.brainres.2006.01.025 Deouell LY, 2007, NEURON, V55, P985, DOI 10.1016/i.neuron.2007.08.019 Desmurget M, 2000, TRENDS COGN SCI, V4, P423, DOI 10.1016/S1364-6613(00)01537-0 Dhanjal NS, 2008, J NEUROSCI, V28, P9969, DOI 10.1523/JNEUROSCI.2607-08.2008 EBELING U, 1992, ACTA NEUROCHIR, V115, P143, DOI 10.1007/BF01406373 Eliades SJ, 2003, J NEUROPHYSIOL, V89, P2194, DOI 10.1152/jn.00627.2002 Eliades SJ, 2008, NATURE, V453, P1102, DOI 10.1038/nature06910 Engel LR, 2009, NEUROIMAGE, V47, P1778, DOI 10.1016/j.neuroimage.2009.05.041 Formisano E, 2003, NEURON, V40, P859, DOI 10.1016/S0896-6273(03)00669-X Frey S, 2008, J NEUROSCI, V28, P11435, DOI 10.1523/JNEUROSCI.2388-08.2008 Friederici AD, 2006, P NATL ACAD SCI USA, V103, P2458, DOI 10.1073/pnas.0509389103 Fu KMG, 2003, J NEUROSCI, V23, P7510 GALABURDA AM, 1993, ARCH NEUROL-CHICAGO, V50, P457 Gelfand JR, 2003, NEURON, V38, P831, DOI 10.1016/S0896-6273(03)00285-X GESCHWIN.N, 1965, BRAIN, V88, P237, DOI 10.1093/brain/88.2.237 Ghazanfar AA, 2005, J NEUROSCI, V25, P5004, DOI 10.1523/JNEUROSCI.0799-05.2005 Gibson J., 1977, PERCEIVING ACTING KN, P67 GoldmanRakic PS, 1996, PHILOS T ROY SOC B, V351, P1445, DOI 10.1098/rstb.1996.0129 GOODALE MA, 1992, TRENDS NEUROSCI, V15, P20, DOI 10.1016/0166-2236(92)90344-8 GRIFFITHS ID, 1996, NATURE, V383, P425 GRIFFITHS ID, 2004, NAT REV NEUROSCI, V5, P887 Griffiths TD, 2002, TRENDS NEUROSCI, V25, P348, DOI 10.1016/S0166-2236(02)02191-4 Griffiths TD, 1998, NAT NEUROSCI, V1, P74, DOI 10.1038/276 Griffiths TD, 1997, BRAIN, V120, P785, DOI 10.1093/brain/120.5.785 Grush R., 2004, BEHAV BRAIN SCI, V27, P396, DOI DOI 10.1017/S0140525X04000093 Grush R, 2004, BEHAV BRAIN SCI, V27, P377 Guenther FH, 2006, J COMMUN DISORD, V39, P350, DOI 10.1016/j.jcomdis.2006.06.013 HACKETT TA, 2010, INFORM FLOW AUDITORY Hackett TA, 1998, J COMP NEUROL, V394, P475, DOI 10.1002/(SICI)1096-9861(19980518)394:4<475::AID-CNE6>3.0.CO;2-Z Hackett TA, 1998, J COMP NEUROL, V400, P271, DOI 10.1002/(SICI)1096-9861(19981019)400:2<271::AID-CNE8>3.0.CO;2-6 Halpern AR, 1999, CEREB CORTEX, V9, P697, DOI 10.1093/cercor/9.7.697 HEFFNER H, 1975, J NEUROPHYSIOL, V38, P1340 Hershberger W. A., 1976, Cybernetics Forum, V8 Hickok G, 2007, NAT REV NEUROSCI, V8, P393, DOI 10.1038/nrn2113 Hickok G, 2009, J NEUROPHYSIOL, V101, P2725, DOI 10.1152/jn.91099.2008 Hickok G, 2000, TRENDS COGN SCI, V4, P131, DOI 10.1016/S1364-6613(00)01463-7 Hickok G, 2000, NEUROSCI LETT, V287, P156, DOI 10.1016/S0304-3940(00)01143-5 Hikosaka O, 1999, TRENDS NEUROSCI, V22, P464, DOI 10.1016/S0166-2236(99)01439-3 Houde JF, 2002, J COGNITIVE NEUROSCI, V14, P1125, DOI 10.1162/089892902760807140 Humphries C, 2010, NEUROIMAGE, V50, P1202, DOI 10.1016/j.neuroimage.2010.01.046 Hyde KL, 2008, NEUROPSYCHOLOGIA, V46, P632, DOI 10.1016/j.neuropsychologia.2007.09.004 Indefrey P, 2004, COGNITION, V92, P101, DOI 10.1016/j.cognition.2002.06.001 IRVINE DRF, 1992, SPRINGER HDB AUDITOR, V2, P153 Jaaskelainen IP, 2004, P NATL ACAD SCI USA, V101, P6809, DOI 10.1073/pnas.0303760101 Kaas JH, 2000, P NATL ACAD SCI USA, V97, P11793, DOI 10.1073/pnas.97.22.11793 Kauramaki J, 2010, J NEUROSCI, V30, P1314, DOI 10.1523/JNEUROSCI.1950-09.2010 Kawato M, 1999, CURR OPIN NEUROBIOL, V9, P718, DOI 10.1016/S0959-4388(99)00028-8 Kayser C, 2007, J NEUROSCI, V27, P1824, DOI 10.1523/JNEUROSCI.4737-06.2007 Keller SS, 2009, J NEUROSCI, V29, P14607, DOI 10.1523/JNEUROSCI.2892-09.2009 King AJ, 2009, NAT NEUROSCI, V12, P698, DOI 10.1038/nn.2308 KNUDSEN EI, 1978, J NEUROPHYSIOL, V41, P870 Krumbholz K, 2005, EUR J NEUROSCI, V21, P230, DOI 10.1111/j.1460-9568.2004.03836.x Krumbholz K, 2005, CEREB CORTEX, V15, P317, DOI 10.1093/cercor/bhh133 KUSMIEREK R, 2009, J NEUROPHYSIOL, V102, P1606 Lahav A, 2007, J NEUROSCI, V27, P308, DOI 10.1523/JNEUROSCI.4822-06.2007 Lakatos P, 2007, NEURON, V53, P279, DOI 10.1016/j.neuron.2006.12.011 Leaver AM, 2009, J NEUROSCI, V29, P2477, DOI 10.1523/JNEUROSCI.4921-08.2009 Leaver AM, 2010, J NEUROSCI, V30, P7604, DOI 10.1523/JNEUROSCI.0296-10.2010 Lewis JW, 2005, J NEUROSCI, V25, P5148, DOI 10.1523/JNEUROSCI.0419-05.2005 Lewis JW, 2000, J COMP NEUROL, V428, P112, DOI 10.1002/1096-9861(20001204)428:1<112::AID-CNE8>3.0.CO;2-9 LIBERMAN AM, 1985, COGNITION, V21, P1, DOI 10.1016/0010-0277(85)90021-6 LIBERMAN AM, 1967, PSYCHOL REV, V74, P431, DOI 10.1037/h0020279 MAEDER RP, 2001, NEUROIMAGE, V14, P802 May BJ, 2000, HEARING RES, V148, P74, DOI 10.1016/S0378-5955(00)00142-8 Micheyl C, 2005, NEURON, V48, P139, DOI 10.1016/j.neuron.2005.08.039 Miller LM, 2009, P NATL ACAD SCI USA, V106, P5931, DOI 10.1073/pnas.0901023106 MOREL A, 1993, J COMP NEUROL, V335, P437, DOI 10.1002/cne.903350312 MULLERPREUSS R, 1981, BRAIN RES, V215, P61 Mulliken GH, 2008, P NATL ACAD SCI USA, V105, P8170, DOI 10.1073/pnas.0802602105 NEFF WD, 1956, J NEUROPHYSIOL, V19, P500 Nourski KV, 2009, J NEUROSCI, V29, P15564, DOI 10.1523/JNEUROSCI.3065-09.2009 Numminen J, 1999, NEUROSCI LETT, V265, P119, DOI 10.1016/S0304-3940(99)00218-9 Obleser J, 2006, HUM BRAIN MAPP, V27, P562, DOI 10.1002/hbm.20201 Obleser J, 2007, CEREB CORTEX, V17, P2251, DOI 10.1093/cercor/bhl133 Paus T, 1996, EUR J NEUROSCI, V8, P2236, DOI 10.1111/j.1460-9568.1996.tb01187.x Perry DW, 1999, NEUROREPORT, V10, P3979 Petrides M, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000170 PETRIDES M, 1984, J COMP NEUROL, V228, P105, DOI 10.1002/cne.902280110 Pizzamiglio L, 2005, NEUROIMAGE, V24, P852, DOI 10.1016/j.neuroimage.2004.09.025 Rauschecker JP, 1997, ACTA OTO-LARYNGOL, P34 RAUSCHECKER JP, 1995, SCIENCE, V268, P111, DOI 10.1126/science.7701330 Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800 Rauschecker JP, 2009, NAT NEUROSCI, V12, P718, DOI 10.1038/nn.2331 Rauschecker JP, 2005, ANN NY ACAD SCI, V1060, P125, DOI 10.1196/annals.1360.009 Rauschecker JP, 1997, J COMP NEUROL, V382, P89 Rauschecker Josef P., 2007, P389, DOI 10.1007/978-0-387-71978-8_20 Rauschecker JP, 1998, AUDIOL NEURO-OTOL, V3, P86, DOI 10.1159/000013784 RAVIZZA RJ, 1972, J NEUROPHYSIOL, V35, P344 Reale RA, 2007, NEUROSCIENCE, V145, P162, DOI 10.1016/j.neuroscience.2006.11.036 Recanzone GH, 2000, P NATL ACAD SCI USA, V97, P11829, DOI 10.1073/pnas.97.22.11829 Recanzone GH, 2000, J NEUROPHYSIOL, V83, P2723 Remedios R, 2009, J NEUROSCI, V29, P1034, DOI 10.1523/JNEUROSCI.4089-08.2009 Repp BH, 2005, PSYCHON B REV, V12, P969, DOI 10.3758/BF03206433 Rilling JK, 2008, NAT NEUROSCI, V11, P426, DOI 10.1038/nn2072 Rizzolatti G., 2006, NOVART FDN SYMP, V270, P140 Rizzolatti G., 2006, NOVART FDN SYMP, V270, P164 Rizzolatti Giacomo, 2006, Novartis Found Symp, V270, P129 Romanski LM, 1999, NAT NEUROSCI, V2, P1131, DOI 10.1038/16056 Romanski LM, 2009, ANNU REV NEUROSCI, V32, P315, DOI 10.1146/annurev.neuro.051508.135431 Sabes PN, 2000, CURR OPIN NEUROBIOL, V10, P740, DOI 10.1016/S0959-4388(00)00149-5 Saur D, 2008, P NATL ACAD SCI USA, V105, P18035, DOI 10.1073/pnas.0805234105 Schubotz RI, 2003, NEUROIMAGE, V20, P173, DOI 10.1016/S1053-8119(03)00218-0 Schubotz RI, 2000, NEUROIMAGE, V11, P1, DOI 10.1006/nimg.1999.0514 Scott SK, 2000, BRAIN, V123, P2400, DOI 10.1093/brain/123.12.2400 Scott SK, 2005, CURR OPIN NEUROBIOL, V15, P197, DOI 10.1016/j.conb.2005.03.009 SELTZER B, 1994, J COMP NEUROL, V343, P445, DOI 10.1002/cne.903430308 Simon D., 2006, OPTIMAL STATE ESTIMA Smiley JF, 2007, J COMP NEUROL, V502, P894, DOI 10.1002/cne.21325 SMITH KR, 2009, J COGNITIVE NEUROSCI, V22, P632 SPERRY RW, 1950, J COMP PHYSIOL PSYCH, V43, P482, DOI 10.1037/h0055479 Spierer L, 2009, J NEUROSCI, V29, P8630, DOI 10.1523/JNEUROSCI.2111-09.2009 Spierer L, 2009, BRAIN, V132, P1953, DOI 10.1093/brain/awp127 Tata MS, 2005, EXP BRAIN RES, V167, P481, DOI 10.1007/s00221-005-0183-y Tata MS, 2005, NEUROPSYCHOLOGIA, V43, P509, DOI 10.1016/j.neuropsychologia.2004.07.019 Tian B, 2001, SCIENCE, V292, P290, DOI 10.1126/science.1058911 Tourville JA, 2008, NEUROIMAGE, V39, P1429, DOI 10.1016/j.neuroimage.2007.09.054 Ungerleider LG, 1982, ANAL VISUAL BEHAV, P549 VONHOLST E, 1950, NATURWISSENSCHAFTEN, V37, P464 Warren JD, 2002, NEURON, V34, P1 Warren JE, 2005, TRENDS NEUROSCI, V28, P636, DOI 10.1016/j.tins.2005.09.010 Weeks RA, 1999, NEUROSCI LETT, V262, P155, DOI 10.1016/S0304-3940(99)00062-2 Wernicke C., 1881, LEHRBUCH GEHIRNKRANK Wernicke C., 1874, APHASISCHE SYMPTOMEN Wessinger CM, 2001, J COGNITIVE NEUROSCI, V13, P1, DOI 10.1162/089892901564108 Wilson SM, 2004, NAT NEUROSCI, V7, P701, DOI 10.1038/nn1263 Wise RJS, 2001, BRAIN, V124, P83, DOI 10.1093/brain/124.1.83 WOLPERT DM, 1995, SCIENCE, V269, P1880, DOI 10.1126/science.7569931 Wolpert DM, 2003, PHILOS T R SOC B, V358, P593, DOI 10.1098/rstb.2002.1238 Zatorre RJ, 2002, TRENDS COGN SCI, V6, P37, DOI 10.1016/S1364-6613(00)01816-7 Zatorre RJ, 2004, J NEUROSCI, V24, P3637, DOI 10.1523/JNEUROSCI.5458-03.2004 Zatorre RJ, 2002, NAT NEUROSCI, V5, P905, DOI 10.1038/nn904 Zatorre RJ, 2007, NAT REV NEUROSCI, V8, P547, DOI 10.1038/nrn2152 ZHENOCHIN S, 1998, ASS RES OT, V21, P146 Zimmer U, 2005, NEURON, V47, P893, DOI 10.1016/j.neuron.2005.07.019 NR 164 TC 64 Z9 65 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2011 VL 271 IS 1-2 SI SI BP 16 EP 25 DI 10.1016/j.heares.2010.09.001 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 717VH UT WOS:000287075000003 PM 20850511 ER PT J AU Salgado, H Garcia-Oscos, F Dinh, L Atzori, M AF Salgado, Humberto Garcia-Oscos, Francisco Dinh, Lu Atzori, Marco TI Dynamic modulation of short-term synaptic plasticity in the auditory cortex: The role of norepinephrine SO HEARING RESEARCH LA English DT Article ID MEDIAL PREFRONTAL CORTEX; PRIMARY SOMATOSENSORY CORTEX; MOUSE ENTORHINAL CORTEX; PYRAMIDAL NEURONS; NORADRENERGIC INNERVATION; GABAERGIC INTERNEURONS; EXCITATORY SYNAPSES; INHIBITORY SYNAPSES; CEREBRAL-CORTEX; IN-VITRO AB Norepinephrine (NE) is an important modulator of neuronal activity in the auditory cortex. Using patch-clamp recording and a pair pulse protocol on an auditory cortex slice preparation we recently demonstrated that NE affects cortical inhibition in a layer-specific manner, by decreasing apical but increasing basal inhibition onto layer II/III pyramidal cell dendrites. In the present study we used a similar protocol to investigate the dependence of noradrenergic modulation of inhibition on stimulus frequency, using s-long train pulses at 5, 10, and 20 Hz. The study was conducted using pharmacologically isolated inhibitory postsynaptic currents (IPSCs) evoked by electrical stimulation of axons either in layer 1 (LI-eIPSCs) or in layer II/III (LII/III-eIPSCs). We found that: 1) LI-eIPSC display less synaptic depression than LII/III-elPSCs at all the frequencies tested, 2) in both type of synapses depression had a presynaptic component which could be altered manipulating [Ca2+](0), 3) NE modestly altered short-term synaptic plasticity at low or intermediate (5-10 Hz) frequencies, but selectively enhanced synaptic facilitation in LI-eIPSCs while increasing synaptic depression of LII/III-eIPSCs in the latest (>250 ms) part of the response, at high stimulation frequency (20 Hz). We speculate that these mechanisms may limit the temporal window for top down synaptic integration as well as the duration and intensity of stimulus-evoked gamma-oscillations triggered by complex auditory stimuli during alertness. Published by Elsevier B.V. C1 [Salgado, Humberto; Garcia-Oscos, Francisco; Dinh, Lu; Atzori, Marco] Univ Texas Dallas, Sch Behav & Brain Sci, Lab Cell & Synapt Physiol, Richardson, TX 75080 USA. [Salgado, Humberto] Univ Autonoma Yucatan, Dept Neurociencias, Ctr Invest Reg Dr Hideyo Noguchi, Yucatan, Mexico. RP Atzori, M (reprint author), Univ Texas Dallas, Sch Behav & Brain Sci, Lab Cell & Synapt Physiol, Richardson, TX 75080 USA. EM marco.atzori@utdallas.edu FU NIH/NIDCD [R01DC005986]; N.A.R.S.A.D. Young Investigator Award; CONACyT [MOD-ORD-1-09 PCI-047-11-09] FX This study has been funded by NIH/NIDCD R01DC005986 and by a N.A.R.S.A.D. Young Investigator Award to MA; CONACyT (MOD-ORD-1-09 PCI-047-11-09 to H.S.). We would like to thank Dr. M. Trevino and Dr. L Cauller for intellectual contributions and useful discussions during the development of this study. CR ARMSTRONGJAMES M, 1983, J PHYSIOL-LONDON, V335, P427 Ascoli GA, 2008, NAT REV NEUROSCI, V9, P557, DOI 10.1038/nrn2402 Atzori M, 2001, NAT NEUROSCI, V4, P1230, DOI 10.1038/nn760 Bacci A, 2004, NATURE, V431, P312, DOI 10.1038/nature02913 Baimoukhametova DV, 2004, J NEUROSCI, V24, P5162, DOI 10.1523/JNEUROSCI.4979-03.2004 Cardin JA, 2009, NATURE, V459, P663, DOI 10.1038/nature08002 Cauli B, 1997, J NEUROSCI, V17, P3894 Cauller LJ, 1998, J COMP NEUROL, V390, P297 Chalk M, 2010, NEURON, V66, P114, DOI 10.1016/j.neuron.2010.03.013 Dinh L, 2009, NEUROCHEM RES, V34, P1896, DOI 10.1007/s11064-009-9966-z Donishi T, 2006, NEUROSCIENCE, V141, P1553, DOI 10.1016/j.neuroscience.2006.04.037 Edeline JM, 1999, PROG NEUROBIOL, V57, P165 Falchier A., 2009, CEREB CORTEX FOOTE SL, 1975, BRAIN RES, V86, P229, DOI 10.1016/0006-8993(75)90699-X FREEDMAN R, 1975, J COMP NEUROL, V164, P209, DOI 10.1002/cne.901640205 Freund TF, 2003, TRENDS NEUROSCI, V26, P489, DOI 10.1016/S0166-2236(03)00227-3 Freund TF, 1997, CAN J PHYSIOL PHARM, V75, P479, DOI 10.1139/cjpp-75-5-479 Fuxe K, 1968, Brain Res, V8, P125, DOI 10.1016/0006-8993(68)90175-3 Hajos N, 1997, J NEUROSCI, V17, P8427 Hempel CM, 2000, J NEUROPHYSIOL, V83, P3031 Hu B, 2003, EXP BRAIN RES, V153, P543, DOI 10.1007/s00221-003-1611-5 IMIG TJ, 1977, BRAIN RES, V138, P241, DOI 10.1016/0006-8993(77)90743-0 Ji XH, 2008, NEUROPSYCHOPHARMACOL, V33, P2263, DOI 10.1038/sj.npp.1301603 Ji XH, 2008, CEREB CORTEX, V18, P1506, DOI 10.1093/cercor/bhm177 Jones EG, 1998, NEUROSCIENCE, V85, P331, DOI 10.1016/S0306-4522(97)00581-2 Kapfer C, 2007, NAT NEUROSCI, V10, P743, DOI 10.1038/nn1909 Kawaguchi Y, 1998, J NEUROSCI, V18, P6963 KELLY JS, 1973, BRIT J PHARMACOL, V48, P396 Kilgard MP, 1998, NAT NEUROSCI, V1, P727, DOI 10.1038/3729 Larkum ME, 2004, CEREB CORTEX, V14, P1059, DOI 10.1093/cercor/bhh065 LAYTON BS, 1979, BRAIN RES, V173, P337 Lei S, 2007, J NEUROPHYSIOL, V98, P2868, DOI 10.1152/jn.00679.2007 LEVITT P, 1978, BRAIN RES, V139, P219, DOI 10.1016/0006-8993(78)90925-3 Lorente de No R, 1992, SOMATOSENS MOT RES, V9, P3 Manunta Y, 2004, J NEUROPHYSIOL, V92, P1445, DOI 10.1152/jn.00079.2004 Manunta Y, 1997, EUR J NEUROSCI, V9, P833, DOI 10.1111/j.1460-9568.1997.tb01433.x Manunta Y, 1999, EUR J NEUROSCI, V11, P2134, DOI 10.1046/j.1460-9568.1999.00633.x Markram H, 2004, NAT REV NEUROSCI, V5, P793, DOI 10.1038/nrn1519 Miles R, 1996, NEURON, V16, P815, DOI 10.1016/S0896-6273(00)80101-4 MORRISON JH, 1979, SCIENCE, V205, P313, DOI 10.1126/science.451605 MORRISON JH, 1979, BRAIN RES BULL, V4, P849, DOI 10.1016/0361-9230(79)90022-4 MORRISON JH, 1978, J COMP NEUROL, V181, P17, DOI 10.1002/cne.901810103 Mueller D, 2008, J NEUROSCI, V28, P369, DOI 10.1523/JNEUROSCI.3248-07.2008 Murray MM, 2009, HEARING RES, V258, P121, DOI 10.1016/j.heares.2009.04.022 Musacchia G, 2009, HEARING RES, V258, P72, DOI 10.1016/j.heares.2009.06.018 NOWICKY AV, 1992, NEUROSCI LETT, V137, P270, DOI 10.1016/0304-3940(92)90420-C Oswald AMM, 2009, J NEUROSCI, V29, P10321, DOI 10.1523/JNEUROSCI.1703-09.2009 Pralong E, 1995, EUR J NEUROSCI, V7, P2370, DOI 10.1111/j.1460-9568.1995.tb01034.x PRALONG E, 1994, NEUROSCI LETT, V179, P145, DOI 10.1016/0304-3940(94)90955-5 Pralong E, 2002, PROG NEUROBIOL, V67, P173, DOI 10.1016/S0301-0082(02)00017-5 Radtke-Schuller S, 2004, ANAT EMBRYOL, V209, P77, DOI 10.1007/s00429-004-0425-y Ramos BP, 2007, PHARMACOL THERAPEUT, V113, P523, DOI 10.1016/j.pharmthera.2006.11.006 Rutkowski RG, 2003, HEARING RES, V181, P116, DOI 10.1016/S0378-5955(03)00182-5 SALGADO H, 2010, LAYER SPECIFIC NORAD Sceniak MP, 2008, BMC NEUROSCI, V9, DOI 10.1186/1471-2202-9-8 Sohal VS, 2009, NATURE, V459, P698, DOI 10.1038/nature07991 Tecuapetla F, 2007, P NATL ACAD SCI USA, V104, P10258, DOI 10.1073/pnas.0703813104 Tsodyks MV, 1997, P NATL ACAD SCI USA, V94, P719, DOI 10.1073/pnas.94.2.719 Varela JA, 1997, J NEUROSCI, V17, P7926 VIDEEN TO, 1984, J NEUROSCI, V4, P1607 Vreugdenhil M, 2005, J PHYSIOL-LONDON, V562, P149, DOI 10.1113/jphysiol.2004.075390 Vreugdenhil M, 2005, NEUROSCIENCE, V132, P1151, DOI 10.1016/j.neuroscience.2005.01.025 Wang Y, 2004, J PHYSIOL-LONDON, V561, P65, DOI 10.1113/jphysiol.2004.073353 Weinberger NM, 2004, NAT REV NEUROSCI, V5, P279, DOI 10.1038/nrn1366 Zucker RS, 2002, ANNU REV PHYSIOL, V64, P355, DOI 10.1146/annurev.physiol.64.092501.114547 NR 65 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2011 VL 271 IS 1-2 SI SI BP 26 EP 36 DI 10.1016/j.heares.2010.08.014 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 717VH UT WOS:000287075000004 PM 20816739 ER PT J AU Harris, KD Bartho, P Chadderton, P Curto, C de la Rocha, J Hollender, L Itskov, V Luczak, A Marguet, SL Renart, A Sakata, S AF Harris, Kenneth D. Bartho, Peter Chadderton, Paul Curto, Carina de la Rocha, Jaime Hollender, Liad Itskov, Vladimir Luczak, Artur Marguet, Stephan L. Renart, Alfonso Sakata, Shuzo TI How do neurons work together? Lessons from auditory cortex SO HEARING RESEARCH LA English DT Article ID INFORMATION-PROCESSING STATES; ACTIVITY IN-VIVO; LAYER-V NEURONS; VISUAL-CORTEX; BARREL CORTEX; RECEPTIVE-FIELDS; SUSPECTED INTERNEURONS; SENSORY RESPONSES; EFFERENT NEURONS; AWAKE RABBIT AB Recordings of single neurons have yielded great insights into the way acoustic stimuli are represented in auditory cortex. However, any one neuron functions as part of a population whose combined activity underlies cortical information processing. Here we review some results obtained by recording simultaneously from auditory cortical populations and individual morphologically identified neurons, in urethane-anesthetized and unanesthetized passively listening rats. Auditory cortical populations produced structured activity patterns both in response to acoustic stimuli, and spontaneously without sensory input. Population spike time patterns were broadly conserved across multiple sensory stimuli and spontaneous events, exhibiting a generally conserved sequential organization lasting approximately 100 ms. Both spontaneous and evoked events exhibited sparse, spatially localized activity in layer 2/3 pyramidal cells, and densely distributed activity in larger layer 5 pyramidal cells and putative interneurons. Laminar propagation differed however, with spontaneous activity spreading upward from deep layers and slowly across columns, but sensory responses initiating in presumptive thalamorecipient layers, spreading rapidly across columns. In both unanesthetized and urethanized rats, global activity fluctuated between "desynchronized" state characterized by low amplitude, high-frequency local field potentials and a "synchronized" state of larger, lower-frequency waves. Computational studies suggested that responses could be predicted by a simple dynamical system model fitted to the spontaneous activity immediately preceding stimulus presentation. Fitting this model to the data yielded a nonlinear self-exciting system model in synchronized states and an approximately linear system in desynchronized states. We comment on the significance of these results for auditory cortical processing of acoustic and non-acoustic information. (C) 2010 Elsevier E.V. All rights reserved. C1 [Harris, Kenneth D.; Bartho, Peter; Chadderton, Paul; Curto, Carina; de la Rocha, Jaime; Hollender, Liad; Itskov, Vladimir; Luczak, Artur; Marguet, Stephan L.; Renart, Alfonso; Sakata, Shuzo] Rutgers State Univ, Ctr Mol & Behav Neurosci, Newark, NJ 07102 USA. [Harris, Kenneth D.] NYU, Sch Med, Dept Otolaryngol, New York, NY 10016 USA. [Harris, Kenneth D.] NYU, Sch Med, Smilow Neurosci Program, New York, NY 10016 USA. [Harris, Kenneth D.] Univ London Imperial Coll Sci Technol & Med, Dept Bioengn, London SW7 2AZ, England. [Harris, Kenneth D.] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2AZ, England. [Bartho, Peter] Hungarian Acad Sci, Inst Expt Med, H-1083 Budapest, Hungary. [Chadderton, Paul] UCL Ear Inst, London WC1X 8EE, England. [Curto, Carina; Itskov, Vladimir] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA. [Luczak, Artur] Univ Lethbridge, Dept Neurosci, Canadian Ctr Behav Neurosci, Lethbridge, AB T1K 3M4, Canada. [Itskov, Vladimir; Sakata, Shuzo] Univ Strathclyde, Strathclyde Inst Pharm & Biomed Sci, Glasgow G4 0NR, Lanark, Scotland. RP Harris, KD (reprint author), Rutgers State Univ, Ctr Mol & Behav Neurosci, 197 Univ Ave, Newark, NJ 07102 USA. EM kenneth.harris@imperial.ac.uk CR Arlotta P, 2005, NEURON, V45, P207, DOI 10.1016/j.neuron.2004.12.036 Atencio CA, 2010, J NEUROPHYSIOL, V103, P192, DOI 10.1152/jn.00624.2009 Bandyopadhyay S, 2010, NAT NEUROSCI, V13, P361, DOI 10.1038/nn.2490 Barbour DL, 2008, J NEUROSCI, V28, P11174, DOI 10.1523/JNEUROSCI.2093-08.2008 Barlow H B, 1972, Perception, V1, P371, DOI 10.1068/p010371 Bartho P, 2009, EUR J NEUROSCI, V30, P1767, DOI 10.1111/j.1460-9568.2009.06954.x Bartho P, 2004, J NEUROPHYSIOL, V92, P600, DOI 10.1152/jn.01170.2003 Berke JD, 2004, NEURON, V43, P883, DOI 10.1016/j.neuron.2004.08.035 Brecht M, 2007, CURR OPIN NEUROBIOL, V17, P408, DOI 10.1016/j.conb.2007.07.008 Brecht M, 2003, J PHYSIOL-LONDON, V553, P243, DOI 10.1113/jphysiol.2003.044222 Brincat SL, 2006, NEURON, V49, P17, DOI 10.1016/j.neuron.2005.11.026 Brosch M, 1999, EUR J NEUROSCI, V11, P3517, DOI 10.1046/j.1460-9568.1999.00770.x Brosch M, 2005, J NEUROSCI, V25, P6797, DOI 10.1523/JNEUROSCI.1571-05.2005 Bureau I, 2006, PLOS BIOL, V4, P2361, DOI 10.1371/journal.pbio.0040382 BUZSAKI G, 1989, NEUROSCIENCE, V31, P551, DOI 10.1016/0306-4522(89)90423-5 BUZSAKI G, 1988, J NEUROSCI, V8, P4007 Castro-Alamancos MA, 2004, PROG NEUROBIOL, V74, P213, DOI 10.1016/j.pneurobio.2004.09.002 Castro-Alamancos MA, 2004, NEURON, V41, P455, DOI 10.1016/S0896-6273(03)00853-5 CHAUVETTE S, 2010, CEREB CORTEX Clement EA, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002004 Cohen MR, 2009, NAT NEUROSCI, V12, P1594, DOI 10.1038/nn.2439 Csicsvari J, 2003, J NEUROPHYSIOL, V90, P1314, DOI 10.1152/jn.00116.2003 Curto C, 2009, J NEUROSCI, V29, P10600, DOI 10.1523/JNEUROSCI.2053-09.2009 deCharms RC, 1996, NATURE, V381, P610, DOI 10.1038/381610a0 de Kock CPJ, 2007, J PHYSIOL-LONDON, V581, P139, DOI 10.1113/jphysiol.2006.124321 DeWeese MR, 2003, J NEUROSCI, V23, P7940 Edeline JM, 2003, EXP BRAIN RES, V153, P554, DOI 10.1007/s00221-003-1608-0 Eggermont JJ, 2006, J NEUROPHYSIOL, V96, P746, DOI 10.1152/jn.00059.2006 Einevoll GT, 2007, J NEUROPHYSIOL, V97, P2174, DOI 10.1152/jn.00845.2006 Feldmeyer D, 2006, J PHYSIOL-LONDON, V575, P583, DOI 10.1113/jphysiol.2006.105106 Felleman DJ, 1991, CEREB CORTEX, V1, P1, DOI 10.1093/cercor/1.1.1 Felsen G, 2008, NEURON, V60, P137, DOI 10.1016/j.neuron.2008.09.019 FitzHugh R., 1955, B MATH BIOPHYS, V17, P257, DOI DOI 10.1007/BF02477753) Fries P, 2001, SCIENCE, V291, P1560, DOI 10.1126/science.1055465 GERSTEIN GL, 1985, J NEUROSCI, V5, P881 Goard M, 2009, NAT NEUROSCI, V12, P1444, DOI 10.1038/nn.2402 Gray CM, 1995, J NEUROSCI METH, V63, P43, DOI 10.1016/0165-0270(95)00085-2 Haider B, 2007, J NEUROPHYSIOL, V97, P4186, DOI 10.1152/jn.01114.2006 Harris KD, 2000, J NEUROPHYSIOL, V84, P401 Harris KD, 2005, NAT REV NEUROSCI, V6, P399, DOI 10.1038/nrn1669 Hasenstaub A, 2007, J NEUROSCI, V27, P9607, DOI 10.1523/JNEUROSCI.2184-07.2007 Hefti Brenda J., 2003, JARO Journal of the Association for Research in Otolaryngology, V4, P106, DOI 10.1007/s10162-002-3012-z Hefti BJ, 2000, J NEUROPHYSIOL, V83, P2626 Heil P, 2004, CURR OPIN NEUROBIOL, V14, P461, DOI 10.1016/j.conb.2004.07.002 Hoffman KL, 2002, SCIENCE, V297, P2070, DOI 10.1126/science.1073538 Hoffman KL, 2007, J NEUROSCI, V27, P11838, DOI 10.1523/JNEUROSCI.3501-07.2007 Holmgren C, 2003, J PHYSIOL-LONDON, V551, P139, DOI 10.1113/jphysiol.2003.044784 Hromadka T, 2008, PLOS BIOL, V6, pe16 Jermakowicz WJ, 2009, J NEUROPHYSIOL, V101, P2279, DOI 10.1152/jn.91207.2008 Jeschke M, 2008, BRAIN RES, V1220, P70, DOI 10.1016/j.brainres.2007.10.047 JOHN ER, 1973, J NEUROPHYSIOL, V36, P893 Kandel A, 1997, J NEUROSCI, V17, P6783 Katzner S, 2009, NEURON, V61, P35, DOI 10.1016/j.neuron.2008.11.016 Kaur S, 2005, NEUROSCIENCE, V134, P1033, DOI 10.1016/j.neuroscience.2005.04.052 Kimura A, 2003, NEUROSCIENCE, V117, P1003, DOI 10.1016/S0306-4522(02)00949-1 Kisley MA, 1999, J NEUROSCI, V19, P10451 Kosslyn SM, 2001, NAT REV NEUROSCI, V2, P635, DOI 10.1038/35090055 Kraemer DJM, 2005, NATURE, V434, P158, DOI 10.1038/434158a Kreiman G, 2000, NATURE, V408, P357 Kruskal JB, 1978, MULTIDIMENSIONAL SCA Lakatos P, 2007, NEURON, V53, P279, DOI 10.1016/j.neuron.2006.12.011 Laurent G, 2002, NAT REV NEUROSCI, V3, P884, DOI 10.1038/nrn964 Linden JF, 2003, CEREB CORTEX, V13, P83, DOI 10.1093/cercor/13.1.83 Liu BH, 2007, NAT NEUROSCI, V10, P1594, DOI 10.1038/nn2012 Logothetis NK, 2001, NATURE, V412, P150, DOI 10.1038/35084005 Luczak A, 2007, P NATL ACAD SCI USA, V104, P347, DOI 10.1073/pnas.0605643104 Luczak A, 2009, NEURON, V62, P413, DOI 10.1016/j.neuron.2009.03.014 MARR D, 1971, PHILOS T ROY SOC B, V262, P23, DOI 10.1098/rstb.1971.0078 MCNAUGHTON BL, 1983, J NEUROSCI METH, V8, P391, DOI 10.1016/0165-0270(83)90097-3 Mitchell JF, 2009, NEURON, V63, P879, DOI 10.1016/j.neuron.2009.09.013 MITZDORF U, 1985, PHYSIOL REV, V65, P37 Moshitch D, 2006, J NEUROPHYSIOL, V95, P3756, DOI 10.1152/jn.00822.2005 Murakami M, 2005, NEURON, V46, P285, DOI 10.1016/j.neuron.2005.02.025 Ohl FW, 2001, NATURE, V412, P733, DOI 10.1038/35089076 Oram MW, 2002, PHILOS T ROY SOC B, V357, P987, DOI 10.1098/rstb.2002.1113 Oswald AMM, 2009, J NEUROSCI, V29, P10321, DOI 10.1523/JNEUROSCI.1703-09.2009 Oswald AMM, 2008, J NEUROPHYSIOL, V99, P2998, DOI 10.1152/jn.01160.2007 Paxinos G, 1997, RAT BRAIN STEREOTAXI Pesaran B, 2002, NAT NEUROSCI, V5, P805, DOI 10.1038/nn890 Petersen CCH, 2003, P NATL ACAD SCI USA, V100, P13638, DOI 10.1073/pnas.2235811100 Pinault D, 1996, J NEUROSCI METH, V65, P113, DOI 10.1016/0165-0270(95)00144-1 Poulet JFA, 2008, NATURE, V454, P881, DOI 10.1038/nature07150 Ranade SP, 2009, J NEUROPHYSIOL, V102, P3026, DOI 10.1152/jn.00507.2009 RECCE M K, 1989, Society for Neuroscience Abstracts, V15, P1250 Renart A, 2010, SCIENCE, V327, P587, DOI 10.1126/science.1179850 ROMANSKI LM, 1993, CEREB CORTEX, V3, P499, DOI 10.1093/cercor/3.6.499 Rothschild G, 2010, NAT NEUROSCI, V13, P353, DOI 10.1038/nn.2484 ROUILLER EM, 1991, EXP BRAIN RES, V86, P483 Sakata S, 2009, NEURON, V64, P404, DOI 10.1016/j.neuron.2009.09.020 SALLY SL, 1988, J NEUROPHYSIOL, V59, P1627 Sanchez-Vives MV, 2000, NAT NEUROSCI, V3, P1027 Scheich H, 2007, HEARING RES, V229, P213, DOI 10.1016/j.heares.2007.01.025 Schmitzer-Torbert N, 2005, NEUROSCIENCE, V131, P1, DOI 10.1016/j.neuroscience.2004.09.066 Schubert D, 2007, BRAIN STRUCT FUNCT, V212, P107, DOI 10.1007/s00429-007-0147-z Shuler MG, 2006, SCIENCE, V311, P1606, DOI 10.1126/science.1123513 Smith PH, 2001, J COMP NEUROL, V436, P508, DOI 10.1002/cne.1084 Sohya K, 2007, J NEUROSCI, V27, P2145, DOI 10.1523/JNEUROSCI.4641-06.2007 Song S, 2005, PLOS BIOL, V3, P507, DOI 10.1371/journal.pbio.0030068 STERIADE M, 1993, SCIENCE, V262, P679, DOI 10.1126/science.8235588 Steriade M, 2001, J NEUROPHYSIOL, V85, P1969 STERIADE M, 1993, J NEUROSCI, V13, P3252 Stopfer M, 2003, NEURON, V39, P991, DOI 10.1016/j.neuron.2003.08.011 Storm JF, 2000, J PHYSIOL-LONDON, V525, P565 Sugase Y, 1999, NATURE, V400, P869, DOI 10.1038/23703 Sugino K, 2006, NAT NEUROSCI, V9, P99, DOI 10.1038/nn1618 SWADLOW HA, 1994, J NEUROPHYSIOL, V71, P437 SWADLOW HA, 1989, J NEUROPHYSIOL, V62, P288 SWADLOW HA, 1988, J NEUROPHYSIOL, V59, P1162 Szymanski FD, 2009, J NEUROPHYSIOL, V102, P1483, DOI 10.1152/jn.00240.2009 Thomson Alex M, 2007, Front Neurosci, V1, P19, DOI 10.3389/neuro.01.1.1.002.2007 Turner JG, 2005, HEARING RES, V202, P129, DOI 10.1016/j.heares.2004.09.011 Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032 Ulanovsky N, 2004, J NEUROSCI, V24, P10440, DOI 10.1523/JNEUROSCI.1905-04.2004 VANBREDERODE JFM, 1995, J NEUROPHYSIOL, V74, P1149 Vanderwolf CH, 2000, BRAIN RES, V855, P217, DOI 10.1016/S0006-8993(99)02351-3 VANDERWOLF CH, 2003, ODYSSEY BRAIN BEHAV VOLKOV IO, 1991, NEUROSCIENCE, V43, P307, DOI 10.1016/0306-4522(91)90295-Y Wallace MN, 2008, EXP BRAIN RES, V184, P179, DOI 10.1007/s00221-007-1092-z Wang XQ, 2005, NATURE, V435, P341, DOI 10.1038/nature03565 Wiest MC, 2003, NAT NEUROSCI, V6, P913, DOI 10.1038/nn1107 Winer JA, 2007, HEARING RES, V229, P3, DOI 10.1016/j.heares.2007.01.017 Worgotter F, 1998, NATURE, V396, P165, DOI 10.1038/24157 Wu GK, 2008, NEURON, V58, P132, DOI 10.1016/j.neuron.2008.01.035 Zhou Y, 2010, NEURON, V65, P706, DOI 10.1016/j.neuron.2010.02.021 NR 124 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2011 VL 271 IS 1-2 SI SI BP 37 EP 53 DI 10.1016/j.heares.2010.06.006 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 717VH UT WOS:000287075000005 PM 20603208 ER PT J AU Petkov, CI Sutter, ML AF Petkov, Christopher I. Sutter, Mitchell L. TI Evolutionary conservation and neuronal mechanisms of auditory perceptual restoration SO HEARING RESEARCH LA English DT Article ID HEARING ILLUSORY SOUNDS; PERCEIVED CONTINUITY; MISMATCH NEGATIVITY; STREAM SEGREGATION; MASKING RELEASE; COMPLEX SOUNDS; CORTEX; NOISE; ORGANIZATION; SPEECH AB Auditory perceptual 'restoration' occurs when the auditory system restores an occluded or masked sound of interest. Behavioral work on auditory restoration in humans began over 50 years ago using it to model a noisy environmental scene with competing sounds. It has become clear that not only humans experience auditory restoration: restoration has been broadly conserved in many species. Behavioral studies in humans and animals provide a necessary foundation to link the insights being obtained from human EEG and fMRI to those from animal neurophysiology. The aggregate of data resulting from multiple approaches across species has begun to clarify the neuronal bases of auditory restoration. Different types of neural responses supporting restoration have been found, supportive of multiple mechanisms working within a species. Yet a general principle has emerged that responses correlated with restoration mimic the response that would have been given to the uninterrupted sound of interest. Using the same technology to study different species will help us to better harness animal models of 'auditory scene analysis' to clarify the conserved neural mechanisms shaping the perceptual organization of sound and to advance strategies to improve hearing in natural environmental settings. (C) 2010 Elsevier B.V. All rights reserved. C1 [Sutter, Mitchell L.] Univ Calif Davis, Ctr Neurosci, Davis, CA 95618 USA. [Sutter, Mitchell L.] Univ Calif Davis, Sect Neurobiol Physiol & Behav, Davis, CA 95618 USA. [Petkov, Christopher I.] Newcastle Univ, Inst Neurosci, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England. RP Sutter, ML (reprint author), Univ Calif Davis, Ctr Neurosci, Davis, CA 95618 USA. EM chris.petkov@ncl.ac.uk; mlsutter@ucdavis.edu FU Newcastle University; McDonnell Foundation; NIDCD [DC-02514] FX We thank K. O'Connor for being a key contributor to our work together that is mentioned in this review and to J. Johnson, R. Lurz, and L Riecke for comments on drafts of the manuscript. We also thank K. Vinnik and E. Balaban for valuable discussions and L Riecke and E. Formisano for providing figures from their work. Supported by grants from Newcastle University, the McDonnell Foundation and the NIDCD (DC-02514). CR Alain C, 2000, FRONT BIOSCI, V5, pD202, DOI 10.2741/Alain ASSAD JA, 1995, NATURE, V373, P518, DOI 10.1038/373518a0 Bishop CW, 2009, J COGNITIVE NEUROSCI, V21, P1790, DOI 10.1162/jocn.2009.21118 Bizley JK, 2009, J NEUROSCI, V29, P2064, DOI 10.1523/JNEUROSCI.4755-08.2009 BORG E, 1988, HEARING RES, V36, P191, DOI 10.1016/0378-5955(88)90061-5 Borrill SJ, 2002, J ACOUST SOC AM, V111, P309, DOI 10.1121/1.1426373 Braaten RE, 1999, PSYCHOL SCI, V10, P162, DOI 10.1111/1467-9280.00125 BREGMAN AS, 1977, CAN J PSYCHOL, V31, P151, DOI 10.1037/h0081658 Bregman AS., 1990, AUDITORY SCENE ANAL BUUS S, 1985, J ACOUST SOC AM, V78, P1958, DOI 10.1121/1.392652 Carlyon RP, 2004, TRENDS COGN SCI, V8, P465, DOI 10.1016/j.tics.2004.08.008 CHERRY EC, 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229 Ciocca V, 2008, FRONT BIOSCI-LANDMRK, V13, P148, DOI 10.2741/2666 CIOCCA V, 1987, PERCEPT PSYCHOPHYS, V42, P476, DOI 10.3758/BF03209755 Craft E, 2007, J NEUROPHYSIOL, V97, P4310, DOI 10.1152/jn.00203.2007 Darwin CJ, 2005, PERCEPT PSYCHOPHYS, V67, P1384, DOI 10.3758/BF03193643 DIVENYI PL, 1989, J ACOUST SOC AM, V85, P2042, DOI 10.1121/1.397856 FENG AS, 1994, J COMP PHYSIOL A, V175, P531 Fishman YI, 2001, HEARING RES, V151, P167, DOI 10.1016/S0378-5955(00)00224-0 Fries P, 2001, SCIENCE, V291, P1560, DOI 10.1126/science.1055465 Fullgrabe C, 2006, HEARING RES, V211, P74, DOI 10.1016/j.heares.2005.09.001 Hall JW, 1998, J ACOUST SOC AM, V103, P2573, DOI 10.1121/1.422778 HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083 Heinrich A, 2008, J COGNITIVE NEUROSCI, V20, P1737, DOI 10.1162/jocn.2008.20069 HELLSTROM LI, 1989, J ACOUST SOC AM, V85, P230, DOI 10.1121/1.397729 Herrero JL, 2008, NATURE, V454, P1110, DOI 10.1038/nature07141 HOUTGAST T, 1972, J ACOUST SOC AM, V51, P1885, DOI 10.1121/1.1913048 Hulse SH, 2002, ADV STUD BEHAV, V31, P163, DOI 10.1016/S0065-3454(02)80008-0 Jarvis ED, 2004, ANN NY ACAD SCI, V1016, P749, DOI 10.1196/annals.1298.038 KALIKOW DN, 1977, J ACOUST SOC AM, V61, P1337, DOI 10.1121/1.381436 Kanwal JS, 1999, J NEUROPHYSIOL, V82, P2327 KLUENDER KR, 1992, PERCEPT PSYCHOPHYS, V51, P231, DOI 10.3758/BF03212249 Las L, 2005, J NEUROSCI, V25, P1503, DOI 10.1523/JNEUROSCI.4007-04.2005 Lyzenga J, 2005, HEARING RES, V210, P30, DOI 10.1016/j.heares.2005.07.002 Micheyl C, 2003, J COGNITIVE NEUROSCI, V15, P747, DOI 10.1162/089892903322307456 Micheyl C, 2005, NEURON, V48, P139, DOI 10.1016/j.neuron.2005.08.039 Miller CT, 2001, NAT NEUROSCI, V4, P783, DOI 10.1038/90481 MILLER GA, 1950, J ACOUST SOC AM, V22, P167, DOI 10.1121/1.1906584 Moore BCJ, 1999, J ACOUST SOC AM, V105, P400, DOI 10.1121/1.424571 Näätänen R, 1995, Electroencephalogr Clin Neurophysiol Suppl, V44, P179 PATTERSON RD, 1992, ADV BIOSCI, V83, P429 PATTERSON RD, 1995, J ACOUST SOC AM, V98, P1890, DOI 10.1121/1.414456 PESSOA L, 2003, FILLING PERCEPTUAL C PETERHANS E, 1991, TRENDS NEUROSCI, V14, P112, DOI 10.1016/0166-2236(91)90072-3 Petkov CI, 2008, NAT NEUROSCI, V11, P367, DOI 10.1038/nn2043 Petkov CI, 2007, NEURON, V54, P153, DOI 10.1016/j.neuron.2007.02.031 Petkov CI, 2006, PLOS BIOL, V4, P1213, DOI 10.1371/journal.pbio.0040215 Petkov CI, 2003, J NEUROSCI, V23, P9155 Picton TW, 2000, AUDIOL NEURO-OTOL, V5, P111, DOI 10.1159/000013875 Plack CJ, 2000, J ACOUST SOC AM, V108, P1162, DOI 10.1121/1.1287022 Ramsden BM, 2001, CEREB CORTEX, V11, P648, DOI 10.1093/cercor/11.7.648 RAUSCHECKER JP, 1995, SCIENCE, V268, P111, DOI 10.1126/science.7701330 Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800 Rauschecker JP, 1998, AUDIOL NEURO-OTOL, V3, P86, DOI 10.1159/000013784 Riecke L, 2008, PERCEPT PSYCHOPHYS, V70, P1, DOI 10.3758/PP.70.1.1 Riecke L, 2007, J NEUROSCI, V27, P12684, DOI 10.1523/JNEUROSCI.2713-07.2007 Riecke L, 2009, NEURON, V64, P550, DOI 10.1016/j.neuron.2009.10.016 Samuel AG, 1997, COGNITIVE PSYCHOL, V32, P97, DOI 10.1006/cogp.1997.0646 SCHREINER C, 1980, HEARING RES, V3, P265, DOI 10.1016/0378-5955(80)90022-2 SCHREINER C, 1977, ACUSTICA, V37, P29 Schreiner CE, 2000, ANNU REV NEUROSCI, V23, P501, DOI 10.1146/annurev.neuro.23.1.501 Schul J, 2006, NEUROSCIENCE, V138, P1, DOI 10.1016/j.neuroscience.2005.11.023 Seeba F, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005974 Shahin AJ, 2009, NEUROIMAGE, V44, P1133, DOI 10.1016/j.neuroimage.2008.09.045 SLANEY M, 1993, APPLE COMPUTER TECHN, V35, P1 Sugita Y, 1997, NEUROREPORT, V8, P1155, DOI 10.1097/00001756-199703240-00019 Turgeon M, 2002, J ACOUST SOC AM, V111, P1819, DOI 10.1121/1.1453450 VINNIK E, 2009, SOUNDS NOISE BEHAV N VONDERHEYDT R, 1984, SCIENCE, V224, P1260, DOI 10.1126/science.6539501 WARREN RM, 1970, SCIENCE, V167, P392, DOI 10.1126/science.167.3917.392 WARREN RM, 1972, SCIENCE, V176, P1149, DOI 10.1126/science.176.4039.1149 NR 71 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2011 VL 271 IS 1-2 SI SI BP 54 EP 65 DI 10.1016/j.heares.2010.05.011 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 717VH UT WOS:000287075000006 PM 20541597 ER PT J AU Brosch, M Selezneva, E Scheich, H AF Brosch, Michael Selezneva, Elena Scheich, Henning TI Formation of associations in auditory cortex by slow changes of tonic firing SO HEARING RESEARCH LA English DT Article ID UNIT-ACTIVITY; NEURONAL-ACTIVITY; SPIKE TRAINS; REWARD; MONKEY; RAT; OSCILLATIONS; POTENTIALS; THALAMUS; BEHAVIOR AB We review event-related slow firing changes in the auditory cortex and related brain structures. Two types of changes can be distinguished, namely increases and decreases of firing, lasting in the order of seconds. Triggering events can be auditory stimuli, reinforcers, and behavioral responses. Slow firing changes terminate with reinforcers and possibly with auditory stimuli and behavioral responses. A necessary condition for the emergence of slow firing changes seems to be that subjects have learnt that consecutive sensory or behavioral events are contingent on reinforcement. They disappear when the contingencies are no longer present. Slow firing changes in auditory cortex bear similarities with slow changes of neuronal activity that have been observed in subcortical parts of the auditory system and in other non-sensory brain structures. We propose that slow firing changes in auditory cortex provide a neuronal mechanism for anticipating, memorizing, and associating events that are related to hearing and of behavioral relevance. This may complement the representation of the timing and types of auditory and auditory-related events which may be provided by phasic responses in auditory cortex. The presence of slow firing changes indicates that many more auditory-related aspects of a behavioral procedure are reflected in the neuronal activity of auditory cortex than previously assumed. (C) 2010 Elsevier B.V. All rights reserved. C1 [Brosch, Michael; Selezneva, Elena; Scheich, Henning] Leibniz Inst Neurobiol, D-39118 Magdeburg, Germany. RP Brosch, M (reprint author), Leibniz Inst Neurobiol, Brenneckestr 6, D-39118 Magdeburg, Germany. EM brosch@ifn-magdeburg.de FU Deutsche Forschungsgemeinschaft [SFB 779, SFB-TRR 31] FX We thank Cornelia Bucks for technical assistance during and after the experiments. The valuable suggestions of Dr. Jonathan Lovell are greatly acknowledged. This research was supported by intramural funding and the Deutsche Forschungsgemeinschaft (SFB 779,SFB-TRR 31). CR Arieli A, 1996, SCIENCE, V273, P1868, DOI 10.1126/science.273.5283.1868 Armony JL, 1998, J NEUROSCI, V18, P2592 BIRBAUMER N, 1990, PHYSIOL REV, V70, P1 Bizley JK, 2007, CEREB CORTEX, V17, P2172, DOI 10.1093/cercor/bhl128 Brosch M, 2005, AUDITORY CORTEX: SYNTHESIS OF HUMAN AND ANIMAL RESEARCH, P127 BROSCH M, RULE BASED LEA UNPUB Brosch M, 2005, J NEUROSCI, V25, P6797, DOI 10.1523/JNEUROSCI.1571-05.2005 Brunia CHM, 1999, ACTA PSYCHOL, V101, P213, DOI 10.1016/S0001-6918(99)00006-2 Budinger E, 2009, HEARING RES, V258, P16, DOI 10.1016/j.heares.2009.04.021 FILIPPOV IV, 2008, BRAIN RES, V11, P66 Fu KMG, 2003, J NEUROSCI, V23, P7510 Gao LX, 2009, J NEUROSCI, V29, P6013, DOI 10.1523/JNEUROSCI.5733-08.2009 Ghazanfar AA, 2006, TRENDS COGN SCI, V10, P278, DOI 10.1016/j.tics.2006.04.008 GOTTLIEB Y, 1989, EXP BRAIN RES, V74, P139 He BJ, 2009, TRENDS COGN SCI, V13, P302, DOI 10.1016/j.tics.2009.04.004 He JF, 2003, J NEUROSCI, V23, P8281 Hernandez G, 2006, BEHAV NEUROSCI, V120, P888, DOI 10.1037/0735-7044.120.4.888 KITZES LM, 1978, EXP NEUROL, V62, P678, DOI 10.1016/0014-4886(78)90277-7 Komura Y, 2001, NATURE, V412, P546, DOI 10.1038/35087595 Komura Y, 2005, NAT NEUROSCI, V8, P1203, DOI 10.1038/nn1528 KORNHUBER HH, 1965, PFLUGERS ARCH, V281, P1 Luczak A, 2009, NEURON, V62, P413, DOI 10.1016/j.neuron.2009.03.014 Metzger RR, 2006, J NEUROSCI, V26, P7468, DOI 10.1523/JNEUROSCI.5401-05.2006 Mita A, 2009, NAT NEUROSCI, V12, P502, DOI 10.1038/nn.2272 Morrison SE, 2009, J NEUROSCI, V29, P11471, DOI 10.1523/JNEUROSCI.1815-09.2009 NIKI H, 1979, BRAIN RES, V171, P213, DOI 10.1016/0006-8993(79)90328-7 Quirk GJ, 1997, NEURON, V19, P613, DOI 10.1016/S0896-6273(00)80375-X Rosler F, 1997, BIOL PSYCHOL, V45, P109, DOI 10.1016/S0301-0511(96)05225-8 ROWLAND V, 1985, ELECTROEN CLIN NEURO, V61, P559, DOI 10.1016/0013-4694(85)90975-7 SAKURAI Y, 1994, J NEUROSCI, V14, P2606 Schroeder CE, 2009, TRENDS NEUROSCI, V32, P9, DOI 10.1016/j.tins.2008.09.012 SCHULTZ W, 1992, J NEUROSCI, V12, P4595 SCHULTZ W, 1992, EXP BRAIN RES, V91, P363 Selezneva E, 2006, CURR BIOL, V16, P2428, DOI 10.1016/j.cub.2006.10.027 SHINBA T, 1995, BRAIN RES BULL, V37, P199, DOI 10.1016/0361-9230(94)00283-7 Shuler MG, 2006, SCIENCE, V311, P1606, DOI 10.1126/science.1123513 STERIADE M, 1993, SCIENCE, V262, P679, DOI 10.1126/science.8235588 WALTER WG, 1964, NATURE, V203, P380, DOI 10.1038/203380a0 Yin P, 2008, J NEUROPHYSIOL, V100, P3009, DOI 10.1152/jn.00828.2007 NR 39 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2011 VL 271 IS 1-2 SI SI BP 66 EP 73 DI 10.1016/j.heares.2010.05.003 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 717VH UT WOS:000287075000007 PM 20488230 ER PT J AU Walker, KMM Bizley, JK King, AJ Schnupp, JWH AF Walker, Kerry M. M. Bizley, Jennifer K. King, Andrew J. Schnupp, Jan W. H. TI Cortical encoding of pitch: Recent results and open questions SO HEARING RESEARCH LA English DT Article ID PRIMARY AUDITORY-CORTEX; FREQUENCY-MODULATED TONES; GERBIL MERIONES-UNGUICULATUS; RECEPTIVE-FIELD PLASTICITY; HARMONIC COMPLEX TONES; LATERAL HESCHLS GYRUS; INFERIOR COLLICULUS; FUNCTIONAL-ORGANIZATION; MONGOLIAN GERBIL; COCHLEAR NUCLEUS AB It is widely appreciated that the key predictor of the pitch of a sound is its periodicity. Neural structures which support pitch perception must therefore be able to reflect the repetition rate of a sound, but this alone is not sufficient. Since pitch is a psychoacoustic property, a putative cortical code for pitch must also be able to account for the relationship between the amount to which a sound is periodic (i.e. its temporal regularity) and the perceived pitch salience, as well as limits in our ability to detect pitch changes or to discriminate rising from falling pitch. Pitch codes must also be robust in the presence of nuisance variables such as loudness or timbre. Here, we review a large body of work on the cortical basis of pitch perception, which illustrates that the distribution of cortical processes that give rise to pitch perception is likely to depend on both the acoustical features and functional relevance of a sound. While previous studies have greatly advanced our understanding, we highlight several open questions regarding the neural basis of pitch perception. These questions can begin to be addressed through a cooperation of investigative efforts across species and experimental techniques, and, critically, by examining the responses of single neurons in behaving animals. (C) 2010 Elsevier B.V. All rights reserved. C1 [Walker, Kerry M. M.; Bizley, Jennifer K.; King, Andrew J.; Schnupp, Jan W. H.] Univ Oxford, Dept Physiol Anat & Genet, Oxford OX1 3PT, England. RP Walker, KMM (reprint author), Univ Oxford, Dept Physiol Anat & Genet, Sherrington Bldg,Parks Rd, Oxford OX1 3PT, England. EM kerry.walker@dpag.ox.ac.uk; jennifer.bizley@dpag.ox.ac.uk; andrew.king@dpag.ox.ac.uk; jan.schnupp@dpag.ox.ac.uk RI Walker, Kerry/B-5057-2011; King, Andrew/M-6708-2013 OI King, Andrew/0000-0001-5180-7179 FU Wellcome Trust [076508/Z/05/Z]; Biotechnology and Biological Sciences Research Council [BB/D009758/1]; L'Oreal-UNESCO; Engineering and Physical Sciences Research Council [EP/C010841/1] FX We are grateful for the support of the Wellcome Trust Principal Research Fellowship (grant 076508/Z/05/Z), for funding to AJK, KMMW and JKB, and to the Biotechnology and Biological Sciences Research Council (grant BB/D009758/1) for a grant awarded to JWHS, AJK and JKB. JKB is also supported by a L'Oreal-UNESCO For Women In Science Fellowship, and JWHS by the Engineering and Physical Sciences Research Council (grant EP/C010841/1). We thank Israel Nelken for his helpful comments on a draft of this manuscript, and Cesare Magri for making his Matlab code for entropy calculations freely available at http://www.ibtb.org (Magri et al., 2009). CR Ahveninen J, 2006, P NATL ACAD SCI USA, V103, P14608, DOI 10.1073/pnas.0510480103 Bajo VM, 2007, CEREB CORTEX, V17, P475, DOI 10.1093/cercor/bhj164 BAKIN JS, 1990, BRAIN RES, V536, P271, DOI 10.1016/0006-8993(90)90035-A Bendor D, 2005, NATURE, V436, P1161, DOI 10.1038/nature03867 Bendor D, 2008, J NEUROPHYSIOL, V100, P888, DOI 10.1152/jn.00884.2007 Bizley JK, 2009, J NEUROSCI, V29, P2064, DOI 10.1523/JNEUROSCI.4755-08.2009 Bizley JK, 2005, CEREB CORTEX, V15, P1637, DOI 10.1093/cercor/bhi042 Bizley JK, 2010, J NEUROSCI, V30, P5078, DOI 10.1523/JNEUROSCI.5475-09.2010 BIZLEY JK, 2009, ASS RES OTOLARYNGOL, P136 Blake DT, 2006, NEURON, V52, P371, DOI 10.1016/j.neuron.2006.08.009 Blake DT, 2002, P NATL ACAD SCI USA, V99, P10114, DOI 10.1073/pnas.092278099 BRAWER JR, 1974, J COMP NEUROL, V155, P251, DOI 10.1002/cne.901550302 Brosch M, 2004, COGNITION, V91, P259, DOI 10.1016/j.cognition.2003.09.005 Brosch M, 1999, J NEUROPHYSIOL, V82, P1542 Brosch M, 2008, EXP BRAIN RES, V184, P349, DOI 10.1007/s00221-007-1109-7 Brown M, 2004, CEREB CORTEX, V14, P952, DOI 10.1093/cercor/bhh056 Budinger E, 2000, EUR J NEUROSCI, V12, P2425, DOI 10.1046/j.1460-9568.2000.00142.x Cansino S, 2003, HUM BRAIN MAPP, V20, P71, DOI 10.1002/hbm.10132 CAPRANIC.RR, 1966, J ACOUST SOC AM, V40, P1131, DOI 10.1121/1.1910198 Cariani P, 1999, NEURAL PLAST, V6, P147, DOI 10.1155/NP.1999.147 Carlyon RP, 1998, J ACOUST SOC AM, V104, P1118, DOI 10.1121/1.423319 Chait M, 2006, CEREB CORTEX, V16, P835, DOI 10.1093/cercor/bhj027 Chawla D, 1999, NEURAL COMPUT, V11, P1389, DOI 10.1162/089976699300016287 COHEN MA, 1995, J ACOUST SOC AM, V98, P862, DOI 10.1121/1.413512 CRAMER EM, 1958, J ACOUST SOC AM, V30, P413, DOI 10.1121/1.1909628 CYNX J, 1995, J COMP PSYCHOL, V109, P261, DOI 10.1037/0735-7036.109.3.261 CYNX J, 1986, J COMP PSYCHOL, V100, P356 DAMATO MR, 1988, MUSIC PERCEPT, V5, P452 de Cheveigne A., 2005, PITCH NEURAL CODING, P169 Degerman A, 2008, EUR J NEUROSCI, V27, P3329, DOI 10.1111/j.1460-9568.2008.06286.x DIVENYI PL, 1989, BRAIN LANG, V37, P290, DOI 10.1016/0093-934X(89)90020-5 Dooling RJ, 2002, J ACOUST SOC AM, V112, P748, DOI 10.1121/1.1494447 DOOLING RJ, 1981, J COMP PHYSIOL, V143, P383 DOWNMAN CBB, 1960, B JOHNS HOPKINS HOSP, V106, P127 EDELINE JM, 1993, BEHAV NEUROSCI, V107, P82, DOI 10.1037//0735-7044.107.1.82 FAY RR, 1983, HEARING RES, V12, P31, DOI 10.1016/0378-5955(83)90117-X Fishman YI, 1998, BRAIN RES, V786, P18, DOI 10.1016/S0006-8993(97)01423-6 Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141 Fritz JB, 2005, J NEUROSCI, V25, P7623, DOI 10.1523/JNEUROSCI.1318-05.2005 FULLER BF, 1992, RES NURS HEALTH, V15, P379, DOI 10.1002/nur.4770150507 Galvan VV, 2002, NEUROBIOL LEARN MEM, V77, P78, DOI 10.1006/nlme.2001.4044 Gelfer MP, 2005, J VOICE, V19, P544, DOI 10.1016/j.jvoice.2004.10.006 Goense JBM, 2008, CURR BIOL, V18, P631, DOI 10.1016/j.cub.2008.03.054 GOLDSTEI.JL, 1973, J ACOUST SOC AM, V54, P1496, DOI 10.1121/1.1914448 Griffiths TD, 2001, NAT NEUROSCI, V4, P633, DOI 10.1038/88459 Griffiths TD, 1999, NEUROREPORT, V10, P3825, DOI 10.1097/00001756-199912160-00019 Gutschalk A, 2007, CEREB CORTEX, V17, P552, DOI 10.1093/cercor/bhj180 Gutschalk A, 2002, NEUROIMAGE, V15, P207, DOI 10.1006/nimg.2001.0949 Hackett TA, 2008, J AM ACAD AUDIOL, V19, P774, DOI 10.3766/jaaa.19.10.5 Hall DA, 2009, CEREB CORTEX, V19, P576, DOI 10.1093/cercor/bhn108 Hall DA, 2007, NEUROREPORT, V18, P323, DOI 10.1097/WNR.0b013e32802b70ce Harrington IA, 2001, NEUROREPORT, V12, P1217, DOI 10.1097/00001756-200105080-00032 HEFFNER H, 1976, J ACOUST SOC AM, V59, P915, DOI 10.1121/1.380951 HEIL P, 1992, HEARING RES, V63, P135, DOI 10.1016/0378-5955(92)90081-W Hertrich I, 2005, NEUROREPORT, V16, P193, DOI 10.1097/00001756-200502080-00026 Houstma A. J. M., 1990, J ACOUST SOC AM, V87, P304 HULSE SH, 1995, J EXP PSYCHOL GEN, V124, P409, DOI 10.1037//0096-3445.124.4.409 Hyde KL, 2008, NEUROPSYCHOLOGIA, V46, P632, DOI 10.1016/j.neuropsychologia.2007.09.004 Izumi A, 2001, J COMP PSYCHOL, V115, P127 Izumi A, 2000, J ACOUST SOC AM, V108, P3073, DOI 10.1121/1.1323461 JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982 Johnsrude IS, 2000, BRAIN, V123, P155, DOI 10.1093/brain/123.1.155 Kadia SC, 2003, J NEUROPHYSIOL, V89, P1603, DOI 10.1152/jn.00271.2001 Kalluri S, 2008, J ACOUST SOC AM, V123, P2701, DOI 10.1121/1.2902178 KAZUI S, 1990, BRAIN LANG, V38, P476, DOI 10.1016/0093-934X(90)90132-Z Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714 Koda H, 2002, PSYCHOL REP, V91, P421 Kojima S, 2003, PRIMATES, V44, P225, DOI 10.1007/s10329-002-0014-8 Krumbholz K, 2003, CEREB CORTEX, V13, P765, DOI 10.1093/cercor/13.7.765 Krumbholz K, 2000, J ACOUST SOC AM, V108, P1170, DOI 10.1121/1.1287843 Langner G, 1997, J COMP PHYSIOL A, V181, P665, DOI 10.1007/s003590050148 Langner Gerald, 2009, Front Integr Neurosci, V3, P27, DOI 10.3389/neuro.07.027.2009 LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799 Langner G, 2002, HEARING RES, V168, P110, DOI 10.1016/S0378-5955(02)00367-2 LICKLIDER JCR, 1951, EXPERIENTIA, V7, P128, DOI 10.1007/BF02156143 Logothetis NK, 2001, NATURE, V412, P150, DOI 10.1038/35084005 Lohr B, 1998, J COMP PSYCHOL, V112, P36, DOI 10.1037/0735-7036.112.1.36 Lomber SG, 2008, NAT NEUROSCI, V11, P609, DOI 10.1038/nn.2108 LONG GR, 1984, J ACOUST SOC AM, V75, P1184, DOI 10.1121/1.390768 Lu T, 2001, NAT NEUROSCI, V4, P1131, DOI 10.1038/nn737 Magri C, 2009, BMC NEUROSCI, V10, DOI 10.1186/1471-2202-10-81 Marvit P, 2000, J ACOUST SOC AM, V108, P1819, DOI 10.1121/1.1287845 McAlpine D, 2004, J NEUROPHYSIOL, V92, P1295, DOI 10.1152/jn.00034.2004 McLachlan N, 2009, HEARING RES, V249, P23, DOI 10.1016/j.heares.2009.01.003 Meddis R, 1997, J ACOUST SOC AM, V102, P1811, DOI 10.1121/1.420088 MERZENIC.MM, 1973, BRAIN RES, V50, P275, DOI 10.1016/0006-8993(73)90731-2 MOODY DB, 1994, J ACOUST SOC AM, V95, P3499, DOI 10.1121/1.409967 Nelken I, 2008, J NEUROPHYSIOL, V99, P1928, DOI 10.1152/jn.00469.2007 NELSON DA, 1989, J COMP PSYCHOL, V103, P171, DOI 10.1037/0735-7036.103.2.171 Ohl FW, 1997, J COMP PHYSIOL A, V181, P685, DOI 10.1007/s003590050150 Otazu GH, 2009, NAT NEUROSCI, V12, P646, DOI 10.1038/nn.2306 PAGE SC, 1989, J EXP PSYCHOL ANIM B, V15, P137, DOI 10.1037/0097-7403.15.2.137 PANTEV C, 1989, SCIENCE, V246, P486, DOI 10.1126/science.2814476 Panzeri S, 2007, J NEUROPHYSIOL, V98, P1064, DOI 10.1152/jn.00559.2007 Parsons CH, 1999, J NEUROPHYSIOL, V82, P2294 Patterson RD, 2002, NEURON, V36, P767, DOI 10.1016/S0896-6273(02)01060-7 Penagos H, 2004, J NEUROSCI, V24, P6810, DOI 10.1523/JNEUROSCI.0383-04.2004 PFEIFFER RR, 1966, EXP BRAIN RES, V1, P220 PIERCE JR, 1991, J ACOUST SOC AM, V90, P1889, DOI 10.1121/1.401667 Plack C. J., 2005, PITCH NEURAL CODING, P99 Polley DB, 2006, J NEUROSCI, V26, P4970, DOI 10.1523/JNEUROSCI.3771-05.2006 Puschmann S, 2010, NEUROIMAGE, V49, P1641, DOI 10.1016/j.neuroimage.2009.09.045 Qin L, 2005, CEREB CORTEX, V15, P1371, DOI 10.1093/cercor/bhi019 Rauschecker JP, 1997, J COMP NEUROL, V382, P89 RECANZONE GH, 1993, J NEUROSCI, V13, P87 REES A, 1987, HEARING RES, V27, P129, DOI 10.1016/0378-5955(87)90014-1 Reissland N, 2003, J CHILD PSYCHOL PSYC, V44, P255, DOI 10.1111/1469-7610.00118 RHODE WS, 1994, J NEUROPHYSIOL, V71, P493 Ritter S, 2005, NEUROIMAGE, V27, P533, DOI 10.1016/j.neuroimage.2005.05.003 ROBIN DA, 1990, BRAIN LANG, V39, P539, DOI 10.1016/0093-934X(90)90161-9 Romanski LM, 1999, NAT NEUROSCI, V2, P1131, DOI 10.1038/16056 Rutkowski RG, 2005, P NATL ACAD SCI USA, V102, P13664, DOI 10.1073/pnas.0506838102 Rybalko N, 2006, EUR J NEUROSCI, V23, P1614, DOI 10.1111/j.1460-9568.2006.04688.x Schiavetto A, 1999, NEUROREPORT, V10, P2467, DOI 10.1097/00001756-199908200-00006 Schneider P, 2005, NAT NEUROSCI, V8, P1241, DOI 10.1038/nn1530 Schonwiesner M, 2008, EXP BRAIN RES, V187, P97, DOI 10.1007/s00221-008-1286-z Schouten JF, 1938, P K NED AKAD WETENSC, V41, P1086 SCHREINER CE, 1988, J NEUROPHYSIOL, V60, P1823 Schulze H, 2002, EUR J NEUROSCI, V15, P1077, DOI 10.1046/j.1460-9568.2002.01935.x SCHWARZ DWF, 1990, J NEUROPHYSIOL, V64, P282 Selezneva E, 2006, CURR BIOL, V16, P2428, DOI 10.1016/j.cub.2006.10.027 SEMAL C, 1990, MUSIC PERCEPT, V8, P165 Semal C, 2006, J ACOUST SOC AM, V120, P3907, DOI 10.1121/1.2357708 SHACKLETON TM, 1994, J ACOUST SOC AM, V95, P3529, DOI 10.1121/1.409970 Shofner W. P., 2005, PITCH NEURAL CODING, P56 Shofner WP, 2002, HEARING RES, V173, P69, DOI 10.1016/S0378-5955(02)00612-3 Shofner WP, 2007, J COMP PSYCHOL, V121, P428, DOI 10.1037/0735-7036.121.4.428 SIDTIS JJ, 1988, BRAIN LANG, V34, P235, DOI 10.1016/0093-934X(88)90135-6 Smith DRR, 2005, J ACOUST SOC AM, V117, P305, DOI 10.1121/1.1828637 Staeren N, 2009, CURR BIOL, V19, P498, DOI 10.1016/j.cub.2009.01.066 Steinschneider M, 1998, J ACOUST SOC AM, V104, P2935, DOI 10.1121/1.423877 Stewart L, 2006, BRAIN, V129, P2533, DOI 10.1093/brain/awl171 SUTTER ML, 1991, J NEUROPHYSIOL, V65, P1207 Talwar SK, 2001, J NEUROPHYSIOL, V86, P1555 Talwar SK, 2001, J NEUROPHYSIOL, V85, P2350 THOMAS H, 1993, EUR J NEUROSCI, V5, P882, DOI 10.1111/j.1460-9568.1993.tb00940.x TOMLINSON RWW, 1988, J ACOUST SOC AM, V84, P560, DOI 10.1121/1.396833 TRAMO MJ, 2004, SOC NEUR ABSTR Tramo MJ, 2005, ANN NY ACAD SCI, V1060, P148, DOI 10.1196/annals.1360.011 Tramo MJ, 2002, J NEUROPHYSIOL, V87, P122 Vongpaisal T, 2006, J SPEECH LANG HEAR R, V49, P1091, DOI 10.4044/1092-4388(2006/078) WALKER KMM, 2009, BEHAV NEURAL PITCH D, P139 Walker KMM, 2009, J ACOUST SOC AM, V126, P1321, DOI 10.1121/1.3179676 WALKER KMM, 2009, INT C AUD CORT MAGD Wang X, 2008, Neuroscience, V157, P484, DOI 10.1016/j.neuroscience.2008.07.050 Warren JD, 2003, ANN NY ACAD SCI, V999, P212, DOI 10.1196/annals.1284.032 Warren JD, 2003, J NEUROSCI, V23, P5799 Warrier CM, 2004, BRAIN, V127, P1616, DOI 10.1093/brain/awh183 Wendel K, 2009, COMPUT INTEL NEUROSC Wetzel W, 1998, BEHAV BRAIN RES, V91, P29, DOI 10.1016/S0166-4328(97)00099-5 Wetzel W, 2008, P NATL ACAD SCI USA, V105, P6753, DOI 10.1073/pnas.0707844105 WHITFIELD IC, 1980, J ACOUST SOC AM, V67, P644, DOI 10.1121/1.383889 Winer JA, 2007, HEARING RES, V229, P3, DOI 10.1016/j.heares.2007.01.017 WINTER IM, 1990, J ACOUST SOC AM, V88, P1437, DOI 10.1121/1.399720 Witte RS, 2005, COGNITIVE BRAIN RES, V23, P171, DOI 10.1016/j.cogbrainres.2004.10.018 Wright AA, 2000, J EXP PSYCHOL GEN, V129, P291, DOI 10.1037//0096-3445.129.3.291 Yin P, 2008, J NEUROPHYSIOL, V100, P3009, DOI 10.1152/jn.00828.2007 ZATORRE RJ, 1992, SCIENCE, V256, P846, DOI 10.1126/science.1589767 ZATORRE RJ, 1988, J ACOUST SOC AM, V84, P566, DOI 10.1121/1.396834 ZATORRE RJ, 1994, J NEUROSCI, V14, P1908 NR 160 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2011 VL 271 IS 1-2 SI SI BP 74 EP 87 DI 10.1016/j.heares.2010.04.015 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 717VH UT WOS:000287075000008 PM 20457240 ER EF