FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Hribar, M
Suput, D
Carvalho, AA
Battelino, S
Vovk, A
AF Hribar, Manja
Suput, Dusan
Carvalho, Altiere Araujo
Battelino, Saba
Vovk, Andrej
TI Structural alterations of brain grey and white matter in early deaf
adults
SO HEARING RESEARCH
LA English
DT Article
ID SENSORINEURAL HEARING-LOSS; PRIMARY AUDITORY-CORTEX; CORTICAL THICKNESS
ANALYSIS; MAGNETIC-RESONANCE IMAGES; SIGN-LANGUAGE PRODUCTION;
VOXEL-BASED MORPHOMETRY; FUNCTIONAL CONNECTIVITY; DIFFUSION ANISOTROPY;
PRELINGUAL DEAFNESS; SPATIAL STATISTICS
AB Functional and structural brain alterations in the absence of the auditory input have been described, but the observed structural brain changes in the deaf are not uniform. Some of the previous researchers focused only on the auditory areas, while others investigated the whole brain or other selected regions of interest. Majority of studies revealed decreased white matter (WM) volume or altered WM microstructure and preserved grey matter (GM) structure of the auditory areas in the deaf. However, preserved WM and increased or decreased GM volume of the auditory areas in the deaf have also been reported. Several structural alterations in the deaf were found also outside the auditory areas, but these regions differ between the studies. The observed differences between the studies could be due to the use of different single-analysis techniques, or the diverse population sample and its size, or possibly due to the usage of hearing aids by some participating deaf subjects. To overcome the aforementioned limitations four different image-processing techniques were used to investigate changes in the brain morphology of prelingually deaf adults who have never used hearing aids. GM and WM volume of the Heschl's gyrus (HG) were measured using manual volumetry, while whole brain GM volume, thickness and surface area were assessed by voxel-based morphometry (VBM) and surface-based analysis. The microstructural properties of the WM were evaluated by diffusion tensor imaging (DTI). The data were compared between 14 congenitally deaf adults and 14 sex- and age-matched normal hearing controls. Manual volumetry revealed preserved GM volume of the bilateral HG and significantly decreased WM volume of the left HG in the deaf. VBM showed increased cerebellar GM volume in the deaf, while no statistically significant differences were observed in the GM thickness or surface area between the groups. The results of the DTI analysis showed WM microstructural alterations between the groups in the bilateral auditory areas, including the superior temporal gyrus, the HG, the planum temporale and the planum polare, which were more extensive in the right hemisphere. Fractional anisotropy (FA) was significantly reduced in the right and axial diffusivity (AD) in the left auditory areas in the deaf. FA and AD were significantly reduced also in several other brain areas outside the auditory cortex in the deaf.
The use of four different methods used in our study, although showing changes that are not directly related, provides additional information and supports the conclusion that in prelingually deaf subjects structural alterations are present both in the auditory areas and elsewhere. Our results support the findings of those studies showing that early deafness results in decreased WM volume and microstructural WM alterations in the auditory areas. As we observed WM microstructural alteration also in several other areas and increased GM volume in the cerebellum in the deaf, we can conclude that early deafness results in widespread structural brain changes. These probably reflect atrophy or degradation as well as compensatory cross-modal reorganisation in the absence of the auditory input and the use of the sign language. (C) 2014 The Authors. Published by Elsevier B.V.
C1 [Hribar, Manja; Suput, Dusan; Vovk, Andrej] Univ Ljubljana, Fac Med, Ctr Clin Physiol, Ljubljana 61000, Slovenia.
[Suput, Dusan] Univ Ljubljana, Fac Med, Inst Pathophysiol, Ljubljana 61000, Slovenia.
[Carvalho, Altiere Araujo] FMU, Sao Paulo, Brazil.
[Battelino, Saba] Univ Ljubljana, Fac Med, Dept Otorhinolaryngol, Ljubljana 61000, Slovenia.
RP Vovk, A (reprint author), Univ Ljubljana, Fac Med, Ctr Clin Physiol, Vrazov Trg 2, Ljubljana 61000, Slovenia.
EM andrej.vovk@mf.uni-lj.si
FU research foundation of Slovenia, ARRS [P3-0019]
FX This work was supported by the grant of the research foundation of
Slovenia, ARRS, grant No. P3-0019.
CR Alexander AL, 2007, NEUROTHERAPEUTICS, V4, P316, DOI 10.1016/j.nurt.2007.05.011
Allen JS, 2013, FRONT NEUROANAT, V7, DOI 10.3389/fnana.2013.00026
Allen JS, 2008, J NEUROSCI, V28, P11900, DOI 10.1523/JNEUROSCI.3141-08.2008
Amodio DM, 2006, NAT REV NEUROSCI, V7, P268, DOI 10.1038/nrn1884
Augustine JR, 1996, BRAIN RES REV, V22, P229, DOI 10.1016/S0165-0173(96)00011-2
Bamiou DE, 2003, BRAIN RES REV, V42, P143, DOI 10.1016/S0165-0173(03)00172-3
Barone P, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0060093
BASSER PJ, 1994, BIOPHYS J, V66, P259
Bavelier D, 2006, TRENDS COGN SCI, V10, P512, DOI 10.1016/j.tics.2006.09.006
Beer AL, 2011, EXP BRAIN RES, V213, P299, DOI 10.1007/s00221-011-2715-y
Bettger J., 1997, J DEAF STUD DEAF EDU, V2, P223
Binder JR, 1997, J NEUROSCI, V17, P353
Chanraud S, 2010, NEUROPSYCHOL REV, V20, P209, DOI 10.1007/s11065-010-9129-7
Connor CM, 2006, EAR HEARING, V27, P628, DOI 10.1097/01.aud.0000240640.59205.42
Corina David P, 2012, Front Psychol, V3, P587, DOI 10.3389/fpsyg.2012.00587
Cox RW, 1996, COMPUT BIOMED RES, V29, P162, DOI 10.1006/cbmr.1996.0014
Da Costa S, 2011, J NEUROSCI, V31, P14067, DOI 10.1523/JNEUROSCI.2000-11.2011
Dale AM, 1999, NEUROIMAGE, V9, P179, DOI 10.1006/nimg.1998.0395
DAMASIO AR, 1984, ANNU REV NEUROSCI, V7, P127
De Smet HJ, 2013, BRAIN LANG, V127, P334, DOI 10.1016/j.bandl.2012.11.001
Dessau Ram Benny, 2008, Ugeskr Laeger, V170, P328
DiVirgilio G, 1997, HUM BRAIN MAPP, V5, P347, DOI 10.1002/(SICI)1097-0193(1997)5:5<347::AID-HBM3>3.0.CO;2-3
Douaud G, 2007, BRAIN, V130, P2375, DOI 10.1093/brain/awm184
Emmorey K, 2002, NEUROIMAGE, V17, P812, DOI 10.1006/nimg.2002.1187
Emmorey K, 2003, P NATL ACAD SCI USA, V100, P10049, DOI 10.1073/pnas.1730169100
Fallon JB, 2008, HEARING RES, V238, P110, DOI 10.1016/j.heares.2007.08.004
Fine I, 2005, J COGNITIVE NEUROSCI, V17, P1621, DOI 10.1162/089892905774597173
Finney EM, 2001, NAT NEUROSCI, V4, P1171, DOI 10.1038/nn763
Fischl B, 2002, NEURON, V33, P341, DOI 10.1016/S0896-6273(02)00569-X
Fischl B, 2000, P NATL ACAD SCI USA, V97, P11050, DOI 10.1073/pnas.200033797
Fischl B, 2004, NEUROIMAGE, V23, pS69, DOI 10.1016/j.neuroimage.2004.07.016
Good CD, 2001, NEUROIMAGE, V14, P21, DOI 10.1006/nimg.2001.0786
Hagler DJ, 2006, NEUROIMAGE, V33, P1093, DOI 10.1016/j.neuroimage.2006.07.036
Hauthal N, 2013, ADV COGN PSYCHOL, V9, P53, DOI [10.2478/v10053-008-0131-z, 10.5709/acp-0131-z]
Hoeft F, 2007, J NEUROSCI, V27, P11960, DOI 10.1523/JNEUROSCI.3591-07.2007
Hofer S, 2006, NEUROIMAGE, V32, P989, DOI 10.1016/j.neuroimage.2006.05.044
Hu ZG, 2011, BRAIN LANG, V116, P64, DOI 10.1016/j.bandl.2010.11.006
Hyde KL, 2008, NEUROPSYCHOLOGIA, V46, P632, DOI 10.1016/j.neuropsychologia.2007.09.004
Jellison BJ, 2004, AM J NEURORADIOL, V25, P356
Kanwisher N, 1997, J NEUROSCI, V17, P4302
Karns CM, 2012, J NEUROSCI, V32, P9626, DOI 10.1523/JNEUROSCI.6488-11.2012
Kassubek J, 2004, NEUROSCI LETT, V364, P168, DOI 10.1016/j.neulet.2004.04.088
Kelly J., 1991, PRINCIPLES NEURAL SC, P481
Kim DJ, 2009, NEUROREPORT, V20, P1032, DOI 10.1097/WNR.0b013e32832e0cdd
Kral A, 2012, TRENDS NEUROSCI, V35, P111, DOI 10.1016/j.tins.2011.09.004
Krienen FM, 2009, CEREB CORTEX, V19, P2485, DOI 10.1093/cercor/bhp135
Le Bihan D, 2001, J MAGN RESON IMAGING, V13, P534, DOI 10.1002/jmri.1076
Leow AD, 2009, 2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, P622, DOI 10.1109/ISBI.2009.5193124
Lepore N, 2010, HUM BRAIN MAPP, V31, P970, DOI 10.1002/hbm.20910
Levanen S, 2001, NEUROSCI LETT, V301, P75, DOI 10.1016/S0304-3940(01)01597-X
Levanen S, 1998, CURR BIOL, V8, P869, DOI 10.1016/S0960-9822(07)00348-X
Li JH, 2012, BRAIN RES, V1430, P35, DOI 10.1016/j.brainres.2011.09.057
Li W, 2013, NEUROIMAGE, V78, P46, DOI 10.1016/j.neuroimage.2013.04.011
Li WJ, 2013, RESTOR NEUROL NEUROS, V31, P1, DOI 10.3233/RNN-2012-120269
Li YY, 2012, HUM BRAIN MAPP, V33, P349, DOI 10.1002/hbm.21215
Lin Y, 2008, J MAGN RESON IMAGING, V28, P598, DOI 10.1002/jmri.21464
Lomber SG, 2010, NAT NEUROSCI, V13, P1421, DOI 10.1038/nn.2653
MacSweeney M, 2002, NEUROPSYCHOLOGIA, V40, P801, DOI 10.1016/S0028-3932(01)00180-4
Martin W, 2012, INT J PEDIATR OTORHI, V76, P1520, DOI 10.1016/j.ijporl.2012.07.007
Miao W, 2013, AM J NEURORADIOL, V34, P1264, DOI 10.3174/ajnr.A3370
Neville HJ, 1998, P NATL ACAD SCI USA, V95, P922, DOI 10.1073/pnas.95.3.922
Nishimura H, 1999, NATURE, V397, P116, DOI 10.1038/16376
Olulade OA, 2014, J NEUROSCI, V34, P5613, DOI 10.1523/JNEUROSCI.3700-13.2014
O'Reilly JX, 2010, CEREB CORTEX, V20, P953, DOI 10.1093/cercor/bhp157
PAULESU E, 1993, NATURE, V362, P342, DOI 10.1038/362342a0
Penhune VB, 1996, CEREB CORTEX, V6, P661, DOI 10.1093/cercor/6.5.661
Penhune VB, 2003, NEUROIMAGE, V20, P1215, DOI 10.1016/S1053-8119(03)00373-2
Penicaud S., 2012, NEUROIMAGE C, V66C, P42, DOI DOI 10.1016/J.NEUR0IMAGE.2012.09.076
Philibert B, 2002, HEARING RES, V165, P142, DOI 10.1016/S0378-5955(02)00296-4
Philippi CL, 2009, J NEUROSCI, V29, P15089, DOI 10.1523/JNEUROSCI.0796-09.2009
Picard N, 1996, CEREB CORTEX, V6, P342, DOI 10.1093/cercor/6.3.342
Ponton CW, 2001, HEARING RES, V154, P32, DOI 10.1016/S0378-5955(01)00214-3
Sadato N, 2004, BMC NEUROSCI, V5, DOI 10.1186/1471-2202-5-56
Sakai KL, 2005, BRAIN, V128, P1407, DOI 10.1093/brain/awh465
Salmi J, 2010, J COGNITIVE NEUROSCI, V22, P2663, DOI 10.1162/jocn.2009.21382
San Jose-Robertson L, 2004, HUM BRAIN MAPP, V23, P156, DOI 10.1002/hbm.20054
Shibata DK, 2007, AM J NEURORADIOL, V28, P243
Shiell MM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0090498
Smith KM, 2011, CEREB CORTEX, V21, P991, DOI 10.1093/cercor/bhq164
Smith SM, 2004, NEUROIMAGE, V23, pS208, DOI 10.1016/j.neuroimage.2004.07.051
Smith SM, 2006, NEUROIMAGE, V31, P1487, DOI 10.1016/j.neuroimage.2006.02.024
Smith SM, 2009, NEUROIMAGE, V44, P83, DOI 10.1016/j.neuroimage.2008.03.061
Song SK, 2002, NEUROIMAGE, V17, P1429, DOI 10.1006/nimg.2002.1267
Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002
Vachon P, 2013, NEUROSCIENCE, V245, P50, DOI 10.1016/j.neuroscience.2013.04.004
Wheeler-Kingshott CAM, 2009, MAGN RESON MED, V61, P1255, DOI 10.1002/mrm.21965
Wong C., 2013, CEREB CORTEX
Wu CM, 2009, AM J NEURORADIOL, V30, P1773, DOI 10.3174/ajnr.A1681
Zatorre RJ, 2002, TRENDS COGN SCI, V6, P37, DOI 10.1016/S1364-6613(00)01816-7
Zatorre RJ, 2001, CEREB CORTEX, V11, P946, DOI 10.1093/cercor/11.10.946
NR 90
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2014
VL 318
BP 1
EP 10
DI 10.1016/j.heares.2014.09.008
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AY6FT
UT WOS:000347663400001
PM 25262621
ER
PT J
AU Nadol, JB
O'Malley, JT
Burgess, BJ
Galler, D
AF Nadol, Joseph B., Jr.
O'Malley, Jennifer T.
Burgess, Barbara J.
Galler, Donald
TI Cellular immunologic responses to cochlear implantation in the human
SO HEARING RESEARCH
LA English
DT Article
ID FOREIGN-BODY REACTION; SILICONE ALLERGY; HISTOPATHOLOGY; REMOVAL
AB A cochlear implant array consists of biomaterials, including metal and polymeric in type which are biocompatible, but not necessarily bio-inert. Histologic evidence of a foreign body reaction has been described in temporal bones in patients who in life had undergone cochlear implantation. In the current study, the cellular immune response was characterized using immunohistochemical stains for B-cell lymphocytes (CD20), T-cell lymphocytes (CD3), and macrophages (CD68). In addition, energy dispersive spectroscopy by scanning electron microscopy (EDS-SEM) was performed to characterize the nature of particulate foreign material seen near the electrode array. Infiltrations of B-cell and Tcell lymphocytes and macrophages were identified immunohistochemically. The track of the electrode array was frequently lined by multi-nucleated foreign body giant cells. Energy dispersive X-ray spectroscopy identified the particulate material found in the fibrous sheeth surrounding the cochlear implant to be consistent with platinum.
In conclusion, a cochlear implant generates a vigorous cellular immune response consisting of B and T lymphocytes, foreign body giant cells, and macrophages. Platinum was identified as one of the antigens likely responsible for this cellular response. This foreign body response may in certain cases result in migration or even extrusion of an implant device. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Nadol, Joseph B., Jr.; O'Malley, Jennifer T.; Burgess, Barbara J.] Massachusetts Eye & Ear Infirm, Dept Otolaryngol, Boston, MA 02114 USA.
[Nadol, Joseph B., Jr.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02114 USA.
[Galler, Donald] MIT, Dept Mat Sci & Engn, Cambridge, MA 02138 USA.
RP Nadol, JB (reprint author), Massachusetts Eye & Ear Infirm, Dept Otolaryngol, 243 Charles St, Boston, MA 02114 USA.
EM Joseph_nadol@meei.harvard.edu
CR Anderson JM, 2008, SEMIN IMMUNOL, V20, P86, DOI 10.1016/j.smim.2007.11.004
Bertuleit H, 1999, LARYNGO RHINO OTOL, V78, P304, DOI 10.1055/s-2007-996876
BUSCH H, 1994, SEMIN ARTHRITIS RHEU, V24, P11, DOI 10.1016/0049-0172(94)90104-X
Chan WO, 2011, ARCH OPHTHALMOL-CHIC, V129, P1247, DOI 10.1001/archophthalmol.2011.255
Clark GM, 2013, JAMA-J AM MED ASSOC, V310, P1225, DOI 10.1001/jama.2013.278142
Clark G.M., 2014, COCHLEAR IMPLANTS IN, P1
Doherty JK, 2004, OTOL NEUROTOL, V25, P1029, DOI 10.1097/00129492-200411000-00029
Groothuis J, 2014, BRAIN STIMUL, V7, P1, DOI 10.1016/j.brs.2013.07.001
Hirose K, 2005, J COMP NEUROL, V489, P180, DOI 10.1002/cne.20619
Ho Eu Chin, 2007, Cochlear Implants Int, V8, P162, DOI 10.1002/cii.337
JIMENEZ DF, 1994, CHILD NERV SYST, V10, P59, DOI 10.1007/BF00313586
Killer M, 2010, J BIOMED MATER RES B, V94B, P486, DOI 10.1002/jbm.b.31660
Kistler U, 2005, J HAND SURG-AM, V30A, P1282, DOI 10.1016/j.jhsa.2005.07.009
Kronenberg J., 2001, OTORHINOLARYNGOL NOV, V11, P207, DOI 10.1159/000063002
Kunda LD, 2006, OTOL NEUROTOL, V27, P1078, DOI 10.1097/01.mao.0000235378.64654.4d
MATURRI L, 1991, INT SURG, V76, P115
MAUSHAGEN E, 1994, Z KARDIOL, V83, P340
Meyer DR, 1998, OPHTHALMIC PLAST REC, V14, P182, DOI 10.1097/00002341-199805000-00007
Migirov L, 2007, EUR ARCH OTO-RHINO-L, V264, P3, DOI 10.1007/s00405-006-0144-5
Nadol JB, 2004, OTOL NEUROTOL, V25, P257, DOI 10.1097/00129492-200405000-00010
Nadol JB, 2008, OTOL NEUROTOL, V29, P1076, DOI 10.1097/MAO.0b013e31818c33cf
Okano T, 2008, J NEUROSCI RES, V86, P1758, DOI 10.1002/jnr.21625
O'Leary SJ, 2013, HEARING RES, V298, P27, DOI 10.1016/j.heares.2013.01.012
O'Malley JT, 2009, ANN OTO RHINOL LARYN, V118, P435
O'Malley JT, 2009, AUDIOL NEURO-OTOL, V14, P78, DOI 10.1159/000158536
Pepas N.A., 1994, SCIENCE, V263, P1715
Pulec J L, 1998, Ear Nose Throat J, V77, P614
Puri S, 2005, LARYNGOSCOPE, V115, P1760, DOI 10.1097/01.mlg.0000172202.58968.41
Seyeddi M., 2014, OTOL NEUROTOL
SHEPHERD RK, 1984, ACTA OTO-LARYNGOL, P71
SNOW RB, 1989, SURG NEUROL, V31, P209, DOI 10.1016/0090-3019(89)90119-5
NR 31
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2014
VL 318
BP 11
EP 17
DI 10.1016/j.heares.2014.09.007
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AY6FT
UT WOS:000347663400002
PM 25285622
ER
PT J
AU Kendall, A
Schacht, J
AF Kendall, Ann
Schacht, Jochen
TI Disparities in auditory physiology and pathology between C57BL/6J and
C57BL/6N substrains
SO HEARING RESEARCH
LA English
DT Article
ID NICOTINAMIDE NUCLEOTIDE TRANSHYDROGENASE; HEARING-LOSS; MOUSE STRAINS;
MICE; SYSTEM; GENE; CBA
AB C57BL/6 inbred mice are frequently used as models in auditory research, mostly the C57BL/6J and C57BL/6N substrains. Genetic variation and phenotypic disparities between these two substrains have been extensively investigated, but conflicting information exists about differences in their auditory and vestibular phenotypes. Literature-based comparisons are rendered difficult or impossible because most auditory publications do not designate the substrain used. We therefore evaluated commercial C57BL/6N and C57BL/6J mice for their baseline auditory brainstem response (ABR) thresholds at 3 months of age as well as their susceptibility to noise exposure and aminoglycoside antibiotics. Both substrains have similar thresholds at 4 and 12 kHz, but C57BL/6N show significantly higher baseline thresholds at 24 and 32 kHz. Because of these elevated thresholds, the N substrain is unsuitable as a model for drug ototoxicity, which primarily affects high frequencies. Exposure to 2-20 kHz broadband noise for 2 h at 110 dB produced significantly higher threshold shifts in the J substrain. These results suggest caution in the selection of C57BL/6 substrains for auditory research and indicate the need to specify substrains, age and the breeding source in all publications. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Kendall, Ann; Schacht, Jochen] Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, Ann Arbor, MI 48109 USA.
RP Schacht, J (reprint author), Univ Michigan, Kresge Hearing Res Inst, 1150 West Med Ctr Dr, Ann Arbor, MI 48109 USA.
EM akendall@umich.edu; schacht@umich.edu
FU National Institutes on Deafness and Other Communication Disorders,
National Institutes of Health [R01 DC003685, P30 DC005188]
FX This work was supported by research grant R01 DC003685 and core grant
P30 DC005188 from the National Institutes on Deafness and Other
Communication Disorders, National Institutes of Health. The authors
thank Dr. David Dolan, Jennifer Eberle and Karin Halsey for help with
and discussions of ABR data; and Andra Talaska for expert editing.
CR Bottger EC, 2013, HEARING RES, V303, P12, DOI 10.1016/j.heares.2013.01.006
Chen FQ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0061999
DIWAN BA, 1980, CANCER LETT, V9, P111, DOI 10.1016/0304-3835(80)90114-7
Freeman HC, 2006, DIABETES, V55, P2153, DOI 10.2337/db06-0358
Frisina RD, 2011, NEUROBIOL AGING, V32, P1716, DOI 10.1016/j.neurobiolaging.2009.09.009
Green ML, 2007, DEV DYNAM, V236, P613, DOI 10.1002/dvdy.21048
Simon MM, 2013, GENOME BIOL, V14, DOI 10.1186/gb-2013-14-7-r82
HUMPHREY GF, 1957, BIOCHEM J, V65, P546
Jones SM, 2006, BRAIN RES, V1091, P40, DOI 10.1016/j.brainres.2006.01.066
Kane KL, 2012, HEARING RES, V283, P80, DOI 10.1016/j.heares.2011.11.007
LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418
Lopert P, 2014, J BIOL CHEM, V289, P15611, DOI 10.1074/jbc.M113.533653
Matsuo N, 2010, FRONT BEHAV NEUROSCI, V4, DOI 10.3389/fnbeh.2010.00029
Meimaridou E, 2012, NAT GENET, V44, P740, DOI 10.1038/ng.2299
Mekada K, 2009, EXP ANIM TOKYO, V58, P141, DOI 10.1538/expanim.58.141
Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226
Ronchi JA, 2013, FREE RADICAL BIO MED, V63, P446, DOI 10.1016/j.freeradbiomed.2013.05.049
Saul SM, 2008, MOL CELL NEUROSCI, V37, P153, DOI 10.1016/j.mcn.2007.09.006
Skarnes WC, 2011, NATURE, V474, P337, DOI 10.1038/nature10163
Tadros SF, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0090279
Toye AA, 2005, DIABETOLOGIA, V48, P675, DOI 10.1007/s00125-005-1680-z
Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3
Zhang Q, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0062786
Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9
Zurita E, 2011, TRANSGENIC RES, V20, P481, DOI 10.1007/s11248-010-9403-8
NR 25
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2014
VL 318
BP 18
EP 22
DI 10.1016/j.heares.2014.10.005
PG 5
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AY6FT
UT WOS:000347663400003
PM 25456090
ER
PT J
AU Szczepek, AJ
Haupt, H
Klapp, BF
Olze, H
Mazurek, B
AF Szczepek, Agnieszka J.
Haupt, Heidemarie
Klapp, Burghard F.
Olze, Heidi
Mazurek, Birgit
TI Biological correlates of tinnitus-related distress: An exploratory study
SO HEARING RESEARCH
LA English
DT Article
ID NEUROTROPHIC FACTOR BDNF; STRESS; IMMUNE; PLASMA; METAANALYSIS;
DEPRESSION; SUFFERERS; SEVERITY; IMPACT; SERUM
AB During the process of tinnitus diagnostics, various psychometric instruments are used to measure tinnitus-related distress. The aim of present work was to explore whether candidates for biological correlates of the tinnitus-related distress could be found in peripheral blood of patients and if so, whether there was association between them and psychometric scores that reflect tinnitus-related distress. The concentrations of interleukin-1 beta (IL1 beta), interleukin-6 (IL6), tumor necrosis factor-cc (TNF alpha) and a brain-derived neutrotrophic factor (BDNF) were measured in serum of 30 patients diagnosed with chronic tinnitus and tested for correlation with psychometric scores collected on the same day. Spearman's correlation analyses detected significant positive association between the concentrations of tumor necrosis factor a and tinnitus loudness, total perceived stress, tension and depression and a negative association between tumor necrosis factor a and a psychometric score "joy". Concentrations of interleukin-1 beta correlated with the awareness grade of tinnitus. The correlation between visual analogue scale (VAS) "loudness" and tumor necrosis factor a as well as between "joy" and tumor necrosis factor a retained their significance (p < 0.00167) after the application of Bonferroni correction for multiple testing. Partial correlations removing the effects of age, hearing loss and the duration of tinnitus verified the results obtained using Spearman correlation. We conclude that measuring the concentrations of selected circulating cytokines could possibly become an additional objective element of tinnitus diagnostics in the future. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Szczepek, Agnieszka J.; Haupt, Heidemarie; Olze, Heidi; Mazurek, Birgit] Charite, Dept Otorhinolaryngol, Mol Biol Res Lab, D-10117 Berlin, Germany.
[Haupt, Heidemarie; Mazurek, Birgit] Charite, Tinnitus Ctr, D-10117 Berlin, Germany.
[Klapp, Burghard F.] Charite, Dept Internal Med & Psychosomat, D-10117 Berlin, Germany.
[Olze, Heidi] Charite, Dept Otorhinolaryngol, D-10117 Berlin, Germany.
RP Mazurek, B (reprint author), Charite, Tinnitus Ctr, Campus Charite Mitte,Charitepl 1, D-10117 Berlin, Germany.
EM birgit.mazurek@charite.de
CR Adamchic I, 2012, AM J AUDIOL, V21, P215, DOI 10.1044/1059-0889(2012/12-0010)
Alpini D, 2006, ORL J OTO-RHINO-LARY, V68, P31, DOI 10.1159/000090488
Andrews JA, 2012, J NEUROCHEM, V120, P26, DOI 10.1111/j.1471-4159.2011.07545.x
BENTON H P, 1991, Current Opinion in Cell Biology, V3, P171, DOI 10.1016/0955-0674(91)90135-L
Bhang SY, 2012, NEUROSCI LETT, V512, P72, DOI 10.1016/j.neulet.2012.01.012
Bob P, 2010, J AFFECT DISORDERS, V120, P231, DOI 10.1016/j.jad.2009.03.017
Cho HC, 2012, NEUROSCI LETT, V519, P78, DOI 10.1016/j.neulet.2012.05.025
Coelho FGD, 2013, ARCH GERONTOL GERIAT, V56, P10, DOI 10.1016/j.archger.2012.06.003
Eyre H, 2012, PSYCHONEUROENDOCRINO, V37, P1397, DOI 10.1016/j.psyneuen.2012.03.019
Feuerecker M, 2013, CLIN EXP IMMUNOL, V172, P290, DOI 10.1111/cei.12049
Fliege H, 2005, PSYCHOSOM MED, V67, P78, DOI 10.1097/01.psy.0000151491.80178.78
Gameiro CM, 2010, MATURITAS, V67, P316, DOI 10.1016/j.maturitas.2010.08.003
GOEBEL G, 1994, HNO, V42, P166
Goto F, 2012, NEUROSCI LETT, V510, P73, DOI 10.1016/j.neulet.2012.01.001
Hansel A, 2010, NEUROSCI BIOBEHAV R, V35, P115, DOI 10.1016/j.neubiorev.2009.12.012
HANSON JM, 1982, PHARMACOL THERAPEUT, V17, P165, DOI 10.1016/0163-7258(82)90010-9
Hebert S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0037733
Henry J.L, 1995, INT TINNITUS J, V1, P85
HILLER W, 1992, J PSYCHOSOM RES, V36, P337, DOI 10.1016/0022-3999(92)90070-I
Howren MB, 2009, PSYCHOSOM MED, V71, P171, DOI 10.1097/PSY.0b013e3181907c1b
Huang EJ, 2001, ANNU REV NEUROSCI, V24, P677, DOI 10.1146/annurev.neuro.24.1.677
Janssen DGA, 2010, HUM PSYCHOPHARM CLIN, V25, P201, DOI 10.1002/hup.1103
Katsuki A, 2012, CNS SPECTRUMS, V17, P155, DOI 10.1017/S109285291200051X
Liu T, 2013, MOL PAIN, V9, DOI 10.1186/1744-8069-9-16
Mazurek B, 2010, INT J ENV RES PUB HE, V7, P3071, DOI 10.3390/ijerph7083071
McCusker RH, 2013, J EXP BIOL, V216, P84, DOI 10.1242/jeb.073411
Pajor AM, 2013, EUR ARCH OTO-RHINO-L, V270, P881, DOI 10.1007/s00405-012-2079-3
Pluchino N, 2013, NEUROSCIENCE, V239, P271, DOI 10.1016/j.neuroscience.2013.01.025
Savastano M, 2007, ANN OTO RHINOL LARYN, V116, P100
Schwarz Markus J, 2003, Dialogues Clin Neurosci, V5, P139
Seydel C, 2013, EAR HEARING, V34, P661, DOI 10.1097/AUD.0b013e31828149f2
Seydel C, 2012, HNO, V60, P732, DOI 10.1007/s00106-011-2403-z
Shore SE, 2011, HEARING RES, V281, P38, DOI 10.1016/j.heares.2011.05.001
Steptoe A, 2007, BRAIN BEHAV IMMUN, V21, P901, DOI 10.1016/j.bbi.2007.03.011
STOUFFER JL, 1990, J SPEECH HEAR DISORD, V55, P439
Tamura S, 2012, BIOCHEM BIOPH RES CO, V427, P542, DOI 10.1016/j.bbrc.2012.09.093
Tyler R, 2014, AM J AUDIOL, V23, P260, DOI 10.1044/2014_AJA-13-0014
TYLER RS, 1983, J SPEECH HEAR DISORD, V48, P150
Tyler RS, 2007, PROG BRAIN RES, V166, P425, DOI 10.1016/S0079-6123(07)66041-5
Weber C, 2002, J PSYCHOSOM RES, V52, P29, DOI 10.1016/S0022-3999(01)00281-1
Zhang G, 2013, NATURE, V497, P211, DOI 10.1038/nature12143
Zirke N, 2013, QUAL LIFE RES, V22, P263, DOI 10.1007/s11136-012-0156-0
NR 42
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2014
VL 318
BP 23
EP 30
DI 10.1016/j.heares.2014.10.007
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AY6FT
UT WOS:000347663400004
PM 25445818
ER
PT J
AU Mishra, SK
AF Mishra, Srikanta K.
TI Attentional modulation of medial olivocochlear inhibition: Evidence for
immaturity in children
SO HEARING RESEARCH
LA English
DT Article
ID EVOKED OTOACOUSTIC EMISSIONS; HUMAN AUDITORY-CORTEX; CONTRALATERAL
SUPPRESSION; INFERIOR COLLICULUS; SPEECH-PERCEPTION; EFFERENT REFLEX;
SYSTEM FUNCTION; MATURATION; HUMANS; NOISE
AB Efferent feedback shapes afferent auditory processing. Auditory attention has been shown to modulate medial olivocochlear (MOC) efferent activity in human adults. Since auditory attention continues to develop throughout childhood, the present study explored whether attentional control of medial-efferent inhibition in 5-10 year-old children is adult-like. MOC inhibition was measured in adults (n = 14) and children (n = 12) during no-task (contralateral broadband noise), passive (contralateral noise with tone-pips) and active listening conditions (attended tone-pips embedded in contralateral broadband noise). A stronger MOC inhibition was observed when measured during the active listening condition for adults which is consistent with past work. However, the effect of auditory attention on MOC inhibition in children was not robust and was significantly lower compared to that observed for adults. These findings suggest the potential immaturity of the attentional mediation of MOC inhibition in tested children. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Mishra, Srikanta K.] New Mexico State Univ, Dept Special Educ & Commun Disorders, Las Cruces, NM 88003 USA.
[Mishra, Srikanta K.] Butler Univ, Dept Commun Sci & Disorders, Indianapolis, IN 46208 USA.
RP Mishra, SK (reprint author), New Mexico State Univ, Dept Special Educ & Commun Disorders, Las Cruces, NM 88003 USA.
EM smishra@nmsu.edu
FU Faculty Research Award, Holcomb Awards Committee, Butler University
FX This work was supported by a Faculty Research Award, Holcomb Awards
Committee, Butler University. The author acknowledges BreeAnna Sawyer
for her assistance with data collection. Carolyn Herbert is acknowledged
for editorial assistance.
CR Abdala C, 2013, J ACOUST SOC AM, V133, P938, DOI 10.1121/1.4773265
Abdala C, 1999, J ACOUST SOC AM, V105, P2392, DOI 10.1121/1.426844
Backus BC, 2007, J ACOUST SOC AM, V121, P1588, DOI 10.1121/1.2434831
Backus BC, 2007, JARO-J ASSOC RES OTO, V8, P484, DOI 10.1007/s10162-007-0100-0
Clark NR, 2012, J ACOUST SOC AM, V132, P1535, DOI 10.1121/1.4742745
Coch D, 2005, J COGNITIVE NEUROSCI, V17, P605, DOI 10.1162/0898929053467631
COOLEY EL, 1990, DEV NEUROPSYCHOL, V6, P239
De Boer J, 2007, HEARING RES, V233, P117, DOI 10.1016/j.heares.2007.08.002
de Boer J, 2008, J NEUROSCI, V28, P4929, DOI 10.1523/JNEUROSCI.0902-08.2008
Durante AS, 2002, INT J AUDIOL, V41, P211, DOI 10.3109/14992020209078333
Feeney MP, 2003, J SPEECH LANG HEAR R, V46, P128, DOI 10.1044/1092-4388(2003/010)
FERBERVIART C, 1995, PHYSIOL BEHAV, V57, P1075, DOI 10.1016/0031-9384(95)00012-8
Garinis AC, 2011, J SPEECH LANG HEAR R, V54, P1464, DOI 10.1044/1092-4388(2011/10-0223)
Gkoritsa E, 2007, INT J AUDIOL, V46, P277, DOI 10.1080/14992020701261405
Gomes H, 2000, FRONT BIOSCI, V5, pD108, DOI 10.2741/Gomes
Goodman SS, 2013, JARO-J ASSOC RES OTO, V14, P829, DOI 10.1007/s10162-013-0409-9
Guinan JJ, 2006, EAR HEARING, V27, P589, DOI 10.1097/01.aud.0000240507.83072.e7
Guinan JJ, 2003, JARO-J ASSOC RES OTO, V4, P521, DOI 10.1007/s10162-002-3037-3
Harkrider AW, 2009, J AM ACAD AUDIOL, V20, P208, DOI 10.3766/jaaa.20.3.7
He J., 2010, OXFORD HDB AUDITORY, P247
Keefe DH, 2010, HEARING RES, V263, P52, DOI 10.1016/j.heares.2009.09.008
Kemp D T, 1986, Scand Audiol Suppl, V25, P71
Khalfa S, 2001, NEUROSCIENCE, V104, P347, DOI 10.1016/S0306-4522(01)00072-0
Klenberg L, 2001, DEV NEUROPSYCHOL, V20, P407, DOI 10.1207/S15326942DN2001_6
Kumar UA, 2004, EAR HEARING, V25, P142, DOI 10.1097/01.AUD.0000120363.56591.E6
Maison S, 2001, PSYCHOPHYSIOLOGY, V38, P35, DOI 10.1017/S0048577201990109
Mishra SK, 2014, FRONT HUM NEUROSCI, V8, DOI 10.3389/fnhum.2014.00860
Mishra SK, 2013, EAR HEARING, V34, P789, DOI 10.1097/AUD.0b013e3182944c04
Mishra SK, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0085756
Moore JK, 2001, JARO, V2, P297, DOI 10.1007/s101620010052
Moore JK, 2002, ANN OTO RHINOL LARYN, V111, P7
Muchnik C, 2004, AUDIOL NEURO-OTOL, V9, P107, DOI 10.1159/000076001
Mulders WHA, 2000, HEARING RES, V149, P11, DOI 10.1016/S0378-5955(00)00157-X
Mulders WHAM, 2000, HEARING RES, V144, P65, DOI 10.1016/S0378-5955(00)00046-0
Mulders WHAM, 2002, HEARING RES, V167, P206, DOI 10.1016/S0378-5955(02)00395-7
NORTON SJ, 1990, EAR HEARING, V11, P121, DOI 10.1097/00003446-199004000-00006
PEARSON DA, 1991, J EXP CHILD PSYCHOL, V51, P320, DOI 10.1016/0022-0965(91)90039-U
Perrot X, 2014, HEARING RES, V308, P27, DOI 10.1016/j.heares.2013.08.010
Prieve BA, 1997, J ACOUST SOC AM, V102, P2860, DOI 10.1121/1.420341
Puria S, 1996, J ACOUST SOC AM, V99, P500, DOI 10.1121/1.414508
Schofield B., 2010, OXFORD HDB AUDITORY, P43
Spangler K., 1991, NEUROBIOLOGY HEARING, P27
Suga N, 2000, P NATL ACAD SCI USA, V97, P11807, DOI 10.1073/pnas.97.22.11807
Tognola G, 1997, HEARING RES, V106, P112, DOI 10.1016/S0378-5955(97)00007-5
Veuillet E, 2007, BRAIN, V130, P2915, DOI 10.1093/brain/awm235
Xiao ZJ, 2002, NAT NEUROSCI, V5, P57, DOI 10.1038/nn786
NR 46
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2014
VL 318
BP 31
EP 36
DI 10.1016/j.heares.2014.10.009
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AY6FT
UT WOS:000347663400005
PM 25445819
ER
PT J
AU Davis, JL
Grant, JW
AF Davis, J. L.
Grant, J. W.
TI Turtle utricle dynamic behavior using a combined anatomically accurate
model and experimentally measured hair bundle stiffness
SO HEARING RESEARCH
LA English
DT Article
ID COMPUTATIONAL MODELS; MECHANICAL-PROPERTIES; OTOLITHIC-MEMBRANE; SLIDER
TURTLE; CELL; ORGANS; EAR; FREQUENCY; HEIGHTS; MACULA
AB Anatomically correct turtle utricle geometry was incorporated into two finite element models. The geometrically accurate model included appropriately shaped macular surface and otoconial layer, compact gel and column filament (or shear) layer thicknesses and thickness distributions. The first model included a shear layer where the effects of hair bundle stiffness was included as part of the shear layer modulus. This solid model's undamped natural frequency was matched to an experimentally measured value. This frequency match established a realistic value of the effective shear layer Young's modulus of 16 Pa. We feel this is the most accurate prediction of this shear layer modulus and fits with other estimates (Kondrachuk, 2001b).
The second model incorporated only beam elements in the shear layer to represent hair cell bundle stiffness. The beam element stiffness's were further distributed to represent their location on the neuroepithelial surface. Experimentally measured striola hair cell bundles mean stiffness values were used in the striolar region and the mean extrastriola hair cell bundles stiffness values were used in this region. The results from this second model indicated that hair cell bundle stiffness contributes approximately 40% to the overall stiffness of the shear layer-hair cell bundle complex.
This analysis shows that high mass saccules, in general, achieve high gain at the sacrifice of frequency bandwidth. We propose the mechanism by which this can be achieved is through increase the otoconial layer mass. The theoretical difference in gain (deflection per acceleration) is shown for saccules with large otoconial layer mass relative to saccules and utricles with small otoconial layer mass. Also discussed is the necessity of these high mass saccules to increase their overall system shear layer stiffness. Un-damped natural frequencies and mode shapes for these sensors are shown. Published by Elsevier B.V.
C1 [Davis, J. L.] Univ So Indiana, Dept Engn, Evansville, IN 47712 USA.
[Grant, J. W.] Dept Biomed Engn & Mech, Blacksburg, VA 24061 USA.
RP Davis, JL (reprint author), 2030 Business & Engn Ctr, 8600 Univ Blvd, Evansville, IN 47712 USA.
EM julian.ly.davis@usi.edu
FU National Institutes of Health NIDCD [R01 DC 05063]
FX National Institutes of Health NIDCD R01 DC 05063 supported this work.
CR BENSER ME, 1993, HEARING RES, V68, P243, DOI 10.1016/0378-5955(93)90128-N
Cotton J, 2004, HEARING RES, V197, P96, DOI 10.1016/j.heares.2004.06.004
Cotton J, 2004, HEARING RES, V197, P105, DOI 10.1016/j.heares.2004.06.005
CRAWFORD AC, 1985, J PHYSIOL-LONDON, V364, P359
Davis J. L., 2007, COMPUTATIONAL STUDY
Davis J. L, 2004, EFFECTS OTOCONIA THI
Davis JL, 2007, J VESTIBUL RES-EQUIL, V17, P145
DE VRIES H, 1951, Acta Otolaryngol, V38, P262
DeWolf J. T., 2006, MECH MAT, V4th
Dunlap MD, 2012, J VESTIBUL RES-EQUIL, V22, P57, DOI 10.3233/VES-2011-0431
Dunlap MD, 2014, JARO-J ASSOC RES OTO, V15, P511, DOI 10.1007/s10162-014-0456-x
FERNANDEZ C, 1976, J NEUROPHYSIOL, V39, P996
FLOCK A, 1984, NATURE, V310, P597, DOI 10.1038/310597a0
Grant J. W., 2007, EXPT COMPUTATIONAL A
GRANT JW, 1984, J BIOMECH ENG-T ASME, V106, P302
GRANT JW, 1986, ANN BIOMED ENG, V14, P241, DOI 10.1007/BF02584273
Grant J W, 1994, J Vestib Res, V4, P137
Grant J W, 1990, J Vestib Res, V1, P139
GRANT W, 1987, AVIAT SPACE ENVIR MD, V58, P970
HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0
HOWARD J, 1986, HEARING RES, V23, P93, DOI 10.1016/0378-5955(86)90178-4
Huterer M, 2002, J NEUROPHYSIOL, V88, P13, DOI 10.1152/jn.01034.2001
Kondrachuk AV, 2000, HEARING RES, V143, P130, DOI 10.1016/S0378-5955(00)00034-4
Kondrachuk AV, 2001, J VESTIBUL RES-EQUIL, V11, P33
Kondrachuk AV, 2001, J VESTIBUL RES-EQUIL, V11, P13
Lewis ER, 1985, VERTEBRATE INNER EAR
Li A, 2008, J NEUROPHYSIOL, V99, P718, DOI 10.1152/jn.00831.2007
LOWENSTEIN O, 1949, J PHYSIOL-LONDON, V110, P392
Nam J. H., 2005, SOC NEUROSCI, V47
Nam JH, 2007, BIOPHYS J, V92, P1918, DOI 10.1529/biophysj.106.085076
NARINS PM, 1984, J ACOUST SOC AM, V76, P1384, DOI 10.1121/1.391455
ROSENHALL U, 1975, ACTA OTO-LARYNGOL, V79, P67, DOI 10.3109/00016487509124657
Rosenhall U., 2011, THICKNESS WAS MEASUR
Rowe MH, 2006, J NEUROPHYSIOL, V96, P2653, DOI 10.1152/jn.00565.2006
Severinsen SA, 2003, JARO-J ASSOC RES OTO, V4, P505
Silber J, 2004, HEARING RES, V197, P112, DOI 10.1016/j.heares.2004.06.006
Songer JE, 2013, J NEUROSCI, V33, P3706, DOI 10.1523/JNEUROSCI.4067-12.2013
Spoon C, 2011, J NEUROPHYSIOL, V106, P2950, DOI 10.1152/jn.00469.2011
Spoon C., 2005, ASS RES OT MIDW RES
Spoon C, 2011, J EXP BIOL, V214, P862, DOI 10.1242/jeb.051151
STRELIOFF D, 1984, HEARING RES, V15, P19, DOI 10.1016/0378-5955(84)90221-1
Tribukait A, 2001, AUDIOL NEURO-OTOL, V6, P98, DOI 10.1159/000046815
Watannuki K., 1976, ARCH OTOLARYNGOL, V102
Xue J., 2003, ASS RES OT MIDW RES
Xue JB, 2006, J NEUROPHYSIOL, V95, P171, DOI 10.1152/jn.00800.2005
NR 45
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2014
VL 318
BP 37
EP 44
DI 10.1016/j.heares.2014.10.010
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AY6FT
UT WOS:000347663400006
PM 25445820
ER
PT J
AU Chen, GD
Decker, B
Muthaiah, VPK
Sheppard, A
Salvi, R
AF Chen, Guang-Di
Decker, Brandon
Muthaiah, Vijaya Prakash Krishnan
Sheppard, Adam
Salvi, Richard
TI Prolonged noise exposure-induced auditory threshold shifts in rats
SO HEARING RESEARCH
LA English
DT Article
ID DORSAL COCHLEAR NUCLEUS; INTENSE SOUND EXPOSURE; ACOUSTIC TRAUMA;
HEARING-LOSS; INDUCED TINNITUS; NEURAL ACTIVITY; PROTECTION; DAMAGE;
TTS; IMPAIRMENT
AB Noise-induced hearing loss (NIHL) initially increases with exposure duration, but eventually reaches an asymptotic threshold shift CATS) once the exposure duration exceeds 18-24 h. Equations for predicting the ATS have been developed for several species, but not for rats, even though this species is extensively used in noise exposure research. To fill this void, we exposed rats to narrowband noise (NBN, 16-20 kHz) for 5 weeks starting at 80 dB SPL in the first week and then increasing the level by 6 dB per week to a final level of 104 dB SPL. Auditory brainstem responses (ABR) were recorded before, during, and following the exposure to determine the amount of hearing loss. The noise induced threshold shift to continuous long-term exposure, defined as compound threshold shift (CTS), within and above 16-20 kHz increased with noise level at the rate of 1.82 dB threshold shift per dB of noise level (NL) above a critical level (C) of 77.2 dB SPL i.e. CIS = 1.82(NL-77.2). The normalized amplitude of the largest ABR peak measured at 100 dB SPL decreased at the rate of 3.1% per dB of NL above the critical level of 76.9 dB SPL, i.e., %ABR Reduction = 3.1%(NL-76.9). ABR thresholds measured >30 days post-exposure only partially recovered resulting in a permanent threshold shift of 30-40 dB along with severe hair cell loss in the basal, high-frequency region of the cochlea. In the rat, CTS increases with noise level with a slope similar to humans and chinchillas. The critical level (C) in the rat is similar to that of humans, but higher than that of chinchillas. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Chen, Guang-Di; Decker, Brandon; Muthaiah, Vijaya Prakash Krishnan; Sheppard, Adam; Salvi, Richard] SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA.
RP Chen, GD (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA.
EM gchen7@buffalo.edu
FU National Institutes of Health [5R01DC011808]; Office of Naval Research
[N000141210731]
FX Research supported by grants from the National Institutes of Health
(5R01DC011808) and Office of Naval Research (N000141210731). We thank
Kim Lourette for the editorial assistance with the manuscript.
CR ATHERLEY GR, 1968, J ACOUST SOC AM, V44, P1503, DOI 10.1121/1.1911288
Atik Alp, 2014, Indian J Otolaryngol Head Neck Surg, V66, P1, DOI 10.1007/s12070-011-0374-8
AXELSSON A, 1985, British Journal of Audiology, V19, P271, DOI 10.3109/03005368509078983
AXELSSON A, 1987, ACTA OTO-LARYNGOL, V104, P225, DOI 10.3109/00016488709107322
BLAKESLEE EA, 1978, J ACOUST SOC AM, V63, P876, DOI 10.1121/1.381767
Bohne B.A., 1982, NEW PERSPECTIVES NOI, P283
Cacace AT, 2014, HEARING RES, V311, P49, DOI 10.1016/j.heares.2014.02.003
Canlon B, 1998, NEUROREPORT, V9, P269, DOI 10.1097/00001756-199801260-00017
Canlon B., 1997, ENT-EAR NOSE THROAT, V76, P253
Canlon B, 1997, Ear Nose Throat J, V76, P248
Cappaert N.L., 2000, NOISE HLTH, V3, P23
CARDER HM, 1972, J SPEECH HEAR RES, V15, P603
CARDER H M, 1971, Transactions of the American Academy of Ophthalmology and Oto-Laryngology, V75, P1346
Cave KM, 2007, MIL MED, V172, P726
Chen G, 2013, JARO-J ASSOC RES OTO, V14, P413, DOI 10.1007/s10162-013-0375-2
Chen GD, 2003, HEARING RES, V177, P81, DOI 10.1016/S0378-5955(02)00802-X
Chen GD, 2002, HEARING RES, V172, P186, DOI 10.1016/S0378-5955(02)00582-8
Chen GD, 2014, NEURAL PLAST, DOI 10.1155/2014/658741
CLARK WW, 1991, J ACOUST SOC AM, V90, P155, DOI 10.1121/1.401309
CODY AR, 1981, J ACOUST SOC AM, V70, P707, DOI 10.1121/1.386906
Coomber B, 2014, EUR J NEUROSCI, V40, P2427, DOI 10.1111/ejn.12580
DAVIS H, 1950, Acta Otolaryngol Suppl, V88, P1
Dawes P, 2014, EAR HEARING, V35, pE44, DOI 10.1097/AUD.0000000000000010
Eddins AC, 1999, HEARING RES, V127, P119
Hamernik RP, 2003, J ACOUST SOC AM, V113, P969, DOI 10.1121/1.1531981
Hebert S, 2013, J NEUROSCI, V33, P2356, DOI 10.1523/JNEUROSCI.3461-12.2013
Heffner HE, 2011, BEHAV RES METHODS, V43, P577, DOI 10.3758/s13428-011-0061-4
Henderson D., 2001, NOISE HEALTH, V3, P33
JOHNSON DL, 1976, AVIAT SPACE ENVIR MD, V47, P987
Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6
Konig O, 2006, HEARING RES, V221, P59, DOI 10.1016/j.heares.2006.07.007
LAROCHE C, 1989, J ACOUST SOC AM, V85, P1681, DOI 10.1121/1.397957
LOEB M, 1967, J ACOUST SOC AM, V42, P453, DOI 10.1121/1.1910600
Luebke AE, 2002, J NEUROSCI, V22, P4241
Mahmood G, 2014, NEUROSCIENCE, V269, P367, DOI 10.1016/j.neuroscience.2014.03.020
Martins Kelly, 2013, Codas, V25, P224, DOI 10.1590/S2317-17822013000300006
Melnick W, 1976, HUMAN ASYMPTOTIC THR
MELNICK W, 1991, J ACOUST SOC AM, V90, P147, DOI 10.1121/1.401308
MENCHER G T, 1973, Cortex, V9, P335
MILLS JH, 1981, J ACOUST SOC AM, V70, P390, DOI 10.1121/1.386774
MILLS JH, 1979, J ACOUST SOC AM, V65, P1238, DOI 10.1121/1.382791
MILLS JH, 1972, J SPEECH HEAR RES, V15, P624
Moody D.B., 1976, EFFECTS NOISE HEARIN
Moon IS, 2011, J OCCUP ENVIRON HYG, V8, P618, DOI 10.1080/15459624.2011.609013
MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7
NIELSEN DW, 1984, AUDIOLOGY, V23, P297
Niu XZ, 2002, ADV OTO-RHINO-LARYNG, V59, P96
Niu XZ, 2004, AUDIOL NEURO-OTOL, V9, P265, DOI 10.1159/000080226
Ortmann M, 2011, EUR J NEUROSCI, V33, P568, DOI 10.1111/j.1460-9568.2010.07542.x
Pace E, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0075011
PHOON WH, 1993, OCCUP MED-OXFORD, V43, P35, DOI 10.1093/occmed/43.1.35
Pukkila M, 1997, ACTA OTO-LARYNGOL, P59
SAUNDERS JC, 1977, J ACOUST SOC AM, V61, P558, DOI 10.1121/1.381298
STEPHENSON MR, 1980, AVIAT SPACE ENVIR MD, V51, P391
Stolzberg D, 2013, J NEUROSCI METH, V219, P224, DOI 10.1016/j.jneumeth.2013.07.021
SUBRAMANIAM M, 1992, HEARING RES, V58, P57, DOI 10.1016/0378-5955(92)90008-B
Sun W, 2012, BRAIN RES, V1485, P108, DOI 10.1016/j.brainres.2012.02.008
SYKA J, 1980, HEARING RES, V3, P205, DOI 10.1016/0378-5955(80)90047-7
Tahera Y, 2007, NEUROBIOL DIS, V25, P189, DOI 10.1016/j.nbd.2006.09.004
VIALL J, 1977, T AM ACAD OPHTHALMOL, V84, P459
Ward W.D., 1975, STUDIES ASYMPTOTICS
Zhang JS, 1998, NEUROSCI LETT, V250, P197, DOI 10.1016/S0304-3940(98)00482-0
NR 62
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2014
VL 317
BP 1
EP 8
DI 10.1016/j.heares.2014.08.004
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AU3XF
UT WOS:000345543300001
PM 25219503
ER
PT J
AU Gilbertson, L
Lutfi, RA
AF Gilbertson, Lynn
Lutfi, Robert A.
TI Correlations of decision weights and cognitive function for the masked
discrimination of vowels by young and old adults
SO HEARING RESEARCH
LA English
DT Article
ID ON-SPEECH MASKING; INFORMATIONAL MASKING; ELDERLY LISTENERS;
HEARING-LOSS; SOUND SOURCE; PERCEPTION; NOISE; IDENTIFICATION;
RECOGNITION; TALKERS
AB Older adults are often reported in the literature to have greater difficulty than younger adults understanding speech in noise [Helfer and Wilber (1988). J. Acoust. Soc. Am, 859-8931. The poorer performance of older adults has been attributed to a general deterioration of cognitive processing, deterioration of cochlear anatomy, and/or greater difficulty segregating speech from noise. The current work used perturbation analysis [Berg (1990). J. Acoust. Soc. Am., 149-158] to provide a more specific assessment of the effect of cognitive factors on speech perception in noise. Sixteen older (age 56-79 years) and seventeen younger (age 19-30 years) adults discriminated a target vowel masked by randomly selected masker vowels immediately preceding and following the target. Relative decision weights on target and maskers resulting from the analysis revealed large individual differences across participants despite similar performance scores in many cases. On the most difficult vowel discriminations, the older adult decision weights were significantly correlated with inhibitory control (Color Word Interference test) and pure-tone threshold averages (PTA). Young adult decision weights were not correlated with any measures of peripheral (PTA) or central function (inhibition or working memory). (C) 2014 The Authors. Published by Elsevier B.V.
C1 [Gilbertson, Lynn; Lutfi, Robert A.] Univ Wisconsin, Auditory Behav Res Lab, Dept Commun Sci & Disorders, Madison, WI 53706 USA.
RP Gilbertson, L (reprint author), Univ Wisconsin, Dept Commun Sci & Disorders, 800 W Main St,Roseman Hall 1016, Whitewater, WI 53190 USA.
EM gilbertl@uww.edu; ralutfi@wisc.edu
FU NIDCD [R01 DC001262-20]; Wisconsin Alzheimer's Disease Research Center
FX The authors would like to thank Dr. Margaritis Fourakis for providing
the vowel stimuli as well as Dr. Ruth Litovsky, Dr. Tom Yin, and Dr. Lyn
Turkstra, for their comments and revisions. This research was conducted
as part of Dr. Gilbertson's dissertation work. This research was
supported by NIDCD grant R01 DC001262-20 and the Wisconsin Alzheimer's
Disease Research Center. The authors would like to thank Dr. Brian Moore
and an anonymous reviewer for comments on a previous draft.
CR Agus TR, 2009, J ACOUST SOC AM, V126, P1926, DOI 10.1121/1.3205403
Anderson S, 2013, HEARING RES, V300, P18, DOI 10.1016/j.heares.2013.03.006
BERG BG, 1990, J ACOUST SOC AM, V88, P149, DOI 10.1121/1.399962
Bouma A, 2011, BRAIN COGNITION, V76, P286, DOI 10.1016/j.bandc.2011.02.008
Brungart DS, 2001, J ACOUST SOC AM, V109, P1101, DOI 10.1121/1.1345696
Brungart DS, 2006, J ACOUST SOC AM, V120, P4007, DOI 10.1121/1.2363929
CRAIK FIM, 1965, Q J EXP PSYCHOL, V17, P227, DOI 10.1080/17470216508416436
Creelman C. D., 1991, DETECTION THEORY USE
Delis DC, 2001, DELIS KAPLAN EXECUTI
Dollemore D., 2009, AGING MICROSCOPE BIO
DORMAN MF, 1977, Q J EXP PSYCHOL, V29, P483, DOI 10.1080/14640747708400624
Gatehouse S, 2004, INT J AUDIOL, V43, P85, DOI 10.1080/14992020400050014
Gordon-Salant S, 2004, J ACOUST SOC AM, V115, P1808, DOI 10.1121/1.1645249
Guerreiro MJS, 2010, PSYCHOL BULL, V136, P975, DOI 10.1037/a0020731
HAWKS JW, 1995, J ACOUST SOC AM, V97, P1343, DOI 10.1121/1.412986
Helfer K., 1988, J ACOUST SOC AM, V83, P859
Helfer KS, 2008, EAR HEARING, V29, P87
Huang Y, 2010, EAR HEARING, V31, P579, DOI 10.1097/AUD.0b013e3181db6dc2
HUMES LE, 1994, J SPEECH HEAR RES, V37, P465
INGLIS J, 1963, CAN J PSYCHOLOGY, V17, P98, DOI 10.1037/h0083265
Kidd G, 2008, J ACOUST SOC AM, V124, P3793, DOI 10.1121/1.2998980
KLATT DH, 1990, J ACOUST SOC AM, V87, P820, DOI 10.1121/1.398894
Leger AC, 2012, HEARING RES, V294, P95, DOI 10.1016/j.heares.2012.10.002
Lunner T, 2003, INT J AUDIOL, V42, pS49
Lutfi RA, 2008, J ACOUST SOC AM, V124, P3784, DOI 10.1121/1.2998767
Lutfi RA, 2011, J ACOUST SOC AM, V129, pEL52, DOI 10.1121/1.3533000
NEAREY TM, 1989, J ACOUST SOC AM, V85, P2088, DOI 10.1121/1.397861
Pichora-Fuller M. K., 2003, INT J AUDIOL, V42, P59, DOI DOI 10.3109/14992020309074625
PICHORAFULLER MK, 1995, J ACOUST SOC AM, V97, P593, DOI 10.1121/1.412282
Russo FA, 2008, EAR HEARING, V29, P746, DOI 10.1097/AUD.0b013e31817bdd1f
Stewart R, 2009, J AM ACAD AUDIOL, V20, P147, DOI 10.3766/jaaa.20.2.7
SUMMERFIELD Q, 1984, PERCEPT PSYCHOPHYS, V35, P203, DOI 10.3758/BF03205933
Tun P. A., 1999, J GERONTOL B-PSYCHOL, V54B, P317
VANROOIJ JCGM, 1990, J ACOUST SOC AM, V88, P2611, DOI 10.1121/1.399981
Wechsler D., 1981, MANUAL WECHSLER ADUL
WINGFIELD A, 1985, J GERONTOL, V40, P579
NR 36
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2014
VL 317
BP 9
EP 14
DI 10.1016/j.heares.2014.09.001
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AU3XF
UT WOS:000345543300002
PM 25256580
ER
PT J
AU Rocha-Muniz, CN
Befi-Lopes, DM
Schochat, E
AF Rocha-Muniz, Caroline Nunes
Befi-Lopes, Debora Maria
Schochat, Eliane
TI Sensitivity, specificity and efficiency of speech-evoked ABR
SO HEARING RESEARCH
LA English
DT Article
ID BRAIN-STEM RESPONSE; AUDITORY PROCESSING DISORDER; INFERIOR COLLICULUS;
LANGUAGE IMPAIRMENT; LEARNING-PROBLEMS; SOUND DURATION; BIOLOGICAL
MARKER; CHILDREN; REPRESENTATION; DEFICITS
AB We determined the sensitivity, specificity and efficiency of speech-evoked Auditory Brainstem Response (ABR) as a diagnostic support for Auditory Processing Disorder (APD) and specific language impairment (SLI). Speech-evoked ABRs were elicited using the five-formant syllable/da/. The waveforms V. A. C, D, E, F. and 0 of all groups were analyzed. The sensitivity and specificity were calculated, and receiver operating characteristic analyses were performed to determine the optimum cut-off. Seventy-five children who were native speakers of Brazilian-Portuguese participated. The participants included 25 children with APD, 25 children with SLI and 25 with typical development. Statistical analysis demonstrated a cut-off for latency values of 6.48, 7.51, 17.82, 22.33, 30.79, 39.54 and 48.00 for V. A, C, D, E, F, and 0 waves, respectively. The A wave exhibited superior balance for the APD group. For the SLI group, the A, D and 0 waves exhibited the best balance. Furthermore, when analyzing the APD and SLI groups separately, better sensitivity values were observed for the SLI group than the APD group. Speech-evoked ABR is a useful test to identify auditory processing disorders and language impairment. Furthermore, this study represented an important step forward in establishing the clinical utility of speech-evoked ABR in Brazilian Portuguese-speaking children. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Rocha-Muniz, Caroline Nunes; Befi-Lopes, Debora Maria; Schochat, Eliane] Univ Sao Paulo, Sch Med, BR-09500900 Sao Paulo, Brazil.
RP Rocha-Muniz, CN (reprint author), 58 Evaristo Silva, BR-06186020 Osasco, SP, Brazil.
EM carolrocha@usp.br
RI Befi-Lopes, Debora/C-8459-2012
FU Sao Paulo Research Foundation - FAPESP [2009/18417-0]
FX This study was supported by the Sao Paulo Research Foundation - FAPESP
(2009/18417-0).
CR Abrams DA, 2006, J NEUROSCI, V26, P11131, DOI 10.1523/JNEUROSCI.2744-06.2006
American Academy of Audiology, 2010, AM AC AUS CLIN PRACT
American Speech-Language-Hearing Association Working Group on Auditory Processing Disorder (ASHA), 2005, CETRN AUD PROC
Anderson S, 2013, J SPEECH LANG HEAR R, V56, P31, DOI 10.1044/1092-4388(2012/12-0043)
Andrade C.R.F., 2004, ABFW TEST LINGUAGEM
Angelini A. L., 1999, MATRIZES PROGR COLOR
Araujo K., 2007, REV SOC BRASILEIRA F, V12, P263
Banai K, 2005, J NEUROSCI, V25, P9850, DOI 10.1523/JNEUROSCI.2373-05.2005
Banai K, 2009, CEREB CORTEX, V19, P2699, DOI 10.1093/cercor/bhp024
Bauer EE, 2002, J NEUROPHYSIOL, V88, P1955, DOI 10.1152/jn.00261.2002
Billiet CR, 2011, J SPEECH LANG HEAR R, V54, P228, DOI 10.1044/1092-4388(2010/09-0239)
Bio-logic S.C, 2005, AUDITORY EVOKED POTE
Brand A, 2000, J NEUROPHYSIOL, V84, P1790
British Society of Audiology (BSA), 2007, AUD PROC DIS STEER C
Casseday JH, 2000, J NEUROPHYSIOL, V84, P1475
CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341
Chandrasekaran B, 2010, PSYCHOPHYSIOLOGY, V47, P236, DOI 10.1111/j.1469-8986.2009.00928.x
Chermak G, 1997, CENTRAL AUDITORY PRO
Covey E, 1996, J NEUROSCI, V16, P3009
Cunningham J, 2001, CLIN NEUROPHYSIOL, V112, P758, DOI 10.1016/S1388-2457(01)00465-5
Dhar S, 2009, CLIN NEUROPHYSIOL, V120, P959, DOI 10.1016/j.clinph.2009.02.172
Ehrlich D, 1997, J NEUROPHYSIOL, V77, P2360
Faure PA, 2003, J NEUROSCI, V23, P3052
Ferguson MA, 2011, J SPEECH LANG HEAR R, V54, P211, DOI 10.1044/1092-4388(2010/09-0167)
Filippini R, 2012, FOLIA PHONIATR LOGO, V64, P217, DOI 10.1159/000342139
Gorga M, 1985, AUDITORY BRAINSTEM R, P49
Hornickel J, 2009, AUDIOL NEURO-OTOL, V14, P198, DOI 10.1159/000188533
Hornickel J, 2012, HEARING RES, V284, P52, DOI 10.1016/j.heares.2011.12.005
Hornickel J, 2009, P NATL ACAD SCI USA, V106, P13022, DOI 10.1073/pnas.0901123106
Hornickel J, 2013, J NEUROSCI, V33, P3500, DOI 10.1523/JNEUROSCI.4205-12.2013
Hresko W. P., 1999, TEST EARLY LANGUAGE
Jasper H. H., 1958, ELECTROENCEPHALOGRAP, V10, P371, DOI DOI 10.1016/0013-4694(58)90053-1
Johnson KL, 2007, J COGNITIVE NEUROSCI, V19, P376, DOI 10.1162/jocn.2007.19.3.376
Johnson KL, 2005, EAR HEARING, V26, P424, DOI 10.1097/01.aud.0000179687.71662.6e
Johnson R.A., 1992, APPL MULTIVARIATE ST
Karawani H, 2010, INT J AUDIOL, V49, P844, DOI 10.3109/14992027.2010.495083
KATZ J, 1968, J SPEECH HEAR DISORD, V33, P132
King C, 2002, NEUROSCI LETT, V319, P111, DOI 10.1016/S0304-3940(01)02556-3
KLATT DH, 1980, J ACOUST SOC AM, V67, P971, DOI 10.1121/1.383940
Kraus N, 2005, TRENDS NEUROSCI, V28, P176, DOI 10.1016/j.tins.2005.02.003
Krishnan A, 2002, HEARING RES, V166, P192, DOI 10.1016/S0378-5955(02)00327-1
Krizman J, 2010, AUDIOL NEURO-OTOL, V15, P332, DOI 10.1159/000289572
Moore DR, 2013, INT J AUDIOL, V52, P3, DOI 10.3109/14992027.2012.723143
MUSIEK FE, 1991, AM J OTOL, V12, P109
Musiek F E, 1994, J Am Acad Audiol, V5, P265
Musiek FE, 2011, J AM ACAD AUDIOL, V22, P342, DOI 10.3766/jaaa.22.6.4
Park SH, 2004, KOREAN J RADIOL, V5, P11
Rocha-Muniz CN, 2012, HEARING RES, V294, P143, DOI 10.1016/j.heares.2012.08.008
Russo N, 2004, CLIN NEUROPHYSIOL, V115, P2021, DOI 10.1016/j.clinph.2004.04.003
Sayegh R, 2011, J COMP PHYSIOL A, V197, P571, DOI 10.1007/s00359-011-0627-8
Skoe E, 2010, EAR HEARING, V31, P302, DOI 10.1097/AUD.0b013e3181cdb272
Song JH, 2006, AUDIOL NEURO-OTOL, V11, P233, DOI 10.1159/000093058
Strait D.L., 2013, CEREB CORTEX
TALLAL P, 1981, J ACOUST SOC AM, V69, P568, DOI 10.1121/1.385431
VanCampen LE, 1997, HEARING RES, V103, P35, DOI 10.1016/S0378-5955(96)00161-X
Wible B, 2004, BIOL PSYCHOL, V67, P299, DOI 10.1016/j.biopsycho.2004.02.002
NR 56
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2014
VL 317
BP 15
EP 22
DI 10.1016/j.heares.2014.09.004
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AU3XF
UT WOS:000345543300003
PM 25262622
ER
PT J
AU Wright, MCM
Winter, IM
Forster, JJ
Bleeck, S
AF Wright, M. C. M.
Winter, I. M.
Forster, J. J.
Bleeck, S.
TI Response to best-frequency tone bursts in the ventral cochlear nucleus
is governed by ordered inter-spike interval statistics
SO HEARING RESEARCH
LA English
DT Article
ID REGULARITY ANALYSIS; SINGLE UNITS; GUINEA-PIG; CAT; NEURONS; NOISE;
CLASSIFICATION; FACILITATION; INFORMATION; INTENSITY
AB The spike trains generated by short constant-amplitude constant-frequency tone bursts in the ventral cochlear nucleus of the anaesthetised guinea pig are examined. Spikes are grouped according to the order in which they occur following the onset of the stimulus. It is found that successive inter-spike intervals have low statistical dependence according to information-theoretic measures. This is in contrast to previous observations with long-duration tone bursts in the cat dorsal and posteroventral cochlear nuclei and lateral superior olive, where it was found that long intervals tended to be followed by shorter ones and vice versa. The interval distributions can also be reasonably modelled by a shifted Gamma distribution parameterised by the dead-time and the mean and coefficient of variation of the dead-time corrected ISI distribution. Knowledge of those three parameters for each interval is sufficient to determine the pen-stimulus time histogram and the regularity measures used to classify these neurons. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Wright, M. C. M.; Bleeck, S.] Univ Southampton, Inst Sound & Vibrat Res, Southampton SO17 1BJ, Hants, England.
[Forster, J. J.] Univ Southampton, Southampton SO17 1BJ, Hants, England.
[Winter, I. M.] Ctr Neural Basis Hearing, Physiol Lab, Cambridge CB2 3EG, England.
RP Wright, MCM (reprint author), Univ Southampton, Inst Sound & Vibrat Res, Southampton SO17 1BJ, Hants, England.
EM mcmw@isvr.soton.ac.uk
FU Google; Wellcome Trust; UK Biotechnology and Biological Sciences
Research Council [BBE017398/1]; UK Engineering and Physical Sciences
Research Council [GR/R76967/01]
FX Part of this work was funded by Google. The collection of the
physiological data was supported by the Wellcome Trust and the UK
Biotechnology and Biological Sciences Research Council (BBE017398/1).
The first author was supported by an Advanced Research Fellowship from
the UK Engineering and Physical Sciences Research Council (GR/R76967/01)
for part of this work.
CR [Anonymous], 2013, MATLAB STAT TOOLB RE
Avila-Akerberg O, 2011, EXP BRAIN RES, V210, P353, DOI 10.1007/s00221-011-2553-y
BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303
Bleeck S, 2006, HEARING RES, V212, P176, DOI 10.1016/j.heares.2005.12.005
Botev ZI, 2010, ANN STAT, V38, P2916, DOI 10.1214/10-AOS799
Bourk T.R., 1976, THESIS CAMBRIDGE
Bowman A. W., 1997, APPL SMOOTHING TECHN
Chase SM, 2007, P NATL ACAD SCI USA, V104, P5175, DOI 10.1073/pnas.0610368104
GOLDBERG JM, 1966, J NEUROPHYSIOL, V29, P72
Grinstead C. M., 2003, INTRO PROBABILITY
Hogg R.V., 2001, PROBABILITY STAT INF
JOHNSON DH, 1986, HEARING RES, V21, P135, DOI 10.1016/0378-5955(86)90035-3
May BJ, 1998, J NEUROPHYSIOL, V79, P1755
Oertel D, 2011, HEARING RES, V276, P61, DOI 10.1016/j.heares.2010.10.018
Pressnitzer D, 2001, J NEUROSCI, V21, P6377
RHODE WS, 1986, J NEUROPHYSIOL, V56, P261
Ross S., 2010, INTRO STAT
SHOFNER WP, 1989, J ACOUST SOC AM, V86, P2172, DOI 10.1121/1.398478
Spirou GA, 2005, NEUROSCIENCE, V136, P843, DOI 10.1016/j.neuroscience.2005.08.068
WINTER IM, 1990, HEARING RES, V44, P161, DOI 10.1016/0378-5955(90)90078-4
Winter IM, 2001, J PHYSIOL-LONDON, V537, P553, DOI 10.1111/j.1469-7793.2001.00553.x
WINTER IM, 1995, J NEUROPHYSIOL, V73, P141
Wright MCM, 2011, J ACOUST SOC AM, V130, P3545, DOI 10.1121/1.3652890
Yao YY, 2003, STUD FUZZ SOFT COMP, V119, P115
YOUNG ED, 1988, J NEUROPHYSIOL, V60, P1
NR 25
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2014
VL 317
BP 23
EP 32
DI 10.1016/j.heares.2014.09.006
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AU3XF
UT WOS:000345543300004
PM 25261771
ER
PT J
AU Jones, AE
Ruhland, JL
Gai, Y
Yin, TCT
AF Jones, Amy E.
Ruhland, Janet L.
Gai, Yan
Yin, Tom C. T.
TI Simultaneous comparison of two sound localization measures
SO HEARING RESEARCH
LA English
DT Article
ID SPATIAL RECEPTIVE-FIELDS; LATERAL SUPERIOR OLIVE; AUDITORY-CORTEX;
INFERIOR COLLICULUS; COOLING DEACTIVATION; UNILATERAL ABLATION; SINGLE
UNITS; CAT; STIMULI; LOCATION
AB Almost all behavioral studies of sound localization have used either an approach-to-target or pointing/orienting task to assess absolute sound localization performance, yet there are very few direct comparisons of these measures. In an approach-to-target task, the subject is trained to walk to a sound source from a fixed location. In an orienting task, finger, head and/or eye movements are monitored while the subject's body is typically constrained. The fact that subjects may also initiate head and eye movements toward the target during the approach-to-target task allows us to measure the accuracy of the initial orienting response and compare it with subsequent target selection. To perform this comparison, we trained cats to localize a broadband noise presented randomly from one of four speakers located +/- 30 degrees and +/- 60 degrees in azimuth. The cat responded to each sound presentation by walking to and pressing a lever at the perceived location, and a food reward was delivered if the first attempt was correct. In tandem, we recorded initial head and eye orienting movements, via magnetic search coils, immediately following target onset and prior to the walking response. Reducing either stimulus duration or level resulted in a systematic decline in both measurements of localization performance. When the task was easy, localization performance was accurate for both measures. When the task was more difficult, the number of incorrect (i.e., wrong selection) and no-go (i.e., no selection) responses increased. Interestingly, for many of the incorrect trials, there was a dissociation between the orienting response and the target selected, and for many of the no-go trials, the gaze oriented towards the correct target even though the cat did not move to it. This suggests different neural systems governing walking to a target as compared to unconditioned gaze orienting. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Jones, Amy E.; Ruhland, Janet L.; Gai, Yan; Yin, Tom C. T.] Univ Wisconsin, Dept Neurosci, Madison, WI 53706 USA.
RP Jones, AE (reprint author), Univ Wisconsin Madison, Med Sci Bldg,290 SMI,1300 Univ Ave, Madison, WI 53706 USA.
EM ahong@wisc.edu; jlruhland@physiology.wisc.edu; ygai@wisc.edu;
tcyin@wisc.edu
FU NIH [DC-07177]
FX We thank J Sekulski for helping with the computer programming and John
Cress, Irina Khitsun, Nishant Sharma and Kelly Young for assistance.
This work was supported by NIH DC-07177. We also thank An-chieh Chang
and Carol Dizack for their support in drawing figure.
CR BEITEL RE, 1993, J NEUROPHYSIOL, V70, P351
Boudreau J.C, 1970, CONTRIBUTIONS SENSOR
CASSEDAY JH, 1975, J NEUROPHYSIOL, V38, P842
Efron B, 1986, STAT SCI, V1, P54, DOI DOI 10.1214/SS/1177013815
FUCHS AF, 1966, J APPL PHYSIOL, V21, P1068
Gai Y, 2013, J NEUROPHYSIOL, V110, P607, DOI 10.1152/jn.01019.2012
GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613
JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987
JENKINS WM, 1984, J NEUROPHYSIOL, V52, P819
KAVANAGH GL, 1987, J NEUROPHYSIOL, V57, P1746
Lomber SG, 2007, HEARING RES, V229, P31, DOI 10.1016/j.heares.2007.01.013
Lomber SG, 2001, J COMP NEUROL, V441, P44, DOI 10.1002/cne.1396
Lomber SG, 2008, NAT NEUROSCI, V11, P609, DOI 10.1038/nn.2108
Malhotra S, 2007, J NEUROPHYSIOL, V97, P26, DOI 10.1152/jn.00720.2006
Malhotra S, 2004, J NEUROPHYSIOL, V92, P1625, DOI 10.1152/jn.01205.2003
May BJ, 1996, J ACOUST SOC AM, V100, P1059, DOI 10.1121/1.416292
Moore JM, 2008, HEARING RES, V238, P94, DOI 10.1016/j.heares.2007.11.006
Nodal FR, 2008, NEUROSCIENCE, V154, P397, DOI 10.1016/j.neuroscience.2007.12.022
Nodal FR, 2010, J NEUROPHYSIOL, V103, P1209, DOI 10.1152/jn.00991.2009
Populin LC, 2002, J NEUROSCI, V22, P2826
Populin LC, 1998, J NEUROSCI, V18, P2147
ROSE JE, 1966, J NEUROPHYSIOL, V29, P288
Ruhland JL, 2013, JARO-J ASSOC RES OTO, V14, P731, DOI 10.1007/s10162-013-0401-4
Smith AL, 2004, EUR J NEUROSCI, V19, P3059, DOI 10.1111/j.1460-9568.2004.03379.x
STEIN BE, 1981, BRAIN BEHAV EVOLUT, V19, P180, DOI 10.1159/000121641
Thompson C.C., 1978, J NEUROPHYSIOL, V41, P1183
Tollin DJ, 2009, J NEUROPHYSIOL, V101, P1258, DOI 10.1152/jn.90977.2008
Tollin DJ, 2002, J NEUROSCI, V22, P1468
Tollin DJ, 2005, J NEUROPHYSIOL, V93, P1223, DOI 10.1152/jn.00747.2004
Tollin DJ, 2002, J NEUROSCI, V22, P1454
Valentine DE, 2002, J COMP PHYSIOL A, V188, P89, DOI 10.1007/s00359-001-0275-5
WHITFIEL.IC, 1972, J NEUROPHYSIOL, V35, P718
YIN TCT, 1983, J NEUROPHYSIOL, V50, P1000
YIN TCT, 1990, J NEUROPHYSIOL, V64, P465
YIN TCT, 1987, J NEUROPHYSIOL, V58, P562
NR 35
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2014
VL 317
BP 33
EP 40
DI 10.1016/j.heares.2014.08.007
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AU3XF
UT WOS:000345543300005
PM 25261773
ER
PT J
AU Nishimura, T
Okayasu, T
Saito, O
Shimokura, R
Yamashita, A
Yamanaka, T
Hosoi, H
Kitahara, T
AF Nishimura, Tadashi
Okayasu, Tadao
Saito, Osamu
Shimokura, Ryota
Yamashita, Akinori
Yamanaka, Toshiaki
Hosoi, Hiroshi
Kitahara, Tadashi
TI An examination of the effects of broadband air-conduction masker on the
speech intelligibility of speech-modulated bone-conduction ultrasound
SO HEARING RESEARCH
LA English
DT Article
ID AUDITORY-CORTEX; PERCEPTION; RECOGNITION; HEARING; FREQUENCIES; NOISE
AB Ultrasound can be heard by bone-conduction, and speech-modulated bone-conducted ultrasound (BCU) delivers the speech information to the human ear. One of the recognition mechanisms is the demodulation of the signals. Because some of the profoundly deaf can also hear speech-modulated BCU, another mechanism may also contribution to the recognition of speech-modulated BCU. In this study, eight volunteers with normal hearing participated. The intelligibilities of speech-modulated BCU were measured using a numeral word list under masking conditions. Because the masker can mask the demodulated sounds, the evaluation of the masking reveals the contribution of the demodulation to the recognition of speech-modulated BCU. In the current results, the masking of speech-modulated BCU differed from that of original non-modulated speech. Although the masking shifted the recognition curve for the original speech upward, the same results were not observed for the speech-modulated BCU. The masking generated the difference in the correct answers among the words for the speech-modulated BCU. The current results suggested the importance of the envelope of the modulated ultrasonic signal to the recognition under masking condition. Both demodulation and direct ultrasonic stimulation contribute to the recognition of speech-modulated BCU for the normal hearing individuals, and the direct ultrasonic stimulation plays an important role in the recognition for the profoundly deaf. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Nishimura, Tadashi; Okayasu, Tadao; Saito, Osamu; Shimokura, Ryota; Yamashita, Akinori; Yamanaka, Toshiaki; Kitahara, Tadashi] Nara Med Univ, Dept Otolaryngol Head & Neck Surg, Kashihara, Nara 6348522, Japan.
[Hosoi, Hiroshi] Nara Med Univ, Kashihara, Nara 6348522, Japan.
RP Nishimura, T (reprint author), Nara Med Univ, Dept Otolaryngol Head & Neck Surg, 840 Shijo Cho, Kashihara, Nara 6348522, Japan.
EM t-nishim@naramed-u.ac.jp
FU Japan Society for the Promotion on Science (JSPS) [20791217, 26282130]
FX This study was supported by Grant-in-Aid for Young Scientists (B)
(20791217) and Grant-in-Aid for Scientific Research (B) (26282130) from
the Japan Society for the Promotion on Science (JSPS).
CR BELLUCCI RICHARD J., 1962, ANN OTOL RHINOL AND LARYNGOL, V71, P719
CORSO JF, 1963, J ACOUST SOC AM, V35, P1738, DOI 10.1121/1.1918804
Deatherage H., 1954, J ACOUST SOC AM, V26, P582
DIEROFF HG, 1975, ARCH OTO-RHINO-LARYN, V209, P277, DOI 10.1007/BF00456548
DIRKS DD, 1982, J SPEECH HEAR DISORD, V47, P114
Fujimoto K, 2005, HEARING RES, V204, P210, DOI 10.1016/j.heares.2005.02.004
GAVREAU V, 1948, CR HEBD ACAD SCI, V226, P2053
HAEFF AV, 1963, SCIENCE, V139, P590, DOI 10.1126/science.139.3555.590
Hosoi H, 1998, LANCET, V351, P496, DOI 10.1016/S0140-6736(05)78683-9
Imaizumi S, 2001, NEUROREPORT, V12, P583, DOI 10.1097/00001756-200103050-00030
Japan Audiological Society, 2010, AUDIOL JPN, V46, P622
Koizumi T, 2014, HEARING RES, V310, P48, DOI 10.1016/j.heares.2014.01.011
LENHARDT ML, 1991, SCIENCE, V253, P82, DOI 10.1126/science.2063208
Matsui T., 2013, P M ACOUST, V19
Moore BCJ, 2012, J ACOUST SOC AM, V132, P1542, DOI 10.1121/1.4739444
Nishimura T, 2011, HEARING RES, V277, P176, DOI 10.1016/j.heares.2011.01.004
Nishimura T, 2009, ACTA OTO-LARYNGOL, V129, P28, DOI 10.1080/00016480902915707
Nishimura T, 2003, HEARING RES, V175, P171, DOI 10.1016/S0378-5955(02)00735-9
Okamoto Y, 2005, HEARING RES, V208, P107, DOI 10.1016/j.heares.2005.05.007
Okayasu T, 2014, NEUROSCI LETT, V559, P117, DOI 10.1016/j.neulet.2013.11.048
Okayasu T, 2013, NEUROSCI LETT, V539, P71, DOI 10.1016/j.neulet.2013.01.040
Oxenham AJ, 2011, P NATL ACAD SCI USA, V108, P7629, DOI 10.1073/pnas.1015291108
PUMPHREY RJ, 1950, NATURE, V166, P571, DOI 10.1038/166571b0
Shimokura R., 2012, BEHAV SCI RES, V50, P187
Studebaker GA, 1999, J ACOUST SOC AM, V105, P2431, DOI 10.1121/1.426848
Yamashita A., 2009, NEUROREPORT, V21, P119
Yamashita A, 2009, ACTA OTO-LARYNGOL, V129, P34, DOI 10.1080/00016480902926449
NR 27
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2014
VL 317
BP 41
EP 49
DI 10.1016/j.heares.2014.09.012
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AU3XF
UT WOS:000345543300006
PM 25285623
ER
PT J
AU Stone, MA
Moore, BCJ
AF Stone, Michael A.
Moore, Brian C. J.
TI Amplitude-modulation detection by recreational-noise-exposed humans with
near-normal hearing thresholds and its medium-term progression
SO HEARING RESEARCH
LA English
DT Article
ID DISC-JOCKEYS; BASILAR-MEMBRANE; MUSIC; LOUDNESS; DAMAGE; LEVEL; MODEL;
DEGENERATION; NIGHTCLUBS; PERCEPTION
AB Noise exposure can affect the functioning of cochlear inner and outer hair cells (IHC/OHC), leading to multiple perceptual changes. This work explored possible changes in detection of amplitude modulation (AM) at three Sensation Levels (SL) for carrier frequencies of 3, 4 and 6 kHz. There were two groups of participants, aged 19 to 24 (Young) and 26 to 35 (Older) years. All had near-normal audiometric thresholds. Participants self-assessed exposure to high-level noise in recreational settings. Each group was sub-grouped into low-noise (LN) or high-noise (HN) exposure. AM detection thresholds were worse for the HN than for the LN sub-group at the lowest SI, for the males only of the Young group and for both genders for the Older group, despite no significant difference in absolute threshold at 3 and 4 kHz between sub-groups. AM detection at the lowest SL, at both 3 and 4 kHz, generally improved with increasing age and increasing absolute threshold, consistent with a recruitment-like process. However, poorer AM detection was correlated with increasing exposure at 3 kHz in the Older group. It is suggested that high-level noise exposure produces both IHC- and OHC-related damage, the balance between the two varying across frequency. However, the use of AM detection offers poor sensitivity as a measure of the effects. (C) 2014 The Authors. Published by Elsevier B.V.
C1 [Stone, Michael A.] Univ Manchester, Audiol & Deafness Grp, Sch Psychol Sci, Manchester M13 9PL, Lancs, England.
[Stone, Michael A.; Moore, Brian C. J.] Univ Cambridge, Auditory Percept Grp, Dept Expt Psychol, Cambridge CB2 3EB, England.
RP Stone, MA (reprint author), Univ Manchester, Audiol & Deafness Grp, Sch Psychol Sci, Manchester M13 9PL, Lancs, England.
EM michael.stone@manchester.ac.uk
FU MRC (UK) [G0701870]; Central Manchester University Hospitals NHS
Foundation Trust Charity; School of Psychological Sciences, University
of Manchester
FX We thank Mike Eason, Doug McKechnie, Sam Nava, Martin Farrell, and
Matthew Mitchard for assistance with data collection. This work was
supported by the MRC (UK), grant number G0701870. The first author was
supported in preparation of this manuscript by the Central Manchester
University Hospitals NHS Foundation Trust Charity and the School of
Psychological Sciences, University of Manchester. The changing pattern
of IHC and OHC damage with characteristic frequency in the data of
Liberman and Dodds (1984) and a similar pattern on our data was pointed
out to the first author by Dr Ian C. Bruce. We thank three reviewers for
helpful comments on an earlier version of this paper.
CR Attias J, 1998, BRIT J AUDIOL, V32, P39, DOI 10.3109/03005364000000049
BORG E, 1995, SCAND AUDIOL, V24, P6
BRADLEY R, 1987, British Journal of Audiology, V21, P119, DOI 10.3109/03005368709077784
Bray A, 2004, J LARYNGOL OTOL, V118, P123
Coles RRA, 2000, CLIN OTOLARYNGOL, V25, P264, DOI 10.1046/j.1365-2273.2000.00368.x
DAVIS H, 1950, Acta Otolaryngol Suppl, V88, P1
Davis RI, 2009, EAR HEARING, V30, P628, DOI 10.1097/AUD.0b013e3181b527a8
FASTL H, 1971, ACUSTICA, V25, P350
FAUSTI SA, 1981, J ACOUST SOC AM, V69, P1343, DOI 10.1121/1.385805
Fligor BJ, 2004, EAR HEARING, V25, P513, DOI 10.1097/00003446-200412000-00001
Fowler EP, 1929, ARCHIV OTOLARYNGOL, V10, P624
Furman AC, 2013, J NEUROPHYSIOL, V110, P577, DOI 10.1152/jn.00164.2013
GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
Hall AJ, 1999, AUDIOLOGY, V38, P277
HALLMO P, 1995, SCAND AUDIOL, V24, P47, DOI 10.3109/01050399509042209
ISO, 1990, AC DET OCC NOIS EXP
ISO (International Organization for Standardization), 1999, AC DET OCC NOIS EXP
Kohlrausch A, 2000, J ACOUST SOC AM, V108, P723, DOI 10.1121/1.429605
Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009
Kumar UA, 2012, NOISE HEALTH, V14, P100, DOI 10.4103/1463-1741.97252
KURAS J E, 1974, Journal of Auditory Research, V14, P51
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
Liberman M.C., 1984, HEARING RES, V16, P54
Lin HW, 2011, JARO-J ASSOC RES OTO, V12, P605, DOI 10.1007/s10162-011-0277-0
Liu LJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049550
Long G.R., 1993, CONTRIB PSYCHOL, P59
Lucertini M, 2002, J ACOUST SOC AM, V111, P972, DOI 10.1121/1.1432979
Makary CA, 2011, JARO-J ASSOC RES OTO, V12, P711, DOI 10.1007/s10162-011-0283-2
Moore BCJ, 2004, HEARING RES, V188, P70, DOI 10.1016/S0378-5955(03)00347-2
Moore BCJ, 2007, J ACOUST SOC AM, V121, P1604, DOI 10.1121/1.2431331
Moore BCJ, 1997, J AUDIO ENG SOC, V45, P224
Moore BCJ, 1996, J ACOUST SOC AM, V100, P481, DOI 10.1121/1.415861
Moore B.C.J., 2012, TINNITUS, P187
Moore BCJ, 2014, AUDITORY PROCESSING OF TEMPORAL FINE STRUCTURE: EFFECTS OF AGE AND HEARING LOSS, P1, DOI 10.1142/9064
Potier M, 2009, EAR HEARING, V30, P291, DOI 10.1097/AUD.0b013e31819769fc
PUMPLIN J, 1985, J ACOUST SOC AM, V78, P100, DOI 10.1121/1.392571
ROBLES L, 1986, J ACOUST SOC AM, V80, P1364, DOI 10.1121/1.394389
Robles L, 2001, PHYSIOL REV, V81, P1305
Sadhra S, 2002, ANN OCCUP HYG, V46, P455, DOI 10.1093/annhyg/mef051
Santos L, 2007, INT J AUDIOL, V46, P223, DOI 10.1080/14992020601188575
Schaette R, 2011, J NEUROSCI, V31, P13452, DOI 10.1523/JNEUROSCI.2156-11.2011
Schuknecht HF, 1993, PATHOLOGY EAR
SHEFT S, 1990, J ACOUST SOC AM, V88, P796, DOI 10.1121/1.399729
Shimokura R, 2012, J ACOUST SOC AM, V132, P1407, DOI 10.1121/1.4740472
Smith P.A., 2000, NOISE HEALTH, V6, P41
SMOORENBURG GF, 1990, ACTA OTO-LARYNGOL, P38
Stone MA, 2008, INT J AUDIOL, V47, P737, DOI 10.1080/14992020802290543
Torre P, 2008, EAR HEARING, V29, P791, DOI 10.1097/AUD.0b013e31817e7409
Vinay, 2010, J ACOUST SOC AM, V128, P3634, DOI 10.1121/1.3500679
Vogel I, 2008, J PEDIATR, V152, P400, DOI 10.1016/j.jpeds.2007.07.009
WARD WD, 1970, J ACOUST SOC AM, V48, P561, DOI 10.1121/1.1912172
WARD WD, 1981, ANN OTO RHINOL LARYN, V90, P584
WEST P D B, 1990, British Journal of Audiology, V24, P89, DOI 10.3109/03005369009077849
Williams W, 2005, INT J AUDIOL, V44, P231, DOI 10.1080/14992020500057673
Worthington DA, 2009, J ACOUST SOC AM, V125, P3733, DOI 10.1121/1.3125798
NR 55
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2014
VL 317
BP 50
EP 62
DI 10.1016/j.heares.2014.09.005
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AU3XF
UT WOS:000345543300007
PM 25260433
ER
PT J
AU Greene, NT
Anbuhl, KL
Williams, W
Tollin, DJ
AF Greene, Nathaniel T.
Anbuhl, Kelsey L.
Williams, Whitney
Tollin, Daniel J.
TI The acoustical cues to sound location in the guinea pig (Cavia
porcellus)
SO HEARING RESEARCH
LA English
DT Article
ID INTERAURAL TIME DIFFERENCES; DIFFERENCE DISCRIMINATION THRESHOLDS; EAR
TRANSFER-FUNCTIONS; INFERIOR COLLICULUS; EXTERNAL-EAR; PRESSURE
TRANSFORMATION; SUPERIOR COLLICULUS; DIRECTIONAL HEARING; AUDITORY
PERIPHERY; BINAURAL MASKING
AB There are three main acoustical cues to sound location, each attributable to space- and frequency-dependent filtering of the propagating sound waves by the outer ears, head, and torso: Interaural differences in time (ITD) and level (ILD) as well as monaural spectral shape cues. While the guinea pig has been a common model for studying the anatomy, physiology, and behavior of binaural and spatial hearing, extensive measurements of their available acoustical cues are lacking. Here, these cues were determined from directional transfer functions (DTFs), the directional components of the head-related transfer functions, for 11 adult guinea pigs. In the frontal hemisphere, monaural spectral notches were present for frequencies from similar to 10 to 20 kHz; in general, the notch frequency increased with increasing sound source elevation and in azimuth toward the contralateral ear. The maximum ITDs calculated from low-pass filtered (2 kHz cutoff frequency) DTFs were similar to 250 mu s, whereas the maximum ITD measured with low-frequency tone pips was over 320 mu s. A spherical head model underestimates ITD magnitude under normal ceinditions, but closely approximates values when the pinnae were removed. Interaural level differences (ILDs) strongly depended on location and frequency; maximum ILDs were <10 dB for frequencies <4 kHz and were as large as 40 dB for frequencies > 10 kHz. Removal of the pinna reduced the depth and sharpness of spectral notches, altered the acoustical axis, and reduced the acoustical gain, ITDs, and ILDs; however, spectral shape features and acoustical gain were not completely eliminated, suggesting a substantial contribution of the head and torso in altering the sounds present at the tympanic membrane. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Greene, Nathaniel T.; Anbuhl, Kelsey L.; Williams, Whitney; Tollin, Daniel J.] Univ Colorado, Sch Med, Dept Physiol & Biophys, Aurora, CO 80045 USA.
[Anbuhl, Kelsey L.; Tollin, Daniel J.] Univ Colorado, Sch Med, Neurosci Training Program, Aurora, CO 80045 USA.
[Greene, Nathaniel T.; Tollin, Daniel J.] Univ Colorado, Sch Med, Dept Otolaryngol, Aurora, CO 80045 USA.
RP Greene, NT (reprint author), Univ Colorado, Sch Med, Dept Physiol & Biophys, Mail Stop 8307,12800 East 19th Ave, Aurora, CO 80045 USA.
EM nathaniel.greene@ucdenver.edu
FU National Institutes of Deafness and Other Communicative Disorders
(NIDCD) [R01-DC011555, T32HD041697, T32DC012280]
FX The authors thank Dr. Kanthaiah Koka for assistance in data collection
and analysis, and Alex Ferber and Dr. Andrew Brown for comments on the
manuscript. This work was supported by the National Institutes of
Deafness and Other Communicative Disorders (NIDCD) grant R01-DC011555
(DJT), T32HD041697 (KLA) and T32DC012280 (NTG). NTG and KLA contributed
equally on all aspects of this work.
CR Aaronson NL, 2014, J ACOUST SOC AM, V135, P817, DOI 10.1121/1.4861243
Aytekin M, 2004, J ACOUST SOC AM, V116, P3594, DOI [10.1121/1.1811412, 10.1121/1.1811412]]
Behrend O, 2004, J NEUROPHYSIOL, V92, P3014, DOI 10.1152/jn.00402.2004
Bierman HS, 2014, J EXP BIOL, V217, P1094, DOI 10.1242/jeb.092866
Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a
Bugayevskiy LM, 1995, MAP PROJECTIONS REFE
CAIRD DM, 1991, HEARING RES, V57, P91, DOI 10.1016/0378-5955(91)90078-N
CALFORD MB, 1984, HEARING RES, V14, P13, DOI 10.1016/0378-5955(84)90064-9
CARLILE S, 1990, J ACOUST SOC AM, V88, P2180, DOI 10.1121/1.400115
CARLILE S, 1987, HEARING RES, V31, P111, DOI 10.1016/0378-5955(87)90117-1
CARLILE S, 1990, J ACOUST SOC AM, V88, P2196, DOI 10.1121/1.400116
Carr CE, 2009, J NEUROSCI, V29, P7978, DOI 10.1523/JNEUROSCI.6154-08.2009
CHEN QC, 1995, J EXP BIOL, V198, P2007
CLEMENTS M, 1978, J COMP PHYSIOL PSYCH, V92, P34, DOI 10.1037/h0077424
COLES RB, 1986, J EXP BIOL, V121, P371
COLES RB, 1988, J COMP PHYSIOL A, V163, P117, DOI 10.1007/BF00612002
Duda RO, 1998, J ACOUST SOC AM, V104, P3048, DOI 10.1121/1.423886
Ebert CS, 2008, HEARING RES, V235, P134, DOI 10.1016/j.heares.2007.11.003
Firzlaff U, 2003, HEARING RES, V181, P27, DOI 10.1016/S0378-5955(03)00164-3
Fuzessery ZM, 1996, HEARING RES, V95, P1, DOI 10.1016/0378-5955(95)00223-5
Gilbert S.G., 1981, PICTORAL ANATOMY CAT
Harper NS, 2004, NATURE, V430, P682, DOI 10.1038/nature02768
HARRISON JM, 1970, J ACOUST SOC AM, V47, P1509, DOI 10.1121/1.1912082
HEFFNER R, 1971, J ACOUST SOC AM, V49, P1888, DOI 10.1121/1.1912596
Heffner R S, 1997, Acta Otolaryngol Suppl, V532, P46
HEFFNER RS, 1988, HEARING RES, V36, P221, DOI 10.1016/0378-5955(88)90064-0
HEFFNER RS, 1994, HEARING RES, V80, P247, DOI 10.1016/0378-5955(94)90116-3
HOUBEN D, 1979, J ACOUST SOC AM, V66, P1057, DOI 10.1121/1.383377
IRVINE DRF, 1987, HEARING RES, V26, P267, DOI 10.1016/0378-5955(87)90063-3
IRVING R, 1967, J COMP NEUROL, V130, P77, DOI 10.1002/cne.901300105
JEN PHS, 1988, HEARING RES, V34, P101, DOI 10.1016/0378-5955(88)90098-6
Jiang D, 1997, J NEUROPHYSIOL, V77, P3085
Jones HG, 2011, JARO-J ASSOC RES OTO, V12, P127, DOI 10.1007/s10162-010-0242-3
Keating P., 2013, JARO-J ASSOC RES OTO, V14, P561
Keller CH, 1998, HEARING RES, V118, P13, DOI 10.1016/S0378-5955(98)00014-8
KELLY JB, 1980, J NEUROPHYSIOL, V44, P1161
Kim DO, 2010, JARO-J ASSOC RES OTO, V11, P541, DOI 10.1007/s10162-010-0221-8
KING AJ, 1983, J PHYSIOL-LONDON, V342, P361
Koka K, 2008, J ACOUST SOC AM, V123, P4297, DOI 10.1121/1.2916587
Koka K, 2011, HEARING RES, V272, P135, DOI 10.1016/j.heares.2010.10.007
KUHN GF, 1977, J ACOUST SOC AM, V62, P157, DOI 10.1121/1.381498
Lauer AM, 2011, JARO-J ASSOC RES OTO, V12, P633, DOI 10.1007/s10162-011-0279-y
Leong P., 1998, J NEUROSCI METH, V80, P191
Lesica NA, 2010, J NEUROSCI, V30, P11696, DOI 10.1523/JNEUROSCI.0846-10.2010
Liu LF, 2006, J NEUROPHYSIOL, V95, P1926, DOI 10.1152/jn.00497.2005
Lupo E.J., 2011, HEARING RES, V272, P30
Maki K, 2005, J ACOUST SOC AM, V118, P872, DOI 10.1121/1.1944647
MARTIN RL, 1987, HEARING RES, V30, P239, DOI 10.1016/0378-5955(87)90140-7
McAlpine D, 2001, NAT NEUROSCI, V4, P396, DOI 10.1038/86049
McAlpine D, 1996, HEARING RES, V97, P136
McAlpine D, 2003, TRENDS NEUROSCI, V26, P347, DOI 10.1016/S0166-2236(03)00140-1
MIDDLEBROOKS JC, 1989, J ACOUST SOC AM, V86, P89, DOI 10.1121/1.398224
MIDDLEBROOKS JC, 1990, J ACOUST SOC AM, V87, P2149, DOI 10.1121/1.399183
Middlebrooks JC, 1999, J ACOUST SOC AM, V106, P1480, DOI 10.1121/1.427176
MIDDLEBROOKS JC, 1981, J NEUROSCI, V1, P107
MILLS AW, 1960, J ACOUST SOC AM, V32, P132, DOI 10.1121/1.1907864
MOISEFF A, 1989, J COMP PHYSIOL A, V164, P629, DOI 10.1007/BF00614505
MOORE DR, 1979, ACTA OTO-LARYNGOL, V87, P434, DOI 10.3109/00016487909126447
MUSICANT AD, 1990, J ACOUST SOC AM, V87, P757, DOI 10.1121/1.399545
OBRIST MK, 1993, J EXP BIOL, V180, P119
PALMER AR, 1982, NATURE, V299, P248, DOI 10.1038/299248a0
PALMER AR, 1990, HEARING RES, V50, P71, DOI 10.1016/0378-5955(90)90034-M
PALMER AR, 1985, HEARING RES, V17, P267, DOI 10.1016/0378-5955(85)90071-1
Palmer AR, 2007, HEARING RES, V223, P105, DOI 10.1016/j.heares.2006.10.005
PHILLIPS DP, 1982, HEARING RES, V8, P13, DOI 10.1016/0378-5955(82)90031-4
Populin LC, 1998, J NEUROSCI, V18, P2147
RICE JJ, 1992, HEARING RES, V58, P132, DOI 10.1016/0378-5955(92)90123-5
RIFE DD, 1989, J AUDIO ENG SOC, V37, P419
ROTH GL, 1980, J ACOUST SOC AM, V68, P1643, DOI 10.1121/1.385196
Schnupp J.W., 2003, J ACOUST SOC AM, V113, P2021
Scott BH, 2007, J NEUROSCI, V27, P6489, DOI 10.1523/JNEUROSCI.0016-07.2007
Shackleton TM, 2003, J NEUROSCI, V23, P716
Shackleton TM, 2010, J NEUROPHYSIOL, V104, P189, DOI 10.1152/jn.00267.2010
Shaw E. A. G., 1974, HDB SENSORY PHYSL, P455
SINYOR A, 1973, J ACOUST SOC AM, V54, P916, DOI 10.1121/1.1914346
Skottun BC, 2001, P NATL ACAD SCI USA, V98, P14050, DOI 10.1073/pnas.241513998
Slee SJ, 2010, HEARING RES, V260, P96, DOI 10.1016/j.heares.2009.12.001
Spezio ML, 2000, HEARING RES, V144, P73, DOI 10.1016/S0378-5955(00)00050-2
Sterbing SJ, 2002, EXP BRAIN RES, V142, P570, DOI 10.1007/s00221-001-0963-y
Sterbing SJ, 2003, J NEUROPHYSIOL, V90, P2648, DOI 10.1152/jn.00348.2003
Tollin DJ, 2003, J NEUROPHYSIOL, V90, P525, DOI 10.1152/jn.00107.2003
Tollin DJ, 2009, J ACOUST SOC AM, V125, P980, DOI 10.1121/1.3058630
Tollin DJ, 2013, J NEUROPHYSIOL, V109, P1658, DOI 10.1152/jn.00358.2012
Tollin DJ, 2009, J ACOUST SOC AM, V126, P3125, DOI 10.1121/1.3257234
Tsai JJ, 2010, J NEUROPHYSIOL, V103, P875, DOI 10.1152/jn.00911.2009
WAKEFORD OS, 1974, J ACOUST SOC AM, V55, P649, DOI 10.1121/1.1914577
WIGHTMAN FL, 1989, J ACOUST SOC AM, V85, P858, DOI 10.1121/1.397557
Woodworth R. S., 1938, EXPT PSYCHOL
WOTTON JM, 1995, J ACOUST SOC AM, V98, P1423, DOI 10.1121/1.413410
Xu L, 2000, J ACOUST SOC AM, V107, P1451, DOI 10.1121/1.428432
Young ED, 1996, J ACOUST SOC AM, V99, P3064, DOI 10.1121/1.414883
Zohar O, 2011, J NEUROSCI, V31, P9192, DOI 10.1523/JNEUROSCI.6193-10.2011
NR 92
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2014
VL 316
BP 1
EP 15
DI 10.1016/j.heares.2014.07.004
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AS0EO
UT WOS:000343951300001
PM 25051197
ER
PT J
AU Oetting, D
Brand, T
Ewert, SD
AF Oetting, Dirk
Brand, Thomas
Ewert, Stephan D.
TI Optimized loudness-function estimation for categorical loudness scaling
data
SO HEARING RESEARCH
LA English
DT Article
ID ADAPTIVE PROCEDURE; GROWTH FUNCTIONS; HEARING-AIDS; RELIABILITY;
THRESHOLD; AUDIOMETRY; LISTENERS; BANDWIDTH; SIGNALS; SPEECH
AB Individual loudness perception can be assessed using categorical loudness scaling (CLS). The procedure does not require any training and is frequently used in clinics. The goal of this study was to investigate different methods of loudness-function estimation from CLS data in terms of their test-retest behaviour and to suggest an improved method compared to Brand and Hohmann (2002) for adaptive CLS. Four different runs of the CLS procedure were conducted using 13 normal-hearing and 11 hearing-impaired listeners. The following approaches for loudness-function estimation (fitting) by minimising the error between the data and loudness function were compared: Errors were defined both in level and in loudness direction, respectively. The hearing threshold level (HTL) was extracted from CLS by splitting the responses into an audible and an inaudible category. The extracted HTL was used as a fixed starting point of the loudness function. The uncomfortable loudness level (UCL) was estimated if presentation levels were not sufficiently high to yield responses in the upper loudness range, as often observed in practise. Compared to the original fitting method, the modified estimation of the HTL was closer to the pure-tone audiometric threshold. Results of a computer simulation for UCL estimation showed that the estimation error was reduced for data sets with sparse or absent responses in the upper loudness range. Overall, the suggested modifications lead to a better test-retest behaviour. If CLS data are highly consistent over the whole loudness range, all fitting methods lead to almost equal loudness functions. A considerable advantage of the suggested fitting method is observed for data sets where the responses either show high standard deviations or where responses are not present in the upper loudness range. Both cases regularly occur in clinical practice. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Oetting, Dirk] Fraunhofer IDMT, Project Grp Hearing Speech & Audio Technol, D-26129 Oldenburg, Germany.
[Oetting, Dirk] Cluster Excellence Hearing4all, D-26129 Oldenburg, Germany.
[Oetting, Dirk; Brand, Thomas; Ewert, Stephan D.] Carl von Ossietzky Univ Oldenburg, D-26111 Oldenburg, Germany.
[Oetting, Dirk; Brand, Thomas; Ewert, Stephan D.] Carl von Ossietzky Univ Oldenburg, Cluster Excellence Hearing4all, D-26111 Oldenburg, Germany.
RP Oetting, D (reprint author), Fraunhofer IDMT, Project Grp Hearing Speech & Audio Technol, Marie Curie Str 2, D-26129 Oldenburg, Germany.
EM dirk.oetting@idmt.fraunhofer.de
FU BMBF ("Modellbasierte Horsysteme") [13EZ1127D]; Deutsche
Forschungsgemeinschaft ("Individualisierte Horakustik", TPE) [DFG FOR
1732]
FX We are very grateful to Birger Kollmeier for his substantial support. We
thank Ray Meddis for comments on earlier versions and discussions. This
work was supported by the BMBF 13EZ1127D ("Modellbasierte Horsysteme")
and the Deutsche Forschungsgemeinschaft (DFG FOR 1732 "Individualisierte
Horakustik", TPE).
CR ALLEN JB, 1990, J ACOUST SOC AM, V88, P745, DOI 10.1121/1.399778
Al-Salim SC, 2010, EAR HEARING, V31, P567, DOI 10.1097/AUD.0b013e3181da4d15
American Speech-Language-Hearing Association, 2005, GUID MAN PUR TON THR
[Anonymous], 2006, 16832 ISO
[Anonymous], 2010, 536 ANSI
Anweiler AK, 2006, J ACOUST SOC AM, V119, P2919, DOI 10.1121/1.2184224
ATHERLEY GR, 1963, BRIT J IND MED, V20, P231
Bentler RA, 2001, EAR HEARING, V22, P58, DOI 10.1097/00003446-200102000-00006
Bevington P R, 2003, DATA REDUCTION ERROR
Bland JM, 1996, BRIT MED J, V313, P744
Brand T., 2007, 8 EFAS C C GER SOC A
Brand T, 2002, J ACOUST SOC AM, V112, P1597, DOI 10.1121/1.1502902
Brand T, 2001, AUDIOLOGY, V40, P92
Brand T., 2000, THESIS U OLDENBURG G
Burns W., 1957, J ACOUST SOC AM, V4, P1274
Buus S, 1998, J ACOUST SOC AM, V104, P399, DOI 10.1121/1.423295
Cox RM, 1997, EAR HEARING, V18, P388, DOI 10.1097/00003446-199710000-00004
Dreschler W.A., 2008, J ACOUST SOC AM, V123, P3714, DOI 10.1121/1.2935153
Elberling C., 1993, RECENT DEV HEARING I, P99
Elberling C, 1999, J Am Acad Audiol, V10, P248
Ewert S.D., 2013, I C AC AIA DAGA, P1326
Ewert S.D., 2012, P ISAAR 2011 SPEECH, P393
Fletcher H, 1933, J ACOUST SOC AM, V5, P82, DOI 10.1121/1.1915637
FOWLER EP, 1950, LARYNGOSCOPE, V60, P680
Gallego S, 1999, ACTA OTO-LARYNGOL, V119, P234, DOI 10.1080/00016489950181738
Heeren W, 2013, J ACOUST SOC AM, V133, pEL314, DOI 10.1121/1.4795217
HELLBRUCK J, 1985, PSYCHOL BEITR, V27, P494
HELLER O, 1985, PSYCHOL BEITR, V27, P478
Herzke T, 2005, EURASIP J APPL SIG P, V2005, P3034, DOI 10.1155/ASP.2005.3034
Hohmann V., 1995, Audiologische Akustik, V34
Hohmann V., 1997, HORFLACHENSKALIERUNG, P81
HorTech, 2010, OP MAN CAT LOUDN SCA
HorTech, 2013, BED KAT LAUTH VERS 1
Humes L E, 1996, Trends Amplif, V1, P121, DOI 10.1177/108471389600100402
Jenstad LM, 1997, EAR HEARING, V18, P401, DOI 10.1097/00003446-199710000-00005
Jesteadt W., 2013, P M AC AC SOC AM
Jurgens T, 2011, HEARING RES, V280, P177, DOI 10.1016/j.heares.2011.05.016
Keidser G, 1999, SCAND AUDIOL, V28, P3, DOI 10.1080/010503999424860
Keidser G., 2008, AUDIOL RES, V1, P88
Keller J.N., 2006, THESIS WASHINGTON U
Kiessling J, 2001, SCAND AUDIOL, V30, P57, DOI 10.1080/010503901300007074
Kiessling J, 1996, SCAND AUDIOL, V25, P153, DOI 10.3109/01050399609047998
Kollmeier B., 1997, HORFLACHENSKALIERUNG
Kreikemeier S., 2011, THESIS U GIEBEN
Launer S., 1994, EXPT MODELLVORSTELLU, P1409
Launer S., 1996, AUDIOL AKUST, V4, P156
Launer S., 1995, THESIS U OLDENBURG
Lecluyse W, 2009, J ACOUST SOC AM, V126, P2570, DOI 10.1121/1.3238248
Pascoe D.P., 1988, HEARING AID FITTING, P129
Polonenko MJ, 2010, INT J AUDIOL, V49, P550, DOI 10.3109/14992021003713122
Rasmussen A.N., 1998, SCAND AUDIOL, V27, P161
Rennies J, 2013, ACTA ACUST UNITED AC, V99, P268, DOI 10.3813/AAA.918609
Ricketts TA, 1996, J ACOUST SOC AM, V99, P2281, DOI 10.1121/1.415415
Robinson K, 1996, EAR HEARING, V17, P120, DOI 10.1097/00003446-199604000-00005
Scharf B., 2007, LOUDNESS ENCY ACOUST, V3, P1481
Smeds K, 2011, SPRINGER HANDB AUDIT, V37, P223, DOI 10.1007/978-1-4419-6712-1_9
Stenfelt S, 2013, HEARING RES, V301, P85, DOI 10.1016/j.heares.2013.03.010
Stevens SS, 1936, PSYCHOL REV, V43, P405, DOI 10.1037/h0058773
STEVENS SS, 1959, J ACOUST SOC AM, V31, P995, DOI 10.1121/1.1907827
Theelen-van den Hoek FL, 2014, INT J AUDIOL, V53, P409, DOI 10.3109/14992027.2013.879338
Valente M, 1997, Trends Amplif, V2, P6, DOI 10.1177/108471389700200102
van Esch TEM, 2013, INT J AUDIOL, V52, P305, DOI 10.3109/14992027.2012.759665
NR 62
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2014
VL 316
BP 16
EP 27
DI 10.1016/j.heares.2014.07.003
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AS0EO
UT WOS:000343951300002
PM 25058812
ER
PT J
AU Puschmann, S
Sandmann, P
Bendixen, A
Thiel, CM
AF Puschmann, Sebastian
Sandmann, Pascale
Bendixen, Alexandra
Thiel, Christiane M.
TI Age-related hearing loss increases cross-modal distractibility
SO HEARING RESEARCH
LA English
DT Article
ID COCHLEAR-IMPLANT USERS; AUDITORY-CORTEX; SPEECH-PERCEPTION; LISTENING
EFFORT; VISUAL-STIMULI; DEAF SUBJECTS; OLDER-ADULTS; PLASTICITY;
IMPAIRMENT; MOTION
AB Recent electrophysiological studies have provided evidence that changes in multisensory processing in auditory cortex cannot only be observed following extensive hearing loss, but also in moderately hearing-impaired subjects. How the reduced auditory input affects audio-visual interactions is however largely unknown. Here we used a cross-modal distraction paradigm to investigate multisensory processing in elderly participants with an age-related high-frequency hearing loss as compared to young and elderly subjects with normal hearing. During the experiment, participants were simultaneously presented with independent streams of auditory and visual input and were asked to categorize either the auditory or visual information while ignoring the other modality. Unisensory sequences without any cross-modal input served as control conditions to assure that all participants were able to perform the task. While all groups performed similarly in these unisensory conditions, hearing-impaired participants showed significantly increased error rates when confronted with distracting cross-modal stimulation. This effect could be observed in both the auditory and the visual task. Supporting these findings, an additional regression analysis indicted that the degree of high-frequency hearing loss significantly modulates cross-modal visual distractibility in the auditory task. These findings provide new evidence that already a moderate sub-clinical hearing loss, a common phenomenon in the elderly population, affects the processing of audio-visual information. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Puschmann, Sebastian; Thiel, Christiane M.] Carl von Ossietzky Univ Oldenburg, European Med Sch, Cluster Excellence Hearing4all, Biol Psychol Lab,Dept Psychol, D-26111 Oldenburg, Germany.
[Sandmann, Pascale] Hannover Med Sch, Cluster Excellence Hearing4all, Dept Neurol, Cent Auditory Diagnost Lab, Hannover, Germany.
[Bendixen, Alexandra] Carl von Ossietzky Univ Oldenburg, European Med Sch, Cluster Excellence Hearing4all, Auditory Psychophysiol Lab,Dept Psychol, D-26111 Oldenburg, Germany.
[Bendixen, Alexandra; Thiel, Christiane M.] Carl von Ossietzky Univ Oldenburg, Res Ctr Neurosensory Sci, D-26111 Oldenburg, Germany.
RP Puschmann, S (reprint author), Carl von Ossietzky Univ Oldenburg, European Med Sch, Cluster Excellence Hearing4all, Biol Psychol Lab,Dept Psychol, D-26111 Oldenburg, Germany.
EM sebastian.puschmann@uni-oldenburg.de
FU German Research Foundation (Deutsche Forschungsgemeinschaft, DFG;
Cluster of Excellence "Hearing4a11) [EXC 1077/1]
FX This work was funded by the German Research Foundation (Deutsche
Forschungsgemeinschaft, DFG; Cluster of Excellence EXC 1077/1
"Hearing4a11). The authors wish to thank the Horzentrum Oldenburg for
their support in recruiting participants as well as Maria Schmolling and
Marita Weerts-Eden for their assistance in data acquisition. The helpful
comments of two anonymous reviewers are gratefully acknowledged.
CR Armstrong BA, 2002, COGNITIVE BRAIN RES, V14, P422, DOI 10.1016/S0926-6410(02)00211-2
Auer Jr T.E., 2007, NEUROREPORT, V18, P645
Baskent D, 2011, EAR HEARING, V32, P582, DOI 10.1097/AUD.0b013e31820fca23
Bavelier D, 2002, NAT REV NEUROSCI, V3, P443, DOI 10.1038/nrn848
Bendixen A, 2010, NEUROPSYCHOLOGIA, V48, P2130, DOI 10.1016/j.neuropsychologia.2010.04.004
Bergeson TR, 2010, RESTOR NEUROL NEUROS, V28, P157, DOI 10.3233/RNN-2010-0522
Brault Lynn M, 2010, Hum Factors, V52, P479
Butler Blake E, 2013, Front Syst Neurosci, V7, P92, DOI 10.3389/fnsys.2013.00092
Campbell J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0090594
Cardin V, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2463
Champoux F, 2009, NEUROPSYCHOLOGIA, V47, P17, DOI 10.1016/j.neuropsychologia.2008.08.028
Desai S, 2008, J ACOUST SOC AM, V123, P428, DOI 10.1121/1.2816573
Dormal G, 2011, J NEUROPHYSIOL, V105, P2627, DOI 10.1152/jn.00109.2011
Fine I, 2005, J COGNITIVE NEUROSCI, V17, P1621, DOI 10.1162/089892905774597173
Finney EM, 2001, NAT NEUROSCI, V4, P1171, DOI 10.1038/nn763
Griffiths TD, 2004, NAT REV NEUROSCI, V5, P887, DOI 10.1038/nrn1538
Guerreiro MJS, 2011, PSYCHOL AGING, V26, P415, DOI 10.1037/a0021507
Guerreiro MJS, 2013, ACTA PSYCHOL, V142, P184, DOI 10.1016/j.actpsy.2012.11.007
Hauthal N, 2013, ADV COGN PSYCHOL, V9, P53, DOI [10.2478/v10053-008-0131-z, 10.5709/acp-0131-z]
Huddleston WE, 2003, PERCEPTION, V32, P1141, DOI 10.1068/p5077
Kalbe E, 2004, INT J GERIATR PSYCH, V19, P136, DOI 10.1002/gps.1042
Kavcic V, 2013, INT J PSYCHOPHYSIOL, V89, P78, DOI 10.1016/j.ijpsycho.2013.05.012
Kral A, 2007, INT J AUDIOL, V46, P479, DOI 10.1080/14992020701383027
Lambertz N, 2005, COGNITIVE BRAIN RES, V25, P884, DOI 10.1016/j.cogbrainres.2005.09.010
Landry S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033113
Landry SP, 2013, PSYCHOL SCI, V24, P1260, DOI 10.1177/0956797612471142
Liu XZ, 2007, J PATHOL, V211, P188, DOI 10.1002/path.2102
Lomber SG, 2010, NAT NEUROSCI, V13, P1421, DOI 10.1038/nn.2653
Merabet LB, 2010, NAT REV NEUROSCI, V11, P44, DOI 10.1038/nrn2758
Meredith MA, 2012, NEUROSCIENCE, V214, P136, DOI 10.1016/j.neuroscience.2012.04.001
Mitchell TV, 2007, INT J AUDIOL, V46, P500, DOI 10.1080/14992020701383050
Musacchia G, 2009, EAR HEARING, V30, P505, DOI 10.1097/AUD.0b013e3181a7f5b7
Pichora-Fuller M Kathleen, 2006, Trends Amplif, V10, P29, DOI 10.1177/108471380601000103
Picou EM, 2011, J SPEECH LANG HEAR R, V54, P1416, DOI 10.1044/1092-4388(2011/10-0154)
Picou EM, 2013, EAR HEARING, V34, pe52, DOI 10.1097/AUD.0b013e31827f0431
Rönnberg Jerker, 2013, Front Syst Neurosci, V7, P31, DOI 10.3389/fnsys.2013.00031
Rouger J, 2012, HUM BRAIN MAPP, V33, P1929, DOI 10.1002/hbm.21331
Rouger J, 2007, P NATL ACAD SCI USA, V104, P7295, DOI 10.1073/pnas.0609419104
Rouger J, 2008, BRAIN RES, V1188, P87, DOI 10.1016/j.brainres.2007.10.049
Sadato N, 2005, CEREB CORTEX, V15, P1113, DOI 10.1093/cercor/bhh210
Sandmann P, 2012, BRAIN, V135, P555, DOI 10.1093/brain/awr329
Tremblay C, 2010, RESTOR NEUROL NEUROS, V28, P283, DOI 10.3233/RNN-2010-0498
Tye-Murray N, 2007, EAR HEARING, V28, P656, DOI 10.1097/AUD.0b013e31812f7185
Van Eyken E, 2007, AUDIOL NEURO-OTOL, V12, P345, DOI 10.1159/000106478
Wagemans J, 2012, PSYCHOL BULL, V138, P1172, DOI 10.1037/a0029333
World Medical Association, 2008, ETH PRINC MED RES IN
Zahnert T, 2011, DTSCH ARZTEBL INT, V108, P433, DOI 10.3238/arztebl.2011.0433
NR 47
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2014
VL 316
BP 28
EP 36
DI 10.1016/j.heares.2014.07.005
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AS0EO
UT WOS:000343951300003
PM 25080386
ER
PT J
AU Yang, M
Chen, HJ
Liu, B
Huang, ZC
Feng, Y
Li, J
Chen, JY
Zhang, LL
Ji, H
Feng, X
Zhu, X
Teng, GJ
AF Yang, Ming
Chen, Hua-Jun
Liu, Bin
Huang, Zhi-Chun
Feng, Yuan
Li, Jing
Chen, Jing-Ya
Zhang, Ling-Ling
Ji, Hui
Feng, Xu
Zhu, Xin
Teng, Gao-Jun
TI Brain structural and functional alterations in patients with unilateral
hearing loss
SO HEARING RESEARCH
LA English
DT Article
ID VOXEL-BASED MORPHOMETRY; OLDER-ADULTS; DIFFUSION ANISOTROPY;
AUDITORY-CORTEX; EARLY DEAFNESS; SIGN-LANGUAGE; DEFAULT-MODE; CHILDREN;
NETWORKS; CONNECTIVITY
AB Alterations of brain structure and functional connectivity have been described in patients with hearing impairments due to distinct pathogenesis; however, the influence of unilateral hearing loss (UHL) On brain morphology and regional brain activity is still not completely understood. In this study, we aim to investigate regional brain structural and functional alterations in patients with UHL. T1-weighted volumetric images and task-free fMRIs were acquired from 14 patients with right-sided UHL (pure tone average >= 40 dB HL) and 19 healthy controls. Hearing ability was assessed by pure tone audiometry. Voxel-based morphometry (VBM) was performed to detect brain regions with changed gray matter volume or white matter volume in UHL The amplitude of low-frequency fluctuation (ALFF) was calculated to analyze brain activity at the baseline and was compared between two groups. Compared with controls, UHL patients showed decreased gray matter volume in bilateral posterior cingulate gyrus and precuneus, left superior/middle/inferior temporal gyrus, and right parahippocampal gyrus and lingual gyrus. Meanwhile, patients showed significantly decreased ALFF in bilateral precuneus, left inferior parietal lobule, and right inferior frontal gyrus and insula and increased ALFF in right inferior and middle temporal gyrus. These findings suggest that chronic UHL could induce brain morphological changes and is associated with aberrant baseline brain activity. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Yang, Ming; Chen, Hua-Jun; Liu, Bin; Feng, Yuan; Li, Jing; Chen, Jing-Ya; Zhang, Ling-Ling; Teng, Gao-Jun] Southeast Univ, Zhong Da Hosp, Dept Radiol, Nanjing 210009, Jiangsu, Peoples R China.
[Huang, Zhi-Chun; Ji, Hui; Feng, Xu; Zhu, Xin] Southeast Univ, Dept Otorhinolaryngol & Head Neck Surg, Nanjing 210009, Jiangsu, Peoples R China.
RP Yang, M (reprint author), Southeast Univ, Zhong Da Hosp, Dept Radiol, Nanjing 210009, Jiangsu, Peoples R China.
EM yangming19710217@163.com; gjteng@vip.sina.com
FU project of the excellent teachers of Jiangsu Provincial Department of
Education; National Science Foundation of China [30970808]; overseas
great teacher project of Southeast University
FX The study was supported by the project of the excellent teachers of
Jiangsu Provincial Department of Education and was partly supported by
National Science Foundation of China (Grant No. 30970808) and the
overseas great teacher project of Southeast University.
CR Ashburner J, 2005, NEUROIMAGE, V26, P839, DOI 10.1016/j.neuroimage.2005.02.018
Ashburner J, 2007, NEUROIMAGE, V38, P95, DOI 10.1016/j.neuroimage.2007.07.007
Bavelier D, 2001, J NEUROSCI, V21, P8931
Boi R, 2012, GERIATR GERONTOL INT, V12, P440, DOI 10.1111/j.1447-0594.2011.00789.x
Borton SA, 2010, AM J AUDIOL, V19, P61, DOI [10.1044/1059-0889(2010/07-0043), 10.1044/1059-0889(2010/07-0043]
Boyen K, 2013, HEARING RES, V295, P67, DOI 10.1016/j.heares.2012.02.010
Burton H, 2012, BMC NEUROSCI, V13, DOI 10.1186/1471-2202-13-3
Chang YM, 2004, NEUROREPORT, V15, P1699, DOI 10.1097/01.wnr.0000134584.10207.1a
Chilosi AM, 2010, DEV MED CHILD NEUROL, V52, P856, DOI 10.1111/j.1469-8749.2010.03621.x
Emmorey K, 2003, P NATL ACAD SCI USA, V100, P10049, DOI 10.1073/pnas.1730169100
Fetterman BL, 1996, AM J OTOL, V17, P529
Fortnum HM, 2002, INT J AUDIOL, V41, P170, DOI 10.3109/14992020209077181
Gaab N, 2008, HUM BRAIN MAPP, V29, P858, DOI 10.1002/hbm.20578
Han Y, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0028664
Hu SW, 2010, NEUROIMAGE, V49, P3027, DOI 10.1016/j.neuroimage.2009.11.051
Husain E.T., 2014, HEARING RES, V307, P153
Husain FT, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026639
Husain FT, 2011, BRAIN RES, V1369, P74, DOI 10.1016/j.brainres.2010.10.095
Kiely KM, 2012, J GERONTOL A-BIOL, V67, P997, DOI 10.1093/gerona/gls066
Kim DJ, 2009, NEUROREPORT, V20, P1032, DOI 10.1097/WNR.0b013e32832e0cdd
Koravand A, 2013, CLIN NEUROPHYSIOL, V124, P1439, DOI 10.1016/j.clinph.2013.01.016
Kuhn M, 2011, TRENDS AMPLIF, V15, P91, DOI 10.1177/1084713811408349
Langers DRM, 2011, NEUROIMAGE, V55, P1617, DOI 10.1016/j.neuroimage.2011.01.019
Li JH, 2012, BRAIN RES, V1430, P35, DOI 10.1016/j.brainres.2011.09.057
Li YY, 2013, CEREB CORTEX, V23, P1988, DOI 10.1093/cercor/bhs185
Lin FR, 2011, J GERONTOL A-BIOL, V66, P1131, DOI 10.1093/gerona/glr115
Lin FR, 2013, JAMA INTERN MED, V173, P293, DOI 10.1001/jamainternmed.2013.1868
Lin MY, 2004, J AM GERIATR SOC, V52, P1996, DOI 10.1111/j.1532-5415.2004.52554.x
Lin Y, 2008, J MAGN RESON IMAGING, V28, P598, DOI 10.1002/jmri.21464
Lorenz I, 2009, NEUROSCI LETT, V453, P225, DOI 10.1016/j.neulet.2009.02.028
Mantini D, 2007, P NATL ACAD SCI USA, V104, P13170, DOI 10.1073/pnas.0700668104
Menon V, 2010, BRAIN STRUCT FUNCT, V214, P655, DOI 10.1007/s00429-010-0262-0
Meyer M, 2007, RESTOR NEUROL NEUROS, V25, P335
Moore JK, 1997, ANN OTO RHINOL LARYN, V106, P385
Musacchia G, 2009, EAR HEARING, V30, P505, DOI 10.1097/AUD.0b013e3181a7f5b7
Nelson SM, 2010, BRAIN STRUCT FUNCT, V214, P669, DOI 10.1007/s00429-010-0260-2
Noppeney U, 2002, NEUROIMAGE, V15, P917, DOI 10.1006/nimg.2001.1016
Oakes TR, 2007, NEUROIMAGE, V34, P500, DOI 10.1016/j.neuroimage.2006.10.007
Oates PA, 2002, EAR HEARING, V23, P399, DOI 10.1097/01.AUD.0000034777.12562.31
Ojemann GA, 2002, NAT NEUROSCI, V5, P64, DOI 10.1038/nn785
Price CJ, 2000, J ANAT, V197, P335, DOI 10.1046/j.1469-7580.2000.19730335.x
Raichle ME, 2001, P NATL ACAD SCI USA, V98, P676, DOI 10.1073/pnas.98.2.676
Ronnberg J, 2011, J SPEECH LANG HEAR R, V54, P705, DOI 10.1044/1092-4388(2010/09-0088)
Schmidt SA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0076488
Schneider P, 2002, NAT NEUROSCI, V5, P688, DOI 10.1038/nn871
SELEMON LD, 1988, J NEUROSCI, V8, P4049
Shibata DK, 2007, AM J NEURORADIOL, V28, P243
Skudlarski P, 2010, BIOL PSYCHIAT, V68, P61, DOI 10.1016/j.biopsych.2010.03.035
Smith SM, 2009, NEUROIMAGE, V44, P83, DOI 10.1016/j.neuroimage.2008.03.061
Surprenant Aimee M, 2014, Evid Based Nurs, V17, P60, DOI 10.1136/eb-2013-101375
Talavage TM, 2014, HEARING RES, V307, P4, DOI 10.1016/j.heares.2013.09.009
Thai-Van H., 2009, ACTA OTO-LARYNGOL, V130, P333
Tibbetts K, 2011, OTOLARYNG HEAD NECK, V144, P602, DOI 10.1177/0194599810394954
Tomasi D, 2012, MOL PSYCHIATR, V17, P841, DOI 10.1038/mp.2011.177
Wang ZQ, 2011, HUM BRAIN MAPP, V32, P1720, DOI 10.1002/hbm.21140
Weisberg J, 2012, NEUROIMAGE, V60, P661, DOI 10.1016/j.neuroimage.2011.12.031
Yang H, 2007, NEUROIMAGE, V36, P144, DOI 10.1016/j.neuroimage.2007.01.054
Zang YF, 2007, BRAIN DEV-JPN, V29, P83, DOI 10.1016/j.braindev.2006.07.002
Zielinski BA, 2010, P NATL ACAD SCI USA, V107, P18191, DOI 10.1073/pnas.1003109107
NR 59
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2014
VL 316
BP 37
EP 43
DI 10.1016/j.heares.2014.07.006
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AS0EO
UT WOS:000343951300004
PM 25093284
ER
PT J
AU Hughes, ML
Baudhuin, JL
Goehring, JL
AF Hughes, Michelle L.
Baudhuin, Jacquelyn L.
Goehring, Jenny L.
TI The relation between auditory-nerve temporal responses and perceptual
rate integration in cochlear implants
SO HEARING RESEARCH
LA English
DT Article
ID PULSATILE ELECTRICAL-STIMULATION; PULSE TRAINS; TELEMETRY; FIBERS;
USERS; ECAP; THRESHOLDS; RECIPIENTS; AMPLITUDE; STRATEGY
AB The purpose of this study was to examine auditory-nerve temporal response properties and their relation to psychophysical threshold for electrical pulse trains of varying rates ("rate integration"). The primary hypothesis was that better rate integration (steeper slope) would be correlated with smaller decrements in ECAP amplitude as a function of stimulation rate (shallower slope of the amplitude-rate function), reflecting a larger percentage of the neural population contributing more synchronously to each pulse in the train. Data were obtained for 26 ears in 23 cochlear-implant recipients. Electrically evoked compound action potential (ECAP) amplitudes were measured in response to each of 21 pulses in a pulse train for the following rates: 900, 1200, 1800, 2400, and 3500 pps. Psychophysical thresholds were obtained using a 3-interval, forced-choice adaptive procedure for 300-ms pulse trains of the same rates as used for the ECAP measures, which formed the rate-integration function. For each electrode, the slope of the psychophysical rate-integration function was compared to the following ECAP measures: (I) slope of the function comparing average normalized ECAP amplitude across pulses versus stimulation rate ("adaptation"), (2) the rate that produced the maximum alternation depth across the pulse train, and (3) rate at which the alternating pattern ceased (stochastic rate). Results showed no significant relations between the slope of the rate-integration function and any of the ECAP measures when data were collapsed across subjects. However, group data showed that both threshold and average ECAP amplitude decreased with increased stimulus rate, and within-subject analyses showed significant positive correlations between psychophysical thresholds and mean ECAP response amplitudes across the pulse train. These data suggest that ECAP temporal response patterns are complex and further study is required to better understand the relative contributions of adaptation, desynchronization, and firing probabilities of individual neurons that contribute to the aggregate ECAP response. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Hughes, Michelle L.; Baudhuin, Jacquelyn L.; Goehring, Jenny L.] Boys Town Natl Res Hosp, Omaha, NE 68131 USA.
RP Hughes, ML (reprint author), Boys Town Natl Res Hosp, 425 North 30th St, Omaha, NE 68131 USA.
EM michelle.hughes@boystown.org
FU NIH/NIDCD [R01 DC009595, T35 DC008757, P30 DC04662]
FX This research was supported by NIH/NIDCD R01 DC009595, T35 DC008757, and
P30 DC04662. The content of this project is solely the responsibility of
the authors and does not necessarily represent the official views of the
National Institute on Deafness and Other Communication Disorders or the
National Institutes of Health. The authors thank Tom Creutz for data
collection and analysis programs; Leonid Litvak (Advanced Bionics) for
BEDCS support; Lisa Stille, Erin Castioni, and Donna Neff for assistance
with data collection; and Rachel Scheperle for feedback on earlier
versions of this manuscript.
CR Botros A, 2010, EAR HEARING, V31, P380, DOI 10.1097/AUD.0b013e3181cb41aa
Brill SM, 1997, AM J OTOL, V18, pS104
Brown CJ, 1998, AM J OTOL, V19, P320
Brown CJ, 1996, J SPEECH HEAR RES, V39, P453
Cartee LA, 2000, HEARING RES, V146, P143, DOI 10.1016/S0378-5955(00)00109-X
Donaldson GS, 1997, J ACOUST SOC AM, V101, P3706, DOI 10.1121/1.418330
Finley C., 1997, 6 NIH
Friesen LM, 2005, AUDIOL NEURO-OTOL, V10, P169, DOI 10.1159/000084027
Haenggeli A, 1998, AUDIOLOGY, V37, P353
Hay-McCutcheon MJ, 2005, J ACOUST SOC AM, V118, P2444, DOI 10.1121/1.2035593
Holden LK, 2002, EAR HEARING, V23, P463, DOI 10.1097/01.AUD.0000034718.53595.99
Hughes ML, 2012, HEARING RES, V285, P46, DOI 10.1016/j.heares.2012.01.010
Hughes ML, 2010, EAR HEARING, V31, P679, DOI 10.1097/AUD.0b013e3181e1d19e
Kiefer J., 2000, COCHLEAR IMPLANTS
Kreft HA, 2004, J ACOUST SOC AM, V116, P2258, DOI 10.1121/1.1786871
Litvak L, 2001, J ACOUST SOC AM, V110, P368, DOI 10.1121/1.1375140
Litvak LM, 2003, J ACOUST SOC AM, V114, P2066, DOI 10.1121/1.1612492
Loizou PC, 2000, J ACOUST SOC AM, V108, P790, DOI 10.1121/1.429612
Matsuoka AJ, 2000, HEARING RES, V149, P115, DOI 10.1016/S0378-5955(00)00172-6
McKay CM, 2013, JARO-J ASSOC RES OTO, V14, P879, DOI 10.1007/s10162-013-0417-9
McKay CM, 2005, EAR HEARING, V26, p38S, DOI 10.1097/00003446-200508001-00006
McKay CM, 1998, J ACOUST SOC AM, V104, P1061, DOI 10.1121/1.423316
Middlebrooks JC, 2004, J ACOUST SOC AM, V116, P452, DOI 10.1121/1.1760795
Miller CA, 2008, JARO-J ASSOC RES OTO, V9, P122, DOI 10.1007/s10162-007-0108-5
Miller CA, 2000, EAR HEARING, V21, P280, DOI 10.1097/00003446-200008000-00003
Morsnowski A., 2006, AUDIOL NEUROTOL, V11, P38
Pfingst BE, 2011, J ACOUST SOC AM, V130, P3954, DOI 10.1121/1.3651820
Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3
SHANNON RV, 1985, HEARING RES, V18, P135, DOI 10.1016/0378-5955(85)90005-X
Vandali AE, 2000, EAR HEARING, V21, P608, DOI 10.1097/00003446-200012000-00008
Wilson BS, 1997, AM J OTOL, V18, pS30
Zhang FW, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0084631
Zhang F, 2007, JARO-J ASSOC RES OTO, V8, P356, DOI 10.1007/s10162-007-0086-7
Zhou N, 2012, HEARING RES, V284, P25, DOI 10.1016/j.heares.2011.12.008
NR 34
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2014
VL 316
BP 44
EP 56
DI 10.1016/j.heares.2014.07.007
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AS0EO
UT WOS:000343951300005
PM 25093283
ER
PT J
AU Zong, L
Chen, KT
Zhou, W
Jiang, D
Sun, L
Zhang, XM
Jiang, HY
AF Zong, Ling
Chen, Kaitian
Zhou, Wei
Jiang, Di
Sun, Liang
Zhang, Xuemei
Jiang, Hongyan
TI Inner ear stem cells derived feeder layer promote directional
differentiation of amniotic fluid stem cells into functional neurons
SO HEARING RESEARCH
LA English
DT Article
ID SPIRAL GANGLION NEURONS; MOUSE; PROGENITORS; SOX2; PROLIFERATION;
EXPRESSION; COCHLEA; CULTURE; GROWTH; ORGAN
AB Intact spiral ganglion neurons are required for cochlear implantation or conventional hearing amplification as an intervention for sensorineural hearing loss. Treatment strategies to replace the loss of spiral ganglion neurons are needed. Recent reports have suggested that amniotic fluid-derived stem cells are capable of differentiating into neuron-like cells in response to cytokines and are not tumorigenic. Amniotic fluid stem cells represent a potential resource for cellular therapy of neural deafness due to spiral ganglion pathology. However, the directional differentiation of amniotic fluid stem cells is undetermined in the absence of cytokines and the consequence of inner ear supporting cells from the mouse cochlea organ of Corti on the differentiation of amniotic fluid stem cells remains to be defined. In an effort to circumvent these limitations, we investigated the effect of inner ear stem cells derived feeder layer on amniotic fluid stem cells differentiation in vitro. An inner ear stem cells derived feeder layer direct contact system was established to induce differentiation of amniotic fluid stem cells. Our results showed that inner ear stem cells derived feeder layer successfully promoted directional differentiation of amniotic fluid stem cells into neurons with characteristics of functionality. Furthermore, we showed that Wnt signaling may play an essential role in triggering neurogenesis. These findings indicate the potential use of inner ear stem cells derived feeder layer as a nerve-regenerative scaffold. A reliable and effective amniotic fluid stem cell differentiation support structure provided by inner ear stem cells derived feeder layer should contribute to efforts to translate cell-based strategies to the clinic. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Zong, Ling; Chen, Kaitian; Zhou, Wei; Jiang, Di; Sun, Liang; Zhang, Xuemei; Jiang, Hongyan] Sun Yat Sen Univ, Affiliated Hosp 1, Dept Otorhinolaryngol, Guangzhou 510080, Guangdong, Peoples R China.
[Zong, Ling; Chen, Kaitian; Zhou, Wei; Jiang, Di; Sun, Liang; Zhang, Xuemei; Jiang, Hongyan] Sun Yat Sen Univ, Inst Otorhinolaryngol, Guangzhou 510080, Guangdong, Peoples R China.
[Jiang, Di] Dongguan Peoples Hosp, Dept Otorhinolaryngol, Dongguan 523059, Peoples R China.
[Sun, Liang] Hainan Gen Hosp, Dept Otorhinolaryngol, Haikou 570311, Peoples R China.
[Zhang, Xuemei] Hebei Med Univ, Hosp 2, Dept Otorhinolaryngol, Shijiazhuang 050000, Hebei, Peoples R China.
RP Jiang, HY (reprint author), Sun Yat Sen Univ, Affiliated Hosp 1, Dept Otorhinolaryngol, Guangzhou 510080, Guangdong, Peoples R China.
EM hyjiangus@163.com
FU National Basic Research Program of China [2011CB504502]; National
Natural Science fund of China [81271076, 81200748]; Minster of Health of
China [201202005]
FX The study was supported by grants from the National Basic Research
Program of China (No. 2011CB504502), the National Natural Science fund
of China (No. 81271076 and No. 81200748) and the Minster of Health of
China (No. 201202005).
CR Amaral E, 2011, METHODS MOL BIOL, V689, P137, DOI 10.1007/978-1-60761-950-5_8
Atkinson PJ, 2011, HEARING RES, V278, P77, DOI 10.1016/j.heares.2011.04.011
Bas E, 2014, STEM CELLS DEV, V23, P502, DOI 10.1089/scd.2013.0274
Blakely BD, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018373
Chai RJ, 2012, P NATL ACAD SCI USA, V109, P8167, DOI 10.1073/pnas.1202774109
Chen P, 1999, DEVELOPMENT, V126, P1581
Chen W, 2012, NATURE, V490, P278, DOI 10.1038/nature11415
Corrales CE, 2006, J NEUROBIOL, V66, P1489, DOI 10.1002/neu.20310
De Coppi P, 2007, NAT BIOTECHNOL, V25, P100, DOI 10.1038/nbt1274
Donaldson AE, 2009, STEM CELLS DEV, V18, P1003, DOI 10.1089/scd.2008.0300
Donovan PJ, 2001, NAT GENET, V29, P246, DOI 10.1038/ng1101-246
Fauza D, 2004, BEST PRACT RES CL OB, V18, P877, DOI 10.1016/j.bpobgyn.2004.07.001
Ferri ALM, 2004, DEVELOPMENT, V131, P3805, DOI 10.1242/dev.01204
Hirabayashi Y, 2004, DEVELOPMENT, V131, P2791, DOI 10.1242/dev.01165
Hu ZQ, 2005, EXP CELL RES, V302, P40, DOI 10.1016/j.yexer.2004.08.023
In T.A.P., 2003, BLOOD, V102, P1548
Kleber M, 2004, CURR OPIN CELL BIOL, V16, P681, DOI 10.1016/j.ceb.2004.08.006
Kondo T, 2011, STEM CELLS, V29, P836, DOI 10.1002/stem.624
McLaughlin D, 2006, J NEUROSCI RES, V83, P1190, DOI 10.1002/jnr.20828
Muroyama Y, 2004, BIOCHEM BIOPH RES CO, V313, P915, DOI 10.1016/j.bbrc.2003.12.023
Neves J, 2007, J COMP NEUROL, V503, P487, DOI 10.1002/cne.21299
Oshima Kazuo, 2009, V493, P141, DOI 10.1007/978-1-59745-523-7_9
Pan GJ, 2002, CELL RES, V12, P321, DOI 10.1038/sj.cr.7290134
Pandit SR, 2011, STEM CELLS, V29, P670, DOI 10.1002/stem.609
Pesce M, 2001, STEM CELLS, V19, P271, DOI 10.1634/stemcells.19-4-271
Pevny LH, 2010, INT J BIOCHEM CELL B, V42, P421, DOI 10.1016/j.biocel.2009.08.018
Prusa A. R., 2002, MED SCI MONITOR, V8, pRA253
Prusa AR, 2003, HUM REPROD, V18, P1489, DOI 10.1093/humrep/deg279
Prusa AR, 2004, AM J OBSTET GYNECOL, V191, P309, DOI 10.1016/j.ajog.2003.12.014
RYAN TA, 1993, NEURON, V11, P713, DOI 10.1016/0896-6273(93)90081-2
Shi FX, 2012, J NEUROSCI, V32, P9639, DOI 10.1523/JNEUROSCI.1064-12.2012
Tang K, 2002, BIOCHEM BIOPH RES CO, V293, P167, DOI 10.1016/S0006-291X(02)00215-2
Tsai MS, 2004, HUM REPROD, V19, P1450, DOI 10.1093/humrep/deh279
Tsai MS, 2006, BIOL REPROD, V74, P545, DOI 10.1095/biolreprod.105.046029
Wodarz A, 1998, ANNU REV CELL DEV BI, V14, P59, DOI 10.1146/annurev.cellbio.14.1.59
Xu NY, 2012, HEARING RES, V283, P33, DOI 10.1016/j.heares.2011.11.010
Zhang M, 2011, CANCER LETT, V303, P108, DOI 10.1016/j.canlet.2011.01.017
ZSEBO KM, 1990, CELL, V63, P213, DOI 10.1016/0092-8674(90)90302-U
NR 38
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2014
VL 316
BP 57
EP 64
DI 10.1016/j.heares.2014.07.012
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AS0EO
UT WOS:000343951300006
PM 25124154
ER
PT J
AU Wurfel, W
Lanfermann, H
Lenarz, T
Majdani, O
AF Wuerfel, Waldemar
Lanfermann, Heinrich
Lenarz, Thomas
Majdani, Omid
TI Cochlear length determination using Cone Beam Computed Tomography in a
clinical setting
SO HEARING RESEARCH
LA English
DT Article
ID DEEP ELECTRODE INSERTION; AIDED 3-DIMENSIONAL RECONSTRUCTION; INNER-EAR;
IMPLANT; TRAUMA; HEARING; ORGAN; CORTI; PRESERVATION; PERCEPTION
AB Indications for cochlear implants are determined by audiological and medical considerations. Clinical imaging is therefore an integral element for anatomical evaluation in terms of medical considerations. Several authors have discussed the variability of cochlear shape, especially cochlear length. Cochlear length is, however, an increasingly recognized parameter in terms of preoperative evaluation. This study introduces a methodology to determine individual cochlear length in clinical setting by using Cone Beam Computed Tomography. Cochlear length determination was performed retrospectively with an OsiriX curved 3D Multiplanar Reconstruction tool on subjects who underwent temporal bone imaging from January 2011 to February 2013. Cochlear length was defined as the spiral route from the center-distal point of the bony round window along the lateral wall towards the helicotrema, which is the endpoint of the measurement. Cochlear length was measured in 436 temporal bones (218 left ears, 218 right ears, 218 subjects). The mean cochlear length was 37.6 mm (SD: +/- 1.93 mm), median was 37.6 mm, range 32-43.5 mm. The cochlear length had a normal distribution. A significant difference was found between cochlear length by gender (p < .0001), but not between the left and right cochlea (p = .301) or according to age. Consideration of the cochlear length in clinical data may be an insufficiently represented parameter in cochlear implant treatment. Literature shows the impact of electrode insertion depth on residual hearing preservation and speech performance. Individual evaluation of the cochlear implant electrode choice may be the next step in personalized cochlear implant treatment as a valuable addition to existing audiological and surgical evaluation. The cochlear length determination methodology presented herein is a reproducible and clinically available parameter. Indeed, revealing a significant cochlear length span width, especially according to gender differences, may be assumed as hardly ignorable. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Wuerfel, Waldemar; Lenarz, Thomas; Majdani, Omid] Hannover Med Sch, Dept Otorhinolaryngol, D-30625 Hannover, Germany.
[Lanfermann, Heinrich] Hannover Med Sch, Inst Neuroradiol, D-30625 Hannover, Germany.
RP Wurfel, W (reprint author), Hannover Med Sch, Dept Otorhinolaryngol, Carl Neuberg Str 1, D-30625 Hannover, Germany.
EM Wuerfel.Waldemar@mh-hannover.de
CR Adunka O, 2005, ARCH OTOLARYNGOL, V131, P488, DOI 10.1001/archotol.131.6.488
Adunka O, 2004, ORL J OTO-RHINO-LARY, V66, P306, DOI 10.1159/000081887
Adunka O, 2006, OTOLARYNG HEAD NECK, V135, P374, DOI 10.1016/j.otohns.2006.05.002
Aschendorff A., 2007, EAR HEAR, V28
Boex C, 2006, JARO-J ASSOC RES OTO, V7, P110, DOI 10.1007/s10162-005-0027-2
Briggs Robert J S, 2011, Cochlear Implants Int, V12, P129, DOI 10.1179/1754762811Y0000000007
CochlearTM, COCHL NUCL EL PORTF
Colletti L, 2012, OTOLARYNG HEAD NECK, V147, P139, DOI 10.1177/0194599812441572
De Raeve L, 2010, OTOL NEUROTOL, V31, P1261, DOI 10.1097/MAO.0b013e3181f1cde3
Dorman MF, 2007, JARO-J ASSOC RES OTO, V8, P234, DOI 10.1007/s10162-007-0071-1
Erixon E, 2009, OTOL NEUROTOL, V30, P14, DOI 10.1097/MAO.0b013e31818a08e8
Erixon E., 2013, ACTA OTO-LARYNGOL, P1
Escudé Bernard, 2006, Audiol Neurootol, V11 Suppl 1, P27, DOI 10.1159/000095611
Finley CC, 2008, OTOL NEUROTOL, V29, P920, DOI 10.1097/MAO.0b013e318184f492
Gani M, 2007, JARO-J ASSOC RES OTO, V8, P69, DOI 10.1007/s10162-006-0065-4
Grewe J, 2013, AM J AUDIOL, V22, P65, DOI 10.1044/1059-0889(2012/12-0039)
Gstoettner W, 1997, ACTA OTO-LARYNGOL, V117, P274, DOI 10.3109/00016489709117786
Gstottner W, 2005, HNO, V53, P784, DOI 10.1007/s00106-004-1170-5
Hardy M, 1938, AM J ANAT, V62, P291, DOI 10.1002/aja.1000620204
Helbig S, 2011, ACTA OTO-LARYNGOL, V131, P585, DOI 10.3109/00016489.2010.544327
Hochmair I, 2003, ACTA OTO-LARYNGOL, V123, P612, DOI 10.1080/00016480310001844
Kawano A, 1996, ANN OTO RHINOL LARYN, V105, P701
KENNEDY DW, 1987, LARYNGOSCOPE, V97, P42
Ketten DR, 1998, ANN OTO RHINOL LARYN, V107, P1
Lenarz Thomas, 2006, Audiol Neurootol, V11 Suppl 1, P34, DOI 10.1159/000095612
Lenarz T, 2013, INT J AUDIOL, V52, P838, DOI 10.3109/14992027.2013.802032
Lenarz T, 2009, AUDIOL NEURO-OTOL, V14, P22, DOI 10.1159/000206492
MED-EL, 2012, MED E EL PORTF
Miller JD, 2007, J ACOUST SOC AM, V121, pEL151, DOI 10.1121/1.2710746
Noble JH, 2013, IEEE T NEUR SYS REH, V21, P820, DOI 10.1109/TNSRE.2013.2253333
Pollak A, 1987, Acta Otolaryngol Suppl, V436, P37
Rask-Andersen H, 2012, ANAT REC, V295, P1791, DOI 10.1002/ar.22599
Rau TS, 2011, INT J COMPUT ASS RAD, V6, P421, DOI 10.1007/s11548-010-0520-x
Rau TS, 2013, INT J COMPUT ASS RAD, V8, P481, DOI 10.1007/s11548-013-0825-7
Retzius G., 1884, GEHORORGAN WIRBELTHI
SATO H, 1991, ACTA OTO-LARYNGOL, V111, P1037, DOI 10.3109/00016489109138447
SHEPHERD RK, 1985, ANN OTO RHINOL LARYN, V94, P55
Stakhovskaya O, 2007, JARO-J ASSOC RES OTO, V8, P220, DOI 10.1007/s10162-007-0076-9
TAKAGI A, 1989, ANN OTO RHINOL LARYN, V98, P515
ULEHLOVA L, 1987, HEARING RES, V28, P149, DOI 10.1016/0378-5955(87)90045-1
WALBY AP, 1985, ANN OTO RHINOL LARYN, V94, P393
WELLING DB, 1993, LARYNGOSCOPE, V103, P995
NR 42
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2014
VL 316
BP 65
EP 72
DI 10.1016/j.heares.2014.07.013
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AS0EO
UT WOS:000343951300007
PM 25124151
ER
PT J
AU Kong, YY
Mullangi, A
Ding, N
AF Kong, Ying-Yee
Mullangi, Ala
Ding, Nai
TI Differential modulation of auditory responses to attended and unattended
speech in different listening conditions
SO HEARING RESEARCH
LA English
DT Article
ID EVENT-RELATED POTENTIALS; SELECTIVE ATTENTION; COCKTAIL PARTY; CORTICAL
REPRESENTATION; NEURONAL OSCILLATIONS; TEMPORAL DYNAMICS; NATURAL
SPEECH; PHASE PATTERNS; CORTEX; ENVELOPE
AB This study investigates how top-down attention modulates neural tracking of the speech envelope in different listening conditions. In the quiet conditions, a single speech stream was presented and the subjects paid attention to the speech stream (active listening) or watched a silent movie instead (passive listening). In the competing speaker (CS) conditions, two speakers of opposite genders were presented diotically. Ongoing electroencephalographic (EEG) responses were measured in each condition and cross-correlated with the speech envelope of each speaker at different time lags. In quiet, active and passive listening resulted in similar neural responses to the speech envelope. In the CS conditions, however, the shape of the cross-correlation function was remarkably different between the attended and unattended speech. The cross-correlation with the attended speech showed stronger N1 and P2 responses but a weaker P1 response compared to the cross-correlation with the unattended speech. Furthermore, the N1 response to the attended speech in the CS condition was enhanced and delayed compared with the active listening condition in quiet, while the P2 response to the unattended speaker in the CS condition was attenuated compared with the passive listening in quiet. Taken together, these results demonstrate that top-down attention differentially modulates envelope-tracking neural activity at different time lags and suggest that top-down attention can both enhance the neural responses to the attended sound stream and suppress the responses to the unattended sound stream. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Kong, Ying-Yee] Northeastern Univ, Dept Speech Language Pathol & Audiol, Boston, MA 02115 USA.
[Kong, Ying-Yee; Mullangi, Ala] Northeastern Univ, Bioengn Program, Boston, MA 02115 USA.
[Ding, Nai] NYU, Dept Psychol, New York, NY 10012 USA.
RP Kong, YY (reprint author), Northeastern Univ, Dept Speech Language Pathol & Audiol, 226 Forsyth Bldg,360 Huntington Ave, Boston, MA 02115 USA.
EM yykong@neu.edu
FU NIH [R01-DC-012300]
FX This work was supported by NIH R01-DC-012300. We thank the two anonymous
reviewers for their helpful comments.
CR Aiken SJ, 2008, EAR HEARING, V29, P139
ALAIN C, 1994, PERCEPT PSYCHOPHYS, V56, P501, DOI 10.3758/BF03206947
ALAIN C, 1993, PSYCHOPHYSIOLOGY, V30, P572, DOI 10.1111/j.1469-8986.1993.tb02083.x
ALHO K, 1994, BIOL PSYCHOL, V38, P73, DOI 10.1016/0301-0511(94)90050-7
Bidet-Caulet A, 2010, NEUROIMAGE, V50, P277, DOI 10.1016/j.neuroimage.2009.12.039
Billings CJ, 2011, EAR HEARING, V32, P53, DOI 10.1097/AUD.0b013e3181ec5c46
Chait M., 2010, NEUROPSYCHOLOGIA, V48, P3262
Choi I, 2014, HEARING RES, V314, P10, DOI 10.1016/j.heares.2014.04.008
Crosse MJ, 2014, J NEUROPHYSIOL, V111, P1400, DOI 10.1152/jn.00690.2013
de Cheveigne A, 2008, J NEUROSCI METH, V171, P331, DOI 10.1016/j.jneumeth.2008.03.015
Ding N., 2014, FRONT HUM NEUROSCI, V8
Ding N, 2012, P NATL ACAD SCI USA, V109, P11854, DOI 10.1073/pnas.1205381109
Ding N, 2012, J NEUROPHYSIOL, V107, P78, DOI 10.1152/jn.00297.2011
Golumbic EZ, 2013, J NEUROSCI, V33, P1417, DOI 10.1523/JNEUROSCI.3675-12.2013
HANSEN JC, 1988, PSYCHOPHYSIOLOGY, V25, P316, DOI 10.1111/j.1469-8986.1988.tb01249.x
HILLYARD SA, 1973, SCIENCE, V182, P177, DOI 10.1126/science.182.4108.177
Horton C, 2013, J NEUROPHYSIOL, V109, P3082, DOI 10.1152/jn.01026.2012
Howard MF, 2010, J NEUROPHYSIOL, V104, P2500, DOI 10.1152/jn.00251.2010
Kerlin JR, 2010, J NEUROSCI, V30, P620, DOI 10.1523/JNEUROSCI.3631-09.2010
Lakatos P, 2008, SCIENCE, V320, P110, DOI 10.1126/science.1154735
Lakatos P, 2013, NEURON, V77, P750, DOI 10.1016/j.neuron.2012.11.034
Lalor EC, 2009, J NEUROPHYSIOL, V102, P349, DOI 10.1152/jn.90896.2008
Lalor EC, 2010, EUR J NEUROSCI, V31, P189, DOI 10.1111/j.1460-9568.2009.07055.x
Luo H, 2007, NEURON, V54, P1001, DOI 10.1016/j.neuron.2007.06.004
Melara RD, 2002, J EXP PSYCHOL HUMAN, V28, P279, DOI 10.1037//0096-1523.28.2.279
Mesgarani N, 2012, NATURE, V485, P233, DOI 10.1038/nature11020
Naatanen R., 1992, ATTENTION BRAIN FUNC
Neelon MF, 2006, CLIN NEUROPHYSIOL, V117, P504, DOI 10.1016/j.clinph.2005.11.009
O'Sullivan J., 2014, CEREB CORTEX
OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4
Oostenveld R, 2001, CLIN NEUROPHYSIOL, V112, P713, DOI 10.1016/S1388-2457(00)00527-7
Pasely B.N., 2012, PLOS BIOL, V10
PICTON TW, 1974, ELECTROEN CLIN NEURO, V36, P191, DOI 10.1016/0013-4694(74)90156-4
Power AJ, 2012, EUR J NEUROSCI, V35, P1497, DOI 10.1111/j.1460-9568.2012.08060.x
RIF J, 1991, ELECTROEN CLIN NEURO, V79, P464, DOI 10.1016/0013-4694(91)90166-2
Ross B, 2010, CEREB CORTEX, V20, P1360, DOI 10.1093/cercor/bhp201
Schroeder CE, 2009, TRENDS NEUROSCI, V32, P9, DOI 10.1016/j.tins.2008.09.012
Snyder JS, 2006, J COGNITIVE NEUROSCI, V18, P1, DOI 10.1162/089892906775250021
Teder-Salejarvi WA, 1999, COGNITIVE BRAIN RES, V8, P213, DOI 10.1016/S0926-6410(99)00023-3
NR 39
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2014
VL 316
BP 73
EP 81
DI 10.1016/j.heares.2014.07.009
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AS0EO
UT WOS:000343951300008
PM 25124153
ER
PT J
AU Tanaka, C
Nguyen-Huynh, A
Loera, K
Stark, G
Reiss, L
AF Tanaka, Chiemi
Anh Nguyen-Huynh
Loera, Katherine
Stark, Gemaine
Reiss, Lina
TI Factors associated with hearing loss in a normal-hearing guinea pig
model of hybrid cochlear implants
SO HEARING RESEARCH
LA English
DT Article
ID CHRONIC ELECTRICAL-STIMULATION; SPIRAL GANGLION NEURONS; IMPAIRED
LISTENERS; SPEECH RECOGNITION; RESIDUAL HEARING; NEUROTROPHIC FACTOR;
NERVE DEGENERATION; ARTICULATION INDEX; AUDITORY-NERVE; CELL SURVIVAL
AB The Hybrid cochlear implant (CI), also known as Electro-Acoustic Stimulation (EAS), is a new type of Cl that preserves residual acoustic hearing and enables combined cochlear implant and hearing aid use in the same ear. However, 30-55% of patients experience acoustic hearing loss within days to months after activation, suggesting that both surgical trauma and electrical stimulation may cause hearing loss.
The goals of this study were to: 1) determine the contributions of both implantation surgery and EAS to hearing loss in a normal-hearing guinea pig model; 2) determine which cochlear structural changes are associated with hearing loss after surgery and EAS. Two groups of animals were implanted (n = 6 per group), with one group receiving chronic acoustic and electric stimulation for 10 weeks, and the other group receiving no direct acoustic or electric stimulation during this time frame. A third group (n = 6) was not implanted, but received chronic acoustic stimulation. Auditory brainstem response thresholds were followed over time at 1, 2, 6, and 16 kHz. At the end of the study, the following cochlear measures were quantified: hair cells, spiral ganglion neuron density, fibrous tissue density, and stria vascularis blood vessel density; the presence or absence of ossification around the electrode entry was also noted.
After surgery, implanted animals experienced a range of 0-55 dB of threshold shifts in the vicinity of the electrode at 6 and 16 kHz. The degree of hearing loss was significantly correlated with reduced stria vascularis vessel density and with the presence of ossification, but not with hair cell counts, spiral ganglion neuron density, or fibrosis area. After 10 weeks of stimulation, 67% of implanted, stimulated animals had more than 10 dB of additional threshold shift at 1 kHz, compared to 17% of implanted, non-stimulated animals and 0% of non-implanted animals. This 1-kHz hearing loss was not associated with changes in any of the cochlear measures quantified in this study. The variation in hearing loss after surgery and electrical stimulation in this animal model is consistent with the variation in human patients. Further, these findings illustrate an advantage of a normal-hearing animal model for quantification of hearing loss and damage to cochlear structures without the confounding effects of chemical- or noise-induced hearing loss. Finally, this study is the first to suggest a role of the stria vascularis and damage to the lateral wall in implantation-induced hearing loss. Further work is needed to determine the mechanisms of implantation- and electrical-stimulation-induced hearing loss. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Tanaka, Chiemi; Anh Nguyen-Huynh; Loera, Katherine; Stark, Gemaine; Reiss, Lina] Oregon Hlth & Sci Univ, Dept Otolaryngol, Oregon Hearing Res Ctr, Portland, OR 97239 USA.
RP Tanaka, C (reprint author), Univ Hawaii Manoa, John A Burns Sch Med, Dept Commun Sci & Disorders, 677 Ala Moana Blvd,Suite 625, Honolulu, HI 96816 USA.
EM tanakach@hawaii.edu; nguyanh@ohsu.edu; loerakatherine@gmail.com;
starkg@ohsu.edu; reiss@ohsu.edu
FU NIH-NIDCD grant [P30DC010755, P30DC005983]; NCRR grant [KL2RR024141]
FX This study was funded by a NIH-NIDCD grant P30DC010755, a NCRR grant
KL2RR024141, and a NIH-NIDCD grant P30DC005983 to the Oregon Hearing
Research Center (OHRC). The authors thank Yehoash Raphael and his lab
members at Kresge Hearing Research Institute for cochlear histology
training; Dennis Trune for cochlear histology consultation and for
helpful comments on the manuscript, Xiao-Rui Shi and their lab members
at OHRC and Dalian Ding at State University of New York at Buffalo for
cochlear histology consultation; Paul Abbas and Carolyn Brown at the
University of Iowa, and Manuel Don and Mickey Waring for
electrophysiology consultation; and John Brigande and his lab members at
the OHRC in assistance in cochlear imaging. The authors also thank
Michael Reiss for help with custom cochlear implant assembly design;
Richard Salvi at State University of New York at Buffalo for providing
information for the custom-made animal restraint; David Wozny for
building the restraint; Frank Risi at Cochlear for assistance with
obtaining external cochlear implant components; Guang-Di Chen at State
University of New York at Buffalo for providing ABR loudspeakers; Edward
Porsov and Fangyi Chen at OHRC for troubleshooting equipment problems;
Judy Jin for assistance in statistical analysis.
CR Agterberg MJH, 2010, HEARING RES, V269, P169, DOI 10.1016/j.heares.2010.06.015
Briggs RJS, 2005, ACTA OTO-LARYNGOL, V125, P870, DOI 10.1080/00016480510031489
Ching TYC, 1998, J ACOUST SOC AM, V103, P1128, DOI 10.1121/1.421224
Choi CH, 2005, HEARING RES, V205, P193, DOI 10.1016/j.heares.2005.03.018
Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004
Eshraghi AA, 2013, LARYNGOSCOPE, V123, pS1, DOI 10.1002/lary.23902
Eshraghi AA, 2005, OTOL NEUROTOL, V26, P442, DOI 10.1097/01.mao.0000169791.53201.e1
Gantz BJ, 2003, LARYNGOSCOPE, V113, P1726, DOI 10.1097/00005537-200310000-00012
Gantz BJ, 2009, AUDIOL NEURO-OTOL, V14, P32, DOI 10.1159/000206493
Gfeller Kate E, 2006, Audiol Neurootol, V11 Suppl 1, P12, DOI 10.1159/000095608
GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
Gstoettner WG, 2009, ACTA OTO-LARYNGOL, V129, P372, DOI 10.1080/00016480802552568
HARTSHORN DO, 1991, OTOLARYNG HEAD NECK, V104, P311
Hogan CA, 1998, J ACOUST SOC AM, V104, P432, DOI 10.1121/1.423247
KAMM CA, 1985, J ACOUST SOC AM, V77, P281, DOI 10.1121/1.392269
Kang SY, 2010, JARO-J ASSOC RES OTO, V11, P245, DOI 10.1007/s10162-009-0194-7
Kanzaki S, 2002, J COMP NEUROL, V454, P350, DOI 10.1002/cne.10480
Khan DC, 2000, HEARING RES, V142, P12, DOI 10.1016/S0378-5955(99)00221-X
Kiefer J, 2002, ADV COCHLEAR IMPLANT, P569
Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009
Li L, 1999, HEARING RES, V133, P27, DOI 10.1016/S0378-5955(99)00043-X
Lin H. W., 2011, JARO-J ASSOC RES OTO, V12, P608
LOUSTEAU RJ, 1987, LARYNGOSCOPE, V97, P836
MacArthur CJ, 2006, LARYNGOSCOPE, V116, P1071, DOI 10.1097/01.mlg.0000224527.41288.c4
Miller AL, 2003, BRAIN RES, V966, P218, DOI 10.1016/S0006-8993(02)04170-7
Miller J M, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P57
Mitchell A, 1997, HEARING RES, V105, P30, DOI 10.1016/S0378-5955(96)00202-X
NI DF, 1992, HEARING RES, V62, P63, DOI 10.1016/0378-5955(92)90203-Y
OLEARY MJ, 1991, ANN OTO RHINOL LARYN, V100, P695
O'Leary SJ, 2013, HEARING RES, V298, P27, DOI 10.1016/j.heares.2013.01.012
PAVLOVIC CV, 1984, J ACOUST SOC AM, V75, P1253, DOI 10.1121/1.390731
Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037
Radeloff A, 2007, LARYNGOSCOPE, V117, P58, DOI 10.1097/01.mlg.0000242073.02488.f4
Richard C, 2012, OTOL NEUROTOL, V33, P1181, DOI 10.1097/MAO.0b013e318263d56d
Roland R.S., 2006, ADV OTORHINOLARYNGOL, V64, P11
Santa Maria Peter L, 2013, Otol Neurotol, V34, P526, DOI 10.1097/MAO.0b013e318281e0c9
Scheper V, 2009, J NEUROSCI RES, V87, P1389, DOI 10.1002/jnr.21964
Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564
Shepherd R K, 1983, Acta Otolaryngol Suppl, V399, P19
Snyder D.L, 1994, LAB ANIM, V24, P42
Turner C, 2008, J REHABIL RES DEV, V45, P769, DOI 10.1682/JRRD.2007.05.0065
Turner CW, 2004, J ACOUST SOC AM, V115, P1729, DOI 10.1121/1.1687425
Vivero RJ, 2008, LARYNGOSCOPE, V118, P2028, DOI 10.1097/MLG.0b013e31818173ec
Wang Q, 2011, J NEUROSCI, V31, P7938, DOI 10.1523/JNEUROSCI.1434-10.2011
Wilson BS, 2003, ANNU REV BIOMED ENG, V5, P207, DOI 10.1146/annurev.bioeng.5.040202.121645
Wright CG, 2013, OTOL NEUROTOL, V34, P402, DOI 10.1097/MAO.0b013e318278509a
Xu J, 1997, HEARING RES, V105, P1, DOI 10.1016/S0378-5955(96)00193-1
NR 47
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2014
VL 316
BP 82
EP 93
DI 10.1016/j.heares.2014.07.011
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AS0EO
UT WOS:000343951300009
PM 25128626
ER
PT J
AU Frissen, I
Feron, FX
Guastavino, C
AF Frissen, Ilja
Feron, Francois-Xavier
Guastavino, Catherine
TI Auditory velocity discrimination in the horizontal plane at very high
velocities
SO HEARING RESEARCH
LA English
DT Article
ID SOUND SOURCE; INTENSITY DIFFERENCES; INTERAURAL TIME; HUMAN LISTENERS;
LOCALIZATION; REVERBERATION; DETECTABILITY; MOTION; ANGLES; IMAGE
AB We determined velocity discrimination thresholds and Weber fractions for sounds revolving around the listener at very high velocities. Sounds used were a broadband white noise and two harmonic sounds with fundamental frequencies of 330 Hz and 1760 Hz. Experiment 1 used velocities ranging between 288 degrees/s and 720 degrees/s in an acoustically treated room and Experiment 2 used velocities between 288 degrees/s and 576 degrees/s in a highly reverberant hall. A third experiment addressed potential confounds in the first two experiments. The results show that people can reliably discriminate velocity at very high velocities and that both thresholds and Weber fractions decrease as velocity increases. These results violate Weber's law but are consistent with the empirical trend observed in the literature. While thresholds for the noise and 330 Hz harmonic stimulus were similar, those for the 1760 Hz harmonic stimulus were substantially higher. There were no reliable differences in velocity discrimination between the two acoustical environments, suggesting that auditory motion perception at high velocities is robust against the effects of reverberation. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Frissen, Ilja; Feron, Francois-Xavier; Guastavino, Catherine] McGill Univ, Sch Informat Studies, Multimodal Interact Lab, Montreal, PQ H3A 1X1, Canada.
[Frissen, Ilja; Feron, Francois-Xavier; Guastavino, Catherine] Ctr Interdisciplinary Res Mus Media & Technol, Montreal, PQ H3A 1E3, Canada.
RP Frissen, I (reprint author), McGill Univ, Sch Informat Studies, 3361 Peel St, Montreal, PQ H3A 1X1, Canada.
EM ilja.frissen@mcgill.ca; feron@ircam.fr; catherine.guastavino@mcgill.ca
FU FQRSC [113581]; NSERC [RGPIN 327392-13]
FX This research was supported by FQRSC (113581) and NSERC (RGPIN
327392-13) grants held by C. Guastavino. The authors would like to thank
Julien Boissinot, Yves Methot and Harold Kilianski of the CIRMMT
technical team for their assistance, and Cedric Curlier.
CR Agaeva M, 2004, HEARING RES, V198, P1, DOI 10.1016/j.heares.2004.07.007
ALTMAN JA, 1977, J ACOUST SOC AM, V61, P816, DOI 10.1121/1.381371
Aschoff V., 1962, ARBEITSGEMEINSHAFT F, V138, P7
Beranek L. L., 2004, CONCERT HALLS OPERA, V2nd
BLAUERT J, 1972, AUDIOLOGY, V11, P265
BURNS E, 1977, J ACOUST SOC AM, V62, pS97, DOI 10.1121/1.2016480
Carlile S, 2002, J ACOUST SOC AM, V111, P1026, DOI 10.1121/1.1436067
Devore S, 2009, NEURON, V62, P123, DOI 10.1016/j.neuron.2009.02.018
Drake C., 1993, PERCEPT PSYCHOPHYS, V54, P77
Feron FX, 2010, J ACOUST SOC AM, V128, P3703, DOI 10.1121/1.3502456
Gescheider George A., 1997, PSYCHOPHYSICS FUNDAM
GIGUERE C, 1993, J ACOUST SOC AM, V94, P769
GRANTHAM DW, 1978, J ACOUST SOC AM, V63, P511, DOI 10.1121/1.381751
GRANTHAM DW, 1982, J ACOUST SOC AM, V72, P1178, DOI 10.1121/1.388326
GRANTHAM DW, 1984, J ACOUST SOC AM, V76, P71, DOI 10.1121/1.391009
GRANTHAM DW, 1986, J ACOUST SOC AM, V79, P1939, DOI 10.1121/1.393201
Grantham DW, 2003, J ACOUST SOC AM, V114, P1009, DOI 10.1121/1.1590970
HARRIS JD, 1971, J SPEECH HEAR RES, V14, P618
International Organization for Standardization (ISO), 2004, AC REF ZER CAL AUD 8
MAKOUS JC, 1990, J ACOUST SOC AM, V87, P2188, DOI 10.1121/1.399186
MILLS AW, 1958, J ACOUST SOC AM, V30, P237, DOI 10.1121/1.1909553
Monaghan JJM, 2013, J ACOUST SOC AM, V133, P2288, DOI 10.1121/1.4793270
Nunes E., 1998, E NUNES, P153
Pulkki V, 1997, J AUDIO ENG SOC, V45, P456
Rakerd B., 2005, AUDITORY SIGNAL PROC, P413, DOI 10.1007/0-387-27045-0_51
SABERI K, 1990, J ACOUST SOC AM, V88, P2639, DOI 10.1121/1.399984
Shinn-Cunningham BG, 2003, 2003 IEEE WORKSH APP
Stockhausen K., 1959, REIHE, V5, P67
Thompson ER, 2008, J ACOUST SOC AM, V123, P1017, DOI 10.1121/1.2821800
Verfaille V., 2006, P INT COMP MUS C NEW, P523
WAUGH W, 1979, Journal of Auditory Research, V19, P103
Wichmann FA, 2001, PERCEPT PSYCHOPHYS, V63, P1293, DOI 10.3758/BF03194544
NR 32
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2014
VL 316
BP 94
EP 101
DI 10.1016/j.heares.2014.07.014
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AS0EO
UT WOS:000343951300010
PM 25131340
ER
PT J
AU Leger, AC
Ives, DT
Lorenzi, C
AF Leger, Agnes C.
Ives, David T.
Lorenzi, Christian
TI Abnormal intelligibility of speech in competing speech and in noise in a
frequency region where audiometric thresholds are near-normal for
hearing-impaired listeners
SO HEARING RESEARCH
LA English
DT Article
ID TEMPORAL-FINE-STRUCTURE; AGE-RELATED DIFFERENCES; MASKING RELEASE;
RECEPTION THRESHOLD; PERCEPTUAL SEPARATION; STRUCTURE SENSITIVITY;
MODULATION DETECTION; FLUCTUATING MASKERS; ABSOLUTE THRESHOLDS;
INTERFERING SPEECH
AB The ability to identify syllables in the presence of speech-shaped noise and a single-talker background was measured for 18 normal-hearing (NH) listeners, and for eight hearing-impaired (HI) listeners with near-normal audiometric thresholds for frequencies up to 1.5 kHz and a moderate to severe hearing loss above 2 kHz. The stimulus components were restricted to the low-frequency (<= 1.5 kHz) region, where audiometric thresholds were classified clinically as normal or near normal for all listeners. Syllable identification in a speech background was measured as a function of the fundamental-frequency (F0) difference between competing voices (ranging from 1 semitone to similar to 1 octave). HI listeners had poorer syllable intelligibility than NH listeners in all conditions. Intelligibility decreased by about the same amount for both groups when the F0 difference between competing voices was reduced. The results suggest that the ability to identify speech against noise or an interfering talker was disrupted in frequency regions of near-normal hearing for HI listeners, but that the ability to benefit from the tested F0 differences was not disrupted. This deficit was not predicted by the elevated absolute thresholds for speech in speech, but it was for speech in noise. It may result from supra-threshold auditory deficits associated with aging. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Leger, Agnes C.] MIT, Elect Res Lab, Cambridge, MA 02139 USA.
[Ives, David T.; Lorenzi, Christian] Paris Sci & Lettres, Ecole Normale Super, Inst Etud Cognit, Lab Syst Perceptifs,Dept Etud Cognit,UMR CNRS 824, F-75005 Paris, France.
RP Leger, AC (reprint author), MIT, Elect Res Lab, Room 36-757,77 Massachusetts Ave, Cambridge, MA 02139 USA.
EM legeragnes@gmail.com
FU National Institutes of Health (NIH/NIDCD) grant [R01-DC000117]; (HEARFIN
Project) from ANR; Starkey France; [ANR-11-0001-02 PSL*];
[ANR-10-LABX-0087]
FX We are very grateful to A Stephan and S Gamier (Entendre, France) for
their help in testing the listeners. AC Leger was supported by a grant
from National Institutes of Health (NIH/NIDCD) grant R01-DC000117. DT
Ives was supported by a grant from Starkey France. C Lorenzi was
supported by ANR-11-0001-02 PSL* and ANR-10-LABX-0087, as well as by a
grant (HEARFIN Project) from ANR. We would like to thank Brian CJ Moore
and two anonymous reviewers for their very helpful comments on previous
versions of this manuscript.
CR ANSI, 1996, S31996 ANSI
Arehart KH, 2011, J SPEECH LANG HEAR R, V54, P190, DOI 10.1044/1092-4388(2010/09-0145)
Arehart KH, 1997, J SPEECH LANG HEAR R, V40, P1434
ASSMANN PF, 1990, J ACOUST SOC AM, V88, P680, DOI 10.1121/1.399772
ASSMANN PF, 1994, J ACOUST SOC AM, V95, P471, DOI 10.1121/1.408342
BAER T, 1994, J ACOUST SOC AM, V95, P2277, DOI 10.1121/1.408640
BAER T, 1993, J ACOUST SOC AM, V94, P1229, DOI 10.1121/1.408176
Bernstein JGW, 2009, J ACOUST SOC AM, V125, P3358, DOI 10.1121/1.3110132
Bernstein JGW, 2013, J AM ACAD AUDIOL, V24, P307, DOI 10.3766/jaaa.24.4.6
Boersma R, 2010, PRAAT DOING PHONETIC
BROKX JPL, 1982, J PHONETICS, V10, P23
CHALIKIA MH, 1993, PERCEPT PSYCHOPHYS, V53, P125, DOI 10.3758/BF03211722
Christiansen C, 2012, J ACOUST SOC AM, V132, P1655, DOI 10.1121/1.4742732
de Cheveigne A, 2002, J ACOUST SOC AM, V111, P1917, DOI 10.1121/1.1458024
Desloge JG, 2010, J ACOUST SOC AM, V128, P342, DOI 10.1121/1.3436522
Dubno JR, 2003, J ACOUST SOC AM, V113, P2084, DOI 10.1121/1.1555611
Dubno JR, 2002, J ACOUST SOC AM, V111, P2897, DOI 10.1121/1.1480421
FESTEN JM, 1990, J ACOUST SOC AM, V88, P1725, DOI 10.1121/1.400247
DUQUESNOY AJ, 1983, J ACOUST SOC AM, V74, P739, DOI 10.1121/1.389859
Fullgrabe C, 2013, AM J AUDIOL, V22, P313, DOI 10.1044/1059-0889(2013/12-0070)
George ELJ, 2006, J ACOUST SOC AM, V120, P2295, DOI 10.1121/1.2266530
Grose JH, 2009, EAR HEARING, V30, P568, DOI 10.1097/AUD.0b013e3181ac128f
GUSTAFSSON HA, 1994, J ACOUST SOC AM, V95, P518, DOI 10.1121/1.408346
Harris KC, 2010, HEARING RES, V264, P21, DOI 10.1016/j.heares.2009.09.017
Harris KC, 2008, HEARING RES, V243, P47, DOI 10.1016/j.heares.2008.05.005
He NJ, 2008, J ACOUST SOC AM, V124, P3841, DOI 10.1121/1.2998779
He NJ, 1998, J ACOUST SOC AM, V103, P553, DOI 10.1121/1.421127
He NJ, 2007, J ACOUST SOC AM, V122, P467, DOI 10.1121/1.2741208
Hopkins K, 2011, J ACOUST SOC AM, V130, P334, DOI 10.1121/1.3585848
Horwitz AR, 2002, J ACOUST SOC AM, V111, P409, DOI 10.1121/1.1427357
Howell D. C., 1997, STAT METHODS PSYCHOL
Jepsen ML, 2011, J ACOUST SOC AM, V129, P262, DOI 10.1121/1.3518768
KONIG E, 1957, Acta Otolaryngol, V48, P475, DOI 10.3109/00016485709126909
Leger AC, 2012, HEARING RES, V294, P95, DOI 10.1016/j.heares.2012.10.002
Leger AC, 2012, J ACOUST SOC AM, V131, P4114, DOI 10.1121/1.3699265
Leger AC, 2012, J ACOUST SOC AM, V131, P1502, DOI 10.1121/1.3665993
Lorenzi C, 2009, J ACOUST SOC AM, V125, P27, DOI 10.1121/1.2939125
Lorenzi C, 2006, P NATL ACAD SCI USA, V103, P18866, DOI 10.1073/pnas.0607364103
Moore B. C. J., 2012, P ISAAR 2011 SPEECH
Moore B. C. J., 2007, COCHLEAR HEARING LOS
Moore BCJ, 2012, J ACOUST SOC AM, V131, P1003, DOI 10.1121/1.3672808
Moore BCJ, 2014, AUDITORY PROCESSING OF TEMPORAL FINE STRUCTURE: EFFECTS OF AGE AND HEARING LOSS, P1, DOI 10.1142/9064
Neher T, 2012, J ACOUST SOC AM, V131, P2561, DOI 10.1121/1.3689850
Oxenham AJ, 2009, J ACOUST SOC AM, V125, P457, DOI 10.1121/1.3021299
Papakonstantinou A, 2011, HEARING RES, V280, P30, DOI 10.1016/j.heares.2011.02.005
Peters RW, 1998, J ACOUST SOC AM, V103, P577, DOI 10.1121/1.421128
Phatak SA, 2012, J ACOUST SOC AM, V132, P1646, DOI 10.1121/1.4742718
PLOMP R, 1978, J ACOUST SOC AM, V63, P533, DOI 10.1121/1.381753
Rhebergen KS, 2010, J ACOUST SOC AM, V127, P1570, DOI 10.1121/1.3291000
Rhebergen KS, 2006, J ACOUST SOC AM, V120, P3988, DOI 10.1121/1.2358008
Rhebergen KS, 2010, INT J AUDIOL, V49, P856, DOI 10.3109/14992027.2010.498446
Scheffers M. T. M., 1983, THESIS U GRONINGEN N
SCHEFFERS MTM, 1983, J ACOUST SOC AM, V74, P1716, DOI 10.1121/1.390280
Sheft S, 2012, EAR HEARING, V33, P709, DOI 10.1097/AUD.0b013e31825aab15
Strelcyk O, 2009, J ACOUST SOC AM, V125, P3328, DOI 10.1121/1.3097469
STUBBS RJ, 1988, J ACOUST SOC AM, V84, P1236, DOI 10.1121/1.396624
STUDEBAKER GA, 1985, J SPEECH HEAR RES, V28, P455
Summers V, 2004, J SPEECH LANG HEAR R, V47, P245, DOI 10.1044/1092-4388(2004/020)
Summers V, 2013, J AM ACAD AUDIOL, V24, P274, DOI 10.3766/jaaa.24.4.4
Summers V, 1998, J SPEECH LANG HEAR R, V41, P1294
TAKAHASHI GA, 1992, J SPEECH HEAR RES, V35, P1410
TERKEURS M, 1993, J ACOUST SOC AM, V94, P1307, DOI 10.1121/1.408158
Vongpoisal T, 2007, J SPEECH LANG HEAR R, V50, P1139, DOI 10.1044/1092-4388(2007/079)
Warren RM, 2004, J ACOUST SOC AM, V115, P1292, DOI 10.1121/1.1646404
NR 64
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2014
VL 316
BP 102
EP 109
DI 10.1016/j.heares.2014.07.008
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AS0EO
UT WOS:000343951300011
PM 25124152
ER
PT J
AU Soshi, T
Hisanaga, S
Kodama, N
Kanekama, Y
Samejima, Y
Yumoto, E
Sekiyama, K
AF Soshi, Takahiro
Hisanaga, Satoko
Kodama, Narihiro
Kanekama, Yori
Samejima, Yasuhiro
Yumoto, Eiji
Sekiyama, Kaoru
TI Event-related potentials for better speech perception in noise by
cochlear implant users
SO HEARING RESEARCH
LA English
DT Article
ID NORMAL-HEARING LISTENERS; MISMATCH NEGATIVITY MMN; SOUNDS VERTICAL-BAR;
INFORMATIONAL MASKING; EVOKED-POTENTIALS; P300; RECOGNITION; RECIPIENTS;
INTERFERENCE; PERFORMANCE
AB Speech perception in noise is still difficult for cochlear implant (CI) users even with many years of Cl use. This study aimed to investigate neurophysiological and behavioral foundations for CI-dependent speech perception in noise. Seventeen post-lingual CI users and twelve age-matched normal hearing adults participated in two experiments. In Experiment 1, CI users' auditory-only word perception in noise (white noise, two-talker babble; at 10 dB SNR) degraded by about 15%, compared to that in quiet (48% accuracy). CI users' auditory-visual word perception was generally better than auditory-only perception. Auditory-visual word perception was degraded under information masking by the two-talker noise (69% accuracy), compared to that in quiet (77%). Such degradation was not observed for white noise (77%), suggesting that the overcoming of information masking is an important issue for CI users' speech perception improvement. In Experiment 2, event-related cortical potentials were recorded in an auditory oddball task in quiet and noise (white noise only). Similarly to the normal hearing participants, the CI users showed the mismatch negative response (MNR) to deviant speech in quiet, indicating automatic speech detection. In noise, the MNR disappeared in the CI users, and only the good Cl performers (above 66% accuracy) showed P300 (P3) like the normal hearing participants. P3 amplitude in the Cl users was positively correlated with speech perception scores. These results suggest that CI users' difficulty in speech perception in noise is associated with the lack of automatic speech detection indicated by the MNR. Successful performance in noise may begin with attended auditory processing indicated by P3. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Soshi, Takahiro; Hisanaga, Satoko; Kanekama, Yori; Sekiyama, Kaoru] Kumamoto Univ, Fac Letters, Div Cognit Psychol, Chuo Ku, Kumamoto 8608555, Japan.
[Kodama, Narihiro; Samejima, Yasuhiro; Yumoto, Eiji] Kumamoto Univ, Grad Sch Med, Dept Otolaryngol Head & Neck Surg, Chou Ku, Kumamoto 8600811, Japan.
RP Sekiyama, K (reprint author), Kumamoto Univ, Fac Letters, Div Cognit Psychol, Chuo Ku, 2-40-1 Kurokami, Kumamoto 8608555, Japan.
EM sekiyama@kumamoto-u.ac.jp
FU Japan Society for the Promotion of Science (JSPS) [21243040]
FX This study was supported by a Grant-in-Aid for Scientific Research
(21243040) to K. Sekiyama from the Japan Society for the Promotion of
Science (JSPS). We would like to express our gratitude to Hideki
Kawahara (Wakayama University) for use of the TANDEM-STRAIGHT software;
Seiko Hayashida (Association of Cochlear Implant Transmitted Audition;
ACITA) for recruitment of CI users; Takao Yamada, Toshikazu Kawagoe,
Saki Shikita, and Naomi Nakamura for their support in preparation and
delivery of the current study. The current affiliation of the first
author (T.S) is National Center of Neurology and Psychiatry (NCNP),
Kodaira, Tokyo, Japan.
CR Brungart DS, 2001, J ACOUST SOC AM, V110, P2527, DOI 10.1121/1.1408946
CARHART R, 1969, J ACOUST SOC AM, V45, P694, DOI 10.1121/1.1911445
Cooke M, 2008, J ACOUST SOC AM, V123, P414, DOI 10.1121/1.2804952
COWAN N, 1993, J EXP PSYCHOL LEARN, V19, P909, DOI 10.1037//0278-7393.19.4.909
Davidson LS, 2010, OTOL NEUROTOL, V31, P1310, DOI 10.1097/MAO.0b013e3181eb320c
Desai S, 2008, J ACOUST SOC AM, V123, P428, DOI 10.1121/1.2816573
Donchin E., 1978, BRAIN EVENT RELATED, P349
Freyman RL, 2004, J ACOUST SOC AM, V115, P2246, DOI 10.1121/1.689343
Fu QJ, 2005, JARO-J ASSOC RES OTO, V6, P19, DOI 10.1007/s10162-004-5024-3
Gilley PM, 2006, CLIN NEUROPHYSIOL, V117, P1772, DOI 10.1016/j.clinph.2006.04.018
Groenen P, 1996, Audiol Neurootol, V1, P112
Groenen PAP, 2001, SCAND AUDIOL, V30, P31, DOI 10.1080/010503901750069554
Groenen PAP, 1996, ACTA OTO-LARYNGOL, V116, P785, DOI 10.3109/00016489609137926
Hamzavi J, 2003, ACTA OTO-LARYNGOL, V123, P493, DOI 10.1080/0036554021000028120
Henkin Y, 2009, AUDIOL NEURO-OTOL, V14, P39, DOI 10.1159/000153434
KAGA K, 1991, LARYNGOSCOPE, V101, P905
Kaiser AR, 2003, J SPEECH LANG HEAR R, V46, P390, DOI 10.1044/1092-4388(2003/032)
Kaplan-Neeman R, 2006, J ACOUST SOC AM, V120, P926, DOI 10.1121/1.2217567
Kawahara H., 2009, P APSIPA SAPP, P111
Kelly AS, 2005, CLIN NEUROPHYSIOL, V116, P1235, DOI 10.1016/j.clinph.2005.02.011
KRAUS N, 1993, HEARING RES, V65, P118, DOI 10.1016/0378-5955(93)90206-G
KRAUS N, 1992, EAR HEARING, V13, P158, DOI 10.1097/00003446-199206000-00004
Kubo T, 2001, ACTA OTO-LARYNGOL, V121, P257
Lonka E, 2013, ACTA OTO-LARYNGOL, V133, P853, DOI 10.3109/00016489.2013.780293
Marco-Pallares J, 2005, NEUROIMAGE, V25, P471, DOI 10.1016/j.neuroimage.2004.11.028
Martin BA, 1997, J ACOUST SOC AM, V101, P1585, DOI 10.1121/1.418146
Mattys SL, 2009, COGNITIVE PSYCHOL, V59, P203, DOI 10.1016/j.cogpsych.2009.04.001
MICCO AG, 1995, AM J OTOL, V16, P514
Miller G. A., 1955, J ACOUST SOC AM, V27, P328
Naatanen R., 1983, TUTORIALS EVENT RELA, P119
NAATANEN R, 1978, ACTA PSYCHOL, V42, P313, DOI 10.1016/0001-6918(78)90006-9
Naatanen R, 2007, CLIN NEUROPHYSIOL, V118, P2544, DOI 10.1016/j.clinph.2007.04.026
Nelson PB, 2003, J ACOUST SOC AM, V113, P961, DOI 10.1121/1.1531983
Nelson PB, 2004, J ACOUST SOC AM, V115, P2286, DOI 10.1121/1.1703538
NOVAK G, 1992, PSYCHOPHYSIOLOGY, V29, P412, DOI 10.1111/j.1469-8986.1992.tb01714.x
Oba SI, 2011, EAR HEARING, V32, P573, DOI 10.1097/AUD.0b013e31820fc821
Obuchi C., 2012, CLIN EXP OTORHINO S1, V5, P6
Oviatt D. L., 1991, AM J AUDIOLOGY, V1, P48
PICTON TW, 1992, J CLIN NEUROPHYSIOL, V9, P456, DOI 10.1097/00004691-199210000-00002
PONTON CW, 1995, EAR HEARING, V16, P131, DOI 10.1097/00003446-199502000-00010
RITTER W, 1979, SCIENCE, V203, P1358, DOI 10.1126/science.424760
Roman S, 2005, HEARING RES, V201, P10, DOI 10.1016/j.heares.2004.08.021
Rouger J, 2007, P NATL ACAD SCI USA, V104, P7295, DOI 10.1073/pnas.0609419104
Rouger J, 2008, BRAIN RES, V1188, P87, DOI 10.1016/j.brainres.2007.10.049
Ruffin CV, 2007, LARYNGOSCOPE, V117, P1183, DOI 10.1097/MLG.0b013e318058191a
Sandmann P, 2009, BRAIN, V132, P1967, DOI 10.1093/brain/awp034
Singh S, 2004, EAR HEARING, V25, P598, DOI 10.1097/00003446-200412000-00008
SQUIRES NK, 1975, ELECTROEN CLIN NEURO, V38, P387, DOI 10.1016/0013-4694(75)90263-1
SUMBY WH, 1954, J ACOUST SOC AM, V26, P212, DOI 10.1121/1.1907309
Tyler R. S., 2006, INT J AUDIOL S1, V45, P113, DOI 10.1080/14992020600783095
TYLER RS, 1995, AUDIOLOGY, V34, P135
Whiting KA, 1998, EAR HEARING, V19, P218, DOI 10.1097/00003446-199806000-00005
Wong PCM, 2008, J SPEECH LANG HEAR R, V51, P1026, DOI 10.1044/1092-4388(2008/075)
Wunderlich JL, 2001, J ACOUST SOC AM, V109, P1526, DOI 10.1121/1.1349184
Zeng Fan-Gang, 2004, Trends Amplif, V8, P1, DOI 10.1177/108471380400800102
Zhang FW, 2011, HEARING RES, V275, P17, DOI 10.1016/j.heares.2010.11.007
NR 56
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2014
VL 316
BP 110
EP 121
DI 10.1016/j.heares.2014.08.001
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AS0EO
UT WOS:000343951300012
PM 25158303
ER
PT J
AU D'Alessandro, LM
Harrison, RV
AF D'Alessandro, Lisa M.
Harrison, Robert V.
TI Excitatory and inhibitory tonotopic bands in chinchilla inferior
colliculus revealed by c-fos immuno-labeling
SO HEARING RESEARCH
LA English
DT Article
ID AUDITORY BRAIN-STEM; IMMEDIATE-EARLY GENES; CENTRAL NUCLEUS;
NERVOUS-SYSTEM; RESPONSE PROPERTIES; RECEPTIVE-FIELDS; GROWTH-FACTOR;
GUINEA-PIG; EXPRESSION; NEURONS
AB We describe in detail a reliable experimental protocol for c-fos immuno-labeling of patterns of neural activation in the chinchilla (chinchilla laniger). We report on resting-level neural activity in inferior colliculus (IC) of auditory midbrain, and on tonotopic bands present following 90 min of pure-tone sound stimulation. Neurons activated by 6-kHz sound stimulation lay ventro-medial to those activated at 2 kHz. This is consistent with the known tonotopic organization of IC, and verified in the present report by multi-unit neuron response recordings in central nucleus of IC. Of particular interest, we observe a significant reduction in cell labeling adjacent to the tonotopic bands, and suggest that such decreases represent inhibitory regions. C-fos-labeled bands and lateral regions of reduced labeling resemble excitatory and lateral-inhibitory response areas of IC neurons. Crown Copyright (C) 2014 Published by Elsevier B.V.
C1 [D'Alessandro, Lisa M.; Harrison, Robert V.] Univ Toronto, Dept Physiol, Toronto, ON M5S 1A8, Canada.
[D'Alessandro, Lisa M.; Harrison, Robert V.] Univ Toronto, Inst Biomat & Biomed Engn, Toronto, ON M5S 3G9, Canada.
[Harrison, Robert V.] Univ Toronto, Dept Otolaryngol Head & Neck Surg, Toronto, ON M5G 2N2, Canada.
[D'Alessandro, Lisa M.; Harrison, Robert V.] Hosp Sick Children, Auditory Sci Lab, Program Neurosci & Mental Hlth, Toronto, ON M5G 1X8, Canada.
RP D'Alessandro, LM (reprint author), Hosp Sick Children, Auditory Sci Lab, Peter Oilgan Ctr Res & Learning, 686 Bay St,Room 05-9400, Toronto, ON M5G 0A4, Canada.
EM L.dalessandro@utoronto.ca; rvh@sickkids.ca
FU Canadian Institutes of Health Research; Masonic Foundation; Natural
Sciences and Engineering Research Council of Canada; Ontario Graduate
Scholarship
FX This study was funded by the Canadian Institutes of Health Research
(RVH), the Masonic Foundation (RVH), the Natural Sciences and
Engineering Research Council of Canada (LMD) and the Ontario Graduate
Scholarship (LMD). We thank Dr. Ujimoto Konomi for assistance with
inhibitory electrophysiological recordings.
CR Alkhatib A, 2006, EXP BRAIN RES, V174, P124, DOI 10.1007/s00221-006-0424-8
BEAVER CJ, 1993, J COMP NEUROL, V333, P469, DOI 10.1002/cne.903330402
BROWN MC, 1995, J COMP NEUROL, V357, P85, DOI 10.1002/cne.903570109
Brown TA, 2011, HEARING RES, V275, P8, DOI 10.1016/j.heares.2010.11.008
Brown TA, 2010, BRAIN RES, V1309, P29, DOI 10.1016/j.brainres.2009.10.053
COCHRAN BH, 1984, SCIENCE, V226, P1080, DOI 10.1126/science.6093261
CURRAN T, 1984, CELL, V36, P259
CURRAN T, 1988, CELL, V55, P395, DOI 10.1016/0092-8674(88)90024-4
Davis KA, 1999, J NEUROPHYSIOL, V82, P164
Ehret G, 1988, Brain Res, V472, P139
EHRET G, 1994, EUR J NEUROSCI, V6, P1589, DOI 10.1111/j.1460-9568.1994.tb00549.x
Filipkowski RK, 2000, LEARN MEMORY, V7, P116, DOI 10.1101/lm.7.2.116
Finkbeiner S, 1998, J NEUROBIOL, V37, P171, DOI 10.1002/(SICI)1097-4695(199810)37:1<171::AID-NEU13>3.0.CO;2-H
FRIAUF E, 1992, EUR J NEUROSCI, V4, P798, DOI 10.1111/j.1460-9568.1992.tb00190.x
GEALDOR M, 1993, HEARING RES, V69, P236, DOI 10.1016/0378-5955(93)90113-F
GREENBERG ME, 1986, MOL CELL BIOL, V6, P1050
Harrison R. V., 1996, Scanning Microscopy, V10, P889
Harrison RV, 2012, ACTA OTO-LARYNGOL, V132, P409, DOI 10.3109/00016489.2011.648271
Harrison RV, 1998, EXP BRAIN RES, V123, P449, DOI 10.1007/s002210050589
Herrera DG, 1996, PROG NEUROBIOL, V50, P83, DOI 10.1016/S0301-0082(96)00021-4
HUGHES P, 1995, PHARMACOL REV, V47, P133
LeBeau FEN, 1996, J NEUROPHYSIOL, V75, P902
LeBeau FEN, 2001, J NEUROSCI, V21, P7303
Loebrich S, 2009, PHYSIOL REV, V89, P1079, DOI 10.1152/physrev.00013.2009
Lu HP, 2009, NEUROSCI LETT, V451, P139, DOI 10.1016/j.neulet.2008.12.048
MALMIERCA MS, 1993, J COMP NEUROL, V333, P1, DOI 10.1002/cne.903330102
Malmierca MS, 2008, J NEUROSCI, V28, P4767, DOI 10.1523/JNEUROSCI.0238-08.2008
Mayko ZM, 2012, FRONT NEURAL CIRCUIT, V6, DOI 10.3389/fncir.2012.00073
McAlpine D, 1996, HEARING RES, V97, P136
MERZENIC.MM, 1974, BRAIN RES, V77, P397, DOI 10.1016/0006-8993(74)90630-1
MOREST DK, 1984, J COMP NEUROL, V222, P209, DOI 10.1002/cne.902220206
Nakamura M, 2005, BRAIN RES, V1031, P39, DOI 10.1016/j.brainres.2004.10.024
OLIVER DL, 1984, J COMP NEUROL, V222, P237, DOI 10.1002/cne.902220207
Palombi PS, 1996, HEARING RES, V100, P59, DOI 10.1016/0378-5955(96)00113-X
Palombi PS, 1996, J NEUROPHYSIOL, V75, P2211
Palombi PS, 1996, HEARING RES, V100, P41, DOI 10.1016/0378-5955(96)00115-3
Pienkowski M, 2005, J NEUROPHYSIOL, V93, P454, DOI 10.1152/jn.00569.2004
Pienkowski M, 2005, J COMP NEUROL, V492, P101, DOI 10.1002/cne.20708
Platenik J, 2000, LIFE SCI, V67, P335, DOI 10.1016/S0024-3205(00)00632-9
POLLAK GD, 1993, HEARING RES, V65, P99, DOI 10.1016/0378-5955(93)90205-F
Pollak GD, 2011, HEARING RES, V274, P27, DOI 10.1016/j.heares.2010.05.010
QIAN Y, 1994, BRAIN RES, V664, P241, DOI 10.1016/0006-8993(94)91979-8
QUERLEU D, 1988, EUR J OBSTET GYN R B, V28, P191, DOI 10.1016/0028-2243(88)90030-5
REIMER K, 1993, BRAIN RES, V616, P339, DOI 10.1016/0006-8993(93)90229-G
ROUX P, 1990, CELL, V63, P341, DOI 10.1016/0092-8674(90)90167-D
SALLAZ M, 1993, NEUROREPORT, V4, P55, DOI 10.1097/00001756-199301000-00014
Sanes DH, 1998, J NEUROSCI, V18, P794
SCHEICH H, 1995, BEHAV BRAIN RES, V66, P195, DOI 10.1016/0166-4328(94)00140-B
Schreiner CE, 1997, NATURE, V388, P383, DOI 10.1038/41106
SHENG M, 1990, NEURON, V4, P477, DOI 10.1016/0896-6273(90)90106-P
Winer JA, 2005, INFERIOR COLLICULUS, P1, DOI 10.1007/0-387-27083-3_1
Wu SH, 2004, J NEUROSCI, V24, P4625, DOI 10.1523/JNEUROSCI.0318-04.2004
Xie RL, 2005, J NEUROPHYSIOL, V94, P4019, DOI 10.1152/jn.00688.2005
ZURITA P, 1994, NEUROSCI RES, V19, P303, DOI 10.1016/0168-0102(94)90043-4
NR 54
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2014
VL 316
BP 122
EP 128
DI 10.1016/j.heares.2014.07.010
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AS0EO
UT WOS:000343951300013
PM 25158304
ER
PT J
AU Saeedi, NE
Blamey, PJ
Burkitt, AN
Grayden, DB
AF Saeedi, Nafise Erfanian
Blamey, Peter J.
Burkitt, Anthony N.
Grayden, David B.
TI Application of a pitch perception model to investigate the effect of
stimulation field spread on the pitch ranking abilities of cochlear
implant recipients
SO HEARING RESEARCH
LA English
DT Article
ID DUAL-ELECTRODE STIMULI; AUDITORY-NERVE FIBERS; ELECTRICAL-STIMULATION;
PLACE-PITCH; CONTOUR IDENTIFICATION; SPEECH RECOGNITION; MELODY
RECOGNITION; INSERTION DEPTH; ACOUSTIC PITCH; DISCRIMINATION
AB Although many cochlear implant (CI) recipients perceive speech very well in favorable conditions, they still have difficulty with music, speech in noisy environments, and tonal languages. Studies show that CI users' performance in these tasks are correlated with their ability to perceive pitch. The spread of stimulation field from the electrodes to the auditory nerve is one of the factors affecting performance. This study proposes a model of auditory perception to predict the performance of CI users in pitch ranking tasks using an existing sound processing scheme. The model is then used as a platform to investigate the effect of stimulation field spread on performance. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Saeedi, Nafise Erfanian; Burkitt, Anthony N.; Grayden, David B.] Univ Melbourne, Dept Elect & Elect Engn, NeuroEngn Lab, Parkville, Vic 3010, Australia.
[Saeedi, Nafise Erfanian; Burkitt, Anthony N.; Grayden, David B.] Univ Melbourne, Ctr Neural Engn, Parkville, Vic 3010, Australia.
[Blamey, Peter J.; Burkitt, Anthony N.; Grayden, David B.] Bion Inst, East Melbourne, Australia.
[Blamey, Peter J.] Univ Melbourne, Dept Med Bion, Parkville, Vic 3010, Australia.
RP Saeedi, NE (reprint author), Univ Melbourne, Level 2,BEE Bldg, Parkville, Vic 3010, Australia.
EM ninaes@student.unimelb.edu.au
RI Burkitt, Anthony/N-9077-2013
OI Burkitt, Anthony/0000-0001-5672-2772
FU Australian Research Council (ARC) [DP1094830]; Victorian Life Sciences
Computation Initiative (VLSCI); Victorian Government
FX This research was supported by Australian Research Council (ARC)
Discovery Grant DP1094830 and the Victorian Life Sciences Computation
Initiative (VLSCI). The authors acknowledge the support that the Bionics
Institute receives from the Victorian Government through its Operational
Infrastructure Support Program.
CR Baskent D, 2005, J ACOUST SOC AM, V117, P1405, DOI 10.1121/1.1856273
BLAMEY PJ, 1984, J ACOUST SOC AM, V76, P97, DOI 10.1121/1.391012
Blamey PJ, 1996, HEARING RES, V99, P139, DOI 10.1016/S0378-5955(96)00095-0
Bruce IC, 1999, IEEE T BIO-MED ENG, V46, P630, DOI 10.1109/10.764939
Carlyon RP, 2002, J ACOUST SOC AM, V112, P1009, DOI 10.1121/1.1496766
Caruso VC, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0087065
Cohen LT, 2009, HEARING RES, V248, P1, DOI 10.1016/j.heares.2008.11.007
Cohen LT, 2009, HEARING RES, V248, P15, DOI 10.1016/j.heares.2008.11.008
Cohen LT, 2009, HEARING RES, V247, P100, DOI 10.1016/j.heares.2008.11.004
COHEN MA, 1995, J ACOUST SOC AM, V98, P862, DOI 10.1121/1.413512
DELGUTTE B, 1984, J ACOUST SOC AM, V75, P866, DOI 10.1121/1.390596
Demuth H., 2008, NEURAL NETWORK TOOLB
Donaldson GS, 2005, J ACOUST SOC AM, V118, P623, DOI 10.1121/1.1937362
Fielden CA, 2013, J ACOUST SOC AM, V133, P4109, DOI 10.1121/1.4803909
Fredelake S, 2012, HEARING RES, V287, P76, DOI 10.1016/j.heares.2012.03.005
Galvin JJ, 2007, EAR HEARING, V28, P302, DOI 10.1097/01.aud.0000261689.35445.20
Gfeller K., 2000, J ACAD REHABIL AUDIO, V33, P115
Gfeller K, 2007, EAR HEARING, V28, P412, DOI 10.1097/AUD.0b013e3180479318
GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
HAWKS JW, 1995, J ACOUST SOC AM, V97, P1343, DOI 10.1121/1.412986
Jolly CN, 1996, IEEE T BIO-MED ENG, V43, P857, DOI 10.1109/10.508549
Kang R, 2009, EAR HEARING, V30, P411, DOI 10.1097/AUD.0b013e3181a61bc0
Ketten DR, 1998, ANN OTO RHINOL LARYN, V107, P1
KLATT DH, 1980, J ACOUST SOC AM, V67, P971, DOI 10.1121/1.383940
Kwon BJ, 2006, J ACOUST SOC AM, V120, pEL1, DOI 10.1121/1.2208152
Landsberger D, 2011, J ACOUST SOC AM, V130, P1559, DOI 10.1121/1.3613938
Landsberger DM, 2012, HEARING RES, V284, P16, DOI 10.1016/j.heares.2011.12.009
Landsberger DM, 2009, HEARING RES, V254, P34, DOI 10.1016/j.heares.2009.04.007
Laneau J, 2004, J ACOUST SOC AM, V116, P3606, DOI 10.1121/1.1823311
LICKLIDER JCR, 1951, EXPERIENTIA, V7, P128, DOI 10.1007/BF02156143
LOEB GE, 1983, BIOL CYBERN, V47, P149, DOI 10.1007/BF00337005
Looi V, 2011, INT J PEDIATR OTORHI, V75, P472, DOI 10.1016/j.ijporl.2010.12.023
Looi V, 2004, INT CONGR SER, V1273, P197, DOI 10.1016/j.ics.2004.08.038
Luo X, 2012, J ACOUST SOC AM, V131, P1325, DOI 10.1121/1.3672708
Maarefvand M, 2013, INT J AUDIOL, V52, P424, DOI 10.3109/14992027.2012.762606
Macherey O, 2011, JARO-J ASSOC RES OTO, V12, P233, DOI 10.1007/s10162-010-0248-x
MCDERMOTT HJ, 1994, J ACOUST SOC AM, V96, P155, DOI 10.1121/1.410475
McDermott HJ, 1997, J ACOUST SOC AM, V101, P1622, DOI 10.1121/1.418177
McKay C. M., 2000, Acoustics Research Letters Online, V1, DOI 10.1121/1.1318742
McKay CM, 1996, J ACOUST SOC AM, V99, P1079, DOI 10.1121/1.414594
Meddis R, 2010, SPRINGER HANDB AUDIT, V35, P1, DOI 10.1007/978-1-4419-5934-8
MILLER MI, 1984, HEARING RES, V14, P257, DOI 10.1016/0378-5955(84)90054-6
NELSON DA, 1995, J ACOUST SOC AM, V98, P1987, DOI 10.1121/1.413317
Oxenham AJ, 2004, P NATL ACAD SCI USA, V101, P1421, DOI 10.1073/pnas.0306958101
Pascal J, 1998, J ACOUST SOC AM, V104, P1509, DOI 10.1121/1.424363
Plack C. J., 2005, PITCH NEURAL CODING
Qin MK, 2003, J ACOUST SOC AM, V114, P446, DOI 10.1121/1.1579009
ROSE JE, 1967, J NEUROPHYSIOL, V30, P769
Saoji AA, 2013, HEARING RES, V298, P109, DOI 10.1016/j.heares.2012.12.006
Schatzer R, 2014, HEARING RES, V309, P26, DOI 10.1016/j.heares.2013.11.003
Shamma S, 2000, J ACOUST SOC AM, V107, P2631, DOI 10.1121/1.428649
SHAMMA SA, 1985, J ACOUST SOC AM, V78, P1612, DOI 10.1121/1.392799
Shera CA, 2002, P NATL ACAD SCI USA, V99, P3318, DOI 10.1073/pnas.032675099
Slaney M., 1993, VISUAL REPRESENTATIO
Srinivasan AG, 2010, HEARING RES, V270, P89, DOI 10.1016/j.heares.2010.09.004
Srinivasan AG, 2013, HEARING RES, V299, P29, DOI 10.1016/j.heares.2013.02.004
Stafford R. C., 2013, EAR HEARING, V35, P262
Sucher CM, 2007, HEARING RES, V230, P80, DOI 10.1016/j.heares.2007.05.002
Swanson B. A., 2008, THESIS U MELBOURNE A
TONG YC, 1983, J ACOUST SOC AM, V74, P73, DOI 10.1121/1.389620
TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554
Van Compernolle D. S., 1987, GOOGLE PATENTS
Vandali AE, 2005, J ACOUST SOC AM, V117, P3126, DOI 10.1121/1.1874632
van den Honert C, 2007, J ACOUST SOC AM, V121, P3703, DOI 10.1121/1.2722047
Voutsas K, 2005, IEEE T SYST MAN CY B, V35, P12, DOI 10.1109/TSMCB.2004.837751
Wang WQ, 2011, INT J AUDIOL, V50, P270, DOI 10.3109/14992027.2010.542490
Zarate JM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0075410
Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5
Zilany MSA, 2006, J ACOUST SOC AM, V120, P1446, DOI 10.1121/1.2225512
NR 69
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2014
VL 316
BP 129
EP 137
DI 10.1016/j.heares.2014.08.006
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AS0EO
UT WOS:000343951300014
ER
PT J
AU Fallon, JB
Shepherd, RK
Nayagam, DAX
Wise, AK
Heifer, LF
Landry, TG
Irvine, DRF
AF Fallon, James B.
Shepherd, Robert K.
Nayagam, David A. X.
Wise, Andrew K.
Heifer, Leon F.
Landry, Thomas G.
Irvine, Dexter R. F.
TI Effects of deafness and cochlear implant use on temporal response
characteristics in cat primary auditory cortex
SO HEARING RESEARCH
LA English
DT Article
ID INTRACOCHLEAR ELECTRICAL-STIMULATION; NEONATALLY DEAFENED CATS; SPIRAL
GANGLION NEURONS; INFERIOR COLLICULUS; CONGENITAL DEAFNESS; REPETITION
RATE; SPEECH; NERVE; PLASTICITY; RESOLUTION
AB We have previously shown that neonatal deafness of 7-13 months duration leads to loss of cochleotopy in the primary auditory cortex (Al) that can be reversed by cochlear implant use. Here we describe the effects of a similar duration of deafness and cochlear implant use on temporal processing. Specifically, we compared the temporal resolution of neurons in Al of young adult normal-hearing cats that were acutely deafened and implanted immediately prior to recording with that in three groups of neonatally deafened cats. One group of neonatally deafened cats received no chronic stimulation. The other two groups received up to 8 months of either low-or high-rate (50 or 500 pulses per second per electrode, respectively) stimulation from a clinical cochlear implant, initiated at 10 weeks of age. Deafness of 7-13 months duration had no effect on the duration of post-onset response suppression, latency, latency jitter, or the stimulus repetition rate at which units responded maximally (best repetition rate), but resulted in a statistically significant reduction in the ability of units to respond to every stimulus in a train (maximum following rate). None of the temporal response characteristics of the low-rate group differed from those in acutely deafened controls. In contrast, high-rate stimulation had diverse effects: it resulted in decreased suppression duration, longer latency and greater jitter relative to all other groups, and an increase in best repetition rate and cut-off rate relative to acutely deafened controls. The minimal effects of moderate-duration deafness on temporal processing in the present study are in contrast to its previously-reported pronounced effects on cochleotopy. Much longer periods of deafness have been reported to result in significant changes in temporal processing, in accord with the fact that duration of deafness is a major factor influencing outcome in human cochlear implantees. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Fallon, James B.; Shepherd, Robert K.; Nayagam, David A. X.; Wise, Andrew K.; Landry, Thomas G.; Irvine, Dexter R. F.] Bion Inst, Melbourne, Vic, Australia.
[Fallon, James B.; Shepherd, Robert K.; Wise, Andrew K.; Heifer, Leon F.; Landry, Thomas G.] Univ Melbourne, Dept Otolaryngol, Melbourne, Vic, Australia.
[Fallon, James B.; Shepherd, Robert K.; Wise, Andrew K.] Univ Melbourne, Med Bion Dept, Melbourne, Vic, Australia.
[Nayagam, David A. X.] Univ Melbourne, Dept Pathol, Melbourne, Vic, Australia.
RP Fallon, JB (reprint author), Bion Inst, 384-388 Albert St, East Melbourne, Vic 3002, Australia.
EM jfallon@bionicsinstitute.org
RI Wise, Andrew/B-5943-2014
OI Wise, Andrew/0000-0001-9715-8784
FU National Institutes of Health NIDCD [NO1-DC-3-1005,
HHS-N-263-2007-00053-C]; National Health and Medical Research Council of
Australia; Victorian State Government through their Operational
Infrastructure Support scheme
FX We are grateful for funding support from the National Institutes of
Health NIDCD (NO1-DC-3-1005 & HHS-N-263-2007-00053-C), the National
Health and Medical Research Council of Australia, and the Victorian
State Government through their Operational Infrastructure Support
scheme.
CR Beitel RE, 2011, J NEUROPHYSIOL, V106, P944, DOI 10.1152/jn.00731.2010
Blamey P, 1996, Audiol Neurootol, V1, P293
BROWN M, 1992, HEARING RES, V59, P224, DOI 10.1016/0378-5955(92)90119-8
Chen XQ, 2013, ACTA OTO-LARYNGOL, V133, P733, DOI 10.3109/00016489.2013.773595
Christianson GB, 2011, J NEUROSCI, V31, P12837, DOI 10.1523/JNEUROSCI.2863-11.2011
Chung Y, 2013, ADV EXP MED BIOL, V787, P353, DOI 10.1007/978-1-4614-1590-9_39
Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004
Dowell R C, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P324
EGGERMONT JJ, 1991, HEARING RES, V56, P153, DOI 10.1016/0378-5955(91)90165-6
EGGERMONT JJ, 1992, HEARING RES, V61, P1, DOI 10.1016/0378-5955(92)90029-M
Fallon J.B., 2007, PLASTIC CHANGES PRIM
Fallon JB, 2009, J COMP NEUROL, V512, P101, DOI 10.1002/cne.21886
Fallon J.B., 2007, C IMPL AUD PROSTH LA
Fallon J.B., 2014, COCHLEAR IMPLANTS
Fallon JB, 2014, EUR J NEUROSCI, V39, P811, DOI 10.1111/ejn.12445
Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3
Heffer LF, 2008, J NEUROSCI METH, V170, P277, DOI 10.1016/j.jneumeth.2008.01.023
Kim JH, 2013, J NEUROSCI, V33, P9402, DOI 10.1523/JNEUROSCI.3389-12.2013
Kral A, 2009, J NEUROSCI, V29, P811, DOI 10.1523/JNEUROSCI.2424-08.2009
Kral A, 2006, PROG BRAIN RES, V157, P283, DOI 10.1016/S0079-6123(06)57018-9
Kral A, 2002, CEREB CORTEX, V12, P797, DOI 10.1093/cercor/12.8.797
LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4
LEAKE PA, 1991, HEARING RES, V54, P251, DOI 10.1016/0378-5955(91)90120-X
Middlebrooks JC, 2008, J NEUROPHYSIOL, V100, P76, DOI 10.1152/jn.01109.2007
Middlebrooks JC, 2008, J NEUROPHYSIOL, V100, P92, DOI 10.1152/jn.01114.2007
Miller C.A., 2010, 33 ANN MIDW RES M AS
Moore BCJ, 2008, PHILOS T R SOC B, V363, P947, DOI 10.1098/rstb.2007.2152
PHILLIPS DP, 1989, J ACOUST SOC AM, V85, P2537, DOI 10.1121/1.397748
ROSEN S, 1992, PHILOS T ROY SOC B, V336, P367, DOI 10.1098/rstb.1992.0070
Ryugo DK, 2010, J COMP NEUROL, V518, P1046, DOI 10.1002/cne.22262
SACHS MB, 1974, J ACOUST SOC AM, V56, P1835, DOI 10.1121/1.1903521
Sakata S, 2009, NEURON, V64, P404, DOI 10.1016/j.neuron.2009.09.020
Sarant JZ, 2001, EAR HEARING, V22, P18, DOI 10.1097/00003446-200102000-00003
Schreiner CE, 1996, J NEUROPHYSIOL, V75, P1283
SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303
Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4
Shepherd RK, 2001, AUDIOL NEURO-OTOL, V6, P305, DOI 10.1159/000046843
Shepherd RK, 1999, J NEUROPHYSIOL, V82, P1363
SNYDER R, 1995, J NEUROPHYSIOL, V73, P449
SNYDER RL, 1991, HEARING RES, V56, P246, DOI 10.1016/0378-5955(91)90175-9
Tan AYY, 2004, J NEUROPHYSIOL, V92, P630, DOI 10.1152/jn.01020.2003
Turrigiano GG, 2008, CELL, V135, P422, DOI 10.1016/j.cell.2008.10.008
Vollmer M, 2005, J NEUROPHYSIOL, V93, P3339, DOI 10.1152/jn.00900.2004
Vollmer M, 2011, J NEUROPHYSIOL, V106, P2423, DOI 10.1152/jn.00565.2011
Vollmer M, 1999, J NEUROPHYSIOL, V82, P2883
Wehr M, 2005, NEURON, V47, P437, DOI 10.1016/j.neuron.2005.06.009
NR 46
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2014
VL 315
BP 1
EP 9
DI 10.1016/j.heares.2014.06.001
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AP2LC
UT WOS:000341902700001
PM 24933111
ER
PT J
AU Kalkman, RK
Briaire, JJ
Dekker, DMT
Frijns, JHM
AF Kalkman, Randy K.
Briaire, Jeroen J.
Dekker, David M. T.
Frijns, Johan H. M.
TI Place pitch versus electrode location in a realistic computational model
of the implanted human cochlea
SO HEARING RESEARCH
LA English
DT Article
ID ELECTRICAL-STIMULATION; SPEECH RECOGNITION; INSERTION DEPTH;
3-DIMENSIONAL RECONSTRUCTION; VOLUME CONDUCTION; SPECTRAL MISMATCH;
BINAURAL BENEFIT; PERCEPTION; POSITION; HEARING
AB Place pitch was investigated in a computational model of the implanted human cochlea containing nerve fibres with realistic trajectories that take the variable distance between the organ of Corti and spiral ganglion into account. The model was further updated from previous studies by including fluid compartments in the modiolus and updating the electrical conductivity values of (temporal) bone and the modiolus, based on clinical data. Four different cochlear geometries are used, modelled with both lateral and perimodiolar implants, and their neural excitation patterns were examined for nerve fibres modelled with and without peripheral processes. Additionally, equations were derived from the model geometries that describe Greenwood's frequency map as a function of cochlear angle at the basilar membrane as well as at the spiral ganglion. The main findings are: (I) in the first (basal) turn of the cochlea, cochlear implant induced pitch can be predicted fairly well using the Greenwood function. (II) Beyond the first turn this pitch becomes increasingly unpredictable, greatly dependent on stimulus level, state of the cochlear neurons and the electrode's distance from the modiolus. (III) After the first turn cochlear implant induced pitch decreases as stimulus level increases, but the pitch does not reach values expected from direct spiral ganglion stimulation unless the peripheral processes are missing. (IV) Electrode contacts near the end of the spiral ganglion or deeper elicit very unpredictable pitch, with broad frequency ranges that strongly overlap with those of neighbouring contacts. (V) The characteristic place pitch for stimulation at either the organ of Corti or the spiral ganglion can be described as a function of cochlear angle by the equations presented in this paper. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Kalkman, Randy K.; Briaire, Jeroen J.; Dekker, David M. T.; Frijns, Johan H. M.] Leiden Univ, Med Ctr, ENT Dept, NL-2300 RC Leiden, Netherlands.
[Briaire, Jeroen J.; Frijns, Johan H. M.] Leiden Inst Brain & Cognit, NL-2300 RC Leiden, Netherlands.
RP Kalkman, RK (reprint author), Leiden Univ, Med Ctr, ENT Dept, POB 9600, NL-2300 RC Leiden, Netherlands.
EM r.k.kalkman@lumc.nl
FU Heinsius-Houbolt Fund; Advanced Bionics Corporation
FX This study was financially supported by the Heinsius-Houbolt Fund and
Advanced Bionics Corporation.
CR ARIYASU L, 1989, OTOLARYNG HEAD NECK, V100, P87
Arnoldner C, 2008, LARYNGOSCOPE, V118, P1630, DOI 10.1097/MLG.0b013e3181799715
Arnoldner C, 2006, LARYNGOSCOPE, V116, P1760, DOI 10.1097/01.mlg.0000228214.02606.42
Baskent D, 2004, J ACOUST SOC AM, V116, P3130, DOI 10.1121/1.1804627
Baskent D, 2007, EAR HEARING, V28, P277
Baskent D, 2005, J ACOUST SOC AM, V117, P1405, DOI 10.1121/1.1856273
Baumann U, 2006, HEARING RES, V213, P34, DOI 10.1016/j.heares.2005.12.010
Baumann U, 2004, EAR HEARING, V25, P275, DOI 10.1097/00003446-200406000-00008
Baumann U, 2011, EAR HEARING, V32, P656, DOI 10.1097/AUD.0b013e31821a4800
Biedron S, 2009, OTOL NEUROTOL, V30, P414, DOI 10.1097/MAO.0b013e3181977b8d
Blamey PJ, 1996, HEARING RES, V99, P139, DOI 10.1016/S0378-5955(96)00095-0
Boex C, 2006, JARO-J ASSOC RES OTO, V7, P110, DOI 10.1007/s10162-005-0027-2
Boyd PJ, 2011, EAR HEARING, V32, P411, DOI 10.1097/AUD.0b013e3182064bda
Bredberg G., 1968, ACTA OTOLARYNGOL S
Briaire JJ, 2000, SIMULAT PRACT THEORY, V8, P57, DOI 10.1016/S0928-4869(00)00007-0
Briaire JJ, 2005, HEARING RES, V205, P143, DOI 10.1016/j.heares.2005.03.020
Briaire JJ, 2000, HEARING RES, V148, P18, DOI 10.1016/S0378-5955(00)00104-0
Briaire JJ, 2006, HEARING RES, V214, P17, DOI 10.1016/j.heares.2006.01.015
Brill S, 2009, BIOMED ENG ONLINE, V8, DOI 10.1186/1475-925X-8-40
Carlyon RP, 2010, JARO-J ASSOC RES OTO, V11, P625, DOI 10.1007/s10162-010-0222-7
Carlyon RP, 2010, J ACOUST SOC AM, V127, P2997, DOI 10.1121/1.3372711
Cohen L.T., 2000, 5 EUR S PAED COCHL I
Deman PR, 2004, INT J AUDIOL, V43, P363, DOI 10.1080/14992020400050046
Dorman MF, 2007, JARO-J ASSOC RES OTO, V8, P234, DOI 10.1007/s10162-007-0071-1
Dorman MF, 1997, J ACOUST SOC AM, V102, P2993, DOI 10.1121/1.420354
Escudé Bernard, 2006, Audiol Neurootol, V11 Suppl 1, P27, DOI 10.1159/000095611
Faes TJC, 1999, PHYSIOL MEAS, V20, pR1, DOI 10.1088/0967-3334/20/4/201
Franke-Trieger A, 2014, OTOL NEUROTOL, V35, P58, DOI 10.1097/MAO.0000000000000211
Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012
Frijns JHM, 2011, ACTA OTO-LARYNGOL, V131, P362, DOI 10.3109/00016489.2010.541939
Frijns JHM, 2009, ACTA OTO-LARYNGOL, V129, P433, DOI 10.1080/00016480802610218
Frijns JHM, 2000, SIMULAT PRACT THEORY, V8, P75, DOI 10.1016/S0928-4869(00)00008-2
Frijns JHM, 2009, OTOL NEUROTOL, V30, P1168, DOI 10.1097/MAO.0b013e3181b12115
Fu QJ, 1999, J ACOUST SOC AM, V105, P1889, DOI 10.1121/1.426725
Gani M, 2007, JARO-J ASSOC RES OTO, V8, P69, DOI 10.1007/s10162-006-0065-4
GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
Hamzavi J, 2006, ACTA OTO-LARYNGOL, V126, P1182, DOI 10.1080/00016480600672683
Hanekom T, 2001, EAR HEARING, V22, P300, DOI 10.1097/00003446-200108000-00005
Hochmair I, 2003, ACTA OTO-LARYNGOL, V123, P612, DOI 10.1080/00016480310001844
Kawano A, 1996, ANN OTO RHINOL LARYN, V105, P701
Laneau J, 2004, J ACOUST SOC AM, V116, P3606, DOI 10.1121/1.1823311
Li TH, 2010, HEARING RES, V270, P81, DOI 10.1016/j.heares.2010.09.005
McDermott H, 2009, AUDIOL NEURO-OTOL, V14, P2, DOI 10.1159/000206489
Mens LHM, 1999, SCAND AUDIOL, V28, P249, DOI 10.1080/010503999424680
Pijl S, 1997, EAR HEARING, V18, P316, DOI 10.1097/00003446-199708000-00006
Rattay F, 2001, HEARING RES, V153, P64, DOI 10.1016/S0378-5955(00)00257-4
Reiss LAJ, 2007, JARO-J ASSOC RES OTO, V8, P241, DOI 10.1007/s10162-007-0077-8
Reiss LAJ, 2008, OTOL NEUROTOL, V29, P160
Schatzer R., 2013, HEAR RES C, V309, P26
SHANNON RV, 1983, HEARING RES, V11, P157, DOI 10.1016/0378-5955(83)90077-1
Shannon RV, 1998, J ACOUST SOC AM, V104, P2467, DOI 10.1121/1.423774
Siciliano CM, 2010, J ACOUST SOC AM, V127, P1645, DOI 10.1121/1.3293002
Skinner MW, 2007, ANN OTO RHINOL LARYN, V116, P2
Snel-Bongers J, 2013, JARO-J ASSOC RES OTO, V14, P781, DOI 10.1007/s10162-013-0395-y
Stakhovskaya O, 2007, JARO-J ASSOC RES OTO, V8, P220, DOI 10.1007/s10162-007-0076-9
Suesserman M.F., 1992, THESIS U WASHINGTON
TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554
van der Marel KS, 2014, EAR HEARING, V35, pE9, DOI 10.1097/01.aud.0000436256.06395.63
Vanpoucke FJ, 2004, IEEE T BIO-MED ENG, V51, P2174, DOI 10.1109/TBME.2004.836518
Verbist BM, 2005, AM J NEURORADIOL, V26, P424
Vermeire K, 2008, HEARING RES, V245, P98, DOI 10.1016/j.heares.2008.09.003
Whiten D.M., 2007, THESIS MIT
Yoon YS, 2013, EAR HEARING, V34, P273, DOI 10.1097/AUD.0b013e31826709e8
Yoon YS, 2011, J ACOUST SOC AM, V130, pEL94, DOI 10.1121/1.3606460
NR 64
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2014
VL 315
BP 10
EP 24
DI 10.1016/j.heares.2014.06.003
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AP2LC
UT WOS:000341902700002
PM 24975087
ER
PT J
AU Dilwali, S
Patel, PB
Roberts, DS
Basinsky, GM
Harris, GJ
Emerick, KS
Stankovic, KM
AF Dilwali, Sonam
Patel, Pratik B.
Roberts, Daniel S.
Basinsky, Gina M.
Harris, Gordon J.
Emerick, Kevin S.
Stankovic, Konstantina M.
TI Primary culture of human Schwann and schwannoma cells: Improved and
simplified, protocol
SO HEARING RESEARCH
LA English
DT Article
ID HIGHLY ENRICHED CULTURES; FIBROBLAST-GROWTH-FACTOR; VESTIBULAR
SCHWANNOMAS; ACOUSTIC NEUROMAS; PERIPHERAL-NERVE; NATURAL-HISTORY; TUMOR
SIZE; EXPRESSION; PURIFICATION; INHIBITION
AB Primary culture of human Schwann cells (SCs) and vestibular schwannoma (VS) cells are invaluable tools to investigate SC physiology and VS pathobiology, and to devise effective pharmacotherapies against VS, which are sorely needed. However, existing culture protocols, in aiming to create robust, pure cultures, employ methods that can lead to loss of biological characteristics of the original cells, potentially resulting in misleading biological findings. We have developed a minimally manipulative method to culture primary human SC and VS cells, without the use of selective mitogens, toxins, or time-consuming and potentially transformative laboratory techniques. Schwann cell purity was quantified longitudinally using S100 staining in SC cultures derived from the great auricular nerve and VS cultures followed for 7 and 12 weeks, respectively. SC cultures retained approximately >= 85% purity for 2 weeks. VS cultures retained approximately >= 80% purity for the majority of the span of 12 weeks, with maximal purity of 87% at 2 weeks. The VS cultures showed high level of biological similarity (68% on average) to their respective parent tumors, as assessed using a protein array featuring 41 growth factors and receptors. Apoptosis rate in vitro negatively correlated with tumor volume. Our results, obtained using a faster, simplified culturing method than previously utilized, indicate that highly pure, primary human SC and VS cultures can be established with minimal manipulation, reaching maximal purity at 2 weeks of culture. The VS cultures recapitulate the parent tumors' biology to a great degree, making them relevant models to investigate VS pathobiology. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Dilwali, Sonam; Stankovic, Konstantina M.] MIT, Harvard Mit Div Hlth Sci & Technol, Speech & Hearing Biosci & Technol Program, Cambridge, MA 02139 USA.
[Patel, Pratik B.; Roberts, Daniel S.; Emerick, Kevin S.; Stankovic, Konstantina M.] Harvard Univ, Sch Med, Dept Otol & Latyngol, Boston, MA 02115 USA.
[Dilwali, Sonam; Patel, Pratik B.; Roberts, Daniel S.; Emerick, Kevin S.; Stankovic, Konstantina M.] Massachusetts Eye & Ear Infirm, Eaton Peabody Labs, Boston, MA 02114 USA.
[Dilwali, Sonam; Patel, Pratik B.; Roberts, Daniel S.; Emerick, Kevin S.; Stankovic, Konstantina M.] Massachusetts Eye & Ear Infirm, Dept Otolaryngol, Boston, MA 02114 USA.
[Basinsky, Gina M.; Harris, Gordon J.] Massachusetts Gen Hosp, Dept Radiol, Boston, MA 02114 USA.
RP Stankovic, KM (reprint author), Massachusetts Eye & Ear Infirm, 243 Charles St, Boston, MA 02114 USA.
EM konstantina_stankovic@meei.harvard.edu
FU National Institute on Deafness and Other Communication Disorders (IDCD)
[T32 DC00038, K08DC010419]; Bertarelli Foundation
FX This research was supported by National Institute on Deafness and Other
Communication Disorders (IDCD) Grants T32 DC00038 (S.D., K.M.S) and
K08DC010419 (K.M.S.), and the Bertarelli Foundation (K.M.S.). We are
grateful to Drs. McKenna and Barker for assisting in VS specimen
collection.
CR Ahmad ZK, 2011, OTOL NEUROTOL, V32, P841, DOI 10.1097/MAO.0b013e31821f7d88
ARMATI PJ, 1990, J NEUROSCI METH, V33, P149, DOI 10.1016/0165-0270(90)90018-B
Bush M.L., 2012, OTOL NEUROTOL, V33
Calderon-Martinez D, 2002, J NEUROSCI METH, V114, P1, DOI 10.1016/S0165-0270(01)00493-9
Casella G T, 1996, Glia, V17, P327, DOI 10.1002/(SICI)1098-1136(199608)17:4<327::AID-GLIA7>3.0.CO;2-W
CHARABI S, 1994, LARYNGOSCOPE, V104, P1348
Cioffi JA, 2010, OTOL NEUROTOL, V31, P1455, DOI 10.1097/MAO.0b013e3181f20655
Demetriades AK, 2010, SKULL BASE-INTERD AP, V20, P381, DOI 10.1055/s-0030-1253576
Dilwali S, 2013, OTOL NEUROTOL, V34, P748, DOI 10.1097/MAO.0b013e31828048ec
Evans DG, 2010, AM J MED GENET A, V152A, P327, DOI 10.1002/ajmg.a.33139
HARDY DG, 1989, J NEUROSURG, V71, P799, DOI 10.3171/jns.1989.71.6.0799
Herwadker A., 2005, OTOL NEUROTOL, V26
Hood B, 2009, NEUROSURG FOCUS, V26, DOI 10.3171/FOC.2009.26.2.E4
Jin YQ, 2008, J NEUROSCI METH, V170, P140, DOI 10.1016/j.jneumeth.2008.01.003
Koutsimpelas D, 2007, OTOL NEUROTOL, V28, P1094
Matthies C, 1997, NEUROSURGERY, V40, P1
Mauritz C, 2004, J NEUROSCI RES, V77, P453, DOI 10.1002/jnr.20166
MORRISSEY TK, 1991, J NEUROSCI, V11, P2433
Nair S., 2007, OTOL NEUROTOL, V28
Neff BA, 2012, LARYNGOSCOPE, V122, P2269, DOI 10.1002/lary.23472
Neumann E, 2010, ARTHRITIS RES THER, V12, DOI 10.1186/ar3010
Niapour A, 2010, BIOTECHNOL LETT, V32, P781, DOI 10.1007/s10529-010-0230-z
Nutik SL, 2001, J NEUROSURG, V94, P922, DOI 10.3171/jns.2001.94.6.0922
Ohtani I, 2007, OTOLOGY JAPAN, V17, P615
Olsavsky KM, 2007, TOXICOL APPL PHARM, V222, P42, DOI 10.1016/j.taap.2007.03.032
Pannunzio ME, 2005, J NEUROSCI METH, V149, P74, DOI 10.1016/j.jneumeth.2005.05.004
Smouha EE, 2005, LARYNGOSCOPE, V115, P1704
Spiegel I, 2009, J NEUROSCI RES, V87, P3288, DOI 10.1002/jnr.21985
SPRECA A, 1989, J HISTOCHEM CYTOCHEM, V37, P441
Stangerup SE, 2012, OTOLARYNG CLIN N AM, V45, P257, DOI 10.1016/j.otc.2011.12.008
THOMSEN J, 1983, J LARYNGOL OTOL, V97, P801, DOI 10.1017/S0022215100095037
Utermark T, 2005, BRAIN PATHOL, V15, P17
Yoshimoto Y, 2005, J NEUROSURG, V103, P59, DOI 10.3171/jns.2005.103.1.0059
NR 33
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2014
VL 315
BP 25
EP 33
DI 10.1016/j.heares.2014.05.006
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AP2LC
UT WOS:000341902700003
PM 24910344
ER
PT J
AU Negandhi, J
Harrison, AL
Allemang, C
Harrison, RV
AF Negandhi, Jaina
Harrison, Adrienne L.
Allemang, Cullen
Harrison, Robert V.
TI Time course of cochlear injury discharge (excitotoxicity) determined by
ABR monitoring of contralateral cochlear events
SO HEARING RESEARCH
LA English
DT Article
ID AUDITORY BRAIN-STEM; OLIVOCOCHLEAR EFFERENT SYSTEM; PRODUCT OTOACOUSTIC
EMISSION; FOS-LIKE IMMUNOREACTIVITY; C-FOS; ACOUSTIC STIMULATION;
FUNCTIONAL RECOVERY; SOUND STIMULATION; HEARING-LOSS; SPINAL-CORD
AB The dynamics of cochlear excitotoxicity can be monitored from effects on the contralateral ear. After unilateral mechanical ablation of the cochlea (in a mouse model) we observed immediate elevations in auditory brainstem evoked response (ABR) thresholds in the contralateral ear. Threshold elevations peaked at 2-3 h post ablation, and returned to baseline levels after 5-6 h. These contralateral effects are initiated by cochlear afferent injury discharges most likely activating the olivocochlear efferent system. Six hours after cochlear injury, ABR thresholds were fully returned to pre-lesion baseline levels and remained normal for up to 10 days of monitoring. We have confirmed that our cochlear ablation procedure increases short-term activity levels in the auditory brainstem and midbrain using c-fos labelling. The study provides insight into the dynamics of glutamate excitotoxicity, a pathological process directly related to acute tinnitus after acoustic trauma, and more generally implicated in many types of brain injury and neuro-degenerative disease. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Negandhi, Jaina; Harrison, Adrienne L.; Allemang, Cullen; Harrison, Robert V.] Hosp Sick Children, Auditory Sci Lab, Neurosci & Mental Hlth Program, Toronto, ON M5G 1X8, Canada.
[Harrison, Robert V.] Hosp Sick Children, Dept Otolaryngol Head & Neck Surg, Toronto, ON M5G 2N2, Canada.
[Harrison, Robert V.] Univ Toronto, Toronto, ON M5G 2N2, Canada.
RP Harrison, RV (reprint author), Hosp Sick Children, Auditory Sci Lab, Neurosci & Mental Hlth Program, 555 Univ Ave, Toronto, ON M5G 1X8, Canada.
EM rvh@sickkids.ca
FU Canadian Institutes of Health Research (CIHR)
FX This research was funded by the Canadian Institutes of Health Research
(CIHR).
CR ADAMS JC, 1995, J COMP NEUROL, V361, P645, DOI 10.1002/cne.903610408
BENVENISTE H, 1984, J NEUROCHEM, V43, P1369, DOI 10.1111/j.1471-4159.1984.tb05396.x
BROWN MC, 1995, J COMP NEUROL, V357, P85, DOI 10.1002/cne.903570109
CHOI DW, 1990, ANNU REV NEUROSCI, V13, P171, DOI 10.1146/annurev.ne.13.030190.001131
Cody AR, 1996, BRAIN RES, V728, P72
COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E
DRAGUNOW M, 1989, J NEUROSCI METH, V29, P261, DOI 10.1016/0165-0270(89)90150-7
DUSART I, 1994, EUR J NEUROSCI, V6, P712, DOI 10.1111/j.1460-9568.1994.tb00983.x
Eggermont JJ, 2012, NEUROSCIENCE TINNITU
Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010
EGGERMONT JJ, 1990, HEARING RES, V48, P111, DOI 10.1016/0378-5955(90)90202-Z
FADEN AI, 1988, ANN NEUROL, V23, P623, DOI 10.1002/ana.410230618
Giraud AL, 1997, J ACOUST SOC AM, V102, P2219, DOI 10.1121/1.419635
Guinan JJ, 2006, EAR HEARING, V27, P589, DOI 10.1097/01.aud.0000240507.83072.e7
Guitton MJ, 2003, J NEUROSCI, V23, P3944
Harrison RV, 1997, HEARING RES, V110, P229, DOI 10.1016/S0378-5955(97)00085-3
Harrison RV, 2012, ACTA OTO-LARYNGOL, V132, P409, DOI 10.3109/00016489.2011.648271
Harrison RV, 2008, ACTA OTO-LARYNGOL, V128, P404, DOI 10.1080/00016480701784965
James AL, 2005, INT J AUDIOL, V44, P118, DOI 10.1080/14992020400029996
Keilmann A, 1997, BRAIN RES, V753, P291, DOI 10.1016/S0006-8993(97)00034-6
Larsen E, 2010, HEARING RES, V260, P70, DOI 10.1016/j.heares.2009.11.011
LENARZ T, 1993, EUR ARCH OTO-RHINO-L, V249, P441
LIBERMAN MC, 1989, HEARING RES, V38, P47, DOI 10.1016/0378-5955(89)90127-5
Liberman MC, 1996, J ACOUST SOC AM, V99, P3572, DOI 10.1121/1.414956
Maison S, 2000, HEARING RES, V140, P111, DOI 10.1016/S0378-5955(99)00196-3
Matha A., 2013, EUR J PHARMACOL, V698, P6
MAYER ML, 1987, TRENDS NEUROSCI, V10, P59, DOI 10.1016/0166-2236(87)90023-3
MOTT JB, 1989, HEARING RES, V38, P229, DOI 10.1016/0378-5955(89)90068-3
MOULIN A, 1993, HEARING RES, V65, P193, DOI 10.1016/0378-5955(93)90213-K
Mulders W., 2009, NEUROSCIENCE, V164, P33
Nakamura M, 2005, BRAIN RES, V1031, P39, DOI 10.1016/j.brainres.2004.10.024
Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037
PUEL JL, 1990, J ACOUST SOC AM, V87, P1630, DOI 10.1121/1.399410
PUEL JL, 1995, CR ACAD SCI III-VIE, V318, P67
Pujol R, 1999, ANN NY ACAD SCI, V884, P249, DOI 10.1111/j.1749-6632.1999.tb08646.x
REIMER K, 1993, BRAIN RES, V616, P339, DOI 10.1016/0006-8993(93)90229-G
Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2
SCHEICH H, 1995, BEHAV BRAIN RES, V66, P195, DOI 10.1016/0166-4328(94)00140-B
SIEGEL JH, 1982, HEARING RES, V6, P171, DOI 10.1016/0378-5955(82)90052-1
SIMON RP, 1984, SCIENCE, V226, P850, DOI 10.1126/science.6093256
WARREN EH, 1989, HEARING RES, V37, P89, DOI 10.1016/0378-5955(89)90032-4
Wolter NE, 2014, AUDIOL NEURO-OTOL, V19, P41, DOI 10.1159/000356174
Zacharek MA, 2002, HEARING RES, V172, P137, DOI 10.1016/S0378-5955(02)00575-0
Zhang JS, 1998, NEUROSCI LETT, V250, P197, DOI 10.1016/S0304-3940(98)00482-0
Zheng XY, 1997, HEARING RES, V105, P65, DOI 10.1016/S0378-5955(96)00188-8
NR 45
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2014
VL 315
BP 34
EP 39
DI 10.1016/j.heares.2014.06.002
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AP2LC
UT WOS:000341902700004
PM 24973579
ER
PT J
AU Smith, AR
Kwon, JH
Navarro, M
Hurley, LM
AF Smith, Adam R.
Kwon, Jae Hyun
Navarro, Marco
Hurley, Laura M.
TI Acoustic trauma triggers upregulation of serotonin receptor genes
SO HEARING RESEARCH
LA English
DT Article
ID MESSENGER-RNA EXPRESSION; RAT INFERIOR COLLICULUS; AUDITORY-SYSTEM;
HEARING-LOSS; SYNAPTIC-TRANSMISSION; GABAERGIC INHIBITION; SUPERIOR
COLLICULUS; VISUAL-CORTEX; BRAIN-STEM; IN-VITRO
AB Hearing loss induces plasticity in excitatory and inhibitory neurotransmitter systems in auditory brain regions. Excitatory-inhibitory balance is also influenced by a range of neuromodulatory regulatory systems, but less is known about the effects of auditory damage on these networks. In this work, we studied the effects of acoustic trauma on neuromodulatory plasticity in the auditory midbrain of CBA/J mice. Quantitative PCR was used to measure the expression of serotonergic and GABAergic receptor genes in the inferior colliculus (IC) of mice that were unmanipulated, sham controls with no hearing loss, and experimental individuals with hearing loss induced by exposure to a 116 dB, 10 kHz pure tone for 3 h. Acoustic trauma induced substantial hearing loss that was accompanied by selective upregulation of two serotonin receptor genes in the IC. The Htr1 B receptor gene was upregulated tenfold following trauma relative to shams, while the Htr1 A gene was upregulated threefold. In contrast, no plasticity in serotonin receptor gene expression was found in the hippocampus, a region also innervated by serotonergic projections. Analyses in the IC demonstrated that acoustic trauma also changed the coexpression of genes in relation to each other, leading to an overexpression of Htr1 B compared to other genes. These data suggest that acoustic trauma induces serotonergic plasticity in the auditory system, and that this plasticity may involve comodulation of functionally-linked receptor genes. Published by Elsevier B.V.
C1 [Smith, Adam R.; Kwon, Jae Hyun; Navarro, Marco; Hurley, Laura M.] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA.
[Navarro, Marco] St Louis Univ, Dept Biol, St Louis, MO 63103 USA.
RP Smith, AR (reprint author), Indiana Univ, Dept Biol, 1001 East 3rd St, Bloomington, IN 47405 USA.
EM adarsmit@indiana.edu
FU NIDCD [DC008963]; NSF REU program [DBI-0851607]
FX The authors declare no competing financial interests. This research was
funded by grant DC008963 to LMH from NIDCD. Support for MN was provided
by the NSF REU program grant DBI-0851607.
CR Argence M, 2006, NEUROSCIENCE, V141, P1193, DOI 10.1016/j.neuroscience.2006.04.058
Baroncelli L, 2010, EXP NEUROL, V226, P100, DOI 10.1016/j.expneurol.2010.08.009
Carleton KL, 2011, METHODS MOL BIOL, V772, P279, DOI 10.1007/978-1-61779-228-1_17
Caspary DM, 2008, J EXP BIOL, V211, P1781, DOI 10.1242/jeb.013581
Caspary DM, 1999, NEUROSCIENCE, V93, P307, DOI 10.1016/S0306-4522(99)00121-9
Choi JY, 2014, SYNAPSE, V68, P363, DOI 10.1002/syn.21748
D'Angelo WR, 2005, J NEUROPHYSIOL, V93, P3390, DOI 10.1152/jn.00956.2004
Dong S, 2010, BRAIN RES, V1342, P24, DOI 10.1016/j.brainres.2010.04.067
Dong SY, 2010, EUR J NEUROSCI, V31, P1616, DOI 10.1111/j.1460-9568.2010.07183.x
Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010
Furay AR, 2011, BEHAV BRAIN RES, V224, P350, DOI 10.1016/j.bbr.2011.06.016
Hall IC, 2010, J EXP BIOL, V213, P1009, DOI 10.1242/jeb.035956
Hannon J, 2008, BEHAV BRAIN RES, V195, P198, DOI 10.1016/j.bbr.2008.03.020
Hazra R, 2012, NEUROSCIENCE, V225, P9, DOI 10.1016/j.neuroscience.2012.08.014
Holt AG, 2005, J NEUROCHEM, V93, P1069, DOI 10.1111/j.1471-4159.2005.03090.x
Hurley LM, 2012, FRONT NEURAL CIRCUIT, V6, DOI 10.3389/fncir.2012.00058
Hurley LM, 2008, J NEUROPHYSIOL, V100, P1656, DOI 10.1152/jn.90536.2008
Hurley LM, 2007, BRAIN RES, V1181, P21, DOI 10.1016/j.brainres.2007.08.053
Hurley LM, 2006, J NEUROPHYSIOL, V96, P2177, DOI 10.1152/jn.00046.2006
Kang HH, 2013, NEUROIMAGE, V75, P262, DOI 10.1016/j.neuroimage.2012.06.049
Knipper Marlies, 2013, Prog Neurobiol, V111, P17, DOI 10.1016/j.pneurobio.2013.08.002
Kojic L, 1997, DEV BRAIN RES, V101, P299, DOI 10.1016/S0165-3806(97)00083-7
Lin WY, 2003, J NEUROSCI, V23, P8143
Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
Manzoor NF, 2013, HEARING RES, V295, P114, DOI 10.1016/j.heares.2012.04.003
Maya Vetencourt J.F., 2011, EUR J NEUROSCI, V33, P49, DOI DOI 10.1111/J.1460-9568.2010.07488.X
Meltser I, 2011, HEARING RES, V281, P47, DOI 10.1016/j.heares.2011.06.003
Mossop JE, 2000, HEARING RES, V147, P183, DOI 10.1016/S0378-5955(00)00054-X
Mulders WHAM, 2011, NEUROSCIENCE, V192, P753, DOI 10.1016/j.neuroscience.2011.06.046
OLESKEVICH S, 1990, NEUROSCIENCE, V34, P19, DOI 10.1016/0306-4522(90)90301-J
Papesh MA, 2012, HEARING RES, V283, P89, DOI 10.1016/j.heares.2011.11.004
Pollak GD, 2012, HEARING RES, V288, P47, DOI 10.1016/j.heares.2012.01.011
Pollak GD, 2002, HEARING RES, V168, P60, DOI 10.1016/S0378-5955(02)00362-3
Qu Y, 2000, NEUROSCIENCE, V101, P863, DOI 10.1016/S0306-4522(00)00441-3
Rao D, 2010, J NEUROPHYSIOL, V104, P2693, DOI 10.1152/jn.01092.2009
Rasmuson S, 1998, MOL BRAIN RES, V53, P285, DOI 10.1016/S0169-328X(97)00317-3
RHOADES RW, 1990, J COMP NEUROL, V299, P151, DOI 10.1002/cne.902990203
Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2
Sari Y, 2004, NEUROSCI BIOBEHAV R, V28, P565, DOI 10.1016/j.neubiorev.2004.08.008
Suga N, 2002, NEURON, V36, P9, DOI 10.1016/S0896-6273(02)00933-9
Tadros SF, 2007, NEUROBIOL AGING, V28, P1112, DOI 10.1016/j.neurobiolaging.2006.05.021
Tahera Y, 2006, ENDOCRINOLOGY, V147, P4430, DOI 10.1210/en.2006-0260
Tahera Y, 2006, J NEUROSCI RES, V83, P1066, DOI 10.1002/jnr.20795
Vale C, 2000, J NEUROSCI, V20, P1912
Vale C, 2004, EUR J NEUROSCI, V20, P2133, DOI 10.1111/j.1460-9568.2004.03679.x
Vale C, 2002, EUR J NEUROSCI, V16, P2394, DOI 10.1046/j.1460-9568.2002.02302.x
VIZUETE ML, 1993, NEUROSCIENCE, V56, P165, DOI 10.1016/0306-4522(93)90571-V
Wang HT, 2008, HEARING RES, V236, P42, DOI 10.1016/j.heares.2007.11.015
YANG LC, 1992, J NEUROPHYSIOL, V68, P1760
Yohe LR, 2012, COGN AFFECT BEHAV NE, V12, P446, DOI 10.3758/s13415-012-0095-9
Zhao S., 2005, J COMPUT BIOL, V12, P1045, DOI DOI 10.1089/CMB.2005.12.1047
NR 51
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2014
VL 315
BP 40
EP 48
DI 10.1016/j.heares.2014.06.004
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AP2LC
UT WOS:000341902700005
PM 24997228
ER
PT J
AU Bullen, A
Taylor, RR
Kachar, B
Moores, C
Fleck, RA
Forge, A
AF Bullen, A.
Taylor, R. R.
Kachar, B.
Moores, C.
Fleck, R. A.
Forge, A.
TI Inner ear tissue preservation by rapid freezing: Improving fixation by
high-pressure freezing and hybrid methods
SO HEARING RESEARCH
LA English
DT Article
ID ELECTRON-MICROSCOPY; CELLULAR ULTRASTRUCTURE; CRYOELECTRON MICROSCOPY;
OSMIUM-TETROXIDE; ACTIN-FILAMENTS; HAIR-CELLS; SUBSTITUTION; TOMOGRAPHY;
MEMBRANES; CRYOFIXATION
AB In the preservation of tissues in as 'close to life' state as possible, rapid freeze fixation has many benefits over conventional chemical fixation. One technique by which rapid freeze-fixation can be achieved, high pressure freezing (HPF), has been shown to enable ice crystal artefact-free freezing and tissue preservation to greater depths (more than 40 pm) than other quick-freezing methods. Despite increasingly becoming routine in electron microscopy, the use of HPF for the fixation of inner ear tissue has been limited. Assessment of the quality of preservation showed routine HPF techniques were suitable for preparation of inner ear tissues in a variety of species. Good preservation throughout the depth of sensory epithelia was achievable. Comparison to chemically fixed tissue indicated that fresh frozen preparations exhibited overall superior structural preservation of cells. However, HPF fixation caused characteristic artefacts in stereocilia that suggested poor quality freezing of the actin bundles. The hybrid technique of pre-fixation and high pressure freezing was shown to produce cellular preservation throughout the tissue, similar to that seen in HPF alone. Pre-fixation HPF produced consistent high quality preservation of stereociliary actin bundles. Optimising the preparation of samples with minimal artefact formation allows analysis of the links between ultrastructure and function in inner ear tissues. (C) 2014 The Authors. Published by Elsevier B.V.
C1 [Bullen, A.; Taylor, R. R.; Forge, A.] UCL Ear Inst, Ctr Auditory Res, London WC1X 8EE, England.
[Kachar, B.] NIDCD, Lab Cell Struct & Dynam, NIH, Bethesda, MD 20892 USA.
[Moores, C.] Birkbeck Coll, Inst Struct & Mol Biol, London WC1E 7HX, England.
[Fleck, R. A.] Natl Inst Biol Stand & Controls, Potters Bar EN6 3QG, Herts, England.
RP Bullen, A (reprint author), UCL Ear Inst, Ctr Auditory Res, London WC1X 8EE, England.
EM a.bullen@ucl.ac.uk
FU Biotechnology and Biological Sciences Research Council (BBSRC)
[BB/I02123X/1]
FX Dr Dan Clare (Birkbeck College) for assistance with HPF. This work is
funded by a project grant from the Biotechnology and Biological Sciences
Research Council (BBSRC) (BB/I02123X/1).
CR Al-Amoudi A, 2004, EMBO J, V23, P3583, DOI 10.1038/sj.emboj.7600366
Boyde A., 1980, SCANNING ELECT MICRO, V117-124, P132
CAULFIELD JB, 1957, J BIOPHYS BIOCHEM CY, V3, P827, DOI 10.1083/jcb.3.5.827
Claeys M, 2004, NEMATOLOGY, V6, P319, DOI 10.1163/1568541042360564
DAHL R, 1989, J ELECTRON MICR TECH, V13, P165, DOI 10.1002/jemt.1060130305
DEROSIER DJ, 1980, NATURE, V287, P291, DOI 10.1038/287291a0
Dubochet J, 2007, METHOD CELL BIOL, V79, P7, DOI 10.1016/S0091-679X(06)79001-X
Dumont RA, 2001, J NEUROSCI, V21, P5066
FLOCK A, 1977, J CELL BIOL, V75, P339, DOI 10.1083/jcb.75.2.339
FORGE A, 1991, J NEUROCYTOL, V20, P471, DOI 10.1007/BF01252275
Galway ME, 1995, METHOD CELL BIOL, V49, P3, DOI 10.1016/S0091-679X(08)61442-9
GILKEY JC, 1986, J ELECTRON MICR TECH, V3, P177, DOI 10.1002/jemt.1060030206
Hayat MA, 2000, PRINCIPLES AND TECHNIQUES OF ELECTRON MICROSCOPY: BIOLOGICAL APPLICATIONS, FOURTH EDITION, P4
HIROKAWA N, 1982, J CELL BIOL, V95, P249, DOI 10.1083/jcb.95.1.249
KACHAR B, 1990, HEARING RES, V45, P179, DOI 10.1016/0378-5955(90)90119-A
Kachar B, 2000, P NATL ACAD SCI USA, V97, P13336, DOI 10.1073/pnas.97.24.13336
KELLENBERGER E, 1991, J MICROSC-OXFORD, V161, P183
Koster AJ, 2003, NAT CELL BIOL, pSS6, DOI 10.1038/nrm1194
Leforestier A, 1996, J MICROSC-OXFORD, V184, P4, DOI 10.1046/j.1365-2818.1996.1090666.x
Lucic V, 2013, J CELL BIOL, V202, P407, DOI 10.1083/jcb.201304193
McDonald Kent L, 2007, Methods Mol Biol, V369, P143
McDonald KL, 2011, J MICROSC-OXFORD, V243, P227, DOI 10.1111/j.1365-2818.2011.03526.x
MEISSNER DH, 1990, J ELECTRON MICR TECH, V14, P348, DOI 10.1002/jemt.1060140410
Meyer AC, 2009, NAT NEUROSCI, V12, P444, DOI 10.1038/nn.2293
Muller M., 1988, ELECT MICROSCOPY MIC, P1
Ohta K, 2012, J STRUCT BIOL, V177, P513, DOI 10.1016/j.jsb.2011.10.012
Resch GP, 2002, J CELL SCI, V115, P1877
Rzadzinska AK, 2004, J CELL BIOL, V164, P887, DOI 10.1083/jcb.200310055
Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089
Semmler K, 1998, J MICROSC-OXFORD, V190, P317
SMALL JV, 1981, J CELL BIOL, V91, P695, DOI 10.1083/jcb.91.3.695
Small JV, 1999, MICROSC RES TECHNIQ, V47, P3
Sosinsky GE, 2008, J STRUCT BIOL, V161, P359, DOI 10.1016/j.jsb.2007.09.002
Sosinsky GE, 2005, NEUROINFORMATICS, V3, P133, DOI 10.1385/NI:03:02:133
STEINBRECHT RA, 1985, J MICROSC-OXFORD, V140, P41
STUDER D, 1992, PLANTA, V188, P155, DOI 10.1007/BF00216809
Studer D, 2001, J MICROSC-OXFORD, V203, P285, DOI 10.1046/j.1365-2818.2001.00919.x
Studer D, 2008, HISTOCHEM CELL BIOL, V130, P877, DOI 10.1007/s00418-008-0500-1
STUDER D, 1995, J MICROSC-OXFORD, V179, P321
Taylor RR, 2005, J COMP NEUROL, V484, P105, DOI 10.1002/cne.20450
Tilney LG, 1998, J CELL BIOL, V143, P121, DOI 10.1083/jcb.143.1.121
WHITE DL, 1976, BIOCHIM BIOPHYS ACTA, V436, P577, DOI 10.1016/0005-2736(76)90442-9
NR 42
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2014
VL 315
BP 49
EP 60
DI 10.1016/j.heares.2014.06.006
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AP2LC
UT WOS:000341902700006
PM 25016142
ER
PT J
AU Benovitski, YB
Blarney, PJ
Rathbone, GD
Fallon, JB
AF Benovitski, Yuri B.
Blamey, Peter J.
Rathbone, Graeme D.
Fallon, James B.
TI Behavioral frequency discrimination ability of partially deafened cats
using cochlear implants
SO HEARING RESEARCH
LA English
DT Article
ID ELECTRIC-ACOUSTIC STIMULATION; SPEECH-PERCEPTION; AUDITORY-CORTEX;
HEARING-AID; PLASTICITY; SYSTEM; RECOGNITION; CONJUNCTION; THRESHOLDS;
LISTENERS
AB The aim of this study was to determine the effects of cochlear implant (CI) use on behavioral frequency discrimination ability in partially deafened cats. We hypothesized that the additional information provided by the CI would allow subjects to perform better on a frequency discrimination task.
Four cats with a high frequency hearing loss induced by ototoxic drugs were first trained on a go/no-go, positive reinforcement, frequency discrimination task and reached asymptotic performance (measured by d' - detection theory). Reference frequencies (1, 4, and 7 kHz) were systematically rotated (Block design) every 9-11 days to cover the hearing range of the cats while avoiding bias arising from the order of testing. Animals were then implanted with an intracochlear electrode array connected to a CI and speech processor. They then underwent 6 months of continuous performance measurement with the Cl turned on, except for one month when the stimulator was turned off.
Overall, subjects performed the frequency discrimination task significantly better with their CI turned on than in the CI-off condition (3-way ANOVA, p < 0.001). The analysis showed no dependence on subject (3-way ANOVA, subject x on-off condition, p > 0.5); however, the CI only significantly improved performance for two (1 and 7 kHz) of the three reference frequencies.
In this study we were able to show, for the first time, that cats can utilize information provided by a CI in performing a behavioral frequency discrimination task. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Benovitski, Yuri B.; Blamey, Peter J.; Rathbone, Graeme D.; Fallon, James B.] Bion Inst, East Melbourne, Vic 3002, Australia.
[Benovitski, Yuri B.; Rathbone, Graeme D.] La Trobe Univ, Dept Elect Engn, Bundoora, Vic 3086, Australia.
[Blamey, Peter J.; Fallon, James B.] Univ Melbourne, Dept Med Bion, Melbourne, Vic 3010, Australia.
[Blamey, Peter J.; Fallon, James B.] Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3010, Australia.
RP Fallon, JB (reprint author), Bion Inst, 384-388 Albert St, East Melbourne, Vic 3002, Australia.
EM jfallon@bionicsinstitute.org
FU National Institutes of Health [HHS-N-263-2007-00053-C]; National Health
and Medical Research Council of Australia [GNT1002430]; Department of
Electronic Engineering, La-Trobe University; Victorian Government
through its Operational Infrastructure Support Program
FX This work was funded by the National Institutes of Health
(HHS-N-263-2007-00053-C), the National Health and Medical Research
Council of Australia (GNT1002430) and The Department of Electronic
Engineering, La-Trobe University. The Bionics Institute acknowledges the
support it receives from the Victorian Government through its
Operational Infrastructure Support Program. The authors are grateful to
Andrew Wise for implant surgeries; Alison Neil, Nicole Critch and Amy
Morley for technical assistance; Sam Irvine for advice; Sue Pierce for
veterinary advice; Sue Mckay for animal maintenance; and Dexter Irvine
for comments on the earlier versions of the manuscript.
CR Armstrong M, 1997, AM J OTOL, V18, pS140
Beitel RE, 2000, AUDIOL NEURO-OTOL, V5, P31, DOI 10.1159/000013863
Benovitski YB, 2014, HEARING RES, V309, P1, DOI 10.1016/j.heares.2013.11.002
Blamey P., 2012, AUDIOL NEURO-OTOL, V18, P36
Blarney P., 1996, AUDIOL NEURO-OTOL, V1, P293
Blarney P.J., 1996, HEARING RES, V99, P139
Ching Teresa Y C, 2006, Audiol Neurootol, V11 Suppl 1, P6, DOI 10.1159/000095607
Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004
Dorman M.F., 2007, AUDIOL NEUROTOL, V13, P105
Fallon JB, 2009, HEARING RES, V257, P93, DOI 10.1016/j.heares.2009.08.006
Firszt JB, 2008, J REHABIL RES DEV, V45, P749, DOI 10.1682/JRRD.2007.08.0120
Hamzavi J, 2004, INT J AUDIOL, V43, P61, DOI 10.1080/14992020400050010
HARRISON RV, 1991, HEARING RES, V54, P11, DOI 10.1016/0378-5955(91)90131-R
Heeger D., 1997, SIGNAL DETECTION THE
Henry BA, 2005, J ACOUST SOC AM, V118, P1111, DOI 10.1121/1.1944567
ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311
Irving S, 2014, J NEURAL ENG, V11, DOI 10.1088/1741-2560/11/4/046008
Klinke R, 1999, SCIENCE, V285, P1729, DOI 10.1126/science.285.5434.1729
Kral A, 2006, PROG BRAIN RES, V157, P283, DOI 10.1016/S0079-6123(06)57018-9
MCDERMOTT H, 1989, IEEE T BIO-MED ENG, V36, P789, DOI 10.1109/10.32112
McDermott HJ, 1998, J ACOUST SOC AM, V104, P2314, DOI 10.1121/1.423744
Mok M, 2006, J SPEECH LANG HEAR R, V49, P338, DOI 10.1044/1092-4388(2006/027)
Pettingill LN, 2007, IEEE T BIO-MED ENG, V54, P1138, DOI 10.1109/TBME.2007.895375
Pienkowski M, 2011, NEUROSCI BIOBEHAV R, V35, P2117, DOI 10.1016/j.neubiorev.2011.02.002
Rose MM, 2005, HEARING RES, V204, P16, DOI 10.1016/j.heares.2004.12.004
Shepherd R, 2011, HEARING RES, V277, P20, DOI 10.1016/j.heares.2011.03.017
Turner CW, 2008, HEARING RES, V242, P164, DOI 10.1016/j.heares.2007.11.008
Turner CW, 2004, J ACOUST SOC AM, V115, P1729, DOI 10.1121/1.1687425
Tyler RS, 2002, EAR HEARING, V23, P98, DOI 10.1097/00003446-200204000-00003
van den Honert C, 2007, J ACOUST SOC AM, V121, P3703, DOI 10.1121/1.2722047
Vollmer M, 2001, J NEUROPHYSIOL, V86, P2330
Vollmer M, 2011, J NEUROPHYSIOL, V106, P2423, DOI 10.1152/jn.00565.2011
von Ilberg C, 1999, ORL J OTO-RHINO-LARY, V61, P334, DOI 10.1159/000027695
von Ilberg CA, 2011, AUDIOL NEURO-OTOL, V16, P1, DOI 10.1159/000327765
Wilson BS, 2008, HEARING RES, V242, P3, DOI 10.1016/j.heares.2008.06.005
NR 35
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2014
VL 315
BP 61
EP 66
DI 10.1016/j.heares.2014.06.005
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AP2LC
UT WOS:000341902700007
PM 25008966
ER
PT J
AU Rattay, F
Danner, SM
AF Rattay, Frank
Danner, Simon M.
TI Peak I of the human auditory brainstem response results from the somatic
regions of type I spiral ganglion cells: Evidence from computer modeling
SO HEARING RESEARCH
LA English
DT Article
ID HUMAN COCHLEAR NEURON; ELECTRICAL-STIMULATION; ACTION-POTENTIALS;
NERVE-FIBERS; RAT; CAT; SENSITIVITY; GENERATORS; CHANNELS; PATTERNS
AB Early neural responses to acoustic signals can be electrically recorded as a series of waves, termed the auditory brainstem response (ABR). The latencies of the ABR waves are important for clinical and neurophysiological evaluations. Using a biophysical model of transmembrane currents along spiral ganglion cells, we show that in human (i) the non-myelinated somatic regions of type I cells, which innervate inner hair cells, predominantly contribute to peak I, (ii) the supra-strong postsynaptic stimulating current (400 pA) and transmembrane currents of the myelinated peripheral axons of type I cells are an order smaller; such postsynaptic currents correspond to the short latencies of a small recordable ABR peak l', (iii) the ABR signal involvement of the central axon of bipolar type I cells is more effective than their peripheral counterpart as the doubled diameter causes larger transmembrane currents and a larger spike dipole-length, (iv) non-myelinated fibers of type II cells which innervate the outer hair cells generate essentially larger transmembrane currents but their ABR contribution is small because of the small ratio type II/type I cells, low firing rates and a short dipole length of spikes propagating slowly in non-myelinated fibers. Using a finite element model of a simplified head, peaks I-n and H (where I-n is the negative peak after peak I) are found to be stationary potentials when volleys of spikes cross the external electrical conductivity barrier at the bone&dura/CSF and at the CSF/brainstem interface whereas peaks I' and I may be generated by strong local transmembrane currents as postsynaptic events at the distal ending and the soma region of type I cells, respectively. All simulated human inter-peak times (I-I', II-I, I-n-I) are close to published data. (C) 2014 The Authors. Published by Elsevier B.V.
C1 [Rattay, Frank; Danner, Simon M.] TU Vienna, Inst Anal & Sci Comp, Vienna, Austria.
[Danner, Simon M.] Med Univ Vienna, Ctr Med Phys & Biomed Engn, Vienna, Austria.
RP Rattay, F (reprint author), TU Vienna, Inst Anal & Sci Comp, Vienna, Austria.
EM frank.rattay@tuwien.ac.at
RI Rattay, Frank/A-2231-2015; Danner, Simon Michael/I-7944-2012
OI Rattay, Frank/0000-0002-2819-8827; Danner, Simon
Michael/0000-0002-4642-7064
FU Austrian Science Fund [21848-N13]
FX This work was supported by the Austrian Science Fund, Grant No.
21848-N13.
CR ABBAS PJ, 1991, HEARING RES, V51, P123, DOI 10.1016/0378-5955(91)90011-W
BOYD IA, 1979, J PHYSIOL-LONDON, V289, P277
Brown DJ, 2010, HEARING RES, V267, P12, DOI 10.1016/j.heares.2010.03.091
Danner SM, 2011, ARTIF ORGANS, V35, P257, DOI 10.1111/j.1525-1594.2011.01213.x
Davis-Gunter MJ, 2001, SCAND AUDIOL, V30, P50, DOI 10.1080/010503901750069572
DOLAN DF, 1989, J ACOUST SOC AM, V86, P2167, DOI 10.1121/1.398477
Esteves M.C., 2009, BRAZ J OTORHINOLARYN, V75, P420
Felix H, 1997, PROGRESS IN HUMAN AUDITORY AND VESTIBULAR HISTOPATHOLOGY, P73
Fraher J, 2002, J ANAT, V200, P415, DOI 10.1046/j.1469-7580.2002.00037.x
GERSDORFF MCH, 1982, ARCH OTO-RHINO-LARYN, V234, P15, DOI 10.1007/BF00453533
Grant L, 2010, J NEUROSCI, V30, P4210, DOI 10.1523/JNEUROSCI.4439-09.2010
Guiraud J, 2007, HEARING RES, V223, P48, DOI 10.1016/j.heares.2006.09.014
HALL RD, 1990, HEARING RES, V49, P155, DOI 10.1016/0378-5955(90)90102-U
HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7
Hashimoto I, 1982, Electroencephalogr Clin Neurophysiol Suppl, V36, P305
HODGKIN AL, 1952, J PHYSIOL-LONDON, V117, P500
Hossain WA, 2005, J NEUROSCI, V25, P6857, DOI 10.1523/JNEUROSCI.0123-05.2005
Hu WQ, 2009, NAT NEUROSCI, V12, P996, DOI 10.1038/nn.2359
HUGHES JR, 1985, J CLIN NEUROPHYSIOL, V2, P355, DOI 10.1097/00004691-198510000-00003
Jewett D.L., 1970, CLIN NEUROL, V28, P609
JEWETT DL, 1971, BRAIN, V94, P681, DOI 10.1093/brain/94.4.681
Lescanne E, 2002, J NEUROSURG, V97, P1191, DOI 10.3171/jns.2002.97.5.1191
Lichtenhan JT, 2014, JARO-J ASSOC RES OTO, V15, P395, DOI 10.1007/s10162-014-0447-y
Macherey O, 2008, JARO-J ASSOC RES OTO, V9, P241, DOI 10.1007/s10162-008-0112-4
Malherbe TK, 2013, MED ENG PHYS, V35, P926, DOI 10.1016/j.medengphy.2012.09.001
MARTIN WH, 1995, EVOKED POTENTIAL, V96, P357, DOI 10.1016/0168-5597(94)00326-A
Mason JA, 1998, PEDIATRICS, V101, P221, DOI 10.1542/peds.101.2.221
MATSUSHIMA J, 1982, Hokkaido Journal of Medical Science, V57, P602
Melcher JR, 1996, HEARING RES, V93, P1, DOI 10.1016/0378-5955(95)00178-6
Miller CA, 2004, HEARING RES, V198, P75, DOI 10.1016/j.heares.2004.07.005
MOLLER AR, 1988, ELECTROEN CLIN NEURO, V71, P198, DOI 10.1016/0168-5597(88)90005-6
MOLLER AR, 1983, EXP NEUROL, V80, P633, DOI 10.1016/0014-4886(83)90313-8
MOORE EJ, 1992, SCAND AUDIOL, V21, P153, DOI 10.3109/01050399209045996
MOTZ H, 1986, NEUROSCIENCE, V18, P699, DOI 10.1016/0306-4522(86)90064-3
Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5
NADOL JB, 1988, HEARING RES, V34, P253, DOI 10.1016/0378-5955(88)90006-8
NAKANISHI T, 1982, ELECTROEN CLIN NEURO, V53, P343, DOI 10.1016/0013-4694(82)90095-5
NEGM MH, 2008, C P IEEE ENG MED BIO, P5539
OTA CY, 1980, ACTA OTO-LARYNGOL, V89, P53, DOI 10.3109/00016488009127108
Potrusil T, 2012, NEUROSCIENCE, V214, P120, DOI 10.1016/j.neuroscience.2012.03.033
RATTAY F, 1993, IEEE T BIO-MED ENG, V40, P1201, DOI 10.1109/10.250575
Rattay F, 1990, ELECT NERVE STIMULAT
Rattay F, 2001, HEARING RES, V153, P64, DOI 10.1016/S0378-5955(00)00257-4
Rattay F, 2010, NEUROSCIENCE, V170, P399, DOI 10.1016/j.neuroscience.2010.07.032
Rattay F, 2000, SPINAL CORD, V38, P473, DOI 10.1038/sj.sc.3101039
RATTAY F, 2003, HDB NEUROPROSTHETIC, P39
Rattay F, 2001, HEARING RES, V153, P43, DOI 10.1016/S0378-5955(00)00256-2
Rattay F, 1999, NEUROSCIENCE, V89, P335, DOI 10.1016/S0306-4522(98)00330-3
Rattay F, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0079256
SPOENDLIN H, 1975, AUDIOLOGY, V14, P383
STARR A, 1979, ANN OTO RHINOL LARYN, V88, P550
STEGEMAN DF, 1987, ELECTROEN CLIN NEURO, V67, P176
TASAKI I, 1954, J ACOUST SOC AM, V26, P765, DOI 10.1121/1.1907415
Tuch DS, 2001, P NATL ACAD SCI USA, V98, P11697, DOI 10.1073/pnas.171473898
Undurraga JA, 2013, JARO-J ASSOC RES OTO, V14, P359, DOI 10.1007/s10162-013-0377-0
Weisz CJC, 2012, J NEUROSCI, V32, P9528, DOI 10.1523/JNEUROSCI.6194-11.2012
Yi EY, 2010, J NEUROPHYSIOL, V103, P2532, DOI 10.1152/jn.00506.2009
NR 57
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2014
VL 315
BP 67
EP 79
DI 10.1016/j.heares.2014.07.001
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AP2LC
UT WOS:000341902700008
PM 25019355
ER
PT J
AU Clarke, J
Gaudrain, E
Chatterjee, M
Baskent, D
AF Clarke, Jeanne
Gaudrain, Etienne
Chatterjee, Monita
Baskent, Deniz
TI T'ain't the way you say it, it's what you say - Perceptual continuity of
voice and top-down restoration of speech
SO HEARING RESEARCH
LA English
DT Article
ID COCHLEAR-IMPLANT USERS; VOCAL-TRACT LENGTH; SELECTIVE AUDITORY
ATTENTION; NORMAL-HEARING LISTENERS; FUNDAMENTAL-FREQUENCY; PHONEMIC
RESTORATIONS; INTERRUPTED SPEECH; INTERVENING NOISE; DEGRADED SPEECH;
INTELLIGIBILITY
AB Phonemic restoration, or top down repair of speech, is the ability of the brain to perceptually reconstruct missing speech sounds, using remaining speech features, linguistic knowledge and context. This usually occurs in conditions where the interrupted speech is perceived as continuous. The main goal of this study was to investigate whether voice continuity was necessary for phonemic restoration. Restoration benefit was measured by the improvement in intelligibility of meaningful sentences interrupted with periodic silent gaps, after the gaps were filled with noise bursts. A discontinuity was induced on the voice characteristics. The fundamental frequency, the vocal tract length, or both of the original vocal characteristics were changed using STRAIGHT to make a talker sound like a different talker from one speech segment to another. Voice discontinuity reduced the global intelligibility of interrupted sentences, confirming the importance of vocal cues for perceptually constructing a speech stream. However, phonemic restoration benefit persisted through all conditions despite the weaker voice continuity. This finding suggests that participants may have relied more on other cues, such as pitch contours or perhaps even linguistic context, when the vocal continuity was disrupted. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Clarke, Jeanne; Gaudrain, Etienne; Baskent, Deniz] Univ Groningen, Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, NL-9700 RB Groningen, Netherlands.
[Clarke, Jeanne; Gaudrain, Etienne; Baskent, Deniz] Univ Groningen, Univ Med Ctr Groningen, Grad Sch Med Sci, Res Sch Behav & Cognit Neurosci, NL-9700 AB Groningen, Netherlands.
[Chatterjee, Monita] Boys Town Natl Res Hosp, Omaha, NE 68131 USA.
RP Clarke, J (reprint author), Univ Groningen, Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, POB 30-001, NL-9700 RB Groningen, Netherlands.
EM j.n.clarke@umcg.nl; e.p.c.gaudrain@umcg.nl;
monita.chatterjee@boystown.org; d.baskent@umcg.nl
FU VIDI grant from the Netherlands Organization for Scientific Research,
NWO [016.096.397]; University of Groningen, University Medical Center
Groningen; Heinsius Houbolt Foundation; VIDI grant from the Netherlands
Organization for Health Research and Development, ZonMw
FX The authors would like to thank Kelly Fitz for his assistance in
technical aspects of the work, Marije Sleurink for transcribing
participant responses, and the participants. The authors would also like
to thank the associate editor and the two anonymous reviewers for their
valuable comments to improve the quality of this paper. This study was
supported by a VIDI grant from the Netherlands Organization for
Scientific Research, NWO (grant no. 016.096.397; from Netherlands
Organization for Health Research and Development, ZonMw). Further
support came from a Rosalind Franklin Fellowship from the University of
Groningen, University Medical Center Groningen, and funds from the
Heinsius Houbolt Foundation. The study is part of the research program
of the Otorhinolaryngology Department of the University Medical Center
Groningen: Healthy Aging and Communication.
CR Assmann PF, 2005, J ACOUST SOC AM, V117, P886, DOI 10.1121/1.1852549
BASHFORD JA, 1992, PERCEPT PSYCHOPHYS, V51, P211, DOI 10.3758/BF03212247
Baskent D, 2012, JARO-J ASSOC RES OTO, V13, P683, DOI 10.1007/s10162-012-0334-3
Baskent D, 2009, J ACOUST SOC AM, V125, P3995, DOI 10.1121/1.3125329
Beck J., 1982, ORG REPRESENTATION P
Benard MR, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058149
Best V, 2008, P NATL ACAD SCI USA, V105, P13174, DOI 10.1073/pnas.0803718105
Bhargava P, 2014, HEARING RES, V309, P113, DOI 10.1016/j.heares.2013.12.003
Billig AJ, 2013, CURR BIOL, V23, P1585, DOI 10.1016/j.cub.2013.06.042
Bregman AS., 1990, AUDITORY SCENE ANAL
COOPER WE, 1985, PERCEPT PSYCHOPHYS, V38, P30, DOI 10.3758/BF03202921
Darwin CJ, 2003, J ACOUST SOC AM, V114, P2913, DOI 10.1121/1.1616924
Fitch WT, 1999, J ACOUST SOC AM, V106, P1511, DOI 10.1121/1.427148
Fuller C., 2014, EFFECT FUNDAMENTAL F
Gaudrain E, 2009, INTERSPEECH 2009: 10TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2009, VOLS 1-5, P152
Gaudrain E, 2007, HEARING RES, V231, P32, DOI 10.1016/j.heares.2007.05.001
HARTMANN WM, 1991, MUSIC PERCEPT, V9, P155
Helfer KS, 2009, J ACOUST SOC AM, V125, P447, DOI 10.1121/1.3035837
Hillenbrand JM, 2009, ATTEN PERCEPT PSYCHO, V71, P1150, DOI 10.3758/APP.71.5.1150
Ives DT, 2005, J ACOUST SOC AM, V118, P3816, DOI 10.1121/1.2118427
Kawahara H, 1999, SPEECH COMMUN, V27, P187, DOI 10.1016/S0167-6393(98)00085-5
Kidd G, 2008, J ACOUST SOC AM, V124, P3793, DOI 10.1121/1.2998980
LADEFOGED P, 1957, J ACOUST SOC AM, V29, P98, DOI 10.1121/1.1908694
Larson E, 2013, J ACOUST SOC AM, V134, pEL165, DOI 10.1121/1.4812439
Liu C, 2004, ACOUST RES LETT ONL, V5, P31, DOI 10.1121/1.1635431
Mackersie CL, 2011, J AM ACAD AUDIOL, V22, P113, DOI 10.3766/jaaa.22.2.6
Mackersie CL, 2011, J ACOUST SOC AM, V130, P1006, DOI 10.1121/1.3605548
Maddox RK, 2012, JARO-J ASSOC RES OTO, V13, P119, DOI 10.1007/s10162-011-0299-7
McLennan CT, 2005, J EXP PSYCHOL LEARN, V31, P306, DOI 10.1037/0278-7393.31.2.306
MILLER GA, 1950, J ACOUST SOC AM, V22, P167, DOI 10.1121/1.1906584
Moore B. C. J., 1995, HDB PERCEPTION COGNI, V6, P387
Nelson PB, 2003, J ACOUST SOC AM, V113, P961, DOI 10.1121/1.1531983
Nelson PB, 2004, J ACOUST SOC AM, V115, P2286, DOI 10.1121/1.1703538
POWERS GL, 1977, J ACOUST SOC AM, V61, P195, DOI 10.1121/1.381255
Shahin AJ, 2009, NEUROIMAGE, V44, P1133, DOI 10.1016/j.neuroimage.2008.09.045
Shinn-Cunningham B., 2013, POMA 21 INT C AC ICA
Skuk V.G., 2013, J SPEECH LANG HEAR R, V57, P285
Smith DRR, 2007, J ACOUST SOC AM, V122, P3628, DOI 10.1121/1.2799507
Stickney GS, 2004, J ACOUST SOC AM, V116, P1081, DOI 10.1121/1.1772399
Stickney GS, 2007, J ACOUST SOC AM, V122, P1069, DOI 10.1121/1.2750159
STUDEBAKER GA, 1985, J SPEECH HEAR RES, V28, P455
TITZE IR, 1989, J ACOUST SOC AM, V85, P1699, DOI 10.1121/1.397959
Tsuzaki M, 2007, HEARING - FROM SENSORY PROCESSING TO PERCEPTION, P285, DOI 10.1007/978-3-540-73009-5_31
VERSCHUURE J, 1983, PERCEPT PSYCHOPHYS, V33, P232, DOI 10.3758/BF03202859
Versfeld NJ, 2000, J ACOUST SOC AM, V107, P1671, DOI 10.1121/1.428451
Wagemans J, 2012, PSYCHOL BULL, V138, P1218, DOI 10.1037/a0029334
Wang X, 2010, J ACOUST SOC AM, V128, P2100, DOI 10.1121/1.3483733
WARREN RM, 1974, PERCEPT PSYCHOPHYS, V16, P150, DOI 10.3758/BF03203268
WARREN RM, 1970, SCIENCE, V167, P392, DOI 10.1126/science.167.3917.392
WARREN RM, 1983, J AUDIO ENG SOC, V31, P623
Wild CJ, 2012, J NEUROSCI, V32, P14010, DOI 10.1523/JNEUROSCI.1528-12.2012
NR 51
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2014
VL 315
BP 80
EP 87
DI 10.1016/j.heares.2014.07.002
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AP2LC
UT WOS:000341902700009
PM 25019356
ER
PT J
AU Kim, E
Kang, H
Lee, H
Lee, HJ
Suh, MW
Song, JJ
Oh, SH
Lee, DS
AF Kim, Eunkyung
Kang, Hyejin
Lee, Hyekyoung
Lee, Hyo-Jeong
Suh, Myung-Whan
Song, Jae-Jin
Oh, Seung-Ha
Lee, Dong Soo
TI Morphological brain network assessed using graph theory and network
filtration in deaf adults
SO HEARING RESEARCH
LA English
DT Article
ID CROSS-MODAL PLASTICITY; HUMAN CEREBRAL-CORTEX; SMALL-WORLD NETWORKS;
AUDITORY-CORTEX; CORTICAL NETWORKS; ANATOMICAL CONNECTIVITY; FUNCTIONAL
CONNECTIVITY; STRUCTURAL COVARIANCE; TOPOLOGICAL PATTERNS; PERSISTENT
HOMOLOGY
AB Prolonged deprivation of auditory input can change brain networks in pre- and postlingual deaf adults by brain-wide reorganization. To investigate morphological changes in these brains voxel-based morphometry, voxel-wise correlation with the primary auditory cortex, and whole brain network analyses using morphological covariance were performed in eight prelingual deaf, eleven postlingual deaf, and eleven hearing adults. Network characteristics based. on graph theory and network filtration based on persistent homology were examined.
Gray matter density in the primary auditor cortex was preserved in prelingual deafness, while it tended to decrease in postlingual deafness. Unlike postlingual, prelingual deafness showed increased bilateral temporal connectivity of the primary auditory cortex compared to the hearing adults.
Of the graph theory-based characteristics, clustering coefficient, betweenness centrality, and nodal efficiency all increased in prelingual deafness, while all the parameters of postlingual deafness were similar to the hearing adults. Patterns of connected components changing during network filtration were different between prelingual deafness and hearing adults according to the barcode, dendrogram, and single linkage matrix representations, while these were the same in postlingual deafness. Nodes in fronto-limbic and left temporal components were closely coupled, and nodes in the temporo-parietal component were loosely coupled, in prelingual deafness. Patterns of connected components changing in postlingual deafness were the same as hearing adults. We propose that the preserved density of auditory cortex associated with increased connectivity in prelingual deafness, and closer coupling between certain brain areas, represent distinctive reorganization of auditory and related cortices compared with hearing or postlingual deaf adults. The differential network reorganization in the prelingual deaf adults could be related to the absence of auditory speech experience. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Kim, Eunkyung; Kang, Hyejin; Lee, Hyekyoung; Lee, Dong Soo] Seoul Natl Univ, Coll Med, Dept Nucl Med, Seoul 110744, South Korea.
[Kim, Eunkyung; Lee, Hyekyoung; Lee, Dong Soo] Seoul Natl Univ, Med Res Ctr, Inst Radiat Med, Seoul, South Korea.
[Kim, Eunkyung; Lee, Dong Soo] Seoul Natl Univ, Interdisciplinary Program Cognit Sci, Seoul, South Korea.
[Kang, Hyejin] Seoul Natl Univ, Data Sci Knowledge Creat Res Ctr, Seoul, South Korea.
[Lee, Hyo-Jeong] Hallym Univ, Coll Med, Dept Otorhinolaryngol Head & Neck Surg, Chunchon, South Korea.
[Oh, Seung-Ha] Seoul Natl Univ, Coll Med, Dept Otorhinolaryngol Head & Neck Surg, Seoul 110744, South Korea.
[Suh, Myung-Whan; Oh, Seung-Ha] Seoul Natl Univ, Med Res Ctr, Sensory Organ Res Inst, Seoul, South Korea.
[Song, Jae-Jin] Seoul Natl Univ, Bundang Hosp, Dept Otorhinolaryngol Head & Neck Surg, Songnam, South Korea.
[Lee, Dong Soo] Seoul Natl Univ, Grad Sch Convergence Sci & Technol, Dept Mol Med & Biopharmaceut Sci, Seoul, South Korea.
[Lee, Dong Soo] Seoul Natl Univ, Coll Med, Seoul, South Korea.
[Lee, Dong Soo] Seoul Natl Univ, Coll Pharm, Seoul, South Korea.
RP Lee, DS (reprint author), Seoul Natl Univ, Coll Med, Dept Nucl Med, 28 Yeongeon Dong, Seoul 110744, South Korea.
EM shaoh@snu.ac.kr; dsl@plaza.snu.ac.kr
FU National Research Foundation (NRF) - Korean government (MSIP)
[2006-2005090]; National Research Foundation of Korea (NRF) - Korea
government (MEST) [2011-0030815]
FX This work was supported by the National Research Foundation (NRF) funded
by the Korean government (MSIP) (No. 2006-2005090)]. This work was
supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MEST) (No. 2011-0030815).
CR Achard S, 2007, PLOS COMPUT BIOL, V3, P174, DOI 10.1371/journal.pcbi.0030017
Alain C, 2008, J COGNITIVE NEUROSCI, V20, P285, DOI 10.1162/jocn.2008.20014
ALEXANDER MP, 1989, BRAIN LANG, V37, P656, DOI 10.1016/0093-934X(89)90118-1
Alexander-Bloch A, 2013, NAT REV NEUROSCI, V14, P322, DOI 10.1038/nrn3465
Ashburner J, 2007, NEUROIMAGE, V38, P95, DOI 10.1016/j.neuroimage.2007.07.007
Bassett DS, 2012, NEUROIMAGE, V59, P2196, DOI 10.1016/j.neuroimage.2011.10.002
Bassett DS, 2008, J NEUROSCI, V28, P9239, DOI 10.1523/JNEUROSCI.1929-08.2008
BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289
Carr L, 2003, P NATL ACAD SCI USA, V100, P5497, DOI 10.1073/pnas.0935845100
CATALANAHUMADA M, 1993, BRAIN RES, V623, P287, DOI 10.1016/0006-8993(93)91439-Y
Chang EF, 2003, SCIENCE, V300, P498, DOI 10.1126/science.1082163
Chen SL, 2006, PSYCHIAT RES-NEUROIM, V146, P65, DOI 10.1016/j.pscychresns.2005.09.006
Clarke S, 2002, EXP BRAIN RES, V147, P8, DOI 10.1007/s00221-002-1203-9
Desai NS, 2002, NAT NEUROSCI, V5, P783, DOI 10.1038/nn878
Edelsbrunner H, 2008, CONTEMP MATH, V453, P257
Emmorey K, 2003, P NATL ACAD SCI USA, V100, P10049, DOI 10.1073/pnas.1730169100
Evans AC, 2013, NEUROIMAGE, V80, P489, DOI 10.1016/j.neuroimage.2013.05.054
Evans AC, 2008, BRAIN IMAGING BEHAV, V2, P289, DOI 10.1007/s11682-008-9034-3
Faw B, 2003, CONSCIOUS COGN, V12, P83, DOI 10.1016/S1053-8100(02)00030-2
Finney EM, 2001, NAT NEUROSCI, V4, P1171, DOI 10.1038/nn763
Ghrist R, 2008, B AM MATH SOC, V45, P61
Gong GL, 2009, CEREB CORTEX, V19, P524, DOI 10.1093/cercor/bhn102
Gong GL, 2012, NEUROIMAGE, V59, P1239, DOI 10.1016/j.neuroimage.2011.08.017
Grubb MS, 2004, CURR OPIN NEUROBIOL, V14, P503, DOI 10.1016/j.conb.2004.06.006
Hackett TA, 2011, HEARING RES, V271, P133, DOI 10.1016/j.heares.2010.01.011
He Y, 2007, CEREB CORTEX, V17, P2407, DOI 10.1093/cercor/bhl149
He Y, 2008, J NEUROSCI, V28, P4756, DOI 10.1523/JNEUROSCI.0141-08.2008
Iturria-Medina Y, 2008, NEUROIMAGE, V40, P1064, DOI 10.1016/j.neuroimage.2007.10.060
Kral A, 2007, INT J AUDIOL, V46, P479, DOI 10.1080/14992020701383027
Latora V, 2001, PHYS REV LETT, V87, DOI 10.1103/PhysRevLett.87.198701
Lee DS, 2008, EUR J NUCL MED MOL I, V35, P1681, DOI 10.1007/s00259-008-0808-z
Lee DS, 2001, NATURE, V409, P149, DOI 10.1038/35051653
Lee Gregory P, 2004, Cogn Behav Neurol, V17, P9, DOI 10.1097/00146965-200403000-00002
Lee H, 2011, LECT NOTES COMPUT SC, V6892, P302
Lee H, 2012, IEEE T MED IMAGING, V31, P2267, DOI 10.1109/TMI.2012.2219590
Lee HJ, 2007, BRAIN, V130, P2929, DOI 10.1093/brain/awm230
Lee JS, 2003, J NUCL MED, V44, P1435
Lerch JP, 2006, NEUROIMAGE, V31, P993, DOI 10.1016/j.neuroimage.2006.01.042
Mechelli A, 2005, J NEUROSCI, V25, P8303, DOI 10.1523/JNEUROSCI.0357-05.2005
Olea RA, 2009, STOCH ENV RES RISK A, V23, P749, DOI 10.1007/s00477-008-0255-1
Penhune VB, 2003, NEUROIMAGE, V20, P1215, DOI 10.1016/S1053-8119(03)00373-2
Petitto LA, 2000, P NATL ACAD SCI USA, V97, P13961, DOI 10.1073/pnas.97.25.13961
Pinotsis DA, 2013, NEUROIMAGE, V65, P127, DOI 10.1016/j.neuroimage.2012.10.016
Rauschecker JP, 1999, TRENDS NEUROSCI, V22, P74, DOI 10.1016/S0166-2236(98)01303-4
Rauschecker JP, 2001, ANN NY ACAD SCI, V930, P330
Robinson JL, 2010, HUM BRAIN MAPP, V31, P173, DOI 10.1002/hbm.20854
Rubinov M, 2010, NEUROIMAGE, V52, P1059, DOI 10.1016/j.neuroimage.2009.10.003
Rusch N, 2003, NEUROIMAGE, V20, P385, DOI 10.1016/S1053-8119(03)00297-0
Sadato N, 2002, NEUROIMAGE, V16, P389, DOI 10.1006/nimg.2002.1111
Salzman CD, 2010, ANNU REV NEUROSCI, V33, P173, DOI 10.1146/annurev.neuro.051508.135256
Shibata DK, 2007, AM J NEURORADIOL, V28, P243
Sporns O, 2011, ANN NY ACAD SCI, V1224, P109, DOI 10.1111/j.1749-6632.2010.05888.x
Sporns O, 2004, TRENDS COGN SCI, V8, P418, DOI 10.1016/j.tics.2004.07.008
Spreng RN, 2013, J NEUROSCI, V33, P15226, DOI 10.1523/JNEUROSCI.2261-13.2013
van den Heuvel MP, 2008, NEUROIMAGE, V43, P528, DOI 10.1016/j.neuroimage.2008.08.010
Wang L, 2010, NEUROIMAGE, V50, P862, DOI 10.1016/j.neuroimage.2010.01.044
Watts DJ, 1998, NATURE, V393, P440, DOI 10.1038/30918
Wilson SM, 2004, NAT NEUROSCI, V7, P701, DOI 10.1038/nn1263
Zomorodian A, 2005, DISCRETE COMPUT GEOM, V33, P249, DOI 10.1007/s00454-004-1146-y
NR 59
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2014
VL 315
BP 88
EP 98
DI 10.1016/j.heares.2014.06.007
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AP2LC
UT WOS:000341902700010
PM 25016143
ER
PT J
AU Salcher, R
Schwab, B
Lenarz, T
Maier, H
AF Salcher, Rolf
Schwab, Burkard
Lenarz, Thomas
Maier, Hannes
TI Round window stimulation with the floating mass transducer at constant
pretension
SO HEARING RESEARCH
LA English
DT Article
ID MIDDLE-EAR IMPLANT; HUMAN TEMPORAL BONES; VIBRANT SOUNDBRIDGE; OSSICULAR
CHAIN; HEARING LOSSES; COCHLEA; RECONSTRUCTION; MEMBRANE; MODEL
AB Objective: Mechanical stimulation of the round window (RW) of the cochlea is successfully done with the Vibrant Soundbridge (Med-El), but clinical outcomes show a substantial degree of variability. One source of variability is variation in the static force applied by the stimulator to the round window (Maier et al., 2013). In this study we investigated other sources of variability by maintaining a constant pre-load testing the effect of a coupler device and the interposition of soft tissue between the stimulator and the RW.
Study design: Experimental.
Methods: The stapes footplate displacement produced by stimulation of the round window was determined in fresh human temporal bones. The response to sound and actuator stimulation was measured with a Laser Doppler Velocimeter at the stapes footplate. The RW was stimulated by a Floating Mass Transducer (FMT) with/without (1) an additional RW coupler (supplied by the manufacturer), and (2) the interposition of TUTOPATCH (R) between the stimulator and the RW, while maintaining a pre-load of similar to 1.96 mN.
Results: In 8 temporal bones with normal stapes footplate response to sound, we found an average 11.9 dB increase (500 Hz-2 kHz) under controlled conditions by using the coupler together with the interposition. The increase was statistically significant at 500 Hz (p < 0.01). Additionally, the coupler/interposition combination reduced the variability between experiments (FMT alone SD = 10.9 dB; FMT with TUTOPATCH (R) 82 coupler: SD = 3.4 dB @ 500 Hz) and increased the repeatability.
Conclusion: At controlled static force an improved output level, inter-subject variability and repeatability were found by using a coupler/TUTOPATCH combination in RW stimulation with the FMT. The high variability found in clinical experience is not solely due to inter-subject variability, but to coupling conditions and can be optimized further. (C) 2014 Elsevier B.V. All rights reserved.
C1 Hannover Med Sch, Dept Otolaryngol, Hannover, Germany.
Hannover Med Sch, Inst Audioneurotechnol VIANNA, Hannover, Germany.
RP Maier, H (reprint author), Klin Hals Nasen Ohrenheilkunde, Med Hsch Hannover, Cluster Excellence Hearing4all, Carl Neuberg Str 1, D-30625 Hannover, Germany.
EM Maier.Hannes@MH-Hannover.de
CR Arnold A, 2010, OTOL NEUROTOL, V31, P122, DOI 10.1097/MAO.0b013e3181c34ee0
Arnold A, 2010, HEARING RES, V263, P120, DOI 10.1016/j.heares.2009.12.019
ASTM, 2005, STAND PRACT DESCR SY, V1
Beltrame AM, 2009, OTOL NEUROTOL, V30, P194, DOI 10.1097/MAO.0b013e318180a495
Cervera-Paz FJ, 2004, ACTA OTO-LARYNGOL, V124, P1124, DOI 10.1080/00016480410018197
Colletti V, 2009, ACTA OTO-LARYNGOL, V129, P449, DOI 10.1080/00016480802642070
Colletti V, 2006, INT J AUDIOL, V45, P600, DOI 10.1080/14992020600840903
DUMON T, 1995, OTOLARYNG CLIN N AM, V28, P173
Frenzel H, 2009, LARYNGOSCOPE, V119, P67, DOI 10.1002/lary.20036
Huttenbrink KB, 1997, HNO, V45, P742, DOI 10.1007/s001060050151
Kiefer J, 2006, ORL J OTO-RHINO-LARY, V68, P378, DOI 10.1159/000095282
Lupo JE, 2011, OTOLARYNG HEAD NECK, V145, P641, DOI 10.1177/0194599811409674
Maier H, 2013, HEARING RES, V301, P115, DOI 10.1016/j.heares.2012.12.010
Nakajima HH, 2010, OTOL NEUROTOL, V31, P506, DOI 10.1097/MAO.0b013e3181c0ea9f
Pennings RJE, 2010, OTOL NEUROTOL, V31, P998, DOI 10.1097/MAO.0b013e3181e8fc21
Rajan GP, 2011, OTOL NEUROTOL, V32, P271, DOI 10.1097/MAO.0b013e318206fda1
Roland PS, 2007, LARYNGOSCOPE, V117, P1397, DOI 10.1097/MLG.0b013e318064e891
Rosowski JJ, 2007, AUDIOL NEURO-OTOL, V12, P265, DOI 10.1159/000101474
Schraven SP, 2011, HEARING RES, V282, P272, DOI 10.1016/j.heares.2011.07.001
Schraven SP, 2012, AUDIOL NEURO-OTOL, V17, P133, DOI 10.1159/000333807
SPINDEL JH, 1995, OTOLARYNG CLIN N AM, V28, P189
Sprinzl GM, 2011, LARYNGO RHINO OTOL, V90, P560, DOI 10.1055/s-0031-1286321
Stieger C, 2013, HEARING RES, V301, P105, DOI 10.1016/j.heares.2012.11.005
Tringali S, 2010, AUDIOL NEURO-OTOL, V15, P291, DOI 10.1159/000283006
WEVER EG, 1948, ARCH OTOLARYNGOL, V48, P19
Wollenberg B, 2007, HNO, V55, P349, DOI 10.1007/s00106-007-1540-x
NR 26
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2014
VL 314
BP 1
EP 9
DI 10.1016/j.heares.2014.04.001
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AL5CF
UT WOS:000339150400001
PM 24727490
ER
PT J
AU Choi, I
Wang, L
Bharadwaj, H
Shinn-Cunningham, B
AF Choi, Inyong
Wang, Le
Bharadwaj, Hari
Shinn-Cunningham, Barbara
TI Individual differences in attentional modulation of cortical responses
correlate with selective attention performance
SO HEARING RESEARCH
LA English
DT Article
ID PASS NOISE MASKING; COCKTAIL PARTY; AUDITORY-CORTEX; VISUAL-CORTEX;
GAIN-CONTROL; SPEECH; OSCILLATIONS; MECHANISMS; ENTRAINMENT; POTENTIALS
AB Many studies have shown that attention modulates the cortical representation of an auditory scene, emphasizing an attended source while suppressing competing sources. Yet, individual differences in the strength of this attentional modulation and their relationship with selective attention ability are poorly understood. Here, we ask whether differences in how strongly attention modulates cortical responses reflect differences in normal-hearing listeners' selective auditory attention ability. We asked listeners to attend to one of three competing melodies and identify its pitch contour while we measured cortical electroencephalographic responses. The three melodies were either from widely separated pitch ranges ("easy trials"), or from a narrow, overlapping pitch range ("hard trials"). The melodies started at slightly different times; listeners attended either the leading or lagging melody. Because of the timing of the onsets, the leading melody drew attention exogenously. In contrast, attending the lagging melody required listeners to direct top-down attention volitionally. We quantified how attention amplified auditory N1 response to the attended melody and found large individual differences in the N1 amplification, even though only correctly answered trials were used to quantify the ERP gain. Importantly, listeners with the strongest amplification of N1 response to the lagging melody in the easy trials were the best performers across other types of trials. Our results raise the possibility that individual differences in the strength of top-down gain control reflect inherent differences in the ability to control top-down attention. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Choi, Inyong; Wang, Le; Bharadwaj, Hari; Shinn-Cunningham, Barbara] Boston Univ, Ctr Computat Neurosci & Neural Technol, Boston, MA 02215 USA.
[Bharadwaj, Hari; Shinn-Cunningham, Barbara] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA.
RP Shinn-Cunningham, B (reprint author), Ctr Computat Neurosci & Neural Technol, 677 Beacon St, Boston, MA 02215 USA.
EM shinn@cns.bu.edu
RI Wang, Le/I-1195-2014
FU NIH [RO1 DC009477]; National Security Science and Engineering
Fellowship; National Research Foundation of Korea Post-doctoral
Fellowship [NRF-2013R1A6A3A03062982]
FX The authors thank Tanzima Arif for helping with subject recruitment and
data collection. This project was supported in part NIH RO1 DC009477, by
a National Security Science and Engineering Fellowship to BGSC, and by a
National Research Foundation of Korea Post-doctoral Fellowship to Choi
(NRF-2013R1A6A3A03062982). The authors declare no competing financial
interests. Authors thank to two anonymous reviewers for their helpful
comments.
CR Allison BZ, 2010, HUM-COMPUT INT-SPRIN, P35, DOI 10.1007/978-1-84996-272-8_3
Anderson S, 2013, J SPEECH LANG HEAR R, V56, P31, DOI 10.1044/1092-4388(2012/12-0043)
Atiani S, 2009, NEURON, V61, P467, DOI 10.1016/j.neuron.2008.12.027
BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289
Best V, 2008, P NATL ACAD SCI USA, V105, P13174, DOI 10.1073/pnas.0803718105
Brainard DH, 1997, SPATIAL VISION, V10, P433, DOI 10.1163/156856897X00357
Chait M, 2010, NEUROPSYCHOLOGIA, V48, P3262, DOI 10.1016/j.neuropsychologia.2010.07.007
Choi I., 2013, FRONT HUM NEUROSCI, V7, P1
Cravo AM, 2013, J NEUROSCI, V33, P4002, DOI 10.1523/JNEUROSCI.4675-12.2013
Ding N, 2012, P NATL ACAD SCI USA, V109, P11854, DOI 10.1073/pnas.1205381109
Elhilali M, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000129
Giesbrecht B, 2003, NEUROIMAGE, V19, P496, DOI 10.1016/S1053-8119(03)00162-9
Golumbic EMZ, 2013, NEURON, V77, P980, DOI 10.1016/j.neuron.2012.12.037
Hill KT, 2010, CEREB CORTEX, V20, P583, DOI 10.1093/cercor/bhp124
Hill NJ, 2012, J NEURAL ENG, V9, DOI 10.1088/1741-2560/9/2/026011
Hillyard SA, 1998, PHILOS T ROY SOC B, V353, P1257, DOI 10.1098/rstb.1998.0281
HILLYARD SA, 1973, SCIENCE, V182, P177, DOI 10.1126/science.182.4108.177
Jerger J, 2000, J Am Acad Audiol, V11, P467
Kerlin JR, 2010, J NEUROSCI, V30, P620, DOI 10.1523/JNEUROSCI.3631-09.2010
Knudsen EI, 2007, ANNU REV NEUROSCI, V30, P57, DOI 10.1146/annurev.neuro.30.051606.094256
Lakatos P, 2008, SCIENCE, V320, P110, DOI 10.1126/science.1154735
Lakatos P, 2013, NEURON, V77, P750, DOI 10.1016/j.neuron.2012.11.034
Linkenkaer-Hansen K, 2004, J NEUROSCI, V24, P10186, DOI 10.1523/JNEUROSCI.2584-04.2004
Martin BA, 1999, J SPEECH LANG HEAR R, V42, P271
Martin BA, 2005, EAR HEARING, V26, P195, DOI 10.1097/00003446-200504000-00007
Martinez-Trujillo JC, 2002, NEURON, V35, P365
Mesgarani N, 2012, NATURE, V485, P233, DOI 10.1038/nature11020
Moore DR, 2013, INT J AUDIOL, V52, P3, DOI 10.3109/14992027.2012.723143
PICTON TW, 1974, ELECTROEN CLIN NEURO, V36, P191, DOI 10.1016/0013-4694(74)90156-4
Power AJ, 2011, CEREB CORTEX, V21, P1223, DOI 10.1093/cercor/bhq233
Ress D, 2000, NAT NEUROSCI, V3, P940
Ruggles D, 2012, CURR BIOL, V22, P1417, DOI 10.1016/j.cub.2012.05.025
Ruggles D, 2011, P NATL ACAD SCI USA, V108, P15516, DOI 10.1073/pnas.1108912108
Ruggles D, 2011, JARO-J ASSOC RES OTO, V12, P395, DOI 10.1007/s10162-010-0254-z
Shamma SA, 2010, CURR OPIN NEUROBIOL, V20, P361, DOI 10.1016/j.conb.2010.03.009
WOLDORFF MG, 1993, P NATL ACAD SCI USA, V90, P8722, DOI 10.1073/pnas.90.18.8722
Xiang JJ, 2010, J NEUROSCI, V30, P12084, DOI 10.1523/JNEUROSCI.0827-10.2010
NR 37
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2014
VL 314
BP 10
EP 19
DI 10.1016/j.heares.2014.04.008
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AL5CF
UT WOS:000339150400002
PM 24821552
ER
PT J
AU Fujikawa, T
Petralia, RS
Fitzgerald, TS
Wang, YX
Millis, B
Morgado-Diaz, JA
Kitamura, K
Kachar, B
AF Fujikawa, Taro
Petralia, Ronald S.
Fitzgerald, Tracy S.
Wang, Ya-Xian
Millis, Bryan
Morgado-Diaz, Jose Andres
Kitamura, Ken
Kachar, Bechara
TI Localization of kainate receptors in inner and outer hair cell synapses
SO HEARING RESEARCH
LA English
DT Article
ID GUINEA-PIG COCHLEA; II AFFERENT-FIBERS; SPIRAL GANGLION; GLUTAMATE
RECEPTORS; IMMUNOCYTOCHEMICAL LOCALIZATION; SYNAPTIC-TRANSMISSION;
MAMMALIAN COCHLEA; RIBBON SYNAPSES; FUNCTIONAL-ROLE; AMPA RECEPTORS
AB Glutamate plays a role in hair cell afferent transmission, but the receptors that mediate neurotransmission between outer hair cells (OHCs) and type H ganglion neurons are not well defined. A previous study using in situ hybridization showed that several kainate-type glutamate receptor (KAR) subunits are expressed in cochlear ganglion neurons. To determine whether KARs are expressed in hair cell synapses, we performed X-gal staining on mice expressing lacZ driven by the GluK5 promoter, and immunolabeling of glutamate receptors in whole-mount mammalian cochleae. X-gal staining revealed GluK5 expression in both type I and type II ganglion neurons and OHCs in adults. OHCs showed X-gal reactivity throughout maturation from postnatal day 4 (P4) to 1.5 months. Immunoreactivity for GluK5 in IHC afferent synapses appeared to be postsynaptic, similar to GluA2 (GluR2; AMPA-type glutamate receptor (AMPAR) subunit), while GluK2 may be on both sides of the synapses. In OHC afferent synapses, immunoreactivity for GluK2 and GluK5 was found, although GluK2 was only in those synapses bearing ribbons. GluA2 was not detected in adult OHC afferent synapses. Interestingly, GluK1, GluK2 and GluK5 were also detected in OHC efferent synapses, forming several active zones in each synaptic area. At P8, GluA2 and all KAR subunits except GluK4 were detected in OHC afferent synapses in the apical turn, and GluA2, GluK1, GluK3 decreased dramatically in the basal turn. These results indicate that AMPARs and KARs (GluK2/ GluK5) are localized to IHC afferent synapses, while only KARs (GluK2/GluK5) are localized to OHC afferent synapses in adults. Glutamate spillover near OHCs may act on KARs in OHC efferent terminals to modulate transmission of acoustic information and OHC electromotility. Published by Elsevier B.V.
C1 [Fujikawa, Taro; Millis, Bryan; Kachar, Bechara] NIDCD, Lab Cell Struct & Dynam, NIH, Bethesda, MD 20892 USA.
[Fujikawa, Taro; Kitamura, Ken] Tokyo Med & Dent Univ, Dept Otolaryngol, Bunkyo Ku, Tokyo 1138519, Japan.
[Petralia, Ronald S.; Wang, Ya-Xian] NIDCD, Adv Imaging Core, NIH, Bethesda, MD 20892 USA.
[Fitzgerald, Tracy S.] NIDCD, Mouse Auditory Testing Core Facil, NIH, Bethesda, MD 20892 USA.
[Morgado-Diaz, Jose Andres] Natl Canc Inst, Cellular Biol Div, BR-20230050 Rio De Janeiro, Brazil.
RP Petralia, RS (reprint author), NIDCD, NIH, 35A Convent Dr,35A-1E614, Bethesda, MD 20892 USA.
EM petralia@nidcd.nih.gov
FU Intramural Research Program of the NIDCD at the National Institutes of
Health
FX This work was supported by the Intramural Research Program of the NIDCD
at the National Institutes of Health. We also thank Dr. Stephan
Brenowitz for reviewing the manuscript, and Dr. Kai Chang for advice
related to the GluK5 mutant mouse.
CR Andrade-Talavera Y, 2012, J NEUROCHEM, V122, P891, DOI 10.1111/j.1471-4159.2012.07844.x
Bianchi LM, 2002, J HISTOCHEM CYTOCHEM, V50, P1641
BROWN MC, 1994, J NEUROPHYSIOL, V71, P1835
Contractor Anis, 2008, P99
Corradi A, 2003, DEVELOPMENT, V130, P401, DOI 10.1242/dev.00215
Darstein M, 2003, J NEUROSCI, V23, P8013
DAU J, 1989, HEARING RES, V42, P253, DOI 10.1016/0378-5955(89)90149-4
Davies C, 2001, SYNAPSE, V40, P258, DOI 10.1002/syn.1048
DECHESNE CJ, 1994, J NEUROCYTOL, V23, P631, DOI 10.1007/BF01191557
Delaney AJ, 2002, NEURON, V36, P475, DOI 10.1016/S0896-6273(02)01008-5
Elgoyhen AB, 2012, J PHYSIOL-PARIS, V106, P47, DOI 10.1016/j.jphysparis.2011.06.001
Eybalin M, 2004, EUR J NEUROSCI, V20, P2981, DOI 10.1111/j.1460-9568.2004.03772.x
EYBALIN M, 1993, PHYSIOL REV, V73, P309
Friedman RA, 2009, HUM MOL GENET, V18, P785, DOI 10.1093/hmg/ddn402
Furness DN, 2002, JARO, V3, P234, DOI 10.1007/s1016200210064
Garduno J, 2012, J NEUROSCI, V32, P15148, DOI 10.1523/JNEUROSCI.0941-12.2012
Glowatzki E, 2002, NAT NEUROSCI, V5, P147, DOI 10.1038/nn796
Grati M, 2012, J NEUROSCI, V32, P14288, DOI 10.1523/JNEUROSCI.3071-12.2012
Harvey DM, 2002, VISUAL NEUROSCI, V19, P681, DOI 10.1017/S0952523802195137
HASHIMOTO S, 1988, ACTA OTO-LARYNGOL, V105, P64, DOI 10.3109/00016488809119447
Hires SA, 2008, P NATL ACAD SCI USA, V105, P4411, DOI 10.1073/pnas.0712008105
Hnasko TS, 2012, ANNU REV PHYSIOL, V74, P225, DOI 10.1146/annurev-physiol-020911-153315
HOLLMANN M, 1994, ANNU REV NEUROSCI, V17, P31, DOI 10.1146/annurev.ne.17.030194.000335
Huang LC, 2012, NEURAL DEV, V7, DOI 10.1186/1749-8104-7-38
Kew JNC, 2005, PSYCHOPHARMACOLOGY, V179, P4, DOI 10.1007/s00213-005-2200-z
Khimich D, 2005, NATURE, V434, P889, DOI 10.1038/nature03418
LEPAGE EL, 1989, HEARING RES, V38, P177, DOI 10.1016/0378-5955(89)90064-6
Lerma J, 2003, NAT REV NEUROSCI, V4, P481, DOI 10.1038/nrn1118
Lerma J, 2013, NEURON, V80, P292, DOI 10.1016/j.neuron.2013.09.045
Liberman LD, 2011, J NEUROSCI, V31, P801, DOI 10.1523/JNEUROSCI.3389-10.2011
LIBERMAN MC, 1980, HEARING RES, V3, P45, DOI 10.1016/0378-5955(80)90007-6
LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309
LIBERMAN MC, 1982, SCIENCE, V216, P1239, DOI 10.1126/science.7079757
LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1
Maison SF, 2006, J NEUROSCI, V26, P10315, DOI 10.1523/JNEUROSCI.2395-06.2006
Maison SF, 2009, JARO-J ASSOC RES OTO, V10, P50, DOI 10.1007/s10162-008-0138-7
Marrocco J, 2012, J NEUROSCI, V32, P17143, DOI 10.1523/JNEUROSCI.1040-12.2012
Martinez-Monedero R., 2012, ARO ANN 821 MIDWINTE, V35, P135
Matsubara A, 1996, J NEUROSCI, V16, P4457
McLean WJ, 2009, JARO-J ASSOC RES OTO, V10, P37, DOI 10.1007/s10162-008-0152-9
Meyer AC, 2009, NAT NEUROSCI, V12, P444, DOI 10.1038/nn.2293
Moser T, 2006, CELL TISSUE RES, V326, P347, DOI 10.1007/s00441-006-0276-3
Newman DL, 2012, HEARING RES, V294, P125, DOI 10.1016/j.heares.2012.08.016
NIEDZIELSKI AS, 1995, J NEUROSCI, V15, P2338
Nishiyama H, 2007, NAT NEUROSCI, V10, P675, DOI 10.1038/nn0607-675
Peppi M, 2012, JARO-J ASSOC RES OTO, V13, P199, DOI 10.1007/s10162-011-0309-9
Petralia RS, 2012, SCI WORLD J, DOI 10.1100/2012/267120
Petralia RS, 2010, NEUROSCIENCE, V167, P68, DOI 10.1016/j.neuroscience.2010.01.022
Petralia RS, 1997, J COMP NEUROL, V385, P456, DOI 10.1002/(SICI)1096-9861(19970901)385:3<456::AID-CNE9>3.0.CO;2-2
PETRALIA RS, 1992, J COMP NEUROL, V318, P329, DOI 10.1002/cne.903180309
Pinard A, 2003, EUR J NEUROSCI, V18, P3241, DOI 10.1046/j.1460-9568.2003.03028.x
Puller C, 2013, NEUROSCIENCE, V243, P136, DOI 10.1016/j.neuroscience.2013.03.054
Puller C, 2011, J COMP NEUROL, V519, P467, DOI 10.1002/cne.22528
Ren J, 2011, NEURON, V69, P445, DOI 10.1016/j.neuron.2010.12.038
Robertson D, 1999, HEARING RES, V136, P151, DOI 10.1016/S0378-5955(99)00120-3
ROBERTSON D, 1984, HEARING RES, V15, P113, DOI 10.1016/0378-5955(84)90042-X
ROMAND R, 1988, BRAIN RES, V462, P167, DOI 10.1016/0006-8993(88)90601-4
Ruel J, 1999, J PHYSIOL-LONDON, V518, P667, DOI 10.1111/j.1469-7793.1999.0667p.x
Safieddine S, 1999, EUR J NEUROSCI, V11, P803, DOI 10.1046/j.1460-9568.1999.00487.x
Safieddine S, 2012, ANNU REV NEUROSCI, V35, P509, DOI 10.1146/annurev-neuro-061010-113705
Shigemoto R, 1997, J NEUROSCI, V17, P7503
SPOENDLI.H, 1969, ACTA OTO-LARYNGOL, V67, P239, DOI 10.3109/00016486909125448
Szapiro G, 2009, NEUROSCIENCE, V162, P644, DOI 10.1016/j.neuroscience.2009.03.077
Szmajda BA, 2011, J NEUROSCI, V31, P13431, DOI 10.1523/JNEUROSCI.2105-11.2011
Tonnaer ELGM, 2010, HEARING RES, V267, P27, DOI 10.1016/j.heares.2010.03.090
Waguespack J, 2007, J NEUROSCI, V27, P13890, DOI 10.1523/JNEUROSCI.2159-07.2007
Wedemeyer C, 2013, J NEUROSCI, V33, P15477, DOI 10.1523/JNEUROSCI.2554-13.2013
Weisz C, 2009, NATURE, V461, P1126, DOI 10.1038/nature08487
Weisz CJC, 2012, J NEUROSCI, V32, P9528, DOI 10.1523/JNEUROSCI.6194-11.2012
Wersinger E, 2011, HEARING RES, V279, P1, DOI 10.1016/j.heares.2010.12.018
Yan D, 2013, NEURON, V78, P687, DOI 10.1016/j.neuron.2013.02.031
NR 71
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2014
VL 314
BP 20
EP 32
DI 10.1016/j.heares.2014.05.001
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AL5CF
UT WOS:000339150400003
PM 24858010
ER
PT J
AU Kale, S
Cervantes, VM
Wu, MR
Pisano, DV
Sheth, N
Olson, ES
AF Kale, Sushrut
Cervantes, Vanessa M.
Wu, Mailing R.
Pisano, Dominic V.
Sheth, Nakul
Olson, Elizabeth S.
TI A novel perfusion-based method for cochlear implant electrode insertion
SO HEARING RESEARCH
LA English
DT Article
ID ROUND WINDOW MEMBRANE; SPIRAL GANGLION; INTRACOCHLEAR POSITION;
SCALA-TYMPANI; TEMPORAL BONE; HEARING; TRAUMA; PLACEMENT; SURGERY;
ARRAYS
AB A cochlear implant (CI) restores partial hearing to profoundly deaf individuals. CI electrodes are inserted manually in the cochlea and surgeons rely on tactile feedback from the implant to determine when to stop the insertion. This manual insertion method results in a large degree of variability in surgical outcomes and intra-cochlear trauma. Additionally, implants often span only the basal turn. In the present study we report on the development of a new method to assist Cl electrode insertion. The design objectives are (1) an automated and standardized insertion technique across patients with (2) more apical insertion than is possible by the contemporary methods, while (3) minimizing insertion trauma. The method relies on a viscous fluid flow through the cochlea to carry the electrode array with it. A small cochleostomy (similar to 100-150 um in diameter) is made in scala vestibuli (SV) and the round window (RW) membrane is opened. A flow of diluted Sodium Hyaluronate (also known as Hyaluronic Acid, (HA)) is set up from the RW to the SV opening using a perfusion pump that sets up a unidirectional flow. Once the flow is established an implant is dropped into the ongoing flow. Here we present a proof-of-concept study where we used this technique to insert silicone implants all the way to the cochlear apex in rats and gerbils. In light-microscopic histology, the implantation occurred without cochlear trauma. To further assess the ototoxicity of the HA perfusion, we measured compound action potential (CAP) thresholds following the perfusion of HA, and found that the CAP thresholds were substantially elevated. Thus, at this point the method is promising, and requires further development to become clinically viable. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Kale, Sushrut; Cervantes, Vanessa M.; Wu, Mailing R.; Pisano, Dominic V.; Sheth, Nakul; Olson, Elizabeth S.] Columbia Univ, Dept Otorhinolaryngol Head & Neck Surg, New York, NY 10032 USA.
[Wu, Mailing R.; Olson, Elizabeth S.] Columbia Univ, Dept Biomed Engn, New York, NY 10025 USA.
RP Kale, S (reprint author), 630 W 168th St,P&S 11-452, New York, NY 10032 USA.
EM sk3646@cumc.columbia.edu
FU NIDCD; Emil Capita Foundation [R01 DC003130]
FX This research was funded by the NIDCD and the Emil Capita Foundation
(R01 DC003130). We would like to thank Abort Medical Optics Inc., Santa
Ana, CA for providing Hyaluronic Acid for this study.
CR Adunka O, 2006, OTOLARYNG HEAD NECK, V135, P374, DOI 10.1016/j.otohns.2006.05.002
Adunka OF, 2010, ADV OTO-RHINO-LARYNG, V67, P96, DOI 10.1159/000262601
Adunka OF, 2007, LARYNGOSCOPE, V117, P2187, DOI 10.1097/MLG.0b013e3181453a6c
Adunka OF, 2006, ACTA OTO-LARYNGOL, V126, P475, DOI 10.1080/00016480500437393
Angeli SI, 2006, OTOLARYNG HEAD NECK, V134, P225, DOI 10.1016/j.otohns.2005.09.028
ARIYASU L, 1989, OTOLARYNG HEAD NECK, V100, P87
Balkany TJ, 2006, OTOL NEUROTOL, V27, P1083, DOI 10.1097/01.mao.0000244355.34577.85
Baskent D, 2004, J ACOUST SOC AM, V116, P3130, DOI 10.1121/1.1804627
Boyd PJ, 2011, EAR HEARING, V32, P411, DOI 10.1097/AUD.0b013e3182064bda
Briaire JJ, 2006, HEARING RES, V214, P17, DOI 10.1016/j.heares.2006.01.015
Briggs R J, 2001, Cochlear Implants Int, V2, P135, DOI 10.1002/cii.45
Briggs RJS, 2005, ACTA OTO-LARYNGOL, V125, P870, DOI 10.1080/00016480510031489
Choudhury B, 2012, OTOL NEUROTOL, V33, P1507, DOI 10.1097/MAO.0b013e31826dbc80
Deman PR, 2004, INT J AUDIOL, V43, P363, DOI 10.1080/14992020400050046
Eshraghi Adrien A, 2006, Curr Opin Otolaryngol Head Neck Surg, V14, P323, DOI 10.1097/01.moo.0000244189.74431.df
Eshraghi AA, 2003, LARYNGOSCOPE, V113, P415, DOI 10.1097/00005537-200303000-00005
Finley CC, 2008, OTOL NEUROTOL, V29, P920, DOI 10.1097/MAO.0b013e318184f492
Friedland David R, 2009, Trends Amplif, V13, P124, DOI 10.1177/1084713809336422
Fu QJ, 1999, EAR HEARING, V20, P332, DOI 10.1097/00003446-199908000-00006
Gantz BJ, 2003, LARYNGOSCOPE, V113, P1726, DOI 10.1097/00005537-200310000-00012
Glueckert R, 2005, AUDIOL NEURO-OTOL, V10, P258, DOI 10.1159/000086000
Harris Robert, 2011, Cochlear Implants Int, V12, P209, DOI 10.1179/146701011X12950038111657
Huang S, 2011, JARO-J ASSOC RES OTO, V12, P559, DOI 10.1007/s10162-011-0272-5
LAURENT C, 1992, ACTA OTO-LARYNGOL, P63
Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3
Lee J, 2011, AUDIOL NEURO-OTOL, V16, P69, DOI 10.1159/000316445
LEHNHARDT E, 1993, HNO, V41, P356
Maleki A, 2007, POLYM BULL, V59, P217, DOI 10.1007/s00289-007-0760-2
NUTTALL AL, 1982, HEARING RES, V6, P207, DOI 10.1016/0378-5955(82)90055-7
PLASSMANN W, 1987, BRAIN BEHAV EVOLUT, V30, P82, DOI 10.1159/000118639
Rebscher SJ, 2008, J REHABIL RES DEV, V45, P731, DOI 10.1682/JRRD.2007.08.0119
Roland J T Jr, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P64
Roland Peter S, 2006, Adv Otorhinolaryngol, V64, P11
Salt AN, 2009, HEARING RES, V250, P63, DOI 10.1016/j.heares.2009.02.001
Scheidt RE, 2010, HEARING RES, V269, P23, DOI 10.1016/j.heares.2010.07.009
Skarzynski H, 2007, ACTA OTO-LARYNGOL, V127, P41, DOI 10.1080/00016480500488917
Souter MA, 2011, OTOL NEUROTOL, V32, P58, DOI 10.1097/MAO.0b013e3182009f52
Stakhovskaya O, 2007, JARO-J ASSOC RES OTO, V8, P220, DOI 10.1007/s10162-007-0076-9
SU WY, 1982, LARYNGOSCOPE, V92, P483
von Ilberg CA, 2011, AUDIOL NEURO-OTOL, V16, P1, DOI 10.1159/000327765
Wardrop P, 2005, HEARING RES, V203, P68, DOI 10.1016/j.heares.2004.11.007
Wardrop P, 2005, HEARING RES, V203, P54, DOI 10.1016/j.heares.2004.11.006
Wilson BS, 2008, HEARING RES, V242, P3, DOI 10.1016/j.heares.2008.06.005
Zhang J, 2006, LECT NOTES COMPUT SC, V4190, P33
NR 44
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2014
VL 314
BP 33
EP 41
DI 10.1016/j.heares.2014.05.003
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AL5CF
UT WOS:000339150400004
PM 24882641
ER
PT J
AU Lu, HP
Syka, J
Chiu, TW
Poon, PWF
AF Lu, H. P.
Syka, J.
Chiu, T. W.
Poon, Paul W. F.
TI Prolonged sound exposure has different effects on increasing neuronal
size in the auditory cortex and brainstem
SO HEARING RESEARCH
LA English
DT Article
ID INFERIOR COLLICULUS; COCHLEAR NUCLEUS; NEOCORTICAL NEURONS; RESPONSE
PROPERTIES; POSTNATAL EXPOSURE; PREFRONTAL CORTEX; CRITICAL PERIOD;
VISUAL-CORTEX; JUVENILE RATS; ORGANIZATION
AB Tone at moderate levels presented to young rats at a stage (postnatal week-4) presumably that has passed the cortical critical period still can enlarge neurons in the auditory cortex. It remains unclear whether this delayed plastic change occurs only in the cortex, or reflects a change taking place in the auditory brainstem. Here we compared sound-exposure effects on neuronal size in the auditory cortex and the midbrain. Starting from postnatal day 22, young rats were exposed to a low-frequency tone (4 kHz at 65 dB SPL) for a period of 3 (postnatal day 22-25) or 7 (postnatal day 22-29) days before sacrifice. Neurons were analyzed morphometrically from 7 mu m-thick histological sections. A marked increase in neuronal size (32%) was found at the cortex in the high-frequency region distant from the exposing tone. The increase in the midbrain was even larger (67%) and was found in both the low and high frequency regions. While cell enlargements were clear at day 29, only in the high frequency region of the cortex a slight enlargement was found at day 22, suggesting that the cortical and subcortical changes are synchronized, if not slightly preceded by the cortex. In contrast, no changes in neuronal size were found in the cochlear nucleus or the visual midbrain. Such differential effects of sound-exposure at the auditory centers across cortical and subcortical levels cannot be explained by a simple activity-driven change occurring earlier in the brainstem, and might involve function of other structures as for example the descending auditory system. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Lu, H. P.; Poon, Paul W. F.] Natl Cheng Kung Univ, Dept Physiol, Tainan 70101, Taiwan.
[Lu, H. P.] Tzu Hui Inst Technol, Pingtung, Taiwan.
[Syka, J.] ASCR, Inst Expt Med, Prague 14220 4, Czech Republic.
[Chiu, T. W.] Natl Chiao Tung Univ, Dept Biol Sci & Technol, Hsinchu, Taiwan.
RP Poon, PWF (reprint author), Natl Cheng Kung Univ, Dept Physiol, 1 Univ Rd, Tainan 70101, Taiwan.
EM ppoon@mail.ncku.edu.tw
FU NSC, Taiwan [99-2320-B-006-020, 100-2923-006-001, 101-2911-1-006-511];
GACR [P303/11/J005, P304/12/1342]
FX We thank Dr lain Bruce for reading the manuscript and Maria Chiu for
comments. Supported by NSC, Taiwan, grants 99-2320-B-006-020,
100-2923-006-001, 101-2911-1-006-511, and GACR P303/11/J005,
P304/12/1342.
CR Adjamian P, 2009, HEARING RES, V253, P15, DOI 10.1016/j.heares.2009.04.001
Argandona EG, 2000, BRAIN RES, V855, P137, DOI 10.1016/S0006-8993(99)02361-6
BERENDES HD, 1965, CHROMOSOMA, V17, P35
Bose M, 2010, SYNAPSE, V64, P97, DOI 10.1002/syn.20710
Bundgaard MJ, 2001, J ANAT, V198, P481, DOI 10.1046/j.1469-7580.2001.19840481.x
Chiu TW, 2003, J NEUROL SCI, V216, P143, DOI 10.1016/S0022-510X(03)00230-2
de Villers-Sidani E, 2007, J NEUROSCI, V27, P180, DOI 10.1523/JNEUROSCI.3227-06.2007
Hromadka T, 2008, PLOS BIOL, V6, P124, DOI 10.1371/journal.pbio.0060016
Doron NN, 2002, J COMP NEUROL, V453, P345, DOI 10.1002/cne.10412
Eggermont JJ, 2008, AM J AUDIOL, V17, pS162, DOI 10.1044/1059-0889(2008/07-0025)
Grecova J, 2009, EUR J NEUROSCI, V29, P1921, DOI 10.1111/j.1460-9568.2009.06739.x
Kolluri N, 2005, AM J PSYCHIAT, V162, P1200, DOI 10.1176/appi.ajp.162.6.1200
LIPPE W, 1985, J COMP NEUROL, V237, P273, DOI 10.1002/cne.902370211
Loftus WC, 2008, NEUROSCIENCE, V154, P196, DOI 10.1016/j.neuroscience.2008.01.019
Lu HP, 2009, NEUROSCI LETT, V463, P145, DOI 10.1016/j.neulet.2009.07.075
Lu HP, 2009, NEUROSCI LETT, V451, P139, DOI 10.1016/j.neulet.2008.12.048
Markham JA, 2004, NEURON GLIA BIOL, V1, P351, DOI 10.1017/S1740925X05000219
Meitzen J, 2008, GEN COMP ENDOCR, V157, P259, DOI 10.1016/j.ygcen.2008.03.014
Miyakawa A, 2013, NEUROSCIENCE, V230, P114, DOI 10.1016/j.neuroscience.2012.10.068
MONTIRONI R, 1994, J CLIN PATHOL, V47, P906, DOI 10.1136/jcp.47.10.906
Niparko JK, 1997, OTOLARYNG HEAD NECK, V117, P229, DOI 10.1016/S0194-5998(97)70179-7
Nixdorf-Bergweiler BE, 1998, NEUROBIOL LEARN MEM, V69, P258, DOI 10.1006/nlme.1998.3819
Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9
Oliver DL, 2011, NEUROSCIENCE, V184, P75, DOI 10.1016/j.neuroscience.2011.04.001
Paxinos G., 1998, RAT BRAIN STEROTAXIC, P280
Pierri JN, 2001, ARCH GEN PSYCHIAT, V58, P466, DOI 10.1001/archpsyc.58.5.466
Polley DB, 2007, J NEUROPHYSIOL, V97, P3621, DOI 10.1152/jn.01298.2006
POON PWF, 1990, BRAIN RES, V524, P327, DOI 10.1016/0006-8993(90)90710-S
POON PWF, 1992, BRAIN RES, V585, P391, DOI 10.1016/0006-8993(92)91243-8
Profant O, 2013, HEARING RES, V296, P51, DOI 10.1016/j.heares.2012.11.021
PTACEK JM, 1974, J COMP NEUROL, V158, P237, DOI 10.1002/cne.901580302
RENSING L, 1965, EXPERIENTIA, V21, P103, DOI 10.1007/BF02144769
Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849
RYAN AF, 1988, HEARING RES, V36, P181, DOI 10.1016/0378-5955(88)90060-3
Saada AA, 1996, BRAIN RES, V736, P315, DOI 10.1016/0006-8993(96)00719-6
Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O
SAUNDERS JC, 1972, EXP NEUROL, V36, P426, DOI 10.1016/0014-4886(72)90003-9
SCHMIDT EE, 1995, J CELL BIOL, V128, P467, DOI 10.1083/jcb.128.4.467
Sempoux C, 1998, J CLIN ENDOCR METAB, V83, P1455, DOI 10.1210/jc.83.5.1455
Sims D, 2009, GENOME BIOL, V10, DOI 10.1186/gb-2009-10-2-r20
Stark Anette K., 2005, Current Alzheimer Research, V2, P449, DOI 10.2174/156720505774330528
Stark AK, 2007, NEUROSCIENCE, V150, P121, DOI 10.1016/j.neuroscience.2007.06.062
Stege R, 2000, CLIN CANCER RES, V6, P160
Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002
Wang Q, 1996, CALCIFIED TISSUE INT, V58, P40
Xu J.F., 1990, COMPUT ENG APPL, V6, P7
Yan J, 1996, SCIENCE, V273, P1100, DOI 10.1126/science.273.5278.1100
Yu X, 2007, P NATL ACAD SCI USA, V104, P12193, DOI 10.1073/pnas.0700960104
Zhang LI, 2002, P NATL ACAD SCI USA, V99, P2309, DOI 10.1073/pnas.261707398
Zhang LI, 2001, NAT NEUROSCI, V4, P1123, DOI 10.1038/nn745
Zhang YK, 2005, J NEUROPHYSIOL, V94, P2676, DOI 10.1152/jn.00549.2005
Zhou XM, 2009, NAT NEUROSCI, V12, P26, DOI 10.1038/nn.2239
NR 52
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2014
VL 314
BP 42
EP 50
DI 10.1016/j.heares.2014.05.005
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AL5CF
UT WOS:000339150400005
PM 24911238
ER
PT J
AU Li, YZ
Peng, AQ
Ge, SL
Wang, Q
Liu, JJ
AF Li, Youzhong
Peng, Anquan
Ge, Shenglei
Wang, Qin
Liu, Jiajia
TI miR-204 suppresses cochlear spiral ganglion neuron survival in vitro by
targeting TMPRSS3
SO HEARING RESEARCH
LA English
DT Article
ID AUTOSOMAL RECESSIVE DEAFNESS; SENSORINEURAL HEARING-LOSS; TRANSMEMBRANE
SERINE PROTEASES; GUINEA-PIG; INNER-EAR; MUTATIONS; MICRORNAS; FAMILIES;
CELLS; GENE
AB Sensorineural hearing loss (SNHL) is the most common cause of hearing impairment. One of the essential steps to prevent progressive hearing loss is to protect spiral ganglion neurons (SGNs) from ongoing degeneration. MicroRNAs and TMPRSS3 (transmembrane protease, serine 3) have been reported to be involved in development of SGNs and genesis of SNHL The aim of this study was to investigate the role of miR-204 and TMPRSS3 in SGNs. Effect of miR-204 on cell viability of SGNs was first examined using MU (3[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. Expression of TMPRSS3 in SGNs with or without addition of miR-204 was assessed by real-time PCR and western blot further. A luciferase reporter activity assay was conducted to confirm target association between miR-204 and 3 '-UTR of TMPRSS3. Finally, role of TMPRSS3 on cell viability of SGNs was evaluated by transfection of TMPRSS3 siRNA. Cell viability of SGNs was suppressed by miR-204 in a concentration-dependent manner. Overexpression of miR-204 reduced expression of TMPRSS3 in SGNs at both mRNA and protein levels. Binding to the 3 '-UTR of TMPRSS3 by miR-204 was identified by luciferase assay. Knockdown of TMpRSS3 by siRNA significantly inhibits cell viability of SGNs. miR-204 could be a potential therapeutic target in sensorineural hearing loss. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Li, Youzhong; Peng, Anquan; Ge, Shenglei; Wang, Qin; Liu, Jiajia] Cent S Univ, Xiangya Hosp 2, Dept Otolaryngol Head & Neck Surg, Changsha 410011, Hunan, Peoples R China.
RP Peng, AQ (reprint author), Cent S Univ, Xiangya Hosp 2, Dept Otolaryngol Head & Neck Surg, 139 Renmin Rd, Changsha 410011, Hunan, Peoples R China.
EM anquanpeng2013@163.com
CR Ben-Yosef T, 2001, J MED GENET, V38, P396, DOI 10.1136/jmg.38.6.396
BICHLER E, 1983, ARCH OTO-RHINO-LARYN, V237, P201, DOI 10.1007/BF00453725
Bindu LH, 2008, INT J AUDIOL, V47, P702, DOI 10.1080/14992020802215862
Bugge TH, 2009, J BIOL CHEM, V284, P23177, DOI 10.1074/jbc.R109.021006
Charif M, 2012, BIOCHEM BIOPH RES CO, V419, P643, DOI 10.1016/j.bbrc.2012.02.066
Charizopoulou N, 2011, NAT COMMUN, V2, DOI 10.1038/ncomms1200
Cho WCS, 2010, BBA-REV CANCER, V1805, P209, DOI 10.1016/j.bbcan.2009.11.003
Clark G. M., 2003, COCHLEAR IMPLANTS FU
Dodson HC, 2000, J NEUROCYTOL, V29, P525, DOI 10.1023/A:1007201913730
Dror AA, 2009, ANNU REV GENET, V43, P411, DOI 10.1146/annurev-genet-102108-134135
Ebert MS, 2012, CELL, V149, P515, DOI 10.1016/j.cell.2012.04.005
Eppsteiner RW, 2012, HEARING RES, V292, P51, DOI 10.1016/j.heares.2012.08.007
Fasquelle L, 2011, J BIOL CHEM, V286, P17383, DOI 10.1074/jbc.M110.190652
Feghali J G, 1998, Ear Nose Throat J, V77, P282
Feghali JG, 1998, ENT-EAR NOSE THROAT, V77, P280
Feghali JG, 1998, ENT-EAR NOSE THROAT, V77, P282
Ge Shenglei, 2011, Zhong Nan Da Xue Xue Bao Yi Xue Ban, V36, P794, DOI 10.3969/j.issn.1672-7347.2011.08.018
Guipponi M, 2002, HUM MOL GENET, V11, P2829, DOI 10.1093/hmg/11.23.2829
Guipponi M, 2008, HUM MUTAT, V29, P130, DOI 10.1002/humu.20617
Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3
Hone S W, 2001, Semin Neonatol, V6, P531, DOI 10.1053/siny.2001.0094
Hutchin T, 2005, CLIN GENET, V68, P506, DOI 10.1111/j.1399-0004.2005.00539.x
Hwang H-W, 2007, Br J Cancer, V96 Suppl, pR40
KOITCHEV K, 1982, ACTA OTO-LARYNGOL, V94, P431, DOI 10.3109/00016488209128931
Krol J, 2010, CELL, V141, P618, DOI 10.1016/j.cell.2010.03.039
LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4
Lee J, 2013, GENE, V532, P276, DOI 10.1016/j.gene.2013.07.108
Lee K, 2012, CLIN GENET, V82, P56, DOI 10.1111/j.1399-0004.2011.01695.x
Li HQ, 2010, J NEUROSCI, V30, P3254, DOI 10.1523/JNEUROSCI.4948-09.2010
Martinez-Monedero R, 2008, DEV NEUROBIOL, V68, P669, DOI 10.1002/dneu.20616
Martinez-Monedero R, 2006, J NEUROBIOL, V66, P319, DOI 10.1002/neu.20232
Masmoudi S, 2001, HUM MUTAT, V18, P101, DOI 10.1002/humu.1159
NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411
Natera-Naranjo O, 2010, RNA, V16, P1516, DOI 10.1261/rna.1833310
Pasquinelli AE, 2012, NAT REV GENET, V13, P271, DOI 10.1038/nrg3162
Plasterk RHA, 2006, CELL, V124, P877, DOI 10.1016/j.cell.2006.02.030
Scott HS, 2001, NAT GENET, V27, P59
Tang X., 2010, NEURAL REGEN RES, V5, P1
Walsh Tom, 2006, Human Genomics, V2, P203
Wattenhofer M, 2005, HUM GENET, V117, P528, DOI 10.1007/s00439-005-1332-x
Wattenhofer M, 2002, J MOL MED-JMM, V80, P124, DOI 10.1007/s00109-001-0310-6
Zhang PZ, 2013, HEARING RES, V298, P1, DOI 10.1016/j.heares.2013.01.022
NR 42
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2014
VL 314
BP 60
EP 64
DI 10.1016/j.heares.2014.05.002
PG 5
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AL5CF
UT WOS:000339150400007
PM 24924414
ER
PT J
AU Lee, J
Seong, K
Lee, SH
Lee, KY
Cho, JH
AF Lee, JangWoo
Seong, KiWoong
Lee, Sang-Heun
Lee, Kyu-Yup
Cho, Jin-Ho
TI Comparison of auditory responses determined by acoustic stimulation and
by mechanical round window stimulation at equivalent stapes velocities
SO HEARING RESEARCH
LA English
DT Article
ID IMPLANTABLE HEARING DEVICE; MIDDLE-EAR IMPLANT; FLOATING MASS
TRANSDUCER; HUMAN TEMPORAL BONES; RECONSTRUCTION; PERFORMANCE; COCHLEA;
HUMANS; AIDS
AB Active middle ear implants (AMEIs) have been studied to overcome the limitations of conventional hearing aids such as howling, occlusion, and social discrimination. AMEIs usually drive the oval window (OW) by means of transmitting vibrational force through the ossicles and the vibrational force corresponding to sound is generated from a mechanical actuator. Recently, round window (RW) stimulation using an AMEI such as a floating mass transducer (FMT) to deliver sound to the cochlea has been introduced and hearing improvement in clinical use has been reported. Although previous studies demonstrated that the auditory response to RW stimulation was comparable to a sound-evoked auditory response, few studies have investigated the quantification of the physiologic performance of an AMEI through RW stimulation on the inner ear in vivo. There is no established relationship between the cochlear responses and mechanical stimulation to RW.
The aim of this study is to assess the physiologic response in RW stimulation by an AMEI. The transferred energy through the RW to the inner ear could estimate the response corresponding to acoustic stimulation in order to quantify the AMEI output in the ossicular chain or OW stimulation. The parameters of the auditory brainstem responses (ABRs) were measured and compared based on stapes velocities similar enough to be regarded as the same for acoustic stimulation to the external auditory canal (EAC) and mechanical stimulation to the RW in an in vivo system. In conclusion, this study showed that the amplitudes and latencies of the ABRs of acoustic and RW stimulation showed significant differences at comparable stapes velocities in an in vivo system. These differences in the ABR amplitudes and latencies reflect different output functions of the cochlea in response to different stimulation pathways. Therefore, it is necessary to develop a new method for quantifying the output of the cochlea in the case of RW stimulation. (C) 2014 Published by Elsevier B.V.
C1 [Lee, JangWoo] Kyungpook Natl Univ, Grad Sch Elect Engn & Comp Sci, Taegu, South Korea.
[Seong, KiWoong] Kyungpook Natl Univ Hosp, Dept Biomed Engn, Taegu, South Korea.
[Lee, Sang-Heun; Lee, Kyu-Yup] Kyungpook Natl Univ, Sch Med, Dept Otorhinolaryngol Head & Neck Surg, Taegu, South Korea.
[Cho, Jin-Ho] Kyungpook Natl Univ, Coll IT Engn, Sch Elect Engn, Taegu, South Korea.
RP Cho, JH (reprint author), Kyungpook Natl Univ, Sch Med, Inst Biomed Engn Res, N509 New Bldg, Taegu, South Korea.
EM kylee@knu.ac.kr; jhcho@ee.knu.ac.kr
FU Korea Healthcare Technology R&D Project, Korean Ministry of Health
Welfare [A092106]; Ministry of Knowledge Economy, South Korea; Korea
Institute for Advancement of Technology (KIAT); Dae-Gyeong Leading
Industry Office through the Leading Industry Development for Economic
Region
FX This study was supported by a grant from the Korea Healthcare Technology
R&D Project, Korean Ministry of Health & Welfare (A092106). And also
this research was financially supported by the Ministry of Knowledge
Economy, South Korea, Korea Institute for Advancement of Technology
(KIAT) and Dae-Gyeong Leading Industry Office through the Leading
Industry Development for Economic Region.
CR Arnold A, 2010, HEARING RES, V263, P120, DOI 10.1016/j.heares.2009.12.019
ASTM International, 2005, STAND PRACT DESCR SY
Backous Douglas D., 2006, HEAD NECK SURG, V14, P314
Colletti V, 2006, INT J AUDIOL, V45, P600, DOI 10.1080/14992020600840903
DUMON T, 1995, OTOLARYNG CLIN N AM, V28, P173
GOODE RL, 1995, OTOLARYNG CLIN N AM, V28, P141
Jenkins HA, 2004, ACTA OTO-LARYNGOL, V124, P391, DOI 10.1080/00016480410016298
Jenkins HA, 2008, OTOL NEUROTOL, V29, P534, DOI 10.1097/MAO.0b013e3181656969
JEWETT DL, 1971, BRAIN, V94, P681, DOI 10.1093/brain/94.4.681
Kiefer J, 2006, ORL J OTO-RHINO-LARY, V68, P378, DOI 10.1159/000095282
Koka K., 2010, CAN STAPES VELOCITY, V33
Koka K, 2010, HEARING RES, V263, P128, DOI 10.1016/j.heares.2009.08.009
Lefebvre PP, 2009, AUDIOL NEURO-OTOL, V14, P172, DOI 10.1159/000171479
Lupo JE, 2009, OTOL NEUROTOL, V30, P1215, DOI 10.1097/MAO.0b013e3181bc3c06
Lupo JE, 2011, OTOLARYNG HEAD NECK, V145, P641, DOI 10.1177/0194599811409674
Nakajima HH, 2010, OTOL NEUROTOL, V31, P506, DOI 10.1097/MAO.0b013e3181c0ea9f
Park IY, 2011, HEARING RES, V272, P187, DOI [10.1016/j.heares.2010.10.017, 10.1016/j.heares.2010.10.17]
Schraven SP, 2011, HEARING RES, V282, P272, DOI 10.1016/j.heares.2011.07.001
Schraven SP, 2012, AUDIOL NEURO-OTOL, V17, P133, DOI 10.1159/000333807
Siegert R, 2007, LARYNGOSCOPE, V117, P336, DOI 10.1097/MLG.0b013e31802b6561
Silva I, 2010, J ACOUST SOC AM, V127, P3629, DOI 10.1121/1.3397457
SPINDEL JH, 1995, OTOLARYNG CLIN N AM, V28, P189
Stieger C, 2013, HEARING RES, V301, P105, DOI 10.1016/j.heares.2012.11.005
Tringali S, 2008, INT J PEDIATR OTORHI, V72, P513, DOI 10.1016/j.ijporl.2007.12.002
Verhaegen VJO, 2008, LARYNGOSCOPE, V118, P1645, DOI 10.1097/MLG.0b013e31817b013a
Voss SE, 1996, J ACOUST SOC AM, V100, P1602, DOI 10.1121/1.416062
W Ko, 1987, P 9 ANN C IEEE ENG M, P13
WEVER EG, 1950, J ACOUST SOC AM, V22, P460, DOI 10.1121/1.1906628
Wollenberg B, 2007, HNO, V55, P349, DOI 10.1007/s00106-007-1540-x
Zenner HP, 1998, LANCET, V352, P1751, DOI 10.1016/S0140-6736(98)00076-2
NR 30
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2014
VL 314
BP 65
EP 71
DI 10.1016/j.heares.2014.04.003
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AL5CF
UT WOS:000339150400008
PM 24768763
ER
PT J
AU Narne, VK
Prabhu, PP
Chatni, S
AF Narne, Vijaya Kumar
Prabhu, P. Prashanth
Chatni, Suma
TI Time-frequency analysis of transient evoked-otoacoustic emissions in
individuals with auditory neuropathy spectrum disorder
SO HEARING RESEARCH
LA English
DT Article
ID MANAGEMENT; SYNCHRONY; DIAGNOSIS
AB The aim of the study was to describe and quantify the cochlear active mechanisms in individuals with Auditory Neuropathy Spectrum Disorders (ANSD). Transient Evoked Otoacoustic Emissions (TEOAEs) were recorded in 15 individuals with ANSD and 22 individuals with normal hearing. TEOAEs were analyzed by Wavelet transform method to describe and quantify the characteristics of TEOAEs in narrow-band frequency regions. It was noted that the amplitude of TEOAEs was higher and latency slightly shorter in individuals with ANSD compared to normal hearing individuals at low and mid frequencies. The increased amplitude and reduced latencies of TEOAEs in ANSD group could be attributed to the efferent system damage, especially at low and mid frequencies seen in individuals with ANSD. Thus, wavelet analysis of TEOAEs proves to be another important tool to understand the patho-physiology in individuals with ANSD. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Narne, Vijaya Kumar; Prabhu, P. Prashanth; Chatni, Suma] All India Inst Speech & Hearing, Dept Audiol, Mysore 570006, Karnataka, India.
RP Prabhu, PP (reprint author), All India Inst Speech & Hearing, Dept Audiol, Naimisham Campus, Mysore 570006, Karnataka, India.
EM prashanth.audio@gmail.com
CR Amatuzzi M, 2011, JARO-J ASSOC RES OTO, V12, P595, DOI 10.1007/s10162-011-0273-4
Avilala V.K.Y., 2012, AUDIOL MED, V10, P50
Berlin CI, 1998, EAR HEARING, V19, P37, DOI 10.1097/00003446-199802000-00002
Berlin CI, 2010, INT J AUDIOL, V49, P30, DOI 10.3109/14992020903160892
BERLIN CI, 1993, HEARING RES, V71, P1, DOI 10.1016/0378-5955(93)90015-S
Berlin CI, 2003, MENT RETARD DEV D R, V9, P225, DOI 10.1002/mrdd.10084
Bhagat S, 2013, AUDIOL NEURO-OTOL, V18, P71, DOI 10.1159/000343909
CARHART R, 1959, J SPEECH HEAR DISORD, V24, P330
Deltenre P., 1999, Audiology (London), V38, P187
Xu J., 2002, ZHONGHUA ER BI YAN H, V36, P436
Yang LP, 2002, MED BIOL ENG COMPUT, V40, P34, DOI 10.1007/BF02347693
Yathiraj A, 2005, PHONEMICALLY BALANCE
Zhang ZG, 2008, HEARING RES, V243, P18, DOI 10.1016/j.heares.2008.07.002
NR 13
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2014
VL 313
BP 1
EP 8
DI 10.1016/j.heares.2014.04.005
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AJ7GU
UT WOS:000337866000001
PM 24768764
ER
PT J
AU Zhang, M
AF Zhang, Ming
TI Effects of the intensity of masking noise on ear canal recorded
low-frequency cochlear microphonic waveforms in normal hearing subjects
SO HEARING RESEARCH
LA English
DT Article
ID PRODUCT OTOACOUSTIC EMISSIONS; OUTER HAIR-CELLS; NERVE; PRESSURE;
AUDIOMETRY; RESPONSES; HUMANS; TONE; DIAGNOSIS; AMPLIFIER
AB Compared to auditory brainstem responses (ABRs), cochlear microphonics (CMs) may be more appropriate to serve as a supplement to the test of otoacoustic emissions (OAEs). Researchers have shown that low-frequency CMs from the apical cochlea are measurable at the tympanic membrane using high-pass masking noise. Our objective is to study the effect of such noise at different intensities on low-frequency CMs recorded at the ear canal, which is not completely known. Six components were involved in this CM measurement including an ear canal electrode (1), a relatively long and low-frequency toneburst (2), and high-pass masking noise at different intensities (3). The rest components include statistical analysis based on multiple human subjects (4), curve modeling based on amplitudes of CM waveforms (CMWs) and noise intensity (5), and a technique based on electrocochleography (ECochG or ECoG) (6). Results show that low-frequency CMWs appeared clearly. The CMW amplitude decreased with an increase in noise level. It decreased first slowly, then faster, and finally slowly again. In conclusion, when masked with high-pass noise, the low-frequency CMs are measurable at the human ear canal. Such noise reduces the low-frequency CM amplitude. The reduction is noise-intensity dependent but not completely linear. The reduction may be caused by the excited basal cochlea which the low-frequency has to travel and pass through. Although not completely clear, six mechanisms related to such reduction are discussed. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Zhang, Ming] Univ Alberta, Fac Rehabil Med, Dept Commun Sci & Disorders, Edmonton, AB T6G 2G4, Canada.
[Zhang, Ming] Glenrose Rehabil Hosp, Alberta Hlth Serv, Dept Audiol, Edmonton, AB T5G 0B7, Canada.
[Zhang, Ming] Univ Alberta, Fac Med & Dent, Dept Surg Otolaryngol, Edmonton, AB T6G 2B7, Canada.
RP Zhang, M (reprint author), 8205 114th St,2-70 Corbett Hall, Edmonton, AB T6G 2G4, Canada.
EM ming.zhang@ualberta.ca
FU Canada Foundation for Innovation; Glenrose Rehabilitation Hospital
Foundation; Research Matching Funds from the University of Alberta
FX Part of this work was supported by grants from the Canada Foundation for
Innovation (M.Z.), Glenrose Rehabilitation Hospital Foundation (M.Z.),
and Research Matching Funds from the University of Alberta (M.Z.). The
authors wish to thank the subjects who participated in the experiment
for their time and effort; Christy Woodruff for the editing and
proofreading; Adrianne Boyd, Adrielle Soriano, Cassandra Wilson, Taylor
King, Meriden Layfield, and Kristi Been for participation in part of
this study; Dr. Vicky Zhao and Mr. Brian Schmidt for insightful
discussions of the study; and anonymous reviewers for their invaluable
comments.
CR ABBAS PJ, 1976, J ACOUST SOC AM, V59, P112, DOI 10.1121/1.380841
Ashmore J, 2010, HEARING RES, V266, P1, DOI 10.1016/j.heares.2010.05.001
BATRA R, 1986, HEARING RES, V21, P167, DOI 10.1016/0378-5955(86)90037-7
Berlin CI, 2003, MENT RETARD DEV D R, V9, P225, DOI 10.1002/mrdd.10084
Brown CJ, 2008, EAR HEARING, V29, P704, DOI 10.1097/AUD.0b013e31817a98af
CHIMENTO TC, 1990, ELECTROEN CLIN NEURO, V75, P88, DOI 10.1016/0013-4694(90)90156-E
CHIMENTO TC, 1992, HEARING RES, V62, P131, DOI 10.1016/0378-5955(92)90178-P
DALLOS P, 1981, ANNU REV PSYCHOL, V32, P153, DOI 10.1146/annurev.ps.32.020181.001101
Dallos P, 2006, J PHYSIOL-LONDON, V576, P37, DOI 10.1113/jphysiol.2006.114652
DAVIS RL, 1984, HEARING RES, V15, P29, DOI 10.1016/0378-5955(84)90222-3
Deppe C, 2013, EAR HEARING, V34, P122, DOI 10.1097/AUD.0b013e31826709c3
Don M, 2005, AUDIOL NEURO-OTOL, V10, P274, DOI 10.1159/000086001
Don M., 2002, AUDITORY BRAINSTEM R
Ferraro J. A., 2002, HDB CLIN AUDIOLOGY, P249
FERRARO JA, 1989, AM J OTOL, V10, P42
GALAMBOS R, 1959, AM J PHYSIOL, V197, P527
Gardi J, 1979, Audiology, V18, P358
GLASER EM, 1976, ELECTROEN CLIN NEURO, V40, P25, DOI 10.1016/0013-4694(76)90176-0
Gouveris H, 2009, EUR ARCH OTO-RHINO-L, V266, P225, DOI 10.1007/s00405-008-0741-6
GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
He WX, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034356
HENRY KR, 1995, HEARING RES, V90, P176, DOI 10.1016/0378-5955(95)00162-6
HINK RF, 1980, AUDIOLOGY, V19, P36
JERGER J, 1970, ARCHIV OTOLARYNGOL, V92, P311
MARSH JT, 1970, SCIENCE, V169, P1222, DOI 10.1126/science.169.3951.1222
Noguchi Y, 1999, AUDIOLOGY, V38, P135
Norton S.J., 1989, ABST ASS RES OTOLARY, V12, p227(A)
OATES P, 1992, EAR HEARING, V13, P28, DOI 10.1097/00003446-199202000-00007
Oghalai John S, 2004, Curr Opin Otolaryngol Head Neck Surg, V12, P431, DOI 10.1097/01.moo.0000134449.05454.82
PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X
PICTON TW, 1977, J OTOLARYNGOL, V6, P90
Poch-Broto J, 2009, ACTA OTO-LARYNGOL, V129, P749, DOI 10.1080/00016480802398962
PONTON CW, 1992, SCAND AUDIOL, V21, P131, DOI 10.3109/01050399209045993
Ren TY, 2011, NAT COMMUN, V2, DOI 10.1038/ncomms1226
RHODE WS, 1978, J NEUROPHYSIOL, V41, P692
Riazi M, 2008, J AM ACAD AUDIOL, V19, P46, DOI 10.3766/jaaa.19.1.5
Roeser RJ, 2007, AUDIOLOGY DIAGNOSIS
Ruggero MA, 2007, JARO-J ASSOC RES OTO, V8, P153, DOI 10.1007/s10162-007-0081-z
SNYDER RL, 1984, HEARING RES, V15, P261, DOI 10.1016/0378-5955(84)90033-9
STILLMAN RD, 1976, AUDIOLOGY, V15, P10
Sun XM, 2009, EAR HEARING, V30, P191, DOI 10.1097/AUD.0b013e31819769e1
Thorson MJ, 2012, J ACOUST SOC AM, V131, P1282, DOI 10.1121/1.3672654
TOGNOLA G, 1995, BRIT J AUDIOL, V29, P153, DOI 10.3109/03005369509086592
WHITEHEAD ML, 1993, J SPEECH HEAR RES, V36, P1097
WOLFE JA, 1978, J SPEECH HEAR RES, V21, P401
YAMADA O, 1982, SCAND AUDIOL, V11, P53, DOI 10.3109/01050398209076199
ZENG FG, 1994, J ACOUST SOC AM, V96, P2127, DOI 10.1121/1.410154
Zeng FG, 2006, J SPEECH LANG HEAR R, V49, P367, DOI 10.1044/1092-4388(2006/029)
Zhang M., 2013, AUDIT RES, V3, P16
Zhang M, 1997, J ACOUST SOC AM, V102, P1032, DOI 10.1121/1.419856
Zhang M, 2010, TRENDS AMPLIF, V14, P211, DOI 10.1177/1084713810388811
Zhang M, 1998, ABST ASS RES OTOLARY, V21, P19
Zhang M., 2007, LOW FREQUENCY OAES C, P108
Zhang M., 2007, WHAT RESPONSES CAN B, P100
Zhang M, 2002, JARO, V3, P289, DOI 10.1007/s101620020016
Zhang M, 2000, PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON RECENT DEVELOPMENTS IN AUDITORY MECHANICS, P330
Zhang M, 2012, TRENDS AMPLIF, V16, P117, DOI 10.1177/1084713812448547
Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009
Zheng J., 2008, ABST ASS RES OTOLARY, V31, P233
Zheng XY, 2000, HEARING RES, V143, P14, DOI 10.1016/S0378-5955(99)00217-8
Zöllner C, 1975, Laryngol Rhinol Otol (Stuttg), V54, P681
NR 61
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2014
VL 313
BP 9
EP 17
DI 10.1016/j.heares.2014.04.004
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AJ7GU
UT WOS:000337866000002
PM 24793117
ER
PT J
AU Sun, W
Fu, Q
Zhang, C
Manohar, S
Kumaraguru, A
Li, J
AF Sun, Wei
Fu, Qiang
Zhang, Chao
Manohar, Senthilvelan
Kumaraguru, Anand
Li, Ji
TI Loudness perception affected by early age hearing loss
SO HEARING RESEARCH
LA English
DT Article
ID AUDIOGENIC-SEIZURE SUSCEPTIBILITY; OTITIS-MEDIA; WILLIAMS-SYNDROME;
AUDITORY-CORTEX; VISUAL-CORTEX; CORTICAL DEVELOPMENT; INFERIOR
COLLICULUS; GENE-EXPRESSION; UNITED-STATES; DELTA-SUBUNIT
AB Tinnitus and hyperacusis, commonly seen in adults, are also reported in children. Although clinical studies found children with tinnitus and hyperacusis often suffered from recurrent otitis media, there is no direct study on how temporary hearing loss in the early age affects the sound loudness perception. In this study, sound loudness changes in rats affected by perforation of the tympanic membranes (TM) have been studied using an operant conditioning based behavioral task. We detected significant increases of sound loudness and susceptibility to audiogenic seizures (AGS) in rats with bilateral TM damage at postnatal 16 days. As increase to sound sensitivity is commonly seen in hyperacusis and tinnitus patients, these results suggest that early age hearing loss is a high risk factor to induce tinnitus and hyperacusis in children. In the TM damaged rats, we also detected a reduced expression of GABA receptor delta and alpha 6 subunits in the inferior colliculus (IC) compared to the controls. Treatment of vigabatrin (60 mg/kg/day, 7-14 days), an anti-seizure drug that inhibits the catabolism of GABA, not only blocked AGS, but also significantly attenuated the loudness response. Administration of vigabatrin following the early age TM damage could even prevent rats from developing AGS. These results suggest that TM damage at an early age may cause a permanent reduction of GABA tonic inhibition which is critical towards the maintenance of normal loudness processing of the IC. Increasing GABA concentration during the critical period may alleviate the impairment in the brain induced by early age hearing loss. Published by Elsevier B.V.
C1 [Sun, Wei; Zhang, Chao; Manohar, Senthilvelan; Kumaraguru, Anand] SUNY Buffalo, Ctr Hearing & Deafness, Dept Commun Disorders & Sci, Buffalo, NY 14214 USA.
[Fu, Qiang; Li, Ji] SUNY Buffalo, Dept Pharmacol & Toxicol, Buffalo, NY 14214 USA.
[Fu, Qiang] Sichuan Univ, West China Sch Preclin & Forens Med, Dept Biochem & Mol Biol, Chengdu 610041, Peoples R China.
[Zhang, Chao] Chinese Peoples Liberat Army Gen Hosp, Dept Otolaryngol, Beijing 100853, Peoples R China.
RP Sun, W (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA.
EM weisun@buffalo.edu
FU Action on Hearing Loss [G42]; National Organization for Hearing Research
FX This project was supported by Action on Hearing Loss (G42) and National
Organization for Hearing Research.
CR Auinger P, 2003, PEDIATRICS, V112, P514, DOI 10.1542/peds.112.3.514
Blomberg S, 2006, RES DEV DISABIL, V27, P668, DOI 10.1016/j.ridd.2005.09.002
Chakravarty DN, 1999, EXP NEUROL, V157, P135, DOI 10.1006/exnr.1999.7047
Chang EF, 2003, SCIENCE, V300, P498, DOI 10.1126/science.1082163
Chang EF, 2005, P NATL ACAD SCI USA, V102, P16460, DOI 10.1073/pnas.0508239102
Coelho CB, 2007, PROG BRAIN RES, V166, P179, DOI 10.1016/S0079-6123(07)66016-6
Dauman R, 2005, ACTA OTO-LARYNGOL, V125, P503, DOI 10.1080/00016480510027565
de Villers-Sidani E, 2008, NAT NEUROSCI, V11, P957, DOI 10.1038/nn.2144
FAGIOLINI M, 1994, VISION RES, V34, P709, DOI 10.1016/0042-6989(94)90210-0
Gothelf D, 2006, NEUROLOGY, V66, P390, DOI 10.1212/01.wnl.0000196643.35395.5f
Hebert S, 2013, J NEUROSCI, V33, P2356, DOI 10.1523/JNEUROSCI.3461-12.2013
Hempel JM, 2012, OTOL NEUROTOL, V33, P1357, DOI 10.1097/MAO.0b013e31826939b5
HENRY KR, 1967, SCIENCE, V158, P938, DOI 10.1126/science.158.3803.938-a
Hensch TK, 2005, CURR TOP DEV BIOL, V69, P215, DOI 10.1016/S0070-2153(05)69008-4
Hensch TK, 2005, NAT REV NEUROSCI, V6, P877, DOI 10.1038/nrn1787
Inge K, 2014, 37 ANN MIDW M ASS RE
Iwai Y, 2003, J NEUROSCI, V23, P6695
JEANSONNE NE, 1991, J BIOL CHEM, V266, P14675
Johnson LB, 2001, J OTOLARYNGOL, V30, P90, DOI 10.2310/7070.2001.20811
Khalfa S, 2004, HEARING RES, V198, P87, DOI 10.1016/j.heares.2004.07.006
Kilman V, 2002, J NEUROSCI, V22, P1328
KLEIN AJ, 1990, J SPEECH HEAR DISORD, V55, P339
Klein BD, 2004, EPILEPSY RES, V62, P13, DOI 10.1016/j.eplepsyres.2004.06.007
Kral A, 2005, CEREB CORTEX, V15, P552, DOI 10.1093/cercor/bhh156
Kral A, 2002, CEREB CORTEX, V12, P797, DOI 10.1093/cercor/12.8.797
Kristjansson S, 2010, ACTA PAEDIATR, V99, P867, DOI 10.1111/j.1651-2227.2009.01637.x
Kwon J, 1997, EPILEPSY RES, V27, P89, DOI 10.1016/S0920-1211(97)01024-3
Lanphear BP, 1997, PEDIATRICS, V99, part. no., DOI 10.1542/peds.99.3.e1
Lee H, 2003, ARCH NEUROL-CHICAGO, V60, P113
Levitin DJ, 2005, J CHILD PSYCHOL PSYC, V46, P514, DOI 10.1111/j.1469-7610.2004.00376.x
Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
May BJ, 2009, JARO-J ASSOC RES OTO, V10, P295, DOI 10.1007/s10162-009-0157-z
Nusser Z, 2002, J NEUROPHYSIOL, V87, P2624, DOI 10.1152/jn.00866.2001
O'Leary SJ, 2009, MED J AUSTRALIA, V191, pS65
Oliver DL, 2011, NEUROSCIENCE, V184, P75, DOI 10.1016/j.neuroscience.2011.04.001
Paradise JL, 1997, PEDIATRICS, V99, P318, DOI 10.1542/peds.99.3.318
POON PWF, 1992, BRAIN RES, V585, P391, DOI 10.1016/0006-8993(92)91243-8
Popescu MV, 2010, NEURON, V65, P718, DOI 10.1016/j.neuron.2010.02.019
Porcello DM, 2003, J NEUROPHYSIOL, V89, P1378, DOI 10.1152/jn.0899.2002
Richardson BD, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016508
Spigelman I, 2002, EPILEPSIA, V43, P3, DOI 10.1046/j.1528-1157.43.s.5.8.x
Sun W, 2008, NEUROSCIENCE, V156, P374, DOI 10.1016/j.neuroscience.2008.07.040
Sun W., 2013, J OTOL, V8, P40
Sun W, 2011, HEARING RES, V282, P178, DOI 10.1016/j.heares.2011.08.004
Sun W, 2009, NEUROSCIENCE, V159, P325, DOI 10.1016/j.neuroscience.2008.12.024
Sun W, 2014, BEHAV BRAIN RES, V258, P187, DOI 10.1016/j.bbr.2013.10.024
VERNON JA, 1987, AM J OTOL, V8, P201
Weikum WM, 2012, P NATL ACAD SCI USA, V109, P17221, DOI 10.1073/pnas.1121263109
Xu H, 2007, J NEUROSCI, V27, P9417, DOI 10.1523/JNEUROSCI.1992-07.2007
NR 49
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2014
VL 313
BP 18
EP 25
DI 10.1016/j.heares.2014.04.002
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AJ7GU
UT WOS:000337866000003
PM 24747532
ER
PT J
AU Kalinec, GM
Thein, P
Parsa, A
Yorgason, J
Luxford, W
Urrutia, R
Kalinec, F
AF Kalinec, Gilda M.
Thein, Pru
Parsa, Arya
Yorgason, Joshua
Luxford, William
Urrutia, Raul
Kalinec, Federico
TI Acetaminophen and NAPQI are toxic to auditory cells via oxidative and
endoplasmic reticulum stress-dependent pathways
SO HEARING RESEARCH
LA English
DT Article
ID HEARING-LOSS; OXIDANT STRESS; ANALGESIC USE; IN-VITRO; ABUSE;
HEPATOTOXICITY; HEPATOCYTES; DEATH; MODEL; HYDROCODONE/ACETAMINOPHEN
AB Pain relievers containing N-acetyl-para-aminophenol, also called APAP, acetaminophen or paracetamol, in combination with opioid narcotics are top-selling pharmaceuticals in the U.S. Individuals who abuse these drugs for as little as sixty days can develop tinnitus and progressive bilateral sensorineural hearing loss. Recently published studies indicate that APAP and its metabolic product N-acetyl-p-benzoquinoneimine (NAPQI) are the primary ototoxic agents in this type of pain relievers. However, the mechanisms underlying the deleterious effects of these drugs on auditory cells remain to be fully characterized. In this study, we report cellular, genomic, and proteomic experiments revealing that cytotoxicity by APAP and NAPQI involves two different pathways in Immortomouse (TM)-derived HEI-OC1 cells, implicating ROS overproduction, alterations in ER morphology, redistribution of intra-cisternal chaperones, activation of the eIF2 alpha-CHOP pathway, as well as changes in ER stress and protein folding response markers. Thus, both oxidative and ER stress are part of the cellular and molecular mechanisms that contribute to the cytotoxic effects of APAP and NAPQI in these cells. We suggest that these in vitro findings should be taken into consideration when designing pharmacological strategies aimed at preventing the toxic effects of these drugs on the auditory system. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Kalinec, Gilda M.; Thein, Pru; Parsa, Arya; Kalinec, Federico] Univ Calif Los Angeles, David Geffen Sch Med, Dept Head & Neck Surg, Los Angeles, CA 90095 USA.
[Yorgason, Joshua] Univ Utah, Salt Lake City, UT 84112 USA.
[Luxford, William] House Clin, Los Angeles, CA 90057 USA.
[Urrutia, Raul] Mayo Clin, Ctr Individualized Med, Translat Epigen Program, Epigenet & Chromatin Dynam Lab, Rochester, MN 55905 USA.
RP Kalinec, F (reprint author), Univ Calif Los Angeles, David Geffen Sch Med, Dept Head & Neck Surg, 2100 West Third St, Los Angeles, CA 90057 USA.
EM fkalinec@mednet.ucla.edu
FU NIH [R01-DC010146, R01-DC010397]
FX The authors declare no existing or potential conflict of interest. This
work was supported by NIH Grants R01-DC010146 and R01-DC010397, and
personal funds from William M. Luxford. Its content is solely the
responsibility of the authors and does not necessarily represent the
official view of the National Institutes of Health.
CR Bajt ML, 2004, TOXICOL SCI, V80, P343, DOI 10.1093/toxsci/kfh151
Bisaglia M, 2002, NEUROCHEM INT, V41, P43, DOI 10.1016/S0197-0186(01)00136-X
Blakley BW, 2008, J OTOLARYNGOL-HEAD N, V37, P507, DOI 10.2310/7070.2008.0096
Bromer Matthew Q, 2003, Clin Liver Dis, V7, P351, DOI 10.1016/S1089-3261(03)00025-4
Curhan SG, 2012, AM J EPIDEMIOL, V176, P544, DOI 10.1093/aje/kws146
Curhan SG, 2010, AM J MED, V123, P231, DOI 10.1016/j.amjmed.2009.08.006
Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861
Friedman RA, 2000, AM J OTOL, V21, P188, DOI 10.1016/S0196-0709(00)80007-1
Gujral JS, 2002, TOXICOL SCI, V67, P322, DOI 10.1093/toxsci/67.2.322
HARMAN AW, 1991, BIOCHEM PHARMACOL, V41, P1111, DOI 10.1016/0006-2952(91)90648-O
Hersh EV, 2007, CLIN THER, V29, P2477, DOI 10.1016/j.clinthera.2007.12.003
Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4
Ho Tang, 2007, Pain Physician, V10, P467
Jaeschke H, 2012, DRUG METAB REV, V44, P88, DOI 10.3109/03602532.2011.602688
Jaeschke H, 2011, LIFE SCI, V88, P737, DOI 10.1016/j.lfs.2011.01.025
Jemnitz K, 2008, TOXICOL IN VITRO, V22, P961, DOI 10.1016/j.tiv.2008.02.001
Kalinec GM, 2003, AUDIOL NEURO-OTOL, V8, P177, DOI 10.1159/000071059
Lin JH, 2007, SCIENCE, V318, P944, DOI 10.1126/science.1146361
Lin JH, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0004170
Locke CJ, 2008, NEUROSCI LETT, V439, P129, DOI 10.1016/j.neulet.2008.05.003
Maharaj H, 2006, METAB BRAIN DIS, V21, P189, DOI 10.1007/s11011-006-9012-7
McGill MR, 2011, HEPATOLOGY, V53, P974, DOI 10.1002/hep.24132
Mikus Gerd, 2005, Current Pharmacogenomics, V3, P43, DOI 10.2174/1570160053175018
Moyer AM, 2011, TOXICOL SCI, V120, P33, DOI 10.1093/toxsci/kfq375
Nagy G., 2009, TOXICOL APPL PHARM, V243, P96
Nagy G, 2007, ARCH BIOCHEM BIOPHYS, V459, P273, DOI 10.1016/j.abb.2006.11.021
Nassini R, 2010, FASEB J, V24, P4904, DOI 10.1096/fj.10-162438
Oh AK, 2000, NEUROLOGY, V54, P2345
Posadas I, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0015360
Rigby MH, 2008, J OTOLARYNGOL-HEAD N, V37, pE161, DOI 10.2310/7070.2008.CR0175
Schonthal AH, 2009, CANCER LETT, V275, P163, DOI 10.1016/j.canlet.2008.07.005
Tripathy D, 2009, J NEUROINFLAMM, V6, DOI 10.1186/1742-2094-6-10
Tripathy D, 2009, MICROVASC RES, V77, P289, DOI 10.1016/j.mvr.2009.02.002
Wiseman RL, 2011, SCIENCE, V332, P44, DOI 10.1126/science.1204505
Woehlbier U, 2011, TRENDS BIOCHEM SCI, V36, P329, DOI 10.1016/j.tibs.2011.03.001
Yorgason JG, 2010, OTOLARYNG HEAD NECK, V142, P814, DOI 10.1016/j.otohns.2010.01.010
Zimmerman H.J., 1998, CLIN LIVER DIS, V2, P523, DOI 10.1016/S1089-3261(05)70025-8
NR 37
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2014
VL 313
BP 26
EP 37
DI 10.1016/j.heares.2014.04.007
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AJ7GU
UT WOS:000337866000004
PM 24793116
ER
PT J
AU Shi, XR
Zhang, F
Urdang, Z
Dai, M
Neng, LL
Zhang, JH
Chen, SL
Ramamoorthy, S
Nuttall, AL
AF Shi, Xiaorui
Zhang, Fei
Urdang, Zachary
Dai, Min
Neng, Lingling
Zhang, Jinhui
Chen, Songlin
Ramamoorthy, Sripriya
Nuttall, Alfred L.
TI Thin and open vessel windows for intra-vital fluorescence imaging of
murine cochlear blood flow
SO HEARING RESEARCH
LA English
DT Article
ID INNER-EAR; STRIA VASCULARIS; ACOUSTIC TRAUMA; HEARING-LOSS; IN-VIVO;
SPIRAL LIGAMENT; AGED GERBILS; NITRIC-OXIDE; BARRIER; MICE
AB Normal microvessel structure and function in the cochlea is essential for maintaining the ionic and metabolic homeostasis required for hearing function. Abnormal cochlear microcirculation has long been considered an etiologic factor in hearing disorders. A better understanding of cochlear blood flow (CoBF) will enable more effective amelioration of hearing disorders that result from aberrant blood flow. However, establishing the direct relationship between CoBF and other cellular events in the lateral wall and response to physio-pathological stress remains a challenge due to the lack of feasible interrogation methods and difficulty in accessing the inner ear. Here we report on new methods for studying the CoBF in a mouse model using a thin or open vessel-window in combination with fluorescence intra-vital microscopy (IVM). An open vessel-window enables investigation of vascular cell biology and blood flow permeability, including pericyte (PC) contractility, bone marrow cell migration, and endothelial barrier leakage, in wild type and fluorescent protein-labeled transgenic mouse models with high spatial and temporal resolution. Alternatively, the thin vessel-window method minimizes disruption of the homeostatic balance in the lateral wall and enables study CoBF under relatively intact physiological conditions. A thin vessel-window method can also be used for time-based studies of physiological and pathological processes. Although the small size of the mouse cochlea makes surgery difficult, the methods are sufficiently developed for studying the structural and functional changes in CoBF under normal and pathological conditions. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Shi, Xiaorui; Zhang, Fei; Urdang, Zachary; Dai, Min; Neng, Lingling; Zhang, Jinhui; Chen, Songlin; Ramamoorthy, Sripriya; Nuttall, Alfred L.] Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, Dept Otolaryngol Head & Neck Surg, Portland, OR 97239 USA.
RP Shi, XR (reprint author), Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, 3181 SW Sam Jackson Pk Rd, Portland, OR 97239 USA.
EM shix@ohsu.edu
FU National Institutes of Health [NIH NIDCD DC008888S1, NIH NIDCD
R01-DC010844, R21DC1239801, R01-DC000105, NIHP30-DC005983]
FX This work was supported by National Institutes of Health grants NIH
NIDCD DC008888S1 (XS), NIH NIDCD R01-DC010844 (XS), R21DC1239801 (XS),
R01-DC000105 (ALN) and NIHP30-DC005983.
CR Aimoni C, 2010, AUDIOL NEURO-OTOL, V15, P111, DOI 10.1159/000231636
ANGELBORG C, 1988, ORL J OTO-RHINO-LARY, V50, P355
Axelsson A., 1968, ACTA OTOLARYNGO S243, P3
AXELSSON A, 1990, ACTA OTO-LARYNGOL, V109, P263, DOI 10.3109/00016489009107442
Brown N.J., 1995, HEARING RES, V86, P189
Choudhury N, 2010, IEEE J SEL TOP QUANT, V16, P524, DOI 10.1109/JSTQE.2009.2032671
Dai M, 2009, HEARING RES, V254, P100, DOI 10.1016/j.heares.2009.04.018
Dai M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020652
Dai M, 2010, AM J PATHOL, V177, P3089, DOI 10.2353/ajpath.2010.100340
Drew PJ, 2010, NAT METHODS, V7, P981, DOI [10.1038/nmeth.1530, 10.1038/NMETH.1530]
Gratton MA, 1997, HEARING RES, V114, P1, DOI 10.1016/S0378-5955(97)00025-7
Gratton MA, 1996, HEARING RES, V94, P116, DOI 10.1016/0378-5955(96)00011-1
Hirose K, 2005, J COMP NEUROL, V489, P180, DOI 10.1002/cne.20619
Lang HN, 2006, J COMP NEUROL, V496, P187, DOI 10.1002/cne.20929
LARSEN HC, 1982, ORL J OTO-RHINO-LARY, V44, P101
Le Floc'h J, 2014, J MAGN RESON IMAGING, V39, P150, DOI 10.1002/jmri.24144
Le Prell CG, 2007, HEARING RES, V226, P22, DOI 10.1016/j.heares.2006.10.006
MILLER JM, 1995, ANN OTO RHINOL LARYN, V104, P476
MILLER JM, 1988, AM J OTOLARYNG, V9, P302, DOI 10.1016/S0196-0709(88)80038-3
Monfared A, 2006, OTOL NEUROTOL, V27, P144, DOI 10.1097/01.mao.0000190708.44067.b0
Nakashima T, 2002, ANN OTO RHINOL LARYN, V111, P998
Nakashima T, 2003, BRAIN RES REV, V43, P17, DOI 10.1016/S0165-0173(03)00189-9
Nuttall A.L., 1999, NOISE HEALTH, V2, P17
NUTTALL AL, 1988, AM J OTOLARYNG, V9, P291, DOI 10.1016/S0196-0709(88)80037-1
NUTTALL AL, 1987, HEARING RES, V27, P111, DOI 10.1016/0378-5955(87)90012-8
OFFNER FF, 1987, HEARING RES, V29, P117, DOI 10.1016/0378-5955(87)90160-2
Ohlemiller KK, 2008, HEARING RES, V244, P85, DOI 10.1016/j.heares.2008.08.001
Ou HC, 2000, HEARING RES, V145, P123, DOI 10.1016/S0378-5955(00)00082-4
Reif R, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052041
Shi XR, 2007, HEARING RES, V224, P1, DOI 10.1016/j.heares.2006.10.011
Shi XR, 2002, HEARING RES, V172, P73, DOI 10.1016/S0378-5955(02)00513-0
Shi XR, 2009, AM J PATHOL, V174, P1692, DOI 10.2353/ajpath.2009.080739
Shi XR, 2008, MICROCIRCULATION, V15, P515, DOI 10.1080/10739680802047445
Spicer SS, 2002, HEARING RES, V172, P172, DOI 10.1016/S0378-5955(02)00581-6
Subhash HM, 2011, IEEE T MED IMAGING, V30, P224, DOI 10.1109/TMI.2010.2072934
Trune Dennis R., 2012, Seminars in Hearing, V33, P242, DOI 10.1055/s-0032-1315723
Wangemann P, 2002, ADV OTO-RHINO-LARYNG, V59, P51
Wangemann P, 1998, HEARING RES, V118, P90, DOI 10.1016/S0378-5955(98)00017-3
Zhang F, 2013, FASEB J, V27, P3730, DOI 10.1096/fj.13-232892
Zhang WJ, 2012, P NATL ACAD SCI USA, V109, P10388, DOI 10.1073/pnas.1205210109
NR 40
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2014
VL 313
BP 38
EP 46
DI 10.1016/j.heares.2014.04.006
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AJ7GU
UT WOS:000337866000005
PM 24780131
ER
PT J
AU Bahmer, A
Baumann, U
AF Bahmer, Andreas
Baumann, Uwe
TI Psychometric function of jittered rate pitch discrimination
SO HEARING RESEARCH
LA English
DT Article
ID COCHLEAR-IMPLANT RECIPIENTS; AUDITORY-NERVE FIBERS;
ELECTRICAL-STIMULATION; RESPONSE PROPERTIES; TEMPORAL PITCH; PULSE
TRAINS; FREQUENCY; PERCEPTION; HEARING; MODEL
AB The impact of jitter on rate pitch discrimination (JRPD) is still a matter of debate. Previous studies have used adaptive procedures to assess pitch discrimination abilities of jittered rate pulses (Dobie and Dillier, 1985; Chen et al., 2005) or have used jitter detection thresholds (Fearn, 2001). Previous studies were conducted in a relatively small number of subjects using either a single-electrode cochlear implant (Dobie and Dillier, 1985, n = 2) or the Nucleus multi-channel devices (Fearn, 2001, n = 3; Chen et al., 2005, n = 5). The successful application of an adaptive procedure requires a monotone psychometric function to achieve asymptotic results. The underlying psychometric function of rate jitter has not been investigated so far. In order to close this knowledge gap, the present study determines psychometric functions by measuring of JRPD with a fixed stimulus paradigm. A rather large range of temporal, Gaussian distributed jitter standard deviation 0, 1, 2, 3, 4 ms was applied to electrical pulse patterns. Since the shape of the underlying probability density function (PDF) may also effect JRPD, a uniform PDF was alternatively applied. 7 Cl users (8 ears, high-level performers with open-speech perception, MED-EL Pulsar/Sonata devices, Innsbruck, Austria) served as subjects for the experiment. JRPD was assessed with a two-stage forced choice procedure. Gross results showed decreasing JRPD with increasing amounts of jitter independent of the applied jitter distribution. In conclusion, pulse rate jitter affects JRPD and therefore should be considered in current coding strategies. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Bahmer, Andreas; Baumann, Uwe] Goethe Univ Frankfurt, Clin Otolaryngol, D-60590 Frankfurt, Germany.
RP Bahmer, A (reprint author), Goethe Univ Frankfurt, Clin Otolaryngol, D-60590 Frankfurt, Germany.
EM andreas.bahmer@kgu.de; uwe.baumann@kgu.de
CR AMIT DJ, 1991, NETWORK-COMP NEURAL, V2, P259, DOI 10.1088/0954-898X/2/3/003
Bahmer A, 2008, J NEUROSCI METH, V173, P306, DOI 10.1016/j.jneumeth.2008.06.012
Bahmer Andreas, 2013, Cochlear Implants Int, V14, P142, DOI 10.1179/1754762812Y.0000000011
Baumann U, 2004, HEARING RES, V196, P49, DOI 10.1016/j.heares.2004.06.008
Bierer JA, 2007, J ACOUST SOC AM, V121, P1642, DOI 10.1121/1.2436712
Carlyon RP, 2010, JARO-J ASSOC RES OTO, V11, P625, DOI 10.1007/s10162-010-0222-7
CARNEY LH, 1993, J ACOUST SOC AM, V93, P401, DOI 10.1121/1.405620
Chen HB, 2005, J ACOUST SOC AM, V118, P338, DOI 10.1121/1.1937228
DOBIE RA, 1985, HEARING RES, V18, P41, DOI 10.1016/0378-5955(85)90109-1
Donaldson GS, 2005, J ACOUST SOC AM, V118, P623, DOI 10.1121/1.1937362
Fearn R.A., 2001, THESIS U N S WALES
Firszt JB, 2007, OTOL NEUROTOL, V28, P629, DOI 10.1097/01.mao.0000281803.36574.bc
Goldsworthy RL, 2014, J ACOUST SOC AM, V135, P334, DOI 10.1121/1.4835735
Hancock KE, 2012, J NEUROPHYSIOL, V108, P714, DOI 10.1152/jn.00269.2012
HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7
Hughes ML, 2012, HEARING RES, V285, P46, DOI 10.1016/j.heares.2012.01.010
Koch DB, 2004, AUDIOL NEURO-OTOL, V9, P214, DOI 10.1159/000078391
Kong YY, 2009, J ACOUST SOC AM, V125, P1649, DOI 10.1121/1.3068457
Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6
Laback B, 2008, P NATL ACAD SCI USA, V105, P814, DOI 10.1073/pnas.0709199105
Litvak LM, 2003, J ACOUST SOC AM, V114, P2066, DOI 10.1121/1.1612492
Lopez-Poveda EA, 2001, J ACOUST SOC AM, V110, P3107, DOI 10.1121/1.1416197
McDermott HJ, 1997, J ACOUST SOC AM, V101, P1622, DOI 10.1121/1.418177
McKay C. M., 2000, Acoustics Research Letters Online, V1, DOI 10.1121/1.1318742
MEDDIS R, 1986, J ACOUST SOC AM, V79, P702, DOI 10.1121/1.393460
Miller CA, 2001, JARO, V2, P216
Morse RP, 1999, HEARING RES, V133, P107, DOI 10.1016/S0378-5955(99)00062-3
Morsnowski A, 2006, AUDIOL NEURO-OTOL, V11, P389, DOI 10.1159/000095966
POLLACK I, 1968, J ACOUST SOC AM, V43, P308, DOI 10.1121/1.1910780
POLLACK I, 1971, J ACOUST SOC AM, V50, P555, DOI 10.1121/1.1912671
POLLACK I, 1968, J ACOUST SOC AM, V43, P1107, DOI 10.1121/1.1910945
Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3
TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554
Tsodyks M, 1998, NEURAL COMPUT, V10, P821, DOI 10.1162/089976698300017502
Wever E. G., 1949, THEORY HEARING
Wever EG, 1930, P NATL ACAD SCI USA, V16, P344, DOI 10.1073/pnas.16.5.344
Wever EG, 1930, J EXP PSYCHOL, V13, P373, DOI 10.1037/h0075820
Wever EG, 1930, PSYCHOL REV, V37, P365, DOI 10.1037/h0075002
Wieringen A., 2003, J ACOUST SOC AM, V114, P1516
Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5
NR 40
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2014
VL 313
BP 47
EP 54
DI 10.1016/j.heares.2014.04.012
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AJ7GU
UT WOS:000337866000006
PM 24821551
ER
PT J
AU Chang-Chien, J
Yen, YC
Chien, KH
Li, SY
Hsu, TC
Yang, JJ
AF Chang-Chien, Ju
Yen, Yung-Chang
Chien, Kuo-Hsuan
Li, Shaun-Yow
Hsu, Tsai-Ching
Yang, Jiann-Jou
TI The connexin 30.3 of zebrafish homologue of human connexin 26 may play
similar role in the inner ear
SO HEARING RESEARCH
LA English
DT Article
ID GAP-JUNCTIONS; DANIO-RERIO; HAIR-CELLS; HEARING-LOSS; GENE; MUTATIONS;
DEAFNESS; IDENTIFICATION; CHANNELS; PROTEIN
AB The intercellular gap junction channels formed by connexins (CXs) are important for recycling potassium ions in the inner ear. CXs are encoded by a family of the CX gene, such as GJB2, and the mechanism leading to mutant connexin-associated diseases, including hearing loss, remains to be elucidated. In this study, using bioinformatics, we found that two zebrafish cx genes, cx27.5 and cx30.3, are likely homologous to human and mouse GJB2. During embryogeneis, zebrafish cx27.5 was rarely expressed at 1.5-3 h post-fertilization (hpf), but a relatively high level of cx27.5 expression was detected from 6 to 96 hpf. However, zebrafish cx30.3 transcripts were hardly detected until 9 hpf. The temporal experiment was conducted in whole larvae. Both cx27.5 and cx30.3 transcripts were revealed significantly in the inner ear by reverse transcription polymerase chain reaction (RT-PCR) and whole-mount in situ hybridization (WISH). In the HeLa cell model, we found that zebrafish Cx27.5 was distributed intracellularly in the cytoplasm, whereas Cx30.3 was localized in the plasma membrane of HeLa cells stably expressing Cx proteins. The expression pattern of zebrafish Cx30.3 in HeLa cells was more similar to that of cells expressing human CX26 than Cx27.5. In addition, we found that Cx30.3 was localized in the cell membrane of hair cells within the inner ear by immunohistochemistry (IHC), suggesting that zebrafish cx30.3 might play an essential role in the development of the inner ear, in the same manner as human GJB2. We then performed morpholino knockdown studies in zebrafish embryos to elucidate the physiological functions of Cx30.3. The zebrafish cx30.3 morphants exhibited wild-type-like and heart edema phenotypes with smaller inner ears at 72 hpf. Based on these results, we suggest that the zebrafish Cx30.3 and mammalian CX26 may play alike roles in the inner ear. Thus, zebrafish can potentially serve as a model for studying hearing loss disorders that result from human CX26 mutations. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Chang-Chien, Ju; Chien, Kuo-Hsuan; Li, Shaun-Yow; Yang, Jiann-Jou] Chung Shan Med Univ, Dept Biomed Sci, Taichung, Taiwan.
[Yang, Jiann-Jou] Chung Shan Med Univ Hosp, Dept Med Sci, Taichung, Taiwan.
[Hsu, Tsai-Ching] Chung Shan Med Univ, Inst Microbiol & Immunol, Coll Med, Taichung, Taiwan.
[Hsu, Tsai-Ching] Chung Shan Med Univ Hosp, Clin Lab, Taichung, Taiwan.
[Yen, Yung-Chang] CHi Mei Med Ctr, Dept Ophthalmol, Tainan, Taiwan.
[Yen, Yung-Chang] Min Hwei Coll Hlth Care Management, Dept Nursing, Tainan, Taiwan.
RP Yang, JJ (reprint author), Chung Shan Med Univ, Dept Biomed Sci, Taichung, Taiwan.
EM htc@csmu.edu.tw; jiannjou@csmu.edu.tw
FU National Science Council, Republic of China [NSC 98-2320-B-040-016-MY3,
NSC 101-2320-B-040-014]; National Science Council [101-2321-B-400-014]
FX This work was supported by the National Science Council, Republic of
China (NSC 98-2320-B-040-016-MY3; NSC 101-2320-B-040-014). We also thank
the Taiwan Zebrafish Core Facility at TZeTH (supported by grant
101-2321-B-400-014 from the National Science Council) for providing
zebrafish used in this study. We also thank Dr. C-J YEH for helpful
analysis of statistical methods.
CR Ahmad S, 2003, BIOCHEM BIOPH RES CO, V307, P362, DOI 10.1016/S0006-291X(03)01166-5
Apps SA, 2007, INT J AUDIOL, V46, P75, DOI 10.1080/14992020600582190
Asai Y, 2006, P NATL ACAD SCI USA, V103, P9069, DOI 10.1073/pnas.0603453103
Beltramello M, 2003, BIOCHEM BIOPH RES CO, V305, P1024, DOI 10.1016/S0006-291X(03)00868-4
Cruciani V, 2007, BIOL CHEM, V388, P253, DOI 10.1515/BC.2007.028
Degen J, 2011, EUR J CELL BIOL, V90, P817, DOI 10.1016/j.ejcb.2011.05.001
Eastman SD, 2006, GENOMICS, V87, P265, DOI 10.1016/j.ygeno.2005.10.005
Evans WH, 2002, MOL MEMBR BIOL, V19, P121, DOI 10.1080/09687680210139839
GOODENOU.DA, 1974, J CELL BIOL, V61, P557, DOI 10.1083/jcb.61.2.557
Grifa A, 1999, NAT GENET, V23, P16
Haddon C, 1996, J COMP NEUROL, V365, P113, DOI 10.1002/(SICI)1096-9861(19960129)365:1<113::AID-CNE9>3.0.CO;2-6
Haffter P, 1996, DEVELOPMENT, V123, P1
Harris L.A., 2002, Q REV BIOPHYS, V34
Jensen AM, 2001, DEVELOPMENT, V128, P95
Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0
KIMMEL CB, 1995, DEV DYNAM, V203, P253
Kwak SJ, 2006, DEV DYNAM, V235, P3026, DOI 10.1002/dvdy.20961
Lanford PJ, 2000, HEARING RES, V143, P1, DOI 10.1016/S0378-5955(00)00015-0
Lautermann J, 1998, CELL TISSUE RES, V294, P415, DOI 10.1007/s004410051192
Lopez-Bigas Nuria, 2002, Gene Expression Patterns, V2, P113, DOI 10.1016/S0925-4773(02)00299-X
Maeda S, 2009, NATURE, V458, P597, DOI 10.1038/nature07869
Marziano NK, 2003, HUM MOL GENET, V12, P805, DOI 10.1093/hmg/ddg076
Mese G, 2007, J INVEST DERMATOL, V127, P2516, DOI 10.1038/sj.jid.5700770
Minekawa A, 2009, NEUROSCIENCE, V164, P1312, DOI 10.1016/j.neuroscience.2009.08.043
Peracchia C, 2000, J MEMBRANE BIOL, V178, P55, DOI 10.1007/s002320010015
Pittlik S, 2008, GENE EXPR PATTERNS, V8, P141, DOI 10.1016/j.gep.2007.11.003
POSTLETHWAIT JH, 1994, SCIENCE, V264, P699, DOI 10.1126/science.8171321
Saez JC, 2003, PHYSIOL REV, V83, P1359, DOI 10.1152/physrev.00007.2003
SAITOU N, 1987, MOL BIOL EVOL, V4, P406
Shen YC, 2008, DEV DYNAM, V237, P941, DOI 10.1002/dvdy.21486
Smyth JW, 2010, J CLIN INVEST, V120, P266, DOI 10.1172/JCI39740
Sohl G, 2004, CARDIOVASC RES, V62, P228, DOI 10.1016/j.cardiores.2003.11.013
SOKOLOWSKI BHA, 1988, J MORPHOL, V198, P49, DOI 10.1002/jmor.1051980107
Steel KP, 2001, NAT GENET, V27, P143, DOI 10.1038/84758
Stooke-Vaughan GA, 2012, DEVELOPMENT, V139, P1777, DOI 10.1242/dev.079947
Su CC, 2010, EUR J HUM GENET, V18, P1061, DOI 10.1038/ejhg.2010.50
Tanimoto M, 2011, J NEUROSCI, V31, P3784, DOI 10.1523/JNEUROSCI.5554-10.2011
Tao LA, 2010, DEV DYNAM, V239, P2627, DOI 10.1002/dvdy.22399
Valiunas V, 2005, J PHYSIOL-LONDON, V568, P459, DOI 10.1113/jphysiol.2005.090985
White TW, 1996, J BIOENERG BIOMEMBR, V28, P339, DOI 10.1007/BF02110110
Whitfield TT, 2002, J NEUROBIOL, V53, P157, DOI 10.1002/neu.10123
Whitfield TT, 2002, DEV DYNAM, V223, P427, DOI 10.1002/dvdy.10073
Xia JH, 1998, NAT GENET, V20, P370, DOI 10.1038/3845
Xu J, 2013, BBA-BIOMEMBRANES, V1828, P167, DOI 10.1016/j.bbamem.2012.06.024
Yang JJ, 2010, HUM GENET, V128, P303, DOI 10.1007/s00439-010-0856-x
Yang JJ, 2007, AUDIOL NEURO-OTOL, V12, P198, DOI 10.1159/000099024
Yu XW, 2011, DEVELOPMENT, V138, P487, DOI 10.1242/dev.057752
NR 47
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2014
VL 313
BP 55
EP 66
DI 10.1016/j.heares.2014.04.010
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AJ7GU
UT WOS:000337866000007
PM 24811980
ER
PT J
AU Agterberg, MJH
Versnel, H
AF Agterberg, Martijn J. H.
Versnel, Huib
TI Behavioral responses of deafened guinea pigs to intracochlear electrical
stimulation: a new rapid psychophysical procedure
SO HEARING RESEARCH
LA English
DT Article
ID SPIRAL GANGLION NEURONS; NEUROTROPHIC FACTOR; AUDITORY NEURONS; COCHLEAR
IMPLANTS; AVOIDANCE-BEHAVIOR; NEONATAL DEAFNESS; ACOUSTIC TRAUMA;
HEARING-LOSS; INNER-EAR; SURVIVAL
AB In auditory research the guinea pig is often preferred above rats and mice because of the easily accessible cochlea and because the frequency range of its hearing is more comparable to that of humans. Studies of the guinea-pig auditory system primarily apply histological and electrophysiological measures. Behavioral animal paradigms, in particular in combination with these histological and electrophysiological methods, are necessary in the development of new therapeutic interventions. However, the guinea pig is not considered an attractive animal for behavioral experiments. Therefore, the purpose of this study was to develop a behavioral task suitable for guinea pigs, that can be utilized in cochlear-implant related research. Guinea pigs were trained in a modified shuttle-box in which a stream of air was used as unconditioned stimulus (UCS). A stream of air was preferred over conventionally used methods as electric foot-shocks since it produces less stress, which is a confounding factor in behavioral experiments. Hearing guinea pigs were trained to respond to acoustic stimuli. They responded correctly within only five sessions of ten minutes. The animals maintained their performance four weeks after the right cochlea was implanted with an electrode array. After systemic deafening, the animals responded in the first session immediately to intracochlear electrical stimulation. These responses were not affected by daily chronic electrical stimulation (CES). In conclusion, the present study demonstrates that guinea pigs can be trained relatively fast to respond to acoustic stimuli, and that the training has a lasting effect, which generalizes to intracochlear electrical stimulation after deafening. Furthermore, it demonstrates that bilaterally deafened guinea pigs with substantial (similar to 50%) loss of spiral ganglion cells (SGCs), detect intracochlear electrical stimulation. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Agterberg, Martijn J. H.; Versnel, Huib] Univ Med Ctr Utrecht, Brain Ctr Rudolf Magnus, Dept Otorhinolaryngol & Head & Neck Surg, NL-3508 GA Utrecht, Netherlands.
[Agterberg, Martijn J. H.] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, Dept Biophys, NL-6500 GL Nijmegen, Netherlands.
RP Agterberg, MJH (reprint author), Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, Dept Biophys, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands.
EM m.agterberg@donders.ru.nl
FU Heinsius-Houbolt Foundation
FX The authors would like to thank M. van den Broek for running training
sessions, and R.E. van de Vosse and R. Struikmans for developing the
recording software. We would like to thank Professor Dr. F.W.J. Albers,
Dr. S.F.L. Klis, Dr. I.H.C.H.M. Philippens and Professor Dr. V.M.
Wiegant for the helpful discussions concerning the study design. We
thank Dr. J.C. Glennon for proofreading the manuscript. Furthermore, we
would like to thank Dr. B. van Dijk and the Cochlear (TM) company for
providing the electrode arrays. This study was supported by the
Heinsius-Houbolt Foundation.
CR Agterberg MJH, 2010, LAB ANIM-UK, V44, P206, DOI 10.1258/la.2009.009096
Agterberg MJH, 2010, HEARING RES, V269, P169, DOI 10.1016/j.heares.2010.06.015
Agterberg MJH, 2008, HEARING RES, V244, P25, DOI 10.1016/j.heares.2008.07.004
Agterberg MJH, 2009, JARO-J ASSOC RES OTO, V10, P355, DOI 10.1007/s10162-009-0170-2
Alagic Z, 2011, ACTA OTO-LARYNGOL, V131, P802, DOI 10.3109/00016489.2011.564652
Berger JI, 2013, J NEUROSCI METH, V213, P188, DOI 10.1016/j.jneumeth.2012.12.023
Berglin CE, 2011, CANCER CHEMOTH PHARM, V68, P1547, DOI 10.1007/s00280-011-1656-2
BROWN JN, 1993, HEARING RES, V70, P167, DOI 10.1016/0378-5955(93)90155-T
Chikar JA, 2008, HEARING RES, V245, P24, DOI 10.1016/j.heares.2008.08.005
Dehmel Susanne, 2012, Front Syst Neurosci, V6, P42, DOI 10.3389/fnsys.2012.00042
Eggermont JJ, 2013, HEARING RES, V295, P140, DOI 10.1016/j.heares.2012.01.005
Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463
Fallon JB, 2009, J COMP NEUROL, V512, P101, DOI 10.1002/cne.21886
Fayad JN, 2006, LARYNGOSCOPE, V116, P1310, DOI 10.1097/01.mlg.0000227176.09500.28
Fransson A, 2010, J NEUROTRAUM, V27, P1745, DOI 10.1089/neu.2009.1218
Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542
Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193
Kang SY, 2010, JARO-J ASSOC RES OTO, V11, P245, DOI 10.1007/s10162-009-0194-7
Klinke R, 1999, SCIENCE, V285, P1729, DOI 10.1126/science.285.5434.1729
Kral A, 2012, TRENDS NEUROSCI, V35, P111, DOI 10.1016/j.tins.2011.09.004
Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3
LEAKE PA, 1991, HEARING RES, V54, P251, DOI 10.1016/0378-5955(91)90120-X
Leake PA, 2013, JARO-J ASSOC RES OTO, V14, P187, DOI 10.1007/s10162-013-0372-5
Maruyama J, 2008, NEUROBIOL DIS, V29, P14, DOI 10.1016/j.nbd.2007.07.026
Miller CA, 1995, HEARING RES, V92, P85, DOI 10.1016/0378-5955(95)00204-9
Mitchell A, 1997, HEARING RES, V105, P30, DOI 10.1016/S0378-5955(96)00202-X
Mulders WHAM, 2011, J COMP NEUROL, V519, P2637, DOI 10.1002/cne.22644
Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883
NICOL KMM, 1992, HEARING RES, V61, P117, DOI 10.1016/0378-5955(92)90042-L
Pettingill LN, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018733
Pfingst BE, 2011, J ACOUST SOC AM, V130, P3954, DOI 10.1121/1.3651820
PHILIPPENS IHCHM, 1992, PHARMACOL BIOCHEM BE, V42, P285, DOI 10.1016/0091-3057(92)90528-N
Sharma A, 2009, J COMMUN DISORD, V42, P272, DOI 10.1016/j.jcomdis.2009.03.003
Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564
Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999
SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683
Versnel H, 2007, HEARING RES, V231, P1, DOI 10.1016/j.heares.2007.03.003
Vollmer M, 2011, J NEUROPHYSIOL, V106, P2423, DOI 10.1152/jn.00565.2011
WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7
WEST BA, 1973, ARCH OTOLARYNGOL, V98, P32
Xu HX, 2012, ACTA OTO-LARYNGOL, V132, P482, DOI 10.3109/00016489.2011.647361
Yamagata T, 2004, J NEUROSCI RES, V78, P75, DOI 10.1002/jnr.20239
NR 42
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2014
VL 313
BP 67
EP 74
DI 10.1016/j.heares.2014.04.011
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AJ7GU
UT WOS:000337866000008
PM 24811981
ER
PT J
AU Malayeri, S
Lotfi, Y
Moossavi, SA
Rostami, R
Faghihzadeh, S
AF Malayeri, Saeed
Lotfi, Yones
Moossavi, Seyed Abdollah
Rostami, Reza
Faghihzadeh, Soghrat
TI Brainstem response to speech and non-speech stimuli in children with
learning problems
SO HEARING RESEARCH
LA English
DT Article
ID AUDITORY NEUROPATHY; EVOKED-POTENTIALS; POOR READERS; DYSLEXIA;
DEFICITS; DISCRIMINATION; SOUNDS; NOISE; TONES; REPRESENTATION
AB Neuronal firing synchronization is critical for recording auditory responses from the brainstem. Recent studies have shown that both click and/da/synthetic syllable (speech) stimuli perform well in evoking neuronal synchronization at the brainstem level. In the present study, brainstem responses to click and speech stimuli were compared between children with learning problems (LP) and those with normal learning (NL) abilities. The study included 49 children with LP and 34 children with NL. Auditory brainstem response (ABR) to 100-mu s click stimulus and speech ABR (sABR) to/da/40-ms stimulus were tested in these children. Wave latencies III, V, and Vn and inter-peak latency (IPL) V-Vn in click ABR and wave latencies I, V. and A and IPLV-A in sABR were significantly longer in children with LP than children with NL Except IPL of I III, a significant positive correlation was observed between click ABR and sABR wave latencies and IPLs in children with NL; this correlation was weaker or not observed in children with LP. In this regard, the difference between correlation coefficients of wave latencies I, III, and V and IPLs I-V and V-Vn/V-A was significant in the two groups. Deficits in auditory processing timing in children with LP may have probably affected ABR for both click and speech stimuli. This finding emphasizes the possibility of shared connections between processing timing for speech and non-speech stimuli in auditory brainstem pathways. Weak or no correlation between click and speech ABR parameters in children with LP may have a clinical relevance and may be effectively used for objective diagnoses after confirming its sufficient sensitivity and specificity and demonstrating its acceptable validity with more scientific evidence. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Malayeri, Saeed; Lotfi, Yones; Moossavi, Seyed Abdollah] Univ Social Welf & Rehabil Sci, Dept Audiol, Tehran, Iran.
[Rostami, Reza] Univ Tehran, Dept Psychol, Tehran, Iran.
[Faghihzadeh, Soghrat] Zanjan Univ Med Sci, Dept Social Med, Tehran, Iran.
RP Lotfi, Y (reprint author), Evin St,Daneshjo St,Koudakyar St, Tehran, Iran.
EM smalayeri50@yahoo.com; yones1333@gmail.com; amoossavi@gmail.com;
rezaros@gmail.com; s.faghihzadeh@zums.ac.ir
FU University of Social Welfare and Rehabilitation Sciences
[91.801.A.2.3707]
FX This study was part of a Ph.D. dissertation project in audiology that
was approved by the University of Social Welfare and Rehabilitation
Sciences (grant #91.801.A.2.3707). The outstanding cooperation of all
participants in this study is greatly appreciated.
CR Ahissar M, 2004, TRENDS COGN SCI, V8, P457, DOI 10.1016/j.tics.2004.08.011
American National Standards Institute, 2004, SPEC AUD ANSI S3 6 2
American National Standards Institute, 2008, AM NAT STAND MAX PER
Baldeweg T, 1999, ANN NEUROL, V45, P495, DOI 10.1002/1531-8249(199904)45:4<495::AID-ANA11>3.0.CO;2-M
Banai K, 2007, INT J AUDIOL, V46, P524, DOI 10.1080/14992020701383035
Banai K, 2005, J NEUROSCI, V25, P9850, DOI 10.1523/JNEUROSCI.2373-05.2005
Banai K, 2009, CEREB CORTEX, V19, P2699, DOI 10.1093/cercor/bhp024
Burkard R.F., 2007, AUDITORY BRAINSTEN R
Cohen J., 1983, APPL MULTIPLE REGRES, V2nd
Cunningham J, 2001, CLIN NEUROPHYSIOL, V112, P758, DOI 10.1016/S1388-2457(01)00465-5
GRONTVED A, 1988, SCAND AUDIOL, V17, P53, DOI 10.3109/01050398809042180
Hall J. W., 2007, NEW HDB AUDITORY EVO
Hornickel J, 2011, BEHAV BRAIN RES, V216, P597, DOI 10.1016/j.bbr.2010.08.051
Hurley A., 2007, HDB CENTRAL AUDITORY, V1, P347
Jafari Z, 2009, J AM ACAD AUDIOL, V20, P621, DOI 10.3766/jaaa.20.10.4
JERGER S, 1987, EAR HEARING, V8, P78, DOI 10.1097/00003446-198704000-00004
Johnson KL, 2005, EAR HEARING, V26, P424, DOI 10.1097/01.aud.0000179687.71662.6e
King C, 2002, NEUROSCI LETT, V319, P111, DOI 10.1016/S0304-3940(01)02556-3
Kraus N, 2005, TRENDS NEUROSCI, V28, P176, DOI 10.1016/j.tins.2005.02.003
Kraus N, 1996, SCIENCE, V273, P971, DOI 10.1126/science.273.5277.971
Krishnan A, 2004, HEARING RES, V189, P1, DOI 10.1016/S0378-5955(03)00402-7
Krishnan A, 2009, BRAIN LANG, V110, P135, DOI 10.1016/j.bandl.2009.03.005
Kujala T, 2006, CLIN NEUROPHYSIOL, V117, P885, DOI 10.1016/j.clinph.2006.01.002
Lachmann T, 2005, INT J PSYCHOPHYSIOL, V56, P105, DOI 10.1016/j.ijpsycho.2004.11.005
LAUTER JL, 1993, ANN NY ACAD SCI, V682, P377, DOI 10.1111/j.1749-6632.1993.tb22998.x
McAnally KI, 1997, J SPEECH LANG HEAR R, V40, P939
MASON SM, 1984, ELECTROEN CLIN NEURO, V59, P297, DOI 10.1016/0168-5597(84)90047-9
Mody M, 1997, J EXP CHILD PSYCHOL, V64, P199, DOI 10.1006/jecp.1996.2343
Nagarajan S, 1999, P NATL ACAD SCI USA, V96, P6483, DOI 10.1073/pnas.96.11.6483
Olkin L, 1995, PSYCHOL BULL, V118, P155
Paul I, 2006, NEUROPSYCHOLOGIA, V44, P785, DOI 10.1016/j.neuropsychologia.2005.07.011
Purdy Suzanne C, 2002, J Am Acad Audiol, V13, P367
Rance G, 2004, EAR HEARING, V25, P34, DOI 10.1097/01.AUD.0000111259.59690.B8
Roeser RJ, 2007, AUDIOLOGY DIAGNOSIS
Russo N, 2004, CLIN NEUROPHYSIOL, V115, P2021, DOI 10.1016/j.clinph.2004.04.003
Shanks J, 2009, HDB CLIN AUDIOLOGY, P157
Skoe E, 2010, EAR HEARING, V31, P302, DOI 10.1097/AUD.0b013e3181cdb272
Song JH, 2012, CEREB CORTEX, V22, P1180, DOI 10.1093/cercor/bhr196
Song JH, 2008, AUDIOL NEURO-OTOL, V13, P335, DOI 10.1159/000132689
Song JH, 2006, AUDIOL NEURO-OTOL, V11, P233, DOI 10.1159/000093058
Strait D.L., 2011, BEHAV BRAIN FUNCT, V44, P2
TAIT C A, 1983, Journal of Auditory Research, V23, P56
TALLAL P, 1981, J ACOUST SOC AM, V69, P568, DOI 10.1121/1.385431
Vander Werff Kathy R, 2011, Ear Hear, V32, P168, DOI 10.1097/AUD.0b013e3181f534b5
Wechsler D, 1997, MANUAL WECHSLER PRES
Wechsler D., 2001, WECHSLER INDIVIDUAL
Wible B, 2004, BIOL PSYCHOL, V67, P299, DOI 10.1016/j.biopsycho.2004.02.002
WILL MC, 1986, EXCEPT CHILDREN, V52, P411
NR 48
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2014
VL 313
BP 75
EP 82
DI 10.1016/j.heares.2014.04.009
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AJ7GU
UT WOS:000337866000009
PM 24823662
ER
PT J
AU Luo, X
Chang, YP
Lin, CY
Chang, RY
AF Luo, Xin
Chang, Yi-ping
Lin, Chun-Yi
Chang, Ronald Y.
TI Contribution of bimodal hearing to lexical tone normalization in
Mandarin-speaking cochlear implant users
SO HEARING RESEARCH
LA English
DT Article
ID CHINESE SPEECH RECOGNITION; ELECTRIC HEARING; ACOUSTIC HEARING;
PERCEPTION; PITCH; BENEFITS; CHILDREN; CUES; SIMULATIONS; INFORMATION
AB Native Mandarin normal-hearing (NH) listeners can easily perceive lexical tones even under conditions of great voice pitch variations across speakers by using the pitch contrast between context and target stimuli. It is however unclear whether cochlear implant (Cl) users with limited access to pitch cues can make similar use of context pitch cues for tone normalization. In this study, native Mandarin NH listeners and pre-lingually deafened unilaterally implanted CI users were asked to recognize a series of Mandarin tones varying from Tone 1 (high-flat) to Tone 2 (mid-rising) with or without a preceding sentence context. Most of the Cl subjects used a hearing aid (HA) in the non-implanted ear (i.e., bimodal users) and were tested both with CI alone and CI + HA. In the test without context, typical S-shaped tone recognition functions were observed for most CI subjects and the function slopes and perceptual boundaries were similar with either CI alone or CI + HA. Compared to NH subjects, CI subjects were less sensitive to the pitch changes in target tones. In the test with context, NH subjects had more (resp. fewer) Tone-2 responses in a context with high (resp. low) fundamental frequencies, known as the contrastive context effect. For Cl subjects, a similar contrastive context effect was found statistically significant for tone recognition with CI + HA but not with CI alone. The results suggest that the pitch cues from CIs may not be sufficient to consistently support the pitch contrast processing for tone normalization. The additional pitch cues from aided residual acoustic hearing can however provide Cl users with a similar tone normalization capability as NH listeners. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Luo, Xin] Purdue Univ, Dept Speech Language & Hearing Sci, W Lafayette, IN 47907 USA.
[Chang, Yi-ping; Lin, Chun-Yi] Childrens Heating Fdn, Speech & Hearing Sci Res Inst, Taipei, Taiwan.
[Chang, Ronald Y.] Acad Sinica, Res Ctr Informat Technol Innovat, Taipei 115, Taiwan.
RP Luo, X (reprint author), Purdue Univ, Dept Speech Language & Hearing Sci, Heavilon Hall,500 Oval Dr, W Lafayette, IN 47907 USA.
EM luo5@purdue.edu
FU NIH [R21-DC-011844]
FX The authors gratefully acknowledge the subjects who participated in this
study and the support by the NIH Grant R21-DC-011844. Dr. Alexander
Francis, Ching-Chih Wu, and Krista Ashmore provided constructive
comments on an earlier version of the manuscript. Krista Ashmore also
helped data collection at the Purdue University.
CR Boersma Paul, 2012, PRAAT DOING PHONETIC
Chao Y. R., 1948, MANDARIN PRIMER
Chen F., 2013, J SPEECH LANG HEAR R
Ching TYC, 2004, EAR HEARING, V25, P9, DOI 10.1097/01.AUD.0000111261.84611.C8
Deroche MLD, 2012, J ACOUST SOC AM, V131, P2938, DOI 10.1121/1.3692230
Dorman MF, 2008, AUDIOL NEURO-OTOL, V13, P105, DOI 10.1159/000111782
FOWLER CA, 1990, PERCEPT PSYCHOPHYS, V48, P559, DOI 10.3758/BF03211602
FOX RA, 1990, J CHINESE LINGUIST, V18, P261
Fu QJ, 2004, EAR HEARING, V25, P501, DOI 10.1097/01.aud.0000145125.50433.19
Fu QJ, 1998, J ACOUST SOC AM, V104, P505, DOI 10.1121/1.423251
Gantz BJ, 2009, AUDIOL NEURO-OTOL, V14, P32, DOI 10.1159/000206493
Geurts L, 2001, J ACOUST SOC AM, V109, P713, DOI 10.1121/1.1340650
Gifford RH, 2007, J SPEECH LANG HEAR R, V50, P835, DOI 10.1044/1092-4388(2007/058)
Green T, 2002, J ACOUST SOC AM, V112, P2155, DOI 10.1121/1.1506688
Han DM, 2009, EAR HEARING, V30, P169, DOI 10.1097/AUD.0b013e31819342cf
Huang JY, 2009, J ACOUST SOC AM, V125, P3983, DOI 10.1121/1.3125342
Huang JY, 2011, J ACOUST SOC AM, V129, P1145, DOI 10.1121/1.3543994
Hufnagle DG, 2013, J EXP CHILD PSYCHOL, V116, P728, DOI 10.1016/j.jecp.2013.05.008
Kong YY, 2005, J ACOUST SOC AM, V117, P1351, DOI 10.1121/1.1857526
LEATHER J, 1983, J PHONETICS, V11, P373
Luo X, 2008, EAR HEARING, V29, P957, DOI 10.1097/AUD.0b013e3181888f61
Luo Xin, 2004, Journal of the Acoustical Society of America, V116, P3659, DOI 10.1121/1.1783352
Luo X, 2006, J ACOUST SOC AM, V120, P2260, DOI 10.1121/1.2336990
Moore CB, 1997, J ACOUST SOC AM, V102, P1864, DOI 10.1121/1.420092
Peng SC, 2004, EAR HEARING, V25, P251, DOI 10.1097/01.AUD.0000130797.73809.40
Turner CW, 2004, J ACOUST SOC AM, V115, P1729, DOI 10.1121/1.1687425
Yost WA, 2009, ATTEN PERCEPT PSYCHO, V71, P1701, DOI 10.3758/APP.71.8.1701
Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5
Zhou N, 2013, OTOL NEUROTOL, V34, P499, DOI 10.1097/MAO.0b013e318287ca86
NR 29
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2014
VL 312
BP 1
EP 8
DI 10.1016/j.heares.2014.02.005
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AH8BD
UT WOS:000336358200001
PM 24576834
ER
PT J
AU Burghard, A
Lenarz, T
Kral, A
Paasche, G
AF Burghard, Alice
Lenarz, Thomas
Kral, Andrej
Paasche, Gerrit
TI Insertion site and sealing technique affect residual hearing and tissue
formation after cochlear implantation
SO HEARING RESEARCH
LA English
DT Article
ID ROUND WINDOW; SPIRAL GANGLION; FIBROUS TISSUE; INNER-EAR; INTRACOCHLEAR;
COCHLEOSTOMY; SURGERY; BONE; PRESERVATION
AB Tissue formation around the electrode array of a cochlear implant has been suggested to influence preservation of residual hearing as well as electrical hearing performance of implanted subjects. Further, inhomogeneity in the electrical properties of the scala tympani shape the electrical field and affect current spread. Intracochlear trauma due to electrode insertion and the insertion site itself are commonly seen as triggers for the tissue formation. The present study investigates whether the insertion site, round window membrane (RWM) vs. cochleostomy (CS), or the sealing material, no seal vs. muscle graft vs. carboxylate cement, have an influence on the amount of fibrous tissue and/or new bone formation after CI implantation in the guinea pig. Hearing thresholds were determined by auditory brainstem response (ABR) measurements prior to implantation and after 28 days. The amount of tissue formation was quantified by evaluation of microscopic images obtained by a grinding/polishing procedure to keep the CI in place during histological processing.
An insertion via the round window membrane resulted after 28 days in less tissue formation in the no seal and muscle seal condition compared to the cochleostomy approach. Between these two sealing techniques there was no difference. Sealing the cochlea with carboxylate cement resulted always in a strong new bone formation and almost total loss of residual hearing. The amount of tissue formation and the hearing loss correlated at 1-8 kHz. Consequently, the use of carboxylate cement as a sealing material in cochlear implantation should be avoided even in animal studies, whereas sealing the insertion site with a muscle graft did not induce an additional tissue growth compared to omitting a seal. For hearing preservation the round window approach should be used. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Burghard, Alice; Kral, Andrej] Hannover Med Sch, Inst Audioneurotechnol, D-30625 Hannover, Germany.
[Burghard, Alice; Lenarz, Thomas; Paasche, Gerrit] Hannover Med Sch, Dept Otolaryngol, D-30625 Hannover, Germany.
RP Burghard, A (reprint author), Hannover Med Sch, Inst Audioneurotechnol, Feodor Lynen Str 35, D-30625 Hannover, Germany.
EM Burghard.Alice@mh-hannover.de
FU German Research Foundation (DFG); Cluster of Excellence Hearing4all and
the Transregio
FX This study was supported by the German Research Foundation (DFG) with
the Cluster of Excellence Hearing4all and the Transregio 37. The authors
would also like to thank Peter Erfurt for the great support for the
histological processing and Peter Baumhoff for the help with the 3D
reconstruction.
CR Adunka O, 2004, ACTA OTO-LARYNGOL, V124, P807, DOI 10.1080/00016480410018179
Adunka OF, 2006, ACTA OTO-LARYNGOL, V126, P475, DOI 10.1080/00016480500437393
Busby P A, 2002, Cochlear Implants Int, V3, P87, DOI 10.1002/cii.55
Choi CH, 2005, HEARING RES, V205, P193, DOI 10.1016/j.heares.2005.03.018
Clark G. M., 1995, Annals of Otology Rhinology and Laryngology, V104, P111
Eshraghi AA, 2012, ANAT REC, V295, P1957, DOI 10.1002/ar.22584
Farhadi Mohammad, 2013, Cochlear Implants Int, V14, P45
Franz B., 1984, ACTA OTO-LARYNGOL, V98, P17
Friedland David R, 2009, Trends Amplif, V13, P124, DOI 10.1177/1084713809336422
Gantz BJ, 2005, LARYNGOSCOPE, V115, P796, DOI 10.1097/01.MLG.0000157695.07536.D2
Havenith S, 2013, OTOL NEUROTOL, V34, P667, DOI 10.1097/MAO.0b013e318288643e
Kawano A, 1998, ACTA OTO-LARYNGOL, V118, P313
Kral A, 2002, CEREB CORTEX, V12, P797, DOI 10.1093/cercor/12.8.797
Lenarz Thomas, 1998, Acta Oto-Rhino-Laryngologica Belgica, V52, P183
Lenarz Thomas, 2006, Audiol Neurootol, V11 Suppl 1, P34, DOI 10.1159/000095612
Li PMMC, 2007, ANN OTO RHINOL LARYN, V116, P731
MCELVEEN JT, 1995, OTOLARYNG HEAD NECK, V112, P457, DOI 10.1016/S0194-5998(95)70284-9
Nadol JB, 2004, OTOL NEUROTOL, V25, P257, DOI 10.1097/00129492-200405000-00010
O'Leary SJ, 2013, HEARING RES, V298, P27, DOI 10.1016/j.heares.2013.01.012
Paasche G, 2006, OTOL NEUROTOL, V27, P639, DOI 10.1097/01.mao.0000227662.88840.61
Pau HW, 2007, LARYNGOSCOPE, V117, P535, DOI 10.1097/MLG.0b013e31802f4169
Purser S., 1991, J OTOLARYNGOL SOC AU, V6, P472
Richard C, 2012, OTOL NEUROTOL, V33, P1181, DOI 10.1097/MAO.0b013e318263d56d
ROBERTSON D, 1984, HEARING RES, V15, P113, DOI 10.1016/0378-5955(84)90042-X
Scheper V, 2009, NANOMEDICINE-UK, V4, P623, DOI [10.2217/nnm.09.41, 10.2217/NNM.09.41]
Somdas MA, 2007, AUDIOL NEURO-OTOL, V12, P277, DOI 10.1159/000103208
Stover T, 2005, OTOL NEUROTOL, V26, P1161
Warnecke A, 2012, HEARING RES, V289, P86, DOI 10.1016/j.heares.2012.04.007
NR 28
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2014
VL 312
BP 21
EP 27
DI 10.1016/j.heares.2014.02.002
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AH8BD
UT WOS:000336358200003
PM 24566091
ER
PT J
AU Gifford, RH
Grantham, DW
Sheffield, SW
Davis, TJ
Dwyer, R
Dorman, MF
AF Gifford, Rene H.
Grantham, D. Wesley
Sheffield, Sterling W.
Davis, Timothy J.
Dwyer, Robert
Dorman, Michael F.
TI Localization and interaural time difference (ITD) thresholds for
cochlear implant recipients with preserved acoustic hearing in the
implanted ear
SO HEARING RESEARCH
LA English
DT Article
ID HORIZONTAL-PLANE LOCALIZATION; SPEECH-PERCEPTION; ADULTS; NOISE;
STIMULATION; FREQUENCY; LISTENERS; BENEFITS; SIGNALS; LEVEL
AB The purpose of this study was to investigate horizontal plane localization and interaural time difference (ITD) thresholds for 14 adult cochlear implant recipients with hearing preservation in the implanted ear. Localization to broadband noise was assessed in an anechoic chamber with a 33-loudspeaker array extending from -90 to +90 degrees. Three listening conditions were tested including bilateral hearing aids, bimodal (implant + contralateral hearing aid) and best aided (implant + bilateral hearing aids). ITD thresholds were assessed, under headphones, for low-frequency stimuli including a 250-Hz tone and bandpass noise (100-900 Hz). Localization, in overall rms error, was significantly poorer in the bimodal condition (mean: 60.2 degrees) as compared to both bilateral hearing aids (mean: 46.1 degrees) and the best-aided condition (mean: 43.4 degrees). ITD thresholds were assessed for the same 14 adult implant recipients as well as 5 normal-hearing adults. ITD thresholds were highly variable across the implant recipients ranging from the range of normal to ITDs not present in real-world listening environments (range: 43 to over 1600 mu s). ITD thresholds were significantly correlated with localization, the degree of interaural asymmetry in low-frequency hearing, and the degree of hearing preservation related benefit in the speech reception threshold (SRT). These data suggest that implant recipients with hearing preservation in the implanted ear have access to binaural cues and that the sensitivity to ITDs is significantly correlated with localization and degree of preserved hearing in the implanted ear. (C) 2014 Published by Elsevier B.V.
C1 [Gifford, Rene H.; Grantham, D. Wesley; Sheffield, Sterling W.; Davis, Timothy J.; Dwyer, Robert] Vanderbilt Univ, Dept Hearing & Speech Sci, Nashville, TN 37235 USA.
[Dorman, Michael F.] Arizona State Univ, Dept Speech & Heating Sci, Tempe, AZ USA.
RP Gifford, RH (reprint author), Vanderbilt Univ, Dept Hearing & Speech Sci, 221 Kirkland Hall, Nashville, TN 37235 USA.
EM rene.h.gifford@Vanderbilt.edu
FU National Institute on Deafness and Other Communication Disorders [R01
DC009404]; Vanderbilt Institute for Clinical and Translational Research
(NCATS/NIH) [UL1 TR000445]
FX This research was supported by grant R01 DC009404 from the National
Institute on Deafness and Other Communication Disorders. Portions of
these data were presented at the Hearing Preservation Symposium in
Baltimore, MD, April 30, 2012, the 2012 International Hearing Aid
Research Conference in Tahoe City, California, August 8-12, 2012, the
American Speech-Language-Hearing Association, Atlanta, GA, November
15-17, 2012, and the Ultimate Midwinter Otolaryngology meeting, Vail,
CO, February 2-6, 2014. Data collection and management via REDCap was
supported by Vanderbilt Institute for Clinical and Translational
Research grant support (UL1 TR000445 from NCATS/NIH).
CR American National Standards Institute (ANSI), 2010, S362010 ANSIASA
BRONKHORST AW, 1989, J ACOUST SOC AM, V86, P1374, DOI 10.1121/1.398697
Dillon H, 1998, NAL NL1 PRESCRIPTION, P4
Dorman MF, 2010, INT J AUDIOL, V49, P912, DOI 10.3109/14992027.2010.509113
Dorman MF, 2013, EAR HEARING, V34, P245, DOI 10.1097/AUD.0b013e318269ce70
Dunn CC, 2010, J AM ACAD AUDIOL, V21, P44, DOI 10.3766/jaaa.21.1.6
Erixon E, 2012, ACTA OTO-LARYNGOL, V132, P923, DOI 10.3109/00016489.2012.680198
Gantz B.J., 2013, EAS S
Gifford RH, 2013, EAR HEARING, V34, P413, DOI 10.1097/AUD.0b013e31827e8163
Gifford RH, 2010, ADV OTO-RHINO-LARYNG, V67, P51, DOI 10.1159/000262596
Grantham DW, 2008, EAR HEARING, V29, P33
Grantham DW, 2007, EAR HEARING, V28, P524, DOI 10.1097/AUD.0b013e31806dc21a
Grantham DW, 2012, EAR HEARING, V33, P595, DOI 10.1097/AUD.0b013e3182503e5e
Harris PA, 2009, J BIOMED INFORM, V42, P377, DOI 10.1016/j.jbi.2008.08.010
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
Litovsky RY, 2004, ARCH OTOLARYNGOL, V130, P648, DOI 10.1001/archotol.130.5.648
Rader T, 2013, EAR HEARING, V34, P324, DOI 10.1097/AUD.0b013e318272f189
RAKERD B, 1985, J ACOUST SOC AM, V78, P524, DOI 10.1121/1.392474
van Hoesel RJM, 2003, J ACOUST SOC AM, V113, P1617, DOI 10.1121/1.1539520
van Hoesel RJM, 2004, AUDIOL NEURO-OTOL, V9, P234, DOI 10.1159/000078393
Yost W.A., 2000, FUNDAMENTALS HEARING
YOST WA, 1988, J ACOUST SOC AM, V83, P1846, DOI 10.1121/1.396520
NR 22
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2014
VL 312
BP 28
EP 37
DI 10.1016/j.heares.2014.02.007
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AH8BD
UT WOS:000336358200004
PM 24607490
ER
PT J
AU Heeringa, AN
van Dijk, P
AF Heeringa, A. N.
van Dijk, P.
TI The dissimilar time course of temporary threshold shifts and reduction
of inhibition in the inferior colliculus following intense sound
exposure
SO HEARING RESEARCH
LA English
DT Article
ID INDUCED HEARING-LOSS; INDUCED COCHLEAR NEUROPATHY; ACUTE NOISE EXPOSURE;
ACOUSTIC TRAUMA; TINNITUS; HYPERACTIVITY; RAT; HYPERACUSIS; POTENTIALS;
EXPRESSION
AB Excessive noise exposure is known to produce an auditory threshold shift, which can be permanent or transient in nature. Recent studies showed that noise-induced temporary threshold shifts are associated with loss of synaptic connections to the inner hair cells and with cochlear nerve degeneration, which is reflected in a decreased amplitude of wave I of the auditory brainstem response (ABR). This suggests that, despite normal auditory thresholds, central auditory processing may be abnormal.
We recorded changes in central auditory processing following a sound-induced temporary threshold shift. Anesthetized guinea pigs were exposed for 1 h to a pure tone of 11 kHz (124 dB sound pressure level). Hearing thresholds, amplitudes of ABR waves I and IV, and spontaneous and tone-evoked firing rates in the inferior colliculus (IC) were assessed immediately, one week, two weeks, and four weeks post exposure.
Hearing thresholds were elevated immediately following overexposure, but recovered within one week. The amplitude of the ABR wave I was decreased in all sound-exposed animals for all test periods. In contrast, the ABR wave IV amplitude was only decreased immediately after overexposure and recovered within a week. The proportion of IC units that show inhibitory responses to pure tones decreased substantially up to two weeks after overexposure, especially when stimulated with high frequencies. The proportion of excitatory responses to low frequencies was increased. Spontaneous activity was unaffected by the overexposure.
Despite rapid normalization of auditory thresholds, our results suggest an increased central gain following sound exposure and an abnormal balance between excitatory and inhibitory responses in the midbrain up to two weeks after overexposure. These findings may be associated with hyperacusis after a sound-induced temporary threshold shift. (C) 2014 The Authors. Published by Elsevier B.V.
C1 [Heeringa, A. N.; van Dijk, P.] Univ Groningen, Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, NL-9700 RB Groningen, Netherlands.
[Heeringa, A. N.; van Dijk, P.] Univ Groningen, Univ Med Ctr Groningen, Grad Sch Med Sci, Res Sch Behav & Cognit Neurosci, NL-9700 AB Groningen, Netherlands.
RP Heeringa, AN (reprint author), Univ Groningen, Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, POB 30-001, NL-9700 RB Groningen, Netherlands.
EM A.N.Heeringa@umcg.nl; P.van.Dijk@umcg.nl
FU Heinsius Houbolt Foundation; Stichting Gehoorgestoorde Kind
FX This work was supported by the Heinsius Houbolt Foundation and the
Stichting Gehoorgestoorde Kind. The study is part of the research
program of our department: Healthy Aging and Communication.
CR BUNO W, 1978, EXP NEUROL, V59, P62, DOI 10.1016/0014-4886(78)90201-7
Dong S, 2010, BRAIN RES, V1342, P24, DOI 10.1016/j.brainres.2010.04.067
Dong SY, 2010, EUR J NEUROSCI, V31, P1616, DOI 10.1111/j.1460-9568.2010.07183.x
Duan ML, 2000, P NATL ACAD SCI USA, V97, P7597, DOI 10.1073/pnas.97.13.7597
Duque D, 2012, J NEUROSCI, V32, P17762, DOI 10.1523/JNEUROSCI.3190-12.2012
Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010
Eggermont JJ, 2013, HEARING RES, V295, P140, DOI 10.1016/j.heares.2012.01.005
Ehret G., 1997, CENTRAL AUDITORY SYS
Furman AC, 2013, J NEUROPHYSIOL, V110, P577, DOI 10.1152/jn.00164.2013
Gu JW, 2010, J NEUROPHYSIOL, V104, P3361, DOI 10.1152/jn.00226.2010
Hickox AE, 2014, J NEUROPHYSIOL, V111, P552, DOI 10.1152/jn.00184.2013
Knipper Marlies, 2013, Prog Neurobiol, V111, P17, DOI 10.1016/j.pneurobio.2013.08.002
Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009
Langers Dave R M, 2012, Front Syst Neurosci, V6, P2, DOI 10.3389/fnsys.2012.00002
LIBERMAN MC, 1989, HEARING RES, V38, P47, DOI 10.1016/0378-5955(89)90127-5
Lin HW, 2011, JARO-J ASSOC RES OTO, V12, P605, DOI 10.1007/s10162-011-0277-0
Ma WLD, 2006, HEARING RES, V212, P9, DOI 10.1016/j.heares.2005.10.003
Maison SF, 2000, J NEUROSCI, V20, P4701
Milbrandt JC, 2000, HEARING RES, V147, P251, DOI 10.1016/S0378-5955(00)00135-0
Mulders WHAM, 2009, NEUROSCIENCE, V164, P733, DOI 10.1016/j.neuroscience.2009.08.036
Mulders WHAM, 2011, NEUROSCIENCE, V192, P753, DOI 10.1016/j.neuroscience.2011.06.046
Niu YG, 2013, J NEUROSCI RES, V91, P292, DOI 10.1002/jnr.23152
SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U
Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2
SALVI RJ, 1978, EXP BRAIN RES, V32, P301
Schaette R, 2011, J NEUROSCI, V31, P13452, DOI 10.1523/JNEUROSCI.2156-11.2011
Scholl B, 2008, J NEUROPHYSIOL, V100, P646, DOI 10.1152/jn.90406.2008
Sun W, 2012, BRAIN RES, V1485, P108, DOI 10.1016/j.brainres.2012.02.008
SZCZEPANIAK WS, 1995, NEUROSCI LETT, V196, P77, DOI 10.1016/0304-3940(95)11851-M
Wang J, 1996, J NEUROPHYSIOL, V75, P171
WILLOTT JF, 1982, SCIENCE, V216, P1331, DOI 10.1126/science.7079767
Zeng FG, 2013, HEARING RES, V295, P172, DOI 10.1016/j.heares.2012.05.009
Zheng XY, 1997, HEARING RES, V107, P147, DOI 10.1016/S0378-5955(97)00031-2
Zuccotti A, 2012, J NEUROSCI, V32, P8545, DOI 10.1523/JNEUROSCI.1247-12.2012
NR 34
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2014
VL 312
BP 38
EP 47
DI 10.1016/j.heares.2014.03.004
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AH8BD
UT WOS:000336358200005
PM 24650953
ER
PT J
AU Boyen, K
de Kleine, E
van Dijk, P
Langers, DRM
AF Boyen, Kris
de Kleine, Emile
van Dijk, Pim
Langers, Dave R. M.
TI Tinnitus-related dissociation between cortical and subcortical neural
activity in humans with mild to moderate sensorineural hearing loss
SO HEARING RESEARCH
LA English
DT Article
ID AUDITORY-CORTEX; SOUND-LEVEL; FMRI ACTIVATION; HUMAN BRAIN; NOISE;
RESPONSES; LATERALIZATION; STIMULATION; HYPERACUSIS; CEREBELLUM
AB Tinnitus is a phantom sound percept that is strongly associated with peripheral hearing loss. However, only a fraction of hearing-impaired subjects develops tinnitus. This may be based on differences in the function of the brain between those subjects that develop tinnitus and those that do not. In this study, cortical and sub-cortical sound-evoked brain responses in 34 hearing-impaired chronic tinnitus patients and 19 hearing level-matched controls were studied using 3-T functional magnetic resonance imaging (fMRI). Auditory stimuli were presented to either the left or the right ear at levels of 30-90 dB SPL. We extracted neural activation as a function of sound intensity in eight auditory regions (left and right auditory cortices, medial geniculate bodies, inferior colliculi and cochlear nuclei), the cerebellum and a cinguloparietal task-positive region. The activation correlated positively with the stimulus intensity, and negatively with the hearing threshold. We found no differences between both groups in terms of the magnitude and lateralization of the sound-evoked responses, except for the left medial geniculate body and right cochlear nucleus where activation levels were elevated in the tinnitus subjects. We observed significantly reduced functional connectivity between the inferior colliculi and the auditory cortices in tinnitus patients compared to controls. Our results indicate a failure of thalamic gating in the development of tinnitus. (C) 2014 The Authors. Published by Elsevier B.V.
C1 [Boyen, Kris; de Kleine, Emile; van Dijk, Pim; Langers, Dave R. M.] Univ Groningen, Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, NL-9700 RB Groningen, Netherlands.
[Boyen, Kris; de Kleine, Emile; van Dijk, Pim; Langers, Dave R. M.] Univ Groningen, Univ Med Ctr Groningen, Res Sch Behav & Cognit Neurosci, Grad Sch Med Sci, NL-9700 RB Groningen, Netherlands.
[Langers, Dave R. M.] Univ Nottingham, NIHR, Nottingham Hearing Biomed Res Unit, Nottingham NG7 2RD, England.
RP Boyen, K (reprint author), Univ Groningen, Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, POB 30-001, NL-9700 RB Groningen, Netherlands.
EM k.boyen@umcg.nl
RI de Kleine, Emile/P-2350-2014
FU American Tinnitus Association; Heinsius Houbolt Foundation; VENI from
the Netherlands Organisation for Scientific Research and the Netherlands
Organization for Health Research and Development (ZonMw) [016.096.011]
FX This research was supported by the American Tinnitus Association and the
Heinsius Houbolt Foundation. Dave R. M. Langers was funded by VENI
research grant 016.096.011 from the Netherlands Organisation for
Scientific Research and the Netherlands Organization for Health Research
and Development (ZonMw). The study is part of the research program of
our department: Healthy Aging and Communication.
CR Adjamian P, 2009, HEARING RES, V253, P15, DOI 10.1016/j.heares.2009.04.001
Amaral A., 2013, FRONT NEUROSCI
Baguley DM, 2003, J ROY SOC MED, V96, P582, DOI 10.1258/jrsm.96.12.582
Baumgart F, 1998, MED PHYS, V25, P2068, DOI 10.1118/1.598368
Boyen K, 2013, HEARING RES, V295, P67, DOI 10.1016/j.heares.2012.02.010
Brozoski TJ, 2007, HEARING RES, V228, P168, DOI 10.1016/j.heares.2007.02.003
Bush G, 2000, TRENDS COGN SCI, V4, P215, DOI 10.1016/S1364-6613(00)01483-2
Dobie RA, 2003, OTOLARYNG CLIN N AM, V36, P383, DOI 10.1016/S0030-6665(02)00168-8
Eggermont JJ, 2001, HEARING RES, V157, P1, DOI 10.1016/S0378-5955(01)00259-3
Ernst SMA, 2008, NEUROIMAGE, V43, P321, DOI 10.1016/j.neuroimage.2008.07.046
Farhadi M, 2010, J CEREBR BLOOD F MET, V30, P864, DOI 10.1038/jcbfm.2009.254
Fox MD, 2005, P NATL ACAD SCI USA, V102, P9673, DOI 10.1073/pnas.0504136102
Friston Karl J., 1994, Human Brain Mapping, V2, P56, DOI 10.1002/hbm.460020107
Ghez C., 1985, PRINCIPLES NEURAL SC, P833
Good P., 2002, J MODERN APPL STAT M, V1, P243
Gu JW, 2010, J NEUROPHYSIOL, V104, P3361, DOI 10.1152/jn.00226.2010
Hall DA, 1999, HUM BRAIN MAPP, V7, P213, DOI 10.1002/(SICI)1097-0193(1999)7:3<213::AID-HBM5>3.0.CO;2-N
Hall DA, 2001, J ACOUST SOC AM, V109, P1559, DOI 10.1121/1.1345697
Harms MP, 2003, HUM BRAIN MAPP, V20, P168, DOI 10.1002/hbm.10136
Hoffmann H. J., 2004, TINNITUS THEORY MANA, P16
Hunter MD, 2006, P NATL ACAD SCI USA, V103, P189, DOI 10.1073/pnas.0506268103
Khalfa S, 2002, ORL J OTO-RHINO-LARY, V64, P436, DOI 10.1159/000067570
Langers Dave R M, 2011, Brain Connect, V1, P233, DOI 10.1089/brain.2011.0023
Langers DRM, 2005, NEUROIMAGE, V28, P490, DOI 10.1016/j.neuroimage.2005.06.024
Langers D.R.M., 2011, CEREB CORTEX, V55
Langers DRM, 2005, MAGNET RESON MED, V53, P49, DOI 10.1002/mrm.20315
Langers DRM, 2007, NEUROIMAGE, V34, P264, DOI 10.1016/j.neuroimage.2006.09.002
Langers DRM, 2007, NEUROIMAGE, V35, P709, DOI 10.1016/j.neuroimage.2006.12.013
Langers DRM, 2003, NEUROIMAGE, V20, P265, DOI 10.1016/S1053-8119(03)00258-1
Lanting CP, 2008, ACTA OTO-LARYNGOL, V128, P415, DOI 10.1080/00016480701793743
Lanting CP, 2009, HEARING RES, V255, P1, DOI 10.1016/j.heares.2009.06.009
Lanting CP, 2010, HEARING RES, V267, P78, DOI 10.1016/j.heares.2010.04.006
Leaver AM, 2011, NEURON, V69, P33, DOI 10.1016/j.neuron.2010.12.002
LIU RY, 1988, ANN STAT, V16, P1696, DOI 10.1214/aos/1176351062
Llinas RR, 1999, P NATL ACAD SCI USA, V96, P15222, DOI 10.1073/pnas.96.26.15222
Lockwood AH, 2002, NEW ENGL J MED, V347, P904, DOI 10.1056/NEJMra013395
Maldjian JA, 2003, NEUROIMAGE, V19, P1233, DOI 10.1016/S1053-8119(03)00169-1
Maudoux A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036222
Melcher JR, 2009, HEARING RES, V257, P63, DOI 10.1016/j.heares.2009.08.005
Melcher JR, 2000, J NEUROPHYSIOL, V83, P1058
Muhlau M, 2006, CEREB CORTEX, V16, P1283, DOI 10.1093/cercor/bhj070
Newman CW, 1996, OTOLARYNGOL HEAD NEC, V1996, p[143, 20]
Nichols TE, 2002, HUM BRAIN MAPP, V15, P1, DOI 10.1002/hbm.1058
Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9
Norman-Haignere S, 2013, J NEUROSCI, V33, P19451, DOI 10.1523/JNEUROSCI.2880-13.2013
OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4
Osaki Y, 2005, NEUROREPORT, V16, P1625, DOI 10.1097/01.wnr.0000183899.85277.08
Petacchi A, 2005, HUM BRAIN MAPP, V25, P118, DOI 10.1002/hbm.20137
Rauschecker JP, 2010, NEURON, V66, P819, DOI 10.1016/j.neuron.2010.04.032
Richardson BD, 2012, BRAIN RES, V1485, P77, DOI 10.1016/j.brainres.2012.02.014
Rohl M, 2012, JARO-J ASSOC RES OTO, V13, P369, DOI 10.1007/s10162-012-0315-6
Rosenbaum PR, 2005, J ROY STAT SOC B, V67, P515, DOI 10.1111/j.1467-9868.2005.00513.x
Scheffler K, 1998, CEREB CORTEX, V8, P156, DOI 10.1093/cercor/8.2.156
Schmahmann JD, 1998, BRAIN, V121, P561, DOI 10.1093/brain/121.4.561
Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1
Sigalovsky IS, 2006, HEARING RES, V215, P67, DOI 10.1016/j.heares.2006.03.002
Smith SM, 2009, P NATL ACAD SCI USA, V106, P13040, DOI 10.1073/pnas.0905267106
Strick PL, 2009, ANNU REV NEUROSCI, V32, P413, DOI 10.1146/annurev.neuro.31.060407.125606
Suzuki M, 2002, HEARING RES, V163, P37, DOI 10.1016/S0378-5955(01)00367-7
van Gendt MJ, 2012, J NEUROSCI, V32, P17528, DOI 10.1523/JNEUROSCI.2791-12.2012
WU CFJ, 1986, ANN STAT, V14, P1261, DOI 10.1214/aos/1176350142
Zhang JS, 2013, HEARING RES, V295, P38, DOI 10.1016/j.heares.2012.05.007
NR 62
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2014
VL 312
BP 48
EP 59
DI 10.1016/j.heares.2014.03.001
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AH8BD
UT WOS:000336358200006
PM 24631963
ER
PT J
AU De Greef, D
Aernouts, J
Aerts, J
Cheng, JT
Horwitz, R
Rosowski, JJ
Dirckx, JJJ
AF De Greef, Daniel
Aernouts, Jef
Aerts, Johan
Cheng, Jeffrey Tao
Horwitz, Rachelle
Rosowski, John J.
Dirckx, Joris J. J.
TI Viscoelastic properties of the human tympanic membrane studied with
stroboscopic holography and finite element modeling
SO HEARING RESEARCH
LA English
DT Article
ID HUMAN MIDDLE-EAR; SOUND-TRANSMISSION; MOTION; SURFACE; TOMOGRAPHY;
EARDRUM; RABBIT; GERBIL
AB A new anatomically-accurate Finite Element (FE) model of the tympanic membrane (TM) and malleus was combined with measurements of the sound-induced motion of the TM surface and the bony manubrium, in an isolated TM-malleus preparation. Using the results, we were able to address two issues related to how sound is coupled to the ossicular chain: (i) Estimate the viscous damping within the tympanic membrane itself, the presence of which may help smooth the broadband response of a potentially highly resonant TM, and (ii) Investigate the function of a peculiar feature of human middle-ear anatomy, the thin mucosal epithelial fold that couples the mid part of the human manubrium to the TM. Sound induced motions of the surface of ex vivo human eardrums and mallei were measured with stroboscopic holography, which yields maps of the amplitude and phase of the displacement of the entire membrane surface at selected frequencies. The results of these measurements were similar, but not identical to measurements made in intact ears. The holography measurements were complemented by laser-Doppler vibrometer measurements of sound-induced umbo velocity, which were made with fine-frequency resolution. Comparisons of these measurements to predictions from a new anatomically accurate FE model with varied membrane characteristics suggest the TM contains viscous elements, which provide relatively low damping, and that the epithelial fold that connects the central section of the human manubrium to the TM only loosely couples the TM to the manubrium. The laser-Doppler measurements in two preparations also suggested the presence of significant variation in the complex modulus of the TM between specimens. (C) 2014 Elsevier B.V. All rights reserved.
C1 [De Greef, Daniel; Aernouts, Jef; Aerts, Johan; Dirckx, Joris J. J.] Univ Antwerp, Lab Biomed Phys, B-2020 Antwerp, Belgium.
[Aernouts, Jef; Cheng, Jeffrey Tao; Horwitz, Rachelle; Rosowski, John J.] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA.
[Aernouts, Jef; Cheng, Jeffrey Tao; Rosowski, John J.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02114 USA.
[Horwitz, Rachelle; Rosowski, John J.] Harvard Mit Div Hlth Sci & Technol, Speech & Hearing Biosci & Technol Program, Boston, MA 02115 USA.
RP De Greef, D (reprint author), Univ Antwerp, Lab Biomed Phys, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
EM daniel.degreef@uantwerpen.be
FU agency for Innovation by Science and Technology in Flanders
(IWT-Vlaanderen); Research Foundation Flanders (FWO); University of
Antwerp; US National Institute of Health
FX Financial support to this project was given by the agency for Innovation
by Science and Technology in Flanders (IWT-Vlaanderen), the Research
Foundation Flanders (FWO), the University of Antwerp and the US National
Institute of Health. We thank Mike Ravicz and Saumil Merchant for the
valuable discussions, Melissa McKinnon for her technical assistance.
CR Aernouts J, 2012, HEARING RES, V290, P45, DOI 10.1016/j.heares.2012.05.001
Cheng JT, 2013, J ACOUST SOC AM, V133, P918, DOI 10.1121/1.4773263
Cheng JT, 2010, HEARING RES, V263, P66, DOI 10.1016/j.heares.2009.12.024
de La Rochefoucauld O, 2010, HEARING RES, V263, P9, DOI 10.1016/j.heares.2009.10.014
Decraemer WF, 2004, PROCEEDINGS OF THE 3RD SYMPOSIUM ON MIDDLE EAR MECHANICS IN RESEARCH AND OTOLOGY, P3
Fay JP, 2006, P NATL ACAD SCI USA, V103, P19743, DOI 10.1073/pnas.0603898104
Fletcher NJC, 1992, ACOUSTIC SYSTEMS BIO
FUNNELL WRJ, 1982, ORL J OTO-RHINO-LARY, V44, P181
Gan RZ, 2004, ANN BIOMED ENG, V32, P847, DOI 10.1023/B:ABME.0000030260.22737.53
GRAHAM MD, 1978, ANN OTO RHINOL LARYN, V87, P426
Gulya AJ, 1995, ANATOMY TEMPORAL BON
Hernandez-Montes MDS, 2009, J BIOMED OPT, V14, DOI 10.1117/1.3153898
Horwitz R., 2012, 35 M ASS RES OT 2012
Koike T, 2001, JSME INT J C-MECH SY, V44, P1097, DOI 10.1299/jsmec.44.1097
Koike T, 2002, J ACOUST SOC AM, V111, P1306, DOI 10.1121/1.1451073
Margolis R.H., 1999, CONT PERSPECTIVES HE, P89
Masschaele BC, 2007, NUCL INSTRUM METH A, V580, P266, DOI 10.1016/j.nima.2007.05.099
Metscher Brian D., 2009, BMC Physiology, V9, P11, DOI 10.1186/1472-6793-9-11
NUMMELA S, 1995, HEARING RES, V85, P18, DOI 10.1016/0378-5955(95)00030-8
Rosowski JJ, 2009, HEARING RES, V253, P83, DOI 10.1016/j.heares.2009.03.010
Rosowski JJ, 2011, OTOL NEUROTOL, V32, P1559, DOI 10.1097/MAO.0b013e31822e94f3
ROSOWSKI JJ, 1990, ANN OTO RHINOL LARYN, V99, P403
Rosowski JJ, 2008, EAR HEARING, V29, P3
Rosowski JJ, 2007, AUDIOL NEURO-OTOL, V12, P265, DOI 10.1159/000101474
Salih WHM, 2012, HEARING RES, V284, P1, DOI 10.1016/j.heares.2011.12.004
Soons JAM, 2010, HEARING RES, V263, P33, DOI 10.1016/j.heares.2009.10.001
STINSON MR, 1985, J ACOUST SOC AM, V78, P1596, DOI 10.1121/1.392797
Sun Q, 2002, BIOMECH MODEL MECHAN, V1, P109, DOI 10.1007/s10237-002-0014-z
Todd N Wendell, 2009, Ear Nose Throat J, V88, pE22
Van der Jeught S, 2013, JARO-J ASSOC RES OTO, V14, P483, DOI 10.1007/s10162-013-0394-z
Volandri G, 2011, J BIOMECH, V44, P1219, DOI 10.1016/j.jbiomech.2010.12.023
Whittemore KR, 2004, HEARING RES, V187, P85, DOI 10.1016/S0378-5955(03)00332-0
Zhang X, 2010, INT J EXP COMPUT BIO, V1, P252, DOI 10.1504/IJECB.2010.03526
Zhang XM, 2013, ANN BIOMED ENG, V41, P205, DOI 10.1007/s10439-012-0624-2
Zhao F, 2009, MED ENG PHYS, V31, P907, DOI 10.1016/j.medengphy.2009.06.009
NR 35
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2014
VL 312
BP 69
EP 80
DI 10.1016/j.heares.2014.03.002
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AH8BD
UT WOS:000336358200008
PM 24657621
ER
PT J
AU Mistry, N
Nolan, LS
Saeed, SR
Forge, A
Taylor, RR
AF Mistry, N.
Nolan, L. S.
Saeed, S. R.
Forge, A.
Taylor, R. R.
TI Cochlear implantation in the mouse via the round window: Effects of
array insertion
SO HEARING RESEARCH
LA English
DT Article
ID STAPEDIAL ARTERY; ANIMAL-MODEL; HEARING PRESERVATION; SURGICAL APPROACH;
GENE-THERAPY; BONE; HISTOPATHOLOGY; ELECTRODE; SURGERY; RECONSTRUCTION
AB Animal models are the only means of assessing the effects of cochlear implantation (CI) at a cellular and molecular level. The range of naturally occurring and genetically-modified mouse strains which mimic human deafness provide excellent opportunities for auditory research. To date, there are very few studies of Cl in mice. The main aims of this study were to develop a reproducible and viable technique to enable long term CI in the mouse and to assess the response of the mouse cochlea to implantation as a means of evaluating the success of the procedure. Electrode array implantation via the round window was performed in C57Bl/6 mice aged 3 and 6 months. The contralateral cochlea acted as a control. Auditory brainstem responses (ABR) were recorded prior to and following Cl. Analysis showed greater threshold shifts in the implanted ear compared to the control ear post-implantation, but substantial preservation of hearing. There were no cases in which implantation caused a profound hearing loss across all frequencies. Cone beam computerised tomography and light microscopy confirmed correct placement of the electrode array within the scala tympani. Cochleae were prepared for histological examination. Initial analysis revealed encapsulation of the implant in tissue with morphological characteristics suggestive of fibrosis. Our results show that mouse Cl via the round window offers a model for exploring tissue responses to implantation. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Mistry, N.; Nolan, L. S.; Saeed, S. R.; Forge, A.; Taylor, R. R.] UCL, Ear Inst, London WC1X 2EE, England.
RP Mistry, N (reprint author), UCL, Ear Inst, 332 Grays Inn Rd, London WC1X 2EE, England.
EM nina.mistry.11@ucl.ac.uk; nolan@ucl.ac.uk; shakeel.saeed@ucl.ac.uk;
a.forge@ucl.ac.uk; ruth.r.taylor@ucl.ac.uk
FU Royal College of Surgeons of England; Midland Institute of Otology;
Royal Society of Medicine; Otorhinolaryngological Research Society
FX Many thanks to The Royal College of Surgeons of England, Midland
Institute of Otology, Royal Society of Medicine and the
Otorhinolaryngological Research Society for their funding support
towards this project and to CochlearTM Ltd for the supply of
bespoke electrode arrays.
CR Addams-Williams J, 2011, Cochlear Implants Int, V12 Suppl 2, pS36, DOI 10.1179/146701011X13074645127478
Akil O, 2012, NEURON, V75, P283, DOI 10.1016/j.neuron.2012.05.019
ALBIIN N, 1985, ANAT REC, V212, P17, DOI 10.1002/ar.1092120103
ALBIIN N, 1983, ACTA ANAT, V115, P134
Aschendorff A., 2011, HEAD NECK SURG, V10, pDoc07
Bogaerts S, 2008, J NEUROSCI METH, V168, P156, DOI 10.1016/j.jneumeth.2007.09.016
Cervera-Paz FJ, 2005, ANN OTO RHINOL LARYN, V114, P543
Chen ZQ, 2006, J NEUROSCI METH, V150, P67, DOI 10.1016/j.jeumeth.2005.05.017
Chow J K, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P42
Clark G M, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P40
Cosetti MK, 2011, EXPERT REV MED DEVIC, V8, P389, DOI [10.1586/erd.11.12, 10.1586/ERD.11.12]
DeMason C, 2012, EAR HEARING, V33, P534, DOI 10.1097/AUD.0b013e3182498c28
Fayad JN, 2009, OTOLARYNG HEAD NECK, V141, P247, DOI 10.1016/j.otohns.2009.03.031
Friedland David R, 2009, Trends Amplif, V13, P124, DOI 10.1177/1084713809336422
GOVAERTS PJ, 1993, ANN OTO RHINOL LARYN, V102, P724
Iguchi F, 2004, ACTA OTO-LARYNGOL, V124, P43, DOI 10.1080/03655230310016816
Jero J, 2001, HEARING RES, V151, P106, DOI 10.1016/S0378-5955(00)00216-1
Kawano A, 1998, ACTA OTO-LARYNGOL, V118, P313
Kong WJ, 2012, ACTA OTO-LARYNGOL, V132, P116, DOI 10.3109/00016489.2011.626794
Kretzmer EA, 2004, ARCH OTOLARYNGOL, V130, P499, DOI 10.1001/archotol.130.5.499
Lenarz T, 2009, AUDIOL NEURO-OTOL, V14, P22, DOI 10.1159/000206492
LINTHICUM FH, 1991, AM J OTOL, V12, P245
Lorens A, 2008, LARYNGOSCOPE, V118, P288, DOI 10.1097/MLG.0b013e3181598887
Lu W, 2005, HEARING RES, V205, P115, DOI 10.1016/j.heares.2005.03.010
Maria PLS, 2013, OTOL NEUROTOL, V34, P526, DOI 10.1097/MAO.0b013e318281e0c9
MARSH MA, 1992, ARCH OTOLARYNGOL, V118, P1257
Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5
Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883
Nguyen Y, 2009, ACTA OTO-LARYNGOL, V129, P1153, DOI 10.3109/00016480802629440
Niparko J.K., 2009, ASSESSMENT CANDIDACY, P137
Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017
Pfingst BE, 2011, HEARING RES, V281, P65, DOI 10.1016/j.heares.2011.05.002
SAUNDERS JE, 1994, AM J OTOL, V15, P606
Skarzynski H, 2010, ADV OTO-RHINO-LARYNG, V67, P135, DOI 10.1159/000262605
Somdas MA, 2007, AUDIOL NEURO-OTOL, V12, P277, DOI 10.1159/000103208
Stöver Timo, 2009, GMS Curr Top Otorhinolaryngol Head Neck Surg, V8, pDoc10, DOI 10.3205/cto000062
Tamir S, 2012, AUDIOL NEURO-OTOL, V17, P331, DOI 10.1159/000339894
Willott J F, 1990, Acta Otolaryngol Suppl, V476, P153
Yamamoto H, 2003, HEARING RES, V186, P69, DOI 10.1016/S0378-5955(03)00310-1
Zeng Fan-Gang, 2008, IEEE Rev Biomed Eng, V1, P115, DOI 10.1109/RBME.2008.2008250
NR 40
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2014
VL 312
BP 81
EP 90
DI 10.1016/j.heares.2014.03.005
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AH8BD
UT WOS:000336358200009
PM 24657211
ER
PT J
AU Todd, NPM
Paillard, AC
Kluk, K
Whittle, E
Colebatch, JG
AF Todd, N. P. M.
Paillard, A. C.
Kluk, K.
Whittle, E.
Colebatch, J. G.
TI Source analysis of short and long latency vestibular-evoked potentials
(VsEPs) produced by left vs. right ear air-conducted 500 Hz tone pips
SO HEARING RESEARCH
LA English
DT Article
ID SOUND; STIMULATION; CORTEX; PROJECTIONS; DOMINANCE; SYSTEM; CAT
AB Todd et al. (2014) have recently demonstrated the presence of vestibular dependent changes both in the morphology and in the intensity dependence of auditory evoked potentials (AEPs) when passing through the vestibular threshold as determined by vestibular evoked myogenic potentials (VEMPs). In this paper we extend this work by comparing left vs. right ear stimulation and by conducting a source analysis of the resulting evoked potentials of short and long latency. Ten healthy, right-handed subjects were recruited and evoked potentials were recorded to both left- and right-ear sound stimulation, above and below vestibular threshold. Below VEMP threshold, typical AEPs were recorded, consisting of mid-latency (MLR) waves Na and Pa followed by long latency AEPs (LAEPs) N1 and P2. In the suprathreshold condition, the expected changes in morphology were observed, consisting of: (1) short-latency vestibular evoked potentials (VsEPs) which have no auditory correlate, i.e. the ocular VEMP (OVEMP) and inion response related potentials; (2) a later deflection, labelled N42/P52, followed by the LAEPs N1 and P2. Statistical analysis of the vestibular dependent responses indicated a contralateral effect for inion related short-latency responses and a left-ear/right-hemisphere advantage for the long-latency responses. Source analysis indicated that the short-latency effects may be mediated by a contralateral projection to left cerebellum, while the long-latency effects were mediated by a contralateral projection to right cingulate cortex. In addition we found evidence of a possible vestibular contribution to the auditory T-complex in radial temporal lobe sources. These last results raise the possibility that acoustic activation of the otolith organs could potentially contribute to auditory processing. (C) 2014 The Authors. Published by Elsevier B.V.
C1 [Todd, N. P. M.; Paillard, A. C.; Whittle, E.] Univ Manchester, Fac Life Sci, Manchester M13 9PL, Lancs, England.
[Kluk, K.] Univ Manchester, Sch Psychol Sci, Manchester M13 9PL, Lancs, England.
[Colebatch, J. G.] Univ New S Wales, Prince Wales Clin Sch & Neurosci Res Australia, Sydney, NSW 2052, Australia.
RP Todd, NPM (reprint author), Univ Manchester, Fac Life Sci, Manchester M13 9PL, Lancs, England.
EM neil.todd@manchester.ac.uk
FU Wellcome Trust [WT091961MA]
FX The research reported in this article was supported by a grant from the
Wellcome Trust (WT091961MA). We wish to thank Aisha McLean for
assistance in the production of this manuscript.
CR Barker M, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035955
BICKFORD RG, 1964, ANN NY ACAD SCI, V112, P204, DOI 10.1111/j.1749-6632.1964.tb26749.x
BLUM PS, 1979, EXP NEUROL, V64, P587, DOI 10.1016/0014-4886(79)90234-6
Brimijoin WO, 2012, I-PERCEPTION, V3, P179, DOI 10.1068/i7173sas
COLEBATCH JG, 1994, J NEUROL NEUROSUR PS, V57, P190, DOI 10.1136/jnnp.57.2.190
CONNOLLY JF, 1993, ELECTROEN CLIN NEURO, V86, P58, DOI 10.1016/0013-4694(93)90067-6
de Waele C, 2001, EXP BRAIN RES, V141, P541, DOI 10.1007/s00221-001-0894-7
Dieterich M, 2003, CEREB CORTEX, V13, P994, DOI 10.1093/cercor/13.9.994
Ebata S, 2004, NEUROSCI RES, V49, P55, DOI 10.1016/j.neures.2004.01.012
Emami S.F., 2012, ISRN OTOLARYNGOL, V7
Emami S.F., 2012, ISRN OTOLARYNGOL, V5
Govender S, 2009, CLIN NEUROPHYSIOL, V120, P1386, DOI 10.1016/j.clinph.2009.04.017
Hine J, 2007, CLIN NEUROPHYSIOL, V118, P1274, DOI 10.1016/j.clinph.2007.03.012
Janzen J, 2008, NEUROIMAGE, V42, P1508, DOI 10.1016/j.neuroimage.2008.06.026
Lopez C, 2012, NEUROSCIENCE, V212, P159, DOI 10.1016/j.neuroscience.2012.03.028
Lopez C, 2011, BRAIN RES REV, V67, P119, DOI 10.1016/j.brainresrev.2010.12.002
MCCUE MP, 1994, J NEUROSCI, V14, P6058
McNerney KM, 2011, J AM ACAD AUDIOL, V22, P143, DOI 10.3766/jaaa.22.3.3
Meddis R, 2011, J ACOUST SOC AM, V129, P3153, DOI 10.1121/1.3569712
NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x
Phillips-Silver J, 2008, BRAIN COGNITION, V67, P94, DOI 10.1016/j.bandc.2007.11.007
PROBST T, 1990, NEUROSCI LETT, V108, P255, DOI 10.1016/0304-3940(90)90650-X
Rosengren SA, 2006, CLIN NEUROPHYSIOL, V117, P1145, DOI 10.1016/j.clinph.2005.12.026
Rosengren SM, 2005, CLIN NEUROPHYSIOL, V116, P1938, DOI 10.1016/j.clinph.2005.03.019
ROUCOUXHANUS M, 1977, EXP BRAIN RES, V29, P283
Scherg M, 1989, J Cogn Neurosci, V1, P336, DOI 10.1162/jocn.1989.1.4.336
Schlindwein P, 2008, NEUROIMAGE, V39, P19, DOI 10.1016/j.neuroimage.2007.08.016
Todd NPM, 2008, CLIN NEUROPHYSIOL, V119, P1881, DOI 10.1016/j.clinph.2008.03.027
Todd NPM, 2003, J ACOUST SOC AM, V114, P3264, DOI 10.1121/1.1628249
Todd NPM, 2007, CLIN NEUROPHYSIOL, V118, P381, DOI 10.1016/j.clinph.2006.09.025
Todd NPM, 2014, HEARING RES, V309, P63, DOI 10.1016/j.heares.2013.11.008
NR 31
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2014
VL 312
BP 91
EP 102
DI 10.1016/j.heares.2014.03.006
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AH8BD
UT WOS:000336358200010
PM 24699384
ER
PT J
AU Schneider, JN
Lloyd, DR
Banks, PN
Mercado, E
AF Schneider, Jennifer N.
Lloyd, David R.
Banks, Patchouly N.
Mercado, Eduardo, III
TI Modeling the utility of binaural cues for underwater sound localization
SO HEARING RESEARCH
LA English
DT Article
ID WINTERING HUMPBACK WHALES; ARTIFICIAL NEURAL-NETWORK;
MEGAPTERA-NOVAEANGLIAE; AUDITORY LOCALIZATION; DIRECTIONAL HEARING;
BASILAR-MEMBRANE; PHOCA-VITULINA; MIDDLE-EAR; PURE-TONES; AZIMUTH
AB The binaural cues used by terrestrial animals for sound localization in azimuth may not always suffice for accurate sound localization underwater. The purpose of this research was to examine the theoretical limits of interaural timing and level differences available underwater using computational and physical models. A paired-hydrophone system was used to record sounds transmitted underwater and recordings were analyzed using neural networks calibrated to reflect the auditory capabilities of terrestrial mammals. Estimates of source direction based on temporal differences were most accurate for frequencies between 0.5 and 1.75 kHz, with greater resolution toward the midline (2), and lower resolution toward the periphery (9 degrees). Level cues also changed systematically with source azimuth, even at lower frequencies than expected from theoretical calculations, suggesting that binaural mechanical coupling (e.g., through bone conduction) might, in principle, facilitate underwater sound localization. Overall, the relatively limited ability of the model to estimate source position using temporal and level difference cues underwater suggests that animals such as whales may use additional cues to accurately localize conspecifics and predators at long distances. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Schneider, Jennifer N.; Lloyd, David R.; Banks, Patchouly N.; Mercado, Eduardo, III] SUNY Buffalo, Dept Psychol, Buffalo, NY 14260 USA.
RP Schneider, JN (reprint author), LCC Int Univ, Dept Social Sci, Kretingos 36, LT-92307 Klaipeda, Lithuania.
EM jns5@buffalo.edu
FU Earthwatch Institute; the Animal Behavior Society's Cetacean Behavior
and Conservation Award; Mark Diamond Research Fund [F-08-09]; Center for
Undergraduate Research and Creative Activities (CURCA); National Science
Foundation [0718004]
FX This work was performed in part at the University at Buffalo's Center
for Computational Research (CCR). This research was made possible with
support from the Earthwatch Institute; the Animal Behavior Society's
Cetacean Behavior and Conservation Award, and the Mark Diamond Research
Fund (F-08-09) awarded to Jennifer Schneider, the Center for
Undergraduate Research and Creative Activities (CURCA) awarded to David
Lloyd; and the National Science Foundation Grant No. 0718004 awarded to
Dr. Eduardo Mercado. Additional training and equipment was provided by
members of Dr. Craig Woolsey's lab at Virginia Tech. We also want to
thank Cynthia Cornelius for technical help, Gary House and Adam Lloyd
for help with field work, and Brittany McIntosh, Dr. Micheal Dent, Dr.
J. David Smith, and Dr. Carol Berman for help on earlier drafts of the
manuscript.
CR Aroyan JL, 2001, J ACOUST SOC AM, V110, P3305, DOI 10.1121/1.1401757
Au W. W. L., 1993, SONAR DOLPHINS
Aytekin M, 2004, J ACOUST SOC AM, V116, P3594, DOI [10.1121/1.1811412, 10.1121/1.1811412]]
Backman J., 1993, P ICASSP 93 MINN MN, VI, P125
Bailey C.A., 2013, J ACOUST SOC AM, V19
BAUER BB, 1966, J ACOUST SOC AM, V39, P25, DOI 10.1121/1.1909870
Bodson A, 2007, J ACOUST SOC AM, V122, P2263, DOI 10.1121/1.2775424
Bodson A, 2006, J ACOUST SOC AM, V120, P1550, DOI 10.1121/1.2221532
Branstetter BK, 2007, J ACOUST SOC AM, V121, P626, DOI 10.1121/1.2400664
Brown CH, 2005, SPR HDB AUD, V25, P124, DOI 10.1007/0-387-28863-5_5
Brown CP, 1998, IEEE T SPEECH AUDI P, V6, P476, DOI 10.1109/89.709673
Christensen-Dalsgaard J, 2005, SPR HDB AUD, V25, P67, DOI 10.1007/0-387-28863-5_4
Chung W, 2000, J ACOUST SOC AM, V107, P432, DOI 10.1121/1.428350
CLARK CW, 1980, SCIENCE, V207, P663, DOI 10.1126/science.207.4431.663
Clemins PJ, 2006, J ACOUST SOC AM, V120, P527, DOI 10.1121/1.2203596
Colbert DE, 2009, J EXP BIOL, V212, P2104, DOI 10.1242/jeb.029033
Colburn HS, 1996, AUDITORY COMPUTATION, P332
CRANFORD JL, 1979, J NEUROPHYSIOL, V42, P1518
CUMMINGS WC, 1971, FISH BULL NATL OC AT, V69, P525
CURREY JD, 1979, J BIOMECH, V12, P313, DOI 10.1016/0021-9290(79)90073-3
Darling JD, 2012, J ACOUST SOC AM, V132, P2955, DOI 10.1121/1.4757739
Datum MS, 1996, J ACOUST SOC AM, V100, P372, DOI 10.1121/1.415854
Van HEEL W. H. DUDOK, 1959, NATURE, V183, P1063
DYE RH, 1984, J ACOUST SOC AM, V75, P1593, DOI 10.1121/1.390868
Echteler SM, 1994, COMP HEARING MAMMALS, P134
Fay RR, 2005, SPR HDB AUD, V25, P36, DOI 10.1007/0-387-28863-5_3
FAY RR, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P229
Fay R.R., 2005, SOUND SOURCE LOCALIZ
FEINSTEI.SH, 1973, J ACOUST SOC AM, V53, P393, DOI 10.1121/1.1913335
FENG AS, 1976, J NEUROPHYSIOL, V39, P871
Fenton MB, 2012, J EXP BIOL, V215, P2935, DOI 10.1242/jeb.073171
GRANTHAM DW, 1984, J ACOUST SOC AM, V75, P1191, DOI 10.1121/1.390769
GREENWOOD D, 1961, J ACOUST SOC AM, V33, P1344, DOI 10.1121/1.1908437
GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
HEFFNER RS, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P691
HEFFNER RS, 1992, J COMP PSYCHOL, V106, P107, DOI 10.1037//0735-7036.106.2.107
HEFFNER RS, 1982, J COMP PHYSIOL PSYCH, V96, P926, DOI 10.1037/0735-7036.96.6.926
Hemila S, 1999, HEARING RES, V133, P82, DOI 10.1016/S0378-5955(99)00055-6
Hemila S, 2001, HEARING RES, V151, P221, DOI 10.1016/S0378-5955(00)00232-X
HERMANSKY H, 1990, J ACOUST SOC AM, V87, P1738, DOI 10.1121/1.399423
Hill A.J., 2012, P I AC 4, V34
HOLLIEN H, 1975, J ACOUST SOC AM, V57, P1488, DOI 10.1121/1.380589
HOUBEN D, 1979, J ACOUST SOC AM, V66, P1057, DOI 10.1121/1.383377
Houser Dorian S., 2001, Aquatic Mammals, V27, P82
IRVINE DRF, 1987, HEARING RES, V26, P267, DOI 10.1016/0378-5955(87)90063-3
Janko J., 1995, BINAURAL SPATIAL HEA, P557
Jensen FB, 2011, MOD ACOUST SIGN PROC, P1, DOI 10.1007/978-1-4419-8678-8
Jin C, 2000, J ACOUST SOC AM, V108, P1215, DOI 10.1121/1.1288411
Ketten Darlene R., 1997, Bioacoustics, V8, P103
Ketten D.R., 1994, IEEE P UNDERWATER AC, V1, P264
Ketten D.R., 2000, HEARING WHALES DOLPH, P330
Kim DO, 2010, JARO-J ASSOC RES OTO, V11, P541, DOI 10.1007/s10162-010-0221-8
King AJ, 2011, AUDITORY CORTEX, P329, DOI 10.1007/978-1-4419-0074-6_15
KLUMP GM, 1986, J COMP PHYSIOL A, V158, P383, DOI 10.1007/BF00603622
LePage EL, 2003, J ACOUST SOC AM, V114, P896, DOI 10.1121/1.1587150
Manley GA, 2011, HEARING RES, V273, P1, DOI 10.1016/j.heares.2011.01.005
MARTIN RL, 1987, HEARING RES, V30, P239, DOI 10.1016/0378-5955(87)90140-7
MASTERTO.B, 1969, J ACOUST SOC AM, V45, P966, DOI 10.1121/1.1911574
MCCORMICK J G, 1970, Journal of the Acoustical Society of America, V48, P1418, DOI 10.1121/1.1912302
Mercado E, 2008, BEHAV PROCESS, V77, P231, DOI 10.1016/j.beproc.2007.10.007
Mercado E, 1999, J ACOUST SOC AM, V106, P3004, DOI 10.1121/1.428120
Mercado III E., 1998, THESIS U HAWAII
MILLS AW, 1958, J ACOUST SOC AM, V30, P237, DOI 10.1121/1.1909553
MOBLEY JR, 1988, BEHAV ECOL SOCIOBIOL, V23, P211, DOI 10.1007/BF00302944
Mohamed M.I.J., 2008, HUMAN SENSITIVITY IN, P47
Mooney TA, 2012, ADV MAR BIOL, V63, P197, DOI 10.1016/B978-0-12-394282-1.00004-1
MOORE BCJ, 1983, J ACOUST SOC AM, V74, P750, DOI 10.1121/1.389861
Nelson BS, 1998, ANIM BEHAV, V56, P467, DOI 10.1006/anbe.1998.0781
NETI C, 1992, J ACOUST SOC AM, V92, P3140, DOI 10.1121/1.404210
NORMAN DA, 1971, J ACOUST SOC AM, V50, P544, DOI 10.1121/1.1912669
Nummela S, 1999, HEARING RES, V133, P71, DOI 10.1016/S0378-5955(99)00054-4
O'Connell-Rodwell CE, 2007, PHYSIOLOGY, V22, P287, DOI 10.1152/physiol.00008.2007
Palmieri F., 1991, INT JOINT C NEUR NET, V1, P125
PARK TJ, 1991, J COMP PSYCHOL, V105, P125, DOI 10.1037/0735-7036.105.2.125
Pau HW, 2011, ACTA OTO-LARYNGOL, V131, P1279, DOI 10.3109/00016489.2011.607845
PAYNE K, 1985, Z TIERPSYCHOL, V68, P89
PAYNE R, 1971, ANN NY ACAD SCI, V188, P110, DOI 10.1111/j.1749-6632.1971.tb13093.x
Phillips DP, 2012, NEUROSCI BIOBEHAV R, V36, P889, DOI 10.1016/j.neubiorev.2011.11.003
Populin LC, 1998, J NEUROSCI, V18, P2147
Ridgway S. H., 2001, Aquatic Mammals, V27, P267
ROSE JE, 1967, J NEUROPHYSIOL, V30, P769
Rowan D, 2008, INT J AUDIOL, V47, P404, DOI 10.1080/14992020802006055
Savel S, 2009, ACTA ACUST UNITED AC, V95, P128, DOI 10.3813/AAA.918134
SCHAUER C, 2000, ACOUST SPEECH SIG PR, P865
SHIPLEY C, 1991, J ACOUST SOC AM, V89, P902, DOI 10.1121/1.1894652
Shupak A, 2005, OTOL NEUROTOL, V26, P127, DOI 10.1097/00129492-200501000-00023
Simmons J.A., 1996, AUDITORY COMPUTATION, P401
Skottun BC, 2001, P NATL ACAD SCI USA, V98, P14050, DOI 10.1073/pnas.241513998
Stern R. M., 2006, COMPUTATIONAL AUDITO, P147
SUPIN AY, 1993, J ACOUST SOC AM, V93, P3490, DOI 10.1121/1.405679
THOMPSON PO, 1986, J ACOUST SOC AM, V80, P735, DOI 10.1121/1.393947
TYACK P, 1983, BEHAVIOUR, V83, P132, DOI 10.1163/156853982X00067
TYACK P, 1983, BEHAV ECOL SOCIOBIOL, V13, P49, DOI 10.1007/BF00295075
Van Wanrooij MM, 2007, J NEUROPHYSIOL, V97, P715, DOI 10.1152/jn.00260.2006
Van Wanrooij MM, 2004, J NEUROSCI, V24, P4163, DOI 10.1523/JNEUROSCI.0048-04.2004
Watkins WA, 1981, SCI REP WHALES RES, V33, P83
Welch TE, 2011, J ACOUST SOC AM, V130, P2293, DOI 10.1121/1.3628335
WEST CD, 1985, J ACOUST SOC AM, V77, P1091, DOI 10.1121/1.392227
Wilhelm H., 2011, ACTA OTO-LARYNGOL, V131, P1279
Yamato M, 2012, ANAT REC, V295, P991, DOI 10.1002/ar.22459
NR 100
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2014
VL 312
BP 103
EP 113
DI 10.1016/j.heares.2014.03.011
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AH8BD
UT WOS:000336358200011
PM 24727491
ER
PT J
AU Koelewijn, T
Shinn-Cunningham, BG
Zekveld, AA
Kramer, SE
AF Koelewijn, Thomas
Shinn-Cunningham, Barbara G.
Zekveld, Adriana A.
Kramer, Sophia E.
TI The pupil response is sensitive to divided attention during speech
processing
SO HEARING RESEARCH
LA English
DT Article
ID LISTENING EFFORT; RECEPTION THRESHOLD; NORMAL-HEARING; NOISE; LOAD;
INTELLIGIBILITY; DILATION; MEMORY; PERFORMANCE; SELECTION
AB Dividing attention over two streams of speech strongly decreases performance compared to focusing on only one. How divided attention affects cognitive processing load as indexed with pupillometry during speech recognition has so far not been investigated. In 12 young adults the pupil response was recorded while they focused on either one or both of two sentences that were presented dichotically and masked by fluctuating noise across a range of signal-to-noise ratios. In line with previous studies, the performance decreases when processing two target sentences instead of one. Additionally, dividing attention to process two sentences caused larger pupil dilation and later peak pupil latency than processing only one. This suggests an effect of attention on cognitive processing load (pupil dilation) during speech processing in noise. (C) 2014 The Authors. Published by Elsevier B.V.
C1 [Koelewijn, Thomas; Zekveld, Adriana A.; Kramer, Sophia E.] Vrije Univ Amsterdam, Med Ctr, Dept Otolaryngol Head & Neck Surg, Sect Audiol, NL-1007 MB Amsterdam, Netherlands.
[Koelewijn, Thomas; Zekveld, Adriana A.; Kramer, Sophia E.] Vrije Univ Amsterdam, Med Ctr, EMGO Inst Hlth & Care Res, NL-1007 MB Amsterdam, Netherlands.
[Shinn-Cunningham, Barbara G.] Boston Univ, Dept Biomed Engn, Ctr Computat Neurosci & Neural Technol, Boston, MA 02215 USA.
[Zekveld, Adriana A.] Linkoping Univ, Linnaeus Ctr HEAD, Dept Behav Sci & Learning, Linkoping, Sweden.
RP Koelewijn, T (reprint author), Vrije Univ Amsterdam, Med Ctr, Dept Otolaryngol Head & Neck Surg, POB 7057, NL-1007 MB Amsterdam, Netherlands.
EM t.koelewijn@vumc.nl
FU Netherlands Organization for Scientific Research (NWO) [451-12-039]
FX This work is financed by The Netherlands Organization for Scientific
Research (NWO) (Veni grant 451-12-039).
CR AHERN S, 1979, SCIENCE, V205, P1289, DOI 10.1126/science.472746
Allen K, 2009, ATTEN PERCEPT PSYCHO, V71, P164, DOI 10.3758/APP.71.1.164
Aston-Jones G, 2005, ANNU REV NEUROSCI, V28, P403, DOI 10.1146/annurev.neuro.28.061604.135709
BEATTY J, 1982, PSYCHOL BULL, V91, P276, DOI 10.1037/0033-2909.91.2.276
Best V, 2010, EAR HEARING, V31, P213, DOI 10.1097/AUD.0b013e3181c34ba6
Best V, 2006, J ACOUST SOC AM, V120, P1506, DOI 10.1121/1.2234849
Broadbent D. E., 1958, PERCEPT COMMUN, P11, DOI 10.1037/10037-002
Bronkhorst AW, 2000, ACUSTICA, V86, P117
CHERRY EC, 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229
Desjardins JL, 2013, EAR HEARING, V34, P261, DOI 10.1097/AUD.0b013e31826d0ba4
FESTEN JM, 1990, J ACOUST SOC AM, V88, P1725, DOI 10.1121/1.400247
Gosselin P.A., 2011, INT J AUDIOL, V2011, P1
HOEKS B, 1993, BEHAV RES METH INSTR, V25, P16, DOI 10.3758/BF03204445
HYONA J, 1995, Q J EXP PSYCHOL-A, V48, P598
Ihlefeld A, 2008, J ACOUST SOC AM, V124, P2224, DOI 10.1121/1.2973185
Iriki A, 1996, NEUROSCI RES, V25, P173
KAHNEMAN D, 1966, SCIENCE, V154, P1583, DOI 10.1126/science.154.3756.1583
Koelewijn T., 2012, INT J OTOLARYNGOLOGY, DOI [10.1155/2012/865731, DOI 10.1155/2012/865731]
Koelewijn T, 2012, EAR HEARING, V33, P291, DOI 10.1097/AUD.0b013e3182310019
Kramer SE, 2013, LANG COGNITIVE PROC, V28, P426, DOI 10.1080/01690965.2011.642267
Kramer SE, 1997, AUDIOLOGY, V36, P155
Lavie N, 2004, J EXP PSYCHOL GEN, V133, P339, DOI 10.1037/0096-3445.133.3.339
Lunner T, 2007, J AM ACAD AUDIOL, V18, P604, DOI 10.3766/jaaa.18.7.7
Mattys SL, 2012, LANG COGNITIVE PROC, V27, P953, DOI 10.1080/01690965.2012.705006
Meer E. V. D., 2010, PSYCHOPHYSIOLOGY, V47, P158
Ng EHN, 2013, INT J AUDIOL, V52, P433, DOI 10.3109/14992027.2013.776181
Picou EM, 2011, J SPEECH LANG HEAR R, V54, P1416, DOI 10.1044/1092-4388(2011/10-0154)
Ronnberg J., 2013, FRONT SYST NEUROSCI, V7, P1
Rudner M, 2011, J AM ACAD AUDIOL, V22, P156, DOI 10.3766/jaaa.22.3.4
Ruggles D, 2011, P NATL ACAD SCI USA, V108, P15516, DOI 10.1073/pnas.1108912108
Versfeld NJ, 2000, J ACOUST SOC AM, V107, P1671, DOI 10.1121/1.428451
Zekveld AA, 2011, EAR HEARING, V32, P498, DOI 10.1097/AUD.0b013e31820512bb
Zekveld AA, 2010, EAR HEARING, V31, P480, DOI 10.1097/AUD.0b013e3181d4f251
NR 33
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2014
VL 312
BP 114
EP 120
DI 10.1016/j.heares.2014.03.010
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AH8BD
UT WOS:000336358200012
PM 24709275
ER
PT J
AU Altmann, CF
Terada, S
Kashino, M
Goto, K
Mima, T
Fukuyama, H
Furukawa, S
AF Altmann, Christian F.
Terada, Satoshi
Kashino, Makio
Goto, Kazuhiro
Mima, Tatsuya
Fukuyama, Hidenao
Furukawa, Shigeto
TI Independent or integrated processing of interaural time and level
differences in human auditory cortex?
SO HEARING RESEARCH
LA English
DT Article
ID HUMAN BRAIN-STEM; INTENSITY DIFFERENCES; SOUND LOCALIZATION; LATENCY
DIFFERENCES; RELATIVE INFLUENCE; SUPERIOR OLIVE; SENSORY MEMORY;
MIDDLE-LATENCY; SINE TONES; LATERALIZATION
AB Sound localization in the horizontal plane is mainly determined by interaural time differences (ITD) and interaural level differences (ILD). Both cues result in an estimate of sound source location and in many real-life situations these two cues are roughly congruent. When stimulating listeners with headphones it is possible to counterbalance the two cues, so called ITD/ILD trading. This phenomenon speaks for integrated ITD/ILD processing at the behavioral level. However, it is unclear at what stages of the auditory processing stream ITD and ILD cues are integrated to provide a unified percept of sound lateralization. Therefore, we set out to test with human electroencephalography for integrated versus independent ITD/ILD processing at the level of preattentive cortical processing by measuring the mismatch negativity (MMN) to changes in sound lateralization. We presented a series of diotic standards (perceived at a midline position) that were interrupted by deviants that entailed either a change in a) ITD only, b) ILD only, c) congruent ITD and ILD, or d) counterbalanced ITD/ILD (ITD/ILD trading). The sound stimuli were either i) pure tones with a frequency of 500 Hz, or ii) amplitude modulated tones with a carrier frequency of 4000 Hz and a modulation frequency of 125 Hz.
We observed significant MMN for the ITD/ILD traded deviants in case of the 500 Hz pure tones, and for the 4000 Hz amplitude-modulated tone. This speaks for independent processing of ITD and ILD at the level of the MMN within auditory cortex. However, the combined ITD/ILD cues elicited smaller MMN than the sum of the MMN induced in response to ITD and ILD cues presented in isolation for 500 Hz, but not 4000 Hz, suggesting independent processing for the higher frequency only. Thus, the two markers for independent processing additivity and cue-conflict resulted in contradicting conclusions with a dissociation between the lower (500 Hz) and higher frequency (4000 Hz) bands. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Altmann, Christian F.; Goto, Kazuhiro; Mima, Tatsuya; Fukuyama, Hidenao] Kyoto Univ, Grad Sch Med, Human Brain Res Ctr, Kyoto 6068507, Japan.
[Altmann, Christian F.; Terada, Satoshi; Goto, Kazuhiro] Kyoto Univ, Career Path Promot Unit Young Life Scientists, Kyoto 6068501, Japan.
[Kashino, Makio; Furukawa, Shigeto] NTT Corp, NTT Commun Sci Labs, Atsugi, Kanagawa 2430198, Japan.
[Goto, Kazuhiro] Sagami Womens Univ, Fac Human Soc, Dept Psychol, Sagamihara, Kanagawa 2520383, Japan.
RP Altmann, CF (reprint author), Kyoto Univ, Grad Sch Med, Human Brain Res Ctr, Sakyo Ku, 54 Shogoin Kawaracho, Kyoto 6068507, Japan.
EM altmann@cp.kyoto-u.ac.jp
FU Special Coordination Fund for Promoting Science and Technology; Ministry
of Education, Culture, Sports, Science and Technology (MEXT) of Japan;
Japan Society for the Promotion of Science [23730701, 25870333, 2450226,
24300192]
FX This study was partly supported by the Special Coordination Fund for
Promoting Science and Technology to CFA from the Ministry of Education,
Culture, Sports, Science and Technology (MEXT) of Japan, Grants-in-Aid
for Young Scientists (B) 23730701 and 25870333 to CFA from the Japan
Society for the Promotion of Science, and Grants-in-Aid for Scientific
Research (B) 24300192 and for Exploratory Research (2450226) to TM from
the Japan Society for the Promotion of Science.
CR Bernstein LR, 2001, J NEUROSCI RES, V66, P1035, DOI 10.1002/jnr.10103
Bernstein S., 2002, J ACOUST SOC AM, V112, P1026
Brainard DH, 1997, SPATIAL VISION, V10, P433, DOI 10.1163/156856897X00357
Brughera A, 2013, J ACOUST SOC AM, V133, P2839, DOI 10.1121/1.4795778
Caclin A, 2006, J COGNITIVE NEUROSCI, V18, P1959, DOI 10.1162/jocn.2006.18.12.1959
Deouell LY, 2006, EUR J NEUROSCI, V24, P1488, DOI 10.1111/j.1460-9568.2006.05025.x
DOMNITZ RH, 1977, J ACOUST SOC AM, V61, P1586, DOI 10.1121/1.381472
Edmonds BA, 2014, JARO-J ASSOC RES OTO, V15, P103, DOI 10.1007/s10162-013-0421-0
Furukawa S, 2006, HEARING RES, V212, P48, DOI 10.1016/j.heares.2005.10.009
Furukawa S, 2008, J ACOUST SOC AM, V123, P1602, DOI 10.1121/1.2835226
GAIK W, 1993, J ACOUST SOC AM, V94, P98, DOI 10.1121/1.406947
Green D. M., 1974, SIGNAL DETECTION THE
Grothe B, 2010, PHYSIOL REV, V90, P983, DOI 10.1152/physrev.00026.2009
HAFTER ER, 1968, J ACOUST SOC AM, V44, P563, DOI 10.1121/1.1911121
HAFTER ER, 1972, J ACOUST SOC AM, V51, P1852, DOI 10.1121/1.1913044
Ihlefeld A, 2011, J ACOUST SOC AM, V130, P324, DOI 10.1121/1.3596476
Irvine D. R. F., 1992, MAMMALIAN AUDITORY P, P153
Johnson BW, 2010, NEUROPSYCHOLOGIA, V48, P2610, DOI 10.1016/j.neuropsychologia.2010.05.008
KAERNBACH C, 1991, PERCEPT PSYCHOPHYS, V49, P227, DOI 10.3758/BF03214307
Kiesel A, 2008, PSYCHOPHYSIOLOGY, V45, P250, DOI 10.1111/j.1469-8986.2007.00618.x
King AJ, 2001, TRENDS COGN SCI, V5, P261, DOI 10.1016/S1364-6613(00)01660-0
Kleiner M., 2007, PERCEPTION, V36
Lang AG, 2008, J ACOUST SOC AM, V124, P3120, DOI 10.1121/1.2981041
Lang AG, 2009, J ACOUST SOC AM, V126, P2536, DOI 10.1121/1.3212927
Magezi DA, 2010, J NEUROPHYSIOL, V104, P1997, DOI 10.1152/jn.00424.2009
Maris E, 2004, PSYCHOPHYSIOLOGY, V41, P142, DOI 10.1111/j.1469-8986.2003.00139.x
Maris E, 2007, J NEUROSCI METH, V164, P177, DOI 10.1016/j.jneumeth.2007.03.024
MCEVOY L, 1994, HEARING RES, V78, P249, DOI 10.1016/0378-5955(94)90031-0
MCGEE T, 1991, BRAIN RES, V544, P211, DOI 10.1016/0006-8993(91)90056-2
Melcher JR, 1996, HEARING RES, V93, P52, DOI 10.1016/0378-5955(95)00200-6
Miller J, 1998, PSYCHOPHYSIOLOGY, V35, P99, DOI 10.1111/1469-8986.3510099
Parkkonen L, 2009, HUM BRAIN MAPP, V30, P1772, DOI 10.1002/hbm.20788
Pelli DG, 1997, SPATIAL VISION, V10, P437, DOI 10.1163/156856897X00366
Pratt H, 1997, HEARING RES, V108, P1, DOI 10.1016/S0378-5955(97)00033-6
Rakerd B, 2010, J ACOUST SOC AM, V128, P3052, DOI 10.1121/1.3493447
Riedel H, 2002, HEARING RES, V163, P12, DOI 10.1016/S0378-5955(01)00362-8
RUOTOLO BR, 1979, J ACOUST SOC AM, V66, P1733, DOI 10.1121/1.383646
SAYERS BM, 1964, J ACOUST SOC AM, V36, P923, DOI 10.1121/1.1919121
SCHERG M, 1985, ELECTROEN CLIN NEURO, V62, P290, DOI 10.1016/0168-5597(85)90006-1
Schroger E, 1996, HEARING RES, V96, P191, DOI 10.1016/0378-5955(96)00066-4
Shaxby J.H., 1932, MED RES COUNC BRIT S, V166, P1
SPITZER MW, 1995, J NEUROPHYSIOL, V73, P1668
Stecker GC, 2010, HEARING RES, V268, P202, DOI 10.1016/j.heares.2010.06.002
Stevens SS, 1936, AM J PSYCHOL, V48, P297, DOI 10.2307/1415748
Strutt J. W, 1907, PHILOS MAG, V13, P214, DOI 10.1080/14786440709463595
Tardif E, 2006, BRAIN RES, V1092, P161, DOI 10.1016/j.brainres.2006.03.095
Tollin DJ, 2003, NEUROSCIENTIST, V9, P127, DOI 10.1177/1073858403252228
Ulrich R, 2001, PSYCHOPHYSIOLOGY, V38, P816, DOI 10.1017/S0048577201000610
Ungan P, 2001, CLIN NEUROPHYSIOL, V112, P485, DOI 10.1016/S1388-2457(00)00550-2
vandePar S, 1997, J ACOUST SOC AM, V101, P1671, DOI 10.1121/1.418151
WHITWORTH R, 1961, J ACOUST SOC AM, V33, P925, DOI 10.1121/1.1908849
Woldorff MG, 1999, HUM BRAIN MAPP, V7, P49, DOI 10.1002/(SICI)1097-0193(1999)7:1<49::AID-HBM5>3.0.CO;2-J
Yin T.C., 2010, OXFORD HDB AUDITORY, P271
YOUNG LL, 1977, J ACOUST SOC AM, V61, P607, DOI 10.1121/1.381307
NR 54
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2014
VL 312
BP 121
EP 127
DI 10.1016/j.heares.2014.03.009
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AH8BD
UT WOS:000336358200013
PM 24709274
ER
PT J
AU Christison-Lagay, KL
Bennur, S
Blackwell, J
Lee, JH
Schroeder, T
Cohen, YE
AF Christison-Lagay, Kate L.
Bennur, Sharath
Blackwell, Jennifer
Lee, Jung H.
Schroeder, Tim
Cohen, Yale E.
TI Natural variability in species-specific vocalizations constrains
behavior and neural activity
SO HEARING RESEARCH
LA English
DT Article
ID VENTROLATERAL PREFRONTAL CORTEX; MACACA-MULATTA VOCALIZATIONS; PRIMATE
AUDITORY-CORTEX; METRIC-SPACE ANALYSIS; RHESUS-MONKEY; CONSPECIFIC
VOCALIZATIONS; FUNCTIONAL SPECIALIZATION; COMMUNICATION SOUNDS; ACOUSTIC
FEATURES; SPEECH CATEGORIES
AB A listener's capacity to discriminate between sounds is related to the amount of acoustic variability that exists between these sounds. However, a full understanding of how this natural variability impacts neural activity and behavior is lacking. Here, we tested monkeys' ability to discriminate between different utterances of vocalizations from the same acoustic class (i.e., coos and grunts), while neural activity was simultaneously recorded in the anterolateral belt region (AL) of the auditory cortex, a brain region that is a part of a pathway that mediates auditory perception. Monkeys could discriminate between coos better than they could discriminate between grunts. We also found AL activity was more informative about different coos than different grunts. This difference could be attributed, in part, to our finding that coos had more acoustic variability than grunts. Thus, intrinsic acoustic variability constrained the discriminability of AL spike trains and the ability of rhesus monkeys to discriminate between vocalizations. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Christison-Lagay, Kate L.; Blackwell, Jennifer] Univ Penn, Neurosci Grad Grp, Philadelphia, PA 19104 USA.
[Bennur, Sharath; Lee, Jung H.; Schroeder, Tim; Cohen, Yale E.] Univ Penn, Dept Otorhinolaryngol, Philadelphia, PA 19104 USA.
[Cohen, Yale E.] Univ Penn, Philadelphia, PA 19104 USA.
RP Cohen, YE (reprint author), 3400 Spruce St 5 Ravdin, Philadelphia, PA 19104 USA.
EM ycohen@mail.med.upenn.edu
RI Schroder, Tim/E-6196-2013
OI Schroder, Tim/0000-0002-3621-5957
FU NIDCD-NIH [R01-DC009224]; Boucai Hearing Restoration Fund
FX We thank Robert Seyfarth, Joji Tsunada, Marc Schmidt, James Saunders,
Maria Geffen, and Heather Hersh for helpful comments on the preparation
of this manuscript. We also thank Harry Shirley for outstanding
veterinary support. KLCL, SB, and YEC were supported by grants from
NIDCD-NIH (R01-DC009224) and from the Boucai Hearing Restoration Fund.
CR Averbeck BB, 2006, J NEUROSCI, V26, P11023, DOI 10.1523/JNEUROSCI.3466-06.2006
Averbeck BB, 2004, J NEUROPHYSIOL, V91, P2897, DOI 10.1152/jn.01103.2003
Bao S, 2013, NEUROSCIENCE, V248, P30, DOI 10.1016/j.neuroscience.2013.05.056
Bathellier B, 2012, NEURON, V76, P435, DOI 10.1016/j.neuron.2012.07.008
Bennur S, 2013, HEARING RES, V305, P3, DOI 10.1016/j.heares.2013.08.008
Bizley JK, 2013, NAT REV NEUROSCI, V14, P693, DOI 10.1038/nrn3565
Boersma P., 2001, GLOT INT, V5, P341
Boersma P., 1993, P I PHONETIC SCI, V17, P97
Chakladar S, 2008, J NEUROSCI METH, V170, P45, DOI 10.1016/j.jneumeth.2007.12.023
Cohen YE, 2007, J NEUROPHYSIOL, V97, P1470, DOI 10.1152/jn.00769.2006
Cohen YE, 2004, J NEUROSCI, V24, P11307, DOI 10.1523/JNEUROSCI.3935-04.2004
Cohen YE, 2009, P NATL ACAD SCI USA, V106, P20045, DOI 10.1073/pnas.0907248106
DiCarlo JJ, 2012, NEURON, V73, P415, DOI 10.1016/j.neuron.2012.01.010
DiMattina C, 2006, J NEUROPHYSIOL, V95, P1244, DOI 10.1152/jn.00818.2005
Egnor SER, 2004, TRENDS NEUROSCI, V27, P649, DOI 10.1016/j.tins.2004.08.009
Ellis D., 2003, DYNAMIC TIME WARP DT
Engineer CT, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0078607
Fitch WT, 2006, J ACOUST SOC AM, V120, P2132, DOI 10.1121/1.2258499
Freeman J, 2013, NAT NEUROSCI, V16, P974, DOI 10.1038/nn.3402
Gaucher Q, 2013, HEARING RES, V305, P102, DOI 10.1016/j.heares.2013.03.011
Ghazanfar AA, 2007, CURR BIOL, V17, P425, DOI 10.1016/j.cub.2007.01.029
Ghazanfar AA, 2004, NAT REV NEUROSCI, V5, P603, DOI 10.1038/nrn1473
Gifford GW, 2005, J COGNITIVE NEUROSCI, V17, P1471, DOI 10.1162/0898929054985464
Green D. M., 1966, SIGNAL DETECTION THE
Griffiths TD, 2004, TRENDS NEUROSCI, V27, P181, DOI 10.1016/j.tins.2004.02.005
Griffiths TD, 2004, NAT REV NEUROSCI, V5, P887, DOI 10.1038/nrn1538
Hauser M.D., 1997, EVOLUTION COMMUNICAT
HAUSER MD, 1991, ETHOLOGY, V89, P29
Hauser MD, 1998, ANIM BEHAV, V55, P1647, DOI 10.1006/anbe.1997.0712
Kikuchi Y, 2010, J NEUROSCI, V30, P13021, DOI 10.1523/JNEUROSCI.2267-10.2010
King AJ, 2009, NAT NEUROSCI, V12, P698, DOI 10.1038/nn.2308
Klein DJ, 2000, J COMPUT NEUROSCI, V9, P85, DOI 10.1023/A:1008990412183
KUHL PK, 1991, PERCEPT PSYCHOPHYS, V50, P93, DOI 10.3758/BF03212211
Kusmierek P, 2009, J NEUROPHYSIOL, V102, P1606, DOI 10.1152/jn.00167.2009
Kusmierek P, 2012, J NEUROPHYSIOL, V107, P1123, DOI 10.1152/jn.00793.2011
LePrell CG, 1997, J COMP PSYCHOL, V111, P261
Le Prell CG, 2000, J EXP PSYCHOL ANIM B, V26, P261, DOI 10.1037//0097-7403.26.3.261
Le Prell CG, 2002, ANIM BEHAV, V63, P47, DOI 10.1006/anbe.2001.1888
Levene H., 1960, CONTRIBUTIONS PROBAB, P278
Liu RC, 2007, PLOS BIOL, V5, P1426, DOI 10.1371/journal.pbio.0050173
Miller EK, 2001, ANNU REV NEUROSCI, V24, P167, DOI 10.1146/annurev.neuro.24.1.167
Miller LM, 2002, J NEUROPHYSIOL, V87, P516
Ohl FW, 2001, NATURE, V412, P733, DOI 10.1038/35089076
Owren MJ, 2003, J COMP PSYCHOL, V117, P380, DOI 10.1037/0735-7036.117.4.380
OWREN MJ, 1992, BEHAVIOUR, V120, P218, DOI 10.1163/156853992X00615
Perrodin C, 2011, CURR BIOL, V21, P1408, DOI 10.1016/j.cub.2011.07.028
Petkov CI, 2008, NAT NEUROSCI, V11, P367, DOI 10.1038/nn2043
Plakke B, 2013, HEARING RES, V305, P135, DOI 10.1016/j.heares.2013.07.011
Plakke B, 2013, NEUROSCIENCE, V244, P62, DOI 10.1016/j.neuroscience.2013.04.002
Plakke B., 2012, 878102012 SOC NEUR
Poremba A, 2013, HEARING RES, V305, P31, DOI 10.1016/j.heares.2013.06.005
Poremba A, 2004, NATURE, V427, P448, DOI 10.1038/nature02268
Quiroga RQ, 2004, NEURAL COMPUT, V16, P1661, DOI 10.1162/089976604774201631
Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800
Rauschecker JP, 2009, NAT NEUROSCI, V12, P718, DOI 10.1038/nn.2331
Rauschecker J.P., 2012, FRONT EVOL NEUROSCI, V4
Rendall D, 1998, J ACOUST SOC AM, V103, P602, DOI 10.1121/1.421104
Romanski Lizabeth M., 2004, Cognitive Affective & Behavioral Neuroscience, V4, P421, DOI 10.3758/CABN.4.4.421
Romanski LM, 2005, J NEUROPHYSIOL, V93, P734, DOI 10.1152/jn.00675.2004
Romanski LM, 2009, ANNU REV NEUROSCI, V32, P315, DOI 10.1146/annurev.neuro.051508.135431
Romanski LM, 2002, NAT NEUROSCI, V5, P15, DOI 10.1038/nn781
Russ BE, 2008, J NEUROPHYSIOL, V99, P87, DOI 10.1152/jn.01069.2007
Russ BE, 2008, CURR BIOL, V18, P1483, DOI 10.1016/j.cub.2008.08.054
Selezneva E, 2006, CURR BIOL, V16, P2428, DOI 10.1016/j.cub.2006.10.027
Singh NC, 2003, J ACOUST SOC AM, V114, P3394, DOI 10.1121/1.1624067
Tchernichovski O, 2000, ANIM BEHAV, V59, P1167, DOI 10.1006/anbe.1999.1416
Theunissen FE, 2004, ANN NY ACAD SCI, V1016, P187, DOI 10.1196/annals.1298.020
Tian B, 2001, SCIENCE, V292, P290, DOI 10.1126/science.1058911
Tsunada J, 2011, J NEUROPHYSIOL, V105, P2634, DOI 10.1152/jn.00037.2011
Tsunada J, 2012, J PHYSIOL-LONDON, V590, P3129, DOI 10.1113/jphysiol.2012.232892
Tsunada J., 2013, ANN M SOC NEUR SAN D
Turetsky R., 2003, 4 INT S MUS INF RETR, P135
Victor JD, 1997, NETWORK-COMP NEURAL, V8, P127, DOI 10.1088/0954-898X/8/2/003
Victor JD, 1996, J NEUROPHYSIOL, V76, P1310
Woolley SMN, 2005, NAT NEUROSCI, V8, P1371, DOI 10.1038/nn1536
Zar JH, 1996, BIOSTATISTICAL ANAL
ZOLOTH SR, 1979, SCIENCE, V204, P870, DOI 10.1126/science.108805
NR 77
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2014
VL 312
BP 128
EP 142
DI 10.1016/j.heares.2014.03.007
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AH8BD
UT WOS:000336358200014
PM 24721001
ER
PT J
AU Walsh, KP
Pasanen, EG
McFadden, D
AF Walsh, Kyle P.
Pasanen, Edward G.
McFadden, Dennis
TI Selective attention reduces physiological noise in the external ear
canals of humans. I: Auditory attention
SO HEARING RESEARCH
LA English
DT Article
ID EVOKED OTOACOUSTIC EMISSIONS; ACTIVE MICROMECHANICAL PROPERTIES;
STIMULATED ACOUSTIC EMISSIONS; VISUAL-ATTENTION; BROWNIAN-MOTION;
HAIR-CELLS; GUINEA-PIG; OLIVOCOCHLEAR EFFERENTS; HUMAN COCHLEA;
MIDDLE-EAR
AB In this study, a nonlinear version of the stimulus-frequency OAE (SFOAE), called the nSFOAE, was used to measure cochlear responses from human subjects while they simultaneously performed behavioral tasks requiring, or not requiring, selective auditory attention. Appended to each stimulus presentation, and included in the calculation of each nSFOAE response, was a 30-ms silent period that was used to estimate the level of the inherent physiological noise in the ear canals of our subjects during each behavioral condition. Physiological-noise magnitudes were higher (noisier) for all subjects in the inattention task, and lower (quieter) in the selective auditory-attention tasks. These noise measures initially were made at the frequency of our nSFOAE probe tone (4.0 kHz), but the same attention effects also were observed across a wide range of frequencies. We attribute the observed differences in physiological-noise magnitudes between the inattention and attention conditions to different levels of efferent activation associated with the differing attentional demands of the behavioral tasks. One hypothesis is that when the attentional demand is relatively great, efferent activation is relatively high, and a decrease in the gain of the cochlear amplifier leads to lower-amplitude cochlear activity, and thus a smaller measure of noise from the ear. (C) 2014 Elsevier B.V. All rights reserved.
C1 Univ Texas Austin, Dept Psychol, Austin, TX 78712 USA.
Univ Texas Austin, Ctr Perceptual Syst, Austin, TX 78712 USA.
RP Walsh, KP (reprint author), Univ Minnesota, Dept Psychol, 75 E River Rd, Minneapolis, MN 55455 USA.
EM kpwalsh@umn.edu
FU National Institute on Deafness (NIDCD) [RO1 DC000153]
FX This study was done as part of the requirements for a doctoral degree
from The University of Texas at Austin, by author KPW, who now is
located at the University of Minnesota. The work was supported by a
research grant awarded to author DM by the National Institute on
Deafness and other Communication Disorders (NIDCD; RO1 DC000153). The
content is solely the responsibility of the authors and does not
necessarily represent the official views of the NIDCD or the National
Institutes of Health. D.O. Kim and J.G. Guinan provided helpful
discussion about these results, and two anonymous reviewers provided
thoughtful comments.
CR AVAN P, 1992, HEARING RES, V57, P269, DOI 10.1016/0378-5955(92)90156-H
Backus BC, 2006, J ACOUST SOC AM, V119, P2889, DOI 10.1121/1.2169918
Bacon S. P., 2004, COMPRESSION COCHLEA
BADDELEY A, 1992, SCIENCE, V255, P556, DOI 10.1126/science.1736359
Breneman KD, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005201
BROWN MC, 1983, SCIENCE, V222, P69, DOI 10.1126/science.6623058
Brown MC, 2011, SPRINGER HANDB AUDIT, V38, P17, DOI 10.1007/978-1-4419-7070-1_2
BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153
Cherry C., 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229
COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155
Cooper NP, 2003, J PHYSIOL-LONDON, V548, P307, DOI 10.1113/jphysiol.2003.039081
Cooper NP, 2006, J PHYSIOL-LONDON, V576, P49, DOI 10.1113/jphysiol.2006.114991
COREY DP, 1983, J NEUROSCI, V3, P962
DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3
De Boer J, 2007, HEARING RES, V233, P117, DOI 10.1016/j.heares.2007.08.002
DEVRIES HL, 1948, PHYSICA, V14, P48, DOI 10.1016/0031-8914(48)90060-3
DIEMONT B, 1988, INT J BIOMED COMPUT, V23, P161, DOI 10.1016/0020-7101(88)90011-6
FERBERVIART C, 1995, PHYSIOL BEHAV, V57, P1075, DOI 10.1016/0031-9384(95)00012-8
Fritz JB, 2007, CURR OPIN NEUROBIOL, V17, P437, DOI 10.1016/j.conb.2007.07.011
FROEHLICH P, 1990, BRAIN RES, V508, P286, DOI 10.1016/0006-8993(90)90408-4
FROEHLICH P, 1993, PHYSIOL BEHAV, V53, P679, DOI 10.1016/0031-9384(93)90173-D
Gallun FJ, 2007, PERCEPT PSYCHOPHYS, V69, P757, DOI 10.3758/BF03193777
GAVRIELY N, 1981, J APPL PHYSIOL, V50, P307
GIARD MH, 1994, BRAIN RES, V633, P353, DOI 10.1016/0006-8993(94)91561-X
Goodman SS, 2006, JARO-J ASSOC RES OTO, V7, P125, DOI 10.1007/s10162-006-0028-9
Guinan JJ, 2006, EAR HEARING, V27, P589, DOI 10.1097/01.aud.0000240507.83072.e7
Guinan JJ, 2003, JARO-J ASSOC RES OTO, V4, P521, DOI 10.1007/s10162-002-3037-3
Guinan JJ, 2011, SPRINGER HANDB AUDIT, V38, P39, DOI 10.1007/978-1-4419-7070-1_3
Hafter E. R., 1998, PSYCHOPHYSICAL PHYSL, P228
Harkrider AW, 2009, J AM ACAD AUDIOL, V20, P208, DOI 10.3766/jaaa.20.3.7
HARRIS GG, 1968, J ACOUST SOC AM, V44, P176, DOI 10.1121/1.1911052
HERNANDEZPEON R, 1956, SCIENCE, V123, P331, DOI 10.1126/science.123.3191.331
Jaramillo F, 1998, NAT NEUROSCI, V1, P384, DOI 10.1038/1597
Keefe DH, 1998, J ACOUST SOC AM, V103, P3489, DOI 10.1121/1.423057
KEMP DT, 1980, HEARING RES, V2, P533, DOI 10.1016/0378-5955(80)90091-X
KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104
LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309
Lilaonitkul W, 2009, JARO-J ASSOC RES OTO, V10, P459, DOI 10.1007/s10162-009-0163-1
LUKAS JH, 1980, PSYCHOPHYSIOLOGY, V17, P444, DOI 10.1111/j.1469-8986.1980.tb00181.x
Maison S, 2001, PSYCHOPHYSIOLOGY, V38, P35, DOI 10.1017/S0048577201990109
MERIC C, 1994, NEUROSCI BIOBEHAV R, V18, P215, DOI 10.1016/0149-7634(94)90026-4
MERIC C, 1992, INT J PSYCHOPHYSIOL, V12, P233, DOI 10.1016/0167-8760(92)90061-F
MERIC C, 1994, INT J PSYCHOPHYSIOL, V17, P281, DOI 10.1016/0167-8760(94)90070-1
Mitchell JF, 2009, NEURON, V63, P879, DOI 10.1016/j.neuron.2009.09.013
Mulders WHA, 2000, HEARING RES, V149, P11, DOI 10.1016/S0378-5955(00)00157-X
Mulders WHAM, 2000, HEARING RES, V144, P65, DOI 10.1016/S0378-5955(00)00046-0
Murugasu E, 1996, J NEUROSCI, V16, P325
Nutall A.L., 1997, HEARING RES, V114, P35
OSTER G, 1980, BIOPHYS J, V30, P119
Pasanen EG, 2000, J ACOUST SOC AM, V108, P1105, DOI 10.1121/1.1287026
PICTON TW, 1974, ELECTROEN CLIN NEURO, V36, P191, DOI 10.1016/0013-4694(74)90156-4
PUEL JL, 1988, BRAIN RES, V447, P380, DOI 10.1016/0006-8993(88)91144-4
Puria S, 2003, J ACOUST SOC AM, V113, P2773, DOI 10.1121/1.1564018
Rabbitt RD, 2009, PLOS COMPUT BIOL, V5, DOI 10.1371/journal.pcbi.1000444
RASMUSSEN GL, 1946, J COMP NEUROL, V84, P141, DOI 10.1002/cne.900840204
RASMUSSEN GL, 1953, J COMP NEUROL, V99, P61, DOI 10.1002/cne.900990105
REN T, 1995, ACTA OTO-LARYNGOL, V115, P725, DOI 10.3109/00016489509139393
Shera CA, 2003, J ACOUST SOC AM, V114, P244, DOI 10.1121/1.1575750
SRIDHAR TS, 1995, J NEUROSCI, V15, P3667
Svrcek-Seiler WA, 1998, J THEOR BIOL, V193, P623, DOI 10.1006/jtbi.1998.0729
TREISMAN AM, 1969, PSYCHOL REV, V76, P282, DOI 10.1037/h0027242
VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724
Walsh KP, 2010, J ACOUST SOC AM, V127, P955, DOI 10.1121/1.3279832
Walsh KP, 2014, HEARING RES, V312, P160, DOI 10.1016/j.heares.2014.03.013
Walsh KR, 2010, HEARING RES, V268, P22, DOI 10.1016/j.heares.2010.04.007
WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1
WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P950, DOI 10.1121/1.1912234
WILSON JP, 1980, HEARING RES, V2, P233, DOI 10.1016/0378-5955(80)90060-X
WIT HP, 1979, J ACOUST SOC AM, V66, P911, DOI 10.1121/1.383202
Worden F. G., 1973, HABITUATION PHYSL SU, P109
NR 70
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2014
VL 312
BP 143
EP 159
DI 10.1016/j.heares.2014.03.012
PG 17
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AH8BD
UT WOS:000336358200015
PM 24732069
ER
PT J
AU Walsh, KP
Pasanen, EG
McFadden, D
AF Walsh, Kyle P.
Pasanen, Edward G.
McFadden, Dennis
TI Selective attention reduces physiological noise in the external ear
canals of humans. II: Visual attention
SO HEARING RESEARCH
LA English
DT Article
ID EVOKED OTOACOUSTIC EMISSIONS; ACTIVE MICROMECHANICAL PROPERTIES; TASK;
COCHLEA
AB Human subjects performed in several behavioral conditions requiring, or not requiring, selective attention to visual stimuli. Specifically, the attentional task was to recognize strings of digits that had been presented visually. A nonlinear version of the stimulus-frequency otoacoustic emission (SFOAE), called the nSFOAE, was collected during the visual presentation of the digits. The segment of the physiological response discussed here occurred during brief silent periods immediately following the SFOAE-evoking stimuli. For all subjects tested, the physiological-noise magnitudes were substantially weaker (less noisy) during the tasks requiring the most visual attention. Effect sizes for the differences were >2.0. Our interpretation is that cortico-olivo influences adjusted the magnitude of efferent activation during the SFOAE-evoking stimulation depending upon the attention task in effect, and then that magnitude of efferent activation persisted throughout the silent period where it also modulated the physiological noise present. Because the results were highly similar to those obtained when the behavioral conditions involved auditory attention, similar mechanisms appear to operate both across modalities and within modalities. Supplementary measurements revealed that the efferent activation was spectrally global, as it was for auditory attention. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Walsh, Kyle P.; Pasanen, Edward G.; McFadden, Dennis] Univ Texas Austin, Ctr Perceptual Syst, Dept Psychol, Austin, TX 78712 USA.
RP Walsh, KP (reprint author), Univ Minnesota, Ctr Cognit Sci, Dept Psychol, 75 E River Rd, Minneapolis, MN 55455 USA.
EM kpwalsh@umn.edu
FU National Institute on Deafness and other Communication Disorders (NIDCD)
[RO1 DC000153]
FX This study was done as part of the requirements for a doctoral degree
from The University of Texas at Austin, by author KPW, who now is
located at the University of Minnesota. This work was supported by a
research grant awarded to author DM by the National Institute on
Deafness and other Communication Disorders (NIDCD; RO1 DC000153). The
content is solely the responsibility of the authors and does not
necessarily represent the official views of the NIDCD or the National
Institutes of Health.
CR AVAN P, 1992, HEARING RES, V57, P269, DOI 10.1016/0378-5955(92)90156-H
COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155
Cooper NP, 2006, J PHYSIOL-LONDON, V576, P49, DOI 10.1113/jphysiol.2006.114991
De Boer J, 2007, HEARING RES, V233, P117, DOI 10.1016/j.heares.2007.08.002
FERBERVIART C, 1995, PHYSIOL BEHAV, V57, P1075, DOI 10.1016/0031-9384(95)00012-8
FROEHLICH P, 1990, BRAIN RES, V508, P286, DOI 10.1016/0006-8993(90)90408-4
FROEHLICH P, 1993, PHYSIOL BEHAV, V53, P679, DOI 10.1016/0031-9384(93)90173-D
HERNANDEZPEON R, 1956, SCIENCE, V123, P331, DOI 10.1126/science.123.3191.331
Keefe DH, 1998, J ACOUST SOC AM, V103, P3489, DOI 10.1121/1.423057
MERIC C, 1992, INT J PSYCHOPHYSIOL, V12, P233, DOI 10.1016/0167-8760(92)90061-F
MERIC C, 1994, INT J PSYCHOPHYSIOL, V17, P281, DOI 10.1016/0167-8760(94)90070-1
PUEL JL, 1988, BRAIN RES, V447, P380, DOI 10.1016/0006-8993(88)91144-4
Walsh KP, 2010, J ACOUST SOC AM, V127, P955, DOI 10.1121/1.3279832
Walsh KP, 2014, HEARING RES, V312, P143, DOI 10.1016/j.heares.2014.03.012
Walsh KR, 2010, HEARING RES, V268, P22, DOI 10.1016/j.heares.2010.04.007
NR 15
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2014
VL 312
BP 160
EP 167
DI 10.1016/j.heares.2014.03.013
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AH8BD
UT WOS:000336358200016
PM 24732070
ER
PT J
AU Battisti, AC
Fantetti, KN
Moyers, BA
Fekete, DM
AF Battisti, Andrea C.
Fantetti, Kristen N.
Moyers, Bryan A.
Fekete, Donna M.
TI A subset of chicken statoacoustic ganglion neurites are repelled by
Slit1 and Slit2
SO HEARING RESEARCH
LA English
DT Article
ID DEVELOPING INNER-EAR; AXON GUIDANCE; COCHLEAR GANGLION; IN-VITRO;
DIFFERENTIAL EXPRESSION; INNERVATION PATTERNS; ROBO RECEPTORS;
NERVE-FIBERS; NEURONS; MIGRATION
AB Mechanosensory hair cells in the chicken inner ear are innervated by bipolar afferent neurons of the statoacoustic ganglion (SAG). During development, individual SAG neurons project their peripheral process to only one of eight distinct sensory organs. These neuronal subtypes may respond differently to guidance cues as they explore the periphery in search of their target. Previous gene expression data suggested that Slit repellants might channel SAG neurites into the sensory primordia, based on the presence of robo transcripts in the neurons and the confinement of slit transcripts to the flanks of the prosensoiy domains. This led to the prediction that excess Slit proteins would impede the outgrowth of SAG neurites. As predicted, axonal projections to the primordium of the anterior crista were reduced 2-3 days after electroporation of either slit1 or slit2 expression plasmids into the anterior pole of the otocyst on embryonic day 3 (E3). The posterior crista afferents, which normally grow through and adjacent to slit expression domains as they are navigating towards the posterior pole of the otocyst, did not show Slit responsiveness when similarly challenged by ectopic delivery of slit to their targets. The sensitivity to ectopic Slits shown by the anterior crista afferents was more the exception than the rule: responsiveness to Slits was not observed when the entire E4 SAG was challenged with Slits for 40 h in vitro. The corona of neurites emanating from SAG explants was unaffected by the presence of purified human Slit1 and Slit2 in the culture medium. Reduced axon outgrowth from E8 olfactory bulbs cultured under similar conditions for 24 h confirmed bioactivity of purified human Slits on chicken neurons. In summary, differential sensitivity to Slit repellents may influence the directional outgrowth of otic axons toward either the anterior or posterior otocyst. (c) 2014 Elsevier B.V. All rights reserved.
C1 [Fekete, Donna M.] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA.
Purdue Univ, Ctr Canc Res, W Lafayette, IN 47907 USA.
RP Fekete, DM (reprint author), Purdue Univ, Dept Biol Sci, 915 W State St, W Lafayette, IN 47907 USA.
EM abattisti@medinst.com; kfantetti@gmail.com; bamoyers@umich.edu;
dfekete@purdue.edu
FU National Institutes of Health [R01DC002756]; Purdue Research Foundation;
NICHD; University of Iowa, Department of Biology, Iowa City [IA 52242]
FX This work was funded by the National Institutes of Health Grant
R01DC002756 and the Purdue Research Foundation. We are grateful to Dr.
Bruce Craig (Purdue University) for expert statistical consultation and
analysis. We thank Dr. Doris Wu for advice with experiments and Deb
Biesemeier and Christine Dee for assistance with histology. The pEFX-GFP
and pEFX plasmids were provided by Dr. Cliff Ragsdale (University of
Chicago), while the CMV-hSlit plasmids were provided by Dr. William
Andrews (University College London). The 9E10 myc (developed by J.M.
Bishop) and 3A10 (developed by T.M. Jessell and collaborators)
antibodies were obtained from the Developmental Studies Hybridoma Bank
developed under the auspices of the NICHD and maintained by The
University of Iowa, Department of Biology, Iowa City, IA 52242.
CR Adamska M, 2001, MECH DEVELOP, V109, P303, DOI 10.1016/S0925-4773(01)00550-0
Agarwala S, 2001, SCIENCE, V291, P2147, DOI 10.1126/science.1058624
Appler JM, 2011, PROG NEUROBIOL, V93, P488, DOI 10.1016/j.pneurobio.2011.01.004
Bank LM, 2012, DEVELOPMENT, V139, P4666, DOI 10.1242/dev.066647
Bashaw GJ, 1999, CELL, V97, P917, DOI 10.1016/S0092-8674(00)80803-X
Battisti AC, 2008, DEV DYNAM, V237, P476, DOI 10.1002/dvdy.21429
BIANCHI LM, 1993, DEV BIOL, V159, P353, DOI 10.1006/dbio.1993.1247
Bianchi LM, 2005, JARO-J ASSOC RES OTO, V6, P355, DOI 10.1007/s10162-005-0013-8
Bianchi LM, 2002, EUR J NEUROSCI, V16, P1499, DOI 10.1046/j.1460-9568.2002.02248.x
Bostrom M., 2009, AUDIOL NEURO-OTOL, V15, P175
Brors D, 2003, J COMP NEUROL, V462, P90, DOI 10.1002/cne.10707
Camarero G, 2003, DEV BIOL, V262, P242, DOI 10.1016/S0012-1606(03)00387-7
Chang W., 2008, PLOS GENET, V11
Chilton JK, 2003, DEV DYNAM, V228, P726, DOI 10.1002/dvdy.10396
Coate TM, 2012, NEURON, V73, P49, DOI 10.1016/j.neuron.2011.10.029
Coate TM, 2013, SEMIN CELL DEV BIOL, V24, P460, DOI 10.1016/j.semcdb.2013.04.003
DAMICOMARTEL A, 1982, AM J ANAT, V163, P351, DOI 10.1002/aja.1001630407
Dickson BJ, 2006, ANNU REV CELL DEV BI, V22, P651, DOI 10.1146/annurev.cellbio.21.090704.151234
Evans TA, 2010, CURR BIOL, V20, P567, DOI 10.1016/j.cub.2010.02.021
Fantetti K.N., 2011, J VIS EXP, V58, pe3600
Fantetti KN, 2011, HEARING RES, V278, P86, DOI 10.1016/j.heares.2011.04.005
Fantetti KN, 2012, DEV NEUROBIOL, V72, P1213, DOI 10.1002/dneu.20988
Fekete DM, 2007, INT J DEV BIOL, V51, P549, DOI 10.1387/ijdb.072341df
Fritzsch B, 2005, HEARING RES, V206, P52, DOI 10.1016/j.heares.2004.11.025
GINZBERG RD, 1980, J NEUROCYTOL, V9, P405, DOI 10.1007/BF01181545
Gu CH, 2003, DEV CELL, V5, P45, DOI 10.1016/S1534-5807(03)00169-2
HAMBURGER V, 1951, J MORPHOL, V88, P49, DOI 10.1002/jmor.1050880104
Hammond R, 2005, DEVELOPMENT, V132, P4483, DOI 10.1242/dev.02038
Hansen MR, 2001, J NEUROSCI, V21, P2256
HEMOND SG, 1991, ANAT EMBRYOL, V184, P1, DOI 10.1007/BF01744256
Holmes G, 2001, DEV DYNAM, V222, P301, DOI 10.1002/dvdy.1182
Hossain WA, 2000, J NEUROSCI RES, V62, P40, DOI 10.1002/1097-4547(20001001)62:1<40::AID-JNR5>3.0.CO;2-L
Hossain WA, 2008, J NEUROSCI RES, V86, P2376, DOI 10.1002/jnr.21685
Hossain WA, 1996, EXP NEUROL, V138, P121, DOI 10.1006/exnr.1996.0052
Jaworski A, 2010, J NEUROSCI, V30, P9445, DOI 10.1523/JNEUROSCI.6290-09.2010
Jeon EJ, 2011, NEUROSCIENCE, V177, P321, DOI 10.1016/j.neuroscience.2011.01.014
Krull CE, 2004, DEV DYNAM, V229, P433, DOI 10.1002/dvdy.10473
KURATANI S, 1988, AM J ANAT, V182, P169, DOI 10.1002/aja.1001820207
Li HS, 1999, CELL, V96, P807, DOI 10.1016/S0092-8674(00)80591-7
Momose T, 1999, DEV GROWTH DIFFER, V41, P335
Neves J, 2007, J COMP NEUROL, V503, P487, DOI 10.1002/cne.21299
Patel K, 2001, DEVELOPMENT, V128, P5031
Pauley S, 2005, SPR HDB AUD, V26, P85
Reeber SL, 2009, CELL ADHES MIGR, V3, P300, DOI 10.4161/cam.3.3.9156
Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849
Sang Q, 2002, MOL CELL NEUROSCI, V21, P250, DOI 10.1006/mcne.2002.1156
Siddiqui SA, 2005, J COMP NEUROL, V482, P309, DOI 10.1002/cne.20396
Tessarollo L, 2004, J NEUROSCI, V24, P2575, DOI 10.1523/JNEUROSCI.5514-03.2004
Vargesson N, 2001, MECH DEVELOP, V106, P175, DOI 10.1016/S0925-4773(01)00430-0
VONBARTHELD CS, 1991, DEVELOPMENT, V113, P455
Wang SZ, 2013, J NEUROSCI, V33, P12242, DOI 10.1523/JNEUROSCI.5736-12.2013
Webber A, 2006, ANAT REC PART A, V288A, P390, DOI 10.1002/ar.a.20299
WHITEHEAD MC, 1985, NEUROSCIENCE, V14, P255, DOI 10.1016/0306-4522(85)90177-0
Whitilon DS, 2009, NEUROSCIENCE, V161, P227, DOI 10.1016/j.neuroscience.2009.03.044
Wu DK, 1996, J NEUROSCI, V16, P6454
Ypsilanti AR, 2010, DEVELOPMENT, V137, P1939, DOI 10.1242/dev.044511
Zhou CQ, 2011, LARYNGOSCOPE, V121, P1541, DOI 10.1002/lary.21861
NR 57
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2014
VL 310
BP 1
EP 12
DI 10.1016/j.heares.2014.01.003
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AE6FV
UT WOS:000334086900001
PM 24456709
ER
PT J
AU Kwacz, M
Marek, P
Borkowski, P
Gambin, W
AF Kwacz, Monika
Marek, Piotr
Borkowski, Pawel
Gambin, Wiktor
TI Effect of different stapes prostheses on the passive vibration of the
basilar membrane
SO HEARING RESEARCH
LA English
DT Article
ID FINITE-ELEMENT MODEL; HUMAN TEMPORAL BONE; MAMMALIAN COCHLEA;
SOUND-TRANSMISSION; DIFFERENT DIAMETER; PISTON DIAMETER; INNER-EAR;
STAPEDOTOMY; OTOSCLEROSIS; SURGERY
AB The effect of different stapes prostheses on the basilar membrane (BM) motion was determined. To that end, a three dimensional finite element (FE) model of the passive human cochlea was developed. Passive responses of the BM were found based on coupled fluid structure interactions between the cochlear solid structures and the scala fluids. The passive BM vibrations in normal (healthy) cochlea were compared with vibrations in the cochlea in which a 0.4-mm piston or a proposed new type of prosthesis was implanted. The proposed chamber prosthesis was not experimentally implanted, but only numerically simulated. Design of the new chamber stapes prosthesis is presented for the first time in this paper. The simulation results showed 10-20 dB decrease in BM displacement amplitude in the case of the piston. In contrast, the BM responses in the cochlea with the new prosthesis are higher with respect to the healthy ear. The results obtained in this study are promising for further research to optimize the design of the new chamber stapes prosthesis. (c) 2014 Elsevier B.V. All rights reserved.
C1 [Kwacz, Monika; Gambin, Wiktor] Warsaw Univ Technol, Fac Mechatron, Inst Micromech & Photon, PL-02525 Warsaw, Poland.
[Marek, Piotr; Borkowski, Pawel] Warsaw Univ Technol, Fac Power & Aeronaut Engn, Inst Aeronaut & Appl Mech, PL-00665 Warsaw, Poland.
RP Kwacz, M (reprint author), Warsaw Univ Technol, Fac Mechatron, Inst Micromech & Photon, Ul Sw A Boboli 8, PL-02525 Warsaw, Poland.
EM m.kwacz@mchtr.pw.edu.pl
FU Polish Ministry of Science and Higher Education [N N518 377637]
FX This work was partially supported by the Polish Ministry of Science and
Higher Education (Research Project No. N N518 377637).
CR Andoh M, 2004, J ACOUST SOC AM, V116, P417, DOI 10.1121/1.1763599
CABEZUDO LM, 1978, ACTA OTO-LARYNGOL, V86, P160, DOI 10.3109/00016487809124733
Cai HX, 2005, J ROY SOC INTERFACE, V2, P341, DOI 10.1098/rsif.2005.0049
Cavaliere M, 2012, ORL-J OTO-RHIN-LARYN, V74, P93, DOI 10.1159/000335927
DALLOS P, 1992, J NEUROSCI, V12, P4575
DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3
de Boer E., 1996, COCHLEA, P258
DEBOER E, 1983, J ACOUST SOC AM, V73, P567, DOI 10.1121/1.389002
Dubreuil C, 1994, Ann Otolaryngol Chir Cervicofac, V111, P249
FISCH U, 1982, AM J OTOL, V4, P112
Fleischer M, 2010, J ACOUST SOC AM, V127, P2973, DOI 10.1121/1.3372752
Gan RZ, 2007, ANN BIOMED ENG, V35, P2180, DOI 10.1007/s10439-007-9366-y
Gan RZ, 2006, MED ENG PHYS, V28, P395, DOI 10.1016/j.medengphy.2005.07.018
GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
Grolman W, 1997, EUR ARCH OTO-RHINO-L, V254, P422, DOI 10.1007/BF02439972
GUNDERSEN T, 1978, ACTA OTO-LARYNGOL, V86, P225, DOI 10.3109/00016487809124740
Hato N, 2003, AUDIOL NEURO-OTOL, V8, P140, DOI 10.1159/000069475
Hausler R, 2004, MIDDLE EAR SURG, P105
Heiland KE, 1999, AM J OTOL, V20, P81
HERZOG JA, 1991, AM J OTOL, V12, P16
Homer M, 2004, J ACOUST SOC AM, V116, P1025, DOI 10.1121/1.1771571
Huber AM, 2003, LARYNGOSCOPE, V113, P853, DOI 10.1097/00005537-200305000-00015
Huttenbrink KB, 2003, OTOL NEUROTOL, V24, P548
IURATO SALVATORE, 1962, JOUR ACOUSTICAL SOC AMER, V34, P1386, DOI 10.1121/1.1918355
Kim N, 2011, JARO-J ASSOC RES OTO, V12, P261, DOI 10.1007/s10162-011-0258-3
Kohlloffel L.U.E, 1983, MECH HEARING, P211
Koike T, 2012, HEARING RES, V283, P117, DOI 10.1016/j.heares.2011.10.006
Kolston PJ, 1996, J ACOUST SOC AM, V99, P455, DOI 10.1121/1.414557
Kwacz M, 2013, BIOMECH MODEL MECHAN, V12, P1243, DOI 10.1007/s10237-013-0479-y
Kwacz M, 2012, ACTA BIOENG BIOMECH, V14, P67, DOI 10.5277/abb120209
Laske RD, 2011, OTOL NEUROTOL, V32, P520, DOI 10.1097/MAO.0b013e318216795b
LECHNER TP, 1993, HEARING RES, V66, P202, DOI 10.1016/0378-5955(93)90140-V
LIGHTHILL J, 1981, J FLUID MECH, V106, P149, DOI 10.1017/S0022112081001560
Lim KM, 2002, HEARING RES, V170, P190, DOI 10.1016/S0378-5955(02)00491-4
Liu S, 2008, J ACOUST SOC AM, V123, P2160, DOI 10.1121/1.2871682
Marchese MR, 2007, AUDIOL NEURO-OTOL, V12, P221, DOI 10.1159/000101329
MCGEE TM, 1981, LARYNGOSCOPE, V91, P1478
Miller C., 1984, J ACOUST SOC AM, V77, P1465
Moller P, 2007, ADV OTO-RHINO-LARYNG, V65, P169, DOI 10.1159/000098802
NEELY ST, 1981, J ACOUST SOC AM, V69, P1386, DOI 10.1121/1.385820
PETERSON LC, 1950, J ACOUST SOC AM, V22, P369, DOI 10.1121/1.1906615
Pozrikidis C, 2008, J FLUID STRUCT, V24, P336, DOI 10.1016/j.jfluidstructs.2007.08.006
Pozrikidis C, 2007, ENG ANAL BOUND ELEM, V31, P1, DOI 10.1016/j.enganabound.2006.07.003
Raut VV, 2002, CLIN OTOLARYNGOL, V27, P113, DOI 10.1046/j.1365-2273.2002.00542.x
Reichenbach T, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.118102
Ren TY, 2002, P NATL ACAD SCI USA, V99, P17101, DOI 10.1073/pnas.262663699
RIZER FM, 1993, OTOLARYNG CLIN N AM, V26, P443
Robles L, 2001, PHYSIOL REV, V81, P1305
Rosowski JJ, 2003, OTOL NEUROTOL, V24, P165, DOI 10.1097/00129492-200303000-00008
ROSOWSKI JJ, 1995, AM J OTOL, V16, P486
Schweitzer L, 1996, HEARING RES, V97, P84
Sennaroglu L, 2001, OTOLARYNG HEAD NECK, V124, P279, DOI 10.1067/mhn.2001.112431
Shabana YK, 1999, CLIN OTOLARYNGOL, V24, P91
SHEA JJ, 1988, J LARYNGOL OTOL, V102, P14, DOI 10.1017/S0022215100103846
SHEA JJ, 1962, ARCHIV OTOLARYNGOL, V76, P516
SHEA J J Jr, 1958, Ann Otol Rhinol Laryngol, V67, P932
Shera CA, 2005, J ACOUST SOC AM, V118, P287, DOI 10.1121/1.1895025
Sim JH, 2010, JARO-J ASSOC RES OTO, V11, P329, DOI 10.1007/s10162-010-0207-6
Sim J.H., 2012, EAR HEARING, V33, P24
Somers T, 2006, ANN OTO RHINOL LARYN, V115, P880
Steele CR, 2009, J MECH MATER STRUCT, V4, P755, DOI 10.2140/jomms.2009.4.755
Steele CR, 1999, AUDIOL NEURO-OTOL, V4, P197, DOI 10.1159/000013841
Stenfelt S, 2003, HEARING RES, V181, P131, DOI 10.1016/S0378-5955(03)00183-7
Tange RA, 2004, OTOL NEUROTOL, V25, P102, DOI 10.1097/00129492-200403000-00004
Teig E, 1999, OTO RHINO LARYN NOVA, V9, P252, DOI 10.1159/000027931
Ulfendahl M, 1997, PROG NEUROBIOL, V53, P331, DOI 10.1016/S0301-0082(97)00040-3
Vincent R, 2006, OTOL NEUROTOL, V27, P25
von Bekesy G., 1960, EXPT HEARING, P44
von Békésy G, 1970, Nature, V225, P1207, DOI 10.1038/2251207a0
Watts L, 2000, J ACOUST SOC AM, V108, P2266, DOI 10.1121/1.1310194
Wittbrodt MJ, 2006, AUDIOL NEURO-OTOL, V11, P104, DOI 10.1159/000090683
Wysocki J, 2011, LARYNGOSCOPE, V121, P1958, DOI 10.1002/lary.22081
Yoon YJ, 2007, J ACOUST SOC AM, V122, P952, DOI 10.1121/1.2747162
NR 73
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2014
VL 310
BP 13
EP 26
DI 10.1016/j.heares.2014.01.004
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AE6FV
UT WOS:000334086900002
PM 24463104
ER
PT J
AU Thein, P
Kalinec, GM
Park, C
Kalinec, F
AF Thein, Pru
Kalinec, Gilda M.
Park, Channy
Kalinec, Federico
TI In vitro assessment of antiretroviral drugs demonstrates potential for
ototoxicity
SO HEARING RESEARCH
LA English
DT Article
ID ACETYL-L-CARNITINE; INDUCED HEARING-LOSS; REVERSE-TRANSCRIPTASE
INHIBITORS; TOXIC NEUROPATHY; MITOCHONDRIAL TOXICITY; HIV-1 INFECTION;
APOPTOSIS; CELLS; AIDS; ZIDOVUDINE
AB Several studies have reported an increased incidence of auditory dysfunction among HIV/AIDS patients. We used auditory HEI-OC1 cells in cell viability, flow cytometry and caspases 3/7-activation studies to investigate the potential ototoxicity of fourteen HIV antiretroviral agents: Abacavir, AZT, Delavirdine, Didenosine, Efavirenz, Emtricitabine, Indinavir, Lamivudine, Nefinavir, Nevirapine, Tenofovir, Ritonavir, Stavudine and Zalcitabine, as well as combinations of these agents as used in the common anti-HIV cocktails Atripla (TM), Combivir (TM), Epzicom (TM), Trizivir (TM), and Truvada (TM). Our results suggested that most of the single assayed anti-HIV drugs are toxic for HEI-0C1 auditory cells. The cocktails, on the other hand, decreased auditory cells' viability with high significance, with the following severity gradient: Epzicom similar to Trizivir >> Atripla similar to Combivir > Truvada. Interestingly, our results suggest that Trizivir- and Epzicom-induced cell death would be mediated by a caspase-independent mechanism. L-Carnitine, a natural micronutrient known to protect HEI-0C1 cells against some ototoxic drugs as well as to decrease neuropathies associated with anti-HIV treatments, increased viability of cells treated with Lamivudine and Tenofovir as well as with the cocktail Atripla, but had only minor effects on cells treated with other drugs and drug combinations. Altogether, these results suggest that some frequently used anti-HIV agents could have deleterious effects on patients' hearing, and provide arguments in favor of additional studies aimed at elucidating the potential ototoxicity of current as well as future anti-HIV drugs. (c) 2014 Elsevier B.V. All rights reserved.
C1 [Thein, Pru; Kalinec, Gilda M.; Park, Channy; Kalinec, Federico] Univ Calif Los Angeles, David Geffen Sch Med, Dept Head & Neck Surg, Los Angeles, CA 90057 USA.
RP Kalinec, F (reprint author), Univ Calif Los Angeles, David Geffen Sch Med, Dept Head & Neck Surg, 2100 West 3rd St, Los Angeles, CA 90057 USA.
EM fkalinec@mednet.ucla.edu
FU Robert Mapplethorpe Foundation; Brotman Foundation of California;
NIDCD/NIH [R01 DC010146, R01 DC010397]
FX This work was supported by The Robert Mapplethorpe Foundation, The
Brotman Foundation of California, and NIDCD/NIH Grants R01 DC010146 and
R01 DC010397. Its content is solely the responsibility of the authors
and does not necessarily represent the official views of these
Institutions. These Institutions had no role in the study design, data
collection, interpretation of results and manuscript preparation. The
authors declare no existing or potential conflict of interest.
CR Bektas D, 2008, HEARING RES, V239, P69, DOI 10.1016/j.heares.2008.01.016
Benbrik E, 1997, J NEUROL SCI, V149, P19, DOI 10.1016/S0022-510X(97)05376-8
Brüning Ansgar, 2009, Cancer Biol Ther, V8, P226, DOI 10.4161/cbt.8.3.7339
Degterev A, 2008, NAT REV MOL CELL BIO, V9, P378, DOI 10.1038/nrm2393
DESIMONE C, 1993, IMMUNOPHARM IMMUNOT, V15, P1, DOI 10.3109/08923979309066930
DESIMONE C, 1994, AIDS, V8, P655
FDA, 2012, ANT GUID
Feng JY, 2001, J BIOL CHEM, V276, P23832, DOI 10.1074/jbc.M101156200
Fink SL, 2005, INFECT IMMUN, V73, P1907, DOI 10.1128/IAI.73.4.1907-1916.2005
Gazzard BG, 2008, HIV MED, V9, P563, DOI 10.1111/j.1468-1293.2008.00636.x
Hammer SM, 2008, JAMA-J AM MED ASSOC, V300, P555, DOI 10.1001/jama.300.5.555
Harris T, 2012, SAMJ S AFR MED J, V102, P363
Hart AM, 2004, AIDS, V18, P1549, DOI 10.1097/01.aids.0000131354.14408.fb
Hart AM, 2002, EXP BRAIN RES, V145, P182, DOI 10.1007/s00221-002-1100-2
Herzmann C, 2005, HIV CLIN TRIALS, V6, P344
Kalinec GM, 2005, P NATL ACAD SCI USA, V102, P16019, DOI 10.1073/pnas.0508053102
Kalinec GM, 2003, AUDIOL NEURO-OTOL, V8, P177, DOI 10.1159/000071059
Maiuri MC, 2007, NAT REV MOL CELL BIO, V8, P741, DOI 10.1038/nrm2239
Marra CM, 1997, ARCH NEUROL-CHICAGO, V54, P407
Monte S, 1997, INT J STD AIDS, V8, P201, DOI 10.1258/0956462971919723
Moretti S, 1998, BLOOD, V91, P3817
Moretti S, 2002, ANTIOXID REDOX SIGN, V4, P391, DOI 10.1089/15230860260196191
Parrish AB, 2013, CSH PERSPECT BIOL, V5, DOI 10.1101/cshperspect.a008672
Riddler SA, 2008, NEW ENGL J MED, V358, P2095, DOI 10.1056/NEJMoa074609
Simdon J, 2001, CLIN INFECT DIS, V32, P1623, DOI 10.1086/320522
Staszewski S, 1999, NEW ENGL J MED, V341, P1865, DOI 10.1056/NEJM199912163412501
Venhoff N, 2007, ANTIVIR THER, V12, P1075
Vogeser M, 1998, Eur J Clin Microbiol Infect Dis, V17, P214
Youle M, 2007, CNS DRUGS, V21, P25, DOI 10.2165/00023210-200721001-00004
Youle M, 2005, ANTIVIR THER, V10, pM125
Youle M, 2007, HIV MED, V8, P241, DOI 10.1111/j.1468-1293.2007.00467.x
Zha B. S., 2011, RECENT TRANSLATIONAL, P253
Zhou HP, 2011, METHOD ENZYMOL, V490, P107, DOI 10.1016/B978-0-12-385114-7.00006-4
NR 33
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2014
VL 310
BP 27
EP 35
DI 10.1016/j.heares.2014.01.005
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AE6FV
UT WOS:000334086900003
PM 24487230
ER
PT J
AU Sang, JQ
Hu, HM
Zheng, CS
Li, GP
Lutman, ME
Bleeck, S
AF Sang, Jinqiu
Hu, Hongmei
Zheng, Chengshi
Li, Guoping
Lutman, Mark E.
Bleeck, Stefan
TI Evaluation of the sparse coding shrinkage noise reduction algorithm in
normal hearing and hearing impaired listeners
SO HEARING RESEARCH
LA English
DT Article
ID SPEECH RECOGNITION; SPECTRAL SUBTRACTION; COCHLEAR IMPLANT; CODE
SHRINKAGE; ENHANCEMENT; INTELLIGIBILITY; AID; DESIGN
AB Although there are numerous single-channel noise reduction strategies to improve speech perception in noise, most of them improve speech quality but do not improve speech intelligibility, in circumstances where the noise and speech have similar frequency spectra. Current exceptions that may improve speech intelligibility are those that require a priori knowledge of the speech or noise statistics, which limits practical application. Hearing impaired (HI) listeners suffer more in speech intelligibility than normal hearing listeners (NH) in the same noisy environment, so developing better single-channel noise reduction algorithms for HI listeners is justified. Our model-based "sparse coding shrinkage" (SCS) algorithm extracts key speech information in noisy speech. We evaluate it by comparison with a state-of-the-art Wiener filtering approach using speech intelligibility tests with NH and HI listeners. The model-based SCS algorithm relies only on statistical signal information without prior information. Results show that the SCS algorithm improves speech intelligibility in stationary noise and is comparable to the Wiener filtering algorithm. Both algorithms improve intelligibility for HI listeners but not for NH listeners. Improvement is less in fluctuating (babble) noise than in stationary noise. Both noise reduction algorithms perform better at higher input signal-to-noise ratios (SNR) where HI listeners can benefit but where NH listeners have already reached ceiling performance. The difference between NH and HI subjects in intelligibility gain depends fundamentally on the input SNR rather than the hearing loss level. We conclude that HI listeners need different signal processing algorithms from NH subjects and that the SCS algorithm offers a promising alternative to Wiener filtering. Performance of all noise reduction algorithms is likely to vary according to extent of hearing loss and algorithms that show little benefit for listeners with moderate hearing loss may be more beneficial for listeners with more severe hearing loss. (c) 2014 Elsevier B.V. All rights reserved.
C1 [Sang, Jinqiu; Hu, Hongmei; Li, Guoping; Lutman, Mark E.; Bleeck, Stefan] Univ Southampton, Inst Sound & Vibrat Res, Southampton SO17 1BJ, Hants, England.
[Zheng, Chengshi] Chinese Acad Sci, Inst Acoust, Beijing 100190, Peoples R China.
RP Bleeck, S (reprint author), Univ Southampton, Inst Sound & Vibrat Res, Southampton SO17 1BJ, Hants, England.
EM s.bleeck@soton.ac.uk
FU European Commission within the ITN AUDIS [PITN-GA-2008-214699]
FX We thank Aapo Hyvarinen, Patrik Hoyer and Xin Zou for their advice in
sparse coding shrinkage. We thank Timo Gerkmann for providing CS-WF
code. We thank David Simpson, James M. Kates and Kathryn Hoberg Arehart
for their advice in NAL-R compensation. We also thank all the subjects.
This work was supported by the European Commission within the ITN AUDIS
(grant agreement number PITN-GA-2008-214699).
CR Alcantara JI, 2003, INT J AUDIOL, V42, P34, DOI 10.3109/14992020309056083
Amos NE, 2007, J SPEECH LANG HEAR R, V50, P819, DOI 10.1044/1092-4388(2007/057)
Arehart KH, 2003, SPEECH COMMUN, V40, P575, DOI 10.1016/S0167-6393(02)00183-8
BAER T, 1993, J REHABIL RES DEV, V30, P49
Bench J., 1979, BRIT J AUDIOL, V13, P102
Breithaupt C, 2008, INT CONF ACOUST SPEE, P4897, DOI 10.1109/ICASSP.2008.4518755
Dahlquist M, 2005, INT J AUDIOL, V44, P721, DOI 10.1080/14992020500271712
Deller J., 2000, DISCRETE TIME PROCES
Dillon H., 2001, HEARING AIDS
DIRKS DD, 1982, J SPEECH HEAR DISORD, V47, P114
ELBERLING C, 1993, SCAND AUDIOL, V22, P39
FIELD DJ, 1994, NEURAL COMPUT, V6, P559, DOI 10.1162/neco.1994.6.4.559
Gerkmann T, 2009, IEEE T SIGNAL PROCES, V57, P4165, DOI 10.1109/TSP.2009.2025795
Gerkmann T, 2012, IEEE T AUDIO SPEECH, V20, P1383, DOI 10.1109/TASL.2011.2180896
Harlander N., 2012, INT J AUDIOL, P1
Hu H., 2011, ENHANCED SPARSE SPEE
Hu HM, 2013, INT CONF ACOUST SPEE, P7790
Hu Y, 2007, J ACOUST SOC AM, V122, P1777, DOI 10.1121/1.2766778
Hu Y, 2003, IEEE T SPEECH AUDI P, V11, P334, DOI 10.1109/TSA.2003.814458
Hyvarinen A, 1999, NEURAL COMPUT, V11, P1739, DOI 10.1162/089976699300016214
Hyvarinen A, 1998, P INT JOINT C NEUR N, V2, P859
JAMIESON DG, 1995, EAR HEARING, V16, P274, DOI 10.1097/00003446-199506000-00004
Kates JM, 1996, J ACOUST SOC AM, V99, P3138, DOI 10.1121/1.414798
Kim G, 2010, IEEE SIGNAL PROC LET, V17, P1010, DOI 10.1109/LSP.2010.2087412
LEVITT H, 1993, SCAND AUDIOL, V22, P7
Levitt H., 1993, ACOUSTICAL FACTORS A, P317
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
Levitt H, 2001, J REHABIL RES DEV, V38, P111
Li G., 2008, THESIS U SOUTHAMPTON
Li G., 2008, P EUSIPCO LAUS SWITZ
Li GP, 2012, INT J AUDIOL, V51, P75, DOI 10.3109/14992027.2011.625984
LOCKWOOD P, 1992, SPEECH COMMUN, V11, P215, DOI 10.1016/0167-6393(92)90016-Z
PLOMP R, 1994, EAR HEARING, V15, P2
POTAMITIS I, 2001, ACOUST SPEECH SIG PR, P621
Sang J., 2012, EVALUATION SPARSE CO
Sang J., 2011, SUPERVISED SPARSE CO
Sang J., 2011, IEEE ICCT 2011 CHIN
Schum DJ, 2003, HEAR J, V56, P32
Verschuur C., 2006, COCHLEAR IMPLANTS IN, V7, P188
Weiss M., 1993, ACOUSTICAL FACTORS A, P337
Widrow B, 2003, SPEECH COMMUN, V39, P139, DOI 10.1016/S0167-6393(02)00063-8
Yang LP, 2005, J ACOUST SOC AM, V117, P1001, DOI 10.1121/1.1852873
Zou X, 2008, IEEE T SIGNAL PROCES, V56, P1812, DOI 10.1109/TSP.2007.910555
NR 43
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2014
VL 310
BP 36
EP 47
DI 10.1016/j.heares.2014.01.006
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AE6FV
UT WOS:000334086900004
PM 24495441
ER
PT J
AU Koizumi, T
Nishimura, T
Yamashita, A
Yamanaka, T
Imamura, T
Hosoi, H
AF Koizumi, Toshizo
Nishimura, Tadashi
Yamashita, Akinori
Yamanaka, Toshiaki
Imamura, Tomoaki
Hosoi, Hiroshi
TI Residual inhibition of tinnitus induced by 30-kHz bone-conducted
ultrasound
SO HEARING RESEARCH
LA English
DT Article
DE Bandwidth; Central frequency; Dynamic range; Tinnitus pitch; Ultrasonic
hearing
ID AUDITORY-CORTEX; PURE TONES; PERCEPTION; FREQUENCY; LOUDNESS; MASKING;
HEARING; MASKER
AB Sounds at frequencies of >24-kHz are classified as ultrasound which cannot be heard by humans if presented by air conduction, but can be perceived if presented by bone conduction. Some research studies involving ultrasonic hearing have reported that tinnitus is masked by bone-conducted ultrasound (BCU). However, little is known about residual inhibition (RI), which is a continuous reduction or disappearance of tinnitus after presentation of BCU. This study investigated whether RI could be induced by BCU. Five types of the masker sounds were used to measure RI in 21 subjects with tinnitus. A bone-conducted 30-kHz pure tone was used as a BCU, and an air-conducted 4-kHz pure tone, narrow-band noise, white noise, and a bone-conducted 4-kHz pure tone were used as controls of audible sounds. The masker intensities of the 30-kHz BCU and audible sounds were set at the minimum masking levels of tinnitus plus 3 and 10 dB, respectively, considering the narrow dynamic range of BCU. The duration of RI induced by the 30-kHz BCU was significantly longer than those induced by the 4-kHz sounds, but was not significantly different from that induced by the white noise. BCU activates the cochlear basal turn in response to the high frequency, which may broadly overlap with the frequency range that included the dominant tinnitus pitch in most of our subjects. The longer RI duration for the 30-kHz BCU was probably derived from this characteristic. These results suggested that the peripheral stimulation characteristic of BCU probably contributed to inducing long RI durations. (c) 2014 Elsevier B.V. All rights reserved.
C1 [Koizumi, Toshizo; Nishimura, Tadashi; Yamashita, Akinori; Yamanaka, Toshiaki; Hosoi, Hiroshi] Nara Med Univ, Dept Otorhinolaryngol & Head & Neck Surg, Kashihara, Nara 6348522, Japan.
[Imamura, Tomoaki] Nara Med Univ, Dept Publ Hlth Hlth Management & Policy, Kashihara, Nara 6348521, Japan.
RP Nishimura, T (reprint author), Nara Med Univ, Dept Otorhinolaryngol & Head & Neck Surg, 840 Shijo Cho, Kashihara, Nara 6348522, Japan.
EM t-nishim@naramed-u.ac.jp
CR BELLUCCI RICHARD J., 1962, ANN OTOL RHINOL AND LARYNGOL, V71, P719
CARRICK D G, 1986, British Journal of Audiology, V20, P153, DOI 10.3109/03005368609079009
RENDELL R J, 1987, British Journal of Audiology, V21, P289, DOI 10.3109/03005368709076421
DAVIS H, 1950, Acta Otolaryngol Suppl, V88, P1
DEATHERAGE BH, 1954, J ACOUST SOC AM, V26, P582, DOI 10.1121/1.1907379
DIEROFF HG, 1975, ARCH OTO-RHINO-LARYN, V209, P277, DOI 10.1007/BF00456548
Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010
FELDMANN H, 1971, AUDIOLOGY, V10, P138
Fletcher H, 1933, J ACOUST SOC AM, V5, P82, DOI 10.1121/1.1915637
Fowler E.P., 1941, ANN OTO RHINOL LARYN, V50, P139
Fujimoto K, 2005, HEARING RES, V204, P210, DOI 10.1016/j.heares.2005.02.004
GAVREAU V, 1948, CR HEBD ACAD SCI, V226, P2053
Goldstein B A, 2001, Int Tinnitus J, V7, P122
Goldstein Barbara A, 2005, Int Tinnitus J, V11, P111
Goldstein Barbara A, 2005, Int Tinnitus J, V11, P14
HAEFF AV, 1963, SCIENCE, V139, P590, DOI 10.1126/science.139.3555.590
Henry J A, 2000, J Am Acad Audiol, V11, P138
Hosoi H, 1998, LANCET, V351, P496, DOI 10.1016/S0140-6736(05)78683-9
Imaizumi S, 2001, NEUROREPORT, V12, P583, DOI 10.1097/00001756-200103050-00030
KITAJIMA K, 1987, AM J OTOL, V8, P203
LENHARDT ML, 1991, SCIENCE, V253, P82, DOI 10.1126/science.2063208
Nishimura T, 2011, HEARING RES, V277, P176, DOI 10.1016/j.heares.2011.01.004
Nishimura T, 2003, HEARING RES, V175, P171, DOI 10.1016/S0378-5955(02)00735-9
Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156
Pan T, 2009, INT J AUDIOL, V48, P277, DOI 10.1080/14992020802581974
PUMPHREY RJ, 1950, NATURE, V166, P571, DOI 10.1038/166571b0
Roberts LE, 2008, JARO-J ASSOC RES OTO, V9, P417, DOI 10.1007/s10162-008-0136-9
ROBERTS LE, 2006, ACTA OTO-LARYNGOL, V556, P27, DOI DOI 10.1080/03655230600895358
ROBINSON DW, 1956, BRIT J APPL PHYS, V7, P166, DOI 10.1088/0508-3443/7/5/302
Terry A M, 1983, Br J Audiol, V17, P245, DOI 10.3109/03005368309081485
Vernon JA, 2003, OTOLARYNG CLIN N AM, V36, P293, DOI 10.1016/S0030-6665(02)00162-7
VERNON J A, 1985, Acta Oto-Rhino-Laryngologica Belgica, V39, P621
Wegel R. L., 1932, ANN OTO RHINOL LARYN, V41, P740
NR 33
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2014
VL 310
BP 48
EP 53
DI 10.1016/j.heares.2014.01.011
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AE6FV
UT WOS:000334086900005
PM 24530434
ER
PT J
AU Jerin, C
Berman, A
Krause, E
Ertl-Wagner, B
Gurkov, R
AF Jerin, Claudia
Berman, Albert
Krause, Eike
Ertl-Wagner, Birgit
Guerkov, Robert
TI Ocular vestibular evoked myogenic potential frequency tuning in certain
Meniere's disease
SO HEARING RESEARCH
LA English
DT Article
DE Vestibular evoked myogenic potential; oVEMP; Frequency tuning; Meniere's
disease
ID ENDOLYMPHATIC HYDROPS; VISUALIZATION; VIBRATION; DYNAMICS; SOUND; AGE
AB Ocular vestibular evoked myogenic potentials (oVEMP) represent extraocular muscle activity in response to vestibular stimulation. To specify the value of oVEMP in the diagnostics of Meniere's disease, the amplitude ratio between 500 and 1000 Hz stimuli was investigated.
Thirty-nine patients with certain Meniere's disease, i.e. definite Meniere's disease with visualization of endolymphatic hydrops by magnetic resonance imaging and 49 age-matched healthy controls were enrolled in this study. oVEMP were recorded using 500 and 1000 Hz air-conducted tone bursts. For Meniere's ears, the 500/1000 Hz amplitude ratio (mean ratio = 1.20) was significantly smaller when compared to unaffected ears of Meniere's patients (mean ratio = 1.80; p = 0.008) or healthy controls (mean ratio = 1.81; p = 0.011). The amplitude ratio was neither correlated with the degree of endolymphatic hydrops nor with the duration of disease. While an older age was associated with a diminished amplitude ratio in healthy controls, there was no correlation between the amplitude ratio and age in Meniere's ears. Hence, the calculation of the oVEMP 500/1000 Hz amplitude ratio may be a valuable diagnostic tool for Meniere's disease. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Jerin, Claudia; Berman, Albert; Krause, Eike; Guerkov, Robert] Univ Munich, Grosshadern Med Ctr, German Ctr Vertigo & Balance Disorders, D-81377 Munich, Germany.
[Krause, Eike; Guerkov, Robert] Univ Munich, Grosshadern Med Ctr, Dept Otorhinolaryngol Head & Neck Surg, D-81377 Munich, Germany.
[Ertl-Wagner, Birgit] Univ Munich, Grosshadern Med Ctr, Inst Clin Radiol, D-81377 Munich, Germany.
RP Jerin, C (reprint author), Univ Munich, Grosshadern Med Ctr, German Ctr Vertigo & Balance Disorders, Marchioninistr 15, D-81377 Munich, Germany.
EM claudia.jerin@med.uni-muenchen.de
RI Gurkov, Robert/K-3536-2013
OI Gurkov, Robert/0000-0002-4195-149X
FU Federal German Ministry of Education and Research [01EO0901]
FX This study was supported by the Federal German Ministry of Education and
Research (grant No. 01EO0901).
CR AAO-HNS guidelines, 1995, HEAD NECK SURG, V113, P181
Gurkov R, 2012, OTOL NEUROTOL, V33, P1040, DOI 10.1097/MAO.0b013e31825d9a95
Hallpike C S, 1938, Proc R Soc Med, V31, P1317
Huang CH, 2011, AUDIOL NEURO-OTOL, V16, P41, DOI 10.1159/000312199
Iwasaki S, 2007, NEUROLOGY, V68, P1227, DOI 10.1212/01.wnl.0000259064.80564.21
Kantner C, 2012, HEARING RES, V294, P55, DOI 10.1016/j.heares.2012.10.008
Kim-Lee Y, 2009, ACTA OTO-LARYNGOL, V129, P924, DOI 10.1080/00016480802495412
Lewis A, 2010, J OTOLARYNGOL-HEAD N, V39, P491, DOI 10.2310/7070.2010.090205
Manzari L, 2010, CLIN NEUROPHYSIOL, V121, P1092, DOI 10.1016/j.clinph.2010.02.003
Murnane OD, 2011, J AM ACAD AUDIOL, V22, P469, DOI 10.3766/jaaa.22.7.7
Naganawa S, 2010, MAGN RESON MED SCI, V9, P237, DOI 10.2463/mrms.9.237
Naganawa S, 2013, MAGN RESON MED SCI, V12, P261, DOI 10.2463/mrms.2013-0019
Nakashima T, 2007, LARYNGOSCOPE, V117, P415, DOI 10.1097/MLG.0b013e31802c300c
Nguyen KD, 2010, OTOL NEUROTOL, V31, P793, DOI 10.1097/MAO.0b013e3181e3d60e
Node M, 2005, OTOL NEUROTOL, V26, P1208, DOI 10.1097/01.mao.0000176172.87141.5d
Park HJ, 2010, CLIN NEUROPHYSIOL, V121, P85, DOI 10.1016/j.clinph.2009.10.003
Piker EG, 2013, EAR HEARING, V34, pE65, DOI 10.1097/AUD.0b013e31828fc9f2
Piker EG, 2011, J AM ACAD AUDIOL, V22, P222, DOI 10.3766/jaaa.22.4.5
Rauch SD, 2004, OTOL NEUROTOL, V25, P333, DOI 10.1097/00129492-200405000-00022
Rosengren SM, 2010, CLIN NEUROPHYSIOL, V121, P636, DOI 10.1016/j.clinph.2009.10.016
Sandhu JS, 2012, OTOL NEUROTOL, V33, P444, DOI 10.1097/MAO.0b013e3182488046
Taylor RL, 2011, CLIN NEUROPHYSIOL, V122, P1256, DOI 10.1016/j.clinph.2010.11.009
Taylor RL, 2012, CEPHALALGIA, V32, P213, DOI 10.1177/0333102411434166
Taylor RL, 2012, AUDIOL NEURO-OTOL, V17, P207, DOI 10.1159/000336959
Todd NPM, 2000, HEARING RES, V141, P180, DOI 10.1016/S0378-5955(99)00222-1
Winters SM, 2012, AUDIOL NEURO-OTOL, V17, P12, DOI 10.1159/000324858
Winters SM, 2011, OTOL NEUROTOL, V32, P1273, DOI 10.1097/MAO.0b013e31822e5ac9
NR 27
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2014
VL 310
BP 54
EP 59
DI 10.1016/j.heares.2014.02.001
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AE6FV
UT WOS:000334086900006
PM 24530828
ER
PT J
AU Verma, RU
Guex, AA
Hancock, KE
Durakovic, N
McKay, CM
Slama, MCC
Brown, MC
Lee, DJ
AF Verma, Rohit U.
Guex, Amelie A.
Hancock, Kenneth E.
Durakovic, Nedim
McKay, Colette M.
Slama, Michael C. C.
Brown, M. Christian
Lee, Daniel J.
TI Auditory responses to electric and infrared neural stimulation of the
rat cochlear nucleus
SO HEARING RESEARCH
LA English
DT Article
ID BRAIN-STEM IMPLANT; INFERIOR COLLICULUS; OPTICAL STIMULATION;
GUINEA-PIGS; NERVE-STIMULATION; PERIPHERAL-NERVE; PROJECTIONS; LASER;
WAVELENGTH; CAT
AB In an effort to improve the auditory brainstem implant, a prosthesis in which user outcomes are modest, we applied electric and infrared neural stimulation (INS) to the cochlear nucleus in a rat animal model. Electric stimulation evoked regions of neural activation in the inferior colliculus and short-latency, multipeaked auditory brainstem responses (ABRs). Pulsed INS, delivered to the surface of the cochlear nucleus via an optical fiber, evoked broad neural activation in the inferior colliculus. Strongest responses were recorded when the fiber was placed at lateral positions on the cochlear nucleus, close to the temporal bone. INS-evoked ABRs were multipeaked but longer in latency than those for electric stimulation; they resembled the responses to acoustic stimulation. After deafening, responses to electric stimulation persisted, whereas those to INS disappeared, consistent with a reported "optophonic" effect, a laser-induced acoustic artifact. Thus, for deaf individuals who use the auditory brainstem implant, INS alone did not appear promising as a new approach. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Verma, Rohit U.] Univ Manchester, Sch Med, Manchester M13 9PL, Lancs, England.
[McKay, Colette M.] Univ Manchester, Sch Psychol Sci, Manchester M13 9PL, Lancs, England.
[Verma, Rohit U.; Hancock, Kenneth E.; Durakovic, Nedim; Slama, Michael C. C.; Brown, M. Christian; Lee, Daniel J.] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA.
[Guex, Amelie A.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland.
[McKay, Colette M.] Bion Inst Australia, Melbourne, Vic, Australia.
[Verma, Rohit U.; Slama, Michael C. C.; Brown, M. Christian; Lee, Daniel J.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02114 USA.
RP Brown, MC (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, 243 Charles St, Boston, MA 02114 USA.
EM Chris_Brown@meei.harvard.edu
FU Helene and Grant Wilson Auditory Brainstem Implant Program at the
Massachusetts Eye and Ear Infirmary; Med-EL Hearing Solutions Research
Grant; Bertarelli Foundation; NIH [DC01089]; Paul and Daisy Soros
Fellowship for New Americans; Victorian Government through its
Operational Infrastructure Support Program
FX Supported by the Helene and Grant Wilson Auditory Brainstem Implant
Program at the Massachusetts Eye and Ear Infirmary, a Med-EL Hearing
Solutions Research Grant, the Bertarelli Foundation, NIH grant DC01089,
and the Paul and Daisy Soros Fellowship for New Americans. The Bionics
Institute acknowledges the support it receives from the Victorian
Government through its Operational Infrastructure Support Program. We
thank Lockheed-Martin for supplying the Aculite laser, and Ishmael
Stefanov, Evan Foss, and Haobing Wang for technical assistance.
Preliminary versions of this work were presented at the 2012 meeting of
the Association for Research in Otolaryngology and are contained in a
master's thesis (Guex, 2012).
CR ABBAS PJ, 1991, HEARING RES, V51, P123, DOI 10.1016/0378-5955(91)90011-W
ABBAS PJ, 1988, HEARING RES, V36, P153, DOI 10.1016/0378-5955(88)90057-3
Boyden ES, 2005, NAT NEUROSCI, V8, P1263, DOI 10.1038/nn1525
Colletti L, 2012, CURR OPIN OTOLARYNGO, V20, P353, DOI 10.1097/MOO.0b013e328357613d
Colletti V, 2005, LARYNGOSCOPE, V115, P1974, DOI 10.1097/01.mlg.0000178327.42926.ec
Darrow K.N., 2013, OPTOGENETIC CONTROL
Fried NM, 2008, J ENDOUROL, V22, P409, DOI 10.1089/end.2008.9996
Frohne C, 2000, J LARYNGOL OTOL, V114, P11
GLENDENNING KK, 1992, J COMP NEUROL, V319, P100, DOI 10.1002/cne.903190110
Guex A, 2012, CHARACTERIZATION AUD
HACKNEY CM, 1990, ANAT EMBRYOL, V182, P123
HALE GM, 1973, APPL OPTICS, V12, P555, DOI 10.1364/AO.12.000555
Harris DM, 2009, P SOC PHOTO-OPT INS, V7180, DOI 10.1117/12.810197
Hoa M, 2008, OTOLARYNG HEAD NECK, V139, P152, DOI 10.1016/j.otohns.2008.04.005
Izzo AD, 2007, IEEE T BIO-MED ENG, V54, P1108, DOI 10.1109/TBME.2007.892925
Izzo AD, 2006, LASER SURG MED, V38, P745, DOI 10.1002/lsm.20358
McCreery D B, 1998, IEEE Trans Rehabil Eng, V6, P391, DOI 10.1109/86.736153
Melcher JR, 1996, HEARING RES, V93, P52, DOI 10.1016/0378-5955(95)00200-6
Muniak MA, 2013, J COMP NEUROL, V521, P1510, DOI 10.1002/cne.23238
Nevison Barry, 2006, Adv Otorhinolaryngol, V64, P154
O'Driscoll M, 2011, EAR HEARING, V32, P300, DOI 10.1097/AUD.0b013e3181fc9f17
OLIVER DL, 1984, J COMP NEUROL, V224, P155, DOI 10.1002/cne.902240202
Otto SR, 1998, OTOLARYNG HEAD NECK, V118, P291, DOI 10.1016/S0194-5998(98)70304-3
Paxinos G., 1998, RAT BRAIN STEREOTAXI
Richter CP, 2008, HEARING RES, V242, P42, DOI [10.1016/j.heares.2008.01.011, 10.1016/j.heares.2008.01.01]
Richter C.-P., 2011, J NEURAL ENG, V8
Rosahl SK, 2001, J NEUROSURG, V95, P845, DOI 10.3171/jns.2001.95.5.0845
Ryan A.F., 1982, J COMP NEUROL, V207
Schofield BR, 2002, J COMP NEUROL, V453, P217, DOI 10.1002/cne.10402
Schofield BR, 2001, J COMP NEUROL, V429, P206, DOI 10.1002/1096-9861(20000108)429:2<206::AID-CNE3>3.0.CO;2-X
Schultz Michael, 2012, Biomed Opt Express, V3, P3332, DOI 10.1364/BOE.3.003332
SHANNON RV, 1993, OTOLARYNG HEAD NECK, V108, P634
Shimano T., 2012, BRAIN RES, V1511, P138
Shivdasani MN, 2008, J NEUROPHYSIOL, V99, P1, DOI 10.1152/jn.00629.2007
Snyder RL, 2004, JARO-J ASSOC RES OTO, V5, P305, DOI 10.1007/s10162-004-4026-5
SPIROU GA, 1993, J COMP NEUROL, V329, P36, DOI 10.1002/cne.903290104
Teudt IU, 2007, LARYNGOSCOPE, V117, P1641, DOI 10.1097/M1LG.0b013e318074ec00
Teudt IU, 2011, IEEE T BIO-MED ENG, V58, P1648, DOI 10.1109/TBME.2011.2108297
VANDENHONERT C, 1986, HEARING RES, V21, P109, DOI 10.1016/0378-5955(86)90033-X
Waring M., 1995, ANN OTO RHINOL LARYN, V103, P33
Waring MD, 1998, EVOKED POTENTIAL, V108, P331, DOI 10.1016/S0168-5597(97)00072-5
Waring MD, 1999, HEARING RES, V130, P219, DOI 10.1016/S0378-5955(99)00016-7
Wells J, 2007, J NEUROSCI METH, V163, P326, DOI 10.1016/j.jneumeth.2007.03.016
Wells J, 2007, BIOPHYS J, V93, P2567, DOI 10.1529/biophysj.107.104786
NR 44
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2014
VL 310
BP 69
EP 75
DI 10.1016/j.heares.2014.01.008
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AE6FV
UT WOS:000334086900008
PM 24508368
ER
PT J
AU Gygi, B
Shafiro, V
AF Gygi, Brian
Shafiro, Valeriy
TI Spatial and temporal modifications of multitalker speech can improve
speech perception in older adults
SO HEARING RESEARCH
LA English
DT Article
DE Speech perception; Stream segregation; Multitalker processing;
Dual-task; Coordinate response measure; Auditory attention
ID TIME-EXPANDED SPEECH; ELDERLY LISTENERS; HEARING-LOSS; INFORMATIONAL
MASKING; IDENTIFICATION TASK; AGE-DIFFERENCES; WORKING-MEMORY;
INTELLIGIBILITY; RECOGNITION; YOUNG
AB Speech perception in multitalker environments often requires listeners to divide attention among several concurrent talkers before focusing on one talker with pertinent information. Such attentionally demanding tasks are particularly difficult for older adults due both to age-related hearing loss (presbacusis) and general declines in attentional processing and associated cognitive abilities. This study investigated two signal-processing techniques that have been suggested as a means of improving speech perception accuracy of older adults: time stretching and spatial separation of target talkers. Stimuli in each experiment comprised 2-4 fixed-form utterances in which listeners were asked to consecutively 1) detect concurrently spoken keywords in the beginning of the utterance (divided attention); and, 2) identify additional keywords from only one talker at the end of the utterance (selective attention). In Experiment 1, the overall tempo of each utterance was unaltered or slowed down by 25%; in Experiment 2 the concurrent utterances were spatially coincident or separated across a 180-degree hemifield. Both manipulations improved performance for elderly adults with age-appropriate hearing on both tasks. Increasing the divided attention load by attending to more concurrent keywords had a marked negative effect on performance of the selective attention task only when the target talker was identified by a keyword, but not by spatial location. These findings suggest that the temporal and spatial modifications of multitalker speech improved perception of multitalker speech primarily by reducing competition, among cognitive resources required to perform attentionally demanding tasks. Published by Elsevier B.V.
C1 [Gygi, Brian] Natl Inst Hlth Res, Nottingham Hearing Biomed Res Unit, Nottingham, England.
[Gygi, Brian] Univ Nottingham, Sch Med, Otol & Hearing Grp, Div Clin Neurosci, Nottingham NG7 2UH, England.
[Gygi, Brian] Vet Affairs Northern Calif Hlth Care Syst, Martinez, CA USA.
[Shafiro, Valeriy] Rush Univ, Med Ctr, Chicago, IL 60612 USA.
RP Gygi, B (reprint author), NIHR, Natl Biomed Res Unit Hearing, 113 Ropewalk, Nottingham NG1 5DU, England.
EM bgygi@ebire.org
FU Merit Review Training Grant from the United States Department of
Veterans Affairs Research Service [06-12-00446]
FX This research was supported by a Merit Review Training Grant from the
United States Department of Veterans Affairs Research Service, VA File #
06-12-00446.
CR Akeroyd MA, 2008, INT J AUDIOL S2, V47, P53, DOI 10.1080/14992020802301142
Algazi V. R., 2001, 2001 IEEE WORKSH APP
Best V, 2010, EAR HEARING, V31, P213, DOI 10.1097/AUD.0b013e3181c34ba6
Bolia RS, 2000, J ACOUST SOC AM, V107, P1065, DOI 10.1121/1.428288
Boothroyd A, 2010, J AM ACAD AUDIOL, V21, P601, DOI 10.3766/jaaa.21.9.6
Boyle PJ, 2013, EAR HEARING, V34, P203, DOI 10.1097/AUD.0b013e31826a8e82
Bradlow AR, 1999, PERCEPT PSYCHOPHYS, V61, P206, DOI 10.3758/BF03206883
Brungart DS, 2001, J ACOUST SOC AM, V110, P2527, DOI 10.1121/1.1408946
Brungart DS, 2006, J ACOUST SOC AM, V120, P4007, DOI 10.1121/1.2363929
DICARLO LM, 1972, J COMMUN DISORD, V5, P299, DOI 10.1016/0021-9924(72)90001-9
FOLSTEIN MF, 1975, J PSYCHIAT RES, V12, P189, DOI 10.1016/0022-3956(75)90026-6
Foo E. W., 2011, US Patent, Patent No. 20120215532
Gallun FJ, 2005, J ACOUST SOC AM, V118, P1614, DOI 10.1121/1.1984876
Gallun FJ, 2007, PERCEPT PSYCHOPHYS, V69, P757, DOI 10.3758/BF03193777
Gordon-Salant S, 2007, J SPEECH LANG HEAR R, V50, P1181, DOI 10.1044/1092-4388(2007/082)
GordonSalant S, 1997, J SPEECH LANG HEAR R, V40, P423
Gygi B, 2012, ACTA ACUST UNITED AC, V98, P142, DOI 10.3813/AAA.918500
Helfer KS, 2008, EAR HEARING, V29, P87
Humes LE., 2008, ASHA LEAD, V13, P33
Humes LE, 2005, J SPEECH LANG HEAR R, V48, P224, DOI 10.1044/1092-4388(2005/016)
Humes LE, 2006, J ACOUST SOC AM, V120, P2926, DOI 10.1121/1.2354070
Humes LE., 2008, ASHA LEAD, V13, P10
Ihlefeld A, 2008, J ACOUST SOC AM, V123, P4380, DOI 10.1121/1.2904825
Iyer N., 2005, J ACOUST SOC AM, V117, P2485
Kidd G, 2005, J ACOUST SOC AM, V118, P982, DOI 10.1121/1.1953167
Kidd G, 2005, J ACOUST SOC AM, V118, P3804, DOI 10.1121/1.2109187
KORABIC EW, 1978, AUDIOLOGY, V17, P159
Lasecki W.S., 2013, P 2013 ACM ANN C HUM, P2033
Lee JH, 2012, J ACOUST SOC AM, V132, P1700, DOI 10.1121/1.4740482
LUTERMAN DM, 1966, J SPEECH HEAR RES, V9, P226
MacMillan N. A., 2005, DETECTION THEORY USE
Marrone N, 2008, J ACOUST SOC AM, V124, P3064, DOI 10.1121/1.2980441
MCCROSKEY RL, 1982, EAR HEARING, V3, P124, DOI 10.1097/00003446-198205000-00005
Moore T.J., 1981, AUR COMM AC NEUR SUR
NAVON D, 1979, PSYCHOL REV, V86, P214, DOI 10.1037/0033-295X.86.3.214
Nejime Y, 1998, J ACOUST SOC AM, V103, P572, DOI 10.1121/1.421123
Nelson T.W., 1999, P HUM FACT ERG SOC 4
NORMAN DA, 1975, COGNITIVE PSYCHOL, V7, P44, DOI 10.1016/0010-0285(75)90004-3
Novak J.S., 2013, P INTERSPEECH, V2013, P1869
PICHENY MA, 1989, J SPEECH HEAR RES, V32, P600
Pichora-Fuller M.K., 2003, INT J AUDIOL, V42, p2S26
Ronnberg J., 2008, INT J AUDIOL, V47, P99, DOI 10.1080/14992020802301167
SALTHOUSE TA, 1991, DEV PSYCHOL, V27, P763, DOI 10.1037/0012-1649.27.5.763
Salthouse TA, 1996, PSYCHOL REV, V103, P403, DOI 10.1037/0033-295X.103.3.403
SCHMITT JF, 1981, J GERONTOL, V36, P441
SCHMITT JF, 1983, J SPEECH HEAR RES, V26, P373
Shafiro V, 2007, J ACOUST SOC AM, V122, pEL229, DOI 10.1121/1.2806174
Sheft S, 2012, EAR HEARING, V33, P709, DOI 10.1097/AUD.0b013e31825aab15
Shinn-Cunningham BG, 2005, ACTA ACUST UNITED AC, V91, P967
Stone MA, 2011, J ACOUST SOC AM, V130, P2874, DOI 10.1121/1.3641371
Vaughan N, 2008, J AM ACAD AUDIOL, V19, P533, DOI 10.3766/jaaa.19.7.2
Vaughan NE, 2002, J REHABIL RES DEV, V39, P559
Verhaeghen P, 1998, PSYCHOL AGING, V13, P120, DOI 10.1037/0882-7974.13.1.120
Verhaeghen P, 2003, PSYCHOL AGING, V18, P443, DOI 10.1037/0882-7974.18.3.443
Wickens C. D., 1991, MULTIPLE TASK PERFOR, P3
Wingfield A, 1999, PSYCHOL AGING, V14, P380, DOI 10.1037//0882-7974.14.3.380
Yost WA, 1996, PERCEPT PSYCHOPHYS, V58, P1026, DOI 10.3758/BF03206830
NR 57
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2014
VL 310
BP 76
EP 86
DI 10.1016/j.heares.2014.01.009
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AE6FV
UT WOS:000334086900009
PM 24530609
ER
PT J
AU Benovitski, YB
Blamey, PJ
Rathbone, GD
Fallon, JB
AF Benovitski, Yuri B.
Blamey, Peter J.
Rathbone, Graeme D.
Fallon, James B.
TI An automated psychoacoustic testing apparatus for use in cats
SO HEARING RESEARCH
LA English
DT Article
ID FREQUENCY DISCRIMINATION; THRESHOLDS; RATS; STIMULATION
AB Animal behavioral studies make a significant contribution to hearing research and provide vital information which is not available from human subjects. Animal psychoacoustics is usually extremely time consuming and labor intensive; in addition, animals may become stressed, especially if restraints or negative reinforcers such as electric shocks are used. We present a novel behavioral experimental system that was developed to allow efficient animal training in response to acoustic stimuli. Cats were required to perform a relatively simple task of moving toward and away from the device depending on whether the members of a tone pair were different or the same in frequency (go/no-go task). The experimental setup proved to be effective, with all animals (N = 7) performing at above, 90% correct on an easy task. Animals were trained within 2-4 weeks and then generated a total of 150-200 trials per day, distributed within approximately 8 self initiated sessions. Data collected using this system were stable over 1 week and repeatable over long test periods (14 weeks). Measured frequency discrimination thresholds from 3 animals at 3 different reference frequencies were comparable with previously published results. The main advantages of the system are: relatively simple setup; large amounts of data can be generated without the need of researcher supervision; multiple animals can be tested simultaneously without removal from home pens; and no electric shocks or restraints are required. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Benovitski, Yuri B.; Blamey, Peter J.; Rathbone, Graeme D.; Fallon, James B.] La Trobe Univ, Bion Inst, Bundoora, Vic 3086, Australia.
[Benovitski, Yuri B.; Rathbone, Graeme D.] La Trobe Univ, Dept Elect Engn, Bundoora, Vic 3086, Australia.
[Blamey, Peter J.; Fallon, James B.] Univ Melbourne, Dept Med Bion, Melbourne, Vic 3010, Australia.
[Fallon, James B.] Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3010, Australia.
RP Fallon, JB (reprint author), Bion Inst, 384-388 Albert St, East Melbourne, Vic 3002, Australia.
EM jfallon@bionicsinstitute.org
FU National Institutes of Health [HHS-N-263-2007-00053-C]; National Health
and Medical Research Council of Australia; Department of Electronic
Engineering, La-Trobe University; Victorian Government
FX This work was funded by the National Institutes of Health
(HHS-N-263-2007-00053-C), the National Health and Medical Research
Council of Australia and The Department of Electronic Engineering,
La-Trobe University. The Bionics Institute acknowledges the support it
receives from the Victorian Government through its Operational
Infrastructure Support Program. The authors are grateful to Alison Neil,
Nicole Critch and Amy Morley for technical assistance; Andrew Wise and
Sam Irvine for advice; Sue Pierce for veterinary advice; Sue Mckay for
animal maintenance; Dexter Irvine for comments on the earlier versions
of the manuscript.
CR Ammersdorfer S., 2012, J COMP PHYSIOL A, P1
Beitel RE, 2000, J NEUROPHYSIOL, V83, P2145
Brown M, 2004, CEREB CORTEX, V14, P952, DOI 10.1093/cercor/bhh056
CARLSTEAD K, 1993, APPL ANIM BEHAV SCI, V38, P143, DOI 10.1016/0168-1591(93)90062-T
Clark Graeme M., 1998, Auris Nasus Larynx, V25, P73, DOI 10.1016/S0385-8146(97)10030-X
Duke JL, 2001, CONTEMP TOP LAB ANIM, V40, P17
ELLIOTT DN, 1960, J ACOUST SOC AM, V32, P380, DOI 10.1121/1.1908071
Ernst K, 2005, APPL ANIM BEHAV SCI, V91, P205, DOI 10.1016/j.applanim.2004.10.010
Fallon JB, 2009, HEARING RES, V257, P93, DOI 10.1016/j.heares.2009.08.006
Heeger D., 1997, SIGNAL DETECTION THE
HEFFNER RS, 1985, HEARING RES, V19, P85, DOI 10.1016/0378-5955(85)90100-5
HIENZ RD, 1993, J ACOUST SOC AM, V93, P462, DOI 10.1121/1.405626
Koot S, 2009, BEHAV RES METHODS, V41, P1169, DOI 10.3758/BRM.41.4.1169
Liu YC, 2010, BEHAV BRAIN RES, V215, P28, DOI 10.1016/j.bbr.2010.06.013
May B.J., 1995, BIOMETHODS METHODS C
Pretorius LL, 2008, HEARING RES, V244, P77, DOI 10.1016/j.heares.2008.07.005
RECANZONE GH, 1991, BEHAV RES METH INSTR, V23, P357
Sloan AM, 2009, HEARING RES, V251, P60, DOI 10.1016/j.heares.2009.02.009
SMITH DW, 1994, HEARING RES, V81, P1, DOI 10.1016/0378-5955(94)90147-3
TONG YC, 1982, J ACOUST SOC AM, V71, P153, DOI 10.1121/1.387342
Vollmer M, 2001, J NEUROPHYSIOL, V86, P2330
Wilson BS, 2008, HEARING RES, V242, P3, DOI 10.1016/j.heares.2008.06.005
NR 22
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2014
VL 309
BP 1
EP 7
DI 10.1016/j.heares.2013.11.002
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AB5WF
UT WOS:000331858700001
PM 24239868
ER
PT J
AU Benson, RR
Gattu, R
Cacace, AT
AF Benson, Randall R.
Gattu, Ramtilak
Cacace, Anthony T.
TI Left hemisphere fractional anisotropy increase in noise-induced
tinnitus: A diffusion tensor imaging (DTI) study of white matter tracts
in the brain
SO HEARING RESEARCH
LA English
DT Article
ID SENSORINEURAL HEARING-LOSS; CENTRAL AUDITORY-SYSTEM; WILLIAMS-SYNDROME;
ACOUSTIC TRAUMA; IN-VIVO; HUNTINGTONS-DISEASE; SPATIAL STATISTICS;
COCHLEAR NUCLEUS; HYPERACUSIS; HYPERACTIVITY
AB Diffusion tensor imaging (DTI) is a contemporary neuroimaging modality used to study connectivity patterns and microstructure of white matter tracts in the brain. The use of DTI in the study of tinnitus is a relatively unexplored methodology with no studies focusing specifically on tinnitus induced by noise exposure. In this investigation, participants were two groups of adults matched for etiology, age, and degree of peripheral hearing loss, but differed by the presence or absence (+/-) of tinnitus. It is assumed that matching individuals on the basis of peripheral hearing loss, allows for differentiating changes in white matter microstructure due to hearing loss from changes due to the effects of chronic tinnitus. Alterations in white matter tracts, using the fractional anisotropy (FA) metric, which measures directional diffusion of water, were quantified using tract-based spatial statistics (TBSS) with additional details provided by in viva probabilistic tractography. Our results indicate that 10 voxel clusters differentiated the two groups, including 9 with higher FA in the group with tinnitus. A decrease in FA was found for a single cluster in the group with tinnitus. However, seven of the 9 clusters with higher FA were in left hemisphere thalamic, frontal, and parietal white matter. These foci were localized to the anterior thalamic radiations and the inferior and superior longitudinal fasciculi. The two right-sided clusters with increased FA were located in the inferior fronto-occipital fasciculus and superior longitudinal fasciculus. The only decrease in FA for the tinnitus-positive group was found in the superior longitudinal fasciculus of the left parietal lobe. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Benson, Randall R.] Ctr Neurol Studies, Novi, MI USA.
[Gattu, Ramtilak] Wayne State Univ, Sch Med, Dept Radiol, Detroit, MI 48202 USA.
[Cacace, Anthony T.] Wayne State Univ, Dept Commun Sci & Disorders, Detroit, MI 48202 USA.
RP Cacace, AT (reprint author), Wayne State Univ, Dept Commun Sci & Disorders, 207 Rackham,60 Farnsworth, Detroit, MI 48202 USA.
EM cacacea@wayne.edu
FU Tinnitus Research Initiative; Tinnitus Research Consortium
FX We thank Paula Morton, R.N., for performing safety questionnaire review
prior to imaging and to Mr. Yang Xuan, for excellent technical MR
scanning skills. Portions of these data were supported by grants from
the Tinnitus Research Initiative and the Tinnitus Research Consortium
awarded to ATC.
CR Aldhafeeri FM, 2012, NEURORADIOLOGY, V54, P883, DOI 10.1007/s00234-012-1044-6
Arlinghaus LR, 2011, MAGN RESON IMAGING, V29, P1165, DOI 10.1016/j.mri.2011.07.012
Arnold W, 1996, ORL J OTO-RHINO-LARY, V58, P195
Attias Joseph, 2008, Journal of Basic and Clinical Physiology and Pharmacology, V19, P193
Awasthi R, 2010, AM J NEURORADIOL, V31, P442, DOI 10.3174/ajnr.A1849
Baguley DM, 2003, J ROY SOC MED, V96, P582, DOI 10.1258/jrsm.96.12.582
Baguley D.M., 2007, HYPERACUSIS
Beaulieu C, 2002, NMR BIOMED, V15, P435, DOI 10.1002/nbm.782
Behrens TEJ, 2003, MAGNET RESON MED, V50, P1077, DOI 10.1002/mrm.10609
Boyen K, 2013, HEARING RES, V295, P67, DOI 10.1016/j.heares.2012.02.010
Browne CJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033272
Brozoski T., 2012, FRONT SYST NEUROSCI, V6, P1
Catani M, 2002, NEUROIMAGE, V17, P77, DOI 10.1006/nimg.2002.1136
Chang SE, 2010, J NEUROLINGUIST, V23, P455, DOI 10.1016/j.jneuroling.2008.11.004
Chang YM, 2004, NEUROREPORT, V15, P1699, DOI 10.1097/01.wnr.0000134584.10207.1a
Clark WW, 1999, JAMA-J AM MED ASSOC, V281, P1658, DOI 10.1001/jama.281.17.1658
Coles R. R. A., 2000, TINNITUS HDB, P399
Crippa Alessandro, 2010, Open Neuroimag J, V4, P16, DOI 10.2174/1874440001004010016
Dong SY, 2010, EUR J NEUROSCI, V31, P1616, DOI 10.1111/j.1460-9568.2010.07183.x
Douaud G, 2009, NEUROIMAGE, V46, P958, DOI 10.1016/j.neuroimage.2009.03.044
Eckert MA, 2006, NEUROIMAGE, V33, P39, DOI 10.1016/j.neuroimage.2006.05.062
Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010
Elsabbagh M, 2011, J INTELL DISABIL RES, V55, P563, DOI 10.1111/j.1365-2788.2011.01411.x
Etkin A, 2011, TRENDS COGN SCI, V15, P85, DOI 10.1016/j.tics.2010.11.004
Gattu R., 2012, P INT SOC MAG RESON
Gerdes JS, 2012, SEIZURE-EUR J EPILEP, V21, P478, DOI 10.1016/j.seizure.2012.03.015
Godfrey DA, 2012, J NEUROSCI RES, V90, P2214, DOI 10.1002/jnr.23095
Golm D., 2012, HEAR RES
Gu J.W., 2010, J NEUROPHYSIOL, V104, P2261
Haas BW, 2012, GENES BRAIN BEHAV, V11, P62, DOI 10.1111/j.1601-183X.2011.00733.x
Haas S.W., 2012, FRONT PSYCHOL, V3, P1
Harris M., 2006, J MAG RESON IMAG, V24, P1259
Henderson D, 2011, TEXTBOOK OF TINNITUS, P301, DOI 10.1007/978-1-60761-145-5_37
Hoeft F, 2007, J NEUROSCI, V27, P11960, DOI 10.1523/JNEUROSCI.3591-07.2007
Holinger D.P., 2005, BRAIN RES, V1037, P39
Humes L, 2006, NOISE MILITARY SERVI
Husain FT, 2011, BRAIN RES, V1369, P74, DOI 10.1016/j.brainres.2010.10.095
Jiang HY, 2006, COMPUT METH PROG BIO, V81, P106, DOI 10.1016/j.cmpb.2005.08.004
Kaltenbach JA, 2011, HEARING RES, V276, P52, DOI 10.1016/j.heares.2010.12.003
Keller SS, 2011, EPILEPSIA, V52, P1715, DOI 10.1111/j.1528-1167.2011.03117.x
Kloppel S, 2008, BRAIN, V131, P196, DOI 10.1093/brain/awm275
Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009
Lee YJ, 2007, J CLIN NEUROSCI, V14, P515, DOI 10.1016/j.jocn.2006.10.002
Levitin DJ, 1998, MUSIC PERCEPT, V15, P357
Levitin DJ, 2003, NEUROIMAGE, V18, P74, DOI 10.1006/nimg.2002.1297
Levitin DJ, 2005, J CHILD PSYCHOL PSYC, V46, P514, DOI 10.1111/j.1469-7610.2004.00376.x
Li QQ, 2010, NEUROENDOCRINOL LETT, V31, P747
Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1
Lin Y, 2008, J MAGN RESON IMAGING, V28, P598, DOI 10.1002/jmri.21464
Ling JM, 2012, BRAIN, V135, P1281, DOI 10.1093/brain/aws073
Lockwood AH, 2002, NEW ENGL J MED, V347, P904, DOI 10.1056/NEJMra013395
Mahoney CJ, 2011, J NEUROL NEUROSUR PS, V82, P1274, DOI 10.1136/jnnp.2010.235473
Makris N, 2005, CEREB CORTEX, V15, P854, DOI 10.1093/cercor/bhh186
Mamah D, 2010, PSYCHIAT RES-NEUROIM, V183, P144, DOI 10.1016/j.pscychresns.2010.04.013
Matsumoto Nozomu, 2011, Commun Integr Biol, V4, P208, DOI 10.4161/cib.4.2.14491
Mazurek B, 2010, INT J ENV RES PUB HE, V7, P3071, DOI 10.3390/ijerph7083071
Miani C, 2001, EUR ARCH OTO-RHINO-L, V258, P341, DOI 10.1007/s004050100364
Middleton JW, 2011, P NATL ACAD SCI USA, V108, P7601, DOI 10.1073/pnas.1100223108
Morest DK, 1998, MICROSC RES TECHNIQ, V41, P205
Mulders WHAM, 2011, NEUROSCIENCE, V192, P753, DOI 10.1016/j.neuroscience.2011.06.046
Mulders WHAM, 2011, J COMP NEUROL, V519, P2637, DOI 10.1002/cne.22644
Newman C. W., 2004, TINNITUS THEORY MANA, P237
Newman CW, 1996, ARCH OTOLARYNGOL, V122, P143
NIGAM A, 1994, J LARYNGOL OTOL, V108, P494
Piccirillo JF, 2011, ARCH OTOLARYNGOL, V137, P221, DOI 10.1001/archoto.2011.3
Pober B.R., 2010, NEW ENGL J MED, V62, P239
Reiss AL, 2004, J NEUROSCI, V24, P5009, DOI 10.1523/JNEUROSCI.5272-03.2004
Roberts LE, 2010, J NEUROSCI, V30, P14972, DOI 10.1523/JNEUROSCI.4028-10.2010
Rueckert D, 1999, IEEE T MED IMAGING, V18, P712, DOI 10.1109/42.796284
Rugg-Gunn FJ, 2001, BRAIN, V124, P627, DOI 10.1093/brain/124.3.627
Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2
Schecklmann M, 2013, BRAIN STRUCT FUNCT, V218, P1061, DOI 10.1007/s00429-013-0520-z
Scholz J, 2009, NAT NEUROSCI, V12, P1370, DOI 10.1038/nn.2412
Schreiner C.E., 2004, TINNITUS THEORY MANA, P189
Smith SM, 2006, NEUROIMAGE, V31, P1487, DOI 10.1016/j.neuroimage.2006.02.024
Smith SM, 2004, NEUROIMAGE, V23, P208, DOI DOI 10.1016/J.NEUROIMAGE.2004.07.051
Snook L, 2007, NEUROIMAGE, V34, P243, DOI 10.1016/j.neuroimage.2006.07.021
Steele CJ, 2013, J NEUROSCI, V33, P1282, DOI 10.1523/JNEUROSCI.3578-12.2013
Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002
Tzourio-Mazoyer N, 2002, NEUROIMAGE, V15, P273, DOI 10.1006/nimg.2001.0978
Vanneste S, 2012, EXP BRAIN RES, V221, P345, DOI 10.1007/s00221-012-3177-6
Versace A, 2008, ARCH GEN PSYCHIAT, V65, P1041, DOI 10.1001/archpsyc.65.9.1041
Wang HN, 2011, HEARING RES, V279, P111, DOI 10.1016/j.heares.2011.04.004
Wu CM, 2009, AM J NEURORADIOL, V30, P1773, DOI 10.3174/ajnr.A1681
Wu CM, 2009, AUDIOL NEURO-OTOL, V14, P248, DOI 10.1159/000191282
Yankaskas K, 2012, HEARING RES, V295, P3
Yu CS, 2007, NEUROIMAGE, V36, P411, DOI 10.1016/j.neuroimage.2007.03.003
Zhou SY, 2003, BIOL PSYCHIAT, V54, P427, DOI 10.1016/S0006-3223(03)00007-6
NR 88
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2014
VL 309
BP 8
EP 16
DI 10.1016/j.heares.2013.10.005
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AB5WF
UT WOS:000331858700002
PM 24212050
ER
PT J
AU Christison-Lagay, KL
Cohen, YE
AF Christison-Lagay, Kate L.
Cohen, Yale E.
TI Behavioral correlates of auditory streaming in rhesus macaques
SO HEARING RESEARCH
LA English
DT Article
ID COCKTAIL PARTY PROBLEM; PERCEPTUAL ORGANIZATION; PHONETIC BOUNDARIES;
ENHANCED DISCRIMINABILITY; AWAKE MONKEY; CORTEX; SEGREGATION; OBJECT;
REPRESENTATIONS; FREQUENCY
AB Perceptual representations of auditory stimuli (i.e., sounds) are derived from the auditory system's ability to segregate and group the spectral, temporal, and spatial features of auditory stimuli a process called "auditory scene analysis". Psychophysical studies have identified several of the principles and mechanisms that underlie a listener's ability to segregate and group acoustic stimuli. One important psychophysical task that has illuminated many of these principles and mechanisms is the "streaming" task. Despite the wide use of this task to study psychophysical mechanisms of human audition, no studies have explicitly tested the streaming abilities of non-human animals using the standard methodologies employed in human-audition studies. Here, we trained rhesus macaques to participate in the streaming task using methodologies and controls similar to those presented in previous human studies. Overall, we found that the monkeys' behavioral reports were qualitatively consistent with those of human listeners, thus suggesting that this task may be a valuable tool for future neurophysiological studies. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Christison-Lagay, Kate L.] Univ Penn, Neurosci Grad Grp, Philadelphia, PA 19104 USA.
[Cohen, Yale E.] U Penn, Perelman Sch Med, Dept Otorhinolaryngol & Neurosci, Philadelphia, PA 19104 USA.
[Cohen, Yale E.] U Penn, Dept Bioengn, Philadelphia, PA 19104 USA.
RP Christison-Lagay, KL (reprint author), Dept Otorhinolaryngol, 3400 Spruce St,5 Ravdin, Philadelphia, PA 19104 USA.
EM katechri@mail.med.upenn.edu
FU NIDCD-NIH; Boucai Hearing Restoration Fund
FX We thank Joji Tsunada, Steven Eliades, and Heather Hersh for helpful
comments on the preparation of this manuscript. We also thank Harry
Shirley for outstanding veterinary support. KLCL and YEC were supported
by grants from NIDCD-NIH and the Boucai Hearing Restoration Fund.
CR Andersen RA, 1996, COLD SPRING HARB SYM, V61, P15
AULANKO R, 1993, NEUROREPORT, V4, P1356, DOI 10.1097/00001756-199309150-00018
Bendor D, 2006, CURR OPIN NEUROBIOL, V16, P391, DOI 10.1016/j.conb.2006.07.001
Bizley JK, 2013, NAT REV NEUROSCI, V14, P693, DOI 10.1038/nrn3565
Bizley JK, 2013, CURR BIOL, V23, P620, DOI 10.1016/j.cub.2013.03.003
BREGMAN AS, 1978, J EXP PSYCHOL HUMAN, V4, P380, DOI 10.1037//0096-1523.4.3.380
Bregman AS, 2000, PERCEPT PSYCHOPHYS, V62, P626, DOI 10.3758/BF03212114
Bregman AS., 1990, AUDITORY SCENE ANAL
BROWN CH, 1980, J ACOUST SOC AM, V68, P127, DOI 10.1121/1.384638
Carlyon RP, 2001, J EXP PSYCHOL HUMAN, V27, P115, DOI 10.1037//0096-1523.27.1.115
Coath M, 2005, NETWORK-COMP NEURAL, V16, P285, DOI 10.1080/09548980500290120
Cohen Y.E., 2012, SPRINGER HDB AUDITOR, P1
Cusack R, 2005, J COGNITIVE NEUROSCI, V17, P641, DOI 10.1162/0898929053467541
DeWitt I, 2012, P NATL ACAD SCI USA, V109, pE505, DOI 10.1073/pnas.1113427109
Elhilali M, 2009, NEURON, V61, P317, DOI 10.1016/j.neuron.2008.12.005
Fishman YI, 2001, HEARING RES, V151, P167, DOI 10.1016/S0378-5955(00)00224-0
Fishman YI, 2004, J ACOUST SOC AM, V116, P1656, DOI 10.1121/1.1778903
Fishman YI, 2001, J NEUROPHYSIOL, V86, P2761
Fishman YI, 2000, J ACOUST SOC AM, V108, P235, DOI 10.1121/1.429460
Griffiths TD, 2004, NAT REV NEUROSCI, V5, P887, DOI 10.1038/nrn1538
Horvath J, 2001, COGNITIVE BRAIN RES, V12, P131, DOI 10.1016/S0926-6410(01)00038-6
Izumi A, 2002, COGNITION, V82, pB113, DOI 10.1016/S0010-0277(01)00161-5
Kaas JH, 1999, NAT NEUROSCI, V2, P1045, DOI 10.1038/15967
KUHL PK, 1982, PERCEPT PSYCHOPHYS, V32, P542, DOI 10.3758/BF03204208
KUHL PK, 1975, J ACOUST SOC AM, V57, pS49, DOI 10.1121/1.1995272
KUHL PK, 1983, J ACOUST SOC AM, V73, P1003, DOI 10.1121/1.389148
LOGOTHETIS NK, 1989, SCIENCE, V245, P761, DOI 10.1126/science.2772635
Ma L, 2010, J COMP PSYCHOL, V124, P317, DOI 10.1037/a0018273
McDermott JH, 2009, CURR BIOL, V19, pR1024, DOI 10.1016/j.cub.2009.09.005
Micheyl C, 2005, NEURON, V48, P139, DOI 10.1016/j.neuron.2005.08.039
Micheyl C, 2007, HEARING RES, V229, P116, DOI 10.1016/j.heares.2007.01.007
Miller CT, 2001, NAT NEUROSCI, V4, P783, DOI 10.1038/90481
Moerel M, 2012, J NEUROSCI, V32, P14205, DOI 10.1523/JNEUROSCI.1388-12.2012
Narayan R, 2007, NAT NEUROSCI, V10, P1601, DOI 10.1038/nn2009
Niwa M, 2012, J NEUROSCI, V32, P3193, DOI 10.1523/JNEUROSCI.0767-11.2012
Parker AJ, 1998, ANNU REV NEUROSCI, V21, P227, DOI 10.1146/annurev.neuro.21.1.227
Petkov CI, 2007, NEURON, V54, P153, DOI 10.1016/j.neuron.2007.02.031
Petkov CI, 2003, J NEUROSCI, V23, P9155
PFINGST BE, 1978, HEARING RES, V1, P43, DOI 10.1016/0378-5955(78)90008-4
Rahne T, 2009, EUR J NEUROSCI, V29, P205, DOI 10.1111/j.1460-9568.2008.06561.x
Rauschecker JP, 2009, NAT NEUROSCI, V12, P718, DOI 10.1038/nn.2331
Recanzone GH, 2000, J NEUROPHYSIOL, V83, P2315
Recanzone GH, 2008, ANNU REV PSYCHOL, V59, P119, DOI 10.1146/annurev.psych.59.103006.093544
Romanski LM, 2009, ANNU REV NEUROSCI, V32, P315, DOI 10.1146/annurev.neuro.051508.135431
SERAFIN JV, 1982, J ACOUST SOC AM, V71, P1513, DOI 10.1121/1.387851
Shamma S, 2008, PLOS BIOL, V6, P1141, DOI 10.1371/journal.pbio.0060155
Shamma SA, 2010, CURR OPIN NEUROBIOL, V20, P361, DOI 10.1016/j.conb.2010.03.009
Shamma SA, 2011, TRENDS NEUROSCI, V34, P114, DOI 10.1016/j.tins.2010.11.002
Shinn-Cunningham BG, 2008, TRENDS COGN SCI, V12, P182, DOI 10.1016/j.tics.2008.02.003
SINNOTT JM, 1976, J ACOUST SOC AM, V60, P687, DOI 10.1121/1.381140
Sussman ES, 2007, PERCEPT PSYCHOPHYS, V69, P136, DOI 10.3758/BF03194460
Sussman ES, 2005, J ACOUST SOC AM, V117, P1285, DOI [10.1121/1.1854312, 10.1121/1.854312]
Tsunada J, 2011, J NEUROPHYSIOL, V105, P2634, DOI 10.1152/jn.00037.2011
Wang X, 2008, NEUROSCIENCE, V154, P294, DOI 10.1016/j.neuroscience.2008.03.065
Winkler I, 2009, TRENDS COGN SCI, V13, P532, DOI 10.1016/j.tics.2009.09.003
Zar JH, 1996, BIOSTATISTICAL ANAL
Zatorre RJ, 2004, J NEUROSCI, V24, P3637, DOI 10.1523/JNEUROSCI.5458-03.2004
NR 57
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2014
VL 309
BP 17
EP 25
DI 10.1016/j.heares.2013.11.001
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AB5WF
UT WOS:000331858700003
PM 24239869
ER
PT J
AU Schatzer, R
Vermeire, K
Visser, D
Krenmayr, A
Kals, M
Voormolen, M
Van de Heyning, P
Zierhofer, C
AF Schatzer, Reinhold
Vermeire, Katrien
Visser, Daniel
Krenmayr, Andreas
Kals, Mathias
Voormolen, Maurits
Van de Heyning, Paul
Zierhofer, Clemens
TI Electric-acoustic pitch comparisons in single-sided-deaf cochlear
implant users: Frequency-place functions and rate pitch
SO HEARING RESEARCH
LA English
DT Article
ID FINE-STRUCTURE; SPEECH-PERCEPTION; CODING STRATEGY; STIMULATION;
HEARING; EAR; MAP
AB Eight cochlear implant users with near-normal hearing in their non-implanted ear compared pitch percepts for pulsatile electric and acoustic pure-tone stimuli presented to the two ears. Six subjects were implanted with a 31-mm MED-EL FLEXSOFT electrode, and two with a 24-mm medium (M) electrode, with insertion angles of the most apical contacts ranging from 565 degrees to 758 degrees. In the first experiment, frequency-place functions were derived from pure-tone matches to 1500-pps unmodulated pulse trains presented to individual electrodes and compared to Greenwood's frequency position map along the organ of Corti. While the overall median downward shift of the obtained frequency-place functions (-0.16 octaves re. Greenwood) and the mean shifts in the basal (<240 degrees; -0.33 octaves) and middle (-0.35 octaves) regions were statistically significant, the shift in the apical region (>480 degrees; 0.26 octaves) was not. Standard deviations of frequency-place functions were approximately half an octave at electrode insertion angles below 480 degrees, increasing to an octave at higher angular locations while individual functions were gradually leveling off.
In a second experiment, subjects matched the rates of unmodulated pulse trains presented to individual electrodes in the apical half of the array to low-frequency pure tones between 100 Hz and 450 Hz. The aim was to investigate the influence of electrode place on the salience of temporal pitch cues, for coding strategies that present temporal fine structure information via rate modulations on select apical channels. Most subjects achieved reliable matches to tone frequencies from 100 Hz to 300 Hz only on electrodes at angular insertion depths beyond 360 degrees, while rate-matches to 450-Hz tones were primarily achieved on electrodes at shallower insertion angles. Only for electrodes in the second turn the average slopes of rate-pitch functions did not differ significantly from the pure-tone references, suggesting their use for the encoding of within-channel fine frequency information via rate modulations in temporal fine structure stimulation strategies. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Schatzer, Reinhold; Zierhofer, Clemens] Univ Innsbruck, Inst Mechatron, A-6020 Innsbruck, Austria.
[Vermeire, Katrien; Visser, Daniel; Krenmayr, Andreas; Kals, Mathias] Univ Innsbruck, Inst Ion Phys & Appl Phys, C Doppler Lab Act Implantable Syst, A-6020 Innsbruck, Austria.
[Voormolen, Maurits] Univ Antwerp, Univ Dept Radiol, Univ Antwerp Hosp, B-2650 Edegem, Belgium.
[Van de Heyning, Paul] Univ Antwerp, Univ Dept Otorhinolaryngol Head & Neck Surg, Univ Antwerp Hosp, B-2650 Edegem, Belgium.
RP Schatzer, R (reprint author), Univ Innsbruck, Inst Mechatron, Technikerstr 25, A-6020 Innsbruck, Austria.
EM reinhold.schatzer@uibk.ac.at
FU Austrian C. Doppler Research Association; TOPBOF project of the
University of Antwerp
FX We thank Dr. David Landsberger for his helpful comments on a previous
version of this manuscript and Dr. Otto Peter for providing the RIB II
MED-EL implant research interface. Special thanks go to our subjects for
their time and commitment. This work was funded by the Austrian C.
Doppler Research Association and supported by the TOPBOF project of the
University of Antwerp.
CR Baumann U, 2006, HEARING RES, V213, P34, DOI 10.1016/j.heares.2005.12.010
Baumann U, 2011, EAR HEARING, V32, P656, DOI 10.1097/AUD.0b013e31821a4800
Blamey PJ, 1996, HEARING RES, V99, P139, DOI 10.1016/S0378-5955(96)00095-0
Boex C, 2006, JARO-J ASSOC RES OTO, V7, P110, DOI 10.1007/s10162-005-0027-2
Canyon R. P., 2010, J ACOUST SOC AM, V127, P2997
Carlyon RP, 2010, JARO-J ASSOC RES OTO, V11, P625, DOI 10.1007/s10162-010-0222-7
Dorman MF, 2007, JARO-J ASSOC RES OTO, V8, P234, DOI 10.1007/s10162-007-0071-1
DORMAN MF, 1994, J ACOUST SOC AM, V95, P1677, DOI 10.1121/1.408558
Fearn R, 2000, Ann Otol Rhinol Laryngol Suppl, V185, P51
Frijns J. H., 2011, S AP COCHL NEUR EL S
GOLDSTEI.JL, 1973, J ACOUST SOC AM, V54, P1496, DOI 10.1121/1.1914448
GREENWOOD D, 1961, J ACOUST SOC AM, V33, P1344, DOI 10.1121/1.1908437
GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
Kong YY, 2010, J ACOUST SOC AM, V127, P3114, DOI 10.1121/1.3372713
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
Licklider J. C. R., 1959, PSYCHOL STUDY SCI, V1, P41
Loeb GE, 2005, EAR HEARING, V26, P435, DOI 10.1097/01.aud.0000179688.87621.48
McDermott H, 2009, AUDIOL NEURO-OTOL, V14, P2, DOI 10.1159/000206489
Meddis R, 1997, J ACOUST SOC AM, V102, P1811, DOI 10.1121/1.420088
Muller J, 2012, ORL J OTO-RHINO-LARY, V74, P185, DOI 10.1159/000337089
Oxenham AJ, 2004, P NATL ACAD SCI USA, V101, P1421, DOI 10.1073/pnas.0306958101
Plomp R., 1971, P 7 INT C AC BUD, V3, P377
Qin MK, 2003, J ACOUST SOC AM, V114, P446, DOI 10.1121/1.1579009
Reiss LAJ, 2007, JARO-J ASSOC RES OTO, V8, P241, DOI 10.1007/s10162-007-0077-8
Reiss LAJ, 2008, OTOL NEUROTOL, V29, P160
Riss D, 2008, OTOL NEUROTOL, V29, P784, DOI 10.1097/MAO.0b013e31817fe00f
Schatzer R, 2010, ACTA OTO-LARYNGOL, V130, P1031, DOI 10.3109/00016481003591731
Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a
Stakhovskaya O, 2007, JARO-J ASSOC RES OTO, V8, P220, DOI 10.1007/s10162-007-0076-9
TERHARDT E, 1979, HEARING RES, V1, P155, DOI 10.1016/0378-5955(79)90025-X
TONG YC, 1983, J ACOUST SOC AM, V74, P73, DOI 10.1121/1.389620
TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554
Van de Heyning Paul, 2008, Ann Otol Rhinol Laryngol, V117, P645
Vermeire K, 2008, HEARING RES, V245, P98, DOI 10.1016/j.heares.2008.09.003
von Helmholtz H, 1863, LEHRE TONEMPFINDUNGE
Weyer E. G., 1930, PSYCHOL REV, V37, P365
Weyer E. G., 1940, THEORY HEARING
WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0
Wundt W., 1880, GRUNDZUGE PHYSL PSYC
Xu J, 2000, AM J OTOL, V21, P49, DOI 10.1016/S0196-0709(00)80112-X
Xu L, 2003, J ACOUST SOC AM, V114, P3024, DOI 10.1121/1.1623786
NR 41
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2014
VL 309
BP 26
EP 35
DI 10.1016/j.heares.2013.11.003
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AB5WF
UT WOS:000331858700004
PM 24252455
ER
PT J
AU Macias, S
Hechavarria, JC
Cobo, A
Mora, EC
AF Macias, Silvio
Hechavarria, Julio C.
Cobo, Ariadna
Mora, Emanuel C.
TI Narrow sound pressure level tuning in the auditory cortex of the bats
Molossus molossus and Macrotus waterhousii
SO HEARING RESEARCH
LA English
DT Article
ID AMPLITUDE-SPECTRUM REPRESENTATION; MOUSTACHED BATS; MUSTACHE BAT;
FUNCTIONAL-ORGANIZATION; TELEMETRY MICROPHONE; RESPONSE PROPERTIES;
ECHOLOCATING BATS; MYOTIS-LUCIFUGUS; TONE INTENSITY; HORSESHOE BAT
AB In the auditory system, tuning to sound level appears in the form of non-monotonic response-level functions that depict the response of a neuron to changing sound levels. Neurons with non-monotonic response-level functions respond best to a particular sound pressure level (defined as "best level" or level evoking the maximum response). We performed a comparative study on the location and basic functional organization of the auditory cortex in the gleaning bat, Macrotus waterhousii, and the aerial-hawking bat, Molossus molossus. Here, we describe the response-level function of cortical units in these two species. In the auditory cortices of M. waterhousii and M. molossus, the characteristic frequency of the units increased from caudal to rostral. In M. waterhousii, there was an even distribution of characteristic frequencies while in M. molossus there was an overrepresentation of frequencies present within echolocation pulses. In both species, most of the units showed best levels in a narrow range, without an evident topography in the amplitopic organization, as described in other species. During flight, bats decrease the intensity of their emitted pulses when they approach a prey item or an obstacle resulting in maintenance of perceived echo intensity. Narrow level tuning likely contributes to the extraction of echo amplitudes facilitating echo-intensity compensation. For aerial-hawking bats, like M. molossus, receiving echoes within the optimal sensitivity range can help the bats to sustain consistent analysis of successive echoes without distortions of perception caused by changes in amplitude. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Macias, Silvio; Cobo, Ariadna; Mora, Emanuel C.] Univ Havana, Fac Biol, Dept Anim & Human Biol, Res Grp Bioacoust & Neuroethol, Havana 10400, Cuba.
[Hechavarria, Julio C.] Goethe Univ Frankfurt, Inst Zellbiol & Neurowissensch, D-60054 Frankfurt, Germany.
RP Macias, S (reprint author), Univ Havana, Fac Biol, Dept Anim & Human Biol, Res Grp Bioacoust & Neuroethol, 25 St 455, Havana 10400, Cuba.
EM silvio@fbio.uh.cu
FU Alexander von Humboldt Foundation; German Academic Exchange Service
(DAAD)
FX This work was supported by the Alexander von Humboldt Foundation and the
German Academic Exchange Service (DAAD). Our gratitude goes as well to
two anonymous reviewers who made very important contributions to earlier
versions of the manuscript.
CR Au WWL, 2003, NATURE, V423, P861, DOI 10.1038/nature01727
Coles R., 1998, J COMP PHYSIOL A, V165, P269
DEAR SP, 1993, J NEUROPHYSIOL, V70, P1988
Ehret G, 1997, J COMP PHYSIOL A, V181, P547, DOI 10.1007/s003590050139
Esser KH, 1997, P NATL ACAD SCI USA, V94, P14019, DOI 10.1073/pnas.94.25.14019
Esser KH, 1999, EUR J NEUROSCI, V11, P3669, DOI 10.1046/j.1460-9568.1999.00789.x
GAIONI SJ, 1990, J NEUROPHYSIOL, V64, P1801
Galazyuk AV, 1997, J COMP PHYSIOL A, V180, P301, DOI 10.1007/s003590050050
Hagemann C, 2010, J NEUROPHYSIOL, V103, P322, DOI 10.1152/jn.00595.2009
Hagemann C, 2011, J COMP PHYSIOL A, V197, P605, DOI 10.1007/s00359-010-0530-8
Hechavarria JC, 2013, J ACOUST SOC AM, V133, P570, DOI 10.1121/1.4768794
HEIL P, 1994, HEARING RES, V76, P188, DOI 10.1016/0378-5955(94)90099-X
Hiryu S, 2005, J ACOUST SOC AM, V118, P3927, DOI 10.1121/1.2130940
Hiryu S, 2007, J ACOUST SOC AM, V121, P1749, DOI 10.1121/1.2431337
Hiryu S, 2008, J COMP PHYSIOL A, V194, P841, DOI 10.1007/s00359-008-0355-x
Hoffmann S, 2008, BMC NEUROSCI, V9, DOI 10.1186/1471-2202-9-65
Kanwal JS, 1999, J NEUROPHYSIOL, V82, P2327
KANWAL JS, 1994, J ACOUST SOC AM, V96, P1229, DOI 10.1121/1.410273
Macias S, 2009, HEARING RES, V250, P19, DOI 10.1016/j.heares.2009.01.006
NEUWEILER G, 1990, PHYSIOL REV, V70, P615
OSTWALD J, 1984, J COMP PHYSIOL, V155, P821, DOI 10.1007/BF00611599
RADTKESCHULLER S, 1995, EUR J NEUROSCI, V7, P570, DOI 10.1111/j.1460-9568.1995.tb00662.x
Razak KA, 2002, J NEUROPHYSIOL, V87, P72
Rohl M, 2012, JARO-J ASSOC RES OTO, V13, P369, DOI 10.1007/s10162-012-0315-6
RUBSAMEN R, 1988, J COMP PHYSIOL A, V163, P271, DOI 10.1007/BF00612436
Sadagopan S, 2008, J NEUROSCI, V28, P3415, DOI 10.1523/JNEUROSCI.2743-07.2008
SCHREINER CE, 1992, EXP BRAIN RES, V92, P105
SUGA N, 1982, J NEUROPHYSIOL, V47, P225
SUGA N, 1992, PHILOS T ROY SOC B, V336, P423, DOI 10.1098/rstb.1992.0078
Suga N., 1984, DYNAMIC ASPECTS NEOC, P315
SUGA N, 1979, SCIENCE, V206, P351, DOI 10.1126/science.482944
SUGA N, 1976, SCIENCE, V194, P542, DOI 10.1126/science.973140
SUGA N, 1977, SCIENCE, V196, P64, DOI 10.1126/science.190681
SUTTER ML, 1995, J NEUROPHYSIOL, V73, P190
Takahashi H, 2004, NEUROREPORT, V15, P2061, DOI 10.1097/00001756-200409150-00013
TANIGUCHI I, 1993, NEUROSCI LETT, V151, P178, DOI 10.1016/0304-3940(93)90015-D
Watkins PV, 2008, NAT NEUROSCI, V11, P1259, DOI 10.1038/nn.2201
WONG D, 1988, BRAIN RES, V453, P349, DOI 10.1016/0006-8993(88)90176-X
NR 38
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2014
VL 309
BP 36
EP 43
DI 10.1016/j.heares.2013.11.004
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AB5WF
UT WOS:000331858700005
PM 24269749
ER
PT J
AU Godfrey, DA
Jin, YM
Liu, XC
Godfrey, MA
AF Godfrey, Donald A.
Jin, Yong-Ming
Liu, Xiaochen
Godfrey, Matthew A.
TI Effects of cochlear ablation on amino acid levels in the rat cochlear
nucleus and superior olive
SO HEARING RESEARCH
LA English
DT Article
ID STEM AUDITORY NUCLEI; CHOLINE-ACETYLTRANSFERASE ACTIVITY;
GAMMA-AMINOBUTYRIC ACID; INTENSE TONE EXPOSURE; ELECTRON-MICROSCOPIC
IMMUNOCYTOCHEMISTRY; UNILATERAL VESTIBULAR GANGLIONECTOMY; EAR OSSICLE
REMOVAL; GUINEA-PIG COCHLEA; BRAIN-STEM; WALLERIAN DEGENERATION
AB Amino acids have important roles in the chemistry of the auditory system, including communication among neurons. There is much evidence for glutamate as a neurotransmitter from auditory nerve fibers to cochlear nucleus neurons. Previous studies in rodents have examined effects of removal of auditory nerve input by cochlear ablation on levels, uptake and release of glutamate in cochlear nucleus subdivisions, as well as on glutamate receptors. Effects have also been reported on uptake and release of gamma-aminobutyrate (GABA) and glycine, two other amino acids strongly implicated in cochlear nucleus synaptic transmission. We mapped the effects of cochlear ablation on the levels of amino acids, including glutamate, GABA, glycine, aspartate, glutamine, taurine, serine, threonine, and arginine, in microscopic subregions of the rat cochlear nucleus. Submicrogram-size samples microdissected from freeze-dried brainstem sections were assayed for amino acid levels by high performance liquid chromatography. After cochlear ablation, glutamate and aspartate levels decreased by 2 days in regions receiving relatively dense innervation from the auditory nerve, whereas the levels of most other amino acids increased. The results are consistent with a close association of glutamate and aspartate with auditory nerve fibers and of other amino acids with other neurons and glia in the cochlear nucleus. A consistent decrease of GABA level in the lateral superior olive could be consistent with a role in some lateral olivocochlear neurons. The results are compared with those obtained with the same methods for the rat vestibular nerve root and nuclei after vestibular ganglionectomy. (C) 2013 Elsevier B.V. All rights reserved.
C1 Univ Toledo, Coll Med, Dept Neurol, Toledo, OH 43614 USA.
Univ Toledo, Coll Med, Dept Surg, Div Otolaryngol & Dent, Toledo, OH 43614 USA.
RP Godfrey, DA (reprint author), Univ Toledo, Dept Neurol, Mail Stop 1195,Hlth Sci Campus,3000 Arlington Ave, Toledo, OH 43614 USA.
EM donald.godfrey@utoledo.edu
FU NIH [DC00172]; University of Toledo Foundation
FX Support for this research was received from NIH grant DC00172 and the
University of Toledo Foundation.
CR Abbott SD, 1999, NEUROSCIENCE, V93, P1375, DOI 10.1016/S0306-4522(99)00300-0
Albrecht J, 2005, NEUROCHEM RES, V30, P1615, DOI 10.1007/s11064-005-8986-6
Aldskogius H, 1998, PROG NEUROBIOL, V55, P1, DOI 10.1016/S0301-0082(97)00093-2
Alibardi L, 2003, J ANAT, V203, P31, DOI 10.1046/j.1469-7580.2003.00208.x
Apostolides PF, 2013, J NEUROSCI, V33, P4768, DOI 10.1523/JNEUROSCI.5555-12.2013
BERREBI AS, 1991, ANAT EMBRYOL, V183, P427
BOBBIN RP, 1990, HEARING RES, V46, P83, DOI 10.1016/0378-5955(90)90141-B
CHANPALAY V, 1982, P NATL ACAD SCI-BIOL, V79, P6717, DOI 10.1073/pnas.79.21.6717
COHEN ES, 1972, EXP NEUROL, V35, P470, DOI 10.1016/0014-4886(72)90117-3
DEMEDIUK P, 1989, J NEUROCHEM, V52, P1529, DOI 10.1111/j.1471-4159.1989.tb09204.x
Dingledine Raymond, 1994, P367
Dong SY, 2010, EUR J NEUROSCI, V31, P1616, DOI 10.1111/j.1460-9568.2010.07183.x
DRESCHER MJ, 1983, J NEUROCHEM, V41, P309, DOI 10.1111/j.1471-4159.1983.tb04745.x
Eggermont JJ, 2012, NEUROSCIENCE TINNITU
EYBALIN M, 1993, PHYSIOL REV, V73, P309
FEX J, 1976, BRAIN RES, V109, P575, DOI 10.1016/0006-8993(76)90036-6
FISHER SK, 1976, J NEUROCHEM, V27, P1145, DOI 10.1111/j.1471-4159.1976.tb00321.x
FRANSON P, 1984, J COMP NEUROL, V223, P138, DOI 10.1002/cne.902230111
Fredrich M, 2013, EUR J NEUROSCI, V38, P2041, DOI 10.1111/ejn.12200
Fuentes-Santamaria V, 2012, J COMP NEUROL, V520, P2974, DOI 10.1002/cne.23088
GACEK RR, 1961, ANAT REC, V139, P455, DOI 10.1002/ar.1091390402
GEORGE R, 1994, EXP NEUROL, V129, P225, DOI 10.1006/exnr.1994.1164
Godfrey DA, 1988, AUDITORY PATHWAY, P107
Godfrey DA, 2012, J NEUROSCI RES, V90, P2214, DOI 10.1002/jnr.23095
GODFREY DA, 1976, J HISTOCHEM CYTOCHEM, V24, P468
Godfrey DA, 2004, J NEUROSCI RES, V77, P603, DOI 10.1002/jnr.20179
GODFREY DA, 1984, HEARING RES, V14, P93, DOI 10.1016/0378-5955(84)90072-8
Godfrey D.A., 2004, ASS RES OT ABSTR, V188
Godfrey Donald A., 2008, Seminars in Hearing, V29, P259, DOI 10.1055/s-0028-1082032
GODFREY DA, 1976, J HISTOCHEM CYTOCHEM, V24, P697
Godfrey DA, 2013, J NEUROSCI RES, V91, P987, DOI 10.1002/jnr.23227
Godfrey DA, 2008, NEUROSCIENCE, V154, P304, DOI 10.1016/j.neuroscience.2007.12.031
Godfrey DA, 2000, HEARING RES, V150, P189, DOI 10.1016/S0378-5955(00)00199-4
GUILLERY RW, 1993, J NEUROCYTOL, V22, P707, DOI 10.1007/BF01181316
Hackney CM, 1996, EUR J NEUROSCI, V8, P79, DOI 10.1111/j.1460-9568.1996.tb01169.x
HARRISON JM, 1966, J COMP NEUROL, V126, P51, DOI 10.1002/cne.901260105
HARRISON JM, 1962, J COMP NEUROL, V119, P341, DOI 10.1002/cne.901190306
HARRISON JM, 1965, J COMP NEUROL, V124, P15, DOI 10.1002/cne.901240103
HASSEL B, 1995, NEUROCHEM RES, V20, P413, DOI 10.1007/BF00973096
Hildebrandt H, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023686
HILL DW, 1979, ANAL CHEM, V51, P1338, DOI 10.1021/ac50044a055
Jenkins SA, 2006, BRAIN RES, V1111, P12, DOI 10.1016/j.brainres.2006.06.067
Jin YM, 2005, J NEUROSCI RES, V81, P91, DOI 10.1002/jnr.20536
Jin YM, 2006, J NEUROSCI RES, V83, P157, DOI 10.1002/jnr.20706
Jin YM, 2006, HEARING RES, V216, P168, DOI 10.1016/j.heares.2006.02.002
Kim JJ, 2004, J NEUROSCI RES, V77, P829, DOI 10.1002/jnr.20211
Kraus KS, 2011, NEUROSCIENCE, V194, P309, DOI 10.1016/j.neuroscience.2011.07.056
Lehninger AL, 1975, BIOCHEMISTRY
Li H, 1997, NEUROSCIENCE, V77, P473, DOI 10.1016/S0306-4522(96)00468-X
Li HY, 1999, ANN OTO RHINOL LARYN, V108, P181
Li HY, 1996, J NEUROCHEM, V66, P1550
Lorente de No R, 1981, PRIMARY ACOUSTIC NUC
Lowry OH, 1972, FLEXIBLE SYSTEM ENZY
LUDWIN SK, 1990, ACTA NEUROPATHOL, V80, P266
MCCAMAN RE, 1959, J NEUROCHEM, V5, P18, DOI 10.1111/j.1471-4159.1959.tb13329.x
MERCHAN MA, 1985, J ANAT, V141, P121
Michler SA, 2003, AUDIOL NEURO-OTOL, V8, P190, DOI 10.1159/000071060
Milbrandt JC, 2000, HEARING RES, V147, P251, DOI 10.1016/S0378-5955(00)00135-0
Morest DK, 1998, MICROSC RES TECHNIQ, V41, P205
MUGNAINI E, 1985, J COMP NEUROL, V235, P61, DOI 10.1002/cne.902350106
OTTERSEN OP, 1992, NEUROSCIENCE, V46, P519, DOI 10.1016/0306-4522(92)90141-N
Pagano M, 1993, PRINCIPLES BIOSTATIS
PATEL AJ, 1985, J NEUROCHEM, V44, P1816, DOI 10.1111/j.1471-4159.1985.tb07173.x
Potashner SJ, 2000, HEARING RES, V147, P125, DOI 10.1016/S0378-5955(00)00126-X
POTASHNER SJ, 1985, J NEUROCHEM, V45, P1558, DOI 10.1111/j.1471-4159.1985.tb07227.x
Potashner SJ, 1997, EXP NEUROL, V148, P222, DOI 10.1006/exnr.1997.6641
Potts MB, 2009, CEREBELLUM, V8, P211, DOI 10.1007/s12311-009-0114-8
RICHRATH W, 1974, ARCH OTO-RHINO-LARYN, V208, P283, DOI 10.1007/BF02438987
Ross CD, 1995, NEUROCHEM RES, V20, P1483, DOI 10.1007/BF00970598
RYAN AF, 1992, HEARING RES, V61, P24, DOI 10.1016/0378-5955(92)90032-I
Shannon-Hartman S., 1993, Society for Neuroscience Abstracts, V19, P533
Suneja SK, 2000, EXP NEUROL, V165, P355, DOI 10.1006/exnr.2000.7471
Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812
Suneja SK, 1998, EXP NEUROL, V154, P473, DOI 10.1006/exnr.1998.6946
TACHIBAN.M, 1974, BRAIN RES, V69, P370, DOI 10.1016/0006-8993(74)90017-1
Torres AC, 1999, NEUROSCIENCE, V92, P1475
VETTER DE, 1991, SYNAPSE, V7, P21, DOI 10.1002/syn.890070104
Wall JT, 2002, BRAIN RES REV, V39, P181, DOI 10.1016/S0165-0173(02)00192-3
WALSH BT, 1972, INT J NEUROSCI, V3, P221, DOI 10.3109/00207457209147026
Wang H, 2009, NEUROSCIENCE, V164, P747, DOI 10.1016/j.neuroscience.2009.08.026
Wang HN, 2011, HEARING RES, V279, P111, DOI 10.1016/j.heares.2011.04.004
Warr W. B., 1992, MAMMALIAN AUDITORY P, P410
Wenthold RJ, 1977, BRAIN RES, V138, P279
WENTHOLD RJ, 1978, BRAIN RES, V143, P544, DOI 10.1016/0006-8993(78)90365-7
WENTHOLD RJ, 1987, NEUROSCIENCE, V22, P897, DOI 10.1016/0306-4522(87)92968-X
WENTHOLD RJ, 1993, NATO ADV SCI INST SE, V239, P179
WENTHOLD RJ, 1979, BRAIN RES, V162, P338, DOI 10.1016/0006-8993(79)90294-4
WOUTERLOOD FG, 1984, J COMP NEUROL, V227, P136, DOI 10.1002/cne.902270114
Zhang JS, 2003, EXP BRAIN RES, V153, P655, DOI 10.1007/s00221-003-1612-4
Zhang JS, 2003, HEARING RES, V185, P13, DOI 10.1016/S0378-5955(03)00276-4
NR 90
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2014
VL 309
BP 44
EP 54
DI 10.1016/j.heares.2013.11.005
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AB5WF
UT WOS:000331858700006
PM 24291808
ER
PT J
AU Zhong, ZW
Henry, KS
Heinz, MG
AF Zhong, Ziwei
Henry, Kenneth S.
Heinz, Michael G.
TI Sensorineural hearing loss amplifies neural coding of envelope
information in the central auditory system of chinchillas
SO HEARING RESEARCH
LA English
DT Article
ID TEMPORAL FINE-STRUCTURE; FREQUENCY-FOLLOWING RESPONSES; MODULATION
TRANSFER-FUNCTIONS; OUTER HAIR-CELLS; LOUDNESS RECRUITMENT; GUINEA-PIG;
AMPLITUDE-MODULATION; INFERIOR COLLICULUS; SPEECH-PERCEPTION; IMPAIRED
SUBJECTS
AB People with sensorineural hearing loss often have substantial difficulty understanding speech under challenging listening conditions. Behavioral studies suggest that reduced sensitivity to the temporal structure of sound may be responsible, but underlying neurophysiological pathologies are incompletely understood. Here, we investigate the effects of noise-induced hearing loss on coding of envelope (ENV) structure in the central auditory system of anesthetized chinchillas. ENV coding wag evaluated non-invasively using auditory evoked potentials recorded from the scalp surface in response to sinusoidally amplitude modulated tones with carrier frequencies of 1, 2, 4, and 8 kHz and a modulation frequency of 140 Hz. Stimuli were presented in quiet and in three levels of white background noise. The latency of scalp-recorded ENV responses was consistent with generation in the auditory midbrain. Hearing loss amplified neural coding of ENV at carrier frequencies of 2 kHz and above. This result may reflect enhanced ENV coding from the periphery and/or an increase in the gain of central auditory neurons. In contrast to expectations, hearing loss was not associated with a stronger adverse effect of increasing masker intensity on ENV coding. The exaggerated neural representation of ENV information shown here at the level of the auditory midbrain helps to explain previous findings of enhanced sensitivity to amplitude modulation in people with hearing loss under some conditions. Furthermore, amplified ENV coding may potentially contribute to speech perception problems in people with cochlear hearing loss by acting as a distraction from more salient acoustic cues, particularly in fluctuating backgrounds. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Zhong, Ziwei; Heinz, Michael G.] Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA.
[Henry, Kenneth S.; Heinz, Michael G.] Purdue Univ, Dept Speech Language & Hearing Sci, W Lafayette, IN 47907 USA.
RP Heinz, MG (reprint author), Purdue Univ, Dept Speech Language & Hearing Sci, 500 Oval Dr, W Lafayette, IN 47907 USA.
EM mheinz@purdue.edu
FU NIH from the National Institute on Deafness and other Communication
Disorders [R01-DC009838, F32-DC012236]
FX This work was supported by NIH grants R01-DC009838 to MGH and
F32-DC012236 to KSH from the National Institute on Deafness and other
Communication Disorders.
CR BACON SP, 1992, J SPEECH HEAR RES, V35, P642
Bode H. W., 1945, NETWORK ANAL FEEDBAC
CHIMENTO TC, 1990, ELECTROEN CLIN NEURO, V75, P88, DOI 10.1016/0013-4694(90)90156-E
CODY AR, 1983, HEARING RES, V9, P55, DOI 10.1016/0378-5955(83)90134-X
Dau T, 1999, J ACOUST SOC AM, V106, P2752, DOI 10.1121/1.428103
DOLPHIN WF, 1992, HEARING RES, V58, P70, DOI 10.1016/0378-5955(92)90010-K
Finlayson PG, 2009, HEARING RES, V256, P104, DOI 10.1016/j.heares.2009.07.006
Fullgrabe C, 2003, HEARING RES, V178, P35, DOI 10.1016/S0378-5955(03)00027-3
GALBRAITH GC, 1994, ELECTROEN CLIN NEURO, V92, P321, DOI 10.1016/0168-5597(94)90100-7
Galbraith GC, 2000, NEUROSCI LETT, V292, P123, DOI 10.1016/S0304-3940(00)01436-1
GLASBERG BR, 1992, HEARING RES, V64, P81, DOI 10.1016/0378-5955(92)90170-R
GLASER EM, 1976, ELECTROEN CLIN NEURO, V40, P25, DOI 10.1016/0013-4694(76)90176-0
HARRISON RV, 1979, ARCH OTO-RHINO-LARYN, V224, P71, DOI 10.1007/BF00455226
Heinz MG, 2010, NEUROPHYSIOLOGICAL BASES OF AUDITORY PERCEPTION, P621, DOI 10.1007/978-1-4419-5686-6_56
Heinz MG, 2004, J NEUROPHYSIOL, V91, P784, DOI 10.1152/jn.00776.2003
Henry KS, 2011, HEARING RES, V280, P236, DOI 10.1016/j.heares.2011.06.002
Henry KS, 2012, NAT NEUROSCI, V15, P1362, DOI 10.1038/nn.3216
Hopkins K, 2008, J ACOUST SOC AM, V123, P1140, DOI 10.1121/1.2824018
Joris PX, 2003, J NEUROSCI, V23, P6345
Kale S, 2010, JARO-J ASSOC RES OTO, V11, P657, DOI 10.1007/s10162-010-0223-6
Kale S, 2012, HEARING RES, V286, P64, DOI 10.1016/j.heares.2012.02.004
Kilman V, 2002, J NEUROSCI, V22, P1328
KIREN T, 1994, ACTA OTO-LARYNGOL, P28
Krishnan A., 2006, AUDITORY EVOKED POTE, P313
Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009
KUWADA S, 1986, HEARING RES, V21, P179, DOI 10.1016/0378-5955(86)90038-9
Langner G, 2002, HEARING RES, V168, P110, DOI 10.1016/S0378-5955(02)00367-2
LIBERMAN MC, 1984, HEARING RES, V16, P75, DOI 10.1016/0378-5955(84)90026-1
Littell R., 2006, SAS MIXED MODELS
Lorenzi C, 2009, J ACOUST SOC AM, V125, P27, DOI 10.1121/1.2939125
Lorenzi C, 2006, P NATL ACAD SCI USA, V103, P18866, DOI 10.1073/pnas.0607364103
Maison SF, 2000, J NEUROSCI, V20, P4701
Miller RL, 1997, J ACOUST SOC AM, V101, P3602, DOI 10.1121/1.418321
MOORE BCJ, 1993, J ACOUST SOC AM, V94, P2050, DOI 10.1121/1.407478
Moore BCJ, 2008, JARO-J ASSOC RES OTO, V9, P399, DOI 10.1007/s10162-008-0143-x
Moore BCJ, 2006, HEARING RES, V222, P16, DOI 10.1016/j.heares.2006.08.007
MOORE BCJ, 1995, BRIT J AUDIOL, V29, P131, DOI 10.3109/03005369509086590
Moore BCJ, 1996, J ACOUST SOC AM, V100, P481, DOI 10.1121/1.415861
Moore BCJ, 2001, J ACOUST SOC AM, V110, P1067, DOI 10.1121/1.1385177
MOORE BCJ, 1992, BRIT J AUDIOL, V26, P229, DOI 10.3109/03005369209076641
Mulders WHAM, 2009, NEUROSCIENCE, V164, P733, DOI 10.1016/j.neuroscience.2009.08.036
Niu YG, 2013, J NEUROSCI RES, V91, P292, DOI 10.1002/jnr.23152
RUGGERO MA, 1991, J NEUROSCI, V11, P1057
Schaette R, 2011, J NEUROSCI, V31, P13452, DOI 10.1523/JNEUROSCI.2156-11.2011
Scheidt RE, 2010, HEARING RES, V269, P23, DOI 10.1016/j.heares.2010.07.009
Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1
SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996
SMITH JC, 1975, ELECTROEN CLIN NEURO, V39, P465, DOI 10.1016/0013-4694(75)90047-4
SOHMER H, 1977, ELECTROEN CLIN NEURO, V42, P656, DOI 10.1016/0013-4694(77)90282-6
Titze IR, 1994, PRINCIPLES VOICE PRO
Turrigiano GG, 1999, TRENDS NEUROSCI, V22, P221, DOI 10.1016/S0166-2236(98)01341-1
Turrigiano GG, 1998, NATURE, V391, P892, DOI 10.1038/36103
WOOLF NK, 1981, HEARING RES, V4, P335, DOI 10.1016/0378-5955(81)90017-4
Young ED, 2012, SPRINGER HANDB AUDIT, V40, P87, DOI 10.1007/978-1-4419-9523-0_6
Zeng FG, 2005, P NATL ACAD SCI USA, V102, P2293, DOI 10.1073/pnas.0406460102
NR 55
TC 1
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2014
VL 309
BP 55
EP 62
DI 10.1016/j.heares.2013.11.006
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AB5WF
UT WOS:000331858700007
PM 24315815
ER
PT J
AU Todd, NPM
Paillard, AC
Kluk, K
Whittle, E
Colebatch, JG
AF Todd, Neil P. M.
Paillard, Aurore C.
Kluk, Karolina
Whittle, Elizabeth
Colebatch, James G.
TI Vestibular receptors contribute to cortical auditory evoked potentials
SO HEARING RESEARCH
LA English
DT Article
ID BONE-CONDUCTED SOUND; LOW-FREQUENCY VIBRATION; INDUCED HEARING-LOSS;
MYOGENIC POTENTIALS; CALORIC STIMULATION; HUMAN CORTEX; COMPONENTS;
INTENSITY; RESPONSES; THRESHOLD
AB Acoustic sensitivity of the vestibular apparatus is well-established, but the contribution of vestibular receptors to the late auditory evoked potentials of cortical origin is unknown. Evoked potentials from 500 Hz tone pips were recorded using 70 channel EEG at several intensities below and above the vestibular acoustic threshold, as determined by vestibular evoked myogenic potentials (VEMPs). In healthy subjects both auditory mid- and long-latency auditory evoked potentials (AEPs), consisting of Na, Pa, N1 and P2 waves, were observed in the sub-threshold conditions. However, in passing through the vestibular threshold, systematic changes were observed in the morphology of the potentials and in the intensity dependence of their amplitude and latency. These changes were absent in a patient without functioning vestibular receptors. In particular, for the healthy subjects there was a fronto-central negativity, which appeared at about 42 ms, referred to as an N42, prior to the AEP NI. Source analysis of both the N42 and N1 indicated involvement of cingulate cortex, as well as bilateral superior temporal cortex. Our findings are best explained by vestibular receptors contributing to what were hitherto considered as purely auditory evoked potentials and in addition tentatively identify a new component that appears to be primarily of vestibular origin. (C) 2013 The Authors. Published by Blsevier B.V. All rights reserved.
C1 [Todd, Neil P. M.; Paillard, Aurore C.; Kluk, Karolina; Whittle, Elizabeth] Univ Manchester, Manchester M13 9PL, Lancs, England.
[Colebatch, James G.] Univ New S Wales, Sydney, NSW 2052, Australia.
RP Todd, NPM (reprint author), Univ Manchester, Fac Life Sci, Manchester M13 9PL, Lancs, England.
EM neil.todd@manchester.ac.uk
FU Wellcome Trust [WT091961MA]
FX The research reported in this article was supported by a grant from the
Wellcome Trust (WT091961MA). We are grateful to Sendhil Govender for
assistance in recording EEG from the vestibular patient and to Dr M
Welgampola and Professor M Halmagyi for their cooperation in the
recruitment of the patient. We would like to thank Prof Chris Plack and
Dr Selvino de Kort for their comments on an earlier version of this
manuscript. We would also like to thank Aisha Mclean for assistance in
the preparation of the manuscript.
CR Akin FW, 2012, EAR HEARING, V33, P458, DOI 10.1097/AUD.0b013e3182498c5f
Antal A, 2008, VISUAL NEUROSCI, V25, P17, DOI 10.1017/S0952523808080024
Balaban CD, 2004, SPR HDB AUD, P286
Barker M., 2012, PLOS ONE, V7
Bickford A.G., 1964, ANN NY ACAD SCI, V194, P112
BLUM PS, 1979, EXP NEUROL, V64, P587, DOI 10.1016/0014-4886(79)90234-6
Brimijoin WO, 2012, I-PERCEPTION, V3, P179, DOI 10.1068/i7173sas
COLEBATCH JG, 1994, J NEUROL NEUROSUR PS, V57, P190, DOI 10.1136/jnnp.57.2.190
Curthoys IS, 2006, EXP BRAIN RES, V175, P256, DOI 10.1007/s00221-006-0544-1
de Waele C, 2001, EXP BRAIN RES, V141, P541, DOI 10.1007/s00221-001-0894-7
Dierks T, 1999, PSYCHOPHARMACOLOGY, V146, P101, DOI 10.1007/s002130051094
Emami S.F., 2012, ISRN OTOLARYNGOL, DOI DOI 10.5402/2012/850629
Emami S.F., 2012, ISRN OTOLARYNGOL, DOI DOI 10.5402/2012/246065
Fasold O, 2002, NEUROIMAGE, V17, P1384, DOI 10.1006/nimg.2002.1241
Gallinat J, 2000, PSYCHOPHARMACOLOGY, V148, P404, DOI 10.1007/s002130050070
Guldin WO, 1998, TRENDS NEUROSCI, V21, P254, DOI 10.1016/S0166-2236(97)01211-3
Jones TA, 2011, HEARING RES, V280, P133, DOI 10.1016/j.heares.2011.05.005
Kumar K, 2010, NOISE HEALTH, V12, P191, DOI 10.4103/1463-1741.64973
LACKNER JR, 1974, AEROSPACE MED, V45, P1267
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
Lewis E., 1999, COMP HEARING FISH AM
Lobel E, 1998, J NEUROPHYSIOL, V80, P2699
Lopez C., 2012, NEUROSCIENCE, V212, P156
Lopez C, 2011, BRAIN RES REV, V67, P119, DOI 10.1016/j.brainresrev.2010.12.002
Manley G.A., 2004, EVOLUTION VERTEBRATE
MAURIZI M, 1984, AUDIOLOGY, V23, P569
MCCUE MP, 1994, J NEUROSCI, V14, P6058
McKnight CL, 2013, J ACOUST SOC AM, V133, P136, DOI 10.1121/1.4768801
McNerney KM, 2011, J AM ACAD AUDIOL, V22, P143, DOI 10.3766/jaaa.22.3.3
Meddis R, 2011, J ACOUST SOC AM, V129, P3153, DOI 10.1121/1.3569712
Miyarnoto T, 2007, NEUROSCI LETT, V423, P68, DOI 10.1016/j.neulet.2007.06.036
NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x
OZDAMAR O, 1983, AUDIOLOGY, V22, P34
Phillips-Silver J, 2008, BRAIN COGNITION, V67, P94, DOI 10.1016/j.bandc.2007.11.007
PICTON TW, 1974, ELECTROEN CLIN NEURO, V36, P179, DOI 10.1016/0013-4694(74)90155-2
Picton TW., 2011, HUMAN AUDITORY EVOKE
PROBST T, 1990, NEUROSCI LETT, V108, P255, DOI 10.1016/0304-3940(90)90650-X
Rosengren SA, 2006, CLIN NEUROPHYSIOL, V117, P1145, DOI 10.1016/j.clinph.2005.12.026
Rosengren SM, 2005, CLIN NEUROPHYSIOL, V116, P1938, DOI 10.1016/j.clinph.2005.03.019
ROUCOUXHANUS M, 1977, EXP BRAIN RES, V29, P283
Scherg M, 1989, J Cogn Neurosci, V1, P336, DOI 10.1162/jocn.1989.1.4.336
Schlindwein P, 2008, NEUROIMAGE, V39, P19, DOI 10.1016/j.neuroimage.2007.08.016
Smith AT, 2012, CEREB CORTEX, V22, P1068, DOI 10.1093/cercor/bhr179
Sohmer H., 1999, NOISE HEALTH, V2, P41
Stenfelt S, 2000, J ACOUST SOC AM, V107, P422, DOI 10.1121/1.428314
Suzuki M, 2001, COGNITIVE BRAIN RES, V12, P441, DOI 10.1016/S0926-6410(01)00080-5
Tait J., 1932, ANN OTO RHINOL LARYN, V41, P6812
THORNTON AR, 1977, J SPEECH HEAR RES, V20, P81
Todd N, 2001, J ACOUST SOC AM, V110, P380, DOI 10.1121/1.1373662
Todd NPM, 2008, CLIN NEUROPHYSIOL, V119, P1881, DOI 10.1016/j.clinph.2008.03.027
Todd NPM, 2000, J ACOUST SOC AM, V107, P496, DOI 10.1121/1.428317
Todd NPM, 2003, J ACOUST SOC AM, V114, P3264, DOI 10.1121/1.1628249
Todd NPM, 2008, NEUROSCI LETT, V444, P36, DOI 10.1016/j.neulet.2008.08.011
Todd NPM, 2007, J ACOUST SOC AM, V122, P2906, DOI 10.1121/1.2785811
Todd NPM, 2009, NEUROSCI LETT, V451, P175, DOI 10.1016/j.neulet.2008.12.055
Todd NPM, 2010, J APPL PHYSIOL, V109, P53, DOI 10.1152/japplphysiol.01139.2009
Todd NPM, 2004, J ACOUST SOC AM, V115, P3077, DOI 10.1121/1.1736273
Todd NPM, 2007, CLIN NEUROPHYSIOL, V118, P381, DOI 10.1016/j.clinph.2006.09.025
TODD NPM, 1993, MUSIC PERCEPT, V10, P379
Wang YP, 2007, OTOLARYNG HEAD NECK, V137, P607, DOI 10.1016/j.otohns.2007.05.005
YOUNG ED, 1977, ACTA OTO-LARYNGOL, V84, P352, DOI 10.3109/00016487709123977
Zhang AS, 2012, J APPL PHYSIOL, V112, P1279, DOI 10.1152/japplphysiol.01024.2011
Zhang AS, 2011, EXP BRAIN RES, V213, P111, DOI 10.1007/s00221-011-2783-z
Zuniga MG, 2012, OTOL NEUROTOL, V33, P1586, DOI 10.1097/MAO.0b013e31826bedbc
NR 64
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2014
VL 309
BP 63
EP 74
DI 10.1016/j.heares.2013.11.008
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AB5WF
UT WOS:000331858700008
PM 24321822
ER
PT J
AU Anderson, MC
Arehart, KH
Kates, JM
AF Anderson, Melinda C.
Arehart, Kathryn H.
Kates, James M.
TI The effects of noise vocoding on speech quality perception
SO HEARING RESEARCH
LA English
DT Article
ID TEMPORAL FINE-STRUCTURE; DIFFERENT FREQUENCY RESPONSES; HEARING-IMPAIRED
LISTENERS; SOUND QUALITY; PERCEIVED NATURALNESS; STRUCTURE INFORMATION;
NONLINEAR DISTORTION; MUSIC QUALITY; INTELLIGIBILITY; ENVELOPE
AB Speech perception depends on access to spectral and temporal acoustic cues. Temporal cues include slowly varying amplitude changes (i.e. temporal envelope, TE) and quickly varying amplitude changes associated with the center frequency of the auditory filter (i.e. temporal fine structure, TFS). This study quantifies the effects of TFS randomization through noise vocoding on the perception of speech quality by parametrically varying the amount of original TFS available above 1500 Hz. The two research aims were: 1) to establish the role of TFS in quality perception, and 2) to determine if the role of TFS in quality perception differs between subjects with normal hearing and subjects with sensorineural hearing loss. Ratings were obtained from 20 subjects (10 with normal hearing and 10 with hearing loss) using an 11-point quality scale. Stimuli were processed in three different ways: 1) A 32-channel noise-excited vocoder with random envelope fluctuations in the noise carrier, 2) a 32-channel noise-excited vocoder with the noise-carrier envelope smoothed, and 3) removal of high-frequency bands. Stimuli were presented in quiet and in babble noise at 18 dB and 12 dB signal-to-noise ratios. TFS randomization had a measurable detrimental effect on quality ratings for speech in quiet and a smaller effect for speech in background babble. Subjects with normal hearing and subjects with sensorineural hearing loss provided similar quality ratings for noise-vocoded speech. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Anderson, Melinda C.; Arehart, Kathryn H.; Kates, James M.] Univ Colorado, Boulder, CO 80309 USA.
RP Anderson, MC (reprint author), Univ Colorado Hosp, 1635 Aurora Court Suite 6200,Mail Stop F736, Aurora, CO 80045 USA.
EM melinda.anderson@uch.edu; kathryn.arehart@colorado.edu;
james.kates@colorado.edu
FU University of Colorado at Boulder from GN ReSound
FX This article is based upon a dissertation submitted to the Graduate
School of the University of Colorado at Boulder in partial fulfillment
of the requirements of the doctoral degree. This research was supported
by a research grant to the University of Colorado at Boulder from GN
ReSound.
CR Aguilera-Munoz C., 1999, P 6 IEEE INT C EL CI, P741
American National Standards Institute (ANSI), 2004, SPEC AUD ANSI S3 6
Anderson MC, 2009, EURASIP J ADV SIG PR, DOI 10.1155/2009/619805
Arehart KH, 2007, J ACOUST SOC AM, V122, P1150, DOI 10.1121/1.2754061
Arehart KH, 2011, INT J AUDIOL, V50, P177, DOI 10.3109/14992027.2010.539273
Arehart KH, 2010, EAR HEARING, V31, P420, DOI 10.1097/AUD.0b013e3181d3d4f3
Baskent D, 2006, J ACOUST SOC AM, V120, P2908, DOI 10.1121/1.2354017
Beerends JG, 2002, J AUDIO ENG SOC, V50, P765
BYRNE D, 1986, EAR HEARING, V7, P257
COX RM, 1988, EAR HEARING, V9, P198, DOI 10.1097/00003446-198808000-00005
Davies-Venn E, 2007, J AM ACAD AUDIOL, V18, P688, DOI 10.3766/jaaa.18.8.6
Dubno J., 2008, INT HEAR AID RES C L
Dudley H, 1939, J ACOUST SOC AM, V11, P169, DOI 10.1121/1.1916020
FOLSTEIN MF, 1975, J PSYCHIAT RES, V12, P189, DOI 10.1016/0022-3956(75)90026-6
Fullgrabe C, 2010, INT J AUDIOL, V49, P741, DOI 10.3109/14992027.2010.495084
GABRIELSSON A, 1988, J SPEECH HEAR RES, V31, P166
GABRIELSSON A, 1990, J ACOUST SOC AM, V88, P1359, DOI 10.1121/1.399713
Glasberg BR, 2006, J ACOUST SOC AM, V120, P585, DOI 10.1121/1.2214151
GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
Heinz MG, 2009, JARO-J ASSOC RES OTO, V10, P407, DOI 10.1007/s10162-009-0169-8
Hopkins K, 2009, J ACOUST SOC AM, V125, P442, DOI 10.1121/1.3037233
Hopkins K, 2010, J ACOUST SOC AM, V127, P1595, DOI 10.1121/1.3293003
Hopkins K, 2008, J ACOUST SOC AM, V123, P1140, DOI 10.1121/1.2824018
Huber R, 2006, IEEE T AUDIO SPEECH, V14, P1902, DOI 10.1109/TASL.2006.883259
JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982
Kates J.M., 2011, U.S. Patent Application, Patent No. 20110249845
Kates JM, 2010, J AUDIO ENG SOC, V58, P363
Kates JM, 2011, J ACOUST SOC AM, V129, P3981, DOI 10.1121/1.3583552
Kochkin S., 2010, HEAR J, V63, P11
Korhonen P, 2008, J AM ACAD AUDIOL, V19, P639, DOI 10.3766/jaaa.19.8.7
Kulkarni PN, 2012, INT J AUDIOL, V51, P334, DOI 10.3109/14992027.2011.642012
Larson VD, 2000, JAMA-J AM MED ASSOC, V284, P1806, DOI 10.1001/jama.284.14.1806
Lorenzi C, 2006, P NATL ACAD SCI USA, V103, P18866, DOI 10.1073/pnas.0607364103
Ma GL, 2011, IEEE T AUDIO SPEECH, V19, P677, DOI 10.1109/TASL.2010.2057245
Moore BCJ, 2004, HEARING RES, V188, P70, DOI 10.1016/S0378-5955(03)00347-2
Moore BCJ, 2004, J AUDIO ENG SOC, V52, P900
Moore BCJ, 2004, J AUDIO ENG SOC, V52, P1228
Moore BCJ, 2003, J ACOUST SOC AM, V114, P408, DOI 10.1121/1.1577552
Moore BCJ, 2009, J ACOUST SOC AM, V125, P3186, DOI 10.1121/1.3106525
PREMINGER JE, 1995, J SPEECH HEAR RES, V38, P714
Qin MK, 2003, J ACOUST SOC AM, V114, P446, DOI 10.1121/1.1579009
Ricketts TA, 2008, J SPEECH LANG HEAR R, V51, P160, DOI 10.1044/1092-4388(2008/012)
Rosenthal S., 1969, IEEE T AUDIO ELECTRO, V17, P227
SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303
Simpson A, 2005, INT J AUDIOL, V44, P281, DOI 10.1080/14992020500060636
Slaney M., 1993, 35 APPL COMP LIB
Souza P, 2009, J ACOUST SOC AM, V126, P792, DOI 10.1121/1.3158835
Souza PE, 2013, J SPEECH LANG HEAR R, V56, P1349, DOI 10.1044/1092-4388(2013/12-0151)
Stone MA, 2012, J ACOUST SOC AM, V132, P317, DOI 10.1121/1.4725766
Stone MA, 2008, INT J AUDIOL, V47, P737, DOI 10.1080/14992020802290543
Stone MA, 2003, J ACOUST SOC AM, V114, P1023, DOI 10.1121/1.1592160
Tan CT, 2008, INT J AUDIOL, V47, P246, DOI 10.1080/14992020801945493
Tan CT, 2004, J AUDIO ENG SOC, V52, P699
van Buuren RA, 1999, J ACOUST SOC AM, V105, P2903, DOI 10.1121/1.426943
Whitmal NA, 2007, J ACOUST SOC AM, V122, P2376, DOI 10.1121/1.2773993
NR 55
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2014
VL 309
BP 75
EP 83
DI 10.1016/j.heares.2013.11.011
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AB5WF
UT WOS:000331858700009
PM 24333929
ER
PT J
AU Pollonini, L
Olds, C
Abaya, H
Bortfeld, H
Beauchamp, MS
Oghalai, JS
AF Pollonini, Luca
Olds, Cristen
Abaya, Homer
Bortfeld, Heather
Beauchamp, Michael S.
Oghalai, John S.
TI Auditory cortex activation to natural speech and simulated cochlear
implant speech measured with functional near-infrared spectroscopy
SO HEARING RESEARCH
LA English
DT Article
ID SUPERIOR TEMPORAL SULCUS; MOTION ARTIFACT CANCELLATION; CHILDREN;
LANGUAGE; FNIRS; INFORMATION; SYSTEM; BRAIN
AB The primary goal of most cochlear implant procedures is to improve a patient's ability to discriminate speech. To accomplish this, cochlear implants are programmed so as to maximize speech understanding. However, programming a cochlear implant can be an iterative, labor-intensive process that takes place over months. In this study, we sought to determine whether functional near-infrared spectroscopy (fNIRS), a non-invasive neuroimaging method which is safe to use repeatedly and for extended periods of time, can provide an objective measure of whether a subject is hearing normal speech or distorted speech. We used a 140 channel fNIRS system to measure activation within the auditory cortex in 19 normal hearing subjects while they listed to speech with different levels of intelligibility. Custom software was developed to analyze the data and compute topographic maps from the measured changes in oxyhemoglobin and deoxyhemoglobin concentration. Normal speech reliably evoked the strongest responses within the auditory cortex. Distorted speech produced less region-specific cortical activation. Environmental sounds were used as a control, and they produced the least cortical activation. These data collected using fNIRS are consistent with the fMRI literature and thus demonstrate the feasibility of using this technique to objectively detect differences in cortical responses to speech of different intelligibility. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Pollonini, Luca] Univ Houston, Abramson Ctr Future Hlth, Houston, TX 77204 USA.
[Pollonini, Luca] Univ Houston, Dept Engn Technol, Houston, TX 77204 USA.
[Olds, Cristen; Abaya, Homer; Oghalai, John S.] Stanford Univ, Dept Otolaryngol Head & Neck Surg, Stanford, CA 94305 USA.
[Bortfeld, Heather] Univ Connecticut, Dept Psychol, Storrs, CT 06269 USA.
[Beauchamp, Michael S.] Univ Texas Hlth Sci Ctr Houston, Dept Neurobiol & Anat, Houston, TX 77030 USA.
RP Pollonini, L (reprint author), Univ Houston, Abramson Ctr Future Hlth, 300 Technol Bldg,Suite 123, Houston, TX 77204 USA.
EM lpollonini@uh.edu; ceo@stanford.edu; habaya@ohns.stanford.edu;
heather.bortfeld@uconn.edu; Michael.S.Beauchamp@uth.tmc.edu;
joghalai@ohns.stanford.edu
RI Pollonini, Luca/J-9274-2014
OI Pollonini, Luca/0000-0003-2955-6355
FU NIH [R56DC010164, R01DC010075]
FX This research was supported by NIH R56DC010164 and R01DC010075.
CR Ayaz H, 2010, IEEE ENG MED BIO, P6567, DOI 10.1109/IEMBS.2010.5627113
Beauchamp MS, 2004, NEURON, V41, P809, DOI 10.1016/S0896-6273(04)00070-4
Beauchamp MS, 2008, NEUROIMAGE, V41, P1011, DOI 10.1016/j.neuroimage.2008.03.015
Belin P, 2002, COGNITIVE BRAIN RES, V13, P17, DOI 10.1016/S0926-6410(01)00084-2
Belin P, 2000, NATURE, V403, P309, DOI 10.1038/35002078
Belin P, 2006, PHILOS T R SOC B, V361, P2091, DOI 10.1098/rstb.2006.1933
Bhasin Tanya Karapurkar, 2006, Morbidity and Mortality Weekly Report, V55, P1
Cope M, 1988, Adv Exp Med Biol, V222, P183
Cox RW, 1996, COMPUT BIOMED RES, V29, P162, DOI 10.1006/cbmr.1996.0014
Cui X, 2010, NEUROIMAGE, V49, P3039, DOI 10.1016/j.neuroimage.2009.11.050
Fekete T, 2011, NEUROIMAGE, V56, P2080, DOI 10.1016/j.neuroimage.2011.03.068
Fekete T, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024322
Ferrari M, 2012, NEUROIMAGE, V63, P921, DOI 10.1016/j.neuroimage.2012.03.049
Fischl B, 1999, NEUROIMAGE, V9, P195, DOI 10.1006/nimg.1998.0396
Frost JA, 1999, BRAIN, V122, P199, DOI 10.1093/brain/122.2.199
Gallagher A, 2012, BRAIN LANG, V121, P124, DOI 10.1016/j.bandl.2011.03.006
Huppert TJ, 2009, APPL OPTICS, V48, pD280, DOI 10.1364/AO.48.00D280
Izzetoglu M, 2010, BIOMED ENG ONLINE, V9, DOI 10.1186/1475-925X-9-16
Izzetoglu M, 2005, IEEE T BIO-MED ENG, V52, P934, DOI 10.1109/TBME.2005.845243
Kocsis L, 2006, PHYS MED BIOL, V51, pN91, DOI 10.1088/0031-9155/51/5/N02
Leake PA, 2008, HEARING RES, V242, P86, DOI 10.1016/j.heares.2008.06.002
MIYAMOTO RT, 1994, LARYNGOSCOPE, V104, P1120
Nath AR, 2011, J NEUROSCI, V31, P1704, DOI 10.1523/JNEUROSCI.4853-10.2011
Pei Y., 2007, HUMAN BRAIN MAPPING
Plichta MM, 2006, NEUROIMAGE, V31, P116, DOI 10.1016/j.neuroimage.2005.12.008
Quaresima V, 2012, BRAIN LANG, V121, P79, DOI 10.1016/j.bandl.2011.03.009
Robinshaw HM, 1995, BRIT J AUDIOL, V29, P315, DOI 10.3109/03005369509076750
Rossi S, 2012, BRAIN LANG, V121, P152, DOI 10.1016/j.bandl.2011.03.008
Saad ZS, 2012, NEUROIMAGE, V62, P768, DOI 10.1016/j.neuroimage.2011.09.016
Schecklmann M, 2008, NEUROIMAGE, V43, P147, DOI 10.1016/j.neuroimage.2008.06.032
Sevy ABG, 2010, HEARING RES, V270, P39, DOI 10.1016/j.heares.2010.09.010
SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303
Sridhar Divya, 2006, Audiol Neurootol, V11 Suppl 1, P16, DOI 10.1159/000095609
Themelis G., 2004, DEPTH ARTERIAL OSCIL, pWF2
Themelis G, 2007, J BIOMED OPT, V12, DOI 10.1117/1.2710250
Ward B.D., 1998, DECONVOLUTION ANAL F
Wilcox T, 2009, NEUROPSYCHOLOGIA, V47, P657, DOI 10.1016/j.neuropsychologia.2008.11.014
Wilcox T, 2008, DEVELOPMENTAL SCI, V11, P361, DOI 10.1111/j.1467-7687.2008.00681.x
Ye Jong Chul, 2009, Neuroimage, V44, P428, DOI 10.1016/j.neuroimage.2008.08.036
Yoshinaga-Itano C, 1998, PEDIATRICS, V102, P1161, DOI 10.1542/peds.102.5.1161
Zhang H, 2011, NEUROIMAGE, V55, P607, DOI 10.1016/j.neuroimage.2010.12.007
NR 41
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2014
VL 309
BP 84
EP 93
DI 10.1016/j.heares.2013.11.007
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AB5WF
UT WOS:000331858700010
PM 24342740
ER
PT J
AU Dye, MWG
Hauser, PC
AF Dye, Matthew W. G.
Hauser, Peter C.
TI Sustained attention, selective attention and cognitive control in deaf
and hearing children
SO HEARING RESEARCH
LA English
DT Article
ID PERIPHERAL VISUAL SPACE; MOVEMENT DETECTION TASK; LANGUAGE IMPAIRMENT;
COCHLEAR IMPLANTS; SPATIAL-DISTRIBUTION; BEHAVIOR PROBLEMS; CONTROL
NETWORKS; SPOKEN LANGUAGE; SKILLS; INDIVIDUALS
AB Deaf children have been characterized as being impulsive, distractible, and unable to sustain attention. However, past research has tested deaf children born to hearing parents who are likely to have experienced language delays. The purpose of this study was to determine whether an absence of auditory input modulates attentional problems in deaf children with no delayed exposure to language. Two versions of a continuous performance test were administered to 37 deaf children born to Deaf parents and 60 hearing children, all aged 6-13 years. A vigilance task was used to measure sustained attention over the course of several minutes, and a distractibility test provided a measure of the ability to ignore task irrelevant information selective attention. Both tasks provided assessments of cognitive control through analysis of commission errors. The deaf and hearing children did not differ on measures of sustained attention. However, younger deaf children were more distracted by task-irrelevant information in their peripheral visual field, and deaf children produced a higher number of commission errors in the selective attention task. It is argued that this is not likely to be an effect of audition on cognitive processing, but may rather reflect difficulty in endogenous control of reallocated visual attention resources stemming from early profound deafness. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Dye, Matthew W. G.] Univ Illinois, Dept Speech & Hearing Sci, Champaign, IL 61820 USA.
[Hauser, Peter C.] Natl Tech Inst Deaf, Dept Amer Sign Language & Interpreting Educ, Rochester, NY 14623 USA.
RP Dye, MWG (reprint author), Univ Illinois, Dept Speech & Hearing Sci, Champaign, IL 61820 USA.
EM mdye@illinois.edu
FU NSF [SBE-0541953, SBE-1041725]; [NIDCD R01 DC004418]
FX This research was supported by NSF awards SBE-0541953 and SBE-1041725 to
the Science of Learning Center on Visual Language and Visual Learning at
Gallaudet University, and grant NIDCD R01 DC004418 to Daphne Bavelier
and PH. We wish to thank Geo Kartheiser, Rupert Dubler, Kim Scanlon, and
Dani Hagemann for recruitment and data collection efforts.
CR Arlinger S, 2009, SCAND J PSYCHOL, V50, P371, DOI 10.1111/j.1467-9450.2009.00753.x
Barac R, 2012, CHILD DEV, V83, P413, DOI 10.1111/j.1467-8624.2011.01707.x
Bavelier D, 2006, TRENDS COGN SCI, V10, P512, DOI 10.1016/j.tics.2006.09.006
Best P., 1974, THESIS WAYNE STATE U
Bonvillian J.D., 1983, LANGUAGE SIGN INT PE
Buckley D, 2010, VISION RES, V50, P548, DOI 10.1016/j.visres.2009.11.018
Carlson SM, 2008, DEVELOPMENTAL SCI, V11, P282, DOI 10.1111/j.1467-7687.2008.00675.x
Chavajay P, 1999, DEV PSYCHOL, V35, P1079, DOI 10.1037//0012-1649.35.4.1079
Chen Q, 2006, BRAIN RES, V1109, P117, DOI 10.1016/j.brainres.2006.06.043
CHESS S, 1980, AM ANN DEAF, V125, P505
Codina C, 2011, DEVELOPMENTAL SCI, V14, P725, DOI 10.1111/j.1467-7687.2010.01017.x
Conway CM, 2009, CURR DIR PSYCHOL SCI, V18, P275
Corbett BA, 2006, CHILD NEUROPSYCHOL, V12, P335, DOI 10.1080/09297040500350938
Dye MWG, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005640
Dye MWG, 2010, VISION RES, V50, P452, DOI 10.1016/j.visres.2009.10.010
Dye MWG, 2009, NEUROPSYCHOLOGIA, V47, P1780, DOI 10.1016/j.neuropsychologia.2009.02.002
Dye MWG, 2010, RESTOR NEUROL NEUROS, V28, P181, DOI 10.3233/RNN-2010-0501
Dye M.W.G., 2013, SPRINGER HDB AUDITOR
Dye MWG, 2007, NEUROPSYCHOLOGIA, V45, P1801, DOI 10.1016/j.neuropsychologia.2006.12.019
Eabon M.F., 1984, 56 ANN M MIDW PSYCH
Ebert KD, 2011, J SPEECH LANG HEAR R, V54, P1372, DOI 10.1044/1092-4388(2011/10-0231)
Emmorey K, 2008, PSYCHOL SCI, V19, P1201, DOI 10.1111/j.1467-9280.2008.02224.x
Fair DA, 2007, P NATL ACAD SCI USA, V104, P13507, DOI 10.1073/pnas.0705843104
Finneran DA, 2009, J SPEECH LANG HEAR R, V52, P915, DOI 10.1044/1092-4388(2009/07-0053)
GARRETSON HB, 1990, J AUTISM DEV DISORD, V20, P101, DOI 10.1007/BF02206860
Gordon M, 1987, TECHNICAL GUIDE GORD
Green D. M., 1966, SIGNAL DETECTION THE
HARRIS RI, 1978, AM ANN DEAF, V123, P52
Hollingshead A. B., 1975, 4 FACTOR INDEX SOCIA
Horn DL, 2005, EAR HEARING, V26, P389, DOI 10.1097/00003446-200508000-00003
Hwang K, 2010, J NEUROSCI, V30, P15535, DOI 10.1523/JNEUROSCI.2825-10.2010
Johnson MH, 2012, TRENDS COGN SCI, V16, P454, DOI 10.1016/j.tics.2012.07.001
Kushalnagar R., 2010, J DEAF STUD DEAF EDU, V15, P263
Kushnerenko E, 2013, FRONT PSYCHOL, V4, DOI 10.3389/fpsyg.2013.00432
Leark R.A., 1999, TOVA TEST VARIABLES
Sandler W, 2006, SIGN LANGUAGE AND LINGUISTIC UNIVERSALS, P1, DOI 10.2277/ 0521483956
LOKE WH, 1991, B PSYCHONOMIC SOC, V29, P437
Loots G., 2003, J DEAF STUD DEAF EDU, V8, P31, DOI 10.1093/deafed/8.1.31
Marschark M., 1993, PSYCHOL DEV DEAF CHI
Mitchell T.V., 1996, THESIS INDIANA U BLO
Mitchell TV, 1996, J CLIN CHILD PSYCHOL, V25, P83, DOI 10.1207/s15374424jccp2501_10
NEVILLE HJ, 1983, BRAIN RES, V266, P127, DOI 10.1016/0006-8993(83)91314-8
NEVILLE HJ, 1987, BRAIN RES, V405, P284, DOI 10.1016/0006-8993(87)90297-6
NEVILLE HJ, 1987, BRAIN RES, V405, P268, DOI 10.1016/0006-8993(87)90296-4
Niparko JK, 2010, JAMA-J AM MED ASSOC, V303, P1498, DOI 10.1001/jama.2010.451
OBRIEN DH, 1987, AM ANN DEAF, V132, P213
Parasnis I., 2001, J SPEECH LANG HEAR R, V46, P1165
Peterson CC, 2000, MIND LANG, V15, P123, DOI 10.1111/1468-0017.00126
PETITTO LA, 1991, SCIENCE, V251, P1493, DOI 10.1126/science.2006424
Proksch J, 2002, J COGNITIVE NEUROSCI, V14, P687, DOI 10.1162/08989290260138591
QUITTNER AL, 1990, J PERS SOC PSYCHOL, V59, P1266, DOI 10.1037//0022-3514.59.6.1266
QUITTNER AL, 1994, PSYCHOL SCI, V5, P347, DOI 10.1111/j.1467-9280.1994.tb00284.x
Quittner AL, 2004, ARCH OTOLARYNGOL, V130, P547, DOI 10.1001/archotol.130.5.547
REIVICH RS, 1972, J SPEECH HEAR RES, V15, P93
Ronnberg J., 2008, INT J AUDIOLOGY S2, V47, pS171
Shin MS, 2007, EAR HEARING, V28, p22S, DOI 10.1097/AUD.0b013e318031541b
Sladen DP, 2005, J SPEECH LANG HEAR R, V48, P1529, DOI 10.1044/1092-4388(2005/106)
Smith L.B., 1998, DEV PSYCHOL, V34, P84
Spaulding TJ, 2008, J SPEECH LANG HEAR R, V51, P16, DOI 10.1044/1092-4388(2008/002)
Tharpe AM, 2002, J SPEECH LANG HEAR R, V45, P403, DOI 10.1044/1092-4388(2002/032)
Ting JY, 2012, LARYNGOSCOPE, V122, P2808, DOI 10.1002/lary.22149
Tomblin JB, 2005, J SPEECH LANG HEAR R, V48, P853, DOI 10.1044/1092-4388(2005/059)
Wendelken C, 2011, DEV COGN NEUROS-NETH, V1, P175, DOI 10.1016/j.dcn.2010.11.001
Wilbur R.B., 2008, SIGN VOICES, P119
Wild CJ, 2012, J NEUROSCI, V32, P14010, DOI 10.1523/JNEUROSCI.1528-12.2012
Yu C, 2011, DEVELOPMENTAL SCI, V14, P165, DOI 10.1111/j.1467-7687.2010.00958.x
Yucel E, 2008, INT J PEDIATR OTORHI, V72, P869, DOI [10.1016/j.ijporl.2008.02.017, 10.1016/j.ijport.2008.02.017]
NR 67
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2014
VL 309
BP 94
EP 102
DI 10.1016/j.heares.2013.12.001
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AB5WF
UT WOS:000331858700011
PM 24355653
ER
PT J
AU Sun, F
Zhou, K
Wang, SJ
Liang, PF
Zhu, MZ
Qiu, JH
AF Sun, Fei
Zhou, Ke
Wang, Shu-juan
Liang, Peng-fei
Zhu, Miao-zhang
Qiu, Jian-hua
TI Expression patterns of atrial natriuretic peptide and its receptors
within the cochlear spiral ganglion of the postnatal rat
SO HEARING RESEARCH
LA English
DT Article
ID DOPAMINERGIC AMACRINE CELLS; INNER-EAR; GUINEA-PIG; GUANYLYL CYCLASES;
C-RECEPTOR; RETINA; LOCALIZATION; SYSTEM; ANP; STIMULATION
AB The spiral ganglion, which is primarily composed of spiral ganglion neurons and satellite glial cells, transmits auditory information from sensory hair cells to the central nervous system. Atrial natriuretic peptide (ANP), acting through specific receptors, is a regulatory peptide required for a variety of cardiac, neuronal and glial functions. Although previous studies have provided direct evidence for the presence of ANP and its functional receptors (NPR-A and NPR-C) in the inner ear, their presence within the cochlear spiral ganglion and their regulatory roles during auditory neurotransmission and development is not known. Here we investigated the expression patterns and levels of ANP and its receptors within the cochlear spiral ganglion of the postnatal rat using immunofluorescence and immunoelectron microscopy techniques, reverse transcription-polymerase chain reaction and Western blot analysis. We have demonstrated that ANP and its receptors colocalize in both subtypes of spiral ganglion neurons and in perineuronal satellite glial cells. Furthermore, we have analyzed differential expression levels associated with both mRNA and protein of ANP and its receptors within the rat spiral ganglion during postnatal development. Collectively, our research provides direct evidence for the presence and synthesis of ANP and its receptors in both neuronal and non-neuronal cells within the cochlear spiral ganglion, suggesting possible roles for ANP in modulating neuronal and glial functions, as well as neuron satellite glial cell communication, within the spiral ganglion during auditory neurotransmission and development. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Sun, Fei; Zhou, Ke; Wang, Shu-juan; Liang, Peng-fei; Qiu, Jian-hua] Fourth Mil Med Univ, Xijing Hosp, Dept Otolaryngol Head & Neck Surg, Xian 710032, Shaanxi Provinc, Peoples R China.
[Sun, Fei; Zhu, Miao-zhang] Fourth Mil Med Univ, Sch Basic Med Sci, Dept Physiol, Xian 710032, Shaanxi Provinc, Peoples R China.
[Zhou, Ke] Fourth Mil Med Univ, Xijing Hosp, Dept Clin Lab, Ctr Clin Lab Med PLA, Xian 710032, Shaanxi Provinc, Peoples R China.
RP Zhu, MZ (reprint author), Fourth Mil Med Univ, Sch Basic Med Sci, Dept Physiol, Xian 710032, Shaanxi Provinc, Peoples R China.
EM zhumz@fmmu.edu.cn; qiujh@fmmu.edu.cn
FU National Basic Research Program of China (973 Project) [2011CB504505];
National Natural Science Foundation of China (NSFC) [81120108008,
30930098, 30870902, 81200737, 31271220, 81170911, 81371099, 81271070];
China Postdoctoral Science Foundation [2012M512101, 2013T60954]
FX This research was supported by grants from the National Basic Research
Program of China (973 Project, No. 2011CB504505), the National Natural
Science Foundation of China (NSFC, No. 81120108008, 30930098, 30870902,
81200737, 31271220, 81170911, 81371099 and 81271070) and the China
Postdoctoral Science Foundation No. 2012M512101 and 2013T60954. The
funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.
CR Abdelalim EM, 2010, PEPTIDES, V31, P180, DOI 10.1016/j.peptides.2009.10.014
Abdelalim EM, 2008, PEPTIDES, V29, P622, DOI 10.1016/j.peptides.2007.11.021
ANANDSRIVASTAVA MB, 1990, J BIOL CHEM, V265, P8566
ANANDSRIVASTAVA MB, 1993, PHARMACOL REV, V45, P455
Barres BA, 2008, NEURON, V60, P430, DOI 10.1016/j.neuron.2008.10.013
Cao LH, 2008, PROG NEUROBIOL, V84, P234, DOI 10.1016/j.pneurobio.2007.12.003
CHEN HX, 1994, CHINESE MED J-PEKING, V107, P53
DEBOLD AJ, 1981, LIFE SCI, V28, P89, DOI 10.1016/0024-3205(81)90370-2
Dixon DB, 1997, J NEUROSCI, V17, P8945
Furuta H, 1995, HEARING RES, V92, P78, DOI 10.1016/0378-5955(95)00203-0
Hanani M, 2005, BRAIN RES REV, V48, P457, DOI 10.1016/j.brainresrev.2004.09.001
Hanani M, 2010, BRAIN RES REV, V64, P304, DOI 10.1016/j.brainresrev.2010.04.009
Kalisch F, 2006, EXP EYE RES, V83, P962, DOI 10.1016/j.exer.2006.05.003
KOCH T, 1992, HEARING RES, V63, P197, DOI 10.1016/0378-5955(92)90085-2
Krause G, 1997, HEARING RES, V110, P95, DOI 10.1016/S0378-5955(97)00064-6
Kuribayashi K, 2006, BRAIN RES, V1071, P34, DOI 10.1016/j.brainres.2005.11.068
LAMPRECHT J, 1988, ARCH OTO-RHINO-LARYN, V245, P300, DOI 10.1007/BF00464636
LATZKOVITS L, 1993, AM J PHYSIOL, V264, pC603
Levin ER, 1998, NEW ENGL J MED, V339, P321
LEVIN ER, 1991, AM J PHYSIOL, V261, pR453
ZUMGOTTESBERGE AMM, 1991, HEARING RES, V56, P86
Meyer zum Gottesberge A. M., 1989, ACTA OTO-LARYNGOL, V108, P53
ZUMGOTTESBERGE AMM, 1995, ACTA OTO-LARYNGOL, P170
Moriyama N, 2006, BIOCHEM BIOPH RES CO, V350, P322, DOI 10.1016/j.bbrc.2006.09.034
Murthy KS, 2000, AM J PHYSIOL-GASTR L, V278, pG974
Nayagam BA, 2011, HEARING RES, V278, P2, DOI 10.1016/j.heares.2011.04.003
Potter Lincoln R., 2009, V191, P341
Potter LR, 2006, ENDOCR REV, V27, P47, DOI 10.1210/er.2005-0014
Prado J, 2010, NEUROCHEM INT, V57, P367, DOI 10.1016/j.neuint.2010.03.004
Qiao L, 2011, NEUROENDOCRINOL LETT, V32, P187
Richard D, 1996, J NEUROSCI, V16, P7526
Rose RA, 2008, J PHYSIOL-LONDON, V586, P353, DOI 10.1113/jphysiol.2007.144253
Rusznak Z, 2009, PFLUG ARCH EUR J PHY, V457, P1303, DOI 10.1007/s00424-008-0586-2
Sarker MH, 2002, J PHYSIOL-LONDON, V540, P209, DOI 10.1113/physiol.2001.012912
Seebacher T, 1999, HEARING RES, V127, P95, DOI 10.1016/S0378-5955(98)00176-2
Shepherd RK, 2001, AUDIOL NEURO-OTOL, V6, P305, DOI 10.1159/000046843
SUMNERS C, 1994, GLIA, V11, P110, DOI 10.1002/glia.440110206
Sun F, 2013, BRAIN RES BULL, V95, P28, DOI 10.1016/j.brainresbull.2013.04.001
Suzuki M, 1998, MOL BRAIN RES, V55, P165, DOI 10.1016/S0169-328X(98)00016-3
TONG Y, 1990, NEUROPEPTIDES, V16, P63, DOI 10.1016/0143-4179(90)90113-D
Vles J. S., 2000, BRAIN RES, V857, P219
Xu GZ, 2010, BRAIN RES BULL, V82, P188, DOI 10.1016/j.brainresbull.2010.03.004
YOON YJ, 1994, ORL J OTO-RHINO-LARY, V56, P73
YOON YJ, 1992, ACTA OTO-LARYNGOL, V112, P604, DOI 10.3109/00016489209137448
NR 44
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2014
VL 309
BP 103
EP 112
DI 10.1016/j.heares.2013.11.010
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AB5WF
UT WOS:000331858700012
PM 24333928
ER
PT J
AU Bhargava, P
Gaudrain, E
Baskent, D
AF Bhargava, Pranesh
Gaudrain, Etienne
Baskent, Deniz
TI Top-down restoration of speech in cochlear-implant users
SO HEARING RESEARCH
LA English
DT Article
ID NORMAL-HEARING LISTENERS; CALCULATING CORRELATION-COEFFICIENTS; PHONEMIC
RESTORATION; PERCEPTUAL RESTORATION; AUDITORY INDUCTION; TEMPORAL CUES;
CONTINUITY ILLUSION; GAP DISCRIMINATION; INTERVENING NOISE; ELECTRIC
HEARING
AB In noisy listening conditions, intelligibility of degraded speech can be enhanced by top-down restoration. Cochlear implant (CI) users have difficulty understanding speech in noisy environments. This could partially be due to reduced top-down restoration of speech, which may be related to the changes that the electrical stimulation imposes on the bottom-up cues. We tested this hypothesis using the phonemic restoration (PhR) paradigm in which speech interrupted with periodic silent intervals is perceived illusorily continuous (continuity illusion or Col) and becomes more intelligible (PhR benefit) when the interruptions are filled with noise bursts. Using meaningful sentences, both Col and PhR benefit were measured in CI users, and compared with those of normal-hearing (NH) listeners presented with normal speech and 8-channel noise-band vocoded speech, acoustically simulating CIs. CI users showed different patterns in both PhR benefit and Col, compared to NH results with or without the noise-band vocoding. However, they were able to use top-down restoration under certain test conditions. This observation supports the idea that changes in bottom-up cues can impose changes to the top down processes needed to enhance intelligibility of degraded speech. The knowledge that CI users seem to be able to do restoration under the right circumstances could be exploited in patient rehabilitation and product development. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Bhargava, Pranesh; Gaudrain, Etienne; Baskent, Deniz] Univ Groningen, Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, NL-9700 AB Groningen, Netherlands.
[Bhargava, Pranesh; Gaudrain, Etienne; Baskent, Deniz] Univ Groningen, Univ Med Ctr Groningen, Grad Sch Med Sci, Res Sch Behav & Cognit Neurosci, NL-9700 AB Groningen, Netherlands.
RP Bhargava, P (reprint author), Univ Med Ctr Groningen, BB21,Postbus 30-001, NL-9700 RB Groningen, Netherlands.
EM p.bhargava@umcg.nl; e.p.c.gaudrain@umcg.nl; d.baskent@umcg.nl
FU Netherlands Organization for Scientific Research, NWO; Netherlands
Organization for Health Research and Development, ZonMw [016.096.397];
University of Groningen; University Medical Center Groningen; Heinsius
Houbolt Foundation
FX The study was supported by a VIDI grant from the Netherlands
Organization for Scientific Research, NWO, and Netherlands Organization
for Health Research and Development, ZonMw (grant no. 016.096.397).
Further support came from a Rosalind Franklin Fellowship from University
of Groningen, University Medical Center Groningen, and funds from
Heinsius Houbolt Foundation. We thank our participants for their
cooperation, and Ir. Bert Maat, Floor Burgerhof, Esmee Van Der Veen and
Marije Sleurink for their valuable assistance. The study is part of the
research program of the Otorhinolaryngology Department of University
Medical Center Groningen: Healthy Aging and Communication.
CR Assmann Peter, 2004, VVolume 18, P231
BASHFORD JA, 1992, PERCEPT PSYCHOPHYS, V51, P211, DOI 10.3758/BF03212247
BASHFORD JA, 1979, J ACOUST SOC AM, V65, pS112, DOI 10.1121/1.2016950
Baskent D, 2010, HEARING RES, V270, P127, DOI 10.1016/j.heares.2010.08.011
Baskent D, 2012, JARO-J ASSOC RES OTO, V13, P683, DOI 10.1007/s10162-012-0334-3
Baskent D, 2009, J ACOUST SOC AM, V125, P3995, DOI 10.1121/1.3125329
Baskent D, 2010, J ACOUST SOC AM, V128, pE169, DOI 10.1121/1.3475794
Baskent D, 2010, HEARING RES, V260, P54, DOI 10.1016/j.heares.2009.11.007
Baskent D, 2005, J ACOUST SOC AM, V117, P1405, DOI 10.1121/1.1856273
Baskent D, 2006, J ACOUST SOC AM, V119, P1156, DOI 10.1121/1.2151825
Benard MR, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058149
Benard M.R., 2013, JASA EL UNPUB
Benard M.R., 2013, PERCEPTUAL LEA UNPUB
Bertoli S, 2002, CLIN NEUROPHYSIOL, V113, P396, DOI 10.1016/S1388-2457(02)00013-5
Best V, 2008, P NATL ACAD SCI USA, V105, P13174, DOI 10.1073/pnas.0803718105
Bhargava P., 2011, C IMPL AUD PROSTH AS
Bhargava P., 2013, INTELLIGIBILIT UNPUB
BLAND JM, 1995, BRIT MED J, V310, P446
BLAND JM, 1995, BRIT MED J, V310, P633
Bosman A.J., 1989, THESIS RIJKSUNIVERSI
Bregman AS., 1990, AUDITORY SCENE ANAL
Carlyon RP, 2002, ACTA ACUST UNITED AC, V88, P408
Carlyon RP, 2004, J ACOUST SOC AM, V116, P3629, DOI 10.1121/1.1811474
Chatterjee M, 2010, J ACOUST SOC AM, V127, pEL37, DOI 10.1121/1.3284544
Clarke J., 2013, C IMPL AUD PROSTH LA
Dudley H, 1939, J ACOUST SOC AM, V11, P169, DOI 10.1121/1.1916020
Fishman KE, 1997, J SPEECH LANG HEAR R, V40, P1201
Fogerty D, 2009, J ACOUST SOC AM, V126, P847, DOI 10.1121/1.3159302
Fogerty D, 2012, J ACOUST SOC AM, V131, P1490, DOI 10.1121/1.3676696
Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538
Fu QJ, 2004, JARO-J ASSOC RES OTO, V5, P253, DOI 10.1007/s10162-004-4046-1
Fu QJ, 1998, J ACOUST SOC AM, V104, P3586, DOI 10.1121/1.423941
Gaudrain E, 2013, J ACOUST SOC AM, V133, P502, DOI 10.1121/1.4770243
GORDONSALANT S, 1993, J SPEECH HEAR RES, V36, P1276
GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
Heinrich A, 2008, J COGNITIVE NEUROSCI, V20, P1737, DOI 10.1162/jocn.2008.20069
Horvath J, 2011, ATTEN PERCEPT PSYCHO, V73, P695, DOI 10.3758/s13414-010-0077-3
HUGGINS AWF, 1964, J ACOUST SOC AM, V36, P1055, DOI 10.1121/1.1919151
Kashino M., 2006, Acoustical Science and Technology, V27, DOI 10.1250/ast.27.318
Kidd GR, 2012, J ACOUST SOC AM, V131, P1434, DOI 10.1121/1.3675975
King AJ, 2007, CURR BIOL, V17, pR799, DOI 10.1016/j.cub.2007.07.013
Lister J, 2002, J ACOUST SOC AM, V111, P2793, DOI 10.1121/1.1476685
Lister J, 2004, J SPEECH LANG HEAR R, V47, P257, DOI 10.1044/1092-4388(2004/021)
Loizou PC, 1998, IEEE SIGNAL PROC MAG, V15, P101, DOI 10.1109/79.708543
MILLER GA, 1950, J ACOUST SOC AM, V22, P167, DOI 10.1121/1.1906584
Nelson PB, 2003, J ACOUST SOC AM, V113, P961, DOI 10.1121/1.1531983
Nelson PB, 2004, J ACOUST SOC AM, V115, P2286, DOI 10.1121/1.1703538
Nie K, 2006, EAR HEARING, V27, P208, DOI 10.1097/01.aud.0000202312.31837.25
Petkov CI, 2003, J NEUROSCI, V23, P9155
Pichora-Fuller MK, 2006, J ACOUST SOC AM, V119, P1143, DOI 10.1121/1.2149837
POWERS GL, 1977, J ACOUST SOC AM, V61, P195, DOI 10.1121/1.381255
Qin MK, 2003, J ACOUST SOC AM, V114, P446, DOI 10.1121/1.1579009
REPP BH, 1978, J EXP PSYCHOL HUMAN, V4, P621, DOI 10.1037//0096-1523.4.4.621
REPP BH, 1992, PERCEPT PSYCHOPHYS, V51, P14, DOI 10.3758/BF03205070
Riecke L, 2011, HEARING RES, V277, P152, DOI 10.1016/j.heares.2011.01.013
Riecke L, 2009, HEARING RES, V247, P71, DOI 10.1016/j.heares.2008.10.006
Riecke L, 2012, J NEUROSCI, V32, P8024, DOI 10.1523/JNEUROSCI.0440-12.2012
ROSEN S, 1992, PHILOS T ROY SOC B, V336, P367, DOI 10.1098/rstb.1992.0070
Saija JD, 2014, JARO-J ASSOC RES OTO, V15, P139, DOI 10.1007/s10162-013-0422-z
Shahin AJ, 2009, NEUROIMAGE, V44, P1133, DOI 10.1016/j.neuroimage.2008.09.045
SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303
Shinn-Cunningham B., 2013, ICA 2013 MONTR
Shinn-Cunningham BG, 2008, TRENDS COGN SCI, V12, P182, DOI 10.1016/j.tics.2008.02.003
Shinn-Cunningham BG, 2008, J ACOUST SOC AM, V123, P295, DOI 10.1121/1.2804701
Srinivasan S, 2005, SPEECH COMMUN, V45, P63, DOI 10.1016/j.specom.2004.09.002
Stephens D, 1996, Scand Audiol Suppl, V43, P57
Stickney GS, 2004, J ACOUST SOC AM, V116, P1081, DOI 10.1121/1.1772399
Stilp CE, 2013, J ACOUST SOC AM, V133, pEL136, DOI 10.1121/1.4776773
Stilp CE, 2010, P NATL ACAD SCI USA, V107, P12387, DOI 10.1073/pnas.0913625107
Strouse A, 1998, J ACOUST SOC AM, V104, P2385, DOI 10.1121/1.423748
STUDEBAKER GA, 1985, J SPEECH HEAR RES, V28, P455
Sugita Y, 1997, NEUROREPORT, V8, P1155, DOI 10.1097/00001756-199703240-00019
Tasell D.J.V., 1992, J ACOUST SOC AM, V92, P1247
THURLOW WR, 1959, J ACOUST SOC AM, V31, P1337, DOI 10.1121/1.1907631
THURLOW W, 1957, AM J PSYCHOL, V70, P653, DOI 10.2307/1419466
VERSCHUURE J, 1983, PERCEPT PSYCHOPHYS, V33, P232, DOI 10.3758/BF03202859
Versfeld NJ, 2000, J ACOUST SOC AM, V107, P1671, DOI 10.1121/1.428451
WARREN RM, 1994, PERCEPT PSYCHOPHYS, V55, P313, DOI 10.3758/BF03207602
WARREN RM, 1984, PSYCHOL BULL, V96, P371
WARREN RM, 1970, SCIENCE, V167, P392, DOI 10.1126/science.167.3917.392
WARREN RM, 1971, PERCEPT PSYCHOPHYS, V9, P358, DOI 10.3758/BF03212667
WARREN RM, 1972, SCIENCE, V176, P1149, DOI 10.1126/science.176.4039.1149
NR 82
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2014
VL 309
BP 113
EP 123
DI 10.1016/j.heares.2013.12.003
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AB5WF
UT WOS:000331858700013
PM 24368138
ER
PT J
AU Takada, Y
Beyer, LA
Swiderski, DL
O'Neal, AL
Prieskorn, DM
Shivatzki, S
Avraham, KB
Raphael, Y
AF Takada, Yohei
Beyer, Lisa A.
Swiderski, Donald L.
O'Neal, Aubrey L.
Prieskorn, Diane M.
Shivatzki, Shaked
Avraham, Karen B.
Raphael, Yehoash
TI Connexin 26 null mice exhibit spiral ganglion degeneration that can be
blocked by BDNF gene therapy
SO HEARING RESEARCH
LA English
DT Article
ID SENSORINEURAL HEARING-LOSS; BINDING PROTEIN IMMUNOREACTIVITY; DEAFENED
GUINEA-PIGS; AUDITORY BRAIN-STEM; COCHLEAR IMPLANTATION; NEUROTROPHIC
FACTOR; C57BL/6J MICE; HAIR-CELLS; INNER-EAR; PEDIATRIC-PATIENTS
AB Mutations in the connexin 26 gene (GJB2) are the most common genetic cause of deafness, leading to congenital bilateral non-syndromic sensorineural hearing loss. Here we report the generation of a mouse model for a connexin 26 (Cx26) mutation, in which cre-Sox10 drives excision of the Cx26 gene from non-sensory cells flanking the auditory epithelium. We determined that these conditional knockout mice, designated Gjb2-CKO, have a severe hearing loss. Immunocytochemistry of the auditory epithelium confirmed absence of Cx26 in the non-sensory cells. Histology of the organ of Corti and the spiral ganglion neurons (SGNs) performed at ages 1, 3, or 6 months revealed that in Gjb2-CKO mice, the organ of Corti began to degenerate in the basal cochlear turn at an early stage, and the degeneration rapidly spread to the apex. In addition, the density of SGNs in Rosenthal's canal decreased rapidly along a gradient from the base of the cochlea to the apex, where some SGNs survived until at least 6 months of age. Surviving neurons often clustered together and formed clumps of cells in the canal. We then assessed the influence of brain derived neurotrophic factor (BDNF) gene therapy on the SGNs of Gjb2-CKO mice by inoculating Adenovirus with the BDNF gene insert (Ad.BDNF) into the base of the cochlea via the scala tympani or scala media. We determined that over-expression of BDNF beginning around 1 month of age resulted in a significant rescue of neurons in Rosenthal's canal of the cochlear basal turn but not in the middle or apical portions. This data may be used to design therapies for enhancing the SGN physiological status in all GJB2 patients and especially in a sub-group of GJB2 patients where the hearing loss progresses due to ongoing degeneration of the auditory nerve, thereby improving the outcome of cochlear implant therapy in these ears. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Takada, Yohei; Beyer, Lisa A.; Swiderski, Donald L.; O'Neal, Aubrey L.; Prieskorn, Diane M.; Raphael, Yehoash] Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol Head & Neck Surg, Ann Arbor, MI 48109 USA.
[Takada, Yohei] Kansai Med Univ, Dept Otolaryngol, Hirakata, Osaka 5731191, Japan.
[Shivatzki, Shaked; Avraham, Karen B.] Tel Aviv Univ, Sackler Fac Med, Dept Human Mol Genet & Biochem, IL-69978 Tel Aviv, Israel.
[Shivatzki, Shaked; Avraham, Karen B.] Tel Aviv Univ, Sagol Sch Neurosci, IL-69978 Tel Aviv, Israel.
RP Raphael, Y (reprint author), Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol Head & Neck Surg, 1150 W Med Ctr, Ann Arbor, MI 48109 USA.
EM yoash@umich.edu
FU Berte and Alan Hirschfield Foundation; R. Jamison and Betty Williams
Professorship; I-CORE Gene Regulation in Complex Human Disease Center
[41/11]; NIH/NIDCD [R01-DC010412, R01-DC007634, P30-DC05188,
R01-DC011835]
FX The Ad.BDNF was kindly provided by Dr. Adriana Di Polo, University of
Montreal. We would like to thank Hideto Fukui, Yong Ho Park and Hiu Tung
(Candy) Wong for assistance and helpful comments on this paper. This
work was supported by the Berte and Alan Hirschfield Foundation (Y.R.
and K.B.A.), the R. Jamison and Betty Williams Professorship (Y.R.),
I-CORE Gene Regulation in Complex Human Disease Center No. 41/11
(K.B.A.),and by NIH/NIDCD Grants R01-DC010412, R01-DC007634, P30-DC05188
(Y.R.) and R01-DC011835 (K.B.A.).
CR Aarnisalo AA, 2000, ORL J OTO-RHINO-LARY, V62, P330, DOI 10.1159/000027764
Abrashkin KA, 2006, HEARING RES, V218, P20, DOI 10.1016/j.heares.2006.04.001
Agterberg MJH, 2008, HEARING RES, V244, P25, DOI 10.1016/j.heares.2008.07.004
Agterberg MJH, 2009, JARO-J ASSOC RES OTO, V10, P355, DOI 10.1007/s10162-009-0170-2
Anselmi F, 2008, P NATL ACAD SCI USA, V105, P18770, DOI [10.1073/pnas.0800793105, 10.1073/pnas.080079310S]
Atkinson PJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052338
Bowers WJ, 2002, MOL THER, V6, P12, DOI 10.1006/mthe.2002.0627
Bruzzone R, 1996, EUR J BIOCHEM, V238, P1, DOI 10.1111/j.1432-1033.1996.0001q.x
Chikar JA, 2008, HEARING RES, V245, P24, DOI 10.1016/j.heares.2008.08.005
CLOPTON BM, 1980, ANN OTO RHINOL LARYN, V89, P5
Cohen-Salmon M, 2002, CURR BIOL, V12, P1106, DOI 10.1016/S0960-9822(02)00904-1
Crawley BK, 2011, HEARING RES, V280, P201, DOI 10.1016/j.heares.2011.05.015
Crispino G, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023279
Cullen RD, 2004, LARYNGOSCOPE, V114, P1415, DOI 10.1097/00005537-200408000-00019
Denoyelle F, 1999, LANCET, V353, P1298, DOI 10.1016/S0140-6736(98)11071-1
Di Polo A, 1998, P NATL ACAD SCI USA, V95, P3978, DOI 10.1073/pnas.95.7.3978
Dodson HC, 2000, J NEUROCYTOL, V29, P525, DOI 10.1023/A:1007201913730
Duan ML, 2000, P NATL ACAD SCI USA, V97, P7597, DOI 10.1073/pnas.97.13.7597
Fritzsch B, 1999, CELL TISSUE RES, V295, P369, DOI 10.1007/s004410051244
Fukui H, 2012, SCI REP-UK, V2, DOI 10.1038/srep00838
Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542
Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3
Hilgert N, 2009, EUR J HUM GENET, V17, P517, DOI 10.1038/ejhg.2008.201
Hochman JB, 2010, OTOL NEUROTOL, V31, P919, DOI 10.1097/MAO.0b013e3181e3d324
Idrizbegovic E, 2003, HEARING RES, V179, P33, DOI 10.1016/S0378-5955(03)00076-5
Idrizbegovic E, 2004, NEUROBIOL AGING, V25, P1085, DOI 10.1016/j.neuroimaging.2003.11.004
Incesulu A, 1998, ANN OTO RHINOL LARYN, V107, P906
Jun AI, 2000, LARYNGOSCOPE, V110, P269, DOI 10.1097/00005537-200002010-00016
Jyothi V, 2010, J COMP NEUROL, V518, P3254, DOI 10.1002/cne.22398
JYUNG RW, 1989, OTOLARYNG HEAD NECK, V101, P670
Kanzaki S, 2002, J COMP NEUROL, V454, P350, DOI 10.1002/cne.10480
Kho ST, 2000, MOL THER, V2, P368, DOI 10.1006/mthe.2000.0129
Kikuchi Toshihiko, 2000, Medical Electron Microscopy, V33, P51, DOI 10.1007/s007950070001
KOITCHEV K, 1982, ACTA OTO-LARYNGOL, V94, P431, DOI 10.3109/00016488209128931
Kong Y, 2013, CHINESE MED J-PEKING, V126, P1298, DOI 10.3760/cma.j.issn.0366-6999.20123431
Kudo T, 2003, HUM MOL GENET, V12, P995, DOI 10.1093/hmg/ddg116
Kumar NM, 1996, CELL, V84, P381, DOI 10.1016/S0092-8674(00)81282-9
LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4
LINTHICUM FH, 1991, ACTA OTO-LARYNGOL, V111, P327, DOI 10.3109/00016489109137395
Liu XZ, 2001, ANN OTO RHINOL LARYN, V110, P356
Matsuoka T, 2005, NATURE, V436, P347, DOI 10.1038/nature03837
Nakaizumi T, 2004, AUDIOL NEURO-OTOL, V9, P135, DOI 10.1159/000077264
Ohlemiller KK, 2004, J COMP NEUROL, V479, P103, DOI 10.1002/cne.20326
OTTE J, 1978, LARYNGOSCOPE, V88, P1231
Salt AN, 2009, AUDIOL NEURO-OTOL, V14, P350, DOI 10.1159/000241892
Sato T, 2006, BRAIN RES, V1091, P224, DOI 10.1016/j.brainres.2005.12.104
Shibata SB, 2010, EXP NEUROL, V223, P464, DOI 10.1016/j.expneurol.2010.01.011
Snoeckx RL, 2005, AM J HUM GENET, V77, P945, DOI 10.1086/497996
Someya S, 2009, P NATL ACAD SCI USA, V106, P19432, DOI 10.1073/pnas.0908786106
Someya S, 2008, NEUROBIOL AGING, V29, P1080, DOI 10.1016/j.neurobiolaging.2007.01.014
Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011
Stover T, 2000, GENE THER, V7, P377, DOI 10.1038/sj.gt.3301108
Sugawara M, 2005, JARO-J ASSOC RES OTO, V6, P136, DOI 10.1007/s10162-004-5050-1
Sun Y, 2009, J COMP NEUROL, V516, P569, DOI 10.1002/cne.22117
Tarkan O, 2013, J LARYNGOL OTOL, V127, P33, DOI 10.1017/S0022215112002587
Tylstedt S, 1997, ACTA OTO-LARYNGOL, V117, P505, DOI 10.3109/00016489709113429
VANDEWATER TR, 1996, CIBA F SYMP, V196, P162
VandeWater TR, 1996, CIBA F SYMP, V196, P149
Wang YF, 2009, BIOCHEM BIOPH RES CO, V385, P33, DOI 10.1016/j.bbrc.2009.05.023
WEBSTER DB, 1978, OTOLARYNGOLOGY, V86
Willott JF, 2009, HEARING RES, V252, P89, DOI 10.1016/j.heares.2008.12.002
Wise AK, 2011, HEARING RES, V278, P69, DOI 10.1016/j.heares.2011.04.010
Wise AK, 2010, MOL THER, V18, P1111, DOI 10.1038/mt.2010.28
Ylikoski J, 1998, HEARING RES, V124, P17, DOI 10.1016/S0378-5955(98)00095-1
Yoshida H, 2013, AURIS NASUS LARYNX, V40, P435, DOI 10.1016/j.anl.2013.01.006
Yu Q, 2013, J NEUROSCI, V33, P13042, DOI 10.1523/JNEUROSCI.0854-13.2013
Zilberstein Y, 2012, J NEUROSCI, V32, P405, DOI 10.1523/JNEUROSCI.4678-11.2012
NR 67
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2014
VL 309
BP 124
EP 135
DI 10.1016/j.heares.2013.11.009
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AB5WF
UT WOS:000331858700014
PM 24333301
ER
PT J
AU Guan, XY
Chen, YZ
Gan, RZ
AF Guan, Xiying
Chen, Yongzheng
Gan, Rong Z.
TI Factors affecting loss of tympanic membrane mobility in acute otitis
media model of chinchilla
SO HEARING RESEARCH
LA English
DT Article
ID NONTYPABLE HAEMOPHILUS-INFLUENZAE; MIDDLE-EAR FLUID;
STREPTOCOCCUS-PNEUMONIAE; STATIC PRESSURE; PARS FLACCIDA;
SOUND-TRANSMISSION; OSSICULAR CHAIN; GENE-EXPRESSION; MOUSE MODEL;
GUINEA-PIG
AB Recently we reported that middle ear pressure (MEP), middle ear effusion (MEE), and ossicular changes each contribute to the loss of tympanic membrane (TM) mobility in a guinea pig model of acute otitis media (AOM) induced by Streptococcus pneumoniae (Guan and Gan, 2013). However, it is not clear how those factors vary along the course of the disease and whether those effects are reproducible in different species. In this study, a chinchilla AOM model was produced by transbullar injection of Haemophilus influenzae. Mobility of the TM at the umbo was measured by laser vibrometry in two treatment groups: 4 days (4D) and 8 days (8D) post inoculation. These time points represent relatively early and later phases of AOM. In each group, the vibration of the umbo was measured at three experimental stages: unopened, pressure-released, and effusion-removed ears. The effects of MEP and MEE and middle ear structural changes were quantified in each group by comparing the TM mobility at one stage with that of the previous stage. Our findings show that the factors affecting TM mobility do change with the disease time course. The MEP was the dominant contributor to reduction of TM mobility in 4D AOM ears, but showed little effect in 8D ears when MEE filled the tympanic cavity. MEE was the primary factor affecting TM mobility loss in 8D ears, but affected the 4D ears only at high frequencies. After the release of MEP and removal of MEE, residual loss of TM mobility was seen mainly at low frequencies in both 4D and 8D ears, and was associated with middle ear structural changes. Our findings establish that the factors contributing to TM mobility loss in the chinchilla ear were similar to those we reported previously for the guinea pig ears with AOM. Outcomes did not appear to differ between the two major bacterial species causing AOM in these animal models. (C) 2014 Elsevier B.V. All rights reserved.
C1 [Gan, Rong Z.] Univ Oklahoma, Sch Aerosp & Mech Engn, Norman, OK 73019 USA.
Univ Oklahoma, Ctr Bioengn, Norman, OK 73019 USA.
RP Gan, RZ (reprint author), Univ Oklahoma, Sch Aerosp & Mech Engn, 865 Asp Ave,Room 200, Norman, OK 73019 USA.
EM rgan@ou.edu
FU NIH [R01DC011585]
FX We thank Dr. Thomas W. Seale and Brett Cole in Department of Pediatrics
at University of Oklahoma Health Science Center for their expert
technical assistance on Haemophilus influenzae preparation. The authors
also thank Dr. Seale and Dr. Mark Wood at Hough Ear Institute for
editing this paper. This work was supported by NIH R01DC011585.
CR Bakaletz LO, 2009, EXPERT REV VACCINES, V8, P1063, DOI [10.1586/erv.09.63, 10.1586/ERV.09.63]
Bakaletz LO, 1999, INFECT IMMUN, V67, P2746
BLUESTONE CD, 1992, PEDIATR INFECT DIS J, V11, pS7, DOI 10.1097/00006454-199208001-00002
Bluestone C.D., 1983, PEDIAT OTOLARYNGOLOG, P419
BROWNING GG, 1978, ANN OTO RHINOL LARYN, V87, P875
CayeThomasen P, 1996, LARYNGOSCOPE, V106, P463
Caye-Thomasen P, 2000, ACTA OTO-LARYNGOL, V120, P810
Dai C, 2008, HEARING RES, V236, P22, DOI 10.1016/j.heares.2007.11.005
Dai C, 2007, HEARING RES, V230, P24, DOI 10.1016/j.heares.2007.03.006
Forbes ML, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001969
Gan RZ, 2006, J ACOUST SOC AM, V120, P3799, DOI 10.1121/1.2372451
Gan RZ, 2013, HEARING RES, V301, P125, DOI 10.1016/j.heares.2013.01.001
Giebink GS, 1999, MICROB DRUG RESIST, V5, P57, DOI 10.1089/mdr.1999.5.57
Gould JM, 2010, PEDIATR REV, V31, P102, DOI 10.1542/pir.31-3-102
Guan XY, 2011, HEARING RES, V277, P96, DOI 10.1016/j.heares.2011.03.003
Guan XY, 2013, JARO-J ASSOC RES OTO, V14, P295, DOI 10.1007/s10162-013-0379-y
GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465
HANAMURE Y, 1987, AM J OTOLARYNG, V8, P127, DOI 10.1016/S0196-0709(87)80035-2
Hoa M, 2009, ANN OTO RHINOL LARYN, V118, P292
Hoberman A, 2011, NEW ENGL J MED, V364, P105, DOI 10.1056/NEJMoa0912254
JERGER J, 1970, ARCHIV OTOLARYNGOL, V92, P311
Larsson C, 2003, OTOL NEUROTOL, V24, P358, DOI 10.1097/00129492-200305000-00002
Lee CY, 2001, HEARING RES, V153, P146, DOI 10.1016/S0378-5955(00)00269-0
Lin JZ, 2002, INT J PEDIATR OTORHI, V65, P203, DOI 10.1016/S0165-5876(02)00130-1
Long JP, 2003, INFECT IMMUN, V71, P5531, DOI 10.1128/IAI.71.10.5531-5540.2003
Luo H., 2009, INT J EXP COMP BIOME, V1, P1
MacArthur CJ, 2006, HEARING RES, V219, P12, DOI 10.1016/j.heares.2006.05.012
Mason KM, 2003, INFECT IMMUN, V71, P3454, DOI 10.1128/IAI.71.6.3454-3462.2003
Melhus A, 2003, APMIS, V111, P989, DOI 10.1034/j.1600-0463.2003.1111012.x
Morton DJ, 2004, MICROB PATHOGENESIS, V36, P25, DOI 10.1016/j.micpath.2003.08.007
Morton Daniel J, 2012, BMC Res Notes, V5, P327, DOI 10.1186/1756-0500-5-327
NAGUIB MB, 1994, LARYNGOSCOPE, V104, P1003
Nakajima HH, 2005, LARYNGOSCOPE, V115, P147, DOI 10.1097/01.mlg.0000150692.23506.b7
Nakajima HH, 2005, HEARING RES, V204, P60, DOI 10.1016/j.heares.2005.01.002
PARADISE JL, 1976, PEDIATRICS, V58, P198
Ravicz ME, 2004, HEARING RES, V195, P103, DOI 10.1016/j.heares.2004.05.010
Reid SD, 2009, J INFECT DIS, V199, P786, DOI 10.1086/597042
Rosowski JJ, 2008, EAR HEARING, V29, P3
Rosowski JJ, 2002, HEARING RES, V174, P183, DOI 10.1016/S0378-5955(02)00655-X
RUGGERO MA, 1990, J ACOUST SOC AM, V87, P1612, DOI 10.1121/1.399409
SUZUKI K, 1994, INFECT IMMUN, V62, P1710
Thornton JL, 2013, JARO-J ASSOC RES OTO, V14, P451, DOI 10.1007/s10162-013-0388-x
vonUnge M, 1997, HEARING RES, V106, P123, DOI 10.1016/S0378-5955(97)00008-7
VONUNGE M, 1993, HEARING RES, V70, P229, DOI 10.1016/0378-5955(93)90161-S
VRETTAKOS PA, 1988, AM J OTOLARYNG, V9, P58, DOI 10.1016/S0196-0709(88)80009-7
NR 45
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2014
VL 309
BP 136
EP 146
DI 10.1016/j.heares.2013.12.005
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AB5WF
UT WOS:000331858700015
PM 24406734
ER
PT J
AU Takanen, M
Santala, O
Pulkki, V
AF Takanen, Marko
Santala, Olli
Pulkki, Ville
TI Visualization of functional count-comparison-based binaural auditory
model output
SO HEARING RESEARCH
LA English
DT Article
ID LATERAL SUPERIOR OLIVE; INTERAURAL TIME DIFFERENCES; AMPLITUDE-MODULATED
SOUNDS; MASKING-LEVEL DIFFERENCES; INFERIOR COLLICULUS; LOW-FREQUENCY;
BRAIN-STEM; INTENSITY DIFFERENCES; TEMPORAL DISPARITIES; SOURCE
LOCALIZATION
AB The count-comparison principle in binaural auditory modeling is based on the assumption that there are nuclei in the mammalian auditory pathway that encode the directional cues in the rate of the output. When this principle is applied, the outputs of the modeled nuclei do not directly result in a topographically organized map of the auditory space that could be monitored as such. Therefore, this article presents a method for visualizing the information from the outputs as well as the nucleus models. The functionality of the auditory model presented here is tested in various binaural listening scenarios, including localization tasks and the discrimination of a target in the presence of distracting sound as well as sound scenarios consisting of multiple simultaneous sound sources. The performance of the model is illustrated with binaural activity maps. The activations seen in the maps are compared to human performance in similar scenarios, and it is shown that the performance of the model is in accordance with the psychoacoustical data. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Takanen, Marko; Santala, Olli; Pulkki, Ville] Aalto Univ, Sch Elect Engn, Dept Signal Proc & Acoust, FI-00076 Aalto, Finland.
RP Takanen, M (reprint author), Aalto Univ, Sch Elect Engn, Dept Signal Proc & Acoust, POB 13000, FI-00076 Aalto, Finland.
EM marko.takanen@aalto.fi; olli.santala@aalto.fi; ville.pulkki@aalto.fi
RI Pulkki, Ville/G-2394-2013
FU Academy of Finland; Walter Ahlstrom foundation; Nokia Foundation;
European Research Council under the European Community [240453]
FX The authors wish to thank Ph.D Sarah Verhulst from Boston University for
providing the cochlear model and assisting in its use, Ph.D Ville
Sivonen from Cochlear Nordic for providing the head-related transfer
functions, Prof. Tapio Lokki from Aalto University for the binaural room
impulse responses, and Ph.D Nelli Salminen from Aalto University as well
as one anonymous reviewer for providing valuable feedback which greatly
improved the manuscript. This work has been supported by the Academy of
Finland, Walter Ahlstrom foundation, and the Nokia Foundation. The
research leading to these results has received funding from the European
Research Council under the European Community's Seventh Framework
Programme (FP7/2007-2013)/ERC Grant agreement No. 240453.
CR Bang & Olufsen, 1992, MUS ARCH, V101
Bech S, 1998, J ACOUST SOC AM, V103, P434, DOI 10.1121/1.421098
Bech S, 1996, J ACOUST SOC AM, V99, P3539, DOI 10.1121/1.414952
BERNSTEIN LR, 1985, J ACOUST SOC AM, V77, P1868, DOI 10.1121/1.391938
Best V, 2007, J ACOUST SOC AM, V121, P1070, DOI 10.1121/1.2407738
Blauert J., 1997, SPATIAL HEARING PSYC, p[37, 140, 164]
Blauert J., 2013, TECHNOLOGY BINAURAL
BLODGETT HC, 1956, J ACOUST SOC AM, V28, P639, DOI 10.1121/1.1908430
Boerger G., 1965, THESIS TU BERLIN GER
Bregman A.S., 1994, AUDITORY SCENE ANAL, P529
BRUGGE JF, 1969, J NEUROPHYSIOL, V32, P1005
Brughera A, 2013, J ACOUST SOC AM, V133, P2839, DOI 10.1121/1.4795778
BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P705, DOI 10.1002/cne.901970410
Calvert GA, 2001, CEREB CORTEX, V11, P1110, DOI 10.1093/cercor/11.12.1110
CANT NB, 1992, HEARING RES, V58, P26, DOI 10.1016/0378-5955(92)90005-8
CARHART R, 1969, J ACOUST SOC AM, V45, P694, DOI 10.1121/1.1911445
CHERRY EC, 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229
Colburn H.S., 1996, SPRINGER HDB AUDITOR, P332
COLBURN HS, 1990, HEARING RES, V49, P335
COLBURN HS, 1977, J ACOUST SOC AM, V61, P525, DOI 10.1121/1.381294
DAVID EE, 1959, J ACOUST SOC AM, V31, P774, DOI 10.1121/1.1907784
Dietz M, 2009, J ACOUST SOC AM, V125, P1622, DOI 10.1121/1.3076045
Dietz M, 2013, P NATL ACAD SCI USA, V110, P15151, DOI 10.1073/pnas.1309712110
DURLACH NI, 1963, J ACOUST SOC AM, V35, P1206, DOI 10.1121/1.1918675
EISENMAN LM, 1974, BRAIN RES, V75, P203, DOI 10.1016/0006-8993(74)90742-2
ELVERLAND HH, 1978, EXP BRAIN RES, V32, P117
Faller C, 2004, J ACOUST SOC AM, V116, P3075, DOI 10.1121/1.1791872
FLANAGAN JL, 1966, J ACOUST SOC AM, V40, P456, DOI 10.1121/1.1910096
Franssen N.V., 1960, THESIS TH DELFT NETH
FREYMAN RL, 1991, J ACOUST SOC AM, V90, P874, DOI 10.1121/1.401955
GAIK W, 1993, J ACOUST SOC AM, V94, P98, DOI 10.1121/1.406947
GARDNER MB, 1968, J ACOUST SOC AM, V44, P797, DOI 10.1121/1.1911176
GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
GORDON B, 1973, J NEUROPHYSIOL, V36, P157
Grothe B, 2010, PHYSIOL REV, V90, P983, DOI 10.1152/physrev.00026.2009
Grothe B, 2003, NAT REV NEUROSCI, V4, P540, DOI 10.1038/nrn1136
GUINAN JJ, 1972, INT J NEUROSCI, V4, P147
HAFTER ER, 1968, J ACOUST SOC AM, V44, P563, DOI 10.1121/1.1911121
HAFTER ER, 1969, J ACOUST SOC AM, V46, P125, DOI 10.1121/1.1973448
HAN Y, 1993, HEARING RES, V68, P115, DOI 10.1016/0378-5955(93)90070-H
HARRIS GG, 1960, J ACOUST SOC AM, V32, P685, DOI 10.1121/1.1908181
HARTMANN WM, 1989, J ACOUST SOC AM, V86, P1366, DOI 10.1121/1.398696
Haustein B.-G., 1970, Hochfrequenztechnik und Elektroakustik, V79
Hawley ML, 1999, J ACOUST SOC AM, V105, P3436, DOI 10.1121/1.424670
HIRSH IJ, 1948, J ACOUST SOC AM, V20, P536, DOI 10.1121/1.1906407
Hirvonen T., 2008, P 124 INT CONV AUD E
Irvine D., 1992, MAMMALIAN AUDITORY P, P157
Jackson C. V., 1953, Q J EXPT PSYCHOL, V5, P52, DOI 10.1080/17470215308416626
JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495
Jeffress L.A., 1972, F MODERN AUDITORY TH, VII, P349
Joris PX, 1996, J NEUROPHYSIOL, V76, P2137
Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003
KOHLRAUSCH A, 1986, HEARING RES, V23, P267, DOI 10.1016/0378-5955(86)90115-2
KOLLMEIER B, 1990, J ACOUST SOC AM, V87, P1709, DOI 10.1121/1.399419
Lang AG, 2008, J ACOUST SOC AM, V124, P3120, DOI 10.1121/1.2981041
LINDEMANN W, 1986, J ACOUST SOC AM, V80, P1608, DOI 10.1121/1.394325
Litovsky RY, 1999, J ACOUST SOC AM, V106, P1633, DOI 10.1121/1.427914
Loftus WC, 2004, J COMP NEUROL, V472, P330, DOI 10.1002/cne.20070
MACPHERSON EA, 1991, J AUDIO ENG SOC, V39, P604
Macpherson EA, 2002, J ACOUST SOC AM, V111, P2219, DOI 10.1121/1.1471898
Makela JP, 1996, EXP BRAIN RES, V110, P446
McAlpine D, 2000, J NEUROPHYSIOL, V83, P1356
McAlpine D, 2003, TRENDS NEUROSCI, V26, P347, DOI 10.1016/S0166-2236(03)00140-1
MCFADDEN D, 1976, J ACOUST SOC AM, V59, P634, DOI 10.1121/1.380913
MCGURK H, 1976, NATURE, V264, P746, DOI 10.1038/264746a0
MEDDIS R, 1986, J ACOUST SOC AM, V79, P702, DOI 10.1121/1.393460
MILLS AW, 1958, J ACOUST SOC AM, V30, P237, DOI 10.1121/1.1909553
Moller A.G., 2006, HEARING ANATOMY PHYS, P75
MOORE JK, 1987, HEARING RES, V29, P33, DOI 10.1016/0378-5955(87)90203-6
Oliver DL, 2000, MICROSC RES TECHNIQ, V51, P355, DOI 10.1002/1097-0029(20001115)51:4<355::AID-JEMT5>3.0.CO;2-J
OLIVER DL, 1995, J COMP NEUROL, V360, P17, DOI 10.1002/cne.903600103
PALMER AR, 1982, NATURE, V299, P248, DOI 10.1038/299248a0
Park TJ, 2004, J NEUROPHYSIOL, V92, P289, DOI 10.1152/jn.00961.2003
PECK CK, 1987, BRAIN RES, V420, P162, DOI 10.1016/0006-8993(87)90253-8
Pecka M, 2008, J NEUROSCI, V28, P6914, DOI 10.1523/JNEUROSCI.1660-08.2008
PERROTT DR, 1969, J ACOUST SOC AM, V45, P436, DOI 10.1121/1.1911392
Preibisch-Effenberger R., 1965, THESIS TU DRESDEN GE
Pulkki V, 2009, ACTA ACUST UNITED AC, V95, P883, DOI 10.3813/AAA.918220
Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800
Rayleigh L., 1907, PHILOS MAG, V13, P214
Salminen N., 2010, J ACOUST SOC AM, V127, P60
SANES DH, 1990, J NEUROSCI, V10, P3494
Santala O, 2011, J ACOUST SOC AM, V129, P1522, DOI 10.1121/1.3533727
SAYERS BM, 1964, J ACOUST SOC AM, V36, P923, DOI 10.1121/1.1919121
SCHEIBEL ME, 1974, EXP NEUROL, V43, P339, DOI 10.1016/0014-4886(74)90175-7
Schwattz I.R., 1992, SUPERIOR OLIVARY COM
SHACKLETON TM, 1992, J ACOUST SOC AM, V91, P2276, DOI 10.1121/1.403663
Slaney M., 1993, 35 APPL COMP
Slaney M., 1998, 10 INT RES CORP
Sondegaard P., 2013, TECHNOLOGY BINAURAL
Stecker GC, 2005, PLOS BIOL, V3, P520, DOI 10.1371/journal.pbio.0030078
Stein B. E., 1993, MERGING SENSES
Stern Richard M., 1996, Journal of the Acoustical Society of America, V100, P2278, DOI 10.1121/1.417937
Stevens SS, 1936, AM J PSYCHOL, V48, P297, DOI 10.2307/1415748
STROMING.NL, 1971, J COMP NEUROL, V143, P217, DOI 10.1002/cne.901430205
Tahvanainen H., 2011, 6 FOR AC ALB DENM, P2639
Takanen M., 2013, TECHNOLOGY BINAURAL, P333
Tollin DJ, 2003, NEUROSCIENTIST, V9, P127, DOI 10.1177/1073858403252228
Tollin DJ, 2008, J NEUROSCI, V28, P4848, DOI 10.1523/JNEUROSCI.5421-07.2008
Tollin DJ, 2005, J NEUROSCI, V25, P10648, DOI 10.1523/JNEUROSCI.1609-05.2005
TRAHIOTIS C, 1989, J ACOUST SOC AM, V86, P1285, DOI 10.1121/1.398743
TSUCHITA.C, 1967, J ACOUST SOC AM, V42, P794, DOI 10.1121/1.1910651
van BERGEIJK WILLEM A., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1431, DOI 10.1121/1.1918364
Verhulst S, 2012, J ACOUST SOC AM, V132, P3842, DOI 10.1121/1.4763989
von Bekesy G., 1930, PHYS Z, V824-835, P857
von Beleesy G., 1960, MCGRAW HILL SERIES P
WARR WB, 1966, EXP NEUROL, V14, P453, DOI 10.1016/0014-4886(66)90130-0
WHITWORTH R, 1961, J ACOUST SOC AM, V33, P925, DOI 10.1121/1.1908849
WIGHTMAN FL, 1992, J ACOUST SOC AM, V91, P1648, DOI 10.1121/1.402445
Wilska A., 1938, THESIS U HELSINKI HE, P1
WITKIN HA, 1952, J EXP PSYCHOL, V43, P58, DOI 10.1037/h0055889
Woodworth R. S., 1954, EXPT PSYCHOL
YIN TCT, 1990, J NEUROPHYSIOL, V64, P465
Yin TCT, 2002, SPR HDB AUD, V15, P99
YOST WA, 1981, J ACOUST SOC AM, V70, P397, DOI 10.1121/1.386775
NR 115
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2014
VL 309
BP 147
EP 163
DI 10.1016/j.heares.2013.10.004
PG 17
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AB5WF
UT WOS:000331858700016
PM 24513586
ER
PT J
AU Lerud, KD
Almonte, FV
Kim, JC
Large, EW
AF Lerud, Karl D.
Almonte, Felix V.
Kim, Ji Chul
Large, Edward W.
TI Mode-locking neurodynamics predict human auditory brainstem responses to
musical intervals
SO HEARING RESEARCH
LA English
DT Article
ID FREQUENCY-FOLLOWING RESPONSES; CONNECTED NEURAL OSCILLATORS; 2-TONE
DISTORTION PRODUCTS; SYNAPTIC ORGANIZATIONS; DYNAMICAL PROPERTIES;
INFERIOR COLLICULUS; MAMMALIAN COCHLEA; BASILAR-MEMBRANE; CANONICAL
MODEL; DIFFERENCE TONE
AB The auditory nervous system is highly nonlinear. Some nonlinear responses arise through active processes in the cochlea, while others may arise in neural populations of the cochlear nucleus, inferior colliculus and higher auditory areas. In humans, auditory brainstem recordings reveal nonlinear population responses to combinations of pure tones, and to musical intervals composed of complex tones. Yet the biophysical origin of central auditory nonlinearities, their signal processing properties, and their relationship to auditory perception remain largely unknown. Both stimulus components and nonlinear resonances are well represented in auditory brainstem nuclei due to neural phase-locking. Recently mode-locking, a generalization of phase-locking that implies an intrinsically nonlinear processing of sound, has been observed in mammalian auditory brainstem nuclei. Here we show that a canonical model of mode-locked neural oscillation predicts the complex nonlinear population responses to musical intervals that have been observed in the human brainstem. The model makes predictions about auditory signal processing and perception that are different from traditional delay-based models, and may provide insight into the nature of auditory population responses. We anticipate that the application of dynamical systems analysis will provide the starting point for generic models of auditory population dynamics, and lead to a deeper understanding of nonlinear auditory signal processing possibly arising in excitatory-inhibitory networks of the central auditory nervous system. This approach has the potential to link neural dynamics with the perception of pitch, music, and speech, and lead to dynamical models of auditory system development.
This article is part of a Special Issue entitled . (C) 2013 Elsevier B.V. All rights reserved.
C1 [Lerud, Karl D.; Almonte, Felix V.; Kim, Ji Chul; Large, Edward W.] Univ Connecticut, Dept Psychol, Storrs, CT 06269 USA.
RP Large, EW (reprint author), Univ Connecticut, Dept Psychol, 406 Babbidge Rd, Storrs, CT 06269 USA.
EM edward.large@uconn.edu
FU AFOSR [FA9550-07-C0095]; NSF [BCS-1027761]
FX This work was supported by AFOSR FA9550-07-C0095 and NSF BCS-1027761.
Thanks to Kimi Lee, Erika Skoe, Nina Kraus and Ric Ashley for providing
the brainstem data, and for valuable discussions and comments regarding
this work.
CR Ainsworth M, 2012, NEURON, V75, P572, DOI 10.1016/j.neuron.2012.08.004
Arnold S, 1998, J ACOUST SOC AM, V104, P1565, DOI 10.1121/1.424368
Arnold S, 2000, J ACOUST SOC AM, V107, P1541, DOI 10.1121/1.428439
Bhagat SP, 2004, HEARING RES, V193, P51, DOI 10.1016/j.heares.2004.04.005
Bian L, 2008, J ACOUST SOC AM, V124, P3739, DOI 10.1121/1.3001706
Bidelman GM, 2009, J NEUROSCI, V29, P13165, DOI 10.1523/JNEUROSCI.3900-09.2009
Bruce IC, 2003, J ACOUST SOC AM, V113, P369, DOI 10.1121/1.1519544
Brumberg JC, 2007, BRAIN RES, V1171, P122, DOI 10.1016/j.brainres.2007.07.028
BURNS EM, 1981, J ACOUST SOC AM, V70, P1655, DOI 10.1121/1.387220
BURNS EM, 1976, J ACOUST SOC AM, V60, P863, DOI 10.1121/1.381166
Cartwright JHE, 1999, PHYS REV LETT, V82, P5389, DOI 10.1103/PhysRevLett.82.5389
CASTELLANO MA, 1984, J EXP PSYCHOL GEN, V113, P394, DOI 10.1037//0096-3445.113.3.394
Chang KW, 1997, J ACOUST SOC AM, V102, P1719, DOI 10.1121/1.420082
CHERTOFF ME, 1990, J ACOUST SOC AM, V87, P1248, DOI 10.1121/1.398800
Cooper NP, 1997, J NEUROPHYSIOL, V78, P261
Cousineau M, 2012, P NATL ACAD SCI USA, V109, P19858, DOI 10.1073/pnas.1207989109
de Cheveigne A, 2006, J ACOUST SOC AM, V119, P3908, DOI 10.1121/1.2195291
Dhar S, 2005, J ACOUST SOC AM, V117, P3766, DOI 10.1121/1.1903846
Dhar S, 2009, CLIN NEUROPHYSIOL, V120, P959, DOI 10.1016/j.clinph.2009.02.172
Eguiluz VM, 2000, PHYS REV LETT, V84, P5232, DOI 10.1103/PhysRevLett.84.5232
Escabi MA, 2002, J NEUROSCI, V22, P4114
GALBRAITH GC, 1994, ELECTROEN CLIN NEURO, V92, P321, DOI 10.1016/0168-5597(94)90100-7
GARDI J, 1979, AUDIOLOGY, V18, P494
Gockel HE, 2011, JARO-J ASSOC RES OTO, V12, P767, DOI 10.1007/s10162-011-0284-1
HALL JL, 1974, J ACOUST SOC AM, V56, P1818, DOI 10.1121/1.1903519
Hartmann WM, 1996, J ACOUST SOC AM, V100, P3491, DOI 10.1121/1.417248
HOPPENSTEADT FC, 1997, WEAKLY CONNECTED NEU
Hoppensteadt FC, 1996, BIOL CYBERN, V75, P117, DOI 10.1007/s004220050279
Hoppensteadt FC, 1996, BIOL CYBERN, V75, P129, DOI 10.1007/s004220050280
Joris PX, 2011, P NATL ACAD SCI USA, V108, P17516, DOI 10.1073/pnas.1105867108
Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003
Julicher F, 2001, P NATL ACAD SCI USA, V98, P9080, DOI 10.1073/pnas.151257898
Kaernbach C, 1998, J ACOUST SOC AM, V104, P2298, DOI 10.1121/1.423742
Kern A, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.128101
KIKUCHI Y, 2011, HARMONIC PREFERENCE
Knight RD, 2001, J ACOUST SOC AM, V109, P1513, DOI 10.1121/1.1354197
Koepsell Kilian, 2010, Front Neurosci, V4, P53, DOI 10.3389/neuro.01.010.2010
Krumhansl C., 1990, COGNITIVE FDN MUSICA
KRUMHANSL CL, 1982, PSYCHOL REV, V89, P334, DOI 10.1037/0033-295X.89.4.334
KUJAWA SG, 1995, HEARING RES, V85, P142, DOI 10.1016/0378-5955(95)00041-2
Langner G., 2007, Zeitschrift fur Audiologie, V46
LANGNER G, 1992, HEARING RES, V60, P115, DOI 10.1016/0378-5955(92)90015-F
Large EW, 2002, J COMPUT NEUROSCI, V13, P125, DOI 10.1023/A:1020162207511
Large EW, 2010, PHYSICA D, V239, P905, DOI 10.1016/j.physd.2009.11.015
LARGE EW, 1998, P ASS RES OT, V21, P717
LARGE EW, 2011, LECT NOTES ARTIF INT, V6726, P115
Large EW, 2012, ANN NY ACAD SCI, V1252, pE1, DOI 10.1111/j.1749-6632.2012.06594.x
LARGE EW, 2011, STUDIES COMPUTATIONA, V328, P193
LARGE EW, NEURODYNAMICS UNPUB
Laudanski J, 2010, J NEUROPHYSIOL, V103, P1226, DOI 10.1152/jn.00070.2009
Lee KM, 2009, J NEUROSCI, V29, P5832, DOI 10.1523/JNEUROSCI.6133-08.2009
Lee SG, 2006, PHYS REV E, V73, DOI 10.1103/PhysRevE.73.041924
LICKLIDER JCR, 1951, EXPERIENTIA, V7, P128, DOI 10.1007/BF02156143
Lots IS, 2008, J R SOC INTERFACE, V5, P1429, DOI 10.1098/rsif.2008.0143
LYON I, 2010, CIRC SYST ISCAS P 20, P3809
Magnasco MO, 2003, PHYS REV LETT, V90, DOI 10.1103/PhysRevLett.90.058101
McDermott JH, 2010, CURR BIOL, V20, P1035, DOI 10.1016/j.cub.2010.04.019
Mora T, 2011, J STAT PHYS, V144, P268, DOI 10.1007/s10955-011-0229-4
MURDOCK JA, 2003, NORMAL FORMS UNFOLDI
Ospeck M, 2001, BIOPHYS J, V80, P2597
Pandya Pritesh K, 2004, J Am Acad Audiol, V15, P184, DOI 10.3766/jaaa.15.3.2
Perko L. M., 1996, TEXTS APPL MATH, V7
Purcell DW, 2007, J ACOUST SOC AM, V122, P992, DOI 10.1121/1.2751250
RICKMAN MD, 1991, J ACOUST SOC AM, V89, P2818, DOI 10.1121/1.400720
Robles L, 2001, PHYSIOL REV, V81, P1305
Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265
SCHOUTEN J. F., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1418, DOI 10.1121/1.1918360
SCHWARZ DWF, 1993, ACTA OTO-LARYNGOL, V113, P266, DOI 10.3109/00016489309135807
Skoe E, 2010, EAR HEARING, V31, P302, DOI 10.1097/AUD.0b013e3181cdb272
Stoop R, 2005, PHYSICA A, V351, P175, DOI 10.1016/j.physa.2004.12.019
SUTTER ML, 1991, J NEUROPHYSIOL, V65, P1207
Szalai R, 2013, J ACOUST SOC AM, V133, P323, DOI 10.1121/1.4768868
Varela F, 2001, NAT REV NEUROSCI, V2, P229, DOI 10.1038/35067550
WIGGINS S, 1990, INTRO APPL NONLINEAR
Wile D, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000369
WILSON HR, 1973, KYBERNETIK, V13, P55, DOI 10.1007/BF00288786
Zilany MSA, 2006, J ACOUST SOC AM, V120, P1446, DOI 10.1121/1.2225512
Zuckerkandl Victor, 1956, SOUND SYMBOL MUSIC E
NR 78
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2014
VL 308
SI SI
BP 41
EP 49
DI 10.1016/j.heares.2013.09.010
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AA9QO
UT WOS:000331428200005
PM 24091182
ER
PT J
AU Trainor, LJ
Marie, C
Bruce, IC
Bidelman, GM
AF Trainor, Laurel J.
Marie, Celine
Bruce, Ian C.
Bidelman, Gavin M.
TI Explaining the high voice superiority effect in polyphonic music:
Evidence from cortical evoked potentials and peripheral auditory models
SO HEARING RESEARCH
LA English
DT Article
ID STARLINGS STURNUS-VULGARIS; GOLDFISH CARASSIUS-AURATUS; MISMATCH
NEGATIVITY MMN; STREAM SEGREGATION; NERVE FIBERS; COMPLEX TONES; SCENE
ANALYSIS; HUMAN BRAIN; PHENOMENOLOGICAL MODEL; JAPANESE MONKEYS
AB Natural auditory environments contain multiple simultaneously-sounding objects and the auditory system must parse the incoming complex sound wave they collectively create into parts that represent each of these individual objects. Music often similarly requires processing of more than one voice or stream at the same time, and behavioral studies demonstrate that human listeners show a systematic perceptual bias in processing the highest voice in multi-voiced music. Here, we review studies utilizing event-related brain potentials (ERPs), which support the notions that (1) separate memory traces are formed for two simultaneous voices (even without conscious awareness) in auditory cortex and (2) adults show more robust encoding (i.e., larger ERP responses) to deviant pitches in the higher than in the lower voice, indicating better encoding of the former. Furthermore, infants also show this high-voice superiority effect, suggesting that the perceptual dominance observed across studies might result from neurophysiological characteristics of the peripheral auditory system. Although musically untrained adults show smaller responses in general than musically trained adults, both groups similarly show a more robust cortical representation of the higher than of the lower voice. Finally, years of experience playing a bass-range instrument reduces but does not reverse the high voice superiority effect, indicating that although it can be modified, it is not highly neuroplastic. Results of new modeling experiments examined the possibility that characteristics of middle-ear filtering and cochlear dynamics (e.g., suppression) reflected in auditory nerve firing patterns might account for the higher-voice superiority effect. Simulations show that both place and temporal AN coding schemes well-predict a high-voice superiority across a wide range of interval spacings and registers. Collectively, we infer an innate, peripheral origin for the higher-voice superiority observed in human ERP and psychophysical music listening studies.
This article is part of a Special Issue entitled . (C) 2013 Elsevier B.V. All rights reserved.
C1 [Trainor, Laurel J.; Marie, Celine] McMaster Univ, Dept Psychol Neurosci & Behav, Hamilton, ON L8S 4K1, Canada.
[Trainor, Laurel J.; Marie, Celine; Bruce, Ian C.] McMaster Inst Mus & Mind, Hamilton, ON, Canada.
[Trainor, Laurel J.] Baycrest Ctr Geriatr Care, Rotman Res Inst, Toronto, ON, Canada.
[Bruce, Ian C.] McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON L8S 4K1, Canada.
[Bidelman, Gavin M.] Univ Memphis, Inst Intelligent Syst, Memphis, TN 38152 USA.
[Bidelman, Gavin M.] Univ Memphis, Sch Commun Sci & Disorders, Memphis, TN 38152 USA.
RP Trainor, LJ (reprint author), McMaster Univ, Dept Psychol Neurosci & Behav, 1280 Main St West, Hamilton, ON L8S 4K1, Canada.
EM ljt@mcmaster.ca
RI Bruce, Ian/A-1232-2008
OI Bruce, Ian/0000-0002-5169-4538
FU Canadian Institutes of Health Research (CHIR); Natural Sciences and
Engineering Research Council of Canada (NSERC); NSERC CREATE grant in
Auditory Cognitive Neuroscience
FX This research was supported by grants from the Canadian Institutes of
Health Research (CHIR) to LJT and from the Natural Sciences and
Engineering Research Council of Canada (NSERC) to UT and ICB. CM was
supported by a postdoctoral fellowship from the NSERC CREATE grant in
Auditory Cognitive Neuroscience.
CR Alain C, 2002, J ACOUST SOC AM, V111, P990, DOI 10.1121/1.1434942
Alain C., 2012, SPRINGER HDB AUDITOR, V43, P69
ALDWELL E., 2003, HARMONY VOICE LEADIN, V3rd
Bidelman GM, 2009, J NEUROSCI, V29, P13165, DOI 10.1523/JNEUROSCI.3900-09.2009
Bidelman GM, 2011, J ACOUST SOC AM, V130, P1488, DOI 10.1121/1.3605559
BREGMAN AS, 1971, J EXP PSYCHOL, V89, P244, DOI 10.1037/h0031163
Bregman AS., 1990, AUDITORY SCENE ANAL
Bruce IC, 2003, J ACOUST SOC AM, V113, P369, DOI 10.1121/1.1519544
Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717
Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698
Cedolin L, 2005, J NEUROPHYSIOL, V94, P347, DOI 10.1152/jn.01114.2004
COHEN MA, 1995, J ACOUST SOC AM, V98, P862, DOI 10.1121/1.413512
Crawley EJ, 2002, J EXP PSYCHOL HUMAN, V28, P367, DOI 10.1037//0096-1523.28.2.367
DAI HP, 1992, J ACOUST SOC AM, V91, P2845, DOI 10.1121/1.402965
Deike S, 2004, NEUROREPORT, V15, P1511, DOI 10.1097/01.wnr.0000132919.12990.34
DELGUTTE B, 1990, J ACOUST SOC AM, V87, P791, DOI 10.1121/1.398891
DELGUTTE B, 1990, HEARING RES, V49, P225, DOI 10.1016/0378-5955(90)90106-Y
DEMANY L, 1982, INFANT BEHAV DEV, V5, P261, DOI 10.1016/S0163-6383(82)80036-2
DEWITT LA, 1987, PERCEPT PSYCHOPHYS, V41, P73, DOI 10.3758/BF03208216
DOWLING WJ, 1973, COGNITIVE PSYCHOL, V5, P322, DOI 10.1016/0010-0285(73)90040-6
Edworthy J., 1981, PSYCHOL MUSIC, V9, P39, DOI 10.1177/03057356810090010701
EGAN JP, 1950, J ACOUST SOC AM, V22, P622, DOI 10.1121/1.1906661
Fassbender C., 1993, THESIS
Fay RR, 2000, JARO, V1, P120, DOI 10.1007/s101620010015
Fay RR, 1998, HEARING RES, V120, P69, DOI 10.1016/S0378-5955(98)00058-6
Fishman YI, 2001, HEARING RES, V151, P167, DOI 10.1016/S0378-5955(00)00224-0
Folland NA, 2012, J ACOUST SOC AM, V131, P993, DOI 10.1121/1.3651254
Fujioka T, 2005, J COGNITIVE NEUROSCI, V17, P1578, DOI 10.1162/089892905774597263
Fujioka T, 2008, NEUROREPORT, V19, P361, DOI 10.1097/WNR.0b013e3282f51d91
Glasberg BR, 2002, J AUDIO ENG SOC, V50, P331
GOLDSTEI.JL, 1973, J ACOUST SOC AM, V54, P1496, DOI 10.1121/1.1914448
Griffiths TD, 2004, NAT REV NEUROSCI, V5, P887, DOI 10.1038/nrn1538
Gutschalk A, 2005, J NEUROSCI, V25, P5382, DOI 10.1523/JNEUROSCI.0374-05.2005
HARTMANN WM, 1991, MUSIC PERCEPT, V9, P155
HOUTSMA AJM, 1990, J ACOUST SOC AM, V87, P304, DOI 10.1121/1.399297
HULSE SH, 1995, J EXP PSYCHOL GEN, V124, P409, DOI 10.1037//0096-3445.124.4.409
Hulse SH, 1997, J COMP PSYCHOL, V111, P3, DOI 10.1037/0735-7036.111.1.3
Hulse SH, 2002, ADV STUD BEHAV, V31, P163, DOI 10.1016/S0065-3454(02)80008-0
Huron D, 2001, MUSIC PERCEPT, V19, P1, DOI 10.1525/mp.2001.19.1.1
Ibrahim RA, 2010, NEUROPHYSIOLOGICAL BASES OF AUDITORY PERCEPTION, P429, DOI 10.1007/978-1-4419-5686-6_40
Izumi A, 2002, COGNITION, V82, pB113, DOI 10.1016/S0010-0277(01)00161-5
Izumi A, 2000, J ACOUST SOC AM, V108, P3073, DOI 10.1121/1.1323461
Joris PX, 2011, P NATL ACAD SCI USA, V108, P17516, DOI 10.1073/pnas.1105867108
Lee KM, 2009, J NEUROSCI, V29, P5832, DOI 10.1523/JNEUROSCI.6133-08.2009
LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736
Marie C, 2013, CEREB CORTEX, V23, P660, DOI 10.1093/cercor/bhs050
Marie C, 2012, PSYCHOMUSICOL MUSIC, V22, P97, DOI DOI 10.1037/A0030858
McAdams S, 1997, J ACOUST SOC AM, V102, P2945, DOI 10.1121/1.420349
McDermott J, 2005, MUSIC PERCEPT, V23, P29, DOI 10.1525/mp.2005.23.1.29
McDermott JH, 2010, CURR BIOL, V20, P1035, DOI 10.1016/j.cub.2010.04.019
Micheyl C, 2007, HEARING RES, V229, P116, DOI 10.1016/j.heares.2007.01.007
Miller RL, 1997, J ACOUST SOC AM, V101, P3602, DOI 10.1121/1.418321
MOORE BCJ, 1973, J ACOUST SOC AM, V54, P610, DOI 10.1121/1.1913640
Moore B. C. J., 1995, HDB PERCEPTION COGNI, V6, P387
Moss CF, 2001, J ACOUST SOC AM, V110, P2207, DOI 10.1121/1.1398051
Naatanen R, 2007, CLIN NEUROPHYSIOL, V118, P2544, DOI 10.1016/j.clinph.2007.04.026
Nager W, 2003, NEUROREPORT, V14, P871, DOI 10.1097/01.wnr.0000069961.11849.3d
PALMER C, 1994, PERCEPT PSYCHOPHYS, V56, P301, DOI 10.3758/BF03209764
Pascal J, 1998, J ACOUST SOC AM, V104, P1509, DOI 10.1121/1.424363
Patel AD, 2009, CURR BIOL, V19, P827, DOI 10.1016/j.cub.2009.03.038
Picton TW, 2000, AUDIOL NEURO-OTOL, V5, P111, DOI 10.1159/000013875
PLOMP R, 1965, J ACOUST SOC AM, V38, P548, DOI 10.1121/1.1909741
Rose MM, 2000, J ACOUST SOC AM, V108, P1209, DOI 10.1121/1.1287708
Schachner A, 2009, CURR BIOL, V19, P831, DOI 10.1016/j.cub.2009.03.061
SEMAL C, 1990, MUSIC PERCEPT, V8, P165
Shera CA, 2002, P NATL ACAD SCI USA, V99, P3318, DOI 10.1073/pnas.032675099
Shinozaki N, 2000, NEUROREPORT, V11, P1597, DOI 10.1097/00001756-200006050-00001
Smith NA, 2011, INFANCY, V16, P655, DOI 10.1111/j.1532-7078.2011.00067.x
Snyder JS, 2007, PSYCHOL BULL, V133, P780, DOI 10.1037/0033-2909.133.5.780
Snyder JS, 2006, J COGNITIVE NEUROSCI, V18, P1, DOI 10.1162/089892906775250021
Sussman ES, 2005, J ACOUST SOC AM, V117, P1285, DOI [10.1121/1.1854312, 10.1121/1.854312]
TERHARDT E, 1982, J ACOUST SOC AM, V71, P679, DOI 10.1121/1.387544
Trainor L, 2008, NATURE, V453, P598, DOI 10.1038/453598a
Trainor LJ, 2012, SPRINGER HANDB AUDIT, V42, P223, DOI 10.1007/978-1-4614-1421-6_8
Trainor LJ, 2010, SPRINGER HANDB AUDIT, V36, P89, DOI 10.1007/978-1-4419-6114-3_4
Trainor LJ, 2012, ANN NY ACAD SCI, V1252, P25, DOI 10.1111/j.1749-6632.2012.06444.x
Trainor LJ, 2012, PSYCHOL MUSIC, P423
van Noorden, 1977, ASA 90, p[131, 17]
van Noorden L. P. A. S., 1975, THESIS EINDHOVEN U T
Wilson EC, 2007, J NEUROPHYSIOL, V97, P2230, DOI 10.1152/jn.00788.2006
Winkler I, 2009, TRENDS COGN SCI, V13, P532, DOI 10.1016/j.tics.2009.09.003
Winkler I, 2003, P NATL ACAD SCI USA, V100, P11812, DOI 10.1073/pnas.2031891100
Winkler I, 2005, COGNITIVE BRAIN RES, V25, P291, DOI 10.1016/j.cogbrainres.2005.06.005
Yabe H, 2001, BRAIN RES, V897, P222, DOI 10.1016/S0006-8993(01)02224-7
YOUNG ED, 1986, J ACOUST SOC AM, V79, P426, DOI 10.1121/1.393530
Zenatti A., 1969, MONOGR FRANCAISES PS, V17
Zhang XD, 2001, J ACOUST SOC AM, V109, P648, DOI 10.1121/1.1336503
Zilany MSA, 2007, J ACOUST SOC AM, V122, P402, DOI 10.1121/1.2735117
Zilany MSA, 2009, J ACOUST SOC AM, V126, P2390, DOI 10.1121/1.3238250
Zilany MSA, 2006, J ACOUST SOC AM, V120, P1446, DOI 10.1121/1.2225512
NR 90
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2014
VL 308
SI SI
BP 60
EP 70
DI 10.1016/j.heares.2013.07.014
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AA9QO
UT WOS:000331428200007
PM 23916754
ER
PT J
AU Grube, M
Cooper, FE
Kumar, S
Kelly, T
Griffiths, TD
AF Grube, Manon
Cooper, Freya E.
Kumar, Sukhbinder
Kelly, Tom
Griffiths, Timothy D.
TI Exploring the role of auditory analysis in atypical compared to typical
language development
SO HEARING RESEARCH
LA English
DT Article
ID FAST FORWORD LANGUAGE; SPEECH-PERCEPTION; FREQUENCY DISCRIMINATION;
DYSLEXIC LISTENERS; CHILDREN; IMPAIRMENT; DEFICITS; SKILLS; ADULTS;
RHYTHM
AB The relationship between auditory processing and language skills has been debated for decades. Previous findings have been inconsistent, both in typically developing and impaired subjects, including those with dyslexia or specific language impairment. Whether correlations between auditory and language skills are consistent between different populations has hardly been addressed at all. The present work presents an exploratory approach of testing for patterns of correlations in a range of measures of auditory processing. In a recent study, we reported findings from a large cohort of eleven-year olds on a range of auditory measures and the data supported a specific role for the processing of short sequences in pitch and time in typical language development. Here we tested whether a group of individuals with dyslexic traits (DT group; n = 28) from the same year group would show the same pattern of correlations between auditory and language skills as the typically developing group (TD group; n = 173). Regarding the raw scores, the DT group showed a significantly poorer performance on the language but not the auditory measures, including measures of pitch, time and rhythm, and timbre (modulation). In terms of correlations, there was a tendency to decrease in correlations between short-sequence processing and language skills, contrasted by a significant increase in correlation for basic, single-sound processing, in particular in the domain of modulation. The data support the notion that the fundamental relationship between auditory and language skills might differ in atypical compared to typical language development, with the implication that merging data or drawing inference between populations might be problematic. Further examination of the relationship between both basic sound feature analysis and music-like sound analysis and language skills in impaired populations might allow the development of appropriate training strategies. These might include types of musical training to augment language skills via their common bases in sound sequence analysis.
This article is part of a Special Issue entitled . (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved.
C1 [Grube, Manon; Cooper, Freya E.; Kumar, Sukhbinder; Kelly, Tom; Griffiths, Timothy D.] Newcastle Univ, Sch Med, Inst Neurosci, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England.
RP Grube, M (reprint author), Newcastle Univ, Sch Med, Inst Neurosci, Framlington Pl, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England.
EM manon.grube@ncl.ac.uk; sukhbinder.kumar@ncl.ac.uk;
t.d.griffiths@ncl.ac.uk
FU Wellcome Trust
FX The authors are grateful for the invaluable contributions from the
participating individuals and all the support from the St. Thomas More
Catholic School, Gateshead. They thank Dr J. Foxton for advice on the
pitch sequence tasks; and D. Birch, M. Catley, A. McQuaid, J. Sweeney
and J. Farran for help with testing; and Dr. Q. Vuong for invaluable
help with proofreading. The work was funded by the Wellcome Trust.
CR Abrams DA, 2009, J NEUROSCI, V29, P7686, DOI 10.1523/JNEUROSCI.5242-08.2009
Amitay S, 2002, JARO, V3, P302, DOI 10.1007/s101620010093
Bishop DVM, 1999, J SPEECH LANG HEAR R, V42, P1295
Boets B, 2007, NEUROPSYCHOLOGIA, V45, P1608, DOI 10.1016/j.neuropsychologia.2007.01.009
Boyle J, 2010, DEV MED CHILD NEUROL, V52, P994, DOI 10.1111/j.1469-8749.2010.03750.x
Chi TS, 1999, J ACOUST SOC AM, V106, P2719, DOI 10.1121/1.428100
Corriveau KH, 2010, J LEARN DISABIL-US, V43, P369, DOI 10.1177/0022219410369071
Drake C, 2000, COGNITION, V77, P251, DOI 10.1016/S0010-0277(00)00106-2
Fey ME, 2011, LANG SPEECH HEAR SER, V42, P246, DOI 10.1044/0161-1461(2010/10-0013)
Foxton JM, 2003, NAT NEUROSCI, V6, P343, DOI 10.1038/nn1035
France SJ, 2002, PERCEPT PSYCHOPHYS, V64, P169, DOI 10.3758/BF03195783
Gaab N, 2007, RESTOR NEUROL NEUROS, V25, P295
Gathercole SE, 2001, WORKING MEMORY TEST
Ghitza O, 2013, FRONT PSYCHOL, V4, DOI 10.3389/fpsyg.2013.00138
Giraud AL, 2012, NAT NEUROSCI, V15, P511, DOI 10.1038/nn.3063
Given BK, 2008, BRAIN LANG, V106, P83, DOI 10.1016/j.bandl.2007.12.001
Goswami U, 2011, TRENDS COGN SCI, V15, P3, DOI 10.1016/j.tics.2010.10.001
Goswami U, 2013, CORTEX, V49, P1363, DOI 10.1016/j.cortex.2012.05.005
Goswami U, 2002, P NATL ACAD SCI USA, V99, P10911, DOI 10.1073/pnas.122368599
Grabe E, 2002, PHONOL PHONET, V4-1, P515
Grube M, 2012, P ROY SOC B-BIOL SCI, V279, P4496, DOI 10.1098/rspb.2012.1817
Grube M, 2009, CORTEX, V45, P72, DOI 10.1016/j.cortex.2008.01.006
Grube M, 2010, P NATL ACAD SCI USA, V107, P11597, DOI 10.1073/pnas.0910473107
Grube M, 2013, COGN NEUROSCI-UK, V4, P225, DOI 10.1080/17588928.2013.825236
Halliday LF, 2006, J RES READ, V29, P213, DOI 10.1111/j.1467-9817.2006.00286.x
Halliday LF, 2006, BRAIN LANG, V97, P200, DOI 10.1016/j.bandl.2005.10.007
Hausen M, 2013, FRONT PSYCHOL, V4, DOI 10.3389/fpsyg.2013.00566
Hickok G, 2007, NAT REV NEUROSCI, V8, P393, DOI 10.1038/nrn2113
Hill NI, 1999, J ACOUST SOC AM, V106, pL53, DOI 10.1121/1.428154
Huss M, 2011, CORTEX, V47, P674, DOI 10.1016/j.cortex.2010.07.010
JUSCZYK PW, 1992, COGNITIVE PSYCHOL, V24, P252, DOI 10.1016/0010-0285(92)90009-Q
Jusczyk PW, 1999, TRENDS COGN SCI, V3, P323, DOI 10.1016/S1364-6613(99)01363-7
Kay J., 1992, PALPA PSYCHOLINGUIST
KLATT DH, 1976, J ACOUST SOC AM, V59, P1208, DOI 10.1121/1.380986
Lehongre K, 2011, NEURON, V72, P1080, DOI 10.1016/j.neuron.2011.11.002
Lehongre K, 2013, FRONT HUM NEUROSCI, V7, DOI 10.3389/fnhum.2013.00454
Leong V, 2014, HEARING RES, V308, P141, DOI 10.1016/j.heares.2013.07.015
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
LEWIS C, 1994, J CHILD PSYCHOL PSYC, V35, P283, DOI 10.1111/j.1469-7610.1994.tb01162.x
LIBERMAN AM, 1956, J EXP PSYCHOL, V52, P127, DOI 10.1037/h0041240
London J., 2004, HEARING TIME
Lyon GR, 2003, ANN DYSLEXIA, V53, P1, DOI 10.1007/s11881-003-0001-9
Madison G, 2002, PSYCHOL RES-PSYCH FO, V66, P201, DOI 10.1007/s00426-001-0085-y
McAnally KI, 1996, P ROY SOC B-BIOL SCI, V263, P961, DOI 10.1098/rspb.1996.0142
Meltzer H, 2000, MENTAL HLTH CHILDREN
Metsala JL, 1998, WORD RECOGNITION IN BEGINNING LITERACY, P89
Overy K, 2003, DYSLEXIA, V9, P18, DOI 10.1002/dys.233
Patel AD, 2005, BRAIN COGNITION, V59, P310, DOI 10.1016/j.bandc.2004.10.003
Peretz I, 2003, ANN NY ACAD SCI, V999, P58, DOI 10.1196/annals.1284.006
Poelmans H, 2011, RES DEV DISABIL, V32, P2810, DOI 10.1016/j.ridd.2011.05.025
Poeppel D, 2004, NEUROPSYCHOLOGIA, V42, P183, DOI 10.1016/j.neuropsychologia.2003.07.010
Poeppel D, 2003, SPEECH COMMUN, V41, P245, DOI 10.1016/S0167-6393(02)00107-3
POVEL DJ, 1985, MUSIC PERCEPT, V2, P411
Ramus F, 2003, BRAIN, V126, P841, DOI 10.1093/brain/awg076
Richardson U, 2004, DYSLEXIA, V10, P215, DOI 10.1002/dys.276
Rosen S, 2001, J SPEECH LANG HEAR R, V44, P720, DOI 10.1044/1092-4388(2001/057)
Rosen S, 2009, J SPEECH LANG HEAR R, V52, P396, DOI 10.1044/1092-4388(2009/08-0114)
ROSEN S, 1992, PHILOS T ROY SOC B, V336, P367, DOI 10.1098/rstb.1992.0070
Rosen S, 2003, J PHONETICS, V31, P509, DOI 10.1016/S0095-4470(03)00046-9
Rouse CE, 2004, ECON EDUC REV, V23, P323, DOI 10.1016/j.econedurev.2003.10.005
Santurette S, 2010, JARO-J ASSOC RES OTO, V11, P515, DOI 10.1007/s10162-010-0216-5
Schonwiesner M, 2009, P NATL ACAD SCI USA, V106, P14611, DOI 10.1073/pnas.0907682106
SCOTT DR, 1982, J ACOUST SOC AM, V71, P996, DOI 10.1121/1.387581
Serniclaes W, 2001, J SPEECH LANG HEAR R, V44, P384, DOI 10.1044/1092-4388(2001/032)
SMITH MR, 1989, J SPEECH HEAR RES, V32, P912
Snowling M.J., 2000, DYSLEXIA
Strong GK, 2011, J CHILD PSYCHOL PSYC, V52, P224, DOI 10.1111/j.1469-7610.2010.02329.x
Talcott JB, 2000, P NATL ACAD SCI USA, V97, P2952, DOI 10.1073/pnas.040546597
TALLAL P, 1980, BRAIN LANG, V9, P182, DOI 10.1016/0093-934X(80)90139-X
Temple E, 2003, P NATL ACAD SCI USA, V100, P2860, DOI 10.1073/pnas.0030098100
Thomson JM, 2006, J RES READ, V29, P334, DOI 10.1111/j.1467-9817.2006.00312.x
Tomblin JB, 1997, J SPEECH LANG HEAR R, V40, P1245
Troia GA, 2003, CONTEMP EDUC PSYCHOL, V28, P465, DOI 10.1016/S0361-476X(02)00045-0
Vandermosten M, 2010, P NATL ACAD SCI USA, V107, P10389, DOI 10.1073/pnas.0912858107
Vandermosten M, 2011, RES DEV DISABIL, V32, P593, DOI 10.1016/j.ridd.2010.12.015
WATSON BU, 1993, ANN NY ACAD SCI, V682, P418, DOI 10.1111/j.1749-6632.1993.tb23011.x
Watson CS, 2003, J LEARN DISABIL-US, V36, P165, DOI 10.1177/002221940303600209
Wechsler D., 2005, WECHSLER INDIVIDUAL
Witton C, 1998, CURR BIOL, V8, P791, DOI 10.1016/S0960-9822(98)70320-3
Wright BA, 1997, NATURE, V387, P176, DOI 10.1038/387176a0
Ziegler JC, 2011, J EXP CHILD PSYCHOL, V110, P362, DOI 10.1016/j.jecp.2011.05.001
Ziegler JC, 2012, BRAIN LANG, V120, P265, DOI 10.1016/j.bandl.2011.12.002
Ziegler JC, 2005, P NATL ACAD SCI USA, V102, P14110, DOI 10.1073/pnas.0504446102
Ziegler JC, 2009, DEVELOPMENTAL SCI, V12, P732, DOI 10.1111/j.1467-7687.2009.00817.x
NR 84
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2014
VL 308
SI SI
BP 129
EP 140
DI 10.1016/j.heares.2013.09.015
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AA9QO
UT WOS:000331428200013
PM 24112877
ER
PT J
AU Leong, V
Goswami, U
AF Leong, Victoria
Goswami, Usha
TI Assessment of rhythmic entrainment at multiple timescales in dyslexia:
Evidence for disruption to syllable timing
SO HEARING RESEARCH
LA English
DT Article
ID DEVELOPMENTAL DYSLEXIA; NEURONAL OSCILLATIONS; AUDITORY-CORTEX; MUSICAL
INTERVENTION; CENTRIC PERSPECTIVE; LINGUISTIC RHYTHM; SPEECH RECEPTION;
BEAT PERCEPTION; LEXICAL ACCESS; WORD STRESS
AB Developmental dyslexia is associated with rhythmic difficulties, including impaired perception of beat patterns in music and prosodic stress patterns in speech. Spoken prosodic rhythm is cued by slow (<10 Hz) fluctuations in speech signal amplitude. Impaired neural oscillatory tracking of these slow amplitude modulation (AM) patterns is one plausible source of impaired rhythm tracking in dyslexia. Here, we characterise the temporal profile of the dyslexic rhythm deficit by examining rhythmic entrainment at multiple speech timescales. Adult dyslexic participants completed two experiments aimed at testing the perception and production of speech rhythm. In the perception task, participants tapped along to the beat of 4 metrically-regular nursery rhyme sentences. In the production task, participants produced the same 4 sentences in time to a metronome beat. Rhythmic entrainment was assessed using both traditional rhythmic indices and a novel AM-based measure, which utilised 3 dominant AM timescales in the speech signal each associated with a different phonological grain-sized unit (0.9-2.5 Hz, prosodic stress; 2.5-12 Hz, syllables; 12-40 Hz, phonemes). The AM-based measure revealed atypical rhythmic entrainment by dyslexic participants to syllable patterns in speech, in perception and production. In the perception task, both groups showed equally strong phase-locking to Syllable AM patterns, but dyslexic responses were entrained to a significantly earlier oscillatory phase angle than controls. In the production task, dyslexic utterances showed shorter syllable intervals, and differences in Syllable:Phoneme AM cross-frequency synchronisation. Our data support the view that rhythmic entrainment at slow (similar to 5 Hz, Syllable) rates is atypical in dyslexia, suggesting that neural mechanisms for syllable perception and production may also be atypical. These syllable timing deficits could contribute to the atypical development of phonological representations for spoken words, the central cognitive characteristic of developmental dyslexia across languages.
This article is part of a Special Issue entitled . (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved.
C1 [Leong, Victoria; Goswami, Usha] Univ Cambridge, Dept Psychol, Ctr Neurosci Educ, Cambridge CB2 3EB, England.
RP Leong, V (reprint author), Univ Cambridge, Dept Psychol, Ctr Neurosci Educ, Downing St, Cambridge CB2 3EB, England.
EM vvec2@cam.ac.uk
FU Harold Hyam Wingate Research Scholarship; Medical Research Council
[G0902375]
FX This research was funded by a Harold Hyam Wingate Research Scholarship
to VL for her doctoral work, and by the Medical Research Council,
G0902375.
CR Abercrombie D, 1967, ELEMENTS GEN PHONETI
Ahissar E, 2001, P NATL ACAD SCI USA, V98, P13367, DOI 10.1073/pnas.201400998
ALLEN GD, 1972, LANG SPEECH, V15, P72
ARMITAGE SE, 1980, SCIENCE, V208, P1173, DOI 10.1126/science.7375927
Berens P, 2009, J STAT SOFTWARE, V31
Bhide A, 2013, MIND BRAIN EDUC, V7, P113, DOI 10.1111/mbe.12016
Boersma P., 2009, PRAAT DOING PHONETIC
Buzsaki G, 2004, SCIENCE, V304, P1926, DOI 10.1126/science.1099745
Canolty RT, 2010, TRENDS COGN SCI, V14, P506, DOI 10.1016/j.tics.2010.09.001
Cutler A., 1987, Computer Speech and Language, V2, DOI 10.1016/0885-2308(87)90004-0
Cooper G., 1960, RHYTHMIC STRUCTURE M
Cooper N, 2002, LANG SPEECH, V45, P207
CRYSTAL TH, 1988, J ACOUST SOC AM, V83, P1553, DOI 10.1121/1.395911
Cummins F, 2009, J PHONETICS, V37, P16, DOI 10.1016/j.wocn.2008.08.003
Cummins F, 1998, J PHONETICS, V26, P145, DOI 10.1006/jpho.1998.0070
CUTLER A, 1988, J EXP PSYCHOL HUMAN, V14, P113, DOI 10.1037/0096-1523.14.1.113
Cutler A, 2005, BLACKW HBK LINGUIST, P264, DOI 10.1002/9780470757024.ch11
DAUER RM, 1983, J PHONETICS, V11, P51
de Bree E, 2006, J RES READ, V29, P304, DOI 10.1111/j.1467-9817.2006.00310.x
Dellwo V, 2003, P 15 INT C PHON SCI, P471
Ding N, 2012, P NATL ACAD SCI USA, V109, P11854, DOI 10.1073/pnas.1205381109
DRULLMAN R, 1994, J ACOUST SOC AM, V95, P1053, DOI 10.1121/1.408467
DRULLMAN R, 1994, J ACOUST SOC AM, V95, P2670, DOI 10.1121/1.409836
Echols CH, 1997, J MEM LANG, V36, P202, DOI 10.1006/jmla.1996.2483
FOWLER AE, 1991, PHONOLOGICAL PROCESSES IN LITERACY, P97
FRAISSE P, 1982, PSYCHOL MUSIC, P148
Fredrickson N., 1997, PHONOLOGICAL ASSESSM
FRY DB, 1958, LANG SPEECH, V1, P126
Fry D.B., 1955, J ACOUST SOC AM, V26, P138
Gabor D., 1946, Journal of the Institution of Electrical Engineers. III. Radio and Communication Engineering, V93
Ghitza O, 2009, PHONETICA, V66, P113, DOI 10.1159/000208934
Ghitza O, 2011, FRONT PSYCHOL, V2, DOI 10.3389/fpsyg.2011.00130
Giraud AL, 2012, NAT NEUROSCI, V15, P511, DOI 10.1038/nn.3063
Gleitman L. R., 1982, LANG ACQUIS, P3
Golumbic EMZ, 2012, BRAIN LANG, V122, P151, DOI 10.1016/j.bandl.2011.12.010
Goswami U, 2011, TRENDS COGN SCI, V15, P3, DOI 10.1016/j.tics.2010.10.001
Goswami U., 2013, LAB PHONOL, V4, P67, DOI [10.1515/lp-2013-0004, DOI 10.1515/LP-2013-0004]
Goswami U, 2011, J COGNITIVE NEUROSCI, V23, P325, DOI 10.1162/jocn.2010.21453
Goswami U, 2013, J MEM LANG, V69, P1, DOI 10.1016/j.jml.2013.03.001
Goswami U, 2010, READ WRIT, V23, P995, DOI 10.1007/s11145-009-9186-6
Goswami U, 2013, CORTEX, V49, P1363, DOI 10.1016/j.cortex.2012.05.005
Goswami U, 2002, P NATL ACAD SCI USA, V99, P10911, DOI 10.1073/pnas.122368599
Grabe E, 2002, PHONOL PHONET, V4-1, P515
Grahn JA, 2009, ANN NY ACAD SCI, V1169, P35, DOI 10.1111/j.1749-6632.2009.04553.x
Greenberg S, 2006, UNDERSTANDING SPEECH, P411
Greenberg S, 2003, J PHONETICS, V31, P465, DOI 10.1016/j.wocn.2003.09.005
Greenberg S, 1999, SPEECH COMMUN, V29, P159, DOI 10.1016/S0167-6393(99)00050-3
Hamalainen JA, 2012, NEUROIMAGE, V59, P2952, DOI 10.1016/j.neuroimage.2011.09.075
Hamalainen J.A., 2012, J LEARNING DISABILIT
Hayes B., 1995, METRICAL STRESS THEO
Henry MJ, 2012, P NATL ACAD SCI USA, V109, P20095, DOI 10.1073/pnas.1213390109
Hirst D. J., 2006, ENCY LANGUAGE LINGUI, P539
Holliman AJ, 2012, J RES READ, V35, P32, DOI 10.1111/j.1467-9817.2010.01459.x
Holliman AJ, 2010, EDUC PSYCHOL-UK, V30, P247, DOI 10.1080/01443410903560922
HOUTGAST T, 1985, J ACOUST SOC AM, V77, P1069, DOI 10.1121/1.392224
Huss M, 2011, CORTEX, V47, P674, DOI 10.1016/j.cortex.2010.07.010
Jusczyk PW, 1999, COGNITIVE PSYCHOL, V39, P159, DOI 10.1006/cogp.1999.0716
JUSCZYK PW, 1993, CHILD DEV, V64, P675, DOI 10.1111/j.1467-8624.1993.tb02935.x
Kayser C, 2009, NEURON, V61, P597, DOI 10.1016/j.neuron.2009.01.008
KELSO JAS, 1986, J PHONETICS, V14, P29
Kitzen K.R., 2001, THESIS U COLUMBIA, V62, p0460A
Kochanski G, 2005, J ACOUST SOC AM, V118, P1038, DOI 10.1121/1.1923349
Kotz SA, 2010, TRENDS COGN SCI, V14, P392, DOI 10.1016/j.tics.2010.06.005
Kralemann B, 2008, PHYS REV E, V77, DOI 10.1103/PhysRevE.77.066205
Kralemann B, 2007, PHYS REV E, V76, DOI 10.1103/PhysRevE.76.055201
Lakatos P, 2005, J NEUROPHYSIOL, V94, P1904, DOI 10.1152/jn.00263.2005
Lakatos P, 2008, SCIENCE, V320, P110, DOI 10.1126/science.1154735
Lehongre K, 2011, NEURON, V72, P1080, DOI 10.1016/j.neuron.2011.11.002
Leong V, 2012, THESIS U CAMBRIDGE
Leong V, 2011, J MEM LANG, V64, P59, DOI 10.1016/j.jml.2010.09.003
Leong V., 2011, 13 RHYTHM PERC PROD
Lerdahl F., 1983, GENERATIVE THEORY TO
LIBERMAN AM, 1985, COGNITION, V21, P1, DOI 10.1016/0010-0277(85)90021-6
LIBERMAN M, 1977, LINGUIST INQ, V8, P249
Luo H, 2007, NEURON, V54, P1001, DOI 10.1016/j.neuron.2007.06.004
Luo H, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000445
MARCUS SM, 1981, PERCEPT PSYCHOPHYS, V30, P247, DOI 10.3758/BF03214280
MARTIN JG, 1972, PSYCHOL REV, V79, P487, DOI 10.1037/h0033467
MORTON J, 1976, PSYCHOL REV, V83, P405, DOI 10.1037//0033-295X.83.5.405
Mundy IR, 2012, J COGN PSYCHOL, V24, P560, DOI 10.1080/20445911.2012.662341
Muneaux M, 2004, NEUROREPORT, V15, P1255, DOI 10.1097/01.wnr.0000127459.31232.c4
Nazzi T, 1998, J EXP PSYCHOL HUMAN, V24, P756, DOI 10.1037//0096-1523.24.3.756
Overy K, 2003, ANN NY ACAD SCI, V999, P497, DOI 10.1196/annals.1284.060
Palva JM, 2005, J NEUROSCI, V25, P3962, DOI 10.1523/JNEUROSCI.4250-04.2005
Pasley BN, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001251
Patel A.D., 1999, P 14 INT C PHON SCI, V1, P405
Pike P., 1945, INTONATION AM ENGLIS
Poelmans H, 2011, RES DEV DISABIL, V32, P2810, DOI 10.1016/j.ridd.2011.05.025
Poeppel D, 2003, SPEECH COMMUN, V41, P245, DOI 10.1016/S0167-6393(02)00107-3
Port RF, 2003, J PHONETICS, V31, P599, DOI 10.1016/j.wocn.2003.08.001
Ramus F, 1999, COGNITION, V73, P265, DOI 10.1016/S0010-0277(99)00058-X
Repp BH, 2005, PSYCHON B REV, V12, P969, DOI 10.3758/BF03206433
ROSEN S, 1992, PHILOS T ROY SOC B, V336, P367, DOI 10.1098/rstb.1992.0070
Schack B, 2005, BIOL CYBERN, V92, P275, DOI 10.1007/s00422-005-0555-1
SCHANE SA, 1979, LANGUAGE, V55, P559, DOI 10.2307/413318
Schroeder CE, 2008, TRENDS NEUROSCI, V32, P9, DOI 10.1016/j.tins.2008.09.012
Schroeder CE, 2009, TRENDS NEUROSCI, V32, P9, DOI 10.1016/j.tins.2008.09.012
Scott S. K., 1993, THESIS U COLL LONDON
Selkirk E., 1986, PHONOLOGY YB, V3, P371
Selkirk E. O., 1984, PHONOLOGY SYNTAX REL
SELKIRK EO, 1980, LINGUIST INQ, V11, P563
SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303
Silipo R., 1999, PHON SPONT SPEECH IC
Smith AB, 2008, J SPEECH LANG HEAR R, V51, P1300, DOI 10.1044/1092-4388(2008/06-0193)
Snowling M.J., 2000, DYSLEXIA
Stone MA, 2003, J ACOUST SOC AM, V114, P1023, DOI 10.1121/1.1592160
Suranyi Z, 2009, READ WRIT, V22, P41, DOI 10.1007/s11145-007-9102-x
Tass P., 1998, PHYS REV LETT, V81, P3291
Teki S, 2011, J NEUROSCI, V31, P3805, DOI 10.1523/JNEUROSCI.5561-10.2011
Thomson J., 2012, READ WRIT, DOI DOI 10.1007/S11145-012-9359-6.ADVANCE
Thomson JM, 2008, J PHYSIOL-PARIS, V102, P120, DOI 10.1016/j.jphysparis.2008.03.007
Thomson JM, 2006, J RES READ, V29, P334, DOI 10.1111/j.1467-9817.2006.00312.x
Tilsen S, 2008, J ACOUST SOC AM, V124, pEL34, DOI 10.1121/1.2947626
Treiman R., 1991, PHONOLOGICAL PROCESS
Villing R., 2010, THESIS NATL U IRELAN
Wechsler D, 1999, WECHSLER ABBREVIATED
Wilkinson G.S., 1993, WIDE RANGE ACHIEVEME, V3
Wolff P. H., 2002, READ WRIT, V15, P179, DOI 10.1023/A:1013880723925
Wood C, 1998, EDUC PSYCHOL, V18, P253, DOI 10.1080/0144341980180301
Ziegler JC, 2005, PSYCHOL BULL, V131, P3, DOI 10.1037/0033-2909.131.1.3
NR 120
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2014
VL 308
SI SI
BP 141
EP 161
DI 10.1016/j.heares.2013.07.015
PG 21
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AA9QO
UT WOS:000331428200014
PM 23916752
ER
PT J
AU Alho, K
Rinne, T
Herron, TJ
Woods, DL
AF Alho, Kimmo
Rinne, Teemu
Herron, Timothy J.
Woods, David L.
TI Stimulus-dependent activations and attention-related modulations in the
auditory cortex: A meta-analysis of fMRI studies
SO HEARING RESEARCH
LA English
DT Article
ID EVENT-RELATED FMRI; FUNCTIONAL NEUROIMAGING DATA; SUPERIOR TEMPORAL
SULCUS; VISUAL ODDBALL TASKS; HUMAN BRAIN; SELECTIVE ATTENTION;
SPEECH-PERCEPTION; WORKING-MEMORY; MISMATCH NEGATIVITY; SOUND LOCATION
AB We meta-analyzed 115 functional magnetic resonance imaging (fMRI) studies reporting auditory-cortex (AC) coordinates for activations related to active and passive processing of pitch and spatial location of non-speech sounds, as well as to the active and passive speech and voice processing. We aimed at revealing any systematic differences between AC surface locations of these activations by statistically analyzing the activation loci using the open-source Matlab toolbox VAMCA (Visualization and Meta-analysis on Cortical Anatomy). AC activations associated with pitch processing (e.g., active or passive listening to tones with a varying vs. fixed pitch) had median loci in the middle superior temporal gyrus (STG), lateral to Heschl's gyrus. However, median loci of activations due to the processing of infrequent pitch changes in a tone stream were centered in the STG or planum temporale (PT), significantly posterior to the median loci for other types of pitch processing. Median loci of attention-related modulations due to focused attention to pitch (e.g., attending selectively to low or high tones delivered in concurrent sequences) were, in turn, centered in the STG or superior temporal sulcus (STS), posterior to median lad for passive pitch processing. Activations due to spatial processing were centered in the posterior STG or PT, significantly posterior to pitch processing loci (processing of infrequent pitch changes excluded). In the right-hemisphere AC, the median locus of spatial attention-related modulations was in the STS, significantly inferior to the median locus for passive spatial processing. Activations associated with speech processing and those associated with voice processing had indistinguishable median loci at the border of mid-STG and mid-STS. Median loci of attention-related modulations due to attention to speech were in the same mid-STG/STS region. Thus, while attention to the pitch or location of non-speech sounds seems to recruit AC areas less involved in passive pitch or location processing, focused attention to speech predominantly enhances activations in regions that already respond to human vocalizations during passive listening. This suggests that distinct attention mechanisms might be engaged by attention to speech and attention to more elemental auditory features such as tone pitch or location.
This article is part of a Special Issue entitled . (C) 2013 Elsevier B.V. All rights reserved.
C1 [Alho, Kimmo] Univ Helsinki, Helsinki Coll Adv Studies, FI-00014 Helsinki, Finland.
[Alho, Kimmo; Rinne, Teemu] Univ Helsinki, Inst Behav Sci, FI-00014 Helsinki, Finland.
[Herron, Timothy J.; Woods, David L.] Vet Affairs Northern Calif Hlth Care Syst, Martinez, CA 94553 USA.
[Woods, David L.] Univ Calif Davis, Ctr Neurosci, Dept Neurol, Davis, CA 95618 USA.
[Woods, David L.] Univ Calif Davis, Ctr Mind & Brain, Davis, CA 95618 USA.
RP Alho, K (reprint author), Univ Helsinki, Helsinki Coll Adv Studies, POB 4, FI-00014 Helsinki, Finland.
EM kimmo.alho@helsinki.fi; teemu.rinne@helsinki.fi; tjherron@ebire.org;
dlwoods@ucdavis.edu
RI Rinne, Teemu/A-6090-2009; Alho, Kimmo/G-2997-2013
OI Rinne, Teemu/0000-0002-3142-9438;
FU Academy of Finland [209709, 210186, 260054, 1135900]; US Veterans
Affairs Research Service Grant [10889758]
FX This research was supported by the Academy of Finland grants 209709,
210186, 260054, and 1135900, and by US Veterans Affairs Research Service
Grant 10889758. The cortical surface database applied in the present
study was created by Dr. Xiaojian Kang. The content is solely the
responsibility of the authors and does not necessarily represent the
official views of the agencies.
CR Alain C, 2001, P NATL ACAD SCI USA, V98, P12301, DOI 10.1073/pnas.211209098
Alain C., 2005, NEUROIMAGE, V26, P529
Alho K, 2006, BRAIN RES, V1075, P142, DOI 10.1016/j.brainres.2005.11.103
Alho K, 1998, PSYCHOPHYSIOLOGY, V35, P211, DOI 10.1017/S004857729800211X
Alho K, 1999, COGNITIVE BRAIN RES, V7, P335, DOI 10.1016/S0926-6410(98)00036-6
Altmann CF, 2007, NEUROIMAGE, V35, P1192, DOI 10.1016/j.neuroimage.2007.01.007
Altmann CF, 2008, NEUROIMAGE, V41, P69, DOI 10.1016/j.neuroimage.2008.02.013
Anticevic A, 2008, NEUROIMAGE, V41, P835, DOI 10.1016/j.neuroimage.2008.02.052
Arnott SR, 2004, NEUROIMAGE, V22, P401, DOI 10.1016/j.neuroimage.2004.01.014
Barker D, 2011, NEUROREPORT, V22, P111, DOI 10.1097/WNR.0b013e328342ba30
Barrett DJK, 2006, NEUROIMAGE, V32, P968, DOI 10.1016/j.neuroimage.2006.03.050
Belin P, 2004, TRENDS COGN SCI, V8, P129, DOI 10.1016/j.tics.2004.01.008
Belin P, 2000, NATURE, V403, P309, DOI 10.1038/35002078
Belizaire G, 2007, NEUROREPORT, V18, P29
Benson RR, 2001, BRAIN LANG, V78, P364, DOI 10.1006/brln.2001.2484
Benson RR, 2006, NEUROIMAGE, V31, P342, DOI 10.1016/j.neuroimage.2005.11.029
Bidet-Caulet A, 2005, NEUROIMAGE, V28, P132, DOI 10.1016/j.neuroimage.2005.06.018
Binder JR, 2000, CEREB CORTEX, V10, P512, DOI 10.1093/cercor/10.5.512
Binder JR, 2004, NAT NEUROSCI, V7, P295, DOI 10.1038/nn1198
Bozic M, 2010, P NATL ACAD SCI USA, V107, P17439, DOI 10.1073/pnas.1000531107
Brechmann A, 2005, CEREB CORTEX, V15, P578, DOI 10.1093/cercor/bhh159
Brechmann A, 2007, CEREB CORTEX, V17, P2544, DOI 10.1093/cercor/bhl160
Brunetti M, 2005, HUM BRAIN MAPP, V26, P251, DOI 10.1002/hbm.20164
Budd TW, 2003, NEUROIMAGE, V20, P1783, DOI 10.1016/j.neuroimaging.2003.07.026
Burton MW, 2006, CORTEX, V42, P644, DOI 10.1016/S0010-9452(08)70400-3
Burton MW, 2000, J COGNITIVE NEUROSCI, V12, P679, DOI 10.1162/089892900562309
Celsis P, 1999, NEUROIMAGE, V9, P135, DOI 10.1006/nimg.1998.0389
Christensen TA, 2008, NEUROREPORT, V19, P1101, DOI 10.1097/WNR.0b013e3283060a9d
Costafreda SG, 2009, NEUROIMAGE, V46, P115, DOI 10.1016/j.neuroimage.2009.01.031
Da Costa S, 2013, J NEUROSCI, V33, P1858, DOI 10.1523/JNEUROSCI.4405-12.2013
Davis MH, 2003, J NEUROSCI, V23, P3423
Degerman A, 2008, EUR J NEUROSCI, V27, P3329, DOI 10.1111/j.1460-9568.2008.06286.x
Degerman A, 2006, BRAIN RES, V1077, P123, DOI 10.1016/j.brainres.2006.01.025
Deike S, 2004, NEUROREPORT, V15, P1511, DOI 10.1097/01.wnr.0000132919.12990.34
Dick F, 2007, J COGNITIVE NEUROSCI, V19, P799, DOI 10.1162/jocn.2007.19.5.799
Dietrich S, 2007, NEUROREPORT, V18, P1891
Doeller CF, 2003, NEUROIMAGE, V20, P1270, DOI 10.1016/S1053-8119(03)00389-6
Eickhoff SB, 2009, HUM BRAIN MAPP, V30, P2907, DOI 10.1002/hbm.20718
Escera C, 2000, AUDIOL NEURO-OTOL, V5, P151, DOI 10.1159/000013877
Fecteau S, 2004, NEUROIMAGE, V23, P840, DOI 10.1016/j.neuroimage.2004.09.019
Friederici AD, 2010, HUM BRAIN MAPP, V31, P448, DOI 10.1002/hbm.20878
Fruhholz S, 2013, NEUROSCI BIOBEHAV R, V37, P24, DOI 10.1016/j.neubiorev.2012.11.002
Garcia D, 2010, NEUROIMAGE, V51, P808, DOI 10.1016/j.neuroimage.2010.02.079
Giraud AL, 2004, CEREB CORTEX, V14, P247, DOI 10.1093/cercor/bhg124
Griffiths TD, 2000, HUM BRAIN MAPP, V9, P72, DOI 10.1002/(SICI)1097-0193(200002)9:2<72::AID-HBM2>3.0.CO;2-9
Hall DA, 2000, HUM BRAIN MAPP, V10, P107, DOI 10.1002/1097-0193(200007)10:3<107::AID-HBM20>3.0.CO;2-8
Hall DA, 2002, CEREB CORTEX, V12, P140, DOI 10.1093/cercor/12.2.140
Hall DA, 2005, J NEUROPHYSIOL, V94, P3181, DOI 10.1152/jn.00271.2005
Harinen K, 2013, NEUROIMAGE, V77, P279, DOI 10.1016/j.neuroimage.2013.03.064
Hart HC, 2004, HUM BRAIN MAPP, V21, P178, DOI 10.1002/hbm.10156
Hart HC, 2003, HEARING RES, V179, P104, DOI 10.1016/S0378-5955(03)00100-X
Heinrich A, 2008, J COGNITIVE NEUROSCI, V20, P1737, DOI 10.1162/jocn.2008.20069
Hill KT, 2010, CEREB CORTEX, V20, P583, DOI 10.1093/cercor/bhp124
HILLYARD SA, 1973, SCIENCE, V182, P177, DOI 10.1126/science.182.4108.177
Hugdahl K, 2003, BRAIN LANG, V85, P37, DOI 10.1016/S0093-934X(02)00500-X
Hutchison ER, 2008, NEUROIMAGE, V40, P342, DOI 10.1016/j.neuroimage.2007.10.064
Hyde KL, 2008, NEUROPSYCHOLOGIA, V46, P632, DOI 10.1016/j.neuropsychologia.2007.09.004
Ikeda Y, 2010, NEUROSCI RES, V67, P65, DOI 10.1016/j.neures.2010.02.006
Jacquemot C, 2003, J NEUROSCI, V23, P9541
Jamison HL, 2006, CEREB CORTEX, V16, P1266, DOI 10.1093/cercor/bhj068
Janata P, 2002, COGN AFFECT BEHAV NE, V2, P121, DOI 10.3758/CABN.2.2.121
Jancke L, 2002, HEARING RES, V170, P166, DOI 10.1016/S0378-5955(02)00488-4
Jancke L, 2002, NEUROIMAGE, V15, P733, DOI 10.1006/nimg.2001.1027
Joanisse MF, 2007, NEUROREPORT, V18, P901, DOI 10.1097/WNR.0b013e3281053c4e
Johnson JA, 2006, NEUROIMAGE, V31, P1673, DOI 10.1016/j.neuroimage.2006.02.026
JONES DM, 1993, J EXP PSYCHOL LEARN, V19, P369, DOI 10.1037/0278-7393.19.2.369
Kang XJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0045582
Kang XJ, 2007, MAGN RESON IMAGING, V25, P1070, DOI 10.1016/j.mri.2006.12.005
Kiehl KA, 2005, NEUROIMAGE, V25, P899, DOI 10.1016/j.neuroimage.2004.12.035
Kiehl KA, 2001, PSYCHOPHYSIOLOGY, V38, P133, DOI 10.1017/S0048577201981867
Krumbholz K, 2005, EUR J NEUROSCI, V21, P230, DOI 10.1111/j.1460-9568.2004.03836.x
Krumbholz K, 2007, J COGNITIVE NEUROSCI, V19, P1721, DOI 10.1162/jocn.2007.19.10.1721
Laird AR, 2010, NEUROIMAGE, V51, P677, DOI 10.1016/j.neuroimage.2010.02.048
Lattner S, 2005, HUM BRAIN MAPP, V24, P11, DOI 10.1002/hbm.20065
Laufer I, 2008, BRAIN STRUCT FUNCT, V212, P427, DOI 10.1007/s00429-007-0167-8
Leaver AM, 2010, J NEUROSCI, V30, P7604, DOI 10.1523/JNEUROSCI.0296-10.2010
Leech R, 2011, BRAIN LANG, V116, P83, DOI 10.1016/j.bandl.2010.11.001
Leff AP, 2009, CORTEX, V45, P517, DOI 10.1016/j.cortex.2007.10.008
Liebenthal E, 2005, CEREB CORTEX, V15, P1621, DOI 10.1093/cercor/bhi040
LoCasto PC, 2004, J COGNITIVE NEUROSCI, V16, P1612, DOI 10.1162/0898929042568433
Loose R, 2003, HUM BRAIN MAPP, V18, P249, DOI 10.1002/hbm.10082
Martinkauppi S, 2000, CEREB CORTEX, V10, P889, DOI 10.1093/cercor/10.9.889
Mayer AR, 2006, NEUROIMAGE, V30, P938, DOI 10.1016/j.neuroimage.2005.10.050
Menon V, 2002, NEUROIMAGE, V17, P1742, DOI 10.1006/nimg.2002.1295
Molholm S, 2005, CEREB CORTEX, V15, P545, DOI 10.1093/cercor/bhh155
Muller BW, 2003, NEUROREPORT, V14, P1597, DOI 10.1097/00001756-200308260-00011
Muller RA, 2001, BRAIN LANG, V76, P70, DOI 10.1006/brln.2000.2398
Naatanen R., 1992, ATTENTION BRAIN FUNC
Naatanen R, 2011, PSYCHOPHYSIOLOGY, V48, P4, DOI 10.1111/j.1469-8986.2010.01114.x
Naatanen R, 2007, CLIN NEUROPHYSIOL, V118, P2544, DOI 10.1016/j.clinph.2007.04.026
Nakai Toshiharu, 2005, Magn Reson Med Sci, V4, P75, DOI 10.2463/mrms.4.75
Narain C, 2003, CEREB CORTEX, V13, P1362, DOI 10.1093/cercor/bhg083
Obleser J, 2006, HUM BRAIN MAPP, V27, P562, DOI 10.1002/hbm.20201
Obleser J, 2008, J NEUROSCI, V28, P8116, DOI 10.1523/JNEUROSCI.1290-08.2008
Obleser J, 2009, TRENDS COGN SCI, V13, P14, DOI 10.1016/j.tics.2008.09.005
Obleser J, 2007, J NEUROSCI, V27, P2283, DOI 10.1523/JNEUROSCI.4663-06.2007
Opitz B, 1999, PSYCHOPHYSIOLOGY, V36, P142, DOI 10.1017/S0048577299980848
Opitz B, 2005, EUR J NEUROSCI, V21, P531, DOI 10.1111/j.1460-9568.2005.03839.x
Opitz B, 2002, NEUROIMAGE, V15, P167, DOI 10.1006/nimg.2001.0970
Osnes B, 2011, BRAIN LANG, V116, P97, DOI 10.1016/j.bandl.2010.10.001
Patterson RD, 2002, NEURON, V36, P767, DOI 10.1016/S0896-6273(02)01060-7
Pavani F, 2002, CURR BIOL, V12, P1584, DOI 10.1016/S0960-9822(02)01143-0
Peelle JE, 2010, CEREB CORTEX, V20, P773, DOI 10.1093/cercor/bhp142
Penagos H, 2004, J NEUROSCI, V24, P6810, DOI 10.1523/JNEUROSCI.0383-04.2004
Petkov CI, 2004, NAT NEUROSCI, V7, P658, DOI 10.1038/nn1256
Petkov CI, 2009, NEUROSCIENTIST, V15, P419, DOI 10.1177/1073858408326430
Rama P, 2005, NEUROIMAGE, V24, P224, DOI 10.1016/j.neuroimage.2004.08.024
Rauschecker JP, 2009, NAT NEUROSCI, V12, P718, DOI 10.1038/nn.2331
Recanzone GH, 2011, ANN NY ACAD SCI, V1224, P96, DOI 10.1111/j.1749-6632.2010.05920.x
RIF J, 1991, ELECTROEN CLIN NEURO, V79, P464, DOI 10.1016/0013-4694(91)90166-2
Rimol LM, 2006, NEUROIMAGE, V30, P554, DOI 10.1016/j.neuroimage.2005.10.021
Rimol LM, 2005, NEUROIMAGE, V26, P1059, DOI 10.1016/j.neuroimage.2005.03.028
Rinne T, 2009, J NEUROSCI, V29, P13338, DOI 10.1523/JNEUROSCI.3012-09.2009
Rinne Teemu, 2010, Open Neuroimag J, V4, P187, DOI 10.2174/1874440001004010187
Rinne T, 2012, NEUROIMAGE, V59, P4126, DOI 10.1016/j.neuroimage.2011.10.069
Rinne T, 2008, J NEUROPHYSIOL, V100, P3323, DOI 10.1152/jn.90607.2008
Rinne T, 2005, HUM BRAIN MAPP, V26, P94, DOI 10.1002/hbm.20123
Sabri M, 2004, NEUROIMAGE, V21, P69, DOI 10.1016/j.neuroimage.2003.08.033
Sabri M, 2008, NEUROIMAGE, V39, P1444, DOI 10.1016/j.neuroimage.2007.09.052
Sabri M, 2006, J COGNITIVE NEUROSCI, V18, P689, DOI 10.1162/jocn.2006.18.5.689
Salmi J, 2007, BRAIN STRUCT FUNCT, V212, P181, DOI 10.1007/s00429-007-0152-2
Salmi J, 2009, BRAIN RES, V1286, P155, DOI 10.1016/j.brainres.2009.06.083
Samson F., 2011, FRONTIERS PSYCHOL, V1, P1
Santangelo V, 2010, NEUROIMAGE, V49, P2717, DOI 10.1016/j.neuroimage.2009.10.061
Schirmer A, 2012, NEUROIMAGE, V63, P137, DOI 10.1016/j.neuroimage.2012.06.025
Schlosser MJ, 1998, HUM BRAIN MAPP, V6, P1, DOI 10.1002/(SICI)1097-0193(1998)6:1<1::AID-HBM1>3.0.CO;2-7
Schonwiesner M, 2005, EUR J NEUROSCI, V22, P1521, DOI 10.1111/j.1460-9568.2005.04315.x
Sevostianov A, 2002, INT J NEUROSCI, V112, P587, DOI 10.1080/00207450290025671
Sharda M, 2012, NEUROSCIENCE, V214, P49, DOI 10.1016/j.neuroscience.2012.03.053
Shomstein S, 2006, J NEUROSCI, V26, P435, DOI 10.1523/JNEUROSCI.4408-05.2006
Shomstein S, 2004, J NEUROSCI, V24, P10702, DOI 10.1523/JNEUROSCI.2939-04.2004
Shultz S, 2012, J COGNITIVE NEUROSCI, V24, P1224, DOI 10.1162/jocn_a_00208
Sokhi DS, 2005, NEUROIMAGE, V27, P572, DOI 10.1016/j.neuroimage.2005.04.023
Specht K, 2003, NEUROIMAGE, V20, P1944, DOI 10.1016/j.neuroimage.2003.07.034
Specht K, 2005, NEUROSCI LETT, V384, P60, DOI 10.1016/j.neulet.2005.04.057
Stevens AA, 2000, MAGN RESON IMAGING, V18, P495, DOI 10.1016/S0730-725X(00)00128-4
Stevens AA, 2004, COGNITIVE BRAIN RES, V18, P162, DOI 10.1016/j.cogbrainres.2003.10.008
Stewart L, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001470
Strand F, 2008, BRAIN RES, V1212, P48, DOI 10.1016/j.brainres.2008.02.097
Tervaniemi M, 2006, J NEUROSCI, V26, P8647, DOI 10.1523/JNEUROSCI.0995-06.2006
Turkeltaub PE, 2010, BRAIN LANG, V114, P1, DOI 10.1016/j.bandl.2010.03.008
Turkeltaub PE, 2002, NEUROIMAGE, V16, P765, DOI 10.1006/nimg.2002.1131
Uppenkamp S, 2006, NEUROIMAGE, V31, P1284, DOI 10.1016/j.neuroimage.2006.01.004
Vigneau M, 2006, NEUROIMAGE, V30, P1414, DOI 10.1016/j.neuroimage.2005.11.002
Voisin J, 2006, J NEUROSCI, V26, P273, DOI 10.1523/JNEUROSCI.2967-05.2006
Von Kriegstein K, 2004, NEUROIMAGE, V22, P948
von Kriegstein K, 2003, COGNITIVE BRAIN RES, V17, P48, DOI 10.1016/S0926-6410(03)00079-X
Vouloumanos A, 2001, J COGNITIVE NEUROSCI, V13, P994, DOI 10.1162/089892901753165890
Warren JD, 2006, NEUROIMAGE, V31, P1389, DOI 10.1016/j.neuroimage.2006.01.034
Warren JD, 2003, P NATL ACAD SCI USA, V100, P10038, DOI 10.1073/pnas.1730682100
Warren JD, 2003, J NEUROSCI, V23, P5799
Warren JD, 2002, NEURON, V34, P139, DOI 10.1016/S0896-6273(02)00637-2
Warren JD, 2005, NEUROIMAGE, V24, P1052, DOI 10.1016/j.neuroimage.2004.10.031
Weissman DH, 2004, J NEUROSCI, V24, P10941, DOI 10.1523/JNEUROSCI.3669-04.2004
WOLDORFF MG, 1993, P NATL ACAD SCI USA, V90, P8722, DOI 10.1073/pnas.90.18.8722
Woods David L, 2010, Front Syst Neurosci, V4, P155, DOI 10.3389/fnsys.2010.00155
Woods DL, 2011, FRONT HUM NEUROSCI, V5, DOI 10.3389/fnhum.2011.00042
Wu CT, 2007, BRAIN RES, V1134, P187, DOI 10.1016/j.brainres.2006.11.088
Yoncheva YN, 2010, CEREB CORTEX, V20, P622, DOI 10.1093/cercor/bhp129
Yoshiura T, 1999, NEUROREPORT, V10, P1683, DOI 10.1097/00001756-199906030-00011
Zaehle T, 2004, EUR J NEUROSCI, V20, P2447, DOI 10.1111/j.1460-9568.2004.03687.x
Zatorre RJ, 1999, NEUROIMAGE, V10, P544, DOI 10.1006/nimg.1999.0491
Zevin JD, 2010, J NEUROSCI, V30, P1110, DOI 10.1523/JNEUROSCI.4599-09.2010
NR 163
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2014
VL 307
SI SI
BP 29
EP 41
DI 10.1016/j.heares.2013.08.001
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA AA8LU
UT WOS:000331347800004
PM 23938208
ER
PT J
AU Kiani, F
Yoganantha, U
Tan, CM
Meddis, R
Schaette, R
AF Kiani, Farhait
Yoganantha, Ushalline
Tan, Christine M.
Meddis, Ray
Schaette, Roland
TI Off-frequency listening in subjects with chronic tinnitus
SO HEARING RESEARCH
LA English
DT Article
ID PSYCHOPHYSICAL TUNING CURVES; DORSAL COCHLEAR NUCLEUS; SENSORINEURAL
HEARING-LOSS; HAIR CELL LOSS; DEAD REGIONS; COMPUTATIONAL MODEL;
NEURONAL HYPERACTIVITY; IMPAIRED LISTENERS; NORMAL AUDIOGRAM; THRESHOLDS
AB The occurrence of subjective tinnitus has been linked to cochlear damage, as most tinnitus patients have impaired hearing, and animal studies have shown that the induction of hearing loss can lead to behavioural signs of tinnitus. In tinnitus patients, the pure-tone audiogram is the main source of information about cochlear damage, but hearing thresholds alone may not adequately reflect its magnitude. Etchelecou et al. (2011) reported that the majority of patients with acute tinnitus post impulse noise exposure showed off-frequency listening (OFL), which is not readily observed in pure-tone audiograms. We investigated the possibility of OFL occurring in subjects with chronic tinnitus by testing twenty subjects who had experienced tinnitus for more than a year. OFL was assessed by measuring psychophysical tuning curves using a forward-masking paradigm. OFL occurred in 13 out of 20 subjects, 12 of whom also did not perceive frequencies above 8 kHz. Such unresponsive frequencies (UFs) were also present in three subjects without OFL. The tinnitus spectrum generally reached its highest values at the edge of or within the frequency regions with OFL or UFs, but there was no significant correlation between edge frequencies and the frequency with the highest tinnitus pitch similarity rating. When OFL and UFs were taken as evidence for cochlear dead regions, 16/20 subjects passed the criterion for cochlear dead regions. The remaining four subjects showed neither OFL nor UFs. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Kiani, Farhait; Yoganantha, Ushalline; Schaette, Roland] UCL Ear Inst, London WC1X 8EE, England.
[Tan, Christine M.; Meddis, Ray] Univ Essex, Dept Psychol, Colchester CO4 3SQ, Essex, England.
RP Schaette, R (reprint author), UCL Ear Inst, 332 Grays Inn Rd, London WC1X 8EE, England.
EM r.schaette@ucl.ac.uk
FU British Tinnitus Association (BTA)
FX We would like to thank the editor Brian Moore and two anonymous
reviewers for their very helpful comments and suggestions on this
manuscript. This study was supported by the British Tinnitus Association
(BTA tinnitus research fellowship awarded to R.S.).
CR AXELSSON A, 1989, British Journal of Audiology, V23, P53, DOI 10.3109/03005368909077819
Ayache D, 2003, OTOL NEUROTOL, V24, P48, DOI 10.1097/00129492-200301000-00011
BARNEA G, 1990, AUDIOLOGY, V29, P36
Bauer CA, 2008, J NEUROSCI RES, V86, P2564, DOI 10.1002/jnr.21699
Brozoski TJ, 2002, J NEUROSCI, V22, P2383
Choy DS, 2010, J LARYNGOL OTOL, V124, P366, DOI 10.1017/S0022215109992167
Chrostowski M, 2011, J COMPUT NEUROSCI, V30, P279, DOI 10.1007/s10827-010-0256-1
CHUNG DY, 1984, AUDIOLOGY, V23, P441
Davis B, 2004, HEARING RES, V187, P12, DOI 10.1016/S0378-5955(03)00339-3
Dominguez M, 2006, NEURAL COMPUT, V18, P2942, DOI 10.1162/neco.2006.18.12.2942
Epp B, 2012, J ACOUST SOC AM, V132, pEL196, DOI 10.1121/1.4740462
Etchelecou MC, 2011, HEARING RES, V282, P81, DOI 10.1016/j.heares.2011.09.006
GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
Gu JW, 2012, JARO-J ASSOC RES OTO, V13, P819, DOI 10.1007/s10162-012-0344-1
HALLAM RS, 1988, BRIT J CLIN PSYCHOL, V27, P213
Hallam R.S., 2008, TQ MANUAL TINNITUS Q
Heffner HE, 2002, HEARING RES, V170, P83, DOI 10.1016/S0378-5955(02)00343-X
Henry J.A., 1999, 6 INT TINN SEM 1999, P51
Huss M, 2003, J ACOUST SOC AM, V114, P3283, DOI 10.1121/1.162400
Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038
Kaltenbach JA, 2002, J NEUROPHYSIOL, V88, P699, DOI 10.1152/jn00893.2001
Kaltenbach JA, 2011, HEARING RES, V276, P52, DOI 10.1016/j.heares.2010.12.003
Kluk K, 2005, HEARING RES, V200, P115, DOI 10.1016/j.heares.2004.09.003
Kluk K, 2004, HEARING RES, V194, P118, DOI 10.1016/j.heares.2004.04.012
Konig O, 2006, HEARING RES, V221, P59, DOI 10.1016/j.heares.2006.07.007
Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009
Lecluyse W, 2009, J ACOUST SOC AM, V126, P2570, DOI 10.1121/1.3238248
Lecluyse W., 2013, INT J AUDIOL, DOI DOI 10.3109/14992027.2013.796530.P0STED
Lockwood AH, 2002, NEW ENGL J MED, V347, P904, DOI 10.1056/NEJMra013395
Lugli Marco, 2009, Int Tinnitus J, V15, P51
Makary CA, 2011, JARO-J ASSOC RES OTO, V12, P711, DOI 10.1007/s10162-011-0283-2
Meddis R, 2010, NEUROPHYSIOLOGICAL BASES OF AUDITORY PERCEPTION, P631, DOI 10.1007/978-1-4419-5686-6_57
MOORE BCJ, 1978, J ACOUST SOC AM, V63, P524, DOI 10.1121/1.381752
Moore BCJ, 2004, EAR HEARING, V25, P478, DOI 10.1097/01.aud.0000145992.31135.89
Moore BCJ, 2004, EAR HEARING, V25, P98, DOI 10.1097/01.AUD.0000120359.49711.D7
Moore BCJ, 2000, BRIT J AUDIOL, V34, P205
Moore BCJ, 2001, EAR HEARING, V22, P268, DOI 10.1097/00003446-200108000-00002
Mulders WHAM, 2011, J COMP NEUROL, V519, P2637, DOI 10.1002/cne.22644
Nicolas-Puel Cécile, 2002, Int Tinnitus J, V8, P37
Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156
Norena AJ, 2011, NEUROSCI BIOBEHAV R, V35, P1089, DOI 10.1016/j.neubiorev.2010.11.003
Nosrati-Zarenoe R, 2007, ACTA OTO-LARYNGOL, V127, P1168, DOI 10.1080/00016480701242477
Okamoto H, 2010, P NATL ACAD SCI USA, V107, P1207, DOI 10.1073/pnas.0911268107
Parra LC, 2007, J ACOUST SOC AM, V121, P1632, DOI 10.1121/1.2431346
Pepler A., 2012, 3 ANN C EXP SHORT PA
Roberts LE, 2008, JARO-J ASSOC RES OTO, V9, P417, DOI 10.1007/s10162-008-0136-9
Sanchez Tanit Ganz, 2005, Braz J Otorhinolaryngol, V71, P427
Schaette R, 2006, EUR J NEUROSCI, V23, P3124, DOI 10.1111/j.1460-9568.04774.x
Schaette R, 2008, HEARING RES, V240, P57, DOI 10.1016/j.heares.2008.02.006
Schaette R, 2009, J NEUROPHYSIOL, V101, P3042, DOI 10.1152/jn.91256.2008
Schaette R, 2011, J NEUROSCI, V31, P13452, DOI 10.1523/JNEUROSCI.2156-11.2011
Sek A, 2011, INT J AUDIOL, V50, P237, DOI 10.3109/14992027.2010.550636
Sereda M, 2011, INT J AUDIOL, V50, P303, DOI 10.3109/14992027.2010.551221
Sobrinho Pollyanna G, 2004, Int Tinnitus J, V10, P197
Tan CM, 2013, JARO-J ASSOC RES OTO, V14, P275, DOI 10.1007/s10162-013-0371-6
Tass PA, 2012, RESTOR NEUROL NEUROS, V30, P137, DOI 10.3233/RNN-2012-110218
Tass PA, 2012, BIOL CYBERN, V106, P27, DOI 10.1007/s00422-012-0479-5
Vinay, 2007, EAR HEARING, V28, P231
Weisz N, 2006, HEARING RES, V222, P108, DOI 10.1016/j.heares.2006.09.003
NR 59
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2013
VL 306
BP 1
EP 10
DI 10.1016/j.heares.2013.08.012
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 260EQ
UT WOS:000327578200001
PM 24012951
ER
PT J
AU Eeg-Olofsson, M
Stenfelt, S
Taghavi, H
Reinfeldt, S
Hakansson, B
Tengstrand, T
Finizia, C
AF Eeg-Olofsson, Mans
Stenfelt, Stefan
Taghavi, Hamidreza
Reinfeldt, Sabine
Hakansson, Bo
Tengstrand, Tomas
Finizia, Caterina
TI Transmission of bone conducted sound - Correlation between hearing
perception and cochlear vibration
SO HEARING RESEARCH
LA English
DT Article
ID HUMAN SKULL; TRANSCRANIAL ATTENUATION; MECHANICAL IMPEDANCE; AIR
CONDUCTION; MIDDLE-EAR; HUMAN HEAD; STIMULATION; THRESHOLDS; AUDIOMETRY;
MOTION
AB The vibration velocity of the lateral semicircular canal and the cochlear promontory was measured on 16 subjects with a unilateral middle ear common cavity, using a laser Doppler vibrometer, when the stimulation was by bone conduction (BC). Four stimulation positions were used: three ipsilateral positions and one contralateral position. Masked BC pure tone thresholds were measured with the stimulation at the same four positions. Valid vibration data were obtained at frequencies between 0.3 and 5.0 kHz. Large intersubject variation of the results was found with both methods. The difference in cochlear velocity with BC stimulation at the four positions varied as a function of frequency while the tone thresholds showed a tendency of lower thresholds with stimulation at positions close to the cochlea. The correlation between the vibration velocities of the two measuring sites of the otic capsule was high. Also, relative median data showed similar trends for both vibration and threshold measurements. However, due to the high variability for both vibration and perceptual data, low correlation between the two methods was found at the individual level. The results from this study indicated that human hearing perception from BC sound can be estimated from the measure of cochlear vibrations of the otic capsule. It also showed that vibration measurements of the cochlea in cadaver heads are similar to that measured in live humans. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Eeg-Olofsson, Mans; Finizia, Caterina] Gothenburg Univ, Dept Otorhinolaryngol Head & Neck Surg, Sahlgrenska Univ Hosp, Sahlgrenska Acad, S-41345 Gothenburg, Sweden.
[Stenfelt, Stefan] Linkoping Univ, Dept Clin & Expt Med, Linkoping, Sweden.
[Taghavi, Hamidreza; Reinfeldt, Sabine; Hakansson, Bo] Chalmers, Dept Signals & Syst, S-41296 Gothenburg, Sweden.
[Tengstrand, Tomas] Sahlgrens Univ Hosp, Dept Tech Audiol, Gothenburg, Sweden.
RP Eeg-Olofsson, M (reprint author), Gothenburg Univ, Dept Otorhinolaryngol Head & Neck Surg, Sahlgrenska Univ Hosp, Sahlgrenska Acad, Grona Straket 5, S-41345 Gothenburg, Sweden.
EM manseegolofsson@gmail.com; stefan.stenfelt@liu.se; taghavi@chalmers.se;
sabine.reinfeldt@chalmers.se; boh@chalmers.se;
tomas.tengstrand@vgregion.se; caterina.finizia@orlss.gu.se
FU Health & Medical Care Committee of the Regional Executive Board, Region
Vastra Gotaland; Goteborg Medical Society; VINNOVA: Swedish Governmental
Agency for Innovation Systems [2009-00190]
FX The authors thank Ann-Christine Hermansson for the great help, support
and endurance in completing this study. This study is partly supported
by "The Health & Medical Care Committee of the Regional Executive Board,
Region Vastra Gotaland", "The Goteborg Medical Society" and "VINNOVA:
Swedish Governmental Agency for Innovation Systems" (Grant number
2009-00190). The study has partly been presented at "The 12th
International Conference on Cochlear Implants and Other Implantable
Auditory Technologies; 2012", Baltimore, USA.
CR Bekesy G., 1960, EXPT HEARING
BUCHMAN E, 1991, J ACOUST SOC AM, V90, P895, DOI 10.1121/1.401956
Eeg-Olofsson M, 2011, OTOL NEUROTOL, V32, P192, DOI 10.1097/MAO.0b013e3182009f16
Eeg-Olofsson M, 2008, INT J AUDIOL, V47, P761, DOI 10.1080/14992020802311216
FLOTTORP G, 1976, J ACOUST SOC AM, V59, P899, DOI 10.1121/1.380949
FRANKE EK, 1956, J ACOUST SOC AM, V28, P1277, DOI 10.1121/1.1908622
GOODHILL V, 1970, ARCHIV OTOLARYNGOL, V91, P250
GURDJIAN ES, 1970, J BIOMECH, V3, P239, DOI 10.1016/0021-9290(70)90025-4
Hakansson B, 1996, J ACOUST SOC AM, V99, P2239
Hakansson B, 2010, INT J AUDIOL, V49, P203, DOI 10.3109/14992020903264462
HAKANSSON B, 1984, SCAND AUDIOL, V13, P3, DOI 10.3109/01050398409076252
HAKANSSON B, 1986, J ACOUST SOC AM, V80, P1065
Hakansson B, 2008, OTOL NEUROTOL, V29, P1132, DOI 10.1097/MAO.0b013e31816fdc90
HAKANSSON B, 1985, ACTA OTO-LARYNGOL, V100, P240, DOI 10.3109/00016488509104786
Hurley R., 1970, J AUD RES, P147
JERLVALL L, 1986, SCAND AUDIOL, V15, P51, DOI 10.3109/01050398609045954
KHALIL TB, 1979, J SOUND VIB, V63, P351, DOI 10.1016/0022-460X(79)90679-5
KHANNA SM, 1976, J ACOUST SOC AM, V60, P139, DOI 10.1121/1.381081
McBride M, 2008, ERGONOMICS, V51, P702, DOI 10.1080/00140130701747509
NOLAN M, 1981, J LARYNGOL OTOL, V95, P597, DOI 10.1017/S0022215100091155
SMITH JB, 1976, J SOUND VIB, V48, P35, DOI 10.1016/0022-460X(76)90369-2
SNYDER JM, 1973, LARYNGOSCOPE, V83, P1847, DOI 10.1288/00005537-197311000-00017
Sohmer H, 2000, HEARING RES, V146, P81, DOI 10.1016/S0378-5955(00)00099-X
Stenfelt S, 2002, J ACOUST SOC AM, V111, P947, DOI 10.1121/1.1432977
Stenfelt S, 2011, ADV OTO-RHINO-LARYNG, V71, P10, DOI 10.1159/000323574
Stenfelt S, 2003, J ACOUST SOC AM, V113, P902, DOI 10.1121/1.1534606
Stenfelt S, 2005, OTOL NEUROTOL, V26, P1245, DOI 10.1097/01.mao.0000187236.10842.d5
Stenfelt S, 2004, J ACOUST SOC AM, V115, P797, DOI 10.1121/1.1639903
Stenfelt S, 2004, HEARING RES, V198, P10, DOI 10.1016/j.heares.2004.07.008
Stenfelt S, 2012, OTOL NEUROTOL, V33, P105, DOI 10.1097/MAO.0b013e31823e28ab
Stenfelt S, 2005, INT J AUDIOL, V44, P178, DOI 10.1080/14992020500031561
Stenfelt S, 2006, J ACOUST SOC AM, V119, P2848, DOI 10.1121/1.2184225
Stenfelt S, 2003, HEARING RES, V181, P131, DOI 10.1016/S0378-5955(03)00183-7
Stenfelt S, 2005, J ACOUST SOC AM, V118, P2373, DOI 10.1121/1.12005847
Stenfelt S, 2000, J ACOUST SOC AM, V107, P422, DOI 10.1121/1.428314
Stenfelt SPY, 1999, SCAND AUDIOL, V28, P190, DOI 10.1080/010503999424761
STUDEBAKER GA, 1962, J SPEECH HEAR RES, V5, P321
Tjellstrom A, 2001, OTOLARYNG CLIN N AM, V34, P337, DOI 10.1016/S0030-6665(05)70335-2
Tonndorf J., 1966, ACTA OTO-LARYNGOL, V213, P1
TONNDORF J, 1962, J ACOUST SOC AM, V34, P1127, DOI 10.1121/1.1918259
NR 40
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2013
VL 306
BP 11
EP 20
DI 10.1016/j.heares.2013.08.015
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 260EQ
UT WOS:000327578200002
PM 24047594
ER
PT J
AU Epp, B
Yasin, I
Verhey, JL
AF Epp, Bastian
Yasin, Ifat
Verhey, Jesko L.
TI Objective measures of binaural masking level differences and
comodulation masking release based on late auditory evoked potentials
SO HEARING RESEARCH
LA English
DT Article
ID TO-NOISE RATIO; MODULATED MASKERS; COCHLEAR NUCLEUS; SOUND INTENSITY;
RESPONSES; NEURONS; SIGNALS; CORTEX; ACTIVATION; LOUDNESS
AB The audibility of important sounds is often hampered due to the presence of other masking sounds. The present study investigates if a correlate of the audibility of a tone masked by noise is found in late auditory evoked potentials measured from human listeners. The audibility of the target sound at a fixed physical intensity is varied by introducing auditory cues of (i) interaural target signal phase disparity and (ii) coherent masker level fluctuations in different frequency regions. In agreement with previous studies, psychoacoustical experiments showed that both stimulus manipulations result in a masking release (i: binaural masking level difference; ii: comodulation masking release) compared to a condition where those cues are not present. Late auditory evoked potentials (N1, P2) were recorded for the stimuli at a constant masker level, but different signal levels within the same set of listeners who participated in the psychoacoustical experiment. The data indicate differences in N1 and P2 between stimuli with and without interaural phase disparities. However, differences for stimuli with and without coherent masker modulation were only found for P2, i.e., only P2 is sensitive to the increase in audibility, irrespective of the cue that caused the masking release. The amplitude of P2 is consistent with the psychoacoustical finding of an addition of the masking releases when both cues are present. Even though it cannot be concluded where along the auditory pathway the audibility is represented, the P2 component of auditory evoked potentials is a candidate for an objective measure of audibility in the human auditory system. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Epp, Bastian] Tech Univ Denmark, Dept Elect Engn, Ctr Appl Hearing Res, DK-2800 Lyngby, Denmark.
[Yasin, Ifat] UCL Ear Inst, London WC1X 8EE, England.
[Verhey, Jesko L.] Univ Magdeburg, Dept Expt Audiol, D-39120 Magdeburg, Germany.
RP Epp, B (reprint author), Tech Univ Denmark, Dept Elect Engn, Ctr Appl Hearing Res, Bldg 352, DK-2800 Lyngby, Denmark.
EM bepp@elektro.dtu.dk; i.yasin@ucl.ac.uk; jesko.verhey@med.ovgu.de
FU Deutsche Forschungsgemeinschaft [SFB/TRR31]; British Council
(German-British Advanced Research Collaboration Award)
FX This work was supported by the Deutsche Forschungsgemeinschaft
(SFB/TRR31) and by the British Council (German-British Advanced Research
Collaboration Award). We would like to thank Helge Luddemann for his
support with the EEG data collection and two anonymous Reviewers for
helpful comments on previous versions of this manuscript.
CR Androulidakis AG, 2006, CLIN NEUROPHYSIOL, V117, P1783, DOI 10.1016/j.clinph.2006.04.011
Asadollahi A., 2006, EUR J NEUROSCI, V32, P606
Billings CJ, 2009, HEARING RES, V254, P15, DOI 10.1016/j.heares.2009.04.002
Epp B, 2009, J ACOUST SOC AM, V126, P2479, DOI 10.1121/1.3205404
Epp B, 2009, J COMPUT NEUROSCI, V26, P393, DOI 10.1007/s10827-008-0118-2
Ernst SMA, 2008, NEUROIMAGE, V43, P321, DOI 10.1016/j.neuroimage.2008.07.046
Ernst SMA, 2010, NEUROIMAGE, V49, P835, DOI 10.1016/j.neuroimage.2009.07.014
Fowler C G, 1996, J Am Acad Audiol, V7, P23
Goense JBM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031589
Hall JW, 2011, J ACOUST SOC AM, V129, P2080, DOI 10.1121/1.3562563
HALL JW, 1984, J ACOUST SOC AM, V76, P50, DOI 10.1121/1.391005
HOKE M, 1984, ELECTROEN CLIN NEURO, V57, P484, DOI 10.1016/0013-4694(84)90078-6
Ishida I.M., 2004, EAR HEARING, V30, P713
Jasper H. H., 1958, ELECTROENCEPHALOGRAP, V10, P371, DOI DOI 10.1016/0013-4694(58)90053-1
JEFFRESS LA, 1956, J ACOUST SOC AM, V28, P416, DOI 10.1121/1.1908346
Jiang D, 1997, J NEUROPHYSIOL, V77, P3085
KEVANISHVILI Z, 1987, SCAND AUDIOL, V16, P3, DOI 10.3109/01050398709042149
Langers DRM, 2007, NEUROIMAGE, V35, P709, DOI 10.1016/j.neuroimage.2006.12.013
Las L, 2005, J NEUROSCI, V25, P1503, DOI 10.1523/JNEUROSCI.4007-04.2005
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
Luddemann H, 2009, HEARING RES, V256, P39, DOI 10.1016/j.heares.2009.06.010
Morita T, 2003, CLIN NEUROPHYSIOL, V114, P851, DOI 10.1016/S1388-2457(03)00033-6
MOTT JB, 1990, J ACOUST SOC AM, V88, P2682, DOI 10.1121/1.399987
Nelken I, 1999, NATURE, V397, P154, DOI 10.1038/16456
Neuert V, 2004, J NEUROSCI, V24, P5789, DOI 10.1523/JNEUROSCI.0450-04.2004
Nieder A, 2001, EUR J NEUROSCI, V13, P1033, DOI 10.1046/j.0953-816x.2001.01465.x
Piechowiak T, 2007, J ACOUST SOC AM, V121, P2111, DOI 10.1121/1.2534227
Pressnitzer D, 2001, J NEUROSCI, V21, P6377
Puschmann S, 2010, NEUROIMAGE, V49, P1641, DOI 10.1016/j.neuroimage.2009.09.045
Riedel H., 2001, Zeitschrift fur Audiologie, V40
Rohl M, 2012, JARO-J ASSOC RES OTO, V13, P369, DOI 10.1007/s10162-012-0315-6
Ross B, 2007, J NEUROSCI, V27, P11172, DOI 10.1523/JNEUROSCI.1813-07.2007
Rupp A, 2007, HEARING - FROM SENSORY PROCESSING TO PERCEPTION, P125, DOI 10.1007/978-3-540-73009-5_14
Sasaki T, 2005, NEUROIMAGE, V25, P684, DOI 10.1016/j.neuroimage.2004.11.030
Sharbrough F., 1991, CLIN NEUROPHYSIOL, V8, P200, DOI DOI 10.1097/00004691-199104000-00007
Verhey JL, 2003, EXP BRAIN RES, V153, P405, DOI 10.1007/s00221-003-1607-1
Verhey JL, 1999, J ACOUST SOC AM, V106, P2733, DOI 10.1121/1.428101
Wack DS, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041263
Wong WYS, 2004, EAR HEARING, V25, P57, DOI 10.1097/01.AUD.0000111257.11898.64
NR 39
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2013
VL 306
BP 21
EP 28
DI 10.1016/j.heares.2013.08.013
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 260EQ
UT WOS:000327578200003
PM 24047593
ER
PT J
AU Vermeire, K
Landsberger, DM
Schleich, P
Van de Heyning, PH
AF Vermeire, Katrien
Landsberger, David M.
Schleich, Peter
Van de Heyning, Paul H.
TI Multidimensional scaling between acoustic and electric stimuli in
cochlear implant users with contralateral hearing
SO HEARING RESEARCH
LA English
DT Article
ID UNILATERAL DEAFNESS; BINAURAL HEARING; PITCH RANKING; TINNITUS; SPEECH;
RECOGNITION; PERCEPTION; FEATURES
AB This study investigated the perceptual relationship between acoustic and electric stimuli presented to CI users with functional contralateral hearing.
Fourteen subjects with unilateral profound deafness implanted with a MED-EL CI scaled the perceptual differences between pure tones presented to the acoustic hearing ear and electric biphasic pulse trains presented to the implanted ear. The differences were analyzed with a multidimensional scaling (MDS) analysis. Additionally, speech performance in noise was tested using sentence material presented in different spatial configurations while patients listened with both their acoustic hearing and implanted ears.
Results of alternating least squares scaling (ALSCAL) analysis consistently demonstrate that a change in place of stimulation is in the same perceptual dimension as a change in acoustic frequency. However, the relative perceptual differences between the acoustic and the electric stimuli varied greatly across subjects. A degree of perceptual separation between acoustic and electric stimulation (quantified by relative dimensional weightings from an INDSCAL analysis) was hypothesized that would indicate a change in perceptual quality, but also be predictive of performance with combined acoustic and electric hearing. Perceptual separation between acoustic and electric stimuli was observed for some subjects. However, no relationship between the degree of perceptual separation and performance was found. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Vermeire, Katrien; Schleich, Peter; Van de Heyning, Paul H.] Univ Antwerp, Dept Otorhinolaryngol & Head & Neck Surg, Antwerp Univ Hosp, B-2650 Edegem, Belgium.
[Vermeire, Katrien] Univ Innsbruck, C Doppler Lab Act Implantable Syst, Inst Ion Phys & Appl Phys, A-6020 Innsbruck, Austria.
[Vermeire, Katrien] Thomas More Univ Coll, B-2018 Antwerp, Belgium.
[Landsberger, David M.] House Res Inst, Los Angeles, CA 90057 USA.
[Schleich, Peter] MED EL GmbH, A-6020 Innsbruck, Austria.
RP Vermeire, K (reprint author), Thomas More Univ Coll, Jozef De Bomstr 11, B-2018 Antwerp, Belgium.
EM Katrien.vermeire@thomasmore.be
FU Research Foundation Flanders (FWO) [A 7/2 EP B5]; NIH/NIDCD [R01
DC012152]; Med-El Hearing Solutions; TOPBOF in the University of Antwerp
[5503]
FX This work was supported by grants from Research Foundation Flanders
(FWO; A 7/2 EP B5), NIH/NIDCD (R01 DC012152), Med-El Hearing Solutions,
and a TOPBOF (5503) in the University of Antwerp. The authors would like
to express their thanks and appreciation to the subjects for their time
and effort. We gratefully acknowledge contributions from Andrea Nobbe
and Ernst Aschbacher.
CR Arndt S, 2011, OTOL NEUROTOL, V32, P39, DOI 10.1097/MAO.0b013e3181fcf271
Baumann U, 2006, HEARING RES, V213, P34, DOI 10.1016/j.heares.2005.12.010
Buechner A, 2010, OTOL NEUROTOL, V31, P1381, DOI 10.1097/MAO.0b013e3181e3d353
Busby PA, 2000, J ACOUST SOC AM, V107, P547, DOI 10.1121/1.428353
Ching T Y C, 2007, Trends Amplif, V11, P161, DOI 10.1177/1084713807304357
Collins LM, 1997, J ACOUST SOC AM, V101, P440, DOI 10.1121/1.417989
Collins LM, 2000, J ACOUST SOC AM, V108, P2353, DOI 10.1121/1.1314320
Gantz BJ, 2004, ACTA OTO-LARYNGOL, V124, P344, DOI 10.1080/00016480410016423
Gifford RH, 2007, J SPEECH LANG HEAR R, V50, P835, DOI 10.1044/1092-4388(2007/058)
Henshall K R, 2001, J Am Acad Audiol, V12, P478
Kendall D. G., 1971, MATH ARCHAEOLOGICAL, P215
Kong YY, 2005, J ACOUST SOC AM, V117, P1351, DOI 10.1121/1.1857526
Kruskal J. B., 1977, MULTIDIMENSIONAL SCA
Landsberger DM, 2012, HEARING RES, V284, P16, DOI 10.1016/j.heares.2011.12.009
Lazard DS, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0038687
Macherey O, 2011, JARO-J ASSOC RES OTO, V12, P233, DOI 10.1007/s10162-010-0248-x
McDermott HJ, 2006, HEARING RES, V218, P81, DOI 10.1016/j.heares.2006.05.002
McKay CM, 2005, J ACOUST SOC AM, V118, P386, DOI 10.1121/1.1937349
McKay CM, 1999, J ACOUST SOC AM, V105, P347, DOI 10.1121/1.424553
McKay CM, 1996, J ACOUST SOC AM, V99, P1079, DOI 10.1121/1.414594
Pauka C K, 1989, J Laryngol Otol Suppl, V19, P1
Punte Andrea Kleine, 2011, Cochlear Implants Int, V12 Suppl 1, pS26, DOI 10.1179/146701011X13001035752336
Rader T, 2013, EAR HEARING, V34, P324, DOI 10.1097/AUD.0b013e318272f189
Sucher CM, 2007, HEARING RES, V230, P80, DOI 10.1016/j.heares.2007.05.002
TAKANE Y, 1977, PSYCHOMETRIKA, V42, P7, DOI 10.1007/BF02293745
Tavora-Vieira D, 2013, LARYNGOSCOPE, V123, P1251, DOI 10.1002/lary.23764
TONG YC, 1983, SCIENCE, V219, P993, DOI 10.1126/science.6823564
Van de Heyning Paul, 2008, Ann Otol Rhinol Laryngol, V117, P645
van Wieringen A, 2008, INT J AUDIOL, V47, P348, DOI 10.1080/14992020801895144
Vermeire K, 2009, AUDIOL NEURO-OTOL, V14, P163, DOI 10.1159/000171478
Vermeire K, 2008, HEARING RES, V245, P98, DOI 10.1016/j.heares.2008.09.003
von Ilberg C, 1999, ORL J OTO-RHINO-LARY, V61, P334, DOI 10.1159/000027695
Yang HI, 2013, SCI REP-UK, V3, DOI 10.1038/srep01419
Yoon YS, 2011, INT J AUDIOL, V50, P554, DOI 10.3109/14992027.2011.580785
Young F. W., 1979, ALSCAL 4 USERS GUIDE
NR 35
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2013
VL 306
BP 29
EP 36
DI 10.1016/j.heares.2013.09.004
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 260EQ
UT WOS:000327578200004
PM 24055624
ER
PT J
AU Irving, S
Trotter, MI
Fallon, JB
Millard, RE
Shepherd, RK
Wise, AK
AF Irving, S.
Trotter, M. I.
Fallon, J. B.
Millard, R. E.
Shepherd, R. K.
Wise, A. K.
TI Cochlear implantation for chronic electrical stimulation in the mouse
SO HEARING RESEARCH
LA English
DT Article
ID SPIRAL GANGLION NEURONS; SENSORINEURAL HEARING-LOSS; PRIMARY
AUDITORY-CORTEX; GUINEA-PIG; NEONATAL DEAFNESS; DEAFENED KITTENS;
HAIR-CELLS; NERVE; OTOTOXICITY; SURVIVAL
AB The mouse is becoming an increasingly attractive model for auditory research due to the number of genetic deafness models available. These genetic models offer the researcher an array of congenital causes of hearing impairment, and are therefore of high clinical relevance. To date, the use of mice in cochlear implant research has not been possible due to the lack of an intracochlear electrode array and stimulator small enough for murine use, coupled with the difficulty of the surgery in this species. Here, we present a fully-implantable intracochlear electrode stimulator assembly designed for chronic implantation in the mouse. We describe the surgical approach for implantation, as well as presenting the first functional data obtained from intracochlear electrical stimulation in the mouse. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Irving, S.; Trotter, M. I.; Fallon, J. B.; Millard, R. E.; Shepherd, R. K.; Wise, A. K.] Bion Inst, Melbourne, Vic, Australia.
[Irving, S.] Univ Melbourne, Dept Psychol, Melbourne, Vic 3010, Australia.
[Fallon, J. B.; Shepherd, R. K.; Wise, A. K.] Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3010, Australia.
[Fallon, J. B.; Shepherd, R. K.; Wise, A. K.] Univ Melbourne, Dept Med Bion, Melbourne, Vic 3010, Australia.
RP Shepherd, RK (reprint author), Bion Inst, 384-388 Albert St, East Melbourne, Vic 3002, Australia.
EM rshepherd@bionicsinstitute.org
RI Wise, Andrew/B-5943-2014; Fallon, James/B-6383-2014
OI Wise, Andrew/0000-0001-9715-8784;
FU NIH [HHS-N-263-2007-00053-C]; NHMRC; Royal Victorian Eye and Ear
Hospital; Victorian Government
FX We would like to thank Helen Feng for electrode manufacture, Jin Xu for
surgical assistance and X-ray, Jonathon Kirk from Cochlear Ltd. for the
image of the electrode in the epoxy-embedded cochlea, Ms. Nicole Critch,
Daphne Do, Amy Morley and Alison Neil for technical assistance and
animal maintenance, and Dr. Sue Peirce for veterinary advice. This work
was funded by NIH Contract HHS-N-263-2007-00053-C, the NH&MRC and by The
Royal Victorian Eye and Ear Hospital. The Bionics Institute acknowledges
the support it receives from the Victorian Government via its
Operational Infrastructure Support Scheme.
CR Ahituv N, 2002, TRENDS MOL MED, V8, P447, DOI 10.1016/S1471-4914(02)02388-2
[Anonymous], 2010, PATHOLOGY EAR
Araki S, 1998, LARYNGOSCOPE, V108, P687, DOI 10.1097/00005537-199805000-00012
Black R C, 1983, Acta Otolaryngol Suppl, V399, P5
Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004
Coleman B, 2006, CELL TRANSPLANT, V15, P369, DOI 10.3727/000000006783981819
Coleman B, 2009, J NEUROSCI METH, V176, P144, DOI 10.1016/j.jneumeth.2008.09.007
Eggermont JJ, 2000, HEARING RES, V142, P89, DOI 10.1016/S0378-5955(00)00024-1
Emadi G, 2004, J NEUROPHYSIOL, V91, P474, DOI 10.1152/jn.00446.2003
Fallon JB, 2009, J COMP NEUROL, V512, P101, DOI 10.1002/cne.21886
Hartmann R, 1997, HEARING RES, V112, P115, DOI 10.1016/S0378-5955(97)00114-7
James DP, 2008, AUDIOL NEURO-OTOL, V13, P86, DOI 10.1159/000111780
Klinke R, 1999, SCIENCE, V285, P1729, DOI 10.1126/science.285.5434.1729
Lalwani AK, 2002, AUDIOL NEURO-OTOL, V7, P146, DOI 10.1159/000058300
Landry T.G., 2011, HEARING RES
Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3
Li PMMC, 2007, ANN OTO RHINOL LARYN, V116, P731
Lu W, 2005, HEARING RES, V205, P115, DOI 10.1016/j.heares.2005.03.010
Millard RE, 2007, J NEUROSCI METH, V166, P168, DOI 10.1016/j.jneumeth.2007.07.009
Morzaria S, 2004, INT J PEDIATR OTORHI, V68, P1193, DOI 10.1016/j.ijporl.2004.04.013
Muller M, 2005, HEARING RES, V202, P63, DOI 10.1016/j.heares.2004.08.011
Murillo-Cuesta S, 2010, LAB ANIM-UK, V44, P124, DOI 10.1258/la.2009.009046
Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017
ROBERTSON D, 1994, BRAIN RES, V646, P37, DOI 10.1016/0006-8993(94)90055-8
Ryugo DK, 2010, J COMP NEUROL, V518, P1046, DOI 10.1002/cne.22262
Sekiya T, 2012, J NEUROSCI RES, V90, P1924, DOI 10.1002/jnr.23093
Shepherd R., 2011, HEAR RES
SHEPHERD RK, 1994, HEARING RES, V81, P150, DOI 10.1016/0378-5955(94)90162-7
Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564
Shepherd RK, 1995, HEARING RES, V92, P131, DOI 10.1016/0378-5955(95)00211-1
SHEPHERD RK, 1985, HEARING RES, V18, P105, DOI 10.1016/0378-5955(85)90001-2
Short KR, 2011, J INFECT DIS, V204, P1857, DOI 10.1093/infdis/jir618
Taylor RR, 2008, JARO-J ASSOC RES OTO, V9, P44, DOI 10.1007/s10162-007-0105-8
Wise AK, 2011, NEUROTHERAPEUTICS, V8, P774, DOI 10.1007/s13311-011-0070-0
Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3
Xu J, 1997, HEARING RES, V105, P1, DOI 10.1016/S0378-5955(96)00193-1
Zilberstein Y, 2012, J NEUROSCI, V32, P405, DOI 10.1523/JNEUROSCI.4678-11.2012
NR 37
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2013
VL 306
BP 37
EP 45
DI 10.1016/j.heares.2013.09.005
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 260EQ
UT WOS:000327578200005
PM 24055621
ER
PT J
AU Bielefeld, EC
AF Bielefeld, Eric C.
TI Age-related hearing loss patterns in Fischer 344/NHsd rats with
cisplatin-induced hearing loss
SO HEARING RESEARCH
LA English
DT Article
ID GERM-CELL CANCER; CIS-DIAMMINEDICHLOROPLATINUM; TESTICULAR CANCER; STRIA
VASCULARIS; GUINEA-PIG; OTOTOXICITY; PLATINUM; DEGENERATION; COCHLEAR;
CHEMOTHERAPY
AB The current study was undertaken to explore the impact of cisplatin ototoxicity at a young adult age on the development of age-related hearing loss, both in terms of age of onset and severity of the hearing loss. For the study, 21 Fischer 344/NHsd rats were tested. All rats were tested for auditory brainstem responses (ABRs) at age 7 months and then 15 of the rats were exposed to 7 mg/kg cisplatin by intraperitoneal infusion. The other 6 rats received saline infusions to serve as controls. Seven of the cisplatin rats were euthanized after an ABR test 7 days after cisplatin exposure to assess acute damage. The other 14 rats were tested monthly until age 18 months. Cisplatin caused acute ABR threshold shift at 30 and 40 kHz, but that acute hearing loss led to less age-related hearing loss at those frequencies. Cisplatin exposure led to a primarily additive interaction with age-related hearing loss at 20 kHz, with some exacerbation of hearing loss at age 16-18 months, along with a larger lesion of missing outer hair cells in the corresponding region of the cochlea. ABR P1 amplitude input output functions were not significantly affected by the cisplatin exposure when controlling for threshold shift. Results indicate that cisplatin ototoxicity and age-related hearing loss interact antagonistically in the cochlear region damaged by cisplatin, and primarily show an additive interaction in the frequencies lower than the focus of the cisplatin damage. (C) 2013 Elsevier B.V. All rights reserved.
C1 Ohio State Univ, Dept Speech & Hearing Sci, Columbus, OH 43220 USA.
RP Bielefeld, EC (reprint author), Ohio State Univ, Dept Speech & Hearing Sci, 110 Pressey Hall,1070 Carmack Rd, Columbus, OH 43220 USA.
EM bielefeld.6@osu.edu
CR Bertolini P, 2004, J PEDIAT HEMATOL ONC, V26, P649, DOI 10.1097/01.mph.0000141348.62532.73
Bielefeld Eric C, 2008, J Negat Results Biomed, V7, P4, DOI 10.1186/1477-5751-7-4
Bielefeld EC, 2008, HEARING RES, V241, P26, DOI 10.1016/j.heares.2008.04.006
Bielefeld EC, 2013, ANTI-CANCER DRUG, V24, P43, DOI 10.1097/CAD.0b013e32835739fd
BOHEIM K, 1985, ARCH OTO-RHINO-LARYN, V242, P1, DOI 10.1007/BF00464398
Buckiova D, 2007, EXP GERONTOL, V42, P629, DOI 10.1016/j.exger.2007.02.007
Buckiova D, 2006, EXP GERONTOL, V41, P296, DOI 10.1016/j.exger.2005.11.010
Cardinaal RM, 2000, HEARING RES, V144, P135, DOI 10.1016/S0378-5955(00)00059-9
Chen GD, 2009, HEARING RES, V248, P39, DOI 10.1016/j.heares.2008.11.010
Einarsson EJ, 2010, INT J AUDIOL, V49, P765, DOI 10.3109/14992027.2010.485595
Einarsson EJ, 2011, INT J AUDIOL, V50, P642, DOI 10.3109/14992027.2011.585667
Gates GA, 2000, HEARING RES, V141, P220, DOI 10.1016/S0378-5955(99)00223-3
GREGG RW, 1992, J CLIN ONCOL, V10, P795
HANSEN SW, 1992, DAN MED BULL, V39, P391
HANSEN SW, 1989, J CLIN ONCOL, V7, P1457
HAYES DM, 1977, CANCER, V39, P1372, DOI 10.1002/1097-0142(197704)39:4<1372::AID-CNCR2820390404>3.0.CO;2-J
HINOJOSA R, 1995, AM J OTOL, V16, P731
KEITHLEY EM, 1992, HEARING RES, V59, P171, DOI 10.1016/0378-5955(92)90113-2
KOMUNE S, 1981, OTOLARYNG HEAD NECK, V89, P275
Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009
Kujawa SG, 2006, J NEUROSCI, V26, P2115, DOI 10.1523/JNEUROSCI.4985-05.2006
LAURELL G, 1991, ACTA OTO-LARYNGOL, V111, P891, DOI 10.3109/00016489109138427
Lin HW, 2011, JARO-J ASSOC RES OTO, V12, P605, DOI 10.1007/s10162-011-0277-0
Madasu R, 1997, ARCH OTOLARYNGOL, V123, P978
Meech RP, 1998, HEARING RES, V124, P44, DOI 10.1016/S0378-5955(98)00116-6
Mills JH, 1997, J ACOUST SOC AM, V101, P1681, DOI 10.1121/1.418152
Mills J.H., 1996, SCI BASIS NOISE INDU
MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7
OSANTO S, 1992, J CLIN ONCOL, V10, P574
Popelar J, 2006, NEUROBIOL AGING, V27, P490, DOI 10.1016/j.neurobiolaging.2005.03.001
Rao G.N., 1990, PATHOLOGY FISCHER RA, P5
REDDEL RR, 1982, CANCER TREAT REP, V66, P19
Rosenhall U, 2003, Noise Health, V5, P47
STUART NSA, 1990, BRIT J CANCER, V61, P479, DOI 10.1038/bjc.1990.106
TANGE RA, 1984, ARCH OTO-RHINO-LARYN, V239, P41, DOI 10.1007/BF00454261
VANZEIJL LGPM, 1984, ARCH OTO-RHINO-LARYN, V239, P255
NR 36
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2013
VL 306
BP 46
EP 53
DI 10.1016/j.heares.2013.09.003
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 260EQ
UT WOS:000327578200006
PM 24055622
ER
PT J
AU Deroche, MLD
Culling, JF
Chatterjee, M
AF Deroche, Mickael L. D.
Culling, John F.
Chatterjee, Monita
TI Phase effects in masking by harmonic complexes: Speech recognition
SO HEARING RESEARCH
LA English
DT Article
ID HEARING-IMPAIRED LISTENERS; BASILAR-MEMBRANE; PERIPHERAL COMPRESSION;
RECEPTION THRESHOLD; IMPULSE RESPONSES; PERIOD PATTERNS; INNER-EAR;
NOISE; LEVEL; TONES
AB Harmonic complexes that generate highly modulated temporal envelopes on the basilar membrane (BM) mask a tone less effectively than complexes that generate relatively flat temporal envelopes, because the non-linear active gain of the BM selectively amplifies a low-level tone in the dips of a modulated masker envelope. The present study examines a similar effect in speech recognition. Speech reception thresholds (SRTs) were measured for a voice masked by harmonic complexes with partials in sine phase (SP) or in random phase (RP). The masker's fundamental frequency (F0) was 50, 100 or 200 Hz. SRTs were considerably lower for SP than for RP maskers at 50-Hz F0, but the two converged at 100-Hz F0, while at 200-Hz F0, SRTs were a little higher for SP than RP maskers. The results were similar whether the target voice was male or female and whether the masker's spectral profile was flat or speech-shaped. Although listening in the masker dips has been shown to play a large role for artificial stimuli such as Schroeder-phase complexes at high levels, it contributes weakly to speech recognition in the presence of harmonic maskers with different crest factors at more moderate sound levels (65 dB SPL). (C) 2013 Elsevier B.V. All rights reserved.
C1 [Deroche, Mickael L. D.] Johns Hopkins Univ, Sch Med, Dept Otolaryngol, Baltimore, MD 21205 USA.
[Culling, John F.] Cardiff Univ, Sch Psychol, Cardiff CF10 3AT, S Glam, Wales.
[Chatterjee, Monita] Boys Town Natl Res Hosp, Auditory Prostheses & Percept Lab, Omaha, NE 68131 USA.
RP Deroche, MLD (reprint author), Johns Hopkins Univ, Sch Med, Dept Otolaryngol, 818 Ross Res Bldg,720 Rutland Ave, Baltimore, MD 21205 USA.
EM mderoch2@jhmi.edu
RI Culling, John/D-1468-2009
FU NIH [R01DC004786, R01DC004786-08S1, R21DC011905]
FX This work was supported by NIH Grants No. R01DC004786, No.
R01DC004786-08S1, and No. R21DC011905 to M.C.
CR Alcantara JI, 2003, J ACOUST SOC AM, V114, P2158, DOI 10.1121/1.1608959
Buss E, 2009, J ACOUST SOC AM, V125, P1612, DOI 10.1121/1.3075579
Carlyon RP, 1997, J ACOUST SOC AM, V101, P3636, DOI 10.1121/1.418324
Carlyon RP, 1997, J ACOUST SOC AM, V101, P3648, DOI 10.1121/1.418325
Carney LH, 1999, J ACOUST SOC AM, V105, P2384, DOI 10.1121/1.426843
de Laat J. A. P. M., 1983, HEARING PHYSL BASES, P359
deBoer E, 1997, J ACOUST SOC AM, V101, P3583, DOI 10.1121/1.418319
Deroche MLD, 2011, J ACOUST SOC AM, V130, P2855, DOI 10.1121/1.3643812
FESTEN JM, 1990, J ACOUST SOC AM, V88, P1725, DOI 10.1121/1.400247
FLETCHER H, 1950, J ACOUST SOC AM, V22, P89, DOI 10.1121/1.1906605
GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
Gockel H, 2002, J ACOUST SOC AM, V111, P2759, DOI 10.1121/1.1480422
HARTMANN WM, 1991, J ACOUST SOC AM, V90, P1986, DOI 10.1121/1.401678
Hawley ML, 2004, J ACOUST SOC AM, V115, P833, DOI 10.1121/1.1639908
IEEE, 1969, IEEE T AUDIO ELECTRO, VAE-17, P227
JOHNSTONE BM, 1986, HEARING RES, V22, P147, DOI 10.1016/0378-5955(86)90090-0
KOHLRAUSCH A, 1995, J ACOUST SOC AM, V97, P1817, DOI 10.1121/1.413097
Lentz JJ, 2001, JARO, V2, P408, DOI 10.1007/s101620010045
Oxenham AJ, 2001, J ACOUST SOC AM, V110, P3169, DOI 10.1121/1.1414706
Oxenham AJ, 2001, J ACOUST SOC AM, V110, P1525, DOI 10.1121/1.1394740
Oxenham AJ, 2004, J ACOUST SOC AM, V116, P2248, DOI 10.1121/1.1786852
OXENHAM AJ, 1994, HEARING RES, V80, P105, DOI 10.1016/0378-5955(94)90014-0
PLOMP R, 1979, J ACOUST SOC AM, V66, P1333, DOI 10.1121/1.383554
Recio A., 1998, J ACOUST SOC AM, V103, P1972
Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265
SCHROEDE.MR, 1970, IEEE T INFORM THEORY, V16, P85, DOI 10.1109/TIT.1970.1054411
SHACKLETON TM, 1994, J ACOUST SOC AM, V95, P3529, DOI 10.1121/1.409970
Shen Y, 2009, J ACOUST SOC AM, V126, P2501, DOI 10.1121/1.3224709
SMITH BK, 1986, J ACOUST SOC AM, V80, P1631, DOI 10.1121/1.394327
SUMMERFIELD Q, 1991, J ACOUST SOC AM, V89, P1364, DOI 10.1121/1.400659
Summers V, 1998, HEARING RES, V118, P139, DOI 10.1016/S0378-5955(98)00030-6
Wojtczak M, 2009, JARO-J ASSOC RES OTO, V10, P595, DOI 10.1007/s10162-009-0180-0
YATES GK, 1990, HEARING RES, V50, P145, DOI 10.1016/0378-5955(90)90041-M
NR 33
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2013
VL 306
BP 54
EP 62
DI 10.1016/j.heares.2013.09.008
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 260EQ
UT WOS:000327578200007
PM 24076425
ER
PT J
AU Ward, JL
Buerkle, NP
Bee, MA
AF Ward, Jessica L.
Buerkle, Nathan P.
Bee, Mark A.
TI Spatial release from masking improves sound pattern discrimination along
a biologically relevant pulse-rate continuum in gray treefrogs
SO HEARING RESEARCH
LA English
DT Article
ID BUDGERIGARS MELOPSITTACUS-UNDULATUS; SPEECH-RECEPTION THRESHOLD; INDUCED
INTERAURAL TIME; COCKTAIL PARTY PROBLEM; HYLA-VERSICOLOR; ACOUSTIC
COMMUNICATION; GREY TREEFROGS; DIRECTIONAL HEARING; SIGNAL RECOGNITION;
AUDITORY MIDBRAIN
AB Many frogs form large choruses during their mating season in which males produce loud advertisement calls to attract females and repel rival males. High background noise levels in these social aggregations can impair vocal perception. In humans, spatial release from masking contributes to our ability to understand speech in noisy social groups. Here, we tested the hypothesis that spatial separation between target signals and 'chorus-shaped noise' improves the ability of female gray treefrogs (Hyla daysoscelis) to perform a behavioral discrimination task based on perceiving differences in the pulsatile structure of advertisement calls. We used two-stimulus choice tests to measure phonotaxis (approach toward sound) in response to calls differing in pulse rate along a biologically relevant continuum between conspecific (50 pulses s(-1)) and heterospecific (20 pulses s(-1)) calls. Signals were presented in quiet, in colocated noise, and in spatially separated noise. In quiet conditions, females exhibited robust preferences for calls with relatively faster pulse rates more typical of conspecific calls. Behavioral discrimination between calls differing in pulse rate was impaired in the presence of colocated noise but similar between quiet and spatially separated noise conditions. Our results indicate that spatial release from energetic masking facilitates a biologically important temporal discrimination task in frogs. We discuss these results in light of previous work on spatial release from masking in frogs and other animals. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Ward, Jessica L.; Buerkle, Nathan P.; Bee, Mark A.] Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA.
RP Bee, MA (reprint author), Univ Minnesota, Dept Ecol Evolut & Behav, 1987 Upper Buford Circle, St Paul, MN 55108 USA.
EM mbee@umn.edu
RI Bee, Mark/A-9410-2013
OI Bee, Mark/0000-0002-6770-9730
FU NIDCD [R01 DC009582]
FX This work was supported by NIDCD R01 DC009582. We thank, Alejandro Velez
for recordings of natural choruses and help generating chorus-shaped
noise maskers, Mark Crawford, Madeleine Linck, John Moriarty, Ed Quinn,
and Don Pereira for access to frog breeding sites, Sandra Tekmen for
organizing collecting crews, and numerous undergraduate research
assistants for help collecting and testing frogs.
CR Arbogast TL, 2002, J ACOUST SOC AM, V112, P2086, DOI 10.1121/1.1510141
Beckers OM, 2004, J COMP PHYSIOL A, V190, P869, DOI 10.1007/s00359-004-0542-3
Bee MA, 2008, J COMP PSYCHOL, V122, P235, DOI 10.1037/0735-7036.122.3.235
Bee MA, 2007, ANIM BEHAV, V74, P549, DOI 10.1016/j.anbehav.2006.12.012
Bee MA, 2008, ANIM BEHAV, V76, P831, DOI 10.1016/j.anbehav.2008.01.026
Bee MA, 2012, CURR OPIN NEUROBIOL, V22, P301, DOI 10.1016/j.conb.2011.12.014
Bee MA, 2008, ANIM BEHAV, V75, P1781, DOI 10.1016/j.anbehav.2007.10.032
Best V, 2005, J ACOUST SOC AM, V118, P3766, DOI 10.1121/1.2130949
BRONKHORST AW, 1988, J ACOUST SOC AM, V83, P1508, DOI 10.1121/1.395906
BRONKHORST AW, 1992, J ACOUST SOC AM, V92, P3132, DOI 10.1121/1.404209
Bronkhorst AW, 2000, ACUSTICA, V86, P117
Brumm H, 2005, ADV STUD BEHAV, V35, P151, DOI 10.1016/S0065-3454(05)35004-2
Bush SL, 2002, ANIM BEHAV, V63, P7, DOI 10.1006/anbe.2001.1880
CHERRY EC, 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229
Christensen-Dalsgaard J, 2005, SPR HDB AUD, V25, P67, DOI 10.1007/0-387-28863-5_4
Christensen-Dalsgaard J, 2011, HEARING RES, V273, P37, DOI 10.1016/j.heares.2010.08.007
Culling JF, 2004, J ACOUST SOC AM, V116, P1057, DOI [10.1121/1.1772396, 10.1121/17.1772396]
Dent ML, 2009, J COMP PSYCHOL, V123, P357, DOI 10.1037/a0016898
DIRKS DD, 1969, J SPEECH HEAR RES, V12, P5
Edwards CJ, 2002, NAT NEUROSCI, V5, P934, DOI 10.1038/nn916
Freyman RL, 1999, J ACOUST SOC AM, V106, P3578, DOI 10.1121/1.428211
Gerhardt H. C., 1995, METHODS COMP PSYCHOA, P209
GERHARDT HC, 1994, COPEIA, P51
Gerhardt HC, 2000, BEHAV ECOL, V11, P663, DOI 10.1093/beheco/11.6.663
GERHARDT HC, 1978, SCIENCE, V199, P992, DOI 10.1126/science.199.4332.992
Gerhardt HC, 2001, ADV STUD BEHAV, V30, P99, DOI 10.1016/S0065-3454(01)80006-1
Gerhardt HC, 2005, EVOLUTION, V59, P395
GERHARDT HC, 1988, J COMP PHYSIOL A, V162, P261, DOI 10.1007/BF00606090
GERHARDT HC, 1975, J COMP PHYSIOL, V102, P1
Gerhardt HC, 2002, ACOUSTIC COMMUNICATI
Gerhardt HC, 2008, J EXP BIOL, V211, P2609, DOI 10.1242/jeb.019612
HALL JC, 1994, AM ZOOL, V34, P670
Hardin J. W., 2012, GEN ESTIMATING EQUAT, V2nd
Hawley ML, 1999, J ACOUST SOC AM, V105, P3436, DOI 10.1121/1.424670
HIRSH IJ, 1950, J ACOUST SOC AM, V22, P196, DOI 10.1121/1.1906588
Holloway AK, 2006, AM NAT, V167, pE88, DOI 10.1086/501079
Johnson C., 1963, Copeia, V1963, P139, DOI 10.2307/1441281
Kidd G, 2005, ACTA ACUST UNITED AC, V91, P526
Klump Georg M., 1996, P321
Kuczynski MC, 2010, J EXP BIOL, V213, P2840, DOI 10.1242/jeb.044628
Larsen ON, 2006, J COMP PHYSIOL A, V192, P1063, DOI 10.1007/s00359-006-0138-1
Lin WY, 2003, J NEUROSCI, V23, P8143
Lin WY, 2001, J COMP PHYSIOL A, V187, P699, DOI 10.1007/s00359-001-0241-2
Marshall VT, 2006, ANIM BEHAV, V72, P449, DOI 10.1016/j.anbehav.2006.02.001
Mason MJ, 2007, SPR HDB AUD, V28, P147
McDermott JH, 2009, CURR BIOL, V19, pR1024, DOI 10.1016/j.cub.2009.09.005
Michelsen A., 1998, COMP HEARING INSECTS, P341
Nityananda V, 2012, HEARING RES, V285, P86, DOI 10.1016/j.heares.2012.01.003
Nityananda V, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021191
Palmer AR, 2002, ACTA ACUST UNITED AC, V88, P312
Pan W, 2001, BIOMETRICS, V57, P120, DOI 10.1111/j.0006-341X.2001.00120.x
Peissig J, 1997, J ACOUST SOC AM, V101, P1660, DOI 10.1121/1.418150
PLOMP R, 1981, ACUSTICA, V48, P325
PTACEK MB, 1994, EVOLUTION, V48, P898, DOI 10.2307/2410495
Ratnam R, 1998, J NEUROPHYSIOL, V80, P2848
Rheinlaender J., 1988, P297
Rice W. R., 1989, AM NAT, V43, P223, DOI DOI 10.2307/2409177
Romer H., ANIMAL COMM IN PRESS
Schmidt AKD, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028593
Schul J, 2002, P ROY SOC B-BIOL SCI, V269, P1847, DOI 10.1098/rspb.2002.2092
SCHWARTZ JJ, 1989, J COMP PHYSIOL A, V166, P37
Shinn-Cunningham BG, 2001, J ACOUST SOC AM, V110, P1118, DOI 10.1121/1.1386633
Shinn-Cunningham BG, 2005, ACTA ACUST UNITED AC, V91, P967
Sumer S, 2009, J COMP PHYSIOL A, V195, P463, DOI 10.1007/s00359-009-0424-9
Swanson EM, 2007, CAN J ZOOL, V85, P921, DOI 10.1139/Z07-074
VELEZ A., ANIMAL COMM IN PRESS
Velez A, 2010, BEHAV ECOL SOCIOBIOL, V64, P1695, DOI 10.1007/s00265-010-0983-3
Velez A, 2011, ANIM BEHAV, V82, P1319, DOI 10.1016/j.anbehav.2011.09.015
Velez A, 2013, J COMP PSYCHOL, V127, P166, DOI 10.1037/a0030185
Ward JL, 2013, ANIM BEHAV, V86, P231, DOI 10.1016/j.anbehav.2013.05.016
NR 70
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2013
VL 306
BP 63
EP 75
DI 10.1016/j.heares.2013.09.006
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 260EQ
UT WOS:000327578200008
PM 24055623
ER
PT J
AU Macpherson, EA
Sabin, AT
AF Macpherson, Ewan A.
Sabin, Andrew T.
TI Vertical-plane sound localization with distorted spectral cues
SO HEARING RESEARCH
LA English
DT Article
ID DORSAL COCHLEAR NUCLEUS; MEDIAN PLANE; BACKGROUND-NOISE; AUDITORY-NERVE;
LEVEL; DISCRIMINATION; NOTCHES; CAT; FREQUENCY; ELEVATION
AB For human listeners, the primary cues for localization in the vertical plane are provided by the direction-dependent filtering of the pinnae, head, and upper body. Vertical-plane localization generally is accurate for broadband sounds, but when such sounds are presented at near-threshold levels or at high levels with short durations (<20 ms), the apparent location is biased toward the horizontal plane (i.e., elevation gain <1). We tested the hypothesis that these effects result in part from distorted peripheral representations of sound spectra. Human listeners indicated the apparent position of 100-ms, 50-60 dB SPL, wideband noise-burst targets by orienting their heads. The targets were synthesized in virtual auditory space and presented over headphones. Faithfully synthesized targets were interleaved with targets for which the directional transfer function spectral notches were filled in, peaks were leveled off, or the spectral contrast of the entire profile was reduced or expanded. As notches were filled in progressively or peaks leveled progressively, elevation gain decreased in a graded manner similar to that observed as sensation level is reduced below 30 dB or, for brief sounds, increased above 45 dB. As spectral contrast was reduced, gain dropped only at the most extreme reduction (25% of normal). Spectral contrast expansion had little effect. The results are consistent with the hypothesis that loss of representation of spectral features contributes to reduced elevation gain at low and high sound levels. The results also suggest that perceived location depends on a correlation-like spectral matching process that is sensitive to the relative, rather than absolute, across-frequency shape of the spectral profile. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Macpherson, Ewan A.; Sabin, Andrew T.] Univ Michigan, Sch Med, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA.
[Macpherson, Ewan A.] Univ Western Ontario, Natl Ctr Audiol, London, ON N6G 1H1, Canada.
[Sabin, Andrew T.] Northwestern Univ, Dept Commun Sci & Disorders, Evanston, IL 60208 USA.
[Macpherson, Ewan A.] Univ Western Ontario, London, ON N6G 1H1, Canada.
RP Macpherson, EA (reprint author), Univ Western Ontario, Natl Ctr Audiol, 1201 Western Rd, London, ON N6G 1H1, Canada.
EM ewan.macpherson@nca.uwo.ca; a-sabin@northwestern.edu
FU NIH [R01 DC00420, P30 DC05188]
FX The authors are very grateful to Zekiye Onsan, Chris Ellinger, and
Dwayne Vaillencourt for administrative and technical assistance; to John
Middlebrooks, G. Christopher Stecker, and Ian Harrington for helpful
discussions; to John Van Opstal and Joyce Vliegen for providing original
data from Vliegen and Van Opstal (2004); and to Brian C.J. Moore and two
anonymous reviewers for valuable comments on previous versions of this
paper. This work was supported by NIH Grants R01 DC00420 and P30
DC05188.
CR Alves-Pinto A, 2005, J ACOUST SOC AM, V118, P2458, DOI 10.1121/1.2032067
BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289
BLAUERT J, 1969, ACUSTICA, V22, P205
BLOOM PJ, 1977, J AUDIO ENG SOC, V25, P560
Brungart D., 2009, IEEE WORKSH APPL SIG, P305
Brungart D. S., 2008, P 14 INT C AUD DISPL
Brungart D.S., 2009, J ACOUST SOC AM, V125, P2691
Butler R.A., 1997, BINAURAL SPATIAL HEA, P99
CARLYON RP, 1984, J ACOUST SOC AM, V76, P1369, DOI 10.1121/1.391453
Gai Y, 2013, J NEUROPHYSIOL, V110, P607, DOI 10.1152/jn.01019.2012
GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
Hammershoi D, 1996, J ACOUST SOC AM, V100, P408
HARTMANN WM, 1993, J ACOUST SOC AM, V94, P2083, DOI 10.1121/1.407481
Hartmann WM, 2010, J ACOUST SOC AM, V127, P3060, DOI 10.1121/1.3372753
Hays W. L., 1988, STATISTICS
HEBRANK J, 1974, J ACOUST SOC AM, V56, P1829, DOI 10.1121/1.1903520
Hofman PM, 1998, J ACOUST SOC AM, V103, P2634, DOI 10.1121/1.422784
Iida K, 2007, APPL ACOUST, V68, P835, DOI 10.1016/j.apacoust.2006.07.016
Imig TJ, 2000, J NEUROPHYSIOL, V83, P907
Langendijk E., 2002, THESIS TU DELFT
Langendijk EHA, 2002, J ACOUST SOC AM, V112, P1583, DOI 10.1121/1.1501901
Macpherson EA, 2002, J ACOUST SOC AM, V111, P2219, DOI 10.1121/1.1471898
Macpherson E.A., 2008, 23 MIDW M ASS RSE OT
Macpherson EA, 1997, J ACOUST SOC AM, V101, p3104A, DOI 10.1121/1.418858
Macpherson EA, 2007, J ACOUST SOC AM, V121, P3677, DOI 10.1121/1.2722048
Macpherson EA, 2000, J ACOUST SOC AM, V108, P1834, DOI 10.1121/1.1310196
Macpherson E.A., 1998, THESIS U WISCONSIN M
MIDDLEBROOKS JC, 1992, J ACOUST SOC AM, V92, P2607, DOI 10.1121/1.404400
MIDDLEBROOKS JC, 1989, J ACOUST SOC AM, V86, P89, DOI 10.1121/1.398224
Middlebrooks JC, 1999, J ACOUST SOC AM, V106, P1480, DOI 10.1121/1.427176
MOORE BCJ, 1989, J ACOUST SOC AM, V85, P820, DOI 10.1121/1.397554
Reiss LAJ, 2011, JARO-J ASSOC RES OTO, V12, P71, DOI 10.1007/s10162-010-0232-5
RICE JJ, 1992, HEARING RES, V58, P132, DOI 10.1016/0378-5955(92)90123-5
Sabin AT, 2005, HEARING RES, V199, P124, DOI 10.1016/j.heares.2004.08.001
SACHS MB, 1979, J ACOUST SOC AM, V66, P470, DOI 10.1121/1.383098
SHU ZJ, 1993, NATURE, V364, P721, DOI 10.1038/364721a0
Vliegen J, 2004, J ACOUST SOC AM, V115, P1705, DOI 10.1121/1.1687423
Wightman F. L., 1997, BINAURAL SPATIAL HEA, P1
WIGHTMAN FL, 1989, J ACOUST SOC AM, V85, P858, DOI 10.1121/1.397557
YOUNG ED, 1992, PHILOS T ROY SOC B, V336, P407, DOI 10.1098/rstb.1992.0076
Young ED, 2002, SPR HDB AUD, V15, P160
ZAKARAUSKAS P, 1993, J ACOUST SOC AM, V94, P1323, DOI 10.1121/1.408160
Zhang PX, 2010, HEARING RES, V260, P30, DOI 10.1016/j.heares.2009.11.001
ZHOU B, 1992, J ACOUST SOC AM, V92, P1169, DOI 10.1121/1.404045
NR 44
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2013
VL 306
BP 76
EP 92
DI 10.1016/j.heares.2013.09.007
PG 17
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 260EQ
UT WOS:000327578200009
PM 24076423
ER
PT J
AU Hughes, ML
Stille, LJ
Baudhuin, JL
Goehring, JL
AF Hughes, Michelle L.
Stille, Lisa J.
Baudhuin, Jacquelyn L.
Goehring, Jenny L.
TI ECAP spread of excitation with virtual channels and physical electrodes
SO HEARING RESEARCH
LA English
DT Article
ID COCHLEAR IMPLANT RECIPIENTS; PITCH RANKING; NORMAL-HEARING; STIMULATION;
SINGLE; RESOLUTION; PATTERNS; USERS; LISTENERS
AB The primary goal of this study was to evaluate physiological spatial excitation patterns for stimulation of adjacent physical electrodes and intermediate virtual channels. Two experiments were conducted that utilized electrically evoked compound action potential (ECAP) spread-of-excitation (SOE) functions obtained with the traditional forward-masking subtraction method. These two experiments examined spatial excitation patterns for virtual-channel maskers and probes, respectively. In Experiment 1, ECAP SOE patterns were obtained for maskers applied to physical electrodes and virtual channels to determine whether virtual-channel maskers yield SOE patterns similar to those predicted from physical electrodes. In Experiment 2, spatial separation of SOE functions was compared for two adjacent physical probe electrodes and the intermediate virtual channel to determine the extent to which ECAP SOE patterns for virtual-channel probes are spatially separate from those obtained with physical electrodes. Data were obtained for three electrode regions (basal, middle, apical) for 35 ears implanted with Cochlear (N = 16) or Advanced Bionics (N = 19) devices. Results from Experiment 1 showed no significant difference between predicted and measured ECAP amplitudes for Advanced Bionics subjects. Measured ECAP amplitudes for virtual-channel maskers were significantly larger than the predicted amplitudes for Cochlear subjects; however, the difference was <2 mu V and thus is likely not clinically significant. Results from Experiment 2 showed that the probe set in the apical region demonstrated the least amount of spatial separation amongst SOB functions, which may be attributed to more uniform nerve survival patterns, closer electrode spacing, and/or the tapered geometry of the cochlea. As expected, adjacent physical probes demonstrated greater spatial separation than for comparisons between each physical probe and the intermediate virtual channel. Finally, the virtual-channel SOE functions were generally weighted toward the basal electrode in the pair. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Hughes, Michelle L.; Stille, Lisa J.; Baudhuin, Jacquelyn L.; Goehring, Jenny L.] Boys Town Natl Res Hosp, Lied Learning & Technol Ctr, Omaha, NE 68131 USA.
RP Hughes, ML (reprint author), Boys Town Natl Res Hosp, Lied Learning & Technol Ctr, 425 North 30th St, Omaha, NE 68131 USA.
EM michelle.hughes@boystown.org
FU NIH/NIDCD [R01 DC009595, P30 DC04662]
FX This research was supported by NIH/NIDCD grants R01 DC009595 and P30
DC04662. The content of this project is solely the responsibility of the
authors and does not necessarily represent the official views of the
National Institute on Deafness and Other Communication Disorders or the
National Institutes of Health. The authors thank Donna Neff, Adam
Goulson, Katelyn Glassman, and Gina Diaz for assistance with data
collection; Tom Creutz for data-analysis programs; Kanae Nishi for
statistical assistance; Bas Van Dijk (Cochlear Europe) and Peter Busby
(Cochlear Australia) for Custom-Sound EP Dual Electrode support; and Leo
Litvak and Aniket Saoji (Advanced Bionics) for BEDCS support.
CR Abbas PJ, 2004, AUDIOL NEURO-OTOL, V9, P203, DOI 10.1159/000078390
Abbas PJ, 1999, EAR HEARING, V20, P45, DOI 10.1097/00003446-199902000-00005
Bonham BH, 2008, HEARING RES, V242, P141, DOI 10.1016/j.heares.2008.03.006
Busby PA, 2008, EAR HEARING, V29, P853, DOI 10.1097/AUD.0b013e318181a878
Busby PA, 2005, EAR HEARING, V26, P504, DOI 10.1097/01.aud.0000179693.32989.84
Choi CTM, 2009, ANN BIOMED ENG, V37, P614, DOI 10.1007/s10439-008-9622-9
Donaldson GS, 2005, J ACOUST SOC AM, V118, P623, DOI 10.1121/1.1937362
Firszt JB, 2007, OTOL NEUROTOL, V28, P629, DOI 10.1097/01.mao.0000281803.36574.bc
Frijns JHM, 2009, ACTA OTO-LARYNGOL, V129, P433, DOI 10.1080/00016480802610218
Henry BA, 2005, J ACOUST SOC AM, V118, P1111, DOI 10.1121/1.1944567
Henry BA, 2003, J ACOUST SOC AM, V113, P2861, DOI 10.1121/1.1561900
Hughes ML, 2011, EAR HEARING, V32, P323, DOI 10.1097/AUD.0b013e3182008c56
Hughes ML, 2008, J ACOUST SOC AM, V124, P2711, DOI 10.1121/1.2990710
Hughes ML, 2006, J ACOUST SOC AM, V119, P1527, DOI 10.1121/1.2163273
Koch DB, 2007, EAR HEARING, V28, p38S, DOI 10.1097/AUD.0b013e31803150de
Kwon BJ., 2006, J ACOUST SOC AM, V120, pEL1
MCDERMOTT HJ, 1994, J ACOUST SOC AM, V96, P155, DOI 10.1121/1.410475
McKay CM, 1996, J ACOUST SOC AM, V99, P1079, DOI 10.1121/1.414594
Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5
Patrick James F, 2006, Trends Amplif, V10, P175, DOI 10.1177/1084713806296386
Saoji AA, 2009, EAR HEARING, V30, P559, DOI 10.1097/AUD.0b013e3181ab2b6f
Snel-Bongers J, 2012, EAR HEARING, V33, P367, DOI 10.1097/AUD.0b013e318234efd5
NR 22
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2013
VL 306
BP 93
EP 103
DI 10.1016/j.heares.2013.09.014
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 260EQ
UT WOS:000327578200010
PM 24095669
ER
PT J
AU Chen, SX
Deng, J
Bian, L
Li, GL
AF Chen, Shixiong
Deng, Jun
Bian, Lin
Li, Guanglin
TI Stimulus frequency otoacoustic emissions evoked by swept tones
SO HEARING RESEARCH
LA English
DT Article
ID BASILAR-MEMBRANE RESPONSES; TEST-RETEST RELIABILITY; INPUT-OUTPUT
FUNCTIONS; DISTORTION-PRODUCT; FINE-STRUCTURE; CHINCHILLA COCHLEA;
NORMAL-HEARING; GUINEA-PIG; HUMAN EARS; ORIGIN
AB Otoacoustic emissions (OAEs) are soft sounds generated by the cochlea and the measurements of OAEs are useful in detecting cochlear damages. Stimulus frequency otoacoustic emissions (SFOAEs) are evoked by one single tone and they are the most frequency specific in probing functional status of the cochlea than other types of OAEs. However, SFOAEs are currently restricted to research only because of the difficulty and low efficiency of their measurements. To solve these problems, an efficient method of using swept tones to measure SFOAEs was proposed in this study. The swept tones had time-varying frequencies and therefore could efficiently measure SFOAEs over a wide frequency range with a resolution dependent on the sweep rate. A three-interval paradigm and a tracking filter were used to separate the swept-tone SFOAEs from background noises. The reliability of the swept-tone SFOAEs was examined by a repeated-measure design, and the accuracy was evaluated by the comparison with a standard method using pure tones as the stimuli. The pilot results of this study showed that SFOAEs could be measured successfully using swept tones in human ears with normal hearing. The amplitude and phase of the swept-tone SFOAEs were highly reproducible in the repeated measures, and were nearly equivalent to SFOAEs evoked by pure tones under various signal conditions. These findings suggest that the proposed swept-tone SFOAEs could be a useful method in estimating the cochlear functions and developing an efficient approach of OAF measurements to help with accurate hearing diagnoses in the clinic. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Chen, Shixiong; Deng, Jun; Li, Guanglin] Chinese Acad Sci, Shenzhen Inst Adv Technol, Inst Biomed & Hlth Engn, Shenzhen 518055, Guangdong, Peoples R China.
[Chen, Shixiong; Bian, Lin] Arizona State Univ, Dept Speech & Hearing Sci, Tempe, AZ 85287 USA.
RP Chen, SX (reprint author), Chinese Acad Sci, Shenzhen Inst Adv Technol, Inst Biomed & Hlth Engn, Shenzhen 518055, Guangdong, Peoples R China.
EM sx.chen@siat.ac.cn; gl.li@siat.ac.cn
FU National Institutes of Health [R03 DC006165]; National Natural Science
Foundation of China [61203209, 61302037]; Shenzhen Governmental Basic
Research Grand [JC201005270295A]; Shenzhen Public Platform for
Biomedical Electronics and Health Informatics; Guangdong Innovation
Research Team Fund for Low-cost Healthcare Technologies
FX We thank Williams Yost, Michael Dorman and Tamiko Azuma for their useful
suggestions on this study. This work was supported in part by Grant No
R03 DC006165 from the National Institutes of Health, the National
Natural Science Foundation of China (Grant No 61203209), the National
Natural Science Foundation of China (Grant No 61302037), the Shenzhen
Governmental Basic Research Grand (#JC201005270295A), the Shenzhen
Public Platform for Biomedical Electronics and Health Informatics and
the Guangdong Innovation Research Team Fund for Low-cost Healthcare
Technologies.
CR Acar M, 2012, J PEDIATR ENDOCR MET, V25, P503, DOI 10.1515/jpem-2012-0062
Allen J.B., 1986, PERIPERY AUDITORY ME, P43
Erenberg A, 1999, PEDIATRICS, V103, P527
AVAN P, 1993, HEARING RES, V70, P109, DOI 10.1016/0378-5955(93)90055-6
Bennett CL, 2010, J ACOUST SOC AM, V128, P1833, DOI 10.1121/1.3467769
Bennett CL, 2010, J ACOUST SOC AM, V127, P2410, DOI 10.1121/1.3279831
Bentsen T, 2011, J ACOUST SOC AM, V129, P3797, DOI 10.1121/1.3575596
Bergevin C, 2011, AIP CONF PROC, V1403, DOI 10.1063/1.3658130
BRASS D, 1991, J ACOUST SOC AM, V90, P2415, DOI 10.1121/1.402046
BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153
Cheatham MA, 2011, AIP CONF PROC, V1403, DOI 10.1063/1.3658115
Choi YS, 2008, J ACOUST SOC AM, V123, P2651, DOI 10.1121/1.2902184
Cueva RA, 2012, OTOLARYNG CLIN N AM, V45, P285, DOI 10.1016/j.otc.2011.12.002
Dhar S, 2002, J ACOUST SOC AM, V112, P2882, DOI 10.1121/1.1516757
Duke T, 2003, PHYS REV LETT, V90, DOI 10.1103/PhysRevLett.90.158101
FRANKLIN DJ, 1992, EAR HEARING, V13, P417
Goodman SS, 2003, HEARING RES, V183, P7, DOI 10.1016/S0378-5955(03)00193-X
Finitzo T, 2000, PEDIATRICS, V106, P798
Kalluri R, 2007, J ACOUST SOC AM, V122, P3562, DOI 10.1121/1.2793604
Kalluri R, 2007, J ACOUST SOC AM, V121, P2097, DOI 10.1121/1.2435981
Keefe DH, 1998, J ACOUST SOC AM, V103, P3489, DOI 10.1121/1.423057
Keefe D.H., 1996, J ACOUST SOC AM S1, V99, P2562, DOI 10.1121/1.415026
Keefe DH, 1998, J ACOUST SOC AM, V103, P3499, DOI 10.1121/1.423058
Kemp D. T., 1980, PSYCHOPHYSICAL PHYSL
KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104
Kemp DT, 2002, BRIT MED BULL, V63, P223, DOI 10.1093/bmb/63.1.223
KEMP DT, 1990, EAR HEARING, V11, P93
Keppler H, 2010, INT J AUDIOL, V49, P99, DOI 10.3109/14992020903300431
KRUGER B, 1987, ACTA OTO-LARYNGOL, V103, P578
Lichtenhan JT, 2012, JARO-J ASSOC RES OTO, V13, P17, DOI 10.1007/s10162-011-0296-x
Lineton B, 2003, J ACOUST SOC AM, V114, P883, DOI 10.1121/1.1582176
LINETON B, 2003, EFFECT SUPPRESSION P, V114, P871
Long GR, 2008, J ACOUST SOC AM, V124, P1613, DOI 10.1121/1.2949505
LONSBURYMARTIN BL, 1988, HEARING RES, V33, P69, DOI 10.1016/0378-5955(88)90021-4
Marshall L, 1996, EAR HEARING, V17, P237, DOI 10.1097/00003446-199606000-00007
Muller S, 2001, J AUDIO ENG SOC, V49, P443
Neely ST, 1998, J ACOUST SOC AM, V104, P2925, DOI 10.1121/1.423876
Parazzini M, 2006, IEEE T BIO-MED ENG, V53, P1550, DOI 10.1109/TBME.2006.877804
Parazzini M., 2006, EMBS 06, P2122
Recio A, 1998, J ACOUST SOC AM, V103, P1972, DOI 10.1121/1.421377
Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265
Schairer KS, 2005, J ACOUST SOC AM, V117, P818, DOI 10.1121/1.1850341
Schairer KS, 2003, J ACOUST SOC AM, V114, P944, DOI 10.1121/1.1592799
Shaffer LA, 2003, EAR HEARING, V24, P367, DOI 10.1097/01.AUD.0000090439.16438.9F
Shera CA, 2003, J ACOUST SOC AM, V113, P2762, DOI 10.1121/1.1557211
Shera CA, 2002, P NATL ACAD SCI USA, V99, P3318, DOI 10.1073/pnas.032675099
Shera CA, 2010, JARO-J ASSOC RES OTO, V11, P343, DOI 10.1007/s10162-010-0217-4
Siegel JH, 2005, J ACOUST SOC AM, V118, P2434, DOI 10.1121/1.2005867
Sisto R, 1999, J ACOUST SOC AM, V106, P1893, DOI 10.1121/1.427938
Smith J. O., 2007, INTRO DIGITAL FILTER
Talmadge CL, 1999, J ACOUST SOC AM, V105, P275, DOI 10.1121/1.424584
Talmadge CL, 2000, J ACOUST SOC AM, V108, P2911, DOI 10.1121/1.1321012
Valero MD, 2011, HEARING RES, V282, P265, DOI 10.1016/j.heares.2011.07.004
Wagner WG, 2008, EAR HEARING, V29, P378, DOI 10.1097/AUD.0b013e31816906e7
White Karl R, 2005, Am J Audiol, V14, pS186, DOI 10.1044/1059-0889(2005/021)
Withnell RH, 1998, J ACOUST SOC AM, V104, P344, DOI 10.1121/1.423243
Yates GK, 1999, HEARING RES, V136, P49, DOI 10.1016/S0378-5955(99)00108-2
ZENNER HP, 1987, BIOCHEM BIOPH RES CO, V149, P304, DOI 10.1016/0006-291X(87)91639-1
Zhao F, 1999, SCAND AUDIOL, V28, P171, DOI 10.1080/010503999424743
ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320
NR 60
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2013
VL 306
BP 104
EP 114
DI 10.1016/j.heares.2013.09.016
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 260EQ
UT WOS:000327578200011
PM 24113114
ER
PT J
AU Guignard, J
Stieger, C
Kompis, M
Caversaccio, M
Arnold, A
AF Guignard, Jeremie
Stieger, Christof
Kompis, Martin
Caversaccio, Marco
Arnold, Andreas
TI Bone conduction in Thiel-embalmed cadaver heads
SO HEARING RESEARCH
LA English
DT Article
ID HUMAN MIDDLE-EAR; LASER-DOPPLER-VIBROMETRY; TYMPANIC MEMBRANE; HUMAN
SKULL; HEARING-LOSS; TRANSMISSION; MOTION; SOUND; LIVE; STIMULATION
AB Introduction: Sound can reach the inner ear via at least two different pathways: air conduction and bone conduction (BC). BC hearing is used clinically for diagnostic purposes and for BC hearing aids. Research on the motion of the human middle ear in response to BC stimulation is typically conducted using cadaver models.
We evaluated middle ear motion of Thiel-embalmed whole-head specimens in terms of linearity, reproducibility, and consistency with the reported middle ear motion of living subjects, fresh cadaveric temporal bones, and whole-heads embalmed with a Non-Thiel solution of salts.
Methods: We used laser Doppler vibrometry to measure the displacement of the skull, the umbo, the cochlear promontory, the stapes, and the round window in seven ears from four human whole-head specimens embalmed according to Thiel's method. The ears were stimulated with a Baha (R) implanted behind the auricle.
Results: The Thiel model shows promontory velocity similar to that reported in the literature for whole-heads embalmed with a Non-Thiel solution of salts (0- to 7-dB difference). The Thiel heads' relative velocity of the stapes with respect to the promontory was similar to that of fresh cadaver temporal bones (0- to 4-dB difference). The velocity of the umbo was comparable in Thiel-embalmed heads and living subjects (0- to 10-dB difference). The skull and all middle ear elements measured responded linearly to different stimulation levels, with an average difference less than 1 dB. The variability of repeated measurements for both short- (2 h; 4 dB) and long-term (4-16 weeks; 6 dB) repetitions in the same ear, and the difference between the two ears of the same donor (approximately 10 dB) were lower than the inter-individual difference (up to 25 dB).
Conclusion: Thiel-embalmed human whole-head specimens can be used as an alternative model for the study of human middle ear mechanics secondary to BC stimulation. At some frequencies, differences from living subjects must be considered. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Guignard, Jeremie; Caversaccio, Marco; Arnold, Andreas] Univ Bern, ARTORG Ctr, CH-3010 Bern, Switzerland.
[Guignard, Jeremie] Univ Bern, Grad Sch Cellular & Biomed Sci, CH-3010 Bern, Switzerland.
[Stieger, Christof] Univ Basel Hosp, Dept Otorhinolaryngol, Basel, Switzerland.
[Kompis, Martin; Caversaccio, Marco; Arnold, Andreas] Univ Bern, Inselspital, Dept Otorhinolaryngol Head & Neck Surg, CH-3010 Bern, Switzerland.
RP Arnold, A (reprint author), Univ Bern, Inselspital, Dept Otorhinolaryngol Head & Neck Surg, Freiburgstr, CH-3010 Bern, Switzerland.
EM andreas.arnold@insel.ch
FU Swiss Commission for Technology and Innovation [CTI 12593]
FX We would like to thank John Rosowski and David Chhan for sharing their
umbo velocity data. This work was partly funded by a grant from the
Swiss Commission for Technology and Innovation (CTI 12593).
CR Arnold A, 2010, HEARING RES, V263, P120, DOI 10.1016/j.heares.2009.12.019
Bekesy G.V., 1980, EXPT HEARING
Cheng JT, 2010, HEARING RES, V263, P66, DOI 10.1016/j.heares.2009.12.024
Chien W, 2007, OTOL NEUROTOL, V28, P250, DOI 10.1097/01.mao.0000244370.47320.9a
Chien W, 2009, HEARING RES, V249, P54, DOI 10.1016/j.heares.2008.11.011
Chien WD, 2006, AUDIOL NEURO-OTOL, V11, P183, DOI 10.1159/000091815
CURREY JD, 1995, BIOMATERIALS, V16, P1267, DOI 10.1016/0142-9612(95)98135-2
Eeg-Olofsson M, 2008, INT J AUDIOL, V47, P761, DOI 10.1080/14992020802311216
Goode RL, 1996, AM J OTOL, V17, P813
GOODE RL, 1994, AM J OTOL, V15, P145
Hakansson B, 1996, J ACOUST SOC AM, V99, P2239
Hakansson B, 2008, OTOL NEUROTOL, V29, P1132, DOI 10.1097/MAO.0b013e31816fdc90
HAKANSSON B, 1989, SCAND AUDIOL, V18, P91, DOI 10.3109/01050398909070728
Hato N, 2003, AUDIOL NEURO-OTOL, V8, P140, DOI 10.1159/000069475
Heiland KE, 1999, AM J OTOL, V20, P81
Hol MKS, 2004, AUDIOL NEURO-OTOL, V9, P274, DOI 10.1159/000080227
Huber A, 2003, ANN OTO RHINOL LARYN, V112, P348
Huber A, 2001, ANN OTO RHINOL LARYN, V110, P31
Huber AM, 2001, LARYNGOSCOPE, V111, P501, DOI 10.1097/00005537-200103000-00022
Jakob A, 2009, OTOL NEUROTOL, V30, P1049, DOI 10.1097/MAO.0b013e31819e622b
Kim N, 2011, JARO-J ASSOC RES OTO, V12, P261, DOI 10.1007/s10162-011-0258-3
McKnight CL, 2013, J ACOUST SOC AM, V133, P136, DOI 10.1121/1.4768801
Pfiffner F., 2010, EAR HEARING, V32, P40
REGER S N, 1960, Ann Otol Rhinol Laryngol, V69, P1179
Roosli C, 2012, HEARING RES, V290, P83, DOI 10.1016/j.heares.2012.04.011
Rosowski JJ, 2008, EAR HEARING, V29, P3
Rosowski JJ, 2003, OTOL NEUROTOL, V24, P165, DOI 10.1097/00129492-200303000-00008
Smith HD, 1943, ARCHIV OTOLARYNGOL, V38, P369
Sohmer H, 2004, HEARING RES, V193, P105, DOI 10.1016/j.heares.2004.03.015
STASCHE N, 1994, ACTA OTO-LARYNGOL, V114, P59, DOI 10.3109/00016489409126017
Stenfelt S, 2002, J ACOUST SOC AM, V111, P947, DOI 10.1121/1.1432977
Stenfelt S, 2003, J ACOUST SOC AM, V113, P902, DOI 10.1121/1.1534606
Stenfelt S, 2005, OTOL NEUROTOL, V26, P1245, DOI 10.1097/01.mao.0000187236.10842.d5
Stenfelt S, 2004, HEARING RES, V198, P10, DOI 10.1016/j.heares.2004.07.008
Stenfelt S, 2005, J ACOUST SOC AM, V118, P2373, DOI 10.1121/1.12005847
Stieger C, 2012, OTOL NEUROTOL, V33, P311, DOI 10.1097/MAO.0b013e3182487de0
THIEL W, 1992, ANN ANAT, V174, P185
Unger Stefan, 2010, Bone, V47, P1048, DOI 10.1016/j.bone.2010.08.012
VLAMING MSMG, 1986, CLIN OTOLARYNGOL, V11, P353, DOI 10.1111/j.1365-2273.1986.tb00137.x
Voss SE, 2000, HEARING RES, V150, P43, DOI 10.1016/S0378-5955(00)00177-5
Wazen JJ, 2010, OTOLARYNG HEAD NECK, V142, P554, DOI 10.1016/j.otohns.2009.12.047
NR 41
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2013
VL 306
BP 115
EP 122
DI 10.1016/j.heares.2013.10.002
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 260EQ
UT WOS:000327578200012
PM 24161399
ER
PT J
AU Bahmer, A
Baumann, U
AF Bahmer, Andreas
Baumann, Uwe
TI Effects of electrical pulse polarity shape on intra cochlear neural
responses in humans: Triphasic pulses with cathodic second phase
SO HEARING RESEARCH
LA English
DT Article
ID COMPOUND ACTION-POTENTIALS; BRAIN-STEM RESPONSES; AMPLITUDE RATIO PAR;
AUDITORY-NERVE; MONOPHASIC STIMULATION; CAT; SENSITIVITY; MONOPOLAR;
IMPLANTS; FIBERS
AB Charge balanced pulses are used in modern cochlear implants to avoid direct current (DC) stimulation that may damage neural tissues. In this context the effect of electrical pulse shape and polarity is still a matter of debate and the most effective pulse shape needs to be determined (Bahmer et al., 2010a; Undurraga et al., 2010; Wieringen et al., 2008; Macherey et al., 2008). Therefore, we conducted electrophysiological measurements, namely electrical compound action potentials (ECAPs) to assess response strength elicited by various pulse shapes and polarities in five cochlear implant recipients (SonataTI100/PulsarCI100 devices, MED-EL Innsbruck). ECAP response strength depending on pulse shape was compared with individual psychophysical thresholds. Results indicated the weakest response amplitude and highest thresholds for symmetric triphasic pulse shapes (with cathodic second phase), and the strongest response amplitude and lowest thresholds for biphasic pulses with anodic first phase. Biphasic pulses with cathodic first phase generated intermediate response amplitude and thresholds. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Bahmer, Andreas; Baumann, Uwe] Univ Frankfurt Main, Clin Otolaryngol, D-60590 Frankfurt, Germany.
RP Bahmer, A (reprint author), Univ Frankfurt Main, Clin Otolaryngol, D-60590 Frankfurt, Germany.
EM andreas.bahmer@kgu.de
FU MED-EL (Innsbruck, Austria)
FX The work was supported by a grant from MED-EL (Innsbruck, Austria).
CR Bahmer A, 2010, J NEUROSCI METH, V191, P66, DOI 10.1016/j.jneumeth.2010.06.008
Bahmer A, 2008, J NEUROSCI METH, V173, P306, DOI 10.1016/j.jneumeth.2008.06.012
Bahmer A, 2010, HEARING RES, V259, P75, DOI 10.1016/j.heares.2009.10.003
Bahmer A, 2012, J NEUROSCI METH, V205, P212, DOI 10.1016/j.jneumeth.2011.12.006
Bahmer A, 2012, J NEUROSCI METH, V205, P202, DOI 10.1016/j.jneumeth.2011.12.005
Bonnet RM, 2004, ACTA OTO-LARYNGOL, V124, P371, DOI 10.1080/00016480410031084
Briaire JJ, 2005, HEARING RES, V205, P143, DOI 10.1016/j.heares.2005.03.020
BROWN MC, 1994, J NEUROPHYSIOL, V71, P1826
BRUMMER SB, 1977, IEEE T BIO-MED ENG, V24, P59, DOI 10.1109/TBME.1977.326218
Cartee L, 2004, INTRACOCHLEAR POTENT
Coste RL, 1996, J ACOUST SOC AM, V99, P3099, DOI 10.1121/1.414796
Eddington D.K., 2004, SPEECH PROCESSORS AU
HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7
Javel E, 2000, HEARING RES, V140, P45, DOI 10.1016/S0378-5955(99)00186-0
Macherey O, 2008, JARO-J ASSOC RES OTO, V9, P241, DOI 10.1007/s10162-008-0112-4
Macherey O, 2006, JARO-J ASSOC RES OTO, V7, P253, DOI 10.1007/s10162-006-0040-0
Miller CA, 2004, HEARING RES, V198, P75, DOI 10.1016/j.heares.2004.07.005
Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X
Miller CA, 1999, HEARING RES, V130, P197, DOI 10.1016/S0378-5955(99)00012-X
Rattay F, 2001, HEARING RES, V153, P64, DOI 10.1016/S0378-5955(00)00257-4
Rattay F, 2001, HEARING RES, V153, P43, DOI 10.1016/S0378-5955(00)00256-2
Rattay F, 1999, NEUROSCIENCE, V89, P335, DOI 10.1016/S0306-4522(98)00330-3
Rubinstein JT, 2001, IEEE T BIO-MED ENG, V48, P1065, DOI 10.1109/10.951508
Shepherd RK, 1999, HEARING RES, V130, P171, DOI 10.1016/S0378-5955(99)00011-8
Shepherd RK, 1999, ACTA OTO-LARYNGOL, V119, P674, DOI 10.1080/00016489950180621
Spitzer P., 2007, ART GUIDE INTRO MED
Spitzer P., 2010, EAP RECORDING SYSTEM
Undurraga J.A., 2013, THESIS KU LEUVEN
Undurraga JA, 2010, HEARING RES, V269, P146, DOI 10.1016/j.heares.2010.06.017
Undurraga JA, 2013, JARO-J ASSOC RES OTO, V14, P359, DOI 10.1007/s10162-013-0377-0
Waltzman S. B., 2006, COCHLEAR IMPLANTS
Wieringen A., 2008, HEARING RES, V242, P154
Zeng Fan-Gang, 2004, Trends Amplif, V8, P1, DOI 10.1177/108471380400800102
Zierhofer CM, 2000, IEEE T CIRCUITS-II, V47, P408, DOI 10.1109/82.842109
NR 34
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2013
VL 306
BP 123
EP 130
DI 10.1016/j.heares.2013.10.001
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 260EQ
UT WOS:000327578200013
PM 24161948
ER
PT J
AU Nakamoto, KT
Sowick, CS
Schofield, BR
AF Nakamoto, Kyle T.
Sowick, Colleen S.
Schofield, Brett R.
TI Auditory cortical axons contact commissural cells throughout the guinea
pig inferior colliculus
SO HEARING RESEARCH
LA English
DT Article
ID MEDIAL GENICULATE-BODY; NITRIC-OXIDE SYNTHASE; DESCENDING PROJECTIONS;
COCHLEAR NUCLEUS; NEURONAL RESPONSES; LATERAL LEMNISCUS; GABAERGIC
NEURONS; DEFINED REGIONS; BRAIN-STEM; IN-VIVO
AB Projections from auditory cortex (AC) affect how cells in both inferior colliculi (IC) respond to acoustic stimuli. The large projection from the AC to the ipsilateral IC is usually credited with the effects in the ipsilateral IC. The circuitry underlying effects in the contralateral IC is less clear. The direct projection from the AC to the contralateral IC is relatively small. An unexplored possibility is that the large ipsilateral cortical projection contacts the substantial number of cells in the ipsilateral IC that project through the commissure to the contralateral IC.
Apparent contacts between cortical boutons and commissural cells were identified in the left IC after injection of different fluorescent tracers into the left AC and the right IC. Commissural cells were labeled throughout the left IC, and many (23-34%) appeared to be contacted by cortical axons. In the central nucleus, both disc-shaped and stellate cells were contacted. Antibodies to glutamic acid decarboxylase (GAD) were used to identify GABAergic commissural cells. The majority (>86%) of labeled commissural cells were GAD-immunonegative. Despite low numbers of GAD-immunopositive commissural cells, some of these cells were contacted by cortical boutons. Nonetheless, most cortically contacted commissural cells were GAD-immunonegative (i.e., presumably glutamatergic).
We conclude that auditory cortical axons contact primarily excitatory commissural cells in the ipsilateral IC that project to the contralateral IC. These corticocollicular contacts occur in each subdivision of the ipsilateral IC, suggesting involvement of commissural cells throughout the IC. This pathway from AC to commissural cells in the ipsilateral IC - is a prime candidate for the excitatory effects of activation of the auditory cortex on responses in the contralateral IC. Overall this suggests that the auditory corticofugal pathway is integrated with midbrain commissural connections. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Nakamoto, Kyle T.; Sowick, Colleen S.; Schofield, Brett R.] Northeast Ohio Med Univ, Dept Anat & Neurobiol, Rootstown, OH 44272 USA.
RP Schofield, BR (reprint author), Northeast Ohio Med Univ, Dept Anat & Neurobiol, 4209 St Rt 44,POB 95, Rootstown, OH 44272 USA.
EM bschofie@neomed.edu
FU NIH [R01 DC04391, 1 F32 DC010958]
FX We would like to thank Megan Storey-Workley for expert technical
assistance and Dr. W. Chilian for use of his fluorescence macroscope.
Dr. J. Mellott provided valuable comments on an early draft of the
manuscript. Supported by NIH R01 DC04391 and 1 F32 DC010958.
CR ADAMS JC, 1984, BRAIN RES BULL, V13, P585, DOI 10.1016/0361-9230(84)90041-8
AMATO G, 1969, Archivio Italiano di Scienze Mediche Tropicali e di Parassitologia, V53, P291
Anderson LA, 2013, EUR J NEUROSCI, V37, P52, DOI 10.1111/ejn.12018
AOKI E, 1988, BRAIN RES, V442, P63, DOI 10.1016/0006-8993(88)91432-1
Bajo VM, 2007, CEREB CORTEX, V17, P475, DOI 10.1093/cercor/bhj164
Bajo VM, 2005, J COMP NEUROL, V486, P101, DOI 10.1002/cne.20542
Bledsoe SC, 2003, EXP BRAIN RES, V153, P530, DOI 10.1007/s00221-003-1671-6
BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P705, DOI 10.1002/cne.901970410
CALFORD MB, 1983, J NEUROSCI, V3, P2365
Coomes DL, 2004, EUR J NEUROSCI, V19, P2188, DOI 10.1111/j.1460-9568.2004.03317.x
Coomes DL, 2005, BRAIN RES, V1042, P62, DOI 10.1016/j.brainres.2005.02.015
Peterson DC, 2007, HEARING RES, V232, P67, DOI 10.1016/j.heares.2007.06.009
Coote EJ, 2008, NEUROSCIENCE, V154, P218, DOI 10.1016/j.neuroscience.2008.02.030
DAWSON TM, 1991, P NATL ACAD SCI USA, V88, P7797, DOI 10.1073/pnas.88.17.7797
Doucet JR, 2003, EXP BRAIN RES, V153, P461, DOI 10.1007/s00221-003-1604-4
Du Y, 2009, EUR J NEUROSCI, V30, P1779, DOI 10.1111/j.1460-9568.2009.06947.x
FELICIANO M, 1995, J NEUROCHEM, V65, P1348
Feliciano M. E., 1995, AUDIT NEUROSCI, V1, P287
GonzalezHernandez T, 1996, J COMP NEUROL, V372, P309, DOI 10.1002/(SICI)1096-9861(19960819)372:2<309::AID-CNE11>3.0.CO;2-E
Hackett TA, 2011, AUDITORY CORTEX, P117, DOI 10.1007/978-1-4419-0074-6_5
Hernandez O, 2006, NEUROREPORT, V17, P1611, DOI 10.1097/01.wnr.0000236857.70715.be
Ito T, 2009, J NEUROSCI, V29, P13860, DOI 10.1523/JNEUROSCI.3454-09.2009
Jacomme AV, 2003, EXP BRAIN RES, V153, P467, DOI 10.1007/s00221-003-1606-2
Jen PHS, 1998, J COMP PHYSIOL A, V183, P683, DOI 10.1007/s003590050291
Kulesza RJ, 2000, JARO, V1, P255, DOI 10.1007/s101620010054
LEDOUX JE, 1985, J COMP NEUROL, V242, P182, DOI 10.1002/cne.902420204
Lim HH, 2007, J NEUROPHYSIOL, V97, P1413, DOI 10.1152/jn.00384.2006
Ma XF, 2001, J NEUROPHYSIOL, V85, P1078
Malmierca MS, 2005, EUR J NEUROSCI, V21, P2701, DOI 10.1111/j.1460-9568.2005.04103.x
Malmierca MS, 2003, EXP BRAIN RES, V153, P522, DOI 10.1007/s00221-003-1615-1
MALMIERCA MS, 1995, ANAT EMBRYOL, V191, P343, DOI 10.1007/BF00534687
Malmierca MS, 2009, J COMP NEUROL, V514, P226, DOI 10.1002/cne.21997
MALMIERCA MS, 1995, J COMP NEUROL, V357, P124, DOI 10.1002/cne.903570112
MASSOPUST LC, 1962, EXP NEUROL, V6, P465, DOI 10.1016/0014-4886(62)90072-9
Merchan M, 2005, NEUROSCIENCE, V136, P907, DOI 10.1016/j.neuroscience.2004.12.030
MITANI A, 1983, NEUROSCI LETT, V42, P185, DOI 10.1016/0304-3940(83)90404-4
MOORE DR, 1988, J COMP NEUROL, V269, P342, DOI 10.1002/cne.902690303
Moore DR, 1998, J NEUROPHYSIOL, V80, P2229
Nakamoto KT, 2013, FRONT NEUROANAT, V7, DOI 10.3389/fnana.2013.00013
Nakamoto KT, 2010, J NEUROPHYSIOL, V103, P2050, DOI 10.1152/jn.00451.2009
Nakamoto KT, 2008, J NEUROPHYSIOL, V99, P2347, DOI 10.1152/jn.01326.2007
Okoyama S, 2006, HEARING RES, V218, P72, DOI 10.1016/j.heares.2006.04.004
Oliver DL, 2005, INFERIOR COLLICULUS, P69, DOI 10.1007/0-387-27083-3_2
OLIVER DL, 1994, J COMP NEUROL, V340, P27, DOI 10.1002/cne.903400104
Popelar J, 2003, PHYSIOL RES, V52, P615
POURCHO RG, 1992, NEUROSCIENCE, V46, P643, DOI 10.1016/0306-4522(92)90151-Q
Reetz G, 1999, BRAIN RES, V816, P527, DOI 10.1016/S0006-8993(98)01230-X
ROUILLER EM, 1985, HEARING RES, V19, P97, DOI 10.1016/0378-5955(85)90114-5
SaintMarie RL, 1996, J COMP NEUROL, V373, P255, DOI 10.1002/(SICI)1096-9861(19960916)373:2<255::AID-CNE8>3.0.CO;2-2
Saldana E, 2005, INFERIOR COLLICULUS, P155, DOI 10.1007/0-387-27083-3_5
Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O
SMITH PH, 1992, J NEUROSCI, V12, P3700
Suga N, 2008, J COMP PHYSIOL A, V194, P169, DOI 10.1007/s00359-007-0274-2
SUN X, 1989, BRAIN RES, V495, P1, DOI 10.1016/0006-8993(89)91212-2
SYKA J, 1984, NEUROSCI LETT, V51, P235, DOI 10.1016/0304-3940(84)90557-3
Torterolo P, 1998, NEUROSCI LETT, V249, P172, DOI 10.1016/S0304-3940(98)00367-X
Wallace MN, 2002, EXP BRAIN RES, V143, P106, DOI 10.1007/s00221-001-0973-9
Wallace MN, 2000, EXP BRAIN RES, V132, P445, DOI 10.1007/s002210000362
Weedman DL, 1996, BRAIN RES, V706, P97, DOI 10.1016/0006-8993(95)01201-X
Weedman DL, 1996, J COMP NEUROL, V371, P311
WILLARD FH, 1984, BRAIN RES, V303, P171, DOI 10.1016/0006-8993(84)90225-7
Winer JA, 2005, INFERIOR COLLICULUS, P231, DOI 10.1007/0-387-27083-3_8
Winer JA, 1998, J COMP NEUROL, V400, P147
Xiong K, 2008, EXP NEUROL, V211, P271, DOI 10.1016/j.expneurol.2008.02.003
Zhang DX, 1998, HEARING RES, V117, P1, DOI 10.1016/S0378-5955(97)00202-5
NR 65
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2013
VL 306
BP 131
EP 144
DI 10.1016/j.heares.2013.10.003
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 260EQ
UT WOS:000327578200014
PM 24140579
ER
PT J
AU Wrzeszcz, A
Reuter, G
Nolte, I
Lenarz, T
Scheper, V
AF Wrzeszcz, Antonina
Reuter, Guenter
Nolte, Ingo
Lenarz, Thomas
Scheper, Verena
TI Spiral ganglion neuron quantification in the guinea pig cochlea using
Confocal Laser Scanning Microscopy compared to embedding methods
SO HEARING RESEARCH
LA English
DT Article
ID SENSORINEURAL HEARING-LOSS; NEUROTROPHIC FACTOR; AUDITORY NEURONS; CELL
SURVIVAL; MOUSE COCHLEA; GROWTH-FACTOR; HAIR-CELLS; DEGENERATION; GDNF;
RECONSTRUCTION
AB Neuron counting in the cochlea is a crucial but time-consuming operation for which various methods have been developed. To improve simplicity and efficiency, we tested an imaging method of the cochlea, and based on Confocal Laser Scanning Microscopy (CLSM), we visualised Rosenthal's Canal and quantified the spiral ganglion neurons (SGN) within.
Cochleae of 8 normal hearing guinea pigs and one implanted with a silicone filament were fixed in paraformaldehyde (PFA), decalcified, dehydrated and cleared in Spalteholz solution. Using the tissue's autofluorescence, CLSM was performed at 100fold magnification generating z-series stacks of about 20 slices of the modiolus. In 5 midmodiolar slices per cochlea the perimeters of the Rosenthal's Canal were surveyed, representative neuron diameters were measured and the neurons first counted manually and then software-assisted. For comparison, 8 normal hearing guinea pig cochleae were embedded in paraffin and examined similarly.
The CLSM method has the advantage that the cochleae remain intact as an organ and keep their geometrical structure. Z-stack creation is nearly fully-automatic and frequently repeatable with various objectives and step sizes and without visible bleaching. The tissue shows minimal or no shrinking artefacts and damage typical of embedding and sectioning. As a result, the cells in the cleared cochleae reach an average diameter of 21 gm and a density of about 18 cells/10,000 mu m(2) with no significant difference between the manual and the automatical counts. Subsequently we compared the CLSM data with those generated using the established method of paraffin slides, where the SGN reached a mean density of 9.5 cells/10,000 mu m(2) and a mean soma diameter of 13.6 mu m.
We were able to prove that the semi-automatic CLSM method is a simple and effective technique for auditory neuron count. It provides a high grade of tissue preservation and the automatic stack-generation as well as the counter software reduces the effort considerably. In addition this visualisation technique offers the potential to detect the position and orientation of cochlear implants (Cl) within the cochlea and tissue growing in the scala tympani around the CI and at the position of the cochleostomy due to the fact that the implant does not have to be removed to perform histology as in case of the paraffin method. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Wrzeszcz, Antonina; Reuter, Guenter; Lenarz, Thomas; Scheper, Verena] Hannover Med Sch, Dept Otolaryngol, D-30625 Hannover, Germany.
[Nolte, Ingo] Univ Vet Med Hannover, Small Anim Clin, D-30559 Hannover, Germany.
RP Wrzeszcz, A (reprint author), Hannover Med Sch, Dept Otolaryngol, Carl Neuberg Str 1, D-30625 Hannover, Germany.
EM wrzeszcz.antonina@mh-hannover.de
FU German Research Foundation [SFB Transregio 37]
FX Wolfgang Posse It and Dr. Rudolf Bauerfeind, Research Core Unit for
Laser Microscopy, Hannover Medical School, Germany, are gratefully
acknowledged for providing and supervising the microscopy. This work was
funded by the German Research Foundation (SFB Transregio 37, Project
A5).
CR Agterberg MJH, 2008, HEARING RES, V244, P25, DOI 10.1016/j.heares.2008.07.004
Agterberg MJH, 2009, JARO-J ASSOC RES OTO, V10, P355, DOI 10.1007/s10162-009-0170-2
Bixenstine PJ, 2008, LARYNGOSCOPE, V118, P1217, DOI 10.1097/MLG.0b013e31816ba9cd
Borenstein JT, 2011, EXPERT OPIN DRUG DEL, V8, P1161, DOI 10.1517/17425247.2011.588207
Ceschi, 2012, COMMUNICATION
CLARKE PGH, 1992, TRENDS NEUROSCI, V15, P211, DOI 10.1016/0166-2236(92)90036-8
COGGESHALL RE, 1992, TRENDS NEUROSCI, V15, P9, DOI 10.1016/0166-2236(92)90339-A
de Franceschi CM, 2011, BRAZ J OTORHINOLAR, V77, P728, DOI 10.1590/S1808-86942011000600009
Eickhoff R, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041236
Emmenlauer M, 2009, J MICROSC-OXFORD, V233, P42, DOI 10.1111/j.1365-2818.2008.03094.x
Fransson A, 2010, J NEUROTRAUM, V27, P1745, DOI 10.1089/neu.2009.1218
Gardella D, 2003, J NEUROSCI METH, V124, P45, DOI 10.1016/S0165-0270(02)00363-1
Garnham C, 2005, Cochlear Implants Int, V6 Suppl 1, P12, DOI 10.1002/cii.273
Gillespie LN, 2005, EUR J NEUROSCI, V22, P2123, DOI 10.1111/j.1460-9568.2005.04430.x
Glueckert R, 2008, J COMP NEUROL, V507, P1602, DOI 10.1002/cne.21619
Haq N., 1988, THESIS U WASHINGTON
Hardie NA, 2004, BRAIN RES, V1000, P200, DOI 10.1016/j.brainres.2003.10.071
Hinojosa R, 2011, LARYNGOSCOPE, V121, P2641, DOI 10.1002/lary.22383
Huang LC, 2007, DEVELOPMENT, V134, P2925, DOI 10.1242/dev.001925
Incesulu A, 1998, ANN OTO RHINOL LARYN, V107, P906
Johnson SB, 2011, HEARING RES, V278, P34, DOI 10.1016/j.heares.2011.02.008
Kellerhals B., 1967, ACTA OTO-LARYNGOL, V226, P1
Kellner M, 2012, J APPL PHYSIOL, V113, P975, DOI 10.1152/japplphysiol.00026.2012
LOUSTEAU RJ, 1987, LARYNGOSCOPE, V97, P836
MacDonald GH, 2010, AUDIOL MED, V8, P120, DOI 10.3109/1651386X.2010.502301
MacDonald GH, 2008, HEARING RES, V243, P1, DOI 10.1016/j.heares.2008.05.009
Maruyama J, 2008, NEUROBIOL DIS, V29, P14, DOI 10.1016/j.nbd.2007.07.026
Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7
OTTE J, 1978, LARYNGOSCOPE, V88, P1231
Pfingst BE, 2011, HEARING RES, V281, P65, DOI 10.1016/j.heares.2011.05.002
Richter CP, 2011, HEARING RES, V278, P43, DOI 10.1016/j.heares.2011.02.003
Scheper V, 2009, J NEUROSCI RES, V87, P1389, DOI 10.1002/jnr.21964
Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564
Sly DJ, 2012, JARO-J ASSOC RES OTO, V13, P1, DOI 10.1007/s10162-011-0297-9
Spalteholz W, 1914, DURCHSICHTIGMACHEN M
Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011
Stover T, 2005, OTOL NEUROTOL, V26, P1161
van Ruijven MWM, 2004, HEARING RES, V197, P44, DOI 10.1016/j.heares.2004.07.014
VOIE AH, 1993, J MICROSC-OXFORD, V170, P229
Voie AH, 1995, COMPUT MED IMAG GRAP, V19, P377, DOI 10.1016/0895-6111(95)00034-8
Warnecke A, 2010, NEUROREPORT, V21, P517, DOI 10.1097/WNR.0b013e328339045b
WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7
Whitlon DS, 2006, NEUROSCIENCE, V138, P653, DOI 10.1016/j.neuroscience.2005.11.030
Wise AK, 2011, NEUROTHERAPEUTICS, V8, P774, DOI 10.1007/s13311-011-0070-0
Yagi M, 2000, JARO, V1, P315, DOI 10.1007/s101620010011
Ylikoski J, 1998, HEARING RES, V124, P17, DOI 10.1016/S0378-5955(98)00095-1
Zilberstein Y, 2012, J NEUROSCI, V32, P405, DOI 10.1523/JNEUROSCI.4678-11.2012
NR 47
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2013
VL 306
BP 145
EP 155
DI 10.1016/j.heares.2013.08.002
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 260EQ
UT WOS:000327578200015
PM 23968822
ER
PT J
AU Butler, BE
Folland, NA
Trainor, LJ
AF Butler, Blake E.
Folland, Nicole A.
Trainor, Laurel J.
TI Development of pitch processing: Infants' discrimination of iterated
rippled noise stimuli with unresolved spectral content
SO HEARING RESEARCH
LA English
DT Article
ID VENTRAL COCHLEAR NUCLEUS; COMPLEX TONES; TEMPORAL REPRESENTATION; MUSIC
PERCEPTION; SENSITIVITY; RECOGNITION; COMPONENTS
AB Sound frequency is extracted at the level of the cochlea, and is represented by two neural codes: a spectral (place) code that is maintained by tonotopic maps extending into primary auditory cortex, and a temporal code based on the periodicity of action potentials in auditory nerve fibers. To date, little work has examined infants' ability to perceive pitch when spectral content cannot be resolved by cochlear filters; the present experiments do so using high-pass filtered iterated rippled noise (IRN) stimuli. Using a conditioned head-turn paradigm, most 8-month-old infants showed above-chance discrimination of a change from 167 to 200 Hz in the fundamental frequency (F0) of such high-passed filtered IRN stimuli, but only when first exposed to a training target stimulus that emphasized pitch through the addition of a sine wave tone to the IRN stimulus at the F0. However, even after this period of pitch priming, performance was quite poor relative to that found in previous studies using stimuli with resolved spectral content. These results support the idea that 8-month-olds can perceive pitch when only unresolved spectral content is present in the stimulus, but that such processing is not yet robust. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Butler, Blake E.; Folland, Nicole A.; Trainor, Laurel J.] McMaster Univ, Dept Psychol Neurosci & Behav, Hamilton, ON L8S 4L8, Canada.
RP Trainor, LJ (reprint author), McMaster Univ, Dept Psychol Neurosci & Behav, 1280 Main St W, Hamilton, ON L8S 4L8, Canada.
EM ljt@mcmaster.ca
FU Natural Sciences and Engineering Research Council of Canada (NSERC);
Canadian Institutes of Health Research (CIHR); NSERC
FX This research was supported by grants to LIT from the Natural Sciences
and Engineering Research Council of Canada (NSERC) and the Canadian
Institutes of Health Research (CIHR) and an NSERC graduate scholarship
to BEB. The authors wish to thank Andrea Unrau for assisting with data
collection.
CR Barker D., 2011, CEREB CORTEX, DOI DOI 10.1093/CERC0R/BHR065
Bregman A. S., 1990, AUDITORY SCENE ANAL, P1
Butler BE, 2012, FRONT PSYCHOL, V3, P1
CLARKSON MG, 1995, J ACOUST SOC AM, V98, P1372, DOI 10.1121/1.413473
CLARKSON MG, 1985, J ACOUST SOC AM, V77, P1521, DOI 10.1121/1.391994
CLARKSON MG, 1995, J ACOUST SOC AM, V98, P148, DOI 10.1121/1.413751
FRICK RW, 1985, PSYCHOL BULL, V97, P412, DOI 10.1037//0033-2909.97.3.412
GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
Gorga MP, 1996, J ACOUST SOC AM, V100, P968, DOI 10.1121/1.416208
He C, 2009, J NEUROSCI, V29, P7718, DOI 10.1523/JNEUROSCI.0157-09.2009
HOUTSMA AJM, 1990, J ACOUST SOC AM, V87, P304, DOI 10.1121/1.399297
HOUTSMA AJM, 1972, J ACOUST SOC AM, V51, P520, DOI 10.1121/1.1912873
Koelsch S, 2005, TRENDS COGN SCI, V9, P578, DOI 10.1016/j.tics.2005.10.001
MACMILLAN NA, 1985, PSYCHOL BULL, V98, P185, DOI 10.1037/0033-2909.98.1.185
McDermott JH, 2008, CURR OPIN NEUROBIOL, V18, P452, DOI 10.1016/j.conb.2008.09.005
Montgomery CR, 1997, J ACOUST SOC AM, V102, P3665, DOI 10.1121/1.420153
Moore B.C., 2012, INTRO PSYCHOL HEARIN
Moore BCJ, 2011, HEARING RES, V276, P88, DOI 10.1016/j.heares.2011.01.003
OLSHO LW, 1982, DEV PSYCHOL, V18, P721
Patterson RD, 1996, J ACOUST SOC AM, V100, P3286, DOI 10.1121/1.417212
PLOMP R, 1967, J ACOUST SOC AM, V41, P1526, DOI 10.1121/1.1910515
Pressnitzer D., 2001, PHYSL PSYCHOPHYSICAL
RITSMA RJ, 1962, J ACOUST SOC AM, V34, P1224, DOI 10.1121/1.1918307
RITSMA RJ, 1967, J ACOUST SOC AM, V42, P191, DOI 10.1121/1.1910550
Sayles M, 2008, J NEUROSCI, V28, P11925, DOI 10.1523/JNEUROSCI.3137-08.2008
Song JH, 2011, J COGNITIVE NEUROSCI, V23, P2268, DOI 10.1162/jocn.2010.21556
Trainor L.J., 2010, SPRINGER HDB AUDITOR
VANDOMMELEN WA, 1990, LANG SPEECH, V33, P259
WERNEROLSHO L, 1988, J ACOUST SOC AM, V84, P1316
Winter IM, 2001, J PHYSIOL-LONDON, V537, P553, DOI 10.1111/j.1469-7793.2001.00553.x
Yost W.A., 2007, FUNDAMENTALS HEARING, P47
NR 31
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2013
VL 304
BP 1
EP 6
DI 10.1016/j.heares.2013.05.009
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 225PM
UT WOS:000324974800001
PM 23764671
ER
PT J
AU Youm, I
Youan, BBC
AF Youm, Ibrahima
Youan, Bi-Botti C.
TI Uptake mechanism of Furosemide-loaded pegylated nanoparticles by
cochlear cell lines
SO HEARING RESEARCH
LA English
DT Article
ID RECEPTOR-MEDIATED ENDOCYTOSIS; POLYMER-DRUG COMPATIBILITY;
CENTRAL-NERVOUS-SYSTEM; INDUCED HEARING-LOSS; INNER-EAR; STEM-CELLS;
INTRACELLULAR TRAFFICKING; DEPENDENT INTERNALIZATION; PLGA
NANOPARTICLES; CANCER-CELLS
AB This study tests the hypothesis that pegylated nanoparticles (NPs) could be taken up by the cochlear cells [House Ear Institute-organ of Corti 1 (HEI-OC1) and Stria vascularis K-1 (SVK-1)], through endocytic pathways. Furthermore, the in vitro drug release and the cytotoxicity of Furosemide (FUR)-loaded NPs on these two cochlear cells are investigated. FUR-loaded pegylated NPs are prepared by the emulsion-solvent diffusion method without surfactant. The NPs are characterized for particle mean diameter, polydispersity index (PDI), morphology, percent drug encapsulation efficiency (EE%), and FUR release kinetics. The methyl tetrazolium salt (MTS) and lactate dehydrogenase (LDH) bioassays are used to evaluate in vitro, the cytotoxicity of FUR-loaded NPs and native FUR. The NPs uptake is investigated using confocal microscopy, microplate reader/fluorimetry, and flow cytometry. Spherical NPs with a mean diameter range of 133-210 nm and PDI values varying from 0.037 to 0.41 are produced. The FUR EE% is 86% and the drug is released from the NPs according to the zero-order and Higuchi models. After treatment with blank NPs, the percentage of cell viability and cell death are 95.96% and 8.95%, in HEI-OC1 cells, respectively. The NPs are internalized by HEI-OC1 cells through a clathrin-dependent pathway. In addition, results show that NPs can be taken up via clathrin and cytoskeleton mediated pathways in SVK-1 cells. The internalization of the pegylated NPs can enhance the drug toxicity by necrosis in a dose-dependent and sustained release manner. The formulated NPs provide a promising template for a targeted drug delivery system to the inner ear. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Youm, Ibrahima; Youan, Bi-Botti C.] Univ Missouri, Div Pharmaceut Sci, Lab Future Nanomed & Theoret Chronopharmaceut, Kansas City, MO 64108 USA.
RP Youan, BBC (reprint author), Univ Missouri, Div Pharmaceut Sci, Lab Future Nanomed & Theoret Chronopharmaceut, Kansas City, MO 64108 USA.
EM youanb@umkc.edu
CR ARNOLD W, 1981, ACTA OTO-LARYNGOL, V91, P399, DOI 10.3109/00016488109138521
Auffan M, 2009, NAT NANOTECHNOL, V4, P634, DOI 10.1038/nnano.2009.242
Avgoustakis K, 2003, INT J PHARMACEUT, V259, P115, DOI 10.1016/S0378-5173(03)00224-2
Barichello JM, 1999, DRUG DEV IND PHARM, V25, P471, DOI 10.1081/DDC-100102197
Belyantseva I., 1998, ASS RES OT 21 MIDW M
Buckiova D, 2012, NANOMEDICINE-UK, V7, P1339, DOI 10.2217/NNM.12.5
Campbell KCM, 2007, HEARING RES, V226, P92, DOI 10.1016/j.heares.2006.11.012
Cederroth CR, 2012, HEARING RES, V292, P83, DOI 10.1016/j.heares.2012.08.011
Chandrasekhar SS, 2000, OTOLARYNG HEAD NECK, V122, P521, DOI 10.1016/S0194-5998(00)70094-5
Chen FQ, 2012, HEARING RES, V284, P33, DOI 10.1016/j.heares.2011.12.007
Cheng J, 2007, BIOMATERIALS, V28, P869, DOI 10.1016/j.biomaterials.2006.09.047
Choi SH, 2002, J COLLOID INTERF SCI, V251, P57, DOI 10.1006/jcis.2002.8427
Douglas KL, 2008, EUR J PHARM BIOPHARM, V68, P676, DOI 10.1016/j.ejpb.2007.09.002
Durrbach A, 1996, J CELL SCI, V109, P457
Dwan'Isa JPL, 2007, PHARMAZIE, V62, P499, DOI 10.1691/ph.2007.7.6273
FEE WE, 1980, LARYNGOSCOPE, V90, P1, DOI 10.1288/00005537-198010001-00001
Feghali JG, 2001, LARYNGOSCOPE, V111, P1147, DOI 10.1097/00005537-200107000-00005
FESSI H, 1989, INT J PHARM, V55, pR1, DOI 10.1016/0378-5173(89)90281-0
Gaikwad A, 2010, INT J PHARMTECH RES, V2, P300
Ge XX, 2007, OTOLARYNG HEAD NECK, V137, P619, DOI 10.1016/j.otohns.2007.04.013
Gorner T, 1999, J CONTROL RELEASE, V57, P259, DOI 10.1016/S0168-3659(98)00121-7
Hackley V., 2001, NATL I STANDARDS TEC
Hansen C. M., 1967, J PAINT TECHNOL, V39, P104
Hassanein M, 2011, MOL IMAGING BIOL, V13, P840, DOI 10.1007/s11307-010-0399-5
Hildebrand J. H., 1950, SOLUBILITY NONELECTR, V3rd
HOLM PK, 1995, EXP CELL RES, V217, P157, DOI 10.1006/excr.1995.1075
Hu N, 2003, HEARING RES, V185, P77, DOI 10.1016/S0378-5955(03)00261-2
Hughes G.B., 2007, CLIN OTOLOGY, P215
Kalinec GM, 2003, AUDIOL NEURO-OTOL, V8, P177, DOI 10.1159/000071059
Kawashima Y, 1998, EUR J PHARM BIOPHARM, V45, P41, DOI 10.1016/S0939-6411(97)00121-5
Khalil IA, 2006, PHARMACOL REV, V58, P32, DOI 10.1124/pr.58.1.8
Kim HR, 2007, CELL MOL LIFE SCI, V64, P356, DOI 10.1007/s00018-007-6390-x
Kros CJ, 1998, NATURE, V394, P281, DOI 10.1038/28401
LENDAHL U, 1990, CELL, V60, P585, DOI 10.1016/0092-8674(90)90662-X
Li HZ, 2011, SCI REP-UK, V1, DOI 10.1038/srep00159
Li PY, 2010, BIOMACROMOLECULES, V11, P2576, DOI 10.1021/bm1005195
Liu JB, 2004, J PHARM SCI-US, V93, P132, DOI 10.1002/jps.10533
Lovgren T, 2004, ARTHRITIS RHEUM, V50, P1861, DOI 10.1002/art.20254
MCCABE BF, 1979, ANN OTO RHINOL LARYN, V88, P585
MCKAY R, 1993, CR ACAD SCI III-VIE, V316, P1452
McKay R, 1997, SCIENCE, V276, P66, DOI 10.1126/science.276.5309.66
Mehta RC, 1996, J CONTROL RELEASE, V41, P249, DOI 10.1016/0168-3659(96)01332-6
Mundy DI, 2002, J CELL SCI, V115, P4327, DOI 10.1242/jcs.00117
Nahar M, 2009, PHARM RES-DORD, V26, P2588, DOI 10.1007/s11095-009-9973-4
Olivier JC, 2002, PHARMACEUT RES, V19, P1137, DOI 10.1023/A:1019842024814
Panyam J, 2003, INT J PHARM, V262, P1, DOI 10.1016/S0378-5173(03)00295-3
PARTON RG, 1994, J CELL BIOL, V127, P1199, DOI 10.1083/jcb.127.5.1199
Portis AM, 2010, MICROSC RES TECHNIQ, V73, P878, DOI 10.1002/jemt.20861
Rabinowitz PM, 2000, AM FAM PHYSICIAN, V61, P2749
Rejman J, 2004, BIOCHEM J, V377, P159, DOI 10.1042/BJ20031253
Rejman J, 2004, BBA-BIOMEMBRANES, V1660, P41, DOI 10.1016/j.bbamem.2003.10.011
Rosenholm JM, 2009, ACS NANO, V3, P197, DOI 10.1021/nn800781r
Roy S, 2010, INT J PHARMACEUT, V390, P214, DOI 10.1016/j.ijpharm.2010.02.003
Saenz-Robles MT, 2001, ONCOGENE, V20, P7899, DOI 10.1038/sj.onc.1204936
SALISBURY JL, 1980, J CELL BIOL, V87, P132, DOI 10.1083/jcb.87.1.132
Santos-Sacchi J, 2001, HEARING RES, V159, P69, DOI 10.1016/S0378-5955(01)00321-5
Schenderlein S, 2004, INT J PHARM, V286, P19, DOI 10.1016/j.ijpharm.2004.07.034
SCHWEITZER VG, 1993, OTOLARYNG CLIN N AM, V26, P759
Song ZM, 2011, J COLLOID INTERF SCI, V354, P116, DOI 10.1016/j.jcis.2010.10.024
Swan EEL, 2008, ADV DRUG DELIVER REV, V60, P1583, DOI 10.1016/j.addr.2008.08.001
Takemura K, 2004, HEARING RES, V196, P58, DOI 10.1016/j.heares.2004.06.003
Wangemann P., 1996, COCHLEA, P130
Yan F, 2010, NANOMED-NANOTECHNOL, V6, P170, DOI 10.1016/j.nano.2009.05.004
Youm I, 2012, COLLOID SURFACE B, V94, P133, DOI 10.1016/j.colsurfb.2012.01.027
Zhang Y, 2011, INT J PHARMACEUT, V404, P211, DOI 10.1016/j.ijpharm.2010.11.006
Zhang Y, 2011, ACTA OTO-LARYNGOL, V131, P1249, DOI 10.3109/00016489.2011.615066
Zhou J, 2010, J COLLOID INTERF SCI, V345, P241, DOI 10.1016/j.jcis.2010.02.004
Zou J., 2009, EUR J NANOMED, V3, P8
NR 68
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2013
VL 304
BP 7
EP 19
DI 10.1016/j.heares.2013.05.010
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 225PM
UT WOS:000324974800002
PM 23747541
ER
PT J
AU Andeol, G
Macpherson, EA
Sabin, AT
AF Andeol, Guillaume
Macpherson, Ewan A.
Sabin, Andrew T.
TI Sound localization in noise and sensitivity to spectral shape
SO HEARING RESEARCH
LA English
DT Article
ID COCHLEAR IMPLANT LISTENERS; EAR TRANSFER-FUNCTIONS; MODULATION
DETECTION; FREE-FIELD; INDIVIDUAL-DIFFERENCES; HEADPHONE SIMULATION;
FREQUENCY; HEARING; PLANE; FRONT
AB Individual differences exist in sound localization performance even for normal-hearing listeners. Some of these differences might be related to acoustical differences in localization cues carried by the head related transfer functions (HRTF). Recent data suggest that individual differences in sound localization performance could also have a perceptual origin. The localization of an auditory target in the up/down and front/back dimensions requires the analysis of the spectral shape of the stimulus. In the present study, we investigated the role of an acoustic factor, the prominence of the spectral shape ("spectral strength") and the role of a perceptual factor, the listener's sensitivity to spectral shape, in individual differences observed in sound localization performance. Spectral strength was computed as the spectral distance between the magnitude spectrum of the HRTFs and a flat spectrum. Sensitivity to spectral shape was evaluated using spectral-modulation thresholds measured with a broadband (0.2-12.8 kHz) or high-frequency (4-16 kHz) carrier and for different spectral modulation frequencies (below 1 cycle/octave, between 1 and 2 cycles/octave, above 2 cycles/octave). Data obtained from 19 young normal-hearing listeners showed that low thresholds for spectral modulation frequency below 1 cycle/octave with a high-frequency carrier were associated with better sound localization performance. No correlation was found between sound localization performance and the spectral strength of the HRTFs. These results suggest that differences in perceptual ability, rather than acoustical differences, contribute to individual differences in sound localization performance in noise. (C) 2013 Authors. Published by Elsevier B.V. All rights reserved.
C1 [Andeol, Guillaume] Inst Rech Biomed Armees, Dept Act & Cognit Situat Operat, F-91223 Bretigny Sur Orge, France.
[Macpherson, Ewan A.] Univ Western Ontario, Sch Commun Sci & Disorders, London, ON N6G 1H1, Canada.
[Macpherson, Ewan A.] Univ Western Ontario, Natl Ctr Audiol, London, ON N6G 1H1, Canada.
[Sabin, Andrew T.] Northwestern Univ, Dept Commun Sci & Disorders, Hearing Aid Lab, Evanston, IL 60208 USA.
RP Andeol, G (reprint author), Inst Rech Biomed Armees, Dept Act & Cognit Situat Operat, BP 73, F-91223 Bretigny Sur Orge, France.
EM guillaume.andeol@irba.fr; ewan.macpherson@nca.uwo.ca;
a-sabin@northwestern.edu
FU French Procurement Agency (DGA); National Science Foundation (USA);
Natural Sciences and Engineering Research Council of Canada; National
Institutes of Health (USA) [F31DC9549]
FX This work was supported in part by the French Procurement Agency (DGA).
Author EM acknowledges funding from the National Science Foundation
(USA) and the Natural Sciences and Engineering Research Council of
Canada. Author AS acknowledges funding from National Institutes of
Health (USA) Grant F31DC9549. We thank Jean Christophe Bouy for help
with software development, Lionel Pellieux for HRTF measurements and
signal processing manipulations and Brian C.J. Moore, and two anonymous
reviewers for many helpful comments.
CR Andeol G, 2011, J NEUROSCI, V31, P6759, DOI 10.1523/JNEUROSCI.0248-11.2011
Best V, 2005, ACTA ACUST UNITED AC, V91, P421
Brungart D., 2009, IEEE WORKSH APPL SIG, P305
Brungart D.S., 2009, J ACOUST SOC AM, V125, P2691
BUTLER RA, 1977, J ACOUST SOC AM, V61, P1264, DOI 10.1121/1.381427
Djelani T, 2000, ACUSTICA, V86, P1046
Drennan WR, 2001, J ACOUST SOC AM, V110, P2491, DOI 10.1121/1.1408310
Eddins DA, 2007, J ACOUST SOC AM, V121, P363, DOI 10.1121/1.2382347
GILKEY RH, 1995, BEHAV RES METH INSTR, V27, P1, DOI 10.3758/BF03203614
Good MD, 1996, J ACOUST SOC AM, V99, P1108, DOI 10.1121/1.415233
Henry BA, 2005, J ACOUST SOC AM, V118, P1111, DOI 10.1121/1.1944567
Hofman M, 2003, Exp Brain Res, V148, P458
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
Macpherson EA, 2003, J ACOUST SOC AM, V114, P430, DOI 10.1121/1.1582174
Macpherson EA, 2007, J ACOUST SOC AM, V121, P3677, DOI 10.1121/1.2722048
MAKOUS JC, 1990, J ACOUST SOC AM, V87, P2188, DOI 10.1121/1.399186
Middlebrooks JC, 1999, J ACOUST SOC AM, V106, P1493, DOI 10.1121/1.427147
MIDDLEBROOKS JC, 1990, J ACOUST SOC AM, V87, P2149, DOI 10.1121/1.399183
Middlebrooks JC, 1999, J ACOUST SOC AM, V106, P1480, DOI 10.1121/1.427176
Moller H, 1996, J AUDIO ENG SOC, V44, P451
Qian JY, 2008, J ACOUST SOC AM, V123, P302, DOI [10.1121/1.2804698, 10.1121/1.28046981]
RIFE DD, 1989, J AUDIO ENG SOC, V37, P419
Sabin A.T., 2005, ASS RES OT ABSTR, V257
Sabin AT, 2012, EXP BRAIN RES, V218, P567, DOI 10.1007/s00221-012-3049-0
Saoji AA, 2009, J ACOUST SOC AM, V126, P955, DOI 10.1121/1.3179670
Shaw E. A. G., 1997, BINAURAL SPATIAL HEA, P25
SHAW EAG, 1974, J ACOUST SOC AM, V56, P1848, DOI 10.1121/1.1903522
Wenzel E. M., 1988, J ACOUST SOC AM, V84, pS79, DOI 10.1121/1.2026486
WENZEL EM, 1993, J ACOUST SOC AM, V94, P111, DOI 10.1121/1.407089
Wightman F, 2005, ACTA ACUST UNITED AC, V91, P429
Wightman F. L., 1997, BINAURAL SPATIAL HEA, P1
WIGHTMAN FL, 1989, J ACOUST SOC AM, V85, P858, DOI 10.1121/1.397557
Wightman FL, 1999, J ACOUST SOC AM, V105, P2841, DOI 10.1121/1.426899
WIGHTMAN FL, 1989, J ACOUST SOC AM, V85, P868, DOI 10.1121/1.397558
Zahorik P, 2006, J ACOUST SOC AM, V120, P343, DOI 10.1121/1.2208429
Zhang PX, 2010, HEARING RES, V260, P30, DOI 10.1016/j.heares.2009.11.001
NR 36
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2013
VL 304
BP 20
EP 27
DI 10.1016/j.heares.2013.06.001
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 225PM
UT WOS:000324974800003
PM 23769958
ER
PT J
AU Gnanateja, GN
Ranjan, R
Firdose, H
Sinha, SK
Maruthy, S
AF Gnanateja, G. Nike
Ranjan, Ranjeet
Firdose, Husna
Sinha, Sujeet Kumar
Maruthy, Sandeep
TI Acoustic basis of context dependent brainstem encoding of speech
SO HEARING RESEARCH
LA English
DT Article
ID IN-NOISE PERCEPTION; CORTICOFUGAL MODULATION; COMPLEX TONES; LOW PITCH;
BAT; RESPONSES; MIDBRAIN; HEARING
AB The newfound context dependent brainstem encoding of speech is evidence of online regularity detection and modulation of the sub-cortical responses. We studied the influence of spectral structure of the contextual stimulus on context dependent encoding of speech at the brainstem, in an attempt to understand the acoustic basis for this effect. Fourteen normal hearing adults participated in a randomized true experimental design in whom brainstem responses were recorded. Brainstem responses for a high pass filtered /da/in the context of syllables, that either had same or different spectral structure were compared with each other. The findings suggest that spectral structure is one of the parameters which cue the context dependent sub-cortical encoding of speech. Interestingly, the results also revealed that, brainstem can encode pitch even with negligible acoustic information below the second formant frequency. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Gnanateja, G. Nike; Sinha, Sujeet Kumar; Maruthy, Sandeep] All India Inst Speech & Hearing, Dept Audiol, Mysore 570006, Karnataka, India.
[Ranjan, Ranjeet] Phonak India Pvt Ltd, Mumbai, Maharashtra, India.
[Firdose, Husna] All India Inst Speech & Hearing, Mysore 570006, Karnataka, India.
RP Gnanateja, GN (reprint author), All India Inst Speech & Hearing, Dept Audiol, Mysore 570006, Karnataka, India.
EM nikegnanateja@gmail.com; ranjanbs3@yahoo.co.in;
husna_firdose2002@yahoo.com; sujitks5@gmail.com; msandeepa@gmail.com
CR Bartlett EL, 2005, J NEUROPHYSIOL, V94, P83, DOI 10.1152/jn.01124.2004
Boutros NN, 1999, BIOL PSYCHIAT, V45, P917, DOI 10.1016/S0006-3223(98)00253-4
Boutros NN, 2011, BIOL PSYCHIAT, V69, P883, DOI 10.1016/j.biopsych.2010.12.011
Buchsbaum BR, 2009, CEREB CORTEX, V19, P1474, DOI 10.1093/cercor/bhn186
CHAMBERS RD, 1986, J ACOUST SOC AM, V80, P1673, DOI 10.1121/1.394279
Chandrasekaran B, 2009, NEURON, V64, P311, DOI 10.1016/j.neuron.2009.10.006
Gao E, 1998, P NATL ACAD SCI USA, V95, P12663, DOI 10.1073/pnas.95.21.12663
Gnanateja GN, 2012, J ALL INDIA I SPEECH, V31, P215
GREENBERG S, 1987, HEARING RES, V25, P91, DOI 10.1016/0378-5955(87)90083-9
He C., 2009, J NEUROSCI, V2924, P7718
Helenius P, 1999, BRAIN, V122, P907, DOI 10.1093/brain/122.5.907
Hornickel J, 2009, P NATL ACAD SCI USA, V106, P13022, DOI 10.1073/pnas.0901123106
Karhu J., 1997, DUAL CEREBRAL PROCES
Krizman J, 2010, AUDIOL NEURO-OTOL, V15, P332, DOI 10.1159/000289572
Large EW, 1999, PSYCHOL REV, V106, P119, DOI 10.1037/0033-295X.106.1.119
Parbery-Clark A, 2011, NEUROPSYCHOLOGIA, V49, P3338, DOI 10.1016/j.neuropsychologia.2011.08.007
Rosburg T, 2004, NEUROSCI LETT, V372, P245, DOI 10.1016/j.neulet.2004.09.047
SCHOUTEN J. F., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1418, DOI 10.1121/1.1918360
Skoe E, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013645
Strait DL, 2011, BEHAV BRAIN FUNCT, V7, DOI 10.1186/1744-9081-7-44
Suga N, 2002, NEURON, V36, P9, DOI 10.1016/S0896-6273(02)00933-9
Winkler I, 2009, TRENDS COGN SCI, V13, P532, DOI 10.1016/j.tics.2009.09.003
Zhang Y., 1997, NATURE, V387
Zhang YF, 1997, J NEUROPHYSIOL, V78, P3489
Zhou XM, 2007, J NEUROPHYSIOL, V98, P2509, DOI 10.1152/jn.00613.2007
NR 25
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2013
VL 304
BP 28
EP 32
DI 10.1016/j.heares.2013.06.002
PG 5
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 225PM
UT WOS:000324974800004
PM 23792077
ER
PT J
AU Bao, JX
Hungerford, M
Luxmore, R
Ding, DL
Qiu, ZY
Lei, DB
Yang, AZ
Liang, RQ
Ohlemiller, KK
AF Bao, Jianxin
Hungerford, Michelle
Luxmore, Randi
Ding, Dalian
Qiu, Ziyu
Lei, Debin
Yang, Aizhen
Liang, Ruqiang
Ohlemiller, Kevin K.
TI Prophylactic and therapeutic functions of drug combinations against
noise-induced hearing loss
SO HEARING RESEARCH
LA English
DT Article
ID SPIRAL GANGLION NEURONS; FACTOR-KAPPA-B; CALCIUM-CHANNEL BLOCKER;
ACOUSTIC TRAUMA; T-TYPE; GLUCOCORTICOID-RECEPTORS; RESTRAINT STRESS;
HAIR-CELLS; INNER-EAR; SUPEROXIDE-DISMUTASE
AB Noise is the most common occupational and environmental hazard. Noise-induced hearing loss (NIHL) is the second most common form of sensorineural hearing deficit, after age-related hearing loss (presbycusis). Although promising approaches have been identified for reducing NIHL, currently there are no effective medications to prevent NIHL. Development of an efficacious treatment has been hampered by the complex array of cellular and molecular pathways involved in NIHL We turned this difficulty into an advantage by asking whether NIHL could be effectively prevented by targeting multiple signaling pathways with a combination of drugs already approved by U.S. Food and Drug Administration (FDA). We previously found that antiepileptic drugs blocking T-type calcium channels had both prophylactic and therapeutic effects for NIHL. NIHL can also be reduced by an up-regulation of glucocorticoid (GC) signaling pathways. Based on these findings, we tested a combination therapy for NIHL that included ethosuximide and zonisamide (anticonvulsants) and dexamethasone and methylprednisolone (synthetic GCs) in mice under exposure conditions typically associated with dramatic permanent threshold shifts (PTS). We first examined possible prophylactic effects for each drug when administered alone 2 h before noise, and calculated the median effective dose (ED50). We then tested for synergistic effects of two-drug combinations (anticonvulsant + GC), and identified combinations with the strongest synergy against NIHL, based on a previously established combination index (CI) metric. We repeated similar tests to determine their therapeutic effects when administered the same drugs 24 h after the noise exposure. Our study shows the feasibility of developing pharmacological intervention in multiple pathways, and discovering drug combinations with optimal synergistic effects in preventing permanent NIHL. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Bao, Jianxin; Hungerford, Michelle; Luxmore, Randi; Qiu, Ziyu; Lei, Debin; Yang, Aizhen; Liang, Ruqiang; Ohlemiller, Kevin K.] Washington Univ, Sch Med, Dept Otolaryngol, Ctr Aging, St Louis, MO 63110 USA.
[Ding, Dalian] SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA.
RP Bao, JX (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, Ctr Aging, 4560 Clayton Ave, St Louis, MO 63110 USA.
EM jbao@wustl.edu
FU National Institute of Health [DC010489, DC011793]; National Organization
for Hearing Research Foundation
FX We thank Drs. Barbara Bohne and Colleen Garbe Le Prell for their
thoughtful suggestions, and Drs. Yixin Chen and Yi Mao for their help of
computational simulations. The project was supported by grants to J.B.
from the National Institute of Health (DC010489 and DC011793), and the
National Organization for Hearing Research Foundation.
CR Adamson CL, 2002, J NEUROSCI, V22, P1385
Bao JX, 2004, NAT NEUROSCI, V7, P1250, DOI 10.1038/nn1342
Bao JX, 2005, J NEUROSCI, V25, P3041, DOI 10.1523/JNEUROSCI.5277-04.2005
Bas E., 2008, ACTA OTO-LARYNGOL, V129, P385
Bielefeld EC, 2007, ACTA OTO-LARYNGOL, V127, P914, DOI 10.1080/00016480601110188
Boettcher FA, 1996, LARYNGOSCOPE, V106, P772, DOI 10.1097/00005537-199606000-00020
Boettcher FA, 1998, HEARING RES, V121, P139, DOI 10.1016/S0378-5955(98)00075-6
Page JC, 2002, MIL MED, V167, P48
Boik JC, 2008, STAT MED, V27, P1040, DOI 10.1002/sim.3005
Campbell KCM, 2007, HEARING RES, V226, P92, DOI 10.1016/j.heares.2006.11.012
Canlon B, 2007, HEARING RES, V226, P61, DOI 10.1016/j.heares.2006.05.009
CHOU TC, 1984, ADV ENZYME REGUL, V22, P27, DOI 10.1016/0065-2571(84)90007-4
Chou TC, 2006, PHARMACOL REV, V58, P621, DOI 10.1124/pr.58.3.10
Darrat Ilaaf, 2007, Curr Opin Otolaryngol Head Neck Surg, V15, P358, DOI 10.1097/MOO.0b013e3282efa641
Dodson Kelley M, 2004, Ear Nose Throat J, V83, P394
Errington AC, 2005, CURR TOP MED CHEM, V5, P15, DOI 10.2174/1568026053386872
Fuchs P, 2002, AUDIOL NEURO-OTOL, V7, P40, DOI 10.1159/000046862
Hanaoka BY, 2012, NAT REV RHEUMATOL, V8, P448, DOI 10.1038/nrrheum.2012.85
Hansen MR, 2003, J NEUROSCI RES, V72, P169, DOI 10.1002/jnr.10551
Heinrich UR, 1997, EUR ARCH OTO-RHINO-L, V254, P223, DOI 10.1007/BF00874093
Henderson D., 2003, NOISE HLTH, V3, P33
Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3
Hight NG, 2003, HEARING RES, V179, P21, DOI 10.1016/S0378-5955(03)00067-4
Ison JR, 1997, HEARING RES, V106, P179, DOI 10.1016/S0378-5955(96)00216-X
Jin DX, 2009, BRAIN RES, V1277, P3, DOI 10.1016/j.brainres.2009.02.017
Kopke R, 2005, ACTA OTO-LARYNGOL, V125, P235, DOI 10.1080/00016480410023038
Lacinova L, 2000, GEN PHYSIOL BIOPHYS, V19, P121
Lang HN, 2006, J NEUROSCI, V26, P3541, DOI 10.1523/JNEUROSCI.2488-05.2006
Le Prell C G, 2003, Noise Health, V5, P1
Le Prell C.G., 2012, SPRINGER HDB AUDITOR
Lee JJ, 2009, STAT BIOPHARM RES, V1, P4, DOI 10.1198/sbr.2009.0001
Lee Soo-Il, 2010, Korean J Anesthesiol, V58, P421, DOI 10.4097/kjae.2010.58.5.421
Le Prell CG, 2007, FREE RADICAL BIO MED, V42, P1454, DOI 10.1016/j.freeradbiomed.2007.02.008
Lynch ED, 2004, LARYNGOSCOPE, V114, P333, DOI 10.1097/00005537-200402000-00029
Lynch ED, 2005, DRUG DISCOV TODAY, V10, P1291, DOI 10.1016/S1359-6446(05)03561-0
MacArthur CJ, 2008, OTOLARYNG HEAD NECK, V139, P646, DOI 10.1016/j.otohns.2008.07.029
McFadden SL, 2005, HEARING RES, V202, P200, DOI 10.1016/j.heares.2004.10.011
McFadden SL, 2001, NOISE HEALTH, V3, P49
Nikonenko I, 2005, MOL PHARMACOL, V68, P84, DOI 10.1124/mol.104.010066
Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5
Ohinata Y, 2003, BRAIN RES, V966, P265, DOI 10.1016/S0006-8993(02)04205-1
Ohlemiller KK, 2000, HEARING RES, V149, P239, DOI 10.1016/S0378-5955(00)00191-X
Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043
Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017
Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847
Park E, 2008, CAN MED ASSOC J, V178, P1163, DOI 10.1503/cmaj.080282
Paz Z, 2004, AUDIOL NEURO-OTOL, V9, P363, DOI 10.1159/000081409
Peppi M, 2011, J NEUROSCI, V31, P735, DOI 10.1523/JNEUROSCI.3955-10.2011
Perez-Reyes E, 1998, J BIOENERG BIOMEMBR, V30, P313, DOI 10.1023/A:1021981420839
Richman DD, 2001, NATURE, V410, P995, DOI 10.1038/35073673
Rodriguez-Contreras A, 2001, J PHYSIOL-LONDON, V534, P669, DOI 10.1111/j.1469-7793.2001.00669.x
Schnee ME, 2003, J PHYSIOL-LONDON, V549, P697, DOI 10.1113/jphysiol.2002.037481
SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052
Seixas NS, 2005, OCCUP ENVIRON MED, V62, P309, DOI 10.1136/oem.2004.018143
Sendowski I, 2006, HEARING RES, V221, P119, DOI 10.1016/j.heares.2006.08.010
Shen HY, 2007, HEARING RES, V226, P52, DOI 10.1016/j.heares.2006.12.011
Shen HY, 2011, HEARING RES, V277, P184, DOI 10.1016/j.heares.2011.01.009
Shimazaki T, 2002, ANN OTO RHINOL LARYN, V111, P1133
So HS, 2005, HEARING RES, V204, P127, DOI 10.1016/j.heares.2005.01.011
Tabuchi K, 2006, OTOL NEUROTOL, V27, P1176, DOI 10.1097/01.mao.0000226313.82069.3f
Tahera Y, 2006, NEUROREPORT, V17, P879, DOI 10.1097/01.wnr.0000220131.24468.e7
Tahera Y, 2006, ENDOCRINOLOGY, V147, P4430, DOI 10.1210/en.2006-0260
Tahera Y, 2006, J NEUROSCI RES, V83, P1066, DOI 10.1002/jnr.20795
TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865
Triggle DJ, 2006, CURR PHARM DESIGN, V12, P443, DOI 10.2174/138161206775474503
Trune DR, 2012, ANAT REC, V295, P1928, DOI 10.1002/ar.22576
Uemaetomari I, 2009, TOHOKU J EXP MED, V218, P41
Wang Y, 2002, HEARING RES, V165, P96, DOI 10.1016/S0378-5955(02)00289-7
Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028
Werling LL, 2007, NEUROLOGIST, V13, P272, DOI 10.1097/NRL.0b013e3180f60bd8
Xu J, 2009, J NEUROSCI, V29, P2022, DOI 10.1523/JNEUROSCI.2621-08.2009
Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761
Yamashita D, 2005, NEUROSCIENCE, V134, P633, DOI 10.1016/j.neuroscience.2005.04.015
Yamashita D, 2004, BRAIN RES, V1019, P201, DOI 10.1016/j.brainres.2004.05.104
Yamasoba T, 1999, BRAIN RES, V815, P317, DOI 10.1016/S0006-8993(98)01100-7
Yoshida N, 1999, J NEUROSCI, V19, P10116
Yunker AMR, 2003, J BIOENERG BIOMEMBR, V35, P533, DOI 10.1023/B:JOBB.0000008024.77488.48
ZUO J, 1995, HEARING RES, V87, P220, DOI 10.1016/0378-5955(95)00092-I
NR 78
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2013
VL 304
BP 33
EP 40
DI 10.1016/j.heares.2013.06.004
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 225PM
UT WOS:000324974800005
PM 23792074
ER
PT J
AU Watson, CJ
Tempel, BL
AF Watson, Claire J.
Tempel, Bruce L.
TI A new Atp2b2 deafwaddler allele, dfw(i5), interacts strongly with Cdh23
and other auditory modifiers
SO HEARING RESEARCH
LA English
DT Article
ID HAIR-CELL STEREOCILIA; MEMBRANE CA2+ ATPASE; HEARING-LOSS; CALCIUM-PUMP;
PURKINJE NEURONS; INBRED STRAINS; INNER-EAR; TIP-LINK; MICE; DEAFNESS
AB Tight regulation of calcium (Ca2+) concentrations in the stereocilia bundles of auditory hair cells of the inner ear is critical to normal auditory transduction. The plasma membrane Ca2+ ATPase 2 (PMCA2), encoded by the Atp2b2 gene, is the primary mechanism for clearance of Ca2+ from auditory stereocilia, keeping intracellular levels low, and also contributes to maintaining adequate levels of extracellular Ca2+ in the endolymph. This study characterizes a novel null Atp2b2 allele, dfw(i5), by examining cochlear anatomy, vestibular function and auditory physiology in mutant mice. Loss of auditory function in PMCA2 mutants can be attributed to dysregulation of intracellular Ca2+ inside the stereocilia bundles. However, extracellular Ca2+ ions surrounding the stereocilia are also required for rigidity of cadherin 23, a component of the stereocilia tip-link encoded by the Cdh23 gene. This study further resolves the interaction between Atp2b2 and Cdh23 in a gene dosage and frequency-dependent manner, and finds that low frequencies are significantly affected by the interaction. In +/dfw(i5) mice, one mutant copy of Cdh23 is sufficient to cause broad frequency hearing impairment. Additionally, we report another modifying interaction with Atp2b2 on auditory sensitivity, possibly caused by an unidentified hearing loss gene in mice. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Watson, Claire J.; Tempel, Bruce L.] Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Dept Pharmacol, Seattle, WA 98195 USA.
[Tempel, Bruce L.] Univ Washington, Dept Otolaryngol Head & Neck Surg, Seattle, WA 98195 USA.
RP Tempel, BL (reprint author), Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Box 357923, Seattle, WA 98195 USA.
EM bltempel@uw.edu
FU NIH [RO1 DC02739, P30 DC04661, T32 DC005361, T32 DC000033]
FX We would like to thank L. Robinson for maintaining our mouse colonies;
A. Peterson, D. Speca and D. Chihara for providing us with the original
"Line 70" dfwi5 mouse; D. Cunningham for assistance with
scanning electron microscopy techniques; and V. Street for comments on
the manuscript. This work was supported by grants from the NIH; RO1
DC02739 (BLT), P30 DC04661 (BLT), T32 DC005361 (CJW) and T32 DC000033
(CJW).
CR Beurg M, 2010, J NEUROPHYSIOL, V104, P18, DOI 10.1152/jn.00019.2010
BOCK GR, 1983, ACTA OTO-LARYNGOL, V96, P39, DOI 10.3109/00016488309132873
Bortolozzi M, 2010, J BIOL CHEM, V285, P37693, DOI 10.1074/jbc.M110.170092
Brini M, 2003, J BIOL CHEM, V278, P24500, DOI 10.1074/jbc.M300784200
Burette A, 2003, J COMP NEUROL, V467, P464, DOI 10.1002/cne.10933
Carafoli E, 2002, P NATL ACAD SCI USA, V99, P1115, DOI 10.1073/pnas.032427999
Chen QG, 2012, EUR J NEUROSCI, V36, P2302, DOI 10.1111/j.1460-9568.2012.08159.x
Clapham DE, 2007, CELL, V131, P1047, DOI 10.1016/j.cell.2007.11.028
COREY DP, 1979, NATURE, V281, P675, DOI 10.1038/281675a0
Dumont RA, 2001, J NEUROSCI, V21, P5066
Eatock RA, 2000, ANNU REV NEUROSCI, V23, P285, DOI 10.1146/annurev.neuro.23.1.285
Empson RM, 2007, J NEUROSCI, V27, P3753, DOI 10.1523/JNEUROSCI.0069-07.2007
Empson RM, 2010, J PHYSIOL-LONDON, V588, P907, DOI 10.1113/jphysiol.2009.182196
Fettiplace R, 2003, CURR OPIN NEUROBIOL, V13, P446, DOI 10.1016/S0959-4388(03)00094-1
Ficarella R, 2007, P NATL ACAD SCI USA, V104, P1516, DOI 10.1073/pnas.0609775104
Furuta H, 1998, HEARING RES, V123, P10, DOI 10.1016/S0378-5955(98)00091-4
HILFIKER H, 1994, J BIOL CHEM, V269, P26178
Hofacker IL, 2003, NUCLEIC ACIDS RES, V31, P3429, DOI 10.1093/nar/gkg599
Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377
Johnson KR, 2006, BRAIN RES, V1091, P79, DOI 10.1016/j.brainres.2006.02.021
Kane KL, 2012, HEARING RES, V283, P80, DOI 10.1016/j.heares.2011.11.007
Kazmierczak P, 2007, NATURE, V449, P87, DOI 10.1038/nature06091
Kiernan AE, 1999, J NEUROCYTOL, V28, P969, DOI 10.1023/A:1007090626294
Kozel PJ, 1998, J BIOL CHEM, V273, P18693, DOI 10.1074/jbc.273.30.18693
Kurnellas MP, 2007, MOL CELL NEUROSCI, V34, P178, DOI 10.1016/j.mcn.2006.10.010
Mammano F, 2007, PHYSIOLOGY, V22, P131, DOI 10.1152/physiol.00040.2006
MAREAN GC, 1995, HEARING RES, V82, P267, DOI 10.1016/0378-5955(94)00183-Q
MARSHALL JF, 1979, SCIENCE, V206, P477, DOI 10.1126/science.504992
McCullough BJ, 2007, HEARING RES, V224, P51, DOI 10.1016/j.heares.2006.11.006
McCullough BJ, 2004, HEARING RES, V195, P90, DOI 10.1016/j.heares.2004.05.003
NobenTrauth K, 1997, GENOMICS, V44, P266, DOI 10.1006/geno.1997.4869
Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226
OHMORI H, 1987, J PHYSIOL-LONDON, V387, P589
Penheiter AR, 2001, HEARING RES, V162, P19, DOI 10.1016/S0378-5955(01)00356-2
Prosen C.A., 1978, OTOLARYNGOLOGY, V86
RYAN A, 1977, ANN OTO RHINOL LARYN, V86, P176
Schultz JM, 2005, NEW ENGL J MED, V352, P1557, DOI 10.1056/NEJMoa043899
Shin JB, 2010, J NEUROSCI, V30, P9683, DOI 10.1523/JNEUROSCI.1541-10.2010
Siemens J, 2004, NATURE, V428, P950, DOI 10.1038/nature02483
Silverstein RS, 2006, NEUROSCIENCE, V141, P245, DOI 10.1106/j.neuroscience.2006.03.036
Speca DJ, 2006, GENES BRAIN BEHAV, V5, P19, DOI 10.1111/j.1601-183X.2005.00127.x
Spiden SL, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000238
STAUFFER TP, 1995, J BIOL CHEM, V270, P12184
Stebbins W C, 1979, Am J Otolaryngol, V1, P15, DOI 10.1016/S0196-0709(79)80004-6
Street VA, 1998, NAT GENET, V19, P390
Takahashi K, 1999, BIOCHEM BIOPH RES CO, V261, P773, DOI 10.1006/bbrc.1999.1102
Wood JD, 2004, JARO-J ASSOC RES OTO, V5, P99, DOI 10.1007/s10162-003-4022-1
Yamoah EN, 1998, J NEUROSCI, V18, P610
Zheng QY, 2001, HEARING RES, V154, P45, DOI 10.1016/S0378-5955(01)00215-5
NR 49
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2013
VL 304
BP 41
EP 48
DI 10.1016/j.heares.2013.06.003
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 225PM
UT WOS:000324974800006
PM 23792079
ER
PT J
AU Chang, EW
Cheng, JT
Roosli, C
Kobler, JB
Rosowski, JJ
Yun, SH
AF Chang, Ernest W.
Cheng, Jeffrey T.
Roeoesli, Christof
Kobler, James B.
Rosowski, John J.
Yun, Seok Hyun
TI Simultaneous 3D imaging of sound-induced motions of the tympanic
membrane and middle ear ossicles
SO HEARING RESEARCH
LA English
DT Article
ID OPTICAL COHERENCE TOMOGRAPHY; IN-VIVO; HEARING-LOSS; LASER; CHINCHILLA;
VELOCITY; SURFACE; EARDRUM; INTERFEROMETRY; FEASIBILITY
AB Efficient transfer of sound by the middle ear ossicles is essential for hearing. Various pathologies can impede the transmission of sound and thereby cause conductive hearing loss. Differential diagnosis of ossicular disorders can be challenging since the ossicles are normally hidden behind the tympanic membrane (TM). Here we describe the use of a technique termed optical coherence tomography (OCT) vibrography to view the sound-induced motion of the TM and ossicles simultaneously. With this method, we were able to capture three-dimensional motion of the intact TM and ossicles of the chinchilla ear with nanometer-scale sensitivity at sound frequencies from 0.5 to 5 kHz. The vibration patterns of the TM were complex and highly frequency dependent with mean amplitudes of 70-120 nm at 100 dB sound pressure level. The TM motion was only marginally sensitive to stapes fixation and incus-stapes joint interruption; however, when additional information derived from the simultaneous measurement of ossicular motion was added, it was possible to clearly distinguish these different simulated pathologies. The technique may be applicable to clinical diagnosis in Otology and to basic research in audition and acoustics. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Chang, Ernest W.; Yun, Seok Hyun] Massachusetts Gen Hosp, Wellman Ctr Photomed, Boston, MA 02114 USA.
[Chang, Ernest W.] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA.
[Cheng, Jeffrey T.; Roeoesli, Christof; Rosowski, John J.] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA.
[Cheng, Jeffrey T.; Roeoesli, Christof; Rosowski, John J.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA.
[Roeoesli, Christof] Univ Zurich Hosp, Dept Otorhinolaryngol Head & Neck Surg, Zurich, Switzerland.
[Kobler, James B.] Harvard Univ, Sch Med, Dept Surg, Boston, MA 02115 USA.
[Kobler, James B.] Massachusetts Gen Hosp, Ctr Laryngeal Surg & Voice Rehabil, Boston, MA 02114 USA.
[Rosowski, John J.; Yun, Seok Hyun] Harvard MIT Hlth Sci & Technol, Cambridge, MA USA.
[Yun, Seok Hyun] Harvard Univ, Sch Med, Dept Dermatol, Boston, MA 02115 USA.
RP Yun, SH (reprint author), Massachusetts Gen Hosp, Wellman Ctr Photomed, 50 Blossom St, Boston, MA 02114 USA.
EM John_Rosowski@meei.harvard.edu; syun@hms.harvard.edu
FU Center for Biomedical OCT Research and Translation; National Institute
of Health [P41EB015903, R01DC00194]; Wellman Center Graduate Student
Scholarship
FX This work was supported by the Center for Biomedical OCT Research and
Translation funded by National Institute of Health (P41EB015903,
R01DC00194). E.W.C. acknowledges the Wellman Center Graduate Student
Scholarship.
CR Ahn YC, 2007, OPT LETT, V32, P1587, DOI 10.1364/OL.32.001587
Athanasiadis-Sismanis A., 2010, GLASSCOCK SHAMBAUGH, P489
Chang EW, 2012, OPT LETT, V37, P3678, DOI 10.1364/OL.37.003678
Chen FY, 2011, NAT NEUROSCI, V14, P770, DOI 10.1038/nn.2827
Cheng JT, 2013, J ACOUST SOC AM, V133, P918, DOI 10.1121/1.4773263
Cheng JT, 2010, HEARING RES, V263, P66, DOI 10.1016/j.heares.2009.12.024
Chien W, 2009, HEARING RES, V249, P54, DOI 10.1016/j.heares.2008.11.011
DEMPSTER JH, 1991, CLIN OTOLARYNGOL, V16, P157, DOI 10.1111/j.1365-2273.1991.tb01967.x
Fisch U, 2001, OTOL NEUROTOL, V22, P776, DOI 10.1097/00129492-200111000-00011
FUNNELL WRJ, 1983, J ACOUST SOC AM, V73, P1657, DOI 10.1121/1.389386
Goll E, 2011, J ACOUST SOC AM, V130, P1452, DOI 10.1121/1.3613934
Heermann R, 2002, LARYNGO RHINO OTOL, V81, P400, DOI 10.1055/s-2002-32213
Holley MC, 2005, DRUG DISCOV TODAY, V10, P1269, DOI 10.1016/S1359-6446(05)03595-6
Huber AM, 2001, LARYNGOSCOPE, V111, P501, DOI 10.1097/00005537-200103000-00022
Huber AM, 2011, HNO, V59, P255, DOI 10.1007/s00106-011-2271-6
JERGER J, 1975, ARCH OTOLARYNGOL, V101, P589
Just T, 2009, HNO, V57, P421, DOI 10.1007/s00106-009-1907-2
Kim P, 2010, NAT METHODS, V7, P303, DOI [10.1038/nmeth.1440, 10.1038/NMETH.1440]
Klein T, 2011, OPT EXPRESS, V19, P3044, DOI 10.1364/OE.19.003044
Kobler JB, 2010, LARYNGOSCOPE, V120, P1354, DOI 10.1002/lary.20938
Lin J, 2008, ANN OTO RHINOL LARYN, V117, P341
Makita S, 2008, OPT LETT, V33, P836, DOI 10.1364/OL.33.000836
Merchant S.N., 2010, GLASSCOCKSHAMBAUGH S, P49
Nakajima HH, 2012, EAR HEARING, V33, P35, DOI 10.1097/AUD.0b013e31822ccba0
Nakajima HH, 2005, LARYNGOSCOPE, V115, P147, DOI 10.1097/01.mlg.0000150692.23506.b7
Nakajima HH, 2005, HEARING RES, V204, P60, DOI 10.1016/j.heares.2005.01.002
Nguyen CT, 2012, P NATL ACAD SCI USA, V109, P9529, DOI 10.1073/pnas.1201592109
Oh WY, 2010, OPT LETT, V35, P2919, DOI 10.1364/OL.35.002919
Parent P, 2010, HEARING RES, V263, P152, DOI 10.1016/j.heares.2009.12.015
Pitris C, 2001, ARCH OTOLARYNGOL, V127, P637
Ravicz ME, 2010, HEARING RES, V263, P16, DOI 10.1016/j.heares.2009.11.014
Rosowski JJ, 2013, HEARING RES, V301, P44, DOI 10.1016/j.heares.2012.11.022
Rosowski JJ, 2009, HEARING RES, V253, P83, DOI 10.1016/j.heares.2009.03.010
Rosowski JJ, 2008, EAR HEARING, V29, P3
Shanks J, 2009, HDB CLIN AUDIOLOGY, P157
Subhash HM, 2012, J BIOMED OPT, V17, DOI 10.1117/1.JBO.17.6.060505
Tuck-Lee JP, 2008, J ACOUST SOC AM, V124, P348, DOI 10.1121/1.2912438
VRETTAKOS PA, 1988, AM J OTOLARYNG, V9, P58, DOI 10.1016/S0196-0709(88)80009-7
Wada H, 2002, J ACOUST SOC AM, V111, P2189, DOI 10.1121/1.1467671
Yun SH, 2006, NAT MED, V12, P1429, DOI 10.1038/nm1450
Yun SH, 2003, OPT EXPRESS, V11, P2953, DOI 10.1364/OE.11.002953
NR 41
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2013
VL 304
BP 49
EP 56
DI 10.1016/j.heares.2013.06.006
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 225PM
UT WOS:000324974800007
PM 23811181
ER
PT J
AU Carrasco, A
Lomber, SG
AF Carrasco, Andres
Lomber, Stephen G.
TI Influence of inter-field communication on neuronal response synchrony
across auditory cortex
SO HEARING RESEARCH
LA English
DT Article
ID MEDIAL GENICULATE-BODY; CAT VISUAL-CORTEX; CORTICO-CORTICAL CONNECTIONS;
STIMULUS-SPECIFIC ADAPTATION; CORTICOCORTICAL CONNECTIONS;
FUNCTIONAL-ORGANIZATION; COOLING DEACTIVATION; MACAQUE MONKEYS;
TONOTOPIC ORGANIZATION; HORSERADISH-PEROXIDASE
AB Sensory information is encoded by cortical neurons in the form of synaptic discharge time and rate level. These neuronal codes generate response patterns across cell assemblies that are crucial to various cognitive functions. Despite pivotal information about structural and cognitive factors involved in the generation of synchronous neuronal responses such as stimulus context, attention, age, cortical depth, sensory experience, and receptive field properties, the influence of cortico-cortical connectivity on the emergence of neuronal response patterns is poorly understood. The present investigation assesses the role of cortico-cortical connectivity in the modulation of neuronal discharge synchrony across auditory cortex cell-assemblies. Acute single-unit recording techniques in combination with reversible cooling deactivation procedures were used in the domestic cat (Fells catus). Recording electrodes were positioned across primary and non-primary auditory fields and neuronal activity was measured before, during, and after synaptic deactivation of adjacent cortical regions in the presence of acoustic stimulation. Cross-correlation functions of simultaneously recorded units were generated and changes in response synchrony levels across cooling conditions were measured. Data analyses revealed significant decreases in response time coincidences between cortical neurons during periods of cortical deactivation. Collectively, the results of the present investigation demonstrate that cortical neurons participate in the modulation of response synchrony levels across neuronal assemblies of primary and non-primary auditory fields. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Carrasco, Andres; Lomber, Stephen G.] Univ Western Ontario, Cerebral Syst Lab, London, ON N6A 5C1, Canada.
[Carrasco, Andres; Lomber, Stephen G.] Univ Western Ontario, Dept Physiol & Pharmacol, London, ON N6A 5C1, Canada.
[Lomber, Stephen G.] Univ Western Ontario, Dept Psychol, London, ON N6A 5C1, Canada.
[Lomber, Stephen G.] Univ Western Ontario, Brain & Mind Inst, London, ON N6A 5C1, Canada.
[Lomber, Stephen G.] Univ Western Ontario, Natl Ctr Audiol, London, ON N6A 5C1, Canada.
RP Lomber, SG (reprint author), Univ Western Ontario, Dept Physiol & Pharmacol, Cerebral Syst Lab, M216 Med Sci Bldg, London, ON N6A 5C1, Canada.
EM steve.lomber@uwo.ca
RI Lomber, Stephen/B-6820-2015
OI Lomber, Stephen/0000-0002-3001-7909
FU Canadian Institutes of Health Research; Natural Sciences and Engineering
Research Council of Canada; Canada Foundation for Innovation
FX We thank Pam Nixon for excellent veterinary support and Kevin Barker for
his constant help. This work was supported by grants from the Canadian
Institutes of Health Research, the Natural Sciences and Engineering
Research Council of Canada, and the Canada Foundation for Innovation.
CR ANDERSEN RA, 1980, J COMP NEUROL, V194, P663, DOI 10.1002/cne.901940312
Anderson LA, 2013, EUR J NEUROSCI, V37, P52, DOI 10.1111/ejn.12018
Antunes FM, 2011, J NEUROSCI, V31, P17306, DOI 10.1523/JNEUROSCI.1915-11.2011
Beaver BV, 2001, J AM VET MED ASSOC, V218, P669
BENITA M, 1972, BRAIN RES, V36, P133, DOI 10.1016/0006-8993(72)90771-8
BORDI F, 1994, EXP BRAIN RES, V98, P261, DOI 10.1007/BF00228414
BOWMAN EM, 1988, J COMP NEUROL, V272, P30, DOI 10.1002/cne.902720104
Brosch M, 2002, J NEUROPHYSIOL, V87, P2715, DOI 10.1152/jn.00583.2001
Brosch M, 1999, EUR J NEUROSCI, V11, P3517, DOI 10.1046/j.1460-9568.1999.00770.x
BROSCH M, 1995, EUR J NEUROSCI, V7, P86, DOI 10.1111/j.1460-9568.1995.tb01023.x
Budinger E, 2000, EUR J NEUROSCI, V12, P2425, DOI 10.1046/j.1460-9568.2000.00142.x
CALFORD MB, 1983, J NEUROSCI, V3, P2365
Carrasco A, 2011, J NEUROPHYSIOL, V106, P1166, DOI 10.1152/jn.00940.2010
Carrasco A, 2009, J NEUROSCI, V29, P14323, DOI 10.1523/JNEUROSCI.2905-09.2009
Carrasco A, 2009, J NEUROSCI, V29, P8350, DOI 10.1523/JNEUROSCI.6001-08.2009
Carrasco A, 2010, J NEUROSCI, V30, P1476, DOI 10.1523/JNEUROSCI.5708-09.2009
Cheung SW, 2001, HEARING RES, V156, P115, DOI 10.1016/S0378-5955(01)00272-6
CLAREY JC, 1990, J COMP NEUROL, V301, P304, DOI 10.1002/cne.903010212
Clasca F, 1997, J COMP NEUROL, V384, P456, DOI 10.1002/(SICI)1096-9861(19970804)384:3<456::AID-CNE10>3.0.CO;2-H
CODE RA, 1985, J COMP NEUROL, V242, P485, DOI 10.1002/cne.902420404
deCharms RC, 1996, NATURE, V381, P610, DOI 10.1038/381610a0
de la Mothe LA, 2012, ANAT REC, V295, P800, DOI 10.1002/ar.22451
Diamond I T, 1968, Brain Res, V11, P177, DOI 10.1016/0006-8993(68)90080-2
Eggermont JJ, 2000, J NEUROPHYSIOL, V83, P2708
Eggermont JJ, 1996, EXP BRAIN RES, V110, P379
Eggermont JJ, 1998, J NEUROPHYSIOL, V80, P2743
EGGERMONT JJ, 1992, J NEUROPHYSIOL, V68, P1216
Eggermont JJ, 2006, J NEUROPHYSIOL, V96, P746, DOI 10.1152/jn.00059.2006
EGGERMONT JJ, 1995, J NEUROPHYSIOL, V73, P227
ENGEL AK, 1990, EUR J NEUROSCI, V2, P588, DOI 10.1111/j.1460-9568.1990.tb00449.x
ENGEL AK, 1991, SCIENCE, V252, P1177, DOI 10.1126/science.252.5009.1177
Erchova IA, 2002, EUR J NEUROSCI, V15, P744, DOI 10.1046/j.0953-816x.2002.01898.x
FITZPATRICK KA, 1980, J COMP NEUROL, V192, P589, DOI 10.1002/cne.901920314
GRAY CM, 1989, NATURE, V338, P334, DOI 10.1038/338334a0
Hackett TA, 1998, J COMP NEUROL, V394, P475, DOI 10.1002/(SICI)1096-9861(19980518)394:4<475::AID-CNE6>3.0.CO;2-Z
Hackett TA, 1999, BRAIN RES, V817, P45, DOI 10.1016/S0006-8993(98)01182-2
Hackett TA, 2011, HEARING RES, V271, P133, DOI 10.1016/j.heares.2010.01.011
Horsley V, 1908, BRAIN, V31, P45, DOI 10.1093/brain/31.1.45
Imaizumi K, 2004, J NEUROPHYSIOL, V92, P444, DOI 10.1152/jn.01173.2003
IMIG TJ, 1980, J COMP NEUROL, V192, P293, DOI 10.1002/cne.901920208
IMIG TJ, 1978, J COMP NEUROL, V182, P637, DOI 10.1002/cne.901820406
Kaas JH, 2000, P NATL ACAD SCI USA, V97, P11793, DOI 10.1073/pnas.97.22.11793
Kilgard MP, 2007, HEARING RES, V229, P171, DOI 10.1016/j.heares.2007.01.005
KNIGHT PL, 1977, BRAIN RES, V130, P447, DOI 10.1016/0006-8993(77)90108-1
Lee CC, 2008, J COMP NEUROL, V507, P1901, DOI 10.1002/cne.21614
Lee CC, 2008, J COMP NEUROL, V507, P1920, DOI 10.1002/cne.21613
Lomber SG, 1999, J NEUROSCI METH, V86, P179, DOI 10.1016/S0165-0270(98)00165-4
Lomber SG, 2007, HEARING RES, V229, P31, DOI 10.1016/j.heares.2007.01.013
Lomber SG, 1999, J NEUROSCI METH, V86, P109, DOI 10.1016/S0165-0270(98)00160-5
Lomber SG, 1996, VISUAL NEUROSCI, V13, P1143
Lomber SG, 2008, NAT NEUROSCI, V11, P609, DOI 10.1038/nn.2108
LOMBER SG, 1994, P NATL ACAD SCI USA, V91, P2999, DOI 10.1073/pnas.91.8.2999
Lomber SG, 2000, CEREB CORTEX, V10, P1066, DOI 10.1093/cercor/10.11.1066
Malhotra S, 2007, J NEUROPHYSIOL, V97, P26, DOI 10.1152/jn.00720.2006
Mathers DA, 2007, NEUROPHARMACOLOGY, V52, P1160, DOI 10.1016/j.neuropharm.2006.12.004
Mellott JG, 2010, HEARING RES, V267, P119, DOI 10.1016/j.heares.2010.04.003
MERZENICH MM, 1975, J NEUROPHYSIOL, V38, P231
MOREL A, 1993, J COMP NEUROL, V335, P437, DOI 10.1002/cne.903350312
Nakamoto KT, 2008, J NEUROPHYSIOL, V99, P2347, DOI 10.1152/jn.01326.2007
NELSON JI, 1992, VISUAL NEUROSCI, V9, P21
Olfert E.D., 1993, GUIDE CARE USE EXPT
Palmer AR, 2007, HEARING RES, V229, P148, DOI 10.1016/j.heares.2006.12.007
Payne BR, 1996, VISUAL NEUROSCI, V13, P805
PERKEL DH, 1967, BIOPHYS J, V7, P419
PHILLIPS DP, 1984, J NEUROPHYSIOL, V51, P147
Rauschecker JP, 1997, J COMP NEUROL, V382, P89
REALE RA, 1980, J COMP NEUROL, V192, P265, DOI 10.1002/cne.901920207
ROUILLER EM, 1991, EXP BRAIN RES, V86, P483
RUTTGERS K, 1990, BRAIN RES, V509, P71, DOI 10.1016/0006-8993(90)90310-8
Schnitzler A, 2005, NAT REV NEUROSCI, V6, P285, DOI 10.1038/nrn1650
SCHREINER CE, 1984, J NEUROPHYSIOL, V51, P1284
Singer W, 1999, NEURON, V24, P49, DOI 10.1016/S0896-6273(00)80821-1
Sporns O, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001049
Sporns O, 2004, NEUROINFORMATICS, V2, P145, DOI 10.1385/NI:2:2:145
Sporns O, 2006, BIOSYSTEMS, V85, P55, DOI 10.1016/j.biosystems.2006.02.008
Thomas H, 2003, BIOL RES, V36, P155, DOI 10.4067/S0716-97602003000200006
Uhlhaas Peter J, 2006, Neuron, V52, P155, DOI 10.1016/j.neuron.2006.09.020
Varela F, 2001, NAT REV NEUROSCI, V2, P229, DOI 10.1038/35067550
WINER JA, 1977, J COMP NEUROL, V176, P387, DOI 10.1002/cne.901760307
Winer JA, 2007, HEARING RES, V229, P3, DOI 10.1016/j.heares.2007.01.017
Yang XF, 2006, NEUROBIOL DIS, V23, P637, DOI 10.1016/j.nbd.2006.05.006
Zhu Z, 2002, J NEUROSCI METH, V115, P45, DOI 10.1016/S0165-0270(01)00529-5
NR 82
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2013
VL 304
BP 57
EP 69
DI 10.1016/j.heares.2013.05.012
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 225PM
UT WOS:000324974800008
PM 23791776
ER
PT J
AU Brown, DJ
Chihara, Y
Wang, Y
AF Brown, D. J.
Chihara, Y.
Wang, Y.
TI Changes in utricular function during artificial endolymph injections in
guinea pigs
SO HEARING RESEARCH
LA English
DT Article
ID BONE CONDUCTED VIBRATION; EVOKED-POTENTIALS VSEPS; MENIERES-DISEASE;
REISSNERS MEMBRANE; COCHLEAR FUNCTION; TEMPORAL BONE; HYDROPS;
PATHOPHYSIOLOGY; RESPONSES; SYMPTOMS
AB Various theories suggest endolymphatic hydrops may cause a rupture of the membranous labyrinth or may force open the utriculo-saccular duct, resulting in a sudden change in inner ear function. Here, we have used slow injections of artificial endolymph into either scala media or the utricle of anaesthetised guinea pigs to investigate the effects of hydrops. Vestibular function was continuously monitored in addition to the measurements of cochlear function developed in our laboratory (Brown et al. Hear Res, 2013). Scala media injection induced consistent functional changes, which occurred in two stages. Initial changes involved were associated with an increased hydrostatic pressure in scala media that only affected cochlear function. After 3-4 mu l of endolymph had been injected, cochlear function spontaneously recovered, and was often shortly followed by a transient increase or decrease in utricular sensitivity, with the effects varying between animals. Endolymph injection directly into the utricle produced variable effects across animals, although in 2 experiments it produced similar changes as those observed for scala media injections, suggesting that the fluid pathway between scala media and the utricle was continuous in these animals. The mechanism underlying the sudden, spontaneous functional changes is not yet clear, but we tentatively suggest that in some cases it may be caused by the utriculo-saccular duct suddenly opening to alleviate an elevated hydrostatic pressure in the pars inferior, resulting in a change in utricular function due to an increase in its volume. These changes are comparable to the sudden or fluctuating functional changes in Meniere's sufferers, and support the hypothesis that endolymphatic hydrops can directly cause some symptoms of this syndrome. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.
C1 [Brown, D. J.; Chihara, Y.; Wang, Y.] Univ Sydney, Sydney Med Sch, Brain & Mind Res Inst, Camperdown, NSW 2050, Australia.
[Chihara, Y.] Natl Tokyo Med Ctr, Natl Inst Sensory Organs, Tokyo, Japan.
RP Brown, DJ (reprint author), Univ Sydney, Sydney Med Sch, Brain & Mind Res Inst, 100 Mallett St, Camperdown, NSW 2050, Australia.
EM daniel.brown@sydney.edu.au; y-chihara@umin.ac.jp
FU NHMRC [APP1044219]; Sydney Medical School Foundation; Meniere's Research
Fund Inc.
FX This study was supported in part by an NHMRC project grant APP1044219,
and by funds held by The Sydney Medical School Foundation, and raised by
the Meniere's Research Fund Inc., a not-for-profit organization in NSW,
Australia.
CR Böhmer A, 1995, Acta Otolaryngol Suppl, V520 Pt 1, P120, DOI 10.3109/00016489509125206
Brown DJ, 2013, HEARING RES, V296, P96, DOI 10.1016/j.heares.2012.12.004
Chihara Y., 2013, EVIDENCE UTRICULAR O
Cureoglu S, 2004, OTOLARYNG HEAD NECK, V130, P113, DOI 10.1016/j.otohns.2003.09.008
Curthoys IS, 2006, EXP BRAIN RES, V175, P256, DOI 10.1007/s00221-006-0544-1
DUVALL AJ, 1967, ANN OTO RHINOL LARYN, V76, P688
Gibson WPR, 2010, OTOLARYNG CLIN N AM, V43, P1019, DOI 10.1016/j.otc.2010.05.013
Jones TA, 2011, HEARING RES, V280, P133, DOI 10.1016/j.heares.2011.05.005
Jones TA, 1999, HEARING RES, V136, P75, DOI 10.1016/S0378-5955(99)00110-0
Kakigi Akinobu, 2010, ORL J Otorhinolaryngol Relat Spec, V71 Suppl 1, P16, DOI 10.1159/000265118
Kingma CM, 2010, EUR ARCH OTO-RHINO-L, V267, P1679, DOI 10.1007/s00405-010-1298-8
Kingma CM, 2009, J VESTIBUL RES-EQUIL, V19, P27, DOI 10.3233/VES-2009-0341
Kobayashi T, 1999, AM J OTOL, V20, P179
Manzari L, 2011, EUR ARCH OTO-RHINO-L, V268, P637, DOI 10.1007/s00405-010-1442-5
Manzari L, 2010, CLIN NEUROPHYSIOL, V121, P1092, DOI 10.1016/j.clinph.2010.02.003
Marcon S., 2008, HEAR RES, V237
MARCUS DC, 1983, HEARING RES, V12, P17, DOI 10.1016/0378-5955(83)90116-8
Marcus N.Y., 1987, AM J PHYSL 2, V253, P613
McNeill C, 2009, ACTA OTO-LARYNGOL, V129, P1404, DOI 10.3109/00016480902751672
Merchant SN, 2005, OTOL NEUROTOL, V26, P74, DOI 10.1097/00129492-200501000-00013
PATUZZI R, 1984, HEARING RES, V13, P19, DOI 10.1016/0378-5955(84)90091-1
Plotnik M, 1999, AM J OTOL, V20, P238
Rabbitt RD, 2001, ANN NY ACAD SCI, V942, P313
Salt AN, 2004, HEARING RES, V191, P90, DOI 10.1016/j.heares.2003.12.018
Salt A.N., 2010, OTOLARYNGOL CLIN N A, P43971
SCHUKNECHT HF, 1975, J LARYNGOL OTOL, V89, P985, DOI 10.1017/S0022215100081305
SCHUKNECHT HF, 1976, ARCH OTO-RHINO-LARYN, V212, P253, DOI 10.1007/BF00453673
TONNDORF J, 1983, ACTA OTO-LARYNGOL, V95, P421, DOI 10.3109/00016488309139425
Uzun-Coruhlu H, 2007, HEARING RES, V233, P77, DOI 10.1016/j.heares.2007.07.008
Valk WL, 2004, HEARING RES, V192, P47, DOI 10.1016/j.heares.2003.12.021
Valk WL, 2006, ACTA OTO-LARYNGOL, V126, P1030, DOI 10.1080/00016480600621722
ZENNER HP, 1986, HEARING RES, V22, P83, DOI 10.1016/0378-5955(86)90082-1
ZWICKER E, 1977, J ACOUST SOC AM, V61, P1031, DOI 10.1121/1.381387
NR 33
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2013
VL 304
BP 70
EP 76
DI 10.1016/j.heares.2013.05.011
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 225PM
UT WOS:000324974800009
PM 23792075
ER
PT J
AU McMullan, AR
Hambrook, DA
Tata, MS
AF McMullan, Amanda R.
Hambrook, Dillon A.
Tata, Matthew S.
TI Brain dynamics encode the spectrotemporal boundaries of auditory objects
SO HEARING RESEARCH
LA English
DT Article
ID PRIMARY VISUAL-CORTEX; GAMMA-BAND; FUNCTIONAL SPECIALIZATION;
NEUROMAGNETIC RESPONSES; STIMULUS SELECTION; EVOKED FIELD; BOTTOM-UP;
PITCH; POTENTIALS; MECHANISMS
AB Perception of objects in the scene around us is effortless and intuitive, yet entails profound computational challenges. Progress has been made in understanding some mechanisms by which the brain encodes the boundaries and surfaces of visual objects. However, in the auditory domain, these mechanisms are poorly understood. We investigated differences between neural responses to spectrotemporal boundaries in the auditory scene. We used iterated rippled noise to create perceptual boundaries with and without energy transients. In contrast to boundaries marked by energy transients, second-order boundaries were characterized by an absence of early components in the event-related potential. First-order energy boundaries triggered a transient evoked gamma-band response and a well-defined P90 component of the event-related potential, whereas second-order boundaries evoked only the later N1 component. Furthermore, the N1 component was delayed when evoked by second-order boundaries and theta-band electroencephalography activity at this latency exhibited significant phase lag for second-order compared to first-order boundaries. We speculate that boundaries defined by sharp energy transients can be registered by early feed-forward mechanisms. By contrast, boundaries defined only by discontinuities at discrete frequency bands require integration across the tonotopic representation of the frequency spectrum and require time-consuming interaction between auditory areas. (C) 2013 Elsevier B.V. All rights reserved.
C1 [McMullan, Amanda R.; Hambrook, Dillon A.; Tata, Matthew S.] Univ Lethbridge, Dept Neurosci, Lethbridge, AB T1K 3M4, Canada.
RP McMullan, AR (reprint author), Univ Lethbridge, Dept Neurosci, 4401 Univ Dr W, Lethbridge, AB T1K 3M4, Canada.
EM amanda.mcmullan@uleth.ca
FU NSERC Canada
FX The authors would like to thank Karla Ponjavic-Conte, Jarrod Dowdall,
and Sebastian Pavlovic. Research was funded by an NSERC Canada Discovery
Grant to Matthew S. Tata.
CR Alain C, 2000, FRONT BIOSCI, V5, pD202, DOI 10.2741/Alain
Alain C, 2001, P NATL ACAD SCI USA, V98, P12301, DOI 10.1073/pnas.211209098
Alain C, 2001, J EXP PSYCHOL HUMAN, V27, P1072, DOI 10.1037//0096-1523.27.5.1072
Alain C, 2002, J ACOUST SOC AM, V111, P990, DOI 10.1121/1.1434942
Andersen RA, 1997, NEURON, V18, P865, DOI 10.1016/S0896-6273(00)80326-8
Baramidze V, 2006, SIAM J SCI COMPUT, V28, P241, DOI 10.1137/040620722
Barker D, 2011, CEREB CORTEX, V22, P745
BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289
Bosman CA, 2012, NEURON, V75, P875, DOI 10.1016/j.neuron.2012.06.037
Busch NA, 2006, NEUROIMAGE, V29, P1106, DOI 10.1016/j.neuroimage.2005.09.009
Butcher A, 2011, HEARING RES, V272, P58, DOI 10.1016/j.heares.2010.10.019
Chait M, 2006, CEREB CORTEX, V16, P835, DOI 10.1093/cercor/bhj027
Chait M, 2007, J NEUROPHYSIOL, V98, P224, DOI 10.1152/jn.00359.2007
Chait M, 2007, J NEUROSCI, V27, P5207, DOI 10.1523/JNEUROSCI.0318-07.2007
Chait M, 2008, BRAIN RES, V1213, P78, DOI 10.1016/j.brainres.2008.03.050
David O, 2006, NEUROIMAGE, V31, P1580, DOI 10.1016/j.neuroimage.2006.02.034
Delorme A., 2004, EEGLAB MATLAB TOOLBO
Doesburg SM, 2005, NEUROREPORT, V16, P1139, DOI 10.1097/00001756-200508010-00001
Dyson BJ, 2004, J ACOUST SOC AM, V115, P280, DOI 10.1121/1.1631945
PANTEV C, 1994, NATO ADV SCI INST SE, V271, P219
Fries P, 2005, TRENDS COGN SCI, V9, P474, DOI 10.1016/j.tics.2005.08.011
Fries P, 2002, J NEUROSCI, V22, P3739
Glasberg BR, 2002, J AUDIO ENG SOC, V50, P331
GOODALE MA, 1992, TRENDS NEUROSCI, V15, P20, DOI 10.1016/0166-2236(92)90344-8
Griffiths TD, 2002, TRENDS NEUROSCI, V25, P348, DOI 10.1016/S0166-2236(02)02191-4
Griffiths TD, 2004, NAT REV NEUROSCI, V5, P887, DOI 10.1038/nrn1538
Hall D.A., 2008, CEREB CORTEX, V19, P576
HARI R, 1987, AUDIOLOGY, V26, P31
HILLYARD SA, 1978, PERCEPT PSYCHOPHYS, V24, P391, DOI 10.3758/BF03199736
HILLYARD SA, 1973, SCIENCE, V182, P177, DOI 10.1126/science.182.4108.177
Hoechstetter K, 2004, BRAIN TOPOGR, V16, P233
Johnson BW, 2006, NEUROREPORT, V17, P389, DOI 10.1097/01.wnr.0000203358.72814.df
Johnson BW, 2003, CLIN NEUROPHYSIOL, V114, P2245, DOI 10.1016/S1388-2457(03)00247-5
Krumbholz K, 2003, CEREB CORTEX, V13, P765, DOI 10.1093/cercor/13.7.765
Kubovy M, 2001, COGNITION, V80, P97, DOI 10.1016/S0010-0277(00)00155-4
Lee TS, 2001, P NATL ACAD SCI USA, V98, P1907, DOI 10.1073/pnas.031579998
Lutkenhoner B, 2011, HEARING RES, V272, P85, DOI 10.1016/j.heares.2010.10.013
Luu P, 2005, DETERMINATION HYDROC
Mareschal I, 1998, NAT NEUROSCI, V1, P150, DOI 10.1038/401
Marr D., 1982, VISION COMPUTATIONAL
McDonald KL, 2005, J ACOUST SOC AM, V118, P1593, DOI 10.1121/1.2000747
NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x
Niwa M, 2012, J NEUROSCI, V32, P9323, DOI 10.1523/JNEUROSCI.5832-11.2012
Oostenveld R., 2011, FIELDTRIP OPEN SOURC
PANTEV C, 1991, P NATL ACAD SCI USA, V88, P8996, DOI 10.1073/pnas.88.20.8996
PFEFFERB.A, 1971, PSYCHOPHYSIOLOGY, V8, P332, DOI 10.1111/j.1469-8986.1971.tb00463.x
POLICH J, 1995, BIOL PSYCHOL, V41, P103, DOI 10.1016/0301-0511(95)05130-9
Ponjavic-Conte K.D., 2013, PLOS ONE, V8
Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800
Seither-Preisler A, 2004, EUR J NEUROSCI, V19, P3073, DOI 10.1111/j.1460-9568.2004.03423.x
Seither-Preisler A, 2006, HEARING RES, V218, P50, DOI 10.1016/j.heares.2006.04.005
Seither-Preisler A, 2006, HEARING RES, V213, P88, DOI 10.1016/j.heares.2006.01.003
Shahin AJ, 2007, BRAIN TOPOGR, V20, P55, DOI 10.1007/s10548-007-0031-4
SHAPLEY R, 1990, ANNU REV PSYCHOL, V41, P635, DOI 10.1146/annurev.psych.41.1.635
Singer W, 1999, NEURON, V24, P49, DOI 10.1016/S0896-6273(00)80821-1
Snyder JS, 2006, J COGNITIVE NEUROSCI, V18, P1, DOI 10.1162/089892906775250021
Tallon-Baudry C, 1999, TRENDS COGN SCI, V3, P151, DOI 10.1016/S1364-6613(99)01299-1
Tian B, 2001, SCIENCE, V292, P290, DOI 10.1126/science.1058911
UNGAN P, 1989, ELECTROEN CLIN NEURO, V73, P306, DOI 10.1016/0013-4694(89)90109-0
VONDERMALSBURG C, 1986, BIOL CYBERN, V54, P29
Yost WA, 1996, J ACOUST SOC AM, V100, P511, DOI 10.1121/1.415873
Yuval-Greenberg S, 2008, NEURON, V58, P429, DOI 10.1016/j.neuron.2008.03.027
ZEKI S, 1991, J NEUROSCI, V11, P641
Zipser K, 1996, J NEUROSCI, V16, P7376
NR 64
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2013
VL 304
BP 77
EP 90
DI 10.1016/j.heares.2013.06.009
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 225PM
UT WOS:000324974800010
PM 23831040
ER
PT J
AU Du, XP
Li, W
Gao, XS
West, MB
Saltzman, WM
Cheng, CJ
Stewart, C
Zheng, J
Cheng, WH
Kopke, RD
AF Du, Xiaoping
Li, Wei
Gao, Xinsheng
West, Matthew B.
Saltzman, W. Mark
Cheng, Christopher J.
Stewart, Charles
Zheng, Jie
Cheng, Weihua
Kopke, Richard D.
TI Regeneration of mammalian cochlear and vestibular hair cells through
Hes1/Hes5 modulation with siRNA
SO HEARING RESEARCH
LA English
DT Article
ID GREEN FLUORESCENT PROTEIN; MATH1 GENE-TRANSFER; GUINEA-PIG COCHLEA;
AVIAN INNER-EAR; PLGA NANOPARTICLES; RNA-INTERFERENCE; SUPPORTING CELLS;
ACOUSTIC TRAUMA; IN-VITRO; SENSORY EPITHELIA
AB The Notch pathway is a cell signaling pathway determining initial specification and subsequent cell fate in the inner ear. Previous studies have suggested that new hair cells (HCs) can be regenerated in the inner ear by manipulating the Notch pathway. In the present study, delivery of siRNA to Hes1 and Hes5 using a transfection reagent or siRNA to Hes1 encapsulated within poly(lactide-co-glycolide acid) (PLGA) nanoparticles increased HC numbers in non-toxin treated organotypic cultures of cochleae and maculae of postnatal day 3 mouse pups. An increase in HCs was also observed in cultured cochleae and maculae of mouse pups pre-conditioned with a HC toxin (4-hydroxy-2-nonenal or neomycin) and then treated with the various siRNA formulations. Treating cochleae with siRNA to Hes1 associated with a transfection reagent or siRNA to Hes1 delivered by PLGA nanoparticles decreased Hes1 mRNA and up-regulated Atoh1 mRNA expression allowing supporting cells (SCs) to acquire a HC fate. Experiments using cochleae and maculae of p27(kip1)/-GFP transgenic mouse pups demonstrated that newly generated HCs trans-differentiated from SCs. Furthermore, PLGA nanoparticles are non-toxic to inner ear tissue, readily taken up by cells within the tissue of interest, and present a synthetic delivery system that is a safe alternative to viral vectors. These results indicate that when delivered using a suitable vehicle, Hes siRNAs are potential therapeutic molecules that may have the capacity to regenerate new HCs in the inner ear and possibly restore human hearing and balance function. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Du, Xiaoping; Li, Wei; Gao, Xinsheng; West, Matthew B.; Stewart, Charles; Zheng, Jie; Cheng, Weihua; Kopke, Richard D.] Hough Ear Inst, Oklahoma City, OK 73112 USA.
[Kopke, Richard D.] Oklahoma Med Res Fdn, Oklahoma City, OK 73104 USA.
[Saltzman, W. Mark; Cheng, Christopher J.] Yale Univ, Dept Biomed Engn, New Haven, CT 06511 USA.
RP Kopke, RD (reprint author), Hough Ear Inst, POB 23206, Oklahoma City, OK 73123 USA.
EM rkopke@houghear.org
FU Hough Ear Institute; Integris Health, Oklahoma City, Oklahoma
FX This study was supported by grants from Hough Ear Institute and Integris
Health, Oklahoma City, Oklahoma (RDK). The authors would like to thank
Dr. Neil Segil at House Ear Institute for providing
p27kip1/GFP transgenic mice and Jim Henthorn at the
University of Oklahoma Health Science Center for assistance with
confocal microscopy. We are also very grateful to Dr. Douglas Cotanche
at Boston University School of Medicine for his thoughtful review of and
suggestions for this manuscript.
CR Adler HJ, 1996, NEUROSCI LETT, V205, P17, DOI 10.1016/0304-3940(96)12367-3
Alvarado DM, 2011, J NEUROSCI, V31, P4535, DOI 10.1523/JNEUROSCI.5456-10.2011
Barnes Allison L, 2007, Biomagn Res Technol, V5, P1, DOI 10.1186/1477-044X-5-1
Batts SA, 2009, HEARING RES, V249, P15, DOI 10.1016/j.heares.2008.12.008
Bergmans Hans, 2008, Environmental Biosafety Research, V7, P1, DOI 10.1051/ebr:2008001
Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837
Bermingham-McDonogh O, 2003, CURR OPIN NEUROBIOL, V13, P119, DOI 10.1016/S0959-4388(03)00018-7
Brigande JV, 2009, NAT NEUROSCI, V12, P679, DOI 10.1038/nn.2311
Cartiera MS, 2009, BIOMATERIALS, V30, P2790, DOI 10.1016/j.biomaterials.2009.01.057
Castanotto D, 2009, NATURE, V457, P426, DOI 10.1038/nature07758
CHALFIE M, 1994, SCIENCE, V263, P802, DOI 10.1126/science.8303295
Chen P, 1999, DEVELOPMENT, V126, P1581
Chene CJ, 2011, BIOMATERIALS, V32, P6194, DOI 10.1016/j.biomaterials.2011.04.053
Collado MS, 2011, J NEUROSCI, V31, P11855, DOI 10.1523/JNEUROSCI.2525-11.2011
CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100
Cotanche DA, 2008, J COMMUN DISORD, V41, P421, DOI 10.1016/j.jcomdis.2008.03.004
Cu Y, 2009, MOL PHARMACEUT, V6, P173, DOI 10.1021/mp8001254
Cu Y, 2010, NANOMED-NANOTECHNOL, V6, P334, DOI 10.1016/j.nano.2009.09.001
Cu Y, 2011, J CONTROL RELEASE, V156, P258, DOI 10.1016/j.jconrel.2011.06.036
Davda J, 2002, INT J PHARM, V233, P51, DOI 10.1016/S0378-5173(01)00923-1
Davis ME, 2010, NATURE, V464, P1067, DOI 10.1038/nature08956
Doetzlhofer A, 2006, BRAIN RES, V1091, P282, DOI 10.1016/j.brainres.2006.02.071
Dormer KJ, 2008, J BIOMED NANOTECHNOL, V4, P174, DOI 10.1166/jbn.2008.015
Du XP, 2013, OTOL NEUROTOL, V34, P41, DOI 10.1097/MAO.0b013e318277a40e
Duncan LJ, 2006, J COMP NEUROL, V499, P691, DOI 10.1002/cne.21114
Fekete DM, 1998, J NEUROSCI, V18, P7811
FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284
Forge A, 1998, J COMP NEUROL, V397, P69
Gao X., 2010, J NANOTECHNOL ENG ME, DOI DOI 10.1115/1.4002043
Ge XX, 2007, OTOLARYNG HEAD NECK, V137, P619, DOI 10.1016/j.otohns.2007.04.013
Guzman J, 2006, ACTA OTO-LARYNGOL, V126, P685, DOI 10.1080/00016480500492018
Hartman BH, 2009, JARO-J ASSOC RES OTO, V10, P321, DOI 10.1007/s10162-009-0162-2
Hori R, 2007, NEUROREPORT, V18, P1911
Izumikawa M, 2008, HEARING RES, V240, P52, DOI 10.1016/j.heares.2008.02.007
Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193
Jia SP, 2009, J NEUROSCI, V29, P15277, DOI 10.1523/JNEUROSCI.3231-09.2009
JOHNSSON LG, 1976, ANN OTO RHINOL LARYN, V85, P725
Jung JY, 2013, MOL THER, V21, P834, DOI 10.1038/mt.2013.18
KAIN SR, 1995, BIOTECHNIQUES, V19, P650
Kawamoto K, 2003, J NEUROSCI, V23, P4395
Kawamoto K, 2009, HEARING RES, V247, P17, DOI 10.1016/j.heares.2008.08.010
Kelley MW, 2006, NAT REV NEUROSCI, V7, P837, DOI 10.1038/nrn1987
Kiernan AE, 2005, DEVELOPMENT, V132, P4353, DOI 10.1242/dev.02002
Kopke RD, 2006, AUDIOL NEURO-OTOL, V11, P123, DOI 10.1159/000090685
Kopke RD, 2001, P NATL ACAD SCI USA, V98, P5886, DOI 10.1073/pnas.101120898
Laine H, 2010, DEV BIOL, V337, P134, DOI 10.1016/j.ydbio.2009.10.027
Lanford PJ, 1999, NAT GENET, V21, P289
Lin V, 2011, J NEUROSCI, V31, P15329, DOI 10.1523/JNEUROSCI.2057-11.2011
Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
Lopez I, 1997, INT J DEV NEUROSCI, V15, P447, DOI 10.1016/S0736-5748(96)00103-7
Lowenheim H, 1999, P NATL ACAD SCI USA, V96, P4084, DOI 10.1073/pnas.96.7.4084
Ma EY, 2008, J NEUROSCI, V28, P2261, DOI 10.1523/JNEUROSCI.4372-07.2008
Maeda Y, 2005, HUM MOL GENET, V14, P1641, DOI 10.1093/hmg/ddi172
Minoda R, 2007, HEARING RES, V232, P44, DOI 10.1016/j.heares.2007.06.005
Mizutari K, 2013, NEURON, V77, P58, DOI 10.1016/j.neuron.2012.10.032
Mondalek Fadee G, 2006, J Nanobiotechnology, V4, P4, DOI 10.1186/1477-3155-4-4
Mukherjea D, 2008, J NEUROSCI, V28, P13056, DOI 10.1523/JNEUROSCI.1307-08.2008
Murata J, 2006, J COMP NEUROL, V497, P502, DOI 10.1002/cne.20997
Ozeki M, 2007, J NEUROSCI RES, V85, P515, DOI 10.1002/jnr.21133
Raft S, 2007, DEVELOPMENT, V134, P4405, DOI 10.1242/dev.009118
Riley BB, 1999, DEVELOPMENT, V126, P5669
Ruiz JW, 2006, OTOLARYNG HEAD NECK, V135, P792, DOI 10.1016/j.otohns.2006.05.031
RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101
Rybak LP, 2007, KIDNEY INT, V72, P931, DOI 10.1038/sj.ki.5002434
Salcher EE, 2010, TOP CURR CHEM, V296, P227, DOI 10.1007/128_2010_69
Seibel NM, 2007, ANAL BIOCHEM, V368, P95, DOI 10.1016/j.ab.2007.05.025
Shnerson A, 1981, Brain Res, V254, P77
Shou JY, 2003, MOL CELL NEUROSCI, V23, P169, DOI 10.1016/S1044-7431(03)00066-6
Sinkkonen ST, 2011, SCI REP-UK, V1, DOI 10.1038/srep00026
Sobkowicz HM, 1996, ACTA OTO-LARYNGOL, V116, P257, DOI 10.3109/00016489609137836
Staecker H, 2007, OTOL NEUROTOL, V28, P223, DOI 10.1097/MAO.0b013e31802b3225
Stone JS, 1998, CURR OPIN NEUROL, V11, P17, DOI 10.1097/00019052-199802000-00004
Takebayashi S, 2007, DEV BIOL, V307, P165, DOI 10.1016/j.ydbio.2007.04.035
Tang LS, 2006, DEVELOPMENT, V133, P3683, DOI 10.1242/dev.02536
Tateya T, 2011, DEV BIOL, V352, P329, DOI 10.1016/j.ydbio.2011.01.038
Taylor S, 2010, METHODS, V50, pS1, DOI 10.1016/j.ymeth.2010.01.005
Torchinsky C, 1999, J NEUROCYTOL, V28, P913, DOI 10.1023/A:1007082424477
Walsh RM, 2000, J OTOLARYNGOL, V29, P351
Wang GP, 2010, HEARING RES, V267, P61, DOI 10.1016/j.heares.2010.03.085
Wang Y., 2011, J NANOTECHNOL ENG ME, DOI DOI 10.1115/1A002928
Wassel RA, 2007, COLLOID SURFACE A, V292, P125, DOI 10.1016/j.colsurfa.2006.06.012
Wei XB, 2003, BIOPHYS J, V84, P1317
White PM, 2006, NATURE, V441, P984, DOI 10.1038/nature04849
Whitehead KA, 2009, NAT REV DRUG DISCOV, V8, P129, DOI 10.1038/nrd2742
Woodrow KA, 2009, NAT MATER, V8, P526, DOI [10.1038/nmat2444, 10.1038/NMAT2444]
Yamamoto N, 2006, J MOL MED-JMM, V84, P37, DOI 10.1007/s00109-005-0706-9
YLIKOSKI J, 1992, HEARING RES, V60, P80, DOI 10.1016/0378-5955(92)90061-Q
Zheng JL, 2000, NAT NEUROSCI, V3, P580
Zheng JL, 2000, DEVELOPMENT, V127, P4551
Zine A, 2001, J NEUROSCI, V21, P4712
Zine A, 2002, HEARING RES, V170, P22, DOI 10.1016/S0378-5955(02)00449-5
NR 91
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2013
VL 304
BP 91
EP 110
DI 10.1016/j.heares.2013.06.011
PG 20
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 225PM
UT WOS:000324974800011
PM 23850665
ER
PT J
AU Corfield, JR
Krilow, JM
Vande Ligt, MN
Iwaniuk, AN
AF Corfield, Jeremy R.
Krilow, Justin M.
Vande Ligt, Maureen N.
Iwaniuk, Andrew N.
TI A quantitative morphological analysis of the inner ear of galliform
birds
SO HEARING RESEARCH
LA English
DT Article
ID HAIR CELL REGENERATION; 4-WEEK BODY-WEIGHT; BASILAR PAPILLA; BARN OWL;
ACOUSTIC TRAUMA; JAPANESE-QUAIL; SPECIES-DIFFERENCES; COCHLEAR
INTEGRITY; COTURNIX QUAIL; HEARING ORGAN
AB The function of the inner ear is dependent on its physical structure and there is therefore a strong correspondence between inner ear morphology and hearing capabilities. In this study, we examine the morphology of the inner ear and use this relationship to predict the hearing range and sensitivities of species within the Order Galliformes (chicken, quail and allies). All galliforms share a similar inner ear morphology, which is characterized by gradients in hair cell morphology that are similar to other birds. Most galliforms did have an area of morphologically similar hair cells at the apical end of the BP, indicative of a low frequency specialization. We suggest that, in general, the galliform inner ear is tuned for detecting low frequencies, with most hair cells and more than half of the BP dedicated to frequencies below 1 kHz. Whether this is a specialization or associated with their basal lineage remains to be determined. We also determined that body and brain size are associated with the number of hair cells and basilar papilla length across galliform birds, such that as body size increases, there are correlated increases in BP length and the number of hair cells. Our data therefore corroborate patterns observed across a wide range of bird species and provides significant insight into how species differences in BP morphology evolve and putative relationships with size, vocalizations and life history. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Corfield, Jeremy R.; Krilow, Justin M.; Vande Ligt, Maureen N.; Iwaniuk, Andrew N.] Univ Lethbridge, Dept Neurosci, Lethbridge, AB T1K 3M4, Canada.
RP Corfield, JR (reprint author), Univ Lethbridge, Dept Neurosci, Lethbridge, AB T1K 3M4, Canada.
EM jr.corfield@gmail.com
FU NSERC [372237]; [380284-2009]
FX We would like to thank Doug Bray and Christine Koppl for their
assistance with tissue processing, Grant Duke, Fran Legget and the
Lethbridge Research Centre for the use of their scanning electron
microscope and four anonymous reviewers for their constructive feedback.
We also wish to thank all of the hunters and falconers that assisted us
in obtaining specimens in Alberta and New Zealand, in particular, Brent
Davidson, Lynn Oliphant and Udo Hannebaum. Funding for this study was
provided by an NSERC Discovery Grant (372237) and Accelerator Supplement
(380284-2009) to ANI.
CR Art JJ, 2006, SPR HDB AUD, V27, P204
AUBIN AE, 1972, CAN J ZOOLOG, V50, P1225, DOI 10.1139/z72-165
AVRAHAM KB, 1995, NAT GENET, V11, P369, DOI 10.1038/ng1295-369
Bryant J, 2002, BRIT MED BULL, V63, P39, DOI 10.1093/bmb/63.1.39
BUCKLEY K, 1985, J CELL BIOL, V100, P1284, DOI 10.1083/jcb.100.4.1284
CHEN L, 1994, HEARING RES, V81, P130, DOI 10.1016/0378-5955(94)90160-0
Collins SA, 1998, ETHOLOGY, V104, P977
Corfield J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023771
Corfield JR, 2012, JARO-J ASSOC RES OTO, V13, P629, DOI 10.1007/s10162-012-0341-4
COUNTER SA, 1986, ACTA OTO-LARYNGOL, V101, P34, DOI 10.3109/00016488609108605
CRAWFORD AC, 1985, J PHYSIOL-LONDON, V364, P359
Dietz MW, 1997, PHYSIOL ZOOL, V70, P493
Dooling R.J., 1995, ADV HEARING RES, P32
Duncan RK, 2001, J ANAT, V198, P103, DOI 10.1046/j.1469-7580.2001.19810103.x
Dunning J. B., 2007, CRC HDB AVIAN BODY M
Durham D, 2002, HEARING RES, V166, P82, DOI 10.1016/S0378-5955(02)00301-5
Duval C., 2012, J EXP BIOL, V216, P700
Evrard YA, 2004, DEV GENES EVOL, V214, P193, DOI 10.1007/s00427-004-0395-3
Fermin C D, 1997, Cell Vis, V4, P280
FETTIPLACE R, 1987, TRENDS NEUROSCI, V10, P421, DOI 10.1016/0166-2236(87)90013-0
FISCHER FP, 1994, HEARING RES, V73, P1, DOI 10.1016/0378-5955(94)90277-1
FISCHER FP, 1994, SCANNING MICROSCOPY, V8, P351
Fischer FP, 1998, HEARING RES, V121, P112, DOI 10.1016/S0378-5955(98)00072-0
FISCHER FP, 1994, J MORPHOL, V220, P71, DOI 10.1002/jmor.1052200107
FISCHER FP, 1988, HEARING RES, V34, P87, DOI 10.1016/0378-5955(88)90053-6
FISCHER FP, 1992, HEARING RES, V61, P167, DOI 10.1016/0378-5955(92)90048-R
Freeman A., 2012, INFRASONIC AUDIBLE S
Fuchs P., 1998, PSYCHOPHYSICAL PSYCH, P97
FUCHS PA, 1988, J NEUROSCI, V8, P2460
Garcia M, 2012, ETHOLOGY, V118, P292, DOI 10.1111/j.1439-0310.2011.02011.x
GLEICH O, 1989, HEARING RES, V37, P255, DOI 10.1016/0378-5955(89)90026-9
Gleich O, 2004, SPR HDB AUD, V22, P224
Gleich O, 2005, NATURWISSENSCHAFTEN, V92, P595, DOI 10.1007/s00114-005-0050-5
GLEICH O, 1988, HEARING RES, V34, P69, DOI 10.1016/0378-5955(88)90052-4
Gleich O, 2011, HEARING RES, V273, P80, DOI 10.1016/j.heares.2010.01.009
Gleich O, 2000, SPR HDB AUD, V13, P70
GLEICH O, 1994, J MORPHOL, V221, P1, DOI 10.1002/jmor.1052210102
Gubbels SP, 2008, NATURE, V455, P537, DOI 10.1038/nature07265
GULLION GORDON W., 1965, J WILDLIFE MANAGE, V29, P109, DOI 10.2307/3798639
Hayat MA, 2000, PRINCIPLES TECHNIQUE, P564
HEINZ GH, 1970, AUK, V87, P279
HIROKAWA N, 1978, J COMP NEUROL, V181, P361, DOI 10.1002/cne.901810208
Hjorth I, 1970, VILTREVY, V7, P183
JONES SM, 1995, HEARING RES, V82, P149, DOI 10.1016/0378-5955(94)00173-N
JORGENSEN JM, 1989, BRAIN BEHAV EVOLUT, V34, P273, DOI 10.1159/000116512
Khaldari M, 2010, POULTRY SCI, V89, P1834, DOI 10.3382/ps.2010-00725
Knipper M, 2000, J NEUROPHYSIOL, V83, P3101
Koppl C, 1997, J ACOUST SOC AM, V101, P1574, DOI 10.1121/1.418145
Koppl C, 2000, HEARING RES, V139, P123, DOI 10.1016/S0378-5955(99)00178-1
KOPPL C, 1993, J COMP PHYSIOL A, V171, P695, DOI 10.1007/BF00213066
Koppl C, 2001, EUR J NEUROSCI, V13, P1889, DOI 10.1046/j.0953-816x.2001.01567.x
Koppl C, 1998, HEARING RES, V126, P99, DOI 10.1016/S0378-5955(98)00156-7
Koppl C, 1997, AUDIT NEUROSCI, V3, P313
Lin GF, 2007, BMC DEV BIOL, V7, DOI 10.1186/1471-213X-7-56
Lisney TJ, 2012, J COMP PHYSIOL A, V198, P717, DOI 10.1007/s00359-012-0742-1
Madge S, 2002, PHEASANTS PARTRIDGES
Manley GA, 1996, J MORPHOL, V227, P197, DOI 10.1002/(SICI)1097-4687(199602)227:2<197::AID-JMOR6>3.0.CO;2-6
MANLEY GA, 1993, J MORPHOL, V218, P153, DOI 10.1002/jmor.1052180205
MANLEY GA, 1987, SCIENCE, V237, P655, DOI 10.1126/science.3603046
MARKS HL, 1993, POULTRY SCI, V72, P1005
Mills AD, 1997, NEUROSCI BIOBEHAV R, V21, P261, DOI 10.1016/S0149-7634(96)00028-0
Moenig B, 2006, J NEUROSCI METH, V154, P53, DOI 10.1016/j.jneumeth.2005.11.015
Nealen PM, 2005, BRAIN RES, V1032, P50, DOI 10.1016/j.brainres.2004.10.059
NIEMIEC AJ, 1994, HEARING RES, V79, P1, DOI 10.1016/0378-5955(94)90122-8
OKANOYA K, 1987, J COMP PSYCHOL, V101, P7, DOI 10.1037//0735-7036.101.1.7
Ornithology C.L.O., 1999, FIELD GUIDE W BIRD S
Ramanathan K, 1999, SCIENCE, V283, P215, DOI 10.1126/science.283.5399.215
RYALS BM, 1990, HEARING RES, V50, P87, DOI 10.1016/0378-5955(90)90035-N
RYALS BM, 1988, HEARING RES, V36, P1, DOI 10.1016/0378-5955(88)90133-5
RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101
Ryals BM, 1999, HEARING RES, V131, P71, DOI 10.1016/S0378-5955(99)00022-2
RYALS BM, 1984, ACTA OTO-LARYNGOL, V98, P93, DOI 10.3109/00016488409107539
Saunders JC, 2010, ILAR J, V51, P326
Smittkamp SE, 2002, HEARING RES, V170, P139, DOI 10.1016/S0378-5955(02)00486-0
Takahashi M, 2008, J ETHOL, V26, P375, DOI 10.1007/s10164-007-0078-4
TAKASAKA T, 1971, J ULTRA MOL STRUCT R, V35, P20, DOI 10.1016/S0022-5320(71)80141-7
TANAKA K, 1978, AM J ANAT, V153, P251, DOI 10.1002/aja.1001530206
TILNEY LG, 1983, J CELL BIOL, V96, P807, DOI 10.1083/jcb.96.3.807
TILNEY LG, 1986, HEARING RES, V22, P55, DOI 10.1016/0378-5955(86)90077-8
TILNEY MS, 1987, HEARING RES, V25, P141, DOI 10.1016/0378-5955(87)90087-6
van der Ziel CE, 2001, PHYSIOL BIOCHEM ZOOL, V74, P52, DOI 10.1086/319314
Walsh SA, 2009, P R SOC B, V276, P1355, DOI 10.1098/rspb.2008.1390
Wibowo E, 2009, J COMP NEUROL, V516, P74, DOI 10.1002/cne.22101
NR 83
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2013
VL 304
BP 111
EP 127
DI 10.1016/j.heares.2013.07.004
PG 17
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 225PM
UT WOS:000324974800012
PM 23871766
ER
PT J
AU Herrmann, B
Henry, MJ
Scharinger, M
Obleser, J
AF Herrmann, Bjoern
Henry, Molly J.
Scharinger, Mathias
Obleser, Jonas
TI Auditory filter width affects response magnitude but not frequency
specificity in auditory cortex
SO HEARING RESEARCH
LA English
DT Article
ID EVENT-RELATED POTENTIALS; AGE-RELATED DIFFERENCES; CORTICAL
EVOKED-POTENTIALS; HEARING-IMPAIRED SUBJECTS; INTER-STIMULUS INTERVAL;
SHORT-TERM PLASTICITY; MULTIPLE TIME SCALES; NEURAL REPRESENTATION;
BRAIN POTENTIALS; SIGNAL-DETECTION
AB Spectral analysis of acoustic stimuli occurs in the auditory periphery (termed frequency selectivity) as well as at the level of auditory cortex (termed frequency specificity). Frequency selectivity is commonly investigated using an auditory filter model, while frequency specificity is often investigated as neural adaptation of the N1 response in electroencephalography (EEG). However, the effects of aging on frequency-specific adaptation, and the link between peripheral frequency selectivity and neural frequency specificity have not received much attention. Here, normal hearing younger (20-31 years) and older participants (49-63 years) underwent a psychophysical notched noise experiment to estimate individual auditory filters, and an EEG experiment to investigate frequency-specific adaptation in auditory cortex. The shape of auditory filters was comparable between age groups, and thus shows intact frequency selectivity in normal aging. In auditory cortex, both groups showed N1 frequency-specific neural adaptation effects that similarly varied with the spectral variance in the stimulation, while N1 responses were overall larger for older than younger participants. Importantly, the overall N1 amplitude, but not frequency-specific neural adaptation was correlated with the pass-band of the auditory filter. Thus, the current findings show a dissociation of peripheral frequency selectivity and neural frequency specificity, but suggest that widened auditory filters are compensated for by a response gain in frequency-specific areas of auditory cortex. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Herrmann, Bjoern; Henry, Molly J.; Scharinger, Mathias; Obleser, Jonas] Max Planck Inst Human Cognit & Brain Sci, Max Planck Res Grp Auditory Cognit, D-04103 Leipzig, Germany.
RP Herrmann, B (reprint author), Max Planck Inst Human Cognit & Brain Sci, Max Planck Res Grp Auditory Cognit, Stephanstr 1A, D-04103 Leipzig, Germany.
EM bherrmann@cbs.mpg.de
FU Max Planck Society
FX The authors were supported by the Max Planck Society (Max Planck
Research Group grant to J.O.). We thank Nadine Schlichting for her help
with EEG data acquisition and analyses, Nancy Grochol for her help with
setting up the psychophysical experiment, and two anonymous reviewers
for their helpful comments.
CR Amenedo E, 1999, NEUROREPORT, V10, P2383, DOI 10.1097/00001756-199908020-00030
Anderer P, 1996, ELECTROEN CLIN NEURO, V99, P458, DOI 10.1016/S0013-4694(96)96518-9
Bennett IJ, 2004, CLIN NEUROPHYSIOL, V115, P2602, DOI 10.1016/j.clinph.2004.06.011
Bitterman Y, 2008, NATURE, V451, P197, DOI 10.1038/nature06476
Brattico E, 2003, NEUROREPORT, V14, P2489, DOI 10.1097/01.wnr.0000098748.87269.al
Brozoski TJ, 2002, J NEUROSCI, V22, P2383
BRUNEAU N, 1985, ELECTROEN CLIN NEURO, V62, P364, DOI 10.1016/0168-5597(85)90045-0
BUTLER RA, 1968, J ACOUST SOC AM, V44, P945, DOI 10.1121/1.1911233
Costa-Faidella J, 2011, PSYCHOPHYSIOLOGY, V48, P774, DOI 10.1111/j.1469-8986.2010.01144.x
CZIGLER I, 1992, BIOL PSYCHOL, V33, P195, DOI 10.1016/0301-0511(92)90031-O
Dahmen JC, 2010, NEURON, V66, P937, DOI 10.1016/j.neuron.2010.05.018
Dean I, 2008, J NEUROSCI, V28, P6430, DOI 10.1523/JNEUROSCI.0470-08.2008
Dean I, 2005, NAT NEUROSCI, V8, P1684, DOI 10.1038/nn1541
Ehret G, 1997, J COMP PHYSIOL A, V181, P635, DOI 10.1007/s003590050146
Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47
FORD JM, 1979, J GERONTOL, V34, P388
GLASBERG BR, 1986, J ACOUST SOC AM, V79, P1020, DOI 10.1121/1.393374
GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
HARI R, 1982, ELECTROEN CLIN NEURO, V54, P561, DOI 10.1016/0013-4694(82)90041-4
Harris KC, 2008, HEARING RES, V243, P47, DOI 10.1016/j.heares.2008.05.005
Harris KC, 2007, HEARING RES, V228, P58, DOI 10.1016/j.heares.2007.01.021
Henry MJ, 2013, MUSIC PERCEPT, V30, P480, DOI 10.1525/MP.2013.30.5.480
Herrmann B, 2013, J NEUROPHYSIOL, V109, P2086, DOI 10.1152/jn.00907.2012
Jaaskelainen IP, 2011, BRAIN RES, V1422, P66, DOI 10.1016/j.brainres.2011.09.031
Jaaskelainen IP, 2007, TRENDS NEUROSCI, V30, P653, DOI 10.1016/j.tins.2007.09.003
Jerger J., 1980, OTOLARYNGOLOGY, P1226
Jurado C, 2010, J ACOUST SOC AM, V128, P3585, DOI 10.1121/1.3504657
Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038
Kauramaki J., 2007, PLOS ONE, V9, P909
Kim JR, 2012, OTOL NEUROTOL, V33, P1105, DOI 10.1097/MAO.0b013e3182659b1e
Kisley MA, 2005, COGNITIVE BRAIN RES, V25, P913, DOI 10.1016/j.cogbrainres.2005.09.014
Kvale MN, 2004, J NEUROPHYSIOL, V91, P604, DOI 10.1152/jn.00484.2003
Laffont F., 1989, CLIN NEUROPHYSIOL, V19, P15
Leek MR, 2001, PERCEPT PSYCHOPHYS, V63, P1279, DOI 10.3758/BF03194543
Maess B, 2007, NEUROIMAGE, V37, P561, DOI 10.1016/j.neuroimage.2007.05.040
May P, 1999, J COMPUT NEUROSCI, V6, P99, DOI 10.1023/A:1008896417606
McArthur G, 2002, NEUROREPORT, V13, P1079, DOI 10.1097/00001756-200206120-00021
Moore BC., 2003, INTRO PSYCHOL HEARIN
Moore B.C.J., 1986, FREQUENCY SELECTIVIT
Moore BCJ, 2005, INT REV NEUROBIOL, V70, P49, DOI 10.1016/S0074-7742(05)70002-7
Moore BCJ, 1996, J ACOUST SOC AM, V99, P542, DOI 10.1121/1.414512
MOORE BCJ, 1992, J ACOUST SOC AM, V91, P2881, DOI 10.1121/1.402925
NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x
NAATANEN R, 1988, ELECTROEN CLIN NEURO, V69, P523, DOI 10.1016/0013-4694(88)90164-2
Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9
Okamoto H, 2010, J NEUROPHYSIOL, V103, P244, DOI 10.1152/jn.00530.2009
OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4
Oostenveld R, 2011, COMPUT INTEL NEUROSC, DOI 10.1155/2011/156869
PANTEV C, 1988, ELECTROEN CLIN NEURO, V69, P160, DOI 10.1016/0013-4694(88)90211-8
PAPANICOLAOU AC, 1984, NEUROBIOL AGING, V5, P291, DOI 10.1016/0197-4580(84)90005-8
PATTERSON RD, 1976, J ACOUST SOC AM, V59, P640, DOI 10.1121/1.380914
PATTERSON RD, 1982, J ACOUST SOC AM, V72, P1788, DOI 10.1121/1.388652
PETERS RW, 1992, J ACOUST SOC AM, V91, P256, DOI 10.1121/1.402769
PHILLIPS DP, 1994, EXP BRAIN RES, V102, P210
PICTON TW, 1978, ELECTROEN CLIN NEURO, V45, P198, DOI 10.1016/0013-4694(78)90004-4
Pienkowski M, 2011, J NEUROPHYSIOL, V106, P1016, DOI 10.1152/jn.00291.2011
POLICH J, 1988, PAVLOVIAN J BIOL SCI, V23, P35
ROTHMAN HH, 1970, J ACOUST SOC AM, V47, P569, DOI 10.1121/1.1911930
Sadagopan S, 2008, J NEUROSCI, V28, P3415, DOI 10.1523/JNEUROSCI.2743-07.2008
SAMS M, 1994, HEARING RES, V75, P67, DOI 10.1016/0378-5955(94)90057-4
Schiff S, 2008, CLIN NEUROPHYSIOL, V119, P1795, DOI 10.1016/j.clinph.2008.04.007
SCHLAUCH RS, 1991, J ACOUST SOC AM, V90, P1332, DOI 10.1121/1.401925
Soeta Y, 2008, NEUROREPORT, V19, P1709, DOI 10.1097/WNR.0b013e3283177f99
Soeta Y, 2007, NEUROREPORT, V18, P1939
Sommers MS, 1998, J ACOUST SOC AM, V103, P1067, DOI 10.1121/1.421220
SOMMERS MS, 1993, J ACOUST SOC AM, V93, P2903, DOI 10.1121/1.405810
Sutter ML, 2000, J NEUROPHYSIOL, V84, P1012
Tremblay KL, 2003, CLIN NEUROPHYSIOL, V114, P1332, DOI 10.1016/S1388-2457(03)00114-7
Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032
Ulanovsky N, 2004, J NEUROSCI, V24, P10440, DOI 10.1523/JNEUROSCI.1905-04.2004
NR 70
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2013
VL 304
BP 128
EP 136
DI 10.1016/j.heares.2013.07.005
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 225PM
UT WOS:000324974800013
PM 23876524
ER
PT J
AU Shah, SM
Patel, CH
Feng, AS
Kollmar, R
AF Shah, S. M.
Patel, C. H.
Feng, A. S.
Kollmar, R.
TI Lithium alters the morphology of neurites regenerating from cultured
adult spiral ganglion neurons
SO HEARING RESEARCH
LA English
DT Article
ID GLYCOGEN-SYNTHASE KINASE-3-BETA; FIBROBLAST-GROWTH-FACTOR; NEUROTROPHIC
FACTOR; HEARING IMPAIRMENT; GUINEA-PIG; SIGNALING PATHWAY; SENSORY
NEURONS; OUTGROWTH; INHIBITION; COCHLEA
AB The small-molecule drug lithium (as a monovalent ion) promotes neurite regeneration and functional recovery, is easy to administer, and is approved for human use to treat bipolar disorder. Lithium exerts its neuritogenic effect mainly by inhibiting glycogen synthase kinase 3, a constitutively-active serine/threonine kinase that is regulated by neurotrophin and "wingless-related MMTV integration site" (Wnt) signaling. In spiral ganglion neurons of the cochlea, the effects of lithium and the function of glycogen synthase kinase 3 have not been investigated. We, therefore, set out to test whether lithium modulates neuritogenesis from adult spiral ganglion neurons. Primary cultures of dissociated spiral ganglion neurons from adult mice were exposed to lithium at concentrations between 0 and 12.5 mM. The resulting neurite morphology and growth-cone appearance were measured in detail by using immunofluorescence microscopy and image analysis. We found that lithium altered the morphology of regenerating neurites and their growth cones in a differential, concentration-dependent fashion. Low concentrations of 0.5-2.5 mM (around the half-maximal inhibitory concentration for glycogen synthase kinase 3 and the recommended therapeutic serum concentration for bipolar disorder) enhanced neurite sprouting and branching. A high concentration of 12.5 mM, in contrast, slowed elongation. As the lithium concentration rose from low to high, the microtubules became increasingly disarranged and the growth cones more arborized. Our results demonstrate that lithium selectively stimulates phases of neuritogenesis that are driven by microtubule reorganization. In contrast, most other drugs that have previously been tested on spiral ganglion neurons are reported to inhibit neurite outgrowth or affect only elongation. Lithium sensitivity is a necessary, but not sufficient condition for the involvement of glycogen synthase kinase 3. Our results are, therefore, consistent with, but do not prove lithium inhibiting glycogen synthase kinase 3 activity in spiral ganglion neurons. Experiments with additional drugs and molecular-genetic tools will be necessary to test whether glycogen synthase kinase 3 regulates neurite regeneration from spiral ganglion neurons, possibly by integrating neurotrophin and Wnt signals at the growth cone. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Shah, S. M.; Patel, C. H.; Feng, A. S.; Kollmar, R.] Univ Illinois, Dept Mol & Integrat Physiol, Urbana, IL 61801 USA.
[Shah, S. M.; Patel, C. H.; Feng, A. S.; Kollmar, R.] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA.
[Shah, S. M.; Feng, A. S.; Kollmar, R.] Univ Illinois, Neurosci Grad Program, Urbana, IL 61801 USA.
[Shah, S. M.] Univ Illinois, Med Scholars Program, Urbana, IL 61801 USA.
[Kollmar, R.] Suny Downstate Med Ctr, Dept Cell Biol, Brooklyn, NY 11203 USA.
[Kollmar, R.] Suny Downstate Med Ctr, Dept Otolaryngol, Brooklyn, NY 11203 USA.
RP Kollmar, R (reprint author), Suny Downstate Med Ctr, Dept Cell Biol, 450 Clarkson Ave,Box 5, Brooklyn, NY 11203 USA.
EM richard.kollmar@downstate.edu
FU National Institute of Mental Health [R01 MH086638]; National Institute
on Deafness and Other Communication Disorders [T32 DC006612]; American
Otological Society; University of Illinois; Campus Research Board; Mary
Jane Neer Fund at the University of Illinois; National Organization for
Hearing Research
FX We thank Ms. Soon Ki for technical assistance; Dr. William Lytton for
access to and Mr. Larry Eberle for system administration on the SUNY
Downstate high-performance computing cluster, which is supported by
research grant R01 MH086638 from the National Institute of Mental Health
to W.L.; Dr. Donna Fekete for sharing unpublished data; and Ms. Olipriya
Das, Ms. Roza George, Dr. Byron Kemper, and Dr. Mark Stewart for
comments on the manuscript. This work was supported by training grant
T32 DC006612 from the National Institute on Deafness and Other
Communication Disorders, a medical student training grant from the
American Otological Society, and a grant from the Charles M.
Goodenberger Fund at the University of Illinois to S.M.S.; by grants
from the Campus Research Board and the Mary Jane Neer Fund at the
University of Illinois to A.S.F.; and by a research award from the
National Organization for Hearing Research to R.K.
CR Aletsee C, 2001, JARO, V2, P377, DOI 10.1007/s101620010086
Aletsee C, 2002, HEARING RES, V164, P1, DOI 10.1016/S0378-5955(01)00364-1
Aletsee C, 2002, LARYNGO RHINO OTOL, V81, P189, DOI 10.1055/s-2002-25039
Atkinson PJ, 2011, HEARING RES, V278, P77, DOI 10.1016/j.heares.2011.04.011
Bodmer D, 2002, LARYNGOSCOPE, V112, P2057, DOI 10.1097/00005537-200211000-00028
Brors D, 2003, ACTA OTO-LARYNGOL, V123, P20, DOI 10.1080/003655402/000028055
Chiu CT, 2010, PHARMACOL THERAPEUT, V128, P281, DOI 10.1016/j.pharmthera.2010.07.006
Clark G. M., 2003, COCHLEAR IMPLANTS FU
Da Silva JS, 2002, NAT REV NEUROSCI, V3, P694, DOI 10.1038/nrn918
DAVIS AC, 1989, INT J EPIDEMIOL, V18, P911, DOI 10.1093/ije/18.4.911
Dill J, 2008, J NEUROSCI, V28, P8914, DOI 10.1523/JNEUROSCI.1178-08.2008
Fantetti KN, 2011, HEARING RES, V278, P86, DOI 10.1016/j.heares.2011.04.005
Food and Drug Administration, 2012, APPR DRUG PROD THER
Gillespie LN, 2005, EUR J NEUROSCI, V22, P2123, DOI 10.1111/j.1460-9568.2005.04430.x
Glueckert R, 2008, J COMP NEUROL, V507, P1602, DOI 10.1002/cne.21619
Gordon-Weeks P.R., 2000, NEURONAL GROWTH CONE
Grandjean EM, 2009, CNS DRUGS, V23, P225, DOI 10.2165/00023210-200923030-00004
Grandjean EM, 2009, CNS DRUGS, V23, P397, DOI 10.2165/00023210-200923050-00004
Grandjean EM, 2009, CNS DRUGS, V23, P331
Hall AC, 2002, MOL CELL NEUROSCI, V20, P257, DOI 10.1006/mcne.2002.1117
Hall AC, 2000, CELL, V100, P525, DOI 10.1016/S0092-8674(00)80689-3
Hallworth R, 2000, HEARING RES, V148, P161, DOI 10.1016/S0378-5955(00)00149-0
Horner KC, 1998, EUR J NEUROSCI, V10, P1524, DOI 10.1046/j.1460-9568.1998.00196.x
Horner KC, 1997, NEUROREPORT, V8, P1341, DOI 10.1097/00001756-199704140-00005
Hur EM, 2010, NAT REV NEUROSCI, V11, P539, DOI 10.1038/nrn2870
Jiang H, 2005, CELL, V120, P123, DOI 10.1016/j.cell.2004.12.033
Kim WY, 2006, NEURON, V52, P981, DOI 10.1016/j.neuron.2006.10.031
Klein PS, 1996, P NATL ACAD SCI USA, V93, P8455, DOI 10.1073/pnas.93.16.8455
Krylova O, 2000, J CELL BIOL, V151, P83, DOI 10.1083/jcb.151.1.83
Krylova O, 2002, NEURON, V35, P1043, DOI 10.1016/S0896-6273(02)00860-7
Lallemend F, 2005, J CELL SCI, V118, P4511, DOI 10.1242/jcs.02572
Lie M, 2010, NEUROSCIENCE, V169, P855, DOI 10.1016/j.neuroscience.2010.05.020
Lucas FR, 1997, DEV BIOL, V192, P31, DOI 10.1006/dbio.1997.8734
Lucas FR, 1998, J CELL SCI, V111, P1351
McKnight RF, 2012, LANCET, V379, P721, DOI 10.1016/S0140-6736(11)61516-X
Meijering E, 2004, CYTOM PART A, V58A, P167, DOI 10.1002/cyto.a.20022
Miller JM, 2007, J NEUROSCI RES, V85, P1959, DOI 10.1002/jnr.21320
Mullen LM, 2012, BRAIN RES, V1430, P25, DOI 10.1016/j.brainres.2011.10.054
Owen R, 2003, MOL CELL NEUROSCI, V23, P626, DOI 10.1016/S1044-7431(03)00095-2
Pasquali L, 2010, BEHAV PHARMACOL, V21, P473, DOI 10.1097/FBP.0b013e32833da5da
Phiel CJ, 2001, ANNU REV PHARMACOL, V41, P789, DOI 10.1146/annurev.pharmtox.41.1.789
Poulain FE, 2010, MOL CELL NEUROSCI, V43, P15, DOI 10.1016/j.mcn.2009.07.012
Purro SA, 2008, J NEUROSCI, V28, P8644, DOI 10.1523/JNEUROSCI.2320-08.2008
R Core Team, 2012, R LANG ENV STAT COMP
Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089
Shah SM, 2009, NEUROSCIENCE, V164, P478, DOI 10.1016/j.neuroscience.2009.08.049
Shibata SB, 2011, HEARING RES, V281, P56, DOI 10.1016/j.heares.2011.04.019
Shibata SB, 2010, EXP NEUROL, V223, P464, DOI 10.1016/j.expneurol.2010.01.011
van Amerongen R, 2009, DEVELOPMENT, V136, P3205, DOI 10.1242/dev.033910
Vieira M, 2007, HEARING RES, V230, P17, DOI 10.1016/j.heares.2007.03.005
Voth DE, 2005, CLIN MICROBIOL REV, V18, P247, DOI 10.1128/CMR.18.2.247-263.2005
Waites CL, 2005, ANNU REV NEUROSCI, V28, P251, DOI 10.1146/annurev.neuro.27.070203.144336
Webber A, 2006, ANAT REC PART A, V288A, P390, DOI 10.1002/ar.a.20299
Wilson DH, 1999, INT J EPIDEMIOL, V28, P247, DOI 10.1093/ije/28.2.247
Wise AK, 2005, J COMP NEUROL, V487, P147, DOI 10.1002/cne.20563
Xu NY, 2012, HEARING RES, V283, P33, DOI 10.1016/j.heares.2011.11.010
Yick LW, 2004, J NEUROTRAUM, V21, P932, DOI 10.1089/0897715041526221
ZIMMERMANN CE, 1995, HEARING RES, V90, P192, DOI 10.1016/0378-5955(95)00165-1
NR 58
TC 2
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2013
VL 304
BP 137
EP 144
DI 10.1016/j.heares.2013.07.001
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 225PM
UT WOS:000324974800014
PM 23856237
ER
PT J
AU Vlajkovic, SM
Lin, SCY
Wong, ACY
Wackrow, B
Thorne, PR
AF Vlajkovic, Srdjan M.
Lin, Shelly Ching-yu
Wong, Ann Chi Yan
Wackrow, Brad
Thorne, Peter R.
TI Noise-induced changes in expression levels of NADPH oxidases in the
cochlea
SO HEARING RESEARCH
LA English
DT Article
ID INDUCED HEARING-LOSS; NOX FAMILY; CISPLATIN; ROLES; BRAIN; RAT;
SUPEROXIDE; GENERATION; INHIBITORS; MUTATIONS
AB NADPH oxidases are enzymes that transport electrons across the plasma membrane and generate superoxide radical from molecular oxygen. The current study investigated the expression and distribution of NOX/DUOX members of the NADPH oxidase family (NOX1-5 and DUOX1-2) in the rat cochlea and their regulation in response to noise. Wistar rats (8-10 weeks) were exposed for 24 h to band noise (8-12 kHz) at moderate (100 dB) or traumatic (110 dB) sound pressure levels (SPL). Animals exposed to ambient noise (45-55 dB SPL) served as controls. Immunohistochemistly demonstrated predominant expression of all NOX/DUOX isoforms in the sensory and supporting cells of the organ of Corti, with very limited immunoexpression in the lateral wall tissues and spiral ganglion neurons. Noise exposure induced up-regulation of NOX1 and DUOX2 in the cochlea, whereas NOX3 was down-regulated. A significant reduction in the intensity of NOX3 immunolabeling was observed in the inner sulcus region of the cochlea after exposure to noise. Post-exposure inhibition of NADPH oxidases by Diphenyleneiodonium (DPI), a broadly selective NADPH oxidase inhibitor, mitigated noise-induced hearing loss. Conclusion: Noise-induced up-regulation of NOX1 and DUOX2 could be linked to cochlear injury. In contrast, down-regulation of NOX3 may represent an endogenous protective mechanism to reduce oxidative stress in the noise-exposed cochlea. Inhibition of NADPH oxidases is potentially a novel pathway for therapeutic management of noise-induced hearing loss. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Vlajkovic, Srdjan M.; Lin, Shelly Ching-yu; Wackrow, Brad; Thorne, Peter R.] Univ Auckland, Dept Physiol, Fac Med & Hlth Sci, Auckland 1142, New Zealand.
[Thorne, Peter R.] Univ Auckland, Discipline Audiol, Fac Med & Hlth Sci, Auckland 1142, New Zealand.
[Wong, Ann Chi Yan] Univ New S Wales, Sch Med Sci, Translat Neurosci Facil, Sydney, NSW, Australia.
RP Vlajkovic, SM (reprint author), Univ Auckland, Dept Physiol, Fac Med & Hlth Sci, Private Bag 92019, Auckland 1142, New Zealand.
EM s.vlajkovic@auckland.ac.nz
FU University of Auckland Faculty Research Development Fund
FX This study was supported by the University of Auckland Faculty Research
Development Fund.
CR Ago T, 2004, CIRCULATION, V109, P227, DOI 10.1161/01.CIR.0000105680.92873.70
Banfi B, 2004, J BIOL CHEM, V279, P46065, DOI 10.1074/jbc.M403046200
Bedard K, 2007, PHYSIOL REV, V87, P245, DOI 10.1152/physrev.00044.2005
Cheng GJ, 2004, J BIOL CHEM, V279, P34250, DOI 10.1074/jbc.M400660200
Cross R.A., 1986, BIOCHEM J, V237, P111
Forman HJ, 2010, BIOCHEMISTRY-US, V49, P835, DOI 10.1021/bi9020378
HAMERNIK RP, 1984, HEARING RES, V16, P143, DOI 10.1016/0378-5955(84)90004-2
Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3
Infanger DW, 2006, ANTIOXID REDOX SIGN, V8, P1583, DOI 10.1089/ars.2006.8.1583
Irani K, 2000, CIRC RES, V87, P179
Kahles T, 2007, STROKE, V38, P3000, DOI 10.1161/STROKEAHA.107.489765
Kawahara T, 2005, J BIOL CHEM, V280, P31859, DOI 10.1074/jbc.M501882200
Kim HJ, 2010, J NEUROSCI, V30, P3933, DOI 10.1523/JNEUROSCI.6054-09.2010
Kim JA, 2011, EXPERT OPIN THER PAT, V21, P1147, DOI 10.1517/13543776.2011.584870
Krause KH, 2004, JPN J INFECT DIS, V57, pS28
Le Prell CG, 2007, HEARING RES, V226, P22, DOI 10.1016/j.heares.2006.10.006
Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
Mukherjea D, 2006, NEUROSCIENCE, V139, P733, DOI 10.1016/j.neuroscience.2005.12.044
Mukherjea D, 2010, ANTIOXID REDOX SIGN, V13, P589, DOI 10.1089/ars.2010.3110
Nakano Y, 2007, BIOCHEM J, V403, P97, DOI 10.1042/BJ20060819
Oishi N, 2011, EXPERT OPIN EMERG DR, V16, P235, DOI 10.1517/14728214.2011.552427
Paffenholz R, 2004, GENE DEV, V18, P486, DOI 10.1101/gad.1172504
Rybak LP, 2012, CELL MOL LIFE SCI, V69, P2429, DOI 10.1007/s00018-012-1016-3
Schramm A, 2012, VASC PHARMACOL, V56, P216, DOI 10.1016/j.vph.2012.02.012
Thorne Peter R, 2008, N Z Med J, V121, P33
Ueno N, 2005, J BIOL CHEM, V280, P23328, DOI 10.1074/jbc.M414548200
Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4
Wong ACY, 2010, HEARING RES, V260, P81, DOI 10.1016/j.heares.2009.12.004
Wong ACY, 2012, HISTOCHEM CELL BIOL, V137, P599, DOI 10.1007/s00418-012-0922-7
Yamashita D, 2005, NEUROSCIENCE, V134, P633, DOI 10.1016/j.neuroscience.2005.04.015
Yamashita D, 2004, BRAIN RES, V1019, P201, DOI 10.1016/j.brainres.2004.05.104
NR 31
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2013
VL 304
BP 145
EP 152
DI 10.1016/j.heares.2013.07.012
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 225PM
UT WOS:000324974800015
PM 23899412
ER
PT J
AU Schettino, AE
Lauer, AM
AF Schettino, Amy E.
Lauer, Amanda M.
TI The efficiency of design-based stereology in estimating spiral ganglion
populations in mice
SO HEARING RESEARCH
LA English
DT Article
ID INNER HAIR-CELLS; HEARING-LOSS; NEUROTROPHIC FACTOR; TARGET INNERVATION;
SENSORY NEURONS; MOUSE COCHLEA; NOISE; AGE; DEGENERATION; INJURY
AB Accurate quantification of cell populations is essential in assessing and evaluating neural survival and degeneration in experimental groups. Estimates obtained through traditional two-dimensional counting methods are heavily biased by the counting parameters in relation to the size and shape of the neurons to be counted, resulting in a large range of inaccurate counts. In contrast, counting every cell in a population can be extremely labor-intensive. The present study hypothesizes that design-based stereology provides estimates of the total number of cochlear spiral ganglion neurons (SGNs) in mice that are comparable to those obtained by other accurate cell-counting methods, such as a serial reconstruction, while being a more efficient method. SGNs are indispensable for relaying auditory information from hair cells to the auditory brainstem, and investigating factors affecting their degeneration provides insight into the physiological basis for the progression of hearing dysfunction. Stereological quantification techniques offer the benefits of efficient sampling that is independent of the size and shape of the SGNs. Population estimates of SGNs in cochleae from young C57 mice with normal-hearing and C57 mice with age-related hearing loss were obtained using the optical fractionator probe and traditional two-dimensional counting methods. The average estimated population of SGNs in normal-hearing mice was 7009, whereas the average estimated population in mice with age-related hearing loss was 5096. The estimated population of SGNs in normal-hearing mice fell within the range of values previously reported in the literature. The reduction in the SGN population in animals with age-related hearing loss was statistically significant. Stereological measurements required less time per section compared to two-dimensional methods while optimizing the amount of cochlear tissue analyzed. These findings demonstrate that design-based stereology provides a practical alternative to other counting methods such as the Abercrombie correction method, which has been shown to notably underestimate cell populations, and. labor-intensive protocols that account for every cell individually. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Schettino, Amy E.; Lauer, Amanda M.] Johns Hopkins Univ, Dept Otolaryngol Head & Neck Surg, Ctr Hearing & Balance, Baltimore, MD 21205 USA.
[Schettino, Amy E.] Johns Hopkins Univ, Undergrad Program Neurosci, Zanvyl Kreiger Sch Arts & Sci, Baltimore, MD 21205 USA.
RP Lauer, AM (reprint author), Johns Hopkins Univ, 515 Traylor Bldg,720 Rutland Ave, Baltimore, MD 21205 USA.
EM alauer2@jhmi.edu
FU National Institute on Deafness and Other Communication Disorders of the
National Institutes of Health [DC012352, DC005211]
FX The research reported in this publication was supported by the National
Institute on Deafness and Other Communication Disorders of the National
Institutes of Health under award numbers DC012352 and DC005211. The
content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of
Health. We would like to thank Howard Francis for the use of tissue
samples from his lab.
CR Agerman K, 2003, DEVELOPMENT, V130, P1479, DOI 10.1242/dev.00378
Camarero G, 2001, J NEUROSCI, V21, P7630
Dorph-Petersen KA, 2001, J MICROSC-OXFORD, V204, P232, DOI 10.1046/j.1365-2818.2001.00958.x
EHRET G, 1979, J COMP NEUROL, V183, P73, DOI 10.1002/cne.901830107
FARINAS I, 1994, NATURE, V369, P658, DOI 10.1038/369658a0
Francis HW, 2003, HEARING RES, V183, P29, DOI 10.1016/S0378-5955(03)00212-0
Glueckert R, 2008, J COMP NEUROL, V507, P1602, DOI 10.1002/cne.21619
Guillery RW, 2002, J COMP NEUROL, V447, P1, DOI 10.1002/cne.10221
Hequembourg S, 2001, JARO, V2, P118
Ishiyama G, 2011, J NEUROSCI METH, V196, P76, DOI 10.1016/j.jneumeth.2011.01.001
Johnson SB, 2011, HEARING RES, V278, P34, DOI 10.1016/j.heares.2011.02.008
Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009
Lauer AM, 2012, NEUROBIOL AGING, V33, P2892, DOI 10.1016/j.neurobiolaging.2012.02.007
LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418
Liebl DJ, 1997, J NEUROSCI, V17, P9113
Luikart BW, 2003, NEUROSCIENCE, V117, P847, DOI 10.1016/S0306-4522(02)00719-4
MacDonald GH, 2010, AUDIOL MED, V8, P120, DOI 10.3109/1651386X.2010.502301
MacDonald GH, 2008, HEARING RES, V243, P1, DOI 10.1016/j.heares.2008.05.009
Mikaelian D.O., 1979, LARYNGOSCOPE, V1, P1
Mouton PR, 2001, PRINCIPLES PRACTICES
Ohlemiller KK, 2007, HEARING RES, V224, P34, DOI 10.1016/j.heares.2006.11.005
Parry-Hill M., 2013, MICROSCOPE ALIGNMENT
Postigo A, 2002, GENE DEV, V16, P633, DOI 10.1101/gad.217902
Richter CP, 2011, HEARING RES, V278, P43, DOI 10.1016/j.heares.2011.02.003
Shepherd RK, 2008, HEARING RES, V242, P100, DOI 10.1016/j.heares.2007.12.005
Stamataki S, 2006, HEARING RES, V221, P104, DOI 10.1016/j.heares.2006.07.014
von Bartheld CS, 2002, HISTOL HISTOPATHOL, V17, P639
Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028
Whitlon DS, 2006, NEUROSCIENCE, V138, P653, DOI 10.1016/j.neuroscience.2005.11.030
NR 29
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2013
VL 304
BP 153
EP 158
DI 10.1016/j.heares.2013.07.007
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 225PM
UT WOS:000324974800016
PM 23876522
ER
PT J
AU King, EB
Salt, AN
Kel, GE
Eastwood, HT
O'Leary, SJ
AF King, E. B.
Salt, A. N.
Kel, G. E.
Eastwood, H. T.
O'Leary, S. J.
TI Gentamicin administration on the stapes footplate causes greater hearing
loss and vestibulotoxicity than round window administration in guinea
pigs
SO HEARING RESEARCH
LA English
DT Article
ID CHINCHILLA CRISTA-AMPULLARIS; LOCAL-DRUG DELIVERY; HAIR-CELLS;
MENIERES-DISEASE; INTRATYMPANIC APPLICATIONS; STAPEDIOVESTIBULAR JOINT;
PERILYMPHATIC SCALAE; OTOTOXIC ANTIBIOTICS; MIDDLE-EAR; INNER-EAR
AB Clinically, gentamicin has been used extensively to treat the debilitating symptoms of Meniere's disease and is well known for its vestibulotoxic properties. Until recently, it was widely accepted that the round window membrane (RWM) was the primary entry route into the inner ear following intratympanic drug administration. In the current study, gentamicin was delivered to either the RWM or the stapes footplate of guinea pigs (GPs) to assess the associated hearing loss and histopathology associated with each procedure. Vestibulotoxicity of the utricular macula, saccular macula, and crista ampullaris in the posterior semicircular canal were assessed quantitatively with density counts of hair cells, supporting cells, and stereocilia in histological sections. Cochleotoxicity was assessed quantitatively by changes in threshold of auditory brainstem responses (ABR), along with hair cell and spiral ganglion cell counts in the basal and second turns of the cochlea. Animals receiving gentamicin applied to the stapes footplate exhibited markedly higher levels of hearing loss between 8 and 32 kHz, a greater reduction of outer hair cells in the basal turn of the cochlea and fewer normal type I cells in the utricle in the vestibule than those receiving gentamicin on the RWM or saline controls. This suggests that gentamicin more readily enters the ear when applied to the stapes footplate compared with RWM application. These data provide a potential explanation for why gentamicin preferentially ablates vestibular function while preserving hearing following transtympanic administration in humans. (C) 2013 Elsevier B.V. All rights reserved.
C1 [King, E. B.; Kel, G. E.; Eastwood, H. T.; O'Leary, S. J.] Univ Melbourne, Dept Otolaryngol, Melbourne, Vic, Australia.
[King, E. B.] Bion Inst, Melbourne, Vic, Australia.
[Salt, A. N.] Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA.
RP King, EB (reprint author), Bion Inst, 384-388 Albert St, East Melbourne, Vic 3002, Australia.
EM Eking@bionicsinstitute.org
FU NIH/NIDCD [DC 01368]; NHMRC [509206]; Garnett Passe & Rodney Williams
Memorial Fund
FX This authors wish to thank Mrs Maria Clarke and Miss Prudence Neilson
for preparing histology slides; Mrs Ruth Gill for preparing figures;
Professor Ian Curthoys for their advice; Sue Pierce and Nicole Joy
Christie for providing animal husbandry assistance. Alec Salt was
supported by NIH/NIDCD research grant DC 01368 and the project was
supported by NHMRC 509206, and the Garnett Passe & Rodney Williams
Memorial Fund. This study utilized the Australian Phenomics Network
Histopathology and Organ Pathology Service, University of Melbourne.
CR Alzamil KS, 2000, ANN OTO RHINOL LARYN, V109, P30
Clark G., 2003, COCHLEAR IMPLANTS FU, P71
Dai CF, 2008, HEARING RES, V235, P114, DOI 10.1016/j.heares.2007.10.010
Desai SS, 2005, J NEUROPHYSIOL, V93, P251, DOI 10.1152/jm.00746.2003
FRANKE K, 1977, ARCH OTO-RHINO-LARYN, V217, P331, DOI 10.1007/BF00465550
GOVAERTS PJ, 1990, TOXICOL LETT, V52, P227, DOI 10.1016/0378-4274(90)90033-I
Goycoolea M.V., 1998, LARYNGOSCOPE S44, P1
Goycoolea MV, 1997, MICROSC RES TECHNIQ, V36, P201, DOI 10.1002/(SICI)1097-0029(19970201)36:3<201::AID-JEMT8>3.0.CO;2-R
Hirvonen TP, 2005, J NEUROPHYSIOL, V93, P643, DOI 10.1152/jn.00160.2004
King EB, 2011, JARO-J ASSOC RES OTO, V12, P741, DOI 10.1007/s10162-011-0280-5
LANGE G, 1977, LARYNG RHINOL OTOL V, V56, P409
Li HZ, 2011, SCI REP-UK, V1, DOI 10.1038/srep00159
LINDEMAN HH, 1969, ACTA OTO-LARYNGOL, V67, P177, DOI 10.3109/00016486909125441
Lopez I, 1997, INT J DEV NEUROSCI, V15, P447, DOI 10.1016/S0736-5748(96)00103-7
Lyford-Pike S, 2007, JARO-J ASSOC RES OTO, V8, P497, DOI 10.1007/s10162-007-0093-8
Merchant SN, 1999, LARYNGOSCOPE, V109, P1560, DOI 10.1097/00005537-199910000-00004
Merchant S.N., 2010, SCHUKNECHTS PATHOLOG, P44
Mikulec AA, 2009, OTOL NEUROTOL, V30, P131, DOI 10.1097/MAO.0b013e318191bff8
Nakagawa T., 1998, EUR ARCH OTO-RHINO-L, V538, P32
Nakagawa T, 1997, EUR ARCH OTO-RHINO-L, V254, P9, DOI 10.1007/BF02630749
Ohashi M, 2006, HEARING RES, V213, P11, DOI 10.1016/j.heares.2005.11.007
Ohashi M, 2005, ACTA HISTOCHEM CYTOC, V38, P387, DOI 10.1267/ahc.38.387
Okumura Akiko, 1993, Okajimas Folia Anatomica Japonica, V69, P385
Plontke SK, 2007, LARYNGOSCOPE, V117, P1191, DOI 10.1097/MLG.0b013e318058a06b
Plontke SK, 2011, OTOL NEUROTOL, V32, P183, DOI 10.1097/MAO.0b013e3181f6cb25
Plontke S.K.R., 2002, OTOL NEUROTOL, V23, P67
Quaranta A, 1999, ANN NY ACAD SCI, V884, P410, DOI 10.1111/j.1749-6632.1999.tb08658.x
SAIJO S, 1984, ACTA OTO-LARYNGOL, V97, P593, DOI 10.3109/00016488409132937
Salt AN, 2001, HEARING RES, V154, P88, DOI 10.1016/S0378-5955(01)00223-4
SALT AN, 1991, HEARING RES, V56, P37, DOI 10.1016/0378-5955(91)90151-X
Salt AN, 2003, HEARING RES, V182, P24, DOI 10.1016/S0378-5955(03)00137-0
Salt AN, 2008, LARYNGOSCOPE, V118, P1793, DOI 10.1097/MLG.0b013e31817d01cd
Salt AN, 2012, HEARING RES, V283, P14, DOI 10.1016/j.heares.2011.11.012
SCHACHERN PA, 1984, ARCH OTOLARYNGOL, V110, P15
Shepherd RK, 2004, ARCH OTOLARYNGOL, V130, P518, DOI 10.1001/archotol.130.5.518
Silverstein H, 1999, OTOLARYNG HEAD NECK, V120, P649, DOI 10.1053/hn.1999.v120.a91763
TANAKA K, 1981, ARCH OTO-RHINO-LARYN, V233, P67, DOI 10.1007/BF00464276
TANYERI H, 1995, HEARING RES, V89, P194, DOI 10.1016/0378-5955(95)00137-7
Tsuji K, 2000, Ann Otol Rhinol Laryngol Suppl, V181, P20
Wang Q, 2010, HEARING RES, V268, P250, DOI 10.1016/j.heares.2010.06.008
Wang Q, 2009, JARO-J ASSOC RES OTO, V10, P205, DOI 10.1007/s10162-009-0160-4
Zou J, 2005, AUDIOL NEURO-OTOL, V10, P145, DOI 10.1159/000084024
Zou J, 2012, ANN OTO RHINOL LARYN, V121, P119
NR 43
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2013
VL 304
BP 159
EP 166
DI 10.1016/j.heares.2013.07.013
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 225PM
UT WOS:000324974800017
PM 23899413
ER
PT J
AU Layman, WS
Sauceda, MA
Zuo, J
AF Layman, Wanda S.
Sauceda, Mario A.
Zuo, Jian
TI Epigenetic alterations by NuRD and PRC2 in the neonatal mouse cochlea
SO HEARING RESEARCH
LA English
DT Article
ID PLURIPOTENT STEM-CELLS; DNA METHYLATION CHANGES; HAIR-CELLS; SUPPORTING
CELLS; HISTONE DEACETYLASES; MAMMALIAN COCHLEA; GENE-EXPRESSION;
BREAST-CANCER; IN-VIVO; REPRESSION
AB Mammalian cochlear supporting cells remain quiescent at postnatal ages and age-dependent changes in supporting cell proliferative capacity are evident. Ectopic Atoh1 expression in neonatal supporting cells converts only a small percentage of these cells into hair cell-like cells. Despite tremendous potential for therapeutics, cellular reprogramming in the mammalian inner ear remains a slow inefficient process that requires weeks, with most cells failing to reprogram. Cellular reprogramming studies in other tissues have shown that epigenetic inhibitors can significantly improve reprogramming efficiency.
Very little is known about epigenetic regulation in the mammalian inner ear, and almost nothing is known about the histone modifications. Histone modifications are vital for proper transcriptional regulation, and aberrant histone modifications can cause defects in the regulation of genes required for normal tissue development and maintenance. Our data indicate that cofactors of repressive complexes such as NuRD and PRC2 are present in the neonatal organ of Corti. These NuRD cofactors are present throughout most of the organ of Corti from E18.5 until P4. By P6, these NuRD cofactors are mostly un-detectable by immunofluorescence and completely lost by P7, but are detectable again at P8 and continue to be present through P21. The PRC2 enzymatic subunit, EZH2 is also highly present from E18.5 to PO in the organ of Corti, but lost between P2 and P4. However, EZH2 staining is evident again throughout the organ of Corti by P6 and persists through P21. Our data provide evidence that HDACs, DNA methyltransferases, histone methyltransferases, and histone demethylases are expressed postnatally within the organ of Corti, and may be targets for drug inhibition to increase the capacity, speed, and efficiency of reprogramming a supporting cell into a hair cell. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Layman, Wanda S.; Sauceda, Mario A.; Zuo, Jian] St Jude Childrens Res Hosp, Dept Dev Neurobiol, Memphis, TN 38105 USA.
RP Zuo, J (reprint author), St Jude Childrens Res Hosp, Dept Dev Neurobiol, MS323,262 Danny Thomas Pl, Memphis, TN 38105 USA.
EM wanda.layman@stjude.org; mario.sauceda@stjude.org; jian.zuo@stjude.org
FU National Institutes of Health [DC006471, DC008800, CA21765]; Office of
Naval Research [N000140911014, N000141210775, N000 141210191]; American
Lebanese Syrian Associated Charities of St. Jude Children's Research
Hospital; Hartwell Individual Biomedical Research Award
FX This work was supported by grants from the National Institutes of Health
(DC006471, DC008800, and CA21765 to J.Z.), the Office of Naval Research
(N000140911014, N000141210775, and N000 141210191 to J.Z.), and the
American Lebanese Syrian Associated Charities of St. Jude Children's
Research Hospital. J.Z. is a recipient of The Hartwell Individual
Biomedical Research Award.
CR Armstrong L, 2000, MECH DEVELOP, V97, P109, DOI 10.1016/S0925-4773(00)00423-8
Cai Y., 2013, ONCOGENE, DOI DOI 10.1038/0NC.2013.178
Cheng JC, 2003, J NATL CANCER I, V95, P399
Cohen DE, 2011, NAT REV GENET, V12, P243, DOI 10.1038/nrg2938
Cunliffe VT, 2008, CURR OPIN GENET DEV, V18, P404, DOI 10.1016/j.gde.2008.10.001
Driver EC, 2013, DEV BIOL, V376, P86, DOI 10.1016/j.ydbio.2013.01.005
Hanna JH, 2010, CELL, V143, P508, DOI 10.1016/j.cell.2010.10.008
Hayakawa T, 2011, J BIOMED BIOTECHNOL, DOI 10.1155/2011/129383
Hernandez DG, 2011, HUM MOL GENET, V20, P1164, DOI 10.1093/hmg/ddq561
Huangfu DW, 2008, NAT BIOTECHNOL, V26, P795, DOI 10.1038/nbt1418
Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193
Jurkowska RZ, 2011, CHEMBIOCHEM, V12, P206, DOI 10.1002/cbic.201000195
Kelly MC, 2012, J NEUROSCI, V32, P6699, DOI 10.1523/JNEUROSCI.5420-11.2012
Kim K, 2010, NATURE, V467, P285, DOI 10.1038/nature09342
Lai AY, 2011, NAT REV CANCER, V11, P588, DOI 10.1038/nrc3091
Lande-Diner L, 2007, J BIOL CHEM, V282, P12194, DOI 10.1074/jbc.M607838200
LeBoeuf M, 2010, DEV CELL, V19, P807, DOI 10.1016/j.devcel.2010.10.015
Li H, 2009, NATURE, V460, P1136, DOI 10.1038/nature08290
Lister R, 2011, NATURE, V471, P68, DOI 10.1038/nature09798
Liu ZY, 2012, J NEUROSCI, V32, P6600, DOI 10.1523/JNEUROSCI.0818-12.2012
Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
Maegawa S, 2010, GENOME RES, V20, P332, DOI 10.1101/gr.096826.109
Malgrange B, 2002, MECH DEVELOP, V112, P79, DOI 10.1016/S0925-4773(01)00642-6
McCabe MT, 2012, NATURE, V492, P108, DOI 10.1038/nature11606
Mikkelsen TS, 2008, NATURE, V454, P49, DOI 10.1038/nature07056
Miranda TB, 2007, J CELL PHYSIOL, V213, P384, DOI 10.1002/jcp.21224
Mutai H, 2009, DEV NEUROBIOL, V69, P913, DOI 10.1002/dneu.20746
Oshima K, 2007, JARO-J ASSOC RES OTO, V8, P18, DOI 10.1007/s10162-006-0058-3
Palmieri D, 2009, CLIN CANCER RES, V15, P6148, DOI 10.1158/1078-0432.CCR-09-1039
Papp B, 2011, CELL RES, V21, P486, DOI 10.1038/cr.2011.28
Qureshi IA, 2010, CELL CYCLE, V9, P4477, DOI 10.4161/cc.9.22.13973
Reynolds N, 2012, EMBO J, V31, P593, DOI 10.1038/emboj.2011.431
Ruben R.J., 1967, ACTA OTO-LARYNGOL, V220, P221
Sinkkonen ST, 2011, SCI REP-UK, V1, DOI 10.1038/srep00026
Soldner F, 2009, CELL, V136, P964, DOI 10.1016/j.cell.2009.02.013
Spriggs KA, 2010, MOL CELL, V40, P228, DOI 10.1016/j.molcel.2010.09.028
Vire E, 2006, NATURE, V439, P871, DOI 10.1038/nature04431
Vogel C, 2012, NAT REV GENET, V13, P227, DOI 10.1038/nrg3185
Waldhaus J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036066
Walters BJ, 2013, HEARING RES, V297, P68, DOI 10.1016/j.heares.2012.11.009
Wang JX, 2007, NATURE, V446, P882, DOI 10.1038/nature05671
Wang Y, 2009, CELL, V138, P660, DOI 10.1016/j.cell.2009.05.050
White PM, 2006, NATURE, V441, P984, DOI 10.1038/nature04849
Wilting RH, 2010, EMBO J, V29, P2586, DOI 10.1038/emboj.2010.136
Yamaguchi T, 2010, GENE DEV, V24, P455, DOI 10.1101/gad.552310
Yamanaka S, 2009, CELL, V137, P13, DOI 10.1016/j.cell.2009.03.034
Zheng JL, 2000, NAT NEUROSCI, V3, P580
NR 47
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2013
VL 304
BP 167
EP 178
DI 10.1016/j.heares.2013.07.017
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 225PM
UT WOS:000324974800018
PM 23911933
ER
PT J
AU Eggermont, JJ
Munguia, R
Shaw, G
AF Eggermont, Jos J.
Munguia, Raymundo
Shaw, Gregory
TI Cross-correlations between three units in cat primary auditory cortex
SO HEARING RESEARCH
LA English
DT Article
ID NEURAL INTERACTION; SPIKE TRAINS; NEURONS; PATTERNS; DISPLAY; NOISE
AB Here we use a modification of the Joint-Pen-Stimulus-Time histogram (JPSTH) to investigate triple correlations between cat auditory cortex neurons. The modified procedure allowed the decomposition of the xy-pair correlation into a part that is due to the correlation of the x and y units with the trigger unit, and a remaining 'pair correlation'. We analyzed 16 sets of 15-minute duration stationary spontaneous recordings in primary auditory cortex (AI) with between 11 and 14 electrodes from 2 arrays of 8 electrodes each that provided spontaneous firing rates above 0.22 sp/s and for which reliable frequency-tuning curves could be obtained and the characteristic frequency (CF) was estimated. Thus we evaluated 11,282 conditional cross-correlation functions.
The predictor for the conditional cross-correlation, calculated on the assumption that the trigger unit had no effect on the xy-pair correlation but using the same fraction of xy spikes, was equal to the conventional pair-wise correlation function between units xy. The conditional correlation of the xy-pair due to correlation of the x and/or y unit with the trigger unit decreased with the geometric mean distance of the xy pair to the trigger unit, but was independent of the pair cross-correlation coefficient. The conditional pair correlation coefficient was estimated at 78% of the measured pair correlation coefficient. Assuming a geometric decreasing effect of activities of units on other electrodes on the conditional correlation, we estimated the potential contribution of a large number of contributing units on the measured pair correlation at 35-50 of that correlation. This suggests that conventionally measured pair correlations in auditory cortex under ketamine anesthesia overestimate the 'true pair correlation', likely resulting from massive common input, by potentially up to a factor 2. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Eggermont, Jos J.; Munguia, Raymundo; Shaw, Gregory] Univ Calgary, Dept Physiol & Pharmacol, Calgary, AB T2N 1N4, Canada.
[Eggermont, Jos J.; Munguia, Raymundo; Shaw, Gregory] Univ Calgary, Dept Psychol, Calgary, AB T2N 1N4, Canada.
RP Eggermont, JJ (reprint author), Univ Calgary, Dept Psychol, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada.
EM eggermon@ucalgary.ca
FU Natural Sciences and Engineering Research Council (NSERC) of Canada
[NSERC 1206-2010]
FX The study was funded by the Natural Sciences and Engineering Research
Council (NSERC) of Canada under Grant number NSERC 1206-2010. By the
Alberta Heritage Foundation of Medical Research and the Campbell
McLaurin chair for Hearing Deficiencies. The funders had no role in
study design, data collection and analysis, decision to publish, or
preparation of the manuscript.
CR Abeles M, 2001, J NEUROSCI METH, V107, P141, DOI 10.1016/S0165-0270(01)00364-8
ABELES M, 1983, IEEE T BIO-MED ENG, V30, P235, DOI 10.1109/TBME.1983.325226
AERTSEN AMHJ, 1989, J NEUROPHYSIOL, V61, P900
Brody CD, 1999, NEURAL COMPUT, V11, P1537, DOI 10.1162/089976699300016133
BRPSCH M, 1999, EUR J NEUROSCI, V11, P3517
Czanner G, 2005, NEURAL COMPUT, V17, P1456, DOI 10.1162/0899766053723041
DICKSON JW, 1974, J NEUROPHYSIOL, V37, P1239
Eggermont JJ, 2000, J NEUROPHYSIOL, V83, P2708
EGGERMONT JJ, 1994, J NEUROPHYSIOL, V71, P246
EGGERMONT JJ, 1991, J NEUROPHYSIOL, V66, P1549
EGGERMONT JJ, 1992, J NEUROPHYSIOL, V68, P1216
EGGERMONT JJ, 1996, AUDIT NEUROSCI, V2, P76
Eggermont JJ, 2006, J NEUROPHYSIOL, V96, P746, DOI 10.1152/jn.00059.2006
GERSTEIN GL, 1985, J NEUROSCI, V5, P881
Gourevitch B, 2010, J COMPUT NEUROSCI, V29, P253, DOI 10.1007/s10827-009-0149-3
Gourevitch B, 2007, J NEUROSCI METH, V163, P181, DOI 10.1016/j.jneumeth.2007.02.021
Grun S, 2002, NEURAL COMPUT, V14, P43, DOI 10.1162/089976602753284455
Huang CL, 2000, J COMP NEUROL, V427, P302, DOI 10.1002/1096-9861(20001113)427:2<302::AID-CNE10>3.0.CO;2-J
Miller LM, 2001, NEURON, V32, P151, DOI 10.1016/S0896-6273(01)00445-7
Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005
PERKEL DH, 1975, BRAIN RES, V100, P271, DOI 10.1016/0006-8993(75)90483-7
Prut Y, 1998, J NEUROPHYSIOL, V79, P2857
Smith MA, 2008, J NEUROSCI, V28, P12591, DOI 10.1523/JNEUROSCI.2929-08.2008
Tomita M, 2005, J NEUROPHYSIOL, V93, P378, DOI 10.1152/jn.00643.2004
NR 24
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2013
VL 304
BP 179
EP 187
DI 10.1016/j.heares.2013.07.019
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 225PM
UT WOS:000324974800019
PM 23933479
ER
PT J
AU Gasparini, F
Caicci, F
Rigon, F
Zaniolo, G
Burighel, P
Manni, L
AF Gasparini, Fabio
Caicci, Federico
Rigon, Francesca
Zaniolo, Giovanna
Burighel, Paolo
Manni, Lucia
TI Cytodifferentiation of hair cells during the development of a basal
chordate
SO HEARING RESEARCH
LA English
DT Article
ID ASCIDIAN CIONA-INTESTINALIS; VERTEBRATE INNER-EAR; NEURAL CREST;
BOTRYLLUS-SCHLOSSERI; NERVOUS-SYSTEM; CORONAL ORGAN; LATERAL-LINE;
EVOLUTION; PLACODES; REGENERATION
AB Tunicates are unique animals for studying the origin and evolution of vertebrates because they are considered vertebrates' closest living relatives and share the vertebrate body plan and many specific features. Both possess neural placodes, transient thickenings of the cranial ectoderm that give rise to various types of sensory cells, including axonless secondary mechanoreceptors. In vertebrates, these are represented by the hair cells of the inner ear and the lateral line, which have an apical apparatus typically bearing cilia and stereovilli. In tunicates, they are found in the coronal organ, which is a mechanoreceptor located at the base of the oral siphon along the border of the velum and tentacles and is formed of cells bearing a row of cilia and short microvilli. The coronal organ represents the best candidate homolog for the vertebrate lateral line. To further understand the evolution of secondary sensory cells, we analysed the development and cytodifferentiation of coronal cells in the tunicate ascidian Ciona intestinalis for the first time. Here, coronal sensory cells can be identified as early as larval metamorphosis, before tentacles form, as cells with short cilia and microvilli. Sensory cells gradually differentiate, acquiring hair cell features with microvilli containing actin and myosin Vila; in the meantime, the associated supporting cells develop. The coronal organ grows throughout the animal's lifespan, accompanying the growth of the tentacle crown. Anti-phospho Histone H3 immunostaining indicates that both hair cells and supporting cells can proliferate. This finding contributes to the understanding of the evolution of secondary sensory cells, suggesting that both ancestral cell types were able to proliferate and that this property was progressively restricted to supporting cells in vertebrates and definitively lost in mammals. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Gasparini, Fabio; Caicci, Federico; Rigon, Francesca; Zaniolo, Giovanna; Burighel, Paolo; Manni, Lucia] Univ Padua, Dipartimento Biol, I-35121 Padua, Italy.
RP Caicci, F (reprint author), Univ Padua, Dipartimento Biol, Via U Bassi 58-B, I-35121 Padua, Italy.
EM federico.caicci@unipd.it
RI Gasparini, Fabio/F-4485-2011
OI Gasparini, Fabio/0000-0002-7574-0834
FU Italian Ministero della Universita e Ricerca Scientifica e Tecnologica;
Fondazione Cariparo
FX This study was supported by grants from Italian Ministero della
Universita e Ricerca Scientifica e Tecnologica and Fondazione Cariparo
to LM. The authors would like to thank Mr Ivan Rovato and Miss Michela
Rotanti for helping with the acquisition of data.
CR Auger H, 2010, DEV BIOL, V339, P374, DOI 10.1016/j.ydbio.2009.12.040
Baker CVH, 2008, J EXP ZOOL PART B, V310B, P370, DOI 10.1002/jez.b.21188
Bassham S, 2005, DEVELOPMENT, V132, P4259, DOI 10.1242/dev.01973
Bone Q., 1998, BIOL PELAGIC TUNICAT
Bonnet C, 2012, CURR OPIN NEUROL, V25, P42, DOI 10.1097/WCO.0b013e32834ef8b2
Bouchard M, 2010, BMC DEV BIOL, V10, DOI 10.1186/1471-213X-10-89
Burighel P, 2001, INVERTEBR BIOL, V120, P185, DOI 10.1111/j.1744-7410.2001.tb00123.x
Burighel P, 2008, BRAIN RES BULL, V75, P331, DOI 10.1016/j.brainresbull.2007.10.012
Burighel P, 2011, HEARING RES, V273, P14, DOI 10.1016/j.heares.2010.03.087
Burns JC, 2012, J NEUROSCI, V32, P6570, DOI 10.1523/JNEUROSCI.6274-11.2012
Caicci F, 2013, J COMP NEUROL, V521, P2756, DOI 10.1002/cne.23313
Caicci F, 2010, J COMP NEUROL, V518, P547, DOI 10.1002/cne.22222
Caicci F, 2010, CAN J ZOOL, V88, P567, DOI 10.1139/Z10-036
Chiba S, 2004, ZOOL SCI, V21, P285, DOI 10.2108/zsj.21.285
Collado MS, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023861
DALLAI R, 1989, TISSUE CELL, V21, P37, DOI 10.1016/0040-8166(89)90019-0
Delsuc F, 2006, NATURE, V439, P965, DOI 10.1038/nature04336
Donoghue PCJ, 2008, BIOESSAYS, V30, P530, DOI 10.1002/bies.20767
Drummond MC, 2012, HEARING RES, V288, P89, DOI 10.1016/j.heares.2011.12.003
Fritzsch B, 2002, J NEUROBIOL, V53, P143, DOI 10.1002/neu.10098
Frolenkov GI, 2004, NAT REV GENET, V5, P489, DOI 10.1038/nrg1377
Gallagher BC, 1996, DEV BIOL, V175, P95, DOI 10.1006/dbio.1996.0098
Gasparini F, 2008, EVOL DEV, V10, P591, DOI 10.1111/j.1525-142X.2008.00274.x
Gibbs MA, 2004, BRAIN BEHAV EVOLUT, V64, P70, DOI 10.1159/000079117
Graham A, 2013, J ANAT, V222, P32, DOI 10.1111/j.1469-7580.2012.01506.x
Holland LZ, 2001, J ANAT, V199, P85, DOI 10.1046/j.1469-7580.199.parts1-2.8.x
Horie T, 2011, NATURE, V469, P525, DOI 10.1038/nature09631
Jeffery WR, 2008, DEV BIOL, V324, P152, DOI 10.1016/j.ydbio.2008.08.022
KALTENBACH JA, 1994, J COMP NEUROL, V350, P187, DOI 10.1002/cne.903500204
Kennedy HJ, 2012, JARO-J ASSOC RES OTO, V13, P437, DOI 10.1007/s10162-012-0325-4
Liu XL, 2006, J NEUROPATH EXP NEUR, V65, P905, DOI 10.1097/01.jnen.0000235857.79502.c3
Mackie GO, 2006, CAN J ZOOL, V84, P1146, DOI 10.1139/Z06-106
Manley GA, 2008, SENSES COMPREHENSIVE, P1
Manni L, 2004, EVOL DEV, V6, P379, DOI 10.1111/j.1525-142X.2004.04046.x
Manni L, 2005, J EXP ZOOL PART B, V304B, P324, DOI 10.1002/jez.21039
Manni L, 2006, J COMP NEUROL, V495, P363, DOI 10.1002/cne.20867
Manni L, 2004, J EXP ZOOL PART B, V302B, P483, DOI 10.1002/jez.b.21013
Nakamura MJ, 2012, DEV BIOL, V372, P274, DOI 10.1016/j.ydbio.2012.09.007
Pan N, 2012, CELL TISSUE RES, V349, P415, DOI 10.1007/s00441-012-1454-0
Pierce ML, 2008, EVOL DEV, V10, P106, DOI 10.1111/j.1525-142X.2007.00217.x
PIPERNO G, 1987, J CELL BIOL, V104, P289, DOI 10.1083/jcb.104.2.289
Rigon F, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-112
Schlosser G, 2010, INT REV CEL MOL BIO, V283, P129, DOI 10.1016/S1937-6448(10)83004-7
Schlosser G, 2005, J EXP ZOOL PART B, V304B, P347, DOI 10.1002/jez.b.21055
Sinkkonen ST, 2011, SCI REP-UK, V1, DOI 10.1038/srep00026
Streit A, 2001, J ANAT, V199, P99, DOI 10.1017/S0021878201008263
TILNEY LG, 1986, HEARING RES, V22, P55, DOI 10.1016/0378-5955(86)90077-8
Wagner E, 2012, DEVELOPMENT, V139, P2351, DOI 10.1242/dev.078485
Warchol ME, 2011, HEARING RES, V273, P72, DOI 10.1016/j.heares.2010.05.004
Whitlock KE, 2003, DEV BIOL, V257, P140, DOI 10.1016/S0012-1606(03)00039-3
Zaniolo G, 2002, J COMP NEUROL, V443, P124, DOI 10.1002/cne.10097
Zine A, 1996, BRAIN RES, V721, P49, DOI 10.1016/0006-8993(96)00147-3
NR 52
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2013
VL 304
BP 188
EP 199
DI 10.1016/j.heares.2013.07.006
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 225PM
UT WOS:000324974800020
PM 23876523
ER
PT J
AU Lee, GS
Liu, CL
Lee, SH
AF Lee, Guo-She
Liu, Chialin
Lee, Shao-Hsuan
TI Effects of hearing aid amplification on voice F0 variability in speakers
with prelingual hearing loss
SO HEARING RESEARCH
LA English
DT Article
ID DELAYED AUDITORY-FEEDBACK; VOCAL FUNDAMENTAL-FREQUENCY; COCHLEAR
IMPLANTATION; DEAFENED ADULTS; SPEECH; CHILDREN; RESPONSES
AB To investigate the audio-vocal feedback responses of (F0) to hearing amplification in severe-to-profound prelingual hearing loss (SPHL) using power spectral analysis of F0 contour of sustained vowels. Sustained phonations of vowel/a/of seventeen participants with SPHL were acquired with and without hearing-aid amplifications. The vocal intensity was visually fed back to the participants to help controlling the vocal intensity at 65-75 dBA and 85-95 dBA. The F0 contour of the phonations was extracted and submitted to spectral analysis to measure the extent of F0 fluctuations at different frequency ranges. The results showed that both high vocal intensity and hearing-aid amplification significantly improved voice F0 control by reducing the low-frequency fluctuations (low-frequency power, LFP, 0.2-3 Hz) in F0 spectrum. However, the enhanced feedback from higher vocal intensity and/or hearing amplification was not adequate to reduce the LFP to the level of a normal hearing person. Moreover, we found significant and negative correlations between LFP and supra-threshold feedback intensity (phonation intensity hearing threshold level) for the frequencies of 500-2000 Hz. Increased vocal intensity, as well as hearing-aid amplification, improved voice F0 control by reducing the LFP of F0 spectrum, and the subtle changes in voices could be well explored using spectral analysis of F0. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Lee, Guo-She] Natl Yang Ming Univ, Fac Med, Sch Med, Taipei 112, Taiwan.
[Lee, Guo-She] Taipei City Hosp, Dept Otolaryngol, Ren Ai Branch, Taipei 112, Taiwan.
[Liu, Chialin; Lee, Shao-Hsuan] Natl Taipei Univ Nursing & Hlth Sci, Dept Speech & Hearing Disorders & Sci, Taipei, Taiwan.
[Lee, Shao-Hsuan] Yong Cheng Rehabil Clin, Taipei, Taiwan.
RP Lee, GS (reprint author), Natl Yang Ming Univ, Fac Med, Sch Med, 155,Sec 2,Li Norng St, Taipei 112, Taiwan.
EM guosheli@ms12.hinet.net; chialin58@gmail.com; satomilee0701@gmail.com
FU National Science Council, Taiwan [NSC 101-2314-B-010-022]
FX There was no conflict of interest to disclose in this work. This study
was supported by the grant from National Science Council, Taiwan (NSC
101-2314-B-010-022).
CR Black JW, 1951, J SPEECH HEAR DISORD, V16, P56
Bolfan-Stosic N, 2007, J OTOLARYNGOL, V36, P120, DOI 10.2310/7070.2007.0009
Burnett TA, 1998, J ACOUST SOC AM, V103, P3153, DOI 10.1121/1.423073
Campisi P, 2000, J OTOLARYNGOL, V29, P302
Coelho Ana Cristina de Castro, 2009, Pro Fono, V21, P7, DOI 10.1590/S0104-56872009000100002
Dejonckere P., 1998, LOGOP PHONIATR VOCO, V23, P79, DOI 10.1080/140154398434239
EGAN JJ, 1975, ARCH OTOLARYNGOL, V101, P557
FAIRBANKS G, 1958, J SPEECH HEAR RES, V1, P12
Fairbanks G, 1955, J SPEECH HEAR DISORD, V20, P333
Hain TC, 2001, J ACOUST SOC AM, V109, P2146, DOI 10.1121/1.1366319
Hamzavi J, 2000, AUDIOLOGY, V39, P102
Higgins Maureen B., 2003, Ear and Hearing, V24, P48, DOI 10.1097/01.AUD.0000051846.71105.AF
Higgins MB, 2005, EAR HEARING, V26, P546, DOI 10.1097/01.aud.0000188151.99086.a3
HIGGINS MB, 1994, J SPEECH HEAR RES, V37, P510
Kishon-Rabin L, 1999, J ACOUST SOC AM, V106, P2843, DOI 10.1121/1.428109
Langereis MC, 1998, AUDIOLOGY, V37, P219
Larson CR, 2000, J ACOUST SOC AM, V107, P559, DOI 10.1121/1.428323
Lee G. -S., 2004, J TAIWAN OTOLARYNGOL, V39, P145
Lee GS, 2007, EAR HEARING, V28, P343, DOI 10.1097/AUD.0b013e318047936f
Lee GS, 2009, CHINESE J PHYSIOL, V52, P446, DOI 10.4077/CJP.2009.AMH074
Lee GS, 2012, J VOICE, V26, P24, DOI 10.1016/j.jvoice.2010.10.003
Murry T, 1999, J VOICE, V13, P257, DOI 10.1016/S0892-1997(99)80030-7
PICK HL, 1989, J ACOUST SOC AM, V85, P894, DOI 10.1121/1.397561
Sober SJ, 2009, NAT NEUROSCI, V12, P927, DOI 10.1038/nn.2336
Zanini S, 1999, PERCEPT MOTOR SKILL, V89, P1095, DOI 10.2466/PMS.89.7.1095-1109
NR 25
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2013
VL 302
BP 1
EP 8
DI 10.1016/j.heares.2013.04.010
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 186OZ
UT WOS:000322055300001
PM 23648550
ER
PT J
AU Seyyedi, M
Eddington, DK
Nadol, JB
AF Seyyedi, Mohammad
Eddington, Donald K.
Nadol, Joseph B., Jr.
TI Effect of monopolar and bipolar electric stimulation on survival and
size of human spiral ganglion cells as studied by postmortem
histopathology
SO HEARING RESEARCH
LA English
DT Article
ID NEONATALLY DEAFENED CATS; COCHLEAR IMPLANTATION; AUDITORY-NERVE;
GUINEA-PIG; NEUROTROPHIC FACTOR; HEARING-LOSS; INNER-EAR; NEURONS;
DEGENERATION; PATTERNS
AB The spiral ganglion cell (SGC) is the target of electrical stimulation in cochlear implants. This study is designed to test the hypothesis that chronic electrical stimulation tends to preserve SGCs in implanted hearing-impaired ears. A total of 26 pairs of temporal bones were studied from 26 individuals who in life suffered bilateral profound hearing impairment that was symmetric (in degree of impairment and etiology) across ears and then underwent unilateral cochlear implantation. The subjects were divided in two groups by stimulus configuration: bipolar (n = 16) or monopolar (n = 10). The temporal bones were prepared for histological review by standard methods and two measures of SGC status were made by cochlear segment: count and maximal cross-sectional area. Within-subject comparison of the measures between the implanted-stimulated and the unimplanted ears showed: (1) for both stimulus configurations, the mean (across subjects and segments) of the count difference (implanted ear - unimplanted ear) was significantly less than zero; (2) the mean (across subject) count difference for cochlear segments I, II and III (segments with electrode contacts in the implanted ear) was significantly less negative than the mean difference for cochlear segment IV (no electrode in implanted ear) for bipolar but not for monopolar stimulation; (3) neither implantation-stimulation nor stimulus configuration significantly influenced the measures of maximum cross-sectional cell area. The SGC count results are consistent with the hypothesis that implantation results in a propensity across the whole cochlea for SGCs to degenerate and with chronic bipolar stimulation ameliorating this propensity in those cochlear segments with electrodes present. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Seyyedi, Mohammad; Eddington, Donald K.; Nadol, Joseph B., Jr.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02114 USA.
[Seyyedi, Mohammad; Eddington, Donald K.; Nadol, Joseph B., Jr.] Massachusetts Eye & Ear Infirm, Dept Otolaryngol, Boston, MA 02114 USA.
[Seyyedi, Mohammad; Eddington, Donald K.; Nadol, Joseph B., Jr.] Massachusetts Eye & Ear Infirm, Cochlear Implant Res Lab, Boston, MA 02114 USA.
[Eddington, Donald K.; Nadol, Joseph B., Jr.] MIT, Speech & Hearing Biosci & Technol Program, Div Hlth Sci & Technol, Cambridge, MA 02139 USA.
RP Nadol, JB (reprint author), Massachusetts Eye & Ear Infirm, Dept Otolaryngol, 243 Charles St, Boston, MA 02114 USA.
EM joseph_nadol@meei.harvard.edu
FU National Institute of Deafness and Other Communication Disorders
[R01-DC000152]
FX This work was supported by grant R01-DC000152 from the National
Institute of Deafness and Other Communication Disorders.
CR Agterberg MJH, 2010, HEARING RES, V269, P169, DOI 10.1016/j.heares.2010.06.015
Araki S, 1998, LARYNGOSCOPE, V108, P687, DOI 10.1097/00005537-199805000-00012
Chatterjee M, 1999, J ACOUST SOC AM, V105, P850, DOI 10.1121/1.426274
CHIONG CM, 1993, HEARING RES, V67, P211, DOI 10.1016/0378-5955(93)90249-Z
Clark G M, 1988, Acta Otolaryngol Suppl, V448, P1
Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004
Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463
Fayad JN, 2006, LARYNGOSCOPE, V116, P1310, DOI 10.1097/01.mlg.0000227176.09500.28
Fritzsch B, 1999, CELL TISSUE RES, V295, P369, DOI 10.1007/s004410051244
HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7
HINOJOSA R, 1983, ANN NY ACAD SCI, V405, P459, DOI 10.1111/j.1749-6632.1983.tb31662.x
HULTCRANTZ M, 1991, HEARING RES, V54, P272, DOI 10.1016/0378-5955(91)90121-O
Kanzaki S, 2002, J COMP NEUROL, V454, P350, DOI 10.1002/cne.10480
Khan AM, 2005, ANN OTO RHINOL LARYN, V114, P381
Konigsmark BW, 1970, CONT RES METHODS NEU, P315
Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3
LEAKE PA, 1991, HEARING RES, V54, P251, DOI 10.1016/0378-5955(91)90120-X
LEAKE PA, 1995, HEARING RES, V82, P65
LINTHICUM FH, 1991, ACTA OTO-LARYNGOL, V111, P327, DOI 10.3109/00016489109137395
LOUSTEAU RJ, 1987, LARYNGOSCOPE, V97, P836
MARSH MA, 1992, AM J OTOL, V13, P241
McGuinness SL, 2005, OTOL NEUROTOL, V26, P1064, DOI 10.1097/01.mao.0000185063.20081.50
Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7
Mitchell A, 1997, HEARING RES, V105, P30, DOI 10.1016/S0378-5955(96)00202-X
NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411
NADOL JB, 1988, AM J OTOLARYNG, V9, P47, DOI 10.1016/S0196-0709(88)80007-3
NADOL JB, 1990, ANN OTO RHINOL LARYN, V99, P340
OTTE J, 1978, LARYNGOSCOPE, V88, P1231
SCHULNECHT H, 1968, Archives of Otolaryngology, V87, P129
SCHUKNECHT HF, 1953, AMA ARCH OTOLARYNGOL, V58, P377
Seyyedi M, 2011, HEARING RES, V282, P56, DOI 10.1016/j.heares.2011.10.002
SHEPHERD RK, 1994, HEARING RES, V81, P150, DOI 10.1016/0378-5955(94)90162-7
Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4
SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683
WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7
Wise AK, 2005, J COMP NEUROL, V487, P147, DOI 10.1002/cne.20563
Xu HX, 2012, ACTA OTO-LARYNGOL, V132, P482, DOI 10.3109/00016489.2011.647361
Xu J, 1997, HEARING RES, V105, P1, DOI 10.1016/S0378-5955(96)00193-1
XU SA, 1993, HEARING RES, V70, P205, DOI 10.1016/0378-5955(93)90159-X
YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C
ZAPPIA JJ, 1991, ANN OTO RHINOL LARYN, V100, P914
ZIMMERMANN CE, 1995, HEARING RES, V90, P192, DOI 10.1016/0378-5955(95)00165-1
NR 42
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2013
VL 302
BP 9
EP 16
DI 10.1016/j.heares.2013.04.007
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 186OZ
UT WOS:000322055300002
PM 23660399
ER
PT J
AU Wakaoka, T
Motohashi, T
Hayashi, H
Kuze, B
Aoki, M
Mizuta, K
Kunisada, T
Ito, Y
AF Wakaoka, Takanori
Motohashi, Tsutomu
Hayashi, Hisamitsu
Kuze, Bunya
Aoki, Mitsuhiro
Mizuta, Keisuke
Kunisada, Takahiro
Ito, Yatsuji
TI Tracing Sox10-expressing cells elucidates the dynamic development of the
mouse inner ear
SO HEARING RESEARCH
LA English
DT Article
ID TRANSCRIPTION FACTOR SOX10; CREST-DERIVED MELANOCYTES; NEURAL CREST;
HIRSCHSPRUNG-DISEASE; STEM-CELLS; DIFFERENTIATION; GENE; MUTATIONS;
PLACODE; ORIGIN
AB The inner ear is constituted by complicated cochlear and vestibular compartments, which are derived from the otic vesicle, an embryonic structure of ectodermal origin. Although the inner ear development has been analyzed using various techniques, the developmental events have not been fully elucidated because of the intricate structure. We previously developed a Sox10-IRES-Venus mouse designed to express green fluorescent protein under the control of the Sox10 promoter. In the present study, we showed that the Sox10-IRES-Venus mouse enabled the non-destructive visualization and understanding of the morphogenesis during the development of the inner ear. The expression of the transcription factor Sox10 was first observed in the invaginating otic placodal epithelium, and continued to be expressed in the mature inner ear epithelium except for the hair cells and mesenchymal cells. We found that Sox10 was expressed in immature hair cells in the developing inner ear, suggesting that hair cells were generated from the Sox10-expressing prosensory cells. Furthermore, we demonstrated that scattered Sox10-expressing cells existed around the developing inner ear, some of which differentiated into pigmented melanocytes in the stria vascularis, suggesting that they were neural crest cells. Further analyzing the Sox10-IRES-Venus mice would provide important information to better understand the development of the inner ear. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.
C1 [Wakaoka, Takanori; Hayashi, Hisamitsu; Kuze, Bunya; Aoki, Mitsuhiro; Mizuta, Keisuke; Ito, Yatsuji] Gifu Univ, Dept Otolaryngol, Grad Sch Med, Gifu 5011194, Japan.
[Motohashi, Tsutomu; Kunisada, Takahiro] Gifu Univ, Dept Tissue & Organ Dev Regenerat & Adv Med Sci, Grad Sch Med, Gifu 5011194, Japan.
RP Motohashi, T (reprint author), Gifu Univ, Dept Tissue & Organ Dev Regenerat & Adv Med Sci, Grad Sch Med, 1-1 Yanagido, Gifu 5011194, Japan.
EM tmotohas@gifu-u.ac.jp
FU Gifu University Research Grant Program
FX We thank Drs. Hitomi Aoki and Ken-ichi Tezuka (Department of Tissue and
Organ Development) for their technical assistance, and the members of
the Department of Otolaryngology for intellectual discussions and
critical reading of this manuscript. This study was supported by the
Gifu University Research Grant Program.
CR Barald KF, 2004, DEVELOPMENT, V131, P4119, DOI 10.1242/dev.01339
Barrionuevo F, 2008, DEV BIOL, V317, P213, DOI 10.1016/j.ydbio.2008.02.011
Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837
Breuskin I, 2010, J NEUROCHEM, V114, P1827, DOI 10.1111/j.1471-4159.2010.06897.x
Breuskin I, 2009, DEV BIOL, V335, P327, DOI 10.1016/j.ydbio.2009.09.007
Britsch S, 2001, GENE DEV, V15, P66, DOI 10.1101/gad.186601
CABLE J, 1995, MECH DEVELOP, V50, P139, DOI 10.1016/0925-4773(94)00331-G
Cantos R, 2000, P NATL ACAD SCI USA, V97, P11707, DOI 10.1073/pnas.97.22.11707
Chen P, 2002, DEVELOPMENT, V129, P2495
Fekete DM, 1999, TRENDS NEUROSCI, V22, P263, DOI 10.1016/S0166-2236(98)01366-6
FELIX H, 1993, ACTA OTO-LARYNGOL, V113, P321, DOI 10.3109/00016489309135817
Freyer L, 2011, DEVELOPMENT, V138, P5403, DOI 10.1242/dev.069849
Graham A, 2004, DEV DYNAM, V229, P5, DOI 10.1002/dvdy.10442
Herbarth B, 1998, P NATL ACAD SCI USA, V95, P5161, DOI 10.1073/pnas.95.9.5161
Kelley MW, 2007, INT J DEV BIOL, V51, P571, DOI 10.1387/ijdb.072388mk
Kelley MW, 2006, NAT REV NEUROSCI, V7, P837, DOI 10.1038/nrn1987
Kim J, 2003, NEURON, V38, P17, DOI 10.1016/S0896-6273(03)00163-6
Kopecky B, 2011, DEV DYNAM, V240, P1373, DOI 10.1002/dvdy.22620
Kopecky B, 2012, DEV DYNAM, V241, P465, DOI 10.1002/dvdy.23736
LeDouarin NM, 1999, NEURAL CREST
Lim DJ, 1992, STRUCTURAL DEV COCHL, P33
Ma QF, 1998, NEURON, V20, P469, DOI 10.1016/S0896-6273(00)80988-5
MARTIN P, 1993, DEV BIOL, V159, P549, DOI 10.1006/dbio.1993.1263
Mollaaghababa R, 2003, ONCOGENE, V22, P3024, DOI 10.1038/sj.onc.1206442
Morsli H, 1998, J NEUROSCI, V18, P3327
Motohashi T, 2011, DEV DYNAM, V240, P1681, DOI 10.1002/dvdy.22658
Noramly S, 2002, J NEUROBIOL, V53, P100, DOI 10.1002/neu.10131
Pan N, 2011, HEARING RES, V275, P66, DOI 10.1016/j.heares.2010.12.002
Pingault V, 1998, NAT GENET, V18, P171, DOI 10.1038/ng0298-171
Ruben R. J., 1967, ACTA OTO-LARYNGOL, V220, P1
Rugh R., 1990, MOUSE
Salt AN, 2001, ANN NY ACAD SCI, V942, P306
SHER AE, 1971, ACTA OTO-LARYNGOL, P1
SHINOZAKI N, 1980, ACTA OTO-LARYNGOL, V90, P370, DOI 10.3109/00016488009131738
Smeti I, 2011, GENE EXPR PATTERNS, V11, P22, DOI 10.1016/j.gep.2010.08.008
Southard-Smith EM, 1998, NAT GENET, V18, P60, DOI 10.1038/ng0198-60
Stolt CC, 2002, GENE DEV, V16, P165, DOI 10.1101/gad.215802
Tachibana M, 2003, PIGM CELL RES, V16, P448, DOI 10.1034/j.1600-0749.2003.00066.x
Torres M, 1998, MECH DEVELOP, V71, P5, DOI 10.1016/S0925-4773(97)00155-X
Watanabe K, 2000, MOL BRAIN RES, V84, P141, DOI 10.1016/S0169-328X(00)00236-9
Wegner M, 1999, NUCLEIC ACIDS RES, V27, P1409, DOI 10.1093/nar/27.6.1409
Wegner M, 2005, TRENDS NEUROSCI, V28, P583, DOI 10.1016/j.tins.2005.08.008
NR 42
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2013
VL 302
BP 17
EP 25
DI 10.1016/j.heares.2013.05.003
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 186OZ
UT WOS:000322055300003
PM 23684581
ER
PT J
AU Kimura, Y
Kubo, S
Koda, H
Shigemoto, K
Sawabe, M
Kitamura, K
AF Kimura, Yurika
Kubo, Sachiho
Koda, Hiroko
Shigemoto, Kazuhiro
Sawabe, Motoji
Kitamura, Ken
TI RNA analysis of inner ear cells from formalin fixed paraffin embedded
(FFPE) archival human temporal bone section using laser microdissection
- A technical report
SO HEARING RESEARCH
LA English
DT Article
ID POLYMERASE-CHAIN-REACTION; MITOCHONDRIAL-DNA; QUANTITATIVE-ANALYSIS;
EXPRESSION ANALYSIS; TISSUES; MOUSE; AMPLIFICATION; MUTATIONS;
SPECIMENS; DEAFNESS
AB Objective: Molecular analysis using archival human inner ear specimens is challenging because of the anatomical complexity, long-term fixation, and decalcification. However, this method may provide great benefit for elucidation of otological diseases. Here, we extracted mRNA for RT-PCR from tissues dissected from archival FFPE human inner ears by laser microdissection.
Methods: Three human temporal bones obtained at autopsy were fixed in formalin, decalcified by EDTA, and embedded in paraffin. The samples were isolated into spiral ligaments, outer hair cells, spiral ganglion cells, and stria vascularis by laser microdissection. RNA was extracted and heattreated in 10 mM citrate buffer to remove the formalin-derived modification. To identify the sites where COCH and SLC26A5 mRNA were expressed, semi-nested RT-PCR was performed. We also examined how long COCH mRNA could be amplified by semi-nested RT-PCR in archival temporal bone.
Results: COCH was expressed in the spiral ligament and stria vascularis. However, SLC26A5 was expressed only in outer hair cells. The maximum base length of COCH mRNA amplified by RT-PCR was 98 bp in 1 case and 123 bp in 2 cases.
Conclusion: We detected COCH and SLC26A5 mRNA in specific structures and cells of the inner ear from archival human temporal bone. Our innovative method using laser microdissection and semi-nested RTPCR should advance future RNA study of human inner ear diseases. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Kimura, Yurika] Tokyo Metropolitan Geriatr Med Hosp, Dept Otolaryngol, Itabashi Ku, Tokyo 1730015, Japan.
[Kimura, Yurika; Kubo, Sachiho; Shigemoto, Kazuhiro] Tokyo Metropolitan Inst Gerontol, Res Team Geriatr Med, Itabashi Ku, Tokyo, Japan.
[Koda, Hiroko; Kitamura, Ken] Tokyo Med & Dent Univ, Dept Otolaryngol, Grad Sch, Bunkyo Ku, Tokyo, Japan.
[Koda, Hiroko] Ohkubo Hosp, Dept Otolaryngol, Shinjuku Ku, Tokyo, Japan.
[Sawabe, Motoji] Tokyo Med & Dent Univ, Grad Sch Hlth Care Sci, Sect Mol Pathol, Tokyo, Japan.
RP Kimura, Y (reprint author), Tokyo Metropolitan Geriatr Med Hosp, Dept Otolaryngol, Itabashi Ku, 35-2 Sakae Cho, Tokyo 1730015, Japan.
EM kimura@tmghig.jp
FU Ministry of Education, Culture, Sport, Science and Technology, Japan
[19791250, 21390459, 22659305, 23791953]
FX This study was supported by Grants-in-Aid for Scientific Research (Nos.
19791250, 21390459, 22659305, 23791953) from the Ministry of Education,
Culture, Sport, Science and Technology, Japan. The authors wish to thank
Mr Goto, Mr Mukaiyama, Ms Hasegawa, and all other technicians in the
Departments of Pathology of Tokyo Metropolitan Geriatric Hospital for
their excellent pathological work. We also express our sincere gratitude
to the deceased whose temporal bones contributed to this study.
CR Chung JY, 2010, METHODS MOL BIOL, V611, P19, DOI 10.1007/978-1-60327-345-9_2
Everett LA, 2001, HUM MOL GENET, V10, P153, DOI 10.1093/hmg/10.2.153
Farragher SM, 2008, HISTOCHEM CELL BIOL, V130, P435, DOI 10.1007/s00418-008-0479-7
GIBSON F, 1995, NATURE, V374, P62, DOI 10.1038/374062a0
Hall KL, 2007, OTOL NEUROTOL, V28, P116, DOI 10.1097/01.mao.0000235377.70492.c7
Hamatani K, 2006, J HISTOCHEM CYTOCHEM, V54, P773, DOI 10.1369/jhc.5A6859.2006
Kimura Y, 2007, ACTA OTO-LARYNGOL, V127, P1024, DOI 10.1080/00016480701200202
Kimura Y, 2005, ACTA OTO-LARYNGOL, V125, P697, DOI 10.1080/00016480510027510
Koda H, 2010, ACTA OTO-LARYNGOL, V130, P344, DOI [10.1080/00016480903148282, 10.3109/00016480903148282]
Lee KH, 1997, LARYNGOSCOPE, V107, P1228, DOI 10.1097/00005537-199709000-00013
Lin JZ, 1999, ACTA OTO-LARYNGOL, V119, P787, DOI 10.1080/00016489950180432
Markaryan A, 2009, LARYNGOSCOPE, V119, P1184, DOI 10.1002/lary.20218
Pagedar NA, 2006, BRAIN RES, V1091, P289, DOI 10.1016/j.brainres.2006.01.057
Robertson NG, 1998, NAT GENET, V20, P299
Schuknecht HF, 1993, PATHOLOGY EAR
Takahashi K, 2003, LARYNGOSCOPE, V113, P1362, DOI 10.1097/00005537-200308000-00018
Takahashi M, 2010, ACTA OTO-LARYNGOL, V130, P788, DOI 10.3109/00016480903426626
WACKYM PA, 1993, LARYNGOSCOPE, V103, P583
NR 18
TC 1
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2013
VL 302
BP 26
EP 31
DI 10.1016/j.heares.2013.04.008
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 186OZ
UT WOS:000322055300004
PM 23660400
ER
PT J
AU Vandali, A
Sly, D
Cowan, R
van Hoesel, R
AF Vandali, Andrew
Sly, David
Cowan, Robert
van Hoesel, Richard
TI Pitch and loudness matching of unmodulated and modulated stimuli in
cochlear implantees
SO HEARING RESEARCH
LA English
DT Article
ID AUDITORY-NERVE FIBERS; SPEECH PROCESSOR MSP; ELECTRIC PULSE RATES;
TEMPORAL PITCH; FUNDAMENTAL-FREQUENCY; MELODY RECOGNITION; MUSIC
PERCEPTION; HEARING; RECIPIENTS; AMPLITUDE
AB The pitch elicited by unmodulated and amplitude modulated electrical pulse trains was examined with six adult cochlear implantees. In addition, for three of those subjects who had some hearing in their contralateral ear, the pitch of unmodulated electrical pulse trains was compared to that of complex harmonic acoustic tones. In the first experiment, pulse rate discrimination and the effects of place and level differences on pitch were examined for unmodulated pulse trains. General results were consistent with previous studies showing that variations in pulse rate, while holding loudness fixed, elicit changes in pitch at low rates, but become progressively harder to discriminate as rates approach approximately 300 pulses-per-second. Variations in place or level of stimulation generally produced changes in pitch consistent with tonotopic place and spread of excitation. In the second experiment, pitch and loudness of unmodulated pulse trains were compared with those of amplitude modulated stimuli as a function of modulation depth, rate, and shape, and presentation level. The pitch elicited by an amplitude modulated pulse train was generally higher than that of an unmodulated pulse train with a pulse rate equal to the modulation rate, and generally decreased toward that of the unmodulated pulse train as modulation depth or rate increased, or as presentation level decreased. Sharper/narrower modulation produced lower pitch. In the final experiment, the pitch heights of acoustic complex harmonic tones and unmodulated pulse trains were compared. When electrical pulse rate was equal to the fundamental frequency of the acoustic tone, similar pitch heights were elicited. The results from these experiments indicate that F0 rate pitch derived from the temporal envelope in existing clinical cochlear implant strategies may often be higher than that of acoustic harmonic tones at the same F0 in normal hearing, and that pitch growth with increasing F0 may be shallower. The relationship between F0 and rate pitch is expected to be more similar to acoustic stimulation for low F0 rates when using new pitch coding strategies that code F0 information via deep (narrow) amplitude modulation of the stimulus envelope. Although that similarity reduces as F0 approaches the upper limit of rate-pitch discrimination, that limit is reached sooner for the shallow (or broad) modulators used in existing clinical strategies. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.
C1 [Vandali, Andrew; Cowan, Robert; van Hoesel, Richard] Hearing CRC, Carlton, Vic 3053, Australia.
[Sly, David] Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3010, Australia.
RP Vandali, A (reprint author), Hearing CRC, 550 Swanston St, Carlton, Vic 3053, Australia.
EM andrewev@unimelb.edu.au
FU Commonwealth of Australia; Victorian Government through its Operational
Infrastructure Support Program
FX This research was supported by the Commonwealth of Australia through the
establishment and operations of the Hearing CRC. In addition, we
acknowledge the support that the Bionics Institute receives from the
Victorian Government through its Operational Infrastructure Support
Program. The authors wish to thank the six recipients who gave their
time to participate in this study. Many thanks also to Mark White for
his informative comments on the research. Thanks also to Ian Bruce, Leon
Heffer, James Fallon, Richard Dowell, and the anonymous reviewers of the
manuscript.
CR Arnoldner C, 2008, LARYNGOSCOPE, V118, P1630, DOI 10.1097/MLG.0b013e3181799715
Blarney P.J., 1996, HEARING RES, V99, P139
BUSBY PA, 1994, J ACOUST SOC AM, V95, P2658, DOI 10.1121/1.409835
Busby PA, 1997, J ACOUST SOC AM, V101, P1687, DOI 10.1121/1.418178
Carlyon RP, 2010, JARO-J ASSOC RES OTO, V11, P625, DOI 10.1007/s10162-010-0222-7
Carlyon RP, 2002, J ACOUST SOC AM, V112, P621, DOI 10.1121/1.1488660
Carlyon RP, 2010, J ACOUST SOC AM, V127, P2997, DOI 10.1121/1.3372711
Ciocca V, 2002, J ACOUST SOC AM, V111, P2250, DOI 10.1121/1.1471897
Cohen LT, 2009, HEARING RES, V247, P100, DOI 10.1016/j.heares.2008.11.004
Dai HP, 2000, J ACOUST SOC AM, V107, P953, DOI 10.1121/1.428276
DYNES SBC, 1992, HEARING RES, V58, P79, DOI 10.1016/0378-5955(92)90011-B
Eddington D K, 1978, Ann Otol Rhinol Laryngol, V87, P1
FOSTER DH, 1991, PSYCHOL BULL, V109, P152, DOI 10.1037/0033-2909.109.1.152
Geurts L, 2001, J ACOUST SOC AM, V109, P713, DOI 10.1121/1.1340650
GFELLER K, 1991, J SPEECH HEAR RES, V34, P916
Gfeller K, 2005, EAR HEARING, V26, P237, DOI 10.1097/00003446-200506000-00001
Green T, 2004, J ACOUST SOC AM, V116, P2298, DOI 10.1121/1.1785611
Green T, 2005, J ACOUST SOC AM, V118, P375, DOI 10.1121/1.1925827
Hartmann R., 1990, COCHLEAR IMPLANTS MO, P135
Henry BA, 2003, J ACOUST SOC AM, V113, P2861, DOI 10.1121/1.1561900
Huang TS, 1996, AM J OTOL, V17, P46
JAVEL E, 1987, ANN OTO RHINOL LARYN, V96, P26
KIANG NYS, 1979, ACTA OTO-LARYNGOL, V87, P204, DOI 10.3109/00016487909126408
Kreft HA, 2004, J ACOUST SOC AM, V115, P1885, DOI 10.1121/1.1701895
Landsberger DM, 2005, J ACOUST SOC AM, V117, P319, DOI 10.1121/1.1830672
Landsberger DM, 2008, J ACOUST SOC AM, V124, pEL21, DOI 10.1121/1.2947624
Laneau J, 2006, AUDIOL NEURO-OTOL, V11, P38, DOI 10.1159/000088853
Leal MC, 2003, ACTA OTO-LARYNGOL, V123, P826, DOI 10.1080/00016480310000386
Lee KYS, 2002, INT J PEDIATR OTORHI, V63, P137, DOI 10.1016/S0165-5876(02)00005-8
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
Looi V., 2008, OTORINOLARINGOLOGIA, V58, P169
Looi V, 2004, INT CONGR SER, V1273, P197, DOI 10.1016/j.ics.2004.08.038
Macmillan N.A., 1991, DETECTION THEORY USE, P3
Matsuoka A.J., 1998, 7 NIH NEUR PROSTH PR
McDermott Hugh J, 2004, Trends Amplif, V8, P49, DOI 10.1177/108471380400800203
McDermott HJ, 1997, J ACOUST SOC AM, V101, P1622, DOI 10.1121/1.418177
MCKAY CM, 1993, EAR HEARING, V14, P350
MCKAY CM, 1994, J ACOUST SOC AM, V96, P2664, DOI 10.1121/1.411377
MCKAY CM, 1995, J ACOUST SOC AM, V97, P1777, DOI 10.1121/1.412054
McKay C. M., 2000, Acoustics Research Letters Online, V1, DOI 10.1121/1.1318742
McKay CM, 1996, J ACOUST SOC AM, V100, P1081, DOI 10.1121/1.416294
Milczynski M, 2012, HEARING RES, V285, P1, DOI 10.1016/j.heares.2012.02.006
Milczynski M, 2009, J ACOUST SOC AM, V125, P2260, DOI 10.1121/1.3085642
Miller CA, 2001, JARO, V2, P216
Moore B. C., 2005, HDB AUDITORY RES PIT
NELSON DA, 1995, J ACOUST SOC AM, V98, P1987, DOI 10.1121/1.413317
PARKINS CW, 1989, HEARING RES, V41, P137, DOI 10.1016/0378-5955(89)90007-5
PFINGST BE, 1994, HEARING RES, V78, P197, DOI 10.1016/0378-5955(94)90026-4
PFINGST BE, 1988, HEARING RES, V34, P243, DOI 10.1016/0378-5955(88)90005-6
PIJL S, 1995, J ACOUST SOC AM, V98, P886, DOI 10.1121/1.413514
Pijl S, 1997, EAR HEARING, V18, P316, DOI 10.1097/00003446-199708000-00006
SELIGMAN PM, 1984, ACTA OTO-LARYNGOL, P135
Shannon R., 1993, COCHLEAR IMPLANTS AU
SHANNON RV, 1985, HEARING RES, V18, P135, DOI 10.1016/0378-5955(85)90005-X
SHANNON RV, 1992, J ACOUST SOC AM, V91, P2156, DOI 10.1121/1.403807
Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4
Shepherd RK, 2004, EUR J NEUROSCI, V20, P3131, DOI 10.1111/j.1460-9568.2004.03809.x
SKINNER MW, 1991, EAR HEARING, V12, P3, DOI 10.1097/00003446-199102000-00002
Skinner MW, 1999, EAR HEARING, V20, P443, DOI 10.1097/00003446-199912000-00001
Sly DJ, 2007, EUR J NEUROSCI, V26, P510, DOI 10.1111/j.1460-9568.2007.05678.x
Swanson B, 2008, THESIS U MELBOURNE
TONG YC, 1983, J ACOUST SOC AM, V74, P73, DOI 10.1121/1.389620
TONG YC, 1985, J ACOUST SOC AM, V77, P1881, DOI 10.1121/1.391939
TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554
Vandali AE, 2011, J ACOUST SOC AM, V129, P4023, DOI 10.1121/1.3573988
Vandali AE, 2012, J ACOUST SOC AM, V132, P392, DOI 10.1121/1.4718452
Vandali AE, 2005, J ACOUST SOC AM, V117, P3126, DOI 10.1121/1.1874632
VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2
van Wieringen A, 2003, J ACOUST SOC AM, V114, P1516, DOI 10.1121/1.1577551
Wilson BS, 1997, AM J OTOL, V18, pS30
Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5
Zhang F, 2007, JARO-J ASSOC RES OTO, V8, P356, DOI 10.1007/s10162-007-0086-7
NR 72
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2013
VL 302
BP 32
EP 49
DI 10.1016/j.heares.2013.05.004
PG 18
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 186OZ
UT WOS:000322055300005
PM 23685148
ER
PT J
AU Sereda, M
Adjamian, P
Edmondson-Jones, M
Palmer, AR
Hall, DA
AF Sereda, Magdalena
Adjamian, Peyman
Edmondson-Jones, Mark
Palmer, Alan R.
Hall, Deborah A.
TI Auditory evoked magnetic fields in individuals with tinnitus
SO HEARING RESEARCH
LA English
DT Article
ID COCHLEAR HEARING-LOSS; AWAKE GUINEA-PIGS; COMPUTATIONAL MODEL; NOISE
EXPOSURE; NEUROMAGNETIC INDICATORS; CORTICAL REORGANIZATION; NEURONAL
HYPERACTIVITY; LATERAL INHIBITION; BRAIN-STEM; CORTEX
AB Some forms of tinnitus are likely to be perceptual consequences of altered neural activity in the central auditory system triggered by damage to the auditory periphery. Animal studies report changes in the evoked responses after noise exposure or ototoxic drugs in inferior colliculus and auditory cortex. However, human electrophysiological evidence is rather equivocal: increased, reduced or no difference in N1/N1m evoked amplitudes and latencies in tinnitus participants have been reported.
The present study used magnetoencephalography to seek evidence for altered evoked responses in people with tinnitus compared to controls (hearing loss matched and normal hearing) in four different stimulus categories (a control tone, a tone corresponding to the audiometric edge, to the dominant tinnitus pitch and a tone within the area of hearing loss). Results revealed that amplitudes of the evoked responses differed depending on the tone category. N1m amplitude to the dominant tinnitus pitch and the frequency within the area of hearing loss were reduced compared to the other two categories. Given that tinnitus pitch is typically within the area of hearing loss, the differences in the evoked responses pattern in tinnitus participants seem to be related more to the hearing loss than to the presence of tinnitus. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved.
C1 [Sereda, Magdalena; Edmondson-Jones, Mark; Hall, Deborah A.] Univ Nottingham, Natl Inst Hlth Res Nottingham Hearing Biomed Res, Sch Clin Sci, Nottingham NG1 5DU, England.
[Sereda, Magdalena; Adjamian, Peyman; Palmer, Alan R.] MRC Inst Hearing Res, Nottingham NG7 2RD, England.
RP Sereda, M (reprint author), NIHR Nottingham Hearing Biomed Res Unit, Ropewalk House,113 Ropewalk, Nottingham NG1 5DU, England.
EM Magdalena.Sereda@nottingham.ac.uk; peyman@ihr.mrc.ac.uk;
mark.edmondson-jones@nottingham.ac.uk; alan@ihr.mrc.ac.uk;
Deborah.Hall@nottingham.ac.uk
FU MRC; National Institute for Health Research (NIHR)
FX Supported by MRC and the National Institute for Health Research (NIHR).
We thank Oliver Zobay for his help in statistical analysis.
CR Adjamian P, 2012, JARO-J ASSOC RES OTO, V13, P715, DOI 10.1007/s10162-012-0340-5
Adjamian P, 2009, HEARING RES, V253, P15, DOI 10.1016/j.heares.2009.04.001
[Anonymous], HEAR RES, V147, P261
ATTIAS J, 1993, HEARING RES, V71, P106, DOI 10.1016/0378-5955(93)90026-W
Chait M, 2004, NEUROREPORT, V15, P2455, DOI 10.1097/00001756-200411150-00004
COLDINGJORGENSEN E, 1992, ELECTROEN CLIN NEURO, V83, P322, DOI 10.1016/0013-4694(92)90091-U
Dietrich V, 2001, HEARING RES, V158, P95, DOI 10.1016/S0378-5955(01)00282-9
Eggermont JJ, 2000, HEARING RES, V142, P89, DOI 10.1016/S0378-5955(00)00024-1
Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010
Fujioka T, 2002, NEUROSCIENCE, V112, P367, DOI 10.1016/S0306-4522(02)00086-6
Gabriel D, 2004, HEARING RES, V197, P55, DOI 10.1016/j.heares.2004.07.015
Gerken GM, 1996, HEARING RES, V97, P75
Godey B, 2001, CLIN NEUROPHYSIOL, V112, P1850, DOI 10.1016/S1388-2457(01)00636-8
Gu JW, 2010, J NEUROPHYSIOL, V104, P3361, DOI 10.1152/jn.00226.2010
Hallam RS, 2004, INT J AUDIOL, V43, P218, DOI 10.1080/14992020400050030
HARRISON RV, 1991, HEARING RES, V54, P11, DOI 10.1016/0378-5955(91)90131-R
Henry J A, 1999, J Am Acad Audiol, V10, P261
Hoke ES, 1998, AUDIOL NEURO-OTOL, V3, P300, DOI 10.1159/000013802
HOKE M, 1989, HEARING RES, V37, P281, DOI 10.1016/0378-5955(89)90028-2
ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311
Jacobson Gary P, 2003, J Am Acad Audiol, V14, P393
JACOBSON GP, 1991, HEARING RES, V56, P44, DOI 10.1016/0378-5955(91)90152-Y
Kadner A, 2002, NEUROREPORT, V13, P443, DOI 10.1097/00001756-200203250-00016
Kanno A, 1996, Electroencephalogr Clin Neurophysiol Suppl, V47, P129
Khalfa S, 2002, ORL J OTO-RHINO-LARY, V64, P436, DOI 10.1159/000067570
Kiang N.Y.S., 1969, CIB FDN S SENS HEAR, P241
Kimura M, 1999, HEARING RES, V135, P146, DOI 10.1016/S0378-5955(99)00104-5
Langers D.R., 2011, CEREB CORTEX, DOI DOI 10.1093/CERC0R/BHR282
Langers DRM, 2005, NEUROIMAGE, V28, P490, DOI 10.1016/j.neuroimage.2005.06.024
Lanting CP, 2009, HEARING RES, V255, P1, DOI 10.1016/j.heares.2009.06.009
Llinas R, 2005, TRENDS NEUROSCI, V28, P325, DOI 10.1016/j.tins.2005.04.006
Mayhew SD, 2010, NEUROIMAGE, V49, P849, DOI 10.1016/j.neuroimage.2009.06.080
Melcher JR, 2000, J NEUROPHYSIOL, V83, P1058
NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x
Naka D, 1999, NEUROSCIENCE, V93, P573, DOI 10.1016/S0306-4522(99)00177-3
Newman CW, 1996, ARCH OTOLARYNGOL, V122, P143
Norena A, 1999, CLIN NEUROPHYSIOL, V110, P666, DOI 10.1016/S1388-2457(98)00034-0
Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156
Norena AJ, 2011, NEUROSCI BIOBEHAV R, V35, P1089, DOI 10.1016/j.neubiorev.2010.11.003
Norena AJ, 2003, J NEUROPHYSIOL, V90, P2387, DOI 10.1152/jn.00139.2003
OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4
Pan T, 2009, INT J AUDIOL, V48, P277, DOI 10.1080/14992020802581974
PANTEV C, 1989, HEARING RES, V40, P261, DOI 10.1016/0378-5955(89)90167-6
Pineda Jaime A, 2008, Int Tinnitus J, V14, P17
Popelar J, 2008, HEARING RES, V245, P82, DOI 10.1016/j.heares.2008.09.002
POPELAR J, 1987, HEARING RES, V26, P239, DOI 10.1016/0378-5955(87)90060-8
RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104
Roberts LE, 2008, JARO-J ASSOC RES OTO, V9, P417, DOI 10.1007/s10162-008-0136-9
ROBERTS LE, 2006, ACTA OTO-LARYNGOL, V556, P27, DOI DOI 10.1080/03655230600895358
Roberts TPL, 1996, NEUROREPORT, V7, P1138, DOI 10.1097/00001756-199604260-00007
Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2
Schaette R, 2006, EUR J NEUROSCI, V23, P3124, DOI 10.1111/j.1460-9568.04774.x
Schaette R, 2008, HEARING RES, V240, P57, DOI 10.1016/j.heares.2008.02.006
Schaette R, 2009, J NEUROPHYSIOL, V101, P3042, DOI 10.1152/jn.91256.2008
Schaette R, 2011, J NEUROSCI, V31, P13452, DOI 10.1523/JNEUROSCI.2156-11.2011
Sereda M, 2011, INT J AUDIOL, V50, P303, DOI 10.3109/14992027.2010.551221
Sun W, 2008, NEUROSCIENCE, V156, P374, DOI 10.1016/j.neuroscience.2008.07.040
Syka J, 2000, HEARING RES, V139, P59, DOI 10.1016/S0378-5955(99)00175-6
SYKA J, 1994, HEARING RES, V78, P158, DOI 10.1016/0378-5955(94)90021-3
Talavage TM, 2004, J NEUROPHYSIOL, V91, P1282, DOI 10.1152/jn.01125.2002
VERNON JA, 1987, AM J OTOL, V8, P201
Weisz N, 2005, BRAIN, V128, P2722, DOI 10.1093/brain/awh588
NR 62
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2013
VL 302
BP 50
EP 59
DI 10.1016/j.heares.2013.04.006
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 186OZ
UT WOS:000322055300006
PM 23639335
ER
PT J
AU Akhoun, I
McKay, CM
El-Deredy, W
AF Akhoun, Idrick
McKay, Colette M.
El-Deredy, Wael
TI Electrically evoked compound action potential artifact rejection by
independent component analysis: Technique validation
SO HEARING RESEARCH
LA English
DT Article
ID COCHLEAR IMPLANT USERS; STIMULUS ARTIFACT; REDUCTION
AB The electrically-evoked compound action potential (ECAP) is the synchronous whole auditory nerve activity in response to an electrical stimulus, and can be recorded in situ on cochlear implant (CI) electrodes. A novel procedure (ECAP-ICA) to isolate the ECAP from the stimulation artifact, based on independent component analysis (ICA), is described here. ECAPs with artifact (raw-ECAPs) were sequentially recorded for the same stimulus on 9 different intracochlear recording electrodes. The raw-ECAPs were fed to ICA, which separated them into independent sources. Restricting the ICA projection to 4 independent components did not induce under-fitting and was found to explain most of the raw-data variance. The sources were identified and only the source corresponding to the neural response was retained for artifact-free ECAP reconstruction. The validity of the ECAP-ICA procedure was supported as follows: N-1 and P-1 peaks occurred at usual latencies; and ECAP-ICA and artifact amplitude-growth functions (AGFs) had different slopes. Concatenation of raw-ECAPs from multiple stimulus currents, including some below the ECAP-ICA threshold, improved the source separation process. The main advantage of ECAP-ICA is that use of maskers or alternating polarity stimulation are not needed. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved.
C1 [Akhoun, Idrick; McKay, Colette M.; El-Deredy, Wael] Univ Manchester, Sch Psychol Sci, Fac Med & Human Sci, Manchester M13 9PL, Lancs, England.
RP McKay, CM (reprint author), Univ Manchester, Audiol & Deafness Res Grp, Ellen Wilkinson Bldg B1-5, Manchester M13 9PL, Lancs, England.
EM colette.mckay@manchester.ac.uk
FU UK Medical Research Council
FX Support for this work was provided by the UK Medical Research Council.
The authors would like to thank the patients for their generous time and
dedication to this study. Preliminary data for this study were presented
at the Conference on Implantable Auditory Prostheses 2009 and 2011. The
software and hardware were provided by Cochlear UK. The authors would
like to acknowledge the input of three anonymous reviewers for their
helpful criticism of this work. We are also indebted to Pavel
Prado-Gutierrez, Matthew Fraser and Mahan Azadpour for their assistance.
CR Alvarez I, 2008, J NEUROSCI METH, V175, P143, DOI 10.1016/j.jneumeth.2008.08.008
Alvarez I, 2007, J NEUROSCI METH, V165, P95, DOI 10.1016/j.jneumeth.2007.05.028
Bahmer A, 2010, J NEUROSCI METH, V191, P66, DOI 10.1016/j.jneumeth.2010.06.008
BELL AJ, 1995, NEURAL COMPUT, V7, P1129, DOI 10.1162/neco.1995.7.6.1129
BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716
Dees DC, 2005, AUDIOL NEURO-OTOL, V10, P105, DOI 10.1159/000083366
Cardoso JF, 1999, NEURAL COMPUT, V11, P157, DOI 10.1162/089976699300016863
Castaneda-Villa N, 2011, IEEE T BIO-MED ENG, V58, P348, DOI 10.1109/TBME.2010.2072957
Comon P., 1994, SIGNAL PROCESS, V36, P297
Gilley PM, 2006, CLIN NEUROPHYSIOL, V117, P1772, DOI 10.1016/j.clinph.2006.04.018
Hyvarinen A, 2001, INDEPENDENT COMPONEN
Hyvarinen A, 2000, NEURAL NETWORKS, V13, P411, DOI 10.1016/S0893-6080(00)00026-5
Klop WMC, 2004, ACTA OTO-LARYNGOL, V124, P137, DOI 10.1080/00016480310016901
Lai Waikong, 2009, Cochlear Implants Int, V10 Suppl 1, P63, DOI 10.1002/cii.388
Lai WK, 2000, AUDIOL NEURO-OTOL, V5, P333, DOI 10.1159/000013899
Miller CA, 2000, EAR HEARING, V21, P280, DOI 10.1097/00003446-200008000-00003
Naik Ganesh R., 2011, Informatica, V35
Viola FC, 2011, PSYCHOPHYSIOLOGY, V48, P1470, DOI 10.1111/j.1469-8986.2011.01224.x
NR 18
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2013
VL 302
BP 60
EP 73
DI 10.1016/j.heares.2013.04.005
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 186OZ
UT WOS:000322055300007
PM 23632279
ER
PT J
AU Kraus, KS
Ding, D
Jiang, H
Kermany, MH
Mitra, S
Salvi, RJ
AF Kraus, K. S.
Ding, D.
Jiang, H.
Kermany, M. H.
Mitra, S.
Salvi, R. J.
TI Up-regulation of GAP-43 in the chinchilla ventral cochlear nucleus after
carboplatin-induced hearing loss: Correlations with inner hair cell loss
and outer hair cell loss
SO HEARING RESEARCH
LA English
DT Article
ID AUDITORY BRAIN-STEM; GROWTH-ASSOCIATED PROTEIN-43; RETINAL
GANGLION-CELLS; OLIVOCOCHLEAR NEURONS; ACOUSTIC TRAUMA; ADULT-RAT;
OTOACOUSTIC EMISSIONS; NEURITE OUTGROWTH; C-JUN; DEGENERATION
AB Inner ear damage leads to nerve fiber growth and synaptogenesis in the ventral cochlear nucleus (VCN). In this study, we documented the relationship between hair cell loss patterns and synaptic plasticity in the chinchilla VCN using immunolabeling of the growth associated protein-43 (GAP-43), a protein associated with axon outgrowth and modification of presynaptic endings. Unilateral round window application of carboplatin caused hair cell degeneration in which inner hair cells (IHC) were more vulnerable than outer hair cells (OHC). One month after carboplatin treatment (0.5-5 mg/ml), we observed varying patterns of cochlear hair cell loss and GAP-43 expression in VCN. Both IHC loss and OHC loss were strongly correlated with increased GAP-43 immunolabeling in the ipsilateral VCN. We speculate that two factors might promote the expression of GAP-43 in the VCN; one is the loss of afferent input through IHC or the associated type I auditory nerve fibers. The other occurs when the medial olivocochlear efferent neurons lose their cochlear targets, the OHC, and may as compensation increase their synapse numbers in the VCN. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Kraus, K. S.; Ding, D.; Jiang, H.; Kermany, M. H.; Mitra, S.; Salvi, R. J.] SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA.
RP Kraus, KS (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA.
EM skkraus@buffalo.edu; dding@buffalo.edu; hj5@buffalo.edu;
Mohammad.HabibyKermany@roswellpark.org; sucharita.mitra@gmail.com;
salvi@buffalo.edu
FU NOHR [1068911]; NIH [R01DC009091, 1R01DC009219]
FX Supported by NOHR Grant 1068911 and by NIH grant R01DC009091 and
1R01DC009219.
CR Azeredo WJ, 1999, HEARING RES, V134, P57, DOI 10.1016/S0378-5955(99)00069-6
BAETGE EE, 1991, NEURON, V6, P21, DOI 10.1016/0896-6273(91)90118-J
Benowitz LI, 1997, TRENDS NEUROSCI, V20, P84, DOI 10.1016/S0166-2236(96)10072-2
BENOWITZ LI, 1991, PROG BRAIN RES, V89, P69, DOI 10.1016/S0079-6123(08)61716-1
Benson CG, 1997, SYNAPSE, V25, P243
BENSON TE, 1990, J COMP NEUROL, V295, P52, DOI 10.1002/cne.902950106
Benson TE, 2004, JARO-J ASSOC RES OTO, V5, P111, DOI 10.1007/s10162-003-4012-3
Bilak M, 1997, EXP NEUROL, V147, P256, DOI 10.1006/exnr.1997.6636
Brown M.C., 2008, JARO-J ASSOC RES OTO, V10, P64
BROWN MC, 1987, J COMP NEUROL, V260, P591, DOI 10.1002/cne.902600411
Chaisuksunt V, 2000, NEUROSCIENCE, V100, P87, DOI 10.1016/S0306-4522(00)00254-2
DALLOS P, 1978, J NEUROPHYSIOL, V41, P365
DALLOS P, 1995, SCIENCE, V267, P2006, DOI 10.1126/science.7701325
DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3
DEGRAAN PNE, 1985, NEUROSCI LETT, V61, P235, DOI 10.1016/0304-3940(85)90470-7
Dehmel S, 2008, AM J AUDIOL, V17, P193
Ding D., 1998, J AUDIOL SPEECH PATH, V6, P65
Ding DL, 1999, ANN NY ACAD SCI, V884, P152, DOI 10.1111/j.1749-6632.1999.tb08640.x
GOSLIN K, 1990, J NEUROSCI, V10, P588
GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
HOEFFDING V, 1988, BRAIN RES, V449, P104, DOI 10.1016/0006-8993(88)91029-3
Hofstetter P, 1997, HEARING RES, V112, P199, DOI 10.1016/S0378-5955(97)00123-8
Hofstetter P, 1997, AUDIOLOGY, V36, P301
Illing RB, 2005, HEARING RES, V206, P185, DOI 10.1016/j.heares.2005.01.016
Illing RB, 1997, J COMP NEUROL, V382, P116, DOI 10.1002/(SICI)1096-9861(19970526)382:1<116::AID-CNE8>3.0.CO;2-4
JUIZ JM, 1989, HEARING RES, V40, P65, DOI 10.1016/0378-5955(89)90100-7
Kim JN, 1997, HEARING RES, V103, P169, DOI 10.1016/S0378-5955(96)00173-6
Kim JJ, 2004, J NEUROSCI RES, V77, P829, DOI 10.1002/jnr.20211
Kraus KS, 2005, NEUROSCIENCE, V134, P467, DOI 10.1016/j.neuroscience.2005.04.037
Kraus KS, 2011, NEUROSCIENCE, V194, P309, DOI 10.1016/j.neuroscience.2011.07.056
Kraus KS, 2009, HEARING RES, V255, P33, DOI 10.1016/j.heares.2009.05.001
Kraus K.S., 2004, J COMP NEUROL, V475, P169
LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4
Lin HW, 2011, JARO-J ASSOC RES OTO, V12, P605, DOI 10.1007/s10162-011-0277-0
LIN LH, 1992, MOL BRAIN RES, V14, P147, DOI 10.1016/0169-328X(92)90024-6
MAHALIK TJ, 1992, DEV BRAIN RES, V67, P75, DOI 10.1016/0165-3806(92)90027-T
McFadden SL, 2004, BRAIN RES, V997, P40, DOI 10.1016/j.brainres.2003.10.031
Meidinger MA, 2006, EUR J NEUROSCI, V23, P3187, DOI 10.1111/j.1460-9568.2006.04853.x
Meiri KF, 1998, J NEUROSCI, V18, P10429
Michler SA, 2003, AUDIOL NEURO-OTOL, V8, P190, DOI 10.1159/000071060
Michler SA, 2002, J COMP NEUROL, V451, P250, DOI 10.1002/cne.10348
Morest DK, 1997, HEARING RES, V103, P151, DOI 10.1016/S0378-5955(96)00172-4
MOUNTAIN DC, 1980, SCIENCE, V210, P71, DOI 10.1126/science.7414321
Muly SM, 2002, EXP NEUROL, V177, P202, DOI 10.1006/exnr.2002.7963
NG TF, 1995, J NEUROCYTOL, V24, P487, DOI 10.1007/BF01179974
Reyes S, 2001, HEARING RES, V158, P139, DOI 10.1016/S0378-5955(01)00309-4
Ryugo DK, 1992, MAMMALIAN AUDITORY P, P23
RYUGO DK, 1982, J COMP NEUROL, V210, P239, DOI 10.1002/cne.902100304
SCHADEN H, 1994, J NEUROBIOL, V25, P1570, DOI 10.1002/neu.480251209
Schmitt AB, 1999, NEUROBIOL DIS, V6, P122, DOI 10.1006/nbdi.1998.0231
SCHREYER DJ, 1991, J NEUROSCI, V11, P3738
Shore S, 2007, PROG BRAIN RES, V166, P107, DOI 10.1016/S0079-6123(07)66010-5
SKENE JHP, 1989, ANNU REV NEUROSCI, V12, P127, DOI 10.1146/annurev.neuro.12.1.127
SKENE JHP, 1981, J NEUROSCI, V1, P419
Sobkowicz HM, 2004, SYNAPSE, V52, P299, DOI 10.1002/syn.20026
SPOENDLIN H, 1985, AM J OTOLARYNG, V6, P453, DOI 10.1016/S0196-0709(85)80026-0
Sugawara M, 2005, JARO-J ASSOC RES OTO, V6, P136, DOI 10.1007/s10162-004-5050-1
Takeno S, 1998, AUDIOL NEURO-OTOL, V3, P281, DOI 10.1159/000013800
TAKENO S, 1994, SCANNING MICROSCOPY, V8, P97
TAKENO S, 1994, HEARING RES, V75, P93, DOI 10.1016/0378-5955(94)90060-4
Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8
VAUDANO E, 1995, J NEUROSCI, V15, P3594
WAKE M, 1993, J LARYNGOL OTOL, V107, P585, DOI 10.1017/S0022215100123771
WAKE M, 1994, LARYNGOSCOPE, V104, P488
Wang J, 2003, HEARING RES, V181, P65, DOI 10.1016/S0378-5955(03)00176-X
Warr W. B., 1992, MAMMALIAN AUDITORY P, P410
Warr WB, 2003, EXP BRAIN RES, V153, P499, DOI 10.1007/s00221-003-1682-3
Weisz C, 2009, NATURE, V461, P1126, DOI 10.1038/nature08487
WENTHOLD RJ, 1977, BRAIN RES, V138, P111, DOI 10.1016/0006-8993(77)90787-9
WHITE JS, 1983, J COMP NEUROL, V219, P203, DOI 10.1002/cne.902190206
Zeng CH, 2012, J NEUROSCI, V32, P15791, DOI 10.1523/JNEUROSCI.2598-12.2012
Zhou Y., 2009, AUDIOL MED, V7, P189, DOI DOI 10.3109/16513860903335795
Zilberstein Y., 2012, J NEUROSCI, V32, P404
NR 73
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2013
VL 302
BP 74
EP 82
DI 10.1016/j.heares.2013.05.002
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 186OZ
UT WOS:000322055300008
PM 23707995
ER
PT J
AU Mc Laughlin, M
Valdes, AL
Reilly, RB
Zeng, FG
AF Mc Laughlin, Myles
Valdes, Alejandro Lopez
Reilly, Richard B.
Zeng, Fan-Gang
TI Cochlear implant artifact attenuation in late auditory evoked
potentials: A single channel approach
SO HEARING RESEARCH
LA English
DT Article
ID SPEECH RECOGNITION; NORMAL-HEARING; USERS; RESOLUTION; LISTENERS;
STIMULI
AB Recent evidence suggests that late auditory evoked potentials (LAEP) provide a useful objective metric of performance in cochlear implant (Cl) subjects. However, the Cl produces a large electrical artifact that contaminates LAEP recordings and confounds their interpretation. Independent component analysis (ICA) has been used in combination with Multi-channel recordings to effectively remove the artifact. The applicability of the ICA approach is limited when only single channel data are needed or available, as is often the case in both clinical and research settings. Here we developed a single-channel, high sample rate (125 kHz), and high bandwidth (0-100 kHz) acquisition system to reduce the CI stimulation artifact. We identified two different artifacts in the recording: 1) a high frequency artifact reflecting the stimulation pulse rate, and 2) a direct current (DC, or pedestal) artifact that showed a non-linear time varying relationship to pulse amplitude. This relationship was well described by a bivariate polynomial. The high frequency artifact was completely attenuated by a 35 Hz low-pass filter for all subjects (n = 22). The DC artifact could be caused by an impedance mismatch. For 27% of subjects tested, no DC artifact was observed when electrode impedances were balanced to within 1 k Omega For the remaining 73% of subjects, the pulse amplitude was used to estimate and then attenuate the DC artifact. Where measurements of pulse amplitude were not available (as with standard low sample rate systems), the DC artifact could be estimated from the stimulus envelope. The present artifact removal approach allows accurate measurement of LAEPs from Cl subjects from single channel recordings, increasing their feasibility and utility as an accessible objective measure of CI function. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Mc Laughlin, Myles; Zeng, Fan-Gang] Univ Calif Irvine, Hearing & Speech Lab, Irvine, CA 92697 USA.
[Mc Laughlin, Myles; Valdes, Alejandro Lopez; Reilly, Richard B.] Trinity Coll Dublin, Neural Engn Grp, Dublin, Ireland.
RP Mc Laughlin, M (reprint author), Univ Calif Irvine, Irvine, CA 92697 USA.
EM myles.mclaughlin@uci.edu
RI Reilly, Richard/F-7034-2011
OI Reilly, Richard/0000-0001-8578-1245
FU Marie-Curie International Outgoing Fellowship [FP7 IOF 253047]
FX We gratefully acknowledge the generosity of John D'Errico for
contributing the polyfitn function to the Matlab File Exchange. We thank
all the cochlear implant subjects who participated in the experiments.
We also thank the two reviewers and the associate editor for their
helpful comments and suggestions. This work was partly supported by a
Marie-Curie International Outgoing Fellowship (FP7 IOF 253047).
CR Beynon A., 2008, 10 INT C COCHL IMPL
Beynon A., 2012, 7 INT S OBJ MEAS COC, P24
ELBERLING C, 1984, SCAND AUDIOL, V13, P187, DOI 10.3109/01050398409043059
Firszt Jill B., 2002, Ear and Hearing, V23, P516, DOI 10.1097/00003446-200212000-00003
Fu QJ, 2002, NEUROREPORT, V13, P1635, DOI 10.1097/00001756-200209160-00013
Gilley PM, 2006, CLIN NEUROPHYSIOL, V117, P1772, DOI 10.1016/j.clinph.2006.04.018
Henry BA, 2005, J ACOUST SOC AM, V118, P1111, DOI 10.1121/1.1944567
Henry BA, 2003, J ACOUST SOC AM, V113, P2861, DOI 10.1121/1.1561900
Hofmann M, 2012, JARO-J ASSOC RES OTO, V13, P573, DOI 10.1007/s10162-012-0321-8
Hofmann M, 2010, JARO-J ASSOC RES OTO, V11, P267, DOI 10.1007/s10162-009-0201-z
Kelly AS, 2005, CLIN NEUROPHYSIOL, V116, P1235, DOI 10.1016/j.clinph.2005.02.011
Mc Laughlin M., 2013, 36 ANN MIDW M BALT, P184
Mc Laughlin M, 2012, IEEE T NEUR SYS REH, V20, P443, DOI 10.1109/TNSRE.2012.2186982
Miller CA, 2008, HEARING RES, V242, P184, DOI 10.1016/j.heares.2008.04.005
Picton T W, 1976, J Otolaryngol, V6, P90
PICTON TW, 1978, ELECTROEN CLIN NEURO, V45, P186, DOI 10.1016/0013-4694(78)90003-2
Viola FC, 2011, PSYCHOPHYSIOLOGY, V48, P1470, DOI 10.1111/j.1469-8986.2011.01224.x
Wable J, 2000, CLIN NEUROPHYSIOL, V111, P743, DOI 10.1016/S1388-2457(99)00298-9
Won JH, 2007, JARO-J ASSOC RES OTO, V8, P384, DOI 10.1007/s10162-007-0085-8
Zeng Fan-Gang, 2008, IEEE Rev Biomed Eng, V1, P115, DOI 10.1109/RBME.2008.2008250
Zhang FW, 2011, HEARING RES, V275, P17, DOI 10.1016/j.heares.2010.11.007
Zhang FW, 2010, INT J AUDIOL, V49, P277, DOI 10.3109/14992020903321759
NR 22
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2013
VL 302
BP 84
EP 95
DI 10.1016/j.heares.2013.05.006
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 186OZ
UT WOS:000322055300010
PM 23727626
ER
PT J
AU Church, MW
Zhang, JSS
Langford, MM
Perrine, SA
AF Church, Michael W.
Zhang, Jinsheng S.
Langford, Megan M.
Perrine, Shane A.
TI 'Ecstasy' enhances noise-induced hearing loss
SO HEARING RESEARCH
LA English
DT Article
ID AUDITORY-EVOKED-POTENTIALS; DORSAL COCHLEAR NUCLEUS; RAT-BRAIN;
LONG-TERM; (+/-)3,4-METHYLENEDIOXYMETHAMPHETAMINE MDMA;
3,4-METHYLENEDIOXYMETHAMPHETAMINE MDMA; INFERIOR COLLICULUS;
RHESUS-MONKEYS; EXPOSURE; NEUROTOXICITY
AB 'Ecstasy' or 3,4-methylenedioxy-N-methamphetamine (MDMA) is an amphetamine abused for its euphoric, empathogenic, hallucinatory, and stimulant effects. It is also used to treat certain psychiatric disorders. Common settings for Ecstasy use are nightclubs and "rave" parties where participants consume MDMA and dance to loud music. One concern with the club setting is that exposure to loud sounds can cause permanent sensorineural hearing loss. Another concern is that consumption of MDMA may enhance such hearing loss. Whereas this latter possibility has not been investigated, this study tested the hypothesis that MDMA enhances noise-induced hearing loss (NIHL) by exposing rats to either MDMA, noise trauma, both MDMA and noise, or neither treatment. MDMA was given in a binge pattern of 5 mg/kg per intraperitoneal injections every 2 h for a total of four injections to animals in the two MDMA-treated groups (MDMA-only and Noise + MDMA). Saline injections were given to the animals in the two non-MDMA groups (Control and Noise-only). Following the final injection, noise trauma was induced by a 10 kHz tone at 120 dB SPL for 1 h to animals in the two noise trauma-treated groups (Noise-only and Noise + MDMA). Hearing loss was assessed by the auditory brainstem response (ABR) and cochlear histology. Results showed that MDMA enhanced NIHL compared to Noise-only and that MDMA alone caused no hearing loss. This implies that "clobbers" and "rave-goers" are exacerbating the amount of NIHL when they consume MDMA and listen to loud sounds. In contrast to earlier reports, the present study found that MDMA by itself caused no changes in the click-evoked ABR's wave latencies or amplitudes. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Church, Michael W.; Zhang, Jinsheng S.] Wayne State Univ, Sch Med, Dept Otolaryngol & Head Neck Surg, Detroit, MI 48201 USA.
[Church, Michael W.; Zhang, Jinsheng S.] Wayne State Univ, Coll Liberal Arts & Sci, Dept Commun Sci & Disorders, Detroit, MI 48202 USA.
[Langford, Megan M.; Perrine, Shane A.] Wayne State Univ, Sch Med, Dept Psychiat & Behav Neurosci, Detroit, MI 48201 USA.
RP Church, MW (reprint author), Wayne State Univ, Sch Med, Dept Otolaryngol & Head Neck Surg, CS Mott Ctr, 275 East Hancock, Detroit, MI 48201 USA.
EM mchurch@med.wayne.edu
FU NIH [R25GM58905-10, K01DA024760-05, 5P30DC005188-10]
FX This study was supported by funds from NIH grants R25GM58905-10 (M.W.
Church), K01DA024760-05 (S.A. Perrine) and 5P30DC005188-10 (R.A.
Altschuler and J.S. Zhang). MDMA was provided at no cost by the National
Institute on Drug Abuse Drug Supply Program (Bethesda, MD, USA) to S.A.
Perrine. We thank Jennifer Anumba for scoring ABR data, Edward Pace for
assisting with the noise exposure, and Drs. Richard Altschuler and
Joseph Miller, and Ariane Kanicki and Catherine Martin (Kresge Hearing
Research Institute, University of Michigan, Ann Arbor, MI, USA) for
performing, photographing, and interpreting the cochlear histologies and
cytocochleograms.
CR Alvarado JC, 2012, NEUROSCI RES, V73, P302, DOI 10.1016/j.neures.2012.05.001
Baker KE, 2007, VASC PHARMACOL, V47, P10, DOI 10.1016/j.vph.2007.03.001
Biezonski DK, 2011, CURR NEUROPHARMACOL, V9, P84, DOI 10.2174/157015911795017146
Bingham C, 1998, NEPHROL DIAL TRANSPL, V13, P2654, DOI 10.1093/ndt/13.10.2654
Chen CJ, 2007, IND HEALTH, V45, P527, DOI 10.2486/indhealth.45.527
Chen GD, 2009, HEARING RES, V254, P25, DOI 10.1016/j.heares.2009.04.005
CHEN TJ, 1991, EXP BRAIN RES, V85, P537
Church MW, 2012, ALCOHOL CLIN EXP RES, V36, P83, DOI 10.1111/j.1530-0277.2011.01594.x
Church M W, 1984, Brain Res, V316, P23
Church MW, 2004, JARO-J ASSOC RES OTO, V5, P227, DOI 10.1007/s10162-004-4011-z
CODY AR, 1983, HEARING RES, V9, P55, DOI 10.1016/0378-5955(83)90134-X
Dafters RI, 1999, PSYCHOPHARMACOLOGY, V145, P82, DOI 10.1007/s002130051035
Darvesh AS, 2005, J PHARMACOL EXP THER, V312, P694, DOI 10.1124/jpet.104.074849
Dehmel S., 2012, FRONT SYST NEUROSCI, V6, P1
Elgoyhen AB, 2009, BIOCHEM PHARMACOL, V78, P712, DOI 10.1016/j.bcp.2009.05.023
Feduccia AA, 2008, BRAIN RES BULL, V77, P189, DOI 10.1016/j.brainresbull.2008.07.007
Fiaschi AI, 2010, CURR PHARM BIOTECHNO, V11, P444
FISCHER C, 1995, J NEUROSCI, V15, P5476
Gamma A, 2000, NEUROREPORT, V11, P157, DOI 10.1097/00001756-200001170-00031
Garcia-Rates S, 2010, TOXICOL APPL PHARM, V244, P344, DOI 10.1016/j.taap.2010.01.014
Gesi M, 2004, MICROSC RES TECHNIQ, V64, P297, DOI 10.1002/jemt.20084
Gesi M, 2002, PHARMACOL TOXICOL, V91, P29, DOI 10.1034/j.1600-0773.2002.910105.x
Gourevitch B, 2009, BRAIN RES, V1304, P66, DOI 10.1016/j.brainres.2009.09.041
GRATTON MA, 1990, HEARING RES, V50, P211, DOI 10.1016/0378-5955(90)90046-R
Green AR, 2012, BRIT J PHARMACOL, V166, P1523, DOI 10.1111/j.1476-5381.2011.01819.x
GREENHOUSE SW, 1959, PSYCHOMETRIKA, V24, P95, DOI 10.1007/BF02289823
Gunderson E, 1997, AM J IND MED, V31, P75
Hemmerle AM, 2012, J COMP NEUROL, V520, P2459, DOI 10.1002/cne.23048
Henry KR, 2003, HEARING RES, V179, P88, DOI 10.1016/S0378-5955(03)00097-2
HENRY KR, 1979, J AM AUDITORY SOC, V4, P173
Hoet P, 2008, CRIT REV TOXICOL, V38, P127, DOI 10.1080/10408440701845443
Hood LI, 1998, CLIN APPL AUDITORY B, p[50, 67]
Hurley LM, 2011, HEARING RES, V279, P74, DOI 10.1016/j.heares.2010.12.015
Hyde M.L., 1993, PRINCIPLES APPL AUDI, P47
Institute of Laboratory Animal Resources (U.S.), 2011, GUIDE CARE USE LAB A
Jin DX, 2009, BRAIN RES, V1277, P3, DOI 10.1016/j.brainres.2009.02.017
Johnson BN, 2010, J PHARMACOL EXP THER, V335, P180, DOI 10.1124/jpet.110.171322
Johnson EA, 2002, BRAIN RES, V933, P130, DOI 10.1016/S0006-8993(02)02310-7
Johnston L.D., 2011, SECONDARY SCH STUDEN, VI, P24
Kay C, 2011, NEUROBIOL LEARN MEM, V95, P473, DOI 10.1016/j.nlm.2011.02.010
Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009
Lendvai B, 2011, NEUROCHEM INT, V59, P150, DOI 10.1016/j.neuint.2011.05.015
Le Prell CG, 2007, HEARING RES, V226, P22, DOI 10.1016/j.heares.2006.10.006
Li HZ, 2009, NOISE HEALTH, V11, P26, DOI 10.4103/1463-1741.45310
Manzoor NF, 2012, J NEUROPHYSIOL, V108, P976, DOI 10.1152/jn.00833.2011
Mithoefer MC, 2013, J PSYCHOPHARMACOL, V27, P28, DOI 10.1177/0269881112456611
MOLLER AR, 1995, LARYNGOSCOPE, V105, P596
Morton AJ, 2001, NEUROREPORT, V12, P3277, DOI 10.1097/00001756-200110290-00026
MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7
Obrocki J, 1999, BRIT J PSYCHIAT, V175, P186, DOI 10.1192/bjp.175.2.186
Papesh MA, 2012, HEARING RES, V283, P89, DOI 10.1016/j.heares.2011.11.004
Perrine SA, 2010, NEUROTOXICOLOGY, V31, P654, DOI 10.1016/j.neuro.2010.08.005
Perrine SA, 2009, NMR BIOMED, V22, P419, DOI 10.1002/nbm.1352
Piper BJ, 2008, NEUROPSYCHOPHARMACOL, V33, P1192, DOI 10.1038/sj.npp.1301491
Rawool V, 2011, NOISE HEALTH, V13, P356, DOI 10.4103/1463-1741.85508
ROSSI GT, 1984, ELECTROEN CLIN NEURO, V57, P143, DOI 10.1016/0013-4694(84)90173-1
Sadhra S, 2002, ANN OCCUP HYG, V46, P455, DOI 10.1093/annhyg/mef051
Santos M A Rocha, 2004, Rev Laryngol Otol Rhinol (Bord), V125, P151
Sarkar S, 2010, CURR PHARM BIOTECHNO, V11, P460
Serra MR, 2005, INT J AUDIOL, V44, P65, DOI 10.1080/14992020400030010
SHAH SN, 1984, EXP NEUROL, V86, P160, DOI 10.1016/0014-4886(84)90076-1
Sharma A, 2001, J LARYNGOL OTOL, V115, P911
Starr A, 2001, EAR HEARING, V22, P91, DOI 10.1097/00003446-200104000-00002
Taffe MA, 2003, PHARMACOL BIOCHEM BE, V76, P141, DOI 10.1016/S0091-3057(03)00217-X
Taffe MA, 2001, NEUROPSYCHOPHARMACOL, V24, P230, DOI 10.1016/S0893-133X(00)00185-8
Tanaka F, 2003, HEARING RES, V177, P21, DOI 10.1016/S0378-5955(02)00771-2
Tannahill J.C., 1982, HDB CLIN AUDIOLOGY, P442
Tong L, 2005, HEARING RES, V206, P28, DOI 10.1016/j.heares.2005.03.006
Vanattou-Saifoudine N, 2010, BRIT J PHARMACOL, V160, P860, DOI 10.1111/j.1476-5381.2010.00660.x
Vlajkovic SM, 2009, CURR NEUROPHARMACOL, V7, P246, DOI 10.2174/157015909789152155
Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028
Weir E, 2000, CAN MED ASSOC J, V162, P1843
Williams W, 2010, NOISE HEALTH, V12, P155, DOI 10.4103/1463-1741.64970
YAU JLW, 1994, NEUROSCIENCE, V61, P31, DOI 10.1016/0306-4522(94)90057-4
Zhang JS, 2006, J NEUROSCI RES, V84, P819, DOI 10.1002/jnr.20985
NR 75
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2013
VL 302
BP 96
EP 106
DI 10.1016/j.heares.2013.05.007
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 186OZ
UT WOS:000322055300011
PM 23711768
ER
PT J
AU Lingner, A
Kugler, K
Grothe, B
Wiegrebe, L
AF Lingner, Andrea
Kugler, Kathrin
Grothe, Benedikt
Wiegrebe, Lutz
TI Amplitude-modulation detection by gerbils in reverberant sound fields
SO HEARING RESEARCH
LA English
DT Article
ID PERCEPTUAL COMPENSATION; SPEECH-INTELLIGIBILITY; MONGOLIAN GERBIL;
MERIONES-UNGUICULATUS; PREPULSE INHIBITION; ACOUSTIC STARTLE; ROOM
ACOUSTICS; IDENTIFICATION; DETECTABILITY; RECOGNITION
AB Reverberation can dramatically reduce the depth of amplitude modulations which are critical for speech intelligibility. Psychophysical experiments indicate that humans' sensitivity to amplitude modulation in reverberation is better than predicted from the acoustic modulation depth at the receiver position. Electrophysiological studies on reverberation in rabbits highlight the contribution of neurons sensitive to interaural correlation. Here, we use a prepulse-inhibition paradigm to quantify the gerbils' amplitude modulation threshold in both anechoic and reverberant virtual environments. Data show that prepulse inhibition provides a reliable method for determining the gerbils' AM sensitivity. However, we find no evidence for perceptual restoration of amplitude modulation in reverberation. Instead, the deterioration of AM sensitivity in reverberant conditions can be quantitatively explained by the reduced modulation depth at the receiver position. We suggest that the lack of perceptual restoration is related to physical properties of the gerbil's ear input signals and inner-ear processing as opposed to shortcomings of their binaural neural processing. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Lingner, Andrea; Kugler, Kathrin; Grothe, Benedikt; Wiegrebe, Lutz] Univ Munich, Div Neurobiol, Dept Biol 2, D-82152 Martinsried, Germany.
RP Wiegrebe, L (reprint author), Univ Munich, Div Neurobiol, Dept Biol 2, Grosshaderner Str 2-4, D-82152 Martinsried, Germany.
EM lingner@zi.biologie.uni-muenchen.de; kugler@bio.lmu.de;
grothe@bio.lmu.de; lutzw@lmu.de
FU Bernstein Center for Computational Neuroscience in Munich; German Center
for Vertigo and Balance Disorder (IFB)
FX This work was funded by the Bernstein Center for Computational
Neuroscience in Munich and by the German Center for Vertigo and Balance
Disorder (IFB). We thank Dr. Sven Schornich for the calculation of the
virtual acoustic environment. We are very grateful to the Associate
Editor, Brian C.J. Moore, and two anonymous reviewers for very helpful
and constructive comments on an earlier version of this paper.
CR Brandewie E, 2010, J ACOUST SOC AM, V128, P291, DOI 10.1121/1.3436565
Delgutte B., 2012, ASS RES OTOLARYNGOL
Gaese BH, 2009, PHYSIOL BEHAV, V98, P460, DOI 10.1016/j.physbeh.2009.07.014
GRANTHAM DW, 1978, J ACOUST SOC AM, V63, P511, DOI 10.1121/1.381751
GRANTHAM DW, 1982, J ACOUST SOC AM, V72, P1178, DOI 10.1121/1.388326
HOFFMAN HS, 1968, J ACOUST SOC AM, V43, P269, DOI 10.1121/1.1910776
HOUTGAST T, 1980, ACUSTICA, V46, P60
HOUTGAST T, 1973, ACUSTICA, V28, P66
Jons P.X., 2006, J NEUROSCI, V26, P279
Knudsen VO, 1929, J ACOUST SOC AM, V1, P56, DOI 10.1121/1.1901470
Kobayasi KI, 2012, J ACOUST SOC AM, V131, P1622, DOI 10.1121/1.3672693
Lingner A, 2012, JARO-J ASSOC RES OTO, V13, P237, DOI 10.1007/s10162-011-0301-4
Lochner J.P.A., 1961, Acustica, V11
Nielsen JB, 2010, J ACOUST SOC AM, V128, P3088, DOI 10.1121/1.3494508
Plappert CF, 2005, BEHAV BRAIN RES, V162, P307, DOI 10.1016/j.bbr.2005.03.022
REIJMERS LGJE, 1994, BRAIN RES, V667, P144, DOI 10.1016/0006-8993(94)91727-2
SANTON F, 1976, J ACOUST SOC AM, V59, P1399, DOI 10.1121/1.381027
Sayles M, 2008, NEURON, V58, P789, DOI 10.1016/j.neuron.2008.03.029
Shannon RV, 1998, J ACOUST SOC AM, V104, P2467, DOI 10.1121/1.423774
SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303
Siveke I, 2008, J NEUROSCI, V28, P2043, DOI 10.1523/JNEUROSCI.4488-07.2008
Slama M.C.C., 2012, THESIS MIT
Srinivasan NK, 2013, J ACOUST SOC AM, V133, pEL33, DOI 10.1121/1.4771978
Ter-Mikaelian M, 2012, BEHAVIOUR, V149, P461, DOI 10.1163/156853912X639778
Vorlander M, 2011, TRENDS AMPLIF, V15, P106, DOI 10.1177/1084713811408348
Walter M., 2012, OPEN J ACOUST, V2, P34
Watkins AJ, 2005, J ACOUST SOC AM, V118, P249, DOI 10.1121/1.1923369
WATKINS AJ, 1991, J ACOUST SOC AM, V90, P2942, DOI 10.1121/1.401769
Wiegrebe L, 2007, J COMP PHYSIOL A, V193, P305, DOI 10.1007/s00359-006-0188-4
Yee BK, 2004, NEUROPSYCHOPHARMACOL, V29, P1865, DOI 10.1038/sj.npp.1300480
Zahorik P., 2011, POMA, V12, P50005
Zahorik P., 2012, POMA, V15, P50002
NR 32
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2013
VL 302
BP 107
EP 112
DI 10.1016/j.heares.2013.04.004
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 186OZ
UT WOS:000322055300012
PM 23603513
ER
PT J
AU Lobarinas, E
Salvi, R
Ding, DL
AF Lobarinas, Edward
Salvi, Richard
Ding, Dalian
TI Insensitivity of the audiogram to carboplatin induced inner hair cell
loss in chinchillas
SO HEARING RESEARCH
LA English
DT Article
ID PRODUCT OTOACOUSTIC EMISSIONS; PSYCHOPHYSICAL TUNING CURVES;
EVOKED-POTENTIAL THRESHOLDS; INDUCED HEARING-LOSS; AUDITORY NEUROPATHY;
TREATED CHINCHILLAS; GAP DETECTION; ANIMAL-MODEL; NOISE; DAMAGE
AB Noise trauma, aging, and ototoxicity preferentially damage the outer hair cells of the inner ear, leading to increased hearing thresholds and poorer frequency resolution.
Whereas outer hair cells make synaptic connections with less than 10% of afferent auditory nerve fibers (type-II), inner hair cells make connections with over 90% of afferents (type-I). Despite these extensive connections, little is known about how selective inner hair cell loss impacts hearing. In chinchillas, moderate to high doses of the anticancer compound carboplatin produce selective inner hair cell and type-I afferent loss with little to no effect on outer hair cells. To determine the effects of carboplatin-induced inner hair cell loss on the most widely used clinical measure of hearing, the audiogram, pure-tone thresholds were determined behaviorally before and after 75 mg/kg carboplatin. Following carboplatin treatment, small effects on audiometric thresholds were observed even with extensive inner hair cell losses that exceed 80%. These results suggest that conventional audiometry is insensitive to inner hair cell loss and that only small populations of inner hair cells appear to be necessary for detecting tonal stimuli in a quiet background. Published by Elsevier B.V.
C1 [Lobarinas, Edward] Univ Florida, Dept Speech Language & Hearing Sci, Gainesville, FL 32610 USA.
[Salvi, Richard; Ding, Dalian] SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14260 USA.
RP Lobarinas, E (reprint author), Univ Florida, Dept Speech Language & Hearing Sci, Gainesville, FL 32610 USA.
EM elobarinas@ufl.edu
FU National Institute on Deafness and Other Communication Disorders of the
National Institutes of Health [R03DC011612, R01DC006630]
FX The authors wish to thank the following individuals for their valuable
contributions to the successful completion of this project. Dr. Wei Sun
and Daniel Stolzberg designed the custom software used for the
behavioral studies. Karlee Maerten and Haiyan Jiang provided important
technical assistance essential to the completion of the study. Dr.
Colleen Le Prell provided valuable assistance in the revisions of this
manuscript. Research reported in this publication was supported by the
National Institute on Deafness and Other Communication Disorders of the
National Institutes of Health under Award Number R03DC011612 (Lobarinas)
and R01DC006630 (Salvi). The content is solely the responsibility of the
authors and does not necessarily represent the official views of the
National Institutes of Health.
CR AHROON WA, 1993, AUDIOLOGY, V32, P244
BLAKESLEE EA, 1978, J ACOUST SOC AM, V63, P876, DOI 10.1121/1.381767
BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153
CARHART R, 1959, J SPEECH HEAR DISORD, V24, P330
CLARK WW, 1974, J ACOUST SOC AM, V56, P1202, DOI 10.1121/1.1903409
DAVIS RI, 1989, HEARING RES, V41, P1, DOI 10.1016/0378-5955(89)90173-1
Ding D, 1999, Lin Chuang Er Bi Yan Hou Ke Za Zhi, V13, P510
Ding DL, 1999, ANN NY ACAD SCI, V884, P152, DOI 10.1111/j.1749-6632.1999.tb08640.x
El-Badry MM, 2007, BRAIN RES, V1134, P122, DOI 10.1016/j.braines.2006.11.078
El-Badry MM, 2009, HEARING RES, V255, P84, DOI 10.1016/j.heares.2009.06.003
Felder E, 1995, HEARING RES, V91, P19, DOI 10.1016/0378-5955(95)00158-1
GIRAUDI D, 1980, J ACOUST SOC AM, V68, P802, DOI 10.1121/1.384818
GIRAUDIPERRY DM, 1982, J ACOUST SOC AM, V72, P1387, DOI 10.1121/1.388444
GRAF CJ, 1992, J ACOUST SOC AM, V91, P1062, DOI 10.1121/1.402632
GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
Harding GW, 2004, J ACOUST SOC AM, V115, P2207, DOI 10.1121/1.1689961
Harrison RV, 1998, EAR HEARING, V19, P355, DOI 10.1097/00003446-199810000-00002
HEFFNER RS, 1991, HEARING RES, V52, P13, DOI 10.1016/0378-5955(91)90183-A
Hofstetter P, 1997, HEARING RES, V112, P199, DOI 10.1016/S0378-5955(97)00123-8
Hofstetter P, 1997, AUDIOLOGY, V36, P301
Jock BM, 1996, HEARING RES, V96, P179, DOI 10.1016/0378-5955(96)00058-5
Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009
Le Prell CG, 2004, J ACOUST SOC AM, V116, P1044, DOI 10.1121/1.1772395
Lin HW, 2011, JARO-J ASSOC RES OTO, V12, P605, DOI 10.1007/s10162-011-0277-0
McFadden SL, 1998, HEARING RES, V120, P121, DOI 10.1016/S0378-5955(98)00052-5
McFadden SL, 2001, AUDIOLOGY, V40, P313
MILLER JD, 1970, J ACOUST SOC AM, V48, P513, DOI 10.1121/1.1912166
Moore BCJ, 1999, J ACOUST SOC AM, V106, P2761, DOI 10.1121/1.428133
Qiu CX, 2000, HEARING RES, V139, P153, DOI 10.1016/S0378-5955(99)00171-9
ROBERTSON D, 1984, HEARING RES, V15, P113, DOI 10.1016/0378-5955(84)90042-X
RYAN A, 1979, J ACOUST SOC AM, V66, P370, DOI 10.1121/1.383194
SALVI RJ, 1982, J ACOUST SOC AM, V71, P424, DOI 10.1121/1.387445
Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2
SALVI RJ, 1978, EXP BRAIN RES, V32, P301
Salvi RJ, 2000, NOISE HEALTH, V2, P9
SCHROTT A, 1989, HEARING RES, V40, P213, DOI 10.1016/0378-5955(89)90162-7
SMITH DW, 1987, HEARING RES, V29, P125, DOI 10.1016/0378-5955(87)90161-4
SMITH DW, 1987, J ACOUST SOC AM, V82, P63, DOI 10.1121/1.395438
Stebbins W C, 1979, Am J Otolaryngol, V1, P15, DOI 10.1016/S0196-0709(79)80004-6
TAKENO S, 1994, SCANNING MICROSCOPY, V8, P97
Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8
Wake M, 1996, ACTA OTO-LARYNGOL, V116, P714, DOI 10.3109/00016489609137912
WAKE M, 1993, J LARYNGOL OTOL, V107, P585, DOI 10.1017/S0022215100123771
Wang J, 2000, NEUROREPORT, V11, P1137, DOI 10.1097/00001756-200004070-00045
Wang J, 1997, HEARING RES, V107, P67, DOI 10.1016/S0378-5955(97)00020-8
NR 45
TC 11
Z9 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2013
VL 302
BP 113
EP 120
DI 10.1016/j.heares.2013.03.012
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 186OZ
UT WOS:000322055300013
PM 23566980
ER
PT J
AU Parbery-Clark, A
Anderson, S
Kraus, N
AF Parbery-Clark, Alexandra
Anderson, Samira
Kraus, Nina
TI Musicians change their tune: How hearing loss alters the neural code
SO HEARING RESEARCH
LA English
DT Article
ID AUDITORY BRAIN-STEM; INFERIOR COLLICULUS NEURONS; SPEECH-IN-NOISE;
OLDER-ADULTS; IMPAIRED LISTENERS; PERCEPTUAL SEPARATION; RESPONSE
PROPERTIES; SPECTRAL CONTRAST; COCHLEAR DAMAGE; SENSORY LOSS
AB Individuals with sensorineural hearing loss have difficulty understanding speech, especially in background noise. This deficit remains even when audibility is restored through amplification, suggesting that mechanisms beyond a reduction in peripheral sensitivity contribute to the perceptual difficulties associated with hearing loss. Given that normal-hearing musicians have enhanced auditory perceptual skills, including speech-in-noise perception, coupled with heightened subcortical responses to speech, we aimed to determine whether similar advantages could be observed in middle-aged adults with hearing loss. Results indicate that musicians with hearing loss, despite self-perceptions of average performance for understanding speech in noise, have a greater ability to hear in noise relative to nonmusicians. This is accompanied by more robust subcortical encoding of sound (e.g., stimulus-to-response correlations and response consistency) as well as more resilient neural responses to speech in the presence of background noise (e.g., neural timing). Musicians with hearing loss also demonstrate unique neural signatures of spectral encoding relative to nonmusicians: enhanced neural encoding of the speech-sound's fundamental frequency but not of its upper harmonics. This stands in contrast to previous outcomes in normal-hearing musicians, who have enhanced encoding of the harmonics but not the fundamental frequency. Taken together, our data suggest that although hearing loss modifies a musician's spectral encoding of speech, the musician advantage for perceiving speech in noise persists in a hearing-impaired population by adaptively strengthening underlying neural mechanisms for speech-in-noise perception. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Parbery-Clark, Alexandra; Anderson, Samira; Kraus, Nina] Northwestern Univ, Auditory Neurosci Lab, Evanston, IL 60208 USA.
[Parbery-Clark, Alexandra; Anderson, Samira; Kraus, Nina] Northwestern Univ, Dept Commun Sci, Evanston, IL 60208 USA.
[Kraus, Nina] Northwestern Univ, Evanston, IL 60208 USA.
RP Kraus, N (reprint author), Northwestern Univ, Auditory Neurosci Lab, 2240 Campus Dr, Evanston, IL 60208 USA.
EM nkraus@northwestern.edu
FU NSF [BCS-1057556]
FX The authors wish to thank Dana Strait, Erika Skoe, Trent Nicol and
Travis White-Schwoch for comments on an earlier version of this
manuscript. This work was supported by NSF BCS-1057556 to NK.
CR Aiken SJ, 2008, HEARING RES, V245, P35, DOI 10.1016/j.heares.2008.08.004
Aizawa N, 2006, JARO-J ASSOC RES OTO, V7, P71, DOI 10.1007/s10162-005-0026-3
Anderson S, 2012, J NEUROSCI, V32, P14156, DOI 10.1523/JNEUROSCI.2176-12.2012
Anderson S, 2010, HEARING RES, V270, P151, DOI 10.1016/j.heares.2010.08.001
Anderson S, 2011, EAR HEARING, V32, P750, DOI 10.1097/AUD.0b013e31822229d3
Anderson S, 2013, J SPEECH LANG HEAR R, V56, P31, DOI 10.1044/1092-4388(2012/12-0043)
Anderson S, 2010, J NEUROSCI, V30, P4922, DOI 10.1523/JNEUROSCI.0107-10.2010
Assmann P.F., 1987, J ACOUST SOC AM, V82, pS120, DOI 10.1121/1.2024632
Bajo VM, 2010, NAT NEUROSCI, V13, P253, DOI 10.1038/nn.2466
Barsz K, 2007, NEUROSCIENCE, V147, P532, DOI 10.1016/j.neuroscience.2007.04.031
Baumann O, 2010, PSYCHOL RES-PSYCH FO, V74, P110, DOI 10.1007/s00426-008-0185-z
Bellgrove MA, 2005, NEUROPSYCHOLOGIA, V43, P1847, DOI 10.1016/j.neuropsychologia.20.05.03.01
Bench J, 1979, Br J Audiol, V13, P108, DOI 10.3109/03005367909078884
Bird J., 1998, PSYCHOPHYSICAL PHYSL, P263
BLAIR JC, 1985, VOLTA REV, V87, P87
Boettcher FA, 2002, J SPEECH LANG HEAR R, V45, P1249, DOI 10.1044/1092-4388(2002/100)
BOOTHROYD A, 1984, J SPEECH HEAR RES, V27, P134
BROKX JPL, 1982, J PHONETICS, V10, P23
Bures Z, 2010, EUR J NEUROSCI, V32, P155, DOI 10.1111/j.1460-9568.2010.07280.x
BYRNE D, 1986, EAR HEARING, V7, P257
Castellanos FX, 2002, NAT REV NEUROSCI, V3, P617, DOI 10.1038/nrn896
Christian E, 1989, J Gerontol Nurs, V15, P4
CLARKE FR, 1969, J SPEECH HEAR RES, V12, P747
Clinard CG, 2010, HEARING RES, V264, P48, DOI 10.1016/j.heares.2009.11.010
CRANDELL CC, 1993, EAR HEARING, V14, P210
CULLING JF, 1993, J ACOUST SOC AM, V93, P3454, DOI 10.1121/1.405675
Dalton DS, 2003, GERONTOLOGIST, V43, P661
Dong S, 2009, NEUROSCIENCE, V159, P1164, DOI 10.1016/j.neuroscience.2009.01.043
Drullman R, 2004, J ACOUST SOC AM, V116, P3090, DOI 10.1121/1.1802535
DUBNO JR, 1982, J SPEECH HEAR RES, V25, P141
DUBNO JR, 1984, J ACOUST SOC AM, V76, P87, DOI 10.1121/1.391011
Gatehouse S, 2004, INT J AUDIOL, V43, P85, DOI 10.1080/14992020400050014
GLASBERG BR, 1986, J ACOUST SOC AM, V79, P1020, DOI 10.1121/1.393374
Guse L W, 1999, Issues Ment Health Nurs, V20, P527
Harrison RV, 1998, EXP BRAIN RES, V123, P449, DOI 10.1007/s002210050589
Heine C, 2002, DISABIL REHABIL, V24, P763, DOI 10.1080/09638280210129162
Heine C, 2004, AGEING SOC, V24, P113, DOI 10.1017/S0144686X03001491
HELFER KS, 1990, J SPEECH HEAR RES, V33, P149
Hornickel J, 2012, P NATL ACAD SCI USA, V109, P16731, DOI 10.1073/pnas.1206628109
Hultsch DF, 2000, NEUROPSYCHOLOGY, V14, P588, DOI 10.1037/0894-4105.14.4.588
Johnson J.K., QUALITY LIF IN PRESS
Konrad-Martin D, 2012, J AM ACAD AUDIOL, V23, P18, DOI 10.3766/jaaa.23.1.3
Kotak VC, 2005, J NEUROSCI, V25, P3908, DOI 10.1523/JNEUROSCI.5169-04.2005
Krampe RT, 1996, J EXP PSYCHOL GEN, V125, P331, DOI 10.1037/0096-3445.125.4.331
Kraus N, 2000, JARO-J ASSOC RES OTO, V1, P33, DOI 10.1007/s101620010004
Kraus N, 2010, NAT REV NEUROSCI, V11, P599, DOI 10.1038/nrn2882
KREIMAN J, 1992, J SPEECH HEAR RES, V35, P512
Kujala T, 2009, BIOL PSYCHOL, V81, P135, DOI 10.1016/j.biopsycho.2009.03.010
LEEK MR, 1987, J ACOUST SOC AM, V81, P148, DOI 10.1121/1.395024
MILLER GA, 1955, J ACOUST SOC AM, V27, P338, DOI 10.1121/1.1907526
Moore B. C. J., 2007, COCHLEAR HEARING LOS
NIDCD, 2012, QUICK STAT
NILSSON M, 1994, J ACOUST SOC AM, V95, P1085, DOI 10.1121/1.408469
Ohde RN, 2001, J ACOUST SOC AM, V110, P2156, DOI 10.1121/1.1399047
OTTO WC, 1982, AUDIOLOGY, V21, P466
Oxenham Andrew J, 2008, Trends Amplif, V12, P316, DOI 10.1177/1084713808325881
Parbery-Clark A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018082
Parbery-Clark A., 2012, FRONT AGING NEUROSCI, V4, P1
Parbery-Clark A, 2009, EAR HEARING, V30, P653, DOI 10.1097/AUD.0b013e3181b412e9
Parbery-Clark A, 2012, NEUROSCIENCE, V219, P111, DOI 10.1016/j.neuroscience.2012.05.042
Parbery-Clark A, 2009, J NEUROSCI, V29, P14100, DOI 10.1523/JNEUROSCI.3256-09.2009
Parbery-Clark A., 2012, NEUROBIOLOGY AGING, V33
Plyler P N, 2001, J Am Acad Audiol, V12, P523
Reed Charlotte M, 2009, Trends Amplif, V13, P4, DOI 10.1177/1084713808325412
Shinn-Cunningham Barbara G, 2008, Trends Amplif, V12, P283, DOI 10.1177/1084713808325306
Song JH, 2011, J COGNITIVE NEUROSCI, V23, P2268, DOI 10.1162/jocn.2010.21556
Strait DL, 2012, BRAIN LANG, V123, P191, DOI 10.1016/j.bandl.2012.09.001
Strouse A, 1998, J ACOUST SOC AM, V104, P2385, DOI 10.1121/1.423748
Suga N, 2008, J COMP PHYSIOL A, V194, P169, DOI 10.1007/s00359-007-0274-2
Suga N, 2003, NAT REV NEUROSCI, V4, P783, DOI 10.1038/nrn1222
Summers V, 1998, J SPEECH LANG HEAR R, V41, P1294
SUMMERS V, 1994, J ACOUST SOC AM, V95, P3518, DOI 10.1121/1.409969
Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002
TYLER RS, 1984, J ACOUST SOC AM, V76, P1363, DOI 10.1121/1.391452
Vander Werff Kathy R, 2011, Ear Hear, V32, P168, DOI 10.1097/AUD.0b013e3181f534b5
Wang J, 1996, J NEUROPHYSIOL, V75, P171
Wang XQ, 2007, HEARING RES, V229, P81, DOI 10.1016/j.heares.2007.01.019
Wechsler D, 1999, WECHSLER ABBREVIATED
Willott J., 2005, INFERIOR COLLICULUS
WILLOTT JF, 1991, ACTA OTO-LARYNGOL, P153
WILLOTT JF, 1986, J NEUROPHYSIOL, V56, P391
WILLOTT JF, 1984, BRAIN RES, V309, P159, DOI 10.1016/0006-8993(84)91022-9
Woodcock R. W., 2001, WOODCOCK JOHNSON 3 T
YANG LC, 1992, J NEUROPHYSIOL, V68, P1760
Zendel B.R., 2011, PSYCHOL AGING, V27, P410, DOI DOI 10.1037/A0024816
NR 85
TC 6
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2013
VL 302
BP 121
EP 131
DI 10.1016/j.heares.2013.03.009
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 186OZ
UT WOS:000322055300014
PM 23566981
ER
PT J
AU Dong, W
Varavva, P
Olson, ES
AF Dong, Wei
Varavva, Polina
Olson, Elizabeth S.
TI Sound transmission along the ossicular chain in common wild-type
laboratory mice
SO HEARING RESEARCH
LA English
DT Article
ID COCHLEAR INPUT IMPEDANCE; REVERSE TRANSFER-FUNCTIONS; MIDDLE-EAR
FUNCTION; TYMPANIC-MEMBRANE; PRESSURE MEASUREMENTS; HEARING-LOSS;
OTOACOUSTIC EMISSIONS; MONGOLIAN GERBIL; TEMPORAL BONE; MOTION
AB The use of genetically modified mice can accelerate progress in auditory research. However, the fundamental profile of mouse hearing has not been thoroughly documented. In the current study, we explored mouse middle ear transmission by measuring sound-evoked vibrations at several key points along the ossicular chain using a laser-Doppler vibrometer. Observations were made through an opening in pars flaccida. Simultaneously, the pressure at the tympanic membrane close to the umbo was monitored using a micro-pressure-sensor. Measurements were performed in C57BL mice, which are widely used in hearing research. Our results show that the ossicular local transfer function, defined as the ratio of velocity to the pressure at the tympanic membrane, was like a high-pass filter, almost flat at frequencies above similar to 15 kHz, decreasing rapidly at lower frequencies. There was little phase accumulation along the ossicles. Our results suggested that the mouse ossicles moved almost as a rigid body. Based on these 1-dimensional measurements, the malleus incus-complex primarily rotated around the anatomical axis passing through the gonial termination of the anterior malleus and the short process of the incus, but secondary motions were also present. This article is part of a Special Issue entitled "MEMRO 2012". Published by Elsevier B.V.
C1 [Dong, Wei; Varavva, Polina; Olson, Elizabeth S.] Columbia Univ, Dept Otolaryngol Head & Neck Surg, New York, NY 10032 USA.
RP Dong, W (reprint author), Columbia Univ, Dept Otolaryngol Head & Neck Surg, P&S 11-452,630 W 168th St, New York, NY 10032 USA.
EM wd2015@columbia.edu; pvaravva@gmail.com; eao2004@columbia.edu
FU NIDCD; Emil Capita Charitable Foundation
FX Supported by the NIDCD and the Emil Capita Charitable Foundation. We
thank the two reviewers for improving the presentation.
CR Aibara R, 2001, HEARING RES, V152, P100, DOI 10.1016/S0378-5955(00)00240-9
Cheng J.T, 2011, MECH HEAR 2011 WILL
Cheng JT, 2010, HEARING RES, V263, P66, DOI 10.1016/j.heares.2009.12.024
Dalhoff E, 2011, HEARING RES, V280, P86, DOI 10.1016/j.heares.2011.04.015
DANCER A, 1980, HEARING RES, V2, P191, DOI 10.1016/0378-5955(80)90057-X
de La Rochefoucauld O, 2008, JARO-J ASSOC RES OTO, V9, P161, DOI 10.1007/s10162-008-0115-1
de La Rochefoucauld O, 2010, HEARING RES, V270, P158, DOI 10.1016/j.heares.2010.07.010
de La Rochefoucauld O, 2010, HEARING RES, V263, P9, DOI 10.1016/j.heares.2009.10.014
DECORY L, 1990, LECT NOTES BIOMATH, V87, P270
Decraemer W. F, 2003, P MIDDL EAR MECH RES
Decraemer WF, 2007, J ACOUST SOC AM, V121, P2774, DOI 10.1121/1.2709843
Decraemer WF, 2003, JARO, V4, P250, DOI 10.1007/s10162-002-3030-x
Doan DE, 1996, HEARING RES, V97, P174, DOI 10.1016/0378-5955(96)00060-3
Dong W, 2012, JARO-J ASSOC RES OTO, V13, P447, DOI 10.1007/s10162-012-0320-9
Dong W, 2006, J NEUROPHYSIOL, V95, P2951, DOI 10.1152/jn.01214.2005
Dong W, 2009, BIOPHYS J, V97, P1233, DOI 10.1016/j.bpj.2009.05.057
Fay JP, 2006, P NATL ACAD SCI USA, V103, P19743, DOI 10.1073/pnas.0603898104
Fleischer G, 1978, Adv Anat Embryol Cell Biol, V55, P3
GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465
Hato N, 2003, AUDIOL NEURO-OTOL, V8, P140, DOI 10.1159/000069475
Heiland KE, 1999, AM J OTOL, V20, P81
Huber AM, 2008, OTOL NEUROTOL, V29, P1187, DOI 10.1097/MAO.0b013e31817ef49b
Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X
Keefe DH, 2007, J ACOUST SOC AM, V121, P978, DOI 10.1121/1.2427128
Keefe DH, 2002, J ACOUST SOC AM, V111, P249, DOI 10.1121/1.1423931
KHANNA SM, 1972, J ACOUST SOC AM, V51, P1904, DOI 10.1121/1.1913050
Lavender D, 2011, HEARING RES, V282, P97, DOI 10.1016/j.heares.2011.09.003
Lee JH, 2009, ANAT HISTOL EMBRYOL, V38, P311, DOI 10.1111/j.1439-0264.2009.00946.x
Magnan P, 1997, HEARING RES, V107, P41, DOI 10.1016/S0378-5955(97)00015-4
Nakajima H. H., 2008, JARO-J ASSOC RES OTO, V10, P23
NEDZELNITSKY V, 1980, J ACOUST SOC AM, V68, P1676, DOI 10.1121/1.385200
Olson ES, 1998, J ACOUST SOC AM, V103, P3445, DOI 10.1121/1.423083
Olson ES, 2001, J ACOUST SOC AM, V110, P349, DOI 10.1121/1.1369098
Ouagazzal AM, 2006, BEHAV BRAIN RES, V172, P307, DOI 10.1016/j.bbr.2006.05.018
PLASSMANN W, 1991, BRAIN BEHAV EVOLUT, V38, P115, DOI 10.1159/000114382
Puria S, 1998, J ACOUST SOC AM, V104, P3463, DOI 10.1121/1.423930
Puria S, 2010, HEARING RES, V263, P183, DOI 10.1016/j.heares.2009.10.013
Puria S, 2003, J ACOUST SOC AM, V113, P2773, DOI 10.1121/1.1564018
Puria S, 1997, J ACOUST SOC AM, V101, P2754, DOI 10.1121/1.418563
Qin ZB, 2010, HEARING RES, V263, P93, DOI 10.1016/j.heares.2009.10.002
Ravicz ME, 2008, J ACOUST SOC AM, V124, P363, DOI 10.1121/1.2932061
Rosowski J.J, 2003, SENSORS SENSING BIOL, VXII, P59
Rosowski JJ, 2009, HEARING RES, V253, P83, DOI 10.1016/j.heares.2009.03.010
Rosowski JJ, 2003, JARO, V4, P371, DOI 10.1007/s10162-002-3047-1
Rosowski JJ, 1999, AUDIOL NEURO-OTOL, V4, P129, DOI 10.1159/000013831
SAUNDERS JC, 1982, J COMP PHYSIOL, V146, P517
Slama MCC, 2010, J ACOUST SOC AM, V127, P1397, DOI 10.1121/1.3279830
Teoh SW, 1997, HEARING RES, V106, P39, DOI 10.1016/S0378-5955(97)00002-6
Voss SE, 2004, J ACOUST SOC AM, V116, P2187, DOI 10.1021/1.1785832
Willi UB, 2006, J COMP PHYSIOL A, V192, P267, DOI 10.1007/s00359-005-0070-9
NR 50
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2013
VL 301
SI SI
BP 27
EP 34
DI 10.1016/j.heares.2012.11.015
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 165IW
UT WOS:000320478100005
PM 23183032
ER
PT J
AU Koch, M
Seidler, H
Hellmuth, A
Bornitz, M
Lasurashvili, N
Zahnert, T
AF Koch, Martin
Seidler, Hannes
Hellmuth, Alexander
Bornitz, Matthias
Lasurashvili, Nikoloz
Zahnert, Thomas
TI Influence of the middle ear anatomy on the performance of a membrane
sensor in the incudostapedial joint gap
SO HEARING RESEARCH
LA English
DT Article
ID SENSORINEURAL HEARING-LOSS; DEVICE; RECONSTRUCTION
AB There is a great demand for implantable microphones for future generations of implantable hearing aids, especially Cochlea Implants.
An implantable middle ear microphone based on a piezoelectric membrane sensor for insertion into the incudostapedial gap is investigated. The sensor is designed to measure the sound-induced forces acting on the center of the membrane. The sensor mechanically couples to the adjacent ossicles via two contact areas, the sensor membrane and the sensor housing. The sensing element is a piezoelectric single crystal bonded on a titanium membrane. The sensor allows a minimally invasive and reversible implantation without removal of ossicles and without additional sensor fixation in the tympanic cavity.
This study investigates the implantable microphone sensor and its implantation concept. It intends to quantify the influence of the sensor's insertion position on the achievable microphone sensitivity. The investigation considers anatomical and pathological variations of the middle ear geometry and its space limitations.
Temporal bone experiments on a laboratory model show that anatomical and pathological variations of the middle ear geometry can prevent the sensor from being placed optimally within the incudostapedial joint. Beyond scattering of transfer functions due to anatomic variations of individual middle ears there is the impact of variations in the sensor position within the ossicular chain that has a considerable effect on the transfer characteristics of the middle ear microphone. The centering of the sensor between incus and stapes, the direction of insertion (membrane to stapes or to incus) and the effect of additional contact points with surrounding anatomic structures affect the signal yield of the implanted sensor. The presence of additional contact points has a considerably impact on the sensitivity, yet the microphone sensitivity is quite robust against small changes in the positioning of the incus on the sensor. Signal losses can be avoided by adjusting the position of the sensor within the joint.
The findings allow the development of an improved surgical insertion technique to ensure maximally achievable signal yield of the membrane sensor in the ISJ and provides valuable knowledge for a future design considerations including sensor miniaturization and geometry.
Measurements of the implanted sensor in temporal bone specimens showed a microphone sensitivity in the order of 1 mV/Pa. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2012 Elsevier B.V. All rights reserved.
C1 [Koch, Martin; Seidler, Hannes; Bornitz, Matthias; Lasurashvili, Nikoloz; Zahnert, Thomas] Tech Univ Dresden, Otorhinolaryngol Clin, Dept Med, Univ Klin Carl Gustav Carus, D-03107 Dresden, Germany.
[Hellmuth, Alexander] MED EL Med Elect, A-6020 Innsbruck, Austria.
RP Koch, M (reprint author), Tech Univ Dresden, Otorhinolaryngol Clin, Dept Med, Univ Klin Carl Gustav Carus, Fetscherstr 74,Haus 5, D-03107 Dresden, Germany.
EM martin.koch@uniklinikum-dresden.de
CR Asai M, 1999, ACTA OTO-LARYNGOL, V119, P356
Backous D.D, 2006, CURRENT OPINION OTOL, V1, P314
Barbara M, 2009, ACTA OTO-LARYNGOL, V129, P429, DOI 10.1080/00016480802593505
Bornitz M, 2010, HEARING RES, V263, P145, DOI 10.1016/j.heares.2010.02.007
Bruschini L, 2010, ACTA OTO-LARYNGOL, V130, P1147, DOI 10.3109/00016481003671244
Clark G. M., 2003, COCHLEAR IMPLANTS FU
Fisch U, 1994, TYMPANOPLASTY MASTOI, P25
Gan RZ, 2011, MED ENG PHYS, V33, P330, DOI 10.1016/j.medengphy.2010.10.022
Haynes David S, 2009, Trends Amplif, V13, P206, DOI 10.1177/1084713809346262
Hellmut A, 2012, MEMR 2012 6 INT S MI
Neudert M, 2009, OTOL NEUROTOL, V30, P332, DOI 10.1097/MAO.0b013e31819679dd
Park WT, 2007, BIOMED MICRODEVICES, V9, P939, DOI 10.1007/s10544-007-9072-4
Rosowski JJ, 2007, AUDIOL NEURO-OTOL, V12, P265, DOI 10.1159/000101474
Todd NW, 2008, LARYNGOSCOPE, V118, P110, DOI 10.1097/MLG.0b013e318155a299
Voss SE, 2000, HEARING RES, V150, P43, DOI 10.1016/S0378-5955(00)00177-5
Yanagihara N, 2001, OTOLARYNG CLIN N AM, V34, P389, DOI 10.1016/S0030-6665(05)70338-8
Zenner HP, 2000, AM J OTOL, V21, P196, DOI 10.1016/S0196-0709(00)80009-5
Zenner HP, 1998, HNO, V46, P844, DOI 10.1007/s001060050324
Zurcher M.A, 2006, INT C NETWORKED SENS, P49
NR 19
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2013
VL 301
SI SI
BP 35
EP 43
DI 10.1016/j.heares.2012.12.001
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 165IW
UT WOS:000320478100006
PM 23246425
ER
PT J
AU Rosowski, JJ
Dobrev, I
Khaleghi, M
Lu, WN
Cheng, JT
Harrington, E
Furlong, C
AF Rosowski, John J.
Dobrev, Ivo
Khaleghi, Morteza
Lu, Weina
Cheng, Jeffrey Tao
Harrington, Ellery
Furlong, Cosme
TI Measurements of three-dimensional shape and sound-induced motion of the
chinchilla tympanic membrane
SO HEARING RESEARCH
LA English
DT Article
ID WAVE MODEL; EARDRUM; HOLOGRAPHY; SURFACE
AB Opto-electronic computer holographic measurements were made of the tympanic membrane (TM) in cadaveric chinchillas. Measurements with two laser wavelengths were used to compute the 3D-shape of the TM. Single laser wavelength measurements locked to eight distinct phases of a tonal stimulus were used to determine the magnitude and the relative phase of the surface displacements. These measurements were made at over 250,000 points on the TM surface. The measured motions contained spatial phase variations consistent with relatively low-order (large spatial frequency) modal motions and smaller magnitude higher-order (smaller spatial frequency) motions that appear to travel, but may also be explained by losses within the membrane. The measurement of shape and thin shell theory allowed us to separate the measured motions into those components orthogonal to the plane of the tympanic ring, and those components within the plane of the tympanic ring based on the 3D-shape. The predicted in-plane motion components are generally smaller than the out-of-plane perpendicular component of motion. Since the derivation of in-plane and out-of plane depended primarily on the membrane shape, the relative sizes of the predicted motion components did not vary with frequency.
Summary: A new method for simultaneously measuring the shape and sound-induced motion of the tympanic membrane is utilized to estimate the 3D motion on the membrane surface. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2012 Elsevier B.V. All rights reserved.
C1 [Rosowski, John J.; Cheng, Jeffrey Tao; Furlong, Cosme] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA.
[Rosowski, John J.; Cheng, Jeffrey Tao; Furlong, Cosme] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA.
[Dobrev, Ivo; Khaleghi, Morteza; Lu, Weina; Furlong, Cosme] Worcester Polytech Inst, Dept Mech Engn, Worcester, MA 01609 USA.
[Dobrev, Ivo; Khaleghi, Morteza; Lu, Weina; Harrington, Ellery; Furlong, Cosme] Worcester Polytech Inst, Ctr Holog Studies & Laser MicromechaTron, Worcester, MA 01609 USA.
RP Rosowski, JJ (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, 243 Charles St, Boston, MA 02114 USA.
EM John_Rosowski@meei.harvard.edu
FU NIDCD; Mittal Foundation
FX We thank Mike Ravicz, Jef Aernouts, and Saumil Merchant for significant
contributions to this work. This work has been funded by NIDCD grants to
JJR, and the Mittal Foundation.
CR Aernouts J., 2012, HEAR RES
Blayney AW, 1997, ACTA OTO-LARYNGOL, V117, P269, DOI 10.3109/00016489709117785
Chang E.W., NATURE UNPUB
Cheng JT, 2010, HEARING RES, V263, P66, DOI 10.1016/j.heares.2009.12.024
Cheng J.T., J ACOUST SO IN PRESS
Chhan D, 2013, HEARING RES, V301, P66, DOI 10.1016/j.heares.2012.11.014
de La Rochefoucauld O, 2010, HEARING RES, V263, P9, DOI 10.1016/j.heares.2009.10.014
Decraemer WF, 2008, CHRONIC OTITIS MEDIA, P51
DECRAEMER WF, 1991, HEARING RES, V51, P107, DOI 10.1016/0378-5955(91)90010-7
DIRCKX JJJ, 1992, HEARING RES, V62, P99, DOI 10.1016/0378-5955(92)90206-3
Dirckx JJJ, 2001, HEARING RES, V157, P124, DOI 10.1016/S0378-5955(01)00290-8
Fay J, 2005, J BIOMECH, V38, P1807, DOI 10.1016/j.jbiomech.2004.08.022
Flores-Moreno JM, 2011, SCANNING, V33, P342, DOI 10.1002/sca.20283
Funnell W.R., 1977, J ACOUST SOC AM, V63, P1461
FUNNELL WRJ, 1987, J ACOUST SOC AM, V81, P1851, DOI 10.1121/1.394749
Gan RZ, 2002, OTOL NEUROTOL, V23, P271, DOI 10.1097/00129492-200205000-00008
Goll E, 2011, J ACOUST SOC AM, V130, P1452, DOI 10.1121/1.3613934
Hernandez-Montes MDS, 2009, J BIOMED OPT, V14, DOI 10.1117/1.3153898
Ilgner J., 2012, MEMRO 2012, P39
Jackson R., 2012, MEMRO 2012, P24
KHANNA SM, 1972, J ACOUST SOC AM, V51, P1904, DOI 10.1121/1.1913050
Koike T, 2002, J ACOUST SOC AM, V111, P1306, DOI 10.1121/1.1451073
Kolenovic E., 2004, P 2004 SEM INT C EXP, P470
Love A.E.H., 1888, PHILOS T R SOC A, V17, P491, DOI 10.1098/rsta.1888.0016
Lu W., 2012, THESIS WORCESTER POL
Parent P, 2010, HEARING RES, V263, P152, DOI 10.1016/j.heares.2009.12.015
Parenta P, 2007, J ACOUST SOC AM, V122, P918, DOI 10.1121/12747156
Pryputniewicz R.J., 1986, P SOC PHOTO-OPT INS, V673, P250
Puria S, 2010, HEARING RES, V263, P183, DOI 10.1016/j.heares.2009.10.013
RABBITT RD, 1986, J ACOUST SOC AM, V80, P1716, DOI 10.1121/1.394284
Rosowski JJ, 2009, HEARING RES, V253, P83, DOI 10.1016/j.heares.2009.03.010
Rosowski JJ, 2011, OTOL NEUROTOL, V32, P1559, DOI 10.1097/MAO.0b013e31822e94f3
RUGGERO MA, 1990, J ACOUST SOC AM, V87, P1612, DOI 10.1121/1.399409
Saada AS., 1974, ELASTICITY THEORY AP
STETSON KA, 1975, APPL OPTICS, V14, P2256, DOI 10.1364/AO.14.002256
Timoshenko S., 1959, THEORY PLATES SHELLS
Vest C. M., 1979, HOLOGRAPHIC INTERFER
NR 37
TC 11
Z9 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2013
VL 301
SI SI
BP 44
EP 52
DI 10.1016/j.heares.2012.11.022
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 165IW
UT WOS:000320478100007
PM 23247058
ER
PT J
AU Gaihede, M
Padurariu, S
Jacobsen, H
De Greef, D
Dirckx, JJJ
AF Gaihede, Michael
Padurariu, Simona
Jacobsen, Henrik
De Greef, Daniel
Dirckx, Joris J. J.
TI Eustachian tube pressure equilibration. Temporal analysis of pressure
changes based on direct physiological recordings with an intact tympanic
membrane
SO HEARING RESEARCH
LA English
DT Article
ID MIDDLE-EAR PRESSURE; VIDEO ENDOSCOPY; OTITIS-MEDIA
AB Eustachian tube function is important in pressure regulation of the middle ear. The efficacy or magnitude of pressure equilibration by tube openings should be determined by the gradient between middle ear and ambient pressure, but in theory also the duration of the tube opening may play a role.
This study employed direct measurements of middle ear pressure in patients, who after parotidectomy had a catheter inserted into the mastoid with a pressure transducer connected. Thus, monitoring of the middle ear pressure in response to experimentally induced pressure changes could be performed under physiological conditions with an intact tympanic membrane. A set of six experiments was performed in four healthy subjects with different pressure deviations, where the counter-regulation was recorded over 10 min's time frames; a total of 75 events of tube openings were recorded. The transducer had a high accuracy of +/- 0.1 daPa, and data were sampled at 10 Hz, so that detailed parameters for each tube opening event could be obtained: the pressure change, the pressure gradient and the duration of the opening were determined.
The pressure changes in response to Eustachian tube openings showed significant positive correlation to the pressure gradient and ambient pressure (p < 0.001). However, the duration of the opening time was not related to the pressure gradient (p = 0.16), as well as the pressure change was also not related to the duration of the opening time (p = 034). This meant that the magnitude of a pressure equilibration during tube openings was only determined by the pressure gradient and not variations in the duration of the opening time. Additional correlations were investigated including the pressure change rate.
In conclusion, under physiological conditions the opening of the Eustachian tube behaves similarly to a reflex mechanism with relative constant duration. Therefore, in order to equilibrate higher pressure gradients, series of Eustachian tube openings are needed, rather than the tube will open during a longer period of time. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2013 Elsevier B.V. All rights reserved.
C1 [Gaihede, Michael; Padurariu, Simona; Jacobsen, Henrik] Aalborg Univ Hosp, Dept Otolaryngol Head & Neck Surg, DK-9000 Aalborg, Denmark.
[De Greef, Daniel; Dirckx, Joris J. J.] Univ Antwerp, Lab Biomed Phys, B-2020 Antwerp, Belgium.
RP Gaihede, M (reprint author), Aalborg Univ Hosp, Dept Otolaryngol Head & Neck Surg, Hobrovej 18-22, DK-9000 Aalborg, Denmark.
EM mlg@rn.dk; s.padurariu@rn.dk; heja@rn.dk; Daniel.DeGreef@ua.ac.be;
joris.dirckx@ua.ac.be
FU Research Administration of Aalborg Hospital
FX Dr. Kjell Tveteras kindly assisted performing some of the
parotidectomies for this study. The Research Administration of Aalborg
Hospital provided a 2 months fellowship to Simona Padurariu for the
analysis of the data.
CR Asenov DR, 2010, ACTA OTO-LARYNGOL, V130, P1242, DOI 10.3109/00016489.2010.492481
Bluestone CD, 2004, LARYNGOSCOPE, V114, P1, DOI 10.1097/01.mlg.0000148223.45374.ec
Brattmo M, 2003, ACTA OTO-LARYNGOL, V123, P569, DOI 10.1080/00016480310001231
Bunne M, 2000, INT J PEDIATR OTORHI, V52, P131, DOI 10.1016/S0165-5876(00)00281-0
Doyle WJ, 2000, FUNCTION AND MECHANICS OF NORMAL, DISEASED AND RECONSTRUCTED MIDDLE EARS, P3
EDEN AR, 1990, LARYNGOSCOPE, V100, P67
ELNER A, 1971, ACTA OTO-LARYNGOL, V72, P320, DOI 10.3109/00016487109122489
Felding UN, 2003, ACTA OTO-LARYNGOL, V123, P808, DOI 10.1080/00016480310015416
Gaihede M., 2008, CHRONIC OTITIS MEDIA, P227
Gaihede M, 2010, OTOL NEUROTOL, V31, P603, DOI 10.1097/MAO.0b013e3181dd13e2
Jacobsen H, 2007, MIDDLE EAR MECHANICS IN RESEARCH AND OTOLOGY, P26, DOI 10.1142/9789812708694_0004
Mondain M, 1997, LARYNGOSCOPE, V107, P1414, DOI 10.1097/00005537-199710000-00022
Poe DS, 2011, OTOL NEUROTOL, V32, P794, DOI 10.1097/MAO.0b013e31821c6355
Poe DS, 2000, AM J OTOL, V21, P602
Sami SAK, 2009, OTOL NEUROTOL, V30, P649, DOI 10.1097/MAO.0b013e3181a32bd1
Sheer FJ, 2012, MED ENG PHYS, V34, P605, DOI 10.1016/j.medengphy.2011.09.008
Swarts JD, 2011, ANN OTO RHINOL LARYN, V120, P220
Tideholm B, 1996, ACTA OTO-LARYNGOL, V116, P581, DOI 10.3109/00016489609137893
NR 18
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2013
VL 301
SI SI
BP 53
EP 59
DI 10.1016/j.heares.2013.01.003
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 165IW
UT WOS:000320478100008
PM 23347915
ER
PT J
AU Cros, O
Borga, M
Pauwels, E
Dirckx, JJJ
Gaihede, M
AF Cros, Olivier
Borga, Magnus
Pauwels, Elin
Dirckx, Joris J. J.
Gaihede, Michael
TI Micro-channels in the mastoid anatomy. Indications of a separate blood
supply of the air cell system mucosa by micro-CT scanning
SO HEARING RESEARCH
LA English
DT Article
ID MIDDLE-EAR; GAS-EXCHANGE; PRESSURE; MODELS
AB The mastoid air cell system has traditionally been considered to have a passive role in gas exchange and pressure regulation of the middle ear possibly with some acoustic function. However, more evidence has focused on the mucosa of the mastoid, which may play a more active role in regulation of middle ear pressure.
In this study we have applied micro-CT scanning on a series of three human temporal bones. This approach greatly enhances the resolution (40-60 mu m), so that we have discovered anatomical details, which has not been reported earlier. Thus, qualitative analysis using volume rendering has demonstrated notable micro-channels connecting the surface of the compact bone directly to the mastoid air cells as well as forming a network of connections between the air cells. Quantitative analysis on 2D slices was employed to determine the average diameter of these micro-channels (158 mu m; range = 40-440 mu m) as well as their density at a localized area (average = 75 cm(-2); range = 64-97 cm(-2)).
These channels are hypothesized to contain a separate vascular supply for the mastoid mucosa. However, future studies of the histological structure of the micro-channels are warranted to confirm the hypothesis. Studies on the mastoid mucosa and its blood supply may improve our knowledge of its physiological properties, which may have important implications for our understanding of the pressure regulation of the middle ear. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2013 Elsevier B.V. All rights reserved.
C1 [Cros, Olivier; Gaihede, Michael] Aalborg Univ Hosp, Dept Otolaryngol Head & Neck Surg, Aalborg, Denmark.
[Cros, Olivier; Borga, Magnus] Linkoping Univ, Dept Biomed Engn, SE-58185 Linkoping, Sweden.
[Cros, Olivier; Borga, Magnus] Linkoping Univ, Ctr Med Image Sci & Visualizat, SE-58185 Linkoping, Sweden.
[Pauwels, Elin] Univ Ghent, Dept Phys & Astron, Ctr Xray Tomog, B-9000 Ghent, Belgium.
[Dirckx, Joris J. J.] Univ Antwerp, Lab Biomed Phys, Antwerp, Belgium.
RP Cros, O (reprint author), Linkoping Univ, Dept Biomed Engn, SE-58185 Linkoping, Sweden.
EM olivier.cros@liu.se
CR Ars B, 1997, ACTA OTO-LARYNGOL, V117, P704, DOI 10.3109/00016489709113463
Boulpaep EL, 2009, MED PHYSL CELLULAR M, P467
BUYTAERT J.A.N., 2012, ANAT RES INT, V2012, P1
Cinamon U, 2009, EUR ARCH OTO-RHINO-L, V266, P781, DOI 10.1007/s00405-009-0941-8
Cooper D. M. L., 2003, Anatomical Record, V274B, P169, DOI 10.1002/ar.b.10024
Doyle WJ, 2000, FUNCTION AND MECHANICS OF NORMAL, DISEASED AND RECONSTRUCTED MIDDLE EARS, P3
Drebin R. A., 1988, Computer Graphics, V22
Fleischer G., 2010, CONTRIBUTION INT CON, P250
Gaihede M, 2010, OTOL NEUROTOL, V31, P603, DOI 10.1097/MAO.0b013e3181dd13e2
Gulya A.J., 2007, GULYA SCHUKNECHTS AN, P1
Lane J.I., 2009, TEMPORAL BONE IMAGIN, P1
Lee DH, 2010, HEARING RES, V263, P198, DOI 10.1016/j.heares.2010.01.007
Magnuson B, 2003, J LARYNGOL OTOL, V117, P99
Marcusohn Y, 2010, HEARING RES, V265, P11, DOI 10.1016/j.heares.2010.03.078
Masschaele BC, 2007, NUCL INSTRUM METH A, V580, P266, DOI 10.1016/j.nima.2007.05.099
Park MS, 2000, J LARYNGOL OTOL, V114, P93
Sade J, 1997, OTOLARYNG HEAD NECK, V116, P499, DOI 10.1016/S0194-5998(97)70302-4
Salih WHM, 2012, HEARING RES, V284, P1, DOI 10.1016/j.heares.2011.12.004
Vlassenbroeck J, 2007, NUCL INSTRUM METH A, V580, P442, DOI 10.1016/j.nima.2007.05.073
NR 19
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2013
VL 301
SI SI
BP 60
EP 65
DI 10.1016/j.heares.2013.03.002
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 165IW
UT WOS:000320478100009
PM 23518400
ER
PT J
AU Chhan, D
Roosli, C
McKinnon, ML
Rosowski, JJ
AF Chhan, David
Roeoesli, Christof
McKinnon, Melissa L.
Rosowski, John J.
TI Evidence of inner ear contribution in bone conduction in chinchilla
SO HEARING RESEARCH
LA English
DT Article
ID MIDDLE-EAR; ADMITTANCE; PRESSURE
AB We investigated the contribution of the middle ear to the physiological response to bone conduction stimuli in chinchilla. We measured intracochlear sound pressure in response to air conduction (AC) and bone conduction (BC) stimuli before and after interruption of the ossicular chain at the incudostapedial joint. Interruption of the chain effectively decouples the external and middle ear from the inner ear and significantly reduces the contributions of the outer ear and middle ear to the bone conduction response. With AC stimulation, both the scala vestibuli Psv and scala tympani Pst sound pressures drop by 30-40 dB after the interruption. In BC stimulation, Psv decreases after interruption by about 10-20 dB, but Pst is little affected. This difference in the sensitivity of the BC induced Psv and Pst to ossicular interruption is not consistent with a BC response to ossicular motion, but instead suggests a significant contribution of an inner-ear drive (e.g. cochlear fluid inertia or compressibility) to the BC response. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2012 Elsevier B.V. All rights reserved.
C1 [Chhan, David; Rosowski, John J.] MIT, Harvard Mit Div Hlth Sci & Technol, Speech & Hearing Biosci & Technol Program, Cambridge, MA 02139 USA.
[Chhan, David; Roeoesli, Christof; McKinnon, Melissa L.; Rosowski, John J.] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA.
[Roeoesli, Christof; Rosowski, John J.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA.
[Roeoesli, Christof] Univ Zurich Hosp, Dept Otorhinolaryngol Head & Neck Surg, Zurich, Switzerland.
RP Rosowski, JJ (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA.
EM John_Rosowski@meei.harvard.edu
CR Barany E, 1938, ACTA OTO-LARYNGOL, V26, P1
HUIZING E H, 1960, Acta Otolaryngol Suppl, V155, P1
KHANNA SM, 1976, J ACOUST SOC AM, V60, P139, DOI 10.1121/1.381081
Kim N, 2011, JARO-J ASSOC RES OTO, V12, P261, DOI 10.1007/s10162-011-0258-3
Olson ES, 1998, J ACOUST SOC AM, V103, P3445, DOI 10.1121/1.423083
Ravicz ME, 2010, HEARING RES, V263, P16, DOI 10.1016/j.heares.2009.11.014
Rosowski JJ, 2006, J COMP PHYSIOL A, V192, P1287, DOI 10.1007/s00359-006-0159-9
Songer JE, 2006, J ACOUST SOC AM, V120, P258, DOI 10.1121/1.2204356
Stenfelt S, 2002, J ACOUST SOC AM, V111, P947, DOI 10.1121/1.1432977
Stenfelt S, 2003, J ACOUST SOC AM, V113, P902, DOI 10.1121/1.1534606
Stenfelt S, 2005, OTOL NEUROTOL, V26, P1245, DOI 10.1097/01.mao.0000187236.10842.d5
TONNDORF J, 1962, J ACOUST SOC AM, V34, P1127, DOI 10.1121/1.1918259
TONNDORF J, 1972, F MODERN AUDITORY TH, V2, P197
Wever EG, 1954, PHYSL ACOUSTICS
NR 14
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2013
VL 301
SI SI
BP 66
EP 71
DI 10.1016/j.heares.2012.11.014
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 165IW
UT WOS:000320478100010
PM 23211609
ER
PT J
AU Kim, N
Steele, CR
Puria, S
AF Kim, Namkeun
Steele, Charles R.
Puria, Sunil
TI Superior-semicircular-canal dehiscence: Effects of location, shape, and
size on sound conduction
SO HEARING RESEARCH
LA English
DT Article
ID BASILAR-MEMBRANE; HEARING; MODEL; AIR; CHINCHILLA; EAR; AMPLIFICATION;
THRESHOLDS; STIMULI; VERTIGO
AB The effects of a superior-semicircular-canal (SSC) dehiscence (SSCD) on hearing sensitivity via the air-conduction (AC) and bone-conduction (BC) pathways were investigated using a three-dimensional finite-element (FE) model of a human middle ear coupled to the inner ear. Dehiscences were modeled by removing a section of the outer bony wall of the SSC and applying a zero-pressure condition to the fluid surface thus exposed. At each frequency, the basilar-membrane velocity, v(BM), was separately calculated for AC and BC stimulation, under both pre- and post-dehiscence conditions. Hearing loss was calculated as the difference in the maximum magnitudes of v(BM) between the pre- and post-dehiscence conditions representing a change in hearing threshold. In this study, BC excitations were simulated by applying rigid-body vibrations to the model along the directions of the (arbitrarily defined) x, y, and z axes of the model.
Simulation results are consistent with previous clinical measurements on patients with an SSCD and with results from earlier lumped-element electrical-circuit modeling studies, with the dehiscence decreasing the hearing threshold (i.e., increasing v(BM)) by about 35 dB for BC excitation at low frequencies, while for AC excitation the dehiscence increases the hearing threshold (i.e., decreases v(BM)) by about 15 dB. A new finding from this study is that the initial width (defined as the width of the edge of the dehiscence where the flow of the fluid-motion wave from the oval window meets it for the first time) on the vestibular side of the dehiscence has more of an effect on v(BM) than the area of the dehiscence. Analyses of dehiscence effects using the FE model further predict that changing the direction of the BC excitation should have an effect on v(BM), with v(BM) being about 20 dB lower due to BC excitation parallel to the longitudinal direction of the BM in the hook region (the x direction) as compared to excitations in other directions (y and z). BC excitation in the x direction and with a 'center' dehiscence located midway along the length of the SSC causes a reduction in the anti-symmetric component of the fluid pressure across the BM, as compared to the other directions of BC excitation, which results in a decrease in v(BM) at high frequencies. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2013 Published by Elsevier B.V.
C1 [Kim, Namkeun; Steele, Charles R.; Puria, Sunil] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA.
[Puria, Sunil] Stanford Univ, Dept Otolaryngol HNS, Stanford, CA 94305 USA.
RP Puria, S (reprint author), Stanford Univ, Dept Mech Engn, 496 Lomita Mall, Stanford, CA 94305 USA.
EM kimnk@stanford.edu; puria@stanford.edu
FU National Institute of Deafness and other Communication Disorders (NIDCD)
of the NIH [R01-DC07910, R01-DC05960]
FX The authors would like to thank Kevin N. O'Connor for several critical
readings of this paper, leading to numerous improvements. Work supported
in part by grants R01-DC07910 and R01-DC05960 from the National
Institute of Deafness and other Communication Disorders (NIDCD) of the
NIH.
CR Aibara R, 2001, HEARING RES, V152, P100, DOI 10.1016/S0378-5955(00)00240-9
Attias J, 2011, OTOLARYNG HEAD NECK, V145, P648, DOI 10.1177/0194599811410535
Chien WW, 2011, CURR OPIN NEUROL, V24, P25, DOI 10.1097/WCO.0b013e328341ef88
Chien WW, 2012, OTOL NEUROTOL, V33, P810, DOI 10.1097/MAO.0b013e318248eac4
Cremer PD, 2000, NEUROLOGY, V55, P1833
Gan RZ, 2004, ANN BIOMED ENG, V32, P847, DOI 10.1023/B:ABME.0000030260.22737.53
GUNDERSEN T, 1978, ACTA OTO-LARYNGOL, V86, P225, DOI 10.3109/00016487809124740
Kim N., 2012, THESIS STANFORD U
Kim N, 2011, JARO-J ASSOC RES OTO, V12, P261, DOI 10.1007/s10162-011-0258-3
Liu YW, 2010, J ACOUST SOC AM, V127, P2420, DOI 10.1121/1.3337233
Mikulec AA, 2004, OTOL NEUROTOL, V25, P121, DOI 10.1097/00129492-200403000-00007
Minor LB, 2000, AM J OTOL, V21, P9
Minor LB, 1998, ARCH OTOLARYNGOL, V124, P249
Nakajima HH, 2011, AIP CONF PROC, V1403, DOI 10.1063/1.3658069
Niesten M., 2012, ASS RES OT MIDW M SA
PETERSON LC, 1950, J ACOUST SOC AM, V22, P369, DOI 10.1121/1.1906615
Popelka GR, 2010, HEARING RES, V263, P85, DOI 10.1016/j.heares.2009.11.002
Rajan GP, 2008, OTOL NEUROTOL, V29, P972, DOI 10.1097/MAO.0b013e31817f7382
Ren TY, 2005, NAT NEUROSCI, V8, P132, DOI 10.1038/nn0205-132
Rosowski JJ, 2004, OTOL NEUROTOL, V25, P323, DOI 10.1097/00129492-200405000-00021
Shera CA, 2007, J ACOUST SOC AM, V122, P2738, DOI 10.1121/1.2783205
Sohmer H, 2004, HEARING RES, V187, P105, DOI 10.1016/S0378-5955(03)00335-6
Songer JE, 2005, HEARING RES, V210, P53, DOI 10.1016/j.heares.2005.07.003
Songer JE, 2010, HEARING RES, V269, P70, DOI 10.1016/j.heares.2010.07.002
Songer JE, 2007, J ACOUST SOC AM, V122, P943, DOI 10.1121/1.2747158
Songer K.E., 2006, J ACOUST SOC AM, V120, P258
Stenfelt S, 2003, HEARING RES, V181, P131, DOI 10.1016/S0378-5955(03)00183-7
Yoon YJ, 2011, BIOPHYS J, V100, P1, DOI 10.1016/j.bpj.2010.11.039
NR 28
TC 4
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2013
VL 301
SI SI
BP 72
EP 84
DI 10.1016/j.heares.2013.03.008
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 165IW
UT WOS:000320478100011
PM 23562774
ER
PT J
AU Stenfelt, S
Zeitooni, M
AF Stenfelt, Stefan
Zeitooni, Mehrnaz
TI Loudness functions with air and bone conduction stimulation in
normal-hearing subjects using a categorical loudness scaling procedure
SO HEARING RESEARCH
LA English
DT Article
ID OTOACOUSTIC EMISSIONS; VIBROTACTILE STIMULI; SOUND; TRANSMISSION;
FREQUENCY; SUMMATION; REFLEX; THRESHOLDS; PERCEPTION; ULTRASOUND
AB In a previous study (Stenfelt and Hakansson, 2002) a loudness balance test between bone conducted (BC) sound and air conducted (AC) sound was performed at frequencies between 0.25 and 4 kHz and at levels corresponding to 30-80 dB HL. The main outcome of that study was that for maintaining equal loudness, the level increase of sound with BC stimulation was less than that of AC stimulation with a ratio between 0.8 and 0.93 dB/dB. However, because it was shown that AC and BC tone cancellation was independent of the stimulation level, the loudness level difference did not originate in differences in basilar membrane stimulation. Therefore, it was speculated that the result could be due to the loudness estimation procedure. To investigate this further, another loudness estimation method (adaptive categorical loudness scaling) was here employed in 20 normal-hearing subjects.
The loudness of a low-frequency and a high-frequency noise burst was estimated using the adaptive categorical loudness scaling technique when the stimulation was bilaterally by AC or BC. The sounds where rated on an 11-point scale between inaudible and too loud. The total dynamic range for these sounds was over 80 dB when presented by AC (between inaudible and too loud) and the loudness functions were similar for the low and the high-frequency stimulation. When the stimulation was by BC the loudness functions were steeper and the ratios between the slopes of the AC and BC loudness functions were 0.88 for the low-frequency sound and 0.92 for the high-frequency sound. These results were almost equal to the previous published results using the equal loudness estimation procedure, and it was unlikely that the outcome stems from the loudness estimation procedure itself. One possible mechanism for the result was loudness integration of multi-sensory input. However, no conclusive evidence for such a mechanism could be given by the present study. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2013 Elsevier B.V. All rights reserved.
C1 [Stenfelt, Stefan; Zeitooni, Mehrnaz] Linkoping Univ, Dept Clin & Expt Med, S-58185 Linkoping, Sweden.
RP Stenfelt, S (reprint author), Linkoping Univ, Dept Clin & Expt Med, S-58185 Linkoping, Sweden.
EM stefan.stenfelt@liu.se
RI Stenfelt, Stefan/J-9363-2013
OI Stenfelt, Stefan/0000-0003-3350-8997
FU Stingerfonden
FX This study was supported by Stingerfonden.
CR Aibara R, 2001, HEARING RES, V152, P100, DOI 10.1016/S0378-5955(00)00240-9
Beattie RC, 1998, SCAND AUDIOL, V27, P120, DOI 10.1080/010503998420360
Brand T, 2002, J ACOUST SOC AM, V112, P1597, DOI 10.1121/1.1502902
Brinkmann K., 1983, Z AUDIOLOGIE AUDIOLO, V22, P62
Goodman SS, 2006, JARO-J ASSOC RES OTO, V7, P125, DOI 10.1007/s10162-006-0028-9
HAEFF AV, 1963, SCIENCE, V139, P590, DOI 10.1126/science.139.3555.590
Hakansson B, 1996, J ACOUST SOC AM, V99, P2239
Hakansson BEV, 2003, J ACOUST SOC AM, V113, P818, DOI 10.1121/1.1536633
Hosoi H, 1998, LANCET, V351, P496, DOI 10.1016/S0140-6736(05)78683-9
IEC, 2009, IEC603181
International Organization for Standardization, 1994, ISO3893
International Organization for Standardization, 1998, ISO3891
International Organization for Standardization, 2006, ISO16832
International Organization for Standardization, 2004, ISO3898
IRVINE DRF, 1976, AUDIOLOGY, V15, P433
KHANNA SM, 1976, J ACOUST SOC AM, V60, P139, DOI 10.1121/1.381081
Kim N, 2011, JARO-J ASSOC RES OTO, V12, P261, DOI 10.1007/s10162-011-0258-3
Merchant S., 1996, HEARING RES, P97
Moore BCJ, 1997, J AUDIO ENG SOC, V45, P224
Neuhoff JG, 1999, J EXP PSYCHOL HUMAN, V25, P1050, DOI 10.1037/0096-1523.25.4.1050
Neumann J, 1996, Audiol Neurootol, V1, P359
Nishimura T, 2011, HEARING RES, V277, P176, DOI 10.1016/j.heares.2011.01.004
SCHARF B, 1969, J ACOUST SOC AM, V45, P1193, DOI 10.1121/1.1911590
Sheykholeslami K., 2001, HEARING RES, P160
Sivonen VP, 2006, J ACOUST SOC AM, V119, P2965, DOI 10.1021/1.2184268
Snik A.F., 2005, ANN OTOL RHINOL S12, V114, P1
Sorqvist P, 2012, J COGNITIVE NEUROSCI, V24, P2147
Stenfelt S, 2010, HEARING RES, V263, P243, DOI 10.1016/j.heares.2010.03.044
Stenfelt S, 2011, ADV OTO-RHINO-LARYNG, V71, P10, DOI 10.1159/000323574
Stenfelt S, 2002, HEARING RES, V167, P1, DOI 10.1016/S0378-5955(01)00407-5
Stenfelt S, 2005, OTOL NEUROTOL, V26, P1245, DOI 10.1097/01.mao.0000187236.10842.d5
Stenfelt S, 2009, SCAND J PSYCHOL, V50, P385, DOI 10.1111/j.1467-9450.2009.00748.x
Stenfelt S, 2012, OTOL NEUROTOL, V33, P105, DOI 10.1097/MAO.0b013e31823e28ab
Stenfelt S, 2007, INT J AUDIOL, V46, P595, DOI 10.1090/14992020701545880
Stenfelt S, 2003, HEARING RES, V181, P131, DOI 10.1016/S0378-5955(03)00183-7
Stenfelt S, 2005, J ACOUST SOC AM, V118, P2373, DOI 10.1121/1.12005847
Stenfelt S, 2007, HEARING RES, V225, P105, DOI 10.1016/j.heares.2006.12.009
von Bekesy G, 1932, ANN PHYS-BERLIN, V13, P111
Watanabe T, 2008, EAR HEARING, V29, P667, DOI 10.1097/AUD.0b013e3181775dde
Wilson EC, 2010, J ACOUST SOC AM, V127, P3038, DOI 10.1121/1.3377116
Wilson EC, 2010, J ACOUST SOC AM, V127, P3044, DOI 10.1121/1.3365318
Zhao W, 2010, JARO-J ASSOC RES OTO, V11, P53, DOI 10.1007/s10162-009-0189-4
ZWICKER E, 1991, J ACOUST SOC AM, V89, P756, DOI 10.1121/1.1894635
NR 43
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2013
VL 301
SI SI
BP 85
EP 92
DI 10.1016/j.heares.2013.03.010
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 165IW
UT WOS:000320478100012
PM 23562775
ER
PT J
AU Huber, AM
Sim, JH
Xie, YZ
Chatzimichalis, M
Ullrich, O
Roosli, C
AF Huber, A. M.
Sim, J. H.
Xie, Y. Z.
Chatzimichalis, M.
Ullrich, O.
Roeoesli, C.
TI The Bonebridge: Preclinical evaluation of a new
transcutaneously-activated bone anchored hearing device
SO HEARING RESEARCH
LA English
DT Article
ID CONDUCTED SOUND; TRANSCRANIAL ATTENUATION; FLUID PATHWAY; STIMULATION;
TRANSMISSION; IMPLANT; SYSTEM; THRESHOLDS; AUDIOMETRY; TEETH
AB Objectives: To assess the functional performance of the Bonebridge (BB, MED-EL), a newly-designed transcutaneous bone conduction implant that allows the skin to remain intact and to compare it with the current clinical model of choice, a percutaneous bone conduction implant (BAHA BP100, Cochlear Bone Anchored Solutions AG).
Materials and methods: The devices were compared using two methods: (1) Measurements of cochlear promontory acceleration in five cadaver heads: Accelerations of the cochlear promontories on both ipsilateral and contralateral sides were measured using a Laser Doppler system, with free-field sound stimuli of 90 dB SPL in the frequency range of 0.3-10 kHz (2) Measurements of pure-tone sound field thresholds in 5 normally hearing human adult subjects under a condition of simulated hearing loss. For the latter measurements, the devices were applied to the head using a Softband, and measurements were performed in the frequency range of 0.25-8 kHz. Within investigation comparisons (i.e., in cadavers or listeners) and a cross-comparison analysis of the cadaver and human results were done.
Results: Results from the cadaver heads showed that the cochlear promontory acceleration with the BB was higher within 10 dB on the ipsilateral side and lower within 5 dB on the contralateral side than the acceleration with the BAHA, in the frequency range of 0.7-10 kHz. The transcranial attenuation of the acceleration for the BB was greater than for the BAHA within 20 dB. For the sound-field threshold assessments with human subjects, the BB and BAHA showed similar threshold improvements of more than 10 dB HL for the ipsilateral side. For the contralateral side, the threshold improvement with the BB was less than with the BAHA, indicating better separation between ipsilateral and contralateral sides.
Conclusions: Preclinical results imply that the BB has functional performance similar to the BAHA and could be beneficial to patients suffering with conductive and mixed hearing losses as well as for those with unilateral impairment. Based on these preliminary results, a carefully designed clinical trial with conservative inclusion criteria can be recommended. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2013 Elsevier B.V. All rights reserved.
C1 [Huber, A. M.; Sim, J. H.; Chatzimichalis, M.; Roeoesli, C.] Univ Zurich Hosp, Dept Otorhinolaryngol Head & Neck Surg, CH-8091 Zurich, Switzerland.
[Xie, Y. Z.] Fudan Univ, Eye & ENT Hosp, Dept Otorhinolaryngol Head & Neck Surg, Shanghai 200433, Peoples R China.
[Ullrich, O.] Univ Zurich, Inst Anat, Zurich, Switzerland.
RP Roosli, C (reprint author), Univ Zurich Hosp, Dept Otorhinolaryngol Head & Neck Surg, Frauenklin Str 24, CH-8091 Zurich, Switzerland.
EM christof.roeoesli@usz.ch
CR D'Eredita R, 2012, OTOLARYNG HEAD NECK, V146, P979, DOI 10.1177/0194599812438042
Dun CAJ, 2011, ADV OTO-RHINO-LARYNG, V71, P22, DOI 10.1159/000323577
Eeg-Olofsson M, 2011, OTOL NEUROTOL, V32, P192, DOI 10.1097/MAO.0b013e3182009f16
Eeg-Olofsson M, 2008, INT J AUDIOL, V47, P761, DOI 10.1080/14992020802311216
Fisch U, 2008, TYMPANOPLASTY MASTOI
Hakansson B, 2008, OTOL NEUROTOL, V29, P1132, DOI 10.1097/MAO.0b013e31816fdc90
HOOD J D, 1960, Laryngoscope, V70, P1211, DOI 10.1288/00005537-196009000-00001
HOUGH JVD, 1995, OTOLARYNG CLIN N AM, V28, P43
HURLEY RM, 1970, J AUD RES, V10, P147
ISO 8253-1 Acoustics, 1989, 82531 ISO
Ito T, 2011, AUDIOL NEURO-OTOL, V16, P12, DOI 10.1159/000314282
KHANNA SM, 1976, J ACOUST SOC AM, V60, P139, DOI 10.1121/1.381081
Miller RJ, 2010, AM J ORTHOD DENTOFAC, V138, P666, DOI 10.1016/j.ajodo.2010.03.027
Mulla O, 2012, CLIN OTOLARYNGOL, V37, P168, DOI 10.1111/j.1749-4486.2012.02465.x
NOLAN M, 1981, J LARYNGOL OTOL, V95, P597, DOI 10.1017/S0022215100091155
Roosli C, 2012, HEARING RES, V290, P83, DOI 10.1016/j.heares.2012.04.011
Scollie Susan, 2005, Trends Amplif, V9, P159, DOI 10.1177/108471380500900403
SNYDER JM, 1973, LARYNGOSCOPE, V83, P1847, DOI 10.1288/00005537-197311000-00017
Sohmer H, 2000, HEARING RES, V146, P81, DOI 10.1016/S0378-5955(00)00099-X
Sohmer H, 2004, HEARING RES, V193, P105, DOI 10.1016/j.heares.2004.03.015
Stenfelt S, 2005, OTOL NEUROTOL, V26, P1245, DOI 10.1097/01.mao.0000187236.10842.d5
Stenfelt S, 2012, OTOL NEUROTOL, V33, P105, DOI 10.1097/MAO.0b013e31823e28ab
Stenfelt S, 2005, J ACOUST SOC AM, V118, P2373, DOI 10.1121/1.12005847
Stenfelt S, 2000, J ACOUST SOC AM, V107, P422, DOI 10.1121/1.428314
STUDEBAKER GA, 1964, J SPEECH HEAR DISORD, V29, P23
Taghavi H, 2012, OTOL NEUROTOL, V33, P413, DOI 10.1097/MAO.0b013e3182487fc8
THIEL W, 1992, ANN ANAT, V174, P185
Watanabe T, 2008, EAR HEARING, V29, P667, DOI 10.1097/AUD.0b013e3181775dde
NR 28
TC 13
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2013
VL 301
SI SI
BP 93
EP 99
DI 10.1016/j.heares.2013.02.003
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 165IW
UT WOS:000320478100013
PM 23467173
ER
PT J
AU Gostian, AO
Pazen, D
Luers, JC
Huttenbrink, KB
Beutner, D
AF Gostian, A. O.
Pazen, D.
Luers, J. C.
Huttenbrink, K. B.
Beutner, D.
TI Titanium ball joint total ossicular replacement prosthesis -
Experimental evaluation and midterm clinical results
SO HEARING RESEARCH
LA English
DT Article
ID HUMAN TEMPORAL BONES; PROGNOSTIC-FACTORS; STAPES FOOTPLATE; MIDDLE-EAR;
TYMPANOPLASTY; OSSICULOPLASTY; AIR
AB During reconstruction of the ossicular chain, there is a need to address the forces and loads caused by the ambient atmospheric pressure variations and the resulting tympanic membrane movements. It is understood that when a rigid middle ear prosthesis is inserted the malleoincudal joint, a keyfactor in controlling pressure variations in the middle ear space is bypassed. In this paper we describe a modified total titanium ossicular replacement prosthesis with an innovative micro ball joint in the headplate which is designed to compensate for tympanic membrane movements caused by atmospheric pressure variations. The characteristics of this modified prosthesis were examined in temporal bone experiments and compared to the standard titanium total ossicular reconstruction prosthesis. Sound-induced stapes footplate movements were investigated by means of a Laser vibrometer and revealed no significant differences between the two prostheses in vitro. Intraoperatively, the insertion of the modified prosthesis required more delicate handling. The angle between the shaft and the headplate was variable and ranged from 60 to 90 degrees as estimated by the surgeon. Twelve consecutive patients were eligible for clinical evaluation. The pure tone average (PTA) air-bone gap after a mean follow up period of 32 months was 18.8 dB. Furthermore, no extrusion, dislocation or other adverse events were observed. We conclude that the modified total ossicular replacement prosthesis with integrated micro ball joint yields similar volume velocities of the stapes footplate in the laboratory experiments compared to the standard rigid prosthesis. The audiological and morphological results are encouraging and show that the mobile prosthesis headplate adjusting to the level of the tympanic membrane is a further step in the development of a physiological middle ear implant. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2012 Elsevier B.V. All rights reserved.
C1 [Gostian, A. O.; Pazen, D.; Luers, J. C.; Huttenbrink, K. B.; Beutner, D.] Univ Cologne, Dept Otorhinolaryngol Head & Neck Surg, D-50937 Cologne, Germany.
RP Beutner, D (reprint author), Univ Cologne, Dept Otorhinolaryngol Head & Neck Surg, Kerpener Str 62, D-50937 Cologne, Germany.
EM dirk.beutner@uk-koeln.de
CR Arechvo I, 2012, OTOL NEUROTOL, V33, P60, DOI 10.1097/MAO.0b013e31823c9352
Beutner D, 2010, OTOL NEUROTOL, V31, P105, DOI 10.1097/MAO.0b013e3181be6b48
Beutner D, 2011, OTOL NEUROTOL, V32, P646, DOI 10.1097/MAO.0b013e318213867a
Beutner D, 2008, J LARYNGOL OTOL, V122, P682, DOI 10.1017/S0022215108002545
Beutner D., 2009, LARYNGO RHINO OTOL, V88, P32
Committee on Hearing and Equilibrium. Committee on Hearing and Equilibrium guidelines for the evaluation of results of treatment of conductive hearing loss. American Academy of OtolaryngologyY Head and Neck Surgery Foundation Inc, 1995, OTOLARYNGOL HEAD NEC, V113, P186
De Vos C, 2007, OTOL NEUROTOL, V28, P61, DOI 10.1097/01.mao.0000231598.33585.8f
Hato N, 2003, AUDIOL NEURO-OTOL, V8, P140, DOI 10.1159/000069475
HUTTENBRINK KB, 1988, ACTA OTO-LARYNGOL, P1
MILEWSKI C, 1993, LARYNGOSCOPE, V103, P1352
Mueller S., 2001, JAES, V49, P443
Murbe D, 2002, LARYNGOSCOPE, V112, P1769
Schmid G, 2009, LARYNGO RHINO OTOL, V88, P782, DOI 10.1055/s-0029-1231047
SHELTON C, 1990, LARYNGOSCOPE, V100, P679
Stenfelt S, 2004, J ACOUST SOC AM, V115, P797, DOI 10.1121/1.1639903
Yung M, 2006, OTOL NEUROTOL, V27, P874, DOI 10.1097/01.mao.0000226305.43951.13
Zhao SQ, 2005, ACTA OTO-LARYNGOL, V125, P33, DOI 10.1080/00016480410018250
NR 17
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2013
VL 301
SI SI
BP 100
EP 104
DI 10.1016/j.heares.2012.10.009
PG 5
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 165IW
UT WOS:000320478100014
PM 23142147
ER
PT J
AU Stieger, C
Rosowski, JJ
Nakajima, HH
AF Stieger, Christof
Rosowski, John J.
Nakajima, Hideko Heidi
TI Comparison of forward (ear-canal) and reverse (round-window) sound
stimulation of the cochlea
SO HEARING RESEARCH
LA English
DT Article
ID FLOATING MASS TRANSDUCER; MIXED HEARING LOSSES; HUMAN TEMPORAL BONES;
HUMAN MIDDLE-EAR; VIBRANT SOUNDBRIDGE; PRESSURE MEASUREMENTS; INPUT
IMPEDANCE; IMPLANTATION; VIBROPLASTY; PERFORMANCE
AB The cochlea is normally driven with "forward" stimulation, in which sound is introduced to the ear canal. Alternatively, the cochlea can be stimulated at the round window (RW) using an actuator. During RW "reverse" stimulation, the acoustic flow starting at the RW does not necessarily take the same path as during forward stimulation. To understand the differences between forward and reverse stimulation, we measured ear-canal pressure, stapes velocity, RW velocity, and intracochlear pressures in scala vestibuli (SV) and scala tympani (ST) of fresh human temporal bones. During forward stimulation, the cochlear drive (differential pressure across the partition) results from the large difference in magnitude between the pressures of SV and ST, which occurs due to the high compliance of the RW. During reverse stimulation, the relatively high impedance of the middle ear causes the pressures of SV and ST to have similar magnitudes, and the differential pressure results primarily from the difference in phase of the pressures. Furthermore, the sound path differs between forward and reverse stimulation, such that motion through a third window is more significant during reverse stimulation. Additionally, we determined that although stapes velocity is a good estimate of cochlear drive during forward stimulation, it is not a good measure during reverse stimulation. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2012 Elsevier B.V. All rights reserved.
C1 [Stieger, Christof; Rosowski, John J.; Nakajima, Hideko Heidi] Harvard Univ, Massachusetts Eye & Ear Infirm, Sch Med, Dept Otol & Laryngol,Eaton Peabody Lab, Boston, MA 02114 USA.
[Stieger, Christof] Univ Bern, ARTORG Ctr, Univ Dept ENT Head & Neck Surg, Inselspital, CH-3010 Bern, Switzerland.
RP Nakajima, HH (reprint author), Harvard Univ, Massachusetts Eye & Ear Infirm, Sch Med, Dept Otol & Laryngol,Eaton Peabody Lab, 243 Charles St, Boston, MA 02114 USA.
EM heidi_nakajima@meei.harvard.edu
FU NIH [R03DC011158, R01DC004798]
FX We dedicate this paper to Saumil N. Merchant, who was involved
throughout this project contributing his insight and support. We thank
Julie Merchant, Diane Jones, Mike Ravicz, Melissa McKinnon, Ishmael
Stefanov-Wagner, David Chhan, Marlien Niesten, and the staff of the
Otolaryngology Department and Eaton Peabody Laboratory at Massachusetts
Eye and Ear Infirmary for their generous contributions. This work was
carried out in part through the use of MIT's Microsystems Technology
Laboratories for the fabrication of the micro fiberoptic pressure
sensors. Support was provided by NIH grants R03DC011158 (HHN) and
R01DC004798 (SNM).
CR Aibara R, 2001, HEARING RES, V152, P100, DOI 10.1016/S0378-5955(00)00240-9
Arnold A, 2010, OTOL NEUROTOL, V31, P122, DOI 10.1097/MAO.0b013e3181c34ee0
Arnold A, 2010, HEARING RES, V263, P120, DOI 10.1016/j.heares.2009.12.019
Baumgartner WD, 2010, ADV OTO-RHINO-LARYNG, V69, P38, DOI 10.1159/000318521
Bernardeschi D, 2011, AUDIOL NEURO-OTOL, V16, P381, DOI 10.1159/000322647
Colletti L, 2011, OTOL NEUROTOL, V32, P108, DOI 10.1097/MAO.0b013e3181ff752a
Colletti V, 2006, INT J AUDIOL, V45, P600, DOI 10.1080/14992020600840903
DANCER A, 1980, HEARING RES, V2, P191, DOI 10.1016/0378-5955(80)90057-X
Iwasaki S, 2012, ACTA OTO-LARYNGOL, V132, P676, DOI 10.3109/00016489.2011.649492
KRINGLEBOTN M, 1995, J ACOUST SOC AM, V98, P192, DOI 10.1121/1.413746
LYNCH TJ, 1982, J ACOUST SOC AM, V72, P108, DOI 10.1121/1.387995
Mandala M, 2011, OTOL NEUROTOL, V32, P1250, DOI 10.1097/MAO.0b013e31822e9513
Martin C, 2009, OTOL NEUROTOL, V30, P1196, DOI 10.1097/MAO.0b013e3181c34898
Nakajima HH, 2010, OTOL NEUROTOL, V31, P506, DOI 10.1097/MAO.0b013e3181c0ea9f
Nakajima HH, 2009, JARO-J ASSOC RES OTO, V10, P23, DOI 10.1007/s10162-008-0150-y
Nakajima HH, 2010, HEARING RES, V263, P114, DOI 10.1016/j.heares.2009.11.009
NEDZELNITSKY V, 1980, J ACOUST SOC AM, V68, P1676, DOI 10.1121/1.385200
Olson ES, 1998, J ACOUST SOC AM, V103, P3445, DOI 10.1121/1.423083
Pennings RJE, 2010, OTOL NEUROTOL, V31, P998, DOI 10.1097/MAO.0b013e3181e8fc21
Puria S, 2003, J ACOUST SOC AM, V113, P2773, DOI 10.1121/1.1564018
Rajan GP, 2011, OTOL NEUROTOL, V32, P271, DOI 10.1097/MAO.0b013e318206fda1
Schraven SP, 2011, HEARING RES, V282, P272, DOI 10.1016/j.heares.2011.07.001
Schraven SP, 2012, AUDIOL NEURO-OTOL, V17, P133, DOI 10.1159/000333807
SHERA CA, 1992, J ACOUST SOC AM, V92, P1382, DOI 10.1121/1.403931
Sim JH, 2012, EAR HEARING, V33, pE24, DOI 10.1097/AUD.0b013e318258c7a6
SPINDEL JH, 1995, OTOLARYNG CLIN N AM, V28, P189
Stenfelt S, 2004, J ACOUST SOC AM, V115, P797, DOI 10.1121/1.1639903
Tringali S, 2010, AUDIOL NEURO-OTOL, V15, P291, DOI 10.1159/000283006
Verhaegen VJO, 2012, OTOL NEUROTOL, V33, P297, DOI 10.1097/MAO.0b013e3182487f98
Voss SE, 1996, J ACOUST SOC AM, V100, P1602, DOI 10.1121/1.416062
WEVER EG, 1950, J ACOUST SOC AM, V22, P460, DOI 10.1121/1.1906628
WEVER EG, 1948, ANN OTO RHINOL LARYN, V57, P579
NR 32
TC 13
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2013
VL 301
SI SI
BP 105
EP 114
DI 10.1016/j.heares.2012.11.005
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 165IW
UT WOS:000320478100015
PM 23159918
ER
PT J
AU Maier, H
Salcher, R
Schwab, B
Lenarz, T
AF Maier, Hannes
Salcher, Rolf
Schwab, Burkard
Lenarz, Thomas
TI The effect of static force on round window stimulation with the direct
acoustic cochlea stimulator
SO HEARING RESEARCH
LA English
DT Article
ID MIDDLE-EAR IMPLANT; FLOATING MASS TRANSDUCER; HUMAN TEMPORAL BONES;
HEARING LOSSES; RECONSTRUCTION
AB The Direct Acoustic Cochlea Stimulator Partial Implant (DACS PI, Phonak Acoustic Implants SA, Switzerland) is intended to stimulate the cochlea by a conventional stapedotomy piston that is crimped onto the DACS PI artificial incus. An alternative approach to the round window (RW) is successfully done with other devices, having the advantage of being also independent of the existence of middle ear structure (e.g. ossicles). Here the possibility of stimulating the RW with the DACS actuator is investigated including the impact of static force on sound transmission to the cochlea.
The maximum equivalent sound pressure output with RW stimulation was determined experimentally in fresh human temporal bones. Experiments were performed in analogy to the ASTM standard (F2504.24930-1) method for the output determination of implantable middle ear hearing devices (IMEHDs) in human cadaveric temporal bones (TBs). ASTM compliant temporal bones were stimulated with a prosthesis having a spherical tip (empty set0.5 mm) attached to the actuator. The stimulation was performed perpendicular to the round window membrane (RWM) at varying position relative to the RW and the resulting static force on the RW membrane was determined.
At each position the displacement output of the DACS PI actuator and the stapes footplate (SFP) vibration in response to actuator stimulation was measured with a Laser Doppler Velocimeter (LDV). By comparison of the achieved output at the stapes footplate in response to sound and transducer stimulation the equivalent sound pressure level at the tympanic membrane at 1V(rms) input voltage was calculated assuming that the SFP displacement in both conditions is a measure of perceived loudness, as it is done in the ASTM standard.
Ten TB preparations within the acceptance range of the ASTM standard were used for analysis. The actuator driven stapes footplate displacement amplitude as well as the resulting equivalent sound pressure level was highly dependent on the static force applied to the RW. The sound transfer efficiency from the RW to the stapes footplate increased monotonically with increasing static load. At a moderate static force load (approx. 3.9 mN) the obtained average sound equivalent sound pressure level was 102-120 eq. dB SPL @ nominally 1V(rms) input for frequencies <= 4 kHz. At higher frequencies (6-10 kHz) the achieved output dropped to similar to 90 dB SPL.
This output was obtained at loading conditions compatible with the actuator safe operating range, although it was possible to increase the output further by increasing the static force load.
Our results demonstrate for a first time that static force applied to the RW is crucial for sound transmission efficiency. Further we could show that RW stimulation with the DACS PI actuator is possible having a maximum output that is sufficient to treat moderate and pronounced sensorineural hearing losses (SNHL). This article is part of a Special Issue entitled "MEMRO 2012". (C) 2013 Elsevier B.V. All rights reserved.
C1 [Maier, Hannes; Salcher, Rolf; Schwab, Burkard; Lenarz, Thomas] Hannover Med Sch, Inst Audioneurotechnol VIANNA, Dept Expt Otol, ENT Clin, Hannover, Germany.
RP Maier, H (reprint author), Hannover Med Sch, Klin Hals Nasen Ohrenheilkunde, Carl Neuberg Str 1, D-30625 Hannover, Germany.
EM Maier.Hannes@MH-Hannover.de
FU Phonak Acoustic Implants SA, Switzerland; Advanced Bionics
FX The authors thank Albrecht Eiber and Christoph Heckeler for discussions.
We also thank Andrej Kral for continuous support and the possibility to
work in his labs. This work was supported by Phonak Acoustic Implants
SA, Switzerland and Advanced Bionics.
CR Arnold A, 2010, OTOL NEUROTOL, V31, P122, DOI 10.1097/MAO.0b013e3181c34ee0
ASTM, 2005, STAND PRACT DESCR SY
Beltrame AM, 2009, OTOL NEUROTOL, V30, P194, DOI 10.1097/MAO.0b013e318180a495
Bernhard H, 2011, IEEE T BIO-MED ENG, V58, P420, DOI 10.1109/TBME.2010.2087756
Colletti V, 2006, INT J AUDIOL, V45, P600, DOI 10.1080/14992020600840903
Häusler Rudolf, 2008, Audiol Neurootol, V13, P247, DOI 10.1159/000115434
ISHII T, 1995, ACTA OTO-LARYNGOL, P78
Kiefer J, 2006, ORL J OTO-RHINO-LARY, V68, P378, DOI 10.1159/000095282
Lupo JE, 2011, OTOLARYNG HEAD NECK, V145, P641, DOI 10.1177/0194599811409674
Nakajima HH, 2010, OTOL NEUROTOL, V31, P506, DOI 10.1097/MAO.0b013e3181c0ea9f
Rosowski JJ, 2007, AUDIOL NEURO-OTOL, V12, P265, DOI 10.1159/000101474
Schraven SP, 2011, HEARING RES, V282, P272, DOI 10.1016/j.heares.2011.07.001
SPINDEL JH, 1995, OTOLARYNG CLIN N AM, V28, P189
Sprinzl GM, 2011, LARYNGO RHINO OTOL, V90, P560, DOI 10.1055/s-0031-1286321
Tringali S, 2010, AUDIOL NEURO-OTOL, V15, P291, DOI 10.1159/000283006
Wollenberg B, 2007, HNO, V55, P349, DOI 10.1007/s00106-007-1540-x
NR 16
TC 9
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2013
VL 301
SI SI
BP 115
EP 124
DI 10.1016/j.heares.2012.12.010
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 165IW
UT WOS:000320478100016
PM 23276731
ER
PT J
AU Gan, RZ
Nakmali, D
Zhang, XM
AF Gan, Rong Z.
Nakmali, Don
Zhang, Xiangming
TI Dynamic properties of round window membrane in guinea pig otitis media
model measured with electromagnetic stimulation
SO HEARING RESEARCH
LA English
DT Article
ID HEARING-LOSS; MIDDLE-EAR; PERMEABILITY; MORPHOLOGY; CELLS
AB The round window, one of two openings into the cochlea from the middle ear, plays an important role in hearing and is known to be structurally altered during otitis media. However, there have been no published studies systematically describing the changes in biomechanical properties of the round window membrane (RWM) that accompany bacterial otitis media. Here we describe the occurrence of significant changes in the dynamic properties of the RWM between normal guinea pigs and those with acute otitis media (AOM) that are detectable by electromagnetic force stimulation and laser Doppler vibrometry (LDV) measurements. AOM was induced by transbullar injection of streptococcus pneumoniae into the middle ear, and RWM specimens were prepared three days after challenge. Vibration of the RWM induced by coil-magnet coupling was measured by LDV over frequencies of 0.2-40 kHz. The experiment was then simulated in a finite element model, and the inverse-problem solving method was used to determine the complex modulus in the frequency domain and the relaxation modulus in the time domain. Results from 18 ears (9 control ears and 9 AOM ears) established that both the storage modulus and loss modulus of the RWM from ears with AOM were significantly lower than those of RWM from uninfected ears. The average decrease of the storage modulus in AOM ears ranged from 1.5 to 2.2 MPa and the average decrease of the loss modulus was 0.025-0.48 MPa. Our findings suggest that middle ear infection primarily affects the stiffness of the RWM due to the morphological changes that occur in AOM ears. We also conclude that the coil-magnet coupling method for assessment of RWM function may provide a valuable new approach to characterizing the mechanical response of the RWM when reverse driving is selected for middle ear implantable devices. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2013 Elsevier B.V. All rights reserved.
C1 [Gan, Rong Z.] Univ Oklahoma, Sch Aerosp & Mech Engn, Norman, OK 73019 USA.
Univ Oklahoma, Bioengn Ctr, Norman, OK 73019 USA.
RP Gan, RZ (reprint author), Univ Oklahoma, Sch Aerosp & Mech Engn, 865 Asp Ave,Room 200, Norman, OK 73019 USA.
EM rgan@ou.edu
FU Oklahoma Center for the Advancement of Science and Technology (OCAST)
[HR09-033]; NIH [R01DC006632, R01DC011585]
FX The authors thank Xiying Guan and Wei Li, current and former graduate
students in Biomedical Engineering Lab at the University of Oklahoma for
their technical assistance in animal preparation and histology studies.
The authors also thank Dr. Betty Tsai at the Department of
Otorhinolaryngology and Dr. Thomas Seale at the Department of
Pediatrics, University of Oklahoma Health Sciences Center for editing
this paper. This work was supported by Oklahoma Center for the
Advancement of Science and Technology (OCAST) HR09-033 and NIH
R01DC006632 and R01DC011585 grants.
CR Bausch AR, 1999, BIOPHYS J, V76, P573
Beltrame AM, 2009, OTOL NEUROTOL, V30, P194, DOI 10.1097/MAO.0b013e318180a495
Buytaert JAN, 2011, JARO-J ASSOC RES OTO, V12, P681, DOI 10.1007/s10162-011-0281-4
CARPENTER AM, 1989, ARCH OTOLARYNGOL, V115, P585
Colletti V, 2009, ACTA OTO-LARYNGOL, V129, P449, DOI 10.1080/00016480802642070
Colletti V, 2006, INT J AUDIOL, V45, P600, DOI 10.1080/14992020600840903
Dai C., 2009, CHANGE COCHLEAR MECH, V32, P984
Ethiraj R., 2003, THESIS U OKLAHOMA
Feneberg W, 2004, BIOPHYS J, V87, P1338, DOI 10.1529/biophysj.103.037044
Fung Y.C., 1993, BIOMECHANICS MECH PR
GOYCOOLEA MV, 1988, ARCH OTOLARYNGOL, V114, P1247
Goycoolea MV, 1997, MICROSC RES TECHNIQ, V36, P201, DOI 10.1002/(SICI)1097-0029(19970201)36:3<201::AID-JEMT8>3.0.CO;2-R
GOYCOOLEA MV, 1995, ACTA OTO-LARYNGOL, V115, P282, DOI 10.3109/00016489509139310
Hellstrom S, 1997, ANN NY ACAD SCI, V830, P110, DOI 10.1111/j.1749-6632.1997.tb51883.x
IKEDA K, 1988, ARCH OTOLARYNGOL, V114, P895
Kiefer J, 2006, ORL J OTO-RHINO-LARY, V68, P378, DOI 10.1159/000095282
Machiraju C, 2006, COMPUT METH PROG BIO, V83, P29, DOI 10.1016/j.cmpb.2006.05.004
Nakmali D., 2010, P BMES 2010 ANN M AU
Nomura Y, 1984, Adv Otorhinolaryngol, V33, P1
Nordang L, 2001, ORL J OTO-RHINO-LARY, V63, P333, DOI 10.1159/000055770
PAPARELLA MM, 1983, ANN OTO RHINOL LARYN, V92, P629
SAHNI RS, 1987, ARCH OTOLARYNGOL, V113, P630
Schachern P, 2008, ARCH OTOLARYNGOL, V134, P658, DOI 10.1001/archotol.134.6.658
Yoon YJ, 2002, J KOREAN MED SCI, V17, P230
Zhang XM, 2013, MED ENG PHYS, V35, P310, DOI 10.1016/j.medengphy.2012.05.003
Zhang X, 2010, INT J EXP COMPUT BIO, V1, P252, DOI 10.1504/IJECB.2010.03526
NR 26
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2013
VL 301
SI SI
BP 125
EP 136
DI 10.1016/j.heares.2013.01.001
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 165IW
UT WOS:000320478100017
PM 23333258
ER
PT J
AU Chung, J
Song, WJ
Sim, JH
Kim, W
Oh, SH
AF Chung, Juyong
Song, Won Joon
Sim, Jae Hoon
Kim, Wandoo
Oh, Seung-Ha
TI Optimal ossicular site for maximal vibration transmissions to coupled
transducers
SO HEARING RESEARCH
LA English
DT Article
ID HUMAN MIDDLE-EAR; HEARING DEVICE; SYSTEM
AB Totally implantable middle-ear prosthetic devices, such as the Esteem system (Envoy Medical Corporation), detect vibrational motion of the middle-ear ossicles rather than acoustic stimulation to the eardrum. This eliminates the need for a subcutaneous microphone, which is susceptible to interference by ambient noises. Study of the vibrational characteristics of the human ossicles provides valuable information for determining the site of maximum ossicular motion that would be optimal for attachment of the sensor portion of the prosthesis. In this study, vibrational responses at seven locations on the middle-ear ossicles (i.e., the malleus head, 4 different points on the incus body, middle of the incus long process, tip of the incus long process) in human temporal bones (n = 6) were measured using a laser Doppler vibrometer. The measurements were repeated after separating the incudostapedial joint (ISJ). Measured displacement at each location was normalized with the sound pressure level near the tympanic membrane (TM) for representation in the form of a displacement transfer function (DTF). The normalized squared sum of the DTFs (NSSDTF) was then calculated as a measure of vibration motion through a specific frequency range at the considered sites. The relatively large NSSDTF was observed at the sites on the superior part of the malleus head (MH), on the lateral part of the incus body (IBL), and on the superior part of the incus body near the incudomalleal joint (IBS1) for the frequency ranges of 1-4 kHz and 1-9 kHz, regardless of the condition of the ISJ. This indicates that maximum vibrational motion of the middle-ear is deliverable to the piezoelectric transducer of totally implantable devices through these sites. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2013 Elsevier B.V. All rights reserved.
C1 [Chung, Juyong; Oh, Seung-Ha] Seoul Natl Univ, Coll Med, Dept Otorhinolaryngol, Sensory Organ Res Inst,Med Res Ctr, Seoul 110744, South Korea.
[Song, Won Joon] Hanbat Natl Univ, Inst Fus Technol Prod, Taejon, South Korea.
[Sim, Jae Hoon] Univ Zurich Hosp, Dept Otorhinolaryngol Head & Neck Surg, Zurich, Switzerland.
[Kim, Wandoo] Korea Inst Machinery & Mat, Dept Nat Inspired Nanoconvergence Syst, Taejon, South Korea.
RP Oh, SH (reprint author), Seoul Natl Univ, Coll Med, Dept Otorhinolaryngol, Sensory Organ Res Inst,Med Res Ctr, 101 Daehak Ro, Seoul 110744, South Korea.
EM shaoh@snu.ac.kr
FU National Research Foundation, Seoul, Korea [20110001666]
FX This study was supported by the National Research Foundation, Seoul,
Korea (Grant No. 20110001666).
CR Aibara R, 2001, HEARING RES, V152, P100, DOI 10.1016/S0378-5955(00)00240-9
[Anonymous], 2005, 3897 ISO
Chen DA, 2004, OTOLARYNG HEAD NECK, V131, P904, DOI 10.1016/j.otohns.2004.05.027
Chien WD, 2006, AUDIOL NEURO-OTOL, V11, P183, DOI 10.1159/000091815
Cohen N, 2007, EAR HEARING, V28, p100S, DOI 10.1097/AUD.0b013e31803150f4
Conoyer JM, 2007, OTOLARYNG HEAD NECK, V137, P757, DOI 10.1016/j.otohns.2007.07.017
Gan Rong Z., 2004, Otology & Neurotology, V25, P423, DOI 10.1097/00129492-200407000-00005
Gelfand S.A., 1981, HEARING INTRO PSYCHO
Haynes David S, 2009, Trends Amplif, V13, P206, DOI 10.1177/1084713809346262
Homma K, 2009, J ACOUST SOC AM, V125, P968, DOI 10.1121/1.3056564
KUROKAWA H, 1995, OTOLARYNG HEAD NECK, V113, P349, DOI 10.1016/S0194-5998(95)70067-6
Maniglia AJ, 1999, AM J OTOL, V20, P602
Maurer J, 2010, ADV OTO-RHINO-LARYNG, V69, P59, DOI 10.1159/000318523
Meriot P, 1997, RADIOGRAPHICS, V17, P1445
NISHIHARA S, 1993, OTOLARYNG HEAD NECK, V109, P899
Park WT, 2007, BIOMED MICRODEVICES, V9, P939, DOI 10.1007/s10544-007-9072-4
Puria S, 2010, HEARING RES, V263, P183, DOI 10.1016/j.heares.2009.10.013
SHAW EAG, 1975, EARMOLDS ASS PROBLEM, P24
SIM JH, 2004, 3 INT S MIDDL E MECH, P61
Voss SE, 2000, HEARING RES, V150, P43, DOI 10.1016/S0378-5955(00)00177-5
Wada H, 1998, EAR HEARING, V19, P240, DOI 10.1097/00003446-199806000-00007
Willi UB, 2002, HEARING RES, V174, P32, DOI 10.1016/S0378-5955(02)00632-9
ZHANG LA, 2008, THESIS U MELBOURNE A
NR 23
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2013
VL 301
SI SI
BP 137
EP 145
DI 10.1016/j.heares.2013.01.007
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 165IW
UT WOS:000320478100018
PM 23337694
ER
PT J
AU Zhang, XM
Gan, RZ
AF Zhang, Xiangming
Gan, Rong Z.
TI Finite element modeling of energy absorbance in normal and disordered
human ears
SO HEARING RESEARCH
LA English
DT Article
ID HUMAN MIDDLE-EAR; CONDUCTIVE HEARING-LOSS; SOUND-TRANSMISSION;
OTITIS-MEDIA; REFLECTANCE MEASUREMENTS; TYMPANIC MEMBRANE;
ACOUSTIC-IMPEDANCE; ADULTS; EFFUSION; TYMPANOMETRY
AB The finite element (FE) model of the human ear has been developed to analyze the middle ear and cochlea function in relation to the ear structures. However, the energy absorbance or energy reflectance used in the research and clinical audiology test has not been reported in the FE model. The relationship between the middle ear structure and the energy absorbance (EA) needs to be identified using the FE model. In this study, a FE model of the human ear, including the ear canal, the middle ear and the spiral cochlea constructed from the histological sections of a human temporal bone, was used to calculate EA. The viscoelastic material properties were applied to the middle ear soft tissues. Three middle ear disorders were simulated in the FE model: otitis media, otosclerosis, and ossicular chain disarticulation. Multi-physics (acoustic, structure, and fluid) coupled analysis was conducted in the model. The FE model was first validated with the published experimental data on the middle ear input impedance and EA of the normal ear. The EA in three disordered ears was obtained from the model and compared with the published results measured in the clinics and the temporal bone experiments. The consistence of the model-derived EA with the published data demonstrates that the FE model is feasible to analyze EA. The effects of middle ear pressure, middle ear effusion, and mechanical properties of soft tissues on EA were estimated and discussed. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2012 Elsevier B.V. All rights reserved.
C1 [Gan, Rong Z.] Univ Oklahoma, Sch Aerosp & Mech Engn, Norman, OK 73019 USA.
Univ Oklahoma, Bioengn Ctr, Norman, OK 73019 USA.
RP Gan, RZ (reprint author), Univ Oklahoma, Sch Aerosp & Mech Engn, 865 Asp Ave,Room 200, Norman, OK 73019 USA.
EM rgan@ou.edu
FU NIH [R01DC006632, R01DC011585]
FX This work was supported by NIH R01DC006632 and R01DC011585. The authors
thank Dr. Douglas Keefe and another reviewer for their time and
expertise to strengthen the quality of this paper.
CR Allen JB, 2005, J REHABIL RES DEV, V42, P63, DOI 10.1682/JRRD.2005.04.0064
CARRIE S, 1992, ACTA OTO-LARYNGOL, V112, P504, DOI 10.3109/00016489209137432
Ellison JC, 2012, LARYNGOSCOPE, V122, P887, DOI 10.1002/lary.23182
Feeney MP, 2009, EAR HEARING, V30, P391, DOI 10.1097/AUD.0b013e3181a283ed
Feeney MP, 2003, J SPEECH LANG HEAR R, V46, P901, DOI 10.1044/1092-4388(2003/070)
Feeney MP, 2004, J ACOUST SOC AM, V116, P3546, DOI 10.1121/1.1808221
Feng B, 2004, BIOMECH MODEL MECHAN, V3, P33, DOI 10.1007/s10237-004-0044-9
Fung Y.C., 1993, BIOMECHANICS MECH PR
Gan RZ, 2007, ANN BIOMED ENG, V35, P2180, DOI 10.1007/s10439-007-9366-y
Gan RZ, 2004, ANN BIOMED ENG, V32, P847, DOI 10.1023/B:ABME.0000030260.22737.53
Gan RZ, 2007, J ACOUST SOC AM, V122, P3527, DOI 10.1121/1.2793699
Gan RZ, 2009, J ACOUST SOC AM, V126, P243, DOI 10.1121/1.3129129
Gan RZ, 2011, AIP CONF PROC, V1403, DOI 10.1063/1.3658144
Huber A, 2003, ANN OTO RHINOL LARYN, V112, P348
HUDDE H, 1983, J ACOUST SOC AM, V73, P242, DOI 10.1121/1.388855
Iemoto Y, 2004, JPN J APPL PHYS 1, V43, P401, DOI 10.1143/JJAP.43.401
Keefe D. H., 2009, HDB CLIN AUDIOLOGY, P125
KEEFE DH, 1992, J ACOUST SOC AM, V91, P470, DOI 10.1121/1.402733
KEEFE DH, 1993, J ACOUST SOC AM, V94, P2617, DOI 10.1121/1.407347
Keefe DH, 2003, J ACOUST SOC AM, V114, P3217, DOI 10.1121/1.1625931
Koike T., 2004, MIDDLE EAR MECH RES, P68, DOI 10.1142/9789812703019_0010
KRINGLEBOTN M, 1988, SCAND AUDIOL, V17, P75, DOI 10.3109/01050398809070695
Liu YW, 2008, J ACOUST SOC AM, V124, P3708, DOI 10.1121/1.3001712
Luo H., 2009, J BIOMECH ENG, V131
LUPOVICH P, 1971, ANN OTO RHINOL LARYN, V80, P342
Margolis RH, 1999, J ACOUST SOC AM, V106, P265, DOI 10.1121/1.427055
MCCAIG LF, 1995, JAMA-J AM MED ASSOC, V273, P214, DOI 10.1001/jama.273.3.214
Piskorski P, 1999, J ACOUST SOC AM, V105, P1749, DOI 10.1121/1.426713
RABINOWITZ WM, 1981, J ACOUST SOC AM, V70, P1025, DOI 10.1121/1.386953
Ravicz ME, 2004, HEARING RES, V195, P103, DOI 10.1016/j.heares.2004.05.010
Rovers MM, 2004, LANCET, V363, P465, DOI 10.1016/S0140-6736(04)15495-0
Shahnaz N, 2006, EAR HEARING, V27, P774, DOI 10.1097/01.aud.0000240568.00816.4a
Shahnaz N, 2009, EAR HEARING, V30, P219, DOI 10.1097/AUD.0b013e3181976a14
Shaw E.A., 1981, 101 M AC SOC AM OTT
Souza C.D., 2004, OTOSCLEROSIS STAPEDE
Stepp CE, 2005, J ACOUST SOC AM, V118, P861, DOI 10.1121/1.1974730
STINSON MR, 1982, J ACOUST SOC AM, V72, P766, DOI 10.1121/1.388257
VONUNGE M, 1994, AM J OTOL, V15, P663
Voss S. E., 2012, EAR HEARING, V32, P195
Voss SE, 2000, HEARING RES, V150, P43, DOI 10.1016/S0378-5955(00)00177-5
Voss SE, 2008, EAR HEARING, V29, P651, DOI 10.1097/AUD.0b013e318174f07c
VOSS SE, 1994, J ACOUST SOC AM, V95, P372, DOI 10.1121/1.408329
Wang XL, 2007, J ACOUST SOC AM, V122, P906, DOI 10.1121/1.2749417
Zhang X, 2010, INT J EXP COMPUT BIO, V1, P252, DOI 10.1504/IJECB.2010.03526
Zhang X., MED ENG PHY IN PRESS
Zhang XM, 2013, ANN BIOMED ENG, V41, P205, DOI 10.1007/s10439-012-0624-2
Zhang XM, 2011, IEEE T BIO-MED ENG, V58, P3024, DOI 10.1109/TBME.2011.2159714
Zhao F, 2009, MED ENG PHYS, V31, P907, DOI 10.1016/j.medengphy.2009.06.009
ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382
NR 49
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2013
VL 301
SI SI
BP 146
EP 155
DI 10.1016/j.heares.2012.12.005
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 165IW
UT WOS:000320478100019
PM 23274858
ER
PT J
AU Kim, N
Allen, JB
AF Kim, Noori
Allen, Jont B.
TI Two-port network analysis and modeling of a balanced armature receiver
SO HEARING RESEARCH
LA English
DT Article
ID IMPEDANCE
AB Models for acoustic transducers, such as loudspeakers, mastoid bone-drivers, hearing-aid receivers, etc., are critical elements in many acoustic applications. Acoustic transducers employ two-port models to convert between acoustic and electromagnetic signals. This study analyzes a widely-used commercial hearing-aid receiver ED series, manufactured by Knowles Electronics, Inc. Electromagnetic transducer modeling must consider two key elements: a semi-inductor and a gyrator. The semi-inductor accounts for electromagnetic eddy-currents, the 'skin effect' of a conductor (Vanderkooy, 1989), while the gyrator (McMillan, 1946; Tellegen, 1948) accounts for the anti-reciprocity characteristic [Lenz's law (Hunt, 1954, p. 113)]. Aside from Hunt (1954), no publications we know of have included the gyrator element in their electromagnetic transducer models. The most prevalent method of transducer modeling evokes the mobility method, an ideal transformer instead of a gyrator followed by the dual of the mechanical circuit (Beranek, 1954). The mobility approach greatly complicates the analysis. The present study proposes a novel, simplified and rigorous receiver model. Hunt's two-port parameters, the electrical impedance Z(e)(s), acoustic impedance Z(a)(s) and electro-acoustic transduction coefficient T-a(s), are calculated using ABCD and impedance matrix methods (Van Valkenburg, 1964). The results from electrical input impedance measurements Z(in)(s), which vary with given acoustical loads, are used in the calculation (Weece and Allen, 2010). The hearing-aid receiver transducer model is designed based on energy transformation flow [electric -> mechanic -> acoustic]. The model has been verified with electrical input impedance, diaphragm velocity in vacuo, and output pressure measurements.
This receiver model is suitable for designing most electromagnetic transducers and it can ultimately improve the design of hearing-aid devices by providing a simplified yet accurate, physically motivated analysis. This article is part of a Special Issue entitled "MEMRO 2012". Published by Elsevier B.V.
C1 [Kim, Noori; Allen, Jont B.] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA.
RP Kim, N (reprint author), Univ Illinois, Dept Elect & Comp Engn, 1206 W Green St,2137 Beckman Inst,405 N Mathews, Urbana, IL 61801 USA.
EM nkim13@illinois.edu
CR BAUER BB, 1953, J ACOUST SOC AM, V25, P867, DOI 10.1121/1.1907209
Beranek LL, 1954, ACOUSTICS
Carlin H. J., 1964, NETWORK THEORY INTRO
Dodd M., 2004, VOICE COIL IMPEDANCE
Hunt F.V., 1954, ELECTROACOUSTICS ANA
Jensen J, 2011, J AUDIO ENG SOC, V59, P91
KEEFE DH, 1984, J ACOUST SOC AM, V75, P58, DOI 10.1121/1.390300
Killion M.C., 1992, B AM AUDITORY SOC, V17, P10
MCMILLAN EM, 1946, J ACOUST SOC AM, V18, P344, DOI 10.1121/1.1916372
MOTT EE, 1951, AT&T TECH J, V30, P110
TELLEGEN BDH, 1948, PHILIPS RES REP, V3, P81
Thorborg K., 2007, J AUDIO ENG SOC
Van Valkenburg M., 1964, NETWORK ANAL
VANDERKOOY J, 1989, J AUDIO ENG SOC, V37, P119
Warren D. M., 2006, J ACOUST SOC AM, V119, P3377
Weece R, 2010, HEARING RES, V263, P216, DOI 10.1016/j.heares.2010.02.013
Wegel R.L., 1921, Journal of the American Institute of Electrical Engineers, V40
NR 17
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2013
VL 301
SI SI
BP 156
EP 167
DI 10.1016/j.heares.2013.02.007
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 165IW
UT WOS:000320478100020
PM 23485425
ER
PT J
AU Robinson, SR
Nguyen, CT
Allen, JB
AF Robinson, Sarah R.
Nguyen, Cac T.
Allen, Jont B.
TI Characterizing the ear canal acoustic impedance and reflectance by
pole-zero fitting
SO HEARING RESEARCH
LA English
DT Article
ID HUMAN MIDDLE-EAR; CONDUCTIVE HEARING-LOSS; TYMPANIC MEMBRANE; UMBO
VELOCITY; IN-SITU; RESPONSES; MODEL; VARIABILITY; CALIBRATION;
COEFFICIENT
AB This study characterizes middle ear complex acoustic reflectance (CAR) and impedance by fitting poles and zeros to real-ear measurements. The goal of this work is to establish a quantitative connection between pole-zero locations and the underlying physical properties of CAR data. Most previous studies have analyzed CAR magnitude; while the magnitude accounts for reflected power, it does not encode latency information. Thus, an analysis that studies the real and imaginary parts of the data together, being more general, should be more powerful. Pole-zero fitting of CAR data is examined using data compiled from various studies, dating back to Voss and Allen (1994). Recent CAR measurements were taken using the Mimosa Acoustics HearID system, which makes complex acoustic impedance and reflectance measurements in the ear canal over a 0.2-6.0 [kHz] frequency range. Pole-zero fits to measurements over this range are achieved with an average RMS relative error of less than 3% with 12 poles. Factoring the reflectance fit into its all-pass and minimum-phase components estimates the effect of the residual ear canal, allowing for comparison of the eardrum impedance and admittance across measurements. It was found that individual CAR magnitude variations for normal middle ears in the 1-4 [kHz] range often give rise to closely-placed pole-zero pairs, and that the locations of the poles and zeros in the s-plane may systematically differ between normal and pathological middle ears. This study establishes a methodology for examining the physical and mathematical properties of CAR using a concise parametric model. Pole-zero modeling accurately parameterizes CAR data, providing a foundation for detection and identification of middle ear pathologies. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2013 Elsevier B.V. All rights reserved.
C1 [Robinson, Sarah R.; Nguyen, Cac T.; Allen, Jont B.] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA.
RP Robinson, SR (reprint author), 2137 Beckman Inst,MC 251,405 N Mathews Ave, Urbana, IL 61801 USA.
EM srrobin2@illinois.edu; tnguyen8@illinois.edu; jontalle@illinois.edu
FU National Science Foundation [0903622]; NIH [R01 EB013723]
FX Many thanks to the Human Speech Recognition group at UIUC. This material
is based upon work supported by the National Science Foundation under
Grant No. 0903622, and NIH Bioengineering Research Partnership R01
EB013723, PI: Stephen Boppart.
CR Aibara R, 2001, HEARING RES, V152, P100, DOI 10.1016/S0378-5955(00)00240-9
Allen J. B., 1986, PERIPHERAL AUDITORY, P44
Allen JB, 2005, J REHABIL RES DEV, V42, P63, DOI 10.1682/JRRD.2005.04.0064
Brune O., 1931, Journal of Mathematics and Physics, V10
Campbell GA, 1922, BELL SYST TECH J, V1, P1
Claerbout J., 1985, IMAGING EARTHS INTER, P287
Farmer-Fedor BL, 2002, J ACOUST SOC AM, V112, P600, DOI 10.1121/1.1494445
Feeney MP, 2003, J SPEECH LANG HEAR R, V46, P901, DOI 10.1044/1092-4388(2003/070)
Fletcher H, 1925, BELL SYST TECH J, V4, P375
Gustavsen B, 1999, IEEE T POWER DELIVER, V14, P1052, DOI 10.1109/61.772353
Hunter LL, 2010, EAR HEARING, V31, P599, DOI 10.1097/AUD.0b013e3181e40ca7
KEEFE DH, 1992, J ACOUST SOC AM, V91, P470, DOI 10.1121/1.402733
KRINGLEBOTN M, 1988, SCAND AUDIOL, V17, P75, DOI 10.3109/01050398809070695
Lundberg KH, 2007, IEEE CONTR SYST MAG, V27, P22, DOI 10.1109/MCS.2007.284506
Nakajima HH, 2012, EAR HEARING, V33, P35, DOI 10.1097/AUD.0b013e31822ccba0
Parent P, 2010, HEARING RES, V263, P152, DOI 10.1016/j.heares.2009.12.015
Puria S, 1998, J ACOUST SOC AM, V104, P3463, DOI 10.1121/1.423930
Rasetshwane DM, 2012, J ACOUST SOC AM, V131, P1863, DOI 10.1121/1.3681923
Recio-Spinoso A, 2011, IEEE T BIO-MED ENG, V58, P1456, DOI 10.1109/TBME.2010.2052254
Rosowski JJ, 2008, EAR HEARING, V29, P3
Rosowski JJ, 2003, OTOL NEUROTOL, V24, P165, DOI 10.1097/00129492-200303000-00008
Rosowski JJ, 2012, EAR HEARING, V33, P19, DOI 10.1097/AUD.0b013e31822ccb76
Scheperle RA, 2008, J ACOUST SOC AM, V124, P288, DOI 10.1121/1.2931953
Van Valkenburg M.E., 1964, MODERN NETWORK SYNTH
Voss SE, 2000, HEARING RES, V150, P43, DOI 10.1016/S0378-5955(00)00177-5
Voss SE, 2008, EAR HEARING, V29, P651, DOI 10.1097/AUD.0b013e318174f07c
Voss SE, 2012, EAR HEARING, V33, P207, DOI 10.1097/AUD.0b013e31823235b5
VOSS SE, 1994, J ACOUST SOC AM, V95, P372, DOI 10.1121/1.408329
Withnell RH, 2009, J ACOUST SOC AM, V125, P1605, DOI 10.1121/1.3075551
ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382
NR 30
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2013
VL 301
SI SI
BP 168
EP 182
DI 10.1016/j.heares.2013.03.004
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 165IW
UT WOS:000320478100021
PM 23524141
ER
PT J
AU Nguyen, CT
Robinson, SR
Jung, W
Novak, MA
Boppart, SA
Allen, JB
AF Nguyen, Cac T.
Robinson, Sarah R.
Jung, Woonggyu
Novak, Michael A.
Boppart, Stephen A.
Allen, Jont B.
TI Investigation of bacterial biofilm in the human middle ear using optical
coherence tomography and acoustic measurements
SO HEARING RESEARCH
LA English
DT Article
ID CONDUCTIVE HEARING-LOSS; OTITIS-MEDIA; REFLECTANCE MEASUREMENTS; ENERGY
REFLECTANCE; CANAL REFLECTANCE; UMBO VELOCITY; IN-VIVO; DISEASE; MUCOSA;
TYMPANOMETRY
AB Children with chronic otitis media (OM) often have conductive hearing loss which results in communication difficulties and requires surgical treatment. Recent studies have provided clinical evidence that there is a one-to-one correspondence between chronic OM and the presence of a bacterial biofilm behind the tympanic membrane (TM). Here we investigate the acoustic effects of bacterial biofilms, confirmed using optical coherence tomography (OCT), in adult ears. Non-invasive OCT images are collected to visualize the cross-sectional structure of the middle ear, verifying the presence of a biofilm behind the TM. Wideband measurements of acoustic reflectance and impedance (0.2-6 [kHz]) are used to study the acoustic properties of ears with confirmed bacterial biofilms. Compared to known acoustic properties of normal middle ears, each of the ears with a bacterial biofilm has an elevated power reflectance in the 1 to 3 [kHz] range, corresponding to an abnormally small resistance (real part of the impedance). These results provide assistance for the clinical diagnosis of a bacterial biofilm, which could lead to improved treatment of chronic middle ear infection and further understanding of the impact of chronic OM on conductive hearing loss. This article is part of a Special Issue entitled "MEMRO 2012". (C) 2013 Elsevier B.V. All rights reserved.
C1 [Nguyen, Cac T.; Robinson, Sarah R.; Jung, Woonggyu; Boppart, Stephen A.; Allen, Jont B.] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA.
[Nguyen, Cac T.; Robinson, Sarah R.; Boppart, Stephen A.; Allen, Jont B.] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA.
[Boppart, Stephen A.] Univ Illinois, Dept Bioengn, Urbana, IL 61801 USA.
[Boppart, Stephen A.] Univ Illinois, Dept Med, Urbana, IL 61801 USA.
[Novak, Michael A.] Carle Fdn Hosp, Urbana, IL USA.
RP Allen, JB (reprint author), Univ Illinois, Beckman Inst Adv Sci & Technol, 2061 Beckman Inst,MC 251,405 N Mathews Ave, Urbana, IL 61801 USA.
EM jontalle@illinois.edu
FU National Institutes of Health [NIBIB R01EB013723]; Welch Allyn, Inc.;
Blue Highway, Inc.; National Science Foundation [0903622]; STTR award
from Office of Naval Research [N00014-11-C-0498]
FX This research was supported in part by a Bioengineering Research
Partnership grant from the National Institutes of Health (NIBIB
R01EB013723, S.A.B.) and research support from Welch Allyn, Inc., and
Blue Highway, Inc. (S.A.B.). Additional support was provided by the
National Science Foundation under Grant No. 0903622, and an STTR award
from Office of Naval Research under the contract number
N00014-11-C-0498. We thank Barbara Hall, Katie McGlasson, Pam Leon,
Meghan McCoy, and Laura Browning from Cane Foundation Hospital for their
assistance in collecting data in the clinic, and Darold Spillman from
the Beckman Institute for Advanced Science and Technology for his help
in transporting our system between imaging locations.
CR Allen J. B., 1986, PERIPHERAL AUDITORY, P44
Allen JB, 2005, J REHABIL RES DEV, V42, P63, DOI 10.1682/JRRD.2005.04.0064
Aparna MSPBD, 2008, BRAZ J INFECT DIS, V12, P526, DOI 10.1590/S1413-86702008000600016
Beers AN, 2010, EAR HEARING, V31, P221, DOI 10.1097/AUD.0b013e3181c00eae
Bluestone C. D., 2007, OTITIS MEDIA INFANTS
Costerton JW, 1999, SCIENCE, V284, P1318, DOI 10.1126/science.284.5418.1318
Djalilian HR, 2008, OTOL NEUROTOL, V29, P1091, DOI 10.1097/MAO.0b013e31818a08ce
Dohar JE, 2005, LARYNGOSCOPE, V115, P1469, DOI 10.1097/01.mlg.0000172036.82897.d4
Ehrlich GD, 2002, JAMA-J AM MED ASSOC, V287, P1710, DOI 10.1001/jama.287.13.1710
Ellison JC, 2012, LARYNGOSCOPE, V122, P887, DOI 10.1002/lary.23182
Feeney MP, 2003, J SPEECH LANG HEAR R, V46, P901, DOI 10.1044/1092-4388(2003/070)
Hall-Stoodley L, 2006, JAMA-J AM MED ASSOC, V296, P202, DOI 10.1001/jama.296.2.202
Hunter LL, 2010, EAR HEARING, V31, P599, DOI 10.1097/AUD.0b013e3181e40ca7
Jung W, 2011, IEEE T BIO-MED ENG, V58, P741, DOI 10.1109/TBME.2010.2096816
KEEFE DH, 1992, J ACOUST SOC AM, V91, P470, DOI 10.1121/1.402733
Lim D. J., 1995, Acta Oto-Rhino-Laryngologica Belgica, V49, P101
Macassey E, 2008, J LARYNGOL OTOL, V122, P1273, DOI 10.1017/S0022215108002193
Nakajima HH, 2012, EAR HEARING, V33, P35, DOI 10.1097/AUD.0b013e31822ccba0
Nguyen CT, 2012, P NATL ACAD SCI USA, V109, P9529, DOI 10.1073/pnas.1201592109
Nguyen CT, 2010, BIOMED OPT EXPRESS, V1, P1104
Parsek MR, 2003, ANNU REV MICROBIOL, V57, P677, DOI 10.1146/annurev.micro.57.030502.090720
Piskorski P, 1999, J ACOUST SOC AM, V105, P1749, DOI 10.1121/1.426713
Pitris C, 2001, ARCH OTOLARYNGOL, V127, P637
Robinson SR, 2013, HEARING RES, V301, P168, DOI 10.1016/j.heares.2013.03.004
Rosowski JJ, 2012, EAR HEARING, V33, P19, DOI 10.1097/AUD.0b013e31822ccb76
Shahnaz N, 2009, EAR HEARING, V30, P219, DOI 10.1097/AUD.0b013e3181976a14
Voss SE, 2008, EAR HEARING, V29, P651, DOI 10.1097/AUD.0b013e318174f07c
VOSS SE, 1994, J ACOUST SOC AM, V95, P372, DOI 10.1121/1.408329
Xi CW, 2006, J BIOMED OPT, V11, DOI 10.1117/1.2209962
Zysk AM, 2007, J BIOMED OPT, V12, DOI 10.1117/1.2793736
NR 30
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2013
VL 301
SI SI
BP 193
EP 200
DI 10.1016/j.heares.2013.04.001
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 165IW
UT WOS:000320478100023
PM 23588039
ER
PT J
AU Lee, SI
Conrad, T
Jones, SM
Lagziel, A
Starost, MF
Belyantseva, IA
Friedman, TB
Morell, RJ
AF Lee, Sue I.
Conrad, Travis
Jones, Sherri M.
Lagziel, Ayala
Starost, Matthew F.
Belyantseva, Inna A.
Friedman, Thomas B.
Morell, Robert J.
TI A null mutation of mouse Kcna10 causes significant vestibular and mild
hearing dysfunction
SO HEARING RESEARCH
LA English
DT Article
ID FAMILIAL MENIERES-DISEASE; VOLTAGE-GATED POTASSIUM; GANGLION-CELLS;
K-CHANNEL; EXPRESSION; RAT; AFFERENTS; SUBUNIT; MICE
AB KCNA10 is a voltage gated potassium channel that is expressed in the inner ear. The localization and function of KCNA10 was studied in a mutant mouse, B6-Kcna10(TM45), in which the single protein coding exon of Kcna10 was replaced with a beta-galactosidase reporter cassette. Under the regulatory control of the endogenous Kcna10 promoter and enhancers, beta-galactosidase was expressed in hair cells of the vestibular organs and the organ of Corti. KCNA10 expression develops in opposite tonotopic gradients in the inner and outer hair cells. Kcna10(TM45) homozygotes display only a mild elevation in pure tone hearing thresholds as measured by auditory brainstem response (ABR), while heterozygotes are normal. However, Kcna10(TM45) homozygotes have absent vestibular evoked potentials (VsEPs) or elevated VsEP thresholds with prolonged peak latencies, indicating significant vestibular dysfunction despite the lack of any overt imbalance behaviors. Our results suggest that Kcna10 is expressed primarily in hair cells of the inner ear, with little evidence of expression in other organs. The Kcna10(TM45) targeted allele may be a model of human nonsyndromic vestibulopathy. Published by Elsevier B.V.
C1 [Lee, Sue I.; Conrad, Travis; Lagziel, Ayala; Belyantseva, Inna A.; Friedman, Thomas B.; Morell, Robert J.] NIDCD, Sect Human Genet, Mol Genet Lab, NIH, Rockville, MD 20850 USA.
[Conrad, Travis] Univ Maryland, Dept Hearing & Speech Sci, College Pk, MD 20742 USA.
[Jones, Sherri M.] Univ Nebraska, Lincoln, NE USA.
[Starost, Matthew F.] NIH, Off Res Serv, Div Vet Resources, Bethesda, MD USA.
RP Morell, RJ (reprint author), NIDCD, Sect Human Genet, Mol Genet Lab, NIH, 5 Res Ct,2A-19, Rockville, MD 20850 USA.
EM morellr@nidcd.nih.gov
FU NIH [R01DC006443]; NIDCD Intramural Research Fund [DC000048-15]
FX We thank Drs. Dennis Drayna and Andrew Griffith for their critiques of
this study, and Elizabeth Wilson for her assistance in maintaining the
Kcna10TM45 colony. This research was supported by NIH grant
R01DC006443 (S.M.J.) and NIDCD Intramural Research Fund DC000048-15
(T.B.F.)
CR ANNIKO M, 1983, ANAT EMBRYOL, V166, P355, DOI 10.1007/BF00305923
BIRGERSON L, 1987, AM J OTOL, V8, P323
BROWNE DL, 1994, NAT GENET, V8, P136, DOI 10.1038/ng1094-136
Carlisle FA, 2012, GENE EXPR PATTERNS, V12, P172, DOI 10.1016/j.gep.2012.03.001
Eatock R., 2010, J NEUROPHYSIOL, V104, P2034
Eatock RA, 2008, J EXP BIOL, V211, P1764, DOI 10.1242/jeb.017350
Eatock RA, 2011, ANNU REV NEUROSCI, V34, P501, DOI 10.1146/annurev-neuro-061010-113710
Frykholm C, 2006, OTOL NEUROTOL, V27, P681, DOI 10.1097/01.mao.0000226315.27811.c8
Goldberg J M, 1991, Curr Opin Neurobiol, V1, P229, DOI 10.1016/0959-4388(91)90083-J
Goodyear RJ, 2012, J NEUROSCI, V32, P2762, DOI 10.1523/JNEUROSCI.3635-11.2012
Gutman GA, 2005, PHARMACOL REV, V57, P473, DOI 10.1124/pr.57.4.10
Iwasaki S, 2012, BRAIN RES, V1429, P29, DOI 10.1016/j.brainres.2011.10.015
Iwasaki S, 2008, J NEUROPHYSIOL, V100, P2192, DOI 10.1152/jn.01240.2007
Jen JC, 2011, ADV OTO-RHINO-LARYNG, V70, P130, DOI 10.1159/000322900
Jones SM, 2011, HEARING RES, V272, P42, DOI 10.1016/j.heares.2010.11.002
Jones SM, 2005, JARO-J ASSOC RES OTO, V6, P297, DOI 10.1007/s10162-005-0009-1
Kleopa KA, 2006, BRAIN, V129, P1570, DOI 10.1093/brain/awl084
Klockars T, 2007, ARCH OTOLARYNGOL, V133, P73, DOI 10.1001/archotol.133.1.73
Lang R, 2000, AM J PHYSIOL-RENAL, V278, pF1013
LENOIR M, 1987, HEARING RES, V29, P265, DOI 10.1016/0378-5955(87)90173-0
Mathews PJ, 2010, NAT NEUROSCI, V13, P601, DOI 10.1038/nn.2530
Morell R., 2006, GENOMICS, V89, P197
Pongs O., 1992, PHYSL REV S4, V72, P69
Smart SL, 1998, NEURON, V20, P809, DOI 10.1016/S0896-6273(00)81018-1
Tian SL, 2002, AM J PHYSIOL-RENAL, V283, pF142, DOI 10.1152/ajprenal.00258.2001
WANG H, 1994, J NEUROSCI, V14, P4588
YAO XQ, 1995, P NATL ACAD SCI USA, V92, P11711, DOI 10.1073/pnas.92.25.11711
Yao XQ, 2002, J AM SOC NEPHROL, V13, P2831, DOI 10.1097/01.ASN.0000036866.37886.C5
NR 28
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2013
VL 300
BP 1
EP 9
DI 10.1016/j.heares.2013.02.009
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 151WZ
UT WOS:000319492400001
PM 23528307
ER
PT J
AU van Beelen, E
Schraders, M
Huygen, PLM
Oostrik, J
Plantinga, RF
van Drunen, W
Collin, RWJ
Kooper, DP
Pennings, RJE
Cremers, CWRJ
Kremer, H
Kunst, HPM
AF van Beelen, E.
Schraders, M.
Huygen, P. L. M.
Oostrik, J.
Plantinga, R. F.
van Drunen, W.
Collin, R. W. J.
Kooper, D. P.
Pennings, R. J. E.
Cremers, C. W. R. J.
Kremer, H.
Kunst, H. P. M.
TI Clinical aspects of an autosomal dominantly inherited hearing impairment
linked to the DFNA60 locus on chromosome 2q23.1-2q23.3
SO HEARING RESEARCH
LA English
DT Article
ID MUTATIONS; FAMILY; DNA
AB A total of 64 loci for autosomal dominant non-syndromic hearing impairment have been described, and the causative genes have been identified for 24 of these. The present study reports on the clinical characteristics of an autosomal dominantly inherited hearing impairment that is linked to a region within the DFNA60 locus located on chromosome 2 in q22.1-24.1.
A pedigree spanning four generations was established with 13 affected individuals. Linkage analysis demonstrated that the locus extended over a 2.96 Mb region flanked by markers D2S2335 and D2S2275. The audiograms mainly showed a distinctive U-shaped configuration. Deterioration of hearing started at a wide age range, from 12 to 40 years. Cross-sectional analysis showed rapid progression of hearing impairment from mild to severe, between the ages of 40 and 60 years, a phenomenon that is also observed in DFNA9 patients. The results of the individual longitudinal analyses were generally in line with those obtained by the cross-sectional analysis. Speech recognition scores related to the level of hearing impairment (PTA(1,2,4) kHz) appeared to be fairly similar to those of presbyacusis patients. It is speculated that hearing impairment starting in mid-life, as shown by DFNA60 patients, could play a role in the development of presbyacusis. Furthermore, speech recognition did not deteriorate appreciably before the sixth decade of life. We conclude that DFNA60 should be considered in hearing impaired patients who undergo a rapid progression in middle age and are negative for DFNA9. Furthermore, cochlear implantation resulted in good rehabilitation in two DFNA60 patients. (C) 2013 Elsevier B.V. All rights reserved.
C1 [van Beelen, E.; Schraders, M.; Huygen, P. L. M.; Oostrik, J.; Plantinga, R. F.; van Drunen, W.; Pennings, R. J. E.; Cremers, C. W. R. J.; Kremer, H.; Kunst, H. P. M.] Radboud Univ Nijmegen, Med Ctr, Dept Otorhinolaryngol Head & Neck Surg, NL-6500 HB Nijmegen, Netherlands.
[van Beelen, E.; Schraders, M.; Oostrik, J.; Pennings, R. J. E.; Cremers, C. W. R. J.; Kremer, H.; Kunst, H. P. M.] Radboud Univ Nijmegen, Med Ctr, Donders Inst Brain Cognit & Behav, NL-6500 HB Nijmegen, Netherlands.
[Schraders, M.; Oostrik, J.; Collin, R. W. J.; Kremer, H.] Radboud Univ Nijmegen, Med Ctr, Nijmegen Ctr Mol Life Sci, NL-6500 HB Nijmegen, Netherlands.
[Kooper, D. P.] Reinier de Graaf Hosp, Dept Otorhinolaryngol, NL-2600 GA Delft, Netherlands.
[Collin, R. W. J.; Kremer, H.] Radboud Univ Nijmegen, Med Ctr, Dept Human Genet, NL-6500 HB Nijmegen, Netherlands.
RP van Beelen, E (reprint author), Radboud Univ Nijmegen, Med Ctr, Dept Otorhinolaryngol Head & Neck Surg, POB 9101, NL-6500 HB Nijmegen, Netherlands.
EM E.vanBeelen@kno.umcn.nl; M.Schraders@gen.umcn.nl; P.Huygen@kno.umcn.nl;
J.Oostrik@gen.umcn.nl; r.plantinga@cwz.nl; R.Collin@gen.umcn.nl;
kooper@rdgg.nl; R.Pennings@kno.umcn.nl; C.Cremers@kno.umcn.nl;
H.Kremer@gen.umcn.nl; H.Kunst@kno.umcn.nl
RI Kunst, Henricus/J-6456-2012; Pennings, Ronald/J-6651-2012; Kremer,
Hannie/F-5126-2010; Collin, Rob/N-3575-2014
FU Heinsius Houbolt Foundation; INTERREG IV A-program Germany-the
Netherlands; Oticon Foundation [09-3742]; ZonMW [40-00812-98-09047,
90700388]; Netherlands Genomics Initiative [40-41009-98-9073]
FX We are grateful to the families for their participation in this study.
The authors wish to thank Myrthe Rouwette for assistance in STR marker
analysis. This work was financially supported by grants from the
Heinsius Houbolt Foundation (to H.K. and C.C.), the INTERREG IV
A-program Germany-the Netherlands (to H.P.M.K.), The Oticon Foundation
(09-3742, to H.K.), ZonMW (40-00812-98-09047, to H.K. and 90700388 to
R.P.), and the Netherlands Genomics Initiative (40-41009-98-9073, to
M.S.).
CR [Anonymous], 1984, ISO7029
Bischoff AMLC, 2005, OTOL NEUROTOL, V26, P918, DOI 10.1097/01.mao.0000185048.84641.e3
Collin RWJ, 2008, HUM MUTAT, V29, P545, DOI 10.1002/humu.20693
De Leenheer EMR, 2002, ANN OTO RHINOL LARYN, V111, P267
Hoffmann K, 2005, BIOINFORMATICS, V21, P3565, DOI 10.1093/bioinformatics/bti571
Hughes DC, 1998, GENOMICS, V48, P46, DOI 10.1006/geno.1997.5159
Huygen PL, 2003, AUDIOL MED, V1, P37
Kemperman MH, 2005, OTOL NEUROTOL, V26, P926, DOI 10.1097/01.mao.0000185062.12458.87
Kunst H, 2000, CLIN OTOLARYNGOL, V25, P45, DOI 10.1046/j.1365-2273.2000.00327.x
Legan PK, 1997, SEMIN CELL DEV BIOL, V8, P217, DOI 10.1006/scdb.1997.0145
McGuirt WT, 1999, NAT GENET, V23, P413
MILLER SA, 1988, NUCLEIC ACIDS RES, V16, P1215, DOI 10.1093/nar/16.3.1215
Ouyang X.M., 2007, ASS RES OTOLARYNGOL, V30, P68
Smith R.J.H., 2005, HEREDITARY HEARING L
Vermeire K, 2006, OTOL NEUROTOL, V27, P44, DOI 10.1097/01.mao.0000187240.33712.01
Weegerink NJD, 2011, ANN OTO RHINOL LARYN, V120, P191
NR 16
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2013
VL 300
BP 10
EP 17
DI 10.1016/j.heares.2013.03.007
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 151WZ
UT WOS:000319492400002
PM 23538131
ER
PT J
AU Anderson, S
White-Schwoch, T
Parbery-Clark, A
Kraus, N
AF Anderson, Samira
White-Schwoch, Travis
Parbery-Clark, Alexandra
Kraus, Nina
TI A dynamic auditory-cognitive system supports speech-in-noise perception
in older adults
SO HEARING RESEARCH
LA English
DT Article
ID DORSAL COCHLEAR NUCLEUS; AGE-RELATED DIFFERENCES; HUMAN BRAIN-STEM;
HEARING-LOSS; BACKGROUND-NOISE; SPOKEN LANGUAGE; RECOGNITION
PERFORMANCE; INDIVIDUAL-DIFFERENCES; MEMORY; LISTENERS
AB Understanding speech in noise is one of the most complex activities encountered in everyday life, relying on peripheral hearing, central auditory processing, and cognition. These abilities decline with age, and so older adults are often frustrated by a reduced ability to communicate effectively in noisy environments. Many studies have examined these factors independently; in the last decade, however, the idea of an auditory-cognitive system has emerged, recognizing the need to consider the processing of complex sounds in the context of dynamic neural circuits. Here, we used structural equation modeling to evaluate the interacting contributions of peripheral hearing, central processing, cognitive ability, and life experiences to understanding speech in noise. We recruited 120 older adults (ages 55-79) and evaluated their peripheral hearing status, cognitive skills, and central processing. We also collected demographic measures of life experiences, such as physical activity, intellectual engagement, and musical training. In our model, central processing and cognitive function predicted a significant proportion of variance in the ability to understand speech in noise. To a lesser extent, life experience predicted hearing-in-noise ability through modulation of brainstem function. Peripheral hearing levels did not significantly contribute to the model. Previous musical experience modulated the relative contributions of cognitive ability and lifestyle factors to hearing in noise. Our models demonstrate the complex interactions required to hear in noise and the importance of targeting cognitive function, lifestyle, and central auditory processing in the management of individuals who are having difficulty hearing in noise. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Anderson, Samira; White-Schwoch, Travis; Parbery-Clark, Alexandra; Kraus, Nina] Northwestern Univ, Auditory Neurosci Lab, Evanston, IL 60208 USA.
[Anderson, Samira; White-Schwoch, Travis; Parbery-Clark, Alexandra; Kraus, Nina] Northwestern Univ, Dept Commun Sci, Evanston, IL 60208 USA.
[Kraus, Nina] Northwestern Univ, Dept Neurobiol & Physiol, Evanston, IL 60208 USA.
[Kraus, Nina] Northwestern Univ, Dept Otolaryngol, Chicago, IL 60611 USA.
[Anderson, Samira] Univ Maryland, Dept Hearing & Speech Sci, College Pk, MD 20742 USA.
RP Kraus, N (reprint author), Northwestern Univ, Auditory Neurosci Lab, Evanston, IL 60208 USA.
EM nkraus@northwestern.edu
FU National Institutes of Health [T32 DC009399-01A10, RO1 DC10016]; Knowles
Hearing Center
FX We thank the participants who participated in our study and Erika Skoe,
Jen Krizman, and Trent Nicol for their comments on the manuscript. We
also thank Sarah Drehobl, Hee Jae Choi, and Soo Ho Ahn for their help
with data collection and analysis. This work was supported by the
National Institutes of Health (T32 DC009399-01A10 & RO1 DC10016) and the
Knowles Hearing Center.
CR Abrams DA, 2006, J NEUROSCI, V26, P11131, DOI 10.1523/JNEUROSCI.2744-06.2006
Aiken SJ, 2008, HEARING RES, V245, P35, DOI 10.1016/j.heares.2008.08.004
Akeroyd MA, 2008, INT J AUDIOL S2, V47, P53, DOI 10.1080/14992020802301142
Alho K, 2012, EUR J NEUROSCI, V36, P2972, DOI 10.1111/j.1460-9568.2012.08219.x
ANDERSON JC, 1988, PSYCHOL BULL, V103, P411, DOI 10.1037/0033-2909.103.3.411
Anderson S, 2012, J NEUROSCI, V32, P14156, DOI 10.1523/JNEUROSCI.2176-12.2012
Anderson S, 2011, EAR HEARING, V32, P750, DOI 10.1097/AUD.0b013e31822229d3
Anderson S, 2013, P NATL ACAD SCI USA, V110, P4357, DOI 10.1073/pnas.1213555110
Anderson S, 2010, J AM ACAD AUDIOL, V21, P575, DOI 10.3766/jaaa.21.9.3
Anderson S, 2010, EUR J NEUROSCI, V32, P1407, DOI 10.1111/j.1460-9568.2010.07409.x
Andres P, 2006, NEUROPSYCHOLOGIA, V44, P2564, DOI 10.1016/j.neuropsychologia.2006.05.005
Arlinger S, 2009, SCAND J PSYCHOL, V50, P371, DOI 10.1111/j.1467-9450.2009.00753.x
Bajo VM, 2010, NAT NEUROSCI, V13, P253, DOI 10.1038/nn.2466
Bench J, 1979, Br J Audiol, V13, P108, DOI 10.3109/03005367909078884
Bernaards C. A., 2005, EDUC PSYCHOL MEAS, V65, P676, DOI DOI 10.1177/0013164404272507
Berry AS, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011537
Bidebnan GM, 2010, BRAIN RES, V1355, P112, DOI 10.1016/j.brainres.2010.07.100
Bidelman GM, 2009, J COGNITIVE NEUROSCI, V23, P425
Bielak A.A., 2007, J GERONTOL B-PSYCHOL, V62, P331
Bigler ED, 2007, DEV NEUROPSYCHOL, V31, P217
BREGMAN AS, 1971, J EXP PSYCHOL, V89, P244, DOI 10.1037/h0031163
Bregman AS., 1990, AUDITORY SCENE ANAL
BYRNE D, 1986, EAR HEARING, V7, P257
Campbell T, 2012, EAR HEARING, V33, P144, DOI 10.1097/AUD.0b013e3182280353
Carcagno S, 2011, JARO-J ASSOC RES OTO, V12, P89, DOI 10.1007/s10162-010-0236-1
Caspary DM, 2005, J NEUROSCI, V25, P10952, DOI 10.1523/JNEUROSCI.2451-05.2005
Ceponiene R, 2005, PSYCHOPHYSIOLOGY, V42, P391, DOI 10.1111/j.1469-8986.2005.00305.x
Chan AS, 1998, NATURE, V396, P128, DOI 10.1038/24075
Chandrasekaran B, 2012, J NEUROPHYSIOL, V107, P1325, DOI 10.1152/jn.00923.2011
Chandrasekaran B, 2010, PSYCHOPHYSIOLOGY, V47, P236, DOI 10.1111/j.1469-8986.2009.00928.x
Chin W.W., 1998, MIS Q, V22, pvii
Cohen J., 2003, APPL MULTIPLE REGRES
Cohen MA, 2011, PSYCHON B REV, V18, P586, DOI 10.3758/s13423-011-0074-0
Cox R.M., 2010, J AM ACAD AUDIOL, V21, P121
CRAIG CH, 1992, J SPEECH HEAR RES, V35, P234
Czernochowski D, 2008, NEUROBIOL AGING, V29, P945, DOI 10.1016/j.neurobiolaging.2006.12.017
D'Angiulli A, 2008, NEUROPSYCHOLOGY, V22, P293, DOI 10.1037/0894-4105.22.3.293
de Boer J, 2012, J NEUROPHYSIOL, V107, P1301, DOI 10.1152/jn.00222.2011
Dias R, 1996, NATURE, V380, P69, DOI 10.1038/380069a0
Ding N, 2012, P NATL ACAD SCI USA, V109, P11854, DOI 10.1073/pnas.1205381109
Du Y, 2011, CEREB CORTEX, V21, P698, DOI 10.1093/cercor/bhq136
DUBNO JR, 1984, J ACOUST SOC AM, V76, P87, DOI 10.1121/1.391011
Eckert MA, 2012, JARO-J ASSOC RES OTO, V13, P703, DOI 10.1007/s10162-012-0332-5
Erickson KI, 2011, P NATL ACAD SCI USA, V108, P3017, DOI 10.1073/pnas.1015950108
Fabrigar LR, 2011, EXPLORATORY FACTOR A
Farah MJ, 2006, BRAIN RES, V1110, P166, DOI 10.1016/j.brainres.2006.06.072
Finlayson PG, 2002, JARO, V3, P321, DOI 10.1007/s101620020038
Friederici AD, 2000, BRAIN LANG, V74, P289, DOI 10.1006/brln.2000.2313
Fritz JB, 2010, NAT NEUROSCI, V13, P1011, DOI 10.1038/nn.2598
Gajewski B., 2012, FRONT HUM NEUROSCI, V6, P1
Gatehouse S, 2003, INT J AUDIOL, V42, pS77
Gazzaley A, 2005, J COGNITIVE NEUROSCI, V17, P507, DOI 10.1162/0898929053279522
Getzmann S, 2011, BRAIN RES, V1415, P8, DOI 10.1016/j.brainres.2011.08.001
Gordon-Salant S, 2006, J ACOUST SOC AM, V119, P2455, DOI 10.1121/1.2171527
GORDONSALANT S, 1993, J SPEECH HEAR RES, V36, P1276
Gould J.E., 2011, TIME US
GREEN SB, 1991, MULTIVAR BEHAV RES, V26, P499, DOI 10.1207/s15327906mbr2603_7
Grose JH, 2010, EAR HEARING, V31, P755, DOI 10.1097/AUD.0b013e3181e627e7
Hall J. W., 2007, NEW HDB AUDITORY EVO
Harris KC, 2010, HEARING RES, V264, P21, DOI 10.1016/j.heares.2009.09.017
Harris KC, 2009, J NEUROSCI, V29, P6078, DOI 10.1523/JNEUROSCI.0412-09.2009
Hay JF, 1999, PSYCHOL AGING, V14, P122, DOI 10.1037/0882-7974.14.1.122
Ho YC, 2003, NEUROPSYCHOLOGY, V17, P439, DOI 10.1037/0894-4105.17.3.439
Holt LL, 2008, CURR DIR PSYCHOL SCI, V17, P42, DOI 10.1111/j.1467-8721.2008.00545.x
Hornickel J, 2012, P NATL ACAD SCI USA, V109, P16731, DOI 10.1073/pnas.1206628109
Hughes LF, 2010, HEARING RES, V264, P79, DOI 10.1016/j.heares.2009.09.005
Hultsch DF, 1999, PSYCHOL AGING, V14, P245, DOI 10.1037/0882-7974.14.2.245
Humes LE, 2012, J AM ACAD AUDIOL, V23, P635, DOI 10.3766/jaaa.23.8.5
HUMES LE, 1994, J SPEECH HEAR RES, V37, P465
Humes L E, 1996, J Am Acad Audiol, V7, P161
JACOBSEN J., 1985, AUDITORY BRAINSTEM R
Jacoby LL, 2012, PSYCHOL AGING, V27, P22, DOI 10.1037/a0025924
Jakobson LS, 2008, MUSIC PERCEPT, V26, P41, DOI 10.1525/MP.2008.26.1.41
Kemp DT, 2002, BRIT MED BULL, V63, P223, DOI 10.1093/bmb/63.1.223
Kerlin JR, 2010, J NEUROSCI, V30, P620, DOI 10.1523/JNEUROSCI.3631-09.2010
Killion MC, 2000, HEARING J, V53, P46
Kraus N., 2013, J SPEECH LANG HEAR R, P1092
Kraus N., J ACOUST SO IN PRESS
Kraus N, 2010, NAT REV NEUROSCI, V11, P599, DOI 10.1038/nrn2882
Krishnan A, 2005, COGNITIVE BRAIN RES, V25, P161, DOI 10.1016/j.cogbrainres.2005.05.004
KRISHNAN Ananthanarayan, 2008, J COGNITIVE NEUROSCI, V21, P1092
Krizman J, 2012, P NATL ACAD SCI USA, V109, P7877, DOI 10.1073/pnas.1201575109
Landau SM, 2012, ARCH NEUROL-CHICAGO, V69, P623, DOI 10.1001/archneurol.2011.2748
Lunner T, 2003, INT J AUDIOL, V42, pS49
Luo Y, 2005, J GERONTOL B-PSYCHOL, V60, pS93
Ma XF, 2008, J NEUROPHYSIOL, V100, P1127, DOI 10.1152/jn.90508.2008
Maguire EA, 2000, P NATL ACAD SCI USA, V97, P4398, DOI 10.1073/pnas.070039597
Majno M, 2012, ANN NY ACAD SCI, V1252, P56, DOI [10.1111/j.1749-6632.2012.06498.x, 10.1111/j.1749-6632.2012.06498]
Matilainen LE, 2010, CLIN NEUROPHYSIOL, V121, P902, DOI 10.1016/j.clinph.2010.01.007
Mazelova J, 2003, EXP GERONTOL, V38, P87, DOI 10.1016/S0531-5565(02)00155-9
McCoy SL, 2005, Q J EXP PSYCHOL-A, V58, P22, DOI 10.1080/02724980443000151
Mesgarani N, 2012, NATURE, V485, P233, DOI 10.1038/nature11020
Mortensen E. L., EUR J PUBLI IN PRESS, DOI DOI 10.1093/EURPUB/CKS140
Mukari SZMS, 2008, AUDIOL NEURO-OTOL, V13, P328, DOI 10.1159/000128978
Nadel L, 1997, CURR OPIN NEUROBIOL, V7, P217, DOI 10.1016/S0959-4388(97)80010-4
Nahum M, 2008, PLOS BIOL, V6, P978, DOI 10.1371/journal.pbio.0060126
Netz Y, 2011, INT PSYCHOGERIATR, V23, P114, DOI 10.1017/S1041610210000797
NILSSON M, 1994, J ACOUST SOC AM, V95, P1085, DOI 10.1121/1.408469
Parbery-Clark A., 2012, NEUROBIOL AGING, V33, DOI [10.1016/j.neurobiolaging.2011.12.015, DOI 10.1016/J.NEUR0BI0LAGING.2011.12.015]
Parbery-Clark A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018082
Parbery-Clark A, 2011, EUR J NEUROSCI, V33, P549, DOI 10.1111/j.1460-9568.2010.07546.x
Parbery-Clark A, 2009, J NEUROSCI, V29, P14100, DOI 10.1523/JNEUROSCI.3256-09.2009
Parthasarathy A, 2011, NEUROSCIENCE, V192, P619, DOI 10.1016/j.neuroscience.2011.06.042
Patel AD, 2011, RONTIERS IN PSYCHOLO, V2, P142, DOI [10.3389/fpsyg.2011.00142, DOI 10.3389/FPSYG.2011.00142]
Peelle JE, 2011, J NEUROSCI, V31, P12638, DOI 10.1523/JNEUROSCI.2559-11.2011
Pichora-Fuller K., 2008, INT J AUDIOL, V47, pS72, DOI DOI 10.1080/14992020802307404
Pichora-Fuller M., 2003, INT J AUDIOL, V42, P26, DOI 10.3109/14992020309074641
PICHORAFULLER MK, 1995, J ACOUST SOC AM, V97, P593, DOI 10.1121/1.412282
Pichora-Fuller M.K., 2003, INT J AUDIOL S2, V42, P11, DOI DOI 10.3109/14992020309074638
Pichora-Fuller MK, 2006, J ACOUST SOC AM, V119, P1143, DOI 10.1121/1.2149837
Poth EA, 2001, HEARING RES, V161, P81, DOI 10.1016/S0378-5955(01)00352-5
Radua J, 2010, NEUROIMAGE, V49, P939, DOI 10.1016/j.neuroimage.2009.08.030
Raizada R. D. S., 2007, FRONT HUM NEUROSCI, V2
RAYKOV T, 1991, PSYCHOL AGING, V6, P499, DOI 10.1037//0882-7974.6.4.499
Recanzone GH, 2011, HEARING RES, V271, P115, DOI 10.1016/j.heares.2010.03.084
Revelle W, 2009, PSYCHOMETRIKA, V74, P145, DOI 10.1007/s11336-008-9102-z
Revelle W., 2012, PSYCH PROCEDURES PER
Revit L., 2004, J ACOUST SOC AM, V116, P2405
Rogers CS, 2012, PSYCHOL AGING, V27, P33, DOI 10.1037/a0026231
Rosseel Y, 2012, J STAT SOFTW, V48, P1
Rudner M, 2011, J AM ACAD AUDIOL, V22, P156, DOI 10.3766/jaaa.22.3.4
Ruggles D, 2012, CURR BIOL, V22, P1417, DOI 10.1016/j.cub.2012.05.025
Russo NM, 2010, BEHAV BRAIN FUNCT, V6, DOI 10.1186/1744-9081-6-60
Sachdev P.S., 2011, BIOL PSYCHIAT
Salthouse T. A., 2007, HDB AGING COGNITION
Salthouse TA, 2006, PERSPECT PSYCHOL SCI, V1, P68, DOI 10.1111/j.1745-6916.2006.00005.x
Schatteman TA, 2008, NEUROSCIENCE, V154, P329, DOI 10.1016/j.neuroscience.2008.02.025
Schellenberg EG, 2008, TRENDS COGN SCI, V12, P45, DOI 10.1016/j.tics.2007.11.005
Schellenberg EG, 2005, CURR DIR PSYCHOL SCI, V14, P317, DOI 10.1111/j.0963-7214.2005.00389.x
Schvartz KC, 2008, J ACOUST SOC AM, V124, P3972, DOI 10.1121/1.2997434
Shinn-Cunningham Barbara G, 2008, Trends Amplif, V12, P283, DOI 10.1177/1084713808325306
Shtyrov Y, 1998, NEUROSCI LETT, V251, P141, DOI 10.1016/S0304-3940(98)00529-1
Skoe E, 2012, J NEUROSCI, V32, P11507, DOI 10.1523/JNEUROSCI.1949-12.2012
Smith GE, 2009, J AM GERIATR SOC, V57, P594, DOI 10.1111/j.1532-5415.2008.02167.x
Song JH, 2012, CEREB CORTEX, V22, P1180, DOI 10.1093/cercor/bhr196
Souza PE, 2007, J AM ACAD AUDIOL, V18, P54, DOI 10.3766/jaaa.18.1.5
Streiner DL, 2003, J PERS ASSESS, V80, P99, DOI 10.1207/S15327752JPA8001_18
SWAAB DF, 1991, NEUROBIOL AGING, V12, P317, DOI 10.1016/0197-4580(91)90008-8
Tierney AT, 2008, EMPIRICAL MUSICOLOGY, V3, P178
Toscano JC, 2010, PSYCHOL SCI, V21, P1532, DOI 10.1177/0956797610384142
Tremblay KL, 2002, NEUROREPORT, V13, P1865, DOI 10.1097/00001756-200210280-00007
Vander Werff Kathy R, 2011, Ear Hear, V32, P168, DOI 10.1097/AUD.0b013e3181f534b5
Van Engen KJ, 2007, J ACOUST SOC AM, V121, P519, DOI 10.1121/1.2400666
Wagner W, 2008, ACTA OTO-LARYNGOL, V128, P53, DOI 10.1080/00016480701361954
Wakin Daniel J., 2012, NY TIMES
Walton JP, 1998, J NEUROSCI, V18, P2764
Wilson RH, 2007, J SPEECH LANG HEAR R, V50, P844, DOI 10.1044/1092-4388(2007/059)
Wingfield A, 2007, J AM ACAD AUDIOL, V18, P548, DOI 10.3766/jaaa.18.7.3
Wingfield A, 1996, J Am Acad Audiol, V7, P175
Wingfield A, 1999, PSYCHOL AGING, V14, P380, DOI 10.1037//0882-7974.14.3.380
Wingfield A, 2005, CURR DIR PSYCHOL SCI, V14, P144, DOI 10.1111/j.0963-7214.2005.00356.x
Wong PCM, 2007, NAT NEUROSCI, V10, P420, DOI 10.1038/nn1872
Wong PCM, 2009, NEUROPSYCHOLOGIA, V47, P693, DOI 10.1016/j.neuropsychologia.2008.11.032
Wong PCM, 2010, EAR HEARING, V31, P471, DOI 10.1097/AUD.0b013e3181d709c2
Woodcock R. W., 2001, WOODCOCK JOHNSON 3 T
Working Group on Speech Understanding and Aging, 1988, J ACOUST SOC AM, V83, P859
Zatorre RJ, 2001, CEREB CORTEX, V11, P946, DOI 10.1093/cercor/11.10.946
Zendel BR, 2012, PSYCHOL AGING, V27, P410, DOI 10.1037/a0024816
Zhu J., 1999, WECHSLER ABBREVIATED
Zinbarg RE, 2005, PSYCHOMETRIKA, V70, P123, DOI 10.1007/s11336-003-0974-7
NR 160
TC 14
Z9 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2013
VL 300
BP 18
EP 32
DI 10.1016/j.heares.2013.03.006
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 151WZ
UT WOS:000319492400003
PM 23541911
ER
PT J
AU Chabot, N
Mellott, JG
Hall, AJ
Tichenoff, EL
Lomber, SG
AF Chabot, Nicole
Mellott, Jeffrey G.
Hall, Amee J.
Tichenoff, Emily L.
Lomber, Stephen G.
TI Cerebral origins of the auditory projection to the superior colliculus
of the cat
SO HEARING RESEARCH
LA English
DT Article
ID MEDIAL GENICULATE-BODY; SOUND-LOCALIZATION; CORTICAL AREAS;
HORSERADISH-PEROXIDASE; INFERIOR COLLICULUS; COOLING DEACTIVATION;
REVERSIBLE DEACTIVATION; REACTION-PRODUCT; MULTISENSORY INTEGRATION;
CORTICOTECTAL INFLUENCES
AB The superior colliculus (SC) is critical for directing accurate head and eye movements to visual and acoustic targets. In visual cortex, areas involved in orienting of the head and eyes to a visual stimulus have direct projections to the SC. In auditory cortex of the cat, four areas have been identified to be critical for the accurate orienting of the head and body to an acoustic stimulus. These areas include primary auditory cortex (A1), the posterior auditory field (PAF), the dorsal zone of auditory cortex (DZ), and the auditory field of the anterior ectosylvian sulcus (fAES). Therefore, we hypothesized that these four regions of auditory cortex would have direct projections to the SC. To test this hypothesis, deposits of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) were made into the superficial and deep layers of the SC to label, by means of retrograde transport, the auditory cortical origins of the corticotectal pathway. Bilateral examination of auditory cortex revealed that the vast majority of the labeled cells were located in the hemisphere ipsilateral to the SC injection. In ipsilateral auditory cortex, nearly all the labeled neurons were found in the infragranular layers, predominately in layer V. The largest population of labeled cells was located in the fAES. Few labeled neurons were identified in A1, PAF, or DZ. Thus, in contrast to the visual system, only one of the auditory cortical areas involved in orienting to an acoustic stimulus has a strong direct projection to the SC. Sound localization signals processed in primary (A1) and other non-primary (PAF and DZ) auditory cortices may be transmitted to the SC via a multi-synaptic corticotectal network. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Chabot, Nicole; Mellott, Jeffrey G.; Hall, Amee J.; Tichenoff, Emily L.; Lomber, Stephen G.] Univ Western Ontario, Schulich Sch Med & Dent, Dept Physiol & Pharmacol, Cerebral Syst Lab, London, ON N6A 5K8, Canada.
[Chabot, Nicole; Mellott, Jeffrey G.; Hall, Amee J.; Tichenoff, Emily L.; Lomber, Stephen G.] Univ Western Ontario, Fac Social Sci, Dept Psychol, Brain & Mind Inst, London, ON N6A 5C2, Canada.
RP Lomber, SG (reprint author), Univ Western Ontario, Dept Physiol & Pharmacol, Brain & Mind Inst, Med Sci Bldg,Room 216,1151 Richmond St North, London, ON N6A 5C1, Canada.
EM steve.lomber@uwo.ca
RI Lomber, Stephen/B-6820-2015
OI Lomber, Stephen/0000-0002-3001-7909
FU Canadian Institutes of Health Research; Natural Science and Engineering
Research Council of Canada
FX We would like to thank Pam Nixon for the assistance with animal care and
Zachary J. Hall and Sam Yi for help with various phases of the project.
This work was supported by grants from the Canadian Institutes of Health
Research and the Natural Science and Engineering Research Council of
Canada.
CR ADAMS JC, 1981, J HISTOCHEM CYTOCHEM, V29, P775
ADELSON PD, 1995, DEV BRAIN RES, V86, P81, DOI 10.1016/0165-3806(95)00007-Z
MASTERSON RB, 1964, J NEUROPHYSIOL, V27, P15
APTER JT, 1946, J NEUROPHYSIOL, V9, P73
Bajo VM, 2010, FRONT NEUROANAT, V4, DOI 10.3389/fnana.2010.00018
Baldwin MKL, 2012, J COMP NEUROL, V520, P2002, DOI 10.1002/cne.23025
BALEYDIER C, 1977, NEUROSCI LETT, V4, P9, DOI 10.1016/0304-3940(77)90116-1
CADUSSEAU J, 1985, J HIRNFORSCH, V26, P667
CASAGRAN.VA, 1974, J COMP NEUROL, V156, P207, DOI 10.1002/cne.901560206
CLAREY JC, 1990, J COMP NEUROL, V301, P304, DOI 10.1002/cne.903010212
CLARKE S, 1995, EXP BRAIN RES, V104, P534
CLEMO HR, 1984, J NEUROPHYSIOL, V51, P843
CLEMO HR, 1986, J NEUROPHYSIOL, V55, P1352
Collins CE, 2005, ANAT REC PART A, V285A, P619, DOI 10.1002/ar.a.20207
COVEY E, 1987, J COMP NEUROL, V263, P179, DOI 10.1002/cne.902630203
CRABTREE JW, 1989, J COMP NEUROL, V286, P504, DOI 10.1002/cne.902860408
Diamond IT, 1979, PROGR PSYCHOBIOLOGY, V8, P1
Duque A, 2010, CEREB CORTEX, V20, P1020, DOI 10.1093/cercor/bhp164
Edwards S.B., 1980, RETICULAR FORMATION, P193
EDWARDS SB, 1979, J COMP NEUROL, V184, P309, DOI 10.1002/cne.901840207
FRIES W, 1984, J COMP NEUROL, V230, P55, DOI 10.1002/cne.902300106
GRAYBIEL AM, 1975, BRAIN RES, V96, P1, DOI 10.1016/0006-8993(75)90566-1
Hall DA, 2003, CURR BIOL, V13, pR406, DOI 10.1016/S0960-9822(03)00323-3
HARTING JK, 1992, J COMP NEUROL, V324, P379, DOI 10.1002/cne.903240308
HARTING JK, 1976, J COMP NEUROL, V166, P133, DOI 10.1002/cne.901660202
Hess WR, 1946, MON PSYCHIATR NEUROL, V112, P1
HICKS TP, 1986, J COMP NEUROL, V246, P544, DOI 10.1002/cne.902460410
Horsley V, 1908, BRAIN, V31, P45, DOI 10.1093/brain/31.1.45
JENKINS WM, 1984, J NEUROPHYSIOL, V52, P819
Jiang W, 2001, J NEUROPHYSIOL, V85, P506
Jiang W, 2002, J COGNITIVE NEUROSCI, V14, P1240, DOI 10.1162/089892902760807230
Jiang W, 2003, J NEUROPHYSIOL, V90, P2123, DOI 10.1152/jn.00369.2003
KANASEKI T, 1974, J COMP NEUROL, V158, P319, DOI 10.1002/cne.901580307
KAWAMURA K, 1979, EXP BRAIN RES, V35, P161
KELLY JP, 1981, BRAIN RES, V212, P1, DOI 10.1016/0006-8993(81)90027-5
King AJ, 1998, J COMP NEUROL, V390, P342
KUDO M, 1988, BRAIN RES, V463, P352, DOI 10.1016/0006-8993(88)90409-X
KUNZLE H, 1995, CEREB CORTEX, V5, P338, DOI 10.1093/cercor/5.4.338
Lee CC, 2013, JARO-J ASSOC RES OTO, V14, P61, DOI 10.1007/s10162-012-0357-9
Lee CC, 2011, HEARING RES, V274, P85, DOI 10.1016/j.heares.2010.05.008
Lee CC, 2008, J COMP NEUROL, V507, P1920, DOI 10.1002/cne.21613
Lomber S.G., 2004, PROJECTIONS POSTERIO
Lomber SG, 2007, HEARING RES, V229, P31, DOI 10.1016/j.heares.2007.01.013
Lomber SG, 2007, J NEUROPHYSIOL, V97, P979, DOI 10.1152/jn.00767.2006
Lomber SG, 2001, J COMP NEUROL, V441, P44, DOI 10.1002/cne.1396
Lomber SG, 2008, NAT NEUROSCI, V11, P609, DOI 10.1038/nn.2108
Lomber SG, 2004, J COMP NEUROL, V474, P190, DOI 10.1002/cne.20123
LOMBER SG, 1994, BEHAV BRAIN RES, V64, P25, DOI 10.1016/0166-4328(94)90116-3
Lomber SG, 2002, EXP BRAIN RES, V142, P463, DOI 10.1007/s00221-001-0957-9
Lomber SG, 2000, CEREB CORTEX, V10, P1066, DOI 10.1093/cercor/10.11.1066
Malhotra S, 2007, J NEUROPHYSIOL, V97, P26, DOI 10.1152/jn.00720.2006
Malhotra S, 2004, J NEUROPHYSIOL, V92, P1625, DOI 10.1152/jn.01205.2003
Malhotra S, 2008, J NEUROPHYSIOL, V99, P1628, DOI 10.1152/jn.01228.2007
Manger PR, 2010, BRAIN RES, V1353, P74, DOI 10.1016/j.brainres.2010.07.085
May PJ, 2012, J COMP NEUROL, V520, P2218, DOI 10.1002/cne.23039
Mellott JG, 2010, HEARING RES, V267, P119, DOI 10.1016/j.heares.2010.04.003
MEREDITH MA, 1989, J COMP NEUROL, V289, P687
MEREDITH MA, 1990, J NEUROSCI, V10, P3727
MEREDITH MA, 1986, J NEUROPHYSIOL, V56, P640
MESULAM MM, 1978, J HISTOCHEM CYTOCHEM, V26, P106
Middlebrooks JC, 2005, AUDITORY CORTEX: SYNTHESIS OF HUMAN AND ANIMAL RESEARCH, P225
MIDDLEBROOKS JC, 1984, J NEUROSCI, V4, P2621
Middlebrooks JC, 2002, NAT NEUROSCI, V5, P824, DOI 10.1038/nn0902-824
Middlebrooks JC, 2002, NEUROSCIENTIST, V8, P73
Nodal FR, 2005, J COMP NEUROL, V485, P202, DOI 10.1002/cne.20478
Olfert E.D., 1993, GUIDE CARE USE EXPT
Oliver DL, 1992, MAMMALIAN AUDITORY P, P168
OLUCHA F, 1985, J NEUROSCI METH, V13, P131, DOI 10.1016/0165-0270(85)90025-1
PALMER AR, 1982, NATURE, V299, P248, DOI 10.1038/299248a0
Payne BR, 1996, VISUAL NEUROSCI, V13, P805
PECK CK, 1990, J PHYSIOL-LONDON, V421, P79
Perales M, 2006, J COMP NEUROL, V497, P959, DOI 10.1002/cne.20988
Radtke-Schuller S, 2004, ANAT EMBRYOL, V209, P59, DOI 10.1007/s00429-004-0424-z
RISS W, 1959, J NEUROPHYSIOL, V22, P374
ROCKLAND KS, 1979, BRAIN RES, V179, P3, DOI 10.1016/0006-8993(79)90485-2
ROSE JE, 1949, J COMP NEUROL, V91, P409, DOI 10.1002/cne.900910305
ROUILLER EM, 1991, EXP BRAIN RES, V86, P483
Sanides F, 1969, J Hirnforsch, V11, P79
SOUSA-PINTO A, 1973, Archives Italiennes de Biologie, V111, P112
SPRAGUE JM, 1965, EXP NEUROL, V11, P115, DOI 10.1016/0014-4886(65)90026-9
Stein B. E., 1993, MERGING SENSES
STEIN BE, 1976, BRAIN RES, V118, P469, DOI 10.1016/0006-8993(76)90314-0
STEIN BE, 1978, J NEUROPHYSIOL, V41, P55
STROMING.NL, 1969, EXP NEUROL, V24, P348, DOI 10.1016/0014-4886(69)90141-1
THONG IG, 1986, DEV BRAIN RES, V25, P227, DOI 10.1016/0165-3806(86)90212-9
TORTELLY A, 1980, BRAIN RES, V188, P543, DOI 10.1016/0006-8993(80)90052-9
WALLACE MT, 1994, J NEUROPHYSIOL, V71, P429
WALLACE MT, 1993, J NEUROPHYSIOL, V69, P1797
Wilkinson LK, 1996, EXP BRAIN RES, V112, P1
Winer JA, 1998, J COMP NEUROL, V400, P147
Winer JA, 2002, HEARING RES, V168, P181, DOI 10.1016/S0378-5955(02)00489-6
Winer JA, 2001, J COMP NEUROL, V430, P27
WONGRILEY M, 1979, BRAIN RES, V171, P11, DOI 10.1016/0006-8993(79)90728-5
Zatorre RJ, 2002, NAT NEUROSCI, V5, P905, DOI 10.1038/nn904
NR 94
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2013
VL 300
BP 33
EP 45
DI 10.1016/j.heares.2013.02.008
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 151WZ
UT WOS:000319492400004
PM 23500650
ER
PT J
AU Krishnan, S
Leech, R
Aydelott, J
Dick, F
AF Krishnan, Saloni
Leech, Robert
Aydelott, Jennifer
Dick, Frederic
TI School-age children's environmental object identification in natural
auditory scenes: Effects of masking and contextual congruence
SO HEARING RESEARCH
LA English
DT Article
ID INFORMATIONAL MASKING; SPEECH-INTELLIGIBILITY; INDIVIDUAL-DIFFERENCES;
LISTENING EFFORT; SPATIAL RELEASE; YOUNG-CHILDREN; HEARING-LOSS; NOISE;
ATTENTION; SOUNDS
AB This study investigated the development of children's skills in identifying ecologically relevant sound objects within naturalistic listening environments, using a non-linguistic analog of the classic 'cocktail-party' situation. Children aged 7-12.5 years completed a closed-set identification task in which brief, commonly encountered environmental sounds were presented at varying signal-to-noise ratios. To simulate the complexity of real-world acoustic environments, target sounds were embedded in either a single, stereophonically presented scene, or in one of two different scenes, with each scene presented to a single ear. Each target sound was either congruent or incongruent with the auditory context. Identification accuracy improved with increasing age, particularly in trials with low signal-to-noise ratios. Performance was most accurate when target sounds were incongruent with the background scene, and when sounds were presented in a single background scene. The presence of two backgrounds disproportionately disrupted children's performance relative to that of previously tested adults, and reduced children's sensitivity to contextual cues. Successful identification of familiar sounds in complex auditory contexts is the outcome of a protracted learning process, with children reaching adult levels of performance after a decade or more of experience. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Krishnan, Saloni; Aydelott, Jennifer; Dick, Frederic] Univ London Birkbeck Coll, Ctr Brain & Cognit Dev, London WC1E 7HX, England.
[Leech, Robert] Univ London Imperial Coll Sci Technol & Med, Div Neurosci & Mental Hlth, London, England.
RP Krishnan, S (reprint author), Univ London Birkbeck Coll, Ctr Brain & Cognit Dev, Malet St, London WC1E 7HX, England.
EM s.krishnan@psychology.bbk.ac.uk; f.dick@bbk.ac.uk
FU UK Medical Research Council [G0400341]; Waterloo Foundation
FX This work was funded by the UK Medical Research Council (G0400341) and
the Waterloo Foundation. The funders had no input into the design or
interpretation of the research. We would like to thank Lori Holt and
Jason Zevin for comments and suggestions.
CR Ahissar M, 2006, NAT NEUROSCI, V9, P1558, DOI 10.1038/nn1800
Alain C, 2003, COGNITIVE BRAIN RES, V16, P210, DOI 10.1016/S0926-6410(02)00275-6
ALLEN P, 1994, J SPEECH HEAR RES, V37, P205
Arnold P, 1999, BRIT J AUDIOL, V33, P171
Ballas JA, 1991, HUM PERFORM, V4, P199, DOI DOI 10.1207/S15327043HUP0403_3
Boersma P., 2009, PRAAT DOING PHONETIC
Bonino AY, 2013, EAR HEARING, V34, P3, DOI 10.1097/AUD.0b013e31825e2841
Brainard DH, 1997, SPATIAL VISION, V10, P433, DOI 10.1163/156856897X00357
CHERRY EC, 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229
CHERRY RS, 1981, PERCEPT MOTOR SKILL, V52, P379
Cummings A, 2006, BRAIN RES, V1115, P92, DOI 10.1016/j.brainres.2006.07.050
Dick F, 2007, J COGNITIVE NEUROSCI, V19, P799, DOI 10.1162/jocn.2007.19.5.799
Dick F., 2004, DEVELOPMENTAL SCI, V7, P360
Durlach NI, 2003, J ACOUST SOC AM, V113, P2984, DOI 10.1121/1.1570435
Durlach NI, 2003, J ACOUST SOC AM, V114, P368, DOI 10.1121/1.1577562
ELLIOTT LL, 1979, J ACOUST SOC AM, V66, P651, DOI 10.1121/1.383691
Fallon M, 2002, J ACOUST SOC AM, V111, P2242, DOI [10.1121/1.1466873, 10.1121/1.466873]
Fletcher-Watson S, 2009, DEVELOPMENTAL SCI, V12, P438, DOI 10.1111/j.1467-7687.2008.00784.x
Goll JC, 2010, BRAIN, V133, P272, DOI 10.1093/brain/awp235
Gomes H, 2000, FRONT BIOSCI, V5, pD108, DOI 10.2741/Gomes
Gregg MK, 2009, ATTEN PERCEPT PSYCHO, V71, P607, DOI 10.3758/APP.71.3.607
Gygi B, 2011, J EXP PSYCHOL HUMAN, V37, P551, DOI 10.1037/a0020671
Gygi B., 2007, P 19 INT C AC MADR S
Hall JW, 2005, J ACOUST SOC AM, V118, P1605, DOI 10.1121/1.1992675
Henderson JM, 1999, ANNU REV PSYCHOL, V50, P243, DOI 10.1146/annurev.psych.50.1.243
Hicks CB, 2002, J SPEECH LANG HEAR R, V45, P573, DOI 10.1044/1092-4388(2002/046)
HISCOCK M, 1980, DEV PSYCHOL, V16, P70, DOI 10.1037//0012-1649.16.1.70
Howard CS, 2010, INT J AUDIOL, V49, P928, DOI 10.3109/14992027.2010.520036
Johnson CE, 2000, J SPEECH LANG HEAR R, V43, P144
Johnstone PM, 2006, J ACOUST SOC AM, V120, P2177, DOI 10.1121/1.2225416
Leech R, 2007, DEVELOPMENTAL SCI, V10, P794, DOI 10.1111/j.1467-7687.2007.00628.x
Leech R, 2009, J ACOUST SOC AM, V126, P3147, DOI 10.1121/1.3238160
Leech R, 2011, BRAIN LANG, V116, P83, DOI 10.1016/j.bandl.2010.11.001
Leibold L. J., 2001, SOUND FDN EARL AMPL
Litovsky RY, 2005, J ACOUST SOC AM, V117, P3091, DOI 10.1121/1.1873913
Lix LM, 2010, PSYCHOL METHODS, V15, P268, DOI 10.1037/a0017737
Lutfi RA, 2003, PERCEPT PSYCHOPHYS, V65, P396, DOI 10.3758/BF03194571
McDonald JH, 2009, HDB BIOL STAT
McFadden B, 2008, LANG SPEECH HEAR SER, V39, P342, DOI 10.1044/0161-1461(2008/032)
Moore B.C., 2012, INTRO PSYCHOL HEARIN
NIESSEN ME, 2008, INT J SEMANTIC COMPU, V2, P327, DOI DOI 10.1142/S1793351X08000506
NITTROUER S, 1990, J ACOUST SOC AM, V87, P2705, DOI 10.1121/1.399061
Oh EL, 2001, J ACOUST SOC AM, V109, P2888, DOI 10.1121/1.1371764
Pearson D., 1991, J EXP CHILD PSYCHOL, V2, P320
Saygin AP, 2010, NEUROPSYCHOLOGIA, V48, P107, DOI 10.1016/j.neuropsychologia.2009.08.015
Shafiro V, 2012, TRENDS AMPLIF, V16, P83, DOI 10.1177/1084713812454225
Shield B, 2004, J ACOUST SOC AM, V115, P730, DOI 10.1121/1.1635837
Snyder JS, 2012, FRONT PSYCHOL, V3, DOI 10.3389/fpsyg.2012.00015
Sussman E, 2007, HEARING RES, V225, P117, DOI 10.1016/j.heares.2006.12.013
Sussman E, 2009, NEUROPSYCHOLOGIA, V47, P771, DOI 10.1016/j.neuropsychologia.2008.12.007
Sussman E, 2001, COGNITIVE BRAIN RES, V12, P431, DOI 10.1016/S0926-6410(01)00067-2
Sussman ES, 2011, DEV COGN NEUROS-NETH, V1, P351, DOI 10.1016/j.dcn.2011.01.003
Thomas MSC, 2009, J SPEECH LANG HEAR R, V52, P336, DOI 10.1044/1092-4388(2009/07-0144)
Underwood G, 2006, Q J EXP PSYCHOL, V59, P1931, DOI 10.1080/17470210500416342
Vo MLH, 2011, ATTEN PERCEPT PSYCHO, V73, P1742, DOI 10.3758/s13414-011-0150-6
Wightman FL, 2003, J ACOUST SOC AM, V113, P3297, DOI 10.1121/1.1570443
Wightman FL, 2010, J ACOUST SOC AM, V128, P270, DOI 10.1121/1.3436536
Wightman FL, 2005, J ACOUST SOC AM, V118, P3164, DOI 10.1121/1.2082567
NR 58
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2013
VL 300
BP 46
EP 55
DI 10.1016/j.heares.2013.03.003
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 151WZ
UT WOS:000319492400005
PM 23518401
ER
PT J
AU Rowan, D
Papadopoulos, T
Edwards, D
Holmes, H
Hollingdale, A
Evans, L
Allen, R
AF Rowan, Daniel
Papadopoulos, Timos
Edwards, David
Holmes, Hannah
Hollingdale, Anna
Evans, Leah
Allen, Robert
TI Identification of the lateral position of a virtual object based on
echoes by humans
SO HEARING RESEARCH
LA English
DT Article
ID SOUND LOCALIZATION; BLIND SUBJECTS; CUES; ECHOLOCATION; SENSITIVITY;
PERCEPTION; THRESHOLD
AB Echolocation offers a promising approach to improve the quality of life of people with blindness although little is known about the factors influencing object localisation using a 'searching' strategy. In this paper, we describe a series of experiments using sighted and blind human listeners and a 'virtual auditory space' technique to investigate the effects of the distance and orientation of a reflective object and the effect of stimulus bandwidth on ability to identify the right-versus-left position of the object, with bands of noise and durations from 10-400 ms. We found that performance reduced with increasing object distance. This was more rapid for object orientations where mirror-like reflection paths do not exist to both ears (i.e. most possible orientations); performance with these orientations was indistinguishable from chance at 1.8 m for even the best performing listeners in other conditions. Above-chance performance extended to larger distances when the echo was artificially presented in isolation, as might be achieved in practice by an assistive device. We also found that performance was primarily based on information above 2 kHz. Further research should extend these investigations to include other factors that are relevant to real-life echolocation. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Rowan, Daniel; Papadopoulos, Timos; Edwards, David; Holmes, Hannah; Hollingdale, Anna; Evans, Leah; Allen, Robert] Univ Southampton, Inst Sound & Vibrat Res, Southampton SO17 1BJ, Hants, England.
[Papadopoulos, Timos] Univ Cyprus, Dept Econ, Nicosia, Cyprus.
RP Rowan, D (reprint author), Univ Southampton, Inst Sound & Vibrat Res, Southampton SO17 1BJ, Hants, England.
EM d.rowan@southampton.ac.uk
FU EPSRC Vacation Bursaries; RCUK studentship through a Basic Technology
Programme grant
FX Hannah Holmes and Leah Evans were supported by EPSRC Vacation Bursaries;
David Edwards was supported by a RCUK studentship through a Basic
Technology Programme grant to the Bio-Inspired Acoustical Systems
project (www.biasweb.org). Thanks to Rebekah White for help with data
collection (Experiment 4b). Boxplots were created using a (modified)
template produced by Vertex42
(www.vertex42.com/ExcelTemplates/box-whisker-plot.html). We are
extremely grateful to Associate Editor Brian Moore and two anonymous
reviewers for their many helpful comments that have improved this
manuscript substantially.
CR ASHMEAD DH, 1989, PERCEPT PSYCHOPHYS, V46, P425, DOI 10.3758/BF03210857
Bernstein LR, 2004, J ACOUST SOC AM, V115, P3156, DOI 10.1121/1.1719025
Blauert J., 1996, SPATIAL HEARING
Chen ZL, 2011, HEARING RES, V282, P204, DOI 10.1016/j.heares.2011.08.001
Despres O, 2005, BRAIN RES, V1041, P56, DOI 10.1016/j.brainres.2005.01.101
Doucet ME, 2005, EXP BRAIN RES, V160, P194, DOI 10.1007/s00221-004-2000-4
Dufour A, 2005, EXP BRAIN RES, V165, P515, DOI 10.1007/s00221-005-2329-3
Ihlefeld A, 2011, J ACOUST SOC AM, V130, P324, DOI 10.1121/1.3596476
Litovsky RY, 1999, J ACOUST SOC AM, V106, P1633, DOI 10.1121/1.427914
MacMillan N. A., 2005, DETECTION THEORY USE
Macpherson EA, 2002, J ACOUST SOC AM, V111, P2219, DOI 10.1121/1.1471898
Papadopoulos T, 2011, BIOMED SIGNAL PROCES, V6, P280, DOI 10.1016/j.bspc.2011.03.005
RICE CE, 1967, SCIENCE, V155, P656, DOI 10.1126/science.155.3763.656
Rojas JAM, 2009, ACTA ACUST UNITED AC, V95, P325, DOI 10.3813/AAA.918155
Sabin AT, 2005, HEARING RES, V199, P124, DOI 10.1016/j.heares.2004.08.001
Schenkman BN, 2010, PERCEPTION, V39, P483, DOI 10.1068/p6473
SCHENKMAN BN, 1986, HUM FACTORS, V28, P607
Schenkman BN, 2011, PERCEPTION, V40, P840, DOI 10.1068/p6898
Schnitzler HU, 2001, BIOSCIENCE, V51, P557, DOI 10.1641/0006-3568(2001)051[0557:EBIEB]2.0.CO;2
Schornich S, 2012, JARO-J ASSOC RES OTO, V13, P673, DOI 10.1007/s10162-012-0338-z
Teng S., 2011, EXP BRAIN RES, V216, P483
Teng S, 2011, J VISUAL IMPAIR BLIN, V105, P20
Thaler L, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020162
TOBIAS JV, 1959, J ACOUST SOC AM, V31, P1591, DOI 10.1121/1.1907664
Wightman F.L, 2005, ACTA ACUST, V91, P429
WIGHTMAN FL, 1992, J ACOUST SOC AM, V91, P1648, DOI 10.1121/1.402445
NR 26
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2013
VL 300
BP 56
EP 65
DI 10.1016/j.heares.2013.03.005
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 151WZ
UT WOS:000319492400006
PM 23538130
ER
PT J
AU Song, JJ
Punte, AK
De Ridder, D
Vanneste, S
Van de Heyning, P
AF Song, Jae-Jin
Punte, Andrea Kleine
De Ridder, Dirk
Vanneste, Sven
Van de Heyning, Paul
TI Neural substrates predicting improvement of tinnitus after cochlear
implantation in patients with single-sided deafness
SO HEARING RESEARCH
LA English
DT Article
ID ELECTROMAGNETIC TOMOGRAPHY LORETA; TRANSCRANIAL MAGNETIC STIMULATION;
PREFRONTAL CORTEX; FUNCTIONAL CONNECTIVITY; VEGETATIVE STATE;
AUDITORY-CORTEX; BRAIN ACTIVITY; SUPPRESSION; LOCALIZATION; RESOLUTION
AB Notwithstanding successful reduction of tinnitus after cochlear implantation (CI) in patients with single-sided deafness (SSD) in recent studies, neither the exact mechanism of suppression nor the predictors of the amount of improvement are fully understood yet. We collected quantitative electroencephalography (qEEG) data from nine SSD patients who underwent CI for tinnitus management. By correlating the degree of improvement in tinnitus intensity and tinnitus-related distress with preoperative source-localized qEEG findings and comparing qEEG findings of patients with marked improvement after CI with those with relatively slight improvement with regard to source-localized activity complimented by connectivity analysis, we attempted to find preoperative predictors of tinnitus improvement. Our results showed increased activities of the auditory cortex (AC), posterior cingulate cortex (PCC) and increased functional connectivity between the AC and PCC as negative prognostic factors for the reduction of tinnitus intensity after CI in patients with SSD. Also, relatively increased activity of the right dorsolateral prefrontal cortex and decreased connectivity between distress-related areas such as the orbitofrontal cortex/parahippocampus and sensory-perception areas such as the AC/precuneus were found in patients with relatively slight improvement in tinnitus-related distress as compared with those with marked improvement. The current study suggests that preoperative cortical oscillations can be applied to predict post-CI tinnitus reduction in patients with SSD. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Song, Jae-Jin] Seoul Natl Univ Hosp, Dept Otorhinolaryngol Head & Neck Surg, Seoul 110744, South Korea.
[Punte, Andrea Kleine; Van de Heyning, Paul] Univ Antwerp Hosp, Brai2n TRI & ENT, Antwerp, Belgium.
[De Ridder, Dirk] Univ Otago, Dunedin Sch Med, Dept Surg Sci, Dunedin, New Zealand.
[De Ridder, Dirk; Vanneste, Sven; Van de Heyning, Paul] Univ Antwerp, Fac Med, Dept Translat Neurosci, Antwerp, Belgium.
[Vanneste, Sven] Univ Texas Dallas, Sch Behav & Brain Sci, Dallas, TX 75230 USA.
RP Song, JJ (reprint author), Seoul Natl Univ Hosp, Dept Otorhinolaryngol Head & Neck Surg, Yun Kun Dong 28, Seoul 110744, South Korea.
EM jjsong96@gmail.com
FU Research Foundation Flanders (FWO); Tinnitus Research Initiative; TOP
project University Antwerp; Neurological Foundation of New Zealand;
Korean Science and Engineering Foundation (KOSEF); Korean government
(MOST) [2012-0030102]
FX This work was supported by Research Foundation Flanders (FWO), Tinnitus
Research Initiative, TOP project University Antwerp, The Neurological
Foundation of New Zealand and the Korean Science and Engineering
Foundation (KOSEF) grant funded by the Korean government (MOST) (no.
2012-0030102).
CR Alain C, 1998, BRAIN RES, V812, P23, DOI 10.1016/S0006-8993(98)00851-8
Amoodi HA, 2011, LARYNGOSCOPE, V121, P1536, DOI 10.1002/lary.21851
Andersson G, 2009, J AM ACAD AUDIOL, V20, P315, DOI 10.3766/jaaa.20.5.5
Arndt S, 2011, OTOL NEUROTOL, V32, P39, DOI 10.1097/MAO.0b013e3181fcf271
BECK AT, 1984, J CLIN PSYCHOL, V40, P1365, DOI 10.1002/1097-4679(198411)40:6<1365::AID-JCLP2270400615>3.0.CO;2-D
Boly M, 2004, ARCH NEUROL-CHICAGO, V61, P233, DOI 10.1001/archneur.61.2.233
Buechner A, 2010, OTOL NEUROTOL, V31, P1381, DOI 10.1097/MAO.0b013e3181e3d353
Davidson RJ, 2003, PSYCHOPHYSIOLOGY, V40, P655, DOI 10.1111/1469-8986.00067
De Ridder D, 2005, OTOL NEUROTOL, V26, P616, DOI 10.1097/01.mao.0000178146.91139.3c
De Ridder D, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024273
Del Bo L, 2008, OTOLARYNG HEAD NECK, V139, P391, DOI 10.1016/j.otohns.2008.06.019
De Ridder D, 2011, P NATL ACAD SCI USA, V108, P8075, DOI 10.1073/pnas.1018466108
Dierks T, 2000, CLIN NEUROPHYSIOL, V111, P1817, DOI 10.1016/S1388-2457(00)00427-2
Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010
Faber M, 2012, BRAIN STIMUL, V5, P492, DOI 10.1016/j.brs.2011.09.003
Fuchs M, 2002, CLIN NEUROPHYSIOL, V113, P702, DOI 10.1016/S1388-2457(02)00030-5
Giraud AL, 2001, BRAIN, V124, P1307, DOI 10.1093/brain/124.7.1307
GOEBEL G, 1994, HNO, V42, P166
Heller AJ, 2003, OTOLARYNG CLIN N AM, V36, P239, DOI 10.1016/S0030-6665(02)00160-3
Holmes AP, 1996, J CEREBR BLOOD F MET, V16, P7
JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9
JOLIOT M, 1994, P NATL ACAD SCI USA, V91, P11748, DOI 10.1073/pnas.91.24.11748
Joos K, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040544
Kleinjung Tobias, 2009, Cases J, V2, P7462, DOI 10.1186/1757-1626-2-7462
KNIGHT RT, 1989, BRAIN RES, V504, P338, DOI 10.1016/0006-8993(89)91381-4
Kreuzer Peter Michael, 2011, Front Syst Neurosci, V5, P88, DOI 10.3389/fnsys.2011.00088
Krog NH, 2010, J PSYCHOSOM RES, V69, P289, DOI 10.1016/j.jpsychores.2010.03.008
Landgrebe M, 2009, NEUROIMAGE, V46, P213, DOI 10.1016/j.neuroimage.2009.01.069
Langguth B, 2007, PROG BRAIN RES, V166, P525, DOI 10.1016/S0079-6123(07)66050-6
Laureys S, 2000, BRAIN, V123, P1589, DOI 10.1093/brain/123.8.1589
Marco-Pallares J, 2005, NEUROIMAGE, V25, P471, DOI 10.1016/j.neuroimage.2004.11.028
MCKERROW WS, 1991, ANN OTO RHINOL LARYN, V100, P552
Mitchell TV, 2005, NEUROREPORT, V16, P457, DOI 10.1097/00001756-200504040-00008
Muhlnickel W, 1998, P NATL ACAD SCI USA, V95, P10340, DOI 10.1073/pnas.95.17.10340
Mulert C, 2004, NEUROIMAGE, V22, P83, DOI 10.1016/j.neuroimage.2003.10.051
Nichols TE, 2002, HUM BRAIN MAPP, V15, P1, DOI 10.1002/hbm.1058
Norena A, 1999, CLIN NEUROPHYSIOL, V110, P666, DOI 10.1016/S1388-2457(98)00034-0
Norena AJ, 2011, NEUROSCI BIOBEHAV R, V35, P1089, DOI 10.1016/j.neubiorev.2010.11.003
Olbrich S, 2009, NEUROIMAGE, V45, P319, DOI 10.1016/j.neuroimage.2008.11.014
Pascual-Marqui RD, 2002, METHOD FIND EXP CLIN, V24, P5
Pascual-Marqui R.D., 2007, ARXIV07103341
Pascual-Marqui RD, 2007, ARXIV07111455
Pizzagalli D, 2001, AM J PSYCHIAT, V158, P405, DOI 10.1176/appi.ajp.158.3.405
Pizzagalli DA, 2004, MOL PSYCHIATR, V9, P393, DOI 10.1038/sj.mp.4001469
Plewnia C, 2003, ANN NEUROL, V53, P263, DOI 10.1002/ana.10468
Punte Andrea Kleine, 2011, Cochlear Implants Int, V12 Suppl 1, pS26, DOI 10.1179/146701011X13001035752336
Raichle Marcus E, 2007, Neuroimage, V37, P1083, DOI 10.1016/j.neuroimage.2007.02.041
Raichle ME, 2007, NEUROIMAGE, V37, P1097, DOI DOI 10.1016/J.NEUR0IMAGE.2007.02.041
Raichle ME, 2001, P NATL ACAD SCI USA, V98, P676, DOI 10.1073/pnas.98.2.676
Ramos Ángel, 2012, Acta Otorrinolaringol Esp, V63, P15, DOI 10.1016/j.otorri.2011.07.004
Ruckenstein MJ, 2001, OTOL NEUROTOL, V22, P200, DOI 10.1097/00129492-200103000-00014
Schaette R, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035238
Schecklmann M, 2013, HUM BRAIN MAPP, V34, P233, DOI 10.1002/hbm.21426
Schlee W, 2012, BMC NEUROSCI, V13, DOI 10.1186/1471-2202-13-16
Schlee W, 2009, BMC NEUROSCI, V10, DOI 10.1186/1471-2202-10-11
Sekihara K, 2005, NEUROIMAGE, V25, P1056, DOI 10.1016/j.neuroimage.2004.11.051
Sherlin L, 2005, NEUROSCI LETT, V387, P72, DOI 10.1016/j.neulet.2005.06.069
Smits M, 2007, NEURORADIOLOGY, V49, P669, DOI 10.1007/s00234-007-0231-3
Song JJ, 2012, J NUCL MED, V53, P1550, DOI 10.2967/jnumed.112.102939
SOULIERE CR, 1992, ARCH OTOLARYNGOL, V118, P1291
Ursu S, 2011, AM J PSYCHIAT, V168, P276, DOI 10.1176/appi.ajp.2010.09081215
Van de Heyning Paul, 2008, Ann Otol Rhinol Laryngol, V117, P645
van der Loo E, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007396
van der Loo E, 2011, AUTON NEUROSCI-BASIC, V165, P191, DOI 10.1016/j.autneu.2011.06.007
Vanneste S, 2010, NEUROIMAGE, V52, P470, DOI 10.1016/j.neuroimage.2010.04.029
Vanneste Sven, 2012, Front Syst Neurosci, V6, P31, DOI 10.3389/fnsys.2012.00031
Vitacco D, 2002, HUM BRAIN MAPP, V17, P4, DOI 10.1002/hbm.10038
Voisin J, 2006, J NEUROSCI, V26, P273, DOI 10.1523/JNEUROSCI.2967-05.2006
Weisz N, 2005, PLOS MED, V2, P546, DOI 10.1371/journal.pmed.0020153
Weisz N, 2007, PROG BRAIN RES, V166, P61, DOI 10.1016/S0079-6123(07)66006-3
Weisz N, 2007, J NEUROSCI, V27, P1479, DOI 10.1523/JNEUROSCI.3711-06.2007
Worrell GA, 2000, BRAIN TOPOGR, V12, P273, DOI 10.1023/A:1023407521772
Worsley KJ, 2005, PHILOS T ROY SOC B, V360, P913, DOI 10.1098/rstb.2005.1637
Zumsteg D, 2005, NEUROLOGY, V65, P1657, DOI 10.1212/01.wnl.0000184516.32369.1a
Zumsteg D, 2006, EPILEPSIA, V47, P1958, DOI 10.1111/j.1528-1167.2006.00824.x
NR 75
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2013
VL 299
BP 1
EP 9
DI 10.1016/j.heares.2013.02.001
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 151TS
UT WOS:000319483700001
PM 23415916
ER
PT J
AU Karg, SA
Lackner, C
Hemmert, W
AF Karg, S. A.
Lackner, C.
Hemmert, W.
TI Temporal interaction in electrical hearing elucidates auditory nerve
dynamics in humans
SO HEARING RESEARCH
LA English
DT Article
ID COCHLEAR IMPLANT USERS; CHANNEL INTERACTIONS; SPEECH RECOGNITION;
PULSE-RATE; INTENSITY DISCRIMINATION; MODULATION DETECTION; RESPONSE
PROPERTIES; STIMULATION RATE; MEMBRANE; LEVEL
AB In cochlear implants, severe limitations arise from electrical crosstalk between channels. Therefore, the current trend in cochlear implants is to increase stimulation rates to encode signals with higher temporal precision. However, the fundamental question: "What is the limit of temporal precision due to inherent neuronal dynamics of the stimulated neurons?" has not yet been resolved. In this study we have developed a double-pulse method and, for the first time, reversed stimulus polarity systematically between consecutive pulses to elucidate subthreshold-induced temporal interaction effects. This method allowed us to determine the time-course of subthreshold temporal interaction in human subjects which identifies the limits of encoded temporal precision. Our results show significant temporal interaction up to 600 mu s inter-pulse interval. In all the cases tested we saw a facilitation effect on threshold. Interaction effects at a 20% below threshold pre-conditioning stimulation showed up to 38% +/- 6% threshold reduction. These results imply that there is significant temporal interaction between two subsequent pulses. This interaction diminishes the precision of amplitude coding. We predict interaction effects on temporal precision and channel interaction. For (interleaved) stimulation with short inter-pulse intervals it is interesting to consider our interaction results; and it may become important to consider them for future coding strategies where high temporal precision is required. In an increasing group of binaural implanted patients this will be the case when interaural time differences are encoded with}is precision. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Karg, S. A.; Hemmert, W.] Tech Univ Munich, D-85748 Garching, Germany.
[Lackner, C.] Fachhsch Munich, Munich, Germany.
RP Karg, SA (reprint author), Tech Univ Munich, Boltzmannstr 11, D-85748 Garching, Germany.
EM karg@tum.de
FU Bernstein Center for Computational Neuroscience Munich; MED-EL Innsbruck
FX This work was supported by the Bernstein Center for Computational
Neuroscience Munich and a grant from MED-EL Innsbruck. The Institut fur
Ionenphysik und Angewandte Physik, University of Innsbruck provided the
research interface RIBII and the ENT-Department of the Klinikum rechts
der Isar, Munich helped us to acquire cochlear implant patients and
provided a room for our measurements.
CR Bierer JA, 2004, JARO-J ASSOC RES OTO, V5, P32, DOI 10.1007/s10162-003-3057-7
Bierer JA, 2002, J NEUROPHYSIOL, V87, P478
Cartee LA, 2000, HEARING RES, V146, P143, DOI 10.1016/S0378-5955(00)00109-X
Coste RL, 1996, J ACOUST SOC AM, V99, P3099, DOI 10.1121/1.414796
de Balthasar C, 2003, HEARING RES, V182, P77, DOI 10.1016/S0378-5955(03)00174-6
DETECTION BY, OTOLARYNGOLOGY, V6, P269
Donaldson GS, 2005, J ACOUST SOC AM, V118, P623, DOI 10.1121/1.1937362
Dynes S.B., 1996, DISCHARGE CHARACTERI
Eddington D.K., 1994, SPEECH PROCESSORS AU
Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538
Friesen L.M., 2001, EFFECT PULSE RATE PU
Fu QJ, 2000, J ACOUST SOC AM, V107, P589, DOI 10.1121/1.428325
Galvin JJ, 2005, JARO-J ASSOC RES OTO, V6, P269, DOI 10.1007/s10162-005-0007-6
Goldwyn JH, 2010, J COMPUT NEUROSCI, V28, P405, DOI 10.1007/s10827-010-0224-9
Javel E, 2000, HEARING RES, V140, P45, DOI 10.1016/S0378-5955(99)00186-0
Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6
Kreft HA, 2004, J ACOUST SOC AM, V116, P2258, DOI 10.1121/1.1786871
Kwon BJ., 2006, J ACOUST SOC AM, V120, pEL1
Litvak LM, 2003, J ACOUST SOC AM, V114, P2066, DOI 10.1121/1.1612492
Liu HL, 2009, IEEE T BIO-MED ENG, V56, P137, DOI 10.1109/TBME.2008.2006013
Matsuoka AJ, 2001, IEEE T BIO-MED ENG, V48, P416, DOI 10.1109/10.915706
MCDERMOTT HJ, 1994, J ACOUST SOC AM, V96, P155, DOI 10.1121/1.410475
McKay CM, 2001, J ACOUST SOC AM, V110, P1514, DOI 10.1121/1.1394222
Middlebrooks JC, 2004, J ACOUST SOC AM, V116, P452, DOI 10.1121/1.1760795
Miller CA, 2011, JARO-J ASSOC RES OTO, V12, P219, DOI 10.1007/s10162-010-0249-9
Miller CA, 2001, JARO, V2, P216
Nelson DA, 1996, J ACOUST SOC AM, V100, P2393, DOI 10.1121/1.417949
Nelson DA, 2001, J ACOUST SOC AM, V109, P2921, DOI 10.1121/1.1371762
Pfingst BE, 2007, J ACOUST SOC AM, V121, P2236, DOI 10.1121/1.2537501
Rothman JS, 2003, J NEUROPHYSIOL, V89, P3097, DOI 10.1152/jn.00127.2002
RUBINSTEIN JT, 1995, BIOPHYS J, V68, P779
Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3
SHANNON RV, 1983, HEARING RES, V12, P1, DOI 10.1016/0378-5955(83)90115-6
Shannon Robert V, 2002, Am J Audiol, V11, P124, DOI 10.1044/1059-0889(2002/013)
SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303
Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4
Shepherd RK, 1999, HEARING RES, V130, P171, DOI 10.1016/S0378-5955(99)00011-8
Svirskis G, 2003, BIOL CYBERN, V89, P333, DOI 10.1007/s00422-003-0438-2
Undurraga JA, 2012, HEARING RES, V290, P21, DOI 10.1016/j.heares.2012.05.003
van Wieringen A, 2008, HEARING RES, V242, P154, DOI 10.1016/j.heares.2008.03.005
VERVEEN AA, 1965, KYBERNETIK, V2, P152
VERVEEN AA, 1968, PR INST ELECTR ELECT, V56, P906, DOI 10.1109/PROC.1968.6443
WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0
Zeng Fan-Gang, 2004, Trends Amplif, V8, P1, DOI 10.1177/108471380400800102
Zeng FG, 2002, J ACOUST SOC AM, V111, P377, DOI 10.1121/1.1423926
Zwicker E., 2007, PSYCHOACOUSTICS FACT
NR 46
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2013
VL 299
BP 10
EP 18
DI 10.1016/j.heares.2013.01.015
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 151TS
UT WOS:000319483700002
PM 23396273
ER
PT J
AU Reinfeldt, S
Stenfelt, S
Hakansson, B
AF Reinfeldt, Sabine
Stenfelt, Stefan
Hakansson, Bo
TI Estimation of bone conduction skull transmission by hearing thresholds
and ear-canal sound pressure
SO HEARING RESEARCH
LA English
DT Article
ID MIDDLE-EAR; TRANSCRANIAL ATTENUATION; AIR CONDUCTION; STIMULATION;
AUDIOMETRY; VIBRATIONS; PLACEMENT; MOTION
AB Bone conduction sound transmission in the human skull and the occlusion effect were estimated from hearing thresholds and ear-canal sound pressure (ECSP) measured by a probe tube microphone when stimulation was at three positions on the skull (ipsilateral mastoid, contralateral mastoid, and forehead). The measurements were done with the ear-canal open as well as occluded by an ear-plug. Depending on the estimation method, transcranial transmission at frequencies below 1 kHz was between -8 and 5 dB, around 0 dB at 1 kHz that decreased with frequency to between -17 and -7 dB at 8 kHz. The forehead transmission was, except at frequencies between 1 and 2 kHz, similar to that proposed in the standard ISO:389-3 (1994) when the threshold measurements were conducted with open ear-canals. Compared with the same measurements using hearing thresholds, the ECSP gave similar transmission results at most frequencies, but differed at 0.5, 0.75, 2 and 3 kHz. One probable reason for the differences between thresholds and ECSP might be a significant perception improvement (lower thresholds) when the stimulation was at the ipsilateral mastoid that was not found at the other positions. This improvement, which also was present in the occlusion effect data, was hypothesized to originate in greater sensitivity of the cochlea for vibration in line with the ipsilateral stimulation direction than from other directions. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Reinfeldt, Sabine; Hakansson, Bo] Chalmers, Dept Signals & Syst, Div Signal Proc & Biomed Engn, SE-41296 Gothenburg, Sweden.
[Stenfelt, Stefan] Linkoping Univ, Dept Clin & Expt Med, Div Tech Audiol, SE-58183 Linkoping, Sweden.
RP Reinfeldt, S (reprint author), Chalmers, Dept Signals & Syst, Div Signal Proc & Biomed Engn, SE-41296 Gothenburg, Sweden.
EM sabine.reinfeldt@chalmers.se
RI Stenfelt, Stefan/J-9363-2013
OI Stenfelt, Stefan/0000-0003-3350-8997
FU Swedish Research Council [621-2002-5624]
FX This study was supported by grant from the Swedish Research Council
(621-2002-5624).
CR [Anonymous], 1994, ISO3893
[Anonymous], 1998, ISO3891
[Anonymous], 2003, ISO226
[Anonymous], 2010, ISO82531
Barany E, 1938, ACTA OTO-LARYNGOL, V26, P1
Bekesy G., 1960, EXPT HEARING
BERGER EH, 1983, J ACOUST SOC AM, V74, P81, DOI 10.1121/1.389621
Dean M S, 2000, Am J Audiol, V9, P131, DOI 10.1044/1059-0889(2000/011)
DIRKS DD, 1969, J SPEECH HEAR RES, V12, P725
Eeg-Olofsson M, 2011, OTOL NEUROTOL, V32, P192, DOI 10.1097/MAO.0b013e3182009f16
Eeg-Olofsson M, 2008, INT J AUDIOL, V47, P761, DOI 10.1080/14992020802311216
Freeman S, 2000, HEARING RES, V146, P72, DOI 10.1016/S0378-5955(00)00098-8
GOODHILL V, 1970, ARCHIV OTOLARYNGOL, V91, P250
Hakansson B, 2010, INT J AUDIOL, V49, P203, DOI 10.3109/14992020903264462
Hakansson BEV, 2003, J ACOUST SOC AM, V113, P818, DOI 10.1121/1.1536633
Homma K, 2009, J ACOUST SOC AM, V125, P968, DOI 10.1121/1.3056564
HUIZING E H, 1960, Acta Otolaryngol Suppl, V155, P1
Ito T, 2011, AUDIOL NEURO-OTOL, V16, P12, DOI 10.1159/000314282
Kim N, 2011, JARO-J ASSOC RES OTO, V12, P261, DOI 10.1007/s10162-011-0258-3
KLODD DA, 1977, AUDIOLOGY, V16, P522
NOLAN M, 1981, J LARYNGOL OTOL, V95, P597, DOI 10.1017/S0022215100091155
Reinfeldt S, 2007, J ACOUST SOC AM, V121, P1576, DOI 10.1121/1.2434762
Shipton M S, 1980, Br J Audiol, V14, P86, DOI 10.3109/03005368009078908
Stenfelt S, 2002, J ACOUST SOC AM, V111, P947, DOI 10.1121/1.1432977
Stenfelt S, 2011, ADV OTO-RHINO-LARYNG, V71, P10, DOI 10.1159/000323574
Stenfelt S, 2003, J ACOUST SOC AM, V113, P902, DOI 10.1121/1.1534606
Stenfelt S, 2005, OTOL NEUROTOL, V26, P1245, DOI 10.1097/01.mao.0000187236.10842.d5
Stenfelt S, 2012, OTOL NEUROTOL, V33, P105, DOI 10.1097/MAO.0b013e31823e28ab
Stenfelt S, 2007, INT J AUDIOL, V46, P595, DOI 10.1090/14992020701545880
Stenfelt S, 2006, J ACOUST SOC AM, V119, P2848, DOI 10.1121/1.2184225
Stenfelt S, 2003, HEARING RES, V181, P131, DOI 10.1016/S0378-5955(03)00183-7
Stenfelt S, 2005, J ACOUST SOC AM, V118, P2373, DOI 10.1121/1.12005847
Stenfelt S, 2000, J ACOUST SOC AM, V107, P422, DOI 10.1121/1.428314
Stenfelt S, 2007, HEARING RES, V225, P105, DOI 10.1016/j.heares.2006.12.009
STUDEBAKER GA, 1962, J SPEECH HEAR RES, V5, P321
Tonndorf J, 1966, ACTA OTO LARYNGOLO S, P1
von Bekesy G, 1932, ANN PHYS-BERLIN, V13, P111
NR 37
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2013
VL 299
BP 19
EP 28
DI 10.1016/j.heares.2013.01.023
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 151TS
UT WOS:000319483700003
PM 23422311
ER
PT J
AU Srinivasan, AG
Padilla, M
Shannon, RV
Landsberger, DM
AF Srinivasan, Arthi G.
Padilla, Monica
Shannon, Robert V.
Landsberger, David M.
TI Improving speech perception in noise with current focusing in cochlear
implant users
SO HEARING RESEARCH
LA English
DT Article
ID VIRTUAL CHANNEL DISCRIMINATION; ELECTRODE CONFIGURATIONS;
ELECTRICAL-STIMULATION; SPECTRAL RESOLUTION; ACOUSTIC HEARING;
RECOGNITION; LISTENERS; TRIPOLAR; THRESHOLDS; EXCITATION
AB Cochlear implant (CI) users typically have excellent speech recognition in quiet but struggle with understanding speech in noise. It is thought that broad current spread from stimulating electrodes causes adjacent electrodes to activate overlapping populations of neurons which results in interactions across adjacent channels. Current focusing has been studied as a way to reduce spread of excitation, and therefore, reduce channel interactions. In particular, partial tripolar stimulation has been shown to reduce spread of excitation relative to monopolar stimulation. However, the crucial question is whether this benefit translates to improvements in speech perception. In this study, we compared speech perception in noise with experimental monopolar and partial tripolar speech processing strategies. The two strategies were matched in terms of number of active electrodes, microphone, filterbanks, stimulation rate and loudness (although both strategies used a lower stimulation rate than typical clinical strategies). The results of this study showed a significant improvement in speech perception in noise with partial tripolar stimulation. All subjects benefited from the current focused speech processing strategy. There was a mean improvement in speech recognition threshold of 2.7 dB in a digits in noise task and a mean improvement of 3 dB in a sentences in noise task with partial tripolar stimulation relative to monopolar stimulation. Although the experimental monopolar strategy was worse than the clinical, presumably due to different microphones, frequency allocations and stimulation rates, the experimental partial-tripolar strategy, which had the same changes, showed no acute deficit relative to the clinical. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Srinivasan, Arthi G.; Padilla, Monica; Shannon, Robert V.; Landsberger, David M.] House Res Inst, Dept Commun & Auditory Neurosci, Los Angeles, CA 90057 USA.
[Srinivasan, Arthi G.; Shannon, Robert V.] Univ So Calif, Dept Biomed Engn, Los Angeles, CA 90089 USA.
RP Srinivasan, AG (reprint author), House Res Inst, Dept Commun & Auditory Neurosci, 2100 West 3rd St, Los Angeles, CA 90057 USA.
EM agsriniva@gmail.com
FU NIDCD [R01-DC-001526, R03-DC-010064, F31 DC011205]
FX This work was supported by NIDCD Grants and Fellowship Numbers:
R01-DC-001526, R03-DC-010064, and F31 DC011205. We gratefully
acknowledge the CI subjects who participated in this study and Justin
Aronoff for help with statistical analyses.
CR Aronoff JM, 2011, EAR HEARING, V32, P468, DOI 10.1097/AUD.0b013e31820dd3f0
Berenstein CK, 2008, EAR HEARING, V29, P250
Bierer JA, 2010, EAR HEARING, V31, P247, DOI 10.1097/AUD.0b013e3181c7daf4
Bierer JA, 2007, J ACOUST SOC AM, V121, P1642, DOI 10.1121/1.2436712
Bierer JA, 2002, J NEUROPHYSIOL, V87, P478
Bonham BH, 2008, HEARING RES, V242, P141, DOI 10.1016/j.heares.2008.03.006
Burns E.M., 2001, C IMPL AUD PROSTH PA, V81
Chan JCY, 2008, INT J AUDIOL, V47, P296, DOI 10.1080/14992020802075407
Chatterjee M, 1998, J ACOUST SOC AM, V103, P2565, DOI 10.1121/1.422777
Dorman MF, 1997, J ACOUST SOC AM, V102, P581, DOI 10.1121/1.419731
Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538
Frijns, 2012, COMMUNICATION
Fu QJ, 2005, JARO-J ASSOC RES OTO, V6, P19, DOI 10.1007/s10162-004-5024-3
Fu QJ, 2003, J ACOUST SOC AM, V113, P1065, DOI 10.1121/1.1537708
Fu QJ, 1998, J ACOUST SOC AM, V104, P3586, DOI 10.1121/1.423941
Henry BA, 2005, J ACOUST SOC AM, V118, P1111, DOI 10.1121/1.1944567
Hochmair Ingeborg, 2006, Trends Amplif, V10, P201, DOI 10.1177/1084713806296720
Hughes ML, 2006, J ACOUST SOC AM, V119, P1527, DOI 10.1121/1.2163273
Landsberger DM, 2012, HEARING RES, V284, P16, DOI 10.1016/j.heares.2011.12.009
Landsberger DM, 2009, HEARING RES, V254, P34, DOI 10.1016/j.heares.2009.04.007
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
Litvak, 2012, COMMUNICATION
Litvak LM, 2007, J ACOUST SOC AM, V122, P967, DOI 10.1121/1.2749414
Litvak LM, 2007, J ACOUST SOC AM, V122, P982, DOI 10.1121/1.2749413
Mens LHM, 2005, OTOL NEUROTOL, V26, P957, DOI 10.1097/01.mao.0000185060.74339.9d
NILSSON M, 1994, J ACOUST SOC AM, V95, P1085, DOI 10.1121/1.408469
Oba, 2012, COMMUNICATION
Oba SI, 2011, EAR HEARING, V32, P573, DOI 10.1097/AUD.0b013e31820fc821
Rosen S, 1999, J ACOUST SOC AM, V106, P3629, DOI 10.1121/1.428215
Saoji AA, 2010, EAR HEARING, V31, P693, DOI 10.1097/AUD.0b013e3181e1d15e
Shannon RV, 2004, ACTA OTO-LARYNGOL, V124, P50, DOI 10.1080/03655230410017562
Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a
Snyder RL, 2004, JARO-J ASSOC RES OTO, V5, P305, DOI 10.1007/s10162-004-4026-5
Srinivasan AG, 2012, HEARING RES, V286, P19, DOI 10.1016/j.heares.2012.02.011
Srinivasan AG, 2010, HEARING RES, V270, P89, DOI 10.1016/j.heares.2010.09.004
Vandali AE, 2000, EAR HEARING, V21, P608, DOI 10.1097/00003446-200012000-00008
Vermeire K, 2010, ORL J OTO-RHINO-LARY, V72, P305, DOI 10.1159/000319748
Wilson B., 1995, SPEECH PROCESSORS AU
WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0
Zhu Z., 2011, HEARING RES, V283, P45
Zwolan TA, 1997, J ACOUST SOC AM, V102, P3673, DOI 10.1121/1.420401
NR 41
TC 16
Z9 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2013
VL 299
BP 29
EP 36
DI 10.1016/j.heares.2013.02.004
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 151TS
UT WOS:000319483700004
PM 23467170
ER
PT J
AU Lewald, J
Hausmann, M
AF Lewald, Joerg
Hausmann, Markus
TI Effects of sex and age on auditory spatial scene analysis
SO HEARING RESEARCH
LA English
DT Article
ID SOUND LOCALIZATION; GENDER-DIFFERENCES; MENTAL ROTATION;
HEMISPHERIC-ASYMMETRY; COGNITIVE FUNCTION; MOTION PERCEPTION; SPACE;
WOMEN; DECLINE; HEARING
AB Recently, it has been demonstrated that men outperform women in spatial analysis of complex auditory scenes (Zundorf et al., 2011). The present study investigated the relation between the effects of ageing and sex on the spatial segregation of concurrent sounds in younger and middle-aged adults. The experimental design allowed simultaneous presentation of target and distractor sound sources at different locations. The resulting spatial "pulling" effect (that is, the bias of target localization toward that of the distractor) was used as a measure of performance. The pulling effect was stronger in middle-aged than younger subjects, and female than male subjects. This indicates lower performance of the middle-aged women in the sensory and attentional mechanisms extracting spatial information about the acoustic event of interest from the auditory scene than both younger and male subjects. Moreover, age-specific differences were most prominent for conditions with targets in right hemispace and distractors in left hemispace, suggesting bilateral asymmetries underlying the effect of ageing. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Lewald, Joerg] Ruhr Univ Bochum, Fak Psychol, D-44780 Bochum, Germany.
[Lewald, Joerg] Leibniz Res Ctr Working Environm & Human Factors, D-44139 Dortmund, Germany.
[Hausmann, Markus] Univ Durham, Dept Psychol, Durham DH1 3LE, England.
RP Lewald, J (reprint author), Ruhr Univ Bochum, Fak Psychol, D-44780 Bochum, Germany.
EM joerg.lewald@rub.de
RI Lewald, Jorg/D-3034-2009; Hausmann, Markus/F-4060-2014
OI Lewald, Jorg/0000-0001-9351-0170;
FU Deutsche Forschungsgemeinschaft [FA211/24-1]
FX This research was supported by the Deutsche Forschungsgemeinschaft
(FA211/24-1). The authors are grateful to Peter Dillmann for preparing
the software and part of the electronic equipment, to Katja Brodmann,
Christine Friedmann, Alexandra Stobener, Claudia Wolf, and Verena
Zimmermann for help with running the experiments, and to Charles A.
Heywood and Sophie Hodgetts for valuable comments on an earlier version
of the manuscript. The authors especially wish to thank Brian Moore and
two anonymous reviewers for their constructive comments and detailed
suggestions for improving this paper.
CR Abel SM, 2000, J ACOUST SOC AM, V108, P743, DOI 10.1121/1.429607
Barnes LL, 2003, NEUROLOGY, V60, P1777
Barrett-Connor E, 1999, J AM GERIATR SOC, V47, P159
Best V, 2007, J ACOUST SOC AM, V121, P1070, DOI 10.1121/1.2407738
Blauert J., 1983, SPATIAL HEARING PSYC
BRAYNE C, 1995, PSYCHOL MED, V25, P673
Bregman A., 1994, AUDITORY SCENE ANAL
BURKE KA, 1994, NEUROPSYCHOLOGIA, V32, P1409, DOI 10.1016/0028-3932(94)00074-3
BUTLER RA, 1962, J ACOUST SOC AM, V34, P1100, DOI 10.1121/1.1918252
CHERRY EC, 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229
CRANFORD JL, 1990, J SPEECH HEAR RES, V33, P654
Daselaar S., 2004, COGNITIVE NEUROSCIEN, P325, DOI DOI 10.1093/ACPROF:OSO/9780195156744.003.0014
DOLLINGER SMC, 1995, DEV NEUROPSYCHOL, V11, P215
Elias MF, 1997, EXP AGING RES, V23, P201, DOI 10.1080/03610739708254281
ELIAS MF, 1974, J GERONTOL, V29, P162
GARDNER MB, 1969, J ACOUST SOC AM, V46, P339, DOI 10.1121/1.1911695
Griffiths TD, 1998, NAT NEUROSCI, V1, P74, DOI 10.1038/276
Halpern DF, 1996, DEV REV, V16, P261, DOI 10.1006/drev.1996.0010
Hausmann M, 2003, LATERALITY, V8, P277, DOI 10.1080/13576500244000201
Hausmann M, 1999, BRAIN COGNITION, V41, P263, DOI 10.1006/brcg.1999.1126
Herlitz A, 1997, MEM COGNITION, V25, P801, DOI 10.3758/BF03211324
HERMAN JF, 1983, EXP AGING RES, V9, P83
Hirnstein M, 2007, LATERALITY, V12, P87, DOI 10.1080/13576500600959247
HISCOCK M, 1995, J CLIN EXP NEUROPSYC, V17, P590, DOI 10.1080/01688639508405148
Hornickel J., 2012, HEAR J, V65, P28
Hugdahl K, 2006, NEUROPSYCHOLOGIA, V44, P1575, DOI 10.1016/j.neuropsychologia.2006.01.026
JERGER J, 1994, EAR HEARING, V15, P274, DOI 10.1097/00003446-199408000-00002
Kaiser J, 2000, J NEUROSCI, V20, P6631
KIMURA D, 1992, Scientific American, V267, P118
Kreitewolf J, 2011, NEUROIMAGE, V54, P2340, DOI 10.1016/j.neuroimage.2010.10.031
Lacreuse A, 2005, BEHAV NEUROSCI, V119, P118, DOI 10.1037/0735-7044.119.1.118
LARRABEE GJ, 1993, PSYCHOL AGING, V8, P68, DOI 10.1037/0882-7974.8.1.68
Lee AKC, 2009, J ACOUST SOC AM, V126, P2543, DOI 10.1121/1.3238240
Lewald J, 2000, BEHAV BRAIN RES, V108, P105, DOI 10.1016/S0166-4328(99)00141-2
Lewald J, 1997, BEHAV BRAIN RES, V87, P35, DOI 10.1016/S0166-4328(96)02254-1
Lewald J, 2004, COGNITIVE BRAIN RES, V19, P92, DOI 10.1016/j.cogbrainres.2003.11.005
Li KZH, 2002, NEUROSCI BIOBEHAV R, V26, P777, DOI 10.1016/S0149-7634(02)00073-8
Liederman J., 2010, LANG SPEECH, V54, P33
Litovsky RY, 2001, J ACOUST SOC AM, V109, P346, DOI 10.1121/1.1328792
Maitland SB, 2000, AGING NEUROPSYCHOL C, V7, P32, DOI 10.1076/anec.7.1.32.807
Maylor EA, 2007, ARCH SEX BEHAV, V36, P235, DOI 10.1007/s10508-006-9155-y
MCGLONE J, 1980, BEHAV BRAIN SCI, V3, P215
Meinz EJ, 1998, PSYCHON B REV, V5, P56, DOI 10.3758/BF03209457
Mills John H., 2006, Seminars in Hearing, V27, P228, DOI 10.1055/s-2006-954849
Neuhoff JG, 2009, J EXP PSYCHOL HUMAN, V35, P225, DOI 10.1037/a0013159
Ocklenburg S, 2010, BRAIN COGNITION, V72, P210, DOI 10.1016/j.bandc.2009.08.013
ROBERT M, 1990, EXP AGING RES, V16, P123, DOI 10.1080/07340669008251539
Ruggles D, 2012, CURR BIOL, V22, P1417, DOI 10.1016/j.cub.2012.05.025
Siefer A., 2003, ZENTRALBLATT ARBEITS, V53, P346
Simon-Dack SL, 2009, NEUROREPORT, V20, P105, DOI 10.1097/WNR.0b013e32831befc1
Singer T, 2003, PSYCHOL AGING, V18, P318, DOI 10.1037/0882-7974.18.2.318
Stoet G, 2010, Q J EXP PSYCHOL, V63, P633, DOI 10.1080/17470210903464253
van Exel E, 2001, J NEUROL NEUROSUR PS, V71, P29, DOI 10.1136/jnnp.71.1.29
Willott J. F., 1991, AGING AUDITORY SYSTE
Woldorff MG, 1999, HUM BRAIN MAPP, V7, P49, DOI 10.1002/(SICI)1097-0193(1999)7:1<49::AID-HBM5>3.0.CO;2-J
Zundorf IC, 2011, CORTEX, V47, P741, DOI 10.1016/j.cortex.2010.08.002
NR 56
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2013
VL 299
BP 46
EP 52
DI 10.1016/j.heares.2013.02.005
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 151TS
UT WOS:000319483700006
PM 23467172
ER
PT J
AU Williams, LH
Miller, KA
Dahl, HHM
Manji, SSM
AF Williams, Louise H.
Miller, Kerry A.
Dahl, Hans-Henrik M.
Manji, Shehnaaz S. M.
TI Characterization of a novel ENU-generated myosin VI mutant mouse strain
with congenital deafness and vestibular dysfunction
SO HEARING RESEARCH
LA English
DT Article
ID NONSYNDROMIC HEARING-LOSS; COCHLEAR HAIR-CELLS; INNER-EAR; RECESSIVE
DEAFNESS; SPLICE-SITE; ADAPTATION MOTOR; GENOME-WIDE; GENE; MUTATION;
MYO6
AB Myosin VI (Myo6) is known to play an important role in the mammalian auditory and vestibular systems. We have identified a novel N-ethyl-N-nitrosourea mutagenised mouse strain, charlie, carrying an intronic Myo6 splice site mutation. This mutation (IVS5+5G > A) results in skipping of exon 5, and is predicted to cause a frameshift and premature termination of the protein. We detected essentially no Myo6 transcript in tissue from charlie homozygous mutant mice (Myo6(chl/chl)). Myo6(chl/chl) mice exhibit vestibular dysfunction and profound hearing impairment when first tested at four weeks of age. Analysis of vestibular and cochlear hair cells by scanning electron microscopy and immunohistochemistry revealed highly disorganised hair bundles with irregular orientation and kinocilium position at postnatal stage P2-P3. Within a few weeks, the majority of hair cell stereocilia are missing, or fused and elongated, and degeneration of the sensory epithelium occurs. This novel mouse strain will be an important resource in elucidating the role myosin VI plays in the mammalian auditory system, as well as its non-auditory functions. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Williams, Louise H.; Miller, Kerry A.; Dahl, Hans-Henrik M.; Manji, Shehnaaz S. M.] Royal Childrens Hosp, Murdoch Childrens Res Inst, Genet Hearing Res Lab, Parkville, Vic 3052, Australia.
[Dahl, Hans-Henrik M.] Univ Melbourne, Dept Paediat, Parkville, Vic 3052, Australia.
[Dahl, Hans-Henrik M.; Manji, Shehnaaz S. M.] Univ Melbourne, HEARing Cooperat Res Ctr Audiol Hearing & Speech, Melbourne, Vic 3010, Australia.
[Manji, Shehnaaz S. M.] Univ Melbourne, Royal Victorian Eye & Ear Hosp, Dept Otolaryngol, East Melbourne, Vic 3002, Australia.
RP Williams, LH (reprint author), Royal Childrens Hosp, Murdoch Childrens Res Inst, Genet Hearing Res Lab, Flemington Rd, Parkville, Vic 3052, Australia.
EM louisehwilliams@gmail.com
FU NHMRC [284550, 436944]; Victorian Government's Operational
Infrastructure Support (OIS) Program; HEARing CRC under the Cooperative
Research Centres Program an Australian Government Initiative
FX The authors would like to thank Melissa Arnold, Jessica Cardwell,
Stephen Mercer and Wendy Hutchison for their technical assistance. Thank
you to Simon Crawford for his technical expertise in SEM analysis. This
work was supported by NHMRC grants #284550 and #436944, the Victorian
Government's Operational Infrastructure Support (OIS) Program and the
HEARing CRC, established and supported under the Cooperative Research
Centres Program an Australian Government Initiative. H-H. Dahl is an
NHMRC Principal Research Fellow.
CR Adamek N, 2010, BIOCHEMISTRY-US, V49, P958, DOI 10.1021/bi901803j
Adamek N, 2008, P NATL ACAD SCI USA, V105, P5710, DOI 10.1073/pnas.0710520105
Ahmed ZM, 2003, AM J HUM GENET, V72, P1315, DOI 10.1086/375122
Anderson DW, 2000, HUM MOL GENET, V9, P1729, DOI 10.1093/hmg/9.12.1729
AVRAHAM KB, 1995, NAT GENET, V11, P369, DOI 10.1038/ng1295-369
Burset M, 2001, NUCLEIC ACIDS RES, V29, P255, DOI 10.1093/nar/29.1.255
Conter C, 2006, J INHERIT METAB DIS, V29, P135, DOI 10.1007/s10545-006-0202-6
Curtin JA, 2003, CURR BIOL, V13, P1129, DOI 10.1016/S0960-9822(03)00374-9
de Angelis MH, 2000, NAT GENET, V25, P444, DOI 10.1038/78146
Donaudy F, 2004, AM J HUM GENET, V74, P770, DOI 10.1086/383285
Donaudy F, 2003, AM J HUM GENET, V72, P1571, DOI 10.1086/375654
Frank DJ, 2004, CURR OPIN CELL BIOL, V16, P189, DOI 10.1016/j.ceb.2004.02.001
Hardisty RE, 2003, JARO, V4, P130, DOI 10.1007/s10162-002-3015-9
Hasson T, 1997, J CELL BIOL, V137, P1287, DOI 10.1083/jcb.137.6.1287
Hertzano R, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000207
Hilgert N, 2008, EUR J HUM GENET, V16, P593, DOI 10.1038/sj.ejhg.5202000
Kelley PM, 1997, GENOMICS, V40, P73, DOI 10.1006/geno.1996.4545
Kermany MH, 2006, HEARING RES, V220, P76, DOI 10.1016/j.heares.2006.07.011
Kiernan AE, 2001, P NATL ACAD SCI USA, V98, P3873, DOI 10.1073/pnas.071496998
Kiernan AE, 1999, J NEUROCYTOL, V28, P969, DOI 10.1023/A:1007090626294
Lalwani AK, 2000, AM J HUM GENET, V67, P1121
Liburd N, 2001, HUM GENET, V109, P535, DOI 10.1007/s004390100604
Liu XZ, 1997, NAT GENET, V16, P188, DOI 10.1038/ng0697-188
Manji SSM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017607
Manji SSM, 2011, AM J PATHOL, V179, P903, DOI 10.1016/j.ajpath.2011.04.002
Manji SSM, 2012, AM J PATHOL, V180, P1560, DOI 10.1016/j.ajpath.2011.12.034
Marcotti W, 2006, J PHYSIOL-LONDON, V574, P677, DOI 10.1113/jphysiol.2005.095661
Melchionda S, 2001, AM J HUM GENET, V69, P635, DOI 10.1086/323156
Mochizuki E, 2010, EXP ANIM TOKYO, V59, P57
Mohiddin SA, 2004, J MED GENET, V41, P309, DOI 10.1136/jmg.2003.011973
Nolan PM, 2000, NAT GENET, V25, P440, DOI 10.1038/78140
Parker A, 2010, MAMM GENOME, V21, P565, DOI 10.1007/s00335-010-9306-2
Raponi M, 2009, FEBS J, V276, P2060, DOI 10.1111/j.1742-4658.2009.06941.x
Reese MG, 1997, J COMPUT BIOL, V4, P311, DOI 10.1089/cmb.1997.4.311
Rhodes CR, 2003, J NEUROCYTOL, V32, P1143, DOI 10.1023/B:NEUR.0000021908.98337.91
Rhodes CR, 2004, MAMM GENOME, V15, P686, DOI 10.1007/s00335-004-2344-x
Roux I, 2009, HUM MOL GENET, V18, P4615, DOI 10.1093/hmg/ddp429
Sanggaard KM, 2008, AM J MED GENET A, V146A, P1017, DOI 10.1002/ajmg.a.32174
Schwander M, 2007, J NEUROSCI, V27, P2163, DOI 10.1523/JNEUROSCI.4975-06.2007
Self T, 1999, DEV BIOL, V214, P331, DOI 10.1006/dbio.1999.9424
Self T, 1998, DEVELOPMENT, V125, P557
Tran HTT, 2005, MOL GENET METAB, V85, P213, DOI 10.1016/j.ymgme.2005.03.006
Tsai H, 2001, HUM MOL GENET, V10, P507, DOI 10.1093/hmg/10.5.507
Vreugde S, 2002, NAT GENET, V30, P257, DOI 10.1038/ng848
Walsh T, 2002, P NATL ACAD SCI USA, V99, P7518, DOI 10.1073/pnas.102091699
Whitlon DS, 2001, BRAIN RES PROTOC, V6, P159, DOI 10.1016/S1385-299X(00)00048-9
Zadro C, 2009, BBA-MOL BASIS DIS, V1792, P27, DOI 10.1016/j.bbadis.2008.10.017
NR 47
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2013
VL 299
BP 53
EP 62
DI 10.1016/j.heares.2013.02.006
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 151TS
UT WOS:000319483700007
PM 23485424
ER
PT J
AU Kil, SH
Kalinec, F
AF Kil, Sung-Hee
Kalinec, Federico
TI Expression and dexamethasone-induced nuclear translocation of
glucocorticoid and mineralocorticoid receptors in guinea pig cochlear
cells
SO HEARING RESEARCH
LA English
DT Article
ID SPIRAL LIGAMENT FIBROCYTES; MAMMALIAN INNER-EAR; AUTOIMMUNE MICE; RAT
HIPPOCAMPUS; BINDING-SITES; PROINFLAMMATORY CYTOKINES; MRL-FAS(LPR)
MOUSE; PYRAMIDAL NEURONS; STEROID-HORMONES; PLASMA-MEMBRANE
AB Glucocorticoids (GC) are powerful anti-inflammatory agents frequently used to protect the auditory organ against damage associated with a variety of conditions, including noise exposure and ototoxic drugs as well as bacterial and viral infections. In addition to glucocorticoid receptors (GC-R), natural and synthetic GC are known to bind mineralocorticoid receptors (MC-R) with great affinity. We used light and laser scanning confocal microscopy to investigate the expression of GC-R and MC-R in different cell populations of the guinea pig cochlea, and their translocation to different cell compartments after treatment with the synthetic GC dexamethasone. We found expression of both types of receptors in the cytoplasm and nucleus of sensory inner and outer hair cells as well as pillar, Hensen and Deiters cells in the organ of Corti, inner and outer sulcus cells, spiral ganglion neurons and several types of spiral ligament and spiral limbus cells; stria vascularis cells expressed mostly MC-R whereas fibrocytes type IV were positive for GC-R only. GC-R and MC-R were also localized at or near the plasma membrane of pillar cells and outer hair cells, whereas GC-R were found at or near the plasma membrane of Hensen cells only. We investigated the relative levels of receptor expression in the cytoplasm and the nucleus of Hensen cells treated with dexamethasone, and found they varied in a way suggestive of dose-induced translocation. These results suggest that the oto-protective effects of GC could be associated with the concerted activation of genomic and non-genomic, GC-R and MC-R mediated signaling pathways in different regions of the cochlea. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Kil, Sung-Hee; Kalinec, Federico] House Res Inst, Div Cell Biol & Genet, Los Angeles, CA 90057 USA.
[Kalinec, Federico] Univ So Calif, Keck Sch Med, Dept Cell & Neurobiol, Los Angeles, CA 90033 USA.
[Kalinec, Federico] Univ So Calif, Keck Sch Med, Dept Otolaryngol, Los Angeles, CA 90033 USA.
RP Kalinec, F (reprint author), House Res Inst, Div Cell Biol & Genet, 2100 West 3rd St, Los Angeles, CA 90057 USA.
EM fkalinec@hei.org
FU National Institutes of Health [DC010397]; House Research Institute
FX This work was supported by National Institutes of Health grant DC010397
and House Research Institute. Its content is solely the responsibility
of the authors and does not necessarily represent the official views of
the National Institutes of Health or the House Research Institute.
CR ARRIZA JL, 1987, SCIENCE, V237, P268, DOI 10.1126/science.3037703
Bartholome B, 2004, FASEB J, V18, P70, DOI 10.1096/fj.03-0328com
Beavan S, 2001, J BONE MINER RES, V16, P1496, DOI 10.1359/jbmr.2001.16.8.1496
Boldyreff B, 2003, J STEROID BIOCHEM, V85, P375, DOI 10.1016/S0960-0760(03)00202-4
Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223
Cato Andrew C B, 2002, Sci STKE, V2002, pre9, DOI 10.1126/stke.2002.138.re9
CHEN YZ, 1991, NEUROENDOCRINOLOGY, V53, P25, DOI 10.1159/000125791
CLAIRE M, 1993, J MED CHEM, V36, P2404, DOI 10.1021/jm00068a018
Coleman B, 2009, J NEUROSCI METH, V176, P144, DOI 10.1016/j.jneumeth.2008.09.007
DIAMOND DM, 1992, HIPPOCAMPUS, V2, P421, DOI 10.1002/hipo.450020409
Erichsen S, 2001, ACTA OTO-LARYNGOL, V121, P794
Erichsen S, 1996, ACTA OTO-LARYNGOL, V116, P721, DOI 10.3109/00016489609137913
FLOWER RJ, 1988, BRIT J PHARMACOL, V94, P987
Fujioka M, 2006, J NEUROSCI RES, V83, P575, DOI 10.1002/jnr.20764
FURUTA H, 1994, HEARING RES, V78, P175, DOI 10.1016/0378-5955(94)90023-X
GAMETCHU B, 1993, FASEB J, V7, P1283
García Berrocal José Ramón, 2008, Acta Otorrinolaringol Esp, V59, P494
Garcia-Berrocal JR, 2007, BRIT J PHARMACOL, V152, P1012, DOI 10.1038/sj.bjp.0707405
GUO Z, 1995, FUNCT NEUROL, V10, P183
Haller J, 2008, FRONT NEUROENDOCRIN, V29, P273, DOI 10.1016/j.yfrne.2007.10.004
Hirose K, 2003, JARO, V4, P339, DOI 10.1007/s10162-002-3036-4
HUA SY, 1989, ENDOCRINOLOGY, V124, P687
Imamura S, 2003, JARO, V4, P176, DOI 10.1007/s10162-002-2036-8
Joels M, 2006, TRENDS PHARMACOL SCI, V27, P244, DOI 10.1016/j.tips.2006.03.007
JOELS M, 1992, NEUROENDOCRINOLOGY, V55, P344, DOI 10.1159/000126135
Joels M, 2008, EUR J PHARMACOL, V583, P312, DOI 10.1016/j.ejphar.2007.11.064
Johnson LR, 2005, NEUROSCIENCE, V136, P289, DOI 10.1016/j.neuroscience.2005.06.050
Kalinec F, 2009, BRIT J PHARMACOL, V158, P1820, DOI 10.1111/j.1476-5381.2009.00473.x
Kalinec GM, 2003, AUDIOL NEURO-OTOL, V8, P177, DOI 10.1159/000071059
Karst H, 2005, P NATL ACAD SCI USA, V102, P19204, DOI 10.1073/pnas.0507572102
Kawata M, 1995, NEUROSCI RES, V24, P1, DOI 10.1016/0168-0102(96)81278-8
Kikuchi T, 2000, BRAIN RES REV, V32, P163, DOI 10.1016/S0165-0173(99)00076-4
Komatsuzaki Y, 2005, BIOCHEM BIOPH RES CO, V335, P1002, DOI 10.1016/j.bbrc.2005.07.173
KROZOWSKI ZS, 1983, P NATL ACAD SCI-BIOL, V80, P6056, DOI 10.1073/pnas.80.19.6056
LIPOSITS Z, 1993, J NEUROSCI RES, V35, P14, DOI 10.1002/jnr.490350103
Losel R, 2003, NAT REV MOL CELL BIO, V4, P46, DOI 10.1038/nrm1009
Lou SJ, 1998, BIOCHEM BIOPH RES CO, V244, P403, DOI 10.1006/bbrc.1998.8280
Lowenberg M, 2008, STEROIDS, V73, P1025, DOI 10.1016/j.steroids.2007.12.002
Lupien SJ, 1997, BRAIN RES REV, V24, P1, DOI 10.1016/S0165-0173(97)00004-0
Lupien Sonia J., 2005, Nonlinearity in Biology Toxicology and Medicine, V3, P23, DOI 10.2201/nonlin.003.01.003
Magarinos AM, 1996, J NEUROSCI, V16, P3534
Meltser I, 2011, HEARING RES, V281, P47, DOI 10.1016/j.heares.2011.06.003
Moon SK, 2006, ACTA OTO-LARYNGOL, V126, P564, DOI 10.1080/00016480500452525
MYLES K, 1994, AM J PHYSIOL, V267, pE268
Nin F, 2012, P NATL ACAD SCI USA, V109, P9191, DOI 10.1073/pnas.1120067109
Pascual-Le Tallec L, 2005, MOL ENDOCRINOL, V19, P2211, DOI 10.1210/me.2005-0089
Patuzzi R.B., 2011, HEARING RES, V125, P1
PEARCE D, 1993, SCIENCE, V259, P1161, DOI 10.1126/science.8382376
Pedram A, 2007, J BIOL CHEM, V282, P22278, DOI 10.1074/jbc.M611877200
Perretti M, 2003, NEWS PHYSIOL SCI, V18, P60, DOI 10.1152/nips.01424.2002
PITOVSKI DZ, 1994, HEARING RES, V77, P216, DOI 10.1016/0378-5955(94)90269-0
PITOVSKI DZ, 1993, HEARING RES, V69, P10, DOI 10.1016/0378-5955(93)90088-I
Pondugula SR, 2004, AM J PHYSIOL-RENAL, V286, pF1127, DOI 10.1152/ajprenal.00387.2003
Prager EM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014344
Qiu SF, 2010, BIOL PSYCHIAT, V68, P197, DOI 10.1016/j.biopsych.2010.02.013
Rarey KE, 1996, OTOLARYNG HEAD NECK, V115, P38, DOI 10.1016/S0194-5998(96)70133-X
RAREY KE, 1989, HEARING RES, V41, P217, DOI 10.1016/0378-5955(89)90013-0
Reichardt HM, 2000, ADV PHARMACOL, V47, P1
REUL JMHM, 1985, ENDOCRINOLOGY, V117, P2505
Ruckenstein MJ, 1999, OTOLARYNG HEAD NECK, V121, P452, DOI 10.1016/S0194-5998(99)70236-6
RUCKENSTEIN MJ, 1993, ACTA OTO-LARYNGOL, V113, P160, DOI 10.3109/00016489309135785
Ruckenstein MJ, 1999, LARYNGOSCOPE, V109, P626, DOI 10.1097/00005537-199904000-00020
RUPPRECHT R, 1993, EUR J PHARM-MOLEC PH, V247, P145, DOI 10.1016/0922-4106(93)90072-H
Shimazaki T, 2002, ANN OTO RHINOL LARYN, V111, P1133
SINHA PK, 1995, ACTA OTO-LARYNGOL, V115, P643, DOI 10.3109/00016489509139380
SPICER SS, 1991, HEARING RES, V56, P53, DOI 10.1016/0378-5955(91)90153-Z
Tahera Y, 2006, NEUROREPORT, V17, P879, DOI 10.1097/01.wnr.0000220131.24468.e7
Tahera Y, 2006, J NEUROSCI RES, V83, P1066, DOI 10.1002/jnr.20795
Tahera Y, 2007, NEUROBIOL DIS, V25, P189, DOI 10.1016/j.nbd.2006.09.004
TENCATE WJF, 1992, HEARING RES, V60, P199, DOI 10.1016/0378-5955(92)90021-E
TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865
Terunuma T, 2003, MOL BRAIN RES, V120, P65, DOI 10.1016/j.molbrainres.2003.10.002
Tornabene SV, 2006, HEARING RES, V222, P115, DOI 10.1016/j.heares.2006.09.004
Trune DR, 2001, HEARING RES, V155, P9, DOI 10.1016/S0378-5955(01)00240-4
Trune DR, 2006, HEARING RES, V212, P22, DOI 10.1016/j.heares.2005.10.006
Trune DR, 1999, HEARING RES, V137, P167, DOI 10.1016/S0378-5955(99)00148-3
Trune DR, 1997, HEARING RES, V105, P57, DOI 10.1016/S0378-5955(96)00191-8
vanSteensel B, 1996, J CELL SCI, V109, P787
Walther A, 2000, MOL CELL, V5, P831, DOI 10.1016/S1097-2765(00)80323-8
Wang CC, 2009, SYNAPSE, V63, P745, DOI 10.1002/syn.20654
Yao XF, 1996, ACTA OTO-LARYNGOL, V116, P493, DOI 10.3109/00016489609137879
Yoshida K, 1999, HEARING RES, V137, P155, DOI 10.1016/S0378-5955(99)00134-3
Zhou JG, 2005, STEROIDS, V70, P407, DOI 10.1016/j.steroids.2005.02.006
ZUO J, 1995, HEARING RES, V87, P220, DOI 10.1016/0378-5955(95)00092-I
NR 84
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2013
VL 299
BP 63
EP 78
DI 10.1016/j.heares.2013.01.020
PG 16
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 151TS
UT WOS:000319483700008
PM 23403298
ER
PT J
AU Qazi, OUR
van Dijk, B
Moonen, M
Wouters, J
AF Qazi, Obaid Ur Rehman
van Dijk, Bas
Moonen, Marc
Wouters, Jan
TI Understanding the effect of noise on electrical stimulation sequences in
cochlear implants and its impact on speech intelligibility
SO HEARING RESEARCH
LA English
DT Article
ID NORMAL-HEARING LISTENERS; TIME-FREQUENCY MASKING; RECEPTION THRESHOLDS;
FLUCTUATING NOISE; CODING STRATEGIES; BACKGROUND-NOISE; PERCEPTION;
REDUCTION; SIGNAL; RECOGNITION
AB The present study investigates the most important factors that limit the intelligibility of the cochlear implant (CI) processed speech in noisy environments. The electrical stimulation sequences provided in CIs are affected by the noise in the following three manners. First of all, the natural gaps in the speech are filled, which distorts the low-frequency ON/OFF modulations of the speech signal. Secondly, speech envelopes are distorted to include modulations of both speech and noise. Lastly, the N-of-M type of speech coding strategies may select the noise dominated channels instead of the dominant speech channels at low signal-to-noise ratio's (SNRs). Different stimulation sequences are tested with CI subjects to study how these three noise effects individually limit the intelligibility of the CI processed speech. Tests are also conducted with normal hearing (NH) subjects using vocoded speech to identify any significant differences in the noise reduction requirements and speech distortion limitations between the two subject groups. Results indicate that compared to NH subjects CI subjects can tolerate significantly lower levels of steady state speech shaped noise in the speech gaps but at the same time can tolerate comparable levels of distortions in the speech segments. Furthermore, modulations in the stimulus current level have no effect on speech intelligibility as long as the channel selection remains ideal. Finally, wrong maxima selection together with the introduction of noise in the speech gaps significantly degrades the intelligibility. At low SNRs wrong maxima selection introduces interruptions in the speech and makes it difficult to fuse noisy and interrupted speech signals into a coherent speech stream. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Qazi, Obaid Ur Rehman; van Dijk, Bas] Cochlear Technol Ctr, B-2800 Mechelen, Belgium.
[Moonen, Marc] Katholieke Univ Leuven, Dept Elect Engn, B-3000 Louvain, Belgium.
[Qazi, Obaid Ur Rehman; Wouters, Jan] Katholieke Univ Leuven, Dept Neurosci, B-3000 Louvain, Belgium.
RP Qazi, OUR (reprint author), Cochlear Technol Ctr, Schalienhoevedreef 20, B-2800 Mechelen, Belgium.
EM oqazi@cochlear.com; Marc.Moonen@esat.kuleuven.be;
jan.wouters@med.kuleuven.be
RI Wouters, Jan/D-1800-2015
FU EU Marie Curie ITN project AUDIS; Cochlear Technology Centre Belgium
FX This research is supported by EU Marie Curie ITN project AUDIS and
Cochlear Technology Centre Belgium. The authors are thankful to the test
subjects for their patient and enthusiastic participation. We also thank
Astrid Van Wieringen, Wim Buyens, Anke Plasmans and Anneke Lenssen for
their help during the tests.
CR Anzalone MC, 2006, EAR HEARING, V27, P480, DOI 10.1097/01.aud.0000233891.86809.df
ASSMANN PF, 1994, J ACOUST SOC AM, V95, P471, DOI 10.1121/1.408342
Bacon SP, 1998, J SPEECH LANG HEAR R, V41, P549
Brungart D.S., 2006, NATURE, V352, P236
Cochlear Technology, 2002, ACE SPEECH COD STRAT
Cochlear Technology, 2002, NUCL MATLAB TOOLB 2
Cochlear Technology, 2002, ACE CIS DSP STRAT SO
Cooke M, 2006, J ACOUST SOC AM, V119, P1562, DOI 10.1121/1.2166600
Dawson PW, 2011, EAR HEARING, V32, P382, DOI 10.1097/AUD.0b013e318201c200
Dorman MF, 2002, J SPEECH LANG HEAR R, V45, DOI 10.1044/1092-4388(2002/063)
FESTEN JM, 1990, J ACOUST SOC AM, V88, P1725, DOI 10.1121/1.400247
Francart T., 2010, INT J AUDIOL, V50, P2
Gnansia D, 2010, HEARING RES, V265, P46, DOI 10.1016/j.heares.2010.02.012
HOCHBERG I, 1992, EAR HEARING, V13, P263
HOWARDJONES PA, 1993, ACUSTICA, V78, P258
HOWARDJONES PA, 1993, J ACOUST SOC AM, V93, P2915, DOI 10.1121/1.405811
Hu Y, 2008, J ACOUST SOC AM, V124, P498, DOI 10.1121/1.2924131
Hwang CF, 2012, AM J OTOLARYNG, V33, P338, DOI 10.1016/j.amjoto.2011.08.011
Kiefer J, 2001, AUDIOLOGY, V40, P32
Li N, 2007, J ACOUST SOC AM, V122, P1165, DOI 10.1121/1.2749454
Li N, 2008, J ACOUST SOC AM, V123, P1673, DOI 10.1121/1.2832617
Loizou PC, 1999, IEEE ENG MED BIOL, V18, P34
Loizou PC, 2005, J ACOUST SOC AM, V118, P2791, DOI 10.1121/1.2065847
Lorenzi C, 2006, P NATL ACAD SCI USA, V103, P18866, DOI 10.1073/pnas.0607364103
Mauger SJ, 2012, J ACOUST SOC AM, V131, P327, DOI 10.1121/1.3665990
MILLER GA, 1950, J ACOUST SOC AM, V22, P167, DOI 10.1121/1.1906584
Moore BCJ, 2003, OTOL NEUROTOL, V24, P243, DOI 10.1097/00129492-200303000-00019
Nelson PB, 2003, J ACOUST SOC AM, V113, P961, DOI 10.1121/1.1531983
NILSSON M, 1994, J ACOUST SOC AM, V95, P1085, DOI 10.1121/1.408469
Peters RW, 1998, J ACOUST SOC AM, V103, P577, DOI 10.1121/1.421128
PLOMP R, 1979, AUDIOLOGY, V18, P43
Qin MK, 2003, J ACOUST SOC AM, V114, P446, DOI 10.1121/1.1579009
Roman N, 2006, J ACOUST SOC AM, V120, P458, DOI 10.1121/1.2204590
Roman N, 2003, J ACOUST SOC AM, V114, P2236, DOI 10.1121/1.1610463
Seligman P, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P139
Skinner MW, 2002, EAR HEARING, V23, P207, DOI 10.1097/00003446-200206000-00005
Stickney GS, 2004, J ACOUST SOC AM, V116, P1081, DOI 10.1121/1.1772399
Summerfield Q., 2004, SPRINGER HDB AUDITOR, V18, P231, DOI 10.1007/0-387-21575-1_5
Qazi OUR, 2012, IEEE T BIO-MED ENG, V59, P1364, DOI 10.1109/TBME.2012.2187650
van Wieringen A, 2008, INT J AUDIOL, V47, P348, DOI 10.1080/14992020801895144
Vary P, 2006, DIGITAL SPEECH TRANS
Wang DL, 2009, J ACOUST SOC AM, V125, P2336, DOI 10.1121/1.3083233
Wilson BS, 2008, HEARING RES, V242, P3, DOI 10.1016/j.heares.2008.06.005
Yang LP, 2005, J ACOUST SOC AM, V117, P1001, DOI 10.1121/1.1852873
NR 44
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2013
VL 299
BP 79
EP 87
DI 10.1016/j.heares.2013.01.018
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 151TS
UT WOS:000319483700009
PM 23396271
ER
PT J
AU Oonk, AMM
Leijendeckers, JM
Lammers, EM
Weegerink, NJD
Oostrik, J
Beynon, AJ
Huygen, PLM
Kunst, HPM
Kremer, H
Snik, AFM
Pennings, RJE
AF Oonk, A. M. M.
Leijendeckers, J. M.
Lammers, E. M.
Weegerink, N. J. D.
Oostrik, J.
Beynon, A. J.
Huygen, P. L. M.
Kunst, H. P. M.
Kremer, H.
Snik, A. F. M.
Pennings, R. J. E.
TI Progressive hereditary hearing impairment caused by a MYO6 mutation
resembles presbyacusis
SO HEARING RESEARCH
LA English
DT Article
ID AUTOSOMAL-DOMINANT; MYOSIN-VI; AUDIOMETRIC CHARACTERISTICS; DUTCH
FAMILY; AGE; GENE; DEAFNESS; ASSOCIATION; DFNA2/KCNQ4; FEATURES
AB Since deafness is the most common sensorineural disorder in humans, better understanding of the underlying causes is necessary to improve counseling and rehabilitation. A Dutch family with autosomal dominantly inherited sensorineural hearing loss was clinically and genetically assessed. The MYO6 gene was selected to be sequenced because of similarities with other, previously described DENA22 phenotypes and a pathogenic c.3610C > T (p.R1204W) mutation was found to co-segregate with the disease. This missense mutation results in a flat configured audiogram with a mild hearing loss, which becomes severe to profound and gently to steeply downsloping later in life. The age-related typical audiograms (ARTA) constructed for this family resemble presbyacusis. Speech audiometry and results of loudness scaling support the hypothesis that the phenotype of this specific MYO6 mutation mimics presbyacusis. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Oonk, A. M. M.; Leijendeckers, J. M.; Lammers, E. M.; Weegerink, N. J. D.; Oostrik, J.; Beynon, A. J.; Huygen, P. L. M.; Kunst, H. P. M.; Kremer, H.; Snik, A. F. M.; Pennings, R. J. E.] Radboud Univ Nijmegen, Med Ctr, Dept Otorhinolaryngol Hearing & Genes, NL-6500 HB Nijmegen, Netherlands.
[Oonk, A. M. M.; Leijendeckers, J. M.; Kunst, H. P. M.; Snik, A. F. M.; Pennings, R. J. E.] Radboud Univ Nijmegen, Med Ctr, Donders Inst Brain Cognit & Behav, NL-6500 HB Nijmegen, Netherlands.
[Oostrik, J.; Kremer, H.] Radboud Univ Nijmegen, Med Ctr, Nijmegen Ctr Mol Life Sci, NL-6500 HB Nijmegen, Netherlands.
[Kremer, H.] Radboud Univ Nijmegen, Med Ctr, Dept Human Genet, NL-6500 HB Nijmegen, Netherlands.
RP Pennings, RJE (reprint author), Radboud Univ Nijmegen, Med Ctr, Dept Otorhinolaryngol, Postbus 9101, NL-6500 VC Nijmegen, Netherlands.
EM a.oonk@kno.umcn.nl; j.leijendeckers@kno.umcn.nl;
estherlammers86@hotmail.com; n.weegerink@kno.umcn.nl;
j.oostrik@gen.umcn.nl; a.beynon@kno.umcn.nl; p.huygen@kno.umcn.nl;
h.kunst@kno.umcn.nl; h.kremer@gen.umcn.nl; a.snik@kno.umcn.nl;
r.pennings@kno.umcn.nl
RI Kunst, Henricus/J-6456-2012; Pennings, Ronald/J-6651-2012; Snik,
Ad/H-8092-2014; Kremer, Hannie/F-5126-2010
FU ZON MW [90700388]
FX The authors thank the family members for their participation in this
study. This work was funded by ZON MW (to R.P.: 90700388).
CR [Anonymous], 2000, 7029 ISO
Bischoff AMLC, 2004, AUDIOL NEURO-OTOL, V9, P34, DOI 10.1159/000074185
Bischoff AMLC, 2006, OTOL NEUROTOL, V27, P323, DOI 10.1097/00129492-200604000-00006
Bom SJH, 2001, ARCH OTOLARYNGOL, V127, P1045
Bosman AJ, 1995, AUDIOLOGY, V34, P260
de Heer AMR, 2009, ANN OTO RHINOL LARYN, V118, P313
De Leenheer EMR, 2002, ANN OTO RHINOL LARYN, V111, P267
De Leenheer EMR, 2004, ANN OTO RHINOL LARYN, V113, P922
Hasson T, 1997, J CELL BIOL, V137, P1287, DOI 10.1083/jcb.137.6.1287
Hilgert N, 2009, MUTAT RES-REV MUTAT, V681, P189, DOI 10.1016/j.mrrev.2008.08.002
Hone S W, 2001, Semin Neonatol, V6, P531, DOI 10.1053/siny.2001.0094
Huang Q, 2010, EUR ARCH OTO-RHINO-L, V267, P1179, DOI 10.1007/s00405-010-1270-7
Huygen PL, 2003, AUDIOL MED, V1, P37
Leijendeckers JM, 2009, AUDIOL NEURO-OTOL, V14, P223, DOI 10.1159/000189265
Matsunaga Tatsuo, 2009, Keio Journal of Medicine, V58, P216
Melchionda S, 2001, AM J HUM GENET, V69, P635, DOI 10.1086/323156
Mohiddin SA, 2004, J MED GENET, V41, P309, DOI 10.1136/jmg.2003.011973
Morrell CH, 1996, J ACOUST SOC AM, V100, P1949, DOI 10.1121/1.417906
MORTON NE, 1991, ANN NY ACAD SCI, V630, P16, DOI 10.1111/j.1749-6632.1991.tb19572.x
Parving A, 1999, ACTA PAEDIATR, V88, P69, DOI 10.1080/080352599750029439
Pauw RJ, 2008, ARCH OTOLARYNGOL, V134, P294, DOI 10.1001/archotol.134.3.294
Plantinga R.F., 2006, JARO-J ASSOC RES OTO, V8, P1
Rhodes CR, 2004, MAMM GENOME, V15, P686, DOI 10.1007/s00335-004-2344-x
Roux I, 2009, HUM MOL GENET, V18, P4615, DOI 10.1093/hmg/ddp429
Sakurai K, 2011, ADV ENZYME REGUL, V51, P171, DOI 10.1016/j.advenzreg.2010.09.014
Sanggaard KM, 2008, AM J MED GENET A, V146A, P1017, DOI 10.1002/ajmg.a.32174
Schraders M, 2010, AM J HUM GENET, V86, P138, DOI 10.1016/j.ajhg.2009.12.017
Schrijver I, 2004, J MOL DIAGN, V6, P275, DOI 10.1016/S1525-1578(10)60522-3
Schultz JM, 2005, NEW ENGL J MED, V352, P1557, DOI 10.1056/NEJMoa043899
Self T, 1999, DEV BIOL, V214, P331, DOI 10.1006/dbio.1999.9424
Shearer AE, 2011, HEARING RES, V282, P1, DOI 10.1016/j.heares.2011.10.001
Street VA, 2008, J VESTIBUL RES-EQUIL, V18, P51
THEUNISSEN EJJM, 1986, CLIN OTOLARYNGOL, V11, P161, DOI 10.1111/j.1365-2273.1986.tb00123.x
Topsakal V, 2010, AUDIOL NEURO-OTOL, V15, P211, DOI 10.1159/000255339
Van Eyken E, 2006, HUM MUTAT, V27, P1007, DOI 10.1002/humu.20375
Van Laer L, 2003, EAR HEARING, V24, P275, DOI 10.1097/01.AUD.0000079805.04016.03
Van Laer L, 2008, HUM MOL GENET, V17, P159, DOI 10.1093/hmg/ddm292
Van Laer L, 2010, EUR J HUM GENET, V18, P685, DOI 10.1038/ejhg.2009.234
Willems PJ, 2000, NEW ENGL J MED, V342, P1101, DOI 10.1056/NEJM200004133421506
NR 39
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2013
VL 299
BP 88
EP 98
DI 10.1016/j.heares.2012.12.015
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 151TS
UT WOS:000319483700010
PM 23340379
ER
PT J
AU Zhang, PZ
He, Y
Jiang, XW
Chen, FQ
Chen, Y
Shi, L
Chen, J
Chen, X
Li, X
Xue, T
Wang, YF
Mi, WJ
Qiu, JH
AF Zhang, Peng-zhi
He, Ya
Jiang, Xing-wang
Chen, Fu-quan
Chen, Yang
Shi, Li
Chen, Jun
Chen, Xin
Li, Xu
Xue, Tao
Wang, Yafei
Mi, Wen-juan
Qiu, Jian-hua
TI Stem cell transplantation via the cochlear lateral wall for replacement
of degenerated spiral ganglion neurons
SO HEARING RESEARCH
LA English
DT Article
ID SENSORINEURAL HEARING-LOSS; NEURAL PROGENITOR CELLS; AUDITORY-NERVE;
INNER-EAR; GUINEA-PIG; COMPLEMENTARY ROLES; OLFACTORY-BULB; GERBIL
COCHLEA; TIME-COURSE; FACTOR-I
AB Spiral ganglion neurons (SGNs) are poorly regenerated in the mammalian inner ear. Because of this, stem cell transplantation has been used to replace injured SGNs, and several studies have addressed this approach. However, the difficulty of delivering stem cells into the cochlea and encouraging their migration to Rosenthal's canal (RC), where the SGNs are located, severely restricts this therapeutic strategy. In this study, we attempted to establish a new stem cell transplantation route into the cochlea via the cochlear lateral wall (CLW). First, we tested the precision of this route by injecting Fluorogold into the CLW and next assessed its safety by mock surgeries. Then, using a degenerated SGN animal model, we transplanted neural stem cells (NSCs), derived from the olfactory bulb of C57BL/6-green fluorescent protein (GFP) mice, via the CLW route and examined the cells' distribution in the cochlea. We found the CLW transplantation route is precise and safe. In addition, NSCs migrated into RC with a high efficiency and differentiated into neurons in a degenerated SGN rat model after the CLW transplantation. This result revealed that the basilar membrane (BM) may have crevices permitting the migration of NSCs. The result of this study demonstrates a novel route for cell transplantation to the inner ear, which is important for the replacement of degenerated SGNs and may contribute to the treatment of sensorineural hearing loss. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Zhang, Peng-zhi; He, Ya; Jiang, Xing-wang; Chen, Fu-quan; Chen, Yang; Shi, Li; Chen, Jun; Chen, Xin; Li, Xu; Xue, Tao; Wang, Yafei; Mi, Wen-juan; Qiu, Jian-hua] Fourth Mil Med Univ, Xijing Hosp, Dept Otolaryngol Head & Neck Surg, Xian 710032, Shaanxi Provinc, Peoples R China.
RP Qiu, JH (reprint author), Fourth Mil Med Univ, Xijing Hosp, Dept Otolaryngol Head & Neck Surg, 17 Chang Western Rd, Xian 710032, Shaanxi Provinc, Peoples R China.
EM qiujh@fmmu.edu.cn
FU National Natural Science Foundation of China [30930098, 81170911,
81271070, 81100713, 2011CB504505, 81120108008]
FX This study was supported by the National Natural Science Foundation of
China (No. 30930098, 81170911, 81271070, 81100713, 2011CB504505 and
81120108008). The funding agency had no role in the study design, data
collection and analysis, the decision to publish or the preparation of
the manuscript.
CR Altschuler RA, 2008, HEARING RES, V242, P110, DOI 10.1016/j.heares.2008.06.004
AXELSSON A, 1973, ACTA OTO-LARYNGOL, V76, P136, DOI 10.3109/00016487309121492
Barkho BZ, 2008, STEM CELLS, V26, P3139, DOI 10.1634/stemcells.2008-0519
Blamey P, 1996, Audiol Neurootol, V1, P293
Broxmeyer HE, 2005, J EXP MED, V201, P1307, DOI 10.1084/jem.20041385
Carbajal KS, 2010, P NATL ACAD SCI USA, V107, P11068, DOI 10.1073/pnas.1006375107
Chen W, 2012, NATURE, V490, P278, DOI 10.1038/nature11415
Chen Y, 2007, HEARING RES, V228, P3, DOI 10.1016/j.heares.2006.11.014
Coleman B, 2006, CELL TRANSPLANT, V15, P369, DOI 10.3727/000000006783981819
Corrales CE, 2006, J NEUROBIOL, V66, P1489, DOI 10.1002/neu.20310
Duan ML, 2000, P NATL ACAD SCI USA, V97, P7597, DOI 10.1073/pnas.97.13.7597
ERNFORS P, 1995, NEURON, V14, P1153, DOI 10.1016/0896-6273(95)90263-5
Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463
Fish JH, 2001, OTOL NEUROTOL, V22, P170, DOI 10.1097/00129492-200103000-00009
Fu Y, 2012, NEUROTOX RES, V22, P158, DOI 10.1007/s12640-012-9320-0
HALLEN O, 1974, ACTA OTO-LARYNGOL, V78, P309, DOI 10.3109/00016487409126361
Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3
Hu ZQ, 2005, BRAIN RES, V1051, P137, DOI 10.1016/j.brainres.2005.05.016
Hu ZQ, 2004, EXP NEUROL, V185, P7, DOI 10.1016/j.expneurol.2003.09.012
Hu ZQ, 2005, EXP CELL RES, V302, P40, DOI 10.1016/j.yexer.2004.08.023
Iguchi F, 2004, ACTA OTO-LARYNGOL, V124, P43, DOI 10.1080/03655230310016816
Imitola J, 2004, P NATL ACAD SCI USA, V101, P18117, DOI 10.1073/pnas.0408258102
Incesulu A, 1998, ANN OTO RHINOL LARYN, V107, P906
Jongkamonwiwat N, 2010, CURR DRUG TARGETS, V11, P888
JYUNG RW, 1989, OTOLARYNG HEAD NECK, V101, P670
KILENY PR, 1991, ANN OTO RHINOL LARYN, V100, P563
Kilpatrick LA, 2011, OTOLARYNG HEAD NECK, V145, P1007, DOI 10.1177/0194599811416778
Lang H, 2005, JARO-J ASSOC RES OTO, V6, P63, DOI 10.1007/s10162-004-5021-6
Lang HN, 2011, JARO-J ASSOC RES OTO, V12, P151, DOI 10.1007/s10162-010-0244-1
Lang HN, 2008, JARO-J ASSOC RES OTO, V9, P225, DOI 10.1007/s10162-008-0119-x
Lapidot T, 2005, BLOOD, V106, P1901, DOI 10.1182/blood-2005-04-1417
Li X, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026728
McFadden SL, 2004, BRAIN RES, V997, P40, DOI 10.1016/j.brainres.2003.10.031
Ogita H, 2009, ORL J OTO-RHINO-LARY, V71, P32, DOI 10.1159/000165915
Ohlemiller Kevin K, 2004, Curr Opin Otolaryngol Head Neck Surg, V12, P439, DOI 10.1097/01.moo.0000134450.99615.22
Okano T, 2005, NEUROREPORT, V16, P1919, DOI 10.1097/01.wnr.0000187628.38010.5b
Palmgren B, 2011, BRAIN RES, V1377, P41, DOI 10.1016/j.brainres.2010.12.078
Raphael Y, 2002, BRIT MED BULL, V63, P25, DOI 10.1093/bmb/63.1.25
ROBERSON DW, 1994, AM J OTOL, V15, P28
Rozengurt N, 2003, HEARING RES, V177, P71, DOI 10.1016/S0378-5955(02)00799-2
Schmiedt RA, 2002, JARO, V3, P223, DOI 10.1007/s1016200220017
Sekiya T, 2006, EXP NEUROL, V198, P12, DOI 10.1016/j.expneurol.2005.11.006
Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999
Sun F, 2011, BIOMATERIALS, V32, P8118, DOI 10.1016/j.biomaterials.2011.07.031
Vicario-Abejon C, 2003, J NEUROSCI, V23, P895
Wang LE, 2006, CHINESE MED J-PEKING, V119, P974
WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7
NR 47
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2013
VL 298
BP 1
EP 9
DI 10.1016/j.heares.2013.01.022
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 120GP
UT WOS:000317159100001
PM 23403006
ER
PT J
AU Demany, L
Carcagno, S
Semal, C
AF Demany, Laurent
Carcagno, Samuele
Semal, Catherine
TI The perceptual enhancement of tones by frequency shifts
SO HEARING RESEARCH
LA English
DT Article
ID INFORMATIONAL MASKING; AUDITORY ENHANCEMENT; INFERIOR COLLICULUS;
SPECTRAL AMPLITUDE; ADAPTATION; THRESHOLDS; PREDICTION; DETECTORS;
LOUDNESS; SOUNDS
AB In a chord of pure tones with a flat spectral profile, one tone can be perceptually enhanced relative to the other tones by the previous presentation of a slightly different chord. "Intensity enhancement" (IE) is obtained when the component tones of the two chords have the same frequencies, but in the first chord the target of enhancement is attenuated relative to the other tones. "Frequency enhancement" (FE) is obtained when both chords have a flat spectral profile, but the target of enhancement shifts in frequency from the first to the second chord. We report here an experiment in which IE and FE were measured using a task requiring the listener to indicate whether or not the second chord included a tone identical to a subsequent probe tone. The results showed that a global attenuation of the first chord relative to the second chord disrupted IE more than FE. This suggests that the mechanisms of IE and FE are not the same. In accordance with this suggestion, computations of the auditory excitation patterns produced by the chords indicate that the mechanism of IE is not sufficient to explain FE for small frequency shifts. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Demany, Laurent] CNRS, Inst Neurosci Cognit & Integrat Aquitaine, F-33076 Bordeaux, France.
Univ Bordeaux, F-33076 Bordeaux, France.
RP Demany, L (reprint author), CNRS, Inst Neurosci Cognit & Integrat Aquitaine, 146 Rue Leo Saignat, F-33076 Bordeaux, France.
EM laurent.demany@u-bordeaux2.fr; samuele.carcagno@u-bordeaux2.fr;
catherine.semal@ipb.fr
RI Demany, Laurent/D-7984-2014; Semal, Catherine/D-8592-2014
OI Demany, Laurent/0000-0001-5549-9628; Semal,
Catherine/0000-0002-2075-6265
FU Agence Nationale de la Recherche [ANR-2010-BLAN-1906-02]
FX This work was supported by a grant from the Agence Nationale de la
Recherche (ANR-2010-BLAN-1906-02).
CR Antunes FM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014071
Bregman AS., 1990, AUDITORY SCENE ANAL
Byrne AJ, 2011, J ACOUST SOC AM, V129, P2088, DOI 10.1121/1.3552880
Cao X, 2012, J SPEECH LANG HEAR R, V55, P1135, DOI 10.1044/1092-4388(2011/09-0149)
Carcagno S, 2011, J EXP PSYCHOL HUMAN, V37, P1976, DOI 10.1037/a0024321
Carcagno S, BASIC ASPEC IN PRESS
Carcagno S, 2012, JARO-J ASSOC RES OTO, V13, P693, DOI 10.1007/s10162-012-0339-y
CARLYON RP, 1989, HEARING RES, V41, P223, DOI 10.1016/0378-5955(89)90014-2
Constantino FC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0046167
Cousineau M, 2009, J ACOUST SOC AM, V126, P3179, DOI 10.1121/1.3257206
Demany L, 2010, EXP BRAIN RES, V203, P261, DOI 10.1007/s00221-010-2226-2
Demany L, 2009, J ACOUST SOC AM, V126, P1342, DOI 10.1121/1.3179675
Demany L, 2005, J ACOUST SOC AM, V117, P833, DOI 10.1121/1.1850209
Demany L, 2011, J EXP PSYCHOL HUMAN, V37, P597, DOI 10.1037/a0020368
Erviti M, 2011, J ACOUST SOC AM, V129, P3837, DOI 10.1121/1.3589257
Glasberg BR, 2006, J ACOUST SOC AM, V120, P585, DOI 10.1121/1.2214151
Goupell MJ, 2012, J ACOUST SOC AM, V131, P1007, DOI 10.1121/1.3672650
Green D. M., 1988, PROFILE ANAL AUDITOR
Green D. M., 1974, SIGNAL DETECTION THE
Hartmann WM, 2006, J ACOUST SOC AM, V120, P2142, DOI 10.1121/1.2228476
Kidd G, 2011, J ACOUST SOC AM, V130, P3926, DOI 10.1121/1.3658442
Malmierca MS, 2009, J NEUROSCI, V29, P5483, DOI 10.1523/JNEUROSCI.4153-08.2009
Moore B.C.J., BASIC ASPEC IN PRESS
Moore BCJ, 1997, J AUDIO ENG SOC, V45, P224
Nelson PC, 2010, J NEUROSCI, V30, P6577, DOI 10.1523/JNEUROSCI.0277-10.2010
Richards VM, 2004, J ACOUST SOC AM, V116, P2278, DOI 10.1121/1.1784433
Roberts B, 1998, J ACOUST SOC AM, V103, P3588, DOI 10.1121/1.423086
Schouten JF, 1940, P K NED AKAD WETENSC, V43, P356
Serman M, 2008, J ACOUST SOC AM, V123, P4412, DOI 10.1121/1.2902177
SUMMERFIELD Q, 1987, J ACOUST SOC AM, V81, P700, DOI 10.1121/1.394838
Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032
VIEMEISTER NF, 1982, J ACOUST SOC AM, V71, P1502, DOI 10.1121/1.387849
Viemeister NF, 1980, PSYCHOPHYSICAL PHYSL, P190
Viemeister NF, BASIC ASPEC IN PRESS
Wang NY, 2012, J ACOUST SOC AM, V131, pEL421, DOI 10.1121/1.4710838
Wilson JP, 1970, FREQUENCY ANAL PERIO, P303
WRIGHT BA, 1993, J ACOUST SOC AM, V94, P72, DOI 10.1121/1.408215
NR 37
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2013
VL 298
BP 10
EP 16
DI 10.1016/j.heares.2013.01.016
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 120GP
UT WOS:000317159100002
PM 23376551
ER
PT J
AU van Loon, MC
Ramekers, D
Agterberg, MJH
de Groot, JCMJ
Grolman, W
Klis, SFL
Versnel, H
AF van Loon, Maarten C.
Ramekers, Dyan
Agterberg, Martijn J. H.
de Groot, John C. M. J.
Grolman, Wilko
Klis, Sjaak F. L.
Versnel, Huib
TI Spiral ganglion cell morphology in guinea pigs after deafening and
neurotrophic treatment
SO HEARING RESEARCH
LA English
DT Article
ID SENSORINEURAL HEARING-LOSS; FIBROBLAST-GROWTH-FACTOR; INNER-EAR;
ELECTRICAL-STIMULATION; AUDITORY NEURONS; ETHACRYNIC-ACID; INDUCED
DEAFNESS; TIME-COURSE; SURVIVAL; COCHLEA
AB It is well known that spiral ganglion cells (SGCs) degenerate in hair-cell-depleted cochleas and that treatment with exogenous neurotrophins can prevent this degeneration. Several studies reported that, in addition, SGC size decreases after deafening and increases after neurotrophic treatment. The dynamics of these cell size changes are not well known. In a first experiment we measured size, shape (circularity) and intracellular density of SGCs in guinea pigs at various moments after deafening (1, 2, 4, 6, and 8 weeks) and at various cochlear locations. In a second experiment, the effect of treatment with brain-derived neurotrophic factor (BDNF) on SGC morphology was investigated at various cochlear locations in deafened guinea pigs. We found that SGC size gradually decreased after deafening in the basal and middle cochlear turns. Already after one week a decrease in size was observed, which was well before the number of SGCs started to decrease. After BDNF treatment SGCs became noticeably larger than normal throughout the cochlea, including the middle and apical turns, whereas an effect on survival of SGCs was primarily observed in the basal turn. Thus, both after deafening and after neurotrophic treatment a change in size occurs before survival is affected. Morphological changes were not restricted to a subpopulation of SGCs. We argue that although changes in cell size and changes in survival might be manifestations of two separate mechanisms, morphological measures such as size, circularity and intracellular density are indicative for survival and degeneration. (C) 2013 Elsevier B.V. All rights reserved.
C1 [van Loon, Maarten C.; Ramekers, Dyan; Agterberg, Martijn J. H.; de Groot, John C. M. J.; Grolman, Wilko; Klis, Sjaak F. L.; Versnel, Huib] Univ Med Ctr Utrecht, Rudolf Magnus Inst Neurosci, Dept Otorhinolaryngol & Head & Neck Surg, NL-3508 GA Utrecht, Netherlands.
[van Loon, Maarten C.] Vrije Univ Amsterdam, Med Ctr, Dept Otorhinolaryngol & Head & Neck Surg, NL-1007 MB Amsterdam, Netherlands.
[Agterberg, Martijn J. H.] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, Dept Biophys, NL-6500 GL Nijmegen, Netherlands.
[de Groot, John C. M. J.] Leiden Univ, Med Ctr, Dept Otorhinolaryngol & Head & Neck Surg, NL-2300 RC Leiden, Netherlands.
RP Klis, SFL (reprint author), Univ Med Ctr Utrecht, Rudolf Magnus Inst Neurosci, Dept Otorhinolaryngol & Head & Neck Surg, POB 85500, NL-3508 GA Utrecht, Netherlands.
EM s.klis@umcutrecht.nl
FU Heinsius-Houbolt Foundation; Cochlear(R)
FX This study was supported by the Heinsius-Houbolt Foundation and Cochlear
(R). We are grateful to Ferry Hendriksen for assisting with histology,
and Kelly Maijoor for assisting with surgery. We thank Marinus J.C.
Eijkemans (Biostatistics & Research Support, Julius Center) for his
advice on statistical analysis.
CR Adamson CL, 2002, J NEUROSCI, V22, P1385
Agterberg MJH, 2008, HEARING RES, V244, P25, DOI 10.1016/j.heares.2008.07.004
Agterberg MJH, 2009, JARO-J ASSOC RES OTO, V10, P355, DOI 10.1007/s10162-009-0170-2
BROWN JN, 1993, HEARING RES, V70, P167, DOI 10.1016/0378-5955(93)90155-T
BRUMMETT RE, 1979, ARCH OTOLARYNGOL, V105, P240
Camarero G, 2001, J NEUROSCI, V21, P7630
Coggeshall RE, 1996, J COMP NEUROL, V364, P6, DOI 10.1002/(SICI)1096-9861(19960101)364:1<6::AID-CNE2>3.0.CO;2-9
Davis RL, 2003, NEUROSCIENTIST, V9, P311, DOI 10.1177/1073858403251986
Davis RL, 2011, HEARING RES, V276, P34, DOI 10.1016/j.heares.2011.01.014
DEGROOT JCMJ, 1987, ACTA OTO-LARYNGOL, V104, P234, DOI 10.3109/00016488709107323
ERNFORS P, 1995, NEURON, V14, P1153, DOI 10.1016/0896-6273(95)90263-5
Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463
Fritzsch B, 1999, CELL TISSUE RES, V295, P369, DOI 10.1007/s004410051244
Gillespie LN, 2004, NEUROREPORT, V15, P1121, DOI 10.1097/01.wnr.0000125777.04774.c2
Glueckert R, 2008, J COMP NEUROL, V507, P1602, DOI 10.1002/cne.21619
Hahn H, 2012, OTOL NEUROTOL, V33, P660, DOI 10.1097/MAO.0b013e318254501b
Havenith S, 2011, HEARING RES, V272, P168, DOI 10.1016/j.heares.2010.10.003
Ito J, 2005, ORL J OTO-RHINO-LARY, V67, P272, DOI 10.1159/000089407
KOITCHEV K, 1982, ACTA OTO-LARYNGOL, V94, P431, DOI 10.3109/00016488209128931
Kurihara M, 2011, GEN COMP ENDOCR, V170, P156, DOI 10.1016/j.ygcen.2010.09.020
LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4
Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3
Leake PA, 2011, J COMP NEUROL, V519, P1526, DOI 10.1002/cne.22582
McFadden SL, 2004, BRAIN RES, V997, P40, DOI 10.1016/j.brainres.2003.10.031
McGuinness SL, 2005, OTOL NEUROTOL, V26, P1064, DOI 10.1097/01.mao.0000185063.20081.50
Miller JM, 2007, J NEUROSCI RES, V85, P1959, DOI 10.1002/jnr.21320
Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7
Nourski KV, 2004, HEARING RES, V187, P131, DOI 10.1016/S0378-5955(03)00336-8
Prieskorn DM, 2000, HEARING RES, V140, P212, DOI 10.1016/S0378-5955(99)00193-8
Ramekers D, 2012, HEARING RES, V288, P19, DOI 10.1016/j.heares.2012.03.002
Reichardt LF, 2006, PHILOS T R SOC B, V361, P1545, DOI 10.1098/rstb.2006.1894
Richardson RT, 2005, HEARING RES, V204, P37, DOI 10.1016/j.heares.2005.01.001
Richter CP, 2011, HEARING RES, V278, P43, DOI 10.1016/j.heares.2011.02.003
Salt AN, 2009, AUDIOL NEURO-OTOL, V14, P350, DOI 10.1159/000241892
Scheper V, 2009, J NEUROSCI RES, V87, P1389, DOI 10.1002/jnr.21964
Schimmang T, 2003, DEVELOPMENT, V130, P4741, DOI 10.1242/dev.00676
Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564
Shepherd RK, 2004, EUR J NEUROSCI, V20, P3131, DOI 10.1111/j.1460-9568.2004.03809.x
Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999
Slepecky N.B., 1996, COCHLEA, V8, P44
Song BN, 2009, ACTA OTO-LARYNGOL, V129, P142, DOI 10.1080/00016480802043949
SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683
Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011
Tsuji J, 1997, J COMP NEUROL, V381, P188
Versnel H, 2007, HEARING RES, V231, P1, DOI 10.1016/j.heares.2007.03.003
WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7
WEST BA, 1973, ARCH OTOLARYNGOL, V98, P32
Wise AK, 2005, J COMP NEUROL, V487, P147, DOI 10.1002/cne.20563
YLIKOSKI J, 1974, ACTA OTO-LARYNGOL, P23
NR 49
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2013
VL 298
BP 17
EP 26
DI 10.1016/j.heares.2013.01.013
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 120GP
UT WOS:000317159100003
PM 23361189
ER
PT J
AU O'Leary, SJ
Monksfield, P
Kel, G
Connolly, T
Souter, MA
Chang, A
Marovic, P
O'Leary, JS
Richardson, R
Eastwood, H
AF O'Leary, S. J.
Monksfield, P.
Kel, G.
Connolly, T.
Souter, M. A.
Chang, A.
Marovic, P.
O'Leary, J. S.
Richardson, R.
Eastwood, H.
TI Relations between cochlear histopathology and hearing loss in
experimental cochlear implantation
SO HEARING RESEARCH
LA English
DT Article
ID ROUND WINDOW DEXAMETHASONE; GUINEA-PIG MODEL; RESIDUAL HEARING; TRAUMA;
FIBROSIS
AB This study reviews the cochlear histology from four hearing preservation cochlear implantation experiments conducted on 73 guinea pigs from our institution, and relates histopathological findings to residual hearing. All guinea pigs had normal hearing prior to surgery and underwent cochlear implantation via a cochleostomy with a silastic-platinum dummy electrode. Pure tone auditory brainstem response (ABR) thresholds from 2 to 32 kHz were recorded prior to surgery, and at one and four weeks post-operatively. The cochleae were then fixed in paraformaldehyde, decalcified, paraffin embedded, and mid-modiolar sections were prepared. The treatment groups were as follows: 1) Systemic dexamethasone, 0.2 mg/kg administered 1 h before implantation, 2) Local dexamethasone, 2% applied topically to the round window for 30 min prior to cochlear implantation, 3) Local n-acetyl cysteine, 200 jig applied topically to the round window for 30 min prior to implantation, 4) inoculation to keyhole-limpet hemocyanin (KLH) prior to implantation, and 5) untreated controls. There was a significant correlation between the extent of the tissue reaction in the cochlea and the presence of foreign body giant cells (FBGCs), new bone formation and injury to the osseous spiral lamina (OSL). The extent of the tissue response, as a percentage of the area of the scala tympani, limited the best hearing that was observed four weeks after cochlear implantation. Poorer hearing at four weeks correlated with a more extensive tissue response, lower outer hair cell (OHC) counts and OSL injury in the basal turn. Progressive hearing loss was also correlated with the extent of tissue response. Hearing at 2 kHz, which corresponds to the region of the second cochlear turn, did not correspond with loco-regional inner hair cell (IHC), OHC or SGC counts. We conclude that cochlear injury is associated with poorer hearing early after implantation. The tissue response is related to indices of cochlear inflammation and injury. An extensive tissue response limits hearing at four weeks, and correlates with progressive hearing loss. These latter effects may be due to inflammation, but would also be consistent with interference of cochlear mechanics. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.
C1 [O'Leary, S. J.; Monksfield, P.; Kel, G.; Connolly, T.; Souter, M. A.; Chang, A.; Marovic, P.; O'Leary, J. S.; Richardson, R.; Eastwood, H.] Univ Melbourne, Royal Victorian Eye & Ear Hosp, Dept Otolaryngol, East Melbourne, Vic 3002, Australia.
[Connolly, T.] Geelong Hosp, Geelong, Vic, Australia.
[Souter, M. A.] Christchurch Hosp, Christchurch, New Zealand.
[Richardson, R.] Bion Inst, East Melbourne, Vic, Australia.
RP O'Leary, SJ (reprint author), Univ Melbourne, Royal Victorian Eye & Ear Hosp, Dept Otolaryngol, 2nd Floor,32 Gisborne St, East Melbourne, Vic 3002, Australia.
EM sjoleary@unimelb.edu.au; monksfield@talk21.com; gekel@unimelb.edu.au;
timothyent@gmail.com; msouter@me.com; achang_tw@yahoo.com;
paul.marovic@gmail.com; j.oleary3@unimelb.edu.au;
rricharson@bionicsinstitute.org; haydente@unimelb.edu.au
FU National Health and Medical Research Council of Australia; Garnett Passe
and Rodney Williams Memorial Foundation; John Mitchell Crouch
Fellowship; Royal Australasian College of Surgeons; Royal Victorian Eye
and Ear Hospital
FX Maria Clarke and Prudence Nielsen for preparing the histology material.
Helen Feng for making the cochlear electrodes. A/Prof. John Slavin from
St. Vincents Health Melbourne for histopathological assessment of the
cochleae. Amy Hampson for proofing and preparing of the final figures.
The National Health and Medical Research Council of Australia, the
Garnett Passe and Rodney Williams Memorial Foundation, the John Mitchell
Crouch Fellowship awarded to SOL from the Royal Australasian College of
Surgeons and the Royal Victorian Eye and Ear Hospital for funding.
CR Anderson JM, 2008, SEMIN IMMUNOL, V20, P86, DOI 10.1016/j.smim.2007.11.004
Barbara M, 2003, J LARYNGOL OTOL, V117, P850
Briggs R J, 2001, Cochlear Implants Int, V2, P135, DOI 10.1002/cii.45
Chang A, 2009, HEARING RES, V255, P67, DOI 10.1016/j.heares.2009.05.010
Choi CH, 2005, HEARING RES, V205, P193, DOI 10.1016/j.heares.2005.03.018
Dinh CT, 2011, NEUROSCIENCE, V188, P157, DOI 10.1016/j.neuroscience.2011.04.061
Eastwood H, 2010, HEARING RES, V259, P24, DOI 10.1016/j.heares.2009.08.010
Eshraghi AA, 2006, OTOL NEUROTOL, V27, P504, DOI 10.1097/00129492-200606000-00012
Eshraghi AA, 2005, OTOL NEUROTOL, V26, P442, DOI 10.1097/01.mao.0000169791.53201.e1
Fayad JN, 2009, OTOLARYNG HEAD NECK, V141, P247, DOI 10.1016/j.otohns.2009.03.031
GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
Gstoettner Wolfgang K, 2006, Audiol Neurootol, V11 Suppl 1, P49, DOI 10.1159/000095614
Haake SM, 2009, HEARING RES, V255, P22, DOI 10.1016/j.heares.2009.05.003
James DP, 2008, AUDIOL NEURO-OTOL, V13, P86, DOI 10.1159/000111780
Kiefer J, 2006, HEARING RES, V221, P36, DOI 10.1016/j.heares.2006.07.013
Lisnichuk H., 2010, AUDIOL NEURO-OTOL, V16, P137
Maini S, 2009, AUDIOL NEURO-OTOL, V14, P402, DOI 10.1159/000241897
Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883
Nadol Joseph B Jr, 2006, Adv Otorhinolaryngol, V64, P31
Souter M., 2012, OTOLOGY NEUROTOL, V4
Tornabene SV, 2006, HEARING RES, V222, P115, DOI 10.1016/j.heares.2006.09.004
Woodson EA, 2010, ADV OTO-RHINO-LARYNG, V67, P125, DOI 10.1159/000262604
Xu J, 1997, HEARING RES, V105, P1, DOI 10.1016/S0378-5955(96)00193-1
NR 23
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2013
VL 298
BP 27
EP 35
DI 10.1016/j.heares.2013.01.012
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 120GP
UT WOS:000317159100004
PM 23396095
ER
PT J
AU Scott, BH
Mishkin, M
Yin, PB
AF Scott, Brian H.
Mishkin, Mortimer
Yin, Pingbo
TI Effect of acoustic similarity on short-term auditory memory in the
monkey
SO HEARING RESEARCH
LA English
DT Article
ID CEBUS-APELLA; TEMPORAL CORTEX; PITCH; MACAQUE; TIMBRE; INFORMATION;
HIPPOCAMPUS; RETENTION; PRIMATES; AMYGDALA
AB Recent evidence suggests that the monkey's short-term memory in audition depends on a passively retained sensory trace as opposed to a trace reactivated from long-term memory for use in working memory. Reliance on a passive sensory trace could render memory particularly susceptible to confusion between sounds that are similar in some acoustic dimension. If so, then in delayed matching-to-sample, the monkey's performance should be predicted by the similarity in the salient acoustic dimension between the sample and subsequent test stimulus, even at very short delays. To test this prediction and isolate the acoustic features relevant to short-term memory, we examined the pattern of errors made by two rhesus monkeys performing a serial, auditory delayed match-to-sample task with interstimulus intervals of 1 s. The analysis revealed that false-alarm errors did indeed result from similarity-based confusion between the sample and the subsequent nonmatch stimuli. Manipulation of the stimuli showed that removal of spectral cues was more disruptive to matching behavior than removal of temporal cues. In addition, the effect of acoustic similarity on false-alarm response was stronger at the first nonmatch stimulus than at the second one. This pattern of errors would be expected if the first nonmatch stimulus overwrote the sample's trace, and suggests that the passively retained trace is not only vulnerable to similarity-based confusion but is also highly susceptible to overwriting. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Scott, Brian H.; Mishkin, Mortimer; Yin, Pingbo] NIMH, Neuropsychol Lab, NIH, Bethesda, MD 20892 USA.
[Yin, Pingbo] Univ Maryland, Syst Res Inst, Neural Syst Lab, College Pk, MD 20742 USA.
RP Scott, BH (reprint author), NIMH, Neuropsychol Lab, NIH, 49 Convent Dr,Room 1B80, Bethesda, MD 20892 USA.
EM brianscott@mail.nih.gov; mishkinm@mail.nih.gov; pyin@umd.edu
FU Intramural Research Program of the National Institute of Mental Health,
National Institutes of Health, National Institutes of Health, Department
of Health and Human Services
FX We thank Helen Tak, Kathleen Moorhead, Peter Sergo, and Holly Vinal for
assistance with animal training and data collection, and Alexander Kloth
for programming assistance as well as data collection. This work was
supported by the Intramural Research Program of the National Institute
of Mental Health, National Institutes of Health, Department of Health
and Human Services.
CR Boersma Paul, 2012, PRAAT DOING PHONETIC
Caclin A, 2006, J COGNITIVE NEUROSCI, V18, P1959, DOI 10.1162/jocn.2006.18.12.1959
Chi T, 2005, J ACOUST SOC AM, V118, P887, DOI 10.1121/1.1945807
Clement S, 1999, J ACOUST SOC AM, V106, P2805, DOI 10.1121/1.428106
Colombo M, 1996, J NEUROSCI, V16, P4501
COLOMBO M, 1986, Q J EXP PSYCHOL-B, V38, P425
DAMATO MR, 1984, CAN J PSYCHOL, V38, P237, DOI 10.1037/h0080825
DAMATO MR, 1988, J EXP PSYCHOL ANIM B, V14, P131, DOI 10.1037/0097-7403.14.2.131
D'Amato M., 1985, ANIM LEARN BEHAV, V14, P375
Demany L., 2007, AUDITORY PERCEPTION, V29, P77, DOI 10.1007/978-0-387-71305-2_4
DEUTSCH D, 1972, SCIENCE, V175, P1020, DOI 10.1126/science.175.4025.1020
Fritz J, 2005, P NATL ACAD SCI USA, V102, P9359, DOI 10.1073/pnas.0503998102
GAFFAN D, 1991, BRAIN, V114, P2133, DOI 10.1093/brain/114.5.2133
Joly O, 2012, CEREB CORTEX, V22, P838, DOI 10.1093/cercor/bhr150
Kusmierek P, 2012, J NEUROPHYSIOL, V107, P1123, DOI 10.1152/jn.00793.2011
Lemus L, 2009, P NATL ACAD SCI USA, V106, P9471, DOI 10.1073/pnas.0904066106
Lewandowsky S, 2009, TRENDS COGN SCI, V13, P120, DOI 10.1016/j.tics.2008.12.003
MAY B, 1988, ANIM BEHAV, V36, P1432, DOI 10.1016/S0003-3472(88)80214-8
MILLER EK, 1993, J NEUROSCI, V13, P1460
MISHKIN M, 1978, NATURE, V273, P297, DOI 10.1038/273297a0
Munoz-Lopez MM, 2010, FRONT NEUROANAT, V4, DOI 10.3389/fnana.2010.00129
MURRAY EA, 1983, BRAIN RES, V270, P340, DOI 10.1016/0006-8993(83)90610-8
Murray EA, 2007, ANNU REV NEUROSCI, V30, P99, DOI 10.1146/annurev.neuro.29.051605.113046
Ng CW, 2009, HEARING RES, V256, P64, DOI 10.1016/j.heares.2009.06.014
Nousak JMK, 1996, COGNITIVE BRAIN RES, V4, P305, DOI 10.1016/S0926-6410(96)00068-7
Scott BH, 2012, P NATL ACAD SCI USA, V109, P12237, DOI 10.1073/pnas.1209685109
SEMAL C, 1991, J ACOUST SOC AM, V89, P2404, DOI 10.1121/1.400928
Starr GE, 1997, J ACOUST SOC AM, V102, P486, DOI 10.1121/1.419722
SUZUKI WA, 1994, J COMP NEUROL, V350, P497, DOI 10.1002/cne.903500402
Wright AA, 1999, J EXP PSYCHOL ANIM B, V25, P284, DOI 10.1037/0097-7403.25.3.284
Yin P, 2008, J NEUROPHYSIOL, V100, P3009, DOI 10.1152/jn.00828.2007
Yin PB, 2010, J ACOUST SOC AM, V127, P1673, DOI 10.1121/1.3290988
NR 32
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2013
VL 298
BP 36
EP 48
DI 10.1016/j.heares.2013.01.011
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 120GP
UT WOS:000317159100005
PM 23376550
ER
PT J
AU Zhang, R
Zhang, YB
Dai, CF
Steyger, PS
AF Zhang, Ru
Zhang, Yi-Bo
Dai, Chun-Fu
Steyger, Peter S.
TI Temporal and spatial distribution of gentamicin in the peripheral
vestibular system after transtympanic administration in guinea pigs
SO HEARING RESEARCH
LA English
DT Article
ID EVOKED MYOGENIC POTENTIALS; SENSORY HAIR-CELLS; DARK CELLS;
INTRATYMPANIC GENTAMICIN; AMINOGLYCOSIDE ANTIBIOTICS; MENIERES-DISEASE;
INNER-EAR; TRANSITIONAL CELLS; CRISTA-AMPULLARIS; LLC-PK1 CELLS
AB Background and objective: Transtympanic administration of gentamicin is effective for treating patients with intractable vertigo. This study explored the spatial and temporal distribution of gentamicin in vestibular end-organs after transtympanic administration.
Methods: Thirty guinea pigs were transtympanically injected with gentamicin conjugated to Texas Red (GTTR) and their vestibular end-organs examined after various survival periods. Another 9 guinea pigs received GTTR at different doses. Nine animals received Texas Red only and served as controls. We used confocal microscopy to determine the cellular distribution of GTTR in semicircular canal cristae, as well as the utricular and saccular maculae.
Results: The most intense GTTR labeling was present in the saccule compared to other vestibular end-organs. GTTR fluorescence was detected predominantly in type I hair cells, type II hair cells and transitional cells after a single transtympanic dose of GiiR (0.1 mg/ml, 0.05 ml), while only weak fluorescence was observed in non-sensory cells such as supporting cells, dark cells and lumenal epithelial cells. Transitional cells displayed intense GTTR fluorescence in the supra-nuclear regions 24 h after transtympanic injection that was retained for at least 4 weeks. A decreasing spatial gradient of MR fluorescence was observed sensory epithelial regions containing central type I to peripheral type I and then type II hair cells in the crista ampullaris, and from striolar to extra-striolar hair cells within the vestibular macula. GTTR fluorescence extended from being restricted to the apical cytoplasm at lower doses to the entire cell body of type I hair cells with increasing dose. GTTR fluorescence reached peak intensities for individual regions of interest within the cristae and maculae between 3 and 7 days after transtympanic injection.
Conclusion: The saccular uptake of CUR is greater than other vestibular end-organs after transtympanic injection in the semicircular canals. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Zhang, Ru; Zhang, Yi-Bo; Dai, Chun-Fu] Fudan Univ, Eye Ear Nose & Throat Hosp, Dept Otol & Skull Base Surg, Shanghai 200031, Peoples R China.
[Steyger, Peter S.] Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, Portland, OR 97239 USA.
RP Dai, CF (reprint author), Fudan Univ, Eye Ear Nose & Throat Hosp, Dept Otol & Skull Base Surg, 83 Fen Yang Rd, Shanghai 200031, Peoples R China.
EM cfdai66@yahoo.com.cn
FU 973 project [2011CB504504]; National Natural Science Foundation
[30772398, 81070785, 81170909]; Project on advanced and frontier
techniques for Shanghai municipal hospital [SHDC12010119]; NIH-NIDCD
[R01 DC04555]
FX This study was supported by 973 project (2011CB504504), National Natural
Science Foundation (Nos. 30772398, 81070785, and 81170909), Project on
advanced and frontier techniques for Shanghai municipal hospital
(SHDC12010119). PSS was supported by NIH-NIDCD R01 DC04555.
CR Bartolami S, 2011, J NEUROSCI, V31, P16541, DOI 10.1523/JNEUROSCI.2430-11.2011
Becvarovski Z, 2002, LARYNGOSCOPE, V112, P1610, DOI 10.1097/00005537-200209000-00015
BRISMAR H, 1995, J HISTOCHEM CYTOCHEM, V43, P699
Chen JWY, 2000, J NEUROPHYSIOL, V84, P139
Cohen-Kerem R, 2004, LARYNGOSCOPE, V114, P2085, DOI 10.1097/01.mlg.0000149439.43478.24
Cureoglu S, 2003, ARCH OTOLARYNGOL, V129, P626, DOI 10.1001/archotol.129.6.626
Curthoys IS, 2009, ACTA OTORHINOLARYNGO, V29, P179
Dai CF, 2006, HEARING RES, V213, P64, DOI 10.1016/j.heares.2005.11.011
Day AS, 2007, EAR HEARING, V28, P18, DOI 10.1097/01.aud.0000249765.76065.27
de Waele C, 2002, NEUROLOGY, V59, P1442
Dravis C, 2007, HEARING RES, V223, P93, DOI 10.1016/j.heares.2006.10.007
Fiorino F, 2012, OTOL NEUROTOL, V33, P629, DOI 10.1097/MAO.0b013e318248ee1f
GE XX, 1993, AM J OTOL, V14, P74
GE XX, 1995, SCANNING MICROSCOPY, V9, P283
Hashino E, 1997, BRAIN RES, V777, P75, DOI 10.1016/S0006-8993(97)00977-3
Hashino E, 1995, BRAIN RES, V704, P135, DOI 10.1016/0006-8993(95)01198-6
HAYASHIDA T, 1985, ARCH OTO-RHINO-LARYN, V242, P257, DOI 10.1007/BF00453548
Helling K, 2007, LARYNGOSCOPE, V117, P2244, DOI 10.1097/MLG.01b013e3181453a3c
Hirvonen TP, 2005, J NEUROPHYSIOL, V93, P643, DOI 10.1152/jn.00160.2004
IKEDA M, 1992, J LARYNGOL OTOL, V106, P93, DOI 10.1017/S0022215100118791
Imamura S, 2003, JARO, V4, P176, DOI 10.1007/s10162-002-2036-8
Karasawa T, 2010, CELL DEATH DIS, V1, DOI 10.1038/cddis.2010.80
Karasawa T, 2011, TOXICOL SCI, V124, P378, DOI 10.1093/toxsci/kfr196
King EB, 2011, JARO-J ASSOC RES OTO, V12, P741, DOI 10.1007/s10162-011-0280-5
Kuo SW, 2005, ANN OTO RHINOL LARYN, V114, P717
Lee JH, 2001, J NEUROSCI, V21, P9168
Leonard RB, 2002, BRAIN RES, V928, P8, DOI 10.1016/S0006-8993(01)03268-1
LINDEMAN HH, 1969, ACTA OTO-LARYNGOL, V67, P177, DOI 10.3109/00016486909125441
Liu WT, 2005, APPL ENVIRON MICROB, V71, P6453, DOI 10.1128/AEM.71.10.6453-6457.2005
Lopez I, 1997, INT J DEV NEUROSCI, V15, P447, DOI 10.1016/S0736-5748(96)00103-7
Lyford-Pike S, 2007, JARO-J ASSOC RES OTO, V8, P497, DOI 10.1007/s10162-007-0093-8
Lysakowski A, 2004, SPR HDB AUD, P57
Manzari L, 2010, EUR ARCH OTO-RHINO-L, V267, P1487, DOI 10.1007/s00405-010-1317-9
Marcotti W, 2005, J PHYSIOL-LONDON, V567, P505, DOI 10.1113/jphysiol.2005.085951
Myrdal SE, 2005, HEARING RES, V204, P156, DOI 10.1016/j.heares.2005.02.002
Nicolas MT, 2004, BRAIN RES, V1017, P46, DOI 10.1016/j.brainres.2004.05.012
OUDAR O, 1988, ANAT REC, V220, P328, DOI 10.1002/ar.1092200316
PARK JC, 1982, AM J OTOLARYNG, V3, P117, DOI 10.1016/S0196-0709(82)80042-2
Pender D.J., 1985, AM J OTOLARYNG, V6, P358
Plontke SK, 2007, LARYNGOSCOPE, V117, P1191, DOI 10.1097/MLG.0b013e318058a06b
Roehm P, 2007, HEARING RES, V230, P43, DOI 10.1016/j.heares.2007.04.005
Salt AN, 2012, HEARING RES, V283, P14, DOI 10.1016/j.heares.2011.11.012
Sandoval R, 1998, J AM SOC NEPHROL, V9, P167
Sandoval RM, 2000, AM J PHYSIOL-RENAL, V279, pF884
SCHUKNECHT H F, 1956, Laryngoscope, V66, P859, DOI 10.1288/00005537-195607000-00005
Steyger PS, 2003, JARO-J ASSOC RES OTO, V4, P565, DOI 10.1007/s10162-003-4002-5
Wang Q, 2009, JARO-J ASSOC RES OTO, V10, P205, DOI 10.1007/s10162-009-0160-4
WERSALL J, 1971, ARCH KLIN EXP OHR, V200, P1, DOI 10.1007/BF00302186
Xue JB, 2006, J NEUROPHYSIOL, V95, P171, DOI 10.1152/jn.00800.2005
YOSHIHARA T, 1994, ORL J OTO-RHINO-LARY, V56, P24
Zhai F, 2010, OTOL NEUROTOL, V31, P642, DOI 10.1097/MAO.0b013e3181dbb30e
NR 51
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2013
VL 298
BP 49
EP 59
DI 10.1016/j.heares.2013.01.010
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 120GP
UT WOS:000317159100006
PM 23380663
ER
PT J
AU Imennov, NS
Won, JH
Drennan, WR
Jameyson, E
Rubinstein, JT
AF Imennov, Nikita S.
Won, Jong Ho
Drennan, Ward R.
Jameyson, Elyse
Rubinstein, Jay T.
TI Detection of acoustic temporal fine structure by cochlear implant
listeners: Behavioral results and computational modeling
SO HEARING RESEARCH
LA English
DT Article
ID AUDITORY-NERVE RESPONSES; ELECTRICAL-STIMULATION; FREQUENCY-MODULATION;
SPEECH RECOGNITION; HARMONIC COMPLEXES; MUSIC PERCEPTION;
NORMAL-HEARING; CLINICAL-ASSESSMENT; PITCH PERCEPTION; STRUCTURE CUES
AB A test of within-channel detection of acoustic temporal fine structure (aTFS) cues is presented. Eight cochlear implant listeners (CI) were asked to discriminate between two Schroeder-phase (SP) complexes using a two-alternative, forced-choice task. Because differences between the acoustic stimuli are primarily constrained to their aTFS, successful discrimination reflects a combination of the subjects' perception of and the strategy's ability to deliver aTFS cues.
Subjects were mapped with single-channel Continuous Interleaved Sampling (CIS) and Simultaneous Analog Stimulation (SAS) strategies. To compare within- and across- channel delivery of aTFS cues, a 16-channel clinical HiRes strategy was also fitted. Throughout testing, SAS consistently outperformed the CIS strategy (p <= 0.002). For SP stimuli with F-0 = 50 Hz, the highest discrimination scores were achieved with the HiRes encoding, followed by scores with the SAS and the CIS strategies, respectively. At 200 Hz, single-channel SAS performed better than HiRes (p = 0.022), demonstrating that under a more challenging testing condition, discrimination performance with a single-channel analog encoding can exceed that of a 16-channel pulsatile strategy.
To better understand the intermediate steps of discrimination, a biophysical model was used to examine the neural discharges evoked by the SP stimuli. Discrimination estimates calculated from simulated neural responses successfully tracked the behavioral performance trends of single-channel CI listeners. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Imennov, Nikita S.; Rubinstein, Jay T.] Univ Washington, Dept Bioengn, Seattle, WA 98195 USA.
[Imennov, Nikita S.; Drennan, Ward R.; Jameyson, Elyse; Rubinstein, Jay T.] Univ Washington, VM Bloedel Hearing Res Ctr, Seattle, WA 98195 USA.
[Drennan, Ward R.; Jameyson, Elyse; Rubinstein, Jay T.] Univ Washington, Dept Otolaryngol Head & Neck Surg, Seattle, WA 98195 USA.
[Won, Jong Ho] Univ Tennessee, Hlth Sci Ctr, Dept Speech Pathol & Audiol, Knoxville, TN 37996 USA.
RP Imennov, NS (reprint author), Univ Washington, Dept Bioengn, Seattle, WA 98195 USA.
EM imennov@u.washington.edu; jwon1@uthsc.edu; drennan@u.washington.edu;
elysej@u.washington.edu; rubinj@u.washington.edu
FU NIH [R01-DC007525, P30-DC004661]; NIH training grant [F31-DC009755,
T32-DC005361]; Advanced Bionics Corp.
FX This research was supported by NIH grants R01-DC007525, P30-DC004661,
NIH training grants F31-DC009755 (JHW), and T32-DC005361 (NSI), as well
as by an educational fellowship from Advanced Bionics Corp. Jeff
Longnion programmed the original Schroeder-phase discrimination test.
CR ARNESEN AR, 1978, J COMP NEUROL, V178, P661, DOI 10.1002/cne.901780405
Brittan-Powell E., 2005, ACOUST SOC AM, V117, P2467
Clark P, 2009, IEEE T SIGNAL PROCES, V57, P4323, DOI 10.1109/TSP.2009.2025107
COVER T. M., 1991, WILEY SERIES TELECOM
Dayan P., 2001, THEORETICAL NEUROSCI
VANSTEVENINCK RD, 1995, PHILOS T R SOC B, V348, P321
Dooling RJ, 2002, J ACOUST SOC AM, V112, P748, DOI 10.1121/1.1494447
Dooling RJ, 2001, HEARING RES, V152, P159, DOI 10.1016/S0378-5955(00)00249-5
Dorman Michael F., 1996, Journal of the Acoustical Society of America, V99, P1174, DOI 10.1121/1.414600
Drennan WR, 2010, HEARING RES, V262, P1, DOI 10.1016/j.heares.2010.02.003
Drennan WR, 2008, JARO-J ASSOC RES OTO, V9, P138, DOI 10.1007/s10162-007-0107-6
Firszt J.B., 2003, HIRESOLUTION SOUND P
Gfeller K., 2002, COCHLEAR IMPLANTS IN, V3, P31, DOI DOI 10.1002/CII.50
Ghitza O, 2001, J ACOUST SOC AM, V110, P1628, DOI 10.1121/1.1396325
Gilbert G, 2006, J ACOUST SOC AM, V119, P2438, DOI 10.1121/1.2173522
Green D. M., 1966, SIGNAL DETECTION THE
Grewe J., 2007, PLOS ONE, V2
HAMMING RW, 1950, AT&T TECH J, V29, P147
Heinz MG, 2009, JARO-J ASSOC RES OTO, V10, P407, DOI 10.1007/s10162-009-0169-8
Heinz MG, 2001, NEURAL COMPUT, V13, P2273, DOI 10.1162/089976601750541804
Hopkins K, 2008, J ACOUST SOC AM, V123, P1140, DOI 10.1121/1.2824018
Houghton C, 2008, NEURAL COMPUT, V20, P1495, DOI 10.1162/neco.2007.10-06-350
Hu N, 2010, JARO-J ASSOC RES OTO, V11, P641, DOI 10.1007/s10162-010-0225-4
Huettel LG, 2004, IEEE T BIO-MED ENG, V51, P282, DOI 10.1109/TBME.2003.820395
Imennov NS, 2009, IEEE T BIO-MED ENG, V56, P2493, DOI 10.1109/TBME.2009.2016667
JORIS PX, 1992, J ACOUST SOC AM, V91, P215, DOI 10.1121/1.402757
Jung KH, 2010, ACTA OTO-LARYNGOL, V130, P716, DOI 10.3109/00016480903380521
Kang R, 2009, EAR HEARING, V30, P411, DOI 10.1097/AUD.0b013e3181a61bc0
Koch DB, 2004, AUDIOL NEURO-OTOL, V9, P214, DOI 10.1159/000078391
Kong YY, 2004, EAR HEARING, V25, P173, DOI 10.1097/01.AUD.0000120365.97792.2F
Kovacic D, 2009, J ACOUST SOC AM, V126, P762, DOI 10.1121/1.3158855
Kwon BJ, 2006, J ACOUST SOC AM, V120, pEL1, DOI 10.1121/1.2208152
Lauer AM, 2009, JARO-J ASSOC RES OTO, V10, P609, DOI 10.1007/s10162-009-0182-y
Li X, 2010, INT CONF ACOUST SPEE, P5462, DOI 10.1109/ICASSP.2010.5494908
LIBERMAN MC, 1984, J COMP NEUROL, V223, P163, DOI 10.1002/cne.902230203
Litvak L.M., 2003, METHOD SYSTEM CONVEY
Lorenzi C, 2006, P NATL ACAD SCI USA, V103, P18866, DOI 10.1073/pnas.0607364103
Machens CK, 2001, NEUROCOMPUTING, V38, P263, DOI 10.1016/S0925-2312(01)00382-4
Matsuoka AJ, 2000, HEARING RES, V149, P115, DOI 10.1016/S0378-5955(00)00172-6
MCDERMOTT HJ, 1994, J ACOUST SOC AM, V96, P155, DOI 10.1121/1.410475
Miller CA, 2001, HEARING RES, V151, P79, DOI 10.1016/S0300-2977(00)00082-6
Mino H, 2004, IEEE T BIO-MED ENG, V51, P13, DOI 10.1109/TBME.2003.820383
Moore BCJ, 1996, J ACOUST SOC AM, V100, P2320, DOI 10.1121/1.417941
Moore BCJ, 2008, JARO-J ASSOC RES OTO, V9, P399, DOI 10.1007/s10162-008-0143-x
Nelson PB, 2003, J ACOUST SOC AM, V113, P961, DOI 10.1121/1.1531983
Nie K., 2008, OTOHRINOLARYNGOLOGY
Nie K, 2008, INT CONF ACOUST SPEE, P4209
Nie KB, 2005, IEEE T BIO-MED ENG, V52, P64, DOI 10.1109/TBME.2004.839799
NIST, 2010, DIG LIB MATH FUNCT R
Nobbe A, 2007, ACTA OTO-LARYNGOL, V127, P1266, DOI 10.1080/00016480701253078
PAINTAL AS, 1965, J PHYSIOL-LONDON, V180, P20
PAINTAL AS, 1966, J PHYSIOL-LONDON, V184, P791
Qin MK, 2003, J ACOUST SOC AM, V114, P446, DOI 10.1121/1.1579009
Rieke F., 1997, SPIKES EXPLORING NEU
Runge-Samuelson CL, 2004, HEARING RES, V194, P1, DOI 10.1016/j.heares.2004.03.020
RUSHTON WAH, 1951, J PHYSIOL-LONDON, V115, P101
SABERI K, 1995, NATURE, V374, P537, DOI 10.1038/374537a0
SCHROEDE.MR, 1970, IEEE T INFORM THEORY, V16, P85, DOI 10.1109/TIT.1970.1054411
Shannon CE, 1949, MATH THEORY COMMUNIC
SHANNON RV, 1992, J ACOUST SOC AM, V91, P2156, DOI 10.1121/1.403807
Sheft S, 2008, J ACOUST SOC AM, V124, P562, DOI 10.1121/1.2918540
Sit JJ, 2007, IEEE T BIO-MED ENG, V54, P138, DOI 10.1109/TBME.2006.883819
Sit JJ, 2008, IEEE PERVAS COMPUT, V7, P40, DOI 10.1109/MPRV.2008.3
Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a
Spahr AJ, 2004, ARCH OTOLARYNGOL, V130, P624, DOI 10.1001/archotol.130.5.624
Thomson EE, 2005, NEURAL COMPUT, V17, P741, DOI 10.1162/0899766053429435
TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554
van Rossum MCW, 2001, NEURAL COMPUT, V13, P751
Victor JD, 2005, CURR OPIN NEUROBIOL, V15, P585, DOI 10.1016/j.conb.2005.08.002
White JA, 2000, TRENDS NEUROSCI, V23, P131, DOI 10.1016/S0166-2236(99)01521-0
Wilson BS, 2005, EAR HEARING, V26, p73S, DOI 10.1097/00003446-200508001-00009
WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0
Wilson BS, 2008, HEARING RES, V242, P3, DOI 10.1016/j.heares.2008.06.005
Wohlgemuth S, 2007, J NEUROPHYSIOL, V97, P3082, DOI 10.1152/jn.01235.2006
Won JH, 2012, J ACOUST SOC AM, V132, P1113, DOI 10.1121/1.4726013
Xu L, 2003, J ACOUST SOC AM, V114, P3024, DOI 10.1121/1.1623786
Zeng FG, 2005, P NATL ACAD SCI USA, V102, P2293, DOI 10.1073/pnas.0406460102
Zeng FG, 2004, J ACOUST SOC AM, V116, P1351, DOI 10.1121/1.1777938
Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5
NR 79
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2013
VL 298
BP 60
EP 72
DI 10.1016/j.heares.2013.01.004
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 120GP
UT WOS:000317159100007
PM 23333260
ER
PT J
AU Lina, IA
Lauer, AM
AF Lina, Ioan A.
Lauer, Amanda M.
TI Rapid measurement of auditory filter shape in mice using the auditory
brainstem response and notched noise
SO HEARING RESEARCH
LA English
DT Article
ID PSYCHOPHYSICAL TUNING CURVES; FREQUENCY-SELECTIVITY; HEARING THRESHOLDS;
CBA/CAJ MICE; MASKING; LEVEL; TONES; KHZ; NONLINEARITIES; SENSITIVITY
AB The notched noise method is an effective procedure for measuring frequency resolution and auditory filter shapes in both human and animal models of hearing. Briefly, auditory filter shape and bandwidth estimates are derived from masked thresholds for tones presented in noise containing widening spectral notches. As the spectral notch widens, increasingly less of the noise falls within the auditory filter and the tone becomes more detectible until the notch width exceeds the filter bandwidth. Behavioral procedures have been used for the derivation of notched noise auditory filter shapes in mice; however, the time and effort needed to train and test animals on these tasks renders a constraint on the widespread application of this testing method. As an alternative procedure, we combined relatively non-invasive auditory brainstem response (ABR) measurements and the notched noise method to estimate auditory filters in normal-hearing mice at center frequencies of 8, 11.2, and 16 kHz. A complete set of simultaneous masked thresholds for a particular tone frequency were obtained in about an hour. ABR-derived filter bandwidths broadened with increasing frequency, consistent with previous studies. The ABR notched noise procedure provides a fast alternative to estimating frequency selectivity in mice that is well-suited to high through-put or time-sensitive screening. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Lina, Ioan A.; Lauer, Amanda M.] Johns Hopkins Univ, Sch Med, Dept Otolaryngol HNS, Ctr Hearing & Balance, Baltimore, MD 21205 USA.
RP Lauer, AM (reprint author), Johns Hopkins Univ, Sch Med, Dept Otolaryngol HNS, Ctr Hearing & Balance, 515 Traylor,720 Rutland Ave, Baltimore, MD 21205 USA.
EM alauer2@jhmi.edu
FU National Organization for Hearing Research; NIH [DC005211, DC009353]
FX This research was supported by the National Organization for Hearing
Research and NIH grants DC005211 and DC009353. The funding sources had
no role in the study design; data collection, analysis, and
interpretation; writing of the report; or the decision to submit the
manuscript for publication. We thank Eric Young and Bradford May for
discussions regarding the project, and Judy Park and Jessica Stuyvenberg
for data collection assistance.
CR Allen PD, 2012, J NEUROSCI, V32, P2538, DOI 10.1523/JNEUROSCI.1958-11.2012
BORG E, 1983, ACTA OTO-LARYNGOL, V95, P19, DOI 10.3109/00016488309130911
Chambers AR, 2012, JARO-J ASSOC RES OTO, V13, P209, DOI 10.1007/s10162-011-0306-z
Cooper NP, 2006, J PHYSIOL-LONDON, V576, P49, DOI 10.1113/jphysiol.2006.114991
DOOLING RJ, 1985, J COMP PSYCHOL, V99, P226, DOI 10.1037/0735-7036.99.2.226
Dyson ML, 1998, J COMP PHYSIOL A, V182, P695, DOI 10.1007/s003590050214
Finneran JJ, 2002, J ACOUST SOC AM, V112, P322, DOI 10.1121/1.1488652
Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47
Gall MD, 2010, J COMP PHYSIOL A, V196, P559, DOI 10.1007/s00359-010-0543-3
GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
GLASBERG BR, 1982, J ACOUST SOC AM, V71, P946, DOI 10.1121/1.387575
Glasberg BR, 2000, J ACOUST SOC AM, V108, P2318, DOI 10.1121/1.1315291
GORGA MP, 1984, J ACOUST SOC AM, V76, P616, DOI 10.1121/1.391158
GREEN DM, 1981, J ACOUST SOC AM, V69, P1758, DOI 10.1121/1.385911
Henry KS, 2010, ANIM BEHAV, V80, P497, DOI 10.1016/j.anbehav.2010.06.012
Henry KS, 2010, FUNCT ECOL, V24, P614, DOI 10.1111/j.1365-2435.2009.01674.x
Hicks ML, 1999, J ACOUST SOC AM, V105, P326, DOI 10.1121/1.424526
Jennings SG, 2012, J ACOUST SOC AM, V132, P2497, DOI 10.1121/1.4746029
Joris PX, 2011, P NATL ACAD SCI USA, V108, P17516, DOI 10.1073/pnas.1105867108
Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009
Lauer AM, 2009, LAB ANIMAL, V38, P154, DOI 10.1038/laban0509-154
Lauer AM, 2011, JARO-J ASSOC RES OTO, V12, P329, DOI 10.1007/s10162-011-0262-7
Lemmonds D. W., 2012, J ACOUST SOC AM, V132, P1222
Lin J. Y., 1997, J ACOUST SOC AM, V101, P3125
MAREAN GC, 1993, HEARING RES, V71, P125, DOI 10.1016/0378-5955(93)90028-Y
May BJ, 2006, J ACOUST SOC AM, V120, P321, DOI 10.1121/1.2203593
May BJ, 2002, HEARING RES, V171, P142, DOI 10.1016/S0378-5955(02)00495-1
MOORE BCJ, 1983, J ACOUST SOC AM, V74, P750, DOI 10.1121/1.389861
NELSON DA, 1990, J ACOUST SOC AM, V88, P2143, DOI 10.1121/1.400111
Ngan EM, 2001, HEARING RES, V156, P44, DOI 10.1016/S0378-5955(01)00264-7
Niemiec A.J., 1990, J ACOUST SOC AM, V88, pS34, DOI 10.1121/1.2028966
Nousak JK, 2005, INT J AUDIOL, V44, P331, DOI 10.1080/14992020500060891
Oxenham AJ, 2006, J ACOUST SOC AM, V119, P444, DOI 10.1121/1.2141359
PATTERSO.RD, 1974, J ACOUST SOC AM, V55, P802, DOI 10.1121/1.1914603
Patterson R.D., 1982, J ACOUST SOC AM, V72, P1788
PENNER MJ, 1972, J MATH PSYCHOL, V9, P286, DOI 10.1016/0022-2496(72)90019-3
Popov VV, 1997, J ACOUST SOC AM, V102, P3795, DOI 10.1121/1.420142
Radziwon KE, 2009, J COMP PHYSIOL A, V195, P961, DOI 10.1007/s00359-009-0472-1
Rosen S, 1998, J ACOUST SOC AM, V103, P2539, DOI 10.1121/1.422775
ROSEN S, 1992, J ACOUST SOC AM, V92, P773, DOI 10.1121/1.403946
Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265
Ruggero MA, 2005, P NATL ACAD SCI USA, V102, P18614, DOI 10.1073/pnas.0509323102
Satheesh SV, 2012, HUM MOL GENET, V21, P3896, DOI 10.1093/hmg/dds217
Shera CA, 2002, P NATL ACAD SCI USA, V99, P3318, DOI 10.1073/pnas.032675099
Song L, 2008, JARO-J ASSOC RES OTO, V9, P464, DOI 10.1007/s10162-008-0140-0
Song L., 2007, J NEUROPHYSIOL, V99, P344, DOI 10.1152/jn.00983.2007
Stamataki S, 2006, HEARING RES, V221, P104, DOI 10.1016/j.heares.2006.07.014
STAPELLS DR, 1995, EAR HEARING, V16, P361, DOI 10.1097/00003446-199508000-00003
Stapells DR, 1997, AUDIOL NEURO-OTOL, V2, P257
Stapells DR, 2000, J SPEECH LANGUAGE PA, V42, P74
SUGA N, 1976, J COMP PHYSIOL, V106, P111
Tyler R.S., 1984, J ACOUST SOC AM, V81, P1566
Unoki M, 2006, J ACOUST SOC AM, V120, P1474, DOI 10.1121/1.2228539
VANZANTEN GA, 1984, AUDIOLOGY, V23, P253
Walter M., 2012, OPEN J ACOUST, V2, P34
WEBER DL, 1977, J ACOUST SOC AM, V62, P424, DOI 10.1121/1.381542
WENSTRUP JJ, 1984, J COMP PHYSIOL, V155, P91, DOI 10.1007/BF00610934
Yang YM, 2011, J PHYSIOL-LONDON, V589, P4209, DOI 10.1113/jphysiol.2011.208066
ZWISLOCKI J, 1960, J ACOUST SOC AM, V32, P1046, DOI 10.1121/1.1908276
NR 59
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2013
VL 298
BP 73
EP 79
DI 10.1016/j.heares.2013.01.002
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 120GP
UT WOS:000317159100008
PM 23347916
ER
PT J
AU Trujillo, M
Carrasco, MM
Razak, K
AF Trujillo, Michael
Carrasco, Maria Magdalena
Razak, Khaleel
TI Response properties underlying selectivity for the rate of frequency
modulated sweeps in the auditory cortex of the mouse
SO HEARING RESEARCH
LA English
DT Article
ID SENSORINEURAL HEARING-LOSS; TEMPORAL PROCESSING SPEED; TIME-VARYING
STIMULI; INFERIOR COLLICULUS; SOUND DURATION; NEURAL MECHANISMS;
VISUAL-CORTEX; COCHLEAR NUCLEUS; PALLID BAT; INHIBITORY MECHANISMS
AB This study focused on the response properties underlying selectivity for the rate of frequency modulated (FM) sweeps in the auditory cortex of anesthetized C57b1/6 (C57) mice. Linear downward FM sweeps with rates between 0.08 and 20 kHz/ms were tested. We show that at least two different response properties predict FM rate selectivity: sideband inhibition and duration tuning. Sideband inhibition was determined using the two-tone inhibition paradigm in which excitatory and inhibitory tones were presented with different delays. Sideband inhibition was present in the majority (88%, n = 53) of neurons. The spectrotemporal properties of sideband inhibition predicted rate selectivity and exclusion of the sideband from the sweep reduced/eliminated rate tuning. The second property predictive of sweep rate selectivity was duration tuning for tones. Theoretically, if a neuron is selective for the duration that a sweep spends in the excitatory frequency tuning curve, then rate selectivity will ensue. Duration tuning for excitatory tones was present and predicted rate selectivity in similar to 34% of neurons (n = 97). Both sideband inhibition and duration tuning predicted rate selectivity equally well, but sideband inhibition was present in a larger percentage of neurons suggesting that it is the dominant mechanism in the C57 mouse auditory cortex. Similar mechanisms shape sweep rate selectivity in the auditory system of bats and mice and movement-velocity selectivity in the visual system, suggesting similar solutions to analogous problems across sensory systems. This study provides baseline data on basic spectrotemporal processing in the C57 strain for elucidation of changes that occur in presbycusis. (C) 2013 Elsevier B.V. All rights reserved.
C1 Univ Calif Riverside, Neurosci Program, Riverside, CA 92521 USA.
[Razak, Khaleel] Univ Calif Riverside, Dept Psychol, Riverside, CA 92521 USA.
RP Razak, K (reprint author), Univ Calif Riverside, Dept Psychol, 900 Univ Ave, Riverside, CA 92521 USA.
EM khaleel@ucr.edu
FU Deafness Research Foundation; University of California, Riverside
FX We thank the members of the Razak lab for useful discussions of the data
and Dr. Peter Hickmott for feedback on an earlier version of the paper.
Funding for this study was provided by the Deafness Research Foundation
and University of California, Riverside.
CR Atencio CA, 2007, J NEUROPHYSIOL, V98, P2182, DOI 10.1152/jn.00394.2007
Atencio CA, 2008, J NEUROSCI, V28, P3897, DOI 10.1523/JNEUROSCI.5366-07.2008
Barkat TR, 2011, NAT NEUROSCI, V14, P1189, DOI 10.1038/nn.2882
Brand A, 2000, J NEUROPHYSIOL, V84, P1790
Brosch M, 1997, J NEUROPHYSIOL, V77, P923
Brown TA, 2009, J NEUROPHYSIOL, V101, P2017, DOI 10.1152/jn.90931.2008
CALFORD MB, 1995, J NEUROPHYSIOL, V73, P1876
Caspary DM, 2008, J EXP BIOL, V211, P1781, DOI 10.1242/jeb.013581
Casseday JH, 2000, J NEUROPHYSIOL, V84, P1475
CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341
Chen GD, 1998, HEARING RES, V122, P142, DOI 10.1016/S0378-5955(98)00103-8
Cruikshank SJ, 2001, NEUROSCIENCE, V105, P553, DOI 10.1016/S0306-4522(01)00226-3
DUYSEN J, 1985, VISION RES, V25, P171, DOI 10.1016/0042-6989(85)90110-5
DUYSENS J, 1985, J NEUROPHYSIOL, V54, P1068
Duysens J, 1996, VISION RES, V36, P3243, DOI 10.1016/0042-6989(96)00040-5
Ehrlich D, 1997, J NEUROPHYSIOL, V77, P2360
ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H
Felsheim C, 1996, HEARING RES, V98, P137, DOI 10.1016/0378-5955(96)00078-0
FENG AS, 1990, PROG NEUROBIOL, V34, P313, DOI 10.1016/0301-0082(90)90008-5
Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3
Fuzessery ZM, 1996, J NEUROPHYSIOL, V76, P1059
Fuzessery ZM, 1999, HEARING RES, V137, P137, DOI 10.1016/S0378-5955(99)00133-1
Fuzessery ZM, 2006, J NEUROPHYSIOL, V96, P1320, DOI 10.1152/jn.00021.2006
Galazyuk AV, 1997, J COMP PHYSIOL A, V180, P301, DOI 10.1007/s003590050050
Galindo-Leon EE, 2009, NEURON, V62, P705, DOI 10.1016/j.neuron.2009.05.001
Gittelman JX, 2011, J NEUROPHYSIOL, V106, P2399, DOI 10.1152/jn.00250.2011
Gittelman JX, 2011, J NEUROSCI, V31, P2576, DOI 10.1523/JNEUROSCI.5112-10.2011
Godey B, 2005, J NEUROPHYSIOL, V94, P1299, DOI 10.1152/jn.00950.2004
GOOLER DM, 1992, J NEUROPHYSIOL, V67, P1
Gordon M, 1998, HEARING RES, V122, P97, DOI 10.1016/S0378-5955(98)00087-2
Hall DA, 2000, HUM BRAIN MAPP, V10, P107, DOI 10.1002/1097-0193(200007)10:3<107::AID-HBM20>3.0.CO;2-8
Happel MFK, 2010, J NEUROSCI, V30, P11114, DOI 10.1523/JNEUROSCI.0689-10.2010
Harper NS, 2004, NATURE, V430, P682, DOI 10.1038/nature02768
He JF, 1997, J NEUROSCI, V17, P2615
HEIL P, 1992, HEARING RES, V63, P135, DOI 10.1016/0378-5955(92)90081-W
HENRY KR, 1980, AUDIOLOGY, V19, P369
Holmstrom LA, 2010, J NEUROSCI, V30, P802, DOI 10.1523/JNEUROSCI.1964-09.2010
HUNTER KP, 1987, HEARING RES, V30, P207, DOI 10.1016/0378-5955(87)90137-7
Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X
Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377
Kaur S, 2005, NEUROSCIENCE, V134, P1033, DOI 10.1016/j.neuroscience.2005.04.052
Lee HJ, 2002, HEARING RES, V174, P64, DOI 10.1016/S0378-5955(02)00639-1
Linden JF, 2003, J NEUROPHYSIOL, V90, P2660, DOI 10.1152/jn.00751.2002
Linden JF, 2003, CEREB CORTEX, V13, P83, DOI 10.1093/cercor/13.1.83
Liu RC, 2006, BRAIN RES, V1091, P217, DOI 10.1016/j.brainres.2006.02.030
del Campo HNM, 2012, HEARING RES, V294, P31, DOI 10.1016/j.heares.2012.08.017
Mataga N, 2001, J NEUROSCI, V21, P9724
MCMULLEN NT, 1993, BRAIN RES, V620, P317, DOI 10.1016/0006-8993(93)90173-K
MENDELSON JR, 1985, BRAIN RES, V327, P331, DOI 10.1016/0006-8993(85)91530-6
Mendelson JR, 2001, HEARING RES, V158, P84, DOI 10.1016/S0378-5955(01)00294-5
Mendelson JR, 2004, HEARING RES, V191, P21, DOI 10.1016/j.heares.2004.01.010
MENDELSON JR, 1993, EXP BRAIN RES, V94, P65
MIDDLEBROOKS JC, 1983, J NEUROSCI, V3, P203
MIKAELIAN DO, 1979, LARYNGOSCOPE, V89, P1
Miller LM, 2001, NEURON, V32, P151, DOI 10.1016/S0896-6273(01)00445-7
MOLLER AR, 1974, J ACOUST SOC AM, V55, P631, DOI 10.1121/1.1914574
Morishita H, 2010, SCIENCE, V330, P1238, DOI 10.1126/science.1195320
Nelken I, 2000, EUR J NEUROSCI, V12, P549, DOI 10.1046/j.1460-9568.2000.00935.x
Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226
O'Connor DH, 2009, NATURE, V461, P923, DOI 10.1038/nature08539
Ohl FW, 1999, LEARN MEMORY, V6, P347
Ouda L, 2008, EXP GERONTOL, V43, P782, DOI 10.1016/j.exger.2008.04.001
PATEL HH, 1978, J PHYSIOL-LONDON, V284, pP113
PHILLIPS DP, 1985, EXP BRAIN RES, V58, P443
POON PWF, 1991, EXP BRAIN RES, V83, P598
Razak KA, 2009, J NEUROPHYSIOL, V102, P1366, DOI 10.1152/jn.00334.2009
Razak KA, 2006, J NEUROPHYSIOL, V96, P1303, DOI 10.1152/jn.00020.2006
Razak KA, 2008, J NEUROSCI, V28, P9806, DOI 10.1523/JNEUROSCI.1293-08.2008
Razak KA, 2005, J NEUROPHYSIOL, V94, P3573, DOI 10.1152/jn.00816.2004
Ricketts C, 1998, HEARING RES, V123, P27, DOI 10.1016/S0378-5955(98)00086-0
RUGGERO MA, 1992, J NEUROPHYSIOL, V68, P1087
Sadagopan S, 2010, J NEUROSCI, V30, P7314, DOI 10.1523/JNEUROSCI.5072-09.2010
SHAMMA SA, 1993, J NEUROPHYSIOL, V69, P367
SHOFNER WP, 1985, J NEUROPHYSIOL, V54, P917
Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315
Stiebler I, 1997, J COMP PHYSIOL A, V181, P559, DOI 10.1007/s003590050140
SUGA N, 1965, NATURE, V206, P890, DOI 10.1038/206890a0
Sugiyama S, 2008, CELL, V134, P508, DOI 10.1016/j.cell.2008.05.054
Sutter ML, 2003, J NEUROPHYSIOL, V90, P2629, DOI 10.1152/jn.00722.2002
Syka J, 2005, HEARING RES, V206, P177, DOI 10.1016/j.heares.2005.01.013
Taberner AM, 2005, J NEUROPHYSIOL, V93, P557, DOI 10.1152/jn.00574.2004
Tian B., 1994, SURGERY, V71
Tian B, 2004, J NEUROPHYSIOL, V92, P2993, DOI 10.1152/jn.00472.2003
Trujillo M, 2011, J NEUROPHYSIOL, V106, P2825, DOI 10.1152/jn.00480.2011
Washington SD, 2008, J NEUROPHYSIOL, V100, P3285, DOI 10.1152/jn.90442.2008
Wehr M, 2005, NEURON, V47, P437, DOI 10.1016/j.neuron.2005.06.009
Wetzel W, 1998, BEHAV BRAIN RES, V91, P29, DOI 10.1016/S0166-4328(97)00099-5
WHITFIEL.IC, 1965, J NEUROPHYSIOL, V28, P655
WILLOTT JF, 1986, J NEUROPHYSIOL, V56, P391
WILLOTT JF, 1993, J COMP NEUROL, V329, P402, DOI 10.1002/cne.903290310
Wu GK, 2008, NEURON, V58, P132, DOI 10.1016/j.neuron.2008.01.035
Zhang LI, 2003, NATURE, V424, P201, DOI 10.1038/nature01796
ZURITA P, 1994, NEUROSCI RES, V19, P303, DOI 10.1016/0168-0102(94)90043-4
NR 93
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2013
VL 298
BP 80
EP 92
DI 10.1016/j.heares.2012.12.013
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 120GP
UT WOS:000317159100009
PM 23340378
ER
PT J
AU Grondin, Y
Cotanche, DA
Manneberg, O
Molina, R
Trevino-Villarreal, JH
Sepulveda, R
Clifford, R
Bortoni, ME
Forsberg, S
LaBrecque, B
Altshul, L
Brain, JD
Jackson, RL
Rogers, RA
AF Grondin, Yohann
Cotanche, Douglas A.
Manneberg, Otto
Molina, Ramon
Trevino-Villarreal, J. Humberto
Sepulveda, Rosalinda
Clifford, Royce
Bortoni, Magda E.
Forsberg, Scott
LaBrecque, Brian
Altshul, Larisa
Brain, Joseph D.
Jackson, Ronald L.
Rogers, Rick A.
TI Pulmonary delivery of D-methionine is associated with an increase in
ALCAR and glutathione in cochlear fluids
SO HEARING RESEARCH
LA English
DT Article
ID INDUCED HEARING-LOSS; ACETYL-L-CARNITINE; INDUCED OTOTOXICITY;
N-ACETYLCYSTEINE; ACOUSTIC TRAUMA; DRUG-DELIVERY; FREE-RADICALS;
L-CYSTEINE; INNER-EAR; IN-VIVO
AB In animals, hearing loss resulting from cochlear mechanosensory cell damage can be mitigated by antioxidants such as D-methionine (D-met) and acetyl-L-carnitine (ALCAR). The systemic routes of administration of these compounds, that must of necessity transit trough the cochlear fluids, may affect the antioxidant levels in the cochlea and the resulting oto-protective effect. In this study, we analyzed the pharmacokinetics of [C-14]D-met in the cochlea and four other tissues after intratracheal (IT), intranasal (IN), and oral by gavage (OG) administration and compared it to intravenous administration (IV). We then analyzed the effect of these four routes on the antioxidant content of the cochlear fluids after D-met or ALCAR administration, by liquid chromatography/mass spectrometry. Our results showed that the concentration of methionine and ALCAR in cochlear fluids significantly increased after their respective systemic administration. Interestingly, D-met administration also contributed to an increase of ALCAR. Our results also showed that the delivery routes differently affected the bioavailability of administered [C-14]D-met as well as the concentrations of methionine, ALCAR and the ratio of oxidized to reduced glutathione. Overall, pulmonary delivery via IT administration achieved high concentrations of methionine, ALCAR, and oxidative-related metabolites in cochlear fluids, in some cases surpassing IV administration, while IN route appeared to be the least efficacious. To our knowledge, this is the first report of the direct measurements of antioxidant levels in cochlear fluids after their systemic administration. This report also demonstrates the validity of the pulmonary administration of antioxidants and highlights the different contributions of D-met and ALCAR allowing to further investigate their impact on oxidative stress in the cochlear microenvironment. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Grondin, Yohann; Cotanche, Douglas A.; Molina, Ramon; Trevino-Villarreal, J. Humberto; Sepulveda, Rosalinda; Clifford, Royce; Bortoni, Magda E.; Forsberg, Scott; LaBrecque, Brian; Altshul, Larisa; Brain, Joseph D.; Rogers, Rick A.] Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Mol & Integrat Physiol Sci Program, Boston, MA 02115 USA.
[Manneberg, Otto] Sci Life Lab, S-17121 Solna, Sweden.
[Clifford, Royce; Jackson, Ronald L.] USN, Med Ctr, Dept Otolaryngol Head & Neck Surg, San Diego, CA 92134 USA.
RP Rogers, RA (reprint author), Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Mol & Integrat Physiol Sci Program, 665 Huntington Ave, Boston, MA 02115 USA.
EM rogers@hsph.harvard.edu
RI Manneberg, Otto/O-7012-2014
OI Manneberg, Otto/0000-0002-4720-2756
FU Office of Naval Research [N000140911104]; Hellmuth Hertz Foundation
FX The authors would like to gratefully acknowledge funding from the Office
of Naval Research, award# N000140911104 awarded to Dr. Rogers. O.M.
acknowledges funding from the Hellmuth Hertz Foundation. The authors
would also like to gratefully thank Tom Donaghey for his assistance with
the rat assays. We also would like to thank Martin Slade for a critical
review of the statistical methodology.
CR Alagic Z, 2011, ACTA OTO-LARYNGOL, V131, P802, DOI 10.3109/00016489.2011.564652
Ballatori N, 2009, MOL ASPECTS MED, V30, P13, DOI 10.1016/j.mam.2008.08.004
Bielefeld EC, 2007, ACTA OTO-LARYNGOL, V127, P914, DOI 10.1080/00016480601110188
Bivas-Benita M, 2005, EUR J PHARM BIOPHARM, V61, P214, DOI 10.1016/j.ejpb.2005.04.009
Borchers H.W., 2012, PRACMA PRACTICAL NUM
Brain JD, 2007, DIABETES TECHNOL THE, V9, pS4, DOI 10.1089/dia.2007.0228
Burrin DG, 2007, CURR OPIN CLIN NUTR, V10, P63, DOI 10.1097/MCO.0b013e3280115d36
BYRON PR, 1994, J AEROSOL MED, V7, P49, DOI 10.1089/jam.1994.7.49
Campbell K, 2011, HEARING RES, V282, P138, DOI 10.1016/j.heares.2011.08.003
Campbell KCM, 2007, HEARING RES, V226, P92, DOI 10.1016/j.heares.2006.11.012
Choi WS, 2001, P NATL ACAD SCI USA, V98, P11103, DOI 10.1073/pnas.201413798
Circu ML, 2008, FREE RADICAL RES, V42, P689, DOI 10.1080/10715760802317663
Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5
Clifford RE, 2011, OTOLARYNG HEAD NECK, V145, P999, DOI 10.1177/0194599811414496
Coleman JKM, 2007, HEARING RES, V226, P104, DOI 10.1016/j.heares.2006.08.008
DENEKE SM, 1989, AM J PHYSIOL, V257, pL163
Dever JT, 2006, DRUG METAB DISPOS, V34, P2036, DOI 10.1124/dmd.106.012104
Evans AM, 2003, CLIN PHARMACOKINET, V42, P941, DOI 10.2165/00003088-200342110-00002
Ewert DL, 2012, HEARING RES, V285, P29, DOI 10.1016/j.heares.2012.01.013
Fox J, 2011, R COMPANION APPL REG
FREEMAN DM, 1994, HEARING RES, V79, P197, DOI 10.1016/0378-5955(94)90141-4
Goo MJ, 2012, ARCH PHARM RES, V35, P145, DOI 10.1007/s12272-012-0116-9
Gunes D, 2011, CHEMOTHERAPY, V57, P186, DOI 10.1159/000323621
Halsted C.H., 2012, INT J HEPATOL, V2012
Hasegawa H, 2005, J NUTR, V135, P2001
HOFFMAN DW, 1987, HEARING RES, V31, P217, DOI 10.1016/0378-5955(87)90190-0
Hothorn T, 2008, BIOMETRICAL J, V50, P346, DOI 10.1002/bimj.200810425
Jackson R., 2012, ASS RES OTOLARYNGOLO, V35, P729
Jeulin C, 1996, HUM REPROD UPDATE, V2, P87, DOI 10.1093/humupd/2.2.87
Kopke R, 2005, ACTA OTO-LARYNGOL, V125, P235, DOI 10.1080/00016480410023038
Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3
Kopke RD, 2002, LARYNGOSCOPE, V112, P1515, DOI 10.1097/00005537-200209000-00001
Kopke RD, 2007, HEARING RES, V226, P114, DOI 10.1016/j.heares.2006.10.008
Krajcovicova-Kudlackova M, 2000, PHYSIOL RES, V49, P399
Kramer S, 2006, J AM ACAD AUDIOL, V17, P265, DOI 10.3766/jaaa.17.4.5
Labiris NR, 2003, BRIT J CLIN PHARMACO, V56, P588, DOI 10.1046/j.1365-2125.2003.01892.x
Lin CY, 2010, HEARING RES, V269, P42, DOI 10.1016/j.heares.2010.07.005
Monostori P, 2009, J CHROMATOGR B, V877, P3331, DOI 10.1016/j.jchromb.2009.06.016
Naviaux RK, 2008, CANCER BIOL THER, V7, P1191
Newman S.P, 2004, AM J DRUG DELIV, V2, P101, DOI 10.2165/00137696-200402020-00003
Obeid R, 2006, FEBS LETT, V580, P2994, DOI 10.1016/j.febslet.2006.04.088
Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846
Op de Beeck Ken, 2011, Hear Res, V281, P18, DOI 10.1016/j.heares.2011.07.002
Patton John S, 2004, Proc Am Thorac Soc, V1, P338, DOI 10.1513/pats.200409-049TA
Patton JS, 2007, NAT REV DRUG DISCOV, V6, P67, DOI 10.1038/nrd2153
PIERSON MG, 1981, HEARING RES, V4, P79, DOI 10.1016/0378-5955(81)90037-X
Pinheiro J, 2012, NLME LINEAR NONLINEA
Poirrier AL, 2010, CURR MED CHEM, V17, P3591
Pollard K. S., 2012, MULTTEST RESAMPLING
Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4
R Core Team, 2012, R LANG ENV STAT COMP
Rani PJA, 2001, EXP GERONTOL, V36, P1713, DOI 10.1016/S0531-5565(01)00116-4
Rebouche CJ, 2004, ANN NY ACAD SCI, V1033, P30, DOI 10.1196/annals.1320.003
REBOUCHE CJ, 1980, BIOCHIM BIOPHYS ACTA, V630, P22, DOI 10.1016/0304-4165(80)90133-6
Rebrin I, 2008, ADV DRUG DELIVER REV, V60, P1545, DOI 10.1016/j.addr.2008.06.001
Rybak LP, 2007, HEARING RES, V226, P157, DOI 10.1016/j.heares.2006.09.015
Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4
Shi XR, 2011, HEARING RES, V282, P10, DOI 10.1016/j.heares.2011.08.006
SILVERMAN BW, 1981, J ROY STAT SOC B MET, V43, P97
Southern Illinois University; Department of Defense, 2011, PHAS 2 CLIN TRIAL D
Vaz FM, 2002, BIOCHEM J, V361, P417, DOI 10.1042/0264-6021:3610417
VOGT W, 1995, FREE RADICAL BIO MED, V18, P93, DOI 10.1016/0891-5849(94)00158-G
Vuyyuri SB, 2008, CLIN CANCER RES, V14, P2161, DOI 10.1158/1078-0432.CCR-07-1954
Vyas TK, 2006, CRIT REV THER DRUG, V23, P319
Wu GY, 2004, J NUTR, V134, P489
Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761
Yamashita D, 2005, NEUROSCIENCE, V134, P633, DOI 10.1016/j.neuroscience.2005.04.015
NR 67
TC 2
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2013
VL 298
BP 93
EP 103
DI 10.1016/j.heares.2012.12.011
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 120GP
UT WOS:000317159100010
PM 23296212
ER
PT J
AU Mulders, WHAM
Robertson, D
AF Mulders, W. H. A. M.
Robertson, D.
TI Development of hyperactivity after acoustic trauma in the guinea pig
inferior colliculus
SO HEARING RESEARCH
LA English
DT Article
ID DORSAL COCHLEAR NUCLEUS; SPONTANEOUS NEURAL ACTIVITY; THRESHOLD SHIFT;
TINNITUS; CHINCHILLAS; PATTERNS; EXPOSURE
AB The time of onset of hyperactivity (increased spontaneous firing rates) was investigated by single neuron recording in the inferior colliculus (IC) of guinea pigs subjected to unilateral acoustic trauma (exposure to a loud 10 kHz tone). Hyperactivity was present by 12 h post acoustic trauma whereas data obtained within approximately 4 h of the cessation of acoustic trauma found no evidence of hyperactivity. These data suggest that hyperactivity in the IC begins at some time between 4 and 12 h post trauma and is a relatively rapid plastic event beginning within hours rather than days post cochlear trauma. This is consistent with results reported in the cat auditory cortex (Norena and Eggermont, 2003). Hyperactivity did not show any further systematic increase between 12 h and up to 2 weeks post acoustic trauma. At recovery times of 12 and 24 h hyperactivity was widespread across most regions of the IC but at longer recovery times, it became progressively more restricted to ventral regions corresponding to the regions of the cochlea where there was persistent damage. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Mulders, W. H. A. M.; Robertson, D.] Univ Western Australia, Auditory Lab, Sch Anat Physiol & Human Biol, Crawley, WA 6009, Australia.
RP Robertson, D (reprint author), Univ Western Australia, Auditory Lab, Sch Anat Physiol & Human Biol, M311,35 Stirling Highway, Crawley, WA 6009, Australia.
EM don.robertson@uwa.edu.au
FU Action on Hearing Loss (UK); Medical Health and Research Infrastructure
Fund (WA); Neurotrauma Research Program; University of Western Australia
FX Supported by grants from Action on Hearing Loss (UK), the Medical Health
and Research Infrastructure Fund (WA), the Neurotrauma Research Program
and the University of Western Australia. The authors are grateful to an
anonymous referee of an earlier paper for raising the central issue
addressed in this work.
CR Bauer CA, 2008, J NEUROSCI RES, V86, P2564, DOI 10.1002/jnr.21699
Brozoski TJ, 2007, HEARING RES, V228, P168, DOI 10.1016/j.heares.2007.02.003
Brozoski TJ, 2002, J NEUROSCI, V22, P2383
CODY AR, 1980, HEARING RES, V3, P3, DOI 10.1016/0378-5955(80)90004-0
Dong SY, 2010, EUR J NEUROSCI, V31, P1616, DOI 10.1111/j.1460-9568.2010.07183.x
JOHNSTONE JR, 1979, J ACOUST SOC AM, V65, P254, DOI 10.1121/1.382244
Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038
Kaltenbach JA, 2005, HEARING RES, V206, P200, DOI 10.1016/j.heares.2005.02.013
Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6
Kaltenbach JA, 2008, AM J AUDIOL, V17, pS148, DOI 10.1044/1059-0889(2008/08-0004)
Komiya H, 2000, ACTA OTO-LARYNGOL, V120, P750
LIBERMAN MC, 1984, HEARING RES, V16, P33, DOI 10.1016/0378-5955(84)90023-6
Manzoor NF, 2013, HEARING RES, V295, P114, DOI 10.1016/j.heares.2012.04.003
Moore BCJ, 2010, HEARING RES, V261, P51, DOI 10.1016/j.heares.2010.01.003
Mulders WHAM, 2009, NEUROSCIENCE, V164, P733, DOI 10.1016/j.neuroscience.2009.08.036
Mulders WHAM, 2011, NEUROSCIENCE, V192, P753, DOI 10.1016/j.neuroscience.2011.06.046
Mulders WHAM, 2011, J COMP NEUROL, V519, P2637, DOI 10.1002/cne.22644
Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156
Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9
Robertson D., 2013, HEARING RES, V295, P114
SALVI RJ, 1978, EXP BRAIN RES, V32, P301
Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1
Vogler DP, 2011, J NEUROSCI, V31, P6639, DOI 10.1523/JNEUROSCI.6538-10.2011
NR 23
TC 13
Z9 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2013
VL 298
BP 104
EP 108
DI 10.1016/j.heares.2012.12.008
PG 5
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 120GP
UT WOS:000317159100011
PM 23276730
ER
PT J
AU Saoji, AA
Landsberger, DM
Padilla, M
Litvak, LM
AF Saoji, Aniket A.
Landsberger, David M.
Padilla, Monica
Litvak, Leonid M.
TI Masking patterns for monopolar and phantom electrode stimulation in
cochlear implants
SO HEARING RESEARCH
LA English
DT Article
ID MASKED EXCITATION PATTERNS; ELECTRICAL-STIMULATION; PITCH
DISCRIMINATION; TUNING CURVES; HEARING; USERS; RECIPIENTS; LISTENERS;
CHANNELS; MANIPULATIONS
AB Phantom electrode (PE) stimulation consists of out-of-phase stimulation of two electrodes. When presented at the apex of the electrode array, phantom stimulation is known to produce a lower pitch sensation than monopolar (MP) stimulation on the most apical electrode. The ratio of the current between the primary electrode (PEL) and the compensating electrode (CEL) is represented by the coefficient sigma, which ranges from 0 (monopolar) to 1 (full bipolar). The exact mechanism by which PE stimulation produces a lower pitch sensation is unclear. In the present study, unmasked and masked thresholds were obtained using a forward masking paradigm to estimate the spread of current for MP and PE stimulation. Masked thresholds were measured for two phantom electrode configurations (1) PEL = 4, CEL = 5 (lower pitch phantom) and (2) PEL = 4, CEL = 3 (higher pitch phantom). The unmasked thresholds were subtracted from the masked thresholds to obtain masking patterns which were normalized to their peak. The masking patterns reveal (1) differences in the spread of excitation that are consistent with the direction of pitch shift produced by PE stimulation, and (2) narrower spread of electrical excitation for PE stimulation relative to MP stimulation. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Saoji, Aniket A.; Litvak, Leonid M.] Adv Bion LLC, Res & Technol Grp, Valencia, CA 91355 USA.
[Landsberger, David M.; Padilla, Monica] House Ear Res Inst, Los Angeles, CA 90057 USA.
RP Saoji, AA (reprint author), Adv Bion LLC, Res & Technol Grp, 28515 Westinghouse Pl, Valencia, CA 91355 USA.
EM AniketS@advancedbionics.com; DLandsberger@hei.org; MPadilla@hei.org;
LeonidL@advancedbionics.com
FU NIDCD [R01-DC12152, R01-DC-001526, R03-DC-010064]
FX The authors would like to thank the cochlear implant patients for their
patience and participation in this study. This work was supported by
NIDCD Grants R01-DC12152, R01-DC-001526, and R03-DC-010064.
CR Berenstein CK, 2008, EAR HEARING, V29, P250
Boex C, 2003, J ACOUST SOC AM, V114, P2058, DOI 10.1121/1.1610452
Bonham B.H., 2008, HEAR RES
Chatterjee M, 1998, J ACOUST SOC AM, V103, P2565, DOI 10.1121/1.422777
Chatterjee M, 2006, JARO-J ASSOC RES OTO, V7, P15, DOI 10.1007/s10162-005-0019-2
Cohen L T, 1996, Audiol Neurootol, V1, P278
Cohen LT, 2001, HEARING RES, V155, P63, DOI 10.1016/S0378-5955(01)00248-9
Dingemanse JG, 2006, EAR HEARING, V27, P645, DOI 10.1097/01.aud.0000246683.29611.1b
Donaldson GS, 2005, J ACOUST SOC AM, V118, P623, DOI 10.1121/1.1937362
Dorman MF, 1997, AM J OTOL, V18, pS113
Dorman MF, 1998, EAR HEARING, V19, P162, DOI 10.1097/00003446-199804000-00008
Firszt JB, 2007, OTOL NEUROTOL, V28, P629, DOI 10.1097/01.mao.0000281803.36574.bc
Girzon G., 1987, THESIS MIT MA
Hibbert DB, 2001, J ELECTROCHEM SOC, V148, pE1, DOI 10.1149/1.1344543
Hughes ML, 2009, J ACOUST SOC AM, V125, P247, DOI 10.1121/1.3035842
Koch DB, 2007, EAR HEARING, V28, p38S, DOI 10.1097/AUD.0b013e31803150de
Kwon BJ, 2006, J ACOUST SOC AM, V119, P2994, DOI 10.1121/1.2184128
Kwon BJ, 2006, J ACOUST SOC AM, V120, pEL1, DOI 10.1121/1.2208152
Landsberger D, 2011, J ACOUST SOC AM, V130, P1559, DOI 10.1121/1.3613938
Landsberger DM, 2012, HEARING RES, V284, P16, DOI 10.1016/j.heares.2011.12.009
Landsberger DM, 2009, HEARING RES, V254, P34, DOI 10.1016/j.heares.2009.04.007
LIM HH, 1989, J ACOUST SOC AM, V86, P971, DOI 10.1121/1.398732
Litvak LM, 2007, J ACOUST SOC AM, V122, P967, DOI 10.1121/1.2749414
Macherey O, 2012, J ACOUST SOC AM, V131, P2225, DOI 10.1121/1.3677260
Macherey O, 2011, JARO-J ASSOC RES OTO, V12, P233, DOI 10.1007/s10162-010-0248-x
MCDERMOTT HJ, 1994, J ACOUST SOC AM, V96, P155, DOI 10.1121/1.410475
MOORE BCJ, 1978, J ACOUST SOC AM, V63, P524, DOI 10.1121/1.381752
NELSON DA, 1984, J ACOUST SOC AM, V75, P1570, DOI 10.1121/1.390866
Pfingst BE, 1997, HEARING RES, V112, P247, DOI 10.1016/S0378-5955(97)00122-6
ROM DM, 1990, BIOMETRIKA, V77, P663, DOI 10.1093/biomet/77.3.663
Saoji AA, 2010, EAR HEARING, V31, P693, DOI 10.1097/AUD.0b013e3181e1d15e
SHANNON RV, 1983, HEARING RES, V12, P1, DOI 10.1016/0378-5955(83)90115-6
Skinner MW, 2007, ANN OTO RHINOL LARYN, V116, P2
Srinivasan AG, 2010, HEARING RES, V270, P89, DOI 10.1016/j.heares.2010.09.004
TONG YC, 1986, J ACOUST SOC AM, V79, P1958, DOI 10.1121/1.393203
TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554
Tykocinski M, 2005, OTOL NEUROTOL, V26, P948, DOI 10.1097/01.mao.0000185056.99888.f3
Wilson B., 1994, 7 Q PROGR REPORT SPE
Wilson B.S., 1993, COCHLEAR IMPLANTS AU, P35
NR 39
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2013
VL 298
BP 109
EP 116
DI 10.1016/j.heares.2012.12.006
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 120GP
UT WOS:000317159100012
PM 23299125
ER
PT J
AU Zenner, HP
Vonthein, R
Zenner, B
Leuchtweis, R
Plontke, SK
Torka, W
Pogge, S
Birbaumer, N
AF Zenner, Hans-Peter
Vonthein, Reinhard
Zenner, Birgit
Leuchtweis, Regina
Plontke, Stefan K.
Torka, Waldemar
Pogge, Sandra
Birbaumer, Niels
TI Standardized tinnitus-specific individual cognitive-behavioral therapy:
A controlled outcome study with 286 tinnitus patients
SO HEARING RESEARCH
LA English
DT Article
ID RETRAINING THERAPY; MANAGEMENT; SENSITIZATION; ANNOYANCE; MODEL
AB Background: Pharmacological treatment of tinnitus cannot be considered well established. Thus, reducing tinnitus severity through behavioral therapy is emerging as a key goal.
Methods: A total of 286 patients suffering from persistent and stable tinnitus for four months or longer participated in this controlled clinical multicenter study. The study investigated the efficacy and safety of a standardized treatment involving individual cognitive-behavioral therapy (CBT). Controls were 120 patients waiting to be treated. Therapy was standardized using manualized procedures within the setting of a specifically designed disease management program. The primary outcome measure was the tinnitus change score using an 8-point numeric verbal rating scale. Secondary outcome measures were tinnitus severity as determined by the tinnitus questionnaire score as well as the tinnitus loudness score and the tinnitus annoyance score using 6- and 8-point numeric verbal rating scales, respectively. Following a significant multivariate rank test, these four validated outcome measures were tested in the order given.
Results: The primary outcome measure, tinnitus change score, showed an efficacy of treatment with an odds ratio of 3.4 (95% confidence interval, 2.6-4.5). Of the treated patients, 84% showed a tinnitus change score improvement, but only 22% of controls did. The secondary outcome measures of tinnitus questionnaire score, loudness score, and annoyance score improved in the treatment group significantly more than in the control group. In the therapy group, the tinnitus questionnaire score was reduced by 50% from a median of 27 to 13.5; in the control group, no change in median tinnitus questionnaire score was observed. The multivariate endpoint of the primary and secondary outcome measures differed significantly (P < 0.0001) between treatment and control groups. The same was true when univariate scores were considered.
Conclusions: A structured tinnitus-specific CBT using standardized tinnitus-specific interventions can be an effective individual therapy for the treatment of patients suffering from tinnitus for at least 4 months. The trial was registered at the ClinicalTrials.gov registry (ID: NCT 00719940). (C) 2012 Published by Elsevier B.V.
C1 [Zenner, Hans-Peter; Torka, Waldemar] Univ Tubingen, Med Ctr, Dept Otolaryngol Head & Neck Surg, D-72076 Tubingen, Germany.
[Vonthein, Reinhard] Univ Tubingen, Dept Med Biometry, D-72076 Tubingen, Germany.
[Zenner, Birgit; Leuchtweis, Regina] Univ Lubeck, Tubingen, Germany.
[Plontke, Stefan K.] Halle Univ, Med Ctr, Dept Otolaryngol Head & Neck Surg, Halle, Germany.
[Pogge, Sandra] Frankfurt Head Clin, Frankfurt, Germany.
[Birbaumer, Niels] Univ Tubingen, Med Ctr, Dept Med Psychol & Behav Neurobiol, D-72076 Tubingen, Germany.
[Birbaumer, Niels] Univ Halle, Halle, Germany.
[Birbaumer, Niels] Osped San Camillo, IRCCS Inst Ricovero & Curo Carattere Sci, Venice, Italy.
RP Zenner, HP (reprint author), Univ Tubingen, Med Ctr, Dept Otolaryngol Head & Neck Surg, Elfriede Aulhorn Str 5, D-72076 Tubingen, Germany.
EM hans-peter.zenner@med.uni-tuebingen.de
FU Ministry of Research and Technology (BMFT, Project "Deutsches
Kompetenznetz Tinnitus"); Mediceon
FX The study was supported by grants from the Ministry of Research and
Technology (BMFT, Project "Deutsches Kompetenznetz Tinnitus") and from
Mediceon.
CR [Anonymous], 1996, ICH GUIDELINES GOOD
[Anonymous], 1998, ICH GUIDELINES GOOD
[Anonymous], 2000, ICH GUIDELINES GOOD
AXELSSON A, 1989, British Journal of Audiology, V23, P53, DOI 10.3109/03005368909077819
Birbaumer N., 1993, STRUCTURE EMOTION
Caffier PP, 2006, EAR HEARING, V27, P619, DOI 10.1097/01.aud.0000240504.77861.1a
Conrad A, 2007, J ANXIETY DISORD, V21, P243, DOI 10.1016/j.janxdis.2006.08.001
Delb W, 2002, HNO, V50, P997, DOI 10.1007/s00106-002-0645-5
Delb W., 2002, TINNITUS
Deshaies P., 2011, BURDEN DIS ENV NOISE, P71
Dobie RA, 2003, OTOLARYNG CLIN N AM, V36, P383, DOI 10.1016/S0030-6665(02)00168-8
Dobie RA, 1999, LARYNGOSCOPE, V109, P1202, DOI 10.1097/00005537-199908000-00004
Fritsche G., 1997, PSYCHOL BEHANDLUNG C, P111
General Considerations for Clinical Trials, 1997, ICH GUIDELINES GOOD
Georgiewa P, 2006, MED HYPOTHESES, V66, P592, DOI 10.1016/j.mehy.2005.08.050
GOEBEL G, 1994, HNO, V42, P166
HALLAM RS, 1988, BRIT J CLIN PSYCHOL, V27, P213
Hallam RS, 2004, INT J AUDIOL, V43, P218, DOI 10.1080/14992020400050030
HALLAM RS, 1985, ACTA OTO-LARYNGOL, V99, P501
Heller AJ, 2003, OTOLARYNG CLIN N AM, V36, P239, DOI 10.1016/S0030-6665(02)00160-3
Hofmann SG, 2007, J CONSULT CLIN PSYCH, V75, P374, DOI 10.1037/0022-006X.75.3.374
JAKES SC, 1985, AUDIOLOGY, V24, P195
Jastreboff MM, 2007, PROG BRAIN RES, V166, P435, DOI 10.1016/S0079-6123(07)66042-7
JASTREBOFF PJ, 1993, BRIT J AUDIOL, V27, P7, DOI 10.3109/03005369309077884
JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9
Jastreboff PJ, 1999, BRIT J AUDIOL, V33, P68
Jastreboff PJ, 2007, PROG BRAIN RES, V166, P415, DOI 10.1016/S0079-6123(07)66040-3
KRONERHERWIG B, 1995, J PSYCHOSOM RES, V39, P153, DOI 10.1016/0022-3999(94)00098-P
Kroner-Herwig B, 2003, J PSYCHOSOM RES, V54, P381, DOI 10.1016/S0022-3999(02)00400-2
Martinez-Devesa P., 2010, COCHRANE LIB, V9, P1
Mazurek B, 2006, MED HYPOTHESES, V67, P892, DOI 10.1016/j.mehy.2006.03.040
Moller AR, 2003, OTOLARYNG CLIN N AM, V36, P249, DOI 10.1016/S003-6665(02)00170-6
Noble N., 2007, INT J AUDIOL, V46, P569
Overmier JB, 2002, SCAND J PSYCHOL, V43, P105
PREYER S, 1995, HNO, V43, P338
Rauschecker JP, 2010, NEURON, V66, P819, DOI 10.1016/j.neuron.2010.04.032
Roberts LE, 2010, J NEUROSCI, V30, P14972, DOI 10.1523/JNEUROSCI.4028-10.2010
Tonndorf J., 1977, T SECT OTOLARYNGOL A, V66, P475
Tyler R.S., 1981, CIBA F S, V85, P136
Wittkowski KM, 2004, STAT MED, V23, P1579, DOI 10.1002/sim.1778
Zachriat Claudia, 2004, Cognitive Behaviour Therapy, V33, P187, DOI 10.1080/16506070410029568
Zenner HP, 2005, ACTA OTO-LARYNGOL, V125, P1184, DOI 10.1080/00016480510012282
Zenner HP, 2006, OTOL NEUROTOL, V27, P1054, DOI 10.1097/01.mao.0000231604.64079.77
Zenner H.P., 1994, HOREN
Zenner H.P., 2005, HNO PRAXIS HEUTE, V25, P105
Zenner H.-P, 1996, P711
Zenner H.P., 1998, INT TINNITUS J, V4, P109
NR 47
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2013
VL 298
BP 117
EP 125
DI 10.1016/j.heares.2012.11.013
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 120GP
UT WOS:000317159100013
PM 23287811
ER
PT J
AU Song, J
Wang, WB
Carr, CE
Dai, ZD
Tang, YZ
AF Song, Jing
Wang, Wenbo
Carr, Catherine E.
Dai, Zhendong
Tang, Yezhong
TI Vestibular nuclei characterized by calcium-binding protein
immunoreactivity and tract tracing in Gekko gecko
SO HEARING RESEARCH
LA English
DT Article
ID HEN GALLUS-DOMESTICUS; VARANUS-EXANTHEMATICUS; COMPARATIVE MORPHOLOGY;
CONDUCTION-VELOCITY; SYNAPTIC ENDINGS; MONITOR LIZARD; BRAIN-STEM;
SYSTEM; CONNECTIONS; AFFERENTS
AB Immunohistochemical techniques were used to describe the distribution of the calcium binding proteins calretinin, calbindin and parvalbumin as well as synaptic vesicle protein 2 in the vestibular nuclei of the Tokay gecko (Gekko gecko). In addition, tract tracing was used to investigate connections between the vestibular nerves and brainstem nuclei. Seven vestibular nuclei were recognized: the nuclei cerebellaris lateralis (Cerl), vestibularis dorsolateralis (Vedl), ventrolateralis (Vevl), ventromedialis (Vevm), tangentialis (Vetg), ovalis (VeO) and descendens (Veds). Vestibular fibers entered the brainstem with the ascending branch projecting to Vedl and Cerl, the lateral descending branch to Veds, and the medial descending branch to ipsilateral Vevl. Cerl lay most rostral, in the cerebellar peduncle. Vedl, located rostrally, was ventral to the cerebellar peduncle, and consisted of loosely arranged multipolar and monopolar cells. Vevl was found at the level of the vestibular nerve root and contained conspicuously large cells and medium-sized cells. Veds is a large nucleus, the most rostral portion of which is situated lateral and ventral to Vevl, and occupies much of the dorsal brainstem extending caudally through the medulla. VeO is a spherically shaped cell group lateral to the auditory nucleus magnocellularis and dorsal to the caudal part of Vevl. Vevm and Vetg were small in the present study. Except for VeO, all other vestibular nuclei appear directly comparable to counterparts in other reptiles and birds based on their location, cytoarchitecture, and connections, indicating these are conserved features of the vestibular system. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Song, Jing; Tang, Yezhong] Chinese Acad Sci, Dept Herpetol, Chengdu Inst Biol, Chengdu 610041, Sichuan, Peoples R China.
[Wang, Wenbo; Dai, Zhendong] Nanjing Univ Aeronaut & Astronaut, Nanjing 210016, Jiangsu, Peoples R China.
[Carr, Catherine E.] Univ Maryland, Dept Biol, College Pk, MD 20742 USA.
RP Tang, YZ (reprint author), Chinese Acad Sci, Dept Herpetol, Chengdu Inst Biol, 9 Sect 4,Renmin Nan Rd, Chengdu 610041, Sichuan, Peoples R China.
EM tangyz@cib.ac.cn
FU Chinese Academy of Sciences 'Bairenjihua' [KSCX2-YW-R-077]; National
Natural Science Foundation of China (NSFC) [61175105]; NIH [DC00436, P30
DC0466]
FX We thank all members of the Behavioral Neuroscience Group for their
advice and help with this study. Moreover, we gratefully acknowledge Kai
Yan and Wen-ru Liang for assistance with histology, Steven E. Brauth for
a great help with improvements of manuscript. We also thank the two
anonymous referees and the editor for their critical comments and
suggestions. This work was supported by grants from Chinese Academy of
Sciences 'Bairenjihua' KSCX2-YW-R-077 to Yezhong Tang, by the National
Natural Science Foundation of China (NSFC) 61175105 to Wenbo Wang, by
NIH DC00436 to Catherine E. Carr, and by NIH P30 DC0466 to the
University of Maryland Center for the Evolutionary Biology of Hearing.
CR Aerts P, 2000, NETH J ZOOL, V50, P261, DOI 10.1163/156854200505865
Autumn K, 2002, INTEGR COMP BIOL, V42, P1081, DOI 10.1093/icb/42.6.1081
Baizer JS, 2005, EXP BRAIN RES, V164, P78, DOI 10.1007/s00221-004-2211-8
BANGMA GC, 1983, J COMP NEUROL, V220, P453
BARBASHENRY HA, 1988, J COMP NEUROL, V267, P387, DOI 10.1002/cne.902670308
BARBASHENRY HA, 1988, J COMP NEUROL, V277, P234, DOI 10.1002/cne.902770206
Barmack NH, 2003, BRAIN RES BULL, V60, P511, DOI 10.1016/S0361-9230(03)00055-8
BAUMERT M, 1989, EMBO J, V8, P379
BAURLE J, 1994, NEUROSCI LETT, V167, P85, DOI 10.1016/0304-3940(94)91033-2
Belekhova M G, 2004, Dokl Biol Sci, V399, P451, DOI 10.1007/s10630-005-0009-x
Belekhova MG, 2008, J EVOL BIOCHEM PHYS+, V44, P354, DOI 10.1134/S0022093008030125
Braun K, 1990, Prog Histochem Cytochem, V21, P1
BRODAL A, 1957, J ANAT, V91, P438
Brodal A, 1972, Prog Brain Res, V37, P31, DOI 10.1016/S0079-6123(08)63892-3
CELIO MR, 1990, NEUROSCIENCE, V35, P375, DOI 10.1016/0306-4522(90)90091-H
Christensen-Dalsgaard J, 2011, J NEUROPHYSIOL, V105, P1992, DOI 10.1152/jn.00004.2011
COX RG, 1990, J COMP NEUROL, V297, P564, DOI 10.1002/cne.902970409
CULLHEIM S, 1979, J COMP NEUROL, V188, P679, DOI 10.1002/cne.901880410
DEMEMES D, 1993, CELL TISSUE RES, V274, P487, DOI 10.1007/BF00314545
Desai SS, 2005, J NEUROPHYSIOL, V93, P251, DOI 10.1152/jm.00746.2003
Desai SS, 2005, J NEUROPHYSIOL, V93, P267, DOI 10.1152/jn.00747.2003
Dickman JD, 1996, J COMP NEUROL, V367, P110
Donkelaar H., 1983, ANAT EMBRYOL, V168, P277, DOI 10.1007/BF00315822
Donkelaar H.J., 1987, ADV ANATOMY EMBRYOLO, P1
ELLIS JH, 1991, CELL TISSUE RES, V264, P197, DOI 10.1007/BF00313956
FOSTER RE, 1978, J COMP NEUROL, V178, P783, DOI 10.1002/cne.901780412
Hack N.J., 2000, J NEUROSCI, V20, P1
Hursh JB, 1939, AM J PHYSIOL, V127, P131
Jusufi A, 2008, P NATL ACAD SCI USA, V105, P4215, DOI 10.1073/pnas.0711944105
Kern A, 2009, BRAIN BEHAV EVOLUT, V73, P102, DOI 10.1159/000213646
Kevetter GA, 1997, J COMP NEUROL, V386, P317
Kevetter GA, 1996, J COMP NEUROL, V365, P575
Lohmann C, 1996, J COMP NEUROL, V367, P90, DOI 10.1002/(SICI)1096-9861(19960325)367:1<90::AID-CNE7>3.0.CO;2-E
PEUSNER KD, 1980, DEV NEUROSCI-BASEL, V3, P266, DOI 10.1159/000112398
PEUSNER KD, 1984, J COMP NEUROL, V230, P372, DOI 10.1002/cne.902300306
PEUSNER KD, 1981, NEUROSCIENCE, V6, P2335, DOI 10.1016/0306-4522(81)90021-X
Popratiloff A, 2007, J COMP NEUROL, V502, P19, DOI 10.1002/cne.21273
RAJAKUMAR N, 1993, BRAIN RES, V607, P47, DOI 10.1016/0006-8993(93)91488-E
RAMPRASHAD F, 1986, ACTA OTO-LARYNGOL, P1
Raymond J, 1993, Acta Otolaryngol Suppl, V503, P114
ROGERS JH, 1987, J CELL BIOL, V105, P1343, DOI 10.1083/jcb.105.3.1343
ROGERS JH, 1989, NEUROSCIENCE, V31, P697, DOI 10.1016/0306-4522(89)90434-X
Sadjadpour K, 1968, J Hirnforsch, V10, P299
SANS A, 1986, BRAIN RES, V364, P190, DOI 10.1016/0006-8993(86)91003-6
Schwab M.E., 1979, BIOL REPTILIA, V10, P201
SCHWARZ DWF, 1986, ACTA OTO-LARYNGOL, V102, P463, DOI 10.3109/00016488609119432
Straka H, 2003, J NEUROPHYSIOL, V90, P3501, DOI 10.1152/jn.00372.2003
TAKAHASHI TT, 1987, J NEUROSCI, V7, P1843
Tang YZ, 2001, COPEIA, P248
Tellegen AJ, 2001, BRAIN BEHAV EVOLUT, V58, P205, DOI 10.1159/000057564
Walberg F, 1972, Prog Brain Res, V37, P585, DOI 10.1016/S0079-6123(08)63934-5
WOLD JE, 1978, J COMP NEUROL, V179, P393, DOI 10.1002/cne.901790209
WOLD JE, 1979, ARCH ITAL BIOL, V117, P30
WOLD JE, 1979, EXP BRAIN RES, V34, P217
WOLD JE, 1976, ANAT EMBRYOL, V149, P29, DOI 10.1007/BF00315083
Yan K, 2010, J COMP NEUROL, V518, P3409, DOI 10.1002/cne.22428
Zaaf A, 2001, ZOOMORPHOLOGY, V121, P45, DOI 10.1007/s004350100044
NR 57
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2013
VL 296
BP 1
EP 12
DI 10.1016/j.heares.2012.11.011
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 101FW
UT WOS:000315761600001
PM 23201031
ER
PT J
AU Zhao, XY
Sun, JL
Hu, YJ
Yang, Y
Zhang, WJ
Hu, Y
Li, J
Sun, Y
Zhong, Y
Peng, W
Zhang, HL
Kong, WJ
AF Zhao, Xue-Yan
Sun, Jin-Li
Hu, Yu-Juan
Yang, Yang
Zhang, Wen-Juan
Hu, Yuan
Li, Jun
Sun, Yu
Zhong, Yi
Peng, Wei
Zhang, Hong-Lian
Kong, Wei-Jia
TI The effect of overexpression of PGC-1 alpha on the mtDNA4834 common
deletion in a rat cochlear marginal cell senescence model
SO HEARING RESEARCH
LA English
DT Article
ID MITOCHONDRIAL TRANSCRIPTION FACTOR; NUCLEAR RESPIRATORY FACTORS; STRIA
VASCULARIS; HEARING-LOSS; INNER-EAR; GENE-EXPRESSION; TEMPORAL BONE; DNA
DELETION; PRESBYCUSIS; COACTIVATOR
AB Aging is a natural process usually defined as a progressive loss of function with an accumulation of senescent cells. The clinical manifestations of this process include age-related hearing loss (AHL)/presbycusis. Several investigations indicated the association between a mitochondrial common deletion (CD) (mtDNA 4977-bp deletion in humans, corresponding to 4834-bp deletion in rats) and presbycusis. Previous researches have shown that peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha) is a key regulator of mitochondrial biogenesis and energy metabolism. However, the expression of PGC-1 alpha in the inner ear and the possible effect of PGC-1 alpha on presbycusis are not clear. Our data demonstrated the distribution of PGC-1 alpha and its downstream transcription factors nuclear respiratory factor-1 (NRF-1), mitochondrial transcription factor A (Tfam) and nuclear factor kappa B (NF-kappa B) in marginal cells (MCs) for the first time. To explore the role of PGC-1 alpha in cellular senescence, we established a model of marginal cell senescence harboring the mtDNA4834 common deletion induced by D-galactose. We also found that PGC-1 alpha and its downstream transcription factors compensatorily increased in our cell senescence model. Furthermore, the overexpression of PGC-1 alpha induced by transfection largely increased the expression levels of NRF-1 and TFAM and significantly decreased the expression level of NF-kappa B in the cell senescence model. And the levels of CD, senescent cells and apoptotic cells in the cell model decreased after PGC-1 alpha overexpression. These results suggested that PGC-1 alpha might protect MCs in this cell model from senescence through a nuclear-mitochondrial interaction and against apoptosis. Our study may shed light on the pathogenesis of presbycusis and provide a new therapeutic target for presbycusis. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Zhao, Xue-Yan; Sun, Jin-Li; Hu, Yu-Juan; Yang, Yang; Zhang, Wen-Juan; Hu, Yuan; Li, Jun; Sun, Yu; Zhong, Yi; Peng, Wei; Kong, Wei-Jia] Huazhong Univ Sci & Technol, Dept Otolaryngol, Union Hosp, Tongji Med Coll, Wuhan 430022, Peoples R China.
[Zhang, Hong-Lian] Huazhong Univ Sci & Technol, Dept Prevent Med & Publ Hlth, Union Hosp, Tongji Med Coll, Wuhan 430022, Peoples R China.
[Kong, Wei-Jia] Huazhong Univ Sci & Technol, Inst Otorhinolaryngol, Union Hosp, Tongji Med Coll, Wuhan 430022, Peoples R China.
[Kong, Wei-Jia] Minist Educ, Key Lab Neurol Dis, Beijing, Peoples R China.
RP Kong, WJ (reprint author), Huazhong Univ Sci & Technol, Dept Otolaryngol, Union Hosp, Tongji Med Coll, Wuhan 430022, Peoples R China.
EM zhl_bjk@whuh.com; entwjkong@yahoo.com.cn
FU Major State Basic Research Development Program of China (973 program)
[2011CB504504]; National Nature Science Foundation of China [30730094,
81230021, 81000409]; Nature Science Foundation of Hubei Province
[2010CDB08005]
FX This study was supported by grants from the Major State Basic Research
Development Program of China (973 program; No. 2011CB504504), the
National Nature Science Foundation of China (No. 30730094, 81230021 and
81000409) and the Nature Science Foundation of Hubei Province (No.
2010CDB08005).
CR Adler AS, 2007, GENE DEV, V21, P3244, DOI 10.1101/gad.1588507
Alvarez-Guardia D, 2010, CARDIOVASC RES, V87, P449, DOI 10.1093/cvr/cvq080
Bai U, 1997, AM J OTOL, V18, P449
Beinke S, 2004, BIOCHEM J, V382, P393
Bielefeld EC, 2010, HEARING RES, V264, P98, DOI 10.1016/j.heares.2009.09.001
Blagosklonny MV, 2010, AGING-US, V2, P111
Bonawitz ND, 2006, MOL CELL, V24, P813, DOI 10.1016/j.molcel.2006.11.024
Itahana Koji, 2007, Methods Mol Biol, V371, P21
Cannino G, 2007, MITOCHONDRION, V7, P359, DOI 10.1016/j.mito.2007.07.001
Chen B, 2010, BRAIN RES, V1344, P43, DOI 10.1016/j.brainres.2010.04.082
Chetty C, 2008, CANCER RES, V68, P4736, DOI 10.1158/0008-5472.CAN-07-6612
Choi YS, 2002, BBA-GENE STRUCT EXPR, V1574, P200, DOI 10.1016/S0167-4781(01)00361-X
Collado M, 2005, NATURE, V436, P642, DOI 10.1038/436642a
CUATRECA.P, 1966, SCIENCE, V153, P549, DOI 10.1126/science.153.3735.549
DAVIS H, 1958, AM J PHYSIOL, V195, P251
Du ZD, 2012, HEARING RES, V287, P15, DOI 10.1016/j.heares.2012.04.012
ERMINI M, 1976, GERONTOLOGY, V22, P301
Finck BN, 2006, J CLIN INVEST, V116, P615, DOI 10.1172/JCI27794
FischelGhodsian N, 1997, HEARING RES, V110, P147, DOI 10.1016/S0378-5955(97)00077-4
GOPALAKRISHNAN L, 1995, J BIOL CHEM, V270, P18019
Handschin C, 2006, ENDOCR REV, V27, P728, DOI 10.1210/er.2006-0037
HAYFLICK L, 1961, EXP CELL RES, V25, P585, DOI 10.1016/0014-4827(61)90192-6
Jeyapalan JC, 2008, MECH AGEING DEV, V129, P467, DOI 10.1016/j.mad.2008.04.001
Kelly DP, 2004, GENE DEV, V18, P357, DOI 10.1101/gad.1177604
Kim HN, 1996, ACTA OTO-LARYNGOL, V116, P805, DOI 10.3109/00016489609137930
Knutti D, 2001, TRENDS ENDOCRIN MET, V12, P360, DOI 10.1016/S1043-2760(01)00457-X
Kong WJ, 2006, BIOCHEM BIOPH RES CO, V344, P425, DOI 10.1016/j.bbrc.2006.03.060
Kong WJ, 2006, EXP GERONTOL, V41, P628, DOI 10.1016/j.exger.2006.04.008
Labuzek K, 2010, PHARMACOL REP, V62, P827
Lin JD, 2005, CELL METAB, V1, P361, DOI 10.1016/j.cmet.2005.05.004
MELICHAR I, 1992, HEARING RES, V62, P89, DOI 10.1016/0378-5955(92)90205-2
MELICHAR I, 1991, EUR ARCH OTO-RHINO-L, V248, P358
Mendelev N, 2011, MITOCHONDRION, V11, P76, DOI 10.1016/j.mito.2010.07.007
Nicklas JA, 2004, ENVIRON MOL MUTAGEN, V44, P313, DOI 10.1002/em.20050
Nikolaidou-Neokosmidou V, 2006, BIOCHEM J, V398, P439, DOI 10.1042/BJ20060169
Ohlemiller KK, 2010, JARO-J ASSOC RES OTO, V11, P605, DOI 10.1007/s10162-010-0228-1
Ohlemiller KK, 2009, BRAIN RES, V1277, P70, DOI 10.1016/j.brainres.2009.02.079
Ohlemiller KK, 2006, HEARING RES, V220, P10, DOI 10.1016/j.heares.2006.06.012
Puigserver P, 1998, CELL, V92, P829, DOI 10.1016/S0092-8674(00)81410-5
Puigserver P, 2003, ENDOCR REV, V24, P78, DOI 10.1210/er.2002-0012
Puigserver P, 2005, INT J OBESITY, V29, pS5, DOI 10.1038/sj.ijo.0802905
RAREY KE, 1989, HEARING RES, V38, P277, DOI 10.1016/0378-5955(89)90071-3
Scarpulla RC, 2008, PHYSIOL REV, V88, P611, DOI 10.1152/physrev.00025.2007
Scarpulla RC, 2006, J CELL BIOCHEM, V97, P673, DOI 10.1002/jcb.20743
Scarpulla RC, 2008, ANN NY ACAD SCI, V1147, P321, DOI 10.1196/annals.1427.006
Schilling-Toth B, 2011, MUTAT RES-FUND MOL M, V716, P33, DOI 10.1016/j.mrfmmm.2011.07.018
SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1
SCHUKNEC.HF, 1974, LARYNGOSCOPE, V84, P1777
SCHUKNECHT HF, 1964, ARCHIV OTOLARYNGOL, V80, P369
Sen R, 2010, CSH PERSPECT BIOL, V2, DOI 10.1101/cshperspect.a000257
Song X, 1999, MECH AGEING DEV, V108, P239, DOI 10.1016/S0047-6374(99)00022-6
Spicer SS, 2005, HEARING RES, V205, P225, DOI 10.1016/j.heares.2005.03.022
Terman Alexei, 2005, Heart Lung Circ, V14, P107, DOI 10.1016/j.hlc.2004.12.023
Ueda N, 1998, LARYNGOSCOPE, V108, P580, DOI 10.1097/00005537-199804000-00022
VERMA IM, 1995, GENE DEV, V9, P2723, DOI 10.1101/gad.9.22.2723
VIRBASIUS CMA, 1993, GENE DEV, V7, P2431, DOI 10.1101/gad.7.12a.2431
VIRBASIUS JV, 1994, P NATL ACAD SCI USA, V91, P1309, DOI 10.1073/pnas.91.4.1309
Wu ZD, 1999, CELL, V98, P115, DOI 10.1016/S0092-8674(00)80611-X
Zhong Y, 2011, FEBS J, V278, P2500, DOI 10.1111/j.1742-4658.2011.08176.x
NR 59
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2013
VL 296
BP 13
EP 24
DI 10.1016/j.heares.2012.11.007
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 101FW
UT WOS:000315761600002
PM 23159434
ER
PT J
AU Kuriki, S
Kobayashi, Y
Kobayashi, T
Tanaka, K
Uchikawa, Y
AF Kuriki, Shinya
Kobayashi, Yusuke
Kobayashi, Takanari
Tanaka, Keita
Uchikawa, Yoshinori
TI Steady-state MEG responses elicited by a sequence of amplitude-modulated
short tones of different carrier frequencies
SO HEARING RESEARCH
LA English
DT Article
ID HUMAN AUDITORY-CORTEX; OCTAVE ILLUSION; BINAURAL INTERACTION; NEURAL
MECHANISMS; EVOKED-RESPONSES; MAGNETIC-FIELD; MIDDLE LATENCY;
NORMAL-HEARING; PHASE-LOCKING; ORGANIZATION
AB The auditory steady-state response (ASSR) is a weak potential or magnetic response elicited by periodic acoustic stimuli with a maximum response at about a 40-Hz periodicity. In most previous studies using amplitude-modulated (AM) tones of stimulus sound, long lasting tones of more than 10 s in length were used. However, characteristics of the ASSR elicited by short AM tones have remained unclear. In this study, we examined magnetoencephalographic (MEG) ASSR using a sequence of sinusoidal AM tones of 0.78 s in length with various tone frequencies of 440-990 Hz in about one octave variation. It was found that the amplitude of the ASSR was invariant with tone frequencies when the level of sound pressure was adjusted along an equal-loudness curve. The amplitude also did not depend on the existence of preceding tone or difference in frequency of the preceding tone. When the sound level of AM tones was changed with tone frequencies in the same range of 440-990 Hz, the amplitude of ASSR varied in a proportional manner to the sound level. These characteristics are favorable for the use of ASSR in studying temporal processing of auditory information in the auditory cortex. The lack of adaptation in the ASSR elicited by a sequence of short tones may be ascribed to the neural activity of widely accepted generator of magnetic ASSR in the primary auditory cortex. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Kuriki, Shinya] Tokyo Denki Univ, Res Inst Sci & Technol, Adachi Ku, Tokyo 120855, Japan.
[Kobayashi, Yusuke; Kobayashi, Takanari; Tanaka, Keita; Uchikawa, Yoshinori] Tokyo Denki Univ, Sch Sci & Engn, Hatoyama, Saitama 3500394, Japan.
RP Kuriki, S (reprint author), Tokyo Denki Univ, Res Inst Sci & Technol, Adachi Ku, Tokyo 120855, Japan.
EM skuriki@rcat.dendai.ac.jp
FU Ministry of Education, Science and Culture of Japan [B23300169, 07H012]
FX Part of this work was supported by Grants-in-Aid for Scientific Research
(B23300169) and Strategic Research Project (07H012) for Private
University from the Ministry of Education, Science and Culture of Japan.
We thank Asuka Otsuka of the National Institute of Advanced Industrial
Science and Technology, Osaka for valuable discussions.
CR Ahveninen J, 2006, P NATL ACAD SCI USA, V103, P14608, DOI 10.1073/pnas.0510480103
Bartlett EL, 2005, J NEUROPHYSIOL, V94, P83, DOI 10.1152/jn.01124.2004
Budd TW, 1998, INT J PSYCHOPHYSIOL, V31, P51, DOI 10.1016/S0167-8760(98)00040-3
DEUTSCH D, 1975, J ACOUST SOC AM, V57, P1156, DOI 10.1121/1.380573
DEUTSCH D, 1974, NATURE, V251, P307, DOI 10.1038/251307a0
Eggermont JJ, 2002, J NEUROPHYSIOL, V87, P305
Engelien A, 2000, HEARING RES, V148, P153, DOI 10.1016/S0378-5955(00)00148-9
Fujiki N, 2002, J NEUROSCI, V22, P1
Fullerton BC, 2007, J COMP NEUROL, V504, P470, DOI 10.1002/cne.21432
Gabriel D, 2004, HEARING RES, V197, P55, DOI 10.1016/j.heares.2004.07.015
GALABURDA A, 1980, J COMP NEUROL, V190, P597, DOI 10.1002/cne.901900312
GALAMBOS R, 1981, P NATL ACAD SCI-BIOL, V78, P2643, DOI 10.1073/pnas.78.4.2643
GALAMBOS R, 1982, ANN NY ACAD SCI, V388, P722, DOI 10.1111/j.1749-6632.1982.tb50841.x
Hackett TA, 2001, J COMP NEUROL, V441, P197, DOI 10.1002/cne.1407
Herdman AT, 2002, BRAIN TOPOGR, V15, P69, DOI 10.1023/A:1021470822922
Jaaskelainen IP, 2004, P NATL ACAD SCI USA, V101, P6809, DOI 10.1073/pnas.0303760101
JOHNSON B W, 1988, Brain Topography, V1, P117, DOI 10.1007/BF01129176
JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982
JORIS PX, 1992, J ACOUST SOC AM, V91, P215, DOI 10.1121/1.402757
Kaneko K, 2003, HEARING RES, V183, P1, DOI 10.1016/S0378-5955(03)00186-2
Krishna BS, 2000, J NEUROPHYSIOL, V84, P255
Kuriki S, 2006, J NEUROSCI, V26, P4046, DOI 10.1523/JNEUROSCI.3907-05.2006
Kuriki S, 1995, HEARING RES, V92, P47, DOI 10.1016/0378-5955(95)00195-6
Lamminmaki S, 2000, NEUROREPORT, V11, P1469, DOI 10.1097/00001756-200005150-00021
Lamminmaki S, 2012, J ACOUST SOC AM, V132, P1747, DOI 10.1121/1.4740474
LEE YS, 1984, BRAIN, V107, P115, DOI 10.1093/brain/107.1.115
Lins OG, 1996, EAR HEARING, V17, P81, DOI 10.1097/00003446-199604000-00001
MAKELA JP, 1987, ELECTROEN CLIN NEURO, V66, P539, DOI 10.1016/0013-4694(87)90101-5
NAATANEN R, 1988, ELECTROEN CLIN NEURO, V69, P523, DOI 10.1016/0013-4694(88)90164-2
Nishimura T, 2004, ACTA OTO-LARYNGOL, V124, P33, DOI 10.1080/03655230410017634
PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X
PANTEV C, 1993, ELECTROEN CLIN NEURO, V88, P389, DOI 10.1016/0168-5597(93)90015-H
Pantev C, 1996, HEARING RES, V101, P62, DOI 10.1016/S0378-5955(96)00133-5
Patel AD, 2000, NATURE, V404, P80, DOI 10.1038/35003577
Picton Terence W, 2005, J Am Acad Audiol, V16, P140, DOI 10.3766/jaaa.16.3.3
Presacco A, 2010, CLIN NEUROPHYSIOL, V121, P1540, DOI 10.1016/j.clinph.2010.03.020
PREUSS A, 1990, EXP BRAIN RES, V79, P207
REES A, 1986, HEARING RES, V23, P123, DOI 10.1016/0378-5955(86)90009-2
Reite M, 2009, BIPOLAR DISORD, V11, P371, DOI 10.1111/j.1399-5618.2009.00701.x
ROMANI GL, 1982, EXP BRAIN RES, V47, P381
Rosburg T, 2010, EXP BRAIN RES, V205, P559, DOI 10.1007/s00221-010-2391-3
Ross B, 2005, J NEUROPHYSIOL, V94, P4082, DOI 10.1152/jn.00469.2005
Ross B, 2002, HEARING RES, V165, P68, DOI 10.1016/S0378-5955(02)00285-X
Ross B, 2003, HEARING RES, V186, P57, DOI 10.1016/S0378-5955(03)00299-5
Ross B, 2000, J ACOUST SOC AM, V108, P679, DOI 10.1121/1.429600
Ross J, 1996, NEUROREPORT, V8, P303, DOI 10.1097/00001756-199612200-00060
Scherf F, 2006, INT J AUDIOL, V45, P281, DOI 10.1080/14992020500485684
SCHREINER CE, 1988, HEARING RES, V32, P49, DOI 10.1016/0378-5955(88)90146-3
Simpson MIG, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034668
Soeta Y, 2012, HEARING RES, V287, P67, DOI 10.1016/j.heares.2012.03.006
SPYDELL JD, 1985, ELECTROEN CLIN NEURO, V62, P193, DOI 10.1016/0168-5597(85)90014-0
Steinmann I, 2011, NEUROIMAGE, V54, P495, DOI 10.1016/j.neuroimage.2010.07.064
TANSLEY BW, 1983, J ACOUST SOC AM, V74, P765, DOI 10.1121/1.389864
Thaerig S., 2007, INT J PSYCHOPHYSIOL, V67, P235
Wienbruch C, 2006, NEUROIMAGE, V33, P180, DOI 10.1016/j.neuroimage.2006.06.023
NR 55
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2013
VL 296
BP 25
EP 35
DI 10.1016/j.heares.2012.11.002
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 101FW
UT WOS:000315761600003
PM 23174483
ER
PT J
AU Oishi, N
Chen, FQ
Zheng, HW
Sha, SH
AF Oishi, Naoki
Chen, Fu-Quan
Zheng, Hong-Wei
Sha, Su-Hua
TI Intra-tympanic delivery of short interfering RNA into the adult mouse
cochlea
SO HEARING RESEARCH
LA English
DT Article
ID INDUCED HEARING-LOSS; INNER-EAR; DRUG-DELIVERY; GENTAMICIN APPLICATION;
NADPH OXIDASE; RAT; OTOTOXICITY; HYDROGEL; PROTECTS; THERAPY
AB Trans-tympanic injection into the middle ear has long been the standard for local delivery of compounds in experimental studies. Here we demonstrate the advantages of the novel method of intra-tympanic injection through the otic bone for the delivery of compounds or siRNA into the adult mouse cochlea. First, a fluorescently-conjugated scrambled siRNA probe was applied via intra-tympanic injection into the middle ear cavity and was detected in sensory hair cells and nerve fibers as early as 6 h after the injection. The fluorescent probe was also detected in other cells of the organ of Corti, the lateral wall, and in spiral ganglion cells 48 h after the injection. Furthermore, intra-tympanic delivery of Nox3 siRNA successfully reduced immunofluorescence associated with Nox3 in outer hair cells 72 h after injection by 20%. Drug or siRNA delivery via intra-tympanic injection does not compromise the tympanic membrane or interfere with noise-induced hearing loss, while trans-tympanic injections significantly altered the cochlear response to noise exposure. In summary, intra-tympanic injection through the otic bone into the middle ear cavity provides a promising approach for delivery of compounds or siRNA to cochlear hair cells of adult mice, relevant for the study of mechanisms underlying inner ear insults and, specifically, noise-induced hearing loss. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Oishi, Naoki] Univ Michigan, Dept Otolaryngol, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA.
[Chen, Fu-Quan; Zheng, Hong-Wei; Sha, Su-Hua] Med Univ S Carolina, Dept Pathol & Lab Med, Charleston, SC 29414 USA.
RP Sha, SH (reprint author), Med Univ S Carolina, Dept Pathol & Lab Med, Charleston, SC 29414 USA.
EM shasu@musc.edu
FU National Institute on Deafness and Other Communication Disorders,
National Institutes of Health [R01 DC009222]; National Center for
Research Resources [C06 RR015455]; [C06 RR014516]
FX The research project described was supported by grant R01 DC009222 from
the National Institute on Deafness and Other Communication Disorders,
National Institutes of Health. This work was partially conducted in the
Walton Research Building in renovated space supported by grant C06
RR014516. Some animals used in this study were housed in MUSC CRI animal
facilities supported by grant C06 RR015455 from the Extramural Research
Facilities Program of the National Center for Research Resources. We
thank Dr. Jochen Schacht for his valuable comments on the manuscript.
CR Assimakopoulos D, 2003, J LARYNGOL OTOL, V117, P10
Banfi B, 2004, J BIOL CHEM, V279, P46065, DOI 10.1074/jbc.M403046200
Borkholder DA, 2008, CURR OPIN OTOLARYNGO, V16, P472, DOI 10.1097/MOO.0b013e32830e20db
Coleman JKM, 2007, HEARING RES, V226, P70, DOI 10.1016/j.heares.2006.05.006
Heydt JL, 2004, HEARING RES, V192, P65, DOI 10.1016/j.heares.2004.01.006
Iwai K, 2006, LARYNGOSCOPE, V116, P529, DOI 10.1097/01.mlg.0000200791.77819.eb
Kaur T, 2011, CELL DEATH DIS, V2, DOI 10.1038/cddis.2011.63
Lee KY, 2007, OTOL NEUROTOL, V28, P976
Leidenfrost U, 1976, Laryngol Rhinol Otol (Stuttg), V55, P1005
Liu YH, 2005, MOL THER, V12, P725, DOI 10.1016/j.ymthe.2005.03.021
Maeda Y, 2007, NEUROSCI RES, V58, P250, DOI 10.1016/j.neures.2007.03.006
Mikulec AA, 2009, OTOL NEUROTOL, V30, P131, DOI 10.1097/MAO.0b013e318191bff8
Moneim I A, 1996, J Egypt Public Health Assoc, V71, P243
Mukherjea D, 2008, J NEUROSCI, V28, P13056, DOI 10.1523/JNEUROSCI.1307-08.2008
Mukherjea D, 2010, ANTIOXID REDOX SIGN, V13, P589, DOI 10.1089/ars.2010.3110
Oishi N, 2011, EXPERT OPIN EMERG DR, V16, P235, DOI 10.1517/14728214.2011.552427
Plontke SK, 2007, AUDIOL NEURO-OTOL, V12, P37, DOI 10.1159/000097246
Roehm P, 2007, HEARING RES, V230, P43, DOI 10.1016/j.heares.2007.04.005
Seggas I, 2011, OTOL NEUROTOL, V32, P29, DOI 10.1097/MAO.0b013e3181f7aba3
Tamir S, 2010, J OCCUP MED TOXICOL, V5, DOI 10.1186/1745-6673-5-26
Wagner N, 2005, ACTA OTO-LARYNGOL, V125, P340, DOI 10.1080/00016480510026881
Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3
Xu L, 2010, OTOL NEUROTOL, V31, P1115, DOI 10.1097/MAO.0b013e3181eb32d1
NR 23
TC 4
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2013
VL 296
BP 36
EP 41
DI 10.1016/j.heares.2012.10.011
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 101FW
UT WOS:000315761600004
PM 23183031
ER
PT J
AU Heffner, RS
Koay, G
Heffner, HE
AF Heffner, Rickye S.
Koay, Gimseong
Heffner, Henry E.
TI Hearing in American leaf-nosed bats. IV: The Common vampire bat,
Desmodus rotundus
SO HEARING RESEARCH
LA English
DT Article
ID BIG BROWN BAT; AUDITORY-NERVE FIBERS; EPTESICUS-FUSCUS; SOUND
LOCALIZATION; BEHAVIORAL AUDIOGRAMS; ARTIBEUS-JAMAICENSIS; SPECTRAL
CUES; ECHOLOCATION; SENSITIVITY; FRUIT
AB We behaviorally determined the audiograms of three Common vampire bats (Phyllostomidae, Desmodus rotundus), a species specialized to exist exclusively on blood. The bats were trained to respond to pure tones in a conditioned suppression/avoidance procedure for a blood reward and a mild punisher for failures to detect the tones. Common vampire bats have a hearing range from 716 Hz to 113 kHz at a level of 60 dB. Their best hearing is at 20 kHz where they are slightly more sensitive than other bats, and they have a second peak of good sensitivity at 71 kHz. They have unusually good sensitivity to low frequencies compared to other bats, but are less sensitive to low frequencies than most mammals. Selective pressures affecting high-frequency hearing in bats and mammals in general are discussed. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Heffner, Rickye S.; Koay, Gimseong; Heffner, Henry E.] Univ Toledo, Dept Psychol 948, Toledo, OH 43606 USA.
RP Heffner, RS (reprint author), Univ Toledo, Dept Psychol 948, 2801 W Bancroft St, Toledo, OH 43606 USA.
EM Rickye.Heffner@utoledo.edu; Gim_Koay@yahoo.com;
Henry.Heffner@utoledo.edu
FU NIH [R15-DC009321]
FX Supported by NIH R15-DC009321.
CR Barnard S., 2011, DIET FEEDING ENV HOU, V3
DALLAND JI, 1965, SCIENCE, V150, P1185, DOI 10.1126/science.150.3700.1185
FROST SB, 1994, HEARING RES, V76, P67, DOI 10.1016/0378-5955(94)90088-4
FUZESSERY ZM, 1994, J NEUROPHYSIOL, V72, P1061
FUZESSERY ZM, 1993, J COMP PHYSIOL A, V171, P767, DOI 10.1007/BF00213073
Greenhall A.M., 1988, NATURAL HIST VAMPIRE
Greenhall R.M., 1983, MAMM SPECIES, V202, P1
Groger U, 2006, BMC BIOL, V4, DOI 10.1186/1741-7007-4-18
HABERSETZER J, 1992, NATURWISSENSCHAFTEN, V79, P462, DOI 10.1007/BF01139198
Heffner H. E., 1995, METHODS COMP PSYCHOA, P73
Heffner H.E., 2008, SENSES COMPREHENSIVE, V3, P55
Heffner RS, 2001, HEARING RES, V157, P138, DOI 10.1016/S0378-5955(01)00298-2
HEFFNER RS, 1993, J COMP NEUROL, V331, P418, DOI 10.1002/cne.903310311
Heffner RS, 2006, HEARING RES, V221, P17, DOI 10.1016/j.heares.2006.06.008
HEFFNER RS, 1982, J COMP PHYSIOL PSYCH, V96, P926, DOI 10.1037/0735-7036.96.6.926
Heffner RS, 2001, J ACOUST SOC AM, V109, P412, DOI 10.1121/1.1329620
HEFFNER RS, 1985, HEARING RES, V19, P85, DOI 10.1016/0378-5955(85)90100-5
Heffner RS, 2003, HEARING RES, V184, P113, DOI 10.1016/S0378-5955(03)00233-8
JOHNSON C. SCOTT, 1967, MAR BIO ACOUSTICS, V2, P247
Jones G, 2006, TRENDS ECOL EVOL, V21, P149, DOI 10.1016/j.tree.2006.01.001
Kalko EKV, 1998, FUNCT ECOL, V12, P364, DOI 10.1046/j.1365-2435.1998.00198.x
Koay G, 2003, HEARING RES, V178, P27, DOI 10.1016/S0378-5955(03)00025-X
Koay G, 1997, HEARING RES, V105, P202, DOI 10.1016/S0378-5955(96)00208-0
Koay G, 2002, HEARING RES, V171, P96, DOI 10.1016/S0378-5955(02)00458-6
Koay G, 1998, J COMP PSYCHOL, V112, P371, DOI 10.1037/0735-7036.112.4.371
Kuc R, 2009, J ACOUST SOC AM, V125, P3454, DOI 10.1121/1.3097500
KURTEN L, 1982, J COMP PHYSIOL, V146, P223
Kuwabara N, 1999, ACTA CHIROPTEROL, V1, P81
LJUNGBLAD DK, 1982, J ACOUST SOC AM, V72, P1726, DOI 10.1121/1.388666
LONG GR, 1975, J COMP PHYSIOL, V100, P211
Macias S, 2006, HEARING RES, V212, P245, DOI 10.1016/j.heares.2005.12.004
Moller A.R., 2000, HEARING
Neuweiler G, 2003, J COMP PHYSIOL A, V189, P245, DOI 10.1007/s00359-003-0406-2
ROSE JE, 1967, J NEUROPHYSIOL, V30, P769
RYAN MJ, 1983, J COMP PHYSIOL, V150, P413
Schmidt S., 1984, Myotis, V21-22, P62
Schmidt U., 1972, ZOOL BEITR, V4, P310
Schmidt U., 1988, P143
SCHMIDT U, 1991, J COMP PHYSIOL A, V168, P45, DOI 10.1007/BF00217102
Taberner AM, 2005, J NEUROPHYSIOL, V93, P557, DOI 10.1152/jn.00574.2004
Vernon J., 1966, J AUD RES, V6, P181
WENSTRUP JJ, 1984, J COMP PHYSIOL, V155, P91, DOI 10.1007/BF00610934
Wotton JM, 2000, J ACOUST SOC AM, V107, P1034, DOI 10.1121/1.428283
Wotton JM, 1997, J ACOUST SOC AM, V101, P1723, DOI 10.1121/1.418271
WOTTON JM, 1995, J ACOUST SOC AM, V98, P1423, DOI 10.1121/1.413410
Yovel Y, 2011, J COMP PHYSIOL A, V197, P515, DOI 10.1007/s00359-011-0639-4
NR 46
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2013
VL 296
BP 42
EP 50
DI 10.1016/j.heares.2012.09.011
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 101FW
UT WOS:000315761600005
PM 23194991
ER
PT J
AU Profant, O
Burianova, J
Syka, J
AF Profant, Oliver
Burianova, Jana
Syka, Josef
TI The response properties of neurons in different fields of the auditory
cortex in the rat
SO HEARING RESEARCH
LA English
DT Article
ID SPECIES-SPECIFIC VOCALIZATIONS; MEDIAL GENICULATE-BODY;
FUNCTIONAL-ORGANIZATION; INFERIOR COLLICULUS; GUINEA-PIG; ALBINO-RAT;
PYRAMIDAL NEURONS; IN-VIVO; FREQUENCY REPRESENTATION; AXON TERMINALS
AB The auditory cortex (AC) of the rat has been the subject of many studies, yet the details of its functional organization are still not well understood. We describe here the functional organization of the AC in young rats (strain Long Evans, aged 30-35 days, anesthetized with ketamine/xylazine) on the basis of the neuronal responses to acoustic stimuli. Based on the neuronal responses to broad band noise (BBN) and pure tone bursts, the AC may be divided into the primary auditory cortex (AI) and three other core fields: anterior (AAF), suprarhinal (SRAF) and posterior (PAF) as well as an unspecific region (UR) inserted between the AI and AAF. The core fields are surrounded by a belt area. Neurons in the AI, AAF, SRAF and PAF showed well defined characteristic frequencies (CF) in response to pure tone stimulation; in contrast, UR neurons responded only at high intensities without a clear CF. Neurons responding only to BBN stimulation were found mostly in the belt area. The putative borders between the core fields were determined by changes in their tonotopic gradient; however, no tonotopic organization was found in the PAP. Neurons with the shortest response latencies to BBN stimulation were found in layer 4 (L4) and layer 6 (L6) in the AI, while those with the longest latencies in the superficial layers (L1/2) of the belt area. Similar principles of responsiveness were observed when the spike rate in response to BBN stimulation was evaluated, with the highest rate present in L4 of the AI and the lowest in L1/2 of the belt area. According to the shape of the peristimulus time histograms, the responses of neurons in the AC of the rat may be classified as pure onset, sustained, onset-sustained, double peak or late onset. The most dominant in all fields, as well as in all layers, was the pure onset response. Our findings offer further cues for understanding the functional organization of the AC in the rat. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Profant, Oliver; Burianova, Jana; Syka, Josef] Acad Sci Czech Republic, Inst Expt Med, Dept Auditory Neurosci, Prague, Czech Republic.
[Profant, Oliver] Charles Univ Prague, Fac Hosp Motol, Fac Med 1, Dept Otorhinolaryngol & Head & Neck Surg,Inst Pos, Prague 15006 5, Czech Republic.
RP Profant, O (reprint author), Charles Univ Prague, Fac Med 1, Fac Hosp Motol, Dept ENT, V Uvalu 84, Prague 15006 5, Czech Republic.
EM profant@biomed.cas.cz
RI Syka, Josef/H-3103-2014
FU [GACR P303/12/1347]; [GACR P304/121G069]
FX The study was supported by grants GACR P303/12/1347 and GACR
P304/121G069. We thank Jan Setnitka, Zbynek Sure and Daniel "Suta for
their assistance in this research.
CR ABELES M, 1972, BRAIN RES, V42, P337, DOI 10.1016/0006-8993(72)90535-5
AITKIN L, 1994, EXP BRAIN RES, V98, P53
Astl J, 1996, AUDIOLOGY, V35, P335
Bandyopadhyay S, 2010, NAT NEUROSCI, V13, P361, DOI 10.1038/nn.2490
Barbour DL, 2008, J NEUROSCI, V28, P11174, DOI 10.1523/JNEUROSCI.2093-08.2008
Bizley JK, 2005, CEREB CORTEX, V15, P1637, DOI 10.1093/cercor/bhi042
Bonham BH, 2004, J NEUROPHYSIOL, V91, P841, DOI 10.1152/jn.00017.2003
Chang EF, 2005, P NATL ACAD SCI USA, V102, P16460, DOI 10.1073/pnas.0508239102
Cheung SW, 2001, HEARING RES, V156, P115, DOI 10.1016/S0378-5955(01)00272-6
Cheung SW, 2001, J NEUROPHYSIOL, V85, P1732
CLAREY JC, 1994, J NEUROPHYSIOL, V72, P2383
Degenetais E, 2002, CEREB CORTEX, V12, P1, DOI 10.1093/cercor/12.1.1
Doron NN, 2002, J COMP NEUROL, V453, P345, DOI 10.1002/cne.10412
EHRET G, 1985, J COMP PHYSIOL A, V156, P619, DOI 10.1007/BF00619111
GAMES KD, 1988, HEARING RES, V34, P1, DOI 10.1016/0378-5955(88)90047-0
Grecova J, 2009, EUR J NEUROSCI, V29, P1921, DOI 10.1111/j.1460-9568.2009.06739.x
He JF, 2002, J NEUROPHYSIOL, V88, P2377, DOI 10.1152/jn.00083.2002
HEIL P, 1994, HEARING RES, V76, P188, DOI 10.1016/0378-5955(94)90099-X
Heil P, 2004, CURR OPIN NEUROBIOL, V14, P461, DOI 10.1016/j.conb.2004.07.002
HORIKAWA K, 1988, NEUROSCI RES, V6, P31, DOI 10.1016/0168-0102(88)90004-1
Huetz C, 2011, HEARING RES, V271, P147, DOI 10.1016/j.heares.2010.01.010
Huggenberger S, 2009, CEREB CORTEX, V19, P1008, DOI 10.1093/cercor/bhn143
Jones EG, 2000, P NATL ACAD SCI USA, V97, P5019, DOI 10.1073/pnas.97.10.5019
Kaas JH, 2011, AUDITORY CORTEX, P407, DOI 10.1007/978-1-4419-0074-6_19
Kalatsky VA, 2005, P NATL ACAD SCI USA, V102, P13325, DOI 10.1073/pnas.0505592102
KANG YN, 1994, J NEUROPHYSIOL, V72, P578
Kaur S, 2005, NEUROSCIENCE, V134, P1033, DOI 10.1016/j.neuroscience.2005.04.052
KELLY JB, 1988, J NEUROPHYSIOL, V59, P1756
Kelly J.B., 1990, CEREBRAL CORTEX RAT, P381
Kilgard MP, 1999, HEARING RES, V134, P16, DOI 10.1016/S0378-5955(99)00061-1
Kvasnak E, 2000, PHYSIOL RES, V49, P369
Kwegyir-Afful EE, 2009, J NEUROSCI, V29, P964, DOI 10.1523/JNEUROSCI.3924-08.2009
Linden JF, 2003, CEREB CORTEX, V13, P83, DOI 10.1093/cercor/13.1.83
MERZENICH MM, 1975, J NEUROPHYSIOL, V38, P231
MITANI A, 1985, J COMP NEUROL, V235, P430, DOI 10.1002/cne.902350403
Nelken I, 2005, J COMPUT NEUROSCI, V19, P199, DOI 10.1007/s10827-005-1739-3
Nuding SC, 1999, HEARING RES, V131, P89, DOI 10.1016/S0378-5955(99)00023-4
Nuding SC, 1998, BRAIN RES, V785, P185, DOI 10.1016/S0006-8993(97)01347-4
Ojima H, 2002, CEREB CORTEX, V12, P1079, DOI 10.1093/cercor/12.10.1079
Oliver L.D., 2005, INFERIOR COLLICULUS, P709
Pandya PK, 2008, CEREB CORTEX, V18, P301, DOI 10.1093/cercor/bhm055
Petersen CCH, 2007, NEURON, V56, P339, DOI 10.1016/j.neuron.2007.09.017
Polley DB, 2007, J NEUROPHYSIOL, V97, P3621, DOI 10.1152/jn.01298.2006
PRIETO JJ, 1994, J COMP NEUROL, V344, P383, DOI 10.1002/cne.903440305
Profant O., 2007, 6 C CZECH NEUR SOC P, P65
Pysanenko K., 2010, 47 INN EAR BIOL WORK, P140
Qin L, 2007, J NEUROPHYSIOL, V97, P3421, DOI 10.1152/jn.00184.2007
Recanzone GH, 2000, HEARING RES, V150, P104, DOI 10.1016/S0378-5955(00)00194-5
REDIES H, 1989, J COMP NEUROL, V282, P473, DOI 10.1002/cne.902820402
Reimer A, 2011, CEREB CORTEX, V21, P166, DOI 10.1093/cercor/bhq073
Rothschild G, 2010, NAT NEUROSCI, V13, P353, DOI 10.1038/nn.2484
Rutkowski RG, 2003, HEARING RES, V181, P116, DOI 10.1016/S0378-5955(03)00182-5
Sadagopan S, 2010, J NEUROSCI, V30, P7314, DOI 10.1523/JNEUROSCI.5072-09.2010
Sakata S, 2009, NEURON, V64, P404, DOI 10.1016/j.neuron.2009.09.020
SALLY SL, 1988, J NEUROPHYSIOL, V59, P1627
Scholl B, 2008, J NEUROPHYSIOL, V100, P646, DOI 10.1152/jn.90406.2008
Schreiner CE, 2007, NEURON, V56, P356, DOI 10.1016/j.neuron.2007.10.013
Smith PH, 2001, J COMP NEUROL, V436, P508, DOI 10.1002/cne.1084
Stiebler I, 1997, J COMP PHYSIOL A, V181, P559, DOI 10.1007/s003590050140
SUGA N, 1965, NATURE, V206, P890, DOI 10.1038/206890a0
Sugimoto S, 1997, HEARING RES, V112, P175, DOI 10.1016/S0378-5955(97)00119-6
Suta D, 2003, J NEUROPHYSIOL, V90, P3794, DOI 10.1152/jn.01175.2002
Syka J, 2005, HEARING RES, V206, P177, DOI 10.1016/j.heares.2005.01.013
Tan AYY, 2009, NEUROSCIENCE, V163, P1302, DOI 10.1016/j.neuroscience.2009.07.032
THOMAS H, 1993, EUR J NEUROSCI, V5, P882, DOI 10.1111/j.1460-9568.1993.tb00940.x
TURKEWITZ G, 1985, J DEV BEHAV PEDIATR, V6, P302
Valentine PA, 2004, HEARING RES, V196, P119, DOI 10.1016/j.heares.2004.05.011
VANBREDERODE JFM, 1995, J NEUROPHYSIOL, V74, P1149
VOLKOV I O, 1989, Neirofiziologiya, V21, P498
Wallace MN, 2000, EXP BRAIN RES, V132, P445, DOI 10.1007/s002210000362
Wallace MN, 2008, EXP BRAIN RES, V184, P179, DOI 10.1007/s00221-007-1092-z
Wang XQ, 2005, NATURE, V435, P341, DOI 10.1038/nature03565
White LE, 2007, NEURON, V56, P327, DOI 10.1016/j.neuron.2007.10.011
Winer JA, 2007, HEARING RES, V229, P3, DOI 10.1016/j.heares.2007.01.017
Winer JA, 1999, J COMP NEUROL, V413, P181
Zhou X, 2008, NEUROSCIENCE, V154, P390, DOI 10.1016/j.neuroscience.2008.01.026
ZILLES K, 1980, ANAT EMBRYOL, V159, P335, DOI 10.1007/BF00317655
Zilles K., 1985, RAT NERVOUS SYSTEM, P375
NR 78
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2013
VL 296
BP 51
EP 59
DI 10.1016/j.heares.2012.11.021
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 101FW
UT WOS:000315761600006
PM 23220149
ER
PT J
AU Zirn, S
Hempel, JM
Schuster, M
Hemmert, W
AF Zirn, Stefan
Hempel, John-Martin
Schuster, Maria
Hemmert, Werner
TI Comodulation Masking Release induced by controlled electrical
stimulation of auditory nerve fibers
SO HEARING RESEARCH
LA English
DT Article
ID COCHLEAR IMPLANT LISTENERS; STREAM SEGREGATION; HEARING-LOSS;
PSYCHOACOUSTICS; RECOGNITION; MASKERS
AB Normal-hearing listeners can perceptually segregate concurrent sound sources, but listeners with significant hearing loss or who wear a Cochlear Implant (CI) lag behind in this ability. Perceptual grouping mechanisms are essential to segregate concurrent sound sources and affect Comodulation Masking Release (CMR). Thus, CMR measurements in CI users could shed light on segregation cues needed for forming and grouping of auditory objects. CMR illustrates the fact that detection of a target sound embedded in a fluctuating masker is improved by the addition of masker energy remote from the target frequency, provided the envelope fluctuations across masker components are coherent. We modified such a CMR experiment to electrically-induced hearing using direct stimulation and measured the effect in 21 CI users. Cluster analysis of our data revealed two groups: one showed no or only small CMR of 0.1 dB +/- 2.7 (N = 14) and a second group achieved a CMR of 10.7 dB +/- 3.2 (N = 7), a value that is close to the enhancement observed in a comparable acoustic experiment in normal-hearing listeners (12.9 dB +/- 2.6, N = 6). Interestingly, we observed that CMR in CI users may relate to hearing etiology and duration of hearing loss pre-implantation. Our study demonstrates for the first time that a substantial minority of cochlear-implant listeners (about a third) can show significant CMR. This outcome motivates the development of physiologically inspired multi-band gain control and/or different coding strategies for these groups in order to better preserve coherent modulation and thus to take advantage of the individual remaining capabilities to analyze spectro-temporal patterns. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Zirn, Stefan; Hempel, John-Martin; Schuster, Maria] Univ Munich, Univ Med Ctr, Dept Otolaryngol ENT Head & Neck Surg, D-81377 Munich, Germany.
[Hemmert, Werner] Tech Univ Munich, Bioinspired Informat Proc, IMETUM Inst Med Engn, D-85748 Garching, Germany.
RP Zirn, S (reprint author), Univ Munich, Univ Med Ctr, Dept Otolaryngol ENT Head & Neck Surg, Marchioninistr 15, D-81377 Munich, Germany.
EM Stefan.Zirn@med.uni-muenchen.de; John-Martin.Hempel@med.uni-muenchen.de;
Maria-Elke.Schuster@med.uni-muenchen.de; Werner.Hemmert@tum.de
FU Cochlear Ltd.; German Federal Ministry of Education and Research within
the Munich Bernstein Center of Computational Neuroscience [01GQ1004B];
Dr. H. Hessel [IIR-73]
FX This work was supported by Cochlear Ltd., Dr. H. Hessel (IIR-73; CMR in
CI users CRDL) and the German Federal Ministry of Education and Research
within the Munich Bernstein Center of Computational Neuroscience
(reference number 01GQ1004B). We thank Bernhard Seeber for helpful
discussions and Dianne Mecklenburg and Josie Wyss for proofreading the
manuscript. We also thank two anonymous reviewers for helpful comments.
CR Backhaus Klaus, 2006, MULTIVARIATE ANALYSE, V11th
Bregman AS., 1990, AUDITORY SCENE ANAL
CARRELL TD, 1992, PERCEPT PSYCHOPHYS, V52, P437, DOI 10.3758/BF03206703
Cochlear_Ltd, 2002, NUCL IMPL COMM NIC S
Cooper HR, 2009, J ACOUST SOC AM, V126, P1975, DOI 10.1121/1.3203210
Cooper HR, 2007, HEARING RES, V225, P11, DOI 10.1016/j.heares.2006.11.010
Dau T, 2009, J ACOUST SOC AM, V125, P2182, DOI 10.1121/1.3082121
Epp B, 2009, J ACOUST SOC AM, V126, P2479, DOI 10.1121/1.3205404
Epp B, 2009, J COMPUT NEUROSCI, V26, P393, DOI 10.1007/s10827-008-0118-2
Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47
Garadat SN, 2011, HEARING RES, V275, P130, DOI 10.1016/j.heares.2010.12.011
Goldman SA, 2012, J ACOUST SOC AM, V132, P303, DOI 10.1121/1.4726074
GROSE JH, 1992, J ACOUST SOC AM, V91, P1042, DOI 10.1121/1.402630
Grose JH, 1996, J ACOUST SOC AM, V100, P519, DOI 10.1121/1.415864
HALL JW, 1984, J ACOUST SOC AM, V76, P50, DOI 10.1121/1.391005
HALL JW, 1988, J ACOUST SOC AM, V84, P1325, DOI 10.1121/1.396631
Ihlefeld A, 2012, J ACOUST SOC AM, V131, P1315, DOI 10.1121/1.3676701
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
Miller AL, 2003, BRAIN RES, V966, P218, DOI 10.1016/S0006-8993(02)04170-7
Moore B.C., 2012, INTRO PSYCHOL HEARIN
MOORE B C J, 1990, British Journal of Audiology, V24, P131, DOI 10.3109/03005369009077854
Nelken I, 1999, NATURE, V397, P154, DOI 10.1038/16456
Oxenham Andrew J, 2008, Trends Amplif, V12, P316, DOI 10.1177/1084713808325881
Pierzycki RH, 2010, J ACOUST SOC AM, V128, P3614, DOI 10.1121/1.3500673
Pressnitzer D, 2001, J NEUROSCI, V21, P6377
Qin MK, 2003, J ACOUST SOC AM, V114, P446, DOI 10.1121/1.1579009
Rice S. O., 1954, MATH ANAL RANDOM NOI
SCHOONEVELDT GP, 1987, J ACOUST SOC AM, V82, P1944, DOI 10.1121/1.395639
Sharma Anu, 2002, Ear and Hearing, V23, P532, DOI 10.1097/00003446-200212000-00004
Shepherd RK, 2004, EUR J NEUROSCI, V20, P3131, DOI 10.1111/j.1460-9568.2004.03809.x
Skinner MW, 2002, EAR HEARING, V23, p2S, DOI 10.1097/00003446-200202001-00002
SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683
Stickney GS, 2004, J ACOUST SOC AM, V116, P1081, DOI 10.1121/1.1772399
Stone MA, 2004, J ACOUST SOC AM, V116, P2311, DOI 10.1121/1.1784447
Verhey J., 2008, Z AUDIOL, V47, P10
Verhey JL, 2012, HEARING RES, V285, P77, DOI 10.1016/j.heares.2012.01.006
Verhey JL, 2003, EXP BRAIN RES, V153, P405, DOI 10.1007/s00221-003-1607-1
Vollmer M, 2007, J NEUROPHYSIOL, V98, P2588, DOI 10.1152/jn.00011.2007
Wilson BS, 2008, HEARING RES, V242, P3, DOI 10.1016/j.heares.2008.06.005
Xiang JJ, 2010, J NEUROSCI, V30, P12084, DOI 10.1523/JNEUROSCI.0827-10.2010
ZENG FG, 1992, HEARING RES, V60, P231, DOI 10.1016/0378-5955(92)90024-H
Zirn S., 2010, COMODULATION MASKING
NR 42
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2013
VL 296
BP 60
EP 66
DI 10.1016/j.heares.2012.11.023
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 101FW
UT WOS:000315761600007
PM 23220120
ER
PT J
AU Dalhoff, E
Turcanu, D
Vetesnik, A
Gummer, AW
AF Dalhoff, Ernst
Turcanu, Diana
Vetesnik, Ales
Gummer, Anthony W.
TI Two-source interference as the major reason for auditory-threshold
estimation error based on DPOAE input-output functions in normal-hearing
subjects
SO HEARING RESEARCH
LA English
DT Article
ID PRODUCT OTOACOUSTIC EMISSIONS; ACOUSTIC DISTORTION-PRODUCT;
CLINICAL-TEST PERFORMANCE; FINE-STRUCTURE; INPUT/OUTPUT FUNCTIONS; HUMAN
EARS; LEVEL; TONE; SENSITIVITY; HUMANS
AB Fine structure in the frequency response of distortion product otoacoustic emissions (DPOAEs) can severely limit the usefulness of DPOAEs in estimating auditory thresholds. Here, fine structure is removed by extracting the primary-source DPOAE component using the onset-decomposition technique (Vetesnik et al., 2009) and auditory threshold estimates are compared to those obtained from DPOAEs in response to conventional, continuous two-tone stimulation. Auditory thresholds are predicted using the estimated distortion product thresholds (EDPTs), obtained from linear regression of input-output (I/O) functions of DPOAE pressure amplitude versus second-tone stimulus level (Boege and Janssen, 2002). The accuracy of the auditory-threshold predictions is derived by comparison with measured auditory thresholds. The parameters of the two primary stimulus tones of frequency f(1) and f(2) and levels of L-1 and L-2 are chosen as: f(2)/f(1) = 1.2 with 1.5 <= f(2) <= 2.5 kHz, and L-1 = 0.4L(2) + 39 dB SPL, with 25 <= L-2 <= 65 dB SPL. Data are from 12 normal-hearing subjects with profound DPOAE fine structure. 255 DPOAE I/O functions were measured for each of the two DPOAE paradigms. An EDPT value was accepted as reliable if: 1) the squared correlation coefficient, r(2) >= 0.8, 2) the regression slope, s(I/O) >= 0.2 mu pa/dB, and 3) the standard deviation of the EDPT, sigma(EDPT) <= 10 dB. The proportion of rejected I/O functions was 8% for onset-decomposition DPOAEs, and 25% for continuous-tone DPOAEs. Removal of data points from the saturation region of the DPOAE I/O function by an automated algorithm reduced the rejection rate, to zero for onset-decomposition DPOAEs, but to only 13% for continuous-tone DPOAEs. In the absence of saturated DPOAE responses, auditory thresholds were predicted with standard deviation of only 4 dB for onset-decomposition DPOAEs, but 12 dB for continuous-tone DPOAEs. In 'summary, by extracting the primary-source component of the DPOAE by the method of onset-decomposition it is possible to predict human auditory threshold with hitherto unattainable accuracy. (C) 2013 Elsevier B.V. All rights reserved.
C1 [Dalhoff, Ernst; Turcanu, Diana; Vetesnik, Ales; Gummer, Anthony W.] Univ Tubingen, Dept Otolaryngol, Sect Physiol Acoust & Commun, D-72076 Tubingen, Germany.
RP Gummer, AW (reprint author), Univ Tubingen, Dept Otolaryngol, Sect Physiol Acoust & Commun, Elfriede Aulhorn Str 5, D-72076 Tubingen, Germany.
EM ernst.dalhoff@uni-tuebingen.de; diana.turcanu@uni-tuebingen.de;
ales.vetesnik@fjfi.cvut.cz; anthony.gummer@uni-tuebingen.de
FU Deutsche Forschungsgemeinschaft [DFG Gu 194/8-1, DFG Da 487/3-1]
FX The authors are grateful to the anonymous reviewer, whose suggestions
significantly improved this manuscript. Preliminary experiments were
supported by a grant from the Deutsche Forschungsgemeinschaft, DFG Gu
194/8-1 and later work by a grant from the Deutsche
Forschungsgemeinschaft, DFG Da 487/3-1.
CR Avan P, 1997, J ACOUST SOC AM, V101, P2771, DOI 10.1121/1.418564
Boege P, 2002, J ACOUST SOC AM, V111, P1810, DOI 10.1121/1.1460923
Burke SR, 2010, EAR HEARING, V31, P533, DOI 10.1097/AUD.0b013e3181d86b3d
Dalhoff E, 2011, AIP CONF PROC, V1403, DOI 10.1063/1.3658096
Dhar S, 2004, EAR HEARING, V25, P573, DOI 10.1097/00003446-200412000-00006
ELLIOTT E, 1958, NATURE, V181, P1076, DOI 10.1038/1811076a0
GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732
Gibra I.N., 1973, PROBABILITY STAT INF, P262
Goldman B, 2006, J ACOUST SOC AM, V120, P2764, DOI 10.1121/1.2258871
GORGA MP, 1993, J ACOUST SOC AM, V94, P2639, DOI 10.1121/1.407348
Gorga MP, 2003, J ACOUST SOC AM, V113, P3275, DOI 10.1121/1.1570433
HE NJ, 1993, J ACOUST SOC AM, V94, P2659, DOI 10.1121/1.407350
Heitmann J, 1998, J ACOUST SOC AM, V103, P1527, DOI 10.1121/1.421290
Johnson TA, 2010, EAR HEARING, V31, P74, DOI 10.1097/AUD.0b013e3181b71924
Johnson TA, 2007, J ACOUST SOC AM, V122, P3539, DOI 10.1121/1.2799474
Johnson TA, 2006, J ACOUST SOC AM, V119, P3896, DOI 10.1121/1.2200048
Kalluri R, 2001, J ACOUST SOC AM, V109, P622, DOI 10.1121/1.1334597
Kemp D. T., 1983, MECH HEARING, P75
KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104
KIMBERLEY BP, 1989, J OTOLARYNGOL, V18, P365
Kirby BJ, 2011, EAR HEARING, V32, P230, DOI 10.1097/AUD.0b013e3181fa5da2
Kummer P, 2006, HNO, V54, P457, DOI 10.1007/s00106-005-1341-z
Kummer P, 1998, J ACOUST SOC AM, V103, P3431, DOI 10.1121/1.423054
Kummer P, 2000, HEARING RES, V146, P47, DOI 10.1016/S0378-5955(00)00097-6
LONG GR, 1988, HEARING RES, V36, P125, DOI 10.1016/0378-5955(88)90055-X
Long GR, 2008, J ACOUST SOC AM, V124, P1613, DOI 10.1121/1.2949505
Martin GK, 2009, J ACOUST SOC AM, V125, pEL85, DOI 10.1121/1.3073734
Martin GK, 2011, J ACOUST SOC AM, V129, P3090, DOI 10.1121/1.3560123
Martin GK, 2010, J ACOUST SOC AM, V127, P2955, DOI 10.1121/1.3353121
Mauermann M, 2004, J ACOUST SOC AM, V116, P2199, DOI 10.1121/1.1791719
Mauermann M, 2004, J ACOUST SOC AM, V116, P1066, DOI 10.1121/1.1760106
Neely ST, 2009, J ACOUST SOC AM, V126, P728, DOI 10.1121/1.3158859
NELSON DA, 1992, J SPEECH HEAR RES, V35, P1142
Norton SJ, 2000, EAR HEARING, V21, P508, DOI 10.1097/00003446-200010000-00013
Oswald Johann A, 2003, Z Med Phys, V13, P93
PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897
Shaffer LA, 2006, J AM ACAD AUDIOL, V17, P279, DOI 10.3766/jaaa.17.4.6
Shera CA, 2004, EAR HEARING, V25, P86, DOI 10.1097/01.AUD.0000121200.90211.83
Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948
Talmadge CL, 1999, J ACOUST SOC AM, V105, P275, DOI 10.1121/1.424584
Vetesnik A, 2009, HEARING RES, V256, P21, DOI 10.1016/j.heares.2009.06.002
Whitehead ML, 1996, J ACOUST SOC AM, V100, P1663, DOI 10.1121/1.416065
Yates GK, 1999, HEARING RES, V136, P49, DOI 10.1016/S0378-5955(99)00108-2
ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320
NR 44
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2013
VL 296
BP 67
EP 82
DI 10.1016/j.heares.2012.12.003
PG 16
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 101FW
UT WOS:000315761600008
PM 23268357
ER
PT J
AU Heil, P
Verhey, JL
Zoefel, B
AF Heil, Peter
Verhey, Jesko L.
Zoefel, Benedikt
TI Modelling detection thresholds for sounds repeated at different delays
SO HEARING RESEARCH
LA English
DT Article
ID AUDITORY TEMPORAL INTEGRATION; BASILAR-MEMBRANE RESPONSES;
FREQUENCY-SELECTIVITY; UNIFYING BASIS; FILTER SHAPES; NERVE FIBERS;
ABSOLUTE THRESHOLD; 1ST-SPIKE LATENCY; PHASE-LOCKING; NOTCHED-NOISE
AB Detection thresholds for pairs or multiple copies of sounds are better than those for a single sound, an observation commonly interpreted as indicating temporal integration by the auditory system. Detection thresholds for pairs of brief tones depend on the delay between the tones (if short) and on frequency, suggesting frequency-dependent temporal overlap of auditory-filter responses elicited by the two successive stimuli (Krumbholz and Wiegrebe, 1998). The model presented by Krumbholz and Wiegrebe did not account for all aspects of their data, despite its complexity. This study shows that a simple probabilistic model based on Neubauer and Heil (2008) predicts the increase in threshold for short temporal delays as well as the asymptotic behaviour towards longer delays. The model entails (i) a 4th-order gammatone filter with a brief impulse response and thus broad bandwidth (shorter and broader than those of a filter normally assumed), (ii) the formation of stochastic 'spikes' or 'events' whose probability of occurrence is proportional to the filter output (half-wave rectified fine-structure or amplitude envelope), raised to a power of 3, and (iii) probability summation. The same model with the same front-end filter also predicts thresholds for pairs of clicks presented in band-reject noise, measured by Hall and Lummis (1973). The model accurately predicts the magnitudes and the decay of the alternating increase and decrease of thresholds as the delay between the click varies, the small effects of click polarity, and the dependence of thresholds for pairs of clicks with unequal intensities on their temporal order. Finally, we show that this model also correctly predicts the decrease in threshold with increasing number of temporally separated brief sounds, reported in several studies. While the latter data do not constrain the characteristics of the front-end filter, they do confirm the exponent of 3 in the model. Our paper stresses the viability of the model and raises the possibility that the bandwidths of filters estimated with psychophysical techniques may depend more strongly on the experimental paradigms and stimuli than hitherto thought. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Heil, Peter; Zoefel, Benedikt] Leibniz Inst Neurobiol, D-39118 Magdeburg, Germany.
[Heil, Peter; Verhey, Jesko L.] Ctr Behav Brain Sci, D-39118 Magdeburg, Germany.
[Verhey, Jesko L.] Univ Magdeburg, Dept Expt Audiol, D-39120 Magdeburg, Germany.
RP Heil, P (reprint author), Leibniz Inst Neurobiol, Brenneckestr 6, D-39118 Magdeburg, Germany.
EM peter.heil@lin-magdeburg.de; jesko.verhey@med.ovgu.de;
benedikt.zoefel@lin-magdeburg.de
FU Deutsche Forschungsgemeinschaft [SFB-TRR 31, A6, B3]
FX This study was supported by the Deutsche Forschungsgemeinschaft (SFB-TRR
31, A6 and B3).
CR BACON SP, 1986, HEARING RES, V23, P257, DOI 10.1016/0378-5955(86)90114-0
BACON SP, 1985, J ACOUST SOC AM, V78, P1231, DOI 10.1121/1.392891
BACON SP, 1986, J ACOUST SOC AM, V80, P1638, DOI 10.1121/1.394328
CARLYON RP, 1990, J ACOUST SOC AM, V87, P260, DOI 10.1121/1.399293
Chen FY, 2011, NAT NEUROSCI, V14, P770, DOI 10.1038/nn.2827
COOMBS S, 1989, J ACOUST SOC AM, V86, P925, DOI 10.1121/1.398727
DALLOS PJ, 1966, J ACOUST SOC AM, V40, P1160, DOI 10.1121/1.1910201
Dau T, 1997, J ACOUST SOC AM, V102, P2892, DOI 10.1121/1.420344
de Boer E, 1985, TIME RESOLUTION AUDI, P141
Eddins AC, 1999, J SPEECH LANG HEAR R, V42, P516
Eddins David A., 1995, P207, DOI 10.1016/B978-012505626-7/50008-X
FAY RR, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P229
FLANAGAN JL, 1961, J ACOUST SOC AM, V33, P1540, DOI 10.1121/1.1908494
GEISLER CD, 1985, J ACOUST SOC AM, V77, P1102, DOI 10.1121/1.392228
GERKEN GM, 1990, J ACOUST SOC AM, V88, P767, DOI 10.1121/1.399726
GERKEN GM, 1966, PERCEPT PSYCHOPHYS, V1, P137, DOI 10.3758/BF03210044
GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
Green DM, 1985, TIME RESOLUTION AUDI, P122
Guinan JJ, 2008, J ACOUST SOC AM, V124, P1080, DOI 10.1121/1.2949435
HALL JL, 1973, J ACOUST SOC AM, V54, P593, DOI 10.1121/1.1913638
Heil Peter, 2010, Front Synaptic Neurosci, V2, P148, DOI 10.3389/fnsyn.2010.00148
Heil P, 2008, HEARING RES, V238, P25, DOI 10.1016/j.heares.2007.09.014
Heil P., BASIC ASPECTS HEARIN
Heil P, 2003, P NATL ACAD SCI USA, V100, P6151, DOI 10.1073/pnas.1030017100
Heil P, 2011, J NEUROSCI, V31, P15424, DOI 10.1523/JNEUROSCI.1638-11.2011
HEIL P, 1991, BRAIN RES, V539, P110, DOI 10.1016/0006-8993(91)90692-O
Hohmann V, 2002, ACTA ACUST UNITED AC, V88, P433
MOORE BCJ, 1995, J ACOUST SOC AM, V97, P1175, DOI 10.1121/1.412229
Joris PX, 2011, P NATL ACAD SCI USA, V108, P17516, DOI 10.1073/pnas.1105867108
Kiang NYS, 1965, RES MONOGRAPHS, V35
Koppl C, 1997, J NEUROSCI, V17, P3312
Krumbholz K, 1998, HEARING RES, V124, P155, DOI 10.1016/S0378-5955(98)00134-8
Lopez-Poveda EA, 2001, J ACOUST SOC AM, V110, P3107, DOI 10.1121/1.1416197
Lutkenhoner B, 2011, BRAIN RES, V1385, P206, DOI 10.1016/j.brainres.2011.02.011
Meddis R, 1997, J ACOUST SOC AM, V102, P1811, DOI 10.1121/1.420088
Meddis R, 2011, J ACOUST SOC AM, V129, P3153, DOI 10.1121/1.3569712
Meddis R, 2006, J ACOUST SOC AM, V120, P1192, DOI 10.1121/1.2221413
MOORE BCJ, 1987, J ACOUST SOC AM, V81, P1873, DOI 10.1121/1.394751
Neubauer H, 2008, BRAIN RES, V1220, P208, DOI 10.1016/j.brainres.2007.08.081
Neubauer H, 2004, JARO-J ASSOC RES OTO, V5, P436, DOI 10.1007/s10162-004-5031-4
O'Connor KN, 1999, J ACOUST SOC AM, V106, P954, DOI 10.1121/1.427108
PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X
PATTERSON RD, 1976, J ACOUST SOC AM, V59, P640, DOI 10.1121/1.380914
Patterson R.D., 1994, J ACOUST SOC AM, V48, P894
Plack CJ, 2002, ACTA ACUST UNITED AC, V88, P348
PLOMP R, 1959, J ACOUST SOC AM, V31, P749, DOI 10.1121/1.1907781
Qin L, 2003, NEUROSCI RES, V46, P145, DOI 10.1016/S0168-0102(03)00034-8
Recanzone GH, 2008, ANNU REV PSYCHOL, V59, P119, DOI 10.1146/annurev.psych.59.103006.093544
Recio A, 1998, J ACOUST SOC AM, V103, P1972, DOI 10.1121/1.421377
Robles L, 2001, PHYSIOL REV, V81, P1305
Ruggero M. A., 1992, MAMMALIAN AUDITORY P, P34
Ruggero MA, 2005, P NATL ACAD SCI USA, V102, P18614, DOI 10.1073/pnas.0509323102
SHAILER MJ, 1987, J ACOUST SOC AM, V81, P1110, DOI 10.1121/1.394631
Shechter B, 2009, HEARING RES, V256, P118, DOI 10.1016/j.heares.2009.07.005
Shera CA, 2002, P NATL ACAD SCI USA, V99, P3318, DOI 10.1073/pnas.032675099
SOLECKI JM, 1990, J ACOUST SOC AM, V88, P779, DOI 10.1121/1.399727
SRINIVAS.R, 1971, J ACOUST SOC AM, V50, P616, DOI 10.1121/1.1912677
Strickland EA, 2001, J ACOUST SOC AM, V109, P2062, DOI 10.1121/1.1357811
Todd N.P., 1994, P INT C SPOK DIAL PR, P127
Verhey J. L., 2010, OXFORD HDB AUDITORY, P105
VIEMEISTER NF, 1991, J ACOUST SOC AM, V90, P858, DOI 10.1121/1.401953
ZWICKER E, 1972, J ACOUST SOC AM, V52, P699, DOI 10.1121/1.1913161
ZWISLOCKI J, 1962, J ACOUST SOC AM, V34, P1648
ZWISLOCKI J, 1960, J ACOUST SOC AM, V32, P1046, DOI 10.1121/1.1908276
NR 64
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2013
VL 296
BP 83
EP 95
DI 10.1016/j.heares.2012.12.002
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 101FW
UT WOS:000315761600009
PM 23268356
ER
PT J
AU Brown, DJ
Chihara, Y
Curthoys, IS
Wang, Y
Bos, M
AF Brown, Daniel J.
Chihara, Yasuhiro
Curthoys, Ian S.
Wang, Yuan
Bos, Marieke
TI Changes in cochlear function during acute endolymphatic hydrops
development in guinea pigs
SO HEARING RESEARCH
LA English
DT Article
ID EVOKED MYOGENIC POTENTIALS; MENIERES-DISEASE; REISSNERS MEMBRANE;
SACCULAR MACULAE; PERILYMPHATIC K+; OPERATING POINT; TEMPORAL BONE;
TIME-COURSE; IN-VIVO; PRESSURE
AB Previous studies have injected artificial endolymph into scala media in anaesthetized guinea pigs as an acute model of endolymphatic hydrops. Here, we have injected artificial endolymph into scala media in guinea pigs at rates of 40-80 nl/min, whilst monitoring Compound Action Potential (CAP) thresholds, the Summating Potential (SP)/CAP ratio, Cochlear Microphonic (CM) distortion, low-frequency modulated Distortion Product Otoacoustic Emissions (DPOAEs), and the Endocochlear Potential (EP). We found that abrupt recovery of CAP thresholds, SP/CAP ratio, and CM and DPOAE asymmetric distortion could occur several times during a single injection of less than 3 mu l, suggesting that endolymph pressure could periodically decrease while the injection was ongoing. Larger volumes are thought to produce a rupture of the membranous labyrinth, however, our results suggest that multiple injections, each larger than 3 mu l and within 40 min of each other, cause multiple pressure-related changes, which are difficult to be explained on the basis of a simple labyrinth rupture. We have also examined the morphological changes of the temporal bones ex vivo using X-ray micro-tomography. Both the functional changes and the micro-CT images suggest ruptures of the membranous labyrinth may not always be responsible for abrupt changes in inner ear function. Our results provide a new insight into the changes in cochlear function occurring during acute hydrops development, which compares well to the clinical findings observed in Meniere's Disease. We suggest that hydrops development may be a continual process, yet cause discontinuous functional changes due to mechanisms other than a simple rupture of the membranous labyrinth. (C) 2012 Published by Elsevier B.V.
C1 [Brown, Daniel J.; Chihara, Yasuhiro; Curthoys, Ian S.; Wang, Yuan] Univ Sydney, Sydney Med Sch, Brain & Mind Res Inst, Camperdown, NSW 2050, Australia.
[Bos, Marieke] Utrecht Univ Appl Sci, Inst Life Sci & Chem, Utrecht, Netherlands.
RP Brown, DJ (reprint author), Univ Sydney, Sydney Med Sch, Brain & Mind Res Inst, 100 Mallett St, Camperdown, NSW 2050, Australia.
EM daniel.brown@sydney.edu.au; y-chihara@umin.ac.jp
FU Meniere's Research Fund Inc., NSW, Australia
FX This study was supported by the Meniere's Research Fund Inc., a
not-for-profit organization in NSW, Australia.
CR Abel C, 2009, J NEUROPHYSIOL, V101, P2362, DOI 10.1152/jn.00026.2009
BANCE M, 1991, LARYNGOSCOPE, V101, P197
BROWN DH, 1988, LARYNGOSCOPE, V98, P599
Brown DJ, 2009, J ACOUST SOC AM, V125, P2129, DOI 10.1121/1.3083228
Brown DJ, 2011, HEARING RES, V282, P119, DOI 10.1016/j.heares.2011.09.002
Curthoys IS, 2009, ANN NY ACAD SCI, V1164, P13, DOI 10.1111/j.1749-6632.2008.03729.x
DOHLMANN GF, 1976, ARCH OTO-RHINO-LARYN, V212, P301, DOI 10.1007/BF00453678
Flock A, 2003, AUDIOL NEURO-OTOL, V8, P59, DOI 10.1159/000069002
Flock A, 2000, HEARING RES, V150, P175, DOI 10.1016/S0378-5955(00)00198-2
Fridberger A, 1997, ACTA PHYSIOL SCAND, V161, P239, DOI 10.1046/j.1365-201X.1997.00214.x
Gibson WPR, 2010, OTOLARYNG CLIN N AM, V43, P1019, DOI 10.1016/j.otc.2010.05.013
Gibson WPR, 1997, OTOLARYNG CLIN N AM, V30, P961
Gurkov R, 2011, EUR ARCH OTO-RHINO-L, V268, P1743, DOI 10.1007/s00405-011-1573-3
Kakigi Akinobu, 2010, ORL J Otorhinolaryngol Relat Spec, V71 Suppl 1, P16, DOI 10.1159/000265118
Kingma CM, 2010, EUR ARCH OTO-RHINO-L, V267, P1679, DOI 10.1007/s00405-010-1298-8
Kingma CM, 2009, J VESTIBUL RES-EQUIL, V19, P27, DOI 10.3233/VES-2009-0341
Manzari L, 2011, EUR ARCH OTO-RHINO-L, V268, P637, DOI 10.1007/s00405-010-1442-5
Manzari L, 2010, CLIN NEUROPHYSIOL, V121, P1092, DOI 10.1016/j.clinph.2010.02.003
Marcon S, 2008, HEARING RES, V237, P76, DOI 10.1016/j.heares.2007.12.011
MARCUS DC, 1983, HEARING RES, V12, P17, DOI 10.1016/0378-5955(83)90116-8
MCCLURE JA, 1981, LARYNGOSCOPE, V91, P1727
McClure J A, 1982, Adv Otorhinolaryngol, V28, P39
McNeill C, 2009, ACTA OTO-LARYNGOL, V129, P1404, DOI 10.3109/00016480902751672
McNeill C, 2009, INT J AUDIOL, V48, P594, DOI 10.1080/14992020802716778
Palomar-Asenjo V, 2006, OTOL NEUROTOL, V27, P945, DOI 10.1097/01.mao.0000231593.03090.23
Patuzzi R, 1998, HEARING RES, V125, P1, DOI 10.1016/S0378-5955(98)00125-7
Patuzzi R, 2002, AUDIOL NEURO-OTOL, V7, P17, DOI 10.1159/000046857
Perez-Garrigues H, 2008, ARCH OTOLARYNGOL, V134, P1149, DOI 10.1001/archotol.134.11.1149
Rabbitt RD, 2001, ANN NY ACAD SCI, V942, P313
Salt AN, 2004, HEARING RES, V191, P90, DOI 10.1016/j.heares.2003.12.018
Salt AN, 2006, J NEUROSCI METH, V153, P121, DOI 10.1016/j.jneumeth.2005.10.008
SALT AN, 1994, HEARING RES, V74, P165, DOI 10.1016/0378-5955(94)90184-8
Salt AN, 2010, OTOLARYNG CLIN N AM, V43, P971, DOI 10.1016/j.otc.2010.05.007
Schuknecht H., 1963, J OTOLARYNGOL SOC AU, V30, P222
SCHUKNECHT HF, 1975, J LARYNGOL OTOL, V89, P985, DOI 10.1017/S0022215100081305
Sirjani DB, 2004, J ACOUST SOC AM, V115, P1219, DOI 10.1121/1.1647479
Stahle J, 1991, Acta Otolaryngol Suppl, V485, P78
TASAKI I, 1952, J NEUROPHYSIOL, V15, P497
Taylor RL, 2012, CEPHALALGIA, V32, P213, DOI 10.1177/0333102411434166
Thorne M, 1999, LARYNGOSCOPE, V109, P1661, DOI 10.1097/00005537-199910000-00021
TONNDORF J, 1983, ACTA OTO-LARYNGOL, V95, P421, DOI 10.3109/00016488309139425
Uzun-Coruhlu H, 2007, HEARING RES, V233, P77, DOI 10.1016/j.heares.2007.07.008
Valk WL, 2004, HEARING RES, V192, P47, DOI 10.1016/j.heares.2003.12.021
Valk WL, 2006, ACTA OTO-LARYNGOL, V126, P1030, DOI 10.1080/00016480600621722
Wong CC., 2012, ACTA OTOLARYNGOL
NR 45
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2013
VL 296
BP 96
EP 106
DI 10.1016/j.heares.2012.12.004
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 101FW
UT WOS:000315761600010
PM 23270618
ER
PT J
AU Carrasco, MM
Trujillo, M
Razak, K
AF Carrasco, Maria Magdalena
Trujillo, Michael
Razak, Khaleel
TI Development of response selectivity in the mouse auditory cortex
SO HEARING RESEARCH
LA English
DT Article
ID FREQUENCY-MODULATED SWEEPS; MECHANISMS UNDERLYING SELECTIVITY; BAT
INFERIOR COLLICULUS; BIG BROWN BAT; RECEPTIVE-FIELDS; PALLID BAT; SOUND
DURATION; MOUSTACHED BAT; VISUAL-CORTEX; HEARING-LOSS
AB The mouse auditory system contains neurons selective for tone duration and for a narrow range of frequency modulated (FM) sweep rates. Whether such selectivity is developmentally regulated is not known. The main goal of this study was to follow the development of neuronal responses to tones (frequency and duration tuning) and FM sweeps (direction and rate selectivity) in the core auditory cortex (A1 and AAF) of ketamine/xylazine anesthetized C57b1/6 mice. Three groups were compared: postnatal day (P) 15-20, P21-30 and P31-90. Frequency tuning bandwidth decreased during the first month indicating refinement of the excitatory receptive field. Duration tuning for tones did not change during development in terms of categories of tuning types as well as measures of selectivity such as best duration and half-maximal duration. FM rate and direction selectivity were developmentally regulated. Selectivity for linear up and down FM sweeps (0.06-22 kHz/ms) was tested. The best rate and half-maximal rate of neurons categorized as fast- or band-pass selective shifted toward faster rates during development. The percentage of fast-pass selective neurons also increased during development. These data suggest that cortical neurons' discrimination and detection abilities for relatively faster sweep rates improve during development. Although on average, direction selectivity was weak across development, there was a significant shift toward upward sweep selectivity at slow rates. Thus, the C57b1/6 mouse auditory cortex is not adult-like until at least P30. The changes in response selectivity can be explained based on known developmental changes in intrinsic and synaptic properties of mouse auditory cortical neurons. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Razak, Khaleel] Univ Calif Riverside, Grad Neurosci Program, Riverside, CA 92521 USA.
Univ Calif Riverside, Dept Psychol, Riverside, CA 92521 USA.
RP Razak, K (reprint author), Univ Calif Riverside, Grad Neurosci Program, 900 Univ Ave, Riverside, CA 92521 USA.
EM khaleel@ucr.edu
FU Deafness Research Foundation
FX This study was funded by a grant from the Deafness Research Foundation.
We thank the members of the Razak lab for useful discussions of the
data.
CR ARTHUR RM, 1971, J PHYSIOL-LONDON, V212, P593
Atencio CA, 2007, J NEUROPHYSIOL, V98, P2182, DOI 10.1152/jn.00394.2007
Barkat TR, 2011, NAT NEUROSCI, V14, P1189, DOI 10.1038/nn.2882
Brand A, 2000, J NEUROPHYSIOL, V84, P1790
Brown TA, 2009, J NEUROPHYSIOL, V101, P2017, DOI 10.1152/jn.90931.2008
Brown TA, 2010, BRAIN RES, V1309, P29, DOI 10.1016/j.brainres.2009.10.053
CALFORD MB, 1995, J NEUROPHYSIOL, V73, P1876
Campbell RAA, 2010, J NEUROPHYSIOL, V103, P2783, DOI 10.1152/jn.00730.2009
Carrasco MM, 2005, J NEUROPHYSIOL, V94, P1962, DOI 10.1152/jn.00166.2005
CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341
Chang EF, 2005, P NATL ACAD SCI USA, V102, P16460, DOI 10.1073/pnas.0508239102
Chen GD, 1998, HEARING RES, V122, P142, DOI 10.1016/S0378-5955(98)00103-8
Cohen L, 2011, NEURON, V72, P357, DOI 10.1016/j.neuron.2011.08.019
Covey E, 1999, ANNU REV PHYSIOL, V61, P457, DOI 10.1146/annurev.physiol.61.1.457
Demyanenko GP, 2011, J NEUROSCI, V31, P1545, DOI 10.1523/JNEUROSCI.4467-10.2011
de Villers-Sidani E, 2007, J NEUROSCI, V27, P180, DOI 10.1523/JNEUROSCI.3227-06.2007
DeWeese MR, 2003, J NEUROSCI, V23, P7940
Eggermont JJ, 1996, NEUROREPORT, V7, P753, DOI 10.1097/00001756-199602290-00018
EHRET G, 1992, DEV BRAIN RES, V67, P317, DOI 10.1016/0165-3806(92)90233-M
Ehrlich D, 1997, J NEUROPHYSIOL, V77, P2360
FAGIOLINI M, 1994, VISION RES, V34, P709, DOI 10.1016/0042-6989(94)90210-0
Felsheim C, 1996, HEARING RES, V98, P137, DOI 10.1016/0378-5955(96)00078-0
Fremouw T, 2005, J NEUROPHYSIOL, V94, P1869, DOI 10.1152/jn.00253.2005
Froemke RC, 2011, NEUROSCI BIOBEHAV R, V35, P2105, DOI 10.1016/j.neubiorev.2011.02.006
Fuzessery ZM, 1999, HEARING RES, V137, P137, DOI 10.1016/S0378-5955(99)00133-1
Fuzessery ZM, 2006, J NEUROPHYSIOL, V96, P1320, DOI 10.1152/jn.00021.2006
Fuzessery ZM, 2011, J COMP PHYSIOL A, V197, P615, DOI 10.1007/s00359-010-0554-0
Galazyuk AV, 1997, J COMP PHYSIOL A, V180, P301, DOI 10.1007/s003590050050
Garcia-Lazaro JA, 2006, CURR BIOL, V16, P264, DOI 10.1016/j.cub.2005.12.013
Gianfranceschi L, 2003, P NATL ACAD SCI USA, V100, P12486, DOI 10.1073/pnas.1934836100
Gittelman JX, 2009, J NEUROSCI, V29, P13030, DOI 10.1523/JNEUROSCI.2477-09.2009
Gordon M, 1998, HEARING RES, V122, P97, DOI 10.1016/S0378-5955(98)00087-2
Grimsley JMS, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017460
Happel MFK, 2010, J NEUROSCI, V30, P11114, DOI 10.1523/JNEUROSCI.0689-10.2010
Harper NS, 2004, NATURE, V430, P682, DOI 10.1038/nature02768
He JF, 1997, J NEUROSCI, V17, P2615
HENRY KR, 1980, AUDIOLOGY, V19, P369
Holmstrom LA, 2010, J NEUROSCI, V30, P802, DOI 10.1523/JNEUROSCI.1964-09.2010
HUBEL DH, 1963, J NEUROPHYSIOL, V26, P994
HUNTER KP, 1987, HEARING RES, V30, P207, DOI 10.1016/0378-5955(87)90137-7
Inan M, 2007, NEUROSCIENTIST, V13, P49, DOI 10.1177/1073858406296257
Insanally MN, 2010, J NEUROPHYSIOL, V103, P2611, DOI 10.1152/jn.00872.2009
Intskirveli I, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026192
Katz LC, 1996, SCIENCE, V274, P1133, DOI 10.1126/science.274.5290.1133
Lee CC, 2011, HEARING RES, V274, P85, DOI 10.1016/j.heares.2010.05.008
Linden JF, 2003, J NEUROPHYSIOL, V90, P2660, DOI 10.1152/jn.00751.2002
Liu RC, 2003, J ACOUST SOC AM, V114, P3412, DOI 10.1121/1.1623787
Luo F, 2008, J NEUROPHYSIOL, V99, P284, DOI 10.1152/jn.00935.2007
MENDELSON JR, 1993, EXP BRAIN RES, V94, P65
Metherate R, 1999, DEV BRAIN RES, V115, P131, DOI 10.1016/S0165-3806(99)00058-9
MIKAELIAN DO, 1979, LARYNGOSCOPE, V89, P1
Miller LM, 2001, NEURON, V32, P151, DOI 10.1016/S0896-6273(01)00445-7
Nelken I, 2000, EUR J NEUROSCI, V12, P549, DOI 10.1046/j.1460-9568.2000.00935.x
Ohl FW, 1999, LEARN MEMORY, V6, P347
O'Neill WE, 2002, J NEUROPHYSIOL, V88, P172, DOI 10.1152/jn.00966.2001
Oswald AMM, 2011, CEREB CORTEX, V21, P1351, DOI 10.1093/cercor/bhq214
Oswald AMM, 2008, J NEUROPHYSIOL, V99, P2998, DOI 10.1152/jn.01160.2007
Panksepp JB, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000351
Park SN, 2010, CLIN EXP OTORHINOLAR, V3, P126, DOI 10.3342/ceo.2010.3.3.126
Perez-Gonzalez D, 2006, J NEUROPHYSIOL, V95, P823, DOI 10.1152/jn.00741.2005
Pienkowski M, 2005, J NEUROPHYSIOL, V93, P454, DOI 10.1152/jn.00569.2004
POON PWF, 1991, EXP BRAIN RES, V83, P598
Portfors CV, 2005, NEUROSCIENCE, V136, P1159, DOI 10.1016/j.neuroscience.2005.08.031
Portfors CV, 2011, NEUROSCIENCE, V193, P429, DOI 10.1016/j.neuroscience.2011.07.025
Portfors CV, 2009, NEUROSCIENCE, V162, P486, DOI 10.1016/j.neuroscience.2009.04.056
Ranson A, 2012, P NATL ACAD SCI USA, V109, P1311, DOI 10.1073/pnas.1112204109
Razak KA, 2007, HEARING RES, V228, P69, DOI 10.1016/j.heares.2007.01.020
Razak KA, 2006, J NEUROPHYSIOL, V96, P1303, DOI 10.1152/jn.00020.2006
Razak KA, 2008, P NATL ACAD SCI USA, V105, P4465, DOI 10.1073/pnas.0709504105
Razak KA, 2007, J NEUROSCI, V27, P1769, DOI 10.1523/JNEUROSCI.3851-06.2007
Ricketts C, 1998, HEARING RES, V123, P27, DOI 10.1016/S0378-5955(98)00086-0
Rotschafer SE, 2012, BRAIN RES, V1439, P7, DOI 10.1016/j.brainres.2011.12.041
ROUILLER EM, 1991, EXP BRAIN RES, V86, P483
SAUNDERS JC, 1980, BRAIN RES, V187, P69, DOI 10.1016/0006-8993(80)90495-3
Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315
Stern EA, 2001, NEURON, V31, P305, DOI 10.1016/S0896-6273(01)00360-9
Stiebler I, 1997, J COMP PHYSIOL A, V181, P559, DOI 10.1007/s003590050140
Suga N, 1997, J NEUROPHYSIOL, V77, P2098
Sugiyama S, 2008, CELL, V134, P508, DOI 10.1016/j.cell.2008.05.054
Sun YJ, 2010, NATURE, V465, P927, DOI 10.1038/nature09079
Sutter ML, 1999, J NEUROPHYSIOL, V82, P2358
Syka J, 2005, HEARING RES, V206, P177, DOI 10.1016/j.heares.2005.01.013
Taberner AM, 2005, J NEUROPHYSIOL, V93, P557, DOI 10.1152/jn.00574.2004
TIAN B, 1994, J NEUROPHYSIOL, V71, P1959
Torii M, 2012, CEREB CORTEX
Trujillo M, 2011, J NEUROPHYSIOL, V106, P2825, DOI 10.1152/jn.00480.2011
Vater M, 2010, J NEUROPHYSIOL, V103, P2339, DOI 10.1152/jn.00517.2009
Vignal C, 2011, J COMP PSYCHOL, V125, P150, DOI 10.1037/a0020865
Walker KMM, 2008, J COGNITIVE NEUROSCI, V20, P135, DOI 10.1162/jocn.2008.20012
Wang J, 2006, BRAIN RES, V1114, P63, DOI 10.1016/j.brainres.2006.07.046
Washington SD, 2008, J NEUROPHYSIOL, V100, P3285, DOI 10.1152/jn.90442.2008
Wetzel W, 1998, BEHAV BRAIN RES, V91, P29, DOI 10.1016/S0166-4328(97)00099-5
WHITFIEL.IC, 1965, J NEUROPHYSIOL, V28, P655
WILLOTT JF, 1986, J NEUROPHYSIOL, V56, P391
WILLOTT JF, 1993, J COMP NEUROL, V329, P402, DOI 10.1002/cne.903290310
Wu GK, 2008, NEURON, V58, P132, DOI 10.1016/j.neuron.2008.01.035
Xu HP, 2011, NEURON, V70, P1115, DOI 10.1016/j.neuron.2011.04.028
Zeng FG, 2005, P NATL ACAD SCI USA, V102, P2293, DOI 10.1073/pnas.0406460102
Zhang LI, 2003, NATURE, V424, P201, DOI 10.1038/nature01796
Zhang LI, 2001, NAT NEUROSCI, V4, P1123, DOI 10.1038/nn745
ZURITA P, 1994, NEUROSCI RES, V19, P303, DOI 10.1016/0168-0102(94)90043-4
NR 101
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2013
VL 296
BP 107
EP 120
DI 10.1016/j.heares.2012.11.020
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 101FW
UT WOS:000315761600011
PM 23261406
ER
PT J
AU Pienkowski, M
Munguia, R
Eggermont, JJ
AF Pienkowski, Martin
Munguia, Raymundo
Eggermont, Jos J.
TI Effects of passive, moderate-level sound exposure on the mature auditory
cortex: Spectral edges, spectrotemporal density, and real-world noise
SO HEARING RESEARCH
LA English
DT Article
ID HEARING-LOSS; ACOUSTIC ENVIRONMENT; ADULT CATS; ORGANIZATION;
PLASTICITY; REPRESENTATION; MAP; AI
AB Persistent, passive exposure of adult cats to bandlimited tone pip ensembles or sharply-filtered white noise at moderate levels (similar to 70 dB SPL) leads to a long-term suppression of spontaneous and sound-evoked activity in the region(s) of primary auditory cortex (AI) normally tuned to the exposure spectrum, and to an enhancement of activity in one or more neighboring regions of AI, all in the apparent absence of hearing loss. Here, we first examined the effects of passive exposure to a more structured, real-world noise, consisting of a mix of power tool and construction sounds. This "factory noise" had less pronounced effects on adult cat AI than our previous random tone pip ensembles and white noise, and these effects appeared limited to the region of AI tuned to frequencies near the sharp factory noise cutoff at 16 kHz. To further investigate the role of sharp spectral edges in passive exposure-induced cortical plasticity, a second group of adult cats was exposed to a tone pip ensemble with a flat spectrum between 2 and 4 kHz and shallow cutoff slopes (12 dB/oct) on either side. Compared to our previous ensemble with the same power in the 2-4 kHz band but very steep slopes, exposure to the overall more intense, sloped stimulus had much weaker effects on AI. Finally, we explored the issue of exposure stimulus spectrotemporal density and found that low aggregate tone pip presentation rates of about one per second sufficed to induce changes in the adult AI similar to those characteristic of our previous, much denser exposures. These results are discussed in light of the putative mechanisms underlying exposure-induced auditory cortical plasticity, and the potential adverse consequences of working or living in moderately noisy environments. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Pienkowski, Martin; Munguia, Raymundo; Eggermont, Jos J.] Univ Calgary, Dept Physiol & Pharmacol, Calgary, AB T2N 1N4, Canada.
[Pienkowski, Martin; Munguia, Raymundo; Eggermont, Jos J.] Univ Calgary, Dept Psychol, Calgary, AB T2N 1N4, Canada.
[Eggermont, Jos J.] Univ Calgary, Hotchkiss Brain Inst, Calgary, AB T2N 1N4, Canada.
RP Eggermont, JJ (reprint author), Univ Calgary, Hotchkiss Brain Inst, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada.
EM eggermon@ucalgary.ca
FU Alberta Innovates Health Solutions; National Sciences and Engineering
Research Council of Canada; Campbell McLaurin Chair for Hearing
Deficiencies
FX We thank Greg Shaw for data acquisition software development and
support. This work was supported by Alberta Innovates Health Solutions,
the National Sciences and Engineering Research Council of Canada, and
the Campbell McLaurin Chair for Hearing Deficiencies.
CR Bavelier D, 2010, J NEUROSCI, V30, P14964, DOI 10.1523/JNEUROSCI.4812-10.2010
Bonham BH, 2004, J NEUROPHYSIOL, V91, P841, DOI 10.1152/jn.00017.2003
de Villers-Sidani E, 2007, J NEUROSCI, V27, P180, DOI 10.1523/JNEUROSCI.3227-06.2007
Eggermont JJ, 1996, AUDIT NEUROSCI, V2, P309
ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311
Kaur S, 2004, J NEUROPHYSIOL, V91, P2551, DOI 10.1152/jn.01121.2003
Kim H, 2009, J NEUROSCI, V29, P5163, DOI 10.1523/JNEUROSCI.0365-09.2009
KJELLBERG A, 1990, SCAND J WORK ENV HEA, V16, P29
Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005
Norena AJ, 2006, NAT NEUROSCI, V9, P932, DOI 10.1038/nn1720
Norena AJ, 2008, J NEUROSCI, V28, P8885, DOI 10.1523/JNEUROSCI.2693-08.2008
Pienkowski M, 2011, HEARING RES, V277, P117, DOI 10.1016/j.heares.2011.02.002
Pienkowski M, 2012, EAR HEARING, V33, P305, DOI 10.1097/AUD.0b013e318241e880
Pienkowski M, 2010, HEARING RES, V261, P30, DOI 10.1016/j.heares.2009.12.025
Pienkowski M, 2011, NEUROSCI BIOBEHAV R, V35, P2117, DOI 10.1016/j.neubiorev.2011.02.002
Pienkowski M, 2010, HEARING RES, V268, P151, DOI 10.1016/j.heares.2010.05.016
Pienkowski M, 2009, HEARING RES, V257, P24, DOI 10.1016/j.heares.2009.07.011
RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104
SCHWABER MK, 1993, AM J OTOL, V14, P252
Stanton SG, 1996, AUDIT NEUROSCI, V2, P97
WALLACE MN, 1991, EXP BRAIN RES, V86, P527
WILLOTT JF, 1993, J COMP NEUROL, V329, P402, DOI 10.1002/cne.903290310
Zhang LI, 2001, NAT NEUROSCI, V4, P1123, DOI 10.1038/nn745
Zhou XM, 2012, NAT COMMUN, V3, DOI 10.1038/ncomms1849
Zhou XM, 2011, J NEUROSCI, V31, P5625, DOI 10.1523/JNEUROSCI.6470-10.2011
NR 25
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2013
VL 296
BP 121
EP 130
DI 10.1016/j.heares.2012.11.006
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 101FW
UT WOS:000315761600012
PM 23154196
ER
PT J
AU Skuk, VG
Schweinberger, SR
AF Skuk, Verena G.
Schweinberger, Stefan R.
TI Gender differences in familiar voice identification
SO HEARING RESEARCH
LA English
DT Article
ID PERSONALLY KNOWN FACES; CONFIDENCE JUDGMENTS; SEX-DIFFERENCES;
RECOGNITION; SPEAKER; DURATION; MEMORY; DISTINCTIVENESS; PHONAGNOSIA;
INFORMATION
AB We investigated gender differences in the identification of personally familiar voices in a gender-balanced sample of 40 listeners. From various types of utterances, listeners had to identify by name 20 speakers (10 female) among a set of 70 possible classmates who were all 12th grade pupils from the same local secondary school. Mean identification rates were 67% from sentences, and around 35% for an isolated /Hello/ or a VCV syllable. Even from non-verbal harrumphs, speakers were identified with an accuracy of 18%, i.e. highly above chance levels. Substantial individual differences were observed between listeners. Importantly, superior overall performance of female listeners was qualified by an interaction between voice gender and listener gender. Male listeners exhibited an own-gender bias (i.e. better identification for male than female voices), whereas female listeners identified voices of both genders at similar levels. Individual own-gender identification biases were correlated with differences in reported contact to a speaker's voice and voice distinctiveness. Overall, the present study establishes a number of factors that account for substantial individual differences in personal voice identification. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Skuk, Verena G.; Schweinberger, Stefan R.] Univ Jena, Inst Psychol, Dept Gen Psychol & Cognit Neurosci, D-07743 Jena, Germany.
[Skuk, Verena G.; Schweinberger, Stefan R.] Univ Jena, Inst Psychol, DFG Res Unit Person Percept, D-07743 Jena, Germany.
RP Skuk, VG (reprint author), Univ Jena, DFG Res Unit Person Percept, Leutragraben 1, D-07743 Jena, Germany.
EM verena.skuk@uni-jena.de
FU Deutsche Forschungsgemeinschaft (DFG) [Schw 511/10-1]
FX This research was supported by a grant from the Deutsche
Forschungsgemeinschaft (DFG) to S.R.S. (grant reference Schw 511/10-1).
CR Barsics C, 2011, CONSCIOUS COGN, V20, P303, DOI 10.1016/j.concog.2010.03.008
BARTHOLO.B, 1973, CAN J PSYCHOL, V27, P464, DOI 10.1037/h0082498
Belin P, 2011, BRIT J PSYCHOL, V102, P711, DOI 10.1111/j.2044-8295.2011.02041.x
Boersma P., 2001, GLOT INT, V5, P341
Bredart S, 2009, EUR J COGN PSYCHOL, V21, P1013, DOI 10.1080/09541440802591821
BRICKER PD, 1966, J ACOUST SOC AM, V40, P1441, DOI 10.1121/1.1910246
Bull R., 1984, EYEWITNESS TESTIMONY, P92
COMPTON AJ, 1963, J ACOUST SOC AM, V35, P1748, DOI 10.1121/1.1918810
Garrido L, 2009, NEUROPSYCHOLOGIA, V47, P123, DOI 10.1016/j.neuropsychologia.2008.08.003
Goldstein A.G., 1977, PSYCHOL LEGAL PROCES, P223
Hancock PJB, 2000, TRENDS COGN SCI, V4, P330, DOI 10.1016/S1364-6613(00)01519-9
Hanley JR, 2009, MEMORY, V17, P830, DOI 10.1080/09658210903264175
Hanley JR, 1998, Q J EXP PSYCHOL-A, V51, P179
Herzmann G, 2004, PSYCHOPHYSIOLOGY, V41, P688, DOI 10.1111/j.1469-8986.2004.00196.x
Huynh H., 1976, J EDUC STATIST, V1, P69, DOI DOI 10.2307/1164736
Ladefoged P., 1980, UCLA WORKING PAPERS, V49, P43
Lavner Y., 2001, INT J SPEECH TECHNOL, V4, P63, DOI 10.1023/A:1009656816383
Lewin C, 2002, BRAIN COGNITION, V50, P121, DOI 10.1016/S0278-2626(02)00016-7
MANN VA, 1979, J EXP CHILD PSYCHOL, V27, P153, DOI 10.1016/0022-0965(79)90067-5
Mullennix JW, 2011, APPL COGNITIVE PSYCH, V25, P29, DOI 10.1002/acp.1635
Neuner F, 2000, BRAIN COGNITION, V44, P342, DOI 10.1006/brcg.1999.1196
Perfect TJ, 2004, APPL COGNITIVE PSYCH, V18, P157, DOI 10.1002/acp.952
Rehnman J, 2007, ACTA PSYCHOL, V124, P344, DOI 10.1016/j.actpsy.2006.04.004
ROEBUCK R, 1993, APPL COGNITIVE PSYCH, V7, P475, DOI 10.1002/acp.2350070603
Russell R, 2009, PSYCHON B REV, V16, P252, DOI 10.3758/PBR.16.2.252
SASLOVE H, 1980, J APPL PSYCHOL, V65, P111, DOI 10.1037/0021-9010.65.1.111
SCHMIDTNIELSEN A, 1985, J ACOUST SOC AM, V77, P658, DOI 10.1121/1.391884
Schweinberger SR, 1997, Q J EXP PSYCHOL-A, V50, P498, DOI 10.1080/027249897391991
Schweinberger SR, 1997, J SPEECH LANG HEAR R, V40, P453
Stankov L, 2009, EUR J PSYCHOL ASSESS, V25, P123, DOI 10.1027/1015-5759.25.2.123
THOMPSON CP, 1985, HUM LEARN, V4, P19
VALENTINE T, 1991, Q J EXP PSYCHOL-A, V43, P161
VALENTINE T, 1986, CAN J PSYCHOL, V40, P300, DOI 10.1037/h0080101
VANLANCKER D, 1985, J PHONETICS, V13, P19
VANLANCKER D, 1987, NEUROPSYCHOLOGIA, V25, P829, DOI 10.1016/0028-3932(87)90120-5
VANLANCKER D, 1985, J PHONETICS, V13, P39
VANLANCKER DR, 1989, J CLIN EXP NEUROPSYC, V11, P665, DOI 10.1080/01688638908400923
Vongphoe M, 2005, J ACOUST SOC AM, V118, P1055, DOI 10.1121/1.1944507
Whittle S, 2011, BIOL PSYCHOL, V87, P319, DOI 10.1016/j.biopsycho.2011.05.003
Wright DB, 2003, ACTA PSYCHOL, V114, P101, DOI 10.1016/S0001-6918(03)00052-0
Yarmey AD, 2001, APPL COGNITIVE PSYCH, V15, P283, DOI 10.1002/acp.702
YARMEY AD, 1992, APPL COGNITIVE PSYCH, V6, P367, DOI 10.1002/acp.2350060502
Zaske R, 2010, HEARING RES, V268, P38, DOI 10.1016/j.heares.2010.04.011
NR 43
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2013
VL 296
BP 131
EP 140
DI 10.1016/j.heares.2012.11.004
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 101FW
UT WOS:000315761600013
PM 23168357
ER
PT J
AU Vanneste, S
van Dongen, M
De Vree, B
Hiseni, S
van der Velden, E
Strydis, C
Joos, K
Norena, A
Serdijn, W
De Ridder, D
AF Vanneste, Sven
van Dongen, Marijn
De Vree, Bjorn
Hiseni, Senad
van der Velden, Eddy
Strydis, Christos
Joos, Kathleen
Norena, Arnaud
Serdijn, Wouter
De Ridder, Dirk
TI Does enriched acoustic environment in humans abolish chronic tinnitus
clinically and electrophysiologically? A double blind placebo controlled
study
SO HEARING RESEARCH
LA English
DT Article
ID DEEP BRAIN-STIMULATION; ELECTROMAGNETIC TOMOGRAPHY LORETA; ANTERIOR
THALAMUS; AUDITORY-CORTEX; NOISE TRAUMA; PSYCHOLOGICAL DISTRESS;
DEPRESSION SCALE; HOSPITAL ANXIETY; HEARING-LOSS; REORGANIZATION
AB Animal research has shown that loss of normal acoustic stimulation can increase spontaneous firing in the central auditory system and induce cortical map plasticity. Enriched acoustic environment after noise trauma prevents map plasticity and abolishes neural signs of tinnitus. In humans, the tinnitus spectrum overlaps with the area of hearing loss. Based on these findings it can be hypothesized that stimulating the auditory system by presenting music compensating specifically for the hearing loss might also suppress chronic tinnitus. To verify this hypothesis, a study was conducted in three groups of tinnitus patients. One group listened just to unmodified music (i.e. active control group), one group listened to music spectrally tailored to compensate for their hearing loss, and a third group received music tailored to overcompensate for their hearing loss, associated with one (in presbycusis) or two notches (in audiometric dip) at the edge of hearing loss. Our data indicate that applying overcompensation to the hearing loss worsens the patients' tinnitus loudness, the tinnitus annoyance and their depressive feelings. No significant effects were obtained for the control group or for the compensation group. These clinical findings were associated with an increase in current density within the left dorsal anterior cingulate cortex in the alpha2 frequency band and within the left pregenual anterior cingulate cortex in betal and beta2 frequency band. In addition, a region of interest analysis also demonstrated an associated increase in gamma band activity in the auditory cortex after overcompensation in comparison to baseline measurements. This was, however, not the case for the control or the compensation groups. In conclusion, music therapy compensating for hearing loss is not beneficial in suppressing tinnitus, and overcompensating hearing loss actually worsens tinnitus, both clinically and electrophysiologically. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Vanneste, Sven; De Vree, Bjorn; van der Velden, Eddy; Joos, Kathleen; De Ridder, Dirk] Univ Antwerp Hosp, TRI, B-2650 Edegem, Belgium.
[Vanneste, Sven; De Vree, Bjorn; van der Velden, Eddy; Joos, Kathleen; De Ridder, Dirk] Univ Antwerp Hosp, Dept Neurosurg, B-2650 Edegem, Belgium.
[Vanneste, Sven; Joos, Kathleen] Univ Antwerp, Fac Med, Dept Translat Neurosci, Antwerp, Belgium.
[van Dongen, Marijn; Hiseni, Senad; Serdijn, Wouter] Delft Univ Technol, Fac Elect Engn Math & Comp Sci, Elect Res Lab, Biomed Elect Grp, NL-2600 AA Delft, Netherlands.
[Strydis, Christos] Erasmus Univ, Erasmus Med Ctr, Dept Neurosci, Rotterdam, Netherlands.
[Strydis, Christos] Univ Aix Marseille 1, Integrat & Adapt Neurobiol Lab, Natl Ctr Sci Res, F-13331 Marseille 3, France.
RP Vanneste, S (reprint author), Univ Antwerp Hosp, Wilrijkstr 10, B-2650 Edegem, Belgium.
EM sven.vanneste@ua.ac.be
FU Research Foundation Flanders (FWO); Tinnitus Research Initiative (TRI)
FX The authors thank Jan Ost, Bram Van Achteren and Pieter van Looy for
their help in preparing this manuscript. This work was supported by
Research Foundation Flanders (FWO) and the Tinnitus Research Initiative
(TRI).
CR ALSTER J, 1993, BIOL PSYCHIAT, V34, P84, DOI 10.1016/0006-3223(93)90260-K
Argence M, 2008, EUR J NEUROSCI, V28, P1589, DOI 10.1111/j.1460-9568.2008.06454.x
Audiology BSO, 2008, REC PROC PUR TON AIR
Baguley DM, 2002, BRIT MED BULL, V63, P195, DOI 10.1093/bmb/63.1.195
BERTRAND O, 1985, ELECTROEN CLIN NEURO, V62, P462, DOI 10.1016/0168-5597(85)90058-9
Congedo M., 2002, EUREKA VERSION 3 0 C
Crone NE, 2001, CLIN NEUROPHYSIOL, V112, P565, DOI 10.1016/S1388-2457(00)00545-9
Cronlein T, 2007, PROG BRAIN RES, V166, P227, DOI 10.1016/S0079-6123(07)66021-X
De Ridder D, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024273
De Ridder D, 2011, TEXTBOOK OF TINNITUS, P237, DOI 10.1007/978-1-60761-145-5_28
De Ridder D, 2011, J NEUROSURG, V114, P912, DOI 10.3171/2010.11.JNS10335
Dierks T, 2000, CLIN NEUROPHYSIOL, V111, P1817, DOI 10.1016/S1388-2457(00)00427-2
Dobie RA, 2003, OTOLARYNG CLIN N AM, V36, P383, DOI 10.1016/S0030-6665(02)00168-8
Eggermont JJ, 2000, HEARING RES, V142, P89, DOI 10.1016/S0378-5955(00)00024-1
Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010
FLOR H, 1995, NATURE, V375, P482, DOI 10.1038/375482a0
Fuchs M, 2002, CLIN NEUROPHYSIOL, V113, P702, DOI 10.1016/S1388-2457(02)00030-5
Grulke N, 2005, BONE MARROW TRANSPL, V35, P1107, DOI 10.1038/sj.bmt.1704971
Hallam RS, 2004, INT J AUDIOL, V43, P218, DOI 10.1080/14992020400050030
Hanley Peter J, 2008, Trends Amplif, V12, P210, DOI 10.1177/1084713808319942
Heller AJ, 2003, OTOLARYNG CLIN N AM, V36, P239, DOI 10.1016/S0030-6665(02)00160-3
Jastreboff PJ, 2007, PROG BRAIN RES, V166, P415, DOI 10.1016/S0079-6123(07)66040-3
JOLIOT M, 1994, P NATL ACAD SCI USA, V91, P11748, DOI 10.1073/pnas.91.24.11748
Jurcak V, 2007, NEUROIMAGE, V34, P1600, DOI 10.1016/j.neuroimage.2006.09.024
Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5
Kleine Punte A., 2011, COCHLEAR IMPLANTS TI
Langguth B, 2007, PROG BRAIN RES, V166, P221, DOI 10.1016/S0079-6123(07)66020-8
Llinas R, 2005, TRENDS NEUROSCI, V28, P325, DOI 10.1016/j.tins.2005.04.006
Llinas RR, 1999, P NATL ACAD SCI USA, V96, P15222, DOI 10.1073/pnas.96.26.15222
Lorenz I, 2009, NEUROSCI LETT, V453, P225, DOI 10.1016/j.neulet.2009.02.028
Mccue P, 2006, BRIT J CLIN PSYCHOL, V45, P483, DOI 10.1348/014466505X82379
Meeus O, 2011, OTOL NEUROTOL
Meeus O, 2009, EUR ARCH OTORHINOLAR
Moffat G, 2009, HEARING RES, V254, P82, DOI 10.1016/j.heares.2009.04.016
Muhlnickel W, 1998, P NATL ACAD SCI USA, V95, P10340, DOI 10.1073/pnas.95.17.10340
Mulert C, 2004, NEUROIMAGE, V22, P83, DOI 10.1016/j.neuroimage.2003.10.051
Nichols TE, 2002, HUM BRAIN MAPP, V15, P1, DOI 10.1002/hbm.1058
Norena AJ, 2006, NEUROREPORT, V17, P559, DOI 10.1097/00001756-200604240-00001
Norena AJ, 2007, NEUROREPORT, V18, P1251, DOI 10.1097/WNR.0b013e3282202c35
Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005
Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9
Pascual-Marqui RD, 2002, METHOD FIND EXP CLIN, V24, P5
Pascual-Marqui RD, 2002, METHOD FIND EXP CLIN, V24, P91
Pizzagalli D, 2001, AM J PSYCHIAT, V158, P405, DOI 10.1176/appi.ajp.158.3.405
Pizzagalli DA, 2004, MOL PSYCHIATR, V9, P393, DOI 10.1038/sj.mp.4001469
Punte Andrea Kleine, 2011, Cochlear Implants Int, V12 Suppl 1, pS26, DOI 10.1179/146701011X13001035752336
Robertson D., 2012, HEAR RES
Robjant K., 2009, BR J CLIN PSYCHOL
Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2
Schaette R, 2010, HEARING RES, V269, P95, DOI 10.1016/j.heares.2010.06.022
Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1
Surr R K, 1999, J Am Acad Audiol, V10, P489
Trotrer MI, 2008, J LARYNGOL OTOL, V122, P1052, DOI 10.1017/S002221510800203X
Van de Heyning Paul, 2008, Ann Otol Rhinol Laryngol, V117, P645
van Dellen E, 2009, PLOS ONE, V4, P1
van der Loo E, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007396
Vanneste S, 2010, NEUROIMAGE, V52, P470, DOI 10.1016/j.neuroimage.2010.04.029
Vitacco D, 2002, HUM BRAIN MAPP, V17, P4, DOI 10.1002/hbm.10038
Volpe U, 2007, BRAIN RES BULL, V73, P220, DOI 10.1016/j.brainresbull.2007.03.003
Worrell GA, 2000, BRAIN TOPOGR, V12, P273, DOI 10.1023/A:1023407521772
ZIGMOND AS, 1983, ACTA PSYCHIAT SCAND, V67, P361, DOI 10.1111/j.1600-0447.1983.tb09716.x
Zumsteg D, 2006, CLIN NEUROPHYSIOL, V117, P1602, DOI 10.1016/j.clinph.2006.04.008
Zumsteg D, 2006, CLIN NEUROPHYSIOL, V117, P192, DOI 10.1016/j.clilnph.2005.09.015
Zumsteg D, 2005, NEUROLOGY, V65, P1657, DOI 10.1212/01.wnl.0000184516.32369.1a
Zumsteg D, 2006, EPILEPSIA, V47, P1958, DOI 10.1111/j.1528-1167.2006.00824.x
NR 65
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2013
VL 296
BP 141
EP 148
DI 10.1016/j.heares.2012.10.003
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 101FW
UT WOS:000315761600014
PM 23104014
ER
PT J
AU Yankaskas, K
AF Yankaskas, Kurt
TI Prelude: Noise-induced tinnitus and hearing loss in the military
SO HEARING RESEARCH
LA English
DT Article
ID SPEECH-INTELLIGIBILITY; AIRCRAFT NOISE; HEALTH-RISK; ANNOYANCE;
DEPRESSION; SEVERITY; PROTECTION; PERSONNEL; VETERANS; EXPOSURE
AB Hearing is critical to the performance of military personnel and is integral to the rapid and accurate processing of speech information. Thus, noise-induced hearing loss (NIHL) represents a severe impairment that reduces military effectiveness, safety, and quality of life. With the high levels of noise to which military personnel are exposed and the limited protection afforded by hearing conservation programs, it should be no surprise that annual Veterans Affairs disability payments for tinnitus and hearing loss exceeded $1.2 billion for 2009 and continue to increase. Military personnel work in high-noise environments, yet the Department of Defense (DoD) cannot predict who is susceptible to noise-induced hearing loss and tinnitus. Of those exposed to noise, 80% may also suffer from chronic tinnitus. Despite its prevalence, there are no means to objectively measure the severity of tinnitus in those individuals. A fundamental understanding of the underlying mechanisms of tinnitus and its relation to noise-induced hearing loss is critical. Such an understanding may provide insight to who is at risk for each condition, allow aggressive hearing protection measures in those individuals most at risk, and create areas for treatment for those already suffering from the conditions. The current review will address the scope of the problems of NIHL and tinnitus for the military, discuss the noise environments in which military personnel operate, describe the hearing conservation measures currently in place, and the challenges those programs face. Some recent breakthroughs in NIHL research will be discussed along with some challenges and directions for future research on NIHL and tinnitus. Published by Elsevier B.V.
C1 Off Naval Res, Noise Induced Hearing Loss Program, Arlington, VA 22203 USA.
RP Yankaskas, K (reprint author), Off Naval Res, Noise Induced Hearing Loss Program, Code 342,875 N Randolph St, Arlington, VA 22203 USA.
EM kurt.d.yankaskas@navy.mil
CR ABEL SM, 1982, J ACOUST SOC AM, V71, P708, DOI 10.1121/1.387547
ALSTER J, 1993, BIOL PSYCHIAT, V34, P84, DOI 10.1016/0006-3223(93)90260-K
AXELSSON A, 1987, ACTA OTO-LARYNGOL, V104, P225, DOI 10.3109/00016488709107322
Beck L.B., 2011, 3 INT STAT SCI M BLA
Berger E.H., 2000, J ACOUSTICAL SOC A 2, V108, P2619
Blue-Terry M, 2011, ERGONOMICS, V54, P139, DOI 10.1080/00140139.2010.540354
Brink M, 2008, J ACOUST SOC AM, V124, P2930, DOI 10.1121/1.2977680
Casali JG, 2009, NOISE HEALTH, V11, P69, DOI 10.4103/1463-1741.48564
DOBIE RA, 1992, ACTA OTO-LARYNGOL, V112, P242
Fausti SA, 2009, J REHABIL RES DEV, V46, P797, DOI 10.1682/JRRD.2008.09.0118
Folmer RL, 1999, OTOLARYNG HEAD NECK, V121, P48, DOI 10.1016/S0194-5998(99)70123-3
Garinther G., 1990, ARMY RES DEV ACQ JAN, P1
Geiger M., 2008, NOISE EVALUATION ACQ
HALFORD JBS, 1991, J PSYCHOSOM RES, V35, P383, DOI 10.1016/0022-3999(91)90033-K
Hallam RS, 2004, INT J AUDIOL, V43, P218, DOI 10.1080/14992020400050030
HAMERNIK RP, 1984, HEARING RES, V13, P229, DOI 10.1016/0378-5955(84)90077-7
Helfer TM, 2010, AM J PREV MED, V38, pS71, DOI 10.1016/j.amepre.2009.10.025
Henry JA, 2009, NOISE HEALTH, V11, P33, DOI 10.4103/1463-1741.45311
Henry James A, 2008, Trends Amplif, V12, P170, DOI 10.1177/1084713808319941
Hoffer M, 2011, 3 INT STAT SCI M BLA
Humes L. E., 2005, NOISE MILITARY SERVI
ISING H, 1990, INT ARCH OCC ENV HEA, V62, P357, DOI 10.1007/BF00381365
Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193
Langguth B, 2007, PROG BRAIN RES, V166, P221, DOI 10.1016/S0079-6123(07)66020-8
LAZAR JM, 1995, PERCEPT MOTOR SKILL, V80, P739
Lin S, 2008, INT ARCH OCC ENV HEA, V81, P797, DOI 10.1007/s00420-007-0265-1
Mazurek B, 2010, INT J ENV RES PUB HE, V7, P3071, DOI 10.3390/ijerph7083071
Nakashima Ann, 2007, Noise Health, V9, P35
NIOSH, 1998, NIOSH PUBL, V98-102
Norin JA, 2011, EAR HEARING, V32, P642, DOI 10.1097/AUD.0b013e31821478c8
Patterson J.H., 1986, BASIC APPLIED ASPECT, P405
Pepper CB, 2003, ENVIRON MANAGE, V32, P418, DOI 10.1007/s00267-003-3024-4
Phillips Y Y, 1989, Ann Otol Rhinol Laryngol Suppl, V140, P3
Price G R, 1989, Ann Otol Rhinol Laryngol Suppl, V140, P42
Ribera JE, 2004, AVIAT SPACE ENVIR MD, V75, P132
Rossiter S, 2006, J SPEECH LANG HEAR R, V49, P150, DOI 10.1044/1092-4388(2006/012)
Roup CM, 2009, AM J AUDIOL, V18, P45, DOI 10.1044/1059-0889(2009/08-0028)
Rovig GW, 2004, MIL MED, V169, P429
Saunders GH, 2009, NOISE HEALTH, V11, P14, DOI 10.4103/1463-1741.45308
SKINNER MW, 1980, J ACOUST SOC AM, V67, P306, DOI 10.1121/1.384463
Stephenson M. R., 2000, P 3 ANN US ARM FORC
Sullivan M, 1992, Psychiatr Med, V10, P61
US-Navy, 2005, NAV SAF OCC HLTH SOH
VA, 2011, ANN BEN REP
Van Gerven PWM, 2009, J ACOUST SOC AM, V126, P187, DOI 10.1121/1.3147510
Van Wijngaarden SJ, 2001, AVIAT SPACE ENVIR MD, V72, P1037
Versfeld NJ, 1997, J ACOUST SOC AM, V101, P2677, DOI 10.1121/1.418556
Vignuelle R., 2011, 3 INT STAT SCI M BLA
Wilson RH, 2010, J REHABIL RES DEV, V47, P505, DOI 10.1682/JRRD.2009.10.0169
Yankaskas K, 2009, NAV ENV HLTH CTR ANN
Zheng JL, 2000, NAT NEUROSCI, V3, P580
NR 51
TC 18
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2013
VL 295
BP 3
EP 8
DI 10.1016/j.heares.2012.04.016
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 098NX
UT WOS:000315557100002
PM 22575206
ER
PT J
AU Canlon, B
Theorell, T
Hasson, D
AF Canlon, Barbara
Theorell, Tores
Hasson, Dan
TI Associations between stress and hearing problems in humans
SO HEARING RESEARCH
LA English
DT Article
ID SELF-RATED HEALTH; ACOUSTIC TRAUMA; EMOTIONAL EXHAUSTION; TINNITUS
SUFFERERS; THRESHOLD SHIFTS; RESTRAINT STRESS; ALLOSTATIC LOAD; NOISE
EXPOSURE; OLDER-ADULTS; RISK-FACTORS
AB Hearing problems are a public health issue with prevalence figures far more common than previously estimated. There are well-established risk factors of hearing problems such as age, sex and noise exposure history. Here, we demonstrate additional risk factors, i.e. socioeconomic status and long-term stress exposure that are found to increase the risk of hearing problems. In order to proactively intervene and prevent hearing problems, these newly recognized risk factors need to be taken into consideration. When taking these new risk factors into account, sex differences become even more apparent than previously found. The aim of this review is to summarize our recent findings about the associations between stress and hearing problems. (c) 2012 Elsevier B.V. All rights reserved.
C1 [Canlon, Barbara; Hasson, Dan] Karolinska Inst, Dept Physiol & Pharmacol, S-17177 Stockholm, Sweden.
[Theorell, Tores; Hasson, Dan] Stockholm Univ, Stress Res Inst, Stockholm, Sweden.
[Theorell, Tores] Karolinska Inst, Dept Publ Hlth, S-17177 Stockholm, Sweden.
RP Hasson, D (reprint author), Karolinska Inst, Dept Physiol & Pharmacol, S-17177 Stockholm, Sweden.
EM dan.hasson@ki.se
FU Swedish Research Council; Swedish Council for Working Life and Social
Research; Stiftelsen Tysta Skolan; Bliwastiftelsen; AFA Forsakring
FX We would like to thank Avesina AB for providing the clinical facilities
for the Stress and hearing study. We also wish to thank the participants
of the SLOSH study and the entire staff involved in the projects: Dr
Martin Benka Wallen, Dr Walter Osika, Professor Hugo Westerlund, Dr
Constanze Leineweber, Dr Linda Magnusson Hansson, Agneta Viberg, Susanna
Benka, Satu Turunen-Taheri, Renata Bogo, Elin Ljungkvist, Anne-Marie
Jakobsson and all the rest of the audiologist team. Our deepest
gratitude for the kind and invaluable financial support from the
following funding bodies that made these studies and analyses possible:
The Swedish Research Council, The Swedish Council for Working Life and
Social Research, Stiftelsen Tysta Skolan, Bliwastiftelsen and AFA
Forsakring.
CR Agrawal Y, 2008, ARCH INTERN MED, V168, P1522, DOI 10.1001/archinte.168.14.1522
Alpini D, 2006, ORL J OTO-RHINO-LARY, V68, P31, DOI 10.1159/000090488
Asplund R, 2003, ARCH GERONTOL GERIAT, V36, P93, DOI 10.1016/S0167-4943(02)00062-6
Asplund R, 2003, ARCH GERONTOL GERIAT, V37, P139, DOI 10.1016/S0167-4943(03)00028-1
Bailis DS, 2003, SOC SCI MED, V56, P203, DOI 10.1016/S0277-9536(02)00020-5
Berne RM, 1993, PHYSIOLOGY
Bielefeld EC, 2007, HEARING RES, V223, P11, DOI 10.1016/j.heares.2006.09.010
Bulbul SF, 2009, INT J PEDIATR OTORHI, V73, P1124, DOI 10.1016/j.ijporl.2009.04.018
Calabrese Francesca, 2009, Psychoneuroendocrinology, V34 Suppl 1, pS208, DOI 10.1016/j.psyneuen.2009.05.014
CANLON B, 1988, HEARING RES, V34, P197, DOI 10.1016/0378-5955(88)90107-4
Canlon B, 2007, HEARING RES, V226, P61, DOI 10.1016/j.heares.2006.05.009
CHROUSOS GP, 1992, JAMA-J AM MED ASSOC, V267, P1244, DOI 10.1001/jama.267.9.1244
Ciccone DS, 2003, PSYCHOSOM MED, V65, P268, DOI 10.1097/01.PSY.0000033125.08272.A9
Clauw DJ, 2002, AM J IND MED, V41, P370, DOI 10.1002/ajim.10068
Dalton DS, 2003, GERONTOLOGIST, V43, P661
Daniel E, 2007, J SCHOOL HEALTH, V77, P225, DOI 10.1111/j.1746-1561.2007.00197.x
EASTWOOD MR, 1985, BRIT J PSYCHIAT, V147, P552, DOI 10.1192/bjp.147.5.552
Farmer MM, 1997, J HEALTH SOC BEHAV, V38, P298, DOI 10.2307/2955372
Hallberg UE, 2004, EUR J PSYCHOL ASSESS, V20, P320, DOI 10.1027/1015-5759.20.4.320
Hanson LLM, 2008, SCAND J PUBLIC HEALT, V36, P737, DOI 10.1177/1403494808090164
Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6
Hasson D, 2009, J HEALTH PSYCHOL, V14, P568, DOI 10.1177/1359105309103576
Hasson D, 2010, J EPIDEMIOL COMMUN H, V64, P453, DOI 10.1136/jech.2009.095430
Hasson Dan, 2006, Popul Health Metr, V4, P8, DOI 10.1186/1478-7954-4-8
Hasson D, 2011, BMC PUBLIC HEALTH, V11, DOI 10.1186/1471-2458-11-130
Hasson D, 2009, INT J PSYCHOPHYSIOL, V74, P93, DOI 10.1016/j.ijpsycho.2009.07.009
Havard S., 2011, OCCUP ENV MED
Hebert S, 2004, HEARING RES, V190, P1, DOI [10.1016/S0378-5955(04)00021-8, 10.1016/S037-5955(04)00021-8]
Hebert S, 2007, NEUROSCI LETT, V411, P138, DOI 10.1016/j.neulet.2006.10.028
Hebert S, 2009, INT J HYG ENVIR HEAL, V212, P37, DOI 10.1016/j.ijheh.2007.11.005
Hebert S, 2012, PSYCHOTHER PSYCHOSOM, V81, P324, DOI 10.1159/000335043
Henry JA, 2005, J SPEECH LANG HEAR R, V48, P1204, DOI 10.1044/1092-4388(2005/084)
Horner KC, 2001, EUR J NEUROSCI, V13, P405, DOI 10.1046/j.0953-816X.2000.01386.x
Horner KC, 2003, NEUROSCI BIOBEHAV R, V27, P437, DOI 10.1016/S0149-7634(03)00071-X
HUDSON JI, 1992, AM J MED, V92, P363, DOI 10.1016/0002-9343(92)90265-D
Idler EL, 1997, J HEALTH SOC BEHAV, V38, P21, DOI 10.2307/2955359
Ihlebaek C, 2003, OCCUP MED-OXFORD, V53, P270, DOI 10.1093/occmed/kqg060
Job A, 2009, HEARING RES, V251, P10, DOI 10.1016/j.heares.2009.02.008
Kaleta D, 2008, INT J OCCUP MED ENV, V21, P227, DOI 10.2478/v10001-008-0023-y
KUK FK, 1990, EAR HEARING, V11, P434, DOI 10.1097/00003446-199012000-00005
Lam DK, 2001, J OROFAC PAIN, V15, P146
Lawrence H P, 2001, Spec Care Dentist, V21, P129, DOI 10.1111/j.1754-4505.2001.tb00242.x
LEINO P, 1993, PAIN, V53, P89, DOI 10.1016/0304-3959(93)90060-3
Lekander M, 2004, PSYCHOSOM MED, V66, P559, DOI 10.1097/01.psy.0000130491.95823.94
LIBERMAN MC, 1995, HEARING RES, V90, P158, DOI 10.1016/0378-5955(95)00160-2
Lindstrom M, 2009, HEALTH POLICY, V93, P172, DOI 10.1016/j.healthpol.2009.05.010
Lockwood AH, 1998, NEUROLOGY, V50, P114
Lopez AD, 2006, LANCET, V367, P1747, DOI 10.1016/S0140-6736(06)68770-9
Lusk SL, 2002, ARCH ENVIRON HEALTH, V57, P273
Maslach C., 1996, MASLACH BURNOUT INVE, V3rd
Mathers C, 2000, GLOBAL BURDEN DIS, P1
Mathers CD, 2006, PLOS MED, V3, DOI 10.1371/journal.pmed.0030442
McEwen BS, 2000, BRAIN RES, V886, P172, DOI 10.1016/S0006-8993(00)02950-4
McEwen BS, 1998, NEW ENGL J MED, V338, P171
McEwen BS, 1998, ANN NY ACAD SCI, V840, P33, DOI 10.1111/j.1749-6632.1998.tb09546.x
McEwen BS, 2011, ANNU REV MED, V62, P431, DOI 10.1146/annurev-med-052209-100430
McNeill K, 2010, J ACOUST SOC AM, V128, P646, DOI 10.1121/1.3458853
Mense Siegfried, 2003, Curr Pain Headache Rep, V7, P419, DOI 10.1007/s11916-003-0057-6
Nelson DI, 2005, AM J IND MED, V48, P446, DOI 10.1002/aijm.20223
Noble RE, 2002, METABOLISM, V51, P37, DOI 10.1053/meta.2002.33190
Ohlemiller KK, 2008, HEARING RES, V245, P5, DOI 10.1016/j.heares.2008.08.007
Olusanya BO, 2006, JAMA-J AM MED ASSOC, V296, P441, DOI 10.1001/jama.296.4.441
PATUZZI RB, 1989, HEARING RES, V39, P189, DOI 10.1016/0378-5955(89)90090-7
Pearson Murphy B.E., 2000, ENCY STRESS, V2, P244
Pikhart H, 2001, J EPIDEMIOL COMMUN H, V55, P624, DOI 10.1136/jech.55.9.624
RAREY KE, 1995, HEARING RES, V82, P135, DOI 10.1016/0378-5955(94)00171-L
Saunders GH, 2009, NOISE HEALTH, V11, P14, DOI 10.4103/1463-1741.45308
Schmuziger N, 2006, INT J AUDIOL, V45, P46, DOI 10.1080/14992020500377089
Smith A, 2000, OCCUP MED-OXFORD, V50, P294
Tahera Y, 2006, ENDOCRINOLOGY, V147, P4430, DOI 10.1210/en.2006-0260
Tahera Y, 2007, NEUROBIOL DIS, V25, P189, DOI 10.1016/j.nbd.2006.09.004
Tambs K, 2006, INT J AUDIOL, V45, P309, DOI 10.1080/14992020600582166
Theorell T., 2009, CURRENT PERSPECTIVES, P300
UHLMANN RF, 1989, JAMA-J AM MED ASSOC, V261, P1916, DOI 10.1001/jama.261.13.1916
Ulrich-Lai YM, 2009, NAT REV NEUROSCI, V10, P397, DOI 10.1038/nrn2647
Ursin H, 2001, ANN NY ACAD SCI, V933, P119
Wallhagen MI, 1997, AM J PUBLIC HEALTH, V87, P440, DOI 10.2105/AJPH.87.3.440
Wang Y, 2002, HEARING RES, V165, P96, DOI 10.1016/S0378-5955(02)00289-7
WHO, 2011, BURD DIS ENV NOIS QU
Willenberg H.S., 2000, ENCY STRESS, V1, P709
NR 80
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2013
VL 295
BP 9
EP 15
DI 10.1016/j.heares.2012.08.015
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 098NX
UT WOS:000315557100003
PM 22982334
ER
PT J
AU Fournier, P
Hebert, S
AF Fournier, Philippe
Hebert, Sylvie
TI Gap detection deficits in humans with tinnitus as assessed with the
acoustic startle paradigm: Does tinnitus fill in the gap?
SO HEARING RESEARCH
LA English
DT Article
ID PREPULSE INHIBITION; AUDITORY-CORTEX; SLEEP COMPLAINTS; TEMPORAL ACUITY;
NEURAL ACTIVITY; HEARING-LOSS; BASE-LINE; REFLEX; NOISE; RATS
AB The measurement of tinnitus in humans relies on subjective measures such as self-report, visual analog scales and questionnaires. Gap detection impairments have been tested in animals in an attempt to objectify the presence of tinnitus. The main purpose of this study was to investigate the gap startle paradigm in human participants with high-frequency tinnitus. Fifteen adults with bilateral high-frequency tinnitus but normal hearing at standard frequencies and seventeen matched controls without tinnitus were tested. The psychoacoustic characteristics of the tinnitus spectrum (pitch and loudness) were assessed using novel participant-directed custom-made methods. The startle task consisted of startle-alone, prepulse inhibition and gap-in-noise condition at low- and high-background noise frequencies. All measurements were retested after several months. Data indicate normal prepulse inhibition but higher reactivity to the startle sounds in the tinnitus group in comparison with controls. Most importantly, the tinnitus group displayed a consistent deficit in gap processing at both low- and high-background noise frequencies. All effects were identified consistently and were reproducible at retest. We propose that the higher reactivity to startle might reflect hyperacusis and that the gap deficit might be an index of abnormal cortical auditory processing in tinnitus. (c) 2012 Elsevier B.V. All rights reserved.
C1 [Fournier, Philippe; Hebert, Sylvie] Univ Montreal, Fac Med, Ecole Orthophonie & Audiol, Montreal, PQ H3C 3J7, Canada.
[Fournier, Philippe; Hebert, Sylvie] Inst Univ Geriatrie Montreal, Ctr Rech, Montreal, PQ, Canada.
[Fournier, Philippe; Hebert, Sylvie] Univ Montreal, Int Lab Brain Mus & Sound, BRAMS, Montreal, PQ H3C 3J7, Canada.
[Fournier, Philippe; Hebert, Sylvie] McGill Univ, Montreal, PQ H3A 2T5, Canada.
RP Hebert, S (reprint author), Univ Montreal, Fac Med, Ecole Orthophonie & Audiol, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada.
EM Sylvie.hebert@umontreal.ca
FU Institut de la recherche en sante et securite du Travail du Quebec
(IRSST); Fondation de la recherche en sante du Quebec (FRSQ)
FX We thank Nathanael Lecaude for programming the tasks described in this
paper, and Emilie Gosselin for help in the testing of the participants.
We are grateful to Dr. Terry D. Blumenthal for his kind and expert
advice regarding data analysis of the startle paradigm. We also thank
the Reviewers and Editors for their valuable comments on previous
versions of this paper. This research was made possible thanks to a
Canadian Foundation Innovation (CFI) grant, and a studentship from
Institut de la recherche en sante et securite du Travail du Quebec
(IRSST) and from Fondation de la recherche en sante du Quebec (FRSQ) to
P.F.
CR Andersson G, 2003, AURIS NASUS LARYNX, V30, P129, DOI 10.1016/S0385-8146(03)00008-7
Bakker M. J., 2008, J PSYCHIATR NEUROSCI, V34, P314
Bakker MJ, 2011, J PSYCHIATR RES, V45, P796, DOI 10.1016/j.jpsychires.2010.11.006
Bauer CA, 2001, JARO, V2, P54
Beck A.T., 1996, MANUAL BECK DEPRESSI
Blumenthal TD, 2005, PSYCHOPHYSIOLOGY, V42, P1, DOI 10.1111/j.1469-8986.2005.00271.x
Bowen GP, 2003, CEREB CORTEX, V13, P815, DOI 10.1093/cercor/13.8.815
BRAFF D, 1978, PSYCHOPHYSIOLOGY, V15, P339, DOI 10.1111/j.1469-8986.1978.tb01390.x
BUCHTEL HA, 1989, BRAIN LANG, V37, P12, DOI 10.1016/0093-934X(89)90098-9
DAVIS M, 1982, J NEUROSCI, V2, P791
Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010
Eggermont J.J., 2012, HEARING RES
Engineer ND, 2011, NATURE, V470, P101, DOI 10.1038/nature09656
Frau R., 2008, INT J NEUROPSYCHOPHA, V11
GRILLON C, 1994, BIOL PSYCHIAT, V35, P431, DOI 10.1016/0006-3223(94)90040-X
Grillon C, 1996, PSYCHIAT RES, V64, P169, DOI 10.1016/S0165-1781(96)02942-3
Hairston IS, 2010, EUR J NEUROSCI, V31, P2112, DOI 10.1111/j.1460-9568.2010.07237.x
Harrell R. W., 2002, HDB CLIN AUDIOLOGY, P71
Hebert S, 2004, HEARING RES, V190, P1, DOI [10.1016/S0378-5955(04)00021-8, 10.1016/S037-5955(04)00021-8]
Hebert S, 2007, NEUROSCI LETT, V411, P138, DOI 10.1016/j.neulet.2006.10.028
Hebert S, 2011, J SLEEP RES, V20, P38, DOI 10.1111/j.1365-2869.2010.00860.x
Hebert S., PSYCHOTHERAPY PSYCHO
Hebert S., 2012, PLOS ONE
Hebert S, 2009, INT J HYG ENVIR HEAL, V212, P37, DOI 10.1016/j.ijheh.2007.11.005
Hebert S, 2007, EAR HEARING, V28, P649
Hiller W, 2007, AUDIOL NEURO-OTOL, V12, P391, DOI 10.1159/000106482
Holgers K-M, 2003, AUDIOLOGICAL MED, V2, P101
Holt A.G., 2010, PLOS ONE, V5, P1
Ison JR, 2007, JARO-J ASSOC RES OTO, V8, P539, DOI 10.1007/s10162-007-0098-3
ISON JR, 1991, BEHAV NEUROSCI, V105, P33, DOI 10.1037//0735-7044.105.1.33
ISON JR, 1982, J COMP PHYSIOL PSYCH, V96, P945, DOI 10.1037/0735-7036.96.6.945
Khalfa S, 2002, ORL J OTO-RHINO-LARY, V64, P436, DOI 10.1159/000067570
Kline P, 2000, HDB PSYCHOL TESTING
Koch M, 1999, PROG NEUROBIOL, V59, P107, DOI 10.1016/S0301-0082(98)00098-7
Kraus KS, 2010, NEUROSCIENCE, V167, P1216, DOI 10.1016/j.neuroscience.2010.02.071
Kumari V, 1996, PSYCHOPHARMACOLOGY, V128, P54, DOI 10.1007/s002130050109
Lee YL, 1996, J NEUROSCI, V16, P3775
Li L, 2009, NEUROSCI BIOBEHAV R, V33, P1157, DOI 10.1016/j.neubiorev.2009.02.001
Longenecker RJ, 2011, JARO-J ASSOC RES OTO, V12, P647, DOI 10.1007/s10162-011-0276-1
Mao J.C., 2011, J NEUROTRAUM
Middleton JW, 2011, P NATL ACAD SCI USA, V108, P7601, DOI 10.1073/pnas.1100223108
Moore BCJ, 2010, HEARING RES, V261, P51, DOI 10.1016/j.heares.2010.01.003
Muhlnickel W, 1998, P NATL ACAD SCI USA, V95, P10340, DOI 10.1073/pnas.95.17.10340
Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156
Ralli M, 2010, OTOL NEUROTOL, V31, P823, DOI 10.1097/MAO.0b013e3181de4662
Roberts LE, 2008, JARO-J ASSOC RES OTO, V9, P417, DOI 10.1007/s10162-008-0136-9
Schaette R, 2011, J NEUROSCI, V31, P13452, DOI 10.1523/JNEUROSCI.2156-11.2011
Shargorodsky J, 2010, AM J MED, V123, P711, DOI 10.1016/j.amjmed.2010.02.015
SILVERSTEIN LD, 1980, ELECTROEN CLIN NEURO, V48, P406, DOI 10.1016/0013-4694(80)90133-9
Simoens Veerle L, 2012, BMC Ear Nose Throat Disord, V12, P4, DOI 10.1186/1472-6815-12-4
Sun W, 2009, NEUROSCIENCE, V159, P325, DOI 10.1016/j.neuroscience.2008.12.024
Swerdlow NR, 2000, BEHAV PHARMACOL, V11, P185
SWERDLOW NR, 1995, J NEUROL NEUROSUR PS, V58, P192, DOI 10.1136/jnnp.58.2.192
Threlkeld SW, 2008, NEUROREPORT, V19, P893, DOI 10.1097/WNR.0b013e3283013d7e
Turner J.G., 2008, AM J AUDIOL, V17, P185
Turner JG, 2006, BEHAV NEUROSCI, V120, P188, DOI 10.1037/0735-7044.120.1.188
Wang H, 2009, NEUROSCIENCE, V164, P747, DOI 10.1016/j.neuroscience.2009.08.026
Weisz N, 2005, BRAIN, V128, P2722, DOI 10.1093/brain/awh588
Yang G, 2007, HEARING RES, V226, P244, DOI 10.1016/j.heares.2006.06.013
Yeomans JS, 2002, NEUROSCI BIOBEHAV R, V26, P1, DOI 10.1016/S0149-7634(01)00057-4
Zhang J., 2010, JARO-J ASSOC RES OTO, V12, P185
NR 61
TC 16
Z9 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2013
VL 295
BP 16
EP 23
DI 10.1016/j.heares.2012.05.011
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 098NX
UT WOS:000315557100004
PM 22688322
ER
PT J
AU Punte, AK
De Ridder, D
Van de Heyning, P
AF Punte, Andrea Kleine
De Ridder, Dirk
Van de Heyning, Paul
TI On the necessity of full length electrical cochlear stimulation to
suppress severe tinnitus in single-sided deafness
SO HEARING RESEARCH
LA English
DT Article
ID BECK DEPRESSION INVENTORY; PROMONTORY STIMULATION; IMPLANTATION;
HEARING; NETWORKS
AB Background: Cochlear implantation (CI) has proven in long term prospective trials to reduce significantly incapacitating tinnitus in single sided deafness (SSD). Discussion arises whether electrical stimulation near the round window (RW) is also able to reduce tinnitus.
Aim: to assess whether electrical stimulation of the basal first 4 intracochlear electrodes of a CI could sufficiently reduce tinnitus and to compare these results with stimulation with all CI electrodes.
Material and methods: 7 patients who met the criteria of severe tinnitus due to SSD were implanted with a Med-El Sonata Ti100 with a FlexSoft (TM) or Flex24 (TM) electrode. After 4 weeks only the basal electrodepair (E12) nearest to the RW was activated. Each week the following pair was activated until the 4th pair. Thereafter all electrodes were activated. Tinnitus was assessed before CI surgery and before each electrode pair was activated. When all electrodes were fitted, evaluation was done after 1, 3 and 6 months. Tinnitus was assessed with Visual Analogue Scale (VAS) for loudness, psychoacoustic tinnitus loudness comparison at 1 kHz and Tinnitus Questionnaire (TQ) for the effect on quality of life. To evaluate the natural evolution, a tightly matched control group with severe tinnitus due to SSD was followed prospectively.
Results: All the tinnitus outcome measures remained unchanged with 1, 2, 3 or 4 activated electrode pairs. With complete CI activation, the tinnitus decreased significantly comparable with earlier reports. Pre-implantation the tinnitus loudness was 8.2/10 on the VAS and was reduced to 4.1/10 6 months post-implantation. Psychometrically the loudness level went from 21.7 dB SL (SD: 16.02) to 7.5 dB SL (SD: 5.24) and the TQ from 60/84 to 39/84. The non-implanted group had no decrease of the tinnitus, the average VAS remained stable at 8.9/10 throughout the follow-up period of 6 months.
Conclusion: with the current stimulation parameters electrical stimulation in the first 8-10 mm of the basal part of the scala tympani is insufficient to reduce tinnitus. However, stimulation over the complete CI length yields immediate tinnitus reduction confirming earlier results. (c) 2012 Elsevier B.V. All rights reserved.
C1 [Punte, Andrea Kleine; Van de Heyning, Paul] Univ Antwerp, Univ Dept Otorhinolaryngol & Head & Neck Surg, Univ Antwerp Hosp, B-2650 Antwerp, Belgium.
[De Ridder, Dirk] Univ Antwerp Hosp, Brain Res Ctr Innovat & Interdisciplinary Neuromo, Antwerp, Belgium.
RP Punte, AK (reprint author), Univ Antwerp, Univ Dept Otorhinolaryngol & Head & Neck Surg, Univ Antwerp Hosp, Wilrijkstr 10, B-2650 Antwerp, Belgium.
EM Andrea.kleine.punte@uza.be
CR Arndt S, 2011, OTOL NEUROTOL, V32, P39, DOI 10.1097/MAO.0b013e3181fcf271
Baguley DM, 2007, PROG BRAIN RES, V166, P347, DOI 10.1016/S0079-6123(07)66033-6
BALKANY T, 1987, AM J OTOL, V8, P207
BECK AT, 1984, J CLIN PSYCHOL, V40, P1365, DOI 10.1002/1097-4679(198411)40:6<1365::AID-JCLP2270400615>3.0.CO;2-D
Buechner A, 2010, OTOL NEUROTOL, V31, P1381, DOI 10.1097/MAO.0b013e3181e3d353
CAZALS Y, 1978, J AM AUDITORY SOC, V3, P209
Demeester K, 2007, B-ENT, P37
De Ridder D, 2011, P NATL ACAD SCI USA, V108, P8075, DOI 10.1073/pnas.1018466108
De Ridder D, 2007, PROG BRAIN RES, V166, P401, DOI 10.1016/S0079-6123(07)66039-7
Di Nardo W, 2007, EUR ARCH OTO-RHINO-L, V264, P1145, DOI 10.1007/s00405-007-0352-7
GOEBEL G, 1994, HNO, V42, P166
Konopka W, 2001, AURIS NASUS LARYNX, V28, P35, DOI 10.1016/S0385-8146(00)00086-9
Langguth B, 2007, PROG BRAIN RES, V166, P525, DOI 10.1016/S0079-6123(07)66050-6
Langguth B, 2011, WORLD J BIOL PSYCHIA, V12, P489, DOI 10.3109/15622975.2011.575178
Leaver AM, 2011, NEURON, V69, P33, DOI 10.1016/j.neuron.2010.12.002
Lobarinas Edward, 2008, Seminars in Hearing, V29, P333, DOI 10.1055/s-0028-1095893
Lockwood AH, 1998, NEUROLOGY, V50, P114
Moller A, 2010, TXB TINNITUS, P619
Muhlnickel W, 1998, P NATL ACAD SCI USA, V95, P10340, DOI 10.1073/pnas.95.17.10340
Olze H, 2011, LARYNGOSCOPE, V121, P2220, DOI 10.1002/lary.22145
PORTMANN M, 1979, ACTA OTO-LARYNGOL, V87, P294, DOI 10.3109/00016487909126423
Punte Andrea Kleine, 2011, Cochlear Implants Int, V12 Suppl 1, pS26, DOI 10.1179/146701011X13001035752336
Quaranta N, 2008, ACTA OTO-LARYNGOL, V128, P159, DOI 10.1080/00016480701387173
Quaranta N, 2004, INT J AUDIOL, V43, P245, DOI 10.1080/14992020400050033
Ramos Ángel, 2012, Acta Otorrinolaringol Esp, V63, P15, DOI 10.1016/j.otorri.2011.07.004
Robinson Shannon K, 2003, Int Tinnitus J, V9, P97
Rubinstein JT, 2003, OTOL NEUROTOL, V24, P478, DOI 10.1097/00129492-200305000-00021
Steenerson RL, 1999, OTOLARYNG HEAD NECK, V121, P511, DOI 10.1016/S0194-5998(99)70048-3
Steer RA, 1999, GEN HOSP PSYCHIAT, V21, P106, DOI 10.1016/S0163-8343(98)00070-X
Van de Heyning Paul, 2008, Ann Otol Rhinol Laryngol, V117, P645
Vanneste S, 2011, EUR J NEUROSCI, V34, P718, DOI 10.1111/j.1460-9568.2011.07793.x
Watanabe K, 1997, AUDIOLOGY, V36, P147
Weisz N, 2007, J NEUROSCI, V27, P1479, DOI 10.1523/JNEUROSCI.3711-06.2007
NR 33
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2013
VL 295
BP 24
EP 29
DI 10.1016/j.heares.2012.08.003
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 098NX
UT WOS:000315557100005
PM 23418635
ER
PT J
AU Boyen, K
Langers, DRM
de Kleine, E
van Dijk, P
AF Boyen, Kris
Langers, Dave R. M.
de Kleine, Emile
van Dijk, Pim
TI Gray matter in the brain: Differences associated with tinnitus and
hearing loss
SO HEARING RESEARCH
LA English
DT Article
ID POSITRON-EMISSION-TOMOGRAPHY; VOXEL-BASED MORPHOMETRY; LEFT
AUDITORY-CORTEX; EPISODIC MEMORY; PET; NETWORKS; FMRI; QUESTIONNAIRE;
STIMULATION; ACTIVATION
AB Tinnitus, usually associated with hearing loss, is characterized by the perception of sound without an external sound source. The pathophysiology of tinnitus is poorly understood. In the present study, voxel-based morphometiy (VBM) was employed to identify gray matter differences related to hearing loss and tinnitus. VBM was applied to magnetic resonance images of normal-hearing control subjects (n = 24), hearing-impaired subjects without tinnitus (n = 16, HI group) and hearing-impaired subjects with tinnitus (n = 31, HI + T group). This design allowed us to disentangle the gray matter (GM) differences related to hearing loss and tinnitus, respectively. Voxel-based VBM analyses revealed that both HI and HI + T groups, relative to the controls, had GM increases in the superior and middle temporal gyri, and decreases in the superior frontal gyrus, occipital lobe and hypothalamus. We did not find significant GM differences between both patient groups. Subsequent region-of-interest (ROI) analyses of all Brodmann Areas, the cerebellum and the subcortical auditory nuclei showed a GM increase in the left primary auditory cortex of the tinnitus patients compared to the HI and control groups. Moreover, GM decreases were observed in frontal areas and mainly GM increases in limbic areas, both of which occurred for hearing loss irrespective of tinnitus, relative to the controls. These results suggest a specific role of the left primary auditory cortex and the additional involvement of various non-auditory brain structures in tinnitus. Understanding the causal relation between these GM changes and tinnitus will be an important next step in understanding tinnitus mechanisms. (c) 2012 Elsevier B.V. All rights reserved.
C1 [Boyen, Kris; Langers, Dave R. M.; de Kleine, Emile; van Dijk, Pim] Univ Groningen, Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, NL-9700 RB Groningen, Netherlands.
[Boyen, Kris; Langers, Dave R. M.; de Kleine, Emile; van Dijk, Pim] Univ Groningen, Univ Med Ctr Groningen, Grad Sch Med Sci, Res Sch Behav & Cognit Neurosci, NL-9700 RB Groningen, Netherlands.
RP Boyen, K (reprint author), Univ Groningen, Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, POB 30-001, NL-9700 RB Groningen, Netherlands.
EM k.boyen@umcg.nl; d.r.m.langers@umcg.nl; e.de.kleine@umcg.nl;
p.van.dijk@umcg.nl
RI de Kleine, Emile/P-2350-2014
FU American Tinnitus Association (ATA); the Netherlands Organization for
Scientific Research (NWO); Heinsius Houbolt Foundation
FX This research was supported by the American Tinnitus Association (ATA),
the Netherlands Organization for Scientific Research (NWO) and the
Heinsius Houbolt Foundation. The study is part of the research program
of our department: Communication through Hearing and Speech.
CR Adjamian P, 2009, HEARING RES, V253, P15, DOI 10.1016/j.heares.2009.04.001
Andersson G, 2000, ACTA OTO-LARYNGOL, V120, P967, DOI 10.1080/00016480050218717
Arnold W, 1996, ORL J OTO-RHINO-LARY, V58, P195
Ashburner J, 2005, NEUROIMAGE, V26, P839, DOI 10.1016/j.neuroimage.2005.02.018
Ashburner J, 2000, NEUROIMAGE, V11, P805, DOI 10.1006/nimg.2000.0582
Benjamini Y, 2001, BEHAV BRAIN RES, V125, P279, DOI 10.1016/S0166-4328(01)00297-2
BERLINER KI, 1992, AM J OTOL, V13, P13
Burger J, 2011, BRAIN STIMUL, V4, P222, DOI 10.1016/j.brs.2010.11.003
Cruickshanks KJ, 1998, AM J EPIDEMIOL, V148, P879
Dalla Barba G, 1998, CORTEX, V34, P547
de Geus EJC, 2007, BIOL PSYCHIAT, V61, P1062, DOI 10.1016/j.biopsych.2006.07.026
Demeester K, 2009, INT J AUDIOL, V48, P222, DOI 10.1080/14992020802441799
De Ridder D, 2011, P NATL ACAD SCI USA, V108, P8075, DOI 10.1073/pnas.1018466108
Giraud AL, 1999, NEUROREPORT, V10, P1, DOI 10.1097/00001756-199901180-00001
GOEBEL G, 1994, HNO, V42, P166
Good CD, 2001, NEUROIMAGE, V14, P21, DOI 10.1006/nimg.2001.0786
Hebert S, 2007, NEUROSCI LETT, V411, P138, DOI 10.1016/j.neulet.2006.10.028
Hoffmann H. J., 2004, TINNITUS THEORY MANA, P16
House J W, 1981, Ciba Found Symp, V85, P204
Husain FT, 2011, BRAIN RES, V1369, P74, DOI 10.1016/j.brainres.2010.10.095
JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9
Khalfa S, 2002, ORL J OTO-RHINO-LARY, V64, P436, DOI 10.1159/000067570
Kraus KS, 2010, NEUROSCIENCE, V167, P1216, DOI 10.1016/j.neuroscience.2010.02.071
Landgrebe M, 2009, NEUROIMAGE, V46, P213, DOI 10.1016/j.neuroimage.2009.01.069
LANGGUTH B, 2006, ACTA OTO-LARYNGOL, V556, P84, DOI DOI 10.1080/03655230600895317
Langguth B, 2011, WORLD J BIOL PSYCHIA, V12, P489, DOI 10.3109/15622975.2011.575178
Lanting CP, 2008, ACTA OTO-LARYNGOL, V128, P415, DOI 10.1080/00016480701793743
Lanting CP, 2009, HEARING RES, V255, P1, DOI 10.1016/j.heares.2009.06.009
Leaver AM, 2011, NEURON, V69, P33, DOI 10.1016/j.neuron.2010.12.002
Lee ACH, 2002, NEUROIMAGE, V16, P724, DOI 10.1006/nimg.2002.1101
Lockwood AH, 2002, NEW ENGL J MED, V347, P904, DOI 10.1056/NEJMra013395
Lockwood AH, 1998, NEUROLOGY, V50, P114
Maldjian JA, 2003, NEUROIMAGE, V19, P1233, DOI 10.1016/S1053-8119(03)00169-1
May A, 2006, CURR OPIN NEUROL, V19, P407, DOI 10.1097/01.wco.0000236622.91495.21
Mechelli A, 2005, CURR MED IMAGING REV, V1, P105, DOI 10.2174/1573405054038726
Melcher JR, 2009, HEARING RES, V257, P63, DOI 10.1016/j.heares.2009.08.005
Melcher JR, 2000, J NEUROPHYSIOL, V83, P1058
Mirz F, 1999, SCAND AUDIOL, V28, P161, DOI 10.1080/010503999424734
Moller A R, 2000, J Am Acad Audiol, V11, P115
Muhlau M, 2006, CEREB CORTEX, V16, P1283, DOI 10.1093/cercor/bhj070
Newman CW, 1996, ARCH OTOLARYNGOL, V122, P143
OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4
Oliver R, 2008, NAT CLIN PRACT NEURO, V4, P306, DOI 10.1038/ncpneuro0794
Rauschecker JP, 2010, NEURON, V66, P819, DOI 10.1016/j.neuron.2010.04.032
Riemann D, 2007, SLEEP, V30, P955
Schneider P, 2009, NEUROIMAGE, V45, P927, DOI 10.1016/j.neuroimage.2008.12.045
Wang HT, 2001, CHINESE MED J-PEKING, V114, P848
NR 47
TC 18
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2013
VL 295
BP 67
EP 78
DI 10.1016/j.heares.2012.02.010
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 098NX
UT WOS:000315557100009
PM 22446179
ER
PT J
AU Melcher, JR
Knudson, IM
Levine, RA
AF Melcher, Jennifer R.
Knudson, Inge M.
Levine, Robert A.
TI Subcallosal brain structure: Correlation with hearing threshold at
supra-clinical frequencies (> 8 kHz), but not with tinnitus
SO HEARING RESEARCH
LA English
DT Article
ID PSYCHOMETRIC PROPERTIES; INVENTORY; AGE
AB This study tested for differences in brain structure between tinnitus and control subjects, focusing on a subcallosal brain region where striking differences have been inconsistently found previously. Voxel-based morphometry (VBM) was used to compare structural MRIs of tinnitus subjects and non-tinnitus controls. Audiograms of all subjects were normal or near-normal at standard clinical frequencies (<= 8 kHz). Mean threshold through 14 kHz, age, sex and handedness were matched between groups. There were no definitive differences between tinnitus and control groups in modulated or unmodulated maps of gray matter (GM) probability (i.e., GM volume and concentration, respectively). However, when the image data were tested for correlations with parameters that were either not measured or not matched between the tinnitus and control groups of previous studies, a notable correlation was found: Threshold at supra-clinical frequencies (above 8 kHz) was negatively correlated with modulated GM probability in ventral posterior cingulate cortex, dorsomedial prefrontal cortex, and a subcallosal region that included ventromedial prefrontal cortex and coincided with previously-reported differences between tinnitus and control subjects. The results suggest an explanation for the discrepant findings in subcallosal brain: threshold at supra-clinical frequencies may have differed systematically between tinnitus and control groups in some studies but not others. The observed correlation between (1) brain structure in regions engaged in cognitive and attentional processes and (2) hearing sensitivity at frequencies generally considered unnecessary for normal human auditory behavior is surprising and worthy of follow up. (c) 2012 Elsevier B.V. All rights reserved.
C1 [Melcher, Jennifer R.; Knudson, Inge M.; Levine, Robert A.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA.
[Melcher, Jennifer R.; Knudson, Inge M.; Levine, Robert A.] Massachusetts Eye & Ear Infirm, Dept Otolaryngol, Boston, MA 02114 USA.
[Melcher, Jennifer R.] Harvard Mit Div Hlth Sci & Technol, Speech & Hearing Biosci & Technol Program, Boston, MA USA.
RP Melcher, JR (reprint author), Massachusetts Eye & Ear Infirm, Dept Otolaryngol, 243 Charles St, Boston, MA 02114 USA.
EM jennifer_melcher@meei.harvard.edu
FU Tinnitus Research Consortium; NIH/NIDCD [P30DC005209]
FX The authors wish to thank Barbara Norris and Wendy Gu for assistance
with data-taking and Barbara Norris for assistance with the figures.
Support was provided by the Tinnitus Research Consortium and NIH/NIDCD
P30DC005209.
CR Ashburner J, 2005, NEUROIMAGE, V26, P839, DOI 10.1016/j.neuroimage.2005.02.018
Ashburner J, 2000, NEUROIMAGE, V11, P805, DOI 10.1006/nimg.2000.0582
Ashburner J, 2007, NEUROIMAGE, V38, P95, DOI 10.1016/j.neuroimage.2007.07.007
BECK AT, 1988, J CONSULT CLIN PSYCH, V56, P893, DOI 10.1037/0022-006X.56.6.893
BECK AT, 1961, ARCH GEN PSYCHIAT, V4, P561
Draganski B, 2010, CURR OPIN NEUROL, V23, P413, DOI 10.1097/WCO.0b013e32833bc59c
Good CD, 2001, NEUROIMAGE, V14, P21, DOI 10.1006/nimg.2001.0786
Gu JW, 2010, J NEUROPHYSIOL, V104, P3361, DOI 10.1152/jn.00226.2010
Husain FT, 2011, BRAIN RES, V1369, P74, DOI 10.1016/j.brainres.2010.10.095
Landgrebe M, 2009, NEUROIMAGE, V46, P213, DOI 10.1016/j.neuroimage.2009.01.069
Leaver AM, 2011, NEURON, V69, P33, DOI 10.1016/j.neuron.2010.12.002
Muhlau M, 2006, CEREB CORTEX, V16, P1283, DOI 10.1093/cercor/bhj070
Richardson FM, 2009, BRAIN STRUCT FUNCT, V213, P511, DOI 10.1007/s00429-009-0211-y
Salat DH, 2009, NEUROIMAGE, V48, P21, DOI 10.1016/j.neuroimage.2009.06.074
Schneider P, 2009, NEUROIMAGE, V45, P927, DOI 10.1016/j.neuroimage.2008.12.045
Sowell ER, 2007, CEREB CORTEX, V17, P1550, DOI 10.1093/cercor/bhl066
Tyler R. S., 2003, HYPERAKUSIS, V6, P39
WILSON PH, 1991, J SPEECH HEAR RES, V34, P197
Worsley KJ, 1996, HUM BRAIN MAPP, V4, P58, DOI 10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O
NR 19
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2013
VL 295
BP 79
EP 86
DI 10.1016/j.heares.2012.03.013
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 098NX
UT WOS:000315557100010
PM 22504034
ER
PT J
AU Golm, D
Schmidt-Samoa, C
Dechent, P
Kroner-Herwig, B
AF Golm, Dennis
Schmidt-Samoa, Carsten
Dechent, Peter
Kroener-Herwig, Birgit
TI Neural correlates of tinnitus related distress: An fMRI-study
SO HEARING RESEARCH
LA English
DT Article
ID TRANSCRANIAL MAGNETIC STIMULATION; INDEPENDENT COMPONENT ANALYSIS;
POSITRON-EMISSION-TOMOGRAPHY; BRAIN ACTIVATION; CINGULATE CORTEX;
QUESTIONNAIRE; EMOTION; MEMORY; PAIN; DEPRESSION
AB Chronic tinnitus affects approximately 5% of the population. Severe distress due to the phantom noise is experienced by 20% of the tinnitus patients. This distress cannot be predicted by psychoacoustic features of the tinnitus. It is commonly assumed that negative cognitive emotional evaluation of the tinnitus and its expected consequences is a major factor that determines the impact of tinnitus-related distress. Models of tinnitus distress and recently conducted research propose differences in limbic, frontal and parietal processing between highly and low distressed tinnitus patients. An experimental paradigm using verbal material to stimulate cognitive emotional processing of tinnitus-related information was conducted. Age and sex matched highly (n = 16) and low (n = 16) distressed tinnitus patients and healthy controls (n = 16) underwent functional magnetic resonance imaging (fMRI) while sentences with neutral, negative or tinnitus-related content were presented. A random effects group analysis was performed on the basis of the general linear model. Tinnitus patients showed stronger activations to tinnitus-related sentences in comparison to neutral sentences than healthy controls in various limbic/emotion processing areas, such as the anterior cingulate cortex, midcingulate cortex, posterior cingulate cortex, retrosplenial cortex and insula and also in frontal areas. Highly and low distressed tinnitus patients differed in terms of activation of the left middle frontal gyrus. A connectivity analysis and correlational analysis between the predictors of the general linear model of relevant contrasts and tinnitus-related distress further supported the idea of a fronto-parietal-cingulate network, which seems to be more active in highly distressed tinnitus patients. This network may present an aspecific distress network. Based on the findings the left middle frontal gyrus and the right medial frontal gyrus are suggested as target regions for neuromodulatory approaches in the treatment of tinnitus. For future studies we recommend the use of idiosyncratic stimulus material. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Golm, Dennis; Kroener-Herwig, Birgit] Univ Gottingen, Dept Clin Psychol & Psychotherapy, Georg Elias Mueller Inst Psychol, D-37073 Gottingen, Germany.
[Schmidt-Samoa, Carsten; Dechent, Peter] Univ Gottingen, MR Res Neurol & Psychiat, UMG, D-37075 Gottingen, Germany.
RP Golm, D (reprint author), Univ Gottingen, Dept Clin Psychol & Psychotherapy, Georg Elias Mueller Inst Psychol, Gosslerstr 14, D-37073 Gottingen, Germany.
EM dgolm@psych.uni-goettingen.de;
carsten.schmidt-samoa@med.uni-goettingen.de; pdechen@gwdg.de;
bkroene@uni-goettingen.de
CR Andersson G, 2004, J CLIN PSYCHOL, V60, P171, DOI 10.1002/jclp.10243
Barke A., 2011, J BEHAV THER EXP PSY, V43, P565
Benuzzi F, 2008, J NEUROSCI, V28, P923, DOI 10.1523/JNEUROSCI.4012-07.2008
Bleich-Cohen M., 2006, NEUROREPORT, V17
BRADLEY MM, 1994, J BEHAV THER EXP PSY, V25, P49, DOI 10.1016/0005-7916(94)90063-9
BUCKNER R. L., 2001, HDB FUNCTIONAL NEURO, P27
Cooney RE, 2010, COGN AFFECT BEHAV NE, V10, P470, DOI 10.3758/CABN.10.4.470
Danesh AA, 2003, LECT NOTES ARTIF INT, V2774, P794
Davis A, 2000, TINNITUS HDB, P1
De Ridder D., 2011, PLOS ONE, V6
De Ridder D, 2011, TEXTBOOK OF TINNITUS, P171, DOI 10.1007/978-1-60761-145-5_21
Dolcos F, 2004, NEUROIMAGE, V23, P64, DOI 10.1016/j.neuroimage.2004.05.015
Fabijanska A., 1999, P 6 INT TINN SEM, P569
FORMAN SD, 1995, MAGNET RESON MED, V33, P636, DOI 10.1002/mrm.1910330508
Goebel G, 2001, VERHALTENSMEDIZINISC
Goebel G, 1998, TINNITUS FRAGEBOGEN
Goebel R, 2006, HUM BRAIN MAPP, V27, P392, DOI 10.1002/hbm.20249
Grafe K, 2004, DIAGNOSTICA, V50, P171, DOI 10.1026/0012-1924.50.4.171
Hallam RS., 1996, MANUAL TINNITUS QUES
Henry J A, 2000, J Am Acad Audiol, V11, P138
Henry J.L, 1995, INT TINNITUS J, V1, P85
Herrmann C, 1995, HADS D HOSP ANXIETY
Hiller W, 2007, AUDIOL NEURO-OTOL, V12, P391, DOI 10.1159/000106482
HILLER W, 1994, BRIT J CLIN PSYCHOL, V33, P231
Hirata M, 2007, NEUROIMAGE, V35, P420, DOI 10.1016/j.neuroimage.2006.11.025
Hoehn-Saric R, 2004, PSYCHIAT RES-NEUROIM, V131, P11, DOI 10.1016/j.pscychresns.2004.02.003
HOLLON SD, 1980, COGNITIVE THER RES, V4, P383, DOI 10.1007/BF01178214
Jastreboff PJ, 1996, AM J OTOL, V17, P236
Jastreboff P.J., 1990, NEUROSCI RES, V8, P228
KLAGES U, 1989, Z KLIN PSYCHOL PSYCH, V37, P5
Kleinjung T, 2008, OTOLARYNG HEAD NECK, V138, P497, DOI 10.1016/j.otohns.2007.12.022
Kreuzer P.M., 2011, FRONT SYST NEUROSCI, V5, P1
Kroner-Herwig B, 2003, J PSYCHOSOM RES, V54, P381, DOI 10.1016/S0022-3999(02)00400-2
Kross E, 2007, J COGNITIVE NEUROSCI, V19, P945, DOI 10.1162/jocn.2007.19.6.945
Lancaster JL, 1997, HUM BRAIN MAPP, V5, P238, DOI 10.1002/(SICI)1097-0193(1997)5:4<238::AID-HBM6>3.0.CO;2-4
Lancaster JL, 2000, HUM BRAIN MAPP, V10, P120, DOI 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
Landgrebe M, 2008, NEUROIMAGE, V41, P1336, DOI 10.1016/j.neuroimage.2008.04.171
Lockwood AH, 2004, TINNITUS THEORY MANA, P253
Loewe B., 2002, PHQ D GESUNDHEITSFRA
Logothetis NK, 2008, NATURE, V453, P869, DOI 10.1038/nature06976
Medford N, 2005, PSYCHIAT RES-NEUROIM, V138, P247, DOI 10.1016/j.pscychresns.2004.10.004
Mertin M., 1997, PSYCHOL BEHANDLUNG C, P15
Mirz F, 1999, HEARING RES, V134, P133, DOI 10.1016/S0378-5955(99)00075-1
Mitchell TV, 2005, NEUROREPORT, V16, P457, DOI 10.1097/00001756-200504040-00008
Moisset X., 2007, NEUROIMAGE, V37, P80
Moller AR, 2011, TEXTBOOK OF TINNITUS, P3, DOI 10.1007/978-1-60761-145-5_1
Mulert C, 2004, EUR ARCH PSY CLIN N, V254, P190, DOI 10.1007/s00406-004-0469-2
Nagai M, 2010, J AM SOC HYPERTENS, V4, P174, DOI 10.1016/j.jash.2010.05.001
Nelting M., 2002, Z KLIN PSYCHOL PSYCH, V31, P47, DOI 10.1026//1616-3443.31.1.47
Nelting M., 2004, GUF GERAUSCHUBEREMPF
Palmer KT, 2002, OCCUP ENVIRON MED, V59, P634, DOI 10.1136/oem.59.9.634
Plewnia C, 2007, J NEUROL NEUROSUR PS, V78, P152, DOI 10.1136/jnnp.2006.095612
Pollatos O, 2007, BRAIN RES, V1141, P178, DOI 10.1016/j.brainres.2007.01.026
Rief W, 2005, PSYCHOSOM MED, V67, P833, DOI 10.1097/01.psy.0000174174.38908.c6
Saykin AJ, 1999, BRAIN, V122, P1963, DOI 10.1093/brain/122.10.1963
Schlee W, 2011, TEXTBOOK OF TINNITUS, P161, DOI 10.1007/978-1-60761-145-5_20
Schlee W., 2009, BMC BIOL, V7
Schmithorst VJ, 2004, J MAGN RESON IMAGING, V19, P365, DOI 10.1002/jmri.20009
Schwibbe M., 1994, HDB DEUTSCHSPRACHIGE, P272
Seidler H., 1996, SCHWERHORIGKEIT URSA
Shackman AJ, 2011, NAT REV NEUROSCI, V12, P154, DOI 10.1038/nrn2994
Tewes U., 1991, HAWIE R HAMBURG WECH
Tomasi D, 2005, NEUROIMAGE, V27, P377, DOI 10.1016/j.neuroimage.2005.04.010
Vanneste S, 2010, NEUROIMAGE, V52, P470, DOI 10.1016/j.neuroimage.2010.04.029
Vanneste S, 2010, EXP BRAIN RES, V202, P779, DOI 10.1007/s00221-010-2183-9
Vogt BA, 2005, NAT REV NEUROSCI, V6, P533, DOI 10.1038/nrn1704
Vogt B.A., 2004, HUMAN NERVOUS SYSTEM, P915, DOI 10.1016/B978-012547626-3/50025-9
Vogt BA, 2003, EUR J NEUROSCI, V18, P3134, DOI 10.1046/j.1460-9568.2003.03034.x
Voisin J, 2006, J NEUROSCI, V26, P273, DOI 10.1523/JNEUROSCI.2967-05.2006
von Leupoldt A, 2009, NEUROIMAGE, V48, P200, DOI 10.1016/j.neuroimage.2009.06.015
Wang JJ, 2005, P NATL ACAD SCI USA, V102, P17804, DOI 10.1073/pnas.0503082102
Weissenbacher A, 2009, NEUROIMAGE, V47, P1408, DOI 10.1016/j.neuroimage.2009.05.005
Weisz N, 2005, PLOS MED, V2, P546, DOI 10.1371/journal.pmed.0020153
Zachriat Claudia, 2004, Cognitive Behaviour Therapy, V33, P187, DOI 10.1080/16506070410029568
NR 74
TC 13
Z9 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2013
VL 295
BP 87
EP 99
DI 10.1016/j.heares.2012.03.003
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 098NX
UT WOS:000315557100011
PM 22445697
ER
PT J
AU Manzoor, NF
Gao, Y
Licari, F
Kaltenbach, JA
AF Manzoor, N. F.
Gao, Y.
Licari, F.
Kaltenbach, J. A.
TI Comparison and contrast of noise-induced hyperactivity in the dorsal
cochlear nucleus and inferior colliculus
SO HEARING RESEARCH
LA English
DT Article
ID INTENSE SOUND EXPOSURE; INDUCED HEARING-LOSS; CHOLINE-ACETYLTRANSFERASE
ACTIVITY; SPONTANEOUS NEURAL ACTIVITY; AUDITORY BRAIN-STEM; ACOUSTIC
TRAUMA; GABAERGIC INHIBITION; COMPUTATIONAL MODEL; RESPONSE PROPERTIES;
INDUCED TINNITUS
AB Induction of hyperactivity in the central auditory system is one of the major physiological hallmarks of animal models of noise-induced tinnitus. Although hyperactivity occurs at various levels of the auditory system, it is not clear to what extent hyperactivity originating in one nucleus contributes to hyperactivity at higher levels of the auditory system. In this study we compared the time courses and tonotopic distribution patterns of hyperactivity in the dorsal cochlear nucleus (DCN) and inferior colliculus (IC). A model of acquisition of hyperactivity in the IC by passive relay from the DCN would predict that the two nuclei show similar time courses and tonotopic profiles of hyperactivity. A model of acquisition of hyperactivity in the IC by compensatory plasticity mechanisms would predict that the IC and DCN would show differences in these features, since each adjusts to changes of spontaneous activity of opposite polarity. To test the role of these two mechanisms, animals were exposed to an intense hyperactivity-inducing tone (10 kHz, 115 dB SPL, 4 h) then studied electrophysiologically at three different post-exposure recovery times (from 1 to 6 weeks after exposure). For each time frame, multiunit spontaneous activity was mapped as a function of location along the tonotopic gradient in the DCN and IC. Comparison of activity profile from the two nuclei showed a similar progression toward increased activity over time and culminated in the development of a central peak of hyperactivity at a similar tonotopic location. These similarities suggest that the shape of the activity profile is determined primarily by passive relay from the cochlear nucleus. However, the absolute levels of activity were generally much lower in the IC than in the DCN, suggesting that the magnitude of hyperactivity is greatly attenuated by inhibition. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Manzoor, N. F.; Gao, Y.; Licari, F.; Kaltenbach, J. A.] Cleveland Clin, Dept Neurosci, Cleveland, OH 44195 USA.
RP Kaltenbach, JA (reprint author), Cleveland Clin, Dept Neurosci, NE-63,9500 Euclid Ave, Cleveland, OH 44195 USA.
EM kaltenj@ccf.org
FU NIH [DC009097]
FX This work was supported by NIH DC009097.
CR Abbott SD, 1999, NEUROSCIENCE, V93, P1375, DOI 10.1016/S0306-4522(99)00300-0
AXELSSON A, 1985, British Journal of Audiology, V19, P271, DOI 10.3109/03005368509078983
Axelsson A, 2000, NOISE HEALTH, V2, P47
Bauer CA, 2008, J NEUROSCI RES, V86, P2564, DOI 10.1002/jnr.21699
Bauer C.A., 2004, HEAD NECK SURG, V12, P413
Benson CG, 1997, SYNAPSE, V25, P243
Bilak M, 1997, EXP NEUROL, V147, P256, DOI 10.1006/exnr.1997.6636
Brozoski TJ, 2002, J NEUROSCI, V22, P2383
Davis KA, 2002, J NEUROPHYSIOL, V87, P1824, DOI 10.1152/jn.00769.2001
Dehmel S, 2012, J NEUROSCI, V32, P1660, DOI 10.1523/JNEUROSCI.4608-11.2012
Desai NS, 2002, NAT NEUROSCI, V5, P783, DOI 10.1038/nn878
Dong S, 2010, BRAIN RES, V1342, P24, DOI 10.1016/j.brainres.2010.04.067
Dong SY, 2010, EUR J NEUROSCI, V31, P1616, DOI 10.1111/j.1460-9568.2010.07183.x
Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010
FAINGOLD CL, 1993, HEARING RES, V69, P98, DOI 10.1016/0378-5955(93)90097-K
Finlayson PG, 2009, HEARING RES, V256, P104, DOI 10.1016/j.heares.2009.07.006
Goel A, 2007, J NEUROSCI, V27, P6692, DOI 10.1523/JNEUROSCI.5038-06.2007
Illing RB, 2005, HEARING RES, V206, P185, DOI 10.1016/j.heares.2005.01.016
Izquierdo MA, 2008, NEUROSCIENCE, V154, P355, DOI 10.1016/j.neuroscience.2008.01.057
Jin YM, 2005, J NEUROSCI RES, V81, P91, DOI 10.1002/jnr.20536
Jin YM, 2006, J NEUROSCI RES, V83, P157, DOI 10.1002/jnr.20706
Jin YM, 2006, HEARING RES, V216, P168, DOI 10.1016/j.heares.2006.02.002
Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038
Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6
Kaltenbach J.A., 2007, PROG BRAIN RES, V166, P89
KALTENBACH JA, 1992, HEARING RES, V60, P205, DOI 10.1016/0378-5955(92)90022-F
Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5
Kaltenbach JA, 2002, J NEUROPHYSIOL, V88, P699, DOI 10.1152/jn00893.2001
KALTENBACH JA, 1991, HEARING RES, V51, P149, DOI 10.1016/0378-5955(91)90013-Y
Kaltenbach JA, 2011, HEARING RES, V276, P52, DOI 10.1016/j.heares.2010.12.003
Kim J, 2008, NEURON, V58, P925, DOI 10.1016/j.neuron.2008.05.009
Kim JJ, 2004, J NEUROSCI RES, V77, P829, DOI 10.1002/jnr.20211
Knogler LD, 2010, J NEUROSCI, V30, P8871, DOI 10.1523/JNEUROSCI.0880-10.2010
LeBeau FEN, 1996, J NEUROPHYSIOL, V75, P902
LIBERMAN M C, 1978, Acta Oto-Laryngologica Supplement, P1
LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8
Longenecker RJ, 2011, JARO-J ASSOC RES OTO, V12, P647, DOI 10.1007/s10162-011-0276-1
Malmierca MS, 2008, J NEUROSCI, V28, P4767, DOI 10.1523/JNEUROSCI.0238-08.2008
Meltzer NE, 2006, ANAT REC PART A, V288A, P397, DOI 10.1002/ar.a.20300
Middleton JW, 2011, P NATL ACAD SCI USA, V108, P7601, DOI 10.1073/pnas.1100223108
Milbrandt JC, 2000, HEARING RES, V147, P251, DOI 10.1016/S0378-5955(00)00135-0
Mulders WHAM, 2009, NEUROSCIENCE, V164, P733, DOI 10.1016/j.neuroscience.2009.08.036
Muly SM, 2004, J NEUROSCI RES, V75, P585, DOI 10.1002/jnr.20011
Norena AJ, 2006, NEUROREPORT, V17, P559, DOI 10.1097/00001756-200604240-00001
Norena AJ, 2003, J NEUROPHYSIOL, V90, P2387, DOI 10.1152/jn.00139.2003
O'Brien RJ, 1998, NEURON, V21, P1067
POLLAK GD, 1993, HEARING RES, V65, P99, DOI 10.1016/0378-5955(93)90205-F
Rachel JD, 2002, HEARING RES, V164, P206, DOI 10.1016/S0378-5955(02)00287-3
Roberts LE, 2010, J NEUROSCI, V30, P14972, DOI 10.1523/JNEUROSCI.4028-10.2010
Schaette R, 2006, EUR J NEUROSCI, V23, P3124, DOI 10.1111/j.1460-9568.04774.x
Schaette R, 2008, HEARING RES, V240, P57, DOI 10.1016/j.heares.2008.02.006
Schofield BR, 2006, HEARING RES, V216, P81, DOI 10.1016/j.heares.2006.01.004
Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1
Shore SE, 2008, EUR J NEUROSCI, V27, P155, DOI 10.1111/j.1460-9568.2007.05983.x
Stellwagen D, 2006, NATURE, V440, P1054, DOI 10.1038/nature04671
Turrigiano G, 2011, ANNU REV NEUROSCI, V34, P89, DOI 10.1146/annurev-neuro-060909-153238
Turrigiano GG, 1998, NATURE, V391, P892, DOI 10.1038/36103
VATER M, 1992, J COMP PHYSIOL A, V171, P541
Vogler DP, 2011, J NEUROSCI, V31, P6639, DOI 10.1523/JNEUROSCI.6538-10.2011
Wang H, 2009, NEUROSCIENCE, V164, P747, DOI 10.1016/j.neuroscience.2009.08.026
Wang HN, 2011, HEARING RES, V279, P111, DOI 10.1016/j.heares.2011.04.004
Xu H, 2006, HEARING RES, V220, P95, DOI 10.1016/j.heares.2006.07.005
Zacharek MA, 2002, HEARING RES, V172, P137, DOI 10.1016/S0378-5955(02)00575-0
Zeng CH, 2009, J NEUROSCI, V29, P4210, DOI 10.1523/JNEUROSCI.0208-09.2009
Zhang JS, 1998, NEUROSCI LETT, V250, P197, DOI 10.1016/S0304-3940(98)00482-0
Zhang JS, 2006, J NEUROSCI RES, V84, P819, DOI 10.1002/jnr.20985
NR 66
TC 13
Z9 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2013
VL 295
BP 114
EP 123
DI 10.1016/j.heares.2012.04.003
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 098NX
UT WOS:000315557100013
PM 22521905
ER
PT J
AU Robertson, D
Bester, C
Vogler, D
Mulders, WHAM
AF Robertson, Donald
Bester, Christofer
Vogler, Darryl
Mulders, Wilhelmina H. A. M.
TI Spontaneous hyperactivity in the auditory midbrain: Relationship to
afferent input
SO HEARING RESEARCH
LA English
DT Article
ID DORSAL COCHLEAR NUCLEUS; SPONTANEOUS NEURAL ACTIVITY; INDUCED
HEARING-LOSS; ACOUSTIC TRAUMA; GUINEA-PIG; INFERIOR COLLICULUS; INDUCED
TINNITUS; GENE-EXPRESSION; BRAIN-STEM; PLASTICITY
AB Hyperactivity in the form of increased spontaneous firing rates of single neurons develops in the guinea pig inferior colliculus (IC) after unilateral loud sound exposures that result in behavioural signs of tinnitus. The hyperactivity is found in those parts of the topographic frequency map in the IC where neurons possess characteristic frequencies (CFs) closely related to the region in the cochlea where lasting sensitivity changes occur as a result of the loud sound exposure. The observed hyperactivity could be endogenous to the IC, or it could be driven by hyperactivity at lower stages of the auditory pathway. In addition to the dorsal cochlear nucleus (DCN) hyperactivity reported by others, specific cell types in the ventral cochlear nucleus (VCN) also show hyperactivity in this animal model suggesting that increased drive from several regions of the lower brainstem could contribute to the observed hyperactivity in the midbrain. In addition, spontaneous afferent drive from the cochlea itself is necessary for the maintenance of hyperactivity up to about 8 weeks post cochlear trauma. After 8 weeks however, IC hyperactivity becomes less dependent on cochlear input, suggesting that central neurons transition from a state of hyperexcitability to a state in which they generate their own endogenous firing. The results suggest that there might be a "therapeutic window" for early-onset tinnitus, using treatments that reduce cochlear afferent firing. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Robertson, Donald; Bester, Christofer; Vogler, Darryl; Mulders, Wilhelmina H. A. M.] Univ Western Australia, Sch Anat Physiol & Human Biol, Auditory Lab, Crawley, WA 6009, Australia.
RP Robertson, D (reprint author), Univ Western Australia, Sch Anat Physiol & Human Biol, Auditory Lab, M311,35 Stirling Hwy, Crawley, WA 6009, Australia.
EM don.robertson@uwa.edu.au
FU Action on Hearing Loss; Neurotrauma Research Program; Medical Health and
Research Infrastructure Fund; Australian Postgraduate Awards
FX This work was supported by grants to D. Robertson and W. Mulders from
Action on Hearing Loss, The Neurotrauma Research Program and the Medical
Health and Research Infrastructure Fund. C. Bester and D. Vogler are
currently recipients of Australian Postgraduate Awards. The authors are
grateful to R. Salvi for advice and encouragement, D. Stolzberg for
generous technical assistance and donation of the GPIAS software and I.
Winter and I.M. Lloyd for providing single neuron software (Neurosound)
and microelectrodes.
CR Bauer CA, 2008, J NEUROSCI RES, V86, P2564, DOI 10.1002/jnr.21699
Dong S, 2010, BRAIN RES, V1342, P24, DOI 10.1016/j.brainres.2010.04.067
Dong S, 2009, NEUROSCIENCE, V159, P1164, DOI 10.1016/j.neuroscience.2009.01.043
Dong SY, 2010, EUR J NEUROSCI, V31, P1616, DOI 10.1111/j.1460-9568.2010.07183.x
Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038
Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6
Kaltenbach JA, 2011, HEARING RES, V276, P52, DOI 10.1016/j.heares.2010.12.003
Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009
Mulders WHAM, 2010, J NEUROSCI, V30, P9578, DOI 10.1523/JNEUROSCI.2289-10.2010
Mulders WHAM, 2009, NEUROSCIENCE, V164, P733, DOI 10.1016/j.neuroscience.2009.08.036
Mulders WHAM, 2011, NEUROSCIENCE, V192, P753, DOI 10.1016/j.neuroscience.2011.06.046
Mulders WHAM, 2011, J COMP NEUROL, V519, P2637, DOI 10.1002/cne.22644
Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156
Norena AJ, 2006, NEUROREPORT, V17, P559, DOI 10.1097/00001756-200604240-00001
Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9
Shore SE, 2008, EUR J NEUROSCI, V27, P155, DOI 10.1111/j.1460-9568.2007.05983.x
Shore SE, 2011, HEARING RES, V281, P38, DOI 10.1016/j.heares.2011.05.001
Vogler DP, 2011, J NEUROSCI, V31, P6639, DOI 10.1523/JNEUROSCI.6538-10.2011
WINTER IM, 1990, HEARING RES, V44, P161, DOI 10.1016/0378-5955(90)90078-4
Yang G, 2007, HEARING RES, V226, P244, DOI 10.1016/j.heares.2006.06.013
Zacharek MA, 2002, HEARING RES, V172, P137, DOI 10.1016/S0378-5955(02)00575-0
NR 21
TC 14
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2013
VL 295
BP 124
EP 129
DI 10.1016/j.heares.2012.02.002
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 098NX
UT WOS:000315557100014
PM 22349094
ER
PT J
AU Bauer, CA
Kurt, W
Sybert, LT
Brozoski, TJ
AF Bauer, Carol A.
Kurt, Wisner
Sybert, Lauren T.
Brozoski, Thomas J.
TI The cerebellum as a novel tinnitus generator
SO HEARING RESEARCH
LA English
DT Article
ID DORSAL COCHLEAR NUCLEUS; RESONANCE-IMAGING MEMRI; UNIPOLAR BRUSH CELL;
ANIMAL-MODEL; ACOUSTIC-TRAUMA; NEURAL ACTIVITY; AUDITORY INTERACTIONS;
INFERIOR COLLICULUS; RAT; BRAIN
AB The role of the cerebellum in auditory processing is largely unknown. Recently it was shown that rats with psychophysical evidence of tinnitus had significantly elevated neural activity in the paraflocculus of the cerebellum (PFL), as indicated by functional imaging. It was further shown that PFL activity was not elevated in normal rats listening to a tinnitus-like sound. This suggests that plastic changes in the PFL may underpin chronic tinnitus, i.e., it may serve as a tinnitus generator. Using a rat model of acoustic-trauma-induced tinnitus, the role of the cerebellum was further examined in a series of experiments: The PFL was surgically ablated in animals with established tinnitus; the PFL was surgically ablated in animals before induction of tinnitus; the PFL was reversibly inactivated by chronic lidocaine infusion into the subarcuate fossa of animals with established tinnitus. It was found that PFL ablation eliminated established tinnitus without altering auditory discrimination. Similar to the ablation results, PFL inactivation with lidocaine reversibly eliminated existing tinnitus. In contrast however, PFL ablation before tinnitus induction attenuated, but did not completely eliminate, tinnitus. In a rat model of noise-induced chronic tinnitus, the cerebellar PFL may serve as a sufficient but non-obligatory generator of tinnitus. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Bauer, Carol A.; Kurt, Wisner; Sybert, Lauren T.; Brozoski, Thomas J.] So Illinois Univ, Sch Med, Springfield, IL 62794 USA.
RP Bauer, CA (reprint author), So Illinois Univ, Sch Med, Dept Surg, POB 19662, Springfield, IL 62794 USA.
EM cbauer@siumed.edu
FU National Institute on Deafness and Other Communication Disorders
[1R01DC009669-01]
FX Supported by the National Institute on Deafness and Other Communication
Disorders, # 1R01DC009669-01.
CR ALBERTI PW, 1987, J OTOLARYNGOL, V16, P34
AZIZI SA, 1985, EXP BRAIN RES, V59, P36
AZIZI SA, 1990, BRAIN RES, V533, P255, DOI 10.1016/0006-8993(90)91347-J
Bauer CA, 2008, J NEUROSCI RES, V86, P2564, DOI 10.1002/jnr.21699
Bauer CA, 1999, OTOLARYNG HEAD NECK, V121, P457, DOI 10.1016/S0194-5998(99)70237-8
Bauer CA, 2001, JARO, V2, P54
BERLINER KI, 1992, AM J OTOL, V13, P13
Brozoski T. J., 2011, J ASS RES OTOLARYNGO
Brozoski Thomas D., 2008, Seminars in Hearing, V29, P242, DOI 10.1055/s-0028-1082031
Brozoski TJ, 2007, HEARING RES, V228, P168, DOI 10.1016/j.heares.2007.02.003
Brozoski TJ, 2012, JARO-J ASSOC RES OTO, V13, P55, DOI 10.1007/s10162-011-0290-3
Brozoski TJ, 2002, J NEUROSCI, V22, P2383
Brozoski TJ, 2005, HEARING RES, V206, P227, DOI 10.1016/j.heares.2004.12.013
Brozoski TJ, 2007, JARO-J ASSOC RES OTO, V8, P105, DOI 10.1007/s10162-006-0067-2
Dino MR, 2000, NEUROSCIENCE, V98, P625, DOI 10.1016/S0306-4522(00)00123-8
Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010
Eggermont JJ, 1998, HEARING RES, V117, P149, DOI 10.1016/S0378-5955(98)00008-2
EISENMAN LM, 1980, BRAIN RES, V188, P550, DOI 10.1016/0006-8993(80)90053-0
Fiez JA, 1996, CEREB CORTEX, V6, P1, DOI 10.1093/cercor/6.1.1
Griest S E, 1998, AAOHN J, V46, P325
Holt AG, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014260
Ito M, 2006, PROG NEUROBIOL, V78, P272, DOI 10.1016/j.pneurobio.2006.02.006
Ito M, 2008, NAT REV NEUROSCI, V9, P304, DOI 10.1038/nrn2332
Kaltenbach J. A., 1999, ASS RES OT MIDW RES
Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038
Kaltenbach JA, 2008, AM J AUDIOL, V17, pS148, DOI 10.1044/1059-0889(2008/08-0004)
Langguth B, 2010, NEUROPHYSIOL CLIN, V40, P45, DOI 10.1016/j.neucli.2009.03.001
Lanting CP, 2009, HEARING RES, V255, P1, DOI 10.1016/j.heares.2009.06.009
Levine RA, 2003, EXP BRAIN RES, V153, P643, DOI 10.1007/s00221-003-1747-3
Manohar S, 2012, NEUROSCIENCE, V202, P169, DOI 10.1016/j.neuroscience.2011.12.013
Mirz F, 1999, HEARING RES, V134, P133, DOI 10.1016/S0378-5955(99)00075-1
Morest DK, 1997, HEARING RES, V103, P151, DOI 10.1016/S0378-5955(96)00172-4
MORTIMER JA, 1975, BRAIN RES, V83, P369, DOI 10.1016/0006-8993(75)90831-8
Moruzzi R. D. a. G., 1958, PHYSL PATHOLOGY CERE
MUGNAINI E, 1994, J COMP NEUROL, V339, P174, DOI 10.1002/cne.903390203
Mugnaini E, 2011, BRAIN RES REV, V66, P220, DOI 10.1016/j.brainresrev.2010.10.001
Nondahl David M, 2002, J Am Acad Audiol, V13, P323
Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9
Osaki Y, 2005, NEUROREPORT, V16, P1625, DOI 10.1097/01.wnr.0000183899.85277.08
Paul AK, 2009, NEUROIMAGE, V44, P312, DOI 10.1016/j.neuroimage.2008.09.024
Pautler Robia G, 2006, Methods Mol Med, V124, P365
Petacchi A, 2005, HUM BRAIN MAPP, V25, P118, DOI 10.1002/hbm.20137
Rasmussen G., 1990, RES NOTEBOOKS, P1
Rauschecker JP, 2010, NEURON, V66, P819, DOI 10.1016/j.neuron.2010.04.032
Saab CY, 2003, BRAIN RES REV, V42, P85, DOI 10.1016/S0165-0173(03)00151-6
Salvi R., 1982, NEW PERSPECTIVES NOI, P165
SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U
Sanchez TG, 2002, AUDIOL NEURO-OTOL, V7, P370, DOI 10.1159/000066155
Sawtell NB, 2010, NEURON, V66, P573, DOI 10.1016/j.neuron.2010.04.018
Schlosser R, 1998, J NEUROL NEUROSUR PS, V64, P492, DOI 10.1136/jnnp.64.4.492
SCHMAHMANN JD, 1991, ARCH NEUROL-CHICAGO, V48, P1178
Schmahmann JD, 1996, HUM BRAIN MAPP, V4, P174, DOI 10.1002/(SICI)1097-0193(1996)4:3<174::AID-HBM3>3.0.CO;2-0
Shulman A, 1999, Int Tinnitus J, V5, P92
Silva AC, 2004, NMR BIOMED, V17, P532, DOI 10.1002/nbm.945
Tan J, 2007, NEUROSCIENCE, V145, P715, DOI 10.1016/j.neuroscience.2006.11.067
Voogd J, 1998, TRENDS NEUROSCI, V21, P370, DOI 10.1016/S0166-2236(98)01318-6
Yang G, 2007, HEARING RES, V226, P244, DOI 10.1016/j.heares.2006.06.013
Yang SC, 2011, P NATL ACAD SCI USA, V108, P14974, DOI 10.1073/pnas.1107998108
Yu X, 2005, NAT NEUROSCI, V8, P961, DOI 10.1038/nn1477
NR 59
TC 10
Z9 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2013
VL 295
BP 130
EP 139
DI 10.1016/j.heares.2012.03.009
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 098NX
UT WOS:000315557100015
PM 23418634
ER
PT J
AU Eggermont, JJ
AF Eggermont, Jos J.
TI Hearing loss, hyperacusis, or tinnitus: What is modeled in animal
research?
SO HEARING RESEARCH
LA English
DT Article
ID DORSAL COCHLEAR NUCLEUS; PRIMARY AUDITORY-CORTEX; ENRICHED ACOUSTIC
ENVIRONMENT; INTENSE SOUND EXPOSURE; NEURAL ACTIVITY; INFERIOR
COLLICULUS; NOISE TRAUMA; GUINEA-PIG; HOMEOSTATIC PLASTICITY; PREPULSE
INHIBITION
AB Animal models of tinnitus require a behavioral correlate thereof. Various conditioned response methods and gap-startle reflex methods are in use and the outcomes generally correspond with putative elec.trophysiological substrates of tinnitus. However, for salicylate-induced tinnitus there is discordance between the behavioral and electrophysiological test results. As a result it is not clear what the various tests are reflecting. A review of the, mostly sub-cortical, neural circuits that underlie the behavioral responses suggests that cortical electrophysiological correlates do not necessarily have to correspond with behavioral ones. Human objective correlates of tinnitus point heavily into cortical network, but not just auditory cortex, correlates of tinnitus. Furthermore, the synaptic mechanisms underlying spontaneous firing rate changes may be different from those involved in driven neural activity. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Eggermont, Jos J.] Univ Calgary, Dept Physiol & Pharmacol, Calgary, AB T2N 1N4, Canada.
[Eggermont, Jos J.] Univ Calgary, Dept Psychol, Calgary, AB T2N 1N4, Canada.
RP Eggermont, JJ (reprint author), Univ Calgary, Dept Psychol, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada.
EM eggermon@ucalgary.ca
FU Alberta Heritage Foundation for Medical Research; Natural Sciences and
Engineering Research Council; Campbell McLaurin Chair for Hearing
Deficiencies
FX This work was supported by the Alberta Heritage Foundation for Medical
Research, by the Natural Sciences and Engineering Research Council, and
by the Campbell McLaurin Chair for Hearing Deficiencies. Martin
Pienkowski and Raymundo Munguia made valuable comments on an earlier
version of the manuscript.
CR Andersson G, 2000, ACTA OTO-LARYNGOL, V120, P967, DOI 10.1080/00016480050218717
AUGUSTINE GJ, 1991, ANN NY ACAD SCI, V635, P365, DOI 10.1111/j.1749-6632.1991.tb36505.x
Bauer CA, 2000, HEARING RES, V147, P175, DOI 10.1016/S0378-5955(00)00130-1
Bauer CA, 2008, J NEUROSCI RES, V86, P2564, DOI 10.1002/jnr.21699
Bauer CA, 2001, JARO, V2, P54
Bowen GP, 2003, CEREB CORTEX, V13, P815, DOI 10.1093/cercor/13.8.815
Brozoski TJ, 2002, J NEUROSCI, V22, P2383
Brozoski TJ, 2005, HEARING RES, V206, P227, DOI 10.1016/j.heares.2004.12.013
BUTLER RA, 1957, J NEUROPHYSIOL, V20, P108
CANLON B, 1995, HEARING RES, V84, P112, DOI 10.1016/0378-5955(95)00020-5
Caperton KK, 2011, OTOL NEUROTOL, V32, P301, DOI 10.1097/MAO.0b013e3182009d46
Cazals Y, 1998, J NEUROPHYSIOL, V80, P2113
Chang H, 2002, HEARING RES, V164, P59, DOI 10.1016/S0378-5955(01)00410-5
Dehaene S, 2006, TRENDS COGN SCI, V10, P204, DOI 10.1016/j.tics.2006.03.007
Dehaene S, 2005, PLOS BIOL, V3, P910, DOI 10.1371/journal.pbio.0030141
De Ridder D, 2011, P NATL ACAD SCI USA, V108, P8075, DOI 10.1073/pnas.1018466108
Dominguez M, 2006, NEURAL COMPUT, V18, P2942, DOI 10.1162/neco.2006.18.12.2942
Du Y, 2011, J NEUROSCI, V31, P13644, DOI 10.1523/JNEUROSCI.1292-11.2011
Eggermont J. J., 2006, REPROGRAMMING CEREBR, P143
Eggermont JJ, 2008, AM J AUDIOL, V17, pS162, DOI 10.1044/1059-0889(2008/07-0025)
Eggermont J.J., 2004, TINNITUS THEORY MANA, P171
Eggermont JJ, 2000, HEARING RES, V142, P89, DOI 10.1016/S0378-5955(00)00024-1
Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010
Eggermont JJ, 1998, HEARING RES, V117, P149, DOI 10.1016/S0378-5955(98)00008-2
Engineer ND, 2011, NATURE, V470, P101, DOI 10.1038/nature09656
Estes WK, 1941, J EXP PSYCHOL, V29, P390, DOI 10.1037/h0062283
Evans E F, 1981, Ciba Found Symp, V85, P108
Farrant M, 2005, NAT REV NEUROSCI, V6, P215, DOI 10.1038/nrn1625
Finlayson PG, 2009, HEARING RES, V256, P104, DOI 10.1016/j.heares.2009.07.006
Fredj NB, 2009, NAT NEUROSCI, V12, P751, DOI 10.1038/nn.2317
GOLDBERG JM, 1961, J NEUROPHYSIOL, V24, P119
Guitton MJ, 2003, J NEUROSCI, V23, P3944
HEFFNER H, 1978, J NEUROPHYSIOL, V41, P963
Heffner HE, 2002, HEARING RES, V170, P83, DOI 10.1016/S0378-5955(02)00343-X
Hua YF, 2010, NAT NEUROSCI, V13, P1451, DOI 10.1038/nn.2695
Huang ZW, 2005, J NEUROPHYSIOL, V93, P2053, DOI 10.1152/jn.00959.2004
HUNTER KP, 1993, PHYSIOL BEHAV, V54, P1133, DOI 10.1016/0031-9384(93)90337-F
ISON JR, 1991, BEHAV NEUROSCI, V105, P33, DOI 10.1037//0735-7044.105.1.33
JASTREBOFF PJ, 1986, J ACOUST SOC AM, V80, P1384, DOI 10.1121/1.394391
JASTREBOFF PJ, 1988, BEHAV NEUROSCI, V102, P811, DOI 10.1037/0735-7044.102.6.811
JASTREBOFF PJ, 1988, LARYNGOSCOPE, V98, P280
Jones EG, 1998, NEUROSCIENCE, V85, P331, DOI 10.1016/S0306-4522(97)00581-2
Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038
Kiang N Y, 1970, Ciba Found Symp, P241
Koch M, 1999, PROG NEUROBIOL, V59, P107, DOI 10.1016/S0301-0082(98)00098-7
KOLB B, 1981, J COMP PHYSIOL PSYCH, V95, P468, DOI 10.1037/h0077784
Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009
Li L, 2009, NEUROSCI BIOBEHAV R, V33, P1157, DOI 10.1016/j.neubiorev.2009.02.001
Lissin DV, 1998, P NATL ACAD SCI USA, V95, P7097, DOI 10.1073/pnas.95.12.7097
Lobarinas E, 2004, HEARING RES, V190, P109, DOI 10.1016/S0378-5955(04)00019-X
Lu J, 2011, NEUROSCIENCE, V189, P187, DOI 10.1016/j.neuroscience.2011.04.073
Luczak A, 2009, NEURON, V62, P413, DOI 10.1016/j.neuron.2009.03.014
Ma WLD, 2006, HEARING RES, V216, P176, DOI 10.1016/j.heares.2006.03.011
Ma WLD, 2006, HEARING RES, V212, P9, DOI 10.1016/j.heares.2005.10.003
Manabe Y, 1997, HEARING RES, V103, P192, DOI 10.1016/S0378-5955(96)00181-5
Melloni L, 2007, J NEUROSCI, V27, P2858, DOI 10.1523/JNEUROSCI.4623-06.2007
MEYER DR, 1952, J NEUROPHYSIOL, V15, P149
Middleton JW, 2011, P NATL ACAD SCI USA, V108, P7601, DOI 10.1073/pnas.1100223108
Mulders WHAM, 2009, NEUROSCIENCE, V164, P733, DOI 10.1016/j.neuroscience.2009.08.036
Norena AJ, 2006, NEUROREPORT, V17, P559, DOI 10.1097/00001756-200604240-00001
Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005
Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9
Norena AJ, 2003, J NEUROPHYSIOL, V90, P2387, DOI 10.1152/jn.00139.2003
O'Donohue H., 2010, ASS RES OT MIDW M
Ochi K, 1996, HEARING RES, V95, P63, DOI 10.1016/0378-5955(96)00019-6
Ohl FW, 1999, LEARN MEMORY, V6, P347
Paul AK, 2009, NEUROIMAGE, V44, P312, DOI 10.1016/j.neuroimage.2008.09.024
Pienkowski M, 2011, HEARING RES, V277, P117, DOI 10.1016/j.heares.2011.02.002
Pienkowski M, 2009, HEARING RES, V257, P24, DOI 10.1016/j.heares.2009.07.011
Plewnia C, 2007, HUM BRAIN MAPP, V28, P238, DOI 10.1002/hbm.20270
Richardson BD, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016508
Roberts LE, 2010, J NEUROSCI, V30, P14972, DOI 10.1523/JNEUROSCI.4028-10.2010
Ruel J, 2008, J NEUROSCI, V28, P7313, DOI 10.1523/JNEUROSCI.5335-07.2008
Ruttiger L, 2003, HEARING RES, V180, P39, DOI 10.1016/S0378-5955(03)00075-3
Schaette R, 2006, EUR J NEUROSCI, V23, P3124, DOI 10.1111/j.1460-9568.04774.x
Searchfield GD, 2007, PROG BRAIN RES, V166, P441, DOI 10.1016/S0079-6123(07)66043-9
Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1
Seki S, 2002, HEARING RES, V173, P172, DOI 10.1016/S0378-5955(02)00518-X
Singer W, 1999, NEURON, V24, P49, DOI 10.1016/S0896-6273(00)80821-1
Stolzberg D, 2011, NEUROSCIENCE, V180, P157, DOI 10.1016/j.neuroscience.2011.02.005
STYPULKOWSKI PH, 1990, HEARING RES, V46, P113, DOI 10.1016/0378-5955(90)90144-E
Sun W, 2009, NEUROSCIENCE, V159, P325, DOI 10.1016/j.neuroscience.2008.12.024
Swerdlow NR, 2001, PSYCHOPHARMACOLOGY, V156, P194
Threlkeld SW, 2008, NEUROREPORT, V19, P893, DOI 10.1097/WNR.0b013e3283013d7e
Turner JG, 2006, BEHAV NEUROSCI, V120, P188, DOI 10.1037/0735-7044.120.1.188
Turrigiano GG, 1998, NATURE, V391, P892, DOI 10.1038/36103
Vogler DP, 2011, J NEUROSCI, V31, P6639, DOI 10.1523/JNEUROSCI.6538-10.2011
Vyleta NP, 2011, J NEUROSCI, V31, P4593, DOI 10.1523/JNEUROSCI.6398-10.2011
Wang HN, 2011, HEARING RES, V279, P111, DOI 10.1016/j.heares.2011.04.004
Ward LM, 2011, CONSCIOUS COGN, V20, P464, DOI 10.1016/j.concog.2011.01.007
Wei L, 2010, HEARING RES, V267, P54, DOI 10.1016/j.heares.2010.03.088
Weinberger NM, 1998, NEUROBIOL LEARN MEM, V70, P226, DOI 10.1006/nlme.1998.3850
Weinberger NM, 2004, NAT REV NEUROSCI, V5, P279, DOI 10.1038/nrn1366
Weinberger NM, 2007, LEARN MEMORY, V14, P1, DOI 10.1101/lm.421807
WHISHAW IQ, 1981, J COMP PHYSIOL PSYCH, V95, P85, DOI 10.1037/h0077760
Yang G, 2007, HEARING RES, V226, P244, DOI 10.1016/j.heares.2006.06.013
Yang SC, 2011, P NATL ACAD SCI USA, V108, P14974, DOI 10.1073/pnas.1107998108
Zhang JS, 2006, J NEUROSCI RES, V84, P819, DOI 10.1002/jnr.20985
Zhang X, 2011, NEUROSCIENCE, V172, P232, DOI 10.1016/j.neuroscience.2010.10.073
NR 99
TC 23
Z9 25
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2013
VL 295
BP 140
EP 149
DI 10.1016/j.heares.2012.01.005
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 098NX
UT WOS:000315557100016
PM 22330978
ER
PT J
AU Lobarinas, E
Hayes, SH
Allman, BL
AF Lobarinas, Edward
Hayes, Sarah H.
Allman, Brian L.
TI The gap-startle paradigm for tinnitus screening in animal models:
Limitations and optimization
SO HEARING RESEARCH
LA English
DT Article
ID SALICYLATE-INDUCED TINNITUS; BEHAVIORAL PARADIGM; NEURAL ACTIVITY;
HEARING-LOSS; RATS; SOUND; INHIBITION; PLASTICITY; NOISE; HYPERACTIVITY
AB In 2006, Turner and colleagues (Behav. Neurosci., 120:188-195) introduced the gap-startle paradigm as a high-throughput method for tinnitus screening in rats. Under this paradigm, gap detection ability was assessed by determining the level of inhibition of the acoustic startle reflex produced by a short silent gap inserted in an otherwise continuous background sound prior to a loud startling stimulus. Animals with tinnitus were expected to show impaired gap detection ability (i.e., lack of inhibition of the acoustic startle reflex) if the background sound containing the gap was qualitatively similar to the tinnitus pitch. Thus, for the gap-startle paradigm to be a valid tool to screen for tinnitus, a robust startle response from which to inhibit must be present. Because recent studies have demonstrated that the acoustic startle reflex could be dramatically reduced following noise exposure, we endeavored to 1) modify the gap-startle paradigm to be more resilient in the presence of hearing loss, and 2) evaluate whether a reduction in startle reactivity could confound the interpretation of gap prepulse inhibition and lead to errors in screening for tinnitus. In the first experiment, the traditional broadband noise (BBN) startle stimulus was replaced by a bandpass noise in which the sound energy was concentrated in the lower frequencies (5-10 kHz) in order to maintain audibility of the startle stimulus after unilateral high-frequency noise exposure (16 kHz). However, rats stili showed a 57% reduction in startle amplitude to the bandpass noise post-noise exposure. A follow-up experiment on a separate group of rats with transiently-induced conductive hearing loss revealed that startle reactivity was better preserved when the BBN startle stimulus was replaced by a rapid airpuff to the back of the rafs neck. Furthermore, it was found that transient unilateral conductive hearing loss, which was not likely to induce tinnitus, caused an impairment in gap prepulse inhibition as assessed with the traditional BBN gap-startle paradigm, resulting in a false-positive screening for tinnitus. Thus, the present study identifies significant caveats of the traditional gap-startle paradigm, and describes experimental parameters using an airpuff startle stimulus which may help to limit the negative consequences of reduced startle reactivity following noise exposure, thereby allowing researchers to better screen for tinnitus in animals with hearing loss. Published by Elsevier B.V.
C1 [Lobarinas, Edward; Hayes, Sarah H.; Allman, Brian L.] SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA.
RP Lobarinas, E (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall, Buffalo, NY 14214 USA.
EM el24@buffalo.edu
FU National Defense Science and Engineering Graduate Fellowship through the
U.S. Department of Defense; Tinnitus Research Initiative; National
Institute On Deafness and Other Communication Disorders [R03DC011374]
FX The authors wish to thank the following individuals for their valuable
contributions to the successful completion of this project. As Director
of the Center for Hearing and Deafness, Dr. Richard Salvi provided
generous support, encouragement and guidance in all aspects of the
study, and provided helpful comments on an earlier version of the
manuscript Daniel Stolzberg designed the custom software used for the
gap-startle paradigm, and provided thought-provoking comments on the
interpretation of the data. Carrie Shillitoe-Blair, Laura Lewicki and
Carolyn Whitcomb provided technical assistance. Sarah Hayes received
support from the National Defense Science and Engineering Graduate
Fellowship through the U.S. Department of Defense. This work was
supported in part by a generous research grant from the Tinnitus
Research Initiative (EL). The project described was supported by Grant
Number R03DC011374 (BLA) from the National Institute On Deafness and
Other Communication Disorders. The content is solely the responsibility
of the authors and does not necessarily represent the official views of
the National Institute On Deafness and Other Communication Disorders or
the National Institutes of Health.
CR Bauer CA, 1999, OTOLARYNG HEAD NECK, V121, P457, DOI 10.1016/S0194-5998(99)70237-8
Bauer CA, 2001, JARO, V2, P54
Cave KM, 2007, MIL MED, V172, P726
Dehmel S, 2012, J NEUROSCI, V32, P1660, DOI 10.1523/JNEUROSCI.4608-11.2012
Engineer ND, 2011, NATURE, V470, P101, DOI 10.1038/nature09656
Goble TJ, 2009, HEARING RES, V253, P52, DOI 10.1016/j.heares.2009.03.002
Guitton MJ, 2003, J NEUROSCI, V23, P3944
Heffner HE, 2005, BEHAV NEUROSCI, V119, P734, DOI 10.1037/0735-7044.119.3.734
Heffner HE, 2011, BEHAV RES METHODS, V43, P577, DOI 10.3758/s13428-011-0061-4
Heffner HE, 2002, HEARING RES, V170, P83, DOI 10.1016/S0378-5955(02)00343-X
Holt AG, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014260
ISON JR, 1991, BEHAV NEUROSCI, V105, P33, DOI 10.1037//0735-7044.105.1.33
ISON JR, 1982, J COMP PHYSIOL PSYCH, V96, P945, DOI 10.1037/0735-7036.96.6.945
JASTREBOFF PJ, 1988, LARYNGOSCOPE, V98, P280
Kraus KS, 2010, NEUROSCIENCE, V167, P1216, DOI 10.1016/j.neuroscience.2010.02.071
Li L, 1999, NEUROSCIENCE, V90, P139, DOI 10.1016/S0306-4522(98)00436-9
Lobarinas E., 2012, MODELING BLAST INDUC
Lobarinas E, 2004, HEARING RES, V190, P109, DOI 10.1016/S0378-5955(04)00019-X
Lobarinas E, 2006, ACTA OTO-LARYNGOL, V126, P13, DOI 10.1080/03655230600895408
Longenecker RJ, 2011, JARO-J ASSOC RES OTO, V12, P647, DOI 10.1007/s10162-011-0276-1
McCombe A, 2001, CLIN OTOLARYNGOL, V26, P388, DOI 10.1046/j.1365-2273.2001.00490.x
Middleton JW, 2011, P NATL ACAD SCI USA, V108, P7601, DOI 10.1073/pnas.1100223108
Ruttiger L, 2003, HEARING RES, V180, P39, DOI 10.1016/S0378-5955(03)00075-3
Shargorodsky J, 2010, AM J MED, V123, P711, DOI 10.1016/j.amjmed.2010.02.015
Swerdlow NR, 2000, BEHAV PHARMACOL, V11, P185
Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002
Turner JG, 2008, AM J AUDIOL, V17, pS185, DOI 10.1044/1059-0889(2008/08-0006)
Turner JG, 2006, BEHAV NEUROSCI, V120, P188, DOI 10.1037/0735-7044.120.1.188
Varty GB, 1999, BEHAV BRAIN RES, V100, P177, DOI 10.1016/S0166-4328(98)00129-6
Varty GB, 1998, NEUROBIOL AGING, V19, P243, DOI 10.1016/S0197-4580(98)00053-0
Wallhausser-Franke E, 2003, EXP BRAIN RES, V153, P649, DOI 10.1007/s00221-003-1614-2
Wang H, 2009, NEUROSCIENCE, V164, P747, DOI 10.1016/j.neuroscience.2009.08.026
Yang G, 2007, HEARING RES, V226, P244, DOI 10.1016/j.heares.2006.06.013
Yang SC, 2011, P NATL ACAD SCI USA, V108, P14974, DOI 10.1073/pnas.1107998108
Zhang JS, 2011, JARO-J ASSOC RES OTO, V12, P185, DOI 10.1007/s10162-010-0246-z
NR 35
TC 19
Z9 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2013
VL 295
BP 150
EP 160
DI 10.1016/j.heares.2012.06.001
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 098NX
UT WOS:000315557100017
PM 22728305
ER
PT J
AU Zeng, FG
AF Zeng, Fan-Gang
TI An active loudness model suggesting tinnitus as increased central noise
and hyperacusis as increased nonlinear gain
SO HEARING RESEARCH
LA English
DT Article
ID SOUND-LEVEL STATISTICS; INDUCED HEARING-LOSS; AUDITORY-NERVE;
AUDIOLOGICAL CHARACTERISTICS; OTOACOUSTIC EMISSIONS; COMPUTATIONAL
MODEL; NEURAL ADAPTATION; COCHLEAR IMPLANT; STIMULATION; RECRUITMENT
AB The present study uses a systems engineering approach to delineate the relationship between tinnitus and hyperacusis as a result of either hearing loss in the ear or an imbalanced state in the brain. Specifically examined is the input output function, or loudness growth as a function of intensity in both normal and pathological conditions. Tinnitus reduces the output dynamic range by raising the floor, while hyperacusis reduces the input dynamic range by lowering the ceiling or sound tolerance level. Tinnitus does not necessarily steepen the loudness growth function but hyperacusis always does. An active loudness model that consists of an expansion stage following a compression stage can account for these key properties in tinnitus and hyperacusis loudness functions. The active loudness model suggests that tinnitus is a result of increased central noise, while hyperacusis is due to increased nonlinear gain. The active loudness model also generates specific predictions on loudness growth in tinnitus, hyperacusis, hearing loss or any combinations of the three conditions. These predictions need to be verified by experimental data and have explicit implications for treatment of tinnitus and hyperacusis. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Zeng, Fan-Gang] Univ Calif Irvine, Dept Anat & Neurobiol, Irvine, CA 92697 USA.
[Zeng, Fan-Gang] Univ Calif Irvine, Dept Biomed Engn, Irvine, CA 92697 USA.
[Zeng, Fan-Gang] Univ Calif Irvine, Dept Cognit Sci, Irvine, CA 92697 USA.
[Zeng, Fan-Gang] Univ Calif Irvine, Dept Otolaryngol Head & Neck Surg, Irvine, CA 92697 USA.
RP Zeng, FG (reprint author), Univ Calif Irvine, Ctr Hearing Res, 110 Med Sci E, Irvine, CA 92697 USA.
EM fzeng@uci.edu
CR Andersson G, 2002, INT J AUDIOL, V41, P545, DOI 10.3109/14992020209056075
Bauer C.A., 2011, EAR HEAR
Buus S, 2002, JARO-J ASSOC RES OTO, V3, P120, DOI 10.1007/s101620010084
Cai SQ, 2009, JARO-J ASSOC RES OTO, V10, P5, DOI 10.1007/s10162-008-0142-y
CANEVET G, 1985, AUDIOLOGY, V24, P430
Cianfrone G, 2005, Acta Otorhinolaryngol Ital, V25, P3
Darlington CL, 2007, PROG BRAIN RES, V166, P249, DOI 10.1016/S0079-6123(07)66023-3
Dean I, 2008, J NEUROSCI, V28, P6430, DOI 10.1523/JNEUROSCI.0470-08.2008
Dean I, 2005, NAT NEUROSCI, V8, P1684, DOI 10.1038/nn1541
Dehmel S, 2008, AM J AUDIOL, V17, pS193, DOI 10.1044/1059-0889(2008/07-0045)
Del Bo L, 2007, PROG BRAIN RES, V166, P341, DOI 10.1016/S0079-6123(07)66032-4
Epstein M, 2005, J ACOUST SOC AM, V117, P263, DOI 10.1121/1.1830670
Fausti SA, 2009, J REHABIL RES DEV, V46, P797, DOI 10.1682/JRRD.2008.09.0118
FLORENTINE M, 1979, HEARING RES, V1, P121, DOI 10.1016/0378-5955(79)90023-6
FORMBY C, 1980, AUDIOLOGY, V19, P519
Formby C, 2008, J ACOUST SOC AM, V123, P3717, DOI 10.1121/1.2935164
Fowler EP, 1928, ARCHIV OTOLARYNGOL, V8, P151
Freeman WJ, 1996, INT J NEURAL SYST, V7, P473, DOI 10.1142/S0129065796000452
Goldstein B, 1996, INT TINNITUS J, V2, P83
GOODWIN PE, 1980, ACTA OTO-LARYNGOL, V90, P353, DOI 10.3109/00016488009131736
HALLAM RS, 1988, BRIT J CLIN PSYCHOL, V27, P213
Heinz MG, 2005, JARO-J ASSOC RES OTO, V6, P91, DOI 10.1007/s10162-004-5043-0
Henkin Y, 2006, ACTA OTO-LARYNGOL, V126, P581, DOI 10.1080/00016480500443391
Henry J A, 1999, J Am Acad Audiol, V10, P261
Hiller W, 2007, AUDIOL NEURO-OTOL, V12, P391, DOI 10.1159/000106482
Hong RS, 2003, OTOL NEUROTOL, V24, P590, DOI 10.1097/00129492-200307000-00010
JASTREBOFF PJ, 1994, HEARING RES, V80, P216, DOI 10.1016/0378-5955(94)90113-9
Jastreboff PJ, 2003, OTOLARYNG CLIN N AM, V36, P321, DOI 10.1016/S0030-6665(02)00172-X
Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5
Kaltenbach JA, 2011, HEARING RES, V276, P52, DOI 10.1016/j.heares.2010.12.003
KODAMA A, 1990, ORL J OTO-RHINO-LARY, V52, P156
Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009
Langguth B, 2006, ACTA OTO-LARYNGOL, V126, P102, DOI 10.1080/03655230600895457
Launer S, 2003, INT J AUDIOL, V42, P262, DOI 10.3109/14992020309078345
Launer S, 1997, MODELING SENSORINEURAL HEARING LOSS, P175
Marinaro Maria, 2004, Phys Rev E Stat Nonlin Soft Matter Phys, V70, P041909, DOI 10.1103/PhysRevE.70.041909
MARKS LE, 1994, J EXP PSYCHOL HUMAN, V20, P382, DOI 10.1037//0096-1523.20.2.382
MICHEYL C, 1995, BRAIN COGNITION, V29, P127, DOI 10.1006/brcg.1995.1272
Miyamoto RT, 2003, OTOLARYNG CLIN N AM, V36, P345, DOI 10.1016/S0030-6665(02)00165-2
Moore BCJ, 2004, HEARING RES, V188, P70, DOI 10.1016/S0378-5955(03)00347-2
Moore BCJ, 1997, J AUDIO ENG SOC, V45, P224
Moore BCJ, 1996, ACUSTICA, V82, P335
Nelson Jeffrey J, 2004, Ear Nose Throat J, V83, P472
Nieschalk M, 1996, HNO, V44, P577, DOI 10.1007/s001060050057
Norena AJ, 2011, NEUROSCI BIOBEHAV R, V35, P1089, DOI 10.1016/j.neubiorev.2010.11.003
Okamoto H, 2010, P NATL ACAD SCI USA, V107, P1207, DOI 10.1073/pnas.0911268107
Olsen SO, 1999, AUDIOLOGY, V38, P202
PENNER MJ, 1983, J SPEECH HEAR RES, V26, P73
PENNER MJ, 1986, J SPEECH HEAR RES, V29, P400
PENNER MJ, 1986, J SPEECH HEAR RES, V29, P407
Qiu CX, 2000, HEARING RES, V139, P153, DOI 10.1016/S0378-5955(99)00171-9
Rauschecker JP, 2010, NEURON, V66, P819, DOI 10.1016/j.neuron.2010.04.032
Reavis K. M., 2012, J ASS RES OTOLARYNGO
REED G F, 1960, AMA Arch Otolaryngol, V71, P84
Roberts LE, 2008, JARO-J ASSOC RES OTO, V9, P417, DOI 10.1007/s10162-008-0136-9
Roberts LE, 2010, J NEUROSCI, V30, P14972, DOI 10.1523/JNEUROSCI.4028-10.2010
Schaette R, 2006, EUR J NEUROSCI, V23, P3124, DOI 10.1111/j.1460-9568.04774.x
Schaette R, 2011, J NEUROSCI, V31, P13452, DOI 10.1523/JNEUROSCI.2156-11.2011
SCHARF B, 1966, J ACOUST SOC AM, V40, P71, DOI 10.1121/1.1910066
SCHLAUCH RS, 1992, J ACOUST SOC AM, V92, P758, DOI 10.1121/1.403999
Schlauch RS, 1998, J ACOUST SOC AM, V103, P2010, DOI 10.1121/1.421379
Shargorodsky J, 2010, AM J MED, V123, P711, DOI 10.1016/j.amjmed.2010.02.015
Stevens SS, 1936, PSYCHOL REV, V43, P405, DOI 10.1037/h0058773
Sweetow RW, 2010, J AM ACAD AUDIOL, V21, P461, DOI 10.3766/jaaa.21.7.5
Szczepaniak WS, 1996, EVOKED POTENTIAL, V100, P158, DOI 10.1016/0013-4694(95)00234-0
Tass PA, 2012, BIOL CYBERN, V106, P27, DOI 10.1007/s00422-012-0479-5
Terry A M, 1983, Br J Audiol, V17, P245, DOI 10.3109/03005368309081485
Thorson MJ, 2012, J ACOUST SOC AM, V131, P1282, DOI 10.1121/1.3672654
TYLER RS, 1983, J SPEECH HEAR RES, V26, P59
VERNON J, 1981, J LARYNGOL OTOL, P76
Ward LM, 2009, AM J AUDIOL, V18, P119, DOI 10.1044/1059-0889(2009/07-0033)
Wen B, 2009, J NEUROSCI, V29, P13797, DOI 10.1523/JNEUROSCI.5610-08.2009
ZENG FG, 1992, HEARING RES, V60, P231, DOI 10.1016/0378-5955(92)90024-H
Zeng FG, 1999, EAR HEARING, V20, P60, DOI 10.1097/00003446-199902000-00006
ZENG FG, 1994, SCIENCE, V264, P564, DOI 10.1126/science.8160013
Zilany MSA, 2010, J NEUROSCI, V30, P10380, DOI 10.1523/JNEUROSCI.0647-10.2010
ZWICKER E, 1965, PSYCHOL REV, V72, P3, DOI 10.1037/h0021703
Zwicker E., 2007, PSYCHOACOUSTICS FACT
NR 78
TC 21
Z9 21
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2013
VL 295
BP 172
EP 179
DI 10.1016/j.heares.2012.05.009
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 098NX
UT WOS:000315557100019
PM 22641191
ER
PT J
AU Snow, JB
AF Snow, James B., Jr.
TI Strategies and accomplishments of the Tinnitus Research Consortium
SO HEARING RESEARCH
LA English
DT Article
ID DORSAL COCHLEAR NUCLEUS; TRIGEMINAL GANGLION STIMULATION; INTENSE SOUND;
RESPONSES; NEURONS
AB The Tinnitus Research Consortium (TRC) is sponsored by a philanthropist who wants to accelerate progress in basic and clinical research on tinnitus. The TRC consists of 12 distinguished auditory scientists who began meeting in 1998 twice a year for brainstorming for new research approaches to tinnitus, developing requests for applications, judging the scientific merit of the applications received and reviewing the progress of funded projects. Through these efforts, common confounding variables in tinnitus research have been identified, and solutions to these problems have been suggested. TRC grants have been made up to $100,000.00 per year for three years. The sponsor had provided $600,000.00 per year; so two new grants could be made each year. The good news is that the sponsor's support has been increased by 50% for 2011 so that three grants have been awarded. Some of the landmark studies supported by the TRC over the last 14 years are reviewed as is the changing conceptualization of the pathogenesis of tinnitus and its management. The effect of strategies of the TRC on the applicants, grantees, scientific field, scientific societies and other funding agencies will be discussed. For example, when the TRC was initiated, sessions devoted to tinnitus research at national scientific meetings were rare. Through the efforts of the TRC, the American Tinnitus Association and the American Academy of Audiology, organizations such as the Association for Research in Otolaryngology and the Society for Neuroscience were encouraged to hold special sessions on tinnitus research. Now such organizations have well attended sessions on tinnitus research each year. The size of the TRC grants, large enough to support a substantial research project, has caused several other voluntary agencies to increase the size of their grants toward the TRC standard. The National Institute on Deafness and Other Communication Disorders and other institutes at the National Institutes of Health have devoted far more emphasis on tinnitus. By supporting sound research on tinnitus and recruiting world-class scientists to the field, the TRC has led in making tinnitus research respectable. (C) 2012 Elsevier B.V. All rights reserved.
C1 Tinnitus Res Consortium, West Grove, PA 19390 USA.
RP Snow, JB (reprint author), Tinnitus Res Consortium, 327 Greenbriar Lane, West Grove, PA 19390 USA.
EM jandssnow@comcast.net
FU Robert W. Wilson Charitable Trust
FX Dr. Snow receives consultation fees and travel expenses for managing the
grant-in-aid program of the Tinnitus Research Consortium and Members of
the Tinnitus Research Consortium receive honoraria and travel expenses
for participation in the meetings of the Tinnitus Research Consortium
from the Robert W. Wilson Charitable Trust.
CR Bauer CA, 2006, LARYNGOSCOPE, V116, P675, DOI 10.1097/01.MLG.0000216812.65206.CD
Bauer CA, 2011, EAR HEARING, V32, P145, DOI 10.1097/AUD.0b013e3181f5374f
Cheung SW, 2010, NEUROSCIENCE, V169, P1768, DOI 10.1016/j.neuroscience.2010.06.007
Husain FT, 2011, BRAIN RES, V1369, P74, DOI 10.1016/j.brainres.2010.10.095
Koehler SD, 2011, EUR J NEUROSCI, V33, P409, DOI 10.1111/j.1460-9568.2010.07547.x
Leaver AM, 2011, NEURON, V69, P33, DOI 10.1016/j.neuron.2010.12.002
Levin R, 2004, TINNITUS THEORY MANA, P108
Ma WLD, 2006, HEARING RES, V216, P176, DOI 10.1016/j.heares.2006.03.011
Ma WLD, 2006, HEARING RES, V212, P9, DOI 10.1016/j.heares.2005.10.003
Meikle MB, 2012, EAR HEARING, V33, P153, DOI 10.1097/AUD.0b013e31822f67c0
Melcher JR, 2009, HEARING RES, V257, P63, DOI 10.1016/j.heares.2009.08.005
Mennemeier M.S., BRAIN STIMUL
Muhlau M, 2006, CEREB CORTEX, V16, P1283, DOI 10.1093/cercor/bhj070
Rauschecker JP, 2010, NEURON, V66, P819, DOI 10.1016/j.neuron.2010.04.032
Roberts LE, 2010, J NEUROSCI, V30, P14972, DOI 10.1523/JNEUROSCI.4028-10.2010
Robinson SK, 2005, PSYCHOSOM MED, V67, P981, DOI 10.1097/01.psy.0000188479.04891.74
Rubinstein JT, 2003, OTOL NEUROTOL, V24, P478, DOI 10.1097/00129492-200305000-00021
Rubinstein JT, 2004, TINNITUS THEORY MANA, P326
Shore SE, 2003, NEUROSCIENCE, V119, P1085, DOI 10.1016/S0306-4522(03)00207-0
Shore SE, 2008, EUR J NEUROSCI, V27, P155, DOI 10.1111/j.1460-9568.2007.05983.x
Shore SE, 2005, EUR J NEUROSCI, V21, P3334, DOI 10.1111/j.1460-9568.2005.04142.x
Shore SE, 2006, HEARING RES, V216, P90, DOI 10.1016/j.heares.2006.01.006
Smith JA, 2007, LARYNGOSCOPE, V117, P529, DOI 10.1097/MLG.0b013e31802f4154
Snow JB, 2006, ACTA OTO-LARYNGOL, V126, P89, DOI 10.1080/03655230600895325
Yang G, 2007, HEARING RES, V226, P244, DOI 10.1016/j.heares.2006.06.013
Zacharek MA, 2002, HEARING RES, V172, P137, DOI 10.1016/S0378-5955(02)00575-0
Zhang JS, 2003, EXP BRAIN RES, V153, P655, DOI 10.1007/s00221-003-1612-4
Zhang JS, 2003, HEARING RES, V185, P13, DOI 10.1016/S0378-5955(03)00276-4
NR 28
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2013
VL 295
BP 180
EP 186
DI 10.1016/j.heares.2012.01.001
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 098NX
UT WOS:000315557100020
PM 22245715
ER
PT J
AU Oberfeld, D
Stahn, P
Kuta, M
AF Oberfeld, Daniel
Stahn, Patricia
Kuta, Martha
TI Binaural release from masking in forward-masked intensity
discrimination: Evidence for effects of selective attention
SO HEARING RESEARCH
LA English
DT Article
ID DICHOTIC-LISTENING CONDITIONS; TEMPORAL MASKING; COCKTAIL PARTY;
NONSIMULTANEOUS MASKING; SPEECH-INTELLIGIBILITY; INFORMATIONAL MASKING;
BACKWARD-MASKING; IMPAIRED HEARING; INTERAURAL TIME; NOISE
AB In a forward-masked intensity discrimination task, we manipulated the perceived lateralization of the masker via variation of the interaural time difference (ITD). The maskers and targets were 500 Hz pure tones with a duration of 30 ms. Standards of 30 and 60 dB SPL were combined with 60 or 90 dB SPL maskers. As expected, the presentation of a forward masker perceived as lateralized to the other side of the head as the target resulted in a significantly smaller elevation of the intensity difference limen than a masker lateralized ipsilaterally. This binaural release from masking in forward-masked intensity discrimination cannot be explained by peripheral mechanisms because varying the ITD leaves the neural representation in the monaural channels (i.e., in the auditory nerve) unaltered. Instead, our results are compatible with the assumption that lateralization differences between masker and target promote object segregation and therefore facilitate object-based selective attention to the target. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Oberfeld, Daniel; Stahn, Patricia; Kuta, Martha] Johannes Gutenberg Univ Mainz, Dept Psychol, Sect Expt Psychol, D-55122 Mainz, Germany.
RP Oberfeld, D (reprint author), Johannes Gutenberg Univ Mainz, Dept Psychol, Sect Expt Psychol, Wallstr 3, D-55122 Mainz, Germany.
EM oberfeld@uni-mainz.de; stahn@uni-mainz.de; kuta@uni-mainz.de
RI Oberfeld, Daniel/A-7997-2008
OI Oberfeld, Daniel/0000-0002-6710-3309
FU Deutsche Forschungsgemeinschaft (DFG) [OB 346/4-1]
FX This work was supported by a grant from Deutsche Forschungsgemeinschaft
(DFG; www.dfg.de) to Daniel Oberfeld (OB 346/4-1: Temporal aspects of
auditory intensity processing). The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the
manuscript. No additional external funding received. We are grateful to
Felicitas Klockner, Mahsa Mitchell and Leonie Schmalfuss for their
assistance in data collection.
CR Alain C, 2000, FRONT BIOSCI, V5, pD202, DOI 10.2741/Alain
[Anonymous], 1970, 318 IEC
BEKESY GEORG v., 1947, ACTA OTO LARYNGOL [STOCKHOLM], V35, P411, DOI 10.3109/00016484709123756
BERG K, 1976, J ACOUST SOC AM, V60, P173, DOI 10.1121/1.381060
Best V, 2008, P NATL ACAD SCI USA, V105, P13174, DOI 10.1073/pnas.0803718105
Breebaart J, 2001, J ACOUST SOC AM, V110, P1105, DOI 10.1121/1.1383299
Bregman AS., 1990, AUDITORY SCENE ANAL
Buss E, 2011, J ACOUST SOC AM, V129, P907, DOI 10.1121/1.3514528
CARLYON RP, 1993, J ACOUST SOC AM, V93, P2886, DOI 10.1121/1.405808
CHERRY EC, 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229
Cohen J., 1988, STAT POWER ANAL BEHA, V2nd
COLBURN HS, 1977, J ACOUST SOC AM, V61, P525, DOI 10.1121/1.381294
Dai P, 2011, SPEECH COMMUN, V53, P229, DOI 10.1016/j.specom.2010.09.004
Durlach NI, 2003, J ACOUST SOC AM, V113, P2984, DOI 10.1121/1.1570435
DURLACH NI, 1963, J ACOUST SOC AM, V35, P1206, DOI 10.1121/1.1918675
DURLACH NI, 1969, J ACOUST SOC AM, V46, P372, DOI 10.1121/1.1911699
Gunawan TS, 2010, SPEECH COMMUN, V52, P381, DOI 10.1016/j.specom.2009.12.006
HALL JW, 1992, PHILOS T ROY SOC B, V336, P331, DOI 10.1098/rstb.1992.0066
HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083
Hartmann WM, 2005, SIGNALS SOUND SENSAT
Hawley ML, 2004, J ACOUST SOC AM, V115, P833, DOI 10.1121/1.1639908
HIRSH IJ, 1948, J ACOUST SOC AM, V20, P536, DOI 10.1121/1.1906407
HOCHBERG Y, 1988, BIOMETRIKA, V75, P800, DOI 10.1093/biomet/75.4.800
Huynh H., 1976, J EDUC STATIST, V1, P69, DOI DOI 10.2307/1164736
Ihlefeld Antje, 2008, J Acoust Soc Am, V123, P4369, DOI 10.1121/1.2904826
JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495
Jones GL, 2008, J ACOUST SOC AM, V124, P3818, DOI 10.1121/1.2996336
Jones GL, 2011, J ACOUST SOC AM, V130, P1463, DOI 10.1121/1.3613928
Kahneman D., 1981, PERCEPTUAL ORG, P181
Kidd G, 2005, J ACOUST SOC AM, V118, P982, DOI 10.1121/1.1953167
Kohlrausch A., 1994, BINAURAL SPATIAL HEA, P169
Kubovy M, 2001, COGNITION, V80, P97, DOI 10.1016/S0010-0277(00)00155-4
Laback B, 2011, J ACOUST SOC AM, V129, P888, DOI 10.1121/1.3518781
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
LICKLIDER JCR, 1948, J ACOUST SOC AM, V20, P150, DOI 10.1121/1.1906358
Lovie P., 1986, NEW DEV STAT PSYCHOL, P45
Moore BCJ, 2002, ACTA ACUST UNITED AC, V88, P320
Moore BCJ, 2012, PHILOS T R SOC B, V367, P919, DOI 10.1098/rstb.2011.0355
Oberfeld D, 2009, J ACOUST SOC AM, V125, P294, DOI 10.1121/1.3021296
Oberfeld D, 2010, NEUROPHYSIOLOGICAL BASES OF AUDITORY PERCEPTION, P99, DOI 10.1007/978-1-4419-5686-6_10
Oberfeld D, 2008, J ACOUST SOC AM, V123, P1571, DOI 10.1121/1.2837284
Oberfeld D, 2007, J ACOUST SOC AM, V121, P2137, DOI 10.1121/1.2710433
PLACK CJ, 1992, J ACOUST SOC AM, V92, P3097, DOI 10.1121/1.404205
Plack CJ, 1996, J ACOUST SOC AM, V100, P1031, DOI 10.1121/1.416289
PLACK CJ, 1995, J ACOUST SOC AM, V97, P1141, DOI 10.1121/1.412227
Plack CJ, 2002, ACTA ACUST UNITED AC, V88, P348
Rennies J, 2011, J ACOUST SOC AM, V130, P2999, DOI 10.1121/1.3641368
Rhebergen KS, 2010, J ACOUST SOC AM, V127, P1570, DOI 10.1121/1.3291000
Savelsbergh G.J., 2004, TIME CONTACT, P355
Schlauch RS, 1999, J ACOUST SOC AM, V105, P822, DOI 10.1121/1.426271
Schlauch RS, 1997, J ACOUST SOC AM, V102, P461, DOI 10.1121/1.419610
Scholl BJ, 2001, COGNITION, V80, P1, DOI 10.1016/S0010-0277(00)00152-9
Shinn-Cunningham BG, 2008, TRENDS COGN SCI, V12, P182, DOI 10.1016/j.tics.2008.02.003
Stahn P., PLOS ONE IN PRESS
Stellmack MA, 2007, J ACOUST SOC AM, V122, P1328, DOI 10.1121/1.2756167
Wojtczak M, 2010, J ACOUST SOC AM, V128, P247, DOI 10.1121/1.3436566
YAMA MF, 1992, J ACOUST SOC AM, V91, P327, DOI 10.1121/1.402775
Yates Graeme K., 1995, P41, DOI 10.1016/B978-012505626-7/50004-2
YIN TCT, 1990, J NEUROPHYSIOL, V64, P465
YOST WA, 1982, HEARING RES, V7, P247, DOI 10.1016/0378-5955(82)90039-9
ZENG FG, 1992, J ACOUST SOC AM, V92, P782, DOI 10.1121/1.403947
ZENG FG, 1991, HEARING RES, V55, P223, DOI 10.1016/0378-5955(91)90107-K
Zeng FG, 1998, J ACOUST SOC AM, V103, P2021, DOI 10.1121/1.421373
Zhang PXY, 2006, J ACOUST SOC AM, V120, P3471, DOI 10.1121/1.2372456
NR 64
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2012
VL 294
IS 1-2
BP 1
EP 9
DI 10.1016/j.heares.2012.09.004
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 064PV
UT WOS:000313088800001
PM 23010335
ER
PT J
AU Burke, AJ
Hatano, M
Kelly, JB
AF Burke, Aaron J.
Hatano, Miyako
Kelly, Jack B.
TI Behavioral consequences of unilateral inferior colliculus lesions in the
rat
SO HEARING RESEARCH
LA English
DT Article
ID AUDITORY-CORTEX LESIONS; BINAURAL EVOKED-RESPONSES; SUPERIOR OLIVARY
COMPLEX; FERRET MUSTELA-PUTORIUS; LATERAL LEMNISCUS; SOUND LOCALIZATION;
DORSAL NUCLEUS; TONOTOPIC ORGANIZATION; ALBINO-RAT; ANATOMICAL
PLASTICITY
AB This study was carried out to determine the behavioral sensitivity to sound of rats with unilateral lesions of inferior colliculus (IC) located ipsilateral or contralateral to the projection pathway from one ear. Absolute thresholds for the detection of a broad-band noise burst were compared for rats with a profound conductive hearing loss in one ear and a lesion placed either ipsilateral or contralateral to the normally functioning ear. The rats were trained to make withdrawal responses to avoid a shock when they detected the presence of a noise burst. Sound pressure level was systematically lowered to obtain psychophysical curves from which absolute thresholds could be determined. Complete lesions of the contralateral IC resulted in substantial elevations in absolute threshold relative to normal whereas equivalent lesions of the ipsilateral IC produced relatively little elevation. In neither case did unilateral destruction of the IC produce a total inability to respond to sound. Contralateral IC lesions that included the dorsal nucleus of the lateral lemniscus (DNLL) produced a significantly greater elevation in behavioral thresholds than complete lesions limited to the IC. The results indicate a predominance of the contralateral over the ipsilateral pathway to IC for maintaining normal thresholds. They also indicate that other pathways that bypass the IC are likely involved in detecting the presence of a sound. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Burke, Aaron J.; Hatano, Miyako; Kelly, Jack B.] Carleton Univ, Dept Psychol, Lab Sensory Neurosci, Ottawa, ON K1S 5B6, Canada.
[Burke, Aaron J.; Hatano, Miyako; Kelly, Jack B.] Carleton Univ, Dept Neurosci, Lab Sensory Neurosci, Ottawa, ON K1S 5B6, Canada.
[Hatano, Miyako] Fukui Prefectural Hosp, Dept Otolaryngol Head & Neck Surg, Fukui, Japan.
RP Kelly, JB (reprint author), Carleton Univ, Dept Psychol, Lab Sensory Neurosci, Ottawa, ON K1S 5B6, Canada.
EM jkelly@connect.carleton.ca
FU Natural Sciences and Engineering Research Council of Canada; Hearing
Research Foundation of Canada
FX This research was supported by grants to JBK from the Natural Sciences
and Engineering Research Council of Canada and The Hearing Research
Foundation of Canada. The authors would like to thank Teresa Fortin for
her important contribution to the study.
CR Aitkin L., 1986, AUDITORY MIDBRAIN ST
AITKIN LM, 1984, NEUROSCI LETT, V44, P259, DOI 10.1016/0304-3940(84)90032-6
BEYERL BD, 1978, BRAIN RES, V145, P209, DOI 10.1016/0006-8993(78)90858-2
Burger RM, 2001, J NEUROSCI, V21, P4830
Cant NB, 2005, INFERIOR COLLICULUS, P115, DOI 10.1007/0-387-27083-3_3
Casseday JH, 2002, SPR HDB AUD, V15, P238
CASSEDAY JH, 1989, J COMP NEUROL, V287, P247, DOI 10.1002/cne.902870208
Champoux F, 2007, EUR J NEUROSCI, V25, P291, DOI 10.1111/j.1460-9568.2006.05260.x
CLOPTON BM, 1977, J NEUROPHYSIOL, V40, P1275
CLOPTON BM, 1973, BRAIN RES, V56, P355, DOI 10.1016/0006-8993(73)90352-1
COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204
Cooke JE, 2007, HEARING RES, V231, P90, DOI 10.1016/j.heares.2007.06.002
Doron NN, 2000, J COMP NEUROL, V425, P257
DRUGA R, 1984, PHYSIOL BOHEMOSLOV, V33, P31
Ehret G, 2005, INFERIOR COLLICULUS, P312, DOI 10.1007/0-387-27083-3_11
Ehret G., 1997, CENTRAL AUDITORY SYS, P259
FLAMMINO F, 1975, J ACOUST SOC AM, V57, P692, DOI 10.1121/1.380494
GALAMBOS R, 1961, AM J PHYSIOL, V200, P23
GLENDENNING KK, 1981, J COMP NEUROL, V197, P673, DOI 10.1002/cne.901970409
Heffner H. E., 1995, METHODS COMP PSYCHOA, P79
HEFFNER HE, 1989, J NEUROPHYSIOL, V62, P789
HEFFNER HE, 1986, J NEUROPHYSIOL, V55, P256
HEFFNER HE, 1990, J NEUROPHYSIOL, V64, P191
HUANG C, 1986, EXP BRAIN RES, V61, P506
Ito M, 2008, HEARING RES, V239, P92, DOI 10.1016/j.heares.2008.01.014
JANE JA, 1965, J COMP NEUROL, V125, P165, DOI 10.1002/cne.901250203
JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987
Kalinina T.E., 1967, NEUROSCI TRANSLAT, V1, P47, DOI 10.1007/BF01124643
KAVANAGH GL, 1986, BEHAV NEUROSCI, V100, P200, DOI 10.1037//0735-7044.100.2.200
KAVANAGH GL, 1988, J NEUROPHYSIOL, V60, P879
Kelly J. B., 2009, ASS RES OTOLARYNGOL, V32, P36
KELLY JB, 1994, J NEUROPHYSIOL, V71, P1078
Kelly JB, 2006, J COMP PSYCHOL, V120, P98, DOI 10.1037/0735-7036.120.2.98
Kelly JB, 2009, J COMP NEUROL, V512, P573, DOI 10.1002/cne.21929
Kelly JB, 1997, HEARING RES, V104, P112, DOI 10.1016/S0378-5955(96)00182-7
KELLY JB, 1980, J NEUROPHYSIOL, V44, P1161
KELLY JB, 1978, BRAIN RES, V145, P315, DOI 10.1016/0006-8993(78)90865-X
KELLY JB, 1991, HEARING RES, V56, P273, DOI 10.1016/0378-5955(91)90177-B
Kelly JB, 1998, HEARING RES, V116, P43, DOI 10.1016/S0378-5955(97)00195-0
Kelly JB, 2002, HEARING RES, V168, P35, DOI 10.1016/S0378-5955(02)00372-6
KELLY JB, 1985, J NEUROPHYSIOL, V53, P361
Kelly J.B., 1990, CEREBRAL CORTEX RAT, P381
Kidd SA, 1996, J NEUROSCI, V16, P7390
Knight J., 1968, HEARING MECHANISMS V, P207
Kryter KD, 1943, AM J PSYCHOL, V56, P501, DOI 10.2307/1417352
LeDoux J, 2003, CELL MOL NEUROBIOL, V23, P727, DOI 10.1023/A:1025048802629
Lee YL, 1996, J NEUROSCI, V16, P3775
LI L, 1992, J NEUROSCI, V12, P4530
Malmierca MS, 2008, J NEUROSCI, V28, P4767, DOI 10.1523/JNEUROSCI.0238-08.2008
MASTERTO.RB, 1968, J NEUROPHYSIOL, V31, P96
Meloni EG, 1999, PSYCHOPHARMACOLOGY, V144, P373, DOI 10.1007/s002130051020
Meloni EG, 2004, PSYCHOPHARMACOLOGY, V174, P228, DOI 10.1007/s00213-003-1728-z
Merchan M.A, 2004, RAT NERVOUS SYSTEM, P999
NIEDER PC, 1965, J NEUROPHYSIOL, V28, P1185
OKOYAMA S, 1995, HEARING RES, V88, P65, DOI 10.1016/0378-5955(95)00100-I
OKOYAMA S, 1995, HEARING RES, V88, P71, DOI 10.1016/0378-5955(95)00101-9
Oliver DL, 2005, INFERIOR COLLICULUS, P69, DOI 10.1007/0-387-27083-3_2
Palmer AR, 2005, INFERIOR COLLICULUS, P377, DOI 10.1007/0-387-27083-3_13
PAPEZ JW, 1929, ANAT REC, V42, P60
Paxinos G., 1998, RAT BRAIN STEREOTAXI
Pollak GD, 2012, HEARING RES, V288, P47, DOI 10.1016/j.heares.2012.01.011
Pollak GD, 2002, HEARING RES, V168, P60, DOI 10.1016/S0378-5955(02)00362-3
RAAB DH, 1946, AM J PSYCHOL, V59, P59, DOI 10.2307/1416999
Rees A, 2005, INFERIOR COLLICULUS, P346, DOI 10.1007/0-387-27083-3_12
SALLY SL, 1992, BRAIN RES, V572, P5, DOI 10.1016/0006-8993(92)90444-E
Schofield BR, 2005, INFERIOR COLLICULUS, P132, DOI 10.1007/0-387-27083-3_4
SHNEIDERMAN A, 1988, J COMP NEUROL, V276, P188, DOI 10.1002/cne.902760204
STARZL TE, 1951, J NEUROPHYSIOL, V14, P479
STROMING.NL, 1970, J COMP NEUROL, V138, P1, DOI 10.1002/cne.901380102
Syka J, 2002, HEARING RES, V172, P151, DOI 10.1016/S0378-5955(02)00578-6
Kelly JB, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P329, DOI 10.1007/978-1-4419-8712-9_31
van Adel BA, 1999, HEARING RES, V130, P115, DOI 10.1016/S0378-5955(98)00226-3
WENSTRUP JJ, 1988, J NEUROPHYSIOL, V60, P1384
WENSTRUP JJ, 1986, J NEUROSCI, V6, P962
Winer JA, 2005, INFERIOR COLLICULUS, P231, DOI 10.1007/0-387-27083-3_8
Winer JA, 1998, J COMP NEUROL, V400, P147
Winer JA, 2005, INFERIOR COLLICULUS, P1, DOI 10.1007/0-387-27083-3_1
Yin TCT, 2005, INFERIOR COLLICULUS, P426, DOI 10.1007/0-387-27083-3_15
Zhang DX, 1998, HEARING RES, V117, P1, DOI 10.1016/S0378-5955(97)00202-5
Zrull MC, 1999, ACTA OTO-LARYNGOL, V119, P326
NR 80
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2012
VL 294
IS 1-2
BP 10
EP 20
DI 10.1016/j.heares.2012.09.003
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 064PV
UT WOS:000313088800002
PM 23010333
ER
PT J
AU Guthrie, OW
Xu, H
AF Guthrie, O'neil W.
Xu, Helen
TI Noise exposure potentiates the subcellular distribution of nucleotide
excision repair proteins within spiral ganglion neurons
SO HEARING RESEARCH
LA English
DT Article
ID COMPLEMENTATION GROUP-A; INDUCED HEARING-LOSS; XERODERMA-PIGMENTOSUM;
DNA-REPAIR; XPA PROTEIN; INNER-EAR; NUCLEAR TRANSLOCATION;
MOLECULAR-MECHANISMS; PROCESSIVITY FACTOR; COCKAYNE-SYNDROME
AB Nucleotide excision repair (NER) is a defensive mechanism that limits genomic stress through genetically distinct cascades that employs Cockayne syndrome-A (CSA), the xeroderma pigmentosum-C (XPC) and the xeroderma pigmentosum-A (XPA) proteins. Noise exposure induces stress within the spiral ganglia. Therefore, it was posited that noise exposure would mobilize NER proteins within spiral ganglion neurons. Long-Evans rats were exposed to noise (105 dB SPL/4 h) and cochlear impairment was verified (pre-post DPOAE recordings) then the animals were euthanized via intravascular perfusion for temporal bone harvesting, immunohistochemistry and quantification of intracellular protein distribution. The results revealed that under normal (quiet) conditions the majority (similar to 60%) of spiral ganglion neurons do not express NER proteins, however, a subpopulation (similar to 40%) was NER positive. The overall number of reactive neurons stayed the same following noise exposure but there was significant (p < 0.01) subcellular redistribution of NER proteins. For instance, neurons within the apex exhibited significant (p < 0.01) nuclear accumulation of CSA while neurons within the base revealed significant (p < 0.05) nuclear accumulation of XPC. This spatial heterogeneity suggests a difference in genome defense repertoire between apical and basal coils of the cochlea. Furthermore, noise exposure depleted XPA from the nucleus regardless of location along the cochlear spiral. These findings provide a novel mechanism for interpreting noise-induced neuronal stress. Published by Elsevier B.V.
C1 [Guthrie, O'neil W.] Loma Linda Vet Affairs Med Ctr, Res Serv 151, Loma Linda, CA 92357 USA.
[Guthrie, O'neil W.; Xu, Helen] Loma Linda Univ, Med Ctr, Sch Med, Dept Otolaryngol & Head & Neck Surg, Loma Linda, CA 92354 USA.
RP Guthrie, OW (reprint author), Loma Linda Vet Affairs Med Ctr, Res Serv 151, 11201 Benton St, Loma Linda, CA 92357 USA.
EM O'neil.Guthrie@va.gov
FU Rehabilitation Research and Development Service of the Office of
Research and Development United States Department of Veterans Affairs
[C7600-W]
FX This work was supported by a CDA-2 (C7600-W) Award from the
Rehabilitation Research and Development Service of the Office of
Research and Development United States Department of Veterans Affairs.
The Loma Linda Veterans Affairs Medical Center provided facilities for
conducting the experiments.
CR Allen T. C., 1994, LAB METHODS HISTOTEC, P53
Araki M, 2001, J BIOL CHEM, V276, P18665, DOI 10.1074/jbc.M100855200
Balaban CD, 2005, VOLTA REV, V105, P335
Banfi B, 2004, J BIOL CHEM, V279, P46065, DOI 10.1074/jbc.M403046200
Bartels CL, 2007, BIOCHEM BIOPH RES CO, V356, P219, DOI 10.1016/j.bbrc.2007.02.125
Chung CY, 2005, HUM MOL GENET, V14, P1709, DOI 10.1093/hmg/ddi178
Costa RMA, 2003, BIOCHIMIE, V85, P1083, DOI 10.1016/j.biochi.2003.10.017
Dong L, 2010, CANCER RES, V70, P3547, DOI 10.1158/0008-5472.CAN-09-4596
Feng S, 1997, CARCINOGENESIS, V18, P279, DOI 10.1093/carcin/18.2.279
Fousteri M, 2008, CELL RES, V18, P73, DOI 10.1038/cr.2008.6
GANDOLFI A, 1984, ANN NEUROL, V15, P135, DOI 10.1002/ana.410150205
Gillet LCJ, 2006, CHEM REV, V106, P253, DOI 10.1021/cr040483f
Guthrie OW, 2008, HEARING RES, V239, P79, DOI 10.1016/j.heares.2008.01.013
Guthrie OW, 2008, ANTICANCER RES, V28, P2637
Guthrie OW, 2010, EAR HEARING, V31, P714, DOI 10.1097/AUD.0b013e3181ddf5a3
Guthrie OW, 2009, J CHEMOTHERAPY, V21, P74
Guthrie OW, 2011, BRAIN RES, V1407, P97, DOI 10.1016/j.brainres.2011.06.044
Guthrie OW, 2008, J MOL HISTOL, V39, P617, DOI 10.1007/s10735-008-9202-1
Hanawalt PC, 2008, NAT REV MOL CELL BIO, V9, P958, DOI 10.1038/nrm2549
Hey T, 2002, BIOCHEMISTRY-US, V41, P6583, DOI 10.1021/bi012202t
Ishiyama A, 2001, NEUROSCI LETT, V304, P93, DOI 10.1016/S0304-3940(01)01774-8
Ishiyama G, 2011, J NEUROSCI METH, V196, P76, DOI 10.1016/j.jneumeth.2011.01.001
Jaspers NGJ, 2007, AM J HUM GENET, V80, P457, DOI 10.1086/512486
JOHNSSON LG, 1974, ANN OTO RHINOL LARYN, V83, P294
Kang TH, 2011, NUCLEIC ACIDS RES, V39, P3176, DOI 10.1093/nar/gkq1318
KENYON GS, 1985, BRAIN, V108, P771, DOI 10.1093/brain/108.3.771
Kesseler KJ, 2007, J THEOR BIOL, V249, P361, DOI 10.1016/j.jtbi.2007.07.025
Khan MJ, 2000, EUR ARCH OTO-RHINO-L, V257, P177, DOI 10.1007/s004050050218
Kitahara T, 2005, NEUROSCIENCE, V135, P639, DOI 10.1016/j.neuroscience.2005.06.056
Kitahara T, 2004, HEARING RES, V196, P39, DOI 10.1016/j.heares.2004.02.002
Knudsen NO, 2009, DNA REPAIR, V8, P682, DOI 10.1016/j.dnarep.2009.03.005
Koberle B, 2008, MOL CARCINOGEN, V47, P580, DOI 10.1002/mc.20418
Koberle B, 2006, DNA REPAIR, V5, P641, DOI 10.1016/j.dnarep.2005.12.001
Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009
Kujawa SG, 2006, J NEUROSCI, V26, P2115, DOI 10.1523/JNEUROSCI.4985-05.2006
Lambert MW, 2000, BIOCHEM BIOPH RES CO, V271, P782, DOI 10.1006/bbrc.2000.2714
Lawner BE, 1997, INT J DEV NEUROSCI, V15, P601, DOI 10.1016/S0736-5748(96)00115-3
Leake PA, 2011, J COMP NEUROL, V519, P1526, DOI 10.1002/cne.22582
Le Prell CG, 2007, HEARING RES, V226, P22, DOI 10.1016/j.heares.2006.10.006
Li ZK, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028326
Lin HW, 2011, JARO-J ASSOC RES OTO, V12, P605, DOI 10.1007/s10162-011-0277-0
Maillard O, 2008, MUTAT RES-REV MUTAT, V658, P271, DOI 10.1016/j.mrrev.2008.01.007
Makary CA, 2011, JARO-J ASSOC RES OTO, V12, P711, DOI 10.1007/s10162-011-0283-2
Mattiasson G, 2003, NAT MED, V9, P1062, DOI 10.1038/nm903
Mattiasson G, 2003, J NEUROCHEM, V87, P532, DOI 10.1046/j.1471-4159.2003.02026.x
MCLEAN IW, 1974, J HISTOCHEM CYTOCHEM, V22, P1077
Mirkin N, 2008, NUCLEIC ACIDS RES, V36, P1792, DOI 10.1093/nar/gkn005
Morita EH, 1996, GENES CELLS, V1, P437, DOI 10.1046/j.1365-2443.1996.d01-252.x
Mouton PR, 2002, PRINCIPLES PRACTICES
Nitta M, 2000, NUCLEIC ACIDS RES, V28, P4212, DOI 10.1093/nar/28.21.4212
Nouspikel T, 2006, P NATL ACAD SCI USA, V103, P16188, DOI 10.1073/pnas.0607769103
Nouspikel T, 2002, DNA REPAIR, V1, P59, DOI 10.1016/S1568-7864(01)00005-2
Nouspikel T, 2003, BIOESSAYS, V25, P168, DOI 10.1002/bies.10227
Nouspikel T, 2000, MOL CELL BIOL, V20, P1562, DOI 10.1128/MCB.20.5.1562-1570.2000
Oh KS, 2006, HUM MUTAT, V27, P1092, DOI 10.1002/humu.20392
OTTE J, 1978, LARYNGOSCOPE, V88, P1231
Raams A., 2010, PLOS GENET, V6
ROBBINS JH, 1991, BRAIN, V114, P1335, DOI 10.1093/brain/114.3.1335
Schuknecht H. F., 1974, PATHOLOGY EAR
SHEMEN LJ, 1984, AM J OTOL, V5, P300
SPOENDLI.H, 1971, ACTA OTO-LARYNGOL, V71, P166, DOI 10.3109/00016487109125346
Sugawara M, 2005, JARO-J ASSOC RES OTO, V6, P136, DOI 10.1007/s10162-004-5050-1
SUZUKA Y, 1988, ACTA OTO-LARYNGOL, P1
Wu X, 2007, ONCOGENE, V26, P757, DOI 10.1038/sj.onc.1209828
Yang SZ, 2008, ANAT REC, V291, P775, DOI 10.1002/ar.20713
Yang ZG, 2006, BIOCHEMISTRY-US, V45, P15921, DOI 10.1021/bi061626q
Ying YLM, 2009, HEARING RES, V253, P116, DOI 10.1016/j.heares.2009.04.006
NR 67
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2012
VL 294
IS 1-2
BP 21
EP 30
DI 10.1016/j.heares.2012.09.001
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 064PV
UT WOS:000313088800003
PM 23022597
ER
PT J
AU del Campo, HNM
Measor, KR
Razak, KA
AF del Campo, H. N. Martin
Measor, K. R.
Razak, K. A.
TI Parvalbumin immunoreactivity in the auditory cortex of a mouse model of
presbycusis
SO HEARING RESEARCH
LA English
DT Article
ID FREQUENCY-MODULATED SWEEPS; AGE-RELATED-CHANGES; TEMPORAL PROCESSING
SPEED; PRIMARY VISUAL-CORTEX; INFERIOR COLLICULUS; NEURAL MECHANISMS;
CORTICAL CIRCUIT; C57BL/6J MICE; HEARING-LOSS; FAST-SPIKING
AB Age-related hearing loss (presbycusis) affects 35% of humans older than sixty-five years. Symptoms of presbycusis include impaired discrimination of sounds with fast temporal features, such as those present in speech. Such symptoms likely arise because of central auditory system plasticity, but the underlying components are incompletely characterized. The rapid spiking inhibitory interneurons that co-express the calcium binding protein Parvalbumin (PV) are involved in shaping neural responses to fast spectrotemporal modulations. Here, we examined cortical PV expression in the C57bl/6 (C57) mouse, a strain commonly studied as a presbycusis model. We examined if PV expression showed auditory cortical field- and layer-specific susceptibilities with age. The percentage of PV-expressing cells relative to Nissl-stained cells was counted in the anterior auditory field (AAF) and primary auditory cortex (A1) in three age groups: young (1-2 months), middle-aged (6-8 months) and old (14-20 months). There were significant declines in the percentage of cells expressing PV at a detectable level in layers I-IV of both A1 and AAF in the old mice compared to young mice. In layers V-VI, there was an increase in the percentage of PV-expressing cells in the AAF of the old group. There were no changes in percentage of PV-expressing cells in layers V-VI of A1. These data suggest cortical layer(s)- and field-specific susceptibility of PV+ cells with presbycusis. The results are consistent with the hypothesis that a decline in inhibitory neurotransmission, particularly in the superficial cortical layers, occurs with presbycusis. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Razak, K. A.] Univ Calif Riverside, Dept Psychol, Riverside, CA 92521 USA.
Univ Calif Riverside, Grad Neurosci Program, Riverside, CA 92521 USA.
RP Razak, KA (reprint author), Univ Calif Riverside, Dept Psychol, 900 Univ Ave, Riverside, CA 92521 USA.
EM khaleel@ucr.edu
FU Deafness Research Foundation
FX We thank the members of the Razak lab for reviewing this paper and the
Deafness Research Foundation for funding this study.
CR Anderson LA, 2009, BRAIN RES, V1252, P130, DOI 10.1016/j.brainres.2008.11.037
Atencio CA, 2009, P NATL ACAD SCI USA, V106, P21894, DOI 10.1073/pnas.0908383106
Atencio CA, 2008, J NEUROSCI, V28, P3897, DOI 10.1523/JNEUROSCI.5366-07.2008
Bartos M, 2007, NAT REV NEUROSCI, V8, P45, DOI 10.1038/nrn2044
Behrens MM, 2007, SCIENCE, V318, P1645, DOI 10.1126/science.1148045
BEST N, 1993, NEUROSCI LETT, V155, P1, DOI 10.1016/0304-3940(93)90660-D
Bu J, 2003, EXP NEUROL, V182, P220, DOI 10.1016/S0014-4886(03)00094-3
Buzsaki G, 2004, SCIENCE, V304, P1926, DOI 10.1126/science.1099745
Caspary DM, 2008, J EXP BIOL, V211, P1781, DOI 10.1242/jeb.013581
CAVINESS VS, 1975, J COMP NEUROL, V164, P247, DOI 10.1002/cne.901640207
Chiry O, 2003, EUR J NEUROSCI, V17, P397, DOI 10.1046/j.1460-9568.2003.02430.x
Clemo HR, 2003, J CHEM NEUROANAT, V26, P51, DOI 10.1016/S0891-0618(03)00039-5
Cruikshank SJ, 2001, NEUROSCIENCE, V105, P553, DOI 10.1016/S0306-4522(01)00226-3
Desgent S, 2010, NEUROSCIENCE, V171, P1326, DOI 10.1016/j.neuroscience.2010.10.016
de Villers-Sidani E, 2010, P NATL ACAD SCI USA, V107, P13900, DOI 10.1073/pnas.1007885107
Franklin K.B.J., 2008, MOUSE BRAIN STEREOTA, V3rd
Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3
Gates G.A., 2009, HEARING CARE ADULTS, P47
Gates GA, 2005, LANCET, V366, P1111, DOI 10.1016/S0140-6736(05)67423-5
Goldshmit Y, 2010, NEUROSCIENCE, V166, P886, DOI 10.1016/j.neuroscience.2009.12.039
GUNDERSEN HJG, 1988, APMIS, V96, P379
HENRY KR, 1980, AUDIOLOGY, V19, P369
Hughes LF, 2010, HEARING RES, V264, P79, DOI 10.1016/j.heares.2009.09.005
Hultcrantz M, 2006, ACTA OTO-LARYNGOL, V126, P10, DOI 10.1080/00016480510038617
HUNTER KP, 1987, HEARING RES, V30, P207, DOI 10.1016/0378-5955(87)90137-7
Idrizbegovic E, 2004, NEUROBIOL AGING, V25, P1085, DOI 10.1016/j.neuroimaging.2003.11.004
Jones EG, 2003, ANN NY ACAD SCI, V999, P218, DOI 10.1196/annals.1284.033
KRZYWKOWSKI P, 1995, NEUROBIOL AGING, V16, P29, DOI 10.1016/0197-4580(95)80005-C
Lee HJ, 2002, HEARING RES, V174, P64, DOI 10.1016/S0378-5955(02)00639-1
Linden JF, 2003, J NEUROPHYSIOL, V90, P2660, DOI 10.1152/jn.00751.2002
Ling LL, 2005, NEUROSCIENCE, V132, P1103, DOI 10.1016/j.neuroscience.2004.12.043
Lucas EK, 2010, J NEUROSCI, V30, P7227, DOI 10.1523/JNEUROSCI.0698-10.2010
MCMULLEN NT, 1994, J COMP NEUROL, V349, P493, DOI 10.1002/cne.903490402
Mendelson JR, 2001, HEARING RES, V158, P84, DOI 10.1016/S0378-5955(01)00294-5
Mendelson JR, 2004, HEARING RES, V191, P21, DOI 10.1016/j.heares.2004.01.010
MIETTINEN R, 1993, NEUROSCIENCE, V53, P367, DOI 10.1016/0306-4522(93)90201-P
Ohl FW, 1999, LEARN MEMORY, V6, P347
Ouda L, 2008, EXP GERONTOL, V43, P782, DOI 10.1016/j.exger.2008.04.001
Powell SB, 2012, NEUROPHARMACOLOGY, V62, P1322, DOI 10.1016/j.neuropharm.2011.01.049
Razak KA, 2009, J NEUROPHYSIOL, V102, P1366, DOI 10.1152/jn.00334.2009
Razak KA, 2006, J NEUROPHYSIOL, V96, P1303, DOI 10.1152/jn.00020.2006
Razak KA, 2012, J NEUROPHYSIOL, V107, P2202, DOI 10.1152/jn.00922.2011
Sloviter R S, 1991, Hippocampus, V1, P41, DOI 10.1002/hipo.450010106
Sohal VS, 2009, NATURE, V459, P698, DOI 10.1038/nature07991
Suta D, 2011, EXP GERONTOL, V46, P739, DOI 10.1016/j.exger.2011.05.004
Syka J, 2010, HEARING RES, V264, P70, DOI 10.1016/j.heares.2009.11.003
Trujillo M, 2011, J NEUROPHYSIOL, V106, P2825, DOI 10.1152/jn.00480.2011
Walton JP, 1998, J NEUROSCI, V18, P2764
WEINSTEIN BE, 1982, J SPEECH HEAR RES, V25, P593
Wetzel W, 1998, BEHAV BRAIN RES, V91, P29, DOI 10.1016/S0166-4328(97)00099-5
Willard FH, 1983, AUDITORY PSYCHOBIOLO, P201
WILLOTT JF, 1993, J COMP NEUROL, V329, P402, DOI 10.1002/cne.903290310
WREE A, 1983, ANAT EMBRYOL, V166, P333, DOI 10.1007/BF00305922
Wu GK, 2008, NEURON, V58, P132, DOI 10.1016/j.neuron.2008.01.035
Yuan KX, 2011, J NEUROSCI, V31, P13333, DOI 10.1523/JNEUROSCI.1000-11.2011
Zeng FG, 2005, P NATL ACAD SCI USA, V102, P2293, DOI 10.1073/pnas.0406460102
Zhang LI, 2003, NATURE, V424, P201, DOI 10.1038/nature01796
Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9
NR 58
TC 11
Z9 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2012
VL 294
IS 1-2
BP 31
EP 39
DI 10.1016/j.heares.2012.08.017
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 064PV
UT WOS:000313088800004
ER
PT J
AU Zhong, Y
Hu, YJ
Peng, W
Sun, Y
Yang, Y
Zhao, XY
Huang, X
Zhang, HL
Kong, WJ
AF Zhong, Yi
Hu, Yujuan
Peng, Wei
Sun, Yu
Yang, Yang
Zhao, Xueyan
Huang, Xiang
Zhang, Honglian
Kong, Weijia
TI Age-related decline of the cytochrome c oxidase subunit expression in
the auditory cortex of the mimetic aging rat model associated with the
common deletion
SO HEARING RESEARCH
LA English
DT Article
ID MITOCHONDRIAL-DNA DELETION; PRODUCT OTOACOUSTIC EMISSIONS; SENSORINEURAL
HEARING-LOSS; D-GALACTOSE; CONTRALATERAL SUPPRESSION;
DROSOPHILA-MELANOGASTER; C57BL/6J MICE; MOUSE MODEL; OXIDATIVE DAMAGE;
QUANTITATIVE PCR
AB The age-related deterioration in the central auditory system is well known to impair the abilities of sound localization and speech perception. However, the mechanisms involved in the age-related central auditory deficiency remain unclear. Previous studies have demonstrated that mitochondrial DNA (mtDNA) deletions accumulated with age in the auditory system. Also, a cytochrome c oxidase (CcO) deficiency has been proposed to be a causal factor in the age-related decline in mitochondrial respiratory activity. This study was designed to explore the changes of CcO activity and to investigate the possible relationship between the mtDNA common deletion (CD) and CcO activity as well as the mRNA expression of CcO subunits in the auditory cortex of D-galactose (D-gal)-induced mimetic aging rats at different ages. Moreover, we explored whether peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM) were involved in the changes of nuclear- and mitochondrial-encoded CcO subunits in the auditory cortex during aging. Our data demonstrated that D-gal-induced mimetic aging rats exhibited an accelerated accumulation of the CD and a gradual decline in the CcO activity in the auditory cortex during the aging process. The reduction in the CcO activity was correlated with the level of CD load in the auditory cortex. The mRNA expression of CcO subunit III was reduced significantly with age in the D-gal-induced mimetic aging rats. In contrast, the decline in the mRNA expression of subunits I and IV was relatively minor. Additionally, significant increases in the mRNA and protein levels of PGC-1 alpha, NRF-1 and TFAM were observed in the auditory cortex of D-gal-induced mimetic aging rats with aging. These findings suggested that the accelerated accumulation of the CD in the auditory cortex may induce a substantial decline in CcO subunit III and lead to a significant decline in the CcO activity progressively with age despite compensatory increases of PGC-1 alpha, NRF-1 and TFAM. Therefore, CcO may be a specific intramitochondrial site of age-related deterioration in the auditory cortex, and CcO subunit III might be a target in the development of presbycusis. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Zhong, Yi; Hu, Yujuan; Peng, Wei; Sun, Yu; Yang, Yang; Zhao, Xueyan; Kong, Weijia] Huazhong Univ Sci & Technol, Dept Otorhinolaryngol, Union Hosp, Tongji Med Coll, Wuhan 430022, Peoples R China.
[Zhang, Honglian] Huazhong Univ Sci & Technol, Dept Prevent Med & Publ Hlth, Union Hosp, Tongji Med Coll, Wuhan 430022, Peoples R China.
[Huang, Xiang; Kong, Weijia] Huazhong Univ Sci & Technol, Inst Otorhinolaryngol, Union Hosp, Tongji Med Coll, Wuhan 430022, Peoples R China.
[Kong, Weijia] Minist Educ, Key Lab Neurol Dis, Taipei, Taiwan.
RP Kong, WJ (reprint author), Huazhong Univ Sci & Technol, Dept Otorhinolaryngol, Union Hosp, Tongji Med Coll, 1277 Jiefang Ave, Wuhan 430022, Peoples R China.
EM zhl_bjk@whuh.com; entwjkong@yahoo.com.cn
FU Major State Basic Research Development Program of China (973 Program)
[2011CB504504]; National Nature Science Foundation of China [30730094,
81000409]; Natural Science Foundation of Hubei Province of China
[2010CDB08005]
FX This work was supported by grants from the Major State Basic Research
Development Program of China (973 Program) (No. 2011CB504504), the
National Nature Science Foundation of China (Nos. 30730094 and 81000409)
and the Natural Science Foundation of Hubei Province of China (No.
2010CDB08005).
CR Arnold S, 1997, EUR J BIOCHEM, V249, P350, DOI 10.1111/j.1432-1033.1997.t01-1-00350.x
Bai UM, 2001, HEARING RES, V154, P73, DOI 10.1016/S0378-5955(01)00221-0
Belevich I, 2006, NATURE, V440, P829, DOI 10.1038/nature04619
CAPALDI RA, 1990, ANNU REV BIOCHEM, V59, P569
Cassano P, 2004, ANN NY ACAD SCI, V1019, P269, DOI 10.1196/annals.1297.045
Chen B, 2010, BRAIN RES, V1344, P43, DOI 10.1016/j.brainres.2010.04.082
Chen B, 2010, MOL BIOL REP, V38, P3635
Chen GD, 2009, HEARING RES, V248, P39, DOI 10.1016/j.heares.2008.11.010
Cui X, 2004, BIOGERONTOLOGY, V5, P317, DOI 10.1007/s10522-004-2570-3
Cui X, 2006, J NEUROSCI RES, V84, P647, DOI 10.1002/jnr.20899
Derave W, 2005, EXP GERONTOL, V40, P562, DOI 10.1016/j.exger.2005.05.005
Dhar SS, 2008, J BIOL CHEM, V283, P3120, DOI 10.1074/jbc.M707587200
Ekstrand MI, 2004, HUM MOL GENET, V13, P935, DOI 10.1093/hmg/ddh109
ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H
Ferguson M, 2005, BIOCHEM J, V390, P501, DOI 10.1042/BJ20042130
Finck BN, 2006, J CLIN INVEST, V116, P615, DOI 10.1172/JCI27794
Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3
Frisina RD, 2006, HEARING RES, V216, P216, DOI 10.1016/j.heares.2006.02.003
Frisina RD, 2007, J ACOUST SOC AM, V121, pEL29, DOI 10.1121/1.2401226
Gates GA, 2005, LANCET, V366, P1111, DOI 10.1016/S0140-6736(05)67423-5
Geng TY, 2011, AM J PATHOL, V178, P1738, DOI 10.1016/j.ajpath.2011.01.005
Goss JR, 2011, MECH AGEING DEV, V132, P437, DOI [10.1016/j.mad.2011.04.010, 10.1016/j.mad,2011.04.010]
Gregg SQ, 2012, HEPATOLOGY, V55, P609, DOI 10.1002/hep.24713
Gruart A., FASEB J
Helling S, 2008, MOL CELL PROTEOMICS, V7, P1714, DOI 10.1074/mcp.M800137-MCP200
Ho SC, 2003, BIOGERONTOLOGY, V4, P15, DOI 10.1023/A:1022417102206
Hong O S, 2001, ORL Head Neck Nurs, V19, P7
Howarth A, 2006, POSTGRAD MED J, V82, P166, DOI 10.1136/pgmj.2005.039388
Huttemann M, 2012, BBA-BIOENERGETICS, V1817, P598, DOI 10.1016/j.bbabio.2011.07.001
Jacobson M, 2003, LARYNGOSCOPE, V113, P1707, DOI 10.1097/00005537-200310000-00009
Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X
Khalimonchuk Oleh, 2005, Mitochondrion, V5, P363, DOI 10.1016/j.mito.2005.08.002
Kim SH, 2002, AUDIOL NEURO-OTOL, V7, P348, DOI 10.1159/000066159
Kong WJ, 2006, BIOCHEM BIOPH RES CO, V344, P425, DOI 10.1016/j.bbrc.2006.03.060
Kong WJ, 2006, EXP GERONTOL, V41, P628, DOI 10.1016/j.exger.2006.04.008
Kumar A, 2011, J ASIAN NAT PROD RES, V13, P42, DOI 10.1080/10286020.2010.544253
Kumar A, 2010, FOOD CHEM TOXICOL, V48, P626, DOI 10.1016/j.fct.2009.11.043
Kusunoki T, 2004, AM J OTOLARYNG, V25, P313, DOI 10.1016/j.amjoto.2004.04.002
Lei M, 2008, BIOCHEM BIOPH RES CO, V369, P1082, DOI 10.1016/j.bbrc.2008.02.151
Lin RJ, 2012, LARYNGOSCOPE, V122, P624, DOI 10.1002/lary.22480
Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
Lu J, 2006, BEHAV BRAIN RES, V171, P251, DOI 10.1016/j.bbr.2006.03.043
Markaryan A, 2009, LARYNGOSCOPE, V119, P1184, DOI 10.1002/lary.20218
Meissner C, 2008, EXP GERONTOL, V43, P645, DOI 10.1016/j.exger.2008.03.004
Napiwotzki J, 1998, BIOL CHEM, V379, P335, DOI 10.1515/bchm.1998.379.3.335
Nicklas JA, 2004, ENVIRON MOL MUTAGEN, V44, P313, DOI 10.1002/em.20050
Nishiyama S, 2010, BIOCHEM BIOPH RES CO, V401, P26, DOI 10.1016/j.bbrc.2010.08.143
Piantadosi CA, 2006, J BIOL CHEM, V281, P324, DOI 10.1074/jbc.M508805200
Ren JC, 2010, BIOCHEM BIOPH RES CO, V401, P64, DOI 10.1016/j.bbrc.2010.09.009
Shoffner J.M., 2001, CURR PROTOC HUM GENE, V9, P1
Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315
Stiburek L, 2006, PHYSIOL RES, V55, pS27
Syka J, 2010, HEARING RES, V264, P70, DOI 10.1016/j.heares.2009.11.003
Tadros SF, 2007, NEUROBIOL AGING, V28, P1112, DOI 10.1016/j.neurobiolaging.2006.05.021
Thannickal VJ, 2000, AM J PHYSIOL-LUNG C, V279, pL1005
Uddin MN, 2010, J IMMUNOTOXICOL, V7, P165, DOI 10.3109/15476910903510806
Viveros MP, 2007, NEUROIMMUNOMODULAT, V14, P157, DOI 10.1159/000110640
Walton JP, 1997, J COMP PHYSIOL A, V181, P161, DOI 10.1007/s003590050103
Willott JF, 2009, HEARING RES, V252, P89, DOI 10.1016/j.heares.2008.12.002
Willott JF, 2004, J COMP NEUROL, V472, P358, DOI 10.1002/cne.20065
WILSON DF, 1974, ARCH BIOCHEM BIOPHYS, V163, P491, DOI 10.1016/0003-9861(74)90506-2
WILSON KS, 1990, ARCH BIOCHEM BIOPHYS, V282, P413, DOI 10.1016/0003-9861(90)90137-N
Wolf N, 2005, EXP EYE RES, V81, P276, DOI 10.1016/j.exer.2005.01.024
Wu SL, 1995, BIOCHEMISTRY-US, V34, P16298, DOI 10.1021/bi00050a009
Yu-Wai-Man P, 2010, INVEST OPHTH VIS SCI, V51, P3347, DOI 10.1167/iovs.09-4660
Zettel ML, 2007, JARO-J ASSOC RES OTO, V8, P280, DOI 10.1007/s10162-007-0075-x
Zhang XL, 2007, PHARMACOL BIOCHEM BE, V88, P64, DOI 10.1016/j.pbb.2007.07.004
Zhong Y, 2011, MUTAT RES-FUND MOL M, V712, P11, DOI 10.1016/j.mrfmmm.2011.03.013
Zhu XX, 2007, J COMP NEUROL, V503, P593, DOI 10.1002/cne.21402
NR 69
TC 6
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2012
VL 294
IS 1-2
BP 40
EP 48
DI 10.1016/j.heares.2012.09.006
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 064PV
UT WOS:000313088800005
PM 23022596
ER
PT J
AU Grose, JH
Mamo, SK
AF Grose, John H.
Mamo, Sara K.
TI Frequency modulation detection as a measure of temporal processing:
Age-related monaural and binaural effects
SO HEARING RESEARCH
LA English
DT Article
ID HEARING-IMPAIRED LISTENERS; FINE-STRUCTURE SENSITIVITY; INTERAURAL
PHASE; SPEECH RECEPTION; SELECTIVITY; NOISE; CUES; TONE
AB The detection of low-rate frequency modulation (FM) carried by a low-frequency tone has been employed as a means of assessing the fidelity of temporal fine structure coding. Detection of low-rate FM can be made more acute, relative to the monaural case, by the addition of a pure tone to the contralateral ear. This study examined whether FM detection in the 500-Hz region could be further improved by using a binaural stimulation mode where the modulator was antiphasic across the two ears. The study also sought to determine whether these dichotic FM conditions were beneficial in identifying the emergence of a temporal fine structure processing deficiency relatively early in the aging process. Young, mid-aged, and older listeners (n = 12 per group) were tested. The results demonstrated better FM acuity in the dichotic task irrespective of listener age. Dichotic FM detection also differentiated between age groups more definitively than diotic detection, especially in terms of distinguishing mid-aged from older listeners. In the group of older listeners, dichotic FM detection was weakly associated with absolute sensitivity to the carrier. In addition, this group failed to show a dichotic benefit in the presence of a marked asymmetry in sensation level across ears. The overall pattern of results suggests that dichotic FM measurements have advantages over monaural measurements for the purposes of assessing age-related temporal processing effects, although a marked asymmetry in absolute thresholds across ears could undermine these advantages. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Grose, John H.; Mamo, Sara K.] Univ N Carolina, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC 27599 USA.
RP Grose, JH (reprint author), Univ N Carolina, Dept Otolaryngol Head & Neck Surg, G190 Phys Off Bldg,CB 7070,170 Manning Dr, Chapel Hill, NC 27599 USA.
EM jhg@med.unc.edu
FU NIH NIDCD [R01DC001507]
FX This work was supported by NIH NIDCD R01DC001507. The helpful comments
of the Associate Editor, Brian C.J. Moore, and two anonymous reviewers
are gratefully acknowledged. The manuscript also benefited from
constructive discussions with Joseph W. Hall III and Emily Buss.
CR Batra R, 1997, J NEUROPHYSIOL, V78, P1237
Buss E, 2004, EAR HEARING, V25, P242, DOI 10.1097/01.AUD.0000130796.93809.09
Clinard CG, 2010, HEARING RES, V264, P48, DOI 10.1016/j.heares.2009.11.010
Dobreva MS, 2011, J NEUROPHYSIOL, V105, P2471, DOI 10.1152/jn.00951.2010
Ernst SMA, 2012, J ACOUST SOC AM, V131, P4722, DOI 10.1121/1.3699233
GREEN GGR, 1976, J PHYSIOL-LONDON, V260, pP49
Grose JH, 2010, EAR HEARING, V31, P755, DOI 10.1097/AUD.0b013e3181e627e7
He NJ, 2007, J ACOUST SOC AM, V122, P467, DOI 10.1121/1.2741208
Hopkins K, 2011, J ACOUST SOC AM, V130, P334, DOI 10.1121/1.3585848
Hopkins K, 2010, INT J AUDIOL, V49, P940, DOI 10.3109/14992027.2010.512613
Lacher-Fougere S, 2005, J ACOUST SOC AM, V118, P2519, DOI 10.1121/1.2032747
Lacher-Fougere S, 1998, AUDIOLOGY, V37, P109
LANGHANS A, 1992, J ACOUST SOC AM, V91, P3456, DOI 10.1121/1.402834
Moore BCJ, 2012, J ACOUST SOC AM, V131, P1003, DOI 10.1121/1.3672808
Moore BCJ, 1996, J ACOUST SOC AM, V100, P2320, DOI 10.1121/1.417941
Moore BCJ, 2002, J ACOUST SOC AM, V111, P327, DOI 10.1121/1.1424871
Moore BCJ, 2012, INT J AUDIOL, V51, P715, DOI 10.3109/14992027.2012.690079
Ross B, 2007, J NEUROSCI, V27, P11172, DOI 10.1523/JNEUROSCI.1813-07.2007
Strelcyk O, 2009, J ACOUST SOC AM, V125, P3328, DOI 10.1121/1.3097469
Witton C, 2000, J ACOUST SOC AM, V108, P1826, DOI 10.1121/1.1310195
NR 20
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2012
VL 294
IS 1-2
BP 49
EP 54
DI 10.1016/j.heares.2012.09.007
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 064PV
UT WOS:000313088800006
PM 23041187
ER
PT J
AU Bielefeld, EC
Hoglund, EM
Feth, LL
AF Bielefeld, Eric C.
Hoglund, Evelyn M.
Feth, Lawrence L.
TI Noise-induced changes in cochlear compression in the rat as indexed by
forward masking of the auditory brainstem response
SO HEARING RESEARCH
LA English
DT Article
ID BASILAR-MEMBRANE NONLINEARITY; TEMPORARY THRESHOLD SHIFTS; INDUCED
HEARING-LOSS; OUTER HAIR-CELLS; BEHAVIORAL MEASURE; ACOUSTIC TRAUMA;
EXPOSURE; DAMAGE; NERVE
AB The current study was undertaken to investigate changes in forward masking patterns using on-frequency and off-frequency maskers of 7 and 10 kHz probes in the Sprague Dawley rat. Off-frequency forward masking growth functions have been shown in humans to be non-linear, while on-frequency functions behave linearly. The non-linear nature of the off-frequency functions is attributable to active processing from the outer hair cells, and was therefore expected to be sensitive to noise-induced cochlear damage. For the study, nine Sprague Dawley rats' auditory brainstem responses (ABRs) were recorded with and without forward maskers. Forward masker-induced changes in latency and amplitude of the initial positive peak of the rats' auditory brainstem responses were assessed with both off-frequency and on-frequency maskers. The rats were then exposed to a noise designed to induce 20 40 dB of permanent threshold shift. Twenty-one days after the noise exposure, the forward masking growth functions were measured to assess noise-induced changes in the off-frequency and on-frequency forward masking patterns. Pre-exposure results showed compressive non-linear masking effects of the off-frequency conditions on both latency and amplitude of the auditory brainstem response. The noise rendered the off-frequency forward masking patterns more linear, consistent with human behavioral findings. On- and off-frequency forward masking growth functions were calculated, and they displayed patterns consistent with human behavioral functions, both prior to noise and after the noise exposure. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Bielefeld, Eric C.; Hoglund, Evelyn M.; Feth, Lawrence L.] Ohio State Univ, Dept Speech & Hearing Sci, Columbus, OH 43220 USA.
RP Bielefeld, EC (reprint author), Ohio State Univ, Dept Speech & Hearing Sci, 110 Pressey Hall,1070 Carmack Rd, Columbus, OH 43220 USA.
EM bielefeld.6@osu.edu
RI Bielefeld, Eric/D-2015-2012; Yin, Ming/E-4879-2012
FU Office of Naval Research [N000140911]
FX The authors thank Megan Kobel, Anna Kiener, Marie Neel, and Joseph
Hribar for their assistance with the development of the test conditions
and with data collection. Research was supported by a grant from the
Office of Naval Research #N000140911.
CR Ahmad M, 2003, HEARING RES, V175, P82, DOI 10.1016/S0378-5955(02)00713-X
BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153
Chen GD, 2009, HEARING RES, V254, P25, DOI 10.1016/j.heares.2009.04.005
Chen GD, 2003, HEARING RES, V177, P81, DOI 10.1016/S0378-5955(02)00802-X
Don M, 1998, J ACOUST SOC AM, V104, P2280, DOI 10.1121/1.423741
Duan M L, 1996, Audiol Neurootol, V1, P328
Duan M L, 1996, Audiol Neurootol, V1, P309
Duan M L, 1996, Audiol Neurootol, V1, P320
GORGA MP, 1983, J ACOUST SOC AM, V73, P256, DOI 10.1121/1.388858
HAMERNIK RP, 1984, HEARING RES, V13, P229, DOI 10.1016/0378-5955(84)90077-7
Hamernik R.P., 1986, BASIC APPL ASPECTS N, P69
Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3
Howgate S, 2011, HEARING RES, V277, P78, DOI 10.1016/j.heares.2011.03.009
JEWETT DL, 1971, BRAIN, V94, P681, DOI 10.1093/brain/94.4.681
Lopez-Poveda EA, 2008, J ACOUST SOC AM, V123, P1544, DOI 10.1121/1.2835418
MOLLER AR, 1988, ELECTROEN CLIN NEURO, V71, P198, DOI 10.1016/0168-5597(88)90005-6
MOLLER AR, 1981, BRAIN RES, V207, P184
National Institute for Occupational Safety and Health, 2001, NAT I OCC SAF HLTH F
National Institute on Deafness and Other Communication Disorders, 2008, QUICK STAT
NEELY ST, 1983, HEARING RES, V9, P123, DOI 10.1016/0378-5955(83)90022-9
Niskar AS, 2001, PEDIATRICS, V108, P40, DOI 10.1542/peds.108.1.40
Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5
Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846
OXENHAM AJ, 1995, J ACOUST SOC AM, V98, P1921, DOI 10.1121/1.413376
Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3666, DOI 10.1121/1.418327
Patuzzi R, 2002, AUDIOL NEURO-OTOL, V7, P17, DOI 10.1159/000046857
Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265
RYAN A, 1975, NATURE, V253, P44, DOI 10.1038/253044a0
WALTON JP, 1995, HEARING RES, V88, P19, DOI 10.1016/0378-5955(95)00093-J
YAMANE H, 1995, ACTA OTO-LARYNGOL, P87
YATES GK, 1990, HEARING RES, V45, P203, DOI 10.1016/0378-5955(90)90121-5
NR 31
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2012
VL 294
IS 1-2
BP 64
EP 72
DI 10.1016/j.heares.2012.10.007
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 064PV
UT WOS:000313088800008
PM 23123219
ER
PT J
AU Buss, E
Hall, JW
Grose, JH
AF Buss, Emily
Hall, Joseph W., III
Grose, John H.
TI Effects of masker envelope irregularities on tone detection in
narrowband and broadband noise maskers
SO HEARING RESEARCH
LA English
DT Article
ID COMODULATION MASKING RELEASE; AMPLITUDE-MODULATION; TEMPORAL
INTEGRATION; INFORMATIONAL MASKING; FREQUENCY; ADAPTATION; TIME;
DURATION; BANDWIDTH; MULTIPLE
AB Introducing coherent masker envelope modulation to frequency regions neighboring the signal frequency can reduce detection thresholds for a pure-tone signal. Verhey and Ernst (2009) reported that irregular masker modulation conferred greater benefit than regular modulation when the masker was broadband, but that there was no difference when the masker was narrowband. The present study evaluated two possible explanations for this result: one based on modulation adaptation and the other based on the introduction of relatively long-duration modulation minima in the irregular masker modulation condition. The first experiment replicated the results of Verhey and Ernst (2009), but also included conditions in which a 12.5-ms signal was presented in a 12.5-ms modulation minimum, which was exempted from envelope jitter. The second experiment used a continuous masker and suspended jitter during epochs associated with either a 12.5- or 87.5-ms signal. No benefit of masker envelope irregularity before or after the signal was observed in either experiment. These findings are inconsistent with an explanation based on modulation adaptation, implicating instead the introduction of relatively long-duration modulation minima in the large masking release obtained for a long-duration signal in an irregularly modulated masker. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Buss, Emily; Hall, Joseph W., III; Grose, John H.] Univ N Carolina, Sch Med, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC 27599 USA.
RP Buss, E (reprint author), Univ N Carolina, Sch Med, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC 27599 USA.
EM ebuss@med.unc.edu
FU NIH NIDCD [RO1-DC007391]
FX This work was supported by NIH NIDCD RO1-DC007391. Detailed feedback on
this report was provided by Brian Moore and two anonymous reviewers.
CR ANSI, 2010, S362010 ANSI
Bacon SP, 1997, J ACOUST SOC AM, V101, P1600, DOI 10.1121/1.418175
Bruckert L, 2006, J ACOUST SOC AM, V119, P3542, DOI 10.1121/1.2200696
Buss E, 2009, J ACOUST SOC AM, V126, P2455, DOI 10.1121/1.3224708
BUUS S, 1985, J ACOUST SOC AM, V78, P1958, DOI 10.1121/1.392652
Buus S, 1999, J ACOUST SOC AM, V105, P2466, DOI 10.1121/1.426859
Buus S, 1996, J ACOUST SOC AM, V99, P2288, DOI 10.1121/1.415416
CARLYON RP, 1989, HEARING RES, V42, P37, DOI 10.1016/0378-5955(89)90116-0
Dau T, 1997, J ACOUST SOC AM, V102, P2892, DOI 10.1121/1.420344
Dau T, 2005, AUDITORY SIGNAL PROCESSINGP: PHYSIOLOGY, PSYCHOACOUSTICS, AND MODELS, P335
Durlach NI, 2003, J ACOUST SOC AM, V114, P368, DOI 10.1121/1.1577562
GARNER WR, 1947, J EXP PSYCHOL, V37, P293, DOI 10.1037/h0055734
GERKEN GM, 1990, J ACOUST SOC AM, V88, P767, DOI 10.1121/1.399726
GROSE JH, 1989, J ACOUST SOC AM, V85, P1276, DOI 10.1121/1.397458
GROSE JH, 1993, J ACOUST SOC AM, V93, P2896, DOI 10.1121/1.405809
HICKS ML, 1995, J ACOUST SOC AM, V98, P2504, DOI 10.1121/1.413216
Kawashima T, 2009, J ACOUST SOC AM, V126, pEL123, DOI 10.1121/1.3230676
KAY RH, 1972, J PHYSIOL-LONDON, V225, P657
KIDD G, 1994, J ACOUST SOC AM, V95, P3475, DOI 10.1121/1.410023
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
MCFADDEN D, 1986, J ACOUST SOC AM, V80, P1658, DOI 10.1121/1.394277
MOORE BCJ, 1982, J ACOUST SOC AM, V71, P942, DOI 10.1121/1.387574
Moore BCJ, 2009, J ACOUST SOC AM, V125, P1075, DOI 10.1121/1.3056562
MOORE BCJ, 1988, J ACOUST SOC AM, V83, P1102, DOI 10.1121/1.396055
NEFF DL, 1986, J ACOUST SOC AM, V79, P1519, DOI 10.1121/1.393678
NEFF DL, 1995, J ACOUST SOC AM, V98, P1909, DOI 10.1121/1.414458
Richards VM, 1997, J ACOUST SOC AM, V102, P468, DOI 10.1121/1.419719
SCHOONEVELDT GP, 1989, J ACOUST SOC AM, V85, P273, DOI 10.1121/1.397734
TANSLEY BW, 1983, J ACOUST SOC AM, V74, P765, DOI 10.1121/1.389864
VANDENBRINK WAC, 1990, J ACOUST SOC AM, V88, P1703, DOI 10.1121/1.400245
Verhey JL, 2009, HEARING RES, V253, P97, DOI 10.1016/j.heares.2009.03.011
Verhey JL, 1999, J ACOUST SOC AM, V106, P2733, DOI 10.1121/1.428101
VIEMEISTER NF, 1991, J ACOUST SOC AM, V90, P858, DOI 10.1121/1.401953
Wojtczak M, 2005, J ACOUST SOC AM, V118, P3198, DOI 10.1121/1.2042970
Wojtczak M, 2003, J ACOUST SOC AM, V114, P991, DOI 10.1121/1.1593067
NR 35
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2012
VL 294
IS 1-2
BP 73
EP 81
DI 10.1016/j.heares.2012.10.006
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 064PV
UT WOS:000313088800009
PM 23117057
ER
PT J
AU Mahajan, Y
McArthur, G
AF Mahajan, Yatin
McArthur, Genevieve
TI Maturation of auditory event-related potentials across adolescence
SO HEARING RESEARCH
LA English
DT Article
ID LONG-LATENCY POTENTIALS; EVOKED-POTENTIALS; LANGUAGE IMPAIRMENT;
DEVELOPMENTAL-CHANGES; BRAIN MATURATION; INDIVIDUAL-DIFFERENCES;
COGNITIVE-DEVELOPMENT; LEARNING-PROBLEMS; NORMAL-CHILDREN; SPEECH
STIMULI
AB Adolescence is a time of great change in the brain in terms of structure and function. It is possible to track the development of neural function across adolescence using auditory event-related potentials (ERPs). We measured passive auditory ERPs to pure tones and consonant vowel (CV) syllables in 90 children and adolescents aged 10-18 years, as well as 10 adults. With one exception, the pattern of results were the same for tones and speech: Across adolescence, the P1 ERP peak decreased in size and latency, the N1 increased in size and decreased in latency, the P2 remained constant in size, and the N2 decreased in size but remained stable across adolescence. The exception was P2 latency, which increased for speech but remained stable for tones. Interesting step-like changes were observed for N1 latency for both tones and speech stimuli in 15- to 16-year-olds. These may stem from rapid hormonal changes that affect neurotransmitter activity of the ERP-generating neurons. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.
C1 [Mahajan, Yatin; McArthur, Genevieve] Macquarie Univ, ARC Ctr Excellence Cognit & Disorders, Dept Cognit Sci, N Ryde, NSW 2109, Australia.
RP Mahajan, Y (reprint author), Macquarie Univ, ARC Ctr Excellence Cognit & Disorders, Dept Cognit Sci, N Ryde, NSW 2109, Australia.
EM yatin.mahajan@mq.edu.au
FU Macquarie Centre for Cognitive Science; Macquarie University Research
Excellence (MQRES)
FX This study was funded by Macquarie Centre for Cognitive Science
post-graduate fund and supported by Macquarie University Research
Excellence (MQRES) scholarship.
CR Albrecht R, 2000, CLIN NEUROPHYSIOL, V111, P2268, DOI 10.1016/S1388-2457(00)00464-8
American Electroencephalographic Society, 1994, J CLIN NEUROPHYSIOL, V11, P111, DOI DOI 10.1097/00004691-199401000-00014
BENES FM, 1994, ARCH GEN PSYCHIAT, V51, P477
Bishop DVM, 2007, DEVELOPMENTAL SCI, V10, P576, DOI 10.1111/j.1467-7687.2007.00620.x
Bishop DVM, 2005, CORTEX, V41, P327, DOI 10.1016/S0010-9452(08)70270-3
Bishop DVM, 2004, DEVELOPMENTAL SCI, V7, pF11, DOI 10.1111/j.1467-7687.2004.00356.x
Bishop DVM, 2007, DEVELOPMENTAL SCI, V10, P565, DOI 10.1111/j.1467-7687.2007.00619.x
Ceponiene R, 2009, BRAIN LANG, V110, P107, DOI 10.1016/j.bandl.2009.04.003
COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155
Courchesne E, 1990, EVENT RELATED BRAIN, P210
Cunningham J, 2000, EAR HEARING, V21, P554, DOI 10.1097/00003446-200012000-00003
Eggermont JJ, 2003, ACTA OTO-LARYNGOL, V123, P249, DOI 10.1080/0036554021000028098
ENOKI H, 1993, COGNITIVE BRAIN RES, V1, P161, DOI 10.1016/0926-6410(93)90023-X
Fishman YI, 2000, J ACOUST SOC AM, V108, P247, DOI 10.1121/1.429461
FUCHIGAMI T, 1993, DEV MED CHILD NEUROL, V35, P230
Giedd JN, 1999, NAT NEUROSCI, V2, P861, DOI 10.1038/13158
Gilley PM, 2005, CLIN NEUROPHYSIOL, V116, P648, DOI 10.1016/j.clinph.2004.09.009
Gogtay N, 2004, P NATL ACAD SCI USA, V101, P8174, DOI 10.1073/pnas.0402680101
Gomot M., 1998, NEUROIMAGING CHILD N, P113
GOODIN DS, 1978, ELECTROEN CLIN NEURO, V44, P447, DOI 10.1016/0013-4694(78)90029-9
HUTTENLOCHER PR, 1979, BRAIN RES, V163, P195
JOHNSON R, 1989, PSYCHOPHYSIOLOGY, V26, P651, DOI 10.1111/j.1469-8986.1989.tb03167.x
Johnstone SJ, 1996, INT J PSYCHOPHYSIOL, V24, P223, DOI 10.1016/S0167-8760(96)00065-7
Kaufman A. S., 1990, KAUFMAN BRIEF INTELL
KENDRICK KM, 1979, SCIENCE, V204, P877, DOI 10.1126/science.220709
Key APF, 2005, DEV NEUROPSYCHOL, V27, P183, DOI 10.1207/s15326942dn2702_1
KNIGHT RT, 1988, ELECTROEN CLIN NEURO, V70, P499, DOI 10.1016/0013-4694(88)90148-4
KURTZBERG D, 1984, DEV MED CHILD NEUROL, V26, P466
LANG AH, 1995, EAR HEARING, V16, P118, DOI 10.1097/00003446-199502000-00009
LIEGEOISCHAUVEL C, 1994, ELECTROEN CLIN NEURO, V92, P204, DOI 10.1016/0168-5597(94)90064-7
Luck S.J., 2005, INTRO EVENT RELATED, P121
Mahajan Y, 2011, CLIN NEUROPHYSIOL, V122, P934, DOI 10.1016/j.clinph.2010.08.014
MARTIN L, 1988, ELECTROEN CLIN NEURO, V71, P375, DOI 10.1016/0168-5597(88)90040-8
McArthur G, 2009, DEVELOPMENTAL SCI, V12, P768, DOI 10.1111/j.1467-7687.2008.00804.x
McArthur G, 2002, NEUROREPORT, V13, P1079, DOI 10.1097/00001756-200206120-00021
McPherson D.L., 1996, LATE POTENTIALS AUDI, P66
Moore JK, 2001, JARO, V2, P297, DOI 10.1007/s101620010052
NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x
Neurosoft Inc, 1999, SCAN US GUID
Oades RD, 1997, PSYCHOPHYSIOLOGY, V34, P677, DOI 10.1111/j.1469-8986.1997.tb02143.x
Pang EW, 2000, CLIN NEUROPHYSIOL, V111, P388, DOI 10.1016/S1388-2457(99)00259-X
Paus T, 2005, TRENDS COGN SCI, V9, P60, DOI 10.1016/j.tics.2004.12.008
Ponton CW, 2000, CLIN NEUROPHYSIOL, V111, P220, DOI 10.1016/S1388-2457(99)00236-9
Ceponiene R, 2002, CLIN NEUROPHYSIOL, V113, P870, DOI 10.1016/S1388-2457(02)00078-0
SAR M, 1981, NATURE, V289, P500, DOI 10.1038/289500a0
SATTERFIELD JH, 1988, PSYCHOPHYSIOLOGY, V25, P591, DOI 10.1111/j.1469-8986.1988.tb01895.x
SATTERFIELD JH, 1977, ELECTROEN CLIN NEURO, V43, P43, DOI 10.1016/0013-4694(77)90193-6
Scott S.K., 2003, CEREB CORTEX, V13, P1362
SEMLITSCH HV, 1986, PSYCHOPHYSIOLOGY, V23, P695, DOI 10.1111/j.1469-8986.1986.tb00696.x
Sharma A, 1997, EVOKED POTENTIAL, V104, P540, DOI 10.1016/S0168-5597(97)00050-6
Sharma A, 2002, NEUROREPORT, V13, P1365, DOI 10.1097/00001756-200207190-00030
Sharma A, 2005, HEARING RES, V203, P134, DOI 10.1016/j.heares.2004.12.010
Sharma M, 2006, CLIN NEUROPHYSIOL, V117, P1130, DOI 10.1016/j.clinph.2006.02.001
Sinkkonen J., 2000, CLIN NEUROPHYSIOL, V110, P1388
Sussman E, 2008, HEARING RES, V236, P61, DOI 10.1016/j.heares.2007.12.001
TONNQUISTUHLEN I, 1995, ELECTROEN CLIN NEURO, V95, P34, DOI 10.1016/0013-4694(95)00044-Y
TonnquistUhlen I, 1996, EAR HEARING, V17, P314, DOI 10.1097/00003446-199608000-00003
Trainor LJ, 2008, DEVELOPMENTAL PSYCHOPHYSIOLOGY: THEORY, SYSTEMS, AND METHODS, P69
VERKINDT C, 1995, EVOKED POTENTIAL, V96, P143, DOI 10.1016/0168-5597(94)00242-7
Whitford TJ, 2007, HUM BRAIN MAPP, V28, P228, DOI 10.1002/hbm.20273
Wible B, 2002, CLIN NEUROPHYSIOL, V113, P485, DOI 10.1016/S1388-2457(02)00017-2
Wunderlich JL, 2006, HEARING RES, V212, P212, DOI 10.1016/j.heares.2005.11.008
NR 62
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2012
VL 294
IS 1-2
BP 82
EP 94
DI 10.1016/j.heares.2012.10.005
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 064PV
UT WOS:000313088800010
PM 23103362
ER
PT J
AU Leger, AC
Moore, BCJ
Lorenzi, C
AF Leger, Agnes C.
Moore, Brian C. J.
Lorenzi, Christian
TI Abnormal speech processing in frequency regions where absolute
thresholds are normal for listeners with high-frequency hearing loss
SO HEARING RESEARCH
LA English
DT Article
ID TEMPORAL FINE-STRUCTURE; IMPAIRED LISTENERS; STRUCTURE SENSITIVITY;
INTELLIGIBILITY INDEX; RECEPTION THRESHOLD; FLUCTUATING NOISE; AGE;
RECOGNITION; SENTENCES; PERCEPTION
AB The ability to understand speech in quiet and in a steady noise was measured for 26 listeners with audiometric thresholds below 30 dB HL for frequencies up to 3 kHz and covering a wide range (0-80 dB HL) between 3 and 8 kHz. The stimulus components were restricted to the low (<= 1.5 kHz) and middle (1-3 kHz) frequency regions, where audiometric thresholds were classified clinically as normal or near-normal. Sensitivity to inter-aural phase was measured at 0.5 and 0.75 kHz and otoacoustic emission and brainstem responses were measured. For each frequency region, about half of the listeners with high-frequency hearing loss showed extremely poor intelligibility for speech in quiet and in noise. These deficits could not be accounted for by reduced audibility. Scores for speech in quiet were correlated with age, audiometric thresholds at low and at high frequencies, the amplitude of transient otoacoustic emissions in the mid-frequency region, but not with inter-aural phase discrimination. The results suggest that large speech deficits may be observed in regions of normal or near-normal hearing for hearing-impaired listeners. They also suggest that speech deficits may result from suprathreshold auditory deficits caused by outer hair-cell damage and by factors associated with aging. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Leger, Agnes C.; Lorenzi, Christian] Ecole Normale Super, Equipe Audit, Inst Etud Cognit, F-75005 Paris, France.
[Leger, Agnes C.; Lorenzi, Christian] Univ Paris 05, Lab Psychol Percept, Paris, France.
[Leger, Agnes C.; Lorenzi, Christian] CNRS, UMR 8158, Paris, France.
[Moore, Brian C. J.] Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England.
RP Leger, AC (reprint author), Ecole Normale Super, Equipe Audit, Inst Etud Cognit, 29 Rue Ulm, F-75005 Paris, France.
EM agnes.leger@ens.fr
RI Moore, Brian/I-5541-2012; Lorenzi, Christian/F-5310-2012
FU Royal Society [2009R3]; CIFRE grant from ANRT; Neurelec; MRC (UK)
[G0701870]; HEARFIN Project from ANR
FX This work was supported by a grant from the Royal Society (International
joint Project, 2009R3). A.C. Leger was supported by a CIFRE grant from
ANRT and Neurelec. B.C.J. Moore was supported by the MRC (UK, grant
number G0701870). C. Lorenzi was supported by a grant (HEARFIN Project)
from ANR.
CR Badri R, 2011, J ACOUST SOC AM, V129, P852, DOI 10.1121/1.3523476
BAER T, 1994, J ACOUST SOC AM, V95, P2277, DOI 10.1121/1.408640
BAER T, 1993, J ACOUST SOC AM, V94, P1229, DOI 10.1121/1.408176
Dau T., 2009, J ACOUST SOC AM, V125, P3328
Desloge JG, 2010, J ACOUST SOC AM, V128, P342, DOI 10.1121/1.3436522
Dubno JR, 2002, J ACOUST SOC AM, V111, P2897, DOI 10.1121/1.1480421
Fullgrabe C., 2012, INT J AUDIOL, V51, P245
Goodman A., 1965, ASHA, V7
Grose JH, 2009, EAR HEARING, V30, P568, DOI 10.1097/AUD.0b013e3181ac128f
Grose JH, 2010, EAR HEARING, V31, P755, DOI 10.1097/AUD.0b013e3181e627e7
Hopkins K, 2011, J ACOUST SOC AM, V130, P334, DOI 10.1121/1.3585848
Hopkins K, 2010, INT J AUDIOL, V49, P940, DOI 10.3109/14992027.2010.512613
Horwitz AR, 2002, J ACOUST SOC AM, V111, P409, DOI 10.1121/1.1427357
HUMES LE, 1987, J ACOUST SOC AM, V81, P765, DOI 10.1121/1.394845
Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009
Leger AC, 2012, J ACOUST SOC AM, V131, P4114, DOI 10.1121/1.3699265
Leger AC, 2012, J ACOUST SOC AM, V131, P1502, DOI 10.1121/1.3665993
Lorenzi C, 2009, J ACOUST SOC AM, V125, P27, DOI 10.1121/1.2939125
Moore B. C. J., 2007, COCHLEAR HEARING LOS
Moore BCJ, 2012, J ACOUST SOC AM, V131, P1003, DOI 10.1121/1.3672808
Moore BCJ, 1998, BRIT J AUDIOL, V32, P317, DOI 10.3109/03005364000000083
Moore BCJ, 2012, INT J AUDIOL, V51, P715, DOI 10.3109/14992027.2012.690079
Neher T, 2012, J ACOUST SOC AM, V131, P2561, DOI 10.1121/1.3689850
Papakonstantinou A, 2011, HEARING RES, V280, P30, DOI 10.1016/j.heares.2011.02.005
Rhebergen KS, 2006, J ACOUST SOC AM, V120, P3988, DOI 10.1121/1.2358008
Rhebergen KS, 2005, J ACOUST SOC AM, V117, P2181, DOI 10.1121/1.1861713
Santurette S, 2007, HEARING RES, V223, P29, DOI 10.1016/j.heares.2006.09.013
Schaette R, 2011, J NEUROSCI, V31, P13452, DOI 10.1523/JNEUROSCI.2156-11.2011
Schmiedt RA, 2010, SPRINGER HANDB AUDIT, V34, P9, DOI 10.1007/978-1-4419-0993-0_2
STARR A, 1991, BRAIN, V114, P1157, DOI 10.1093/brain/114.3.1157
STUDEBAKER GA, 1985, J SPEECH HEAR RES, V28, P455
Warren RM, 2004, J ACOUST SOC AM, V115, P1292, DOI 10.1121/1.1646404
Zeng FG, 2006, J SPEECH LANG HEAR R, V49, P367, DOI 10.1044/1092-4388(2006/029)
Zeng FG, 2005, J NEUROPHYSIOL, V93, P3050, DOI 10.1152/jn.00985.2004
ZUREK PM, 1987, J ACOUST SOC AM, V82, P1548, DOI 10.1121/1.395145
NR 35
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2012
VL 294
IS 1-2
BP 95
EP 103
DI 10.1016/j.heares.2012.10.002
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 064PV
UT WOS:000313088800011
PM 23104012
ER
PT J
AU Dagnino-Subiabre, A
Perez, MA
Terreros, G
Cheng, MY
House, P
Sapolsky, R
AF Dagnino-Subiabre, Alexies
Angel Perez, Miguel
Terreros, Gonzalo
Cheng, Michelle Y.
House, Patrick
Sapolsky, Robert
TI Corticosterone treatment impairs auditory fear learning and the
dendritic morphology of the rat inferior colliculus
SO HEARING RESEARCH
LA English
DT Article
ID CHRONIC MILD STRESS; MEDIAL GENICULATE-NUCLEUS; CELL-ADHESION MOLECULES;
GLUCOCORTICOID-RECEPTORS; CONDITIONED FEAR; PYRAMIDAL NEURONS; INDUCED
ATROPHY; PINEAL-GLAND; AMYGDALA; EXPRESSION
AB Stress leads to secretion of the adrenal steroid hormone corticosterone (CORT). The aim of this study was to determine the effects of chronic CORT administration on auditory and visual fear conditioning. Male Sprague-Dawley rats received CORT (400 mg/ml) in their drinking water for 10 consecutive days; this treatment induces stress levels of serum CORT. CORT impaired fear conditioning (F-(1,F-28) = 11.52, p < 0.01) and extinction (F-(1,F-28) = 4.86, p < 0.05) of auditory fear learning, but did not affect visual fear conditioning. In addition, we analyzed the CORT effects on the neuronal morphology of the inferior colliculus (flat neurons, auditory mesencephalon, a key brain area for auditory processing) and superior colliculus (wide-field neurons, related to visual processing) by Golgi stain. CORT decreased dendritic arborization of inferior colliculus neurons by approximately 50%, but did not affect superior colliculus neurons. Thus, CORT had more deleterious effects on the auditory fear processing than the visual system in the brain. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Dagnino-Subiabre, Alexies; Angel Perez, Miguel; Terreros, Gonzalo] Univ Valparaiso, Lab Behav Neurobiol, Ctr Neurobiol & Brain Plast, Dept Physiol,Fac Sci, Valparaiso, Chile.
[Cheng, Michelle Y.; House, Patrick; Sapolsky, Robert] Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA.
[Cheng, Michelle Y.; House, Patrick; Sapolsky, Robert] Stanford Univ, Dept Neurol & Neurol Sci, Stanford, CA 94305 USA.
[Cheng, Michelle Y.; House, Patrick; Sapolsky, Robert] Stanford Univ, Dept Neurosurg, Stanford, CA 94305 USA.
[Dagnino-Subiabre, Alexies; Angel Perez, Miguel] Univ Catolica Norte, Fac Med, Coquimbo, Chile.
RP Dagnino-Subiabre, A (reprint author), Univ Valparaiso, Lab Neurobiol & Conducta, Ctr Neurobiol & Plasticidad Cerebral, Dept Fisiol,Fac Ciencias, Gran Bretana 1111, Valparaiso, Chile.
EM alexies.dagnino@uv.cl
FU FONDECYT [1100413]; Anillo de Ciencia y Tecnologia [ADI-09]
FX This work was supported by FONDECYT No 1100413 and Anillo de Ciencia y
Tecnologia No ADI-09 grants (Dagnino-Subiabre).
CR Aboitiz F, 2003, BEHAV BRAIN SCI, V26, P535, DOI 10.1017/S0140525X03000128
Ampuero E, 2010, NEUROSCIENCE, V169, P98, DOI 10.1016/j.neuroscience.2010.04.035
Baran SE, 2009, NEUROBIOL LEARN MEM, V91, P321, DOI 10.1016/j.nlm.2008.11.005
Bose M, 2010, SYNAPSE, V64, P97, DOI 10.1002/syn.20710
Bouton ME, 2008, J EXP PSYCHOL ANIM B, V34, P223, DOI 10.1037/0097-7403.34.2.223
Braun AA, 2011, PHARMACOL BIOCHEM BE, V97, P406, DOI 10.1016/j.pbb.2010.09.013
Burghardt NS, 2007, BIOL PSYCHIAT, V62, P1111, DOI 10.1016/j.biopsych.2006.11.023
Choi JS, 2010, LEARN MEMORY, V17, P139, DOI 10.1101/lm.1676610
Conrad CD, 2004, NEUROBIOL LEARN MEM, V81, P185, DOI 10.1016/j.nlm.2004.01.002
Cordero MI, 1998, BEHAV NEUROSCI, V112, P885, DOI 10.1037/0735-7044.112.4.885
Dagnino-Subiabre A, 2005, NEUROSCIENCE, V135, P1067, DOI 10.1016/j.neuroscience.2005.07.032
Dagnino-Subiabre A, 2009, BEHAV BRAIN RES, V203, P88, DOI 10.1016/j.bbr.2009.04.024
Dagnino-Subiabre A, 2006, J NEUROCHEM, V97, P1279, DOI 10.1111/j.1471-4159.2006.03787.x
Dagnino-Subiabre A, 2006, BRAIN RES, V1086, P27, DOI 10.1016/j.brainres.2006.02.118
De Kloet ER, 1998, ENDOCR REV, V19, P269, DOI 10.1210/er.19.3.269
Doron NN, 1999, J COMP NEUROL, V412, P383
Gray TS, 1996, CRIT REV NEUROBIOL, V10, P155
Grippo AJ, 2005, PHYSIOL BEHAV, V84, P697, DOI 10.1016/j.physbeh.2005.02.011
Herman JP, 1996, CRIT REV NEUROBIOL, V10, P371
Herman JP, 2003, FRONT NEUROENDOCRIN, V24, P151, DOI 10.1016/j.yfrne.2003.07.001
Hilbig H, 2000, BRAIN RES BULL, V51, P255, DOI 10.1016/S0361-9230(99)00230-0
Hu H, 2010, NEUROSCIENCE, V169, P171, DOI 10.1016/j.neuroscience.2010.04.057
Jadavji NM, 2011, NEUROENDOCRINOLOGY, V94, P278, DOI 10.1159/000329988
Joels M, 2001, J NEUROENDOCRINOL, V13, P657, DOI 10.1046/j.1365-2826.2001.00688.x
Kiss JZ, 2001, BRAIN RES REV, V36, P175, DOI 10.1016/S0165-0173(01)00093-5
Kraus KS, 2012, HEARING RES, V288, P34, DOI 10.1016/j.heares.2012.02.009
Kumar G, 2007, PSYCHONEUROENDOCRINO, V32, P834, DOI 10.1016/j.psyneuen.2007.05.011
Lakshminarasimhan H, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0030481
LEDOUX JE, 1990, J NEUROSCI, V10, P1043
LEDOUX JE, 1984, J NEUROSCI, V4, P683
Lin CH, 2009, J NEUROCHEM, V111, P777, DOI 10.1111/j.1471-4159.2009.06364.x
Magarinos AM, 1998, BRAIN RES, V809, P314, DOI 10.1016/S0006-8993(98)00882-8
MAGARINOS AM, 1995, NEUROSCIENCE, V69, P83, DOI 10.1016/0306-4522(95)00256-I
MALMIERCA MS, 1993, J COMP NEUROL, V333, P1, DOI 10.1002/cne.903330102
MALMIERCA MS, 1995, ANAT EMBRYOL, V191, P343, DOI 10.1007/BF00534687
Malmierca MS, 2011, HEARING RES, V274, P13, DOI 10.1016/j.heares.2010.06.011
Maren S, 2001, J NEUROSCI, V21, part. no.
Marsh RA, 2002, J NEUROSCI, V22, P10449
Mazurek B, 2010, HEARING RES, V259, P55, DOI 10.1016/j.heares.2009.10.006
McDonald AJ, 1998, PROG NEUROBIOL, V55, P257, DOI 10.1016/S0301-0082(98)00003-3
McEwen B.S., 2004, EUR NEUROPSYCHOPHARM, V5, P497
McEwen BS, 2007, PHYSIOL REV, V87, P873, DOI 10.1152/physrev.00041.2006
McLaughin KJ, 2010, HIPPOCAMPUS, V20, P768, DOI 10.1002/hipo.20678
Meltser I, 2011, HEARING RES, V281, P47, DOI 10.1016/j.heares.2011.06.003
Meltser I, 2009, J NEUROTRAUM, V26, P1835, DOI 10.1089/neu.2008.0874
Miracle AD, 2006, NEUROBIOL LEARN MEM, V85, P213, DOI 10.1016/j.nlm.2005.10.005
Mitra R, 2008, P NATL ACAD SCI USA, V105, P5573, DOI 10.1073/pnas.0705615105
Monfils MH, 2009, SCIENCE, V324, P951, DOI 10.1126/science.1167975
Mueller D, 2009, PSYCHOPHARMACOLOGY, V204, P599, DOI 10.1007/s00213-009-1491-x
Pare D, 2004, J NEUROPHYSIOL, V92, P1, DOI 10.1152/jn.00153.2004
Peruzzi D, 2000, NEUROSCIENCE, V101, P403, DOI 10.1016/S0306-4522(00)00382-1
Poremba A, 2001, J NEUROSCI, V21, P270
Reichardt LF, 2006, PHILOS T R SOC B, V361, P1545, DOI 10.1098/rstb.2006.1894
Sandi C, 2004, NAT REV NEUROSCI, V5, P917, DOI 10.1038/nrn1555
Selye H, 1936, NATURE, V138, P32, DOI 10.1038/138032a0
Shi CJ, 2001, J NEUROSCI, V21, P9844
Simoens VL, 2007, PSYCHOPHYSIOLOGY, V44, P30, DOI 10.1111/j.1469-8986.2006.00476.x
Smith Sean M, 2006, Dialogues Clin Neurosci, V8, P383
Stavreva DA, 2009, NAT CELL BIOL, V11, P1093, DOI 10.1038/ncb1922
Sun T, 2010, PHARMACOL BIOCHEM BE, V95, P298, DOI 10.1016/j.pbb.2010.02.005
Tahera Y, 2006, J NEUROSCI RES, V83, P1066, DOI 10.1002/jnr.20795
TENCATE WJF, 1992, HEARING RES, V60, P199, DOI 10.1016/0378-5955(92)90021-E
TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865
Ushijima K, 2006, BEHAV BRAIN RES, V173, P326, DOI 10.1016/j.bbr.2006.06.038
Vuong SM, 2010, BEHAV BRAIN RES, V208, P278, DOI 10.1016/j.bbr.2009.11.036
Vyas A, 2002, J NEUROSCI, V22, P6810
WATANABE Y, 1992, HIPPOCAMPUS, V2, P431, DOI 10.1002/hipo.450020410
Wellman CL, 2001, J NEUROBIOL, V49, P245, DOI 10.1002/neu.1079
ZUO J, 1995, HEARING RES, V87, P220, DOI 10.1016/0378-5955(95)00092-I
NR 69
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2012
VL 294
IS 1-2
BP 104
EP 113
DI 10.1016/j.heares.2012.09.008
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 064PV
UT WOS:000313088800012
PM 23088831
ER
PT J
AU Francart, T
McDermott, HJ
AF Francart, Tom
McDermott, Hugh J.
TI Development of a loudness normalisation strategy for combined cochlear
implant and acoustic stimulation
SO HEARING RESEARCH
LA English
DT Article
ID HEARING-LOSS; MODEL; PERCEPTION; SENSITIVITY; GAIN; AID
AB Users of a cochlear implant together with a hearing aid in the non-implanted ear currently use devices that were developed separately and are often fitted separately. This results in very different growth of loudness with level in the two ears, potentially leading to decreased wearing comfort and suboptimal perception of interaural level differences. A loudness equalisation strategy, named 'SCORE bimodal', is proposed. It equalises loudness growth for the two modalities using existing models of loudness for acoustic and electric stimulation, and is suitable for implementation in wearable devices. Loudness balancing experiments were performed with six bimodal listeners to validate the strategy. In a first set of experiments, the function of each loudness model used was validated by balancing the loudness of four harmonic complexes of different bandwidths, ranging from 200 Hz to 1000 Hz, separately for each ear. Both the electric and acoustic loudness models predicted the data well. In a second set of experiments, binaural balancing was done for the same stimuli. It was found that SCORE significantly improved binaural balance. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Francart, Tom; McDermott, Hugh J.] Bion Inst, Melbourne, Vic 3002, Australia.
[Francart, Tom] Katholieke Univ Leuven, ExpORL, Dept Neurosci, B-3000 Louvain, Belgium.
[McDermott, Hugh J.] Univ Melbourne, Melbourne, Vic 3010, Australia.
RP Francart, T (reprint author), Katholieke Univ Leuven, ExpORL, Dept Neurosci, Herestr 49,Bus 721, B-3000 Louvain, Belgium.
EM tom.francart@med.kuleuven.be; hmcdermott@bionicsinstitute.org
FU Fund for Scientific Research of the Flemish Government; Marie Curie
International Outgoing Fellowship of the European Commission
[PIOF-GA-2009-252730]; Victorian Government through its Operational
Infrastructure Support Program
FX We are grateful to our subjects, who inexhaustibly and cheerfully
participated in numerous test sessions. We thank Ruth English for her
help with the psychophysical testing, and Cochlear Ltd for financial
support. Hamish Innes-Brown provided valuable feedback on an earlier
version of the manuscript. We thank Brian Moore and one anonymous
reviewer for their constructive remarks to improve the manuscript. Tom
Francart was sponsored by a Post Doctoral Fellowship of the Fund for
Scientific Research of the Flemish Government and a Marie Curie
International Outgoing Fellowship of the European Commission, grant
agreement number PIOF-GA-2009-252730. The Bionics Institute acknowledges
the support it receives from the Victorian Government through its
Operational Infrastructure Support Program.
CR Akeroyd M, 2006, INT J AUDIOL, V45, P25, DOI 10.1080/14992020600782626
ANSI, 1997, S35 ANSI
Bregman AS., 1990, AUDITORY SCENE ANAL
BYRNE D, 1990, EAR HEARING, V11, P40, DOI 10.1097/00003446-199002000-00009
Ching T Y C, 2007, Trends Amplif, V11, P161, DOI 10.1177/1084713807304357
Ching TYC, 2004, EAR HEARING, V25, P9, DOI 10.1097/01.AUD.0000111261.84611.C8
Dillon H., 2001, HEARING AIDS
Francart T, 2008, J NEUROSCI METH, V172, P283, DOI 10.1016/j.jneumeth.2008.04.020
Francart T, 2011, AUDIOL NEURO-OTOL, V16, P82, DOI 10.1159/000313329
Francart T., PLOS ONE IN PRESS
Francart T, 2009, JARO-J ASSOC RES OTO, V10, P131, DOI 10.1007/s10162-008-0145-8
Francart T, 2008, AUDIOL NEURO-OTOL, V13, P309, DOI 10.1159/000124279
Glasberg BR, 2002, J AUDIO ENG SOC, V50, P331
JESTEADT W, 1980, PERCEPT PSYCHOPHYS, V28, P85, DOI 10.3758/BF03204321
Launer S, 2003, INT J AUDIOL, V42, P262, DOI 10.3109/14992020309078345
McDermott H, 2009, J NEURAL ENG, V6, DOI 10.1088/1741-2560/6/6/065007
MCDERMOTT HJ, 1992, J ACOUST SOC AM, V91, P3367, DOI 10.1121/1.402826
McDermott HJ, 2003, J ACOUST SOC AM, V114, P2190, DOI 10.1121/1.1612488
McKay CM, 2003, J ACOUST SOC AM, V113, P2054, DOI 10.1121/1.1558378
Moore BCJ, 1997, AUDIT NEUROSCI, V3, P289
Moore B.C., 2012, INTRO PSYCHOL HEARIN
Moore BCJ, 2004, HEARING RES, V188, P70, DOI 10.1016/S0378-5955(03)00347-2
Moore BCJ, 2004, EAR HEARING, V25, P98, DOI 10.1097/01.AUD.0000120359.49711.D7
Moore BCJ, 1996, ACUSTICA, V82, P335
Swanson B, 2008, THESIS U MELBOURNE
Vandali AE, 2000, EAR HEARING, V21, P608, DOI 10.1097/00003446-200012000-00008
Varsavsky A., IEEE T NEUR IN PRESS
Zwicker E., 2007, PSYCHOACOUSTICS FACT
NR 28
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2012
VL 294
IS 1-2
BP 114
EP 124
DI 10.1016/j.heares.2012.09.002
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 064PV
UT WOS:000313088800013
PM 23000118
ER
PT J
AU Newman, DL
Fisher, LM
Ohmen, J
Parody, R
Fong, CT
Frisina, ST
Mapes, F
Eddins, DA
Frisina, DR
Frisina, RD
Friedman, RA
AF Newman, Dina L.
Fisher, Laurel M.
Ohmen, Jeffrey
Parody, Robert
Fong, Chin-To
Frisina, Susan T.
Mapes, Frances
Eddins, David A.
Frisina, D. Robert
Frisina, Robert D.
Friedman, Rick A.
TI GRM7 variants associated with age-related hearing loss based on auditory
perception
SO HEARING RESEARCH
LA English
DT Article
ID SPEECH RECOGNITION; OLDER-ADULTS; POSTMENOPAUSAL WOMEN; NOISE TEST;
IMPAIRMENT; PRESBYCUSIS; THRESHOLDS; COGNITION; GENE; INTELLIGIBILITY
AB Age-related hearing impairment (ARHI), or presbycusis, is a common condition of the elderly that results in significant communication difficulties in daily life. Clinically, it has been defined as a progressive loss of sensitivity to sound, starting at the high frequencies, inability to understand speech, lengthening of the minimum discernable temporal gap in sounds, and a decrease in the ability to filter out background noise. The causes of presbycusis are likely a combination of environmental and genetic factors. Previous research into the genetics of presbycusis has focused solely on hearing as measured by pure-tone thresholds. A few loci have been identified, based on a best ear pure-tone average phenotype, as having a likely role in susceptibility to this type of hearing loss; and GRM7 is the only gene that has achieved genome-wide significance. We examined the association of GRM7 variants identified from the previous study, which used an European cohort with Z-scores based on pure-tone thresholds, in a European-American population from Rochester, NY (N = 687), and used novel phenotypes of presbycusis. In the present study mixed modeling analyses were used to explore the relationship of GRM7 haplotype and SNP genotypes with various measures of auditory perception. Here we show that GRM7 alleles are associated primarily with peripheral measures of hearing loss, and particularly with speech detection in older adults. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Newman, Dina L.] Rochester Inst Technol, Thomas H Gosnell Sch Life Sci, Rochester, NY 14623 USA.
[Fisher, Laurel M.] House Res Inst, Ctr Clin Studies, Los Angeles, CA 90057 USA.
[Ohmen, Jeffrey; Friedman, Rick A.] House Res Inst, Cell Biol & Genet Div, Los Angeles, CA 90057 USA.
[Parody, Robert] Rochester Inst Technol, John D Hromi Ctr Qual & Appl Stat, Rochester, NY 14623 USA.
[Fong, Chin-To] Univ Rochester, Sch Med & Dent, Dept Pediat, Rochester, NY 14642 USA.
[Fong, Chin-To] Univ Rochester, Sch Med & Dent, Dept Med Humanities, Rochester, NY 14642 USA.
[Fong, Chin-To] Univ Rochester, Sch Med & Dent, Dept Biochem & Biophys, Rochester, NY 14642 USA.
[Newman, Dina L.; Frisina, Susan T.; Mapes, Frances; Eddins, David A.; Frisina, D. Robert; Frisina, Robert D.] Rochester Inst Technol, Int Ctr Hearing & Speech Res, Natl Tech Inst Deaf, Rochester, NY 14623 USA.
[Eddins, David A.; Frisina, D. Robert; Frisina, Robert D.] Univ S Florida, Global Ctr Hearing & Speech Res, Dept Commun Sci & Disorders, Tampa, FL 33620 USA.
[Eddins, David A.; Frisina, D. Robert; Frisina, Robert D.] Univ S Florida, Global Ctr Hearing & Speech Res, Dept Chem & Biomed Engn, Tampa, FL 33620 USA.
RP Newman, DL (reprint author), Rochester Inst Technol, Gosnell Sch Life Sci, 153 Lomb Mem Dr, Rochester, NY 14623 USA.
EM dina.newman@rit.edu; LFisher@hei.org; JOhmen@hei.org; rjpeqa@rit.edu;
ChinTo_Fong@urmc.rochester.edu; stfsusan@aol.com; fray.mapes@yahoo.com;
deddins@usf.edu; frisina@usf.edu; rfrisina@usf.edu; RFriedman@hei.org
FU National Institutes of Health [NIA: P01-AG009524, K01-AG026394, NIDCD:
R01-DC010215]; Seaver Foundation; Schwartz Foundation (House Ear
Institute)
FX The authors wish to express their gratitude to all the volunteers who
participated in the study. Gregory Warnes performed the calculation of
SII; Karissa Raish, Dawn Mugrage and numerous undergraduate students at
RIT assisted with DNA extraction and archiving of samples; and Elizabeth
Hickman provided database support. This work was supported by grants
from the National Institutes of Health (NIA: P01-AG009524 and
K01-AG026394; NIDCD: R01-DC010215), the Seaver Foundation and the
Schwartz Foundation (House Ear Institute).
CR Acoustical Society of America, 1998, S351997 ANSI AC SOC
Birren J E, 1991, Nebr Symp Motiv, V39, P1
Christensen K, 2001, J AM GERIATR SOC, V49, P1512, DOI 10.1046/j.1532-5415.2001.4911245.x
Cruickshanks KJ, 2010, SPRINGER HANDB AUDIT, V34, P259, DOI 10.1007/978-1-4419-0993-0_9
Dalstra JAA, 2005, INT J EPIDEMIOL, V34, P316, DOI 10.1093/ije/dyh386
DeStefano AL, 2003, ARCH OTOLARYNGOL, V129, P285
Dubno JR, 1997, J SPEECH LANG HEAR R, V40, P444
Fitzgibbons P J, 1996, J Am Acad Audiol, V7, P183
Fransen E, 2004, EAR HEARING, V25, P133, DOI 10.1097/01.AUD.0000120362.69077.0B
Friedman RA, 2009, HUM MOL GENET, V18, P785, DOI 10.1093/hmg/ddn402
Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3
Frisina ST, 2006, HEARING RES, V211, P103, DOI 10.1016/j.heares.2005.09.002
Garringer HJ, 2006, ARCH OTOLARYNGOL, V132, P506, DOI 10.1001/archotol.132.5.506
Gates GA, 1999, ARCH OTOLARYNGOL, V125, P654
Gordon-Salant S, 2001, J SPEECH LANG HEAR R, V44, P709, DOI 10.1044/1092-4388(2001/056)
Guimaraes P, 2006, P NATL ACAD SCI USA, V103, P14246, DOI 10.1073/pnas.0606891103
Harrell Jr FE, 2010, REGRESSION MODELING
Helfer KS, 2009, J AM ACAD AUDIOL, V20, P264, DOI 10.3766/jaaa.20.4.6
Hogan A, 2009, J AGING HEALTH, V21, P1098, DOI 10.1177/0898264309347821
Hox J., 2010, MULTILEVEL ANAL TECH
Humes LE, 2010, SPRINGER HANDB AUDIT, V34, P211, DOI 10.1007/978-1-4419-0993-0_8
Huyghe JR, 2008, AM J HUM GENET, V83, P401, DOI 10.1016/j.ajhg.2008.08.002
Karlsson KK, 1997, EAR HEARING, V18, P114, DOI 10.1097/00003446-199704000-00003
Kilicdag EB, 2004, AM J OBSTET GYNECOL, V190, P77, DOI 10.1016/j.ajpg.2003.06.001
Kim SH, 2002, OBSTET GYNECOL, V99, P726, DOI 10.1016/S0029-7844(02)01963-4
Lin FR, 2011, J GERONTOL A-BIOL, V66, P1131, DOI 10.1093/gerona/glr115
Lin FR, 2011, NEUROPSYCHOLOGY, V25, P763, DOI 10.1037/a0024238
Mazelova J, 2003, EXP GERONTOL, V38, P87, DOI 10.1016/S0531-5565(02)00155-9
NILSSON M, 1994, J ACOUST SOC AM, V95, P1085, DOI 10.1121/1.408469
Park DC, 2009, ANNU REV PSYCHOL, V60, P173, DOI 10.1146/annurev.psych.59.103006.093656
Parmet Sharon, 2007, JAMA, V298, P130, DOI 10.1001/jama.298.1.130
Pichora-Fuller MK, 2007, HEARING RES, V223, P114, DOI 10.1016/j.heares.2006.10.009
Pichora-Fuller MK, 2003, INT J AUDIOL, V42, pS11
Price K, 2009, HEARING RES, V252, P29, DOI 10.1016/j.heares.2009.02.010
Pujol R, 1990, Acta Otolaryngol Suppl, V476, P32
Rodriguez S, 2009, AM J EPIDEMIOL, V169, P505, DOI 10.1093/aje/kwn359
SCHMIEDT RA, 2010, AGING AUDITORY SYSTE, P31
Schneider BA, 2010, SPRINGER HANDB AUDIT, V34, P167, DOI 10.1007/978-1-4419-0993-0_7
SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1
Schuknecht HF, 1993, PATHOLOGY EAR
SCHUKNECHT HF, 1964, ARCHIV OTOLARYNGOL, V80, P369
SCHUKNECHT H F, 1953, Trans Am Acad Ophthalmol Otolaryngol, V57, P366
Singer J. D., 2003, APPL LONGITUDINAL DA
Snell KB, 1997, J ACOUST SOC AM, V101, P2214, DOI 10.1121/1.418205
Soli SD, 2008, INT J AUDIOL, V47, P356, DOI 10.1080/14992020801895136
Stephens M, 2001, AM J HUM GENET, V68, P978, DOI 10.1086/319501
Tadros SF, 2005, HEARING RES, V209, P10, DOI 10.1016/j.heares.2005.05.009
Unal M, 2005, LARYNGOSCOPE, V115, P2238, DOI 10.1097/01.mlg.0000183694.10583.12
Van Eyken E, 2006, HUM MUTAT, V27, P1007, DOI 10.1002/humu.20375
Van Eyken E, 2007, J MED GENET, V44, DOI 10.1136/jmg.2007.049205
Van Laer L, 2008, HUM MOL GENET, V17, P159, DOI 10.1093/hmg/ddm292
Van Laer L, 2010, EUR J HUM GENET, V18, P685, DOI 10.1038/ejhg.2009.234
Vermiglio AJ, 2008, INT J AUDIOL, V47, P386, DOI 10.1080/14992020801908251
West B. T., 2007, LINEAR MIXED MODELS
Wiley TL, 2008, J AM ACAD AUDIOL, V19, P281, DOI 10.3766/jaaa.19.4.2
Wingfield A, 2007, J GERONTOL A-BIOL, V62, P1294
NR 56
TC 14
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2012
VL 294
IS 1-2
BP 125
EP 132
DI 10.1016/j.heares.2012.08.016
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 064PV
UT WOS:000313088800014
PM 23102807
ER
PT J
AU Selezneva, E
Gorkin, A
Mylius, J
Noesselt, T
Scheich, H
Brosch, M
AF Selezneva, Elena
Gorkin, Alexander
Mylius, Judith
Noesselt, Toemme
Scheich, Henning
Brosch, Michael
TI Reaction times reflect subjective auditory perception of tone sequences
in macaque monkeys
SO HEARING RESEARCH
LA English
DT Article
ID STARLINGS STURNUS-VULGARIS; STREAM SEGREGATION; SCENE ANALYSIS;
VISUAL-CORTEX; ORGANIZATION; RIVALRY; MOTION
AB Perceptually ambiguous stimuli are useful for testing psychological and neuronal models of perceptual organization, e.g. for studying brain processes that underlie sequential segregation and integration. This is because the same stimuli may give rise to different subjective experiences. For humans, a tone sequence that alternates between a low-frequency and a high-frequency tone is perceptually bistable, and can be perceived as one or two streams. In the current study we present a new method based on response times (RTs) which allows identification ambiguous and unambiguous stimuli for subjects who cannot verbally report their subjective experience. We required two macaque monkeys (macaca fascicularis) to detect the termination of a sequence of light flashes which were either presented alone, or synchronized in different ways with a sequence of alternating low and high tones. We found that the monkeys responded faster to the termination of the flash sequence when the tone sequence terminated shortly before the flash sequence and thus predicted the termination of the flash sequence. This RT gain depended on the frequency separation of the tones. RT gains were largest when the frequency separation was small and the tones were presumably heard mainly as one stream. RT gains were smallest when the frequency separation was large and the tones were presumably mainly heard as two streams. RT gain was of intermediate size for intermediate frequency separations. Similar results were obtained from human subjects. We conclude that the observed RT gains reflect the perceptual organization of the tone sequence, and that tone sequences with an intermediate frequency separation, as for humans, are perceptually ambiguous for monkeys. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Selezneva, Elena] Leibniz Inst Neurobiol, Special Lab Primate Neurobiol, D-39118 Magdeburg, Germany.
[Gorkin, Alexander] Russian Acad Sci, Inst Psychol, Moscow 129366, Russia.
[Noesselt, Toemme] Otto Von Guericke Univ, Inst Psychol 2, D-39120 Magdeburg, Germany.
RP Selezneva, E (reprint author), Leibniz Inst Neurobiol, Special Lab Primate Neurobiol, Brenneckestr 6, D-39118 Magdeburg, Germany.
EM Elena.Selezneva@lin-magdeburg.de
FU Deutsche Forschungsgemeinschaft [SFB TR 31, SFB 779]
FX We thank C. Bucks for assistance in animal care, C. Micheyl and A.
Brechmann for comments on earlier versions of this manuscript, and J.
Lovell for improving the English. Supported by the Deutsche
Forschungsgemeinschaft (SFB TR 31, SFB 779).
CR Bee MA, 2004, J NEUROPHYSIOL, V92, P1088, DOI 10.1152/jn.00884.2003
Benney KS, 2000, J COMP PSYCHOL, V114, P174, DOI 10.1037//0735-7036.114.2.174
Bolognini N, 2005, EXP BRAIN RES, V160, P273, DOI 10.1007/s00221-004-2005-z
Bregman AS., 1990, AUDITORY SCENE ANAL
BRITTEN KH, 1992, J NEUROSCI, V12, P4745
Brosch M, 2004, COGNITION, V91, P259, DOI 10.1016/j.cognition.2003.09.005
Denham SL, 2006, J PHYSIOLOGY-PARIS, V100, P154, DOI 10.1016/j.jphysparis.2006.09.012
Fay RR, 1998, HEARING RES, V120, P69, DOI 10.1016/S0378-5955(98)00058-6
Fishman YI, 2001, HEARING RES, V151, P167, DOI 10.1016/S0378-5955(00)00224-0
Foxton JM, 2010, COGNITION, V115, P71, DOI 10.1016/j.cognition.2009.11.009
Frassinetti F, 2002, EXP BRAIN RES, V147, P332, DOI 10.1007/s00221-002-1262-y
Green D. M., 1966, SIGNAL DETECTION THE
Handel S, 2006, PERCEPTUAL COHERENCE
Hulse SH, 1997, J COMP PSYCHOL, V111, P3, DOI 10.1037/0735-7036.111.1.3
Izumi A, 2002, COGNITION, V82, pB113, DOI 10.1016/S0010-0277(01)00161-5
Leopold DA, 1996, NATURE, V379, P549, DOI 10.1038/379549a0
LOGOTHETIS NK, 1990, VISION RES, V30, P1409, DOI 10.1016/0042-6989(90)90022-D
MacDougall-Shackleton SA, 1998, J ACOUST SOC AM, V103, P3581, DOI 10.1121/1.423063
Marozeau J, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011297
McDonald JJ, 2000, NATURE, V407, P906, DOI 10.1038/35038085
Merlo JL, 2010, AM J PSYCHOL, V123, P413
Micheyl C, 2005, NEURON, V48, P139, DOI 10.1016/j.neuron.2005.08.039
Micheyl C, 2007, HEARING RES, V229, P116, DOI 10.1016/j.heares.2007.01.007
MIEZIN FM, 1981, VISION RES, V21, P177, DOI 10.1016/0042-6989(81)90111-5
Moore BCJ, 2012, PHILOS T R SOC B, V367, P919, DOI 10.1098/rstb.2011.0355
OLEARY A, 1984, PERCEPT PSYCHOPHYS, V35, P565, DOI 10.3758/BF03205954
Pressnitzer D, 2006, CURR BIOL, V16, P1351, DOI 10.1016/j.cub.2006.05.054
Rahne T, 2008, BRAIN RES, V1220, P118, DOI 10.1016/j.brainres.2007.08.011
Rossi S, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001702
Sakata S, 2004, EXP BRAIN RES, V159, P409, DOI 10.1007/s00221-004-1962-6
Schroeder CE, 2009, TRENDS NEUROSCI, V32, P9, DOI 10.1016/j.tins.2008.09.012
Spence C., 2007, Acoustical Science and Technology, V28, DOI 10.1250/ast.28.61
van Noorden L. P. A. S., 1975, THESIS EINDHOVEN U T
Vroomen J, 2010, ATTEN PERCEPT PSYCHO, V72, P871, DOI 10.3758/APP.72.4.871
Wilke M, 2006, P NATL ACAD SCI USA, V103, P17507, DOI 10.1073/pnas.0604673103
NR 35
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2012
VL 294
IS 1-2
BP 133
EP 142
DI 10.1016/j.heares.2012.08.014
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 064PV
UT WOS:000313088800015
PM 22990003
ER
PT J
AU Rocha-Muniz, CN
Befi-Lopes, DM
Schochat, E
AF Rocha-Muniz, Caroline N.
Befi-Lopes, Debora M.
Schochat, Eliane
TI Investigation of auditory processing disorder and language impairment
using the speech-evoked auditory brainstem response
SO HEARING RESEARCH
LA English
DT Article
ID FREQUENCY DISCRIMINATION; DEVELOPMENTAL APHASIA; LEARNING-PROBLEMS; STOP
CONSONANTS; GAP-DETECTION; CHILDREN; PERCEPTION; DEFICITS; SOUNDS;
REPRESENTATION
AB This study investigated whether there are differences in the Speech-Evoked Auditory Brainstem Response among children with Typical Development (TD), (Central) Auditory Processing Disorder (C) APD, and Language Impairment (LI). The speech-evoked Auditory Brainstem Response was tested in 57 children (ages 6-12). The children were placed into three groups: TD (n = 18), (C)APD (n = 18) and LI (n = 21). Speech-evoked ABR were elicited using the five-formant syllable/da/. Three dimensions were defined for analysis, including timing, harmonics, and pitch. A comparative analysis of the responses between the typical development children and children with (C)APD and LI revealed abnormal encoding of the speech acoustic features that are characteristics of speech perception in children with (C)APD and LI, although the two groups differed in their abnormalities. While the children with (C)APD might had a greater difficulty distinguishing stimuli based on timing cues, the children with LI had the additional difficulty of distinguishing speech harmonics, which are important to the identification of speech sounds. These data suggested that an inefficient representation of crucial components of speech sounds may contribute to the difficulties with language processing found in children with LI. Furthermore, these findings may indicate that the neural processes mediated by the auditory brainstem differ among children with auditory processing and speech-language disorders. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Rocha-Muniz, Caroline N.; Befi-Lopes, Debora M.; Schochat, Eliane] Univ Sao Paulo, Sch Med USP, Sao Paulo, Brazil.
RP Rocha-Muniz, CN (reprint author), 58 Evaristo da Silva, BR-06186020 Osasco, SP, Brazil.
EM carolrocha@usp.br
RI Befi-Lopes, Debora/C-8459-2012; Rocha-Muniz, Caroline/H-9358-2012
FU Sao Paulo Research Foundation - FAPESP
FX We would like to thank all the study participants. The author would like
to give special thanks to Nina Kraus and Erika Skoe for providing us the
Mat lab Analysis Program (Brainstem Toolbox). This study was supported
by Sao Paulo Research Foundation - FAPESP.
CR Abrams DA, 2006, J NEUROSCI, V26, P11131, DOI 10.1523/JNEUROSCI.2744-06.2006
American Speech-Language-Hearing Association Working Group on Auditory Processing Disorder (ASHA), 2005, CENTR AUD PROC
Andrade C. R. F., 2004, ABFW TESTE LINGUAGEM
Araujo K., 2007, REV SOC BRASILEIRA F, V12, P263
GATHERCOLE SE, 1990, J MEM LANG, V29, P336, DOI 10.1016/0749-596X(90)90004-J
Banai K, 2007, INT J AUDIOL, V46, P524, DOI 10.1080/14992020701383035
Banai K, 2005, J NEUROSCI, V25, P9850, DOI 10.1523/JNEUROSCI.2373-05.2005
Banai K, 2009, CEREB CORTEX, V19, P2699, DOI 10.1093/cercor/bhp024
Banai K, 2008, CURRENT CONTROVERSIE, P269
Basu M, 2009, DEVELOPMENTAL SCI, V13, P77
Bellis T. J., 2002, BRAIN CANT HEAR UNRA
Benasich AA, 1996, INFANT BEHAV DEV, V19, P339, DOI 10.1016/S0163-6383(96)90033-8
Benasich AA, 2002, DEV PSYCHOBIOL, V40, P278, DOI 10.1002/dev.10032
Benasich AA, 2002, BEHAV BRAIN RES, V136, P31, DOI 10.1016/S0166-4328(02)00098-0
Billiet CR, 2011, J SPEECH LANG HEAR R, V54, P228, DOI 10.1044/1092-4388(2010/09-0239)
Bio-logic S.C, 2005, AUDITORY EVOKED POTE
Bishop DVM, 1999, J SPEECH LANG HEAR R, V42, P1295
Bishop DVM, 1996, J CHILD PSYCHOL PSYC, V37, P391, DOI 10.1111/j.1469-7610.1996.tb01420.x
Chandrasekaran B, 2010, PSYCHOPHYSIOLOGY, V47, P236, DOI 10.1111/j.1469-8986.2009.00928.x
Chermak G, 1997, CENTRAL AUDITORY PRO
Chou YM, 1998, J QUAL TECHNOL, V30, P133
Cohen J., 1977, STAT POWER ANAL BEHA
Cruttenden Alan, 1997, INTONATION, V2nd
Cunningham J, 2001, CLIN NEUROPHYSIOL, V112, P758, DOI 10.1016/S1388-2457(01)00465-5
Dawes P, 2008, INT J PEDIATR OTORHI, V72, P483, DOI 10.1016/j.ijporl.2007.12.007
Dawes P, 2009, INT J LANG COMM DIS, V44, P440, DOI 10.1080/13682820902929073
Dhar S, 2009, CLIN NEUROPHYSIOL, V120, P959, DOI 10.1016/j.clinph.2009.02.172
Duarte W.F, 1999, MATRIZED PROGR COLOR
Farmer ME, 1995, PSYCHON B REV, V2, P460, DOI 10.3758/BF03210983
Ferguson MA, 2011, J SPEECH LANG HEAR R, V54, P211, DOI 10.1044/1092-4388(2010/09-0167)
Gibbs S, 2004, ED PSYCHOL, V24, P13, DOI 10.1080/0144341032000146412
Glascoe FP, 2000, CHILD CARE HLTH DEV, V26, P137, DOI 10.1046/j.1365-2214.2000.00173.x
Gorga M, 1985, AUDITORY BRAINSTEM R, P49
Hall J. W., 2007, NEW HDB AUDITORY EVO
Helzer JR, 1996, PERCEPT MOTOR SKILL, V83, P1171
Hickok G, 2007, NAT REV NEUROSCI, V8, P393, DOI 10.1038/nrn2113
Hill PR, 2005, J SPEECH LANG HEAR R, V48, P1136, DOI 10.1044/1092-4388(2005/080)
Hood L. J., 1998, CLIN APPL AUDITORY B
Hornickel J, 2009, AUDIOL NEURO-OTOL, V14, P198, DOI 10.1159/000188533
Hornickel J, 2009, P NATL ACAD SCI USA, V106, P13022, DOI 10.1073/pnas.0901123106
Hresko W. P., 1999, TEST EARLY LANGUAGE
Jasper H. H., 1958, ELECTROENCEPHALOGRAP, V10, P371, DOI DOI 10.1016/0013-4694(58)90053-1
Jerger J, 2002, AUDIOLOGY TODAY, V14
Johnson KL, 2007, J COGNITIVE NEUROSCI, V19, P376, DOI 10.1162/jocn.2007.19.3.376
Johnson KL, 2005, EAR HEARING, V26, P424, DOI 10.1097/01.aud.0000179687.71662.6e
Johnson KL, 2008, J NEUROSCI, V28, P4000, DOI 10.1523/JNEUROSCI.0012-08.2008
Karawani H, 2010, INT J AUDIOL, V49, P844, DOI 10.3109/14992027.2010.495083
KATZ J, 1968, J SPEECH HEAR DISORD, V33, P132
King C, 2002, NEUROSCI LETT, V319, P111, DOI 10.1016/S0304-3940(01)02556-3
KLATT DH, 1980, J ACOUST SOC AM, V67, P971, DOI 10.1121/1.383940
Kraus N, 2007, CURR DIR PSYCHOL SCI, V16, P105, DOI 10.1111/j.1467-8721.2007.00485.x
Krishnan A, 2010, BRAIN RES, V1313, P124, DOI 10.1016/j.brainres.2009.11.061
Krishnan A, 2002, HEARING RES, V166, P192, DOI 10.1016/S0378-5955(02)00327-1
Krizman J, 2010, AUDIOL NEURO-OTOL, V15, P332, DOI 10.1159/000289572
Leonard L. B., 1998, CHILDREN SPECIFIC LA
Liu LF, 2006, J NEUROPHYSIOL, V95, P1926, DOI 10.1152/jn.00497.2005
INAGAKI M, 1987, BRAIN DEV-JPN, V9, P597
LOWE AD, 1965, J SPEECH HEAR RES, V8, P313
Marchman VA, 2002, J SPEECH LANG HEAR R, V45, P983, DOI 10.1044/1092-4388(2002/080)
McArthur GM, 2004, COGN NEUROPSYCHOL, V21, P79, DOI 10.1080/02643290342000087
McArthur GM, 2004, J SPEECH LANG HEAR R, V47, P527, DOI 10.1044/1092-4388(2004/041)
Mengler ED, 2005, DYSLEXIA, V11, P155, DOI 10.1002/dys.302
Miller CA, 2011, LANG SPEECH HEAR SER, V42, P309, DOI 10.1044/0161-1461(2011/10-0040)
Miller CA, 2011, J COMMUN DISORD, V44, P745, DOI 10.1016/j.jcomdis.2011.04.001
Moller AR, 1999, EEG CL N SU, P27
Morselli A., 2003, THESIS U SAO PAULO
Musacchia G, 2007, P NATL ACAD SCI USA, V104, P15894, DOI 10.1073/pnas.0701498104
Musiek F, 2007, HDB CENTRAL AUDITORY, VI
MUSIEK FE, 1991, AM J OTOL, V12, P109
Musiek F E, 1994, J Am Acad Audiol, V5, P265
O'Neill DK, 2007, J SPEECH LANG HEAR R, V50, P214, DOI 10.1044/1092-4388(2007/017)
Phillips D P, 1999, J Am Acad Audiol, V10, P343
Phillips DP, 1998, J ACOUST SOC AM, V103, P2064, DOI 10.1121/1.421353
Phillips DP, 2004, PERCEPTION, V33, P371, DOI 10.1068/p5116
Ponton CW, 2000, CLIN NEUROPHYSIOL, V111, P220, DOI 10.1016/S1388-2457(99)00236-9
Raven J. C., 1986, RAVENS PROGR MATRICE
Raven JC, 2002, COLOURED PROGR MATRI
Rintelmann W., 1990, HEARING ASSESSMENT, P549
Russo N, 2004, CLIN NEUROPHYSIOL, V115, P2021, DOI 10.1016/j.clinph.2004.04.003
Russo NM, 2005, BEHAV BRAIN RES, V156, P95, DOI 10.1016/j.bbr.2004.05.012
Shinn-Cunningham Barbara G, 2008, Trends Amplif, V12, P283, DOI 10.1177/1084713808325306
Skoe E, 2010, EAR HEARING, V31, P302, DOI 10.1097/AUD.0b013e3181cdb272
Song JH, 2006, AUDIOL NEURO-OTOL, V11, P233, DOI 10.1159/000093058
Starr A., 1988, HDB ELECTROENCEPHALO, V3, P97
Strauss E., 2006, COMPENDIUM NEUROPSYC
SUSSMAN JE, 1993, J SPEECH HEAR RES, V36, P1286
TALLAL P, 1974, NEUROPSYCHOLOGIA, V12, P83, DOI 10.1016/0028-3932(74)90030-X
TALLAL P, 1973, NATURE, V241, P468, DOI 10.1038/241468a0
TALLAL P, 1980, BRAIN LANG, V9, P182, DOI 10.1016/0093-934X(80)90139-X
TALLAL P, 1975, NEUROPSYCHOLOGIA, V13, P69, DOI 10.1016/0028-3932(75)90049-4
Tallal P, 2000, P NATL ACAD SCI USA, V97, P2402, DOI 10.1073/pnas.97.6.2402
Tallal P, 1997, FOUNDATIONS OF READING ACQUISITION AND DYSLEXIA, P49
TALLAL P, 1981, J ACOUST SOC AM, V69, P568, DOI 10.1121/1.385431
Tomblin B, 1995, J SPEECH HEAR RES, V38, P387
Tomblin JB, 1997, J SPEECH LANG HEAR R, V40, P1245
Wible B, 2004, BIOL PSYCHOL, V67, P299, DOI 10.1016/j.biopsycho.2004.02.002
Wible B, 2005, BRAIN, V128, P417, DOI 10.1093/brain/awh367
Wong PCM, 2007, NAT NEUROSCI, V10, P420, DOI 10.1038/nn1872
Wright BA, 1997, NATURE, V387, P176, DOI 10.1038/387176a0
Xiao ZJ, 2002, NAT NEUROSCI, V5, P57, DOI 10.1038/nn786
Xu Y., 2005, COGNITIVE BRAIN RES, V8, P124
Zatorre RJ, 2008, PHILOS T R SOC B, V363, P1087, DOI 10.1098/rstb.2007.2161
NR 102
TC 6
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2012
VL 294
IS 1-2
BP 143
EP 152
DI 10.1016/j.heares.2012.08.008
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 064PV
UT WOS:000313088800016
PM 22974503
ER
PT J
AU Vlasits, AL
Simon, JA
Raible, DW
Rubel, EW
Owens, KN
AF Vlasits, Anna L.
Simon, Julian A.
Raible, David W.
Rubel, Edwin W.
Owens, Kelly N.
TI Screen of FDA-approved drug library reveals compounds that protect hair
cells from aminoglycosides and cisplatin
SO HEARING RESEARCH
LA English
DT Article
ID ZEBRAFISH DANIO-RERIO; LATERAL-LINE SYSTEM; GUINEA-PIG COCHLEA; MYOSIN
VIIA; MECHANICAL TRANSDUCTION; INDUCED OTOTOXICITY; INNER-EAR; IN-VITRO;
DEATH; MOUSE
AB Loss of mechanosensory hair cells in the inner ear accounts for many hearing loss and balance disorders. Several beneficial pharmaceutical drugs cause hair cell death as a side effect. These include aminoglycoside antibiotics, such as neomycin, kanamycin and gentamicin, and several cancer chemotherapy drugs, such as cisplatin. Discovering new compounds that protect mammalian hair cells from toxic insults is experimentally difficult because of the inaccessibility of the inner ear. We used the zebrafish lateral line sensory system as an in vivo screening platform to survey a library of FDA-approved pharmaceuticals for compounds that protect hair cells from neomycin, gentamicin, kanamycin and cisplatin. Ten compounds were identified that provide protection from at least two of the four toxins. The resulting compounds fall into several drug classes, including serotonin and dopamine-modulating drugs, adrenergic receptor ligands, and estrogen receptor modulators. The protective compounds show different effects against the different toxins, supporting the idea that each toxin causes hair cell death by distinct, but partially overlapping, mechanisms. Furthermore, some compounds from the same drug classes had different protective properties, suggesting that they might not prevent hair cell death by their known target mechanisms. Some protective compounds blocked gentamicin uptake into hair cells, suggesting that they may block mechanotransduction or other routes of entry. The protective compounds identified in our screen will provide a starting point for studies in mammals as well as further research discovering the cellular signaling pathways that trigger hair cell death. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Vlasits, Anna L.; Raible, David W.; Rubel, Edwin W.; Owens, Kelly N.] Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Seattle, WA 98195 USA.
[Vlasits, Anna L.; Rubel, Edwin W.; Owens, Kelly N.] Univ Washington, Dept Otolaryngol Head & Neck Surg, Seattle, WA 98195 USA.
[Raible, David W.] Univ Washington, Dept Biol Struct, Seattle, WA 98195 USA.
[Simon, Julian A.] Fred Hutchinson Canc Res Ctr, Seattle, WA 98109 USA.
RP Owens, KN (reprint author), Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Box 357923, Seattle, WA 98195 USA.
EM avlasits@berkeley.edu; jsimon@fhcrc.edu; draible@uw.edu; rubel@uw.edu;
kowens@u.washington.edu
FU NIH/NIDCD [DC05897, DC04661]
FX We would like to thank David White and staff for maintenance of the
zebrafish facilities, Eli Ocheltree for assistance with tissue culture
experiments and Glen MacDonald for advice on microscopy. Funding for
this work was provided by NIH/NIDCD grants DC05897 and DC04661.
CR Airhart MJ, 2007, NEUROTOXICOL TERATOL, V29, P652, DOI 10.1016/j.ntt.2007.07.005
Alharazneh A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022347
ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X
Bian JT, 2002, EUR J PHARMACOL, V453, P159, DOI 10.1016/S0014-2999(02)02421-4
Bokemeyer C, 1998, BRIT J CANCER, V77, P1355, DOI 10.1038/bjc.1998.226
Brummett R.E., 1983, CLIN INFECT DIS, V5, pS294, DOI 10.1093/clinids/5.Supplement_2.S294
Ciarimboli G, 2010, AM J PATHOL, V176, P1169, DOI 10.2353/ajpath.2010.090610
Coffin AB, 2009, HEARING RES, V253, P42, DOI 10.1016/j.heares.2009.03.004
Coffin AB, 2010, ZEBRAFISH, V7, P3, DOI 10.1089/zeb.2009.0639
Coombs S., 1989, MECHANOSENSORY LATER
DAVIS BD, 1987, MICROBIOL REV, V51, P341
DULON D, 1986, ANTIMICROB AGENTS CH, V30, P96
Ericson E, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000151
Ernest S, 2000, HUM MOL GENET, V9, P2189, DOI 10.1093/hmg/9.14.2189
Fermin C., 1980, 3 MIDW M ARO
FLEISCHMAN RW, 1975, TOXICOL APPL PHARM, V33, P320, DOI 10.1016/0041-008X(75)90098-8
Froehlicher M, 2009, DEV BIOL, V330, P32, DOI 10.1016/j.ydbio.2009.03.005
Gale JE, 2001, J NEUROSCI, V21, P7013
GIARD DJ, 1973, J NATL CANCER I, V51, P1417
Giari L., 2011, J APPL TOXICOL, V32, P293
Harris JA, 2003, JARO, V4, P219, DOI 10.1007/s10162-002-3022-x
HELSON L, 1978, CLIN TOXICOL, V13, P469
HINSHAW HC, 1946, AM REV TUBERC PULM, V54, P191
Hirose Y, 2011, JARO-J ASSOC RES OTO, V12, P719, DOI 10.1007/s10162-011-0278-z
Ishida S, 2002, P NATL ACAD SCI USA, V99, P14298, DOI 10.1073/pnas.162491399
Iversen L, 2006, BRIT J PHARMACOL, V147, pS82, DOI 10.1038/sj.bjp.0706428
JORGENSEN F, 1988, J PHYSIOL-LONDON, V403, P577
KAUS S, 1992, ACTA OTO-LARYNGOL, V112, P83, DOI 10.3109/00016489209100787
Kohanski MA, 2007, CELL, V130, P797, DOI 10.1016/j.cell.2007.06.049
LOMBARTE A, 1993, HEARING RES, V64, P166, DOI 10.1016/0378-5955(93)90002-I
Marcotti W, 2005, J PHYSIOL-LONDON, V567, P505, DOI 10.1113/jphysiol.2005.085951
Meltser I, 2008, J CLIN INVEST, V118, P1563, DOI 10.1172/JCI32796
METCALFE WK, 1985, J COMP NEUROL, V233, P377, DOI 10.1002/cne.902330307
Nakamagoe M, 2010, HEARING RES, V261, P67, DOI 10.1016/j.heares.2010.01.004
Nicolson T, 2005, ANNU REV GENET, V39, P9, DOI 10.1146/annurev.genet.39.073003.105049
Nicolson T, 1998, NEURON, V20, P271, DOI 10.1016/S0896-6273(00)80455-9
Noirot IC, 2009, HEARING RES, V252, P49, DOI 10.1016/j.heares.2009.04.012
Norton WHJ, 2008, J COMP NEUROL, V511, P521, DOI 10.1002/cne.21831
Ou HC, 2007, HEARING RES, V233, P46, DOI 10.1016/j.heares.2007.07.003
Ou HC, 2009, JARO-J ASSOC RES OTO, V10, P191, DOI 10.1007/s10162-009-0158-y
Ou HC, 2010, DRUG DISCOV TODAY, V15, P265, DOI 10.1016/j.drudis.2010.01.001
Owens KN, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000020
Owens KN, 2009, HEARING RES, V253, P32, DOI 10.1016/j.heares.2009.03.001
Owens KN, 2007, J COMP NEUROL, V502, P522, DOI 10.1002/cne.21345
Pabla N, 2008, KIDNEY INT, V73, P994, DOI 10.1038/sj.ki.5002786
Raible D., 2011, ASS RES OT ABSTR, V34, P266
Raible DW, 2000, J COMP NEUROL, V421, P189, DOI 10.1002/(SICI)1096-9861(20000529)421:2<189::AID-CNE5>3.0.CO;2-K
REDDEL RR, 1982, CANCER TREAT REP, V66, P19
Richardson GP, 1997, J NEUROSCI, V17, P9506
Richardson GP, 1999, ANN NY ACAD SCI, V884, P110
ROSENBERG B, 1985, CANCER, V55, P2303, DOI 10.1002/1097-0142(19850515)55:10<2303::AID-CNCR2820551002>3.0.CO;2-L
RUSCH A, 1994, J PHYSIOL-LONDON, V474, P75
Rybak LP, 2007, HEARING RES, V226, P157, DOI 10.1016/j.heares.2006.09.015
Santos F, 2006, HEARING RES, V213, P25, DOI 10.1016/j.heares.2005.12.009
Seiler C, 1999, J NEUROBIOL, V41, P424, DOI 10.1002/(SICI)1097-4695(19991115)41:3<424::AID-NEU10>3.0.CO;2-G
Selimoglu E, 2003, YONSEI MED J, V44, P517
SMITH C R, 1977, New England Journal of Medicine, V296, P349, DOI 10.1056/NEJM197702172960701
Stenberg AE, 1999, HEARING RES, V136, P29, DOI 10.1016/S0378-5955(99)00098-2
Steyger PS, 2003, JARO-J ASSOC RES OTO, V4, P565, DOI 10.1007/s10162-003-4002-5
TANG CM, 1988, SCIENCE, V240, P213, DOI 10.1126/science.2451291
Terstappen GC, 2003, NEUROSCI LETT, V346, P85, DOI 10.1016/S0304-3940(03)00574-3
Tingaud-Sequeira A, 2004, GENE EXPR PATTERNS, V4, P561, DOI 10.1016/j.medgep.2004.02.002
Ton C, 2005, HEARING RES, V208, P79, DOI 10.1016/j.heares.2005.05.005
Van Netten S., 2001, NAT NEUROSCI, V5, P41
Wanamaker HH, 1999, AM J OTOL, V20, P457
Wang YH, 2006, TOHOKU J EXP MED, V208, P267, DOI 10.1620/tjem.208.267
Wayne P., 2008, PERFORMANCE STANDARD, P100
Wikler MA, 2006, METHODS DILUTION ANT
Williams JA, 2000, HEARING RES, V143, P171, DOI 10.1016/S0378-5955(00)00039-3
Wu WJ, 2002, AUDIOL NEURO-OTOL, V7, P171, DOI 10.1159/000058305
Zhao YD, 1996, P NATL ACAD SCI USA, V93, P15469, DOI 10.1073/pnas.93.26.15469
NR 71
TC 11
Z9 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2012
VL 294
IS 1-2
BP 153
EP 165
DI 10.1016/j.heares.2012.08.002
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 064PV
UT WOS:000313088800017
PM 22967486
ER
PT J
AU Micheyl, C
Xiao, L
Oxenham, AJ
AF Micheyl, Christophe
Xiao, Li
Oxenham, Andrew J.
TI Characterizing the dependence of pure-tone frequency difference limens
on frequency, duration, and level
SO HEARING RESEARCH
LA English
DT Article
ID HEARING-IMPAIRED LISTENERS; ONE-PARAMETER DISCRIMINATION; AUDITORY
PERFORMANCE LIMITS; SENSATION LEVEL; MODEL; NERVE; INTENSITY;
MECHANISMS; SENSITIVITY; MODULATION
AB This study examined the relationship between the difference limen for frequency (DLF) of pure tones and three commonly explored stimulus parameters of frequency, duration, and sensation level. Data from 12 published studies of pure-tone frequency discrimination (a total of 583 DLF measurements across 77 normal-hearing listeners) were analyzed using hierarchical (or "mixed-effects") generalized linear models. Model parameters were estimated using two approaches (Bayesian and maximum likelihood). A model in which log-transformed DLFs were predicted using a sum of power-law functions plus a random subject- or group-specific term was found to explain a substantial proportion of the variability in the psychophysical data. The results confirmed earlier findings of an inverse-square-root relationship between log-transformed DLFs and duration, and of an inverse relationship between log(DLF) and sensation level. However, they did not confirm earlier suggestions that log(DLF) increases approximately linearly with the square-root of frequency; instead, the relationship between frequency and log(DLF) was best fitted using a power function of frequency with an exponent of about 0.8. These results, and the comprehensive quantitative analysis of pure-tone frequency discrimination on which they are based, provide a new reference for the quantitative evaluation of models of frequency (or pitch) discrimination. (c) 2012 Elsevier B.V. All rights reserved.
C1 [Micheyl, Christophe; Xiao, Li; Oxenham, Andrew J.] Univ Minnesota, Dept Psychol, Auditory Percept & Cognit Lab, Minneapolis, MN 55455 USA.
RP Micheyl, C (reprint author), Univ Minnesota, Dept Psychol, Auditory Percept & Cognit Lab, 75 E River Pkwy, Minneapolis, MN 55455 USA.
EM cmicheyl@umn.edu; xiaoli19871216@gmail.com; oxenham@umn.edu
FU National Institutes of Health [NIH R01 DC05216]
FX This work was supported by a grant from the National Institutes of
Health (NIH R01 DC05216). The authors would like to thank Dr. B.C.J.
Moore, Dr. M.G. Heinz, and an anonymous reviewer for many helpful
comments on an earlier version of the manuscript. Dr. Heinz is also
acknowledged for helpful discussions concerning his and Siebert's
optimal-observer models.
CR Amitay S, 2006, J ACOUST SOC AM, V119, P1616, DOI 10.1121/1.2164988
Dai HP, 2011, J ACOUST SOC AM, V130, P263, DOI 10.1121/1.3598448
DAI HP, 1995, HEARING RES, V85, P109, DOI 10.1016/0378-5955(95)00036-4
de Cheveigne A, 2005, SPR HDB AUD, V24, P169
Delhommeau K, 2005, JARO-J ASSOC RES OTO, V6, P171, DOI 10.1007/s10162-005-5055-4
Demidenko E, 2004, MIXED MODELS THEORY
Fletcher H., 1953, SPEECH HEARING COMMU
FREYMAN RL, 1986, J ACOUST SOC AM, V79, P1034, DOI 10.1121/1.393375
FREYMAN RL, 1987, J SPEECH HEAR RES, V30, P28
FREYMAN RL, 1991, J SPEECH HEAR RES, V34, P1371
Gelman A., 2004, BAYESIAN DATA ANAL
Gelman A, 1992, STAT SCI, V7, P457, DOI DOI 10.1214/SS/1177011136
GEMAN S, 1984, IEEE T PATTERN ANAL, V6, P721
GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
Goldstein J.L., 1977, PSYCHOPHYSICS PHYSL, P337
GOOD IJ, 1979, BIOMETRIKA, V66, P393, DOI 10.1093/biomet/66.2.393
Green D. M., 1966, SIGNAL DETECTION THE
Gregory P C, 2005, BAYESIAN LOGICAL DAT
HALL JW, 1984, J SPEECH HEAR RES, V27, P252
Hanekom JJ, 2001, HEARING RES, V151, P188, DOI 10.1016/S0378-5955(00)00227-6
HARRIS JD, 1952, J ACOUST SOC AM, V24, P750, DOI 10.1121/1.1906970
Heinz MG, 2001, NEURAL COMPUT, V13, P2317, DOI 10.1162/089976601750541813
Heinz MG, 2001, NEURAL COMPUT, V13, P2273, DOI 10.1162/089976601750541804
Jeffreys H., 1961, THEORY PROBABILITY, V3rd
JESTEADT W, 1974, J ACOUST SOC AM, V55, P1266, DOI 10.1121/1.1914696
JESTEADT W, 1977, J ACOUST SOC AM, V61, P1599, DOI 10.1121/1.381446
JESTEADT W, 1975, J ACOUST SOC AM, V57, P1161, DOI 10.1121/1.380574
JESTEADT W, 1977, J ACOUST SOC AM, V61, P169, DOI 10.1121/1.381278
Johnson D.H., 1974, THESIS MIT CAMBRIDGE
JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982
KASS RE, 1995, J AM STAT ASSOC, V90, P773, DOI 10.1080/01621459.1995.10476572
Koppl C, 1997, J NEUROSCI, V17, P3312
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
Liang C.A., 1961, SOV PHYS ACOUST+, V6, P75
Lunn DJ, 2000, STAT COMPUT, V10, P325, DOI 10.1023/A:1008929526011
MacMillan N. A., 2005, DETECTION THEORY USE
Marin J.-M., 2007, BAYESIAN CORE PRACTI
McKinney MF, 1999, J ACOUST SOC AM, V106, P2679, DOI 10.1121/1.428098
Micheyl C, 1998, J ACOUST SOC AM, V104, P1039, DOI 10.1121/1.423322
MOORE BCJ, 1973, J ACOUST SOC AM, V54, P610, DOI 10.1121/1.1913640
Moore BC., 2003, INTRO PSYCHOL HEARIN
MOORE BCJ, 1989, J ACOUST SOC AM, V86, P1722, DOI 10.1121/1.398603
Moore B.C.J., J ACOUST SO IN PRESS
NELSON DA, 1982, J ACOUST SOC AM, V71, P660, DOI 10.1121/1.387541
NELSON DA, 1983, J ACOUST SOC AM, V73, P2117, DOI 10.1121/1.389579
Oetinger R., 1959, Acustica, V9
Oxenham AJ, 2003, JARO-J ASSOC RES OTO, V4, P541, DOI 10.1007/s10162-002-3058-y
Oxenham A.J., BASIC ASPECTS HEARIN
Pinheiro J. C., 1995, J COMPUTATIONAL GRAP, V4, P12, DOI [10.1080/10618600.1995.10474663, DOI 10.2307/1390625]
RONKEN DA, 1971, J ACOUST SOC AM, V49, P1232, DOI 10.1121/1.1912486
Ruggero M.A., 1989, COCHLEAR MECH STRUCT, P259
Scharf B, 1970, FDN MODERN AUDITORY
SCHWARZ G, 1978, ANN STAT, V6, P461, DOI 10.1214/aos/1176344136
SEK A, 1995, J ACOUST SOC AM, V97, P2479, DOI 10.1121/1.411968
SEKEY ANDREW, 1963, JOUR ACOUSTICAL SOC AMER, V35, P682, DOI 10.1121/1.1918587
Shower EG, 1931, J ACOUST SOC AM, V3, P275, DOI 10.1121/1.1915561
Siebert W. M., 1968, RECOGNIZING PATTERNS, P104
SIEBERT WM, 1970, PR INST ELECTR ELECT, V58, P723, DOI 10.1109/PROC.1970.7727
Spiegelhalter DJ, 2002, J ROY STAT SOC B, V64, P583, DOI 10.1111/1467-9868.00353
SRULOVICZ P, 1983, J ACOUST SOC AM, V73, P1266, DOI 10.1121/1.389275
TURNER CW, 1982, J SPEECH HEAR RES, V25, P34
WAKEFIELD GH, 1985, J ACOUST SOC AM, V77, P613, DOI 10.1121/1.391879
WIER CC, 1977, J ACOUST SOC AM, V61, P178, DOI 10.1121/1.381251
WIER CC, 1976, PERCEPT PSYCHOPHYS, V19, P75, DOI 10.3758/BF03199389
ZWICKER E, 1957, J ACOUST SOC AM, V29, P548, DOI 10.1121/1.1908963
Zwicker E., 1970, FREQUENCY ANAL PERIO, P376
NR 66
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2012
VL 292
IS 1-2
BP 1
EP 13
DI 10.1016/j.heares.2012.07.004
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 024GJ
UT WOS:000310097400001
PM 22841571
ER
PT J
AU Andrade, LR
Lins, U
Farina, M
Kachar, B
Thalmann, R
AF Andrade, Leonardo R.
Lins, Ulysses
Farina, Marcos
Kachar, Bechara
Thalmann, Ruediger
TI Immunogold TEM of otoconin 90 and otolin - relevance to mineralization
of otoconia, and pathogenesis of benign positional vertigo
SO HEARING RESEARCH
LA English
DT Article
ID INNER-EAR; MATRIX PROTEINS; MAJOR PROTEIN; OSTEOPOROSIS; OSTEOPENIA;
CONTAINS; BALANCE
AB Implementation of the deep-etch technique enabled unprecedented definition of substructural elements of otoconia, including the fibrillar meshwork of the inner core with its globular attachments. Subsequently the effects of the principal soluble otoconial protein, otoconin 90, upon calcite crystal growth in vitro were determined, including an increased rate of nucleation, inhibition of growth kinetics and significant morphologic changes. The logical next step, ultrastructural localization of otoconin 90, by means of immunogold TEM in young mature mice, demonstrated a high density of gold particles in the inner core in spite of a relatively low level of mineralization. Here gold particles are typically arranged in oval patterns implying that otoconin 90 is attached to a scaffold consisting of the hexagonal fibrillar meshwork, characteristic of otolin. The level of mineralization is much higher in the outer cortex where mineralized fiber bundles are arranged parallel to the surface. Following decalcification, gold particles, as well as matrix fibrils, presumed to consist of a linear structural phenotype of otolin, are aligned in identical direction, suggesting that they serve as scaffold to guide mineralization mediated by otoconin 90. In the faceted tips, the level of mineralization is highest, even though the density of gold particles is relatively low, conceivably due to the displacement by the dense mineral phase. TEM shows that individual crystallites assemble into iso-oriented columns. Columns are arranged in parallel lamellae which convert into mineralized blocks for hierarchical assembly into the complex otoconial mosaic.
Another set of experiments based on immunogold TEM in young mice demonstrates that the fibrils interconnecting otoconia consist of the short chain collagen otolin. By two years of age the superficial layer of mouse otoconia (corresponding to mid-life human) has become demineralized resulting in weakening or loss of anchoring of the fibrils interconnecting otoconia. Consequently, otoconia detached from each other may be released into the endolymphatic space by minor mechanical disturbances. In humans, benign positional vertigo (BPV) is believed to result from translocation of otoconia from the endolymphatic space into the semi-circular canals rendering their receptors susceptible to stimulation by gravity causing severe attacks of vertigo. The combinations of these observations in humans, together with the presented animal experiments, provide a tentative pathogenetic basis of the early stage of BPV. (c) 2012 Elsevier B.V. All rights reserved.
C1 [Thalmann, Ruediger] Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA.
[Andrade, Leonardo R.; Kachar, Bechara] NIDCD, Lab Cell Struct & Dynam, NIH, Bethesda, MD 20892 USA.
[Andrade, Leonardo R.; Farina, Marcos] Univ Fed Rio de Janeiro, CCS, Inst Ciencias Biomed, BR-21941590 Rio De Janeiro, RJ, Brazil.
[Lins, Ulysses] Univ Fed Rio de Janeiro, CCS, Inst Microbiol Prof Paulo de Goes, BR-21941590 Rio De Janeiro, RJ, Brazil.
RP Thalmann, R (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, 660 S Euclid Ave, St Louis, MO 63110 USA.
EM thalmannr@ent.wustl.edu
RI Andrade, Leonardo/C-9554-2011; Inbeb, Inct/K-2317-2013; Farina,
Marcos/I-3744-2014
OI Andrade, Leonardo/0000-0002-0004-5677;
FU National Institutes of Health (NIH) Intramural Research Fund
[Z01-DC000002-22]; NIH [R21DC 009320, RO1 DC 011614]; FAPERJ; CNPq
FX We thank Dr. S. Brian Andrews from NINDS-NIH for the use of the Zeiss
912 analytical TEM. We would also like to thank Endrit Agastra for
assistance with the preparation of the manuscript. This work was
supported by National Institutes of Health (NIH) Intramural Research
Fund Z01-DC000002-22 (B.K.), NIH awards R21DC 009320 and RO1 DC 011614
(RT), and the Brazilian Agencies FAPERJ (UL) and CNPq (MF).
CR Agrawal Y, 2009, ARCH INTERN MED, V169, P938, DOI 10.1001/archinternmed.2009.66
ANNIKO M, 1984, ACTA OTO-LARYNGOL, V97, P283, DOI 10.3109/00016488409130990
BALOH RW, 1987, NEUROLOGY, V37, P371
CAMPOS A, 1990, ADV OTO-RHINO-LARYNG, V45, P143
Colfen H, 2010, NAT MATER, V9, P960, DOI 10.1038/nmat2911
Deans MR, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012765
EPLEY JM, 1992, OTOLARYNG HEAD NECK, V107, P399
ERWAY LC, 1986, SCANNING MICROSCOPY, V1986, P1681
Giachelli C M, 2005, Orthod Craniofac Res, V8, P229, DOI 10.1111/j.1601-6343.2005.00345.x
HARADA Y, 1977, ACTA OTO-LARYNGOL, V84, P65, DOI 10.3109/00016487709123943
HUNTER GK, 1994, BIOCHEM J, V300, P723
Jeong SH, 2009, NEUROLOGY, V72, P1069, DOI 10.1212/01.wnl.0000345016.33983.e0
KWAN APL, 1991, J CELL BIOL, V114, P597, DOI 10.1083/jcb.114.3.597
Lim D.J., 1983, ANN OTOL RHINOL LA S, V112, P12
Lins U, 2000, J STRUCT BIOL, V131, P67, DOI 10.1006/jsbi.2000.4260
Lu WF, 2010, HEARING RES, V268, P172, DOI 10.1016/j.heares.2010.05.019
MANN S, 1983, PROC R SOC SER B-BIO, V218, P415, DOI 10.1098/rspb.1983.0048
Murayama E, 2005, MECH DEVELOP, V122, P791, DOI 10.1016/j.mod.2005.03.002
Murayama E, 2002, EUR J BIOCHEM, V269, P688, DOI 10.1046/j.0014-2956.2001.02701.x
Petralia RS, 1999, METH MOL B, V128, P73
POTE KG, 1993, BIOCHEMISTRY-US, V32, P5017, DOI 10.1021/bi00070a007
ROSS MD, 1976, ANN OTO RHINOL LARYN, V85, P310
SALAMAT MS, 1980, ANN OTO RHINOL LARYN, V89, P229
Thalmann I, 2006, ELECTROPHORESIS, V27, P1598, DOI 10.1002/elps.200500768
Thalmann R, 2001, ANN NY ACAD SCI, V942, P162
Thalmann R, 2011, ACTA OTO-LARYNGOL, V131, P382, DOI 10.3109/00016489.2010.548401
Verpy E, 1999, P NATL ACAD SCI USA, V96, P529, DOI 10.1073/pnas.96.2.529
Vibert D, 2003, ANN OTO RHINOL LARYN, V112, P885
Wang YX, 1998, P NATL ACAD SCI USA, V95, P15345, DOI 10.1073/pnas.95.26.15345
Welgampola MS, 2011, MED J AUSTRALIA, V195, P518, DOI 10.5694/mja11.11001
Yang H, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020498
Zhao X, 2007, DEV BIOL, V304, P508, DOI 10.1016/j.ydbio.2007.01.013
NR 32
TC 8
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2012
VL 292
IS 1-2
BP 14
EP 25
DI 10.1016/j.heares.2012.07.003
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 024GJ
UT WOS:000310097400002
PM 22841569
ER
PT J
AU Smalt, CJ
Krishnan, A
Bidelman, GM
Ananthakrishnan, S
Gandour, JT
AF Smalt, Christopher J.
Krishnan, Ananthanarayan
Bidelman, Gavin M.
Ananthakrishnan, Saradha
Gandour, Jackson T.
TI Distortion products and their influence on representation of
pitch-relevant information in the human brainstem for unresolved
harmonic complex tones
SO HEARING RESEARCH
LA English
DT Article
ID FREQUENCY-FOLLOWING RESPONSES; CUBIC DIFFERENCE TONES; HUMAN AUDITORY
BRAIN; ANTEROVENTRAL COCHLEAR NUCLEUS; ITERATED RIPPLED NOISE;
STEADY-STATE VOWELS; ACOUSTIC DISTORTION; COMBINATION TONES;
FUNDAMENTAL-FREQUENCY; INFERIOR COLLICULUS
AB Pitch experiments aimed at evaluating temporal pitch mechanism(s) often utilize complex sounds with only unresolved harmonic components, and a low-pass noise masker to eliminate the potential contribution of audible distortion products to the pitch percept. Herein we examine how: (i) masker induced reduction of neural distortion products (difference tone: DT; and cubic difference tone: CDT) alters the representation of pitch relevant information in the brainstem; and (ii) the pitch salience is altered when distortion products are reduced and/or eliminated. Scalp recorded brainstem frequency following responses (FFR) were recorded in normal hearing individuals using a complex tone with only unresolved harmonics presented in quiet, and in the presence of a low-pass masker at SNRs of +15, +5, and -5 dB. Difference limen for F0 discrimination (F0 DL) was obtained in quiet and in the presence of low-pass noise. Magnitude of DT components (with the exception of components at F0 and 2F0), and the CDT components decreased with increasing masker level. Neural pitch strength decreased with increasing masker level for both the envelope-related (FFRENV) and spectral-related (FFRSPEC) phase-locked activity. Finally, F0 DLs increased with decreasing SNRs suggesting poorer F0 discrimination with reduction of the distortion products. Collectively, these findings support the notion that both DT and CDT, as reflected in the FFRENV and FFRSPEC, respectively, influence both the brainstem representation of pitch relevant information and the pitch salience of the complex sounds. (c) 2012 Elsevier B.V. All rights reserved.
C1 [Krishnan, Ananthanarayan; Ananthakrishnan, Saradha; Gandour, Jackson T.] Purdue Univ, Dept Speech Language & Hearing Sci, W Lafayette, IN 47907 USA.
[Smalt, Christopher J.] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA.
[Bidelman, Gavin M.] Baycrest Ctr Geriatr Care, Rotman Res Inst, Toronto, ON M6A 2E1, Canada.
RP Krishnan, A (reprint author), Purdue Univ, Dept Speech Language & Hearing Sci, 1353 Heavilon Hall,500 Oval Dr, W Lafayette, IN 47907 USA.
EM rkrish@purdue.edu
FU NIH [R01DC008549]
FX Research supported by NIH R01DC008549 (A.K.). We also profusely thank
the two reviewers for their patience and many thoughtful insights that
have improved the quality of this manuscript. Reprint requests should be
addressed to Ananthanarayan Krishnan, Department of Speech Language
Hearing Sciences, Purdue University, West Lafayette, IN, USA 47907-2038,
or via email: rkrish@purdue.edu
CR Abel C, 2009, J NEUROPHYSIOL, V101, P1560, DOI 10.1152/jn.90805.2008
Aiken SJ, 2008, HEARING RES, V245, P35, DOI 10.1016/j.heares.2008.08.004
Arnold S, 1998, J ACOUST SOC AM, V104, P1565, DOI 10.1121/1.424368
Bernstein JG, 2003, J ACOUST SOC AM, V113, P3323, DOI 10.1121/1.1572146
Bhagat SP, 2004, HEARING RES, V193, P51, DOI 10.1016/j.heares.2004.04.005
BROWN AM, 1987, HEARING RES, V31, P25, DOI 10.1016/0378-5955(87)90211-5
BUUNEN TJF, 1977, J ACOUST SOC AM, V61, P508, DOI 10.1121/1.381292
BUUNEN TJF, 1978, J ACOUST SOC AM, V64, P772, DOI 10.1121/1.382042
BUUNEN TJF, 1974, J ACOUST SOC AM, V55, P297, DOI 10.1121/1.1914501
Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717
Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698
Carlyon RP, 2002, J ACOUST SOC AM, V112, P621, DOI 10.1121/1.1488660
CHAMBERS RD, 1986, J ACOUST SOC AM, V80, P1673, DOI 10.1121/1.394279
CHERTOFF ME, 1990, J ACOUST SOC AM, V87, P1248, DOI 10.1121/1.398800
CHERTOFF ME, 1992, J SPEECH HEAR RES, V35, P157
CLARK WW, 1984, HEARING RES, V16, P299, DOI 10.1016/0378-5955(84)90119-9
DOLPHIN WF, 1994, J ACOUST SOC AM, V96, P2225, DOI 10.1121/1.411382
Elsisy H, 2008, INT J AUDIOL, V47, P431, DOI 10.1080/14992020801987396
Faulstich M, 1999, J ACOUST SOC AM, V105, P491, DOI 10.1121/1.424586
GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732
GLASER EM, 1976, ELECTROEN CLIN NEURO, V40, P25, DOI 10.1016/0013-4694(76)90176-0
Gockel HE, 2011, JARO-J ASSOC RES OTO, V12, P767, DOI 10.1007/s10162-011-0284-1
GOLDSTEI.JL, 1967, J ACOUST SOC AM, V41, P1603, DOI 10.1121/1.2143682
GOLDSTEI.JL, 1968, PR INST ELECTR ELECT, V56, P981, DOI 10.1109/PROC.1968.6449
GREENBERG S, 1987, HEARING RES, V25, P91, DOI 10.1016/0378-5955(87)90083-9
Grimault N, 2002, PERCEPT PSYCHOPHYS, V64, P189, DOI 10.3758/BF03195785
Hall DA, 2009, CEREB CORTEX, V19, P576, DOI 10.1093/cercor/bhn108
HALL JW, 1979, SCIENCE, V205, P1297, DOI 10.1126/science.472748
HORNER K, 1983, HEARING RES, V11, P343, DOI 10.1016/0378-5955(83)90066-7
HOUTSMA AJM, 1990, J ACOUST SOC AM, V87, P304, DOI 10.1121/1.399297
HOUTSMA AJM, 1972, J ACOUST SOC AM, V51, P520, DOI 10.1121/1.1912873
HUMES LE, 1980, HEARING RES, V2, P115, DOI 10.1016/0378-5955(80)90033-7
Kaernbach C, 2001, J ACOUST SOC AM, V110, P1039, DOI 10.1121/1.1381535
KEMP DT, 1984, HEARING RES, V13, P39, DOI 10.1016/0378-5955(84)90093-5
KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222
KIM DO, 1980, J ACOUST SOC AM, V67, P1704, DOI 10.1121/1.384297
Krishnan A, 2010, BRAIN RES, V1313, P124, DOI 10.1016/j.brainres.2009.11.061
Krishnan A, 2005, COGNITIVE BRAIN RES, V25, P161, DOI 10.1016/j.cogbrainres.2005.05.004
Krishnan A, 2011, HEARING RES, V275, P110, DOI 10.1016/j.heares.2010.12.008
Krishnan A, 2010, BRAIN LANG, V114, P193, DOI 10.1016/j.bandl.2010.05.004
Krishnan A, 2004, HEARING RES, V189, P1, DOI 10.1016/S0378-5955(03)00402-7
Krishnan A, 2009, BRAIN LANG, V110, P135, DOI 10.1016/j.bandl.2009.03.005
Krishnan A, 2009, J COGNITIVE NEUROSCI, V21, P1092, DOI 10.1162/jocn.2009.21077
Krishnan A, 2000, AUDIOL NEURO-OTOL, V5, P312, DOI 10.1159/000013897
Krishnan A, 1999, AUDIOL NEURO-OTOL, V4, P95, DOI 10.1159/000013826
Krishnan A, 2009, NEUROREPORT, V20, P408, DOI 10.1097/WNR.0b013e3283263000
Krishnan A, 2002, HEARING RES, V166, P192, DOI 10.1016/S0378-5955(02)00327-1
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
Lonsbury-Martin B L, 1990, Ann Otol Rhinol Laryngol Suppl, V147, P3
LONSBURYMARTIN BL, 1987, HEARING RES, V28, P173, DOI 10.1016/0378-5955(87)90048-7
Marsh J.T., 1974, ELECTROENCEPHALOGR C, V38, P415
MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9
McAlpine D, 2004, J NEUROPHYSIOL, V92, P1295, DOI 10.1152/jn.00034.2004
Meddis R, 1997, J ACOUST SOC AM, V102, P1811, DOI 10.1121/1.420088
Micheyl C, 2010, J ACOUST SOC AM, V128, P1930, DOI 10.1121/1.3478786
Moore BCJ, 2000, J ACOUST SOC AM, V108, P2337, DOI 10.1121/1.1312362
Moore BCJ, 2011, HEARING RES, V276, P88, DOI 10.1016/j.heares.2011.01.003
Oxenham AJ, 2009, J ACOUST SOC AM, V125, P2189, DOI 10.1121/1.3089220
Pandya Pritesh K, 2004, J Am Acad Audiol, V15, P184, DOI 10.3766/jaaa.15.3.2
Plack CJ, 2000, J ACOUST SOC AM, V108, P696, DOI 10.1121/1.429602
PLOMP R, 1967, J ACOUST SOC AM, V41, P1526, DOI 10.1121/1.1910515
Pressnitzer D, 2001, J ACOUST SOC AM, V109, P2074, DOI 10.1121/1.1359797
Purcell DW, 2007, J ACOUST SOC AM, V122, P992, DOI 10.1121/1.2751250
RHODE WS, 1993, HEARING RES, V66, P31, DOI 10.1016/0378-5955(93)90257-2
RICKMAN MD, 1991, J ACOUST SOC AM, V89, P2818, DOI 10.1121/1.400720
Robles L, 1997, J NEUROPHYSIOL, V77, P2385
SCHMIEDT RA, 1986, J ACOUST SOC AM, V79, P1481, DOI 10.1121/1.393675
SCHOUTEN J. F., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1418, DOI 10.1121/1.1918360
SHACKLETON TM, 1994, J ACOUST SOC AM, V95, P3529, DOI 10.1121/1.409970
SMITH JC, 1975, ELECTROEN CLIN NEURO, V39, P465, DOI 10.1016/0013-4694(75)90047-4
SMITH JC, 1978, SCIENCE, V201, P639, DOI 10.1126/science.675250
SMOORENB.GF, 1970, J ACOUST SOC AM, V48, P924, DOI 10.1121/1.1912232
SMOORENB.GF, 1972, J ACOUST SOC AM, V52, P615, DOI 10.1121/1.1913152
SMOORENB.GF, 1972, J ACOUST SOC AM, V52, P603, DOI 10.1121/1.1913151
SMOORENBURG GF, 1976, J ACOUST SOC AM, V59, P945, DOI 10.1121/1.380954
Swaminathan J, 2008, IEEE T BIO-MED ENG, V55, P281, DOI 10.1109/TBME.2007.896592
Swaminathan J, 2008, NEUROREPORT, V19, P1163, DOI 10.1097/WNR.0b013e3283088d31
Wegel RL, 1924, PHYS REV, V23, P266, DOI 10.1103/PhysRev.23.266
Wiegrebe L, 1999, J ACOUST SOC AM, V106, P2709, DOI 10.1121/1.428099
WORDEN FG, 1968, ELECTROEN CLIN NEURO, V25, P42, DOI 10.1016/0013-4694(68)90085-0
Yost WA, 1996, J ACOUST SOC AM, V99, P1066, DOI 10.1121/1.414593
YOUNG ED, 1979, J ACOUST SOC AM, V66, P1381, DOI 10.1121/1.383532
ZWICKER E, 1979, HEARING RES, V1, P283, DOI 10.1016/0378-5955(79)90001-7
ZWICKER E, 1980, HEARING RES, V2, P513, DOI 10.1016/0378-5955(80)90088-X
NR 84
TC 5
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2012
VL 292
IS 1-2
BP 26
EP 34
DI 10.1016/j.heares.2012.08.001
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 024GJ
UT WOS:000310097400003
PM 22910032
ER
PT J
AU Guinan, JJ
AF Guinan, John J., Jr.
TI How are inner hair cells stimulated? Evidence for multiple mechanical
drives
SO HEARING RESEARCH
LA English
DT Article
ID AUDITORY-NERVE RESPONSES; OLIVOCOCHLEAR-EFFERENT INHIBITION;
BASILAR-MEMBRANE RESPONSES; CHRONIC COCHLEAR PATHOLOGY; LOW-FREQUENCY
TONES; TECTORIAL MEMBRANE; ELECTRICAL-STIMULATION; HYDRODYNAMIC-FORCES;
STEREOCILIA DAMAGE; CHINCHILLA COCHLEA
AB Recent studies indicate that the gap over outer hair cells (OHCs) between the reticular lamina (RL) and the tectorial membrane (TM) varies cyclically during low-frequency sounds. Variation in the RL-TM gap produces radial fluid flow in the gap that can drive inner hair cell (IHC) stereocilia. Analysis of RL-TM gap changes reveals three IHC drives in addition to classic SHEAR. For upward basilar-membrane (BM) motion, IHC stereocilia are deflected in the excitatory direction by SHEAR and OHC-MOTILITY, but in the inhibitory direction by TM-PUSH and CILIA-SLANT. Upward BM motion causes OHC somatic contraction which tilts the RL, compresses the RL-TM gap over IHCs and expands the RL-TM gap over OHCs, thereby producing an outward (away from the IHCs) radial fluid flow which is the OHC-MOTILITY drive. For upward BM motion, the force that moves the TM upward also compresses the RL-TM gap over OHCs causing inward radial flow past IHCs which is the TM-PUSH drive. Motions that produce large tilting of OHC stereocilia squeeze the supra-OHC RL-TM gap and caused inward radial flow past IHCs which is the CILIA-SLANT drive. Combinations of these drives explain: (1) the reversal at high sound levels of auditory nerve (AN) initial peak (ANIP) responses to clicks, and medial olivocochlear (MOC) inhibition of ANIP responses below, but not above, the ANIP reversal, (2) dips and phase reversals in AN responses to tones in cats and chinchillas, (3) hypersensitivity and phase reversals in tuning-curve tails after OHC ablation, and (4) MOC inhibition of tail-frequency AN responses. The OHC-MOTILITY drive provides another mechanism, in addition to BM motion amplification, that uses active processes to enhance the output of the cochlea. The ability of these IHC drives to explain previously anomalous data provides strong, although indirect, evidence that these drives are significant and presents a new view of how the cochlea works at frequencies below 3 kHz. (c) 2012 Elsevier B.V. All rights reserved.
C1 [Guinan, John J., Jr.] Massachusetts Eye & Ear Infirm, Dept Otolaryngol, Eaton Peabody Lab Auditory Physiol, Boston, MA 02114 USA.
[Guinan, John J., Jr.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA.
[Guinan, John J., Jr.] Harvard MIT Div Hlth Sci & Technol, Speech & Hearing Biosci & Technol Program, Cambridge, MA 02139 USA.
RP Guinan, JJ (reprint author), Massachusetts Eye & Ear Infirm, Dept Otolaryngol, Eaton Peabody Lab Auditory Physiol, 243 Charles St, Boston, MA 02114 USA.
EM jjg@epl.meei.harvard.edu
FU NIH NIDCD [RO1 DC000235, P30 DC005209]
FX I thank Dr. Dennis Freedman and Dr. Christopher Shera for comments on an
earlier version of the manuscript. Supported by NIH NIDCD RO1 DC000235
and P30 DC005209.
CR ALLEN JB, 1980, J ACOUST SOC AM, V68, P1660, DOI 10.1121/1.385198
Baumgart J, 2009, CONCEPTS AND CHALLENGES IN THE BIOPHYSICS OF HEARING, P288, DOI 10.1142/9789812833785_0045
Chadwick RS, 1996, P NATL ACAD SCI USA, V93, P2564, DOI 10.1073/pnas.93.6.2564
Chan DK, 2005, BIOPHYS J, V89, P4382, DOI 10.1529/biophysj.105.070474
Cheatham MA, 2004, J PHYSIOL-LONDON, V560, P821, DOI 10.1113/jphysiol.204.069559
Cheatham MA, 1998, J ACOUST SOC AM, V104, P356, DOI 10.1121/1.423245
Chen FY, 2011, NAT NEUROSCI, V14, P770, DOI 10.1038/nn.2827
Chiaradia C, 2009, CONCEPTS AND CHALLENGES IN THE BIOPHYSICS OF HEARING, P283, DOI 10.1142/9789812833785_0044
Cooper N.P., 2011, ASS RES OT ABSTR, V34
Cooper N.P., 2011, PROGR AUDITORY BIOME, V1403, P396
Cooper N.P., 1997, PHYCHOPHYSICAL PHYSL, P11
Cooper NP, 2006, J PHYSIOL-LONDON, V576, P49, DOI 10.1113/jphysiol.2006.114991
Dallos P, 2008, NEURON, V58, P333, DOI 10.1016/j.neuron.2008.02.028
DALLOS P, 1978, J NEUROPHYSIOL, V41, P365
Dallos P, 2003, JARO, V4, P416, DOI 10.1007/s0162-002-3049-z
Eatock RA, 2000, ANNU REV NEUROSCI, V23, P285, DOI 10.1146/annurev.neuro.23.1.285
Echteler SM, 1994, COMP HEARING MAMMALS, P134
FREEMAN DM, 1990, HEARING RES, V48, P31, DOI 10.1016/0378-5955(90)90197-W
FREEMAN DM, 1990, HEARING RES, V48, P17, DOI 10.1016/0378-5955(90)90196-V
Fridberger A, 2006, Auditory Mechanisms: Processes and Models, P254, DOI 10.1142/9789812773456_0044
Fridberger A, 2002, J NEUROSCI, V22, P9850
Fridberger A, 2006, P NATL ACAD SCI USA, V103, P1918, DOI 10.1073/pnas.0507231103
Ghaffari R, 2007, P NATL ACAD SCI USA, V104, P16510, DOI 10.1073/pnas.0703665104
Ghaffari R., 2010, NATURE COMMUNICATION
GIFFORD ML, 1983, J ACOUST SOC AM, V74, P115, DOI 10.1121/1.389728
Glueckert R, 2005, HEARING RES, V199, P40, DOI 10.1016/j.heares.2004.05.006
GRAY PR, 1967, BIOPHYS J, V7, P759, DOI 10.1016/S0006-3495(67)86621-9
Guinan JJ, 2005, J ACOUST SOC AM, V118, P2421, DOI 10.1121/1.2017899
Guinan JJ, 2008, J ACOUST SOC AM, V124, P1080, DOI 10.1121/1.2949435
GUINAN JJ, 1984, J COMP NEUROL, V226, P21, DOI 10.1002/cne.902260103
GUINAN JJ, 1988, HEARING RES, V37, P29, DOI 10.1016/0378-5955(88)90075-5
Guinan JJ, 2009, CONCEPTS AND CHALLENGES IN THE BIOPHYSICS OF HEARING, P155, DOI 10.1142/9789812833785_0024
Guinan Jr J.J., 2011, PROGR AUDITORY BIOME, V1403, P90
Gummer AW, 2006, AUDITORY MECHANISMS: PROCESSES AND MODELS, P17, DOI 10.1142/9789812773456_0002
Gummer AW, 1996, P NATL ACAD SCI USA, V93, P8727, DOI 10.1073/pnas.93.16.8727
Hakizimana P., 2011, ASS RES OT ABSTR, V34, P117
Hakizimana P., 2011, MECH HEARING, V1403
HUBBARD AE, 1990, HEARING RES, V43, P269, DOI 10.1016/0378-5955(90)90234-G
Hudspeth AJ, 2000, P NATL ACAD SCI USA, V97, P11765, DOI 10.1073/pnas.97.22.11765
Jacob S, 2011, BIOPHYS J, V100, P2586, DOI 10.1016/j.bpj.2011.05.002
Jia SP, 2005, NAT NEUROSCI, V8, P1028, DOI 10.1038/nn1509
Karavitaki KD, 2007, BIOPHYS J, V92, P3284, DOI 10.1529/biophysj.106.084087
Karavitaki K.D., 2007, BIOPHYS J, V92, P3294
Kennedy HJ, 2006, J NEUROSCI, V26, P2757, DOI 10.1523/JNEUROSCI.3808-05.2006
KIANG NYS, 1990, HEARING RES, V49, P1
KIANG NYS, 1986, HEARING RES, V22, P171
Kim J., 2011, PROGR AUDITORY BIOME, V1403, P50
Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059
LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X
LIBERMAN MC, 1984, HEARING RES, V16, P75, DOI 10.1016/0378-5955(84)90026-1
Lin T, 2000, J ACOUST SOC AM, V107, P2615, DOI 10.1121/1.428648
Lopez-Poveda EA, 2008, J ACOUST SOC AM, V123, P1544, DOI 10.1121/1.2835418
Lu TK, 2006, HEARING RES, V214, P45, DOI 10.1016/j.heares.2006.01.018
Mountain DC, 1999, HEARING RES, V132, P1, DOI 10.1016/S0378-5955(99)00013-1
Nam H., 2011, PROGR AUDITORY BIOME, V1403, P502
Narayan SS, 1998, SCIENCE, V282, P1882, DOI 10.1126/science.282.5395.1882
NEELY ST, 1993, J ACOUST SOC AM, V94, P137, DOI 10.1121/1.407091
Nowotny M, 2006, P NATL ACAD SCI USA, V103, P2120, DOI 10.1073/pnas.0511125103
Nowotny M, 2011, J ACOUST SOC AM, V130, P3852, DOI 10.1121/1.3651822
Olson ES, 2001, J ACOUST SOC AM, V110, P349, DOI 10.1121/1.1369098
Plack CJ, 1998, J ACOUST SOC AM, V103, P1598, DOI 10.1121/1.421294
Recio A, 1998, J ACOUST SOC AM, V103, P1972, DOI 10.1121/1.421377
Robles L, 2001, PHYSIOL REV, V81, P1305
RUGGERO MA, 1987, J NEUROPHYSIOL, V58, P379
RUGGERO MA, 1986, J ACOUST SOC AM, V80, P1375, DOI 10.1121/1.394390
Ruggero MA, 1996, AUDIT NEUROSCI, V2, P159
Russell IJ, 2007, NAT NEUROSCI, V10, P215, DOI 10.1038/nn1828
Scherer MP, 2004, P NATL ACAD SCI USA, V101, P17652, DOI 10.1073/pnas.0408232101
SELLICK PM, 1982, HEARING RES, V7, P199, DOI 10.1016/0378-5955(82)90014-4
Shoelson B, 2004, BIOPHYS J, V87, P2768, DOI 10.1529/biophysj.104.040774
Slepecky N. B., 1996, COCHLEA, P44
Smith ST, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018161
Stankovic Konstantina M., 1999, Journal of the Acoustical Society of America, V106, P857, DOI 10.1121/1.427102
Stankovic KM, 2000, J ACOUST SOC AM, V108, P664, DOI 10.1121/1.429599
Steele CR, 2005, INT J SOLIDS STRUCT, V42, P5887, DOI 10.1016/j.ijsolstr.2005.03.056
Steele CR, 2009, J MECH MATER STRUCT, V4, P755, DOI 10.2140/jomms.2009.4.755
ter Kuile E., 1900, PFLUGERS ARCH GES PH, V79, P146
van der Heijden M, 2006, J NEUROSCI, V26, P11462, DOI 10.1523/JNEUROSCI.1882-06.2006
Wong JC, 1998, HEARING RES, V123, P61, DOI 10.1016/S0378-5955(98)00098-7
Zilany MSA, 2006, J ACOUST SOC AM, V120, P1446, DOI 10.1121/1.2225512
ZWISLOCKI JJ, 1980, J ACOUST SOC AM, V67, P1679
NR 81
TC 11
Z9 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2012
VL 292
IS 1-2
BP 35
EP 50
DI 10.1016/j.heares.2012.08.005
PG 16
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 024GJ
UT WOS:000310097400004
PM 22959529
ER
PT J
AU Eppsteiner, RW
Shearer, AE
Hildebrand, MS
DeLuca, AP
Ji, HH
Dunn, CC
Black-Ziegelbein, EA
Casavant, TL
Braun, TA
Scheet, TE
Scherer, SE
Hansen, MR
Gantz, BJ
Smith, RJH
AF Eppsteiner, Robert W.
Shearer, A. Eliot
Hildebrand, Michael S.
DeLuca, Adam P.
Ji, Haihong
Dunn, Camille C.
Black-Ziegelbein, Elizabeth A.
Casavant, Thomas L.
Braun, Terry A.
Scheetz, Todd E.
Scherer, Steven E.
Hansen, Marlan R.
Gantz, Bruce J.
Smith, Richard J. H.
TI Prediction of cochlear implant performance by genetic mutation: The
spiral ganglion hypothesis
SO HEARING RESEARCH
LA English
DT Article
ID NEUROPATHY SPECTRUM DISORDER; ICHTHYOSIS-DEAFNESS SYNDROME; HEREDITARY
HEARING-LOSS; LANGE-NIELSEN-SYNDROME; AUDITORY NEUROPATHY; GJB2 GENE;
SPEECH-PERCEPTION; GJB2-RELATED DEAFNESS; PROFOUND DEAFNESS; TMPRSS3
MUTATIONS
AB Background: Up to 7% of patients with severe-to-profound deafness do not benefit from cochlear implantation. Given the high surgical implantation and clinical management cost of cochlear implantation (>51 million lifetime cost), prospective identification of the worst performers would reduce unnecessary procedures and healthcare costs. Because cochlear implants bypass the membranous labyrinth but rely on the spiral ganglion for functionality, we hypothesize that cochlear implant (CI) performance is dictated in part by the anatomic location of the cochlear pathology that underlies the hearing loss. As a corollary, we hypothesize that because genetic testing can identify sites of cochlear pathology, it may be useful in predicting CI performance.
Methods: 29 adult CI recipients with idiopathic adult-onset severe-to-profound hearing loss were studied. DNA samples were subjected to solution-based sequence capture and massively parallel sequencing using the OtoSCOPE (R) platform. The cohort was divided into three CI performance groups (good, intermediate, poor) and genetic causes of deafness were correlated with audiometric data to determine whether there was a gene-specific impact on CI performance.
Results: The genetic cause of deafness was determined in 3/29 (10%) individuals. The two poor performers segregated mutations in TMPRSS3, a gene expressed in the spiral ganglion, while the good performer segregated mutations in LOXHD1, a gene expressed in the membranous labyrinth. Comprehensive literature review identified other good performers with mutations in membranous labyrinth-expressed genes; poor performance was associated with spiral ganglion-expressed genes.
Conclusions: Our data support the underlying hypothesis that mutations in genes preferentially expressed in the spiral ganglion portend poor CI performance while mutations in genes expressed in the membranous labyrinth portend good CI performance. Although the low mutation rate in known deafness genes in this cohort likely relates to the ascertainment characteristics (postlingual hearing loss in adult CI recipients), these data suggest that genetic testing should be implemented as part of the CI evaluation to test this association prospectively. (c) 2012 Elsevier B.V. All rights reserved.
C1 [Eppsteiner, Robert W.; Shearer, A. Eliot; Hildebrand, Michael S.; Ji, Haihong; Dunn, Camille C.; Hansen, Marlan R.; Gantz, Bruce J.; Smith, Richard J. H.] Univ Iowa Hosp & Clin, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA.
[Shearer, A. Eliot; Smith, Richard J. H.] Univ Iowa, Carver Coll Med, Dept Mol Physiol & Biophys, Iowa City, IA 52242 USA.
[DeLuca, Adam P.; Casavant, Thomas L.; Braun, Terry A.; Scheetz, Todd E.] Univ Iowa, Dept Biomed Engn, Iowa City, IA 52242 USA.
[DeLuca, Adam P.; Black-Ziegelbein, Elizabeth A.; Casavant, Thomas L.; Braun, Terry A.; Scheetz, Todd E.] Univ Iowa, Ctr Bioinforrnat & Computat Biol, Iowa City, IA 52242 USA.
[Scheetz, Todd E.] Univ Iowa Hosp & Clin, Dept Ophthalmol & Visual Sci, Iowa City, IA 52242 USA.
[Scherer, Steven E.] Baylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USA.
[Smith, Richard J. H.] Univ Iowa, Interdepartmental PhD Program Genet, Iowa City, IA 52242 USA.
RP Smith, RJH (reprint author), Univ Iowa Hosp & Clin, Dept Otolaryngol Head & Neck Surg, 200 Hawkins Dr,21151-A, Iowa City, IA 52242 USA.
EM richard-smith@uiowa.edu
FU NIDCD [RO1 DC012049, T32 DC00040]
FX This research was supported in part by NIDCD RO1 DC012049 (RJHS) and
NIDCD T32 DC00040 (RWE0). We would like to acknowledge Richard Gibbs and
Donna Muzny for their help with sequencing.
CR Angeli SI, 2011, OTOL NEUROTOL, V32, P1437, DOI 10.1097/MAO.0b013e31823387f9
Archbold Sue M, 2009, Cochlear Implants Int, V10, P25, DOI 10.1002/cii.363
Arndt S, 2010, OTOL NEUROTOL, V31, P210, DOI 10.1097/MAO.0b013e3181cc09cd
Bauer PW, 2003, LARYNGOSCOPE, V113, P2135, DOI 10.1097/00005537-200312000-00015
Brookes JT, 2008, INT J PEDIATR OTORHI, V72, P121, DOI 10.1016/j.ijporl.2007.08.019
Brownstein Z, 2011, GENOME BIOL, V12, DOI 10.1186/gb-2011-12-9-r89
Cheng AK, 2000, JAMA-J AM MED ASSOC, V284, P850, DOI 10.1001/jama.284.7.850
Chora JRGDM, 2010, INT J PEDIATR OTORHI, V74, P1135, DOI 10.1016/j.ijporl.2010.06.014
Chorbachi R, 2002, INT J PEDIATR OTORHI, V66, P213, DOI 10.1016/S0165-5876(02)00181-7
Choung YH, 2008, INT J PEDIATR OTORHI, V72, P911, DOI 10.1016/j.ijporl.2008.02.023
CLOPTON BM, 1980, ANN OTO RHINOL LARYN, V89, P5
Colletti L, 2011, LARYNGOSCOPE, V121, P2455, DOI 10.1002/lary.22131
Connell SS, 2007, OTOLARYNG HEAD NECK, V137, P596, DOI 10.1016/j.otohns.2007.02.017
Counter PR, 2001, J LARYNGOL OTOL, V115, P730
Cullen RD, 2004, LARYNGOSCOPE, V114, P1415, DOI 10.1097/00005537-200408000-00019
Dahl HHM, 2003, AUDIOL NEURO-OTOL, V8, P263, DOI 10.1159/000071998
Dalamon V, 2009, ACTA OTO-LARYNGOL, V129, P395, DOI 10.1080/00016480802566295
Daneshi A, 2011, J LARYNGOL OTOL, V125, P455, DOI 10.1017/S0022215110002999
de Wolf MJF, 2010, J LARYNGOL OTOL, V124, P86, DOI 10.1017/S0022215109990296
Edvardson S, 2011, AM J MED GENET A, V155A, P1170, DOI 10.1002/ajmg.a.33972
Elbracht M, 2007, J MED GENET, V44, DOI 10.1136/jmg.2007.049122
Fasquelle L, 2011, J BIOL CHEM, V286, P17383, DOI 10.1074/jbc.M110.190652
Fukushima K, 2002, INT J PEDIATR OTORHI, V62, P151, DOI 10.1016/S0165-5876(01)00619-X
Gerard JM, 2010, INT J PEDIATR OTORHI, V74, P642, DOI 10.1016/j.ijporl.2010.03.010
Green GE, 2002, AM J MED GENET, V109, P167, DOI 10.1002/ajmg.10330
Grillet N, 2009, AM J HUM GENET, V85, P328, DOI 10.1016/j.ajhg.2009.07.017
GRIMBERG J, 1989, NUCLEIC ACIDS RES, V17, P8390, DOI 10.1093/nar/17.20.8390
Guipponi M, 2002, HUM MOL GENET, V11, P2829, DOI 10.1093/hmg/11.23.2829
Hildebrand MS, 2006, LARYNGOSCOPE, V116, P2211, DOI 10.1097/01.mlg.0000242089.72880.f8
Hutchin T, 2005, CLIN GENET, V68, P506, DOI 10.1111/j.1399-0004.2005.00539.x
Karamert R, 2011, INT J PEDIATR OTORHI, V75, P1572, DOI 10.1016/j.ijporl.2011.09.010
Lai R, 2012, J LARYNGOL OTOL, V128, P349, DOI 10.1017/S002221511100346X
Lalwani AK, 1997, AUDIOL NEURO-OTOL, V2, P139
Lanson BG, 2007, LARYNGOSCOPE, V117, P1260, DOI 10.1097/MLG.0b013e31806009c9
Lee HK, 2009, CLIN GENET, V75, P572, DOI 10.1111/j.1399-0004.2009.01181.x
Li H, 2010, BIOINFORMATICS, V26, P589, DOI 10.1093/bioinformatics/btp698
Liu XZ, 2008, INT J PEDIATR OTORHI, V72, P841, DOI 10.1016/j.ijporl.2008.02.013
Loundon N, 2005, OTOL NEUROTOL, V26, P748, DOI 10.1097/01.mao.0000169044.63970.4a
Lustig LR, 2004, ARCH OTOLARYNGOL, V130, P541, DOI 10.1001/archotol.130.5.541
Luxford WM, 2001, OTOLARYNG HEAD NECK, V124, P125, DOI 10.1067/mhn.2001.113035
Makishima T, 2004, OTOL NEUROTOL, V25, P714, DOI 10.1097/00129492-200409000-00011
Mason JC, 2003, LARYNGOSCOPE, V113, P45, DOI 10.1097/00005537-200301000-00009
Matsushiro N, 2002, LARYNGOSCOPE, V112, P255, DOI 10.1097/00005537-200202000-00011
McKenna A, 2010, GENOME RES, V20, P1297, DOI 10.1101/gr.107524.110
Mhatre AN, 2006, J NEUROSCI RES, V84, P809, DOI 10.1002/jnr.20993
Mohr PE, 2000, INT J TECHNOL ASSESS, V16, P1120, DOI 10.1017/S0266462300103162
NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411
Nadol JB, 2001, INT J PEDIATR OTORHI, V61, P1, DOI 10.1016/S0165-5876(01)00546-8
NILSSON M, 1994, J ACOUST SOC AM, V95, P1085, DOI 10.1121/1.408469
Pennings RJE, 2006, LARYNGOSCOPE, V116, P717, DOI 10.1097/01.mlg.0000205167.08415.9e
PETERSON GE, 1962, J SPEECH HEAR DISORD, V27, P62
Raine CH, 2008, OTOL NEUROTOL, V29, P221
Reinert J, 2010, INT J PEDIATR OTORHI, V74, P791, DOI 10.1016/j.ijporl.2010.04.002
Rodriguez-Ballesteros M, 2008, HUM MUTAT, V29, P823, DOI 10.1002/humu.20708
Rodriguez-Ballesteros M, 2003, HUM MUTAT, V22, P451, DOI 10.1002/humu.10274
Rouillon I, 2006, INT J PEDIATR OTORHI, V70, P689, DOI 10.1016/j.ijporl.2005.09.006
Roush P, 2011, AM J AUDIOL, V20, P159, DOI 10.1044/1059-0889(2011/10-0032)
Rubinstein JT, 1999, AM J OTOL, V20, P445
Santarelli R, 2010, GENOME MED, V2, DOI 10.1186/gm212
Shearer AE, 2010, P NATL ACAD SCI USA, V107, P21104, DOI 10.1073/pnas.1012989107
Siem G, 2008, EAR HEARING, V29, P261
Sinnathuray AR, 2004, OTOL NEUROTOL, V25, P930, DOI 10.1097/00129492-200411000-00012
Sinnathuray AR, 2004, OTOL NEUROTOL, V25, P935, DOI 10.1097/00129492-200411000-00013
Song MH, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024511
Stankovic KM, 2010, ANN OTO RHINOL LARYN, V119, P815
TaitelbaumSwead R, 2006, ARCH OTOLARYNGOL, V132, P495, DOI 10.1001/archotol.132.5.495
Tang W., 2012, GENET TEST MOL BIOMA
Teagle HFB, 2010, EAR HEARING, V31, P325, DOI 10.1097/AUD.0b013e3181ce693b
Tomblin JB, 1999, J SPEECH LANG HEAR R, V42, P497
Tono T, 2001, ORL J OTO-RHINO-LARY, V63, P25, DOI 10.1159/000055702
Turchetti G, 2011, ACTA OTORHINOLARYNGO, V31, P319
Ulubil SA, 2006, J LARYNGOL OTOL, V120, P230, DOI 10.1017/S002221510500318X
Vermeire K, 2006, OTOL NEUROTOL, V27, P44, DOI 10.1097/01.mao.0000187240.33712.01
Vescan A, 2002, J OTOLARYNGOL, V31, P54, DOI 10.2310/7070.2002.19332
Weegerink NJD, 2011, ANN OTO RHINOL LARYN, V120, P191
Weegerink NJD, 2011, JARO-J ASSOC RES OTO, V12, P753, DOI 10.1007/s10162-011-0282-3
Wróbel Maciej, 2008, Cochlear Implants Int, V9, P132, DOI 10.1002/cii.362
Wu CC, 2011, LARYNGOSCOPE, V121, P1287, DOI 10.1002/lary.21751
Wu CC, 2008, ARCH PEDIAT ADOL MED, V162, P269, DOI 10.1001/archpediatrics.2007.59
Yasunaga S, 1999, NAT GENET, V21, P363
Yoshikawa S, 2011, AURIS NASUS LARYNX, V38, P444, DOI 10.1016/j.anl.2010.11.012
NR 81
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2012
VL 292
IS 1-2
BP 51
EP 58
DI 10.1016/j.heares.2012.08.007
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 024GJ
UT WOS:000310097400005
PM 22975204
ER
PT J
AU Oguchi, T
Suzuki, N
Hashimoto, S
Chaudhry, GA
Chaudhry, FA
Usami, S
Ottersen, OP
AF Oguchi, Tomohiro
Suzuki, Nobuyoshi
Hashimoto, Shigenari
Chaudhry, Gauhar Ayub
Chaudhry, Farrukh Abbas
Usami, Shin-ichi
Ottersen, Ole Petter
TI Inner hair cells of mice express the glutamine transporter SAT1
SO HEARING RESEARCH
LA English
DT Article
ID GUINEA-PIG COCHLEA; ASPARTATE TRANSPORTER; MAMMALIAN COCHLEA; AFFERENT
SYNAPSES; RAT ORGAN; LOCALIZATION; NEURONS; SYSTEM; GLAST; ORGANIZATION
AB Glutamate has been implicated in signal transmission between inner hair cells and afferent fibers of the organ of Corti. The inner hair cells are enriched in glutamate and the postsynaptic membranes express AMPA glutamate receptors. However, it is not known whether inner hair cells contain a mechanism for glutamate replenishment. Such a mechanism must be in place to sustain glutamate neurotransmission. Here we provide RT-PCR and immunofluorescence data indicating that system A transporter 1 (SLC38A1), which is associated with neuronal glutamine transport and synthesis of the neurotransmitters GABA and glutamate in CNS, is expressed in inner hair cells. It was previously shown that inner hair cells contain glutaminase that converts glutamine to glutamate. Thus, our finding that inner hair cells express a glutamine transporter and the key glutamine metabolizing enzyme glutaminase, provides a mechanism for glutamate replenishment and bolsters the idea that glutamate serves as a transmitter in the peripheral synapse of the auditory system. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Oguchi, Tomohiro; Chaudhry, Gauhar Ayub; Chaudhry, Farrukh Abbas; Ottersen, Ole Petter] Univ Oslo, Inst Basic Med Sci, Ctr Mol Biol & Neurosci, N-0317 Oslo, Norway.
[Chaudhry, Gauhar Ayub; Chaudhry, Farrukh Abbas] Univ Oslo, Biotechnol Ctr Oslo, N-0317 Oslo, Norway.
[Oguchi, Tomohiro; Suzuki, Nobuyoshi; Hashimoto, Shigenari; Usami, Shin-ichi] Shinshu Univ, Dept Otorhinolaryngol, Sch Med, Matsumoto, Nagano 3908621, Japan.
RP Ottersen, OP (reprint author), Univ Oslo, Inst Basic Med Sci, Ctr Mol Biol & Neurosci, POB 1105 Blindern, N-0317 Oslo, Norway.
EM o.p.ottersen@basalmed.uio.no
FU Japan Health Science Foundation; University of Oslo; Shinshu University;
Research Council of Norway; Ministry of Education, Science and Culture
of Japan
FX We gratefully acknowledge financial support by the Japan Health Science
Foundation, University of Oslo, Shinshu University, Research Council of
Norway, and Grant-in-Aid for Scientific Research from the Ministry of
Education, Science and Culture of Japan. The sponsors of this study
played no role in the study design; the collection, analysis, and
interpretation of data; the writing of the report; nor in the decision
to submit the paper for publication.
CR Bak LK, 2006, J NEUROCHEM, V98, P641, DOI 10.1111/j.1471-4159.2006.03913.x
Boulland JL, 2003, GLIA, V41, P260, DOI 10.1002/glia.10188
Buntup D, 2008, NEUROCHEM RES, V33, P248, DOI 10.1007/s11064-007-9527-2
Chaudhry Farrukh A., 2008, V184, P77
Chaudhry FA, 1999, CELL, V99, P769, DOI 10.1016/S0092-8674(00)81674-8
Chaudhry FA, 2002, J NEUROSCI, V22, P62
Danbolt NC, 2001, PROG NEUROBIOL, V65, P1, DOI 10.1016/S0301-0082(00)00067-8
EYBALIN M, 1990, J ELECTRON MICR TECH, V15, P209, DOI 10.1002/jemt.1060150303
Eybalin M, 1996, HEARING RES, V101, P93, DOI 10.1016/S0378-5955(96)00136-0
Furness DN, 1997, EUR J NEUROSCI, V9, P1961, DOI 10.1111/j.1460-9568.1997.tb00763.x
Furness DN, 2003, J NEUROSCI, V23, P11296
Glowatzki E, 2006, J NEUROSCI, V26, P7659, DOI 10.1523/JNEUROSCI.1545-06.2006
Hakuba N, 2000, J NEUROSCI, V20, P8750
Hamdani E.H., 2012, GLIA IN PRESS
Jenstad M, 2009, CEREB CORTEX, V19, P1092, DOI 10.1093/cercor/bhn151
Mackenzie B, 2003, J BIOL CHEM, V278, P23720, DOI 10.1074/jbc.M212718200
Matsubara A, 1996, J NEUROSCI, V16, P4457
Ottersen OP, 1998, PROG NEUROBIOL, V54, P127, DOI 10.1016/S0301-0082(97)00054-3
ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X
Ruel J, 2008, AM J HUM GENET, V83, P278, DOI 10.1016/j.ajhg.2008.07.008
SAUNDERS JC, 1985, J ACOUST SOC AM, V78, P833, DOI 10.1121/1.392915
Seal RP, 2008, NEURON, V57, P263, DOI 10.1016/j.neuron.2007.11.032
Solbu TT, 2010, FRONT NEUROANAT, V4, DOI 10.3389/neuro.05.001.2010
Takumi Y, 1999, J NEUROCYTOL, V28, P223, DOI 10.1023/A:1007076007642
Takumi Y, 1997, NEUROSCIENCE, V79, P1137, DOI 10.1016/S0306-4522(97)00025-0
THALMANN R, 1985, ACTA OTO-LARYNGOL, V99, P469, DOI 10.3109/00016488509108940
THALMANN R, 1981, LARYNGOSCOPE, V91, P1785
USAMI S, 1992, EXP BRAIN RES, V91, P1
Varoqui H, 2000, J BIOL CHEM, V275, P4049, DOI 10.1074/jbc.275.6.4049
WIET GJ, 1986, HEARING RES, V24, P137, DOI 10.1016/0378-5955(86)90058-4
NR 30
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2012
VL 292
IS 1-2
BP 59
EP 63
DI 10.1016/j.heares.2012.07.005
PG 5
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 024GJ
UT WOS:000310097400006
PM 22841570
ER
PT J
AU Miller, ME
Nasiri, AK
Farhangi, PO
Farahbakhsh, NA
Lopez, IA
Narins, PM
Simmons, DD
AF Miller, Mia E.
Nasiri, Arian K.
Farhangi, Peyman O.
Farahbakhsh, Nasser A.
Lopez, Ivan A.
Narins, Peter M.
Simmons, Dwayne D.
TI Evidence for water-permeable channels in auditory hair cells in the
leopard frog
SO HEARING RESEARCH
LA English
DT Article
ID INNER-EAR; AMPHIBIAN PAPILLA; SLOW MOTILITY; GUINEA-PIG; AQUAPORINS;
EXPRESSION; COCHLEA; HEARING
AB Auditory hair cells in the amphibian papilla (APHCs) of the leopard frog, Rana pipiens pipiens, have a significantly higher permeability to water than that observed in mammalian hair cells. The insensitivity of water permeability in frog hair cells to extracellular mercury suggests that an amphibian homologue of the water channel aquaporin-4 (AQP4) may mediate water transport in these cells. Using immunocytochemistry, we show that an AQP4-like protein is found in APHCs. Rabbit anti-AQP4 antibody was used in multiple-immunohistochemical staining experiments along with AP hair cell and hair bundle markers in leopard frog and mouse tissue. AQP4 immunoreactivity was found in the basal and apical poles of the APHCs and shows uniform immunoreactivity. This study provides the first identification and localization of an AQP4-like protein in the amphibian inner ear. We also report a more direct measure of hyperosmotically-induced volume changes in APHCs that confirms previous findings. The presence of water channels in anuran APHCs constitutes a novel physiological difference between amphibian and mammalian hair cell structure and function. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Nasiri, Arian K.; Farhangi, Peyman O.; Farahbakhsh, Nasser A.; Narins, Peter M.; Simmons, Dwayne D.] Univ Calif Los Angeles, Dept Integrat Biol & Physiol, Los Angeles, CA 90095 USA.
[Narins, Peter M.] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA.
[Miller, Mia E.; Lopez, Ivan A.] Univ Calif Los Angeles, David Geffen Sch Med, Dept Head & Neck Surg, Los Angeles, CA 90095 USA.
[Narins, Peter M.; Simmons, Dwayne D.] Univ Calif Los Angeles, Brain Res Inst, Los Angeles, CA 90095 USA.
RP Simmons, DD (reprint author), Univ Calif Los Angeles, Dept Integrat Biol & Physiol, 610 Charles E Young Dr E, Los Angeles, CA 90095 USA.
EM dd.simmons@ucla.edu
CR Beitz E, 2003, CELL MOL NEUROBIOL, V23, P315, DOI 10.1023/A:1023636620721
Farahbakhsh NA, 2006, HEARING RES, V212, P140, DOI 10.1016/j.heares.2005.11.004
Farahbakhsh NA, 2008, HEARING RES, V241, P7, DOI 10.1016/j.heares.2008.04.007
Farahbakhsh NA, 2011, HEARING RES, V272, P69, DOI 10.1016/j.heares.2010.10.015
FINKELSTEIN A, 1976, J GEN PHYSIOL, V68, P137, DOI 10.1085/jgp.68.2.137
Gomes D, 2009, BBA-BIOMEMBRANES, V1788, P1213, DOI 10.1016/j.bbamem.2009.03.009
Huang DL, 2002, HEARING RES, V165, P85, DOI 10.1016/S0378-5955(02)00288-5
Ishibashi K, 2000, REV PHYSIOL BIOCH P, V141, P1, DOI 10.1007/BFb0119576
Ishibashi K, 2011, AM J PHYSIOL-REG I, V300, pR566, DOI 10.1152/ajpregu.90464.2008
Li J, 2001, J BIOL CHEM, V276, P31233, DOI 10.1074/jbc.M104368200
Lopez IA, 2007, CELL TISSUE RES, V328, P453, DOI 10.1007/s00441-007-0380-z
Manley GT, 2000, NAT MED, V6, P159, DOI 10.1038/72256
Merves M, 2003, JARO, V4, P264, DOI 10.1007/s10162-002-3033-7
Mhatre AN, 2002, BIOCHEM BIOPH RES CO, V297, P987, DOI 10.1016/S0006-291X(02)02296-9
Nagelhus EA, 2004, NEUROSCIENCE, V129, P905, DOI 10.1016/j.neuroscience.2004.08.053
Nishimoto G, 2007, AM J PHYSIOL-REG I, V292, pR644, DOI 10.1152/ajpregu.00362.2006
Ratnanather JT, 1996, HEARING RES, V96, P33
Sawada S, 2003, HEARING RES, V181, P15, DOI 10.1016/S0378-5955(03)00131-X
Stankovic KM, 1995, AM J PHYSIOL-CELL PH, V269, pC1450
Suzuki M, 2009, COMP BIOCHEM PHYS A, V153, P231, DOI 10.1016/j.cbpa.2009.02.035
Takata K, 2004, PROG HISTOCHEM CYTO, V39, P1, DOI 10.1016/j.proghi.2004.03.001
Takumi Y, 1998, EUR J NEUROSCI, V10, P3584, DOI 10.1046/j.1460-9568.1998.00360.x
VERKMAN AS, 1989, AM J PHYSIOL, V257, pC837
Zhi M, 2007, HEARING RES, V228, P95, DOI 10.1016/j.heares.2007.02.007
Zhong SX, 2003, ORL J OTO-RHINO-LARY, V65, P284, DOI 10.1159/000075227
Zichichi R, 2011, BRAIN RES, V1384, P23, DOI 10.1016/j.brainres.2011.02.024
NR 26
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2012
VL 292
IS 1-2
BP 64
EP 70
DI 10.1016/j.heares.2012.08.004
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 024GJ
UT WOS:000310097400007
PM 22940201
ER
PT J
AU Cederholm, JME
Froud, KE
Wong, ACY
Ko, M
Ryan, AF
Housley, GD
AF Cederholm, Jennie M. E.
Froud, Kristina E.
Wong, Ann C. Y.
Ko, Myungseo
Ryan, Allen F.
Housley, Gary D.
TI Differential actions of isoflurane and ketamine-based anaesthetics on
cochlear function in the mouse
SO HEARING RESEARCH
LA English
DT Article
ID BRAIN-STEM RESPONSE; NICOTINIC ACETYLCHOLINE-RECEPTORS; INHALATIONAL
GENERAL-ANESTHETICS; INDUCED HEARING-LOSS; MIDDLE-EAR PRESSURE; ACID
TYPE-A; ION CHANNELS; NEUROTRANSMITTER RELEASE; OTOACOUSTIC EMISSIONS;
GLYCINE RECEPTORS
AB Isoflurane is a volatile inhaled anaesthetic widely used in animal research, with particular utility for hearing research. lsoflurane has been shown to blunt hearing sensitivity compared with the awake state, but little is known about how isoflurane compares with other anaesthetics with regard to hair cell transduction and auditory neurotransmission. The current study was undertaken in C578I/6J and C129/SvEv strains of mice to determine whether isoflurane anaesthesia affects hearing function relative to ketamine-based anaesthesia. Cochlear function and central auditory transmission were assessed using auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE), comparing thresholds and input/output functions over time, for isoflurane vs. ketamine/xylazine/acepromazine anaesthesia. ABR thresholds at the most sensitive region of hearing (16 kHz) were initially higher under isoflurane anaesthesia. This reduced hearing sensitivity worsened over the 1 h study period, and also became evident with broadband click stimulus. Ketamine anaesthesia provided stable ABR thresholds. Although the growth functions were unchanged over time for both anaesthetics, the slopes under isoflurane anaesthesia were significantly less. Cubic (2f(1)-f(2)) DPOAE thresholds and growth functions were initially similar for both anaesthetics. After 60 min, DPOAE thresholds increased for both groups, but this effect was significantly greater with ketamine anaesthesia.
The isoflurane-mediated increase in ABR thresholds over time is attributable to action on cochlear nerve activation, evident as a right-shift in the P1-N1 input/output function compared to K/X/A. The ketamine-based anaesthetic produced stable ABR thresholds and gain over time, despite a right-shift in the outer hair cell - mediated DPOAE input/output function. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Cederholm, Jennie M. E.; Froud, Kristina E.; Wong, Ann C. Y.; Ko, Myungseo; Housley, Gary D.] Univ New S Wales, Sch Med Sci, Translat Neurosci Facil, Sydney, NSW 2052, Australia.
[Cederholm, Jennie M. E.; Froud, Kristina E.; Wong, Ann C. Y.; Ko, Myungseo; Housley, Gary D.] Univ New S Wales, Sch Med Sci, Dept Physiol, Sydney, NSW 2052, Australia.
[Ryan, Allen F.] Univ Calif San Diego, Dept Surg, San Diego, CA 92103 USA.
[Ryan, Allen F.] Univ Calif San Diego, Dept Neurosci, San Diego, CA 92103 USA.
[Ryan, Allen F.] VA Med Ctr, La Jolla, CA USA.
RP Housley, GD (reprint author), Univ New S Wales, Sch Med Sci, Translat Neurosci Facil, UNSW Kensington Campus, Sydney, NSW 2052, Australia.
EM g.housley@unsw.edu.au
FU National Health & Medical Research Council (NHMRC), Australia [APP
630618]; Research Service of the U.S. Veterans Administration
FX This study was supported by the National Health & Medical Research
Council (NH&MRC), Australia, project grant APP 630618, and the Research
Service of the U.S. Veterans Administration.
CR Acar B, 2010, ACTA OTORHINOLARYNGO, V30, P285
Alvarado JC, 2012, NEUROSCI RES, V73, P302, DOI 10.1016/j.neures.2012.05.001
Ashmore J, 2008, PHYSIOL REV, V88, P173, DOI 10.1152/physrev.00044.2006
Baldwin R., 1959, MOD VET PRACT, V40, P46
Barkdull GC, 2007, LARYNGOSCOPE, V117, P2174, DOI 10.1097/MLG.0b013e3181461f92
BOARINI DJ, 1984, NEUROSURGERY, V15, P400
Chau PL, 2010, BRIT J PHARMACOL, V161, P288, DOI 10.1111/j.1476-5381.2010.00891.x
Chung JW, 2007, ANESTH ANALG, V104, P1404, DOI 10.1213/01.ane.0000261508.24083.6c
de Sousa SLM, 2000, ANESTHESIOLOGY, V92, P1055, DOI 10.1097/00000542-200004000-00024
DildyMayfield JE, 1996, J PHARMACOL EXP THER, V276, P1058
DILGER JP, 1994, ANESTHESIOLOGY, V81, P431, DOI 10.1097/00000542-199408000-00022
Downie DL, 1996, BRIT J PHARMACOL, V118, P493
Drexl M, 2004, HEARING RES, V194, P135, DOI 10.1016/j.heares.2004.04.006
Forman SA, 1998, ANESTHESIOLOGY, V88, P1535, DOI 10.1097/00000542-199806000-00018
FRANKS NP, 1984, NATURE, V310, P599, DOI 10.1038/310599a0
Franks NP, 2008, NAT REV NEUROSCI, V9, P370, DOI 10.1038/nrn2372
GREENE SA, 1988, J VET PHARMACOL THER, V11, P295, DOI 10.1111/j.1365-2885.1988.tb00189.x
HALL AC, 1994, BRIT J PHARMACOL, V112, P906
HARRISON NL, 1993, MOL PHARMACOL, V44, P628
Hemmings HC, 2009, BRIT J ANAESTH, V103, P61, DOI 10.1093/bja/aep144
Herring BE, 2009, J NEUROPHYSIOL, V102, P1265, DOI 10.1152/jn.00252.2009
Hirota K, 1996, BRIT J ANAESTH, V77, P441
Hirota K, 2011, BRIT J ANAESTH, V107, P123, DOI 10.1093/bja/aer221
ISHIZAKI K, 1995, BRIT J ANAESTH, V75, P636
Karabiyik L, 1996, EUR J ANAESTH, V13, P27
Kemp DT, 2002, BRIT MED BULL, V63, P223, DOI 10.1093/bmb/63.1.223
Kim JU, 2005, LARYNGOSCOPE, V115, P1996, DOI 10.1097/01.mlg.0000180173.81034.4d
KURODA Y, 1993, ANESTH ANALG, V77, P795
Legatt AD, 2002, J CLIN NEUROPHYSIOL, V19, P396, DOI 10.1097/00004691-200210000-00003
Liberman LD, 2011, J NEUROSCI, V31, P801, DOI 10.1523/JNEUROSCI.3389-10.2011
LIN LH, 1993, J NEUROCHEM, V60, P1548, DOI 10.1111/j.1471-4159.1993.tb03320.x
LO EH, 1991, NEUROSCI LETT, V131, P17, DOI 10.1016/0304-3940(91)90327-P
MARTIN DC, 1995, BIOCHEM PHARMACOL, V49, P809, DOI 10.1016/0006-2952(94)00519-R
Mascia MP, 1996, BRIT J PHARMACOL, V119, P1331
MIHIC SJ, 1994, MOL PHARMACOL, V46, P851
Minami K, 1998, J BIOL CHEM, V273, P8248, DOI 10.1074/jbc.273.14.8248
MOODY EJ, 1993, BRAIN RES, V615, P101, DOI 10.1016/0006-8993(93)91119-D
RIKKE BA, 1995, GENETICS, V139, P901
Ruebhausen MR, 2012, HEARING RES, V287, P25, DOI 10.1016/j.heares.2012.04.005
Santarelli R, 2003, ACTA OTO-LARYNGOL, V123, P176, DOI 10.1080/0036554021000028108
SMITH DI, 1989, ELECTROEN CLIN NEURO, V72, P422, DOI 10.1016/0013-4694(89)90047-3
Stronks HC, 2010, HEARING RES, V260, P20, DOI 10.1016/j.heares.2009.10.015
TUCKER PK, 1992, MAMM GENOME, V3, P254, DOI 10.1007/BF00292153
WACHTEL RE, 1992, BRIT J PHARMACOL, V106, P623
WANG ZX, 1987, HEARING RES, V27, P145
Westphalen RI, 2011, NEUROPHARMACOLOGY, V61, P699, DOI 10.1016/j.neuropharm.2011.05.013
Yamakura T, 2001, ANNU REV PHARMACOL, V41, P23, DOI 10.1146/annurev.pharmtox.41.1.23
Yamakura T, 2000, ANESTHESIOLOGY, V92, P1144, DOI 10.1097/00000542-200004000-00033
YAMAKURA T, 1993, NEUROREPORT, V4, P687, DOI 10.1097/00001756-199306000-00021
Yamakura T, 2001, ANESTHESIOLOGY, V95, P144, DOI 10.1097/00000542-200107000-00025
Yamashita M, 2005, ANESTHESIOLOGY, V102, P76, DOI 10.1097/00000542-200501000-00015
Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9
NR 52
TC 8
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2012
VL 292
IS 1-2
BP 71
EP 79
DI 10.1016/j.heares.2012.08.010
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 024GJ
UT WOS:000310097400008
PM 22960466
ER
PT J
AU Smith, PF
AF Smith, Paul F.
TI Interactions between the vestibular nucleus and the dorsal cochlear
nucleus: Implications for tinnitus
SO HEARING RESEARCH
LA English
DT Article
ID WHOLE-BODY ROTATION; GUINEA-PIG; CENTRAL PROJECTIONS; MONGOLIAN GERBIL;
AUDITORY-SYSTEM; AFFERENT-FIBERS; SELF-MOTION; STIMULATION; INPUTS;
NOISE
AB The peripheral auditory and vestibular systems are recognised to be closely related anatomically and physiologically; however, less well understood is the interaction of these two sensory systems in the brain. A number of previous studies in different species have reported that the dorsal and ventral cochlear nuclei receive direct projections from the primary vestibular nerve and one previous study had reported projections from the vestibular nucleus to the dorsal cochlear nucleus (DCN) in rabbit. Recently, Barker et al. (2012 PLoS One. 7(5): e35955) have reported new evidence that the lateral vestibular nucleus (LVN) projects to the DCN in rat and that these synapses are mediated by glutamate acting on AMPA and NMDA receptors. These recent findings, in addition to the earlier ones, suggest that the auditory and vestibular systems may be intimately connected centrally as well as peripherally and this may have important implications for disorders such as tinnitus. (C) 2012 Elsevier B.V. All rights reserved.
C1 Univ Otago, Sch Med Sci, Dept Pharmacol & Toxicol, Brain Hlth Res Ctr, Dunedin, New Zealand.
RP Smith, PF (reprint author), Univ Otago, Sch Med Sci, Dept Pharmacol & Toxicol, Brain Hlth Res Ctr, Dunedin, New Zealand.
EM paul.smith@otago.ac.nz
CR Baguley DM, 2006, OTOL NEUROTOL, V27, P220, DOI 10.1097/01.mao.0000172412.87778.28
Barker M, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035955
Bukowska D, 2002, CELLS TISSUES ORGANS, V170, P61, DOI 10.1159/000047921
BURIAN M, 1988, NEUROSCI LETT, V84, P13, DOI 10.1016/0304-3940(88)90329-1
BURIAN M, 1989, ARCH OTO-RHINO-LARYN, V246, P238, DOI 10.1007/BF00463563
Cullen KE, 2012, TRENDS NEUROSCI, V35, P185, DOI 10.1016/j.tins.2011.12.001
Dehmel S, 2012, J NEUROSCI, V32, P1660, DOI 10.1523/JNEUROSCI.4608-11.2012
El-Kashlan HK, 2004, HEARING RES, V189, P25, DOI 10.1016/S0378-5955(03)00393-9
Fekete DM, 1999, TRENDS NEUROSCI, V22, P263, DOI 10.1016/S0166-2236(98)01366-6
GSTOETTNER W, 1991, NEUROSCI LETT, V122, P163, DOI 10.1016/0304-3940(91)90848-N
GSTOETTNER W, 1992, ACTA OTO-LARYNGOL, V112, P486, DOI 10.3109/00016489209137430
KEVETTER GA, 1986, J COMP NEUROL, V254, P410, DOI 10.1002/cne.902540312
KEVETTER GA, 1989, BRAIN BEHAV EVOLUT, V34, P193, DOI 10.1159/000116505
Kevetter GA, 2004, J VESTIBUL RES-EQUIL, V14, P1
Lackner JR, 2010, EXP BRAIN RES, V202, P513, DOI 10.1007/s00221-009-2149-y
Lanting CP, 2010, HEARING RES, V267, P78, DOI 10.1016/j.heares.2010.04.006
Lewald J, 2001, EUR J NEUROSCI, V13, P2268, DOI 10.1046/j.0953-816x.2001.01608.x
Lewald J, 2002, EUR J NEUROSCI, V15, P1219, DOI 10.1046/j.1460-9568.2002.01949.x
Lewald J, 2000, J NEUROPHYSIOL, V84, P1107
Maklad A, 2003, BRAIN RES BULL, V60, P497, DOI 10.1016/S0361-9230(03)00054-6
Muller F, 2011, CELLS TISSUES ORGANS, V193, P215, DOI 10.1159/000320026
Newlands SD, 2003, J COMP NEUROL, V466, P31, DOI 10.1002/cne.10876
Newlands SD, 2003, BRAIN RES BULL, V60, P475, DOI 10.1016/S0361-9230(03)00051-0
Oertel D, 2004, TRENDS NEUROSCI, V27, P104, DOI 10.1016/j.tins.2003.12.001
Pettorossi VE, 2005, ACTA OTO-LARYNGOL, V125, P524, DOI 10.1080/00016480510028465
Pinchoff RJ, 1998, AM J OTOL, V19, P785
PROBST T, 1990, BEHAV BRAIN RES, V41, P1, DOI 10.1016/0166-4328(90)90048-J
Shore SE, 2008, EUR J NEUROSCI, V27, P155, DOI 10.1111/j.1460-9568.2007.05983.x
Shore SE, 2011, HEARING RES, V281, P38, DOI 10.1016/j.heares.2011.05.001
Shore SE, 2006, HEARING RES, V216, P90, DOI 10.1016/j.heares.2006.01.006
Van Barneveld DCPBM, 2011, EXP BRAIN RES, V213, P235, DOI 10.1007/s00221-011-2741-9
Van Barneveld DCPBM, 2010, EUR J NEUROSCI, V31, P920, DOI 10.1111/j.1460-9568.2010.07113.x
Vanneste S, 2010, EXP BRAIN RES, V204, P283, DOI 10.1007/s00221-010-2304-5
Wilson VJ, 1979, MAMMALIAN VESTIBULAR
Zeng C, 2011, NEUROSCIENCE, V176, P142, DOI 10.1016/j.neuroscience.2010.12.010
Zeng CH, 2009, J NEUROSCI, V29, P4210, DOI 10.1523/JNEUROSCI.0208-09.2009
Zhou JX, 2007, J COMP NEUROL, V500, P777, DOI 10.1002/cne.21208
NR 37
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2012
VL 292
IS 1-2
BP 80
EP 82
DI 10.1016/j.heares.2012.08.006
PG 3
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 024GJ
UT WOS:000310097400009
PM 22960359
ER
PT J
AU Needham, K
Nayagam, BA
Minter, RL
O'Leary, SJ
AF Needham, Karina
Nayagam, Bryony A.
Minter, Ricki L.
O'Leary, Stephen J.
TI Combined application of brain-derived neurotrophic factor and
neurotrophin-3 and its impact on spiral ganglion neuron firing
properties and hyperpolarization-activated currents
SO HEARING RESEARCH
LA English
DT Article
ID SENSORINEURAL HEARING-LOSS; DEVELOPING INNER-EAR; COCHLEAR IMPLANT
STIMULATION; PRIMARY AUDITORY NEURONS; CATION CURRENT I(H); GATED HCN
CHANNELS; CURRENT I-H; ELECTRICAL-STIMULATION; PHYSIOLOGICAL-FUNCTION;
FIBER RESPONSES
AB Neurotrophins provide an effective tool for the rescue and regeneration of spiral ganglion neurons (SGNs) following sensorineural hearing loss. However, these nerve growth factors are also potent modulators of ion channel activity and expression, and in the peripheral auditory system brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) have previously been shown to alter the firing properties of auditory neurons and differentially regulate the expression of some potassium channels in vitro. In this study we examined the activity of the hyperpolarization-mediated mixed-cation current (I-h) in early postnatal cultured rat SGNs following exposure to combined BDNF and NT3. Whole-cell patch-clamp recordings made after 1 or 2 days in vitro revealed no change in the firing adaptation of neurons in the presence of BDNF and NT3. Resting membrane potentials were also maintained, but spike latency and firing threshold was subject to regulation by both neurotrophins and time in vitro. Current clamp recordings revealed an activity profile consistent with activation of the hyperpolarization-activated current. Rapid membrane hyperpolarization was followed by a voltage- and time-dependent depolarizing voltage sag. In voltage clamp, membrane hyperpolarization evoked a slowly-activating inward current that was reversibly blocked with cesium and inhibited by ZD7288. The amplitude and current density of I-h was significantly larger in BDNF and NT3 supplemented cultures, but this did not translate to a significant alteration in voltage sag magnitude. Neurotrophins provided at 50 ng/ml produced a hyperpolarizing shift in the voltage-dependence and slower time course of I-h activation compared to SGNs in control groups or cultured with 10 ng/ml BDNF and NT3. Our results indicate that combined BDNF and NT3 increase the activity of hyperpolarization-activated currents and that the voltage-dependence and activation kinetics of I-h in SGNs are sensitive to changes in neurotrophin concentration. In addition, BDNF and NT3 applied together induce a decrease in firing threshold, but does not generate a shift in firing adaptation. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Needham, Karina; Nayagam, Bryony A.; Minter, Ricki L.; O'Leary, Stephen J.] Univ Melbourne, Royal Victorian Eye & Ear Hosp, Dept Otolaryngol, Melbourne, Vic 3002, Australia.
RP Needham, K (reprint author), Univ Melbourne, Royal Victorian Eye & Ear Hosp, Dept Otolaryngol, Level 2,32 Gisborne St, Melbourne, Vic 3002, Australia.
EM k.needham@unimelb.edu.au; b.nayagam@unimelb.edu.au;
rminter@unimelb.edu.au; sjoleary@unimelb.edu.au
FU Department of Otolaryngology, the University of Melbourne; Garnett Passe
and Rodney Williams Memorial Foundation; Royal Victorian Eye and Ear
Hospital; William Buckland Foundation (ANZ Charitable Trusts); National
Health & Medical Research Council of Australia (NHMRC); NHMRC
FX We gratefully acknowledge the assistance of Marc L Brady and John R
Brady for valuable engineering support and technical assistance. We also
thank the anonymous reviewers for providing constructive comments on an
earlier version of the manuscript. Funding for this research was
provided by: the Department of Otolaryngology, the University of
Melbourne, the Garnett Passe and Rodney Williams Memorial Foundation,
the Royal Victorian Eye and Ear Hospital, and the William Buckland
Foundation (ANZ Charitable Trusts). B.A. Nayagam is supported by an
Australian-Based Biomedical Research Fellowship from the National Health
& Medical Research Council of Australia (NH&MRC), and S.J. O'Leary is a
recipient of a NH&MRC Practitioner Fellowship. The funding bodies had no
role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.
CR Adamson CL, 2002, J COMP NEUROL, V447, P331, DOI 10.1002/cne.10244
Adamson CL, 2002, J NEUROSCI, V22, P1385
Agterberg M.J., 2009, J ASS RES OTOLARYNGO
Bakondi G, 2009, NEUROSCIENCE, V158, P1469, DOI 10.1016/j.neuroscience.2008.10.056
Bal R, 2000, J NEUROPHYSIOL, V84, P806
BANKS MI, 1993, J NEUROPHYSIOL, V70, P1420
Barclay M, 2011, NEURAL DEV, V6, DOI 10.1186/1749-8104-6-33
Bender RA, 2008, PROG NEUROBIOL, V86, P129, DOI 10.1016/j.pneurobio.2008.09.007
Brewster A, 2002, J NEUROSCI, V22, P4591
Cao XJ, 2011, J NEUROPHYSIOL, V106, P630, DOI 10.1152/jn.00015.2010
Chen C, 1997, HEARING RES, V110, P179, DOI 10.1016/S0378-5955(97)00078-6
Coleman B, 2007, EXP CELL RES, V313, P232, DOI 10.1016/j.yexcr.2006.10.010
Cuttle MF, 2001, J PHYSIOL-LONDON, V534, P733, DOI 10.1111/j.1469-7793.2001.00733.x
Davis RL, 2011, HEARING RES, V276, P34, DOI 10.1016/j.heares.2011.01.014
de Carrizosa MADL, 2009, J NEUROSCI, V29, P575, DOI 10.1523/JNEUROSCI.5312-08.2009
ERNFORS P, 1992, EUR J NEUROSCI, V4, P1140, DOI 10.1111/j.1460-9568.1992.tb00141.x
FARINAS I, 1994, NATURE, V369, P658, DOI 10.1038/369658a0
Fayad JN, 2006, LARYNGOSCOPE, V116, P1310, DOI 10.1097/01.mlg.0000227176.09500.28
Fogle KJ, 2007, J NEUROSCI, V27, P2802, DOI 10.1523/JNEUROSCI.4376-06.2007
Frere SGA, 2004, MOL NEUROBIOL, V30, P279, DOI 10.1385/MN:30:3:279
Fritzsch B, 1997, J NEUROSCI, V17, P6213
George M.S., 2009, NAT NEUROSCI
Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542
Gillespie LN, 2004, NEUROREPORT, V15, P1121, DOI 10.1097/01.wnr.0000125777.04774.c2
HAFIDI A, 1993, INT J DEV NEUROSCI, V11, P507, DOI 10.1016/0736-5748(93)90024-8
Hansen MR, 2001, HEARING RES, V161, P87, DOI 10.1016/S0378-5955(01)00360-4
Hansen MR, 2001, J NEUROSCI, V21, P2256
Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3
Hassfurth B, 2009, EUR J NEUROSCI, V30, P1227, DOI 10.1111/j.1460-9568.2009.06925.x
Heffer LF, 2010, J NEUROPHYSIOL, V104, P3124, DOI 10.1152/jn.00500.2010
Jagger DJ, 2002, NEUROSCIENCE, V109, P169, DOI 10.1016/S0306-4522(01)00454-7
Jiang YQ, 2008, NEUROCHEM RES, V33, P1979, DOI 10.1007/s11064-008-9717-6
Jimenez C, 1997, NEUROSCIENCE, V77, P673, DOI 10.1016/S0306-4522(96)00505-2
Khurana S, 2011, J NEUROSCI, V31, P8936, DOI 10.1523/JNEUROSCI.1079-11.2011
Lallemend F, 2007, NEUROSCIENCE, V150, P212, DOI 10.1016/j.neuroscience.2007.08.032
Landry TG, 2011, HEARING RES, V282, P303, DOI 10.1016/j.heares.2011.06.007
LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4
Leake PA, 2011, J COMP NEUROL, V519, P1526, DOI 10.1002/cne.22582
Leao KE, 2006, J PHYSIOL-LONDON, V576, P849, DOI 10.1113/jphysiol.2006.114702
Leao KE, 2011, EUR J NEUROSCI, V33, P1462, DOI 10.1111/j.1460-9568.2011.07627.x
Leao RN, 2005, EUR J NEUROSCI, V22, P147, DOI 10.1111/j.1460-9568.2005.04185.x
LEFEBVRE PP, 1994, NEUROREPORT, V5, P865, DOI 10.1097/00001756-199404000-00003
Lewis AS, 2009, J NEUROSCI, V29, P6250, DOI 10.1523/JNEUROSCI.0856-09.2009
Lin X, 1997, HEARING RES, V108, P157, DOI 10.1016/S0378-5955(97)00050-6
Liu Q, 2007, J NEUROPHYSIOL, V98, P2215, DOI 10.1152/jn.00284.2007
MacLean JN, 2003, NEURON, V37, P109, DOI 10.1016/S0896-6273(02)01104-2
MacLean JN, 2005, J NEUROPHYSIOL, V94, P3601, DOI 10.1152/jn.00281.2005
Malgrange B, 1996, NEUROREPORT, V7, P913, DOI 10.1097/00001756-199603220-00016
Marzella PL, 1999, HEARING RES, V138, P73, DOI 10.1016/S0378-5955(99)00152-5
McGuinness SL, 2005, OTOL NEUROTOL, V26, P1064, DOI 10.1097/01.mao.0000185063.20081.50
Miller CA, 2006, JARO-J ASSOC RES OTO, V7, P195, DOI 10.1007/s10162-006-0036-9
Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7
Mo ZL, 1997, J NEUROPHYSIOL, V77, P1294
Mo ZL, 2002, J PHYSIOL-LONDON, V542, P763, DOI 10.1113/jphysiol.2002.017202
Mo ZL, 1997, J NEUROPHYSIOL, V78, P3019
Mou K, 1997, J COMP NEUROL, V386, P529
Negm MH, 2008, IEEE ENG MED BIO, P5539, DOI 10.1109/IEMBS.2008.4650469
O'Leary SJ, 2009, J NEURAL ENG, V6, DOI 10.1088/1741-2560/6/5/055002
Pape HC, 1996, ANNU REV PHYSIOL, V58, P299, DOI 10.1146/annurev.physiol.58.1.299
Pettingill LN, 2007, IEEE T BIO-MED ENG, V54, P1138, DOI 10.1109/TBME.2007.895375
Pian P, 2007, PFLUG ARCH EUR J PHY, V455, P125, DOI 10.1007/s00424-007-0295-2
PIRVOLA U, 1992, P NATL ACAD SCI USA, V89, P9915, DOI 10.1073/pnas.89.20.9915
PIRVOLA U, 1994, HEARING RES, V75, P131, DOI 10.1016/0378-5955(94)90064-7
Ramekers D, 2012, HEARING RES, V288, P19, DOI 10.1016/j.heares.2012.03.002
Reichardt LF, 2006, PHILOS T R SOC B, V361, P1545, DOI 10.1098/rstb.2006.1894
Richardson RT, 2006, AUDIOL NEURO-OTOL, V11, P343, DOI 10.1159/000095896
Richichi C, 2008, NEUROBIOL DIS, V29, P297, DOI 10.1016/j.nbd.2007.09.003
Robinson RB, 2003, ANNU REV PHYSIOL, V65, P453, DOI 10.1146/annurev.physiol.65.092101.142734
Rodrigues ARA, 2006, J NEUROPHYSIOL, V95, P76, DOI 10.1152/jn.00624.2005
Roehm Pamela C, 2005, Curr Opin Otolaryngol Head Neck Surg, V13, P294, DOI 10.1097/01.moo.0000180919.68812.b9
Rusznak Z, 2009, PFLUG ARCH EUR J PHY, V457, P1303, DOI 10.1007/s00424-008-0586-2
Santoro B, 2004, J NEUROSCI, V24, P10750, DOI 10.1523/JNEUROSCI.3300-04.2004
Santoro B, 2003, TRENDS NEUROSCI, V26, P550, DOI 10.1016/j.tins.2003.08.003
SCHECTERSON LC, 1994, HEARING RES, V73, P92, DOI 10.1016/0378-5955(94)90286-0
Schimmang T, 2003, DEVELOPMENT, V130, P4741, DOI 10.1242/dev.00676
SCHIMMANG T, 1995, DEVELOPMENT, V121, P3381
Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4
Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564
Shepherd RK, 2004, EUR J NEUROSCI, V20, P3131, DOI 10.1111/j.1460-9568.2004.03809.x
Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999
SilosSantiago I, 1997, EUR J NEUROSCI, V9, P2045, DOI 10.1111/j.1460-9568.1997.tb01372.x
Sly DJ, 2007, EUR J NEUROSCI, V26, P510, DOI 10.1111/j.1460-9568.2007.05678.x
Sly DJ, 2012, JARO-J ASSOC RES OTO, V13, P1, DOI 10.1007/s10162-011-0297-9
Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011
Sun W, 2009, NEUROSCIENCE, V164, P1854, DOI 10.1016/j.neuroscience.2009.09.037
Szabo ZS, 2002, EUR J NEUROSCI, V16, P1887, DOI 10.1046/j.1460-9568.2002.02258.x
Thoby-Brisson M, 2003, J NEUROSCI, V23, P7685
Wahl-Schott C, 2009, CELL MOL LIFE SCI, V66, P470, DOI 10.1007/s00018-008-8525-0
Wise AK, 2005, J COMP NEUROL, V487, P147, DOI 10.1002/cne.20563
Yamada R, 2005, J NEUROSCI, V25, P8867, DOI 10.1523/JNEUROSCI.2541-05.2005
Yi EY, 2010, J NEUROPHYSIOL, V103, P2532, DOI 10.1152/jn.00506.2009
YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C
Youssoufian M, 2007, EUR J NEUROSCI, V25, P1647, DOI 10.1111/j.1460-9568.2007.05428.x
ZHENG JL, 1995, J NEUROSCI, V15, P5079
Zhou ZP, 2005, J NEUROSCI, V25, P7558, DOI 10.1523/JNEUROSCI.1735-05.2005
NR 95
TC 8
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2012
VL 291
IS 1-2
BP 1
EP 14
DI 10.1016/j.heares.2012.07.002
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 004MA
UT WOS:000308684600001
PM 22796476
ER
PT J
AU van Beelen, E
Leijendeckers, JM
Huygen, PLM
Admiraal, RJC
Hoefsloot, LH
Lichtenbelt, KD
Stobe, L
Pennings, RJE
Leuwer, R
Snik, AFM
Kunst, HPM
AF van Beelen, E.
Leijendeckers, J. M.
Huygen, P. L. M.
Admiraal, R. J. C.
Hoefsloot, L. H.
Lichtenbelt, K. D.
Stoebe, L.
Pennings, R. J. E.
Leuwer, R.
Snik, A. F. M.
Kunst, H. P. M.
TI Audiometric characteristics of two Dutch families with non-ocular
Stickler syndrome (COL11A2)
SO HEARING RESEARCH
LA English
DT Article
ID PROGRESSIVE ARTHRO-OPHTHALMOPATHY; HEARING-LOSS; AUTOSOMAL-DOMINANT;
OTOSPONDYLOMEGAEPIPHYSEAL DYSPLASIA; AFFECTED MEMBERS; MUTATION; GENE;
DFNA13/COL11A2; IMPAIRMENT; PHENOTYPE
AB Objective: To evaluate hearing impairment and cochlear function in non-ocular Stickler syndrome.
Study design: Multifamily study.
Patients & methods: Ten patients from two different families with non-ocular Stickler syndrome (Stickler syndrome type 3) were included. Six members of the first family and four members of the second family participated in this study. Otorhinolaryngologic examinations were performed. Pure-tone and speech audiograms were obtained. Longitudinal analysis was performed. Psychophysical measurements, including loudness scaling, gap detection, difference limen for frequency and speech perception in noise were administered to assess cochlear function at a deeper level.
Results: Affected individuals in the first family were carriers of a heterozygous splice donor mutation in the COL11A2 gene. Affected individuals in the second family were carriers of a novel heterozygous missense mutation in COL11A2. Both families showed bilateral, non-progressive hearing impairment with childhood onset. The severity of the hearing impairment exhibited inter- and intrafamilial variability and was mostly mild to moderate. The results of the psychophysical measurements were similar to those previously published for DFNA8/12 (TECTA) and DFNA13 (COL11A2) patients and thus consistent with an intra-cochlear conductive hearing impairment. This is in line with the theory that mutations in COL11A2 affect tectorial membrane function.
Conclusion: Hearing impairment in non-ocular Stickler syndrome is characterized by non-progressive hearing loss, present since childhood, and mostly mild to moderate in severity. Psychophysical measurements in non-ocular Stickler patients were suggestive of intra-cochlear conductive hearing impairment. (C) 2012 Elsevier B.V. All rights reserved.
C1 [van Beelen, E.; Leijendeckers, J. M.; Huygen, P. L. M.; Admiraal, R. J. C.; Hoefsloot, L. H.; Pennings, R. J. E.; Snik, A. F. M.; Kunst, H. P. M.] Radboud Univ Nijmegen, Med Ctr, Dept Otorhinolaryngol Head & Neck Surg, NL-6500 HB Nijmegen, Netherlands.
[van Beelen, E.; Leijendeckers, J. M.; Admiraal, R. J. C.; Pennings, R. J. E.; Snik, A. F. M.; Kunst, H. P. M.] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, NL-6500 HE Nijmegen, Netherlands.
[Lichtenbelt, K. D.] Univ Med Ctr Utrecht, Dept Med Genet, NL-3508 AB Utrecht, Netherlands.
[Stoebe, L.; Leuwer, R.] HELIOS Hosp, Dept Otorhinolaryngol Head & Neck Surg, D-47805 Krefeld, Germany.
[Hoefsloot, L. H.] Radboud Univ Nijmegen, Med Ctr, Dept Human Genet, NL-6500 HB Nijmegen, Netherlands.
RP van Beelen, E (reprint author), Radboud Univ Nijmegen, Med Ctr, Dept Otorhinolaryngol Head & Neck Surg, POB 9101, NL-6500 HB Nijmegen, Netherlands.
EM E.vanBeelen@kno.umcn.nl; J.Leijendeckers@kno.umcn.nl;
P.Huygen@kno.umcn.nl; R.Admiraal@kno.umcn.nl; L.Hoefsloot@gen.umcn.nl;
k.d.lichtenbelt@umcutrecht.nl; Lars.Stoebe@helios-kliniken.de;
R.Pennings@kno.umcn.nl; rudolf.leuwer@helios-kliniken.de;
A.Snik@kno.umcn.nl; H.Kunst@kno.umcn.nl
RI Kunst, Henricus/J-6456-2012; Pennings, Ronald/J-6651-2012; Snik,
Ad/H-8092-2014
FU INTERREG IVA program of Germany; INTERREG IVA program of the Netherlands
FX We would like to thank all of the family members who participated in
this study for their cooperation. This study was supported by a grant
from the INTERREG IVA program of Germany and the Netherlands.
CR Admiraal RJC, 2000, LARYNGOSCOPE, V110, P457, DOI 10.1097/00005537-200003000-00025
Annunen S, 1999, AM J HUM GENET, V65, P974, DOI 10.1086/302585
Avcin T, 2008, J RHEUMATOL, V35, P920
Bosman AJ, 1995, AUDIOLOGY, V34, P260
BRUNNER HG, 1994, HUM MOL GENET, V3, P1561, DOI 10.1093/hmg/3.9.1561
Chen W, 2005, J MED GENET, V42, DOI 10.1136/jmg.2005.032615
De Leenheer EMR, 2002, ANN OTO RHINOL LARYN, V111, P267
De Leenheer EMR, 2004, ANN OTO RHINOL LARYN, V113, P922
Govaerts PJ, 2002, ADV OTO-RHINO-LARYNG, V61, P60
HALL J, 1974, Birth Defects Original Article Series, V10, P157
Harel T, 2005, AM J MED GENET A, V132A, P33, DOI 10.1002/ajmg.a.30371
Kirschhofer K, 1998, CYTOGENET CELL GENET, V82, P126, DOI 10.1159/000015086
Kunst H, 2000, AM J OTOL, V21, P181, DOI 10.1016/S0196-0709(00)80006-X
Leijendeckers JM, 2009, AUDIOL NEURO-OTOL, V14, P223, DOI 10.1159/000189265
McGuirt WT, 1999, NAT GENET, V23, P413
MOSER LM, 1987, HNO, V35, P318
Naz S, 2003, J MED GENET, V40, P360, DOI 10.1136/jmg.40.5.360
Pascoe PD, 1988, HEAR FITT THEOR PRAC, P129
Plantinga RF, 2007, JARO-J ASSOC RES OTO, V8, P1, DOI 10.1007/s10162-006-0060-9
PLOMP R, 1979, AUDIOLOGY, V18, P43
Robin NH, 1993, GENEREVIEWS
Sirko-Osadsa D, 1998, J PEDIATR-US, V132, P368, DOI 10.1016/S0022-3476(98)70466-4
Snead MP, 1999, J MED GENET, V36, P353
STICKLER GB, 1967, MAYO CLIN PROC, V42, P495
STICKLER GB, 1965, MAYO CLIN PROC, V40, P433
Szymko-Bennett YM, 2001, ARCH OTOLARYNGOL, V127, P1061
vanSteensel MAM, 1997, AM J MED GENET, V70, P315
VIKKULA M, 1995, CELL, V80, P431, DOI 10.1016/0092-8674(95)90493-X
Vuoristo MM, 2004, AM J MED GENET A, V130A, P160, DOI 10.1002/ajmg.a.30111
NR 29
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2012
VL 291
IS 1-2
BP 15
EP 23
DI 10.1016/j.heares.2012.07.001
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 004MA
UT WOS:000308684600002
PM 22796475
ER
PT J
AU Fullgrabe, C
Moore, BCJ
AF Fuellgrabe, Christian
Moore, Brian C. J.
TI Objective and subjective measures of pure-tone stream segregation based
on interaural time differences
SO HEARING RESEARCH
LA English
DT Article
ID HEARING-IMPAIRED LISTENERS; TEMPORAL DISCRIMINATION;
FUNDAMENTAL-FREQUENCY; SEQUENCES; PERCEPTION; ATTENTION; CUES
AB The effect of interaural time differences (ITDs) on stream segregation for successive tone bursts was investigated. Obligatory stream segregation was inferred from the threshold for detecting a rhythmic irregularity in an otherwise isochronous sequence of interleaved "A" and "B" tones (task 1). Subjective stream segregation was evaluated by requiring listeners to indicate whether they heard one or two streams during presentation of a 30-s long sequence (task 2). The A and B tones had equal but opposite ITDs and had the same or different frequencies of 500 and/or 707 Hz. The ITDs ranged from 0 to 2 ms in study 1, and from 0 to 0.5 ms in study 2. Sensitivity on task 1 was poor in both studies when A and B had different frequencies, and was little affected by ITD. Thresholds for the same-frequency conditions worsened somewhat with increasing ITD up to 0.5 ms and then (for study 1) flattened off. There was a small increase in subjective streaming as the ITD was increased up to 0.5 ms, but little streaming for larger ITDs (study 1). We conclude that ITD, at most, has weak effects in producing obligatory and subjective stream segregation. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Fuellgrabe, Christian; Moore, Brian C. J.] Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England.
RP Fullgrabe, C (reprint author), Nottingham Univ Sect, MRC Inst Hearing Res, Nottingham NG7 2RD, England.
EM c.fullgrabe@ihr.mrc.ac.uk; bcjm@cam.ac.uk
RI Moore, Brian/I-5541-2012; Fullgrabe, Christian/I-6331-2012
FU Fyssen Foundation (France); MRC (UK)
FX This research was supported by a Fyssen Foundation (France)
post-doctoral fellowship to C. Fullgrabe, and an MRC (UK) grant to
B.C.J. Moore. The authors are indebted to Dr. Thomas Stainsby for help
with programming. We thank two reviewers for helpful comments on an
earlier version of this paper.
CR Akeroyd MA, 2005, J ACOUST SOC AM, V118, P977, DOI 10.1121/1.1945566
ANSTIS S, 1985, J EXP PSYCHOL HUMAN, V11, P257, DOI 10.1037/0096-1523.11.3.257
Beauvois MW, 1997, PERCEPT PSYCHOPHYS, V59, P81, DOI 10.3758/BF03206850
Boehnke SE, 2005, PERCEPT PSYCHOPHYS, V67, P1088, DOI 10.3758/BF03193634
Bregman A. S., 1993, THINKING SOUND COGNI, P10
BREGMAN AS, 1978, J EXP PSYCHOL HUMAN, V4, P380, DOI 10.1037//0096-1523.4.3.380
BREGMAN AS, 1971, J EXP PSYCHOL, V89, P244, DOI 10.1037/h0031163
Bregman AS., 1990, AUDITORY SCENE ANAL
BUELL TN, 1991, J ACOUST SOC AM, V90, P3077, DOI 10.1121/1.401782
Carlyon RP, 2001, J EXP PSYCHOL HUMAN, V27, P115, DOI 10.1037//0096-1523.27.1.115
CRAMER EM, 1958, J ACOUST SOC AM, V30, P413, DOI 10.1121/1.1909628
Culling JF, 2000, J EXP PSYCHOL HUMAN, V26, P1760, DOI 10.1037/0096-1523.26.6.1760
Cusack R, 2000, PERCEPT PSYCHOPHYS, V62, P1112, DOI 10.3758/BF03212092
Darwin CJ, 1999, J EXP PSYCHOL HUMAN, V25, P617, DOI 10.1037/0096-1523.25.3.617
DOWLING WJ, 1973, COGNITIVE PSYCHOL, V5, P322, DOI 10.1016/0010-0285(73)90040-6
Gockel H, 1999, J ACOUST SOC AM, V106, P3553, DOI 10.1121/1.428208
Grantham D. Wesley, 1995, P297, DOI 10.1016/B978-012505626-7/50011-X
HARTMANN WM, 1991, MUSIC PERCEPT, V9, P155
KUBOVY M, 1974, SCIENCE, V186, P272, DOI 10.1126/science.186.4160.272
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
MILLER GA, 1950, J ACOUST SOC AM, V22, P637, DOI 10.1121/1.1906663
MILLS AW, 1958, J ACOUST SOC AM, V30, P237, DOI 10.1121/1.1909553
Moore BCJ, 2002, ACTA ACUST UNITED AC, V88, P320
Moore BCJ, 2012, PHILOS T R SOC B, V367, P919, DOI 10.1098/rstb.2011.0355
Pressnitzer D, 2006, CURR BIOL, V16, P1351, DOI 10.1016/j.cub.2006.05.054
Roberts B, 2002, J ACOUST SOC AM, V112, P2074, DOI 10.1121/1.1508784
Roberts B, 2008, J EXP PSYCHOL HUMAN, V34, P992, DOI 10.1037/0096-1523.34.4.992
Rose MM, 1997, J ACOUST SOC AM, V102, P1768, DOI 10.1121/1.420108
Snedecor G. W., 1967, STAT METHODS
Stainsby TH, 2004, HEARING RES, V192, P119, DOI 10.1016/j.heares.2004.02.003
Stainsby TH, 2011, J ACOUST SOC AM, V130, P904, DOI 10.1121/1.3605540
Stainsby TH, 2004, J ACOUST SOC AM, V115, P1665, DOI [10.1121/1.1650288, 10.1121/1.1650288]]
STUDEBAKER GA, 1985, J SPEECH HEAR RES, V28, P455
THURLOW W, 1957, AM J PSYCHOL, V70, P653, DOI 10.2307/1419466
van Noorden L. P. A. S., 1975, THESIS EINDHOVEN U T
Vliegen J, 1999, J ACOUST SOC AM, V106, P938, DOI 10.1121/1.427140
Wilson EC, 2007, J NEUROPHYSIOL, V97, P2230, DOI 10.1152/jn.00788.2006
NR 37
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2012
VL 291
IS 1-2
BP 24
EP 33
DI 10.1016/j.heares.2012.06.006
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 004MA
UT WOS:000308684600003
PM 22771780
ER
PT J
AU Thomas, JM
Morse, C
Kishline, L
O'Brien-Lambert, A
Simonton, A
Miller, KE
Covey, E
AF Thomas, Jessica M.
Morse, Christina
Kishline, Lindsey
O'Brien-Lambert, Alex
Simonton, Ariel
Miller, Kimberly E.
Covey, Ellen
TI Stimulus-specific adaptation in specialized neurons in the inferior
colliculus of the big brown bat, Eptesicus fuscus
SO HEARING RESEARCH
LA English
DT Article
ID SINUSOIDAL FREQUENCY MODULATIONS; AUDITORY-SYSTEM; CORTEX; RAT
AB The inferior colliculus (IC) of the big brown bat (Eptesicus fuscus) contains specialized neurons that respond exclusively to highly specific spectrotemporal patterns such as sinusoidally frequency modulated (SFM) signals or directional frequency modulated sweeps (FM). Other specialized cells with l-shaped frequency response areas (FRAs) are tuned to very narrow frequency bands (1-2 kHz) in an amplitude-tolerant manner. In contrast, non-specialized neurons respond to any stimulus with energy in their frequency response area. IC neurons in several mammalian species, including bats, demonstrate stimulus-specific adaptation (SSA), a reduction in response to a high-probability stimulus. To evaluate the relation between stimulus selectivity and SSA, we presented sounds using an oddball stimulus paradigm and recorded extracellular responses of IC neurons. SFM-selective cells (n = 10), FM-selective cells (n = 7), and cells with I-shaped FRAs (n = 13) did not show SSA under any of the conditions tested (NSSI = 0.009, 0.033, 0.020 respectively). However, non-specialized neurons (n = 52) exhibited various levels of SSA (NSSI = 0.163), with a subset of these cells displaying strong adaptation. These findings suggest that SSA is not a ubiquitous characteristic of all neurons in the bat IC, but is present only in a subset of non-specialized neurons. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Thomas, Jessica M.; Morse, Christina; Kishline, Lindsey; O'Brien-Lambert, Alex; Simonton, Ariel; Miller, Kimberly E.; Covey, Ellen] Univ Washington, Dept Psychol, Seattle, WA 98195 USA.
RP Covey, E (reprint author), Univ Washington, Dept Psychol, Seattle, WA 98195 USA.
EM ecovey@u.washington.edu
FU NSF [IOS-0719295]; Auditory Neuroscience Training Grant
[5T32DC005361-09]
FX We thank Michael Dale Fisher for his many contributions to the project
and Brandon Warren for software support. Financial support was provided
by the NSF Grant IOS-0719295 (EC) and Auditory Neuroscience Training
Grant 5T32DC005361-09 (JMT).
CR Anderson LA, 2009, NEUROREPORT, V20, P462, DOI 10.1097/WNR.0b013e328326f5ab
Antunes F. M., 2010, PLOS ONE, V5
Brudzynski S.M., 2005, BEHAV GENET, V35, P87
Casseday JH, 1997, J NEUROPHYSIOL, V77, P1595
CASSEDAY JH, 1992, J COMP NEUROL, V319, P34, DOI 10.1002/cne.903190106
Casseday JH, 2002, SPR HDB AUD, V15, P238
Casseday JH, 1996, BRAIN BEHAV EVOLUT, V47, P311, DOI 10.1159/000113249
Covey E, 2005, ANAT REC PART A, V287A, P1103, DOI 10.1002/ar.a.20254
Covey E, 1999, ANNU REV PHYSIOL, V61, P457, DOI 10.1146/annurev.physiol.61.1.457
Farrar D.M., 2005, N AM S BAT RES, V35
Malmierca MS, 2009, J NEUROSCI, V29, P5483, DOI 10.1523/JNEUROSCI.4153-08.2009
Monroy J.A., 2011, J COMP PHYSIOL A, P1
Perez-Gonzalez D, 2005, EUR J NEUROSCI, V22, P2879, DOI 10.1111/j.1460-9568.2005.04472.x
SIMMONS JA, 1989, COGNITION, V33, P155, DOI 10.1016/0010-0277(89)90009-7
Simonton A., 2009, STIMULUS SPECIFIC AD
Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032
Ulanovsky N, 2004, J NEUROSCI, V24, P10440, DOI 10.1523/JNEUROSCI.1905-04.2004
Yue Q, 2007, J NEUROPHYSIOL, V98, P1364, DOI 10.1152/jn.00432.2007
NR 18
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2012
VL 291
IS 1-2
BP 34
EP 40
DI 10.1016/j.heares.2012.06.004
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 004MA
UT WOS:000308684600004
PM 22743044
ER
PT J
AU Chung, K
Nelson, L
Teske, M
AF Chung, King
Nelson, Lance
Teske, Melissa
TI Noise reduction technologies implemented in head-worn preprocessors for
improving cochlear implant performance in reverberant noise fields
SO HEARING RESEARCH
LA English
DT Article
ID QUALITY-OF-LIFE; NORMAL-HEARING LISTENERS; DIRECTIONAL MICROPHONES;
PHONEME RECOGNITION; SPEECH RECOGNITION; BACKGROUND-NOISE; CHILDREN;
AID; AGE; LANGUAGE
AB The purpose of this study was to investigate whether a multichannel adaptive directional microphone and a modulation-based noise reduction algorithm could enhance cochlear implant performance in reverberant noise fields. A hearing aid was modified to output electrical signals (ePreprocessor) and a cochlear implant speech processor was modified to receive electrical signals (eProcessor). The ePreprocessor was programmed to flat frequency response and linear amplification. Cochlear implant listeners wore the ePreprocessor-eProcessor system in three reverberant noise fields: 1) one noise source with variable locations: 2) three noise sources with variable locations: and 3) eight evenly spaced noise sources from 0 degrees to 360 degrees. Listeners' speech recognition scores were tested when the ePreprocessor was programmed to omnidirectional microphone (OMNI), omnidirectional microphone plus noise reduction algorithm (OMNI + NR), and adaptive directional microphone plus noise reduction algorithm (ADM + NR). They were also tested with their own cochlear implant speech processor (CI_OMNI) in the three noise fields. Additionally, listeners rated overall sound quality preferences on recordings made in the noise fields. Results indicated that ADM+NR produced the highest speech recognition scores and the most preferable rating in all noise fields. Factors requiring attention in the hearing aid-cochlear implant integration process are discussed. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Chung, King] No Illinois Univ, Dept Allied Hlth & Commun Disorders, De Kalb, IL 60115 USA.
[Nelson, Lance; Teske, Melissa] Purdue Univ, Dept Speech Language & Hearing Sci, W Lafayette, IN 47906 USA.
RP Chung, K (reprint author), No Illinois Univ, Dept Allied Hlth & Commun Disorders, 323 Wirtz Hall, De Kalb, IL 60115 USA.
EM kchung@niu.edu
FU Oticon Foundation; MED-EL Cooperation
FX We would like to thank Scott Kepner and Derek Tully for technical
support and Oticon Foundation and MED-EL Cooperation for sponsoring the
project. While the study protocol was devised in collaboration with
sponsoring organizations, the authors are solely responsible for the
interpretation and the presentation of the results in this paper.
CR Alcantara JI, 2003, INT J AUDIOL, V42, P34, DOI 10.3109/14992020309056083
Arlinger S, 2003, INT J AUDIOL, V42, pS17
Barton GR, 2005, INT J AUDIOL, V44, P157, DOI 10.1080/14992020500057566
Bentler Ruth, 2006, Trends Amplif, V10, P67
Bentler Ruth A, 2004, Am J Audiol, V13, P73, DOI 10.1044/1059-0889(2004/010)
Boymans M, 2000, AUDIOLOGY, V39, P260
Buchner A., 2011, 13 S COCHL IMPL CHIL
BURKHARD MD, 1975, J ACOUST SOC AM, V58, P214, DOI 10.1121/1.380648
Chung K, 2009, HEARING RES, V250, P27, DOI 10.1016/j.heares.2009.01.005
Chung K, 2006, J ACOUST SOC AM, V120, P2216, DOI 10.1121/1.2285800
Chung K, 2004, ACOUST RES LETT ONL, V5, P56, DOI 10.1121/1.1666869
Chung K, 2007, J ACOUST SOC AM, V121, P1090, DOI 10.1121/1.2409859
Chung KT, 2004, RADIAT PHYS CHEM, V70, P83, DOI 10.1016/j.radphyschem.2003.12.006
COX RM, 1987, EAR HEARING, V8, pS119, DOI 10.1097/00003446-198710001-00010
Dawson PW, 2011, EAR HEARING, V32, P382, DOI 10.1097/AUD.0b013e318201c200
Dorman MF, 1998, J ACOUST SOC AM, V104, P3583, DOI 10.1121/1.423940
Edwards B.W., 1998, HEAR J, V51, P38
Flynn M., 2004, SYNCRO CONCEPT
Fu QJ, 1999, J ACOUST SOC AM, V106, pL18, DOI 10.1121/1.427031
Gates GA, 2005, LANCET, V366, P1111, DOI 10.1016/S0140-6736(05)67423-5
Gifford RH, 2010, J AM ACAD AUDIOL, V21, P441, DOI 10.3766/jaaa.21.7.3
Hicks CB, 2002, J SPEECH LANG HEAR R, V45, P573, DOI 10.1044/1092-4388(2002/046)
Hu Y, 2008, J ACOUST SOC AM, V124, P498, DOI 10.1121/1.2924131
Hu Y, 2010, J ACOUST SOC AM, V127, P3689, DOI 10.1121/1.3365256
Johns M., 2002, EFFECTIVE NOISE REDU
Kokkinakis K, 2010, J ACOUST SOC AM, V127, P3136, DOI 10.1121/1.3372727
Kuk F, 2002, HEAR J, V55, P34
Latzel M., 2003, HEAR REV, V10, P76
Mauger SJ, 2012, J ACOUST SOC AM, V131, P327, DOI 10.1121/1.3665990
Miyamoto RT, 2008, ACTA OTO-LARYNGOL, V128, P373, DOI 10.1080/00016480701785012
Mueller H Gustav, 2006, Trends Amplif, V10, P83, DOI 10.1177/1084713806289553
Nachtegaal J, 2009, EAR HEARING, V30, P302, DOI 10.1097/AUD.0b013e31819c6e01
Nelson PB, 2003, J ACOUST SOC AM, V113, P961, DOI 10.1121/1.1531983
Nicholas JG, 2007, J SPEECH LANG HEAR R, V50, P1048, DOI 10.1044/1092-4388(2007/073)
Nilsson M.J., 1994, J ACOUST SOC AM, V95, P1985
Palmer Catherine V, 2006, Trends Amplif, V10, P95, DOI 10.1177/1084713806289554
Pearsons K.S., 1976, ENV HLTH EFFECTS RES
Powers T., 1999, HEAR REV, V3, P36
Ricketts T, 2002, INT J AUDIOL, V41, P100, DOI 10.3109/14992020209090400
Ricketts T A, 2001, Trends Amplif, V5, P139, DOI 10.1177/108471380100500401
Sarampalis A, 2009, J SPEECH LANG HEAR R, V52, P1230, DOI 10.1044/1092-4388(2009/08-0111)
Schum DJ, 2003, HEAR J, V56, P32
Spriet A, 2007, EAR HEARING, V28, P62, DOI 10.1097/01.aud.0000252470.54246.54
Stacey PC, 2006, EAR HEARING, V27, P161, DOI 10.1097/01.aud.0000202353.37567.b4
Stickney GS, 2004, J ACOUST SOC AM, V116, P1081, DOI 10.1121/1.1772399
STUDEBAKER GA, 1985, J SPEECH HEAR RES, V28, P455
Tellier N., 2003, HEAR REV, V10, P48
Valente M., 2004, HEAR REV, V11, p[42, 71]
Valente M, 1999, Trends Amplif, V4, P112, DOI 10.1177/108471389900400302
Walden B E, 2000, J Am Acad Audiol, V11, P540
Yoshinaga-Itano C, 1998, PEDIATRICS, V102, P1161, DOI 10.1542/peds.102.5.1161
Zeng Fan-Gang, 2008, IEEE Rev Biomed Eng, V1, P115, DOI 10.1109/RBME.2008.2008250
Zeng FG, 1999, EAR HEARING, V20, P60, DOI 10.1097/00003446-199902000-00006
Zhao F, 2008, CLIN OTOLARYNGOL, V33, P427, DOI 10.1111/j.1749-4486.2008.01773.x
NR 54
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2012
VL 291
IS 1-2
BP 41
EP 51
DI 10.1016/j.heares.2012.06.003
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 004MA
UT WOS:000308684600005
PM 22750449
ER
PT J
AU Brown, AD
Kuznetsova, MS
Spain, WJ
Stecker, GC
AF Brown, Andrew D.
Kuznetsova, Marina S.
Spain, William J.
Stecker, G. Christopher
TI Frequency-specific, location-nonspecific adaptation of interaural time
difference sensitivity
SO HEARING RESEARCH
LA English
DT Article
ID SOUND LOCALIZATION; POTASSIUM CURRENTS; COCHLEAR NUCLEUS; LEVEL;
LATERALIZATION; INHIBITION; CUES
AB Human listeners' sensitivity to interaural time differences (ITD) was assessed for 1000 Hz tone bursts (500 ms duration) preceded by trains of 500-ms "adapter" tone bursts (7 s total adapter duration, frequencies of 200, 665, 1000, or 1400 Hz) carrying random ITD, or by an equal-duration period of silence. Presentation of the adapter burst train reduced ITD sensitivity in a frequency-specific manner. The observed effect differs from previously described forms of location-specific psychophysical adaptation, as it was produced using a binaurally diffuse sequence of tone bursts (i.e., a location-nonspecific adapter stimulus). Results are discussed in the context of pre-binaural adaptation. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Brown, Andrew D.; Stecker, G. Christopher] Univ Washington, Dept Speech & Hearing Sci, Seattle, WA 98105 USA.
[Kuznetsova, Marina S.] Univ Washington, Interdisciplinary Grad Program Neurobiol & Behav, Seattle, WA 98105 USA.
[Spain, William J.] Vet Affairs Puget Sound Hlth Care Syst, Seattle, WA 98108 USA.
RP Brown, AD (reprint author), Univ Washington, Dept Speech & Hearing Sci, 1417 NE 42nd St, Seattle, WA 98105 USA.
EM andrewdb@uw.edu; msk@uw.edu; spain@uw.edu; cstecker@uw.edu
FU National Institute on Deafness and Other Communication Disorders [NIH]
[T32-DC000033, F31-DC010543, F31-DC091763, R03-DC009482]; VA Merit
Review
FX The authors thank Anna Mamiya and Shiboney Dumo for help with data
collection. This work was supported by the National Institute on
Deafness and Other Communication Disorders [NIH Grant Nos. T32-DC000033,
F31-DC010543 (ADB), F31-DC091763 (MSK), R03-DC009482 (GCS)] and a VA
Merit Review (WJS).
CR Abolafia JM, 2011, CEREB CORTEX, V21, P977, DOI 10.1093/cercor/bhq163
Adrian ED, 1926, J PHYSIOL-LONDON, V61, P151
Fairhall AL, 2001, NATURE, V412, P787, DOI 10.1038/35090500
Freyman RL, 1997, J ACOUST SOC AM, V101, P1649, DOI 10.1121/1.418149
Getzmann S, 2004, HEARING RES, V191, P14, DOI 10.1016/j.heares.2003.12.020
Grothe B, 2010, PHYSIOL REV, V90, P983, DOI 10.1152/physrev.00026.2009
Grothe B, 2011, HEARING RES, V279, P43, DOI 10.1016/j.heares.2011.03.013
HAFTER ER, 1988, AUDITORY FUNCTION, P647
Hartung K, 2001, J ACOUST SOC AM, V110, P1505, DOI 10.1121/1.1390339
Kapfer C, 2002, NAT NEUROSCI, V5, P247, DOI 10.1038/mm810
Kashino M, 1998, J ACOUST SOC AM, V103, P3597, DOI 10.1121/1.423064
Kuznetsova MS, 2008, J NEUROSCI, V28, P11906, DOI 10.1523/JNEUROSCI.3827-08.2008
Kuznetsova M.S., 2009, ASS RES OTOLARYNGOL, V34, P718
Levitt H., 1971, J ACOUST SOC AM, V98, P1803
Maier JK, 2010, JARO-J ASSOC RES OTO, V11, P319, DOI 10.1007/s10162-009-0200-0
MCFADDEN D, 1973, PERCEPT MOTOR SKILL, V37, P755
MOORE BCJ, 1987, HEARING RES, V28, P209, DOI 10.1016/0378-5955(87)90050-5
Moore D., 2005, INTRO PRACTICE STAT, V4th
Nakamoto KT, 2008, J NEUROPHYSIOL, V99, P2347, DOI 10.1152/jn.01326.2007
Pecka M, 2007, J NEUROSCI, V27, P1782, DOI 10.1523/JNEUROSCI.5335-06.2007
Phillips DP, 2005, HEARING RES, V202, P188, DOI [10.1016/j.heares.2004.11.001, 10.1016/j.heres.2004.11.001]
Rothman JS, 2003, J NEUROPHYSIOL, V89, P3070, DOI 10.1152/jn.00125.2002
Schnupp JWH, 2009, NAT NEUROSCI, V12, P692, DOI 10.1038/nn.2325
Tollin DJ, 1999, J ACOUST SOC AM, V105, P838, DOI 10.1121/1.426273
WALLACH H, 1949, AM J PSYCHOL, V62, P315, DOI 10.2307/1418275
WICKESBERG RE, 1990, J NEUROSCI, V10, P1762
ZWISLOCKI J, 1956, J ACOUST SOC AM, V28, P860, DOI 10.1121/1.1908495
NR 27
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2012
VL 291
IS 1-2
BP 52
EP 56
DI 10.1016/j.heares.2012.06.002
PG 5
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 004MA
UT WOS:000308684600006
PM 22732693
ER
PT J
AU Razak, KA
AF Razak, K. A.
TI Mechanisms underlying azimuth selectivity in the auditory cortex of the
pallid bat
SO HEARING RESEARCH
LA English
DT Article
ID SOUND PRESSURE LEVEL; INTERAURAL INTENSITY DIFFERENCES; FERRET
MUSTELA-PUTORIUS; INFERIOR COLLICULUS; ANTROZOUS-PALLIDUS;
CORTICAL-NEURONS; FUNCTIONAL-ORGANIZATION; BINAURAL ORGANIZATION;
UNILATERAL ABLATION; TIME DIFFERENCES
AB This study focused on mechanisms underlying azimuth selectivity in the primary auditory cortex (A1) of pallid bats. The pallid bat listens to prey-generated noise (5-35 kHz) to localize and hunt terrestrial prey. The region of A1 tuned between 5 and 35 kHz consists of two clusters of neurons distinguished by interaural intensity difference (IID) selectivity: binaurally inhibited (EI) and peaked. The first aim of this study was to use sequential dichotic/free-field stimulation to test the hypothesis that IID is the primary cue underlying azimuth selectivity in neurons tuned in the prey-generated noise frequency band. IID selectivity and ear directionality at the neuron's characteristic frequency (CF) were used to predict azimuth selectivity functions. The predicted azimuth selectivity was compared with the actual azimuth selectivity from the same neurons. Prediction accuracy was similarly high for El neurons and peaked neurons with low CF, whereas predictions were increasingly inaccurate with increasing CF among the peaked neurons. The second aim of this study was to compare azimuth selectivity obtained with noise and CF tones to determine the extent to which stimulus bandwidth influences azimuth selectivity in neurons with different binaural properties. The azimuth selectivity functions were similar for the two stimuli in the majority of El neurons. A greater percentage of peaked neurons showed differences in their azimuth selectivity for noise and tones. This included neurons with mutiple peaks when tested with tones and a single peak when tested with noise. Taken together, data from the two aims suggest that azimuth tuning of El neurons is primarily dictated by IID sensitivity at CF. Peaked neurons, particularly those with high CF, may integrate IID sensitivity across frequency to generate azimuth selectivity for broadband sound. The data are consistent with those found in cat and ferret A1 in that binaurally facilitated neurons depend to a greater extent (compared to EI neurons) on spectral integration of binaural properties to generate azimuth selectivity for broadband stimuli. (c) 2012 Elsevier B.V. All rights reserved.
C1 Univ Calif Riverside, Dept Psychol, Grad Program Neurosci, Riverside, CA 92521 USA.
RP Razak, KA (reprint author), Univ Calif Riverside, Dept Psychol, Grad Program Neurosci, 900 Univ Ave, Riverside, CA 92521 USA.
EM khaleel@ucr.edu
FU National Institute on Deafness and Other Communication Disorders Grant
[R03 DC009882-01A]
FX The study was funded by National Institute on Deafness and Other
Communication Disorders Grant (R03 DC009882-01A). I thank Dr. Zoltan
Fuzessery for comments on an earlier version of the manuscript. I also
thank Kevin Measor, Sarah Rotschafer and two anonymous reviewers for
providing feedback on this manuscript.
CR AITKIN LM, 1987, J NEUROPHYSIOL, V57, P1185
Barber JR, 2003, J COMP PHYSIOL A, V189, P843, DOI 10.1007/s00359-003-0463-6
BELL GP, 1982, BEHAV ECOL SOCIOBIOL, V10, P217, DOI 10.1007/BF00299688
BRAINARD MS, 1992, J ACOUST SOC AM, V91, P1015, DOI 10.1121/1.402627
BROWN CH, 1980, J ACOUST SOC AM, V68, P127, DOI 10.1121/1.384638
Brugge JF, 1996, J NEUROSCI, V16, P4420
BUTLER RA, 1986, HEARING RES, V21, P67, DOI 10.1016/0378-5955(86)90047-X
Casseday J H, 1977, Ann N Y Acad Sci, V299, P255, DOI 10.1111/j.1749-6632.1977.tb41912.x
CLAREY JC, 1995, J NEUROPHYSIOL, V74, P961
CLAREY JC, 1994, J NEUROPHYSIOL, V72, P2383
Dingle RN, 2010, HEARING RES, V268, P67, DOI 10.1016/j.heares.2010.04.017
Furukawa S, 2000, J NEUROSCI, V20, P1216
Fuzessery M., 1990, J NEUROPHYSIOL, V63, P1128
Fuzessery ZM, 1996, HEARING RES, V95, P1, DOI 10.1016/0378-5955(95)00223-5
FUZESSERY ZM, 1994, J NEUROPHYSIOL, V72, P1061
FUZESSERY ZM, 1985, J NEUROPHYSIOL, V54, P757
Heffner H E, 1997, Acta Otolaryngol Suppl, V532, P22
Higgins N.C., 2011, J NEUROSCI, V30, P14522
IMIG TJ, 1990, J NEUROPHYSIOL, V63, P1448
IMIG TJ, 1977, BRAIN RES, V138, P241, DOI 10.1016/0006-8993(77)90743-0
IRVINE DRF, 1987, HEARING RES, V30, P169, DOI 10.1016/0378-5955(87)90134-1
Irvine DRF, 1996, J NEUROPHYSIOL, V75, P75
IRVINE DRF, 1990, J NEUROPHYSIOL, V63, P570
JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987
JENKINS WM, 1984, J NEUROPHYSIOL, V52, P819
KAVANAGH GL, 1987, J NEUROPHYSIOL, V57, P1746
KELLY JB, 1994, J NEUROPHYSIOL, V71, P904
KITZES LM, 1980, J COMP NEUROL, V192, P455, DOI 10.1002/cne.901920306
Lohuis TD, 2000, HEARING RES, V143, P43, DOI 10.1016/S0378-5955(00)00021-6
Malhotra S, 2004, J NEUROPHYSIOL, V92, P1625, DOI 10.1152/jn.01205.2003
MARTIN RL, 1987, HEARING RES, V30, P239, DOI 10.1016/0378-5955(87)90140-7
Mendelson JR, 2000, CEREB CORTEX, V10, P32, DOI 10.1093/cercor/10.1.32
MIDDLEBROOKS JC, 1994, SCIENCE, V264, P842, DOI 10.1126/science.8171339
MIDDLEBROOKS JC, 1981, J NEUROSCI, V1, P107
MIDDLEBROOKS JC, 1980, BRAIN RES, V181, P31, DOI 10.1016/0006-8993(80)91257-3
Miller LM, 2009, P NATL ACAD SCI USA, V106, P5931, DOI 10.1073/pnas.0901023106
MOISEFF A, 1981, J NEUROSCI, V1, P40
Mrsic-Flogel TD, 2005, J NEUROPHYSIOL, V93, P3489, DOI 10.1152/jn.00748.2004
Nakamoto KT, 2004, J NEUROPHYSIOL, V91, P118, DOI 10.1152/jn.00171.2003
PALMER AR, 1982, NATURE, V299, P248, DOI 10.1038/299248a0
PARK TJ, 1993, J NEUROSCI, V13, P2050
PHILLIPS DP, 1981, HEARING RES, V4, P299, DOI 10.1016/0378-5955(81)90014-9
RAJAN R, 1990, J NEUROPHYSIOL, V64, P888
Razak KA, 2010, J NEUROPHYSIOL, V104, P517, DOI 10.1152/jn.00294.2010
Razak KA, 2002, J NEUROPHYSIOL, V87, P72
Razak KA, 2007, J COMP NEUROL, V500, P322, DOI 10.1002/cne.21178
Razak KA, 2011, J NEUROSCI, V31, P13848, DOI 10.1523/JNEUROSCI.1937-11.2011
Reale A. A., 1986, J NEUROPHYSIOL, V56, P663
Rutkowski RG, 2000, HEARING RES, V145, P177, DOI 10.1016/S0378-5955(00)00087-3
Schnupp JWH, 2001, NATURE, V414, P200, DOI 10.1038/35102568
SEMPLE MN, 1993, J NEUROPHYSIOL, V69, P462
Stecker GC, 2005, PLOS BIOL, V3, P520, DOI 10.1371/journal.pbio.0030078
TERHUNE JM, 1985, SCAND AUDIOL, V14, P125, DOI 10.3109/01050398509045933
WENSTRUP JJ, 1988, J NEUROPHYSIOL, V60, P1384
WHITFIEL.IC, 1972, J NEUROPHYSIOL, V35, P718
NR 55
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2012
VL 290
IS 1-2
BP 1
EP 12
DI 10.1016/j.heares.2012.05.008
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 983PS
UT WOS:000307131800001
PM 22641192
ER
PT J
AU Parsa, A
Webster, P
Kalinec, F
AF Parsa, Arya
Webster, Paul
Kalinec, Federico
TI Deiters cells tread a narrow path-The Deiters cells-basilar membrane
junction-
SO HEARING RESEARCH
LA English
DT Article
ID SCANNING-ELECTRON-MICROSCOPY; SUPPORTING CELLS; INNER-EAR; MAMMALIAN
ORGAN; CORTI; COCHLEA; STIFFNESS; ACTIN
AB Deiters cells extend from the basilar membrane to the reticular lamina and, together with pillar cells and outer hair cells, structurally define the micro-architecture of the organ of Corti. Studying vibrotome sections of the mouse organ of Corti with confocal and scanning electron microscopy we found that the basal pole of every Deiters cell, independently of their position in the organ of Corti and along the cochlear spiral, attached to the basilar membrane within a 15.1 +/- 0.3 mu m-wide stripe running the length of the cochlear spiral adjacent to the row of outer pillar cells. All Deiters cells' basal poles had similar diameter and general morphology, and distributed on the stripe in a precise arrangement with a center-to-center distance of 71 +/- 0.3 mu m between neighbor cells of the same row and 5.9 +/- 0.4 mu m for neighbor cells in adjacent rows. Complete detachment of Deiters cells revealed an elliptical imprint on the top surface of the basilar membrane consisting of a smaller central structure with a very smooth surface surrounded by a rougher area, suggesting the presence of two different: anchoring junctions. These previously unidentified morphological features of Deiters cells could be critical for the mechanical response of the organ of Corti. (c) 012 Elsevier B.V. All rights reserved.
C1 [Parsa, Arya; Kalinec, Federico] House Res Inst, Div Cell Biol & Genet, Los Angeles, CA 90057 USA.
[Webster, Paul] House Res Inst, Ahmanson Ctr EM & Adv Imaging, Los Angeles, CA 90057 USA.
[Webster, Paul; Kalinec, Federico] Univ So Calif, Keck Sch Med, Dept Otolaryngol, Los Angeles, CA 90033 USA.
[Kalinec, Federico] Univ So Calif, Keck Sch Med, Dept Cell & Neurobiol, Los Angeles, CA 90033 USA.
RP Kalinec, F (reprint author), House Res Inst, Div Cell Biol & Genet, 2100 W 3rd St, Los Angeles, CA 90057 USA.
EM fkalinec@hei.org
FU National Institutes of Health [DC010146, DC010397]; House Research
Institute
FX The authors thank Dr. David J. Lim for critically reading the
manuscript, and declare no existing or potential conflict of interest.
Ahmanson Foundation grants equipped the Imaging Center where much of
this work was carried out. This work was supported by National
Institutes of Health grants DC010146 and DC010397 and House Research
Institute. Its content is solely the responsibility of the authors and
does not necessarily represent the official views of the National
Institutes of Health or the House Research Institute.
CR Alberts B., 2002, MOL BIOL CELL, V4th
ANGELBOR.C, 1972, ACTA OTO-LARYNGOL, P49
BREDBERG G, 1972, ACTA OTO-LARYNGOL, P3
Cooper NP, 2000, RECENT DEV AUDITORY, P109, DOI 10.1142/9789812793980_0016
DAVIES S, 1987, J MICROSC-OXFORD, V147, P89
Deiters O, 1860, UNTERSUCHUNGEN LAMIN
ENGSTROM H, 1953, ACTA OTO-LARYNGOL, V43, P323, DOI 10.3109/00016485309119854
ENGSTROM H, 1958, INT REV CYTOL, V7, P535, DOI 10.1016/S0074-7696(08)62695-9
ENGSTROM H, 1958, Exp Cell Res, V14, P460
FORGE A, 1992, SCANNING MICROSCOPY, V6, P521
Hardie NA, 2004, BRAIN RES, V1000, P200, DOI 10.1016/j.brainres.2003.10.071
Huang LC, 2010, PURINERG SIGNAL, V6, P231, DOI 10.1007/s11302-010-9191-x
IURATO S, 1961, Z ZELLFORSCH MIK ANA, V53, P259, DOI 10.1007/BF00339444
KIMURA RS, 1975, INT REV CYTOL, V42, P173, DOI 10.1016/S0074-7696(08)60981-X
Naidu RC, 1998, HEARING RES, V124, P124, DOI 10.1016/S0378-5955(98)00133-6
O'Keeffe MG, 2010, PURINERG SIGNAL, V6, P249, DOI 10.1007/s11302-010-9190-y
OLSON ES, 1994, J ACOUST SOC AM, V95, P395, DOI 10.1121/1.408331
Olson E.S., 1993, BIOPHYSICS HAIR CELL, P280
Retzius G., 1884, GEHARORGAN WIRBELTHI, V2
Shim K., 2011, J VIS EXP, DOI [10.3791/2793, DOI 10.3791/2793]
SLEPECKY N, 1986, CELL TISSUE RES, V245, P229
SLEPECKY N, 1983, HEARING RES, V10, P359, DOI 10.1016/0378-5955(83)90098-9
Slepecky N.B., 1996, COCHLEA, V8, P44
SMITH CA, 1957, AM J ANAT, V100, P337, DOI 10.1002/aja.1001000304
SPICER SS, 1993, ANAT REC, V237, P421, DOI 10.1002/ar.1092370316
NR 25
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2012
VL 290
IS 1-2
BP 13
EP 20
DI 10.1016/j.heares.2012.05.006
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 983PS
UT WOS:000307131800002
PM 22633942
ER
PT J
AU Undurraga, JA
Carlyon, RP
Macherey, O
Wouters, J
van Wieringen, A
AF Undurraga, Jaime A.
Carlyon, Robert P.
Macherey, Olivier
Wouters, Jan
van Wieringen, Astrid
TI Spread of excitation varies for different electrical pulse shapes and
stimulation modes in cochlear implants
SO HEARING RESEARCH
LA English
DT Article
ID BRAIN-STEM RESPONSES; AUDITORY-NERVE; ELECTRODE CONFIGURATION;
SPEECH-PERCEPTION; ACTION-POTENTIALS; NUMBER; RECOGNITION; PATTERNS;
MASKING; HEARING
AB In Cochlear Implants (CI) Bipolar (BP) electrical stimulation has been suggested as a method to reduce the spread of current along the cochlea. However, behavioral measurements in BP mode have shown either similar or worse performance than in Monopolar (MP) mode. This could be explained by a bimodal excitation pattern, with two main excitation peaks at the sites of the stimulating electrodes. We measured the Spread of Excitation (SOE) by means of the Electrically Evoked Compound Action Potential (ECAP), obtained using the forward-masked paradigm. The aim was to measure the bimodality of the excitation and to determine whether it could be reduced by using asymmetric pulses. Three types of maskers shapes were used: Symmetric (SYM), Pseudomonophasic (PS), and Symmetric with a long Inter-Phase Gap (SYM-IPG) pulses. Maskers were presented in BP + 9 (wide), BP + 3 (narrow) and MP (only SYM) mode on fixed electrodes. The SOE obtained with the MP masker showed a main excitation peak close to the masker electrode. Wide SYM maskers produced bimodal excitation patterns showing two peaks close to the electrodes of the masker channel, whereas SYM-IPG maskers showed a single main peak near the electrode for which the masker's second phase (responsible for most of the masking) was anodic. Narrow SYM maskers showed complex and wider excitation patterns than asymmetric stimuli consistent with the overlap of the patterns produced by each channel's electrodes. The masking produced by narrow SYM-IPG and PS stimuli was more pronounced close to the masker electrode for which the effective phase was anodic. These results showed that the anodic polarity is the most effective one in BP mode and that the bimodal patterns produced by SYM maskers could be partially reduced by using asymmetric pulses. (c) 2012 Elsevier B.V. All rights reserved.
C1 [Undurraga, Jaime A.; Wouters, Jan; van Wieringen, Astrid] Univ Leuven, KU Leuven, Dept Neurosci, ExpORL, B-3000 Louvain, Belgium.
[Carlyon, Robert P.] Cognit & Brain Sci Unit, MRC, Cambridge CB2 7EF, England.
[Macherey, Olivier] CNRS, Lab Mecan & Acoust, F-13402 Marseille, France.
RP Undurraga, JA (reprint author), Univ Leuven, KU Leuven, Dept Neurosci, ExpORL, Herestr 49 bus 721, B-3000 Louvain, Belgium.
EM jaime.undurraga@med.kuleuven.be; bob.carlyon@mrc-cbu.cam.ac.uk;
olivier.macherey@mrc-cbu.cam.acuk; jan.wouters@med.kuleuven.be;
astrid.vanwieringen@med.kuleuven.be
RI Wouters, Jan/D-1800-2015
FU OT grant from the Research Council of the University of Leuven
[OT/07/056]
FX This research is supported by the OT grant from the Research Council of
the University of Leuven (OT/07/056) and is approved by the Local
Research Ethics Committee of the University of Leuven/UZ Leuven.
CR Briaire JJ, 2005, HEARING RES, V205, P143, DOI 10.1016/j.heares.2005.03.020
BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716
Cartee L, 2004, INTRACOCHLEAR POTENT
Chatterjee M, 2006, JARO-J ASSOC RES OTO, V7, P15, DOI 10.1007/s10162-005-0019-2
Chua TEH, 2011, EAR HEARING, V32, P679, DOI 10.1097/AUD.0b013e31821a47df
Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0
DON M, 1994, J ACOUST SOC AM, V96, P2746, DOI 10.1121/1.411281
DORMAN M, 1989, EAR HEARING, V10, P288, DOI 10.1097/00003446-198910000-00003
Dorman MF, 1997, AM J OTOL, V18, pS113
Eisen MD, 2005, JARO-J ASSOC RES OTO, V6, P160, DOI 10.1007/s10162-005-5057-2
ELBERLING C, 1984, SCAND AUDIOL, V13, P187, DOI 10.3109/01050398409043059
ELBERLING C, 1985, SCAND AUDIOL, V14, P89, DOI 10.3109/01050398509045928
Fayad JN, 2006, LARYNGOSCOPE, V116, P1310, DOI 10.1097/01.mlg.0000227176.09500.28
Fishman KE, 1997, J SPEECH LANG HEAR R, V40, P1201
Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538
Frijns JHM, 2009, ACTA OTO-LARYNGOL, V129, P433, DOI 10.1080/00016480802610218
Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4
GEIER LL, 1992, EAR HEARING, V13, P340
HOLMES AE, 1987, AM J OTOL, V8, P240
Javel E, 2000, HEARING RES, V140, P45, DOI 10.1016/S0378-5955(99)00186-0
KILENY PR, 1992, AM J OTOL, V13, P117
Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6
Kwon BJ, 2006, J ACOUST SOC AM, V119, P2994, DOI 10.1121/1.2184128
Laneau J, 2004, J ACOUST SOC AM, V116, P3606, DOI 10.1121/1.1823311
LEHNHARDT E, 1992, ORL J OTO-RHINO-LARY, V54, P308
LIM HH, 1989, J ACOUST SOC AM, V86, P971, DOI 10.1121/1.398732
Litvak LM, 2007, J ACOUST SOC AM, V122, P967, DOI 10.1121/1.2749414
Macherey O, 2010, J ACOUST SOC AM, V127, P326, DOI 10.1121/1.3257231
Macherey O, 2011, JARO-J ASSOC RES OTO, V12, P233, DOI 10.1007/s10162-010-0248-x
Macherey O, 2008, JARO-J ASSOC RES OTO, V9, P241, DOI 10.1007/s10162-008-0112-4
Macherey O, 2006, JARO-J ASSOC RES OTO, V7, P253, DOI 10.1007/s10162-006-0040-0
Mens LHM, 2005, OTOL NEUROTOL, V26, P957, DOI 10.1097/01.mao.0000185060.74339.9d
Miller CA, 2004, HEARING RES, V198, P75, DOI 10.1016/j.heares.2004.07.005
Miller CA, 2003, HEARING RES, V175, P200
Miller CA, 2001, JARO, V2, P216
Miller CA, 1999, HEARING RES, V130, P197, DOI 10.1016/S0378-5955(99)00012-X
Morsnowski A, 2006, AUDIOL NEURO-OTOL, V11, P389, DOI 10.1159/000095966
Pfingst BE, 1997, HEARING RES, V112, P247, DOI 10.1016/S0378-5955(97)00122-6
Pfingst BE, 2001, JARO, V2, P87
R Development Core Team, 2011, R LANG ENV STAT COMP
Rattay F, 2001, HEARING RES, V153, P43, DOI 10.1016/S0378-5955(00)00256-2
Silva I, 2009, IEEE T BIO-MED ENG, V56, P2123, DOI 10.1109/TBME.2009.2021400
Smith DW, 1997, J ACOUST SOC AM, V102, P2228, DOI 10.1121/1.419636
Snyder RL, 2008, HEARING RES, V235, P23, DOI 10.1016/j.heares.2007.09.013
Undurraga JA, 2010, HEARING RES, V269, P146, DOI 10.1016/j.heares.2010.06.017
Undurraga J.A., 2012, IEEE T BIOM IN PRESS
Van Der Baan FH, 2012, INT J AUDIOL, P1
VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5
Zwolan TA, 1996, AM J OTOL, V17, P717
NR 49
TC 5
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2012
VL 290
IS 1-2
BP 21
EP 36
DI 10.1016/j.heares.2012.05.003
PG 16
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 983PS
UT WOS:000307131800003
PM 22583921
ER
PT J
AU Johnson, LA
Della Santina, CC
Wang, XQ
AF Johnson, Luke A.
Della Santina, Charles C.
Wang, Xiaoqin
TI Temporal bone characterization and cochlear implant feasibility in the
common marmoset (Callithrix jacchus)
SO HEARING RESEARCH
LA English
DT Article
ID PRIMARY AUDITORY-CORTEX; NEURAL REPRESENTATIONS; POSTNATAL-GROWTH;
BASILAR-MEMBRANE; ELECTRODE ARRAY; TYMPANIC SCALAE; PRIMATE; MONKEY;
VOCALIZATION; DIMENSIONS
AB The marmoset (Callithrix jacchus) is a valuable non-human primate model for studying behavioral and neural mechanisms related to vocal communication. It is also well suited for investigating neural mechanisms related to cochlear implants. The purpose of this study was to characterize marmoset temporal bone anatomy and investigate the feasibility of implanting a multi-channel intracochlear electrode into the marmoset scala tympani. Micro computed tomography (microCT) was used to create high-resolution images of marmoset temporal bones. Cochlear fluid spaces, middle ear ossicles, semicircular canals and the surrounding temporal bone were reconstructed in three-dimensional space. Our results show that the marmoset cochlea is similar to 16.5 mm in length and has similar to 2.8 turns. The cross-sectional area of the scala tympani is greatest (similar to 0.8 mm(2)) at similar to 1.75 mm from the base of the scala, reduces to similar to 0.4 mm(2) at 5 mm from the base, and decreases at a constant rate for the remaining length. Interestingly, this length area profile, when scaled 2.5 times, is similar to the scala tympani of the human cochlea. Given these dimensions, a compatible multi-channel implant electrode was identified. In a cadaveric specimen, this electrode was inserted 3/4 turn into the scala tympani through a cochleostomy at similar to 1 mm apical to the round window. The depth of the most apical electrode band was similar to 8 mm. Our study provides detailed structural anatomy data for the middle and inner ear of the marmoset, and suggests the potential of the marmoset as a new non-human primate model for cochlear implant research. (c) 2012 Elsevier B.V. All rights reserved.
C1 [Johnson, Luke A.; Della Santina, Charles C.; Wang, Xiaoqin] Johns Hopkins Univ, Dept Biochem Engn, Baltimore, MD 21205 USA.
RP Johnson, LA (reprint author), Johns Hopkins Univ, Dept Biochem Engn, 412 Traylor Res Bldg,720 Rutland Ave, Baltimore, MD 21205 USA.
EM luke.johnson@jhu.edu
FU Kleberg Foundation; NIH National Institute on Deafness and Other
Communication Disorders [F31 DC010321, P30 DC005211]
FX This work was supported by a grant from the Kleberg Foundation to X.
Wang and grants from the NIH National Institute on Deafness and Other
Communication Disorders (F31 DC010321 to L Johnson and P30 DC005211 to
the Center for Hearing and Balance at Johns Hopkins). We thank Haoxin
Sun for assistance with Amira reconstructions of several temporal bone
specimens. We also thank Zach Smith for assistance with obtaining
Cochlear Ltd. electrodes, Ben Tsui and Jianhua Yu for help with CT
imaging of the electrode-implanted marmoset cochlea, Jenny Estes and
Nate Sotuyo for animal care, and Mohamed Lehar, Hakim Hiel and San San
Yu for help with histology.
CR Bartlett EL, 2011, J NEUROPHYSIOL, V106, P849, DOI 10.1152/jn.00559.2010
Bendor D, 2010, J NEUROPHYSIOL, V103, P1809, DOI 10.1152/jn.00281.2009
Bendor D, 2005, NATURE, V436, P1161, DOI 10.1038/nature03867
Bendor D, 2008, J NEUROPHYSIOL, V100, P888, DOI 10.1152/jn.00884.2007
Bezerra BM, 2008, INT J PRIMATOL, V29, P671, DOI 10.1007/s10764-008-9250-0
Biedron S, 2009, OTOL NEUROTOL, V30, P414, DOI 10.1097/MAO.0b013e3181977b8d
Borin Andrei, 2008, Braz J Otorhinolaryngol, V74, P370
Brumm H, 2004, J EXP BIOL, V207, P443, DOI 10.1242/jeb.00768
DAHM MC, 1993, ACTA OTO-LARYNGOL, P1
de la Mothe LA, 2006, J COMP NEUROL, V496, P27, DOI 10.1002/cne.20923
DiMattina C, 2006, J NEUROPHYSIOL, V95, P1244, DOI 10.1152/jn.00818.2005
EBY TL, 1986, ANN OTO RHINOL LARYN, V95, P356
Eliades SJ, 2003, J NEUROPHYSIOL, V89, P2194, DOI 10.1152/jn.00627.2002
Eliades SJ, 2008, NATURE, V453, P1102, DOI 10.1038/nature06910
Eliades SJ, 2005, CEREB CORTEX, V15, P1510, DOI 10.1093/cercor/bhi030
Fallon JB, 2009, HEARING RES, V257, P93, DOI 10.1016/j.heares.2009.08.006
Fay R. R., 1988, HEARING VERTEBRATES
Finley C. C., 1990, COCHLEAR IMPLANTS MO, P55
Flohr S, 2010, ANAT REC, V293, P2094, DOI 10.1002/ar.21271
FRIJNS JHM, 1995, HEARING RES, V87, P170, DOI 10.1016/0378-5955(95)00090-Q
Gray A.A., 1907, LABYRINTH ANIMALS
GREENWOOD D, 1961, J ACOUST SOC AM, V33, P1344, DOI 10.1121/1.1908437
GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
Gstoettner W, 1999, ACTA OTO-LARYNGOL, V119, P229
Hanekom T, 2001, EAR HEARING, V22, P300, DOI 10.1097/00003446-200108000-00005
Ketten DR, 1998, ANN OTO RHINOL LARYN, V107, P1
Lee CF, 2006, LARYNGOSCOPE, V116, P711, DOI 10.1097/01.mlg.0000204758.15877.34
Liang L, 2002, J NEUROPHYSIOL, V87, P2237, DOI 10.1152/jn.00834.2001
Lu W, 2005, HEARING RES, V205, P115, DOI 10.1016/j.heares.2005.03.010
Miller CT, 2009, J COMP PHYSIOL A, V195, P783, DOI 10.1007/s00359-009-0456-1
Nelson PC, 2010, J NEUROSCI, V30, P6577, DOI 10.1523/JNEUROSCI.0277-10.2010
Osmanski MS, 2011, HEARING RES, V277, P127, DOI 10.1016/j.heares.2011.02.001
Pistorio AL, 2006, J ACOUST SOC AM, V120, P1655, DOI 10.1121/1.2225899
Quam R, 2008, J HUM EVOL, V54, P414, DOI 10.1016/j.jhevol.2007.10.005
Rebscher SJ, 2007, J NEUROSCI METH, V166, P1, DOI 10.1016/j.jneumeth.2007.05.013
Sadagopan S, 2008, J NEUROSCI, V28, P3415, DOI 10.1523/JNEUROSCI.2743-07.2008
Shepherd R, 2011, HEARING RES, V277, P20, DOI 10.1016/j.heares.2011.03.017
SHEPHERD RK, 1995, AM J OTOL, V16, P186
Slee SJ, 2010, HEARING RES, V260, P96, DOI 10.1016/j.heares.2009.12.001
Snyder RL, 2008, HEARING RES, V235, P23, DOI 10.1016/j.heares.2007.09.013
Spoor F, 1998, YEARB PHYS ANTHROPOL, V41, P211
Thorne M, 1999, LARYNGOSCOPE, V109, P1661, DOI 10.1097/00005537-199910000-00021
Valero MD, 2008, HEARING RES, V243, P57, DOI 10.1016/j.heares.2008.05.006
Wang X, 2008, NEUROSCIENCE, V154, P294, DOI 10.1016/j.neuroscience.2008.03.065
Wang XQ, 2007, HEARING RES, V229, P81, DOI 10.1016/j.heares.2007.01.019
Wang XQ, 2000, P NATL ACAD SCI USA, V97, P11843, DOI 10.1073/pnas.97.22.11843
Wang XQ, 1995, J NEUROPHYSIOL, V74, P2685
Watkins PV, 2011, CEREB CORTEX, V21, P178, DOI 10.1093/cercor/bhq079
WEST CD, 1985, J ACOUST SOC AM, V77, P1091, DOI 10.1121/1.392227
Whiten D.M., 2007, THESIS HARVARD MIT D
Wysocki J, 1999, HEARING RES, V135, P39, DOI 10.1016/S0378-5955(99)00088-X
Wysocki J, 2001, HEARING RES, V161, P1, DOI 10.1016/S0378-5955(01)00314-8
NR 52
TC 3
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2012
VL 290
IS 1-2
BP 37
EP 44
DI 10.1016/j.heares.2012.05.002
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 983PS
UT WOS:000307131800004
PM 22583919
ER
PT J
AU Aernouts, J
Aerts, JRM
Dirckx, JJJ
AF Aernouts, Jef
Aerts, Johan R. M.
Dirckx, Joris J. J.
TI Mechanical properties of human tympanic membrane in the quasi-static
regime from in situ point indentation measurements
SO HEARING RESEARCH
LA English
DT Article
ID SOFT BIOLOGICAL TISSUES; MIDDLE-EAR; VISCOELASTIC PROPERTIES; STRUCTURAL
MODEL; CAT EARDRUM; HOLOGRAPHY; PRESSURE; BEHAVIOR; MALLEUS
AB The tympanic membrane is a key component of the human auditory apparatus. Good estimates of tympanic membrane mechanical properties are important to obtain realistic models of middle ear mechanics. Current literature values are almost all derived from direct mechanical tests on cut-out strips. For a biomedical specimen like the tympanic membrane, it is not always possible to harvest strips of uniform and manageable geometry and well-defined size suitable for such mechanical tests.
In this work, elastic and viscoelastic properties of human tympanic membrane were determined through indentation testing on the tympanic membrane in situ. Indentation experiments were performed on three specimens with a custom-built apparatus that was also used in previously published works. Two types of indentation tests were performed on each specimen: (i) sinusoidal indentation at 0.2 Hz yielding the quasi-static Young's modulus and (ii) step indentation tests yielding viscoelastic properties in the quasi-static regime (0-20 Hz).
In the cyclic indentation experiments (type i), the indentation depth and resulting needle force were recorded. The unloaded shape of the tympanic membrane and the membrane thickness were measured and used to create a specimen-specific finite element model of the experiment. The Young's modulus was then found through optimization of the error between model and experimental data; the values that were found for the three different samples are 2.1 MPa, 4.4 MPa and 2.3 MPa. A sensitivity analysis showed that these values are very sensitive to the thickness used in the models.
In the step indentation tests (type ii), force relaxation was measured during 120 s and the relaxation curves were fitted with a 5 parameter Maxwell viscoelastic model. The relaxation curves in the time domain were transformed to complex moduli in the frequency domain, yielding viscoelastic properties in the quasi-static regime only. (c) 2012 Elsevier B.V. All rights reserved.
C1 [Aernouts, Jef; Aerts, Johan R. M.; Dirckx, Joris J. J.] Univ Antwerp, Lab Biomed Phys, B-2020 Antwerp, Belgium.
RP Aernouts, J (reprint author), Univ Antwerp, Lab Biomed Phys, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
EM jef.aernouts@ua.ac.be
FU Agency for Innovation by Science and Technology in Flanders
(IWT-Vlaanderen); Hercules Foundation (Hercules Type 1) [AUHA 09/001]
FX This work was supported by the Agency for Innovation by Science and
Technology in Flanders (IWT-Vlaanderen). We would like to thank Dr.
Jean-Marc Gerard of the Brussels Saint-Luc University Hospital (UCL)
together with Joris Walraevens of the Cochlear Technology Centre Belgium
for putting the temporal bones at our disposal; we would also like to
thank Isabel Pintelon of the Laboratory of Cell Biology & Histology at
the University of Antwerp for her assistance with the confocal
microscopy measurements and Stijn Vandenbroeck from the EMAT laboratory
at the University of Antwerp for doing the scanning electron microscopy
measurement of the needle tip. The UltraVIEW VoX spinning disk confocal
microscope was purchased with support of the Hercules Foundation
(Hercules Type 1: AUHA 09/001).
CR Aernouts J, 2011, BIOMECH MODEL MECHAN, V10, P727, DOI 10.1007/s10237-010-0269-8
Aernouts J, 2012, J BIOMECH, V45, P919, DOI 10.1016/j.jbiomech.2012.01.023
Aernouts J, 2010, INT J ENG SCI, V48, P599, DOI 10.1016/j.ijengsci.2010.02.001
Bekesy G, 1960, EXPT HEARING
Bekesy G.V., 1941, AKUST Z, V6, P1
Buytaert JAN, 2010, OPT LASER ENG, V48, P172, DOI 10.1016/j.optlaseng.2009.03.018
Cheng JT, 2010, HEARING RES, V263, P66, DOI 10.1016/j.heares.2009.12.024
Cheng T, 2007, ANN BIOMED ENG, V35, P305, DOI 10.1007/s10439-006-9227-0
Daphalapurkar NR, 2009, J MECH BEHAV BIOMED, V2, P82, DOI 10.1016/j.jmbbm.2008.05.008
DECRAEMER WF, 1980, J BIOMECH, V13, P463, DOI 10.1016/0021-9290(80)90338-3
DECRAEMER WF, 1980, J BIOMECH, V13, P559, DOI 10.1016/0021-9290(80)90056-1
DIRCKX JJJ, 1992, HEARING RES, V62, P99, DOI 10.1016/0378-5955(92)90206-3
Dirckx JJJ, 2001, HEARING RES, V157, P124, DOI 10.1016/S0378-5955(01)00290-8
Elkhouri N, 2006, JARO-J ASSOC RES OTO, V7, P399, DOI 10.1007/s10162-006-0055-6
Fay J, 2005, J BIOMECH, V38, P1807, DOI 10.1016/j.jbiomech.2004.08.022
Fay JP, 2006, P NATL ACAD SCI USA, V103, P19743, DOI 10.1073/pnas.0603898104
Ferris P, 2000, J BIOMECH, V33, P581, DOI 10.1016/S0021-9290(99)00213-4
Findley WN, 1976, CREEP RELAXATION NON
Fung Y. C., 1981, BIOMECHANICS MECH PR
FUNNELL WRJ, 1982, ORL J OTO-RHINO-LARY, V44, P181
FUNNELL WRJ, 1987, J ACOUST SOC AM, V81, P1851, DOI 10.1121/1.394749
Gaihede M, 2010, OTOL NEUROTOL, V31, P603, DOI 10.1097/MAO.0b013e3181dd13e2
GRAHAM MD, 1978, ANN OTO RHINOL LARYN, V87, P426
Gulya AJ, 1995, ANATOMY TEMPORAL BON
Helmholtz H., 1868, PFLUGER ARCH PHYSL, V1
Kirikae I., 1960, STRUCTURE FUNCTION M
Koike T, 2001, JSME INT J C-MECH SY, V44, P1097, DOI 10.1299/jsmec.44.1097
KOJO Y, 1954, J O R L SOC JPN, V57, P115
Kuypers L., 2005, OTOL NEUROTOL, V27, P256
Ladak HM, 2004, J ACOUST SOC AM, V116, P3008, DOI 10.1121/1.1802673
Lee C. F., 2006, BIOMED ENG-APP BAS C, V18, P214
LIM DJ, 1970, ACTA OTO-LARYNGOL, V70, P176
Luo H., 2009, J BIOMECHANICAL ENG, V131
Maas S., 2011, FEBIO FINITE ELEMENT
Marcusohn Y, 2006, JARO-J ASSOC RES OTO, V7, P236, DOI 10.1007/s10162-006-0038-7
RUAH CB, 1991, ARCH OTOLARYNGOL, V117, P627
Salih WHM, 2012, HEARING RES, V284, P1, DOI 10.1016/j.heares.2011.12.004
Sun Q, 2002, BIOMECH MODEL MECHAN, V1, P109, DOI 10.1007/s10237-002-0014-z
TONNDORF J, 1972, J ACOUST SOC AM, V52, P1221, DOI 10.1121/1.1913236
Tuck-Lee JP, 2008, J ACOUST SOC AM, V124, P348, DOI 10.1121/1.2912438
UEBO K, 1988, EAR RES JPN, V19, P70
Volandri G, 2011, J BIOMECH, V44, P1219, DOI 10.1016/j.jbiomech.2010.12.023
Wang XL, 2007, J ACOUST SOC AM, V122, P906, DOI 10.1121/1.2749417
Zhang W, 2007, BIOMATERIALS, V28, P3579, DOI 10.1016/j.biomaterials.2007.04.040
Zhang X, 2010, INT J EXP COMPUT BIO, V1, P252, DOI 10.1504/IJECB.2010.03526
Zhao F, 2009, MED ENG PHYS, V31, P907, DOI 10.1016/j.medengphy.2009.06.009
NR 46
TC 11
Z9 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2012
VL 290
IS 1-2
BP 45
EP 54
DI 10.1016/j.heares.2012.05.001
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 983PS
UT WOS:000307131800005
PM 22583920
ER
PT J
AU Ben-David, BM
Tse, VYY
Schneider, BA
AF Ben-David, Boaz M.
Tse, Vania Y. Y.
Schneider, Bruce A.
TI Does it take older adults longer than younger adults to perceptually
segregate a speech target from a background masker?
SO HEARING RESEARCH
LA English
DT Article
ID AUDITORY STREAM SEGREGATION; HEARING-IMPAIRED LISTENERS; TERM-MEMORY
PERFORMANCE; INFORMATIONAL MASKING; SPATIAL SEPARATION; SCENE ANALYSIS;
NOISE; ATTENTION; PERCEPTION; AGE
AB Older adults often find it more difficult than younger adults to attend to a target talker when there are other people talking. One possible reason for this difficulty is that it may take them longer to perceptually segregate the target speech from competing speech. This study investigated age-related differences in the time it takes to segregate target speech from either a speech spectrum noise masker or a babble masker (many people talking simultaneously). Specifically, we employed five different delays (0.1 s-1.1 s) between masker onset and target speech onset. Four signal-to-masker ratios were employed at each delay to determine the 50% thresholds for word recognition accuracy when target words were masked by either speech spectrum noise or multi-talker babble. Thresholds for word recognition decreased exponentially as a function of the masker-word-onset delay, at the same rate for younger and older adults, when the masker was speech spectrum noise. When the masker was babble, thresholds for younger adults decreased exponentially with delay at the same rate as they did when the masker was speech spectrum noise. The word recognition thresholds for older adults, however, did not appear to change over the range of delays explored in this study. In addition, the average difference between word recognition thresholds for younger and older adults (younger adult thresholds < older adult thresholds) was significantly larger when the masker was babble than when it was noise. These results indicate that older adults are as fast as younger adults at separating speech from a steady-state noise masker, but are not as capable as younger adults of taking advantage of the delayed onset of the speech target when the masker is babble. The potential contributions of age-related sensory and cognitive declines to these stream segregation effects are discussed. Finally, we conclude that age-related differences in the timeline for stream segregation contribute to the difficulties older adults experience in listening to speech in a background of babble. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Ben-David, Boaz M.] Univ Toronto, Dept Speech Language Pathol, Oral Dynam Lab, Toronto, ON M5G 1V7, Canada.
[Ben-David, Boaz M.] Toronto Rehabil Inst, Toronto, ON M5G 2A2, Canada.
[Ben-David, Boaz M.; Tse, Vania Y. Y.; Schneider, Bruce A.] Univ Toronto, Ctr Res Biol Commun Syst, Dept Psychol, Mississauga, ON L5L 1C6, Canada.
RP Ben-David, BM (reprint author), Univ Toronto, Dept Speech Language Pathol, Oral Dynam Lab, 160-500 Univ Ave, Toronto, ON M5G 1V7, Canada.
EM boaz.ben.david@utoronto.ca
FU Canadian Institutes of Health Research Grants [STP-53875, MGC-42665,
MOP-15359]; Faculty of Arts & Science at the University of Toronto
Mississauga; Ontario Neurotrauma Foundation [2008-ABI-PDF-659]
FX This study was partially supported by Canadian Institutes of Health
Research Grants (STP-53875, MGC-42665, & MOP-15359), and a research
opportunity program grant from the Faculty of Arts & Science at the
University of Toronto Mississauga. The first author was partially
supported by a grant from the Ontario Neurotrauma Foundation
(2008-ABI-PDF-659). We wish to thank the following students, Wu Yan
(Lulu) Li, Julio Pereira, Marissa Polidori and especially Caterina Leung
for their assistance in collecting the data.
CR Alain C, 2001, J EXP PSYCHOL HUMAN, V27, P1072, DOI 10.1037//0096-1523.27.5.1072
Alain C., 2006, HDB MODELS HUMAN AGI, P759, DOI DOI 10.1016/B978-012369391-4/50065-5
Balota DA, 2007, BEHAV RES METHODS, V39, P445, DOI 10.3758/BF03193014
Ben-David BM, 2011, BRAIN INJURY, V25, P206, DOI 10.3109/02699052.2010.536197
Ben-David BM, 2011, J SPEECH LANG HEAR R, V54, P243, DOI 10.1044/1092-4388(2010/09-0233)
Ben-David BM, 2010, AGING NEUROPSYCHOL C, V17, P730, DOI 10.1080/13825585.2010.510553
Bernstein JGW, 2009, J ACOUST SOC AM, V125, P3358, DOI 10.1121/1.3110132
BILGER RC, 1984, J SPEECH HEAR RES, V27, P32
BREGMAN AS, 1971, J EXP PSYCHOL, V89, P244, DOI 10.1037/h0031163
Bregman AS., 1990, AUDITORY SCENE ANAL
Brungart DS, 2001, J ACOUST SOC AM, V110, P2527, DOI 10.1121/1.1408946
Carlyon RP, 2001, J EXP PSYCHOL HUMAN, V27, P115, DOI 10.1037//0096-1523.27.1.115
Carlyon RP, 2003, PERCEPTION, V32, P1393, DOI 10.1068/p5035
Cusack R, 2004, J EXP PSYCHOL HUMAN, V30, P643, DOI 10.1037/0096-1523.30.4.643
Durlach NI, 2003, J ACOUST SOC AM, V114, P368, DOI 10.1121/1.1577562
Ezzatian P., LANG COGNIT IN PRESS
Ezzatian P, 2011, EAR HEARING, V32, P84, DOI 10.1097/AUD.0b013e3181ee6b8a
Freyman RL, 1999, J ACOUST SOC AM, V106, P3578, DOI 10.1121/1.428211
George ELJ, 2006, J ACOUST SOC AM, V120, P2295, DOI 10.1121/1.2266530
GRANT DA, 1948, PSYCHOL BULL, V45, P427, DOI 10.1037/h0053912
Hasher L., 1988, PSYCHOL LEARN MOTIV, V22, P193, DOI DOI 10.1016/S0079-7421(08)60041-9
Heinrich A, 2011, EAR HEARING, V32, P524, DOI 10.1097/AUD.0b013e31820a0281
Heinrich A, 2008, Q J EXP PSYCHOL, V61, P735, DOI 10.1080/17470210701402372
Helfer KS, 2008, EAR HEARING, V29, P87
Humes LE, 2006, J ACOUST SOC AM, V120, P2926, DOI 10.1121/1.2354070
JERGER J, 1971, ARCHIV OTOLARYNGOL, V93, P573
Li Ang, 2004, Journal of Experimental Psychology Human Perception and Performance, V30, P1077
Lorenzi C, 2006, P NATL ACAD SCI USA, V103, P18866, DOI 10.1073/pnas.0607364103
MCFADDEN D, 1990, J ACOUST SOC AM, V88, P711, DOI 10.1121/1.399774
MILLER GA, 1950, J ACOUST SOC AM, V22, P637, DOI 10.1121/1.1906663
Murphy DR, 2000, PSYCHOL AGING, V15, P323, DOI 10.1037/0882-7974.15.2.323
PICHORAFULLER MK, 1995, J ACOUST SOC AM, V97, P593, DOI 10.1121/1.412282
Raven J.C., 1965, MILL HILL VOCABULARY
Salthouse TA, 1996, PSYCHOL REV, V103, P403, DOI 10.1037/0033-295X.103.3.403
Schmiedt RA, 2010, SPRINGER HANDB AUDIT, V34, P9, DOI 10.1007/978-1-4419-0993-0_2
Schneider B. A., 2007, J AM ACAD AUDIOL, V18, P578
Schneider BA, 2010, SPRINGER HANDB AUDIT, V34, P167, DOI 10.1007/978-1-4419-0993-0_7
Simpson SA, 2005, J ACOUST SOC AM, V118, P2775, DOI 10.1121/1.2062650
Singh G, 2008, J ACOUST SOC AM, V124, P1294, DOI 10.1121/1.2949399
Snyder JS, 2006, J COGNITIVE NEUROSCI, V18, P1, DOI 10.1162/089892906775250021
Sussman ES, 2007, PERCEPT PSYCHOPHYS, V69, P136, DOI 10.3758/BF03194460
Van Engen KJ, 2007, J ACOUST SOC AM, V121, P519, DOI 10.1121/1.2400666
Vongpoisal T, 2007, J SPEECH LANG HEAR R, V50, P1139, DOI 10.1044/1092-4388(2007/079)
Wagener KC, 2005, INT J AUDIOL, V44, P144, DOI 10.1080/14992020500057517
Wright BA, 1997, J ACOUST SOC AM, V101, P420, DOI 10.1121/1.417987
Yang ZG, 2007, SPEECH COMMUN, V49, P892, DOI 10.1016/j.specom.2007.05.005
ZWICKER E, 1965, J ACOUST SOC AM, V37, P653, DOI 10.1121/1.1909389
NR 47
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2012
VL 290
IS 1-2
BP 55
EP 63
DI 10.1016/j.heares.2012.04.022
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 983PS
UT WOS:000307131800006
PM 22609772
ER
PT J
AU Norman, M
Tomscha, K
Wehr, M
AF Norman, Madeleine
Tomscha, Katherine
Wehr, Michael
TI Isoflurane blocks temporary tinnitus
SO HEARING RESEARCH
LA English
DT Article
ID SALICYLATE-INDUCED TINNITUS; RAT INFERIOR COLLICULUS; INDUCED
HEARING-LOSS; AUDITORY-CORTEX; ACOUSTIC TRAUMA; NEURAL CHANGES;
ANIMAL-MODEL; GUINEA-PIGS; NOISE; MICE
AB Temporary tinnitus is a common consequence of noise exposure, and may share important mechanisms with chronic tinnitus. Noise-induced hearing loss is the most prevalent cause of chronic tinnitus. The reversibility of temporary tinnitus offers some practical experimental advantages. We therefore adapted a behavioral method based on gap detection to measure temporary tinnitus following brief acoustic trauma. Although anesthesia is often used during acoustic trauma exposure, many anesthetics can protect against noise-induced hearing loss. Whether anesthesia during acoustic trauma affects temporary tinnitus therefore remains an open question that directly affects experimental design in tinnitus studies. Here we tested whether anesthetizing rats with isoflurane during trauma had any effect on tinnitus. We found that gap-detection deficits, a behavioral measure of tinnitus, were 5 times stronger and lasted 10 times longer when isoflurane was not used. This suggests that isoflurane largely prevents temporary noise-induced tinnitus. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Norman, Madeleine; Tomscha, Katherine; Wehr, Michael] 1254 Univ Oregon, Dept Psychol, Inst Neurosci, Eugene, OR 97403 USA.
RP Wehr, M (reprint author), 1254 Univ Oregon, Dept Psychol, Inst Neurosci, Eugene, OR 97403 USA.
EM wehr@uoregon.edu
FU Tinnitus Research Consortium
FX This research was supported by the Tinnitus Research Consortium.
CR ATHERLEY GR, 1968, J ACOUST SOC AM, V44, P1503, DOI 10.1121/1.1911288
Bauer CA, 2000, HEARING RES, V147, P175, DOI 10.1016/S0378-5955(00)00130-1
Bauer CA, 1999, OTOLARYNG HEAD NECK, V121, P457, DOI 10.1016/S0194-5998(99)70237-8
Bauer CA, 2001, JARO, V2, P54
Brozoski T.J., 2011, JARO-J ASSOC RES OTO, V13, P55
CHERMAK GD, 1987, SCAND AUDIOL, V16, P67, DOI 10.3109/01050398709042158
Chung JW, 2007, ANESTH ANALG, V104, P1404, DOI 10.1213/01.ane.0000261508.24083.6c
Cooper J C Jr, 1994, J Am Acad Audiol, V5, P37
DAVIS H, 1950, Acta Otolaryngol Suppl, V88, P1
Eggermont JJ, 2008, AM J AUDIOL, V17, pS162, DOI 10.1044/1059-0889(2008/07-0025)
Hemmings HC, 2005, TRENDS PHARMACOL SCI, V26, P503, DOI 10.1016/j.tips.2005.08.006
Holt AG, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014260
Ison JR, 2007, JARO-J ASSOC RES OTO, V8, P539, DOI 10.1007/s10162-007-0098-3
JASTREBOFF PJ, 1988, BEHAV NEUROSCI, V102, P811, DOI 10.1037/0735-7044.102.6.811
Kim JU, 2005, LARYNGOSCOPE, V115, P1996, DOI 10.1097/01.mlg.0000180173.81034.4d
Kraus KS, 2010, NEUROSCIENCE, V167, P1216, DOI 10.1016/j.neuroscience.2010.02.071
Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1
Lobarinas E, 2004, HEARING RES, V190, P109, DOI 10.1016/S0378-5955(04)00019-X
LOEB M, 1967, J ACOUST SOC AM, V42, P453, DOI 10.1121/1.1910600
LONSBURYMARTIN BL, 1978, J NEUROPHYSIOL, V41, P987
Milbrandt JC, 2000, HEARING RES, V147, P251, DOI 10.1016/S0378-5955(00)00135-0
NAKAGAWARA M, 1986, ANESTHESIOLOGY, V64, P4, DOI 10.1097/00000542-198601000-00002
Nondahl David M, 2002, J Am Acad Audiol, V13, P323
Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005
Norena AJ, 2010, NEUROSCIENCE, V166, P1194, DOI 10.1016/j.neuroscience.2009.12.063
Norena AJ, 2003, J NEUROPHYSIOL, V90, P2387, DOI 10.1152/jn.00139.2003
Ralli M, 2010, OTOL NEUROTOL, V31, P823, DOI 10.1097/MAO.0b013e3181de4662
Scholl B, 2008, J NEUROPHYSIOL, V100, P646, DOI 10.1152/jn.90406.2008
Shargorodsky J, 2010, AM J MED, V123, P711, DOI 10.1016/j.amjmed.2010.02.015
Stolzberg D, 2011, NEUROSCIENCE, V180, P157, DOI 10.1016/j.neuroscience.2011.02.005
Stronks HC, 2010, HEARING RES, V260, P20, DOI 10.1016/j.heares.2009.10.015
Sun W, 2009, NEUROSCIENCE, V159, P325, DOI 10.1016/j.neuroscience.2008.12.024
Turner JG, 2008, AM J AUDIOL, V17, pS185, DOI 10.1044/1059-0889(2008/08-0006)
Turner JG, 2006, BEHAV NEUROSCI, V120, P188, DOI 10.1037/0735-7044.120.1.188
Vernon J.A, 1995, MECH TINNITUS
Yang G, 2007, HEARING RES, V226, P244, DOI 10.1016/j.heares.2006.06.013
Zhang X, 2011, NEUROSCIENCE, V172, P232, DOI 10.1016/j.neuroscience.2010.10.073
NR 37
TC 4
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2012
VL 290
IS 1-2
BP 64
EP 71
DI 10.1016/j.heares.2012.03.015
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 983PS
UT WOS:000307131800007
PM 22633941
ER
PT J
AU Tabuchi, H
Borucki, E
Berg, BG
AF Tabuchi, Hisaaki
Borucki, Ewa
Berg, Bruce G.
TI Effects of randomizing phase on the discrimination between
amplitude-modulated and quasi-frequency-modulated tones
SO HEARING RESEARCH
LA English
DT Article
ID DISTORTION PRODUCTS F2-F1; CRITICAL BANDWIDTH; LEVEL; REGION; 2F1-F2
AB This study investigated the bandwidth of phase sensitivity. Subjects discriminated amplitude-modulated tones (AM), and quasi-frequency-modulated tones (QFM) in a two-interval, forced-choice task. An adaptive threshold procedure was used to estimate the modulation depth needed to discriminate the stimuli as a function of carrier and modulation frequency. Non-monotonicities in threshold-bandwidth functions were often observed at higher modulation frequencies. The results are discussed in terms of two potential cues: (1) waveform envelope, (2) cubic distortion products. In order to degrade the information obtained from auditory distortions, the phase for the carrier frequency was randomly sampled from a uniform distribution, which diminished the non-monotonicities with minimal effect at lower modulation frequencies. Model simulations demonstrated that phase randomization degrades distortion product cues with only a modest effect on temporal cues. Final results show that maximum bandwidths for phase sensitivity (BWmax) were not proportional to carrier frequencies. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Tabuchi, Hisaaki; Borucki, Ewa; Berg, Bruce G.] Univ Calif Irvine, Dept Cognit Sci, Irvine, CA 92697 USA.
RP Berg, BG (reprint author), Univ Calif Irvine, Dept Cognit Sci, 2201 Social & Behav Sci,Gateway Bldg, Irvine, CA 92697 USA.
EM bgberg@uci.edu
FU National Science Foundation [BCS-07464003]
FX The authors thank Dr. Virginia Richards, Dr. Mathew Turner, Allison
Shim, and reviewers for helpful comments. This work was supported by a
grant from the National Science Foundation (BCS-07464003).
CR American National Standards Institute (ANSI), 1989, S361989 ANSI
Bernstein JGW, 2006, J ACOUST SOC AM, V120, P3929, DOI 10.1121/1.2372452
Borucki E., 2010, J ACOUST SOC AM, V127, P1988
BUUNEN TJF, 1975, ACUSTICA, V34, P98
Buunen T.J.F., 1976, THESIS TH DEFT
BUUNEN TJF, 1974, J ACOUST SOC AM, V55, P297, DOI 10.1121/1.1914501
Eddins DA, 1999, J ACOUST SOC AM, V105, P829, DOI 10.1121/1.426272
Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47
FORREST TG, 1987, J ACOUST SOC AM, V82, P1933, DOI 10.1121/1.395689
GOLDSTEI.JL, 1967, J ACOUST SOC AM, V41, P458, DOI 10.1121/1.1910357
GOLDSTEI.JL, 1967, J ACOUST SOC AM, V41, P676, DOI 10.1121/1.1910396
Greenwood DD, 1996, J ACOUST SOC AM, V99, P1029, DOI 10.1121/1.414632
HALL JL, 1972, J ACOUST SOC AM, V51, P1863, DOI 10.1121/1.1913045
HALL JL, 1972, J ACOUST SOC AM, V51, P1872, DOI 10.1121/1.1913046
JESTEADT W, 1977, J ACOUST SOC AM, V61, P169, DOI 10.1121/1.381278
KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104
Klein SA, 2001, PERCEPT PSYCHOPHYS, V63, P1421, DOI 10.3758/BF03194552
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
MATHES RC, 1947, J ACOUST SOC AM, V19, P780, DOI 10.1121/1.1916623
NELSON DA, 1995, J ACOUST SOC AM, V98, P1969, DOI 10.1121/1.413316
NELSON DA, 1994, J ACOUST SOC AM, V95, P1514, DOI 10.1121/1.408539
Strickland EA, 1997, J ACOUST SOC AM, V102, P1799, DOI 10.1121/1.419617
Strickland EA, 2000, J ACOUST SOC AM, V107, P942, DOI 10.1121/1.428275
VIEMEISTER NF, 1979, J ACOUST SOC AM, V66, P1364, DOI 10.1121/1.383531
Zwicker E, 1999, PSYCHOACOUSTICS FACT
ZWICKER E, 1981, J ACOUST SOC AM, V70, P1277, DOI 10.1121/1.387141
NR 26
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2012
VL 290
IS 1-2
BP 72
EP 82
DI 10.1016/j.heares.2012.04.021
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 983PS
UT WOS:000307131800008
PM 22609773
ER
PT J
AU Roosli, C
Chhan, D
Halpin, C
Rosowski, JJ
AF Roeoesli, Christof
Chhan, David
Halpin, Christopher
Rosowski, John J.
TI Comparison of umbo velocity in air- and bone-conduction
SO HEARING RESEARCH
LA English
DT Article
ID DOPPLER VIBROMETER LDV; MIDDLE-EAR; FLUID PATHWAY; HEARING; STIMULATION;
THRESHOLDS; MOTION; SOUND; PRESSURE; HUMANS
AB This study investigates the ossicular motion produced by bone-conducted (BC) sound in live human ears. Laser Doppler Vibrometry was used to measure air conduction (AC)- and BC-induced umbo velocity (V-U) in both ears of 10 subjects, 20 ears total. Sound pressure in the ear canal (P-EC) was measured simultaneously. For air conduction, V-U at standard hearing threshold level was calculated. For BC, Delta V was defined as the difference between V-U and the tympanic ring velocity (an estimate of the skull velocity measured in the ear canal). Delta V and P-EC at BC standard hearing threshold were calculated. Delta V at standard BC threshold was significantly smaller than Vu at standard AC threshold between 500 Hz and 2000 Hz. Ear canal pressure at BC threshold tended to be smaller than for AC below 3000 Hz (with significant differences at 1000 Hz and 2000 Hz). Our results are most consistent with inertia of the ossicles and cochlear fluid driving BC hearing below 500 Hz, but with other mechanisms playing a significant role at higher frequencies. Sound radiated into the external ear canal might contribute to BC hearing at 3000 Hz and above. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Roeoesli, Christof; Chhan, David; Rosowski, John J.] Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA.
[Roeoesli, Christof; Halpin, Christopher; Rosowski, John J.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA.
[Roeoesli, Christof] Univ Zurich Hosp, Clin Otorhinolaryngol Head & Neck Surg, CH-8091 Zurich, Switzerland.
[Chhan, David; Rosowski, John J.] MIT, Harvard Mit Div Hlth Sci & Technol, Speech & Hearing Biosci & Technol Program, Cambridge, MA 02139 USA.
[Halpin, Christopher] Massachusetts Eye & Ear Infirm, Dept Audiol, Boston, MA 02114 USA.
RP Roosli, C (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, 243 Charles St, Boston, MA 02114 USA.
EM christof_roosli@meei.harvard.edu
CR Barany E, 1938, ACTA OTO-LARYNGOL, V26, P1
Bekesy G., 1960, EXPT HEARING
Dalhoff E, 2011, HEARING RES, V280, P86, DOI 10.1016/j.heares.2011.04.015
Goode RL, 1996, AM J OTOL, V17, P813
GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465
Hato N, 2003, AUDIOL NEURO-OTOL, V8, P140, DOI 10.1159/000069475
Huber AM, 2001, LARYNGOSCOPE, V111, P501, DOI 10.1097/00005537-200103000-00022
Hulecki LR, 2011, J AM ACAD AUDIOL, V22, P81, DOI 10.3766/jaaa.22.2.3
Ito T, 2011, AUDIOL NEURO-OTOL, V16, P12, DOI 10.1159/000314282
Kim N, 2011, JARO-J ASSOC RES OTO, V12, P261, DOI 10.1007/s10162-011-0258-3
MARGOLIS RH, 1993, EAR HEARING, V14, P3, DOI 10.1097/00003446-199302000-00002
Puria S, 1997, J ACOUST SOC AM, V101, P2754, DOI 10.1121/1.418563
Rosowski J.J., 2011, EAR HEAR
Rosowski JJ, 2008, EAR HEARING, V29, P3
Shupak A, 2005, OTOL NEUROTOL, V26, P127, DOI 10.1097/00129492-200501000-00023
Sohmer H, 2000, HEARING RES, V146, P81, DOI 10.1016/S0378-5955(00)00099-X
Sohmer H, 2004, HEARING RES, V193, P105, DOI 10.1016/j.heares.2004.03.015
Stenfelt S, 2002, J ACOUST SOC AM, V111, P947, DOI 10.1121/1.1432977
Stenfelt S, 2003, J ACOUST SOC AM, V113, P902, DOI 10.1121/1.1534606
Stenfelt S, 2005, OTOL NEUROTOL, V26, P1245, DOI 10.1097/01.mao.0000187236.10842.d5
Stenfelt S, 2006, J ACOUST SOC AM, V119, P2848, DOI 10.1121/1.2184225
Tonndorf J., 1966, ACTA OTO-LARYNGOL, V213, P1
Vikram K Bhat, 2004, J Otolaryngol, V33, P227
Watanabe T, 2008, EAR HEARING, V29, P667, DOI 10.1097/AUD.0b013e3181775dde
Whittemore KR, 2004, HEARING RES, V187, P85, DOI 10.1016/S0378-5955(03)00332-0
NR 25
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2012
VL 290
IS 1-2
BP 83
EP 90
DI 10.1016/j.heares.2012.04.011
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 983PS
UT WOS:000307131800009
PM 22609771
ER
PT J
AU Ranasinghe, KG
Carraway, RS
Borland, MS
Moreno, NA
Hanacik, EA
Miller, RS
Kilgard, MP
AF Ranasinghe, Kamalini G.
Carraway, Ryan S.
Borland, Michael S.
Moreno, Nicole A.
Hanacik, Elizabeth A.
Miller, Robert S.
Kilgard, Michael P.
TI Speech discrimination after early exposure to pulsed-noise or speech
SO HEARING RESEARCH
LA English
DT Article
ID PRIMARY AUDITORY-CORTEX; CORTICAL MAP REORGANIZATION; EARLY
LANGUAGE-ACQUISITION; VOWEL-LIKE SOUNDS; CRITICAL PERIOD; PHONEME
REPRESENTATIONS; DEAF-CHILDREN; PLASTICITY; BRAIN; EXPERIENCE
AB Early experience of structured inputs and complex sound features generate lasting changes in tonotopy and receptive field properties of primary auditory cortex (A1). In this study we tested whether these changes are severe enough to alter neural representations and behavioral discrimination of speech. We exposed two groups of rat pups during the critical period of auditory development to pulsed-noise or speech. Both groups of rats were trained to discriminate speech sounds when they were young adults, and anesthetized neural responses were recorded from A1. The representation of speech in A1 and behavioral discrimination of speech remained robust to altered spectral and temporal characteristics of A1 neurons after pulsed-noise exposure. Exposure to passive speech during early development provided no added advantage in speech sound processing. Speech training increased A1 neuronal firing rate for speech stimuli in naive rats, but did not increase responses in rats that experienced early exposure to pulsed-noise or speech. Our results suggest that speech sound processing is resistant to changes in simple neural response properties caused by manipulating early acoustic environment. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Ranasinghe, Kamalini G.; Carraway, Ryan S.; Borland, Michael S.; Moreno, Nicole A.; Hanacik, Elizabeth A.; Miller, Robert S.; Kilgard, Michael P.] GR41 Univ Texas Dallas, Sch Behav & Brain Sci, Richardson, TX 75080 USA.
RP Ranasinghe, KG (reprint author), GR41 Univ Texas Dallas, Sch Behav & Brain Sci, 800 W Campbell Rd, Richardson, TX 75080 USA.
EM kamalini@utdallas.edu
FU National Institute on Deafness and Other Communication Disorders
[R01DC010433, R15DC006624]
FX The authors would like to thank K. Hau, D. Gunter, R. Cheung, N.
Mithani, C. Im, C. Matney, L. Wong, T. Mohhammad, A. Afsar and S.
Mahioddin, A. Malik, F. Halipoto, A. Boulom, S. Ahmed, C. Rohloff, A.
Ruiz, M. Abrahim and F. Naqvi for their help with behavioral training
and physiology experiments. We would also like to thank P. C. Loizou, A.
Moller, P. Assmann, and C. Engineer, for their comments and suggestions
on earlier versions of the manuscript. The authors also would like to
thank Shaowen Bao for the valuable comments provided on presentation of
results. We also extend out gratitude to Cathy Steffen for the
assistance given in handling young rat pups. This work was supported by
Award Numbers R01DC010433 and R15DC006624 from the National Institute on
Deafness and Other Communication Disorders.
CR Alain C, 2007, CEREB CORTEX, V17, P1074, DOI 10.1093/cercor/bhl018
Bieszczad KM, 2010, P NATL ACAD SCI USA, V107, P3793, DOI 10.1073/pnas.1000159107
Brown M, 2004, CEREB CORTEX, V14, P952, DOI 10.1093/cercor/bhh056
Chang EF, 2010, NAT NEUROSCI, V13, P1428, DOI 10.1038/nn.2641
Chang EF, 2005, P NATL ACAD SCI USA, V102, P16460, DOI 10.1073/pnas.0508239102
Cheour M, 1998, NAT NEUROSCI, V1, P351, DOI 10.1038/1561
Conner JM, 2005, NEURON, V46, P173, DOI 10.1016/j.neuron.2005.03.003
DELGUTTE B, 1984, J ACOUST SOC AM, V75, P866, DOI 10.1121/1.390596
DELGUTTE B, 1984, J ACOUST SOC AM, V75, P879, DOI 10.1121/1.390597
de Villers-Sidani E, 2007, J NEUROSCI, V27, P180, DOI 10.1523/JNEUROSCI.3227-06.2007
DRULLMAN R, 1994, J ACOUST SOC AM, V95, P1053, DOI 10.1121/1.408467
Engineer CT, 2008, NAT NEUROSCI, V11, P603, DOI 10.1038/nn.2109
Engineer CT, 2008, SPEECH SOUND CODING
Fishman KE, 1997, J SPEECH LANG HEAR R, V40, P1201
Foffani G, 2004, J NEUROSCI METH, V135, P107, DOI [10.1016/j.jneumeth.2003.12.011, 10.1016/j.neumeth.2003.12.011]
Green D. M., 1989, SIGNAL DETECTION THE
Han YK, 2007, NAT NEUROSCI, V10, P1191, DOI 10.1038/nn1941
Hoff E, 2003, CHILD DEV, V74, P1368, DOI 10.1111/1467-8624.00612
Insanally MN, 2010, J NEUROPHYSIOL, V103, P2611, DOI 10.1152/jn.00872.2009
Insanally MN, 2009, J NEUROSCI, V29, P5456, DOI 10.1523/JNEUROSCI.5311-08.2009
Irvine DRF, 1996, CLIN EXP PHARMACOL P, V23, P939, DOI 10.1111/j.1440-1681.1996.tb01146.x
Kawahara H., 1997, ICASSP APR, V2, P1303
Kilgard MP, 1998, NAT NEUROSCI, V1, P727, DOI 10.1038/3729
Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714
Kim H, 2009, J NEUROSCI, V29, P5163, DOI 10.1523/JNEUROSCI.0365-09.2009
KRAUS N, 1995, J COGNITIVE NEUROSCI, V7, P25, DOI 10.1162/jocn.1995.7.1.25
Kuhl PK, 2010, NEURON, V67, P713, DOI 10.1016/j.neuron.2010.08.038
Kuhl PK, 2004, NAT REV NEUROSCI, V5, P831, DOI 10.1038/nrn1533
Kuhl P.K., 1997, J ACOUST SOC AM, V102, P3135, DOI 10.1121/1.420646
Kuhl PK, 1997, SCIENCE, V277, P684, DOI 10.1126/science.277.5326.684
Kuhl PK, 2003, P NATL ACAD SCI USA, V100, P9096, DOI 10.1073/pnas.1532872100
MILLER GA, 1955, J ACOUST SOC AM, V27, P338, DOI 10.1121/1.1907526
Naatanen R, 1997, NATURE, V385, P432, DOI 10.1038/385432a0
Nicholas JG, 2006, EAR HEARING, V27, P286, DOI 10.1097/01.aud.0000215973.76912.c6
Ohl FW, 1997, P NATL ACAD SCI USA, V94, P9440, DOI 10.1073/pnas.94.17.9440
Pandya PK, 2008, CEREB CORTEX, V18, P301, DOI 10.1093/cercor/bhm055
Perez C.A., CEREB CORTE IN PRESS, DOI [10.1093/cercor/bhs045, DOI 10.1093/CERCOR/BHS045]
PISONI DB, 1973, PERCEPT PSYCHOPHYS, V13, P253, DOI 10.3758/BF03214136
Polley DB, 2006, J NEUROSCI, V26, P4970, DOI 10.1523/JNEUROSCI.3771-05.2006
Puckett AC, 2007, J NEUROPHYSIOL, V98, P253, DOI 10.1152/jn.01309.2006
Ranasinghe K.G., NEURAL MECH IN PRESS, DOI [10.1007/s10162-012-0328-1, DOI 10.1007/S10162-012-0328-1]
RECANZONE GH, 1993, J NEUROSCI, V13, P87
RECANZONE GH, 1992, J NEUROPHYSIOL, V67, P1071
RECANZONE GH, 1992, J NEUROPHYSIOL, V67, P1057
Reed A, 2011, NEURON, V70, P121, DOI 10.1016/j.neuron.2011.02.038
Rutkowski RG, 2005, P NATL ACAD SCI USA, V102, P13664, DOI 10.1073/pnas.0506838102
SACHS MB, 1979, J ACOUST SOC AM, V66, P470, DOI 10.1121/1.383098
SCHEICH H, 1993, PROG BRAIN RES, V97, P135
Schnupp JWH, 2006, J NEUROSCI, V26, P4785, DOI 10.1523/JNEUROSCI.4330-05.2006
SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303
Shetake JA, 2011, EUR J NEUROSCI, V34, P1823, DOI 10.1111/j.1460-9568.2011.07887.x
Svirsky MA, 2004, AUDIOL NEURO-OTOL, V9, P224, DOI 10.1159/000078392
Talwar SK, 2001, J NEUROPHYSIOL, V86, P1555
Tremblay K, 2001, EAR HEARING, V22, P79, DOI 10.1097/00003446-200104000-00001
van Wassenhove V, 2007, J NEUROSCI, V27, P2663, DOI 10.1523/JNEUROSCI.4844-06.2007
Weizman ZO, 2001, DEV PSYCHOL, V37, P265, DOI 10.1037//0012-1649.37.2.265
Yotsumoto Y, 2008, NEURON, V57, P827, DOI 10.1016/j.neuron.2008.02.034
Zhang LI, 2002, P NATL ACAD SCI USA, V99, P2309, DOI 10.1073/pnas.261707398
Zhang LI, 2001, NAT NEUROSCI, V4, P1123, DOI 10.1038/nn745
Zhou XM, 2007, P NATL ACAD SCI USA, V104, P15935, DOI 10.1073/pnas.0707348104
Zhou XM, 2009, NAT NEUROSCI, V12, P26, DOI 10.1038/nn.2239
Zhou XM, 2008, P NATL ACAD SCI USA, V105, P4423, DOI 10.1073/pnas.0800009105
NR 62
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2012
VL 289
IS 1-2
BP 1
EP 12
DI 10.1016/j.heares.2012.04.020
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 967UL
UT WOS:000305933200001
PM 22575207
ER
PT J
AU Roos, MJ
May, BJ
AF Roos, Matthew J.
May, Bradford J.
TI Classification of unit types in the anteroventral cochlear nucleus of
laboratory mice
SO HEARING RESEARCH
LA English
DT Article
ID AUDITORY-NERVE FIBERS; PRIMARY AXOSOMATIC ENDINGS; SPHERICAL BUSHY
CELLS; RESPONSE PROPERTIES; CHOPPER UNITS; HORSERADISH-PEROXIDASE;
REGULARITY ANALYSIS; DISCHARGE PATTERNS; SINGLE NEURONS; BRAIN-STEM
AB This report introduces a system for the objective physiological classification of single-unit activity in the anteroventral cochlear nucleus (AVCN) of anesthetized CBA/129 and CBA/CaJ mice. As in previous studies, the decision criteria are based on the temporal properties of responses to short tone bursts that are visualized in the form of pen-stimulus time histograms (PSTHs). Individual unit types are defined by the statistical distribution of quantifiable metrics that relate to the onset latency, regularity, and adaptation of sound-driven discharge rates. Variations of these properties reflect the unique synaptic organizations and intrinsic membrane properties that dictate the selective tuning of sound coding in the AVCN. When these metrics are applied to the mouse AVCN, responses to best frequency (BF) tones reproduce the major PSTH patterns that have been previously demonstrated in other mammalian species. The consistency of response types in two genetically diverse strains of laboratory mice suggests that the present classification system is appropriate for additional strains with normal peripheral function. The general agreement of present findings to established classifications validates laboratory mice as an adequate model for general principles of mammalian sound coding. Nevertheless, important differences are noted for the reliability of specialized endbulb transmission within the AVCN, suggesting less secure temporal coding in this high-frequency species. (C) 2012 Elsevier B.V. All rights reserved.
C1 [May, Bradford J.] Johns Hopkins Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Baltimore, MD 21205 USA.
[Roos, Matthew J.] Johns Hopkins Univ, Sch Med, Dept Neurosci, Baltimore, MD 21205 USA.
RP May, BJ (reprint author), Johns Hopkins Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, 720 Rutland Ave,521 Taylor Bldg, Baltimore, MD 21205 USA.
EM bmay@jhu.edu
FU NIDCD [F31 DC010095, P30 DC005211]
FX Amanda Lauer conducted the initial assessments of auditory function in
CBA/129 mice (auditory brainstem response, distortion product
otoacoustic emissions, and acoustic startle responses). This work was
supported by NIDCD grants F31 DC010095 and P30 DC005211.
CR Antolin J, 2009, J CHEM PHYS, V130, DOI 10.1063/1.3078050
BANKS MI, 1991, J NEUROPHYSIOL, V65, P606
BLACKBURN CC, 1992, J NEUROPHYSIOL, V68, P124
BLACKBURN CC, 1990, J NEUROPHYSIOL, V63, P1191
BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303
Bourk TR, 1976, THESIS MIT CAMBRIDGE
BRINER W, 1989, NEUROBIOL AGING, V10, P295, DOI 10.1016/0197-4580(89)90039-0
Cai S., 2007, THESIS J HOPKINS U B
Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9
CANT NB, 1979, NEUROSCIENCE, V4, P1909, DOI 10.1016/0306-4522(79)90065-4
CANT NB, 1979, NEUROSCIENCE, V4, P1925, DOI 10.1016/0306-4522(79)90066-6
CANT NB, 1984, HEARING SCI RECENT A, P371
Chase SM, 2007, P NATL ACAD SCI USA, V104, P5175, DOI 10.1073/pnas.0610368104
EVANS EF, 1973, EXP BRAIN RES, V17, P402
Feng J, 2010, J NEUROSCI RES, V88, P86, DOI 10.1002/jnr.22179
Harris JA, 2005, J COMP NEUROL, V493, P460, DOI 10.1002/cne.20776
Jiang D, 1996, J NEUROPHYSIOL, V75, P380
KANE EC, 1973, INT J NEUROSCI, V5, P251, DOI 10.3109/00207457309149485
Kiang NY-s, 1965, DISCHARGE PATTERNS S
Kopp-Scheinpflug C, 2002, J NEUROSCI, V22, P11004
Kuenzel T, 2011, J NEUROSCI, V31, P4260, DOI 10.1523/JNEUROSCI.5433-10.2011
Lai Y C, 1994, J Comput Neurosci, V1, P167, DOI 10.1007/BF00961733
Lauer AM, 2009, LAB ANIMAL, V38, P154, DOI 10.1038/laban0509-154
Lauer AM, 2011, JARO-J ASSOC RES OTO, V12, P633, DOI 10.1007/s10162-011-0279-y
Lee DJ, 2003, J NEUROCYTOL, V32, P229, DOI 10.1023/B:NEUR.0000010082.99874.14
LIBERMAN MC, 1993, J COMP NEUROL, V327, P17, DOI 10.1002/cne.903270103
Limb CJ, 2000, JARO, V1, P103, DOI 10.1007/sl01620010032
Luo F, 2009, HEARING RES, V257, P75, DOI 10.1016/j.heares.2009.08.002
Malmierca MS, 2010, OXFORD HDB AUDITORY, P9
MANIS PB, 1991, J NEUROSCI, V11, P2865
May BJ, 2011, OTOL NEUROTOL, V32, P1568, DOI 10.1097/MAO.0b013e31823389a1
May BJ, 1998, J NEUROPHYSIOL, V79, P1755
Muniak M.A., J COMP NEUROL UNPUB
Oertel D, 2008, NEUROSCIENCE, V154, P77, DOI 10.1016/j.neuroscience.2008.01.085
OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407
Palmer AR, 2003, EXP BRAIN RES, V153, P418, DOI 10.1007/s00221-003-1602-6
Palmer AR, 1996, J NEUROPHYSIOL, V75, P780
Paolini AG, 1999, J NEUROPHYSIOL, V81, P2347
Pearce M, 2001, J NEUROSCI METH, V106, P57, DOI 10.1016/S0165-0270(01)00329-6
PFEIFFER RR, 1966, EXP BRAIN RES, V1, P220
RHODE WS, 1986, J NEUROPHYSIOL, V56, P261
RHODE WS, 1983, J COMP NEUROL, V213, P448, DOI 10.1002/cne.902130408
Rhode WS, 2008, NEUROSCIENCE, V154, P87, DOI 10.1016/j.neuroscience.2008.03.013
Roos M.J., 2012, THESIS J HOPKINS U B
ROTHMAN JS, 1993, J NEUROPHYSIOL, V70, P2562
RYUGO DK, 1982, J COMP NEUROL, V210, P239, DOI 10.1002/cne.902100304
RYUGO DK, 1991, J COMP NEUROL, V305, P35, DOI 10.1002/cne.903050105
Sayles M, 2010, HEARING RES, V262, P26, DOI 10.1016/j.heares.2010.01.015
SHOFNER WP, 1985, J NEUROPHYSIOL, V54, P917
SMITH PH, 1989, J COMP NEUROL, V282, P595, DOI 10.1002/cne.902820410
Spirou GA, 2005, NEUROSCIENCE, V136, P843, DOI 10.1016/j.neuroscience.2005.08.068
Taberner AM, 2005, J NEUROPHYSIOL, V93, P557, DOI 10.1152/jn.00574.2004
Trussel L.O., 2002, INTEGRATIVE FUNCTION, P72
VANHEUSDEN E, 1983, HEARING RES, V11, P295, DOI 10.1016/0378-5955(83)90064-3
WEBSTER DB, 1982, AM J ANAT, V163, P103, DOI 10.1002/aja.1001630202
WINTER IM, 1995, J NEUROPHYSIOL, V73, P141
Woolf N K, 1985, Brain Res, V349, P131
WU SH, 1984, J NEUROSCI, V4, P1577
Young E. D., 1988, AUDITORY FUNCTION NE, P277
YOUNG ED, 1988, J NEUROPHYSIOL, V60, P1
Youssoufian M, 2008, J COMP NEUROL, V506, P442, DOI 10.1002/cne.21566
NR 61
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2012
VL 289
IS 1-2
BP 13
EP 26
DI 10.1016/j.heares.2012.04.019
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 967UL
UT WOS:000305933200002
PM 22579638
ER
PT J
AU Jacques, BE
Dabdoub, A
Kelley, MW
AF Jacques, Bonnie E.
Dabdoub, Alain
Kelley, Matthew W.
TI Fgf signaling regulates development and transdifferentiation of hair
cells and supporting cells in the basilar papilla
SO HEARING RESEARCH
LA English
DT Article
ID CHICK INNER-EAR; AUDITORY SENSORY EPITHELIUM; GROWTH-FACTOR RECEPTOR;
MAMMALIAN COCHLEA; ACOUSTIC TRAUMA; CELLULAR-DIFFERENTIATION; EXPRESSION
PATTERNS; PROSENSORY PATCHES; NONSENSORY REGIONS; NOTCH LIGANDS
AB The avian basilar papilla (BP) is a likely homolog of the auditory sensory epithelium of the mammalian cochlea, the organ of Corti. During mammalian development Fibroblast growth factor receptor-3 (Fgfr3) is known to regulate the differentiation of auditory mechanosensory hair cells (HCs) and supporting cells (SCs), both of which are required for sound detection. Fgfr3 is expressed in developing progenitor cells (PCs) and SCs of both the BP and the organ of Corti; however its role in BP development is unknown. Here we utilized an in vitro whole organ embryonic culture system to examine the role of Fgf signaling in the developing avian cochlea. SU5402 (an antagonist of Fgf signaling) was applied to developing BP cultures at different stages to assay the role of Fgf signaling during HC formation. Similar to the observed effects of inhibition of Fgfr3 in the mammalian cochlea, Fgfr inhibition in the developing BP increased the number of HCs that formed. This increase was not associated with increased proliferation, suggesting that inhibition of the Fgf pathway leads to the direct conversion of PCs or supporting cells into HCs, a process known as transdifferentiation. This also implies that Fgf signaling is required to prevent the conversion of PCs and SCs into HCs. The ability of Fgf signaling to inhibit transdifferentiation suggests that its down-regulation may be essential for the initial steps of HC formation, as well as for the maintenance of SC phenotypes. (C) 2012 Published by Elsevier B.V.
C1 [Jacques, Bonnie E.; Kelley, Matthew W.] NIDCD, Lab Cochlear Dev, NIH, Porter Neurosci Res Ctr, Bethesda, MD 20892 USA.
[Jacques, Bonnie E.; Dabdoub, Alain] UCSD Sch Med, Dept Surg, Div Otolaryngol, La Jolla, CA 92093 USA.
[Jacques, Bonnie E.] Univ Maryland, Dept Biol, College Pk, MD 20742 USA.
RP Kelley, MW (reprint author), NIDCD, Lab Cochlear Dev, NIH, Porter Neurosci Res Ctr, 35 Convent Dr,Room 2A-100, Bethesda, MD 20892 USA.
EM bjacques@ucsd.edu; adabdoub@ucsd.edu; kelleymt@nidcd.nih.gov
FU National Institute on Deafness and other Communication Disorders; [P30
CA23100]
FX We would like to thank Drs. Douglas Cotanche and Jennifer Stone for
reading an earlier version of the manuscript and providing very helpful
comments. We would like to thank Dr. Guy Richardson at the University of
Sussex for kindly providing the HCA antibody. Some of the images were
generated at the UCSD Shared Microscopy Facility, Cancer Center
specialized support grant P30 CA23100. This research was supported by
funds from the intramural program at the National Institute on Deafness
and other Communication Disorders (M.W.K.).
CR Adam J, 1998, DEVELOPMENT, V125, P4645
Alvarado DM, 2011, J NEUROSCI, V31, P4535, DOI 10.1523/JNEUROSCI.5456-10.2011
BARTOLAMI S, 1991, J COMP NEUROL, V314, P777, DOI 10.1002/cne.903140410
Basch ML, 2011, J NEUROSCI, V31, P8046, DOI 10.1523/JNEUROSCI.6671-10.2011
Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837
Bermingham-McDonogh O, 2001, DEV BIOL, V238, P247, DOI 10.1006/dbio.2001.0412
Brooker R, 2006, DEVELOPMENT, V133, P1277, DOI 10.1242/dev.02284
Chen L, 1999, J CLIN INVEST, V104, P1517, DOI 10.1172/JCI6690
Chen P, 2002, DEVELOPMENT, V129, P2495
COHEN GM, 1978, ACTA OTO-LARYNGOL, V86, P342, DOI 10.3109/00016487809107513
Colvin JS, 1996, NAT GENET, V12, P390, DOI 10.1038/ng0496-390
CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100
Cotanche DA, 2010, HEARING RES, V266, P18, DOI 10.1016/j.heares.2010.04.012
Cotanche D A, 1984, Brain Res, V318, P181
COTANCHE DA, 1987, HEARING RES, V30, P181, DOI 10.1016/0378-5955(87)90135-3
COTANCHE DA, 1983, ARCH OTO-RHINO-LARYN, V237, P191, DOI 10.1007/BF00453723
Dabdoub A, 2008, P NATL ACAD SCI USA, V105, P18396, DOI 10.1073/pnas.0808175105
Daudet N, 2007, DEVELOPMENT, V134, P2369, DOI 10.1242/dev.001842
Daudet N, 2009, DEV BIOL, V326, P86, DOI 10.1016/j.ydbio.2008.10.033
Daudet N, 2005, DEVELOPMENT, V132, P541, DOI 10.1242/dev.01589
Doetzlhofer A, 2009, DEV CELL, V16, P58, DOI 10.1016/j.devcel.2008.11.008
Fekete DM, 1998, J NEUROSCI, V18, P7811
Goodyear R, 1997, J NEUROSCI, V17, P6289
Govindarajan V, 2001, DEVELOPMENT, V128, P1617
HAMBURGER V, 1951, J MORPHOL, V88, P49, DOI 10.1002/jmor.1050880104
Hayashi T, 2008, J NEUROSCI, V28, P5991, DOI 10.1523/JNEUROSCI.1690-08.2008
Hayashi T, 2007, DEV DYNAM, V236, P525, DOI 10.1002/dvdy.21026
Hebert JM, 2011, FRONT NEUROSCI-SWITZ, V5, DOI 10.3389/fnins.2011.00133
Jacques BE, 2007, DEVELOPMENT, V134, P3021, DOI 10.1242/dev.02874
KATAYAMA A, 1989, J COMP NEUROL, V281, P129, DOI 10.1002/cne.902810110
Kiernan AE, 2005, DEVELOPMENT, V132, P4353, DOI 10.1242/dev.02002
Kirjavainen A, 2008, DEV BIOL, V322, P33, DOI 10.1016/j.ydbio.2008.07.004
Lanford PJ, 1999, NAT GENET, V21, P289
Levic S, 2007, P NATL ACAD SCI USA, V104, P19108, DOI 10.1073/pnas.0705927104
Lewis AK, 1998, MECH DEVELOP, V78, P159, DOI 10.1016/S0925-4773(98)00165-8
Li HW, 2005, BMC DEV BIOL, V5, DOI 10.1186/1471-213X-5-16
Ma EY, 2008, J NEUROSCI, V28, P2261, DOI 10.1523/JNEUROSCI.4372-07.2008
Mansour SL, 2009, HUM MOL GENET, V18, P43, DOI 10.1093/hmg/ddn311
Mason JM, 2006, TRENDS CELL BIOL, V16, P45, DOI 10.1016/j.tcb.2005.11.004
Matei V, 2005, DEV DYNAM, V234, P633, DOI 10.1002/dvdy.20551
Mohammadi M, 1997, SCIENCE, V276, P955, DOI 10.1126/science.276.5314.955
Molea D, 1999, J COMP NEUROL, V406, P183
Mueller KL, 2002, J NEUROSCI, V22, P9368
Neves J, 2007, J COMP NEUROL, V503, P487, DOI 10.1002/cne.21299
Ohyama T, 2010, J NEUROSCI, V30, P15044, DOI 10.1523/JNEUROSCI.3547-10.2010
Ornitz DM, 1996, J BIOL CHEM, V271, P15292
Pauley S, 2003, DEV DYNAM, V227, P203, DOI 10.1002/dvdy.10297
PETERS K, 1993, DEV BIOL, V155, P423, DOI 10.1006/dbio.1993.1040
Pickles JO, 1997, DEV NEUROSCI-BASEL, V19, P476, DOI 10.1159/000111245
Pirvola U, 2002, NEURON, V35, P671, DOI 10.1016/S0896-6273(02)00824-3
Pirvola U, 2004, DEV BIOL, V273, P350, DOI 10.1016/j.ydbio.2004.06.010
Pirvola U, 2000, J NEUROSCI, V20, P6125
Pujades C, 2006, DEV BIOL, V292, P55, DOI 10.1016/j.ydbio.2006.01.001
Puligilla C, 2007, DEV DYNAM, V236, P1905, DOI 10.1002/dvdy.21192
Roberson DW, 2004, J NEUROSCI RES, V78, P461, DOI 10.1002/jnr.20271
RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101
Sajan SA, 2007, GENETICS, V177, P631, DOI 10.1534/genetics.107.078584
Sanchez-Calderon H, 2004, GENE EXPR PATTERNS, V4, P659, DOI 10.1016/j.modgep.2004.04.008
Sanchez-Calderon H, 2002, BRAIN RES BULL, V57, P321, DOI 10.1016/S0361-9230(01)00725-0
Schimmang T, 2007, INT J DEV BIOL, V51, P473, DOI 10.1387/ijdb.072334ts
Shang JL, 2010, JARO-J ASSOC RES OTO, V11, P203, DOI 10.1007/s10162-009-0206-7
Shim K, 2005, DEV CELL, V8, P553, DOI 10.1016/j.devcel.2005.02.009
Shin JW, 2006, MOL BIOL CELL, V17, P576, DOI 10.1091/mbc.E05-04-0368
Si F, 2003, J NEUROSCI, V23, P10815
Stone JS, 2007, INT J DEV BIOL, V51, P633, DOI 10.1387/ijdb.072408js
Stone JS, 2000, J COMP NEUROL, V417, P1, DOI 10.1002/(SICI)1096-9861(20000131)417:1<1::AID-CNE1>3.0.CO;2-E
STONE JS, 1991, J COMP NEUROL, V314, P614, DOI 10.1002/cne.903140315
Stone JS, 2003, J COMP NEUROL, V460, P487, DOI 10.1002/cne.10662
TILNEY LG, 1986, DEV BIOL, V116, P100, DOI 10.1016/0012-1606(86)90047-3
UMEMOTO M, 1995, CELL TISSUE RES, V281, P435, DOI 10.1007/s004410050440
White PM, 2006, NATURE, V441, P984, DOI 10.1038/nature04849
WHITEHEAD MC, 1985, NEUROSCIENCE, V14, P277, DOI 10.1016/0306-4522(85)90178-2
Woods C, 2004, NAT NEUROSCI, V7, P1310, DOI 10.1038/nn1349
Wu DK, 1996, J NEUROSCI, V16, P6454
Yamamoto N, 2011, DEV BIOL, V353, P367, DOI 10.1016/j.ydbio.2011.03.016
Yang H, 2010, GENESIS, V48, P407, DOI 10.1002/dvg.20633
NR 76
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2012
VL 289
IS 1-2
BP 27
EP 39
DI 10.1016/j.heares.2012.04.018
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 967UL
UT WOS:000305933200003
PM 22575790
ER
PT J
AU Yoshida, A
Yamamoto, N
Kinoshita, M
Hiroi, N
Hiramoto, T
Kang, G
Trimble, WS
Tanigaki, K
Nakagawa, T
Ito, J
AF Yoshida, Atsuhiro
Yamamoto, Norio
Kinoshita, Makoto
Hiroi, Noboru
Hiramoto, Takeshi
Kang, Gina
Trimble, William S.
Tanigaki, Kenji
Nakagawa, Takayuki
Ito, Juichi
TI Localization of septin proteins in the mouse cochlea
SO HEARING RESEARCH
LA English
DT Article
ID CONNEXIN 26 GENE; MAMMALIAN SEPTIN; SUPPORTING CELLS; INNER-EAR;
NEURONS; EXPRESSION; CYTOSKELETON; MICROTUBULES; ORGANIZATION;
CYTOKINESIS
AB Septins are a family of GTP binding proteins that are well conserved in eukaryotic species except plants. Septins contribute to the lateral compartmentalization of membranes, cortical rigidity, and the regulation of membrane trafficking by associating with membrane lipids, actin, and microtubules. The organ of Corti in the cochlea has pivotal roles in auditory perception and includes two kinds of highly polarized cells, hair and supporting cells, both of which are rich in actin and microtubules. To identify the roles of septins in the cochlea, we analyzed the localization of three septin proteins, septin 4 (SEPT4), septin 5 (SEPT5), and septin 7 (SEPT7) that are abundantly expressed in brain tissues, and also examined auditory functions of Sept4 and Sept5 null mice. SEPT4, SEPT5, and SEPT7 were expressed in inner and outer pillar cells and Deiters' cells but the distribution patterns of each protein in Deiters' cells were different. SEPT4 and SEPT7 were expressed in the phalangeal process where SEPT5 was not detected. In addition to these cells SEPT5 and SEPT7 were co-localized with presynaptic vesicles of efferent nerve terminals. Only SEPT7 was expressed in the cochlea at embryonic stages. Although expression patterns of septin proteins suggested their important roles in the function of the cochlea, both Sept4 and Sept5 null mice had similar auditory functions to their wild type littermates. Immunohistochemical analysis of Sept4 null mice showed that compensatory expression of SEPT5 in the phalangeal process of Deiters' cells may have caused functional compensation of hearing ability in Sept4 null mice. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Yoshida, Atsuhiro; Yamamoto, Norio; Nakagawa, Takayuki; Ito, Juichi] Kyoto Univ, Dept Otolaryngol Head & Neck Surg, Grad Sch Med, Sakyo Ku, Kyoto 6068507, Japan.
[Kinoshita, Makoto] Nagoya Univ, Div Biol Sci, Grad Sch Sci, Chikusa Ku, Nagoya, Aichi 4648602, Japan.
[Hiroi, Noboru; Hiramoto, Takeshi; Kang, Gina] Albert Einstein Coll Med, Dept Psychiat & Behav Sci, Bronx, NY 10461 USA.
[Hiroi, Noboru; Hiramoto, Takeshi; Kang, Gina] Albert Einstein Coll Med, Dept Neurosci, Bronx, NY 10461 USA.
[Hiroi, Noboru; Hiramoto, Takeshi; Kang, Gina] Albert Einstein Coll Med, Dept Genet, Bronx, NY 10461 USA.
[Trimble, William S.] Hosp Sick Children, Cell Biol Program, Toronto, ON M5G 1X8, Canada.
[Tanigaki, Kenji] Shiga Med Ctr, Res Inst, Shiga 5248524, Japan.
RP Yamamoto, N (reprint author), Kyoto Univ, Dept Otolaryngol Head & Neck Surg, Grad Sch Med, Sakyo Ku, 54 Shogoin Kawahara Cho, Kyoto 6068507, Japan.
EM yamamoto@ent.kuhp.kyoto-u.ac.jp
RI Hiroi, Noboru/E-2215-2013
OI Hiroi, Noboru/0000-0002-6846-5969
FU Ministry of Education, Culture, Sports, Science and Technology in Japan
[22791595, 23229009]; Japan Society for Promotion of Science; National
Institutes of Health [HD05311]; National Alliance for Research on
Schizophrenia and Depression Independent Investigator Award; Maltz
Foundation
FX This project was supported by a Grant-in-Aid for Young Scientists (B)
(22791595) to NY, a Grant-in-Aid for Scientific Research (S) (23229009)
to JI from the Ministry of Education, Culture, Sports, Science and
Technology in Japan and Japan Society for Promotion of Science, and the
National Institutes of Health (HD05311), National Alliance for Research
on Schizophrenia and Depression Independent Investigator Award, and the
Maltz Foundation to N.H.
CR Amin ND, 2008, J NEUROSCI, V28, P3631, DOI 10.1523/JNEUROSCI.0453-08.2008
Beites CL, 1999, NAT NEUROSCI, V2, P434
Blaser S, 2002, FEBS LETT, V519, P169, DOI 10.1016/S0014-5793(02)02749-7
Blaser S, 2003, GENE, V312, P313, DOI 10.1016/S0378-1119(03)00635-8
Buser AM, 2009, MOL CELL NEUROSCI, V40, P156, DOI 10.1016/j.mcn.2008.10.002
Caltagarone J, 1998, NEUROREPORT, V9, P2907, DOI 10.1097/00001756-199808240-00042
Caudron F, 2009, DEV CELL, V16, P493, DOI 10.1016/j.devcel.2009.04.003
Denoyelle F, 1997, HUM MOL GENET, V6, P2173, DOI 10.1093/hmg/6.12.2173
Dent J, 2002, P NATL ACAD SCI USA, V99, P3064, DOI 10.1073/pnas.052715199
Estivill X, 1998, LANCET, V351, P394, DOI 10.1016/S0140-6736(97)11124-2
FEX J, 1986, BRAIN RES, V366, P106, DOI 10.1016/0006-8993(86)91285-0
Fujishima K, 2007, J NEUROCHEM, V102, P77, DOI 10.1111/j.1471-4159.2007.04478.x
Gilden J, 2010, CYTOSKELETON, V67, P477, DOI 10.1002/cm.20461
GILLOYZAGA P, 1988, INT J DEV NEUROSCI, V6, P155, DOI 10.1016/0736-5748(88)90040-8
Hall PA, 2005, J PATHOL, V206, P269, DOI 10.1002/path.1789
HARTWELL LH, 1971, EXP CELL RES, V69, P265, DOI 10.1016/0014-4827(71)90223-0
Kikuchi K, 1965, Acta Otolaryngol, V60, P207, DOI 10.3109/00016486509127003
Ihara M, 2005, DEV CELL, V8, P343, DOI 10.1016/j.devcel.2004.12.005
Ihara M, 2007, NEURON, V53, P519, DOI 10.1016/j.neuron.2007.01.019
Joberty G, 2001, NAT CELL BIOL, V3, P861, DOI 10.1038/ncb1001-861
Kartmann B, 2001, J CELL SCI, V114, P839
Kelley PM, 1998, AM J HUM GENET, V62, P792, DOI 10.1086/301807
KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783
Kinoshita A, 2000, J COMP NEUROL, V428, P223, DOI 10.1002/1096-9861(20001211)428:2<223::AID-CNE3>3.0.CO;2-M
Kinoshita M, 2006, CURR OPIN CELL BIOL, V18, P54, DOI 10.1016/j.ceb.2005.12.005
Kinoshita M, 2003, J BIOCHEM, V134, P491, DOI 10.1093/jb/mvg182
Kwitny S, 2010, BIOL REPROD, V82, P669, DOI 10.1095/biolreprod.109.079566
Mistrik P, 2009, CURR OPIN OTOLARYNGO, V17, P394, DOI 10.1097/MOO.0b013e328330366f
Nagata K, 2003, J BIOL CHEM, V278, P18538, DOI 10.1074/jbc.M205246200
Nagata K, 2004, J BIOL CHEM, V279, P55895, DOI 10.1074/jbc.M406153200
Pan FF, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148/7/103
Parker MA, 2011, JARO-J ASSOC RES OTO, V12, P471, DOI 10.1007/s10162-011-0265-4
Peng XR, 2002, MOL CELL BIOL, V22, P378, DOI 10.1128/MCB.22.1.378-387.2002
Rio C, 2002, J COMP NEUROL, V442, P156, DOI 10.1002/cne.10085
SADANAGA M, 1995, HEARING RES, V89, P155, DOI 10.1016/0378-5955(95)00133-X
Schrott-Fischer A, 2002, HEARING RES, V174, P75, DOI 10.1016/S0378-5955(02)00640-8
Shiga A, 2005, AUDIOL NEURO-OTOL, V10, P97, DOI 10.1159/000083365
SLEPECKY N, 1983, HEARING RES, V10, P359, DOI 10.1016/0378-5955(83)90098-9
Slepecky N. B., 1996, COCHLEA, P44
Surka MC, 2002, MOL BIOL CELL, V13, P3532, DOI 10.1091/mbc.E02-01-0042
Tada T, 2007, CURR BIOL, V17, P1752, DOI 10.1016/j.cub.2007.09.039
Tsang CW, 2011, BIOL CHEM, V392, P739, DOI 10.1515/BC.2011.077
Xie YL, 2007, CURR BIOL, V17, P1746, DOI 10.1016/j.cub.2007.08.042
NR 43
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2012
VL 289
IS 1-2
BP 40
EP 51
DI 10.1016/j.heares.2012.04.015
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 967UL
UT WOS:000305933200004
PM 22575789
ER
PT J
AU Parthasarathy, A
Bartlett, E
AF Parthasarathy, Aravindakshan
Bartlett, Edward
TI Two-channel recording of auditory-evoked potentials to detect
age-related deficits in temporal processing
SO HEARING RESEARCH
LA English
DT Article
ID FREQUENCY-FOLLOWING RESPONSES; AMPLITUDE-MODULATED SOUNDS; BRAIN-STEM
RESPONSE; INFERIOR COLLICULUS NEURONS; DORSAL COCHLEAR NUCLEUS; IN-NOISE
PERCEPTION; HEARING-LOSS; ELECTRODE PLACEMENT; SPEECH RECOGNITION;
MONGOLIAN GERBIL
AB Auditory brainstem responses (ABRs), and envelope and frequency following responses (EFRs and FFRs) are widely used to study aberrant auditory processing in conditions such as aging. We have previously reported age-related deficits in auditory processing for rapid amplitude modulation (AM) frequencies using EFRs recorded from a single channel. However, sensitive testing of EFRs along a wide range of modulation frequencies is required to gain a more complete understanding of the auditory processing deficits. In this study, ABRs and EFRs were recorded simultaneously from two electrode configurations in young and old Fischer-344 rats, a common auditory aging model. Analysis shows that the two channels respond most sensitively to complementary AM frequencies. Channel 1, recorded from Fz to mastoid, responds better to faster AM frequencies in the 100-700 Hz range of frequencies, while Channel 2, recorded from the inter-aural line to the mastoid, responds better to slower AM frequencies in the 16 100 Hz range. Simultaneous recording of Channels 1 and 2 using AM stimuli with varying sound levels and modulation depths show that age-related deficits in temporal processing are not present at slower AM frequencies but only at more rapid ones, which would not have been apparent recording from either channel alone. Comparison of EFRs between un-anesthetized and isoflurane-anesthetized recordings in young animals, as well as comparison with previously published ABR waveforms, suggests that the generators of Channel 1 may emphasize more caudal brainstem structures while those of Channel 2 may emphasize more rostral auditory nuclei including the inferior colliculus and the forebrain, with the boundary of separation potentially along the cochlear nucleus/superior olivary complex. Simultaneous two-channel recording of EFRs help to give a more complete understanding of the properties of auditory temporal processing over a wide range of modulation frequencies which is useful in understanding neural representations of sound stimuli in normal, developmental or pathological conditions. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Bartlett, Edward] Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47906 USA.
[Parthasarathy, Aravindakshan; Bartlett, Edward] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47906 USA.
RP Bartlett, E (reprint author), Purdue Univ, Weldon Sch Biomed Engn, 206 S Martin Jischke Dr, W Lafayette, IN 47906 USA.
EM ebartle@purdue.edu
FU National Institute on Deafness and Other Communicative Disorders
[1R01DC011580-01A1]; American Federation for Aging Research (AFAR)
FX This work for supported by a grant (1R01DC011580-01A1) from the National
Institute on Deafness and Other Communicative Disorders and from the
American Federation for Aging Research (AFAR) to EB. The authors would
like to thank Christopher Evenson for his help with data collection, and
Dr. Ravi Krishnan for his helpful comments and suggestions.
CR Aiken SJ, 2008, HEARING RES, V245, P35, DOI 10.1016/j.heares.2008.08.004
Anderson MJ, 2004, HEARING RES, V188, P29, DOI 10.1016/S0378-5955(03)00348-4
Anderson S, 2011, EAR HEARING, V32, P750, DOI 10.1097/AUD.0b013e31822229d3
Argence M, 2006, NEUROSCIENCE, V141, P1193, DOI 10.1016/j.neuroscience.2006.04.058
Arnold S., 2001, M ASS FOR RES IN OT, V112, P590
BACKOFF PM, 1994, HEARING RES, V73, P163, DOI 10.1016/0378-5955(94)90231-3
Banks MI, 1999, ANESTHESIOLOGY, V90, P120, DOI 10.1097/00000542-199901000-00018
Basu M, 2010, DEVELOPMENTAL SCI, V13, P77, DOI 10.1111/j.1467-7687.2009.00849.x
BEATTIE RC, 1989, AUDIOLOGY, V28, P1
BEATTIE RC, 1986, J SPEECH HEAR DISORD, V51, P63
Benkwitz C., 2003, GABAA RECEPTOR GAMMA
BOETTCHER FA, 1993, HEARING RES, V71, P137, DOI 10.1016/0378-5955(93)90029-Z
Boettcher FA, 2001, HEARING RES, V153, P32, DOI 10.1016/S0378-5955(00)00255-0
BUCHWALD JS, 1975, SCIENCE, V189, P382, DOI 10.1126/science.1145206
Buckiova D, 2007, EXP GERONTOL, V42, P629, DOI 10.1016/j.exger.2007.02.007
BURTON MJ, 1992, ACTA OTO-LARYNGOL, V112, P745, DOI 10.3109/00016489209137469
Caspary DM, 2008, J EXP BIOL, V211, P1781, DOI 10.1242/jeb.013581
CASPARY DM, 1990, J NEUROSCI, V10, P2363
Chen GD, 2009, HEARING RES, V248, P39, DOI 10.1016/j.heares.2008.11.010
CHEN TJ, 1991, EXP BRAIN RES, V85, P537
Cheung SW, 2001, HEARING RES, V156, P115, DOI 10.1016/S0378-5955(01)00272-6
Clinard CG, 2010, HEARING RES, V264, P48, DOI 10.1016/j.heares.2009.11.010
COSTA P, 1990, Electromyography and Clinical Neurophysiology, V30, P495
CREUTZFELDT O, 1980, EXP BRAIN RES, V39, P87
DOLPHIN WF, 1992, HEARING RES, V58, P70, DOI 10.1016/0378-5955(92)90010-K
DUBNO JR, 1984, J ACOUST SOC AM, V76, P87, DOI 10.1121/1.391011
Finneran JJ, 2007, J COMP PHYSIOL A, V193, P835, DOI 10.1007/s00359-007-0238-6
Fitzgibbons P J, 1996, J Am Acad Audiol, V7, P183
Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3
FUNAI H, 1983, AUDIOLOGY, V22, P9
Galbraith G, 2006, J NEUROSCI METH, V153, P214, DOI 10.1016/j.jneumeth.2005.10.017
GALBRAITH GC, 1994, ELECTROEN CLIN NEURO, V92, P321, DOI 10.1016/0168-5597(94)90100-7
Galbraith GC, 2001, PERCEPT MOTOR SKILL, V92, P99, DOI 10.2466/PMS.92.1.99-106
Galbraith GC, 2000, NEUROSCI LETT, V292, P123, DOI 10.1016/S0304-3940(00)01436-1
HASHIMOTO I, 1981, BRAIN, V104, P841, DOI 10.1093/brain/104.4.841
He NJ, 2008, J ACOUST SOC AM, V124, P3841, DOI 10.1121/1.2998779
Hernandez O, 2005, NEUROSCIENCE, V132, P203, DOI 10.1016/j.neuroscience.2005.01.001
HOORMANN J, 1992, HEARING RES, V59, P179, DOI 10.1016/0378-5955(92)90114-3
Izquierdo MA, 2008, NEUROSCIENCE, V154, P355, DOI 10.1016/j.neuroscience.2008.01.057
Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003
Kaga K, 1997, ACTA OTO-LARYNGOL, V117, P197, DOI 10.3109/00016489709117768
KIREN T, 1994, ACTA OTO-LARYNGOL, P28
Konrad-Martin D, 2012, J AM ACAD AUDIOL, V23, P18, DOI 10.3766/jaaa.23.1.3
Krishnan A, 2010, HEARING RES, V268, P60, DOI 10.1016/j.heares.2010.04.016
Krishnan A, 1999, AUDIOL NEURO-OTOL, V4, P95, DOI 10.1159/000013826
Kuwada Shigeyuki, 2002, J Am Acad Audiol, V13, P188
LEV A, 1972, ARCH KLIN EXP OHR, V201, P79, DOI 10.1007/BF00341066
Lucas JR, 2007, J COMP PHYSIOL A, V193, P201, DOI 10.1007/s00359-006-0180-z
Mazelova J, 2002, 6 INT S NEUR NEUR AG, P87
Mendelson JR, 2004, HEARING RES, V191, P21, DOI 10.1016/j.heares.2004.01.010
Parbery-Clark A, 2011, NEUROPSYCHOLOGIA, V49, P3338, DOI 10.1016/j.neuropsychologia.2011.08.007
Parthasarathy A, 2010, FRONT AGING NEUROSCI, V2, DOI 10.3389/fnagi.2010.00152
Parthasarathy A, 2011, NEUROSCIENCE, V192, P619, DOI 10.1016/j.neuroscience.2011.06.042
Ping JL, 2007, J NEUROSCI METH, V161, P11, DOI 10.1016/j.neumeth.2006.10.001
Poth EA, 2002, HEARING RES, V165
PUIL E, 1994, NEUROSCI LETT, V176, P63, DOI 10.1016/0304-3940(94)90872-9
REES A, 1987, HEARING RES, V27, P129, DOI 10.1016/0378-5955(87)90014-1
Ruotsalainen S, 1997, PHARMACOL BIOCHEM BE, V56, P31, DOI 10.1016/S0091-3057(96)00151-7
Santarelli R, 2003, BRAIN RES, V973, P240, DOI 10.1016/S0006-8993(03)02520-4
Schatteman TA, 2008, NEUROSCIENCE, V154, P329, DOI 10.1016/j.neuroscience.2008.02.025
SCHNEIDER BA, 1994, J ACOUST SOC AM, V95, P980, DOI 10.1121/1.408403
Palombi PS, 2001, HEARING RES, V153, P174, DOI 10.1016/S0378-5955(00)00264-1
SNELL KB, 1994, J ACOUST SOC AM, V96, P1458, DOI 10.1121/1.410288
SOHMER H, 1977, ELECTROEN CLIN NEURO, V42, P656, DOI 10.1016/0013-4694(77)90282-6
STOCKARD JJ, 1977, NEUROLOGY, V27, P316
Szalda K, 2005, HEARING RES, V203, P32, DOI 10.1016/j.heares.2004.11.014
Tadros SF, 2007, BRAIN RES, V1127, P1, DOI 10.1016/j.brainres.2006.09.081
Tennigkeit F, 1997, J NEUROPHYSIOL, V78, P591
Ter-Mikaelian M, 2007, J NEUROSCI, V27, P6091, DOI 10.1523/JNEUROSCI.4848-06-2007
Tremblay Kelly L, 2004, J Am Acad Audiol, V15, P226, DOI 10.3766/jaaa.15.3.5
Vander Werff K.R., 2003, 26 MIDW M ASS FOR RE, V26, p[Daytona, 310]
Walton JP, 1998, J NEUROSCI, V18, P2764
Warrier CM, 2011, HEARING RES, V282, P108, DOI 10.1016/j.heares.2011.09.001
Zhang HM, 2003, J NEUROPHYSIOL, V90, P477, DOI 10.1152/jn.01084.2002
NR 74
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2012
VL 289
IS 1-2
BP 52
EP 62
DI 10.1016/j.heares.2012.04.014
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 967UL
UT WOS:000305933200005
PM 22560961
ER
PT J
AU McFadden, D
Garcia-Sierra, A
Hsieh, MD
Maloney, MM
Champlin, CA
Pasanen, EG
AF McFadden, Dennis
Garcia-Sierra, Adrian
Hsieh, Michelle D.
Maloney, Mindy M.
Champlin, Craig A.
Pasanen, Edward G.
TI Relationships between otoacoustic emissions and a proxy measure of
cochlear length derived from the auditory brainstem response
SO HEARING RESEARCH
LA English
DT Article
ID TRAVELING-WAVE; GENDER-DIFFERENCES; SEXUAL ORIENTATION; EVOKED
POTENTIALS; HEARING; HUMANS; DELAYS; PHASE; TWINS; MASCULINIZATION
AB Brief tones of 1.0 and 8.0 kHz were used to evoke auditory brainstem responses (ABRs), and the differences between the wave-V latencies for those two frequencies were used as a proxy for cochlear length. The tone bursts (8 ms in duration including 2-ms rise/fall times, and 82 dB in level) were, or were not, accompanied by a continuous, moderately intense noise band, highpass filtered immediately above the tone. The proxy values for length were compared with various measures of otoacoustic emissions (OAEs) obtained from the same ears. All the correlations were low, suggesting that cochlear length, as measured by this proxy at least, is not strongly related to the various group and individual differences that exist in OAEs. Female latencies did not differ across the menstrual cycle, and the proxy length measure exhibited no sex difference (either for menses females vs. males or midluteal females vs. males) when the highpass noises were used. However, when the subjects were partitioned into Whites and Non-Whites, a substantial sex difference in cochlear length did emerge for the White group, although the correlations with OAEs remained low. Head size was not highly correlated with any of the ABR measures. (C) 2012 Elsevier B.V. All rights reserved.
C1 [McFadden, Dennis; Maloney, Mindy M.; Pasanen, Edward G.] Univ Texas Austin, Dept Psychol, Austin, TX 78712 USA.
[McFadden, Dennis; Maloney, Mindy M.; Pasanen, Edward G.] Univ Texas Austin, Ctr Perceptual Syst, Austin, TX 78712 USA.
[Hsieh, Michelle D.; Champlin, Craig A.] Univ Texas Austin, Dept Commun Sci & Disorders, Austin, TX 78712 USA.
[Garcia-Sierra, Adrian] Univ Washington, Inst Learning & Brain Sci, Seattle, WA 98195 USA.
RP McFadden, D (reprint author), Univ Texas Austin, Dept Psychol, 108 E Dean Keeton,A8000, Austin, TX 78712 USA.
EM mcfadden@psy.utexas.edu; gasa@u.washington.edu;
michelle.d.hsieh@gmail.com; mindymaloney@gmail.com;
champlin@austin.utexas.edu; pasanen@psy.utexas.edu
FU National Institute on Deafness and other Communication Disorders (NIDCD)
[RO1 DC000153]
FX This work was supported by a research grant awarded to DM by the
National Institute on Deafness and other Communication Disorders (NIDCD;
RO1 DC000153). The content is solely the responsibility of the authors
and does not necessarily represent the official views of the NIDCD or
the National Institutes of Health. K.P. Walsh provided valuable
assistance at various junctures. He, J.C. Loehlin, D.C. Teas, and T.L.
Langford made helpful comments on previous versions of this paper.
CR BILGER RC, 1990, J SPEECH HEAR RES, V33, P418
BOHNE BA, 1986, J ACOUST SOC AM, V80, P1729, DOI 10.1121/1.394285
BOHNE BA, 1979, J ACOUST SOC AM, V66, P411, DOI 10.1121/1.383092
Bowman DM, 2000, HEARING RES, V142, P1, DOI 10.1016/S0378-5955(99)00212-9
BURKARD R, 1983, J ACOUST SOC AM, V74, P1214, DOI 10.1121/1.390025
COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155
Dallos R, 1971, J ACOUST SOC AM, V49, P1140
DON M, 1993, J ACOUST SOC AM, V94, P2135, DOI 10.1121/1.407485
ELKINDHIRSCH KE, 1992, HEARING RES, V60, P143, DOI 10.1016/0378-5955(92)90016-G
ELKINDHIRSCH KE, 1994, OTOLARYNG HEAD NECK, V110, P46, DOI 10.1016/S0194-5998(94)70791-X
ELKINDHIRSCH KE, 1992, HEARING RES, V64, P93, DOI 10.1016/0378-5955(92)90171-I
Erixon E, 2008, OTOL NEUROTOL, V30, P14
Goodman SS, 2004, HEARING RES, V188, P57, DOI 10.1016/S0378-5955(03)00375-7
Ketten DR, 1998, ANN OTO RHINOL LARYN, V107, P1
KIMBERLEY BP, 1993, J ACOUST SOC AM, V94, P1343, DOI 10.1121/1.408162
Lin FR, 2012, JARO-J ASSOC RES OTO, V13, P109, DOI 10.1007/s10162-011-0298-8
LONSBURYMARTIN BL, 1988, HEARING RES, V33, P69, DOI 10.1016/0378-5955(88)90021-4
McFadden D, 1996, HEARING RES, V97, P102
McFadden D, 2009, HEARING RES, V252, P37, DOI 10.1016/j.heares.2009.01.002
McFadden D, 1999, J ACOUST SOC AM, V105, P2403, DOI 10.1121/1.426845
McFadden D, 1998, DEV NEUROPSYCHOL, V14, P261
McFadden D, 1998, P NATL ACAD SCI USA, V95, P2709, DOI 10.1073/pnas.95.5.2709
MCFADDEN D, 1983, ANNU REV PSYCHOL, V34, P95, DOI 10.1146/annurev.ps.34.020183.000523
McFadden D, 2010, HEARING RES, V270, P56, DOI 10.1016/j.heares.2010.09.008
McFadden D., J ACOUST SOC A UNPUB
MCFADDEN D, 1995, HEARING RES, V85, P181, DOI 10.1016/0378-5955(95)00045-6
McFadden D, 2000, HEARING RES, V142, P23, DOI 10.1016/S0378-5955(00)00002-2
MCFADDEN D, 1993, P NATL ACAD SCI USA, V90, P11900, DOI 10.1073/pnas.90.24.11900
McFadden D, 2008, PERSPECT PSYCHOL SCI, V3, P309, DOI 10.1111/j.1745-6924.2008.00082.x
McFadden D, 2011, FRONT NEUROENDOCRIN, V32, P201, DOI 10.1016/j.yfrne.2011.02.001
McFadden D., 2002, ARCH SEX BEHAV, V31, P93
McMinn M.M., 2002, THESIS U TEXAS AUSTI
Miller JD, 2007, J ACOUST SOC AM, V121, pEL151, DOI 10.1121/1.2710746
Moulin A, 1996, J ACOUST SOC AM, V100, P1617, DOI 10.1121/1.416063
PARKER D J, 1978, Scandinavian Audiology, V7, P67, DOI 10.3109/01050397809043134
Pasanen EG, 2000, J ACOUST SOC AM, V108, P1105, DOI 10.1121/1.1287026
Ruggero MA, 2007, JARO-J ASSOC RES OTO, V8, P153, DOI 10.1007/s10162-007-0081-z
Russell A.F., 1992, THESIS U ILLINOIS UR
SATO H, 1991, ACTA OTO-LARYNGOL, V111, P1037, DOI 10.3109/00016489109138447
SCHUBERT ED, 1959, J ACOUST SOC AM, V31, P990, DOI 10.1121/1.1907826
Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948
Siegel JH, 2005, J ACOUST SOC AM, V118, P2434, DOI 10.1121/1.2005867
Skinner MW, 2002, JARO-J ASSOC RES OTO, V3, P332, DOI 10.1007/s101620020013
Snihur A.W.K., 2012, NEUROSCI IN PRESS
TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V
TEAS DONALD C, 1962, JOUR ACOUSTICAL SOC AMER, V34, P1438, DOI 10.1121/1.1918366
TRUNE DR, 1988, HEARING RES, V32, P165, DOI 10.1016/0378-5955(88)90088-3
WHITEHEAD ML, 1993, SCAND AUDIOL, V22, P3, DOI 10.3109/01050399309046012
ZERLIN S, 1969, J ACOUST SOC AM, V46, P1011, DOI 10.1121/1.1911792
NR 49
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2012
VL 289
IS 1-2
BP 63
EP 73
DI 10.1016/j.heares.2012.04.010
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 967UL
UT WOS:000305933200006
PM 22546328
ER
PT J
AU Lewis, RM
Hume, CR
Stone, JS
AF Lewis, Rebecca M.
Hume, Clifford R.
Stone, Jennifer S.
TI Atoh1 expression and function during auditory hair cell regeneration in
post-hatch chickens
SO HEARING RESEARCH
LA English
DT Article
ID AVIAN INNER-EAR; DEVELOPING NERVOUS-SYSTEM; MATH1 GENE-TRANSFER; MATURE
GUINEA-PIGS; SENSORY EPITHELIA; BASILAR PAPILLA; DIRECT
TRANSDIFFERENTIATION; MAMMALIAN COCHLEA; NEUROGENIC GENES; ACOUSTIC
TRAUMA
AB Loss of hair cells in humans leads to irreversible hearing deficits, since auditory hair cells are not replaced. In contrast, hair cells are regenerated in the auditory epithelium of mature birds after damage by non-sensory supporting cells that transdifferentiate into hair cells by mitotic and/or non-mitotic mechanisms. Factors controlling these processes are poorly understood. The basic helix-loop-helix transcription factor ATOH1, is both necessary and sufficient for developmental hair cell differentiation, but it is unclear if it plays the same role in the mitotic and non-mitotic pathways in hair cell regeneration. We examined Atoh1 expression and function during hair cell regeneration in chickens. Atoh1 transcripts were increased in many supporting cells in the damaged auditory epithelium shortly after ototoxin administration and later became restricted to differentiating hair cells. Fate-mapping in vitro using an Atoh1 enhancer reporter demonstrated that only 56% of the supporting cells that spontaneously upregulate Atoh1 enhancer activity after damage acquired the hair cell fate. Inhibition of notch signaling using a gamma secretase antagonist stimulated an increase in Atoh1 reporter activity and induced a higher proportion of supporting cells with Atoh1 activity (73%) to differentiate as hair cells. Forced overexpression of Atoh1 in supporting cells triggered 66% of them to acquire the hair cell fate and nearly tripled their likelihood of cell cycle entry. These findings demonstrate that Atoh1 is broadly upregulated in supporting cells after damage, but a substantial proportion of supporting cells with Atoh1 activation fails to acquire hair cell features, in part due to gamma secretase-dependent activities. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Hume, Clifford R.; Stone, Jennifer S.] Univ Washington, Dept Otolaryngol Head & Neck Surg, Virginia Merrill Bloedel Hearing Res Ctr, Seattle, WA 98195 USA.
[Lewis, Rebecca M.] Univ Washington, Dept Speech & Hearing Sci, Seattle, WA 98195 USA.
RP Stone, JS (reprint author), Univ Washington, Dept Otolaryngol Head & Neck Surg, Virginia Merrill Bloedel Hearing Res Ctr, Box 357923, Seattle, WA 98195 USA.
EM stoner@u.washington.edu
FU NIH [R01 DC03696, DC006437, T32 DC005361, P30 DC04661]
FX We thank Jialin Shang and James Garlick for assistance with
electroporation and tissue labeling methods, Debbie Bratt for assistance
with plasmid design, Robin Gibson and Tot Bui Nyugen for assistance with
plasmid preparations, and Glen MacDonald for assistance with confocal
imaging. We thank Ed Rubel for help with data analysis and for other
contributions to the manuscript. We are grateful to Fernando Giraldez
(University Pompeu Fabra, Barcelona) for donating the construct for
chicken Atoh1 RNA probe and to Jane Johnson (University of Texas
Southwestern Medical School) for donating the J2Xn-GFP construct for the
Atoh1 reporter and anti-ATOH1 antibodies. This work was supported by NIH
grants R01 DC03696 (JSS), DC006437 (CH), T32 DC005361 (RML), and P30
DC04661.
CR Adler HJ, 1996, NEUROSCI LETT, V205, P17, DOI 10.1016/0304-3940(96)12367-3
Adler HJ, 1997, INT J DEV NEUROSCI, V15, P375, DOI 10.1016/S0736-5748(96)00098-6
Baird RA, 1996, ANN NY ACAD SCI, V781, P59, DOI 10.1111/j.1749-6632.1996.tb15693.x
Batts SA, 2009, HEARING RES, V249, P15, DOI 10.1016/j.heares.2008.12.008
Ben-Arie N, 2000, DEVELOPMENT, V127, P1039
BenArie N, 1996, HUM MOL GENET, V5, P1207, DOI 10.1093/hmg/5.9.1207
Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837
Bermingham-McDonogh O, 2003, CURR OPIN NEUROBIOL, V13, P119, DOI 10.1016/S0959-4388(03)00018-7
Bertrand N, 2002, NAT REV NEUROSCI, V3, P517, DOI 10.1038/nrn874
Brignull HR, 2009, BRAIN RES, V1277, P12, DOI 10.1016/j.brainres.2009.02.028
Cafaro J, 2007, DEV DYNAM, V236, P156, DOI 10.1002/dvdy.21023
Castro DS, 2011, CELL CYCLE, V10, P4026, DOI 10.4161/cc.10.23.18578
Chen P, 2002, DEVELOPMENT, V129, P2495
CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100
COTANCHE DA, 1987, HEARING RES, V28, P35, DOI 10.1016/0378-5955(87)90151-1
Daudet N, 2009, DEV BIOL, V326, P86, DOI 10.1016/j.ydbio.2008.10.033
Doetzlhofer A, 2009, DEV CELL, V16, P58, DOI 10.1016/j.devcel.2008.11.008
DUCKERT LG, 1990, HEARING RES, V48, P161, DOI 10.1016/0378-5955(90)90206-5
Ebert PJ, 2003, DEVELOPMENT, V130, P1949, DOI 10.1242/dev.00419
Farah MH, 2000, DEVELOPMENT, V127, P693
FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284
Forge A, 1998, J COMP NEUROL, V397, P69
Fritzsch B, 2011, HEARING RES, V276, P16, DOI 10.1016/j.heares.2011.01.007
Goodyear R, 1996, HEARING RES, V96, P167, DOI 10.1016/0378-5955(96)00045-7
Gubbels SP, 2008, NATURE, V455, P537, DOI 10.1038/nature07265
HASHINO E, 1993, J CELL SCI, V105, P23
Hasson T, 1997, J CELL BIOL, V137, P1287, DOI 10.1083/jcb.137.6.1287
Hawkins J E Jr, 1973, Adv Otorhinolaryngol, V20, P125
Helms AW, 2000, DEVELOPMENT, V127, P1185
HENRIQUE D, 1995, NATURE, V375, P787, DOI 10.1038/375787a0
Izumikawa M, 2008, HEARING RES, V240, P52, DOI 10.1016/j.heares.2008.02.007
Jahan I, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011661
JARMAN AP, 1993, CELL, V73, P1307, DOI 10.1016/0092-8674(93)90358-W
JARMAN AP, 1993, DEVELOPMENT, V119, P19
JORGENSEN JM, 1988, NATURWISSENSCHAFTEN, V75, P319, DOI 10.1007/BF00367330
Kageyama R, 2008, DEV GROWTH DIFFER, V50, pS97, DOI 10.1111/j.1440-169X.2008.00993.x
Kawamoto K, 2003, J NEUROSCI, V23, P4395
Kawamoto K, 2009, HEARING RES, V247, P17, DOI 10.1016/j.heares.2008.08.010
Kruger RP, 1999, J NEUROSCI, V19, P4815
Lanford Pamela J., 2000, JARO Journal of the Association for Research in Otolaryngology, V1, P161, DOI 10.1007/s101620010023
Lewis J, 1996, CURR OPIN NEUROBIOL, V6, P3, DOI 10.1016/S0959-4388(96)80002-X
Lin V, 2011, J NEUROSCI, V31, P15329, DOI 10.1523/JNEUROSCI.2057-11.2011
Lumpkin EA, 2003, GENE EXPR PATTERNS, V3, P389, DOI 10.1016/S1567-133X(03)00089-9
Morest DK, 2004, J NEUROSCI RES, V78, P455, DOI 10.1002/jnr.20283
OESTERLE EC, 1993, HEARING RES, V70, P85, DOI 10.1016/0378-5955(93)90054-5
Pujades C, 2006, DEV BIOL, V292, P55, DOI 10.1016/j.ydbio.2006.01.001
Raft S, 2007, DEVELOPMENT, V134, P4405, DOI 10.1242/dev.009118
RAPHAEL Y, 1992, J NEUROCYTOL, V21, P663, DOI 10.1007/BF01191727
ROBERSON DF, 1992, HEARING RES, V57, P166, DOI 10.1016/0378-5955(92)90149-H
Roberson DW, 1996, AUDIT NEUROSCI, V2, P195
Roberson DW, 2004, J NEUROSCI RES, V78, P461, DOI 10.1002/jnr.20271
Selkoe D, 2003, ANNU REV NEUROSCI, V26, P565, DOI 10.1146/annurev.neuro.26.041002.131334
Shailam R, 1999, J NEUROCYTOL, V28, P809, DOI 10.1023/A:1007009803095
Shang JL, 2010, JARO-J ASSOC RES OTO, V11, P203, DOI 10.1007/s10162-009-0206-7
Shou JY, 2003, MOL CELL NEUROSCI, V23, P169, DOI 10.1016/S1044-7431(03)00066-6
Staecker H, 2007, OTOL NEUROTOL, V28, P223, DOI 10.1097/MAO.0b013e31802b3225
Stone JS, 2007, INT J DEV BIOL, V51, P633, DOI 10.1387/ijdb.072408js
Stone JS, 2000, J COMP NEUROL, V417, P1, DOI 10.1002/(SICI)1096-9861(20000131)417:1<1::AID-CNE1>3.0.CO;2-E
STONE JS, 1994, J COMP NEUROL, V341, P50, DOI 10.1002/cne.903410106
Stone JS, 1999, DEVELOPMENT, V126, P961
Woods C, 2004, NAT NEUROSCI, V7, P1310, DOI 10.1038/nn1349
Zhao H, 2008, GENE DEV, V22, P722, DOI 10.1101/gad.1636408
Zhao LD, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023729
Zheng JL, 2000, NAT NEUROSCI, V3, P580
NR 64
TC 16
Z9 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2012
VL 289
IS 1-2
BP 74
EP 85
DI 10.1016/j.heares.2012.04.008
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 967UL
UT WOS:000305933200007
PM 22543087
ER
PT J
AU Warnecke, A
Sasse, S
Wenzel, GI
Hoffmann, A
Gross, G
Paasche, G
Scheper, V
Reich, U
Esser, KH
Lenarz, T
Stover, T
Wissel, K
AF Warnecke, Athanasia
Sasse, Susanne
Wenzel, Gentiana I.
Hoffmann, Andrea
Gross, Gerhard
Paasche, Gerrit
Scheper, Verena
Reich, Uta
Esser, Karl-Heinz
Lenarz, Thomas
Stoever, Timo
Wissel, Kirsten
TI Stable release of BDNF from the fibroblast cell line NIH3T3 grown on
silicone elastomers enhances survival of spiral ganglion cells in vitro
and in vivo
SO HEARING RESEARCH
LA English
DT Article
ID DEAFENED GUINEA-PIGS; PROMOTING NEURITE OUTGROWTH; SENSORINEURAL
HEARING-LOSS; COCHLEAR GENE-TRANSFER; NEUROTROPHIC FACTOR;
ELECTRICAL-STIMULATION; AUDITORY NEURONS; ADENOASSOCIATED VIRUS;
INNER-EAR; LENTIVIRAL VECTORS
AB The treatment of choice for profound sensorineural hearing loss (SNHL) is direct electrical stimulation of spiral ganglion cells (SGC) via a cochlear implant (CI). The number and excitability of SGC seem to be critical for the success that can be achieved via CI treatment. However, SNHL is associated with degeneration of SGC. Long-term drug delivery to the inner ear for improving SGC survival may be achieved by functionalisation of CI electrodes with cells providing growth factors. Therefore, the capacity of brain-derived neurotrophic factor (BDNF)-secreting NIH3T3 cells grown on cylindrically shaped silicone elastomers (SE) to exert local and sustained neuroprotective effects was assessed in vitro and in vivo. An in vitro model to investigate adhesion and cell growth of lentivirally modified NIH3T3 cells synthesising BDNF on SE was established. The bioactivity of BDNF was characterised by co-cultivation of SGC with cell-coated SE. In addition, cell-coated SE were implanted into deafened guinea pigs.
The recombinant NIH3T3 cells proliferated on silicone surfaces during 14 days of cultivation and expressed significantly increasing BDNF levels. Enhanced survival rates and neurite outgrowth of SGC demonstrated the bioactivity of BDNF in vitro. Implantation of SE with adhering BDNF-secreting NIH3T3 cells into the cochleae of systemically deafened guinea pigs induced a significant increase in SGC survival in comparison to SE without cell coating. Our data demonstrate a novel approach of cell-based long-term drug delivery to support SGC survival in vitro and in vivo. This therapeutic strategy - once transferred to cells suitable for clinical application may - improve CI performance. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Warnecke, Athanasia; Sasse, Susanne; Wenzel, Gentiana I.; Paasche, Gerrit; Scheper, Verena; Lenarz, Thomas; Stoever, Timo; Wissel, Kirsten] Hannover Med Sch, Dept Otorhinolaryngol Head & Neck Surg, D-30625 Hannover, Germany.
[Hoffmann, Andrea; Gross, Gerhard] Helmholtz Ctr Infect Res, Dept Gene Regulat & Differentiat, D-38124 Braunschweig, Germany.
[Reich, Uta] Clin & Polyclin Otorhinolaryngol, D-10117 Berlin, Germany.
[Esser, Karl-Heinz] Univ Vet Med, Auditory Neuroethol & Neurobiol Lab, Inst Zool, D-30559 Hannover, Germany.
RP Wissel, K (reprint author), Hannover Med Sch, Dept Otorhinolaryngol Head & Neck Surg, Carl Neuberg Str 1, D-30625 Hannover, Germany.
EM warnecke.athanasia@mh-hannover.de; wissel.kirsten@mh-hannover.de
FU German Research Foundation [SFB 599]
FX This study was funded by the German Research Foundation (SFB 599,
subproject D2).
CR Agterberg MJH, 2009, JARO-J ASSOC RES OTO, V10, P355, DOI 10.1007/s10162-009-0170-2
Brigande JV, 2009, NAT NEUROSCI, V12, P679, DOI 10.1038/nn.2311
Chernajovsky Y, 2004, NAT REV IMMUNOL, V4, P800, DOI 10.1038/nri1459
Chikar JA, 2008, HEARING RES, V245, P24, DOI 10.1016/j.heares.2008.08.005
Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004
Coleman B, 2006, CELL TRANSPLANT, V15, P369, DOI 10.3727/000000006783981819
Dazert S, 1998, J CELL PHYSIOL, V177, P123, DOI 10.1002/(SICI)1097-4652(199810)177:1<123::AID-JCP13>3.0.CO;2-E
Evans AJ, 2009, J BIOMED MATER RES A, V91A, P241, DOI 10.1002/jbm.a.32228
Fransson A, 2010, J NEUROTRAUM, V27, P1745, DOI 10.1089/neu.2009.1218
Fryer RH, 1997, EXP NEUROL, V148, P616, DOI 10.1006/exnr.1997.6699
Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542
Gillespie LN, 2001, NEUROREPORT, V12, P275, DOI 10.1097/00001756-200102120-00019
GLASS DJ, 1991, CELL, V66, P405, DOI 10.1016/0092-8674(91)90629-D
Glueckert R., 2008, J COMP NEUROL, V1, P1602
Goren A, 2010, FASEB J, V24, P22, DOI 10.1096/fj.09-131888
Hegarty JL, 1997, J NEUROSCI, V17, P1959
Huang JH, 2010, J BIOMED MATER RES A, V93A, P164, DOI 10.1002/jbm.a.32511
Ishimoto S, 2002, HEARING RES, V173, P187, DOI 10.1016/S0378-5955(02)00579-8
Ishimoto S, 2003, AUDIOL NEURO-OTOL, V8, P70, DOI 10.1159/000069000
Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193
Jerregard H, 2000, J NEUROCYTOL, V29, P653, DOI 10.1023/A:1010883320683
Jiang H, 1999, J BIOL CHEM, V274, P26209, DOI 10.1074/jbc.274.37.26209
Johnson DG, 2010, IEEE ENG MED BIO, P6441, DOI 10.1109/IEMBS.2010.5627335
Kanzaki S, 2002, J COMP NEUROL, V454, P350, DOI 10.1002/cne.10480
Kho ST, 2000, MOL THER, V2, P368, DOI 10.1006/mthe.2000.0129
Kilpatrick LA, 2011, GENE THER, V18, P569, DOI 10.1038/gt.2010.175
Kishino A, 2001, NEUROREPORT, V12, P1067, DOI 10.1097/00001756-200104170-00040
Lalwani AK, 2002, LARYNGOSCOPE, V112, P1325, DOI 10.1097/00005537-200208000-00001
LEFEBVRE PP, 1991, BRAIN RES, V555, P75, DOI 10.1016/0006-8993(91)90862-P
Lenarz Thomas, 2006, Audiol Neurootol, V11 Suppl 1, P34, DOI 10.1159/000095612
Li H., 2002, CHIN OPHTHALMIC RES, V20, P214
Loizou PC, 2003, J ACOUST SOC AM, V114, P475, DOI 10.1121/1.1582861
Lundberg C, 2008, CURR GENE THER, V8, P461, DOI 10.2174/156652308786847996
Marzella PL, 1999, HEARING RES, V138, P73, DOI 10.1016/S0378-5955(99)00152-5
McCall AA, 2010, EAR HEARING, V31, P156, DOI 10.1097/AUD.0b013e3181c351f2
McGuinness SL, 2005, OTOL NEUROTOL, V26, P1064, DOI 10.1097/01.mao.0000185063.20081.50
Miller JM, 2007, J NEUROSCI RES, V85, P1959, DOI 10.1002/jnr.21320
Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7
Nakaizumi T, 2004, AUDIOL NEURO-OTOL, V9, P135, DOI 10.1159/000077264
Okano T, 2006, MOL THER, V14, P866, DOI 10.1016/j.ymthe.2006.06.012
Pettingill LN, 2008, NEUROSCIENCE, V152, P821, DOI 10.1016/j.neuroscience.2007.11.057
Pettingill L.N., 2011, PLOS ONE, V5
Pincha M, 2010, EXPERT REV VACCINES, V9, P309, DOI [10.1586/erv.10.9, 10.1586/ERV.10.9]
Reich U, 2008, J BIOMED MATER RES B, V87B, P146, DOI 10.1002/jbm.b.31084
Rejali D, 2007, HEARING RES, V228, P180, DOI 10.1016/j.heares.2007.02.010
Richardson RT, 2009, BIOMATERIALS, V30, P2614, DOI 10.1016/j.biomaterials.2009.01.015
Salmon P, 2000, MOL THER, V2, P404, DOI 10.1006/mthe.2000.0141
Salt AN, 2005, VOLTA REV, V105, P277
Salt AN, 2005, DRUG DISCOV TODAY, V10, P1299, DOI 10.1016/S1359-6446(05)03574-9
Scheper V, 2009, J NEUROSCI RES, V87, P1389, DOI 10.1002/jnr.21964
Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564
Shepherd RK, 2008, HEARING RES, V242, P100, DOI 10.1016/j.heares.2007.12.005
Shibata SB, 2010, EXP NEUROL, V223, P464, DOI 10.1016/j.expneurol.2010.01.011
Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999
Song B.N., 2008, CHIN MED J ENGL, V5, P1189
Song BN, 2009, ACTA OTO-LARYNGOL, V129, P142, DOI 10.1080/00016480802043949
SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683
Staecker H, 2010, DRUG DISCOV TODAY, V15, P314, DOI 10.1016/j.drudis.2010.02.005
Stover T, 2000, GENE THER, V7, P377, DOI 10.1038/sj.gt.3301108
Wang J, 2007, NEUROREPORT, V18, P1329, DOI 10.1097/WNR.0b013e3282010b16
Warnecke A, 2007, NEUROREPORT, V18, P1683
WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7
Wefstaedt P, 2005, NEUROREPORT, V16, P2011, DOI 10.1097/00001756-200512190-00008
WEST BA, 1973, ARCH OTOLARYNGOL, V98, P32
Wise AK, 2010, MOL THER, V18, P1111, DOI 10.1038/mt.2010.28
Wissel K, 2008, OTOL NEUROTOL, V29, P475, DOI 10.1097/MAO.0b013e318164d110
Yagi M, 2000, JARO, V1, P315, DOI 10.1007/s101620010011
Yamagata T, 2004, J NEUROSCI RES, V78, P75, DOI 10.1002/jnr.20239
NR 68
TC 13
Z9 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2012
VL 289
IS 1-2
BP 86
EP 97
DI 10.1016/j.heares.2012.04.007
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 967UL
UT WOS:000305933200008
PM 22564255
ER
PT J
AU Rimmele, J
Schroger, E
Bendixen, A
AF Rimmele, Johanna
Schroeger, Erich
Bendixen, Alexandra
TI Age-related changes in the use of regular patterns for auditory scene
analysis
SO HEARING RESEARCH
LA English
DT Article
ID EVENT-RELATED POTENTIALS; MISMATCH NEGATIVITY; STREAM SEGREGATION;
RHYTHMIC ATTENTION; VISUAL-ATTENTION; HEARING-LOSS; MEMORY; NOISE;
PERCEPTION; RESOLUTION
AB A recent approach to auditory processing suggests a close relationship of regularity processing in auditory sensory memory (ASM) and stream segregation, such that within-stream regularities can be used to stabilize stream segregation. The present study investigates age-related changes in how regular patterns are used for auditory scene analysis (ASA), when the stream containing the regularity is attended or unattended. In order to accomplish an intensity level deviant detection task, participants had to segregate the task-relevant pure tone sequence from an irrelevant distractor pure tone sequence, which randomly varied in level. In three conditions a simple spectro-temporal regularity ("Isochronous"), a more complex spectro-temporal regularity ("Rhythmic"), or no regularity ("Random") was embedded in either the attended target sequence (Experiment 1), or the unattended distractor sequence (Experiment 2). When the sequence containing the regularity was attended, older participants showed a similar increase of performance to younger adults in the conditions with regular patterns ("Isochronous" and "Rhythmic") compared to the "Random" condition. In contrast, when the sequence containing the regularity was unattended, older adults showed a specific performance decline compared to younger adults in the "Isochronous" condition. Results suggest a link between impaired automatic processing of regularities in ASM, and age-related deficits in the use of regular patterns for ASA. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Rimmele, Johanna] Univ Leipzig, Inst Psychol, BioCog Cognit Incl Biol Psychol, D-04103 Leipzig, Germany.
RP Rimmele, J (reprint author), Univ Leipzig, Inst Psychol, BioCog Cognit Incl Biol Psychol, Seeburgstr 14-20, D-04103 Leipzig, Germany.
EM rimmele@uni-leipzig.de
RI Bendixen, Alexandra/B-3922-2010
FU German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) [DFG
1182]; Reinhart-Koselleck grant
FX This research was supported by the German Research Foundation (Deutsche
Forschungsgemeinschaft, DFG) as part of the graduate program "Function
of Attention in Cognition" (DFG 1182, scholarship to J.R.) and a
Reinhart-Koselleck grant (to E.S.). The experiments were realized using
Cogent 2000 developed by the Cogent 2000 team at the FIL and the ICN.
The authors thank Andreas Widmann for providing the hearing screen test
procedure as well as Marie-Luise Schmidt and Susann Duwe for their help
with the data collection. Furthermore, we are grateful to Prof. Dr.
Brian Moore and two anonymous reviewers for valuable comments on earlier
versions of the manuscript.
CR Alain C, 1999, PSYCHOL AGING, V14, P507, DOI 10.1037/0882-7974.14.3.507
Alain C, 2004, PSYCHOL AGING, V19, P125, DOI 10.1037/0882-7974.19.1.125
Alain C, 1999, PSYCHOPHYSIOLOGY, V36, P737, DOI 10.1017/S0048577299980812
Alain C., 2006, HDB MODELS HUMAN AGI, P759, DOI DOI 10.1016/B978-012369391-4/50065-5
Andreou LV, 2011, HEARING RES, V280, P228, DOI 10.1016/j.heares.2011.06.001
Bendixen A, 2010, J ACOUST SOC AM, V128, P3658, DOI 10.1121/1.3500695
Bertoli S, 2002, CLIN NEUROPHYSIOL, V113, P396, DOI 10.1016/S1388-2457(02)00013-5
Best V, 2011, J ACOUST SOC AM, V129, P1616, DOI 10.1121/1.3533733
Boh B, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021458
Bregman AS., 1990, AUDITORY SCENE ANAL
Denham SL, 2006, J PHYSIOLOGY-PARIS, V100, P154, DOI 10.1016/j.jphysparis.2006.09.012
Devergie A, 2010, J ACOUST SOC AM, V128, pEL1, DOI 10.1121/1.3436498
Eagleman DM, 2005, J NEUROSCI, V25, P10369, DOI 10.1523/JNEUROSCI.3487-05.2005
Fitzgibbons PJ, 2011, J ACOUST SOC AM, V129, P1490, DOI 10.1121/1.3533728
Folstein M. F., 1990, MINIMENTAL STATUS TE
FRENCHSTGEORGE M, 1989, PERCEPT PSYCHOPHYS, V46, P384
Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3
Green D. M., 1966, SIGNAL DETECTION THE
Hasher L., 1988, PSYCHOL LEARN MOTIV, V22, P193, DOI DOI 10.1016/S0079-7421(08)60041-9
Hopkins K, 2011, J ACOUST SOC AM, V130, P334, DOI 10.1121/1.3585848
Jones MR, 2006, COGNITIVE PSYCHOL, V53, P59, DOI 10.1016/j.cogpsych.2006.01.003
JONES MR, 1981, J EXP PSYCHOL HUMAN, V7, P1059, DOI 10.1037/0096-1523.7.5.1059
JONES MR, 1976, PSYCHOL REV, V83, P323, DOI 10.1037/0033-295X.83.5.323
KAERNBACH C, 1990, J ACOUST SOC AM, V88, P2645, DOI 10.1121/1.399985
Larsby B, 2005, INT J AUDIOL, V44, P131, DOI 10.1080/14992020500057244
MacMillan N. A., 2005, DETECTION THEORY USE
MANTYSALO S, 1987, BIOL PSYCHOL, V24, P183, DOI 10.1016/0301-0511(87)90001-9
Micheyl C, 2010, JARO-J ASSOC RES OTO, V11, P709, DOI 10.1007/s10162-010-0227-2
Moore BC., 2003, INTRO PSYCHOL HEARIN
Moore BCJ, 2002, ACTA ACUST UNITED AC, V88, P320
Naatanen R, 2010, BRAIN RES REV, V64, P123, DOI 10.1016/j.brainresrev.2010.03.001
Naatanen R, 2011, PSYCHOPHYSIOLOGY, V48, P4, DOI 10.1111/j.1469-8986.2010.01114.x
Pekkonen E, 2000, AUDIOL NEURO-OTOL, V5, P216, DOI 10.1159/000013883
Picton TW, 2000, AUDIOL NEURO-OTOL, V5, P111, DOI 10.1159/000013875
Rajan R, 2008, NEUROSCIENCE, V154, P784, DOI 10.1016/j.neuroscience.2008.03.067
Reuter-Lorenz PA, 2010, J GERONTOL B-PSYCHOL, V65, P405, DOI 10.1093/geronb/gbq035
Rimmele J, 2012, PSYCHOL AGING, V27, P384, DOI 10.1037/a0024866
ROGERS WL, 1993, PERCEPT PSYCHOPHYS, V53, P179, DOI 10.3758/BF03211728
Schroger E, 2007, J PSYCHOPHYSIOL, V21, P138, DOI 10.1027/0269-8803.21.34.138
Shinn-Cunningham BG, 2008, TRENDS COGN SCI, V12, P182, DOI 10.1016/j.tics.2008.02.003
Snyder JS, 2005, COGNITIVE BRAIN RES, V24, P492, DOI 10.1016/j.cogbrainres.2005.03.002
Snyder JS, 2007, CEREB CORTEX, V17, P501, DOI 10.1093/cercor/bhj175
Sussman E, 1998, BRAIN RES, V789, P130, DOI 10.1016/S0006-8993(97)01443-1
TRAINOR LJ, 1989, PERCEPT PSYCHOPHYS, V45, P417, DOI 10.3758/BF03210715
van Norden L. P. A. S, 1975, THESIS TU EINDHOVEN
Verhaegen P., 2008, HDB COGNITIVE AGING, P134
Winkler I, 2009, TRENDS COGN SCI, V13, P532, DOI 10.1016/j.tics.2009.09.003
Winkler I, 2012, PHILOS T R SOC B, V367, P1001, DOI 10.1098/rstb.2011.0359
Winkler I, 2003, COGN AFFECT BEHAV NE, V3, P57, DOI 10.3758/CABN.3.1.57
Winkler I, 2003, P NATL ACAD SCI USA, V100, P11812, DOI 10.1073/pnas.2031891100
Winkler I, 2007, J PSYCHOPHYSIOL, V21, P147, DOI 10.1027/0269-8803.21.34.147
Winkler I., LEARN PERCE IN PRESS
Yordanova J, 2004, BRAIN, V127, P351, DOI 10.1093/brain/awh042
NR 53
TC 8
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2012
VL 289
IS 1-2
BP 98
EP 107
DI 10.1016/j.heares.2012.04.006
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 967UL
UT WOS:000305933200009
PM 22543088
ER
PT J
AU Niedermeier, K
Braun, S
Fauser, C
Straubinger, RK
Stark, T
AF Niedermeier, Katharina
Braun, Susanne
Fauser, Claudius
Straubinger, Reinhard K.
Stark, Thomas
TI Pneumococcal meningitis post cochlear implantation: Development of an
animal model in the guinea pig
SO HEARING RESEARCH
LA English
DT Article
ID BACTERIAL-MENINGITIS; STREPTOCOCCUS-PNEUMONIAE; CHILDREN; RISK
AB In 2002 an increased number of cochlear implant related meningitis cases was reported by the U. S. Food and Drug Administration (FDA). The most commonly identified causative agent was Streptococcus pneumoniae. Although most cases of meningitis were related to a special electrode design, the risk for post-operative pneumococcal meningitis might nonetheless be enhanced by opening of the cochlea during implantation.
In the present study, a threshold model for middle ear inoculation of S. pneumoniae was established in the guinea pig after cochlear implantation to assess the post-operative risk of meningitis.
Guinea pigs were implanted unilaterally with a silicone cochlear implant electrode dummy. Five weeks after implantation, animals were challenged via the middle ear with a clinically relevant strain of S. pneumoniae and monitored over a period of five days for signs of meningitis. Meningitis was confirmed by clinical outcome in the animals, histological investigation of brains, as well as by pleocytosis and presence of bacteria in cerebrospinal fluid (CSF). By inoculation of varying numbers of bacteria (between 1 x 10(4) and 1 x 10(9) CFU/ml in 10 mu l), a threshold model was established. The attack rate, pattern and onset of meningitis depended on number of inoculated bacteria. An increased meningitis rate in different experimental groups shows that greater bacterial burden leads to an increased attack rate after intratympanal inoculation. The established animal model provides a potential tool to assess the meningitis risk after cochlear implantation. Its implementation in future studies will allow the investigation of existing and newly developed prostheses for postoperatively infection risk. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Niedermeier, Katharina; Stark, Thomas] Tech Univ Munich, Clin Otorhinolaryngol Head & Neck Surg, Klinikum Rechts Isar, D-81675 Munich, Germany.
[Braun, Susanne] MED EL Deutschland GmbH, D-82319 Starnberg, Germany.
[Fauser, Claudius] HNO Zentrum Regensburg, D-93047 Regensburg, Germany.
[Straubinger, Reinhard K.] Ludwig Maximilians Univ Munchen, Inst Infect Dis & Zoonoses, Dept Vet Sci, Fac Vet Med, D-80539 Munich, Germany.
RP Niedermeier, K (reprint author), Tech Univ Munich, Clin Otorhinolaryngol Head & Neck Surg, Klinikum Rechts Isar, Ismaninger Str 22, D-81675 Munich, Germany.
EM K.Niedermeier@lrz.tum.de; susanne.braun@medel.com;
fauser@lrz.tu-muenchen.de; R.Straubinger@lmu.de; t.stark@lrz.tum.de
RI Straubinger, Reinhard/D-1719-2010
FU MED-EL research grant (MED-EL GmbH, Innsbruck)
FX We acknowledge Dr. Jane M. Opie (Medical Communications Writer at MED-EL
GmbH, Innsbruck) for medical writing assistance following the
preparation of this manuscript. The authors thank Prof. Dr. med. Uwe
Kodel, Department of Neurology, Klinikum Grosshadern, LMU Munich,
Germany, for his advice and his support in methodological questions. We
also thank Prof. Dr. Sven Hammerschmidt, University of Greifswald,
Greifswald, Germany, for providing the pneumococcal strain. This work
was supported by a MED-EL research grant (MED-EL GmbH, Innsbruck) and we
gratefully acknowledge Carolyn Garnham for her support.
CR Biernath KR, 2006, PEDIATRICS, V117, P284, DOI 10.1542/peds.2005-0824
BLANK AL, 1994, ARCH OTOLARYNGOL, V120, P1342
Braun S, 2011, ORL-J OTO-RHIN-LARYN, V73, P219, DOI 10.1159/000329791
Callanan V, 2004, INT J PEDIATR OTORHI, V68, P545, DOI 10.1016/j.ijporl.2003.12.003
Clark G. M., 2003, COCHLEAR IMPLANTS FU
Cohen NL, 2010, OTOL NEUROTOL, V31, P1325, DOI 10.1097/MAO.0b013e3181f2ed06
FDA, 2002, PUBL HLTH WEB NOT RI, V2010
Hoffman Olaf, 2009, Ther Adv Neurol Disord, V2, P1, DOI 10.1177/1756285609337975
Lalwani AK, 2012, OTOL NEUROTOL, V33, P93, DOI 10.1097/MAO.0b013e31823dbb08
MOXON ER, 1981, REV INFECT DIS, V3, P354
Reefhuis J, 2003, NEW ENGL J MED, V349, P435, DOI 10.1056/NEJMoa031101
Rubin LG, 2010, OTOL NEUROTOL, V31, P1331, DOI 10.1097/MAO.0b013e3181f2f074
Wei Benjamin P C, 2008, Clin Infect Dis, V46, pe1, DOI 10.1086/524083
Wei BPC, 2006, OTOL NEUROTOL, V27, P1152, DOI 10.1097/01.mao.0000227898.80656.54
Wei B.P.C., 2010, OTOLARYNGOL HEAD NEC, V143, P15
Wei BPC, 2007, ARCH OTOLARYNGOL, V133, P987, DOI 10.1001/archotol.133.10.987
Wei BPC, 2006, OTOL NEUROTOL, V27, P844, DOI 10.1097/01.mao.0000231603.25961.f1
Winter AJ, 1997, INFECT IMMUN, V65, P4411
Wysocki J, 2005, HEARING RES, V199, P103, DOI 10.1016/j.heares.2004.08.008
NR 19
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2012
VL 289
IS 1-2
BP 108
EP 115
DI 10.1016/j.heares.2012.04.002
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 967UL
UT WOS:000305933200010
PM 22575208
ER
PT J
AU Du, ZD
Yang, Y
Hu, YJ
Sun, Y
Zhang, SL
Peng, W
Zhong, Y
Huang, X
Kong, WJ
AF Du, Zhengde
Yang, Yang
Hu, Yujuan
Sun, Yu
Zhang, Sulin
Peng, Wei
Zhong, Yi
Huang, Xiang
Kong, Weijia
TI A long-term high-fat diet increases oxidative stress, mitochondrial
damage and apoptosis in the inner ear of D-galactose-induced aging rats
SO HEARING RESEARCH
LA English
DT Article
ID UNCOUPLING PROTEINS; GENE-EXPRESSION; HEARING-LOSS; BP DELETION;
PHYSIOLOGICAL FUNCTIONS; QUANTITATIVE PCR; COMMON DELETION;
SKELETAL-MUSCLE; DNA MUTATIONS; NADPH OXIDASE
AB In humans, chronic dyslipidemia associated with elevated triglycerides may reduce auditory function. However, there is little evidence available in the literature concerning the effects of a long-term high-fat diet (HFD) on the inner ears of animals. The purpose of this study was to investigate the effect of 12 month-HFD on the inner ear of Sprague-Dawley rats and on the E.-galactose (D-gal)-induced aging process in the inner ear. We found that 12 month-HFD markedly elevated the auditory brainstem response (ABR) threshold in the high-frequency region. The HFD significantly increased the generation of reactive oxygen species (ROS) and the expressions of NADPH oxidase (NOX) and the uncoupling proteins (UCP). Furthermore, an elevated accumulation of the mitochondrial DNA (mtDNA) common deletion (CD) and mitochondrial ultrastructural changes in the inner ear suggested that there was mitochondrial damage in response to the excessive fat intake. The expression level of cleaved caspase-3 and the number of terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick-end-labelling (TUNEL)-positive cells in the inner ear were increased by the HFD. The effects of D-gal on the inner ears were similar with 12 month-HFD. We found that rats receiving both the HFD and D-gal exhibited a greater shift in the ABR threshold, larger increases in the expression levels of NOX, UCP and cleaved caspase-3 and an increased number of TUNEL-positive cells in the inner ear. The present study demonstrated that HFD may induce oxidative stress, mitochondrial damage and apoptosis in the inner ear, and it provided evidence regarding the link between HFD and an increased risk of age-related hearing loss. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Du, Zhengde; Yang, Yang; Hu, Yujuan; Sun, Yu; Zhang, Sulin; Peng, Wei; Zhong, Yi; Kong, Weijia] Huazhong Univ Sci & Technol, Tongji Med Coll, Union Hosp, Dept Otorhinolaryngol, Wuhan 430022, Peoples R China.
[Huang, Xiang] Huazhong Univ Sci & Technol, Tongji Med Coll, Union Hosp, Inst Otorhinolaryngol, Wuhan 430022, Peoples R China.
RP Kong, WJ (reprint author), Huazhong Univ Sci & Technol, Tongji Med Coll, Union Hosp, Dept Otorhinolaryngol, 1277 Jiefang Ave, Wuhan 430022, Peoples R China.
EM entwjkong@yahoo.com.cn
FU Major State Basic Research Development Programme of China (973
Programme) [2011CB504504]; National Nature Science Foundation of China
[30730094, 81000408, 81000409]
FX This work was supported by grants from the Major State Basic Research
Development Programme of China (973 Programme) (No. 2011CB504504) and
the National Nature Science Foundation of China (Nos. 30730094, 81000408
and 81000409).
CR Ballal K, 2010, MOL CELL BIOCHEM, V344, P221, DOI 10.1007/s11010-010-0546-y
Banfi B, 2004, J BIOL CHEM, V279, P46065, DOI 10.1074/jbc.M403046200
Bedard K, 2007, PHYSIOL REV, V87, P245, DOI 10.1152/physrev.00044.2005
Brand MD, 2005, CELL METAB, V2, P85, DOI 10.1016/j.cmet.2005.06.002
Bruce KD, 2009, HEPATOLOGY, V50, P1796, DOI 10.1002/hep.23205
Cadenas E, 2000, FREE RADICAL BIO MED, V29, P222, DOI 10.1016/S0891-5849(00)00317-8
Chen B, 2011, MOL BIOL REP, V38, P3635, DOI 10.1007/s11033-010-0476-5
Chen B, 2010, BRAIN RES, V1344, P43, DOI 10.1016/j.brainres.2010.04.082
Cui X, 2006, J NEUROSCI RES, V84, P647, DOI 10.1002/jnr.20899
Druzhyna NM, 2008, MECH AGEING DEV, V129, P383, DOI 10.1016/j.mad.2008.03.002
Echtay KS, 2002, NATURE, V415, P96, DOI 10.1038/415096a
Evans MB, 2006, OTOL NEUROTOL, V27, P609, DOI 10.1097/01.mao.0000226286.19295.34
Gopinath B, 2011, J NUTR, V141, P1355, DOI 10.3945/jn.111.138610
Green DR, 2004, SCIENCE, V305, P626, DOI 10.1126/science.1099320
Harman D, 2001, ANN NY ACAD SCI, V928, P1
Hengartner MO, 2000, NATURE, V407, P770, DOI 10.1038/35037710
Hiona A, 2008, EXP GERONTOL, V43, P24, DOI 10.1016/j.exger.2007.10.001
Ho SC, 2003, BIOGERONTOLOGY, V4, P15, DOI 10.1023/A:1022417102206
Hua XD, 2007, LIFE SCI, V80, P1897, DOI 10.1016/j.lfs.2007.02.030
Kartha GK, 2008, ACTA DIABETOL, V45, P75, DOI 10.1007/s00592-008-0025-z
Kitahara T, 2005, NEUROSCIENCE, V135, P639, DOI 10.1016/j.neuroscience.2005.06.056
Kitahara T, 2007, NEUROSCI RES, V59, P237, DOI 10.1016/j.neures.2007.07.001
Kong WJ, 2006, BIOCHEM BIOPH RES CO, V344, P425, DOI 10.1016/j.bbrc.2006.03.060
Kong WJ, 2006, EXP GERONTOL, V41, P628, DOI 10.1016/j.exger.2006.04.008
Kujoth GC, 2005, SCIENCE, V309, P481, DOI 10.1126/science.1112125
LEE HC, 1994, BBA-MOL BASIS DIS, V1226, P37, DOI 10.1016/0925-4439(94)90056-6
Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
Lu J, 2007, BIOCHEM PHARMACOL, V74, P1078, DOI 10.1016/j.bcp.2007.07.007
Markaryan A, 2009, LARYNGOSCOPE, V119, P1184, DOI 10.1002/lary.20218
Meissner C, 2008, EXP GERONTOL, V43, P645, DOI 10.1016/j.exger.2008.03.004
Mohamed SA, 2006, EXP GERONTOL, V41, P508, DOI 10.1016/j.exger.2006.03.014
Mukherjea D., 2010, ANTIOXID REDOX SIGNA
Nicklas JA, 2004, ENVIRON MOL MUTAGEN, V44, P313, DOI 10.1002/em.20050
PAULER M, 1988, LARYNGOSCOPE, V98, P754
Poli G, 2004, CURR MED CHEM, V11, P1163
Raha S, 2000, TRENDS BIOCHEM SCI, V25, P502, DOI 10.1016/S0968-0004(00)01674-1
Schuknecht HF, 1993, PATHOLOGY EAR
Spankovich C, 2011, J AM ACAD AUDIOL, V22, P49, DOI 10.3766/jaaa.22.1.6
Syka J, 2007, NEUROSCI LETT, V411, P112, DOI 10.1016/j.neulet.2006.10.032
Ueno N, 2005, J BIOL CHEM, V280, P23328, DOI 10.1074/jbc.M414548200
Valko M, 2007, INT J BIOCHEM CELL B, V39, P44, DOI 10.1016/j.biocel.2006.07.001
Vasilyeva ON, 2009, HEARING RES, V249, P44, DOI 10.1016/j.heares.2009.01.007
Wang JA, 2010, NEUROBIOL AGING, V31, P1238, DOI 10.1016/j.neurobiolaging.2008.07.016
Yokota T, 2009, AM J PHYSIOL-HEART C, V297, pH1069, DOI 10.1152/ajpheart.00267.2009
Zhong Y, 2011, MUTAT RES-FUND MOL M, V712, P11, DOI 10.1016/j.mrfmmm.2011.03.013
Zhong Y, 2011, FEBS J, V278, P2500, DOI 10.1111/j.1742-4658.2011.08176.x
Zhou XR, 2008, GROWTH HORM IGF RES, V18, P361, DOI 10.1016/j.ghir.2008.01.001
NR 47
TC 19
Z9 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2012
VL 287
IS 1-2
BP 15
EP 24
DI 10.1016/j.heares.2012.04.012
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 957YB
UT WOS:000305201900004
PM 22543089
ER
PT J
AU Ruebhausen, MR
Brozoski, TJ
Bauer, CA
AF Ruebhausen, M. R.
Brozoski, T. J.
Bauer, C. A.
TI A comparison of the effects of isoflurane and ketamine anesthesia on
auditory brainstem response (ABR) thresholds in rats
SO HEARING RESEARCH
LA English
DT Article
ID CEREBRAL BLOOD-FLOW; HALOTHANE; MICE
AB The auditory brainstem response (ABR) is an acoustically evoked potential commonly used to determine hearing sensitivity in laboratory animals. Both isoflurane and ketamine/xylazine anesthesia are commonly used to immobilize animals during ABR procedures. Hearing threshold determination is often the primary interest. Although a number of studies have examined the effect of different anesthetics on evoked potential waveforms and growth functions, none have directly compared their effect on ABR hearing threshold estimates. The present study used a within-subject comparison and typical threshold criteria, to examine the effect of isoflurane and ketamine/xylazine on ABR thresholds for clicks and pure-tone stimuli extending from 8 to 32 kHz. At comparable physiological doses, hearing thresholds obtained with isoflurane (1.7% in O-2) were on average elevated across a broad frequency range by greater than 27 dB compared to ketamine/xylazine (ketamine HCl, 50 mg/kg: xylazine, 9 mg/kg). This highly significant threshold effect (F-1,F-6 = 158.3403, p = 3.51 x 10(-22)) demonstrates a substantial difference between general anesthetics on auditory brainstem sensitivity. Potential mechanisms and implications for ABR threshold determination under anesthesia are discussed. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Ruebhausen, M. R.; Brozoski, T. J.; Bauer, C. A.] So Illinois Univ, Sch Med, Div Otolaryngol Head & Neck Surg, Springfield, IL 62702 USA.
RP Ruebhausen, MR (reprint author), So Illinois Univ, Sch Med, Div Otolaryngol Head & Neck Surg, 801 N Rutledge,Rm 3205, Springfield, IL 62702 USA.
EM mruebhausen@siumed.edu; tbrozoski@siumed.edu; cbauer@siumed.edu
FU National Institute on Deafness and Other Communication Disorders
[1R01DC009669-01]
FX We thank K. Wisner, L Sybert and G. Szafranski for their technical
assistance. Supported by the National Institute on Deafness and Other
Communication Disorders, 1R01DC009669-01.
CR Bianchi SL, 2008, NEUROBIOL AGING, V29, P1002, DOI 10.1016/j.neurobiolaging.2007.02.009
BOARINI DJ, 1984, NEUROSURGERY, V15, P400
Brozoski T.J., 2010, NEUR ABSTR, P877
CAVAZZUTI M, 1987, J CEREBR BLOOD F MET, V7, P806
Ferber-Viart C, 1998, HEARING RES, V121, P53, DOI 10.1016/S0378-5955(98)00064-1
Franks NP, 2008, NAT REV NEUROSCI, V9, P370, DOI 10.1038/nrn2372
GELMAN S, 1984, ANESTH ANALG, V63, P557
Gunduz-Bruce H, 2009, BRAIN RES REV, V60, P279, DOI 10.1016/j.brainresrev.2008.07.006
HENEGHAN CPH, 1987, BRIT J ANAESTH, V59, P277, DOI 10.1093/bja/59.3.277
Hirota K, 1996, BRIT J ANAESTH, V77, P441
Kim JU, 2005, LARYNGOSCOPE, V115, P1996, DOI 10.1097/01.mlg.0000180173.81034.4d
LO EH, 1991, NEUROSCI LETT, V131, P17, DOI 10.1016/0304-3940(91)90327-P
LUTZ PL, 1994, NEUROCHEM RES, V19, P1283, DOI 10.1007/BF01006819
MILLER LP, 1977, NATURE, V266, P847, DOI 10.1038/266847a0
Moller A.R., 2006, HEARING ANATOMY PHYS, P163
PARE WP, 1986, NEUROSCI BIOBEHAV R, V10, P339, DOI 10.1016/0149-7634(86)90017-5
Santarelli R, 2003, ACTA OTO-LARYNGOL, V123, P176, DOI 10.1080/0036554021000028108
SMITH DI, 1989, ELECTROEN CLIN NEURO, V72, P422, DOI 10.1016/0013-4694(89)90047-3
Stronks HC, 2010, HEARING RES, V260, P20, DOI 10.1016/j.heares.2009.10.015
Xie ZC, 2007, J NEUROSCI, V27, P1247, DOI 10.1523/JNEUROSCI.5320-06.2007
YAO H, 1993, STROKE, V24, P577
NR 21
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2012
VL 287
IS 1-2
BP 25
EP 29
DI 10.1016/j.heares.2012.04.005
PG 5
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 957YB
UT WOS:000305201900005
PM 22543090
ER
PT J
AU Allitt, BJ
Morgan, SJ
Bell, S
Nayagam, DAX
Arhatari, B
Clark, GM
Paolini, AG
AF Allitt, B. J.
Morgan, S. J.
Bell, S.
Nayagam, D. A. X.
Arhatari, B.
Clark, G. M.
Paolini, A. G.
TI Midbrain responses to micro-stimulation of the cochlea using high
density thin-film arrays
SO HEARING RESEARCH
LA English
DT Article
ID INTRACOCHLEAR ELECTRICAL-STIMULATION; INFERIOR COLLICULUS;
AUDITORY-NERVE; ELECTRODE CONFIGURATION; MUSIC PERCEPTION; IMPLANT
USERS; GUINEA-PIG; SPEECH; LANGUAGE; NUCLEUS
AB A broader activation of auditory nerve fibres than normal using a cochlear implant contributes to poor frequency discrimination. As cochlear implants also deliver a restricted dynamic range, this hinders the ability to segregate sound sources. Better frequency coding and control over amplitude may be achieved by limiting current spread during electrical stimulation of the cochlea and positioning electrodes closer to the modiolus. Thin-film high density microelectrode arrays and conventional platinum ring electrode arrays were used to stimulate the cochlea of urethane-anaesthetized rats and responses compared. Neurophysiological recordings were taken at 197 multi-unit clusters in the central nucleus of the inferior colliculus (CIC), a site that receives direct monaural innervation from the cochlear nucleus. CIC responses to both the platinum ring and high density electrodes were recorded and differences in activity to changes in stimulation intensity, thresholds and frequency coding of neural activation were examined. The high density electrode array elicited less CIC activity at nonspecific frequency regions than the platinum ring electrode array. The high density electrode array produced significantly lower thresholds and larger dynamic ranges than the platinum ring electrode array when positioned close to the modiolus. These results suggest that a higher density of stimulation sites on electrodes that effectively 'aim' current, combined with placement closer to the modiolus would permit finer control over charge delivery. This may equate to improved frequency specific perception and control over amplitude when using future cochlear implant devices. (C) 2012 Published by Elsevier B.V.
C1 [Allitt, B. J.; Morgan, S. J.; Bell, S.; Clark, G. M.; Paolini, A. G.] La Trobe Univ, Sch Psychol Sci, Bundoora, Vic 3086, Australia.
[Bell, S.] Univ Toronto, Inst Biomat & Biomed Engn, Toronto, ON, Canada.
[Nayagam, D. A. X.] Bion Inst, Melbourne, Australia.
[Arhatari, B.] La Trobe Univ, Dept Phys, Bundoora, Vic 3086, Australia.
RP Paolini, AG (reprint author), La Trobe Univ, Sch Psychol Sci, Bundoora, Vic 3086, Australia.
EM a.paolini@latrobe.edu.au
FU ARC Centre of Excellence for Electromaterials Science
FX This research was funded by the ARC Centre of Excellence for
Electromaterials Science. The authors wish to thank Rosalia Bruzzese for
her technical support. We also wish to thank Peter Allitt and Matt
Pennell for proof reading.
CR ANDERSON DJ, 1989, IEEE T BIO-MED ENG, V36, P693, DOI 10.1109/10.32101
Bavin EL, 2010, LANG SPEECH, V53, P31, DOI 10.1177/0023830909349151
BEEBE X, 1988, IEEE T BIO-MED ENG, V35, P494, DOI 10.1109/10.2122
Bierer JA, 2002, J NEUROPHYSIOL, V87, P478
Bonham BH, 2008, HEARING RES, V242, P141, DOI 10.1016/j.heares.2008.03.006
Boothroyd A., 1993, COCHLEAR IMPLANTS AU, P1
BROWN AM, 1985, J LARYNGOL OTOL, V99, P231, DOI 10.1017/S0022215100096614
Clark G. M., 2003, COCHLEAR IMPLANTS FU
CLARK GM, 1981, ACTA OTO-LARYNGOL, V91, P173, DOI 10.3109/00016488109138496
Clark GM, 2006, PHILOS T R SOC B, V361, P791, DOI 10.1098/rstb.2005.1782
CLARK GM, 1983, ANN NY ACAD SCI, V405, P191, DOI 10.1111/j.1749-6632.1983.tb31632.x
CLOPTON BM, 1980, ANN OTO RHINOL LARYN, V89, P5
Cohen LT, 2001, HEARING RES, V155, P63, DOI 10.1016/S0378-5955(01)00248-9
Cumming G, 2007, J CELL BIOL, V177, P7, DOI 10.1083/jcb.200611141
DAWSON PW, 1992, J SPEECH HEAR RES, V35, P401
DEUTSCH D, 1991, MUSIC PERCEPT, V8, P335
DiCarlo JJ, 1996, J NEUROSCI METH, V64, P75, DOI 10.1016/0165-0270(95)00113-1
Drennan WR, 2010, HEARING RES, V262, P1, DOI 10.1016/j.heares.2010.02.003
Drennan WR, 2008, J REHABIL RES DEV, V45, P779, DOI 10.1682/JPRD.2007.08.0118
Driscoll VD, 2009, J AM ACAD AUDIOL, V20, P71, DOI 10.3766/jaaa.20.1.7
Hu GN, 2004, IEEE T NEURAL NETWOR, V15, P1135, DOI 10.1109/TNN.2004.832812
Jerger J, 2000, J Am Acad Audiol, V11, P467
Jung KH, 2010, ACTA OTO-LARYNGOL, V130, P716, DOI 10.3109/00016480903380521
Lim HH, 2006, J NEUROPHYSIOL, V96, P975, DOI 10.1152/jn.01112.2005
LIM HH, 1989, J ACOUST SOC AM, V86, P971, DOI 10.1121/1.398732
Lim HH, 2007, J NEUROPHYSIOL, V97, P1413, DOI 10.1152/jn.00384.2006
Lindblom B, 2009, SPEECH COMMUN, V51, P622, DOI 10.1016/j.specom.2008.12.003
Lutfi R., 2008, AUDITORY PERCEPTION, P13
McCreery DB, 2008, HEARING RES, V242, P64, DOI 10.1016/j.heares.2007.11.014
Middlebrooks JC, 2007, JARO-J ASSOC RES OTO, V8, P258, DOI 10.1007/s10162-007-0070-2
Moore B. C. J., 2007, COCHLEAR HEARING LOS
Naatanen R, 1999, PSYCHOL BULL, V125, P826, DOI 10.1037/0033-2909.125.6.826
NADOL JB, 1990, HEARING RES, V49, P141, DOI 10.1016/0378-5955(90)90101-T
OSBERGER MJ, 1991, AM J OTOL, V12, P151
Paolini AG, 1998, BRAIN RES BULL, V46, P317, DOI 10.1016/S0361-9230(98)00017-3
Parkinson A.J., 2002, EAR HEARING, V23, P41
Patel AD, 1998, MUSIC PERCEPT, V16, P27
Paxinos G., 2007, STEREOTAXIC COORDINA
Plomp R, 1976, ASPECTS TONE SENSATI
Rielly J.P., 1992, ELECT STIMULATION EL, P231
Robblee L.S., 1986, BIOMEDICAL MAT, V55, P303
Shalit E., 2008, SPR HDB AUD, P9
SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3
Shepherd RK, 2004, EUR J NEUROSCI, V20, P3131, DOI 10.1111/j.1460-9568.2004.03809.x
Shivdasani MN, 2008, J NEUROPHYSIOL, V99, P1, DOI 10.1152/jn.00629.2007
Snyder RL, 2008, HEARING RES, V235, P23, DOI 10.1016/j.heares.2007.09.013
Strait DL, 2010, HEARING RES, V261, P22, DOI 10.1016/j.heares.2009.12.021
Tang Q, 2011, J NEURAL ENG, V8, DOI 10.1088/1741-2560/8/4/046029
Tobey E.A., 1993, COCHLEAR IMPLANTS AU, P257
Winer JA, 2005, INFERIOR COLLICULUS, P1, DOI 10.1007/0-387-27083-3_1
Wise KD, 2008, HEARING RES, V242, P22, DOI 10.1016/j.heares.2008.04.002
Xu L, 2008, HEARING RES, V242, P132, DOI 10.1016/j.heares.2007.12.010
ZAPPIA JJ, 1990, OTOLARYNG HEAD NECK, V103, P575
Zatorre RJ, 1999, NEUROIMAGE, V10, P544, DOI 10.1006/nimg.1999.0491
Zeng FG, 1998, NEUROREPORT, V9, P1845, DOI 10.1097/00001756-199806010-00033
NR 55
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2012
VL 287
IS 1-2
BP 30
EP 42
DI 10.1016/j.heares.2012.04.004
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 957YB
UT WOS:000305201900006
PM 22531007
ER
PT J
AU Lee, CC
Sherman, SM
AF Lee, Charles C.
Sherman, S. Murray
TI Intrinsic modulators of auditory thalamocortical transmission
SO HEARING RESEARCH
LA English
DT Article
ID METABOTROPIC GLUTAMATE RECEPTORS; REPETITIVE STIMULATION; DISTINGUISHING
DRIVERS; SYNAPTIC PROPERTIES; VISUAL-CORTEX; BARREL CORTEX;
VOLTAGE-CLAMP; IN-VITRO; LAYER 6; NEURONS
AB Neurons in layer 4 of the primary auditory cortex receive convergent glutamatergic inputs from thalamic and cortical projections that activate different groups of postsynaptic glutamate receptors. Of particular interest in layer 4 neurons are the Group II metabotropic glutamate receptors (mGluRs), which hyperpolarize neurons postsynaptically via the downstream opening of GIRK channels. This pronounced effect on membrane conductance could influence the neuronal processing of synaptic inputs, such as those from the thalamus, essentially modulating information flow through the thalamocortical pathway. To examine how Group II mGluRs affect thalamocortical transmission, we used an in vitro slice preparation of the auditory thalamocortical pathways in the mouse to examine synaptic transmission under conditions where Group II mGluRs were activated. We found that both pre- and post-synaptic Group II mGluRs are involved in the attenuation of thalamocortical EPSP/Cs. Thus, thalamocortical synaptic transmission is suppressed via the presynaptic reduction of thalamocortical neurotransmitter release and the postsynaptic inhibition of the layer 4 thalamorecipient neurons. This could enable the thalamocortical pathway to autoregulate transmission, via either a gating or gain control mechanism, or both. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Lee, Charles C.] Louisiana State Univ, Dept Comparat Biomed Sci, Sch Vet Med, Baton Rouge, LA 70803 USA.
[Sherman, S. Murray] Univ Chicago, Dept Neurobiol, Chicago, IL 60608 USA.
RP Lee, CC (reprint author), Louisiana State Univ, Dept Comparat Biomed Sci, Sch Vet Med, Baton Rouge, LA 70803 USA.
EM cclee@lsu.edu
FU NIH/NIDCD [R03 DC 011361, R01 DC 008794]
FX We thank Dr. Vytas Byndokas for his valuable assistance with the
confocal microscope and image acquisition. This work was supported by
NIH/NIDCD grants R03 DC 011361 (CCL) and R01 DC 008794 (SMS).
CR AGMON A, 1991, NEUROSCIENCE, V41, P365, DOI 10.1016/0306-4522(91)90333-J
Bandrowski AE, 2002, SYNAPSE, V44, P146, DOI 10.1002/syn.10058
Bartlett EL, 2002, NEUROSCIENCE, V113, P957, DOI 10.1016/S0306-4522(02)00240-3
Beaver CJ, 1999, J NEUROPHYSIOL, V82, P86
Cahusac P.M., 1994, EUR J NEUROSCI, V6
Cartmell J, 2000, J NEUROCHEM, V75, P889, DOI 10.1046/j.1471-4159.2000.0750889.x
Conn PJ, 1997, ANNU REV PHARMACOL, V37, P205, DOI 10.1146/annurev.pharmtox.37.1.205
Covic EN, 2011, CEREB CORTEX, V21, P2425, DOI 10.1093/cercor/bhr029
Cox CL, 1999, J NEUROSCI, V19, P6694
Cruikshank SJ, 2002, J NEUROPHYSIOL, V87, P361
Dutar P, 2000, J NEUROPHYSIOL, V84, P2284
Farazifard R, 2010, BRAIN RES, V1325, P28, DOI 10.1016/j.brainres.2010.02.021
Flavin HJ, 2000, BRAIN RES, V873, P212, DOI 10.1016/S0006-8993(00)02429-X
Gibson JR, 1999, NATURE, V402, P75
Gil Z, 1999, NEURON, V23, P385, DOI 10.1016/S0896-6273(00)80788-6
Hackett TA, 2011, HEARING RES, V274, P129, DOI 10.1016/j.heares.2010.11.001
Lam YW, 2010, CEREB CORTEX, V20, P13, DOI 10.1093/cercor/bhp077
Lee CC, 2010, P NATL ACAD SCI USA, V107, P372, DOI 10.1073/pnas.0907873107
Lee Charles C, 2009, Front Syst Neurosci, V3, P3, DOI 10.3389/neuro.06.003.2009
Lee CC, 2008, J NEUROPHYSIOL, V100, P317, DOI 10.1152/jn.90391.2008
Lee CC, 2009, CEREB CORTEX, V19, P2281, DOI 10.1093/cercor/bhn246
Lee CC, 2008, J COMP NEUROL, V507, P1879, DOI 10.1002/cne.21611
Mateo Z, 2007, NEUROSCIENCE, V146, P1062, DOI 10.1016/j.neuroscience.2007.02.053
Nahmani M, 2005, J COMP NEUROL, V484, P458, DOI 10.1002/cne.20505
Neki A, 1996, NEUROSCI LETT, V202, P197, DOI 10.1016/0304-3940(95)12248-6
Ngomba RT, 2011, EPILEPSIA, V52, P1211, DOI 10.1111/j.1528-1167.2011.03082.x
Niswender CM, 2010, ANNU REV PHARMACOL, V50, P295, DOI 10.1146/annurev.pharmtox.011008.145533
Papageorgiou G, 1999, J AM CHEM SOC, V121, P6503, DOI 10.1021/ja990931e
Petralia RS, 1996, NEUROSCIENCE, V71, P949, DOI 10.1016/0306-4522(95)00533-1
Reichova I, 2004, J NEUROPHYSIOL, V92, P2185, DOI 10.1152/jn.00322.2004
Richardson RJ, 2009, J NEUROSCI, V29, P6406, DOI 10.1523/JNEUROSCI.0258-09.2009
Rose HJ, 2005, J NEUROPHYSIOL, V94, P2019, DOI 10.1152/jn.00860.2004
Sekizawa S, 2009, J NEUROSCI, V29, P11807, DOI 10.1523/JNEUROSCI.2617-09.2009
Shepherd GMG, 2003, NEURON, V38, P277, DOI 10.1016/S0896-6273(03)00152-1
Sherman SM, 1998, P NATL ACAD SCI USA, V95, P7121, DOI 10.1073/pnas.95.12.7121
Sherman SM, 2006, EXPLORING THALAMUS I
SPRUSTON N, 1993, J NEUROPHYSIOL, V70, P781
Thomson AM, 2010, FRONT NEUROANAT, V4, DOI 10.3389/fnana.2010.00013
Webster DB, 1992, MAMMALIAN AUDITORY P, P1
Williams SR, 2008, NAT NEUROSCI, V11, P790, DOI 10.1038/nn.2137
NR 40
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2012
VL 287
IS 1-2
BP 43
EP 50
DI 10.1016/j.heares.2012.04.001
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 957YB
UT WOS:000305201900007
PM 22726616
ER
PT J
AU Bierer, SM
Ling, L
Nie, KB
Fuchs, AF
Kaneko, CRS
Oxford, T
Nowack, AL
Shepherd, SJ
Rubinstein, JT
Phillips, JO
AF Bierer, Steven M.
Ling, Leo
Nie, Kaibao
Fuchs, Albert F.
Kaneko, Chris R. S.
Oxford, Trey
Nowack, Amy L.
Shepherd, Sarah J.
Rubinstein, Jay T.
Phillips, James O.
TI Auditory outcomes following implantation and electrical stimulation of
the semicircular canals
SO HEARING RESEARCH
LA English
DT Article
ID COCHLEAR IMPLANT; VESTIBULAR NERVE; RHESUS-MONKEY; EYE-MOVEMENTS;
GUINEA-PIGS; PROSTHESIS; HEARING; FREQUENCY; RESPONSES
AB We measured auditory brainstem responses (ABRs) in eight Rhesus monkeys after implantation of electrodes in the semicircular canals of one ear, using a multi-channel vestibular prosthesis based on cochlear implant technology. In five animals, click-evoked ABR thresholds in the implanted ear were within 10 dB of thresholds in the non-implanted control ear. Threshold differences in the remaining three animals varied from 18 to 69 dB, indicating mild to severe hearing losses. Click- and tone-evoked ABRs measured in a subset of animals before and after implantation revealed - a comparable pattern of threshold changes. Thresholds obtained five months or more after implantation a period in which the prosthesis regularly delivered electrical stimulation to achieve functional activation of the vestibular system - improved in three animals with no or mild initial hearing loss and increased in a fourth with a moderate hearing loss. These results suggest that, although there is a risk of hearing loss with unilateral vestibular implantation to treat balance disorders, the surgery can be performed in a manner that preserves hearing over an extended period of functional stimulation. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Nie, Kaibao; Rubinstein, Jay T.; Phillips, James O.] Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Seattle, WA 98195 USA.
[Bierer, Steven M.; Ling, Leo; Nie, Kaibao; Oxford, Trey; Nowack, Amy L.; Shepherd, Sarah J.; Rubinstein, Jay T.; Phillips, James O.] Univ Washington, Dept Otolaryngol Head & Neck Surg, Seattle, WA 98195 USA.
[Bierer, Steven M.; Ling, Leo; Fuchs, Albert F.; Kaneko, Chris R. S.; Oxford, Trey; Nowack, Amy L.; Phillips, James O.] Univ Washington, Washington Natl Primate Res Ctr, Seattle, WA 98195 USA.
[Fuchs, Albert F.; Kaneko, Chris R. S.] Univ Washington, Dept Physiol & Biophys, Seattle, WA 98195 USA.
[Shepherd, Sarah J.] Univ Washington, Dept Speech & Hearing Sci, Seattle, WA 98105 USA.
RP Phillips, JO (reprint author), Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, CD 176 CHDD Bldg,Box 357923,1701 Columbia Rd, Seattle, WA 98195 USA.
EM sbierer@uw.edu; lling@uw.edu; niek@uw.edu; fuchs@uw.edu; kaneko@uw.edu;
treyo@uw.edu; aln@uw.edu; shepsh@uw.edu; rubinj@uw.edu; jop@uw.edu
FU National Institute on Deafness and Other Communication Disorders
[N01-DC-6-005]; NCRR ITHS [RR00166]
FX The authors thank Brandon Warren for development of the ABR software.
This research was supported by a contract from the National Institute on
Deafness and Other Communication Disorders, N01-DC-6-005 and an NCRR
ITHS ignition award, RR00166. The Anspach Effort, Inc. provided surgical
drills.
CR Bierer S., OTOL NEUROT IN PRESS
BREY RH, 1995, AM J OTOL, V16, P424
Coca A., 2007, HEARING RES, V225, P60
daCruz MJ, 1997, OTOLARYNG HEAD NECK, V117, P555, DOI 10.1016/S0194-5998(97)70030-5
Dai CK, 2011, HEARING RES, V277, P204, DOI 10.1016/j.heares.2010.12.021
Davidovics NS, 2011, IEEE T NEUR SYS REH, V19, P84, DOI 10.1109/TNSRE.2010.2065241
Della Santina CC, 2007, IEEE T BIO-MED ENG, V54, P1016, DOI 10.1109/TBME.2007.894629
Enticott JC, 2006, OTOL NEUROTOL, V27, P824, DOI 10.1097/01.mao.0000227903.47483.a6
Farzanegan G, 2010, BRIT J NEUROSURG, V24, P40, DOI 10.3109/02688690903374059
Fuchs AF, 2005, J NEUROPHYSIOL, V94, P4481, DOI 10.1152/jn.00101.2005
Gentine A, 2008, Rev Laryngol Otol Rhinol (Bord), V129, P11
Gong WS, 2002, IEEE T BIO-MED ENG, V49, P175, DOI 10.1109/10.979358
Guyot JP, 2011, ANN OTO RHINOL LARYN, V120, P81
Isaacson DJ, 1999, OTOLARYNG HEAD NECK, V120, P394, DOI 10.1016/S0194-5998(99)70282-2
Krause E, 2010, OTOLARYNG HEAD NECK, V142, P809, DOI 10.1016/j.otohns.2010.01.017
Lasky RE, 1999, HEARING RES, V136, P35, DOI 10.1016/S0378-5955(99)00100-8
Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3
Lewis RF, 2002, J VESTIBUL RES-EQUIL, V12, P87
Merfeld DM, 2007, IEEE T BIO-MED ENG, V54, P1005, DOI 10.1109/TBME.2007.891943
Nie KB, 2011, OTOL NEUROTOL, V32, P88, DOI 10.1097/MAO.0b013e3181f6ca45
PARNES LS, 1985, J OTOLARYNGOL, V14, P145
Smouha EE, 1999, OTOLARYNG HEAD NECK, V120, P146, DOI 10.1016/S0194-5998(99)70398-0
SOUDIJN ER, 1976, ANN OTO RHINOL LARYN, V85, P1
Spezio ML, 2000, HEARING RES, V144, P73, DOI 10.1016/S0378-5955(00)00050-2
Tang S, 2009, ACTA OTO-LARYNGOL, V129, P481, DOI 10.1080/00016480802252243
Torre P., 2004, NEUROBIOL AGING, V2, P945
Tran H., 2011, EAR HEARING, V33, P118
Wall C, 2007, ANN OTO RHINOL LARYN, V116, P369
NR 28
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2012
VL 287
IS 1-2
BP 51
EP 56
DI 10.1016/j.heares.2012.03.012
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 957YB
UT WOS:000305201900008
PM 22504025
ER
PT J
AU Hatano, M
Ito, M
Yoshizaki, T
Kelly, JB
AF Hatano, Miyako
Ito, Makoto
Yoshizaki, Tomokazu
Kelly, Jack B.
TI Changes in projections to the inferior colliculus following early
hearing loss in rats
SO HEARING RESEARCH
LA English
DT Article
ID SUPERIOR OLIVARY COMPLEX; GERBIL MERIONES-UNGUICULATUS; UNILATERAL
COCHLEAR ABLATION; STEM AUDITORY NUCLEI; LATERAL LEMNISCUS; BRAIN-STEM;
DORSAL NUCLEUS; REMOVAL; IMPLANTATION; ORGANIZATION
AB The purpose of this study was to investigate the effects of early hearing loss on the anatomy of the central auditory system, specifically, the ascending projections to the inferior colliculus (IC). We compared normal animals with animals deafened during early development by administration of amikacin, an ototoxic antibiotic that is known to destroy the hair cells in the inner ear. The amikacin was injected subcutaneously every day from postnatal days P7 to P16. A retrograde tract tracer, Fluoro-Gold (FG), was then injected unilaterally directly into the IC at either 4 weeks of age or 12 weeks of age. After axonal transport the animals were sacrificed and their brains were prepared for histology. The FG labeled neurons in the cochlear nucleus (CN) and the dorsal nucleus of lateral lemniscus (DNLL) were counted for each of the animals in the two age groups. For deaf animals sacrificed at 4 weeks of age there was a significant reduction in the number of FG labeled neurons that was limited to the ventral CN ipsilateral to the tracer injection. For deaf animals sacrificed at 12 weeks of age, however, there was a significant decrease in the number of labeled cells in both dorsal and ventral CN on both sides of the brain. In DNLL there was no change in the number or pattern of labeled neurons. The results show that neonatal deafness reduces the number of labeled neurons projecting from the CN to the IC with the effect being more evident during later stages of deafness. In contrast, there are no significant changes in the projections from DNLL to IC. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.
C1 [Hatano, Miyako] Fukui Prefectural Hosp, Dept Otolaryngol Head & Neck Surg, Fukui 9108526, Japan.
[Ito, Makoto; Yoshizaki, Tomokazu] Kanazawa Univ, Grad Sch Med Sci, Div Neurosci, Dept Otolaryngol Head & Neck Surg, Kanazawa, Ishikawa 9201192, Japan.
[Kelly, Jack B.] Carleton Univ, Dept Psychol, Inst Neurosci, Ottawa, ON K1S 5B6, Canada.
RP Hatano, M (reprint author), Fukui Prefectural Hosp, Dept Otolaryngol Head & Neck Surg, 2-8-1 Yotsui, Fukui 9108526, Japan.
EM miyakohatano@gmail.com
CR Aitkin L., 1986, AUDITORY MIDBRAIN ST
BORN DE, 1985, J COMP NEUROL, V231, P435, DOI 10.1002/cne.902310403
Cant NB, 2005, INFERIOR COLLICULUS, P115, DOI 10.1007/0-387-27083-3_3
Cant NB, 2008, NEUROSCIENCE, V154, P206, DOI 10.1016/j.neuroscience.2008.02.015
Cant NB, 2006, J COMP NEUROL, V495, P511, DOI 10.1002/cne.20888
Cant NB, 2007, J COMP NEUROL, V503, P432, DOI 10.1002/cne.21391
Casseday JH, 2002, SPR HDB AUD, V15, P238
Dorn A.L., 2010, NATURE, V465, P932
Ehret G., 1997, CENTRAL AUDITORY SYS, P259
Franklin SR, 2006, NEUROSCIENCE, V143, P105, DOI 10.1016/j.neuroscience.2006.07.039
Franklin SR, 2008, NEUROSCIENCE, V154, P346, DOI 10.1016/j.neuroscience.2008.02.011
Govaerts PJ, 2002, OTOL NEUROTOL, V23, P885, DOI 10.1097/00129492-200211000-00013
Hashisaki G T, 1989, J Comp Neurol, V283, P5
Kelly JB, 2009, J COMP NEUROL, V512, P573, DOI 10.1002/cne.21929
Kelly JB, 1998, HEARING RES, V116, P43, DOI 10.1016/S0378-5955(97)00195-0
KITZES LM, 1995, J COMP NEUROL, V353, P341, DOI 10.1002/cne.903530303
Kral Andrej, 2006, Adv Otorhinolaryngol, V64, P89
LENOIR M, 1983, ACTA OTO-LARYNGOL, P1
Marianowski R, 2000, HEARING RES, V150, P1, DOI 10.1016/S0378-5955(00)00166-0
MOORE DR, 1988, J COMP NEUROL, V272, P503, DOI 10.1002/cne.902720405
MOORE DR, 1985, J COMP NEUROL, V240, P180, DOI 10.1002/cne.902400208
Mostafapour SP, 2000, J COMP NEUROL, V426, P561, DOI 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G
NORDEEN KW, 1983, J COMP NEUROL, V214, P144, DOI 10.1002/cne.902140204
O'Donoghue GM, 2000, LANCET, V356, P466, DOI 10.1016/S0140-6736(00)02555-1
RUSSELL FA, 1995, J COMP NEUROL, V352, P607, DOI 10.1002/cne.903520409
Ryugo DK, 2005, SCIENCE, V310, P1490, DOI 10.1126/science.1119419
Schofield BR, 2005, INFERIOR COLLICULUS, P132, DOI 10.1007/0-387-27083-3_4
Brunso-Bechtold JK, 2005, INFERIOR COLLICULUS, P537, DOI 10.1007/0-387-27083-3_18
Sharma Anu, 2002, Ear and Hearing, V23, P532, DOI 10.1097/00003446-200212000-00004
Shepherd K.S., 2006, COCHLEAR IMPLANT, P25
TRUNE DR, 1982, J COMP NEUROL, V209, P409, DOI 10.1002/cne.902090410
WEBSTER DB, 1977, ARCH OTOLARYNGOL, V103, P392
Winer JA, 2005, INFERIOR COLLICULUS, P1, DOI 10.1007/0-387-27083-3_1
NR 33
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2012
VL 287
IS 1-2
BP 57
EP 66
DI 10.1016/j.heares.2012.03.011
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 957YB
UT WOS:000305201900009
PM 22726617
ER
PT J
AU Soeta, Y
Nakagawa, S
AF Soeta, Yoshiharu
Nakagawa, Seiji
TI Auditory evoked responses in human auditory cortex to the variation of
sound intensity in an ongoing tone
SO HEARING RESEARCH
LA English
DT Article
ID NEUROMAGNETIC EVIDENCE; MAGNETIC-FIELDS; HUMAN-BRAIN; TONOTOPIC
ORGANIZATION; STIMULUS-INTENSITY; SENSORY MEMORY; TEMPORAL INTEGRATION;
FMRI ACTIVATION; COMPLEX SOUNDS; HESCHLS GYRUS
AB In daily life, variations of sound intensity, frequency, and other auditory parameters, can be perceived as transitions from one sound to another. The neural mechanisms underlying the processing of intensity change are currently unclear. The present study sought to clarify the effects of frequency and initial sound pressure level (SPL) on the auditory evoked response elicited by sounds of different SPL We examined responses approximately 100 ms after an SPL change (the N1m'). Experiment 1 examined the effects of frequency on the N1m'. Experiment 2 examined the effects of initial SPL on the N1m'. The results revealed that N1m' amplitude increased with greater SPL changes. The increase in N1m' amplitude with increasing SPL was almost constant for low frequency sounds (250 and 1000 Hz); however, this increase was reduced for high frequency sounds (4000 Hz). The increase in N1m' amplitude was reduced with high initial SPL. The pattern of amplitude change may reflect a difference in activation in the auditory nerve and/or primary auditory cortex. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Soeta, Yoshiharu; Nakagawa, Seiji] Natl Inst Adv Ind Sci & Technol, Hlth Res Inst, Ikeda, Osaka 5638577, Japan.
RP Soeta, Y (reprint author), Natl Inst Adv Ind Sci & Technol, Hlth Res Inst, 1-8-31 Midorigaoka, Ikeda, Osaka 5638577, Japan.
EM y.soeta@aist.go.jp
FU Japan Society for the Promotion of Science [23686086]
FX This work was supported by a Grant-in-Aid for Young Scientists (A) from
the Japan Society for the Promotion of Science (23686086).
CR Antonoro F., 1969, J ACOUST SOC AM, V46, P1433
ASHMEAD DH, 1995, J EXP PSYCHOL HUMAN, V21, P239, DOI 10.1037/0096-1523.21.2.239
Bach DR, 2008, CEREB CORTEX, V18, P145, DOI 10.1093/cercor/bhm040
BAK CK, 1985, ELECTROEN CLIN NEURO, V61, P141, DOI 10.1016/0013-4694(85)91053-3
Biermann S, 2000, J NEUROPHYSIOL, V84, P2426
Bilecen D, 2002, NEUROIMAGE, V17, P710, DOI 10.1006/nimg.2002.1133
Boemio A, 2005, NAT NEUROSCI, V8, P389, DOI 10.1038/nn1409
CAMPBELL RA, 1967, J ACOUST SOC AM, V42, P972, DOI 10.1121/1.1910705
Cansino S, 2003, HUM BRAIN MAPP, V20, P71, DOI 10.1002/hbm.10132
DAVIS H, 1968, J ACOUST SOC AM, V43, P431, DOI 10.1121/1.1910849
Dimitrijevic A, 2009, CLIN NEUROPHYSIOL, V120, P374, DOI 10.1016/j.clinph.2008.11.009
ELBERLING C, 1982, ACTA NEUROL SCAND, V65, P553
Ernst SMA, 2008, NEUROIMAGE, V43, P321, DOI 10.1016/j.neuroimage.2008.07.046
Fujioka T, 2003, EUR J NEUROSCI, V18, P432, DOI 10.1046/j.1460-9568.2003.02769.x
GREEN DM, 1969, J ACOUST SOC AM, V46, P939, DOI 10.1121/1.1911813
GREEN DM, 1979, J ACOUST SOC AM, V66, P1051, DOI 10.1121/1.383324
Hall DA, 2001, J ACOUST SOC AM, V109, P1559, DOI 10.1121/1.1345697
HAMALAINEN M, 1993, REV MOD PHYS, V65, P413, DOI 10.1103/RevModPhys.65.413
Harris KC, 2007, HEARING RES, V228, P58, DOI 10.1016/j.heares.2007.01.021
Hart HC, 2002, HEARING RES, V171, P177, DOI 10.1016/S0378-5955(02)00498-7
Hine J, 2007, CLIN NEUROPHYSIOL, V118, P1274, DOI 10.1016/j.clinph.2007.03.012
Jancke L, 1998, NEUROPSYCHOLOGIA, V36, P875, DOI 10.1016/S0028-3932(98)00019-0
JERGER J, 1970, ARCHIV OTOLARYNGOL, V91, P433
Kanno A, 1996, No To Shinkei, V48, P240
KNIGHT RT, 1980, ELECTROEN CLIN NEURO, V50, P112, DOI 10.1016/0013-4694(80)90328-4
KNIGHT RT, 1988, ELECTROEN CLIN NEURO, V70, P499, DOI 10.1016/0013-4694(88)90148-4
Krumbholz K, 2003, CEREB CORTEX, V13, P765, DOI 10.1093/cercor/13.7.765
Langers DRM, 2007, NEUROIMAGE, V35, P709, DOI 10.1016/j.neuroimage.2006.12.013
Loveless N, 1996, EVOKED POTENTIAL, V100, P220, DOI 10.1016/0168-5597(95)00271-5
LOVELESS NE, 1993, BIOL PSYCHOL, V35, P1, DOI 10.1016/0301-0511(93)90088-P
Lutkenhoner B, 2007, HEARING RES, V228, P188, DOI 10.1016/j.heares.2007.02.011
Lutkenhoner B, 1998, AUDIOL NEURO-OTOL, V3, P191, DOI 10.1159/000013790
Martin BA, 2000, J ACOUST SOC AM, V107, P2155, DOI 10.1121/1.428556
MCCANDLE.GA, 1970, J SPEECH HEAR RES, V13, P624
McEvoy L, 1997, PSYCHOPHYSIOLOGY, V34, P308, DOI 10.1111/j.1469-8986.1997.tb02401.x
Michalewski HJ, 2009, CLIN NEUROPHYSIOL, V120, P1352, DOI 10.1016/j.clinph.2009.05.013
Neuhoff JG, 1998, NATURE, V395, P123, DOI 10.1038/25862
PANTEV C, 1995, ELECTROEN CLIN NEURO, V94, P26, DOI 10.1016/0013-4694(94)00209-4
PANTEV C, 1988, ELECTROEN CLIN NEURO, V69, P160, DOI 10.1016/0013-4694(88)90211-8
PANTEV C, 1989, ELECTROEN CLIN NEURO, V72, P225, DOI 10.1016/0013-4694(89)90247-2
PANTEV C, 1989, SCIENCE, V246, P486, DOI 10.1126/science.2814476
PHILLIPS DP, 1987, J ACOUST SOC AM, V82, P1, DOI 10.1121/1.395547
REITE M, 1982, ELECTROEN CLIN NEURO, V54, P147, DOI 10.1016/0013-4694(82)90156-0
ROBINSON DW, 1956, BRIT J APPL PHYS, V7, P166, DOI 10.1088/0508-3443/7/5/302
ROMANI GL, 1982, SCIENCE, V216, P1339, DOI 10.1126/science.7079770
ROSENBLUM LD, 1987, PERCEPTION, V16, P175, DOI 10.1068/p160175
Ross B, 1999, AUDIOL NEURO-OTOL, V4, P12, DOI 10.1159/000013816
SAMS M, 1993, J COGNITIVE NEUROSCI, V5, P363, DOI 10.1162/jocn.1993.5.3.363
SAMSON S, 1994, NEUROPSYCHOLOGIA, V32, P231, DOI 10.1016/0028-3932(94)90008-6
Schonwiesner M, 2005, ANN NY ACAD SCI, V1060, P89, DOI 10.1196/annals.1360.051
Seither-Preisler A, 2004, EUR J NEUROSCI, V19, P3073, DOI 10.1111/j.1460-9568.2004.03423.x
Seither-Preisler A, 2003, AUDIOL NEURO-OTOL, V8, P322, DOI 10.1159/000073517
SIDTIS JJ, 1981, NEUROPSYCHOLOGIA, V19, P103, DOI 10.1016/0028-3932(81)90050-6
SIDTIS JJ, 1980, NEUROPSYCHOLOGIA, V18, P321, DOI 10.1016/0028-3932(80)90127-X
Sigalovsky IS, 2006, HEARING RES, V215, P67, DOI 10.1016/j.heares.2006.03.002
Soeta Y, 2006, HEARING RES, V222, P125, DOI 10.1016/j.heares.2006.09.005
Soeta Y, 2009, NEUROREPORT, V20, P548, DOI 10.1097/WNR.0b013e32832a6f15
Soeta Y, 2010, NEUROREPORT, V21, P1157, DOI 10.1097/WNR.0b013e328340ccde
Spoor A., 1969, INT AUDIOL, V8, P410, DOI 10.3109/05384916909079086
Stufflebeam SM, 1998, NEUROREPORT, V9, P91, DOI 10.1097/00001756-199801050-00018
Suzuki Y, 2004, J ACOUST SOC AM, V116, P918, DOI 10.1121/1.1763601
Tervaniemi M, 2003, BRAIN RES REV, V43, P231, DOI 10.1016/j.brainresrev.2003.08.004
THORNTON AR, 1977, J SPEECH HEAR RES, V20, P81
TURNER CW, 1989, J ACOUST SOC AM, V86, P109, DOI 10.1121/1.398329
VASAMA JP, 1995, ACTA OTO-LARYNGOL, V115, P616, DOI 10.3109/00016489509139376
WINTER IM, 1991, J ACOUST SOC AM, V90, P1958, DOI 10.1121/1.401675
YAMAMOTO T, 1988, P NATL ACAD SCI USA, V85, P8732, DOI 10.1073/pnas.85.22.8732
Yetkin FZ, 2004, LARYNGOSCOPE, V114, P512, DOI 10.1097/00005537-200403000-00024
Zatorre RJ, 2001, ANN NY ACAD SCI, V930, P193
Zatorre RJ, 2002, TRENDS COGN SCI, V6, P37, DOI 10.1016/S1364-6613(00)01816-7
Zwicker E., 1990, PSYCHOACOUSTICS FACT, P17
NR 71
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2012
VL 287
IS 1-2
BP 67
EP 75
DI 10.1016/j.heares.2012.03.006
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 957YB
UT WOS:000305201900010
PM 22726618
ER
PT J
AU Fredelake, S
Hohmann, V
AF Fredelake, Stefan
Hohmann, Volker
TI Factors affecting predicted speech intelligibility with cochlear
implants in an auditory model for electrical stimulation
SO HEARING RESEARCH
LA English
DT Article
ID SENSORINEURAL HEARING-LOSS; SPOKEN WORD RECOGNITION; NEURAL EXCITATION;
STOCHASTIC-MODEL; NERVE; PERFORMANCE; PERCEPTION; THRESHOLD; LISTENERS;
MASKING
AB A model of the auditory response to stimulation with cochlear implants (Cls) was used to predict speech intelligibility in electric hearing. The model consists of an auditory nerve cell population that generates delta pulses as action potentials in response to temporal and spatial excitation with a simulated Cl signal processing strategy. The auditory nerve cells are modeled with a leaky integrate-and-fire model with membrane noise. Refractory behavior is introduced by raising the threshold potential with an exponentially decreasing function. Furthermore, the action potentials are delayed to account for latency and jitter. The action potentials are further processed by a central model stage, which includes spatial and temporal integration, resulting in an internal representation of the sound presented. Multiplicative noise is included in the internal representations to limit resolution. Internal representations of complete word sets for a sentence intelligibility test were computed and classified using a Dynamic-Time-Warping classifier to quantify information content and to estimate speech intelligibility. The number of auditory nerve cells, the spatial spread of the electrodes' electric field, and the internal noise intensity were found to have a major impact on the modeled speech intelligibility, whereas the influence of refractory behavior, membrane noise, and latency and jitter was minor. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Fredelake, Stefan; Hohmann, Volker] Carl von Ossietzky Univ Oldenburg, D-26111 Oldenburg, Germany.
RP Fredelake, S (reprint author), European Res Ctr, Feodor Lynen Str 35, D-30625 Hannover, Germany.
EM stefan.fredelake@advancedbionics.com
FU Audiologie-Initiative Niedersachsen
FX We thank Birger Kollmeier, Tim Jurgens, and Tamas Harczos for their
substantial support. We would also like to thank the
Audiologie-Initiative Niedersachsen for funding the research reported in
this paper. We thank Jennifer Trumpler for improving the language.
CR Brand T., 2004, 7 JAHR DTSCH GES AUD
Brand T, 2002, J ACOUST SOC AM, V111, P2801, DOI 10.1121/1.1479152
Bruce IC, 1999, IEEE T BIO-MED ENG, V46, P617, DOI 10.1109/10.764938
Bruce IC, 1999, IEEE T BIO-MED ENG, V46, P630, DOI 10.1109/10.764939
BUSBY PA, 1994, J ACOUST SOC AM, V95, P2658, DOI 10.1121/1.409835
Chatterjee M, 1999, J ACOUST SOC AM, V105, P1853, DOI 10.1121/1.426722
Cohen LT, 2009, HEARING RES, V248, P1, DOI 10.1016/j.heares.2008.11.007
Cohen LT, 2009, HEARING RES, V248, P15, DOI 10.1016/j.heares.2008.11.008
Cohen LT, 2009, HEARING RES, V247, P100, DOI 10.1016/j.heares.2008.11.004
Cohen LT, 2009, HEARING RES, V247, P112, DOI 10.1016/j.heares.2008.11.002
Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0
Cohen LT, 2009, HEARING RES, V247, P87, DOI 10.1016/j.heares.2008.11.003
COLOMBO J, 1987, HEARING RES, V31, P287, DOI 10.1016/0378-5955(87)90197-3
Cooper NP., 2004, SPRINGER HDB AUDITOR, V17
Dau T, 1996, J ACOUST SOC AM, V99, P3615, DOI 10.1121/1.414959
Dynes S.B.C., 1996, THESIS MIT
Fayad JN, 2006, LARYNGOSCOPE, V116, P1310, DOI 10.1097/01.mlg.0000227176.09500.28
Finley CC, 2008, OTOL NEUROTOL, V29, P920, DOI 10.1097/MAO.0b013e318184f492
FRIJNS JHM, 1995, HEARING RES, V87, P170, DOI 10.1016/0378-5955(95)00090-Q
Fu QJ, 2002, NEUROREPORT, V13, P1635, DOI 10.1097/00001756-200209160-00013
Gerstner W., 2002, SPIKING NEURON MODEL
Goldwyn JH, 2010, J COMPUT NEUROSCI, V28, P405, DOI 10.1007/s10827-010-0224-9
Goldwyn J.H., 2011, C IMPL AUD PROTH AS
Gomaa NA, 2003, EAR HEARING, V24, P539, DOI 10.1097/01.AUD.0000100208.26628.2D
Hamacher V., 2004, THESIS RWTH AACHEN
Haumann S., 2010, 13 JAHR DTSCH GES AU
Heffer LF, 2010, J NEUROPHYSIOL, V104, P3124, DOI 10.1152/jn.00500.2010
Hey M., 2010, 13 JAHR DTSCH GES AU
Heydebrand G, 2007, AUDIOL NEURO-OTOL, V12, P254, DOI 10.1159/000101473
Holden L. K., 2011, C IMPL AUD PROSTH AS
Imennov NS, 2009, IEEE T BIO-MED ENG, V56, P2493, DOI 10.1109/TBME.2009.2016667
Jayel E., 1990, COCHLEAR IMPLANTS MO, P247
Jurgens T, 2009, J ACOUST SOC AM, V126, P2635, DOI 10.1121/1.3224721
Jurgens T., 2010, P ANN C INT SPEECH C, P2478
Li FP, 2010, J ACOUST SOC AM, V127, P2599, DOI 10.1121/1.3295689
Miller CA, 1999, HEARING RES, V135, P1, DOI 10.1016/S0378-5955(99)00081-7
Miller CA, 1999, HEARING RES, V130, P197, DOI 10.1016/S0378-5955(99)00012-X
Mino H, 2004, IEEE T BIO-MED ENG, V51, P13, DOI 10.1109/TBME.2003.820383
Mino H, 2006, IEEE T NEUR SYS REH, V14, P273, DOI 10.1109/TNSRE.2006.881590
Muller-Deile J, 2009, VERFAHREN ANPASSUNG
Rattay F, 2001, HEARING RES, V153, P43, DOI 10.1016/S0378-5955(00)00256-2
Reilly JP, 1992, ELECT STIMULATION EL
Rubinstein JT, 1999, AM J OTOL, V20, P445
SAKOE H, 1978, IEEE T ACOUST SPEECH, V26, P43, DOI 10.1109/TASSP.1978.1163055
Saunders E, 2002, EAR HEARING, V23, p28S, DOI 10.1097/00003446-200202001-00004
SHANNON RV, 1990, HEARING RES, V47, P159, DOI 10.1016/0378-5955(90)90173-M
Shepherd RK, 2004, EUR J NEUROSCI, V20, P3131, DOI 10.1111/j.1460-9568.2004.03809.x
Shpak T, 2004, ACTA OTO-LARYNGOL, V124, P679, DOI 10.1080/00016480310002168
Stadler S., 2009, EURASIP J ADV SIGNAL
Vandali AE, 2000, EAR HEARING, V21, P608, DOI 10.1097/00003446-200012000-00008
van Dijk JE, 1999, AUDIOLOGY, V38, P109
Wagener K, 1999, Z AUDIOL, V38, P44
Wagener K, 1999, Z AUDIOL, V38, P4
Wagener K., 1999, Z AUDIOL, V38, P86
Wagener KC, 2005, INT J AUDIOL, V44, P144, DOI 10.1080/14992020500057517
Yost W.A., 2000, FUNDAMENTALS HEARING
Zekveld AA, 2007, J SPEECH LANG HEAR R, V50, P576, DOI 10.1044/1092-4388(2007/040)
Zhou XM, 2000, J COMP PHYSIOL A, V186, P389, DOI 10.1007/s003590050438
NR 58
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2012
VL 287
IS 1-2
BP 76
EP 90
DI 10.1016/j.heares.2012.03.005
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 957YB
UT WOS:000305201900011
PM 22465681
ER
PT J
AU Drexl, M
Gurkov, R
Krause, E
AF Drexl, Markus
Guerkov, Robert
Krause, Eike
TI Low-frequency modulated quadratic and cubic distortion product
otoacoustic emissions in humans
SO HEARING RESEARCH
LA English
DT Article
ID POSTEXPOSURE RESPONSIVENESS; ENDOLYMPHATIC HYDROPS; COCHLEAR AMPLIFIER;
AUDITORY SYSTEM; OPERATING POINT; TRANSDUCER; DPOAE; ORIGIN; EAR;
SENSITIZATION
AB Previous studies have used low-frequency tones to modulate distortion product otoacoustic emissions (DPOAEs). The cubic DPOAE (CDPOAE) is mostly chosen because amplitudes sufficient for modulation can be evoked with moderate sound pressure levels. Quadratic DPOAEs (QDPOAEs) however, are more sensitive to minute changes of the cochlear operating point (OP) and are better suited to assess changes of the cochlear OP.
Here, we compare the properties of low-frequency (30 Hz, 80-120 dB SPL) modulated CDPOAE and QDPOAEs evoked with f(2) = 2 and 5 kHz in human subjects with normal hearing. The modulation depth was quantified with the modulation index (MI), a measure which considers both amplitude and phase.
Modulated CDPOAEs evoked with f(2) = 2 kHz have amplitude maxima at the zero crossings and amplitude minima at the extremes of the biasing tone (BT) which correlate positively with the BT level. CDPOAEs evoked with f(2) = 5 kHz were recorded during biasing in exactly the same way as described before. At the highest BT levels used (120 dB SPL), very little modulation could be detected. Not only the depth, but also the shape of the QDPOAE modulation pattern is correlated with the BT level. At moderate BT levels (about 90-100 dB SPL) QDPOAEs evoked with f(2) = 5 kHz show one amplitude notch around the zero crossing of the positive going flank of the BT (a single modulation pattern). At and above a BT level of about 105 dB SPL, the pattern reverses and shows a double modulation pattern. At the highest BT level used (120 dB SPL), quadratic MIs exceed cubic MIs (2.0 +/- 0.5 and 0.97 +/- 0.06, respectively).
Patterns of low-frequency modulated QDPOAEs in humans are similar to the modulation seen in animal studies and as predicted by mathematical models. Human low-frequency modulated QDPOAEs are ideally suited to estimate cochlear OP shifts because of their high sensitivity to the OP shift. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Drexl, Markus; Guerkov, Robert; Krause, Eike] Univ Munich, Integrated Ctr Res & Treatment Vertigo Balance &, D-81377 Munich, Germany.
RP Drexl, M (reprint author), Univ Munich, Integrated Ctr Res & Treatment Vertigo Balance &, Marchioninistr 15, D-81377 Munich, Germany.
EM markus.drexl@med.uni-muenchen.de; robert.guerkov@med.uni-muenchen.de;
eike.krause@med.uni-muenchen.de
RI Gurkov, Robert/K-3536-2013
OI Gurkov, Robert/0000-0002-4195-149X
FU German Federal Ministry of Education and Research [IFBLMU TR-F9]
FX This study was funded by the German Federal Ministry of Education and
Research, project IFBLMU TR-F9. We would also like to thank
Professor Lutz Wiegrebe for his technical support, and Professor Manfred
Kossl, Thomas Weddell and Dr Andrei Lukashkin for helpful comments on
this manuscript.
CR Abel C, 2009, J NEUROPHYSIOL, V101, P2362, DOI 10.1152/jn.00026.2009
Bian L, 2002, J ACOUST SOC AM, V112, P198, DOI 10.1121/1.1488943
Bian L, 2004, J ACOUST SOC AM, V115, P2159, DOI 10.1121/1.1690081
Bian L, 2004, J ACOUST SOC AM, V116, P3559, DOI 10.1121/1.1819501
Bian L, 2008, J ACOUST SOC AM, V124, P3739, DOI 10.1121/1.3001706
Bian L, 2007, J ACOUST SOC AM, V122, P1681, DOI 10.1121/1.2764467
BROWN AM, 1984, HEARING RES, V13, P29, DOI 10.1016/0378-5955(84)90092-3
Brown AM, 1996, J ACOUST SOC AM, V100, P3260, DOI 10.1121/1.417209
Brown DJ, 2009, J ACOUST SOC AM, V125, P2129, DOI 10.1121/1.3083228
Brown DJ, 2011, HEARING RES, V282, P119, DOI 10.1016/j.heares.2011.09.002
CRAWFORD AC, 1989, J PHYSIOL-LONDON, V419, P405
Frank G., 1996, HEARING RES, V98, P115
Frank G, 1997, HEARING RES, V113, P57, DOI 10.1016/S0378-5955(97)00131-7
Hensel J, 2007, HEARING RES, V233, P67, DOI 10.1016/j.heares.2007.07.004
Hirschfelder A, 2005, HNO, V53, P612, DOI 10.1007/s00106-004-1171-4
HUGHES JR, 1954, J ACOUST SOC AM, V26, P1064, DOI 10.1121/1.1907450
Janssen T, 2006, ORL J OTO-RHINO-LARY, V68, P334, DOI 10.1159/000095275
Janssen T, 1998, J ACOUST SOC AM, V103, P3418, DOI 10.1121/1.423053
KEMP DT, 1980, HEARING RES, V2, P533, DOI 10.1016/0378-5955(80)90091-X
Kemp DT, 2002, BRIT MED BULL, V63, P223, DOI 10.1093/bmb/63.1.223
KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0
Kirk DL, 1997, HEARING RES, V112, P69, DOI 10.1016/S0378-5955(97)00104-4
Kirk DL, 1997, HEARING RES, V112, P49, DOI 10.1016/S0378-5955(97)00105-6
Lukashkin AN, 1998, J ACOUST SOC AM, V103, P973, DOI 10.1121/1.421214
Lukashkin AN, 2005, HEARING RES, V203, P45, DOI 10.1016/j.heares.2004.11.011
Marquardt T, 2007, J ACOUST SOC AM, V121, P3628, DOI 10.1121/1.2722506
MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9
Moulin A, 2000, J ACOUST SOC AM, V107, P1460, DOI 10.1121/1.428433
NOFFSING.PD, 1970, J ACOUST SOC AM, V47, P552, DOI 10.1121/1.1911928
NOFFSING.PD, 1970, J ACOUST SOC AM, V47, P546, DOI 10.1121/1.1911927
Rotter A, 2008, EUR ARCH OTO-RHINO-L, V265, P643, DOI 10.1007/s00405-007-0520-9
Salt AN, 2010, HEARING RES, V268, P12, DOI 10.1016/j.heares.2010.06.007
Scholz G, 1999, HEARING RES, V130, P189, DOI 10.1016/S0378-5955(99)00010-6
SIEGEL JH, 1994, HEARING RES, V80, P146, DOI 10.1016/0378-5955(94)90106-6
Sirjani DB, 2004, J ACOUST SOC AM, V115, P1219, DOI 10.1121/1.1647479
Verpy E, 2008, NATURE, V456, P255, DOI 10.1038/nature07380
NR 36
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2012
VL 287
IS 1-2
BP 91
EP 101
DI 10.1016/j.heares.2012.03.004
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 957YB
UT WOS:000305201900012
PM 22465462
ER
PT J
AU Macias, S
Mora, EC
Hechavarria, JC
Kossl, M
AF Macias, Silvio
Mora, Emanuel C.
Hechavarria, Julio C.
Koessl, Manfred
TI Properties of echo delay-tuning receptive fields in the inferior
colliculus of the mustached bat
SO HEARING RESEARCH
LA English
DT Article
ID COMBINATION-SENSITIVE NEURONS; COMPLEX AUDITORY RESPONSES; MEDIAL
GENICULATE-BODY; BIG BROWN BAT; TARGET RANGE; GLYCINERGIC INHIBITION;
ECHOLOCATING BAT; MUSTACHED BAT; TUNED NEURONS; CORTEX
AB One role of the inferior colliculus (IC) in bats is to create neuronal delay-tuning, which is used for the estimation of target distance in the echolocating bat's auditory system. In this study, we describe response properties of IC delay-tuned neurons of the mustached bat (Pteronotus parnellii) and compare it with those of delay-tuned neurons of the auditory cortex (AC). We also address the question if frequency content of the stimulus (pure-tone (PT) or frequency-modulated (FM) pairs stimulation) affects combination-sensitive interaction in the same neuron. Sharpness and sensitivity of delay-tuned neurons in the IC are similar to those described in the AC. However, in contrast to cortical responses, in collicular neurons the delay at which the neurons show the maximum response does not change with changes in echo level. This tolerance to changes in the echo level seems to be a property of collicular delay-tuned neurons, which is modified along the ascending auditory pathway. In the IC we found neurons that showed a facilitated delay-tuned response when stimulated with FM components and did not show any delay-tuning with PT stimulation. This result suggests that not only is echo delay-tuning generated in the IC but also its FM-specificity observed in the cortex could be created to some extent in the IC and then topographically organized at higher levels. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Macias, Silvio; Mora, Emanuel C.] Univ Havana, Dept Anim & Human Biol, Fac Biol, Havana 10400, Cuba.
[Hechavarria, Julio C.; Koessl, Manfred] Goethe Univ Frankfurt, Inst Zellbiol & Neurowissensch, D-60323 Frankfurt, Germany.
RP Macias, S (reprint author), Univ Havana, Dept Anim & Human Biol, Fac Biol, Calle 25,455 Entre J e I Vedado, Havana 10400, Cuba.
EM silvio@fbio.uh.cu
FU Deutscher Akademisher Austausch Dienst (DAAD); Deutsche
Forschungsgemeinschaft (DFG)
FX This work was supported by fellowships from the Deutscher Akademisher
Austausch Dienst (DAAD) to Silvio Macias, and the Deutsche
Forschungsgemeinschaft (DFG). We thank Dr. Jeffrey Wenstrup for his
comments on an earlier version of the manuscript.
CR Abel C, 2009, J NEUROPHYSIOL, V101, P1560, DOI 10.1152/jn.90805.2008
Casseday JH, 1996, BRAIN BEHAV EVOLUT, V47, P311, DOI 10.1159/000113249
COVEY E, 1987, J COMP NEUROL, V263, P179, DOI 10.1002/cne.902630203
DEAR SP, 1995, J NEUROPHYSIOL, V73, P1084
Fremouw T, 2005, J NEUROPHYSIOL, V94, P1869, DOI 10.1152/jn.00253.2005
Griffin DR, 1958, LISTENING DARK
Hagemann C, 2010, J NEUROPHYSIOL, V103, P322, DOI 10.1152/jn.00595.2009
Hagemann C, 2011, J COMP PHYSIOL A, V197, P605, DOI 10.1007/s00359-010-0530-8
HAPLEA S, 1994, J COMP PHYSIOL A, V174, P671
Harris R, 2000, J NEUROPHYSIOL, V84, P401
KANWAL JS, 1994, J ACOUST SOC AM, V96, P1229, DOI 10.1121/1.410273
Lewicki MS, 1998, NETWORK-COMP NEURAL, V9, pR53, DOI 10.1088/0954-898X/9/4/001
Macias S, 2011, J NEUROPHYSIOL, V106, P3119, DOI 10.1152/jn.00294.2011
MITTMANN DH, 1995, HEARING RES, V90, P185, DOI 10.1016/0378-5955(95)00164-X
Nataraj K, 2005, J NEUROPHYSIOL, V93, P3294, DOI 10.1152/jn.01152.2004
Nataraj K, 2006, J NEUROPHYSIOL, V95, P2179, DOI 10.1152/jn.01148.2005
O'Neill W. E., 1995, HEARING BATS, P416
OLSEN JF, 1991, J NEUROPHYSIOL, V65, P1275
ONEILL WE, 1979, SCIENCE, V203, P69, DOI 10.1126/science.758681
ONEILL WE, 1982, J NEUROSCI, V2, P17
Peterson DC, 2008, J NEUROPHYSIOL, V100, P629, DOI 10.1152/jn.90390.2008
Portfors C. V., 2004, ECHOLOCATION BATS DO, P141
Portfors CV, 2001, JARO, V2, P104, DOI 10.1007/s101620010057
Portfors CV, 1999, J NEUROPHYSIOL, V82, P1326
Sanchez JT, 2008, J NEUROSCI, V28, P80, DOI 10.1523/JNEUROSCI.3572-07.2008
SIMMONS JA, 1971, SCIENCE, V171, P925, DOI 10.1126/science.171.3974.925
SUGA N, 1979, SCIENCE, V206, P351, DOI 10.1126/science.482944
SUGA N, 1983, J NEUROPHYSIOL, V49, P1573
SUGA N, 1989, J EXP BIOL, V146, P277
SULLIVAN WE, 1982, J NEUROPHYSIOL, V48, P1011
TANIGUCHI I, 1986, J COMP PHYSIOL A, V159, P331, DOI 10.1007/BF00603979
Wenstrup JJ, 1999, J NEUROPHYSIOL, V82, P2528
Wenstrup JJ, 2011, NEUROSCI BIOBEHAV R, V35, P2073, DOI 10.1016/j.neubiorev.2010.12.015
Wenstrup JJ, 2001, J NEUROSCI, V21
Yan J, 1996, HEARING RES, V93, P102, DOI 10.1016/0378-5955(95)00209-X
Yavuzoglu A, 2011, J NEUROSCI, V31, P14424, DOI 10.1523/JNEUROSCI.3529-11.2011
NR 36
TC 7
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2012
VL 286
IS 1-2
BP 1
EP 8
DI 10.1016/j.heares.2012.02.013
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 936ZZ
UT WOS:000303630100001
PM 22446180
ER
PT J
AU Agterberg, MJH
Snik, AFM
Hol, MKS
Van Wanrooij, MM
Van Opstal, AJ
AF Agterberg, Martijn J. H.
Snik, Ad F. M.
Hol, Myrthe K. S.
Van Wanrooij, Marc M.
Van Opstal, A. John
TI Contribution of monaural and binaural cues to sound localization in
listeners with acquired unilateral conductive hearing loss: Improved
directional hearing with a bone-conduction device
SO HEARING RESEARCH
LA English
DT Article
ID PINNA CUES; AID; DISCRIMINATION; CHILDREN
AB Sound localization in the horizontal (azimuth) plane relies mainly on interaural time differences (ITDs) and interaural level differences (ILDs). Both are distorted in listeners with acquired unilateral conductive hearing loss (UCHL), reducing their ability to localize sound. Several studies demonstrated that UCHL listeners had some ability to localize sound in azimuth. To test whether listeners with acquired UCHL use strongly perturbed binaural difference cues, we measured localization while they listened with a sound-attenuating earmuff over their impaired ear. We also tested the potential use of monaural pinna-induced spectral-shape cues for localization in azimuth and elevation, by filling the cavities of the pinna of their better-hearing ear with a mould. These conditions were tested while a bone-conduction device (BCD), fitted to all UCHL listeners in order to provide hearing from the impaired side, was turned off. We varied stimulus presentation levels to investigate whether UCHL listeners were using sound level as an azimuth cue. Furthermore, we examined whether horizontal sound-localization abilities improved when listeners used their BCD. Ten control listeners without hearing loss demonstrated a significant decrease in their localization abilities when they listened with a monaural plug and muff. In 4/13 UCHL listeners we observed good horizontal localization of 65 dB SPL broadband noises with their BCD turned off. Localization was strongly impaired when the impaired ear was covered with the muff. The mould in the good ear of listeners with UCHL deteriorated the localization of broadband sounds presented at 45 dB SPL. This demonstrates that they used pinna cues to localize sounds presented at low levels. Our data demonstrate that UCHL listeners have learned to adapt their localization strategies under a wide variety of hearing conditions and that sound-localization abilities improved with their BCD turned on. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Agterberg, Martijn J. H.; Van Wanrooij, Marc M.; Van Opstal, A. John] Radboud Univ Nijmegen, Dept Biophys, Donders Inst Brain Cognit & Behav, NL-6500 HB Nijmegen, Netherlands.
[Agterberg, Martijn J. H.; Snik, Ad F. M.; Hol, Myrthe K. S.] Radboud Univ Nijmegen, Dept Otorhinolaryngol, Donders Inst Brain Cognit & Behav, Med Ctr, NL-6500 HB Nijmegen, Netherlands.
RP Agterberg, MJH (reprint author), Radboud Univ Nijmegen, Dept Biophys, Donders Inst Brain Cognit & Behav, POB 9101, NL-6500 HB Nijmegen, Netherlands.
EM m.agterberg@donders.ru.nl
RI van Opstal, John/D-1907-2010; van Wanrooij, Marc/J-3385-2012; Agterberg,
Martijn/K-2956-2012; Snik, Ad/H-8092-2014
OI van Wanrooij, Marc/0000-0003-4180-1835;
FU William Demants og Hustru Ida Emilies Fond; Dutch Organization for
Scientific Research, through a VICI [ALW/VICI 865.05.003]; Radboud
University Nijmegen; Donders Centre for Neuroscience; Department of
Otorhinolaryngology at the Radboud University Medical Centre Nijmegen
FX We thank H. Kleijnen, L Van Bolderen and G. Windau for their technical
support. We would like to thank the associate editor, Brian Moore, and
the anonymous reviewers for their useful comments and suggestions for
improving the manuscript. This research was funded by the William
Demants og Hustru Ida Emilies Fond and the Dutch Organization for
Scientific Research, through a VICI grant within Earth and Life Sciences
(project grant ALW/VICI 865.05.003; AJVO, MMVW), the Radboud University
Nijmegen (AJVO), the Donders Centre for Neuroscience (MJHA), and the
Department of Otorhinolaryngology at the Radboud University Medical
Centre Nijmegen (AFMS, MKSH).
CR Agterberg MJH, 2011, ADV OTO-RHINO-LARYNG, V71, P84, DOI 10.1159/000323587
Agterberg MJH, 2011, JARO-J ASSOC RES OTO, V12, P1, DOI 10.1007/s10162-010-0235-2
ALGAZI V., 2001, CIPIC HRTF DATABASE, P99, DOI DOI 10.1155/S1463924601000141
[Anonymous], 1991, 48691 DIN ISO
BATTEAU DW, 1967, PROC R SOC SER B-BIO, V168, P158, DOI 10.1098/rspb.1967.0058
Blauert J., 1997, SPATIAL HEARING PSYC
Bremen P, 2010, J NEUROSCI, V30, P194, DOI 10.1523/JNEUROSCI.2982-09.2010
Colburn H S, 1982, Scand Audiol Suppl, V15, P27
Grothe B, 2010, PHYSIOL REV, V90, P983, DOI 10.1152/physrev.00026.2009
HAUSLER R, 1983, ACTA OTO-LARYNGOL, P1
Hofman PM, 1998, J ACOUST SOC AM, V103, P2634, DOI 10.1121/1.422784
Hol MKS, 2005, AUDIOL NEURO-OTOL, V10, P159, DOI 10.1159/000084026
HUMES LE, 1980, AUDIOLOGY, V19, P508
Kacelnik O, 2006, PLOS BIOL, V4, P627, DOI 10.1371/journal.pbio.0040071
Kumpik DP, 2010, J NEUROSCI, V30, P4883, DOI 10.1523/JNEUROSCI.5488-09.2010
MIDDLEBROOKS JC, 1992, J ACOUST SOC AM, V92, P2607, DOI 10.1121/1.404400
MIDDLEBROOKS JC, 1991, ANNU REV PSYCHOL, V42, P135, DOI 10.1146/annurev.ps.42.020191.001031
NEWTON VE, 1981, J LARYNGOL OTOL, V95, P41, DOI 10.1017/S0022215100090381
Priwin C, 2007, INT J PEDIATR OTORHI, V71, P135, DOI 10.1016/j.ijporl.2006.09.014
ROBINSON DA, 1963, IEEE T BIO-MED ENG, VBM10, P137, DOI 10.1109/TBMEL.1963.4322822
Shub DE, 2008, J ACOUST SOC AM, V124, P3132, DOI 10.1121/1.2981634
SLATTERY WH, 1994, HEARING RES, V75, P38, DOI 10.1016/0378-5955(94)90053-1
Snik AFM, 2002, OTOL NEUROTOL, V23, P61, DOI 10.1097/00129492-200201000-00015
Stenfelt S, 2012, OTOL NEUROTOL, V33, P105, DOI 10.1097/MAO.0b013e31823e28ab
Stenfelt S, 2005, INT J AUDIOL, V44, P178, DOI 10.1080/14992020500031561
Stenfelt S, 2005, J ACOUST SOC AM, V118, P2373, DOI 10.1121/1.12005847
Van Wanrooij MM, 2007, J NEUROPHYSIOL, V97, P715, DOI 10.1152/jn.00260.2006
Van Wanrooij MM, 2004, J NEUROSCI, V24, P4163, DOI 10.1523/JNEUROSCI.0048-04.2004
Wazen JJ, 2001, LARYNGOSCOPE, V111, P955, DOI 10.1097/00005537-200106000-00005
WEBSTER DB, 1983, EXP NEUROL, V79, P130, DOI 10.1016/0014-4886(83)90384-9
WEBSTER DB, 1983, HEARING RES, V12, P145, DOI 10.1016/0378-5955(83)90123-5
WILMINGTON D, 1994, HEARING RES, V74, P99, DOI 10.1016/0378-5955(94)90179-1
NR 32
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2012
VL 286
IS 1-2
BP 9
EP 18
DI 10.1016/j.heares.2012.02.012
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 936ZZ
UT WOS:000303630100002
PM 22616091
ER
PT J
AU Srinivasan, AG
Shannon, RV
Landsberger, DM
AF Srinivasan, Arthi G.
Shannon, Robert V.
Landsberger, David M.
TI Improving virtual channel discrimination in a multi-channel context
SO HEARING RESEARCH
LA English
DT Article
ID COCHLEAR IMPLANT USERS; INTRACOCHLEAR ELECTRIC-STIMULATION; SPEECH
CODING STRATEGY; SPECTRAL RESOLUTION; NORMAL-HEARING; TEMPORAL CUES;
PLACE-PITCH; RECOGNITION; PERCEPTION; RECIPIENTS
AB Improving spectral resolution in cochlear implants is key to improving performance in difficult listening conditions (e.g. speech in noise, music, etc.). Current focusing might reduce channel interaction, thereby increasing spectral resolution. Previous studies have shown that combining current steering and current focusing reduces spread of excitation and improves virtual channel discrimination in a single-channel context. It is unclear whether the single-channel benefits from current focusing extend to a multi-channel context, in which the physical and perceptual interference of multiple stimulated channels might overwhelm the benefits of improved spectral resolution. In this study, signal discrimination was measured with and without current focusing, in the presence of competing stimuli on nearby electrodes. Results showed that signal discrimination was consistently better with current focusing than without, regardless of the amplitude of the competing stimuli. Therefore, combining current steering and current focusing may provide more effective spectral cues than are currently available. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Srinivasan, Arthi G.; Shannon, Robert V.; Landsberger, David M.] House Res Inst, Dept Commun & Auditory Neurosci, Los Angeles, CA 90057 USA.
[Srinivasan, Arthi G.; Shannon, Robert V.] Univ So Calif, Dept Biomed Engn, Los Angeles, CA 90089 USA.
RP Srinivasan, AG (reprint author), House Res Inst, Dept Commun & Auditory Neurosci, 2100 W 3rd St, Los Angeles, CA 90057 USA.
EM asrinivasan@hei.org
FU NIDCD [R01-DC-001526, R03-DC-010064, F31 DC011205-01]
FX This work was supported by NIDCD Grants and Fellowship Numbers:
R01-DC-001526, R03-DC-010064, and F31 DC011205-01. We gratefully
acknowledge the CI subjects who participated in this study. We also
thank John J. Galvin III for editorial help.
CR Berenstein CK, 2008, EAR HEARING, V29, P250
Bierer JA, 2010, EAR HEARING, V31, P247, DOI 10.1097/AUD.0b013e3181c7daf4
Bierer JA, 2002, J NEUROPHYSIOL, V87, P478
Brendel M, 2008, OTOL NEUROTOL, V29, P199, DOI 10.1097/mao.0b013e31816335c6
Briaire JJ, 2000, HEARING RES, V148, P18, DOI 10.1016/S0378-5955(00)00104-0
Busby PA, 2008, EAR HEARING, V29, P853, DOI 10.1097/AUD.0b013e318181a878
Donaldson GS, 2005, J ACOUST SOC AM, V118, P623, DOI 10.1121/1.1937362
Donaldson GS, 2011, EAR HEARING, V32, P238, DOI 10.1097/AUD.0b013e3181fb8390
Firszt JB, 2007, OTOL NEUROTOL, V28, P629, DOI 10.1097/01.mao.0000281803.36574.bc
Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538
Fu QJ, 2005, JARO-J ASSOC RES OTO, V6, P19, DOI 10.1007/s10162-004-5024-3
Fu QJ, 2005, J ACOUST SOC AM, V118, P1711, DOI 10.1121/1.1985024
Fu QJ, 1998, J ACOUST SOC AM, V104, P3586, DOI 10.1121/1.423941
Henry BA, 2005, J ACOUST SOC AM, V118, P1111, DOI 10.1121/1.1944567
Henry BA, 2003, J ACOUST SOC AM, V113, P2861, DOI 10.1121/1.1561900
Henry BA, 2000, J ACOUST SOC AM, V108, P1269, DOI 10.1121/1.1287711
Holden LK, 2002, EAR HEARING, V23, P463, DOI 10.1097/01.AUD.0000034718.53595.99
Hughes ML, 2006, J ACOUST SOC AM, V119, P1527, DOI 10.1121/1.2163273
Landsberger DM, 2012, HEARING RES, V284, P16, DOI 10.1016/j.heares.2011.12.009
Landsberger DM, 2009, HEARING RES, V254, P34, DOI 10.1016/j.heares.2009.04.007
Lazard DS, 2010, ACTA OTO-LARYNGOL, V130, P1267, DOI 10.3109/00016481003769972
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
Litvak LM, 2007, J ACOUST SOC AM, V122, P967, DOI 10.1121/1.2749414
Litvak LM, 2007, J ACOUST SOC AM, V122, P982, DOI 10.1121/1.2749413
Loizou P.C., 2001, J ACOUST SOC AM, V110, P1619
Luo Xin, 2010, J Acoust Soc Am, V128, P1215, DOI 10.1121/1.3474237
NELSON DA, 1995, J ACOUST SOC AM, V98, P1987, DOI 10.1121/1.413317
Saoji AA, 2009, EAR HEARING, V30, P559, DOI 10.1097/AUD.0b013e3181ab2b6f
Saoji AA, 2010, EAR HEARING, V31, P693, DOI 10.1097/AUD.0b013e3181e1d15e
Shannon Robert V, 2004, Acta Otolaryngol Suppl, P50
SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303
Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a
Snyder RL, 2004, JARO-J ASSOC RES OTO, V5, P305, DOI 10.1007/s10162-004-4026-5
Spelman F A, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P131
Srinivasan AG, 2010, HEARING RES, V270, P89, DOI 10.1016/j.heares.2010.09.004
Throckmorton CS, 1999, J ACOUST SOC AM, V105, P861, DOI 10.1121/1.426275
Vandali AE, 2000, EAR HEARING, V21, P608, DOI 10.1097/00003446-200012000-00008
van den Honert C, 2007, J ACOUST SOC AM, V121, P3703, DOI 10.1121/1.2722047
WHITFORD LA, 1995, ACTA OTO-LARYNGOL, V115, P629, DOI 10.3109/00016489509139378
Won JH, 2007, JARO-J ASSOC RES OTO, V8, P384, DOI 10.1007/s10162-007-0085-8
Xu L, 2005, J ACOUST SOC AM, V117, P3255, DOI 10.1121/.1.1886405
Zwolan TA, 1997, J ACOUST SOC AM, V102, P3673, DOI 10.1121/1.420401
NR 42
TC 8
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2012
VL 286
IS 1-2
BP 19
EP 29
DI 10.1016/j.heares.2012.02.011
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 936ZZ
UT WOS:000303630100003
PM 22616092
ER
PT J
AU Geven, LI
Wit, HP
de Kleine, E
van Dijk, P
AF Geven, Leontien I.
Wit, Hero P.
de Kleine, Emile
van Dijk, Pim
TI Wavelet analysis demonstrates no abnormality in contralateral
suppression of otoacoustic emissions in tinnitus patients
SO HEARING RESEARCH
LA English
DT Article
ID EFFERENT AUDITORY-SYSTEM; NORMAL-HEARING; REFLEX THRESHOLD; HUMANS;
FREQUENCY; REFLECTANCE; MECHANISMS; EARS
AB The efferent auditory system is thought to play a role in the origin of tinnitus. Part of this system can be tested in humans with contralateral suppression of otoacoustic emissions. Stimulation of the medial olivocochlear efferent system is responsible for this reduction of otoacoustic emissions after contralateral acoustic stimulation. Previous research on patients with tinnitus showed inconclusive results. With wavelet analysis both time and frequency information of the emission can be analysed and compared. Contralateral suppression of otoacoustic emissions was therefore measured in tinnitus patients (n = 26) and normal subjects (n = 37) and analysed using wavelets. No significant difference in suppression was found between the tinnitus patients and the control group. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Geven, Leontien I.; Wit, Hero P.; de Kleine, Emile; van Dijk, Pim] Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, NL-9700 RB Groningen, Netherlands.
[Geven, Leontien I.; de Kleine, Emile; van Dijk, Pim] Univ Groningen, Grad Sch Med Sci, Res Sch Behav & Cognit Neurosci, Groningen, Netherlands.
RP Geven, LI (reprint author), Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, POB 30-001, NL-9700 RB Groningen, Netherlands.
EM l.i.geven@umcg.nl
RI Van Dijk, Pim/E-8019-2010; de Kleine, Emile/P-2350-2014
OI Van Dijk, Pim/0000-0002-8023-7571;
FU Heinsius Houbolt Foundation
FX This study was supported by the Heinsius Houbolt Foundation and is part
of the research program of our department: Communication through Hearing
and Speech.
CR Attias J, 1996, ACTA OTO-LARYNGOL, V116, P534, DOI 10.3109/00016489609137885
Bauer Carol A, 2004, Curr Opin Otolaryngol Head Neck Surg, V12, P413, DOI 10.1097/01.moo.0000134443.29853.09
Ceranic BJ, 1998, J NEUROL NEUROSUR PS, V65, P523, DOI 10.1136/jnnp.65.4.523
CHERYCROZE S, 1994, BRIT J AUDIOL, V28, P13, DOI 10.3109/03005369409077909
CHERYCROZE S, 1994, BRIT J AUDIOL, V28, P255, DOI 10.3109/03005369409086575
Cohen J., 1988, STAT POWER ANAL BEHA, V2nd
COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E
De Ceulaer G, 2001, OTOL NEUROTOL, V22, P350, DOI 10.1097/00129492-200105000-00013
Fávero Mariana Lopes, 2006, Rev. Bras. Otorrinolaringol., V72, P223, DOI 10.1590/S0034-72992006000200012
Feeney MP, 2001, EAR HEARING, V22, P316, DOI 10.1097/00003446-200108000-00006
Feeney MP, 2004, EAR HEARING, V25, P421, DOI 10.1097/01.aud.0000145110.60657.73
Geven LI, 2011, OTOL NEUROTOL, V32, P315, DOI 10.1097/MAO.0b013e3181fcf180
Giraud AL, 1995, BRAIN RES, V705, P15, DOI 10.1016/0006-8993(95)01091-2
GRAHAM RL, 1994, BRIT J AUDIOL, V28, P235, DOI 10.3109/03005369409086573
Guinan JJ, 2006, EAR HEARING, V27, P589, DOI 10.1097/01.aud.0000240507.83072.e7
Hood LJ, 1996, HEARING RES, V101, P113, DOI 10.1016/S0378-5955(96)00138-4
JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9
Lind O, 1996, SCAND AUDIOL, V25, P167, DOI 10.3109/01050399609048000
Moller AR, 2007, PROG BRAIN RES, V166, P3, DOI 10.1016/S0079-6123(07)66001-4
Morand N, 2000, HEARING RES, V145, P52, DOI 10.1016/S0378-5955(00)00069-1
Mulders WHAM, 2010, J NEUROSCI, V30, P9578, DOI 10.1523/JNEUROSCI.2289-10.2010
Paglialonga A, 2011, AURIS NASUS LARYNX, V38, P33, DOI 10.1016/j.anl.2010.04.006
PRIEVE BA, 1993, J ACOUST SOC AM, V93, P3308, DOI 10.1121/1.405715
Riga M, 2007, OTOL NEUROTOL, V28, P185, DOI 10.1097/MAO.0b013e31802e2a14
Roberts LE, 2010, J NEUROSCI, V10, P14972
Sun XM, 2008, HEARING RES, V237, P66, DOI 10.1016/j.heares.2007.12.004
Tognola G, 1998, IEEE T BIO-MED ENG, V45, P686, DOI 10.1109/10.678603
Tognola G, 1997, HEARING RES, V106, P112, DOI 10.1016/S0378-5955(97)00007-5
WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1
Winer JA, 2006, HEARING RES, V212, P1, DOI 10.1016/j.heares.2005.06.014
WIT HP, 1994, HEARING RES, V73, P141, DOI 10.1016/0378-5955(94)90228-3
NR 31
TC 3
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2012
VL 286
IS 1-2
BP 30
EP 40
DI 10.1016/j.heares.2012.02.008
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 936ZZ
UT WOS:000303630100004
PM 22387429
ER
PT J
AU Patel, CR
Redhead, C
Cervi, AL
Zhang, HM
AF Patel, Chirag R.
Redhead, Carmela
Cervi, Andrea L.
Zhang, Huiming
TI Neural sensitivity to novel sounds in the rat's dorsal cortex of the
inferior colliculus as revealed by evoked local field potentials
SO HEARING RESEARCH
LA English
DT Article
ID STIMULUS-SPECIFIC ADAPTATION; POSTSYNAPTIC GABA(B) RECEPTORS; PRIMARY
AUDITORY-CORTEX; MEDIAL GENICULATE-BODY; DESCENDING PROJECTIONS;
CORTICAL-NEURONS; CENTRAL NUCLEUS; GUINEA-PIG; CAT; RESPONSES
AB Evoked local field potentials in response to contralaterally presented tone bursts were recorded from the rat's dorsal cortex of the inferior colliculus (ICd). An oddball stimulus paradigm was used to study the sensitivity of ensembles of neurons in the ICd to novel sounds. Our recordings indicate that neuron ensembles in the ICd display stimulus-specific adaptation when a large contrast in both frequency and probability of occurrence exists between the two tone bursts used for generating an oddball paradigm. A local field potential evoked by a tone burst presented as a deviant stimulus has a larger amplitude than that evoked by the same sound presented as a standard stimulus. The difference between the two responses occurs after the initial rising phases of their predominant deflections. The degree of stimulus-specific adaptation increases with the rate of sound presentation up to 8/s, the highest rate used in this study. A comparison between our results and those from previous studies suggests that differences exist between responses to oddball paradigms in the ICd and those in the primary auditory cortex, a major source of projection to the ICd. These differences suggest that local mechanisms exist in the ICd for suppressing neural responses to frequently presented sounds and enhancing responses to rarely presented sounds. Thus, the ICd may serve as an important component of an integrative circuit in the brain for detecting novel sounds in the acoustic environment. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Patel, Chirag R.; Redhead, Carmela; Cervi, Andrea L.; Zhang, Huiming] Univ Windsor, Dept Biol Sci, Windsor, ON N9B 3P4, Canada.
RP Zhang, HM (reprint author), Univ Windsor, Dept Biol Sci, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada.
EM hzhang@uwindsor.ca
FU Natural Sciences and Engineering Research Council (NSERC) of Canada
FX This research was supported by a grant from the Natural Sciences and
Engineering Research Council (NSERC) of Canada to HZ. We would like to
thank Dr. Alan Lomax for comments on an early draft of the manuscript.
We also would like to thank Lena Jamal for helping with histological
procedures and Rebecca Philipose for helping with data analyses.
CR AITKIN L, 1994, EXP BRAIN RES, V98, P53
Antunes FM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014071
Bajo VM, 2007, CEREB CORTEX, V17, P475, DOI 10.1093/cercor/bhj164
Binns KE, 1997, J PHYSIOL-LONDON, V504, P629, DOI 10.1111/j.1469-7793.1997.629bd.x
Bledsoe SC, 2003, EXP BRAIN RES, V153, P530, DOI 10.1007/s00221-003-1671-6
Burger RM, 1998, J NEUROPHYSIOL, V80, P1686
Burkard B.F., 1999, J ACOUST SOC AM, V106, P304
Burkard R. F., 2006, AUDITORY EVOKED POTE
CAIRD D, 1985, ELECTROEN CLIN NEURO, V61, P50, DOI 10.1016/0013-4694(85)91072-7
Cant NB, 2008, NEUROSCIENCE, V154, P206, DOI 10.1016/j.neuroscience.2008.02.015
COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204
Druga R, 1997, PHYSIOL RES, V46, P215
Farley BJ, 2010, J NEUROSCI, V30, P16475, DOI 10.1523/JNEUROSCI.2793-10.2010
Goense JBM, 2008, CURR BIOL, V18, P631, DOI 10.1016/j.cub.2008.03.054
GONZALEZHERNANDEZ TH, 1987, J HIRNFORSCH, V28, P315
HAVEY DC, 1980, ELECTROEN CLIN NEURO, V48, P249, DOI 10.1016/0013-4694(80)90313-2
HERBERT H, 1991, J COMP NEUROL, V304, P103, DOI 10.1002/cne.903040108
HERRERA M, 1994, ARCH ITAL BIOL, V132, P147
Jamal L, 2011, NEUROSCIENCE, V181, P243, DOI 10.1016/j.neuroscience.2011.02.050
Kelly JB, 2005, INFERIOR COLLICULUS, P248, DOI 10.1007/0-387-27083-3_9
KUDO M, 1978, BRAIN RES, V155, P113, DOI 10.1016/0006-8993(78)90310-4
Loftus WC, 2008, NEUROSCIENCE, V154, P196, DOI 10.1016/j.neuroscience.2008.01.019
Logothetis NK, 2008, NATURE, V453, P869, DOI 10.1038/nature06976
Logothetis NK, 2003, J NEUROSCI, V23, P3963
Lumani A, 2010, BRAIN RES, V1351, P115, DOI 10.1016/j.brainres.2010.06.066
Malmierca M. S., 2010, AUDITORY CORTEX, P189
Malmierca MS, 2009, J NEUROSCI, V29, P5483, DOI 10.1523/JNEUROSCI.4153-08.2009
MALMIERCA MS, 1993, J COMP NEUROL, V333, P1, DOI 10.1002/cne.903330102
Malmierca M.S., 2004, RAT NERVOUS SYSTEM, P997
MALMIERCA MS, 1995, ANAT EMBRYOL, V191, P343, DOI 10.1007/BF00534687
Malmierca MS, 2009, J COMP NEUROL, V514, P226, DOI 10.1002/cne.21997
Malmierca MS, 2011, HEARING RES, V274, P13, DOI 10.1016/j.heares.2010.06.011
MALMIERCA MS, 1995, J COMP NEUROL, V357, P124, DOI 10.1002/cne.903570112
MILBRANDT JC, 1994, NEUROBIOL AGING, V15, P699, DOI 10.1016/0197-4580(94)90051-5
MITZDORF U, 1987, INT J NEUROSCI, V33, P33
MITZDORF U, 1985, PHYSIOL REV, V65, P37
Oliver DL, 2005, INFERIOR COLLICULUS, P69, DOI 10.1007/0-387-27083-3_2
Palombi PS, 1996, HEARING RES, V100, P41, DOI 10.1016/0378-5955(96)00115-3
Perez-Gonzalez D, 2005, EUR J NEUROSCI, V22, P2879, DOI 10.1111/j.1460-9568.2005.04472.x
Pienkowski M, 2009, NEUROREPORT, V20, P1198, DOI 10.1097/WNR.0b013e32832f812c
Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O
SALDANA E, 1992, J COMP NEUROL, V319, P417, DOI 10.1002/cne.903190308
Sanderson MI, 2000, J NEUROPHYSIOL, V83, P1840
Scanziani M, 2000, NEURON, V25, P673, DOI 10.1016/S0896-6273(00)81069-7
SMITH PH, 1992, J NEUROSCI, V12, P3700
SONTHEIMER D, 1985, ELECTROEN CLIN NEURO, V61, P539, DOI 10.1016/0013-4694(85)90973-3
Sun H, 2009, NEUROSCIENCE, V160, P198, DOI 10.1016/j.neuroscience.2009.02.011
Sun HY, 2008, BRAIN RES, V1226, P70, DOI 10.1016/j.brainres.2008.06.010
Syka J, 2000, EXP BRAIN RES, V133, P254, DOI 10.1007/s002210000426
SYKA J, 1984, NEUROSCI LETT, V51, P235, DOI 10.1016/0304-3940(84)90557-3
Szymanski FD, 2009, J NEUROPHYSIOL, V102, P1483, DOI 10.1152/jn.00240.2009
Taaseh N, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023369
Torterolo R, 1998, NEUROSCI LETT, V249, P172
Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032
Ulanovsky N, 2004, J NEUROSCI, V24, P10440, DOI 10.1523/JNEUROSCI.1905-04.2004
Vogt KE, 1999, P NATL ACAD SCI USA, V96, P1118, DOI 10.1073/pnas.96.3.1118
von der Behrens W, 2009, J NEUROSCI, V29, P13837, DOI 10.1523/JNEUROSCI.3475-09.2009
WENSTRUP JJ, 1994, J COMP NEUROL, V346, P207, DOI 10.1002/cne.903460204
WILLARD FH, 1983, NEUROSCIENCE, V10, P1203, DOI 10.1016/0306-4522(83)90109-4
Winer JA, 2002, HEARING RES, V168, P181, DOI 10.1016/S0378-5955(02)00489-6
NR 60
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2012
VL 286
IS 1-2
BP 41
EP 54
DI 10.1016/j.heares.2012.02.007
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 936ZZ
UT WOS:000303630100005
PM 22406035
ER
PT J
AU Wang, XR
Zhang, XM
Du, JT
Jiang, HY
AF Wang, Xian-Ren
Zhang, Xue-Mei
Du, Jintao
Jiang, Hongyan
TI MicroRNA-182 regulates otocyst-derived cell differentiation and targets
T-box1 gene
SO HEARING RESEARCH
LA English
DT Article
ID MOUSE INNER-EAR; PROGRESSIVE HEARING-LOSS; HAIR-CELLS; STEM-CELLS;
EXPRESSION; MIR-96; TBX1; FATE; MICE; MORPHOGENESIS
AB Background: Recently, in vitro and in vivo models have identified that microRNAs (miRNAs), which are extensively expressed in the inner ear, play important roles in inner ear development and function. However, the function of miRNA in vertebrate tissue is not well understood.
Results: The current study used an in vitro model of embryonic mouse inner ear in a stem/progenitor cell culture to demonstrate that: 1) miR-182 is expressed during differentiation of inner ear stem/progenitor cell into a hair cell-like fate, 2) ectopic miR-182 promotes inner ear stem/progenitor cell differentiation into a hair cell-like fate, and 3) the function of miR-182 may be associated with its putative target Tbx1, a transcription factors that have been implicated in inner ear development and hair cell fate.
Conclusions: Our findings suggest that miR-182 could regulate inner ear progenitor cell differentiation and that miRNAs are important regulators of hair cell differentiation, providing new targets for hair cell repair. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Wang, Xian-Ren; Zhang, Xue-Mei; Du, Jintao; Jiang, Hongyan] Sun Yat Sen Univ, Dept Otorhinolaryngol, Affiliated Hosp 1, Guangzhou 510080, Guangdong, Peoples R China.
[Wang, Xian-Ren; Zhang, Xue-Mei; Du, Jintao; Jiang, Hongyan] Sun Yat Sen Univ, Inst Otorhinolaryngol, Guangzhou 510080, Guangdong, Peoples R China.
RP Jiang, HY (reprint author), Sun Yat Sen Univ, Dept Otorhinolaryngol, Affiliated Hosp 1, 58 Zhongshan Rd, Guangzhou 510080, Guangdong, Peoples R China.
EM jhongy@mail.sysu.edu.cn
FU National Basic Research Program of China [2011CB504502]; Key Nature Fund
of Guangdong Province [8251008901000016]; National Natural Science Fund
of China [30973306]
FX This work was support by grants from the National Basic Research Program
of China (2011CB504502), Key Nature Fund of Guangdong Province
(8251008901000016), and the National Natural Science Fund of China
(30973306).
CR Bartel DP, 2004, CELL, V116, P281, DOI 10.1016/S0092-8674(04)00045-5
Betel D, 2008, NUCLEIC ACIDS RES, V36, pD149, DOI 10.1093/nar/gkm995
Bok J, 2011, P NATL ACAD SCI USA, V108, P161, DOI 10.1073/pnas.1010547108
Braunstein EM, 2008, JARO-J ASSOC RES OTO, V9, P33, DOI 10.1007/s10162-008-0110-6
Brown ST, 2003, CURR TOP DEV BIOL, V57, P115, DOI 10.1016/S0070-2153(03)57004-1
Chen CF, 2005, NUCLEIC ACIDS RES, V33, DOI 10.1093/nar/gni178
Clop A, 2006, NAT GENET, V38, P813, DOI 10.1038/ng1810
Diensthuber M., 2009, J ASS RES OTOLARYNGO
Edge ASB, 2008, CURR OPIN NEUROBIOL, V18, P377, DOI 10.1016/j.conb.2008.10.001
Friedman LM, 2009, P NATL ACAD SCI USA, V106, P7915, DOI 10.1073/pnas.0812446106
Friedman RC, 2009, GENOME RES, V19, P92, DOI 10.1101/gr.082701.108
Frucht CS, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011502
Funke B, 2001, HUM MOL GENET, V10, P2549, DOI 10.1093/hmg/10.22.2549
He TC, 1998, P NATL ACAD SCI USA, V95, P2509, DOI 10.1073/pnas.95.5.2509
Kelley MW, 2006, NAT REV NEUROSCI, V7, P837, DOI 10.1038/nrn1987
Krek A, 2005, NAT GENET, V37, P495, DOI 10.1038/ng1536
Kuhn S, 2011, P NATL ACAD SCI USA, V108, P2355, DOI 10.1073/pnas.1016646108
Lee RC, 2001, SCIENCE, V294, P862, DOI 10.1126/science.1065329
Lewis BP, 2005, CELL, V120, P15, DOI 10.1016/j.cell.2004.12.035
Lewis MA, 2009, NAT GENET, V41, P614, DOI 10.1038/ng.369
Li HQ, 2010, J NEUROSCI, V30, P3254, DOI 10.1523/JNEUROSCI.4948-09.2010
Li HW, 2003, NAT MED, V9, P1293, DOI 10.1038/nm925
Mencia A, 2009, NAT GENET, V41, P609, DOI 10.1038/ng.355
Oshima Kazuo, 2009, V493, P141, DOI 10.1007/978-1-59745-523-7_9
Raft S, 2004, DEVELOPMENT, V131, P1801, DOI 10.1242/dev.01067
Sacheli R, 2009, GENE EXPR PATTERNS, V9, P364, DOI 10.1016/j.gep.2009.01.003
Soukup GA, 2009, DEV BIOL, V328, P328, DOI 10.1016/j.ydbio.2009.01.037
Vitelli F, 2003, HUM MOL GENET, V12, P2041, DOI 10.1093/hmg/ddg216
Wang XR, 2010, NEUROREPORT, V21, P611, DOI 10.1097/WNR.0b013e328338864b
Wang ZM, 2006, NEUROREPORT, V17, P767, DOI 10.1097/01.wnr.0000215781.22345.8b
Weston MD, 2006, BRAIN RES, V1111, P95, DOI 10.1016/j.brainres.2006.07.006
Weston MD, 2011, DEV DYNAM, V240, P808, DOI 10.1002/dvdy.22591
Xu HS, 2007, DEV BIOL, V302, P670, DOI 10.1016/j.ydbio.2006.10.002
Yang BF, 2007, NAT MED, V13, P486, DOI 10.1038/nm1569
NR 34
TC 6
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2012
VL 286
IS 1-2
BP 55
EP 63
DI 10.1016/j.heares.2012.02.005
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 936ZZ
UT WOS:000303630100006
PM 22381690
ER
PT J
AU Kale, S
Heinz, MG
AF Kale, Sushrut
Heinz, Michael G.
TI Temporal modulation transfer functions measured from auditory-nerve
responses following sensorineural hearing loss
SO HEARING RESEARCH
LA English
DT Article
ID CHRONIC COCHLEAR PATHOLOGY; BROAD-BAND NOISE; TUNING CURVES; IMPAIRED
LISTENERS; STEREOCILIA DAMAGE; ACOUSTIC TRAUMA; GUINEA-PIG; HAIR CELL;
AMPLITUDE; FIBERS
AB The ability of auditory-nerve (AN) fibers to encode modulation frequencies, as characterized by temporal modulation transfer functions (TMTFs), generally shows a low-pass shape with a cut-off frequency that increases with fiber characteristic frequency (CF). Because AN-fiber bandwidth increases with CF, this result has been interpreted to suggest that peripheral filtering has a significant effect on limiting the encoding of higher modulation frequencies. Sensorineural hearing loss (SNHL), which is typically associated with broadened tuning, is thus predicted to increase the range of modulation frequencies encoded; however, perceptual studies have generally not supported this prediction. The present study sought to determine whether the range of modulation frequencies encoded by AN fibers is affected by SNHL, and whether the effects of SNHL on envelope coding are similar at all modulation frequencies within the TMTF passband. Modulation response gain for sinusoidally amplitude modulated (SAM) tones was measured as a function of modulation frequency, with the carrier frequency placed at fiber CF. TMTFs were compared between normal-hearing chinchillas and chinchillas with a noise-induced hearing loss for which AN fibers had significantly broadened tuning. Synchrony and phase responses for individual SAM tone components were quantified to explore a variety of factors that can influence modulation coding. Modulation gain was found to be higher than normal in noise-exposed fibers across the entire range of modulation frequencies encoded by AN fibers. The range of modulation frequencies encoded by noise-exposed AN fibers was not affected by SNHL, as quantified by TMTF 3- and 10-dB cut-off frequencies. These results suggest that physiological factors other than peripheral filtering may have a significant role in determining the range of modulation frequencies encoded in AN fibers. Furthermore, these neural data may help to explain the lack of a consistent association between perceptual measures of temporal resolution and degraded frequency selectivity. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Heinz, Michael G.] Purdue Univ, Dept Speech Language & Hearing Sci, W Lafayette, IN 47907 USA.
[Kale, Sushrut; Heinz, Michael G.] Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA.
RP Heinz, MG (reprint author), Purdue Univ, Dept Speech Language & Hearing Sci, 500 Oval Dr, W Lafayette, IN 47907 USA.
EM sushrut.kale@gmail.com; mheinz@purdue.edu
FU National Institutes of Health (NIH)/National Institute on Deafness and
Other Communication Disorders (NIDCD) [R03DC07348, R01DC009838];
American Hearing Research Foundation
FX This research was supported by grants R03DC07348 and R01DC009838 from
the National Institutes of Health (NIH)/National Institute on Deafness
and Other Communication Disorders (NIDCD). Support from the American
Hearing Research Foundation also contributed to this work.
CR BACON SP, 1992, J SPEECH HEAR RES, V35, P642
BACON SP, 1985, AUDIOLOGY, V24, P117
Bruce IC, 2003, J ACOUST SOC AM, V113, P369, DOI 10.1121/1.1519544
Chintanpalli A, 2007, J ACOUST SOC AM, V122, pEL203, DOI 10.1121/1.2794880
FORMBY C, 1987, AUDIOLOGY, V26, P89
Fullgrabe C, 2003, HEARING RES, V178, P35, DOI 10.1016/S0378-5955(03)00027-3
GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613
He NJ, 2008, J ACOUST SOC AM, V124, P3841, DOI 10.1121/1.2998779
Heinz MG, 2010, NEUROPHYSIOLOGICAL BASES OF AUDITORY PERCEPTION, P621, DOI 10.1007/978-1-4419-5686-6_56
Heinz MG, 2004, J NEUROPHYSIOL, V91, P784, DOI 10.1152/jn.00776.2003
JAVEL E, 1980, J ACOUST SOC AM, V68, P133, DOI 10.1121/1.384639
JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982
JORIS PX, 1992, J ACOUST SOC AM, V91, P215, DOI 10.1121/1.402757
Joris PX, 2003, J NEUROSCI, V23, P6345
Kale S, 2010, JARO-J ASSOC RES OTO, V11, P657, DOI 10.1007/s10162-010-0223-6
LIBERMAN MC, 1984, HEARING RES, V16, P33, DOI 10.1016/0378-5955(84)90023-6
LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X
LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8
Louage DHG, 2004, J NEUROPHYSIOL, V91, P2051, DOI 10.1152/jn.00816.2003
Mardia K, 2000, DIRECTIONAL STAT
Marean GC, 1998, J ACOUST SOC AM, V103, P3567, DOI 10.1121/1.423085
Miller RL, 1997, J ACOUST SOC AM, V101, P3602, DOI 10.1121/1.418321
MOLLER AR, 1972, ACTA PHYSIOL SCAND, V86, P223, DOI 10.1111/j.1748-1716.1972.tb05328.x
Moore BCJ, 1996, J ACOUST SOC AM, V100, P481, DOI 10.1121/1.415861
Moore BCJ, 2001, J ACOUST SOC AM, V110, P1067, DOI 10.1121/1.1385177
MOORE BCJ, 1992, BRIT J AUDIOL, V26, P229, DOI 10.3109/03005369209076641
PALMER AR, 1982, ARCH OTO-RHINO-LARYN, V236, P197, DOI 10.1007/BF00454039
Parthasarathy A, 2010, FRONT AGING NEUROSCI, V2, DOI 10.3389/fnagi.2010.00152
REES A, 1989, J ACOUST SOC AM, V85, P1978, DOI 10.1121/1.397851
RUGGERO MA, 1991, J NEUROSCI, V11, P1057
Scheidt RE, 2010, HEARING RES, V269, P23, DOI 10.1016/j.heares.2010.07.009
Schmiedt RA, 2002, J NEUROSCI, V22, P9643
SEWELL WF, 1984, HEARING RES, V14, P305, DOI 10.1016/0378-5955(84)90057-1
Temchin AN, 2010, JARO-J ASSOC RES OTO, V11, P297, DOI 10.1007/s10162-009-0197-4
Zilany MSA, 2009, J ACOUST SOC AM, V126, P2390, DOI 10.1121/1.3238250
NR 35
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2012
VL 286
IS 1-2
BP 64
EP 75
DI 10.1016/j.heares.2012.02.004
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 936ZZ
UT WOS:000303630100007
PM 22366500
ER
PT J
AU Milczynski, M
Chang, JE
Wouters, J
van Wieringen, A
AF Milczynski, Matthias
Chang, Janice Erica
Wouters, Jan
van Wieringen, Astrid
TI Perception of Mandarin Chinese with cochlear implants using enhanced
temporal pitch cues
SO HEARING RESEARCH
LA English
DT Article
ID SOUND-PROCESSING STRATEGIES; TONE RECOGNITION; SPEECH-PERCEPTION;
CONCURRENT-VOWEL; PERIODICITY CUES; ELECTRIC HEARING; CODING STRATEGY;
MODULATION; USERS; NOISE
AB A cochlear implant (Cl) signal processing strategy named F0 modulation (F0mod) was compared with the advanced combination encoder (ACE) strategy in a group of four post-lingually deafened Mandarin Chinese speaking Cl listeners. F0 provides an enhanced temporal pitch cue by amplitude modulating the multichannel electrical stimulation pattern at the fundamental frequency (F0) of the incoming speech signal. Word and sentence recognition tests were carried out in quiet and in noise. The responses for the word-recognition test were further segmented into phoneme and tone scores. Off-line implementations of ACE and F0mod were used, and electrical stimulation patterns were directly streamed to the CI subject's implant. To focus on the feasibility of enhanced temporal cues for tonal language perception, idealized PO information that was extracted from speech tokens in quiet was used in the F0mod processing of speech-in-noise mixtures. The results indicated significantly better lexical tone perception with the F0mod strategy than with ACE for the male voice (p < 0.05). No significant differences in sentence recognition were found between F0mod and ACE. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Milczynski, Matthias; Wouters, Jan; van Wieringen, Astrid] Katholieke Univ Leuven, Dept Neurosci, ExpORL, B-3000 Louvain, Belgium.
[Chang, Janice Erica] UC Irvine, HESP, Irvine, CA 92697 USA.
RP Milczynski, M (reprint author), Katholieke Univ Leuven, Dept Neurosci, ExpORL, O&N 2,Herestr 49 Bus 721, B-3000 Louvain, Belgium.
EM matthias.milczynski@gmail.com
RI Wouters, Jan/D-1800-2015
FU Institute for the Promotion of Innovation by Science and Technology in
Flanders (IWT) [050445, 080304]; Cochlear Ltd.; US Department of Health
and Human Services, National Institutes of Health (NIH) [1R01-DC008858,
P30-DC008369]; C-TEC, Beijing
FX Special thanks are given to all anonymous reviewers for their thorough
and very helpful comments on two previous versions of this manuscript.
We particularly would like to give credit to the associate editor Prof.
Brian Moore for his detailed comments, suggestions and corrections. In
addition, we would like to thank Cochlear Ltd. and all employees at
C-TEC, Beijing for their support and help in setting up the local study.
Special thanks go to Mary-Beth Brinson, Brendan Mason, Lucy Lu, Denise
Lee, Qi Liang, Peggy Lu and C-TEC director Ms. Wang. We also thank Wim
Buyens, Bas Van Dijk and Jan Poppeliers for local technical support in
Belgium. This study was partly supported by the Institute for the
Promotion of Innovation by Science and Technology in Flanders (IWT)
Project No. 050445 and 080304 and was partly sponsored by Cochlear Ltd.
We particularly want to thank Prof. Dr. Fan-Gang Zeng from the Hearing
and Speech Lab (HESP, UC Irvine, CA, USA) for providing the speech
material used in the present study and for facilitating a pilot study.
In summer 2009, Matthias Milczynski gathered preliminary data from two
Mandarin-speaking CI users at HESP. The contributions of Janice Chang to
the pilot study were supported by the US Department of Health and Human
Services, National Institutes of Health grants (NIH) Project No.
1R01-DC008858 and P30-DC008369. Finally, we would like to express our
thanks to the CI subjects for their commitment and dedication.
CR Bagshaw P., 1993, P EUR C SPEECH COMM, P1003
Boersma P., 2001, GLOT INT, V5, P341
Boersma P., 1993, P I PHONETIC SCI, V17, P97
Carlyon RP, 2002, J ACOUST SOC AM, V112, P621, DOI 10.1121/1.1488660
Carlyon RP, 2007, JARO-J ASSOC RES OTO, V8, P119, DOI 10.1007/s10162-006-0068-1
CHALIKIA MH, 1989, PERCEPT PSYCHOPHYS, V46, P487, DOI 10.3758/BF03210865
Chang YT, 2009, OTOL NEUROTOL, V30, P750, DOI 10.1097/MAO.0b013e3181b286b2
Chatterjee M, 2003, J ACOUST SOC AM, V113, P2042, DOI 10.1121/1.1555613
Chen TH, 2008, J ACOUST SOC AM, V123, P2356, DOI 10.1121/1.2839004
Chu WC, 2003, SPEECH CODING ALGORI
de Cheveigne A, 2002, J ACOUST SOC AM, V111, P1917, DOI 10.1121/1.1458024
DUBNOWSKI JJ, 1976, IEEE T ACOUST SPEECH, V24, P2, DOI 10.1109/TASSP.1976.1162765
Flanagan J., 1966, J ACOUST SOC AM, V38, P1493
Fu QJ, 2004, EAR HEARING, V25, P501, DOI 10.1097/01.aud.0000145125.50433.19
Gordon R. G., 2005, ETHNOLOGUE LANGUAGES
Hamilton N, 2007, INT J AUDIOL, V46, P244, DOI 10.1080/14992020601053340
Han DM, 2009, EAR HEARING, V30, P169, DOI 10.1097/AUD.0b013e31819342cf
Kong YY, 2009, J ACOUST SOC AM, V125, P1649, DOI 10.1121/1.3068457
Kong YY, 2006, J ACOUST SOC AM, V120, P2830, DOI 10.1121/1.2346009
Laneau J, 2006, AUDIOL NEURO-OTOL, V11, P38, DOI 10.1159/000088853
Luo X, 2008, EAR HEARING, V29, P957, DOI 10.1097/AUD.0b013e3181888f61
Luo X, 2009, HEARING RES, V256, P75, DOI 10.1016/j.heares.2009.07.001
Luo X, 2009, J ACOUST SOC AM, V125, P3223, DOI 10.1121/1.3106534
Macherey O, 2011, JARO-J ASSOC RES OTO, V12, P233, DOI 10.1007/s10162-010-0248-x
Martin R, 2001, IEEE T SPEECH AUDI P, V9, P504, DOI 10.1109/89.928915
MCKAY CM, 1994, J ACOUST SOC AM, V96, P2664, DOI 10.1121/1.411377
Milczynski M., 2011, THESIS KATHOLIEKE U
Milczynski M, 2009, J ACOUST SOC AM, V125, P2260, DOI 10.1121/1.3085642
Nie KB, 2005, IEEE T BIO-MED ENG, V52, P64, DOI 10.1109/TBME.2004.839799
Richardson LM, 1998, J ACOUST SOC AM, V104, P442, DOI 10.1121/1.423248
Schimmel SM, 2008, INT CONF ACOUST SPEE, P4201, DOI 10.1109/ICASSP.2008.4518581
SHANNON RV, 1992, J ACOUST SOC AM, V91, P2156, DOI 10.1121/1.403807
SONDHI MM, 1968, IEEE T ACOUST SPEECH, VAU16, P262, DOI 10.1109/TAU.1968.1161986
Swanson B. A., 2008, THESIS U MELBOURNE A
TONG YC, 1983, J ACOUST SOC AM, V74, P73, DOI 10.1121/1.389620
TONG YC, 1979, J LARYNGOL OTOL, V93, P679, DOI 10.1017/S0022215100087545
Vandali AE, 2011, J ACOUST SOC AM, V129, P4023, DOI 10.1121/1.3573988
Vandali AE, 2000, EAR HEARING, V21, P608, DOI 10.1097/00003446-200012000-00008
Vandali AE, 2005, J ACOUST SOC AM, V117, P3126, DOI 10.1121/1.1874632
van Wieringen A, 2008, INT J AUDIOL, V47, P348, DOI 10.1080/14992020801895144
Vary P, 2006, DIGITAL SPEECH TRANS
Wei CG, 2007, EAR HEARING, V28, p62S, DOI 10.1097/AUD.0b013e318031512c
Wei CG, 2004, HEARING RES, V197, P87, DOI 10.1016/j.heares.2004.06.002
WHALEN DH, 1992, PHONETICA, V49, P25
WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0
Wong L.L., 2007, EAR HEARING, V28, P70
Wong LLN, 2008, INT J AUDIOL, V47, P337, DOI 10.1080/14992020802070788
Wong LLN, 2005, EAR HEARING, V26, P276, DOI 10.1097/00003446-200506000-00004
Xu L, 2002, J ACOUST SOC AM, V112, P247, DOI 10.1121/1.1487843
Yuan M, 2009, J ACOUST SOC AM, V126, P327, DOI 10.1121/1.3117447
NR 50
TC 12
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2012
VL 285
IS 1-2
BP 1
EP 12
DI 10.1016/j.heares.2012.02.006
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 920WN
UT WOS:000302439600001
PM 22361414
ER
PT J
AU Guo, CK
Wang, Y
Zhou, T
Yu, H
Zhang, WJ
Kong, WJ
AF Guo, Chang-Kai
Wang, Yi
Zhou, Tao
Yu, Hong
Zhang, Wen-Juan
Kong, Wei-Jia
TI M2 muscarinic ACh receptors sensitive BK channels mediate cholinergic
inhibition of type II vestibular hair cells
SO HEARING RESEARCH
LA English
DT Article
ID BETA-GAMMA-SUBUNITS; CA2+-ACTIVATED K+ CHANNELS; GUINEA-PIG;
ACETYLCHOLINE-RECEPTOR; ADENYLYL-CYCLASE; MOLECULAR CHARACTERIZATION;
VENTRICULAR MYOCYTES; SIGNAL-TRANSDUCTION; RATTUS-NORVEGICUS;
MESSENGER-RNAS
AB There are two types of hair cells in the sensory epithelium of vestibular end organ. Type II vestibular hair cell (VHC II) is innervated by the efferent nerve endings, which employ a cholinergic inhibition mediated by SK channels through the activation of alpha 9-containing nAChR. Our previous studies demonstrated that a BK-type cholinergic inhibition was present in guinea pig VHCs II, which may be mediated by an unknown mAChR. In this study. BK channel activities triggered by ACh were studied to determine the mAChR subtype and function. We found the BK channel was insensitive to alpha 9-containing nAChR antagonists and m1, m3, m4 muscarinic antagonists, but potently inhibited by the m2 muscarinic antagonist. Muscarinic agonists could mimic the effect of ACh and be blocked by m2 antagonist. cAMP analog activated the BK current and adenyl cyclase (AC) inhibitor inhibited the ACh response. Inhibitor of Gi alpha subunit failed to affect the BK current, but inhibitor of Gi alpha and Gi beta gamma subunits showed a potent inhibition to these currents. Our findings provide the physiological evidence that mAChRs may locate in guinea pig VHCs II, and m2 mAChRs may play a dominant role in BK-type cholinergic inhibition. The activation of m2 mAChRs may stimulate Gi beta gamma-mediated excitation of AC/CAMP activities and lead to the phosphorylation of Ca2+ channels, resulting in the influx of Ca2+ and opening of the BK channel. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Guo, Chang-Kai; Wang, Yi; Zhou, Tao; Yu, Hong; Zhang, Wen-Juan; Kong, Wei-Jia] Huazhong Univ Sci & Technol, Tongji Med Coll, Union Hosp, Dept Otolaryngol, Wuhan 430022, Peoples R China.
RP Kong, WJ (reprint author), Huazhong Univ Sci & Technol, Tongji Med Coll, Union Hosp, Dept Otolaryngol, Wuhan 430022, Peoples R China.
EM entwjkong@yahoo.com.cn
FU Nature Science Foundation of China [30700934, 30730094, 30872865];
National Eleventh Five-Year Project for Scientific and Technological
Development of China [2007BAI18B13]
FX Funded by the Nature Science Foundation of China (Grant 30700934,
30730094 and 30872865), and the National Eleventh Five-Year Project for
Scientific and Technological Development of China (2007BAI18B13). The
authors declare that they have no competing financial interests.
CR Anderson AD, 1997, BRAIN RES, V778, P409, DOI 10.1016/S0006-8993(97)01121-9
ASCHER P, 1979, J PHYSIOL-LONDON, V295, P139
Belevych AE, 2000, J PHYSIOL-LONDON, V528, P279, DOI 10.1111/j.1469-7793.2000.00279.x
Belevych AE, 2001, J PHYSIOL-LONDON, V536, P677, DOI 10.1111/j.1469-7793.2001.00677.x
Brichta AM, 2000, J NEUROPHYSIOL, V83, P1224
CHEN JQ, 1995, SCIENCE, V268, P1166, DOI 10.1126/science.7761832
Cioffi JA, 2005, MOL BRAIN RES, V137, P89, DOI 10.1016/j.molbrainres.2005.02.024
Cioffi JA, 2003, ACTA OTO-LARYNGOL, V123, P1027, DOI 10.1080/00016480310000773
CLAPHAM DE, 1993, NATURE, V365, P403, DOI 10.1038/365403a0
Derbenev AV, 2005, J NEUROPHYSIOL, V94, P3134, DOI 10.1152/jn.00131.2005
ELGOYHEN AB, 1994, CELL, V79, P705, DOI 10.1016/0092-8674(94)90555-X
Elgoyhen AB, 2001, P NATL ACAD SCI USA, V98, P3501, DOI 10.1073/pnas.051622798
FEDERMAN AD, 1992, NATURE, V356, P159, DOI 10.1038/356159a0
FELDER CC, 1995, FASEB J, V9, P619
Glowatzki E, 2000, SCIENCE, V288, P2366, DOI 10.1126/science.288.5475.2366
GUTH PS, 1986, ACTA OTO-LARYNGOL, V102, P194, DOI 10.3109/00016488609108666
Guth PS, 1998, PROG NEUROBIOL, V54, P193, DOI 10.1016/S0301-0082(97)00068-3
Holt JC, 2003, J NEUROPHYSIOL, V90, P1526, DOI 10.1152/jn.00273.2002
Holt JC, 2001, HEARING RES, V152, P25, DOI 10.1016/S0378-5955(00)00225-2
Ishiyama A, 1997, AM J OTOL, V18, P648
Jagger DJ, 1999, PFLUG ARCH EUR J PHY, V437, P409, DOI 10.1007/s004240050795
JONES SVP, 1991, MOL PHARMACOL, V40, P242
Kong WJ, 2007, BRAIN RES, V1129, P110, DOI 10.1016/j.brainres.2006.10.043
Kong WJ, 2006, BRAIN RES, V1102, P103, DOI 10.1016/j.brainres.2006.04.107
Kong WJ, 2005, HEARING RES, V209, P1, DOI 10.1016/j.heares.2005.06.001
Krejci A, 2002, MOL PHARMACOL, V61, P1267, DOI 10.1124/mol.61.6.1267
Krejci A, 2004, PHYSIOL RES, V53, pS131
Li GQ, 2007, NEUROSCIENCE, V146, P384, DOI 10.1016/j.neuroscience.2007.02.019
McIntosh JM, 2005, J BIOL CHEM, V280, P30107, DOI 10.1074/jbc.M504102200
Molenaar P., 1980, PROGR PHARM, V3, P39
Oliver D, 2000, NEURON, V26, P595, DOI 10.1016/S0896-6273(00)81197-6
PRIGIONI I, 1983, BRAIN RES, V269, P83, DOI 10.1016/0006-8993(83)90964-2
SCARFONE E, 1991, CELL TISSUE RES, V266, P51, DOI 10.1007/BF00678710
Schweizer FE, 2009, J COMP NEUROL, V517, P134, DOI 10.1002/cne.22148
SHIGEMOTO T, 1991, J PHYSIOL-LONDON, V442, P669
STEINACKER A, 1988, HEARING RES, V35, P265, DOI 10.1016/0378-5955(88)90123-2
Sunahara RK, 1996, ANNU REV PHARMACOL, V36, P461
TANG WJ, 1991, SCIENCE, V254, P1500, DOI 10.1126/science.1962211
Verbitsky M, 2000, NEUROPHARMACOLOGY, V39, P2515, DOI 10.1016/S0028-3908(00)00124-6
Wackym PA, 2005, J VESTIBUL RES-EQUIL, V15, P11
Wackym PA, 2000, BRAIN RES, V859, P378, DOI 10.1016/S0006-8993(00)02007-2
Wackym PA, 1996, CELL BIOL INT, V20, P187, DOI 10.1006/cbir.1996.0023
Wersinger E, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013836
YOSHIDA N, 1994, BRAIN RES, V644, P90, DOI 10.1016/0006-8993(94)90351-4
Zhou XB, 2008, J BIOL CHEM, V283, P21036, DOI 10.1074/jbc.M800447200
NR 45
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2012
VL 285
IS 1-2
BP 13
EP 19
DI 10.1016/j.heares.2012.02.003
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 920WN
UT WOS:000302439600002
PM 22366501
ER
PT J
AU Bergevin, C
Fulcher, A
Richmond, S
Velenovsky, D
Lee, J
AF Bergevin, Christopher
Fulcher, Analydia
Richmond, Susan
Velenovsky, David
Lee, Jungmee
TI Interrelationships between spontaneous and low-level stimulus-frequency
otoacoustic emissions in humans
SO HEARING RESEARCH
LA English
DT Article
ID OTO-ACOUSTIC EMISSIONS; COHERENT REFLECTION; DISTORTION PRODUCTS;
NONHUMAN PRIMATE; EXTERNAL TONES; FINE-STRUCTURE; HUMAN EARS;
MICROSTRUCTURE; THRESHOLD; COCHLEA
AB It has been proposed that OAEs be classified not on the basis of the stimuli used to evoke them, but on the mechanisms that produce them (Shera and Guinan, 1999). One branch of this taxonomy focuses on a coherent reflection model and explicitly describes interrelationships between spontaneous emissions (SOAEs) and stimulus-frequency emissions (SFOAEs). The present study empirically examines SOAEs and SFOAEs from individual ears within the context of model predictions, using a low stimulus level (20 dB SPL) to evoke SFOAEs. Emissions were recorded from ears of normal-hearing young adults, both with and without prominent SOAE activity. When spontaneous activity was observed, SFOAEs demonstrated a localized increase about the SOAE peaks. The converse was not necessarily true though, i.e., robust SFOAEs could be measured where no SOAE peaks were observed. There was no significant difference in SFOAE phase-gradient delays between those with and without observable SOAE activity. However, delays were larger for a 20 dB SPL stimulus level than those previously reported for 40 dB SPL. The total amount of SFOAE phase accumulation occurring between adjacent SOAE peaks tended to cluster about an integral number of cycles. Overall, the present data appear congruous with predictions stemming from the coherent reflection model and support the notion that such comparisons ideally are made with emissions evoked using relatively lower stimulus levels. Published by Elsevier B.V.
C1 [Bergevin, Christopher] Columbia Univ, Dept Otolaryngol Head & Neck Surg, New York, NY 10032 USA.
[Fulcher, Analydia; Richmond, Susan; Velenovsky, David] Univ Arizona, Dept Speech Language & Hearing Sci, Tucson, AZ 85705 USA.
[Lee, Jungmee] Northwestern Univ, Roxelyn & Richard Pepper Dept Commun Sci & Disord, Evanston, IL 60208 USA.
RP Bergevin, C (reprint author), Columbia Univ, Dept Otolaryngol Head & Neck Surg, 630 W 168th St P&S 11-452, New York, NY 10032 USA.
EM dolemitecb@gmail.com
FU Howard Hughes Medical Inst. [52003749]; National Science Foundation Div.
of Mathematical Sciences [0602173]; American Speech-Language-Hearing
Foundation
FX Comments from Karolina Charaziak, James Dewey, Radha Kalluri, Glenis
Long, and the reviewers on the manuscript are greatly appreciated.
Christopher Shera in particular provided valuable constructive/critical
feedback. Financial support came from the Howard Hughes Medical Inst.
(52003749) and National Science Foundation Div. of Mathematical Sciences
(0602173) and the American Speech-Language-Hearing Foundation New
Century Scholars Research Grant (awarded to the last author). We would
like to thank Benjamin Smith for technical support.
CR Bentsen T, 2011, J ACOUST SOC AM, V129, P3797, DOI 10.1121/1.3575596
Bergevin C, 2010, J ACOUST SOC AM, V127, P2398, DOI 10.1121/1.3303977
Bergevin C, 2011, JARO-J ASSOC RES OTO, V12, P203, DOI 10.1007/s10162-010-0253-0
Bergevin C, 2010, BIOPHYS J, V99, P1064, DOI 10.1016/j.bpj.2010.06.012
Bergevin C., 2011, WHAT FIRE IS MINE EA
Bergevin C, 2007, THESIS MIT
BIALEK W, 1984, PHYS LETT A, V104, P173, DOI 10.1016/0375-9601(84)90371-2
BURNS EM, 1984, HEARING RES, V16, P271, DOI 10.1016/0378-5955(84)90116-3
Burns EM, 2009, J ACOUST SOC AM, V125, P3166, DOI 10.1121/1.3097768
BURNS EM, 1992, J ACOUST SOC AM, V91, P1571, DOI 10.1121/1.402438
Chiappe ME, 2007, J NEUROSCI, V27, P11978, DOI 10.1523/JNEUROSCI.3679-07.2007
Choi YS, 2008, J ACOUST SOC AM, V123, P2651, DOI 10.1121/1.2902184
Cooper N., 2011, WHAT FIRE IS MINE EA
ELLIOTT E, 1958, NATURE, V181, P1076, DOI 10.1038/1811076a0
Epp B, 2010, J ACOUST SOC AM, V128, P1870, DOI 10.1121/1.3479755
Goodman SS, 2003, HEARING RES, V183, P7, DOI 10.1016/S0378-5955(03)00193-X
Joris PX, 2011, P NATL ACAD SCI USA, V108, P17516, DOI 10.1073/pnas.1105867108
Kalluri R, 2007, J ACOUST SOC AM, V122, P3562, DOI 10.1121/1.2793604
Kalluri R, 2007, J ACOUST SOC AM, V121, P2097, DOI 10.1121/1.2435981
Keefe DH, 2008, J ACOUST SOC AM, V123, P1479, DOI 10.1121/1.2828209
KEMP DT, 1980, HEARING RES, V2, P533, DOI 10.1016/0378-5955(80)90091-X
KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104
KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222
KOPPL C, 1994, HEARING RES, V72, P159, DOI 10.1016/0378-5955(94)90215-1
Koppl C., 1995, ADV HEARING RES
KULAWIEC JT, 1995, EAR HEARING, V16, P515
Lee J, 2012, HEARING RES, V283, P24, DOI 10.1016/j.heares.2011.11.011
Lineton B, 2009, J ACOUST SOC AM, V125, P1558, DOI 10.1121/1.3068452
LONG GR, 1988, J ACOUST SOC AM, V84, P1343, DOI 10.1121/1.396633
LONG GR, 1988, HEARING RES, V36, P125, DOI 10.1016/0378-5955(88)90055-X
Long GR, 1997, J ACOUST SOC AM, V102, P2831, DOI 10.1121/1.420339
LONSBURYMARTIN BL, 1988, HEARING RES, V33, P69, DOI 10.1016/0378-5955(88)90021-4
Manley GA, 2001, J NEUROPHYSIOL, V86, P541
MARTIN GK, 1988, HEARING RES, V33, P49, DOI 10.1016/0378-5955(88)90020-2
MCFADDEN D, 1984, J ACOUST SOC AM, V76, P443, DOI 10.1121/1.391585
MOULIN A, 1993, HEARING RES, V65, P216, DOI 10.1016/0378-5955(93)90215-M
MURPHY WJ, 1995, J ACOUST SOC AM, V97, P3711, DOI 10.1121/1.412388
NEELY ST, 1988, J ACOUST SOC AM, V83, P652, DOI 10.1121/1.396542
PEAKE WT, 1980, J ACOUST SOC AM, V67, P1736, DOI 10.1121/1.384300
PROBST R, 1986, HEARING RES, V21, P261, DOI 10.1016/0378-5955(86)90224-8
PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897
Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265
Schairer KS, 2006, J ACOUST SOC AM, V120, P901, DOI 10.1121/1.2214147
Shera CA, 2003, J ACOUST SOC AM, V113, P2762, DOI 10.1121/1.1557211
SHERA CA, 1993, J ACOUST SOC AM, V93, P3333, DOI 10.1121/1.405717
Shera CA, 2003, J ACOUST SOC AM, V114, P244, DOI 10.1121/1.1575750
Shera CA, 2002, P NATL ACAD SCI USA, V99, P3318, DOI 10.1073/pnas.032675099
Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948
Siegel JH, 2005, J ACOUST SOC AM, V118, P2434, DOI 10.1121/1.2005867
Sisto R, 2007, J ACOUST SOC AM, V122, P3554, DOI 10.1121/1.2799498
Sisto R, 2007, J ACOUST SOC AM, V122, P2183, DOI 10.1121/1.2769981
Stewart CE, 2000, P NATL ACAD SCI USA, V97, P454, DOI 10.1073/pnas.97.1.454
Talmadge C., 1993, BIOPHYSICS HAIR CELL, P25
Talmadge CL, 2000, J ACOUST SOC AM, V108, P2911, DOI 10.1121/1.1321012
TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V
Talmadge CL, 1998, J ACOUST SOC AM, V104, P1517, DOI 10.1121/1.424364
THOMAS IB, 1975, J ACOUST SOC AM, V57, pS26, DOI 10.1121/1.1995148
van Dijk P, 2011, JARO-J ASSOC RES OTO, V12, P13, DOI 10.1007/s10162-010-0241-4
vanHengel PWJ, 1996, J ACOUST SOC AM, V99, P3566, DOI 10.1121/1.414955
WHITEHEAD ML, 1991, HEARING RES, V53, P269, DOI 10.1016/0378-5955(91)90060-M
WHITEHEAD ML, 1993, SCAND AUDIOL, V22, P3, DOI 10.3109/01050399309046012
ZUREK PM, 1981, J ACOUST SOC AM, V69, P514, DOI 10.1121/1.385481
ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320
ZWICKER E, 1984, J ACOUST SOC AM, V75, P1148, DOI 10.1121/1.390763
ZWICKER E, 1990, ADV AUDIOL, V7, P63
NR 65
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2012
VL 285
IS 1-2
BP 20
EP 28
DI 10.1016/j.heares.2012.02.001
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 920WN
UT WOS:000302439600003
PM 22509533
ER
PT J
AU Ewert, DL
Lu, JZ
Li, W
Du, XP
Floyd, R
Kopke, R
AF Ewert, Donald L.
Lu, Jianzhong
Li, Wei
Du, Xiaoping
Floyd, Robert
Kopke, Richard
TI Antioxidant treatment reduces blast-induced cochlear damage and hearing
loss
SO HEARING RESEARCH
LA English
DT Article
ID TRAUMATIC BRAIN-INJURY; IMPULSE NOISE BLAST; OXIDATIVE STRESS;
TYMPANIC-MEMBRANE; N-ACETYLCYSTEINE; AUDITORY-SYSTEM; OVERPRESSURE;
EXPOSURE; NXY-059; MODEL
AB Exposure to blast overpressure has become one of the hazards of both military and civilian life in many parts of the world due to war and terrorist activity. Auditory damage is one of the primary sequela of blast trauma, affecting immediate situational awareness and causing permanent hearing loss. Protecting against blast exposure is limited by the inability to anticipate the timing of these exposures, particularly those caused by terrorists. Therefore a therapeutic regimen is desirable that is able to ameliorate auditory damage when administered after a blast exposure has occurred. The purpose of this study was to determine if administration of a combination of antioxidants 2,4-disulfonyl alpha-phenyl tertiary butyl nitrone (HPN-07) and N-acetylcysteine (NAC) beginning 1 h after blast exposure could reduce both temporary and permanent hearing loss. To this end, a blast simulator was developed and the operational conditions established for exposing rats to blast overpressures comparable to those encountered in an open-field blast of 14 pounds per square inch (psi). This blast model produced reproducible blast overpressures that resulted in physiological and physical damage to the auditory system that was proportional to the number and amplitude of the blasts. After exposure to 3 consecutive 14 psi blasts 100% of anesthetized rats had permanent hearing loss as determined at 21 days post exposure by auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) testing. Animals treated with HPN-07 and NAC after blast exposure showed a significant reduction in ABR threshold shifts and DPOAE level shifts at 2-16 kHz with significant reduction in inner hair cell (IHC) and outer hair cell (OHC) loss across the 5-36 kHz region of the cochlea compared with control animals.
The time course of changes in the auditory system was documented at 3 h, 24 h, 7 day and 21 day after blast exposure. At 3 h after blast exposure the auditory brainstem response (ABR) threshold shifts were elevated by 60 dB in both treated and control groups. A partial recovery of to 35 dB was observed at 24 h in the controls, indicative of a temporary threshold shift (ITS) and there was essentially no further recovery by 21 days representing a permanent threshold shift (PTS) of about 30 dB. Antioxidant treatment increased the amount of both us and PTS recovery relative to controls by 10 and 20 dB respectively. Distortion product otoacoustic emission (DPOAE) reached a maximum level shift of 25-30 dB measured in both control and treated groups at 3 h after blast exposure. These levels did not change by day 21 in the control group but in the treatment group the level shifts began to decline at 24 h until by day 21 they were 10-20 dB below that of the controls. Loss of cochlear hair cells measured at 21 day after blast exposure was mostly in the outer hair cells (OHC) and broadly distributed across the basilar membrane, consistent with the distribution of loss of frequency responses as measured by ABR and DPOAE analysis and typical of blast-induced damage. OHC loss progressively increased after blast exposure reaching an average loss of 32% in the control group and 10% in the treated group at 21 days. These findings provide the first evidence that a combination of antioxidants, HPN-07 and NAC, can both enhance ITS recovery and prevent PTS by reducing damage to the mechanical and neural components of the auditory system when administered shortly after blast exposure. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Ewert, Donald L.; Lu, Jianzhong; Li, Wei; Du, Xiaoping; Kopke, Richard] Hough Ear Inst, Oklahoma City, OK 73112 USA.
[Floyd, Robert; Kopke, Richard] Oklahoma Med Res Fdn, Oklahoma City, OK 73104 USA.
[Kopke, Richard] Univ Oklahoma, Hlth Sci Ctr, Dept Physiol, Oklahoma City, OK 73014 USA.
[Kopke, Richard] Univ Oklahoma, Hlth Sci Ctr, Dept Otolaryngol, Oklahoma City, OK 73014 USA.
RP Kopke, R (reprint author), Hough Ear Inst, 3400 NW 56th St, Oklahoma City, OK 73112 USA.
EM dewert@houghear.org; jlu@houghear.org; weili@houghear.org;
Xiaoping.du@houghear.org; robert-floyd@omrf.org; rkopke@houghear.org
FU US Department of Navy, Office of Naval Research [N00014-09-1-0999]
FX The authors appreciate the efforts of Joel Young in the design and
construction of the blast simulator and of Dr. Ning Hu and Dr. Charles
Stewart and Weihua Cheng for their outstanding technical assistance.
This research was supported by grant N00014-09-1-0999 from the US
Department of Navy, Office of Naval Research.
CR Abi-Hachem Ralph N, 2010, Recent Pat CNS Drug Discov, V5, P147
Cave KM, 2007, MIL MED, V172, P726
Cernak I, 2010, J CEREBR BLOOD F MET, V30, P255, DOI 10.1038/jcbfm.2009.203
Chavko M, 2009, SHOCK, V32, P325, DOI 10.1097/SHK.0b013e31819c38f1
Chen G.Q, 2008, MEDIAT INFLAMM, P1
Cheng JM, 2010, J NEUROL SCI, V294, P23, DOI 10.1016/j.jns.2010.04.010
Choi CH, 2008, FREE RADICAL BIO MED, V44, P1772, DOI 10.1016/j.freeradbiomed.2008.02.005
Clausen F, 2008, J NEUROTRAUM, V25, P1449, DOI 10.1089/neu.2008.0585
Elsayed NM, 2000, TOXICOLOGY, V155, P91, DOI 10.1016/S0300-483X(00)00281-X
Elsayed NM, 2003, TOXICOLOGY, V189, P63, DOI 10.1016/S0300-483X(03)00153-7
Fausti SA, 2009, J REHABIL RES DEV, V46, P797, DOI 10.1682/JRRD.2008.09.0118
Floyd R. A., 2008, FREE RADIC BIOL MED, V15, P1361
GARTH RJN, 1994, J LARYNGOL OTOL, V108, P925
Gondusky JS, 2005, MIL MED, V170, P546
Haase GM, 2011, AM J OTOLARYNG, V32, P55, DOI 10.1016/j.amjoto.2009.09.002
HAMERNIK RP, 1987, J ACOUST SOC AM, V81, P1118, DOI 10.1121/1.394632
HAMERNIK RP, 1991, J ACOUST SOC AM, V90, P197, DOI 10.1121/1.402344
Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3
HENRY WR, 1995, HEARING RES, V84, P81, DOI 10.1016/0378-5955(95)00014-U
Hoffer M.E., 2010, NEUROTRAUMA LETT
JAFFIN JH, 1987, J TRAUMA, V27, P349, DOI 10.1097/00005373-198704000-00002
JENSEN JH, 1993, ACTA OTO-LARYNGOL, V113, P62, DOI 10.3109/00016489309135768
Kopke R, 2005, ACTA OTO-LARYNGOL, V125, P235, DOI 10.1080/00016480410023038
Kopke RD, 2007, HEARING RES, V226, P114, DOI 10.1016/j.heares.2006.10.008
Kujawa S.G., 2009, J NEUROSCI, V11, P14077
LONG JB, 2008, J NEUROTRAUM, V26, P827
Lyden PD, 2007, STROKE, V38, P2262, DOI 10.1161/STROKEAHA.106.472746
Maj R.H., 1989, ANN OTO RHINOL LARYN, V98, P9
Nageris Ben I., 2008, Journal of Basic and Clinical Physiology and Pharmacology, V19, P185
Nilsson D, 2007, J CLIN PHARMACOL, V47, P264, DOI 10.1177/0091270006293752
Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846
Patterson JH, 1997, TOXICOLOGY, V121, P29, DOI 10.1016/S0300-483X(97)03653-6
PRICE GR, 1989, J ACOUST SOC AM, V85, P1245, DOI 10.1121/1.397455
Richmond DR, 1989, ANN OTO RHINOL LARYN, V140, P35
Roberto M, 1989, Ann Otol Rhinol Laryngol Suppl, V140, P23
Svetlov SI, 2010, J TRAUMA, V69, P795, DOI 10.1097/TA.0b013e3181bbd885
Wu AG, 2006, EXP NEUROL, V197, P309, DOI 10.1016/j.expneurol.2005.09.004
Xiong Y, 1999, J NEUROTRAUM, V16, P1067, DOI 10.1089/neu.1999.16.1067
Xydakis MS, 2007, NEW ENGL J MED, V357, P830, DOI 10.1056/NEJMc076071
YLIKOSKI J, 1987, ACTA OTO-LARYNGOL, V103, P415
NR 40
TC 17
Z9 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2012
VL 285
IS 1-2
BP 29
EP 39
DI 10.1016/j.heares.2012.01.013
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 920WN
UT WOS:000302439600004
PM 22326291
ER
PT J
AU Grose, JH
Buss, E
Hall, JW
AF Grose, John H.
Buss, Emily
Hall, Joseph W., III
TI Binaural beat salience
SO HEARING RESEARCH
LA English
DT Article
ID HIGH-FREQUENCIES; DISPARITIES; CARRIERS; LIMITS; TONES
AB Previous studies of binaural beats have noted individual variability and response lability, but little attention has been paid to the salience of the binaural beat percept. The purpose of this study was to gauge the strength of the binaural beat percept by matching its salience to that of sinusoidal amplitude modulation (SAM), and to then compare rate discrimination for the two types of fluctuation. Rate discrimination was measured for standard rates of 4, 8, 16, and 32 Hz - all in the 500-Hz carrier region. Twelve normal-hearing adults participated in this study. The results indicated that discrimination acuity for binaural beats is similar to that for SAM tones whose depths of modulation have been adjusted to provide equivalent modulation salience. The matched-salience SAM tones had relatively shallow depths of modulation, suggesting that the perceptual strength of binaural beats is relatively weak, although all listeners perceived them. The Weber fraction for detection of an increase in binaural beat rate is roughly constant across beat rates, at least for rates above 4 Hz, as is rate discrimination for SAM tones. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Grose, John H.; Buss, Emily; Hall, Joseph W., III] Univ N Carolina, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC 27519 USA.
RP Grose, JH (reprint author), UNC CH, Dept OHNS, G190 Phys Off Bldg,CB 7070,170 Manning Dr, Chapel Hill, NC 27599 USA.
EM jhg@med.unc.edu
FU NIH NIDCD [R01DC001507]
FX The assistance of Sara Mamo in data collection is gratefully
acknowledged. This work was supported by NIH NIDCD R01DC001507.
CR Akeroyd MA, 2010, J ACOUST SOC AM, V128, P3301, DOI 10.1121/1.3505122
Bernstein LR, 1996, J ACOUST SOC AM, V99, P1670, DOI 10.1121/1.414689
Dietz M, 2008, BRAIN RES, V1220, P234, DOI 10.1016/j.brainres.2007.09.026
Fitzpatrick DC, 2009, JARO-J ASSOC RES OTO, V10, P579, DOI 10.1007/s10162-009-0177-8
FRITZE W, 1985, ARCH OTO-RHINO-LARYN, V242, P301, DOI 10.1007/BF00453554
Grantham W., 1978, J ACOUST SOC AM, V63, P511
GROEN J J, 1964, Acta Otolaryngol, V57, P224, DOI 10.3109/00016486409137078
GU X, 1995, J ACOUST SOC AM, V97, P701, DOI 10.1121/1.412294
He NJ, 2008, J ACOUST SOC AM, V124, P3841, DOI 10.1121/1.2998779
KUWADA S, 1979, SCIENCE, V206, P586, DOI 10.1126/science.493964
LEE JM, 1994, J ACOUST SOC AM, V96, P2140, DOI 10.1121/1.410156
LICKLIDER JCR, 1950, J ACOUST SOC AM, V22, P468, DOI 10.1121/1.1906629
MCFADDEN D, 1975, SCIENCE, V190, P394, DOI 10.1126/science.1179219
PERROTT DR, 1969, J ACOUST SOC AM, V46, P1477, DOI 10.1121/1.1911890
PERROTT DR, 1970, J ACOUST SOC AM, V47, P663, DOI 10.1121/1.1911946
PERROTT DR, 1977, J ACOUST SOC AM, V61, P1288, DOI 10.1121/1.381430
RUTSCHMA.J, 1965, J ACOUST SOC AM, V38, P759, DOI 10.1121/1.1909802
Schwarz DWF, 2005, CLIN NEUROPHYSIOL, V116, P658, DOI 10.1016/j.clinph.2004.09.014
Siveke I, 2008, J NEUROSCI, V28, P2043, DOI 10.1523/JNEUROSCI.4488-07.2008
Stewart GW, 1917, PHYS REV, V9, P502, DOI 10.1103/PhysRev.9.502
TOBIAS JV, 1963, J ACOUST SOC AM, V35, P1442, DOI 10.1121/1.1918710
Tobias J.V., 1965, INT AUDIOL, V4, P179, DOI 10.3109/05384916509074132
Tobias J.V., 1972, FDN MODERN AUDITORY, V2, P463
Wever E. G., 1949, THEORY HEARING
NR 24
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2012
VL 285
IS 1-2
BP 40
EP 45
DI 10.1016/j.heares.2012.01.012
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 920WN
UT WOS:000302439600005
PM 22326292
ER
PT J
AU Hughes, ML
Castioni, EE
Goehring, JL
Baudhuin, JL
AF Hughes, Michelle L.
Castioni, Erin E.
Goehring, Jenny L.
Baudhuin, Jacquelyn L.
TI Temporal response properties of the auditory nerve: Data from human
cochlear-implant recipients
SO HEARING RESEARCH
LA English
DT Article
ID ELECTRIC PULSE TRAINS; STIMULATION RATE; SPEECH RECOGNITION; NEURAL
RESPONSE; C-LEVELS; FIBERS; CAT; REFRACTORINESS; SYSTEM; USERS
AB The primary goal of this study was to characterize the variability in auditory-nerve temporal response patterns obtained with the electrically evoked compound action potential (ECAP) within and across a relatively large group of cochlear-implant recipients. ECAPs were recorded in response to each of 21 pulses in a pulse train for five rates (900, 1200, 1800, 2400, and 3500 pps) and three cochlear regions (basal, middle, and apical). An alternating amplitude pattern was typically observed across the pulse train for slower rates, reflecting refractory properties of individual nerve fibers. For faster rates, the alternation ceased and overall amplitudes were substantially lower relative to the first pulse in the train, reflecting cross-fiber desynchronization. The following specific parameters were examined: (1) the rate at which the alternating pattern ceased (termed stochastic rate), (2) the alternation depth and the rate at which the maximum alternation occurred, and (3) the average normalized ECAP amplitude across the pulse train (measure of overall adaptation/desynchronization). Data from 29 ears showed that stochastic rates for the group spanned the entire range of rates tested. The majority of subjects (79%) had different stochastic rates across the three cochlear regions. The stochastic rate occurred most frequently at 2400 pps for basal and middle electrodes, and at 3500 pps for apical electrodes. Stimulus level was significantly correlated with stochastic rate, where higher levels yielded faster stochastic rates. The maximum alternation depth averaged 19% of the amplitude for the first pulse. Maximum alternation occurred most often at 1800 pps for basal and apical electrodes, and at 1200 pps for middle electrodes. These differences suggest some independence between alternation depth and stochastic rate. Finally, the overall amount of adaptation or desynchronization ranged from 63% (for 900 pps) to 23% (for 3500 pps) of the amplitude for the first pulse. Differences in temporal response properties across the cochlea within subjects may have implications for developing new speech-processing strategies that employ varied rates across the array. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Hughes, Michelle L.; Castioni, Erin E.; Goehring, Jenny L.; Baudhuin, Jacquelyn L.] Boys Town Natl Res Hosp, Lied Learning & Technol Ctr, Omaha, NE 68131 USA.
RP Hughes, ML (reprint author), Boys Town Natl Res Hosp, Lied Learning & Technol Ctr, 425 N 30th St, Omaha, NE 68131 USA.
EM michelle.hughes@boystown.org
FU NIH/NIDCD [R01 DC009595, T35 DC008757, P30 DC04662]
FX This research was supported by NIH/NIDCDR01 DC009595,T35 DC008757, and
P30 DC04662. The content of this project is solely the responsibility of
the authors and does not necessarily represent the official views of the
National Institute on Deafness and Other Communication Disorders or the
National Institutes of Health. The authors thank Tom Creutz for
data-analysis programs; Leo Litvak (Advanced Bionics) for BEDCS support;
and Lisa Stille, Katelyn Rosemond, Donna Neff, Adam Goulson, Alex
Helbig, and Gina Diaz for assistance with data collection. We also thank
two anonymous reviewers for valuable feedback on an earlier version of
this manuscript.
CR Abbas PJ, 1999, EAR HEARING, V20, P45, DOI 10.1097/00003446-199902000-00005
ARNESEN AR, 1978, J COMP NEUROL, V178, P661, DOI 10.1002/cne.901780405
Botros A, 2010, EAR HEARING, V31, P380, DOI 10.1097/AUD.0b013e3181cb41aa
Brill SM, 1997, AM J OTOL, V18, pS104
Finley C., 1997, SPEECH PROCESSORS AU
Friesen LM, 2005, AUDIOL NEURO-OTOL, V10, P169, DOI 10.1159/000084027
Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4
Fu QJ, 2002, NEUROREPORT, V13, P1635, DOI 10.1097/00001756-200209160-00013
Hay-McCutcheon MJ, 2005, J ACOUST SOC AM, V118, P2444, DOI 10.1121/1.2035593
Hochmair Ingeborg, 2006, Trends Amplif, V10, P201, DOI 10.1177/1084713806296720
Holden LK, 2002, EAR HEARING, V23, P463, DOI 10.1097/01.AUD.0000034718.53595.99
Holstad BA, 2009, EAR HEARING, V30, P115, DOI 10.1097/AUD.0b013e3181906c0f
Hughes ML, 2009, J ACOUST SOC AM, V125, P247, DOI 10.1121/1.3035842
Javel E, 2000, HEARING RES, V140, P45, DOI 10.1016/S0378-5955(99)00186-0
Kiefer J., 2000, COCHLEAR IMPLANTS
LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677
LIBERMAN MC, 1980, HEARING RES, V3, P45, DOI 10.1016/0378-5955(80)90007-6
Litvak LM, 2003, J ACOUST SOC AM, V114, P2066, DOI 10.1121/1.1612492
Loizou PC, 2000, J ACOUST SOC AM, V108, P790, DOI 10.1121/1.429612
Luo X, 2008, EAR HEARING, V29, P957, DOI 10.1097/AUD.0b013e3181888f61
Matsuoka AJ, 2001, IEEE T BIO-MED ENG, V48, P416, DOI 10.1109/10.915706
Miller CA, 2008, JARO-J ASSOC RES OTO, V9, P122, DOI 10.1007/s10162-007-0108-5
Miller CA, 2001, JARO, V2, P216
Mino H, 2004, IEEE T BIO-MED ENG, V51, P13, DOI 10.1109/TBME.2003.820383
Mino H, 2006, IEEE T NEUR SYS REH, V14, P273, DOI 10.1109/TNSRE.2006.881590
Morsnowski A, 2006, AUDIOL NEURO-OTOL, V11, P389, DOI 10.1159/000095966
MULLER M, 1991, HEARING RES, V57, P63, DOI 10.1016/0378-5955(91)90075-K
Ng M., 2000, COCHLEAR IMPLANTS PR
Potts LG, 2007, EAR HEARING, V28, P495, DOI 10.1097/AUD.0b013e31806dc16e
RANCK JB, 1975, BRAIN RES, V98, P417, DOI 10.1016/0006-8993(75)90364-9
RATTAY F, 1986, IEEE T BIO-MED ENG, V33, P974, DOI 10.1109/TBME.1986.325670
RHODE WS, 1985, HEARING RES, V18, P159, DOI 10.1016/0378-5955(85)90008-5
Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3
Sagi E, 2009, J SPEECH LANG HEAR R, V52, P385, DOI [10.1044/1092-4388(2008/07-0219), 10.1044/1092-4388(2008/07-0219]
TYKOCINSKI M, 1995, HEARING RES, V88, P124, DOI 10.1016/0378-5955(95)00108-G
Vandali AE, 2000, EAR HEARING, V21, P608, DOI 10.1097/00003446-200012000-00008
van Dijk B, 2007, EAR HEARING, V28, P558, DOI 10.1097/AUD.0b013e31806dc1d1
Wilson B. S., 1997, AM J OTOL, V18, P30
WILSON BS, 1995, AM J OTOL, V16, P669
Woo J, 2010, JARO-J ASSOC RES OTO, V11, P283, DOI 10.1007/s10162-009-0199-2
Zhang F, 2007, JARO-J ASSOC RES OTO, V8, P356, DOI 10.1007/s10162-007-0086-7
NR 41
TC 7
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2012
VL 285
IS 1-2
BP 46
EP 57
DI 10.1016/j.heares.2012.01.010
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 920WN
UT WOS:000302439600006
PM 22326590
ER
PT J
AU Kilian, EC
Lutman, ME
Montelpare, WJ
Thyer, NJ
AF Kilian, Edward C.
Lutman, Mark E.
Montelpare, William J.
Thyer, Nicholas J.
TI A mechanism for simultaneous suppression of tone burst-evoked
otoacoustic emissions
SO HEARING RESEARCH
LA English
DT Article
ID NONLINEAR TEMPORAL INTERACTIONS; BASILAR-MEMBRANE; ACOUSTIC EMISSIONS;
2-TONE SUPPRESSION; COCHLEAR MECHANICS; AUDITORY FILTER; NORMAL-HEARING;
FINE-STRUCTURE; GUINEA-PIG; HUMAN EARS
AB Tone burst-evoked otoacoustic emission (TBOAE) components in response to a 1 kHz tone burst are suppressed by the simultaneous presence of tone bursts at higher frequencies. To date, the underlying cause of this "simultaneous suppression" of TBOAEs is unclear. This paper describes a potential mechanism based on local nonlinear interactions between basilar membrane (BM) travelling waves, and tests the extent to which it is able to account for this specific suppression phenomenon. A simple mathematical model based on local nonlinear interactions was developed, and its predictions for a range of tone burst pairs were compared to corresponding TBOAE suppression data recorded from fourteen normally hearing human ears at a level of 60 dB p.e. SPL Model predictions and mean TBOAE suppression data showed close agreement for all pairs of tone bursts. These results suggest that simultaneous suppression of TBOAEs can be explained solely in terms of the local nonlinear interaction-based mechanism. However, the involvement of other mechanisms, involving components generated at places basal to their characteristic place along the BM, cannot be excluded. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Kilian, Edward C.; Montelpare, William J.; Thyer, Nicholas J.] Univ Leeds, Sch Healthcare, Acad Unit Clin & Rehabil Sci, Leeds LS2 9UT, W Yorkshire, England.
[Lutman, Mark E.] Univ Southampton, Inst Sound & Vibrat Res, Southampton SO9 5NH, Hants, England.
RP Kilian, EC (reprint author), Univ Leeds, Sch Healthcare, Acad Unit Clin & Rehabil Sci, Woodhouse Lane, Leeds LS2 9UT, W Yorkshire, England.
EM e.killan@leeds.ac.uk
CR Avan P, 1997, J ACOUST SOC AM, V101, P2771, DOI 10.1121/1.418564
BRASS D, 1993, J ACOUST SOC AM, V93, P920, DOI 10.1121/1.405453
Carvalho S, 2003, HEARING RES, V175, P215, DOI 10.1016/S0378-5955(02)00745-1
Cooper NP, 1996, AUDIT NEUROSCI, V3, P123
Epstein M, 2005, J ACOUST SOC AM, V117, P263, DOI 10.1121/1.1830670
Goodman SS, 2003, HEARING RES, V183, P7, DOI 10.1016/S0378-5955(03)00193-X
Goodman SS, 2009, J ACOUST SOC AM, V125, P1014, DOI 10.1121/1.3056566
Hall J., 2000, HDB OTOACOUSTIC EMIS
Harte JM, 2005, HEARING RES, V207, P99, DOI 10.1016/j.heares.2005.04.008
Irino T, 1997, J ACOUST SOC AM, V101, P412, DOI 10.1121/1.417975
Irino T, 2001, J ACOUST SOC AM, V109, P2008, DOI 10.1121/1.1367253
Irino T, 2006, IEEE T AUDIO SPEECH, V14, P2222, DOI 10.1109/TASL.2006.874669
Jedrzejczak WW, 2008, HEARING RES, V235, P80, DOI 10.1016/j.heares.2007.10.005
Kalluri R, 2007, J ACOUST SOC AM, V121, P2097, DOI 10.1121/1.2435981
Kapadia S, 2001, BRIT J AUDIOL, V35, P103
Kapadia S, 2000, HEARING RES, V146, P89, DOI 10.1016/S0378-5955(00)00102-7
Kapadia S, 2000, HEARING RES, V146, P101, DOI 10.1016/S0378-5955(00)00103-9
Keefe DH, 2008, J ACOUST SOC AM, V123, P1479, DOI 10.1121/1.2828209
KEMP DT, 1980, HEARING RES, V2, P213, DOI 10.1016/0378-5955(80)90059-3
Killan EC, 2006, HEARING RES, V212, P65, DOI 10.1016/j.heares.2005.10.010
Kolston PJ, 2000, HEARING RES, V145, P25, DOI 10.1016/S0378-5955(00)00067-8
KULAWIEC JT, 1995, EAR HEARING, V16, P515
Lineton B, 2006, HEARING RES, V219, P24, DOI 10.1016/j.heares.2006.05.005
Lineton B, 2003, J ACOUST SOC AM, V114, P871, DOI 10.1121/1.1582437
Murnane Owen D, 2003, J Am Acad Audiol, V14, P525, DOI 10.3766/jaaa.14.9.8
NEELY ST, 1986, J ACOUST SOC AM, V79, P1472, DOI 10.1121/1.393674
NORTON SJ, 1987, J ACOUST SOC AM, V81, P1860, DOI 10.1121/1.394750
Notaro G, 2007, J ACOUST SOC AM, V122, P3576, DOI 10.1121/1.2799924
Nuttall AL, 1996, J ACOUST SOC AM, V99, P1556, DOI 10.1121/1.414732
Prieve BA, 1996, J ACOUST SOC AM, V99, P3077, DOI 10.1121/1.414794
PROBST R, 1986, HEARING RES, V21, P261, DOI 10.1016/0378-5955(86)90224-8
Rhode WS, 2000, J ACOUST SOC AM, V107, P3317, DOI 10.1121/1.429404
Robinette M.S., 2002, OTOACOUSTIC EMISSION
RUTTEN WLC, 1980, HEARING RES, V2, P263, DOI 10.1016/0378-5955(80)90062-3
Shera CA, 2004, EAR HEARING, V25, P86, DOI 10.1097/01.AUD.0000121200.90211.83
Siegel JH, 2005, J ACOUST SOC AM, V118, P2434, DOI 10.1121/1.2005867
Sisto R, 2008, J ACOUST SOC AM, V124, P2995, DOI 10.1121/1.2990711
Talmadge CL, 2000, J ACOUST SOC AM, V108, P2911, DOI 10.1121/1.1321012
TAVARTKILADZE GA, 1994, BRIT J AUDIOL, V28, P193, DOI 10.3109/03005369409086568
WILSON JP, 1980, HEARING RES, V2, P233, DOI 10.1016/0378-5955(80)90060-X
Withnell RH, 2008, J ACOUST SOC AM, V123, P212, DOI 10.1121/1.2804635
Withnell R.H., 1998, J ACOUST SOC AM, V105, P782
XU L, 1994, HEARING RES, V74, P173
Yates GK, 1999, HEARING RES, V136, P49, DOI 10.1016/S0378-5955(99)00108-2
Yoshikawa H, 2000, HEARING RES, V148, P95, DOI 10.1016/S0378-5955(00)00144-1
Zettner EM, 2003, J ACOUST SOC AM, V113, P2031, DOI 10.1121/1.1560191
ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320
NR 47
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2012
VL 285
IS 1-2
BP 58
EP 64
DI 10.1016/j.heares.2012.01.008
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 920WN
UT WOS:000302439600007
ER
PT J
AU Guest, M
Boggess, M
Attia, J
AF Guest, Maya
Boggess, May
Attia, John
TI Relative risk of elevated hearing threshold compared to ISO1999
normative populations for Royal Australian Air Force male personnel
SO HEARING RESEARCH
LA English
DT Article
ID NUTRITION EXAMINATION SURVEY; OCCUPATIONAL NOISE EXPOSURE; F-111
MAINTENANCE WORKERS; SHOAMP GENERAL HEALTH; AUDIOMETRIC NOTCH;
ADULT-POPULATION; NATIONAL-HEALTH; IMPAIRMENT; REGRESSION; AGE
AB Objective: This paper introduces a new method to calculate relative risks of elevated hearing thresholds, at various ages and frequencies, between a study population and ISO1999:2003: Annex A Screened, Annex B Unscreened and ISO1999 Section 5.3 adjustment for noise exposure using Annex A Screened data. We demonstrate this method on a study population of male Royal Australian Air Force personnel.
Study Design: Using a retrospective cohort design, hearing thresholds were assessed in 583 F-111 aircraft maintenance personnel, 377 technical-trade comparisons and 492 non-technical comparisons using pure-tone audiometry. A quantile regression model was used determine whether an association exists between median hearing thresholds and F-111 maintenance, adjusting for possible confounders. The new method involves using quantile regression models with bootstrapped standard errors to estimate percentiles for the study population and thus determine the probability of a greater than 25 dB hearing threshold. This was done for the three ISO datasets as follows; for the ISO1999 Annex A screened population data the formula provided allows the calculation of these probabilities. ISO1999 Annex B unscreened population data only provides the values for the 10th, 50th and 90th percentiles at ages 30, 40, 50 and 60 only, therefore it was necessary to fit a curve to these values in order to estimate the probabilities. For 1501999 Section 5.3 adjustment for noise exposure population we used the Annex A screened population data plus the formula. The probabilities were then divided to give the relative risks of a greater than 25 dB hearing threshold, at various ages and frequencies.
Results: While no difference was observed between the three groups, the model identified a number of significant confounders, namely tinnitus, smoking, diabetes and the use of anti-depressant medications. Relative risks were high at frequencies 2 kHz and less for the study population of all ages compared to ISO A screened data. The increased relative risks at 4 and 6 kHz give the appearance of a "noise notch" for ages 30 and 40 years. The comparison with the ISO B unscreened data are significantly less than one for frequencies above 2 kHz, particularly for young men and greater than one less than 2 kHz. The relative risks for the comparison to the ISO A screened data with ISO 5.3 adjustments, are highest for young men decreasing with age, with the highest relative risk are at frequencies less than 2 kHz.
Conclusions: This paper demonstrates a new method for quantifying the probability of a clinically relevant hearing loss and the relative risk of the loss due to a risk factor. Prior to this, researchers were reduced to simplistic methods such as visual comparison of deciles which did not enable the estimation of risk. The new method can use all observed hearing thresholds per study participant, adjust for known confounding factors such age and gender, and calculate the relative risk of a clinically relevant increase in hearing threshold due to a risk factor of interest. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Guest, Maya] Univ Newcastle, Sch Hlth Sci, Fac Hlth, Callaghan, NSW 2308, Australia.
[Boggess, May] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA.
RP Guest, M (reprint author), Univ Newcastle, Sch Hlth Sci, Fac Hlth, Hunter Bldg,Univ Dr, Callaghan, NSW 2308, Australia.
EM maya.guest@newcastle.edu.au
RI D'ESTE, CATHERINE/G-7392-2013; Attia, John/F-5376-2013
OI Attia, John/0000-0001-9800-1308
FU Commonwealth Department of Defence
FX The Study of Health Outcomes in Aircraft Maintenance Personnel was
funded by the Commonwealth Department of Defence and administered by the
Department of Veterans' Affairs. Study investigators would particularly
like to thank all participants of the SHOAMP for their time and
patience.
CR Agrawal Y, 2008, ARCH INTERN MED, V168, P1522, DOI 10.1001/archinte.168.14.1522
Agrawal Y, 2010, EAR HEARING, V31, P234, DOI 10.1097/AUD.0b013e3181c6b9fd
Albera R, 2010, EUR ARCH OTO-RHINO-L, V267, P665, DOI 10.1007/s00405-009-1096-3
Andrews G, 2001, AUST NZ J PUBL HEAL, V25, P494, DOI 10.1111/j.1467-842X.2001.tb00310.x
[Anonymous], 2000, 7029 ISO
Attia JR, 2006, J OCCUP ENVIRON MED, V48, P682, DOI 10.1097/01.jom.0000205985.00559.84
Bainbridge KE, 2010, DIABETES CARE, V33, P811, DOI 10.2337/dc09-1193
Barlow C, 2011, MED PROBL PERFORM AR, V26, P96
BERGSTROM B, 1986, SCAND AUDIOL, V15, P227, DOI 10.3109/01050398609042148
Borchgrevink H M, 2005, Noise Health, V7, P1
Campo P., 2000, NOISE HEALTH, V3, P49
CLARK WW, 1992, J ACOUST SOC AM, V91, P3064, DOI 10.1121/1.402943
Coles R.R., 2000, CLIN OTOLARYNGOL ALL, V25, P265
D'Este C., 2004, GEN HLTH MED STUDY
Dobie R.A., 1997, J ACOUST SOC AM, V101, P2734
Dobie RA, 2006, EAR HEARING, V27, P526, DOI 10.1097/01.aud.0000233863.39603.f5
Efron B., 1993, INTRO BOOTSTRAP
Engdahl B, 2005, INT J AUDIOL, V44, P213, DOI 10.1080/14992020500057731
Frisina ST, 2006, HEARING RES, V211, P103, DOI 10.1016/j.heares.2005.09.002
Ganong W.F., 2003, REV MED PHYSL, P173
GOLDBERG JO, 1986, J CLIN PSYCHOL, V42, P792, DOI 10.1002/1097-4679(198609)42:5<792::AID-JCLP2270420519>3.0.CO;2-8
Gopal KV, 2004, INT J AUDIOL, V43, P493, DOI 10.1080/14992020400050063
Gopinath B, 2009, ARCH INTERN MED, V169, P415, DOI 10.1001/archinternmed.2008.597
Guest M, 2010, AM J IND MED, V53, P1159, DOI 10.1002/ajim.20867
Havia M, 2002, AURIS NASUS LARYNX, V29, P115, DOI 10.1016/S0385-8146(01)00142-0
Health National, 2001, AUSTR ALC GUID HLTH
HENSELMAN LW, 1995, EAR HEARING, V16, P382, DOI 10.1097/00003446-199508000-00005
HISCOCK CK, 1994, J PSYCHOPATHOL BEHAV, V16, P95, DOI 10.1007/BF02232721
Hoffman HJ, 2010, EAR HEARING, V31, P725, DOI 10.1097/AUD.0b013e3181e9770e
Horowitz JL, 1998, ECONOMETRICA, V66, P1327, DOI 10.2307/2999619
International Organisation for Standardisation, 2003, ISO1999
Jirojwong Sansnee, 2005, Southeast Asian Journal of Tropical Medicine and Public Health, V36, P1048
Jokitulppo J, 2006, MIL MED, V171, P112
Kaufman LR, 2005, J OCCUP ENVIRON MED, V47, P212, DOI 10.1097/01.jom.0000155710.28289.0e
Kauppinen T, 1998, AM J IND MED, V33, P409, DOI 10.1002/(SICI)1097-0274(199804)33:4<409::AID-AJIM12>3.3.CO;2-F
Kim J, 2005, IND HEALTH, V43, P567, DOI 10.2486/indhealth.43.567
KOENKER R, 1978, ECONOMETRICA, V46, P33, DOI 10.2307/1913643
Kuronen P, 2004, INT J AUDIOL, V43, P79, DOI 10.1080/14992020400050013
Martines F, 2010, AURIS NASUS LARYNX, V37, P685, DOI 10.1016/j.anl.2010.03.008
May JJ, 2000, AM J IND MED, V37, P112, DOI 10.1002/(SICI)1097-0274(200001)37:1<112::AID-AJIM9>3.0.CO;2-#
McBride D, 2001, SCAND AUDIOL, V30, P106, DOI 10.1080/010503901300112211
McBride DI, 2001, OCCUP ENVIRON MED, V58, P46, DOI 10.1136/oem.58.1.46
Monley P., 1996, AUST J AUDIOL, V16, P57
Monzani D, 2008, ACTA OTORHINOLARYNGO, V28, P61
Nakanishi N, 2000, J OCCUP ENVIRON MED, V42, P1045, DOI 10.1097/00043764-200011000-00001
Narula SC, 1999, STAT MED, V18, P1401, DOI 10.1002/(SICI)1097-0258(19990615)18:11<1401::AID-SIM136>3.3.CO;2-7
Nomura K, 2005, INT ARCH OCC ENV HEA, V78, P178, DOI 10.1007/s00420-005-0604-z
Prasher Deepak, 2005, Noise Health, V7, P31
Prince MM, 1997, J ACOUST SOC AM, V101, P950, DOI 10.1121/1.418053
Prince MM, 2003, J ACOUST SOC AM, V113, P871, DOI 10.1121/1.1536635
Rabinowitz PM, 2006, EAR HEARING, V27, P742, DOI 10.1097/01.aud.0000240544.79254.bc
Rey A, 1964, EXAMEN CLIN PSYCHOL
ROSLER G, 1994, SCAND AUDIOL, V23, P13, DOI 10.3109/01050399409047483
ROYSTER JD, 1991, J ACOUST SOC AM, V89, P2793, DOI 10.1121/1.400719
Schmuziger N, 2006, EAR HEARING, V27, P321, DOI 10.1097/01.aud.0000224737.34907.5e
Schofield PW, 2006, NEUROTOXICOLOGY, V27, P852, DOI 10.1016/j.neuro.2006.02.002
Seixas NS, 2005, OCCUP ENVIRON MED, V62, P309, DOI 10.1136/oem.2004.018143
SMITH TL, 1995, LARYNGOSCOPE, V105, P236, DOI 10.1288/00005537-199503000-00002
StataCorp, 2009, STATA STAT SOFTW
Steurer M, 1998, AUDIOLOGY, V37, P38
Tadros SF, 2007, NEUROBIOL AGING, V28, P1112, DOI 10.1016/j.neurobiolaging.2006.05.021
TAY HL, 1995, CLIN OTOLARYNGOL, V20, P130, DOI 10.1111/j.1365-2273.1995.tb00029.x
Taylor W., 1965, J ACOUST SOC AM, V32, P135
Toppila E, 2011, NOISE HEALTH, V13, P45, DOI 10.4103/1463-1741.74001
Vicente-Torres MA, 2003, HEARING RES, V182, P43, DOI 10.1016/S0378-5955(03)00140-0
Wagstaff AS, 2009, AVIAT SPACE ENVIR MD, V80, P857, DOI 10.3357/ASEM.1991.2009
Weiss A.A., 1988, MISCELLANEA, P517
NR 67
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2012
VL 285
IS 1-2
BP 65
EP 76
DI 10.1016/j.heares.2012.01.007
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 920WN
UT WOS:000302439600008
PM 22326290
ER
PT J
AU Verhey, JL
Ernst, SMA
Yasin, I
AF Verhey, Jesko L.
Ernst, Stephan M. A.
Yasin, Ifat
TI Effects of sequential streaming on auditory masking using
psychoacoustics and auditory evoked potentials
SO HEARING RESEARCH
LA English
DT Article
ID VENTRAL COCHLEAR NUCLEUS; MISMATCH NEGATIVITY MMN; BRAIN POTENTIALS;
SIGNAL FREQUENCY; RELEASE CMR; COMODULATION; CORTEX; ATTENTION; NOISE;
SOUND
AB The present study was aimed at investigating the relationship between the mismatch negativity (MMN) and psychoacoustical effects of sequential streaming on comodulation masking release (CMR). The influence of sequential streaming on CMR was investigated using a psychoacoustical alternative forced-choice procedure and electroencephalography (EEG) for the same group of subjects. The psychoacoustical data showed, that adding precursors comprising of only off-signal-frequency maskers abolished the CMR. Complementary EEG data showed an MMN irrespective of the masker envelope correlation across frequency when only the off-signal-frequency masker components were present. The addition of such precursors promotes a separation of the on- and off-frequency masker components into distinct auditory objects preventing the auditory system from using comodulation as an additional cue. A frequency-specific adaptation changing the representation of the flanking bands in the streaming conditions may also contribute to the reduction of CMR in the stream conditions, however, it is unlikely that adaptation is the primary reason for the streaming effect. A neurophysiological correlate of sequential streaming was found in EEG data using MMN, but the magnitude of the MMN was not correlated with the audibility of the signal in CMR experiments. Dipole source analysis indicated different cortical regions involved in processing auditory streaming and modulation detection. In particular, neural sources for processing auditory streaming include cortical regions involved in decision-making. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Yasin, Ifat] UCL Ear Inst, London WC1X 8EE, England.
[Verhey, Jesko L.] Univ Magdeburg, Dept Expt Audiol, D-39120 Magdeburg, Germany.
[Ernst, Stephan M. A.] Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England.
RP Yasin, I (reprint author), UCL Ear Inst, 332 Grays Inn Rd, London WC1X 8EE, England.
EM jesko.verhey@med.ovgu.de; Stephan.ernst@uni-oldenburg.de;
i.yasin@ucl.ac.uk
FU British Council Advanced Research Collaboration (ARC); Deutsche
Akademischer Austausch Dienst (DAAD)
FX This work was supported by the British Council Advanced Research
Collaboration (ARC) award and the Deutsche Akademischer Austausch Dienst
(DAAD).
CR Alain C, 2002, J ACOUST SOC AM, V111, P990, DOI 10.1121/1.1434942
Androulidakis AG, 2006, CLIN NEUROPHYSIOL, V117, P1783, DOI 10.1016/j.clinph.2006.04.011
Bendixen A, 2010, NEUROIMAGE, V50, P285, DOI 10.1016/j.neuroimage.2009.12.037
Bleeck S, 2008, NEUROSCIENCE, V154, P139, DOI 10.1016/j.neuroscience.2008.03.020
Bruder J, 2011, INT J PSYCHOPHYSIOL, V79, P106, DOI 10.1016/j.ijpsycho.2010.09.008
Burton MW, 2000, J COGNITIVE NEUROSCI, V12, P679, DOI 10.1162/089892900562309
Buschermohle M, 2007, BIOL CYBERN, V97, P397, DOI 10.1007/s00422-007-0179-8
CARRELL TD, 1992, PERCEPT PSYCHOPHYS, V52, P437, DOI 10.3758/BF03206703
Dau T, 2009, J ACOUST SOC AM, V125, P2182, DOI 10.1121/1.3082121
Dau T., 2004, AUDITORY SIGNAL PROC, P285
Dien J, 1998, BEHAV RES METH INS C, V30, P34, DOI 10.3758/BF03209414
Draganova R, 2009, BMC NEUROSCI, V10, DOI 10.1186/1471-2202-10-143
Eckert MA, 2009, HUM BRAIN MAPP, V30, P2530, DOI 10.1002/hbm.20688
EDDINS DA, 1994, J ACOUST SOC AM, V96, P3432, DOI 10.1121/1.411450
Ernst SMA, 2008, BRAIN RES, V1220, P246, DOI 10.1016/j.brainres.2007.08.013
Ernst S.M.A., 2006, J ACOUST SOC AM, V120, P384
Ernst SMA, 2010, NEUROIMAGE, V49, P835, DOI 10.1016/j.neuroimage.2009.07.014
Ernst SMA, 2010, J ACOUST SOC AM, V128, P300, DOI 10.1121/1.3397582
Friedman D, 2001, NEUROSCI BIOBEHAV R, V25, P355, DOI 10.1016/S0149-7634(01)00019-7
Griffiths TD, 1998, NAT NEUROSCI, V1, P74, DOI 10.1038/276
Grimm S, 2011, PSYCHOPHYSIOLOGY, V48, P377, DOI 10.1111/j.1469-8986.2010.01073.x
GROSE JH, 1993, J ACOUST SOC AM, V93, P2896, DOI 10.1121/1.405809
Gutschalk A, 2005, J NEUROSCI, V25, P5382, DOI 10.1523/JNEUROSCI.0374-05.2005
Hall JW, 1996, J ACOUST SOC AM, V100, P2365, DOI 10.1121/1.417946
HALL JW, 1984, J ACOUST SOC AM, V76, P50, DOI 10.1121/1.391005
Hautus MJ, 2005, J ACOUST SOC AM, V117, P275, DOI 10.1121/1.1828499
Hideki O., 2010, NEUROIMAGE, V49, P1024
Jaaskelainen IP, 2004, P NATL ACAD SCI USA, V101, P6809, DOI 10.1073/pnas.0303760101
Klein C, 1999, BIOL PSYCHIAT, V45, P1612, DOI 10.1016/S0006-3223(98)00254-6
Klink KB, 2010, JARO-J ASSOC RES OTO, V11, P79, DOI 10.1007/s10162-009-0186-7
Kumar S, 2007, PLOS COMPUT BIOL, V3, P977, DOI 10.1371/journal.pcbi.0030100
Las L, 2005, J NEUROSCI, V25, P1503, DOI 10.1523/JNEUROSCI.4007-04.2005
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
MARKS LE, 1991, J EXP PSYCHOL HUMAN, V17, P986, DOI 10.1037/0096-1523.17.4.986
MCFADDEN D, 1986, J ACOUST SOC AM, V80, P1658, DOI 10.1121/1.394277
Naatanen R, 2000, INT J PSYCHOPHYSIOL, V37, P3, DOI 10.1016/S0167-8760(00)00091-X
Naatanen R, 2005, PSYCHOPHYSIOLOGY, V42, P25, DOI 10.1111/j.1469-8986.2005.00256.x
Naatanen R, 1999, PSYCHOL BULL, V125, P826, DOI 10.1037/0033-2909.125.6.826
Nelken I, 1999, NATURE, V397, P154, DOI 10.1038/16456
Neuert V, 2004, J NEUROSCI, V24, P5789, DOI 10.1523/JNEUROSCI.0450-04.2004
Neuert V, 2005, J NEUROPHYSIOL, V93, P2766, DOI 10.1152/jn.00774.2004
Obleser J, 2006, HUM BRAIN MAPP, V27, P562, DOI 10.1002/hbm.20201
Piechowiak T., 2007, J ACOUST SOC AM, V21, P2111
Plummer C, 2007, CLIN NEUROPHYSIOL, V118, P2344, DOI 10.1016/j.clinph.2007.08.016
Pressnitzer D, 2001, J NEUROSCI, V21, P6377
Pugh KR, 1996, NEUROIMAGE, V4, P159, DOI 10.1006/nimg.1996.0067
Rauschecker JP, 2009, NAT NEUROSCI, V12, P718, DOI 10.1038/nn.2331
Rauschecker JP, 2005, ANN NY ACAD SCI, V1060, P125, DOI 10.1196/annals.1360.009
Rupp A, 2007, HEARING - FROM SENSORY PROCESSING TO PERCEPTION, P125, DOI 10.1007/978-3-540-73009-5_14
SCHOONEVELDT GP, 1987, J ACOUST SOC AM, V82, P1944, DOI 10.1121/1.395639
SEMLITSCH HV, 1986, PSYCHOPHYSIOLOGY, V23, P695, DOI 10.1111/j.1469-8986.1986.tb00696.x
SUMMERFIELD Q, 1987, J ACOUST SOC AM, V81, P700, DOI 10.1121/1.394838
Sussman E, 1999, PSYCHOPHYSIOLOGY, V36, P22, DOI 10.1017/S0048577299971056
Sussman ES, 2007, PERCEPT PSYCHOPHYS, V69, P136, DOI 10.3758/BF03194460
Talaraich P., 1988, STEREOTACTICCOPLANAR
Tzourio N, 1997, NEUROIMAGE, V5, P63, DOI 10.1006/nimg.1996.0252
Verhey JL, 2009, HEARING RES, V253, P97, DOI 10.1016/j.heares.2009.03.011
Verhey JL, 2003, EXP BRAIN RES, V153, P405, DOI 10.1007/s00221-003-1607-1
Verhey JL, 1999, J ACOUST SOC AM, V106, P2733, DOI 10.1121/1.428101
Wagner E, 2006, J ACOUST SOC AM, V119, P1012, DOI 10.1021/1.2159430
Winkler I, 2005, COGNITIVE BRAIN RES, V25, P291, DOI 10.1016/j.cogbrainres.2005.06.005
Xiang JJ, 2010, J NEUROSCI, V30, P12084, DOI 10.1523/JNEUROSCI.0827-10.2010
Yasin I, 2007, NEUROPSYCHOLOGIA, V45, P2718, DOI 10.1016/j.neuropsychologia.2007.04.009
NR 63
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2012
VL 285
IS 1-2
BP 77
EP 85
DI 10.1016/j.heares.2012.01.006
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 920WN
UT WOS:000302439600009
PM 22326589
ER
PT J
AU Nityananda, V
Bee, MA
AF Nityananda, Vivek
Bee, Mark A.
TI Spatial release from masking in a free-field source identification task
by gray treefrogs
SO HEARING RESEARCH
LA English
DT Article
ID BUDGERIGARS MELOPSITTACUS-UNDULATUS; SPEECH-RECEPTION THRESHOLD;
COCKTAIL PARTY PROBLEM; FROG HYLA-VERSICOLOR; CHORUS-SHAPED NOISE; 2
FREQUENCY BANDS; GREY TREEFROGS; DIRECTIONAL HEARING; ACOUSTIC-SIGNALS;
MATE CHOICE
AB Humans and other animals often communicate acoustically in noisy social groups, in which the background noise generated by other individuals can mask signals of interest. When listening to speech in the presence of speech-like noise, humans experience a release from auditory masking when target and masker are spatially separated. We investigated spatial release from masking (SRM) in a free-field call recognition task in Cope's gray treefrog (Hyla chlysoscelis). In this species, reproduction requires that females successfully detect, recognize, and localize a conspecific male in the noisy social environment of a breeding chorus. Using no-choice phonotaxis assays, we measured females' signal recognition thresholds in response to a target signal (an advertisement call) in the presence and absence of chorus-shaped noise. Females experienced about 3 dB of masking release, compared with a co-localized condition, when the masker was displaced 90 degrees in azimuth from the target. The magnitude of masking release was independent of the spectral composition of the target (carriers of 1.3 kHz, 2.6 kHz, or both). Our results indicate that frogs experience a modest degree of spatial unmasking when performing a call recognition task in the free-field, and suggest that variation in signal spectral content has small effects on both source identification and spatial unmasking. We discuss these results in the context of spatial unmasking in vertebrates and call recognition in frogs. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Nityananda, Vivek; Bee, Mark A.] Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA.
RP Bee, MA (reprint author), Univ Minnesota, Dept Ecol Evolut & Behav, 100 Ecol,1987 Upper Buford Circle, St Paul, MN 55108 USA.
EM v.nityananda@qmul.ac.uk; mbee@umn.edu
RI Bee, Mark/A-9410-2013
OI Bee, Mark/0000-0002-6770-9730
FU NIDCD [DC009582]
FX This work was supported by NIDCD DC009582. We thank, Alejandro Velez for
recordings of natural choruses and help generating chorus-shaped
maskers, Mark Crawford, Madeleine Linck, John Moriarty, Ed Quinn, and
Don Pereira for access to frog breeding sites, and Nate Buerkle, Brian
Chicoine, Jenna Cook, Cally Espegard, Sarah Feingold, Noah Gordon, Nick
Hein, Katie Heino, Johanna Henly, Shannon Hinrichs, Joe Kleinschmidt,
Betsy Linehan-Skillings, James Mertz, Cathleen Nguyen, Steffen Peterson,
Abby Rapacz-Van Neuren, Alejandro Velez, and especially Sandra Tekmen
for help collecting and testing frogs.
CR ARAK A, 1983, NATURE, V306, P261, DOI 10.1038/306261a0
Beckers OM, 2004, J COMP PHYSIOL A, V190, P869, DOI 10.1007/s00359-004-0542-3
Bee MA, 2008, J COMP PSYCHOL, V122, P235, DOI 10.1037/0735-7036.122.3.235
Bee MA, 2007, ANIM BEHAV, V74, P549, DOI 10.1016/j.anbehav.2006.12.012
Bee MA, 2008, ANIM BEHAV, V76, P831, DOI 10.1016/j.anbehav.2008.01.026
Bee MA, 2009, J ACOUST SOC AM, V126, P2788, DOI 10.1121/1.3224707
Bee MA, 2008, ANIM BEHAV, V76, P845, DOI 10.1016/j.anbehav.2008.01.029
Bee MA, 2007, ANIM BEHAV, V74, P1765, DOI 10.1016/j.anbehav.2007.03.019
Bee M.A., 2010, J COMP PSYCHOL, V124
Bee M.A., J ACOUSTICA IN PRESS
Bee MA, 2008, ANIM BEHAV, V75, P1781, DOI 10.1016/j.anbehav.2007.10.032
Bronkhorst AW, 2000, ACUSTICA, V86, P117
Bush SL, 2002, ANIM BEHAV, V63, P7, DOI 10.1006/anbe.2001.1880
CAPRANIC.RR, 1966, J ACOUST SOC AM, V40, P1131, DOI 10.1121/1.1910198
Capranica RR, 1965, EVOKED VOCAL RESPONS
CHERRY EC, 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229
Christensen-Dalsgaard J, 2005, SPR HDB AUD, V25, P67, DOI 10.1007/0-387-28863-5_4
Christensen-Dalsgaard J, 2008, BRAIN RES BULL, V75, P365, DOI 10.1016/j.brainresbull.2007.10.044
Christensen-Dalsgaard J, 2011, HEARING RES, V273, P37, DOI 10.1016/j.heares.2010.08.007
Christie K, 2010, J COMP PHYSIOL A, V196, P569, DOI 10.1007/s00359-010-0544-2
Dent ML, 2009, J COMP PSYCHOL, V123, P357, DOI 10.1037/a0016898
Dent ML, 1997, BEHAV NEUROSCI, V111, P590
Fay RR, 2000, HEARING RES, V149, P1, DOI 10.1016/S0378-5955(00)00168-4
FELLERS GM, 1979, ANIM BEHAV, V27, P107, DOI 10.1016/0003-3472(79)90131-3
Feng A.S., 2007, HEARING SOUND COMMUN, P323
FENG AS, 1981, HEARING RES, V5, P201, DOI 10.1016/0378-5955(81)90046-0
FUZESSERY ZM, 1982, J COMP PHYSIOL, V146, P471
FUZESSERY ZM, 1983, J COMP PHYSIOL, V150, P333
Gerhardt H. C., 1995, METHODS COMP PSYCHOA, P209
Gerhardt H. Carl, 2001, P73
Gerhardt HC, 2000, BEHAV ECOL, V11, P663, DOI 10.1093/beheco/11.6.663
GERHARDT HC, 1981, J COMP PHYSIOL, V144, P9
Gerhardt HC, 2007, SPR HDB AUD, V28, P113
GERHARDT HC, 1988, ANIM BEHAV, V36, P1247, DOI 10.1016/S0003-3472(88)80090-3
Gerhardt HC, 2005, ANIM BEHAV, V70, P39, DOI 10.1016/j.anbehav.200409.021
GERHARDT HC, 1976, NATURE, V261, P692, DOI 10.1038/261692a0
Gerhardt HC, 2007, J EXP BIOL, V210, P2990, DOI 10.1242/jeb.006312
GERHARDT HC, 1975, J COMP PHYSIOL, V102, P1
Gerhardt HC, 2002, ACOUSTIC COMMUNICATI
Gilkey RH, 1995, HUM FACTORS, V37, P835, DOI 10.1518/001872095778995580
HILLERY CM, 1984, COPEIA, P844
Hoffman HS, 1996, BEHAV RES METH INSTR, V28, P357, DOI 10.3758/BF03200513
Holt MM, 2007, J ACOUST SOC AM, V121, P1219, DOI 10.1121/1.2404929
HOY RR, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P115
Hulse SH, 2002, ADV STUD BEHAV, V31, P163, DOI 10.1016/S0065-3454(02)80008-0
Ison JR, 1998, J ACOUST SOC AM, V104, P1689, DOI 10.1121/1.424381
JORGENSEN MB, 1991, J COMP PHYSIOL A, V169, P177, DOI 10.1007/BF00215864
JORGENSEN MB, 1991, J COMP PHYSIOL A, V169, P591
Kidd G, 1998, J ACOUST SOC AM, V104, P422, DOI 10.1121/1.423246
Kroodsma DE, 2001, ANIM BEHAV, V61, P1029, DOI 10.1006/anbe.2000.1676
Larsen ON, 2006, J COMP PHYSIOL A, V192, P1063, DOI 10.1007/s00359-006-0138-1
Lin WY, 2003, J NEUROSCI, V23, P8143
Lin WY, 2001, J COMP PHYSIOL A, V187, P699, DOI 10.1007/s00359-001-0241-2
Litovsky RY, 2005, J ACOUST SOC AM, V117, P3091, DOI 10.1121/1.1873913
Manley G.A., 2004, EVOLUTION VERTEBRATE
Marshall VT, 2006, ANIM BEHAV, V72, P449, DOI 10.1016/j.anbehav.2006.02.001
McDermott JH, 2009, CURR BIOL, V19, pR1024, DOI 10.1016/j.cub.2009.09.005
MCGREGOR PK, 1992, NATO ADV SCI I A-LIF, V228, P1
MUDRY KM, 1987, J COMP PHYSIOL A, V160, P477, DOI 10.1007/BF00615081
MUDRY KM, 1987, J COMP PHYSIOL A, V161, P407, DOI 10.1007/BF00603966
Narins P.M., 1988, P511
NARINS PM, 1982, J COMP PHYSIOL, V147, P439
Nityananda V, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021191
PLOMP R, 1979, AUDIOLOGY, V18, P43
PLOMP R, 1978, J ACOUST SOC AM, V63, P533, DOI 10.1121/1.381753
PLOMP R, 1979, J ACOUST SOC AM, V66, P1333, DOI 10.1121/1.383554
Popper AN, 1997, BRAIN BEHAV EVOLUT, V50, P213
PTACEK MB, 1994, EVOLUTION, V48, P898, DOI 10.2307/2410495
Ratnam R, 1998, J NEUROPHYSIOL, V80, P2848
RHEINLAENDER J, 1979, J COMP PHYSIOL, V133, P247
Richardson C, 2010, P ROY SOC B-BIOL SCI, V277, P1247, DOI 10.1098/rspb.2009.1836
SABERI K, 1991, J ACOUST SOC AM, V90, P1355, DOI 10.1121/1.401927
SANTON F, 1987, ACUSTICA, V63, P222
Schnupp JWH, 2009, NAT NEUROSCI, V12, P692, DOI 10.1038/nn.2325
Schul J, 2002, P ROY SOC B-BIOL SCI, V269, P1847, DOI 10.1098/rspb.2002.2092
Schwartz J.J., 1995, AUDIT NEUROSCI, V1, P195
SCHWARTZ JJ, 1987, EVOLUTION, V41, P461, DOI 10.2307/2409249
SCHWARTZ JJ, 1989, J COMP PHYSIOL A, V166, P37
Schwartz JJ, 2001, BEHAV ECOL SOCIOBIOL, V49, P443, DOI 10.1007/s002650100317
Shinn-Cunningham BG, 2005, ACTA ACUST UNITED AC, V91, P967
Simmons A. M., 1995, METHODS COMP PSYCHOA, P197
Simmons D.D., 2007, HEARING SOUND COMMUN, V29, P184
Swanson EM, 2007, CAN J ZOOL, V85, P921, DOI 10.1139/Z07-074
TURNBULL SD, 1994, CAN J ZOOL, V72, P1863, DOI 10.1139/z94-253
Velez A, 2010, BEHAV ECOL SOCIOBIOL, V64, P1695, DOI 10.1007/s00265-010-0983-3
Velez A, 2011, ANIM BEHAV, V82, P1319, DOI 10.1016/j.anbehav.2011.09.015
Webster DB, 1992, EVOLUTIONARY BIOL HE
Wollerman L, 2002, ANIM BEHAV, V63, P15, DOI 10.1006/anbe.2001.1885
Wollerman L, 1999, ANIM BEHAV, V57, P529, DOI 10.1006/anbe.1998.1013
Zakon H.H., 1988, P125
NR 90
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2012
VL 285
IS 1-2
BP 86
EP 97
DI 10.1016/j.heares.2012.01.003
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 920WN
UT WOS:000302439600010
PM 22240459
ER
PT J
AU Salih, WHM
Buytaert, JAN
Aerts, JRM
Vanderniepen, P
Dierick, M
Dirckx, JJJ
AF Salih, Wasil H. M.
Buytaert, Jan A. N.
Aerts, Johan R. M.
Vanderniepen, Pieter
Dierick, Manuel
Dirckx, Joris J. J.
TI Open access high-resolution 3D morphology models of cat, gerbil, rabbit,
rat and human ossicular chains
SO HEARING RESEARCH
LA English
DT Article
ID HUMAN MIDDLE-EAR; FINITE-ELEMENT-METHOD; HIGH-FREQUENCY HEARING;
MALLEUS-INCUS-COMPLEX; OTITIS-MEDIA; TYMPANIC-MEMBRANE; MONGOLIAN
GERBIL; DYNAMIC-BEHAVIOR; CT DATASETS; EARDRUM
AB High-resolution 3D morphology models of cat, gerbil, rabbit, rat and human ossicular chains are presented. The models are based on high-resolution CT measurements. The resolution of the CT images, from which the models are segmented, varies from 5.6 to 33.5 mu m. Models are freely available in different formats at our website (http://www.ua.ac.be/bimef/models) for research and educational purposes. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Salih, Wasil H. M.; Buytaert, Jan A. N.; Aerts, Johan R. M.; Dirckx, Joris J. J.] Univ Antwerp, Lab BioMed Phys, B-2020 Antwerp, Belgium.
[Vanderniepen, Pieter; Dierick, Manuel] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium.
RP Buytaert, JAN (reprint author), Univ Antwerp, Lab BioMed Phys, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
EM wasil.hashim@ua.ac.be; jan.buytaert@ua.ac.be
RI Buytaert, Jan/C-4064-2009
FU Research Foundation - Flanders (FWO-Vlaanderen); Institute for the
Promotion of Innovation through Science and Technology in Flanders
(IWT-Vlaanderen)
FX This work was supported by the Research Foundation - Flanders
(FWO-Vlaanderen) and the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen). We thank
the Temporal Bone Foundation - Belgium and Bernard Ars for the juvenile
human sample, and the Cochlear Technology Center - Belgium for the adult
human sample.
CR Aernouts J., BIOMECH MOD IN PRESS
Aerts JRM, 2010, HEARING RES, V263, P26, DOI 10.1016/j.heares.2009.12.022
Bast T. H., 1949, TEMPORAL BONE EAR
Beer HJ, 1999, AUDIOL NEURO-OTOL, V4, P156, DOI 10.1159/000013835
Blayney AW, 1997, ACTA OTO-LARYNGOL, V117, P269, DOI 10.3109/00016489709117785
Buytaert JAN, 2011, JARO-J ASSOC RES OTO, V12, P681, DOI 10.1007/s10162-011-0281-4
DECRAEMER WF, 1989, HEARING RES, V38, P1, DOI 10.1016/0378-5955(89)90123-8
Decraemer W.F., 2002, P SOC PHOTO-OPT INS, P148
Decraemer WF, 2003, JARO, V4, P250, DOI 10.1007/s10162-002-3030-x
Dirckx JJJ, 2006, JARO-J ASSOC RES OTO, V7, P339, DOI 10.1007/s10162-006-0048-5
Eiber A, 1999, AUDIOL NEURO-OTOL, V4, P178, DOI 10.1159/000013838
Elkhouri N, 2006, JARO-J ASSOC RES OTO, V7, P399, DOI 10.1007/s10162-006-0055-6
Fay R. R., 1988, HEARING VERTEBRATES
Franz Burkhard, 2008, Int Tinnitus J, V14, P101
FULGHUM RS, 1982, INFECT IMMUN, V36, P802
FUNNELL WRJ, 1992, J ACOUST SOC AM, V91, P2082, DOI 10.1121/1.403694
Funnell WRJ, 2005, JARO-J ASSOC RES OTO, V6, P9, DOI 10.1007/s10162-004-5016-3
FUNNELL WRJ, 1983, J ACOUST SOC AM, V73, P1657, DOI 10.1121/1.389386
FUNNELL WRJ, 1987, J ACOUST SOC AM, V81, P1851, DOI 10.1121/1.394749
Gan RZ, 2004, ANN BIOMED ENG, V32, P847, DOI 10.1023/B:ABME.0000030260.22737.53
GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465
HEMILA S, 1995, HEARING RES, V85, P31, DOI 10.1016/0378-5955(95)00031-X
Keen J., 1927, J LARYNGOL OTOL, V42, P174, DOI 10.1017/S0022215100030127
Koike T, 2002, J ACOUST SOC AM, V111, P1306, DOI 10.1121/1.1451073
Ladak HM, 1996, J ACOUST SOC AM, V100, P933, DOI 10.1121/1.416205
Lee C. F., 2006, BIOMED ENG-APP BAS C, V18, P214
Lee DH, 2010, HEARING RES, V263, P198, DOI 10.1016/j.heares.2010.01.007
Marcusohn Y, 2011, HEARING RES, V272, P148, DOI 10.1016/j.heares.2010.10.005
Masschaele BC, 2007, NUCL INSTRUM METH A, V580, P266, DOI 10.1016/j.nima.2007.05.099
Mikhael C.S., 2004, 28 ANN C CAN MED BIO, P126
NUMMELA S, 1995, HEARING RES, V85, P18, DOI 10.1016/0378-5955(95)00030-8
Ogura M, 2008, AURIS NASUS LARYNX, V35, P338, DOI 10.1016/j.anl.2007.09.009
OLSZEWSKI J, 1990, ANAT ANZEIGER, V171, P187
Prendergast PJ, 1999, AUDIOL NEURO-OTOL, V4, P185, DOI 10.1159/000013839
Puria S, 2010, HEARING RES, V263, P183, DOI 10.1016/j.heares.2009.10.013
Rodt T, 2002, NEURORADIOLOGY, V44, P783, DOI 10.1007/s00234-002-0784-0
Rosowski JJ, 1999, AUDIOL NEURO-OTOL, V4, P129, DOI 10.1159/000013831
Ruf I, 2009, MAMM BIOL, V74, P100, DOI 10.1016/j.mambio.2008.01.002
Schuknecht H. F., 1974, PATHOLOGY EAR
Sim JH, 2008, JARO-J ASSOC RES OTO, V9, P5, DOI 10.1007/s10162-007-0103-x
Stenfelt S, 2008, INT J AUDIOL, V47, pS10, DOI 10.1080/14992020802307396
Sun Q, 2002, BIOMECH MODEL MECHAN, V1, P109, DOI 10.1007/s10237-002-0014-z
Unur E, 2002, ERCIYES MED J, V24, P57
Von Unge M, 2009, ACTA OTO-LARYNGOL, V129, P261, DOI 10.1080/00016480802239091
WADA H, 1992, J ACOUST SOC AM, V92, P3157, DOI 10.1121/1.404211
Wang HB, 2006, OTOL NEUROTOL, V27, P452, DOI 10.1097/00129492-200606000-00004
Zhao F, 2009, MED ENG PHYS, V31, P907, DOI 10.1016/j.medengphy.2009.06.009
NR 47
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2012
VL 284
IS 1-2
BP 1
EP 5
DI 10.1016/j.heares.2011.12.004
PG 5
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 915SQ
UT WOS:000302048100001
PM 22186087
ER
PT J
AU Viola, FC
De Vos, M
Hine, J
Sandmann, P
Bleeck, S
Eyles, J
Debener, S
AF Viola, Filipa Campos
De Vos, Maarten
Hine, Jemma
Sandmann, Pascale
Bleeck, Stefan
Eyles, Julie
Debener, Stefan
TI Semi-automatic attenuation of cochlear implant artifacts for the
evaluation of late auditory evoked potentials
SO HEARING RESEARCH
LA English
DT Article
ID INDEPENDENT COMPONENT ANALYSIS; SPEECH-PERCEPTION; BRAIN DYNAMICS; EEG
ARTIFACT; USERS; RECIPIENTS; CHILDREN
AB Electrical artifacts caused by the cochlear implant (Cl) contaminate electroencephalographic (EEG) recordings from implanted individuals and corrupt auditory evoked potentials (AEPs). Independent component analysis (ICA) is efficient in attenuating the electrical Cl artifact and AEPs can be successfully reconstructed. However the manual selection of Cl artifact related independent components (ICs) obtained with ICA is unsatisfactory, since it contains expert-choices and is time consuming.
We developed a new procedure to evaluate temporal and topographical properties of ICs and semiautomatically select those components representing electrical Cl artifact. The Cl Artifact Correction (CIAC) algorithm was tested on EEG data from two different studies. The first consists of published datasets from 18 Cl users listening to environmental sounds. Compared to the manual IC selection performed by an expert the sensitivity of CIAC was 91.7% and the specificity 92.3%. After CIAC-based attenuation of Cl artifacts, a high correlation between age and N1-P2 peak-to-peak amplitude was observed in the AEPs, replicating previously reported findings and further confirming the algorithm's validity.
In the second study AEPs in response to pure tone and white noise stimuli from 12 Cl users that had also participated in the other study were evaluated. Cl artifacts were attenuated based on the IC selection performed semi-automatically by C1AC and manually by one expert. Again, a correlation between N1 amplitude and age was found. Moreover, a high test-retest reliability for AEP N1 amplitudes and latencies suggested that CIAC-based attenuation reliably preserves plausible individual response characteristics.
We conclude that C1AC enables the objective and efficient attenuation of the Cl artifact in EEG recordings, as it provided a reasonable reconstruction of individual AEPs. The systematic pattern of individual differences in N1 amplitudes and latencies observed with different stimuli at different sessions, strongly suggests that C1AC can overcome the electrical artifact problem. Thus CIAC facilitates the use of cortical AEPs as an objective measurement of auditory rehabilitation. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Viola, Filipa Campos; De Vos, Maarten; Sandmann, Pascale; Debener, Stefan] Carl von Ossietzky Univ Oldenburg, Dept Psychol, Neuropsychol Lab, D-26111 Oldenburg, Germany.
[De Vos, Maarten] Katholieke Univ Leuven, Dept Elect Engn ESAT SCD, Louvain, Belgium.
[Hine, Jemma] Univ Southampton, Sch Med, Southampton SO9 5NH, Hants, England.
[Bleeck, Stefan; Eyles, Julie] Univ Southampton, Inst Sound & Vibrat Res, Southampton SO9 5NH, Hants, England.
[Debener, Stefan] Univ Hosp Jena, Dept Neurol, Biomagnet Ctr, Jena, Germany.
RP Debener, S (reprint author), Carl von Ossietzky Univ Oldenburg, Dept Psychol, Neuropsychol Lab, D-26111 Oldenburg, Germany.
EM stefan.debener@uni-oldenburg.de
RI Bleeck, Stefan/A-1178-2013
FU Fundacao para a Ciencia e Tecnologia, Lisbon, Portugal
[SFRH/BD/37662/2007]; Alexander von-Humboldt stipendium; Swiss National
Science Foundation [PBZHP3-128462]
FX F.C.V. was funded by the Fundacao para a Ciencia e Tecnologia, Lisbon,
Portugal (SFRH/BD/37662/2007). M.D.V. was supported by a Alexander
von-Humboldt stipendium. P.S. was supported by the Swiss National
Science Foundation (grant number PBZHP3-128462). The authors would like
to thank A. Barks for assistance with recording the data and J.D. Thorne
for helpful discussions.
CR Debener S, 2010, SIMULTANEOUS EEG FMR, P121
Debener S, 2008, PSYCHOPHYSIOLOGY, V45, P20, DOI 10.1111/j.1469-8986.2007.00610.x
Delorme A, 2007, NEUROIMAGE, V34, P1443, DOI 10.1016/j.neuroimage.2006.11.004
Delorme A, 2004, J NEUROSCI METH, V134, P9, DOI 10.1016/j.jneumeth.2003.10.009
Friesen LM, 2010, HEARING RES, V259, P95, DOI 10.1016/j.heares.2009.10.012
Gilley PM, 2006, CLIN NEUROPHYSIOL, V117, P1772, DOI 10.1016/j.clinph.2006.04.018
Gilley PM, 2008, BRAIN RES, V1239, P56, DOI 10.1016/j.brainres.2008.08.026
Gramann K, 2010, J COGNITIVE NEUROSCI, V22, P2836, DOI 10.1162/jocn.2009.21369
Henkin Y, 2009, AUDIOL NEURO-OTOL, V14, P39, DOI 10.1159/000153434
Kelly AS, 2005, CLIN NEUROPHYSIOL, V116, P1235, DOI 10.1016/j.clinph.2005.02.011
Kileny PR, 2007, EAR HEARING, V28, p124S, DOI 10.1097/AUD.0b013e318031549d
Koelsch S, 2004, CLIN NEUROPHYSIOL, V115, P966, DOI 10.1016/j.clinph.2003.11.032
Lonka E, 2004, AUDIOL NEURO-OTOL, V9, P160, DOI 10.1159/000077265
Makeig S, 2004, TRENDS COGN SCI, V8, P204, DOI 10.1016/j.tics.2004.03.008
McNeill Celene, 2009, Cochlear Implants Int, V10 Suppl 1, P78, DOI 10.1002/cii.391
Mognon A, 2010, PSYCHOPHYSIOLOGY
Moore DR, 2009, NAT NEUROSCI, V12, P686, DOI 10.1038/nn.2326
Nolan H, 2010, J NEUROSCI METH, V192, P152, DOI 10.1016/j.jneumeth.2010.07.015
Onton J, 2006, NEUROSCI BIOBEHAV R, V30, P808, DOI 10.1016/j.neubiorev.2006.06.007
Oostenveld R, 2002, HUM BRAIN MAPP, V17, P179, DOI 10.1002/hbm.10061
Pantev C, 2006, CEREB CORTEX, V16, P31, DOI 10.1093/cercor/bhi081
Sandmann P, 2010, CLIN NEUROPHYSIOL, V121, P2070, DOI 10.1016/j.clinph.2010.04.032
Sandmann P, 2009, BRAIN, V132, P1967, DOI 10.1093/brain/awp034
Sharma A, 2005, HEARING RES, V203, P134, DOI 10.1016/j.heares.2004.12.010
Viola FC, 2009, CLIN NEUROPHYSIOL, V120, P868, DOI 10.1016/j.clinph.2009.01.015
Viola FC, 2011, PSYCHOPHYSIOLOGY, V48, P1470, DOI 10.1111/j.1469-8986.2011.01224.x
Walhovd KB, 2002, INT J PSYCHOPHYSIOL, V46, P29, DOI 10.1016/S0167-8760(02)00039-9
Wilson BS, 2008, HEARING RES, V242, P3, DOI 10.1016/j.heares.2008.06.005
Wong DDE, 2009, IEEE T BIO-MED ENG, V56, P2851, DOI 10.1109/TBME.2009.2029239
Zhang FW, 2011, HEARING RES, V275, P17, DOI 10.1016/j.heares.2010.11.007
Zhang FW, 2010, INT J AUDIOL, V49, P277, DOI 10.3109/14992020903321759
NR 31
TC 8
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2012
VL 284
IS 1-2
BP 6
EP 15
DI 10.1016/j.heares.2011.12.010
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 915SQ
UT WOS:000302048100002
PM 22234161
ER
PT J
AU Landsberger, DM
Padilla, M
Srinivasan, AG
AF Landsberger, David M.
Padilla, Monica
Srinivasan, Arthi G.
TI Reducing current spread using current focusing in cochlear implant users
SO HEARING RESEARCH
LA English
DT Article
ID AUDITORY CORTICAL IMAGES; ELECTRODE CONFIGURATION;
ELECTRICAL-STIMULATION; SPECTRAL RESOLUTION; SPEECH-PERCEPTION; INFERIOR
COLLICULUS; PARTIAL TRIPOLAR; EXCITATION; NOISE; RECOGNITION
AB Cochlear implant performance in difficult listening situations is limited by channel interactions. It is known that partial tripolar (PTP) stimulation reduces the spread of excitation (SOE). However, the greater the degree of current focusing, the greater the absolute current required to maintain a fixed loudness. As current increases, so does SOE. In experiment 1, the SOE for equally loud stimuli with different degrees of current focusing is measured via a forward-masking procedure. Results suggest that at a fixed loudness, some but not all patients have a reduced SOE with PTP stimulation. Therefore, it seems likely that a PTP speech processing strategy could improve spectral resolution for only those patients with a reduced SOE. In experiment 2, the ability to discriminate different levels of current focusing was measured. In experiment 3, patients subjectively scaled verbal descriptors of stimuli of various levels of current focusing. Both discrimination and scaling of verbal descriptors correlated well with SOE reduction, suggesting that either technique have the potential to be used clinically to quickly predict which patients would receive benefit from a current focusing strategy. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Landsberger, David M.; Padilla, Monica; Srinivasan, Arthi G.] House Res Inst, Dept Commun & Auditory Neurosci, Los Angeles, CA 90057 USA.
[Srinivasan, Arthi G.] Univ So Calif, Dept Biomed Engn, Los Angeles, CA 90089 USA.
RP Landsberger, DM (reprint author), House Res Inst, Dept Commun & Auditory Neurosci, 2100 W 3rd St, Los Angeles, CA 90057 USA.
EM dlandsberger@hei.org
CR Arenberg JG, 2000, JARO, V1, P183, DOI 10.1007/sl01620010036
Berenstein CK, 2008, EAR HEARING, V29, P250
Berenstein C.K., 2007, COMMUNICATION
Bierer JA, 2010, EAR HEARING, V31, P247, DOI 10.1097/AUD.0b013e3181c7daf4
Bierer JA, 2010, HEARING RES, V270, P134, DOI 10.1016/j.heares.2010.08.006
Bierer JA, 2007, J ACOUST SOC AM, V121, P1642, DOI 10.1121/1.2436712
Bierer JA, 2002, J NEUROPHYSIOL, V87, P478
Bingabr M, 2008, HEARING RES, V241, P73, DOI 10.1016/j.heares.2008.04.012
Bonham BH, 2008, HEARING RES, V242, P141, DOI 10.1016/j.heares.2008.03.006
Briaire JJ, 2000, HEARING RES, V148, P18, DOI 10.1016/S0378-5955(00)00104-0
Chatterjee M, 1998, J ACOUST SOC AM, V103, P2565, DOI 10.1121/1.422777
Filipo R, 2004, ACTA OTO-LARYNGOL, V124, P368, DOI 10.1080/00016480410016324
Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538
Fu QJ, 2005, JARO-J ASSOC RES OTO, V6, P19, DOI 10.1007/s10162-004-5024-3
Fu QJ, 1998, J ACOUST SOC AM, V104, P3586, DOI 10.1121/1.423941
Geurts L, 2004, J ACOUST SOC AM, V115, P844, DOI 10.1121/1.1642623
HACKER MJ, 1979, PERCEPT PSYCHOPHYS, V26, P168, DOI 10.3758/BF03208311
JESTEADT W, 1980, PERCEPT PSYCHOPHYS, V28, P85, DOI 10.3758/BF03204321
Jolly CN, 1996, IEEE T BIO-MED ENG, V43, P857, DOI 10.1109/10.508549
Koch DB, 2007, EAR HEARING, V28, p38S, DOI 10.1097/AUD.0b013e31803150de
Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6
Kwon BJ, 2006, J ACOUST SOC AM, V119, P2994, DOI 10.1121/1.2184128
Landsberger DM, 2009, HEARING RES, V254, P34, DOI 10.1016/j.heares.2009.04.007
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
Litvak LM, 2007, J ACOUST SOC AM, V122, P967, DOI 10.1121/1.2749414
Marzalek M.S., 2007, EFFECTS MULTIELECTRO
MCDERMOTT HJ, 1994, J ACOUST SOC AM, V96, P155, DOI 10.1121/1.410475
Mens LHM, 2005, OTOL NEUROTOL, V26, P957, DOI 10.1097/01.mao.0000185060.74339.9d
Pfingst BE, 2001, JARO, V2, P87
Saoji A.A., 2007, COMMUNICATION
Shannon Robert V, 2004, Acta Otolaryngol Suppl, P50
SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303
Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a
Snyder RL, 2004, JARO-J ASSOC RES OTO, V5, P305, DOI 10.1007/s10162-004-4026-5
Spelman F A, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P131
Srinivasan AG, 2010, HEARING RES, V270, P89, DOI 10.1016/j.heares.2010.09.004
Vandali AE, 2000, EAR HEARING, V21, P608, DOI 10.1097/00003446-200012000-00008
NR 37
TC 24
Z9 25
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2012
VL 284
IS 1-2
BP 16
EP 24
DI 10.1016/j.heares.2011.12.009
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 915SQ
UT WOS:000302048100003
PM 22230370
ER
PT J
AU Zhou, N
Xu, L
Pfingst, BE
AF Zhou, Ning
Xu, Li
Pfingst, Bryan E.
TI Characteristics of detection thresholds and maximum comfortable loudness
levels as a function of pulse rate in human cochlear implant users
SO HEARING RESEARCH
LA English
DT Article
ID PULSATILE ELECTRICAL-STIMULATION; MODULATION DETECTION; INTENSITY
DISCRIMINATION; ELECTRODE CONFIGURATION; TEMPORAL INTEGRATION; NEURAL
DEGENERATION; SPEECH-PERCEPTION; POSITION; SYSTEM; RECOGNITION
AB The ability of an implanted ear to integrate multiple pulses, as measured by the slopes of detection threshold level (T level) versus pulse rate functions, may reflect cochlear health in the cochlea, as suggested by previous animal studies (Kang et al., 2010; Pfingst et al., 2011). In the current study, we examined the slopes of T level versus pulse rate functions in human subjects with cochlear implants. Typically, T levels decrease as a function of pulse rate, consistent with a multipulse integration mechanism. The magnitudes of the slopes of the T level versus pulse rate functions obtained from the human subjects were comparable to those reported in the animal studies. The slopes varied across stimulation sites, but did not change systematically along the tonotopic axis. This suggests that the slopes are dependent on local conditions near the individual stimulation sites. The characteristics of these functions were also similar to those found in animals in that the slopes for higher pulse rates were steeper than those for the lower pulse rates, consistent with a combined effect of multipulse integration and cumulative partial depolarization mechanisms at rates above 1000 pps. The maximum comfortable loudness level (C level) versus pulse rate functions were also examined to determine the effect of level on the slopes. Slopes of C-level functions were shallower than those for the T-level functions and were not correlated with those of the T-level functions, so the mechanisms underlying these two functions are probably not identical. The slopes of the T- or C-level functions were not dependent on stimulus-current level. Based on these results, we suggest that slopes of T level versus pulse rate functions might be a useful measure for estimating nerve survival in the cochlea in regions close to the stimulation sites. (C) 2012 Elsevier B.V. All rights reserved.
C1 [Zhou, Ning; Xu, Li; Pfingst, Bryan E.] Univ Michigan, Dept Otolaryngol, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA.
[Xu, Li] Ohio Univ, Sch Rehabil & Commun Sci, Athens, OH 45701 USA.
RP Pfingst, BE (reprint author), Univ Michigan, Dept Otolaryngol, Kresge Hearing Res Inst, 1301 E Ann St, Ann Arbor, MI 48109 USA.
EM bpfingst@umich.edu
FU NIH/NIDCD [R01 DC004312, R01 DC010786, T32 DC00011]
FX We express appreciation to Catherine Thompson for assistance with
subject recruitment and data collection and to our research subjects for
their cheerful participation in this work. The work was supported by
NIH/NIDCD grants R01 DC004312, R01 DC010786 and T32 DC00011.
CR Chatterjee M, 2003, J ACOUST SOC AM, V113, P2042, DOI 10.1121/1.1555613
Chatterjee Monita, 2000, Journal of the Acoustical Society of America, V107, P1637, DOI 10.1121/1.428448
Donaldson GS, 1997, J ACOUST SOC AM, V101, P3706, DOI 10.1121/1.418330
Fu QJ, 2005, HEARING RES, V202, P55, DOI 10.1016/j.heares.2004.10.004
Galvin JJ, 2005, JARO-J ASSOC RES OTO, V6, P269, DOI 10.1007/s10162-005-0007-6
Galvin JJ, 2009, HEARING RES, V250, P46, DOI 10.1016/j.heares.2009.01.009
Garadat SN, 2011, HEARING RES, V275, P130, DOI 10.1016/j.heares.2010.12.011
GERKEN GM, 1990, J ACOUST SOC AM, V88, P767, DOI 10.1121/1.399726
GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
HINOJOSA R, 1980, ARCH OTOLARYNGOL, V106, P193
Holden LK, 2002, EAR HEARING, V23, P463, DOI 10.1097/01.AUD.0000034718.53595.99
Johnson L., 1981, Alaska Department of Fish and Game Final Report, P1
Kang SY, 2010, JARO-J ASSOC RES OTO, V11, P245, DOI 10.1007/s10162-009-0194-7
Kreft HA, 2004, J ACOUST SOC AM, V116, P2258, DOI 10.1121/1.1786871
Kreft HA, 2004, J ACOUST SOC AM, V115, P1885, DOI 10.1121/1.1701895
Loizou PC, 2000, J ACOUST SOC AM, V108, P790, DOI 10.1121/1.429612
Long C. J., 2010, OBJ MEAS AUD IMPL 6
McKay CM, 1998, J ACOUST SOC AM, V104, P1061, DOI 10.1121/1.423316
McKay CM, 2001, J ACOUST SOC AM, V110, P1514, DOI 10.1121/1.1394222
Middlebrooks JC, 2004, J ACOUST SOC AM, V116, P452, DOI 10.1121/1.1760795
Middlebrooks JC, 2008, J NEUROPHYSIOL, V100, P92, DOI 10.1152/jn.01114.2007
Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5
Pfingst BE, 2011, J ACOUST SOC AM, V130, P3954, DOI 10.1121/1.3651820
Pfingst BE, 2007, J ACOUST SOC AM, V121, P2236, DOI 10.1121/1.2537501
PFINGST BE, 1993, J ACOUST SOC AM, V94, P1287, DOI 10.1121/1.408155
Pfingst BE, 2004, JARO-J ASSOC RES OTO, V5, P11, DOI 10.1007/s10162-003-3051-0
Plant K, 2007, EAR HEARING, V28, P381, DOI 10.1097/AUD.0b013e31804793ac
Roland JT, 2000, AM J OTOL, V21, P218, DOI 10.1016/S0196-0709(00)80012-5
Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3
Saunders C.E., 2002, EAR HEARING, V23, p28S
SHANNON RV, 1985, HEARING RES, V18, P135, DOI 10.1016/0378-5955(85)90005-X
Shannon RV, 2011, AUDIOL NEURO-OTOL, V16, P113, DOI 10.1159/000315115
SHANNON RV, 1989, HEARING RES, V40, P197, DOI 10.1016/0378-5955(89)90160-3
Skinner MW, 2002, JARO-J ASSOC RES OTO, V3, P332, DOI 10.1007/s101620020013
Skinner M W, 2000, J Am Acad Audiol, V11, P203
Tykocinski M, 2000, AM J OTOL, V21, P205, DOI 10.1016/S0196-0709(00)80010-1
Vandali AE, 2000, EAR HEARING, V21, P608, DOI 10.1097/00003446-200012000-00008
Verschuur CA, 2005, INT J AUDIOL, V44, P58, DOI 10.1080/14992020400022488
ZENG FG, 1994, SCIENCE, V264, P564, DOI 10.1126/science.8160013
NR 39
TC 8
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2012
VL 284
IS 1-2
BP 25
EP 32
DI 10.1016/j.heares.2011.12.008
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 915SQ
UT WOS:000302048100004
PM 22245714
ER
PT J
AU Chen, FQ
Hill, K
Guan, YJ
Schacht, J
Sha, SH
AF Chen, Fu-Quan
Hill, Kayla
Guan, Ya-Jun
Schacht, Jochen
Sha, Su-Hua
TI Activation of apoptotic pathways in the absence of cell death in an
inner-ear immortomouse cell line
SO HEARING RESEARCH
LA English
DT Article
ID HAIR-CELLS; IN-VITRO; MOUSE; OTOTOXICITY; GENTAMICIN; FIBROBLASTS;
CASPASES; NEOMYCIN; ORGAN; CORTI
AB Aminoglycoside antibiotics and cisplatin (CDDP) are the major ototoxins of clinical medicine due to their capacity to cause significant and permanent hearing loss by targeting the mammalian sensory cells. Understanding the pathogenesis of damage is the first step in designing effective prevention of drug-induced hearing loss. In-vitro systems greatly enhance the efficiency of biochemical and molecular investigations through ease of access and manipulation. HEI-OC1, an inner ear cell line derived from the immortomouse, expresses markers for auditory sensory cells and, therefore, is a potential tool to study the ototoxic mechanisms of drugs like aminoglycoside antibiotics and CDDP HEI-OC1 cells (and also HeLa cells) efficiently take up fluorescently tagged gentamicin and respond to drug treatment with changes in cell death and survival signaling pathways. Within hours, the c-Jun N-terminal kinase pathway and the transcription factor AP-1 were activated and at later times, the "executioner caspase", caspase-3. These responses were robust and elicited by both gentamicin and kanamycin. However, despite the initiation of apoptotic pathways and transient changes in nuclear morphology, cell death was not observed following aminoglycoside treatment, while administration of CDDP led to significant cell death as determined by flow cytometric measurements: beta-galactosidase analysis ruled out senescence in gentamicin-treated cells. The ability to withstand treatment with aminoglycosides but not with CDDP suggests that this cell line might be helpful in providing some insight into the differential actions of the two ototoxic drugs. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Chen, Fu-Quan; Hill, Kayla; Sha, Su-Hua] Med Univ S Carolina, Coll Med, Dept Pathol & Lab Med, Charleston, SC 29425 USA.
[Guan, Ya-Jun; Schacht, Jochen] Univ Michigan, Dept Otolaryngol, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA.
[Chen, Fu-Quan] Fourth Mil Med Univ, Xijing Hosp, Dept Otolaryngol Head & Neck Surg, Xian 710032, Peoples R China.
RP Sha, SH (reprint author), Med Univ S Carolina, Coll Med, Dept Pathol & Lab Med, 39 Sabin St, Charleston, SC 29425 USA.
EM shasu@musc.edu
FU National Center for Research Resources [C06 RR014516]; Cancer Center
[P30 CA138313]; National Institute on Deafness and Other Communication
Disorders, National Institutes of Health [R01 DC-03685, P30 DC-05188]
FX This work was partially conducted in Walton Research Building renovated
space supported by grant C06 RR014516 from the National Center for
Research Resources. Imaging facilities for partial work in this research
were supported, in part, by the Cancer Center Support Grant P30 CA138313
to the Hollings Cancer Center, Medical University of South Carolina. The
research project described was supported by grant R01 DC-03685 and a
core center grant P30 DC-05188 from the National Institute on Deafness
and Other Communication Disorders, National Institutes of Health.
CR Alharazneh A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022347
Barber RD, 2000, MOL NEUROBIOL, V21, P161
Bertolaso L, 2003, AUDIOL NEURO-OTOL, V8, P38, DOI 10.1159/000067890
Chen FQ, 2009, J NEUROCHEM, V108, P1226, DOI 10.1111/j.1471-4159.2009.05871.x
Chen QM, 2000, BIOCHEM J, V347, P543, DOI 10.1042/0264-6021:3470543
Choung YH, 2009, NEUROSCIENCE, V161, P214, DOI 10.1016/j.neuroscience.2009.02.085
Cunningham LL, 2004, J NEUROBIOL, V60, P89, DOI 10.1002/neu.20006
Cunningham LL, 2002, J NEUROSCI, V22, P8532
D'Amelio M, 2010, Cell Death Differ, V17, P1104, DOI 10.1038/cdd.2009.180
DIMRI GP, 1995, P NATL ACAD SCI USA, V92, P9363, DOI 10.1073/pnas.92.20.9363
El Mouedden M, 2000, TOXICOL SCI, V56, P229, DOI 10.1093/toxsci/56.1.229
Feinstein-Rotkopf Y, 2009, APOPTOSIS, V14, P980, DOI 10.1007/s10495-009-0346-6
Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X
Germiller JA, 2004, DEV DYNAM, V231, P815, DOI 10.1002/dvdy.20186
Helyer R, 2007, EUR J NEUROSCI, V25, P957, DOI 10.1111/j.1460-9568.2007.05338.x
JAT PS, 1991, P NATL ACAD SCI USA, V88, P5096, DOI 10.1073/pnas.88.12.5096
Jiang H, 2006, CELL DEATH DIFFER, V13, P20, DOI 10.1038/sj.cdd.4401706
Jiang HY, 2005, J NEUROSCI RES, V79, P644, DOI 10.1002/jnr.20392
Kalinec GM, 2003, AUDIOL NEURO-OTOL, V8, P177, DOI 10.1159/000071059
Kuranaga E, 2007, TRENDS CELL BIOL, V17, P135, DOI 10.1016/j.tcb.2007.01.001
Lee J. E., 2004, ACTA OTO-LARYNGOL, V551, P69
LENDAHL U, 1990, TRENDS NEUROSCI, V13, P132, DOI 10.1016/0166-2236(90)90004-T
Rybak L.P., 2008, SPR HDB AUD, P219
Saenz-Robles MT, 2001, ONCOGENE, V20, P7899, DOI 10.1038/sj.onc.1204936
Seigel G M, 1999, Mol Vis, V5, P4
Stennicke HR, 1998, BBA-PROTEIN STRUCT M, V1387, P17, DOI 10.1016/S0167-4838(98)00133-2
Xie J, 2011, HEARING RES, V281, P28, DOI 10.1016/j.heares.2011.05.008
Yikoski J., 2002, HEARING RES, V166, P33
NR 28
TC 10
Z9 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2012
VL 284
IS 1-2
BP 33
EP 41
DI 10.1016/j.heares.2011.12.007
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 915SQ
UT WOS:000302048100005
PM 22240458
ER
PT J
AU Kundu, S
Munjal, C
Tyagi, N
Sen, U
Tyagi, AC
Tyagi, SC
AF Kundu, Soumi
Munjal, Charu
Tyagi, Neetu
Sen, Utpal
Tyagi, Aaron C.
Tyagi, Suresh C.
TI Folic acid improves inner ear vascularization in hyperhomocysteinemic
mice
SO HEARING RESEARCH
LA English
DT Article
ID HEARING-LOSS; BLOOD-FLOW; ENDOTHELIAL DYSFUNCTION; GENE POLYMORPHISMS;
STRIA VASCULARIS; ETA RECEPTORS; COCHLEAR; FOLATE; HOMOCYSTEINE;
ENDOLYMPH
AB More than 29 million adults in the United States have been diagnosed with hearing loss. Interestingly, elevated homocysteine (Hcy) levels, known as hyperhomocysteinemia (HHcy), are also associated with impaired hearing. However, the associated mechanism remains obscure. The collagen receptor such as discoidin domain receptor 1 and matrix metalloproteinase (MMP) play a significant role in inner ear structure and function. We hypothesize that HHcy increases hearing thresholds by compromise in inner ear vasculature resulted from impaired Hcy metabolism, increased oxidative stress, collagen IVa and collagen Ia turnover. The treatment with folic acid (FA) protects elevated hearing thresholds and prevents reduction in vessel density by lowering abundant collagen deposition and oxidative stress in inner ear. To test this hypothesis we employed 8 weeks old male wild type (WT), cystathionine-beta-synthase heterozygote knockout (CBS+/-) mice, WT + FA (0.0057 mu g/g/day, equivalent to a 400 mu g/70 kg/day human dose in drinking water); and CBS(+/-) +FA. The mice were treated for four weeks. The hearing thresholds were determined by recording the auditory brainstem responses. Integrity of vessels was analyzed by perfusion of horseradish peroxidase (HRP) tracer. Endothelial permeability was assessed, which indicated restoration of HRP leakage by FA treatment. A total Hcy level was increased in stria vascularis (SV) and spiral ligament (SL) of CBS+/- mice which was lowered by FA. Interestingly, FA treatment lowered Col IVa Immunostaining by affecting its turnover. The levels of MMP-2, -9, methylenetetrahydrofolate reductase (MTHFR) and cystathione gamma lyase (CSE) were measured by Western blot analysis. The oxidative stress was high in SV and SL of CBS+/- compared to WT however the treatment with FA lowered oxidative stress in CBS+/- mice. These data suggested that hearing loss in CBS+/- mice was primarily due to leakage in inner ear circulation, also partly by induced collagen imbalance, increase in Hcy and oxidative stress in inner ear. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Munjal, Charu; Tyagi, Neetu; Sen, Utpal; Tyagi, Aaron C.; Tyagi, Suresh C.] Univ Louisville, Dept Physiol & Biophys, Sch Med, Louisville, KY 40202 USA.
[Kundu, Soumi] Uppsala Univ, Dept Genet & Pathol, Rudbecklab PLAN 3 C11, S-75185 Uppsala, Sweden.
RP Tyagi, N (reprint author), Univ Louisville, Hlth Sci Ctr, Dept Physiol & Biophys, A-1115, Louisville, KY 40292 USA.
EM n0tyag01@louisville.edu
FU NIH [HL-71010, NS51568]
FX This work was supported by NIH grants: HL-71010 and NS51568 to SCT.
CR ANGELBORG C, 1985, ANN OTO RHINOL LARYN, V94, P181
Banfi B, 2004, J BIOL CHEM, V279, P46065, DOI 10.1074/jbc.M403046200
Capaccio P, 2005, GENET MED, V7, P206, DOI 10.1097/01.GIM.0000157817.92509.45
Clarke ZL, 2006, EUR J PHARMACOL, V551, P92, DOI 10.1016/j.ejphar.2006.08.085
Cohen-Salmon M, 2007, P NATL ACAD SCI USA, V104, P6229, DOI 10.1073/pnas.0605108104
Gates GA, 2005, LANCET, V366, P1111, DOI 10.1016/S0140-6736(05)67423-5
Gopinath B, 2010, J NUTR, V140, P1469, DOI 10.3945/jn.110.122010
Hausler R, 2000, ACTA OTO-LARYNGOL, V120, P689
Kumar M, 2008, NEUROCHEM INT, V53, P214, DOI 10.1016/j.neuint.2008.07.008
Kundu S, 2009, MOL CELL BIOCHEM, V332, P215, DOI 10.1007/s11010-009-0194-2
Lauhio A., 2010, ANN MED
Liu D, 1988, Zhonghua Er Bi Yan Hou Ke Za Zhi, V23, P342
Mees K, 2002, LARYNGO RHINO OTOL, V81, P465, DOI 10.1055/s-2002-33290
Miller A, 2002, AM J HYPERTENS, V15, P157, DOI 10.1016/S0895-7061(01)02286-5
Mujumdar VS, 2000, J CELL PHYSIOL, V183, P28, DOI 10.1002/(SICI)1097-4652(200004)183:1<28::AID-JCP4>3.0.CO;2-O
Munjal C, 2011, MOL CELL BIOCHEM, V348, P99, DOI 10.1007/s11010-010-0643-y
NAKAI Y, 1992, SCANNING MICROSCOPY, V6, P1097
Nakai Y., 1992, SCANNING MICROSCOPY, V6, P1103
Polyzos SA, 2010, J BONE MINER METAB, V28, P314, DOI 10.1007/s00774-009-0131-1
Qipshidze N, 2010, J CELL PHYSL
QUIRK WS, 1995, AM J OTOL, V16, P322
SAKAGAMI M, 1984, ACTA OTO-LARYNGOL, P256
Scherer EQ, 2001, J MEMBRANE BIOL, V182, P183, DOI 10.1007/s00232-001-0041-1
Scherer EQ, 2002, ADV OTO-RHINO-LARYNG, V59, P58
Setz C, 2011, NEUROSCIENCE, V181, P28, DOI 10.1016/j.neuroscience.2011.02.043
STERKERS O, 1982, AM J PHYSIOL, V243, pF173
STERKERS O, 1982, AM J OTOLARYNG, V3, P367, DOI 10.1016/S0196-0709(82)80012-4
Symons JD, 2006, ARTERIOSCL THROM VAS, V26, P814, DOI 10.1161/01.ATV.0000204408.01416.16
Uchida Y, 2011, BMC MED GENET, V12, DOI 10.1186/1471-2350-12-35
Wangemann P, 2002, ADV OTO-RHINO-LARYNG, V59, P51
Woo MS, 2008, J NEUROCHEM, V106, P770, DOI 10.1111/j.1471-4159.2008.05430.x
Zhen PP, 2011, ATHEROSCLEROSIS, V215, P309, DOI 10.1016/j.atherosclerosis.2010.12.029
zum Gottesberge AMM, 2008, LAB INVEST, V88, P27, DOI 10.1038/labinvest.3700692
zum Gottesberge AMM, 2005, HISTOCHEM CELL BIOL, V124, P507, DOI 10.1007/s00418-005-0027-7
NR 34
TC 2
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2012
VL 284
IS 1-2
BP 42
EP 51
DI 10.1016/j.heares.2011.12.006
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 915SQ
UT WOS:000302048100006
PM 22222235
ER
PT J
AU Hornickel, J
Knowles, E
Kraus, N
AF Hornickel, Jane
Knowles, Erica
Kraus, Nina
TI Test-retest consistency of speech-evoked auditory brainstem responses in
typically-developing children
SO HEARING RESEARCH
LA English
DT Article
ID IN-NOISE PERCEPTION; PITCH; EXPERIENCE; DIFFERENTIATION; REPRESENTATION;
MATURATION; PLASTICITY; LATENCY; SOUNDS; MUSIC
AB The click-evoked auditory brainstem response (ABR) is widely used in clinical settings, partly due to its predictability and high test-retest consistency. More recently, the speech-evoked ABR has been used to evaluate subcortical processing of complex signals, allowing for the objective assessment of biological processes underlying auditory function and auditory processing deficits not revealed by responses to clicks. Test-retest reliability of some components of speech-evoked ABRs has been shown for adults and children over the course of months. However, a systematic study of the consistency of the speech-evoked brainstem response in school-age children has not been conducted. In the present study, speech-evoked ABRs were collected from 26 typically-developing children (ages 8-13) at two time points separated by one year. ABRs were collected for /da/ presented in quiet and in a 6-talker babble background noise. Test-retest consistency of response timing, spectral encoding, and signal-to-noise ratio was assessed. Response timing and spectral encoding were highly replicable over the course of one year. The consistency of response timing and spectral encoding found for the speech-evoked ABRs of typically-developing children suggests that the speech-evoked ABR may be a unique tool for research and clinical assessment of auditory function, particularly with respect to auditory-based communication skills. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Hornickel, Jane; Knowles, Erica; Kraus, Nina] Northwestern Univ, Dept Commun Sci & Disorders, Auditory Neurosci Lab, Evanston, IL 60208 USA.
[Kraus, Nina] Northwestern Univ, Dept Neurobiol & Physiol, Evanston, IL 60208 USA.
[Kraus, Nina] Northwestern Univ, Dept Otolaryngol, Evanston, IL 60208 USA.
RP Hornickel, J (reprint author), Northwestern Univ, Dept Commun Sci & Disorders, Auditory Neurosci Lab, 2240 Campus Dr, Evanston, IL 60208 USA.
EM j-hornickel@northwestern.edu
FU National Institutes of Health [R01DC01510]; Hugh Knowles Center of
Northwestern University
FX This work was supported by the National Institutes of Health
(R01DC01510) and the Hugh Knowles Center of Northwestern University. The
authors would like to thank Steven Zecker for his advisement, Dana
Strait, Samira Anderson, and Trent Nicol for their review of the
manuscript and the children and their families for participating.
CR Aiken SJ, 2008, HEARING RES, V245, P35, DOI 10.1016/j.heares.2008.08.004
Anderson S, 2010, HEARING RES, V270, P151, DOI 10.1016/j.heares.2010.08.001
Anderson S, 2010, J NEUROSCI, V30, P4922, DOI 10.1523/JNEUROSCI.0107-10.2010
Banai K, 2009, CEREB CORTEX, V19, P2699, DOI 10.1093/cercor/bhp024
Campbell T, 2012, EAR HEARING, V33, P144, DOI 10.1097/AUD.0b013e3182280353
Carcagno S, 2011, JARO-J ASSOC RES OTO, V12, P89, DOI 10.1007/s10162-010-0236-1
EDWARDS RM, 1982, ELECTROEN CLIN NEURO, V53, P125, DOI 10.1016/0013-4694(82)90018-9
Gorga M, 1985, AUDITORY BRAINSTEM R, P49
Graven S, 2008, NEWBORN INFANT NURS, V8, P187, DOI DOI 10.1053/J.NAINR.2008.10.010
Hall J., 2006, NEW HDB AUDITORY EVO
Hood L. J., 1998, CLIN APPL AUDITORY B
Hornickel J, 2009, P NATL ACAD SCI USA, V106, P13022, DOI 10.1073/pnas.0901123106
Hornickel J, 2011, BEHAV BRAIN RES, V216, P597, DOI 10.1016/j.bbr.2010.08.051
ISSA A, 1995, INT J PEDIATR OTORHI, V32, P35, DOI 10.1016/0165-5876(94)01110-J
Johnson KL, 2008, J NEUROSCI, V28, P4000, DOI 10.1523/JNEUROSCI.0012-08.2008
KLATT DH, 1980, J ACOUST SOC AM, V67, P971, DOI 10.1121/1.383940
Kraus N, 2010, NAT REV NEUROSCI, V11, P599, DOI 10.1038/nrn2882
Krishnan A, 2005, COGNITIVE BRAIN RES, V25, P161, DOI 10.1016/j.cogbrainres.2005.05.004
LAUTER JL, 1992, BRIT J AUDIOL, V26, P245, DOI 10.3109/03005369209076643
McGrew K., 2001, TECHNICAL MANUAL WOO
Musacchia G, 2007, P NATL ACAD SCI USA, V104, P15894, DOI 10.1073/pnas.0701498104
Musiek FE, 2007, AUDITORY EVOKED POTE, P291
Nunnally J. C., 1959, TESTS MEASUREMENTS A
Ponton CW, 2000, CLIN NEUROPHYSIOL, V111, P220, DOI 10.1016/S1388-2457(99)00236-9
Russo N, 2004, CLIN NEUROPHYSIOL, V115, P2021, DOI 10.1016/j.clinph.2004.04.003
Russo NM, 2010, BEHAV BRAIN FUNCT, V6, DOI 10.1186/1744-9081-6-60
Russo NM, 2005, BEHAV BRAIN RES, V156, P95, DOI 10.1016/j.bbr.2004.05.012
SALAMY A, 1984, J CLIN NEUROPHYSIOL, V1, P293, DOI 10.1097/00004691-198407000-00003
Sininger Y. S., 2007, AUDITORY EVOKED POTE, P254
Skoe E, 2010, EAR HEARING, V31, P302, DOI 10.1097/AUD.0b013e3181cdb272
Skoe E, 2011, J NEUROSCI METH, V196, P308, DOI 10.1016/j.jneumeth.2011.01.020
Song JH, 2011, J COGNITIVE NEUROSCI, V23, P2268, DOI 10.1162/jocn.2010.21556
Song JH, 2011, CLIN NEUROPHYSIOL, V122, P346, DOI 10.1016/j.clinph.2010.07.009
Song JH, 2011, CEREB CORTEX, V122, P1890
Syntrillium Software: Syntrillium Software Corporation, 2003, SYNTR SOFTW SYNTR SO
Torgensen J. K., 1999, TEST WORD READING EF
Torgesen J. K., 1999, EXAMINERS MANUAL TES
TUSA RJ, 1994, NEUROLOGY, V44, P528
Wagner R. K., 1999, EXAMINERS MANUAL COM
Wible B, 2004, BIOL PSYCHOL, V67, P299, DOI 10.1016/j.biopsycho.2004.02.002
Woerner C., 1999, WECHSLER ABBREVIATED
Wong PCM, 2007, NAT NEUROSCI, V10, P420, DOI 10.1038/nn1872
Xu YS, 2006, NEUROREPORT, V17, P1601, DOI 10.1097/01.wnr.0000236865.31705.3a
NR 43
TC 13
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2012
VL 284
IS 1-2
BP 52
EP 58
DI 10.1016/j.heares.2011.12.005
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 915SQ
UT WOS:000302048100007
PM 22197852
ER
PT J
AU Banai, K
Fisher, S
Ganot, R
AF Banai, Karen
Fisher, Shirley
Ganot, Ron
TI The effects of context and musical training on auditory
temporal-interval discrimination
SO HEARING RESEARCH
LA English
DT Article
ID FREQUENCY DISCRIMINATION; DURATION DISCRIMINATION; REVERSE HIERARCHIES;
INTRINSIC MODELS; PITCH; PERCEPTION; TIME; SYSTEM; SOUNDS; CORTEX
AB Non sensory factors such as stimulus context and musical experience are known to influence auditory frequency discrimination, but whether the context effect extends to auditory temporal processing remains unknown. Whether individual experiences such as musical training alter the context effect is also unknown. The goal of the present study was therefore to investigate the effects of stimulus context and musical experience on auditory temporal-interval discrimination. In experiment 1, temporal-interval discrimination was compared between fixed context conditions in which a single base temporal interval was presented repeatedly across all trials and variable context conditions in which one of two base intervals was randomly presented on each trial. Discrimination was significantly better in the fixed than in the variable context conditions. In experiment 2 temporal discrimination thresholds of musicians and non-musicians were compared across 3 conditions: a fixed context condition in which the target interval was presented repeatedly across trials, and two variable context conditions differing in the frequencies used for the tones marking the temporal intervals. Musicians outperformed non-musicians on all 3 conditions, but the effects of context were similar for the two groups. Overall, it appears that, like frequency discrimination, temporal-interval discrimination benefits from having a fixed reference. Musical experience, while improving performance, did not alter the context effect, suggesting that improved discrimination skills among musicians are probably not an outcome of more sensitive contextual facilitation or predictive coding mechanisms. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Banai, Karen; Fisher, Shirley; Ganot, Ron] Univ Haifa, Dept Commun Sci & Disorders, IL-31905 Haifa, Israel.
RP Banai, K (reprint author), Univ Haifa, Dept Commun Sci & Disorders, IL-31905 Haifa, Israel.
EM kbanai@research.haifa.ac.il
FU Israel Science Foundation [LHSI 1842/07]; Marie Curie fellowship [IRG
224763]
FX We thank Beverly Wright for helpful discussions of these data, Brian
Moore and two anonymous reviewers for comments on a previous version of
the manuscript, and Liraz Weissbrod and Oved Izhaki for help with the
collection of data for experiment 1. This work was supported by the
Israel Science Foundation (LHSI 1842/07) and a Marie Curie fellowship
(IRG 224763). Ron Ganot and Shirley Fisher conducted experiment 2 as
part of an undergraduate research project mentored by Karen Banai.
CR Ahissar M., 2009, LEARNING PERCEPTION, V1, P115, DOI [DOI 10.1556/LP.1.2009.1.9, 10.1556/LP.1.2009.1.9]
Ahissar M, 2006, NAT NEUROSCI, V9, P1558, DOI 10.1038/nn1800
Ahissar M, 2009, PHILOS T R SOC B, V364, P285, DOI 10.1098/rstb.2008.0253
Baldeweg T, 2006, TRENDS COGN SCI, V10, P93, DOI 10.1016/j.tics.2006.01.010
Banai K., 2007, DAILY TRAINING REQ A
Banai K, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019769
Banai K, 2010, NEUROSCIENCE, V165, P436, DOI 10.1016/j.neuroscience.2009.10.060
Best V, 2008, P NATL ACAD SCI USA, V105, P13174, DOI 10.1073/pnas.0803718105
Bialystok E, 2009, J EXP PSYCHOL HUMAN, V35, P565, DOI 10.1037/a0012735
Bidelman GM, 2011, EUR J NEUROSCI, V33, P530, DOI 10.1111/j.1460-9568.2010.07527.x
Bitterman Y, 2008, NATURE, V451, P197, DOI 10.1038/nature06476
Chan AS, 1998, NATURE, V396, P128, DOI 10.1038/24075
Chandrasekaran B, 2009, NEURON, V64, P311, DOI 10.1016/j.neuron.2009.10.006
CREELMAN CD, 1979, J EXP PSYCHOL HUMAN, V5, P146, DOI 10.1037//0096-1523.5.1.146
DIVENYI PL, 1978, PERCEPT PSYCHOPHYS, V24, P429, DOI 10.3758/BF03199740
DONCHIN E, 1981, PSYCHOPHYSIOLOGY, V18, P493, DOI 10.1111/j.1469-8986.1981.tb01815.x
Geiser E, 2009, CORTEX, V45, P93, DOI 10.1016/j.cortex.2007.09.010
Harris JA, 2006, PLOS ONE, V1, DOI 10.1371/journal.pone.0000100
HARRIS JD, 1948, AM J PSYCHOL, V61, P309, DOI 10.2307/1417151
Hochstein S, 2002, NEURON, V36, P791, DOI 10.1016/S0896-6273(02)01091-7
Ivry RB, 2008, TRENDS COGN SCI, V12, P273, DOI 10.1016/j.tics.2008.04.002
Karmarkar UR, 2003, LEARN MEMORY, V10, P141, DOI 10.1101/lm.55503
Karmarkar UR, 2007, NEURON, V53, P427, DOI 10.1016/j.neuron.2007.01.006
Kishon-Rabin Liat, 2001, Journal of Basic and Clinical Physiology and Pharmacology, V12, P125
Kraus N, 2010, NAT REV NEUROSCI, V11, P599, DOI 10.1038/nrn2882
Kristjansson A, 2010, ATTEN PERCEPT PSYCHO, V72, P5, DOI 10.3758/APP.72.1.5
Lapid E, 2008, PERCEPT PSYCHOPHYS, V70, P291, DOI 10.3758/PP.70.2.291
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
Lockwood AH, 1999, CEREB CORTEX, V9, P65, DOI 10.1093/cercor/9.1.65
Luck S. J., 2005, INTRO EVENT RELATED
Mauk MD, 2004, ANNU REV NEUROSCI, V27, P307, DOI 10.1146/annurev.neuro.27.070203.144247
Micheyl C, 2006, HEARING RES, V219, P36, DOI 10.1016/j.heares.2006.05.004
Nahum M, 2008, PLOS BIOL, V6, P978, DOI 10.1371/journal.pbio.0060126
Nahum M, 2010, J NEUROSCI, V30, P1128, DOI 10.1523/JNEUROSCI.1781-09.2010
PANTEV C, 1989, SCIENCE, V246, P486, DOI 10.1126/science.2814476
Parbery-Clark A, 2009, EAR HEARING, V30, P653, DOI 10.1097/AUD.0b013e3181b412e9
Parbery-Clark A, 2009, J NEUROSCI, V29, P14100, DOI 10.1523/JNEUROSCI.3256-09.2009
Prince JB, 2009, J EXP PSYCHOL HUMAN, V35, P1598, DOI 10.1037/a0016456
Rammsayer T, 2006, MUSIC PERCEPT, V24, P37, DOI 10.1525/mp.2006.24.1.37
RAMMSAYER TH, 1991, PERCEPT PSYCHOPHYS, V50, P565, DOI 10.3758/BF03207541
Spencer RMC, 2009, PHILOS T R SOC B, V364, P1853, DOI 10.1098/rstb.2009.0024
Strait DL, 2011, FRONT PSYCHOL, V2, DOI 10.3389/fpsyg.2011.00113
Strait DL, 2010, HEARING RES, V261, P22, DOI 10.1016/j.heares.2009.12.021
Todorovic A, 2011, J NEUROSCI, V31, P9118, DOI 10.1523/JNEUROSCI.1425-11.2011
Tsaliach Inbal, 2010, Journal of Basic and Clinical Physiology and Pharmacology, V21, P221
Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032
Wright BA, 2010, J NEUROSCI, V30, P11635, DOI 10.1523/JNEUROSCI.1441-10.2010
Wright BA, 1997, J NEUROSCI, V17, P3956
Wright BA, 2007, EXP BRAIN RES, V180, P727, DOI 10.1007/s00221-007-0898-z
NR 49
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2012
VL 284
IS 1-2
BP 59
EP 66
DI 10.1016/j.heares.2011.12.002
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 915SQ
UT WOS:000302048100008
PM 22200608
ER
PT J
AU Buck, LMJ
Winter, MJ
Redfern, WS
Whitfield, TT
AF Buck, Lauren M. J.
Winter, Matthew J.
Redfern, William S.
Whitfield, Tanya T.
TI Ototoxin-induced cellular damage in neuromasts disrupts lateral line
function in larval zebrafish
SO HEARING RESEARCH
LA English
DT Article
ID GOLDFISH CARASSIUS-AURATUS; DICENTRARCHUS-LABRAX L.; RANDOMIZED
PHASE-III; DANIO-RERIO; HAIR-CELLS; BEHAVIORAL-CHARACTERISTICS; CADMIUM
EXPOSURE; STARTLE RESPONSE; LUNG-CANCER; INNER-EAR
AB The ototoxicity of a number of marketed drugs is well documented, and there is an absence of convenient techniques to identify and eliminate this unwanted effect at a pre-clinical stage. We have assessed the validity of the larval zebrafish, or more specifically its lateral line neuromast hair cells, as a microplatescale in vivo surrogate model of mammalian inner ear hair cell responses to ototoxin exposure. Here we describe an investigation of the pathological and functional consequences of hair cell loss in lateral line neuromasts of larval zebrafish after exposure to a range of well known human and non-human mammalian ototoxins. Using a previously described histological assay, we show that hair cell damage occurs in a concentration-dependent fashion following exposure to representatives from a range of drug classes, including the aminoglycoside antibiotics, salicylates and platinum-based chemotherapeutics, as well as a heavy metal. Furthermore, we detail the optimisation of a semi-automated method to analyse the stereotypical startle response in larval zebrafish, and use this to assess the impact of hair cell damage on hearing function in these animals. Functional assessment revealed robust and significant attenuation of the innate startle, rheotactic and avoidance responses of 5 day old zebrafish larvae after treatment with a number of compounds previously shown to induce hair cell damage and loss. Interestingly, a startle reflex (albeit reduced) was still present even after the apparent complete loss of lateral line hair cell fluorescence, suggesting some involvement of the inner ear as well as the lateral line neuromast hair cells in this reflex response. Collectively, these data provide evidence to support the use of the zebrafish as a pre-clinical indicator of drug-induced histological and functional ototoxicity. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Buck, Lauren M. J.; Winter, Matthew J.] AstraZeneca Safety Hlth & Environm, Brixham Environm Lab, Freshwater Quarry TQ5 8BA, Brixham, England.
[Buck, Lauren M. J.; Whitfield, Tanya T.] Univ Sheffield, MRC Ctr Dev & Biomed Genet, Sheffield S10 2TN, S Yorkshire, England.
[Buck, Lauren M. J.; Whitfield, Tanya T.] Univ Sheffield, Dept Biomed Sci, Sheffield S10 2TN, S Yorkshire, England.
[Redfern, William S.] AstraZeneca R&D, Safety Assessment UK, Macclesfield SK10 4TG, Cheshire, England.
RP Winter, MJ (reprint author), AstraZeneca Safety Hlth & Environm, Brixham Environm Lab, Freshwater Quarry TQ5 8BA, Brixham, England.
EM Matthew.Winter@astrazeneca.com; t.whitfield@sheffield.ac.uk
FU BBSRC CASE (IPG) [BB/G529424/1]; MRC [G0700091]; Wellcome Trust
[GR077544AIA]
FX This work was funded by a BBSRC CASE (IPG) award to LMJB between
AstraZeneca and TTW (BB/G529424/1). We are grateful to Alan Sharpe and
Nick Monk for help with the statistical analyses. We thank the BEL
engineering department, Pete Nicholson and Robert Chandler for technical
assistance, and aquarium staff at both the MRC CDBG Sheffield and at BEL
aquaria for expert care of the zebrafish. We thank Viewpoint Inc. for
their equipment, expertise and advice. The MRC CDBG zebrafish aquaria
and imaging facilities were supported by the MRC (G0700091), with
additional support from the Wellcome Trust (GR077544AIA).
CR AHL, 2011, ACT HEAR LOSS
ARNOLD GP, 1974, BIOL REV, V49, P515, DOI 10.1111/j.1469-185X.1974.tb01173.x
Baker CF, 2001, ENVIRON BIOL FISH, V62, P455, DOI 10.1023/A:1012290912326
Bang PI, 2002, J NEUROSCI METH, V118, P177, DOI 10.1016/S0165-0270(02)00118-8
Best JD, 2008, NEUROPSYCHOPHARMACOL, V33, P1206, DOI 10.1038/sj.npp.1301489
Bever MM, 2002, DEV DYNAM, V223, P536, DOI 10.1002/dvdy.10062
Blaxter J.H.S., 1989, P481
Brack CL, 2012, J CLIN NEUROSCI, V19, P333, DOI 10.1016/j.jocn.2011.06.008
Brignull HR, 2009, BRAIN RES, V1277, P12, DOI 10.1016/j.brainres.2009.02.028
Brunton L. L., 2006, GOODMAN GILMANS PHAR
Burgess HA, 2007, J NEUROSCI, V27, P4984, DOI 10.1523/JNEUROSCI.0615-07.2007
Burgess HA, 2009, GENES BRAIN BEHAV, V8, P500, DOI 10.1111/j.1601-183X.2009.00499.x
Burgess Harold A., 2008, Briefings in Functional Genomics & Proteomics, V7, P474, DOI 10.1093/bfgp/eln039
Chiu LL, 2008, JARO-J ASSOC RES OTO, V9, P178, DOI 10.1007/s10162-008-0118-y
Coffin AB, 2009, HEARING RES, V253, P42, DOI 10.1016/j.heares.2009.03.004
Coffin AB, 2010, ZEBRAFISH, V7, P3, DOI 10.1089/zeb.2009.0639
Colucci G, 2002, CANCER, V94, P902, DOI 10.1002/cncr.10323
Crino L, 1999, J CLIN ONCOL, V17, P3522
Crino L, 1999, J CLIN ONCOL, V17, P2081
DIJKGRAAF S, 1963, BIOL REV, V38, P51, DOI 10.1111/j.1469-185X.1963.tb00654.x
Domenici P, 2010, J EXP ZOOL PART A, V313A, P59, DOI 10.1002/jez.580
Faucher K, 2008, ENVIRON POLLUT, V151, P148, DOI 10.1016/j.envpol.2007.02.017
Faucher K, 2006, AQUAT TOXICOL, V76, P278, DOI 10.1016/j.aquatox.2005.10.004
FAY RR, 1974, J EXP BIOL, V61, P243
Froehlicher M, 2009, AQUAT TOXICOL, V95, P307, DOI 10.1016/j.aquatox.2009.04.007
Ghysen A, 2004, CURR OPIN NEUROBIOL, V14, P67, DOI 10.1016/j.conb.2004.01.012
Guthrie OW, 2008, TOXICOLOGY, V249, P91, DOI 10.1016/j.tox.2008.04.015
Harris JA, 2003, JARO, V4, P219, DOI 10.1007/s10162-002-3022-x
Hernandez PP, 2006, HEARING RES, V213, P1, DOI 10.1016/j.heares.2005.10.015
Hirose Y., 2011, J ASS RES OTOLARYNGO, V6
Johnson A, 2007, AQUAT TOXICOL, V84, P431, DOI 10.1016/j.aquatox.2007.07.003
Joint Formulary Committee, 2011, BRIT NAT FORM
KAUS S, 1987, ACTA OTO-LARYNGOL, V103, P291, DOI 10.3109/00016488709107796
KIMMEL CB, 1995, DEV DYNAM, V203, P253
KIMMEL CB, 1980, J COMP PHYSIOL, V140, P343
KIMMEL CB, 1974, DEV PSYCHOBIOL, V7, P47, DOI 10.1002/dev.420070109
Lee Nam-Su, 2004, Cancer Res Treat, V36, P173, DOI 10.4143/crt.2004.36.3.173
Linbo TL, 2006, ENVIRON TOXICOL CHEM, V25, P597, DOI 10.1897/05-241R.1
Liu KS, 1999, NEURON, V23, P325, DOI 10.1016/S0896-6273(00)80783-7
MATSUURA S, 1971, JPN J PHYSIOL, V21, P579
McHenry MJ, 2009, BIOL LETTERS, V5, P477, DOI 10.1098/rsbl.2009.0048
METCALFE WK, 1985, J COMP NEUROL, V233, P377, DOI 10.1002/cne.902330307
Metcalfe W.K., 1989, P147
Mo W, 2010, BMC NEUROSCI, V11, DOI 10.1186/1471-2202-11-110
Montgomery JC, 1997, NATURE, V389, P960, DOI 10.1038/40135
Murakami SL, 2003, HEARING RES, V186, P47, DOI 10.1016/S0378-5955(03)00259-4
Nusslein-Volhard C., 2002, ZEBRAFISH PRACTICAL
Olivari FA, 2008, BRAIN RES, V1244, P1, DOI 10.1016/j.brainres.2008.09.050
Ou HC, 2007, HEARING RES, V233, P46, DOI 10.1016/j.heares.2007.07.003
Ou HC, 2009, JARO-J ASSOC RES OTO, V10, P191, DOI 10.1007/s10162-009-0158-y
Ou HC, 2010, DRUG DISCOV TODAY, V15, P265, DOI 10.1016/j.drudis.2010.01.001
Owens KN, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000020
Owens KN, 2009, HEARING RES, V253, P32, DOI 10.1016/j.heares.2009.03.001
Owens KN, 2007, J COMP NEUROL, V502, P522, DOI 10.1002/cne.21345
Palumbo A, 2010, BLOOD, V115, P1873, DOI 10.1182/blood-2009-09-241737
Pinguet F, 2000, CLIN CANCER RES, V6, P57
PRESTAYKO AW, 1979, CANCER TREAT REV, V6, P17, DOI 10.1016/S0305-7372(79)80057-2
Raible DW, 2000, J COMP NEUROL, V421, P189, DOI 10.1002/(SICI)1096-9861(20000529)421:2<189::AID-CNE5>3.0.CO;2-K
Ramcharitar J, 2010, J APPL TOXICOL, V30, P536, DOI 10.1002/jat.1523
Ramcharitar JU, 2010, J CLIN NEUROSCI, V17, P103, DOI 10.1016/j.jocn.2009.08.003
Rankin CH, 2009, NEUROBIOL LEARN MEM, V92, P135, DOI 10.1016/j.nlm.2008.09.012
Redfern William S., 2008, Journal of Pharmacological and Toxicological Methods, V58, P110, DOI 10.1016/j.vascn.2008.05.006
RELLER LB, 1973, ANTIMICROB AGENTS CH, V3, P488
RIBNER BS, 1983, J ANTIMICROB CHEMOTH, V12, P387, DOI 10.1093/jac/12.4.387
Rice C, 2011, AQUAT TOXICOL, V105, P600, DOI 10.1016/j.aquatox.2011.08.014
Richards F. M., 2008, Journal of Pharmacological and Toxicological Methods, V58, P50, DOI 10.1016/j.vascn.2008.04.002
Rybak LP, 2007, HEARING RES, V226, P157, DOI 10.1016/j.heares.2006.09.015
RYBAK LP, 1986, ANNU REV PHARMACOL, V26, P79
Rybak LP, 2007, KIDNEY INT, V72, P931, DOI 10.1038/sj.ki.5002434
Salvo F, 2007, J ANTIMICROB CHEMOTH, V60, P121, DOI 10.1093/jac/dkm111
Sandler A, 1999, Oncologist, V4, P241
Santos F, 2006, HEARING RES, V213, P25, DOI 10.1016/j.heares.2005.12.009
Schacht J, 2006, AUDIOL NEURO-OTOL, V11, P1, DOI 10.1159/000088850
Seligmann H, 1996, DRUG SAFETY, V14, P198
THOMPSON RF, 1966, PSYCHOL REV, V73, P16, DOI 10.1037/h0022681
Ton C, 2005, HEARING RES, V208, P79, DOI 10.1016/j.heares.2005.05.005
Van Trump WJ, 2010, HEARING RES, V261, P42, DOI 10.1016/j.heares.2010.01.001
von der Maase H, 1999, ANN ONCOL, V10, P1461, DOI 10.1023/A:1008331111654
Weber DN, 2006, J FISH BIOL, V69, P75, DOI 10.1111/j.1095-8649.2006.01068.x
Whitfield TT, 2002, J NEUROBIOL, V53, P157, DOI 10.1002/neu.10123
Whitfield TT, 2002, DEV DYNAM, V223, P427, DOI 10.1002/dvdy.10073
Winter Matthew J., 2008, Journal of Pharmacological and Toxicological Methods, V57, P176, DOI 10.1016/j.vascn.2008.01.004
Xiao T, 2005, DEVELOPMENT, V132, P2955, DOI 10.1242/dev.01861
Zeddies DG, 2005, J EXP BIOL, V208, P1363, DOI 10.1242/jeb.01534
NR 84
TC 15
Z9 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2012
VL 284
IS 1-2
BP 67
EP 81
DI 10.1016/j.heares.2011.12.001
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 915SQ
UT WOS:000302048100009
PM 22183155
ER
PT J
AU Eiber, A
Huber, AM
Lauxmann, M
Chatzimichalis, M
Sequeira, D
Sim, JH
AF Eiber, Albrecht
Huber, Alexander M.
Lauxmann, Michael
Chatzimichalis, Michail
Sequeira, Damien
Sim, Jae Hoon
TI Contribution of complex stapes motion to cochlea activation
SO HEARING RESEARCH
LA English
DT Article
ID HUMAN TEMPORAL BONES; SOUND-TRANSMISSION; MIDDLE-EAR; GERBIL; FOOTPLATE;
PRESSURE; VELOCITY; SYSTEM
AB Classic theories of hearing have considered only a translational component (piston-like component) of the stapes motion as being the effective stimulus for cochlear activation and thus the sensation of hearing. Our previous study (Huber et al., 2008) qualitatively showed that rotational components around the long and short axes of the footplate (rocking-like components) lead to cochlear activation as well. In this study, the contribution of the piston-like and rocking-like components of the stapes motion to cochlea activation was quantitatively investigated with measurements in live guinea pigs and a related mathematical description. The isolated stapes in anesthetized guinea pigs was stimulated by a three-axis piezoelectric actuator, and 3-D motions of the stapes and compound action potential (CAP) of the cochlea were measured simultaneously. The measured values were used to fit a hypothesis of the CAP as a linear combination of the logarithms of the piston-like and rocking-like components. Both the piston-like and rocking-like components activate cochlear responses when they exceed certain thresholds. These thresholds as well as the relation between CAP and intensity of the motion component were different for piston-like and rocking-like components. The threshold was found to be higher and the sensitivity lower for the rocking-like component than the corresponding values for the piston-like component. The influence of the rocking-like component was secondary in cases of piston-dominant motions of the stapes although it may become significant for low amplitudes of the piston-like component. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Sim, Jae Hoon] Univ Zurich Hosp, Dept Otorhinolaryngol Head & Neck Surg, CH-8091 Zurich, Switzerland.
[Eiber, Albrecht; Lauxmann, Michael] Univ Stuttgart, D-7000 Stuttgart, Germany.
RP Sim, JH (reprint author), Univ Zurich Hosp, Dept Otorhinolaryngol Head & Neck Surg, Frauenklin Str 24, CH-8091 Zurich, Switzerland.
EM JaeHoon.Sim@usz.ch
RI Huber, Alexander/A-2693-2009
OI Huber, Alexander/0000-0002-8888-8483
FU SNF [31000-120237]; DFG [El 231/4-2]
FX This work was supported by SNF Grant No. 31000-120237 and DFG Grant El
231/4-2.
CR Asai M, 1999, ACTA OTO-LARYNGOL, V119, P356
Bekesy G, 1960, EXPT HEARING
Breuninger C., 2008, THESIS U STUTTGART S
Dallos P., 1973, AUDITORY PERIPHERY B
de La Rochefoucauld O, 2008, JARO-J ASSOC RES OTO, V9, P161, DOI 10.1007/s10162-008-0115-1
Decraemer W., 1999, FUNCTION MECH NORMAL, P23
Decraemer WF, 2007, J ACOUST SOC AM, V121, P2774, DOI 10.1121/1.2709843
Dodson J.M., 2001, THESIS U MICHIGAN AN
Eiber A, 2007, MIDDLE EAR MECHANICS IN RESEARCH AND OTOLOGY, P123, DOI 10.1142/9789812708694_0016
Gundersen T, 1971, PROSTHESES OSSICULAR
GYO K, 1987, ACTA OTO-LARYNGOL, V103, P87, DOI 10.3109/00016488709134702
Hato N, 2003, AUDIOL NEURO-OTOL, V8, P140, DOI 10.1159/000069475
Huber AM, 2008, OTOL NEUROTOL, V29, P1187, DOI 10.1097/MAO.0b013e31817ef49b
Kirikae I., 1960, STRUCTURE FUNCTION M
Kolston PJ, 1996, J ACOUST SOC AM, V99, P455, DOI 10.1121/1.414557
Lim KM, 2002, HEARING RES, V170, P190, DOI 10.1016/S0378-5955(02)00491-4
Linder TE, 2003, OTOL NEUROTOL, V24, P259, DOI 10.1097/00129492-200303000-00021
Ombredanne M, 1968, Ann Otolaryngol Chir Cervicofac, V85, P369
Pozrikidis C, 2008, J FLUID STRUCT, V24, P336, DOI 10.1016/j.jfluidstructs.2007.08.006
Ravicz ME, 2008, J ACOUST SOC AM, V124, P363, DOI 10.1121/1.2932061
RICHARDS SH, 1981, CLIN OTOLARYNGOL, V6, P265, DOI 10.1111/j.1365-2273.1981.tb01546.x
Schmiedt R.A., 1979, AUDITORY INVESTIGATI, P211
SHERA CA, 1992, J ACOUST SOC AM, V92, P1382, DOI 10.1121/1.403931
Sim JH, 2010, HEARING RES, V270, P4, DOI 10.1016/j.heares.2010.08.009
Sim JH, 2010, JARO-J ASSOC RES OTO, V11, P329, DOI 10.1007/s10162-010-0207-6
Stenfelt S, 2005, J ACOUST SOC AM, V118, P2373, DOI 10.1121/1.12005847
Voss SE, 2000, HEARING RES, V150, P43, DOI 10.1016/S0378-5955(00)00177-5
NR 27
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2012
VL 284
IS 1-2
BP 82
EP 92
DI 10.1016/j.heares.2011.11.008
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 915SQ
UT WOS:000302048100010
PM 22155337
ER
PT J
AU Du, XP
Chen, KJ
Choi, CH
Li, W
Cheng, WH
Stewart, C
Hu, N
Floyd, RA
Kopke, RD
AF Du, Xiaoping
Chen, Kejian
Choi, Chul-Hee
Li, Wei
Cheng, Weihua
Stewart, Charles
Hu, Ning
Floyd, Robert A.
Kopke, Richard D.
TI Selective degeneration of synapses in the dorsal cochlear nucleus of
chinchilla following acoustic trauma and effects of antioxidant
treatment
SO HEARING RESEARCH
LA English
DT Article
ID INDUCED HEARING-LOSS; COMPLEX-SPIKING NEURONS; PRIMARY AUDITORY-CORTEX;
HAIR CELL LOSS; GUINEA-PIG; SYNAPTOPHYSIN IMMUNOREACTIVITY; SYNAPTIC
ENDINGS; NOISE EXPOSURE; INTENSE SOUND; SPATIAL REPRESENTATION
AB The purpose of this study was to reveal synaptic plasticity within the dorsal cochlear nucleus (DCN) as a result of noise trauma and to determine whether effective antioxidant protection to the cochlea can also impact plasticity changes in the DCN. Expression of synapse activity markers (synaptophysin and precerebellin) and ultrastructure of synapses were examined in the DCN of chinchilla 10 days after a 105 dB SPL octave-band noise (centered at 4 kHz, 6 h) exposure. One group of chinchilla was treated with a combination of antioxidants (4-hydroxy phenyl N-tert-butylnitrone, N-acetyl-L-cysteine and acetyl-L-carnitine) beginning 4 h after noise exposure. Down-regulated synaptophysin and precerebellin expression, as well as selective degeneration of nerve terminals surrounding cartwheel cells and their primary dendrites were found in the fusiform soma layer in the middle region of the DCN of the noise exposure group. Antioxidant treatment significantly reduced synaptic plasticity changes surrounding cartwheel cells. Results of this study provide further evidence of acoustic trauma-induced neural plasticity in the DCN and suggest that loss of input to cartwheel cells may be an important factor contributing to the emergence of hyperactivity in the DCN after noise exposure. Results further suggest that early antioxidant treatment for acoustic trauma not only rescues cochlear hair cells, but also has impact on central auditory structures. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Du, Xiaoping; Chen, Kejian; Choi, Chul-Hee; Li, Wei; Cheng, Weihua; Stewart, Charles; Hu, Ning; Kopke, Richard D.] Hough Ear Inst, Oklahoma City, OK 73123 USA.
[Stewart, Charles; Floyd, Robert A.] Oklahoma Med Res Fdn, Expt Therapeut Res Program, Oklahoma City, OK 73104 USA.
[Kopke, Richard D.] Univ Oklahoma, Hlth Sci Ctr, Dept Physiol, Oklahoma City, OK 73104 USA.
[Kopke, Richard D.] Univ Oklahoma, Hlth Sci Ctr, Dept Otolaryngol, Oklahoma City, OK 73104 USA.
RP Kopke, RD (reprint author), Hough Ear Inst, POB 23206, Oklahoma City, OK 73123 USA.
EM rkopke@houghear.org
FU Office of Naval Research (ONR) and Integris Health, Oklahoma City,
Oklahoma
FX This study was supported by grants (N00014-08-1-0484) from the Office of
Naval Research (ONR) and Integris Health, Oklahoma City, Oklahoma (RDK).
The authors would like to thank Joe Wilkerson in Core Facility for
Imaging at the Oklahoma Medical Research Foundation for assistance in
TEM. The authors wish like to thank Dr. James Kaltenbach for his
thoughtful review of and suggestions for this manuscript.
CR Aarnisalo AA, 2000, ORL J OTO-RHINO-LARY, V62, P330, DOI 10.1159/000027764
Basta D, 2005, NEUROSCI LETT, V381, P199, DOI 10.1016/j.neulet.2005.02.034
Bauer CA, 2007, J NEUROSCI RES, V85, P1489, DOI 10.1002/jnr.21259
Benson CG, 1997, SYNAPSE, V25, P243
Berrebi AS, 1998, NEUROSCIENCE, V83, P535
BERREBI AS, 1990, J NEUROCYTOL, V19, P643, DOI 10.1007/BF01188033
BERREBI AS, 1991, ANAT EMBRYOL, V183, P427
Bilak M, 1997, EXP NEUROL, V147, P256, DOI 10.1006/exnr.1997.6636
BROCK TO, 1987, J NEUROSCI, V7, P931
Brozoski TJ, 2002, J NEUROSCI, V22, P2383
Brozoski TJ, 2005, HEARING RES, V206, P227, DOI 10.1016/j.heares.2004.12.013
BURIAN M, 1988, NEUROSCI LETT, V84, P13, DOI 10.1016/0304-3940(88)90329-1
Calhoun ME, 1996, J NEUROCYTOL, V25, P821, DOI 10.1007/BF02284844
Caspary DM, 2005, J NEUROSCI, V25, P10952, DOI 10.1523/JNEUROSCI.2451-05.2005
Chang H, 2002, HEARING RES, V164, P59, DOI 10.1016/S0378-5955(01)00410-5
Choi CH, 2008, FREE RADICAL BIO MED, V44, P1772, DOI 10.1016/j.freeradbiomed.2008.02.005
Davis KA, 1997, J NEUROSCI, V17, P6798
DeFelipe J, 1997, CEREB CORTEX, V7, P619, DOI 10.1093/cercor/7.7.619
Du XS, 2011, FIXED POINT THEORY A, DOI 10.1155/2011/563136
ELDREDGE DH, 1981, J ACOUST SOC AM, V69, P1091, DOI 10.1121/1.385688
Elinos-Calderon D, 2009, EXP BRAIN RES, V197, P287, DOI 10.1007/s00221-009-1913-3
Finlayson PG, 2009, HEARING RES, V256, P104, DOI 10.1016/j.heares.2009.07.006
FRIAUF E, 1992, EUR J NEUROSCI, V4, P798, DOI 10.1111/j.1460-9568.1992.tb00190.x
Fuentes-Santamaria V, 2007, NEUROSCIENCE, V148, P1033, DOI 10.1016/j.neuroscience.2007.07.026
Gil-Loyzaga P, 1998, HISTOL HISTOPATHOL, V13, P415
Golding NL, 1997, J NEUROPHYSIOL, V78, P248
Golding NL, 1996, J NEUROSCI, V16, P2208
Groschel M, 2010, J NEUROTRAUM, V27, P1499, DOI 10.1089/neu.2009.1246
Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6
Heffner HE, 2002, HEARING RES, V170, P83, DOI 10.1016/S0378-5955(02)00343-X
Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3
Hirai H, 2005, NAT NEUROSCI, V8, P1534, DOI 10.1038/nn1576
House J W, 1981, Ciba Found Symp, V85, P204
Idrizbegovic E, 1998, BRAIN RES, V800, P86, DOI 10.1016/S0006-8993(98)00504-6
ITOH K, 1987, BRAIN RES, V400, P145, DOI 10.1016/0006-8993(87)90662-7
Ito-Ishida A, 2008, J NEUROSCI, V28, P5920, DOI 10.1523/JNEUROSCI.1030-08.2008
JAHN R, 1985, P NATL ACAD SCI USA, V82, P4137, DOI 10.1073/pnas.82.12.4137
Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038
Kaltenbach JA, 2005, HEARING RES, V206, P200, DOI 10.1016/j.heares.2005.02.013
Kaltenbach JA, 2008, AM J AUDIOL, V17, pS148, DOI 10.1044/1059-0889(2008/08-0004)
KALTENBACH JA, 1987, EXP NEUROL, V96, P406, DOI 10.1016/0014-4886(87)90058-6
Kaltenbach JA, 2007, HEARING RES, V226, P232, DOI 10.1016/j.heares.2006.07.001
Kaltenbach JA, 2002, J NEUROPHYSIOL, V88, P699, DOI 10.1152/jn00893.2001
Kaltenbach James A, 2006, Acta Otolaryngol Suppl, P20
KIANG NYS, 1976, ANN OTO RHINOL LARYN, V85, P752
Kim JN, 1997, HEARING RES, V103, P169, DOI 10.1016/S0378-5955(96)00173-6
Kim JJ, 2004, J NEUROSCI RES, V77, P798, DOI 10.1002/jnr.20213
Kim JJ, 2004, J NEUROSCI RES, V77, P817, DOI 10.1002/jnr.20212
Kim JJ, 2004, J NEUROSCI RES, V77, P829, DOI 10.1002/jnr.20211
Kopke RD, 2002, LARYNGOSCOPE, V112, P1515, DOI 10.1097/00005537-200209000-00001
Kopke RD, 2007, HEARING RES, V226, P114, DOI 10.1016/j.heares.2006.10.008
Kraus KS, 2010, NEUROSCIENCE, V167, P1216, DOI 10.1016/j.neuroscience.2010.02.071
La Prell C.G., 2007, HEARING RES, V226, P22
MANIS PB, 1994, J COMP NEUROL, V348, P261, DOI 10.1002/cne.903480208
MASLIAH E, 1991, EXP NEUROL, V113, P131, DOI 10.1016/0014-4886(91)90169-D
Matsuda K, 2010, SCIENCE, V328, P363, DOI 10.1126/science.1185152
Melamed SB, 2000, AUDIOLOGY, V39, P24
Miura E, 2009, EUR J NEUROSCI, V29, P693, DOI 10.1111/j.1460-9568.2009.06632.x
Morest DK, 1998, MICROSC RES TECHNIQ, V41, P205
MUGNAINI E, 1988, SYNAPSE, V2, P125, DOI 10.1002/syn.890020204
Muly SM, 2004, J NEUROSCI RES, V75, P585, DOI 10.1002/jnr.20011
Muly SM, 2002, EXP NEUROL, V177, P202, DOI 10.1006/exnr.2002.7963
Nelson DI, 2005, AM J IND MED, V48, P446, DOI 10.1002/aijm.20223
Ohinata Y, 2000, HEARING RES, V146, P28, DOI 10.1016/S0378-5955(00)00096-4
Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846
Portfors CV, 2007, J NEUROPHYSIOL, V98, P744, DOI 10.1152/jn.01356.2006
Pulec JL, 1995, ENT-EAR NOSE THROAT, V74, P470
ROUILLER EM, 1992, NEUROSCI LETT, V144, P19, DOI 10.1016/0304-3940(92)90706-D
Rubio ME, 2004, J COMP NEUROL, V477, P253, DOI 10.1002/cne.20249
RYAN AF, 1988, HEARING RES, V36, P181, DOI 10.1016/0378-5955(88)90060-3
Saint Marie RL, 1999, HEARING RES, V128, P70, DOI 10.1016/S0378-5955(98)00188-9
Saljo A, 2002, J NEUROTRAUM, V19, P985, DOI 10.1089/089771502320317131
Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2
Saunders GH, 2009, NOISE HEALTH, V11, P14, DOI 10.4103/1463-1741.45308
SCHULZ JB, 1995, J NEUROCHEM, V64, P2239
Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1
Sekiya T, 2009, EXP NEUROL, V218, P117, DOI 10.1016/j.expneurol.2009.04.014
SLEMMON JR, 1985, P NATL ACAD SCI USA, V82, P7145, DOI 10.1073/pnas.82.20.7145
SLEPECKY N, 1986, HEARING RES, V22, P307, DOI 10.1016/0378-5955(86)90107-3
SPIROU GA, 1993, J COMP NEUROL, V329, P36, DOI 10.1002/cne.903290104
Sziklai I, 2004, EUR ARCH OTO-RHINO-L, V261, P517, DOI 10.1007/s00405-004-0745-9
Tastekin A, 2005, BRAIN DEV-JPN, V27, P570, DOI 10.1016/j.braindev.2005.02.006
THEOPOLD HM, 1975, ARCH OTO-RHINO-LARYN, V209, P247, DOI 10.1007/BF00456545
TONNDORF J, 1987, HEARING RES, V28, P271, DOI 10.1016/0378-5955(87)90054-2
URADE Y, 1991, P NATL ACAD SCI USA, V88, P1069, DOI 10.1073/pnas.88.3.1069
Urano S, 1997, EUR J BIOCHEM, V245, P64, DOI 10.1111/j.1432-1033.1997.00064.x
WALAAS SI, 1988, SYNAPSE, V2, P516, DOI 10.1002/syn.890020507
Wang H, 2009, NEUROSCIENCE, V164, P747, DOI 10.1016/j.neuroscience.2009.08.026
Weedman DL, 1996, J COMP NEUROL, V369, P345
WIEDENMANN B, 1985, CELL, V41, P1017, DOI 10.1016/S0092-8674(85)80082-9
WILLOTT JF, 1994, HEARING RES, V74, P1, DOI 10.1016/0378-5955(94)90171-6
WOUTERLOOD FG, 1984, J COMP NEUROL, V227, P136, DOI 10.1002/cne.902270114
YAJIMA Y, 1989, EXP BRAIN RES, V75, P381
Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87
Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761
Zacharek MA, 2002, HEARING RES, V172, P137, DOI 10.1016/S0378-5955(02)00575-0
Zanelli SA, 2005, ANN NY ACAD SCI, V1053, P153, DOI 10.1196/annals.1344.013
Zheng YW, 2011, EXP BRAIN RES, V210, P477, DOI 10.1007/s00221-010-2491-0
NR 98
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2012
VL 283
IS 1-2
BP 1
EP 13
DI 10.1016/j.heares.2011.11.013
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 908FH
UT WOS:000301475300001
PM 22178982
ER
PT J
AU Salt, AN
King, EB
Hartsock, JJ
Gill, RM
O'Leary, SJ
AF Salt, Alec N.
King, Elisha B.
Hartsock, Jared J.
Gill, Ruth M.
O'Leary, Stephen J.
TI Marker entry into vestibular perilymph via the stapes following
applications to the round window niche of guinea pigs
SO HEARING RESEARCH
LA English
DT Article
ID INNER-EAR; SCALA TYMPANI; DRUG-DELIVERY; INTRATYMPANIC APPLICATIONS;
CONCENTRATION GRADIENT; RADIAL COMMUNICATION; COCHLEAR APEX;
OTITIS-MEDIA; MEMBRANE; PERMEABILITY
AB It has been widely believed that drug entry from the middle ear into perilymph occurs primarily via the round window (RW) membrane. Entry into scala vestibuli (SV) was thought to be dominated by local, inter-scala communication between scala tympani (ST) and SV through permeable tissues such as the spiral ligament. In the present study, the distribution of the ionic marker trimethylphenylammonium (TMPA) was compared following intracochlear injections or applications to the RW niche, with or without occlusion of the RW membrane or stapes area. Perilymph TMPA concentrations were monitored either in real time with TMPA-selective microelectrodes sealed into ST and SV, or by the collection of sequential perilymph samples from the lateral semi-circular canal. Local inter-scala communication of TMPA was confirmed by measuring SV and ST concentrations following direct injections into perilymph of ST. Application of TMPA to the RW niche also showed a predominant entry into ST, with distribution to SV presumed to occur secondarily. When the RW membrane was occluded by a silicone plug, RW niche irrigation produced higher concentrations in SV compared to ST, confirming direct TMPA entry into the vestibule in the region of the stapes. The proportion of TMPA entering by the two routes was quantified by perilymph sampling from the lateral semi-circular canal. The TMPA levels of initial samples (originating from the vestibule) were markedly lower when the stapes area was occluded with silicone. These data were interpreted using a simulation program that incorporates all the major fluid and tissue compartments of the cochlea and vestibular systems. From this analysis it was estimated that 65% of total TMPA entered through the RW membrane and 35% entered the vestibule directly in the vicinity of the stapes. Direct entry of drugs into the vestibule is relevant to inner ear fluid pharmacokinetics and to the growing field of intratympanic drug delivery. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Salt, Alec N.; Hartsock, Jared J.; Gill, Ruth M.] Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA.
[King, Elisha B.; O'Leary, Stephen J.] Univ Melbourne, Dept Otolaryngol, Melbourne, Vic, Australia.
RP Salt, AN (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, Box 8115,660 S Euclid Ave, St Louis, MO 63110 USA.
EM salta@ent.wustl.edu
FU NIDCD, NIH [DC01368]
FX This work was supported by research grant DC01368 from NIDCD, NIH. Dr.
Salt is a member of the Scientific Advisory Board of Otonomy, Inc. and
may receive income based on equity holdings. Otonomy did not financially
support this study.
CR Becvarovski Z, 2002, LARYNGOSCOPE, V112, P1610, DOI 10.1097/00005537-200209000-00015
Bird RA., 2011, OTOL NEUROTOL, V32, P933
GOYCOOLEA MV, 1980, LARYNGOSCOPE, V90, P1387
GOYCOOLEA MV, 1980, ARCH OTOLARYNGOL, V106, P430
Goycoolea MV, 1997, MICROSC RES TECHNIQ, V36, P201, DOI 10.1002/(SICI)1097-0029(19970201)36:3<201::AID-JEMT8>3.0.CO;2-R
Hoffer ME, 2001, LARYNGOSCOPE, V111, P1343, DOI 10.1097/00005537-200108000-00007
HOFT J, 1969, ARCH KLIN EXP OHR, V193, P128, DOI 10.1007/BF00401701
Imamura S, 2003, JARO, V4, P196, DOI 10.1007/s10162-002-2037-7
King EB, 2011, JARO-J ASSOC RES OTO, V12, P741, DOI 10.1007/s10162-011-0280-5
LUNDMAN L, 1987, ACTA OTO-LARYNGOL, P41
Mikulec AA, 2009, OTOL NEUROTOL, V30, P131, DOI 10.1097/MAO.0b013e318191bff8
Mikulec AA, 2008, OTOL NEUROTOL, V29, P1020, DOI 10.1097/MAO.0b013e31818658ea
Mynatt R, 2006, JARO-J ASSOC RES OTO, V7, P182, DOI 10.1007/a10162-0006-0034-y
Plontke SK, 2008, OTOL NEUROTOL, V29, P401, DOI 10.1097/MAO.0b013e318161aaae
Plontke SK, 2007, LARYNGOSCOPE, V117, P1191, DOI 10.1097/MLG.0b013e318058a06b
Plontke SKR, 2002, OTOL NEUROTOL, V23, P967, DOI 10.1097/00129492-200211000-00026
Rauch SD, 2011, JAMA-J AM MED ASSOC, V305, P2071, DOI 10.1001/jama.2011.679
SAIJO S, 1984, ACTA OTO-LARYNGOL, V97, P593, DOI 10.3109/00016488409132937
Salt A. N., 2011, 34 MIDW RES M ARO BA
Salt AN, 2001, HEARING RES, V154, P88, DOI 10.1016/S0378-5955(01)00223-4
Salt AN, 2006, J NEUROSCI METH, V153, P121, DOI 10.1016/j.jneumeth.2005.10.008
Salt AN, 2005, DRUG DISCOV TODAY, V10, P1299, DOI 10.1016/S1359-6446(05)03574-9
SALT AN, 1991, HEARING RES, V56, P37, DOI 10.1016/0378-5955(91)90151-X
Salt AN, 2008, LARYNGOSCOPE, V118, P1793, DOI 10.1097/MLG.0b013e31817d01cd
SALT AN, 1991, HEARING RES, V56, P29, DOI 10.1016/0378-5955(91)90150-8
SMITH BM, 1979, OTOLARYNG HEAD NECK, V87, P888
TANAKA K, 1981, ARCH OTO-RHINO-LARYN, V233, P67, DOI 10.1007/BF00464276
Yoshioka M, 2009, OTOL NEUROTOL, V30, P645, DOI 10.1097/MAO.0b013e31819bda66
Zou J, 2010, OTOL NEUROTOL, V31, P637, DOI 10.1097/MAO.0b013e3181d2f095
Zou J, 2005, AUDIOL NEURO-OTOL, V10, P145, DOI 10.1159/000084024
NR 30
TC 11
Z9 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2012
VL 283
IS 1-2
BP 14
EP 23
DI 10.1016/j.heares.2011.11.012
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 908FH
UT WOS:000301475300002
PM 22178981
ER
PT J
AU Lee, J
Long, G
AF Lee, Jungmee
Long, Glenis
TI Stimulus characteristics which lessen the impact of threshold fine
structure on estimates of hearing status
SO HEARING RESEARCH
LA English
DT Article
ID SPONTANEOUS OTOACOUSTIC EMISSIONS; DISTORTION-PRODUCT; MICROSTRUCTURE;
PERCEPTION; FREQUENCY; QUIET
AB When hearing thresholds are measured with high-frequency resolution there is a pseudo-periodic variation in thresholds across frequency of up to 15-20 dB. This variation is called threshold fine structure (previously referred to as threshold microstructure). Consequently, estimates of auditory status based on threshold measures can depend greatly on the specific frequency evaluated. The impact of threshold fine structure on the prediction of auditory status was examined by measuring detection thresholds of pure tones (providing an indication of threshold fine structure) and comparing them with thresholds obtained using linear sweeps, sinusoidally frequency modulated tones, and narrow-band noise. Spontaneous otoacoustic emissions (SOAEs) were also obtained to confirm the established relationship between threshold fine structure and SOAEs. Thresholds obtained using linear sweeps and narrow-band noise provided stable threshold estimates indicating that such threshold estimates were less influenced by threshold fine structure. Consequently, thresholds obtained with these stimuli may provide estimates of cochlear status less dependent of the exact frequency being evaluated, permitting better prediction of performance on other psychoacoustic measures (such as cochlear tuning and loudness perception) and the properties of their more objective measures (such as otoacoustic emissions). Published by Elsevier B.V.
C1 [Lee, Jungmee] Northwestern Univ, Roxelyn & Richard Pepper Dept Commun Sci & Disord, Evanston, IL 60208 USA.
[Long, Glenis] CUNY, Grad Ctr, New York, NY 10016 USA.
RP Lee, J (reprint author), Northwestern Univ, Roxelyn & Richard Pepper Dept Commun Sci & Disord, 2-256 Frances Searle,2240 Campus Dr, Evanston, IL 60208 USA.
EM jmlee6@northwestern.edu
FU PSC-CUNY; National Institute on Disability and Rehabilitation Research,
U.S. Department of Education, Rehabilitation Engineering Research Center
Hearing Enhancement
FX The authors would like to thank Changmo Jeung for his help on data
collection. Special thanks to Brian Moore, James Dewey, Gayla Poling,
and two anonymous reviewers for their valuable comments on an earlier
version of this manuscript. This study was funded by PSC-CUNY and the
National Institute on Disability and Rehabilitation Research, U.S.
Department of Education, Rehabilitation Engineering Research Center
Hearing Enhancement.
CR Epp E., 2010, J ACOUST SOC AM, V128, P1870
Franklin C, 2009, EAR HEARING, V30, P485, DOI 10.1097/AUD.0b013e3181a16366
FURST M, 1992, J ACOUST SOC AM, V91, P1003, DOI 10.1121/1.402626
Gorga M.P., 2007, OTOACOUSTIC EMISSION, P243
Gorga MP, 2005, EAR HEARING, V26, P593, DOI 10.1097/01.aud.0000188108.08713.6c
HAMILL TA, 1986, J COMMUN DISORD, V19, P227, DOI 10.1016/0021-9924(86)90012-2
HE NJ, 1993, J ACOUST SOC AM, V94, P2659, DOI 10.1121/1.407350
Heise SJ, 2009, J ACOUST SOC AM, V125, pEL33, DOI 10.1121/1.3040031
Heise SJ, 2008, INT J AUDIOL, V47, P520, DOI 10.1080/14992020802089473
Johannesen PT, 2008, J ACOUST SOC AM, V124, P2149, DOI 10.1121/1.2968692
Johannesen PT, 2010, J ACOUST SOC AM, V127, P3602, DOI 10.1121/1.3377087
Kapadia S, 1999, AUDIOLOGY, V38, P257
Kemp DT, 1979, SCAND AUDIOL S, V9, P35
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
LONG GR, 1988, J ACOUST SOC AM, V84, P1343, DOI 10.1121/1.396633
LONG GR, 1991, J ACOUST SOC AM, V89, P1201, DOI 10.1121/1.400651
LONG GR, 1988, HEARING RES, V36, P125, DOI 10.1016/0378-5955(88)90055-X
Long GR, 1997, J ACOUST SOC AM, V102, P2831, DOI 10.1121/1.420339
Long GR, 2008, J ACOUST SOC AM, V124, P1613, DOI 10.1121/1.2949505
LONG GR, 1984, HEARING RES, V15, P73, DOI 10.1016/0378-5955(84)90227-2
Mauermann M, 2004, J ACOUST SOC AM, V116, P2199, DOI 10.1121/1.1791719
Mauermann M, 2004, J ACOUST SOC AM, V116, P1066, DOI 10.1121/1.1760106
Nelson DA, 2001, J ACOUST SOC AM, V110, P2045, DOI 10.1121/1.1404439
Orchik D.J., 1977, J AM AUDIOL SOC, V3, P214
SCHLOTH E, 1983, ACUSTICA, V53, P250
Stephens M.M., 1977, J AM AUDIOL SOC, V3, P221
TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V
Talmadge CL, 1998, J ACOUST SOC AM, V104, P1517, DOI 10.1121/1.424364
Zhou X, 2011, HEARING RES, V277, P107, DOI 10.1016/j.heares.2011.02.006
ZWICKER E, 1984, J ACOUST SOC AM, V75, P1148, DOI 10.1121/1.390763
ZWICKER E, 1986, AUDITORY FREQUENCY S, P49
NR 31
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2012
VL 283
IS 1-2
BP 24
EP 32
DI 10.1016/j.heares.2011.11.011
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 908FH
UT WOS:000301475300003
PM 22178980
ER
PT J
AU Xu, NY
Engbers, J
Khaja, S
Xu, LJ
Clark, JJ
Hansen, MR
AF Xu, Ningyong
Engbers, Jonathan
Khaja, Sobia
Xu, Linjing
Clark, J. Jason
Hansen, Marlan R.
TI Influence of cAMP and protein kinase A on neurite length from spiral
ganglion neurons
SO HEARING RESEARCH
LA English
DT Article
ID CHRONIC ELECTRICAL-STIMULATION; GROWTH CONE GUIDANCE; NEUROTROPHIC
FACTORS; AUDITORY NEURONS; IN-VITRO; COCHLEAR IMPLANTATION;
CYCLIC-NUCLEOTIDES; AXON GROWTH; HAIR-CELLS; INNER-EAR
AB Regrowth of peripheral spiral ganglion neuron (SGN) fibers is a primary objective in efforts to improve cochlear implant outcomes and to potentially reinnervate regenerated hair cells. Cyclic adenosine monophosphate (cAMP) regulates neurite growth and guidance via activation of protein kinase A (PKA) and Exchange Protein directly Activated by Cylic AMP (Epac). Here we explored the effects of cAMP signaling on SGN neurite length in vitro. We find that the cAMP analog, cpt-cAMP, exerts a biphasic effect on neurite length; increasing length at lower concentrations and reducing length at higher concentrations. This biphasic response occurs in cultures plated on laminin, fibronectin, or tenascin C suggesting that it is not substrate dependent. cpt-cAMP also reduces SGN neurite branching. The Epac-specific agonist, 8-pCPT-2'-O-Me-cAMP, does not alter SGN neurite length. Constitutively active PKA isoforms strongly inhibit SGN neurite length similar to higher levels of cAMP. Chronic membrane depolarization activates PICA in SGNs and also inhibits SGN neurite length. However, inhibition of PKA fails to rescue neurite length in depolarized cultures implying that activation of PKA is not necessary for the inhibition of SGN neurite length by chronic depolarization. Expression of constitutively active phosphatidylinositol 3-kinase, but not c-Jun N-terminal kinase, isoforms partially rescues SGN neurite length in the presence of activated PKA. Taken together, these results suggest that activation of cAMP/PKA represents a potential strategy to enhance SGN fiber elongation following deafness; however such therapies will likely require careful titration so as to promote rather than inhibit nerve fiber regeneration. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Xu, Ningyong; Engbers, Jonathan; Khaja, Sobia; Xu, Linjing; Clark, J. Jason; Hansen, Marlan R.] Univ Iowa, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA.
RP Hansen, MR (reprint author), Univ Iowa Hosp & Clin, Dept Otolaryngol Head & Neck Surg, 200 Hawkins Dr, Iowa City, IA 52242 USA.
EM marlan-hansen@uiowa.edu
FU NIDCD [K08 DC006211, RO1 DC009801, P30 DC010362]
FX Support: NIDCD K08 DC006211, RO1 DC009801, and P30 DC010362.
CR Aglah C, 2008, NEUROPHARMACOLOGY, V55, P8, DOI 10.1016/j.neuropharm.2008.04.005
Agterberg MJH, 2010, HEARING RES, V269, P169, DOI 10.1016/j.heares.2010.06.015
Alam SA, 2007, J COMP NEUROL, V503, P832, DOI 10.1002/cne.21430
Aletsee C, 2001, JARO, V2, P377, DOI 10.1007/s101620010086
Altschuler RA, 1999, ANN NY ACAD SCI, V884, P305, DOI 10.1111/j.1749-6632.1999.tb08650.x
Atkinson P.J., 2011, HEARING RES
Bao JX, 2010, HEARING RES, V264, P93, DOI 10.1016/j.heares.2009.10.009
Bianchi L. M., 2004, Current Drug Targets - CNS and Neurological Disorders, V3, P195, DOI 10.2174/1568007043337454
Boer JC, 2009, J NEUROSCI, V29, P5711, DOI 10.1523/JNEUROSCI.0433-09.2009
Bok J, 2007, MOL CELL NEUROSCI, V36, P13, DOI 10.1016/j.mcn.2007.05.008
Bok J, 2003, J NEUROSCI, V23, P777
Cai D, 2001, J NEUROSCI, V21, P4731
Christensen AE, 2003, J BIOL CHEM, V278, P35394, DOI 10.1074/jbc.M302179200
Dodson HC, 2000, J NEUROCYTOL, V29, P525, DOI 10.1023/A:1007201913730
Enserink JM, 2002, NAT CELL BIOL, V4, P901, DOI 10.1038/ncb874
Fritzsch B, 1997, TRENDS NEUROSCI, V20, P159, DOI 10.1016/S0166-2236(96)01007-7
Fujioka T, 2004, J NEUROSCI, V24, P319, DOI 10.1523/JNEUROSCI.1065.03.2004
Gillespie LN, 2005, EUR J NEUROSCI, V22, P2123, DOI 10.1111/j.1460-9568.2005.04430.x
Goldwyn JH, 2010, HEARING RES, V268, P93, DOI 10.1016/j.heares.2010.05.005
Gomaa NA, 2003, EAR HEARING, V24, P539, DOI 10.1097/01.AUD.0000100208.26628.2D
Han JZ, 2007, J CELL BIOL, V176, P101, DOI 10.1083/jcb.200607128
Hansen MR, 2003, J NEUROSCI RES, V72, P169, DOI 10.1002/jnr.10551
Hansen MR, 2001, J NEUROSCI, V21, P2256
Hansen MR, 2007, DEV NEUROBIOL, V67, P316, DOI 10.1002/dneu.20346
Hanson MG, 1998, J NEUROSCI, V18, P7361
Hegarty JL, 1997, J NEUROSCI, V17, P1959
Jeon EJ, 2011, NEUROSCIENCE, V177, P321, DOI 10.1016/j.neuroscience.2011.01.014
Kang GX, 2003, J BIOL CHEM, V278, P8279, DOI 10.1074/jbc.M211682200
Kao HT, 2002, NAT NEUROSCI, V5, P431, DOI 10.1038/nn840
Khan AM, 2005, ANN OTO RHINOL LARYN, V114, P381
Kopperud R, 2003, FEBS LETT, V546, P121, DOI 10.1016/S0014-5793(03)00563-5
Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3
Lee JE, 2003, LARYNGOSCOPE, V113, P994, DOI 10.1097/00005537-200306000-00015
LEFEBVRE PP, 1994, NEUROREPORT, V5, P865, DOI 10.1097/00001756-199404000-00003
Lemons ML, 2006, EXP NEUROL, V202, P324, DOI 10.1016/j.expneurol.2006.06.008
Li SF, 2010, HEARING RES, V267, P111, DOI 10.1016/j.heares.2010.04.004
LINTHICUM FH, 1991, AM J OTOL, V12, P245
Linthicum FH, 2009, OTOL NEUROTOL, V30, P418, DOI 10.1097/MAO.0b013e31819a8827
Malgrange B, 1996, NEUROREPORT, V7, P913, DOI 10.1097/00001756-199603220-00016
McGuinness SL, 2005, OTOL NEUROTOL, V26, P1064, DOI 10.1097/01.mao.0000185063.20081.50
Miller AL, 2003, BRAIN RES, V966, P218, DOI 10.1016/S0006-8993(02)04170-7
Miller JM, 2007, J NEUROSCI RES, V85, P1959, DOI 10.1002/jnr.21320
Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7
Ming GL, 1997, NEURON, V19, P1225, DOI 10.1016/S0896-6273(00)80414-6
MONASTERSKY GM, 1984, EXP NEUROL, V85, P152, DOI 10.1016/0014-4886(84)90169-9
Mou K, 1997, J COMP NEUROL, V386, P529
Murray AJ, 2008, MOL CELL NEUROSCI, V38, P578, DOI 10.1016/j.mcn.2008.05.006
Murray AJ, 2009, J NEUROSCI, V29, P15434, DOI 10.1523/JNEUROSCI.3071-09.2009
NADOL JB, 1990, HEARING RES, V49, P141, DOI 10.1016/0378-5955(90)90101-T
Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883
Neumann S, 2002, NEURON, V34, P885, DOI 10.1016/S0896-6273(02)00702-X
Pettingill LN, 2007, IEEE T BIO-MED ENG, V54, P1138, DOI 10.1109/TBME.2007.895375
Renton JP, 2010, J NEUROSCI RES, V88, P2239, DOI 10.1002/jnr.22381
Richardson RT, 2009, BIOMATERIALS, V30, P2614, DOI 10.1016/j.biomaterials.2009.01.015
Roehm Pamela C, 2005, Curr Opin Otolaryngol Head Neck Surg, V13, P294, DOI 10.1097/01.moo.0000180919.68812.b9
Roehm PC, 2008, MOL CELL NEUROSCI, V37, P376, DOI 10.1016/j.mcn.2007.10.014
Rubinstein Jay T, 2004, Curr Opin Otolaryngol Head Neck Surg, V12, P444, DOI 10.1097/01.moo.0000134452.24819.c0
SEAMON KB, 1983, J MED CHEM, V26, P436, DOI 10.1021/jm00357a021
Shabb JB, 2001, CHEM REV, V101, P2381, DOI 10.1021/cr000236l
Shelly M, 2010, SCIENCE, V327, P547, DOI 10.1126/science.1179735
SHEPHERD RK, 1994, HEARING RES, V81, P150, DOI 10.1016/0378-5955(94)90162-7
Shibata SB, 2010, EXP NEUROL, V223, P464, DOI 10.1016/j.expneurol.2010.01.011
Song HJ, 1998, SCIENCE, V281, P1515, DOI 10.1126/science.281.5382.1515
Song HJ, 1997, NATURE, V388, P275
SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683
Staecker H, 2010, EXP NEUROL, V226, P1, DOI 10.1016/j.expneurol.2010.07.012
Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011
White JA, 2000, HEARING RES, V141, P12, DOI 10.1016/S0378-5955(99)00204-X
Whitlon DS, 2006, NEUROSCIENCE, V138, P653, DOI 10.1016/j.neuroscience.2005.11.030
Wise AK, 2010, MOL THER, V18, P1111, DOI 10.1038/mt.2010.28
Xu L, 2008, HEARING RES, V242, P132, DOI 10.1016/j.heares.2007.12.010
Zha XM, 2001, HEARING RES, V156, P53, DOI 10.1016/S0378-5955(01)00267-2
ZIMMERMANN CE, 1995, HEARING RES, V90, P192, DOI 10.1016/0378-5955(95)00165-1
NR 73
TC 11
Z9 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2012
VL 283
IS 1-2
BP 33
EP 44
DI 10.1016/j.heares.2011.11.010
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 908FH
UT WOS:000301475300004
PM 22154930
ER
PT J
AU Zhu, ZY
Tang, Q
Zeng, FG
Guan, T
Ye, DT
AF Zhu, Ziyan
Tang, Qing
Zeng, Fan-Gang
Guan, Tian
Ye, Datian
TI Cochlear-implant spatial selectivity with monopolar, bipolar and
tripolar stimulation
SO HEARING RESEARCH
LA English
DT Article
ID INTRACOCHLEAR ELECTRICAL-STIMULATION; PSYCHOPHYSICAL TUNING CURVES;
MASKED EXCITATION PATTERNS; ELECTRODE-NEURON INTERFACE; AUDITORY
CORTICAL IMAGES; SPEECH-RECOGNITION; INFERIOR COLLICULUS; CHANNEL
INTERACTION; LOUDNESS GROWTH; SPECTRAL-RIPPLE
AB Sharp spatial selectivity is critical to auditory performance, particularly in pitch-related tasks. Most contemporary cochlear implants have employed monopolar stimulation that produces broad electric fields, which presumably contribute to poor pitch and pitch-related performance by implant users. Bipolar or tripolar stimulation can generate focused electric fields but requires higher current to reach threshold and, more interestingly, has not produced any apparent improvement in cochlear-implant performance. The present study addressed this dilemma by measuring psychophysical and physiological spatial selectivity with both broad and focused stimulations in the same cohort of subjects. Different current levels were adjusted by systematically measuring loudness growth for each stimulus, each stimulation mode, and in each subject. Both psychophysical and physiological measures showed that, although focused stimulation produced significantly sharper spatial tuning than monopolar stimulation, it could shift the tuning position or even split the tuning tips. The altered tuning with focused stimulation is interpreted as a result of poor electrode-to-neuron interface in the cochlea, and is suggested to be mainly responsible for the lack of consistent improvement in implant performance. A linear model could satisfactorily quantify the psychophysical and physiological data and derive the tuning width. Significant correlation was found between the individual physiological and psychophysical tuning widths, and the correlation was improved by log-linearly transforming the physiological data to predict the psychophysical data. Because the physiological measure took only one-tenth of the time of the psychophysical measure, the present model is of high clinical significance in terms of predicting and improving cochlear-implant performance. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Zhu, Ziyan; Ye, Datian] Tsinghua Univ, Sch Med, Dept Biomed Engn, Beijing 100084, Peoples R China.
[Zhu, Ziyan; Guan, Tian; Ye, Datian] Tsinghua Univ, Grad Sch Shenzhen, Biomed Engn Res Ctr, Shenzhen 518055, Guangdong, Peoples R China.
[Zhu, Ziyan; Tang, Qing; Zeng, Fan-Gang] Univ Calif Irvine, Dept Biomed Engn, Irvine, CA 92697 USA.
RP Zhu, ZY (reprint author), Tsinghua Univ, Sch Med, Dept Biomed Engn, Beijing 100084, Peoples R China.
EM zhuzy05@mails.tsinghua.edu.cn; fzeng@uci.edu;
yedt6386@sz.tsinghua.edu.cn
RI Zeng, Fan-Gang/G-4875-2012
FU NIH [R01-DC008858, P30-DC008369]; Ministry of Education of China, and
the Natural Science Fund of China [30800234, 60871083]
FX The authors thank all subjects for their time and dedication. The
authors also thank Matthew Chang, Grace Hunter and two anonymous
reviewers for comments on the manuscript. The experiments were supported
by the NIH grants (R01-DC008858 and P30-DC008369), the Scholarship of
the Ministry of Education of China, and the Natural Science Fund of
China (30800234 and 60871083).
CR Abbas PJ, 2004, AUDIOL NEURO-OTOL, V9, P203, DOI 10.1159/000078390
Abbas PJ, 1999, EAR HEARING, V20, P45, DOI 10.1097/00003446-199902000-00005
BEKESY GEORG v., 1952, ACTA OTO LARYNGOL, V42, P197, DOI 10.3109/00016485209120346
Berenstein CK, 2010, HEARING RES, V270, P28, DOI 10.1016/j.heares.2010.10.001
Berenstein CK, 2008, EAR HEARING, V29, P250
Bierer JA, 2010, EAR HEARING, V31, P247, DOI 10.1097/AUD.0b013e3181c7daf4
Bierer JA, 2010, HEARING RES, V270, P134, DOI 10.1016/j.heares.2010.08.006
Bierer JA, 2002, J NEUROPHYSIOL, V87, P478
Boex C, 2003, J ACOUST SOC AM, V114, P2058, DOI 10.1121/1.1610452
Bonham BH, 2008, HEARING RES, V242, P141, DOI 10.1016/j.heares.2008.03.006
Brown CJ, 2000, EAR HEARING, V21, P151, DOI 10.1097/00003446-200004000-00009
Chatterjee M, 1998, J ACOUST SOC AM, V103, P2565, DOI 10.1121/1.422777
Chatterjee M, 2006, JARO-J ASSOC RES OTO, V7, P15, DOI 10.1007/s10162-005-0019-2
CHISTOVICH L. A., 1957, BIOFIZIKA [TRANSL], V2, P714
Chua TEH, 2011, EAR HEARING, V32, P679, DOI 10.1097/AUD.0b013e31821a47df
Cohen LT, 2001, HEARING RES, V155, P63, DOI 10.1016/S0378-5955(01)00248-9
Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0
Cullington HE, 2010, EAR HEARING, V31, P70, DOI 10.1097/AUD.0b013e3181bc7722
DESAUVAGE RC, 1983, J ACOUST SOC AM, V73, P616
Dillier N, 2002, ANN OTO RHINOL LARYN, V111, P407
Dingemanse JG, 2006, EAR HEARING, V27, P645, DOI 10.1097/01.aud.0000246683.29611.1b
Donaldson GS, 1997, J ACOUST SOC AM, V101, P3706, DOI 10.1121/1.418330
Donaldson GS, 2011, EAR HEARING, V32, P238, DOI 10.1097/AUD.0b013e3181fb8390
Eisen MD, 2005, JARO-J ASSOC RES OTO, V6, P160, DOI 10.1007/s10162-005-5057-2
Eisen MD, 2004, EAR HEARING, V25, P528, DOI 10.1097/00003446-200412000-00002
Finley CC, 2008, OTOL NEUROTOL, V29, P920, DOI 10.1097/MAO.0b013e318184f492
Fishman KE, 1997, J SPEECH LANG HEAR R, V40, P1201
Fletcher H, 1935, J FRANKL INST, V220, P405, DOI 10.1016/S0016-0032(35)90128-4
Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538
Fu QJ, 2005, HEARING RES, V202, P55, DOI 10.1016/j.heares.2004.10.004
Gartner L, 2010, ACTA OTO-LARYNGOL, V130, P724, DOI 10.3109/00016480903380539
Goldwyn JH, 2010, HEARING RES, V268, P93, DOI 10.1016/j.heares.2010.05.005
Helmholtz H, 1877, SENSATIONS TONE
Henry BA, 2003, J ACOUST SOC AM, V113, P2861, DOI 10.1121/1.1561900
Hughes ML, 2010, EAR HEARING, V31, P679, DOI 10.1097/AUD.0b013e3181e1d19e
Hughes ML, 2008, EAR HEARING, V29, P435, DOI 10.1097/AUD.0b013e31816a0d3d
Jolly CN, 1996, IEEE T BIO-MED ENG, V43, P857, DOI 10.1109/10.508549
Ketten DR, 1998, ANN OTO RHINOL LARYN, V107, P1
Khan AM, 2005, HEARING RES, V205, P83, DOI 10.1016/j.heares.2005.03.003
Koch DB, 2004, AUDIOL NEURO-OTOL, V9, P214, DOI 10.1159/000078391
Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6
Kwon BJ, 2006, J ACOUST SOC AM, V119, P2994, DOI 10.1121/1.2184128
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X
LIM HH, 1989, J ACOUST SOC AM, V86, P971, DOI 10.1121/1.398732
LINTHICUM FH, 1991, AM J OTOL, V12, P245
Litvak LM, 2007, J ACOUST SOC AM, V122, P967, DOI 10.1121/1.2749414
Litvak LM, 2007, J ACOUST SOC AM, V122, P982, DOI 10.1121/1.2749413
Mens LHM, 2005, OTOL NEUROTOL, V26, P957, DOI 10.1097/01.mao.0000185060.74339.9d
Middlebrooks JC, 2002, J NEUROPHYSIOL, V87, P493
Miller CA, 2003, HEARING RES, V175, P200
Miller CA, 2000, EAR HEARING, V21, P280, DOI 10.1097/00003446-200008000-00003
MOORE BCJ, 1986, J ACOUST SOC AM, V80, P93, DOI 10.1121/1.394087
Moore BCJ, 2001, EAR HEARING, V22, P268, DOI 10.1097/00003446-200108000-00002
Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883
Nelson DA, 2002, J ACOUST SOC AM, V112, P2932, DOI 10.1121/1.1514935
Nelson DA, 2008, J ACOUST SOC AM, V123, P1522, DOI 10.1121/1.2836786
Pfingst BE, 2001, JARO, V2, P87
Pfingst BE, 2004, JARO-J ASSOC RES OTO, V5, P11, DOI 10.1007/s10162-003-3051-0
Pickles JO, 1988, INTRO PHYSL HEARING
PLOMP R, 1964, J ACOUST SOC AM, V36, P1628, DOI 10.1121/1.1919256
Ruggero M A, 1992, Curr Opin Neurobiol, V2, P449, DOI 10.1016/0959-4388(92)90179-O
Saoji AA, 2009, EAR HEARING, V30, P559, DOI 10.1097/AUD.0b013e3181ab2b6f
SHANNON RV, 1983, HEARING RES, V12, P1, DOI 10.1016/0378-5955(83)90115-6
SHANNON RV, 1985, HEARING RES, V18, P135, DOI 10.1016/0378-5955(85)90005-X
Shannon RV, 1998, J ACOUST SOC AM, V104, P2467, DOI 10.1121/1.423774
SMALL AM, 1959, J ACOUST SOC AM, V31, P1619, DOI 10.1121/1.1907670
Snyder RL, 2008, HEARING RES, V235, P23, DOI 10.1016/j.heares.2007.09.013
Somdas MA, 2007, AUDIOL NEURO-OTOL, V12, P277, DOI 10.1159/000103208
Spoendlin H., 1984, ANN OTOL RHINO S112, V112
Srinivasan AG, 2010, HEARING RES, V270, P89, DOI 10.1016/j.heares.2010.09.004
Tang Q, 2011, J NEURAL ENG, V8, DOI 10.1088/1741-2560/8/4/046029
TASAKI I, 1954, J NEUROPHYSIOL, V17, P97
TERAYAMA Y, 1979, ACTA OTO-LARYNGOL, V88, P27, DOI 10.3109/00016487909137136
Throckmorton CS, 1999, J ACOUST SOC AM, V105, P861, DOI 10.1121/1.426275
Tykocinski M, 2001, OTOL NEUROTOL, V22, P33, DOI 10.1097/00129492-200101000-00007
VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5
Vanpoucke F, 2004, OTOL NEUROTOL, V25, P282, DOI 10.1097/00129492-200405000-00014
Vollmer M, 2007, J NEUROPHYSIOL, V98, P2588, DOI 10.1152/jn.00011.2007
Wardrop P, 2005, HEARING RES, V203, P68, DOI 10.1016/j.heares.2004.11.007
WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0
Won JH, 2007, JARO-J ASSOC RES OTO, V8, P384, DOI 10.1007/s10162-007-0085-8
Zeng Fan-Gang, 2004, Trends Amplif, V8, P1, DOI 10.1177/108471380400800102
ZENG FG, 1992, HEARING RES, V60, P231, DOI 10.1016/0378-5955(92)90024-H
Zeng FG, 2011, HEARING RES, V277, P61, DOI 10.1016/j.heares.2011.03.010
Zeng FG, 1998, NEUROREPORT, V9, P1845, DOI 10.1097/00001756-199806010-00033
ZENG FG, 1994, SCIENCE, V264, P564, DOI 10.1126/science.8160013
Zhu Ziyan, 2010, Journal of Tsinghua University (Science and Technology), V50
Zwicker E., 1974, FACTS MODELS HEARING
NR 89
TC 11
Z9 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2012
VL 283
IS 1-2
BP 45
EP 58
DI 10.1016/j.heares.2011.11.005
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 908FH
UT WOS:000301475300005
PM 22138630
ER
PT J
AU Fraser, M
McKay, CM
AF Fraser, Matthew
McKay, Colette M.
TI Temporal modulation transfer functions in cochlear implantees using a
method that limits overall loudness cues
SO HEARING RESEARCH
LA English
DT Article
ID AMPLITUDE-MODULATION; INTENSITY DISCRIMINATION; ELECTRIC HEARING;
STIMULATION RATE; PULSE-RATE; LISTENERS; LEVEL; USERS; THRESHOLDS;
CARRIERS
AB Temporal modulation transfer functions (TMTFs) were measured for six users of cochlear implants, using different carrier rates and levels. Unlike most previous studies investigating modulation detection, the experimental design limited potential effects of overall loudness cues. Psychometric functions (percent correct discrimination of modulated from unmodulated stimuli versus modulation depth) were obtained. For each modulation depth, each modulated stimulus was loudness balanced to the unmodulated reference stimulus, and level jitter was applied in the discrimination task. The loudness-balance data showed that the modulated stimuli were louder than the unmodulated reference stimuli with the same average current, thus confirming the need to limit loudness cues when measuring modulation detection. TMTFs measured in this way had a low-pass characteristic, with a cut-off frequency (at comfortably loud levels) similar to that for normal-hearing listeners. A reduction in level caused degradation in modulation detection efficiency and a lower-cut-off frequency (i.e. poorer temporal resolution). An increase in carrier rate also led to a degradation in modulation detection efficiency, but only at lower levels or higher modulation frequencies. When detection thresholds were expressed as a proportion of dynamic range, there was no effect of carrier rate for the lowest modulation frequency (50 Hz) at either level. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Fraser, Matthew; McKay, Colette M.] Univ Manchester, Sch Psychol Sci, Manchester M13 9PL, Lancs, England.
RP McKay, CM (reprint author), Univ Manchester, Sch Psychol Sci, B15,Ellen Wilkinson Bldg, Manchester M13 9PL, Lancs, England.
EM matthew.fraser@manchester.ac.uk; colette.mckay@manchester.ac.uk
FU UK Medical Research Council; MRC Cognition and Brain Sciences Unit in
Cambridge, UK
FX This study was supported by a project grant from the UK Medical Research
Council. We thank Hugh McDermott for helpful comments on an earlier
version of the manuscript, and three reviewers for constructive
suggestions. We thank the six participants for the donation of their
time to this research. The SPEAR processor was developed at the
Cooperative Research Centre for Hearing in Melbourne, Australia, and the
ImPReS software was developed at the University of Melbourne, Australia,
with support from the MRC Cognition and Brain Sciences Unit in
Cambridge, UK.
CR BUSBY PA, 1993, J ACOUST SOC AM, V94, P124, DOI 10.1121/1.408212
CAZALS Y, 1994, J ACOUST SOC AM, V96, P2048, DOI 10.1121/1.410146
Chatterjee M, 2005, J ACOUST SOC AM, V118, P993, DOI 10.1121/1.1929258
Chatterjee M, 2011, J ACOUST SOC AM, V130, P1567, DOI 10.1121/1.3621445
Chatterjee M, 2001, JARO, V2, P159, DOI 10.1007/s101620010079
Dai HP, 2010, ATTEN PERCEPT PSYCHO, V72, P538, DOI 10.3758/APP.72.2.538
Dau T, 1997, J ACOUST SOC AM, V102, P2892, DOI 10.1121/1.420344
Donaldson GS, 2000, J ACOUST SOC AM, V108, P760, DOI 10.1121/1.429609
Fu QJ, 2002, NEUROREPORT, V13, P1635, DOI 10.1097/00001756-200209160-00013
Galvin JJ, 2005, JARO-J ASSOC RES OTO, V6, P269, DOI 10.1007/s10162-005-0007-6
Galvin JJ, 2009, HEARING RES, V250, P46, DOI 10.1016/j.heares.2009.01.009
Kohlrausch A, 2000, J ACOUST SOC AM, V108, P723, DOI 10.1121/1.429605
MCKAY CM, 1994, J ACOUST SOC AM, V96, P2664, DOI 10.1121/1.411377
McKay CM, 2010, JARO-J ASSOC RES OTO, V11, P101, DOI 10.1007/s10162-009-0188-5
McKay CM, 2003, J ACOUST SOC AM, V113, P2054, DOI 10.1121/1.1558378
Middlebrooks JC, 2008, J NEUROPHYSIOL, V100, P92, DOI 10.1152/jn.01114.2007
Nelson DA, 1996, J ACOUST SOC AM, V100, P2393, DOI 10.1121/1.417949
Pfingst BE, 2007, J ACOUST SOC AM, V121, P2236, DOI 10.1121/1.2537501
Pfingst BE, 2008, J ACOUST SOC AM, V123, P1054, DOI 10.1121/1.2828051
Rubinstein Jay T, 2003, Ann Otol Rhinol Laryngol Suppl, V191, P14
SHANNON RV, 1992, J ACOUST SOC AM, V91, P2156, DOI 10.1121/1.403807
VIEMEISTER NF, 1979, J ACOUST SOC AM, V66, P1364, DOI 10.1121/1.383531
Zhang CY, 1997, J ACOUST SOC AM, V102, P2925, DOI 10.1121/1.420347
NR 23
TC 11
Z9 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2012
VL 283
IS 1-2
BP 59
EP 69
DI 10.1016/j.heares.2011.11.009
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 908FH
UT WOS:000301475300006
PM 22146425
ER
PT J
AU Arch, VS
Simmons, DD
Quinones, PM
Feng, AS
Jiang, JP
Stuart, BL
Shen, JX
Blair, C
Narins, PM
AF Arch, Victoria S.
Simmons, Dwayne D.
Quinones, Patricia M.
Feng, Albert S.
Jiang, Jianping
Stuart, Bryan L.
Shen, Jun-Xian
Blair, Chris
Narins, Peter M.
TI Inner ear morphological correlates of ultrasonic hearing in frogs
SO HEARING RESEARCH
LA English
DT Article
ID BULLFROG AMPHIBIAN PAPILLA; PRODUCT OTOACOUSTIC EMISSIONS; AUDITORY
HAIR-CELLS; BASILAR PAPILLA; ANURAN AMPHIBIANS; RANA-CATESBEIANA;
TONOTOPIC ORGANIZATION; ELECTRICAL RESONANCE; QUANTITATIVE LIGHT;
PERIPHERAL ORIGINS
AB Three species of anuran amphibians (Odorrana torrnota, Odorrana livida and Huia cavitympanum) have recently been found to detect ultrasounds. We employed immunohistochemistry and confocal microscopy to examine several morphometrics of the inner ear of these ultrasonically sensitive species. We compared morphological data collected from the ultrasound-detecting species with data from Rana pipiens, a frog with a typical anuran upper cut-off frequency of similar to 3 kHz. In addition, we examined the ears of two species of Lao torrent frogs, Odorrana chloronota and Amolops daorum, that live in an acoustic environment approximating those of ultrasonically sensitive frogs. Our results suggest that the three ultrasound-detecting species have converged on small-scale functional modifications of the basilar papilla (BP), the high-frequency hearing organ in the frog inner ear. These modifications include: 1. reduced BP chamber volume, 2. reduced tectorial membrane mass, 3. reduced hair bundle length, and 4. reduced hair cell soma length. While none of these factors on its own could account for the US sensitivity of the inner ears of these species, the combination of these factors appears to extend their hearing bandwidth, and facilitate high-frequency/ultrasound detection. These modifications are also seen in the ears of 0. chloronota, suggesting that this species is a candidate for high-frequency hearing sensitivity. These data form the foundation for future functional work probing the physiological bases of ultrasound detection by a non-mammalian ear. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Simmons, Dwayne D.; Blair, Chris; Narins, Peter M.] Univ Calif Los Angeles, Dept Integrat Biol & Physiol, Los Angeles, CA 90095 USA.
[Arch, Victoria S.] Abbott Vasc Inc, Santa Clara, CA 95054 USA.
[Arch, Victoria S.; Narins, Peter M.] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA.
[Quinones, Patricia M.] Univ Calif Los Angeles, David Geffen Sch Med, Dept Neurobiol, Los Angeles, CA 90095 USA.
[Feng, Albert S.] Univ Illinois, Dept Mol & Integrat Physiol, Urbana, IL 61801 USA.
[Jiang, Jianping] Chinese Acad Sci, Chengdu Inst Biol, Chengdu 610041, Sichuan, Peoples R China.
[Stuart, Bryan L.] N Carolina Museum Nat Sci, Raleigh, NC 27601 USA.
[Shen, Jun-Xian] Chinese Acad Sci, Inst Biophys, State Key Lab Brain & Cognit Sci, Beijing 100101, Peoples R China.
RP Narins, PM (reprint author), Univ Calif Los Angeles, Dept Integrat Biol & Physiol, 621 Charles E Young Dr S, Los Angeles, CA 90095 USA.
EM pnarins@ucla.edu
CR Arch VS, 2008, BIOL LETTERS, V4, P19, DOI 10.1098/rsbl.2007.0494
Arch VS, 2008, ANIM BEHAV, V76, P1423, DOI 10.1016/j.anbehav.2008.05.012
Arch VS, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005413
AUTHIER S, 1995, HEARING RES, V82, P1
Bain RH, 2003, AM MUS NOVIT, P1, DOI 10.1206/0003-0082(2003)417<0001:CSOACF>2.0.CO;2
BAIRD IL, 1974, BRAIN BEHAV EVOLUT, V10, P11, DOI 10.1159/000124300
BOHNE BA, 1985, J ACOUST SOC AM, V77, P153, DOI 10.1121/1.392279
Capranica R.R., 1976, P551
Capranica R.R., 1977, J ACOUST SOC AM, V6, P536
Dooling R. J., 2000, COMP HEARING BIRDS R, P308
Echteler SM, 1994, COMP HEARING MAMMALS, P134
Fei L., 1999, ATLAS AMPHIBIANS CHI
Feng AS, 2006, NATURE, V440, P333, DOI 10.1038/nature04416
FENG AS, 1981, HEARING RES, V5, P201, DOI 10.1016/0378-5955(81)90046-0
Feng AS, 2002, NATURWISSENSCHAFTEN, V89, P352, DOI 10.1007/s00144-002-0335-x
FENG AS, 1975, J COMP PHYSIOL, V100, P221
Fettiplace R, 1999, ANNU REV PHYSIOL, V61, P809, DOI 10.1146/annurev.physiol.61.1.809
Flock A., 1977, PSYCHOPHYSICS PHYSL, P15
Flock A., 1982, REPRESENTATION SPEEC, P1
Fuchs P.A., 1988, J NEUROSCI, V8, P2460
GEISLER CD, 1964, J MORPHOL, V114, P43, DOI 10.1002/jmor.1051140103
Gridi-Papp M, 2008, P NATL ACAD SCI USA, V105, P11014, DOI 10.1073/pnas.0802210105
HACKNEY CM, 1993, HEARING RES, V69, P163, DOI 10.1016/0378-5955(93)90104-9
Heffner H. E., 1998, COMP PSYCHOL HDB, P290
Heffner H.E., 2007, SENSES COMPREHENSIVE, P55
HILLERY CM, 1984, SCIENCE, V225, P1037, DOI 10.1126/science.6474164
HILLERY CM, 1987, HEARING RES, V25, P233, DOI 10.1016/0378-5955(87)90095-5
Iurato S, 1967, SUBMICROSCOPIC STRUC
KOPPL C, 1995, HEARING RES, V82, P14
Lewis E.R., 1983, SCANNING ELECTRON MI, V1983, P189
LEWIS ER, 1975, BRAIN RES, V83, P35, DOI 10.1016/0006-8993(75)90856-2
Lewis E.R., 1992, J COMP PHYSIOL A, V17, P421
LEWIS ER, 1982, SCIENCE, V215, P1641, DOI 10.1126/science.6978525
LEWIS ER, 1982, J COMP PHYSIOL, V145, P437
LEWIS ER, 1976, BRAIN BEHAV EVOLUT, V13, P196, DOI 10.1159/000123810
LIM DJ, 1980, J ACOUST SOC AM, V67, P1686, DOI 10.1121/1.384295
LOFTUSHI.JJ, 1970, J ACOUST SOC AM, V47, P1131, DOI 10.1121/1.1912015
LOMBARD RE, 1979, BIOL J LINN SOC, V11, P19, DOI 10.1111/j.1095-8312.1979.tb00027.x
Mann DA, 2001, J ACOUST SOC AM, V109, P3048, DOI 10.1121/1.1368406
Meenderink SWF, 2005, J ACOUST SOC AM, V117, P3165, DOI 10.1121/1.1871752
MEGELA AL, 1982, J ACOUST SOC AM, V71, P641, DOI 10.1121/1.387538
MULROY MJ, 1974, BRAIN BEHAV EVOLUT, V10, P69, DOI 10.1159/000124303
Narins P.M., 1983, HEARING PHYSL BASES, P70
Narins PM, 2004, J ACOUST SOC AM, V115, P910, DOI 10.1121/1.1636851
NARINS PM, 1990, BIOSCIENCE, V40, P268, DOI 10.2307/1311263
PITCHFORD S, 1987, HEARING RES, V27, P75, DOI 10.1016/0378-5955(87)90027-X
Purgue AP, 2000, J COMP PHYSIOL A, V186, P489, DOI 10.1007/s003590050447
Purgue AP, 2000, J COMP PHYSIOL A, V186, P481, DOI 10.1007/s003590050446
R Development Core Team, 2004, R R FDN STAT COMP
RONKEN DA, 1990, HEARING RES, V47, P63, DOI 10.1016/0378-5955(90)90167-N
Schoffelen RLM, 2009, JARO-J ASSOC RES OTO, V10, P309, DOI 10.1007/s10162-009-0167-x
SHOFNER WP, 1984, J COMP NEUROL, V224, P141, DOI 10.1002/cne.902240113
SHOFNER WP, 1981, J EXP BIOL, V93, P181
SHOFNER WP, 1983, HEARING RES, V11, P103, DOI 10.1016/0378-5955(83)90048-5
SIMMONS DD, 1994, HEARING RES, V80, P71, DOI 10.1016/0378-5955(94)90010-8
Smotherman MS, 2000, J EXP BIOL, V203, P2237
Smotherman MS, 1998, J NEUROPHYSIOL, V79, P312
Smotherman MS, 1999, HEARING RES, V132, P117, DOI 10.1016/S0378-5955(99)00047-7
Smotherman MS, 1999, J NEUROSCI, V19, P5275
Strelioff D., 1982, SOC NEUR ABSTR, V8, P40
Stuart BL, 2008, MOL PHYLOGENET EVOL, V46, P49, DOI 10.1016/j.ympev.2007.09.016
SUGIHARA I, 1989, J NEUROPHYSIOL, V62, P1330
TILNEY LG, 1983, J CELL BIOL, V96, P807, DOI 10.1083/jcb.96.3.807
TURNER RG, 1981, SCIENCE, V213, P1519, DOI 10.1126/science.7280673
Van Dijk P, 2006, Auditory Mechanisms: Processes and Models, P332, DOI 10.1142/9789812773456_0055
van Dijk P, 2001, HEARING RES, V153, P14, DOI 10.1016/S0378-5955(00)00251-3
Wada T., 1923, AM ANATOMIC MEMOIRS, P1
Weyer E. G., 1973, J MORPHOL, V141, P461
Weyer E.G., 1985, AMPHIBIAN EAR
WILCZYNSKI W, 1984, PROG NEUROBIOL, V22, P1, DOI 10.1016/0301-0082(84)90016-9
Yang D., 1991, FIELDIANA ZOOLOGY, V63
YU XL, 1991, J COMP PHYSIOL A, V169, P241, DOI 10.1007/BF00215871
ZWISLOCKI JJ, 1980, HEARING RES, V2, P171, DOI 10.1016/0378-5955(80)90055-6
ZWISLOCKI JJ, 1980, J ACOUST SOC AM, V67, P1679
NR 74
TC 2
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2012
VL 283
IS 1-2
BP 70
EP 79
DI 10.1016/j.heares.2011.11.006
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 908FH
UT WOS:000301475300007
PM 22146424
ER
PT J
AU Kane, KL
Longo-Guess, CM
Gagnon, LH
Ding, DL
Salvi, RJ
Johnson, KR
AF Kane, Kelly L.
Longo-Guess, Chantal M.
Gagnon, Leona H.
Ding, Dalian
Salvi, Richard J.
Johnson, Kenneth R.
TI Genetic background effects on age-related hearing loss associated with
Cdh23 variants in mice
SO HEARING RESEARCH
LA English
DT Article
ID C57BL/6 SUBSTRAINS; HAIR-CELLS; MOUSE; PRESBYCUSIS; CBA; SUSCEPTIBILITY;
INHERITANCE; CADHERIN-23; IMPAIRMENT; STRAINS
AB Inbred strain variants of the Cdh23 gene have been shown to influence the onset and progression of agerelated hearing loss (AHL) in mice. In linkage backcrosses, the recessive Cdh23 allele (ahl) of the C57BL/6J strain, when homozygous, confers increased susceptibility to AHL, while the dominant allele (Ahl+) of the CBA/CaJ strain confers resistance. To determine the isolated effects of these alleles on different strain backgrounds, we produced the reciprocal congenic strains B6.CBACa-Cdh23(Ahl+) and CBACa.B6-Cdh23(ahl) and tested 15-30 mice from each for hearing loss progression. ABR thresholds for 8 kHz, 16 kHz, and 32 kHz pure-tone stimuli were measured at 3, 6, 9, 12, 15 and 18 months of age and compared with agematched mice of the C57BL/6J and CBA/CaJ parental strains. Mice of the C57BL/6N strain, which is the source of embryonic stem cells for the large International Knockout Mouse Consortium, were also tested for comparisons with C57BL/6J mice. Mice of the C57BL/6J and C57BL/6N strains exhibited identical hearing loss profiles: their 32 kHz ABR thresholds were significantly higher than those of CBA/CaJ and congenic strain mice by 6 months of age, and their 16 kHz thresholds were significantly higher by 12 months. Thresholds of the CBA/CaJ, the B6.CBACa-Cdh23(Ahl+), and the CBACa.B6-Cdh23ahl strain mice differed little from one another and only slightly increased throughout the 18-month test period. Hearing loss, which corresponded well with cochlear hair cell loss, was most profound in the C57BL/61 and C57BL/ 6NJ strains. These results indicate that the CBA/CaJ-derived Cdh23(Ahl+) allele dramatically lessens hearing loss and hair cell death in an otherwise C57BL/6J genetic background, but that the C57BL/6J-derived Cdh23(ahl) allele has little effect on hearing loss in an otherwise CBA/CaJ background. We conclude that although Cdh23(ahl) homozygosity is necessary, it is not by itself sufficient to account for the accelerated hearing loss of C57BL/6J mice. (C) 2011 Elsevier By. All rights reserved.
C1 [Kane, Kelly L.; Longo-Guess, Chantal M.; Gagnon, Leona H.; Johnson, Kenneth R.] Jackson Lab, Bar Harbor, ME 04609 USA.
[Ding, Dalian; Salvi, Richard J.] SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA.
RP Johnson, KR (reprint author), Jackson Lab, 600 Main St, Bar Harbor, ME 04609 USA.
EM ken.johnson@jax.org
FU National Institutes of Health (NIH), National Institute on Deafness and
Other Communication Disorders (NIDCD) [DC005827]; NIH National Cancer
Institute [CA34196]
FX We thank Patsy Nishina and David Bergstrom of The Jackson Laboratory for
their critical review of this manuscript. We also thank Sandra Gray for
her skilled mouse colony management and assistance in the development of
the congenic strains. This research was supported by RO1 grant DC005827
(KRJ) from the National Institutes of Health (NIH), National Institute
on Deafness and Other Communication Disorders (NIDCD). The Jackson
Laboratory institutional shared services are supported by NIH National
Cancer Institute support grant CA34196.
CR Alagramam KN, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019183
Bared A, 2010, OTOLARYNG HEAD NECK, V143, P263, DOI 10.1016/j.otohns.2010.03.024
Bielefeld EC, 2010, HEARING RES, V264, P98, DOI 10.1016/j.heares.2009.09.001
Bryant CD, 2008, J NEUROGENET, V22, P315, DOI 10.1080/01677060802357388
Dalton DS, 2003, GERONTOLOGIST, V43, P661
DeStefano AL, 2003, ARCH OTOLARYNGOL, V129, P285
Ding DL, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P189, DOI 10.1201/9781420038736.ch13
Ding DL, 1999, AUDIOL NEURO-OTOL, V4, P55, DOI 10.1159/000013822
Friedman RA, 2009, HUM MOL GENET, V18, P785, DOI 10.1093/hmg/ddn402
Garringer HJ, 2006, ARCH OTOLARYNGOL, V132, P506, DOI 10.1001/archotol.132.5.506
HENRY KR, 1980, AUDIOLOGY, V19, P369
Hequembourg S, 2001, JARO, V2, P118
Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X
Johnson K.R., 2010, HEAR RES
Kazmierczak P, 2007, NATURE, V449, P87, DOI 10.1038/nature06091
Keithley EM, 2004, HEARING RES, V188, P21, DOI 10.1016/S0378-5955(03)00365-4
Lang H, 2002, HEARING RES, V172, P118, DOI 10.1016/S0378-5955(02)00552-X
Latoche JR, 2011, HEARING RES, V275, P150, DOI 10.1016/j.heares.2010.12.017
LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418
Mikaelian D.O., 1979, LARYNGOSCOPE, V34, P1
Muller M, 2005, HEARING RES, V202, P63, DOI 10.1016/j.heares.2004.08.011
Nicholson A, 2010, OBESITY, V18, P1902, DOI 10.1038/oby.2009.477
Noben-Trauth K, 2009, BRAIN RES, V1277, P42, DOI 10.1016/j.brainres.2009.02.012
Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226
Ohlemiller KK, 2010, JARO-J ASSOC RES OTO, V11, P605, DOI 10.1007/s10162-010-0228-1
Ohlemiller KK, 2009, BRAIN RES, V1277, P70, DOI 10.1016/j.brainres.2009.02.079
Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017
Rodriguez-Paris J, 2008, ANN CLIN LAB SCI, V38, P352
Schwander M, 2009, P NATL ACAD SCI USA, V106, P5252, DOI 10.1073/pnas.0900691106
Someya S, 2009, P NATL ACAD SCI USA, V106, P19432, DOI 10.1073/pnas.0908786106
Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315
Unal M, 2005, LARYNGOSCOPE, V115, P2238, DOI 10.1097/01.mlg.0000183694.10583.12
Wang J., 2008, NEUROBIOL AGING, V31, P1238
WILLOTT JF, 1986, J NEUROPHYSIOL, V56, P391
Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9
Zheng QY, 2009, NEUROBIOL AGING, V30, P1693, DOI 10.1016/j.neurobiolaging.2007.12.011
NR 36
TC 13
Z9 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2012
VL 283
IS 1-2
BP 80
EP 88
DI 10.1016/j.heares.2011.11.007
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 908FH
UT WOS:000301475300008
PM 22138310
ER
PT J
AU Papesh, MA
Hurley, LM
AF Papesh, Melissa A.
Hurley, Laura M.
TI Plasticity of serotonergic innervation of the inferior colliculus in
mice following acoustic trauma
SO HEARING RESEARCH
LA English
DT Article
ID SPONTANEOUS NEURAL ACTIVITY; INHIBITORY POSTSYNAPTIC CURRENTS; DORSAL
COCHLEAR NUCLEUS; CENTRAL AUDITORY-SYSTEM; ADULT VISUAL-CORTEX;
HEARING-LOSS; EVOKED-POTENTIALS; BRAIN-STEM; INDUCED TINNITUS; NOISE
EXPOSURE
AB Acoustic trauma often results in permanent damage to the cochlea, triggering changes in processing within central auditory structures such as the inferior colliculus (IC). The serotonergic neuromodulatory system, present in the IC, is responsive to chronic changes in the activity of sensory systems. The current study investigated whether the density of serotonergic innervation in the IC is changed following acoustic trauma. The trauma stimulus consisted of an 8 kHz pure tone presented at a level of 113 dB SPL for six consecutive hours to anesthetized CBAJJ mice. Following a minimum recovery period of three weeks, serotonergic fibers were visualized via histochemical techniques targeting the serotonin reuptake transporter (SERT) and quantified using stereologic probes. SERT-positive fiber densities were then compared between the traumatized and protected hemispheres of unilaterally traumatized subjects and those of controls. A significant effect of acoustic trauma was found between the hemispheres of unilaterally traumatized subjects such that the IC contralateral to the ear of exposure contained a lower density of SERT-positive fibers than the IC ipsilateral to acoustic trauma. No significant difference in density was found between the hemispheres of control subjects. Additional dimensions of variability in serotonergic fibers were seen among subdivisions of the IC and with age. The central IC had a slightly but significantly lowered density of serotonergic fibers than other subdivisions of the IC, and serotonergic fibers also declined with age. Overall, the results indicate that acoustic trauma is capable of producing modest but significant decreases in the density of serotonergic fibers innervating the IC. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Hurley, Laura M.] Indiana Univ, Dept Biol, Ctr Integrat Study Anim Behav, Bloomington, IN 47405 USA.
[Papesh, Melissa A.] Indiana Univ, Dept Speech & Hearing Sci, Bloomington, IN 47405 USA.
RP Hurley, LM (reprint author), Indiana Univ, Dept Biol, Ctr Integrat Study Anim Behav, 1001 E 3rd St, Bloomington, IN 47405 USA.
EM mwoods@indiana.edu; lhurley@indiana.edu
FU Indiana University's Faculty
FX The authors would like to thank Abby Howenstein and Katherine Knisely
for their help in running experiments and with data analysis. We would
also like to thank Robert Withnell and William Shofner their time,
expertise, and helpful comments on the manuscript. This project is
supported by a grant from Indiana University's Faculty Research Support
Program.
CR Abbott SD, 1999, NEUROSCIENCE, V93, P1375, DOI 10.1016/S0306-4522(99)00300-0
Baroncelli L, 2010, EXP NEUROL, V226, P100, DOI 10.1016/j.expneurol.2010.08.009
Barsz K, 2007, NEUROSCIENCE, V147, P532, DOI 10.1016/j.neuroscience.2007.04.031
Bartels H, 2007, OTOL NEUROTOL, V28, P178, DOI 10.1097/MAO.0b013e31802b3248
Basta Dietmar, 2005, Neurosci Lett, V374, P74, DOI 10.1016/j.neulet.2004.11.002
Bledsoe SC, 1995, NEUROREPORT, V7, P225, DOI 10.1097/00001756-199512000-00054
Bohorquez A, 2009, HEARING RES, V251, P29, DOI 10.1016/j.heares.2009.02.006
Calhoun Michael E., 2001, Journal of Chemical Neuroanatomy, V21, P257, DOI 10.1016/S0891-0618(01)00093-X
COLES RB, 1982, J EXP BIOL, V101, P337
Cransac H, 1996, HEARING RES, V100, P150, DOI 10.1016/0378-5955(96)00116-5
DAVIS M, 1980, SCIENCE, V209, P521, DOI 10.1126/science.7394520
DAVIS RI, 1989, HEARING RES, V41, P1, DOI 10.1016/0378-5955(89)90173-1
Dong S, 2010, BRAIN RES, V1342, P24, DOI 10.1016/j.brainres.2010.04.067
Dong S., 2010, EUR J NEUROSCI, V31, P16
Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010
Eggermont JJ, 1998, HEARING RES, V117, P149, DOI 10.1016/S0378-5955(98)00008-2
Eldredge D H, 1973, Adv Otorhinolaryngol, V20, P64
Esaki T, 2005, P NATL ACAD SCI USA, V102, P5582, DOI 10.1073/pnas.0501509102
Hall IC, 2010, J EXP BIOL, V213, P1009, DOI 10.1242/jeb.035956
Hall IC, 2007, HEARING RES, V228, P82, DOI 10.1016/j.heares.2007.01.023
Hall IC, 2011, BEHAV NEUROSCI, V125, P501, DOI 10.1037/a0024426
Holt AG, 2005, J NEUROCHEM, V93, P1069, DOI 10.1111/j.1471-4159.2005.03090.x
Hurley LM, 2008, J NEUROPHYSIOL, V100, P1656, DOI 10.1152/jn.90536.2008
Hurley LM, 2011, HEARING RES, V279, P74, DOI 10.1016/j.heares.2010.12.015
Hurley LM, 1999, J NEUROSCI, V19, P8071
Hurley LM, 2007, BRAIN RES, V1181, P21, DOI 10.1016/j.brainres.2007.08.053
Hurley LM, 2001, J NEUROPHYSIOL, V85, P828
Hurley LM, 2006, J NEUROPHYSIOL, V96, P2177, DOI 10.1152/jn.00046.2006
Hurley LM, 2001, J COMP NEUROL, V435, P78, DOI 10.1002/cne.1194
Johnson RG, 1998, J PHARMACOL EXP THER, V285, P643
Kaiser A., 1997, J SCI NEW YORK, P71
Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6
Kelley NH, 1937, J EXP PSYCHOL, V21, P211, DOI 10.1037/h0055019
KLEPPER A, 1991, BRAIN RES, V557, P190, DOI 10.1016/0006-8993(91)90134-H
Komiya H, 2000, ACTA OTO-LARYNGOL, V120, P750
Kreczmanski P, 2009, ACTA NEUROPATHOL, V117, P409, DOI 10.1007/s00401-009-0482-7
LI HS, 1992, ACTA OTO-LARYNGOL, V112, P956, DOI 10.3109/00016489209137496
LIBERMAN MC, 1978, ACTA OTO-LARYNGOL, P5
LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8
Lombion S., 2007, PROG NEUROPSYCHOPHAR, V32, P629
Ma WLD, 2006, HEARING RES, V212, P9, DOI 10.1016/j.heares.2005.10.003
Mamounas LA, 2000, J NEUROSCI, V20, P771
MARRIAGE J, 1995, J LARYNGOL OTOL, V109, P915
Maya-Vetencourt JF, 2008, SCIENCE, V320, P385, DOI 10.1126/science.1150516
MELICHAR I, 1980, Hearing Research, V2, P55, DOI 10.1016/0378-5955(80)90016-7
Michler SA, 2002, J COMP NEUROL, V451, P250, DOI 10.1002/cne.10348
Milbrandt JC, 2000, HEARING RES, V147, P251, DOI 10.1016/S0378-5955(00)00135-0
Moller AR, 2006, PROG BRAIN RES, V157, P365, DOI 10.1016/S0079-6123(06)57022-0
Mossop JE, 2000, HEARING RES, V147, P183, DOI 10.1016/S0378-5955(00)00054-X
Nathan PJ, 2006, HUM PSYCHOPHARM CLIN, V21, P47, DOI 10.1002/hup.740
Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9
Normann C, 2007, BIOL PSYCHIAT, V62, P373, DOI 10.1016/j.biopsych.2006.10.006
Okamoto K, 2002, PAIN, V99, P133, DOI 10.1016/S0304-3959(02)00070-2
Paxinos G., 2004, MOUSE BRAIN STEREOTA
Peruzzi D, 2004, BRAIN RES, V998, P247, DOI 10.1016/j.brainres.2003.10.059
Portfors CV, 2009, NEUROSCIENCE, V162, P486, DOI 10.1016/j.neuroscience.2009.04.056
PRISCO S, 1994, J PHARMACOL EXP THER, V271, P83
Qu Y, 2000, NEUROSCIENCE, V101, P863, DOI 10.1016/S0306-4522(00)00441-3
Rachel JD, 2002, HEARING RES, V164, P206, DOI 10.1016/S0378-5955(02)00287-3
ROMAND R, 1990, DEV BRAIN RES, V54, P221, DOI 10.1016/0165-3806(90)90145-O
SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U
Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2
Salvinelli F, 2003, MED HYPOTHESES, V61, P446, DOI 10.1016/S0306-9877(03)00194-4
Schaette R, 2006, EUR J NEUROSCI, V23, P3124, DOI 10.1111/j.1460-9568.04774.x
Shamy JL, 2007, J COMP NEUROL, V502, P192, DOI 10.1002/cne.21313
Simpson JJ, 2000, HEARING RES, V145, P1, DOI 10.1016/S0378-5955(00)00093-9
Smith GS, 1997, AM J PSYCHIAT, V154, P490
SOHMER H, 1980, ELECTROEN CLIN NEURO, V49, P506, DOI 10.1016/0013-4694(80)90393-4
SUGISAWA T, 1994, EUR ARCH OTO-RHINO-L, V251, P154
Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812
Szczepaniak WS, 1996, EVOKED POTENTIAL, V100, P158, DOI 10.1016/0013-4694(95)00234-0
SZCZEPANIAK WS, 1995, NEUROSCI LETT, V196, P77, DOI 10.1016/0304-3940(95)11851-M
Tadros SF, 2007, NEUROBIOL AGING, V28, P1112, DOI 10.1016/j.neurobiolaging.2006.05.021
Tan J, 2007, NEUROSCIENCE, V145, P715, DOI 10.1016/j.neuroscience.2006.11.067
Thompson AM, 2004, NEUROSCI LETT, V356, P179, DOI 10.1016/j.neulet.2003.11.052
THOMPSON GC, 1994, OTOLARYNG HEAD NECK, V110, P93, DOI 10.1016/S0194-5998(94)70797-9
Tong L, 2005, HEARING RES, V206, P28, DOI 10.1016/j.heares.2005.03.006
Vale C, 2004, EUR J NEUROSCI, V20, P2133, DOI 10.1111/j.1460-9568.2004.03679.x
Vale C, 2002, EUR J NEUROSCI, V16, P2394, DOI 10.1046/j.1460-9568.2002.02302.x
Wang HT, 2008, HEARING RES, V236, P42, DOI 10.1016/j.heares.2007.11.015
Wang HT, 2006, HEARING RES, V215, P77, DOI 10.1016/j.heares.2006.03.004
Wang JA, 2002, HEARING RES, V168, P238, DOI 10.1016/S0378-5955(02)00360-X
WILLOTT JF, 1982, SCIENCE, V216, P1331, DOI 10.1126/science.7079767
WILLOTT JF, 1974, J COMP PHYSIOL PSYCH, V86, P1, DOI 10.1037/h0035922
Yang G, 2007, HEARING RES, V226, P244, DOI 10.1016/j.heares.2006.06.013
Zeng SJ, 2007, BRAIN BEHAV EVOLUT, V70, P1, DOI 10.1159/000101066
NR 86
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2012
VL 283
IS 1-2
BP 89
EP 97
DI 10.1016/j.heares.2011.11.004
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 908FH
UT WOS:000301475300009
PM 22101024
ER
PT J
AU Pilati, N
Large, C
Forsythe, ID
Hamann, M
AF Pilati, Nadia
Large, Charles
Forsythe, Ian D.
Hamann, Martine
TI Acoustic over-exposure triggers burst firing in dorsal cochlear nucleus
fusiform cells
SO HEARING RESEARCH
LA English
DT Article
ID SPONTANEOUS NEURAL ACTIVITY; KV3.1 POTASSIUM CHANNEL; AUDITORY-NERVE
FIBERS; INDUCED HEARING-LOSS; GATED K+ CHANNELS; NEURONAL EXCITABILITY;
RESPONSE PROPERTIES; INDUCED TINNITUS; THRESHOLD SHIFT; INTENSE SOUND
AB Acoustic over-exposure (AOE) triggers deafness in animals and humans and provokes auditory nerve degeneration. Weeks after exposure there is an increase in the cellular excitability within the dorsal cochlear nucleus (DCN) and this is considered as a possible neural correlate of tinnitus. The origin of this DCN hyperactivity phenomenon is still unknown but it is associated with neurons lying within the fusiform cell layer. Here we investigated changes of excitability within identified fusiform cells following AOE. Wistar rats were exposed to a loud (110 dB SPL) single tone (14.8 kHz) for 4 h. Auditory brainstem response recordings performed 3-4 days after AOE showed that the hearing thresholds were significantly elevated by about 20-30 dB SPL for frequencies above 15 kHz. Control fusiform cells fired with a regular firing pattern as assessed by the coefficient of variation of the inter-spike interval distribution of 0.19 +/- 0.11 (n = 5). Three to four days after AOE, 40% of fusiform cells exhibited irregular bursting discharge patterns (coefficient of variation of the inter-spike interval distribution of 1.8 + 0.6, n = 5: p < 0.05). Additionally the maximal firing following step current injections was reduced in these cells (from 83 +/- 11 Hz, n = 5 in unexposed condition to 43 +/- 6 Hz, n = 5 after AOE) and this was accompanied by an increased firing gain (from 0.09 0.01 Hz/pA, n = 5 in unexposed condition to 0.56 0.25 Hz/pA, n = 5 after AOE). Current and voltage clamp recordings suggest that the presence of bursts in fusiform cells is related to a down regulation of high voltage activated potassium currents.
In conclusion we showed that AOE triggers deafness at early stages and this is correlated with profound changes in the firing pattern and frequency of the DCN major output fusiform cells. The changes here described could represent the initial network imbalance prior to the emergence of tinnitus. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
C1 [Pilati, Nadia; Hamann, Martine] Univ Leicester, Dept Cell Physiol & Pharmacol, Leicester LE1 9HN, Leics, England.
[Large, Charles] GlaxoSmithKline SpA, Neurosci CEDD, I-37135 Verona, Italy.
[Forsythe, Ian D.] Univ Leicester, MRC Toxicol Unit, Leicester LE1 9HN, Leics, England.
RP Hamann, M (reprint author), Univ Leicester, Dept Cell Physiol & Pharmacol, Maurice Shock Med Sci Bldg,Univ Rd, Leicester LE1 9HN, Leics, England.
EM mh86@le.ac.uk
FU GlaxoSmithKline; Wellcome Trust; Royal Society, Medisearch and Deafness
Research UK
FX This project was supported by GlaxoSmithKline, Wellcome Trust, Royal
Society, Medisearch and Deafness Research UK. We thank Dr M. Mulheran
and the Biomedical Services of the University of Leicester for helpful
advice and Dr J. Kaltenbach for insightful discussions.
CR Barnes-Davies M, 2004, EUR J NEUROSCI, V19, P325, DOI 10.1111/j.1460-9568.2003.03133.x
BARRS DM, 1984, AM J OTOL, V5, P269
Brew HM, 1995, J NEUROSCI, V15, P8011
Brozoski TJ, 2002, J NEUROSCI, V22, P2383
Buzsaki G, 2002, CEREB CORTEX, V12, P893, DOI 10.1093/cercor/12.9.893
CALVIN WH, 1968, J NEUROPHYSIOL, V31, P574
Chance FS, 2002, NEURON, V35, P773, DOI 10.1016/S0896-6273(02)00820-6
Chang H, 2002, HEARING RES, V164, P59, DOI 10.1016/S0378-5955(01)00410-5
Chen K, 1999, NEUROSCIENCE, V90, P1043, DOI 10.1016/S0306-4522(98)00503-X
Chen KJ, 1998, BRAIN RES, V783, P219, DOI 10.1016/S0006-8993(97)01348-6
DALLOS P, 1978, J NEUROPHYSIOL, V41, P365
DAVIES E, 1994, BRIT J AUDIOL, V28, P125, DOI 10.3109/03005369409086559
Ding J, 1999, J NEUROPHYSIOL, V82, P3434
Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010
Ehrenberger Klaus, 2005, Int Tinnitus J, V11, P34
Finlayson PG, 2009, HEARING RES, V256, P104, DOI 10.1016/j.heares.2009.07.006
Friedland DR, 2007, HEARING RES, V228, P31, DOI 10.1016/j.heares.2007.01.024
GEALDOR M, 1993, HEARING RES, V69, P236, DOI 10.1016/0378-5955(93)90113-F
GRISSMER S, 1994, MOL PHARMACOL, V45, P1227
Hancock KE, 2002, J NEUROPHYSIOL, V87, P2505, DOI 10.1152/jn00342.2001
HIRSCH JA, 1988, J PHYSIOL-LONDON, V396, P535
Holt GR, 1997, NEURAL COMPUT, V9, P1001, DOI 10.1162/neco.1997.9.5.1001
Hopkins WF, 1998, J PHARMACOL EXP THER, V285, P1051
Johnston J, 2010, J PHYSIOL-LONDON, V588, P3187, DOI 10.1113/jphysiol.2010.191973
Kaltenbach J.A., 2002, ABS ASS RES OTOLARYN, V25
Kaltenbach JA, 2007, PROG BRAIN RES, V166, P89, DOI 10.1016/S0079-6123(07)66009-9
Kaltenbach JA, 2008, AM J AUDIOL, V17, pS148, DOI 10.1044/1059-0889(2008/08-0004)
Kaltenbach JA, 1998, HEARING RES, V124, P78, DOI 10.1016/S0378-5955(98)00119-1
KIANG NYS, 1965, ANN OTO RHINOL LARYN, V74, P463
Koch C., 1999, BIOPHYSICS COMPUTATI
Komiya H, 2000, ACTA OTO-LARYNGOL, V120, P750
Lau D, 2000, J NEUROSCI, V20, P9071
Leao KE, 2010, EUR J NEUROSCI, V32, P1658, DOI 10.1111/j.1460-9568.2010.07437.x
Leao RN, 2006, J PHYSIOL-LONDON, V571, P563, DOI 10.1113/jphysiol.2005.098780
Lien CC, 2003, J NEUROSCI, V23, P2058
LOEB M, 1967, J ACOUST SOC AM, V42, P453, DOI 10.1121/1.1910600
Ma WLD, 2006, HEARING RES, V212, P9, DOI 10.1016/j.heares.2005.10.003
MANIS PB, 1990, J NEUROSCI, V10, P2338
MANIS PB, 1994, J COMP NEUROL, V348, P261, DOI 10.1002/cne.903480208
Middleton JW, 2011, P NATL ACAD SCI USA, V108, P7601, DOI 10.1073/pnas.1100223108
Murashita H, 2006, HEARING RES, V214, P1, DOI 10.1016/j.heares.2005.12.008
Nicolas-Puel Cécile, 2002, Int Tinnitus J, V8, P37
Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9
OERTEL D, 1989, J COMP NEUROL, V283, P228, DOI 10.1002/cne.902830206
Oertel D, 2004, TRENDS NEUROSCI, V27, P104, DOI 10.1016/j.tins.2003.12.001
PIERSON M, 1992, EPILEPSY RES, V13, P35, DOI 10.1016/0920-1211(92)90005-E
Pilati N, 2008, J HISTOCHEM CYTOCHEM, V56, P539, DOI 10.1369/jhc.2008.950246
Roberts LE, 2010, J NEUROSCI, V30, P14972, DOI 10.1523/JNEUROSCI.4028-10.2010
Rudy B, 2001, TRENDS NEUROSCI, V24, P517, DOI 10.1016/S0166-2236(00)01892-0
Rybalko N, 2011, PHYSIOL BEHAV, V102, P453, DOI 10.1016/j.physbeh.2010.12.010
SALVI RJ, 1983, HEARING RES, V10, P37, DOI 10.1016/0378-5955(83)90017-5
Sanes DH, 2011, HEARING RES, V279, P140, DOI 10.1016/j.heares.2011.03.015
Schaette R, 2009, J NEUROPHYSIOL, V101, P3042, DOI 10.1152/jn.91256.2008
Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1
Shore SE, 2008, EUR J NEUROSCI, V27, P155, DOI 10.1111/j.1460-9568.2007.05983.x
SMITH RL, 1980, HEARING RES, V2, P123, DOI 10.1016/0378-5955(80)90034-9
Song P, 2005, NAT NEUROSCI, V8, P1335, DOI 10.1038/nn1533
Steinert JR, 2011, NEURON, V71, P291, DOI 10.1016/j.neuron.2011.05.037
THEOPOLD HM, 1985, LARYNGO RHINO OTOL, V64, P609, DOI 10.1055/s-2007-1008218
Timofeev I, 2010, NEUROSCIENTIST, V16, P19, DOI 10.1177/1073858409333545
Topolnik L, 2003, EUR J NEUROSCI, V18, P486, DOI 10.1046/j.1460-9568.2003.02742.x
Trellakis S, 2007, PROG BRAIN RES, V166, P303, DOI 10.1016/S0079-6123(07)66028-2
TURRIGIANO G, 1995, J NEUROSCI, V15, P3640
Turrigiano GG, 1999, TRENDS NEUROSCI, V22, P221, DOI 10.1016/S0166-2236(98)01341-1
von Hehn CAA, 2004, J NEUROSCI, V24, P1936, DOI 10.1523/JNEUROSCI.4554-03.2004
Waller HJ, 1996, HEARING RES, V98, P169, DOI 10.1016/0378-5955(96)00090-1
Wang LY, 1998, J PHYSIOL-LONDON, V509, P183, DOI 10.1111/j.1469-7793.1998.183bo.x
Witsell DL, 2007, OTOL NEUROTOL, V28, P11, DOI 10.1097/01.mao.0000235967.53474.93
YAJIMA Y, 1989, EXP BRAIN RES, V75, P381
Zacharek MA, 2002, HEARING RES, V172, P137, DOI 10.1016/S0378-5955(02)00575-0
Zhang JS, 1998, NEUROSCI LETT, V250, P197, DOI 10.1016/S0304-3940(98)00482-0
ZHANG S, 1994, J NEUROPHYSIOL, V71, P914
NR 72
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2012
VL 283
IS 1-2
BP 98
EP 106
DI 10.1016/j.heares.2011.10.008
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 908FH
UT WOS:000301475300010
PM 22085487
ER
PT J
AU Werner, M
Van De Water, TR
Andersson, T
Arnoldsson, G
Berggren, D
AF Werner, Mimmi
Van De Water, Thomas R.
Andersson, Therese
Arnoldsson, Goran
Berggren, Diana
TI Morphological and morphometric characteristics of vestibular hair cells
and support cells in long term cultures of rat utricle explants
SO HEARING RESEARCH
LA English
DT Article
ID CHINCHILLA CRISTA-AMPULLARIS; MARROW-DERIVED CELLS; MATH1 GENE-TRANSFER;
STEM-CELLS; INNER-EAR; UTRICULAR MACULA; ACOUSTIC TRAUMA; SENSORY CELLS;
HEARING-LOSS; REGENERATION
AB A method for long term culture of utricular macula explants is demonstrated to be stable and reproducible over a period of 28 days in vitro (DIV). This culture system for four-day-old rat utricular maculae is potentially suitable for studies of hair cell loss, repair and regeneration processes as they occur in postnatal mammalian inner ear sensory epithelia. The cellular events that occur within utricular macula hair cell epithelia during 28 days of culture are documented from serial sections. Vestibular hair cells (HCs) and supporting cells (SCs) were systematically counted using light microscopy (LM) and the assistance of morphometric computer software. Ultrastructural observations were made with transmission electron microscopy (TEM) for describing the changes in the fine detailed morphological characteristics that occurred in the explants related to time in vitro. After 2 DIV the density of HCs was 77%, at 21 DIV it was 69%, and at 28 DIV it was 52% of HCs present at explantation. Between 2 DIV and 28 DIV there was a 1.7% decrease of the vestibular macula HC density per DIV. The corresponding decrease of SC density within the utricular explants was less than 1% per DIV. The overall morphology of the epithelia, i.e. relationship of HCs to SCs, was well preserved during the first two weeks in culture. After this time a slight deterioration of the epithelia was observed and although type 1 and type 11 HCs were identified by TEM observations, these two HC types could no longer be distinguished from one another by LM observations. In preparations cultured for 21 DIV. SC nuclei were located more apical and further away from the basal membrane compared to their position in macula explants fixed immediately after dissection. The loss of cells that occurred was probably due to expulsion from the apical (i.e. lumina]) surface of the sensory epithelia, but no lesions of the apical lining or ruptures of the basal membrane were observed. There were no significant changes in the volume of the vestibular HC comprising macular epithelium during the observation period of 28 DIV. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Werner, Mimmi; Andersson, Therese; Berggren, Diana] Umea Univ, Dept Clin Sci Otolaryngol, Umea, Sweden.
[Van De Water, Thomas R.] Univ Miami, Miller Sch Med, Univ Miami Ear Inst, Dept Otolaryngol,Cochlear Implant Res Program, Miami, FL 33136 USA.
[Arnoldsson, Goran] Umea Univ, Dept Stat, S-90187 Umea, Sweden.
RP Berggren, D (reprint author), Umea Univ, Dept Clin Sci Otolaryngol, Umea, Sweden.
EM Diana.Berggren@ent.umu.se
FU Swedish Research Council [2006-5159]; Foundation Tysta Skolan; Acta
stiftelsen and the Medical Faculty of the University of Umea
FX The skilful technical assistance of Mrs. Kristina Forsgren and Mr.
Anders Asplund, statistical support of Associate Professor Hans Stenlund
and valuable discussions with Associate Professor Per Sta.1, is
gratefully acknowledged. This work was supported by the Swedish Research
Council, (2006-5159) the Foundation Tysta Skolan, Acta stiftelsen and
the Medical Faculty of the University of Umea.
CR Adler HJ, 1996, NEUROSCI LETT, V205, P17, DOI 10.1016/0304-3940(96)12367-3
Alvarez-Dolado M, 2003, NATURE, V425, P968, DOI 10.1038/nature02069
BAGGERSJOBACK D, 1984, ANN OTO RHINOL LARYN, V93, P89
Bahmad F, 2007, LARYNGOSCOPE, V117, P1202, DOI 10.1097/MLG.0b013e3180581944
Berggren D, 2003, HEARING RES, V180, P114, DOI 10.1016/S0378-5955(03)00112-6
Burns J, 2008, J COMP NEUROL, V511, P396, DOI 10.1002/cne.21849
CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100
Cotanche DA, 2008, J COMMUN DISORD, V41, P421, DOI 10.1016/j.jcomdis.2008.03.004
Cunningham LL, 2006, JARO-J ASSOC RES OTO, V7, P299, DOI 10.1007/s10162-006-0043-x
Forge A, 1997, SEMIN CELL DEV BIOL, V8, P225, DOI 10.1006/scdb.1997.0147
FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284
Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X
Gale JE, 2002, J NEUROBIOL, V50, P81, DOI 10.1002/neu.10002
Gu RD, 2007, EUR J NEUROSCI, V25, P1363, DOI 10.1111/j.1460-9568.2007.05414.x
Gundersen HJG, 1999, J MICROSC-OXFORD, V193, P199, DOI 10.1046/j.1365-2818.1999.00457.x
Holley MC, 2005, DRUG DISCOV TODAY, V10, P1269, DOI 10.1016/S1359-6446(05)03595-6
Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193
Jones JE, 1996, J NEUROSCI, V16, P649
Kawamoto K, 2003, J NEUROSCI, V23, P4395
Kawamoto K, 2009, HEARING RES, V247, P17, DOI 10.1016/j.heares.2008.08.010
KING DG, 1982, STAIN TECHNOL, V57, P307
Kirkegaard M, 2005, J COMP NEUROL, V492, P132, DOI 10.1002/cne.20736
Kopke RD, 2001, P NATL ACAD SCI USA, V98, P5886, DOI 10.1073/pnas.101120898
Li HW, 2003, NAT MED, V9, P1293, DOI 10.1038/nm925
Lopez I, 1997, INT J DEV NEUROSCI, V15, P447, DOI 10.1016/S0736-5748(96)00103-7
Martinez-Monedero R, 2006, J NEUROBIOL, V66, P319, DOI 10.1002/neu.20232
Matsui JI, 2005, J REHABIL RES DEV, V42, P187, DOI 10.1682/JRRD.2005.01.0008
Oshima K, 2007, JARO-J ASSOC RES OTO, V8, P18, DOI 10.1007/s10162-006-0058-3
Pinheiro J. C., 2000, MIXED EFFECTS MODELS
Popper AN, 2000, PHILOS T ROY SOC B, V355, P1277, DOI 10.1098/rstb.2000.0683
Praetorius M, 2010, ACTA OTO-LARYNGOL, V130, P215, DOI 10.3109/00016480903019251
Qun LX, 1999, ANN NY ACAD SCI, V884, P292, DOI 10.1111/j.1749-6632.1999.tb08649.x
R Development Core Team, 2010, R LANG ENV STAT COMP
Rask-Andersen H, 2010, ADV OTO-RHINO-LARYNG, V67, P14, DOI 10.1159/000262593
Rizvi AZ, 2006, P NATL ACAD SCI USA, V103, P6321, DOI 10.1073/pnas.0508593103
Ross MD, 2000, ACTA OTO-LARYNGOL, V120, P490, DOI 10.1080/000164800750045983
RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101
Severinsen SA, 2008, HEARING RES, V236, P33, DOI 10.1016/j.heares.2007.11.009
Staecker H, 2007, OTOL NEUROTOL, V28, P223, DOI 10.1097/MAO.0b013e31802b3225
TANYERI H, 1995, HEARING RES, V89, P194, DOI 10.1016/0378-5955(95)00137-7
Van De Water T., 1976, ANN OTOL RHINOL S33, V85, P1
Warchol ME, 1996, J NEUROSCI, V16, P5466
Wersall J., 1961, ACTA OTOLARYNGO S163, V163, P25
Willenbring H, 2005, BRIT J SURG, V92, P923, DOI 10.1002/bjs.5110
Yoshida T, 2007, NEUROSCIENCE, V145, P923, DOI 10.1016/j.neuroscience.2006.12.067
NR 45
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2012
VL 283
IS 1-2
BP 107
EP 116
DI 10.1016/j.heares.2011.11.003
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 908FH
UT WOS:000301475300011
PM 22127330
ER
PT J
AU Koike, T
Sakamoto, C
Sakashita, T
Hayashi, K
Kanzaki, S
Ogawa, K
AF Koike, Takuji
Sakamoto, Chiaki
Sakashita, Tasuku
Hayashi, Ken
Kanzaki, Sho
Ogawa, Kaoru
TI Effects of a perilymphatic fistula on the passive vibration response of
the basilar membrane
SO HEARING RESEARCH
LA English
DT Article
ID HUMAN TEMPORAL BONES; HEARING-LOSS; COCHLEAR MODEL; ELEMENT MODEL;
PATHOPHYSIOLOGY; MECHANICS; PRESSURE; STIMULI; DAMAGE; CAT
AB In this study, a three-dimensional finite-element model of the passive human cochlea was created. Dynamic behavior of the basilar membrane caused by the vibration of the stapes footplate was analyzed considering a fluid-structure interaction with the cochlear fluid. Next, the effects of a perilymphatic fistula (PLF) on the vibration of the cochlea were examined by making a small hole on the wall of the cochlea model. Even if a PLF existed in the scala vestibuli, a traveling wave was generated on the basilar membrane. When a PLF existed at the basal end of the cochlea, the shape of the traveling wave envelope showed no remarkable change, but the maximum amplitude became smaller at the entire frequency range from 0.5 to 5 kHz and decreased with decreasing frequency. in contrast, when a PLF existed at the second turn of the cochlea, the traveling wave envelope showed a notch at the position of the PLF and the maximum amplitude also became smaller. This model assists in elucidating the mechanisms of hearing loss due to a PLF from the view of dynamics. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Koike, Takuji; Sakamoto, Chiaki; Sakashita, Tasuku] Univ Electrocommun, Grad Sch Informat & Engn, Dept Mech Engn & Intelligent Syst, Chofu, Tokyo 1828585, Japan.
[Hayashi, Ken] Shinkawa Clin, Dept Otolaryngol, Kanagawa, Japan.
[Kanzaki, Sho; Ogawa, Kaoru] Keio Univ, Sch Med, Dept Otolaryngol, Tokyo 160, Japan.
RP Koike, T (reprint author), Univ Electrocommun, Grad Sch Informat & Engn, Dept Mech Engn & Intelligent Syst, 1-5-1 Chofugaoka, Chofu, Tokyo 1828585, Japan.
EM koike@mce.uec.ac.jp
RI Kanzaki, Sho/B-3100-2014
OI Kanzaki, Sho/0000-0001-9056-0850
FU Ministry of Education, Culture, Sports, Science & Technology in Japan
FX This work was supported by a Grants-in-Aid for Scientific Research (C)
from the Ministry of Education, Culture, Sports, Science & Technology in
Japan. We thank the section editor Anthony Gummer and the anonymous
reviewers for their constructive and helpful comments and suggestions.
CR Andoh M, 2004, J ACOUST SOC AM, V116, P417, DOI 10.1121/1.1763599
Andoh Masayoshi, 2005, J Acoust Soc Am, V118, P1554, DOI 10.1121/1.2000770
Becvarovski Zoran, 2004, Ear Nose Throat J, V83, P18
Bohnke F, 1999, ORL J OTO-RHINO-LARY, V61, P305, DOI 10.1159/000027688
CABEZUDO LM, 1978, ACTA OTO-LARYNGOL, V86, P160, DOI 10.3109/00016487809124733
Dreiling FJ, 2002, HEARING RES, V166, P166, DOI 10.1016/S0378-5955(02)00314-3
Fleischer M, 2010, J ACOUST SOC AM, V127, P2973, DOI 10.1121/1.3372752
Foster PK, 2002, HEARING RES, V167, P175, DOI 10.1016/S0378-5955(02)00389-1
Goto F, 2001, AURIS NASUS LARYNX, V28, P29, DOI 10.1016/S0385-8146(00)00089-4
GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
IGARASHI M, 1986, ACTA OTO-LARYNGOL, V101, P161, DOI 10.3109/00016488609132823
Ikezono T, 2010, AUDIOL NEURO-OTOL, V15, P168, DOI 10.1159/000241097
IURATO SALVATORE, 1962, JOUR ACOUSTICAL SOC AMER, V34, P1386, DOI 10.1121/1.1918355
KELLY JP, 1984, HEARING RES, V16, P109, DOI 10.1016/0378-5955(84)90001-7
Koike T, 2002, J ACOUST SOC AM, V111, P1306, DOI 10.1121/1.1451073
LEONARD DGB, 1984, J ACOUST SOC AM, V75, P515, DOI 10.1121/1.390485
LIGHTHILL J, 1981, J FLUID MECH, V106, P149, DOI 10.1017/S0022112081001560
Lim KM, 2002, HEARING RES, V170, P190, DOI 10.1016/S0378-5955(02)00491-4
Lim YS, 2005, MED ENG PHYS, V27, P695, DOI 10.1016/j.medengphy.2004.12.009
Manoussaki D, 2000, SIAM J APPL MATH, V61, P369, DOI 10.1137/S0036139999358404
Meaud J, 2010, J ACOUST SOC AM, V127, P1411, DOI 10.1121/1.3290995
Merchant SN, 1996, HEARING RES, V97, P30
Merchant SN, 2008, OTOL NEUROTOL, V29, P282, DOI 10.1097/mao.0b013e318161ab24
Merchant SN, 2005, OTOL NEUROTOL, V26, P151, DOI 10.1097/00129492-200503000-00004
NISHIOKA I, 1986, AM J OTOL, V7, P430
NOMURA Y, 1986, AM J OTOLARYNG, V7, P267, DOI 10.1016/S0196-0709(86)80049-7
NOMURA Y, 1992, ACTA OTO-LARYNGOL, V112, P186
Parthasarathi AA, 2000, J ACOUST SOC AM, V107, P474, DOI 10.1121/1.428352
Ramamoorthy S, 2007, J ACOUST SOC AM, V121, P2758, DOI 10.1121/1.2713725
Ren TY, 2002, P NATL ACAD SCI USA, V99, P17101, DOI 10.1073/pnas.262663699
Schweitzer L, 1996, HEARING RES, V97, P84
SIMMONS FB, 1979, LARYNGOSCOPE, V89, P59
Skrodzka EB, 2005, APPL ACOUST, V66, P1321, DOI 10.1016/j.apacoust.2005.04.006
STEELE CR, 1979, J ACOUST SOC AM, V65, P1001, DOI 10.1121/1.382569
Stenfelt S, 2003, HEARING RES, V181, P131, DOI 10.1016/S0378-5955(03)00183-7
ULEHLOVA L, 1987, HEARING RES, V28, P149, DOI 10.1016/0378-5955(87)90045-1
WEISSKOPF A, 1978, LARYNGOSCOPE, V88, P389, DOI 10.1288/00005537-197803000-00002
Wever E. G., 1949, THEORY HEARING
Yoon YJ, 2007, J ACOUST SOC AM, V122, P952, DOI 10.1121/1.2747162
NR 39
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2012
VL 283
IS 1-2
BP 117
EP 125
DI 10.1016/j.heares.2011.10.006
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 908FH
UT WOS:000301475300012
PM 22115725
ER
PT J
AU Alain, C
McDonald, K
Van Roon, P
AF Alain, Claude
McDonald, Kelly
Van Roon, Patricia
TI Effects of age and background noise on processing a mistuned harmonic in
an otherwise periodic complex sound
SO HEARING RESEARCH
LA English
DT Article
ID HUMAN AUDITORY-CORTEX; OTOACOUSTIC EMISSIONS; CONTRALATERAL SUPPRESSION;
INHIBITORY CONTROL; GAP DETECTION; HEARING-LOSS; NEURAL REPRESENTATION;
SPEECH RECOGNITION; VOLUME MEASUREMENT; OLDER-ADULTS
AB Older adults presented with short (i.e., 40 ms) harmonic complex tones show a reduced likelihood of hearing the mistuned harmonic as a separate sound. Here, we examined whether this age difference for the mistuned harmonic would generalize to a longer signal duration (i.e., 200 ms). We measured auditory evoked fields (AEFs) using magnetoencephalography while young and older adults were presented with harmonic complex tones that either had all partials of the tones in tune (single sound object) or contained a 4 or 16% mistuned harmonic (dual sound objects). The auditory stimuli were presented in isolation or embedded in low or moderate levels of continuous white noise. For each participant, we modeled the AEFs with a pair of dipoles in the superior temporal plane and examined the effects of age and noise on the amplitude and latency of the resulting source waveforms. The present study reveals similar noise-induced increases in N1 m and object-related negativity in young and older adults which may be mediated via efferent feedback connections and/or changes in the temporal window of integration. We observed less age-related differences in concurrent sound segregation for stimuli that matched the duration of the temporal integration window of auditory perception (i.e., similar to 200 ms) than for short duration sounds (i.e., 40 ms). Possible explanations for this duration-dependent age-related decline in concurrent sound perception are a general slowing in auditory processing and/or lengthening of the temporal integration window. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Alain, Claude; McDonald, Kelly; Van Roon, Patricia] Baycrest Ctr Geriatr Care, Rotman Res Inst, Toronto, ON M6A 2E1, Canada.
[Alain, Claude] Univ Toronto, Dept Psychol, Toronto, ON M8V 2S4, Canada.
[Alain, Claude] Univ Toronto, Inst Med Sci, Toronto, ON M8V 2S4, Canada.
RP Alain, C (reprint author), Baycrest Ctr Geriatr Care, Rotman Res Inst, 3560 Bathurst St, Toronto, ON M6A 2E1, Canada.
EM calain@rotman-baycrest.on.ca
FU Canadian Institutes of Health Research; Natural Sciences and Engineering
Research Council of Canada
FX This research was supported by grants from the Canadian Institutes of
Health Research and the Natural Sciences and Engineering Research
Council of Canada. We also like to thank the two reviewers and the
Associate Editor (Brian Moore) for insightful comments.
CR Alain C, 1999, PSYCHOL AGING, V14, P507, DOI 10.1037/0882-7974.14.3.507
Alain C, 2004, PSYCHOL AGING, V19, P125, DOI 10.1037/0882-7974.19.1.125
Alain C, 2007, J NEUROSCI, V27, P1308, DOI 10.1523/JNEUROSCI.5433-06.2007
Alain C, 2001, J ACOUST SOC AM, V109, P2211, DOI 10.1121/1.1367243
Alain C, 2001, J EXP PSYCHOL HUMAN, V27, P1072, DOI 10.1037//0096-1523.27.5.1072
Alain C, 2009, EUR J NEUROSCI, V30, P132, DOI 10.1111/j.1460-9568.2009.06792.x
ALHO K, 1994, ELECTROEN CLIN NEURO, V91, P353, DOI 10.1016/0013-4694(94)00173-1
Arnott SR, 2011, BRAIN RES, V1387, P116, DOI 10.1016/j.brainres.2011.02.062
Bergeson T. R., 2001, Canadian Acoustics, V29
BERLIN CI, 1993, HEARING RES, V71, P1, DOI 10.1016/0378-5955(93)90015-S
Billings CJ, 2009, HEARING RES, V254, P15, DOI 10.1016/j.heares.2009.04.002
Caspary DM, 2005, J NEUROSCI, V25, P10952, DOI 10.1523/JNEUROSCI.2451-05.2005
Chao LL, 1997, CEREB CORTEX, V7, P63, DOI 10.1093/cercor/7.1.63
CHERYCROZE S, 1993, HEARING RES, V68, P53, DOI 10.1016/0378-5955(93)90064-8
COWAN N, 1984, PSYCHOL BULL, V96, P341, DOI 10.1037/0033-2909.96.2.341
DUQUESNOY AJ, 1983, J ACOUST SOC AM, V74, P1136, DOI 10.1121/1.390037
Emmer Michele B, 2006, J Acoust Soc Am, V120, P1467, DOI 10.1121/1.2221415
Finkel D, 2007, PSYCHOL AGING, V22, P558, DOI 10.1037/0882-7974.22.3.558
Fitzgibbons PJ, 2007, J ACOUST SOC AM, V122, P458, DOI 10.1121/1.2739409
DUQUESNOY AJ, 1983, J ACOUST SOC AM, V74, P739, DOI 10.1121/1.389859
Garrett DD, 2011, J NEUROSCI, V31, P4496, DOI 10.1523/JNEUROSCI.5641-10.2011
Gazzaley A, 2005, NAT NEUROSCI, V8, P1298, DOI 10.1038/nn1543
Gleich O, 2007, HEARING RES, V224, P101, DOI 10.1016/j.heares.2006.12.002
GORDONSALANT S, 1993, J SPEECH HEAR RES, V36, P1276
Grady CL, 2008, ANN NY ACAD SCI, V1124, P127, DOI 10.1196/annals.1440.009
Grube M, 2003, EXP BRAIN RES, V153, P637, DOI 10.1007/s00221-003-1640-0
HARI R, 1988, EXP BRAIN RES, V71, P87
Huang Y, 2009, J EXP PSYCHOL HUMAN, V35, P1618, DOI 10.1037/a0015791
Humes LE, 2009, ATTEN PERCEPT PSYCHO, V71, P860, DOI 10.3758/APP.71.4.860
Keppler H, 2010, CLIN NEUROPHYSIOL, V121, P359, DOI 10.1016/j.clinph.2009.11.003
Killion MC, 2004, J ACOUST SOC AM, V116, P2395, DOI 10.1121/1.1784440
Kim SH, 2002, AUDIOL NEURO-OTOL, V7, P348, DOI 10.1159/000066159
KNIGHT RT, 1989, BRAIN RES, V504, P338, DOI 10.1016/0006-8993(89)91381-4
Kovacevic S, 2005, NEUROREPORT, V16, P1075, DOI 10.1097/00001756-200507130-00009
Leonard CM, 1998, CEREB CORTEX, V8, P397, DOI 10.1093/cercor/8.5.397
Lister JJ, 2011, INT J AUDIOL, V50, P211, DOI 10.3109/14992027.2010.526967
Matilainen LE, 2010, CLIN NEUROPHYSIOL, V121, P902, DOI 10.1016/j.clinph.2010.01.007
MOORE BCJ, 1986, J ACOUST SOC AM, V80, P479, DOI 10.1121/1.394043
Morita T, 2006, BRAIN RES, V1087, P151, DOI 10.1016/j.brainres.2006.03.004
MOULIN A, 1992, ACTA OTO-LARYNGOL, V112, P210
Okamoto H, 2007, BMC BIOL, V5, DOI 10.1186/1741-7007-5-52
Ostroff JM, 2003, HEARING RES, V181, P1, DOI 10.1016/S0378-5955(03)00113-8
Pantev C, 1998, AUDIOL NEURO-OTOL, V3, P183, DOI 10.1159/000013789
Parbery-Clark A, 2011, EUR J NEUROSCI, V33, P549, DOI 10.1111/j.1460-9568.2010.07546.x
PEKKONEN E, 1995, NEUROREPORT, V6, P1803, DOI 10.1097/00001756-199509000-00023
Penhune VB, 1996, CEREB CORTEX, V6, P661, DOI 10.1093/cercor/6.5.661
Pettigrew Catharine M, 2004, J Am Acad Audiol, V15, P469, DOI 10.3766/jaaa.15.7.2
PICHORAFULLER MK, 1995, J ACOUST SOC AM, V97, P593, DOI 10.1121/1.412282
Pichora-Fuller MK, 2006, J ACOUST SOC AM, V119, P1143, DOI 10.1121/1.2149837
Rademacher J, 2001, NEUROIMAGE, V13, P669, DOI 10.1006/nimg.2000.0714
Ross B, 2009, NEUROIMAGE, V47, P678, DOI 10.1016/j.neuroimage.2009.04.051
Ross B, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010101
Salthouse TA, 1996, PSYCHOL REV, V103, P403, DOI 10.1037/0033-295X.103.3.403
SARVAS J, 1987, PHYS MED BIOL, V32, P11, DOI 10.1088/0031-9155/32/1/004
Schneider BA, 2000, PSYCHOL AGING, V15, P110, DOI 10.1037//0882-7974.15.1.110
Schneider BA, 1999, J ACOUST SOC AM, V106, P371, DOI 10.1121/1.427062
SCHNEIDER BA, 1994, J ACOUST SOC AM, V95, P980, DOI 10.1121/1.408403
Shtyrov Y, 1999, NEUROREPORT, V10, P2189, DOI 10.1097/00001756-199907130-00034
Snyder JS, 2005, COGNITIVE BRAIN RES, V24, P492, DOI 10.1016/j.cogbrainres.2005.03.002
Soros P, 2009, BMC NEUROSCI, V10, DOI 10.1186/1471-2202-10-34
Tremblay KL, 2002, NEUROREPORT, V13, P1865, DOI 10.1097/00001756-200210280-00007
Tremblay KL, 2003, CLIN NEUROPHYSIOL, V114, P1332, DOI 10.1016/S1388-2457(03)00114-7
West R, 2000, PSYCHOPHYSIOLOGY, V37, P179, DOI 10.1017/S0048577200981460
West RL, 1996, PSYCHOL BULL, V120, P272, DOI 10.1037/0033-2909.120.2.272
Whiting KA, 1998, EAR HEARING, V19, P218, DOI 10.1097/00003446-199806000-00005
WILLIAMS EA, 1994, ACTA OTO-LARYNGOL, V114, P121, DOI 10.3109/00016489409126029
Yilmaz ST, 2007, J LARYNGOL OTOL, V121, P1029
Zhu XX, 2007, J COMP NEUROL, V503, P593, DOI 10.1002/cne.21402
NR 68
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2012
VL 283
IS 1-2
BP 126
EP 135
DI 10.1016/j.heares.2011.10.007
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 908FH
UT WOS:000301475300013
PM 22101023
ER
PT J
AU Wu, MH
Li, HH
Gao, YY
Lei, M
Teng, XB
Wu, XH
Li, L
AF Wu, Meihong
Li, Huahui
Gao, Yayue
Lei, Ming
Teng, Xiangbin
Wu, Xihong
Li, Liang
TI Adding irrelevant information to the content prime reduces the
prime-induced unmasking effect on speech recognition
SO HEARING RESEARCH
LA English
DT Article
ID PERCEIVED SPATIAL SEPARATION; OLDER-ADULTS; SELECTIVE ATTENTION;
ENERGETIC MASKING; CHINESE SPEECH; CUES; RELEASE; YOUNGER; NOISE;
COMPREHENSION
AB Presenting the early part of a nonsense sentence in quiet improves recognition of the last keyword of the sentence in a masker, especially a speech masker. This priming effect depends on higher-order processing of the prime information during target-masker segregation. This study investigated whether introducing irrelevant content information into the prime reduces the priming effect. The results showed that presenting the first four syllables (not including the second and third keywords) of the threekeyword target sentence in quiet significantly improved recognition of the second and third keywords in a two-talker-speech masker but not a noise masker, relative to the no-priming condition. Increasing the prime content from four to eight syllables (including the first and second keywords of the target sentence) further improved recognition of the third keyword in either the noise or speech masker. However, if the last four syllables of the eight-syllable prime were replaced by four irrelevant syllables (which did not occur in the target sentence), all the prime-induced speech-recognition improvements disappeared. Thus, knowing the early part of the target sentence mainly reduces informational masking of target speech, possibly by helping listeners attend to the target speech. Increasing the informative content of the prime further improves target-speech recognition probably by reducing the processing load. The reduction of the priming effect by adding irrelevant information to the prime is not due to introducing additional masking of the target speech. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Wu, Meihong; Li, Huahui; Gao, Yayue; Lei, Ming; Teng, Xiangbin; Wu, Xihong; Li, Liang] Peking Univ, Dept Machine Intelligence, Speech & Hearing Res Ctr, Key Lab Machine Percept,Minist Educ, Beijing 100871, Peoples R China.
[Wu, Meihong; Li, Huahui; Gao, Yayue; Lei, Ming; Teng, Xiangbin; Wu, Xihong; Li, Liang] Peking Univ, Dept Psychol, Speech & Hearing Res Ctr, Key Lab Machine Percept,Minist Educ, Beijing 100871, Peoples R China.
RP Wu, XH (reprint author), Peking Univ, Dept Machine Intelligence, Speech & Hearing Res Ctr, Key Lab Machine Percept,Minist Educ, Beijing 100871, Peoples R China.
EM wxh@cis.pku.edu.cn; liangli@pku.edu.cn
FU National Basic Research Program of China [2009CB320901]; National
Natural Science Foundation of China [30670704, 90920302, 60811140086];
Chinese Ministry of Education [20090001110050]; Peking University
FX This work was supported by the "973" National Basic Research Program of
China (2009CB320901), the National Natural Science Foundation of China
(30670704; 90920302; 60811140086), the Chinese Ministry of Education
(20090001110050), and "985" grants from Peking University. We would like
to express our sincere thanks to the Associate Editor, Dr. Brian Moore,
and the two anonymous reviewers for their numerous helpful comments and
suggestions for improving this manuscript.
CR Agus TR, 2009, J ACOUST SOC AM, V126, P1926, DOI 10.1121/1.3205403
Arbogast TL, 2002, J ACOUST SOC AM, V112, P2086, DOI 10.1121/1.1510141
BADDELEY A, 1981, COGNITION, V10, P17, DOI 10.1016/0010-0277(81)90020-2
Best V, 2008, P NATL ACAD SCI USA, V105, P13174, DOI 10.1073/pnas.0803718105
Best V, 2007, JARO-J ASSOC RES OTO, V8, P294, DOI 10.1007/s10162-007-0073-z
Brungart DS, 2001, J ACOUST SOC AM, V110, P2527, DOI 10.1121/1.1408946
Cao SY, 2011, J ACOUST SOC AM, V129, P2227, DOI 10.1121/1.3559707
Darwin CJ, 2000, J ACOUST SOC AM, V108, P335, DOI 10.1121/1.429468
Darwin CJ, 2000, J ACOUST SOC AM, V107, P970, DOI 10.1121/1.428278
Ezzatian P, 2011, EAR HEARING, V32, P84, DOI 10.1097/AUD.0b013e3181ee6b8a
Freyman RL, 1999, J ACOUST SOC AM, V106, P3578, DOI 10.1121/1.428211
Freyman RL, 2004, J ACOUST SOC AM, V115, P2246, DOI 10.1121/1.689343
Fukada T., 1992, P ICASSP, P137, DOI 10.1109/ICASSP.1992.225953
Grant KW, 2000, J ACOUST SOC AM, V108, P1197, DOI 10.1121/1.1288668
Hasher L., 1988, PSYCHOL LEARN MOTIV, V22, P193, DOI DOI 10.1016/S0079-7421(08)60041-9
Helfer KS, 2009, J ACOUST SOC AM, V125, P447, DOI 10.1121/1.3035837
Helfer KS, 1997, J SPEECH LANG HEAR R, V40, P432
Helfer KS, 2005, J ACOUST SOC AM, V117, P842, DOI [10.1121/1.1836832, 10.1121/1.183682]
Helfer KS, 2008, EAR HEARING, V29, P87
Huang Y, 2010, EAR HEARING, V31, P579, DOI 10.1097/AUD.0b013e3181db6dc2
Huang Y, 2009, J EXP PSYCHOL HUMAN, V35, P1618, DOI 10.1037/a0015791
Huang Y, 2008, HEARING RES, V244, P51, DOI 10.1016/j.heares.2008.07.006
Kidd G, 2005, J ACOUST SOC AM, V118, P3804, DOI 10.1121/1.2109187
King S., 2009, P BLIZZ CHALL WORKSH
Li L, 2004, J EXP PSYCHOL HUMAN, V30, P1077, DOI 10.1037/0096-1523.30.6.1077
Newman RS, 2007, J PHONETICS, V35, P85, DOI 10.1016/j.wocn.2005.10.004
Rakerd B, 2006, J ACOUST SOC AM, V119, P1597, DOI 10.1121/1.2161438
Rosenblum LD, 1996, J SPEECH HEAR RES, V39, P1159
Rudmann DS, 2003, HUM FACTORS, V45, P329, DOI 10.1518/hfes.45.2.329.27237
Schneider B. A., 2007, J AM ACAD AUDIOL, V18, P578
SUMBY WH, 1954, J ACOUST SOC AM, V26, P212, DOI 10.1121/1.1907309
Summerfleld A. Q., 1979, PHONETICA, V36, P314
Wolfram S., 1991, MATH SYSTEM DOING MA, P1
Wu XH, 2005, HEARING RES, V199, P1, DOI 10.1016/j.heares.2004.03.010
Yang ZG, 2007, SPEECH COMMUN, V49, P892, DOI 10.1016/j.specom.2007.05.005
Yoshimura T., 1999, P EUROSPEECH, V5, P2347
Zen H., 2007, P 6 ISCA WORKSH SPEE
Zen HG, 2007, IEICE T INF SYST, VE90D, P325, DOI 10.1093/ietisy/e90-d.1.325
NR 38
TC 1
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2012
VL 283
IS 1-2
BP 136
EP 143
DI 10.1016/j.heares.2011.11.001
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 908FH
UT WOS:000301475300014
PM 22101022
ER
PT J
AU Witt, KM
Bockman, CS
Dang, HK
Gruber, DD
Wangemann, P
Scofield, MA
AF Witt, Kelly M.
Bockman, Charles S.
Dang, Herbert K.
Gruber, Daniel D.
Wangemann, Philine
Scofield, Margaret A.
TI Molecular and pharmacological characteristics of the gerbil
alpha(1a)-adrenergic receptor
SO HEARING RESEARCH
LA English
DT Article
ID COCHLEAR BLOOD-FLOW; SPIRAL MODIOLAR ARTERY; GLAND ACINAR-CELLS;
ALPHA(1)-ADRENOCEPTOR SUBTYPES; ALPHA-1-ADRENERGIC RECEPTORS;
ADRENERGIC-RECEPTORS; GUINEA-PIG; EXPRESSION; BINDING; CLONING
AB The spiral modiolar artery supplies blood and essential nutrients to the cochlea. Our previous functional study indicates the alpha(1A)-adrenergic receptor subtype mediates vasoconstriction of the gerbil spiral modiolar artery. Although the gerbil cochlea is often used as a model in hearing research, the molecular and pharmacological characteristics of the cloned gerbil alpha(1a)-adrenergic receptor have not been determined. Thus we cloned, expressed and characterized the gerbil aia-adrenergic receptor and then compared its molecular and pharmacological properties to those of other mammalian alpha(1a)-adrenergic receptors. The cDNA clone contained 1404 nucleotides, which encoded a 467 amino acid peptide with a deduced sequence having 96.8, 96.4 and 91.6% identity to rat, mouse and human alpha(1a)-receptors, respectively. We transiently transfected the a15-adrenergic receptor into COS-1 cells and determined its pharmacological characteristics by [H-3]prazosin binding. Unlabeled prazosin had a K-i of 0.89 +/- 0.1 nM. The am-adrenergic receptor-selective antagonists, 5-methylurapidil and WB-4101, bound with high affinity and had K-i values of 4.9 +/- 1 and 1.0 +/- 0.1 nM, respectively. BMY-7378, an ai D-adrenergic receptorselective antagonist, bound with low affinity (260 +/- 60 nM). The 91.6% amino acid sequence identity and K-iS of the cloned gerbil alpha(1a)-adrenergic receptor are similar to those of the human al a-adrenergic receptor clone. These results show that the gerbil aia-adrenergic receptor is representative of the human laic adrenergic receptor, lending validity to the use of the gerbil spiral modiolar artery as a model in studies of vascular disorders of the cochlea. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Witt, Kelly M.; Bockman, Charles S.; Dang, Herbert K.; Scofield, Margaret A.] Creighton Univ, Dept Pharmacol, Omaha, NE 68178 USA.
[Gruber, Daniel D.] Creighton Univ, Dept Biomed Sci, Omaha, NE 68178 USA.
[Wangemann, Philine] Kansas State Univ, Dept Anat & Physiol, Manhattan, KS 66506 USA.
RP Scofield, MA (reprint author), Creighton Univ, Dept Pharmacol, 2500 Calif Plaza, Omaha, NE 68178 USA.
EM kellymwitt@hotmail.com; cbockman@creighton.edu; hekdang@gmail.com;
ddgruber1@gmail.com; wange@vet.k-state.edu; mscof@creighton.edu
RI Wangemann, Philine/N-2826-2013
CR BILLETT TE, 1989, HEARING RES, V41, P189, DOI 10.1016/0378-5955(89)90010-5
Bockman CS, 2004, J PHARMACOL EXP THER, V311, P364, DOI 10.1124/jpet.104.066399
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1006/abio.1976.9999
Bruchas MR, 2008, EUR J PHARMACOL, V578, P349, DOI 10.1016/j.ejphar.2007.09.029
CARLISLE L, 1990, HEARING RES, V43, P107, DOI 10.1016/0378-5955(90)90219-F
CHENG Y, 1973, BIOCHEM PHARMACOL, V22, P3099
Furchgott RF, 1966, ADV DRUG RES, V3, P21
GOETZ AS, 1995, EUR J PHARMACOL, V272, pR5, DOI 10.1016/0014-2999(94)00751-R
GROSS G, 1988, EUR J PHARMACOL, V151, P333, DOI 10.1016/0014-2999(88)90819-9
Gruber DD, 1998, HEARING RES, V119, P113, DOI 10.1016/S0378-5955(98)00036-7
HAN C, 1987, MOL PHARMACOL, V32, P505
HIEBLE JP, 1995, PHARMACOL REV, V47, P267
HIRASAWA A, 1993, BIOCHEM BIOPH RES CO, V195, P902, DOI 10.1006/bbrc.1993.2130
Iwasaki S, 1997, HEARING RES, V108, P55, DOI 10.1016/S0378-5955(97)00045-2
Koga K, 2003, J COMP NEUROL, V456, P105, DOI 10.1002/cne.10479
KOZAK M, 1987, NUCLEIC ACIDS RES, V15, P8125, DOI 10.1093/nar/15.20.8125
LOMASNEY JW, 1991, J BIOL CHEM, V266, P6365
Mom T, 1999, BRAIN RES PROTOC, V4, P249, DOI 10.1016/S1385-299X(99)00026-4
MORROW AL, 1986, MOL PHARMACOL, V29, P321
Nakashima T, 2003, BRAIN RES REV, V43, P17, DOI 10.1016/S0165-0173(03)00189-9
OHLSEN KA, 1991, CIRC RES, V69, P509
Patel S, 2001, BRAIN RES PROTOC, V8, P191, DOI 10.1016/S1385-299X(01)00110-6
PORTER JE, 1992, J PHARMACOL EXP THER, V263, P1062
RUFFOLO RR, 1982, J AUTON PHARMACOL, V2, P277, DOI 10.1111/j.1474-8673.1982.tb00520.x
SCHWINN DA, 1995, J PHARMACOL EXP THER, V272, P134
SCOFIELD MA, 1995, J PHARMACOL EXP THER, V275, P1035
Seidman MD, 1999, ANN NY ACAD SCI, V884, P226, DOI 10.1111/j.1749-6632.1999.tb08644.x
SHIKOWITZ MJ, 1991, MED CLIN N AM, V75, P1239
Waugh DJJ, 2001, J BIOL CHEM, V276, P25366, DOI 10.1074/jbc.M103152200
WEINBERG DH, 1994, BIOCHEM BIOPH RES CO, V201, P1296, DOI 10.1006/bbrc.1994.1845
Xiao L, 1998, BRIT J PHARMACOL, V124, P213, DOI 10.1038/sj.bjp.0701812
Yang M, 1998, J PHARMACOL EXP THER, V286, P841
Zhong HY, 1999, EUR J PHARMACOL, V375, P261, DOI 10.1016/S0014-2999(99)00222-8
NR 33
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2012
VL 283
IS 1-2
BP 144
EP 150
DI 10.1016/j.heares.2011.11.002
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 908FH
UT WOS:000301475300015
PM 22101021
ER
PT J
AU Haugas, M
Lillevali, K
Salminen, M
AF Haugas, Maarja
Lillevaeli, Kersti
Salminen, Marjo
TI Defects in sensory organ morphogenesis and generation of cochlear hair
cells in Gata3-deficient mouse embryos
SO HEARING RESEARCH
LA English
DT Article
ID INNER-EAR DEVELOPMENT; TRANSCRIPTION FACTOR GATA-3; MAMMALIAN COCHLEA;
FATE DETERMINATION; CELLULAR-DIFFERENTIATION; OVERLAPPING EXPRESSION;
TARGETED DISRUPTION; PERIOTIC MESENCHYME; PROSENSORY DOMAINS;
NERVOUS-SYSTEM
AB The development of the inner ear sensory epithelia involves a complex network of transcription factors and signaling pathways and the whole process is not yet entirely understood. GATA3 is a DNA-binding factor that is necessary for otic morphogenesis and without GATA3 variable defects have been observed already at early stages in mouse embryos. In the less severe phenotypes, one small oval shaped vesicle is formed whereas in the more severe cases, the otic epithelium becomes disrupted and the endolymphatic domain becomes separated from the rest of the otic epithelium. Despite these defects, the early sensory fate specification occurs in Gata3-/- otic epithelium. However, due to the early lethality of Gata3-deficient embryos, the later morphogenesis and sensory development have remained unclear. To gain information of these later processes we produced drug-rescued Gata3-/- embryos that survived up to late gestation. In these older Gata3-/- embryos, a similar variability was observed as earlier. In the more severely affected ears, the development of the separate endolymphatic domain arrested completely whereas the remaining vesicle formed an empty cavity with variable forms, but without any distinguishable otic compartments or morphologically distinct sensory organs. However, the dorsal part of this vesicle was able to adopt a sensory fate and to produce some hair cells. In the less severe cases of Gata3-/- ears, distinct utricular, saccular and cochlear compartments were present and hair cells could be detected in the vestibular sensory epithelia. Although clear cristae and maculae formed, the morphology and size of these sensory areas were abnormal and they remained often un-separated. In contrast to the vestibule, the cochlear sensory compartment remained more immature and no hair or supporting cells could be detected. Our results suggest that GATA3 is critical for normal vestibular and cochlear morphogenesis and that it is especially important for cochlear sensory differentiation. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Haugas, Maarja; Salminen, Marjo] Univ Helsinki, Dept Vet Biosci, Helsinki 00790, Finland.
[Lillevaeli, Kersti] Univ Tartu, Dept Dev Biol, Tartu, Estonia.
[Lillevaeli, Kersti] Univ Tartu, Dept Physiol, Tartu, Estonia.
RP Salminen, M (reprint author), Univ Helsinki, Dept Vet Biosci, Agnes Sjobergin Katu 2, Helsinki 00790, Finland.
EM maarja.haugas@helsinki.fi; kersti@ebc.ee; marjo.salminen@helsinki.fi
FU Finnish Academy; EU [MEST-CT-2005-020546]; Sigrid Juselius Foundation;
Estonian Ministry of Education and Research [SF0180019s11]
FX This study was funded by the Finnish Academy, by the EU Marie Curie
Early Stage Training Action MEST-CT-2005-020546, by the Sigrid Juselius
Foundation and by a Grant from the Estonian Ministry of Education and
Research (SF0180019s11). We are grateful to Raija Savolainen for expert
technical assistance and Mall Kure for help with the semi-thin
sectioning. The vivarium of the Institute of Molecular and Cell Biology,
University of Tartu and especially Side Kask, Side Habak and Kaire Tsaro
are acknowledged for providing the rescued Gata3 gene targeted embryos.
CR Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837
Bermingham-McDonogh O, 2006, J COMP NEUROL, V496, P172, DOI 10.1002/cne.20944
Bermingham-McDonogh O, 2003, CURR OPIN NEUROBIOL, V13, P119, DOI 10.1016/S0959-4388(03)00018-7
Bouchard M, 2010, BMC DEV BIOL, V10, DOI 10.1186/1471-213X-10-89
Braunstein EM, 2008, JARO-J ASSOC RES OTO, V9, P33, DOI 10.1007/s10162-008-0110-6
Brooker R, 2006, DEVELOPMENT, V133, P1277, DOI 10.1242/dev.02284
Bryant J, 2002, BRIT MED BULL, V63, P39, DOI 10.1093/bmb/63.1.39
Burton Q, 2004, DEV BIOL, V272, P161, DOI 10.1016/j.ydbio.2004.04.024
Chang W, 2004, DEVELOPMENT, V131, P4201, DOI 10.1242/dev.01292
Chatterjee S., 2010, BMC GENET, V16, P68
Chen P, 2002, DEVELOPMENT, V129, P2495
Chen P, 1999, DEVELOPMENT, V126, P1581
Christophorou NAD, 2010, DEV BIOL, V345, P180, DOI 10.1016/j.ydbio.2010.07.007
Cotanche DA, 2010, HEARING RES, V266, P18, DOI 10.1016/j.heares.2010.04.012
Dabdoub A, 2008, P NATL ACAD SCI USA, V105, P18396, DOI 10.1073/pnas.0808175105
DECHESNE CJ, 1994, J COMP NEUROL, V346, P517, DOI 10.1002/cne.903460405
Doetzlhofer A, 2004, DEV BIOL, V272, P432, DOI 10.1016/j.ydbio.2004.05.013
Duncan JS, 2011, INT J DEV BIOL, V55, P297, DOI 10.1387/ijdb.103178jd
Erkman L, 1996, NATURE, V381, P603, DOI 10.1038/381603a0
Everett LA, 2001, HUM MOL GENET, V10, P153, DOI 10.1093/hmg/10.2.153
Fekete DM, 2002, CURR OPIN NEUROBIOL, V12, P35, DOI 10.1016/S0959-4388(02)00287-8
Friedman LM, 2007, INT J DEV BIOL, V51, P609, DOI 10.1387/ijdb.072365lf
Grote D, 2006, DEVELOPMENT, V133, P53, DOI 10.1242/dev.02184
Hartman BH, 2010, P NATL ACAD SCI USA, V107, P15792, DOI 10.1073/pnas.1002827107
Hatch EP, 2007, DEVELOPMENT, V134, P3615, DOI 10.1242/dev.006627
Haugas M, 2010, DEV DYNAM, V239, P2452, DOI 10.1002/dvdy.22373
Hayashi T, 2008, J NEUROSCI, V28, P5991, DOI 10.1523/JNEUROSCI.1690-08.2008
Hayashi T, 2007, DEV DYNAM, V236, P525, DOI 10.1002/dvdy.21026
Hendriks RW, 1999, EUR J IMMUNOL, V29, P1912, DOI 10.1002/(SICI)1521-4141(199906)29:06<1912::AID-IMMU1912>3.0.CO;2-D
Hulander M, 2003, DEVELOPMENT, V130, P2013, DOI 10.1242/dev.00376
Hume CR, 2007, GENE EXPR PATTERNS, V7, P798, DOI 10.1016/j.modgep.2007.05.002
HUMPHREY CD, 1974, STAIN TECHNOL, V49, P9
Hwang CH, 2009, DEV DYNAM, V238, P2725, DOI 10.1002/dvdy.22111
Jacques BE, 2007, DEVELOPMENT, V134, P3021, DOI 10.1242/dev.02874
Kamaid A, 2010, J NEUROSCI, V30, P11426, DOI 10.1523/JNEUROSCI.2570-10.2010
Karis A, 2001, J COMP NEUROL, V429, P615, DOI 10.1002/1096-9861(20010122)429:4<615::AID-CNE8>3.0.CO;2-F
Kaufman CK, 2003, GENE DEV, V17, P2108, DOI 10.1101/gad.1115203
Kelley MW, 2006, BRAIN RES, V1091, P172, DOI 10.1016/j.brainres.2006.02.062
Kelley MW, 2007, INT J DEV BIOL, V51, P571, DOI 10.1387/ijdb.072388mk
Kiernan AE, 2006, PLOS GENET, V2, P27, DOI 10.1371/journal.pgen.0020004
Kiernan AE, 2005, NATURE, V434, P1031, DOI 10.1038/nature03487
Kiernan AE, 2001, P NATL ACAD SCI USA, V98, P3873, DOI 10.1073/pnas.071496998
Kim HM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014041
Kirjavainen A, 2008, DEV BIOL, V322, P33, DOI 10.1016/j.ydbio.2008.07.004
Koo SK, 2009, DEV BIOL, V333, P14, DOI 10.1016/j.ydbio.2009.06.016
Kopecky B, 2011, DEV DYNAM, V240, P1373, DOI 10.1002/dvdy.22620
Lawoko-Kerali G, 2002, J COMP NEUROL, V442, P378, DOI 10.1002/cne.10088
Lee YS, 2006, DEVELOPMENT, V133, P2817, DOI 10.1242/dev.02453
Lillevali K, 2007, DEV DYNAM, V236, P306, DOI 10.1002/dvdy.21011
Lillevali K, 2006, MECH DEVELOP, V123, P415, DOI 10.1016/j.mod.2006.04.007
Lillevali K, 2004, DEV DYNAM, V231, P775, DOI 10.1002/dvdy.20185
Lim KC, 2000, NAT GENET, V25, P209
Lin ZS, 2005, DEVELOPMENT, V132, P2309, DOI 10.1242/dev.01804
Mak ACY, 2009, GENE EXPR PATTERNS, V9, P444, DOI 10.1016/j.gep.2009.04.003
Milo M, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007144
Montcouquiol M, 2003, J NEUROSCI, V23, P9469
Morrison A, 1999, MECH DEVELOP, V84, P169, DOI 10.1016/S0925-4773(99)00066-0
Morsli H, 1998, J NEUROSCI, V18, P3327
Nesbit MA, 2004, J BIOL CHEM, V279, P22624, DOI 10.1074/jbc.M401797200
Nichols DH, 2008, CELL TISSUE RES, V334, P339, DOI 10.1007/s00441-008-0709-2
Noramly S, 2002, J NEUROBIOL, V53, P100, DOI 10.1002/neu.10131
Ohyama T, 2010, J NEUROSCI, V30, P15044, DOI 10.1523/JNEUROSCI.3547-10.2010
Pan W, 2010, P NATL ACAD SCI USA, V107, P15798, DOI 10.1073/pnas.1003089107
PANDOLFI PP, 1995, NAT GENET, V11, P40, DOI 10.1038/ng0995-40
Pasqualetti M, 2001, NAT GENET, V29, P34, DOI 10.1038/ng702
Patient RK, 2002, CURR OPIN GENET DEV, V12, P416, DOI 10.1016/S0959-437X(02)00319-2
Pauley S, 2003, DEV DYNAM, V227, P203, DOI 10.1002/dvdy.10297
Piatto Vânia B., 2005, Rev. Bras. Otorrinolaringol., V71, P216, DOI 10.1590/S0034-72992005000200016
Pirvola U, 2004, DEV BIOL, V273, P350, DOI 10.1016/j.ydbio.2004.06.010
Puligilla C, 2009, CURR OPIN GENET DEV, V19, P368, DOI 10.1016/j.gde.2009.06.004
Ruben R. J., 1967, ACTA OTO-LARYNGOL, V220, P1
Salminen M, 2000, DEVELOPMENT, V127, P13
Salminen M, 1998, DEV DYNAM, V212, P326, DOI 10.1002/(SICI)1097-0177(199806)212:2<326::AID-AJA17>3.0.CO;2-1
ten Berge D, 1998, DEVELOPMENT, V125, P3831
Torres MA, 1996, DEVELOPMENT, V122, P3381
van der Wees J, 2004, NEUROBIOL DIS, V16, P169, DOI 10.1016/j.nbd.2004.02.004
Van Esch H, 2000, NATURE, V406, P419, DOI 10.1038/35019088
Woods C, 2004, NAT NEUROSCI, V7, P1310, DOI 10.1038/nn1349
Xiang MQ, 1997, P NATL ACAD SCI USA, V94, P9445, DOI 10.1073/pnas.94.17.9445
Xiang MQ, 1998, DEVELOPMENT, V125, P3935
Xu HS, 2007, DEV BIOL, V302, P670, DOI 10.1016/j.ydbio.2006.10.002
Zheng JL, 1997, J NEUROSCI, V17, P8270
Zou D, 2008, HUM MOL GENET, V17, P3340, DOI 10.1093/hmg/ddn229
NR 83
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2012
VL 283
IS 1-2
BP 151
EP 161
DI 10.1016/j.heares.2011.10.010
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 908FH
UT WOS:000301475300016
PM 22094003
ER
PT J
AU Brimijoin, WO
McShefferty, D
Akeroyd, MA
AF Brimijoin, W. Owen
McShefferty, David
Akeroyd, Michael A.
TI Undirected head movements of listeners with asymmetrical hearing
impairment during a speech-in-noise task
SO HEARING RESEARCH
LA English
DT Article
ID SOUND LOCALIZATION; INTELLIGIBILITY; TARGETS
AB It has long been understood that the level of a sound at the ear is dependent on head orientation, but the way in which listeners move their heads during listening has remained largely unstudied. Given the task of understanding a speech signal in the presence of a simultaneous noise, listeners could potentially use head orientation to either maximize the level of the signal in their better ear, or to maximize the signalto-noise ratio in their better ear. To establish what head orientation strategy listeners use in a speech comprehension task, we used an infrared motion-tracking system to measure the head movements of 36 listeners with large (>16 dB) differences in hearing threshold between their left and right ears. We engaged listeners in a difficult task of understanding sentences presented at the same time as a spatially separated background noise. We found that they tended to orient their heads so as to maximize the level of the target sentence in their better ear, irrespective of the position of the background noise. This is not ideal orientation behavior from the perspective of maximizing the signal-to-noise ratio (SNR) at the ear, but is a simple, easily implemented strategy that is often effective in an environment where the spatial position of multiple noise sources may be difficult or impossible to determine. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Brimijoin, W. Owen; McShefferty, David; Akeroyd, Michael A.] Glasgow Royal Infirm, MRC Inst Hearing Res, Scottish Sect, Glasgow G31 2ER, Lanark, Scotland.
RP Brimijoin, WO (reprint author), Glasgow Royal Infirm, MRC Inst Hearing Res, Scottish Sect, 16 Alexandra Parade, Glasgow G31 2ER, Lanark, Scotland.
EM owen@ihr.gla.ac.uk
RI Akeroyd, Michael/N-3978-2014
OI Akeroyd, Michael/0000-0002-7182-9209
FU Medical Research Council and the Chief Scientist Office (Scotland)
FX We thank John Culling for providing the monaural speech intelligibility
model; we would also like to thank the editor and two anonymous
reviewers. All research was funded by the Medical Research Council and
the Chief Scientist Office (Scotland).
CR ANSI, 1997, S351997 ANSI
Berens P., 2009, J STAT SOFTW, V30, P1
Blauert J., 1983, SPATIAL HEARING
Brimijoin WO, 2010, J ACOUST SOC AM, V127, P3678, DOI 10.1121/1.3409488
Ching TYC, 2009, J SPEECH LANG HEAR R, V52, P1241, DOI 10.1044/1092-4388(2009/08-0261)
Dreschler WA, 2001, AUDIOLOGY, V40, P148
ERBER NP, 1969, J SPEECH HEAR RES, V12, P423
FRENCH NR, 1947, J ACOUST SOC AM, V19, P90, DOI 10.1121/1.1916407
Fuller JH, 1996, J VESTIBUL RES-EQUIL, V6, P1
FULLER JH, 1992, EXP BRAIN RES, V92, P152
GARDNER WG, 1995, J ACOUST SOC AM, V97, P3907, DOI 10.1121/1.412407
Grant KW, 2001, J ACOUST SOC AM, V109, P2272, DOI 10.1121/1.1362687
GUITTON D, 1987, J NEUROPHYSIOL, V58, P427
Harrison D, 1988, J APPL STAT, V15, P197, DOI DOI 10.1080/02664768800000026
HAWKINS JE, 1950, J ACOUST SOC AM, V22, P6, DOI 10.1121/1.1906581
KENDON A, 1967, ACTA PSYCHOL, V26, P22, DOI 10.1016/0001-6918(67)90005-4
Lavandier M, 2010, J ACOUST SOC AM, V127, P387, DOI 10.1121/1.3268612
MACLEOD A, 1987, British Journal of Audiology, V21, P131, DOI 10.3109/03005368709077786
MUIR D, 1979, CHILD DEV, V50, P431, DOI 10.1111/j.1467-8624.1979.tb04125.x
Rhebergen KS, 2005, J ACOUST SOC AM, V117, P2181, DOI 10.1121/1.1861713
Schwartz JL, 2004, COGNITION, V93, pB69, DOI 10.1016/j.cognition.2004.01.006
Simpson BD, 2005, HUM FACTORS, V47, P188, DOI 10.1518/0018720053653866
Smeele PMT, 1998, J EXP PSYCHOL HUMAN, V24, P1232, DOI 10.1037//0096-1523.24.4.1232
SOKOLOV EN, 1963, ANNU REV PHYSIOL, V25, P545, DOI 10.1146/annurev.ph.25.030163.002553
SUMBY WH, 1954, J ACOUST SOC AM, V26, P212, DOI 10.1121/1.1907309
THURLOW WR, 1967, J ACOUST SOC AM, V42, P489, DOI 10.1121/1.1910605
Wightman FL, 1999, J ACOUST SOC AM, V105, P2841, DOI 10.1121/1.426899
Young PT, 1931, J EXP PSYCHOL, V14, P95, DOI 10.1037/h0075721
NR 28
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2012
VL 283
IS 1-2
BP 162
EP 168
DI 10.1016/j.heares.2011.10.009
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 908FH
UT WOS:000301475300017
PM 22079774
ER
PT J
AU Zhang, YB
Zhang, R
Zhang, WF
Steyger, PS
Dai, CF
AF Zhang, Yi-Bo
Zhang, Ru
Zhang, Wei-Feng
Steyger, Peter S.
Dai, Chun-Fu
TI Uptake of gentamicin by vestibular efferent neurons and superior olivary
complex after transtympanic administration in guinea pigs
SO HEARING RESEARCH
LA English
DT Article
ID RETROGRADE AXONAL-TRANSPORT; INTRATYMPANIC GENTAMICIN; MENIERES-DISEASE;
COCHLEAR NUCLEUS; HAIR-CELLS; SYSTEMIC APPLICATION; INNER-EAR;
DOXORUBICIN; CHINCHILLA; AFFERENTS
AB Transtympanic administration of gentamicin is a widely accepted and effective approach for treating patients with intractable vertigo. Previous studies have demonstrated the uptake, distribution and effects of gentamicin in peripheral vestibular and cochlear structures after transtympanic injection. However, little is known about whether transtympanically administered gentamicin is trafficked into more central auditory and vestibular structures and its effect on these structures. In this study, we used immunofluorescence to determine the distribution of gentamicin within the auditory and vestibular brainstem. We observed gentamicin immunolabeling bilaterally in the vestibular efferent neurons, and in the superior olivary complex, and ipsilaterally in the cochlear nucleus 24 h after transtympanic administration of gentamicin, and that the drug could still be detected in these locations 30 days after injection. In contrast, no gentamicin labeling was detected in the vestibular nuclear complex. In the vestibular efferent neurons and superior olivary complex, gentamicin labeling was detected in the cytoplasm and cell processes, while in the cochlear nucleus gentamicin is mainly localized outside and adjacent to the cell bodies of neurons. Nerve fibers in cochlear nucleus, root of eighth nerve, as well as descending pathways from the superior olivary complex, are also immunolabeled with gentamicin continuously. Based on these data, we hypothesize that retrograde axonal transport of gentamicin is responsible for the distribution of gentamicin in these efferent nuclei including vestibular efferent.neurons and superior olivary complex and anterograde axonal transport into the ipsilateral cochlear nucleus. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Zhang, Yi-Bo; Zhang, Ru; Dai, Chun-Fu] Fudan Univ, Eye Ear Nose & Throat Hosp, Dept Otol & Skull Base Surg, Shanghai 200031, Peoples R China.
[Zhang, Wei-Feng] Shanghai Jiao Tong Univ, Ruijin Hosp, Dept Neurosurg, Shanghai 200025, Peoples R China.
[Steyger, Peter S.] Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, Portland, OR 97239 USA.
RP Dai, CF (reprint author), Fudan Univ, Eye Ear Nose & Throat Hosp, Dept Otol & Skull Base Surg, Shanghai 200031, Peoples R China.
EM cfdai66@yahoo.com.cn
FU Educational Ministry of China [NCET-06-0369]; National Natural Science
Foundation [30772398, 81070785]; Shanghai Municipal Hospital
[SHDC12010119]; 973 Project [2011CB504504]; National Institute of
Deafness and Other Communication Disorders [DC 04555]
FX This study was supported by Educational Ministry of China (No:
NCET-06-0369); National Natural Science Foundation (No. 30772398, No.
81070785); Project on Advanced and Frontier Techniques for Shanghai
Municipal Hospital (SHDC12010119); 973 Project (2011CB504504), and
National Institute of Deafness and Other Communication Disorders (DC
04555, PSS).
CR Alberts B., 2002, MOL BIOL CELL, V4th
ANDERSON PN, 1981, J ANAT, V133, P371
Aran JM, 1999, ANN NY ACAD SCI, V884, P60, DOI 10.1111/j.1749-6632.1999.tb08636.x
BIGOTTE L, 1982, NEUROSCI LETT, V32, P217, DOI 10.1016/0304-3940(82)90296-8
Bodmer D, 2007, OTOL NEUROTOL, V28, P1140
Chia SH, 2004, OTOL NEUROTOL, V25, P544, DOI 10.1097/00129492-200407000-00023
Curtis R, 1998, MOL CELL NEUROSCI, V12, P105, DOI 10.1006/mcne.1998.0704
Dai CF, 2006, HEARING RES, V213, P64, DOI 10.1016/j.heares.2005.11.011
Furman JM, 2005, J NEUROL NEUROSUR PS, V76, P1, DOI 10.1136/jnnp.2004.048926
Hennig AK, 1998, J NEUROSCI, V18, P3282
Hirvonen TP, 2005, J NEUROPHYSIOL, V93, P643, DOI 10.1152/jn.00160.2004
Hong SH, 2006, HEARING RES, V211, P46, DOI 10.1016/j.heares.2005.08.009
Imamura S, 2003, JARO, V4, P176, DOI 10.1007/s10162-002-2036-8
Lima da Costa D, 1998, Audiology, V37, P151
LIPPE WR, 1991, HEARING RES, V51, P193, DOI 10.1016/0378-5955(91)90036-9
Lyford-Pike S, 2007, JARO-J ASSOC RES OTO, V8, P497, DOI 10.1007/s10162-007-0093-8
Moller A.R, 2006, HEARING ANATOMY PHYS, P89
Rogers NJ, 1998, ANN OTO RHINOL LARYN, V107, P337
Myrdal SE, 2005, HEARING RES, V204, P156, DOI 10.1016/j.heares.2005.02.002
Ng D, 2011, LARYNGOSCOPE, V121, P492, DOI 10.1002/lary.21279
OLDFIELD BJ, 1977, NEUROSCI LETT, V6, P135, DOI 10.1016/0304-3940(77)90008-8
Postema RJ, 2008, ACTA OTO-LARYNGOL, V128, P876, DOI 10.1080/00016480701762458
Reuss S, 2000, MICROSC RES TECHNIQ, V51, P303, DOI 10.1002/1097-0029(20001115)51:4<303::AID-JEMT1>3.0.CO;2-B
Roehm P, 2007, HEARING RES, V230, P43, DOI 10.1016/j.heares.2007.04.005
Rosen JH, 1998, BRAIN RES, V813, P177, DOI 10.1016/S0006-8993(98)00972-X
SCHUKNECHT H F, 1956, Laryngoscope, V66, P859, DOI 10.1288/00005537-195607000-00005
SHUMILINA V F, 1986, Neirofiziologiya, V18, P738
SIDENIUS P, 1981, DIABETOLOGIA, V20, P110, DOI 10.1007/BF00262011
Theopold H M, 1976, Laryngol Rhinol Otol (Stuttg), V55, P786
VANDERKOOY D, 1985, NEUROSCI LETT, V53, P215, DOI 10.1016/0304-3940(85)90188-0
Xu M, 2009, ACTA OTO-LARYNGOL, V129, P745, DOI 10.1080/00016480802454716
Zhai F, 2010, OTOL NEUROTOL, V31, P642, DOI 10.1097/MAO.0b013e3181dbb30e
Zhu XX, 2007, J COMP NEUROL, V503, P593, DOI 10.1002/cne.21402
NR 33
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2012
VL 283
IS 1-2
BP 169
EP 179
DI 10.1016/j.heares.2011.10.003
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 908FH
UT WOS:000301475300018
PM 22063470
ER
PT J
AU Chordekar, S
Kriksunov, L
Kishon-Rabin, L
Adelman, C
Sohmer, H
AF Chordekar, Shai
Kriksunov, Leonid
Kishon-Rabin, Liat
Adelman, Cahtia
Sohmer, Haim
TI Mutual cancellation between tones presented by air conduction, by bone
conduction and by non-osseous (soft tissue) bone conduction
SO HEARING RESEARCH
LA English
DT Article
ID STIMULATION; THRESHOLDS; LENGTH; SOUND; EAR
AB Auditory sensation can be elicited not only by air conducted (AC) sound or bone conducted (BC) sound, but also by stimulation of soft tissue (STC) sites on the head and neck relatively distant from deeply underlying bone. Tone stimulation by paired combinations of AC with BC (mastoid) and/or with soft tissue conduction produce the same pitch sensation, mutual masking and beats. The present study was designed to determine whether they can also cancel each other. The study was conducted on ten normal hearing subjects. Tones at 2 kHz were presented in paired combinations by AC (insert earphone), by BC (bone vibrator) at the mastoid, and by the same bone vibrator to several STC sites; e.g. the neck, the sterno-cleido-mastoid muscle, the eye, and under the chin, shifting the phases between the pairs. Subjects reported changes in loudness and cancellation. The phase for cancellation differed across subjects. Neck muscle manipulations (changes in head position) led to alterations in the phase at which cancellation was reported. Cancellation was also achieved between pairs of tones to two STC sites. The differing phases for cancellation across subjects and the change in phase accompanying different head positions may be due to the different acoustic impedances of the several tissues in the head and neck. A major component of auditory stimulation by STC may not induce actual skull bone vibrations and may not involve bulk fluid volume displacements. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Chordekar, Shai; Kishon-Rabin, Liat] Tel Aviv Univ, Sackler Fac Med, Dept Commun Disorders, Tel Aviv, Israel.
[Kriksunov, Leonid; Adelman, Cahtia; Sohmer, Haim] Hadassah Acad Coll, Dept Commun Disorders, IL-91010 Jerusalem, Israel.
[Kriksunov, Leonid] Ozen Kashevet Hearing Clin, Jerusalem, Israel.
[Adelman, Cahtia] Hadassah Univ Hosp, Speech & Hearing Ctr, IL-91120 Jerusalem, Israel.
[Sohmer, Haim] Hebrew Univ Jerusalem, Hadassah Med Sch, Inst Med Res Israel Canada, Dept Med Neurobiol Physiol, IL-91120 Jerusalem, Israel.
RP Sohmer, H (reprint author), Hebrew Univ Jerusalem, Hadassah Med Sch, Dept Physiol, POB 12272, IL-91120 Jerusalem, Israel.
EM haims@ekmd.huji.ac.il
CR Adelman C., EUR ARCH OT IN PRESS
Baun J., 2004, PHYS PRINCIPLES GEN
Bekesy G., 1960, EXPT HEARING
Clavier OH, 2010, HEARING RES, V263, P224, DOI 10.1016/j.heares.2010.03.004
Dean M S, 2000, Am J Audiol, V9, P131, DOI 10.1044/1059-0889(2000/011)
Freeman S, 2000, HEARING RES, V146, P72, DOI 10.1016/S0378-5955(00)00098-8
GRIFFITHS RI, 1987, J NEUROSCI METH, V21, P159, DOI 10.1016/0165-0270(87)90113-0
Hossain M.Z., 2009, P SPIE
HYVARINE.J, 1968, SCIENCE, V162, P1130, DOI 10.1126/science.162.3858.1130
Ito T, 2011, AUDIOL NEURO-OTOL, V16, P12, DOI 10.1159/000314282
Lowy K, 1942, J ACOUST SOC AM, P156
OBRIEN PD, 1995, CIRCULATION, V91, P171
Perez R, 2011, HEARING RES, V280, P82, DOI 10.1016/j.heares.2011.04.007
Sohmer H, 2000, HEARING RES, V146, P81, DOI 10.1016/S0378-5955(00)00099-X
Stenfelt S, 2005, OTOL NEUROTOL, V26, P1245, DOI 10.1097/01.mao.0000187236.10842.d5
Stenfelt S, 2007, HEARING RES, V225, P105, DOI 10.1016/j.heares.2006.12.009
TONNDORF J, 1962, J ACOUST SOC AM, V34, P1127, DOI 10.1121/1.1918259
Topchyan A, 2006, ULTRASONICS, V44, P259, DOI 10.1016/j.ultras.2006.02.003
Tsai V, 2005, OTOL NEUROTOL, V26, P1138, DOI 10.1097/01.mao.0000179996.82402.e0
Vento B. A., 2009, HDB CLIN AUDIOLOGY
von Bekesy G, 1932, ANN PHYS-BERLIN, V13, P111
Watanabe T, 2008, EAR HEARING, V29, P667, DOI 10.1097/AUD.0b013e3181775dde
Wever EG, 1954, PHYSL ACOUSTICS
Yacullo W.S, 2009, HDB CLIN AUDIOLOGY
ZWISLOCKI J, 1953, J ACOUST SOC AM, V25, P986, DOI 10.1121/1.1907231
NR 25
TC 9
Z9 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2012
VL 283
IS 1-2
BP 180
EP 184
DI 10.1016/j.heares.2011.10.004
PG 5
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 908FH
UT WOS:000301475300019
PM 22037489
ER
PT J
AU Poznyakovskiy, AA
Zahnert, T
Kalaidzidis, Y
Lazurashvili, N
Schmidt, R
Hardtke, HJ
Fischer, B
Yarin, YM
AF Poznyakovskiy, Anton A.
Zahnert, Thomas
Kalaidzidis, Yannis
Lazurashvili, Nikoloz
Schmidt, Rolf
Hardtke, Hans-Juergen
Fischer, Bjoern
Yarin, Yury M.
TI A segmentation method to obtain a complete geometry model of the hearing
organ
SO HEARING RESEARCH
LA English
DT Article
ID 3-DIMENSIONAL RECONSTRUCTION; INNER-EAR; ULTRASOUND IMAGES;
BASILAR-MEMBRANE; DEFORMABLE MODEL; MEDICAL IMAGES; IN-VIVO; DIMENSIONS;
COCHLEA; QUANTIFICATION
AB We present a method for obtaining a complete geometry model of the fluid chambers of cochlea (scalae) from tomography images. An accurate segmentation of cochlea is problematic due to the low contrast of the inner membranes of scalae. Our method of 3D segmentation is based on dynamic resampling of an original image stack to achieve a perpendicular cross-section of the scalae on all sections. Subsequently, perpendicular cross-section is being segmented using 2D active contours. The center of mass of the contour is extracted and used to predict further course of scalae centerline by Kalman filter. Cross-section contours are subsequently assembled to the total geometry model. This method has been applied to CT images, but we expect that it could be used for segmentation of strongly curved low-contrast tubular objects recorded with other tomography techniques. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Poznyakovskiy, Anton A.; Zahnert, Thomas; Lazurashvili, Nikoloz; Yarin, Yury M.] Univ Klinikum Dresden, Dept Med, Clin Oto Rhino Laryngol, D-01307 Dresden, Germany.
[Kalaidzidis, Yannis] Max Planck Inst Mol & Cell Biol, D-01307 Dresden, Germany.
[Kalaidzidis, Yannis] Moscow MV Lomonosov State Univ, Belozersky Inst Phys Chem Biol, Moscow 117189, Russia.
[Schmidt, Rolf; Hardtke, Hans-Juergen] Tech Univ Dresden, Dept Mech Engn, Inst Solid Mech, D-01307 Dresden, Germany.
[Fischer, Bjoern] Fraunhofer Inst Nondestruct Testing, Dresden Branch IZFP, D-01109 Dresden, Germany.
RP Poznyakovskiy, AA (reprint author), Univ Klinikum Dresden, Dept Med, Clin Oto Rhino Laryngol, Fetscherstr 74, D-01307 Dresden, Germany.
EM anton.poznyakovskiy@uniklinikumdresden.de
CR Baker G., 2004, P INT C PATT REC 200
Baker G, 2004, LECT NOTES ARTIF INT, V3339, P74
Barratt DC, 2004, IEEE T MED IMAGING, V23, P567, DOI 10.1109/TMI.2004.825601
Behrens T, 2003, IEEE T SYST MAN CY B, V33, P554, DOI 10.1109/TSMCB.2003.814305
Cerveri P., 2003, HUM MOVEMENT SCI, V22, P337
Coskun AU, 2003, CATHETER CARDIO INTE, V60, P67, DOI 10.1002/ccd.10594
Fleischer M, 2010, J ACOUST SOC AM, V127, P2973, DOI 10.1121/1.3372752
Frangi A. F., 2000, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737), DOI 10.1109/MMBIA.2000.852367
Frimmel H, 2005, MED PHYS, V32, P2665, DOI 10.1118/1.1990288
Ghiz AF, 2001, HEARING RES, V162, P105, DOI 10.1016/S0378-5955(01)00375-6
Giannoglou GD, 2007, COMPUT BIOL MED, V37, P1292, DOI 10.1016/j.compbiomed.2006.12.003
Givelberg E, 2003, J COMPUT PHYS, V191, P377, DOI 10.1016/S0021-9991(03)00319-X
Grover D, 2008, J R SOC INTERFACE, V5, P1181, DOI 10.1098/rsif.2007.1333
Guerrero J, 2007, IEEE T MED IMAGING, V26, P1079, DOI 10.1109/TMI.2007.899180
Halvorsen K, 2008, J BIOMECH ENG-T ASME, V130, DOI 10.1115/1.2838035
Hardy M, 1938, AM J ANAT, V62, P291, DOI 10.1002/aja.1000620204
HATSUSHIKA S, 1990, ANN OTO RHINOL LARYN, V99, P871
Hofman R, 2009, J VESTIBUL RES-EQUIL, V19, P21, DOI 10.3233/VES-2009-0346
Kalaidzidis Y., 2009, J MATH BIOL, V2009, P57
Kalman R.E, 1960, J BASIC ENG, V82, P35, DOI DOI 10.1115/1.3662552
Kang DJ, 1999, PATTERN RECOGN LETT, V20, P507
KASS M, 1987, INT J COMPUT VISION, V1, P321
Lee CF, 2010, ANN BIOMED ENG, V38, P1719, DOI 10.1007/s10439-010-9961-1
Lesage D, 2009, MED IMAGE ANAL, V13, P819, DOI 10.1016/j.media.2009.07.011
Li R., 2003, P DIG IM COMP TECH A, P243
Li SF, 2006, ORL J OTO-RHINO-LARY, V68, P302, DOI 10.1159/000094378
Lui B., 2007, BRAIN STRUCT FUNCT, V212, P223
McNames J., 2006, C P IEEE ENG MED BIO, P3708
Meshik X., 2009, OTOL NEUROTOL, V31, P58
Noble JH, 2010, PROC SPIE, V7623, DOI 10.1117/12.844747
PERONA P, 1990, IEEE T PATTERN ANAL, V12, P629, DOI 10.1109/34.56205
Poznyakovskiy AA, 2008, HEARING RES, V243, P95, DOI 10.1016/j.heares.2008.06.008
Sadleir RJT, 2005, COMPUT MED IMAG GRAP, V29, P251, DOI 10.1016/j.compmedimag.2004.10.002
Thorne M, 1999, LARYNGOSCOPE, V109, P1661, DOI 10.1097/00005537-199910000-00021
Valverde FL, 2004, COMPUT METH PROG BIO, V73, P233, DOI 10.1016/S0169-2607(03)00043-9
Voie AH, 1995, COMPUT MED IMAG GRAP, V19, P377, DOI 10.1016/0895-6111(95)00034-8
Wada H, 1998, HEARING RES, V120, P1, DOI 10.1016/S0378-5955(98)00007-0
Wang HX, 2006, PEPTIDES, V27, P27, DOI 10.1016/j.peptides.2005.06.009
Wang Y., 2008, C P IEEE ENG MED BIO, P1720
Worz S, 2007, IEEE T IMAGE PROCESS, V16, P1994, DOI 10.1109/TIP.2007.901204
Wysocki J, 1999, HEARING RES, V135, P39, DOI 10.1016/S0378-5955(99)00088-X
Xianfen Diao, 2005, Conf Proc IEEE Eng Med Biol Soc, V6, P6285
Yim PJ, 2001, IEEE T MED IMAGING, V20, P1411, DOI 10.1109/42.974935
Yoo K S, 2001, J Digit Imaging, V14, P173
Yoo SK, 2000, IEEE T INF TECHNOL B, V4, P144, DOI 10.1109/4233.845207
ZRUNEK M, 1981, ARCH OTO-RHINO-LARYN, V233, P99, DOI 10.1007/BF00464279
NR 46
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 25
EP 34
DI 10.1016/j.heares.2011.06.009
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300003
PM 21782915
ER
PT J
AU Petacchi, A
Kaernbach, C
Ratnam, R
Bower, JM
AF Petacchi, Augusto
Kaernbach, Christian
Ratnam, Rama
Bower, James M.
TI Increased activation of the human cerebellum during pitch
discrimination: A positron emission tomography (PET) study
SO HEARING RESEARCH
LA English
DT Article
ID SCANNER BACKGROUND-NOISE; POSTEROVENTRAL COCHLEAR NUCLEUS; PERIPHERAL
TACTILE STIMULATION; VERBAL WORKING-MEMORY; HUMAN AUDITORY-CORTEX;
CEREBRAL-BLOOD-FLOW; GRANULE CELL LAYER; FREQUENCY DISCRIMINATION;
INFERIOR COLLICULUS; COMPLEX TONES
AB Recent years have seen a growing debate concerning the function of the cerebellum. Here we used a pitch discrimination task and PET to test for cerebellar involvement in the active control of sensory data acquisition. Specifically, we predicted greater cerebellar activity during active pitch discrimination compared to passive listening, with the greatest activity when pitch discrimination was most difficult. Ten healthy subjects were trained to discriminate deviant tones presented with a slightly higher pitch than a standard tone, using a Go/No Go paradigm. To ensure that discrimination performance was matched across subjects, individual psychometric curves were assessed beforehand using a two-step psychoacoustic procedure. Subjects were scanned while resting in the absence of any sounds, while passively listening to standard tones, and while detecting deviant tones slightly higher in pitch among these standard tones at four different performance levels. Consistent with our predictions, 1) passive listening alone elicited cerebellar activity (lobule IX), 2) cerebellar activity increased during pitch discrimination as compared to passive listening (crus I and II, lobules VI, VIIB, and VIIIB), and 3) this increase was correlated with the difficulty of the discrimination task (lobules V, VI, and IX). These results complement recent findings showing pitch discrimination deficits in cerebellar patients (Parsons et al., 2009) and further support a role for the cerebellum in sensory data acquisition. The data are discussed in the light of anatomical and physiological evidence functionally connecting auditory system and cerebellum. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Petacchi, Augusto; Bower, James M.] Univ Texas Hlth Sci Ctr San Antonio, Res Imaging Inst, San Antonio, TX 78229 USA.
[Kaernbach, Christian] Univ Kiel, Dept Psychol, D-24098 Kiel, Germany.
[Ratnam, Rama; Bower, James M.] Univ Texas San Antonio, Dept Biol, San Antonio, TX USA.
RP Petacchi, A (reprint author), Univ Texas Hlth Sci Ctr San Antonio, Res Imaging Inst, 7703 Floyd Curl Dr, San Antonio, TX 78229 USA.
EM petacchi@uthscsa.edu
FU UTSA-CRSGP
FX We are grateful to Shalini Narayana for useful comments, to Don Robin
for discussions, to Michelle Valero for review of the manuscript, and to
Krystal Franklin, Jack Lancaster, and Frank Zamarripa for assistance
with analysis software. This work was supported by a UTSA-CRSGP grant to
Rama Ratnam.
CR Ackermann H, 2007, CEREBELLUM, V6, P202, DOI 10.1080/14734220701266742
Ackermann H, 2001, NEUROREPORT, V12, P4087, DOI 10.1097/00001756-200112210-00045
Ackermann H, 2008, TRENDS NEUROSCI, V31, P265, DOI 10.1016/j.tins.2008.02.011
AITKIN LM, 1975, J NEUROPHYSIOL, V38, P418
AKSHOOMOFF NA, 1992, BEHAV NEUROSCI, V106, P731, DOI 10.1037//0735-7044.106.5.731
Akshoomoff N.A., 1997, CEREBELLUM COGNITION, P575
ALBUS J S, 1971, Mathematical Biosciences, V10, P25, DOI 10.1016/0025-5564(71)90051-4
Allen G, 1997, SCIENCE, V275, P1940, DOI 10.1126/science.275.5308.1940
Andersen BB, 2003, J COMP NEUROL, V466, P356, DOI 10.1002/cne.10884
Andreasen NC, 2008, BIOL PSYCHIAT, V64, P81, DOI 10.1016/j.biopsych.2008.01.003
AZIZI SA, 1985, EXP BRAIN RES, V59, P36
AZIZI SA, 1990, BRAIN RES, V533, P255, DOI 10.1016/0006-8993(90)91347-J
Barker D, 2011, CEREB CORTEX, DOI [10.1093/cercor/bhr065, DOI 10.1093/CERCOR/BHR065]
Baumann O, 2010, J NEUROSCI, V30, P4489, DOI 10.1523/JNEUROSCI.5661-09.2010
Belin P, 1999, NEUROIMAGE, V10, P417, DOI 10.1006/nimg.1999.0480
Belin P, 2002, NEUROPSYCHOLOGIA, V40, P1956, DOI 10.1016/S0028-3932(02)00062-3
Belin P, 1998, J NEUROSCI, V18, P6388
Bellebaum C, 2007, CEREBELLUM, V6, P184, DOI 10.1080/14734220601169707
Bendor D, 2005, NATURE, V436, P1161, DOI 10.1038/nature03867
Ben-Yehudah G, 2007, CEREBELLUM, V6, P193, DOI 10.1080/14734220701286195
Bower J, 2003, SCI AM, V289, P50
BOWER JM, 1990, J COMP NEUROL, V302, P768, DOI 10.1002/cne.903020409
Bower JM, 2002, ANN NY ACAD SCI, V978, P135, DOI 10.1111/j.1749-6632.2002.tb07562.x
Bower JM, 1997, PROGR BRAIN RES, V114, P483, DOI 10.1016/S0079-6123(08)63381-6
Bower JM, 2011, ANN NY ACAD SCI, V1225, P130, DOI 10.1111/j.1749-6632.2011.06020.x
BOWER JM, 1983, J NEUROPHYSIOL, V49, P745
Bower J.M., 1997, CEREBELLUM COGNITION, P490
Braitenberg V, 1967, Prog Brain Res, V25, P334
Braitenberg V, 1983, J THEORET NEUROBIOL, V2, P237
Braitenberg V, 1997, BEHAV BRAIN SCI, V20, P229, DOI 10.1017/S0140525X9700143X
BRODAL A, 1946, J COMP NEUROL, V84, P31, DOI 10.1002/cne.900840105
BRODAL P, 1979, NEUROSCIENCE, V4, P193, DOI 10.1016/0306-4522(79)90082-4
Brown IE, 2002, J NEUROSCI, V22, P6819
Brown IE, 2001, J COMP NEUROL, V429, P59, DOI 10.1002/1096-9861(20000101)429:1<59::AID-CNE5>3.0.CO;2-3
Brozoski TJ, 2007, HEARING RES, V228, P168, DOI 10.1016/j.heares.2007.02.003
Bueti D, 2008, J COGNITIVE NEUROSCI, V20, P204, DOI 10.1162/jocn.2008.20017
Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9
Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717
Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698
Casini L, 1999, NEUROPSYCHOLOGY, V13, P10, DOI 10.1037/0894-4105.13.1.10
Cedolin L, 2010, J NEUROSCI, V30, P12712, DOI 10.1523/JNEUROSCI.6365-09.2010
Cedolin L, 2005, J NEUROPHYSIOL, V94, P347, DOI 10.1152/jn.01114.2004
Cerf-Ducastel B, 2001, CHEM SENSES, V26, P625, DOI 10.1093/chemse/26.6.625
Christian KM, 2005, BEHAV NEUROSCI, V119, P526, DOI 10.1037/0735-7044.119.2.526
CLARKE PGH, 1974, J PHYSIOL-LONDON, V243, P267
CRISPINO L, 1984, P NATL ACAD SCI-BIOL, V81, P2917, DOI 10.1073/pnas.81.9.2917
de Cheveigne A., 2005, PITCH NEURAL CODING, P169
De Venecia RK, 2005, J COMP NEUROL, V487, P345, DOI 10.1002/cne.20550
Dimitrova A, 2006, NEUROIMAGE, V30, P12, DOI 10.1016/j.neuroimage.2005.09.020
Dimitrova A, 2002, NEUROIMAGE, V17, P240, DOI 10.1006/nimg.2002.1124
EARLE AM, 1974, J COMP NEUROL, V154, P117, DOI 10.1002/cne.901540202
Eickhoff SB, 2009, HUM BRAIN MAPP, V30, P2907, DOI 10.1002/hbm.20718
Ferdon S, 2003, NEUROIMAGE, V20, P12, DOI 10.1016/S1053-8119(03)00276-3
FOLSTEIN MF, 1975, J PSYCHIAT RES, V12, P189, DOI 10.1016/0022-3956(75)90026-6
FOX PT, 1984, J NEUROPHYSIOL, V51, P1109
Fox PT, 2006, HUM BRAIN MAPP, V27, P478, DOI 10.1002/hbm.20192
FOX PT, 1989, J NUCL MED, V30, P141
Fox PT, 2000, BRAIN, V123, P1985, DOI 10.1093/brain/123.10.1985
FOX PT, 1988, J CEREBR BLOOD F MET, V8, P642
Gaab N, 2003, NEUROREPORT, V14, P2291, DOI 10.1097/01.wnr.0000093587.33576.f7
Gaab N, 2007, HUM BRAIN MAPP, V28, P703, DOI 10.1002/hbm.20298
Gaab N, 2003, NEUROIMAGE, V19, P1417, DOI 10.1016/S1053-8119(03)00224-6
Gaab N, 2008, HUM BRAIN MAPP, V29, P858, DOI 10.1002/hbm.20578
Gaab N, 2007, HUM BRAIN MAPP, V28, P721, DOI 10.1002/hbm.20299
GACEK RR, 1973, EXP NEUROL, V41, P101, DOI 10.1016/0014-4886(73)90183-0
Gao JH, 1996, SCIENCE, V272, P545, DOI 10.1126/science.272.5261.545
Gottwald B, 2003, NEUROPSYCHOLOGIA, V41, P1452, DOI 10.1016/S0028-3932(03)00090-3
Green D. M., 1989, SIGNAL DETECTION THE
Griffiths TD, 1998, NAT NEUROSCI, V1, P74, DOI 10.1038/276
Griffiths TD, 1999, NEUROREPORT, V10, P3825, DOI 10.1097/00001756-199912160-00019
Griffiths TD, 2000, HUM BRAIN MAPP, V9, P72, DOI 10.1002/(SICI)1097-0193(200002)9:2<72::AID-HBM2>3.0.CO;2-9
Groff JA, 2003, J NEUROPHYSIOL, V90, P3178, DOI 10.1152/jn.00537.2003
Habas C, 2009, J NEUROSCI, V29, P8586, DOI 10.1523/JNEUROSCI.1868-09.2009
Hall DA, 2006, EUR J NEUROSCI, V24, P3601, DOI 10.1111/j.1460-9568.2006.05240.x
Hall DA, 1999, HUM BRAIN MAPP, V7, P213, DOI 10.1002/(SICI)1097-0193(1999)7:3<213::AID-HBM5>3.0.CO;2-N
Hallett M, 1997, INT REV NEUROBIOL, V41, P297
Harrington DL, 2004, BRAIN, V127, P561, DOI 10.1093/brain/awh065
Harris D.J., 1952, J ACOUST SOC AM, V24, P750
Hartmann MJ, 2001, J NEUROSCI, V21, P3549
Helton WS, 2010, NEUROPSYCHOLOGIA, V48, P1683, DOI 10.1016/j.neuropsychologia.2010.02.014
Holcomb HH, 1998, CEREB CORTEX, V8, P534, DOI 10.1093/cercor/8.6.534
HUANG C, 1990, EXP BRAIN RES, V81, P377
HUANG CM, 1985, BRAIN RES, V335, P121, DOI 10.1016/0006-8993(85)90282-3
Huang CM, 2007, ALCOHOL CLIN EXP RES, V31, P336, DOI 10.1111/j.1530-0277.2006.00309.x
HUANG CM, 1982, BRAIN RES, V244, P1, DOI 10.1016/0006-8993(82)90897-6
HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9
Hyde KL, 2008, NEUROPSYCHOLOGIA, V46, P632, DOI 10.1016/j.neuropsychologia.2007.09.004
Ito M, 1984, CEREBELLUM NEURAL CO
Ito M, 2008, NAT REV NEUROSCI, V9, P304, DOI 10.1038/nrn2332
Ivry R. B., 2000, NEW COGNITIVE NEUROS, P999
Ivry RB, 2008, TRENDS COGN SCI, V12, P273, DOI 10.1016/j.tics.2008.04.002
Ivry RB, 2002, ANN NY ACAD SCI, V978, P302, DOI 10.1111/j.1749-6632.2002.tb07576.x
Ivry R B, 1989, J Cogn Neurosci, V1, P136, DOI 10.1162/jocn.1989.1.2.136
Jancke L, 2000, COGNITIVE BRAIN RES, V10, P51, DOI 10.1016/S0926-6410(00)00022-7
JEN PHS, 1980, BRAIN RES, V196, P502, DOI 10.1016/0006-8993(80)90415-1
Jenkinson M, 2002, NEUROIMAGE, V17, P825, DOI 10.1006/nimg.2002.1132
Jenkinson M, 2005, 11 ANN M ORG HUM BRA
JESTEADT W, 1974, J ACOUST SOC AM, V55, P1266, DOI 10.1121/1.1914696
JESTEADT W, 1975, J ACOUST SOC AM, V57, P1161, DOI 10.1121/1.380574
Johnsrude IS, 2000, BRAIN, V123, P155, DOI 10.1093/brain/123.1.155
JUEPTNER M, 1995, NEUROLOGY, V45, P1540
KAERNBACH C, 1990, J ACOUST SOC AM, V88, P2645, DOI 10.1121/1.399985
Krienen FM, 2009, CEREB CORTEX, V19, P2485, DOI 10.1093/cercor/bhp135
Lancaster JL, 2007, HUM BRAIN MAPP, V28, P1194, DOI 10.1002/hbm.20345
Lancaster JL, 1995, HUM BRAIN MAPP, V3, P209, DOI 10.1002/hbm.460030305
Lancaster JL, 2000, HUM BRAIN MAPP, V10, P120, DOI 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
Lancaster JL, 1999, J NUCL MED, V40, P942
Lanting CP, 2009, HEARING RES, V255, P1, DOI 10.1016/j.heares.2009.06.009
Lanting CP, 2010, HEARING RES, V267, P78, DOI 10.1016/j.heares.2010.04.006
Larsen JO, 2000, J COMP NEUROL, V428, P213
Le TH, 1998, J NEUROPHYSIOL, V79, P1535
Liu YJ, 2000, HUM BRAIN MAPP, V10, P147, DOI 10.1002/1097-0193(200008)10:4<147::AID-HBM10>3.0.CO;2-U
Liu YY, 1999, NATURE, V400, P364
LLINAS RR, 1991, LIFE SCI R, V50, P223
Llinas R., 1984, CEREBELLAR FUNCTIONS, P170
MacMillan N. A., 2005, DETECTION THEORY USE
Mangels JA, 1998, COGNITIVE BRAIN RES, V7, P15, DOI 10.1016/S0926-6410(98)00005-6
Manto M, 2008, CEREBELLUM, V7, P505, DOI 10.1007/s12311-008-0063-7
MARR D, 1969, J PHYSIOL-LONDON, V202, P437
Mathiak K, 2002, J COGNITIVE NEUROSCI, V14, P902, DOI 10.1162/089892902760191126
Mathiak K, 2004, NEUROIMAGE, V21, P154, DOI 10.1016/j.neuroimage.2003.09.036
MINTUN MA, 1989, J CEREBR BLOOD F MET, V9, P96
Morest DK, 1997, HEARING RES, V103, P151, DOI 10.1016/S0378-5955(96)00172-4
MORI S, 1993, BEHAV BRAIN RES, V59, P33, DOI 10.1016/0166-4328(93)90149-K
Morissette J, 1996, EXP BRAIN RES, V109, P240
NELSON DA, 1986, J ACOUST SOC AM, V79, P799, DOI 10.1121/1.393470
NELSON DA, 1983, J ACOUST SOC AM, V73, P2117, DOI 10.1121/1.389579
Nichelli P, 1996, NEUROPSYCHOLOGIA, V34, P863, DOI 10.1016/0028-3932(96)00001-2
OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4
Oxenham A.J., 2008, TRENDS AMPLIF, V12, P313
PARDO JV, 1991, NATURE, V349, P61, DOI 10.1038/349061a0
Parsons LM, 2009, BRAIN RES, V1303, P84, DOI 10.1016/j.brainres.2009.09.052
Parsons LM, 1997, LEARN MEMORY, V4, P49, DOI 10.1101/lm.4.1.49
Pastor MA, 2008, J NEUROPHYSIOL, V100, P1699, DOI 10.1152/jn.01156.2007
Patterson RD, 2002, NEURON, V36, P767, DOI 10.1016/S0896-6273(02)01060-7
Paus T, 1997, J COGNITIVE NEUROSCI, V9, P392, DOI 10.1162/jocn.1997.9.3.392
Petacchi A, 2005, HUM BRAIN MAPP, V25, P118, DOI 10.1002/hbm.20137
Ramnani N, 2006, NAT REV NEUROSCI, V7, P511, DOI 10.1038/nrn1953
Rao SM, 1997, J NEUROSCI, V17, P5528
Rapoport M, 2000, J NEUROPSYCH CLIN N, V12, P193, DOI 10.1176/appi.neuropsych.12.2.193
Ravizza SM, 2006, BRAIN, V129, P306, DOI 10.1093/brain/awh685
REID MD, 1975, COMP BIOCHEM PHYSIOL, V50, P259, DOI 10.1016/0300-9629(75)90008-0
RHODE WS, 1995, J ACOUST SOC AM, V97, P2414, DOI 10.1121/1.411963
Rossi G, 1967, Acta Otolaryngol, V63, P166, DOI 10.3109/00016486709128745
Sayles M, 2008, J NEUROSCI, V28, P11925, DOI 10.1523/JNEUROSCI.3137-08.2008
Schlerf JE, 2007, CEREBELLUM, V6, P221, DOI 10.1080/14734220701370643
Schmahmann J, 1997, CEREBELLUM COGNITION
Schmahmann J. D., 2000, MRI ATLAS HUMAN CERE
Schofield BR, 1999, J COMP NEUROL, V409, P210, DOI 10.1002/(SICI)1096-9861(19990628)409:2<210::AID-CNE3>3.0.CO;2-A
Schulze K, 2009, BMC NEUROSCI, V10, DOI 10.1186/1471-2202-10-106
SEK A, 1995, J ACOUST SOC AM, V97, P2479, DOI 10.1121/1.411968
Sevostianov A, 2002, INT J NEUROSCI, V112, P587, DOI 10.1080/00207450290025671
Shulman A, 1999, Int Tinnitus J, V5, P92
Shulman Abraham, 2010, Int Tinnitus J, V16, P73
Shulman Abraham, 2009, Int Tinnitus J, V15, P5
Shumway C, 2005, J NEUROPHYSIOL, V94, P2630, DOI 10.1152/jn.00161.2005
Smith SM, 2002, HUM BRAIN MAPP, V17, P143, DOI 10.1002/hbm.10062
Snider RS, 1944, J NEUROPHYSIOL, V7, P331
Sobel N, 1998, J NEUROSCI, V18, P8990
Spencer RMC, 2005, BRAIN COGNITION, V58, P84, DOI 10.1016/j.bandc.2004.09.010
Stoodley CJ, 2012, CEREBELLUM, V11, P352, DOI 10.1007/s12311-011-0260-7
Strick PL, 2009, ANNU REV NEUROSCI, V32, P413, DOI 10.1146/annurev.neuro.31.060407.125606
Sturm W, 2004, NEUROPSYCHOLOGIA, V42, P563, DOI 10.1016/j.neuropsychologia.2003.11.004
SUN D, 1990, J COMP PHYSIOL A, V166, P477
SUN XD, 1983, BRAIN RES, V271, P162, DOI 10.1016/0006-8993(83)91378-1
Talairach J., 1988, COPLANAR STEREOTAXIC
THACH WT, 1992, ANNU REV NEUROSCI, V15, P403, DOI 10.1146/annurev.neuro.15.1.403
Thach WT, 1998, NEUROBIOL LEARN MEM, V70, P177, DOI 10.1006/nlme.1998.3846
Thach WT, 1997, CEREBELLUM COGNITION, P600
Thakral PP, 2009, BRAIN RES, V1302, P157, DOI 10.1016/j.brainres.2009.09.031
THOMPSON AM, 1993, J COMP NEUROL, V335, P402, DOI 10.1002/cne.903350309
THOMPSON AM, 1991, J COMP NEUROL, V303, P267, DOI 10.1002/cne.903030209
Tramo MJ, 2002, J NEUROPHYSIOL, V87, P122
Turkeltaub PE, 2002, NEUROIMAGE, V16, P765, DOI 10.1006/nimg.2002.1131
TURNER CW, 1982, J SPEECH HEAR RES, V25, P34
VELLUTI R, 1979, BRAIN RES BULL, V4, P621, DOI 10.1016/0361-9230(79)90103-5
Vokaer M, 2002, NEUROLOGY, V58, P967
Walker KMM, 2011, HEARING RES, V271, P74, DOI 10.1016/j.heares.2010.04.015
Warr W. B., 1992, MAMMALIAN AUDITORY P, P410
WIER CC, 1977, J ACOUST SOC AM, V61, P178, DOI 10.1121/1.381251
Winter IM, 2003, SPEECH COMMUN, V41, P135, DOI 10.1016/S0167-6393(02)00098-5
WOLFE JW, 1972, EXP NEUROL, V36, P295, DOI 10.1016/0014-4886(72)90025-8
Wolfe J.W., 1975, OTOLARYNGOL, V80, P143
Wolpert DM, 1998, TRENDS COGN SCI, V2, P338, DOI 10.1016/S1364-6613(98)01221-2
Wolpert DM, 2003, PHILOS T R SOC B, V358, P593, DOI 10.1098/rstb.2002.1238
Woodruff-Pak DS, 2010, P NATL ACAD SCI USA, V107, P1624, DOI 10.1073/pnas.0914207107
WoodruffPak DS, 1996, NEUROPSYCHOLOGY, V10, P443
XI MC, 1994, NEUROREPORT, V5, P1567, DOI 10.1097/00001756-199408150-00006
Zatorre RJ, 1999, NEUROIMAGE, V10, P544, DOI 10.1006/nimg.1999.0491
ZATORRE RJ, 1992, SCIENCE, V256, P846, DOI 10.1126/science.1589767
ZATORRE RJ, 1994, J NEUROSCI, V14, P1908
NR 191
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 35
EP 48
DI 10.1016/j.heares.2011.09.008
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300004
PM 22000998
ER
PT J
AU Liu, C
Jin, SH
AF Liu, Chang
Jin, Su-Hyun
TI Audibility of American English vowels produced by English-, Chinese-,
and Korean-native speakers in long-term speech-shaped noise
SO HEARING RESEARCH
LA English
DT Article
ID EXCITATION PATTERNS; FOREIGN ACCENT; INTELLIGIBILITY; PERCEPTION;
FORMULAS; HEARING; LEVEL
AB The purpose of this study was to evaluate whether there were significant differences in audibility of American English vowels in noise produced by non-native and native speakers. Detection thresholds for 12 English vowels with equalized durations of 170 ms produced by 10 English-, Chinese- and Korean-native speakers were measured for young normal-hearing English-native listeners in the presence of speech-shaped noise presented at 70 dB SPL. Similar patterns of vowel detection thresholds as a function of the vowel category were found for native and non-native speakers, with the highest thresholds for /u/ and /u/ and lowest thresholds for /i/ and /e/. In addition, vowel detection thresholds for non-native speakers were significantly lower and showed greater speaker variability than those for native speakers. Thresholds for vowel detection predicted from an excitation-pattern model corresponded well to behavioral thresholds, implying that vowel detection was primarily determined by the vowel spectrum regardless of speaker language background. Both behavioral and predicted thresholds showed that vowel audibility was similar or even better for non-native speakers than for native speakers, indicating that vowel audibility did not account for non-native speakers' lower-than-native intelligibility in noise. Effects of non-native speakers' English proficiency level on vowel audibility are discussed. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Liu, Chang; Jin, Su-Hyun] Univ Texas Austin, Dept Commun Sci & Disorders, Austin, TX 78712 USA.
RP Liu, C (reprint author), Univ Texas Austin, Dept Commun Sci & Disorders, 1 Univ Stn,A1100, Austin, TX 78712 USA.
EM changliu@mail.utexas.edu; shjin@mail.utexas.edu
FU University of Texas at Austin
FX The authors would like to thank Sangeeta Kamdar for her help in data
collection. Special thanks are given to Craig Champlin for his comments
on this study and manuscript. The authors are also grateful to Brian C.
J. Moore and the two anonymous reviewers for their constructive comments
and suggestions on the earlier drafts of this manuscript. This research
was supported by a University of Texas at Austin Research Grant.
CR ANSI, 2004, S362004 ANSI
Bent T, 2003, J ACOUST SOC AM, V114, P1600, DOI 10.1121/1.1603234
Bent T., 2004, J ACOUST SOC AM, V116, P2604
Bradlow AR, 2008, COGNITION, V106, P707, DOI 10.1016/j.cognition.2007.04.005
Chen Y, 2001, CLIN LINGUIST PHONET, V15, P427
Chen Z., 2011, HEAR RES
Dalby J., 2009, J ACOUST SOC AM, V125, P2776
Eddins D.A., 2008, J ACOUST SOC AM, V123, P539
FLEGE JE, 1988, J ACOUST SOC AM, V84, P70, DOI 10.1121/1.396876
Flege J.E., 1995, SPEECH PERCEPTION LI, P223
Fletcher H., 1929, SPEECH HEARING
GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
Glasberg BR, 2001, HEARING RES, V155, P41, DOI 10.1016/S0378-5955(01)00244-1
Jin S-H., 2009, J ACOUST SOC AM, V125, P2727
KALIKOW DN, 1977, J ACOUST SOC AM, V61, P1337, DOI 10.1121/1.381436
KEWLEYPORT D, 1991, J ACOUST SOC AM, V89, P820, DOI 10.1121/1.1894642
Kiefte M, 2010, J ACOUST SOC AM, V127, P2611, DOI 10.1121/1.3353124
Kiefte M, 2005, J ACOUST SOC AM, V117, P1395, DOI 10.1121/1.1861158
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
MOORE BCJ, 1983, J ACOUST SOC AM, V74, P750, DOI 10.1121/1.389861
Moore BCJ, 2004, HEARING RES, V188, P70, DOI 10.1016/S0378-5955(03)00347-2
MOORE BCJ, 1987, HEARING RES, V28, P209, DOI 10.1016/0378-5955(87)90050-5
Munro M. J., 1998, STUDIES 2 LANGUAGE A, V20, P139
MUNRO MJ, 1995, LANG LEARN, V45, P73, DOI 10.1111/j.1467-1770.1995.tb00963.x
NABELEK AK, 1992, J ACOUST SOC AM, V92, P1228
Rogers CL, 2004, LANG SPEECH, V47, P139
Rogers C.L., 1997, THESIS INDIANA U BLO
Skovenborg E., 2004, AUD ENG SOC 117 CONV
Tiffany WR, 1953, J SPEECH HEAR DISORD, V18, P379
Yang BG, 1996, J PHONETICS, V24, P245, DOI 10.1006/jpho.1996.0013
Zwicker E., 1999, SPRINGER SERIES INFO, V22
NR 31
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 49
EP 55
DI 10.1016/j.heares.2011.08.013
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300005
PM 21920420
ER
PT J
AU Seyyedi, M
Eddington, DK
Nadol, JB
AF Seyyedi, Mohammad
Eddington, Donald K.
Nadol, Joseph B., Jr.
TI Interaural comparison of spiral ganglion cell counts in profound
deafness
SO HEARING RESEARCH
LA English
DT Article
ID COCHLEAR IMPLANTATION; CHARGE SYNDROME; HISTOPATHOLOGY
AB Objectives: This study is designed to measure the degree to which spiral ganglion cell (SGC) survival in the left and right ears is similar in profoundly hearing-impaired human patients with symmetric (right/left) etiology and sensitivity. This is of interest because a small difference between ears would imply that one ear could be used as a control ear in temporal bone studies evaluating the impact on SGC survival of a medical intervention in the other ear.
Materials and methods: Forty-two temporal bones from 21 individuals with bilaterally symmetric profound hearing impairment were studied. Both ears in each individual were impaired by the same etiology. Rosenthal's canal was reconstructed in two dimensions and segmental and total SGCs were counted. Correlation analysis and t-tests were used to compare segmental and total counts of left and right ears. Statistical power calculations illustrate how the results can be used to estimate the effect size (right/left difference in SGC count) that can be reliably identified as a function of sample size.
Results: Left counts (segmental and total) were significantly correlated with those in the right ears (p < 0.01) and the coefficients of determination for segments 1 to 4 and total count were respectively 0.64, 0.91, 0.93, 0.91 and 0.98. The hypothesis that mean segmental and total counts of right and left are the same could not be rejected by paired t-test.
Conclusion: The variance in the between-ear difference across the temporal bones studied indicates that useful effect sizes can be reliably identified using subject numbers that are practical for temporal bone studies. For instance, there is 95% likelihood that an interaural difference in SGC count of approximately 1000 cells associated with a treatment/manipulation of one ear will be reliably detected in a bilaterally-symmetric profound hearing loss population of temporal bones from approximately 10 subjects. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Seyyedi, Mohammad; Eddington, Donald K.; Nadol, Joseph B., Jr.] Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02114 USA.
[Seyyedi, Mohammad; Eddington, Donald K.; Nadol, Joseph B., Jr.] Massachusetts Eye & Ear Infirm, Dept Otolaryngol, Boston, MA 02114 USA.
[Seyyedi, Mohammad; Eddington, Donald K.; Nadol, Joseph B., Jr.] Massachusetts Eye & Ear Infirm, Cochlear Implant Res Lab, Boston, MA 02114 USA.
[Eddington, Donald K.; Nadol, Joseph B., Jr.] MIT, Div Hlth Sci & Technol, Speech & Hearing Biosci & Technol Program, Cambridge, MA 02139 USA.
RP Nadol, JB (reprint author), Harvard Univ, Sch Med, Dept Otol & Laryngol, 243 Charles St, Boston, MA 02114 USA.
EM joseph_nadol@meei.harvard.edu
FU National Institute of Deafness and Other Communication Disorders
[R01-DC00152]
FX This work was supported by grant R01-DC00152 from the National Institute
of Deafness and Other Communication Disorders.
CR Amiel J, 2001, AM J MED GENET, V99, P124, DOI 10.1002/1096-8628(20010301)99:2<124::AID-AJMG1114>3.0.CO;2-9
Arndt S, 2010, OTOL NEUROTOL, V31, P67, DOI 10.1097/MAO.0b013e3181c0e972
Fayad JN, 2006, LARYNGOSCOPE, V116, P1310, DOI 10.1097/01.mlg.0000227176.09500.28
GUILD STACY R., 1932, ACTA OTO LARYNGOL, V17, P207, DOI 10.3109/00016483209129041
HINOJOSA R, 1983, ANN NY ACAD SCI, V405, P459, DOI 10.1111/j.1749-6632.1983.tb31662.x
Khan AM, 2005, ANN OTO RHINOL LARYN, V114, P381
Konigsmark BW, 1970, CONT RES METHODS NEU, P315
NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411
NADOL JB, 1988, AM J OTOLARYNG, V9, P47, DOI 10.1016/S0196-0709(88)80007-3
OTTE J, 1978, LARYNGOSCOPE, V88, P1231
SCHULNECHT H, 1968, Archives of Otolaryngology, V87, P129
SCHUKNECHT HF, 1953, AMA ARCH OTOLARYNGOL, V58, P377
NR 12
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 56
EP 62
DI 10.1016/j.heares.2011.10.002
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300006
PM 22008826
ER
PT J
AU Beyer, LA
Galano, MM
Nair, TS
Kommareddi, PK
Sha, SH
Raphael, Y
Carey, TE
AF Beyer, Lisa A.
Galano, Maria M.
Nair, Thankam S.
Kommareddi, Pavan K.
Sha, Su-Hua
Raphael, Yehoash
Carey, Thomas E.
TI Age-related changes in expression of CTL2/SLC44A2 and its isoforms in
the mouse inner ear
SO HEARING RESEARCH
LA English
DT Article
ID TRANSPORTER-LIKE PROTEINS; INDUCED HEARING-LOSS; ELECTRIC LOBE; CBA/J
MOUSE; ANTIBODY; COCHLEA; AUTOANTIBODIES; SUPPRESSOR; PATHOLOGY; JAGGED1
AB The membrane glycoprotein CTL2/SLC44A2 is expressed by supporting cells in the inner ear and has been identified as a target of antibodies that may induce auto-immune hearing loss. To determine if CTI2/SLC44A2 also has roles in inner ear development and to distinguish between isoform-specific roles, we assessed age-related changes in expression of CTL2/SLC44A2 isoforms and protein in the developing murine inner ear. We determined that both isoform p1 and isoform p2 (named for the upstream p1 and proximal p2 promoters that control alternate exons 1a and 1b) were robustly expressed as early as E14 and persisted during embryonic development, but after birth the p1 isoform fell to barely detectable levels while isoform p2 levels were maintained. This trend continued and became even more apparent later in post,natal development and remained in mature ears until at least 6 weeks of age. In aged (18mo old) mice, the level of isoform p1 transcripts rose again to levels similar to the p2 isoform like that seen early in development. At the earliest stage examined, CTL2/SLC44A2 protein was expressed in both immature supporting cells and immature sensory cells, but after birth expression in the sensory cells declined in both the utricle and cochlea and by day P1 expression of CTL2/SLC44A2 was restricted to supporting cells. The changes we observed in isoform distribution are indicative of differential developmental roles and age related changes between the two isoforms of CTL2/SLC44A2 in the inner ear. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Beyer, Lisa A.; Galano, Maria M.; Nair, Thankam S.; Kommareddi, Pavan K.; Sha, Su-Hua; Raphael, Yehoash; Carey, Thomas E.] Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA.
[Sha, Su-Hua] Med Univ S Carolina, Dept Pathol & Lab Med, Charleston, SC 29425 USA.
RP Carey, TE (reprint author), Univ Michigan, Kresge Hearing Res Inst, 1150 W Med Ctr Dr, Ann Arbor, MI 48109 USA.
EM careyte@umich.edu
FU Townsend Family Fund; Taubman Institute; Williams Professorship; NIH
NIDCD [DC03686, DC05188]
FX This study was supported by the Townsend Family Fund, The Taubman
Institute, the Williams Professorship, and by NIH NIDCD grants DC03686
and DC05188. The authors are indebted to Donald Swiderski for his expert
assistance with the final figures.
CR Abrashkin KA, 2006, HEARING RES, V218, P20, DOI 10.1016/j.heares.2006.04.001
Artavanis-Tsakonas S, 1999, SCIENCE, V284, P770, DOI 10.1126/science.284.5415.770
Batts SA, 2009, HEARING RES, V249, P15, DOI 10.1016/j.heares.2008.12.008
Brooker R, 2006, DEVELOPMENT, V133, P1277, DOI 10.1242/dev.02284
Disher MJ, 1997, ANN NY ACAD SCI, V830, P253, DOI 10.1111/j.1749-6632.1997.tb51896.x
Hartman BH, 2009, JARO-J ASSOC RES OTO, V10, P321, DOI 10.1007/s10162-009-0162-2
Kelly MC, 2009, CURR OPIN NEUROBIOL, V19, P395, DOI 10.1016/j.conb.2009.07.010
Kiernan AE, 2001, P NATL ACAD SCI USA, V98, P3873, DOI 10.1073/pnas.071496998
Kommareddi PK, 2009, LARYNGOSCOPE, V119, P924, DOI 10.1002/lary.20136
Kommareddi P.K., 2010, PROTEIN J
Kommareddi PK, 2007, JARO-J ASSOC RES OTO, V8, P435, DOI 10.1007/s10162-007-0099-2
NAIR TS, 1995, HEARING RES, V83, P101, DOI 10.1016/0378-5955(94)00194-U
Nair TS, 1997, HEARING RES, V107, P93, DOI 10.1016/S0378-5955(97)00024-5
Nair TS, 1999, HEARING RES, V129, P50, DOI 10.1016/S0378-5955(98)00220-2
Nair TS, 2004, J NEUROSCI, V24, P1772, DOI 10.1523/JNEUROSCI.5063-03.2004
O'Regan S, 2003, NEUROCHEM RES, V28, P551, DOI 10.1023/A:1022877524469
O'Regan S, 2000, P NATL ACAD SCI USA, V97, P1835, DOI 10.1073/pnas.030339697
Raphael Y, 2002, BRIT MED BULL, V63, P25, DOI 10.1093/bmb/63.1.25
Sha SH, 2008, HEARING RES, V243, P87, DOI 10.1016/j.heares.2008.06.001
Sha SH, 2010, HEARING RES, V264, P86, DOI 10.1016/j.heares.2009.09.002
Traiffort E, 2005, J NEUROCHEM, V92, P1116, DOI 10.1111/j.1471-4159.2004.02962.x
Wang GP, 2010, HEARING RES, V267, P61, DOI 10.1016/j.heares.2010.03.085
ZAJIC G, 1991, HEARING RES, V52, P59, DOI 10.1016/0378-5955(91)90187-E
NR 23
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 63
EP 68
DI 10.1016/j.heares.2011.09.004
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300007
PM 21986210
ER
PT J
AU Chen, ZL
Hu, GS
Glasberg, BR
Moore, BCJ
AF Chen, Zhangli
Hu, Guangshu
Glasberg, Brian R.
Moore, Brian C. J.
TI A new model for calculating auditory excitation patterns and loudness
for cases of cochlear hearing loss
SO HEARING RESEARCH
LA English
DT Article
ID PSYCHOPHYSICAL TUNING CURVES; BASILAR-MEMBRANE NONLINEARITY; DEAD
REGIONS; FREQUENCY-SELECTIVITY; IMPAIRED LISTENERS; FILTER SHAPES;
NOTCHED-NOISE; SUMMATION; PERCEPTION; THRESHOLD
AB A model for calculating auditory excitation patterns and loudness for steady sounds for normal hearing is extended to deal with cochlear hearing loss. The filters used in the model have a double ROEX-shape, the gain of the narrow active filter being controlled by the output of the broad passive filter. It is assumed that the hearing loss at each audiometric frequency can be partitioned into a loss due to dysfunction of outer hair cells (OHCs) and a loss due to dysfunction of inner hair cells (IHCs). OHC loss is modeled by decreasing the maximum gain of the active filter, which results in increased absolute threshold, reduced compressive nonlinearity and reduced frequency selectivity. IHC loss is modeled by a level-dependent attenuation of excitation level, which results in elevated absolute threshold. The magnitude of OHC loss and IHC loss can be derived from measures of loudness recruitment and the measured absolute threshold, using an iterative procedure. The model accurately fits loudness recruitment data obtained using subjects with unilateral or highly asymmetric cochlear hearing loss who were required to make loudness matches between tones presented alternately to the two ears. With the same parameters, the model predicted loudness matches between narrowband and broadband sound reasonably well, reflecting loudness summation. The model can also predict when a dead region is present. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Chen, Zhangli; Glasberg, Brian R.; Moore, Brian C. J.] Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England.
[Chen, Zhangli; Hu, Guangshu] Tsinghua Univ, Sch Med, Dept Biomed Engn, Beijing 100084, Peoples R China.
RP Moore, BCJ (reprint author), Univ Cambridge, Dept Expt Psychol, Downing St, Cambridge CB2 3EB, England.
EM bcjm@cam.ac.uk
RI Moore, Brian/I-5541-2012
FU China Scholarship Council; National Natural Science Foundation of China;
Tsinghua-Yu-Yuan Medical Sciences Fund; Medical Research Council (UK)
FX Author Chen was a visiting PhD student in the laboratory of author
Moore, sponsored by the China Scholarship Council. The work of authors
Chen and Hu was supported by the National Natural Science Foundation of
China and Tsinghua-Yu-Yuan Medical Sciences Fund. The work of authors
Glasberg and Moore was supported by the Medical Research Council (UK).
CR Aazh H., 2007, J AM ACAD AUDIOL, V18, P96
Aibara R, 2001, HEARING RES, V152, P100, DOI 10.1016/S0378-5955(00)00240-9
[Anonymous], 2003, 226 ISO
[Anonymous], 2005, 3897 ISO
[Anonymous], 2007, S342007 ANSI
Baker R. J., 1998, PSYCHOPHYSICAL PHYSL, P81
Baker RJ, 2002, J ACOUST SOC AM, V111, P1330, DOI 10.1121/1.1448516
BONDING P, 1980, AUDIOLOGY, V19, P57
Bonding P, 1979, Br J Audiol, V13, P23, DOI 10.3109/03005367909078871
Chalupper J, 2002, ACTA ACUST UNITED AC, V88, P378
Chen ZL, 2011, HEARING RES, V282, P69, DOI 10.1016/j.heares.2011.09.007
COOPER NP, 1995, HEARING RES, V82, P225, DOI 10.1016/0378-5955(94)00180-X
Florentine M, 1996, J ACOUST SOC AM, V99, P1633, DOI 10.1121/1.415236
FLORENTINE M, 1979, HEARING RES, V1, P121, DOI 10.1016/0378-5955(79)90023-6
FLORENTINE M, 1983, J ACOUST SOC AM, V73, P961, DOI 10.1121/1.389021
Fowler EP, 1936, ARCHIV OTOLARYNGOL, V24, P731
Glasberg BR, 2006, J ACOUST SOC AM, V120, P585, DOI 10.1121/1.2214151
GLASBERG BR, 1986, J ACOUST SOC AM, V79, P1020, DOI 10.1121/1.393374
GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
Glasberg BR, 2000, J ACOUST SOC AM, V108, P2318, DOI 10.1121/1.1315291
GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
HUMES LE, 1992, ADV BIOSCI, V83, P617
Jurado C, 2011, J ACOUST SOC AM, V129, P3166, DOI 10.1121/1.3560535
Kluk K, 2006, INT J AUDIOL, V45, P463, DOI 10.1080/14992020600753189
Launer S, 1997, MODELING SENSORINEURAL HEARING LOSS, P175
Launer S., 1995, THESIS OLDENBURG GER
Liberman M.C., 1984, HEARING RES, V16, P54
Moore B. C. J., 1996, PSYCHOACOUSTICS SPEE, P7
Moore B. C. J., 2007, COCHLEAR HEARING LOS
Moore BCJ, 1997, AUDIT NEUROSCI, V3, P289
Moore B C, 2001, Trends Amplif, V5, P1, DOI 10.1177/108471380100500102
Moore B C, 1986, Scand Audiol Suppl, V25, P139
Moore BC., 2003, INTRO PSYCHOL HEARIN
Moore BCJ, 2004, HEARING RES, V188, P70, DOI 10.1016/S0378-5955(03)00347-2
Moore BCJ, 1997, J AUDIO ENG SOC, V45, P224
Moore BCJ, 2004, EAR HEARING, V25, P478, DOI 10.1097/01.aud.0000145992.31135.89
Moore BCJ, 1998, PSYCHOL REV, V105, P108, DOI 10.1037/0033-295X.105.1.108
Moore BCJ, 2004, J ACOUST SOC AM, V115, P3103, DOI 10.1121/1.1738839
Moore BCJ, 2004, EAR HEARING, V25, P98, DOI 10.1097/01.AUD.0000120359.49711.D7
Moore BCJ, 1999, J ACOUST SOC AM, V106, P898, DOI 10.1121/1.427105
Moore BCJ, 2000, BRIT J AUDIOL, V34, P205
Moore BCJ, 1999, J ACOUST SOC AM, V106, P2761, DOI 10.1121/1.428133
Moore BCJ, 2001, EAR HEARING, V22, P268, DOI 10.1097/00003446-200108000-00002
Nelson DA, 2001, J ACOUST SOC AM, V110, P2045, DOI 10.1121/1.1404439
Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3666, DOI 10.1121/1.418327
PATTERSON RD, 1982, J ACOUST SOC AM, V72, P1788, DOI 10.1121/1.388652
Plack CJ, 2004, J ACOUST SOC AM, V115, P1684, DOI 10.1121/1.1675812
Plack CJ, 2000, J ACOUST SOC AM, V107, P501, DOI 10.1121/1.428318
Puria S, 1997, J ACOUST SOC AM, V101, P2754, DOI 10.1121/1.418563
ROBLES L, 1986, J ACOUST SOC AM, V80, P1364, DOI 10.1121/1.394389
Robles L, 2001, PHYSIOL REV, V81, P1305
SCHARF B, 1966, J ACOUST SOC AM, V40, P71, DOI 10.1121/1.1910066
Schmiedt RA, 1996, HEARING RES, V102, P125, DOI 10.1016/S0378-5955(96)00154-2
SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1
Schuknecht HF, 1993, PATHOLOGY EAR
Steinberg JC, 1937, J ACOUST SOC AM, V9, P11, DOI 10.1121/1.1915905
THORNTON AR, 1980, J ACOUST SOC AM, V67, P638, DOI 10.1121/1.383888
Vinay, 2007, EAR HEARING, V28, P231
Yasin I, 2005, J ACOUST SOC AM, V118, P2498, DOI 10.1121/1.2035594
ZWICKER E, 1965, PSYCHOL REV, V72, P3, DOI 10.1037/h0021703
ZWICKER E, 1957, J ACOUST SOC AM, V29, P548, DOI 10.1121/1.1908963
NR 61
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 69
EP 80
DI 10.1016/j.heares.2011.09.007
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300008
PM 21983133
ER
PT J
AU Etchelecou, MC
Coulet, O
Derkenne, R
Tomasi, M
Norena, AJ
AF Etchelecou, M. -C.
Coulet, O.
Derkenne, R.
Tomasi, M.
Norena, A. J.
TI Temporary off-frequency listening after noise trauma
SO HEARING RESEARCH
LA English
DT Article
ID INDUCED HEARING-LOSS; PSYCHOPHYSICAL TUNING CURVES; INFERIOR COLLICULUS
NEURONS; DORSAL COCHLEAR NUCLEUS; ENRICHED ACOUSTIC ENVIRONMENT; PRIMATE
SOMATOSENSORY CORTEX; SPONTANEOUS NEURAL ACTIVITY; PERMANENT THRESHOLD
SHIFT; SPIRAL GANGLION LESIONS; PRIMARY AUDITORY-CORTEX
AB Hearing loss is routinely estimated from the audiogram, even though this measure gives only a rough approximation of hearing. Indeed, cochlear regions functioning poorly, if at all, called dead regions, are not detected by a simple audiogram. To detect cochlear dead regions, additional measurements of psychophysical tuning curves or thresholds in background noise (TEN test) are required. A first aim of this study was to assess the presence of dead regions after impulse noise trauma using psychophysical tuning curves. The procedure we used was based on a compromise between the need to collect reliable estimates of psychophysical tuning curves and the limited time available to obtain these estimates in a hospital setting. Psychophysical tuning curves were measured using simultaneous masking with a 2-alternative forced choice paradigm, where the target was randomly placed in one of the two masker presentations. It is well known that some components of noise-induced hearing loss are reversible. A second aim of this study was to examine the potential recovery of dead regions after acoustic trauma. A third issue addressed in this article was the relationship between noise-induced dead regions and tinnitus. We found that 70% of the subjects had dead regions after noise trauma, while 88% reported tinnitus. Moreover, we found that the extent of dead regions probably diminished in about 50% of subjects, which highlights the ability of the human auditory system to recover from noise-induced hearing loss. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Norena, A. J.] Univ Aix Marseille 1, UMR CNRS 6149, Ctr St Charles, F-13331 Marseille 03, France.
[Etchelecou, M. -C.; Coulet, O.; Derkenne, R.; Tomasi, M.] Laveran Hosp, F-13013 Marseille, France.
RP Norena, AJ (reprint author), Univ Aix Marseille 1, UMR CNRS 6149, Ctr St Charles, Pole 3C,Case B,3 Pl Victor Hugo, F-13331 Marseille 03, France.
EM arnaud.norena@univ-provence.fr
FU Agence Nationale de la Recherche [06-Neuro-021-01]; Tinnitus Research
Initiative; France Acouphene
FX This work was supported by a grant from "Agence Nationale de la
Recherche" (no. 06-Neuro-021-01), the Tinnitus Research Initiative and
France Acouphene. We thank Brandon Farley for proof reading the English,
and Brian Moore and two anonymous reviewers for their comments on an
earlier version of this manuscript.
CR Abaamrane L, 2009, HEARING RES, V247, P137, DOI 10.1016/j.heares.2008.11.005
Alcantara JI, 2002, HEARING RES, V165, P103, DOI 10.1016/S0378-5955(02)00291-5
ATHERLEY GR, 1968, J ACOUST SOC AM, V44, P1503, DOI 10.1121/1.1911288
Avan P, 2005, HEARING RES, V209, P68, DOI 10.1016/j.heares.2005.06.008
AXELSSON A, 1989, British Journal of Audiology, V23, P53, DOI 10.3109/03005368909077819
Axelsson A, 2000, NOISE HEALTH, V2, P47
Baer T, 2002, J ACOUST SOC AM, V112, P1133, DOI 10.1121/1.1498853
Baer T, 2007, J ACOUST SOC AM, V122, P542
Beagley H A, 1965, Acta Otolaryngol, V60, P479, DOI 10.3109/00016486509127031
BORG E, 1989, J ACOUST SOC AM, V86, P1776, DOI 10.1121/1.398609
CALFORD MB, 1993, NEUROSCIENCE, V55, P953, DOI 10.1016/0306-4522(93)90310-C
Calford MB, 2002, NEUROSCIENCE, V111, P709, DOI 10.1016/S0306-4522(02)00022-2
Daniel E, 2007, J SCHOOL HEALTH, V77, P225, DOI 10.1111/j.1746-1561.2007.00197.x
Demeester K, 2007, B-ENT, V3 Suppl 7, P37
Eggermont JJ, 2008, AM J AUDIOL, V17, pS162, DOI 10.1044/1059-0889(2008/07-0025)
Feldman DE, 2009, ANNU REV NEUROSCI, V32, P33, DOI 10.1146/annurev.neuro.051508.135516
Flock A, 1999, J NEUROSCI, V19, P4498
FLORENTINE M, 1983, J ACOUST SOC AM, V73, P961, DOI 10.1121/1.389021
Folmer RL, 1999, OTOLARYNG HEAD NECK, V121, P48, DOI 10.1016/S0194-5998(99)70123-3
Folmer RL, 2000, AM J OTOLARYNG, V21, P287, DOI 10.1053/ajot.2000.9871
FUKUSHIMA N, 1990, HEARING RES, V50, P107, DOI 10.1016/0378-5955(90)90037-P
Garraghty PE, 2006, J COMP NEUROL, V497, P636, DOI 10.1002/cne.21018
Garraghty PE, 1996, J COMP NEUROL, V367, P319, DOI 10.1002/(SICI)1096-9861(19960401)367:2<319::AID-CNE12>3.0.CO;2-L
HATCH M, 1991, HEARING RES, V56, P265, DOI 10.1016/0378-5955(91)90176-A
HAWKINS JE, 1972, LARYNGOSCOPE, V82, P1091, DOI 10.1288/00005537-197207000-00001
Heinz MG, 2004, J NEUROPHYSIOL, V91, P784, DOI 10.1152/jn.00776.2003
HENDERSON D, 1986, J ACOUST SOC AM, V80, P569, DOI 10.1121/1.394052
Henry JA, 1999, P 6 INT TINN SEM, P51
Holtmaat A, 2009, NAT REV NEUROSCI, V10, P647, DOI 10.1038/nrn2699
ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311
Jacono AA, 1998, HEARING RES, V117, P31, DOI 10.1016/S0378-5955(97)00214-1
Kaltenbach JA, 2005, HEARING RES, V206, P200, DOI 10.1016/j.heares.2005.02.013
Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6
Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5
Kluk K, 2006, INT J AUDIOL, V45, P463, DOI 10.1080/14992020600753189
Kluk K, 2006, HEARING RES, V222, P1, DOI 10.1016/j.heares.2006.06.020
Kluk K, 2005, HEARING RES, V200, P115, DOI 10.1016/j.heares.2004.09.003
Konig O, 2006, HEARING RES, V221, P59, DOI 10.1016/j.heares.2006.07.007
Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x
Kujawa S.G., 2009, J NEUROSCI, V11, P14077
Kujawa SG, 2006, J NEUROSCI, V26, P2115, DOI 10.1523/JNEUROSCI.4985-05.2006
Kuokkanen J, 2000, ACTA OTO-LARYNGOL, P132
Kuokkanen J, 1997, ACTA OTO-LARYNGOL, P80
Lamm K, 2000, HEARING RES, V141, P199, DOI 10.1016/S0378-5955(00)00005-8
Lamm K, 1998, HEARING RES, V115, P149, DOI 10.1016/S0378-5955(97)00186-X
LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8
LOEB M, 1967, J ACOUST SOC AM, V42, P453, DOI 10.1121/1.1910600
McFeely WJ, 1999, OTOLARYNG HEAD NECK, V121, P367, DOI 10.1016/S0194-5998(99)70222-6
Moffat G, 2009, HEARING RES, V254, P82, DOI 10.1016/j.heares.2009.04.016
Moore B.C.J., 1995, PERCEPTUAL CONSEQUEN
Moore BCJ, 2009, BRAIN, V132, P524, DOI 10.1093/brain/awn308
Moore BCJ, 2004, EAR HEARING, V25, P98, DOI 10.1097/01.AUD.0000120359.49711.D7
Moore BCJ, 2000, BRIT J AUDIOL, V34, P205
Moore BCJ, 2001, EAR HEARING, V22, P268, DOI 10.1097/00003446-200108000-00002
Mrena R, 2004, ACTA OTO-LARYNGOL, V124, P946, DOI 10.1080/00016480310017045
Mulders W.H.A.M., 2009, NEUROSCIENCE, V1, P733
MULROY MJ, 1984, SCAN ELECTRON MICROS, P831
Nelson S.B., 2008, NEURON, V6, P477
Niu XZ, 2004, AUDIOL NEURO-OTOL, V9, P265, DOI 10.1159/000080226
Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X
Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156
Norena AJ, 2006, NEUROREPORT, V17, P559, DOI 10.1097/00001756-200604240-00001
Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005
Norena A.J., 2007, NEUROREPORT, V6, P1251
Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9
Norena AJ, 2011, NEUROSCI BIOBEHAV R, V35, P1089, DOI 10.1016/j.neubiorev.2010.11.003
Norena AJ, 2003, J NEUROPHYSIOL, V90, P2387, DOI 10.1152/jn.00139.2003
Norena A.J., 2010, NEUROSCIENCE, V14, P1194
Nottet JB, 2006, LARYNGOSCOPE, V116, P970, DOI 10.1097/01.MLG.0000216823.77995.13
Passchier-Vermeer Willy, 2000, Environmental Health Perspectives, V108, P123, DOI 10.2307/3454637
Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037
PUEL JL, 1995, CR ACAD SCI III-VIE, V318, P67
Pujol R, 1999, ANN NY ACAD SCI, V884, P249, DOI 10.1111/j.1749-6632.1999.tb08646.x
Rajan R, 1998, NAT NEUROSCI, V1, P138, DOI 10.1038/388
RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104
RAREY KE, 1993, HEARING RES, V64, P205, DOI 10.1016/0378-5955(93)90007-N
Roberts LE, 2008, JARO-J ASSOC RES OTO, V9, P417, DOI 10.1007/s10162-008-0136-9
ROBERTS LE, 2006, ACTA OTO-LARYNGOL, V556, P27, DOI DOI 10.1080/03655230600895358
ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X
SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U
Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2
SAUNDERS JC, 1991, J ACOUST SOC AM, V90, P136, DOI 10.1121/1.401307
Schaette R, 2009, J NEUROPHYSIOL, V101, P3042, DOI 10.1152/jn.91256.2008
Schreiber BE, 2010, LANCET, V375, P1203, DOI 10.1016/S0140-6736(09)62071-7
Seki S, 2002, HEARING RES, V173, P172, DOI 10.1016/S0378-5955(02)00518-X
Shargorodsky J, 2010, AM J MED, V123, P711, DOI 10.1016/j.amjmed.2010.02.015
Snyder RL, 2000, HEARING RES, V147, P200, DOI 10.1016/S0378-5955(00)00132-5
Snyder RL, 2002, J NEUROPHYSIOL, V87, P434
Snyder RL, 2008, HEARING RES, V246, P59, DOI 10.1016/j.heares.2008.09.010
SPOENDLIN H, 1985, J OTOLARYNGOL, V14, P282
SPOENDLI.H, 1971, ACTA OTO-LARYNGOL, V71, P166, DOI 10.3109/00016487109125346
Summers V, 2003, EAR HEARING, V24, P133, DOI 10.1097/01.AUD.0000058148.27540.D9
Tahera Y, 2006, J NEUROSCI RES, V83, P1066, DOI 10.1002/jnr.20795
Takahashi K, 1996, ACTA OTO-LARYNGOL, V116, P209, DOI 10.3109/00016489609137825
TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865
THORNE PR, 1989, ACTA OTO-LARYNGOL, V107, P71, DOI 10.3109/00016488909127481
TYLER RS, 1983, J SPEECH HEAR DISORD, V48, P150
Vickers DA, 2001, J ACOUST SOC AM, V110, P1164, DOI 10.1121/1.1381534
Vinay, 2007, EAR HEARING, V28, P231
Vinay B. T., 2008, J ACOUST SOC AM, V123, P606
Wang J, 1996, J NEUROPHYSIOL, V75, P171
Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028
Weisz N, 2006, HEARING RES, V222, P108, DOI 10.1016/j.heares.2006.09.003
NR 103
TC 6
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 81
EP 91
DI 10.1016/j.heares.2011.09.006
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300009
PM 21986211
ER
PT J
AU Jung, HH
Chang, J
Yang, JY
Choi, J
Im, GJ
Chae, SW
AF Jung, Hak Hyun
Chang, Jiwon
Yang, Ji Yoon
Choi, June
Im, Gi Jung
Chae, Sung Won
TI Protective role of antidiabetic drug metformin against gentamicin
induced apoptosis in auditory cell line
SO HEARING RESEARCH
LA English
DT Article
ID MITOCHONDRIAL PERMEABILITY TRANSITION; IN-VITRO; GUINEA-PIGS;
OTOTOXICITY; COCHLEAR; DEATH; MECHANISM; MEMBRANE; DISEASE
AB Besides their prominent function in cellular energy metabolism, the central role of mitochondria has been focused on control of cellular death in last decades. The mitochondrial permeability transition pore (PIP) is involved in the intrinsic pathway of apoptosis via the release of cytochrome c into cytosol. Metformin, a drug widely used in the treatment of type II diabetes, has recently received attention owing to new findings regarding its effect on apoptosis through mitochondria] permeability transition and cytochrome c release. The modulation of PIP is still unknown, but calcium is certainly the most important known inducer. In the present study, the preventive effects of metformin on gentamicin ototoxicity were investigated through the changes of intracellular calcium concentrations using calcium imaging in HEI-OC1 cells. Calcium imaging traced the changes of intracellular calcium concentration after the application of 50 mM of gentamicin in both 100 uM of metformin pretreated group and non-pretreated group. These calcium reactions were compared and analyzed with the results of cell viability test. Hoechst staining, intracellular reactive oxygen species level and expression of caspase-3, and poly-ADP-ribose polymerase (PARP). Continuous increase of intracellular calcium concentration (increase of 380/340 ratio) occurred after application of 50 mM of gentamicin. However, there was no change of intracellular calcium concentration in 100 uM metformin pretreated group. Cell viability was significantly higher in 100 uM metformin pretreated group and also, metformin pretreated HEI-OC1 cells produced less ROS that gentamicin alone treated group. Gentamicin increased cleaved PARP and caspase-3, but metformin inhibited the expression of caspase-3 and cleavage of PARP. This study demonstrated that metformin prevented gentamicin induced apoptosis through the calcium modulating and ROS reducing anti-apoptotic effects. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Jung, Hak Hyun; Chang, Jiwon; Yang, Ji Yoon; Choi, June; Im, Gi Jung; Chae, Sung Won] Korea Univ, Coll Med, Dept Otolaryngol Head & Neck Surg, Seoul 136705, South Korea.
RP Jung, HH (reprint author), Korea Univ, Coll Med, Dept Otolaryngol Head & Neck Surg, Anam Dong 5 Ga 126-1, Seoul 136705, South Korea.
EM ranccoon@naver.com
RI Choi, June/E-7063-2013
FU Brain Korea 21
FX This study was supported by Brain Korea 21.
CR ARGAUD D, 1993, EUR J BIOCHEM, V213, P1341, DOI 10.1111/j.1432-1033.1993.tb17886.x
Bernardi P, 2006, FEBS J, V273, P2077, DOI 10.1111/j.1742-4658.2006.05213.x
Bernardi P, 1999, EUR J BIOCHEM, V264, P687, DOI 10.1046/j.1432-1327.1999.00725.x
Cottet-Rousselle C., 2011, CELL DEATH DIS MAR, V24, pe134
Dehne N, 2002, HEARING RES, V169, P47, DOI 10.1016/S0378-5955(02)00338-6
Ding DL, 2002, HEARING RES, V164, P115, DOI 10.1016/S0378-5955(01)00417-8
El-Mir MY, 2008, J MOL NEUROSCI, V34, P77, DOI 10.1007/s12031-007-9002-1
Fontaine E, 1998, J BIOL CHEM, V273, P12662, DOI 10.1074/jbc.273.20.12662
Guigas B, 2004, BIOCHEM J, V382, P877
Hirose K, 1999, ANN NY ACAD SCI, V884, P389, DOI 10.1111/j.1749-6632.1999.tb08657.x
HUNDAL HS, 1992, ENDOCRINOLOGY, V131, P1165, DOI 10.1210/en.131.3.1165
Hundal RS, 2000, DIABETES, V49, P2063, DOI 10.2337/diabetes.49.12.2063
Jacotot E, 1999, ANN NY ACAD SCI, V887, P18
Kalinec GM, 2003, AUDIOL NEURO-OTOL, V8, P177, DOI 10.1159/000071059
Kalkandelen S, 2002, J INT MED RES, V30, P406
Lustig LR, 2004, OTOLARYNG CLIN N AM, V37, P1001, DOI 10.1016/j.otc.2004.04.001
MACGLASHAN D, 1989, J CELL BIOL, V109, P123, DOI 10.1083/jcb.109.1.123
McMurtrie EB, 1997, GENOMICS, V45, P623, DOI 10.1006/geno.1997.4959
Morales AI, 2010, KIDNEY INT, V77, P861, DOI 10.1038/ki.2010.11
NEDZELSKI JM, 1992, AM J OTOL, V13, P18
Roland Jr IT, 1998, OTOLARYNGOLOGY HEAD, P3186
Roland Peter S, 2004, Ear Nose Throat J, V83, P15
Rybak Leonard P, 2003, Curr Opin Otolaryngol Head Neck Surg, V11, P328, DOI 10.1097/00020840-200310000-00004
Selimoglu E, 2003, YONSEI MED J, V44, P517
Selimoglu E, 2007, CURR PHARM DESIGN, V13, P119, DOI 10.2174/138161207779313731
Strupp M, 2001, CURR OPIN NEUROL, V14, P11, DOI 10.1097/00019052-200102000-00003
NR 26
TC 16
Z9 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 92
EP 96
DI 10.1016/j.heares.2011.09.005
PG 5
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300010
ER
PT J
AU Lavender, D
Taraskin, SN
Mason, MJ
AF Lavender, Danielle
Taraskin, Sergei N.
Mason, Matthew J.
TI Mass distribution and rotational inertia of "microtype" and "freely
mobile" middle ear ossicles in rodents
SO HEARING RESEARCH
LA English
DT Article
ID HIGH-FREQUENCY HEARING; GOLDEN MOLES CHRYSOCHLORIDAE;
MALLEUS-INCUS-COMPLEX; SOUND-TRANSMISSION; TYMPANIC-MEMBRANE; EVOLUTION;
APPARATUS; MAMMALS; GERBIL
AB The middle ears of seven species of rodents, including four hamster species, were examined under light microscopy and through micro-CT imaging. Hamsters were found to possess a spectrum of ossicular morphologies ranging from something approaching "freely mobile" (Mesocricetus) to something nearer the "microtype" (Cricetulus), although no hamster has an orbicular apophysis of the malleus. Rats, mice and Calomyscus were found to have typically microtype ossicles. To explore the functional effects of these morphological differences, CT scan data were used to calculate the magnitudes of the moments of inertia and positions of the centres of mass and principal rotational axes for the malleus-incus complexes. Microtype species were found to have much greater ossicular inertias, relative to size, about the "anatomical axis" extending between anterior process of the malleus and short process of the incus: ossicular centres of mass were displaced further from this axis. Calculated inertial values were then put into an existing model of middle ear function (Hemila et al., 1995), in order to see whether the more accurate data would improve predictions of upper hearing limits. For the rat and mouse they did, but this was not so for the hamster Mesocricetus. This might indicate that the inner rather than the middle ear limits hearing in this species, or might simply reflect other shortcomings of the model. Functional differences appear to exist even among rodent ears of the same general type, but the adaptive significance of these differences remains enigmatic. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Lavender, Danielle; Mason, Matthew J.] Univ Cambridge, Dept Physiol Dev & Neurosci, Cambridge CB2 3EG, England.
[Taraskin, Sergei N.] Univ Cambridge, St Catharines Coll, Cambridge CB2 3EG, England.
[Taraskin, Sergei N.] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England.
RP Mason, MJ (reprint author), Univ Cambridge, Dept Physiol Dev & Neurosci, Downing St, Cambridge CB2 3EG, England.
EM mjm68@hermes.cam.ac.uk
FU Department of Physiology, Development & Neuroscience, University of
Cambridge
FX The authors wish to thank Alan Heaver of the Department of Engineering
for his help in producing the CT scans and Norman Fleck for the use of
his scanner. We thank the Department of Zoology for the use of the
electrobalance and Peter Tuck for translations. Special thanks are due
to Simon's Rodents of Abbotsley, Cambridgeshire and to Russell Tofts for
their kind provision of specimens. We are indebted to John Rosowski and
to a second, anonymous, reviewer for their valuable comments. This paper
is based in part on an Honours dissertation (DL), supported by the
Department of Physiology, Development & Neuroscience, University of
Cambridge.
CR Akache F, 2007, AUDIOL NEURO-OTOL, V12, P49, DOI 10.1159/000097247
Argyle EC, 2008, J MAMMAL, V89, P1447, DOI 10.1644/07-MAMM-A-401.1
Barany E, 1938, ACTA OTO-LARYNGOL, V26, P1
BURDA H, 1992, J MORPHOL, V214, P49, DOI 10.1002/jmor.1052140104
Corbet G.B., 1991, WORLD LIST MAMMALIAN
Dahmann H, 1929, Z HALS NASEN OHRENH, V24, P462
DECRAEMER WF, 1994, HEARING RES, V72, P1, DOI 10.1016/0378-5955(94)90199-6
Fleischer G., 1978, Advances in Anatomy Embryology and Cell Biology, V55, P1
FLEISCHER G, 1973, Saeugetierkundliche Mitteilungen, V21, P131
Heffner RS, 2001, HEARING RES, V157, P138, DOI 10.1016/S0378-5955(01)00298-2
Hemila S, 2006, J ACOUST SOC AM, V120, P3463, DOI 10.1121/1.2372712
HEMILA S, 1995, HEARING RES, V85, P31, DOI 10.1016/0378-5955(95)00031-X
Mason MJ, 2003, J ZOOL, V260, P391, DOI 10.1017/S095283690300387X
Mason MJ, 1999, THESIS U CAMBRIDGE C
Mason MJ, 2001, J ZOOL, V255, P467
Mason MJ, 2006, J MORPHOL, V267, P678, DOI 10.1002/jmor.10430
Mason MJ, 2004, J MAMMAL, V85, P797, DOI 10.1644/BEL-102
Mason MJ, 2006, J COMP PHYSIOL A, V192, P1349, DOI 10.1007/s00359-006-0163-0
Nummela S, 1999, HEARING RES, V133, P61, DOI 10.1016/S0378-5955(99)00053-2
Nummela Sirpa, 1997, Comments on Theoretical Biology, V4, P387
Overstreet EH, 2002, J ACOUST SOC AM, V111, P261, DOI 10.1121/1.1420382
PAVLINOV IY, 1980, ZOOL ZH, V59, P312
Puria S, 2010, HEARING RES, V263, P183, DOI 10.1016/j.heares.2009.10.013
Ravicz ME, 2008, J ACOUST SOC AM, V124, P363, DOI 10.1121/1.2932061
RELKIN EM, 1980, ACTA OTO-LARYNGOL, V90, P6, DOI 10.3109/00016488009131692
Rosowski I.J, 1992, EVOLUTIONARY BIOL HE, P615
Rosowski JJ, 2006, J COMP PHYSIOL A, V192, P1287, DOI 10.1007/s00359-006-0159-9
Ruggero MA, 2002, P NATL ACAD SCI USA, V99, P13206, DOI 10.1073/pnas.202492699
SAUNDERS JC, 1982, J COMP PHYSIOL, V146, P517
Sim JH, 2007, J MECH MATER STRUCT, V2, P1515, DOI 10.2140/jomms.2007.2.1515
Willi UB, 2002, HEARING RES, V174, P32, DOI 10.1016/S0378-5955(02)00632-9
Wilson D.E., 2005, MAMMAL SPECIES WORLD
WILSON JP, 1983, HEARING RES, V10, P1, DOI 10.1016/0378-5955(83)90015-1
ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382
NR 34
TC 7
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 97
EP 107
DI 10.1016/j.heares.2011.09.003
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300011
PM 21951489
ER
PT J
AU Warrier, CM
Abrams, DA
Nicol, TG
Kraus, N
AF Warrier, Catherine M.
Abrams, Daniel A.
Nicol, Trent G.
Kraus, Nina
TI Inferior colliculus contributions to phase encoding of stop consonants
in an animal model
SO HEARING RESEARCH
LA English
DT Article
ID AUDITORY BRAIN-STEM; FREQUENCY-FOLLOWING RESPONSES; MIDDLE LATENCY
RESPONSE; IN-NOISE PERCEPTION; GUINEA-PIG; TEMPORAL-LOBE; SPEECH;
CHILDREN; DIFFERENTIATION; REPRESENTATION
AB The human auditory brainstem is known to be exquisitely sensitive to fine-grained spectro-temporal differences between speech sound contrasts, and the ability of the brainstem to discriminate between these contrasts is important for speech perception. Recent work has described a novel method for translating brainstem timing differences in response to speech contrasts into frequency-specific phase differentials. Results from this method have shown that the human brainstem response is surprisingly sensitive to phase differences inherent to the stimuli across a wide extent of the spectrum. Here we use an animal model of the auditory brainstem to examine whether the stimulus-specific phase signatures measured in human brainstem responses represent an epiphenomenon associated with far-field (i.e., scalp-recorded) measurement of neural activity, or alternatively whether these specific activity patterns are also evident in auditory nuclei that contribute to the scalp-recorded response, thereby representing a more fundamental temporal processing phenomenon. Responses in anaesthetized guinea pigs to three minimally-contrasting consonant-vowel stimuli were collected simultaneously from the cortical surface vertex and directly from central nucleus of the inferior colliculus (ICc), measuring volume conducted neural activity and multiunit, near-field activity, respectively. Guinea pig surface responses were similar to human scalp-recorded responses to identical stimuli in gross morphology as well as phase characteristics. Moreover, surface-recorded potentials shared many phase characteristics with near-field ICc activity. Response phase differences were prominent during formant transition periods, reflecting spectro-temporal differences between syllables, and showed more subtle differences during the identical steady state periods. ICc encoded stimulus distinctions over a broader frequency range, with differences apparent in the highest frequency ranges analyzed, up to 3000 Hz. Based on the similarity of phase encoding across sites, and the consistency and sensitivity of response phase measured within ICc, results suggest that a general property of the auditory system is a high degree of sensitivity to fine-grained phase information inherent to complex acoustical stimuli. Furthermore, results suggest that temporal encoding in ICc contributes to temporal features measured in speech-evoked scalp-recorded responses. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Warrier, Catherine M.; Abrams, Daniel A.; Nicol, Trent G.; Kraus, Nina] Northwestern Univ, Auditory Neurosci Lab, Roxelyn & Richard Pepper Dept Commun Sci & Disord, Evanston, IL 60208 USA.
[Kraus, Nina] Northwestern Univ, Dept Neurobiol & Physiol, Evanston, IL 60208 USA.
[Kraus, Nina] Northwestern Univ, Dept Otolaryngol, Evanston, IL 60208 USA.
RP Warrier, CM (reprint author), Northwestern Univ, Auditory Neurosci Lab, Roxelyn & Richard Pepper Dept Commun Sci & Disord, Frances Searle Bldg,2240 Campus Dr, Evanston, IL 60208 USA.
EM cwarrier@northwestern.edu
FU National Institutes of Health (NIH) [R01 DC01510]; National Organization
for Hearing Research (NOHR) [340-B208]
FX This work was supported by the National Institutes of Health (NIH: R01
DC01510) and the National Organization for Hearing Research (NOHR:
340-B208).
CR Abrams DA, 2011, HEARING RES, V272, P125, DOI 10.1016/j.heares.2010.10.009
Akhoun I, 2008, CLIN NEUROPHYSIOL, V119, P922, DOI 10.1016/j.clinph.2007.12.010
Banai K., 2009, READING SUBCORTICAL
Chandrasekaran B, 2010, PSYCHOPHYSIOLOGY, V47, P236, DOI 10.1111/j.1469-8986.2009.00928.x
Chandrasekaran B, 2009, NEURON, V64, P311, DOI 10.1016/j.neuron.2009.10.006
Cunningham J, 2002, HEARING RES, V169, P97, DOI 10.1016/S0378-5955(02)00344-1
Dau T, 2003, J ACOUST SOC AM, V113, P936, DOI 10.1121/1.1534833
Hornickel J, 2009, AUDIOL NEURO-OTOL, V14, P198, DOI 10.1159/000188533
Hornickel J, 2009, P NATL ACAD SCI USA, V106, P13022, DOI 10.1073/pnas.0901123106
Hornickel J, 2011, BEHAV BRAIN RES, V216, P597, DOI 10.1016/j.bbr.2010.08.051
John MS, 2000, HEARING RES, V141, P57, DOI 10.1016/S0378-5955(99)00209-9
Johnson KL, 2008, J NEUROSCI, V28, P4000, DOI 10.1523/JNEUROSCI.0012-08.2008
Johnson KL, 2008, CLIN NEUROPHYSIOL, V119, P2623, DOI 10.1016/j.clinph.2008.07.277
Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003
King C, 2002, NEUROSCI LETT, V319, P111, DOI 10.1016/S0304-3940(01)02556-3
King C, 1999, NEUROSCI LETT, V267, P89, DOI 10.1016/S0304-3940(99)00336-5
KLATT DH, 1980, J ACOUST SOC AM, V67, P971, DOI 10.1121/1.383940
KRAUS N, 1992, BRAIN RES, V587, P186, DOI 10.1016/0006-8993(92)90996-M
KRAUS N, 1988, ELECTROEN CLIN NEURO, V70, P541, DOI 10.1016/0013-4694(88)90152-6
Kraus N, 2007, CURR DIR PSYCHOL SCI, V16, P105, DOI 10.1111/j.1467-8721.2007.00485.x
KRAUS N, 1994, J NEUROPHYSIOL, V72, P1270
KRAUS N, 1994, J ACOUST SOC AM, V96, P2758, DOI 10.1121/1.411282
KRAUS N, 1985, ELECTROEN CLIN NEURO, V62, P219, DOI 10.1016/0168-5597(85)90017-6
Krishnan A, 2005, COGNITIVE BRAIN RES, V25, P161, DOI 10.1016/j.cogbrainres.2005.05.004
Krishnan A, 2002, HEARING RES, V166, P192, DOI 10.1016/S0378-5955(02)00327-1
Liberman A.M., 1954, PSYCHOL MONOGR, V68
Liu LF, 2006, J NEUROPHYSIOL, V95, P1926, DOI 10.1152/jn.00497.2005
MARSH JT, 1974, ELECTROEN CLIN NEURO, V36, P415, DOI 10.1016/0013-4694(74)90192-8
McGee T, 1996, J ACOUST SOC AM, V99, P3606, DOI 10.1121/1.414958
Musacchia G, 2007, P NATL ACAD SCI USA, V104, P15894, DOI 10.1073/pnas.0701498104
REES A, 1988, J ACOUST SOC AM, V83, P1488, DOI 10.1121/1.395904
Skoe E, 2011, J NEUROSCI METH, V196, P308, DOI 10.1016/j.jneumeth.2011.01.020
SMITH JC, 1975, ELECTROEN CLIN NEURO, V39, P465, DOI 10.1016/0013-4694(75)90047-4
Song JH, 2008, AUDIOL NEURO-OTOL, V13, P335, DOI 10.1159/000132689
Syka J, 2000, EXP BRAIN RES, V133, P254, DOI 10.1007/s002210000426
Vander Werff Kathy R, 2011, Ear Hear, V32, P168, DOI 10.1097/AUD.0b013e3181f534b5
WATANABE T, 1978, J ACOUST SOC AM, V64, P333, DOI 10.1121/1.381952
WOOD CC, 1981, CAN J PSYCHOL, V35, P113, DOI 10.1037/h0081149
NR 38
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 108
EP 118
DI 10.1016/j.heares.2011.09.001
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300012
PM 21945200
ER
PT J
AU Brown, DJ
Gibson, WPR
AF Brown, Daniel J.
Gibson, William P. R.
TI On the differential diagnosis of Meniere's disease using low-frequency
acoustic biasing of the 2f1-f2 DPOAE
SO HEARING RESEARCH
LA English
DT Article
ID PRODUCT OTOACOUSTIC EMISSIONS; ENDOLYMPHATIC HYDROPS; OPERATING POINT;
CELL MOTILITY; HAIR-CELLS; EAR; MODEL; DISPLACEMENT; CALIBRATION;
MODULATION
AB We have cyclically suppressed the 2f1-12 distortion product otoacoustic emission (DPOAE) with low-frequency tones (17-97 Hz) as a way of differentially diagnosing the endolymphatic hydrops assumed to be associated with Meniere's syndrome. Round-window electrocochleography (ECochG) was performed in subjects with sensorineural hearing loss (SNHL) on the day of DPOAE testing, and from which the amplitude of the summating potential (SP) was measured, to support the diagnosis of Meniere's syndrome based on symptoms. To summarize and compare the cyclic patterns of DPOAE modulation in these groups we have used the simplest model of DPOAE generation and modulation, by assuming that the DPOAEs were generated by a 1st-order Boltzmann nonlinearity so that the magnitude of the 2f1-f2 DPOAE resembled the 3rd derivative cif the Boltzmann function. We have also assumed that the modulation of the DPOAEs by the low-frequency tones was simply due to a sinusoidal change in the operating point on the Boltzmann nonlinearity. We have found the cyclic DPOAE modulation to be different in subjects with Meniere's syndrome (n = 16) when compared to the patterns in normal subjects (n = 16) and in other control subjects with non-Meniere's SNHL and/or vestibular disorders (n = 13). The DPOAEs of normal and non-Meniere's ears were suppressed more during negative ear canal pressure than during positive ear canal pressure. By contrast, DPOAE modulation in Meniere's ears with abnormal ECochG was greatest during positive ear canal pressures. This test may provide a tool for diagnosing Meniere's in the early stages, and might be used to investigate the pathological mechanism underlying the hearing symptoms of this. syndrome. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
C1 [Brown, Daniel J.] Univ Sydney, Brain & Mind Res Inst, Sydney Med Sch, Camperdown, NSW 2050, Australia.
RP Brown, DJ (reprint author), Univ Sydney, Brain & Mind Res Inst, Sydney Med Sch, 100 Mallett St, Camperdown, NSW 2050, Australia.
EM daniel.brown@sydney.edu.au; wpr_gibson@bigpond.com
FU Grace Kathleen Fanton Bequest; Garnett Passe and Rodney Williams
Foundation [R9403]; Meniere's Research Fund Inc. in Australia
FX This study was funded by a Grace Kathleen Fanton Bequest, provided by
the Garnett Passe and Rodney Williams Foundation (project code R9403),
and Dr Brown's salary was supported by the Meniere's Research Fund Inc.
in Australia. We would also like to thank Professor Alec Salt from
Washington University and Dr Robert Patuzzi from The University of
Western Australia for their significant contributions to this study.
CR Bian L, 2006, J ACOUST SOC AM, V119, P3872, DOI 10.1121/1.2200068
Bian L, 2007, J ACOUST SOC AM, V122, P1681, DOI 10.1121/1.2764467
Bowman DM, 1998, HEARING RES, V119, P14, DOI 10.1016/S0378-5955(98)00041-0
Brown DJ, 2009, J ACOUST SOC AM, V125, P2129, DOI 10.1121/1.3083228
BROWNELL WE, 1984, SCANNING ELECTRON MI, V3, P1401
DALLOS P, 1970, J ACOUST SOC AM, V48, P489, DOI 10.1121/1.1912163
FERRARO JA, 1985, ARCH OTOLARYNGOL, V111, P71
FLOCK A, 1986, ARCH OTO-RHINO-LARYN, V243, P83, DOI 10.1007/BF00453755
Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4
Gibson William P R, 2009, Acta Otolaryngol Suppl, P38, DOI 10.1080/00016480902729843
Hensel J, 2007, HEARING RES, V233, P67, DOI 10.1016/j.heares.2007.07.004
Hirschfelder A, 2005, HNO, V53, P612, DOI 10.1007/s00106-004-1171-4
JARAMILLO F, 1993, P NATL ACAD SCI USA, V90, P1330, DOI 10.1073/pnas.90.4.1330
Lukashkin AN, 2005, HEARING RES, V203, P45, DOI 10.1016/j.heares.2004.11.011
Marquardt T, 2007, J ACOUST SOC AM, V121, P3628, DOI 10.1121/1.2722506
MONSELL EM, 1995, OTOLARYNG HEAD NECK, V113, P181
Mrowinski D, 1996, Audiol Neurootol, V1, P125
O'Beirne GA, 2007, HEARING RES, V234, P29, DOI 10.1016/j.heares.2007.09.008
Rotter A, 2008, EUR ARCH OTO-RHINO-L, V265, P643, DOI 10.1007/s00405-007-0520-9
Salt A.N., 2010, HEARING RES, V1, P12
SANTOS-SACCHI J, 1991, J NEUROSCI, V11, P3096
Scheperle RA, 2008, J ACOUST SOC AM, V124, P288, DOI 10.1121/1.2931953
Scholz G, 1999, HEARING RES, V130, P189, DOI 10.1016/S0378-5955(99)00010-6
SIEGEL JH, 1994, J ACOUST SOC AM, V95, P2589, DOI 10.1121/1.409829
WEISS TF, 1985, HEARING RES, V20, P175, DOI 10.1016/0378-5955(85)90167-4
ZWICKER E, 1986, J ACOUST SOC AM, V80, P163, DOI 10.1121/1.394177
ZWICKER E, 1977, J ACOUST SOC AM, V61, P1031, DOI 10.1121/1.381387
NR 27
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 119
EP 127
DI 10.1016/j.heares.2011.09.002
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300013
PM 21944944
ER
PT J
AU Garinis, A
Werner, L
Abdala, C
AF Garinis, Angela
Werner, Lynne
Abdala, Carolina
TI The relationship between MOC reflex and masked threshold
SO HEARING RESEARCH
LA English
DT Article
ID PRODUCT OTOACOUSTIC EMISSIONS; CROSSED OLIVOCOCHLEAR BUNDLE; IN-NOISE
INTELLIGIBILITY; MEDIAL EFFERENT SYSTEM; OUTER HAIR-CELLS;
FINE-STRUCTURE; INFORMATIONAL MASKING; NORMAL-HEARING; CONTRALATERAL
SUPPRESSION; MULTICOMPONENT MASKERS
AB Otoacoustic emission (OAE) amplitude can be reduced by acoustic stimulation. This effect is produced by the medial olivocochlear (MOC) reflex. Past studies have shown that the MOC reflex is related to listening in noise and attention. In the present study, the relationship between strength of the contralateral MOC reflex and masked threshold was investigated in 19 adults. Detection thresholds were determined for 1000-Hz, 300-ms tone presented simultaneously with one repetition of a 300-ms masker in an ongoing train of masker bursts. Three masking conditions were tested: 1) broadband noise 2) a fixed-frequency 4-tone complex masker and 3) a random-frequency 4-tone complex masker. Broadband noise was expected to produce energetic masking and the tonal maskers were expected to produce informational masking in some listeners. DPOAEs were recorded at fine frequency intervals from 500 to 4000 Hz, with and without contralateral acoustic stimulation. MOC reflex strength was estimated as a reduction in baseline level and a shift in frequency of DPOAE fine-structure maxima near 1000-Hz. MOC reflex and psychophysical testing were completed in separate sessions. Individuals with poorer thresholds in broadband noise and in random-frequency maskers were found to have stronger MOC reflexes. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Garinis, Angela; Werner, Lynne] Univ Washington, Dept Speech & Hearing Sci, Seattle, WA 98105 USA.
[Abdala, Carolina] House Res Inst, Los Angeles, CA 90057 USA.
RP Garinis, A (reprint author), Univ Washington, Dept Speech & Hearing Sci, 1417 NE 42nd St, Seattle, WA 98105 USA.
EM agarinis@u.washington.edu
FU National Institutes of Health [R01 DC000396, R01 DC003552, T32 DC005361,
P30 DC004661]
FX Supported in part by research grants R01 DC000396, R01 DC003552, T32
DC005361 and P30 DC004661 from the National Institutes of Health. The
authors would like to express their gratitude to Ashley L Flad for data
analysis and Ping Luo for programming contributions.
CR Abdala C, 2011, J ACOUST SOC AM, V129, P3123, DOI 10.1121/1.3573992
Abdala C, 2009, J ACOUST SOC AM, V125, P1584, DOI 10.1121/1.3068442
Abdala C, 1999, J ACOUST SOC AM, V105, P2392, DOI 10.1121/1.426844
Bhagat SP, 2010, NEUROSCI LETT, V485, P94, DOI 10.1016/j.neulet.2010.08.069
Bonino A.Y., 2008, J ACOUST SOC AM, V124, P321
BUUS S, 1986, J ACOUST SOC AM, V80, P1646, DOI 10.1121/1.394329
COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E
de Boer J, 2008, J NEUROSCI, V28, P4929, DOI 10.1523/JNEUROSCI.0902-08.2008
Deeter R, 2009, J ACOUST SOC AM, V126, P2413, DOI 10.1121/1.3224716
Dhar S, 2002, J ACOUST SOC AM, V112, P2882, DOI 10.1121/1.1516757
DOLAN DF, 1988, J ACOUST SOC AM, V83, P1081, DOI 10.1121/1.396052
Feeney MP, 2003, J SPEECH LANG HEAR R, V46, P128, DOI 10.1044/1092-4388(2003/010)
FEX J, 1967, J ACOUST SOC AM, V41, P666, DOI 10.1121/1.1910395
FRANCIS HW, 1993, HEARING RES, V64, P184, DOI 10.1016/0378-5955(93)90004-K
Francis NA, 2010, HEARING RES, V267, P36, DOI 10.1016/j.heares.2010.04.009
FROEHLICH P, 1993, PHYSIOL BEHAV, V53, P679, DOI 10.1016/0031-9384(93)90173-D
Garinis A.C., J SPEECH LA IN PRESS
GIARD MH, 1994, BRAIN RES, V633, P353, DOI 10.1016/0006-8993(94)91561-X
Giraud AL, 1997, NEUROREPORT, V8, P1779
Guinan JJ, 2006, EAR HEARING, V27, P589, DOI 10.1097/01.aud.0000240507.83072.e7
Guinan JJ, 2010, CURR OPIN OTOLARYNGO, V18, P447, DOI 10.1097/MOO.0b013e32833e05d6
HADI AS, 1994, J ROY STAT SOC B MET, V56, P393
Harkrider AW, 2009, J AM ACAD AUDIOL, V20, P208, DOI 10.3766/jaaa.20.3.7
Hartmann WM, 2002, J ACOUST SOC AM, V112, P1037, DOI 10.1121/1.1500759
KAWASE T, 1993, J NEUROPHYSIOL, V70, P2533
Keefe DH, 2010, HEARING RES, V263, P52, DOI 10.1016/j.heares.2009.09.008
Kim SH, 2002, AUDIOL NEURO-OTOL, V7, P348, DOI 10.1159/000066159
Kujawa SG, 2001, JARO, V2, P268, DOI 10.1007/s101620010047
Kumar UA, 2004, EAR HEARING, V25, P142, DOI 10.1097/01.AUD.0000120363.56591.E6
Leibold LJ, 2006, J ACOUST SOC AM, V119, P3960, DOI 10.1121/1.2200150
Leibold LJ, 2010, J ACOUST SOC AM, V127, P2441, DOI 10.1121/1.3298588
Leibold LJ, 2009, J ACOUST SOC AM, V125, P2200, DOI 10.1121/1.3087435
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1
LIBERMAN MC, 1988, J NEUROPHYSIOL, V60, P1779
Long GR, 2008, J ACOUST SOC AM, V124, P1613, DOI 10.1121/1.2949505
May BJ, 2004, ARCH OTOLARYNGOL, V130, P660, DOI 10.1001/archotol.130.5.660
Micheyl C., 1996, J ACOUST SOC AM, V99, P1064
MICHEYL C, 1995, ACTA OTO-LARYNGOL, V115, P178, DOI 10.3109/00016489509139286
Moore BCJ, 1997, J AUDIO ENG SOC, V45, P224
MOUNTAIN DC, 1980, SCIENCE, V210, P71, DOI 10.1126/science.7414321
NEFF DL, 1995, J ACOUST SOC AM, V98, P125, DOI 10.1121/1.413748
NEFF DL, 1987, PERCEPT PSYCHOPHYS, V41, P409, DOI 10.3758/BF03203033
Oxenham AJ, 2003, J ACOUST SOC AM, V114, P1543, DOI 10.1121/1.1598197
Perrot X, 2006, CEREB CORTEX, V16, P941, DOI 10.1093/cercor/bhj035
Pollack I., 1975, J ACOUST SOC AM S1, V57, P5, DOI 10.1121%2F1.1995329
PUEL JL, 1990, J ACOUST SOC AM, V87, P1630, DOI 10.1121/1.399410
Reuter K, 2006, J ACOUST SOC AM, V120, P270, DOI 10.1121/1.2205130
ROBERTSON D, 1985, HEARING RES, V20, P63, DOI 10.1016/0378-5955(85)90059-0
Scharf B, 1997, HEARING RES, V103, P101, DOI 10.1016/S0378-5955(96)00168-2
SCHARF B, 1994, HEARING RES, V75, P11, DOI 10.1016/0378-5955(94)90051-5
SCHLAUCH RS, 1991, J ACOUST SOC AM, V90, P1332, DOI 10.1121/1.401925
SCHMIDT S, 1991, J ACOUST SOC AM, V89, P1324, DOI 10.1121/1.400656
Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948
Siegel J., 2009, ASS RES OTOLARY 0214
Talmadge CL, 1999, J ACOUST SOC AM, V105, P275, DOI 10.1121/1.424584
Tan MN, 2008, HEARING RES, V241, P18, DOI 10.1016/j.heares.2008.04.003
Thiers FA, 2002, JARO, V3, P269, DOI 10.1007/s101620020024
Wagner W, 2008, ACTA OTO-LARYNGOL, V128, P53, DOI 10.1080/00016480701361954
WINSLOW RL, 1988, HEARING RES, V35, P165, DOI 10.1016/0378-5955(88)90116-5
Zeng FG, 2000, HEARING RES, V142, P102, DOI 10.1016/S0378-5955(00)00011-3
ZWICKER E, 1965, J ACOUST SOC AM, V38, P132, DOI 10.1121/1.1909588
NR 62
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 128
EP 137
DI 10.1016/j.heares.2011.08.007
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300014
PM 21878379
ER
PT J
AU Campbell, K
Claussen, A
Meech, R
Verhulst, S
Fox, D
Hughes, L
AF Campbell, Kathleen
Claussen, Alex
Meech, Robert
Verhulst, Steven
Fox, Daniel
Hughes, Larry
TI D-methionine (D-met) significantly rescues noise-induced hearing loss:
Timing studies
SO HEARING RESEARCH
LA English
DT Article
ID INTENSE NOISE; FREE-RADICALS; OXIDATIVE STRESS; THRESHOLD SHIFT;
PROTECTION; EXPOSURE; GLUTATHIONE; CHINCHILLA; APOPTOSIS; COCHLEA
AB We have previously reported rescue from noise-induced auditory brainstem response (ABR) threshold shifts with D-methionine (D-met) administration 1 h after noise exposure. The present study investigated further D-met rescue intervals at 3, 5 and 7 h post-noise exposure. Chinchillas laniger were exposed to a 6 h 105 dB sound pressure level (dB SPL) octave band noise (OBN) and then administered D-met i.p. starting 3, 5, or 7 h after noise exposure: controls received saline i.p. immediately after noise exposure. ABR assessments were performed at baseline and on post-exposure days 1 and 21. Outer hair cell (OHC) loss was measured in cochleae obtained at sacrifice 21 days post-exposure. Administration of D-met starting at any of the delay times of 3-7 h post-noise exposure significantly reduced day 21 ABR threshold shift at 2 and 4 kHz and OHC loss at all hair cell regions measured (2, 4, 6 and 8 kHz). ABR threshold shifts in the control group at 6 and 8 kHz were only 8 and 11 dB respectively allowing little opportunity to observe protection at those 2 frequencies. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Campbell, Kathleen; Claussen, Alex; Meech, Robert; Fox, Daniel; Hughes, Larry] So Illinois Univ, Sch Med, Dept Surg, Div Otolaryngol, Springfield, IL 62794 USA.
[Verhulst, Steven] So Illinois Univ, Sch Med, Dept Stat & Res Consulting, Springfield, IL 62794 USA.
RP Campbell, K (reprint author), So Illinois Univ, Sch Med, Dept Surg, Div Otolaryngol, POB 19629, Springfield, IL 62794 USA.
EM kcampbell@siumed.edu
FU Illinois Excellence in Academic Medicine Grant Program; Mentored
Professional Enrichment Experience Program
FX The authors would like to thank the Illinois Excellence in Academic
Medicine Grant Program and the Mentored Professional Enrichment
Experience Program for their financial support of this research.
CR Berger EH, 2003, J ACOUST SOC AM, V114, P1955, DOI 10.1121/1.1605415
Bielefeld EC, 2007, ACTA OTO-LARYNGOL, V127, P914, DOI 10.1080/00016480601110188
Bielefeld EC, 2005, HEARING RES, V207, P35, DOI 10.1016/j.heares.2005.03.025
Campbell Kathleen C M, 2003, J Am Acad Audiol, V14, P144
Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9
Campbell KCM, 2007, HEARING RES, V226, P92, DOI 10.1016/j.heares.2006.11.012
Cheng PW, 2008, EAR HEARING, V29, P65
Clerici WJ, 1996, HEARING RES, V101, P14, DOI 10.1016/S0378-5955(96)00126-8
Coleman JKM, 2007, HEARING RES, V226, P104, DOI 10.1016/j.heares.2006.08.008
Duan ML, 2004, HEARING RES, V192, P1, DOI 10.1016/j.heares.2004.02.005
ELDREDGE DH, 1981, J ACOUST SOC AM, V69, P1091, DOI 10.1121/1.385688
Evans P, 1999, ANN NY ACAD SCI, V884, P19, DOI 10.1111/j.1749-6632.1999.tb08633.x
Ghibelli L, 1998, FASEB J, V12, P479
Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3
Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3
Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1
KAJI H, 1987, RES COMMUN CHEM PATH, V56, P101
KIES C, 1975, J NUTR, V105, P809
Kopke R, 2005, ACTA OTO-LARYNGOL, V125, P235, DOI 10.1080/00016480410023038
Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3
Kopke RD, 2002, LARYNGOSCOPE, V112, P1515, DOI 10.1097/00005537-200209000-00001
Kopke RD, 2007, HEARING RES, V226, P114, DOI 10.1016/j.heares.2006.10.008
Le Prell CG, 2007, FREE RADICAL BIO MED, V42, P1454, DOI 10.1016/j.freeradbiomed.2007.02.008
Lu SC, 1999, FASEB J, V13, P1169
Lynch ED, 2004, LARYNGOSCOPE, V114, P333, DOI 10.1097/00005537-200402000-00029
Mcllwain DS, 2008, AM J PUBLIC HEALTH, V98, P2167, DOI 10.2105/AJPH.2007.128504
MEYER GJ, 1985, EUR J NUCL MED, V10, P373
Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5
Ohinata Y, 2000, HEARING RES, V146, P28, DOI 10.1016/S0378-5955(00)00096-4
Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043
Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846
Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847
Samson J, 2008, NEUROSCIENCE, V152, P146, DOI 10.1016/j.neuroscience.2007.11.015
Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4
Simon HU, 2000, APOPTOSIS, V5, P415, DOI 10.1023/A:1009616228304
STEGINK LD, 1986, J NUTR, V116, P1185
Tanaka K, 2005, EUR J PHARMACOL, V522, P116, DOI 10.1016/j.ejphar.2005.08.026
Trost RP, 2007, MIL MED, V172, P426
Van Campen LE, 2002, HEARING RES, V164, P29, DOI 10.1016/S0378-5955(01)00391-4
VOGT W, 1995, FREE RADICAL BIO MED, V18, P93, DOI 10.1016/0891-5849(94)00158-G
YAMANE H, 1995, ACTA OTO-LARYNGOL, P87
Yamashita D, 2005, NEUROSCIENCE, V134, P633, DOI 10.1016/j.neuroscience.2005.04.015
Yamashita D, 2004, BRAIN RES, V1019, P201, DOI 10.1016/j.brainres.2004.05.104
Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6
NR 44
TC 13
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 138
EP 144
DI 10.1016/j.heares.2011.08.003
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300015
PM 21924333
ER
PT J
AU Tierney, A
Parbery-Clark, A
Skoe, E
Kraus, N
AF Tierney, A.
Parbery-Clark, A.
Skoe, E.
Kraus, N.
TI Frequency-dependent effects of background noise on subcortical response
timing
SO HEARING RESEARCH
LA English
DT Article
ID BRAIN-STEM RESPONSES; BA-VERTICAL-BAR; INFERIOR COLLICULUS; SPEECH;
MASKING; PERCEPTION; CHILDREN; LATENCY; SOUNDS; POTENTIALS
AB The addition of background noise to an auditory signal delays brainstem response timing. This effect has been extensively documented using manual peak selection. Peak picking, however, is impractical for large-scale studies of spectrotemporally complex stimuli, and leaves open the question of whether noise-induced delays are frequency-dependent or occur across the frequency spectrum. Here we use an automated, objective method to examine phase shifts between auditory brainstem responses to a speech sound (/da/) presented with and without background noise. We predicted that shifts in neural response timing would also be reflected in frequency-specific phase shifts. Our results indicate that the addition of background noise causes phase shifts across the subcortical response spectrum (70-1000 Hz). However, this noise-induced delay is not uniform such that some frequency bands show greater shifts than others: low-frequency phase shifts (300-500 Hz) are largest during the response to the consonant-vowel formant transition (/d/), while high-frequency shifts (720-1000 Hz) predominate during the response to the steady-state vowel (/a/). Most importantly, phase shifts occurring in specific frequency bands correlate strongly with shifts in the latencies of the predominant peaks in the auditory brainstem response, while phase shifts in other frequency bands do not. This finding confirms the validity of phase shift detection as an objective measure of timing differences and reveals that this method detects noise-induced shifts in timing that may not be captured by traditional peak latency measurements. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Tierney, A.; Parbery-Clark, A.; Skoe, E.; Kraus, N.] Northwestern Univ, Auditory Neurosci Lab, Evanston, IL 60208 USA.
[Parbery-Clark, A.; Skoe, E.; Kraus, N.] Northwestern Univ, Dept Commun Sci, Evanston, IL 60208 USA.
[Kraus, N.] Northwestern Univ, Inst Neurosci, Evanston, IL 60208 USA.
[Kraus, N.] Northwestern Univ, Dept Neurobiol & Physiol, Evanston, IL 60208 USA.
[Kraus, N.] Northwestern Univ, Dept Otolaryngol, Chicago, IL 60611 USA.
RP Kraus, N (reprint author), Northwestern Univ, Auditory Neurosci Lab, 2240 Campus Dr, Evanston, IL 60208 USA.
EM nkraus@northwestern.edu
RI Parbery-Clark, Alexandra/G-2966-2012
FU NIH [DC009399]; NSF [0842376]; Hugh Knowles Center
FX This research was funded in part by NIH DC009399, NSF 0842376 and the
Hugh Knowles Center. The authors thank Carrie Lam and Emily Hittner for
their assistance with peak picking, and all of the participants for
their time.
CR Aiken SJ, 2008, HEARING RES, V245, P35, DOI 10.1016/j.heares.2008.08.004
Akhoun I, 2008, CLIN NEUROPHYSIOL, V119, P922, DOI 10.1016/j.clinph.2007.12.010
Akhoun I, 2008, J NEUROSCI METH, V175, P196, DOI 10.1016/j.jneumeth.2008.07.026
ANANTHANARAYAN AK, 1992, EAR HEARING, V13, P228, DOI 10.1097/00003446-199208000-00003
Anderson S, 2010, TRENDS AMPLIF, V14, P73, DOI 10.1177/1084713810380227
Anderson S, 2010, J NEUROSCI, V30, P4922, DOI 10.1523/JNEUROSCI.0107-10.2010
Bidebnan GM, 2010, BRAIN RES, V1355, P112, DOI 10.1016/j.brainres.2010.07.100
Billings CJ, 2009, HEARING RES, V254, P15, DOI 10.1016/j.heares.2009.04.002
BRANDT J, 1980, BRAIN LANG, V9, P324, DOI 10.1016/0093-934X(80)90152-2
Brown L., 1997, TEST NONVERBAL INTEL
BURKARD R, 1983, J ACOUST SOC AM, V74, P1204, DOI 10.1121/1.390024
Burkard Robert F, 2002, Am J Audiol, V11, P13, DOI 10.1044/1059-0889(2002/004)
Cunningham J, 2002, HEARING RES, V169, P97, DOI 10.1016/S0378-5955(02)00344-1
Cunningham J, 2001, CLIN NEUROPHYSIOL, V112, P758, DOI 10.1016/S1388-2457(01)00465-5
DON M, 1977, ANN OTO RHINOL LARYN, V86, P186
Gorga M, 1985, AUDITORY BRAINSTEM R, P49
GOTT PS, 1989, ELECTROEN CLIN NEURO, V74, P131, DOI 10.1016/0168-5597(89)90018-X
Hornickel J, 2011, BEHAV BRAIN RES, V216, P597, DOI 10.1016/j.bbr.2010.08.051
John MS, 2000, HEARING RES, V141, P57, DOI 10.1016/S0378-5955(99)00209-9
Klatt D., 1980, J ACOUST SOC AM, V67, P13
KUWADA S, 1984, J NEUROPHYSIOL, V51, P1306
Li XM, 2011, J ACOUST SOC AM, V129, pEL21, DOI 10.1121/1.3528775
Liu LF, 2006, J NEUROPHYSIOL, V95, P1926, DOI 10.1152/jn.00497.2005
Martin BA, 1999, J SPEECH LANG HEAR R, V42, P271
Miller G., 1954, J ACOUST SOC AM, V27, P338
Nishi K, 2010, J ACOUST SOC AM, V127, P3177, DOI 10.1121/1.3377080
Parbery-Clark A, 2011, EUR J NEUROSCI, V33, P549, DOI 10.1111/j.1460-9568.2010.07546.x
Parbery-Clark A, 2009, J NEUROSCI, V29, P14100, DOI 10.1523/JNEUROSCI.3256-09.2009
Russo N, 2004, CLIN NEUROPHYSIOL, V115, P2021, DOI 10.1016/j.clinph.2004.04.003
Russo N, 2009, DEVELOPMENTAL SCI, V12, P557, DOI 10.1111/j.1467-7687.2008.00790.x
Skoe E, 2011, J NEUROSCI METH, V196, P308, DOI 10.1016/j.jneumeth.2011.01.020
Smiljanic R, 2005, J ACOUST SOC AM, V118, P1677, DOI 10.1121/1.2000788
Song JH, 2011, J COGNITIVE NEUROSCI, V23, P2268, DOI 10.1162/jocn.2010.21556
THUMMLER I, 1981, SCAND AUDIOL, V10, P255, DOI 10.3109/01050398109076189
Warder C., HEARING RES IN PRESS
Warrier CM, 2004, EXP BRAIN RES, V157, P431, DOI 10.1007/s00221-004-1857-6
Whiting KA, 1998, EAR HEARING, V19, P218, DOI 10.1097/00003446-199806000-00005
YAMADA O, 1979, AUDIOLOGY, V18, P381
NR 38
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 145
EP 150
DI 10.1016/j.heares.2011.08.014
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300016
PM 21907782
ER
PT J
AU Martini, M
Canella, R
Prigioni, I
Russo, G
Tavazzani, E
Fesce, R
Rossi, ML
AF Martini, Marta
Canella, Rita
Prigioni, Ivo
Russo, Giancarlo
Tavazzani, Elisa
Fesce, Riccardo
Rossi, Maria Lisa
TI Acute effects of gentamicin on the ionic currents of semicircular canal
hair cells in the frog
SO HEARING RESEARCH
LA English
DT Article
ID RIBOSOMAL-RNA GENE; AMINOGLYCOSIDE ANTIBIOTICS; GUINEA-PIG;
INTRATYMPANIC GENTAMICIN; CALCIUM; PHARMACOKINETICS; TRANSDUCTION;
LABYRINTH; DEAFNESS; TRANSMISSION
AB The effects of acute gentamicin application on hair cells isolated from the frog semicircular canals have been tested by using the patch-clamp technique in the whole-cell configuration. Extracellular gentamicin (1 mM) mostly affected the Ca(2+) macrocurrent, I(ca), and the Ca-dependent K(+) current, I(KCa). The drug, applied to the hair cell basolateral membrane through a fast perfusion system, produced a rapid and relevant decrease (similar to 34%) of I(Ca) amplitude, without apparently affecting its activation-deactivation kinetics. The I(KCa) component of the delayed I(KD) was similarly affected: peak and steady-state mean amplitudes were significantly reduced, by about 47 and 54%, respectively, whereas the time constant of the mono-exponential current rising phase did not change. The Ca(2+) independent fraction of I(KD), I(KV), and the fast IA current were unaffected. Transduction channels (permeable to and blocked by gentamicin) are not available in the isolated hair cell, so the effect of intracellular gentamicin was tested by applying the drug through the patch pipette (1 mM in the pipette): again, it significantly reduced both I(Ca) and amplitude, without affecting currents kinetics. IA properties were also unaffected. The drug did not affect the onset and removal of IKD inactivation, although the changes were scaled to the reduced IKD amplitude.
From these observations, it is expected that hair cells exposed to gentamicin 'in vivo' become unresponsive to physiological stimulation (block of the transduction channels) and transmitter release at the cytoneural junction be drastically depressed due to reduced Ca(2+) inflow. In particular, functional impairment ensues much earlier than biochemical events that lead to hair cell apoptosis. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Martini, Marta; Canella, Rita; Rossi, Maria Lisa] Univ Ferrara, Dipartimento Biol & Evoluz, Sez Fisiol & Biofis, I-44121 Ferrara, Italy.
[Prigioni, Ivo; Russo, Giancarlo; Tavazzani, Elisa] Univ Pavia, Dipartimento Fisiol, I-27100 Pavia, Italy.
[Fesce, Riccardo] Univ Insubria, Ctr Ric Neurosci, I-21052 Busto Arsizio, VA, Italy.
[Fesce, Riccardo] Ist Sci San Raffaele, Div Neurosci, Milan, Italy.
RP Rossi, ML (reprint author), Univ Ferrara, Dipartimento Biol & Evoluz, Sez Fisiol & Biofis, Via Borsari 46, I-44121 Ferrara, Italy.
EM mrm@unife.it; cnr@unife.it; ivo.prigioni@unipv.it;
giancarlo.susso@unipv.it; elisa.tavazzani@unpv.it;
riccardo.fesce@uninsubria.it; rsm@unife.it
RI Rossi, Maria Lisa/D-4251-2011
FU Ministero della Universita e della Ricerca Scientifica e Tecnologica
[200785RCZZ_001, 200785RCZZ_002]
FX We thank Prof. Oscar Sacchi for help and advice. This study was
supported by grants from the Ministero della Universita e della Ricerca
Scientifica e Tecnologica within the national research project PRIN 2007
(200785RCZZ_001 I.P. and 200785RCZZ_002 M.L.R.).
CR BACINO C, 1995, PHARMACOGENETICS, V5, P165, DOI 10.1097/00008571-199506000-00005
Becvarovski Z, 2002, LARYNGOSCOPE, V112, P1163, DOI 10.1097/00005537-200207000-00004
Blanchet C, 2000, J PHYSIOL-LONDON, V525, P641, DOI 10.1111/j.1469-7793.2000.t01-1-00641.x
DEGROOT JCMJ, 1990, HEARING RES, V50, P35, DOI 10.1016/0378-5955(90)90031-J
DENK W, 1992, J NEUROPHYSIOL, V68, P927
DULON D, 1989, J NEUROSCI RES, V24, P338, DOI 10.1002/jnr.490240226
DULON D, 1995, PFLUG ARCH EUR J PHY, V430, P365, DOI 10.1007/BF00373911
DULON D, 1993, CR ACAD SCI III-VIE, V316, P682
ERNST A, 1994, BRAIN RES, V636, P153, DOI 10.1016/0006-8993(94)90191-0
Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861
Groves AK, 2010, EXP BIOL MED, V235, P434, DOI 10.1258/ebm.2009.009281
Guan-Min H, 2004, LARYNGOSCOPE, V114, P1184, DOI 10.1097/00005537-200407000-00010
Hashino E, 1995, BRAIN RES, V704, P135, DOI 10.1016/0006-8993(95)01198-6
Henkel AW, 1996, CURR OPIN NEUROBIOL, V6, P350, DOI 10.1016/S0959-4388(96)80119-X
Hibi T, 2001, ACTA OTO-LARYNGOL, V121, P336, DOI 10.1080/000164801300102699
Hirvonen TP, 2005, J NEUROPHYSIOL, V93, P643, DOI 10.1152/jn.00160.2004
HUY PTB, 1986, J CLIN INVEST, V77, P1492
HUY PTB, 1981, J INFECT DIS, V143, P476
KIMITSUKI T, 1993, BRAIN RES, V624, P143, DOI 10.1016/0006-8993(93)90072-U
KOHLHEPP SJ, 1982, ANTIMICROB AGENTS CH, V21, P668
KROESE ABA, 1989, HEARING RES, V37, P203, DOI 10.1016/0378-5955(89)90023-3
KUMANA CR, 1994, DRUGS, V47, P902, DOI 10.2165/00003495-199447060-00004
Lin Xi, 1993, Journal of Neurophysiology (Bethesda), V70, P1593
Lyford-Pike S, 2007, JARO-J ASSOC RES OTO, V8, P497, DOI 10.1007/s10162-007-0093-8
Marcotti W, 2005, J PHYSIOL-LONDON, V567, P505, DOI 10.1113/jphysiol.2005.085951
Martini M, 2009, AM J PHYSIOL-REG I, V296, pR1585, DOI 10.1152/ajpregu.90981.2008
Martini M, 2009, PFLUG ARCH EUR J PHY, V457, P1327, DOI 10.1007/s00424-008-0598-y
Martini M, 2004, HEARING RES, V195, P67, DOI 10.1016/j.heares.2004.05.009
Martini M, 2002, EUR J NEUROSCI, V16, P1647, DOI 10.1046/j.1460-9568.2002.02234x
Martini M, 2000, BIOPHYS J, V78, P1240
Matz G, 2004, OTOLARYNG HEAD NECK, V130, pS79, DOI 10.1016/j.otohns.2003.12.007
OHMORI H, 1985, J PHYSIOL-LONDON, V359, P189
Owens KN, 2009, HEARING RES, V253, P32, DOI 10.1016/j.heares.2009.03.001
Pappas S, 2006, INT J CLIN PRACT, V60, P1115, DOI 10.1111/j.1742-1241.2006.01005.x
PREZANT TR, 1993, NAT GENET, V4, P289, DOI 10.1038/ng0793-289
Ricci A, 2002, J NEUROPHYSIOL, V87, P1738, DOI 10.1152/jn.00574.2001
Rossi ML, 2010, AM J PHYSIOL-REG I, V298, pR439, DOI 10.1152/ajpregu.00673.2009
Martini M, 2007, EUR BIOPHYS J BIOPHY, V36, P779, DOI 10.1007/s00249-007-0172-0
ROSSI ML, 1994, J PHYSIOL-LONDON, V478, P17
Russo G, 2009, NEUROSCIENCE, V163, P1327, DOI 10.1016/j.neuroscience.2009.07.026
Salt AN, 2005, DRUG DISCOV TODAY, V10, P1299, DOI 10.1016/S1359-6446(05)03574-9
Tan CT, 2001, HEARING RES, V154, P81, DOI 10.1016/S0378-5955(01)00222-2
Wang Q, 2009, JARO-J ASSOC RES OTO, V10, P205, DOI 10.1007/s10162-009-0160-4
Warchol ME, 2011, HEARING RES, V273, P72, DOI 10.1016/j.heares.2010.05.004
WEBSTER J C, 1970, Transactions of the American Academy of Ophthalmology and Oto-Laryngology, V74, P1155
Youssef TE, 1998, AM J OTOL, V19, P435
Zhao H, 2004, AM J HUM GENET, V74, P139, DOI 10.1086/381133
NR 47
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 151
EP 160
DI 10.1016/j.heares.2011.08.011
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300017
PM 21906667
ER
PT J
AU Pillai, JA
Siegel, JH
AF Pillai, Jagan A.
Siegel, Jonathan H.
TI Interaction of Tamoxifen and noise-induced damage to the cochlea
SO HEARING RESEARCH
LA English
DT Article
ID HORMONE REPLACEMENT THERAPY; LOUD SOUND EXPOSURE; HIGH-DOSE TAMOXIFEN;
PHASE-I TRIAL; INNER-EAR; ESTROGEN-RECEPTORS; ACOUSTIC OVERSTIMULATION;
CHLORIDE CHANNELS; BREAST-CANCER; MICE
AB Tamoxifen has been used extensively in the treatment of breast cancer and other neoplasms. In addition to its well-known action on estrogen receptors it is also known to acutely block chloride channels that participate in cell volume regulation. Tamoxifen's role in preventing cochlear outer hair cell (OHC) swelling in vitro suggested that OHC swelling noted following noise exposure could potentially be a therapeutic target for Tamoxifen in its role as a chloride channel blocker to help prevent noise-induced hearing loss. To investigate this possibility, the effects of exposure to Tamoxifen on physiologic measures of cochlear function in the presence and absence of subsequent noise exposure were studied. Male Mongolian gerbils (2-4 months old) were randomly assigned to different groups. Tamoxifen at similar to 10 mg/kg was administered to one of the groups. Five hours later they were exposed to a one-third octave band of noise centered at 8 kHz in a sound-isolation chamber for 30 min at 108 dB SPL Compound action potential (CAP) thresholds and distortion product otoacoustic emission (DPOAE) levels were measured 30-35 days following noise exposure. Tamoxifen administration did not produce any changes in CAP thresholds and DPOAE levels when administered by itself in the absence of noise. Tamoxifen causes a significant increase in CAP thresholds from 8 to 15 kHz following noise exposure compared to CAP thresholds in animals exposed to noise alone. No significant differences were seen in the DPOAE levels in the f(2) = 8-15 kHz frequency range where maximum noise-induced increases in CAP thresholds were seen. Contrary to our original expectation, it is concluded that Tamoxifen potentiates the degree of damage to the cochlea resulting from noise exposure. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Pillai, Jagan A.; Siegel, Jonathan H.] Northwestern Univ, Dept Commun Sci & Disorders, Evanston, IL 60208 USA.
RP Pillai, JA (reprint author), VA San Diego Med Ctr, Dept Neurol, 3350 La Jolla Village Dr, San Diego, CA 92122 USA.
EM jaganpillai@gmail.com; j-siegel@northwestern.edu
FU NIH [R01 DC03416]
FX This work was completed as a thesis by the first author submitted in
partial fulfillment of the Doctor of Philosophy degree from the
Department of Communication Sciences and Disorders at Northwestern
University. We thank the dissertation committee members Mario Ruggero
and Peter Dallos for their invaluable insights into this work. This
research was supported by NIH grant R01 DC03416 awarded to the second
author.
CR Abdullaev IF, 2006, J PHYSIOL-LONDON, V572, P677, DOI 10.1113/jphysiol.2005.103820
ARAN JM, 1995, OTOLARYNG HEAD NECK, V112, P133, DOI 10.1016/S0194-5998(95)70313-6
BOETTCHER FA, 1987, EAR HEARING, V8, P192, DOI 10.1097/00003446-198708000-00003
Bohne B.A., 1976, EFFECTS NOISE HEARIN, P41
Bohne BA, 2007, HEARING RES, V223, P61, DOI 10.1016/j.heares.2006.10.004
Cardoso CMP, 2001, TOXICOL APPL PHARM, V176, P145, DOI 10.1006/taap.2001.9265
Charitidi K, 2009, HEARING RES, V252, P71, DOI 10.1016/j.heares.2008.12.009
CHIODO AA, 1994, EUR ARCH OTO-RHINO-L, V251, P375
CODY AR, 1981, J ACOUST SOC AM, V70, P707, DOI 10.1121/1.386906
Silva MMC, 2000, BBA-BIOMEMBRANES, V1464, P49
Custodio JBA, 1998, TOXICOL APPL PHARM, V152, P10, DOI 10.1006/taap.1998.8510
DALLOS P, 1969, J ACOUST SOC AM, V46, P356, DOI 10.1121/1.1911697
Duan D, 1997, NATURE, V390, P417
Duan DD, 2011, ACTA PHARMACOL SIN, V32, P675, DOI 10.1038/aps.2011.30
Fadden Mc, 1985, NATO ASI SERIES
Hederstierna C, 2007, ACTA OTO-LARYNGOL, V127, P149, DOI 10.1080/00016480600794446
Jenkins V, 2009, BREAST, V18, P279, DOI 10.1016/j.breast.2009.07.004
Jordan VC, 2001, ANN NY ACAD SCI, V952, P60
Kilicdag EB, 2004, AM J OBSTET GYNECOL, V190, P77, DOI 10.1016/j.ajpg.2003.06.001
Mandlekar S, 2001, APOPTOSIS, V6, P469, DOI 10.1023/A:1012437607881
Marques D.M., 1975, J ACOUST SOC AM, V57, pS1
Mattsson JL, 2000, TOXICOL PATHOL, V28, P137, DOI 10.1177/019262330002800117
Mc Clay EF, 2001, MELANOMA RES, V11, P309
Meltser I, 2008, J CLIN INVEST, V118, P1563, DOI 10.1172/JCI32796
Morest DK, 1998, MICROSC RES TECHNIQ, V41, P205
Motohashi R, 2010, ACTA OTO-LARYNGOL, V130, P204, DOI 10.3109/00016480903016570
Neely ET., 1993, TECH MEMO BOYS TOWN
OHLEMILLER KK, 1992, HEARING RES, V63, P79, DOI 10.1016/0378-5955(92)90076-Y
Ou HC, 2000, HEARING RES, V145, P111, DOI 10.1016/S0378-5955(00)00081-2
Overstreet EH, 2003, AUDIOL NEURO-OTOL, V8, P19, DOI 10.1159/000067892
Pearce M, 2001, J NEUROSCI METH, V106, P57, DOI 10.1016/S0165-0270(01)00329-6
Perez EA, 2003, CANCER INVEST, V21, P1, DOI 10.1081/CNV-120016397
ROBINSON SP, 1991, DRUG METAB DISPOS, V19, P36
Sardini A, 2003, BBA-BIOMEMBRANES, V1618, P153, DOI 10.1016/j.bbamem.2003.10.008
SCHMIEDT RA, 1986, J ACOUST SOC AM, V79, P1481, DOI 10.1121/1.393675
Shughrue PJ, 1997, ENDOCRINOLOGY, V138, P5476, DOI 10.1210/en.138.12.5476
Siegel J.H., 2001, ASS RES OTOLARYNGOL
Silva I, 2000, NEUROSCI LETT, V291, P183, DOI 10.1016/S0304-3940(00)01410-5
Simonoska R, 2009, J ENDOCRINOL, V201, P397, DOI 10.1677/JOE-09-0060
SPOENDLI.H, 1971, ACTA OTO-LARYNGOL, V71, P166, DOI 10.3109/00016487109125346
Stenberg AE, 2001, HEARING RES, V157, P87, DOI 10.1016/S0378-5955(01)00280-5
Strachan D, 1996, J LARYNGOL OTOL, V110, P1148
Thompson SK, 2006, OTOLARYNG HEAD NECK, V135, P100, DOI 10.1016/j.otohns.2006.02.004
THORNE PR, 1989, ACTA OTO-LARYNGOL, V107, P71, DOI 10.3109/00016488909127481
THORNE PR, 1987, HEARING RES, V27, P1, DOI 10.1016/0378-5955(87)90021-9
TRUMP DL, 1992, J NATL CANCER I, V84, P1811, DOI 10.1093/jnci/84.23.1811
Veliskova J, 2000, EPILEPSIA, V41, pS30, DOI 10.1111/j.1528-1157.2000.tb01553.x
YUAN H, 1995, ENDOCRINOLOGY, V136, P96, DOI 10.1210/en.136.1.96
NR 48
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 161
EP 166
DI 10.1016/j.heares.2011.08.012
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300018
PM 21907781
ER
PT J
AU Weegerink, NJD
Huygen, PLM
Schraders, M
Kremer, H
Pennings, RJE
Kunst, HPM
AF Weegerink, N. J. D.
Huygen, P. L. M.
Schraders, M.
Kremer, H.
Pennings, R. J. E.
Kunst, H. P. M.
TI Variable degrees of hearing impairment in a Dutch DFNX4 (DFN6) family
SO HEARING RESEARCH
LA English
DT Article
ID VESTIBULAR FEATURES; DFNA15 FAMILY; MUTATION; POU4F3; DEAFNESS; PROTEIN;
SMPX; GENE
AB Objective: Investigation of the audiometric characteristics of a large Dutch DFNX4 family with a p.Glu72X mutation in the SMPX gene.
Patients and methods: Sixty family members participated in this study and examination consisted of medical history, otoscopy, pure tone and speech audiometry. Linkage and mutation analysis revealed a pathogenic mutation in the SMPX gene.
Results: All 25 mutation carriers exhibited hearing impairment, except one woman aged 25 years. The men (n = 10) showed more severe hearing impairment than the women (n = 14) and already at a younger age. The age of onset according to history was 2-10 years (mean: 3.3 years) in men and 3-48 years (mean: 26.4 years) in women. In the men, severe threshold deterioration mainly occurred during the first two decades of life, especially at the higher frequencies. The women showed milder threshold deterioration and more pronounced across-subjects and individual inter-aural variation, especially at 2-8 kHz. Longitudinal linear regression analysis demonstrated significant progression of at least two frequencies in five individuals (3 men and 2 women).
The speech recognition scores of the mutation carriers with hearing impairment were decreased at relatively young ages compared to a reference group of patients with only presbycusis, especially in men. However, all these patients tended to have better speech recognition scores than the presbycusis patients at matching PTA(1,2,4) (kHz) levels.
Conclusion: This study demonstrates the phenotypic heterogeneity in this large family with an X-linked pattern of inherited sensorineural hearing impairment. The men showed more severe hearing impairment at a younger age with more pronounced progression during the first two decades of life, while women demonstrated less severe hearing impairment with more gradual progression and a wider variation in age of onset, degree of hearing impairment and inter-aural asymmetry in thresholds. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Weegerink, N. J. D.; Huygen, P. L. M.; Schraders, M.; Kremer, H.; Pennings, R. J. E.; Kunst, H. P. M.] Radboud Univ Nijmegen, Med Ctr, Dept Otorhinolaryngol Head & Neck Surg, NL-6500 NB Nijmegen, Netherlands.
[Weegerink, N. J. D.; Schraders, M.; Kremer, H.; Pennings, R. J. E.; Kunst, H. P. M.] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, NL-6500 NB Nijmegen, Netherlands.
[Schraders, M.; Kremer, H.] Radboud Univ Nijmegen, Nijmegen Ctr Mol Life Sci, NL-6500 NB Nijmegen, Netherlands.
[Kremer, H.] Radboud Univ Nijmegen, Dept Human Genet, Med Ctr, NL-6500 NB Nijmegen, Netherlands.
RP Weegerink, NJD (reprint author), Radboud Univ Nijmegen, Med Ctr, Dept Otorhinolaryngol Head & Neck Surg, POB 9101, NL-6500 NB Nijmegen, Netherlands.
EM N.Weegerink@kno.umcn.nl; P.Huygen@kno.umcn.nl;
M.Schraders@antrg.umcn.nl; H.Kremer@antrg.umcn.nl;
R.Pennings@kno.umcn.nl; H.Kunst@kno.umcn.nl
RI Kremer, Hannie/F-5126-2010; Kunst, Henricus/J-6456-2012; Pennings,
Ronald/J-6651-2012
FU Heinsius Houbolt foundation; INTERREG IV A- Germany - the Netherlands
FX This study was supported by a grant from the Heinsius Houbolt foundation
and by a grant from the INTERREG IV A-program Germany - the Netherlands.
CR Bischoff A.M., 2006, OTOL NEUROTOL, V27, P23
Bischoff AMLC, 2004, AUDIOL NEURO-OTOL, V9, P34, DOI 10.1159/000074185
Bom SJH, 2001, ARCH OTOLARYNGOL, V127, P1045
De Leenheer E.M., 2002, ANN OTO RHINOL LARYN, V11, P1267
de Heer AMR, 2009, ANN OTO RHINOL LARYN, V118, P313
de Heer AMR, 2011, AUDIOL NEURO-OTOL, V16, P93, DOI 10.1159/000313282
de Heer AMR, 2009, ANN OTO RHINOL LARYN, V118, P382
Del Castillo I., 1996, HUM MOL GENET, V51, P383
del Castillo I, 2000, ADV OTO-RHINO-LARYNG, V56, P200
Frydman M, 2000, ARCH OTOLARYNGOL, V126, P633
Hilgert N, 2009, MUTAT RES-REV MUTAT, V681, P189, DOI 10.1016/j.mrrev.2008.08.002
Huebner AK, 2011, AM J HUM GENET, V88, P621, DOI 10.1016/j.ajhg.2011.04.007
Huygen P.L.M., 2003, AUDIOL MED, V1, P137
International Standards Organization (ISO), 1984, 7029 ISO
LYON MF, 1961, NATURE, V190, P372, DOI 10.1038/190372a0
Marres H, 1997, ARCH OTOLARYNGOL, V123, P573
Pauw RJ, 2008, ARCH OTOLARYNGOL, V134, P294, DOI 10.1001/archotol.134.3.294
Petersen MB, 2008, CLIN GENET, V73, P14, DOI 10.1111/j.1399-0004.2007.00913.x
Schraders M, 2011, AM J HUM GENET, V88, P628, DOI 10.1016/j.ajhg.2011.04.012
Smith RJH, 2008, DEAFNESS HEREDITARY
Street VA, 2008, J VESTIBUL RES-EQUIL, V18, P51
Tamagawa Y, 2002, LARYNGOSCOPE, V112, P292, DOI 10.1097/00005537-200202000-00017
VanCamp G, 1997, AM J HUM GENET, V60, P758
van Drunen FJW, 2009, AUDIOL NEURO-OTOL, V14, P303, DOI 10.1159/000212109
NR 24
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 167
EP 177
DI 10.1016/j.heares.2011.08.010
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300019
PM 21893181
ER
PT J
AU Sun, W
Manohar, S
Jayaram, A
Kumaraguru, A
Fu, Q
Li, J
Allman, B
AF Sun, Wei
Manohar, Senthilvelan
Jayaram, Aditi
Kumaraguru, Anand
Fu, Qiang
Li, Ji
Allman, Brian
TI Early age conductive hearing loss causes audiogenic seizure and
hyperacusis behavior
SO HEARING RESEARCH
LA English
DT Article
ID BALB-C MICE; OTITIS-MEDIA; WILLIAMS-SYNDROME; INFERIOR COLLICULUS;
AUDITORY-CORTEX; SUSCEPTIBILITY; DEPRIVATION; PREVALENCE; RATS;
ABNORMALITIES
AB Recent clinical reports found a high incidence of recurrent otitis media in children suffering hyperacusis, a marked intolerance to an otherwise ordinary environmental sound. However, it is unclear whether the conductive hearing loss caused by otitis media in early age will affect sound tolerance later in life. Thus, we have tested the effects of tympanic membrane (TM) damage at an early age on sound perception development in rats. Two weeks after the TM perforation, more than 80% of the rats showed audiogenic seizure (AGS) when exposed to loud sound (120 dB SPL white noise, <1 min). The susceptibility of AGS lasted at least sixteen weeks after the TM damage, even the hearing loss recovered. The TM damaged rats also showed significantly enhanced acoustic startle responses compared to the rats without TM damage. These results suggest that early age conductive hearing loss may cause an impaired sound tolerance during development. In addition, the AGS can be suppressed by the treatment of vigabatrin, acute injections (250 mg/kg) or oral intakes (60 mg/kg/day for 7 days), an antiepileptic drug that inhibits the catabolism of GABA. c-Fos staining showed a strong staining in the inferior colliculus (IC) in the TM damaged rats, not in the control rats, after exposed to loud sound, indicating a hyper-excitability in the IC during AGS. These results indicate that early age conductive hearing loss can impair sound tolerance by reducing GABA inhibition in the IC, which may be related to hyperacusis seen in children with otitis media. Published by Elsevier B.V.
C1 [Sun, Wei; Manohar, Senthilvelan; Jayaram, Aditi; Kumaraguru, Anand; Allman, Brian] SUNY Buffalo, Ctr Hearing & Deafness, Dept Communicat Disorders & Sci, Buffalo, NY 14214 USA.
[Fu, Qiang; Li, Ji] SUNY Buffalo, Dept Pharmacol & Toxicol, Buffalo, NY 14214 USA.
RP Sun, W (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, Dept Communicat Disorders & Sci, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA.
EM weisun@buffalo.edu
FU Action on Hearing Loss [G42]; National Institute of Health [R03
DC008685]
FX This project was supported by Action on Hearing Loss (G42) and National
Institute of Health (R03 DC008685).
CR AMOILS CP, 1992, OTOLARYNG HEAD NECK, V106, P47
Bigelow DC, 1998, ANN OTO RHINOL LARYN, V107, P928
Chakravarty DN, 1999, EXP NEUROL, V157, P135, DOI 10.1006/exnr.1999.7047
Chang EF, 2003, SCIENCE, V300, P498, DOI 10.1126/science.1082163
CHEN CS, 1978, EXP NEUROL, V60, P400, DOI 10.1016/0014-4886(78)90094-8
CHEN CS, 1973, EXP NEUROL, V39, P277, DOI 10.1016/0014-4886(73)90230-6
Coelho CB, 2007, PROG BRAIN RES, V166, P169, DOI 10.1016/S0079-6123(07)66015-4
de Villers-Sidani E, 2008, NAT NEUROSCI, V11, P957, DOI 10.1038/nn.2144
FRIAUF E, 1992, EUR J NEUROSCI, V4, P798, DOI 10.1111/j.1460-9568.1992.tb00190.x
GATES GR, 1973, EXP NEUROL, V38, P488, DOI 10.1016/0014-4886(73)90170-2
Gothelf D, 2006, NEUROLOGY, V66, P390, DOI 10.1212/01.wnl.0000196643.35395.5f
Gu JW, 2010, J NEUROPHYSIOL, V104, P3361, DOI 10.1152/jn.00226.2010
Ison JR, 2007, JARO-J ASSOC RES OTO, V8, P539, DOI 10.1007/s10162-007-0098-3
Johnston LC, 2004, PEDIATRICS, V114, pE58, DOI 10.1542/peds.114.1.e58
KLEIN AJ, 1990, J SPEECH HEAR DISORD, V55, P339
Klein BD, 2004, EPILEPSY RES, V62, P13, DOI 10.1016/j.eplepsyres.2004.06.007
Kral A, 2002, CEREB CORTEX, V12, P797, DOI 10.1093/cercor/12.8.797
Kristjansson S, 2010, ACTA PAEDIATR, V99, P867, DOI 10.1111/j.1651-2227.2009.01637.x
Kwon J, 1997, EPILEPSY RES, V27, P89, DOI 10.1016/S0920-1211(97)01024-3
Lanphear BP, 1997, PEDIATRICS, V99, part. no., DOI 10.1542/peds.99.3.e1
Lasisi AO, 2008, EUR ARCH OTO-RHINO-L, V265, P765, DOI 10.1007/s00405-007-0544-1
Martines F, 2010, EUR ARCH OTO-RHINO-L, V267, P709, DOI 10.1007/s00405-009-1131-4
MCGINN MD, 1973, NATURE-NEW BIOL, V244, P255
Miani C, 2001, EUR ARCH OTO-RHINO-L, V258, P341, DOI 10.1007/s004050100364
O'Leary SJ, 2009, MED J AUSTRALIA, V191, pS65
PIERSON M, 1992, EPILEPSY RES, V13, P35, DOI 10.1016/0920-1211(92)90005-E
Popescu MV, 2010, NEURON, V65, P718, DOI 10.1016/j.neuron.2010.02.019
STEVENS SS, 1955, J ACOUST SOC AM, V27, P815, DOI 10.1121/1.1908048
Sun W, 2009, NEUROSCIENCE, V159, P325, DOI 10.1016/j.neuroscience.2008.12.024
Takesian AE, 2010, J NEUROSCI, V30, P2716, DOI 10.1523/JNEUROSCI.3903-09.2010
Turner JG, 2008, AM J AUDIOL, V17, pS185, DOI 10.1044/1059-0889(2008/08-0006)
Willmore LJ, 2009, EPILEPSIA, V50, P163, DOI 10.1111/j.1528-1167.2008.01988.x
Xu H, 2007, J NEUROSCI, V27, P9417, DOI 10.1523/JNEUROSCI.1992-07.2007
NR 33
TC 5
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 178
EP 183
DI 10.1016/j.heares.2011.08.004
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300020
PM 21872651
ER
PT J
AU Hurd, EA
Adams, ME
Layman, WS
Swiderski, DL
Beyer, LA
Halsey, KE
Benson, JM
Gong, TW
Dolan, DF
Raphael, Y
Martin, DM
AF Hurd, Elizabeth A.
Adams, Meredith E.
Layman, Wanda S.
Swiderski, Donald L.
Beyer, Lisa A.
Halsey, Karin E.
Benson, Jennifer M.
Gong, Tzy-Wen
Dolan, David F.
Raphael, Yehoash
Martin, Donna M.
TI Mature middle and inner ears express Chd7 and exhibit distinctive
pathologies in a mouse model of CHARGE syndrome
SO HEARING RESEARCH
LA English
DT Article
ID HIGHLY MUTABLE LOCUS; HEARING-LOSS; TEMPORAL BONE; PHENOTYPIC SPECTRUM;
HAIR-CELLS; ASSOCIATION; MICE; GENE; DEFECTS; MUTATIONS
AB Heterozygous mutations in the gene encoding chromodomain-DNA-binding-protein 7 (CHD7) cause CHARGE syndrome, a multiple anomaly condition which includes vestibular dysfunction and hearing loss. Mice with heterozygous Chd7 mutations exhibit semicircular canal dysgenesis and abnormal inner ear neurogenesis, and are an excellent model of CHARGE syndrome. Here we characterized Chd7 expression in mature middle and inner ears, analyzed morphological features of mutant ears and tested whether Chd7 mutant mice have altered responses to noise exposure and correlated those responses to inner and middle ear structure. We found that Chd7 is highly expressed in mature inner and outer hair cells, spiral ganglion neurons, vestibular sensory epithelia and middle ear ossicles. There were no obvious defects in individual hair cell morphology by Prestin immunostaining or scanning electron microscopy, and cochlear innervation appeared normal in Chd7(Gt/+) mice. Hearing thresholds by auditory brainstem response (ABR) testing were elevated at 4 and 16 kHz in Chd7(Gt/+) mice, and there were reduced distortion product otoacoustic emissions (DPOAE). Exposure of Chd7(Gt/+) mice to broadband noise resulted in variable degrees of hair cell loss which inversely correlated with severity of stapedial defects. The degrees of hair cell loss and threshold shifts after noise exposure were more severe in wild type mice than in mutants. Together, these data indicate that Chd7(Gt/+) mice have combined conductive and sensorineural hearing loss, correlating with changes in both middle and inner ears. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Hurd, Elizabeth A.; Martin, Donna M.] Univ Michigan, Dept Pediat, Ann Arbor, MI 48109 USA.
[Layman, Wanda S.; Martin, Donna M.] Univ Michigan, Dept Human Genet, Ann Arbor, MI 48109 USA.
[Adams, Meredith E.] Univ Michigan, Dept Otolaryngol Head & Neck Surg, Ann Arbor, MI 48109 USA.
[Swiderski, Donald L.; Beyer, Lisa A.; Halsey, Karin E.; Benson, Jennifer M.; Gong, Tzy-Wen; Dolan, David F.; Raphael, Yehoash] Univ Michigan, Dept Otolaryngol, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA.
RP Martin, DM (reprint author), Univ Michigan, Dept Pediat, 3520A MSRB 1,1500 W Med Ctr Dr, Ann Arbor, MI 48109 USA.
EM lizhurd@umich.edu; meadams@umn.edu; layman@umich.edu;
dlswider@umich.edu; lbeyer@umich.edu; khalsey@umich.edu;
matuszew@umich.edu; tzywen@umich.edu; ddolan@umich.edu; yoash@umich.edu;
donnamm@umich.edu
FU Williams Professorship; A. Alfred Taubman Medical Research Institute;
Berte and Alan Hirschfield Foundation; NOHR; NIH/NIDCD [P30 DC05188, R01
DC009410]
FX This work was supported by the Williams Professorship, the A. Alfred
Taubman Medical Research Institute and the Berte and Alan Hirschfield
Foundation (Y.R), NOHR (D.M.M), and NIH/NIDCD grants P30 DC05188 (Y.R
and D.F.D) and R01 DC009410 (D.M.M and Y.R).
CR Abadie V, 2000, EUR J PEDIATR, V159, P569, DOI 10.1007/s004319900409
Adams ME, 2007, J COMP NEUROL, V504, P519, DOI 10.1002/cne.21460
Admiraal RJC, 1997, INT J PEDIATR OTORHI, V39, P205, DOI 10.1016/S0165-5876(96)01489-9
Amiel J, 2001, AM J MED GENET, V99, P124, DOI 10.1002/1096-8628(20010301)99:2<124::AID-AJMG1114>3.0.CO;2-9
Arnold JS, 2006, HUM MOL GENET, V15, P1629, DOI 10.1093/hmg/ddl084
Bergman JEH, 2010, EUR J HUM GENET, V18, P171, DOI 10.1038/ejhg.2009.158
Beyer LA, 2000, J NEUROCYTOL, V29, P227, DOI 10.1023/A:1026515619443
Bosman EA, 2005, HUM MOL GENET, V14, P3463, DOI 10.1093/hmg/ddi375
Calvert JA, 2011, MAMM GENOME, V22, P290, DOI 10.1007/s00335-011-9324-8
Dallos P, 2008, CURR OPIN NEUROBIOL, V18, P370, DOI 10.1016/j.conb.2008.08.016
Desai U, 2010, J CRANIOFAC SURG, V21, P1411, DOI 10.1097/SCS.0b013e3181ebcf58
Dhooge I, 1998, ANN OTO RHINOL LARYN, V107, P935
EDWARDS BM, 1995, INT J PEDIATR OTORHI, V33, P23, DOI 10.1016/0165-5876(95)01188-H
Edwards BM, 2002, PEDIATRICS, V110, P119, DOI 10.1542/peds.110.1.119
Fekete DM, 1999, TRENDS NEUROSCI, V22, P263, DOI 10.1016/S0166-2236(98)01366-6
Funke B, 2001, HUM MOL GENET, V10, P2549, DOI 10.1093/hmg/10.22.2549
Gao XC, 2007, AM J HUM GENET, V80, P957, DOI 10.1086/513571
Gehr DD, 2004, HEARING RES, V193, P9, DOI 10.1016/j.heares.2004.03.018
Glueckert R, 2010, AM J MED GENET A, V152A, P665, DOI 10.1002/ajmg.a.33321
GUYOT JP, 1987, ARCH OTOLARYNGOL, V113, P321
Haginomori SI, 2002, ANN OTO RHINOL LARYN, V111, P397
Harding GW, 2005, HEARING RES, V204, P90, DOI 10.1016/j.heares.2005.01.004
Hawker K, 2005, INT J AUDIOL, V44, P171, DOI 10.1080/14992020500057434
Hurd EA, 2010, DEVELOPMENT, V137, P3139, DOI 10.1242/dev.047894
Hurd EA, 2007, MAMM GENOME, V18, P94, DOI 10.1007/s00335-006-0107-6
Jongmans MCJ, 2006, J MED GENET, V43, P306, DOI 10.1136/jmg.2005.036061
Karolyi IJ, 2007, MAMM GENOME, V18, P596, DOI 10.1007/s00335-007-9038-0
Kiernan AE, 2002, MAMM GENOME, V13, P142, DOI 10.1007/s0033501-2088-9
Lalani SR, 2006, AM J HUM GENET, V78, P303, DOI 10.1086/500273
Lanson BG, 2007, LARYNGOSCOPE, V117, P1260, DOI 10.1097/MLG.0b013e31806009c9
Layman WS, 2011, HUM MOL GENET, V20, P3138, DOI 10.1093/hmg/ddr216
Layman WS, 2009, HUM MOL GENET, V18, P1909, DOI 10.1093/hmg/ddp112
Lemmerling M, 1998, NEURORADIOLOGY, V40, P462
Lenz D.R., 2010, AUDIOL MED, P1
Martin D.M, 2010, PLOS GENET, V6
MATSUO I, 1995, GENE DEV, V9, P2646, DOI 10.1101/gad.9.21.2646
Moraes F, 2005, MECH DEVELOP, V122, P199, DOI 10.1016/j.mod.2004.10.004
MORGAN D, 1993, ARCH OTOLARYNGOL, V119, P49
Morimoto AK, 2006, AM J NEURORADIOL, V27, P1663
Morsli H, 1999, DEVELOPMENT, V126, P2335
Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226
Nolen LD, 2006, AM J MED GENET A, V140A, P1711, DOI 10.1002/ajmg.a.31335
OSBORNE MP, 1991, SCANNING MICROSCOPY, V5, P555
PARK K, 1992, AM J OTOLARYNG, V13, P93, DOI 10.1016/0196-0709(92)90005-E
Pau H, 2004, OTOL NEUROTOL, V25, P707, DOI 10.1097/00129492-200409000-00010
Qin ZB, 2010, HEARING RES, V263, P93, DOI 10.1016/j.heares.2009.10.002
Randall V, 2009, J CLIN INVEST, V119, P3301, DOI 10.1172/JCI37561
Reyes MRT, 1999, INT J PEDIATR OTORHI, V47, P227, DOI 10.1016/S0165-5876(98)00180-3
Sanlaville D, 2006, J MED GENET, V43, P211, DOI 10.1136/jmg.2005.036160
Shah UK, 1998, INT J PEDIATR OTORHI, V44, P139, DOI 10.1016/S0165-5876(98)00064-0
Takada I, 2007, NAT CELL BIOL, V9, P1273, DOI 10.1038/ncb1647
Tellier AL, 1998, AM J MED GENET, V76, P402, DOI 10.1002/(SICI)1096-8628(19980413)76:5<402::AID-AJMG7>3.0.CO;2-O
THELIN JW, 1986, INT J PEDIATR OTORHI, V12, P145, DOI 10.1016/S0165-5876(86)80072-6
Vissers LELM, 2004, NAT GENET, V36, P955, DOI 10.1038/ng1407
Wiener-Vacher SR, 1999, ARCH OTOLARYNGOL, V125, P342
WRIGHT CG, 1986, ANN OTO RHINOL LARYN, V95, P480
Wright EMMB, 2009, EUR J MED GENET, V52, P239, DOI 10.1016/j.ejmg.2009.03.017
Zentner GE, 2010, AM J MED GENET A, V152A, P674, DOI 10.1002/ajmg.a.33323
NR 58
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 184
EP 195
DI 10.1016/j.heares.2011.08.005
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300021
PM 21875659
ER
PT J
AU Ding, DL
He, JC
Allman, BL
Yu, DZ
Jiang, HY
Seigel, GM
Salvi, RJ
AF Ding, Dalian
He, Jingchun
Allman, Brian L.
Yu, Dongzhen
Jiang, Haiyan
Seigel, Gail M.
Salvi, Richard J.
TI Cisplatin ototoxicity in rat cochlear organotypic cultures
SO HEARING RESEARCH
LA English
DT Article
ID ORGANIC CATION TRANSPORTER-2; GUINEA-PIG COCHLEA; COPPER TRANSPORTER;
HAIR-CELLS; CELLULAR ACCUMULATION; PROTECTS COCHLEAR; CTR1;
NEPHROTOXICITY; CHILDREN; GENTAMICIN
AB Ototoxicity is a dose-limiting side effect of chemotherapeutic treatment with cisplatin. In a series of experiments on neonatal rat cochlear organotypic cultures, the extent of damage induced by a broad range of cisplatin treatment concentrations was examined. Paradoxically, it was found that hair cell loss was greater following 48 h exposure to low (10, 50 and 100 mu M) versus high (400 and 1000 mu M) concentrations of cisplatin; these findings indicate that hair cells possess intrinsic resistance to high levels of extracellular cisplatin. Using cisplatin conjugated to Alexa Fluor 488, it was found that cisplatin is readily taken up by hair cells at low concentrations, but is largely excluded at high concentrations. Recent studies indicate that the major influx of cisplatin into hair cells occurs via the copper transporter, Ctr1, whereas ATP7A and ATP7B are copper pumps responsible for cisplatin sequestration and efflux. Using immunolabeling procedures for these copper trafficking proteins, it was found that Ctr1 and ATP7B were localized in the hair cells, whereas ATP7A showed extensive labeling in the pillar cells in the organ of Corti. Additional experiments confirmed the protective effect of copper sulfate and cimetidine in attenuating cisplatin-induced hair cell loss. However, because neither copper sulfate nor cimetidine provided complete protection against cisplatin, and high levels of copper sulfate itself were found to be ototoxic, it is suggested that future therapeutic efforts may benefit from a combination of pharmacological treatments which seek to not only limit the uptake of cisplatin into cochlear cells but also increase its efflux. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Ding, Dalian; Allman, Brian L.; Jiang, Haiyan; Seigel, Gail M.; Salvi, Richard J.] SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA.
[Ding, Dalian; Allman, Brian L.; Seigel, Gail M.; Salvi, Richard J.] SUNY Buffalo, Dept Communicat Disorders & Sci, Buffalo, NY 14214 USA.
[He, Jingchun; Yu, Dongzhen] Shanghai Jiao Tong Univ, Peoples Hosp 6, Dept Otolaryngol, Shanghai, Peoples R China.
RP Allman, BL (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA.
EM brianall@buffalo.edu
FU National Institutes of Health [5R01DC006630-05]; Research to Prevent
Blindness [R21CA127061]; National Cancer Institute [U54CA143876]
FX This research was supported in part by National Institutes of Health
grant 5R01DC006630-05. GMS is supported by R21CA127061, a departmental
challenge grant from Research to Prevent Blindness and U54CA143876 from
the National Cancer Institute. The content is solely the responsibility
of the author and does not necessarily represent the official views of
the National Cancer Institute or the National Institutes of Health. Our
special thanks to Dhruba J Barali for providing us the Alexa Flur
488-labeled cisplatin, and to Donald E. Coling for preparing the
negative control Alexa probe and providing helpful comments during
manuscript preparation. We thank Weidong Qi, Yong Fu, Yongqi Li, Lei Wei
and Raquel Lima for technical support.
CR BROCK PR, 1991, MED PEDIATR ONCOL, V19, P295, DOI 10.1002/mpo.2950190415
Cardinaal RM, 2000, HEARING RES, V144, P135, DOI 10.1016/S0378-5955(00)00059-9
Chen YS, 1999, ANGEW CHEM INT EDIT, V38, P1768, DOI 10.1002/(SICI)1521-3773(19990614)38:12<1768::AID-ANIE1768>3.0.CO;2-6
Ciarimboli G, 2010, AM J PATHOL, V176, P1169, DOI 10.2353/ajpath.2010.090610
Ciarimboli G, 2005, AM J PATHOL, V167, P1477, DOI 10.1016/S0002-9440(10)61234-5
Coradini PP, 2007, J PEDIAT HEMATOL ONC, V29, P355, DOI 10.1097/MPH.0b013e318059c220
Ding D., 2008, CHIN J OTOL, V6, P125
Ding D., 2009, ABSTR ASS RES OT, V119, P41
Ding D., 2009, ABSTR ASS RES OT, V121, P42
Ding DL, 2002, HEARING RES, V164, P115, DOI 10.1016/S0378-5955(01)00417-8
Di Nicolantonio F, 2003, RECENT RES CANCER, V161, P73
Holzer AK, 2006, MOL PHARMACOL, V70, P1390, DOI 10.1124/mol.106.022624
Howell SB, 2010, MOL PHARMACOL, V77, P887, DOI 10.1124/mol.109.063172
Ishida S, 2002, P NATL ACAD SCI USA, V99, P14298, DOI 10.1073/pnas.162491399
KIMITSUKI T, 1993, HEARING RES, V71, P64, DOI 10.1016/0378-5955(93)90021-R
Larson CA, 2009, MOL PHARMACOL, V75, P324, DOI 10.1124/mol.108.052381
Li Y, 2004, EUR J CANCER, V40, P2445, DOI 10.1016/j.ejca.2003.08.009
McFadden SL, 2003, TOXICOL APPL PHARM, V186, P46, DOI 10.1016/S0041-008X(02)00017-0
Meyers JR, 2003, J NEUROSCI, V23, P4054
More SS, 2010, J NEUROSCI, V30, P9500, DOI 10.1523/JNEUROSCI.1544-10.2010
Pabla N, 2009, AM J PHYSIOL-RENAL, V296, pF505, DOI 10.1152/ajprenal.90545.2008
Qi WD, 2008, HEARING RES, V236, P52, DOI 10.1016/j.heares.2007.12.002
Rybak LP, 2009, TOHOKU J EXP MED, V219, P177, DOI 10.1620/tjem.219.177
Safaei R, 2006, CANCER LETT, V234, P34, DOI 10.1016/j.canlet.2005.07.046
Salvi R., 2009, ABSTR ASS RES OT, V756, P256
Skinner R, 2004, EUR J CANCER, V40, P2352, DOI 10.1016/j.ejca.2004.08.002
van Ruijven MWM, 2004, HEARING RES, V197, P44, DOI 10.1016/j.heares.2004.07.014
Wei L, 2010, NEUROSCIENCE, V168, P288, DOI 10.1016/j.neuroscience.2010.03.015
NR 28
TC 24
Z9 27
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 196
EP 203
DI 10.1016/j.heares.2011.08.002
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300022
PM 21854840
ER
PT J
AU Chen, ZL
Hue, GS
Glasberg, BR
Moore, BCJ
AF Chen, Zhangli
Hue, Guangshu
Glasberg, Brian R.
Moore, Brian C. J.
TI A new method of calculating auditory excitation patterns and loudness
for steady sounds
SO HEARING RESEARCH
LA English
DT Article
ID PSYCHOPHYSICAL TUNING CURVES; FREQUENCY-SELECTIVITY; BINAURAL LOUDNESS;
NOTCHED-NOISE; FILTER NONLINEARITY; 2-TONE INHIBITION; LEVEL CONTOURS;
CRITICAL BANDS; NERVE FIBERS; PURE-TONES
AB A new method for calculating auditory excitation patterns and loudness for steady sounds is described. The method is based on a nonlinear filterbank in which each filter is the sum of a broad passive filter and a sharp active filter. All filters have a rounded-exponential shape. For each center frequency (CF), the gain of the active filter is controlled by the output of the passive filter. The parameters of the model were derived from large sets of previously published notched-noise masking data obtained from human subjects. Excitation patterns derived using the new filterbank include the effects of basilar membrane compression. Loudness can be calculated as the area under the excitation pattern when plotted in intensity-like units on an ERB(N)-number (Cam) scale; no transformation from excitation to specific loudness is required. The method predicts the standard equal-loudness contours and loudness as a function of bandwidth with good accuracy. With some additional assumptions, the method also gives reasonably accurate predictions of partial loudness. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Chen, Zhangli; Glasberg, Brian R.; Moore, Brian C. J.] Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England.
[Chen, Zhangli; Hue, Guangshu] Tsinghua Univ, Sch Med, Dept Biomed Engn, Beijing 100084, Peoples R China.
RP Moore, BCJ (reprint author), Univ Cambridge, Dept Expt Psychol, Downing St, Cambridge CB2 3EB, England.
EM bcjm@cam.ac.uk
RI Moore, Brian/I-5541-2012
FU China Scholarship Council; National Natural Science Foundation of China;
Tsinghua-Yu-Yuan Medical Sciences Fund; Medical Research Council (UK)
FX Author Chen was a visiting PhD student in the laboratory of author
Moore, sponsored by the China Scholarship Council. The work of authors
Chen and Hu was supported by the National Natural Science Foundation of
China and Tsinghua-Yu-Yuan Medical Sciences Fund. The work of authors
Glasberg and Moore was supported by the Medical Research Council (UK).
We thank Masashi Unoki for providing his software and data and Ray
Meddis for helpful discussions. We also thank three reviewers for
helpful comments.
CR Aibara R, 2001, HEARING RES, V152, P100, DOI 10.1016/S0378-5955(00)00240-9
[Anonymous], 2003, 226 ISO
[Anonymous], 2005, 3897 ISO
[Anonymous], 1991, 45631 DIN
[Anonymous], 2007, S342007 ANSI
ARTHUR RM, 1971, J PHYSIOL-LONDON, V212, P593
Baker R. J., 1998, PSYCHOPHYSICAL PHYSL, P81
Baker RJ, 2006, J ACOUST SOC AM, V119, P454, DOI 10.1121/1.2139100
Baumgarte F, 1997, P 1997 IEEE ASSP WOR, P1
BUUS S, 1986, J ACOUST SOC AM, V80, P1646, DOI 10.1121/1.394329
Buus S, 1998, J ACOUST SOC AM, V104, P399, DOI 10.1121/1.423295
Charbonneau J., 2009, INTER NOISE, P4730
DUIFHUIS H, 1980, J ACOUST SOC AM, V67, P914, DOI 10.1121/1.383971
Epstein M, 2009, EAR HEARING, V30, P234, DOI 10.1097/AUD.0b013e3181976993
Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47
Fletcher H, 1933, J ACOUST SOC AM, V5, P82, DOI 10.1121/1.1915637
Gabriel B, 1997, ACUSTICA, V83, P670
Glasberg B. R., 1999, PSYCHOPHYSICS PHYSL, P143
Glasberg BR, 2006, J ACOUST SOC AM, V120, P585, DOI 10.1121/1.2214151
GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
Glasberg BR, 2000, J ACOUST SOC AM, V108, P2318, DOI 10.1121/1.1315291
GLASBERG BR, 1984, J ACOUST SOC AM, V76, P419, DOI 10.1121/1.391584
GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
HARTMANN WM, 1997, SIGNALS SOUND SENSAT
HELLMAN RP, 1976, J ACOUST SOC AM, V60, P672, DOI 10.1121/1.381138
HELLMAN RP, 1961, J ACOUST SOC AM, V33, P687, DOI 10.1121/1.1908764
Houtgast T, 1974, THESIS FREE U AMSTER
HOUTGAST T, 1973, ACUSTICA, V29, P168
Jurado C, 2011, J ACOUST SOC AM, V129, P3166, DOI 10.1121/1.3560535
Jurado C, 2010, J ACOUST SOC AM, V128, P3585, DOI 10.1121/1.3504657
Kluk K, 2004, HEARING RES, V194, P118, DOI 10.1016/j.heares.2004.04.012
Lopez-Poveda EA, 2001, J ACOUST SOC AM, V110, P3107, DOI 10.1121/1.1416197
MARKS LE, 1978, J ACOUST SOC AM, V64, P107, DOI 10.1121/1.381976
Meddis R, 2001, J ACOUST SOC AM, V109, P2852, DOI 10.1121/1.1370357
MOORE BCJ, 1983, J ACOUST SOC AM, V74, P750, DOI 10.1121/1.389861
Moore B C, 1986, Scand Audiol Suppl, V25, P139
Moore BC., 2003, INTRO PSYCHOL HEARIN
MOORE BCJ, 1978, J ACOUST SOC AM, V63, P524, DOI 10.1121/1.381752
Moore BCJ, 2007, J ACOUST SOC AM, V121, P1604, DOI 10.1121/1.2431331
Moore BCJ, 1997, J AUDIO ENG SOC, V45, P224
MOORE BCJ, 1987, HEARING RES, V28, P209, DOI 10.1016/0378-5955(87)90050-5
PATTERSO.RD, 1974, J ACOUST SOC AM, V55, P802, DOI 10.1121/1.1914603
PATTERSON RD, 1976, J ACOUST SOC AM, V59, P640, DOI 10.1121/1.380914
PATTERSON RD, 1982, J ACOUST SOC AM, V72, P1788, DOI 10.1121/1.388652
Patterson RD, 1986, FREQUENCY SELECTIVIT, P123
Patterson RD, 2003, J ACOUST SOC AM, V114, P1529, DOI 10.1121/1.1600720
Plack Christopher J., 1995, P123, DOI 10.1016/B978-012505626-7/50006-6
POLLACK I, 1949, AM J PSYCHOL, V62, P412, DOI 10.2307/1418283
Puria S, 1997, J ACOUST SOC AM, V101, P2754, DOI 10.1121/1.418563
ROBLES L, 1986, J ACOUST SOC AM, V80, P1364, DOI 10.1121/1.394389
Robles L, 2001, PHYSIOL REV, V81, P1305
Rosen S, 1998, J ACOUST SOC AM, V103, P2539, DOI 10.1121/1.422775
ROSEN S, 1992, J ACOUST SOC AM, V92, P773, DOI 10.1121/1.403946
ROSEN S, 1992, ADV BIOSCI, V83, P171
SACHS MB, 1968, J ACOUST SOC AM, V43, P1120, DOI 10.1121/1.1910947
SCHARF B, 1964, ACUSTICA, V14, P16
SCHARF B, 1961, PSYCHOL BULL, V58, P205, DOI 10.1037/h0049235
SHANNON RV, 1976, J ACOUST SOC AM, V59, P1460, DOI 10.1121/1.381007
Sivonen VP, 2006, J ACOUST SOC AM, V119, P2965, DOI 10.1021/1.2184268
Sivonen VP, 2011, SPRINGER HANDB AUDIT, V37, P169, DOI 10.1007/978-1-4419-6712-1_7
Suzuki Y, 2004, J ACOUST SOC AM, V116, P918, DOI 10.1121/1.1763601
Unoki M, 2006, J ACOUST SOC AM, V120, P1474, DOI 10.1121/1.2228539
VIEMEISTER NF, 1988, J ACOUST SOC AM, V84, P172, DOI 10.1121/1.396961
Vogten LL, 1974, FACTS MODELS HEARING, P142
VOGTEN LLM, 1978, J ACOUST SOC AM, V63, P1520, DOI 10.1121/1.381846
Whilby S, 2006, J ACOUST SOC AM, V119, P3931, DOI 10.1121/1.2193813
Yasin I, 2005, J ACOUST SOC AM, V118, P2498, DOI 10.1121/1.2035594
Zhang XD, 2001, J ACOUST SOC AM, V109, P648, DOI 10.1121/1.1336503
ZWICKER E, 1961, J ACOUST SOC AM, V33, P248, DOI 10.1121/1.1908630
Zwicker E., 1958, ACUSTICA, V8, P237
ZWICKER E, 1965, PSYCHOL REV, V72, P3, DOI 10.1037/h0021703
Zwicker E., 1963, Acustica, V13
ZWICKER E, 1991, J ACOUST SOC AM, V89, P756, DOI 10.1121/1.1894635
ZWICKER E, 1957, J ACOUST SOC AM, V29, P548, DOI 10.1121/1.1908963
Zwicker E., 1970, FREQUENCY ANAL PERIO, P376
Zwicker E., 1956, ACUSTICA, V6, P356
NR 76
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 204
EP 215
DI 10.1016/j.heares.2011.08.001
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300023
PM 21851853
ER
PT J
AU Altmann, CF
Klein, C
Heinemann, LV
Wibral, M
Gaese, BH
Kaiser, J
AF Altmann, Christian F.
Klein, Carsten
Heinemann, Linda V.
Wibral, Michael
Gaese, Bernhard H.
Kaiser, Jochen
TI Repetition of complex frequency-modulated sweeps enhances neuromagnetic
responses in the human auditory cortex
SO HEARING RESEARCH
LA English
DT Article
ID MECHANISMS UNDERLYING SELECTIVITY; EVENT-RELATED POTENTIALS; MISMATCH
NEGATIVITY; NEURAL REPRESENTATIONS; SENSORY MEMORY; NATURAL SOUNDS;
HUMAN BRAIN; ADAPTATION; DIRECTION; PERCEPTION
AB Frequency modulations (FM) play a decisive role in our everyday communication. To investigate the processing of FM direction we measured change-related auditory cortex responses with human magnetoencephalography. First, we tested for FM direction selectivity by presenting FM sweeps with the same FM directions in a repeated series (RS). These series were interrupted by a deviant with the opposite FM direction. Second, we tested for the representation of abstract rules and presented series of FM sweeps with alternating FM directions (AS). The AS series were interrupted by a deviant which was a repetition of the series' last FM sweep but broke the alternating pattern. For the RS, the deviant did not evoke significant change-related responses in the auditory cortex. However, for the first stimulus after the deviant, significantly stronger responses compared to standards were observed bilaterally in the auditory cortex at about 200 ms after stimulus onset. For the AS, we observed a similar bilateral change-related signal enhancement for a deviant FM sweep breaking the alternating series. Since this response enhancement occurred for both RS and AS even after a single FM sweep repetition, we conclude that these activities represent local signal enhancements rather than change-related responses due to abstract rule violation. In sum, our data indicate repetition enhancement due to spectro-temporal interactions between successive complex FM sweeps. These enhancement effects were observed for the first but not further repetitions suggesting a second-order repetition suppression of the initial repetition enhancement. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Altmann, Christian F.] Kyoto Univ, Career Path Promot Unit Young Life Scientists, Sakyo Ku, Kyoto 6068501, Japan.
[Altmann, Christian F.; Klein, Carsten; Heinemann, Linda V.; Kaiser, Jochen] Goethe Univ Frankfurt, Inst Med Psychol, D-60528 Frankfurt, Germany.
[Altmann, Christian F.] Kyoto Univ, Grad Sch Med, Human Brain Res Ctr, Kyoto 6068507, Japan.
[Klein, Carsten; Gaese, Bernhard H.] Goethe Univ Frankfurt, Inst Cell Biol & Neurosci, D-60528 Frankfurt, Germany.
[Wibral, Michael] Goethe Univ Frankfurt, Brain Imaging Ctr, Magnetoencephalog Unit, D-60528 Frankfurt, Germany.
RP Altmann, CF (reprint author), Kyoto Univ, Career Path Promot Unit Young Life Scientists, Sakyo Ku, Yoshida Konoe Cho, Kyoto 6068501, Japan.
EM altmann@cp.kyoto-u.ac.jp
FU Deutsche Forschungsgemeinschaft (DFG) [AL 1074/2-1]
FX We are most grateful for helpful comments on an earlier version of this
manuscript from Torsten Baldeweg and for support by Deutsche
Forschungsgemeinschaft (DFG AL 1074/2-1).
CR Altmann CF, 2007, NEUROIMAGE, V35, P1192, DOI 10.1016/j.neuroimage.2007.01.007
Altmann CF, 2008, CEREB CORTEX, V18, P1350, DOI 10.1093/cercor/bhm166
Bailey PJ, 2002, BRIT MED BULL, V63, P135, DOI 10.1093/bmb/63.1.135
Baldeweg T, 2006, TRENDS COGN SCI, V10, P93, DOI 10.1016/j.tics.2006.01.010
Bartlett EL, 2005, J NEUROPHYSIOL, V94, P83, DOI 10.1152/jn.01124.2004
Brosch M, 2008, EXP BRAIN RES, V184, P349, DOI 10.1007/s00221-007-1109-7
Carral V, 2005, NEUROREPORT, V16, P301, DOI 10.1097/00001756-200502280-00020
Efron B., 1994, INTRO BOOTSTRAP
Fishman Y.I., 2001, HEARING RES, V151, P161
Gaab N, 2007, RESTOR NEUROL NEUROS, V25, P295
GARDNER RB, 1979, J ACOUST SOC AM, V66, P704, DOI 10.1121/1.383220
Haenschel C, 2005, J NEUROSCI, V25, P10494, DOI 10.1523/JNEUROSCI.1227-05.2005
Heinemann LV, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0015548
HOLM S, 1979, SCAND J STAT, V6, P65
Horvath J, 2001, COGNITIVE BRAIN RES, V12, P131, DOI 10.1016/S0926-6410(01)00038-6
Horvath J, 2004, NEUROSCI LETT, V368, P157, DOI 10.1016/j.neulet.2004.07.004
Hoshiyama M, 2007, EUR J NEUROSCI, V25, P854, DOI 10.1111/j.1460-9568.2007.05315.x
Kaan E, 2007, BRAIN RES, V1148, P113, DOI 10.1016/j.brainres.2007.02.019
Kanwal JS, 2007, FRONT BIOSCI, V12, P4621, DOI 10.2741/2413
KAWASAKI M, 1988, J NEUROPHYSIOL, V59, P623
Liang L, 2002, J NEUROPHYSIOL, V87, P2237, DOI 10.1152/jn.00834.2001
LIBERMAN AM, 1989, SCIENCE, V243, P489, DOI 10.1126/science.2643163
List A, 2007, BRAIN RES, V1153, P122, DOI 10.1016/j.brainres.2007.03.040
Loveless N, 1996, EVOKED POTENTIAL, V100, P220, DOI 10.1016/0168-5597(95)00271-5
LOVELESS N, 1989, ELECTROEN CLIN NEURO, V74, P217, DOI 10.1016/0013-4694(89)90008-4
Luo H, 2007, HEARING RES, V224, P75, DOI 10.1016/j.heares.2006.11.007
NAATANEN R, 1988, ELECTROEN CLIN NEURO, V69, P523, DOI 10.1016/0013-4694(88)90164-2
NAATANEN R, 1978, ACTA PSYCHOL, V42, P313, DOI 10.1016/0001-6918(78)90006-9
Naatanen R, 2007, CLIN NEUROPHYSIOL, V118, P2544, DOI 10.1016/j.clinph.2007.04.026
Okamoto H, 2010, J NEUROPHYSIOL, V103, P244, DOI 10.1152/jn.00530.2009
Paavilainen P, 2003, NEUROREPORT, V14, P715, DOI 10.1097/01.wnr.0000064985.96259.ce
PARDO PJ, 1993, NEUROSCI LETT, V159, P43, DOI 10.1016/0304-3940(93)90794-L
Pollak GD, 2011, HEARING RES, V273, P134, DOI 10.1016/j.heares.2010.03.083
Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800
Razak KA, 2006, J NEUROPHYSIOL, V96, P1303, DOI 10.1152/jn.00020.2006
Razak KA, 2008, J NEUROSCI, V28, P9806, DOI 10.1523/JNEUROSCI.1293-08.2008
SAMS M, 1985, ELECTROEN CLIN NEURO, V62, P437, DOI 10.1016/0168-5597(85)90054-1
SAMS M, 1991, NEUROSCI LETT, V121, P43, DOI 10.1016/0304-3940(91)90645-A
Shechter B, 2006, HEARING RES, V221, P91, DOI 10.1016/j.heares.2006.08.002
SHEPARD RN, 1964, J ACOUST SOC AM, V36, P2346, DOI 10.1121/1.1919362
Talairach J., 1988, COPLANAR STEREOTAXIC
Tallal P, 1997, FOUNDATIONS OF READING ACQUISITION AND DYSLEXIA, P49
TERVANIEMI M, 1994, NEUROREPORT, V5, P844, DOI 10.1097/00001756-199403000-00027
Tian B, 2004, J NEUROPHYSIOL, V92, P2993, DOI 10.1152/jn.00472.2003
TIITINEN H, 1993, PSYCHOPHYSIOLOGY, V30, P537, DOI 10.1111/j.1469-8986.1993.tb02078.x
Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032
Ulanovsky N, 2004, J NEUROSCI, V24, P10440, DOI 10.1523/JNEUROSCI.1905-04.2004
Witton C, 1998, CURR BIOL, V8, P791, DOI 10.1016/S0960-9822(98)70320-3
Yang LJ, 2008, CHINESE MED J-PEKING, V121, P2429
Zhang LI, 2003, NATURE, V424, P201, DOI 10.1038/nature01796
NR 50
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 216
EP 224
DI 10.1016/j.heares.2011.07.008
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300024
PM 21839158
ER
PT J
AU Deroche, MLD
Culling, JF
AF Deroche, Mickael L. D.
Culling, John F.
TI Narrow noise band detection in a complex masker: Masking level
difference due to harmonicity
SO HEARING RESEARCH
LA English
DT Article
ID CONCURRENT VOWEL IDENTIFICATION; DIFFERENT FUNDAMENTAL FREQUENCIES;
PERCEPTUAL SEPARATION; PERIOD PATTERNS; WITHIN-CHANNEL; INNER-EAR;
PHASE; TONES; CANCELLATION; MODEL
AB Three experiments investigated listeners ability to detect a narrow band of noise, centered on one partial of a random-phase complex tone, as a function of inharmonicity. Inharmonicity was generated by randomly mistuning the partial frequencies from a 100-Hz fundamental frequency (FO). In experiment 1, masked detection thresholds were lower when the masker was harmonic than when it was inharmonic for target bands in the range 0.5-2.5 kHz. The presence of this masking level difference due to harmonicity (HMLD) in regions of resolved partials and the reduction of the HMLD with increasing center frequency did not support the idea that HMLD was primarily caused by the envelope modulations produced by the beating of unresolved partials within an auditory filter. In experiment 2, masker mistunings ranging beyond 12% of the FO disrupted the HMLD while smaller mistunings gave thresholds similar to a harmonic masker. In experiment 3, all partials contributed to some extent to the HMLD, but the harmonicity of partials neighboring the target had a greater influence than distant partials. The observed HMLDs can best be accounted for by a mechanism of harmonic cancellation. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Deroche, Mickael L. D.] Univ Maryland, Cochlear Implants & Psychophys Lab, Dept Hearing & Speech Sci, College Pk, MD 20742 USA.
[Culling, John F.] Cardiff Univ, Sch Psychol, Cardiff CF10 3AT, S Glam, Wales.
RP Deroche, MLD (reprint author), Univ Maryland, Cochlear Implants & Psychophys Lab, Dept Hearing & Speech Sci, College Pk, MD 20742 USA.
EM mderoche@hesp.umd.edu
RI Culling, John/D-1468-2009
FU UK EPSRC
FX This work was supported by the UK EPSRC. We would like to thank the
reviewers of this article as well as those of previous versions for
their thorough comments.
CR Alcantara JI, 2003, J ACOUST SOC AM, V114, P2158, DOI 10.1121/1.1608959
American National Standards Institute, 1997, METH CALC SPEECH INT
ASSMANN PF, 1990, J ACOUST SOC AM, V88, P680, DOI 10.1121/1.399772
Bird J., 1998, PSYCHOPHYSICAL PHYSL, P263
BROKX JPL, 1982, J PHONETICS, V10, P23
Brunstrom JM, 1998, J ACOUST SOC AM, V104, P3511, DOI 10.1121/1.423934
Carlyon RP, 1997, J ACOUST SOC AM, V101, P3636, DOI 10.1121/1.418324
Carlyon RP, 1997, J ACOUST SOC AM, V101, P3648, DOI 10.1121/1.418325
CHALIKIA MH, 1993, PERCEPT PSYCHOPHYS, V53, P125, DOI 10.3758/BF03211722
CULLING JF, 1993, J ACOUST SOC AM, V93, P3454, DOI 10.1121/1.405675
DECHEVEIGNE A, 1995, J ACOUST SOC AM, V97, P3736
deCheveigne A, 1997, J ACOUST SOC AM, V101, P2839, DOI 10.1121/1.418517
deCheveigne A, 1997, J ACOUST SOC AM, V101, P2848, DOI 10.1121/1.419476
DECHEVEIGNE A, 1993, J ACOUST SOC AM, V93, P3271
deCheveigne A, 1997, J ACOUST SOC AM, V101, P2857, DOI 10.1121/1.419480
GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
Gockel H, 2002, J ACOUST SOC AM, V111, P2759, DOI 10.1121/1.1480422
JOHNSTONE BM, 1986, HEARING RES, V22, P147, DOI 10.1016/0378-5955(86)90090-0
KOHLRAUSCH A, 1995, J ACOUST SOC AM, V97, P1817, DOI 10.1121/1.413097
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
LICKLIDER JCR, 1951, EXPERIENTIA, V7, P128, DOI 10.1007/BF02156143
MEDDIS R, 1992, J ACOUST SOC AM, V91, P233, DOI 10.1121/1.402767
Mehrgardt S., 1983, HEARING PHYSL BASES
MOORE BCJ, 1985, J ACOUST SOC AM, V77, P1853, DOI 10.1121/1.391936
MOORE BCJ, 1985, J ACOUST SOC AM, V77, P1861, DOI 10.1121/1.391937
Oxenham AJ, 2001, J ACOUST SOC AM, V110, P3169, DOI 10.1121/1.1414706
OXENHAM AJ, 1994, HEARING RES, V80, P105, DOI 10.1016/0378-5955(94)90014-0
PARSONS TW, 1976, J ACOUST SOC AM, V60, P911, DOI 10.1121/1.381172
Roberts B, 2006, HEARING RES, V222, P79, DOI 10.1016/j.heares.2006.08.013
Rossi-Katz JA, 2005, J ACOUST SOC AM, V118, P2588, DOI 10.1121/1.2031975
Scheffers M. T. M., 1983, THESIS RIJKSUNIVERSI
SMITH BK, 1986, J ACOUST SOC AM, V80, P1631, DOI 10.1121/1.394327
Summerfield Q., 1992, J ACOUST SOC AM, V92, P2317, DOI 10.1121/1.405031
SUMMERFIELD Q, 1991, J ACOUST SOC AM, V89, P1364, DOI 10.1121/1.400659
Summers V, 1998, HEARING RES, V118, P139, DOI 10.1016/S0378-5955(98)00030-6
Treurniet WC, 2001, J ACOUST SOC AM, V109, P306, DOI 10.1121/1.1328791
Treurniet WC, 2001, J ACOUST SOC AM, V110, P1267, DOI 10.1121/1.1391245
Verhey JL, 1999, J ACOUST SOC AM, V106, P2733, DOI 10.1121/1.428101
YATES GK, 1990, HEARING RES, V50, P145, DOI 10.1016/0378-5955(90)90041-M
NR 39
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 225
EP 235
DI 10.1016/j.heares.2011.07.005
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300025
PM 21820501
ER
PT J
AU Moon, IS
So, JH
Jung, YM
Lee, WS
Kim, EY
Choi, JH
Kim, CH
Choi, JY
AF Moon, In Seok
So, Ju-Hoon
Jung, Young-Mi
Lee, Won-Sang
Kim, Eun Young
Choi, Jung-Hwa
Kim, Cheol-Hee
Choi, Jae Young
TI Fucoidan promotes mechanosensory hair cell regeneration following amino
glycoside-induced cell death
SO HEARING RESEARCH
LA English
DT Article
ID ZEBRAFISH LATERAL-LINE; AMINOGLYCOSIDE TOXICITY; INNER-EAR; GENES;
NOTCH; OTOTOXICITY; COCHLEA; HEARING; SCREEN; MODEL
AB Objective: Lateral line system of the zebrafish is a useful model for study of hair cell toxicity and regeneration. We found that low molecular weight fucoidan (LMWF) stimulated the regeneration of mechanosensory hair cells after neomycin-induced cell death in zebrafish lateral line. The aims of this study were to quantify the regenerative effects of LMWF and determine their relationship to the Notch and FGF signaling pathways.
Methods: Wild-type zebrafish and three different transgenic zebrafish lines (Pou4f3::GFP, scm1::GFP, and E720::GFP) were used. At 4.5-6 days post-fertilization, lateral line hair cells of larvae were eliminated using neomycin (500 mu M). Larvae were then treated with LMWF. Neuromasts were observed using confocal microscopy. Stereocilia morphology was observed using scanning electron microscopy, and the location and status of regeneration was assessed using 5-bromo-2-deoxyuridine (BrdU) incorporation.
Results: Hair cells damaged by neomycin treatment regenerated faster in wild-type and Pou4f3::GFP larvae treated with LMWF (50 mu g/ml) than in untreated controls. LMWF also enhanced the regeneration of supporting cells in scm1::GFP and E720::GFP larvae. Increased numbers of BrdU-labeled cells were found after LMWF treatment in neuromast regions corresponding to internal and peripheral supporting cells. The effect of LMWF was mimicked by the Notch signaling inhibitor N[N-(3,5-difluorophenacetyl)1-alanyl]-5-phenylglycine t-butyl ester (DAPT), but the effects of LMWF and DAPT were not additive.
Conclusion: LMWF enhances the regeneration of hair cells damaged by neomycin. The mechanism may involve the Notch signaling pathway. LMWF shows promise as a therapeutic agent for hearing and balance disorders. (C) 2011 Elsevier B.V. All rights reserved.
C1 [So, Ju-Hoon; Choi, Jung-Hwa; Kim, Cheol-Hee] Chungnam Natl Univ, Dept Biol, Taejon, South Korea.
[So, Ju-Hoon; Choi, Jung-Hwa; Kim, Cheol-Hee] Chungnam Natl Univ, GRAST, Taejon, South Korea.
[Moon, In Seok] Chung Ang Univ, Dept Otorhinolaryngol Head & Neck Surg, Coll Med, Seoul 156756, South Korea.
[Jung, Young-Mi] Kyoungpook Natl Univ, Dept Genet Engn, Coll Nat Sci, Taegu, South Korea.
[Lee, Won-Sang; Kim, Eun Young; Choi, Jae Young] Yonsei Univ, Dept Otorhinolaryngol Head & Neck Surg, Coll Med, Seoul 120749, South Korea.
RP Kim, CH (reprint author), Chungnam Natl Univ, Dept Biol, Taejon, South Korea.
EM zebrakim@cnu.ac.kr; jychoi@yuhs.ac
RI Kim, Cheol-Hee/F-6278-2013
FU Korean Healthcare Technology R&D Project for Health, Welfare & Family
Affairs, Republic of Korea [A090496]; National Research Foundation of
Korea (NRF) through National Core Research Center for Nanomedical
Technology [R15-2004-024-00000-0]; NRF; Ministry of Education. Science
and Technology [20100024645]
FX This study was supported by a grant of the Korean Healthcare Technology
R&D Project for Health, Welfare & Family Affairs, Republic of Korea
(A090496) and National Research Foundation of Korea (NRF) through
National Core Research Center for Nanomedical Technology
(R15-2004-024-00000-0) and a Basic Science Research Program through the
NRF funded by the Ministry of Education. Science and Technology
(20100024645).
CR Adler HJ, 1996, NEUROSCI LETT, V205, P17, DOI 10.1016/0304-3940(96)12367-3
BAIRD RA, 1993, HEARING RES, V65, P164, DOI 10.1016/0378-5955(93)90211-I
Behra M, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000455
Changotade SIT, 2008, J BIOMED MATER RES A, V87A, P666, DOI 10.1002/jbm.a.31819
Chiu LL, 2008, JARO-J ASSOC RES OTO, V9, P178, DOI 10.1007/s10162-008-0118-y
Fukuta K, 2008, J PHARM PHARMACOL, V60, P499, DOI 10.1211/jpp.60.4.0013
Harris JA, 2003, JARO, V4, P219, DOI 10.1007/s10162-002-3022-x
Hori R, 2007, NEUROREPORT, V18, P1911
Itoh M, 2001, MECH DEVELOP, V102, P263, DOI 10.1016/S0925-4773(01)00308-2
Jung Y.M., 2008, OFF J KOREAN SOC TOX, V24, P79
Jung Y.M., 2007, BIOAVILABLE FUCOIDAN
Kang DH, 2009, J MED CHEM, V52, P3093, DOI 10.1021/jm8014734
Kim CH, 2008, APOPTOSIS, V13, P1184, DOI 10.1007/s10495-008-0242-5
Kim KR, 2005, EUR J PHARMACOL, V528, P37, DOI 10.1016/j.ejphar.2005.10.027
Li B, 2008, MOLECULES, V13, P1671, DOI 10.3390/molecules13081671
LIPPE WR, 1991, HEARING RES, V56, P203, DOI 10.1016/0378-5955(91)90171-5
Luyt CE, 2003, J PHARMACOL EXP THER, V305, P24, DOI 10.1124/jpet.102.046144
Ma EY, 2008, J NEUROSCI, V28, P2261, DOI 10.1523/JNEUROSCI.4372-07.2008
Ma EY, 2009, CURR BIOL, V19, pR381, DOI 10.1016/j.cub.2009.03.057
Millimaki BB, 2007, DEVELOPMENT, V134, P295, DOI 10.1242/dev.02734
Nechiporuk A, 2008, SCIENCE, V320, P1774, DOI 10.1126/science.1156547
Nicolson T, 2005, ANNU REV GENET, V39, P9, DOI 10.1146/annurev.genet.39.073003.105049
Owens KN, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000020
Parinov S, 2004, DEV DYNAM, V231, P449, DOI 10.1002/dvdy.20157
RUBEL EW, 1995, SCIENCE, V267, P701, DOI 10.1126/science.7839150
Ruben R. J., 1967, ACTA OTO-LARYNGOL, V220, P1
Rybak LP, 2007, KIDNEY INT, V72, P931, DOI 10.1038/sj.ki.5002434
SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1
Stone JS, 2000, P NATL ACAD SCI USA, V97, P11714, DOI 10.1073/pnas.97.22.11714
Sweeney EA, 2002, BLOOD, V99, P44, DOI 10.1182/blood.V99.1.44
Ton C, 2005, HEARING RES, V208, P79, DOI 10.1016/j.heares.2005.05.005
Wang J, 2009, INT J BIOL MACROMOL, V44, P170, DOI 10.1016/j.ijbiomac.2008.11.010
Westerfield M., 2000, ZEBRAFISH BOOK GUIDE, V4th
Whitfield TT, 2002, J NEUROBIOL, V53, P157, DOI 10.1002/neu.10123
Xiao T, 2005, DEVELOPMENT, V132, P2955, DOI 10.1242/dev.01861
NR 35
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 236
EP 242
DI 10.1016/j.heares.2011.07.007
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300026
PM 21810458
ER
PT J
AU Weegerink, NJD
Schraders, M
Leijendeckers, J
Slieker, K
Huygen, PLM
Hoefsloot, L
Oostrik, J
Pennings, RJE
Simon, A
Snik, A
Kremer, H
Kunst, HPM
AF Weegerink, N. J. D.
Schraders, M.
Leijendeckers, J.
Slieker, K.
Huygen, P. L. M.
Hoefsloot, L.
Oostrik, J.
Pennings, R. J. E.
Simon, A.
Snik, A.
Kremer, H.
Kunst, H. P. M.
TI Audiometric characteristics of a Dutch family with Muckle-Wells syndrome
SO HEARING RESEARCH
LA English
DT Article
ID HEREDITARY PERIODIC FEVER; RICH REPEAT DOMAIN; NF-KAPPA-B;
AUTOINFLAMMATORY SYNDROMES; ARTICULAR SYNDROME; CIAS1 MUTATIONS; AA
AMYLOIDOSIS; INTERLEUKIN-1-BETA SECRETION; SPEECH RECEPTION; AFFECTED
MEMBERS
AB Description of the audiometric and vestibular characteristics of a Dutch family with Muckle-Wells syndrome (MWS).
Examination of all family members consisted of pure tone audiometry, otoscopy and genetic analysis. In addition, a selected group underwent speech audiometry, vestibulo-ocular examination, acoustic reflex testing and tests assessing loudness scaling, gap detection, difference limen for frequency and speech perception in noise. Linear regression analyses were performed on the audiometric data.
Six clinically affected family members participated in this study and all were carriers of a p.Tyr859His mutation in the NLPR3 gene. Most affected family members reported bilateral, slowly progressive hearing impairment since childhood. Hearing impairment started at the high frequencies and the low- and mid-frequency threshold values deteriorated with advancing age. Annual threshold deterioration (ATD) ranged from 1.3 to 1.9 dB/year with the highest values at the lower frequencies. Longitudinal linear regression analysis demonstrated significant progression for a number of frequencies in five individuals. Speech recognition scores were clearly affected. However, these individuals tended to have higher speech recognition scores than presbyacusis patients at similar PTA(1.2.4) (kHz) levels.
The loudness growth curves were steeper than those found in individuals with normal hearing, except for one family member (individual IV:6). Suprathreshold measurements, such as difference limen for frequency (DLf), gap detection and particularly speech perception in noise were within the normal range or at least close to data obtained in two groups of patients with a so-called conductive type of hearing loss, situated in the cochlea.
Hearing impairment in MWS is variable and shows resemblance to previously described intra-cochlear conductive hearing impairment. This could be helpful in elucidating the pathogenesis of hearing impairment in MWS. Other associated symptoms of MWS were mild and nonspecific in the present family. Therefore, even without any obvious syndromic features, MWS can be the cause of sensorineural hearing impairment, especially when combined with (mild) skin rash and musculoskeletal symptoms. An early diagnosis of MWS is essential to prevent irreversible damage from amyloidosis. The effect of IL-1/beta inhibitors on hearing impairment is more controversial, but an early start of treatment seems to be essential. Therefore, our results are of importance in patient care and counselling. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Weegerink, N. J. D.; Schraders, M.; Leijendeckers, J.; Huygen, P. L. M.; Hoefsloot, L.; Oostrik, J.; Pennings, R. J. E.; Snik, A.; Kremer, H.; Kunst, H. P. M.] Radboud Univ Nijmegen, Dept Otorhinolaryngol Head & Neck Surg, Med Ctr, NL-6500 HB Nijmegen, Netherlands.
[Weegerink, N. J. D.; Schraders, M.; Leijendeckers, J.; Oostrik, J.; Pennings, R. J. E.; Snik, A.; Kremer, H.; Kunst, H. P. M.] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, NL-6500 HB Nijmegen, Netherlands.
[Schraders, M.; Oostrik, J.; Kremer, H.] Radboud Univ Nijmegen, Nijmegen Ctr Mol Life Sci, NL-6500 HB Nijmegen, Netherlands.
[Slieker, K.; Simon, A.] Radboud Univ Nijmegen, Dept Internal Med, Med Ctr, NL-6500 HB Nijmegen, Netherlands.
[Hoefsloot, L.; Kremer, H.] Radboud Univ Nijmegen, Dept Human Genet, Med Ctr, NL-6500 HB Nijmegen, Netherlands.
RP Weegerink, NJD (reprint author), Radboud Univ Nijmegen, Dept Otorhinolaryngol Head & Neck Surg, Med Ctr, POB 9101, NL-6500 HB Nijmegen, Netherlands.
EM N.Weegerink@kno.umcn.nl; M.Schraders@antrg.umcn.nl;
J.Leijendeckers@kno.umcn.nl; K.Slieker@aig.umcn.nl;
P.Huygen@kno.umcn.nl; L.Hoefsloot@antrg.umcn.nl;
J.Oostrik@antrg.umcn.nl; R.Pennings@kno.umcn.nl; A.Simon@aig.umcn.nl;
A.Snik@kno.umcn.nl; H.Kremer@antrg.umcn.nl; H.Kunst@kno.umcn.nl
RI Simon, Anna/D-3757-2009; Kremer, Hannie/F-5126-2010; Kunst,
Henricus/J-6456-2012; Pennings, Ronald/J-6651-2012; Snik, Ad/H-8092-2014
OI Simon, Anna/0000-0002-6141-7921;
FU Heinsius Houbolt foundation; INTERREG IV A-program Germany-the
Netherlands
FX This study was supported by a grant from the Heinsius Houbolt foundation
and by a grant from the INTERREG IV A-program Germany-the Netherlands.
CR Aganna E, 2002, ARTHRITIS RHEUM, V46, P2445, DOI 10.1002/art.10509
Aganna E, 2004, GENES IMMUN, V5, P289, DOI 10.1038/sj.gene.6364070
Agostini L, 2004, IMMUNITY, V20, P319, DOI 10.1016/S1074-7613(04)00046-9
Aksentijevich I, 2007, ARTHRITIS RHEUM, V56, P1273, DOI 10.1002/art.22491
Albrecht M, 2003, FEBS LETT, V554, P520, DOI 10.1016/S0014-5793(03)01222-5
Alves Fátima R A, 2005, Braz J Otorhinolaryngol, V71, P813
Arostegui JI, 2004, ARTHRITIS RHEUM, V50, P4045, DOI 10.1002/art.20633
Biswas D, 2010, INT J PEDIATR OTORHI, V74, P553, DOI [10.1016/j.ijporl.2010.02.023, 10.1016/j.ijpor1.2010.02.023]
Brydges SD, 2009, IMMUNITY, V30, P875, DOI 10.1016/j.immuni.2009.05.005
Cuisset L, 1999, AM J HUM GENET, V65, P1054, DOI 10.1086/302589
Dalgic B, 2007, PEDIATR NEPHROL, V22, P1391, DOI 10.1007/s00467-007-0500-8
De Leenheer EMR, 2002, ANN OTO RHINOL LARYN, V111, P267
De Leenheer EMR, 2004, ANN OTO RHINOL LARYN, V113, P922
Dode C, 2002, AM J HUM GENET, V70, P1498, DOI 10.1086/340786
Dode C, 2003, J NEPHROL, V16, P435
Dowds TA, 2004, J BIOL CHEM, V279, P21924, DOI 10.1074/jbc.M401178200
Feldmann J, 2002, AM J HUM GENET, V71, P198, DOI 10.1086/341357
Frenkel J, 2004, ARTHRITIS RHEUM, V50, P2719, DOI 10.1002/art.20295
Gattorno M, 2007, ARTHRITIS RHEUM, V56, P3138, DOI 10.1002/art.22842
Hawkins PN, 2004, ARTHRITIS RHEUM-US, V50, P607, DOI 10.1002/art.20033
Hawkins PN, 2003, NEW ENGL J MED, V348, P2583, DOI 10.1056/NEJM200306193482523
Hentgen V, 2005, J RHEUMATOL, V32, P747
Hoffman HM, 2001, NAT GENET, V29, P301, DOI 10.1038/ng756
Huygen PL, 2003, AUDIOL MED, V1, P37
International Organization for Standardization, 1984, 7029 ISO
Jeru I, 2006, ARTHRITIS RHEUM, V54, P508, DOI 10.1002/art.21618
Jeru I, 2010, ARTHRITIS RHEUM-US, V62, P1176, DOI 10.1002/art.27326
Koike Ryuji, 2007, Mod Rheumatol, V17, P496, DOI 10.1007/s10165-007-0616-5
Kummerle-Deschner JB, 2010, ARTHRITIS RHEUM-US, V62, P3783, DOI 10.1002/art.27696
Latz E, 2010, CURR OPIN IMMUNOL, V22, P28, DOI 10.1016/j.coi.2009.12.004
LEGENT F, 1976, ANN OTO-LAR CHIR C-F, V93, P355
Leslie KS, 2006, ARCH DERMATOL, V142, P1591, DOI 10.1001/archderm.142.12.1591
Maksimovic L, 2008, RHEUMATOLOGY, V47, P309, DOI 10.1093/rheumatology/kem318
Manji GA, 2002, J BIOL CHEM, V277, P11570, DOI 10.1074/jbc.M112208200
Marres H, 1997, ARCH OTOLARYNGOL, V123, P573
Matsushima N, 2005, CELL MOL LIFE SCI, V62, P2771, DOI 10.1007/s00018-005-5187-z
McDermott MF, 2000, ARTHRITIS RHEUM, V43, P2034, DOI 10.1002/1529-0131(200009)43:9<2034::AID-ANR14>3.0.CO;2-J
Meng GX, 2010, EUR J IMMUNOL, V40, P649, DOI 10.1002/eji.200940191
Meng GX, 2009, IMMUNITY, V30, P860, DOI 10.1016/j.immuni.2009.04.012
Merchant SN, 2004, LARYNGOSCOPE, V114, P1609, DOI 10.1097/00005537-200409000-00020
Mirault T, 2006, ARTHRITIS RHEUM, V54, P1697, DOI 10.1002/art.21807
Moon I.S., 2008, ACTA OTO-LARYNGOL, V129, P932
MOSER LM, 1987, HNO, V35, P318
MUCKLE TJ, 1962, Q J MED, V31, P235
Neven B, 2004, BLOOD, V103, P2809, DOI 10.1182/blood-2003-07-2531
O'Connor W, 2003, J IMMUNOL, V171, P6329
Plantinga RF, 2007, JARO-J ASSOC RES OTO, V8, P1, DOI 10.1007/s10162-006-0060-9
PLOMP R, 1979, AUDIOLOGY, V18, P43
Rynne M, 2006, ANN RHEUM DIS, V65, P533, DOI 10.1136/ard.2005.038091
Sanchez GAM, 2009, DEV MED CHILD NEUROL, V51, P420, DOI 10.1111/j.1469-8749.2009.03336.x
Schroder K, 2010, CELL, V140, P821, DOI 10.1016/j.cell.2010.01.040
SMOORENBURG GF, 1992, J ACOUST SOC AM, V91, P421, DOI 10.1121/1.402729
Sutterwala FS, 2006, IMMUNITY, V24, P317, DOI 10.1016/j.immuni.2006.02.004
Kuemmerle-Deschner JB, 2011, ARTHRITIS RHEUM-US, V63, P840, DOI 10.1002/art.30149
van der Hilst JCH, 2005, CLIN EXP MED, V5, P87, DOI 10.1007/s10238-005-0071-6
Yamazaki T, 2008, ARTHRITIS RHEUM, V58, P864, DOI 10.1002/art.23261
NR 56
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 243
EP 251
DI 10.1016/j.heares.2011.07.006
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300027
PM 21810457
ER
PT J
AU Seldran, F
Micheyl, C
Truy, E
Berger-Vachon, C
Thai-Van, H
Gallego, S
AF Seldran, Fabien
Micheyl, Christophe
Truy, Eric
Berger-Vachon, Christian
Thai-Van, Hung
Gallego, Stephane
TI A model-based analysis of the "combined-stimulation advantage"
SO HEARING RESEARCH
LA English
DT Article
ID LOW-FREQUENCY SPEECH; USE HEARING-AIDS; ELECTRIC HEARING; ACOUSTIC
HEARING; FUNDAMENTAL-FREQUENCY; PERCEPTUAL SEPARATION; COCHLEAR
IMPLANTS; WORD RECOGNITION; OPPOSITE EARS; NOISE
AB Improvements in speech-recognition performance resulting from the addition of low-frequency information to electric (or vocoded) signals have attracted considerable interest in recent years. An important question is whether these improvements reflect a form of constructive perceptual interaction-whereby acoustic cues enhance the perception of electric or vocoded signals-or whether they can be explained without assuming any interaction. To address this question, speech-recognition performance was measured in 24 normal-hearing listeners using lowpass-filtered, vocoded, and "combined" (lowpass + vocoded) words presented either in quiet or in a realistic background (cafeteria noise), for different signal-to-noise ratios, different lowpass-filter cutoff frequencies, and different numbers of vocoder bands. The results of these measures were then compared to the predictions of three models of cue combination, including a "probability-summation" model and two Gaussian signal detection theory (SDT) models one (the "independent-noises" model) involving pre-combination noises, and the other (the "late-noise" model) involving post-combination noise. Consistent with previous findings, speech-recognition performance with combined stimulation was significantly higher than performance with vocoded or lowpass stimuli alone, and it was also higher than predicted by the probability-summation model. The two Gaussian-SOT models could account quantitatively for the data. Moreover, a Bayesian model-comparison procedure demonstrated that, given the data, these two models were far more likely than the probability-summation model. Since these models do not involve any constructive-interaction mechanism, this demonstrates that constructive interactions are not needed to explain the combined-stimulation benefits measured in this study. It will be important for future studies to investigate whether this conclusion generalizes to other test conditions, including real EAS, and to further test the assumptions of these different models of the combined-stimulation advantage. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Seldran, Fabien; Truy, Eric; Berger-Vachon, Christian; Thai-Van, Hung; Gallego, Stephane] Lyon Neurosci Res Ctr, INSERM, PACS Team Speech Audiol Commun Hlth, U1028, F-69000 Lyon, France.
[Seldran, Fabien; Truy, Eric; Berger-Vachon, Christian; Thai-Van, Hung; Gallego, Stephane] Lyon Neurosci Res Ctr, INSERM, PACS Team Speech Audiol Commun Hlth, CNRS,UMR5292, F-69000 Lyon, France.
[Seldran, Fabien; Truy, Eric; Berger-Vachon, Christian; Thai-Van, Hung; Gallego, Stephane] Univ Lyon 1, F-69000 Lyon, France.
[Seldran, Fabien] Vibrant Med El Hearing Technol GmbH, F-06906 Sophia Antipolis, France.
[Micheyl, Christophe] Univ Minnesota, Dept Psychol, Minneapolis, MN 55455 USA.
[Truy, Eric; Thai-Van, Hung] Hop Edouard Herriot, Audiol & ENT Dept, F-69437 Lyon, France.
RP Seldran, F (reprint author), Hop Edouard Herriot, INSERM, CNRS, Ctr Rech Neurosci Lyon,Equipe Audit,U1028,UMR5292, Pavil U,Pl Arsonval, F-69437 Lyon 03, France.
EM fseldran@yahoo.fr; cmicheyl@umn.edu; eric.truy@chu-lyon.fr;
christian.berger-vachon@univ-lyon1.fr; hthaivan@gmail.com;
sgallego@hotmail.fr
FU Vibrant Med-El France [CIFRE 266/2007]; French National Center for
Scientific Research (CNRS); NIH [R01 DC05216]; "Laboratoire Audition
Conseil" (22 rue Constantine, Lyon 69001, France)
FX This work was supported by Vibrant Med-El France (Doctoral Research
Grant CIFRE 266/2007 to F.S.), the French National Center for Scientific
Research (CNRS), NIH R01 DC05216 (author C.M.) and "Laboratoire Audition
Conseil" (22 rue Constantine, Lyon 69001, France) Dr. Christopher Brown
and an anonymous reviewer provided useful comments on an earlier version
of the manuscript.
CR Baskent D, 2010, HEARING RES, V270, P127, DOI 10.1016/j.heares.2010.08.011
Bishop C. M., 2006, PATTERN RECOGNITION
BOOTHROYD A, 1988, J ACOUST SOC AM, V84, P101, DOI 10.1121/1.396976
BRAIDA LD, 1991, Q J EXP PSYCHOL-A, V43, P647
BROKX JPL, 1982, J PHONETICS, V10, P23
Brown CA, 2010, HEARING RES, V266, P52, DOI 10.1016/j.heares.2009.08.011
Brown CA, 2009, J ACOUST SOC AM, V125, P1658, DOI 10.1121/1.3068441
Brown CA, 2009, EAR HEARING, V30, P489, DOI 10.1097/AUD.0b013e3181ab2b87
Buchner A, 2009, AUDIOL NEURO-OTOL, V14, P8, DOI 10.1159/000206490
Carlyon RP, 1996, J ACOUST SOC AM, V99, P517, DOI 10.1121/1.414510
Carroll J, 2007, HEARING RES, V231, P42, DOI 10.1016/j.heares.2007.05.004
Chang JE, 2006, IEEE T BIO-MED ENG, V53, P2598, DOI 10.1109/TBME.2006.883793
Chen F, 2010, EAR HEARING, V31, P259, DOI 10.1097/AUD.0b013e3181c7db17
Ching TYC, 2004, EAR HEARING, V25, P9, DOI 10.1097/01.AUD.0000111261.84611.C8
CULLING JF, 1993, J ACOUST SOC AM, V93, P3454, DOI 10.1121/1.405675
Cullington HE, 2011, EAR HEARING, V32, P16, DOI 10.1097/AUD.0b013e3181edfbd2
Dorman MF, 2005, EAR HEARING, V26, P371, DOI 10.1097/00003446-200508000-00001
FAULKNER A, 1990, British Journal of Audiology, V24, P381, DOI 10.3109/03005369009076579
Fletcher H., 1953, SPEECH HEARING COMMU
Fournier J. E., 1951, AUDIOMETRIE VOCALE
Gantz Bruce J, 2006, Audiol Neurootol, V11 Suppl 1, P63, DOI 10.1159/000095616
Gantz Bruce J, 2004, Cochlear Implants Int, V5 Suppl 1, P8, DOI 10.1002/cii.147
Gantz BJ, 2004, ACTA OTO-LARYNGOL, V124, P344, DOI 10.1080/00016480410016423
Gantz BJ, 2003, LARYNGOSCOPE, V113, P1726, DOI 10.1097/00005537-200310000-00012
Gelman A, 1995, BAYESIAN DATA ANAL
Gfeller Kate E, 2006, Audiol Neurootol, V11 Suppl 1, P12, DOI 10.1159/000095608
Green D. M., 1966, SIGNAL DETECTION THE
Green D.M., 1958, 81 U MICH EL DEF GRO
GREEN DM, 1991, PERCEPT PSYCHOPHYS, V49, P100, DOI 10.3758/BF03211621
Jaynes E. T., 2003, PROBABILITY THEORY L
Jeffreys H., 1961, THEORY PROBABILITY, V3rd
Jordan M. I., 1999, LEARNING GRAPHICAL M
Kong YY, 2005, J ACOUST SOC AM, V117, P1351, DOI 10.1121/1.1857526
Kong YY, 2011, J SPEECH LANG HEAR R, V54, P959, DOI 10.1044/1092-4388(2010/10-0197)
Kong YY, 2007, J ACOUST SOC AM, V121, P3717, DOI 10.1121/1.2717408
KRYTER KD, 1962, J ACOUST SOC AM, V34, P1689, DOI 10.1121/1.1909094
Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009
Li N, 2008, J ACOUST SOC AM, V123, P2287, DOI 10.1121/1.2839013
Mackay D. J. C., 2003, INFORM THEORY INFERE
MacMillan N. A., 2005, DETECTION THEORY USE
Micheyl C., REVISITING EVI UNPUB
Mok M, 2006, J SPEECH LANG HEAR R, V49, P338, DOI 10.1044/1092-4388(2006/027)
MOORE B C J, 1985, British Journal of Audiology, V19, P189, DOI 10.3109/03005368509078973
Moore BCJ, 1997, BRIT J AUDIOL, V31, P227
Müsch H, 2001, J Acoust Soc Am, V109, P2896, DOI 10.1121/1.1371971
NITTROUER S, 1990, J ACOUST SOC AM, V87, P2705, DOI 10.1121/1.399061
PELLI DG, 1985, J OPT SOC AM A, V2, P1508, DOI 10.1364/JOSAA.2.001508
Pirenne MH, 1943, NATURE, V152, P698, DOI 10.1038/152698a0
Qin MK, 2006, J ACOUST SOC AM, V119, P2417, DOI 10.1121/1.2178719
Ronan D, 2004, J ACOUST SOC AM, V116, P1749, DOI 10.1121/1.1777858
Rouder JN, 2005, PSYCHON B REV, V12, P573, DOI 10.3758/BF03196750
Treisman M, 1998, PSYCHOL METHODS, V3, P252, DOI 10.1037/1082-989X.3.2.252
Turner CW, 2004, J ACOUST SOC AM, V115, P1729, DOI 10.1121/1.1687425
Tyler R. S., 1986, FREQUENCY SELECTIVIT, P309
Uchanski RM, 1998, PERCEPT PSYCHOPHYS, V60, P533, DOI 10.3758/BF03206044
von Ilberg C, 1999, ORL J OTO-RHINO-LARY, V61, P334, DOI 10.1159/000027695
Wickens T., 2001, ELEMENTARY SIGNAL DE
NR 57
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 252
EP 264
DI 10.1016/j.heares.2011.06.004
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300028
PM 21801823
ER
PT J
AU Valero, MD
Ratnam, R
AF Valero, Michelle D.
Ratnam, Rama
TI Reliability of distortion-product otoacoustic emissions in the common
marmoset (Callithrix jacchus)
SO HEARING RESEARCH
LA English
DT Article
ID TEST-RETEST RELIABILITY; NORMAL-HEARING; MACACA-MULATTA; REPEATABILITY;
PROGESTERONE; VARIABILITY; ESTROGEN; HUMANS; CYCLE; EARS
AB This study examines the test-retest reliability of distortion-product otoacoustic emissions (DPOAEs) in ketamine-anesthetized common marmosets (Callithrix jacchus). DPOAE gain functions were measured at 16 f(2)-frequencies between 3 and 24 kHz. Test-retest reliability was assessed at the following time intervals: (1) Interleaved, in which two gain functions were obtained at each frequency before advancing to the next frequency, (2) Immediate, wherein one gain function was collected at all f(2)-frequencies and the retest was immediately performed without removing the probe tip, (3) Short-term, in which the retest followed a 10-min period with the probe removed, and (4) Long-term, wherein the retest was performed at least one week after the initial test. Reliability was assessed using four correlation coefficients used in the literature. Test-retest reliability was best in the interleaved interval and worst in the short-term interval. In general, reliability was best when primary-tone levels were high. Correlation coefficients decreased at frequencies above 12-kHz in the short-term and long-term intervals, but the decrease was more substantial in females than in males in the long-term interval. At frequencies below 12 kHz, same-day measurements (2, 3) were less repeatable, regardless of whether the probe was removed, which may be due to time under anesthesia. These results have implications for DPOAE studies where repeated measures are required and when treatment or group differences are small. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Valero, Michelle D.; Ratnam, Rama] Univ Texas San Antonio, Dept Biol, San Antonio, TX 78249 USA.
RP Valero, MD (reprint author), Univ Texas San Antonio, Dept Biol, San Antonio, TX 78249 USA.
EM michelle.valero@utsa.edu
FU National Institute on Deafness and other Communication Disorders (NIDCD)
[R03DC009050, DC00153]
FX This work was supported by a research grant (R03DC009050) from the
National Institute on Deafness and other Communication Disorders
(NIDCD). The authors are grateful for the data acquisition software
provided by Edward Pasanen, from Dennis McFadden's lab, which was
written while supported by research grant DC00153 from the NIDCD.
Figures were made on lgorPro software. We are thankful to the reviewers,
the Specialized Neuroscience Research Program (SNRP) at UTSA, and
Pamella Tijerina for the helpful suggestions made on earlier versions of
this manuscript. We also thank Donna Layne-Colon and the staff at TBRI,
who take great care of our marmoset colony.
CR Allen J. B, 1990, USER MANUAL CUBDIS D
Al-Mana D, 2010, HEARING RES, V268, P114, DOI 10.1016/j.heares.2010.05.007
Beattie RC, 2003, INT J AUDIOL, V42, P348, DOI 10.3109/14992020309101328
Cacace AT, 1996, J SPEECH HEAR RES, V39, P1138
Dreisbach LE, 2006, EAR HEARING, V27, P466, DOI 10.1097/01.aud.0000233892.37803.1a
Fisher R. A., 1938, STAT METHODS RES WOR
FRANKLIN DJ, 1992, EAR HEARING, V13, P417
Garner CA, 2008, J ACOUST SOC AM, V124, P1054, DOI 10.1121/1.2939126
Guimaraes P, 2006, P NATL ACAD SCI USA, V103, P14246, DOI 10.1073/pnas.0606891103
Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6
HARLOW CR, 1983, J ZOOL, V201, P273
Keppler H, 2010, INT J AUDIOL, V49, P99, DOI 10.3109/14992020903300431
LASKY RE, 1995, HEARING RES, V89, P35, DOI 10.1016/0378-5955(95)00120-1
McFadden D, 1998, J ACOUST SOC AM, V104, P1555, DOI 10.1121/1.424366
McFadden D, 2009, J ACOUST SOC AM, V125, P239, DOI 10.1121/1.3037231
McGraw KO, 1996, PSYCHOL METHODS, V1, P30, DOI 10.1037/1082-989X.1.4.390
Ng I.H., 2005, AUDIOL MED, V3, P108, DOI 10.1080/16513860510028284
Parazzini M, 2006, Conf Proc IEEE Eng Med Biol Soc, V1, P2122
PARK JY, 1995, HEARING RES, V86, P147, DOI 10.1016/0378-5955(95)00065-C
Price K, 2009, HEARING RES, V252, P29, DOI 10.1016/j.heares.2009.02.010
Rasmussen AN, 2005, INT J AUDIOL, V44, P237, DOI 10.1080/14992020500057640
ROEDE J, 1993, AUDIOLOGY, V32, P273
Saltzman W, 2009, P R SOC B, V276, P389, DOI 10.1098/rspb.2008.1374
Silvestri A, 2007, REPRODUCTION, V134, P341, DOI 10.1530/REP-06-0266
Sockalingam R, 2007, INT J AUDIOL, V46, P351, DOI 10.1080/14992020701311168
Stuart A, 2009, J SPEECH LANG HEAR R, V52, P671, DOI 10.1044/1092-4388(2008/08-0118)
Valero MD, 2008, HEARING RES, V243, P57, DOI 10.1016/j.heares.2008.05.006
Wagner WG, 2008, EAR HEARING, V29, P378, DOI 10.1097/AUD.0b013e31816906e7
Yellin M W, 1999, J Am Acad Audiol, V10, P400
Zhao F, 1999, SCAND AUDIOL, V28, P171, DOI 10.1080/010503999424743
NR 30
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 265
EP 271
DI 10.1016/j.heares.2011.07.004
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300029
PM 21801824
ER
PT J
AU Schraven, SP
Hirt, B
Gummer, AW
Zenner, HP
Dalhoff, E
AF Schraven, Sebastian P.
Hirt, Bernhard
Gummer, Anthony W.
Zenner, Hans-Peter
Dalhoff, Ernst
TI Controlled round-window stimulation in human temporal bones yielding
reproducible and functionally relevant stapedial responses
SO HEARING RESEARCH
LA English
DT Article
ID MIDDLE-EAR IMPLANT; SOUND-PRESSURE MEASUREMENTS; FLOATING MASS
TRANSDUCER; MIXED HEARING LOSSES; VIBRANT SOUNDBRIDGE; COCHLEA;
RECONSTRUCTION; CONDUCTION; TRANSMISSION; PERFORMANCE
AB Stimulation of the round window (RW) has gained increasing clinical importance. Clinical, as well as human temporal bone and in-vivo animal studies show considerable variability. The influence of RW stimulation on the cochlea remains unclear. We designed a human temporal-bone study with controlled direct mechanical stimulation of the RW membrane to identify conditions for successful RW stimulation. Eight human temporal bones were stimulated on the RW by piezoelectric stack actuators with cylindrical aluminium rods of diameter 0.5 mm and with either flat or 30 degrees inclined top surface. Using a dedicated two-stage positioning protocol for the actuator, we achieved highly reproducible measurements of the stimulus vibration at the RW and of the resultant vibration of the stapes footplate. The reverse transmission, characterized by the displacement ratio of the stapes-footplate relative to the actuator tip on the RW membrane, yielded an average displacement ratio of 0.089 up to 12 kHz when the actuator was coupled without angular misalignment to the RW membrane. The results suggest that 90-mu m pretension of the RW membrane is essential for optimum and reproducible RW stimulation. The displacements are shown to be roughly consistent with the equal-volume displacement hypothesis under specific assumptions about the displacement mode of the RW membrane. It is further suggested that the large inter-patient variability in the effectiveness of RW stimulation might be due primarily to the success of coupling, rather than to the variability of functionally relevant anatomical parameters. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Schraven, Sebastian P.; Hirt, Bernhard; Gummer, Anthony W.; Zenner, Hans-Peter; Dalhoff, Ernst] Univ Tubingen, Dept Otolaryngol, Sect Physiol Acoust & Commun, Tubingen Hearing Res Ctr THRC, D-72076 Tubingen, Germany.
[Hirt, Bernhard] Univ Tubingen, Inst Anat, D-72076 Tubingen, Germany.
RP Dalhoff, E (reprint author), Univ Tubingen, Dept Otolaryngol, Sect Physiol Acoust & Commun, Tubingen Hearing Res Ctr THRC, Elfriede Aulhorn Str 5, D-72076 Tubingen, Germany.
EM sebastian.schraven@med.uni-tuebingen.de;
bernhard.hirt@klinikum.uni-tuebingen.de;
anthony.gummer@uni-tuebingen.de; hans-peter.zenner@med.uni-tuebingen.de;
ernst.dalhoff@uni-tuebingen.de
FU German Ministry of Education and Research (BMBF)
FX This work was supported by the German Ministry of Education and Research
(BMBF).
CR Arnold A, 2010, HEARING RES, V263, P120, DOI 10.1016/j.heares.2009.12.019
Baumgartner WD, 2010, ADV OTO-RHINO-LARYNG, V69, P38, DOI 10.1159/000318521
Beltrame AM, 2009, OTOL NEUROTOL, V30, P194, DOI 10.1097/MAO.0b013e318180a495
Boeheim K, 2010, OTOL NEUROTOL, V31, P424, DOI 10.1097/MAO.0b013e3181cabd42
Colletti V, 2009, ACTA OTO-LARYNGOL, V129, P449, DOI 10.1080/00016480802642070
Colletti V, 2006, INT J AUDIOL, V45, P600, DOI 10.1080/14992020600840903
Cuda D, 2009, OTOL NEUROTOL, V30, P782, DOI 10.1097/MAO.0b013e3181b04d4d
Dalhoff E, 2007, P NATL ACAD SCI USA, V104, P1546, DOI 10.1073/pnas.0610185103
Frenzel H, 2009, LARYNGOSCOPE, V119, P67, DOI 10.1002/lary.20036
Gisselson L, 2011, ARCHIV OHR USW HEILK, V166, P411
Kiefer J, 2006, ORL J OTO-RHINO-LARY, V68, P378, DOI 10.1159/000095282
KRINGLEBOTN M, 1995, J ACOUST SOC AM, V98, P192, DOI 10.1121/1.413746
Linder T, 2009, OTOL NEUROTOL, V30, P41, DOI 10.1097/MAO.0b013e31818be812
Lupo JE, 2009, OTOL NEUROTOL, V30, P1215, DOI 10.1097/MAO.0b013e3181bc3c06
Nakajima HH, 2010, OTOL NEUROTOL, V31, P506, DOI 10.1097/MAO.0b013e3181c0ea9f
Nakajima HH, 2010, HEARING RES, V263, P114, DOI 10.1016/j.heares.2009.11.009
NUMMELA S, 1995, HEARING RES, V85, P18, DOI 10.1016/0378-5955(95)00030-8
OKUNO H, 1988, ACTA OTO-LARYNGOL, V106, P55, DOI 10.3109/00016488809107371
Pennings RJE, 2010, OTOL NEUROTOL, V31, P998, DOI 10.1097/MAO.0b013e3181e8fc21
Puria S, 1997, J ACOUST SOC AM, V101, P2754, DOI 10.1121/1.418563
Rodriguez Jorge J, 1997, HNO, V45, P997, DOI 10.1007/s001060050185
Rodriguez Jorge Jesus, 2006, Laryngoscope, V116, P473
RUGGERO MA, 1990, J ACOUST SOC AM, V87, P1612, DOI 10.1121/1.399409
SHERA CA, 1992, J ACOUST SOC AM, V92, P1382, DOI 10.1121/1.403931
Songer JE, 2007, J ACOUST SOC AM, V122, P932, DOI 10.1121/1.2747157
Stenfelt S, 2004, J ACOUST SOC AM, V115, P797, DOI 10.1121/1.1639903
Streitberger C, 2009, Rev Laryngol Otol Rhinol (Bord), V130, P83
TONNDORF J, 1962, ANN OTO RHINOL LARYN, V71, P5
Tringali S, 2010, AUDIOL NEURO-OTOL, V15, P291, DOI 10.1159/000283006
Voss SE, 2000, HEARING RES, V150, P43, DOI 10.1016/S0378-5955(00)00177-5
Voss SE, 1996, J ACOUST SOC AM, V100, P1602, DOI 10.1121/1.416062
WEVER EG, 1950, J ACOUST SOC AM, V22, P460, DOI 10.1121/1.1906628
WEVER EG, 1948, ARCH OTOLARYNGOL, V48, P19
Wollenberg B, 2007, HNO, V55, P349, DOI 10.1007/s00106-007-1540-x
ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382
NR 35
TC 14
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 272
EP 282
DI 10.1016/j.heares.2011.07.001
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300030
PM 21798325
ER
PT J
AU Zaske, R
Schweinberger, SR
AF Zaeske, Romi
Schweinberger, Stefan R.
TI You are only as old as you sound: Auditory aftereffects in vocal age
perception
SO HEARING RESEARCH
LA English
DT Article
ID HEARING-LOSS; HANDICAP PRINCIPLE; VOICE PERCEPTION; ADAPTATION; FACES;
RECOGNITION; SPEAKERS; SPEECH; ATTRACTIVENESS; PREFERENCES
AB High-level adaptation not only biases the perception of faces, but also causes transient distortions in auditory perception of non-linguistic voice information about gender, identity, and emotional intonation. Here we report a novel auditory aftereffect in perceiving vocal age: age estimates were elevated in age-morphed test voices when preceded by adaptor voices of young speakers (similar to 20 yrs), compared to old adaptor voices (similar to 70 yrs). This vocal age aftereffect (VAAE) complements a recently reported face aftereffect (Schweinberger et al., 2010) and points to selective neuronal coding of vocal age. Intriguingly, post-adaptation assessment revealed that VAAEs could persist for minutes after adaptation, although reduced in magnitude. As an important qualification, VAAEs during post-adaptation were modulated by gender congruency between speaker and listener. For both male and female listeners, VAAEs were much reduced for test voices of opposite gender. Overall, this study establishes a new auditory aftereffect in the perception of vocal age. We offer a tentative sociobiological explanation for the differential, gender-dependent recovery from vocal age adaptation. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Zaeske, Romi; Schweinberger, Stefan R.] Univ Jena, Dept Gen Psychol & Cognit Neurosci, Inst Psychol, D-07743 Jena, Germany.
[Schweinberger, Stefan R.] Univ Jena, DFG Res Unit Person Percept, Inst Psychol, D-07743 Jena, Germany.
RP Zaske, R (reprint author), Univ Jena, Dept Gen Psychol & Cognit Neurosci, Inst Psychol, Steiger 3-1, D-07743 Jena, Germany.
EM romi.zaeske@uni-jena.de
RI Schweinberger, Stefan/A-1860-2009
FU Deutsche Forschungsgemeinschaft (DFG) [Schw 511/10-1]
FX Supported in part by the Deutsche Forschungsgemeinschaft (DFG; grant
Schw 511/10-1) in the context of the DFG Research Unit Person Perception
(FOR1097). The authors thank Janis Etzel and Sina Schneider for help in
data acquisition and Christoph Casper for stimulus editing.
CR Andics A, 2010, NEUROIMAGE, V52, P1528, DOI 10.1016/j.neuroimage.2010.05.048
Anstis S, 1998, TRENDS COGN SCI, V2, P111, DOI 10.1016/S1364-6613(98)01142-5
Apicella CL, 2007, BIOLOGY LETT, V3, P682, DOI 10.1098/rsbl.2007.0410
Belin P, 2004, TRENDS COGN SCI, V8, P129, DOI 10.1016/j.tics.2004.01.008
Bestelmeyer PEG, 2010, COGNITION, V117, P217, DOI 10.1016/j.cognition.2010.08.008
Bruckert L, 2006, P ROY SOC B-BIOL SCI, V273, P83, DOI 10.1098/rspb.2005.3265
Collins SA, 2000, ANIM BEHAV, V60, P773, DOI 10.1006/anbe.2000.1523
Eppley B.D., 2001, CONT ISSUES COMMUNIC, V28, P5
Feinberg DR, 2005, ANIM BEHAV, V69, P561, DOI 10.1016/j.anbehav.2004.06.012
Feinberg DR, 2008, EVOL ANTHROPOL, V17, P112, DOI 10.1002/evan.20166
Frisina RD, 2009, ANN NY ACAD SCI, V1170, P708, DOI 10.1111/j.1749-6632.2009.03931.x
Frisina ST, 2006, HEARING RES, V211, P103, DOI 10.1016/j.heares.2005.09.002
Gonzalez J, 2003, PERCEPT MOTOR SKILL, V96, P297, DOI 10.2466/PMS.96.1.297-304
Gopinath B, 2009, ARCH INTERN MED, V169, P415, DOI 10.1001/archinternmed.2008.597
Harnsberger James D, 2008, J Voice, V22, P58, DOI 10.1016/j.jvoice.2006.07.004
Harnsberger JD, 2010, J VOICE, V24, P523, DOI 10.1016/j.jvoice.2009.01.003
HARTMAN DE, 1979, J COMMUN DISORD, V12, P53, DOI 10.1016/0021-9924(79)90021-2
Hughes SM, 2004, EVOL HUM BEHAV, V25, P295, DOI 10.1016/j.evolhumbehav.2004.06.001
Huntley R, 1987, J VOICE, V1, P49, DOI DOI 10.1016/S0892-1997(87)80024-3
Huynh H., 1976, J EDUC STATIST, V1, P69, DOI DOI 10.2307/1164736
JOHNSTONE RA, 1995, BIOL REV, V70, P1, DOI 10.1111/j.1469-185X.1995.tb01439.x
Jones BC, 2010, ANIM BEHAV, V79, P57, DOI 10.1016/j.anbehav.2009.10.003
Kawahara H., 2009, P APSIPA SAPP, P111
Kawahara H., 2003, ICASSP 2003, P256
KENRICK DT, 1992, BEHAV BRAIN SCI, V15, P75
Kovacs G, 2006, CEREB CORTEX, V16, P742, DOI 10.1093/cercor/bhj020
Krauss RM, 2002, J EXP SOC PSYCHOL, V38, P618, DOI 10.1016/S0022-1031(02)00510-3
Lai M., CORTEX IN PRESS
LASS NJ, 1976, J ACOUST SOC AM, V60, P700, DOI 10.1121/1.381142
Leopold DA, 2001, NAT NEUROSCI, V4, P89, DOI 10.1038/82947
Linville SE, 1987, J VOICE, V1, P44, DOI 10.1016/S0892-1997(87)80023-1
Pichora-Fuller M.K., 2003, INT J AUDIOLOGY S2, V42
PTACEK PH, 1966, J SPEECH HEAR RES, V9, P273
RYAN WJ, 1974, J COMMUN DISORD, V7, P181, DOI 10.1016/0021-9924(74)90030-6
Saxton TK, 2009, EVOL HUM BEHAV, V30, P398, DOI 10.1016/j.evolhumbehav.2009.06.004
Schweinberger SR, 2010, VISION RES, V50, P2570, DOI 10.1016/j.visres.2010.08.017
Schweinberger SR, 2008, CURR BIOL, V18, P684, DOI 10.1016/j.cub.2008.04.015
SHIPP T, 1969, J SPEECH HEAR RES, V12, P703
von Kriegstein K, 2008, P NATL ACAD SCI USA, V105, P6747, DOI 10.1073/pnas.0710826105
Webster MA, 2004, NATURE, V428, P557, DOI 10.1038/nature02420
ZAHAVI A, 1977, J THEOR BIOL, V67, P603, DOI 10.1016/0022-5193(77)90061-3
Zaske R, 2010, HEARING RES, V268, P38, DOI 10.1016/j.heares.2010.04.011
Zaske R, 2009, EUR J NEUROSCI, V30, P527, DOI 10.1111/j.1460-9568.2009.06839.x
NR 43
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 283
EP 288
DI 10.1016/j.heares.2011.06.008
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300031
PM 21771649
ER
PT J
AU Moreno, LE
Rajguru, SM
Matic, AI
Yerram, N
Robinson, AM
Hwang, M
Stock, S
Richter, CP
AF Moreno, Laura E.
Rajguru, Suhrud M.
Matic, Agnella Izzo
Yerram, Nitin
Robinson, Alan M.
Hwang, Margaret
Stock, Stuart
Richter, Claus-Peter
TI Infrared neural stimulation: Beam path in the guinea pig cochlea
SO HEARING RESEARCH
LA English
DT Article
ID NERVE CUFF ELECTRODES; HUMAN INNER-EAR; HARD X-RAYS;
ELECTRICAL-STIMULATION; OPTICAL-PROPERTIES; INFERIOR COLLICULUS;
PERIPHERAL-NERVE; ACTIVATION; IMPLANT; TISSUE
AB It has been demonstrated that INS can be utilized to stimulate spiral ganglion cells in the cochlea. Although neural stimulation can be achieved without direct contact of the radiation source and the tissue, the presence of fluids or bone between the target structure and the radiation source may lead to absorption or scattering of the radiation, which may limit the efficacy of INS. The present study demonstrates the neural structures in the radiation beam path that can be stimulated. Histological reconstructions and microCT of guinea pig cochleae stimulated with an infrared laser suggest that the orientation of the beam from the optical fiber determined the site of stimulation in the cochlea. Best frequencies of the INS-evoked neural responses obtained from the central nucleus of the inferior colliculus matched the histological sites in the spiral ganglion. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Moreno, Laura E.; Rajguru, Suhrud M.; Matic, Agnella Izzo; Yerram, Nitin; Robinson, Alan M.; Hwang, Margaret; Richter, Claus-Peter] Northwestern Univ, Dept Otolaryngol, Feinberg Sch Med, Chicago, IL 60611 USA.
[Richter, Claus-Peter] Northwestern Univ, Hugh Knowles Ctr, Evanston, IL USA.
[Stock, Stuart] Northwestern Univ, Dept Mol Pharmacol & Biol Chem, Feinberg Sch Med, Chicago, IL 60611 USA.
RP Richter, CP (reprint author), Northwestern Univ, Dept Otolaryngol, Feinberg Sch Med, 303 E Chicago Ave,Searle Bldg 12-561, Chicago, IL 60611 USA.
EM cri529@northwestern.edu
FU National Institute on Deafness and Other Communication Disorders,
National Institutes of Health, Department of Health and Human Services
[HHSN260-2006-00006-C/NIH, N01-DC-6-0006]
FX This project has been funded with federal funds from the National
Institute on Deafness and Other Communication Disorders, National
Institutes of Health, Department of Health and Human Services, under
Contract No. HHSN260-2006-00006-C/NIH No. N01-DC-6-0006. We thank
Northwestern University MicroCT facility for use of the microCT.
CR ANTONIO A, 1949, NATURE, V163, P604, DOI 10.1038/163604a0
Bekesy G., 1960, EXPT HEARING
Bierer JA, 2002, J NEUROPHYSIOL, V87, P478
BOWMAN BR, 1985, ANN BIOMED ENG, V13, P75, DOI 10.1007/BF02371251
BRUMMER SB, 1983, ANN NY ACAD SCI, V405, P159, DOI 10.1111/j.1749-6632.1983.tb31628.x
FALK M, 1966, CAN J CHEMISTRY, V44, P1699, DOI 10.1139/v66-255
FIRBANK M, 1993, PHYS MED BIOL, V38, P503, DOI 10.1088/0031-9155/38/4/002
Glueckert R, 2011, AM J MED GENET A, V152A, P665
Green D. M., 1966, SIGNAL DETECTION THE
Grill WM, 2009, ANNU REV BIOMED ENG, V11, P1, DOI 10.1146/annurev-bioeng-061008-124927
Grill WM, 2000, J BIOMED MATER RES, V50, P215
HALE GM, 1973, APPL OPTICS, V12, P555, DOI 10.1364/AO.12.000555
Hofman R, 2009, J MICROSC-OXFORD, V233, P251, DOI 10.1111/j.1365-2818.2009.03115.x
Izzo AD, 2007, J BIOMED OPT, V12, DOI 10.1117/1.2714296
Izzo A.D., 2006, SPIE, V6078
Izzo AD, 2008, BIOPHYS J, V94, P3159, DOI 10.1529/biophysj.107.117150
Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6
Lareida A, 2009, J MICROSC-OXFORD, V234, P95, DOI 10.1111/j.1365-2818.2009.03143.x
Larsen JO, 1998, ACTA NEUROPATHOL, V96, P365
LEFURGE T, 1991, ANN BIOMED ENG, V19, P197, DOI 10.1007/BF02368469
MERZENIC.MM, 1974, BRAIN RES, V77, P397, DOI 10.1016/0006-8993(74)90630-1
Middlebrooks JC, 2007, JARO-J ASSOC RES OTO, V8, P258, DOI 10.1007/s10162-007-0070-2
Muller M, 1996, FREQUENZ INTENSITATS
Palmer AR, 1996, J NEUROPHYSIOL, V75, P780
Polasek KH, 2009, IEEE T NEUR SYS REH, V17, P428, DOI 10.1109/TNSRE.2009.2032603
Rau C, 2006, MICROSC RES TECHNIQ, V69, P660, DOI 10.1002/jemt.20336
Richter CP, 2009, MICROSC RES TECHNIQ, V72, P902, DOI 10.1002/jemt.20728
Richter CP, 2011, LASER PHOTONICS REV, V5, P68, DOI 10.1002/lpor.200900044
ROBERTSON D, 1984, HEARING RES, V15, P113, DOI 10.1016/0378-5955(84)90042-X
Smith S.S., 2011, P SPIE C
Smith ZM, 2007, JARO-J ASSOC RES OTO, V8, P134, DOI 10.1007/s10162-006-0069-0
Snyder RL, 2004, JARO-J ASSOC RES OTO, V5, P305, DOI 10.1007/s10162-004-4026-5
Snyder RL, 2008, HEARING RES, V235, P23, DOI 10.1016/j.heares.2007.09.013
SNYDER RL, 1990, HEARING RES, V50, P7, DOI 10.1016/0378-5955(90)90030-S
Stock SR, 2009, MICROCOMPUTED TOMOGR
Teudt IU, 2007, J NEUROSCI METH, V162, P187, DOI 10.1016/j.jneumeth.2007.01.012
Teudt IU, 2007, LARYNGOSCOPE, V117, P1641, DOI 10.1097/M1LG.0b013e318074ec00
Teudt I.U., T BIOMED EN IN PRESS
Tsuji J, 1997, J COMP NEUROL, V381, P188
Ugnell AO, 1997, MED ENG PHYS, V19, P630, DOI 10.1016/S1350-4533(97)00015-5
Veraart C, 1998, BRAIN RES, V813, P181, DOI 10.1016/S0006-8993(98)00977-9
VERAART C, 1993, IEEE T BIO-MED ENG, V40, P640, DOI 10.1109/10.237694
Vogel U, 1999, ORL J OTO-RHINO-LARY, V61, P259, DOI 10.1159/000027683
WALSH JT, 1994, LASER SURG MED, V15, P295, DOI 10.1002/lsm.1900150310
Wells J, 2005, J BIOMED OPT, V10, DOI 10.1117/1.2121772
Wells J, 2007, BIOPHYS J, V93, P2567, DOI 10.1529/biophysj.107.104786
Wenzel GI, 2009, J BIOMED OPT, V14, DOI 10.1117/1.3174389
Zhang KY, 2009, OPT EXPRESS, V17, P23037, DOI 10.1364/OE.17.023037
NR 48
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 289
EP 302
DI 10.1016/j.heares.2011.06.006
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300032
PM 21763410
ER
PT J
AU Landry, TG
Wise, AK
Fallon, JB
Shepherd, RK
AF Landry, Thomas G.
Wise, Andrew K.
Fallon, James B.
Shepherd, Robert K.
TI Spiral ganglion neuron survival and function in the deafened cochlea
following chronic neurotrophic treatment
SO HEARING RESEARCH
LA English
DT Article
ID CHRONIC ELECTRICAL-STIMULATION; SENSORINEURAL HEARING-LOSS; GUINEA-PIG
COCHLEA; FIBROBLAST-GROWTH-FACTOR; QUALITY-OF-LIFE; HAIR CELL LOSS;
AUDITORY-NERVE; NEONATAL DEAFNESS; MENTAL DISTRESS; DENTATE GYRUS
AB Cochlear implants electrically stimulate residual spiral ganglion neurons (SGNs) to provide auditory cues for the severe-profoundly deaf. However, SGNs gradually degenerate following cochlear hair cell loss, leaving fewer neurons available for stimulation. Providing an exogenous supply of neurotrophins (NTs) has been shown to prevent SGN degeneration, and when combined with chronic intracochlear electrical stimulation (ES) following a short period of deafness (5 days), may also promote the formation of new neurons. The present study assessed the histopathological response of guinea pig cochleae treated with NTs (brain-derived neurotrophic factor and neurotrophin-3) with and without ES over a four week period, initiated two weeks after deafening. Results were compared to both NT alone and artificial perilymph (AP) treated animals. AP/ES treated animals exhibited no evidence of SGN rescue compared with untreated deafened controls. In contrast, NT administration showed a significant SGN rescue effect in the lower and middle cochlear turns (two-way ANOVA, p < 0.05) compared with AP-treated control animals. ES in combination with NT did not enhance SGN survival compared with NT alone. SGN function was assessed by measuring electrically-evoked auditory brainstem response (EABR) thresholds. EABR thresholds following NT treatment were significantly lower than animals treated with AP (two-way ANOVA, p = 0.033). Finally, the potential for induced neurogenesis following the combined treatment was investigated using a marker of DNA synthesis. However, no evidence of neurogenesis was observed in the SGN population. The results indicate that chronic NT delivery to the cochlea may be beneficial to cochlear implant patients by increasing the number of viable SGNs and decreasing activation thresholds compared to chronic ES alone. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Landry, Thomas G.; Wise, Andrew K.; Fallon, James B.; Shepherd, Robert K.] St Vincents Hosp, Bion Inst, Fitzroy, Vic 3065, Australia.
[Landry, Thomas G.; Wise, Andrew K.; Fallon, James B.; Shepherd, Robert K.] Univ Melbourne, Parkville, Vic 3052, Australia.
RP Shepherd, RK (reprint author), Bion Inst, 384-388 Albert St, Melbourne, Vic 3002, Australia.
EM rshepherd@bionicsinstitute.org
RI Fallon, James/B-5211-2012; Shepherd, Robert/I-6276-2012; Wise,
Andrew/B-5943-2014; Fallon, James/B-6383-2014
OI Wise, Andrew/0000-0001-9715-8784;
FU National Institute on Deafness and Other Communication disorders
(National Institutes of Health) [HHS-N-263-2007-00053-C]; The Bionics
Institute; The Mabel Kent Scholarship; Victorian Government
FX This study was funded by the National Institute on Deafness and Other
Communication disorders (National Institutes of Health contract
HHS-N-263-2007-00053-C), The Bartholomew Reardon PhD Scholarship (The
Bionics Institute), and The Mabel Kent Scholarship. The Bionics
Institute acknowledges the support it receives from the Victorian
Government through its Operational Infrastructure Support Program. Many
thanks to Mrs. M. Clarke and Ms. P. Nielsen for H & E staining, Mrs. H.
Feng for implant manufacturing and contributions to cochlear implant
design, Mr. R. Millard for technical support, Mrs. A. Neil for surgical
assistance, and Dr. J. Xu for X-ray photography and contributions to
cochlear implant design.
CR Abrous DN, 2005, PHYSIOL REV, V85, P523, DOI 10.1152/physrev.00055.2003
Adamson CL, 2002, J NEUROSCI, V22, P1385
Agterberg MJH, 2010, HEARING RES, V269, P169, DOI 10.1016/j.heares.2010.06.015
Agterberg MJH, 2008, HEARING RES, V244, P25, DOI 10.1016/j.heares.2008.07.004
Agterberg MJH, 2009, JARO-J ASSOC RES OTO, V10, P355, DOI 10.1007/s10162-009-0170-2
Araki S, 1998, LARYNGOSCOPE, V108, P687, DOI 10.1097/00005537-199805000-00012
BOND M, 2009, HEALTH TECHNOL ASSES, V13, P1
Choi CH, 2005, HEARING RES, V205, P193, DOI 10.1016/j.heares.2005.03.018
Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004
Coleman B, 2009, J NEUROSCI METH, V176, P144, DOI 10.1016/j.jneumeth.2008.09.007
de Graaf R, 2002, PSYCHOSOM MED, V64, P61
Dodson HC, 2000, J NEUROCYTOL, V29, P525, DOI 10.1023/A:1007201913730
DOLBEARE F, 1995, HISTOCHEM J, V27, P339
Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463
Fallon JB, 2009, J COMP NEUROL, V512, P101, DOI 10.1002/cne.21886
Fellinger J, 2005, SOC PSYCH PSYCH EPID, V40, P737, DOI 10.1007/s00127-005-0936-8
Fritzsch B, 2004, PROG BRAIN RES, V146, P265, DOI 10.1016/S0079-6123(03)46017-2
Garcia-Verdugo J, 1998, J NEUROBIOL, V36, P234, DOI 10.1002/(SICI)1097-4695(199808)36:2<234::AID-NEU10>3.0.CO;2-E
Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542
Gillespie LN, 2004, NEUROREPORT, V15, P1121, DOI 10.1097/01.wnr.0000125777.04774.c2
Glueckert R, 2008, J COMP NEUROL, V507, P1602, DOI 10.1002/cne.21619
Guidi S, 2005, HIPPOCAMPUS, V15, P285, DOI 10.1002/hipo.20050
HARRIS JP, 1995, ARCH OTOLARYNGOL, V121, P398
HARTSHORN DO, 1991, OTOLARYNG HEAD NECK, V104, P311
Heine VM, 2004, NEUROBIOL AGING, V25, P361, DOI 10.1016/S0197-4580(03)00090-3
Kanzaki S, 2002, J COMP NEUROL, V454, P350, DOI 10.1002/cne.10480
Kass L, 2000, EUR J HISTOCHEM, V44, P185
Kim LS, 2010, AURIS NASUS LARYNX, V37, P6, DOI 10.1016/j.anl.2009.09.011
LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4
Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3
LEAKE PA, 1992, HEARING RES, V64, P99, DOI 10.1016/0378-5955(92)90172-J
LEAKE PA, 1991, HEARING RES, V54, P251, DOI 10.1016/0378-5955(91)90120-X
Li L, 1999, HEARING RES, V133, P27, DOI 10.1016/S0378-5955(99)00043-X
MCDERMOTT HJ, 1992, J ACOUST SOC AM, V91, P3367, DOI 10.1121/1.402826
McGuinness SL, 2005, OTOL NEUROTOL, V26, P1064, DOI 10.1097/01.mao.0000185063.20081.50
MCNEAL DR, 1976, IEEE T BIO-MED ENG, V23, P329, DOI 10.1109/TBME.1976.324593
Miller AL, 2001, HEARING RES, V151, P1, DOI 10.1016/S0378-5955(00)00226-4
Miller JM, 2007, J NEUROSCI RES, V85, P1959, DOI 10.1002/jnr.21320
Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7
Mitchell A, 1997, HEARING RES, V105, P30, DOI 10.1016/S0378-5955(96)00202-X
Miura M, 2002, ANN OTO RHINOL LARYN, V111, P1059
Mohr PE, 2000, INT J TECHNOL ASSESS, V16, P1120, DOI 10.1017/S0266462300103162
NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411
O'Hara JR, 2007, CELL TISSUE RES, V329, P433, DOI 10.1007/s00441-007-0430-6
Rask-Andersen H, 2005, HEARING RES, V203, P180, DOI 10.1016/j.heares.2004.12.005
Richardson RT, 2005, HEARING RES, V204, P37, DOI 10.1016/j.heares.2005.01.001
RUSHTON WAH, 1951, J PHYSIOL-LONDON, V115, P101
Seligman PM, 2004, NEUROPROSTHETICS THE, P878
SHEPHERD RK, 1994, HEARING RES, V81, P150, DOI 10.1016/0378-5955(94)90162-7
Shepherd R. K., 2006, COCHLEAR IMPLANTS, P25
Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564
Shepherd RK, 2008, HEARING RES, V242, P100, DOI 10.1016/j.heares.2007.12.005
Shepherd RK, 2002, HEARING RES, V172, P92, DOI 10.1016/S0378-5955(02)00517-8
Shimada A, 2008, J IMMUNOL METHODS, V339, P11, DOI 10.1016/j.jim.2008.07.013
Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999
Skaper SD, 2008, CNS NEUROL DISORD-DR, V7, P46, DOI 10.2174/187152708783885174
Spoendlin H, 1984, Ann Otol Rhinol Laryngol Suppl, V112, P76
Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011
Stankovic K, 2004, J NEUROSCI, V24, P8651, DOI 10.1523/JNEUROSCI.0733-04.2004
Sugawara M, 2005, JARO-J ASSOC RES OTO, V6, P136, DOI 10.1007/s10162-004-5050-1
Takeno S, 1998, AUDIOL NEURO-OTOL, V3, P281, DOI 10.1159/000013800
Tan J, 2006, AM J PATHOL, V169, P528, DOI 10.2353/ajpath.2006.060122
Versnel H, 2007, HEARING RES, V231, P1, DOI 10.1016/j.heares.2007.03.003
Vollmer M, 2007, J NEUROPHYSIOL, V98, P2588, DOI 10.1152/jn.00011.2007
Wei D, 2007, DEV NEUROBIOL, V67, P108, DOI 10.1002/neu.20336
Wise AK, 2010, MOL THER, V18, P1111, DOI 10.1038/mt.2010.28
Wise AK, 2005, J COMP NEUROL, V487, P147, DOI 10.1002/cne.20563
World Health Organization, 2010, DEFN HEAR IMP
Xu J, 1997, HEARING RES, V105, P1, DOI 10.1016/S0378-5955(96)00193-1
YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C
ZIMMERMANN CE, 1995, HEARING RES, V90, P192, DOI 10.1016/0378-5955(95)00165-1
NR 71
TC 16
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2011
VL 282
IS 1-2
BP 303
EP 313
DI 10.1016/j.heares.2011.06.007
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 871FW
UT WOS:000298724300033
PM 21762764
ER
PT J
AU Lenz, DR
Avraham, KB
AF Lenz, Danielle R.
Avraham, Karen B.
TI Hereditary hearing loss: From human mutation to mechanism
SO HEARING RESEARCH
LA English
DT Article
ID ACTIN BINDING-PROTEIN; LINKED MIXED DEAFNESS; HAIR-CELLS; INNER-EAR;
RECESSIVE DEAFNESS; GENE-EXPRESSION; MOUSE MODELS; APOPTOSIS; TRIOBP;
MIR-96
AB The genetic heterogeneity of hereditary hearing loss is thus far represented by hundreds of genes encoding a large variety of proteins. Mutations in these genes have been discovered for patients with different modes of inheritance and types of hearing loss, ranging from syndromic to non-syndromic and mild to profound. In many cases, the mechanisms whereby the mutations lead to hearing loss have been partly elucidated using cell culture systems and mouse and other animal models. The discovery of the genes has completely changed the practice of genetic counseling in this area, providing potential diagnosis in many cases that can be coupled with clinical phenotypes and offer predictive information for families. In this review we provide three examples of gene discovery in families with hereditary hearing loss, all associated with elucidation of some of the mechanisms leading to hair cell degeneration and pathology of deafness. (C) 2011 Published by Elsevier B.V.
C1 [Lenz, Danielle R.; Avraham, Karen B.] Tel Aviv Univ, Sackler Fac Med, Dept Human Mol Genet & Biochem, IL-69978 Tel Aviv, Israel.
RP Avraham, KB (reprint author), Tel Aviv Univ, Sackler Fac Med, Dept Human Mol Genet & Biochem, IL-69978 Tel Aviv, Israel.
EM karena@post.tau.ac.il
FU National Institutes of Health (NIDCD) [R01DC005641]; Israel Science
Foundation [1486/07]; European Commission [037188]; Israel Ministry of
Health; Israel Ministry of Science and Technology
FX Research in Karen Avraham's laboratory is funded by the National
Institutes of Health (NIDCD) R01DC005641, Israel Science Foundation
Grant 1486/07, European Commission FP6 Integrated Project Eumodic
037188, and the Israel Ministry of Health. DL's fellowship is funded by
the Israel Ministry of Science and Technology. We are indebted to our
collaborators and colleagues for our work together over the years, as
well as the patients who so willingly took part in the studies. We thank
Inna Belyantseva, Jing Chen, Thomas Friedman, Mary-Claire King, Walter
Marcotti, Miguel Angel Moreno-Pelayo and Karen Steel for sharing figures
with us.
CR Bartel DP, 2004, CELL, V116, P281, DOI 10.1016/S0092-8674(04)00045-5
Beurel E, 2006, PROG NEUROBIOL, V79, P173, DOI 10.1016/j.pneurobio.2006.07.006
Brownstein Z, 2009, PEDIATR RES, V66, P128, DOI 10.1203/PDR.0b013e3181aabd7f
Carlton VEH, 2003, NAT GENET, V34, P91, DOI 10.1038/ng1147
DEKOK YJM, 1995, SCIENCE, V267, P685, DOI 10.1126/science.7839145
Dror AA, 2010, NEURON, V68, P293, DOI 10.1016/j.neuron.2010.10.011
FLOCK A, 1977, J CELL BIOL, V75, P339, DOI 10.1083/jcb.75.2.339
Friedman LM, 2007, INT J DEV BIOL, V51, P609, DOI 10.1387/ijdb.072365lf
Gorlin R.J., 1995, HEREDITARY HEARING L
Grimson A, 2007, MOL CELL, V27, P91, DOI 10.1016/j.molcel.2007.06.017
GUILFORD P, 1994, NAT GENET, V6, P24, DOI 10.1038/ng0194-24
Guo HL, 2010, NATURE, V466, P835, DOI 10.1038/nature09267
Hildebrand MS, 2010, AM J MED GENET A, V152A, P646, DOI 10.1002/ajmg.a.33299
Hilgert N, 2008, CLIN GENET, V74, P223, DOI 10.1111/j.1399-0004.2008.01053.x
Housley GD, 2006, J MEMBRANE BIOL, V209, P89, DOI 10.1007/s00232-005-0835-7
Karavitaki KD, 2006, Auditory Mechanisms: Processes and Models, P286, DOI 10.1142/9789812773456_0048
Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0
Kimberling WJ, 2010, GENET MED, V12, P512, DOI 10.1097/GIM.0b013e3181e5afb8
Kitajiri S, 2010, CELL, V141, P786, DOI 10.1016/j.cell.2010.03.049
Kong JH, 2008, J PHYSIOL-LONDON, V586, P5471, DOI 10.1113/jphysiol.2008.160077
Kuhn S, 2011, P NATL ACAD SCI USA, V108, P2355, DOI 10.1073/pnas.1016646108
Leibovici M, 2008, CURR TOP DEV BIOL, V84, P385, DOI 10.1016/S0070-2153(08)00608-X
LEON PE, 1992, P NATL ACAD SCI USA, V89, P5181, DOI 10.1073/pnas.89.11.5181
Lewis MA, 2009, NAT GENET, V41, P614, DOI 10.1038/ng.369
Linseman DA, 2004, J NEUROSCI, V24, P9993, DOI 10.1523/JNEUROSCI.2057-04.2004
Lynch ED, 1997, SCIENCE, V278, P1315, DOI 10.1126/science.278.5341.1315
Marcotti W, 2004, J PHYSIOL-LONDON, V560, P691, DOI 10.1113/jphysiol.2004.072868
Mencia A, 2009, NAT GENET, V41, P609, DOI 10.1038/ng.355
Metzker ML, 2010, NAT REV GENET, V11, P31, DOI 10.1038/nrg2626
Nuutinen U, 2009, LEUKEMIA RES, V33, P1714, DOI 10.1016/j.leukres.2009.06.004
Oshima K, 2010, CELL, V141, P704, DOI 10.1016/j.cell.2010.03.035
Park HJ, 2009, HEARING RES, V257, P53, DOI 10.1016/j.heares.2009.08.001
Pierce ML, 2008, EVOL DEV, V10, P106, DOI 10.1111/j.1525-142X.2007.00217.x
Purdy KR, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.058105
Rabionet R, 2000, HUM GENET, V106, P40, DOI 10.1007/s004390051007
Rehm HL, 2005, SEMIN PERINATOL, V29, P173, DOI 10.1053/j.semperi.2004.12.002
Riazuddin S, 2006, AM J HUM GENET, V78, P137, DOI 10.1086/499164
Richardson GP, 2011, ANNU REV PHYSIOL, V73, P311, DOI 10.1146/annurev-physiol-012110-142228
Seipel K, 2001, J CELL SCI, V114, P389
Shahin H, 2006, AM J HUM GENET, V78, P144, DOI 10.1086/499495
Shearer AE, 2010, P NATL ACAD SCI USA, V107, P21104, DOI 10.1073/pnas.1012989107
Shibata SB, 2010, J COMMUN DISORD, V43, P295, DOI 10.1016/j.jcomdis.2010.04.001
Someya S, 2010, MECH AGEING DEV, V131, P480, DOI 10.1016/j.mad.2010.04.006
Someya S, 2009, P NATL ACAD SCI USA, V106, P19432, DOI 10.1073/pnas.0908786106
Tadros SF, 2008, APOPTOSIS, V13, P1303, DOI 10.1007/s10495-008-0266-x
Tapia R, 2009, MOL BIOL CELL, V20, P1102, DOI 10.1091/mbc.E08-03-0277
Traweger A, 2008, DIFFERENTIATION, V76, P99, DOI 10.1111/j.1432-0436.2007.00227.x
WALLIS C, 1988, GENOMICS, V3, P299, DOI 10.1016/0888-7543(88)90119-X
Walsh T, 2010, AM J HUM GENET, V87, P101, DOI 10.1016/j.ajhg.2010.05.011
Walsh T.D., 2000, 50 ANN M AM SOC HUM
Weston MD, 2006, BRAIN RES, V1111, P95, DOI 10.1016/j.brainres.2006.07.006
Wienholds E, 2005, SCIENCE, V309, P310, DOI 10.1126/science.1114519
Xu JL, 2008, MOL CELL BIOL, V28, P1669, DOI 10.1128/MCB.00891-07
NR 53
TC 14
Z9 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2011
VL 281
IS 1-2
SI SI
BP 3
EP 10
DI 10.1016/j.heares.2011.05.021
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 853ML
UT WOS:000297430300002
PM 21664957
ER
PT J
AU Griffith, AJ
Wangemann, P
AF Griffith, Andrew J.
Wangemann, Philine
TI Hearing loss associated with enlargement of the vestibular aqueduct:
Mechanistic insights from clinical phenotypes, genotypes, and mouse
models
SO HEARING RESEARCH
LA English
DT Article
ID PENDRED-SYNDROME GENE; CONGENITAL CYTOMEGALOVIRUS-INFECTION; COCHLEAR
ENDOLYMPH; INNER-EAR; CARBONIC-ANHYDRASE; SLC26A4 MUTATION; PDS
MUTATIONS; K+ SECRETION; GUINEA-PIG; DEAFNESS
AB Enlargement of the vestibular aqueduct (EVA) is one of the most common inner ear malformations associated with sensorineural hearing loss in children. The delayed onset and progressive nature of this phenotype offer a window of opportunity to prevent or retard progression of hearing loss. EVA is not the direct cause of hearing loss in these patients, but rather is a radiologic marker for some underlying pathogenetic defect. Mutations of the SLC26A4 gene are a common cause of EVA. Studies of an Slc26a4 knockout mouse demonstrate that acidification and enlargement of the scala media are early events in the pathogenesis of deafness. The enlargement is driven by fluid secretion in the vestibular labyrinth and a failure of fluid absorption in the embryonic endolymphatic sac. Elucidating the mechanism of hearing loss may offer clues to potential therapeutic strategies. Published by Elsevier B.V.
C1 [Griffith, Andrew J.] Natl Inst Deafness & Other Commun Disorders, Otolaryngol Branch, Rockville, MD 20850 USA.
[Wangemann, Philine] Kansas State Univ, Dept Anat & Physiol, Manhattan, KS 66506 USA.
RP Griffith, AJ (reprint author), Natl Inst Deafness & Other Commun Disorders, Otolaryngol Branch, 5 Res Court, Rockville, MD 20850 USA.
EM griffita@nidcd.nih.gov
RI Wangemann, Philine/N-2826-2013
FU NIH [Z01-DC-000060]; Kansas State University
FX The authors are supported by NIH intramural research fund Z01-DC-000060
(A.J.G.) and Kansas State University (P.W.). We thank our colleagues for
critical review of this manuscript. Figs. 1 and 2 were provided by the
National Institute on Deafness and Other Communication Disorders.
CR Anwar S, 2009, J HUM GENET, V54, P266, DOI 10.1038/jhg.2009.21
Arjmand EM, 2004, ARCH OTOLARYNGOL, V130, P1169, DOI 10.1001/archotol.130.10.1169
Azaiez H, 2007, HUM GENET, V122, P451, DOI 10.1007/s00439-007-0415-2
BAUMAN NM, 1994, J PEDIATR-US, V124, P71, DOI 10.1016/S0022-3476(94)70256-X
Belenky W M, 1993, Ear Nose Throat J, V72, P746
BERGSTROM L, 1980, ANN OTO RHINOL LARYN, V89, P135
BOSHER SK, 1978, NATURE, V273, P377, DOI 10.1038/273377a0
Bradley D.J., 1994, SCIENCE, V91, P439
Campbell C, 2001, HUM MUTAT, V17, P403, DOI 10.1002/humu.1116
Campos-Barros A., 2000, SCIENCE, V97, P1287
Chang Q, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0004088
Cheung CY, 2005, J SOC GYNECOL INVEST, V12, P558, DOI 10.1016/j.jsgi.2005.08.008
Choi BY, 2009, HUM MUTAT, V30, P1471, DOI 10.1002/humu.21098
Choi BY, 2009, HUM MUTAT, V30, P599, DOI 10.1002/humu.20884
Choi BY, 2009, J MED GENET, V46, P856, DOI 10.1136/jmg.2009.067892
Dahle A J, 2000, J Am Acad Audiol, V11, P283
DAS VK, 1987, J LARYNGOL OTOL, V101, P721, DOI 10.1017/S0022215100102592
Dou Hongwei, 2004, Journal of Histochemistry & Cytochemistry, V52, P1377, DOI 10.1369/jhc.3A6228.2004
Dror AA, 2010, J BIOL CHEM, V285, P21724, DOI 10.1074/jbc.M110.120188
Everett LA, 1997, NAT GENET, V17, P411, DOI 10.1038/ng1297-411
Everett LA, 2001, HUM MOL GENET, V10, P153, DOI 10.1093/hmg/10.2.153
FRASER GR, 1965, ANN HUM GENET, V28, P201
Govaerts PJ, 1999, INT J PEDIATR OTORHI, V51, P157, DOI 10.1016/S0165-5876(99)00268-2
Griffith AJ, 1996, LARYNGOSCOPE, V106, P960, DOI 10.1097/00005537-199608000-00009
Hulander M, 2003, DEVELOPMENT, V130, P2013, DOI 10.1242/dev.00376
IKEDA K, 1987, HEARING RES, V26, P117, DOI 10.1016/0378-5955(87)90040-2
IKEDA K, 1987, HEARING RES, V31, P211, DOI 10.1016/0378-5955(87)90189-4
JACKLER RK, 1989, LARYNGOSCOPE, V99, P1238
Jonard L, 2010, INT J PEDIATR OTORHI, V74, P1049, DOI 10.1016/j.ijporl.2010.06.002
Kim HM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014041
Kim HM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017949
King KA, 2010, LARYNGOSCOPE, V120, P384, DOI 10.1002/lary.20722
Lemmerling KM., 1997, RADIOLOGY, V204, P213
LEVENSON MJ, 1989, ARCH OTOLARYNGOL, V115, P54
Lin CY, 2005, AURIS NASUS LARYNX, V32, P99, DOI 10.1016/j.anl.2004.11.001
Mansour S.L, 2005, DEV INNER EAR, P43
Marcus DC, 2002, AM J PHYSIOL-CELL PH, V282, pC403
Merchant SN, 2005, OTOL NEUROTOL, V26, P74, DOI 10.1097/00129492-200501000-00013
Merchant SN, 2007, ANN OTO RHINOL LARYN, V116, P532
MORGANS ME, 1958, LANCET, V1, P607
Nakashima T, 2000, AM J OTOL, V21, P671
Ng L, 2009, ENDOCRINOLOGY, V150, P1952, DOI 10.1210/en.2008-1419
Park HJ, 2003, J MED GENET, V40, P242, DOI 10.1136/jmg.40.4.242
Park HJ, 2005, CLIN GENET, V67, P160, DOI 10.1111/j.1399-0004.2004.00386.x
Pendred V, 1896, LANCET, V2, P532
Pera A, 2008, EUR J HUM GENET, V16, P888, DOI 10.1038/ejhg.2008.30
Phelps PD, 1998, CLIN RADIOL, V53, P268, DOI 10.1016/S0009-9260(98)80125-6
Pryor SP, 2005, ARCH OTOLARYNGOL, V131, P388, DOI 10.1001/archotol.131.5.388
Pryor SP, 2005, J MED GENET, V42, P159, DOI 10.1136/jmg.2004.024208
Reardon W, 2000, QJM-MON J ASSOC PHYS, V93, P99, DOI 10.1093/qjmed/93.2.99
Royaux IE, 2003, JARO, V4, P394, DOI 10.1007/s10162-002-3052-4
Royaux IE, 2001, P NATL ACAD SCI USA, V98, P4221, DOI 10.1073/pnas.071516798
Royaux IE, 2000, ENDOCRINOLOGY, V141, P839, DOI 10.1210/en.141.2.839
Scott DA, 1999, NAT GENET, V21, P440
Singh R, 2008, AM J PHYSIOL-RENAL, V294, pF139, DOI 10.1152/ajprenal.00433.2007
Soleimani M, 2001, AM J PHYSIOL-RENAL, V280, pF356
STERKERS O, 1984, AM J PHYSIOL, V246, pF47
Tanaka F, 2004, HEARING RES, V187, P44, DOI 10.1016/S0378-5955(03)00330-7
TANAKA Y, 1980, HEARING RES, V2, P431, DOI 10.1016/0378-5955(80)90079-9
Unsold B, 2000, PFLUG ARCH EUR J PHY, V441, P368, DOI 10.1007/s004240000434
Usami S, 1999, HUM GENET, V104, P188, DOI 10.1007/s004390050933
VALVASSORI GE, 1978, LARYNGOSCOPE, V88, P723
Vennekens R, 2001, PFLUG ARCH EUR J PHY, V442, P237, DOI 10.1007/s004240100517
Wang YF, 2009, BIOCHEM BIOPH RES CO, V385, P33, DOI 10.1016/j.bbrc.2009.05.023
Wangemann P, 2006, J PHYSIOL-LONDON, V576, P11, DOI 10.1113/jphysiol.2006.112888
WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S
Wangemann P, 2004, BMC MED, V2, DOI 10.1186/1741-7015-2-30
Wangemann P, 2009, AM J PHYSIOL-RENAL, V297, pF1435, DOI 10.1152/ajprenal.00011.2009
Wangemann P, 2007, AM J PHYSIOL-RENAL, V292, pF1345, DOI 10.1152/ajprenal.00487.2006
Wangemann P, 1996, HEARING RES, V100, P201, DOI 10.1016/0378-5955(96)00127-X
Wilson DF, 1997, AM J OTOL, V18, P106
Wilson DF, 1997, AM J OTOL, V18, P101
Wu CC, 2010, AUDIOL NEURO-OTOL, V15, P57, DOI 10.1159/000231567
Yang T, 2007, AM J HUM GENET, V80, P1055, DOI 10.1086/518314
Yang T, 2009, AM J HUM GENET, V84, P651, DOI 10.1016/j.ajhg.2009.04.014
Yuan Y, 2009, J TRANSL MED, V7, DOI 10.1186/1479-5876-7-79
Zhang YP, 2005, P NATL ACAD SCI USA, V102, P15201, DOI 10.1073/pnas.0501859102
NR 77
TC 13
Z9 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2011
VL 281
IS 1-2
SI SI
BP 11
EP 17
DI 10.1016/j.heares.2011.05.009
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 853ML
UT WOS:000297430300003
PM 21669267
ER
PT J
AU de Beeck, KO
Schacht, J
Van Camp, G
AF de Beeck, Ken Op
Schacht, Jochen
Van Camp, Guy
TI Apoptosis in acquired and genetic hearing impairment: The programmed
death of the hair cell
SO HEARING RESEARCH
LA English
DT Article
ID CISPLATIN-INDUCED OTOTOXICITY; VESTIBULAR SENSORY EPITHELIA;
GENTAMICIN-INDUCED COCHLEAR; NOISE-INDUCED APOPTOSIS; GUINEA-PIG;
INNER-EAR; INTENSE NOISE; D-METHIONINE; DFNA5 GENE; IN-VIVO
AB Apoptosis is an important physiological process. Normally, a healthy cell maintains a delicate balance between pro- and anti-apoptotic factors, allowing it to live and proliferate. It is thus not surprising that disturbance of this delicate balance may result in disease. It is a well known fact that apoptosis also contributes to several acquired forms of hearing impairment. Noise-induced hearing loss is the result of prolonged exposure to excessive noise, triggering apoptosis in terminally differentiated sensory hair cells. Moreover, hearing loss caused by the use of therapeutic drugs such as aminoglycoside antibiotics and cisplatin potentially may result in the activation of apoptosis in sensory hair cells leading to hearing loss due to the "ototoxicity" of the drugs. Finally, apoptosis is a key contributor to the development of presbycusis, age-related hearing loss. Recently, several mutations in apoptosis genes were identified as the cause of monogenic hearing impairment. These genes are TJP2, DFNA5 and MSRB3. This implies that apoptosis not only contributes to the pathology of acquired forms of hearing impairment, but also to genetic hearing impairment as well. We believe that these genes constitute a new functional class within the hearing loss field. Here, the contribution of apoptosis in the pathology of both acquired and genetic hearing impairment is reviewed. (C) 2011 Elsevier B.V. All rights reserved.
C1 [de Beeck, Ken Op; Van Camp, Guy] Univ Antwerp, Dept Biomed Sci, Ctr Med Genet, B-2610 Antwerp, Belgium.
[de Beeck, Ken Op; Van Camp, Guy] Univ Antwerp Hosp, Ctr Med Genet, Antwerp, Belgium.
[Schacht, Jochen] Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA.
RP Van Camp, G (reprint author), Univ Pl 1, B-2610 Antwerp, Belgium.
EM guy.vancamp@ua.ac.be
RI Van Camp, Guy/F-3386-2013
OI Van Camp, Guy/0000-0001-5105-9000
FU 'Fonds voor Wetenschappelijk Onderzoek Vlaanderen' (FWO) [G.0245.10N];
National Institute for Deafness and Other Communication Disorders,
National Institutes of Health [R01 DC003685]
FX This work was supported by the 'Fonds voor Wetenschappelijk Onderzoek
Vlaanderen' (FWO grant G.0245.10N). K.O.D.B. holds a predoctoral
research position with the 'Instituut voor de Aanmoediging van Innovatie
door Wetenschap en Technologie in Vlaanderen (IWT)'. Dr. Schacht's
research on drug-induced hearing loss is supported by grant R01 DC003685
from the National Institute for Deafness and Other Communication
Disorders, National Institutes of Health.
CR Ahmed ZM, 2011, AM J HUM GENET, V88, P19, DOI 10.1016/j.ajhg.2010.11.010
Ahn JH, 2005, BIOCHEM BIOPH RES CO, V335, P485, DOI 10.1016/j.bbrc.2005.07.114
Akino K, 2007, CANCER SCI, V98, P88, DOI 10.1111/j.1349-7006.2006.00351.x
Alam SA, 2000, HEARING RES, V141, P28, DOI 10.1016/S0378-5955(99)00211-7
Arslan E, 1999, ANN NY ACAD SCI, V884, P1
Banfi B, 2004, J BIOL CHEM, V279, P46065, DOI 10.1074/jbc.M403046200
Bischoff AMLC, 2004, AUDIOL NEURO-OTOL, V9, P34, DOI 10.1159/000074185
Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9
Campbell KCM, 2007, HEARING RES, V226, P92, DOI 10.1016/j.heares.2006.11.012
Chen Y, 2007, HEARING RES, V226, P178, DOI 10.1016/j.heares.2006.05.008
Cheng J, 2007, CLIN GENET, V72, P471, DOI 10.1111/j.1399-0004.2007.00889.x
CHURCH MW, 1995, HEARING RES, V86, P195, DOI 10.1016/0378-5955(95)00066-D
Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5
Dehne N, 2001, TOXICOL APPL PHARM, V174, P27, DOI 10.1006/taap.2001.9171
Dehne N, 2002, HEARING RES, V169, P47, DOI 10.1016/S0378-5955(02)00338-6
Dickey CA, 2004, NEUROSCI LETT, V366, P10, DOI 10.1016/j.neulet.2004.04.089
ESTREM SA, 1981, OTOLARYNG HEAD NECK, V89, P638
Ettaiche M, 1999, INVEST OPHTH VIS SCI, V40, P729
Fetoni AR, 2010, NEUROSCIENCE, V169, P1575, DOI 10.1016/j.neuroscience.2010.06.022
Fetoni AR, 2009, BRAIN RES, V1257, P108, DOI 10.1016/j.brainres.2008.12.027
FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2
Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X
FUJIKANE T, 2009, BREAST CANC RES TREA
Gates GA, 2005, LANCET, V366, P1111, DOI 10.1016/S0140-6736(05)67423-5
HAMERNIK RP, 1984, HEARING RES, V13, P229, DOI 10.1016/0378-5955(84)90077-7
Han WJ, 2006, HEARING RES, V211, P85, DOI 10.1016/j.heares.2005.10.004
Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3
Hight NG, 2003, HEARING RES, V179, P21, DOI 10.1016/S0378-5955(03)00067-4
Hill GW, 2008, OTOL NEUROTOL, V29, P1005, DOI 10.1097/MAO.0b013e31818599d5
Hong SH, 2006, HEARING RES, V211, P46, DOI 10.1016/j.heares.2005.08.009
Hu BH, 2002, HEARING RES, V172, P1, DOI 10.1016/S0378-5955(01)00361-6
Hu BH, 2009, NEUROSCIENCE, V161, P915, DOI 10.1016/j.neuroscience.2009.03.072
Hu BH, 2000, ACTA OTO-LARYNGOL, V120, P19, DOI 10.1080/000164800760370774
Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1
Humes HD, 1999, ANN NY ACAD SCI, V884, P15
Jiang H, 2006, CELL DEATH DIFFER, V13, P20, DOI 10.1038/sj.cdd.4401706
Jiang H, 2007, NEUROBIOL AGING, V28, P1605, DOI 10.1016/j.neurobiolaging.2006.06.025
Jiang HY, 2005, J NEUROSCI RES, V79, P644, DOI 10.1002/jnr.20392
Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377
Kalinec GM, 2005, P NATL ACAD SCI USA, V102, P16019, DOI 10.1073/pnas.0508053102
Kawamoto K, 2004, MOL THER, V9, P173, DOI 10.1016/j.ymthe.2003.11.020
KERR JFR, 1972, BRIT J CANCER, V26, P239, DOI 10.1038/bjc.1972.33
Kim MS, 2008, BIOCHEM BIOPH RES CO, V370, P38, DOI 10.1016/j.bbrc.2008.03.026
Kim MS, 2008, ONCOGENE, V27, P3624, DOI 10.1038/sj.onc.1211021
Kopke RD, 1997, AM J OTOL, V18, P559
Lage H, 2001, FEBS LETT, V494, P54, DOI 10.1016/S0014-5793(01)02304-3
Lang-Lazdunski L, 2000, EUR J CARDIO-THORAC, V18, P174, DOI 10.1016/S1010-7940(00)00430-9
LAURELL G, 1989, HEARING RES, V38, P27, DOI 10.1016/0378-5955(89)90125-1
Lee JE, 2003, LARYNGOSCOPE, V113, P994, DOI 10.1097/00005537-200306000-00015
Lesniak W, 2005, CHEM RES TOXICOL, V18, P357, DOI 10.1021/tx0496946
LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307
Lo YYC, 1996, J BIOL CHEM, V271, P15703
MARAZITA ML, 1993, AM J MED GENET, V46, P486, DOI 10.1002/ajmg.1320460504
Masuda Yoshiko, 2006, J Hum Genet, V51, P652, DOI 10.1007/s10038-006-0004-6
Mielke K, 2000, PROG NEUROBIOL, V61, P45, DOI 10.1016/S0301-0082(99)00042-8
Mukherjea D, 2006, NEUROSCIENCE, V139, P733, DOI 10.1016/j.neuroscience.2005.12.044
Musial-Bright L, 2011, CHILD NERV SYST, V27, P407, DOI 10.1007/s00381-010-1300-1
Nakagawa T, 1998, EUR ARCH OTO-RHINO-L, V255, P127, DOI 10.1007/s004050050027
Nakamagoe M, 2010, HEARING RES, V261, P67, DOI 10.1016/j.heares.2010.01.004
Nelson DI, 2005, AM J IND MED, V48, P446, DOI 10.1002/aijm.20223
Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2
Niu XZ, 2003, NEUROREPORT, V14, P1025, DOI 10.1097/01.wnr.0000070830.57864.32
Ohinata Y, 2003, BRAIN RES, V966, P265, DOI 10.1016/S0006-8993(02)04205-1
Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017
Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846
OPDEBEECK K, 2011, EUR J HUM GENET
Pirvola U, 2000, J NEUROSCI, V20, P43
Ries P. W., 1994, VITAL HLTH STAT, V10, P1
Rybak LP, 2007, HEARING RES, V226, P157, DOI 10.1016/j.heares.2006.09.015
Rybak LP, 2007, KIDNEY INT, V72, P931, DOI 10.1038/sj.ki.5002434
SAUNDERS JC, 1985, J ACOUST SOC AM, V78, P833, DOI 10.1121/1.392915
Sergi B, 2006, NEUROREPORT, V17, P857, DOI 10.1097/01.wnr.0000221834.18470.8c
Sha SH, 1999, FREE RADICAL BIO MED, V26, P341, DOI 10.1016/S0891-5849(98)00207-X
Sha SH, 2009, HEARING RES, V254, P92, DOI 10.1016/j.heares.2009.04.019
Sha SH, 2008, HEARING RES, V243, P87, DOI 10.1016/j.heares.2008.06.001
Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4
Shim HJ, 2009, ACTA OTO-LARYNGOL, V129, P233, DOI 10.1080/00016480802226155
SLEPECKY N, 1986, HEARING RES, V22, P307, DOI 10.1016/0378-5955(86)90107-3
Someya S, 2007, NEUROBIOL AGING, V28, P1613, DOI 10.1016/j.neurobiolaging.2006.06.024
Someya S, 2010, MECH AGEING DEV, V131, P480, DOI 10.1016/j.mad.2010.04.006
Someya S, 2009, P NATL ACAD SCI USA, V106, P19432, DOI 10.1073/pnas.0908786106
Song BB, 1998, FREE RADICAL BIO MED, V25, P189, DOI 10.1016/S0891-5849(98)00037-9
Suzuki M, 2008, ACTA OTO-LARYNGOL, V128, P724, DOI 10.1080/00016480701714244
Tabuchi K, 2007, NEUROSCIENCE, V149, P213, DOI 10.1016/j.neuroscience.2007.06.061
Tadros SF, 2008, APOPTOSIS, V13, P1303, DOI 10.1007/s10495-008-0266-x
Tanaka K, 2005, EUR J PHARMACOL, V522, P116, DOI 10.1016/j.ejphar.2005.08.026
Tsutsumishita Y, 1998, BIOCHEM BIOPH RES CO, V242, P310, DOI 10.1006/bbrc.1997.7962
Usami S, 1997, BRAIN RES, V747, P147, DOI 10.1016/S0006-8993(96)01243-7
Van Laer L, 1998, NAT GENET, V20, P194
Van Laer L, 2004, J MED GENET, V41, P401, DOI 10.1136/jmg.2003.015073
Vicente-Torres MA, 2006, J NEUROSCI RES, V83, P1564, DOI 10.1002/jnr.20832
Walsh T, 2010, AM J HUM GENET, V87, P101, DOI 10.1016/j.ajhg.2010.05.011
Wang J, 2002, NEUROSCIENCE, V111, P635
Wang J, 2007, MOL PHARMACOL, V71, P654, DOI 10.1124/mol.106.028936
Wu YJ, 2005, J PHARMACOL EXP THER, V312, P424, DOI 10.1124/jpet.104.075119
Yamashita D, 2005, NEUROSCIENCE, V134, P633, DOI 10.1016/j.neuroscience.2005.04.015
Yamashita D, 2004, NEUROREPORT, V15, P2719
Yamashita D, 2004, BRAIN RES, V1019, P201, DOI 10.1016/j.brainres.2004.05.104
Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015
Ylikoski J, 2002, HEARING RES, V163, P71, DOI 10.1016/S0378-5955(01)00380-X
Yu CA, 2003, GENOMICS, V82, P575, DOI 10.1016/S0888-7543(03)00175-7
NR 101
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2011
VL 281
IS 1-2
SI SI
BP 18
EP 27
DI 10.1016/j.heares.2011.07.002
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 853ML
UT WOS:000297430300004
ER
PT J
AU Xie, J
Talaska, AE
Schacht, J
AF Xie, Jing
Talaska, Andra E.
Schacht, Jochen
TI New developments in aminoglycoside therapy and ototoxicity
SO HEARING RESEARCH
LA English
DT Article
ID HAIR CELL-DEATH; CYSTIC-FIBROSIS PATIENTS; PIG INNER-EAR; ATTENUATE
GENTAMICIN OTOTOXICITY; PREMATURE STOP MUTATIONS; INDUCED HEARING-LOSS;
GUINEA-PIG; IN-VIVO; ULTRASTRUCTURAL-LOCALIZATION; ANTIBACTERIAL
ACTIVITY
AB After almost seven decades in clinical use, aminoglycoside antibiotics still remain indispensible drugs for acute infections and specific indications such as tuberculosis or the containment of pseudomonas bacteria in patients with cystic fibrosis. The review will describe the pathology and pathophysiology of aminoglycoside-induced auditory and vestibular toxicity in humans and experimental animals and explore contemporary views of the mechanisms of cell death. It will also outline the current state of protective therapy and recent advances in the development of aminoglycoside derivatives with low toxicity profiles for antimicrobial treatment and for stop-codon suppression in the attenuation of genetic disorders. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Xie, Jing; Talaska, Andra E.; Schacht, Jochen] Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA.
RP Schacht, J (reprint author), Univ Michigan, Kresge Hearing Res Inst, Room 5315,Med Sci Bldg 1,1150 W Med Ctr Dr, Ann Arbor, MI 48109 USA.
EM schacht@umich.edu
FU National Institute for Deafness and Other Communication Disorders,
National Institutes of Health [R01 DC003685]
FX Dr. Schacht's research on drug-induced hearing loss is supported by
grant R01 DC003685 from the National Institute for Deafness and Other
Communication Disorders, National Institutes of Health.
CR ALMALKY G, 2011, AUDIO, V50, P112
American Academy of Audiology, 2009, POS STAT CLIN PRACT
Armstrong ES, 2010, CURR OPIN MICROBIOL, V13, P565, DOI 10.1016/j.mib.2010.09.004
*ASLHA, 2010, EV BAS SYST REV ESBR
Avent ML, 2011, INTERN MED J, V41, P441, DOI 10.1111/j.1445-5994.2011.02452.x
Balakin KV, 2007, ANTI-CANCER AGENT ME, V7, P576
Barto Tara Lynn, 2010, Hosp Pract (1995), V38, P26
Barton-Davis ER, 1999, J CLIN INVEST, V104, P375, DOI 10.1172/JCI7866
Battaglia A, 2003, NEUROSCIENCE, V122, P1025, DOI 10.1016/j.neuroscience.2003.08.041
Behnoud F, 2009, SAUDI MED J, V30, P1165
Bera S, 2010, BIOORG MED CHEM LETT, V20, P3031, DOI 10.1016/j.bmcl.2010.03.116
Bottger EC, 2001, EMBO REP, V2, P318, DOI 10.1093/embo-reports/kve062
BRAZIL OV, 1957, J PHARMACOL EXP THER, V120, P452
Bremner JB, 2007, CURR MED CHEM, V14, P1459, DOI 10.2174/092986707780831168
BURKE JF, 1985, NUCLEIC ACIDS RES, V13, P6265, DOI 10.1093/nar/13.17.6265
Caminero JA, 2010, LANCET INFECT DIS, V10, P621, DOI 10.1016/S1473-3099(10)70139-0
CAUSSE R, 1949, CR SOC BIOL, V143, P619
Chen F, 2008, ABSTR ASSN RES OTOLA, V31, P50
Chen FQ, 2009, J NEUROCHEM, V108, P1226, DOI 10.1111/j.1471-4159.2009.05871.x
Choung YH, 2009, NEUROSCIENCE, V161, P214, DOI 10.1016/j.neuroscience.2009.02.085
Chung WH, 2006, JARO-J ASSOC RES OTO, V7, P373, DOI 10.1007/s10162-006-0050-y
Clancy JP, 2001, AM J RESP CRIT CARE, V163, P1683
Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5
Darrouzet J, 1974, Rev Laryngol Otol Rhinol (Bord), V95, P601
Davies JC, 2007, BRIT MED J, V335, P1255, DOI 10.1136/bmj.39391.713229.AD
DEGROOT JCMJ, 1990, HEARING RES, V50, P35, DOI 10.1016/0378-5955(90)90031-J
de Jager P, 2002, INT J TUBERC LUNG D, V6, P622
Dotan ZA, 2003, ANESTH ANALG, V96, P750, DOI 10.1213/01.ANE.0000050280.59508.70
DUGGAL P, 2007, BMC EAR NOSE THROAT, V12, P1
Eshraghi AA, 2007, HEARING RES, V226, P168, DOI 10.1016/j.heares.2006.09.008
EUSTICE DC, 1984, BIOCHEMISTRY-US, V23, P1462, DOI 10.1021/bi00302a019
Fausti S A, 1992, J Am Acad Audiol, V3, P397
FEE WE, 1980, LARYNGOSCOPE, V90, P1, DOI 10.1288/00005537-198010001-00001
Feldman L, 2007, KIDNEY INT, V72, P359, DOI 10.1038/sj.ki.5002295
Frederiksen B, 1996, PEDIATR PULM, V21, P153, DOI 10.1002/(SICI)1099-0496(199603)21:3<153::AID-PPUL1>3.0.CO;2-R
GILBERT DN, 2004, MANDELL DOUGLAS BENN, P328
GREER LG, 2008, INFECT DIS OBSTET GY
Gulbay BE, 2006, RESP MED, V100, P1834, DOI 10.1016/j.rmed.2006.01.014
Hainrichson M, 2005, BIOORGAN MED CHEM, V13, P5797, DOI 10.1016/j.bmc.2005.05.058
Hashino E, 1997, BRAIN RES, V777, P75, DOI 10.1016/S0006-8993(97)00977-3
HAWKINS JE, 1973, AUDIOLOGY, V12, P383
Haydel SE, 2010, PHARMACEUTICALS, V3, P2268, DOI DOI 10.3390/PH3072268
HELLER J, 1984, International Urology and Nephrology, V16, P243, DOI 10.1007/BF02082570
HIEL H, 1992, HEARING RES, V57, P157, DOI 10.1016/0378-5955(92)90148-G
HINOJOSA R, 1987, J INFECT DIS, V156, P448
HINSHAW HC, 1945, P STAFF M MAYO CLIN, V20, P313
Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4
Howard MT, 2004, ANN NEUROL, V55, P422, DOI 10.1002/ana.20052
Huizing E H, 1987, Acta Otolaryngol Suppl, V436, P117
Imamura S, 2003, JARO, V4, P176, DOI 10.1007/s10162-002-2036-8
Ishihara K, 2003, EUR J BIOCHEM, V270, P3461, DOI 10.1046/j.1432-1033.2003.03740.x
Jiang H, 2006, CELL DEATH DIFFER, V13, P20, DOI 10.1038/sj.cdd.4401706
Jiang H, 2006, J NEUROCHEM, V99, P269, DOI 10.1111/j.1471-4159.2006.04117.x
Jiang H, 2006, J NEUROSCI RES, V83, P1544, DOI 10.1002/jnr.20833
Jiang HY, 2005, J NEUROSCI RES, V79, P644, DOI 10.1002/jnr.20392
Kaplan DM, 2000, LARYNGOSCOPE, V110, P1298, DOI 10.1097/00005537-200008000-00014
Kaufman RJ, 1999, J CLIN INVEST, V104, P367, DOI 10.1172/JCI8055
Kaul M, 2006, J AM CHEM SOC, V128, P1261, DOI 10.1021/ja056159z
Kawamoto K, 2004, MOL THER, V9, P173, DOI 10.1016/j.ymthe.2003.11.020
Kerem E, 2008, LANCET, V372, P719, DOI 10.1016/S0140-6736(08)61168-X
Kharkheli E., 2007, GEORGIAN MED NEWS, V146, P14
KIES C, 1975, J NUTR, V105, P809
Kirkwood Allison, 2007, J Obstet Gynaecol Can, V29, P140
Leitner MG, 2011, MOL PHARMACOL, V79, P51, DOI 10.1124/mol.110.068130
LENOIR M, 1983, ACTA OTO-LARYNGOL, P1
LERNER SA, 1986, AM J MED, V80, P98, DOI 10.1016/0002-9343(86)90486-9
LIM DJ, 1986, AM J OTOLARYNG, V7, P73, DOI 10.1016/S0196-0709(86)80037-0
LODHI S, 1980, BIOCHEM PHARMACOL, V29, P597, DOI 10.1016/0006-2952(80)90382-2
Lyell DJ, 2010, OBSTET GYNECOL, V115, P344, DOI 10.1097/AOG.0b013e3181cb5c0e
Magnet S, 2005, CHEM REV, V105, P477, DOI 10.1021/cr0301088
Malik V, 2010, ANN NEUROL, V67, P771, DOI 10.1002/ana.22024
Marcotti W, 2005, J PHYSIOL-LONDON, V567, P505, DOI 10.1113/jphysiol.2005.085951
MAROT M, 1980, HEARING RES, V2, P111, DOI 10.1016/0378-5955(80)90032-5
Mizuta K, 1999, HEARING RES, V129, P83, DOI 10.1016/S0378-5955(98)00221-4
MOESTRUP SK, 1995, J CLIN INVEST, V96, P1404, DOI 10.1172/JCI118176
Mohtat D, 2010, SEMIN NEPHROL, V30, P468, DOI 10.1016/j.semnephrol.2010.07.004
MOORE RD, 1984, J INFECT DIS, V149, P23
Mulheran M, 2001, ANTIMICROB AGENTS CH, V45, P2502, DOI 10.1128/AAC.45.9.2502-2509.2001
Myrdal SE, 2005, HEARING RES, V204, P170, DOI 10.1016/j.heares.2005.02.005
Nudelman I, 2009, J MED CHEM, V52, P2836, DOI 10.1021/jm801640k
ORSULAKOVA A, 1976, J NEUROCHEM, V26, P285, DOI 10.1111/j.1471-4159.1976.tb04478.x
Ou HC, 2010, DRUG DISCOV TODAY, V15, P265, DOI 10.1016/j.drudis.2010.01.001
PARADELIS AG, 1988, METHOD FIND EXP CLIN, V10, P687
Pfannenstiel SC, 2009, AUDIOL NEURO-OTOL, V14, P254, DOI 10.1159/000192953
Pirvola U, 2000, J NEUROSCI, V20, P43
Pokrovskaya V, 2010, METHOD ENZYMOL, V478, P437, DOI 10.1016/S0076-6879(10)78021-6
PREZANT TR, 1993, NAT GENET, V4, P289, DOI 10.1038/ng0793-289
Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4
Radigan Elizabeth A, 2010, J Intensive Care Med, V25, P327, DOI 10.1177/0885066610377968
Ramesh G, 2004, KIDNEY INT, V65, P490, DOI 10.1111/j.1523-1755.2004.00413.x
RASMUSSE.F, 1969, SCAND J RESPIR DIS, V50, P61
Richardson GP, 1997, J NEUROSCI, V17, P9506
Ryals B, 1997, HEARING RES, V112, P44, DOI 10.1016/S0378-5955(97)00094-4
Rybak LP, 2005, DRUG DISCOV TODAY, V10, P1313, DOI 10.1016/S1359-6446(05)03552-X
Saunders JE, 2009, OTOLARYNG HEAD NECK, V140, P103, DOI 10.1016/j.otohns.2008.09.027
SCHACHT J, 1979, ARCH OTO-RHINO-LARYN, V224, P129, DOI 10.1007/BF00455236
SCHIEVE LA, 1994, AM J PUBLIC HEALTH, V84, P405, DOI 10.2105/AJPH.84.3.405
Selimoglu E, 2003, YONSEI MED J, V44, P517
Sha SH, 1999, FREE RADICAL BIO MED, V26, P341, DOI 10.1016/S0891-5849(98)00207-X
Sha SH, 2006, NEW ENGL J MED, V354, P1856, DOI 10.1056/NEJMc053428
Sha SH, 1999, LAB INVEST, V79, P807
Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4
Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6
Sleat D E, 2001, Eur J Paediatr Neurol, V5 Suppl A, P57, DOI 10.1053/ejpn.2000.0436
Sobel ML, 2003, ANTIMICROB AGENTS CH, V47, P3202, DOI 10.1128/AAC.47.10.3202-3207.2003
Song BB, 1998, FREE RADICAL BIO MED, V25, P189, DOI 10.1016/S0891-5849(98)00037-9
Song BB, 1996, HEARING RES, V94, P87, DOI 10.1016/0378-5955(96)00003-2
STEBBINS WC, 1969, ANN OTO RHINOL LARYN, V78, P1007
Streetman DS, 2001, PHARMACOTHERAPY, V21, P443, DOI 10.1592/phco.21.5.443.34490
Sundar S, 2007, NEW ENGL J MED, V356, P2571, DOI 10.1056/NEJMoa066536
Taleb M, 2009, CELL STRESS CHAPERON, V14, P427, DOI 10.1007/s12192-008-0097-2
Thakur CP, 2008, INDIAN J MED RES, V127, P489
Tsuji K, 2000, Ann Otol Rhinol Laryngol Suppl, V181, P20
Wagner KR, 2001, ANN NEUROL, V49, P706, DOI 10.1002/ana.1023
Wang J, 2003, J NEUROSCI, V23, P8596
WERSALL J, 1969, J INFECT DIS, V119, P410
WILLIAMS SE, 1987, BIOCHEM PHARMACOL, V36, P89, DOI 10.1016/0006-2952(87)90385-6
Wilschanski M, 2003, NEW ENGL J MED, V349, P1433, DOI 10.1056/NEJMoa022170
Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3
Yagi M, 1999, HUM GENE THER, V10, P813, DOI 10.1089/10430349950018562
Ylikoski J, 2002, HEARING RES, V166, P33, DOI 10.1016/S0378-5955(01)00388-4
NR 121
TC 44
Z9 45
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2011
VL 281
IS 1-2
SI SI
BP 28
EP 37
DI 10.1016/j.heares.2011.05.008
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 853ML
UT WOS:000297430300005
PM 21640178
ER
PT J
AU Shore, SE
AF Shore, S. E.
TI Plasticity of somatosensory inputs to the cochlear nucleus -
Implications for tinnitus
SO HEARING RESEARCH
LA English
DT Article
ID TIMING-DEPENDENT PLASTICITY; VESICULAR GLUTAMATE TRANSPORTERS;
TRIGEMINAL GANGLION STIMULATION; INTENSE SOUND EXPOSURE; GUINEA-PIG;
INFERIOR COLLICULUS; DISCHARGE PATTERNS; PYRAMIDAL CELLS;
AUDITORY-CORTEX; UNIT RESPONSES
AB This chapter reviews evidence for functional connections of the somatosensory and auditory systems at the very lowest levels of the nervous system. Neural inputs from the dosal root and trigeminal ganglia, as well as their brain stem nuclei, cuneate, gracillis and trigeminal, terminate in the cochlear nuclei. Terminations are primarily in the shell regions surrounding the cochlear nuclei but some terminals are found in the magnocellular regions of cochlear nucleus. The effects of stimulating these inputs on multisensory integration are shown as short and long-term, both suppressive and enhancing. Evidence that these projections are glutamatergic and are altered after cochlear damage is provided in the light of probable influences on the modulation and generation of tinnitus. (C) 2011 Elsevier B.V. All rights reserved.
C1 Univ Michigan, Dept Otolaryngol, Ann Arbor, MI 48109 USA.
RP Shore, SE (reprint author), Univ Michigan, Dept Otolaryngol, 1150 W Med Ctr, Ann Arbor, MI 48109 USA.
EM sushore@umich.edu
FU NIH [NIDCD R01 004825, P30 DC 05188]; Tinnitus Research Consortium;
Tinnitus Research Initiative
FX This work was supported by NIH Grants NIDCD R01 004825 and P30 DC 05188
and the Tinnitus Research Consortium and the Tinnitus Research
Initiative. We thank Ben Yates for expert graphical assistance.
CR Allman BL, 2009, P NATL ACAD SCI USA, V106, P5925, DOI 10.1073/pnas.0809483106
Bauer CA, 2008, J NEUROSCI RES
Bledsoe SC, 2009, J NEUROPHYSIOL, V102, P886, DOI 10.1152/jn.91003.2008
Brozoski TJ, 2002, J NEUROSCI, V22, P2383
Caclin A, 2002, PERCEPT PSYCHOPHYS, V64, P616, DOI 10.3758/BF03194730
CASPARY DM, 1987, BRAIN RES, V417, P273, DOI 10.1016/0006-8993(87)90452-5
Davis KA, 1996, J NEUROPHYSIOL, V76, P3012
Dehmel S, 2008, AM J AUDIOL, V17, pS193, DOI 10.1044/1059-0889(2008/07-0045)
DEHMEL S, 2011, ABSTR ASS RES OT, V34, P437
Dehmel S, 2008, AM J AUDIOL, V17, P193
Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010
Eggermont JJ, 2005, DRUG DISCOV TODAY, V10, P1283, DOI 10.1016/S1359-6446(05)03542-7
Finlayson PG, 2009, HEARING RES, V256, P104, DOI 10.1016/j.heares.2009.07.006
Fremeau RT, 2004, SCIENCE, V304, P1815, DOI 10.1126/science.1097468
Fujino K, 2003, P NATL ACAD SCI USA, V100, P265, DOI 10.1073/pnas.0135345100
Gras C, 2002, J NEUROSCI, V22, P5442
HACKNEY CM, 1990, ANAT EMBRYOL, V182, P123
Haenggeli CA, 2005, J COMP NEUROL, V484, P191, DOI 10.1002/cne.20466
Herzog E, 2001, J NEUROSCI, V21, part. no.
Ito T, 2009, P NATL ACAD SCI USA, V106, P1245, DOI 10.1073/pnas.0810063106
Jain R, 2006, NEUROSCI LETT, V395, P71, DOI 10.1016/j.neulet.2005.10.077
Kaltenbach JA, 2008, AM J AUDIOL, V17, pS148, DOI 10.1044/1059-0889(2008/08-0004)
Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5
Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57
Kaneko T, 2002, J COMP NEUROL, V444, P39, DOI 10.1002/cne.10129
KANOLD PO, 2011, J NEUROPHYSIOL
Kanold PO, 2001, J NEUROPHYSIOL, V85, P523
Kanold PO, 2005, J NEUROPHYSIOL, V93, P2887, DOI 10.1152/jn.00910.2004
KANOLD PO, 2010, J NEUROPHYSIOL
Kanold PO, 2001, J NEUROSCI, V21, P7848
Kanold PO, 1999, J NEUROSCI, V19, P2195
Koehler SD, 2011, EUR J NEUROSCI, V33, P409, DOI 10.1111/j.1460-9568.2010.07547.x
Lanting CP, 2010, HEARING RES, V267, P78, DOI 10.1016/j.heares.2010.04.006
Levine RA, 1999, AM J OTOLARYNG, V20, P351, DOI 10.1016/S0196-0709(99)90074-1
Lewald J, 1999, EXP BRAIN RES, V125, P389, DOI 10.1007/s002210050695
Lockwood AH, 2002, NEW ENGL J MED, V347, P904, DOI 10.1056/NEJMra013395
LOEB M, 1967, J ACOUST SOC AM, V42, P453, DOI 10.1121/1.1910600
Masuda N, 2007, J COMPUT NEUROSCI, V22, P327, DOI 10.1007/s10827-007-0022-1
McBain CJ, 2008, PROG BRAIN RES, V169, P225, DOI 10.1016/S0079-6123(07)00013-1
Moore BCJ, 2010, HEARING RES, V261, P51, DOI 10.1016/j.heares.2010.01.003
Mulders WHAM, 2009, NEUROSCIENCE, V164, P733, DOI 10.1016/j.neuroscience.2009.08.036
Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156
ODONAHUE H, 2010, ARO, V33, P240
Pinchoff RJ, 1998, AM J OTOL, V19, P785
Roberts LE, 2008, JARO-J ASSOC RES OTO, V9, P417, DOI 10.1007/s10162-008-0136-9
Roberts PD, 2006, NEUROCOMPUTING, V69, P1191, DOI 10.1016/j.neucom.2005.12.073
RUBINSTEIN B, 1990, Journal of Craniomandibular Disorders, V4, P186
Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2
Schaette R, 2009, J NEUROPHYSIOL, V101, P3042, DOI 10.1152/jn.91256.2008
Schurmann M, 2004, J ACOUST SOC AM, V115, P830, DOI 10.1121/1.1639909
Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1
SHORE RE, 2005, TINNITUS THEORY MANA, P125
SHORE RE, 2008, EUR J NEUROSCI, V27, P155
Shore S, 2007, PROG BRAIN RES, V166, P107, DOI 10.1016/S0079-6123(07)66010-5
Shore SE, 2003, NEUROSCIENCE, V119, P1085, DOI 10.1016/S0306-4522(03)00207-0
Shore SE, 2000, J COMP NEUROL, V419, P271, DOI 10.1002/(SICI)1096-9861(20000410)419:3<271::AID-CNE1>3.0.CO;2-M
Shore SE, 2005, EUR J NEUROSCI, V21, P3334, DOI 10.1111/j.1460-9568.2005.04142.x
Takahashi YK, 2009, PHYS REV E, V79, DOI 10.1103/PhysRevE.79.051904
Takamori S, 2001, J NEUROSCI, V21
Tzounopoulos T, 2007, NEURON, V54, P291, DOI 10.1016/j.neuron.2007.03.026
Tzounopoulos T, 2004, NAT NEUROSCI, V7, P719, DOI 10.1038/nn1272
VANHEUSDEN E, 1983, HEARING RES, V11, P295, DOI 10.1016/0378-5955(83)90064-3
Varoqui H, 2002, J NEUROSCI, V22, P142
Wallen-Mackenzie A, 2010, UPSALA J MED SCI, V115, P11, DOI 10.3109/03009730903572073
Wang H, 2009, NEUROSCIENCE, V164, P747, DOI 10.1016/j.neuroscience.2009.08.026
Weisz N, 2006, HEARING RES, V222, P108, DOI 10.1016/j.heares.2006.09.003
Zacharek MA, 2002, HEARING RES, V172, P137, DOI 10.1016/S0378-5955(02)00575-0
Zeng C, 2011, NEUROSCIENCE, V176, P142, DOI 10.1016/j.neuroscience.2010.12.010
Zeng CH, 2009, J NEUROSCI, V29, P4210, DOI 10.1523/JNEUROSCI.0208-09.2009
Zhan XP, 2006, J COMP NEUROL, V496, P335, DOI 10.1002/cne.20917
Zhang J, 2008, J NEUROSCI RES, V86, P1178, DOI 10.1002/jnr.21560
Zhou JX, 2007, J COMP NEUROL, V500, P777, DOI 10.1002/cne.21208
Zhou JX, 2004, J NEUROSCI RES, V78, P901, DOI 10.1002/jnr.20343
Zhou JX, 2006, J COMP NEUROL, V495, P100, DOI 10.1002/cne.20863
NR 74
TC 19
Z9 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2011
VL 281
IS 1-2
SI SI
BP 38
EP 46
DI 10.1016/j.heares.2011.05.001
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 853ML
UT WOS:000297430300006
PM 21620940
ER
PT J
AU Meltser, I
Canlon, B
AF Meltser, Inna
Canlon, Barbara
TI Protecting the auditory system with glucocorticoids
SO HEARING RESEARCH
LA English
DT Article
ID NF-KAPPA-B; INDUCED HEARING-LOSS; GUINEA-PIG COCHLEA; INNER-EAR;
ACOUSTIC TRAUMA; RECEPTOR EXPRESSION; RESTRAINT STRESS; NOISE EXPOSURE;
HAIR-CELLS; RAT-BRAIN
AB Glucocorticoids are hormones released following stress-related events and function to maintain homeostasis. Glucocorticoid receptors localize, among others, to hair cells, spiral ligament and spiral ganglion neurons. Glucocorticoid receptor-induced protection against acoustic trauma is found by i) pretreatment with glucocorticoid agonists; ii) acute restraint stress; and iii) sound conditioning. In contrast, glucocorticoid receptor antagonists exacerbate hearing loss. These findings have important clinical significance since synthetic glucocorticoids are commonly used to treat hearing loss. However, this treatment has limited success since hearing improvement is often not maintained once the treatment has ended, a fact that reduces the overall appeal for this treatment. It must be realized that despite the widespread use of glucocorticoids to treat hearing disorders, the molecular mechanisms underlying this treatment are not well characterized. This review will give insight into some physiological and biochemical mechanisms underlying glucocorticoid treatment for preventing hearing loss. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Meltser, Inna; Canlon, Barbara] Karolinska Inst, Dept Physiol & Pharmacol, S-17177 Stockholm, Sweden.
RP Canlon, B (reprint author), Karolinska Inst, Dept Physiol & Pharmacol, S-17177 Stockholm, Sweden.
EM Barbara.Canlon@ki.se
CR Agerman K, 2003, NEUROREPORT, V14, P2183, DOI 10.1097/01.wnr.0000095710.83808.57
Ahlbom E, 2000, P NATL ACAD SCI USA, V97, P14726, DOI 10.1073/pnas.260501697
Albensi BC, 2000, SYNAPSE, V35, P151
Barker DJP, 1998, CLIN SCI, V95, P115, DOI 10.1042/CS19980019
BEATO M, 1989, J STEROID BIOCHEM, V32, P737, DOI 10.1016/0022-4731(89)90521-9
Buijs RM, 2003, J ENDOCRINOL, V177, P17, DOI 10.1677/joe.0.1770017
CANLON B, 1988, HEARING RES, V34, P197, DOI 10.1016/0378-5955(88)90107-4
Canlon B, 2003, EUR J NEUROSCI, V17, P2035, DOI 10.1046/j.1460-9568.2003.02641.x
Carlsson PI, 2005, HEARING RES, V202, P87, DOI 10.1016/j.heares.2004.09.005
Chaouloff F, 2011, FRONT NEUROENDOCRIN, V32, P25, DOI 10.1016/j.yfrne.2010.07.004
Coleman JKM, 2007, HEARING RES, V226, P70, DOI 10.1016/j.heares.2006.05.006
Conway-Campbell BL, 2007, ENDOCRINOLOGY, V148, P5470, DOI 10.1210/en.2007-0585
Datson NA, 2008, EUR J PHARMACOL, V583, P272, DOI 10.1016/j.ejphar.2007.11.070
DEKLOET R, 1975, ENDOCRINOLOGY, V96, P598
Dinh CT, 2008, NEUROSCIENCE, V157, P405, DOI 10.1016/j.neuroscience.2008.09.012
DONG Y, 1988, MOL ENDOCRINOL, V2, P1256
Eastwood H, 2010, HEARING RES, V265, P25, DOI 10.1016/j.heares.2010.03.006
Erdmann G, 2008, J NEUROENDOCRINOL, V20, P655, DOI 10.1111/j.1365-2826.2008.01717.x
FRANK L, 1985, PEDIATRICS, V75, P569
FREDELIUS L, 1990, ACTA OTO-LARYNGOL, V109, P76, DOI 10.3109/00016489009107417
George DL, 2009, NAT REV RHEUMATOL, V5, P505, DOI 10.1038/nrrheum.2009.150
Gloddek B, 2002, ADV OTO-RHINO-LARYNG, V59, P75
Godfrey KM, 1998, EUR J OBSTET GYN R B, V78, P141, DOI 10.1016/S0301-2115(98)00060-8
Gross KL, 2009, MOL CELL ENDOCRINOL, V300, P7, DOI 10.1016/j.mce.2008.10.001
Haake SM, 2009, HEARING RES, V255, P22, DOI 10.1016/j.heares.2009.05.003
Haller J, 2008, FRONT NEUROENDOCRIN, V29, P273, DOI 10.1016/j.yfrne.2007.10.004
Hamanoue M, 1999, MOL CELL NEUROSCI, V14, P28, DOI 10.1006/mcne.1999.0770
Henley DE, 2011, NEUROSCIENCE, V180, P1, DOI 10.1016/j.neuroscience.2011.02.053
Henry KR, 2004, HEARING RES, V190, P141, DOI 10.1016/S0378-5955(03)00401-5
Herman JP, 1997, TRENDS NEUROSCI, V20, P78, DOI 10.1016/S0166-2236(96)10069-2
Hirose K, 2005, J COMP NEUROL, V489, P180, DOI 10.1002/cne.20619
HOLSON RR, 1995, NEUROTOXICOL TERATOL, V17, P393, DOI 10.1016/0892-0362(94)00074-N
Hossain A, 2008, ENDOCRINOLOGY, V149, P6356, DOI 10.1210/en.2008-0388
HUTCHISON KA, 1993, ANN NY ACAD SCI, V684, P35, DOI 10.1111/j.1749-6632.1993.tb32269.x
Jiang HY, 2005, J NEUROSCI RES, V79, P644, DOI 10.1002/jnr.20392
Johansson-Haque K, 2008, J MOL ENDOCRINOL, V41, P239, DOI 10.1677/JME-08-0015
Kalinec F, 2009, BRIT J PHARMACOL, V158, P1820, DOI 10.1111/j.1476-5381.2009.00473.x
Kaltschmidt B, 2009, CSH PERSPECT BIOL, V1, DOI 10.1101/cshperspect.a001271
Kassel O, 2007, MOL CELL ENDOCRINOL, V275, P13, DOI 10.1016/j.mce.2007.07.003
KATTNER E, 1992, J PERINAT MED, V20, P449, DOI 10.1515/jpme.1992.20.6.449
Kim SH, 2009, AM J PHYSIOL-CELL PH, V296, pC544, DOI 10.1152/ajpcell.00338.2008
Lang HN, 2006, J NEUROSCI, V26, P3541, DOI 10.1523/JNEUROSCI.2488-05.2006
Lautermann J, 1997, HEARING RES, V114, P75, DOI 10.1016/S0378-5955(97)00154-8
Lee JH, 2002, AUDIOL NEURO-OTOL, V7, P100, DOI 10.1159/000057657
Lipsky RH, 2001, J NEUROCHEM, V78, P254, DOI 10.1046/j.1471-4159.2001.00386.x
Lorenz RR, 2002, J NEUROIMMUNOL, V130, P173, DOI 10.1016/S0165-5728(02)00190-X
Lowenberg M, 2008, STEROIDS, V73, P1025, DOI 10.1016/j.steroids.2007.12.002
Maeda K, 2005, HEARING RES, V202, P154, DOI 10.1016/j.heares.2004.08.022
Malkoski SP, 1999, MOL ENDOCRINOL, V13, P1629, DOI 10.1210/me.13.10.1629
Marini AM, 2004, RESTOR NEUROL NEUROS, V22, P121
MELTSER I, 2009, NEUROSCIENCE
Meltser I, 2009, J NEUROTRAUM, V26, P1835, DOI 10.1089/neu.2008.0874
Mills CD, 1999, HEARING RES, V128, P75, DOI 10.1016/S0378-5955(98)00190-7
MITCHELL C, 1989, HEARING RES, V40, P75, DOI 10.1016/0378-5955(89)90101-9
MIYAKITA T, 1992, HEARING RES, V60, P149, DOI 10.1016/0378-5955(92)90017-H
Murai N, 2008, J NEUROTRAUM, V25, P72, DOI 10.1089/neu.2007.0346
Nimkarn S, 2009, MOL CELL ENDOCRINOL, V300, P192, DOI 10.1016/j.mce.2008.11.027
Peppi M, 2011, J NEUROSCI, V31, P735, DOI 10.1523/JNEUROSCI.3955-10.2011
Pouyatos B, 2007, HEARING RES, V224, P61, DOI 10.1016/j.heares.2006.11.009
QUIRK WS, 1994, HEARING RES, V80, P119, DOI 10.1016/0378-5955(94)90015-9
QUIRK WS, 1994, HEARING RES, V74, P217, DOI 10.1016/0378-5955(94)90189-9
Rabinowitz PM, 2002, HEARING RES, V173, P164, DOI 10.1016/S0378-5955(02)00350-7
Ramkumar V, 2004, HEARING RES, V188, P47, DOI 10.1016/S0378-5955(03)00344-7
RAREY KE, 1993, HEARING RES, V64, P205, DOI 10.1016/0378-5955(93)90007-N
Reichardt LF, 2006, PHILOS T R SOC B, V361, P1545, DOI 10.1098/rstb.2006.1894
REUL JMHM, 1985, ENDOCRINOLOGY, V117, P2505
ROSEWICZ S, 1988, J BIOL CHEM, V263, P2581
RYAN AF, 1994, HEARING RES, V72, P23, DOI 10.1016/0378-5955(94)90201-1
Schaaf MJM, 2002, J STEROID BIOCHEM, V83, P37, DOI 10.1016/S0960-0760(02)00263-7
Schoneveld OJLM, 2004, BBA-GENE STRUCT EXPR, V1680, P114, DOI 10.1016/j.bbaexp.2004.09.004
Seckl JR, 1998, CLIN PERINATOL, V25, P939
Seckl JR, 2004, ANN NY ACAD SCI, V1032, P63, DOI 10.1196/annals.1314.006
Selivanova O, 2007, ORL J OTO-RHINO-LARY, V69, P277, DOI 10.1159/000103871
Sendowski I, 2006, HEARING RES, V221, P119, DOI 10.1016/j.heares.2006.08.010
Shimazaki T, 2002, ANN OTO RHINOL LARYN, V111, P1133
Staecker H, 2002, ACTA OTO-LARYNGOL, V122, P684, DOI 10.1080/000164802320396402
Stohr T, 1998, PHARMACOL BIOCHEM BE, V59, P799, DOI 10.1016/S0091-3057(97)00541-8
Tahera Y, 2006, NEUROREPORT, V17, P879, DOI 10.1097/01.wnr.0000220131.24468.e7
Tahera Y, 2006, ENDOCRINOLOGY, V147, P4430, DOI 10.1210/en.2006-0260
Tahera Y, 2006, J NEUROSCI RES, V83, P1066, DOI 10.1002/jnr.20795
Tahera Y, 2007, NEUROBIOL DIS, V25, P189, DOI 10.1016/j.nbd.2006.09.004
TENCATE WJF, 1992, HEARING RES, V60, P199, DOI 10.1016/0378-5955(92)90021-E
TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865
Toldy A, 2005, BRAIN RES BULL, V65, P487, DOI 10.1016/j.brainresbull.2005.02.028
Tronche F, 1999, NAT GENET, V23, P99, DOI 10.1038/12703
Trune DR, 2002, HEARING RES, V167, P170, DOI 10.1016/S0378-5955(02)00384-2
Turner JD, 2010, BIOCHEM PHARMACOL, V80, P1860, DOI 10.1016/j.bcp.2010.06.037
UNO H, 1990, DEV BRAIN RES, V53, P157, DOI 10.1016/0165-3806(90)90002-G
Van Campen LE, 2002, HEARING RES, V164, P29, DOI 10.1016/S0378-5955(01)00391-4
Walker BR, 2006, ANN NY ACAD SCI, V1083, P165, DOI 10.1196/annals.1367.012
Walker JJ, 2010, J NEUROENDOCRINOL, V22, P1226, DOI 10.1111/j.1365-2826.2010.02087.x
Wang J, 2007, MOL PHARMACOL, V71, P654, DOI 10.1124/mol.106.028936
Wang Y, 2002, HEARING RES, V165, P96, DOI 10.1016/S0378-5955(02)00289-7
Welberg LAM, 2001, J NEUROENDOCRINOL, V13, P113, DOI 10.1046/j.1365-2826.2001.00601.x
Yamamoto Y, 2004, TRENDS BIOCHEM SCI, V29, P72, DOI 10.1016/j.tibs.2003.12.003
Yoshida N, 2000, HEARING RES, V148, P213, DOI 10.1016/S0378-5955(00)00161-1
Yoshida N, 1999, J NEUROSCI, V19, P10116
Yukawa H, 2005, NEUROSCIENCE, V130, P485, DOI 10.1016/j.neuroscience.2004.09.037
Zou J, 2005, HEARING RES, V202, P13, DOI 10.1016/j.heares.2004.10.008
ZUO J, 1995, HEARING RES, V87, P220, DOI 10.1016/0378-5955(95)00092-I
NR 100
TC 13
Z9 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2011
VL 281
IS 1-2
SI SI
BP 47
EP 55
DI 10.1016/j.heares.2011.06.003
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 853ML
UT WOS:000297430300007
PM 21718769
ER
PT J
AU Shibata, SB
Budenz, CL
Bowling, SA
Pfingst, BE
Raphael, Y
AF Shibata, Seiji B.
Budenz, Cameron L.
Bowling, Sara A.
Pfingst, Bryan E.
Raphael, Yehoash
TI Nerve maintenance and regeneration in the damaged cochlea
SO HEARING RESEARCH
LA English
DT Article
ID SPIRAL GANGLION NEURONS; HAIR CELL LOSS; CHRONIC ELECTRICAL-STIMULATION;
SENSORINEURAL HEARING-LOSS; DEAFENED GUINEA-PIGS; ELEMENTS FOLLOWING
DISRUPTION; AUDITORY NEUROPATHY AUNA1; FACTOR GENE-THERAPY; CNS WHITE
MATTER; NEUROTROPHIC FACTOR
AB Following the onset of sensorineural hearing loss, degeneration of mechanosensitive hair cells and spiral ganglion cells (SGCs) in humans and animals occurs to variable degrees, with a trend for greater neural degeneration with greater duration of deafness. Emergence of the cochlear implant prosthesis has provided much needed aid to many hearing impaired patients and has become a well-recognized therapy worldwide. However, ongoing peripheral nerve fiber regression and subsequent degeneration of SGC bodies can reduce the neural targets of cochlear implant stimulation and diminish its function. There is increasing interest in bio-engineering approaches that aim to enhance cochlear implant efficacy by preventing SGC body degeneration and/or regenerating peripheral nerve fibers into the deaf sensory epithelium. We review the advancements in maintaining and regenerating nerves in damaged animal cochleae, with an emphasis on the therapeutic capacity of neurotrophic factors delivered to the inner ear after an insult. Additionally, we summarize the histological process of neuronal degeneration in the inner ear and describe different animal models that have been employed to study this mechanism. Research on enhancing the biological infrastructure of the deafened cochlea in order to improve cochlear implant efficacy is of immediate clinical importance. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Shibata, Seiji B.; Budenz, Cameron L.; Bowling, Sara A.; Pfingst, Bryan E.; Raphael, Yehoash] Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, Ann Arbor, MI 48109 USA.
RP Raphael, Y (reprint author), Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, 1150 W Med Cntr Dr, Ann Arbor, MI 48109 USA.
EM yoash@umich.edu
FU A. Alfred Taubman Medical Research Institute; Berte and Alan Hirschfield
Foundation; R. Jamison and Betty Williams Professorship, MedEl;
NIH/NIDCD [R01 DC01634, R01 DC007634, T32 DC005356, P30 DC05188]
FX We thank Donald Swiderski and Hiu Tung Wong for images and helpful
comments. Our work is supported by the A. Alfred Taubman Medical
Research Institute, the Berte and Alan Hirschfield Foundation, the R.
Jamison and Betty Williams Professorship, MedEl, and NIH/NIDCD Grants
R01 DC01634, R01 DC007634, T32 DC005356 and P30 DC05188.
CR ABRASHKIN MA, 2006, HEARING RES, V218, P20
Agterberg MJH, 2010, HEARING RES, V269, P169, DOI 10.1016/j.heares.2010.06.015
Agterberg MJH, 2008, HEARING RES, V244, P25, DOI 10.1016/j.heares.2008.07.004
Agterberg MJH, 2009, JARO-J ASSOC RES OTO, V10, P355, DOI 10.1007/s10162-009-0170-2
ANNIKO M, 1983, ACTA OTO-LARYNGOL, V95, P263, DOI 10.3109/00016488309130943
AVILA MA, 1993, DEV BIOL, V159, P266, DOI 10.1006/dbio.1993.1239
Bankiewicz KS, 2006, MOL THER, V14, P564, DOI 10.1016/j.ymthe.2006.05.005
Bellamkonda RV, 2006, BIOMATERIALS, V27, P3515, DOI 10.1016/j.biomaterials.2006.02.030
BICHLER E, 1983, ARCH OTO-RHINO-LARYN, V237, P201, DOI 10.1007/BF00453725
BLACK RC, 1983, ANN NY ACAD SCI, V405, P137, DOI 10.1111/j.1749-6632.1983.tb31626.x
BLACK RC, 1981, IEEE T BIO-MED ENG, V28, P721, DOI 10.1109/TBME.1981.324668
Bledsoe SC, 1995, NEUROREPORT, V7, P225, DOI 10.1097/00001756-199512000-00054
Bohne BA, 2000, AM J OTOL, V21, P505
BOHNE BA, 1992, LARYNGOSCOPE, V102, P693, DOI 10.1288/00005537-199206000-00017
Bomze HM, 2001, NAT NEUROSCI, V4, P38
BORG E, 1983, HEARING RES, V11, P1, DOI 10.1016/0378-5955(83)90040-0
Bowers WJ, 2002, MOL THER, V6, P12, DOI 10.1006/mthe.2002.0627
Briaire JJ, 2006, HEARING RES, V214, P17, DOI 10.1016/j.heares.2006.01.015
Brushart TM, 1998, J NEUROSCI, V18, P8674
Buss E, 2002, OTOL NEUROTOL, V23, P328, DOI 10.1097/00129492-200205000-00017
CARONI P, 1988, J CELL BIOL, V106, P1281, DOI 10.1083/jcb.106.4.1281
CARONI P, 1988, NEURON, V1, P85, DOI 10.1016/0896-6273(88)90212-7
Chen I, 2010, JARO-J ASSOC RES OTO, V11, P587, DOI 10.1007/s10162-010-0234-3
Cheng C, 2002, NEUROSCIENCE, V115, P321, DOI 10.1016/S0306-4522(02)00291-9
Chikar JA, 2008, HEARING RES, V245, P24, DOI 10.1016/j.heares.2008.08.005
Cohen LT, 2006, HEARING RES, V212, P160, DOI 10.1016/j.heares.2005.11.005
Cohen LT, 2005, INT J AUDIOL, V44, P559, DOI 10.1080/14992020500258743
Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0
Delmaghani S, 2006, NAT GENET, V38, P770, DOI 10.1038/ng1829
DESPRES G, 1994, ACTA OTO-LARYNGOL, V114, P377, DOI 10.3109/00016489409126073
Di Polo A, 1998, P NATL ACAD SCI USA, V95, P3978, DOI 10.1073/pnas.95.7.3978
Dodson HC, 1997, J NEUROCYTOL, V26, P541, DOI 10.1023/A:1015434524040
Dodson HC, 2000, J NEUROCYTOL, V29, P525, DOI 10.1023/A:1007201913730
Dorman MF, 1998, J ACOUST SOC AM, V104, P3583, DOI 10.1121/1.423940
Duan ML, 2002, NEUROREPORT, V13, P1295
Eiberger J, 2006, GLIA, V53, P601, DOI 10.1002/glia.20315
Ernfors P, 1995, INT J DEV BIOL, V39, P799
Fitzgerald MB, 2007, ACTA OTO-LARYNGOL, V127, P378, DOI 10.1080/00016480701258671
FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2
Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538
Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012
Fritzsch B, 2004, PROG BRAIN RES, V146, P265, DOI 10.1016/S0079-6123(03)46017-2
Fritzsch B, 1997, SEMIN CELL DEV BIOL, V8, P277, DOI 10.1006/scdb.1997.0144
Fu SY, 1997, MOL NEUROBIOL, V14, P67, DOI 10.1007/BF02740621
Gibson WPR, 2007, EAR HEARING, V28, p102S, DOI 10.1097/AUD.0b013e3180315392
Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542
Glueckert R, 2008, J COMP NEUROL, V507, P1602, DOI 10.1002/cne.21619
Grati FR, 2009, AM J MED GENET A, V149A, P906, DOI 10.1002/ajmg.a.32754
Hansen MR, 2001, HEARING RES, V161, P87, DOI 10.1016/S0378-5955(01)00360-4
Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3
HARTSHORN DO, 1991, OTOLARYNG HEAD NECK, V104, P311
Hawkins J E Jr, 1973, Adv Otorhinolaryngol, V20, P125
Hildebrand MS, 2008, MOL THER, V16, P224, DOI 10.1038/sj.mt.6300351
Hughes ML, 2006, J ACOUST SOC AM, V119, P1538, DOI 10.1121/1.2164969
Izumikawa M, 2008, HEARING RES, V240, P52, DOI 10.1016/j.heares.2008.02.007
Jessen KR, 2005, NAT REV NEUROSCI, V6, P671, DOI 10.1038/nrn1746
JOHNSSON LG, 1974, ANN OTO RHINOL LARYN, V83, P294
JOHNSSON LG, 1972, LARYNGOSCOPE, V82, P1105, DOI 10.1288/00005537-197207000-00002
Kang SY, 2010, JARO-J ASSOC RES OTO, V11, P245, DOI 10.1007/s10162-009-0194-7
Kanzaki S, 2002, J COMP NEUROL, V454, P350, DOI 10.1002/cne.10480
KIANG NYS, 1982, SCIENCE, V217, P175, DOI 10.1126/science.7089553
Kim TB, 2004, J MED GENET, V41, P872, DOI 10.1136/jmg.2004.020628
Kim YH, 2007, CELL CYCLE, V6, P612, DOI 10.4161/cc.6.5.3929
Kong YY, 2004, EAR HEARING, V25, P173, DOI 10.1097/01.AUD.0000120365.97792.2F
Kraus N, 2000, JARO-J ASSOC RES OTO, V1, P33, DOI 10.1007/s101620010004
Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009
Lalwani AK, 1998, GENE THER, V5, P277, DOI 10.1038/sj.gt.3300573
Lang H, 2005, JARO-J ASSOC RES OTO, V6, P63, DOI 10.1007/s10162-004-5021-6
Lang HN, 2011, JARO-J ASSOC RES OTO, V12, P151, DOI 10.1007/s10162-010-0244-1
Lawner BE, 1997, INT J DEV NEUROSCI, V15, P601, DOI 10.1016/S0736-5748(96)00115-3
LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4
Li L, 1999, HEARING RES, V133, P27, DOI 10.1016/S0378-5955(99)00043-X
LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309
LIBERMAN MC, 1980, HEARING RES, V3, P189, DOI 10.1016/0378-5955(80)90046-5
LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1
Madden C, 2002, OTOL NEUROTOL, V23, P163, DOI 10.1097/00129492-200203000-00011
Mason JC, 2003, LARYNGOSCOPE, V113, P45, DOI 10.1097/00005537-200301000-00009
Matsuoka AJ, 2007, LARYNGOSCOPE, V117, P1629, DOI 10.1097/M1LG.0b013e3I806bf282
Medd AM, 2000, EXP NEUROL, V162, P390, DOI 10.1006/exnr.2000.7353
Miller AL, 2001, HEARING RES, V151, P1, DOI 10.1016/S0378-5955(00)00226-4
Miller J M, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P57
Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7
Mitchell A, 1997, HEARING RES, V105, P30, DOI 10.1016/S0378-5955(96)00202-X
Morris JK, 2006, BRAIN RES, V1091, P186, DOI 10.1016/j.brainres.2006.02.090
NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411
Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5
Nadol Joseph B Jr, 2006, Adv Otorhinolaryngol, V64, P31
Nakaizumi T, 2004, AUDIOL NEURO-OTOL, V9, P135, DOI 10.1159/000077264
O'Leary SJ, 2009, J NEURAL ENG, V6, DOI 10.1088/1741-2560/6/5/055002
Pawlowski KS, 2006, JARO-J ASSOC RES OTO, V7, P83, DOI 10.1007/a10162-005-0024-5
PFINGST BE, 1981, ACTA OTO-LARYNGOL, V92, P1, DOI 10.3109/00016488109133232
Praetorius M, 2002, AUDIOL NEURO-OTOL, V7, P324, DOI 10.1159/000066157
Rance G, 2009, INT J AUDIOL, V48, P313, DOI 10.1080/14992020802665959
Rance G, 2008, OTOL NEUROTOL, V29, P179, DOI 10.1097/mao.0b013e31815e92fd
Raphael Y, 2003, BRAIN RES BULL, V60, P397, DOI 10.1016/S0361-9230(03)00047-9
RAPHAEL Y, 1991, HEARING RES, V51, P173, DOI 10.1016/0378-5955(91)90034-7
ROBERSON DW, 1994, AM J OTOL, V15, P28
ROMAND MR, 1990, J ELECTRON MICR TECH, V15, P144, DOI 10.1002/jemt.1060150206
ROMAND R, 1982, J COMP NEUROL, V204, P1, DOI 10.1002/cne.902040102
Romanos J, 2009, J HUM GENET, V54, P382, DOI 10.1038/jhg.2009.45
Ryugo DK, 1998, J COMP NEUROL, V397, P532, DOI 10.1002/(SICI)1096-9861(19980810)397:4<532::AID-CNE6>3.0.CO;2-2
SAVIO T, 1989, J NEUROSCI, V9, P1126
Schmiedt RA, 2002, JARO, V3, P223, DOI 10.1007/s1016200220017
SCHNELL L, 1994, NATURE, V367, P170, DOI 10.1038/367170a0
Schoen CJ, 2010, P NATL ACAD SCI USA, V107, P13396, DOI 10.1073/pnas.1003027107
Schwab JM, 2005, ARCH NEUROL-CHICAGO, V62, P1561, DOI 10.1001/archneur.62.10.1561
SCHWAB ME, 1985, J NEUROSCI, V5, P2415
Shallop JK, 2001, LARYNGOSCOPE, V111, P555, DOI 10.1097/00005537-200104000-00001
SHEPHERD RK, 1994, HEARING RES, V81, P150, DOI 10.1016/0378-5955(94)90162-7
Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4
Shepherd RK, 2008, HEARING RES, V242, P100, DOI 10.1016/j.heares.2007.12.005
Shibata SB, 2010, EXP NEUROL, V223, P464, DOI 10.1016/j.expneurol.2010.01.011
Shibata SB, 2007, BRAIN RES, V1144, P74, DOI 10.1016/j.brainres.2007.01.090
SMITH CA, 1963, ANN OTO RHINOL LARYN, V72, P489
Snyder RL, 2008, HEARING RES, V235, P23, DOI 10.1016/j.heares.2007.09.013
SOILEAU LC, 1987, J NEUROSCI, V7, P4176
SPOENDLI.H, 1969, ACTA OTO-LARYNGOL, V67, P239, DOI 10.3109/00016486909125448
SPOENDLIN H, 1979, ACTA OTO-LARYNGOL, V87, P381, DOI 10.3109/00016487909126437
SPOENDLIN H, 1981, ACTA OTO-LARYNGOL, V91, P451, DOI 10.3109/00016488109138527
Spoendlin H, 1966, Fortschr Hals Nasen Ohrenheilkd, V13, P1
SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683
SPOENDLIN H, 1976, ACTA OTO-LARYNGOL, V81, P228, DOI 10.3109/00016487609119954
STAECKER H, 2010, EXP NEUROL
Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011
Staecker H, 1998, OTOLARYNG HEAD NECK, V119, P7, DOI 10.1016/S0194-5998(98)70194-9
Starr A, 1996, BRAIN, V119, P741, DOI 10.1093/brain/119.3.741
Starr A, 2004, JARO-J ASSOC RES OTO, V5, P411, DOI 10.1007/s10162-004-5014-5
Strominger RN, 1995, HEARING RES, V92, P52, DOI 10.1016/0378-5955(95)00196-4
Sugawara M, 2005, JARO-J ASSOC RES OTO, V6, P136, DOI 10.1007/s10162-004-5050-1
Tang WX, 2006, J NEUROSCI, V26, P1991, DOI 10.1523/JNEUROSCI.5055-05.2006
Teagle HFB, 2010, EAR HEARING, V31, P325, DOI 10.1097/AUD.0b013e3181ce693b
TERAYAMA Y, 1979, ACTA OTO-LARYNGOL, V88, P27, DOI 10.3109/00016487909137136
TERAYAMA Y, 1977, ACTA OTO-LARYNGOL, V83, P291, DOI 10.3109/00016487709128848
TORVIK A, 1975, BRAIN RES, V95, P519, DOI 10.1016/0006-8993(75)90125-0
Trautwein P G, 2000, J Am Acad Audiol, V11, P309
Tuszynski MH, 2005, NAT MED, V11, P551, DOI 10.1038/nm1239
VANDEWATER TR, 1996, CIBA F SYMP, V196, P162
VandeWater TR, 1996, CIBA F SYMP, V196, P149
Varga R, 2003, J MED GENET, V40, P45, DOI 10.1136/jmg.40.1.45
Walton J, 2008, OTOL NEUROTOL, V29, P302, DOI 10.1097/MAO.0b013e318164d0f6
Wang J, 2003, HEARING RES, V181, P65, DOI 10.1016/S0378-5955(03)00176-X
WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1
WEBSTER DB, 1982, BRAIN RES, V244, P356, DOI 10.1016/0006-8993(82)90097-X
WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7
Whitilon DS, 2009, NEUROSCIENCE, V161, P227, DOI 10.1016/j.neuroscience.2009.03.044
Wise AK, 2010, MOL THER, V18, P1111, DOI 10.1038/mt.2010.28
Wise AK, 2005, J COMP NEUROL, V487, P147, DOI 10.1002/cne.20563
WORTHINGTON DW, 1980, EAR HEARING, V1, P281, DOI 10.1097/00003446-198009000-00009
Xu L, 2003, J ACOUST SOC AM, V114, P3024, DOI 10.1121/1.1623786
Yagi M, 2000, JARO, V1, P315, DOI 10.1007/s101620010011
Zeng CH, 2009, J NEUROSCI, V29, P4210, DOI 10.1523/JNEUROSCI.0208-09.2009
Zeng FG, 1999, NEUROREPORT, V10, P3429, DOI 10.1097/00001756-199911080-00031
NR 152
TC 15
Z9 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2011
VL 281
IS 1-2
SI SI
BP 56
EP 64
DI 10.1016/j.heares.2011.04.019
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 853ML
UT WOS:000297430300008
PM 21596129
ER
PT J
AU Pfingst, BE
Bowling, SA
Colesa, DJ
Garadat, SN
Raphael, Y
Shibata, SB
Strahl, SB
Su, GL
Zhou, N
AF Pfingst, Bryan E.
Bowling, Sara A.
Colesa, Deborah J.
Garadat, Soha N.
Raphael, Yehoash
Shibata, Seiji B.
Strahl, Stefan B.
Su, Gina L.
Zhou, Ning
TI Cochlear infrastructure for electrical hearing
SO HEARING RESEARCH
LA English
DT Article
ID SPIRAL GANGLION-CELLS; DEAFENED GUINEA-PIGS; MODULATION DETECTION;
AUDITORY-NERVE; IMPLANT USERS; 8TH NERVE; DETECTION THRESHOLDS;
NEUROTROPHIC FACTOR; SPEECH RECOGNITION; PULSE-RATE
AB Although the cochlear implant is already the world's most successful neural prosthesis, opportunities for further improvement abound. Promising areas of current research include work on improving the biological infrastructure in the implanted cochlea to optimize reception of cochlear implant stimulation and on designing the pattern of electrical stimulation to take maximal advantage of conditions in the implanted cochlea. In this review we summarize what is currently known about conditions in the cochlea of deaf, implanted humans and then review recent work from our animal laboratory investigating the effects of preserving or reinnervating tissues on psychophysical and electrophysiological measures of implant function. Additionally we review work from our human laboratory on optimizing the pattern of electrical stimulation to better utilize strengths in the cochlear infrastructure. Histological studies of human temporal bones from implant users and from people who would have been candidates for implants show a range of pathologic conditions including spiral ganglion cell counts ranging from approximately 2% to 92% of normal and partial hair cell survival in some cases. To duplicate these conditions in a guinea pig model, we use a variety of deafening and implantation procedures as well as post-deafening therapies designed to protect neurons and/or regenerate neurites. Across populations of human patients, relationships between nerve survival and functional measures such as speech have been difficult to demonstrate, possibly due to the numerous subject variables that can affect implant function and the elapsed time between functional measures and postmortem histology. However, psychophysical studies across stimulation sites within individual human subjects suggest that biological conditions near the implanted electrodes contribute significantly to implant function, and this is supported by studies in animal models comparing histological findings to psychophysical and electrophysiological data. Results of these studies support the efforts to improve the biological infrastructure in the implanted ear and guide strategies which optimize stimulation patterns to match patient-specific conditions in the cochlea. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Pfingst, Bryan E.; Bowling, Sara A.; Colesa, Deborah J.; Garadat, Soha N.; Raphael, Yehoash; Shibata, Seiji B.; Strahl, Stefan B.; Su, Gina L.; Zhou, Ning] Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, Ann Arbor, MI 48109 USA.
[Strahl, Stefan B.] MED EL GmbH, R&D Worldwide Headquarters, A-6020 Innsbruck, Austria.
RP Pfingst, BE (reprint author), Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, Room 4605,Med Sci 2,1150 W Med Ctr Dr, Ann Arbor, MI 48109 USA.
EM bpfingst@umich.edu
FU NIDCD [R01s DC010786, DC010412, DC007634, DC004312, F32 DC010318, T32
DC000011, P30 DC005188]; MED-EL Corporation
FX This work was supported financially in large part by research grants
from the NIDCD (R01s DC010786, DC010412, DC007634, & DC004312), a
research contract from MED-EL Corporation, and training grants from
NIDCD (F32 DC010318 & T32 DC000011). We gratefully acknowledge the
assistance from core facilities supported by NIDCD P30 DC005188 which
included support for electronics, computer and machine shops: Chris
Ellinger, David Rodgers, Dwayne Vailliencourt and Jim Wiler. Special
thanks to the Electrophysiology Core directed by Dr. David Dolan which
performed the ESA recordings under the expert guidance of Karin Halsey
and to Don Swiderski and Lisa Beyer in the Raphael laboratory for
histological preparation. We appreciate the equipment, software and
personnel time provided by Cochlear Corporation which facilitated work
done in both the human and animal laboratories; particular thanks to
Chris van den Honert, Barbara Buck and Colin Irwin from Cochlear
Corporation. Thanks to Ariana Di Polo for providing the viral
constructs. Consistently helpful review and guidance from Carolyn
Garnham at MED-EL and from our clinical faculty, particularly Terry
Zwolan and Caroline Arnedt is greatly appreciated.
CR Agterberg MJH, 2008, HEARING RES, V244, P25, DOI 10.1016/j.heares.2008.07.004
Anderson DJ, 2008, HEARING RES, V242, P31, DOI 10.1016/j.heares.2008.01.010
Bierer JA, 2007, J ACOUST SOC AM, V121, P1642, DOI 10.1121/1.2436712
Chikar JA, 2008, HEARING RES, V245, P24, DOI 10.1016/j.heares.2008.08.005
DOLAN DF, 1990, J ACOUST SOC AM, V87, P2621, DOI 10.1121/1.399054
Donaldson GS, 1997, J ACOUST SOC AM, V101, P3706, DOI 10.1121/1.418330
Fayad JN, 2009, OTOLARYNG HEAD NECK, V141, P247, DOI 10.1016/j.otohns.2009.03.031
Fayad JN, 2006, LARYNGOSCOPE, V116, P1310, DOI 10.1097/01.mlg.0000227176.09500.28
Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538
Galvin JJ, 2005, JARO-J ASSOC RES OTO, V6, P269, DOI 10.1007/s10162-005-0007-6
GARADAT S, 2011, ASS RES OT ABST, V34
Garadat SN, 2011, HEARING RES, V275, P130, DOI 10.1016/j.heares.2010.12.011
HALL RD, 1990, HEARING RES, V45, P123, DOI 10.1016/0378-5955(90)90188-U
HINOJOSA R, 1983, ANN NY ACAD SCI, V405, P459, DOI 10.1111/j.1749-6632.1983.tb31662.x
Hu N, 2003, HEARING RES, V185, P77, DOI 10.1016/S0378-5955(03)00261-2
Incesulu A, 1998, ANN OTO RHINOL LARYN, V107, P906
Johnsson L G, 1981, Acta Otolaryngol Suppl, V383, P1
JOHNSSON LG, 1974, ANN OTO RHINOL LARYN, V83, P294
JOHNSSON LG, 1967, ARCHIV OTOLARYNGOL, V85, P599
JYUNG RW, 1989, OTOLARYNG HEAD NECK, V101, P670
Kang SY, 2010, JARO-J ASSOC RES OTO, V11, P245, DOI 10.1007/s10162-009-0194-7
Kawano A, 1998, ACTA OTO-LARYNGOL, V118, P313
Khan AM, 2005, LARYNGOSCOPE, V115, P672, DOI 10.1097/01.mlg.0000161335.62139.80
Khan AM, 2005, ANN OTO RHINOL LARYN, V114, P381
Kim JR, 2010, OTOL NEUROTOL, V31, P1041, DOI 10.1097/MAO.0b013e3181ec1d92
Middlebrooks JC, 2004, J ACOUST SOC AM, V116, P452, DOI 10.1121/1.1760795
Middlebrooks JC, 2002, J NEUROPHYSIOL, V87, P493
Miller AL, 2001, HEARING RES, V151, P1, DOI 10.1016/S0378-5955(00)00226-4
Miller JM, 2002, AUDIOL NEURO-OTOL, V7, P175, DOI 10.1159/000058306
Mitchell A, 1997, HEARING RES, V105, P30, DOI 10.1016/S0378-5955(96)00202-X
Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5
Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883
OTTE J, 1978, LARYNGOSCOPE, V88, P1231
PFINGST BE, 2010, ASS RES OT ABST, V33, P118
Pfingst BE, 2007, J ACOUST SOC AM, V121, P2236, DOI 10.1121/1.2537501
Pfingst BE, 2008, J ACOUST SOC AM, V123, P1054, DOI 10.1121/1.2828051
Pfingst BE, 2004, JARO-J ASSOC RES OTO, V5, P11, DOI 10.1007/s10162-003-3051-0
PFINGST BE, 2011, J ACOUST SO IN PRESS, V129
Raphael Y., 1998, CURR OPIN OTOLARYNGO, V6, P311, DOI 10.1097/00020840-199810000-00005
Scheper V, 2009, J NEUROSCI RES, V87, P1389, DOI 10.1002/jnr.21964
SCHUKNECHT H F, 1953, Trans Am Acad Ophthalmol Otolaryngol, V57, P366
Searchfield GD, 2004, HEARING RES, V192, P23, DOI 10.1016/j.heares.2004.02.006
Shibata SB, 2010, EXP NEUROL, V223, P464, DOI 10.1016/j.expneurol.2010.01.011
SHIBATA SB, HEAR RES IN PRESS
SMITH L, 1983, ANN OTO RHINOL LARYN, V92, P19
Spoendlin H, 1966, Fortschr Hals Nasen Ohrenheilkd, V13, P1
Stebbins WC, 1970, ANIMAL PSYCHOPHYSICS
Su GL, 2008, HEARING RES, V241, P64, DOI 10.1016/j.heares.2008.04.011
WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7
Wise AK, 2010, MOL THER, V18, P1111, DOI 10.1038/mt.2010.28
Wise AK, 2005, J COMP NEUROL, V487, P147, DOI 10.1002/cne.20563
Wise KD, 2008, HEARING RES, V242, P22, DOI 10.1016/j.heares.2008.04.002
ZIMMERMANN CE, 1995, HEARING RES, V90, P192, DOI 10.1016/0378-5955(95)00165-1
Zwolan TA, 1997, J ACOUST SOC AM, V102, P3673, DOI 10.1121/1.420401
NR 54
TC 18
Z9 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2011
VL 281
IS 1-2
SI SI
BP 65
EP 73
DI 10.1016/j.heares.2011.05.002
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 853ML
UT WOS:000297430300009
PM 21605648
ER
PT J
AU Dai, CK
Fridman, GY
Davidovics, NS
Chiang, B
Ahn, JH
Della Santina, CC
AF Dai, Chenkai
Fridman, Gene Y.
Davidovics, Natan S.
Chiang, Bryce
Ahn, Joong Ho
Della Santina, Charles C.
TI Restoration of 3D vestibular sensation in rhesus monkeys using a
multichannel vestibular prosthesis
SO HEARING RESEARCH
LA English
DT Article
ID HORIZONTAL VESTIBULOOCULAR REFLEX; HIGH-ACCELERATION ROTATIONS; SCLERAL
SEARCH COIL; UNILATERAL LABYRINTHECTOMY; INTRATYMPANIC GENTAMICIN;
ELECTRICAL-STIMULATION; SQUIRREL-MONKEY; MULTIMODAL INTEGRATION;
SEMICIRCULAR CANALS; MENIERES-DISEASE
AB Profound bilateral loss of vestibular hair cell function can cause chronically disabling loss of balance and inability to maintain stable vision during head and body movements. We have previously shown that chinchillas rendered bilaterally vestibular-deficient via intratympanic administration of the ototoxic antibiotic gentamicin regain a more nearly normal 3-dimensional vestibulo-ocular reflex (3D VOR) when head motion information sensed by a head-mounted multichannel vestibular prosthesis (MVP) is encoded via rate-modulated pulsatile stimulation of vestibular nerve branches. Despite significant improvement versus the unaided condition, animals still exhibited some 3D VOR misalignment (i.e., the 3D axis of eye movement responses did not precisely align with the axis of head rotation), presumably due to current spread between a given ampullary nerve's stimulating electrode(s) and afferent fibers in non-targeted branches of the vestibular nerve. Assuming that effects of current spread depend on relative orientation and separation between nerve branches, anatomic differences between chinchilla and human labyrinths may limit the extent to which results in chinchillas accurately predict MVP performance in humans.
In this report, we describe the MVP-evoked 3D VOR measured in alert rhesus monkeys, which have labyrinths that are larger than chinchillas and temporal bone anatomy more similar to humans. Electrodes were implanted in five monkeys treated with intratympanic gentamicin to bilaterally ablate vestibular hair cell mechanosensitivity. Eye movements mediated by the 3D VOR were recorded during passive sinusoidal (0.2-5 Hz, peak 50 degrees/s) and acceleration-step (1000 degrees/s(2) to 150 degrees/s) whole-body rotations in darkness about each semicircular canal axis. During constant 100 pulse/s stimulation (i.e., MVP powered ON but set to stimulate each ampullary nerve at a constant mean baseline rate not modulated by head motion), 3D VOR responses to head rotation exhibited profoundly low gain [(mean eye velocity amplitude)/(mean head velocity amplitude) < 0.1] and large misalignment between ideal and actual eye movements. In contrast, motion-modulated sinusoidal MVP stimuli elicited a 3D VOR with gain 0.4-0.7 and axis misalignment of 21-38 degrees, and responses to high-acceleration transient head rotations exhibited gain and asymmetry closer to those of unilaterally gentamicin-treated animals (i.e., with one intact labyrinth) than to bilaterally gentamicin-treated animals without MVP stimulation. In comparison to responses observed under similar conditions in chinchillas, acute responses to MVP stimulation in rhesus macaque monkeys were slightly better aligned to the desired rotation axis. Responses during combined rotation and prosthetic stimulation were greater than when either stimulus was presented alone, suggesting that the central nervous system uses MVP input in the context of multisensory integration. Considering the similarity in temporal bone anatomy and VOR performance between rhesus monkeys and humans, these observations suggest that an MVP will likely restore a useful level of vestibular sensation and gaze stabilization in humans. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Della Santina, Charles C.] Johns Hopkins Univ, Sch Med, Vestibular NeuroEngn Lab, Dept Otolaryngol Head & Neck Surg, Baltimore, MD 21205 USA.
[Chiang, Bryce; Della Santina, Charles C.] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA.
RP Della Santina, CC (reprint author), Johns Hopkins Univ, Sch Med, Vestibular NeuroEngn Lab, Dept Otolaryngol Head & Neck Surg, 720 Rutland Ave,Ross Bldg Rm 830, Baltimore, MD 21205 USA.
EM charley.dellasantina@jhu.edu
FU United States National Institutes of Health/National Institute on
Deafness and Other Communication Disorders (NIH/NIDCD) [R01DC0255,
R01DC2390, K08DC6216, 5F32DC009917]
FX We thank Lani Swarthout for assistance with animal care. This research
was supported by the United States National Institutes of
Health/National Institute on Deafness and Other Communication Disorders
(NIH/NIDCD) grants R01DC0255, R01DC2390, K08DC6216, and 5F32DC009917.
Disclosures: inventor status on university-assigned patents related to
MVP technology (GYF, BC, CCDS); equity interest in Labyrinth Devices LLC
(CCDS).
CR ANGELAKI DE, 1994, J NEUROPHYSIOL, V71, P1222
BLANKS RHI, 1985, BRAIN RES, V340, P315, DOI 10.1016/0006-8993(85)90928-X
Carey J. P., 2005, CUMMINGS OTOLARYNGOL, P3115
Carey JP, 2002, JARO, V3, P430, DOI 10.1007/s101620010053
Chiang B, 2011, IEEE T NEUR SYS REH, V19, P588, DOI 10.1109/TNSRE.2011.2164937
DAI C, 2010, HEAR RES 1231
Dai CK, 2011, EXP BRAIN RES, V210, P595, DOI 10.1007/s00221-011-2591-5
Davidovics NS, 2011, IEEE T NEUR SYS REH, V19, P84, DOI 10.1109/TNSRE.2010.2065241
Della Santina Charles, 2005, Conf Proc IEEE Eng Med Biol Soc, V7, P7380
Della Santina CC, 2007, IEEE T BIO-MED ENG, V54, P1016, DOI 10.1109/TBME.2007.894629
Della Santina CC, 2002, ARCH OTOLARYNGOL, V128, P1044
FETTER M, 1988, J NEUROPHYSIOL, V59, P370
Fridman GY, 2010, JARO-J ASSOC RES OTO, V11, P367, DOI 10.1007/s10162-010-0208-5
Gillespie MB, 1999, LARYNGOSCOPE, V109, P35, DOI 10.1097/00005537-199901000-00008
Grunbauer WM, 1998, NEUROREPORT, V9, P1807
HALMAGYI GM, 1988, ARCH NEUROL-CHICAGO, V45, P737
HASLWANTER T, 1995, VISION RES, V35, P1727, DOI 10.1016/0042-6989(94)00257-M
HEPP K, 1990, COMMUN MATH PHYS, V132, P285, DOI 10.1007/BF02278012
Hirvonen TP, 2005, J NEUROPHYSIOL, V93, P643, DOI 10.1152/jn.00160.2004
Hullar TE, 2006, HEARING RES, V213, P17, DOI 10.1016/j.heares.2005.11.009
Lasker DM, 2000, J NEUROPHYSIOL, V83, P2482
Lewis RF, 2010, J NEUROPHYSIOL, V103, P1066, DOI 10.1152/jn.00241.2009
Lyford-Pike S, 2007, JARO-J ASSOC RES OTO, V8, P497, DOI 10.1007/s10162-007-0093-8
Migliaccio AA, 2010, J PHYSIOL-LONDON, V588, P3855, DOI 10.1113/jphysiol.2010.196287
Migliaccio AA, 2004, EXP BRAIN RES, V159, P433, DOI 10.1007/s00221-004-1974-2
Migliaccio A. A., 1999, Australasian Physical and Engineering Sciences in Medicine, V22, P73
Minor LB, 1998, JAMA-J AM MED ASSOC, V279, P541, DOI 10.1001/jama.279.7.541
Minor LB, 1999, J NEUROPHYSIOL, V82, P1254
Nguyen KD, 2009, LARYNGOSCOPE, V119, P792, DOI 10.1002/lary.20055
RAMPRASHAD F, 1984, AM J ANAT, V169, P295, DOI 10.1002/aja.1001690306
REMMEL RS, 1984, IEEE T BIO-MED ENG, V31, P388, DOI 10.1109/TBME.1984.325352
ROBINSON DA, 1963, IEEE T BIO-MED ENG, VBM10, P137, DOI 10.1109/TBMEL.1963.4322822
Sadeghi SG, 2011, J NEUROPHYSIOL, V105, P661, DOI 10.1152/jn.00788.2010
Sadeghi SG, 2010, J NEUROSCI, V30, P10158, DOI 10.1523/JNEUROSCI.1368-10.2010
SADEGHI SG, 2011, J NEUROSCI, V30, P10158
Sadeghi SG, 2007, J NEUROPHYSIOL, V97, P1503, DOI 10.1152/jn.00829.2006
Sadeghi SG, 2006, EXP BRAIN RES, V175, P471, DOI 10.1007/s00221-006-0567-7
STRAUMANN D, 1995, VISION RES, V35, P3321, DOI 10.1016/0042-6989(95)00091-R
TWEED D, 1990, VISION RES, V30, P97, DOI 10.1016/0042-6989(90)90130-D
NR 39
TC 17
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2011
VL 281
IS 1-2
SI SI
BP 74
EP 83
DI 10.1016/j.heares.2011.08.008
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 853ML
UT WOS:000297430300010
PM 21888961
ER
PT J
AU Papakonstantinou, A
Strelcyk, O
Dau, T
AF Papakonstantinou, Alexandra
Strelcyk, Olaf
Dau, Torsten
TI Relations between perceptual measures of temporal processing,
auditory-evoked brainstem responses and speech intelligibility in noise
SO HEARING RESEARCH
LA English
DT Article
ID HEARING-IMPAIRED LISTENERS; FREQUENCY-DISCRIMINATION; FINE-STRUCTURE;
MODULATION DETECTION; PSYCHOPHYSICAL DATA; BINAURAL HEARING; RECEPTION;
PSYCHOACOUSTICS; RECOGNITION; SELECTIVITY
AB This study investigates behavioural and objective measures of temporal auditory processing and their relation to the ability to understand speech in noise. The experiments were carried out on a homogeneous group of seven hearing-impaired listeners with normal sensitivity at low frequencies (up to 1 kHz) and steeply sloping hearing losses above 1 kHz. For comparison, data were also collected for five normal-hearing listeners. Temporal processing was addressed at low frequencies by means of psychoacoustical frequency discrimination, binaural masked detection and amplitude modulation (AM) detection. In addition, auditory brainstem responses (ABRs) to clicks and broadband rising chirps were recorded. Furthermore, speech reception thresholds (SRTs) were determined for Danish sentences in speech-shaped noise. The main findings were: (1) SRTs were neither correlated with hearing sensitivity as reflected in the audiogram nor with the AM detection thresholds which represent an envelope-based measure of temporal resolution; (2) SRTs were correlated with frequency discrimination and binaural masked detection which are associated with temporal fine-structure coding; (3) The wave-V thresholds for the chirp-evoked ABRs indicated a relation to SRTs and the ability to process temporal fine structure. Overall, the results demonstrate the importance of low-frequency temporal processing for speech reception which can be affected even if pure-tone sensitivity is close to normal. (c) 2011 Published by Elsevier B.V.
C1 [Strelcyk, Olaf; Dau, Torsten] Tech Univ Denmark, Ctr Appl Hearing Res, Dept Elect Engn, DK-2800 Lyngby, Denmark.
[Papakonstantinou, Alexandra] Carl von Ossietzky Univ Oldenburg, Int Grad Res Training Grp Neurosensory Sci & Syst, D-2611 Oldenburg, Germany.
RP Dau, T (reprint author), Tech Univ Denmark, Ctr Appl Hearing Res, Dept Elect Engn, DK-2800 Lyngby, Denmark.
EM tdau@elektro.dtu.dk
FU GN ReSound; Oticon; Widex
FX This study was supported by GN ReSound, Oticon and Widex. We thank Arne
Norby Rasmussen of the Rigshospitalet Copenhagen for his technical
assistance in the measurements and his contribution in providing us with
suitable test listeners. We also thank the associate editor Fan-Gang
Zeng and the two anonymous reviewers for their constructive and helpful
comments and suggestions.
CR [Anonymous], 2004, 3898 ISO
BACON SP, 1992, J SPEECH HEAR RES, V35, P642
Bronkhorst AW, 2000, ACUSTICA, V86, P117
Buss E, 2004, EAR HEARING, V25, P242, DOI 10.1097/01.AUD.0000130796.93809.09
Carney LH, 2002, ACTA ACUST UNITED AC, V88, P334
Christiansen T. U., 2007, HEARING SENSORY PROC, P515
CHRISTIANSEN TU, 2005, 21 DAN S, P585
Dau T, 2000, J ACOUST SOC AM, V107, P1530, DOI 10.1121/1.428438
Dau T, 2003, J ACOUST SOC AM, V113, P936, DOI 10.1121/1.1534833
DEBOER E, 1980, PHYS REP, V62, P87, DOI 10.1016/0370-1573(80)90100-3
DENG L, 1987, J ACOUST SOC AM, V82, P2001, DOI 10.1121/1.395644
Don M, 1998, J ACOUST SOC AM, V104, P2280, DOI 10.1121/1.423741
DRESCHLER WA, 1980, J ACOUST SOC AM, V68, P1608, DOI 10.1121/1.385215
DRESCHLER WA, 1985, J ACOUST SOC AM, V78, P1261, DOI 10.1121/1.392895
DRULLMAN R, 1994, J ACOUST SOC AM, V95, P2670, DOI 10.1121/1.409836
DUBNO JR, 1990, ACTA OTO-LARYNGOL, P23
Elberling C, 2007, J ACOUST SOC AM, V122, P2772, DOI 10.1121/1.2783985
Felder E, 1995, HEARING RES, V91, P19, DOI 10.1016/0378-5955(95)00158-1
FESTEN JM, 1983, J ACOUST SOC AM, V73, P652, DOI 10.1121/1.388957
FITZGIBBONS PJ, 1982, J ACOUST SOC AM, V72, P761, DOI 10.1121/1.388256
Fobel O, 2004, J ACOUST SOC AM, V116, P2213, DOI 10.1121/1.1787523
FREYMAN RL, 1991, J SPEECH HEAR RES, V34, P1371
GABRIEL KJ, 1992, J ACOUST SOC AM, V91, P336, DOI 10.1121/1.402776
Glasberg B R, 1989, Scand Audiol Suppl, V32, P1
GLASBERG BR, 1986, J ACOUST SOC AM, V79, P1020, DOI 10.1121/1.393374
HALL JW, 1984, J SPEECH HEAR RES, V27, P145
HELFER KS, 1990, J SPEECH HEAR RES, V33, P149
Hopkins K, 2008, J ACOUST SOC AM, V123, P1140, DOI 10.1121/1.2824018
HUMES LE, 1987, J ACOUST SOC AM, V81, P765, DOI 10.1121/1.394845
Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009
LEE LW, 1995, J ACOUST SOC AM, V97, P3345, DOI 10.1121/1.412760
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
Lorenzi C, 2006, P NATL ACAD SCI USA, V103, P18866, DOI 10.1073/pnas.0607364103
Moore B.C.J., 1995, PERCEPTUAL CONSEQUEN
Moore BCJ, 2002, J ACOUST SOC AM, V111, P327, DOI 10.1121/1.1424871
NOORDHOEK, 2001, J ACOUST SOC AM, V109, P1197
OTTE J, 1978, LARYNGOSCOPE, V88, P1231
PICHORA-FULLER K M, 1992, Journal of the Acoustical Society of America, V91, P2129
PLOMP R, 1978, J ACOUST SOC AM, V63, P533, DOI 10.1121/1.381753
PLOMP R, 1994, EAR HEARING, V15, P2
Rance G, 2004, EAR HEARING, V25, P34, DOI 10.1097/01.AUD.0000111259.59690.B8
Ross B, 2007, J NEUROSCI, V27, P11172, DOI 10.1523/JNEUROSCI.1813-07.2007
Schneider BA, 2002, CAN J EXP PSYCHOL, V56, P139, DOI 10.1037/h0087392
SEK A, 1995, J ACOUST SOC AM, V97, P2479, DOI 10.1121/1.411968
STEENEKEN HJM, 1980, J ACOUST SOC AM, V67, P318, DOI 10.1121/1.384464
Strelcyk O, 2009, J ACOUST SOC AM, V126, P1878, DOI 10.1121/1.3203310
Strelcyk O, 2009, J ACOUST SOC AM, V125, P3328, DOI 10.1121/1.3097469
Strouse A, 1998, J ACOUST SOC AM, V104, P2385, DOI 10.1121/1.423748
TAKAHASHI GA, 1992, J SPEECH HEAR RES, V35, P1410
TURNER CW, 1982, J SPEECH HEAR RES, V25, P34
TYLER RS, 1986, J SPEECH HEAR RES, V29, P282
TYLER RS, 1983, J ACOUST SOC AM, V74, P1190, DOI 10.1121/1.390043
TYLER RS, 1982, J ACOUST SOC AM, V72, P740, DOI 10.1121/1.388254
VANROOIJ JCGM, 1990, J ACOUST SOC AM, V88, P2611, DOI 10.1121/1.399981
Wagener K, 2003, INT J AUDIOL, V42, P10, DOI 10.3109/14992020309056080
Wegner O, 2002, J ACOUST SOC AM, V111, P1318, DOI 10.1121/1.1433805
Zeng FG, 2005, J NEUROPHYSIOL, V93, P3050, DOI 10.1152/jn.00985.2004
ZUREK PM, 1987, J ACOUST SOC AM, V82, P1548, DOI 10.1121/1.395145
ZUREK PM, 1981, J SPEECH HEAR RES, V24, P108
NR 59
TC 7
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2011
VL 280
IS 1-2
BP 30
EP 37
DI 10.1016/j.heares.2011.02.005
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 834XG
UT WOS:000295997200004
PM 21354285
ER
PT J
AU Meredith, MA
Lomber, SG
AF Meredith, M. Alex
Lomber, Stephen G.
TI Somatosensory and visual crossmodal plasticity in the anterior auditory
field of early-deaf cats
SO HEARING RESEARCH
LA English
DT Article
ID DORSAL COCHLEAR NUCLEUS; DARK-REARED CATS; INFERIOR COLLICULUS;
HEARING-LOSS; MONOCULAR DEPRIVATION; MODAL PLASTICITY; CEREBRAL-CORTEX;
BRAIN-STEM; RETINOTOPIC ORGANIZATION; PROLONGED SENSITIVITY
AB It is well known that the post-natal loss of sensory input in one modality can result in crossmodal reorganization of the deprived cortical areas, but deafness fails to induce crossmodal effects in cat primary auditory cortex (A1). Because the core auditory regions (A1, and anterior auditory field AAF) are arranged as separate, parallel processors, it cannot be assumed that early-deafness affects one in the same manner as the other. The present experiments were conducted to determine if crossmodal effects occur in the anterior auditory field (AAF). Using mature cats (n = 3), ototoxically deafened postnatally, single-unit recordings were made in the gyral and sulcal portions of the AAF. In contrast to the auditory responsivity found in the hearing controls, none of the neurons in early-deafened AAF were activated by auditory stimulation. Instead, the majority (78%) were activated by somatosensory cues, while fewer were driven by visual stimulation (44%; values include unisensory and bimodal neurons). Somatosensory responses could be activated from all locations on the body surface but most often occurred on the head, were often bilateral (e.g., occupied portions of both sides of the body), and were primarily excited by low-threshold hair receptors. Visual receptive fields were large, collectively represented the contralateral visual field, and exhibited conventional response properties such as movement direction and velocity preferences. These results indicate that, following post-natal deafness, both somatosensory and visual modalities participate in crossmodal reinnervation of the AAF, consistent with the growing literature that documents deafness-induced crossmodal plasticity outside A1. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Meredith, M. Alex] Virginia Commonwealth Univ, Dept Anat & Neurobiol, Sch Med, Richmond, VA 23298 USA.
[Lomber, Stephen G.] Univ Western Ontario, Dept Physiol & Pharmacol, London, ON N6A 5K8, Canada.
[Lomber, Stephen G.] Univ Western Ontario, Dept Psychol, Ctr Brain & Mind, London, ON N6A 5K8, Canada.
RP Meredith, MA (reprint author), Virginia Commonwealth Univ, Dept Anat & Neurobiol, Sch Med, Richmond, VA 23298 USA.
EM mameredi@vcu.edu
RI Lomber, Stephen/B-6820-2015
OI Lomber, Stephen/0000-0002-3001-7909
FU National Institutes of Health [NS-039640]; Jeffress Foundation; Canadian
Institutes of Health Research
FX We thank Dr. RK Shepherd for advice on ototoxic procedures, and Drs. S
Shapiro and A Rice for their technical assistance with the ABRs. We
thank Drs. D Mitchell and L Merabet for helpful discussions concerning
this manuscript. Supported by grants from the National Institutes of
Health (NS-039640) and the Jeffress Foundation (MAM) and the Canadian
Institutes of Health Research (SGL). These sponsors had no role in the
design, conduct or publication of this study.
CR AITKIN LM, 1981, J COMP NEUROL, V196, P25, DOI 10.1002/cne.901960104
Allman BL, 2009, P NATL ACAD SCI USA, V106, P5925, DOI 10.1073/pnas.0809483106
Allman BL, 2009, BRAIN TOPOGR, V21, P157, DOI 10.1007/s10548-009-0088-3
Auer ET, 2007, NEUROREPORT, V18, P645, DOI 10.1097/WNR.0b013e3280d943b9
Bavelier D, 2002, NAT REV NEUROSCI, V3, P443, DOI 10.1038/nrn848
Bavelier D, 2000, J NEUROSCI, V20, P1
BUDINGER E, 2006, NEUROSCIENCE, V28, P1064
BURTON H, 1984, J COMP NEUROL, V225, P527, DOI 10.1002/cne.902250405
Carrasco A, 2009, J NEUROSCI, V29, P8350, DOI 10.1523/JNEUROSCI.6001-08.2009
Chang EF, 2003, SCIENCE, V300, P498, DOI 10.1126/science.1082163
Clemo HR, 2007, J COMP NEUROL, V503, P110, DOI 10.1002/cne.21378
CYNADER M, 1980, BRAIN RES, V191, P545, DOI 10.1016/0006-8993(80)91303-7
CYNADER M, 1980, J NEUROPHYSIOL, V43, P1026
Dinse HR, 1997, AM J OTOL, V18, pS17
Dinse HR, 2003, SPEECH COMMUN, V41, P201, DOI 10.1016/S0167-6393(02)00104-8
Fallon JB, 2009, J COMP NEUROL, V512, P101, DOI 10.1002/cne.21886
Finney EM, 2001, NAT NEUROSCI, V4, P1171, DOI 10.1038/nn763
Foxe JJ, 2000, COGNITIVE BRAIN RES, V10, P77, DOI 10.1016/S0926-6410(00)00024-0
FROST DO, 1985, NATURE, V317, P162, DOI 10.1038/317162a0
He HY, 2006, J NEUROSCI, V26, P2951, DOI 10.1523/JNEUROSCI.5554-05.2006
He HY, 2007, NAT NEUROSCI, V10, P1134, DOI 10.1038/nn1965
Hickok G, 1997, HUM BRAIN MAPP, V5, P437, DOI 10.1002/(SICI)1097-0193(1997)5:6<437::AID-HBM4>3.0.CO;2-4
HUBEL DH, 1965, J NEUROPHYSIOL, V28, P229
Hunt DL, 2006, NEUROSCIENCE, V139, P1507, DOI 10.1016/j.neuroscience.2006.01.023
Imaizumi K, 2004, J NEUROPHYSIOL, V92, P444, DOI 10.1152/jn.01173.2003
IMIG TJ, 1980, J COMP NEUROL, V192, P293, DOI 10.1002/cne.901920208
KAAS JH, 1979, SCIENCE, V204, P521, DOI 10.1126/science.107591
Kanold PO, 2001, J NEUROSCI, V21, P7848
Kayser C, 2008, CEREB CORTEX, V18, P1560, DOI 10.1093/cercor/bhm187
King AJ, 1999, EUR J NEUROSCI, V11, P3945, DOI 10.1046/j.1460-9568.1999.00821.x
KITZES LM, 1985, J NEUROPHYSIOL, V53, P1483
KNIGHT PL, 1977, BRAIN RES, V130, P447, DOI 10.1016/0006-8993(77)90108-1
KORTE M, 1993, J NEUROPHYSIOL, V70, P1717
Kral A, 2000, CEREB CORTEX, V10, P714, DOI 10.1093/cercor/10.7.714
Kral A, 2005, CEREB CORTEX, V15, P552, DOI 10.1093/cercor/bhh156
Kral A, 2007, INT J AUDIOL, V46, P479, DOI 10.1080/14992020701383027
Kral A, 2007, BRAIN RES REV, V56, P259, DOI 10.1016/j.brainresrev.2007.07.021
Kral A, 2003, EXP BRAIN RES, V153, P605, DOI 10.1007/s00221-003-1609-z
Lee CC, 2004, CEREB CORTEX, V14, P441, DOI 10.1093/cercor/bhh006
Lee CC, 2005, CEREB CORTEX, V15, P1804, DOI 10.1093/cercor/bhi057
Levanen S, 2001, NEUROSCI LETT, V301, P75, DOI 10.1016/S0304-3940(01)01597-X
Lomber SG, 2010, NAT NEUROSCI, V13, P1421, DOI 10.1038/nn.2653
Mellott JG, 2010, HEARING RES, V267, P119, DOI 10.1016/j.heares.2010.04.003
Merabet LB, 2010, NAT REV NEUROSCI, V11, P44, DOI 10.1038/nrn2758
MEREDITH MA, P NATL ACA IN PRESS
MEREDITH MA, 2009, SOC NEUR ABSTR
MERZENICH MM, 1975, J NEUROPHYSIOL, V38, P231
MIDDLEBROOKS JC, 1980, BRAIN RES, V181, P31, DOI 10.1016/0006-8993(80)91257-3
MOORE DR, 1994, J COMP NEUROL, V339, P301, DOI 10.1002/cne.903390209
MOORE DR, 1995, J COMP NEUROL, V357, P204, DOI 10.1002/cne.903570203
MOWER GD, 1985, J COMP NEUROL, V235, P448, DOI 10.1002/cne.902350404
MOWER GD, 1983, SCIENCE, V221, P178, DOI 10.1126/science.6857278
MOWER GD, 1991, DEV BRAIN RES, V58, P151, DOI 10.1016/0165-3806(91)90001-Y
OLSON CR, 1987, J COMP NEUROL, V261, P277, DOI 10.1002/cne.902610209
ORBAN GA, 1980, EXP BRAIN RES, V39, P177
PHILLIPS DP, 1982, BRAIN RES, V248, P237, DOI 10.1016/0006-8993(82)90581-9
Piche M, 2007, NEUROSCIENCE, V145, P1144, DOI 10.1016/j.neuroscience.2006.12.050
Raggio MW, 1999, J NEUROPHYSIOL, V82, P3506
RAUSCHECKER JP, 1993, J NEUROSCI, V13, P4538
RAUSCHECKER JP, 1995, TRENDS NEUROSCI, V18, P36, DOI 10.1016/0166-2236(95)93948-W
RAUSCHECKER JP, 1994, EUR J NEUROSCI, V6, P149, DOI 10.1111/j.1460-9568.1994.tb00256.x
REALE RA, 1980, J COMP NEUROL, V192, P265, DOI 10.1002/cne.901920207
ROE AW, 1992, J NEUROSCI, V12, P3651
ROUILLER EM, 1991, EXP BRAIN RES, V86, P483
Sanchez-Vives MV, 2006, PROG BRAIN RES, V155, P287, DOI 10.1016/S0079-6123(06)55017-4
Sarro EC, 2008, CEREB CORTEX, V18, P2855, DOI 10.1093/cercor/bhn044
Scannell JW, 1996, J NEUROPHYSIOL, V76, P895
Shepherd RK, 2001, AUDIOL NEURO-OTOL, V6, P305, DOI 10.1159/000046843
SHIPLEY C, 1980, BRAIN RES, V182, P313, DOI 10.1016/0006-8993(80)91191-9
Shore SE, 2000, J COMP NEUROL, V419, P271, DOI 10.1002/(SICI)1096-9861(20000410)419:3<271::AID-CNE1>3.0.CO;2-M
Shore SE, 2008, EUR J NEUROSCI, V27, P155, DOI 10.1111/j.1460-9568.2007.05983.x
STEIN BE, 1993, PROG BRAIN RES, V95, P79, DOI 10.1016/S0079-6123(08)60359-3
SUR M, 1988, SCIENCE, V242, P1437, DOI 10.1126/science.2462279
Tillein J, 2010, CEREB CORTEX, V20, P492, DOI 10.1093/cercor/bhp222
TIMNEY B, 1980, J NEUROPHYSIOL, V43, P1041
TUSA RJ, 1979, J COMP NEUROL, V185, P657, DOI 10.1002/cne.901850405
Wandell BA, 2009, NAT REV NEUROSCI, V10, P873, DOI 10.1038/nrn2741
Xu H, 2007, J NEUROSCI, V27, P9417, DOI 10.1523/JNEUROSCI.1992-07.2007
XU SA, 1993, HEARING RES, V70, P205, DOI 10.1016/0378-5955(93)90159-X
NR 79
TC 18
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2011
VL 280
IS 1-2
BP 38
EP 47
DI 10.1016/j.heares.2011.02.004
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 834XG
UT WOS:000295997200005
PM 21354286
ER
PT J
AU Wang, XL
Hu, YJ
Wang, ZL
Shi, H
AF Wang, Xuelin
Hu, Yujin
Wang, Zhenlong
Shi, Hong
TI Finite element analysis of the coupling between ossicular chain and mass
loading for evaluation of implantable hearing device
SO HEARING RESEARCH
LA English
DT Article
ID MIDDLE-EAR FUNCTION; SOUND-TRANSMISSION; TEMPORAL BONES; TRANSDUCER;
OSSICLES; MODEL; DESIGN; SYSTEM; AID
AB Finite element (FE) model is used to analyze the coupling effects between ossicular chain and transducer of implantable middle-ear hearing devices. The mass loading of the transducer is attached to the long process of the incus in the form of floating mass transducer (FMT) or applied near the incus-stapes joint by a magnet of contactless electromagnetic transducer (CLT). By changing placement of the transducer, crimping connection and damping parameter of the crimping mechanism, theoretical performances of the transducers were investigated on mechanical characteristics in two aspects: (1) displacement change at the stapes footplate, which describes the change in hearing due to placement of the transducer; (2) the equivalent pressure output of the transducer, which relates the footplate displacement driven by transducer to the sound pressure applied to a normal ear to produce that displacement. For the FMT with a less tight crimping connection or low supporting rigidity, a large drop of the sound-induced stapes displacement occurs at a specific frequency, with a peak reduction about 25.8 dB. A tight connection or high supporting rigidity shifts the drop of the stapes displacement to higher frequency. For the CLT, an electromagnetic transducer of 25 mg placed near the incus-stapes joint produces a maximum decrease of the stapes displacement around 16.5 dB. The equivalent sound pressure output and electromagnetic force requirement are proposed to produce the stapes displacement equivalent to that ear canal sound stimulus. The drop of the footplate displacement caused by mass loading effect can be recovered by the transducer stimulation over frequency range from 1500 Hz to 4000 Hz. The FE analysis reveals that enhancing the coupling stiffness between the clip and the ossicular chain is much helpful for maximizing the efficiency of the transducer stimulation. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Wang, Xuelin; Hu, Yujin; Wang, Zhenlong] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Hubei, Peoples R China.
[Shi, Hong] Huazhong Univ Sci & Technol, Dept Otorhinolaryngol, Union Hosp, Tongji Med Coll, Wuhan 430022, Hubei, Peoples R China.
RP Wang, XL (reprint author), Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, 1037 Luoyu Rd, Wuhan 430074, Hubei, Peoples R China.
EM wangxl@mail.hust.edu.cn
FU National Natural Science Foundation of China [30870605]; Scientific
Research Foundation for the Returned Overseas Chinese Scholars, State
Education of Ministry
FX This work was supported by the National Natural Science Foundation of
China (Grant No.30870605) and by the Scientific Research Foundation for
the Returned Overseas Chinese Scholars, State Education of Ministry. We
would like to thank the anonymous reviewers for valuable comments and
suggestions.
CR ABEL EW, 2004, MIDDLE EAR MECH RES, P145, DOI 10.1142/9789812703019_0021
Aibara R, 2001, HEARING RES, V152, P100, DOI 10.1016/S0378-5955(00)00240-9
Asai M, 1999, ACTA OTO-LARYNGOL, V119, P356
Bornitz M, 2010, HEARING RES, V263, P145, DOI 10.1016/j.heares.2010.02.007
CHENG T, 2007, THESIS U OKLAHIMA
COUNTER P, 2008, P I MECH ENG H, V226, P837
Gan RZ, 2004, ANN BIOMED ENG, V32, P847, DOI 10.1023/B:ABME.0000030260.22737.53
Gan RZ, 2007, J ACOUST SOC AM, V122, P3527, DOI 10.1121/1.2793699
Gan RZ, 2001, ANN OTO RHINOL LARYN, V110, P478
Gan RZ, 2010, HEARING RES, V263, P138, DOI 10.1016/j.heares.2009.09.003
GOODE RL, 1995, OTOLARYNG CLIN N AM, V28, P1
Hamanishi S, 2004, IEEE T MAGN, V40, P3387, DOI 10.1109/TMAG.2004.834190
Homma K, 2009, J ACOUST SOC AM, V125, P968, DOI 10.1121/1.3056564
Hong EP, 2009, MECHATRONICS, V19, P965, DOI 10.1016/j.mechatronics.2009.07.001
Hough JVD, 2000, FUNCTION AND MECHANICS OF NORMAL, DISEASED AND RECONSTRUCTED MIDDLE EARS, P353
Huber AM, 2006, OTOL NEUROTOL, V27, P1104, DOI 10.1097/01.mao.0000244352.49824.e6
KO WH, 1995, OTOLARYNG CLIN N AM, V28, P29
MANIGLIA AJ, 1996, ENT-EAR NOSE THROAT, V76, P333
Meister H, 1999, EUR ARCH OTO-RHINO-L, V256, P122, DOI 10.1007/s004050050123
Needham AJ, 2005, OTOL NEUROTOL, V26, P218, DOI 10.1097/00129492-200503000-00015
NISHIHARA S, 1993, OTOLARYNG HEAD NECK, V109, P899
Park IY, 2011, HEARING RES, V272, P187, DOI [10.1016/j.heares.2010.10.017, 10.1016/j.heares.2010.10.17]
Perkins R, 2010, HEARING RES, V263, P104, DOI 10.1016/j.heares.2010.01.012
Rosowski JJ, 2007, AUDIOL NEURO-OTOL, V12, P265, DOI 10.1159/000101474
Singiresu S. R., 1995, MECH VIBRATIONS
Snik A, 2004, CLIN OTOLARYNGOL, V29, P5, DOI 10.1111/j.1365-2273.2004.00749.x
Stieger C, 2004, COMPUT BIOL MED, V34, P141, DOI 10.1016/S0010-4825(03)00042-8
SUZUKI JI, 1995, OTOLARYNG CLIN N AM, V28, P99
Tsai MH, 2011, J ALLOY COMPD, V509, P813, DOI 10.1016/j.jallcom.2010.09.098
Wang XL, 2007, J ACOUST SOC AM, V122, P906, DOI 10.1121/1.2749417
Yanagihara Naoaki, 1997, Auris Nasus Larynx, V24, P91, DOI 10.1016/S0385-8146(96)00025-9
Zenner HP, 2000, AM J OTOL, V21, P196, DOI 10.1016/S0196-0709(00)80009-5
NR 32
TC 6
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2011
VL 280
IS 1-2
BP 48
EP 57
DI 10.1016/j.heares.2011.04.012
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 834XG
UT WOS:000295997200006
PM 21554941
ER
PT J
AU Bertoli, S
Probst, R
Bodmer, D
AF Bertoli, Sibylle
Probst, Rudolf
Bodmer, Daniel
TI Late auditory evoked potentials in elderly long-term hearing-aid users
with unilateral or bilateral fittings
SO HEARING RESEARCH
LA English
DT Article
ID FREQUENCY DISCRIMINATION; LATE-ONSET; MONAURAL AMPLIFICATION;
SPEECH-INTELLIGIBILITY; BEHAVIORAL MEASURES; IMPAIRED LISTENERS;
PRESENTATION LEVEL; NEURAL PLASTICITY; COCHLEAR DAMAGE; TIME-COURSE
AB This study investigated the effects of long-term unilateral and bilateral amplification on central auditory processing in elderly people with symmetrical hearing loss using late auditory evoked potentials. It was hypothesized that in the unilateral setting stimulation of the aided ear would yield an acclimatization effect with larger amplitudes and shorter latencies of the components P1, N1 and P2 compared to those of the unaided ear. Auditory evoked potentials were elicited by 500, 1000 and 2000 Hz pure tones at 55, 70 and 85 dB SPL presentation level delivered either to the left or right ear. Unilaterally and bilaterally fitted experienced hearing-aid users and a control group of normally hearing adults, all aged at least 60 years, participated. The responses of the unilateral hearing-aid users did not differ significantly for any of the components P1, N1 or P2 between the aided and unaided ears, but a significant interaction between ear and frequency was present for P2 amplitudes. P2 amplitudes were significantly smaller for the 0.5- and 1-kHz stimuli and tended to be larger for the 2-kHz stimulus in the aided ear suggesting an acclimatization effect. Larger P2 amplitudes were observed in the unilaterally fitted group, which was interpreted as a correlate of more effortful auditory processing in unilaterally fitted people. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Bertoli, Sibylle; Bodmer, Daniel] Univ Basel Hosp, Dept Otorhinolaryngol, CH-4031 Basel, Switzerland.
[Probst, Rudolf] Univ Zurich Hosp, Dept Otorhinolaryngol, CH-8091 Zurich, Switzerland.
RP Bertoli, S (reprint author), Univ Basel Hosp, Dept Otorhinolaryngol, Petersgraben 4, CH-4031 Basel, Switzerland.
EM sbertoli@uhbs.ch; rudolf.probst@usz.ch; dbodmer@uhbs.ch
CR Alain C, 2008, CLIN NEUROPHYSIOL, V119, P356, DOI 10.1016/j.clinph.2007.10.024
Amenedo E, 1999, NEUROREPORT, V10, P2383, DOI 10.1097/00001756-199908020-00030
Arlinger S, 1996, EAR HEARING, V17, pS87, DOI 10.1097/00003446-199617031-00009
Atienza M, 2002, LEARN MEMORY, V9, P138, DOI 10.1101/lm.46502
BALFOUR PB, 1992, EAR HEARING, V13, P331
Bertoli S, 2009, INT J AUDIOL, V48, P183, DOI 10.1080/14992020802572627
Bertoli S, 2010, INT J AUDIOL, V49, P333, DOI 10.3109/14992020903473431
Bertoli S, 2005, JARO-J ASSOC RES OTO, V6, P207, DOI 10.1007/s10162-005-0002-y
Bosnyak DJ, 2004, CEREB CORTEX, V14, P1088, DOI 10.1093/cercor/bhh068
Byrne D, 1992, J Am Acad Audiol, V3, P369
Ceponiene R, 2008, BRAIN RES, V1215, P53, DOI 10.1016/j.brainres.2008.02.010
Ceponiene R, 2009, BRAIN LANG, V110, P107, DOI 10.1016/j.bandl.2009.04.003
Crowley K, 2002, CLIN NEUROPHYSIOL, V113, P1615, DOI 10.1016/S1388-2457(02)00237-7
Crowley KE, 2004, CLIN NEUROPHYSIOL, V115, P732, DOI 10.1016/j.clinph.2003.11.021
DRESCHLER WA, 1994, AUDIOLOGISCHE AKUSTI, V5, P12
ERDMAN SA, 1981, EAR HEARING, V2, P225, DOI 10.1097/00003446-198109000-00009
FRISINA RD, 2005, INFERIOR COLLICULUS
Gabriel D, 2006, HEARING RES, V213, P49, DOI 10.1016/j.heares.2005.12.007
Gatehouse S., 1996, PSYCHOACOUSTICS SPEE, P319
GATEHOUSE S, 1989, J ACOUST SOC AM, V86, P2103, DOI 10.1121/1.398469
GELFAND SA, 1987, SCAND AUDIOL, V16, P201, DOI 10.3109/01050398709074941
HAHLBROCK K H, 1953, Arch Ohren Nasen Kehlkopfheilkd, V162, P394, DOI 10.1007/BF02105664
Hanss J, 2009, BMC NEUROSCI, V10, DOI 10.1186/1471-2202-10-23
Hine J, 2007, CLIN NEUROPHYSIOL, V118, P1274, DOI 10.1016/j.clinph.2007.03.012
Hutchinson KM, 1997, SCAND AUDIOL, V26, P177, DOI 10.3109/01050399709074991
Hyde M, 1997, AUDIOL NEURO-OTOL, V2, P281
KALIKOW DN, 1977, J ACOUST SOC AM, V61, P1337, DOI 10.1121/1.381436
Kobler S, 2002, INT J AUDIOL, V41, P395, DOI 10.3109/14992020209090416
Kobler S, 2001, SCAND AUDIOL, V30, P223, DOI 10.1080/01050390152704742
Korczak PA, 2005, EAR HEARING, V26, P165, DOI 10.1097/00003446-200504000-00005
LEEUW AR, 1991, AUDIOLOGY, V30, P330
McDermott HJ, 1998, J ACOUST SOC AM, V104, P2314, DOI 10.1121/1.423744
MOORE BCJ, 1992, EAR HEARING, V13, P349
Munro Kevin J, 2008, Trends Amplif, V12, P254, DOI 10.1177/1084713808323483
Munro KJ, 2003, J ACOUST SOC AM, V114, P484, DOI 10.1121/1.1577556
Munro KJ, 2007, NEUROREPORT, V18, P1871
Munro KJ, 2007, NEUROREPORT, V18, P1237, DOI 10.1097/WNR.0b013e32822025f4
NABELEK AK, 1981, J SPEECH HEAR RES, V24, P375
Neuman AC, 1996, EAR HEARING, V17, pS3, DOI 10.1097/00003446-199617031-00002
Noble W, 2006, INT J AUDIOL, V45, P172, DOI 10.1080/14992020500376933
Oates PA, 2002, EAR HEARING, V23, P399, DOI 10.1097/01.AUD.0000034777.12562.31
Philibert B, 2005, HEARING RES, V205, P131, DOI 10.1016/j.heares.2005.03.013
POLEN S B, 1984, Seminars in Hearing, V5, P127, DOI 10.1055/s-0028-1095227
PUNCH JL, 1991, EAR HEARING, V12, P205, DOI 10.1097/00003446-199106000-00008
Reinke KS, 2003, COGNITIVE BRAIN RES, V17, P781, DOI 10.1016/S0926-6410(03)00202-7
ROBINSON K, 1995, J ACOUST SOC AM, V97, P1183, DOI 10.1121/1.412230
Robinson K, 1996, J ACOUST SOC AM, V99, P1255, DOI 10.1121/1.414637
Ross B, 2009, HEARING RES, V248, P48, DOI 10.1016/j.heares.2008.11.012
Sheehan KA, 2005, COGNITIVE BRAIN RES, V25, P547, DOI 10.1016/j.cogbrainres.2005.08.007
SILMAN S, 1984, J ACOUST SOC AM, V76, P1357, DOI 10.1121/1.391451
STEPHENS SDG, 1991, J ROY SOC MED, V84, P267
Thai-Van H, 2007, HEARING RES, V233, P14, DOI 10.1016/j.heares.2007.06.003
Thai-Van H., 2009, AUDIOL MED, V7, P55
Thai-Van H, 2002, BRAIN, V125, P524, DOI 10.1093/brain/awf044
Thalmann B., 2000, NEUROBIOL AGING, V21, P30, DOI 10.1016/S0197-4580(00)82810-9
Tong YX, 2009, BRAIN RES, V1297, P80, DOI 10.1016/j.brainres.2009.07.089
Tremblay K, 2001, EAR HEARING, V22, P79, DOI 10.1097/00003446-200104000-00001
Tremblay KL, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010283
Tremblay KL, 2009, CLIN NEUROPHYSIOL, V120, P128, DOI 10.1016/j.clinph.2008.10.005
Tremblay KL, 2002, J SPEECH LANG HEAR R, V45, P564, DOI 10.1044/1092-4388(2002/045)
Tremblay KL, 2003, CLIN NEUROPHYSIOL, V114, P1332, DOI 10.1016/S1388-2457(03)00114-7
TSCHOPP K, 1994, SCAND AUDIOL, V23, P241, DOI 10.3109/01050399409047515
WELSH KA, 1994, NEUROLOGY, V44, P609
NR 63
TC 3
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2011
VL 280
IS 1-2
BP 58
EP 69
DI 10.1016/j.heares.2011.04.013
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 834XG
UT WOS:000295997200007
PM 21569828
ER
PT J
AU Imaizumi, K
Priebe, NJ
Cheung, SW
Schreiner, CE
AF Imaizumi, Kazuo
Priebe, Nicholas J.
Cheung, Steven W.
Schreiner, Christoph E.
TI Spatial organization of repetition rate processing in cat anterior
auditory field
SO HEARING RESEARCH
LA English
DT Article
ID AMPLITUDE-MODULATED SOUNDS; FUNCTIONAL-ORGANIZATION; DEPENDENT
PLASTICITY; TEMPORAL INFORMATION; RESPONSE PROPERTIES; RECEPTIVE-FIELDS;
CORTEX; REPRESENTATION; MECHANISMS; MONKEY
AB Auditory cortex updates incoming information on a segment by segment basis for human speech and animal communication. Measuring repetition rate transfer functions (RRTFs) captures temporal responses to repetitive sounds. In this study, we used repetitive click trains to describe the spatial distribution of RRTF responses in cat anterior auditory field (AAF) and to discern potential variations in local temporal processing capacity. A majority of RRTF filters are band-pass. Temporal parameters estimated from RRTFs and corrected for characteristic frequency or latency dependencies are non-homogeneously distributed across AAF. Unlike the shallow global gradient observed in spectral receptive field parameters, transitions from loci with high to low temporal parameters are steep. Quantitative spatial analysis suggests non-uniform, circumscribed local organization for temporal pattern processing superimposed on global organization for spectral processing in cat AAF. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Imaizumi, Kazuo] Louisiana State Univ, Ctr Neurosci, Hlth Sci Ctr, New Orleans, LA 70112 USA.
[Imaizumi, Kazuo; Cheung, Steven W.; Schreiner, Christoph E.] Univ Calif San Francisco, Coleman Mem Lab, WM Keck Ctr Integrat Neurosci, San Francisco, CA 94143 USA.
[Imaizumi, Kazuo; Cheung, Steven W.; Schreiner, Christoph E.] Univ Calif San Francisco, Dept Otolaryngol Head & Neck Surg, San Francisco, CA 94143 USA.
[Priebe, Nicholas J.] Univ Texas Austin, Neurobiol Sect, Ctr Perceptual Syst, Sch Biol Sci, Austin, TX 78712 USA.
RP Imaizumi, K (reprint author), Louisiana State Univ, Ctr Neurosci, Hlth Sci Ctr, 2020 Gravier St, New Orleans, LA 70112 USA.
EM kimaiz@lsuhsc.edu
FU National Institute of Heath (NIH) [DC-002260, MH-77970, EY019288];
Veterans Affairs Merit Review; Hearing Research Inc.; Coleman Memorial
Fund; Pew Charitable Trust
FX We thank B. Philibert for her help in data collection and C. Atencio for
his support in implementing the spatial analysis. This work was
supported by National Institute of Heath (NIH) Grants DC-002260 and
MH-77970 to C.E.S., Veterans Affairs Merit Review to S.W.C., Hearing
Research Inc., and the Coleman Memorial Fund. N.J.P. was supported by
NIH grant EY019288 and the Pew Charitable Trust.
CR Bao SW, 2004, NAT NEUROSCI, V7, P974, DOI 10.1038/nn1293
BARNES WH, 2003, SOC NEUR ABSTR, V28
Beitel RE, 2003, P NATL ACAD SCI USA, V100, P11070, DOI 10.1073/pnas.1334187100
Bieser A, 1996, EXP BRAIN RES, V108, P273
Bizley JK, 2005, CEREB CORTEX, V15, P1637, DOI 10.1093/cercor/bhi042
Chang EF, 2005, P NATL ACAD SCI USA, V102, P16460, DOI 10.1073/pnas.0508239102
Cheung SW, 2001, HEARING RES, V156, P115, DOI 10.1016/S0378-5955(01)00272-6
Cheung SW, 2001, J NEUROPHYSIOL, V85, P1732
Cliff A.D., 1973, SPATIAL AUTOCORRELAT
De Ribaupierre F, 1972, Brain Res, V48, P185, DOI 10.1016/0006-8993(72)90178-3
de la Mothe LA, 2006, J COMP NEUROL, V496, P72, DOI 10.1002/cne.20924
EGGERMONT, 1998, J NEUROPHYSIOL, V80, P2743
Eggermont JJ, 2000, J NEUROPHYSIOL, V83, P2708
Eggermont JJ, 1996, AUDIT NEUROSCI, V2, P309
Eggermont JJ, 2001, HEARING RES, V157, P1, DOI 10.1016/S0378-5955(01)00259-3
Fritz J, 2005, HEARING RES, V206, P159, DOI 10.1016/j.heares.2005.01.015
GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613
GOLDSTEIN MH, 1959, J ACOUST SOC AM, V31, P356, DOI 10.1121/1.1907724
Heil P, 1997, J NEUROPHYSIOL, V77, P2616
Hromadka T, 2007, HEARING RES, V229, P180, DOI 10.1016/j.heares.2007.01.002
Huang CL, 2000, J COMP NEUROL, V427, P302, DOI 10.1002/1096-9861(20001113)427:2<302::AID-CNE10>3.0.CO;2-J
Imaizumi K, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011531
Imaizumi K, 2007, J NEUROPHYSIOL, V98, P2933, DOI 10.1152/jn.00511.2007
Imaizumi K, 2005, AUDITORY CORTEX: SYNTHESIS OF HUMAN AND ANIMAL RESEARCH, P95
Imaizumi K, 2004, J NEUROPHYSIOL, V92, P444, DOI 10.1152/jn.01173.2003
Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003
Kaas JH, 2011, AUDITORY CORTEX, P407, DOI 10.1007/978-1-4419-0074-6_19
Kajikawa Y, 2005, J NEUROPHYSIOL, V93, P22, DOI 10.1152/jn.00248.2004
Kilgard MP, 1998, NAT NEUROSCI, V1, P727, DOI 10.1038/3729
Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714
Kilgard MP, 1999, HEARING RES, V134, P16, DOI 10.1016/S0378-5955(99)00061-1
KNIGHT PL, 1977, BRAIN RES, V130, P447, DOI 10.1016/0006-8993(77)90108-1
KOWALSKI N, 1995, J NEUROPHYSIOL, V73, P1513
Kusmierek P, 2009, J NEUROPHYSIOL, V102, P1606, DOI 10.1152/jn.00167.2009
Langner Gerald, 2009, Front Integr Neurosci, V3, P27, DOI 10.3389/neuro.07.027.2009
Lee CC, 2004, CEREB CORTEX, V14, P441, DOI 10.1093/cercor/bhh006
Liang L, 2002, J NEUROPHYSIOL, V87, P2237, DOI 10.1152/jn.00834.2001
Linden JF, 2003, J NEUROPHYSIOL, V90, P2660, DOI 10.1152/jn.00751.2002
Lomber SG, 2008, NAT NEUROSCI, V11, P609, DOI 10.1038/nn.2108
Lu T, 2000, J NEUROPHYSIOL, V84, P236
Malhotra S, 2004, J NEUROPHYSIOL, V92, P1625, DOI 10.1152/jn.01205.2003
Malone BJ, 2007, J NEUROPHYSIOL, V98, P1451, DOI 10.1152/jn.01203.2006
Mardia K. V., 1972, STAT DIRECTIONAL DAT
Miller LM, 2001, NEURON, V32, P151, DOI 10.1016/S0896-6273(01)00445-7
PHILLIPS DP, 1990, J ACOUST SOC AM, V88, P1403, DOI 10.1121/1.399718
Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800
Read HL, 2001, P NATL ACAD SCI USA, V98, P8042, DOI 10.1073/pnas.131591898
Recanzone GH, 2010, BEHAV BRAIN RES, V206, P1, DOI 10.1016/j.bbr.2009.08.015
Romanski LM, 1999, NAT NEUROSCI, V2, P1131, DOI 10.1038/16056
Rutkowski RG, 2003, HEARING RES, V181, P116, DOI 10.1016/S0378-5955(03)00182-5
SCHREINER CE, 1988, HEARING RES, V32, P49, DOI 10.1016/0378-5955(88)90146-3
Schreiner CE, 1996, J NEUROPHYSIOL, V75, P1283
Schreiner CE, 2007, NEURON, V56, P356, DOI 10.1016/j.neuron.2007.10.013
SCHREINER CE, 1986, HEARING RES, V21, P227, DOI 10.1016/0378-5955(86)90221-2
Ter-Mikaelian M, 2007, J NEUROSCI, V27, P6091, DOI 10.1523/JNEUROSCI.4848-06-2007
TIAN B, 1994, J NEUROPHYSIOL, V71, P1959
Wang X, 2008, Neuroscience, V157, P484, DOI 10.1016/j.neuroscience.2008.07.050
Wang XQ, 2003, SPEECH COMMUN, V41, P107, DOI 10.1016/S0167-6393(02)00097-3
Wehr M, 2005, NEURON, V47, P437, DOI 10.1016/j.neuron.2005.06.009
NR 59
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2011
VL 280
IS 1-2
BP 70
EP 81
DI 10.1016/j.heares.2011.04.008
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 834XG
UT WOS:000295997200008
PM 21569829
ER
PT J
AU Perez, R
Adelman, C
Sohmer, H
AF Perez, Ronen
Adelman, Cahtia
Sohmer, Haim
TI Bone conduction activation through soft tissues following complete
immobilization of the ossicular chain, stapes footplate and round window
SO HEARING RESEARCH
LA English
DT Article
ID AUDITORY-THRESHOLDS; TRANSMISSION; HEARING; SOUND; EAR; OTOSCLEROSIS;
STIMULATION; COCHLEA; PATHWAY; ATRESIA
AB Classically it has been thought that bone conduction activation at the mastoid leads to relative motion between the stapes footplate and the oval window due to inertial and to compression (distortion) mechanisms. However, several recent clinical findings and experimental manipulations may point to additional mechanisms. These manipulations were extended in the present study. In ten fat sand rats, following obliteration of one ear, auditory nerve brainstem evoked response (ABR) thresholds were recorded in response to broad band click stimuli, either air conducted (AC) through insert earphones or bone conducted (BC) delivered directly to the exposed skull bone. Following this, the entire ossicular chain, stapes footplate and round window were completely immobilized with super glue, leading to a mean AC threshold elevation of 44 dB, but to a mean BC threshold change (elevation) of only 3.5 dB. In this state of complete immobilization, the bone vibrator was applied to a pool of saline in the surgical area and ABR was elicited with a mean threshold which was not significantly different from that of the BC threshold. When the bone vibrator was then applied to the eye without touching the bone at the orbit, the resulting ABR threshold was about 20 dB greater than the BC threshold. In conclusion, BC stimulation can activate the cochlea without two mobile windows. Furthermore, the cochlea can be activated by a fluid pathway and by application of a bone vibrator to non-osseous sites (soft tissue conduction). (c) 2011 Elsevier B.V. All rights reserved.
C1 [Perez, Ronen] Shaare Zedek Med Ctr, Dept Otolaryngol & Head & Neck Surg, IL-91031 Jerusalem, Israel.
[Adelman, Cahtia] Hadassah Univ Hosp, Speech & Hearing Ctr, IL-91120 Jerusalem, Israel.
[Sohmer, Haim] Hebrew Univ Jerusalem, Hadassah Med Sch, Inst Med Res Israel Canada, Dept Med Neurobiol Physiol, IL-91120 Jerusalem, Israel.
RP Sohmer, H (reprint author), Hebrew Univ Jerusalem, Hadassah Med Sch, Dept Physiol, POB 12272, IL-91120 Jerusalem, Israel.
EM perezro@internet-zahav.net; cahtiaa@hadassah.org.il;
haims@ekmd.huji.ac.il
RI Yin, Ming/E-4879-2012
CR Adelman C., EUR ARCH OT IN PRESS
Borrmann A, 2007, EUR ARCH OTO-RHINO-L, V264, P1103, DOI 10.1007/s00405-007-0305-1
Chordekar S, 2010, J BASIC CLIN PHYSL P, V21, P273
Dean M S, 2000, Am J Audiol, V9, P131, DOI 10.1044/1059-0889(2000/011)
Freeman S, 2000, HEARING RES, V146, P72, DOI 10.1016/S0378-5955(00)00098-8
Huber AM, 2008, OTOL NEUROTOL, V29, P1187, DOI 10.1097/MAO.0b013e31817ef49b
Ito T, 2011, AUDIOL NEURO-OTOL, V16, P12, DOI 10.1159/000314282
Linder TE, 2003, OTOL NEUROTOL, V24, P259, DOI 10.1097/00129492-200303000-00021
MELZER P, 1984, HEARING RES, V15, P187, DOI 10.1016/0378-5955(84)90050-9
Perez R, 2011, ANN OTO RHINOL LARYN, V120, P66
Perez Ronen, 2009, Journal of Basic and Clinical Physiology and Pharmacology, V20, P197
Robles L, 2001, PHYSIOL REV, V81, P1305
Sichel JY, 1999, J OTOLARYNGOL, V28, P217
Sohmer H, 2000, HEARING RES, V146, P81, DOI 10.1016/S0378-5955(00)00099-X
Sohmer H, 2004, HEARING RES, V187, P105, DOI 10.1016/S0378-5955(03)00335-6
Stenfelt S, 2005, OTOL NEUROTOL, V26, P1245, DOI 10.1097/01.mao.0000187236.10842.d5
Stenfelt S, 2005, J ACOUST SOC AM, V118, P2373, DOI 10.1121/1.12005847
TONNDORF J, 1962, J ACOUST SOC AM, V34, P1127, DOI 10.1121/1.1918259
Tsai V, 2005, OTOL NEUROTOL, V26, P1138, DOI 10.1097/01.mao.0000179996.82402.e0
Vento B. A., 2009, HDB CLIN AUDIOLOGY
Vincent R, 2006, OTOL NEUROTOL, V27, pS25, DOI 10.1097/01.mao.0000235311.80066.df
Watanabe T, 2008, EAR HEARING, V29, P667, DOI 10.1097/AUD.0b013e3181775dde
Yacullo W.S, 2009, HDB CLIN AUDIOLOGY
NR 23
TC 10
Z9 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2011
VL 280
IS 1-2
BP 82
EP 85
DI 10.1016/j.heares.2011.04.007
PG 4
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 834XG
UT WOS:000295997200009
PM 21569827
ER
PT J
AU Dalhoff, E
Turcanu, D
Gummer, AW
AF Dalhoff, Ernst
Turcanu, Diana
Gummer, Anthony W.
TI Forward and reverse transfer functions of the middle ear based on
pressure and velocity DPOAEs with implications for differential hearing
diagnosis
SO HEARING RESEARCH
LA English
DT Article
ID PRODUCT-OTOACOUSTIC-EMISSION; COCHLEAR INPUT IMPEDANCE; HIGH-FREQUENCY
HEARING; TYMPANIC-MEMBRANE; GUINEA-PIG; ACOUSTIC PRESSURE; SOUND
PRESSURE; THRESHOLD ESTIMATION; CLINICAL UTILITY; GROWTH-BEHAVIOR
AB Recently it was shown that distortion product otoacoustic emissions (DPOAEs) can be measured as vibration of the human tympanic membrane in vivo, and proposed to use these vibration DPOAEs to support a differential diagnosis of middle-ear and cochlear pathologies. Here, we investigate how the reverse transfer function (r-TF), defined as the ratio of DPOAE-velocity of the umbo to DPOAE-pressure in the ear canal, can be used to diagnose the state of the middle ear. Anaesthetized guinea pigs served as the experimental animal. Sound was delivered free-field and the vibration of the umbo measured with a laser Doppler vibrometer (LDV). Sound pressure was measured 2-3 mm from the tympanic membrane with a probe-tube microphone. The forward transfer function (f-TF) of umbo velocity relative to ear-canal pressure was obtained by stimulating with multi-tone pressure. The r-TF was assembled from DPOAE components generated in response to acoustic stimulation with two stimulus tones of frequencies f(1) and f(2); f(2)/f(1) was constant at 1.2. The r-TF was plotted as function of DPOAE frequencies; they ranged from 1.7 kHz to 23 kHz. The r-TF showed a characteristic shape with an anti-resonance around 8 kHz as its most salient feature. The data were interpreted with the aid of a middle-ear transmission-line model taken from the literature for the cat and adapted to the guinea pig. Parameters were estimated with a three-step fitting algorithm. Importantly, the r-TF is governed by only half of the 15 independent, free parameters of the model. The parameters estimated from the r-TF were used to estimate the other half of the parameters from the f-TF. The use of r-TF data - in addition to f-TF data - allowed robust estimates of the middle-ear parameters to be obtained. The results highlight the potential of using vibration DPOAEs for ascertaining the functionality of the middle ear and, therefore, for supporting a differential diagnosis of middle-ear and cochlear pathologies. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Dalhoff, Ernst; Turcanu, Diana; Gummer, Anthony W.] Univ Tubingen, Dept Otolaryngol, Sect Physiol Acoust & Commun, Tubingen, Germany.
RP Gummer, AW (reprint author), Univ Tubingen, Dept Otolaryngol, Sect Physiol Acoust & Commun, Elfriede Aulhorn Str 5, Tubingen, Germany.
EM ernst.dalhoff@uni-tuebingen.de; diana.turcanu@uni-tuebingen.de;
anthony.gummer@uni-tuebingen.de
FU German Research Council DFG [Gu 194/8-1,2]
FX We thank J.J. Rosowski and an anonymous second reviewer for helpful
comments on the manuscript. This work was supported by the German
Research Council DFG Gu 194/8-1,2 for which we are most grateful.
CR Abramowitz M., 1972, HDB MATH FUNCTIONS
Aerts JRM, 2010, HEARING RES, V263, P26, DOI 10.1016/j.heares.2009.12.022
Aibara R, 2001, HEARING RES, V152, P100, DOI 10.1016/S0378-5955(00)00240-9
ALLEN JB, 1992, J ACOUST SOC AM, V92, P178, DOI 10.1121/1.404281
Avan P, 1998, EUR J NEUROSCI, V10, P1764, DOI 10.1046/j.1460-9568.1998.00188.x
Beranek LL, 1954, ACOUSTICS
Boege P, 2002, J ACOUST SOC AM, V111, P1810, DOI 10.1121/1.1460923
BROWN AM, 1990, J ACOUST SOC AM, V88, P840, DOI 10.1121/1.399733
BUUNEN TJF, 1981, J ACOUST SOC AM, V69, P744, DOI 10.1121/1.385574
CHAN JCK, 1990, J ACOUST SOC AM, V87, P1237, DOI 10.1121/1.398799
Dalhoff E, 2007, P NATL ACAD SCI USA, V104, P1546, DOI 10.1073/pnas.0610185103
DALHOFF E, 2008, ASS RES OTOLARYNGOL, V31, P537
Dalhoff E, 2009, CONCEPTS AND CHALLENGES IN THE BIOPHYSICS OF HEARING, P15, DOI 10.1142/9789812833785_0003
DANCER A, 1980, HEARING RES, V2, P191, DOI 10.1016/0378-5955(80)90057-X
de La Rochefoucauld O, 2008, JARO-J ASSOC RES OTO, V9, P161, DOI 10.1007/s10162-008-0115-1
de La Rochefoucauld O, 2010, HEARING RES, V263, P9, DOI 10.1016/j.heares.2009.10.014
de Boer E, 2005, J ACOUST SOC AM, V117, P1260, DOI 10.1121/1.1856229
DECRAEMER WF, 1991, HEARING RES, V54, P305, DOI 10.1016/0378-5955(91)90124-R
Decraemer WF, 2007, J ACOUST SOC AM, V121, P2774, DOI 10.1121/1.2709843
Dong W, 2006, J NEUROPHYSIOL, V95, P2951, DOI 10.1152/jn.01214.2005
Dong W, 2008, J ACOUST SOC AM, V123, P222, DOI 10.1121/1.2816566
Farmer-Fedor BL, 2002, J ACOUST SOC AM, V112, P600, DOI 10.1121/1.1494445
Fay JP, 2006, P NATL ACAD SCI USA, V103, P19743, DOI 10.1073/pnas.0603898104
FERNANDEZ C, 1952, J ACOUST SOC AM, V24, P519
Gehr DD, 2004, HEARING RES, V193, P9, DOI 10.1016/j.heares.2004.03.018
GOODE RL, 1994, AM J OTOL, V15, P145
Gorga MP, 2003, J ACOUST SOC AM, V113, P3275, DOI 10.1121/1.1570433
GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465
Guitton MJ, 2004, NEUROREPORT, V15, P1379, DOI 10.1097/01.wnr.0000131672.15566.64
HEMILA S, 1995, HEARING RES, V85, P31, DOI 10.1016/0378-5955(95)00031-X
Huang GT, 1997, J ACOUST SOC AM, V101, P1532, DOI 10.1121/1.418107
Huber AM, 2001, LARYNGOSCOPE, V111, P501, DOI 10.1097/00005537-200103000-00022
HUDDE H, 1983, J ACOUST SOC AM, V73, P242, DOI 10.1121/1.388855
Janssen T, 2005, J ACOUST SOC AM, V117, P2969, DOI 10.1121/1.1853101
JOHNSTONE JR, 1979, J ACOUST SOC AM, V65, P254, DOI 10.1121/1.382244
JORGE JR, 2000, THESIS E KARLS U TUB
Keefe DH, 2007, J ACOUST SOC AM, V121, P978, DOI 10.1121/1.2427128
KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104
KRINGLEBOTN M, 1995, J ACOUST SOC AM, V98, P192, DOI 10.1121/1.413746
Kummer P, 2006, HNO, V54, P457, DOI 10.1007/s00106-005-1341-z
Kummer P, 1998, J ACOUST SOC AM, V103, P3431, DOI 10.1121/1.423054
Kummer P, 2000, HEARING RES, V146, P47, DOI 10.1016/S0378-5955(00)00097-6
Lukashkin AN, 2002, J ACOUST SOC AM, V112, P1561, DOI 10.1121/1.1502903
LYNCH TJ, 1982, J ACOUST SOC AM, V72, P108, DOI 10.1121/1.387995
Magnan P, 1999, AUDIOL NEURO-OTOL, V4, P123, DOI 10.1159/000013830
Magnan P, 1997, HEARING RES, V107, P41, DOI 10.1016/S0378-5955(97)00015-4
MASSEY GA, 1968, PR INST ELECTR ELECT, V56, P2157, DOI 10.1109/PROC.1968.6829
Michaelis CE, 2004, HEARING RES, V189, P58, DOI 10.1016/S0378-5955(03)00373-3
Nakajima HH, 2005, LARYNGOSCOPE, V115, P147, DOI 10.1097/01.mlg.0000150692.23506.b7
Nakajima HH, 2005, HEARING RES, V204, P60, DOI 10.1016/j.heares.2005.01.002
NUMMELA S, 1995, HEARING RES, V85, P18, DOI 10.1016/0378-5955(95)00030-8
O'Connor KN, 2008, J ACOUST SOC AM, V123, P197, DOI 10.1121/1.2817358
Olson ES, 1998, J ACOUST SOC AM, V103, P3445, DOI 10.1121/1.423083
Parent P, 2010, HEARING RES, V263, P152, DOI 10.1016/j.heares.2009.12.015
Parenta P, 2007, J ACOUST SOC AM, V122, P918, DOI 10.1121/12747156
PEAKE WT, 1992, HEARING RES, V57, P245, DOI 10.1016/0378-5955(92)90155-G
PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897
Puria S, 1998, J ACOUST SOC AM, V104, P3463, DOI 10.1121/1.423930
Puria S, 2010, HEARING RES, V263, P183, DOI 10.1016/j.heares.2009.10.013
Puria S, 2003, J ACOUST SOC AM, V113, P2773, DOI 10.1121/1.1564018
PURIA S, 1991, J ACOUST SOC AM, V89, P287, DOI 10.1121/1.400675
Qin ZB, 2010, HEARING RES, V263, P93, DOI 10.1016/j.heares.2009.10.002
Ravicz ME, 2008, J ACOUST SOC AM, V124, P363, DOI 10.1121/1.2932061
Ravicz ME, 2007, J ACOUST SOC AM, V122, P2154, DOI 10.1121/1.2769625
Rosowski JJ, 2008, EAR HEARING, V29, P3
Rosowski JJ, 2003, OTOL NEUROTOL, V24, P165, DOI 10.1097/00129492-200303000-00008
Ruggero MA, 2002, P NATL ACAD SCI USA, V99, P13206, DOI 10.1073/pnas.202492699
Schmuziger N, 2006, J ACOUST SOC AM, V119, P1937, DOI 10.1121/1.2180531
Shaw BAG, 1974, HDB SENSORY PHYSL, VV/1, P455
Shera CA, 2004, EAR HEARING, V25, P86, DOI 10.1097/01.AUD.0000121200.90211.83
Shera CA, 2007, J ACOUST SOC AM, V121, P1003, DOI 10.1121/1.2404620
Siegel J. H., 2002, OTOACOUSTIC EMISSION, P416
TIELEMANS JLM, 2001, THESIS E KARLS U TUB
Turcanu D, 2009, HEARING RES, V251, P17, DOI 10.1016/j.heares.2009.02.005
Vetesnik A, 2009, HEARING RES, V256, P21, DOI 10.1016/j.heares.2009.06.002
Voss SE, 2004, J ACOUST SOC AM, V116, P2187, DOI 10.1021/1.1785832
VOSS SE, 1994, J ACOUST SOC AM, V95, P372, DOI 10.1121/1.408329
Withnell RH, 1998, J ACOUST SOC AM, V104, P350, DOI 10.1121/1.423292
Withnell RH, 2003, HEARING RES, V178, P106, DOI 10.1016/S0378-5955(03)00064-9
Wysocki Jarosław, 2005, Folia Morphol (Warsz), V64, P145
ZEMPLENYI J, 1985, J ACOUST SOC AM, V78, P2146, DOI 10.1121/1.392676
ZUERCHER JC, 1988, J ACOUST SOC AM, V83, P1653, DOI 10.1121/1.395920
ZWISLOCKI J, 1963, J ACOUST SOC AM, V35, P1034, DOI 10.1121/1.1918650
ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382
NR 84
TC 6
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2011
VL 280
IS 1-2
BP 86
EP 99
DI 10.1016/j.heares.2011.04.015
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 834XG
UT WOS:000295997200010
PM 21624450
ER
PT J
AU Irving, S
Moore, DR
AF Irving, Samuel
Moore, David R.
TI Training sound localization in normal hearing listeners with and without
a unilateral ear plug
SO HEARING RESEARCH
LA English
DT Article
ID SENSITIVE PERIOD; OPTIC TECTUM; BARN OWL; CUES; IMPAIRMENT; PLASTICITY;
HUMANS; ALTERS; SPACE; NOISE
AB Surprisingly little is known about the ability of adult human listeners to learn to localize sounds in the free field. In this study, we presented broadband noise bursts at 24 equally spaced locations in a 360 degrees horizontal plane in both normal-hearing conditions and when listeners were fitted with a unilateral earplug. Localization improvement was found over the initial four training sessions, prior to plug insertion which produced an immediate and profound impairment in localization, particularly on the side of the plug. Subsequent training with the plug in place over the next 5 days showed continually improving performance (learning) up to the 4th day. Following plug removal, localization immediately returned to pre-plug levels. These results showed that task-specific training can improve localization ability in normal-hearing conditions and that training also improves performance during a unilateral conductive hearing loss. It has been suggested that the process of learning is due to a gradual reweighting of the available cues to develop a new location map. The return to preplug learning performance suggests that the original location map is preserved despite the formation of a new map, and is in agreement with other reported findings. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Irving, Samuel; Moore, David R.] MRC Inst Hearing Res, Nottingham NG7 2RD, England.
RP Moore, DR (reprint author), MRC Inst Hearing Res, Univ Pk, Nottingham NG7 2RD, England.
EM davem@ihr.mrc.ac.uk
FU Medical Research Council; MRC
FX The authors would like to thank Tim Folkard, Dave Bullock and Angie
Killoran for technical assistance, Mark Edmondson-Jones for statistical
guidance, Quentin Summerfield for advice on experimental design, John
Van Opstal for comments on the draft paper, and the reviewers and
Section Editor (Dan Sanes) for generous help during the publication
process. This work was funded by the intramural programme of the Medical
Research Council and by an MRC Studentship to SI.
CR Abel SM, 2004, APPL ACOUST, V65, P229, DOI 10.1016/j.apacoust.2003.10.003
AGTERBERG MJ, 2010, J ASS RES OTOLARYNGO
Amitay S, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009816
Amitay S, 2005, PERCEPT PSYCHOPHYS, V67, P691, DOI 10.3758/BF03193525
BAUER RW, 1966, J ACOUST SOC AM, V40, P441, DOI 10.1121/1.1910093
Blauert J., 1997, SPATIAL HEARING PSYC
BUTLER RA, 1987, PERCEPT PSYCHOPHYS, V41, P1, DOI 10.3758/BF03208206
CARLILE S, 1990, J ACOUST SOC AM, V88, P2196, DOI 10.1121/1.400116
DURLACH NI, 1981, AUDIOLOGY, V20, P181
EDMONDSONJONES M, 2010, HEARING RES, V267, P4
Florentine M, 1976, J Am Audiol Soc, V1, P243
Gold JI, 1999, J NEUROPHYSIOL, V82, P2197
Hartley DEH, 2003, HEARING RES, V177, P53, DOI 10.1016/S0378-5955(02)00797-9
HARTMANN WM, 1983, J ACOUST SOC AM, V74, P1380, DOI 10.1121/1.390163
Hawkey DJC, 2004, NAT NEUROSCI, V7, P1055, DOI 10.1038/nn1315
HELD RICHARD, 1955, AMER JOUR PSYCHOL, V68, P526, DOI 10.2307/1418782
Hofman PM, 1998, NAT NEUROSCI, V1, P417, DOI 10.1038/1633
Irving S, 2011, J NEUROSCI, V31, P2493, DOI 10.1523/JNEUROSCI.2679-10.2011
JAVER AR, 1995, J OTOLARYNGOL, V24, P111
Kacelnik O, 2006, PLOS BIOL, V4, P627, DOI 10.1371/journal.pbio.0040071
King AJ, 2001, AUDIOL NEURO-OTOL, V6, P182, DOI 10.1159/000046829
King AJ, 2009, PHILOS T R SOC B, V364, P331, DOI 10.1098/rstb.2008.0230
King AJ, 2000, P NATL ACAD SCI USA, V97, P11821, DOI 10.1073/pnas.97.22.11821
KNUDSEN EI, 1984, J NEUROSCI, V4, P1001
KNUDSEN EI, 1985, J NEUROSCI, V5, P3094
Kumpik DP, 2010, J NEUROSCI, V30, P4883, DOI 10.1523/JNEUROSCI.5488-09.2010
Mardia K, 2000, DIRECTIONAL STAT
McPartland JL, 1997, HEARING RES, V113, P165, DOI 10.1016/S0378-5955(97)00142-1
MIDDLEBROOKS JC, 1991, ANNU REV PSYCHOL, V42, P135, DOI 10.1146/annurev.ps.42.020191.001031
MOORE DR, 2004, SPRINGER HDB AUDITOR, P96
Moore DR, 2005, BRAIN LANG, V94, P72, DOI 10.1016/j.bundl.2004.11.009
Noble W, 2006, INT J AUDIOL, V45, P172, DOI 10.1080/14992020500376933
Perrett S, 1997, PERCEPT PSYCHOPHYS, V59, P1018, DOI 10.3758/BF03205517
Recanzone GH, 1998, J ACOUST SOC AM, V103, P1085, DOI 10.1121/1.421222
Shinn-Cunningham BG, 1998, J ACOUST SOC AM, V103, P3667, DOI 10.1121/1.423107
Shinn-Cunningham BG, 1998, J ACOUST SOC AM, V103, P3656, DOI 10.1121/1.423088
SHINNCUNNINGHAM BG, 2000, INT C AUD DISPL ATL
SLATTERY WH, 1994, HEARING RES, V75, P38, DOI 10.1016/0378-5955(94)90053-1
Van Wanrooij MM, 2007, J NEUROPHYSIOL, V97, P715, DOI 10.1152/jn.00260.2006
Van Wanrooij MM, 2005, J NEUROSCI, V25, P5413, DOI 10.1523/JNEUROSCI.0850-05.2005
Van Wanrooij MM, 2004, J NEUROSCI, V24, P4163, DOI 10.1523/JNEUROSCI.0048-04.2004
Wright B. A., 2006, INT J AUDIOL, V45, P92, DOI DOI 10.1080/14992020600783004
NR 42
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2011
VL 280
IS 1-2
BP 100
EP 108
DI 10.1016/j.heares.2011.04.020
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 834XG
UT WOS:000295997200011
PM 21640176
ER
PT J
AU Wotton, JM
Ferragamo, MJ
AF Wotton, J. M.
Ferragamo, M. J.
TI A model of anuran auditory periphery reveals frequency-dependent
adaptation to be a contributing mechanism for two-tone suppression and
amplitude modulation coding
SO HEARING RESEARCH
LA English
DT Article
ID NERVE-FIBERS; HAIR-CELLS; BASILAR-MEMBRANE; DORSAL MEDULLARY;
RANA-CATESBEIANA; GOLDFISH; SYSTEM; FROG; RESPONSES; BULLFROG
AB Anuran auditory nerve fibers (ANF) tuned to low frequencies display unusual frequency-dependent adaptation which results in a more phasic response to signals above best frequency (BF) and a more tonic response to signals below. A network model of the first two layers of the anuran auditory system was used to test the contribution of this dynamic peripheral adaptation on two-tone suppression and amplitude modulation (AM) tuning. The model included a peripheral sandwich component, leaky-integrate-and-fire cells and adaptation was implemented by means of a non-linear increase in threshold weighted by the signal frequency. The results of simulations showed that frequency-dependent adaptation was both necessary and sufficient to produce high-frequency-side two-tone suppression for the ANF and cells of the dorsal medullary nucleus (DMN). It seems likely that both suppression and this dynamic adaptation share a common mechanism. The response of ANFs to AM signals was influenced by adaptation and carrier frequency. Vector strength synchronization to an AM signal improved with increased adaptation. The spike rate response to a carrier at BF was the expected flat function with AM rate. However, for non-BF carrier frequencies the response showed a weak band-pass pattern due to the influence of signal sidebands and adaptation. The DMN received inputs from three ANFs and when the frequency tuning of inputs was near the carrier, then the rate response was a low-pass or all-pass shape. When most of the inputs were biased above or below the carrier, then band-pass responses were observed. Frequency-dependent adaptation enhanced the band-pass tuning for AM rate, particularly when the response of the inputs was predominantly phasic for a given carrier. Different combinations of inputs can therefore bias a DMN cell to be especially well suited to detect specific ranges of AM rates for a particular carrier frequency. Such selection of inputs would clearly be advantageous to the frog in recognizing distinct spectral and temporal parameters in communication calls. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Wotton, J. M.; Ferragamo, M. J.] Gustavus Adolphus Coll, Program Neurosci, St Peter, MN 56082 USA.
RP Wotton, JM (reprint author), Gustavus Adolphus Coll, Program Neurosci, 800 W Coll Ave, St Peter, MN 56082 USA.
EM jwotton2@gac.edu
CR Capranica R.R., 1980, P139
CARNEY LH, 1993, J ACOUST SOC AM, V93, P401, DOI 10.1121/1.405620
COOMBS S, 1987, J ACOUST SOC AM, V81, P1025, DOI 10.1121/1.395113
CRAWFORD AC, 1981, J PHYSIOL-LONDON, V315, P317
Dayan P., 2001, THEORETICAL NEUROSCI
EGGERMONT JJ, 1993, HEARING RES, V66, P177, DOI 10.1016/0378-5955(93)90139-R
EGGERMONT JJ, 1985, HEARING RES, V18, P57, DOI 10.1016/0378-5955(85)90110-8
FAY RR, 1978, J ACOUST SOC AM, V63, P136, DOI 10.1121/1.381705
FAY RR, 1986, NATO ASI SER, P137
FAY RR, 1986, J ACOUST SOC AM, V79, P1883, DOI 10.1121/1.393196
FAY RR, 1985, J ACOUST SOC AM, V78, P1296, DOI 10.1121/1.392899
FENG AS, 1990, PROG NEUROBIOL, V34, P313, DOI 10.1016/0301-0082(90)90008-5
FENG AS, 1975, J COMP PHYSIOL, V100, P221
FENG AS, 1991, J NEUROPHYSIOL, V65, P424
FRISINA RD, 1985, EXP BRAIN RES, V60, P417
FUZESSERY ZM, 1983, J COMP PHYSIOL, V150, P107
GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613
HALL JC, 1991, J NEUROPHYSIOL, V66, P955
Julicher F, 2001, P NATL ACAD SCI USA, V98, P9080, DOI 10.1073/pnas.151257898
Lewis ER, 1999, COMP HEARING FISH AM, P101
LEWIS ER, 1986, AUDITORY FREQUENCY S, P129
Lumpkin EA, 1998, J NEUROSCI, V18, P6300
MEGELA AL, 1981, J NEUROPHYSIOL, V46, P465
MEGELA AL, 1984, J ACOUST SOC AM, V75, P1155, DOI 10.1121/1.390764
Ricci AJ, 1997, J PHYSIOL-LONDON, V501, P111, DOI 10.1111/j.1469-7793.1997.111bo.x
ROBLES L, 1991, NATURE, V349, P413, DOI 10.1038/349413a0
RUGGERO MA, 1992, J NEUROPHYSIOL, V68, P1087
Ryan MJ, 2001, ANURAN COMMUNICATION
Simmons AM, 1996, AUDIT NEUROSCI, V2, P109
SLANEY M, 1993, APPLE COMPUTER TECHN, V35, P1
Smotherman MS, 2000, J EXP BIOL, V203, P2237
VANDIJK P, 1994, J ACOUST SOC AM, V95, P904, DOI 10.1121/1.410009
VANSTOKKUM IHM, 1989, HEARING RES, V41, P71, DOI 10.1016/0378-5955(89)90180-9
Zakon H.H., 1988, P125
NR 35
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2011
VL 280
IS 1-2
BP 109
EP 121
DI 10.1016/j.heares.2011.04.014
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 834XG
UT WOS:000295997200012
PM 21565263
ER
PT J
AU Campo, P
Venet, T
Rumeau, C
Thomas, A
Rieger, B
Cour, C
Cosnier, F
Parietti-Winkler, C
AF Campo, Pierre
Venet, Thomas
Rumeau, Cecile
Thomas, Aurelie
Rieger, Benoit
Cour, Chantal
Cosnier, Frederic
Parietti-Winkler, Cecile
TI Impact of noise or styrene exposure on the kinetics of presbycusis
SO HEARING RESEARCH
LA English
DT Article
ID INDUCED HEARING-LOSS; POSTNATAL-DEVELOPMENT; TECTORIAL MEMBRANE; RAT
COCHLEA; OTOTOXICITY; DPOAE; EAR; AGE
AB Presbycusis, or age-related hearing loss is a growing problem as the general population ages. In this longitudinal study, the influence of noise or styrene exposure on presbycusis was investigated in Brown Norway rats. Animals were exposed at 6 months of age, either to a band noise centered at 8 kHz at a Lex,8h = 85 dB (86.2 dB SPL for 6 h), or to 300 ppm of styrene for 6 h per day, five days per week, for four weeks. Cubic distortion product otoacoustic emissions (2f1-f2 DPOAEs) were used to test the capacity of the auditory receptor over the lifespan of the animals. 2f1-f2DPOAE measurements are easy to implement and efficiently track the age-related deterioration of mid- and high-frequencies. They are good indicators of temporary auditory threshold shift, especially with a level of primaries close to 60 dB SPL Post-exposure hearing defects are best identified using moderate, rather than high, levels of primaries. Like many aging humans, aging rats lose sensitivity to high-frequencies faster than to medium-frequencies. Although the results obtained with the styrene exposure were not entirely conclusive, histopathological data showed the presbycusis process to be enhanced. Noise-exposed rats exhibit a loss of spiral ganglion cells from 12 months and a 7 dB drop in 2f1-f2DPOAEs at 24 months, indicating that even moderate-intensity noise can accelerate the presbycusis process. Even though the results obtained with the styrene exposure are less conclusive, the histopathological data show an enhancement of the presbycusis process. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Campo, Pierre; Venet, Thomas; Rumeau, Cecile; Thomas, Aurelie; Rieger, Benoit; Cour, Chantal; Cosnier, Frederic] Inst Natl Rech & Secur, F-54519 Vandoeuvre Les Nancy, France.
[Parietti-Winkler, Cecile] CHU Hop Cent, Serv ORL & Chirurg Cervico Faciale, Nancy, France.
[Parietti-Winkler, Cecile] Nancy Univ, Fac Med, INSERM, U954, Nancy, France.
RP Campo, P (reprint author), Inst Natl Rech & Secur, Rue Morvan,CS 60027, F-54519 Vandoeuvre Les Nancy, France.
EM Pierre.campo@inrs.fr
FU "Institut National de Recherche et de Securite" (INRS, France)
FX This work was supported by the "Institut National de Recherche et de
Securite" (INRS, France).
CR BORG E, 1982, HEARING RES, V8, P110
Campo P, 2003, Noise Health, V5, P1
GUNDERSEN HJG, 1988, APMIS, V96, P857
Hall RD, 1997, HEARING RES, V103, P75, DOI 10.1016/S0378-5955(96)00166-9
Henley C, 1989, HEARING RES, V43, P141
HENLEY CM, 1995, BRAIN RES REV, V20, P68, DOI 10.1016/0165-0173(94)00006-B
KEITHLEY EM, 1992, HEARING RES, V59, P171, DOI 10.1016/0378-5955(92)90113-2
Lataye R, 2000, HEARING RES, V139, P86, DOI 10.1016/S0378-5955(99)00174-4
LENOIR M, 1986, BASIC APPLIED ASPECT, P227
LENOIR M, 1987, ANAT EMBRYOL, V175, P477, DOI 10.1007/BF00309683
LONSBURYMARTIN BL, 1991, J ACOUST SOC AM, V89, P1749, DOI 10.1121/1.401009
McFadden SL, 1998, HEARING RES, V117, P81, DOI 10.1016/S0378-5955(98)00013-6
McFadden SL, 1997, HEARING RES, V111, P114, DOI 10.1016/S0378-5955(97)00099-3
Miller JM, 1998, SCAND AUDIOL, V27, P53
Mills J.H., 2001, NOISE INDUCED HEARIN, P497
MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7
Oeken J, 2000, ACTA OTO-LARYNGOL, V120, P396
Pouyatos B, 2002, HEARING RES, V165, P156, DOI 10.1016/S0378-5955(02)00298-8
ROSENHALL U, 1990, EAR HEARING, V11, P257, DOI 10.1097/00003446-199008000-00002
ROTH B, 1992, ANAT EMBRYOL, V185, P559, DOI 10.1007/BF00185615
Rybalko N, 2001, HEARING RES, V155, P32, DOI 10.1016/S0378-5955(01)00245-3
SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1
SUN JC, 1994, LARYNGOSCOPE, V104, P1251
Venet T, 2011, TOXICOL SCI, V119, P146, DOI 10.1093/toxsci/kfq312
Whitlon DS, 1999, HEARING RES, V137, P43, DOI 10.1016/S0378-5955(99)00136-7
OFF J EUR UNION L, V42
OFF J EUR UNION L, V358
NR 27
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2011
VL 280
IS 1-2
BP 122
EP 132
DI 10.1016/j.heares.2011.04.016
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 834XG
UT WOS:000295997200013
PM 21616132
ER
PT J
AU Jones, TA
Jones, SM
Vijayakumar, S
Brugeaud, A
Bothwell, M
Chabbert, C
AF Jones, Timothy A.
Jones, Sherri M.
Vijayakumar, Sarath
Brugeaud, Aurore
Bothwell, Marcella
Chabbert, Christian
TI The adequate stimulus for mammalian linear vestibular evoked potentials
(VsEPs)
SO HEARING RESEARCH
LA English
DT Article
ID INNERVATING SEMICIRCULAR CANALS; GRAVITY RECEPTOR FUNCTION;
SQUIRREL-MONKEY; DISCHARGE PROPERTIES; CRISTAE-AMPULLARES; OTOLITH
ORGANS; MOUSE STRAINS; RESPONSES; ACCELERATION; PHYSIOLOGY
AB Short latency linear vestibular sensory evoked potentials (VsEPs) provide a means to objectively and directly assess the function of gravity receptors in mammals and birds. The importance of this functional measure is illustrated by its use in studies of the genetic basis of vestibular function and disease. Head motion is the stimulus for the VsEP. In the bird, it has been established that neurons mediating the linear VsEP respond collectively to the rate of change in linear acceleration during head movement (i.e. jerk) rather than peak acceleration. The kinematic element of motion responsible for triggering mammalian VsEPs has not been characterized in detail. Here we tested the hypothesis that jerk is the kinematic component of head motion responsible for VsEP characteristics. VsEP amplitudes and latencies changed systematically when peak acceleration level was held constant and jerk level was varied from similar to 0.9-4.6 g/ms. In contrast, responses remained relatively constant when kinematic jerk was held constant and peak acceleration was varied from similar to 0.9 to 5.5 g in mice and similar to 0.44 to 2.75 g in rats. Thus the mammalian VsEP depends on jerk levels and not peak acceleration. We conclude that kinematic jerk is the adequate stimulus for the mammalian VsEP. This sheds light on the behavior of neurons generating the response. The results also provide the basis for standardizing the reporting of stimulus levels, which is key to ensuring that response characteristics reported in the literature by many laboratories can be effectively compared and interpreted. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Jones, Timothy A.; Jones, Sherri M.; Vijayakumar, Sarath; Brugeaud, Aurore] E Carolina Univ, Dept Commun Sci & Disorders, Greenville, NC 27858 USA.
[Brugeaud, Aurore; Chabbert, Christian] INSERM, Inst Neurosci Montpellier, U1051, F-34090 Montpellier, France.
[Bothwell, Marcella] Univ Missouri, Dept Otolaryngol HNS, Columbia, MO 65212 USA.
[Chabbert, Christian] Univ Calif San Diego, San Diego, CA 92123 USA.
[Chabbert, Christian] Rady Childrens Hosp San Diego, San Diego, CA 92123 USA.
RP Jones, TA (reprint author), E Carolina Univ, Dept Commun Sci & Disorders, Mail Stop 668, Greenville, NC 27858 USA.
EM jonesti@ecu.edu; jonessh@ecu.edu; vijayakumars@ecu.edu;
aurore.brugeaud@sensorion-pharma.com; mbothwell@rchsd.org;
christian.chabbert@inserm.fr
FU NASA Life Sciences Research [NAG5-4607]; NASA RPG: Human Health From
Earth to Space [NIH R01-DC006443]; The French Space Agency [NIH R01
DC04477]; French Ministry of Research and New Technologies
FX This work was supported by NASA Life Sciences Research: NAG5-4607 (taj,
smj); NASA RPG: Human Health From Earth to Space (taj), NIH R01-DC006443
(smj); NIH R01 DC04477 (smj, taj), The French Space Agency and the
French Ministry of Research and New Technologies (ab, cc).
CR Alagramam KN, 2005, JARO-J ASSOC RES OTO, V6, P106, DOI 10.1007/s10162-005-5032-3
ANDERSON JH, 1978, EXP BRAIN RES, V32, P491
BOHMER A, 1995, AM J OTOL, V16, P498
BOTHWELL M, 1997, AM ACAD OTOL HEAD NE
Correia M. J., 1981, VESTIBULAR SYSTEM FU, P280
DICKMAN JD, 1989, J NEUROPHYSIOL, V62, P1090
FERNANDE.C, 1971, J NEUROPHYSIOL, V34, P661
FERNANDE.C, 1972, J NEUROPHYSIOL, V35, P978
FERNANDEZ C, 1976, J NEUROPHYSIOL, V39, P996
GOLDBERG JM, 1990, HEARING RES, V49, P89, DOI 10.1016/0378-5955(90)90097-9
GOLDBERG JM, 1990, J NEUROPHYSIOL, V63, P781
GOLDBERG JM, 1971, J NEUROPHYSIOL, V34, P676
Jones SM, 1997, J COMP PHYSIOL A, V180, P631, DOI 10.1007/s003590050079
Jones SM, 1998, HEARING RES, V121, P161, DOI 10.1016/S0378-5955(98)00074-4
Jones SM, 1999, HEARING RES, V135, P56, DOI 10.1016/S0378-5955(99)00090-8
Jones SM, 2002, J NEUROSCI METH, V118, P23, DOI 10.1016/S0165-0270(02)00125-5
Jones SM, 2005, JARO-J ASSOC RES OTO, V6, P297, DOI 10.1007/s10162-005-0009-1
Jones SM, 2004, HEARING RES, V191, P34, DOI 10.1016/j.heares.2004.01.008
Jones SM, 2008, BALANCE FUNCTION ASS, P379
Jones SM, 2006, BRAIN RES, V1091, P40, DOI 10.1016/j.brainres.2006.01.066
JONES TA, 1992, ELECTROEN CLIN NEURO, V82, P377, DOI 10.1016/0013-4694(92)90007-5
Jones TA, 1998, J VESTIBUL RES-EQUIL, V8, P253
Jones TA, 2007, AUDITORY EVOKED POTE, P622
Jones TA, 2008, JARO-J ASSOC RES OTO, V9, P490, DOI 10.1007/s10162-008-0132-0
JONES TA, 1989, AM J OTOLARYNG, V10, P327, DOI 10.1016/0196-0709(89)90108-7
Jones TA, 1999, HEARING RES, V136, P75, DOI 10.1016/S0378-5955(99)00110-0
LANGE ME, 1988, THESIS U NEBRASKA
LANGE ME, 1989, ASGSB B, V3, P31
LANGE ME, 1990, ASS RES OTOL, V343
Lewis E R, 1994, J Vestib Res, V4, P189
LYSAKOWSKI A, 1995, J NEUROPHYSIOL, V73, P1270
MYERS SF, 1991, BRAIN RES, V543, P36, DOI 10.1016/0006-8993(91)91045-3
NAZARETH AM, 1991, ASGSB B, V5, P40
Nazareth AM, 1998, J VESTIBUL RES-EQUIL, V8, P233
NAZARETH AM, 1991, THESIS U NEBRASKA ME
Plotnik M, 1997, EVOKED POTENTIAL, V104, P522, DOI 10.1016/S0168-5597(97)00062-2
Rabbitt Richard D., 2004, VVolume 19, P153
WEISLEDER P, 1990, ELECTROEN CLIN NEURO, V76, P362, DOI 10.1016/0013-4694(90)90037-K
NR 38
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2011
VL 280
IS 1-2
BP 133
EP 140
DI 10.1016/j.heares.2011.05.005
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 834XG
UT WOS:000295997200014
PM 21664446
ER
PT J
AU Ohlemiller, KK
Rice, MER
Rosen, AD
Montgomery, SC
Gagnon, PM
AF Ohlemiller, Kevin K.
Rice, Mary E. Rybak
Rosen, Allyson D.
Montgomery, Scott C.
Gagnon, Patricia M.
TI Protection by low-dose kanamycin against noise-induced hearing loss in
mice: Dependence on dosing regimen and genetic background
SO HEARING RESEARCH
LA English
DT Article
ID ISCHEMIC TOLERANCE; ACOUSTIC TRAUMA; MOUSE COCHLEA; INBRED STRAINS;
C57BL/6J MICE; LATERAL WALL; CBA/J MOUSE; OTOTOXICITY; AGE; INJURY
AB We recently demonstrated that sub-chronic low-dose kanamycin (KM, 300 mg/kg sc, 2 x/day, 10 days) dramatically reduces permanent noise-induced hearing loss (NIHL) and hair cell loss in 1 month old CBA/J mice (Fernandez et al., 2010, J. Assoc. Res. Otolaryngol. 11, 235-244). Protection by KM remained for at least 48 h after the last dose, and appeared to involve a cumulative effect of multiple doses as part of a preconditioning process. The first month of life lies within the early 'sensitive period' for both cochlear noise and ototoxic injury in mice, and CBA/J mice appear exquisitely vulnerable to noise during this period (Ohlemiller et al., 2011: Hearing Res. 272, 13-20). From our initial data, we could not rule out 1) that less rigorous treatment protocols than the intensive one we applied may be equally-or more-protective; 2) that protection by KM is tightly linked to processes unique to the sensitive period for noise or ototoxins; or 3) that protection by KM is exclusive to CBA/J mice. The present experiments address these questions by varying the number and timing of fixed doses (300 mg/kg sc) of KM, as well as the age at treatment in CBA/J mice. We also tested for protection in young C57BL/6J (B6) mice. We find that nearly complete protection against at least 2 h of intense (110 dB SPL) broadband noise can be observed in CBA/J mice at least for ages up to 1 year. Reducing dosing frequency to as little as once every other day (a four-fold decrease in dosing frequency) appeared as protective as twice per day. However, reducing the number of doses to just 1 or 2, followed by noise 24 or 48 h later greatly reduced protection. Notably, hearing thresholds and hair cells in young B6 mice appeared completely unprotected by the same regimen that dramatically protects CBA/J mice. We conclude that protective effects of KM against NIHL in CBA/J mice can be engaged by a wide range of dosing regimens, and are not exclusive to the sensitive period for noise or ototoxins. While we cannot presently judge the generality of protection across genetic backgrounds, it appears not to be universal, since B6 showed no benefit. Classical genetic approaches based on CBA/J x B6 crosses may reveal loci critical to protective cascades engaged by kanamycin and perhaps other preconditioners. Their human analogs may partly determine who is at elevated risk of acquired hearing loss. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Ohlemiller, Kevin K.; Gagnon, Patricia M.] Washington Univ, Sch Med, Fay & Carl Simons Ctr Biol Hearing & Deafness, Dept Otolaryngol, St Louis, MO 63110 USA.
[Ohlemiller, Kevin K.; Rice, Mary E. Rybak; Rosen, Allyson D.] Washington Univ, Sch Med, Program Audiol & Commun Sci, St Louis, MO 63130 USA.
[Montgomery, Scott C.] St Louis Univ, Sch Med, St Louis, MO 63103 USA.
RP Ohlemiller, KK (reprint author), Washington Univ, Sch Med, Fay & Carl Simons Ctr Biol Hearing & Deafness, Dept Otolaryngol, 660 S Euclid, St Louis, MO 63110 USA.
EM kohlemiller@wustl.edu
FU WUSM Department of Otolaryngology [P30 DC004665, P30 NS057105, R01
DC03454, R01 DC08321, TL1 RR024995, T35 DC008765]
FX Supported by P30 DC004665 (R.Chole), P30 NS057105 (D. Holtzman), R01
DC03454 (KKO), R01 DC08321 (KKO), TL1 RR024995, T35 DC008765, WUSM
Department of Otolaryngology.
CR BERNARD PA, 1981, LARYNGOSCOPE, V91, P1985
Canlon B, 2007, HEARING RES, V226, P1, DOI 10.1016/j.heares.2007.02.006
Chance MR, 2010, HUM MOL GENET, V19, P1515, DOI 10.1093/hmg/ddq025
CHEN CS, 1983, ARCH OTO-RHINO-LARYN, V238, P217, DOI 10.1007/BF00453932
Chen F, 2008, ABSTR ASSN RES OTOLA, V31, P50
Davis RR, 2001, HEARING RES, V155, P82, DOI 10.1016/S0378-5955(01)00250-7
Dirnagl U, 2003, TRENDS NEUROSCI, V26, P248, DOI 10.1016/S0166-2236(03)00071-7
Eisen A, 2004, ATHEROSCLEROSIS, V172, P201, DOI 10.1016/S0021-9150(03)00238-7
Erway LC, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P56
Fernandez EA, 2010, JARO-J ASSOC RES OTO, V11, P235, DOI 10.1007/s10162-009-0204-9
FOX RR, 1997, HDB GENETICALLY STAN, P95467
Gagnon PM, 2007, HEARING RES, V226, P79, DOI 10.1016/j.heares.2006.09.006
Gidday JM, 2006, NAT REV NEUROSCI, V7, P437, DOI 10.1038/nrn1927
HENLEY CM, 1995, BRAIN RES REV, V20, P68, DOI 10.1016/0165-0173(94)00006-B
HENRY KR, 1981, ARCH OTOLARYNGOL, V107, P92
HENRY KR, 1982, BEHAV GENET, V12, P563, DOI 10.1007/BF01070410
HENRY KR, 1982, HEARING RES, V8, P285, DOI 10.1016/0378-5955(82)90020-X
Hirose K, 2003, JARO, V4, P339, DOI 10.1007/s10162-002-3036-4
Jiang HY, 2005, J NEUROSCI RES, V79, P644, DOI 10.1002/jnr.20392
Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X
Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009
Lehotsky J, 2009, ANAT REC, V292, P2002, DOI 10.1002/ar.20970
Li H S, 1992, Scand Audiol Suppl, V36, P1
LI HS, 1992, ACTA OTO-LARYNGOL, V112, P956, DOI 10.3109/00016489209137496
Li HZ, 2009, NOISE HEALTH, V11, P26, DOI 10.4103/1463-1741.45310
Matsunobu T, 2009, ACTA OTO-LARYNGOL, V129, P18, DOI 10.1080/00016480902933056
Muller M, 2005, HEARING RES, V202, P63, DOI 10.1016/j.heares.2004.08.011
Niu XZ, 2002, ADV OTO-RHINO-LARYNG, V59, P96
Ohlemiller KK, 2010, JARO-J ASSOC RES OTO, V11, P605, DOI 10.1007/s10162-010-0228-1
Ohlemiller KK, 2000, HEARING RES, V149, P239, DOI 10.1016/S0378-5955(00)00191-X
Ohlemiller KK, 2007, HEARING RES, V224, P34, DOI 10.1016/j.heares.2006.11.005
Ohlemiller KK, 2008, HEARING RES, V245, P5, DOI 10.1016/j.heares.2008.08.007
Ohlemiller KK, 2009, BRAIN RES, V1277, P70, DOI 10.1016/j.brainres.2009.02.079
Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017
Ohlemiller KK, 2011, HEARING RES, V272, P13, DOI 10.1016/j.heares.2010.11.006
Ou HC, 2000, HEARING RES, V145, P111, DOI 10.1016/S0378-5955(00)00081-2
Peppi M, 2011, J NEUROSCI, V31, P735, DOI 10.1523/JNEUROSCI.3955-10.2011
Pujol R, 1992, NOISE INDUCED HEARIN, P196
Ran RQ, 2005, DEV NEUROSCI-BASEL, V27, P87, DOI 10.1159/000085979
Rybak Leonard P, 2007, Curr Opin Otolaryngol Head Neck Surg, V15, P364, DOI 10.1097/MOO.0b013e3282eee452
SAUNDERS JC, 1982, ENVIRON HEALTH PERSP, V44, P63, DOI 10.2307/3429477
Sha SH, 2008, HEARING RES, V243, P87, DOI 10.1016/j.heares.2008.06.001
Shi XR, 2007, HEARING RES, V224, P1, DOI 10.1016/j.heares.2006.10.011
So H, 2008, JARO-J ASSOC RES OTO, V9, P290, DOI 10.1007/s10162-008-0126-y
Taleb M, 2009, CELL STRESS CHAPERON, V14, P427, DOI 10.1007/s12192-008-0097-2
Wang Y, 2002, HEARING RES, V165, P96, DOI 10.1016/S0378-5955(02)00289-7
Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028
Willott J. F., 1991, AGING AUDITORY SYSTE
Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3
Yamamoto H, 2009, J NEUROSCI RES, V87, P1832, DOI 10.1002/jnr.22018
Yoshida N, 2000, HEARING RES, V148, P213, DOI 10.1016/S0378-5955(00)00161-1
Yoshida N, 1999, J NEUROSCI, V19, P10116
Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9
NR 53
TC 3
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2011
VL 280
IS 1-2
BP 141
EP 147
DI 10.1016/j.heares.2011.05.007
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 834XG
UT WOS:000295997200015
PM 21645602
ER
PT J
AU Terakado, M
Kumagami, H
Takahashi, H
AF Terakado, Mariko
Kumagami, Hidetaka
Takahashi, Haruo
TI Distribution of glucocorticoid receptors and 11 beta-hydroxysteroid
dehydrogenase isoforms in the rat inner ear
SO HEARING RESEARCH
LA English
DT Article
ID CANAL DUCT EPITHELIUM; 11-BETA-HYDROXYSTEROID DEHYDROGENASE; STRIA
VASCULARIS; SODIUM-TRANSPORT; LEYDIG-CELLS; COCHLEA; DEXAMETHASONE;
LOCALIZATION; NA,K-ATPASE; ABSENCE
AB 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) is an enzyme complex responsible for the conversion of hormonally active cortisol to inactive cortisone, and two isoforms of the enzyme (11 beta-HSD1 and 11 beta-HSD2) have been cloned and characterized. An immunohistochemical study was performed to determine the precise distribution of glucocorticoid receptors (GRs) and the isoforms of 11 beta-HSD in the rat (postnatal day 1, 4, 10, and adult). lmmunoreactivity of GRs was detected in the stria vascularis (SV), the outer hair cells (OHCs), the inner hair cells (IHCs), the spiral ligament (SLig), the spiral limbus (SLib), the spiral ganglion cells (SGCs). Reissner's membrane (RM), the cochlear nerve (CN), the vestibular hair cells (VHCs), the dark cells (DCs), and the vestibular nerve (VN) in the rats. lmmunostaining of 11 beta-HSD1 was observed in almost all the tissues in the cochlea and the vestibule except SLig, SLib, SGCs, CN, VHCs, and VN during all developmental stages, whereas, immunoreactivity of 11 beta-HSD2 was not detected in any of the inner ear tissues. A polymerase chain reaction (PCR) study was also performed on GRs, 11 beta-HSD1, and 11 beta-HSD2 in the OC, SV and vestibule of the postnatal rats, and revealed that mRNAs were detected in all those and tissues in all the developmental days of postnatal days 1, 4, and 10. This data indicates that expression of GRs and 11 beta-HSD isoforms in the inner ear is tissue and age-specific, and that different local steroid regulation by GRs and the isoforms of 11 beta-HSD is present in each part of the inner ear. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Terakado, Mariko; Kumagami, Hidetaka; Takahashi, Haruo] Nagasaki Univ, Grad Sch Biomed Sci, Dept Otolaryngol Head & Neck Surg, Nagasaki 8528501, Japan.
RP Terakado, M (reprint author), Nagasaki Univ, Grad Sch Biomed Sci, Dept Otolaryngol Head & Neck Surg, Sakamoto 1-7-1, Nagasaki 8528501, Japan.
EM terakado@nagasaki-u.ac.jp
CR Brewer JA, 2002, J IMMUNOL, V169, P1309
CURTIS LM, 1993, EUR ARCH OTO-RHINO-L, V250, P265
Derfoul A, 1998, J BIOL CHEM, V273, P20702, DOI 10.1074/jbc.273.33.20702
Draper N, 2005, J ENDOCRINOL, V186, P251, DOI 10.1677/joe.1.06019
Embark HM, 2003, PFLUG ARCH EUR J PHY, V445, P601, DOI 10.1007/s00424-002-0982-y
Erichsen S, 1998, HEARING RES, V124, P146, DOI 10.1016/S0378-5955(98)00117-8
Falkenstein E, 2000, PHARMACOL REV, V52, P513
Ge RS, 2005, ENDOCRINOLOGY, V146, P2657, DOI 10.1210/en.2005-0046
Haake SM, 2009, HEARING RES, V255, P22, DOI 10.1016/j.heares.2009.05.003
Hargunani CA, 2006, OTOL NEUROTOL, V27, P564, DOI 10.1097/00129492-200606000-00021
Hatou S, 2009, CURR EYE RES, V34, P347, DOI 10.1080/02713680902829624
Honda Y, 2008, J STEROID BIOCHEM, V108, P91, DOI 10.1016/j.jsbm6.2007.07.003
Hu GX, 2008, STEROIDS, V73, P1018, DOI 10.1016/j.steroids.2007.12.020
Johnson LR, 2005, NEUROSCIENCE, V136, P289, DOI 10.1016/j.neuroscience.2005.06.050
KAWATA M, 2001, ARCH HISTOL CYTOL, V64, P53
Kim SH, 2009, AM J PHYSIOL-CELL PH, V296, pC544, DOI 10.1152/ajpcell.00338.2008
Lee JH, 2002, AUDIOL NEURO-OTOL, V7, P100, DOI 10.1159/000057657
Lohuis PJFM, 2000, HEARING RES, V143, P189, DOI 10.1016/S0378-5955(00)00043-5
LOHUIS PJFM, 1990, ACTA OTO-LARYNGOL, V110, P348, DOI 10.3109/00016489009107454
Lowenheim H, 1999, P NATL ACAD SCI USA, V96, P4084, DOI 10.1073/pnas.96.7.4084
Mazurek B, 2010, HEARING RES, V259, P55, DOI 10.1016/j.heares.2009.10.006
Meltser I, 2009, J NEUROTRAUM, V26, P1835, DOI 10.1089/neu.2008.0874
Mistrik P, 2009, CURR OPIN OTOLARYNGO, V17, P394, DOI 10.1097/MOO.0b013e328330366f
MOORE FL, 1995, RECEPTOR, V5, P21
Niu NF, 2009, J CLIN ENDOCR METAB, V94, P3072, DOI 10.1210/jc.2008-2109
Oppermann UCT, 1997, EUR J BIOCHEM, V249, P355, DOI 10.1111/j.1432-1033.1997.t01-1-00355.x
PITOVSKI DZ, 1993, BRAIN RES, V601, P273, DOI 10.1016/0006-8993(93)91720-D
Pondugula SR, 2006, PHYSIOL GENOMICS, V24, P114, DOI 10.1152/physiolgenomics.00006.2005
Pondugula SR, 2004, AM J PHYSIOL-RENAL, V286, pF1127, DOI 10.1152/ajprenal.00387.2003
Raddatz D, 1996, HEPATOLOGY, V24, P928
RAREY KE, 1989, ARCH OTOLARYNGOL, V115, P817
Rarey KE, 1996, OTOLARYNG HEAD NECK, V115, P38, DOI 10.1016/S0194-5998(96)70133-X
Sarabdjitsingh RA, 2009, BRAIN RES, V1249, P43, DOI 10.1016/j.brainres.2008.10.048
Seckl JR, 2004, CURR OPIN PHARMACOL, V4, P597, DOI 10.1016/j.coph.2004.09.001
Shimazaki T, 2002, ANN OTO RHINOL LARYN, V111, P1133
Tahera Y, 2006, ENDOCRINOLOGY, V147, P4430, DOI 10.1210/en.2006-0260
Tahera Y, 2007, NEUROBIOL DIS, V25, P189, DOI 10.1016/j.nbd.2006.09.004
Taura A, 2006, BRAIN RES, V1098, P33, DOI 10.1016/j.brainres.2006.04.090
Ten Cate Wouter-Jan F., 1994, American Journal of Physiology, V266, pE269
TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865
tenCate WJF, 1997, ACTA OTO-LARYNGOL, V117, P841
Terunuma T, 2001, HEARING RES, V151, P121, DOI 10.1016/S0378-5955(00)00218-5
ZUO J, 1995, HEARING RES, V87, P220, DOI 10.1016/0378-5955(95)00092-I
NR 43
TC 8
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2011
VL 280
IS 1-2
BP 148
EP 156
DI 10.1016/j.heares.2011.05.006
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 834XG
UT WOS:000295997200016
PM 21669268
ER
PT J
AU Luo, B
Wang, HT
Su, YY
Wu, SH
Chen, L
AF Luo, Bin
Wang, Hai-Tao
Su, Yan-Yan
Wu, Shu-Hui
Chen, Lin
TI Activation of presynaptic GABA(B) receptors modulates GABAergic and
glutamatergic inputs to the medial geniculate body
SO HEARING RESEARCH
LA English
DT Article
ID CENTRAL-NERVOUS-SYSTEM; RAT GLOBUS-PALLIDUS; INFERIOR COLLICULUS;
CORTICAL ACTIVATION; AUDITORY THALAMUS; COCHLEAR NUCLEUS; NEURONS;
INHIBITION; RESPONSES; LOCALIZATION
AB The medial geniculate body (MGB) receives ascending inputs from the inferior colliculus and descending inputs from the auditory cortex. In the present study, we intended to determine whether activation of presynaptic GABA(B) receptors modulates GABAergic and glutamatergic inputs to the MGB with whole-cell patch-clamp recordings in brain slices of the rat. To evoke a synaptic response, we electrically stimulated the ascending and descending inputs to MGB neurons with bipolar electrodes placed on the brachium of the inferior colliculus and the superior thalamic radiation. To isolate presynaptic mechanisms, we blocked the effects of postsynaptic GABA(B) receptors by filling recording electrodes with the internal solution containing cesium and QX-314. The activation of presynaptic GABA(B) receptors by exogenous agonist was shown to modulate synaptic inputs to the MGB as demonstrated by that (1) baclofen, a GABA(B) receptor agonist, reversibly suppressed both inhibitory postsynaptic currents (IPSCs) and excitatory postsynaptic currents (EPSCs) and this suppressive effect could be blocked by CGP35348, a GABA(B) receptor antagonist, (2) baclofen significantly increased the ratio of IPSCs or EPSCs elicited by paired-pulse stimulation, and (3) baclofen depressed EPSCs and IPSCs in response to repetitive stimulation. The activation of presynaptic GABA(B) receptors by endogenously released GABA was shown to modulate the synaptic transmission as demonstrated by that CGP55845, another GABA(B) receptor antagonist, increased the ratio of IPSCs to paired-pulse stimulation in young (P8-10) rats, although not in juvenile (P15-18) rats. Our study provides electrophysiological evidence for the presence of functional presynaptic GABA(B) receptors in the MGB and suggests an age-dependent role of these receptors in the synaptic transmission in this central auditory region. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Luo, Bin; Wang, Hai-Tao; Su, Yan-Yan; Chen, Lin] Univ Sci & Technol China, Auditory Res Lab, Sch Life Sci, Hefei 230027, Peoples R China.
[Luo, Bin; Wang, Hai-Tao; Su, Yan-Yan; Chen, Lin] Univ Sci & Technol China, Auditory Res Lab, Sch Life Sci, CAS Key Lab Brain Funct & Dis, Hefei 230027, Peoples R China.
[Wang, Hai-Tao] Hong Kong Polytech Univ, Dept Rehabil Sci, Hong Kong, Hong Kong, Peoples R China.
[Wu, Shu-Hui] Carleton Univ, Dept Neurosci, Ottawa, ON K1S 5B6, Canada.
RP Chen, L (reprint author), Univ Sci & Technol China, Auditory Res Lab, Sch Life Sci, Hefei 230027, Peoples R China.
EM linchen@ustc.edu.cn
RI Chen, Lin/N-8327-2013
OI Chen, Lin/0000-0002-5847-2989
FU National Basic Research Program of China [2011CB504506, 2007CB512306];
National Natural Science Foundation of China [30970977, 30730041]; CAS
[KSCX1-YW-R-36]
FX We thank Dr. Bin Hu and Mr. Lifeng Zhang for their constructive
suggestions and technical assistance. This work was supported by the
National Basic Research Program of China (Grants 2011CB504506 and
2007CB512306), the National Natural Science Foundation of China (Grants
30970977 and 30730041) and the CAS Knowledge Innovation Project (Grant
KSCX1-YW-R-36).
CR Arcelli P, 1997, BRAIN RES BULL, V42, P27, DOI 10.1016/S0361-9230(96)00107-4
Aroniadou-Anderjaska V, 2000, J NEUROPHYSIOL, V84, P1194
Bartlett EL, 1999, J NEUROPHYSIOL, V81, P1999
Bettler B, 2004, PHYSIOL REV, V84, P835, DOI 10.1152/physrev.00036.2003.
CASPARY DM, 1984, HEARING RES, V13, P113, DOI 10.1016/0378-5955(84)90102-3
Chen L, 2004, J COMP NEUROL, V474, P340, DOI 10.1002/cne.20143
CHU DCM, 1990, NEUROSCIENCE, V34, P341, DOI 10.1016/0306-4522(90)90144-S
Fritschy JM, 1999, EUR J NEUROSCI, V11, P761, DOI 10.1046/j.1460-9568.1999.00481.x
Fubara BM, 1996, J COMP NEUROL, V369, P83
He JF, 1997, J NEUROPHYSIOL, V77, P896
He JF, 2002, J NEUROPHYSIOL, V88, P1040, DOI 10.1152/jn00014.2002
Ikeda SR, 1996, NATURE, V380, P255, DOI 10.1038/380255a0
Jursky F, 1996, J NEUROCHEM, V67, P857
Kaneda K, 2005, J NEUROPHYSIOL, V94, P1104, DOI 10.1152/jn.00255.2005
Kaupmann K, 1997, NATURE, V386, P239, DOI 10.1038/386239a0
KUDO M, 1978, BRAIN RES, V155, P113, DOI 10.1016/0006-8993(78)90310-4
Kulik A, 2002, EUR J NEUROSCI, V15, P291, DOI 10.1046/j.0953-816x.2001.01855.x
Lei SB, 2003, J PHYSIOL-LONDON, V546, P439, DOI 10.1113/jphysiol.2002.034017
Lujan R, 2004, J COMP NEUROL, V475, P36, DOI 10.1002/cne.20160
Luscher C, 1997, NEURON, V19, P687, DOI 10.1016/S0896-6273(00)80381-5
Ma CL, 2002, NEUROSCIENCE, V114, P207, DOI 10.1016/S0306-4522(02)00130-6
Magnusson AK, 2008, NEURON, V59, P125, DOI 10.1016/j.neuron.2008.05.011
Margeta-Mitrovic M, 1999, J COMP NEUROL, V405, P299, DOI 10.1002/(SICI)1096-9861(19990315)405:3<299::AID-CNE2>3.0.CO;2-6
MINTZ IM, 1993, NEURON, V10, P889, DOI 10.1016/0896-6273(93)90204-5
MOLLER AR, 1986, HEARING RES, V24, P203, DOI 10.1016/0378-5955(86)90019-5
Paxinos G, 1986, RAT BRAIN STEREOTAXI, V2nd
Perez-Garci E, 2006, NEURON, V50, P603, DOI 10.1016/j.neuron.2006.04.019
Peruzzi D, 1997, J NEUROSCI, V17, P3766
Porter JT, 2004, J NEUROPHYSIOL, V92, P2762, DOI 10.1152/jn.00196.2004
REES A, 1983, HEARING RES, V10, P301, DOI 10.1016/0378-5955(83)90095-3
ROUILLER EM, 1985, NEUROSCI LETT, V53, P227, DOI 10.1016/0304-3940(85)90190-9
ROUILLER EM, 1991, HEARING RES, V56, P179, DOI 10.1016/0378-5955(91)90168-9
Smith PH, 2007, J NEUROPHYSIOL, V98, P681, DOI 10.1152/jn.00235.2007
Sun H, 2006, NEUROSCI LETT, V399, P151, DOI 10.1016/j.neulet.2006.01.049
SZCZEPANIAK WS, 1995, ANN OTO RHINOL LARYN, V104, P399
Szczepaniak WS, 1996, HEARING RES, V97, P46
Takahashi T, 1998, J NEUROSCI, V18, P3138
Takesian AE, 2010, J NEUROSCI, V30, P2716, DOI 10.1523/JNEUROSCI.3903-09.2010
Tang ZQ, 2009, J NEUROPHYSIOL, V102, P1672, DOI 10.1152/jn.00419.2009
Tennigkeit F, 1998, HEARING RES, V122, P18, DOI 10.1016/S0378-5955(98)00083-5
Thompson SE, 2006, NEUROSIGNALS, V15, P202, DOI 10.1159/000098515
Thomson AM, 2000, TRENDS NEUROSCI, V23, P305, DOI 10.1016/S0166-2236(00)01580-0
Vaughn MD, 1996, NEUROPHARMACOLOGY, V35, P1761, DOI 10.1016/S0028-3908(96)00143-8
Vigot R, 2006, NEURON, V50, P589, DOI 10.1016/j.neuron.2006.04.014
Winer JA, 1996, P NATL ACAD SCI USA, V93, P8005, DOI 10.1073/pnas.93.15.8005
Winer JA, 1996, P NATL ACAD SCI USA, V93, P3083, DOI 10.1073/pnas.93.7.3083
WINER JA, 1987, J COMP NEUROL, V257, P282, DOI 10.1002/cne.902570212
Wu LG, 1997, TRENDS NEUROSCI, V20, P204, DOI 10.1016/S0166-2236(96)01015-6
Wu SH, 2004, J NEUROSCI, V24, P4625, DOI 10.1523/JNEUROSCI.0318-04.2004
Zhang HM, 2003, J NEUROPHYSIOL, V90, P477, DOI 10.1152/jn.01084.2002
Zhang YF, 1997, J NEUROPHYSIOL, V78, P3489
Zhang Z, 2008, J NEUROPHYSIOL, V99, P2938, DOI 10.1152/jn.00002.2008
NR 52
TC 5
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2011
VL 280
IS 1-2
BP 157
EP 165
DI 10.1016/j.heares.2011.05.018
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 834XG
UT WOS:000295997200017
PM 21664264
ER
PT J
AU Westen, AA
Dekker, DMT
Briaire, JJ
Frijns, JHM
AF Westen, A. A.
Dekker, D. M. T.
Briaire, J. J.
Frijns, J. H. M.
TI Stimulus level effects on neural excitation and eCAP amplitude
SO HEARING RESEARCH
LA English
DT Article
ID NERVE ACTION-POTENTIALS; COCHLEAR IMPLANT USERS; ELECTRICAL-STIMULATION;
RESPONSES; PATTERNS; MODELS; CAT
AB The common assumption that the electrically evoked compound action potential (eCAP) has a linear relationship with the number of excited nerve fibres is derived from the acoustical unitary response concept. This study tests the validity of this hypothesis for electrical stimulation. Five guinea pigs were implanted with the tip of a human HiFocus electrode. eCAPs were measured with the forward masking paradigm, using anodic- and cathodic-leading biphasic current pulses and the inter-pulse interval was varied. Masker and probe amplitudes were varied either individually or simultaneously. Surprisingly, at high levels decreasing eCAP amplitudes were measured with increasing stimulus current. In search for an explanation, the experimental conditions were implemented in our 3D computational model of the implanted guinea pig cochlea to perform a functional comparison. In the final experiment, with fixed inter-pulse interval (IPI) and anodic-leading pulses, increasing stimulus currents showed growing numbers of excited nerve fibres and decreasing eCAP amplitudes at high levels, again. While simulating the relative contribution of single fibres to the overall eCAP, an explanation for this could be found in a waveform change in the modelled single fibre action potentials at high levels. We conclude that highly stimulated nerve fibres have another contribution to the eCAP response than lower stimulated fibres, which leads to a reduction of the eCAP amplitude at high levels. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Westen, A. A.; Dekker, D. M. T.; Briaire, J. J.; Frijns, J. H. M.] Leiden Univ, Med Ctr, ENT Dept, NL-2300 RC Leiden, Netherlands.
RP Frijns, JHM (reprint author), Leiden Univ, Med Ctr, ENT Dept, POB 9600, NL-2300 RC Leiden, Netherlands.
EM J.H.M.Frijns@LUMC.nl
RI Briaire, Jeroen/A-7972-2008
OI Briaire, Jeroen/0000-0003-4302-817X
FU Heinsius-Houbolt fund
FX This research was financially supported by grants from the
Heinsius-Houbolt fund. We would like to thank Ruud van den Hooff for his
contributions to this study.
CR Abbas PJ, 2004, AUDIOL NEURO-OTOL, V9, P203, DOI 10.1159/000078390
*ADV BION CORP, 2003, HIRESOLUTION BION EA, P65
BREDBERG G, 1968, ACTA OTOLARYNGO S236
Briaire JJ, 2005, HEARING RES, V205, P143, DOI 10.1016/j.heares.2005.03.020
Briaire JJ, 2000, HEARING RES, V148, P18, DOI 10.1016/S0378-5955(00)00104-0
Brown CJ, 2000, EAR HEARING, V21, P151, DOI 10.1097/00003446-200004000-00009
BROWN CJ, 1990, J ACOUST SOC AM, V88, P2205, DOI 10.1121/1.400117
BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716
BROWN MC, 1994, J NEUROPHYSIOL, V71, P1826
Cafarelli Dees D, 2005, Audiol Neurootol, V10, P105, DOI 10.1159/000083366
Eisen MD, 2004, EAR HEARING, V25, P528, DOI 10.1097/00003446-200412000-00002
FERNANDEZ C, 1952, J ACOUST SOC AM, V24, P519
Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012
FRIJNS JHM, 1994, J MED ENG TECHNOL, V18, P54, DOI 10.3109/03091909409030229
Frijns JHM, 2009, ACTA OTO-LARYNGOL, V129, P433, DOI 10.1080/00016480802610218
FRIJNS JHM, 1995, HEARING RES, V87, P170, DOI 10.1016/0378-5955(95)00090-Q
Frijns JHM, 2003, ACTA OTO-LARYNGOL, V123, P138, DOI 10.1080/0036554021000028126
FRIJNS JHM, 1994, IEEE T BIO-MED ENG, V41, P556, DOI 10.1109/10.293243
Frijns JHM, 2002, EAR HEARING, V23, P184, DOI 10.1097/00003446-200206000-00003
GOLDSTEIN MH, 1958, J ACOUST SOC AM, V30, P107, DOI 10.1121/1.1909497
Gordon KA, 2004, EAR HEARING, V25, P447, DOI 10.1097/01.aud.0000146178.84065.b3
Haenggeli A, 1998, AUDIOLOGY, V37, P353
Klop WMC, 2004, ACTA OTO-LARYNGOL, V124, P137, DOI 10.1080/00016480310016901
LAI WK, 2004, NRT COOKBOOK VERSION
Mason S, 2004, INT J AUDIOL, V43, pS33
Matsuoka AJ, 2001, IEEE T BIO-MED ENG, V48, P416, DOI 10.1109/10.915706
Miller CA, 2004, HEARING RES, V198, P75, DOI 10.1016/j.heares.2004.07.005
Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X
PATRICK J, 2005, 10 S COCHL IMPL CHIL, P49
Rubinstein JT, 2004, INT J AUDIOL, V43, pS3
SCHOONHOVEN R, 1991, CRIT REV BIOMED ENG, V19, P47
NR 31
TC 1
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2011
VL 280
IS 1-2
BP 166
EP 176
DI 10.1016/j.heares.2011.05.014
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 834XG
UT WOS:000295997200018
PM 21664959
ER
PT J
AU Jurgens, T
Kollmeier, B
Brand, T
Ewert, SD
AF Juergens, Tim
Kollmeier, Birger
Brand, Thomas
Ewert, Stephan D.
TI Assessment of auditory nonlinearity for listeners with different hearing
losses using temporal masking and categorical loudness scaling
SO HEARING RESEARCH
LA English
DT Article
ID MEMBRANE RESPONSE FUNCTIONS; IMPAIRED LISTENERS; COMPRESSION;
PERCEPTION; MODEL; FREQUENCY; THRESHOLD
AB A dysfunction or loss of outer hair cells (OHC) and inner hair cells (IHC), assumed to be present in sensorineural hearing-impaired listeners, affects the processing of sound both at and above the listeners' hearing threshold. A loss of OHC may be responsible for a reduction of cochlear gain, apparent in the input/output function of the basilar membrane and steeper-than-normal growth of loudness with level (recruitment). IHC loss is typically assumed to cause a level-independent loss of sensitivity. In the current study, parameters reflecting individual auditory processing were estimated using two psychoacoustic measurement techniques. Hearing loss presumably attributable to IHC damage and low-level (cochlear) gain were estimated using temporal masking curves (TMC). Hearing loss attributable to OHC (HLOHC) was estimated using adaptive categorical loudness scaling (ACALOS) and by fitting a loudness model to measured loudness functions. In a group of listeners with thresholds ranging from normal to mild-to-moderately impaired, the loss in low-level gain derived from TMC was found to be equivalent with HLOHC estimates inferred from ACALOS. Furthermore, HLOHC estimates obtained using both measurement techniques were highly consistent. Overall, the two methods provide consistent measures of auditory nonlinearity in individual listeners, with ACALOS offering better time efficiency. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Juergens, Tim; Kollmeier, Birger; Brand, Thomas; Ewert, Stephan D.] Carl von Ossietzky Univ Oldenburg, D-26111 Oldenburg, Germany.
RP Jurgens, T (reprint author), Carl von Ossietzky Univ Oldenburg, D-26111 Oldenburg, Germany.
EM tim.juergens@uni-oldenburg.de
FU Deutsche Forschungsgemeinschaft (DFG) [SFB TRR 31]; BMBF
FX The authors would like to thank Muge Kaya and Kerstin Sommer from
Horzentrum Oldenburg and Angela Josupeit, who performed the
measurements. Special thanks go to Christopher Plack, Magdalena
Wojtczak, and one anonymous reviewer for many helpful comments on
earlier versions of the manuscript, for very fruitful discussions, and
valuable suggestions. We are grateful to Mani Swaminathan and Paul
Nelson for proofreading. This study was supported by the Deutsche
Forschungsgemeinschaft (DFG, SFB TRR 31 "The active auditory system")
and the BMBF project "Model-based hearing aids".
CR ALLEN JB, 1990, J ACOUST SOC AM, V88, P745, DOI 10.1121/1.399778
Al-Salim SC, 2010, EAR HEARING, V31, P567, DOI 10.1097/AUD.0b013e3181da4d15
[Anonymous], 2006, 16832 ISO
Anweiler AK, 2006, J ACOUST SOC AM, V119, P2919, DOI 10.1121/1.2184224
Appell J., 2002, THESIS CARLVONOSSIET
Brand T, 2002, J ACOUST SOC AM, V112, P1597, DOI 10.1121/1.1502902
Brand T, 2001, AUDIOLOGY, V40, P92
Chalupper J, 2002, ACTA ACUST UNITED AC, V88, P378
Derleth R.-P., 1999, THESIS CARLVONOSSIET
Derleth RP, 2001, HEARING RES, V159, P132, DOI 10.1016/S0378-5955(01)00322-7
Elberling C, 1999, J Am Acad Audiol, V10, P248
Flannery B. P., 1992, NUMERICAL RECIPES C
FOWLER EP, 1950, LARYNGOSCOPE, V60, P680
GLASBERG BR, 1992, HEARING RES, V64, P81, DOI 10.1016/0378-5955(92)90170-R
HELLMAN RP, 1961, J ACOUST SOC AM, V33, P687, DOI 10.1121/1.1908764
IEC 60645-1, 2002, 606451 IEC STAND INT
Jepsen ML, 2011, J ACOUST SOC AM, V129, P262, DOI 10.1121/1.3518768
Jurgens T, 2009, J ACOUST SOC AM, V126, P2635, DOI 10.1121/1.3224721
Kiessling J., 1993, AUDIOL AKUST, V32, P100
Kollmeier B., 1999, PSYCHOPHYSICS PHYSL, P211
Kollmeier B., 1997, HORFLACHENSKALIERUNG
Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009
Launer S., 1995, THESIS CARLVONOSSIET
Launer S, 1997, MODELING SENSORINEURAL HEARING LOSS, P175
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
Lopez-Poveda EA, 2005, HEARING RES, V205, P172, DOI 10.1016/j.heares.2005.03.015
Lopez-Poveda EA, 2008, J ACOUST SOC AM, V123, P1544, DOI 10.1121/1.2835418
MARQUARDT DW, 1963, J SOC IND APPL MATH, V11, P431
Mauermann M, 2004, J ACOUST SOC AM, V116, P1066, DOI 10.1121/1.1760106
Meddis R., 2010, 15 INT S HEAR SAL SP, P631
Merchan M. A., 2009, AUDIOL MED, V7, P22
Moore B., 1998, COCHLEAR HEARING LOS
Moore BCJ, 1997, AUDIT NEUROSCI, V3, P289
Moore BCJ, 2004, HEARING RES, V188, P70, DOI 10.1016/S0378-5955(03)00347-2
Moore BCJ, 1999, J ACOUST SOC AM, V106, P2761, DOI 10.1121/1.428133
Nelson DA, 2001, J ACOUST SOC AM, V110, P2045, DOI 10.1121/1.1404439
Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3666, DOI 10.1121/1.418327
Plack CJ, 2004, J ACOUST SOC AM, V115, P1684, DOI 10.1121/1.1675812
Plack C.J., 2010, BEHAV MEASURE COCHLE
Rohdenburg T., 2008, P IEEE INT C AC SPEE, P2449
Rosengard P.S., 2005, J ACOUST SOC AM, V117, P3028
Sachs L, 1999, ANGEW STAT
Steinberg JC, 1937, J ACOUST SOC AM, V9, P11, DOI 10.1121/1.1915905
STEVENS SS, 1957, PSYCHOL REV, V64, P153, DOI 10.1037/h0046162
Wojtczak M, 2009, J ACOUST SOC AM, V125, P270, DOI 10.1121/1.3023063
Wojtczak M, 2010, J ACOUST SOC AM, V128, P247, DOI 10.1121/1.3436566
Yasin I, 2003, J ACOUST SOC AM, V114, P322, DOI 10.1121/1.1579003
ZWICKER E, 1977, J ACOUST SOC AM, V62, P675, DOI 10.1121/1.381580
NR 48
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2011
VL 280
IS 1-2
BP 177
EP 191
DI 10.1016/j.heares.2011.05.016
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 834XG
UT WOS:000295997200019
PM 21669269
ER
PT J
AU Heng, J
Cantarero, G
Elhilali, M
Limb, CJ
AF Heng, Joseph
Cantarero, Gabriela
Elhilali, Mounya
Limb, Charles J.
TI Impaired perception of temporal fine structure and musical timbre in
cochlear implant users
SO HEARING RESEARCH
LA English
DT Article
ID CONDITIONING PULSE TRAINS; AUDITORY-NERVE; SPEECH-PERCEPTION; PITCH
PERCEPTION; STRUCTURE CUES; ENVELOPE; STIMULATION; FREQUENCY; HEARING;
INFORMATION
AB Cochlear implant (CI) users demonstrate severe limitations in perceiving musical timbre, a psychoacoustic feature of sound responsible for 'tone color' and one's ability to identify a musical instrument. The reasons for this limitation remain poorly understood. In this study, we sought to examine the relative contributions of temporal envelope and fine structure for timbre judgments, in light of the fact that speech processing strategies employed by CI systems typically employ envelope extraction algorithms. We synthesized "instrumental chimeras" that systematically combined variable amounts of envelope and fine structure in 25% increments from two different source instruments with either sustained or percussive envelopes. CI users and normal hearing (NH) subjects were presented with 150 chimeras and asked to determine which instrument the chimera more closely resembled in a single-interval two-alternative forced choice task. By combining instruments with similar and dissimilar envelopes, we controlled the valence of envelope for timbre identification and compensated for envelope reconstruction from fine structure information. Our results show that NH subjects utilize envelope and fine structure interchangeably, whereas CI subjects demonstrate overwhelming reliance on temporal envelope. When chimeras were created from dissimilar envelope instrument pairs. NH subjects utilized a combination of envelope (p = 0.008) and fine structure information (p = 0.009) to make timbre judgments. In contrast, CI users utilized envelope information almost exclusively to make timbre judgments (p < 0.001) and ignored fine structure information (p = 0.908). Interestingly, when the value of envelope as a cue was reduced, both NH subjects and CI users utilized fine structure information to make timbre judgments (p < 0.001). although the effect was quite weak in CI users. Our findings confirm that impairments in fine structure processing underlie poor perception of musical timbre in CI users. (c) 2011 Elsevier By. All rights reserved.
C1 [Heng, Joseph; Cantarero, Gabriela; Limb, Charles J.] Johns Hopkins Univ Hosp, Dept Otolaryngol Head & Neck Surg, Baltimore, MD 21287 USA.
[Elhilali, Mounya] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA.
RP Limb, CJ (reprint author), Johns Hopkins Univ Hosp, Dept Otolaryngol Head & Neck Surg, Baltimore, MD 21287 USA.
EM climb@jhmi.edu
RI Elhilali, Mounya/A-3396-2010
OI Elhilali, Mounya/0000-0003-2597-738X
CR Ansi PT, 1973, PSYCHOACOUSTICAL TER
Caclin A, 2006, J COGNITIVE NEUROSCI, V18, P1959, DOI 10.1162/jocn.2006.18.12.1959
DUGUNDJI J, 1958, IRE T INFORM THEOR, V4, P53, DOI 10.1109/TIT.1958.1057435
Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538
Gfeller Kate, 2002, Cochlear Implants Int, V3, P29, DOI 10.1002/cii.50
Gfeller K, 2000, J Am Acad Audiol, V11, P390
Gfeller Kate, 2002, Annals of Otology Rhinology and Laryngology, V111, P349
Ghitza O, 2001, J ACOUST SOC AM, V110, P1628, DOI 10.1121/1.1396325
Gilbert G, 2006, J ACOUST SOC AM, V119, P2438, DOI 10.1121/1.2173522
GREY JM, 1977, J ACOUST SOC AM, V61, P1270, DOI 10.1121/1.381428
Gunawan D, 2008, J ACOUST SOC AM, V123, P500, DOI 10.1121/1.2817339
Hong RS, 2003, J ACOUST SOC AM, V114, P3327, DOI 10.1121/1.1623785
Hong RS, 2006, OTOL NEUROTOL, V27, P50, DOI 10.1097/01.mao.0000187045.73791.db
Hong RS, 2003, OTOL NEUROTOL, V24, P590, DOI 10.1097/00129492-200307000-00010
Huss M, 2005, J ACOUST SOC AM, V117, P3841, DOI 10.1121/1.1920167
Jolly CN, 1996, IEEE T BIO-MED ENG, V43, P857, DOI 10.1109/10.508549
JORIS PX, 1992, J ACOUST SOC AM, V91, P215, DOI 10.1121/1.402757
Kong YY, 2004, EAR HEARING, V25, P173, DOI 10.1097/01.AUD.0000120365.97792.2F
KRUMHANSL CL, 1989, INT CONGR SER, V846, P43
Laneau J, 2006, AUDIOL NEURO-OTOL, V11, P38, DOI 10.1159/000088853
LICKLIDER JCR, 1948, J ACOUST SOC AM, V20, P42, DOI 10.1121/1.1906346
Litvak LM, 2003, J ACOUST SOC AM, V114, P2079, DOI 10.1121/1.1612493
Litvak LM, 2003, J ACOUST SOC AM, V114, P2066, DOI 10.1121/1.1612492
Liu S, 2006, J ACOUST SOC AM, V120, P424, DOI 10.1121/1.2208427
LOGAN BF, 1977, AT&T TECH J, V56, P487
Marozeau J, 2003, J ACOUST SOC AM, V114, P2946, DOI 10.1121/1.1618239
MCADAMS S, 1995, PSYCHOL RES-PSYCH FO, V58, P177, DOI 10.1007/BF00419633
McDermott Hugh J, 2004, Trends Amplif, V8, P49, DOI 10.1177/108471380400800203
McDermott H.J., 2004, P 8 INT COCHL IMPL C
Moore BCJ, 2005, SPR HDB AUD, V24, P234
Nimmons GL, 2008, OTOL NEUROTOL, V29, P149
Nogueira W, 2005, EURASIP J APPL SIG P, V2005, P3044, DOI 10.1155/ASP.2005.3044
Oxenham AJ, 2004, P NATL ACAD SCI USA, V101, P1421, DOI 10.1073/pnas.0306958101
PAPOULIS A, 1983, IEEE T ACOUST SPEECH, V31, P96, DOI 10.1109/TASSP.1983.1164046
Plomp R., 1983, ROLE MODULATION HEAR, P270
Reiss LAJ, 2007, JARO-J ASSOC RES OTO, V8, P241, DOI 10.1007/s10162-007-0077-8
ROSEN S, 1992, PHILOS T ROY SOC B, V336, P367, DOI 10.1098/rstb.1992.0070
Ruffin C., 2007, ASS RES OT MIDW M 20
Samson S, 1997, CAN J EXP PSYCHOL, V51, P307, DOI 10.1037/1196-1961.51.4.307
SCHIMMEL S, 2005, P ICASSP PHIL US MAY, V1, P221, DOI 10.1109/ICASSP.2005.1415090
Shamma S, 2000, J ACOUST SOC AM, V107, P2631, DOI 10.1121/1.428649
Sheft S, 2008, J ACOUST SOC AM, V124, P562, DOI 10.1121/1.2918540
Shepherd RK, 1999, HEARING RES, V130, P171, DOI 10.1016/S0378-5955(99)00011-8
Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a
VOELCKER HB, 1966, PR INST ELECTR ELECT, V54, P340, DOI 10.1109/PROC.1966.4695
Von Helmholtz Hermann, 1895, SENSATIONS TONE PHYS
Wilson BS, 2004, SPR HDB AUD, V20, P14
Xu L, 2003, J ACOUST SOC AM, V114, P3024, DOI 10.1121/1.1623786
Zeng FG, 2004, J ACOUST SOC AM, V116, P1351, DOI 10.1121/1.1777938
NR 49
TC 12
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2011
VL 280
IS 1-2
BP 192
EP 200
DI 10.1016/j.heares.2011.05.017
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 834XG
UT WOS:000295997200020
PM 21664263
ER
PT J
AU Crawley, BK
Keithley, EM
AF Crawley, Brianna K.
Keithley, Elizabeth M.
TI Effects of mitochondrial mutations on hearing and cochlear pathology
with age
SO HEARING RESEARCH
LA English
DT Article
ID MTDNA MUTATIONS; DNA-POLYMERASE; THRESHOLD SHIFT; TEMPORAL BONE; MUTATOR
MICE; PRESBYCUSIS; MOUSE; DELETIONS; SYSTEM
AB Age-related hearing loss is a multi-factorial process involving genetic and environmental factors, including exposure to noise and ototoxic agents, as well as pathological processes. Among these is the accumulation of mitochondrial DNA mutations and deletions. The creation of a transgenic mouse with a loss-of-function deletion of the nuclear gene that encodes the polymerase required to repair damaged mitochondria! DNA (PolgA) enabled evaluation of age-related cochlear pathology associated with random mitochondrial DNA deletions that accrue over the lifespan of the mouse.
In comparison with their wild-type or heterozygous counterparts, animals with mutated DNA polymerase gamma developed hearing loss most rapidly. Any loss of mitochondria! DNA polymerase function however, resulted in detrimental effects, as evidenced by hearing tests and histological investigation of transgenic heterozygotes. Cochlear pathology in transgenic animals at 10 months of age included loss of neurons and clumping of surviving neurons in the apical turn of the spiral ganglion. Mitochondrial mutations in young animals, on the other hand, were protective against the development of temporary threshold shift in response to relatively low level noise exposure. This supports the idea that temporary threshold shifts are the result of an active process involving mitochondria and respiratory chain activity. Our results indicate that mitochondrial mutation and deletion can certainly contribute to the development of an aging phenotype, specifically age-related hearing loss. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Crawley, Brianna K.; Keithley, Elizabeth M.] Univ Calif San Diego, Div Otolaryngol Head & Neck Surg, La Jolla, CA 92093 USA.
[Keithley, Elizabeth M.] San Diego VA Med Ctr, San Diego, CA 92161 USA.
RP Keithley, EM (reprint author), Univ Calif San Diego, Div Otolaryngol Head & Neck Surg, 9500 Gilman Dr, La Jolla, CA 92093 USA.
EM ekeithley@ucsd.edu
FU Office of Research and Development, Department of Veterans Affairs
FX The authors wish to thank Drs. Greg Kujoth and Tomas Prolla from the
University of Wisconsin, who generously provided us with PolgA mice to
establish our colony. We thank Dr. Peter Billings for establishing our
colony and developing the genotyping assay, Sid Raghaven for assistance
with performing hearing tests and histological assays and Andy Nguyen
and Tina Patel for assistance with histology. This work was supported by
the Office of Research and Development, Department of Veterans Affairs.
CR Ames BN, 2004, ANN NY ACAD SCI, V1019, P406, DOI 10.1196/annals.1297.073
Bai U, 1997, AM J OTOL, V18, P449
Bailey LJ, 2009, NUCLEIC ACIDS RES, V37, P2327, DOI 10.1093/nar/gkp091
Bielefeld EC, 2005, HEARING RES, V207, P35, DOI 10.1016/j.heares.2005.03.025
Edgar D, 2009, CELL METAB, V10, P131, DOI 10.1016/j.cmet.2009.06.010
FischelGhodsian N, 1997, HEARING RES, V110, P147, DOI 10.1016/S0378-5955(97)00077-4
Gates GA, 2005, LANCET, V366, P1111, DOI 10.1016/S0140-6736(05)67423-5
Keithley EM, 2004, HEARING RES, V188, P21, DOI 10.1016/S0378-5955(03)00365-4
Kujoth GC, 2008, EXP GERONTOL, V43, P20, DOI 10.1016/j.exger.2007.09.010
Kujoth GC, 2005, SCIENCE, V309, P481, DOI 10.1126/science.1112125
Le Prell CG, 2007, HEARING RES, V226, P22, DOI 10.1016/j.heares.2006.10.006
Lin CY, 2009, HEARING RES, V257, P8, DOI 10.1016/j.heares.2009.07.008
MIKAELIA.DO, 1974, ACTA OTO-LARYNGOL, V77, P327, DOI 10.3109/00016487409124632
Niu X, 2007, EXP CELL RES, V313, P3924, DOI 10.1016/j.yexcr.2007.05.029
Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226
RYAN A F, 1991, Molecular and Cellular Neuroscience, V2, P179, DOI 10.1016/1044-7431(91)90011-C
SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1
SEIDMAN MD, 2004, ACTA OTO-LARYNGOL, V552, P16
Someya S, 2008, NEUROBIOL AGING, V29, P1080, DOI 10.1016/j.neurobiolaging.2007.01.014
Trifunovic A, 2004, NATURE, V429, P417, DOI 10.1038/nature02517
Trifunovic A, 2005, P NATL ACAD SCI USA, V102, P17993, DOI 10.1073/pnas.0508886102
Vermulst M, 2008, NAT GENET, V40, P392, DOI 10.1038/ng.95
Vermulst M, 2009, CELL METAB, V10, P437, DOI 10.1016/j.cmet.2009.11.001
Vlajkovic SM, 2009, CURR NEUROPHARMACOL, V7, P246, DOI 10.2174/157015909789152155
Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028
WEBSTER DB, 1985, HEARING RES, V18, P19, DOI 10.1016/0378-5955(85)90107-8
WONGRILEY M, 1979, BRAIN RES, V171, P11, DOI 10.1016/0006-8993(79)90728-5
Yamasoba T, 2005, NEUROSCI LETT, V380, P234, DOI 10.1016/j.neulet.2005.01.047
Yamasoba T, 2007, HEARING RES, V226, P185, DOI 10.1016/j.heares.2006.06.004
NR 29
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2011
VL 280
IS 1-2
BP 201
EP 208
DI 10.1016/j.heares.2011.05.015
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 834XG
UT WOS:000295997200021
PM 21664445
ER
PT J
AU Kitani, R
Kakehata, S
Kalinec, F
AF Kitani, Rei
Kakehata, Seiji
Kalinec, Federico
TI Motile responses of cochlear outer hair cells stimulated with an
alternating electrical field
SO HEARING RESEARCH
LA English
DT Article
ID GUINEA-PIG COCHLEA; CRYSTALLINE ACTIN TUBES; MEMBRANE CAPACITANCE;
VOLTAGE-DEPENDENCE; LANTHANIDE IONS; GATING CHARGE; SHAPE CHANGES;
SALICYLATE; GADOLINIUM; ELECTROMOTILITY
AB The goal of the present study was to evaluate and characterize the motile responses of guinea pig OHCs, stimulated at frequencies varying from 50 Hz to 4 kHz, using high-definition, high-speed video recording and fully automatic image analysis software. Cells stimulated in continuous, burst and sweeping modes with an external alternating electrical field showed robust fast and slow motility, which were dependent on frequency, mode and intensity of stimulation. In response to continuous stimulation, electromotile amplitude ranged from 0.3% to 3.2% of total cell length, whereas cell length usually decreased in amounts varying from 0.1% to 4.3%. Electromotile amplitude in OHCs stimulated with square wave's sweeps was near constant up to 200 Hz, progressively decreased between 200 Hz and 2 kHz, and then remained constant up to 4 kHz. In continuous and burst modes electromotility followed cycle-by-cycle the electrical stimulus, but it required 1-2 s to fully develop and reach maximal amplitude. Instead, slow cell length changes started about 0.6 s after the beginning and continuously developed up to 3 s after the end of electrical stimulation. Incubation of OHCs with 10 mM salicylate affected electromotility but not slow motility, whereas incubation with 3 mM gadolinium affected both. Thus, combination of external electrical stimulation, high-speed video recording and advanced image analysis software provides information about OHC motile responses at acoustic frequencies with an unprecedented detail, opening new areas of research in the field of OHC mechanics. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Kitani, Rei; Kalinec, Federico] House Ear Res Inst, Div Cell Biol & Genet, Los Angeles, CA 90057 USA.
[Kakehata, Seiji] Hirosaki Univ, Sch Med, Dept Otolaryngol, Aomori 0368562, Japan.
[Kalinec, Federico] Univ So Calif, Dept Cell & Neurobiol, Keck Sch Med, Los Angeles, CA 90033 USA.
[Kalinec, Federico] Univ So Calif, Dept Otolaryngol, Keck Sch Med, Los Angeles, CA 90033 USA.
RP Kalinec, F (reprint author), House Ear Res Inst, Div Cell Biol & Genet, 2100 W 3rd St, Los Angeles, CA 90057 USA.
EM fkalinec@hei.org
FU National Institutes of Health [R01DC10146-01/R01DC010397-01]; NIDCD [P30
DC006276]; HEI
FX Work supported by National Institutes of Health Grants
R01DC10146-01/R01DC010397-01, NIDCD P30 DC006276 Research Core, and HEI.
Its content is solely responsibility of the authors and do not
necessarily represent the official views of NIH or HEI.
CR Ashmore J, 2008, PHYSIOL REV, V88, P173, DOI 10.1152/physrev.00044.2006
ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323
BARDEN JA, 1978, BIOCHIM BIOPHYS ACTA, V537, P417, DOI 10.1016/0005-2795(78)90526-3
BARDEN JA, 1979, BIOCHEM BIOPH RES CO, V86, P529, DOI 10.1016/0006-291X(79)91746-7
BARDEN JA, 1980, BIOCHIM BIOPHYS ACTA, V624, P163, DOI 10.1016/0005-2795(80)90235-4
BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153
Caldwell RA, 1998, AM J PHYSIOL-CELL PH, V275, pC619
Cheng Y, 1999, BBA-BIOMEMBRANES, V1421, P249, DOI 10.1016/S0005-2736(99)00125-X
Chesarone MA, 2009, CURR OPIN CELL BIOL, V21, P28, DOI 10.1016/j.ceb.2008.12.001
CURMI PMG, 1982, EUR J BIOCHEM, V122, P239, DOI 10.1111/j.1432-1033.1982.tb05872.x
DALLOS P, 1993, J NEUROPHYSIOL, V70, P299
Dallos P, 2002, NAT REV MOL CELL BIO, V3, P104, DOI 10.1038/nrm730
DALLOS P, 1995, SCIENCE, V268, P1420, DOI 10.1126/science.7770765
DALLOS P, 1995, SCIENCE, V267, P2006, DOI 10.1126/science.7701325
DIELER R, 1991, J NEUROCYTOL, V20, P637, DOI 10.1007/BF01187066
DOSREMEDIOS CG, 1980, BIOCHIM BIOPHYS ACTA, V624, P174, DOI 10.1016/0005-2795(80)90236-6
Ermakov YA, 2001, BIOPHYS J, V80, P1851
EVANS BN, 1991, HEARING RES, V52, P288, DOI 10.1016/0378-5955(91)90019-6
Evans B.N., 1989, COCHLEAR MECHANISMS, P205
Frank G, 1999, P NATL ACAD SCI USA, V96, P4420, DOI 10.1073/pnas.96.8.4420
Frolenkov GI, 1997, BIOPHYS J, V73, P1665
Geddes L.A., 1989, PRINCIPLES APPL BIOM
GITTER AH, 1995, EUR ARCH OTO-RHINO-L, V252, P15
Higashida C, 2004, SCIENCE, V303, P2007, DOI 10.1126/science.1093923
IWASA KH, 1989, HEARING RES, V40, P247, DOI 10.1016/0378-5955(89)90165-2
IWASA KH, 1993, BIOPHYS J, V65, P492
KACHAR B, 1986, NATURE, V322, P365, DOI 10.1038/322365a0
Kakehata S, 1996, J NEUROSCI, V16, P4881
KAKEHATA S, 1995, BIOPHYS J, V68, P2190
KITANI R, J VIS EXP IN PRESS
Matsumoto N, 2005, BIOPHYS J, V89, P4343, DOI 10.1529/biophysj.105.064626
Matsumoto N, 2005, HEARING RES, V208, P1, DOI 10.1016/j.heares.2005.03.030
Matsumoto N, 2010, BIOPHYS J, V99, P2067, DOI 10.1016/j.bpj.2010.08.015
OHNISHI S, 1992, AM J PHYSIOL, V263, pC1088
Paavilainen VO, 2004, TRENDS CELL BIOL, V14, P386, DOI 10.1016/j.tcb.2004.05.002
Revenu C., 2004, NAT REV MOL CELL BIO, V5, P1, DOI DOI 10.1038/NRM1437
Sachs F, 2010, PHYSIOLOGY, V25, P50, DOI 10.1152/physiol.00042.2009
SANTOS-SACCHI J, 1991, J NEUROSCI, V11, P3096
Santos-Sacchi J, 1998, J PHYSIOL-LONDON, V510, P225, DOI 10.1111/j.1469-7793.1998.225bz.x
SANTOS-SACCHI J, 1992, J NEUROSCI, V12, P1906
Serghei A, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.184301
SHEHATA WE, 1991, ACTA OTO-LARYNGOL, V111, P707, DOI 10.3109/00016489109138403
TUNSTALL MJ, 1995, J PHYSIOL-LONDON, V485, P739
ZAJIC G, 1987, HEARING RES, V26, P249, DOI 10.1016/0378-5955(87)90061-X
NR 44
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2011
VL 280
IS 1-2
BP 209
EP 218
DI 10.1016/j.heares.2011.05.013
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 834XG
UT WOS:000295997200022
PM 21664265
ER
PT J
AU Banai, K
Sabin, AT
Wright, BA
AF Banai, Karen
Sabin, Andrew T.
Wright, Beverly A.
TI Separable developmental trajectories for the abilities to detect
auditory amplitude and frequency modulation
SO HEARING RESEARCH
LA English
DT Article
ID SPEECH RECOGNITION; TEMPORAL RESOLUTION; PRESCHOOL-CHILDREN;
WORKING-MEMORY; DISCRIMINATION; MATURATION; DYSLEXIA; SOUNDS;
ADAPTATION; PERCEPTION
AB Amplitude modulation (AM) and frequency modulation (FM) are inherent components of most natural sounds. The ability to detect these modulations, considered critical for normal auditory and speech perception, improves over the course of development. However, the extent to which the development of AM and FM detection skills follow different trajectories, and therefore can be attributed to the maturation of separate processes, remains unclear. Here we explored the relationship between the developmental trajectories for the detection of sinusoidal AM and FM in a cross-sectional design employing children aged 8-10 and 11-12 years and adults. For FM of tonal carriers, both average performance (mean) and performance consistency (within-listener standard deviation) were adult-like in the 8-10 y/o. In contrast, in the same listeners, average performance for AM of wideband noise carriers was still not adult-like in the 11-12 y/o, though performance consistency was already mature in the 8-10 y/o. Among the children there were no significant correlations for either measure between the degrees of maturity for AM and FM detection. These differences in developmental trajectory between the two modulation cues and between average detection thresholds and performance consistency suggest that at least partially distinct processes may underlie the development of AM and FM detection as well as the abilities to detect modulation and to do so consistently. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Banai, Karen] Univ Haifa, Dept Commun Sci & Disorders, IL-31905 Haifa, Israel.
[Sabin, Andrew T.; Wright, Beverly A.] Northwestern Univ, Dept Commun Sci & Disorders, Evanston, IL 60208 USA.
RP Banai, K (reprint author), Univ Haifa, Dept Commun Sci & Disorders, IL-31905 Haifa, Israel.
EM kbanai@research.haifa.ac.il
FU NIH/NIDCD [F32DC008052, R01DC004453]; Hugh Knowles Center for Clinical
and Basic Science in Hearing and its Disorders (Northwestern
University); Israeli Council for Higher Education
FX This work was supported by NIH/NIDCD (F32DC008052 and R01DC004453), the
Hugh Knowles Center for Clinical and Basic Science in Hearing and its
Disorders (Northwestern University) and by an Alon Fellowship from the
Israeli Council for Higher Education. Brian Moore and two anonymous
reviewers provided helpful comments on this paper.
CR ALLEN P, 1989, J SPEECH HEAR RES, V32, P317
Banai K, 2006, CEREB CORTEX, V16, P1718, DOI 10.1093/cercor/bhj107
Banai Karen, 2008, Journal of Basic and Clinical Physiology and Pharmacology, V19, P209
Boets B, 2006, BRAIN LANG, V97, P64, DOI 10.1016/j.bandl.2005.07.026
Chen HB, 2004, J ACOUST SOC AM, V116, P2269, DOI 10.1121/1.1785833
Clement S, 1999, J ACOUST SOC AM, V106, P2805, DOI 10.1121/1.428106
Dawes P, 2008, J SPEECH LANG HEAR R, V51, P1002, DOI 10.1044/1092-4388(2008/073)
Dimitrijevic A, 2001, EAR HEARING, V22, P100, DOI 10.1097/00003446-200104000-00003
Eddins DA, 1999, J ACOUST SOC AM, V105, P829, DOI 10.1121/1.426272
FROMBY C, 1988, J ACOUST SOC AM, V84, P545
Gomes H, 1999, DEV PSYCHOL, V35, P294, DOI 10.1037//0012-1649.35.1.294
GROSE JH, 1993, J SPEECH HEAR RES, V36, P351
HALL JW, 1994, J ACOUST SOC AM, V96, P150, DOI 10.1121/1.410474
Halliday LF, 2008, J ACOUST SOC AM, V123, P4393, DOI 10.1121/1.2890749
Hart HC, 2003, CEREB CORTEX, V13, P773, DOI 10.1093/cercor/13.7.773
Hartley DEH, 2000, J SPEECH LANG HEAR R, V43, P1402
HUYCK JJ, 2011, DEVELOPMENTAL SCI, V13, P614
JENSEN JK, 1993, PSYCHOL SCI, V4, P104, DOI 10.1111/j.1467-9280.1993.tb00469.x
KELLER TA, 1994, DEV PSYCHOL, V30, P855, DOI 10.1037/0012-1649.30.6.855
Lorenzi C, 2000, J SPEECH LANG HEAR R, V43, P1367
MAXTON AB, 1982, EAR HEARING, V3, P301
MOORE BCJ, 1995, J ACOUST SOC AM, V97, P2468, DOI 10.1121/1.411967
MOORE BCJ, 1994, J ACOUST SOC AM, V96, P726, DOI 10.1121/1.410311
Moore DR, 2008, HEARING RES, V238, P147, DOI 10.1016/j.heares.2007.11.013
Moore JK, 2007, INT J AUDIOL, V46, P460, DOI 10.1080/14992020701383019
Nelken I, 2008, CURR OPIN NEUROBIOL, V18, P413, DOI 10.1016/j.conb.2008.08.014
Pa J, 2008, J COGNITIVE NEUROSCI, V20, P2198, DOI 10.1162/jocn.2008.20154
Pasternak T, 2005, NAT REV NEUROSCI, V6, P97, DOI 10.1038/nrn1603
REGAN D, 1979, J ACOUST SOC AM, V65, P1249, DOI 10.1121/1.382792
Ronnberg J, 2004, COGNITIVE BRAIN RES, V20, P165, DOI 10.1016/j.cogbrainres.2004.03.002
SABERI K, 1995, NATURE, V374, P537, DOI 10.1038/374537a0
Sarro EC, 2010, DEV NEUROBIOL, V70, P636, DOI 10.1002/dneu.20801
SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303
Stickney GS, 2005, J ACOUST SOC AM, V118, P2412, DOI 10.1121/1.2031967
Sussman E, 2008, HEARING RES, V236, P61, DOI 10.1016/j.heares.2007.12.001
Sutcliffe P, 2005, J EXP CHILD PSYCHOL, V91, P249, DOI 10.1016/j.jecp.2005.03.004
Talcott JB, 2000, P NATL ACAD SCI USA, V97, P2952, DOI 10.1073/pnas.040546597
TANSLEY BW, 1983, J ACOUST SOC AM, V74, P765, DOI 10.1121/1.389864
WIGHTMAN F, 1989, CHILD DEV, V60, P611, DOI 10.1111/j.1467-8624.1989.tb02742.x
Wightman FL, 2010, J ACOUST SOC AM, V128, P270, DOI 10.1121/1.3436536
Wright BA, 2004, P NATL ACAD SCI USA, V101, P9942, DOI 10.1073/pnas.0401825101
Zeng FG, 2005, P NATL ACAD SCI USA, V102, P2293, DOI 10.1073/pnas.0406460102
NR 42
TC 10
Z9 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2011
VL 280
IS 1-2
BP 219
EP 227
DI 10.1016/j.heares.2011.05.019
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 834XG
UT WOS:000295997200023
PM 21664958
ER
PT J
AU Andreou, LV
Kashino, M
Chait, M
AF Andreou, Lefkothea-Vasiliki
Kashino, Makio
Chait, Maria
TI The role of temporal regularity in auditory segregation
SO HEARING RESEARCH
LA English
DT Article
ID STREAM SEGREGATION; PERCEPTUAL ORGANIZATION; INFORMATIONAL MASKING;
RHYTHMIC ATTENTION; TONE SEQUENCES; HUMAN BRAIN; TIME; INTEGRATION;
SOUND; RESPONSES
AB The idea that predictive modelling and extraction of regularities plays a pivotal role in auditory segregation has recently attracted considerable attention. The present study investigated the effect of one basic form of regularity, rhythmic regularity, on auditory stream segregation. We departed from the classic streaming paradigm and developed a new stimulus, Rand-AB, consisting of two, concurrently presented, temporally uncorrelated, tone sequences (with frequencies A and B). To evaluate segregation, we used an objective measure of the extent to which listeners are able to selectively attend to one of the sequences in the presence of the other. Performance was quantified on a difficult pattern detection task which involves detecting a rarely occurring pattern of amplitude modulation applied to three consecutive A or B tones. In all cases the attended sequence was temporally irregular (with a random inter-tone-interval (ITI) between 100 and 400 ms) and the regularity status of the competing sequence was set to one of four conditions: (1) random ITI between 100 and 400 ms (2) isochronous with ITI = 400 ms. (3) isochronous with ITI = 250 ms (equal to the mean rate of the attended sequence) (4) isochronous with ITI = 100 ms. For a frequency separation of 2 (but not 4) semi tones we observed improved performance in conditions (3) and (4) relative to (1), suggesting that stream segregation is facilitated when the distracter sequence is temporally regular, but that the effect of temporal regularity as a cue for segregation is limited to relatively fast rates and to situations where frequency separation is insufficient for segregation. These findings provide new evidence to support models of streaming that involve segregation based on the formation of predictive models. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Andreou, Lefkothea-Vasiliki; Chait, Maria] UCL Ear Inst, London WC1X 8EE, England.
[Kashino, Makio] NTT Corp, NTT Commun Sci Labs, Atsugi, Kanagawa, Japan.
RP Chait, M (reprint author), UCL Ear Inst, 332 Grays Inn Rd, London WC1X 8EE, England.
EM m.chait@ucl.ac.uk
FU Deafness Research UK fellowship
FX This study was supported by a Deafness Research UK fellowship to MC. We
thank Alain de Cheveigne and Daniel Pressnitzer for comments and
discussion.
CR Barnes R, 2000, COGNITIVE PSYCHOL, V41, P254, DOI 10.1006/cogp.2000.0738
Bendixen A, 2010, J ACOUST SOC AM, V128, P3658, DOI 10.1121/1.3500695
Bey C, 2002, PERCEPT PSYCHOPHYS, V64, P844, DOI 10.3758/BF03194750
BOLTZ MG, 1993, MEM COGNITION, V21, P853, DOI 10.3758/BF03202753
BREGMAN AS, 1975, J EXP PSYCHOL HUMAN, V1, P263, DOI 10.1037//0096-1523.1.3.263
Bregman AS., 1990, AUDITORY SCENE ANAL
Carlyon RP, 2004, TRENDS COGN SCI, V8, P465, DOI 10.1016/j.tics.2004.08.008
Coull JT, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000166
COWAN N, 1984, PSYCHOL BULL, V96, P341, DOI 10.1037/0033-2909.96.2.341
Denham SL, 2010, NEUROPHYSIOLOGICAL BASES OF AUDITORY PERCEPTION, P477, DOI 10.1007/978-1-4419-5686-6_44
Denham SL, 2006, J PHYSIOLOGY-PARIS, V100, P154, DOI 10.1016/j.jphysparis.2006.09.012
Devergie A, 2010, J ACOUST SOC AM, V128, pEL1, DOI 10.1121/1.3436498
Drake C, 2000, COGNITION, V77, P251, DOI 10.1016/S0010-0277(00)00106-2
Elhilali M, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000129
FRENCHSTGEORGE M, 1989, PERCEPT PSYCHOPHYS, V46, P384
Green D. M., 1966, SIGNAL DETECTION THE
GREENHOUSE SW, 1959, PSYCHOMETRIKA, V24, P95, DOI 10.1007/BF02289823
Gutschalk A, 2008, PLOS BIOL, V6, P1156, DOI 10.1371/journal.pbio.0060138
HARTMANN WM, 1991, MUSIC PERCEPT, V9, P155
Honing H, 2009, ANN NY ACAD SCI, V1169, P93, DOI 10.1111/j.1749-6632.2009.04761.x
HUGGINS AWF, 1975, PERCEPT PSYCHOPHYS, V18, P149, DOI 10.3758/BF03204103
JONES MR, 1989, PSYCHOL REV, V96, P459, DOI 10.1037//0033-295X.96.3.459
Jones MR, 2002, PSYCHOL SCI, V13, P313, DOI 10.1111/1467-9280.00458
Jones MR, 2006, COGNITIVE PSYCHOL, V53, P59, DOI 10.1016/j.cogpsych.2006.01.003
JONES MR, 1981, J EXP PSYCHOL HUMAN, V7, P1059, DOI 10.1037/0096-1523.7.5.1059
JONES MR, 1976, PSYCHOL REV, V83, P323, DOI 10.1037/0033-295X.83.5.323
JONES MR, 1982, PERCEPT PSYCHOPHYS, V32, P211, DOI 10.3758/BF03206225
KIDD G, 1994, J ACOUST SOC AM, V95, P3475, DOI 10.1121/1.410023
Kondo HM, 2009, J NEUROSCI, V29, P12695, DOI 10.1523/JNEUROSCI.1549-09.2009
Lange K, 2010, INT J PSYCHOPHYSIOL, V78, P231, DOI 10.1016/j.ijpsycho.2010.08.003
Large EW, 1999, PSYCHOL REV, V106, P119, DOI 10.1037/0033-295X.106.1.119
LPAS Van Noorden, 1975, TEMPORAL COHERENCE P
McAuley JD, 2006, J EXP PSYCHOL GEN, V135, P348, DOI 10.1037/0096-3445.135.3.348
MICHEYL C, 2007, HEARING SENSORY PROC, V6, P267
MICHEYL C, 2004, AUDITORY SIGNAL PROC, P203
Micheyl C, 2005, NEURON, V48, P139, DOI 10.1016/j.neuron.2005.08.039
Micheyl C, 2007, HEARING RES, V229, P116, DOI 10.1016/j.heares.2007.01.007
Micheyl C, 2010, JARO-J ASSOC RES OTO, V11, P709, DOI 10.1007/s10162-010-0227-2
Moore BCJ, 2002, ACTA ACUST UNITED AC, V88, P320
Poeppel D, 2003, SPEECH COMMUN, V41, P245, DOI 10.1016/S0167-6393(02)00107-3
Pressnitzer D, 2008, CURR BIOL, V18, P1124, DOI 10.1016/j.cub.2008.06.053
Pressnitzer D, 2006, CURR BIOL, V16, P1351, DOI 10.1016/j.cub.2006.05.054
ROGERS WL, 1993, PERCEPT PSYCHOPHYS, V53, P179, DOI 10.3758/BF03211728
Rose MM, 1997, J ACOUST SOC AM, V102, P1768, DOI 10.1121/1.420108
Shamma SA, 2010, CURR OPIN NEUROBIOL, V20, P361, DOI 10.1016/j.conb.2010.03.009
Snyder JS, 2007, PSYCHOL BULL, V133, P780, DOI 10.1037/0033-2909.133.5.780
Tecchio F, 2000, EXP BRAIN RES, V135, P222, DOI 10.1007/s002210000507
Teki S, 2011, J NEUROSCI, V31, P164, DOI 10.1523/JNEUROSCI.3788-10.2011
Teki S, 2011, J NEUROSCI, V31, P3805, DOI 10.1523/JNEUROSCI.5561-10.2011
Winkler I, 2009, TRENDS COGN SCI, V13, P532, DOI 10.1016/j.tics.2009.09.003
Yabe H, 1998, PSYCHOPHYSIOLOGY, V35, P615, DOI 10.1017/S0048577298000183
YABE H, 1999, CLIN NEUROPHYSIO S49, P166
NR 52
TC 18
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2011
VL 280
IS 1-2
BP 228
EP 235
DI 10.1016/j.heares.2011.06.001
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 834XG
UT WOS:000295997200024
PM 21683778
ER
PT J
AU Henry, KS
Kale, S
Scheidt, RE
Heinz, MG
AF Henry, Kenneth S.
Kale, Sushrut
Scheidt, Ryan E.
Heinz, Michael G.
TI Auditory brainstem responses predict auditory nerve fiber thresholds and
frequency selectivity in hearing impaired chinchillas
SO HEARING RESEARCH
LA English
DT Article
ID HAIR CELL LOSS; CHRONIC COCHLEAR PATHOLOGY; TUNING CURVES; NOISE;
LATENCIES; DAMAGE; INNER; SHIFT; REFLEX; VARIABILITY
AB Noninvasive auditory brainstem responses (ABRs) are commonly used to assess cochlear pathology in both clinical and research environments. In the current study, we evaluated the relationship between ABR characteristics and more direct measures of cochlear function. We recorded ABRs and auditory nerve (AN) single-unit responses in seven chinchillas with noise-induced hearing loss. ABRs were recorded for 1-8 kHz tone burst stimuli both before and several weeks after 4 h of exposure to a 115 dB SPL, 50 Hz band of noise with a center frequency of 2 kHz. Shifts in ABR characteristics (threshold, wave I amplitude, and wave I latency) following hearing loss were compared to AN-fiber tuning curve properties (threshold and frequency selectivity) in the same animals. As expected, noise exposure generally resulted in an increase in ABR threshold and decrease in wave I amplitude at equal SPL Wave I amplitude at equal sensation level (SL), however, was similar before and after noise exposure. In addition, noise exposure resulted in decreases in ABR wave I latency at equal SL and, to a lesser extent, at equal SPL. The shifts in ABR characteristics were significantly related to AN-fiber tuning curve properties in the same animal at the same frequency. Larger shifts in ABR thresholds and ABR wave I amplitude at equal SPL were associated with greater AN threshold elevation. Larger reductions in ABR wave I latency at equal SL on the other hand, were associated with greater loss of AN frequency selectivity. This result is consistent with linear systems theory, which predicts shorter time delays for broader peripheral frequency tuning. Taken together with other studies, our results affirm that ABR thresholds and wave I amplitude provide useful estimates of cochlear sensitivity. Furthermore, comparisons of ABR wave I latency to normative data at the same SL may prove useful for detecting and characterizing loss of cochlear frequency selectivity. (c) 2011 Elsevier B.V. All rights reserved.
C1 [Henry, Kenneth S.; Heinz, Michael G.] Purdue Univ, Dept Speech Language & Hearing Sci, W Lafayette, IN 47907 USA.
[Kale, Sushrut; Heinz, Michael G.] Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA.
[Scheidt, Ryan E.] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA.
RP Heinz, MG (reprint author), Purdue Univ, Dept Speech Language & Hearing Sci, W Lafayette, IN 47907 USA.
EM mheinz@purdue.edu
FU NIH [R01-DC009838]
FX This research was supported by NIH Grant# R01-DC009838. We thank Jon
Boley, Skyler Jennings, Beth Strickland, and Michael Walls for valuable
comments on the manuscript.
CR ATTIAS J, 1984, AUDIOLOGY, V23, P498
BORG E, 1983, ACTA OTO-LARYNGOL, V96, P361, DOI 10.3109/00016488309132721
BUCHWALD JS, 1975, SCIENCE, V189, P382, DOI 10.1126/science.1145206
Chintanpalli A, 2007, J ACOUST SOC AM, V122, pEL203, DOI 10.1121/1.2794880
Chung JW, 2007, ANESTH ANALG, V104, P1404, DOI 10.1213/01.ane.0000261508.24083.6c
CHURCH MW, 1987, ELECTROEN CLIN NEURO, V67, P570, DOI 10.1016/0013-4694(87)90060-5
CODY AR, 1983, HEARING RES, V9, P55, DOI 10.1016/0378-5955(83)90134-X
CODY AR, 1981, J ACOUST SOC AM, V70, P707, DOI 10.1121/1.386906
COOK RO, 1982, DEV PSYCHOBIOL, V15, P95, DOI 10.1002/dev.420150202
Crumling MA, 2007, JARO-J ASSOC RES OTO, V8, P54, DOI 10.1007/s10162-006-0061-8
DALLOS P, 1978, J NEUROPHYSIOL, V41, P365
de Boer E., 1996, COCHLEA, P258
Don M, 1998, J ACOUST SOC AM, V104, P2280, DOI 10.1121/1.423741
DOYLE WJ, 1985, ELECTROEN CLIN NEURO, V60, P258, DOI 10.1016/0013-4694(85)90040-9
Goldstein JL, 1971, PHYSL AUDITORY SYSTE, P133
GORGA MP, 1985, EAR HEARING, V6, P105, DOI 10.1097/00003446-198503000-00008
Gourevitch B, 2009, BRAIN RES, V1304, P66, DOI 10.1016/j.brainres.2009.09.041
Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6
Heinz MG, 2005, JARO-J ASSOC RES OTO, V6, P91, DOI 10.1007/s10162-004-5043-0
Heinz MG, 2010, NEUROPHYSIOLOGICAL BASES OF AUDITORY PERCEPTION, P621, DOI 10.1007/978-1-4419-5686-6_56
Henry KS, 2010, ANIM BEHAV, V80, P497, DOI 10.1016/j.anbehav.2010.06.012
Hofstetter P, 1997, HEARING RES, V112, P199, DOI 10.1016/S0378-5955(97)00123-8
Kale S, 2010, JARO-J ASSOC RES OTO, V11, P657, DOI 10.1007/s10162-010-0223-6
Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009
LIBERMAN MC, 1984, HEARING RES, V16, P33, DOI 10.1016/0378-5955(84)90023-6
LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X
Littell R., 2006, SAS MIXED MODELS
Maison SF, 2000, J NEUROSCI, V20, P4701
Moore BCJ, 2000, BRIT J AUDIOL, V34, P205
Ngan EM, 2001, HEARING RES, V156, P44, DOI 10.1016/S0378-5955(01)00264-7
Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X
Nousak JK, 2005, INT J AUDIOL, V44, P331, DOI 10.1080/14992020500060891
RUGGERO MA, 1994, AUDIOLOGY, V33, P131
SALVI RJ, 1979, HEARING RES, V1, P237, DOI 10.1016/0378-5955(79)90017-0
Scheidt RE, 2010, HEARING RES, V269, P23, DOI 10.1016/j.heares.2010.07.009
Shera CA, 2008, J ACOUST SOC AM, V124, P381, DOI 10.1121/1.2917805
Shera CA, 2010, JARO-J ASSOC RES OTO, V11, P343, DOI 10.1007/s10162-010-0217-4
Strelcyk O, 2009, J ACOUST SOC AM, V126, P1878, DOI 10.1121/1.3203310
THOMPSON GC, 1984, ARCH OTOLARYNGOL, V110, P22
Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8
WANG CY, 1972, J ACOUST SOC AM, V52, P1678, DOI 10.1121/1.1913302
Wang J, 1997, HEARING RES, V107, P67, DOI 10.1016/S0378-5955(97)00020-8
NR 42
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2011
VL 280
IS 1-2
BP 236
EP 244
DI 10.1016/j.heares.2011.06.002
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 834XG
UT WOS:000295997200025
PM 21699970
ER
PT J
AU Wersinger, E
Fuchs, PA
AF Wersinger, Eric
Fuchs, Paul Albert
TI Modulation of hair cell efferents
SO HEARING RESEARCH
LA English
DT Article
ID GUINEA-PIG COCHLEA; CA2+-ACTIVATED K+ CHANNELS; NICOTINIC
CHOLINERGIC-RECEPTOR; ACTIVATED POTASSIUM CHANNELS; SINGLE OLIVOCOCHLEAR
NEURONS; NITRIC-OXIDE SYNTHASE; ENKEPHALIN-LIKE IMMUNOREACTIVITY; RAT
NEUROMUSCULAR-JUNCTIONS; CALCIUM SIGNAL TRANSMISSION; AUDITORY-NERVE
FIBERS
AB Outer hair cells (OHCs) amplify the sound-evoked motion of the basilar membrane to enhance acoustic sensitivity and frequency selectivity. Medial olivocochlear (MOC) efferents inhibit OHCs to reduce the sound-evoked response of cochlear afferent neurons. OHC inhibition occurs through the activation of postsynaptic alpha 9 alpha 10 nicotinic receptors tightly coupled to calcium-dependent SK2 channels that hyperpolarize the hair cell. MOC neurons are cholinergic but a number of other neurotransmitters and neuromodulators have been proposed to participate in efferent transmission, with emerging evidence for both pre- and postsynaptic effects. Cochlear inhibition in vivo is maximized by repetitive activation of the efferents, reflecting facilitation and summation of transmitter release onto outer hair cells. This review summarizes recent studies on cellular and molecular mechanisms of cholinergic inhibition and the regulation of those molecular components, in particular the involvement of intracellular calcium. Facilitation at the efferent synapse is compared in a variety of animals, as well as other possible mechanisms of modulation of ACh release. These results suggest that short-term plasticity contributes to effective cholinergic inhibition of hair cells. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Wersinger, Eric; Fuchs, Paul Albert] Johns Hopkins Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Ctr Hearing & Balance, Baltimore, MD 21205 USA.
[Wersinger, Eric; Fuchs, Paul Albert] Johns Hopkins Univ, Sch Med, Ctr Sensory Biol, Baltimore, MD 21205 USA.
RP Wersinger, E (reprint author), Johns Hopkins Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Ctr Hearing & Balance, Baltimore, MD 21205 USA.
EM ewersin2@jhmi.edu
FU National Institute on Deafness and Other Communication Disorders
[R01DC001508]; Center for Hearing and Balance at Johns Hopkins
University [P30DC005211]
FX This work was supported by grants from the National Institute on
Deafness and Other Communication Disorders to P. A. F. (R01DC001508) and
the Center for Hearing and Balance at Johns Hopkins University
(P30DC005211).
CR Allen D, 2007, J NEUROSCI, V27, P2369, DOI 10.1523/JNEUROSCI.3565-06.2007
Almanza A, 2007, J NEUROPHYSIOL, V97, P1188, DOI 10.1152/jn.00849.2006
ALTSCHULER RA, 1985, HEARING RES, V17, P249, DOI 10.1016/0378-5955(85)90069-3
ALTSCHULER RA, 1984, HEARING RES, V16, P17, DOI 10.1016/0378-5955(84)90022-4
Arnaudeau S, 2001, J BIOL CHEM, V276, P29430, DOI 10.1074/jbc.M103274200
ART JJ, 1985, J PHYSIOL-LONDON, V360, P397
ART JJ, 1984, J PHYSIOL-LONDON, V356, P525
Ashmore J, 2008, PHYSIOL REV, V88, P173, DOI 10.1152/physrev.00044.2006
ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323
ASHMORE JF, 1983, J SUBMICR CYTOL PATH, V15, P163
BALLESTERO J, 2010, ASS RES OT M
BARTOLAMI S, 1993, BRAIN RES, V626, P200, DOI 10.1016/0006-8993(93)90580-G
Batta TJ, 2004, EUR J NEUROSCI, V20, P3364, DOI 10.1111/j.1460-9568.2004.03797.x
Berridge MJ, 1998, NEURON, V21, P13, DOI 10.1016/S0896-6273(00)80510-3
Bildl W, 2004, NEURON, V43, P847, DOI 10.1016/j.neuron.2004.08.033
Blanchet C, 1996, J NEUROSCI, V16, P2574
BOBBIN RP, 1990, HEARING RES, V47, P39, DOI 10.1016/0378-5955(90)90165-L
BOBBIN RP, 1990, HEARING RES, V46, P83, DOI 10.1016/0378-5955(90)90141-B
Bobbin RP, 2002, HEARING RES, V174, P172, DOI 10.1016/S0378-5955(02)00654-8
Bond CT, 2005, CURR OPIN NEUROBIOL, V15, P305, DOI 10.1016/j.conb.2005.05.001
Brown GC, 2000, ACTA PHYSIOL SCAND, V168, P667, DOI 10.1046/j.1365-201x.2000.00718.x
Brown GC, 1999, BIOCHEM SOC SYMP, V66, P17
BROWN MC, 1984, J PHYSIOL-LONDON, V354, P625
Brown MC, 1998, J NEUROPHYSIOL, V79, P3077
BROWN MC, 1983, SCIENCE, V222, P69, DOI 10.1126/science.6623058
Brown MC, 1998, J NEUROPHYSIOL, V79, P3088
BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153
Bruce LL, 2000, J COMP NEUROL, V423, P532, DOI 10.1002/1096-9861(20000731)423:3<532::AID-CNE14>3.0.CO;2-T
Cai X, 2004, NEURON, V44, P351, DOI 10.1016/j.neuron.2004.09.026
Capogna M, 1998, PHARMACOL THERAPEUT, V77, P203, DOI 10.1016/S0163-7258(97)00162-9
Catterall WA, 2008, NEURON, V59, P882, DOI 10.1016/j.neuron.2008.09.005
Chen JWY, 2000, J NEUROPHYSIOL, V84, P139
Kirk EC, 2003, JARO-J ASSOC RES OTO, V4, P445
CHURCHILL J. A., 1956, LARYNGOSCOPE, V66, P1
Colegrove SL, 2000, J GEN PHYSIOL, V115, P351, DOI 10.1085/jgp.115.3.351
Cooper NP, 2003, J PHYSIOL-LONDON, V548, P307, DOI 10.1113/jphysiol.2003.039081
Cooper NP, 2006, J PHYSIOL-LONDON, V576, P49, DOI 10.1113/jphysiol.2006.114991
Dallos P, 1997, J NEUROSCI, V17, P2212
DESANMARTIN JZ, 2010, J NEUROSCI, V3, P12157
DRESCHER DG, 1993, J NEUROCHEM, V61, P1167, DOI 10.1111/j.1471-4159.1993.tb03638.x
Dulon D, 1998, EUR J NEUROSCI, V10, P907, DOI 10.1046/j.1460-9568.1998.00098.x
ELGOYHEN AB, 1994, CELL, V79, P705, DOI 10.1016/0092-8674(94)90555-X
Elgoyhen AB, 2001, P NATL ACAD SCI USA, V98, P3501, DOI 10.1073/pnas.051622798
Engel J, 2006, NEUROSCIENCE, V143, P837, DOI 10.1016/j.neuroscience.2006.08.060
ENGSTROM H, 1958, Exp Cell Res, V14, P460
Evans MG, 1996, J PHYSIOL-LONDON, V491, P563
Evans MG, 1996, HEARING RES, V101, P1, DOI 10.1016/S0378-5955(96)00107-4
Evans MG, 2000, CELL CALCIUM, V28, P195, DOI 10.1054/ceca.2000.0145
EYBALIN M, 1993, PHYSIOL REV, V73, P309
Faber ES, 2009, CELL BIOCHEM BIOPHYS, V55, P127, DOI 10.1007/s12013-009-9062-7
Faber ESL, 2007, CLIN EXP PHARMACOL P, V34, P1077, DOI 10.1111/j.1440-1681.2007.04725.x
Faber ESL, 2008, J NEUROSCI, V28, P10803, DOI 10.1523/JNEUROSCI.1796-08.2008
Fessenden JD, 1998, HEARING RES, V118, P168, DOI 10.1016/S0378-5955(98)00027-6
FESSENDEN JD, 1994, BRAIN RES, V668, P9, DOI 10.1016/0006-8993(94)90505-3
FEX J, 1984, HEARING RES, V15, P123, DOI 10.1016/0378-5955(84)90043-1
FEX J, 1976, BRAIN RES, V109, P575, DOI 10.1016/0006-8993(76)90036-6
FEX J, 1981, P NATL ACAD SCI-BIOL, V78, P1255, DOI 10.1073/pnas.78.2.1255
Fill M, 2002, PHYSIOL REV, V82, P893, DOI 10.1152/physrev.00013.2002
FLOCK A, 1973, J PHYSIOL-LONDON, V235, P591
FLOCK A, 1976, J PHYSIOL-LONDON, V257, P45
FUCHS PA, 1992, P ROY SOC B-BIOL SCI, V248, P35, DOI 10.1098/rspb.1992.0039
FUCHS PA, 1992, J NEUROSCI, V12, P800
GALAMBOS R, 1956, J NEUROPHYSIOL, V19, P424
GIFFORD ML, 1987, HEARING RES, V29, P179, DOI 10.1016/0378-5955(87)90166-3
GITTER AH, 1992, EUR ARCH OTO-RHINO-L, V249, P62
Glowatzki E, 2000, SCIENCE, V288, P2366, DOI 10.1126/science.288.5475.2366
Gomez-Casati ME, 2009, JARO-J ASSOC RES OTO, V10, P221, DOI 10.1007/s10162-009-0164-0
Gomez-Casati ME, 2005, J PHYSIOL-LONDON, V566, P103, DOI 10.1113/jphysiol.2005.087155
Goutman JD, 2005, J PHYSIOL-LONDON, V566, P49, DOI 10.1113/jphysiol.2005.087460
Grant L, 2006, HEARING RES, V219, P101, DOI 10.1016/j.heares.2006.06.002
Grimes WN, 2009, NAT NEUROSCI, V12, P585, DOI 10.1038/nn.2302
Guinan JJ, 2006, EAR HEARING, V27, P589, DOI 10.1097/01.aud.0000240507.83072.e7
Guinan JJ, 1996, J ACOUST SOC AM, V100, P1680, DOI 10.1121/1.416066
Gunter TE, 2004, FEBS LETT, V567, P96, DOI 10.1016/j.febslet.2004.03.071
Hackney CM, 2005, J NEUROSCI, V25, P7867, DOI 10.1523/JNEUROSCI.1196-05.2005
He DZZ, 2003, J NEUROSCI, V23, P9089
HEILBRONN E, 1995, NEUROCHEM INT, V27, P301, DOI 10.1016/0197-0186(95)00011-V
Hess A, 1998, BRAIN RES, V813, P97, DOI 10.1016/S0006-8993(98)00997-4
HILLE B, 1994, TRENDS NEUROSCI, V17, P531, DOI 10.1016/0166-2236(94)90157-0
HILLE B, 1992, NEURON, V9, P187, DOI 10.1016/0896-6273(92)90158-A
HOFFMAN DW, 1984, BRAIN RES, V322, P59, DOI 10.1016/0006-8993(84)91180-6
HOFFMAN DW, 1985, HEARING RES, V17, P47, DOI 10.1016/0378-5955(85)90129-7
HOUSLEY GD, 1990, HEARING RES, V43, P121, DOI 10.1016/0378-5955(90)90221-A
Ikeda SR, 1996, NATURE, V380, P255, DOI 10.1038/380255a0
ISSA NP, 1994, P NATL ACAD SCI USA, V91, P7578, DOI 10.1073/pnas.91.16.7578
Iwasaki S, 2000, J NEUROSCI, V20, P59
Johnson SL, 2007, J PHYSIOL-LONDON, V583, P631, DOI 10.1113/jphysiol.2007.136630
KAKEHATA S, 1993, J PHYSIOL-LONDON, V463, P227
KATZ B, 1968, J PHYSIOL-LONDON, V195, P481
Katz E, 2004, J NEUROSCI, V24, P7814, DOI 10.1523/JNEUROSCI.2102-04.2004
Khan KM, 2002, NEUROSCIENCE, V111, P291, DOI 10.1016/S0306-4522(02)00020-9
Knaus HG, 1996, J NEUROSCI, V16, P955
Kohler M, 1996, SCIENCE, V273, P1709, DOI 10.1126/science.273.5282.1709
Kong JH, 2008, J PHYSIOL-LONDON, V586, P5471, DOI 10.1113/jphysiol.2008.160077
Kujawa SG, 1997, J NEUROPHYSIOL, V78, P3095
Kurc M, 1998, HEARING RES, V116, P1, DOI 10.1016/S0378-5955(97)00183-4
LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309
Liberman MC, 2000, J COMP NEUROL, V423, P132
LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1
LIBERMAN MC, 1988, J NEUROPHYSIOL, V60, P1779
Lioudyno M, 2004, J NEUROSCI, V24, P11160, DOI 10.1523/JNEUROSCI.3674-04.2004
Lioudyno MI, 2002, MOL CELL NEUROSCI, V20, P695, DOI 10.1006/mcne.2002.1150
Lv P, 2010, J NEUROPHYSIOL, V103, P2494, DOI 10.1152/jn.00017.2010
Lysakowski A, 2000, J COMP NEUROL, V427, P508, DOI 10.1002/1096-9861(20001127)427:4<508::AID-CNE2>3.0.CO;2-L
Maingret F, 2008, NEURON, V59, P439, DOI 10.1016/j.neuron.2008.05.026
Maison SF, 2003, J COMP NEUROL, V455, P406, DOI 10.1002/cne.10490
Maison SF, 2006, J NEUROSCI, V26, P10315, DOI 10.1523/JNEUROSCI.2395-06.2006
Maison SF, 2003, J NEUROPHYSIOL, V90, P2941, DOI 10.1152/jn.00596.2003
Maison SF, 2010, J NEUROSCI, V30, P6751, DOI 10.1523/JNEUROSCI.5080-09.2010
Maison SF, 2002, J NEUROSCI, V22, P10838
Maison SF, 2000, J NEUROSCI, V20, P4701
Maison SF, 2009, JARO-J ASSOC RES OTO, V10, P50, DOI 10.1007/s10162-008-0138-7
Malli R, 2005, J BIOL CHEM, V280, P12114, DOI 10.1074/jbc.M409353200
May BJ, 2002, HEARING RES, V171, P142, DOI 10.1016/S0378-5955(02)00495-1
Misonou H, 2006, J COMP NEUROL, V496, P289, DOI 10.1002/cne.20931
Murthy V, 2009, MOL CELL NEUROSCI, V40, P39, DOI 10.1016/j.mcn.2008.08.011
Murugasu E, 1996, J NEUROSCI, V16, P325
Mustafa AK, 2009, SCI SIGNAL, V2, DOI 10.1126/scisignal.268re2
NADOL JB, 1981, ANN OTO RHINOL LARYN, V90, P12
NADOL JB, 1984, ANN OTO RHINOL LARYN, V93, P247
NADOL JB, 1994, HEARING RES, V81, P49, DOI 10.1016/0378-5955(94)90152-X
Nassar A, 2000, J BIOL CHEM, V275, P23661, DOI 10.1074/jbc.M000457200
Nenov AP, 1996, HEARING RES, V101, P149, DOI 10.1016/S0378-5955(96)00143-8
Nie LP, 2004, J NEUROPHYSIOL, V91, P1536, DOI 10.1152/jn.00630.2003
NORRIS CH, 1974, ACTA OTO-LARYNGOL, V77, P318, DOI 10.3109/00016487409124631
Oliver D, 2000, NEURON, V26, P595, DOI 10.1016/S0896-6273(00)81197-6
Pacher P, 2000, J PHYSIOL-LONDON, V529, P553, DOI 10.1111/j.1469-7793.2000.00553.x
Parekh AB, 1997, PHYSIOL REV, V77, P901
PARK Y, 1994, J PHYSIOL-LONDON, V481, P555
Patterson RL, 1999, CELL, V98, P487, DOI 10.1016/S0092-8674(00)81977-7
Plazas PV, 2005, J NEUROSCI, V25, P10905, DOI 10.1523/JNEUROSCI.3805-05.2005
PLINKERT PK, 1989, ARCH OTO-RHINO-LARYN, V246, P417, DOI 10.1007/BF00464301
PLINKERT PK, 1993, EUR ARCH OTO-RHINO-L, V250, P351
Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3
Pujol R, 1982, Brain Res, V255, P151
Putney JW, 2006, CURR BIOL, V16, pR812, DOI 10.1016/j.cub.2006.08.040
Rabbitt RD, 2009, PLOS COMPUT BIOL, V5, DOI 10.1371/journal.pcbi.1000444
RAJAN R, 1988, BRAIN RES, V459, P241, DOI 10.1016/0006-8993(88)90640-3
RAJAN R, 1991, HEARING RES, V53, P153, DOI 10.1016/0378-5955(91)90222-U
RAJAN R, 1995, J NEUROPHYSIOL, V74, P598
Rajan R, 2000, J NEUROSCI, V20, P6684
REITER ER, 1995, J NEUROPHYSIOL, V73, P506
Rizzuto R, 1998, SCIENCE, V280, P1763, DOI 10.1126/science.280.5370.1763
ROBERTS WM, 1990, J NEUROSCI, V10, P3664
ROBERTSON D, 1985, HEARING RES, V20, P63, DOI 10.1016/0378-5955(85)90059-0
ROBITAILLE R, 1993, J PHYSIOLOGY-PARIS, V87, P15, DOI 10.1016/0928-4257(93)90020-T
Siri MDR, 1999, J PHYSIOL-LONDON, V514, P533, DOI 10.1111/j.1469-7793.1999.533ae.x
Rosato-Siri MD, 2002, EUR J NEUROSCI, V15, P1874, DOI 10.1046/j.1460-9568.2002.02015.x
ROSENBLUTH J, 1962, J CELL BIOL, V13, P405, DOI 10.1083/jcb.13.3.405
Ruel J, 2007, HEARING RES, V227, P19, DOI 10.1016/j.heares.2006.08.017
RUSSELL IJ, 1971, J EXP BIOL, V54, P643
Russell IJ, 1997, J ACOUST SOC AM, V102, P1734, DOI 10.1121/1.420083
Ruttiger L, 2004, P NATL ACAD SCI USA, V101, P12922, DOI 10.1073/pnas.0402660101
SAFIEDDINE S, 1992, EUR J NEUROSCI, V4, P981, DOI 10.1111/j.1460-9568.1992.tb00124.x
Safieddine S, 1996, MOL BRAIN RES, V40, P127
Safieddine S, 1997, EUR J NEUROSCI, V9, P356, DOI 10.1111/j.1460-9568.1997.tb01405.x
SAITO K, 1980, J ULTRA MOL STRUCT R, V71, P222, DOI 10.1016/S0022-5320(80)90108-2
Sen M, 2007, VISUAL NEUROSCI, V24, P663, DOI 10.1017/S0952523807070551
Shi XR, 2002, HEARING RES, V164, P49
Shi X, 2007, FREE RADICAL RES, V41, P1313, DOI 10.1080/10715760701687117
Shi XR, 2001, HEARING RES, V153, P23, DOI 10.1016/S0378-5955(00)00254-9
SHIGEMOTO T, 1991, J PHYSIOL-LONDON, V442, P669
Simmons DD, 2002, J NEUROBIOL, V53, P228, DOI 10.1002/neu.10130
SMITH CA, 1961, J ULTRA MOL STRUCT R, V5, P523, DOI 10.1016/S0022-5320(61)80025-7
SOBKOWICZ HM, 1989, J NEUROCYTOL, V18, P209, DOI 10.1007/BF01206663
Soh H, 2002, BIOPHYS J, V83, P2528
Sridhar TS, 1997, J NEUROSCI, V17, P428
SRIDHAR TS, 1995, J NEUROSCI, V15, P3667
Stocker M, 1999, P NATL ACAD SCI USA, V96, P4662, DOI 10.1073/pnas.96.8.4662
Szalai G, 2000, J BIOL CHEM, V275, P15305, DOI 10.1074/jbc.275.20.15305
Sziklai I, 1996, HEARING RES, V95, P87, DOI 10.1016/0378-5955(96)00026-3
Taranda J, 2009, PLOS BIOL, V7, P71, DOI 10.1371/journal.pbio.1000018
Thiers FA, 2008, JARO-J ASSOC RES OTO, V9, P477, DOI 10.1007/s10162-008-0135-x
Tritsch NX, 2010, J NEUROSCI, V30, P1539, DOI 10.1523/JNEUROSCI.3875-09.2010
Tritsch NX, 2010, NAT NEUROSCI, V13, P1050, DOI 10.1038/nn.2604
Turcan S, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009058
Verkhratsky A, 2005, PHYSIOL REV, V85, P201, DOI 10.1152/physrev.00004.2004
VETTER DE, 1991, SYNAPSE, V7, P21, DOI 10.1002/syn.890070104
Vetter DE, 1999, NEURON, V23, P93, DOI 10.1016/S0896-6273(00)80756-4
Vetter DE, 2007, P NATL ACAD SCI USA, V104, P20594, DOI 10.1073/pnas.0708545105
Waka N, 2003, HISTOL HISTOPATHOL, V18, P1115
Walsh EJ, 1998, J NEUROSCI, V18, P3859
Wang ZW, 2008, MOL NEUROBIOL, V38, P153, DOI 10.1007/s12035-008-8039-7
WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1
WEDEMEYER C, 2010, ASS RES OT M
Weisstaub N, 2002, HEARING RES, V167, P122, DOI 10.1016/S0378-5955(02)00380-5
Wersinger E, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013836
WHITLON DS, 1989, J NEUROCYTOL, V18, P505, DOI 10.1007/BF01474546
WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P966, DOI 10.1121/1.1912235
WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P950, DOI 10.1121/1.1912234
Xia XM, 1998, NATURE, V395, P503
YAMAMOTO T, 1991, SYNAPSE, V8, P119, DOI 10.1002/syn.890080206
Yuhas WA, 1999, J COMP PHYSIOL A, V185, P455, DOI 10.1007/s003590050406
Zucker RS, 2002, ANNU REV PHYSIOL, V64, P355, DOI 10.1146/annurev.physiol.64.092501.114547
NR 194
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2011
VL 279
IS 1-2
SI SI
BP 1
EP 12
DI 10.1016/j.heares.2010.12.018
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 830OQ
UT WOS:000295666700001
PM 21187136
ER
PT J
AU MacLeod, KM
AF MacLeod, Katrina M.
TI Short-term synaptic plasticity and intensity coding
SO HEARING RESEARCH
LA English
DT Article
ID AUDITORY BRAIN-STEM; COCHLEAR NUCLEUS ANGULARIS; INTERAURAL TIME
DIFFERENCE; SUPERIOR OLIVARY NUCLEUS; IMPROVES COINCIDENCE DETECTION;
NEURONAL CALCIUM SENSOR-1; LATERAL LEMNISCAL NUCLEI; PURKINJE-CELL
SYNAPSE; OWL TYTO-ALBA; BARN OWL
AB Alterations in synaptic strength over short time scales, termed short-term synaptic plasticity, can gate the flow of information through neural circuits. Different information can be extracted from the same presynaptic spike train depending on the activity- and time-dependent properties of the plasticity at a given synapse. The parallel processing in the brain stem auditory pathways provides an excellent model system for investigating the functional implications of short-term plasticity in neural coding. We review recent evidence that short-term plasticity differs in different pathways with a special emphasis on the 'intensity' pathway. While short-term depression dominates the 'timing' pathway, the intensity pathway is characterized by a balance of short-term depression and facilitation that allows linear transmission of rate-coded intensity information. Target-specific regulation of presynaptic plasticity mechanisms underlies the differential expression of depression and facilitation. The potential contribution of short-term plasticity to different aspects of 'intensity'-related information processing, such as interaural level/intensity difference coding, amplitude modulation coding, and intensity-dependent gain control coding, is discussed. (C) 2011 Elsevier B.V. All rights reserved.
C1 [MacLeod, Katrina M.] Univ Maryland, Dept Biol, College Pk, MD 20742 USA.
[MacLeod, Katrina M.] Univ Maryland, Neurosci & Cognit Sci Program, College Pk, MD 20742 USA.
RP MacLeod, KM (reprint author), Univ Maryland, Dept Biol, Biol Psychol Bldg 4244, College Pk, MD 20742 USA.
EM macleod@umd.edu
RI MacLeod, Katrina/F-4595-2015
CR Abbott LF, 1997, SCIENCE, V275, P220
Abbott LF, 2004, NATURE, V431, P796, DOI 10.1038/nature03010
ADOLPHS R, 1993, J NEUROSCI, V13, P3647
ARENDS JJA, 1986, BRAIN RES, V398, P375, DOI 10.1016/0006-8993(86)91499-X
Atluri PP, 1996, J NEUROSCI, V16, P5661
Babalian AL, 2003, EXP BRAIN RES, V153, P452, DOI 10.1007/s00221-003-1619-x
Beierlein M, 2003, J NEUROPHYSIOL, V90, P2987, DOI 10.1152/jn.00283.2003
Boudreau CE, 2005, J NEUROSCI, V25, P7179, DOI 10.1523/JNEUROSCI.1445-05.2005
Brenowitz S, 2001, J NEUROSCI, V21, P9487
Brenowitz S, 2001, J NEUROSCI, V21, P1857
Burger RM, 2005, J COMP NEUROL, V481, P6, DOI 10.1002/ce.20334
Caillard O, 2000, P NATL ACAD SCI USA, V97, P13372, DOI 10.1073/pnas.230362997
Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9
Cao XJ, 2010, J NEUROPHYSIOL, V104, P2308, DOI 10.1152/jn.00451.2010
Cao XJ, 2008, J COMP NEUROL, V510, P297, DOI 10.1002/cne.21788
Carandini M, 2002, J NEUROSCI, V22, P10053
Carr CE, 2002, BRAIN BEHAV EVOLUT, V59, P294, DOI 10.1159/000063565
CARR CE, 1991, J COMP NEUROL, V314, P306, DOI 10.1002/cne.903140208
CARR CE, 1990, J NEUROSCI, V10, P3227
Chance FS, 1998, J NEUROSCI, V18, P4785
Chung S, 2002, NEURON, V34, P437, DOI 10.1016/S0896-6273(02)00659-1
CONLEE JW, 1986, BRAIN RES, V367, P96, DOI 10.1016/0006-8993(86)91583-0
Cook DL, 2003, NATURE, V421, P66, DOI 10.1038/nature01248
Cuttle MF, 1998, J PHYSIOL-LONDON, V512, P723, DOI 10.1111/j.1469-7793.1998.723bd.x
Dingledine R, 1999, PHARMACOL REV, V51, P7
Dittman JS, 1998, J NEUROSCI, V18, P6147
Dittman JS, 2000, J NEUROSCI, V20, P1374
Felmy F, 2003, NEURON, V37, P801, DOI 10.1016/S0896-6273(03)00085-0
FRISINA RD, 1985, EXP BRAIN RES, V60, P417
Frisina RD, 2001, HEARING RES, V158, P1, DOI 10.1016/S0378-5955(01)00296-9
FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y
FRISINA RD, 1990, HEARING RES, V44, P123, DOI 10.1016/0378-5955(90)90075-Z
Fuhrmann G, 2002, J NEUROPHYSIOL, V87, P140
FUJITA I, 1991, J NEUROSCI, V11, P722
Fukui I, 2003, J PHYSIOL-LONDON, V548, P219
Gardner SM, 1999, J NEUROSCI, V19, P8721
Gardner SM, 2001, J NEUROSCI, V21, P7428
GEIGER JRP, 1995, NEURON, V15, P193, DOI 10.1016/0896-6273(95)90076-4
GLEICH O, 1995, HEARING RES, V82, P81
Inchauspe CG, 2007, J PHYSIOL-LONDON, V584, P835, DOI 10.1113/jphysiol.2007.139683
Grande LA, 2005, PHYSIOLOGY, V20, P201, DOI 10.1152/physiol.00006.2005
Griesinger CB, 2005, NATURE, V435, P212, DOI 10.1038/nature03567
Hermann J, 2007, J NEUROPHYSIOL, V98, P807, DOI 10.1152/jn.00355.2007
HEWITT MJ, 1992, J ACOUST SOC AM, V91, P2096, DOI 10.1121/1.403696
Hosoi N, 2007, J NEUROSCI, V27, P14286, DOI 10.1523/JNEUROSCI.4122-07.2007
Hyson RL, 2005, PHYSIOL BEHAV, V86, P297, DOI 10.1016/j.physbeh.2005.08.003
Inchauspe CG, 2004, J NEUROSCI, V24, P10379, DOI 10.1523/JNEUROSCI.2104-04.2004
Iwasaki S, 2001, J PHYSIOL-LONDON, V534, P861, DOI 10.1111/j.1469-7793.2001.00861.x
Joris P, 2007, TRENDS NEUROSCI, V30, P70, DOI 10.1016/j.tins.2006.12.004
Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003
KNUDSEN EI, 1977, SCIENCE, V198, P1278, DOI 10.1126/science.929202
KONISHI M, 1985, J ACOUST SOC AM, V78, P360, DOI 10.1121/1.392499
Konishi M, 2003, ANNU REV NEUROSCI, V26, P31, DOI 10.1146/annurev.neuro.26.041002.131123
Koppl C, 2003, J NEUROPHYSIOL, V89, P2313, DOI 10.1152/jn.00635.2002
Krutzfeldt NOE, 2010, J COMP NEUROL, V518, P2109, DOI 10.1002/cne.22334
Krutzfeldt NOE, 2010, J COMP NEUROL, V518, P2135, DOI 10.1002/cne.22324
Kuba H, 2002, J PHYSIOL-LONDON, V540, P529, DOI 10.1113/jphysiol.2001.013365
Kuba H, 2002, EUR J NEUROSCI, V15, P984, DOI 10.1046/j.1460-9568.2002.01933.x
Kubke MF, 1999, J COMP NEUROL, V415, P189, DOI 10.1002/(SICI)1096-9861(19991213)415:2<189::AID-CNE4>3.0.CO;2-E
Kuo SP, 2009, J NEUROSCI, V29, P9625, DOI 10.1523/JNEUROSCI.0103-09.2009
LACHICA EA, 1994, J COMP NEUROL, V348, P403, DOI 10.1002/cne.903480307
Levin MD, 1997, J COMP NEUROL, V378, P239, DOI 10.1002/(SICI)1096-9861(19970210)378:2<239::AID-CNE7>3.0.CO;2-4
Lorteije JAM, 2009, J NEUROSCI, V29, P13770, DOI 10.1523/JNEUROSCI.3285-09.2009
Lu Y, 2009, NEUROSCIENCE, V164, P1009, DOI 10.1016/j.neuroscience.2009.09.013
MacLeod KM, 2005, J NEUROPHYSIOL, V93, P2520, DOI 10.1152/jn.00898.2004
MacLeod KM, 2007, J NEUROPHYSIOL, V97, P2863, DOI 10.1152/jn.01030.2006
MacLeod KM, 2007, PROG BRAIN RES, V165, P123, DOI 10.1016/S0079-6123(06)65008-5
MacLeod KM, 2011, BIOL CYBERN, V104, P209, DOI 10.1007/s00422-011-0428-8
MANLEY GA, 1988, J NEUROSCI, V8, P2665
Markram H, 2004, NAT REV NEUROSCI, V5, P793, DOI 10.1038/nrn1519
Markram H, 1998, NEUROBIOL LEARN MEM, V70, P101, DOI 10.1006/nlme.1998.3841
McAlpine D, 2003, TRENDS NEUROSCI, V26, P347, DOI 10.1016/S0166-2236(03)00140-1
MOGDANS J, 1994, HEARING RES, V74, P148, DOI 10.1016/0378-5955(94)90183-X
MOISEFF A, 1983, J NEUROSCI, V3, P2553
MOLLER AR, 1973, BASIC MECH HEARING, P593
MOLLER AR, 1976, ACTA PHYSIOL SCAND, V98, P157, DOI 10.1111/j.1748-1716.1976.tb00235.x
Monsivais P, 2000, J NEUROSCI, V20, P2954
MOSBACHER J, 1994, SCIENCE, V266, P1059, DOI 10.1126/science.7973663
Muller M, 2007, J NEUROSCI, V27, P2261, DOI 10.1523/JNEUROSCI.5582-06.2007
Nishino E, 2008, J NEUROSCI, V28, P7153, DOI 10.1523/JNEUROSCI.4398-07.2008
Oertel D, 1999, ANNU REV PHYSIOL, V61, P497, DOI 10.1146/annurev.physiol.61.1.497
Otis TS, 1996, J NEUROSCI, V16, P1634
Parks TN, 2000, HEARING RES, V147, P77, DOI 10.1016/S0378-5955(00)00122-2
Pena JL, 1996, J NEUROSCI, V16, P7046
Petralia RS, 2000, HEARING RES, V147, P59, DOI 10.1016/S0378-5955(00)00120-9
Puelles L., 2007, CHICK BRAIN STEREOTA
RAMAN IM, 1994, J NEUROSCI, V14, P4998
Reyes A, 1998, NAT NEUROSCI, V1, P279
RHODE WS, 1994, HEARING RES, V77, P43, DOI 10.1016/0378-5955(94)90252-6
RHODE WS, 1994, J NEUROPHYSIOL, V71, P1797
ROUILLER EM, 1986, J COMP NEUROL, V249, P261, DOI 10.1002/cne.902490210
Ryugo DK, 2003, BRAIN RES BULL, V60, P435, DOI 10.1016/S0361-9230(03)00049-2
Sakaba T, 2001, NEURON, V32, P1119, DOI 10.1016/S0896-6273(01)00543-8
Saunders JC, 2002, J NEUROPHYSIOL, V88, P2887, DOI 10.1152/jn.00381.2002
SCHNEGGENBURGER IT, 2002, TRENDS NEUROSCI, V25, P206
Sippy T, 2003, NAT NEUROSCI, V6, P1031, DOI 10.1038/nn1117
SIVARAMAKRISHNAN S, 1995, J NEUROSCI, V15, P6576
Smith AJ, 2000, J PHYSIOL-LONDON, V529, P681, DOI 10.1111/j.1469-7793.2000.00681.x
Soares D, 2001, J COMP NEUROL, V429, P192, DOI 10.1002/1096-9861(20000108)429:2<192::AID-CNE2>3.0.CO;2-5
Soares D, 2002, J NEUROPHYSIOL, V88, P152, DOI 10.1152/jn.00674.2001
Sugden SG, 2002, J NEUROBIOL, V52, P189, DOI 10.1002/neu.10078
SULLIVAN WE, 1985, J NEUROPHYSIOL, V53, P201
SULLIVAN WE, 1984, J NEUROSCI, V4, P1787
Sun HY, 2005, J PHYSIOL-LONDON, V568, P815, DOI 10.1113/jphysiol.2005.093948
TAKAHASHI T, 1984, J NEUROSCI, V4, P1781
TAKAHASHI TT, 1988, J COMP NEUROL, V274, P212, DOI 10.1002/cne.902740207
Taschenberger H, 2002, NEURON, V36, P1127, DOI 10.1016/S0896-6273(02)01137-6
Taschenberger H, 2000, J NEUROSCI, V20, P9162
Tollin DJ, 2008, J NEUROSCI, V28, P4848, DOI 10.1523/JNEUROSCI.5421-07.2008
Trussell LO, 1999, ANNU REV PHYSIOL, V61, P477, DOI 10.1146/annurev.physiol.61.1.477
Tsujimoto T, 2002, SCIENCE, V295, P2276, DOI 10.1126/science.1068278
Usrey WM, 2000, J NEUROSCI, V20, P5461
Viete S, 1997, J NEUROSCI, V17, P1815
von Gersdorff H, 2002, NAT REV NEUROSCI, V3, P53, DOI 10.1038/nrn705
Wang LY, 1998, NATURE, V394, P384, DOI 10.1038/28645
WANG XQ, 1992, PHILOS T ROY SOC B, V336, P399, DOI 10.1098/rstb.1992.0074
Wang Y, 2008, J NEUROPHYSIOL, V100, P1255, DOI 10.1152/jn.90715.2008
Wild JM, 2010, J COMP NEUROL, V518, P2149, DOI 10.1002/cne.22325
Winslow R. L., 1987, AUDITORY PROCESSING, P212
Wong AYC, 2003, J NEUROSCI, V23, P4868
Woolley SMN, 2005, J NEUROPHYSIOL, V94, P1143, DOI 10.1152/jn.01064.2004
Yang H, 2008, J NEUROPHYSIOL, V99, P2510, DOI 10.1152/jn.01293.2007
Yang LC, 1999, J NEUROSCI, V19, P2313
Young ED, 2008, NEUROSCIENCE, V154, P127, DOI 10.1016/j.neuroscience.2008.01.036
ZHANG S, 1994, J PHYSIOL-LONDON, V480, P123
Zucker RS, 1999, CURR OPIN NEUROBIOL, V9, P305, DOI 10.1016/S0959-4388(99)80045-2
Zucker RS, 2002, ANNU REV PHYSIOL, V64, P355, DOI 10.1146/annurev.physiol.64.092501.114547
NR 127
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2011
VL 279
IS 1-2
SI SI
BP 13
EP 21
DI 10.1016/j.heares.2011.03.001
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 830OQ
UT WOS:000295666700002
PM 21397676
ER
PT J
AU Kopp-Scheinpflug, C
Steinert, JR
Forsythe, ID
AF Kopp-Scheinpflug, Cornelia
Steinert, Joern R.
Forsythe, Ian D.
TI Modulation and control of synaptic transmission across the MNTB
SO HEARING RESEARCH
LA English
DT Article
ID PRESYNAPTIC CALCIUM CURRENT; ANTEROVENTRAL COCHLEAR NUCLEUS;
METABOTROPIC GLUTAMATE-RECEPTOR; MAMMALIAN CENTRAL SYNAPSE; CENTRAL
AUDITORY SYNAPSE; KV3.1 POTASSIUM CHANNEL; LATERAL SUPERIOR OLIVE;
SHORT-TERM PLASTICITY; RAT MEDIAL NUCLEUS; TRAPEZOID BODY
AB The aim of this review is to consider the various forms and functions of transmission across the calyx of Held/MNTB synapse and how its modulation might contribute to auditory processing. The calyx of Held synapse is the largest synapse in the mammalian brain which uses the conventional excitatory synaptic transmitter, glutamate. It is sometimes portrayed as the 'ultimate' in synaptic signalling: it is a synaptic relay in which a single axon forms one synaptic terminal onto one specific target neuron. Questions that are often raised are: :Why does such a large and secure synapse need any form of modulation? Surely it is built simply to guarantee firing an action potential in the target neuron? If this synapse is so secure. why is a synapse needed at all?" Investigating these questions explains some general limitations of transmission at synapses and provides insight into the ionic basis of neuronal function by bringing together in vivo and in vitro approaches.
We will start by defining the firing behaviour of MNTB neurons in vitro (in response to synaptic stimulation or current injection) and in vivo (in response to sound) and examining the reasons for different types of firing under the two conditions. Then we will consider some of the mechanisms by which transmission can be regulated. We will finish by discussing the following hypothesis: modulation and adaptation of presynaptic and postsynaptic conductances at the calyx of Held relay synapse are aimed at maximising the security of sound onset encoding while providing secondary information on frequency spectrum, harmonic envelope and duration of sound throughout the later part of the response. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Kopp-Scheinpflug, Cornelia; Steinert, Joern R.; Forsythe, Ian D.] Univ Leicester, MRC Toxicol Unit, Leicester LE1 9HN, Leics, England.
RP Forsythe, ID (reprint author), Univ Leicester, MRC Toxicol Unit, Hodgkin Bldg, Leicester LE1 9HN, Leics, England.
EM idf@le.ac.uk
RI Steinert, Joern/A-6678-2008
FU Medical Research Council, UK
FX This work was supported by the Medical Research Council, UK.
CR ADAMS JC, 1990, HEARING RES, V49, P281, DOI 10.1016/0378-5955(90)90109-3
Awatramani GB, 2004, J NEUROSCI, V24, P2643, DOI 10.1523/JNEUROSCI.5144-03.2004
BANKS MI, 1992, J NEUROSCI, V12, P2819
BARNESDAVIES M, 1995, J PHYSIOL-LONDON, V488, P387
Barnes-Davies M, 2001, HEARING RES, V162, P134, DOI 10.1016/S0378-5955(01)00378-1
Billups B, 2005, J PHYSIOL-LONDON, V565, P885, DOI 10.1113/jphysiol.2005.086736
Borst JGG, 1998, J PHYSIOL-LONDON, V513, P149, DOI 10.1111/j.1469-7793.1998.149by.x
Borst JGG, 2010, TRENDS NEUROSCI, V33, P259, DOI 10.1016/j.tins.2010.03.003
Borst JGG, 1995, J PHYSIOL-LONDON, V489, P825
Brenowitz S, 2001, J NEUROSCI, V21, P1857
Brew HM, 1995, J NEUROSCI, V15, P8011
Brew HM, 2007, J NEUROPHYSIOL, V98, P1501, DOI 10.1152/jn.00640.2006
Brew HM, 2003, J PHYSIOL-LONDON, V548, P1, DOI 10.1113/jphysiol.2002.035568
Brown MR, 2011, HEARING RES, V279, P32, DOI 10.1016/j.heares.2011.03.004
Cuttle MF, 1998, J PHYSIOL-LONDON, V512, P723, DOI 10.1111/j.1469-7793.1998.723bd.x
Dehmel S, 2010, HEARING RES, V268, P234, DOI 10.1016/j.heares.2010.06.005
Devaux J, 2003, J NEUROSCI, V23, P4509
Dodson PD, 2003, J PHYSIOL-LONDON, V550, P27, DOI 10.1113/jphysiol.2003.046250
Dolphin AC, 2003, PHARMACOL REV, V55, P607, DOI 10.1124/pr.55.4.3
Durand DM, 2010, PHILOS T R SOC B, V365, P2347, DOI 10.1098/rstb.2010.0050
Elezgarai I, 2003, NEUROSCIENCE, V118, P889, DOI 10.1016/S0306-4522(03)00068-X
Elezgarai I, 1999, J COMP NEUROL, V411, P431, DOI 10.1002/(SICI)1096-9861(19990830)411:3<431::AID-CNE6>3.0.CO;2-R
Englitz B, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007014
Forsythe ID, 1998, NEURON, V20, P797, DOI 10.1016/S0896-6273(00)81017-X
FORSYTHE ID, 1994, J PHYSIOL-LONDON, V479, P381
Grothe B, 2010, PHYSIOL REV, V90, P983, DOI 10.1152/physrev.00026.2009
GUINAN JJ, 1990, HEARING RES, V49, P321, DOI 10.1016/0378-5955(90)90111-2
Habets RLP, 2005, J PHYSIOL-LONDON, V564, P173, DOI 10.1113/jphysiol.2004.079160
Hennig MH, 2008, J PHYSIOL-LONDON, V586, P3129, DOI 10.1113/jphysiol.2008.152124
Hermann J, 2007, J NEUROPHYSIOL, V98, P807, DOI 10.1152/jn.00355.2007
Huang H, 2008, NEURON, V60, P975, DOI 10.1016/j.neuron.2008.10.052
Inchauspe CG, 2004, J NEUROSCI, V24, P10379, DOI 10.1523/JNEUROSCI.2104-04.2004
Isaacson JS, 1998, J NEUROPHYSIOL, V80, P1571
Ishikawa T, 2003, J NEUROSCI, V23, P10445
Ishikawa T, 2005, J PHYSIOL-LONDON, V568, P199, DOI 10.1113/jphysiol.2005.089912
Johnston J, 2010, J PHYSIOL-LONDON, V588, P3187, DOI 10.1113/jphysiol.2010.191973
Johnston J, 2008, J PHYSIOL-LONDON, V586, P3493, DOI 10.1113/jphysiol.2008.153734
Johnston J, 2009, J NEUROSCI METH, V183, P158, DOI 10.1016/j.jneumeth.2009.06.025
JORIS PX, 1994, J NEUROPHYSIOL, V71, P1022
JORIS PX, 1994, J NEUROPHYSIOL, V71, P1037
Joris PX, 1998, J NEUROPHYSIOL, V79, P253
Joshi I, 2004, J NEUROSCI, V24, P183, DOI 10.1523/JNEUROSCI.1074-03.2004
Kajikawa Y, 2001, P NATL ACAD SCI USA, V98, P8054, DOI 10.1073/pnas.141031298
KARCZ A, 2011, J PHYSL
Kimura M, 2003, J PHYSIOL-LONDON, V553, P415, DOI 10.1113/jphysiol.2003.048371
Klug A, 2006, J NEUROPHYSIOL, V96, P1547, DOI 10.1152/jn.01381.2005
Kopp-Scheinpflug C, 2008, NEUROSCIENCE, V154, P160, DOI 10.1016/j.neuroscience.2008.01.088
Kopp-Scheinpflug C, 2008, NEUROSCIENCE, V157, P432, DOI 10.1016/j.neuroscience.2008.08.068
Kopp-Scheinpflug C, 2003, JARO, V4, P1, DOI 10.1007/s10162-002-2010-5
Kopp-Scheinpflug C, 2002, J NEUROSCI, V22, P11004
Korogod N, 2005, J NEUROSCI, V25, P5127, DOI 10.1523/JNEUROSCI.1295-05.2005
Kushmerick C, 2004, J NEUROSCI, V24, P5955, DOI 10.1523/JNEUROSCI.0768-04.2004
KUWABARA N, 1991, J COMP NEUROL, V314, P707, DOI 10.1002/cne.903140406
Leao KE, 2010, EUR J NEUROSCI, V32, P1658, DOI 10.1111/j.1460-9568.2010.07437.x
Leao RM, 2002, J NEUROPHYSIOL, V87, P2297, DOI 10.1152/jn.00761.2001
Leao RM, 2005, J NEUROSCI, V25, P3724, DOI 10.1523/JNEUROSCI.3983-04.2005
Lim R, 2000, J PHYSIOL-LONDON, V525, P447, DOI 10.1111/j.1469-7793.2000.t01-1-00447.x
LIPPE WR, 1994, J NEUROSCI, V14, P1486
Lorteije JAM, 2009, J NEUROSCI, V29, P13770, DOI 10.1523/JNEUROSCI.3285-09.2009
Lu T, 2008, NEURON, V57, P524, DOI 10.1016/j.neuron.2007.12.010
Mc Laughlin M, 2008, J NEUROSCI, V28, P10206, DOI 10.1523/JNEUROSCI.2735-08.2008
Moulder KL, 2006, NEUROSCIENTIST, V12, P11, DOI 10.1177/1073858405282431
Neher E, 2006, PFLUG ARCH EUR J PHY, V453, P261, DOI 10.1007/s00424-006-0143-9
Paolini AG, 2001, HEARING RES, V159, P101, DOI 10.1016/S0378-5955(01)00327-6
PARADISO K, 2007, J VISUALIZED EXPT, V244
Price GD, 2006, J NEUROSCI, V26, P11432, DOI 10.1523/JNEUROSCI.1660-06.2006
Rasband MN, 2004, J NEUROSCI RES, V76, P749, DOI 10.1002/jnr.20073
Rasband MN, 2001, DEV BIOL, V236, P5, DOI 10.1006/dbio.2001.0326
Rhode WS, 2008, NEUROSCIENCE, V154, P87, DOI 10.1016/j.neuroscience.2008.03.013
Sakmann B, 2006, PFLUG ARCH EUR J PHY, V453, P249, DOI 10.1007/s00424-006-0172-4
Scheuss V, 2002, J NEUROSCI, V22, P728
SCHMIEDT RA, 1989, HEARING RES, V42, P23, DOI 10.1016/0378-5955(89)90115-9
Schneggenburger R, 2002, TRENDS NEUROSCI, V25, P206, DOI 10.1016/S0166-2236(02)02139-2
Schneggenburger R, 2006, CELL TISSUE RES, V326, P311, DOI 10.1007/s00441-006-0272-7
Smith PH, 1998, J NEUROPHYSIOL, V79, P3127
Song P, 2005, NAT NEUROSCI, V8, P1335, DOI 10.1038/nn1533
Spirou GA, 2008, NEUROSCIENCE, V154, P171, DOI 10.1016/j.neuroscience.2008.04.002
Steinert JR, 2010, J PHYSIOL-LONDON, V588, P447, DOI 10.1113/jphysiol.2009.184317
Steinert JR, 2008, NEURON, V60, P642, DOI 10.1016/j.neuron.2008.08.025
Steinert JR, 2010, NEUROSCIENTIST, V16, P435, DOI 10.1177/1073858410366481
Strumbos JG, 2010, NEUROSCIENCE, V167, P567, DOI 10.1016/j.neuroscience.2010.02.046
Taberner AM, 2005, J NEUROPHYSIOL, V93, P557, DOI 10.1152/jn.00574.2004
Takahashi T, 1998, J NEUROSCI, V18, P3138
Takahashi T, 1996, SCIENCE, V274, P594, DOI 10.1126/science.274.5287.594
Taschenberger H, 2000, J NEUROSCI, V20, P9162
Tollin DJ, 2005, J NEUROSCI, V25, P10648, DOI 10.1523/JNEUROSCI.1609-05.2005
Tolnai S, 2008, EUR J NEUROSCI, V27, P3191, DOI 10.1111/j.1460-9568.2008.06292.x
Tritsch NX, 2007, NATURE, V450, P50, DOI 10.1038/nature06233
Turecek R, 2001, NATURE, V411, P587, DOI 10.1038/35079084
Typlt M, 2010, EUR J NEUROSCI, V31, P1574, DOI 10.1111/j.1460-9568.2010.07188.x
Vacher H, 2008, PHYSIOL REV, V88, P1407, DOI 10.1152/physrev.00002.2008
Viitanen T, 2010, J PHYSIOL-LONDON, V588, P1527, DOI 10.1113/jphysiol.2009.181826
vonGersdorff H, 1997, J NEUROSCI, V17, P8137
WANG H, 1993, NATURE, V365, P75, DOI 10.1038/365075a0
Wang LY, 1998, J PHYSIOL-LONDON, V509, P183, DOI 10.1111/j.1469-7793.1998.183bo.x
Wang Y, 2010, HEARING RES, V270, P101, DOI 10.1016/j.heares.2010.09.003
Weston MC, 2006, NAT STRUCT MOL BIOL, V13, P1120, DOI 10.1038/nsmb1178
Wong AYC, 2003, J NEUROSCI, V23, P4868
Wong AYC, 2006, J NEUROPHYSIOL, V95, P3336, DOI 10.1152/jn.jn.00694.2005
Yang H, 2009, J NEUROPHYSIOL, V102, P1699, DOI 10.1152/jn.00072.2009
Yang H, 2008, J NEUROPHYSIOL, V99, P2510, DOI 10.1152/jn.01293.2007
Young SM, 2009, NEURON, V63, P482, DOI 10.1016/j.neuron.2009.07.028
Youssoufian M, 2005, J NEUROPHYSIOL, V94, P3168, DOI 10.1152/jn.00342.2005
Zhou L, 2001, J NEUROPHYSIOL, V85, P197
NR 104
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2011
VL 279
IS 1-2
SI SI
BP 22
EP 31
DI 10.1016/j.heares.2011.02.007
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 830OQ
UT WOS:000295666700003
PM 21397677
ER
PT J
AU Brown, MR
Kaczmarek, LK
AF Brown, Maile R.
Kaczmarek, Leonard K.
TI Potassium channel modulation and auditory processing
SO HEARING RESEARCH
LA English
DT Article
ID X MENTAL-RETARDATION; AUTISM SPECTRUM DISORDERS; LATERAL SUPERIOR OLIVE;
RAT MEDIAL NUCLEUS; FREQUENCY FIRING NEURONS; BRAIN-STEM NEURONS;
TRAPEZOID BODY; DIFFERENTIAL EXPRESSION; PRESYNAPTIC TERMINALS; SYNAPTIC
PLASTICITY
AB For accurate processing of auditory information, neurons in auditory brainstem nuclei have to fire at high rates with high temporal accuracy. These two requirements can only be fulfilled when the intrinsic electrical properties of these neurons are matched to the pattern of incoming synaptic stimulation. This review article focuses on three families of potassium channels that are critical to shaping the firing pattern and accuracy of neurons. Changes in the auditory environment can trigger very rapid changes in the phosphorylation state of potassium channels in auditory brainstem nuclei. Longer lasting changes in the auditory environment produce changes in the rates of translation and transcription of genes encoding these channels. A key protein that plays a role in setting the overall sensitivity of the auditory system to sound stimuli is FMRP (Fragile X Mental Retardation Protein), which binds channels directly and also regulates the translation of mRNAs for the channels. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Kaczmarek, Leonard K.] Yale Univ, Sch Med, Dept Pharmacol, New Haven, CT 06520 USA.
Yale Univ, Sch Med, Dept Cellular & Mol Physiol, New Haven, CT 06520 USA.
RP Kaczmarek, LK (reprint author), Yale Univ, Sch Med, Dept Pharmacol, 333 Cedar St, New Haven, CT 06520 USA.
EM leonard.kaczmarek@yale.edu
CR Alcantara JI, 2004, J CHILD PSYCHOL PSYC, V45, P1107, DOI 10.1111/j.1469-7610.2004.t01-1-00303.x
BANKS MI, 1992, J NEUROSCI, V12, P2819
Bassell GJ, 2008, NEURON, V60, P201, DOI 10.1016/j.neuron.2008.10.004
Bhattacharjee A, 2002, J COMP NEUROL, V454, P241, DOI 10.1002/cne.10439
Bhattacharjee A, 2003, J NEUROSCI, V23, P11681
Bhattacharjee Arin, 2005, J Comp Neurol, V484, P80, DOI 10.1002/cne.20462
Borst JGG, 1995, J PHYSIOL-LONDON, V489, P825
Borst JGG, 1996, NATURE, V383, P431, DOI 10.1038/383431a0
Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a
Brew HM, 2005, HEARING RES, V206, P116, DOI 10.1016/j.heares.2004.12.012
Brew HM, 1995, J NEUROSCI, V15, P8011
Brew HM, 2003, J PHYSIOL-LONDON, V548, P1, DOI 10.1113/jphysiol.2002.035568
Brown MR, 2010, NAT NEUROSCI, V13, P819, DOI 10.1038/nn.2563
BROWNELL WE, 1975, BRAIN RES, V94, P413, DOI 10.1016/0006-8993(75)90226-7
Chen HJ, 2009, J NEUROSCI, V29, P5654, DOI 10.1523/JNEUROSCI.5978-08.2009
Cramer KS, 2005, HEARING RES, V206, P42, DOI 10.1016/j.heares.2004.11.024
Darnell JC, 2001, CELL, V107, P489, DOI 10.1016/S0092-8674(01)00566-9
Desai R, 2008, J BIOL CHEM, V283, P22283, DOI 10.1074/jbc.M801663200
Dodson PD, 2003, J PHYSIOL-LONDON, V550, P27, DOI 10.1113/jphysiol.2003.046250
Dodson PD, 2002, J NEUROSCI, V22, P6953
Fadool DA, 2004, NEURON, V41, P389, DOI 10.1016/S0896-6273(03)00844-4
FORSYTHE ID, 1994, J PHYSIOL-LONDON, V479, P381
Gan L, 1999, J NEUROCHEM, V73, P1350, DOI 10.1046/j.1471-4159.1999.0731350.x
Gan L, 1998, J NEUROBIOL, V37, P69, DOI 10.1002/(SICI)1097-4695(199810)37:1<69::AID-NEU6>3.0.CO;2-6
Gan L, 1996, J BIOL CHEM, V271, P5859
Gazula VR, 2010, J COMP NEUROL, V518, P3205, DOI 10.1002/cne.22393
Grigg JJ, 2000, HEARING RES, V140, P77, DOI 10.1016/S0378-5955(99)00187-2
Hagerman RJ, 2009, PEDIATRICS, V123, P378, DOI 10.1542/peds.2008-0317
Hall SS, 2009, J NEURODEV DISORD, V1, P91, DOI 10.1007/s11689-009-9007-x
HANSON DM, 1986, AM J MED GENET, V23, P195, DOI 10.1002/ajmg.1320230114
Hardman RM, 2009, J PHYSIOL-LONDON, V587, P2487, DOI 10.1113/jphysiol.2009.170548
Hille B., 2001, ION CHANNELS EXCITAB
HODGKIN AL, 1952, J PHYSIOL-LONDON, V117, P500
Huber KM, 2002, P NATL ACAD SCI USA, V99, P7746, DOI 10.1073/pnas.122205699
Johnston J, 2010, J PHYSIOL-LONDON, V588, P3187, DOI 10.1113/jphysiol.2010.191973
Johnston J, 2008, J PHYSIOL-LONDON, V586, P3493, DOI 10.1113/jphysiol.2008.153734
Joiner WJ, 1998, NAT NEUROSCI, V1, P462, DOI 10.1038/2176
Joris PX, 1996, J NEUROPHYSIOL, V76, P2137
JORIS PX, 1995, J NEUROPHYSIOL, V73, P1043
Kaczmarek LK, 2005, HEARING RES, V206, P133, DOI 10.1016/j.heares.2004.11.023
Kaczmarek LK, 2010, J PHYSIOL-LONDON, V588, P1387, DOI 10.1113/jphysiol.2010.189712
Kaczmarek LK, 2006, NAT REV NEUROSCI, V7, P761, DOI 10.1038/nrn1988
KANEMASA T, 1995, J NEUROPHYSIOL, V74, P207
Kopp-Scheinpflug C, 2003, J NEUROSCI, V23, P9199
Kopp-Scheinpflug C, 2003, JARO, V4, P1, DOI 10.1007/s10162-002-2010-5
Laggerbauer B, 2001, HUM MOL GENET, V10, P329, DOI 10.1093/hmg/10.4.329
Leao KE, 2010, EUR J NEUROSCI, V32, P1658, DOI 10.1111/j.1460-9568.2010.07437.x
Leao RN, 2006, J PHYSIOL-LONDON, V571, P563, DOI 10.1113/jphysiol.2005.098780
Li W, 2001, J COMP NEUROL, V437, P196, DOI 10.1002/cne.1279
Li ZZ, 2001, NUCLEIC ACIDS RES, V29, P2276, DOI 10.1093/nar/29.11.2276
Liu SQJ, 1998, J NEUROSCI, V18, P2881
Liu SQJ, 1998, J NEUROSCI, V18, P8758
Macica CM, 2003, J NEUROSCI, V23, P1133
Macica CM, 2001, J NEUROSCI, V21, P1160
MANIS PB, 1991, J NEUROSCI, V11, P2865
Martina M, 1998, J NEUROSCI, V18, P8111
Massengill JL, 1997, J NEUROSCI, V17, P3136
McDonald AJ, 2006, NEUROSCIENCE, V138, P537, DOI 10.1016/j.neuroscience.2005.11.047
Miller LJ, 1999, AM J MED GENET, V83, P268, DOI 10.1002/(SICI)1096-8628(19990402)83:4<268::AID-AJMG7>3.3.CO;2-B
MOORE MJ, 1983, J NEUROSCI, V3, P237
MOREST D. KENT, 1968, BRAIN RES, V9, P288, DOI 10.1016/0006-8993(68)90235-7
Mossbridge JA, 2006, J NEUROSCI, V26, P12708, DOI 10.1523/JNEUROSCI.2254-06.2006
Munte TF, 2001, NATURE, V409, P580, DOI 10.1038/35054668
Nager W, 2003, COGNITIVE BRAIN RES, V17, P83, DOI 10.1016/S0926-6410(03)00083-1
Oertel D, 1999, ANNU REV PHYSIOL, V61, P497, DOI 10.1146/annurev.physiol.61.1.497
PERNEY TM, 1992, J NEUROPHYSIOL, V68, P756
Perney TM, 1997, J COMP NEUROL, V386, P178
Pfeiffer BE, 2009, NEUROSCIENTIST, V15, P549, DOI 10.1177/1073858409333075
Polley DB, 2006, J NEUROSCI, V26, P4970, DOI 10.1523/JNEUROSCI.3771-05.2006
Rathouz M, 1998, J NEUROPHYSIOL, V80, P2824
Russo N, 2009, DEVELOPMENTAL SCI, V12, P557, DOI 10.1111/j.1467-7687.2008.00790.x
Russo N, 2009, J AUTISM DEV DISORD, V39, P1185, DOI 10.1007/s10803-009-0737-0
Russo NM, 2008, CLIN NEUROPHYSIOL, V119, P1720, DOI 10.1016/j.clinph.2008.01.108
Schneggenburger R, 2006, CELL TISSUE RES, V326, P311, DOI 10.1007/s00441-006-0272-7
Smith PH, 1998, J NEUROPHYSIOL, V79, P3127
Song P, 2005, NAT NEUROSCI, V8, P1335, DOI 10.1038/nn1533
Song P, 2006, J BIOL CHEM, V281, P15582, DOI 10.1074/jbc.M512866200
Steinert JR, 2008, NEURON, V60, P642, DOI 10.1016/j.neuron.2008.08.025
Strumbos JG, 2010, J NEUROSCI, V30, P10263, DOI 10.1523/JNEUROSCI.1125-10.2010
Strumbos JG, 2010, NEUROSCIENCE, V167, P567, DOI 10.1016/j.neuroscience.2010.02.046
SWANSON R, 1990, NEURON, V4, P929, DOI 10.1016/0896-6273(90)90146-7
Taschenberger H, 2002, NEURON, V36, P1127, DOI 10.1016/S0896-6273(02)01137-6
Taschenberger H, 2000, J NEUROSCI, V20, P9162
Tharpe AM, 2006, EAR HEARING, V27, P430, DOI 10.1097/01.aud.0000224981.60575.d8
Tong HX, 2010, J PHYSIOL-LONDON, V588, P1451, DOI 10.1113/jphysiol.2009.186676
Trussell LO, 1999, ANNU REV PHYSIOL, V61, P477, DOI 10.1146/annurev.physiol.61.1.477
von Hehn CAA, 2004, J NEUROSCI, V24, P1936, DOI 10.1523/JNEUROSCI.4554-03.2004
Wang LY, 1998, NATURE, V394, P384, DOI 10.1038/28645
Wang LY, 1998, P NATL ACAD SCI USA, V95, P1882, DOI 10.1073/pnas.95.4.1882
Wang LY, 1998, J PHYSIOL-LONDON, V509, P183, DOI 10.1111/j.1469-7793.1998.183bo.x
WEISER M, 1995, J NEUROSCI, V15, P4298
WU SH, 1993, HEARING RES, V68, P189
Yang B, 2007, J NEUROSCI, V27, P2617, DOI 10.1523/JNEUROSCI5308-06.2007
Yang B, 2006, NEUROPHARMACOLOGY, V51, P896, DOI 10.1016/j.neuropharm.2006.06.003
Yuan A, 2003, NEURON, V37, P765, DOI 10.1016/S0896-6273(03)00096-5
Zukin RS, 2009, FRONT NEURAL CIRCUIT, V3, DOI 10.3389/neuro.04.014.2009
NR 96
TC 8
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2011
VL 279
IS 1-2
SI SI
BP 32
EP 42
DI 10.1016/j.heares.2011.03.004
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 830OQ
UT WOS:000295666700004
PM 21414395
ER
PT J
AU Grothe, B
Koch, U
AF Grothe, Benedikt
Koch, Ursula
TI Dynamics of binaural processing in the mammalian sound localization
pathway - The role of GABA(B) receptors
SO HEARING RESEARCH
LA English
DT Article
ID AUDITORY BRAIN-STEM; LATERAL SUPERIOR OLIVE; NUCLEUS MAGNOCELLULARIS
NEURONS; INHIBITORY SYNAPTIC DEPRESSION; INTERAURAL TIME; TRAPEZOID
BODY; MEDIAL NUCLEUS; GLYCINERGIC INHIBITION; COINCIDENCE DETECTION;
GABAERGIC INHIBITION
AB The initial binaural processing in the superior olive represents the fastest computation known in the entire mammalian brain. Although the binaural system has to perform under very different and often highly dynamic acoustic conditions, the integration of binaural information in the superior olivary complex (SOC) has not been considered to be adaptive or dynamic itself. Recent evidence, however, shows that the initial processing of interaural level and interaural time differences relies on well-adjusted interactions of both the excitatory and the inhibitory projections, respectively. Under static conditions, these inputs seem to be tightly balanced, but may also require dynamic adjustment for proper function when the acoustic environment changes. GABA(B) receptors are at least one mechanism rendering the system more dynamic than considered so far. A comprehensive description of how binaural processing in the SOC is dynamically regulated by GABA(B) receptors in adults and in early development is important for understanding how spatial auditory processing changes with acoustic context. (C) 2011 Published by Elsevier B.V.
C1 [Grothe, Benedikt; Koch, Ursula] Univ Munich, Dept Biol 2, Div Neurobiol, D-82152 Martinsried, Germany.
RP Grothe, B (reprint author), Univ Munich, Dept Biol 2, Div Neurobiol, Grosshaderner Str 2-4, D-82152 Martinsried, Germany.
EM grothe@zi.biologie.uni-muenchen.de; koch@bio.uni-muenchen.de
RI Grothe, Benedikt/A-7877-2010
CR ADAMS JC, 1990, HEARING RES, V49, P281, DOI 10.1016/0378-5955(90)90109-3
Balakrishnan V, 2003, J NEUROSCI, V23, P4134
Billups B, 2005, J PHYSIOL-LONDON, V565, P885, DOI 10.1113/jphysiol.2005.086736
Blauert J., 1996, SPATIAL HEARING
Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a
Brenowitz S, 1998, NEURON, V20, P135, DOI 10.1016/S0896-6273(00)80441-9
Burger RM, 2005, J COMP NEUROL, V489, P11, DOI 10.1002/cne.20607
Burger RM, 2005, J COMP NEUROL, V481, P6, DOI 10.1002/ce.20334
CANT NB, 1992, HEARING RES, V58, P26, DOI 10.1016/0378-5955(92)90005-8
Caspary DM, 2008, J EXP BIOL, V211, P1781, DOI 10.1242/jeb.013581
CHANDA S, 2010, J NEUROPHYSIOL, V103, P2063
Chang EH, 2003, J NEUROPHYSIOL, V90, P1479, DOI 10.1152/jn.00386.2003
Couchman K, 2010, J NEUROSCI, V30, P17111, DOI 10.1523/JNEUROSCI.1760-10.2010
Dahmen JC, 2010, NEURON, V66, P937, DOI 10.1016/j.neuron.2010.05.018
Finlayson PG, 1997, HEARING RES, V103, P1, DOI 10.1016/S0378-5955(96)00158-X
Fukui I, 2010, J NEUROSCI, V30, P12075, DOI 10.1523/JNEUROSCI.1484-10.2010
Funabiki K, 1998, J PHYSIOL-LONDON, V508, P851, DOI 10.1111/j.1469-7793.1998.851bp.x
GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613
GROTHE B, 1993, J NEUROPHYSIOL, V69, P1192
Grothe B, 2010, PHYSIOL REV, V90, P983, DOI 10.1152/physrev.00026.2009
HARNISCHFEGER G, 1985, J NEUROPHYSIOL, V53, P89
Hassfurth B, 2010, J NEUROSCI, V30, P9715, DOI 10.1523/JNEUROSCI.1552-10.2010
HEISE I, 2005, SOC NEUR M 2005
HELFERT RH, 1989, BRAIN RES, V501, P269, DOI 10.1016/0006-8993(89)90644-6
Hermann J, 2007, J NEUROPHYSIOL, V98, P807, DOI 10.1152/jn.00355.2007
Hirono M, 2001, NAT NEUROSCI, V4, P1207, DOI 10.1038/nn764
HUANG HY, 1989, EUR J PHARMACOL, V169, P115
Isaacson JS, 1998, J NEUROPHYSIOL, V80, P1571
Joris P, 2007, TRENDS NEUROSCI, V30, P70, DOI 10.1016/j.tins.2006.12.004
Kakazu Y, 1999, J NEUROSCI, V19, P2843
KANDLER K, 1995, J NEUROSCI, V15, P6890
Kapfer C, 2002, NAT NEUROSCI, V5, P247, DOI 10.1038/mm810
Karayannis T, 2010, J NEUROSCI, V30, P9898, DOI 10.1523/JNEUROSCI.5883-09.2010
KISS A, 1983, EXP BRAIN RES, V52, P315
Koch U, 2009, CURR OPIN NEUROBIOL, V19, P305, DOI 10.1016/j.conb.2009.03.006
Kopp-Scheinpflug C, 2008, NEUROSCIENCE, V154, P160, DOI 10.1016/j.neuroscience.2008.01.088
Kopp-Scheinpflug C, 2003, JARO, V4, P1, DOI 10.1007/s10162-002-2010-5
Korada S, 1999, J COMP NEUROL, V409, P664, DOI 10.1002/(SICI)1096-9861(19990712)409:4<664::AID-CNE10>3.0.CO;2-S
Kornau HC, 2006, CELL TISSUE RES, V326, P517, DOI 10.1007/s00441-006-0264-7
Kotak VC, 2000, J NEUROSCI, V20, P5820
Kotak VC, 1998, J NEUROSCI, V18, P4646
Kotak VC, 2001, J NEUROPHYSIOL, V86, P536
Kullmann PHM, 2002, EUR J NEUROSCI, V15, P1093, DOI 10.1046/j.1460-9568.2002.01946.x
Lee S, 2010, SCIENCE, V330, P790, DOI 10.1126/science.1184334
Lim R, 2000, J PHYSIOL-LONDON, V525, P447, DOI 10.1111/j.1469-7793.2000.t01-1-00447.x
Lohrke S, 2005, EUR J NEUROSCI, V22, P2708, DOI 10.1111/j.1460-9568.2005.04465.x
Lorteije JAM, 2009, J NEUROSCI, V29, P13770, DOI 10.1523/JNEUROSCI.3285-09.2009
Lu Y, 2005, J NEUROPHYSIOL, V93, P1429, DOI 10.1152/jn.00786.2004
Magnusson AK, 2005, J PHYSIOL-LONDON, V568, P497, DOI 10.1113/jphysiol.2005.094763
Magnusson AK, 2008, NEURON, V59, P125, DOI 10.1016/j.neuron.2008.05.011
Mc Laughlin M, 2008, J NEUROSCI, V28, P10206, DOI 10.1523/JNEUROSCI.2735-08.2008
Meffin H, 2009, J ACOUST SOC AM, V126, P2437, DOI 10.1121/1.3238239
Monsivais P, 2000, J NEUROSCI, V20, P2954
MOORE MJ, 1983, J NEUROSCI, V3, P237
Nabekura J, 2004, NAT NEUROSCI, V7, P17, DOI 10.1038/nn1170
Nishimaki T, 2007, EUR J NEUROSCI, V26, P323, DOI 10.1111/j.1460-9568.2007.05656.x
Nishino E, 2008, J NEUROSCI, V28, P7153, DOI 10.1523/JNEUROSCI.4398-07.2008
Olah S, 2009, NATURE, V461, P1278, DOI 10.1038/nature08503
Park TJ, 2008, HEARING RES, V238, P58, DOI 10.1016/j.heares.2007.10.009
Park TJ, 1996, J NEUROSCI, V16, P6554
Pecka M, 2008, J NEUROSCI, V28, P6914, DOI 10.1523/JNEUROSCI.1660-08.2008
Rives ML, 2009, EMBO J, V28, P2195, DOI 10.1038/emboj.2009.177
ROBERTS RC, 1987, J COMP NEUROL, V258, P267, DOI 10.1002/cne.902580207
Sakaba T, 2003, NATURE, V424, P775, DOI 10.1038/nature01859
SCHWARTZ IR, 1976, ANAT REC, V184
Smith AJ, 2000, J PHYSIOL-LONDON, V529, P681, DOI 10.1111/j.1469-7793.2000.00681.x
Sodickson DL, 1996, J NEUROSCI, V16, P6374
Sonntag M, 2009, J NEUROSCI, V29, P9510, DOI 10.1523/JNEUROSCI.1377-09.2009
Spirou GA, 1998, J COMP NEUROL, V398, P257, DOI 10.1002/(SICI)1096-9861(19980824)398:2<257::AID-CNE7>3.0.CO;2-#
Takahashi T, 1998, J NEUROSCI, V18, P3138
Tang ZQ, 2009, J NEUROPHYSIOL, V102, P1672, DOI 10.1152/jn.00419.2009
Tollin DJ, 2005, J NEUROSCI, V25, P10648, DOI 10.1523/JNEUROSCI.1609-05.2005
Ulrich D, 2007, CURR OPIN NEUROBIOL, V17, P298, DOI 10.1016/j.conb.2007.04.001
YIN TCT, 1990, J NEUROPHYSIOL, V64, P465
NR 74
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2011
VL 279
IS 1-2
SI SI
BP 43
EP 50
DI 10.1016/j.heares.2011.03.013
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 830OQ
UT WOS:000295666700005
PM 21447375
ER
PT J
AU Klug, A
AF Klug, Achim
TI Short-term synaptic plasticity in the auditory brain stem by using
in-vivo-like stimulation parameters
SO HEARING RESEARCH
LA English
DT Article
ID TRANSMITTER RELEASE RATES; ANTEROVENTRAL COCHLEAR NUCLEUS; SUPERIOR
OLIVARY COMPLEX; NATURAL SPIKE TRAINS; CAT TRAPEZOID BODY; CALYX-TYPE
SYNAPSE; HELD SYNAPSE; MEDIAL NUCLEUS; POSTTETANIC POTENTIATION;
GLUTAMATE RECEPTORS
AB Reduced systems such as brain slices offer a powerful approach to study the physiology of auditory neurons in great detail. However, when studying auditory nuclei in reduced systems such as brain slices, especially highly active auditory brain stem nuclei, one has to be aware that the unphysiological lack of activity in the reduced system compared to the in-vivo situation has a number of important effects on the neurons under investigation, and thus on the data that are measured. Most importantly, the lack of chronic activity in the slice preparation has important effects on the properties of short-term plasticity of the synapses. The main purpose of this article is to discuss how spontaneous activity in auditory neurons, or the lack thereof, can affect the data measured. (C) 2011 Elsevier B.V. All rights reserved.
C1 Univ Colorado Denver, Dept Physiol & Biophys, Aurora, CO 80045 USA.
RP Klug, A (reprint author), Univ Colorado Denver, Dept Physiol & Biophys, POB 6511,MS 8307, Aurora, CO 80045 USA.
EM Achim.klug@ucdenver.edu
CR BARNESDAVIES M, 1995, J PHYSIOL-LONDON, V488, P387
BETZ WJ, 1970, J PHYSIOL-LONDON, V206, P629
Bollmann JH, 2000, SCIENCE, V289, P953, DOI 10.1126/science.289.5481.953
Borst JGG, 1999, J PHYSIOL-LONDON, V521, P123, DOI 10.1111/j.1469-7793.1999.00123.x
Borst JGG, 2010, TRENDS NEUROSCI, V33, P259, DOI 10.1016/j.tins.2010.03.003
Borst JGG, 1996, NATURE, V383, P431, DOI 10.1038/383431a0
Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a
BROWNELL WE, 1975, BRAIN RES, V94, P413, DOI 10.1016/0006-8993(75)90226-7
BRUGGE JF, 1978, ANNU REV NEUROSCI, V1, P363, DOI 10.1146/annurev.ne.01.030178.002051
Burnashev N, 2005, CELL CALCIUM, V37, P489, DOI 10.1016/j.ceca.2005.01.003
CAIRD D, 1983, EXP BRAIN RES, V52, P385
Cheng Q, 2008, NEURON, V57, P171, DOI 10.1016/j.neuron.2008.01.004
de Lange RPJ, 2003, J NEUROSCI, V23, P10164
Dittman J, 2009, ANNU REV CELL DEV BI, V25, P133, DOI 10.1146/annurev.cellbio.042308.113302
Evans MG, 2006, J PHYSIOL-LONDON, V576, P3, DOI 10.1113/jphysiol.2006.118927
Forsythe ID, 1998, NEURON, V20, P797, DOI 10.1016/S0896-6273(00)81017-X
Fuchs P, 2008, J NEUROPHYSIOL, V100, P1695, DOI 10.1152/jn.90838.2008
GEISLER CD, 1985, J ACOUST SOC AM, V77, P1102, DOI 10.1121/1.392228
GOLDBERG JAY M., 1968, J NEUROPHYSIOL, V31, P639
GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613
GOLDBERG JM, 1973, BRAIN RES, V64, P35, DOI 10.1016/0006-8993(73)90169-8
Groemer TW, 2007, NAT NEUROSCI, V10, P145, DOI 10.1038/nn1831
Habets RLP, 2006, J NEUROPHYSIOL, V96, P2868, DOI 10.1152/jn.00427.2006
Habets RLP, 2005, J PHYSIOL-LONDON, V564, P173, DOI 10.1113/jphysiol.2004.079160
Heil P, 2007, J NEUROSCI, V27, P8457, DOI 10.1523/JNEUROSCI.1512-07.2007
Hennig MH, 2008, J PHYSIOL-LONDON, V586, P3129, DOI 10.1113/jphysiol.2008.152124
Hermann J, 2007, J NEUROPHYSIOL, V98, P807, DOI 10.1152/jn.00355.2007
Hermann J, 2009, J NEUROPHYSIOL, V101, P20, DOI 10.1152/jn.90243.2008
Hosoi N, 2007, J NEUROSCI, V27, P14286, DOI 10.1523/JNEUROSCI.4122-07.2007
HUDSPETH AJ, 1994, NEURON, V12, P1, DOI 10.1016/0896-6273(94)90147-3
HUDSPETH AJ, 1989, NATURE, V341, P397, DOI 10.1038/341397a0
Hudspeth AJ, 1997, NEURON, V19, P947, DOI 10.1016/S0896-6273(00)80385-2
IRVINE DRF, 1992, PHYSL AUDITORY BRAIN, V2, P153
Jahn R, 2006, NAT REV MOL CELL BIO, V7, P631, DOI 10.1038/nrm2002
JAHN R, 1990, J PHYSIOL-PARIS, V84, P128
JONES HC, 1988, J PHYSIOL-LONDON, V402, P579
JONES HC, 1992, PROG BRAIN RES, V91, P123
JORIS PX, 1994, J NEUROPHYSIOL, V71, P1022
Kadner A, 2006, J NEUROPHYSIOL, V95, P1499, DOI 10.1152/jn.00902.2005
Kandaswamy U, 2010, J NEUROSCI, V30, P15904, DOI 10.1523/JNEUROSCI.4050-10.2010
KATZ B, 1965, PROC R SOC SER B-BIO, V161, P483, DOI 10.1098/rspb.1965.0016
Kiang NY-s, 1965, DISCHARGE PATTERNS S
Klug Achim, 2006, P132
Klyachko VA, 2006, PLOS BIOL, V4, P1187, DOI 10.1371/journal.pbio.0040207
Kopp-Scheinpflug C, 2003, JARO, V4, P1, DOI 10.1007/s10162-002-2010-5
Korogod N, 2005, J NEUROSCI, V25, P5127, DOI 10.1523/JNEUROSCI.1295-05.2005
Kushmerick C, 2006, J NEUROSCI, V26, P1366, DOI 10.1523/JNEUROSCI.3889-05.2006
Kushmerick C, 2004, J NEUROSCI, V24, P5955, DOI 10.1523/JNEUROSCI.0768-04.2004
Lang Thorsten, 2008, V184, P107
Lee JS, 2008, J NEUROSCI, V28, P7945, DOI 10.1523/JNEUROSCI.2165-08.2008
LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736
LILEY AW, 1953, J NEUROPHYSIOL, V16, P509
LoGiudice L, 2007, TRAFFIC, V8, P1123, DOI 10.1111/j.1600-0854.2007.00591.x
Lorteije JAM, 2009, J NEUROSCI, V29, P13770, DOI 10.1523/JNEUROSCI.3285-09.2009
MacLeod KM, 2007, J NEUROPHYSIOL, V97, P2863, DOI 10.1152/jn.01030.2006
Mc Laughlin M, 2008, J NEUROSCI, V28, P10206, DOI 10.1523/JNEUROSCI.2735-08.2008
Meyer AC, 2001, J NEUROSCI, V21, P7889
MOORE MJ, 1983, J NEUROSCI, V3, P237
Muller M, 2008, J PHYSIOL-LONDON, V586, P5503, DOI 10.1113/jphysiol.2008.155838
Muller M, 2010, J NEUROSCI, V30, P2007, DOI 10.1523/JNEUROSCI.4378-09.2010
Neher E, 2001, J NEUROSCI, V21, P444
Neher E, 2008, NEURON, V59, P861, DOI 10.1016/j.neuron.2008.08.019
Neher E, 2001, J NEUROSCI, V21, P9638
Postlethwaite M, 2007, J PHYSIOL-LONDON, V579, P69, DOI 10.1113/jphysiol.2006.123612
Rizzoli SO, 2005, NAT REV NEUROSCI, V6, P57, DOI 10.1038/nrn1583
ROBERTS WM, 1988, ANNU REV CELL BIOL, V4, P63, DOI 10.1146/annurev.cb.04.110188.000431
Sakaba T, 2001, J NEUROSCI, V21, P462
Sakaba T, 2001, NEURON, V32, P1119, DOI 10.1016/S0896-6273(01)00543-8
Satzler K, 2002, J NEUROSCI, V22, P10567
Schneggenburger R, 2000, NATURE, V406, P889, DOI 10.1038/35022702
Schneggenburger R, 1999, NEURON, V23, P399, DOI 10.1016/S0896-6273(00)80789-8
Schneggenburger R, 2005, CURR OPIN NEUROBIOL, V15, P266, DOI 10.1016/j.conb.2005.05.006
Schneggenburger R, 2002, TRENDS NEUROSCI, V25, P206, DOI 10.1016/S0166-2236(02)02139-2
Schneggenburger R, 2006, CELL TISSUE RES, V326, P311, DOI 10.1007/s00441-006-0272-7
Schwarz DWF, 1997, HEARING RES, V114, P127, DOI 10.1016/S0378-5955(97)00162-7
Smith PH, 1998, J NEUROPHYSIOL, V79, P3127
Smith SM, 2008, TRENDS NEUROSCI, V31, P559, DOI 10.1016/j.tins.2008.08.005
SOMMER I, 1993, EXP BRAIN RES, V95, P223
SPANGLER KM, 1985, J COMP NEUROL, V238, P249, DOI 10.1002/cne.902380302
Spirou GA, 2005, NEUROSCIENCE, V136, P843, DOI 10.1016/j.neuroscience.2005.08.068
SPIROU GA, 1990, J NEUROPHYSIOL, V63, P1169
SUDHOF TC, 1993, PROG BRAIN RES, V98, P235
Sun JY, 2001, NEURON, V30, P171, DOI 10.1016/S0896-6273(01)00271-9
Taschenberger H, 2002, NEURON, V36, P1127, DOI 10.1016/S0896-6273(02)01137-6
Taschenberger H, 2000, J NEUROSCI, V20, P9162
Trommershauser J, 2003, BIOPHYS J, V84, P1563
TRUSSELL LO, 1988, P NATL ACAD SCI USA, V85, P4562, DOI 10.1073/pnas.85.12.4562-a
TRUSSELL LO, 1989, NEURON, V3, P209, DOI 10.1016/0896-6273(89)90034-2
Trussell LO, 1999, ANNU REV PHYSIOL, V61, P477, DOI 10.1146/annurev.physiol.61.1.477
Trussell LO, 2002, CURR OPIN NEUROBIOL, V12, P400, DOI 10.1016/S0959-4388(02)00335-5
Tsujimoto T, 2002, SCIENCE, V295, P2276, DOI 10.1126/science.1068278
vonGersdorff H, 1997, J NEUROSCI, V17, P8137
von Gersdorff H, 2002, NAT REV NEUROSCI, V3, P53, DOI 10.1038/nrn705
Wang LY, 1998, NATURE, V394, P384, DOI 10.1038/28645
Wang Y, 2010, HEARING RES, V270, P101, DOI 10.1016/j.heares.2010.09.003
Wang Y, 2008, J NEUROPHYSIOL, V100, P1255, DOI 10.1152/jn.90715.2008
Weis S, 1999, BIOPHYS J, V77, P2418, DOI 10.1016/S0006-3495(99)77079-7
Wilkinson RS, 2004, TRENDS NEUROSCI, V27, P171, DOI 10.1016/j.tins.2004.01.011
Wong AYC, 2003, J NEUROSCI, V23, P4868
Wu LG, 1999, NEURON, V23, P821, DOI 10.1016/S0896-6273(01)80039-8
WU SH, 1993, HEARING RES, V68, P189
XUE L, 2010, J PHYSL
Yost W. A., 2008, SPRINGER HDB AUDITOR, V29
NR 103
TC 3
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2011
VL 279
IS 1-2
SI SI
BP 51
EP 59
DI 10.1016/j.heares.2011.05.011
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 830OQ
UT WOS:000295666700006
PM 21640177
ER
PT J
AU Reyes, AD
AF Reyes, Alex D.
TI Synaptic short-term plasticity in auditory cortical circuits
SO HEARING RESEARCH
LA English
DT Article
ID PRIMARY VISUAL-CORTEX; NEOCORTICAL PYRAMIDAL NEURONS; IN-VITRO;
THALAMOCORTICAL SYNAPSES; NEUROTRANSMITTER RELEASE; GAIN-CONTROL; LAYER
2/3; DEPRESSION; RAT; MODULATION
AB The auditory system must be able to adapt to changing acoustic environment and still maintain accurate representation of signals. Mechanistically, this is a difficult task because the responsiveness of a large heterogeneous population of interconnected neurons must be adjusted properly and precisely. Synaptic short-term plasticity (STP) is widely regarded as a viable mechanism for adaptive processes. Although the cellular mechanism for STP is well characterized, the overall effect on information processing at the network level is poorly understood. The main challenge is that there are many cell types in auditory cortex, each of which exhibit different forms and degrees of STP. In this article, I will review the basic properties of STP in auditory cortical circuits and discuss the possible impact on signal processing. (C) 2011 Elsevier B.V. All rights reserved.
C1 NYU, Ctr Neural Sci, New York, NY 10003 USA.
RP Reyes, AD (reprint author), NYU, Ctr Neural Sci, New York, NY 10003 USA.
EM reyes@cns.nyu.edu
FU NIH [DC005787-01A1]
FX Supported by NIH DC005787-01A1. The author wishes to thank R.B. Levy for
helpful comments.
CR Abbott LF, 1997, SCIENCE, V275, P220
Abbott LF, 2004, NATURE, V431, P796, DOI 10.1038/nature03010
Ascoli GA, 2008, NAT REV NEUROSCI, V9, P557, DOI 10.1038/nrn2402
Atzori M, 2001, NAT NEUROSCI, V4, P1230, DOI 10.1038/nn760
Bartlett EL, 2005, J NEUROPHYSIOL, V94, P83, DOI 10.1152/jn.01124.2004
Borst JGG, 2010, TRENDS NEUROSCI, V33, P259, DOI 10.1016/j.tins.2010.03.003
Boudreau CE, 2005, J NEUROSCI, V25, P7179, DOI 10.1523/JNEUROSCI.1445-05.2005
Brosch M, 1999, J NEUROPHYSIOL, V82, P1542
Brosch M, 2000, CEREB CORTEX, V10, P1155, DOI 10.1093/cercor/10.12.1155
Castro-Alamancos MA, 2002, J PHYSIOL-LONDON, V541, P319, DOI 10.1113/jphysiol.2002.016857
Chattopadhyaya B, 2004, J NEUROSCI, V24, P9598, DOI 10.1523/JNEUROSCI.1851-04.2004
Cook DL, 2003, NATURE, V421, P66, DOI 10.1038/nature01248
CREUTZFELDT O, 1980, EXP BRAIN RES, V39, P87
Cruikshank SJ, 2001, NEUROSCIENCE, V105, P553, DOI 10.1016/S0306-4522(01)00226-3
Cruikshank SJ, 2002, J NEUROPHYSIOL, V87, P361
David SV, 2009, J NEUROSCI, V29, P3374, DOI 10.1523/JNEUROSCI.5249-08.2009
de la Rocha J, 2008, J NEUROSCI, V28, P9151, DOI 10.1523/JNEUROSCI.1789-08.2008
Hromadka T, 2008, PLOS BIOL, V6, P124, DOI 10.1371/journal.pbio.0060016
Dittman JS, 2000, J NEUROSCI, V20, P1374
Eggermont JJ, 1999, J NEUROSCI, V19, P2780
Ehret G, 1976, J Am Audiol Soc, V1, P179
Feldmeyer D, 2006, J PHYSIOL-LONDON, V575, P583, DOI 10.1113/jphysiol.2006.105106
Hsieh CY, 2000, BRAIN RES, V880, P51, DOI 10.1016/S0006-8993(00)02766-9
KAWAGUCHI Y, 1995, J NEUROSCI, V15, P2638
Lee CC, 2008, J NEUROPHYSIOL, V100, P317, DOI 10.1152/jn.90391.2008
Levy RB, 2008, BRAIN RES, V1215, P97, DOI 10.1016/j.brainres.2008.03.067
LEVY RB, 2009, SOC NEUR ABST
Ma YY, 2006, J NEUROSCI, V26, P5069, DOI 10.1523/JNEUROSCI.0661-06.2006
Malone BJ, 2002, J NEUROSCI, V22, P4625
Markram H, 1998, P NATL ACAD SCI USA, V95, P5323, DOI 10.1073/pnas.95.9.5323
Markram H, 1998, NEUROBIOL LEARN MEM, V70, P101, DOI 10.1006/nlme.1998.3841
McGarry LM, 2010, FRONT NEURAL CIRCUIT, V4, DOI 10.3389/fncir.2010.00012
Metherate R, 1999, EXP BRAIN RES, V126, P160, DOI 10.1007/s002210050726
Naud R, 2008, BIOL CYBERN, V99, P335, DOI 10.1007/s00422-008-0264-7
Neher E, 2008, NEURON, V59, P861, DOI 10.1016/j.neuron.2008.08.019
OSWALD AM, 2010, CEREB CORTEX
Oswald AMM, 2009, J NEUROSCI, V29, P10321, DOI 10.1523/JNEUROSCI.1703-09.2009
Oswald AMM, 2008, J NEUROPHYSIOL, V99, P2998, DOI 10.1152/jn.01160.2007
Oswald AMM, 2006, CURR OPIN NEUROBIOL, V16, P371, DOI 10.1016/j.conb.2006.06.015
Recanzone GH, 2000, HEARING RES, V150, P104, DOI 10.1016/S0378-5955(00)00194-5
Reig R, 2006, CEREB CORTEX, V16, P688, DOI 10.1093/cercor/bhj014
Reyes A, 1999, J NEUROSCI, V19, P3827
Reyes A, 1998, NAT NEUROSCI, V1, P279
Rose HJ, 2001, NEUROSCIENCE, V106, P331, DOI 10.1016/S0306-4522(01)00282-2
Rose HJ, 2005, J NEUROPHYSIOL, V94, P2019, DOI 10.1152/jn.00860.2004
Rothman JS, 2009, NATURE, V457, P1015, DOI 10.1038/nature07604
Salgado H, 2011, HEARING RES, V271, P26, DOI 10.1016/j.heares.2010.08.014
SALGADO H, 2010, CEREB CORTEX, V21, P212
Takesian AE, 2010, J NEUROSCI, V30, P2716, DOI 10.1523/JNEUROSCI.3903-09.2010
Tan AYY, 2004, J NEUROPHYSIOL, V92, P630, DOI 10.1152/jn.01020.2003
Tan AYY, 2009, NEUROSCIENCE, V163, P1302, DOI 10.1016/j.neuroscience.2009.07.032
Tan AYY, 2007, NEUROSCIENCE, V146, P449, DOI 10.1016/j.neuroscience.2007.01.019
Theyel BB, 2010, NEUROREPORT, V21, P861, DOI 10.1097/WNR.0b013e32833d7cec
Thomson AM, 2002, CEREB CORTEX, V12, P936, DOI 10.1093/cercor/12.9.936
Tsodyks MV, 1997, P NATL ACAD SCI USA, V94, P719, DOI 10.1073/pnas.94.2.719
Varela JA, 1997, J NEUROSCI, V17, P7926
Viaene AN, 2011, J NEUROPHYSIOL, V105, P279, DOI 10.1152/jn.00747.2010
WATKINS PV, 2010, HEAR RES
Wehr M, 2005, NEURON, V47, P437, DOI 10.1016/j.neuron.2005.06.009
Xu H, 2007, J NEUROSCI, V27, P9417, DOI 10.1523/JNEUROSCI.1992-07.2007
Zhang LI, 2003, NATURE, V424, P201, DOI 10.1038/nature01796
Zucker RS, 2002, ANNU REV PHYSIOL, V64, P355, DOI 10.1146/annurev.physiol.64.092501.114547
NR 62
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2011
VL 279
IS 1-2
SI SI
BP 60
EP 66
DI 10.1016/j.heares.2011.04.017
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 830OQ
UT WOS:000295666700007
PM 21586318
ER
PT J
AU Zhao, YJ
Rubio, M
Tzounopoulos, T
AF Zhao, Yanjun
Rubio, Maria
Tzounopoulos, Thanos
TI Mechanisms underlying input-specific expression of
endocannabinoid-mediated synaptic plasticity in the dorsal cochlear
nucleus
SO HEARING RESEARCH
LA English
DT Article
ID TIMING-DEPENDENT PLASTICITY; DEPOLARIZATION-INDUCED SUPPRESSION;
CEREBELLAR PURKINJE-CELLS; ENDOGENOUS CANNABINOIDS; GLUTAMATE RECEPTORS;
PYRAMIDAL CELLS; DIFFERENTIAL DISTRIBUTION; SYNAPSES; NEURONS;
INHIBITION
AB A hallmark of brain organization is the integration of primary and modulatory pathways by principal neurons. Primary sensory inputs are usually not plastic, while modulatory inputs converging to the same principal neuron can be plastic. However, the mechanisms determining this input-specific expression of synaptic plasticity remain unknown. We investigated this problem in the dorsal cochlear nucleus (DCN), where principal cells integrate primary auditory nerve input with plastic, parallel fiber input. Our previous DCN studies have shown that parallel fiber inputs exhibit short- and long-term plasticities mediated by endocannabinoid signaling. Here we show that auditory nerve inputs to principal cells do not show short- or long-term endocannabinoid-mediated synaptic plasticity. Electrophysiological and electron microscopy studies indicate that input specificity arises from selective expression of presynaptic cannabinoid (CBI) receptors in parallel fiber terminals, but not in auditory nerve terminals. However, pairing of parallel fiber activity with auditory nerve activity elicits plasticity in parallel fiber inputs, thus suggesting a role for synaptic plasticity in multisensory integration. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Zhao, Yanjun; Rubio, Maria; Tzounopoulos, Thanos] Univ Pittsburgh, Sch Med, Dept Otolaryngol, Pittsburgh, PA 15261 USA.
[Rubio, Maria; Tzounopoulos, Thanos] Univ Pittsburgh, Sch Med, Dept Neurobiol, Pittsburgh, PA 15261 USA.
[Tzounopoulos, Thanos] Univ Pittsburgh & Carnegie Mellon, Ctr Neural Basis Cognit, Pittsburgh, PA 15213 USA.
RP Tzounopoulos, T (reprint author), Univ Pittsburgh, Sch Med, Dept Otolaryngol, Biomed Sci Tower 3,3501 5h Ave,Room 10021, Pittsburgh, PA 15261 USA.
EM thanos@pitt.edu
FU National Institute for Deafness and Communication Disorders [R01
DC-007905]
FX This work was supported by National Institute for Deafness and
Communication Disorders Grants R01 DC-007905 to T. Tzounopoulos and
DC-006881 to M. Rubio.
CR Amaral D G, 1993, Curr Opin Neurobiol, V3, P225, DOI 10.1016/0959-4388(93)90214-J
Bastian J, 2004, NEURON, V41, P767, DOI 10.1016/S0896-6273(04)00071-6
Bell CC, 1997, NATURE, V387, P278, DOI 10.1038/387278a0
Berman NJ, 1999, J EXP BIOL, V202, P1243
Brenowitz SD, 2006, J NEUROSCI, V26, P6841, DOI 10.1523/JNEUROSCI.1280-06.2006
Chevaleyre V, 2006, ANNU REV NEUROSCI, V29, P37, DOI 10.1146/annurev.neuro.29.051605.112834
COLBERT CM, 1992, J NEUROPHYSIOL, V68, P1
Crick F, 1998, NATURE, V391, P245, DOI 10.1038/34584
Dan Y, 2006, PHYSIOL REV, V86, P1033, DOI 10.1152/physrev.00030.2005
DOLLER HJ, 1985, BRAIN RES, V333, P305, DOI 10.1016/0006-8993(85)91584-7
Doucet JR, 2003, J COMP NEUROL, V461, P452, DOI 10.1002/cne.10722
Feldman DE, 2005, SCIENCE, V310, P810, DOI 10.1126/science.1115807
Freund TF, 2003, PHYSIOL REV, V83, P1017, DOI 10.1152/physrev.00004.2003
Fujino K, 2003, P NATL ACAD SCI USA, V100, P265, DOI 10.1073/pnas.0135345100
Fukudome Y, 2004, EUR J NEUROSCI, V19, P2682, DOI 10.1111/j.1460-9568.2004.03384.x
Harvey-Girard E, 2010, J NEUROSCI, V30, P6152, DOI 10.1523/JNEUROSCI.0303-10.2010
Hashimotodani Y, 2007, NEUROSCIENTIST, V13, P127, DOI 10.1177/1073858409296716
Ito M, 2001, PHYSIOL REV, V81, P1143
KANE EC, 1974, ANAT REC, V179, P67, DOI 10.1002/ar.1091790106
Kim J, 2002, J NEUROSCI, V22, P10182
Kreitzer AC, 2001, NEURON, V29, P717, DOI 10.1016/S0896-6273(01)00246-X
Kreitzer AC, 2001, J NEUROSCI, V21, part. no.
Larkum ME, 2009, SCIENCE, V325, P756, DOI 10.1126/science.1171958
LLANO I, 1991, NEURON, V6, P565, DOI 10.1016/0896-6273(91)90059-9
MANIS PB, 1994, J COMP NEUROL, V348, P261, DOI 10.1002/cne.903480208
Markram H, 1998, P NATL ACAD SCI USA, V95, P5323, DOI 10.1073/pnas.95.9.5323
Narushima M, 2007, J NEUROSCI, V27, P496, DOI 10.1523/JNEUROSCI.4644-06.2007
OERTEL D, 1990, J COMP NEUROL, V295, P136, DOI 10.1002/cne.902950112
Oertel D, 2004, TRENDS NEUROSCI, V27, P104, DOI 10.1016/j.tins.2003.12.001
Ohno-Shosaku T, 2002, EUR J NEUROSCI, V15, P953, DOI 10.1046/j.1460-9568.2002.01929.x
Ohno-Shosaku T, 2001, NEURON, V29, P729, DOI 10.1016/S0896-6273(01)00247-1
Petreanu L, 2009, NATURE, V457, P1142, DOI 10.1038/nature07709
Piomelli D, 2003, NAT REV NEUROSCI, V4, P873, DOI 10.1038/nrn1247
PITLER TA, 1994, NEURON, V13, P1447
Pouille F, 2004, NATURE, V429, P717, DOI 10.1038/nature02615
Reyes A, 1998, NAT NEUROSCI, V1, P279
Rozov A, 2001, J PHYSIOL-LONDON, V531, P807, DOI 10.1111/j.1469-7793.2001.0807h.x
Rubio ME, 2004, J COMP NEUROL, V477, P253, DOI 10.1002/cne.20249
Rubio ME, 2006, HEARING RES, V216, P154, DOI 10.1016/j.heares.2006.03.007
Rubio ME, 1997, NEURON, V18, P939, DOI 10.1016/S0896-6273(00)80333-5
Rubio ME, 1999, J NEUROSCI, V19, P5549
RYUGO DK, 1993, J COMP NEUROL, V329, P20, DOI 10.1002/cne.903290103
Shepherd G., 1990, SYNAPTIC ORG BRAIN
Sherman SM, 1998, P NATL ACAD SCI USA, V95, P7121, DOI 10.1073/pnas.95.12.7121
Shore SE, 2005, EUR J NEUROSCI, V21, P3334, DOI 10.1111/j.1460-9568.2005.04142.x
SMITH PH, 1985, J COMP NEUROL, V237, P127, DOI 10.1002/cne.902370110
Thomson AM, 1997, J PHYSIOL-LONDON, V502, P131, DOI 10.1111/j.1469-7793.1997.131bl.x
Toth K, 2000, J NEUROSCI, V20, P8279
Tzounopoulos T, 2007, NEURON, V54, P291, DOI 10.1016/j.neuron.2007.03.026
Tzounopoulos T, 2004, NAT NEUROSCI, V7, P719, DOI 10.1038/nn1272
Uchigashima M, 2007, J NEUROSCI, V27, P3663, DOI 10.1523/JNEUROSCI.0448-07.2007
Wallace MT, 2007, J NEUROPHYSIOL, V97, P921, DOI 10.1152/jn.00497.2006
Whiting B, 2009, NEUROSCIENCE, V163, P1264, DOI 10.1016/j.neuroscience.2009.07.049
Wilson RI, 2001, NATURE, V410, P588, DOI 10.1038/35069076
Yao HS, 2001, NEURON, V32, P315, DOI 10.1016/S0896-6273(01)00460-3
ZHANG S, 1993, J NEUROPHYSIOL, V69, P1384
Zhao YJ, 2011, J NEUROSCI, V31, P3158, DOI 10.1523/JNEUROSCI.5303-10.2011
Zhao YJ, 2009, J NEUROPHYSIOL, V101, P2434, DOI 10.1152/jn.00047.2009
NR 58
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2011
VL 279
IS 1-2
SI SI
BP 67
EP 73
DI 10.1016/j.heares.2011.03.007
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 830OQ
UT WOS:000295666700008
PM 21426926
ER
PT J
AU Hurley, LM
Hall, IC
AF Hurley, L. M.
Hall, I. C.
TI Context-dependent modulation of auditory processing by serotonin
SO HEARING RESEARCH
LA English
DT Article
ID DORSAL RAPHE NUCLEUS; SUPERIOR OLIVARY COMPLEX; RAT INFERIOR COLLICULUS;
ACTIVATED CATION CURRENT; IN-VIVO MICRODIALYSIS; COCHLEAR NUCLEUS; 5-HT
RECEPTORS; CEREBRAL-CORTEX; MESSENGER-RNA; MONOAMINERGIC INNERVATION
AB Context-dependent plasticity in auditory processing is achieved in part by physiological mechanisms that link behavioral state to neural responses to sound. The neuromodulator serotonin has many characteristics suitable for such a role. Serotonergic neurons are extrinsic to the auditory system but send projections to most auditory regions. These projections release serotonin during particular behavioral contexts. Heightened levels of behavioral arousal and specific extrinsic events, including stressful or social events, increase serotonin availability in the auditory system. Although the release of serotonin is likely to be relatively diffuse, highly specific effects of serotonin on auditory neural circuitry are achieved through the localization of serotonergic projections, and through a large array of receptor types that are expressed by specific subsets of auditory neurons. Through this array, serotonin enacts plasticity in auditory processing in multiple ways. Serotonin changes the responses of auditory neurons to input through the alteration of intrinsic and synaptic properties, and alters both short- and long-term forms of plasticity. The infrastructure of the serotonergic system itself is also plastic, responding to age and cochlear trauma. These diverse findings support a view of serotonin as a widespread mechanism for behaviorally relevant plasticity in the regulation of auditory processing. This view also accommodates models of how the same regulatory mechanism can have pathological consequences for auditory processing. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Hurley, L. M.] Indiana Univ, Bloomington, IN 47405 USA.
[Hall, I. C.] Columbia Univ, Fairchild Ctr 901, New York, NY 10027 USA.
RP Hurley, LM (reprint author), Indiana Univ, Jordan Hall Biol,1001 E 3rd St, Bloomington, IN 47405 USA.
EM lhurley@indiana.edu
CR Abrams JK, 2004, ANN NY ACAD SCI, V1018, P46, DOI 10.1196/annals.1296.005
Adell A, 2002, BRAIN RES REV, V39, P154, DOI 10.1016/S0165-0173(02)00182-0
Barnes NM, 1999, NEUROPHARMACOLOGY, V38, P1083, DOI 10.1016/S0028-3908(99)00010-6
Basura GJ, 2008, HEARING RES, V244, P45, DOI 10.1016/j.heares.2008.07.009
BEAUDET A, 1981, J PHYSIOL-PARIS, V77, P193
Bohorquez A, 2009, HEARING RES, V251, P29, DOI 10.1016/j.heares.2009.02.006
BOUTELLE MG, 1990, J NEUROSCI METH, V34, P151, DOI 10.1016/0165-0270(90)90053-I
Bunin MA, 1998, J NEUROSCI, V18, P4854
CAMPBELL MJ, 1987, J COMP NEUROL, V261, P209, DOI 10.1002/cne.902610204
CELADA P, 1993, N-S ARCH PHARMACOL, V347, P583, DOI 10.1007/BF00166940
CHALMERS DT, 1991, BRAIN RES, V561, P51, DOI 10.1016/0006-8993(91)90748-K
Clement HW, 1998, J NEURAL TRANSM, V105, P1155, DOI 10.1007/s007020050119
CRANSAC H, 1995, HEARING RES, V90, P65, DOI 10.1016/0378-5955(95)00147-X
Cransac H, 1996, HEARING RES, V100, P150, DOI 10.1016/0378-5955(96)00116-5
Cransac H, 1998, HEARING RES, V118, P151, DOI 10.1016/S0378-5955(98)00031-8
Cuccurazzu B, 2008, NEUROSCI LETT, V439, P70, DOI 10.1016/j.neulet.2008.04.094
Dahlin A, 2007, NEUROSCIENCE, V146, P1193, DOI 10.1016/j.neuroscience.2007.01.072
DeFelipe J, 1991, CEREB CORTEX, V1, P117, DOI 10.1093/cercor/1.2.117
EBERT U, 1992, NEUROSCI LETT, V145, P51, DOI 10.1016/0304-3940(92)90201-H
Edagawa Y, 2001, J NEUROSCI, V21, P1532
Edwards DH, 2002, BRAIN BEHAV EVOLUT, V60, P360, DOI 10.1159/000067789
Faingold C.L., 1991, NEUROBIOLOGY HEARING, P223
Fitzgerald KK, 1999, J NEUROPHYSIOL, V81, P2743
FITZPATRICK D, 1989, J COMP NEUROL, V288, P647, DOI 10.1002/cne.902880411
Gasser PJ, 2009, J COMP NEUROL, V512, P529, DOI 10.1002/cne.21921
GilLoyzaga P, 1997, NEUROREPORT, V8, P3519, DOI 10.1097/00001756-199711100-00020
Grahn RE, 1999, BRAIN RES, V826, P35, DOI 10.1016/S0006-8993(99)01208-1
Gu Q, 2002, NEUROSCIENCE, V111, P815, DOI 10.1016/S0306-4522(02)00026-X
Hall IC, 2010, J EXP BIOL, V213, P1009, DOI 10.1242/jeb.035956
HALL IC, 2011, BEHAV NEURO IN PRESS
Hannon J, 2008, BEHAV BRAIN RES, V195, P198, DOI 10.1016/j.bbr.2008.03.020
Harris-Warrick RM, 2010, FRONT BEHAV NEUROSCI, V4, ppii47
Hayley S, 2001, BRAIN RES, V892, P293, DOI 10.1016/S0006-8993(00)03262-5
Hegerl U, 2001, J AFFECT DISORDERS, V62, P93, DOI 10.1016/S0165-0327(00)00353-0
HEYM J, 1982, BRAIN RES, V251, P259, DOI 10.1016/0006-8993(82)90743-0
Holmstrom LA, 2010, J NEUROSCI, V30, P802, DOI 10.1523/JNEUROSCI.1964-09.2010
Holt AG, 2005, J NEUROCHEM, V93, P1069, DOI 10.1111/j.1471-4159.2005.03090.x
Holy TE, 2005, PLOS BIOL, V3, P2177, DOI 10.1371/journal.pbio.0030386
Hoyer D, 2002, PHARMACOL BIOCHEM BE, V71, P533, DOI 10.1016/S0091-3057(01)00746-8
Hurley LM, 2008, J NEUROPHYSIOL, V100, P1656, DOI 10.1152/jn.90536.2008
Hurley LM, 2005, J NEUROSCI, V25, P7876, DOI 10.1523/JNEUROSCI.1178-05.2005
Hurley LM, 1999, J NEUROSCI, V19, P8071
Hurley LM, 2007, BRAIN RES, V1181, P21, DOI 10.1016/j.brainres.2007.08.053
HURLEY LM, 2003, IN VIVO NEUROMODULAT
Hurley LM, 2001, J NEUROPHYSIOL, V85, P828
Hurley LM, 2004, CURR OPIN NEUROBIOL, V14, P488, DOI 10.1016/j.conb.2004.06.007
Hurley LM, 2006, J NEUROPHYSIOL, V96, P2177, DOI 10.1152/jn.00046.2006
Hurley LM, 2001, J COMP NEUROL, V435, P78, DOI 10.1002/cne.1194
Hurley LM, 2005, J COMP PHYSIOL A, V191, P535, DOI 10.1007/s00359-005-0623-y
Jacobs B. L., 1999, NEUROPSYCHOPHARMACOL, V21, P9
JACOBS BL, 1992, PHYSIOL REV, V72, P165
Ji WQ, 2007, J NEUROSCI, V27, P4910, DOI 10.1523/JNEUROSCI.5528-06.2007
Johnson RG, 1998, J PHARMACOL EXP THER, V285, P643
Kaiser A, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P71, DOI 10.1007/978-1-4419-8712-9_7
Katz PS, 1998, ANN NY ACAD SCI, V860, P181, DOI 10.1111/j.1749-6632.1998.tb09048.x
Kawano H, 1996, NEUROSCI LETT, V212, P143, DOI 10.1016/0304-3940(96)12795-6
KIEHN O, 1992, J NEUROPHYSIOL, V68, P485
Kim DO, 2003, EXP BRAIN RES, V153, P514, DOI 10.1007/s00221-003-1617-z
KLEPPER A, 1991, BRAIN RES, V557, P190, DOI 10.1016/0006-8993(91)90134-H
Klug A, 2002, J NEUROPHYSIOL, V88, P1941, DOI 10.1152/jn.00260.2002
KNUDSEN DP, 2010, BRAIN LANG
KOSOFSKY BE, 1987, SYNAPSE, V1, P153, DOI 10.1002/syn.890010204
Kranz GS, 2010, NEUROSCIENCE, V166, P1023, DOI 10.1016/j.neuroscience.2010.01.036
LAVOIE B, 1991, J COMP NEUROL, V312, P1, DOI 10.1002/cne.903120102
Lee HS, 2003, BRAIN RES, V963, P57, DOI 10.1016/S0006-8993(02)03841-6
LEMOAL M, 1979, BRAIN RES, V167, P1, DOI 10.1016/0006-8993(79)90259-2
LEWIS DA, 1986, HUM NEUROBIOL, V5, P181
Liu JX, 2003, HEARING RES, V175, P45, DOI 10.1016/S0378-5955(02)00708-6
Liu S, 2007, NEUROSCIENCE, V146, P1677, DOI 10.1016/j.neuroscience.2007.02.064
Luo XY, 2003, DEV NEUROSCI-BASEL, V25, P173, DOI 10.1159/000072266
Manunta Y, 2004, J NEUROPHYSIOL, V92, P1445, DOI 10.1152/jn.00079.2004
Manunta Y, 1997, EUR J NEUROSCI, V9, P833, DOI 10.1111/j.1460-9568.1997.tb01433.x
MARRIAGE J, 1995, J LARYNGOL OTOL, V109, P915
MAS M, 1995, BRAIN RES, V675, P13, DOI 10.1016/0006-8993(95)00029-P
MCCORMICK DA, 1990, J PHYSIOL-LONDON, V431, P319
MELO LL, 1995, PHARMACOL BIOCHEM BE, V51, P317, DOI 10.1016/0091-3057(94)00387-X
Mendlin A, 1996, J NEUROCHEM, V67, P617
Mesce KA, 2002, BRAIN BEHAV EVOLUT, V60, P339, DOI 10.1159/000067793
Miko IJ, 2009, HEARING RES, V251, P39, DOI 10.1016/j.heares.2009.02.003
Mitsushima D, 2006, EUR J NEUROSCI, V24, P3245, DOI 10.1111/j.1460-9568.2006.05214.x
Mizutani H, 2006, EUR J NEUROSCI, V24, P1946, DOI 10.1111/j.1460-9568.2006.05063.x
Monckton JE, 2002, J NEUROPHYSIOL, V87, P2124, DOI 10.1152/jn.00650.2001
Muller CP, 2007, NEUROPHARMACOLOGY, V52, P854, DOI 10.1016/j.neuropharm.2006.10.002
PAPADOPOULOS GC, 1991, PROG NEUROBIOL, V36, P195, DOI 10.1016/0301-0082(91)90030-5
PAPE HC, 1989, NATURE, V340, P715, DOI 10.1038/340715a0
PEROUTKA SJ, 1994, SYNAPSE, V18, P241, DOI 10.1002/syn.890180310
Peroutka Stephen J., 1995, Trends in Neurosciences, V18, P68, DOI 10.1016/0166-2236(95)93875-X
Peruzzi D, 2004, BRAIN RES, V998, P247, DOI 10.1016/j.brainres.2003.10.059
Peyron C, 1998, NEUROSCIENCE, V82, P443
POMPEIANO M, 1994, MOL BRAIN RES, V23, P163, DOI 10.1016/0169-328X(94)90223-2
POMPEIANO M, 1992, J NEUROSCI, V12, P440
Portas CM, 2000, PROG NEUROBIOL, V60, P13, DOI 10.1016/S0301-0082(98)00097-5
Pum ME, 2008, NEUROSCIENCE, V153, P361, DOI 10.1016/j.neuroscience.2008.02.029
Ramsey LCB, 2010, EUR J NEUROSCI, V32, P368, DOI 10.1111/j.1460-9568.2010.07299.x
Rao D, 2010, J NEUROPHYSIOL, V104, P2693, DOI 10.1152/jn.01092.2009
Robinson S, 2007, PROG BRAIN RES, V166, P263, DOI 10.1016/S0079-6123(07)66024-5
Rueter LE, 1996, BRAIN RES, V739, P57, DOI 10.1016/S0006-8993(96)00809-8
Sakurai A, 2006, J NEUROSCI, V26, P2010, DOI 10.1523/JNEUROSCI.2599-05.2006
Sari Y, 2004, NEUROSCI BIOBEHAV R, V28, P565, DOI 10.1016/j.neubiorev.2004.08.008
Simpson JJ, 2000, HEARING RES, V145, P1, DOI 10.1016/S0378-5955(00)00093-9
Smith DG, 2006, BRAIN RES, V1114, P24, DOI 10.1016/j.brainres.2006.07.058
Stark H, 1997, J NEUROCHEM, V68, P691
STEINBUSCH HWM, 1981, NEUROSCIENCE, V6, P557, DOI 10.1016/0306-4522(81)90146-9
Tadros SF, 2007, NEUROBIOL AGING, V28, P1112, DOI 10.1016/j.neurobiolaging.2006.05.021
Takase LF, 2008, BRAIN RES, V1200, P10, DOI 10.1016/j.brainres.2008.01.036
Thompson AM, 2006, BRAIN RES, V1122, P122, DOI 10.1016/j.brainres.2006.08.126
THOMPSON AM, 1995, J COMP NEUROL, V351, P104, DOI 10.1002/cne.903510110
Thompson AM, 2002, HEARING RES, V164, P77, DOI 10.1016/S0378-5955(01)00413-0
Thompson AM, 2004, NEUROSCI LETT, V356, P179, DOI 10.1016/j.neulet.2003.11.052
Thompson AM, 2001, BRAIN RES, V907, P195, DOI 10.1016/S0006-8993(01)02483-0
Thompson AM, 2009, BRAIN RES, V1253, P60, DOI 10.1016/j.brainres.2008.11.054
Thompson AM, 2000, MICROSC RES TECHNIQ, V51, P330, DOI 10.1002/1097-0029(20001115)51:4<330::AID-JEMT4>3.0.CO;2-X
THOMPSON GC, 1994, OTOLARYNG HEAD NECK, V110, P93, DOI 10.1016/S0194-5998(94)70797-9
TO ZP, 1995, BRIT J PHARMACOL, V115, P107
TRULSON ME, 1985, LIFE SCI, V37, P2199, DOI 10.1016/0024-3205(85)90572-7
VAHABZADEH A, 1994, EUR J NEUROSCI, V6, P1205, DOI 10.1111/j.1460-9568.1994.tb00619.x
Verge D, 2000, J CHEM NEUROANAT, V18, P41, DOI 10.1016/S0891-0618(99)00050-2
Vertes RP, 2010, BRAIN STRUCT FUNCT, V215, P1, DOI 10.1007/s00429-010-0249-x
Viemari JC, 2009, RESP PHYSIOL NEUROBI, V168, P69, DOI 10.1016/j.resp.2009.03.011
VU DH, 1992, J COMP NEUROL, V317, P156, DOI 10.1002/cne.903170205
WAEBER C, 1994, NEUROPHARMACOLOGY, V33, P527, DOI 10.1016/0028-3908(94)90084-1
Wang HT, 2008, HEARING RES, V236, P42, DOI 10.1016/j.heares.2007.11.015
Wang XY, 1997, HEARING RES, V106, P20, DOI 10.1016/S0378-5955(96)00211-0
Waterhouse BD, 2004, BRAIN RES, V1000, P183, DOI 10.1016/j.brainres.2003.11.030
White SA, 2006, J NEUROSCI, V26, P10376, DOI 10.1523/JNEUROSCI.3379-06.2006
WILLARD FH, 1984, BRAIN RES BULL, V12, P253, DOI 10.1016/0361-9230(84)90053-4
WRIGHT DE, 1995, J COMP NEUROL, V351, P357, DOI 10.1002/cne.903510304
Xiang ZX, 2003, J NEUROPHYSIOL, V89, P1278, DOI 10.1152/jn.00533.2002
Ye Y, 2001, Acta Otolaryngol, V121, P284
Zeng SJ, 2007, BRAIN BEHAV EVOLUT, V70, P1, DOI 10.1159/000101066
ZHANG B, 1994, J EXP BIOL, V190, P55
NR 131
TC 17
Z9 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2011
VL 279
IS 1-2
SI SI
BP 74
EP 84
DI 10.1016/j.heares.2010.12.015
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 830OQ
UT WOS:000295666700009
PM 21187135
ER
PT J
AU Schofield, BR
Motts, SD
Mellott, JG
AF Schofield, Brett R.
Motts, Susan D.
Mellott, Jeffrey G.
TI Cholinergic cells of the pontomesencephalic tegmentum: Connections with
auditory structures from cochlear nucleus to cortex
SO HEARING RESEARCH
LA English
DT Article
ID LATERAL GENICULATE NUCLEI; RAT INFERIOR COLLICULUS; BRAIN-STEM CORE;
PEDUNCULOPONTINE NUCLEUS; PREPULSE INHIBITION; GUINEA-PIG; SUPERIOR
OLIVE; NITRIC-OXIDE; ACETYLTRANSFERASE ACTIVITY; ACETYLCHOLINE-RECEPTORS
AB Acetylcholine (ACh) is a neuromodulator that is likely to play a role in plasticity as well as other phenomena at many sites in the auditory system. The auditory cortex receives cholinergic innervation from the basal forebrain, whereas the cochlea receives cholinergic innervation from the superior olivary complex. Much of the remainder of the auditory pathways receives innervation from the pedunculopontine and laterodorsal tegmental nuclei, two nuclei referred to collectively as the pontomesencephalic tegmentum (PMT). The PMT provides the major source of ACh to the auditory thalamus and the midbrain, and is a substantial source (in addition to the superior olivary complex) of ACh in the cochlear nucleus. Individual cholinergic cells in the PMT often have axon branches that innervate multiple auditory nuclei, including nuclei on both sides of the brain as well as nuclei at multiple levels of the auditory system. The auditory cortex has direct axonal projections to the PMT cells, including cholinergic cells that project to the inferior colliculus or cochlear nucleus. The divergent projections of PMT cholinergic cells suggest widespread effects on the auditory pathways. These effects are likely to include plasticity as well as novelty detection, sensory gating, reward behavior, arousal and attention. Descending projections from the forebrain, including the auditory cortex, are likely to provide a high level of cognitive input to these cholinergic effects. Dysfunction associated with the cholinergic system may play a role in disorders such as tinnitus and schizophrenia. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Schofield, Brett R.; Motts, Susan D.; Mellott, Jeffrey G.] Northeastern Ohio Univ Coll Med & Pharm, Coll Med, Dept Anat & Neurobiol, Rootstown, OH 44272 USA.
[Schofield, Brett R.; Motts, Susan D.] Kent State Univ, Sch Biomed Sci, Kent, OH 44242 USA.
RP Schofield, BR (reprint author), Northeastern Ohio Univ Coll Med & Pharm, Coll Med, Dept Anat & Neurobiol, POB 95, Rootstown, OH 44272 USA.
EM bschofie@neoucom.edu; smotts@neoucom.edu; jmellott@neoucom.edu
FU NIH [DC04391, DC05277]
FX The work that was completed in the authors' lab was supported by NIH
DC04391 and DC05277. We gratefully acknowledge technical assistance from
Colleen Sowick, Megan Storey-Workley and Arkadiusz Slusarczyk. Kyle T.
Nakamoto provided many helpful discussions through the course of the
experiments as well as critical feedback on an earlier version of the
manuscript.
CR ALTSCHULER RA, 2010, OXFORD HDB AUDITORY, V2, P65
Bajo VM, 2010, NAT NEUROSCI, V13, P253, DOI 10.1038/nn.2466
Bastuji H, 2002, INT J PSYCHOPHYSIOL, V46, P243, DOI 10.1016/S0167-8760(02)00116-2
Behrens EG, 2002, BRAIN RES, V955, P34, DOI 10.1016/S0006-8993(02)03351-6
Billet S, 1999, BRAIN RES, V847, P121, DOI 10.1016/S0006-8993(99)01900-9
Bosch D, 2008, NEUROSCIENCE, V155, P326, DOI 10.1016/j.neuroscience.2008.04.018
Boucetta S, 2009, J NEUROSCI, V29, P4664, DOI 10.1523/JNEUROSCI.5502-08.2009
Braff DL, 2001, PSYCHOPHARMACOLOGY, V156, P234, DOI 10.1007/s002130100810
BROWN MC, 1993, J COMP NEUROL, V337, P600, DOI 10.1002/cne.903370406
Brozoski TJ, 2002, J NEUROSCI, V22, P2383
Brozoski TJ, 2005, HEARING RES, V206, P227, DOI 10.1016/j.heares.2004.12.013
Caspary DM, 2008, J EXP BIOL, V211, P1781, DOI 10.1242/jeb.013581
CASPARY DM, 1983, EXP NEUROL, V82, P491, DOI 10.1016/0014-4886(83)90419-3
Chen J, 2006, PSYCHOPHARMACOLOGY, V184, P514, DOI 10.1007/s00213-005-0252-8
CLARKE PBS, 1985, J NEUROSCI, V5, P1307
COMIS SD, 1968, J NEUROPHYSIOL, V31, P62
CORNWALL J, 1990, BRAIN RES BULL, V25, P271, DOI 10.1016/0361-9230(90)90072-8
CURTIS DR, 1961, J NEUROPHYSIOL, V24, P80
Deco G, 2009, EUR J NEUROSCI, V30, P347, DOI 10.1111/j.1460-9568.2009.06833.x
Eggermont JJ, 1998, HEARING RES, V117, P149, DOI 10.1016/S0378-5955(98)00008-2
FARLEY GR, 1983, HEARING RES, V11, P73, DOI 10.1016/0378-5955(83)90046-1
Fujino K, 2001, J NEUROSCI, V21, P7372
GARCIARILL E, 1991, PROG NEUROBIOL, V36, P363, DOI 10.1016/0301-0082(91)90016-T
Geyer MA, 2001, PSYCHOPHARMACOLOGY, V156, P117, DOI 10.1007/s002130100811
GLENDENNING KK, 1988, J COMP NEUROL, V275, P288, DOI 10.1002/cne.902750210
GODFREY DA, 1987, HEARING RES, V28, P253, DOI 10.1016/0378-5955(87)90053-0
Godfrey DA, 2000, HEARING RES, V150, P189, DOI 10.1016/S0378-5955(00)00199-4
Goldstein-Daruech N, 2002, HEARING RES, V168, P174, DOI 10.1016/S0378-5955(02)00364-7
GRAHAM FK, 1975, PSYCHOPHYSIOLOGY, V12, P238, DOI 10.1111/j.1469-8986.1975.tb01284.x
Habbicht H, 1996, BRAIN RES, V724, P169, DOI 10.1016/0006-8993(96)00224-7
HALLANGER AE, 1987, J COMP NEUROL, V262, P105, DOI 10.1002/cne.902620109
Happe HK, 1998, J COMP NEUROL, V397, P163, DOI 10.1002/(SICI)1096-9861(19980727)397:2<163::AID-CNE2>3.0.CO;2-Z
HE J, 2010, OXFORD HDB AUDITORY, V2, P247
HENDERSON Z, 1991, J COMP NEUROL, V314, P147, DOI 10.1002/cne.903140114
HOFFMAN HS, 1980, PSYCHOL REV, V87, P175, DOI 10.1037/0033-295X.87.2.175
Holt AG, 2005, J NEUROCHEM, V93, P1069, DOI 10.1111/j.1471-4159.2005.03090.x
Hurley LM, 2004, CURR OPIN NEUROBIOL, V14, P488, DOI 10.1016/j.conb.2004.06.007
Irvine D.R.F., 2010, OXFORD HDB AUDITORY, V2, P387
Jenkinson N, 2009, MOVEMENT DISORD, V24, P319, DOI 10.1002/mds.22189
Ji WQ, 2001, J NEUROPHYSIOL, V86, P211
Ji WQ, 2009, J NEUROPHYSIOL, V102, P941, DOI 10.1152/jn.00222.2009
Ji WQ, 2003, J NEUROPHYSIOL, V90, P1904, DOI 10.1152/jn.00363.2003
Ji WQ, 2005, J NEUROPHYSIOL, V94, P1199, DOI 10.1152/jn.00112.2005
Jin YM, 2006, HEARING RES, V216, P168, DOI 10.1016/j.heares.2006.02.002
Jones B. E., 2003, FRONT BIOSCI, V8, P438
JONES BE, 1990, J COMP NEUROL, V295, P485, DOI 10.1002/cne.902950311
JOURDAIN A, 1989, BRAIN RES, V505, P55, DOI 10.1016/0006-8993(89)90115-7
Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5
Kamke MR, 2005, HEARING RES, V206, P89, DOI 10.1016/j.heares.2004.12.014
Keuroghlian AS, 2007, PROG NEUROBIOL, V82, P109, DOI 10.1016/j.pneurobio.2007.03.005
KLEPPER A, 1991, BRAIN RES, V557, P190, DOI 10.1016/0006-8993(91)90134-H
KOCH M, 1993, EXP BRAIN RES, V97, P71
Koch M, 1999, PROG NEUROBIOL, V59, P107, DOI 10.1016/S0301-0082(98)00098-7
KOYAMA Y, 1994, NEUROSCIENCE, V63, P1021, DOI 10.1016/0306-4522(94)90569-X
LEONARD CS, 1995, J COMP NEUROL, V362, P411, DOI 10.1002/cne.903620309
Li L, 2009, NEUROSCI BIOBEHAV R, V33, P1157, DOI 10.1016/j.neubiorev.2009.02.001
Malmierca MS, 2009, J NEUROSCI, V29, P5483, DOI 10.1523/JNEUROSCI.4153-08.2009
Manaye KF, 1999, NEUROSCIENCE, V89, P759, DOI 10.1016/S0306-4522(98)00380-7
MCCORMICK DA, 1987, J PHYSIOL-LONDON, V392, P147
Mena-Segovia J, 2009, J COMP NEUROL, V515, P397, DOI 10.1002/cne.22065
Metherate R, 2011, NEUROSCI BIOBEHAV R, V35, P2058, DOI 10.1016/j.neubiorev.2010.11.010
Metherate R, 2004, PROG BRAIN RES, V145, P143, DOI 10.1016/S0079-6123(03)45010-3
Miko IJ, 2009, HEARING RES, V251, P39, DOI 10.1016/j.heares.2009.02.003
Morley BJ, 2004, JARO-J ASSOC RES OTO, V5, P391, DOI 10.1007/s10162-004-5015-4
Morley BJ, 2000, HEARING RES, V147, P104, DOI 10.1016/S0378-5955(00)00124-6
Motts SD, 2010, FRONT NEUROANAT, V4, DOI 10.3389/fnana.2010.00137
Motts SD, 2008, NEUROSCIENCE, V154, P186, DOI 10.1016/j.neuroscience.2007.12.017
Motts SD, 2009, NEUROSCIENCE, V160, P103, DOI 10.1016/j.neuroscience.2009.02.036
MOTTS SD, 2005, ASS RES OTOLARYNGOL, V28, P242
MOTTS SD, 2009, 2009 NEUR M PLANN
Mulders WHAM, 2000, HEARING RES, V144, P65, DOI 10.1016/S0378-5955(00)00046-0
Nakamoto KT, 2008, J NEUROPHYSIOL, V99, P2347, DOI 10.1152/jn.01326.2007
Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9
OSWALD I, 1960, BRAIN, V83, P440, DOI 10.1093/brain/83.3.440
Pan WX, 2005, J NEUROSCI, V25, P4725, DOI 10.1523/JNEUROSCI.0277-05.2005
PEDEMONTE M, 1994, ARCH ITAL BIOL, V132, P165
PENA JL, 1992, ARCH ITAL BIOL, V130, P179
Pena JL, 1999, BRAIN RES, V816, P463, DOI 10.1016/S0006-8993(98)01194-9
Perez-Gonzalez D, 2005, EUR J NEUROSCI, V22, P2879, DOI 10.1111/j.1460-9568.2005.04472.x
RAZA A, 1994, HEARING RES, V77, P221, DOI 10.1016/0378-5955(94)90270-4
REESE NB, 1995, BRAIN RES BULL, V37, P257, DOI 10.1016/0361-9230(95)00002-V
REESE NB, 1995, PROG NEUROBIOL, V47, P105, DOI 10.1016/0301-0082(95)00023-O
REESE NB, 1995, BRAIN RES BULL, V37, P265, DOI 10.1016/0361-9230(95)00001-U
Rotter A, 1979, Brain Res, V180, P167
Ruby P, 2008, J COGNITIVE NEUROSCI, V20, P296, DOI 10.1162/jocn.2008.20023
Ruggiero DA, 1997, BRAIN RES, V760, P272, DOI 10.1016/S0006-8993(97)00397-1
Rye DB, 1997, SLEEP, V20, P757
Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2
SATOH K, 1986, J COMP NEUROL, V253, P277, DOI 10.1002/cne.902530302
SCHOFIELD BR, 2011, ASS RES OT IN PRESS
Schofield BR, 2009, BRAIN RES BULL, V80, P163, DOI 10.1016/j.brainresbull.2009.06.015
Schofield BR, 2010, NEUROSCIENCE, V166, P231, DOI 10.1016/j.neuroscience.2009.12.008
Schofield B.R., 2010, OXFORD HDB AUDITORY, V2, P43
SEMBA K, 1992, J COMP NEUROL, V323, P387, DOI 10.1002/cne.903230307
SESACK SR, 1989, J COMP NEUROL, V290, P213, DOI 10.1002/cne.902900205
SHERRIFF FE, 1994, NEUROSCIENCE, V58, P627, DOI 10.1016/0306-4522(94)90086-8
SHUTE CCD, 1967, BRAIN, V90, P497, DOI 10.1093/brain/90.3.497
SMITH Y, 1988, EXP BRAIN RES, V70, P166
Steinert JR, 2010, NEUROSCIENTIST, V16, P435, DOI 10.1177/1073858410366481
STEININGER TL, 1992, J COMP NEUROL, V321, P515, DOI 10.1002/cne.903210403
STERIADE M, 1991, P NATL ACAD SCI USA, V88, P4396, DOI 10.1073/pnas.88.10.4396
STERIADE M, 1988, NEUROSCIENCE, V25, P47, DOI 10.1016/0306-4522(88)90006-1
Suga N, 2008, J COMP PHYSIOL A, V194, P169, DOI 10.1007/s00359-007-0274-2
Swerdlow NR, 2001, PSYCHOPHARMACOLOGY, V156, P194
Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002
Takakusaki K, 2008, BRAIN RES REV, V57, P192, DOI 10.1016/j.brainresrev.2007.06.024
Timofeeva E, 2005, J NEUROSCI, V25, P9135, DOI 10.1523/JNEUROSCI.3073-05.2005
Tong L, 2005, HEARING RES, V206, P28, DOI 10.1016/j.heares.2005.03.006
TURLEJSKI K, 1994, NEUROSCIENCE, V60, P521, DOI 10.1016/0306-4522(94)90262-3
Tzounopoulos Thanos, 2008, AM J AUDIOL, V17, P170
Vincent SR, 2000, J CHEM NEUROANAT, V18, P23, DOI 10.1016/S0891-0618(99)00048-4
Wang HL, 2009, EUR J NEUROSCI, V29, P340, DOI 10.1111/j.1460-9568.2008.06576.x
Wang X, 2007, BRAIN RES, V1167, P80, DOI 10.1016/j.brainres.2007.07.002
WATANABE T, 1973, JPN J PHYSIOL, V23, P291
Winkowski DE, 2008, NEURON, V60, P698, DOI 10.1016/j.neuron.2008.09.013
WINN P, 2008, PARKINSONISM RELAT D, V14, P194
WOOLF NJ, 1989, BRAIN RES BULL, V23, P519, DOI 10.1016/0361-9230(89)90197-4
WREE A, 1981, ANAT EMBRYOL, V162, P81, DOI 10.1007/BF00318096
Xiong Y, 2009, NEUROSCI BIOBEHAV R, V33, P1178, DOI 10.1016/j.neubiorev.2008.10.006
Yeomans JS, 2006, NEUROSCIENCE, V142, P921, DOI 10.1016/j.neuroscience.2006.06.025
Yigit M, 2003, NEUROPHARMACOLOGY, V45, P504, DOI 10.1016/S0028-3908(03)00197-7
NR 121
TC 13
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2011
VL 279
IS 1-2
SI SI
BP 85
EP 95
DI 10.1016/j.heares.2010.12.019
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 830OQ
UT WOS:000295666700010
PM 21195150
ER
PT J
AU Friauf, E
Rust, MB
Schulenborg, T
Hirtz, JJ
AF Friauf, Eckhard
Rust, Marco B.
Schulenborg, Thomas
Hirtz, Jan J.
TI Chloride cotransporters, chloride homeostasis, and synaptic inhibition
in the developing auditory system
SO HEARING RESEARCH
LA English
DT Article
ID K-CL COTRANSPORTER; LATERAL SUPERIOR OLIVE; EXPERIENCE-DEPENDENT
REFINEMENT; ANTEROVENTRAL COCHLEAR NUCLEUS; HYPERPOLARIZING GLYCINE
ACTION; GERBIL MERIONES-UNGUICULATUS; IMMATURE NEOCORTICAL NEURONS;
REDUCED SEIZURE THRESHOLD; TEMPORAL-LOBE EPILEPSY; ALANINE-RICH KINASE
AB The role of glycine and GABA as inhibitory neurotransmitters in the adult vertebrate nervous system has been well characterized in a variety of model systems, including the auditory, which is particularly well suited for analyzing inhibitory neurotransmission. However, a full understanding of glycinergic and GABAergic transmission requires profound knowledge of how the precise organization of such synapses emerges. Likewise, the role of glycinergic and GABAergic signaling during development, including the dynamic changes in regulation of cytosolic chloride via chloride cotransporters, needs to be thoroughly understood. Recent literature has elucidated the developmental expression of many of the molecular components that comprise the inhibitory synaptic phenotype. An equally important focus of research has revealed the critical role of glycinergic and GABAergic signaling in sculpting different developmental aspects in the auditory system. This review examines the current literature detailing the expression patterns and function (chapter 1), as well as the regulation and pharmacology of chloride cotransporters (chapter 2). Of particular importance is the ontogeny of glycinergic and GABAergic transmission (chapter 3). The review also surveys the recent work on the signaling role of these two major inhibitory neurotransmitters in the developing auditory system (chapter 4) and concludes with an overview of areas for further research (chapter 5). (C) 2011 Elsevier B.V. All rights reserved.
C1 [Friauf, Eckhard; Rust, Marco B.; Schulenborg, Thomas; Hirtz, Jan J.] Univ Kaiserslautern, Dept Biol, Anim Physiol Grp, D-67653 Kaiserslautern, Germany.
RP Friauf, E (reprint author), Univ Kaiserslautern, Dept Biol, Anim Physiol Grp, POB 3049, D-67653 Kaiserslautern, Germany.
EM eckhard.friauf@biologie.uni-kl.de
RI Friauf, Eckhard/D-7529-2012; Schulenborg, Thomas/N-7672-2013
OI Friauf, Eckhard/0000-0002-1833-1698; Schulenborg,
Thomas/0000-0003-1928-9441
FU German Research Foundation DFG [Fr772/8, Fr1784/10]; Research Initiative
Membrane Biology
FX This work was supported by the German Research Foundation DFG (Grants
Fr772/8 and Fr1784/10) and the Research Initiative Membrane Biology.
CR Abbas L, 2009, DEVELOPMENT, V136, P2837, DOI 10.1242/dev.034215
Adragna NC, 2004, J MEMBRANE BIOL, V201, P109, DOI 10.1007/s00232-004-0695-6
Aguado F, 2003, DEVELOPMENT, V130, P1267, DOI 10.1242/dev.00351
Akerman CJ, 2006, J NEUROSCI, V26, P5117, DOI 10.1523/JNEUROSCI.0319-06.2006
ALVAREZLEEFMANS FJ, 1988, J PHYSIOL-LONDON, V406, P225
AlvarezLeefmans FJ, 2009, PHYSIOLOGY AND PATHOLOGY OF CHLORIDE TRANSPORTERS AND CHANNELS IN THE NERVOUS SYSTEM: FROM MOLECULES TO DISEASES, P1
ASBURY MJ, 1972, BRIT MED J, V1, P211
Awatramani GB, 2005, J NEUROPHYSIOL, V93, P819, DOI 10.1152/jn.00798.2004
Backus KH, 1998, J PHYSIOL-LONDON, V507, P783, DOI 10.1111/j.1469-7793.1998.783bs.x
Balakrishnan V, 2003, J NEUROSCI, V23, P4134
Banke TG, 2006, J NEUROSCI, V26, P11720, DOI 10.1523/JNEUROSCI.2887-06.2006
Batra R, 2002, HEARING RES, V168, P90, DOI 10.1016/S0378-5955(02)00368-4
Becker M, 2003, CELL TISSUE RES, V312, P155, DOI 10.1007/s00441-003-0713-5
Belenky MA, 2010, NEUROSCIENCE, V165, P1519, DOI 10.1016/j.neuroscience.2009.11.040
BENARI Y, 1989, J PHYSIOL-LONDON, V416, P303
Ben-Ari Y, 2002, NAT REV NEUROSCI, V3, P728, DOI 10.1038/nrn920
Ben-Ari Y, 2007, PHYSIOL REV, V87, P1215, DOI 10.1152/physrev.00017.2006
BENDER KJ, 2011, NEUROPHARMACOLOGY
Berglund K, 2008, BRAIN CELL BIOL, V36, P101, DOI 10.1007/s11068-008-9031-x
Blaesse P, 2009, NEURON, V61, P820, DOI 10.1016/j.neuron.2009.03.003
Blaesse P, 2006, J NEUROSCI, V26, P10407, DOI 10.1523/JNEUROSCI.3257-06.2006
Boettger T, 2003, EMBO J, V22, P5422, DOI 10.1093/emboj/cdg519
Bonislawski DP, 2007, NEUROBIOL DIS, V25, P163, DOI 10.1016/j.nbd.2006.09.002
Boulenguez P, 2010, NAT MED, V16, P302, DOI 10.1038/nm.2107
Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a
Burger RM, 2005, J COMP NEUROL, V481, P6, DOI 10.1002/ce.20334
CAIRD D, 1983, EXP BRAIN RES, V52, P385
Campos ML, 2001, NEUROSCIENCE, V102, P625, DOI 10.1016/S0306-4522(00)00525-X
Cancedda L, 2007, J NEUROSCI, V27, P5224, DOI 10.1523/JNEUROSCI.5169-06.2007
Carrascal L, 2005, BRAIN RES REV, V49, P377, DOI 10.1016/j.brainresrev.2005.02.003
Caspary DM, 1991, NEUROBIOLOGY HEARING, P141
CHALPHIN AV, 2010, FRONT MOL NEUROSCI, V3, P1
Chen G, 1996, J PHYSIOL-LONDON, V494, P451
CHERUBINI E, 1991, TRENDS NEUROSCI, V14, P515, DOI 10.1016/0166-2236(91)90003-D
Chudotvorova I, 2005, J PHYSIOL-LONDON, V566, P671, DOI 10.1113/jphysiol.2005.089821
CLARK GM, 1969, BRAIN RES, V14, P293, DOI 10.1016/0006-8993(69)90111-5
Clayton GH, 1998, DEV BRAIN RES, V109, P281, DOI 10.1016/S0165-3806(98)00078-9
CODE RA, 1991, HEARING RES, V54, P281, DOI 10.1016/0378-5955(91)90122-P
Coull JAM, 2003, NATURE, V424, P938, DOI 10.1038/nature01868
Crouch JJ, 1997, J HISTOCHEM CYTOCHEM, V45, P773
Daigle ND, 2009, J CELL PHYSIOL, V220, P680, DOI 10.1002/jcp.21814
Dasika VK, 2005, J NEUROPHYSIOL, V94, P400, DOI 10.1152/jn.01065.2004
DeFazio RA, 2000, J NEUROSCI, V20, P8069
Delpire E, 2000, NEWS PHYSIOL SCI, V15, P309
Delpire E, 1999, NAT GENET, V22, P192, DOI 10.1038/9713
Delpire E, 2009, P NATL ACAD SCI USA, V106, P5383, DOI 10.1073/pnas.0812756106
Delpire E, 2008, BIOCHEM J, V409, P321, DOI 10.1042/BJ20071324
Delpy A, 2008, J PHYSIOL-LONDON, V586, P1059, DOI 10.1113/jphysiol.2007.146993
DIETZEL I, 1980, EXP BRAIN RES, V40, P432
Dixon MJ, 1999, HUM MOL GENET, V8, P1579, DOI 10.1093/hmg/8.8.1579
Duan L, 2009, J PHYSIOL-LONDON, V587, P4063, DOI 10.1113/jphysiol.2009.174797
Dzhala VI, 2010, J NEUROSCI, V30, P11745, DOI 10.1523/JNEUROSCI.1769-10.2010
Dzhala VI, 2005, NAT MED, V11, P1205, DOI 10.1038/nm1301
ECCLES JC, 1964, SCIENCE, V145, P1140, DOI 10.1126/science.145.3637.1140
Ehrlich I, 1999, J PHYSIOL-LONDON, V520, P121, DOI 10.1111/j.1469-7793.1999.00121.x
Flagella M, 1999, J BIOL CHEM, V274, P26946, DOI 10.1074/jbc.274.38.26946
Flatman PW, 2008, CURR OPIN NEPHROL HY, V17, P186, DOI 10.1097/MNH.0b013e3282f5244e
Frech MJ, 1999, J NEUROBIOL, V40, P386, DOI 10.1002/(SICI)1097-4695(19990905)40:3<386::AID-NEU10>3.0.CO;2-D
FRELIN C, 1986, BIOCHEM BIOPH RES CO, V134, P326, DOI 10.1016/0006-291X(86)90566-8
Friauf E, 2008, EUR J NEUROSCI, V28, P2371, DOI 10.1111/j.1460-9568.2008.06528.x
Gagnon KBE, 2006, AM J PHYSIOL-CELL PH, V290, pC134, DOI 10.1152/ajpcell.00037.2005
Galeffi F, 2004, J NEUROSCI, V24, P4478, DOI 10.1523/JNEUROSCI.0755-04.2004
Gamba G, 2005, PHYSIOL REV, V85, P423, DOI 10.1152/physrev.00011.2004
GAMBA G, 1993, P NATL ACAD SCI USA, V90, P2749, DOI 10.1073/pnas.90.7.2749
Ganguly K, 2001, CELL, V105, P521, DOI 10.1016/S0092-8674(01)00341-5
GARAY RP, 1988, MOL PHARMACOL, V33, P696
Garg P, 2007, AM J PHYSIOL-HEART C, V292, pH2100, DOI 10.1152/ajpheart.01402.2006
Ge SY, 2007, TRENDS NEUROSCI, V30, P1, DOI 10.1016/j.tins.2006.11.001
Ge SY, 2006, NATURE, V439, P589, DOI 10.1038/nature04404
Gillespie DC, 2005, NAT NEUROSCI, V8, P332, DOI 10.1038/nn1397
Gimenez I, 2006, CURR OPIN NEPHROL HY, V15, P517
Gleich O, 1998, CELL TISSUE RES, V293, P207, DOI 10.1007/s004410051113
GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613
Golding NL, 1996, J NEUROSCI, V16, P2208
Gonzalez-Islas C, 2009, J NEUROPHYSIOL, V101, P507, DOI 10.1152/jn.90986.2008
Granados-Soto V, 2005, PAIN, V114, P231, DOI 10.1016/j.pain.2004.12.023
Green JS, 2005, J NEUROPHYSIOL, V94, P3826, DOI 10.1152/jn.00601.2005
GROTHE B, 1993, J NEUROPHYSIOL, V69, P1192
Grothe B, 2003, NAT REV NEUROSCI, V4, P1
GUINAN JJ, 1972, INT J NEUROSCI, V4, P147
Gulacsi A, 2003, J NEUROSCI, V23, P8237
Gulledge AT, 2003, NEURON, V37, P299, DOI 10.1016/S0896-6273(02)01146-7
Haas M, 1998, J BIOENERG BIOMEMBR, V30, P161, DOI 10.1023/A:1020521308985
Hannaert P, 2002, N-S ARCH PHARMACOL, V365, P193, DOI 10.1007/s00210-001-0521-y
Hartmann AM, 2009, J NEUROCHEM, V111, P321, DOI 10.1111/j.1471-4159.2009.06343.x
Hebert SC, 2004, PFLUG ARCH EUR J PHY, V447, P580, DOI 10.1007/s00424-003-1066-3
Hentschke M, 2006, MOL CELL BIOL, V26, P182, DOI 10.1128/MCB.1.182-191.2006
Hershfinkel M, 2009, NAT NEUROSCI, V12, P725, DOI 10.1038/nn.2316
Holmgren CD, 2010, J NEUROCHEM, V112, P900, DOI 10.1111/j.1471-4159.2009.06506.x
HOMMA T, 1990, AM J PHYSIOL, V258, pC862
Horn Z, 2010, EUR J NEUROSCI, V31, P2142, DOI 10.1111/j.1460-9568.2010.07258.x
HOWARD HC, 2002, NAT GENET, P1
Howard MA, 2007, J NEUROSCI, V27, P2112, DOI 10.1523/JNEUROSCI.5266-06.2007
Howard MA, 2010, J NEUROSCI, V30, P12063, DOI 10.1523/JNEUROSCI.1840-10.2010
Huang B, 1996, VISUAL NEUROSCI, V13, P441
Huberfeld G, 2007, J NEUROSCI, V27, P9866, DOI 10.1523/JNEUROSCI.2761-07.2007
Hubner CA, 2001, MECH DEVELOP, V102, P267, DOI 10.1016/S0925-4773(01)00309-4
Hubner CA, 2001, NEURON, V30, P515, DOI 10.1016/S0896-6273(01)00297-5
HYSON RL, 1995, BRAIN RES, V677, P117, DOI 10.1016/0006-8993(95)00130-I
INGRAM T T, 1964, Br Med J, V2, P1640
Inoue K, 2004, FEBS LETT, V564, P131, DOI 10.1016/S0014-5793(04)00328-X
Inoue K, 2006, J NEUROCHEM, V96, P598, DOI 10.1111/j.1471-4159.2005.03560.x
Irvine D. R. F., 1986, PROGR SENSORY PHYSL, V7
Ito T, 2009, J NEUROSCI, V29, P13860, DOI 10.1523/JNEUROSCI.3454-09.2009
JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495
Joris P, 2007, TRENDS NEUROSCI, V30, P70, DOI 10.1016/j.tins.2006.12.004
Joris PX, 1998, NEURON, V21, P1235, DOI 10.1016/S0896-6273(00)80643-1
KAHLE KT, 2008, NAT CLIN PRACT NEURO, V4, P491
Kahle KT, 2010, BBA-MOL BASIS DIS, V1802, P1150, DOI 10.1016/j.bbadis.2010.07.009
Kakazu Y, 1999, J NEUROSCI, V19, P2843
KAKIGI A, 2008, AURIS NASUS LARYNX, V36, P135
KANDLER K, 1995, J NEUROSCI, V15, P6890
Kandler K, 2004, CURR OPIN NEUROBIOL, V14, P96, DOI 10.1016/j.conb.2004.01.017
Kandler K, 2005, TRENDS NEUROSCI, V28, P290, DOI 10.1016/j.tins.2005.04.007
Kapfer C, 2002, NAT NEUROSCI, V5, P247, DOI 10.1038/mm810
Karadsheh MF, 2001, J NEUROPHYSIOL, V85, P995
Kelly JB, 2005, INFERIOR COLLICULUS, P248, DOI 10.1007/0-387-27083-3_9
Kelly JB, 1997, HEARING RES, V104, P112, DOI 10.1016/S0378-5955(96)00182-7
Kelsch W, 2001, J NEUROSCI, V21, P8339
Khirug S, 2005, EUR J NEUROSCI, V21, P899, DOI 10.1111/j.1460-9568.2005.03886.x
Kim G, 2010, NEUROSCIENCE, V171, P924, DOI 10.1016/j.neuroscience.2010.09.054
Kim G, 2003, NAT NEUROSCI, V6, P282, DOI 10.1038/nn1015
Kim Y, 2009, J NEUROSCI, V29, P11495, DOI 10.1523/JNEUROSCI.1086-09.2009
Kirmse K, 2010, J NEUROSCI, V30, P16002, DOI 10.1523/JNEUROSCI.2534-10.2010
Korada S, 1999, J COMP NEUROL, V409, P664, DOI 10.1002/(SICI)1096-9861(19990712)409:4<664::AID-CNE10>3.0.CO;2-S
Kotak VC, 2003, BIOL CYBERN, V89, P363, DOI 10.1007/s00422-003-0441-7
Kotak VC, 2000, J NEUROSCI, V20, P5820
Kotak VC, 1998, J NEUROSCI, V18, P4646
Kuba H, 2002, J PHYSIOL-LONDON, V540, P529, DOI 10.1113/jphysiol.2001.013365
Kullmann PHM, 2008, NEUROSCIENCE, V154, P338, DOI 10.1016/j.neuroscience.2008.02.026
Kullmann PHM, 2002, EUR J NEUROSCI, V15, P1093, DOI 10.1046/j.1460-9568.2002.01946.x
Kullmann PHM, 2001, DEV BRAIN RES, V131, P143, DOI 10.1016/S0165-3806(01)00271-1
Kuner T, 2000, NEURON, V27, P447, DOI 10.1016/S0896-6273(00)00056-8
Kungel M, 1997, DEV BRAIN RES, V102, P157, DOI 10.1016/S0165-3806(97)00087-4
Kuo SP, 2009, J NEUROSCI, V29, P9625, DOI 10.1523/JNEUROSCI.0103-09.2009
Kutscher A, 2009, J NEUROPHYSIOL, V101, P3135, DOI 10.1152/jn.00766.2007
Lauf PK, 1980, BIOCHEM BIOPH RES CO, V70, P221
LAUF PK, 1992, AM J PHYSIOL, V263, pC917
LAUF PK, 1984, J MEMBRANE BIOL, V77, P57, DOI 10.1007/BF01871100
Lee H, 2005, EUR J NEUROSCI, V21, P2593, DOI 10.1111/j.1460-9568.2005.04084.x
Legendre P, 2001, CELL MOL LIFE SCI, V58, P760, DOI 10.1007/PL00000899
LEUNG S, 1994, J BIOL CHEM, V269, P10581
Li H, 2007, NEURON, V56, P1019, DOI 10.1016/j.neuron.2007.10.039
Liu ZP, 2006, SCIENCE, V314, P1610, DOI 10.1126/science.1134246
Lohrke S, 2005, EUR J NEUROSCI, V22, P2708, DOI 10.1111/j.1460-9568.2005.04465.x
Lu J, 1999, J NEUROBIOL, V39, P558, DOI 10.1002/(SICI)1097-4695(19990615)39:4<558::AID-NEU9>3.0.CO;2-5
Lu T, 2001, J PHYSIOL-LONDON, V535, P125, DOI 10.1111/j.1469-7793.2001.t01-1-00125.x
LUHMANN HJ, 1991, J NEUROPHYSIOL, V65, P247
Lujan R, 2008, NEUROSCIENCE, V154, P315, DOI 10.1016/j.neuroscience.2008.03.027
Lynch JW, 2009, NEUROPHARMACOLOGY, V56, P303, DOI 10.1016/j.neuropharm.2008.07.034
Lytle C., 2003, RED CELL MEMBRANE TR, P173
Lytle C, 1998, AM J PHYSIOL-CELL PH, V274, pC299
Lytle C, 1996, AM J PHYSIOL-CELL PH, V270, pC437
Malmierca MS, 2003, INT REV NEUROBIOL, V56, P147, DOI 10.1016/S0074-7742(03)56005-6
Marcus DC, 2009, PHYSIOLOGY AND PATHOLOGY OF CHLORIDE TRANSPORTERS AND CHANNELS IN THE NERVOUS SYSTEM: FROM MOLECULES TO DISEASES, P425
Marty A, 2005, TRENDS NEUROSCI, V28, P284, DOI 10.1016/j.tins.2005.04.003
MCBAIN CJ, 1990, SCIENCE, V249, P674, DOI 10.1126/science.2382142
Mercado A, 2000, J BIOL CHEM, V275, P30326, DOI 10.1074/jbc.M003112200
Merchan M, 2005, NEUROSCIENCE, V136, P907, DOI 10.1016/j.neuroscience.2004.12.030
Milenkovic I, 2007, J NEUROPHYSIOL, V98, P1634, DOI 10.1152/jn.01150.2006
Monsivais P, 2001, J NEUROSCI, V21, P7823
MORALESAZA A, 2004, NEUROBIOL DIS, V17, P62
Mount DB, 1999, J BIOL CHEM, V274, P16355, DOI 10.1074/jbc.274.23.16355
Nabekura J, 2004, NAT NEUROSCI, V7, P17, DOI 10.1038/nn1170
Nabekura J, 2002, J NEUROSCI, V22, P4412
Nakahata Y, 2010, BRAIN RES, V1345, P19, DOI 10.1016/j.brainres.2010.05.052
Noh J, 2010, NAT NEUROSCI, V13, P232, DOI 10.1038/nn.2478
OBERHOFER M, 2007, THESIS U KAISERSLAUT, P1
O'Donovan KJ, 1999, TRENDS NEUROSCI, V22, P167, DOI 10.1016/S0166-2236(98)01343-5
OLIVER DL, 1994, J COMP NEUROL, V340, P27, DOI 10.1002/cne.903400104
Owens DF, 2002, NAT REV NEUROSCI, V3, P715, DOI 10.1038/nrn919
Pace AJ, 2000, J CLIN INVEST, V105, P441, DOI 10.1172/JCI8553
Pace AJ, 2001, HEARING RES, V156, P17, DOI 10.1016/S0378-5955(01)00263-5
Palma E, 2006, P NATL ACAD SCI USA, V103, P8465, DOI 10.1073/pnas.0602979103
Palmer AR, 2004, CURR OPIN NEUROBIOL, V14, P457, DOI 10.1016/j.conb.2004.06.001
Payne JA, 1996, J BIOL CHEM, V271, P16245
Payne JA, 2003, TRENDS NEUROSCI, V26, P199, DOI 10.1016/S0166-2236(03)00068-7
PAYNE JA, 1997, AM J PHYSIOL, V273, pC1515
Pecka M, 2007, J NEUROSCI, V27, P1782, DOI 10.1523/JNEUROSCI.5335-06.2007
Pecka M, 2008, J NEUROSCI, V28, P6914, DOI 10.1523/JNEUROSCI.1660-08.2008
PERKINS RE, 1973, J COMP NEUROL, V148, P387, DOI 10.1002/cne.901480306
Piechotta K, 2003, J BIOL CHEM, V278, P52848, DOI 10.1074/jbc.M309436200
Piechotta K, 2002, J BIOL CHEM, V277, P50812, DOI 10.1074/jbc.M208108200
Price TJ, 2009, BRAIN RES REV, V60, P149, DOI 10.1016/j.brainresrev.2008.12.015
REICHLING DB, 1994, J PHYSIOL-LONDON, V476, P411
Reynolds A, 2008, J NEUROSCI, V28, P1588, DOI 10.1523/JNEUROSCI.3791-07.2008
Rheims S, 2009, J NEUROCHEM, V110, P1330, DOI 10.1111/j.1471-4159.2009.06230.x
Rietzel HJ, 1998, J COMP NEUROL, V390, P20
Riquelme R, 2001, J COMP NEUROL, V432, P409, DOI 10.1002/cne.1111
Rivera C, 1999, NATURE, V397, P251
Rivera C, 2002, J CELL BIOL, V159, P747, DOI 10.1083/jcb.200209011
Rivera C, 2004, J NEUROSCI, V24, P4683, DOI 10.1523/JNEUROSCI.5265-03.2004
RUEGG UT, 1989, TRENDS PHARMACOL SCI, V10, P218, DOI 10.1016/0165-6147(89)90263-0
Russell JM, 2009, PHYSIOLOGY AND PATHOLOGY OF CHLORIDE TRANSPORTERS AND CHANNELS IN THE NERVOUS SYSTEM: FROM MOLECULES TO DISEASES, P17
Russell JM, 2000, PHYSIOL REV, V80, P211
Ruusuvuori E, 2010, J NEUROSCI, V30, P15638, DOI 10.1523/JNEUROSCI.3355-10.2010
Sakaguchi N, 1998, HEARING RES, V118, P114, DOI 10.1016/S0378-5955(98)00022-7
Sanes DH, 2000, HEARING RES, V147, P46, DOI 10.1016/S0378-5955(00)00119-2
Sanes DH, 2009, CURR OPIN NEUROBIOL, V19, P188, DOI 10.1016/j.conb.2009.05.014
SANES DH, 1992, NEUROREPORT, V3, P323, DOI 10.1097/00001756-199204000-00008
SANES DH, 1991, J NEUROBIOL, V22, P837, DOI 10.1002/neu.480220805
SANES DH, 1992, J COMP NEUROL, V321, P637, DOI 10.1002/cne.903210410
SANES DH, 1988, J NEUROSCI, V8, P682
SANES DH, 1992, DEV BRAIN RES, V67, P47, DOI 10.1016/0165-3806(92)90024-Q
SANES DH, 1993, EUR J NEUROSCI, V5, P570, DOI 10.1111/j.1460-9568.1993.tb00522.x
SAUNDERS JC, 1973, BRAIN RES, V63, P59, DOI 10.1016/0006-8993(73)90076-0
Seidl AH, 2005, J NEUROPHYSIOL, V94, P1028, DOI 10.1152/jn.01143.2004
Sensi SL, 2004, CURR MOL MED, V4, P87, DOI 10.2174/1566524043479211
Shibata S, 2004, NEUROSCI RES, V48, P211, DOI 10.1016/j.neures.2003.10.011
SHNEIDERMAN A, 1993, J NEUROCHEM, V60, P72, DOI 10.1111/j.1471-4159.1993.tb05824.x
SHNEIDERMAN A, 1988, J COMP NEUROL, V276, P188, DOI 10.1002/cne.902760204
Singer JH, 1998, J NEUROPHYSIOL, V80, P2608
Smith AJ, 2000, J PHYSIOL-LONDON, V529, P681, DOI 10.1111/j.1469-7793.2000.00681.x
Stein V, 2004, J COMP NEUROL, V468, P57, DOI 10.1002/cne.10983
Stil A, 2009, NEUROSCIENCE, V164, P809, DOI 10.1016/j.neuroscience.2009.08.035
Sung KW, 2000, J NEUROSCI, V20, P7531
SUVITAYAVAT W, 1994, AM J PHYSIOL, V266, pC284
Tabor KM, 2011, J COMP NEUROL, V519, P358, DOI 10.1002/cne.22523
Tang ZQ, 2009, J NEUROPHYSIOL, V102, P1672, DOI 10.1152/jn.00419.2009
Tanis JE, 2009, J NEUROSCI, V29, P9943, DOI 10.1523/JNEUROSCI.1989-09.2009
Tornberg J, 2005, EUR J NEUROSCI, V21, P1327, DOI 10.1111/j.1460-9568.2005.03959.x
Toyoda H, 2003, J NEUROPHYSIOL, V89, P1353, DOI 10.1152/jn.00721.2002
Turecek R, 2002, P NATL ACAD SCI USA, V99, P13884, DOI 10.1073/pnas.212419699
Turecek R, 2001, NATURE, V411, P587, DOI 10.1038/35079084
Tyzio R, 2011, J NEUROSCI, V31, P34, DOI 10.1523/JNEUROSCI.3314-10.2011
Tzounopoulos T, 2004, NAT NEUROSCI, V7, P719, DOI 10.1038/nn1272
Uvarov P, 2006, J NEUROSCI, V26, P13463, DOI 10.1523/JNEUROSCI.4731-06.2006
Uvarov P, 2005, J NEUROCHEM, V95, P1144, DOI 10.1111/j.1471-4159.2005.03434.x
Vale C, 2000, J NEUROSCI, V20, P1912
Vale C, 2004, EUR J NEUROSCI, V20, P2133, DOI 10.1111/j.1460-9568.2004.03679.x
Vale C, 2002, EUR J NEUROSCI, V16, P2394, DOI 10.1046/j.1460-9568.2002.02302.x
Vale C, 2005, HEARING RES, V206, P107, DOI 10.1016/j.heares.2005.03.012
Vale C, 2003, J NEUROSCI, V23, P7516
Vater M, 1997, CELL TISSUE RES, V289, P223, DOI 10.1007/s004410050869
Vilen H, 2001, TRANSGENIC RES, V10, P69, DOI 10.1023/A:1008959231644
Wake H, 2007, J NEUROSCI, V27, P1642, DOI 10.1523/JNEUROSCI.3104-06.2007
Walters ZS, 2009, J PHYSIOL-LONDON, V587, P521, DOI 10.1113/jphysiol.2008.161562
Wang DD, 2008, J NEUROSCI, V28, P5547, DOI 10.1523/JNEUROSCI.5599-07.2008
WANG DD, 2010, CEREB CORTEX
Watanabe M, 2009, J BIOL CHEM, V284, P27980, DOI 10.1074/jbc.M109.043620
Wenthold RJ, 1991, NEUROBIOLOGY HEARING, P121
Werthat F, 2008, DEV NEUROBIOL, V68, P1454, DOI 10.1002/dneu.20660
WICKESBERG RE, 1990, J NEUROSCI, V10, P1762
WOJTOWICZ JM, 1982, BRAIN RES, V18, P173
Woo NS, 2002, HIPPOCAMPUS, V12, P258, DOI 10.1002/hipo.10014
Woodin MA, 2003, NEURON, V39, P807, DOI 10.1016/S0896-6273(03)00507-5
WU WI, 1992, J NEUROSCI, V12, P3935
XU JC, 1994, P NATL ACAD SCI USA, V91, P2201, DOI 10.1073/pnas.91.6.2201
Yamada J, 2004, J PHYSIOL-LONDON, V557, P829, DOI 10.1113/jphysiol.2004.062471
Yang K, 2008, NEUROSCI LETT, V441, P205, DOI 10.1016/j.neulet.2008.06.038
Yeo M, 2009, J NEUROSCI, V29, P14652, DOI 10.1523/JNEUROSCI.2934-09.2009
YIN TCT, 1990, J NEUROPHYSIOL, V64, P465
Yin T. C. T, 2002, INTEGRATIVE FUNCTION, P99
YUSTE R, 1991, NEURON, V6, P333, DOI 10.1016/0896-6273(91)90243-S
Zhang D, 2010, J BIOMOL SCREEN, V15, P177, DOI 10.1177/1087057109355708
Zhang LL, 2007, J NEUROPHYSIOL, V98, P266, DOI 10.1152/jn.00288.2007
Zhou Y, 2005, J NEUROSCI, V25, P3046, DOI 10.1523/JNEUROSCI.3064-04.2005
Zhu L, 2008, EPILEPSY RES, V79, P201, DOI 10.1016/j.eplepsyres.2008.02.005
Zhu L, 2005, J NEUROPHYSIOL, V93, P1557, DOI 10.1152/jn.00616.2004
NR 259
TC 8
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2011
VL 279
IS 1-2
SI SI
BP 96
EP 110
DI 10.1016/j.heares.2011.05.012
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 830OQ
UT WOS:000295666700011
PM 21683130
ER
PT J
AU Wang, HN
Brozoski, TJ
Caspary, DM
AF Wang, Hongning
Brozoski, Thomas J.
Caspary, Donald M.
TI Inhibitory neurotransmission in animal models of tinnitus: Maladaptive
plasticity
SO HEARING RESEARCH
LA English
DT Article
ID DORSAL COCHLEAR NUCLEUS; AGE-RELATED-CHANGES; RAT INFERIOR COLLICULUS;
INTENSE SOUND EXPOSURE; STEM AUDITORY NUCLEI; RECEPTOR SUBUNIT
COMPOSITION; SPONTANEOUS NEURAL ACTIVITY; ACOUSTIC TRAUMA; BRAIN-STEM;
RESPONSE PROPERTIES
AB Tinnitus is a phantom auditory sensation experienced by up to 14% of the United States population with a smaller percentage experiencing decreased quality of life. A compelling hypothesis is that tinnitus results from a maladaptive plastic net down-regulation of inhibitory amino acid neurotransmission in the central auditory pathway. This loss of inhibition may be a compensatory response to loss of afferent input such as that caused by acoustic insult and/or age-related hearing loss, the most common causes of tinnitus in people. Compensatory plastic changes may result in pathologic neural activity that underpins tinnitus. The neural correlates include increased spontaneous spiking, increased bursting and decreased variance of inter-spike intervals. This review will examine evidence for chronic plastic neuropathic changes in the central auditory system of animals with psychophysically-defined tinnitus. Neurochemical studies will focus on plastic tinnitus-related changes of inhibitory glycinergic neurotransmission in the adult dorsal cochlear nucleus (DCN). Electrophysiological studies will focus on functional changes in the DCN and inferior colliculus (IC). Tinnitus was associated with increased spontaneous activity and altered response properties of fusiform cells, the major output neurons of DCN. Coincident with these physiologic alterations were changes in glycine receptor (GlyR) subunit composition, its anchoring/trafficking protein, gephyrin and the number and affinity of membrane GlyRs revealed by receptor binding. In the IC, the primary afferent target of DCN fusiform cells, multi-dimensional alterations in unit-spontaneous activity (rate, burst rate, bursting pattern) were found in animals with behavioral evidence of chronic tinnitus more than 9 months following the acoustic/cochlear insult. In contrast, immediately following an intense sound exposure, acute alterations in IC spontaneous activity resembled chronic tinnitus-related changes but were not identical. This suggests that long-term neuroplastic changes responsible for chronic tinnitus are likely to be responsible for its persistence. A clear understanding of tinnitus-related plasticity in the central auditory system and its associated neurochemistry may help define unique targets for therapeutic drug development. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Wang, Hongning; Caspary, Donald M.] So Illinois Univ, Sch Med, Dept Pharmacol, Springfield, IL 62794 USA.
[Brozoski, Thomas J.] So Illinois Univ, Sch Med, Dept Surg, Springfield, IL 62794 USA.
RP Caspary, DM (reprint author), So Illinois Univ, Sch Med, Dept Pharmacol, POB 19629, Springfield, IL 62794 USA.
EM dcaspary@siumed.edu
FU NIH [RO1DC00151, R01DC008532, RO1DC04803, RO1DC009669]
FX We thank Judith Bryan and Lynne Ling for helpful editing. This research
is supported by NIH Grant RO1DC00151 (DMC), R01DC008532 (DMC),
RO1DC04803 (TJB) and RO1DC009669 (TJB).
CR Ahmad N, 2004, DRUG AGING, V21, P297, DOI 10.2165/00002512-200421050-00002
Bauer CA, 2008, J NEUROSCI RES, V86, P2564, DOI 10.1002/jnr.21699
BEYERL BD, 1978, BRAIN RES, V145, P209, DOI 10.1016/0006-8993(78)90858-2
Brozoski TJ, 2007, HEARING RES, V228, P168, DOI 10.1016/j.heares.2007.02.003
Brozoski TJ, 2002, J NEUROSCI, V22, P2383
Brozoski TJ, 2005, HEARING RES, V206, P227, DOI 10.1016/j.heares.2004.12.013
Burianova J, 2009, EXP GERONTOL, V44, P161, DOI 10.1016/j.exger.2008.09.012
Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9
Caspary DM, 2008, J EXP BIOL, V211, P1781, DOI 10.1242/jeb.013581
CASPARY DM, 1990, J NEUROSCI, V10, P2363
Caspary DM, 1999, NEUROSCIENCE, V93, P307, DOI 10.1016/S0306-4522(99)00121-9
Caspary DM, 2005, J NEUROSCI, V25, P10952, DOI 10.1523/JNEUROSCI.2451-05.2005
CASPARY DM, 1987, BRAIN RES, V417, P273, DOI 10.1016/0006-8993(87)90452-5
Chang H, 2002, HEARING RES, V164, P59, DOI 10.1016/S0378-5955(01)00410-5
CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O
Davis KA, 2000, J NEUROPHYSIOL, V83, P926
Dobie RA, 2003, OTOLARYNG CLIN N AM, V36, P383, DOI 10.1016/S0030-6665(02)00168-8
Dong S, 2010, BRAIN RES, V1342, P24, DOI 10.1016/j.brainres.2010.04.067
Dong S, 2009, NEUROSCIENCE, V159, P1164, DOI 10.1016/j.neuroscience.2009.01.043
Dong SY, 2010, EUR J NEUROSCI, V31, P1616, DOI 10.1111/j.1460-9568.2010.07183.x
Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010
Finlayson PG, 2009, HEARING RES, V256, P104, DOI 10.1016/j.heares.2009.07.006
Fritschy JM, 2008, TRENDS NEUROSCI, V31, P257, DOI 10.1016/j.tins.2008.02.006
GonzalezHernandez T, 1996, J COMP NEUROL, V372, P309, DOI 10.1002/(SICI)1096-9861(19960819)372:2<309::AID-CNE11>3.0.CO;2-E
Grudzinska J, 2005, NEURON, V45, P727, DOI 10.1016/j.neuron.2005.01.028
Holt AG, 2005, J NEUROCHEM, V93, P1069, DOI 10.1111/j.1471-4159.2005.03090.x
Holt AG, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014260
Imig TJ, 2005, J COMP NEUROL, V490, P391, DOI 10.1002/cne.20674
Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6
Kaltenbach JA, 2007, PROG BRAIN RES, V166, P89, DOI 10.1016/S0079-6123(07)66009-9
Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5
Kaltenbach JA, 1998, HEARING RES, V124, P78, DOI 10.1016/S0378-5955(98)00119-1
KIRSCH J, 1993, BRAIN RES, V621, P301, DOI 10.1016/0006-8993(93)90120-C
Kneussel M, 2007, BIOL CELL, V99, P297, DOI 10.1042/BC20060120
Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1
Llano DA, 2000, BIOL CYBERN, V83, P419, DOI 10.1007/s004220000174
Ma WLD, 2006, HEARING RES, V216, P176, DOI 10.1016/j.heares.2006.03.011
Ma WLD, 2006, HEARING RES, V212, P9, DOI 10.1016/j.heares.2005.10.003
Maas C, 2006, J CELL BIOL, V172, P441, DOI 10.1083/jcb.200506066
Marciano E, 2003, INT J AUDIOL, V42, P4, DOI 10.3109/14992020309056079
Melcher JR, 2009, HEARING RES, V257, P63, DOI 10.1016/j.heares.2009.08.005
Melcher JR, 2000, J NEUROPHYSIOL, V83, P1058
MILBRANDT JC, 1995, NEUROSCIENCE, V67, P713, DOI 10.1016/0306-4522(95)00082-T
Milbrandt JC, 1997, J COMP NEUROL, V379, P455, DOI 10.1002/(SICI)1096-9861(19970317)379:3<455::AID-CNE10>3.0.CO;2-F
Milbrandt JC, 2000, HEARING RES, V147, P251, DOI 10.1016/S0378-5955(00)00135-0
Milbrandt JC, 1996, NEUROSCIENCE, V73, P449, DOI 10.1016/0306-4522(96)00050-4
Mulders WHAM, 2009, NEUROSCIENCE, V164, P733, DOI 10.1016/j.neuroscience.2009.08.036
Potashner SJ, 2000, HEARING RES, V147, P125, DOI 10.1016/S0378-5955(00)00126-X
Quirk WS, 1996, OTOLARYNG HEAD NECK, V114, P613, DOI 10.1016/S0194-5998(96)70255-3
Roberts LE, 2010, J NEUROSCI, V30, P14972, DOI 10.1523/JNEUROSCI.4028-10.2010
SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U
SALVI RJ, 1978, EXP BRAIN RES, V32, P301
Seidman MD, 1996, OTOLARYNG CLIN N AM, V29, P455
SHNEIDERMAN A, 1988, J COMP NEUROL, V276, P188, DOI 10.1002/cne.902760204
SHORE EE, 2008, EUR J NEUROSCI, V27, P155
Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812
Suneja SK, 1998, EXP NEUROL, V154, P473, DOI 10.1006/exnr.1998.6946
SZCZEPANIAK WS, 1995, NEUROSCI LETT, V196, P77, DOI 10.1016/0304-3940(95)11851-M
TRILLER A, 1985, J CELL BIOL, V101, P683, DOI 10.1083/jcb.101.2.683
Turner JG, 2006, BEHAV NEUROSCI, V120, P188, DOI 10.1037/0735-7044.120.1.188
Vale C, 2004, EUR J NEUROSCI, V20, P2133, DOI 10.1111/j.1460-9568.2004.03679.x
Wang H, 2009, NEUROSCIENCE, V160, P227, DOI 10.1016/j.neuroscience.2009.01.079
Wang H, 2009, NEUROSCIENCE, V164, P747, DOI 10.1016/j.neuroscience.2009.08.026
Wang J, 1996, J NEUROPHYSIOL, V75, P171
Wang JA, 2002, HEARING RES, V168, P238, DOI 10.1016/S0378-5955(02)00360-X
Willott JF, 1997, J COMP NEUROL, V385, P405
WILLOTT JF, 1982, SCIENCE, V216, P1331, DOI 10.1126/science.7079767
Winer J.A., 2005, INFERIOR COLLICULUS
Zhang JS, 1998, NEUROSCI LETT, V250, P197, DOI 10.1016/S0304-3940(98)00482-0
Zoger S, 2001, AUDIOLOGY, V40, P133
NR 70
TC 34
Z9 36
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2011
VL 279
IS 1-2
SI SI
BP 111
EP 117
DI 10.1016/j.heares.2011.04.004
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 830OQ
UT WOS:000295666700012
PM 21527325
ER
PT J
AU O'Neil, JN
Connelly, CJ
Limb, CJ
Ryugo, DK
AF O'Neil, Jahn N.
Connelly, Catherine J.
Limb, Charles J.
Ryugo, David K.
TI Synaptic morphology and the influence of auditory experience
SO HEARING RESEARCH
LA English
DT Article
ID ANTEROVENTRAL COCHLEAR NUCLEUS; MEDIAL SUPERIOR OLIVE; DEAF WHITE CATS;
INTRACOCHLEAR ELECTRICAL-STIMULATION; INTERAURAL TIME DIFFERENCE;
PRIMARY AXOSOMATIC ENDINGS; SPIRAL GANGLION NEURONS; INFERIOR
COLLICULUS; BRAIN-STEM; CONGENITAL DEAFNESS
AB The auditory experience is crucial for the normal development and maturation of brain structure and the maintenance of the auditory pathways. The specific aims of this review are (i) to provide a brief background of the synaptic morphology of the endbulb of Held in hearing and deaf animals; (ii) to argue the importance of this large synaptic ending in linking neural activity along ascending pathways to environmental acoustic events; (iii) to describe how the re-introduction of electrical activity changes this synapse; and (iv) to examine how changes at the endbulb synapse initiate trans-synaptic changes in ascending auditory projections to the superior olivary complex, the inferior complex, and the auditory cortex. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Ryugo, David K.] St Vincents Hosp, Garvan Inst Med Res, Program Neurosci, Darlinghurst, NSW 2010, Australia.
[O'Neil, Jahn N.; Connelly, Catherine J.; Limb, Charles J.; Ryugo, David K.] Johns Hopkins Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Baltimore, MD 21205 USA.
[Ryugo, David K.] Johns Hopkins Univ, Sch Med, Dept Neurosci, Baltimore, MD 21205 USA.
RP Ryugo, DK (reprint author), St Vincents Hosp, Garvan Inst Med Res, Program Neurosci, Darlinghurst, NSW 2010, Australia.
EM d.ryugo@garvan.org.au
FU NIH [DC000232]; Advanced Bionics Corporation; New South Wales, Australia
FX The authors are supported by NIH grant DC000232, a grant from Advanced
Bionics Corporation, and a Life Science Research Award from New South
Wales, Australia.
CR ADAMS JC, 1986, ARCH OTOLARYNGOL, V112, P1253
ADAMS JC, 1987, J COMP NEUROL, V262, P375, DOI 10.1002/cne.902620305
ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305
ALTSCHULER RA, 1984, BRAIN RES, V291, P173, DOI 10.1016/0006-8993(84)90667-X
ANDERSEN RA, 1980, J COMP NEUROL, V194, P649, DOI 10.1002/cne.901940311
Asako M, 2005, J NEUROSCI RES, V81, P102, DOI 10.1002/jnr.20542
Babalian AL, 2003, EXP BRAIN RES, V153, P452, DOI 10.1007/s00221-003-1619-x
BAKER CA, 2010, FRONT NEUROANAT, V4, P1
BLACKBURN CC, 1990, J NEUROPHYSIOL, V63, P1191
Bledsoe SC, 1995, NEUROREPORT, V7, P225, DOI 10.1097/00001756-199512000-00054
Bosher S. K., 1967, J LARYNGOL OTOL, V80, P222
BOSHER SK, 1965, PROC R SOC SER B-BIO, V162, P147, DOI 10.1098/rspb.1965.0030
BOUDREAU JC, 1968, J NEUROPHYSIOL, V31, P442
BOYNE AF, 1975, J CELL BIOL, V67, P814, DOI 10.1083/jcb.67.3.814
Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a
BRAWER JR, 1975, J COMP NEUROL, V160, P491, DOI 10.1002/cne.901600406
Brighton P, 1991, ANN NY ACAD SCI, V630, P152
BROWNER RH, 1988, HEARING RES, V33, P257, DOI 10.1016/0378-5955(88)90156-6
Buras ED, 2006, J COMP NEUROL, V494, P179, DOI 10.1002/cne.20795
BURWEN SJ, 1977, J CELL BIOL, V74, P690, DOI 10.1083/jcb.74.3.690
BUSBY PA, 1993, J ACOUST SOC AM, V93, P1058, DOI 10.1121/1.405554
BUSBY PA, 1992, AUDIOLOGY, V31, P95
Busby PA, 1999, J ACOUST SOC AM, V105, P1841, DOI 10.1121/1.426721
CANT NB, 1992, HEARING RES, V58, P26, DOI 10.1016/0378-5955(92)90005-8
CANT NB, 1979, NEUROSCIENCE, V4, P1925, DOI 10.1016/0306-4522(79)90066-6
CANT NB, 1986, J COMP NEUROL, V247, P457, DOI 10.1002/cne.902470406
Carr CE, 1996, J COMP NEUROL, V373, P467, DOI 10.1002/(SICI)1096-9861(19960930)373:4<467::AID-CNE1>3.0.CO;2-#
Carr CE, 2004, J PHYSIOLOGY-PARIS, V98, P99, DOI 10.1016/j.jphysparis.2004.03.003
CARR CE, 1991, J COMP NEUROL, V314, P306, DOI 10.1002/cne.903140208
Chang EF, 2003, SCIENCE, V300, P498, DOI 10.1126/science.1082163
Chen I, 2010, JARO-J ASSOC RES OTO, V11, P587, DOI 10.1007/s10162-010-0234-3
Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004
Couchman K, 2010, J NEUROSCI, V30, P17111, DOI 10.1523/JNEUROSCI.1760-10.2010
DEOL MS, 1970, PROC R SOC SER B-BIO, V175, P201, DOI 10.1098/rspb.1970.0019
FERRARA ML, 1983, VET REC, V112, P344
Fitzpatrick DC, 1997, NATURE, V388, P871, DOI 10.1038/42246
Francis HW, 2000, HEARING RES, V149, P91, DOI 10.1016/S0378-5955(00)00165-9
FRIAUF E, 1990, NEUROSCI LETT, V120, P58, DOI 10.1016/0304-3940(90)90167-8
GANTZ BJ, 1994, AM J OTOL S2, P1
Gillespie DC, 2005, NAT NEUROSCI, V8, P332, DOI 10.1038/nn1397
GROTHE B, 1993, J NEUROPHYSIOL, V69, P1192
Grothe B, 2000, PROG NEUROBIOL, V61, P581, DOI 10.1016/S0301-0082(99)00068-4
GROTHE B, 1994, J NEUROSCI, V14, P1701
GULLEY RL, 1978, J COMP NEUROL, V180, P707, DOI 10.1002/cne.901800405
GULLEY RL, 1977, J CELL BIOL, V75, P837, DOI 10.1083/jcb.75.3.837
Hackney CM, 1996, EUR J NEUROSCI, V8, P79, DOI 10.1111/j.1460-9568.1996.tb01169.x
Hancock KE, 2010, J NEUROSCI, V30, P14068, DOI 10.1523/JNEUROSCI.3213-10.2010
Hartmann R, 1997, HEARING RES, V112, P115, DOI 10.1016/S0378-5955(97)00114-7
Heid S, 1997, HEARING RES, V110, P191, DOI 10.1016/S0378-5955(97)00074-9
Heid S, 1998, HEARING RES, V115, P101, DOI 10.1016/S0378-5955(97)00182-2
Held H, 1893, ARCH ANAT PHYSL ANAT, V3+4, P201
HEUSER JE, 1973, J CELL BIOL, V57, P315, DOI 10.1083/jcb.57.2.315
HOLLMANN M, 1994, ANNU REV NEUROSCI, V17, P31, DOI 10.1146/annurev.ne.17.030194.000335
HULTCRANTZ M, 1991, HEARING RES, V54, P272, DOI 10.1016/0378-5955(91)90121-O
HUNTER C, 1993, J NEUROSCI, V13, P1932
JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495
JHAVERI S, 1982, NEUROSCIENCE, V7, P837, DOI 10.1016/0306-4522(82)90046-X
Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5
KANDLER K, 1995, J NEUROSCI, V15, P6890
Kandler K, 2009, NAT NEUROSCI, V12, P711, DOI 10.1038/nn.2332
Kandler K, 2004, CURR OPIN NEUROBIOL, V14, P96, DOI 10.1016/j.conb.2004.01.017
Kapfer C, 2002, NAT NEUROSCI, V5, P247, DOI 10.1038/mm810
Kiang NY-s, 1965, DISCHARGE PATTERNS S
Kim G, 2003, NAT NEUROSCI, V6, P282, DOI 10.1038/nn1015
Klinke R, 2001, AUDIOL NEURO-OTOL, V6, P203, DOI 10.1159/000046833
Klinke R, 1999, SCIENCE, V285, P1729, DOI 10.1126/science.285.5434.1729
KOERBER KC, 1966, EXP NEUROL, V16, P119, DOI 10.1016/0014-4886(66)90091-4
KOLSTON J, 1992, ANAT EMBRYOL, V186, P443
KONISHI M, 1985, ANNU REV NEUROSCI, V8, P125
Kral A, 2000, CEREB CORTEX, V10, P714, DOI 10.1093/cercor/10.7.714
Kral A, 2002, CEREB CORTEX, V12, P797, DOI 10.1093/cercor/12.8.797
Kral A, 2001, AUDIOL NEURO-OTOL, V6, P346, DOI 10.1159/000046845
Kretzmer EA, 2004, ARCH OTOLARYNGOL, V130, P499, DOI 10.1001/archotol.130.5.499
KUWABARA N, 1992, J COMP NEUROL, V324, P522, DOI 10.1002/cne.903240406
LARSEN SA, 1992, EXP NEUROL, V115, P151, DOI 10.1016/0014-4886(92)90240-Q
LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4
Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3
Lee DJ, 2003, J NEUROCYTOL, V32, P229, DOI 10.1023/B:NEUR.0000010082.99874.14
LENN NJ, 1966, AM J ANAT, V118, P375, DOI 10.1002/aja.1001180205
Limb CJ, 2000, JARO, V1, P103, DOI 10.1007/sl01620010032
Linthicum FH, 2009, OTOL NEUROTOL, V30, P418, DOI 10.1097/MAO.0b013e31819a8827
Lorente de No R, 1981, PRIMARY ACOUSTIC NUC
LORENZ K, 1935, J ORNITHOLOGIE, V83
LUSTIG LR, 1994, HEARING RES, V74, P29, DOI 10.1016/0378-5955(94)90173-2
MAIR IWS, 1973, ACTA OTOLARYNG S314, P1
MANIS PB, 1991, J NEUROSCI, V11, P2865
MARTIN MR, 1985, HEARING RES, V20, P215, DOI 10.1016/0378-5955(85)90026-7
McAlpine D, 2001, NAT NEUROSCI, V4, P396, DOI 10.1038/86049
MCMULLEN NT, 1988, EXP BRAIN RES, V72, P195, DOI 10.1007/BF00248516
MCMULLEN NT, 1988, J COMP NEUROL, V267, P92, DOI 10.1002/cne.902670107
MOISEFF A, 1981, J NEUROSCI, V1, P40
MOORE DR, 1985, J COMP NEUROL, V240, P180, DOI 10.1002/cne.902400208
Moore JK, 1997, ANN OTO RHINOL LARYN, V106, P385
MOORE MJ, 1983, J NEUROSCI, V3, P237
MOREST DK, 1984, J COMP NEUROL, V222, P209, DOI 10.1002/cne.902220206
Mossop JE, 2000, HEARING RES, V147, P183, DOI 10.1016/S0378-5955(00)00054-X
NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411
NEISES GR, 1982, ANAT REC, V204, P271, DOI 10.1002/ar.1092040312
NI DF, 1993, ACTA OTO-LARYNGOL, V113, P489, DOI 10.3109/00016489309135851
Nicol MJ, 2002, J PHYSIOL-LONDON, V539, P713, DOI 10.1013/jphysiol.2001.012972
NORDEEN KW, 1983, J COMP NEUROL, V214, P131, DOI 10.1002/cne.902140203
NORDEEN KW, 1983, J COMP NEUROL, V214, P144, DOI 10.1002/cne.902140204
OERTEL D, 1983, J NEUROSCI, V3, P2043
Oleskevich S, 2004, J PHYSIOL-LONDON, V560, P709, DOI 10.1113/jphysiol.2004.066652
O'Neil JN, 2010, J COMP NEUROL, V518, P2382, DOI 10.1002/cne.22339
ONEIL JN, 2011, ASS RES OT ABST
OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407
Parks T.N., 2004, PLASTICITY AUDITORY
Pecka M, 2008, J NEUROSCI, V28, P6914, DOI 10.1523/JNEUROSCI.1660-08.2008
Petralia RS, 2000, HEARING RES, V147, P59, DOI 10.1016/S0378-5955(00)00120-9
PFEIFFER RR, 1966, SCIENCE, V154, P667, DOI 10.1126/science.154.3749.667
QUITTNER AL, 1991, AM J OTOL, V12, P89
Ramon, 1909, HISTOLOGIE SYSTEME N
Rauschecker JP, 2002, SCIENCE, V295, P1025, DOI 10.1126/science.1067796
REBILLARD M, 1981, HEARING RES, V5, P189, DOI 10.1016/0378-5955(81)90045-9
REBILLARD M, 1981, HEARING RES, V5, P179, DOI 10.1016/0378-5955(81)90044-7
Redd EE, 2000, HEARING RES, V147, P160, DOI 10.1016/S0378-5955(00)00129-5
REES S, 1985, BRAIN RES, V325, P370, DOI 10.1016/0006-8993(85)90343-9
Rietzel HJ, 1998, J COMP NEUROL, V390, P20
ROBARDS MJ, 1979, J COMP NEUROL, V184, P547, DOI 10.1002/cne.901840308
Robbins AM, 2006, COCHLEAR IMPLANTS, P153
ROMAND R, 1978, BRAIN RES, V148, P43, DOI 10.1016/0006-8993(78)90377-3
ROTH GL, 1978, J COMP NEUROL, V182, P661, DOI 10.1002/cne.901820407
RUSSELL FA, 1995, J COMP NEUROL, V352, P607, DOI 10.1002/cne.903520409
Ryugo D. K., 2009, COCHLEAR IMPLANTS PR, P19
RYUGO DK, 1981, BRAIN RES, V210, P342, DOI 10.1016/0006-8993(81)90907-0
Ryugo DK, 1997, J COMP NEUROL, V385, P230, DOI 10.1002/(SICI)1096-9861(19970825)385:2<230::AID-CNE4>3.0.CO;2-2
RYUGO DK, 1982, J COMP NEUROL, V210, P239, DOI 10.1002/cne.902100304
Ryugo DK, 2010, J COMP NEUROL, V518, P1046, DOI 10.1002/cne.22262
Ryugo DK, 2003, BRAIN RES BULL, V60, P435, DOI 10.1016/S0361-9230(03)00049-2
RYUGO DK, 1991, J COMP NEUROL, V305, P35, DOI 10.1002/cne.903050105
Ryugo DK, 2005, SCIENCE, V310, P1490, DOI 10.1126/science.1119419
Ryugo DK, 1998, J COMP NEUROL, V397, P532, DOI 10.1002/(SICI)1096-9861(19980810)397:4<532::AID-CNE6>3.0.CO;2-2
Ryugo DK, 2006, HEARING RES, V216, P100, DOI 10.1016/j.heares.2006.01.007
Ryugo DK, 1996, J COMP NEUROL, V365, P141, DOI 10.1002/(SICI)1096-9861(19960129)365:1<141::AID-CNE11>3.0.CO;2-T
Saada AA, 1996, BRAIN RES, V736, P315, DOI 10.1016/0006-8993(96)00719-6
Safieddine S, 1997, J NEUROSCI, V17, P7523
SANES DH, 1993, J NEUROSCI, V13, P2627
Sanes DH, 2000, HEARING RES, V147, P46, DOI 10.1016/S0378-5955(00)00119-2
SANES DH, 1990, J NEUROSCI, V10, P3494
Sanes DH, 2009, CURR OPIN NEUROBIOL, V19, P188, DOI 10.1016/j.conb.2009.05.014
SANES DH, 1991, J NEUROBIOL, V22, P837, DOI 10.1002/neu.480220805
SANES DH, 1992, J COMP NEUROL, V321, P637, DOI 10.1002/cne.903210410
SANES DH, 1988, J NEUROSCI, V8, P682
SANES DH, 1987, J NEUROSCI, V7, P3793
SANES DH, 1993, EUR J NEUROSCI, V5, P570, DOI 10.1111/j.1460-9568.1993.tb00522.x
SCHEIBE A, 1885, Z OHRENHEILKD, V27, P95
SCHEIBE A, 1982, ARCH OTOLARYNGOL, V21, P12
SCHWARTZ IR, 1982, ACTA OTO-LARYNGOL, V93, P9, DOI 10.3109/00016488209130847
SCHWEITZER L, 1991, NEUROTOXICOL TERATOL, V13, P189, DOI 10.1016/0892-0362(91)90010-T
Shepherd R. K., 2006, COCHLEAR IMPLANTS, P25
Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4
Shepherd RK, 1999, HEARING RES, V130, P171, DOI 10.1016/S0378-5955(99)00011-8
Sly DJ, 2007, EUR J NEUROSCI, V26, P510, DOI 10.1111/j.1460-9568.2007.05678.x
SMITH PH, 1993, J COMP NEUROL, V331, P245, DOI 10.1002/cne.903310208
SNYDER R, 1995, J NEUROPHYSIOL, V73, P449
Snyder RL, 2000, J NEUROPHYSIOL, V84, P166
SNYDER RL, 1990, HEARING RES, V50, P7, DOI 10.1016/0378-5955(90)90030-S
Stakhovskaya O, 2008, HEARING RES, V243, P69, DOI 10.1016/j.heares.2008.05.007
SUGA F, 1970, LARYNGOSCOPE, V80, P80, DOI 10.1288/00005537-197001000-00007
Syka J, 2000, EXP BRAIN RES, V133, P254, DOI 10.1007/s002210000426
SZPIR MR, 1990, J COMP NEUROL, V295, P530, DOI 10.1002/cne.902950403
Tillein J, 2010, CEREB CORTEX, V20, P492, DOI 10.1093/cercor/bhp222
TIRKO NN, 2009, MIDW RES M ASS RES O
Tollin DJ, 2003, NEUROSCIENTIST, V9, P127, DOI 10.1177/1073858403252228
Tsuji J, 1997, J COMP NEUROL, V381, P188
Tyler R, 1997, Scand Audiol Suppl, V46, P65
Tyler RS, 1996, EAR HEARING, V17, pS38, DOI 10.1097/00003446-199617031-00005
VANDERLO.H, 1973, SCIENCE, V179, P395, DOI 10.1126/science.179.4071.395
van Hoesel RJM, 2007, J ACOUST SOC AM, V121, P2192, DOI 10.1121/1.2537300
van Hoesel RJM, 2004, AUDIOL NEURO-OTOL, V9, P234, DOI 10.1159/000078393
Vollmer M, 2005, J NEUROPHYSIOL, V93, P3339, DOI 10.1152/jn.00900.2004
Walmsley B, 2006, J PHYSIOL-LONDON, V572, P313, DOI 10.1113/jphysiol.2006.104851
WALTZMAN SB, 1993, OTOLARYNG HEAD NECK, V108, P329
WALTZMAN SB, 1994, AM J OTOL, V15, P9
Waltzman SB, 1997, AM J OTOL, V18, P342
WANG TX, 1998, J NEUROSCI, V18, P1148
Wang Y, 2006, JARO-J ASSOC RES OTO, V7, P412, DOI 10.1007/s10162-006-0052-9
Wang Y, 2005, J NEUROPHYSIOL, V94, P1814, DOI 10.1152/jn.00374.2005
WELLER WL, 1975, BRAIN RES, V83, P504
Werthat F, 2008, DEV NEUROBIOL, V68, P1454, DOI 10.1002/dneu.20660
WEST CD, 1973, J COMP NEUROL, V151, P377, DOI 10.1002/cne.901510406
Winer JA, 2005, HEARING RES, V207, P1, DOI 10.1016/j.heares.2005.06.007
WOJCIK SM, 2004, P NATL ACAD SCI USA, V101, P158
WU SH, 1994, HEARING RES, V73, P57
YIN DC, 1990, J NEUROPHYSIOL, V64, P465
YOUNG SR, 1986, J COMP NEUROL, V254, P425, DOI 10.1002/cne.902540402
Zeng CH, 2009, J NEUROSCI, V29, P4210, DOI 10.1523/JNEUROSCI.0208-09.2009
ZHOU L, 2007, J COMP NEUROL, V500, P777
Zhou X, 2008, NEUROSCIENCE, V154, P390, DOI 10.1016/j.neuroscience.2008.01.026
NR 190
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2011
VL 279
IS 1-2
SI SI
BP 118
EP 130
DI 10.1016/j.heares.2011.01.019
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 830OQ
UT WOS:000295666700013
PM 21310226
ER
PT J
AU Wang, Y
O'Donohue, H
Manis, P
AF Wang, Yong
O'Donohue, Heather
Manis, Paul
TI Short-term plasticity and auditory processing in the ventral cochlear
nucleus of normal and hearing-impaired animals
SO HEARING RESEARCH
LA English
DT Article
ID GLUTAMATE-RECEPTOR DESENSITIZATION; PRESYNAPTIC CALCIUM CURRENT;
SYNAPTIC AMPA RECEPTORS; CALYX-TYPE SYNAPSE; BRAIN-STEM; NERVE-FIBERS;
BUSHY CELLS; HELD SYNAPSE; ULTRASTRUCTURAL ANALYSIS; CHARACTERISTIC
FREQUENCY
AB The dynamics of synaptic transmission between neurons plays a major role in neural information processing. In the cochlear nucleus, auditory nerve synapses have a relatively high release probability and show pronounced, synaptic depression that, in conjunction with the variability of interspike intervals, shapes the information transmitted to the postsynaptic cells. Cellular mechanisms have been best analyzed at the endbulb synapses, revealing that the recent history of presynaptic activity plays a complex, non-linear, role in regulating release. Emerging evidence suggests that the dynamics of synaptic function differs according to the target neuron within the cochlear nucleus. One consequence of hearing loss is changes in evoked release at surviving auditory nerve synapses, and in some situations spontaneous release is greatly enhanced. In contrast, even with cochlear ablation, postsynaptic excitability is less affected. The existing evidence suggests that different modes of hearing loss can result in different dynamic patterns of synaptic transmission between the auditory nerve and postsynaptic neurons. These changes in dynamics in turn will affect the efficacy with which different kinds of information about the acoustic environment can be processed by the parallel pathways in the cochlear nucleus. (C) 2011 Elsevier B.V. All rights reserved.
C1 [O'Donohue, Heather; Manis, Paul] Univ N Carolina, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC 27599 USA.
[Wang, Yong] Univ Utah, Sch Med 3C120, Neurosci Program, Salt Lake City, UT 84132 USA.
[Wang, Yong] Univ Utah, Sch Med 3C120, Div Otolaryngol, Salt Lake City, UT 84132 USA.
RP Manis, P (reprint author), Univ N Carolina, Dept Otolaryngol Head & Neck Surg, G127 Phys Off Bldg,CB 7070, Chapel Hill, NC 27599 USA.
EM yong.wang@hsc.utah.edu; pmanis@med.unc.edu
FU NIH [R03DC008190, R01DC004551]
FX This work was supported by NIH grants R03DC008190 to YW and R01DC004551
(PBM, HAO). We would also like to thank an anonymous reviewer for some
very constructive suggestions.
CR Abbott LF, 2004, NATURE, V431, P796, DOI 10.1038/nature03010
BARNESDAVIES M, 1995, J PHYSIOL-LONDON, V488, P387
Bellingham MC, 1999, NEURON, V23, P159, DOI 10.1016/S0896-6273(00)80762-X
Belousov AB, 2001, J NEUROSCI, V21, P2015
Benowitz LI, 1997, TRENDS NEUROSCI, V20, P84, DOI 10.1016/S0166-2236(96)10072-2
Blatow M, 2003, NEURON, V38, P79, DOI 10.1016/S0896-6273(03)00196-X
Bollmann JH, 2005, NAT NEUROSCI, V8, P426, DOI 10.1038/nn1417
Brenowitz S, 2001, J NEUROSCI, V21, P9487
Brenowitz S, 1998, NEURON, V20, P135, DOI 10.1016/S0896-6273(00)80441-9
Cai SQ, 2009, JARO-J ASSOC RES OTO, V10, P5, DOI 10.1007/s10162-008-0142-y
Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9
CAO XJ, 2010, J NEUROPHYSIOL
Cao XJ, 2008, J COMP NEUROL, V510, P297, DOI 10.1002/cne.21788
Cao XJ, 2007, J NEUROPHYSIOL, V97, P3961, DOI 10.1152/jn.00052.2007
CASPARY DM, 1983, EXP NEUROL, V82, P491, DOI 10.1016/0014-4886(83)90419-3
Cens T, 2006, PROG BIOPHYS MOL BIO, V90, P104, DOI 10.1016/j.pbiomolbio.2005.05.013
Chanda S, 2010, J NEUROPHYSIOL, V104, P2063, DOI 10.1152/jn.00474.2010
Chanda S, 2010, J NEUROPHYSIOL, V103, P1915, DOI 10.1152/jn.00751.2009
Cook DL, 2003, NATURE, V421, P66, DOI 10.1038/nature01248
Dittman JS, 2000, J NEUROSCI, V20, P1374
Englitz B, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007014
Forsythe ID, 1998, NEURON, V20, P797, DOI 10.1016/S0896-6273(00)81017-X
Francis HW, 2000, HEARING RES, V149, P91, DOI 10.1016/S0378-5955(00)00165-9
Fuhrmann G, 2002, J NEUROPHYSIOL, V87, P140
Fujino K, 2001, J NEUROSCI, V21, P7372
Fukui I, 2006, J NEUROPHYSIOL, V96, P633, DOI 10.1152/jn.00916.2005
Gardner SM, 1999, J NEUROSCI, V19, P8721
Grande LA, 2005, PHYSIOLOGY, V20, P201, DOI 10.1152/physiol.00006.2005
Grant L, 2008, J NEUROPHYSIOL, V99, P2183, DOI 10.1152/jn.01174.2007
Habets RLP, 2006, J NEUROPHYSIOL, V96, P2868, DOI 10.1152/jn.00427.2006
Hermann J, 2007, J NEUROPHYSIOL, V98, P807, DOI 10.1152/jn.00355.2007
Hermann J, 2009, J NEUROPHYSIOL, V101, P20, DOI 10.1152/jn.90243.2008
Illing RB, 1997, J COMP NEUROL, V382, P116, DOI 10.1002/(SICI)1096-9861(19970526)382:1<116::AID-CNE8>3.0.CO;2-4
ISAACSON JS, 1995, J NEUROPHYSIOL, V73, P964
Ishikawa T, 2001, J PHYSIOL-LONDON, V533, P423, DOI 10.1111/j.1469-7793.2001.0423a.x
Jin YM, 2005, J NEUROSCI RES, V81, P91, DOI 10.1002/jnr.20536
JONES HC, 1988, J PHYSIOL-LONDON, V402, P579
JORIS PX, 1994, J NEUROPHYSIOL, V71, P1022
Kiang NY-s, 1965, DISCHARGE PATTERNS S
Kopp-Scheinpflug C, 2003, JARO, V4, P1, DOI 10.1007/s10162-002-2010-5
Kopp-Scheinpflug C, 2002, J NEUROSCI, V22, P11004
Kraus KS, 2004, J COMP NEUROL, V475, P374, DOI 10.1002/cne.2080
Lee A, 2000, J NEUROSCI, V20, P6830
Lee DJ, 2003, J NEUROCYTOL, V32, P229, DOI 10.1023/B:NEUR.0000010082.99874.14
LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736
LIBERMAN MC, 1991, J COMP NEUROL, V313, P240, DOI 10.1002/cne.903130205
Lorteije JAM, 2009, J NEUROSCI, V29, P13770, DOI 10.1523/JNEUROSCI.3285-09.2009
Lu T, 2007, J NEUROSCI, V27, P808, DOI 10.1523/JNEUROSCI.4871-06.2007
Lu Y, 2007, J NEUROPHYSIOL, V97, P635, DOI 10.1152/jn.00915.2006
MacLeod KM, 2007, J NEUROPHYSIOL, V97, P2863, DOI 10.1152/jn.01030.2006
Mancilla JG, 2009, J NEUROPHYSIOL, V102, P1287, DOI 10.1152/jn.91272.2008
Marianowski R, 2000, HEARING RES, V150, P1, DOI 10.1016/S0378-5955(00)00166-0
Markram H, 1998, P NATL ACAD SCI USA, V95, P5323, DOI 10.1073/pnas.95.9.5323
Michler SA, 2002, J COMP NEUROL, V451, P250, DOI 10.1002/cne.10348
Mostafapour SP, 2000, J COMP NEUROL, V426, P561, DOI 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G
Muly SM, 2004, J NEUROSCI RES, V75, P585, DOI 10.1002/jnr.20011
OERTEL D, 1985, J ACOUST SOC AM, V78, P328, DOI 10.1121/1.392494
Oertel D, 2001, AUDIOL NEURO-OTOL, V6, P161, DOI 10.1159/000046825
OHLEMILLER KK, 1991, J ACOUST SOC AM, V90, P274, DOI 10.1121/1.401298
Oleskevich S, 2000, J PHYSIOL-LONDON, V524, P513, DOI 10.1111/j.1469-7793.2000.00513.x
Oleskevich S, 2002, J PHYSIOL-LONDON, V540, P447, DOI 10.1113/jphysiol.2001.013821
PATNEAU DK, 1993, J NEUROSCI, V13, P3496
Potashner SJ, 1997, EXP NEUROL, V148, P222, DOI 10.1006/exnr.1997.6641
Pressnitzer D, 2001, J NEUROSCI, V21, P6377
RAMAN IM, 1995, BIOPHYS J, V68, P137
Rich AW, 2010, LARYNGOSCOPE, V120, P2047, DOI 10.1002/lary.21106
Rothman JS, 1996, AUDIT NEUROSCI, V2, P47
Rothman JS, 2003, J NEUROPHYSIOL, V89, P3097, DOI 10.1152/jn.00127.2002
ROTHMAN JS, 1993, J NEUROPHYSIOL, V70, P2562
Rubio ME, 2006, HEARING RES, V216, P154, DOI 10.1016/j.heares.2006.03.007
Ryugo DK, 1997, J COMP NEUROL, V385, P230, DOI 10.1002/(SICI)1096-9861(19970825)385:2<230::AID-CNE4>3.0.CO;2-2
SACHS MB, 1974, J ACOUST SOC AM, V56, P1835, DOI 10.1121/1.1903521
Sakaba T, 2001, NEURON, V32, P1119, DOI 10.1016/S0896-6273(01)00543-8
Sato K, 2000, HEARING RES, V147, P137, DOI 10.1016/S0378-5955(00)00127-1
Scheuss V, 2006, J NEUROSCI, V26, P8183, DOI 10.1523/JNEUROSCI.1962-06.2006
Spirou GA, 2005, NEUROSCIENCE, V136, P843, DOI 10.1016/j.neuroscience.2005.08.068
SPIROU GA, 1990, J NEUROPHYSIOL, V63, P1169
Sumner CJ, 2005, J NEUROPHYSIOL, V94, P4234, DOI 10.1152/jn.00401.2005
Sun LY, 2009, MAGNESIUM RES, V22, P266, DOI 10.1684/mrh.2009.0186
Suneja SK, 2000, EXP NEUROL, V165, P355, DOI 10.1006/exnr.2000.7471
Taberner AM, 2005, J NEUROPHYSIOL, V93, P557, DOI 10.1152/jn.00574.2004
TRUSSELL LO, 1989, NEURON, V3, P209, DOI 10.1016/0896-6273(89)90034-2
TRUSSELL LO, 1993, NEURON, V10, P1185, DOI 10.1016/0896-6273(93)90066-Z
Tucci DL, 2002, JARO, V3, P89, DOI 10.1007/s101620010091
Tucci DL, 2001, HEARING RES, V155, P124, DOI 10.1016/S0378-5955(01)00256-8
Typlt M, 2010, EUR J NEUROSCI, V31, P1574, DOI 10.1111/j.1460-9568.2010.07188.x
Wang LY, 1998, NATURE, V394, P384, DOI 10.1038/28645
Wang Y, 2006, JARO-J ASSOC RES OTO, V7, P412, DOI 10.1007/s10162-006-0052-9
Wang Y, 2010, HEARING RES, V270, P101, DOI 10.1016/j.heares.2010.09.003
Wang Y, 2005, J NEUROPHYSIOL, V94, P1814, DOI 10.1152/jn.00374.2005
Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028
Wang Y, 2008, J NEUROPHYSIOL, V100, P1255, DOI 10.1152/jn.90715.2008
Wang YX, 1998, J NEUROSCI, V18, P1148
WENTHOLD RJ, 1979, BRAIN RES, V162, P338, DOI 10.1016/0006-8993(79)90294-4
WENTHOLD RJ, 1977, BRAIN RES, V138, P111, DOI 10.1016/0006-8993(77)90787-9
Whiting B, 2009, NEUROSCIENCE, V163, P1264, DOI 10.1016/j.neuroscience.2009.07.049
WINTER IM, 1990, HEARING RES, V45, P191, DOI 10.1016/0378-5955(90)90120-E
Wong AYC, 2003, J NEUROSCI, V23, P4868
Xu JH, 2005, NEURON, V46, P633, DOI 10.1016/j.neuron.2005.03.024
Xu-Friedman MA, 2005, J NEUROPHYSIOL, V94, P2526, DOI 10.1152/jn.01308.2004
YAMADA KA, 1993, J NEUROSCI, V13, P3904
Yang H, 2009, J NEUROPHYSIOL, V102, P1699, DOI 10.1152/jn.00072.2009
Yang H, 2008, J NEUROPHYSIOL, V99, P2510, DOI 10.1152/jn.01293.2007
Yang H, 2010, J NEUROSCI, V30, P11466, DOI 10.1523/JNEUROSCI.2300-10.2010
Zirpel L, 2000, J NEUROSCI, V20, P6267
NR 105
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2011
VL 279
IS 1-2
SI SI
BP 131
EP 139
DI 10.1016/j.heares.2011.04.018
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 830OQ
UT WOS:000295666700014
PM 21586317
ER
PT J
AU Sanes, DH
Kotak, VC
AF Sanes, Dan H.
Kotak, Vibhakar C.
TI Developmental plasticity of auditory cortical inhibitory synapses
SO HEARING RESEARCH
LA English
DT Article
ID CONDUCTIVE HEARING-LOSS; RECEPTOR ORGAN DAMAGE; PRIMARY VISUAL-CORTEX;
INFERIOR COLLICULUS; SYNAPTIC CURRENTS; THALAMOCORTICAL ACTIVATION;
POSTNATAL-DEVELOPMENT; TEMPORAL INTEGRATION; GABAERGIC INHIBITION;
NEUROTROPHIC FACTOR
AB Functional inhibitory synapses form in auditory cortex well before the onset of normal hearing. However, their properties change dramatically during normal development, and many of these maturational events are delayed by hearing loss. Here, we review recent findings on the developmental plasticity of inhibitory synapse strength, kinetics, and GABAA receptor localization in auditory cortex. Although hearing loss generally leads to a reduction of inhibitory strength, this depends on the type of presynaptic interneuron. Furthermore, plasticity of inhibitory synapses also depends on the postsynaptic target. Hearing loss leads reduced GABAA receptor localization to the membrane of excitatory, but not inhibitory neurons. A reduction in normal activity in development can also affect the use-dependent plasticity of inhibitory synapses. Even moderate hearing loss can disrupt inhibitory short- and long-term synaptic plasticity. Thus, the cortex did not compensate for the loss of inhibition in the brainstem, but rather exacerbated the response to hearing loss by further reducing inhibitory drive. Together, these results demonstrate that inhibitory synapses are exceptionally dynamic during development, and deafness-induced perturbation of inhibitory properties may have a profound impact on auditory processing. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Sanes, Dan H.; Kotak, Vibhakar C.] NYU, Ctr Neural Sci, New York, NY 10003 USA.
[Sanes, Dan H.] NYU, Dept Biol, New York, NY 10003 USA.
RP Sanes, DH (reprint author), NYU, Ctr Neural Sci, New York, NY 10003 USA.
EM sanes@cns.nyu.edu
FU [DC006864]; [DC011284]
FX Supported by DC006864 and DC011284 (DHS and VCK).
CR Abidin I, 2008, J PHYSIOL-LONDON, V586, P1885, DOI 10.1113/jphysiol.2007.148627
Abraham WC, 1996, TRENDS NEUROSCI, V19, P126, DOI 10.1016/S0166-2236(96)80018-X
Atencio CA, 2008, J NEUROSCI, V28, P3897, DOI 10.1523/JNEUROSCI.5366-07.2008
Bacci A, 2003, J NEUROSCI, V23, P9664
BACON SP, 1992, J SPEECH HEAR RES, V35, P642
Banks MI, 2002, J NEUROPHYSIOL, V88, P3097, DOI 10.1152/jn.00026.2002
Bartley AF, 2008, J NEUROPHYSIOL, V100, P1983, DOI 10.1152/jn.90635.2008
Beierlein M, 2003, J NEUROPHYSIOL, V90, P2987, DOI 10.1152/jn.00283.2003
Beierlein M, 2000, NAT NEUROSCI, V3, P904
BOCK GR, 1974, BRAIN RES, V76, P150, DOI 10.1016/0006-8993(74)90521-6
BORN DE, 1991, BRAIN RES, V557, P37, DOI 10.1016/0006-8993(91)90113-A
Bosman LWJ, 2005, J NEUROPHYSIOL, V94, P338, DOI 10.1152/jn.00084.2005
Budinger E, 2006, NEUROSCIENCE, V143, P1065, DOI 10.1016/j.neuroscience.2006.08.035
Budinger E, 2000, EUR J NEUROSCI, V12, P2425, DOI 10.1046/j.1460-9568.2000.00142.x
Buus S, 2002, JARO-J ASSOC RES OTO, V3, P120, DOI 10.1007/s101620010084
CALFORD MB, 1993, NEUROSCIENCE, V55, P953, DOI 10.1016/0306-4522(93)90310-C
Caspary DM, 2008, J EXP BIOL, V211, P1781, DOI 10.1242/jeb.013581
CHAGNACAMITAI Y, 1989, J NEUROPHYSIOL, V61, P747
Chang EF, 2005, P NATL ACAD SCI USA, V102, P16460, DOI 10.1073/pnas.0508239102
Chen QC, 2000, HEARING RES, V150, P161, DOI 10.1016/S0378-5955(00)00197-0
Cook RD, 2002, HEARING RES, V164, P127, DOI 10.1016/S0378-5955(01)00424-5
CRUIKSHANK, 2002, J NEUROPHYSIOL, V87, P361
Cruikshank SJ, 2007, NAT NEUROSCI, V10, P462, DOI 10.1038/nn1861
DEFELIPE J, 1992, PROG NEUROBIOL, V39, P563, DOI 10.1016/0301-0082(92)90015-7
Di Cristo G, 2004, NAT NEUROSCI, V7, P1184, DOI 10.1038/nn1334
Dorrn AL, 2010, NATURE, V465, P932, DOI 10.1038/nature09119
Edden RAE, 2009, J NEUROSCI, V29, P15721, DOI 10.1523/JNEUROSCI.4426-09.2009
Ehlers MD, 2003, NAT NEUROSCI, V6, P231, DOI 10.1038/nn1013
Fallon JB, 2008, HEARING RES, V238, P110, DOI 10.1016/j.heares.2007.08.004
FLORENTINE M, 1988, J ACOUST SOC AM, V84, P195, DOI 10.1121/1.396964
Foeller E, 2001, JARO, V2, P279
FORMBY C, 1987, AUDIOLOGY, V26, P89
Fuchs JL, 1998, J COMP NEUROL, V395, P209
Gabernet L, 2005, NEURON, V48, P165
Gibson JR, 1999, NATURE, V402, P75
GLASBERG BR, 1990, SCAND AUDIOL S32
Gleich O, 2003, NEUROREPORT, V14, P1877, DOI 10.1097/01.wnr.0000089569.45990.74
Gupta A, 2000, SCIENCE, V287, P273, DOI 10.1126/science.287.5451.273
Hong EJ, 2008, NEURON, V60, P610, DOI 10.1016/j.neuron.2008.09.024
Huang ZJ, 1999, CELL, V98, P739, DOI 10.1016/S0092-8674(00)81509-3
Huntsman MM, 2006, J PHYSIOL-LONDON, V572, P459, DOI 10.1113/jphysiol.2006.106617
Ing T, 2007, EUR J NEUROSCI, V25, P723, DOI 10.1111/j.1460-9568.2007.05331.x
Kaas JH, 2000, P NATL ACAD SCI USA, V97, P11793, DOI 10.1073/pnas.97.22.11793
Kandler K, 2009, NAT NEUROSCI, V12, P711, DOI 10.1038/nn.2332
Kaur S, 2004, J NEUROPHYSIOL, V91, P2551, DOI 10.1152/jn.01121.2003
Kimura M, 1999, HEARING RES, V135, P146, DOI 10.1016/S0378-5955(99)00104-5
KOERBER KC, 1966, EXP NEUROL, V16, P119, DOI 10.1016/0014-4886(66)90091-4
Kohara K, 2007, J NEUROSCI, V27, P7234, DOI 10.1523/JNEUROSCI.1943-07.2007
Kotak VC, 2008, CEREB CORTEX, V18, P2098, DOI 10.1093/cercor/bhm233
Kotak VC, 2005, J NEUROSCI, V25, P3908, DOI 10.1523/JNEUROSCI.5169-04.2005
Kotak VC, 1996, J NEUROSCI, V16, P1836
Kral A, 2000, CEREB CORTEX, V10, P714, DOI 10.1093/cercor/10.7.714
Lauer AM, 2007, J ACOUST SOC AM, V122, P3615, DOI 10.1121/1.2799482
LAURIE DJ, 1992, J NEUROSCI, V12, P4151
Lee DS, 2001, NATURE, V409, P149, DOI 10.1038/35051653
Leventhal AG, 2003, SCIENCE, V300, P812, DOI 10.1126/science.1082874
Liu BH, 2007, NAT NEUROSCI, V10, P1594, DOI 10.1038/nn2012
Ma WP, 2010, J NEUROSCI, V30, P14371, DOI 10.1523/JNEUROSCI.3248-10.2010
Maffei A, 2004, NAT NEUROSCI, V7, P1353, DOI 10.1038/nn1351
Marder E, 2002, BIOESSAYS, V24, P1145, DOI 10.1002/bies.10185
Markram H, 2004, NAT REV NEUROSCI, V5, P793, DOI 10.1038/nrn1519
Mockett Bruce G., 2008, Journal of Integrative Neuroscience, V7, P315, DOI 10.1142/S0219635208001782
Mody I, 2004, TRENDS NEUROSCI, V27, P569, DOI 10.1016/j.tins.2004.07.002
Mohler H, 2006, CELL TISSUE RES, V326, P505, DOI 10.1007/s00441-006-0284-3
MULLER CM, 1988, J NEUROPHYSIOL, V59, P1673
Neubauer H, 2004, JARO-J ASSOC RES OTO, V5, P436, DOI 10.1007/s10162-004-5031-4
Norena AJ, 2003, J NEUROPHYSIOL, V90, P2387, DOI 10.1152/jn.00139.2003
Nusser Z, 1997, NEURON, V19, P697, DOI 10.1016/S0896-6273(00)80382-7
Oswald AMM, 2008, J NEUROPHYSIOL, V99, P2998, DOI 10.1152/jn.01160.2007
Qiu CX, 2000, HEARING RES, V139, P153, DOI 10.1016/S0378-5955(99)00171-9
Raggio MW, 1999, J NEUROPHYSIOL, V82, P3506
Rajan R, 1998, NAT NEUROSCI, V1, P138, DOI 10.1038/388
Rajan R, 2001, CEREB CORTEX, V11, P171, DOI 10.1093/cercor/11.2.171
Rao D, 2010, J NEUROPHYSIOL, V104, P2693, DOI 10.1152/jn.01092.2009
Razak KA, 2008, P NATL ACAD SCI USA, V105, P4465, DOI 10.1073/pnas.0709504105
Razak KA, 2007, J NEUROSCI, V27, P1769, DOI 10.1523/JNEUROSCI.3851-06.2007
SANES DH, 2009, DEV PLASTICITY INHIB
Sarro EC, 2008, CEREB CORTEX, V18, P2855, DOI 10.1093/cercor/bhn044
Scholl B, 2008, J NEUROPHYSIOL, V100, P646, DOI 10.1152/jn.90406.2008
Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1
Shepherd RK, 1999, J NEUROPHYSIOL, V82, P1363
SHUZ A, 1989, J COMP NEUROL, V286, P442
Silberberg G, 2008, CURR OPIN NEUROBIOL, V18, P332, DOI 10.1016/j.conb.2008.08.009
Slutsky I, 2004, NEURON, V44, P835, DOI 10.1016/j.neuron.2004.11.013
Sun YJ, 2010, NATURE, V465, P927, DOI 10.1038/nature09079
Swadlow HA, 1998, J NEUROPHYSIOL, V79, P567
Takesian AE, 2009, FUTURE NEUROL, V4, P331, DOI 10.2217/fnl.09.5
Takesian AE, 2010, J NEUROSCI, V30, P2716, DOI 10.1523/JNEUROSCI.3903-09.2010
Tan ZJ, 2008, P NATL ACAD SCI USA, V105, P2187, DOI 10.1073/pnas.0710628105
Thiagarajan TC, 2007, NEUROPHARMACOLOGY, V52, P156, DOI 10.1016/j.neuropharm.2006.07.030
Tia S, 1996, J NEUROSCI, V16, P3630
Tierney TS, 1997, J COMP NEUROL, V387, P421
Tucci DL, 2001, HEARING RES, V155, P124, DOI 10.1016/S0378-5955(01)00256-8
Tucci DL, 1999, LARYNGOSCOPE, V109, P1359, DOI 10.1097/00005537-199909000-00001
Turrigiano G, 2007, CURR OPIN NEUROBIOL, V17, P318, DOI 10.1016/j.conb.2007.04.004
Vale C, 2000, J NEUROSCI, V20, P1912
Vale C, 2002, EUR J NEUROSCI, V16, P2394, DOI 10.1046/j.1460-9568.2002.02302.x
Vicini S, 2001, J NEUROSCI, V21, P3009
Wang J, 2000, NEUROREPORT, V11, P1137, DOI 10.1097/00001756-200004070-00045
WANG J, 2002, BRAIN RES, V19, P219
Wehr M, 2005, NEURON, V47, P437, DOI 10.1016/j.neuron.2005.06.009
Wu GK, 2008, NEURON, V58, P132, DOI 10.1016/j.neuron.2008.01.035
Xu H, 2010, J NEUROSCI, V30, P331, DOI 10.1523/JNEUROSCI.4554-09.2010
Xu H, 2007, J NEUROSCI, V27, P9417, DOI 10.1523/JNEUROSCI.1992-07.2007
Yu X, 2005, NAT NEUROSCI, V8, P961, DOI 10.1038/nn1477
NR 105
TC 18
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2011
VL 279
IS 1-2
SI SI
BP 140
EP 148
DI 10.1016/j.heares.2011.03.015
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 830OQ
UT WOS:000295666700015
PM 21463668
ER
PT J
AU Froemke, RC
Martins, ARO
AF Froemke, Robert C.
Martins, Ana Raquel O.
TI Spectrotemporal dynamics of auditory cortical synaptic receptive field
plasticity
SO HEARING RESEARCH
LA English
DT Article
ID LONG-TERM DEPRESSION; PRIMARY VISUAL-CORTEX; BASAL FOREBRAIN ACTIVATION;
CRITICAL-PERIOD PLASTICITY; NUCLEUS BASALIS; SOMATOSENSORY CORTEX;
DIRECTION SELECTIVITY; PHYSIOLOGICAL MEMORY; INHIBITION UNDERLIES;
CEREBRAL-CORTEX
AB The nervous system must dynamically represent sensory information in order for animals to perceive and operate within a complex, changing environment. Receptive field plasticity in the auditory cortex allows cortical networks to organize around salient features of the sensory environment during postnatal development, and then subsequently refine these representations depending on behavioral context later in life. Here we review the major features of auditory cortical receptive field plasticity in young and adult animals, focusing on modifications to frequency tuning of synaptic inputs. Alteration in the patterns of acoustic input, including sensory deprivation and tonal exposure, leads to rapid adjustments of excitatory and inhibitory strengths that collectively determine the suprathreshold tuning curves of cortical neurons. Long-term cortical plasticity also requires co-activation of subcortical neuromodulatory control nuclei such as the cholinergic nucleus basalis, particularly in adults. Regardless of developmental stage, regulation of inhibition seems to be a general mechanism by which changes in sensory experience and neuromodulatory state can remodel cortical receptive fields. We discuss recent findings suggesting that the microdynamics of synaptic receptive field plasticity unfold as a multi-phase set of distinct phenomena, initiated by disrupting the balance between excitation and inhibition, and eventually leading to wide-scale changes to many synapses throughout the cortex. These changes are coordinated to enhance the representations of newly-significant stimuli, possibly for improved signal processing and language learning in humans. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Froemke, Robert C.; Martins, Ana Raquel O.] NYU, Dept Otolaryngol, Mol Neurobiol Program,Sch Med, Helen & Martin Kimmel Ctr Biol & Med,Skirball Ins, New York, NY 10016 USA.
[Froemke, Robert C.; Martins, Ana Raquel O.] NYU, Dept Physiol, Mol Neurobiol Program,Sch Med, Helen & Martin Kimmel Ctr Biol & Med,Skirball Ins, New York, NY 10016 USA.
[Froemke, Robert C.; Martins, Ana Raquel O.] NYU, Dept Neurosci, Mol Neurobiol Program,Sch Med, Helen & Martin Kimmel Ctr Biol & Med,Skirball Ins, New York, NY 10016 USA.
[Martins, Ana Raquel O.] Univ Coimbra, Ctr Neurosci & Cell Biol, PhD Programme Expt Biol & Biomed, P-3000 Coimbra, Portugal.
RP Froemke, RC (reprint author), NYU, Dept Otolaryngol, Mol Neurobiol Program,Sch Med, Helen & Martin Kimmel Ctr Biol & Med,Skirball Ins, 550 1St Ave, New York, NY 10016 USA.
EM robert.froemke@med.nyu.edu
CR ARTOLA A, 1990, NATURE, V347, P69, DOI 10.1038/347069a0
Asari H, 2009, J NEUROPHYSIOL, V102, P2638, DOI 10.1152/jn.00577.2009
Ascoli GA, 2008, NAT REV NEUROSCI, V9, P557, DOI 10.1038/nrn2402
Bakin JS, 1996, P NATL ACAD SCI USA, V93, P11219, DOI 10.1073/pnas.93.20.11219
Bao SW, 2001, NATURE, V412, P79, DOI 10.1038/35083586
BEAR MF, 1986, NATURE, V320, P172, DOI 10.1038/320172a0
Buonomano DV, 1998, ANNU REV NEUROSCI, V21, P149, DOI 10.1146/annurev.neuro.21.1.149
CALFORD MB, 1988, NATURE, V332, P446, DOI 10.1038/332446a0
Caspary DM, 2008, J EXP BIOL, V211, P1781, DOI 10.1242/jeb.013581
Chang EF, 2003, SCIENCE, V300, P498, DOI 10.1126/science.1082163
Chang EF, 2005, P NATL ACAD SCI USA, V102, P16460, DOI 10.1073/pnas.0508239102
Choi SY, 2005, J NEUROSCI, V25, P11433, DOI 10.1523/JNEUROSCI.4084-05.2005
Dahmen Johannes C, 2008, J Neurosci, V28, P13629, DOI 10.1523/JNEUROSCI.4429-08.2008
Desai NS, 2002, NAT NEUROSCI, V5, P783, DOI 10.1038/nn878
de Villers-Sidani E, 2007, J NEUROSCI, V27, P180, DOI 10.1523/JNEUROSCI.3227-06.2007
de Villers-Sidani E, 2010, P NATL ACAD SCI USA, V107, P13900, DOI 10.1073/pnas.1007885107
DIAMOND ME, 1994, SCIENCE, V265, P1885, DOI 10.1126/science.8091215
Disney AA, 2007, NEURON, V56, P701, DOI 10.1016/j.neuron.2007.09.034
Dorrn AL, 2010, NATURE, V465, P932, DOI 10.1038/nature09119
DOUGLAS RJ, 1991, J PHYSIOL-LONDON, V440, P659
EDELINE JM, 2010, HEARING RES
Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010
Eisenberg LS, 2007, EAR HEARING, V28, P766
Engert F, 1997, NATURE, V388, P279
Eysel UT, 1999, RESTOR NEUROL NEUROS, V15, P153
Feldman DE, 2009, ANNU REV NEUROSCI, V32, P33, DOI 10.1146/annurev.neuro.051508.135516
FERSTER D, 1986, J NEUROSCI, V6, P1284
Frenkel MY, 2004, NEURON, V44, P917, DOI 10.1016/j.neuron.2004.12.003
Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141
Fritz JB, 2005, J NEUROSCI, V25, P7623, DOI 10.1523/JNEUROSCI.1318-05.2005
FROEMKE RC, 2011, NEUROSCIENCE BI 0215
Froemke RC, 2006, J NEUROPHYSIOL, V95, P1620, DOI 10.1152/jn.00910.2005
Froemke RC, 2002, NATURE, V416, P433, DOI 10.1038/416433a
Froemke RC, 2007, NATURE, V450, P425, DOI 10.1038/nature06289
GILBERT CD, 1992, NATURE, V356, P150, DOI 10.1038/356150a0
Giocomo LM, 2007, MOL NEUROBIOL, V36, P184, DOI 10.1007/s12035-007-0032-z
Goard M, 2009, NAT NEUROSCI, V12, P1444, DOI 10.1038/nn.2402
Gu Q, 2002, NEUROSCIENCE, V111, P815, DOI 10.1016/S0306-4522(02)00026-X
Han YK, 2007, NAT NEUROSCI, V10, P1191, DOI 10.1038/nn1941
Harvey CD, 2007, NATURE, V450, P1195, DOI 10.1038/nature06416
Hausser M, 2003, CURR OPIN NEUROBIOL, V13, P372, DOI 10.1016/S0959-4388(03)00075-8
He HY, 2004, J NEUROCHEM, V90, P1186, DOI 10.1111/j.1471-4159.2004.02590.x
Henny P, 2008, EUR J NEUROSCI, V27, P654, DOI 10.1111/j.1460-9568.2008.06029.x
Hensch TK, 2004, ANNU REV NEUROSCI, V27, P549, DOI 10.1146/annurev.neuro.27.070203.144327
Hensch TK, 2005, NAT REV NEUROSCI, V6, P877, DOI 10.1038/nrn1787
Herrero JL, 2008, NATURE, V454, P1110, DOI 10.1038/nature07141
Hirsch JA, 2003, CEREB CORTEX, V13, P63, DOI 10.1093/cercor/13.1.63
Huang ZJ, 1999, CELL, V98, P739, DOI 10.1016/S0092-8674(00)81509-3
Huberman AD, 2008, ANNU REV NEUROSCI, V31, P479, DOI 10.1146/annurev.neuro.31.060407.125533
Insanally MN, 2009, J NEUROSCI, V29, P5456, DOI 10.1523/JNEUROSCI.5311-08.2009
Ivenshitz M, 2006, J NEUROSCI, V26, P1199, DOI 10.1523/JNEUROSCI.2964-05.2006
Katz LC, 1996, SCIENCE, V274, P1133, DOI 10.1126/science.274.5290.1133
Kaur S, 2004, J NEUROPHYSIOL, V91, P2551, DOI 10.1152/jn.01121.2003
Kenet T, 2007, P NATL ACAD SCI USA, V104, P7646, DOI 10.1073/pnas.0701944104
Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714
Kotak VC, 2005, J NEUROSCI, V25, P3908, DOI 10.1523/JNEUROSCI.5169-04.2005
Kruglikov I, 2008, NEURON, V58, P911, DOI 10.1016/j.neuron.2008.04.024
Lin SC, 2008, NEURON, V59, P138, DOI 10.1016/j.neuron.2008.04.031
Lin YX, 2008, NATURE, V455, P1198, DOI 10.1038/nature07319
Liu BH, 2007, NAT NEUROSCI, V10, P1594, DOI 10.1038/nn2012
Losonczy A, 2008, NATURE, V452, P436, DOI 10.1038/nature06725
Lu YM, 2000, NEURON, V26, P197, DOI 10.1016/S0896-6273(00)81150-2
LUND RD, 1977, J COMP NEUROL, V173, P289, DOI 10.1002/cne.901730206
Ma XF, 2005, P NATL ACAD SCI USA, V102, P9335, DOI 10.1073/pnas.0503851102
Maffei A, 2004, NAT NEUROSCI, V7, P1353, DOI 10.1038/nn1351
Markram H, 1997, SCIENCE, V275, P213, DOI 10.1126/science.275.5297.213
Meliza CD, 2006, NEURON, V49, P183, DOI 10.1016/j.neuron.2005.12.009
Mesulam MM, 1998, J PHYSIOLOGY-PARIS, V92, P293, DOI 10.1016/S0928-4257(98)80036-3
Metherate R, 2005, HEARING RES, V206, P146, DOI 10.1016/j.heares.2005.01.014
METHERATE R, 1993, SYNAPSE, V14, P132, DOI 10.1002/syn.890140206
METHERATE R, 1992, J NEUROSCI, V12, P4701
Monier C, 2003, NEURON, V37, P663, DOI 10.1016/S0896-6273(03)00064-3
Morishita H, 2010, SCIENCE, V330, P1238, DOI 10.1126/science.1195320
Nowak LG, 2010, J NEUROPHYSIOL, V103, P677, DOI 10.1152/jn.90946.2008
Oswald AMM, 2008, J NEUROPHYSIOL, V99, P2998, DOI 10.1152/jn.01160.2007
Parikh V, 2007, NEURON, V56, P141, DOI 10.1016/j.neuron.2007.08.025
Pei X, 1991, Neuroreport, V2, P485
Popescu MV, 2010, NEURON, V65, P718, DOI 10.1016/j.neuron.2010.02.019
Pouget A, 1999, NEURAL COMPUT, V11, P85, DOI 10.1162/089976699300016818
Raggio MW, 1999, J NEUROPHYSIOL, V82, P3506
Ramanathan D, 2009, J NEUROSCI, V29, P5992, DOI 10.1523/JNEUROSCI.0230-09.2009
Rasmusson DD, 2000, BEHAV BRAIN RES, V115, P205, DOI 10.1016/S0166-4328(00)00259-X
RASMUSSON DD, 1988, EXP BRAIN RES, V70, P276
RAZAK KA, 2007, J NEUROSCI, V14, P1769
Royer S, 2003, NATURE, V422, P518, DOI 10.1038/nature01530
Rubenstein JLR, 2003, GENES BRAIN BEHAV, V2, P255, DOI 10.1046/j.1601-183X.2003.00037.x
SALLY SL, 1988, J NEUROPHYSIOL, V59, P1627
SANES DH, 1983, SCIENCE, V221, P1183, DOI 10.1126/science.6612332
Sanes DH, 2009, CURR OPIN NEUROBIOL, V19, P188, DOI 10.1016/j.conb.2009.05.014
Sarro EC, 2008, CEREB CORTEX, V18, P2855, DOI 10.1093/cercor/bhn044
Sarter M, 2005, NAT REV NEUROSCI, V6, P48, DOI 10.1038/nrn1588
Scanziani M, 1996, NATURE, V380, P446, DOI 10.1038/380446a0
Scholl B, 2008, J NEUROPHYSIOL, V100, P646, DOI 10.1152/jn.90406.2008
Schummers J, 2002, NEURON, V36, P969, DOI 10.1016/S0896-6273(02)01012-7
Seol GH, 2007, NEURON, V55, P919, DOI 10.1016/j.neuron.2007.08.013
Silver MA, 2008, NEURON, V60, P904, DOI 10.1016/j.neuron.2008.09.038
SNYDER RL, 1990, HEARING RES, V50, P7, DOI 10.1016/0378-5955(90)90030-S
Sohya K, 2007, J NEUROSCI, V27, P2145, DOI 10.1523/JNEUROSCI.4641-06.2007
Southwell DG, 2010, SCIENCE, V327, P1145, DOI 10.1126/science.1183962
Sun YJ, 2010, NATURE, V465, P927, DOI 10.1038/nature09079
Takesian AE, 2009, FUTURE NEUROL, V4, P331, DOI 10.2217/fnl.09.5
Tan AYY, 2009, NEUROSCIENCE, V163, P1302, DOI 10.1016/j.neuroscience.2009.07.032
Trachtenberg JT, 2000, SCIENCE, V287, P2029, DOI 10.1126/science.287.5460.2029
Turner JG, 2005, J NEUROPHYSIOL, V94, P2738, DOI 10.1152/jn.00362.2005
Tzounopoulos T, 2004, NAT NEUROSCI, V7, P719, DOI 10.1038/nn1272
Vale C, 2002, EUR J NEUROSCI, V16, P2394, DOI 10.1046/j.1460-9568.2002.02302.x
VOLKOV IO, 1991, NEUROSCIENCE, V43, P307, DOI 10.1016/0306-4522(91)90295-Y
Wehr M, 2005, NEURON, V47, P437, DOI 10.1016/j.neuron.2005.06.009
Wehr M, 2003, NATURE, V426, P442, DOI 10.1038/nature02116
Weinberger NM, 1998, NEUROBIOL LEARN MEM, V70, P226, DOI 10.1006/nlme.1998.3850
Weinberger NM, 2007, HEARING RES, V229, P54, DOI 10.1016/j.heares.2007.01.004
Willott JF, 2005, INFERIOR COLLICULUS, P585, DOI 10.1007/0-387-27083-3_20
Winer J.A., 1992, Springer Handbook of Auditory Research, V1, P222
WOODY CD, 1987, BRAIN RES, V424, P193, DOI 10.1016/0006-8993(87)91210-8
Xiang ZX, 1998, SCIENCE, V281, P985, DOI 10.1126/science.281.5379.985
Yan J, 2005, EUR J NEUROSCI, V21, P563, DOI 10.1111/j.1460-9568.2005.03878.x
YUAN K, 2010, SOC NEUR ABSTR, V482, P13
Zeitler DM, 2008, OTOL NEUROTOL, V29, P314
Zhang KC, 1999, NEURAL COMPUT, V11, P75, DOI 10.1162/089976699300016809
Zhang LI, 2003, NATURE, V424, P201, DOI 10.1038/nature01796
Zhang LI, 2001, NAT NEUROSCI, V4, P1123, DOI 10.1038/nn745
Zhou X, 2008, NEUROSCIENCE, V154, P390, DOI 10.1016/j.neuroscience.2008.01.026
NR 122
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2011
VL 279
IS 1-2
SI SI
BP 149
EP 161
DI 10.1016/j.heares.2011.03.005
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 830OQ
UT WOS:000295666700016
PM 21426927
ER
PT J
AU Nayagam, BA
Muniak, MA
Ryugo, DK
AF Nayagam, Bryony A.
Muniak, Michael A.
Ryugo, David K.
TI The spiral ganglion: Connecting the peripheral and central auditory
systems
SO HEARING RESEARCH
LA English
DT Article
ID ANTEROVENTRAL COCHLEAR NUCLEUS; OUTER HAIR-CELLS; GUINEA-PIG COCHLEA;
NEURONS IN-VITRO; CHRONIC ELECTRICAL-STIMULATION; DEAF WHITE CATS;
NEUROFILAMENT TRIPLET PROTEINS; INTERMEDIATE-FILAMENT PROTEINS;
UNANESTHETIZED DECEREBRATE CAT; MUTANT SUPEROXIDE-DISMUTASE
AB In mammals, the initial bridge between the physical world of sound and perception of that sound is established by neurons of the spiral ganglion. The cell bodies of these neurons give rise to peripheral processes that contact acoustic receptors in the organ of Corti, and the central processes collect together to form the auditory nerve that projects into the brain. In order to better understand hearing at this initial stage, we need to know the following about spiral ganglion neurons: (1) their cell biology including cytoplasmic, cytoskeletal, and membrane properties, (2) their peripheral and central connections including synaptic structure; (3) the nature of their neural signaling; and (4) their capacity for plasticity and rehabilitation. In this report, we will update the progress on these topics and indicate important issues still awaiting resolution. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Nayagam, Bryony A.] Univ Melbourne, Dept Otolaryngol, Melbourne, Vic, Australia.
[Muniak, Michael A.; Ryugo, David K.] Johns Hopkins Univ, Dept Neurosci, Baltimore, MD USA.
[Ryugo, David K.] Johns Hopkins Univ, Dept Otolaryngol Head & Neck Surg, Baltimore, MD USA.
[Ryugo, David K.] Garvan Inst, Darlinghurst, NSW, Australia.
RP Ryugo, DK (reprint author), St Vincents Hosp, Garvan Inst Med Res, 384 Victoria St, Darlinghurst, NSW 2010, Australia.
EM d.ryugo@garvan.org.au
FU NIH [DC000232, DC004395]; Office for Medical and Scientific Research,
New South Wales; Advanced Bionics Corporation; National Health and
Medical Research Council of Australia; University of Melbourne; Garnett
Passe and Rodney Williams Memorial Foundation; Royal Victorian Eye and
Ear Hospital
FX We are grateful to those researchers who contributed data to this
article. We were supported in part by NIH grants DC000232, DC004395, a
Life Sciences Research Award from the Office for Medical and Scientific
Research, New South Wales, a grant from Advanced Bionics Corporation,
the National Health and Medical Research Council of Australia, The
University of Melbourne, The Garnett Passe and Rodney Williams Memorial
Foundation, and the Royal Victorian Eye and Ear Hospital.
CR ADAMO NJ, 1973, J NEUROCYTOL, V2, P91, DOI 10.1007/BF01099211
ADAMS JC, 1986, ARCH OTOLARYNGOL, V112, P1253
Agterberg MJH, 2009, JARO-J ASSOC RES OTO, V10, P355, DOI 10.1007/s10162-009-0170-2
ALVING BM, 1971, BRAIN RES, V25, P229, DOI 10.1016/0006-8993(71)90435-5
Araki S, 1998, LARYNGOSCOPE, V108, P687, DOI 10.1097/00005537-199805000-00012
BERGLUND AM, 1986, BRAIN RES, V383, P327, DOI 10.1016/0006-8993(86)90034-X
BERGLUND AM, 1991, J COMP NEUROL, V306, P393, DOI 10.1002/cne.903060304
BERGLUND AM, 1994, HEARING RES, V75, P121, DOI 10.1016/0378-5955(94)90063-9
BERGLUND AM, 1987, J COMP NEUROL, V255, P560, DOI 10.1002/cne.902550408
Bianchi LM, 1996, DEVELOPMENT, V122, P1965
BICHLER E, 1983, ARCH OTO-RHINO-LARYN, V237, P201, DOI 10.1007/BF00453725
BOURK TR, 1981, HEARING RES, V4, P215, DOI 10.1016/0378-5955(81)90008-3
BRAWER JR, 1975, J COMP NEUROL, V160, P491, DOI 10.1002/cne.901600406
Bredberg G, 1968, ACTA OTO-LARYNGOL, V236, P1
BROWN MC, 1987, J COMP NEUROL, V260, P591, DOI 10.1002/cne.902600411
BROWN MC, 1988, J COMP NEUROL, V278, P581, DOI 10.1002/cne.902780409
BRUNS V, 1980, HEARING RES, V3, P27, DOI 10.1016/0378-5955(80)90006-4
Burgess BJ, 1997, HEARING RES, V108, P74, DOI 10.1016/S0378-5955(97)00040-3
CANT NB, 1979, NEUROSCIENCE, V4, P1925, DOI 10.1016/0306-4522(79)90066-6
CARDEN MJ, 1987, J NEUROSCI, V7, P3489
Carr CE, 1996, J COMP NEUROL, V373, P467, DOI 10.1002/(SICI)1096-9861(19960930)373:4<467::AID-CNE1>3.0.CO;2-#
Chen I, 2010, JARO-J ASSOC RES OTO, V11, P587, DOI 10.1007/s10162-010-0234-3
Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004
COLE JS, 1994, J NEUROSCI, V14, P6956
Couillard-Despres S, 1998, P NATL ACAD SCI USA, V95, P9626, DOI 10.1073/pnas.95.16.9626
DAU J, 1989, HEARING RES, V42, P253, DOI 10.1016/0378-5955(89)90149-4
Davis RL, 2003, NEUROSCIENTIST, V9, P311, DOI 10.1177/1073858403251986
Ehret G, 1983, AUDITORY PSYCHOBIOLO, P169
EHRET G, 1977, J COMP PHYSIOL, V122, P65
EHRET G, 1979, ACTA OTO-LARYNGOL, V87, P28, DOI 10.3109/00016487909126384
ERNFORS P, 1995, NEURON, V14, P1153, DOI 10.1016/0896-6273(95)90263-5
ERNFORS P, 1994, NATURE, V368, P147, DOI 10.1038/368147a0
Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463
ERNFORS R, 1992, EUR J NEUROSCI, V4, P1140
ESCURAT M, 1990, J NEUROSCI, V10, P764
Farinas I, 2001, J NEUROSCI, V21, P6170
FARINAS I, 1994, NATURE, V369, P658, DOI 10.1038/369658a0
Fechner FP, 2001, J COMP NEUROL, V429, P289, DOI 10.1002/1096-9861(20000108)429:2<289::AID-CNE9>3.0.CO;2-Z
Fechner FP, 1998, J COMP NEUROL, V400, P299, DOI 10.1002/(SICI)1096-9861(19981026)400:3<299::AID-CNE1>3.0.CO;2-3
FEKETE DM, 1984, J COMP NEUROL, V229, P432, DOI 10.1002/cne.902290311
FIRBAS W, 1972, Monatsschrift fuer Ohrenheilkunde und Laryngo-Rhinologie, V106, P105
Firbas W, 1970, Monatsschr Ohrenheilkd Laryngorhinol, V104, P241
FRANCIS HW, 1993, HEARING RES, V64, P184, DOI 10.1016/0378-5955(93)90004-K
Fritzsch B, 1997, TRENDS NEUROSCI, V20, P159, DOI 10.1016/S0166-2236(96)01007-7
Fritzsch B, 1997, J NEUROSCI, V17, P6213
GACEK RR, 1961, ANAT REC, V139, P455, DOI 10.1002/ar.1091390402
Ghoshal S, 1997, J NEUROPHYSIOL, V77, P2083
Ghoshal S, 1996, ACTA OTO-LARYNGOL, V116, P280, DOI 10.3109/00016489609137841
Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542
Gillespie LN, 2001, NEUROREPORT, V12, P275, DOI 10.1097/00001756-200102120-00019
Gillespie LN, 2004, NEUROREPORT, V15, P1121, DOI 10.1097/01.wnr.0000125777.04774.c2
GORHAM JD, 1990, DEV BRAIN RES, V57, P235, DOI 10.1016/0165-3806(90)90049-5
Gotow T, 1999, EUR J NEUROSCI, V11, P3893, DOI 10.1046/j.1460-9568.1999.00820.x
GOYCOOLEA MV, 1990, LARYNGOSCOPE, V100, P19, DOI 10.1288/00005537-199002001-00002
GRAY EG, 1963, J ANAT, V97, P101
HAFIDI A, 1990, J COMP NEUROL, V300, P153, DOI 10.1002/cne.903000202
HAFIDI A, 1993, INT J DEV NEUROSCI, V11, P507, DOI 10.1016/0736-5748(93)90024-8
Hafidi A, 1998, BRAIN RES, V805, P181, DOI 10.1016/S0006-8993(98)00448-X
Hall RD, 1997, HEARING RES, V103, P75, DOI 10.1016/S0378-5955(96)00166-9
Hansen MR, 2001, J NEUROSCI, V21, P2256
Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3
Hartnick CJ, 1996, J NEUROBIOL, V30, P246, DOI 10.1002/(SICI)1097-4695(199606)30:2<246::AID-NEU6>3.0.CO;2-5
HARTSHORN DO, 1991, OTOLARYNG HEAD NECK, V104, P311
Held H., 1926, HDB NORMALEN PATHOLO, P467
Held H, 1893, ARCH ANAT PHYSL ANAT, V3+4, P201
HOFFMAN PN, 1975, J CELL BIOL, V66, P351, DOI 10.1083/jcb.66.2.351
HOWE HA, 1934, J COMP NEUROL, V62, P73
Huang LC, 2007, DEVELOPMENT, V134, P2925, DOI 10.1242/dev.001925
JHAVERI S, 1982, NEUROSCIENCE, V7, P837, DOI 10.1016/0306-4522(82)90046-X
Kanzaki S, 2002, J COMP NEUROL, V454, P350, DOI 10.1002/cne.10480
KAWASE T, 1992, J COMP NEUROL, V319, P312, DOI 10.1002/cne.903190210
KEITHLEY EM, 1987, J ACOUST SOC AM, V81, P1036, DOI 10.1121/1.394675
KEITHLEY EM, 1979, J COMP NEUROL, V188, P429, DOI 10.1002/cne.901880306
KELLERHALS B, 1967, ACTA OTOLARYNGOL S22, V64, P5
KIANG NYS, 1982, SCIENCE, V217, P175, DOI 10.1126/science.7089553
Kiang NY-s, 1965, DISCHARGE PATTERNS S
Kiang N.Y.S., 1984, P143
KIMURA R S, 1979, Annals of Otology Rhinology and Laryngology, V88, P1
KIMURA RS, 1987, ACTA OTO-LARYNGOL, P1
KIMURA RS, 1976, ANN OTO RHINOL LARYN, V85, P791
KUIJPERS W, 1991, HEARING RES, V52, P133, DOI 10.1016/0378-5955(91)90193-D
Ladhams A, 1996, J COMP NEUROL, V366, P335, DOI 10.1002/(SICI)1096-9861(19960304)366:2<335::AID-CNE11>3.0.CO;2-O
Lariviere RC, 2004, J NEUROBIOL, V58, P131, DOI 10.1002/neu.10270
Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3
LEAKE PA, 1991, HEARING RES, V54, P251, DOI 10.1016/0378-5955(91)90120-X
LEAKE PA, 1993, J COMP NEUROL, V333, P257, DOI 10.1002/cne.903330211
Lee DJ, 2003, J NEUROCYTOL, V32, P229, DOI 10.1023/B:NEUR.0000010082.99874.14
LEFEBVRE RP, 1994, NEUROREPORT, V5, P865
LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677
LIBERMAN MC, 1980, HEARING RES, V3, P45, DOI 10.1016/0378-5955(80)90007-6
LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309
LIBERMAN MC, 1984, J COMP NEUROL, V223, P163, DOI 10.1002/cne.902230203
LIBERMAN MC, 1985, J ACOUST SOC AM, V78, P312, DOI 10.1121/1.392492
LIBERMAN MC, 1991, J COMP NEUROL, V313, P240, DOI 10.1002/cne.903130205
Limb CJ, 2000, JARO, V1, P103, DOI 10.1007/sl01620010032
Lorente de No R, 1981, PRIMARY ACOUSTIC NUC
Malgrange B, 1996, NEUROREPORT, V7, P913, DOI 10.1097/00001756-199603220-00016
Marzella PL, 1999, HEARING RES, V138, P73, DOI 10.1016/S0378-5955(99)00152-5
Marzella PL, 1997, NEUROREPORT, V8, P1641, DOI 10.1097/00001756-199705060-00017
McGuinness SL, 2005, OTOL NEUROTOL, V26, P1064, DOI 10.1097/01.mao.0000185063.20081.50
MerchanPerez A, 1996, J COMP NEUROL, V371, P208, DOI 10.1002/(SICI)1096-9861(19960722)371:2<208::AID-CNE2>3.0.CO;2-6
Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7
Minichiello L, 1995, DEVELOPMENT, V121, P4067
MISTRIK P, 2011, P ASS RES OT BALT MD
Mitchell A, 1997, HEARING RES, V105, P30, DOI 10.1016/S0378-5955(96)00202-X
MULLER M, 1991, HEARING RES, V56, P1, DOI 10.1016/0378-5955(91)90147-2
Muller M, 2005, HEARING RES, V202, P63, DOI 10.1016/j.heares.2004.08.011
MULLER M, 1990, EXP BRAIN RES, V81, P140
Muniak MA, 2011, P ASS RES OT BALT MD
MUNZER FT, 1931, Z MIKROSKOPISCH ANAT, V24, P286
NADOL JB, 1981, ANN OTO RHINOL LARYN, V90, P12
Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5
NADOL JB, 1988, AM J OTOLARYNG, V9, P47, DOI 10.1016/S0196-0709(88)80007-3
NADOL JB, 1990, ANN OTO RHINOL LARYN, V99, P340
NEEDHAM K, 2010, P FRONT OT MELB VIC, P55
Nguyen MD, 2000, P NATL ACAD SCI USA, V97, P12306, DOI 10.1073/pnas.97.22.12306
Oleskevich S, 2004, J PHYSIOL-LONDON, V560, P709, DOI 10.1113/jphysiol.2004.066652
Oleskevich S, 2002, J PHYSIOL-LONDON, V540, P447, DOI 10.1113/jphysiol.2001.013821
O'Neil JN, 2010, J COMP NEUROL, V518, P2382, DOI 10.1002/cne.22339
OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407
OTA CY, 1980, ACTA OTO-LARYNGOL, V89, P53, DOI 10.3109/00016488009127108
PERKINS RE, 1975, J COMP NEUROL, V163, P129, DOI 10.1002/cne.901630202
Perrot R, 2008, MOL NEUROBIOL, V38, P27, DOI 10.1007/s12035-008-8033-0
PFEIFFER RR, 1966, SCIENCE, V154, P667, DOI 10.1126/science.154.3749.667
PIRVOLA U, 1992, P NATL ACAD SCI USA, V89, P9915, DOI 10.1073/pnas.89.20.9915
PIRVOLA U, 1991, HEARING RES, V52, P345, DOI 10.1016/0378-5955(91)90024-4
RAMPRASHAD F, 1978, J COMP NEUROL, V178, P347, DOI 10.1002/cne.901780209
Rasmusen GL, 1940, LARYNGOSCOPE, V50, P67
REES S, 1985, BRAIN RES, V325, P370, DOI 10.1016/0006-8993(85)90343-9
RETZIUS G, 1884, GEHOROGAN WIRBELTIER, V2
Richardson RT, 2005, HEARING RES, V204, P37, DOI 10.1016/j.heares.2005.01.001
Rivas A, 2005, P ASS RES OT NEW ORL
ROBERTSON D, 1984, HEARING RES, V15, P113, DOI 10.1016/0378-5955(84)90042-X
ROMAND MR, 1987, ACTA OTO-LARYNGOL, V104, P29, DOI 10.3109/00016488709109044
ROMAND R, 1988, BRAIN RES, V462, P167, DOI 10.1016/0006-8993(88)90601-4
ROMAND R, 1984, ACTA OTO-LARYNGOL, V97, P239, DOI 10.3109/00016488409130985
ROMAND R, 1990, HEARING RES, V49, P119, DOI 10.1016/0378-5955(90)90099-B
ROSENBLUTH J, 1962, J CELL BIOL, V12, P329, DOI 10.1083/jcb.12.2.329
Rowland KC, 2000, J NEUROSCI, V20, P9135
Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849
RUGGERO MA, 1982, HEARING RES, V8, P339, DOI 10.1016/0378-5955(82)90023-5
Ryugo DK, 1997, J COMP NEUROL, V385, P230, DOI 10.1002/(SICI)1096-9861(19970825)385:2<230::AID-CNE4>3.0.CO;2-2
RYUGO DK, 1982, J COMP NEUROL, V210, P239, DOI 10.1002/cne.902100304
Ryugo DK, 2003, BRAIN RES BULL, V60, P435, DOI 10.1016/S0361-9230(03)00049-2
Ryugo DK, 2008, NEUROSCIENCE, V154, P114, DOI 10.1016/j.neuroscience.2007.10.052
RYUGO DK, 1991, J COMP NEUROL, V308, P209, DOI 10.1002/cne.903080208
Ryugo DK, 2005, SCIENCE, V310, P1490, DOI 10.1126/science.1119419
Ryugo DK, 1998, J COMP NEUROL, V397, P532, DOI 10.1002/(SICI)1096-9861(19980810)397:4<532::AID-CNE6>3.0.CO;2-2
Ryugo DK, 1996, J COMP NEUROL, V365, P141, DOI 10.1002/(SICI)1096-9861(19960129)365:1<141::AID-CNE11>3.0.CO;2-T
SCHIMMANG T, 1995, DEVELOPMENT, V121, P3381
SCOTT D, 1985, J BIOL CHEM, V260, P736
SENTO S, 1989, J COMP NEUROL, V280, P553, DOI 10.1002/cne.902800406
SHAH SB, 1995, AM J OTOL, V16, P310
SHAW G, 1982, NATURE, V298, P277, DOI 10.1038/298277a0
Shea TB, 2004, J CELL SCI, V117, P933, DOI 10.1242/jcs.00785
Shea TB, 2003, TRENDS NEUROSCI, V26, P397, DOI 10.1016/S0166-2236(03)00199-1
Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564
Shepherd RK, 2001, AUDIOL NEURO-OTOL, V6, P305, DOI 10.1159/000046843
Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999
SIMMONS DD, 1988, J COMP NEUROL, V270, P145, DOI 10.1002/cne.902700112
Smith C A, 1973, Adv Otorhinolaryngol, V20, P296
SMITH CA, 1961, J ULTRA MOL STRUCT R, V5, P523, DOI 10.1016/S0022-5320(61)80025-7
SMITH CA, 1975, ANN OTO RHINOL LARYN, V84, P443
SMITH PH, 1993, J COMP NEUROL, V331, P245, DOI 10.1002/cne.903310208
SOBKOWICZ HM, 1993, J NEUROCYTOL, V22, P979, DOI 10.1007/BF01218355
Spirou GA, 1998, J COMP NEUROL, V398, P257, DOI 10.1002/(SICI)1096-9861(19980824)398:2<257::AID-CNE7>3.0.CO;2-#
SPOENDLI.H, 1969, ACTA OTO-LARYNGOL, V67, P239, DOI 10.3109/00016486909125448
SPOENDLIN H, 1981, ACTA OTO-LARYNGOL, V91, P451, DOI 10.3109/00016488109138527
SPOENDLIN H, 1988, ACTA OTO-LARYNGOL, V105, P403, DOI 10.3109/00016488809119493
SPOENDLIN H, 1973, P185
SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683
SPOENDLI.H, 1971, ARCH KLIN EXP OHR, V200, P275, DOI 10.1007/BF00373310
STAECKER H, 1995, NEUROREPORT, V6, P1533
Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011
Staecker H, 1998, OTOLARYNG HEAD NECK, V119, P7, DOI 10.1016/S0194-5998(98)70194-9
Tessarollo L, 1997, P NATL ACAD SCI USA, V94, P14776, DOI 10.1073/pnas.94.26.14776
Thiers FA, 2002, JARO, V3, P269, DOI 10.1007/s101620020024
Thiers FA, 2000, HEARING RES, V150, P119, DOI 10.1016/S0378-5955(00)00193-3
Thiers FA, 2008, JARO-J ASSOC RES OTO, V9, P477, DOI 10.1007/s10162-008-0135-x
THOMSEN E, 1966, ACTA OTOLARYNGOL S, V224
Tonnaer ELGM, 2010, HEARING RES, V267, P27, DOI 10.1016/j.heares.2010.03.090
Weisz C, 2009, NATURE, V461, P1126, DOI 10.1038/nature08487
Whitlon DS, 2006, NEUROSCIENCE, V138, P653, DOI 10.1016/j.neuroscience.2005.11.030
Whitlon DS, 2007, NEUROSCIENCE, V146, P833, DOI 10.1016/j.neuroscience.2007.01.036
Wise AK, 2005, J COMP NEUROL, V487, P147, DOI 10.1002/cne.20563
Yamagata T, 2004, J NEUROSCI RES, V78, P75, DOI 10.1002/jnr.20239
Ye Y, 2000, J COMP NEUROL, V420, P127
Ylikoski J, 1998, HEARING RES, V124, P17, DOI 10.1016/S0378-5955(98)00095-1
YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C
Zheng JL, 1996, EUR J NEUROSCI, V8, P1897, DOI 10.1111/j.1460-9568.1996.tb01333.x
ZIMMERMANN CE, 1995, HEARING RES, V90, P192, DOI 10.1016/0378-5955(95)00165-1
NR 191
TC 28
Z9 28
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2011
VL 278
IS 1-2
SI SI
BP 2
EP 20
DI 10.1016/j.heares.2011.04.003
PG 19
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 815GY
UT WOS:000294515300002
PM 21530629
ER
PT J
AU Yang, T
Kersigo, J
Jahan, I
Pan, N
Fritzsch, B
AF Yang, Tian
Kersigo, Jennifer
Jahan, Israt
Pan, Ning
Fritzsch, Bernd
TI The molecular basis of making spiral ganglion neurons and connecting
them to hair cells of the organ of Corti
SO HEARING RESEARCH
LA English
DT Article
ID MAMMALIAN INNER-EAR; NULL MUTANT MICE; SENSORY EPITHELIA; IN-VIVO;
DISORGANIZED INNERVATION; TRANSCRIPTION FACTORS; COCHLEAR INNERVATION;
AUDITORY DEVELOPMENT; NEUROTROPHIC FACTOR; SYSTEM DEVELOPMENT
AB The bipolar spiral ganglion neurons apparently delaminate from the growing cochlear duct and migrate to Rosenthal's canal. They project radial fibers to innervate the organ of Corti (type I neurons to inner hair cells, type II neurons to outer hair cells) and also project tonotopically to the cochlear nuclei. The early differentiation of these neurons requires transcription factors to regulate migration, pathfinding and survival. Neurog1 null mice lack formation of neurons. Neurod1 null mice show massive neuronal death combined with aberrant central and peripheral projections. Prox1 protein is necessary for proper type II neuron process navigation, which is also affected by the neurotrophins Bdnf and Ntf3. Neurotrophin null mutants show specific patterns of neuronal loss along the cochlea but remaining neurons compensate by expanding their target area. All neurotrophin mutants have reduced radial fiber growth proportional to the degree of loss of neurotrophin alleles. This suggests a simple dose response effect of neurotrophin concentration. Keeping overall concentration constant, but misexpressing one neurotrophin under regulatory control of another one results in exuberant fiber growth not only of vestibular fibers to the cochlea but also of spiral ganglion neurons to outer hair cells suggesting different effectiveness of neurotrophins for spiral ganglion neurite growth. Finally, we report here for the first time that losing all neurons in double null mutants affects extension of the cochlear duct and leads to formation of extra rows of outer hair cells in the apex, possibly by disrupting the interaction of the spiral ganglion with the elongating cochlea. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Yang, Tian; Kersigo, Jennifer; Jahan, Israt; Pan, Ning; Fritzsch, Bernd] Univ Iowa, Dept Biol, Coll Liberal Arts & Sci, Iowa City, IA 52242 USA.
RP Fritzsch, B (reprint author), Univ Iowa, Dept Biol, Coll Liberal Arts & Sci, 143 BB, Iowa City, IA 52242 USA.
EM bernd-fritzsch@uiowa.edu
FU NIH [R01 DC 005590, P30 DC010362]
FX This work was supported by a NIH grant (R01 DC 005590) to B.F. and in
part by P30 DC010362. We express our thanks to Drs. Ma, Tessarollo,
Farinas, Reichardt and Ernfors for sharing mouse lines and reagents. We
thank the Roy J Carver Foundation for the support of the Confocal
Imaging Facility.
CR Adam J, 1998, DEVELOPMENT, V125, P4645
Agerman K, 2003, DEVELOPMENT, V130, P1479, DOI 10.1242/dev.00378
Appler JM, 2011, PROG NEUROBIOL, V93, P488, DOI 10.1016/j.pneurobio.2011.01.004
Barclay M, 2010, NEUROSCI LETT, V478, P51, DOI 10.1016/j.neulet.2010.01.063
Battisti AC, 2008, DEV DYNAM, V237, P476, DOI 10.1002/dvdy.21429
Bianchi LM, 2005, JARO-J ASSOC RES OTO, V6, P355, DOI 10.1007/s10162-005-0013-8
Bianchi LM, 1996, DEVELOPMENT, V122, P1965
BOUCHARD M, 2010, BMC DEV BIOL
Brooker R, 2006, DEVELOPMENT, V133, P1277, DOI 10.1242/dev.02284
Brors D, 2003, J COMP NEUROL, V462, P90, DOI 10.1002/cne.10707
Bruce LL, 1997, INT J DEV NEUROSCI, V15, P671, DOI 10.1016/S0736-5748(96)00120-7
Brunelli S, 2003, GENE EXPR PATTERNS, V3, P755, DOI 10.1016/S1567-133X(03)00135-2
Coppola V, 2001, DEVELOPMENT, V128, P4315
DAMICOMARTEL A, 1983, AM J ANAT, V166, P445, DOI 10.1002/aja.1001660406
Davies D, 2007, J COMP NEUROL, V502, P673, DOI 10.1002/cne.21302
Davis RL, 2003, NEUROSCIENTIST, V9, P311, DOI 10.1177/1073858403251986
ERNFORS P, 1995, NEURON, V14, P1153, DOI 10.1016/0896-6273(95)90263-5
Esteban PF, 2006, J CELL BIOL, V173, P291, DOI 10.1083/jcb.200512013
Farinas I, 2001, J NEUROSCI, V21, P6170
Fekete DM, 2007, INT J DEV BIOL, V51, P549, DOI 10.1387/ijdb.072341df
Finzsch M, 2010, J CELL BIOL, V189, P701, DOI 10.1083/jcb.200912142
Flores-Otero J, 2007, J NEUROSCI, V27, P14023, DOI 10.1523/JNEUROSCI.3219-07.2007
Fritzsch B, 2010, CELL MOL LIFE SCI, V67, P3089, DOI 10.1007/s00018-010-0403-x
Fritzsch B, 2005, DEV DYNAM, V233, P570, DOI 10.1002/dvdy.20370
Fritzsch B, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009377
Fritzsch B, 2002, J NEUROBIOL, V53, P143, DOI 10.1002/neu.10098
Fritzsch B, 2004, PROG BRAIN RES, V146, P265, DOI 10.1016/S0079-6123(03)46017-2
Fritzsch B, 2005, BRAIN RES BULL, V66, P249, DOI 10.1016/j.brainresbull.2005.05.016
Fritzsch B, 2006, BIOESSAYS, V28, P1181, DOI 10.1002/bies.20502
Fritzsch B, 2005, HEARING RES, V206, P52, DOI 10.1016/j.heares.2004.11.025
Fritzsch B, 2003, BRAIN RES BULL, V60, P423, DOI 10.1016/S0361-9230(03)00048-0
Fritzsch B, 2006, INT J COMP PSYCHOL, V19, P1
Fritzsch B, 1997, J NEUROSCI, V17, P6213
Galabova-Kovacs G, 2010, METHODS MOL BIOL, V661, P421, DOI 10.1007/978-1-60761-795-2_26
Garcia-Bellido A, 2009, GENETICS, V182, P631, DOI 10.1534/genetics.109.104083
Gaspard N, 2010, CURR OPIN NEUROBIOL, V20, P37, DOI 10.1016/j.conb.2009.12.001
GINZBERG RD, 1983, HEARING RES, V10, P227, DOI 10.1016/0378-5955(83)90056-4
Grabocka E, 2009, CANCER CELL, V16, P85, DOI 10.1016/j.ccr.2009.07.012
Grimsley-Myers CM, 2009, J NEUROSCI, V29, P15859, DOI 10.1523/JNEUROSCI.3998-09.2009
Gu CH, 2003, DEV CELL, V5, P45, DOI 10.1016/S1534-5807(03)00169-2
Heng JIT, 2008, NATURE, V455, P114, DOI 10.1038/nature07198
Hossain WA, 2008, J NEUROSCI RES, V86, P2376, DOI 10.1002/jnr.21685
Huang EJ, 2001, DEVELOPMENT, V128, P2421
Huang LC, 2007, DEVELOPMENT, V134, P2925, DOI 10.1242/dev.001925
Jahan I, 2010, CELL TISSUE RES, V341, P95, DOI 10.1007/s00441-010-0984-6
Jahan I, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011661
Karis A, 2001, J COMP NEUROL, V429, P615, DOI 10.1002/1096-9861(20010122)429:4<615::AID-CNE8>3.0.CO;2-F
Katayama K, 2009, PLOS ONE, V4, pA151, DOI 10.1371/journal.pone.0007786
Kelly MC, 2009, CURR OPIN NEUROBIOL, V19, P395, DOI 10.1016/j.conb.2009.07.010
KERN F, 2010, BR J CANC
Kim WY, 2001, DEVELOPMENT, V128, P417
Kondo T, 2008, P NATL ACAD SCI USA, V105, P5780, DOI 10.1073/pnas.0708704105
KOPECKY B, 2011, DEV DYNAM, V240, P808
Koppel I, 2010, GENESIS, V48, P214, DOI 10.1002/dvg.20606
Koundakjian EJ, 2007, J NEUROSCI, V27, P14078, DOI 10.1523/JNEUROSCI.3765-07.2007
Kruger M, 2006, EUR J NEUROSCI, V24, P1581, DOI 10.1111/j.1460-9568.2006.05051.x
Lallemend F, 2007, NEUROSCIENCE, V150, P212, DOI 10.1016/j.neuroscience.2007.08.032
Lawoko-Kerali G, 2002, J COMP NEUROL, V442, P378, DOI 10.1002/cne.10088
Leake PA, 2008, JARO-J ASSOC RES OTO, V9, P349, DOI 10.1007/s10162-008-0127-x
Lie M, 2010, NEUROSCIENCE, V169, P855, DOI 10.1016/j.neuroscience.2010.05.020
Liu M, 2000, GENE DEV, V14, P2839, DOI 10.1101/gad.840500
Luberg K, 2010, J NEUROCHEM, V113, P952, DOI 10.1111/j.1471-4159.2010.06662.x
Luo ZX, 2011, P ROY SOC B-BIOL SCI, V278, P28, DOI 10.1098/rspb.2010.1148
Ma QF, 1998, NEURON, V20, P469, DOI 10.1016/S0896-6273(00)80988-5
Ma QF, 2000, JARO, V1, P129, DOI 10.1007/sl01620010017
Magarinos M, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014435
Markus A, 2002, NEURON, V35, P65, DOI 10.1016/S0896-6273(02)00752-3
Matei V, 2005, DEV DYNAM, V234, P633, DOI 10.1002/dvdy.20551
Migeotte I, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000442
Morris JK, 2006, BRAIN RES, V1091, P186, DOI 10.1016/j.brainres.2006.02.090
Muller M, 2003, DEVELOPMENT, V130, P5815, DOI 10.1242/dev.00815
Naka H, 2008, NAT NEUROSCI, V11, P1014, DOI 10.1038/nn.2168
Nichols DH, 2008, CELL TISSUE RES, V334, P339, DOI 10.1007/s00441-008-0709-2
Ohsawa R, 2008, BRAIN RES, V1192, P90, DOI 10.1016/j.brainres.2007.04.014
Ohyama T, 2010, J NEUROSCI, V30, P15044, DOI 10.1523/JNEUROSCI.3547-10.2010
PACARY E, 2011, NEURON, V24, P1069
Pan N, 2011, HEARING RES, V275, P66, DOI 10.1016/j.heares.2010.12.002
Pan W, 2010, P NATL ACAD SCI USA, V107, P15798, DOI 10.1073/pnas.1003089107
Parra LM, 2010, NAT NEUROSCI, V13, P29, DOI 10.1038/nn.2457
Pauley S, 2006, DEV DYNAM, V235, P2470, DOI 10.1002/dvdy.20839
Pauley S, 2003, DEV DYNAM, V227, P203, DOI 10.1002/dvdy.10297
PELJTO M, 2011, CURR OPIN NEUROBIOL, V218, P43
PIRVOLA U, 1992, P NATL ACAD SCI USA, V89, P9915, DOI 10.1073/pnas.89.20.9915
Postigo A, 2002, GENE DEV, V16, P633, DOI 10.1101/gad.217902
Puligilla C, 2007, DEV DYNAM, V236, P1905, DOI 10.1002/dvdy.21192
Puligilla C, 2010, J NEUROSCI, V30, P714, DOI 10.1523/JNEUROSCI.3852-09.2010
Qian Y, 2001, GENE DEV, V15, P2533, DOI 10.1101/gad.921501
Qu YB, 2010, J NEUROSCI, V30, P9392, DOI 10.1523/JNEUROSCI.0124-10.2010
Raft S, 2004, DEVELOPMENT, V131, P1801, DOI 10.1242/dev.01067
Raft S, 2007, DEVELOPMENT, V134, P4405, DOI 10.1242/dev.009118
Riccomagno MM, 2005, GENE DEV, V19, P1612, DOI 10.1101/gad.1303905
Romand R, 2008, J COMP NEUROL, V508, P879, DOI [10.1002/cne.21707, 10.1002/ene.21707]
Rontal DA, 2003, J COMP NEUROL, V467, P509, DOI 10.1002/cne.10931
Ross SE, 2010, NEURON, V65, P886, DOI 10.1016/j.neuron.2010.02.025
Roy S, 2010, SCIENCE
Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849
Ruben R. J., 1967, ACTA OTO-LARYNGOL, V220, P1
Schimmang T, 2003, DEVELOPMENT, V130, P4741, DOI 10.1242/dev.00676
Schreiner D, 2010, P NATL ACAD SCI USA, V107, P14893, DOI 10.1073/pnas.1004526107
Sciarretta C, 2010, BMC DEV BIOL, V10, DOI 10.1186/1471-213X-10-103
SilosSantiago I, 1997, EUR J NEUROSCI, V9, P2045, DOI 10.1111/j.1460-9568.1997.tb01372.x
Tang LS, 2006, DEVELOPMENT, V133, P3683, DOI 10.1242/dev.02536
Tessarollo L, 2004, J NEUROSCI, V24, P2575, DOI 10.1523/JNEUROSCI.5514-03.2004
TESSAROLLO L, 1994, P NATL ACAD SCI USA, V91, P11844, DOI 10.1073/pnas.91.25.11844
van Heumen WRA, 2000, HEARING RES, V139, P42, DOI 10.1016/S0378-5955(99)00158-6
Webber A, 2006, ANAT REC PART A, V288A, P390, DOI 10.1002/ar.a.20299
WHITLON DS, 2011, ARO MIDW M
Whitlon DS, 2007, NEUROSCIENCE, V146, P833, DOI 10.1016/j.neuroscience.2007.01.036
Xiang MQ, 2003, BMC NEUROSCI, V4, DOI 10.1186/1471-2202-4-2
Zheng JL, 2000, NAT NEUROSCI, V3, P580
Zhong J, 2007, NAT NEUROSCI, V10, P598, DOI 10.1038/1898
Zhou ZP, 2005, J NEUROSCI, V25, P7558, DOI 10.1523/JNEUROSCI.1735-05.2005
Zou D, 2008, HUM MOL GENET, V17, P3340, DOI 10.1093/hmg/ddn229
Zou D, 2004, DEVELOPMENT, V131, P5561, DOI 10.1242/dev.01437
NR 114
TC 30
Z9 30
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2011
VL 278
IS 1-2
SI SI
BP 21
EP 33
DI 10.1016/j.heares.2011.03.002
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 815GY
UT WOS:000294515300003
PM 21414397
ER
PT J
AU Johnson, SB
Schmitz, HM
Santi, PA
AF Johnson, Shane B.
Schmitz, Heather M.
Santi, Peter A.
TI TSLIM imaging and a morphometric analysis of the mouse spiral ganglion
SO HEARING RESEARCH
LA English
DT Article
ID QUANTITATIVE-ANALYSIS; AUDITORY-NERVE; FREQUENCY MAP; HOUSE-MOUSE;
TARGET INNERVATION; SENSORY NEURONS; MUS-MUSCULUS; COCHLEA; MICE;
MICROSCOPY
AB Thin-sheet laser imaging microscopy (TSLIM) was used to serially section five whole cochleas from 4-wk-old CBA/JCr mice. Three-dimensional reconstructions of Rosenthal's canal (RC) were produced in order to measure canal length and volume, to generate orthogonal cross sections for area measurements, and to determine spiral ganglion neuron (SGN) number. RC length averaged 2.0 mm +/- 0.04 (SEM) as measured along the centroid of the canal compared to an average basilar membrane (BM) length of 5.9 +/- 0.05 (SEM). RC volume averaged 0.036 mm(3) +/- 0.009 (SEM). Significant increases in the radial area of RC were observed at the base (13%), middle (62%), and apex (90%) of its length. The total number of spiral ganglion neurons (SGNs) in RC in each of the five animals averaged 8626 +/- 96 (SEM). SGN number increased at the expanded regions of RC. Increased area and cell number at the base and apex are likely related to extensions of the organ of Corti past the length of RC in these areas. The increase in area and cell number in the middle of the RC appears to be related to the most sensitive frequency region of the organ of Corti. Volume imaging or tomography of the cochlea as provided by TSLIM has the potential to be an efficient and accurate semi-automated method for the quantitative assessment of the number of SGNs and hair cells of the organ of Corti. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Johnson, Shane B.; Schmitz, Heather M.; Santi, Peter A.] Univ Minnesota, Dept Otolaryngol, Minneapolis, MN 55455 USA.
RP Johnson, SB (reprint author), Univ Minnesota, Dept Otolaryngol, 2001 6th St SE, Minneapolis, MN 55455 USA.
EM john6638@umn.edu
FU National Institute for Deafness and Communication Disorders (NIDCD)
[RO1DC007588, DC007588-03S1]
FX Funding for this study was provided by the National Institute for
Deafness and Communication Disorders (NIDCD) grants RO1DC007588 and
DC007588-03S1 to PAS.
CR ABERCROMBIE M, 1946, ANAT REC, V94, P239, DOI 10.1002/ar.1090940210
BERGLUND AM, 1987, J COMP NEUROL, V255, P560, DOI 10.1002/cne.902550408
BROWN MC, 1988, J COMP NEUROL, V278, P581, DOI 10.1002/cne.902780409
Camarero G, 2001, J NEUROSCI, V21, P7630
Dazert S, 1996, HEARING RES, V100, P101, DOI 10.1016/0378-5955(96)00100-1
Dodt HU, 2007, NAT METHODS, V4, P331, DOI 10.1038/NMETH1036
Echteler SM, 2000, J COMP NEUROL, V425, P436
Ehret G, 1983, AUDITORY PSYCHOBIOLO, P169
EHRET G, 1977, J COMP PHYSIOL, V122, P65
EHRET G, 1975, J COMP PHYSIOL, V103, P329
EHRET G, 1979, J COMP NEUROL, V183, P73, DOI 10.1002/cne.901830107
Eichenbaum KD, 2005, BIOTECHNIQUES, V39, P487, DOI 10.2144/000112003
FARINAS I, 1994, NATURE, V369, P658, DOI 10.1038/369658a0
Huang B, 2008, NAT METHODS, V5, P1047, DOI 10.1038/nmeth.1274
KEITHLEY EM, 1987, J ACOUST SOC AM, V81, P1036, DOI 10.1121/1.394675
KEITHLEY EM, 1983, HEARING RES, V12, P381, DOI 10.1016/0378-5955(83)90007-2
KEITHLEY EM, 1979, J COMP NEUROL, V188, P429, DOI 10.1002/cne.901880306
Keller PJ, 2008, SCIENCE, V322, P1065, DOI 10.1126/science.1162493
LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677
LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309
LIBERMAN MC, 1982, SCIENCE, V216, P1239, DOI 10.1126/science.7079757
LIBERMAN MC, 1984, J COMP NEUROL, V223, P163, DOI 10.1002/cne.902230203
Liebl DJ, 1997, J NEUROSCI, V17, P9113
Liu Q, 2007, J NEUROPHYSIOL, V98, P2215, DOI 10.1152/jn.00284.2007
Luikart BW, 2003, NEUROSCIENCE, V117, P847, DOI 10.1016/S0306-4522(02)00719-4
Muller M, 2005, HEARING RES, V202, P63, DOI 10.1016/j.heares.2004.08.011
Ou HC, 2000, HEARING RES, V145, P123, DOI 10.1016/S0378-5955(00)00082-4
POLLAK A, 1987, ACTA OTO-LARYNGOL, P37
Postigo A, 2002, GENE DEV, V16, P633, DOI 10.1101/gad.217902
Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849
Santi PA, 2009, BIOTECHNIQUES, V46, P287, DOI 10.2144/000113087
Santi PA, 2011, J HISTOCHEM CYTOCHEM, V59, P129, DOI 10.1369/0022155410394857
Sato M., 2000, Proceedings the Eighth Pacific Conference on Computer Graphics and Applications, DOI 10.1109/PCCGA.2000.883951
SCHACHT R, 2010, BIOMED OPT EXPRESS, V1, P598
Skinner MW, 2007, ANN OTO RHINOL LARYN, V116, P1
SPOENDLIN H, 1979, ACTA OTO-LARYNGOL, V87, P381, DOI 10.3109/00016487909126437
SPOENDLI.H, 1972, ACTA OTO-LARYNGOL, V73, P235, DOI 10.3109/00016487209138937
VOIE AH, 1993, J MICROSC-OXFORD, V170, P229
WEBSTER DB, 1985, HEARING RES, V18, P19, DOI 10.1016/0378-5955(85)90107-8
Whitlon DS, 2006, NEUROSCIENCE, V138, P653, DOI 10.1016/j.neuroscience.2005.11.030
WILLOTT JF, 1987, J COMP NEUROL, V260, P472, DOI 10.1002/cne.902600312
NR 41
TC 8
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2011
VL 278
IS 1-2
SI SI
BP 34
EP 42
DI 10.1016/j.heares.2011.02.008
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 815GY
UT WOS:000294515300004
PM 21420476
ER
PT J
AU Richter, CP
Kumar, G
Webster, E
Banas, SK
Whitlon, DS
AF Richter, C. -P.
Kumar, G.
Webster, E.
Banas, S. K.
Whitlon, D. S.
TI Unbiased counting of neurons in the cochlea of developing gerbils
SO HEARING RESEARCH
LA English
DT Article
ID GANGLION-CELL COUNTS; SPIRAL GANGLION; STEREOLOGICAL METHODS;
PATHOLOGICAL RESEARCH; TARGET INNERVATION; AUDITORY NEURONS; SENSORY
NEURONS; MICE; NUMBER; HYPOTHYROIDISM
AB Accurate counting of neurons in the cochlea has a significant impact on the interpretation of research and clinically relevant data. However, reports of numbers of neurons in the spiral ganglion are widely variable across studies, even within the same species. We suggest that the implementation of a more standardized, unbiased counting method will improve the consistency and accuracy of neuron counts and will impact scientific interpretations. To test this view, we compared, in different ways, the numbers of neurons in the spiral ganglia of developing gerbils, previously reported to decrease by 22-27% between birth and age 7 days. Cochleae from gerbils, aged newborn, 7 days, 20 days, 1.5 years and 2.5 years were embedded in Araldite and serially sectioned at 5 pm. A computer based stereological method was used to unambiguously count every neuron in serial sections, either throughout the entire cochlea, or in a 100-mu m segment of the cochlea. No significant changes in neuron numbers during cochlear maturation were found. We demonstrate that in methods using sampling of sections, the identity of the starting section and the interval between sections impacts the variability of the estimate of neuron numbers. In addition, we show that packing density differs between the newborn and seven-day old animals. The data demonstrate that variability in counting methods and the comparison of non-uniform samples can lead to neuron number estimates that show differences where none exist. We propose that a standardized counting protocol be implemented across studies and suggest possible approaches to different types of comparisons between neurons of spiral ganglia from different sources. (C) 2011 Published by Elsevier B.V.
C1 [Richter, C. -P.; Kumar, G.; Webster, E.; Banas, S. K.; Whitlon, D. S.] Northwestern Univ, Feinberg Sch Med, Dept Otolaryngol, Chicago, IL 60611 USA.
[Richter, C. -P.] Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA.
[Richter, C. -P.; Whitlon, D. S.] Northwestern Univ, Dept Commun Sci & Disorders, Hugh Knowles Ctr, Evanston, IL 60208 USA.
[Whitlon, D. S.] Northwestern Univ, Interdept Neurosci Program, Chicago, IL 60611 USA.
RP Richter, CP (reprint author), Northwestern Univ, Feinberg Sch Med, Dept Otolaryngol Head & Neck Surg, 303 E Chicago Ave,Searle 12-561, Chicago, IL 60611 USA.
EM cri529@northwestern.edu
FU American Hearing Research Foundation; Hugh Knowles Center, Northwestern
University; Department of Otolaryngology, Northwestern University
FX This project has been supported by the American Hearing Research
Foundation, the Hugh Knowles Center, Northwestern University, and the
Department of Otolaryngology, Northwestern University.
CR ABERCROMBIE M, 1946, ANAT REC, V94, P239, DOI 10.1002/ar.1090940210
Agerman K, 2003, DEVELOPMENT, V130, P1479, DOI 10.1242/dev.00378
Benes FM, 2001, TRENDS NEUROSCI, V24, P11, DOI 10.1016/S0166-2236(00)01660-X
Camarero G, 2001, J NEUROSCI, V21, P7630
Chen I, 2010, JARO-J ASSOC RES OTO, V11, P587, DOI 10.1007/s10162-010-0234-3
Coggeshall RE, 1996, J COMP NEUROL, V364, P6, DOI 10.1002/(SICI)1096-9861(19960101)364:1<6::AID-CNE2>3.0.CO;2-9
COGGESHALL RE, 1992, TRENDS NEUROSCI, V15, P9, DOI 10.1016/0166-2236(92)90339-A
Echteler SM, 2000, J COMP NEUROL, V425, P436
FARINAS I, 1994, NATURE, V369, P658, DOI 10.1038/369658a0
Goto Noboru, 2006, Hum Cell, V19, P49, DOI 10.1111/j.1749-0774.2006.00013.x
GUNDERSEN HJG, 1988, J MICROSC-OXFORD, V151, P3
GUNDERSEN HJG, 1988, APMIS, V96, P379
GUNDERSEN HJG, 1988, APMIS, V96, P857
Hedreen JC, 1998, ANAT REC, V250, P373, DOI 10.1002/(SICI)1097-0185(199803)250:3<373::AID-AR12>3.0.CO;2-L
HINOJOSA R, 1985, ACTA OTO-LARYNGOL, V99, P8, DOI 10.3109/00016488509119139
HOWE HA, 1934, J COMP NEUROL, V62, P73
Ishiyama A, 2001, NEUROSCI LETT, V304, P93, DOI 10.1016/S0304-3940(01)01774-8
JENSEN EBV, 1993, J MICROSC-OXFORD, V170, P35
KEITHLEY EM, 1979, J COMP NEUROL, V188, P429, DOI 10.1002/cne.901880306
King MA, 2002, METHODS, V28, P293, DOI 10.1016/S1046-2023(02)00235-9
KONIGSMA.BW, 1969, JOHNS HOPKINS MED J, V125, P146
Lareida A, 2009, J MICROSC-OXFORD, V234, P95, DOI 10.1111/j.1365-2818.2009.03143.x
Liebl DJ, 1997, J NEUROSCI, V17, P9113
LINDERSTROMLANG K, 1935, COMPTES RENDUS LAB C, V20, P66
Luikart BW, 2003, NEUROSCIENCE, V117, P847, DOI 10.1016/S0306-4522(02)00719-4
MAIR IW, 1973, ACTA OTO-LARYNGOL, V314, P1048
PARK CJ, 1990, HEARING RES, V48, P275
Postigo A, 2002, GENE DEV, V16, P633, DOI 10.1101/gad.217902
Richter CP, 2008, HEARING RES, V242, P42, DOI [10.1016/j.heares.2008.01.011, 10.1016/j.heares.2008.01.01]
Richter CP, 2009, MICROSC RES TECHNIQ, V72, P902, DOI 10.1002/jemt.20728
Rueda J, 2003, NEUROSCI RES, V45, P401, DOI 10.1016/S0168-0102(03)00009-9
RUEDA J, 1987, ACTA OTO-LARYNGOL, V104, P417, DOI 10.3109/00016488709128269
SANTI P, 2010, ABSTR ASS RES OT, V33, P101
Saper CB, 1996, J COMP NEUROL, V364, P5
SCHUKNECHT HF, 1960, NEURAL MECHANISMS AU, P76
SCHUKNECHT HF, 1953, AMA ARCH OTOLARYNGOL, V58, P377
Stark Anette K., 2005, Current Alzheimer Research, V2, P449, DOI 10.2174/156720505774330528
STERIO DC, 1984, J MICROSC-OXFORD, V134, P127
Tandrup T, 1997, J MICROSC-OXFORD, V186, P108, DOI 10.1046/j.1365-2818.1997.2070765.x
UZIEL A, 1983, HEARING RES, V11, P203, DOI 10.1016/0378-5955(83)90079-5
WEBSTER DB, 1985, HEARING RES, V18, P19, DOI 10.1016/0378-5955(85)90107-8
West MJ, 2002, PROG BRAIN RES, V135, P43
West MJ, 1999, TRENDS NEUROSCI, V22, P51, DOI 10.1016/S0166-2236(98)01362-9
Whitlon DS, 2006, NEUROSCIENCE, V138, P653, DOI 10.1016/j.neuroscience.2005.11.030
NR 44
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2011
VL 278
IS 1-2
SI SI
BP 43
EP 51
DI 10.1016/j.heares.2011.02.003
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 815GY
UT WOS:000294515300005
PM 21329751
ER
PT J
AU Chen, WC
Xue, HZ
Hsu, Y
Liu, Q
Patel, S
Davis, RL
AF Chen, Wei Chun
Xue, Hui Zhong
Hsu, Yun (Lucy)
Liu, Qing
Patel, Shail
Davis, Robin L.
TI Complex distribution patterns of voltage-gated calcium channel
alpha-subunits in the spiral ganglion
SO HEARING RESEARCH
LA English
DT Article
ID CA2+ CHANNELS; SCHWANN-CELLS; POTASSIUM CHANNELS; FIRING PATTERNS;
AUDITORY-NERVE; COCHLEAR NERVE; MOUSE COCHLEA; HAIR-CELLS; NEURONS; RAT
AB As with other elements of the peripheral auditory system, spiral ganglion neurons display specializations that vary as a function of location along the tonotopic axis. Previous work has shown that voltage-gated K(+) channels and synaptic proteins show graded changes in their density that confers rapid responsiveness to neurons in the high frequency, basal region of the cochlea and slower, more maintained responsiveness to neurons in the low frequency, apical region of the cochlea. In order to understand how voltage-gated calcium channels (VGCCs) may contribute to these diverse phenotypes, we identified the VGCC alpha-subunits expressed in the ganglion, investigated aspects of Ca(2+)-dependent neuronal firing patterns, and mapped the intracellular and intercellular distributions of seven VGCC alpha-subunits in the spiral ganglion in vitro.
Initial experiments with qRT-PCR showed that eight of the ten known VGCC alpha-subunits were expressed in the ganglion and electrophysiological analysis revealed firing patterns that were consistent with the presence of both LVA and HVA Ca(2+) channels. Moreover, we were able to study seven of the alpha-subunits with immunocytochemistry, and we found that all were present in spiral ganglion neurons, three of which were neuron-specific (Ca(V)1.3, Ca(V)2.2, and Ca(V)3.3). Further characterization of neuron-specific alpha-subunits showed that Ca(V)1.3 and Ca(V)3.3 were tonotopically-distributed, whereas Ca(V)2.2 was uniformly distributed in apical and basal neurons. Multiple VGCC alpha-subunits were also immunolocalized to Schwann cells, having distinct intracellular localizations, and, significantly, appearing to distinguish putative compact (Ca(V)2.3, Ca(V)3.1) from loose (Ca(V)1.2) myelin.
Electrophysiological evaluation of spiral ganglion neurons in the presence of TEA revealed Ca(2+) plateau potentials with slopes that varied proportionately with the cochlear region from which neurons were isolated. Because afterhyperpolarizations were minimal or absent under these conditions, we hypothesize that differential density and/or kinetics of one or more of the VGCC alpha-subunits could account for observed tonotopic differences. These experiments have set the stage for defining the clear multiplicity of functional control in neurons and Schwann cells of the spiral ganglion. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Davis, Robin L.] Rutgers State Univ, Dept Cell Biol & Neurosci, Nelson Labs, Piscataway, NJ 08854 USA.
[Hsu, Yun (Lucy)] Rutgers State Univ, Dept Biochem & Microbiol, New Brunswick, NJ 08901 USA.
[Patel, Shail] Univ Med & Dent New Jersey, New Jersey Med Sch, Newark, NJ 07746 USA.
RP Davis, RL (reprint author), Rutgers State Univ, Dept Cell Biol & Neurosci, Nelson Labs, 604 Allison Rd, Piscataway, NJ 08854 USA.
EM rldavis@rci.rutgers.edu
FU NIH NIDCD [R01 DC-0856]
FX We thank Edmund Lee for his help in manuscript preparation and data
analysis and Dr. Mark R. Plummer for a critical reading of this
manuscript. Work was supported by NIH NIDCD R01 DC-0856.
CR Adamson CL, 2002, J COMP NEUROL, V447, P331, DOI 10.1002/cne.10244
Adamson CL, 2002, J NEUROSCI, V22, P1385
Arimura N, 2007, NAT REV NEUROSCI, V8, P194, DOI 10.1038/nrn2056
Avila T, 2009, CELL MOL NEUROBIOL, V29, P1265, DOI 10.1007/s10571-009-9422-2
Baker MD, 2002, PROG BIOPHYS MOL BIO, V78, P83, DOI 10.1016/S0079-6107(02)00007-X
Bean BP, 2007, NAT REV NEUROSCI, V8, P451, DOI 10.1038/nrn2148
Blanchart A, 2006, J COMP NEUROL, V496, P529, DOI 10.1002/cne.20941
Cao XJ, 2005, J NEUROPHYSIOL, V94, P821, DOI 10.1152/jn.01049.2004
Catterall WA, 2005, PHARMACOL REV, V57, P411, DOI 10.1124/pr.57.4.5
Chen WC, 2006, HEARING RES, V222, P89, DOI 10.1016/j.heares.2006.09.002
Coleman B, 2007, STEM CELLS, V25, P2685, DOI 10.1634/stemcells.2007-0393
Crumling MA, 2005, SYNAPSE, V58, P243, DOI 10.1002/syn.20204
Davis RL, 2003, NEUROSCIENTIST, V9, P311, DOI 10.1177/1073858403251986
DAVIS RL, HEAR RES UNPUB
DeSilva TM, 2009, J NEUROSCI, V29, P7898, DOI 10.1523/JNEUROSCI.6129-08.2009
Dolphin AC, 2009, CURR OPIN NEUROBIOL, V19, P237, DOI 10.1016/j.conb.2009.06.006
FLORESOTERO J, 2010, J COMP NEUROL, DOI DOI 10.1002/CNE22576
Flores-Otero J, 2007, J NEUROSCI, V27, P14023, DOI 10.1523/JNEUROSCI.3219-07.2007
French RJ, 2005, IEEE T NANOBIOSCI, V4, P58, DOI 10.1109/TNB.2004.842500
Ginzinger DG, 2002, EXP HEMATOL, V30, P503, DOI 10.1016/S0301-472X(02)00806-8
GOEDERT M, 1991, TRENDS NEUROSCI, V14, P193, DOI 10.1016/0166-2236(91)90105-4
Gray AC, 2007, CELL CALCIUM, V42, P409, DOI 10.1016/j.ceca.2007.04.003
Green GE, 1996, J NEUROCHEM, V67, P37
Hisashi K, 1995, HEARING RES, V91, P196, DOI 10.1016/0378-5955(95)00191-3
Hossain WA, 2005, J NEUROSCI, V25, P6857, DOI 10.1523/JNEUROSCI.0123-05.2005
Jimenez C, 1997, NEUROSCIENCE, V77, P673, DOI 10.1016/S0306-4522(96)00505-2
Johnson SL, 2008, J PHYSIOL-LONDON, V586, P1029, DOI 10.1113/jphysiol.2007.145219
Joris P, 2007, TRENDS NEUROSCI, V30, P70, DOI 10.1016/j.tins.2006.12.004
Jurkat-Rott K, 2004, J PHYSIOL-LONDON, V554, P609, DOI 10.1113/jphysiol.2003.052712
KIANG NYS, 1965, DISCHARGE PATTERNS S, V35
Kollmar R, 1997, P NATL ACAD SCI USA, V94, P14883, DOI 10.1073/pnas.94.26.14883
Koschak A, 2001, J BIOL CHEM, V276, P22100, DOI 10.1074/jbc.M101469200
LIBERMAN MC, 1982, SCIENCE, V216, P1239, DOI 10.1126/science.7079757
Lipscombe D, 2004, J NEUROPHYSIOL, V92, P2633, DOI 10.1152/jn.00486.2004
LIU Q, 2010, ABSTR ASS RES OT, V33, P741
Liu Q, 2007, J NEUROPHYSIOL, V98, P2215, DOI 10.1152/jn.00284.2007
Loane DJ, 2007, J CELL SCI, V120, P985, DOI 10.1242/jcs.03399
Lopez I, 2003, CELL TISSUE RES, V313, P177, DOI 10.1007/s00441-003-0759-4
MASON WT, 1984, EXP BRAIN RES, V56, P135
Mathie A, 1998, GEN PHARMACOL, V30, P13, DOI 10.1016/S0306-3623(97)00034-7
Mo ZL, 1997, J NEUROPHYSIOL, V77, P1294
Mo ZL, 1997, J NEUROPHYSIOL, V78, P3019
Muller M, 2005, NEUROREPORT, V16, P1183
Nikitina E, 2007, J PHYSIOL-LONDON, V580, P523, DOI 10.1113/jphysiol.2006.126128
OGATA N, 1991, J NEUROSCI METH, V39, P175, DOI 10.1016/0165-0270(91)90083-C
Pettingill LN, 2007, IEEE T BIO-MED ENG, V54, P1138, DOI 10.1109/TBME.2007.895375
Platzer J, 2000, CELL, V102, P89, DOI 10.1016/S0092-8674(00)00013-1
Reid MA, 2004, J NEUROSCI, V24, P733, DOI 10.1523/JNEUROSCI.3923-03.2004
ROSENBLUTH J, 1962, J CELL BIOL, V12, P329, DOI 10.1083/jcb.12.2.329
Rusznak Z, 2009, PFLUG ARCH EUR J PHY, V457, P1303, DOI 10.1007/s00424-008-0586-2
Ryugo DK, 1992, MAMMALIAN AUDITORY P, P23
SALZER JL, 1980, J CELL BIOL, V84, P739, DOI 10.1083/jcb.84.3.739
Singh A, 2008, J BIOL CHEM, V283, P20733, DOI 10.1074/jbc.M802254200
Stocker M, 2004, NAT REV NEUROSCI, V5, P758, DOI 10.1038/nrn1516
STORM JF, 1987, J PHYSIOL-LONDON, V385, P733
Stotz SC, 2000, J BIOL CHEM, V275, P24575, DOI 10.1074/jbc.M000399200
Sun XL, 2003, J NEUROSCI, V23, P3639
Sundgren-Andersson AK, 1998, BRAIN RES, V783, P194, DOI 10.1016/S0006-8993(97)01342-5
Taberner AM, 2005, J NEUROPHYSIOL, V93, P557, DOI 10.1152/jn.00574.2004
Toesca A, 1996, NEUROSCI LETT, V221, P21, DOI 10.1016/S0304-3940(96)13273-0
Westenbroek RE, 2004, J NEUROSCI RES, V75, P371, DOI 10.1002/jnr.10863
Whitlon DS, 2010, NEUROSCIENCE, V171, P23, DOI 10.1016/j.neuroscience.2010.08.069
YAMAGUCHI K, 1990, J PHYSIOL-LONDON, V420, P185
Zhang D, 2006, J BIOL CHEM, V281, P22332, DOI 10.1074/jbc.M511288200
NR 64
TC 12
Z9 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2011
VL 278
IS 1-2
SI SI
BP 52
EP 68
DI 10.1016/j.heares.2011.01.016
PG 17
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 815GY
UT WOS:000294515300006
PM 21281707
ER
PT J
AU Wise, AK
Tu, T
Atkinson, PJ
Flynn, BO
Sgro, BE
Hume, C
O'Leary, SJ
Shepherd, RK
Richardson, RT
AF Wise, Andrew K.
Tu, Tian
Atkinson, Patrick J.
Flynn, Brianna O.
Sgro, Beatrice E.
Hume, Cliff
O'Leary, Stephen J.
Shepherd, Robert K.
Richardson, Rachael T.
TI The effect of deafness duration on neurotrophin gene therapy for spiral
ganglion neuron protection
SO HEARING RESEARCH
LA English
DT Article
ID SENSORINEURAL HEARING-LOSS; DEAFENED GUINEA-PIGS; HAIR CELL LOSS;
IN-VIVO; AUDITORY NEURONS; INNER-EAR; ELECTRICAL-STIMULATION;
ADENOASSOCIATED VIRUS; BRAIN-STEM; SURVIVAL
AB A cochlear implant can restore hearing function by electrically exciting spiral ganglion neurons (SGNs) in the deaf cochlea. However, following deafness SGNs undergo progressive degeneration ultimately leading to their death. One significant cause of SGN degeneration is the loss of neurotrophic support that is normally provided by cells within the organ of Corti (OC). The administration of exogenous neurotrophins (NTs) can protect SGNs from degeneration but the effects are short-lived once the source of NTs has been exhausted. NT gene therapy, whereby cells within the cochlea are transfected with genes enabling them to produce NTs, is one strategy for providing a cellular source of NTs that may provide long-term support for SGNs. As the SGNs normally innervate sensory cells within the OC, targeting residual OC cells for gene therapy in the deaf cochlea may provide a source of NTs for SGN protection and targeted regrowth of their peripheral fibers. However, the continual degeneration of the OC over extended periods of deafness may deplete the cellular targets for NT gene therapy and hence limit the effectiveness of this method in preventing SGN loss. This study examined the effects of deafness duration on the efficacy of NT gene therapy in preventing SGN loss in guinea pigs that were systemically deafened with aminoglycosides. Adenoviral vectors containing green fluorescent protein (GFP) with or without genes for Brain Derived Neurotrophic Factor (BDNF) and Neurotrophin-3 (NT3) were injected into the scala media (SM) compartment of cochleae that had been deafened for one, four or eight weeks prior to the viral injection. The results showed that viral transfection of cells within the SM was still possible even after severe degeneration of the OC. Supporting cells (pillar and Deiters' cells), cells within the stria vascularis, the spiral ligament, endosteal cells lining the scala compartments and interdental cells in the spiral limbus were transfected. However, the level of transfection was remarkably lower following longer durations of deafness. There was a significant increase in SGN survival in the entire basal turn for cochleae that received NT gene therapy compared to the untreated contralateral control cochleae for the one week deaf group. In the four week deaf group significant SGN survival was observed in the lower basal turn only. There was no increase in SGN survival for the eight week deaf group in any cochlear region. These findings indicated that the efficacy of NT gene therapy diminished with increasing durations of deafness leading to reduced benefits in terms of SGN protection. Clinically, there remains a window of opportunity in which NT gene therapy can provide ongoing trophic support for SGNs. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Wise, Andrew K.; Tu, Tian; Atkinson, Patrick J.; Flynn, Brianna O.; Sgro, Beatrice E.; O'Leary, Stephen J.; Shepherd, Robert K.; Richardson, Rachael T.] Bion Ear Inst, Melbourne, Vic 3002, Australia.
[Wise, Andrew K.; Tu, Tian; Atkinson, Patrick J.; O'Leary, Stephen J.; Shepherd, Robert K.; Richardson, Rachael T.] Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3010, Australia.
[Hume, Cliff] Univ Washington, Dept Otolaryngol Head & Neck Surg, Seattle, WA 98195 USA.
RP Wise, AK (reprint author), Bion Ear Inst, 384-388 Albert St, Melbourne, Vic 3002, Australia.
EM awise@bionicear.org
RI Shepherd, Robert/I-6276-2012; Wise, Andrew/B-5943-2014
OI Wise, Andrew/0000-0001-9715-8784
FU Royal National Institute for Deaf People; Garnett Passe and Rodney
Williams Memorial Foundation; NIDCD [HHS-N-263-2007-00053-c, NIDCD
DC-006437, NIDCD P30 DC-0466]; NICHHD [P30 HD-02774]; University of
Melbourne Department of Otolaryngology; Hearing Regeneration Initiative
and Veterans' Hospital Administration; State Government of Victoria
FX The authors would like to acknowledge the funding support from the Royal
National Institute for Deaf People, the Garnett Passe and Rodney
Williams Memorial Foundation, NIDCD HHS-N-263-2007-00053-c, NIDCD
DC-006437, NIDCD P30 DC-04661, NICHHD P30 HD-02774, the University of
Melbourne Department of Otolaryngology and the Hearing Regeneration
Initiative and Veterans' Hospital Administration. The authors would like
to acknowledge the support from the State Government of Victoria's
Operational Infrastructure Program.
CR Agterberg MJH, 2008, HEARING RES, V244, P25, DOI 10.1016/j.heares.2008.07.004
Agterberg MJH, 2009, JARO-J ASSOC RES OTO, V10, P355, DOI 10.1007/s10162-009-0170-2
Altschuler RA, 1999, ANN NY ACAD SCI, V884, P305, DOI 10.1111/j.1749-6632.1999.tb08650.x
Chikar JA, 2008, HEARING RES, V245, P24, DOI 10.1016/j.heares.2008.08.005
Coyne CB, 2005, ADV DRUG DELIVER REV, V57, P869, DOI 10.1016/j.addr.2005.01.007
ERNFORS P, 1992, EUR J NEUROSCI, V4, P1140, DOI 10.1111/j.1460-9568.1992.tb00141.x
ERNFORS R, 1996, NAT MED, V2, P463
Fritzsch B, 1997, TRENDS NEUROSCI, V20, P159, DOI 10.1016/S0166-2236(96)01007-7
Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542
Gillespie LN, 2004, NEUROREPORT, V15, P1121, DOI 10.1097/01.wnr.0000125777.04774.c2
Glueckert R, 2008, J COMP NEUROL, V507, P1602, DOI 10.1002/cne.21619
Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3
Lalwani AK, 2002, LARYNGOSCOPE, V112, P1325, DOI 10.1097/00005537-200208000-00001
Lalwani AK, 1998, GENE THER, V5, P277, DOI 10.1038/sj.gt.3300573
McGuinness SL, 2005, OTOL NEUROTOL, V26, P1064, DOI 10.1097/01.mao.0000185063.20081.50
Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7
Mittereder N, 1996, J VIROL, V70, P7498
NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411
Nakaizumi T, 2004, AUDIOL NEURO-OTOL, V9, P135, DOI 10.1159/000077264
Pettingill LN, 2007, IEEE T BIO-MED ENG, V54, P1138, DOI 10.1109/TBME.2007.895375
Sellick P, 2008, J NEUROSCI METH, V167, P237, DOI 10.1016/j.jneurneth.2007.08.026
Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564
Shepherd RK, 2008, HEARING RES, V242, P100, DOI 10.1016/j.heares.2007.12.005
SHEPHERD RK, 1985, HEARING RES, V18, P105, DOI 10.1016/0378-5955(85)90001-2
Shibata SB, 2010, EXP NEUROL, V223, P464, DOI 10.1016/j.expneurol.2010.01.011
Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011
Staecker H, 1998, OTOLARYNG HEAD NECK, V119, P7, DOI 10.1016/S0194-5998(98)70194-9
Stankovic K, 2004, J NEUROSCI, V24, P8651, DOI 10.1523/JNEUROSCI.0733-04.2004
Waehler R, 2007, NAT REV GENET, V8, P573, DOI 10.1038/nrg2141
WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7
Wise AK, 2010, MOL THER, V18, P1111, DOI 10.1038/mt.2010.28
Wise AK, 2005, J COMP NEUROL, V487, P147, DOI 10.1002/cne.20563
Yagi M, 2000, JARO, V1, P315, DOI 10.1007/s101620010011
YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C
NR 34
TC 14
Z9 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2011
VL 278
IS 1-2
SI SI
BP 69
EP 76
DI 10.1016/j.heares.2011.04.010
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 815GY
UT WOS:000294515300007
PM 21557994
ER
PT J
AU Atkinson, PJ
Cho, CH
Hansen, MR
Green, SH
AF Atkinson, Patrick J.
Cho, Chang-Hyun
Hansen, Marlan R.
Green, Steven H.
TI Activity of all JNK isoforms contributes to neurite growth in spiral
ganglion neurons
SO HEARING RESEARCH
LA English
DT Article
ID N-TERMINAL KINASE; LEUCINE-ZIPPER KINASE; C-JUN; SYMPATHETIC NEURONS;
SIGNAL-TRANSDUCTION; MAP KINASES; CELL-DEATH; IN-VIVO;
BRAIN-DEVELOPMENT; CORTICAL-NEURONS
AB Jun N-terminal kinase (JNK) is a multifunctional protein kinase crucial for neuronal apoptosis as well as neurite growth. We have previously shown that JNK activity is correlated with spiral ganglion neuron (SGN) apoptosis following hair cell loss in rats (Alam et al., 2007) implying that JNK inhibition may have therapeutic potential to protect SGNs in deaf individuals. Here we investigated the role of JNK in neurite outgrowth from cultured neonatal rat and mouse SGNs. We show that JNK is required for initial growth of neurites and for continued extension of already established neurites. The effect of JNK inhibition on neurite growth is rapid and is also rapidly reversible after washout of the inhibitor. Using phosphoJNK immunoreactivity as an indicator, we show that JNK is activated in growth cones within 30 min after transfer to medium lacking neurotrophic stimuli (5 K medium) but activation in the nucleus and soma requires hours. By transfecting epitope-tagged JNK1, JNK2, or JNK3 isoforms into SCNs, we found that all are present in the nucleus and cytoplasm and that there is no preferential redistribution to the nucleus after transfer to 5 K medium. Cotransfection of dominant-negative (dn) JNK1 and JNK2 into SGNs reduced neurite growth, although transfection of dnJNK1 or dnJNK2 alone had no significant effect. SGNs cultured from JNK3(-/-) mice showed reduced neurite growth that was further reduced by transfection of dnJNK1 and dnJNK2. This indicates that all three JNK isoforms promote SGN neurite growth although there may be functional redundancy between JNK1 and JNK2. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Atkinson, Patrick J.; Green, Steven H.] Univ Iowa, Dept Biol, Iowa City, IA 52242 USA.
[Hansen, Marlan R.; Green, Steven H.] Univ Iowa, Dept Otolaryngol, Iowa City, IA 52242 USA.
[Cho, Chang-Hyun] Gachon Univ Med & Sci, Grad Sch, Dept Otolayngol Head & Neck Surg, Inchon, South Korea.
RP Green, SH (reprint author), Univ Iowa, Dept Biol, 143 Biol Bldg, Iowa City, IA 52242 USA.
EM steven-green@uiowa.edu
FU NIH [R01 DC02961, KO8 DC006211-01A1, P30 DC010362]
FX Support for this study was from NIH grants R01 DC02961 (S.H.G.) and KO8
DC006211-01A1 (M.R.H.) and P30 DC010362. We thank Catherine Kane and
Simrit Sodhi for technical assistance.
CR Alam SA, 2007, J COMP NEUROL, V503, P832, DOI 10.1002/cne.21430
Amagasaki K, 2006, J BIOL CHEM, V281, P22173, DOI 10.1074/jbc.M513307200
Barnat M, 2010, J NEUROSCI, V30, P7804, DOI 10.1523/JNEUROSCI.0372-10.2010
Benediktsson AM, 2005, J NEUROSCI METH, V141, P41, DOI 10.1016/j.jneumeth.2004.05.013
Bennett BL, 2001, P NATL ACAD SCI USA, V98, P13681, DOI 10.1073/pnas.251194298
Bjorkblom B, 2005, J NEUROSCI, V25, P6350, DOI 10.1523/JNEUROSCI.1517-05.2005
Bjorkblom B, 2008, J BIOL CHEM, V283, P19704, DOI 10.1074/jbc.M707744200
Bodmer D, 2002, LARYNGOSCOPE, V112, P2057, DOI 10.1097/00005537-200211000-00028
Bogoyevitch MA, 2006, BIOESSAYS, V28, P923, DOI 10.1002/bies.20458
Bogoyevitch MA, 2004, BBA-PROTEINS PROTEOM, V1697, P89, DOI 10.1016/j.bbapap.2003.11.016
Bok J, 2007, MOL CELL NEUROSCI, V36, P13, DOI 10.1016/j.mcn.2007.05.008
Bruckner SR, 2001, J NEUROCHEM, V78, P298, DOI 10.1046/j.1471-4159.2001.00400.x
Carboni S, 2004, J PHARMACOL EXP THER, V310, P25, DOI 10.1124/jpet.103.064246
Chang LF, 2003, DEV CELL, V4, P521, DOI 10.1016/S1534-5807(03)00094-7
Chen XQ, 2008, J NEUROSCI, V28, P672, DOI 10.1523/JNEUROSCI.2132-07.2008
Chow CW, 2000, MOL CELL BIOL, V20, P5227, DOI 10.1128/MCB.20.14.5227-5234.2000
Coffey ET, 2000, J NEUROSCI, V20, P7602
Dajas-Ballador F, 2008, CURR BIOL, V18, P221, DOI 10.1016/j.cub.2008.01.025
Davis RJ, 2000, CELL, V103, P239, DOI 10.1016/S0092-8674(00)00116-1
Eilers A, 1998, J NEUROSCI, V18, P1713
Eminel S, 2008, J NEUROCHEM, V104, P957, DOI 10.1111/j.1471-4159.2007.05101.x
Green SH, 2008, AUDITORY TRAUMA PROT
Ham J, 2000, BIOCHEM PHARMACOL, V60, P1015, DOI 10.1016/S0006-2952(00)00372-5
HAM J, 1995, NEURON, V14, P927, DOI 10.1016/0896-6273(95)90331-3
Han SY, 2002, J BIOL CHEM, V277, P47167, DOI 10.1074/jbc.M204270200
Hirai S, 2006, J NEUROSCI, V26, P11992, DOI 10.1523/JNEUROSCI.2272-06.2006
Huang C, 2004, J CELL SCI, V117, P4619, DOI 10.1242/jcs.01481
Huang C, 2004, CELL CYCLE, V3, P4
Ip YT, 1998, CURR OPIN CELL BIOL, V10, P205, DOI 10.1016/S0955-0674(98)80143-9
Keramaris E, 2005, J BIOL CHEM, V280, P1132, DOI 10.1074/jbc.M410127200
Kuan CY, 2003, P NATL ACAD SCI USA, V100, P15184, DOI 10.1073/pnas.2336254100
Kuan CY, 1999, NEURON, V22, P667, DOI 10.1016/S0896-6273(00)80727-8
Lindwall C, 2005, EXP NEUROL, V196, P184, DOI 10.1016/j.expneurol.2005.07.022
Lindwall C, 2005, NEUROREPORT, V16, P1655, DOI 10.1097/01.wnr.0000183324.75499.fc
Morrison DK, 2003, ANNU REV CELL DEV BI, V19, P91, DOI 10.1146/annurev.cellbio.19.111401.091942
Namgung U, 2001, TOXICOL APPL PHARM, V174, P130, DOI 10.1006/taap.2001.9200
Oliva AA, 2006, J NEUROSCI, V26, P9462, DOI 10.1523/JNEUROSCI.2625-06.2006
Roehm Pamela C, 2005, Curr Opin Otolaryngol Head Neck Surg, V13, P294, DOI 10.1097/01.moo.0000180919.68812.b9
Smadja-Lamere N, 2008, J BIOL CHEM, V283, P34352, DOI 10.1074/jbc.M803364200
Tararuk T, 2006, J CELL BIOL, V173, P265, DOI 10.1083/jcb.200511055
Waetzig V, 2006, PROG NEUROBIOL, V80, P84, DOI 10.1016/j.pneurobio.2006.08.002
Wang LH, 2004, ANNU REV PHARMACOL, V44, P451, DOI 10.1146/annurev.pharmtox.44.101802.121840
Weston CR, 2002, CURR OPIN GENET DEV, V12, P14, DOI 10.1016/S0959-437X(01)00258-1
Widmann C, 1999, PHYSIOL REV, V79, P143
Yang DD, 1997, NATURE, V389, P865, DOI 10.1038/39899
Zha XM, 2001, HEARING RES, V156, P53, DOI 10.1016/S0378-5955(01)00267-2
NR 46
TC 7
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2011
VL 278
IS 1-2
SI SI
BP 77
EP 85
DI 10.1016/j.heares.2011.04.011
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 815GY
UT WOS:000294515300008
PM 21554942
ER
PT J
AU Fantetti, KN
Zou, YM
Fekete, DM
AF Fantetti, Kristen N.
Zou, Yimin
Fekete, Donna M.
TI Wnts and Wnt inhibitors do not influence axon outgrowth from chicken
statoacoustic ganglion neurons
SO HEARING RESEARCH
LA English
DT Article
ID DEVELOPING INNER-EAR; GENE-EXPRESSION; COMMISSURAL AXONS; NERVE-FIBERS;
BASAL LAMINA; GUIDANCE; INNERVATION; PATTERNS; COCHLEA; GROWTH
AB The peripheral growth cones of statoacoustic ganglion (SAG) neurons are presumed to sense molecular cues to navigate to their sensory targets during development. Based on previously reported expression data for Frizzled receptors, Wnt ligands, and Wnt inhibitors, we hypothesized that some members of the Wnt morphogen family may function as repulsive cues for SAG neurites. The responses of SAG neurons to mammalian Writs -1, -4, -5a, -6, and -7b, and the Wnt inhibitors sFRP -1, -2, and -3, were tested in vitro by growing SAG explants from embryonic day 4 (E4) chicken embryos for two days in 3D collagen gels. Average neurite length and density were quantified to determine effects on neurite outgrowth. SAG neurites were strongly repelled by human Sema3E, demonstrating SAG neurons are responsive under these assay conditions. In contrast, SAG neurons showed no changes in neurite outgrowth when cultured in the presence of Wnts and Wnt inhibitors. As an alternative approach, Wnt4 and Wnt5a were also tested in vivo by injecting retroviruses encoding these genes into the chicken otocyst on E3. On E6, no differences were evident in the peripheral projections of SAG axons terminating in infected sensory organs as compared to uninfected organs on the contralateral side of the same embryo. For all Wnt sources, bioactivity was confirmed on E6 chick spinal cord explants by observing enhanced axon outgrowth, as reported previously in the mouse. These results suggest that the tested Wnts do not play a role in guiding peripheral axons in the chicken inner ear. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Fantetti, Kristen N.; Fekete, Donna M.] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA.
[Zou, Yimin] Univ Calif San Diego, Div Biol Sci, Sect Neurobiol, La Jolla, CA 92093 USA.
RP Fekete, DM (reprint author), Purdue Univ, Dept Biol Sci, 915 W State St, W Lafayette, IN 47907 USA.
EM kfantett@purdue.edu; yzou@ucsd.edu; dfekete@purdue.edu
FU National Institutes of Health [RO1DC002756]; Purdue Research Foundation;
NICHD
FX This work was funded by National Institutes of Health Grant RO1DC002756
and the Purdue Research Foundation. We thank Kirsten Luethy for
assistance with histology and data analysis, Cliff Tabin for providing
the RCAS viruses, and Sherry Harbin, Joanne Kuske, and Seth Kreger for
advice and technical assistance.The 39.4D5 Islet-1 antibody developed by
T.M. Jessel and S. Brenner-Morton, the AMV-3C2 developed by D.
Boettinger and the 9E10 myc antibody developed by J.M. Bishop were
obtained from the Developmental Studies Hybridoma Bank developed under
the auspices of the NICHD and maintained by The University of Iowa,
Department of Biology, Iowa City, IA 52242.
CR Battisti AC, 2008, DEV DYNAM, V237, P476, DOI 10.1002/dvdy.21429
BIANCHI LM, 1993, DEV BIOL, V159, P353, DOI 10.1006/dbio.1993.1247
Bianchi LM, 2002, EUR J NEUROSCI, V16, P1499, DOI 10.1046/j.1460-9568.2002.02248.x
Bovolenta P, 2006, DEVELOPMENT, V133, P4399, DOI 10.1242/dev.02592
Charron F, 2005, DEVELOPMENT, V132, P2251, DOI 10.1242/dev.01830
Dalby B, 2004, METHODS, V33, P95, DOI 10.1016/j.ymeth.2003.11.023
DAMICOMARTEL A, 1982, AM J ANAT, V163, P351, DOI 10.1002/aja.1001630407
Evans AR, 2007, DEV NEUROBIOL, V67, P1721, DOI 10.1002/dneu.20540
Fekete DM, 2007, INT J DEV BIOL, V51, P549, DOI 10.1387/ijdb.072341df
Fritzsch B, 2005, HEARING RES, V206, P52, DOI 10.1016/j.heares.2004.11.025
Fritzsch B, 2003, BRAIN RES BULL, V60, P423, DOI 10.1016/S0361-9230(03)00048-0
GAVRIELI Y, 1992, J CELL BIOL, V119, P493, DOI 10.1083/jcb.119.3.493
Gu CH, 2003, DEV CELL, V5, P45, DOI 10.1016/S1534-5807(03)00169-2
Hall AC, 2000, CELL, V100, P525, DOI 10.1016/S0092-8674(00)80689-3
HAMBURGER V, 1951, J MORPHOL, V88, P49, DOI 10.1002/jmor.1050880104
Hartmann C, 2000, DEVELOPMENT, V127, P3141
HEMOND SG, 1991, DEV BRAIN RES, V61, P87, DOI 10.1016/0165-3806(91)90117-2
HEMOND SG, 1991, ANAT EMBRYOL, V184, P1, DOI 10.1007/BF01744256
Homburger SA, 1996, DEV DYNAM, V206, P112, DOI 10.1002/(SICI)1097-0177(199605)206:1<112::AID-AJA10>3.0.CO;2-7
KENNEDY TE, 1994, CELL, V78, P425, DOI 10.1016/0092-8674(94)90421-9
Li HW, 2004, J COMP NEUROL, V477, P1, DOI 10.1002/cne.20190
Liu YB, 2005, NAT NEUROSCI, V8, P1151, DOI 10.1038/nn1520
Lyuksyutova AI, 2003, SCIENCE, V302, P1984, DOI 10.1126/science.1089610
Morgan BA, 1996, METHOD CELL BIOL, V51, P185, DOI 10.1016/S0091-679X(08)60629-9
Neves J, 2007, J COMP NEUROL, V503, P487, DOI 10.1002/cne.21299
Rodriguez J, 2005, NAT NEUROSCI, V8, P1301, DOI 10.1038/nn1547
Sanchez-Calderon H, 2004, GENE EXPR PATTERNS, V4, P659, DOI 10.1016/j.modgep.2004.04.008
Sienknecht UJ, 2008, J COMP NEUROL, V510, P378, DOI 10.1002/cne.21791
Sienknecht UJ, 2009, J COMP NEUROL, V517, P751, DOI 10.1002/cne.22169
Tessarollo L, 2004, J NEUROSCI, V24, P2575, DOI 10.1523/JNEUROSCI.5514-03.2004
WHITEHEAD MC, 1985, NEUROSCIENCE, V14, P255, DOI 10.1016/0306-4522(85)90177-0
Whitilon DS, 2009, NEUROSCIENCE, V161, P227, DOI 10.1016/j.neuroscience.2009.03.044
Wolf AM, 2008, J NEUROSCI, V28, P3456, DOI 10.1523/JNEUROSCI.0029-08.2008
Zou Yimin, 2000, Cell, V102, P363, DOI 10.1016/S0092-8674(00)00041-6
Zou YM, 2007, CURR OPIN NEUROBIOL, V17, P22, DOI 10.1016/j.conb.2007.01.006
NR 35
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2011
VL 278
IS 1-2
SI SI
BP 86
EP 95
DI 10.1016/j.heares.2011.04.005
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 815GY
UT WOS:000294515300009
PM 21530628
ER
PT J
AU Clarke, JC
Tuft, BW
Clinger, JD
Levine, R
Figueroa, LS
Guymon, CA
Hansen, MR
AF Clarke, Joseph C.
Tuft, Bradley W.
Clinger, John D.
Levine, Rachel
Figueroa, Lucas Sievens
Guymon, C. Allan
Hansen, Marlan R.
TI Micropatterned methacrylate polymers direct spiral ganglion neurite and
Schwann cell growth
SO HEARING RESEARCH
LA English
DT Article
ID IN-VITRO; NEUROTROPHIC FACTORS; COATED ELECTRODES; COCHLEAR NEURONS;
OUTGROWTH; ALIGNMENT; SURFACES; DELIVERY; NERVE; DEPOLARIZATION
AB Significant advances in the functional outcomes achieved with cochlear implantation will likely require tissue-engineering approaches to improve the neural prosthesis interface. One strategy is to direct spiral ganglion neuron (SGN) axon growth in a highly organized fashion to approximate or contact stimulating electrodes. Here we assessed the ability of micropatterns induced by photopolymerization in methacrylate (MA) polymer systems to direct cultured neonatal rat SGN neurite growth and alignment of SG Schwann cells (SGSCs). SGN survival and neurite length were comparable among various polymer compositions. Remarkably, there was no significant difference in SGN survival or neurite length between laminin and non-laminin coated MA polymer substrates, suggesting high biocompatibility with SG tissue. Micropatterning with photopolymerization generated microchannels with a ridge periodicity of 50 mu m and channel depths of 0.6-1.0 mu m. SGN neurites grew within the grooves of the microchannels. These topographies strongly induced alignment of dissociated SGN neurites and SGSCs to parallel the pattern. By contrast, fibroblasts failed to align with the micropattern suggesting cell specific responses to topographical cues. SGN neurites extending from explants turned to parallel the pattern as they encountered the microchannels. The extent of turning was significantly correlated with angle at which the neurite initially encountered the pattern. These results indicate that SGN neurites respond to microtopographical features and that these features can be used to direct neurite growth in a highly organized fashion. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Clarke, Joseph C.; Clinger, John D.; Hansen, Marlan R.] Univ Iowa Hosp & Clin, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA.
[Tuft, Bradley W.; Levine, Rachel; Figueroa, Lucas Sievens; Guymon, C. Allan] Univ Iowa, Dept Chem & Biochem Engn, Iowa City, IA 52242 USA.
RP Hansen, MR (reprint author), Univ Iowa Hosp & Clin, Dept Otolaryngol Head & Neck Surg, 2PFP,200 Hawkins Dr, Iowa City, IA 52242 USA.
EM marlan-hansen@uiowa.edu
FU National Center for Research Resources (NCRR) [UL1RR024979]; National
Institutes of Health (NIH); American Hearing Research Foundation (AHRF)
FX This work was supported by Grant Number UL1RR024979 from the National
Center for Research Resources (NCRR), a part of the National Institutes
of Health (NIH) and a grant from the American Hearing Research
Foundation (AHRF). Its contents are solely the responsibility of the
authors and do not necessarily represent the official views of the CTSA,
NIH, or AHRF.
CR Alam SA, 2007, J COMP NEUROL, V503, P832, DOI 10.1002/cne.21430
Altschuler RA, 1999, ANN NY ACAD SCI, V884, P305, DOI 10.1111/j.1749-6632.1999.tb08650.x
Apple DJ, 1996, SURV OPHTHALMOL, V40, P279, DOI 10.1016/S0039-6257(96)82003-0
Bostrom M., 2009, AUDIOL NEURO-OTOL, V15, P175
Branch DW, 2001, BIOMATERIALS, V22, P1035, DOI 10.1016/S0142-9612(00)00343-4
Branch DW, 1998, MED BIOL ENG COMPUT, V36, P135, DOI 10.1007/BF02522871
Brors D, 2003, J COMP NEUROL, V462, P90, DOI 10.1002/cne.10707
Brors D, 2002, HEARING RES, V167, P110, DOI 10.1016/S0378-5955(02)00355-6
Bryant SJ, 2004, ANN BIOMED ENG, V32, P407, DOI 10.1023/B:ABME.0000017535.00602.ca
Bryant SJ, 2007, BIOMATERIALS, V28, P2978, DOI 10.1016/j.biomaterials.2006.11.033
CLARK P, 1991, J CELL SCI, V99, P73
Curtis A, 1997, BIOMATERIALS, V18, P1573, DOI 10.1016/S0142-9612(97)00144-0
Dalby MJ, 2003, EXP CELL RES, V284, P274, DOI 10.1016/S0014-4827(02)00053-8
Danneman PJ, 1997, LAB ANIM SCI, V47, P386
Dazert S, 1998, J CELL PHYSIOL, V177, P123, DOI 10.1002/(SICI)1097-4652(199810)177:1<123::AID-JCP13>3.0.CO;2-E
DUNN GA, 1986, J CELL SCI, V83, P313
Evans AJ, 2009, J BIOMED MATER RES A, V91A, P241, DOI 10.1002/jbm.a.32228
EVANS AR, 2007, DEV NEUROBIOLOGY
Foley JD, 2005, BIOMATERIALS, V26, P3639, DOI 10.1016/j.biomaterials.2004.09.048
Fozdar DY, 2010, BIOFABRICATION, V2, DOI 10.1088/1758-5082/2/3/035005
Gustavsson P, 2007, BIOMATERIALS, V28, P1141, DOI 10.1016/j.biomaterials.2006.10.028
Hansen MR, 2001, HEARING RES, V161, P87, DOI 10.1016/S0378-5955(01)00360-4
Hansen MR, 2001, J NEUROSCI, V21, P2256
Hegarty JL, 1997, J NEUROSCI, V17, P1959
Hsu SH, 2005, BIOTECHNOL BIOENG, V92, P579, DOI 10.1002/bit.20634
Hsu SH, 2007, BIOMED MICRODEVICES, V9, P665, DOI 10.1007/s10544-007-9068-0
Johansson F, 2006, BIOMATERIALS, V27, P1251, DOI 10.1016/j.niomaterials.2005.07.047
Kapoor Y, 2009, BIOMATERIALS, V30, P867, DOI 10.1016/j.biomaterials.2008.10.032
Kenny SM, 2003, J MATER SCI-MATER M, V14, P923, DOI 10.1023/A:1026394530192
Kim SH, 2007, J BIOMAT SCI-POLYM E, V18, P609, DOI 10.1163/156856207780852514
LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4
Lee TY, 2005, MACROMOLECULES, V38, P7529, DOI 10.1021/ma050852p
Miller C, 2001, TISSUE ENG, V7, P705, DOI 10.1089/107632701753337663
Miller JM, 2007, J NEUROSCI RES, V85, P1959, DOI 10.1002/jnr.21320
Oliva AA, 2003, NEUROCHEM RES, V28, P1639
Paasche G, 2009, OTOL NEUROTOL, V30, P592, DOI 10.1097/MAO.0b013e3181ab8fba
Pameijer Cornelis H, 2010, Dent Clin North Am, V54, P325, DOI 10.1016/j.cden.2009.12.004
Pettingill LN, 2007, IEEE T BIO-MED ENG, V54, P1138, DOI 10.1109/TBME.2007.895375
PHIFER CB, 1986, PHYSIOL BEHAV, V38, P887, DOI 10.1016/0031-9384(86)90058-2
Quick DJ, 2003, PHARM RES, V20, P1730, DOI 10.1023/B:PHAM.0000003368.66471.6a
RATNER BD, 2004, INTRO MAT MED, P10
Rebscher SJ, 2008, J REHABIL RES DEV, V45, P731, DOI 10.1682/JRRD.2007.08.0119
Richardson RT, 2009, BIOMATERIALS, V30, P2614, DOI 10.1016/j.biomaterials.2009.01.015
RIDLEY N, 1951, T OPHTH SOC UK OXF O, P617
Roehm PC, 2008, MOL CELL NEUROSCI, V37, P376, DOI 10.1016/j.mcn.2007.10.014
ROEHM RC, 2005, CURRENT OPINION OTOL, V13, P294
Rubinstein Jay T, 2004, Curr Opin Otolaryngol Head Neck Surg, V12, P444, DOI 10.1097/01.moo.0000134452.24819.c0
Schmalenberg KE, 2005, BIOMATERIALS, V26, P1423, DOI 10.1016/j.biomaterials.2004.04.046
Shannon Robert V, 2004, Acta Otolaryngol Suppl, P50
Song M, 2007, ANN BIOMED ENG, V35, P1812, DOI 10.1007/s10439-007-9348-0
SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683
Tykocinski M, 2005, OTOL NEUROTOL, V26, P948, DOI 10.1097/01.mao.0000185056.99888.f3
Uludag H, 2000, ADV DRUG DELIVER REV, V42, P29, DOI 10.1016/S0169-409X(00)00053-3
Whitilon DS, 2009, NEUROSCIENCE, V161, P227, DOI 10.1016/j.neuroscience.2009.03.044
Wise AK, 2010, MOL THER, V18, P1111, DOI 10.1038/mt.2010.28
Wise AK, 2005, J COMP NEUROL, V487, P147, DOI 10.1002/cne.20563
Wittig JH, 2005, J NEUROSCI METH, V144, P79, DOI 10.1016/j.jneumeth.2004.10.010
NR 57
TC 15
Z9 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2011
VL 278
IS 1-2
SI SI
BP 96
EP 105
DI 10.1016/j.heares.2011.05.004
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 815GY
UT WOS:000294515300010
PM 21616131
ER
PT J
AU Lei, DB
Gao, X
Perez, P
Ohlemiller, KK
Chen, CC
Campbell, KP
Hood, AY
Bao, JX
AF Lei, Debin
Gao, Xia
Perez, Philip
Ohlemiller, Kevin K.
Chen, Chien-Chang
Campbell, Kevin P.
Hood, Aizhen Yang
Bao, Jianxin
TI Anti-epileptic drugs delay age-related loss of spiral ganglion neurons
via T-type calcium channel
SO HEARING RESEARCH
LA English
DT Article
ID HEARING-LOSS; CA2+ CHANNELS; C57BL/6 MICE; BRAIN; LIFE; HOMEOSTASIS;
EXPRESSION; BLOCKERS; DISEASE; COCHLEA
AB Loss of spiral ganglion neurons is a major cause of age-related hearing loss (presbycusis). Despite being the third most prevalent condition afflicting elderly persons, there are no known medications to prevent presbycusis. Because calcium signaling has long been implicated in age-related neuronal death, we investigated T-type calcium channels. This family is comprised of three members (Ca(v)3.1, Ca(v)3.2, and Ca(v)3.3), based on their respective main pore-forming alpha subunits: alpha 1G, alpha 1H, and all. In the present study, we report a significant delay of age-related loss of cochlear function and preservation of spiral ganglion neurons in alpha 1H null and heterozygous mice, clearly demonstrating an important role for Ca(v)3.2 in age-related neuronal loss. Furthermore, we show that anticonvulsant drugs from a family of T-type calcium channel blockers can significantly preserve spiral ganglion neurons during aging. To our knowledge, this is the first report of drugs capable of diminishing age-related loss of spiral ganglion neurons. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Lei, Debin; Perez, Philip; Ohlemiller, Kevin K.; Hood, Aizhen Yang; Bao, Jianxin] Washington Univ, Dept Otolaryngol, Sch Med, St Louis, MO 63110 USA.
[Lei, Debin; Perez, Philip; Hood, Aizhen Yang; Bao, Jianxin] Washington Univ, Ctr Aging, Sch Med, St Louis, MO 63110 USA.
[Bao, Jianxin] Washington Univ, Div Biol & Biomed Sci, Sch Med, St Louis, MO 63110 USA.
[Bao, Jianxin] Washington Univ, Neurosci Program, Sch Med, St Louis, MO 63110 USA.
[Gao, Xia] Nanjing Univ, Dept Otolaryngol, Affiliated Drum Tower Hosp, Sch Med, Nanjing 210008, Peoples R China.
[Chen, Chien-Chang; Campbell, Kevin P.] Univ Iowa, Howard Hughes Med Inst, Iowa City, IA USA.
[Campbell, Kevin P.] Univ Iowa, Dept Mol Physiol & Biophys, Iowa City, IA USA.
[Campbell, Kevin P.] Univ Iowa, Dept Neurol, Iowa City, IA USA.
[Campbell, Kevin P.] Univ Iowa, Dept Internal Med, Iowa City, IA USA.
RP Bao, JX (reprint author), Washington Univ, Dept Otolaryngol, Sch Med, 4560 Clayton Ave, St Louis, MO 63110 USA.
EM jbao@wustl.edu
RI Chen, Chien-Chang/D-2023-2015
FU National Organization for Hearing Research Foundation; NIH NIA
[R01AG024250]; NIH NIDCD [R21DC010489, P30DC004665]; NIH NINDS
[P30NS057105]
FX We thank R. Chole, K. Evason, and K. Kornfeld for helpful discussions.
We are also grateful to B. Bohne, R. Davis, D. Dickman, and D. Whitlon
for providing comments on the manuscript. This work was supported by
grants from the National Organization for Hearing Research Foundation,
NIH NIA (R01AG024250), and NIH NIDCD (R21DC010489) to J.B., and core
grants from NIH NIDCD (P30DC004665) and NIH NINDS (P30NS057105).
CR Bao JX, 2004, NAT NEUROSCI, V7, P1250, DOI 10.1038/nn1342
Bao JX, 2010, HEARING RES, V264, P93, DOI 10.1016/j.heares.2009.10.009
Bao JX, 2005, J NEUROSCI, V25, P3041, DOI 10.1523/JNEUROSCI.5277-04.2005
Barton ME, 2001, EPILEPSY RES, V47, P217, DOI 10.1016/S0920-1211(01)00302-3
Buchholz JN, 2007, AGING CELL, V6, P285, DOI 10.1111/j.1474-9726.2007.00298.x
Chen CC, 2003, SCIENCE, V302, P1416, DOI 10.1126/science.1089268
EHRET G, 1979, J COMP NEUROL, V183, P73, DOI 10.1002/cne.901830107
Errington AC, 2005, CURR TOP MED CHEM, V5, P15, DOI 10.2174/1568026053386872
Evason K, 2005, SCIENCE, V307, P258, DOI 10.1126/science.1105299
Foster TC, 2007, AGING CELL, V6, P319, DOI 10.1111/j.1474-9726.2007.00283.x
Fritzsch B, 2004, PROG BRAIN RES, V146, P265, DOI 10.1016/S0079-6123(03)46017-2
Gates GA, 2005, LANCET, V366, P1111, DOI 10.1016/S0140-6736(05)67423-5
GATES GA, 1993, ARCH OTOLARYNGOL, V119, P156
Ison JR, 2007, JARO-J ASSOC RES OTO, V8, P539, DOI 10.1007/s10162-007-0098-3
Kim J, 2011, J NEUROSCI, V31, P4063, DOI 10.1523/JNEUROSCI.4493-10.2011
Lacinova L., 2004, Current Drug Targets - CNS and Neurological Disorders, V3, P105, DOI 10.2174/1568007043482543
Lee SW, 2007, J PHYSIOL-LONDON, V583, P909, DOI 10.1113/jphysiol.2007.135582
Lopez I, 2003, CELL TISSUE RES, V313, P177, DOI 10.1007/s00441-003-0759-4
Mills JH, 1999, ANN NY ACAD SCI, V884, P381, DOI 10.1111/j.1749-6632.1999.tb08656.x
Morrison JH, 1997, SCIENCE, V278, P412, DOI 10.1126/science.278.5337.412
Nie L, 2008, J NEUROPHYSIOL, V100, P2287, DOI 10.1152/jn.90707.2008
Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017
Ohlemiller Kevin K., 2008, V31, P145
Perez-Reyes E, 2003, PHYSIOL REV, V83, P117, DOI 10.1152/physrev.00018.2002
Perez-Reyes E, 1998, NATURE, V391, P896, DOI 10.1038/36110
Rattner A, 2006, NAT REV NEUROSCI, V7, P860, DOI 10.1038/nrn2007
Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849
Schacht J, 2005, AUDIOL NEURO-OTOL, V10, P243, DOI 10.1159/000086524
Shen HY, 2007, HEARING RES, V226, P52, DOI 10.1016/j.heares.2006.12.011
Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315
Talley EM, 1999, J NEUROSCI, V19, P1895
Thibault O, 2007, AGING CELL, V6, P307, DOI 10.1111/j.1474-9726.2007.00295.x
Thrasivoulou C, 2006, AGING CELL, V5, P247, DOI 10.1111/j.1474-9726.2006.00214.x
Toescu EC, 2004, TRENDS NEUROSCI, V27, P614, DOI 10.1016/j.tins.2004.07.010
Wildburger NC, 2009, MOL NEURODEGENER, V4, DOI 10.1186/1750-1326-4-44
Yunker AMR, 2003, J BIOENERG BIOMEMBR, V35, P533, DOI 10.1023/B:JOBB.0000008024.77488.48
Zettel ML, 2003, HEARING RES, V183, P57, DOI 10.1016/S0378-5955(03)00216-8
Zettel ML, 1997, J COMP NEUROL, V386, P92, DOI 10.1002/(SICI)1096-9861(19970915)386:1<92::AID-CNE9>3.0.CO;2-8
Zhang YF, 1996, EPILEPSY RES, V23, P15, DOI 10.1016/0920-1211(95)00079-8
NR 39
TC 8
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2011
VL 278
IS 1-2
SI SI
BP 106
EP 112
DI 10.1016/j.heares.2011.05.010
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 815GY
UT WOS:000294515300011
PM 21640179
ER
PT J
AU Shepherd, R
Verhoeven, K
Xu, J
Risi, F
Fallon, J
Wise, A
AF Shepherd, Robert
Verhoeven, Kristien
Xu, Jin
Risi, Frank
Fallon, James
Wise, Andrew
TI An improved cochlear implant electrode array for use in experimental
studies
SO HEARING RESEARCH
LA English
DT Article
ID SENSORINEURAL HEARING-LOSS; SCALA TYMPANI ELECTRODE; SPIRAL GANGLION
NEURONS; PRIMARY AUDITORY-CORTEX; ELECTRICAL-STIMULATION; NEONATAL
DEAFNESS; NERVE; CATS; PLASTICITY; DESIGN
AB Experimental studies play an important role in establishing the safety and efficacy of cochlear implants and they continue to provide insight into a new generation of electrode arrays and stimulation strategies. One drawback has been the limited depth of insertion of an electrode array in experimental animals. We compared the insertion depth and trauma associated with the insertion of Cochlear Ltd's Hybrid-L (HL) array with a standard 8 ring array in cat cochleae. Both arrays were inserted into cadaver cochleae and an X-ray recorded their anatomical location. The implanted cochlea was serially sectioned and photographed at 300 mu m intervals for evidence of electrode insertion trauma. Subsequently two cats were chronically implanted with HL arrays and electrically-evoked potentials recorded over a three month period. Mean insertion depth for the HL arrays was 334.8 degrees (SD = 21 degrees; n = 4) versus 175.5 degrees (SD = 6 degrees; n = 2) for the standard array. This relates to similar to 10.5 mm and 6 mm respectively. A similar insertion depth was measured in a chronically implanted animal with an HL array. Histology from each cadaver cochleae showed that the electrode array was always located in the scala tympani; there was no evidence of electrode insertion trauma to the basilar membrane, the osseous spiral lamina or the spiral ligament. Finally, evoked potential data from the chronically implanted animals exhibited significantly lower thresholds compared with animals implanted with a standard 8 ring array, with electrical thresholds remaining stable over a three-month observation period. Cochlear Ltd's HL electrode array can be safely inserted similar to 50% of the length of the cat scala tympani, placing the tip of the array close to the 4 kHz place. This insertion depth is considerably greater than is routinely achieved using a standard 8-ring electrode array (similar to 12 kHz place). The HL array evokes low thresholds that remain stable over three months of implantation. This electrode array has potential application in a broad area of cochlear implant related research. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Shepherd, Robert; Xu, Jin; Fallon, James; Wise, Andrew] Bion Ear Inst, Melbourne, Vic, Australia.
[Shepherd, Robert; Xu, Jin; Fallon, James; Wise, Andrew] Univ Melbourne, Parkville, Vic 3052, Australia.
[Verhoeven, Kristien] Cochlear Technol Ctr Europe Belgium, Mechelen, Belgium.
[Risi, Frank] Cochlear Ltd, Sydney, NSW, Australia.
RP Shepherd, R (reprint author), 384-388 Albert St, Melbourne, Vic 3002, Australia.
EM rshepherd@bionicear.org
RI Fallon, James/B-5211-2012; Shepherd, Robert/I-6276-2012; Wise,
Andrew/B-5943-2014; Fallon, James/B-6383-2014
OI Wise, Andrew/0000-0001-9715-8784;
FU National Institutes of Health NIDCD [HHS-N-263-2007-00053-C]; Cochlear
Ltd; NH&MRC of the Australian Government; Victorian State Government
FX We are grateful for funding support from the National Institutes of
Health NIDCD (HHS-N-263-2007-00053-C), Cochlear Ltd, the NH&MRC of the
Australian Government and the Victorian State Government through their
Operational Infrastructure Support scheme. We thank Ms. Helen Feng and
Godofredo Timbol for their contributions to this study and acknowledge
the HEARing Cooperative Research Centre for access to the Microfocus
X-ray Imaging facility.
CR Briggs Robert J S, 2006, Audiol Neurootol, V11 Suppl 1, P42, DOI 10.1159/000095613
BROWN M, 1992, HEARING RES, V59, P224, DOI 10.1016/0378-5955(92)90119-8
CLARK GM, 1983, ANN NY ACAD SCI, V405, P191, DOI 10.1111/j.1749-6632.1983.tb31632.x
Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004
Fallon JB, 2009, HEARING RES, V257, P93, DOI 10.1016/j.heares.2009.08.006
Fallon JB, 2009, J COMP NEUROL, V512, P101, DOI 10.1002/cne.21886
GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
Hartley DEH, 2010, J NEUROSCI METH, V190, P214, DOI 10.1016/j.jneumeth.2010.05.014
Hartmann R, 1997, HEARING RES, V112, P115, DOI 10.1016/S0378-5955(97)00114-7
HARTSHORN DO, 1991, OTOLARYNG HEAD NECK, V104, P311
HATSUSHIKA S, 1990, ANN OTO RHINOL LARYN, V99, P871
HOCHMAIRDESOYER IJ, 1980, IEEE T BIO-MED ENG, V27, P44, DOI 10.1109/TBME.1980.326691
Hsu WC, 2001, J COMP NEUROL, V438, P226, DOI 10.1002/cne.1311
IGARASHI M, 1968, J SPEECH HEAR RES, V11, P229
Klinke R, 1999, SCIENCE, V285, P1729, DOI 10.1126/science.285.5434.1729
Kral A, 2002, CEREB CORTEX, V12, P797, DOI 10.1093/cercor/12.8.797
LEAKE PA, 1991, HEARING RES, V54, P251, DOI 10.1016/0378-5955(91)90120-X
Leake PA, 2000, HEARING RES, V147, P221, DOI 10.1016/S0378-5955(00)00133-7
LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677
Miller CA, 1995, HEARING RES, V92, P85, DOI 10.1016/0378-5955(95)00204-9
Rebscher SJ, 2008, J REHABIL RES DEV, V45, P731, DOI 10.1682/JRRD.2007.08.0119
Rebscher SJ, 2007, J NEUROSCI METH, V166, P1, DOI 10.1016/j.jneumeth.2007.05.013
Ryugo DK, 2010, J COMP NEUROL, V518, P1046, DOI 10.1002/cne.22262
Ryugo DK, 2005, SCIENCE, V310, P1490, DOI 10.1126/science.1119419
SALT AN, 2010, COCHLEAR FLUIDS RES
Saoji AA, 2009, EAR HEARING, V30, P559, DOI 10.1097/AUD.0b013e3181ab2b6f
Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564
Shepherd Robert K, 2006, Adv Otorhinolaryngol, V64, P186
Shepherd R K, 1983, Acta Otolaryngol Suppl, V399, P19
Shepherd RK, 2004, EUR J NEUROSCI, V20, P3131, DOI 10.1111/j.1460-9568.2004.03809.x
Tykocinski M, 2000, AM J OTOL, V21, P205, DOI 10.1016/S0196-0709(00)80010-1
van den Honert C, 2007, J ACOUST SOC AM, V121, P3703, DOI 10.1121/1.2722047
Xu J, 2000, AM J OTOL, V21, P49, DOI 10.1016/S0196-0709(00)80112-X
Xu Jin, 2009, Cochlear Implants Int, V10 Suppl 1, P115, DOI 10.1002/cii.404
Xu J, 2001, OTOL NEUROTOL, V22, P862, DOI 10.1097/00129492-200111000-00026
Xu Jin, 2005, Cochlear Implants Int, V6 Suppl 1, P8, DOI 10.1002/cii.271
Xu J, 1997, HEARING RES, V105, P1, DOI 10.1016/S0378-5955(96)00193-1
Zierhofer CM, 2008, IEEE T BIO-MED ENG, V55, P1907, DOI 10.1109/TBME.2008.919839
NR 38
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2011
VL 277
IS 1-2
BP 20
EP 27
DI 10.1016/j.heares.2011.03.017
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 805KZ
UT WOS:000293726600003
PM 21540098
ER
PT J
AU Sheffield, AM
Gubbels, SP
Hildebrand, MS
Newton, SS
Chiorini, JA
Di Pasquale, G
Smith, RJH
AF Sheffield, Abraham M.
Gubbels, Samuel P.
Hildebrand, Michael S.
Newton, Stephen S.
Chiorini, John A.
Di Pasquale, Giovanni
Smith, Richard J. H.
TI Viral vector tropism for supporting cells in the developing murine
cochlea
SO HEARING RESEARCH
LA English
DT Article
ID MEDIATED GENE-TRANSFER; MAMMALIAN INNER-EAR; ADENOASSOCIATED VIRUS
TYPE-2; GUINEA-PIG COCHLEA; HEARING-LOSS; IN-VIVO; HAIR-CELLS; CONNEXIN
26; SENSORINEURAL DEAFNESS; TRANSGENE EXPRESSION
AB Gene-based therapeutics are being developed as novel treatments for genetic hearing loss. One roadblock to effective gene therapy is the identification of vectors which will safely deliver therapeutics to targeted cells. The cellular heterogeneity that exists within the cochlea makes viral tropism a vital consideration for effective inner ear gene therapy. There are compelling reasons to identify a viral vector with tropism for organ of Corti supporting cells. Supporting cells are the primary expression site of connexin 26 gap junction proteins that are mutated in the most common form of congenital genetic deafness (DFNB1). Supporting cells are also primary targets for inducing hair cell regeneration. Since many genetic forms of deafness are congenital it is necessary to administer gene transfer-based therapeutics prior to the onset of significant hearing loss. We have used transuterine microinjection of the fetal murine otocyst to investigate viral tropism in the developing inner ear. For the first time we have characterized viral tropism for supporting cells following in utero delivery to their progenitors. We report the inner ear tropism and potential ototoxicity of three previously untested vectors: early-generation adenovirus (Ad5.CMV.GFP), advanced-generation adenovirus (Adf.11D) and bovine adeno-associated virus (BAAV.CMV.GFP). Adenovirus showed robust tropism for organ of Corti supporting cells throughout the cochlea but induced increased ABR thresholds indicating ototoxicity. BAAV also showed tropism for organ of Corti supporting cells, with preferential transduction toward the cochlear apex. Additionally, BAAV readily transduced spiral ganglion neurons. Importantly, the BAAV-injected ears exhibited normal hearing at 5 weeks of age when compared to non-injected ears. Our results support the use of BAAV for safe and efficient targeting of supporting cell progenitors in the developing murine inner ear. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Sheffield, Abraham M.; Hildebrand, Michael S.; Newton, Stephen S.; Smith, Richard J. H.] Univ Iowa, Dept Otolaryngol, Iowa City, IA 52242 USA.
[Gubbels, Samuel P.] Univ Wisconsin, Dept Surg, Div Otolaryngol, Madison, WI USA.
[Chiorini, John A.; Di Pasquale, Giovanni] Natl Inst Dent & Craniofacial Res, Mol Physiol & Therapeut Branch, NIH, Bethesda, MD USA.
RP Smith, RJH (reprint author), Univ Iowa, Dept Otolaryngol, Iowa City, IA 52242 USA.
EM richard-smith@uiowa.edu
FU NIH - NIDCD [DC003544]; Royal National Institute for Deaf People (RJHS);
NIH-NCRR-CTSA [1UL1RR025011]
FX We would like to acknowledge Dr. Douglas Brough (GenVec Inc.,
Gaithersburg, MD, USA) for providing the Adf.11D vector as well as
valuable discussion; The University of Iowa Gene Transfer Vector Core
for preparation of Ad5.CMV.GFP; Dr. Marlan Hansen (U. of Iowa, Iowa
City, IA, USA) for assistance with images and cochlear dissections;
Penny Harding (U. of Iowa, Iowa City, IA, USA) for cryosectioning
cochleae. No researchers involved in this study report a conflict of
interest. This research was supported in part by grants from the NIH -
NIDCD (DC003544) and The Royal National Institute for Deaf People
(RJHS). SPG is supported by NIH-NCRR-CTSA 1UL1RR025011 (PI-Marc K.
Drezner, MD).
CR Ahmad S, 2007, P NATL ACAD SCI USA, V104, P1337, DOI 10.1073/pnas.0606855104
BALLANA E, 2008, NEUROSCI LETT
Bedrosian JC, 2006, MOL THER, V14, P328, DOI 10.1016/j.ymthe.2006.04.003
Brigande John V., 2009, V493, P125, DOI 10.1007/978-1-59745-523-7_8
Cohen-Salmon M, 2002, CURR BIOL, V12, P1106, DOI 10.1016/S0960-9822(02)00904-1
Dazert S, 2001, HEARING RES, V151, P30, DOI 10.1016/S0378-5955(00)00189-1
del Castillo I, 2002, NEW ENGL J MED, V346, P243, DOI 10.1056/NEJMoa012052
Derby ML, 1999, HEARING RES, V134, P1, DOI 10.1016/S0378-5955(99)00045-3
Di Pasquale G, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009336
Di Pasquale G, 2005, MOL THER, V11, P849, DOI 10.1016/j.ymthe.2005.02.004
Di Pasquale G, 2003, NAT MED, V9, P1306, DOI 10.1038/nm929
Gubbels SP, 2008, NATURE, V455, P537, DOI 10.1038/nature07265
Heathcote K, 2000, J MED GENET, V37, P50, DOI 10.1136/jmg.37.1.50
Hildebrand MS, 2008, MOL THER, V16, P224, DOI 10.1038/sj.mt.6300351
Hilgert N, 2009, CURR MOL MED, V9, P546
Holt JR, 1999, J NEUROPHYSIOL, V81, P1881
Holt JR, 2002, AUDIOL NEURO-OTOL, V7, P157, DOI 10.1159/000058302
Husseman J, 2009, ADV OTO-RHINO-LARYNG, V66, P37, DOI 10.1159/000218206
Ishimoto S, 2002, HEARING RES, V173, P187, DOI 10.1016/S0378-5955(02)00579-8
Ishimoto S, 2003, AUDIOL NEURO-OTOL, V8, P70, DOI 10.1159/000069000
Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193
Jero J, 2001, HUM GENE THER, V12, P539, DOI 10.1089/104303401300042465
JUHN SK, 1981, ANN OTO RHINOL LARYN, V90, P135
Kaludov N, 2001, J VIROL, V75, P6884, DOI 10.1128/JVI.75.15.6884-6893.2001
Kaludov N, 2002, HUM GENE THER, V13, P1235, DOI 10.1089/104303402320139014
Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0
Kochhar A, 2007, GENET MED, V9, P393, DOI 10.1097/GIM.0b013e3180980bd0
Kudo T, 2003, HUM MOL GENET, V12, P995, DOI 10.1093/hmg/ddg116
Lalwani AK, 1996, GENE THER, V3, P588
Lalwani AK, 2002, AUDIOL NEURO-OTOL, V7, P146, DOI 10.1159/000058300
Liu HS, 1999, BIOCHEM BIOPH RES CO, V260, P712, DOI 10.1006/bbrc.1999.0954
Luebke AE, 2001, GENE THER, V8, P789, DOI 10.1038/sj.gt.3301445
Luebke AE, 2009, ADV OTO-RHINO-LARYNG, V66, P87, DOI 10.1159/000218209
Luebke AE, 2001, HUM GENE THER, V12, P773, DOI 10.1089/104303401750148702
Maestrini E, 1999, HUM MOL GENET, V8, P1237, DOI 10.1093/hmg/8.7.1237
MAGUCHI S, 1991, Auris Nasus Larynx, V18, P1
Martinez AD, 2009, ANTIOXID REDOX SIGN, V11, P309, DOI 10.1089/ars.2008.2138
Nickel R, 2008, CURR OPIN OTOLARYNGO, V16, P452, DOI 10.1097/MOO.0b013e32830e20b0
Ortolano S, 2008, P NATL ACAD SCI USA, V105, P18776, DOI 10.1073/pnas.0800831105
PARKER M, 2010, J VIS EXP
Petit C, 2001, ANNU REV GENET, V35, P589, DOI 10.1146/annurev.genet.35.102401.091224
Praetorius M, 2003, ORL J OTO-RHINO-LARY, V65, P211, DOI 10.1159/000073117
Praetorius M, 2002, AUDIOL NEURO-OTOL, V7, P324, DOI 10.1159/000066157
RUBEN RJ, 1967, ARCHIV OTOLARYNGOL, V86, P32
SANTI PA, 1994, J HISTOCHEM CYTOCHEM, V42, P705
Sato Takashi, 2009, Acta Otolaryngol Suppl, P12
Schmidt M, 2006, J VIROL, V80, P5516, DOI 10.1128/JVI.02393-05
SHER AE, 1971, ACTA OTO-LARYNGOL, P1
Shibata SB, 2009, GENE THER, V16, P990, DOI 10.1038/gt.2009.57
Shou JY, 2003, MOL CELL NEUROSCI, V23, P169, DOI 10.1016/S1044-7431(03)00066-6
Staecker H, 2007, OTOL NEUROTOL, V28, P223, DOI 10.1097/MAO.0b013e31802b3225
Staecker H, 2004, OTOLARYNG CLIN N AM, V37, P1091, DOI 10.1016/j.otc.2004.05.001
Summerford C, 1998, J VIROL, V72, P1438
Teubner B, 2003, HUM MOL GENET, V12, P13, DOI 10.1093/hmg/ddg001
VANCAMP G, 2010, HEREDITARY HEARING
van Steensel MAM, 2002, J INVEST DERMATOL, V118, P724, DOI 10.1046/j.1523-1747.2002.01735.x
Vasquez EC, 1998, EXP NEUROL, V154, P353, DOI 10.1006/exnr.1998.6917
Whitlon DS, 2001, BRAIN RES PROTOC, V6, P159, DOI 10.1016/S1385-299X(00)00048-9
Yamasoba T, 1999, HUM GENE THER, V10, P769, DOI 10.1089/10430349950018526
Yoshikawa M, 2009, P NATL ACAD SCI USA, V106, P9483, DOI 10.1073/pnas.0903279106
Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9
NR 61
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2011
VL 277
IS 1-2
BP 28
EP 36
DI 10.1016/j.heares.2011.03.016
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 805KZ
UT WOS:000293726600004
PM 21530627
ER
PT J
AU O'Connor, KN
Johnson, JS
Niwa, M
Noriega, NC
Marshall, EA
Sutter, ML
AF O'Connor, Kevin N.
Johnson, Jeffrey S.
Niwa, Mamiko
Noriega, Nigel C.
Marshall, Elizabeth A.
Sutter, Mitchell L.
TI Amplitude modulation detection as a function of modulation frequency and
stimulus duration: Comparisons between macaques and humans
SO HEARING RESEARCH
LA English
DT Article
ID AUDITORY INTENSITY DISCRIMINATION; MONKEYS MACACA-MULATTA; TEMPORAL
INTEGRATION; MELOPSITTACUS-UNDULATUS; SIGNAL DURATION; NOISE;
RESTRICTION; SENSITIVITY; THRESHOLDS; GOLDFISH
AB Previous observations show that humans outperform non-human primates on some temporally-based auditory discrimination tasks, suggesting there are species differences in the proficiency of auditory temporal processing among primates. To further resolve these differences we compared the abilities of rhesus macaques and humans to detect sine-amplitude modulation (AM) of a broad-band noise carrier as a function of both AM frequency (2.5 Hz-2 kHz) and signal duration (50-800 ms), under similar testing conditions. Using a go/no-go AM detection task, we found that macaques were less sensitive than humans at the lower frequencies and shorter durations tested but were as, or slightly more, sensitive at higher frequencies and longer durations. Humans had broader AM tuning functions, with lower frequency regions of peak sensitivity (10-60 Hz) than macaques (30-120 Hz). These results support the notion that there are species differences in temporal processing among primates, and underscore the importance of stimulus duration when making cross-species comparisons for temporally-based tasks. (C) 2011 Elsevier B.V. All rights reserved.
C1 [O'Connor, Kevin N.; Johnson, Jeffrey S.; Niwa, Mamiko; Noriega, Nigel C.; Marshall, Elizabeth A.; Sutter, Mitchell L.] UC Davis, Ctr Neurosci, Davis, CA 95616 USA.
[O'Connor, Kevin N.; Noriega, Nigel C.; Sutter, Mitchell L.] UC Davis, Dept Neurobiol Physiol & Behav, Davis, CA 95616 USA.
RP O'Connor, KN (reprint author), UC Davis, Ctr Neurosci, 1544 Newton Ct, Davis, CA 95616 USA.
EM knoconnor@gmail.com
FU NIH: NIDCD [DCO2514, T32 DC008072]
FX We thank Zachary Cline-Egri for assistance in testing macaque subjects,
and James Engle and Xochi Navarro for performing the ABR tests. This
work was supported by the NIH: NIDCD Grant DCO2514 and T32 DC008072.
CR CHAPMAN CJ, 1974, J EXP BIOL, V61, P521
CLACK TD, 1966, J ACOUST SOC AM, V40, P1140, DOI 10.1121/1.1910199
CLOPTON BM, 1972, J EXP ANAL BEHAV, V17, P473, DOI 10.1901/jeab.1972.17-473
Dai C, 2010, HEAR RES
Dau T, 1997, J ACOUST SOC AM, V102, P2906, DOI 10.1121/1.420345
Dau T, 1997, J ACOUST SOC AM, V102, P2892, DOI 10.1121/1.420344
Dent ML, 2002, J COMP PHYSIOL A, V187, P937, DOI 10.1007/s00359-001-0259-5
DOOLING RJ, 1985, J ACOUST SOC AM, V77, P1917, DOI 10.1121/1.391835
Dooling R. J., 2000, COMP HEARING BIRDS R, P308
DOOLING RJ, 1975, J ACOUST SOC AM, V58, P1308, DOI 10.1121/1.380813
EHRET G, 1975, J COMP PHYSIOL, V102, P321
Fay R. R., 1988, HEARING VERTEBRATES
FAY RR, 1985, J ACOUST SOC AM, V78, P1296, DOI 10.1121/1.392899
FORREST TG, 1987, J ACOUST SOC AM, V82, P1933, DOI 10.1121/1.395689
Fowler CG, 2002, HEARING RES, V169, P24, DOI 10.1016/S0378-5955(02)00335-0
Green D. M., 1974, SIGNAL DETECTION THE
Greenberg S, 2004, IEICE T INF SYST, VE87D, P1059
HACK MH, 1971, J COMP PHYSIOL PSYCH, V74, P315, DOI 10.1037/h0030356
HIENZ RD, 1980, J COMP PHYSIOL PSYCH, V94, P993, DOI 10.1037/h0077734
HOPP SL, 1992, J COMP PSYCHOL, V106, P128, DOI 10.1037/0735-7036.106.2.128
JACOBS DW, 1967, ANIM BEHAV, V15, P324, DOI 10.1016/0003-3472(67)90019-X
KAY RH, 1972, J PHYSIOL-LONDON, V225, P657
Kelly JB, 2006, J COMP PSYCHOL, V120, P98, DOI 10.1037/0735-7036.120.2.98
KLUMP GM, 1991, HEARING RES, V52, P1, DOI 10.1016/0378-5955(91)90182-9
Lee J, 1997, J ACOUST SOC AM, V101, P3688, DOI 10.1121/1.418329
Luce D. R., 1959, INDIVIDUAL CHOICE BE
MOODY DB, 1994, J ACOUST SOC AM, V95, P3499, DOI 10.1121/1.409967
O'Connor KN, 2000, J COMP PHYSIOL A, V186, P903, DOI 10.1007/s003590000145
O'Connor KN, 1999, J ACOUST SOC AM, V106, P954, DOI 10.1121/1.427108
ROSENZWEIG M, 1946, AM J PSYCHOL, V59, P127, DOI 10.2307/1417002
SALVI RJ, 1982, J ACOUST SOC AM, V71, P424, DOI 10.1121/1.387445
SHEFT S, 1990, J ACOUST SOC AM, V88, P796, DOI 10.1121/1.399729
SINNOTT JM, 1993, J ACOUST SOC AM, V93, P1541, DOI 10.1121/1.406812
Sinnott JM, 1997, J ACOUST SOC AM, V102, P588, DOI 10.1121/1.419732
SINNOTT JM, 1987, J ACOUST SOC AM, V82, P465, DOI 10.1121/1.395447
SINNOTT JM, 1985, J ACOUST SOC AM, V78, P1977, DOI 10.1121/1.392654
STEENEKEN HJM, 1980, J ACOUST SOC AM, V67, P318, DOI 10.1121/1.384464
TERMAN M, 1970, J EXP ANAL BEHAV, V13, P145, DOI 10.1901/jeab.1970.13-145
Torre P, 2004, NEUROBIOL AGING, V25, P945, DOI 10.1016/j.neurobiolaging.2003.09.006
VIEMEISTER NF, 1979, J ACOUST SOC AM, V66, P1364, DOI 10.1121/1.383531
Yin PB, 2011, J NEUROPHYSIOL, V105, P582, DOI 10.1152/jn.00621.2010
NR 41
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2011
VL 277
IS 1-2
BP 37
EP 43
DI 10.1016/j.heares.2011.03.014
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 805KZ
UT WOS:000293726600005
PM 21457768
ER
PT J
AU Osen, KK
Furness, DN
Hackney, CM
AF Osen, Kirsten K.
Furness, David N.
Hackney, Carole M.
TI The border between the central and the peripheral nervous system in the
cat cochlear nerve: A light and scanning electron microscopical study
SO HEARING RESEARCH
LA English
DT Article
ID ADULT SPINAL-CORD; TRANSITIONAL ZONE; FUNCTIONAL REGENERATION; FIBER
REGENERATION; AUDITORY-NERVE; HEARING-LOSS; DORSAL-ROOT; HEAD-INJURY;
RAT; NUCLEUS
AB The transition between the central (CNS) and peripheral nervous system (PNS) in cranial and spinal nerve roots, referred to here as the CNS PNS border, is of relevance to nerve root disorders and factors that affect peripheral-central regeneration. Here, this border is described in the cat cochlear nerve using light microscopical sections, and scanning electron microscopy of the CNS PNS interfaces exposed by fracture of the nerve either prior to or following critical point drying. The CNS PNS border represents an abrupt change in type of myelin, supporting elements, and vascularization. Because central myelin is formed by oligodendrocytes and peripheral myelin by Schwann cells, the myelinated fibers are as a rule equipped with a node of Ranvier at the border passage. The border is shallower and smoother in cat cochlear nerve than expected from other nerves, and the borderline nodes are largely in register. The loose endoneurial connective tissue of the PNS compartment is closed at the border by a compact glial membrane, the mantle zone, of the CNS compartment. The mantle zone is penetrated by the nerve fibers, but is otherwise composed of astrocytes and their interwoven processes like the external limiting membrane of the brain surface with which it is continuous. The distal surface of the mantle zone is covered by a fenestrated basal lamina. Only occasional vessels traverse the border. From an anatomical point of view, the border might be expected to be a weak point along the cochlear nerve and thus vulnerable to trauma. In mature animals, the CNS-PNS border presents a barrier to regrowth of regenerating nerve fibers and to invasion of the CNS by Schwann cells. An understanding of this region in the cochlear nerve is therefore relevant to head injuries that lead to hearing loss, to surgery on acoustic Schwannomas, and to the possibility of cochlear nerve regeneration. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Furness, David N.] Keele Univ, Sch Life Sci, Inst Sci & Technol Med, Keele ST5 5BG, Staffs, England.
[Osen, Kirsten K.] Univ Oslo, Inst Anat, Oslo, Norway.
[Hackney, Carole M.] Univ Sheffield, Dept Biomed Sci, Sheffield S10 2TN, S Yorkshire, England.
RP Furness, DN (reprint author), Keele Univ, Sch Life Sci, Inst Sci & Technol Med, Keele ST5 5BG, Staffs, England.
EM coa14@keele.ac.uk
FU Henry Smith Charity
FX The experimental part of this study, including the scanning electron
microscopy, was performed at the Institute of Medical Biology,
University of Tromso, Norway, in the 1970s. We dedicate this article to
the late Atle Ronning Arnesen, Ear Nose and Throat Department, Oslo City
Hospital (now Oslo University Hospital), who participated in the
experiments. We are indebted to Enrico Mugnaini, Department of
Behavioral Sciences, University of Connecticut (now at Northwestern
University Institute of Neuroscience), for his early advice,
particularly with respect to the fixation procedure. DNF was supported
by the Henry Smith Charity.
CR Altschuler RA, 2008, HEARING RES, V242, P110, DOI 10.1016/j.heares.2008.06.004
ARNESEN AR, 1978, J COMP NEUROL, V178, P661, DOI 10.1002/cne.901780405
Bao JX, 2010, HEARING RES, V264, P93, DOI 10.1016/j.heares.2009.10.009
Berthold C H, 1977, Acta Physiol Scand Suppl, V446, P23
Berthold C H, 1977, Acta Physiol Scand Suppl, V446, P73
BRIGHTMA.MW, 1969, J CELL BIOL, V40, P648, DOI 10.1083/jcb.40.3.648
BRIGHTMA.MW, 1965, AM J ANAT, V117, P193, DOI 10.1002/aja.1001170204
Carlstedt T, 1997, J ANAT, V190, P51, DOI 10.1046/j.1469-7580.1997.19010051.x
CARLSTEDT T, 1989, BRAIN RES BULL, V22, P93, DOI 10.1016/0361-9230(89)90133-0
Carlstedt T, 1977, Acta Physiol Scand Suppl, V446, P5
Chen Y, 2007, HEARING RES, V228, P3, DOI 10.1016/j.heares.2006.11.014
DALCANTO MC, 1984, AM J PATHOL, V116, P30
Duncan ID, 1997, J ANAT, V191, P318
Flood PR, 1975, SCANNING ELECTRON MI, P287
Fraher J, 2002, J ANAT, V200, P415, DOI 10.1046/j.1469-7580.2002.00037.x
FRAHER JP, 1992, PROG NEUROBIOL, V38, P261, DOI 10.1016/0301-0082(92)90022-7
Fraher JP, 2000, J ANAT, V196, P137
Geuna Stefano, 2010, Italian Journal of Anatomy and Embryology, V115, P91
Guevara N, 2008, EUR ARCH OTO-RHINO-L, V265, P397, DOI 10.1007/s00405-007-0471-1
JACOBS JM, 1988, J ANAT, V157, P153
Kim PD, 2010, MICROSURG, V30, P392, DOI 10.1002/micr.20760
LIVESEY FJ, 1992, NEUROPATH APPL NEURO, V18, P376, DOI 10.1111/j.1365-2990.1992.tb00799.x
MAKISHIMA K, 1975, ARCH OTOLARYNGOL, V101, P426
MATSUNAGA T, 1995, ACTA OTO-LARYNGOL, P149
Nash M, 2009, MOL NEUROBIOL, V40, P224, DOI 10.1007/s12035-009-8083-y
O'Brien D, 2001, J NEUROCYTOL, V30, P11, DOI 10.1023/A:1011961106703
OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407
OSEN KK, 1991, J NEUROCYTOL, V20, P17, DOI 10.1007/BF01187131
OSEN KK, 1979, J ULTRA MOL STRUCT R, V69, P148
PEKER S, 2006, NEUROSURGERY, V60, pE582
PETTERSSON CAV, 1993, ACTA NEUROPATHOL, V86, P636
PODOSHIN L, 1975, ARCH OTOLARYNGOL, V101, P15
Ramer MS, 2000, NATURE, V403, P312, DOI 10.1038/35002084
Remahl IN, 1998, J NEUROCYTOL, V27, P85, DOI 10.1023/A:1006943221434
ROSS MD, 1971, AM J ANAT, V130, P73, DOI 10.1002/aja.1001300106
SCHUKNECHT HF, 1951, ANN OTO RHINOL LARYN, V60, P273
SEKIYA T, 1987, J NEUROSURG, V67, P244, DOI 10.3171/jns.1987.67.2.0244
Shibata SB, 2010, EXP NEUROL, V223, P464, DOI 10.1016/j.expneurol.2010.01.011
Skinner HA, 1931, ARCH NEURO PSYCHIATR, V25, P356
Słoniewski P, 1999, Folia Morphol (Warsz), V58, P37
SPOENDLI.H, 1969, ACTA OTO-LARYNGOL, V67, P239, DOI 10.3109/00016486909125448
SPOENDLI.H, 1972, ACTA OTO-LARYNGOL, V73, P235, DOI 10.3109/00016487209138937
Steinmetz MP, 2005, J NEUROSCI, V25, P8066, DOI 10.1523/JNEUROSCI.2111-05.2005
Tang XQ, 2007, J NEUROSCI, V27, P6068, DOI 10.1523/JNEUROSCI.1442-07.2007
Tarlov IM, 1937, ARCH NEURO PSYCHIATR, V37, P555
THOMSEN R, 1887, VIRCHOWS ARCH PATH A, V109, P459
Tomii M, 2003, J NEUROSURG, V99, P121, DOI 10.3171/jns.2003.99.1.0121
WAGNER HJ, 1982, ANAT EMBRYO BERL, V166, P427
NR 48
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2011
VL 277
IS 1-2
BP 44
EP 53
DI 10.1016/j.heares.2011.03.012
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 805KZ
UT WOS:000293726600006
PM 21447373
ER
PT J
AU Mazurek, B
Amarjargal, N
Haupt, H
Fuchs, J
Olze, H
Machulik, A
Gross, J
AF Mazurek, Birgit
Amarjargal, Nyamaa
Haupt, Heidemarie
Fuchs, Julia
Olze, Heidi
Machulik, Astrid
Gross, Johann
TI Expression of genes implicated in oxidative stress in the cochlea of
newborn rats
SO HEARING RESEARCH
LA English
DT Article
ID TIME RT-PCR; STRIA VASCULARIS; INDUCED APOPTOSIS; HEME OXYGENASE;
GUINEA-PIG; CELL-DEATH; HYPOXIA; CULTURES; MONOXIDE; GLUCOSE
AB Oxidative stress is an important mechanism inducing ototoxicity-, age- and noise-induced hearing loss. To better understand this phenomenon, we examined cochlear tissues for the expression of following genes involved directly or indirectly in the oxidative stress response: glyceraldehyde-3-phosphate dehydrogenase (Gapdh); solute carrier family-2 (facilitated glucose transporter), member-1 (Slc2a1); heme oxygenase-1 (Hmox1); heme oxygenase-2 (Hmox2); inducible nitric oxide synthase-2 (Nos2); transferrin (Tf); transferrin receptor (Tfrc); glutathione S-transferase A3 (Gsta3) and metallothionein-1a (Mt1a). Cochlear tissues were dissected from the p3-p5 Wistar rats, divided into the organ of Corti (OC), modiolus (MOD) and stria vascularis together with spiral ligament (SV + SL) and processed immediately or cultured under normoxic conditions or a short-term, mild hypoxia followed by re-oxygenation. After 24 h, explants were collected and total RNA isolated, transcribed and amplified in the real time RT-PCR. We found all genes listed above expressed in the freshly isolated cochlear tissues. In the OC and MOD, Slc2a1, Tf, and Mt1a were expressed on a lower level than in the SV + SL In the OC, Hmox1 was expressed on a lower level than in the MOD and SV + SL Hypoxic and normoxic cultures increased the transcript number of Gapdh, Slc2a1 and Hmox1 in all cochlear tissues. The expression of Nos2, Tf, Gsta3 and Mt1a increased in a tissue-specific manner. In the SV + SL Mt1a expression decreased after normoxic and hypoxic conditions. Taken together, using real time RT-PCR, our results imply that oxidative stress may be an important component of cochlear injury during the developing period. In spite of the immaturity of the tissue, a differential response of antioxidant enzymes/proteins with respect to the pathway, the expression levels and regions was observed. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Mazurek, Birgit; Amarjargal, Nyamaa; Haupt, Heidemarie; Fuchs, Julia; Machulik, Astrid; Gross, Johann] Charite, Dept Otorhinolaryngol CCM, Mol Biol Res Lab, D-10117 Berlin, Germany.
[Olze, Heidi] Charite, Dept Otorhinolaryngol CVK, D-10117 Berlin, Germany.
RP Mazurek, B (reprint author), Charite, Dept Otorhinolaryngol, Tinnitus Ctr, Charitepl 1, D-10117 Berlin, Germany.
EM birgit.mazurek@charite.de
CR Abraham NG, 2008, PHARMACOL REV, V60, P79, DOI 10.1124/pr.107.07104
Cai L, 2006, J AM COLL CARDIOL, V48, P1688, DOI 10.1016/j.jacc.2006.07.022
CARLILE S, 1992, AVIAT SPACE ENVIR MD, V63, P1093
Carlsson PI, 2005, HEARING RES, V202, P87, DOI 10.1016/j.heares.2004.09.005
Cheng AG, 1999, BRAIN RES, V850, P234, DOI 10.1016/S0006-8993(99)01983-6
Chen-Roetling J, 2011, NEUROPHARMACOLOGY, V60, P423, DOI 10.1016/j.neuropharm.2010.10.015
Chung HT, 2008, METHOD ENZYMOL, V441, P329, DOI 10.1016/S0076-6879(08)01218-4
Datta J, 2007, CANCER RES, V67, P2736, DOI 10.1158/0008-5472.CAN-06-4433
Dehne N, 2000, HEARING RES, V143, P162, DOI 10.1016/S0378-5955(00)00036-8
Elbirt KK, 1999, P ASSOC AM PHYSICIAN, V111, P438
Forstermann U, 2008, NAT CLIN PRACT CARD, V5, P338, DOI 10.1038/ncpcardio1211
Gao J, 1999, J NEURAL TRANSM, V106, P111, DOI 10.1007/s007020050143
Gates GA, 2005, LANCET, V366, P1111, DOI 10.1016/S0140-6736(05)67423-5
GRATTON MA, 1992, PIGM CELL RES, V5, P30, DOI 10.1111/j.1600-0749.1992.tb00779.x
Gross J, 2009, Prague Med Rep, V110, P310
GROSS J, 2005, MOL GRUNDLAGEN HYPOX, P573, DOI 10.1007/3-540-26524-4_21
Gross J, 2007, BRAIN RES, V1162, P56, DOI 10.1016/j.brainres.2007.05.061
Gross J, 2008, GROWTH FACTORS, V26, P180, DOI 10.1080/08977190802194317
Hamamura K, 2008, CELL BIOL INT, V32, P1238, DOI 10.1016/j.cellbi.2008.07.007
Hanbauer I, 2000, ANN NY ACAD SCI, V899, P182
Haq F, 2003, MUTAT RES-FUND MOL M, V533, P211, DOI 10.1016/j.mrfmmm.2003.07.014
Hayes JD, 2005, ANNU REV PHARMACOL, V45, P51, DOI 10.1146/annurev.pharmtox.45.120403.095857
Hayes JD, 2000, PHARMACOLOGY, V61, P154, DOI 10.1159/000028396
Hoshijima H, 2002, HEARING RES, V171, P32, DOI 10.1016/S0378-5955(02)00328-3
ITO M, 1993, HEARING RES, V71, P230, DOI 10.1016/0378-5955(93)90039-4
Jang J, 2011, J MICROBIOL BIOTECHN, V21, P100, DOI 10.4014/jmb.1006.06006
Khan M, 2010, NEUROSCI LETT, V479, P249, DOI 10.1016/j.neulet.2010.05.072
Kim HJ, 2006, FREE RADICAL BIO MED, V40, P1810, DOI 10.1016/j.freeradbiomed.2006.01.018
Langabeer SE, 2002, LEUKEMIA, V16, P393, DOI 10.1038/sj/leu/2402392
Lopez IA, 2008, NEUROSCIENCE, V151, P854, DOI 10.1016/j.neuroscience.2007.10.053
Lowenheim H, 1999, HEARING RES, V128, P16, DOI 10.1016/S0378-5955(98)00181-6
Lu S, 2002, BBA-GENE STRUCT EXPR, V1574, P152, DOI 10.1016/S0167-4781(01)00359-1
Matsunami T, 2006, CELL COMMUN ADHES, V13, P93, DOI 10.1080/15419060600631805
Mazurek B, 2006, HNO, V54, P689, DOI 10.1007/s00106-005-1371-6
Noraberg J, 1999, BRAIN RES PROTOC, V3, P278, DOI 10.1016/S1385-299X(98)00050-6
Ohlemiller KK, 2004, J COMP NEUROL, V479, P103, DOI 10.1002/cne.20326
Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017
Pfaffl MW, 2002, NUCLEIC ACIDS RES, V30, DOI 10.1093/nar/30.9.e36
Pfaffl MW, 2001, NUCLEIC ACIDS RES, V29, DOI 10.1093/nar/29.9.e45
Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3
Ryter SW, 2006, PHYSIOL REV, V86, P583, DOI 10.1152/physrev.00011.2005
Shi XR, 2003, BRAIN RES, V967, P1, DOI 10.1016/S00066-8993(02)04090-8
Sorond FA, 2000, ANTIOXID REDOX SIGN, V2, P421, DOI 10.1089/15230860050192206
Watts RN, 2001, J BIOL CHEM, V276, P4724, DOI 10.1074/jbc.M006318200
West AK, 2008, NEUROTOXICOLOGY, V29, P489, DOI 10.1016/j.neuro.2007.12.006
Whitlon DS, 1999, HEARING RES, V137, P43, DOI 10.1016/S0378-5955(99)00136-7
Williams KJ, 2002, ONCOGENE, V21, P282, DOI 10.1038/sj.onc.1205047
Yoshihara T, 1999, ACTA OTO-LARYNGOL, V119, P336
NR 48
TC 8
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2011
VL 277
IS 1-2
BP 54
EP 60
DI 10.1016/j.heares.2011.03.011
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 805KZ
UT WOS:000293726600007
PM 21447374
ER
PT J
AU Zeng, FG
Tang, Q
Dimitrijevic, A
Starr, A
Larky, J
Blevins, NH
AF Zeng, Fan-Gang
Tang, Qing
Dimitrijevic, Andrew
Starr, Arnold
Larky, Jannine
Blevins, Nikolas H.
TI Tinnitus suppression by low-rate electric stimulation and its
electrophysiological mechanisms
SO HEARING RESEARCH
LA English
DT Article
ID AUDITORY-CORTEX; LATERAL INHIBITION; POTENTIALS; NEUROSCIENCE;
PERCEPTION; GENERATION; MANAGEMENT; RESPONSES; HEARING
AB Tinnitus is a phantom sensation of sound in the absence of external stimulation. However, external stimulation, particularly electric stimulation via a cochlear implant, has been shown to suppress tinnitus. Different from traditional methods of delivering speech sounds or high-rate (>2000 Hz) stimulation, the present study found a unique unilaterally-deafened cochlear implant subject whose tinnitus was completely suppressed by a low-rate (<100 Hz) stimulus, delivered at a level softer than tinnitus to the apical part of the cochlea. Taking advantage of this novel finding, the present study compared both event-related and spontaneous cortical activities in the same subject between the tinnitus-present and tinnitus-suppressed states. Compared with the results obtained in the tinnitus-present state, the low-rate stimulus reduced cortical N100 potentials while increasing the spontaneous alpha power in the auditory cortex. These results are consistent with previous neurophysiological studies employing subjects with and without tinnitus and shed light on both tinnitus mechanism and treatment. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Zeng, Fan-Gang; Tang, Qing] Univ Calif Irvine, Dept Otolaryngol Head & Neck Surg, Irvine, CA 92697 USA.
[Dimitrijevic, Andrew; Starr, Arnold] Univ Calif Irvine, Dept Neurol, Irvine, CA 92697 USA.
[Larky, Jannine; Blevins, Nikolas H.] Stanford Univ, Dept Otolaryngol Head & Neck Surg, Stanford, CA 94305 USA.
RP Zeng, FG (reprint author), Univ Calif Irvine, Dept Otolaryngol Head & Neck Surg, 110 Med Sci E, Irvine, CA 92697 USA.
EM fzeng@uci.edu
RI Zeng, Fan-Gang/G-4875-2012
FU American Tinnitus Association; National Institutes of Health [RO1
DC008858, P30 DC008369]
FX We thank the subject for his spirited and cooperative participation in
the present study. This work was first reported at the 2007 Midwinter
Meeting of The Association for Research in Otolaryngology in Denver, CO
and supported in part by a grant from the American Tinnitus Association
and National Institutes of Health (RO1 DC008858 and P30 DC008369).
CR ALTHAUS J, 1886, LANCET, V128, P205, DOI 10.1016/S0140-6736(00)49789-8
ATTIAS J, 1993, HEARING RES, V71, P106, DOI 10.1016/0378-5955(93)90026-W
Delorme A, 2004, J NEUROSCI METH, V134, P9, DOI 10.1016/j.jneumeth.2003.10.009
Diesch E, 2010, NEUROSCIENCE, V167, P540, DOI 10.1016/j.neuroscience.2010.02.003
Dimitrijevic A, 2008, CLIN NEUROPHYSIOL, V119, P2111, DOI 10.1016/j.clinph.2008.06.002
DON M, 1978, J ACOUST SOC AM, V63, P1084, DOI 10.1121/1.381816
Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010
Gerken GM, 1996, HEARING RES, V97, P75
Gilley PM, 2008, BRAIN RES, V1239, P56, DOI 10.1016/j.brainres.2008.08.026
Hanslmayr S, 2007, CEREB CORTEX, V17, P1, DOI 10.1093/cercor/bhj129
Hazell J W, 1981, Br J Audiol, V15, P223, DOI 10.3109/03005368109081442
Henry JA, 2005, J SPEECH LANG HEAR R, V48, P1204, DOI 10.1044/1092-4388(2005/084)
Ito J, 1997, OTOLARYNG HEAD NECK, V117, P701, DOI 10.1016/S0194-5998(97)70056-1
Jacobson Gary P, 2003, J Am Acad Audiol, V14, P393
Jastreboff MM, 2007, PROG BRAIN RES, V166, P435, DOI 10.1016/S0079-6123(07)66042-7
JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9
Kadner A, 2002, NEUROREPORT, V13, P443, DOI 10.1097/00001756-200203250-00016
Kaltenbach JA, 2005, HEARING RES, V206, P200, DOI 10.1016/j.heares.2005.02.013
KIANG NYS, 1972, ANN OTO RHINOL LARYN, V81, P714
Kleinjung Tobias, 2009, Cases J, V2, P7462, DOI 10.1186/1757-1626-2-7462
Llinas RR, 1999, P NATL ACAD SCI USA, V96, P15222, DOI 10.1073/pnas.96.26.15222
Lockwood AH, 2002, NEW ENGL J MED, V347, P904, DOI 10.1056/NEJMra013395
Lu T, 2001, NAT NEUROSCI, V4, P1131, DOI 10.1038/nn737
Maris E, 2007, J NEUROSCI METH, V164, P177, DOI 10.1016/j.jneumeth.2007.03.024
Middlebrooks JC, 2008, J NEUROPHYSIOL, V100, P92, DOI 10.1152/jn.01114.2007
Miyamoto R, 1997, INT TINNITUS J, V3, P35
Osaki Y, 2005, NEUROREPORT, V16, P1625, DOI 10.1097/01.wnr.0000183899.85277.08
Pan T, 2009, AM J AUDIOL, V18, P144, DOI 10.1044/1059-0889(2009/07-0042)
Rauschecker JP, 2010, NEURON, V66, P819, DOI 10.1016/j.neuron.2010.04.032
Roberts LE, 2010, J NEUROSCI, V30, P14972, DOI 10.1523/JNEUROSCI.4028-10.2010
ROBERTS LE, 2006, ACTA OTO-LARYNGOL, V556, P27, DOI DOI 10.1080/03655230600895358
Rubinstein JT, 2003, OTOL NEUROTOL, V24, P478, DOI 10.1097/00129492-200305000-00021
Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3
Snyder RL, 2000, J NEUROPHYSIOL, V84, P166
Tang Q, 2006, JARO-J ASSOC RES OTO, V7, P59, DOI 10.1007/s10162-005-0023-6
Van de Heyning Paul, 2008, Ann Otol Rhinol Laryngol, V117, P645
Vernon J A, 2000, J Am Acad Audiol, V11, P293
Weisz N, 2007, J NEUROSCI, V27, P1479, DOI 10.1523/JNEUROSCI.3711-06.2007
Weisz N., 2005, PLOS MED, V2, DOI DOI 10.1371/J0URNAL.PMED.0020153
NR 39
TC 16
Z9 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2011
VL 277
IS 1-2
BP 61
EP 66
DI 10.1016/j.heares.2011.03.010
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 805KZ
UT WOS:000293726600008
PM 21447376
ER
PT J
AU Olulade, O
Hu, S
Gonzalez-Castillo, J
Tamer, GG
Luh, WM
Ulmer, JL
Talavage, TM
AF Olulade, O.
Hu, S.
Gonzalez-Castillo, J.
Tamer, G. G., Jr.
Luh, W. -M.
Ulmer, J. L.
Talavage, T. M.
TI Assessment of temporal state-dependent interactions between auditory
fMRI responses to desired and undesired acoustic sources
SO HEARING RESEARCH
LA English
DT Article
ID EVENT-RELATED FMRI; FUNCTIONAL MRI; HEMODYNAMIC-RESPONSES; BOLD
RESPONSE; HUMAN BRAIN; VOLUME MEASUREMENT; CORTICAL AREAS; GRADIENT
NOISE; SCANNER NOISE; CORTEX
AB A confounding factor in auditory functional magnetic resonance imaging (fMRI) experiments is the presence of the acoustic noise inherently associated with the echo planar imaging acquisition technique. Previous studies have demonstrated that this noise can induce unwanted neuronal responses that can mask stimulus-induced responses. Similarly, activation accumulated over multiple stimuli has been demonstrated to elevate the baseline, thus reducing the dynamic range available for subsequent responses. To best evaluate responses to auditory stimuli, it is necessary to account for the presence of all recent acoustic stimulation, beginning with an understanding of the attenuating effects brought about by interaction between and among induced unwanted neuronal responses, and responses to desired auditory stimuli. This study focuses on the characterization of the duration of this temporal memory and qualitative assessment of the associated response attenuation. Two experimental parameters - inter-stimulus interval (ISI) and repetition time (TR) - were varied during an fMRI experiment in which participants were asked to passively attend to an auditory stimulus. Results present evidence of a state-dependent interaction between induced responses. As expected, attenuating effects of these interactions become less significant as TR and ISI increase and in contrast to previous work, persist up to 18s after a stimulus presentation. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Olulade, O.; Talavage, T. M.] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA.
[Olulade, O.] Georgetown Univ, Med Ctr, Ctr Study Learning, Washington, DC 20007 USA.
[Hu, S.] USA, Res Lab, Adelphi, MD USA.
[Gonzalez-Castillo, J.; Tamer, G. G., Jr.; Talavage, T. M.] Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA.
[Luh, W. -M.] NIMH, Funct MRI Facil, NIH, Bethesda, MD 20892 USA.
[Ulmer, J. L.] Med Coll Wisconsin, Dept Radiol, Milwaukee, WI 53226 USA.
RP Olulade, O (reprint author), Purdue Univ, Sch Elect & Comp Engn, EE Bldg,465 Northwestern Ave, W Lafayette, IN 47907 USA.
EM oao24@georgetown.edu; shuowen.hu@us.army.mil;
javier.gonzalez-castillo@nih.gov; gtamer@purdue.edu; luhw@mail.nih.gov;
julmer@mcw.edu; tmt@ecn.purdue.edu
RI Gonzalez-Castillo, Javier/B-6903-2012
FU NIH [R01EB003990]; National Institute of Mental Health
FX The authors wish to thank Dr. Robert W. Prost and Cathy S. Marszalkowski
for their assistance in the execution of this project. This research was
supported in part by NIH grant R01EB003990 and the Intramural Research
Program of the National Institute of Mental Health.
CR AIRAS M, 1999, J ACOUST SOC AM, V105, P1371, DOI 10.1121/1.426488
Arnott SR, 2004, NEUROIMAGE, V22, P401, DOI 10.1016/j.neuroimage.2004.01.014
Bandettini PA, 1998, MAGNET RESON MED, V39, P410, DOI 10.1002/mrm.1910390311
Belin P, 1999, NEUROIMAGE, V10, P417, DOI 10.1006/nimg.1999.0480
BIRN RM, 2001, P INT SOC MAGN RESON, V1219
Birn RM, 2001, NEUROIMAGE, V14, P817, DOI 10.1006/nimg.2001.0873
Burock MA, 1998, NEUROREPORT, V9, P3735, DOI 10.1097/00001756-199811160-00030
Buxton RB, 1998, MAGNET RESON MED, V39, P855, DOI 10.1002/mrm.1910390602
Chambers J, 2001, J ACOUST SOC AM, V110, P3041, DOI 10.1121/1.1408948
Cohen ER, 2002, J CEREBR BLOOD F MET, V22, P1042
Cox RW, 1996, COMPUT BIOMED RES, V29, P162, DOI 10.1006/cbmr.1996.0014
Dale AM, 1997, HUM BRAIN MAPP, V5, P329, DOI 10.1002/(SICI)1097-0193(1997)5:5<329::AID-HBM1>3.0.CO;2-5
Davis TL, 1998, P NATL ACAD SCI USA, V95, P1834, DOI 10.1073/pnas.95.4.1834
Edelstein WA, 2002, MAGN RESON IMAGING, V20, P155, DOI 10.1016/S0730-725X(02)00475-7
Edelstein WA, 2005, MAGNET RESON MED, V53, P1013, DOI 10.1002/mrm.20472
Eden GF, 1999, MAGNET RESON MED, V41, P13, DOI 10.1002/(SICI)1522-2594(199901)41:1<13::AID-MRM4>3.0.CO;2-T
Edmister WB, 1999, HUM BRAIN MAPP, V7, P89, DOI 10.1002/(SICI)1097-0193(1999)7:2<89::AID-HBM2>3.0.CO;2-N
Elliott MR, 1999, MAGNET RESON MED, V41, P1230, DOI 10.1002/(SICI)1522-2594(199906)41:6<1230::AID-MRM20>3.0.CO;2-1
GALABURDA A, 1980, J COMP NEUROL, V221, P169
Garcia D, 2010, NEUROIMAGE, V51, P808, DOI 10.1016/j.neuroimage.2010.02.079
Glover GH, 1999, NEUROIMAGE, V9, P416, DOI 10.1006/nimg.1998.0419
Hackett TA, 2001, J COMP NEUROL, V441, P197, DOI 10.1002/cne.1407
Hall DA, 2000, MAGNET RESON MED, V43, P601, DOI 10.1002/(SICI)1522-2594(200004)43:4<601::AID-MRM16>3.0.CO;2-R
Hall DA, 2009, J ACOUST SOC AM, V125, P347, DOI 10.1121/1.3021437
Hall DA, 1999, HUM BRAIN MAPP, V7, P213, DOI 10.1002/(SICI)1097-0193(1999)7:3<213::AID-HBM5>3.0.CO;2-N
Handwerker DA, 2004, NEUROIMAGE, V21, P1639, DOI 10.1016/j.neuroimage.2003.11.029
Harms MP, 2002, J NEUROPHYSIOL, V88, P1433, DOI 10.1152/jn.00156.2002
Heckman GM, 2007, NEUROIMAGE, V34, P651, DOI 10.1016/j.neuroimage.2006.09.038
Hu SW, 2009, J MAGN RESON IMAGING, V29, P1234, DOI 10.1002/jmri.21767
Hu SW, 2010, NEUROIMAGE, V49, P3027, DOI 10.1016/j.neuroimage.2009.11.051
Kearns M, 1999, NEURAL COMPUT, V11, P1427, DOI 10.1162/089976699300016304
KWONG KK, 1992, P NATL ACAD SCI USA, V89, P5675, DOI 10.1073/pnas.89.12.5675
LANGE N, 1997, J ROY STAT SOC C-APP, V46, P1, DOI 10.1111/1467-9876.00046
Langers DRM, 2005, MAGNET RESON MED, V53, P49, DOI 10.1002/mrm.20315
Le TH, 2001, MAGNET RESON MED, V45, P254, DOI 10.1002/1522-2594(200102)45:2<254::AID-MRM1034>3.0.CO;2-J
Lindquist MA, 2009, NEUROIMAGE, V45, pS187, DOI 10.1016/j.neuroimage.2008.10.065
Mandeville JB, 1999, J CEREBR BLOOD F MET, V19, P679
Mechelli A, 2001, NEUROIMAGE, V14, P862, DOI 10.1006/nimg.2001.0876
Moelker A, 2003, HUM BRAIN MAPP, V20, P123, DOI 10.1002/hbm.10134
Novitski N, 2001, NEUROIMAGE, V14, P244, DOI 10.1006/nimg.2001.0797
Penhune VB, 1996, CEREB CORTEX, V6, P661, DOI 10.1093/cercor/6.5.661
Rademacher J, 2001, NEUROIMAGE, V13, P669, DOI 10.1006/nimg.2000.0714
Ravicz ME, 2001, J ACOUST SOC AM, V109, P216, DOI 10.1121/1.1326083
Ryan T. P., 1998, HDB STAT METHODS ENG
Scarff CJ, 2004, HUM BRAIN MAPP, V22, P341, DOI 10.1002/hbm.20043
Schmithorst VJ, 2004, MAGNET RESON MED, V51, P399, DOI 10.1002/mrm.10706
Soltysik DA, 2004, NEUROIMAGE, V22, P1117, DOI 10.1016/j.neuroimage.2004.03.024
Talavage TM, 1999, HUM BRAIN MAPP, V7, P79, DOI 10.1002/(SICI)1097-0193(1999)7:2<79::AID-HBM1>3.0.CO;2-R
Talavage TM, 2000, HEARING RES, V150, P225, DOI 10.1016/S0378-5955(00)00203-3
Talavage TM, 2004, HUM BRAIN MAPP, V22, P216, DOI 10.1002/hbm.20029
Talavage TM, 2004, J NEUROPHYSIOL, V91, P1282, DOI 10.1152/jn.01125.2002
TAYLOR LT, 2005, SCHIZOPHR RES, V73, P235
TSENG GHC, 2004, P 26 INT C IEEE EMBS
Vazquez AL, 2006, NEUROIMAGE, V32, P1642, DOI 10.1016/j.neuroimage.2006.04.195
Vazquez AL, 1998, NEUROIMAGE, V7, P108, DOI 10.1006/nimg.1997.0316
Wallace MN, 2002, EXP BRAIN RES, V143, P499, DOI 10.1007/s00221-002-1014-z
Zhao FQ, 2007, NEUROIMAGE, V34, P1084, DOI 10.1016/j.neuroimage.2006.10.016
NR 57
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2011
VL 277
IS 1-2
BP 67
EP 77
DI 10.1016/j.heares.2011.03.008
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 805KZ
UT WOS:000293726600009
PM 21426929
ER
PT J
AU Howgate, S
Plack, CJ
AF Howgate, Stella
Plack, Christopher J.
TI A behavioral measure of the cochlear changes underlying temporary
threshold shifts
SO HEARING RESEARCH
LA English
DT Article
ID OUTER HAIR-CELLS; INDUCED HEARING-LOSS; BASILAR-MEMBRANE; GUINEA-PIG;
NOISE EXPOSURE; TRANSDUCTION CHANNELS; AUDITORY COMPRESSION; LOUD SOUND;
LONG-TERM; LISTENERS
AB It is well documented that exposure to recreational noise may result in a temporary threshold shift (TTS) due to cochlear dysfunction. A forward-masking paradigm was used to estimate the relative contribution of inner hair cell (IHC) and outer hair cell (OHC) dysfunction to ITS. Eighteen normal-hearing adults completed a test battery before, immediately after, and one week after attending a loud music venue. Personal dosimeters recorded mean equivalent exposure levels of 99.0 dB A. Shortly after exposure, there was an average TTS of 10.8 dB at 4 kHz, and an average reduction in the estimated gain provided by the OHCs of 11.5 dB. Gain reduction correlated significantly with ITS. The results suggest that OHC dysfunction can account almost entirely for the raised thresholds. For the test battery conducted a week after exposure, all measures showed recovery to pre-exposure values. (C) 2011 Elsevier B.V All rights reserved.
C1 [Plack, Christopher J.] Univ Manchester, Human Commun & Deafness Div, Manchester M13 9PL, Lancs, England.
[Howgate, Stella] Sunderland Royal Hosp, Dept Audiol, Sunderland, Tyne & Wear, England.
RP Plack, CJ (reprint author), Univ Manchester, Human Commun & Deafness Div, Ellen Wilkinson Bldg,Rm B1-23, Manchester M13 9PL, Lancs, England.
EM chris.plack@manchester.ac.uk
FU BBSRC (UK) [BB/D012953/1]
FX The research was supported by BBSRC (UK) grant BB/D012953/1. We are
grateful for comments from the Associate Editor (Brian Moore) and an
anonymous reviewer. Colette McKay also provided helpful comments on an
earlier version of this manuscript. We thank Keith Wilbraham, Kevin
Munro, Richard Baker, and Hedwig Gockel for their help with various
aspects of this work. The program for fitting the regression line in
Fig. 6 was provided by Brian Glasberg.
CR ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323
AXELSSON A, 1978, Scandinavian Audiology, V7, P127, DOI 10.3109/01050397809076279
Backus BC, 2006, J ACOUST SOC AM, V119, P2889, DOI 10.1121/1.2169918
Bray A, 2004, J LARYNGOL OTOL, V118, P123
British Society of Audiology, 1992, BRIT J AUDIOL, V26, P255
BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153
Chen YS, 2003, ORL J OTO-RHINO-LARY, V65, P266, DOI 10.1159/000075224
CODY AR, 1988, HEARING RES, V35, P59, DOI 10.1016/0378-5955(88)90040-8
DRAKELEE AB, 1992, J ROY SOC MED, V85, P617
Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47
Health and Safety Executive, 2005, CONTR NOIS WORK REG
*HLTH SAF EX, 2005, FIN REG IMP ASS CONT
JERGER J, 1970, J SPEECH HEAR RES, V13, P221
JOHNSTONE BM, 1989, J PHYSIOL-LONDON, V408, P77
JOHNSTONE BM, 1986, HEARING RES, V22, P147, DOI 10.1016/0378-5955(86)90090-0
Kim JS, 2005, OTOLARYNG HEAD NECK, V133, P619, DOI 10.1016/j.otohns.2005.06.012
Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009
Kujawa SG, 2006, J NEUROSCI, V26, P2115, DOI 10.1523/JNEUROSCI.4985-05.2006
Levine S, 1998, LARYNGOSCOPE, V108, P993, DOI 10.1097/00005537-199807000-00008
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
Lopez-Poveda EA, 2003, J ACOUST SOC AM, V113, P951, DOI 10.1121/1.1534838
Lopez-Poveda EA, 2008, J ACOUST SOC AM, V123, P1544, DOI 10.1121/1.2835418
Moore B. C. J., 2007, COCHLEAR HEARING LOS
Moore BC., 2003, INTRO PSYCHOL HEARIN
Nelson DA, 2001, J ACOUST SOC AM, V110, P2045, DOI 10.1121/1.1404439
NORTON SJ, 1987, J ACOUST SOC AM, V82, P80, DOI 10.1121/1.395440
OLOUGHLIN BJ, 1981, J ACOUST SOC AM, V69, P1119, DOI 10.1121/1.385691
Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3666, DOI 10.1121/1.418327
Patuzzi R, 1998, HEARING RES, V125, P39, DOI 10.1016/S0378-5955(98)00127-0
Patuzzi R, 1998, HEARING RES, V125, P17, DOI 10.1016/S0378-5955(98)00126-9
Plack CJ, 2004, J ACOUST SOC AM, V115, P1684, DOI 10.1121/1.1675812
Plack CJ, 2010, J ACOUST SOC AM, V128, P771, DOI 10.1121/1.3455844
Plack CJ, 2003, JARO, V4, P405, DOI 10.1007/s10162-002-3056-0
Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265
RUGGERO MA, 1991, J NEUROSCI, V11, P1057
RUPP RR, 1969, CLIN PEDIATR, V8, P60, DOI 10.1177/000992286900800204
Sadhra S, 2002, ANN OCCUP HYG, V46, P455, DOI 10.1093/annhyg/mef051
SALT AN, 1979, HEARING RES, V1, P343, DOI 10.1016/0378-5955(79)90005-4
Schmuziger N, 2007, EAR HEARING, V28, P643, DOI 10.1097/AUD.0b013e31812f7144
Schmuziger N, 2004, EAR HEARING, V25, P127, DOI 10.1097/01.AUD.0000120361.87401.C8
SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1
SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996
Serra MR, 2005, INT J AUDIOL, V44, P65, DOI 10.1080/14992020400030010
Stone MA, 2008, INT J AUDIOL, V47, P737, DOI 10.1080/14992020802290543
Tin L L, 2000, Asia Pac J Public Health, V12, P37
ULRICH RF, 1974, ACTA OTO-LARYNGOL, V77, P51, DOI 10.3109/00016487409124597
Vinck BM, 1999, AUDIOLOGY, V38, P44
Zheng XY, 1997, HEARING RES, V113, P76, DOI 10.1016/S0378-5955(97)00127-5
NR 48
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2011
VL 277
IS 1-2
BP 78
EP 87
DI 10.1016/j.heares.2011.03.009
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 805KZ
UT WOS:000293726600010
PM 21439366
ER
PT J
AU Avan, P
Giraudet, F
Chauveau, B
Gilain, L
Mom, T
AF Avan, Paul
Giraudet, Fabrice
Chauveau, Bertrand
Gilain, Laurent
Mom, Thierry
TI Unstable distortion-product otoacoustic emission phase in Meniere's
disease
SO HEARING RESEARCH
LA English
DT Article
ID INNER-EAR PRESSURE; TYMPANIC MEMBRANE DISPLACEMENT; HUMAN COCHLEAR
AQUEDUCT; PASS NOISE MASKING; ENDOLYMPHATIC HYDROPS; OPERATING POINT;
HEARING-LOSS; MIDDLE-EAR; GUINEA-PIG; DIAGNOSTIC-TEST
AB The presence of endolymphatic hydrops as a marker of Meniere's disease (MD) suggests abnormal pressure in the intralabyrinthine compartments of patients and excessive stiffness of sound-sensitive structures. Otoacoustic emissions (OAEs) have been reported to respond to changes in the ear's stiffness, including those produced by intracranial pressure steps, by a characteristic phase shift around 1 kHz, thereby suggesting a noninvasive means of monitoring MD. Here, body tilt was used for modulating intracranial pressure in forty-one patients with definite MD who were tentatively measured at two stages, with and without active symptoms. Their distortion-product OAEs (DPOAEs) were dynamically monitored around 1 kHz every few seconds in response to body tilt. In a control sample of thirty normal ears, the maximum phase rotation of DPOAEs produced by body tilt was between -18 degrees and +37 degrees. In MD ears with the complete set of symptoms, the posture-induced phase shifts in 32 out of 35 tests fell outside the normative interval, and in 10 tests, although DPOAEs were well above noise floor, their phase was always so abnormally erratic that body tilt produced hardly any additional effect. When MD ears were asymptomatic, nine out of 32 posture tests were abnormal. The excessive DPOAE phase shift is consistent with either a too stiff cochlear partition or a displacement of the operating point of outer hair cells by endolymphatic hydrops. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Avan, Paul; Giraudet, Fabrice; Chauveau, Bertrand; Gilain, Laurent; Mom, Thierry] Univ Auvergne, Sch Med, Lab Sensory Biophys, EA 2667, F-63000 Clermont Ferrand, France.
RP Avan, P (reprint author), Univ Auvergne, Sch Med, Lab Sensory Biophys, EA 2667, F-63000 Clermont Ferrand, France.
EM paul.avan@u-clermont1.fr
FU Fondation de l'Avenir [ET8-488]
FX This work was funded by Fondation de l'Avenir (grant ET8-488). We also
thank the company Echodia for specific software developments and ANR
Emergence-Tec 2008 (Project Audiapic) for supporting the development of
hardware.
CR ANDREWS JC, 1995, OTOLARYNG HEAD NECK, V112, P78
Avan P, 2003, J ACOUST SOC AM, V113, P430, DOI 10.1121/1.1525285
Avan P, 2000, HEARING RES, V140, P189, DOI 10.1016/S0378-5955(99)00201-4
Bouccara D, 1998, AUDIOLOGY, V37, P255
Braun M, 1996, HEARING RES, V97, P1
Brown DJ, 2009, J ACOUST SOC AM, V125, P2129, DOI 10.1121/1.3083228
Buki B, 1996, HEARING RES, V94, P125, DOI 10.1016/0378-5955(96)00015-9
CHAPMAN PH, 1990, NEUROSURGERY, V26, P181
Cianfrone G, 2000, SCAND AUDIOL, V29, P111, DOI 10.1080/010503900424525
Claes GME, 2008, EUR ARCH OTO-RHINO-L, V265, P517, DOI 10.1007/s00405-007-0486-7
Committee on Hearing and Equilibirum, 1995, OTOLARYNGOL HEAD NEC, V113, P181
de Kleine E, 2001, J ACOUST SOC AM, V110, P973, DOI 10.1121/1.1381025
Densert B, 1997, AM J OTOL, V18, P726
De Valck CFJ, 2007, OTOL NEUROTOL, V28, P700, DOI 10.1097/01.mao.0000281806.82315.84
Don M, 2005, OTOL NEUROTOL, V26, P711, DOI 10.1097/01.mao.0000169042.25734.97
Ferraro JA, 2006, J AM ACAD AUDIOL, V17, P45, DOI 10.3766/jaaa.17.1.6
Fetterman BL, 2001, LARYNGOSCOPE, V111, P946, DOI 10.1097/00005537-200106000-00004
Flock A, 2000, HEARING RES, V150, P175, DOI 10.1016/S0378-5955(00)00198-2
FLOTTORP G, 1980, HEARING RES, V2, P407, DOI 10.1016/0378-5955(80)90075-1
Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4
Franco-Vidal V, 2005, OTOL NEUROTOL, V26, P723, DOI 10.1097/01.mao.0000178136.81729.7c
FRAYSSE BG, 1980, ANN OTO RHINOL LARYN, V89, P2
GIBSON WPR, 1983, OTOLARYNG CLIN N AM, V16, P59
Gopen Q, 1997, HEARING RES, V107, P9, DOI 10.1016/S0378-5955(97)00017-8
Hallpike C S, 1938, Proc R Soc Med, V31, P1317
HORNER K, 1989, HEARING RES, V43, P71, DOI 10.1016/0378-5955(89)90060-9
KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104
Levine S, 1998, LARYNGOSCOPE, V108, P993, DOI 10.1097/00005537-199807000-00008
LUTMAN ME, 1979, J SOUND VIB, V64, P133, DOI 10.1016/0022-460X(79)90578-9
Magliulo G, 2001, LARYNGOSCOPE, V111, P102, DOI 10.1097/00005537-200101000-00018
Marchbanks RJ, 1982, HEARING AID J, V35, P14
Mateijsen DJM, 2001, EUR ARCH OTO-RHINO-L, V258, P1, DOI 10.1007/PL00007515
Meniere P, 1861, GAZ MED PARIS, V16, P597
Merchant SN, 2005, OTOL NEUROTOL, V26, P74, DOI 10.1097/00129492-200501000-00013
Mom T, 2009, HEARING RES, V250, P38, DOI 10.1016/j.heares.2009.01.008
OHLMS LA, 1991, OTOLARYNG HEAD NECK, V104, P159
OKUBO H, 1995, ACTA OTO-LARYNGOL, P97
OKUNO T, 1987, ANN OTO RHINOL LARYN, V96, P438
Salt AN, 2004, JARO-J ASSOC RES OTO, V5, P203, DOI 10.1007/s10162-003-4032-z
Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948
Shimbles S, 2005, ACT NEUR S, V95, P197
Sirjani DB, 2004, J ACOUST SOC AM, V115, P1219, DOI 10.1121/1.1647479
THORNTON ARD, 1991, SCAND AUDIOL, V20, P13, DOI 10.3109/01050399109070784
TONNDORF J, 1976, ARCH OTO-RHINO-LARYN, V212, P293, DOI 10.1007/BF00453677
TONNDORF J., 1957, ANN OTOL RHINOL AND LARYNGOL, V66, P766
Traboulsi R, 2007, HEARING RES, V233, P30, DOI 10.1016/j.heares.2007.06.012
Valk WL, 2004, HEARING RES, V192, P47, DOI 10.1016/j.heares.2003.12.021
Wit HP, 1999, HEARING RES, V132, P131, DOI 10.1016/S0378-5955(99)00048-9
Yamakawa K., 1938, P 42 ANN M OT SOC JA, V44, P2310
ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382
NR 50
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2011
VL 277
IS 1-2
BP 88
EP 95
DI 10.1016/j.heares.2011.03.006
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 805KZ
UT WOS:000293726600011
PM 21426928
ER
PT J
AU Guan, XY
Gan, RZ
AF Guan, Xiying
Gan, Rong Z.
TI Effect of middle ear fluid on sound transmission and auditory brainstem
response in guinea pigs
SO HEARING RESEARCH
LA English
DT Article
ID FLACCIDA DISPLACEMENT PATTERN; HUMAN TEMPORAL BONES; OTITIS-MEDIA;
HEARING-LOSS; EFFUSION MODEL; TYMPANOMETRY; GERBIL; ACCURACY; MOTION
AB Combined measurements of middle ear transfer function and auditory brainstem response (ABR) in live guinea pigs with middle ear effusion (MEE) are reported in this paper. The MEE model was created by injecting saline into the middle ear cavity. Vibrations of the tympanic membrane (TM), the tip of the incus, and the round window membrane (RWM) were measured with a laser vibrometer at frequencies of 0.2-40 kHz when the middle ear fluid increased from 0 to 02 ml (i.e., full fill of the cavity). The click and pure tone ABRs were recorded as the middle ear fluid increased. Fluid introduction reduced mobility of the TM, incus and RWM mainly at high frequencies (f > 1 kHz). The magnitude of this reduction was related to the volume of fluid. The displacement transmission ratio of the TM to incus varied with frequency and fluid level. The volume displacement ratio of the oval window to round window was approximately 1.0 over most frequencies. Elevation of ABR thresholds and prolongation of ABR latencies were observed as fluid level increased. Reduction of TM displacement correlated well with elevation of ABR threshold at 0.5-8 kHz. Alterations in the ratio of ossicular displacements before and after fluid induction are consistent with fluid-induced changes in complex ossicular motions. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Gan, Rong Z.] Univ Oklahoma, Sch Aerosp & Mech Engn, Norman, OK 73019 USA.
Univ Oklahoma, Ctr Bioengn, Norman, OK 73019 USA.
RP Gan, RZ (reprint author), Univ Oklahoma, Sch Aerosp & Mech Engn, 865 Asp Ave,Room 200, Norman, OK 73019 USA.
EM rgan@ou.edu
FU Oklahoma Center for the Advancement of Science and Technology [HR06-036,
HR09-033]; NIH/NIDCD [R01DC006632]
FX This work was supported by Oklahoma Center for the Advancement of
Science and Technology (HR06-036 and HR09-033) and NIH/NIDCD
R01DC006632. The authors thank Wei Li, MS, former student in BME lab at
University of Oklahoma, and Don Nakmali at Hough Ear Institute for their
expert technical assistance. The authors also thank Dr. Thomas Seale at
the University of Oklahoma Health Sciences Center for editing this
paper. Two anonymous reviewers are gratefully acknowledged for their
great suggestions to improve the paper.
CR BEERY QC, 1975, ANN OTO RHINOL LARYN, V84, P56
BLUESTONE CD, 1983, PEDIAT OTOLARYNGOLOG, P421
BLUESTON.CD, 1973, LARYNGOSCOPE, V83, P594, DOI 10.1288/00005537-197304000-00015
Burkard R.F., 2007, AUDITORY EVOKED POTE, P229
Chien WD, 2006, AUDIOL NEURO-OTOL, V11, P183, DOI 10.1159/000091815
Dai C, 2008, HEARING RES, V243, P78, DOI 10.1016/j.heares.2008.05.010
Dai CK, 2007, OTOL NEUROTOL, V28, P551, DOI 10.1097/mao.0b013e318033f008
Decraemer WF, 2004, PROCEEDINGS OF THE 3RD SYMPOSIUM ON MIDDLE EAR MECHANICS IN RESEARCH AND OTOLOGY, P3
Dirks DD, 2000, EAR: COMPREHENSIVE OTOLOGY, P223
Francon M., 1966, OPTICAL INTERFEROMET
Gaihede M, 2005, OTOL NEUROTOL, V26, P5, DOI 10.1097/00129492-200501000-00003
Gan RZ, 2006, J ACOUST SOC AM, V120, P3799, DOI 10.1121/1.2372451
Gan RZ, 2001, ANN OTO RHINOL LARYN, V110, P478
GIEBINK GS, 1978, ANNU REV MED, V29, P285, DOI 10.1146/annurev.me.29.020178.001441
Hato N, 2003, AUDIOL NEURO-OTOL, V8, P140, DOI 10.1159/000069475
Heiland KE, 1999, AM J OTOL, V20, P81
Larsson C, 2003, OTOL NEUROTOL, V24, P358, DOI 10.1097/00129492-200305000-00002
Larsson C, 2005, OTOL NEUROTOL, V26, P337, DOI 10.1097/01.mao.0000169770.31292.75
MANLEY GA, 1974, J ACOUST SOC AM, V56, P571, DOI 10.1121/1.1903292
Petrova P, 2006, OTOL NEUROTOL, V27, P734, DOI 10.1097/01.mao.0000226296.28704.de
Qin ZB, 2010, HEARING RES, V263, P93, DOI 10.1016/j.heares.2009.10.002
Ravicz ME, 2004, HEARING RES, V195, P103, DOI 10.1016/j.heares.2004.05.010
SHANKS J, 1991, OTOLARYNG CLIN N AM, V24, P299
Stenfelt S, 2004, J ACOUST SOC AM, V115, P797, DOI 10.1121/1.1639903
Turcanu D, 2009, HEARING RES, V251, P17, DOI 10.1016/j.heares.2009.02.005
VONUNGE M, 1995, HEARING RES, V82, P184, DOI 10.1016/0378-5955(94)00017-K
WEYER EG, 1982, PHYSL ACOUSTICS
Wysocki Jarosław, 2005, Folia Morphol (Warsz), V64, P145
NR 28
TC 8
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2011
VL 277
IS 1-2
BP 96
EP 106
DI 10.1016/j.heares.2011.03.003
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 805KZ
UT WOS:000293726600012
PM 21414396
ER
PT J
AU Zhou, X
Henin, S
Long, GR
Parra, LC
AF Zhou, Xiang
Henin, Simon
Long, Glenis R.
Parra, Lucas C.
TI Impaired cochlear function correlates with the presence of tinnitus and
its estimated spectral profile
SO HEARING RESEARCH
LA English
DT Article
ID PRODUCT OTOACOUSTIC EMISSION; HEARING-LOSS; AUDITORY-SENSITIVITY;
GROWTH-BEHAVIOR; MECHANISMS; HYPERACTIVITY; NEUROSCIENCE; DPOAE; MODEL;
PITCH
AB The presence of tinnitus often coincides with hearing loss. It has been argued that reduced peripheral input leads to frequency-specific increase in neuronal gains resulting in tinnitus-related hyper-activity. Following this gain-adaptation hypothesis, impaired cochlear function should be predictive of the presence and spectral characteristics of tinnitus. To assess cochlear function, perceptual thresholds and distortion product otoacoustic emissions (DPOAEs) were measured with high frequency resolution for subjects with tinnitus and non-tinnitus control subjects (N = 29 and N = 18) with and without hearing loss. Subjects with tinnitus also provided a 'tinnitus likeness spectrum' by rating the similarity of their tinnitus to tones at various frequencies. On average, subjects with tinnitus had elevated thresholds. reduced DPOAE, and increased slope of the DPOAE input-output function in the range from 4 to 10 kHz. These measures were strongly correlated and were equally predictive of the presence of tinnitus. Subjects with a pronounced edge to their hearing loss profile were very likely to have tinnitus. In the group average, the tinnitus likeness spectrum was correlated with perceptual thresholds (r = 0.98, p < 0.01), confirming previous reports. For 19 of 29 of subjects, perceptual thresholds were correlated with the tinnitus likeness ratings across frequencies and this correlation was significantly improved when low input-level DPOAE were included as an additional variable (r = 0.83 +/- 0.09, N = 19). Thus, cochlear function is strongly associated with the tinnitus percept and measures of cochlear function using DPOAEs provide additional diagnostic information over perceptual thresholds alone. Published by Elsevier B.V.
C1 [Zhou, Xiang; Parra, Lucas C.] CUNY City Coll, Dept Biomed Engn, New York, NY 10031 USA.
[Henin, Simon; Long, Glenis R.] CUNY, Grad Ctr, New York, NY 10016 USA.
RP Parra, LC (reprint author), CUNY City Coll, Dept Biomed Engn, New York, NY 10031 USA.
EM xzhou1@gc.cuny.edu; shenin@gc.cuny.edu; glong@gc.cuny.edu;
parra@ccny.cuny.edu
RI Zhou, Xiang/D-9614-2011
CR Baguley DM, 2002, BRIT MED BULL, V63, P195, DOI 10.1093/bmb/63.1.195
Bartnik Grazyna, 2009, Otolaryngol Pol, V63, P171, DOI 10.1016/S0030-6657(09)70102-7
Boege P, 2002, J ACOUST SOC AM, V111, P1810, DOI 10.1121/1.1460923
Davis PB, 2008, ENT-EAR NOSE THROAT, V87, P330
DELONG ER, 1988, BIOMETRICS, V44, P837, DOI 10.2307/2531595
Dominguez M, 2006, NEURAL COMPUT, V18, P2942, DOI 10.1162/neco.2006.18.12.2942
Duda R. O., 2001, PATTERN CLASSIFICATI
Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010
Formby C, 2003, J ACOUST SOC AM, V114, P55, DOI 10.1121/1.1582860
Hanley Peter J, 2008, Trends Amplif, V12, P210, DOI 10.1177/1084713808319942
Hesse Gerhard, 2005, Int Tinnitus J, V11, P6
Janssen T, 1998, J ACOUST SOC AM, V103, P3418, DOI 10.1121/1.423053
Kaltenbach JA, 2008, AM J AUDIOL, V17, pS148, DOI 10.1044/1059-0889(2008/08-0004)
Konig O, 2006, HEARING RES, V221, P59, DOI 10.1016/j.heares.2006.07.007
Kummer P, 1998, J ACOUST SOC AM, V103, P3431, DOI 10.1121/1.423054
LONG GR, 1988, HEARING RES, V36, P125, DOI 10.1016/0378-5955(88)90055-X
Long GR, 2008, J ACOUST SOC AM, V124, P1613, DOI 10.1121/1.2949505
Mauermann M, 2004, J ACOUST SOC AM, V116, P2199, DOI 10.1121/1.1791719
MCCLISH DK, 1989, MED DECIS MAKING, V9, P190, DOI 10.1177/0272989X8900900307
McCullagh P., 1989, GEN LINEAR MODELS
Moffat G, 2009, HEARING RES, V254, P82, DOI 10.1016/j.heares.2009.04.016
Montgomery D C, 2006, INTRO LINEAR REGRESS
Moore BCJ, 2010, HEARING RES, V261, P51, DOI 10.1016/j.heares.2010.01.003
NEELY ST, 2007, SPRINGER HDB AUDITOR, V30, P381
Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156
Norena AJ, 2007, NEUROREPORT, V18, P1251, DOI 10.1097/WNR.0b013e3282202c35
Ozimek E, 2006, J ACOUST SOC AM, V119, P527, DOI 10.1121/1.2141297
Parra LC, 2007, J ACOUST SOC AM, V121, P1632, DOI 10.1121/1.2431346
Penner M.J., 1995, INT TINNITUS J, V1, P79
Rauschecker JP, 2010, NEURON, V66, P819, DOI 10.1016/j.neuron.2010.04.032
Rieke F, 1999, SPIKES EXPLORING NEU
Roberts LE, 2008, JARO-J ASSOC RES OTO, V9, P417, DOI 10.1007/s10162-008-0136-9
Roberts LE, 2010, J NEUROSCI, V30, P14972, DOI 10.1523/JNEUROSCI.4028-10.2010
Rosengard PS, 2005, J ACOUST SOC AM, V117, P3028, DOI 10.1121/1.1883367
Savastano M, 2009, INT J PEDIATR OTORHI, V73, pS13, DOI 10.1016/S0165-5876(09)70003-5
Schaette R, 2010, HEARING RES, V269, P95, DOI 10.1016/j.heares.2010.06.022
Schaette R, 2009, J NEUROPHYSIOL, V101, P3042, DOI 10.1152/jn.91256.2008
Shera CA, 2004, EAR HEARING, V25, P86, DOI 10.1097/01.AUD.0000121200.90211.83
Sztuka A, 2010, AURIS NASUS LARYNX, V37, P55, DOI 10.1016/j.anl.2009.05.001
Vesterager V, 1997, BRIT MED J, V314, P728
WILSON PH, 1991, J SPEECH HEAR RES, V34, P197
Zhou X, 2010, J ACOUST SOC AM, V127, P970, DOI 10.1121/1.3277156
NR 42
TC 13
Z9 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2011
VL 277
IS 1-2
BP 107
EP 116
DI 10.1016/j.heares.2011.02.006
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 805KZ
UT WOS:000293726600013
PM 21376109
ER
PT J
AU Pienkowski, M
Munguia, R
Eggermont, JJ
AF Pienkowski, Martin
Munguia, Raymundo
Eggermont, Jos J.
TI Passive exposure of adult cats to bandlimited tone pip ensembles or
noise leads to long-term response suppression in auditory cortex
SO HEARING RESEARCH
LA English
DT Article
ID CORTICAL MAP REORGANIZATION; CRITICAL PERIOD; 2-TONE SUPPRESSION;
HOMEOSTATIC PLASTICITY; ACOUSTIC ENVIRONMENT; BASILAR-MEMBRANE;
HEARING-LOSS; GUINEA-PIG; ORGANIZATION; HABITUATION
AB We have recently demonstrated that persistent, passive exposure of adult cats to bandlimited tone pip ensembles at moderate intensities (similar to 70 dB SPL) leads to a long-term suppression of neural activity in auditory cortex, in the absence of hearing loss. With wideband ensembles (4-20 kHz), the suppression is limited to the exposure frequency range; with narrowband ensembles (2-4 kHz, or third-octave bands centered at 4 and 16 kHz), suppression occurs not only within but also well beyond the exposure range, at least in primary auditory cortex (Al). (In secondary cortex (All) suppression remains limited mostly to the exposure range even for narrowband ensembles.) We report here on two additional experiments. First, we demonstrate suppression in both Al and All upon exposure to 4-20 kHz bandlimited noise, thus generalizing our previous results obtained with tonal ensembles. However, we found a somewhat different suppression pattern with noise. Whereas 4-20 kHz tone exposure produced relatively uniform suppression over the 4-20 kHz range, save for a small local minimum at similar to 10 kHz, 4-20 kHz noise produced maximal suppression over similar to 4-10 kHz, which then progressively weakened with frequency up to 20 kHz. Second, we outline the time course of the emergence of response suppression in Al, using the above-mentioned pair of third-octave bands as the exposure stimulus. Suppression emerged relatively rapidly, within a week of exposure onset, and was initially confined to frequencies close to the 4 and 16 kHz stimulus bands. Over the course of several more weeks, the suppression broadened to cover the entire 4-16 kHz range. We discuss these new findings with reference to the putative mechanisms underlying exposure-induced auditory cortical plasticity. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Pienkowski, Martin; Munguia, Raymundo; Eggermont, Jos J.] Univ Calgary, Dept Psychol, Calgary, AB T2N 1N4, Canada.
[Pienkowski, Martin; Munguia, Raymundo; Eggermont, Jos J.] Univ Calgary, Dept Physiol, Calgary, AB T2N 1N4, Canada.
[Pienkowski, Martin; Munguia, Raymundo; Eggermont, Jos J.] Univ Calgary, Dept Pharmacol, Calgary, AB T2N 1N4, Canada.
RP Eggermont, JJ (reprint author), Univ Calgary, Dept Psychol, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada.
EM eggermon@ucalgary.ca
FU Alberta Heritage Foundation for Medical Research; National Sciences and
Engineering Research Council of Canada; Campbell McLaurin Chair for
Hearing Deficiencies
FX We thank Greg Shaw for data acquisition software development and
support. This work was supported by the Alberta Heritage Foundation for
Medical Research, the National Sciences and Engineering Research Council
of Canada, and the Campbell McLaurin Chair for Hearing Deficiencies.
CR Bakin JS, 1996, P NATL ACAD SCI USA, V93, P11219, DOI 10.1073/pnas.93.20.11219
BAKIN JS, 1990, BRAIN RES, V536, P271, DOI 10.1016/0006-8993(90)90035-A
BAO S, 2003, J NEUROSCI, V23, P1065
Bao SW, 2004, NAT NEUROSCI, V7, P974, DOI 10.1038/nn1293
Bonham BH, 2004, J NEUROPHYSIOL, V91, P841, DOI 10.1152/jn.00017.2003
Brattico E, 2005, CLIN NEUROPHYSIOL, V116, P190, DOI 10.1016/j.clinph.2004.07.030
Carrasco A, 2010, J NEUROSCI, V30, P1476, DOI 10.1523/JNEUROSCI.5708-09.2009
CASTELLUCCI VF, 1978, SCIENCE, V202, P1306, DOI 10.1126/science.214854
Chang EF, 2003, SCIENCE, V300, P498, DOI 10.1126/science.1082163
CONDON CD, 1991, BEHAV NEUROSCI, V105, P416
de Villers-Sidani E, 2007, J NEUROSCI, V27, P180, DOI 10.1523/JNEUROSCI.3227-06.2007
de Villers-Sidani E, 2008, NAT NEUROSCI, V11, P957, DOI 10.1038/nn.2144
EGAN JP, 1950, J ACOUST SOC AM, V22, P622, DOI 10.1121/1.1906661
Eggermont JJ, 1996, AUDIT NEUROSCI, V2, P309
Formby C, 2003, J ACOUST SOC AM, V114, P55, DOI 10.1121/1.1582860
GARDNER MJ, 1986, BRIT MED J, V292, P746
GEISLER CD, 1990, HEARING RES, V44, P241, DOI 10.1016/0378-5955(90)90084-3
ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311
Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6
KJELLBERG A, 1990, SCAND J WORK ENV HEA, V16, P29
Kujala T, 2004, PSYCHOPHYSIOLOGY, V41, P875, DOI 10.1111/j.1469-8986.2004.00244.x
MOVSHON JA, 1979, NATURE, V278, P850, DOI 10.1038/278850a0
MUSICANT AD, 1990, J ACOUST SOC AM, V87, P757, DOI 10.1121/1.399545
Norena A, 2002, HEARING RES, V166, P202, DOI 10.1016/S0378-5955(02)00329-5
Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005
Norena AJ, 2006, NAT NEUROSCI, V9, P932, DOI 10.1038/nn1720
Pienkowski M, 2009, HEARING RES, V253, P107, DOI 10.1016/j.heares.2009.03.013
Pienkowski M, 2010, HEARING RES, V261, P30, DOI 10.1016/j.heares.2009.12.025
Pienkowski M, 2010, HEARING RES, V268, P151, DOI 10.1016/j.heares.2010.05.016
Pienkowski M, 2009, HEARING RES, V257, P24, DOI 10.1016/j.heares.2009.07.011
Polley DB, 2006, J NEUROSCI, V26, P4970, DOI 10.1523/JNEUROSCI.3771-05.2006
RHODE WS, 1993, HEARING RES, V66, P31, DOI 10.1016/0378-5955(93)90257-2
Robinson BL, 2009, CURR OPIN NEUROBIOL, V19, P402, DOI 10.1016/j.conb.2009.07.006
RUGGERO MA, 1992, J NEUROPHYSIOL, V68, P1087
Sakai M, 2007, BEHAV BRAIN RES, V181, P1, DOI 10.1016/j.bbr.2007.03.016
Schaette R, 2006, EUR J NEUROSCI, V23, P3124, DOI 10.1111/j.1460-9568.04774.x
SCHREINER CE, 1984, J NEUROPHYSIOL, V51, P1284
Turrigiano GG, 1999, TRENDS NEUROSCI, V22, P221, DOI 10.1016/S0166-2236(98)01341-1
Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032
Zhang LI, 2002, P NATL ACAD SCI USA, V99, P2309, DOI 10.1073/pnas.261707398
Zhou XM, 2007, P NATL ACAD SCI USA, V104, P15935, DOI 10.1073/pnas.0707348104
NR 41
TC 15
Z9 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2011
VL 277
IS 1-2
BP 117
EP 126
DI 10.1016/j.heares.2011.02.002
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 805KZ
UT WOS:000293726600014
PM 21316436
ER
PT J
AU Osmanski, MS
Wang, XQ
AF Osmanski, Michael S.
Wang, Xiaoqin
TI Measurement of absolute auditory thresholds in the common marmoset
(Callithrix jacchus)
SO HEARING RESEARCH
LA English
DT Article
ID MONKEY SAIMIRI-SCIUREUS; PURE-TONE THRESHOLDS; LEAF-NOSED BATS; BIG
BROWN BAT; PHEE CALLS; SOUND LOCALIZATION; ACOUSTIC STRUCTURE;
EPTESICUS-FUSCUS; MACACA-FUSCATA; CORTEX
AB The common marmoset is a small, arboreal, New World primate that has emerged as a promising non-human model system in auditory neuroscience. A complete understanding of the neuroethology of auditory processing in marmosets will include behavioral work examining how sounds are perceived by these animals. However, there have been few studies of the marmoset's hearing and perceptual abilities and the audiogram of this species has not been measured using modern psychophysical methods. The present experiment pairs psychophysics with an operant conditioning technique to examine perception of pure tone stimuli by marmosets using an active behavioral paradigm. Subjects were trained to lick at a feeding tube when they detected a sound. Correct responses provided access to a food reward. Pure tones of varying intensities were presented to subjects using the method of constant stimuli. Behavioral thresholds were calculated for each animal based on hit rate - threshold was defined by the tone intensity that the animal correctly identified 50% of the time. Results show that marmoset hearing is comparable to that of other New World monkeys, with a hearing range extending from about 125 Hz up to 36 kHz and a sensitivity peak around 7 kHz. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Osmanski, Michael S.; Wang, Xiaoqin] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Lab Auditory Neurophysiol, Baltimore, MD 21205 USA.
RP Osmanski, MS (reprint author), Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Lab Auditory Neurophysiol, Baltimore, MD 21205 USA.
EM michael.osmanski@jhu.edu; xiaoqin.wang@jhu.edu
FU NIH [DC003180, DC005808, DC008578]
FX We would like to thank Jenny Estes and Nathaniel Sotuyo for their
generous help with animal care. We also thank Marcus Jeschke, Amanda
Lauer, and an anonymous reviewer for their many helpful and insightful
comments on the manuscript. Finally, we thank Rhiannon Desideri,
Meredith Maguire, and Smita Mohan for their assistance in performing the
experiments. This work was supported by NIH grants DC003180, DC005808,
and DC008578.
CR AGAMAITE JA, 1997, THESIS J HOPKINS U B
AITKIN LM, 1986, J COMP NEUROL, V252
ANDREW R. J., 1963, BEHAVIOUR, V20, P1, DOI 10.1163/156853963X00220
BEECHER MD, 1974, J ACOUST SOC AM, V55, P196, DOI 10.1121/1.1928152
BEECHER MD, 1974, J COMP PHYSIOL PSYCH, V86, P898, DOI 10.1037/h0036416
Bendor D, 2006, CURR OPIN NEUROBIOL, V16, P391, DOI 10.1016/j.conb.2006.07.001
Bendor D, 2010, J NEUROPHYSIOL, V103, P1809, DOI 10.1152/jn.00281.2009
Bendor D, 2005, NATURE, V436, P1161, DOI 10.1038/nature03867
Bendor D, 2008, J NEUROPHYSIOL, V100, P888, DOI 10.1152/jn.00884.2007
BROWN CH, 1984, ANIM BEHAV, V32, P66, DOI 10.1016/S0003-3472(84)80325-5
DALLAND JI, 1965, J AUD RES, V5, P95
DiMattina C, 2006, J NEUROPHYSIOL, V95, P1244, DOI 10.1152/jn.00818.2005
Dooling R. J., 1995, METHODS COMP PSYCHOA, P161
Dooling R. J., 2000, COMP HEARING BIRDS R, P308
ELDER J, 1933, PSYCHOL BULL, V30, P547
Elder JH, 1935, AM J PHYSIOL, V112, P109
Elder JH, 1934, J COMP PSYCHOL, V17, P157, DOI 10.1037/h0073798
Eliades SJ, 2003, J NEUROPHYSIOL, V89, P2194, DOI 10.1152/jn.00627.2002
Eliades SJ, 2008, NATURE, V453, P1102, DOI 10.1038/nature06910
Eliades SJ, 2005, CEREB CORTEX, V15, P1510, DOI 10.1093/cercor/bhi030
EPPLE G, 1968, FOLIA PRIMATOL, V8, P1, DOI 10.1159/000155129
Fay R. R., 1988, HEARING VERTEBRATES
FUJITA S, 1965, J ACOUST SOC AM, V37, P139, DOI 10.1121/1.2143403
Gerhardt H. Carl, 2001, P73
Gescheider G. A., 1985, PSYCHOPHYSICS METHOD
GREEN S, 1975, J EXP ANAL BEHAV, V23, P255, DOI 10.1901/jeab.1975.23-255
Harris JD, 1943, J COMP PSYCHOL, V35, P255, DOI 10.1037/h0060357
Heffner RS, 2004, ANAT REC PART A, V281A, P1111, DOI 10.1002/ar.a.20117
Heffner RS, 1996, HEARING RES, V99, P13, DOI 10.1016/S0378-5955(96)00074-3
Heffner RS, 2003, HEARING RES, V184, P113, DOI 10.1016/S0378-5955(03)00233-8
HEINZ RD, 1982, HEARING RES, V8, P71
Jackson LL, 1999, J ACOUST SOC AM, V106, P3017, DOI 10.1121/1.428121
JEN PHS, 1988, HEARING RES, V34, P101, DOI 10.1016/0378-5955(88)90098-6
Koay G, 2003, HEARING RES, V178, P27, DOI 10.1016/S0378-5955(03)00025-X
Koay G, 1997, HEARING RES, V105, P202, DOI 10.1016/S0378-5955(96)00208-0
LONG GR, 1975, J COMP PHYSIOL, V100, P211
Miller CT, 2006, J COMP PHYSIOL A, V192, P27, DOI 10.1007/s00359-005-0043-z
Miller CT, 2010, AM J PRIMATOL, V72, P974, DOI 10.1002/ajp.20854
Miller CT, 2009, ANIM BEHAV, V78, P1195, DOI 10.1016/j.anbehav.2009.07.038
Miller CT, 2009, J COMP PHYSIOL A, V195, P783, DOI 10.1007/s00359-009-0456-1
Miller E. H., 1982, ACOUSTIC COMMUNICATI, V2, P95
NARINS PM, 1976, SCIENCE, V192, P378, DOI 10.1126/science.1257772
NARINS PM, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P439
NEWMAN JD, 2003, PRIMATE AUDITION ETH, V13, P198
NIEMIEC AJ, 1995, METHODS COMP PSYCHOA, P65
Norcross JL, 1999, AM J PRIMATOL, V49, P165, DOI 10.1002/(SICI)1098-2345(199910)49:2<165::AID-AJP7>3.0.CO;2-S
NORCROSS JL, 1993, AM J PRIMATOL, V30, P37, DOI 10.1002/ajp.1350300104
NORCROSS JL, 1994, AM J PRIMATOL, V33, P15, DOI 10.1002/ajp.1350330103
OKANOYA K, 1987, J COMP PSYCHOL, V101, P7, DOI 10.1037//0735-7036.101.1.7
OWREN MJ, 1988, J COMP PSYCHOL, V102, P99
PFINGST BE, 1978, HEARING RES, V1, P43, DOI 10.1016/0378-5955(78)90008-4
Pistorio AL, 2006, J ACOUST SOC AM, V120, P1655, DOI 10.1121/1.2225899
RECANZONE GH, 1991, BEHAV RES METH INSTR, V23, P357
RICE JJ, 1992, HEARING RES, V58, P132, DOI 10.1016/0378-5955(92)90123-5
RYAN MJ, 1992, AM NAT, V139, P1370, DOI 10.1086/285391
Sadagopan S, 2008, J NEUROSCI, V28, P3415, DOI 10.1523/JNEUROSCI.2743-07.2008
Sasaki E, 2009, NATURE, V459, P523, DOI 10.1038/nature08090
Seiden H. R., 1957, THESIS PRINCETON U P
SERAFIN JV, 1982, J ACOUST SOC AM, V71, P1513, DOI 10.1121/1.387851
SINNOTT JM, 1985, J ACOUST SOC AM, V78, P1977, DOI 10.1121/1.392654
STEBBINS WC, 1971, BEHAVIOR NONHUMAN PR, V3, P159
STEBBINS WC, 1978, RECENT ADV PRIMATOL, P703
Stebbins WC, 1970, ANIMAL PSYCHOPHYSICS
STEBBINS WC, 1966, SCIENCE, V153, P1646, DOI 10.1126/science.153.3744.1646-a
STEBBINS WC, 1973, AM J PHYS ANTHROPOL, V38, P357, DOI 10.1002/ajpa.1330380233
Wang XQ, 2007, HEARING RES, V229, P81, DOI 10.1016/j.heares.2007.01.019
Wang XQ, 2000, P NATL ACAD SCI USA, V97, P11843, DOI 10.1073/pnas.97.22.11843
Wang XQ, 2001, J NEUROPHYSIOL, V86, P2616
Watkins PV, 2008, NAT NEUROSCI, V11, P1259, DOI 10.1038/nn.2201
Watkins PV, 2011, CEREB CORTEX, V21, P178, DOI 10.1093/cercor/bhq079
WIERNICKE A, 2001, J COMP PHYSIOL A, V187, P189
WINTER P, 1966, EXP BRAIN RES, V1, P359
WOTTON JM, 1995, J ACOUST SOC AM, V98, P1423, DOI 10.1121/1.413410
NR 73
TC 14
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2011
VL 277
IS 1-2
BP 127
EP 133
DI 10.1016/j.heares.2011.02.001
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 805KZ
UT WOS:000293726600015
PM 21303689
ER
PT J
AU Grimsley, JMS
Palmer, AR
Wallace, MN
AF Grimsley, J. M. S.
Palmer, A. R.
Wallace, M. N.
TI Age differences in the purr call distinguished by units in the adult
guinea pig primary auditory cortex
SO HEARING RESEARCH
LA English
DT Article
ID SPECIES-SPECIFIC VOCALIZATIONS; VOCAL-TRACT LENGTH; CONSPECIFIC
VOCALIZATIONS; HONEST ADVERTISEMENT; REPRESENTATION; RESPONSES;
FREQUENCY; MARMOSET; SIZE; CAT
AB Many communication calls contain information about the physical characteristics of the calling animal. During maturation of the guinea pig purr call the pitch becomes lower as the fundamental frequency progressively decreases from 476 to 261 Hz on average. Neurons in the primary auditory cortex (AI) often respond strongly to the purr and we postulated that some of them are capable of distinguishing between purr calls of different pitch. Consequently four pitch-shifted versions of a single call were used as stimuli. Many units in AI (79/182) responded to the purr call either with an onset response or with multiple bursts of firing that were time-locked to the phrases of the call. All had a characteristic frequency <= 5 kHz. Both types of unit altered their firing rate in response to pitch-shifted versions of the call. Of the responsive units, 41% (32/79) had a firing rate locked to the stimulus envelope that was at least 50% higher for one version of the call than any other. Some (14/32) had a preference that could be predicted from their frequency response area while others (18/32) were not predictable. We conclude that about 18% of stimulus-driven cells at the low-frequency end of AI are very sensitive to age-related changes in the purr call. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Grimsley, J. M. S.; Palmer, A. R.; Wallace, M. N.] MRC Inst Hearing Res, Nottingham NG7 2RD, England.
RP Wallace, MN (reprint author), MRC Inst Hearing Res, Univ Pk, Nottingham NG7 2RD, England.
EM markw@ihr.mrc.ac.uk
CR ARVOLA A, 1974, Annales Zoologici Fennici, V11, P1
Bendor D, 2005, NATURE, V436, P1161, DOI 10.1038/nature03867
BERRYMAN JC, 1981, BEHAV NEURAL BIOL, V31, P476, DOI 10.1016/S0163-1047(81)91572-7
BERRYMAN JC, 1976, Z TIERPSYCHOL, V41, P80
Bizley JK, 2010, NEUROSCIENTIST, V16, P453, DOI 10.1177/1073858410371009
Bryant GA, 2009, BIOL LETTERS, V5, P12, DOI 10.1098/rsbl.2008.0507
BULLOCK DC, 1988, MED BIOL ENG COMPUT, V26, P669, DOI 10.1007/BF02447511
Charlton BD, 2009, ANIM BEHAV, V78, P893, DOI 10.1016/j.anbehav.2009.06.029
CLUTTONBROCK TH, 1979, BEHAVIOUR, V69, P145, DOI 10.1163/156853979X00449
Darwin C., 1871, DESCENT MAN SELECTIO
de la Mothe LA, 2006, J COMP NEUROL, V496, P27, DOI 10.1002/cne.20923
Fant G., 1960, ACOUSTIC THEORY SPEE
Fitch WT, 1997, J ACOUST SOC AM, V102, P1213, DOI 10.1121/1.421048
FITCH WT, 1995, AM J PRIMATOL, V37, P191, DOI 10.1002/ajp.1350370303
Gehr DD, 2000, HEARING RES, V150, P27, DOI 10.1016/S0378-5955(00)00170-2
Geissler DB, 2004, EUR J NEUROSCI, V19, P1027, DOI 10.1111/j.1460-9568.2004.03205.x
Gourevitch B, 2007, J NEUROPHYSIOL, V97, P144, DOI 10.1152/jn.00807.2006
HALL DA, 2009, CEREB CORTEX, V19, P543
Harper L. V., 1976, BIOL GUINEA PIG, P31
HOLLIEN H, 1994, J ACOUST SOC AM, V96, P2646, DOI 10.1121/1.411275
Huetz C, 2009, J NEUROSCI, V29, P334, DOI 10.1523/JNEUROSCI.3269-08.2009
Kaas JH, 1998, AUDIOL NEURO-OTOL, V3, P73, DOI 10.1159/000013783
Lin FG, 2010, J NEUROPHYSIOL, V104, P3588, DOI 10.1152/jn.00295.2010
Monticelli PE, 2004, AN ACAD BRAS CIENC, V76, P368, DOI 10.1590/S0001-37652004000200027
Philibert B, 2005, HEARING RES, V209, P97, DOI 10.1016/j.heares.2005.07.004
Romanski LM, 2005, J NEUROPHYSIOL, V93, P734, DOI 10.1152/jn.00675.2004
Rood J.P., 1972, Animal Behav Monogr, V5, P1
Siemers BM, 2005, ACTA CHIROPTEROL, V7, P259, DOI 10.3161/1733-5329(2005)7[259:ISISAO]2.0.CO;2
Smith DRR, 2005, J ACOUST SOC AM, V118, P3177, DOI 10.1121/1.2047107
Suta D, 2007, EXP BRAIN RES, V183, P377, DOI 10.1007/s00221-007-1056-3
Suta J, 2003, J NEUROPHYSIOL, V90, P3794
Syka J, 2005, HEARING RES, V206, P177, DOI 10.1016/j.heares.2005.01.013
Tian B, 2001, SCIENCE, V292, P290, DOI 10.1126/science.1058911
von Kriegstein K, 2006, NEUROIMAGE, V32, P368, DOI 10.1016/j.neuroimage.2006.02.045
Wallace MN, 2005, NEUROREPORT, V16, P2001, DOI 10.1097/00001756-200512190-00006
Wallace MN, 2011, HEARING RES, V274, P142, DOI 10.1016/j.heares.2010.05.012
Wallace MN, 2002, EXP BRAIN RES, V143, P106, DOI 10.1007/s00221-001-0973-9
Wallace MN, 2008, EXP BRAIN RES, V184, P179, DOI 10.1007/s00221-007-1092-z
Wallace MN, 2005, HEARING RES, V204, P115, DOI 10.1016/j.heares.2005.01.007
Wallace MN, 2009, EXP BRAIN RES, V194, P395, DOI 10.1007/s00221-009-1714-8
Wang XQ, 1995, J NEUROPHYSIOL, V74, P2685
Wang XQ, 2001, J NEUROPHYSIOL, V86, P2616
Wang XQ, 2005, NATURE, V435, P341, DOI 10.1038/nature03565
NR 43
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2011
VL 277
IS 1-2
BP 134
EP 142
DI 10.1016/j.heares.2011.01.018
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 805KZ
UT WOS:000293726600016
PM 21296136
ER
PT J
AU Hsieh, IH
Petrosyan, A
Goncalves, OF
Hickok, G
Saberi, K
AF Hsieh, I-Hui
Petrosyan, Agavni
Goncalves, Oscar F.
Hickok, Gregory
Saberi, Kourosh
TI Observer weighting of interaural cues in positive and negative envelope
slopes of amplitude-modulated waveforms
SO HEARING RESEARCH
LA English
DT Article
ID AUDITORY-NERVE FIBERS; SOUND LOCALIZATION; INFERIOR COLLICULUS;
HIGH-FREQUENCIES; CLICK-TRAINS; INTERCLICK INTERVAL; COMPLEX WAVEFORMS;
ECHO SUPPRESSION; RAMPED SINUSOIDS; BINAURAL BEATS
AB The auditory system can encode interaural delays in highpass-filtered complex sounds by phase locking to their slowly modulating envelopes. Spectrotemporal analysis of interaurally time-delayed highpass waveforms reveals the presence of a concomitant interaural level cue. The current study systematically investigated the contribution of time and concomitant level cues carried by positive and negative envelope slopes of a modified sinusoidally amplitude-modulated (SAM) high-frequency carrier. The waveforms were generated from concatenation of individual modulation cycles whose envelope peaks were extended by the desired interaural delay, allowing independent control of delays in the positive and negative modulation slopes. In experiment 1, thresholds were measured using a 2-interval forced-choice adaptive task for interaural delays in either the positive or negative modulation slopes. In a control condition, thresholds were measured for a standard SAM tone. In experiment 2, decision weights were estimated using a multiple-observation correlational method in a single-interval forced-choice task for interaural delays carried simultaneously by the positive, and independently, negative slopes of the modulation envelope. In experiment 3, decision weights were measured for groups of 3 modulation cycles at the start, middle, and end of the waveform to determine the influence of onset dominance or recency effects. Results were consistent across experiments: thresholds were equal for the positive and negative modulation slopes. Decision weights were positive and equal for the time cue in the positive and negative envelope slopes. Weights were also larger for modulations cycles near the waveform onset. Weights estimated for the concomitant interaural level cue were positive for the positive envelope slope and negative for the negative slope, consistent with exclusive use of time cues. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Hsieh, I-Hui] Natl Cent Univ, Inst Cognit Neurosci, Jhongli 32001, Taoyuan County, Taiwan.
[Petrosyan, Agavni; Goncalves, Oscar F.] Univ Minho, Sch Psychol, Neuropsychophysiol Lab CIPsi, Braga, Portugal.
[Hickok, Gregory; Saberi, Kourosh] Univ Calif Irvine, Dept Cognit Sci, Irvine, CA 92697 USA.
RP Hsieh, IH (reprint author), Natl Cent Univ, Inst Cognit Neurosci, Jhongli 32001, Taoyuan County, Taiwan.
EM ihsieh@ncu.edu.tw
RI Goncalves, Oscar/G-5278-2010
OI Goncalves, Oscar/0000-0003-2735-9155
FU National Science Council, Taiwan [NSC 98-2410-H-008-081-MY3, NIH
R01DC009659]
FX We thank Virginia M. Richards and Bruce G. Berg for helpful discussions.
We also thank Brian C. J. Moore and an anonymous reviewer for their
insightful comments on an earlier draft of the manuscript. Work
supported by grants from the National Science Council, Taiwan NSC
98-2410-H-008-081-MY3 and NIH R01DC009659.
CR Ashmead DH, 1999, J REHABIL RES DEV, V36, P313
BERG BG, 1989, J ACOUST SOC AM, V86, P1743, DOI 10.1121/1.398605
Bernstein LR, 1996, J ACOUST SOC AM, V99, P1670, DOI 10.1121/1.414689
Brown AD, 2010, J ACOUST SOC AM, V128, P332, DOI 10.1121/1.3436540
Brungart DS, 2005, J ACOUST SOC AM, V118, P3241, DOI 10.1121/1.2082557
Champoux F, 2009, EAR HEARING, V30, P377, DOI 10.1097/AUD.0b013e31819c3e84
CLIFTON RK, 1981, CHILD DEV, V52, P833, DOI 10.1111/j.1467-8624.1981.tb03121.x
CLIFTON RK, 1987, J ACOUST SOC AM, V82, P1834, DOI 10.1121/1.395802
Clifton RK, 2002, PERCEPT PSYCHOPHYS, V64, P180, DOI 10.3758/BF03195784
CROW G, 1980, HEARING RES, V3, P147, DOI 10.1016/0378-5955(80)90042-8
DEBOER E, 1978, J ACOUST SOC AM, V63, P115, DOI 10.1121/1.381704
DIVENYI PL, 1992, J ACOUST SOC AM, V91, P1078, DOI 10.1121/1.402634
DOMNITZ RH, 1973, J ACOUST SOC AM, V58, P510
Dreyer A, 2006, J NEUROPHYSIOL, V96, P2327, DOI 10.1152/jn.00326.2006
FEDDERSEN WE, 1957, J ACOUST SOC AM, V29, P988, DOI 10.1121/1.1909356
Freyman RL, 2010, J ACOUST SOC AM, V128, P320, DOI 10.1121/1.3436560
Freyman RL, 1997, J ACOUST SOC AM, V101, P1649, DOI 10.1121/1.418149
Grantham DW, 1996, J ACOUST SOC AM, V99, P1118, DOI 10.1121/1.414596
Hafter E. R., 1984, DYNAMIC ASPECTS NEOC, P425
HAFTER ER, 1983, J ACOUST SOC AM, V73, P644, DOI 10.1121/1.388956
HENNING GB, 1974, J ACOUST SOC AM, V55, P84, DOI 10.1121/1.1928135
HOLDSWORTH J, 1988, 2341 APU MED RES COU
Hsieh IH, 2010, J SPEECH LANG HEAR R, V53, P1417, DOI 10.1044/1092-4388(2010/09-0206)
Keen R, 2009, J ACOUST SOC AM, V125, P3243, DOI 10.1121/1.3097472
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
Lin T, 2004, J ACOUST SOC AM, V116, P405, DOI 10.1121/1.1753294
Lu T, 2001, J NEUROPHYSIOL, V85, P2364
MCFADDEN D, 1975, SCIENCE, V190, P394, DOI 10.1126/science.1179219
MEDDIS R, 1990, J ACOUST SOC AM, V87, P1813, DOI 10.1121/1.399379
Neuert V, 2001, HEARING RES, V159, P36, DOI 10.1016/S0378-5955(01)00318-5
NUETZEL JM, 1981, J ACOUST SOC AM, V69, P1112, DOI 10.1121/1.385690
NUETZEL JM, 1976, J ACOUST SOC AM, V60, P1339, DOI 10.1121/1.381227
Pressnitzer D, 2000, HEARING RES, V149, P155, DOI 10.1016/S0378-5955(00)00175-1
Rayleigh,, 1907, PHILOS MAG, V13, P214, DOI 10.1080/14786440709463595
Recio A, 1998, J ACOUST SOC AM, V103, P1972, DOI 10.1121/1.421377
REES A, 1983, HEARING RES, V10, P301, DOI 10.1016/0378-5955(83)90095-3
RICHARDS VM, 1994, J ACOUST SOC AM, V95, P423, DOI 10.1121/1.408336
SABERI K, 1995, NATURE, V374, P537, DOI 10.1038/374537a0
Saberi K, 1996, PERCEPT PSYCHOPHYS, V58, P1037, DOI 10.3758/BF03206831
Saberi K, 2003, J ACOUST SOC AM, V114, P420, DOI 10.1121/1.1578079
Saberi K, 1998, J ACOUST SOC AM, V103, P2551, DOI 10.1121/1.422776
Saberi K., 1997, BINAURAL SPATIAL HEA, P315
SABERI K, 1990, J ACOUST SOC AM, V88, P2639, DOI 10.1121/1.399984
SABERI K, 1995, J ACOUST SOC AM, V98, P1803, DOI 10.1121/1.413379
SABERI K, 1995, ACUSTICA, V81, P272
Sek A, 2010, J ACOUST SOC AM, V127, P2451, DOI 10.1121/1.3327798
Slaney M., 1998, 1998010 INT RES CORP
Stecker GC, 2002, J ACOUST SOC AM, V112, P1046, DOI 10.1121/1.1497366
Stecker GC, 2009, J ACOUST SOC AM, V125, P3914, DOI 10.1121/1.3124776
Stecker GC, 2010, J ACOUST SOC AM, V127, P3092, DOI 10.1121/1.3377088
Temchin AN, 2005, J NEUROPHYSIOL, V93, P3635, DOI 10.1152/jn.00885.2004
TOBIAS JV, 1959, J ACOUST SOC AM, V31, P1595, DOI 10.1121/1.1907665
WALLACH H, 1949, AM J PSYCHOL, V62, P315, DOI 10.2307/1418275
YIN TCT, 1990, J NEUROPHYSIOL, V64, P465
YOST WA, 1976, J ACOUST SOC AM, V60, P178, DOI 10.1121/1.381061
YOST WA, 1971, J ACOUST SOC AM, V50, P1526, DOI 10.1121/1.1912806
ZUREK PM, 1980, J ACOUST SOC AM, V67, P952, DOI 10.1121/1.383974
Zurek PM, 2003, PERCEPT PSYCHOPHYS, V65, P95, DOI 10.3758/BF03194786
NR 58
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2011
VL 277
IS 1-2
BP 143
EP 151
DI 10.1016/j.heares.2011.01.008
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 805KZ
UT WOS:000293726600017
PM 21272630
ER
PT J
AU Riecke, L
Micheyl, C
Vanbussel, M
Schreiner, CS
Mendelsohn, D
Formisano, E
AF Riecke, Lars
Micheyl, Christophe
Vanbussel, Mieke
Schreiner, Claudia S.
Mendelsohn, Daniel
Formisano, Elia
TI Recalibration of the auditory continuity illusion: Sensory and
decisional effects
SO HEARING RESEARCH
LA English
DT Article
ID HEARING ILLUSORY SOUNDS; SELECTIVE ADAPTATION; PERCEPTUAL
TRANSFORMATIONS; PSYCHOPHYSICAL EVIDENCE; SPEECH CATEGORIZATION;
PHONEMIC RESTORATION; STREAM SEGREGATION; NEURAL MECHANISMS; TONE
SEQUENCES; AWAKE MACAQUES
AB An interrupted sound can be perceived as continuous when noise masks the interruption, creating an illusion of continuity. Recent findings have shown that adaptor sounds preceding an ambiguous target sound can influence listeners' rating of target continuity. However, it remains unclear whether these aftereffects on perceived continuity influence sensory processes, decisional processes (i.e., criterion shifts), or both. The present study addressed this question. Results show that the target sound was more likely to be rated as 'continuous' when preceded by adaptors that were perceived as clearly discontinuous than when it was preceded by adaptors that were heard (illusorily or veridically) as continuous. Detection-theory analyses indicated that these contrastive aftereffects reflect a combination of sensory and decisional processes. The contrastive sensory aftereffect persisted even when adaptors and targets were presented to opposite ears, suggesting a neural origin in structures that receive binaural inputs. Finally, physically identical but perceptually ambiguous adaptors that were rated as 'continuous' induced more reports of target continuity than adaptors that were rated as 'discontinuous'. This assimilative aftereffect was purely decisional. These findings confirm that judgments of auditory continuity can be influenced by preceding events, and reveal that these aftereffects have both sensory and decisional components. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Riecke, Lars; Vanbussel, Mieke; Formisano, Elia] Maastricht Univ, Fac Psychol & Neurosci, Maastricht, Netherlands.
[Micheyl, Christophe] Univ Minnesota, Dept Psychol, Minneapolis, MN 55455 USA.
[Schreiner, Claudia S.] Res Ctr Julich, Inst Neurosci & Med, Julich, Germany.
[Mendelsohn, Daniel] Univ Western Ontario, Schulich Sch Med & Dent, London, ON N6A 3K7, Canada.
RP Riecke, L (reprint author), Maastricht Univ, Fac Psychol & Neurosci, Univ Singel 40, Maastricht, Netherlands.
EM l.riecke@maastrichtuniversity.nl
FU Netherlands Organization for Scientific Research (NWO) [05104020]; NIH
[R01 DC007657]
FX This work was supported by the Netherlands Organization for Scientific
Research (NWO) Cognitie programma Grant 05104020. The authors thank
Andrew Oxenham for useful discussions. Author CM is supported by an NIH
grant (R01 DC007657).
CR Aravamudhan R, 2008, J ACOUST SOC AM, V124, P1695, DOI 10.1121/1.2956482
Bartlett EL, 2005, J NEUROPHYSIOL, V94, P83, DOI 10.1152/jn.01124.2004
BASHFORD JA, 1987, PERCEPT PSYCHOPHYS, V42, P114, DOI 10.3758/BF03210499
BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289
BENNETT KB, 1984, PERCEPT PSYCHOPHYS, V35, P570, DOI 10.3758/BF03205955
Blake R., 1994, PERCEPTION, V3rd
Braaten RE, 1999, PSYCHOL SCI, V10, P162, DOI 10.1111/1467-9280.00125
BREGMAN AS, 1978, J EXP PSYCHOL HUMAN, V4, P380, DOI 10.1037//0096-1523.4.3.380
BREGMAN AS, 1977, CAN J PSYCHOL, V31, P151, DOI 10.1037/h0081658
Bregman AS., 1990, AUDITORY SCENE ANAL
Brosch M, 1997, J NEUROPHYSIOL, V77, P923
Brown GS, 2005, BEHAV RES METHODS, V37, P436, DOI 10.3758/BF03192712
CIOCCA V, 1987, PERCEPT PSYCHOPHYS, V42, P476, DOI 10.3758/BF03209755
CONDON CD, 1991, BEHAV NEUROSCI, V105, P416
Creelman C. D., 1991, DETECTION THEORY USE
Davis KA, 2005, JARO-J ASSOC RES OTO, V6, P280, DOI 10.1007/s10162-005-0008-5
DIEHL RL, 1978, J EXP PSYCHOL HUMAN, V4, P599, DOI 10.1037//0096-1523.4.4.599
EIMAS PD, 1973, COGNITIVE PSYCHOL, V4, P99, DOI 10.1016/0010-0285(73)90006-6
ELMAN JL, 1979, J ACOUST SOC AM, V65, P190, DOI 10.1121/1.382235
FECHNER G, 1960, ELEMENTS PSYCHOPHYSI
Frissen I, 2003, ACTA PSYCHOL, V113, P315, DOI 10.1016/S0001-6918(03)00043-X
Frissen I, 2005, ACTA PSYCHOL, V118, P93, DOI 10.1016/j.actpsy.2004.10.004
Gold JI, 2007, ANNU REV NEUROSCI, V30, P535, DOI 10.1146/annurev.neuro.29.051605.113038
Green D. M., 1966, SIGNAL DETECTION THE
GREEN GGR, 1974, J PHYSIOL-LONDON, V241, pP29
Heinrich A, 2008, J COGNITIVE NEUROSCI, V20, P1737, DOI 10.1162/jocn.2008.20069
Holt LL, 2005, PSYCHOL SCI, V16, P305, DOI 10.1111/j.0956-7976.2005.01532.x
Holt LL, 2006, J ACOUST SOC AM, V120, P2801, DOI 10.1121/1.2354071
HOUTGAST T, 1972, J ACOUST SOC AM, V51, P1885, DOI 10.1121/1.1913048
Husain FT, 2005, J COGNITIVE NEUROSCI, V17, P1275, DOI 10.1162/0898929055002472
JESTEADT W, 1977, J EXP PSYCHOL HUMAN, V3, P92, DOI 10.1037//0096-1523.3.1.92
Jones M, 2003, J EXP PSYCHOL LEARN, V29, P626, DOI 10.1037/0278-7393.29.4.626
Jones M, 2006, J EXP PSYCHOL LEARN, V32, P316, DOI 10.1037/0278-7393.32.3.316
King AJ, 2009, NAT NEUROSCI, V12, P698, DOI 10.1038/nn.2308
KLUENDER KR, 1992, PERCEPT PSYCHOPHYS, V51, P231, DOI 10.3758/BF03212249
Komatsu H, 2006, NAT REV NEUROSCI, V7, P220, DOI 10.1038/nrn1869
Malone BJ, 2002, J NEUROSCI, V22, P4625
Mapes-Riordan D, 1999, J ACOUST SOC AM, V106, P3506, DOI 10.1121/1.428203
MARKS LE, 1993, J EXP PSYCHOL HUMAN, V19, P227, DOI 10.1037//0096-1523.19.2.227
Micheyl C, 2003, J COGNITIVE NEUROSCI, V15, P747, DOI 10.1162/089892903322307456
Micheyl C, 2005, NEURON, V48, P139, DOI 10.1016/j.neuron.2005.08.039
Miller CT, 2001, NAT NEUROSCI, V4, P783, DOI 10.1038/90481
MILLER GA, 1950, J ACOUST SOC AM, V22, P167, DOI 10.1121/1.1906584
Morgan MJ, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000256
MORI S, 1995, PERCEPT PSYCHOPHYS, V57, P1065, DOI 10.3758/BF03205465
Pessoa L., 2003, FILLING IN PERCEPTUA
Petkov CI, 2007, NEURON, V54, P153, DOI 10.1016/j.neuron.2007.02.031
PETKOV CI, 2010, EVOLUTIONARY CONSERV
Petkov CI, 2003, J NEUROSCI, V23, P9155
PETZOLD P, 1981, J EXP PSYCHOL HUMAN, V7, P1371, DOI 10.1037//0096-1523.7.6.1371
Phillips DP, 2002, HEARING RES, V167, P192, DOI 10.1016/S0378-5955(02)00393-3
Phillips DP, 2005, HEARING RES, V202, P188, DOI [10.1016/j.heares.2004.11.001, 10.1016/j.heres.2004.11.001]
RANKIN KM, 1991, CHEM SENSES, V16, P617, DOI 10.1093/chemse/16.6.617
Recanzone GH, 2008, ANNU REV PSYCHOL, V59, P119, DOI 10.1146/annurev.psych.59.103006.093544
Riecke L, 2009, HEARING RES, V247, P71, DOI 10.1016/j.heares.2008.10.006
Riecke L, 2007, J NEUROSCI, V27, P12684, DOI 10.1523/JNEUROSCI.2713-07.2007
Riecke L, 2009, NEURON, V64, P550, DOI 10.1016/j.neuron.2009.10.016
SAMUEL AG, 1981, J EXP PSYCHOL GEN, V110, P474, DOI 10.1037/0096-3445.110.4.474
Samuel AG, 1997, COGNITIVE PSYCHOL, V32, P97, DOI 10.1006/cogp.1997.0646
Samuel AG, 1998, PERCEPT PSYCHOPHYS, V60, P503, DOI 10.3758/BF03206870
SAWUSCH JR, 1981, J EXP PSYCHOL HUMAN, V7, P408, DOI 10.1037//0096-1523.7.2.408
Scharf B, 2002, J ACOUST SOC AM, V112, P807, DOI 10.1121/1.1500755
SCHELLENBERG EG, 1994, PERCEPT PSYCHOPHYS, V56, P472, DOI 10.3758/BF03206738
SCHIFFERSTEIN HNJ, 1992, PERCEPT PSYCHOPHYS, V52, P243, DOI 10.3758/BF03209142
SCHREINER C, 1980, HEARING RES, V3, P265, DOI 10.1016/0378-5955(80)90022-2
Schweinberger SR, 2008, CURR BIOL, V18, P684, DOI 10.1016/j.cub.2008.04.015
Seeba F, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005974
Shahin AJ, 2009, NEUROIMAGE, V44, P1133, DOI 10.1016/j.neuroimage.2008.09.045
SHEPARD RN, 1957, PSYCHOMETRIKA, V22, P325, DOI 10.1007/BF02288967
Shimojo S, 2001, SCIENCE, V293, P1677, DOI 10.1126/science.1060161
SIMON HJ, 1978, J ACOUST SOC AM, V64, P1338, DOI 10.1121/1.382101
Sivonen P, 2006, BRAIN RES, V1121, P177, DOI 10.1016/j.brainres.2006.08.123
Snyder JS, 2009, PSYCHOPHYSIOLOGY, V46, P1208, DOI 10.1111/j.1469-8986.2009.00870.x
Snyder JS, 2009, J EXP PSYCHOL HUMAN, V35, P1232, DOI 10.1037/a0012741
Snyder JS, 2008, J EXP PSYCHOL HUMAN, V34, P1007, DOI 10.1037/0096-1523.34.4.1007
Stewart N, 2002, J EXP PSYCHOL LEARN, V28, P3, DOI 10.1037//0278-7393.28.1.3
Sugita Y, 1997, NEUROREPORT, V8, P1155, DOI 10.1097/00001756-199703240-00019
TANSLEY BW, 1983, J ACOUST SOC AM, V74, P765, DOI 10.1121/1.389864
THURLOW W, 1957, AM J PSYCHOL, V70, P653, DOI 10.2307/1419466
TREISMAN M, 1984, J EXP PSYCHOL GEN, V113, P443, DOI 10.1037/0096-3445.113.3.443
Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032
Ulanovsky N, 2004, J NEUROSCI, V24, P10440, DOI 10.1523/JNEUROSCI.1905-04.2004
VERPLANCK WS, 1952, J EXP PSYCHOL, V44, P273, DOI 10.1037/h0054948
VERSCHUURE J, 1983, PERCEPT PSYCHOPHYS, V33, P232, DOI 10.3758/BF03202859
WAKEFIELD GH, 1984, J ACOUST SOC AM, V75, P1588, DOI 10.1121/1.390808
WARD LM, 1971, PERCEPT PSYCHOPHYS, V9, P73, DOI 10.3758/BF03213031
Warren R. M., 1999, AUDITORY PERCEPTION
WARREN RM, 1970, SCIENCE, V167, P392, DOI 10.1126/science.167.3917.392
WARREN RM, 1972, SCIENCE, V176, P1149, DOI 10.1126/science.176.4039.1149
Werner-Reiss U, 2006, EXP BRAIN RES, V168, P272, DOI 10.1007/s00221-005-0184-x
Wickens Thomas, 2002, ELEMENTARY SIGNAL DE
NR 91
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2011
VL 277
IS 1-2
BP 152
EP 162
DI 10.1016/j.heares.2011.01.013
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 805KZ
UT WOS:000293726600018
PM 21276844
ER
PT J
AU Couchman, K
Garrett, A
Deardorff, AS
Rattay, F
Resatz, S
Fyffe, R
Walmsley, B
Leao, RN
AF Couchman, Kiri
Garrett, Andrew
Deardorff, Adam S.
Rattay, Frank
Resatz, Susanne
Fyffe, Robert
Walmsley, Bruce
Leao, Richardson N.
TI Lateral superior olive function in congenital deafness
SO HEARING RESEARCH
LA English
DT Article
ID AUDITORY BRAIN-STEM; HUMAN COCHLEAR NEURON; GLYCINERGIC TRANSMISSION;
SYNAPTIC TRANSMISSION; COMPUTATIONAL MODEL; COTRANSPORTER KCC2;
CL-REGULATION; DN/DN MOUSE; MICE; CELLS
AB The development of cochlear ilmplants for the treatment of patients with profound hearing loss has advanced considerably in the last few decades, particularly in the field of speech comprehension. However, attempts to provide not only sound decoding but also spatial hearing are limited by our understanding of circuit adaptations in the absence of auditory input. Here we investigate the lateral superior olive (LSO), a nucleus involved in interaural level difference (ILD) processing in the auditory brainstem using a mouse model of congenital deafness (the dn/dn mouse). An electrophysiological investigation of principal neurons of the LSO from the dn/dn mouse reveals a higher than normal proportion of single spiking (SS) neurons, and an increase in the hyperpolarisation-activated I(h) current. However, inhibitory glycinergic input to the LSO appears to develop normally both pre and postsynaptically in dn/dn mice despite the absence of auditory nerve activity. In combination with previous electrophysiological findings from the dn/do mouse, we also compile a simple Hodgkin and Huxley circuit model in order to investigate possible computational deficits in ILD processing resulting from congenital hearing loss. We find that the predominance of SS neurons in the dn/dn LSO may compensate for upstream modifications and help to maintain a functioning ILD circuit in the dn/dn mouse. This could have clinical repercussions on the development of stimulation paradigms for spatial hearing with cochlear implants. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Leao, Richardson N.] Uppsala Univ, Dept Neurosci, Neurodynam Lab, S-75124 Uppsala, Sweden.
[Couchman, Kiri; Garrett, Andrew; Walmsley, Bruce] Australian Natl Univ, John Curtin Sch Med Res, Div Neurosci, Canberra, ACT 2601, Australia.
[Deardorff, Adam S.; Fyffe, Robert] Wright State Univ, Boonshoft Sch Med, Dayton, OH 45435 USA.
[Rattay, Frank; Resatz, Susanne] Vienna Univ Technol, TU BIOMED, A-1040 Vienna, Austria.
[Leao, Richardson N.] Univ Fed Rio Grande do Norte, Inst Brain, BR-59072970 Natal, RN, Brazil.
RP Leao, RN (reprint author), Uppsala Univ, Dept Neurosci, Neurodynam Lab, Husargatan 3, S-75124 Uppsala, Sweden.
EM Richardson.Leao@neuro.uu.se
RI Couchman, Kiri/B-5302-2013; Rattay, Frank/A-2231-2015
OI Couchman, Kiri/0000-0001-6805-0002; Rattay, Frank/0000-0002-2819-8827
FU International Human Frontier Science Program Organisation; Kjell och
Marta Beijers Foundation
FX RNL is supported by a long-term fellowship from the International Human
Frontier Science Program Organisation and a grant from the Kjell och
Marta Beijers Foundation.
CR Aguado F, 2003, DEVELOPMENT, V130, P1267, DOI 10.1242/dev.00351
ALVAREZ AJ, 1997, J COMP NEUROL, V379, P150
Amini B, 1999, J NEUROPHYSIOL, V82, P2249
Awatramani GB, 2005, J NEUROPHYSIOL, V93, P819, DOI 10.1152/jn.00798.2004
Barnes-Davies M, 2004, EUR J NEUROSCI, V19, P325, DOI 10.1111/j.1460-9568.2003.03133.x
BOCK GR, 1982, BRAIN RES, V239, P608, DOI 10.1016/0006-8993(82)90536-4
Boulanger L, 1999, NAT NEUROSCI, V2, P346
BRUNSOBECHTOLD JK, 1994, HEARING RES, V77, P99, DOI 10.1016/0378-5955(94)90257-7
CANT NB, 1984, J COMP NEUROL, V227, P63, DOI 10.1002/cne.902270108
Clements JD, 1997, BIOPHYS J, V73, P220
DURHAM D, 1989, HEARING RES, V43, P39, DOI 10.1016/0378-5955(89)90057-9
Ehrlich I, 1999, J PHYSIOL-LONDON, V520, P121, DOI 10.1111/j.1469-7793.1999.00121.x
Geiman Eric J., 2000, Journal of Comparative Neurology, V426, P130, DOI 10.1002/1096-9861(20001009)426:1<130::AID-CNE9>3.0.CO;2-7
Geiman EJ, 2002, J COMP NEUROL, V444, P275, DOI 10.1002/cne.10148
Graham BP, 2001, NEUROCOMPUTING, V38, P37, DOI 10.1016/S0925-2312(01)00476-3
Hanson MG, 2004, NEURON, V43, P687, DOI 10.1016/j.neuron.2004.08.018
HELFERT RH, 1992, J COMP NEUROL, V323, P305, DOI 10.1002/cne.903230302
Kamiya K, 2001, BRAIN RES, V901, P296, DOI 10.1016/S0006-8993(01)02300-9
Kotak VC, 1998, J NEUROSCI, V18, P4646
Kotak VC, 2005, J NEUROSCI, V25, P3908, DOI 10.1523/JNEUROSCI.5169-04.2005
Kurima K, 2002, NAT GENET, V30, P277, DOI 10.1038/ng842
Leao KE, 2006, J PHYSIOL-LONDON, V576, P849, DOI 10.1113/jphysiol.2006.114702
Leao RN, 2006, EUR J NEUROSCI, V24, P1137, DOI 10.1111/j.1460-9568.2006.04982.x
Leao RN, 2006, J PHYSIOL-LONDON, V571, P563, DOI 10.1113/jphysiol.2005.098780
Leao RN, 2004, J NEUROPHYSIOL, V91, P1006, DOI 10.1152/jn.00771.2003
Leao RN, 2005, P ROY SOC B-BIOL SCI, V272, P2551, DOI 10.1098/rspb.2005.3258
Leao RN, 2004, J PHYSIOL-LONDON, V559, P25, DOI 10.1113/jphysiol.2004.067421
Lim R, 1999, J PHYSIOL-LONDON, V516, P505, DOI 10.1111/j.1469-7793.1999.0505v.x
Marcotti W, 2006, J PHYSIOL-LONDON, V574, P677, DOI 10.1113/jphysiol.2005.095661
Moody WJ, 2005, PHYSIOL REV, V85, P883, DOI 10.1152/physrev.00017.2004
Noh J, 2010, NAT NEUROSCI, V13, P232, DOI 10.1038/nn.2478
Nopp P, 2004, EAR HEARING, V25, P205, DOI 10.1097/01.AUD.0000130793.20444.50
Oleskevich S, 2004, J PHYSIOL-LONDON, V560, P709, DOI 10.1113/jphysiol.2004.066652
Oleskevich S, 2002, J PHYSIOL-LONDON, V540, P447, DOI 10.1113/jphysiol.2001.013821
Oleskevich S, 1999, J NEUROPHYSIOL, V82, P312
Otsu Y, 2004, J NEUROSCI, V24, P420, DOI 10.1523/JNEUROSCI.4452-03.2004
PUJOL R, 1983, HEARING RES, V12, P57, DOI 10.1016/0378-5955(83)90118-1
RATTAY F, 1993, IEEE T BIO-MED ENG, V40, P1201, DOI 10.1109/10.250575
Rattay F, 2001, HEARING RES, V153, P64, DOI 10.1016/S0378-5955(00)00257-4
Rattay F, 1997, ARTIF ORGANS, V21, P213
Rattay F, 2001, HEARING RES, V153, P43, DOI 10.1016/S0378-5955(00)00256-2
Rivera C, 2004, J NEUROSCI, V24, P4683, DOI 10.1523/JNEUROSCI.5265-03.2004
ROTHMAN JS, 1993, J NEUROPHYSIOL, V70, P2562
RYALS BM, 1991, AM J OTOL, V12, P22
Shibata S, 2004, NEUROSCI RES, V48, P211, DOI 10.1016/j.neures.2003.10.011
Smith AJ, 2000, J PHYSIOL-LONDON, V529, P681, DOI 10.1111/j.1469-7793.2000.00681.x
STEEL KP, 1980, NATURE, V288, P159, DOI 10.1038/288159a0
Vanhatalo S, 2005, EUR J NEUROSCI, V22, P2799, DOI 10.1111/j.1460-9568.2005.04459.x
van Hoesel RJM, 2003, J ACOUST SOC AM, V113, P1617, DOI 10.1121/1.1539520
Verheugen JAH, 1999, J NEUROSCI, V19, P2546
Walmsley B, 2006, J PHYSIOL-LONDON, V572, P313, DOI 10.1113/jphysiol.2006.104851
WU SH, 1995, J NEUROPHYSIOL, V73, P256
Yang HM, 2004, INT J PEDIATR OTORHI, V68, P1185, DOI 10.1016/j.ijporl.2004.04.011
YIN TC, 2002, INTEGRATIVE FUNCTION, V15, P431
Youssoufian M, 2008, J COMP NEUROL, V506, P442, DOI 10.1002/cne.21566
Zacksenhouse M, 1998, J NEUROPHYSIOL, V79, P3098
NR 56
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2011
VL 277
IS 1-2
BP 163
EP 175
DI 10.1016/j.heares.2011.01.012
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 805KZ
UT WOS:000293726600019
PM 21276842
ER
PT J
AU Nishimura, T
Okayasu, T
Uratani, Y
Fukuda, F
Saito, O
Hosoi, H
AF Nishimura, Tadashi
Okayasu, Tadao
Uratani, Yuka
Fukuda, Fumi
Saito, Osamu
Hosoi, Hiroshi
TI Peripheral perception mechanism of ultrasonic hearing
SO HEARING RESEARCH
LA English
DT Article
ID BONE-CONDUCTED ULTRASOUND; EVOKED MYOGENIC POTENTIALS; IMPAIRED
LISTENERS; AUDITORY-CORTEX; SPEECH; MASKING
AB Ultrasound can be perceived by bone conduction, and its characteristics differ from those of air-conducted audible sound (ACAS) in some respects. Despite many studies on ultrasonic hearing, the details have not yet been clarified. In this study, to elucidate the perception mechanism, the masking of bone-conducted ultrasound (BCU) produced by ACAS and the sensitivity of BCU in hearing impaired subjects were evaluated. We found that BCU was masked by high frequency ACAS, especially in the frequency range of 10-14 kHz. The most effective masker frequency depended on masker intensity. For hearing impaired subjects, the pure tone thresholds at 1-8 kHz and the maximum audible frequencies at cut-off intensities of 70-100 dB HL were significantly associated with the BCU threshold (p < 0.01 or p < 0.05). No subjects with estimated total loss of the inner hair cell system in the cochlear basal turn could hear BCU. These results suggest the peripheral perceptual region to be located in the cochlea. The results of masking show the faster excitation spread to the lower frequency range, depending on the intensity. This faster excitation spread may be due to nonlinearity in cochlear mechanics, which may work even without cochlear amplifier, and induce unique characteristics of BCU. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Nishimura, Tadashi; Okayasu, Tadao; Uratani, Yuka; Fukuda, Fumi; Saito, Osamu; Hosoi, Hiroshi] Nara Med Univ, Dept Otolaryngol & Head & Neck Surg, Nara 6348522, Japan.
RP Nishimura, T (reprint author), Nara Med Univ, Dept Otolaryngol & Head & Neck Surg, 840 Shijo Cho Kashihara, Nara 6348522, Japan.
EM t-nishim@naramed-u.ac.jp
FU Japan Society for the Promotion of Science (JSPS) [20791217]
FX This study was supported by Grant-in-Aid for Young Scientists (B)
(20791217) from Japan Society for the Promotion of Science (JSPS). We
thank anonymous reviewers for assistance and helpful comments on an
earlier version of this paper.
CR BELLUCCI RICHARD J., 1962, ANN OTOL RHINOL AND LARYNGOL, V71, P719
COLEBATCH JG, 1994, J NEUROL NEUROSUR PS, V57, P190, DOI 10.1136/jnnp.57.2.190
CORSO JF, 1963, J ACOUST SOC AM, V35, P1738, DOI 10.1121/1.1918804
DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3
DEATHERAGE BH, 1954, J ACOUST SOC AM, V26, P582, DOI 10.1121/1.1907379
DIEROFF HG, 1975, ARCH OTO-RHINO-LARYN, V209, P277, DOI 10.1007/BF00456548
DOBIE RA, 1992, SCIENCE, V255, P1584, DOI 10.1126/science.1549785
DOYLE PJ, 1991, J OTOLARYNGOL, V20, P204
EGAN JP, 1950, J ACOUST SOC AM, V22, P622, DOI 10.1121/1.1906661
Fujimoto K, 2005, HEARING RES, V204, P210, DOI 10.1016/j.heares.2005.02.004
GAVREAU V, 1948, CR HEBD ACAD SCI, V226, P2053
HAEFF AV, 1963, SCIENCE, V139, P590, DOI 10.1126/science.139.3555.590
Harris FP, 2002, OTOACOUSTIC EMISSION, P213
Hosoi H, 1998, LANCET, V351, P496, DOI 10.1016/S0140-6736(05)78683-9
Imaizumi S, 2001, NEUROREPORT, V12, P583, DOI 10.1097/00001756-200103050-00030
LENHARDT ML, 1991, SCIENCE, V253, P82, DOI 10.1126/science.2063208
NELSON DA, 1991, J SPEECH HEAR RES, V34, P1233
Nishimura T, 2002, NEUROSCI LETT, V327, P119, DOI 10.1016/S0304-3940(02)00409-3
NISHIMURA T, 2009, ACTA OTO-LARYNGOL, V562, P28
Nishimura T, 2003, HEARING RES, V175, P171, DOI 10.1016/S0378-5955(02)00735-9
Noordhoek IM, 2000, J ACOUST SOC AM, V107, P1685, DOI 10.1121/1.428452
OHYAMA K, 1987, ACTA OTO-LARYNGOL, P73
Okamoto Y, 2005, HEARING RES, V208, P107, DOI 10.1016/j.heares.2005.05.007
Ozeki H, 1999, ORL J OTO-RHINO-LARY, V61, P80, DOI 10.1159/000027646
PUMPHREY RJ, 1950, NATURE, V166, P571, DOI 10.1038/166571b0
ROBERTSON DD, 1995, J OTOLARYNGOL, V24, P3
Russell IJ, 1997, P NATL ACAD SCI USA, V94, P2660, DOI 10.1073/pnas.94.6.2660
SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1
STELMACHOWICZ PG, 1987, J ACOUST SOC AM, V81, P1881, DOI 10.1121/1.394752
Wegel R. L., 1932, ANN OTO RHINOL LARYN, V41, P740
Yamashita A, 2010, NEUROREPORT, V21, P119, DOI 10.1097/WNR.0b013e328334f196
YAMASHITA A, 2009, ACTA OTO-LARYNGOL, V562, P34
Yamashita A, 2008, NEUROSCI LETT, V438, P260, DOI 10.1016/j.neulet.2008.03.086
NR 33
TC 7
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2011
VL 277
IS 1-2
BP 176
EP 183
DI 10.1016/j.heares.2011.01.004
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 805KZ
UT WOS:000293726600020
PM 21238563
ER
PT J
AU Shen, HY
Lin, ZY
Lei, DB
Han, J
Ohlemiller, KK
Bao, JX
AF Shen, Haiyan
Lin, Zhaoyu
Lei, Debin
Han, Josiah
Ohlemiller, Kevin K.
Bao, Jianxin
TI Old mice lacking high-affinity nicotine receptors resist acoustic trauma
SO HEARING RESEARCH
LA English
DT Article
ID INDUCED HEARING-LOSS; GUINEA-PIG COCHLEA; INNER-EAR;
GLUCOCORTICOID-RECEPTORS; CHOLINERGIC-RECEPTORS; AUDITORY-SENSITIVITY;
MEDIATED PROTECTION; MAMMALIAN COCHLEA; RESTRAINT STRESS; MOUSE COCHLEA
AB There is presently no clearly effective preventative medication against noise-induced hearing loss (NIHL). However, negative feedback systems that presumably evolved to modulate the sensitivity of the organ of Corti may incidentally confer protection. One feedback system implicated in protection from NIHL involves synaptic connections between the lateral olivocochlear efferent terminals and the afferent fibers of spiral ganglion neurons (SGNs). These connections operate via high-affinity nicotinic acetylcholine receptors containing the beta 2 subunit. We unexpectedly observed protection from NIHL in 9-month old knockout mice lacking the beta 2 subunit (beta 2(-/-)); however, the same protection was not observed in 2-month old beta 2(-/-) mice. This enigmatic observation led to the discovery that protection from acoustic trauma in older beta 2(-/-) mice is mainly mediated by an age-related increase of corticosterone, not disruption of efferent cholinergic transmission. Significant protection of inner hair cells after acoustic trauma in beta 2(-/-) mice was linked to the activation of glucocorticoid signaling pathways. However, significant loss of SGNs was observed in animals with chronically high systemic levels of corticosterone. These results suggested a "double-edge sword" nature of glucocorticoid signaling in neuronal protection, and a need for caution regarding when to apply synthetic glucocorticoid drugs to treat neural injury such as accompanies acoustic trauma. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Shen, Haiyan; Lin, Zhaoyu; Lei, Debin; Han, Josiah; Ohlemiller, Kevin K.; Bao, Jianxin] Washington Univ, Dept Otolaryngol, Fay & Carl Simons Ctr Hearing Res, St Louis, MO 63110 USA.
[Shen, Haiyan; Lin, Zhaoyu] Nanjing Univ, Model Anim Res Ctr, Nanjing 210061, Peoples R China.
[Bao, Jianxin] Washington Univ, Ctr Aging, Sch Med, St Louis, MO 63110 USA.
RP Bao, JX (reprint author), Washington Univ, Dept Otolaryngol, Fay & Carl Simons Ctr Hearing Res, 4560 Clayton Ave, St Louis, MO 63110 USA.
EM jbao@wustl.edu
FU National Institute on Deafness and Other Communication Disorders
[R21DC010489, P30DC004665]; National Institute on Aging [R01AG024250]
FX We are grateful to Drs. Charles Liberman and Stephane Maison for
valuable suggestions and sharing preliminary data. We thank Drs. Barbara
Bohne and Nobuo Suga for critical reading of the manuscript. Research
was supported by the National Institute on Deafness and Other
Communication Disorders (R21DC010489; P30DC004665) and the National
Institute on Aging (R01AG024250).
CR Bao JX, 2005, J NEUROSCI, V25, P3041, DOI 10.1523/JNEUROSCI.5277-04.2005
Canlon B, 2007, HEARING RES, V226, P61, DOI 10.1016/j.heares.2006.05.009
DALDIN C, 1995, EUR ARCH OTO-RHINO-L, V252, P270
Darrow KN, 2007, J NEUROPHYSIOL, V97, P1775, DOI 10.1152/jn.00955.2006
*DHHS, 2009, HLTH PEOPL 2010 UND
Drescher DG, 1995, COMP BIOCHEM PHYS C, V112, P267, DOI 10.1016/0742-8413(95)02020-9
Elgoyhen AB, 2009, BIOCHEM PHARMACOL, V78, P712, DOI 10.1016/j.bcp.2009.05.023
Erichsen S, 2001, HEARING RES, V160, P37, DOI 10.1016/S0378-5955(01)00317-3
EYBALIN M, 1993, PHYSIOL REV, V73, P309
Gaddnas H, 2000, BEHAV BRAIN RES, V113, P65, DOI 10.1016/S0166-4328(00)00201-1
Hirose Y, 2007, NEUROSCI LETT, V413, P63, DOI 10.1016/j.neulet.2006.11.029
HOUSLEY GD, 1994, HEARING RES, V75, P47, DOI 10.1016/0378-5955(94)90054-X
HUGHES J, 1993, CLIN EXP DERMATOL, V18, P373, DOI 10.1111/j.1365-2230.1993.tb02222.x
Jin DX, 2009, BRAIN RES, V1277, P3, DOI 10.1016/j.brainres.2009.02.017
KIRCH DG, 1992, J PHARM PHARMACOL, V44, P89
Kopke R, 2005, ACTA OTO-LARYNGOL, V125, P235, DOI 10.1080/00016480410023038
Kujawa SG, 1997, J NEUROPHYSIOL, V78, P3095
Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009
LANDFIELD PW, 1978, SCIENCE, V202, P1098, DOI 10.1126/science.715460
Lefebvre PP, 2002, AUDIOL NEURO-OTOL, V7, P165, DOI 10.1159/000058304
Le Prell CG, 2007, HEARING RES, V226, P22, DOI 10.1016/j.heares.2006.10.006
Lynch ED, 2005, DRUG DISCOV TODAY, V10, P1291, DOI 10.1016/S1359-6446(05)03561-0
Maison SF, 2007, J NEUROPHYSIOL, V97, P3269, DOI 10.1152/jn.00067.2007
MCCABE BF, 1979, ANN OTO RHINOL LARYN, V88, P585
McEwen BS, 2008, EUR J PHARMACOL, V583, P174, DOI [10.1016/j.ejphar.2007.11.071, 10.1016/j.ejphar.2007.11.07t]
Morley BJ, 1998, MOL BRAIN RES, V53, P78, DOI 10.1016/S0169-328X(97)00272-6
Nadol JB, 1996, AM J OTOL, V17, P312
Niu XZ, 2002, ADV OTO-RHINO-LARYNG, V59, P96
Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X
Ohlemiller KK, 2000, HEARING RES, V149, P239, DOI 10.1016/S0378-5955(00)00191-X
Ohlemiller KK, 2008, HEARING RES, V245, P5, DOI 10.1016/j.heares.2008.08.007
Paz Z, 2004, AUDIOL NEURO-OTOL, V9, P363, DOI 10.1159/000081409
Phillips JM, 2007, NEUROSCIENCE, V144, P1314, DOI 10.1016/j.neuroscience.2006.11.003
Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037
Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3
Quaranta A, 1998, Scand Audiol Suppl, V48, P75
Rabenstein RL, 2006, PSYCHOPHARMACOLOGY, V189, P395, DOI 10.1007/s00213-006-0568-z
RAJAN R, 1988, J NEUROPHYSIOL, V60, P569
REITER ER, 1995, J NEUROPHYSIOL, V73, P506
REUL JMHM, 1985, ENDOCRINOLOGY, V117, P2505
ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X
Ruel J, 2001, EUR J NEUROSCI, V14, P977, DOI 10.1046/j.0953-816x.2001.01721.x
SAPOLSKY RM, 1986, J NEUROSCI, V6, P2240
Shen HY, 2007, HEARING RES, V226, P52, DOI 10.1016/j.heares.2006.12.011
Shimazaki T, 2002, ANN OTO RHINOL LARYN, V111, P1133
Tahera Y, 2006, ENDOCRINOLOGY, V147, P4430, DOI 10.1210/en.2006-0260
Tahera Y, 2006, J NEUROSCI RES, V83, P1066, DOI 10.1002/jnr.20795
Takahashi K, 1996, ACTA OTO-LARYNGOL, V116, P209, DOI 10.3109/00016489609137825
Takemura K, 2004, HEARING RES, V196, P58, DOI 10.1016/j.heares.2004.06.003
Wang Y, 2002, HEARING RES, V165, P96, DOI 10.1016/S0378-5955(02)00289-7
Yoshida N, 1999, J NEUROSCI, V19, P10116
Zoli M, 1999, EMBO J, V18, P1235, DOI 10.1093/emboj/18.5.1235
NR 52
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2011
VL 277
IS 1-2
BP 184
EP 191
DI 10.1016/j.heares.2011.01.009
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 805KZ
UT WOS:000293726600021
PM 21272629
ER
PT J
AU Buchholz, JM
AF Buchholz, Joerg M.
TI A quantitative analysis of spectral mechanisms involved in auditory
detection of coloration by a single wall reflection
SO HEARING RESEARCH
LA English
DT Article
ID PHASE SENSITIVITY; MODEL STRUCTURE; COMPUTER-MODEL; VIRTUAL PITCH;
COMPLEX TONES; MASKING MODEL; NOISE; PERCEPTION; PERIPHERY; FREQUENCY
AB Coloration detection thresholds (CDTs) were measured for a single reflection as a function of spectral content and reflection delay for diotic stimulus presentation. The direct sound was a 320-ms long burst of bandpass-filtered noise with varying lower and upper cut-off frequencies. The resulting threshold data revealed that: (I) sensitivity decreases with decreasing bandwidth and increasing reflection delay and (2) high-frequency components contribute less to detection than low-frequency components. The auditory processes that may be involved in coloration detection (CD) are discussed in terms of a spectrum-based auditory model, which is conceptually similar to the pattern-transformation model of pitch (Wightman, 1973). Hence, the model derives an auto-correlation function of the input stimulus by applying a frequency analysis to an auditory representation of the power spectrum. It was found that, to successfully describe the quantitative behavior of the CDT data, three important mechanisms need to be included: (1) auditory bandpass filters with a narrower bandwidth than classic Gammatone filters, the increase in spectral resolution was here linked to cochlear suppression, (2) a spectral contrast enhancement process that reflects neural inhibition mechanisms, and (3) integration of information across auditory frequency bands. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Buchholz, Joerg M.] Natl Acoust Labs, Chatswood, NSW 2067, Australia.
[Buchholz, Joerg M.] Macquarie Univ, Dept Linguist Audiol, N Ryde, NSW 2109, Australia.
RP Buchholz, JM (reprint author), Natl Acoust Labs, 126 Greville St, Chatswood, NSW 2067, Australia.
EM Jorg.Buchholz@nal.gov.au
CR ANDO Y, 1982, J ACOUST SOC AM, V71, P616, DOI 10.1121/1.387534
ATAL BS, 1962, 4 INT C AC COP
BILSEN FA, 1970, J ACOUST SOC AM, V47, P469, DOI 10.1121/1.1911916
BILSEN FA, 1969, ACUSTICA, V22, P63
Blauert J., 1997, SPATIAL HEARING PSYC
Bradley JS, 2003, J ACOUST SOC AM, V113, P3233, DOI 10.1121/1.1570439
Breebaart J, 2001, J ACOUST SOC AM, V110, P1074, DOI 10.1121/1.1383297
Buchholz JM, 2007, HEARING RES, V232, P52, DOI 10.1016/j.heares.2007.06.008
Buchholz JM, 2004, ACTA ACUST UNITED AC, V90, P873
BUUS S, 1986, J ACOUST SOC AM, V80, P1646, DOI 10.1121/1.394329
COHEN MA, 1995, J ACOUST SOC AM, V98, P862, DOI 10.1121/1.413512
Dau T, 1996, J ACOUST SOC AM, V99, P3615, DOI 10.1121/1.414959
de Cheveigne A., 2005, PITCH NEURAL CODING, P169
DURLACH NI, 1986, J ACOUST SOC AM, V80, P63, DOI 10.1121/1.394084
Eddins DA, 2007, J ACOUST SOC AM, V121, P363, DOI 10.1121/1.2382347
GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
GOLDSTEI.JL, 1973, J ACOUST SOC AM, V54, P1496, DOI 10.1121/1.1914448
Green D. M., 1988, PROFILE ANAL AUDITOR
HAAS H, 1951, ACUSTICA, V1, P49
Hant JJ, 1997, J ACOUST SOC AM, V101, P2789, DOI 10.1121/1.418565
Hant JJ, 2003, SPEECH COMMUN, V40, P291, DOI 10.1016/S0167-6393(02)00068-7
Hartmann W. M., 1998, SIGNALS SOUND SENSAT
KAERNBACH C, 1991, PERCEPT PSYCHOPHYS, V49, P227, DOI 10.3758/BF03214307
KATES JM, 1985, J ACOUST SOC AM, V77, P1529, DOI 10.1121/1.391995
LICKLIDER JCR, 1951, EXPERIENTIA, V7, P128, DOI 10.1007/BF02156143
Litovsky RY, 1999, J ACOUST SOC AM, V106, P1633, DOI 10.1121/1.427914
MEDDIS R, 1991, J ACOUST SOC AM, V89, P2883, DOI 10.1121/1.400726
MEDDIS R, 1991, J ACOUST SOC AM, V89, P2866, DOI 10.1121/1.400725
Moore BCJ, 2004, J AUDIO ENG SOC, V52, P900
Moore B.C.J., 1986, FREQUENCY SELECTIVIT
Oxenham AJ, 2003, JARO-J ASSOC RES OTO, V4, P541, DOI 10.1007/s10162-002-3058-y
Patterson R.D., 1988, 2341 APU
Pickles JO, 2008, INTRO PHYSL HEARING
Piechowiak T, 2007, J ACOUST SOC AM, V121, P2111, DOI 10.1121/1.2534227
Plack C. J., 2005, PITCH NEURAL CODING
Plack CJ, 1998, J ACOUST SOC AM, V103, P1598, DOI 10.1121/1.421294
Plack C.J., 2005, PITCH NEURAL CODING, P7
Ruggero MA, 2005, P NATL ACAD SCI USA, V102, P18614, DOI 10.1073/pnas.0509323102
SALOMONS AM, 1995, THESIS U DELFT NETHE
Shera CA, 2002, P NATL ACAD SCI USA, V99, P3318, DOI 10.1073/pnas.032675099
TERHARDT E, 1974, J ACOUST SOC AM, V55, P1061, DOI 10.1121/1.1914648
WIGHTMAN FL, 1973, J ACOUST SOC AM, V54, P407, DOI 10.1121/1.1913592
Yost WA, 1996, J ACOUST SOC AM, V100, P3329, DOI 10.1121/1.416973
YOST WA, 1982, J ACOUST SOC AM, V72, P416, DOI 10.1121/1.388094
ZUREK PM, 1979, J ACOUST SOC AM, V66, P1750, DOI 10.1121/1.383648
Zwicker E, 1999, PSYCHOACOUSTICS FACT
NR 46
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2011
VL 277
IS 1-2
BP 192
EP 203
DI 10.1016/j.heares.2011.01.002
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 805KZ
UT WOS:000293726600022
PM 21236325
ER
PT J
AU Dai, CK
Fridman, GY
Della Santina, CC
AF Dai, Chenkai
Fridman, Gene Y.
Della Santina, Charles C.
TI Effects of vestibular prosthesis electrode implantation and stimulation
on hearing in rhesus monkeys
SO HEARING RESEARCH
LA English
DT Article
ID HIGH-ACCELERATION ROTATIONS; SEMICIRCULAR CANAL PROSTHESIS; PRODUCT
OTOACOUSTIC EMISSIONS; VESTIBULOOCULAR REFLEX; SQUIRREL-MONKEY;
MACACA-MULATTA; ELECTRICAL-STIMULATION; RESPONSES; LABYRINTHECTOMY
AB To investigate the effects of vestibular prosthesis electrode implantation and activation on hearing in rhesus monkeys, we measured auditory brainstem responses (ABR) and distortion product otoacoustic emissions (DPOAE) in four rhesus monkeys before and after unilateral implantation of vestibular prosthesis electrodes in each of 3 left semicircular canals (SCC). Each of the 3 left SCCs were implanted with electrodes via a transmastoid approach. Right ears, which served as controls, were not surgically manipulated. Hearing tests were conducted before implantation (BI) and then 4 weeks post-implantation both without electrical stimulation (NS) and with electrical stimulation (S). During the latter condition, prosthetic electrical stimuli encoding 3 dimensions of head angular velocity were delivered to the 3 ampullary branches of the left vestibular nerve via each of 3 electrode pairs of a multichannel vestibular prosthesis. Electrical stimuli comprised charge-balanced biphasic pulses at a baseline rate of 94 pulses/s, with pulse frequency modulated from 48 to 222 pulses/s by head angular velocity. ABR hearing thresholds to clicks and tone pips at 1, 2, and 4 kHz increased by 5-10 dB from BI to NS and increased another similar to 5 dB from NS to S in implanted ears. No significant change was seen in right ears. DPOAE amplitudes decreased by 2-14 dB from BI to NS in implanted ears. There was a slight but insignificant decrease of DPOAE amplitude and a corresponding increase of DPOAE/Noise floor ratio between NS and S in implanted ears.
Vestibular prosthesis electrode implantation and activation have small but measurable effects on hearing in rhesus monkeys. Coupled with the clinical observation that patients with cochlear implants only rarely exhibit signs of vestibular injury or spurious vestibular nerve stimulation, these results suggest that although implantation and activation of multichannel vestibular prosthesis electrodes in human will carry a risk of hearing loss, that loss is not likely to be severe. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Dai, Chenkai; Fridman, Gene Y.; Della Santina, Charles C.] Johns Hopkins Sch Med, Vestibular NeuroEngn Lab, Baltimore, MD 21205 USA.
[Dai, Chenkai; Fridman, Gene Y.; Della Santina, Charles C.] Johns Hopkins Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Baltimore, MD 21205 USA.
[Della Santina, Charles C.] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA.
RP Della Santina, CC (reprint author), Johns Hopkins Sch Med, Vestibular NeuroEngn Lab, 720 Rutland Ave,Ross Bldg,Rm 830, Baltimore, MD 21205 USA.
EM charley.dellasantina@jhu.edu
FU United States National Institute on Deafness and Other Communication
Disorders [R01DC9255, R01DC2390]
FX This research was supported by unrestricted grants from the United
States National Institute on Deafness and Other Communication Disorders,
grants R01DC9255 and R01DC2390. We thank Lani Swarthout for assistance
with ABR measurements. DPOAE were collected with aid from Colleen
Ryan-Bane and Alicia White.
CR BLANKS RHI, 1985, BRAIN RES, V340, P315, DOI 10.1016/0006-8993(85)90928-X
CHIANG B, 2011, IEEE T NEUR IN PRESS
DAVIDOVICS NS, 2010, IEEE T NEURAL S 0902
Della Santina Charles C, 2010, Cochlear Implants Int, V11 Suppl 2, P2, DOI 10.1179/146701010X12726366068454
Della Santina CC, 2007, IEEE T BIO-MED ENG, V54, P1016, DOI 10.1109/TBME.2007.894629
Della Santina CC, 2005, JARO-J ASSOC RES OTO, V6, P191, DOI 10.1007/s10162-005-0003-x
EPLEY J M, 1980, Otolaryngology - Head and Neck Surgery, V88, P304
Fridman GY, 2010, JARO-J ASSOC RES OTO, V11, P367, DOI 10.1007/s10162-010-0208-5
Gacek RR, 2002, ORL J OTO-RHINO-LARY, V64, P397, DOI 10.1159/000067572
Gong WS, 2000, ANN BIOMED ENG, V28, P572, DOI 10.1114/1.293
Gong WS, 2002, IEEE T BIO-MED ENG, V49, P175, DOI 10.1109/10.979358
HASLWANTER T, 1995, VISION RES, V35, P1727, DOI 10.1016/0042-6989(94)00257-M
HAYDEN RP, 2008, ASS RES OT ANN M PHO
HEPP K, 1990, COMMUN MATH PHYS, V132, P285, DOI 10.1007/BF02278012
Lasker DM, 2000, J NEUROPHYSIOL, V83, P2482
LASKY RE, 1995, HEARING RES, V89, P35, DOI 10.1016/0378-5955(95)00120-1
MARTIN GK, 1988, HEARING RES, V33, P49, DOI 10.1016/0378-5955(88)90020-2
Migliaccio AA, 2004, EXP BRAIN RES, V159, P433, DOI 10.1007/s00221-004-1974-2
Migliaccio A. A., 1999, Australasian Physical and Engineering Sciences in Medicine, V22, P73
MINOR LB, 1991, J NEUROSCI, V11, P1636
Minor LB, 1999, J NEUROPHYSIOL, V82, P1254
PAIGE GD, 1991, J NEUROPHYSIOL, V65, P1170
PARK JY, 1995, HEARING RES, V86, P147, DOI 10.1016/0378-5955(95)00065-C
REMMEL RS, 1984, IEEE T BIO-MED ENG, V31, P388, DOI 10.1109/TBME.1984.325352
Sadeghi SG, 2007, J NEUROPHYSIOL, V97, P1503, DOI 10.1152/jn.00829.2006
STRAUMANN D, 1995, VISION RES, V35, P3321, DOI 10.1016/0042-6989(95)00091-R
Tang S, 2009, ACTA OTO-LARYNGOL, V129, P481, DOI 10.1080/00016480802252243
Tien HC, 2002, OTOLARYNG HEAD NECK, V127, P260, DOI 10.1067/mhn.2002.128555
Torre P, 2004, NEUROBIOL AGING, V25, P945, DOI 10.1016/j.neurobiolaging.2003.09.006
NR 29
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2011
VL 277
IS 1-2
BP 204
EP 210
DI 10.1016/j.heares.2010.12.021
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 805KZ
UT WOS:000293726600023
PM 21195755
ER
PT J
AU Gratton, MA
Eleftheriadou, A
Garcia, J
Verduzco, E
Martin, GK
Martin, BLL
Vazquez, AE
AF Gratton, Michael Anne
Eleftheriadou, Anna
Garcia, Jerel
Verduzco, Esteban
Martin, Glen K.
Martin, Brenda L. Lonsbury
Vazquez, Ana E.
TI Noise-induced changes in gene expression in the cochleae of mice
differing in their susceptibility to noise damage
SO HEARING RESEARCH
LA English
DT Article
ID INDUCED HEARING-LOSS; GUINEA-PIG COCHLEA; NF-KAPPA-B; AUDITORY
HAIR-CELLS; ACOUSTIC TRAUMA; INNER-EAR; RAT COCHLEA; OXIDATIVE STRESS;
POSTMITOTIC STATE; MOUSE COCHLEA
AB The molecular mechanisms underlying the vast differences between individuals in their susceptibility to noise-induced hearing loss (NIHL) are unknown. The present study demonstrated that the effects of noise over-exposure on the expression of molecules likely to be important in the development of NIHL differ among inbred mouse strains having distinct susceptibilities to NIHL including B6 (B6.CAST) and 129 (129X1/SvJ and 129S1/SvImJ) mice. The noise-exposure protocol produced a loss of 40 dB in hearing sensitivity in susceptible B6 mice, but no loss for the two resistant 129 substrains. Analysis of gene expression in the membranous labyrinth 6 h following noise exposure revealed upregulation of transcription factors in both the susceptible and resistant strains. However, a significant induction of genes involved in cell-survival pathways such as the heat shock proteins HSP70 and HSP40, growth arrest and DNA-damage-inducible protein 45 beta(CADD45 beta), and CDK-interacting protein 1 (p21(ciP1)) was detected only in the resistant mice. Moreover, in 129 mice significant upregulation of HSP70, GADD45 beta, and p21(Cip1) was confirmed at the protein level. Since the functions of these proteins include roles in potent anti-apoptotic cellular pathways, their upregulation may contribute to protection from NIHL in the resistant 129 mice. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Garcia, Jerel; Verduzco, Esteban; Vazquez, Ana E.] Univ Calif Davis, Dept Otolaryngol, Davis, CA 95618 USA.
[Garcia, Jerel; Verduzco, Esteban; Vazquez, Ana E.] Univ Calif Davis, Ctr Neurosci, Davis, CA 95618 USA.
[Gratton, Michael Anne] Univ Penn, Dept Otorhinolaryngol, Philadelphia, PA 19104 USA.
[Eleftheriadou, Anna] G Gennimatas Hosp, Dept Otorhinolaryngol, Athens, Greece.
[Martin, Glen K.; Martin, Brenda L. Lonsbury] VA Loma Linda Healthcare Syst, Res Serv, Loma Linda, CA USA.
[Martin, Glen K.] Loma Linda Univ, Dept Otolaryngol Head & Neck Surg, Loma Linda, CA 92350 USA.
RP Vazquez, AE (reprint author), Univ Calif Davis, Dept Otolaryngol, Davis, CA 95618 USA.
EM avazquez@ucdavis.edu
FU Public Health Service NIH-NIDCD [DC006442, DC005578]
FX We would like to thank Barden B. Stagner for assistance with the
preparation of the illustrations. This research was supported by the
Public Health Service NIH-NIDCD grants DC006442 (MAG) and DC005578
(AEV).
CR Ahn JH, 2005, BIOCHEM BIOPH RES CO, V335, P485, DOI 10.1016/j.bbrc.2005.07.114
Ajiro K, 2000, J BIOL CHEM, V275, P439, DOI 10.1074/jbc.275.1.439
Besson A, 2008, DEV CELL, V14, P159, DOI [10.1016/j.devcel.2008.01.013, 10.1016/j.devce1.2008.01.013]
Bohne BA, 2007, HEARING RES, V223, P61, DOI 10.1016/j.heares.2006.10.004
Candreia C, 2004, HEARING RES, V194, P109, DOI 10.1016/j.heares.2004.04.007
Chen P, 2003, NAT CELL BIOL, V5, P422, DOI 10.1038/ncb976
Cho YS, 2004, MOL BRAIN RES, V130, P134, DOI 10.1016/j.molbrainres.2004.07.017
Davis R R, 2003, Noise Health, V5, P19
DERIJARD B, 1994, CELL, V76, P1025, DOI 10.1016/0092-8674(94)90380-8
De Smaele E, 2001, NATURE, V414, P308, DOI 10.1038/35104560
Engström H, 1970, Ciba Found Symp, P127
Fortunato G, 2004, CLIN CHEM, V50, P2012, DOI 10.1373/clinchem.2004.037788
Frazer KA, 2007, NATURE, V448, P1050, DOI 10.1038/nature06067
FREDELIUS L, 1988, ACTA OTO-LARYNGOL, V106, P373, DOI 10.3109/00016488809122260
FREDELIUS L, 1990, ACTA OTO-LARYNGOL, V109, P76, DOI 10.3109/00016489009107417
Garcia J, 2002, EMBO J, V21, P5151, DOI 10.1093/emboj/cdf488
Gower VC, 1997, LARYNGOSCOPE, V107, P228, DOI 10.1097/00005537-199702000-00016
Harding GW, 2005, HEARING RES, V204, P90, DOI 10.1016/j.heares.2005.01.004
Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3
Hirose K, 2005, J COMP NEUROL, V489, P180, DOI 10.1002/cne.20619
Hotson AN, 2009, J IMMUNOL, V182, P7558, DOI 10.4049/jimmunol.0803666
Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1
Jacono AA, 1998, HEARING RES, V117, P31, DOI 10.1016/S0378-5955(97)00214-1
Jimenez AM, 2001, JARO, V2, P233
Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X
KEARSEY JM, 1995, ONCOGENE, V11, P1675
Kirkegaard M, 2006, NEUROSCIENCE, V142, P425, DOI 10.1016/j.neuroscience.2006.06.037
Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x
KYRIAKIS JM, 1994, NATURE, V369, P156, DOI 10.1038/369156a0
Laine H, 2007, J NEUROSCI, V27, P1434, DOI 10.1523/JNEUROSCI.4956-06.2007
Lee SH, 2004, STROKE, V35, P2195, DOI 10.1161/01.STR.0000136150.73891.14
Leonova EV, 2002, HEARING RES, V163, P61, DOI 10.1016/S0378-5955(01)00379-3
LIM HH, 1993, HEARING RES, V69, P146
Lomax MI, 2001, NOISE HEALTH, V3, P19
Mantela J, 2005, DEVELOPMENT, V132, P2377, DOI 10.1242/dev.01834
Matsumori Y, 2005, J CEREBR BLOOD F MET, V25, P899, DOI 10.1038/sj.jcbfm.9600080
Matsumori Y, 2006, STROKE, V37, P507, DOI 10.1161/01.STR.0000199057.00365.20
Miyao M, 2008, LARYNGOSCOPE, V118, P1801, DOI 10.1097/MLG.0b013e31817e2c27
NEELY JG, 1991, HEARING RES, V52, P403, DOI 10.1016/0378-5955(91)90028-8
Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226
Ogita K, 2000, NEUROREPORT, V11, P859, DOI 10.1097/00001756-200003200-00040
Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5
Ohlemiller KK, 2007, HEARING RES, V224, P34, DOI 10.1016/j.heares.2006.11.005
Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846
Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847
O'Reilly MA, 2005, ANTIOXID REDOX SIGN, V7, P108, DOI 10.1089/ars.2005.7.108
O'Reilly MA, 2001, AM J RESP CELL MOL, V24, P703
Ou HC, 2000, HEARING RES, V145, P111, DOI 10.1016/S0378-5955(00)00081-2
PAPA S, 2007, J BIOL CHEM
Papa S, 2004, NAT CELL BIOL, V6, P146, DOI 10.1038/ncb1093
Pirvola U, 2000, J NEUROSCI, V20, P43
Scarpidis U, 2003, OTOL NEUROTOL, V24, P409, DOI 10.1097/00129492-200305000-00011
Shizuki K, 2002, NEUROSCI LETT, V320, P73, DOI 10.1016/S0304-3940(02)00059-9
Sliwińiska-Kowalska Mariola, 2006, Pol Merkur Lekarski, V21, P384
Sliwinska-Kwalska Mariola, 2006, International Journal of Occupational Medicine and Environmental Health, V19, P235, DOI 10.2478/v10001-006-0029-2
Sliwinska-Kowalska M, 2008, AM J HUM BIOL, V20, P481, DOI 10.1002/ajhb.20744
Stankovic K, 2004, J NEUROSCI, V24, P8651, DOI 10.1523/JNEUROSCI.0733-04.2004
Sugawara M, 2005, JARO-J ASSOC RES OTO, V6, P136, DOI 10.1007/s10162-004-5050-1
Sutherland KD, 2007, CELL CYCLE, V6, P799
Taggart R.T., 2001, NOISE HEALTH, V3, P1
Tornabene SV, 2006, HEARING RES, V222, P115, DOI 10.1016/j.heares.2006.09.004
Van Laer L, 2006, HUM MUTAT, V27, P786, DOI 10.1002/humu.20360
Wang J, 2007, MOL PHARMACOL, V71, P654, DOI 10.1124/mol.106.028936
Wang J, 2003, J NEUROSCI, V23, P8596
Wang T, 2005, J BIOL CHEM, V280, P12593, DOI 10.1074/jbc.M410982200
Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028
Wu MX, 2003, APOPTOSIS, V8, P11, DOI 10.1023/A:1021688600370
YAMANE H, 1995, ACTA OTO-LARYNGOL, P87
Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015
Yoshida N, 2000, HEARING RES, V141, P97, DOI 10.1016/S0378-5955(99)00210-5
Zaman K, 1999, J NEUROSCI, V19, P9821
Zhang Y, 2002, P NATL ACAD SCI USA, V99, P878
Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9
Zhu YL, 2002, INVEST OPHTH VIS SCI, V43, P1903
Zine A., 2004, Current Drug Targets - CNS and Neurological Disorders, V3, P325, DOI 10.2174/1568007043337166
NR 75
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2011
VL 277
IS 1-2
BP 211
EP 226
DI 10.1016/j.heares.2010.12.014
PG 16
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 805KZ
UT WOS:000293726600024
PM 21187137
ER
PT J
AU Trune, DR
Larrain, BE
Hausman, FA
Kempton, JB
MacArthur, CJ
AF Trune, Dennis R.
Larrain, Barbara E.
Hausman, Frances A.
Kempton, J. Beth
MacArthur, Carol J.
TI Simultaneous measurement of multiple ear proteins with multiplex ELISA
assays
SO HEARING RESEARCH
LA English
DT Article
ID BEAD ARRAY ASSAYS; IMMUNOASSAY; SENSITIVITY; VALIDATION; CYTOKINES;
COCHLEAR; TISSUES; RAT
AB A recent advancement in enzyme-linked immunosorbent assay (ELISA) technology is the multiplex antibody array that measures multiple proteins simultaneously within a single sample. This allows reduction in sample volume, time, labor, and material costs, while increasing sensitivity over single ELISA. Current multiplex platforms include planar-based systems using microplates or slides, or bead-based suspension assay with microspheres. To determine the applicability of this technology for ear research, we used 3 different multiplex ELISA-based immunoassay arrays from 4 different companies to measure cytokine levels in mouse middle and inner ear tissue lysate extracts 24 h following trans-tympanic Haemophilus influenzae inoculation. Middle and inner ear tissue lysates were analyzed using testing services from Quansys Biosciences, Aushon Biosystems SearchLight (both microplate-based), MILLIPLEX MAP Sample (bead-based), and a RayBiotech, Inc (slide-based) kit. Samples were assayed in duplicate or triplicate. Results were compared to determine their relative sensitivity and reliability for measures of cytokines related to inflammation. The cytokine pg/ml amounts varied among the multiplex assays, so a comparison also was made of the mean fold increase in cytokines from untreated controls. Several cytokines and chemokines were elevated, the extent dependent upon the assay sensitivity. Those most significantly elevated were IL-1 alpha, IL-1 beta, IL-6, TNF alpha, VEGF, and IL-8/MIP-2. The results of the multiplex systems were compared with single ELISA kits (IL-1 beta, IL-6) to assess sensitivity over the traditional method. Overall, the Quansys Biosciences and SearchLight arrays showed the greatest sensitivity, both employing the same multiplex methodology of a spotted array within a microplate well with chemiluminescent detection. They also were more sensitive than the traditional single ELISA performed with commercial kits and matched gene expression changes determined by quantitative RT-PCR. The Quansys array showed a limit of detection for ear IL-6 down to 2-4 pg/ml, indicating it is sufficiently sensitive to detect ear proteins present in low concentrations. Thus, the multiplex ELISA procedures appear suitable and reliable for the study of hearing related proteins, providing accurate, quantitative, reproducible results with considerable improvement in sensitivity and economy. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Trune, Dennis R.; Larrain, Barbara E.; Hausman, Frances A.; Kempton, J. Beth; MacArthur, Carol J.] Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, Dept Otolaryngol Head & Neck Surg, Portland, OR 97239 USA.
RP Trune, DR (reprint author), Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, Dept Otolaryngol Head & Neck Surg, 3181 SW Sam Jackson Pk Rd,Mail Code NRC04, Portland, OR 97239 USA.
EM truned@ohsu.edu
FU NIH-NIDCD [R01 DC009455, R01 DC005593]
FX The authors thank Ms. Paige Kruger for assistance in the ELISA
technique. Research supported by NIH-NIDCD R01 DC009455 and R01 DC005593
(DRT).
CR Backen AC, 2009, J IMMUNOL METHODS, V342, P106, DOI 10.1016/j.jim.2009.01.003
CURTIS LM, 1993, EUR ARCH OTO-RHINO-L, V250, P265
de Jager W, 2006, METHODS, V38, P294, DOI 10.1016/j.ymeth.2005.11.008
Elshal MF, 2006, METHODS, V38, P317, DOI 10.1016/j.ymeth.2005.11.010
Khan SS, 2004, CYTOM PART B-CLIN CY, V61B, P35, DOI 10.1002/cyto.b.20021
Lash GE, 2006, J IMMUNOL METHODS, V309, P205, DOI 10.1016/j.jim.2005.12.007
Leng SX, 2008, J GERONTOL A-BIOL, V63, P879
Liew M, 2007, BIOTECHNIQUES, V42, P327, DOI 10.2144/000112332
MacArthur CJ, 2006, HEARING RES, V219, P12, DOI 10.1016/j.heares.2006.05.012
MACARTHUR CJ, LARYNGOSCOP IN PRESS
Ray CA, 2005, J PHARMACEUT BIOMED, V36, P1037, DOI 10.1016/j.jpba.2004.05.024
TENCATE WJF, 1992, HEARING RES, V60, P199, DOI 10.1016/0378-5955(92)90021-E
Wingren Christer, 2009, V509, P57, DOI 10.1007/978-1-59745-372-1_5
Young Howard A., 2009, V511, P85, DOI 10.1007/978-1-59745-447-6_4
NR 14
TC 11
Z9 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2011
VL 275
IS 1-2
BP 1
EP 7
DI 10.1016/j.heares.2010.11.009
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 776WY
UT WOS:000291572300001
PM 21144888
ER
PT J
AU Brown, TA
Harrison, RV
AF Brown, Trecia A.
Harrison, Robert V.
TI Neuronal responses in chinchilla auditory cortex after postnatal
exposure to frequency-modulated tones
SO HEARING RESEARCH
LA English
DT Article
ID CRITICAL PERIOD; RECEPTIVE-FIELDS; SELECTIVITY; RAT; SWEEPS;
ORGANIZATION; ENVIRONMENT; COLLICULUS; RECORDINGS; DIRECTION
AB Early postnatal exposure to an abnormal acoustic environment has been shown to significantly influence the behaviour of neurons in the auditory cortex. In the present study, we ask if sustained neonatal exposure to an FM sweep affects the development of responses to tonal and FM stimuli in chinchilla auditory cortex. Newborn chinchilla pups were exposed continuously to an upward linear FM sweep (0.1-20 kHz) at 0.05 kHz/ms for 4 weeks. Neuronal responses to pure tones and bidirectional linear FM sweeps (range: 0.1-20 kHz; speeds: 0.05-0.82 kHz/ms) were assessed in anesthetized animals following the exposure period as well as in age-matched controls (P28). We hypothesized that constant FM exposure would increase the response selectivity of cortical neurons to the environmental FM sweep. However, our results show that while tonal response latencies increased after the exposure period (p < 0.0001, one-way ANOVA), the exposure stimulus had minimal effect on neuronal direction sensitivity and decreased neuronal selectivity for any of the presented FM sweep speeds (p < 0.05, one-way ANOVA). We therefore suggest that the development of FM direction sensitivity is experience-independent while normal acoustic experience may be required to maintain FM speed tuning. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Brown, Trecia A.; Harrison, Robert V.] Hosp Sick Children, Neurosci & Mental Hlth Div, Auditory Sci Lab, Toronto, ON M5G 1X8, Canada.
[Brown, Trecia A.; Harrison, Robert V.] Univ Toronto, Dept Physiol, Toronto, ON M5S 1A8, Canada.
[Harrison, Robert V.] Univ Toronto, Dept Otolaryngol Head & Neck Surg, Toronto, ON M5S 1A8, Canada.
RP Brown, TA (reprint author), Hosp Sick Children, Neurosci & Mental Hlth Div, Auditory Sci Lab, McMaster Bldg,Room 3005,555 Univ Ave, Toronto, ON M5G 1X8, Canada.
EM trecia.brown@utoronto.ca
FU Canadian Institutes for Health Research; Masonic Foundation of Ontario;
Natural Sciences and Engineering Research Council
FX This work was supported by grants from the Canadian Institutes for
Health Research, the Masonic Foundation of Ontario and the Natural
Sciences and Engineering Research Council.
CR Atencio CA, 2007, J NEUROPHYSIOL, V98, P2182, DOI 10.1152/jn.00394.2007
BANKMAN IN, 1993, IEEE T BIO-MED ENG, V40, P836, DOI 10.1109/10.238472
BLAKEMOR.C, 1970, NATURE, V228, P477, DOI 10.1038/228477a0
BLATCHLEY BJ, 1987, DEV BRAIN RES, V32, P75, DOI 10.1016/0165-3806(87)90140-4
Brown TA, 2009, J NEUROPHYSIOL, V101, P2017, DOI 10.1152/jn.90931.2008
Brown TA, 2010, BRAIN RES, V1309, P29, DOI 10.1016/j.brainres.2009.10.053
Chang EF, 2003, SCIENCE, V300, P498, DOI 10.1126/science.1082163
Chang EF, 2005, P NATL ACAD SCI USA, V102, P16460, DOI 10.1073/pnas.0508239102
CLOPTON BM, 1976, J NEUROPHYSIOL, V39, P1081
Csicsvari J, 1998, NEURON, V21, P179, DOI 10.1016/S0896-6273(00)80525-5
CYNADER M, 1975, EXP BRAIN RES, V22, P267
de Villers-Sidani E, 2007, J NEUROSCI, V27, P180, DOI 10.1523/JNEUROSCI.3227-06.2007
de Villers-Sidani E, 2008, NAT NEUROSCI, V11, P957, DOI 10.1038/nn.2144
GEALDOR M, 1993, HEARING RES, V69, P236, DOI 10.1016/0378-5955(93)90113-F
GERSTEIN GL, 1960, BIOPHYS J, V1, P15
Godey B, 2005, J NEUROPHYSIOL, V94, P1299, DOI 10.1152/jn.00950.2004
Gordon M, 1998, HEARING RES, V122, P97, DOI 10.1016/S0378-5955(98)00087-2
Insanally MN, 2009, J NEUROSCI, V29, P5456, DOI 10.1523/JNEUROSCI.5311-08.2009
Kotak VC, 2005, J NEUROSCI, V25, P3908, DOI 10.1523/JNEUROSCI.5169-04.2005
MENDELSON JR, 1985, BRAIN RES, V327, P331, DOI 10.1016/0006-8993(85)91530-6
Nelken I, 2000, EUR J NEUROSCI, V12, P549, DOI 10.1046/j.1460-9568.2000.00935.x
PERKEL DH, 1967, BIOPHYS J, V7, P391
Pienkowski M, 2005, J NEUROPHYSIOL, V93, P454, DOI 10.1152/jn.00569.2004
Razak KA, 2008, P NATL ACAD SCI USA, V105, P4465, DOI 10.1073/pnas.0709504105
Razak KA, 2007, J NEUROSCI, V27, P1769, DOI 10.1523/JNEUROSCI.3851-06.2007
Rutishauser U, 2006, J NEUROSCI METH, V154, P204, DOI 10.1016/j.jneumeth.2005.12.033
Sanes DH, 2009, CURR OPIN NEUROBIOL, V19, P188, DOI 10.1016/j.conb.2009.05.014
Stanton SG, 1996, AUDIT NEUROSCI, V2, P97
Zhang LI, 2002, P NATL ACAD SCI USA, V99, P2309, DOI 10.1073/pnas.261707398
Zhang LI, 2001, NAT NEUROSCI, V4, P1123, DOI 10.1038/nn745
NR 30
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2011
VL 275
IS 1-2
BP 8
EP 16
DI 10.1016/j.heares.2010.11.008
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 776WY
UT WOS:000291572300002
PM 21144889
ER
PT J
AU Zhang, FW
Hammer, T
Banks, HL
Benson, C
Xiang, J
Fu, QJ
AF Zhang, Fawen
Hammer, Theresa
Banks, Holly-Lolan
Benson, Chelsea
Xiang, Jing
Fu, Qian-Jie
TI Mismatch negativity and adaptation measures of the late auditory evoked
potential in cochlear implant users
SO HEARING RESEARCH
LA English
DT Article
ID EVENT-RELATED POTENTIALS; SHORT-TERM ADAPTATION; UNANESTHETIZED
DECEREBRATE CAT; STIMULUS-SPECIFIC ADAPTATION; BRAIN-STEM RESPONSES;
SIMULATED ECHOES; NUCLEUS NEURONS; NERVE FIBERS; CLICK-PAIRS;
INTERSTIMULUS-INTERVAL
AB A better understanding of the neural correlates of large variability in cochlear implant (CI) patients' speech performance may allow us to find solutions to further improve Cl benefits. The present study examined the mismatch negativity (MMN) and the adaptation of the late auditory evoked potential (LAEP) in 10 CI users. The speech syllable /da/ and 1-kHz tone burst were used to examine the LAEP adaptation. The amount of LAEP adaptation was calculated according to the averaged N1-P2 amplitude for the LAEPs evoked by the last 3 stimuli and the amplitude evoked by the first stimulus. For the MMN recordings, the standard stimulus (1-kHz tone) and the deviant stimulus (2-kHz tone) were presented in an oddball condition. Additionally, the deviants alone were presented in a control condition. The MMN was derived by subtracting the response to the deviants in the control condition from the oddball condition. Results showed that good Cl performers displayed a more prominent LAEP adaptation than moderate-to-poor performers. Speech performance was significantly correlated to the amount of LAEP adaptation for the 1-kHz tone bursts. Good performers displayed large MMNs and moderate-to-poor performers had small or absent MMNs. The abnormal electrophysiological findings in moderate-to-poor performers suggest that long-term deafness may cause damage not only at the auditory cortical level, but also at the cognitive level. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Zhang, Fawen; Hammer, Theresa; Banks, Holly-Lolan; Benson, Chelsea] Univ Cincinnati, Dept Commun Sci & Disorders, Cincinnati, OH 45221 USA.
[Xiang, Jing] Cincinnati Childrens Hosp Med Ctr, Dept Pediat & Neurol, Cincinnati, OH USA.
[Fu, Qian-Jie] House Ear Res Inst, Los Angeles, CA USA.
RP Zhang, FW (reprint author), Univ Cincinnati, Dept Commun Sci & Disorders, Cincinnati, OH 45221 USA.
EM Fawen.Zhang@uc.edu
FU National Institute of Health (NIH) [1R15DC011004-01]
FX The authors thank all participants in this research. The authors also
thank John J. Galvin III for editorial assistance. This project is
partially sponsored by National Institute of Health (NIH
1R15DC011004-01).
CR ABBAS PJ, 1984, HEARING RES, V14, P29, DOI 10.1016/0378-5955(84)90066-2
Anderson LA, 2009, J NEUROSCI, V29, P7359, DOI 10.1523/JNEUROSCI.0793-09.2009
Babalian AL, 2003, EXP BRAIN RES, V153, P452, DOI 10.1007/s00221-003-1619-x
Baldeweg T, 2006, TRENDS COGN SCI, V10, P93, DOI 10.1016/j.tics.2006.01.010
BARRY RJ, 1992, INT J PSYCHOPHYSIOL, V13, P9, DOI 10.1016/0167-8760(92)90014-3
BOETTCHER FA, 1990, HEARING RES, V48, P125, DOI 10.1016/0378-5955(90)90203-2
BOTTCHERGANDOR C, 1992, PSYCHOPHYSIOLOGY, V29, P546, DOI 10.1111/j.1469-8986.1992.tb02028.x
BOURBON WT, 1987, ELECTROEN CLIN NEURO, V66, P160
Budd TW, 1998, INT J PSYCHOPHYSIOL, V31, P51, DOI 10.1016/S0167-8760(98)00040-3
Burkard R, 1996, J ACOUST SOC AM, V100, P978, DOI 10.1121/1.416209
BUTLER RA, 1968, J ACOUST SOC AM, V44, P945, DOI 10.1121/1.1911233
CHIMENTO TC, 1991, J ACOUST SOC AM, V90, P263, DOI 10.1121/1.401296
DAVIS H, 1966, J ACOUST SOC AM, V39, P109, DOI 10.1121/1.1909858
Debener S, 2008, PSYCHOPHYSIOLOGY, V45, P20, DOI 10.1111/j.1469-8986.2007.00610.x
Delgutte B., 1997, HDB PHONETIC SCI, P507
Delorme A, 2004, J NEUROSCI METH, V134, P9, DOI 10.1016/j.jneumeth.2003.10.009
Doeller CF, 2003, NEUROIMAGE, V20, P1270, DOI 10.1016/S1053-8119(03)00389-6
Fitzpatrick DC, 1999, J ACOUST SOC AM, V106, P3460, DOI 10.1121/1.428199
Friston KJ, 2002, PROG NEUROBIOL, V68, P113, DOI 10.1016/S0301-0082(02)00076-X
FRUHSTOR.H, 1970, ELECTROEN CLIN NEURO, V28, P153, DOI 10.1016/0013-4694(70)90183-5
FRUHSTOR.H, 1971, ELECTROEN CLIN NEURO, V30, P306, DOI 10.1016/0013-4694(71)90113-1
Fu QJ, 2005, JARO-J ASSOC RES OTO, V6, P180, DOI 10.1007/s10162-005-5061-6
Garrido MI, 2009, CLIN NEUROPHYSIOL, V120, P453, DOI 10.1016/j.clinph.2008.11.029
Garrido MI, 2008, NEUROIMAGE, V42, P936, DOI 10.1016/j.neuroimage.2008.05.018
GIARD MH, 1990, PSYCHOPHYSIOLOGY, V27, P627, DOI 10.1111/j.1469-8986.1990.tb03184.x
Gilley PM, 2006, CLIN NEUROPHYSIOL, V117, P1772, DOI 10.1016/j.clinph.2006.04.018
Green K M J, 2007, Cochlear Implants Int, V8, P1, DOI 10.1002/cii.326
Groenen P, 1996, Audiol Neurootol, V1, P112
Hagemann D, 2001, PSYCHOPHYSIOLOGY, V38, P847, DOI 10.1017/S0048577201001081
HARI R, 1982, ELECTROEN CLIN NEURO, V54, P561, DOI 10.1016/0013-4694(82)90041-4
HARI R, 1992, ELECTROEN CLIN NEURO, V82, P152, DOI 10.1016/0013-4694(92)90159-F
Hoppe U, 2001, SCAND AUDIOL, V30, P119, DOI 10.1080/010503901300112239
Hoshiyama M, 2007, EUR J NEUROSCI, V25, P854, DOI 10.1111/j.1460-9568.2007.05315.x
Jaaskelainen IP, 2004, P NATL ACAD SCI USA, V101, P6809, DOI 10.1073/pnas.0303760101
Jacobsen T, 2003, NEUROSCI LETT, V344, P79, DOI 10.1016/S0304-3940(03)00408-7
Johnson EK, 2008, J ACOUST SOC AM, V123, pEL144, DOI 10.1121/1.2908407
Johnson KL, 2005, EAR HEARING, V26, P424, DOI 10.1097/01.aud.0000179687.71662.6e
Kelly AS, 2005, CLIN NEUROPHYSIOL, V116, P1235, DOI 10.1016/j.clinph.2005.02.011
KRAUS N, 1993, HEARING RES, V65, P118, DOI 10.1016/0378-5955(93)90206-G
KRAUS N, 1992, EAR HEARING, V13, P158, DOI 10.1097/00003446-199206000-00004
LANG AH, 1995, EAR HEARING, V16, P118, DOI 10.1097/00003446-199502000-00009
Lee JS, 2003, J NUCL MED, V44, P1435
Levanen S, 1996, CEREB CORTEX, V6, P288, DOI 10.1093/cercor/6.2.288
Litvak LM, 2003, J ACOUST SOC AM, V114, P2066, DOI 10.1121/1.1612492
Loquet G, 2004, AUDIOL NEURO-OTOL, V9, P144, DOI 10.1159/000077266
Lunner T, 2003, INT J AUDIOL, V42, pS49
May PJC, 2010, PSYCHOPHYSIOLOGY, V47, P66, DOI 10.1111/j.1469-8986.2009.00856.x
McNeill Celene, 2007, Cochlear Implants Int, V8, P189, DOI 10.1002/cii.343
MEGELA AL, 1979, J COMP PHYSIOL PSYCH, V93, P1154, DOI 10.1037/h0077630
Miller CA, 2001, JARO, V2, P216
NAATANEN R, 1989, NEUROSCI LETT, V107, P347, DOI 10.1016/0304-3940(89)90844-6
NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x
Naatanen R, 2004, PSYCHOPHYSIOLOGY, V41, P660, DOI 10.1111/j.1469-8986.2004.00182.x
Naatanen R, 2005, PSYCHOPHYSIOLOGY, V42, P25, DOI 10.1111/j.1469-8986.2005.00256.x
Naatanen R, 1999, PSYCHOL BULL, V125, P826, DOI 10.1037/0033-2909.125.6.826
Naatanen R, 2007, CLIN NEUROPHYSIOL, V118, P2544, DOI 10.1016/j.clinph.2007.04.026
Nikjeh DA, 2009, EAR HEARING, V30, P432, DOI 10.1097/AUD.0b013e3181a61bf2
Opitz B, 2002, NEUROIMAGE, V15, P167, DOI 10.1006/nimg.2001.0970
Parham K, 1996, J NEUROPHYSIOL, V76, P17
Parham K, 1998, HEARING RES, V125, P131, DOI 10.1016/S0378-5955(98)00140-3
Petermann M, 2009, HEARING RES, V247, P128, DOI 10.1016/j.heares.2008.11.001
Pisoni D. B., 2003, EAR HEAR S1, V24, P106
Pisoni D B, 2000, Ann Otol Rhinol Laryngol Suppl, V185, P92
Ponton CW, 2000, AUDIOL NEURO-OTOL, V5, P167, DOI 10.1159/000013878
PROSSER S, 1981, ARCH OTO-RHINO-LARYN, V233, P179, DOI 10.1007/BF00453642
Rajan R, 2010, EUR J NEUROSCI, V31, P1999, DOI 10.1111/j.1460-9568.2010.07214.x
Rinne T, 2000, NEUROIMAGE, V12, P14, DOI 10.1006/nimg.2000.0591
RITTER W, 1968, ELECTROEN CLIN NEURO, V25, P550, DOI 10.1016/0013-4694(68)90234-4
Roman S, 2005, HEARING RES, V201, P10, DOI 10.1016/j.heares.2004.08.021
Rosburg T, 2004, CLIN NEUROPHYSIOL, V115, P906, DOI 10.1016/j.clinph.2003.11.039
Sharma A, 2007, INT J AUDIOL, V46, P494, DOI 10.1080/14992020701524836
Sharma A, 2002, NEUROREPORT, V13, P1365, DOI 10.1097/00001756-200207190-00030
SHORE SE, 1995, HEARING RES, V82, P31
Singh S, 2004, EAR HEARING, V25, P598, DOI 10.1097/00003446-200412000-00008
SMITH RL, 1982, BIOL CYBERN, V44, P107, DOI 10.1007/BF00317970
SMITH RL, 1977, J NEUROPHYSIOL, V40, P1098
SOUCEK S, 1992, SCAND AUDIOL, V21, P149, DOI 10.3109/01050399209045995
Sussman E, 2001, COGNITIVE BRAIN RES, V12, P431, DOI 10.1016/S0926-6410(01)00067-2
THORNTON ARD, 1993, BRIT J AUDIOL, V27, P205, DOI 10.3109/03005369309076694
Titterington J, 2003, Cochlear Implants Int, V4 Suppl 1, P70, DOI 10.1002/cii.114
Tremblay K, 1998, NEUROREPORT, V9, P3557
Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032
Ulanovsky N, 2004, J NEUROSCI, V24, P10440, DOI 10.1523/JNEUROSCI.1905-04.2004
Valente M, 1997, J Am Acad Audiol, V8, P59
von der Behrens W, 2009, J NEUROSCI, V29, P13837, DOI 10.1523/JNEUROSCI.3475-09.2009
Wable J, 2000, CLIN NEUROPHYSIOL, V111, P743, DOI 10.1016/S1388-2457(99)00298-9
WALTON JP, 1995, HEARING RES, V88, P19, DOI 10.1016/0378-5955(95)00093-J
Wass M, 2008, SCAND J PSYCHOL, V49, P559, DOI 10.1111/j.1467-9450.2008.00680.x
WESTERMAN LA, 1984, HEARING RES, V15, P249, DOI 10.1016/0378-5955(84)90032-7
Zeng Fan-Gang, 2004, Trends Amplif, V8, P1, DOI 10.1177/108471380400800102
Zhang F, 2009, J AM ACAD AUDIOL, V20, P239, DOI 10.3766/jaaa.20.4.4
Zhang FW, 2009, J AM ACAD AUDIOL, V20, P397, DOI 10.3766/jaaa.20.7.2
Zhang FW, 2010, INT J AUDIOL, V49, P277, DOI 10.3109/14992020903321759
Zhang XD, 2005, J ACOUST SOC AM, V118, P1540, DOI 10.1121/1.1993148
ZHOU RZ, 1995, HEARING RES, V88, P98, DOI 10.1016/0378-5955(95)00105-D
NR 95
TC 13
Z9 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2011
VL 275
IS 1-2
BP 17
EP 29
DI 10.1016/j.heares.2010.11.007
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 776WY
UT WOS:000291572300003
PM 21129468
ER
PT J
AU Watkins, PV
Barbour, DL
AF Watkins, Paul V.
Barbour, Dennis L.
TI Rate-level responses in awake marmoset auditory cortex
SO HEARING RESEARCH
LA English
DT Article
ID DORSAL COCHLEAR NUCLEUS; SINGLE-UNIT RESPONSES; AMPLITUDE-SPECTRUM
REPRESENTATION; INFERIOR COLLICULUS; FUNCTIONAL-ORGANIZATION; POSTERIOR
FIELD; TONE INTENSITY; NEURONS; CAT; NOISE
AB Investigations of auditory neuronal firing rate as a function of sound level have revealed a wide variety of rate-level function shapes, including neurons with nonmonotonic or level-tuned functions. These neurons have an unclear role in auditory processing but have been found to be quite common. In the present study of awake marmoset primary auditory cortex (A1) neurons, 56% (305 out of 544), when stimulated with tones at the highest sound level tested, exhibited a decrement in driven rate of at least 50% from the maximum. These nonmonotonic neurons demonstrated significantly lower response thresholds than monotonic neurons, although both populations exhibited thresholds skewed toward lower values. Nonmonotonic neurons significantly outnumbered monotonic neurons in the frequency range 6-13 kHz, which is the frequency range containing most marmoset vocalization energy. Spontaneous rate was inversely correlated with threshold in both populations, and spontaneous rates of nonmonotonic neurons had significantly lower values than spontaneous rates of monotonic neurons, although distributions of maximum driven rates were not significantly different. Finally, monotonicity was found to be organized within electrode penetrations like characteristic frequency but with less structure. These findings are consistent with the hypothesis that nonmonotonic neurons play a unique role in representing sound level, particularly at the lowest sound levels and for complex vocalizations. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Watkins, Paul V.; Barbour, Dennis L.] Washington Univ, Dept Biomed Engn, Lab Sensory Neurosci & Neuroengn, St Louis, MO 63130 USA.
RP Barbour, DL (reprint author), Washington Univ, Dept Biomed Engn, Lab Sensory Neurosci & Neuroengn, One Brookings Dr,Campus Box 1097,Uncas Whitaker H, St Louis, MO 63130 USA.
EM dbarbour@biomed.wustl.edu
FU McDonnell Foundation for Higher Brain Function; National Institutes of
Health [R01-DC009215]
FX This work was supported by The McDonnell Foundation for Higher Brain
Function and the National Institutes of Health grant R01-DC009215.
CR ABELES M, 1970, J NEUROPHYSIOL, V33, P172
AITKIN L, 1991, J NEUROPHYSIOL, V65, P383
Chen TL, 2010, BRAIN RES, V1319, P175, DOI 10.1016/j.brainres.2010.01.012
Cheung SW, 2001, J NEUROPHYSIOL, V85, P1732
CLAREY JC, 1994, J NEUROPHYSIOL, V72, P2383
Davis KA, 2003, JARO, V4, P148, DOI 10.1007/s10162-002-2002-5
Dean I, 2005, NAT NEUROSCI, V8, P1684, DOI 10.1038/nn1541
de la Rocha J, 2008, J NEUROSCI, V28, P9151, DOI 10.1523/JNEUROSCI.1789-08.2008
Hromadka T, 2008, PLOS BIOL, V6, P124, DOI 10.1371/journal.pbio.0060016
DiMattina C, 2006, J NEUROPHYSIOL, V95, P1244, DOI 10.1152/jn.00818.2005
Doron NN, 2002, J COMP NEUROL, V453, P345, DOI 10.1002/cne.10412
FAINGOLD CL, 1991, HEARING RES, V52, P201, DOI 10.1016/0378-5955(91)90200-S
GEISLER CD, 1985, J ACOUST SOC AM, V77, P1102, DOI 10.1121/1.392228
HEIL P, 1994, HEARING RES, V76, P188, DOI 10.1016/0378-5955(94)90099-X
Imaizumi K, 2004, J NEUROPHYSIOL, V92, P444, DOI 10.1152/jn.01173.2003
Kiang NY-s, 1965, DISCHARGE PATTERNS S
KIANG NYS, 1976, ANN OTO RHINOL LARYN, V85, P752
Langford E, 2001, AM STAT, V55, P322, DOI 10.1198/000313001753272286
LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736
Nakamoto KT, 2004, J NEUROPHYSIOL, V91, P118, DOI 10.1152/jn.00171.2003
Nelken I, 1997, J NEUROPHYSIOL, V78, P790
PFINGST BE, 1981, J NEUROPHYSIOL, V45, P16
Philibert B, 2005, J COMP NEUROL, V487, P391, DOI 10.1002/cne.20581
PHILLIPS DP, 1995, J NEUROPHYSIOL, V73, P674
PHILLIPS DP, 1990, BEHAV BRAIN RES, V37, P197, DOI 10.1016/0166-4328(90)90132-X
PHILLIPS DP, 1981, J NEUROPHYSIOL, V45, P48
PHILLIPS DP, 1994, EXP BRAIN RES, V102, P210
Polley DB, 2007, J NEUROPHYSIOL, V97, P3621, DOI 10.1152/jn.01298.2006
Polley DB, 2006, J NEUROSCI, V26, P4970, DOI 10.1523/JNEUROSCI.3771-05.2006
Polley DB, 2004, P NATL ACAD SCI USA, V101, P16351, DOI 10.1073/pnas.0407586101
Ramachandran R, 1999, J NEUROPHYSIOL, V82, P152
Recanzone GH, 2000, J NEUROPHYSIOL, V83, P2315
Recanzone GH, 1999, J COMP NEUROL, V415, P460, DOI 10.1002/(SICI)1096-9861(19991227)415:4<460::AID-CNE4>3.0.CO;2-F
Recanzone GH, 2000, HEARING RES, V150, P104, DOI 10.1016/S0378-5955(00)00194-5
REES A, 1988, J ACOUST SOC AM, V83, P1488, DOI 10.1121/1.395904
RHODE WS, 1985, HEARING RES, V18, P159, DOI 10.1016/0378-5955(85)90008-5
ROSE JE, 1963, J NEUROPHYSIOL, V26, P295
RYAN A, 1978, EXP BRAIN RES, V32, P389
Sadagopan S, 2008, J NEUROSCI, V28, P3415, DOI 10.1523/JNEUROSCI.2743-07.2008
SCHALK TB, 1980, J ACOUST SOC AM, V67, P903, DOI 10.1121/1.383970
SCHREINER CE, 1992, EXP BRAIN RES, V92, P105
SEIDEN HR, 1957, HAPALE JACCHUS
SEMPLE MN, 1985, J NEUROPHYSIOL, V53, P1467
SHAMMA SA, 1985, HEARING RES, V19, P1, DOI 10.1016/0378-5955(85)90094-2
SHAMMA SA, 2003, HDB BRAIN THEORY NEU, P122
Sivaramakrishnan S, 2004, J NEUROSCI, V24, P5031, DOI 10.1523/JNEUROSCI.0357-04.2004
Spirou GA, 1999, J NEUROPHYSIOL, V82, P648
SPIROU GA, 1991, J NEUROPHYSIOL, V66, P1750
SUGA N, 1982, J NEUROPHYSIOL, V47, P225
SUGA N, 1977, SCIENCE, V196, P64, DOI 10.1126/science.190681
Sutter ML, 2003, J NEUROPHYSIOL, V90, P2629, DOI 10.1152/jn.00722.2002
SUTTER ML, 1995, J NEUROPHYSIOL, V73, P190
Tan AYY, 2007, NEUROSCIENCE, V146, P449, DOI 10.1016/j.neuroscience.2007.01.019
Wang JA, 2002, BRAIN RES, V944, P219, DOI 10.1016/S0006-8993(02)02926-8
Watkins PV, 2008, NAT NEUROSCI, V11, P1259, DOI 10.1038/nn.2201
Watkins PV, 2011, CEREB CORTEX, V21, P178, DOI 10.1093/cercor/bhq079
Watkins PV, 2009, BIOL CYBERN, V100, P231, DOI 10.1007/s00422-009-0294-9
Wehr M, 2003, NATURE, V426, P442, DOI 10.1038/nature02116
Wu GY, 2006, NEURON, V52, P705, DOI 10.1016/j.neuron.2006.10.009
Young E. D., 2002, INTEGRATIVE FUNCTION, P160
YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282
NR 61
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2011
VL 275
IS 1-2
BP 30
EP 42
DI 10.1016/j.heares.2010.11.011
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 776WY
UT WOS:000291572300004
PM 21145961
ER
PT J
AU Chen, HC
Sytwu, HK
Chang, JL
Wang, HW
Chen, HK
Kang, BH
Liu, DW
Chen, CH
Chao, TT
Wang, CH
AF Chen, Hsin-Chien
Sytwu, Huey-Kang
Chang, Junn-Liang
Wang, Hsing-Won
Chen, Hang-Kang
Kang, Bor-Hwang
Liu, Dai-Wei
Chen, Chi-Huang
Chao, Ting-Ting
Wang, Chih-Hung
TI Hypoxia enhances the stemness markers of cochlear stem/progenitor cells
and expands sphere formation through activation of hypoxia-inducible
factor-1alpha
SO HEARING RESEARCH
LA English
DT Article
ID OXYGEN CONCENTRATION; INNER-EAR; HAIR-CELLS; IN-VITRO; PROGENITOR CELLS;
LOWERED OXYGEN; MOUSE; PROLIFERATION; DIFFERENTIATION; EXPRESSION
AB Unlike neural stem cells that maintain populations in the adult brains of both rodents and humans, cochlear stem cells appear to diminish in number after birth and may become quiescent in adult mammalian cochleae. Hypoxia has been observed to promote an undifferentiated cell state in various stem cell populations; however, little is known about such an effect on cochlear stem/progenitor cells (SPCs). The aims of this study were to assess the effect of hypoxia on cochlear SPCs and to examine the impact of hypoxia-inducible factor-1alpha (Hif-1a) on regulating such an effect. Our data demonstrate that hypoxic culturing for 24 h significantly increased sphere formation and viability of cochlear SPCs compared with those cultured under normoxic conditions. Concurrent with these proliferation promotion effects are changes in the expression of multiple stemness and cell-cycle quiescent associated gene targets, including Abcg2, nestin, p27(Kip1) and Vegf. Knockdown of Hif-1a expression by small-interfering RNA inhibited hypoxia-induced cochlear SPC expansion and resulted in downregulation of Vegf, Abcg2, and nestin and upregulation of p27(Kip1) gene expression. These results suggest that Hif-1a plays an important role in the stimulation of the proliferation of cochlear SPCs, which confers a great benefit of expanding cochlear SPCs via hypoxic conditions. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Chen, Hsin-Chien; Wang, Hsing-Won; Chen, Hang-Kang; Kang, Bor-Hwang; Chao, Ting-Ting; Wang, Chih-Hung] Tri Serv Gen Hosp, Natl Def Med Ctr, Dept Otolaryngol Head & Neck Surg, Taipei 114, Taiwan.
[Chen, Hsin-Chien; Wang, Chih-Hung] Natl Def Med Ctr, Grad Inst Med Sci, Taipei, Taiwan.
[Sytwu, Huey-Kang; Wang, Chih-Hung] Natl Def Med Ctr, Inst Microbiol & Immunol, Taipei, Taiwan.
[Chang, Junn-Liang] Taoyuan Armed Forces Gen Hosp, Dept Pathol & Lab Med, Tao Yuan, Taiwan.
[Chang, Junn-Liang] Ming Chuan Univ, Dept Biomed Engn, Tao Yuan, Taiwan.
[Kang, Bor-Hwang] Natl Def Med Ctr, Inst Undersea & Hyperbar Med, Taipei, Taiwan.
[Liu, Dai-Wei] Buddhist Tzu Chi Gen Hosp, Dept Radiat Oncol, Hualien, Taiwan.
[Liu, Dai-Wei] Tzu Chi Univ, Dept Radiol, Hualien, Taiwan.
[Chen, Chi-Huang] Tri Serv Gen Hosp, Natl Def Med Ctr, Dept Obstet & Gynecol, Taipei 114, Taiwan.
RP Wang, CH (reprint author), Tri Serv Gen Hosp, Natl Def Med Ctr, Dept Otolaryngol Head & Neck Surg, Taipei 114, Taiwan.
EM chw@ms3.hinet.net
FU National Science Council, Taiwan (NSC) [NSC 98-2314-B-016-017-MY3];
Tri-Service General Hospital (TSGH) [C99-40, C99-42]; DOD, Taiwan, ROC
[98-11-05, 99-09-01, 99-10-05]
FX This work was supported in part by grants from the National Science
Council, Taiwan (NSC 98-2314-B-016-017-MY3), Tri-Service General
Hospital (TSGH C99-40 and C99-42) and National Defense Medical Research
grants, Taiwan, ROC (DOD 98-11-05, DOD 99-09-01, and DOD 99-10-05).
CR Bauer S, 2009, ANN NY ACAD SCI, V1153, P48, DOI 10.1111/j.1749-6632.2009.03986.x
Breuskin I, 2008, HEARING RES, V236, P1, DOI 10.1016/j.heares.2007.08.007
Carmeliet P, 1998, NATURE, V394, P485, DOI 10.1038/28867
Chen P, 1999, DEVELOPMENT, V126, P1581
Choi KS, 2003, J BIOCHEM MOL BIOL, V36, P120
CIPOLLESCHI MG, 1993, BLOOD, V82, P2031
Cipolleschi MG, 2000, LEUKEMIA, V14, P735, DOI 10.1038/sj.leu.2401744
Diensthuber M, 2009, JARO-J ASSOC RES OTO, V10, P173, DOI 10.1007/s10162-009-0161-3
Dumoulin JCM, 1999, HUM REPROD, V14, P465, DOI 10.1093/humrep/14.2.465
Felling RJ, 2006, J NEUROSCI, V26, P4359, DOI 10.1523/JNEUROSCI.1898-05.2006
Gagnon PM, 2007, HEARING RES, V226, P79, DOI 10.1016/j.heares.2006.09.006
Gibbons J, 2006, CLONING STEM CELLS, V8, P117, DOI 10.1089/clo.2006.8.117
Grayson WL, 2006, J CELL PHYSIOL, V207, P331, DOI 10.1002/jcp.20571
Gustafsson MV, 2005, DEV CELL, V9, P617, DOI 10.1016/j.devcel.2005.09.010
Huang YH, 2009, FASEB J, V23, P2076, DOI 10.1096/fj.08-121939
Koay EJ, 2008, OSTEOARTHR CARTILAGE, V16, P1450, DOI 10.1016/j.joca.2008.04.007
KRANENBURG, 1995, J CELL BIOL, V131, P227
Krishnamurthy P, 2004, J BIOL CHEM, V279, P24218, DOI 10.1074/jbc.M313599200
Lamm K, 2000, HEARING RES, V141, P199, DOI 10.1016/S0378-5955(00)00005-8
LENDAHL U, 1990, CELL, V60, P585, DOI 10.1016/0092-8674(90)90662-X
Li HW, 2003, NAT MED, V9, P1293, DOI 10.1038/nm925
Lopez IA, 2004, INT J DEV NEUROSCI, V22, P205, DOI 10.1016/j.ijdevneu.2004.04.006
Lu HM, 2009, FEBS J, V276, P7291, DOI 10.1111/j.1742-4658.2009.07441.x
Malgrange B, 2002, MECH DEVELOP, V112, P79, DOI 10.1016/S0925-4773(01)00642-6
Malladi P, 2006, AM J PHYSIOL-CELL PH, V290, pC1139, DOI 10.1152/ajpcell.00415.2005
Mellodew K, 2004, DEV BRAIN RES, V151, P13, DOI 10.1016/j.devbrainres.2004.03.018
Miyashita H, 2007, INVEST OPHTH VIS SCI, V48, P3586, DOI 10.1167/iovs.07-0077
Orsi NM, 2001, MOL REPROD DEV, V59, P44, DOI 10.1002/mrd.1006
Oshima K, 2007, JARO-J ASSOC RES OTO, V8, P18, DOI 10.1007/s10162-006-0058-3
PACKER L, 1977, NATURE, V267, P423, DOI 10.1038/267423a0
Panchision DM, 2009, J CELL PHYSIOL, V220, P562, DOI 10.1002/jcp.21812
Rask-Andersen H, 2005, HEARING RES, V203, P180, DOI 10.1016/j.heares.2004.12.005
Ruben R. J., 1967, ACTA OTO-LARYNGOL, V220, P1
Sahly I, 1997, ANAT EMBRYOL, V196, P159, DOI 10.1007/s004290050088
Savary E, 2007, STEM CELLS, V25, P332, DOI 10.1634/stemcells.2006-0303
Savary E, 2008, MECH DEVELOP, V125, P674, DOI 10.1016/j.mod.2008.05.001
Simon MC, 2008, NAT REV MOL CELL BIO, V9, P285, DOI 10.1038/nrm2354
Studer L, 2000, J NEUROSCI, V20, P7377
Tarui T, 2005, CEREB CORTEX, V15, P1343, DOI 10.1093/cercor/bhi017
THOMPSON JGE, 1990, J REPROD FERTIL, V89, P573
Wang XL, 2007, NEUROREPORT, V18, P1753
White PM, 2006, NATURE, V441, P984, DOI 10.1038/nature04849
WING DA, 1988, BIOCHEM BIOPH RES CO, V153, P952, DOI 10.1016/S0006-291X(88)81320-2
Yang Z, 2006, NEUROSCIENCE, V139, P555, DOI 10.1016/j.neuroscience.2005.12.059
Yerukhimovich MV, 2007, DEV NEUROSCI-BASEL, V29, P251, DOI 10.1159/000096415
Yoshida Y, 2009, CELL STEM CELL, V5, P237, DOI 10.1016/j.stem.2009.08.001
Yun Z, 2002, DEV CELL, V2, P331, DOI 10.1016/S1534-5807(02)00131-4
Zhang CP, 2006, NEUROSIGNALS, V15, P259, DOI 10.1159/000103385
Zhou S, 2001, NAT MED, V7, P1028, DOI 10.1038/nm0901-1028
NR 49
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2011
VL 275
IS 1-2
BP 43
EP 52
DI 10.1016/j.heares.2010.12.004
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 776WY
UT WOS:000291572300005
PM 21147209
ER
PT J
AU Miller, K
Covey, E
AF Miller, Kimberly
Covey, Ellen
TI Comparison of auditory responses in the medial geniculate and pontine
gray of the big brown bat, Eptesicus fuscus
SO HEARING RESEARCH
LA English
DT Article
ID SOUND PRESSURE TRANSFORMATION; COMBINATION-SENSITIVE NEURONS; INFERIOR
COLLICULUS; MOUSTACHED BAT; ECHOLOCATING BATS; HORSESHOE BAT; BODY;
PROJECTIONS; NUCLEI; CONNECTIONS
AB The inferior colliculus has been well studied for its role of transmitting information from the brainstem to the thalamocortical system. However, it is also the source of a major pathway to the cerebellum, via the pontine gray (PG). We compared auditory responses from single neurons in the medial geniculate body (MGB) and PG of the awake big brown bat. MGB neurons were selective for a variety of stimulus types whereas PG neurons only responded to pure tones or simple FM sweeps. Best frequencies (BF) in MGB ranged from 8 kHz to > 80 kHz. BFs of PG neurons were all above 20 kHz with a high proportion above 60 kHz. The mean response latency was 19 ms for MGB neurons and 11 ms for PG neurons. MGB and PG contained neurons with a variety of discharge patterns but the most striking difference was the proportion of neurons with responses that lasted longer than the stimulus duration (MGB 13%, PG 58%). Both nuclei contained duration-sensitive neurons; the majority of those in MGB were band pass whereas in the PG they were long pass. Over half of the neurons in both nuclei were binaural. Differences between these nuclei are consistent with the idea that the thalamocortical pathway performs integration over time for cognitive analysis, thereby increasing selectivity and lengthening latency, while the colliculo-pontine pathway, which is more concerned with sensory-motor control, provides rapid input and a lasting trace of an auditory event. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Miller, Kimberly; Covey, Ellen] Univ Washington, Dept Psychol, Seattle, WA 98195 USA.
RP Covey, E (reprint author), Univ Washington, Dept Psychol, Box 351525, Seattle, WA 98195 USA.
EM ecovey@u.washington.edu
FU NIH [DC-00287]; NSF [IOS-0719295]
FX Research supported by NIH grant DC-00287 and NSF grant IOS-0719295.
CR AAS JE, 1989, J COMP NEUROL, V282, P331, DOI 10.1002/cne.902820303
ANDERSEN RA, 1980, J COMP NEUROL, V194, P649, DOI 10.1002/cne.901940311
Bergan JF, 2009, J NEUROPHYSIOL, V101, P2924, DOI 10.1152/jn.91313.2008
Casseday JH, 2000, J NEUROPHYSIOL, V84, P1475
CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341
Covey E, 1999, ANNU REV PHYSIOL, V61, P457, DOI 10.1146/annurev.physiol.61.1.457
Covey E, 2003, SPEECH COMMUN, V41, P151, DOI [10.1016/S0167-6393(02)00100-0, 10.1016/S0167-6392(02)00100-0]
Ehrlich D, 1997, J NEUROPHYSIOL, V77, P2360
Faure PA, 2003, J NEUROSCI, V23, P3052
Frederiksen E., 1977, BRUEL KJAER TECHNICA, P3
FRISINA RD, 1989, J COMP NEUROL, V284, P85, DOI 10.1002/cne.902840107
FUZESSERY ZM, 1990, J NEUROPHYSIOL, V63, P1128
HASHIKAWA T, 1983, J COMP NEUROL, V219, P241, DOI 10.1002/cne.902190209
Jakobsen L, 2010, P NATL ACAD SCI USA, V107, P13930, DOI 10.1073/pnas.1006630107
JEN PHS, 1988, HEARING RES, V34, P101, DOI 10.1016/0378-5955(88)90098-6
KAMADA T, 1990, BRAIN RES, V528, P123, DOI 10.1016/0006-8993(90)90203-N
KAMADA T, 1992, BRAIN RES, V575, P187, DOI 10.1016/0006-8993(92)90079-O
Llano DA, 1999, J COMP PHYSIOL A, V184, P371, DOI 10.1007/s003590050336
Malmierca MS, 2009, J NEUROSCI, V29, P5483, DOI 10.1523/JNEUROSCI.4153-08.2009
Metzger RR, 2006, J NEUROSCI, V26, P7468, DOI 10.1523/JNEUROSCI.5401-05.2006
MIHAILOFF GA, 1989, J COMP NEUROL, V282, P617, DOI 10.1002/cne.902820411
Miller KE, 2005, NEUROSCIENCE, V136, P895, DOI 10.1016/j.neuroscience.2005.04.032
Nakamoto KT, 2004, J NEUROPHYSIOL, V91, P118, DOI 10.1152/jn.00171.2003
OBRIST MK, 1993, J EXP BIOL, V180, P119
OLSEN JF, 1991, J NEUROPHYSIOL, V65, P1275
OLSEN JF, 1991, J NEUROPHYSIOL, V65, P1254
Perez-Gonzalez D, 2005, EUR J NEUROSCI, V22, P2879, DOI 10.1111/j.1460-9568.2005.04472.x
Razak KA, 2007, J COMP NEUROL, V500, P322, DOI 10.1002/cne.21178
SCHULLER G, 1991, EUR J NEUROSCI, V3, P648, DOI 10.1111/j.1460-9568.1991.tb00851.x
SCHWEIZER H, 1981, J COMP NEUROL, V201, P25, DOI 10.1002/cne.902010104
Shen JX, 1997, J COMP PHYSIOL A, V181, P591, DOI 10.1007/s003590050142
STAPELLS DR, 1981, EAR HEARING, V2, P20
Surlykke A, 2009, P R SOC B, V276, P853, DOI 10.1098/rspb.2008.1505
Thompson AM, 2006, BRAIN RES, V1100, P104, DOI 10.1016/j.brainres.2006.05.014
WENSTRUP JJ, 1994, J COMP NEUROL, V346, P207, DOI 10.1002/cne.903460204
Wenstrup JJ, 1999, J NEUROPHYSIOL, V82, P2528
Winer JA, 2005, TRENDS NEUROSCI, V28, P255, DOI 10.1016/j.tins.2005.03.009
WINER JA, 1994, J COMP NEUROL, V346, P183, DOI 10.1002/cne.903460203
WU MI, 1995, HEARING RES, V85, P155, DOI 10.1016/0378-5955(95)00042-3
NR 39
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2011
VL 275
IS 1-2
BP 53
EP 65
DI 10.1016/j.heares.2010.12.001
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 776WY
UT WOS:000291572300006
PM 21145384
ER
PT J
AU Pan, N
Jahan, I
Kersigo, J
Kopecky, B
Santi, P
Johnson, S
Schmitz, H
Fritzsch, B
AF Pan, Ning
Jahan, Israt
Kersigo, Jennifer
Kopecky, Benjamin
Santi, Peter
Johnson, Shane
Schmitz, Heather
Fritzsch, Bernd
TI Conditional deletion of Atoh1 using Pax2-Cre results in viable mice
without differentiated cochlear hair cells that have lost most of the
organ of Corti
SO HEARING RESEARCH
LA English
DT Article
ID MAMMALIAN INNER-EAR; SENSORY EPITHELIA; SPIRAL GANGLION; OLIVOCOCHLEAR
NEURONS; GENE-TRANSFER; MUTANT MICE; BRAIN-STEM; CYCLE EXIT; NULL MICE;
MATH1
AB Atonal homolog1 (Atoh1, formerly Math1) is a crucial bHLH transcription factor for inner ear hair cell differentiation. Its absence in embryos results in complete absence of mature hair cells at birth and its misexpression can generate extra hair cells. Thus Atoh1 may be both necessary and sufficient for hair cell differentiation in the ear. Atoh1 null mice die at birth and have some undifferentiated cells in sensory epithelia carrying Atoh1 markers. The fate of these undifferentiated cells in neonates is unknown due to lethality. We use Tg(Pax2-Cre) to delete foxed Atoh1 in the inner ear. This generates viable conditional knockout (CKO) mice for studying the postnatal development of the inner ear without differentiated hair cells. Using in situ hybridization we find that Tg(Pax2-Cre) recombines the foxed Atoh1 prior to detectable Atoh1 expression. Only the posterior canal crista has Atoh1 expressing hair cells due to incomplete recombination. Most of the organ of Corti cells are lost in CKO mice via late embryonic cell death. Marker genes indicate that the organ of Corti is reduced to two rows of cells wedged between flanking markers of the organ of Corti (Fgf10 and Bmp4). These two rows of cells (instead of five rows of supporting cells) are positive for Prox1 in neonates. By postnatal day 14 (P14), the remaining cells of the organ of Corti are transformed into a flat epithelium with no distinction of any specific cell type. However, some of the remaining organ of Corti cells express Myo7a at late postnatal stages and are innervated by remaining afferent fibers. Initial growth of afferents and efferents in embryos shows no difference between control mice and Tg(Pax2-Cre)::Atoh1 CKO mice. Most afferents and efferents are lost in the CKO mutant before birth, except for the apex and few fibers in the base. Afferents focus their projections on patches that express the prosensory specifying gene, Sox2. This pattern of innervation by sensory neurons is maintained at least until P14, but fibers target the few Myo7a positive cells found in later stages. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Pan, Ning; Jahan, Israt; Kersigo, Jennifer; Kopecky, Benjamin; Fritzsch, Bernd] Univ Iowa, Dept Biol, Iowa City, IA 52242 USA.
[Santi, Peter; Johnson, Shane; Schmitz, Heather] Univ Minnesota, Dept Otolaryngol, Minneapolis, MN USA.
RP Fritzsch, B (reprint author), Univ Iowa, Dept Biol, 143 BB, Iowa City, IA 52242 USA.
EM bernd-fritzsch@uiowa.edu
RI Duncan, Jeremy/K-7230-2013
OI Duncan, Jeremy/0000-0002-5555-3273
FU NIH [R01 DC 005590]; Capita Foundation; NIDCD [RO1DC007588,
DC007588-03S1]; Roy. J. Carver foundation; Office of the Vice President
for Research (OVPR)
FX This work was supported by a NIH grant (R01 DC 005590) to B.F. TSLIM
imaging for mouse cochlea was provided by funding from the Capita
Foundation and the NIDCD (RO1DC007588 and DC007588-03S1) to P. S. We
express our thanks to Dr. Huda Zoghbi for providing the foxed Atoh1 mice
and Dr. T. Ohyama and A. Groves for providing the Tg(Pax2-cre) line used
for this study. We wish to thank the following people for providing the
plasmids used for our in situ hybridization experiments: Dr. Zoghbi
(Atoh1), Dr. Tessarollo (Bdnf), Dr. Wu (Bmp4), Dr. Hogan (Fgf10), Dr.
Engel (Gata3), Dr. Lee (Neurod1), Dr. Ma (Neurog1), and Dr. Cheah
(Sox2). We also thank C. Donahue for extensive help with genotyping. The
Leica TCS SP5 confocal microscope was purchased in part with a grant
from the Roy. J. Carver foundation. We thank the Office of the Vice
President for Research (OVPR) for support.
CR ANNIKO M, 1988, ARCH OTO-RHINO-LARYN, V245, P155, DOI 10.1007/BF00464018
Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837
Bermingham NA, 2001, NEURON, V30, P411, DOI 10.1016/S0896-6273(01)00305-1
Bermingham-McDonogh O, 2006, J COMP NEUROL, V496, P172, DOI 10.1002/cne.20944
CAMPBELL JP, 1988, HEARING RES, V35, P271, DOI 10.1016/0378-5955(88)90124-4
Chen P, 2002, DEVELOPMENT, V129, P2495
Dabdoub A, 2008, P NATL ACAD SCI USA, V105, P18396, DOI 10.1073/pnas.0808175105
DELCERRO M, 1980, MICROSC ACTA, V83, P117
Doetzlhofer A, 2009, DEV CELL, V16, P58, DOI 10.1016/j.devcel.2008.11.008
Du XP, 2007, DEV BIOL, V305, P430, DOI 10.1016/j.ydbio.2007.02.028
Farinas I, 2001, J NEUROSCI, V21, P6170
Flora A, 2009, SCIENCE, V326, P1424, DOI 10.1126/science.1181453
Fritzsch B, 2010, CELL MOL LIFE SCI, V67, P3089, DOI 10.1007/s00018-010-0403-x
Fritzsch B, 2005, DEV DYNAM, V233, P570, DOI 10.1002/dvdy.20370
Fritzsch B, 2010, PLOS ONE, V5, P1
Fritzsch B, 2004, PROG BRAIN RES, V146, P265, DOI 10.1016/S0079-6123(03)46017-2
Fritzsch B, 2005, BRAIN RES BULL, V66, P249, DOI 10.1016/j.brainresbull.2005.05.016
Fritzsch B, 1997, J NEUROSCI, V17, P6213
GHYSEN A, 1979, DEV BIOL, V70, P438, DOI 10.1016/0012-1606(79)90037-X
Ghysen A, 2000, TRENDS GENET, V16, P221, DOI 10.1016/S0168-9525(99)01969-1
Gubbels SP, 2008, NATURE, V455, P537, DOI 10.1038/nature07265
Hayashi T, 2008, J NEUROSCI, V28, P5991, DOI 10.1523/JNEUROSCI.1690-08.2008
Hebert JM, 2000, DEV BIOL, V222, P296, DOI 10.1006/dbio.2000.9732
Hertzano R, 2004, HUM MOL GENET, V13, P2143, DOI 10.1093/hmg/ddh218
Hwang CH, 2010, DEV DYNAM, V239, P505, DOI 10.1002/dvdy.22200
Izumikawa M, 2008, HEARING RES, V240, P52, DOI 10.1016/j.heares.2008.02.007
Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193
Jahan I, 2010, CELL TISSUE RES, V341, P95, DOI 10.1007/s00441-010-0984-6
Jahan I, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011661
Kageyama R, 2009, CURR OPIN CELL BIOL, V21, P733, DOI 10.1016/j.ceb.2009.08.009
Karis A, 2001, J COMP NEUROL, V429, P615, DOI 10.1002/1096-9861(20010122)429:4<615::AID-CNE8>3.0.CO;2-F
Kawamoto K, 2003, J NEUROSCI, V23, P4395
Kelley MW, 2009, CURR OPIN OTOLARYNGO, V17, P381, DOI 10.1097/MOO.0b013e3283303347
Kelley MW, 2006, NAT REV NEUROSCI, V7, P837, DOI 10.1038/nrn1987
Kiernan AE, 2006, PLOS GENET, V2, P27, DOI 10.1371/journal.pgen.0020004
Kiernan AE, 2005, NATURE, V434, P1031, DOI 10.1038/nature03487
Krijnen PAJ, 2010, J MOL CELL CARDIOL, V49, P781, DOI 10.1016/j.yjmcc.2010.07.017
Lawoko-Kerali G, 2004, MECH DEVELOP, V121, P287, DOI 10.1016/j.mod.2003.12.006
Lee YS, 2006, DEVELOPMENT, V133, P2817, DOI 10.1242/dev.02453
Linthicum FH, 2009, OTOL NEUROTOL, V30, P418, DOI 10.1097/MAO.0b013e31819a8827
Ma QF, 1998, NEURON, V20, P469, DOI 10.1016/S0896-6273(00)80988-5
Ma QF, 2000, JARO, V1, P129, DOI 10.1007/sl01620010017
Mak ACY, 2009, GENE EXPR PATTERNS, V9, P444, DOI 10.1016/j.gep.2009.04.003
Maricich SM, 2009, J NEUROSCI, V29, P11123, DOI 10.1523/JNEUROSCI.2232-09.2009
Matei V, 2005, DEV DYNAM, V234, P633, DOI 10.1002/dvdy.20551
Morris JK, 2006, BRAIN RES, V1091, P186, DOI 10.1016/j.brainres.2006.02.090
Morsli H, 1998, J NEUROSCI, V18, P3327
Nadol Joseph B Jr, 2006, Adv Otorhinolaryngol, V64, P31
Ohyama T, 2010, J NEUROSCI, V30, P15044, DOI 10.1523/JNEUROSCI.3547-10.2010
Ohyama T, 2004, GENESIS, V38, P195, DOI 10.1002/gene.20017
Pan N, 2009, CELL TISSUE RES, V337, P407, DOI 10.1007/s00441-009-0826-6
Pauley S, 2008, PANMINERVA MED, V50, P41
Pauley S, 2006, DEV DYNAM, V235, P2470, DOI 10.1002/dvdy.20839
Pauley S, 2003, DEV DYNAM, V227, P203, DOI 10.1002/dvdy.10297
PIRVOLA U, 1992, P NATL ACAD SCI USA, V89, P9915, DOI 10.1073/pnas.89.20.9915
Pirvola U, 2000, J NEUROSCI, V20, P6125
Praetorius M, 2010, ACTA OTO-LARYNGOL, V130, P215, DOI 10.3109/00016480903019251
Raft S, 2007, DEVELOPMENT, V134, P4405, DOI 10.1242/dev.009118
Ray SK, 2007, MOL CELL BIOL, V27, P7839, DOI 10.1128/MCB.00438-07
Rose MF, 2009, NEURON, V64, P341, DOI 10.1016/j.neuron.2009.10.023
Santi PA, 2009, BIOTECHNIQUES, V46, P287, DOI 10.2144/000113087
Sato M, 2000, MECH DEVELOP, V93, P127, DOI 10.1016/S0925-4773(00)00282-3
Shibata SB, 2010, EXP NEUROL, V223, P464, DOI 10.1016/j.expneurol.2010.01.011
Shroyer NF, 2007, GASTROENTEROLOGY, V132, P2478, DOI 10.1053/j.gastro.2007.03.047
Soukup GA, 2009, DEV BIOL, V328, P328, DOI 10.1016/j.ydbio.2009.01.037
Spoendlin H, 1990, ACTA OTO-LARYNGOL, V470, P69
SPOENDLIN H, 1990, ACTA OTO-LARYNGOL, P61
Tonniges J, 2010, J MICROSC-OXFORD, V239, P117, DOI 10.1111/j.1365-2818.2009.03363.x
Van Esch H, 2001, CELL MOL LIFE SCI, V58, P1296, DOI 10.1007/PL00000940
Woods C, 2004, NAT NEUROSCI, V7, P1310, DOI 10.1038/nn1349
Xiang MQ, 2003, BMC NEUROSCI, V4, DOI 10.1186/1471-2202-4-2
Yang H, 2010, GENESIS, V48, P407, DOI 10.1002/dvg.20633
Zheng JL, 2000, NAT NEUROSCI, V3, P580
Zou D, 2008, HUM MOL GENET, V17, P3340, DOI 10.1093/hmg/ddn229
NR 74
TC 40
Z9 41
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2011
VL 275
IS 1-2
BP 66
EP 80
DI 10.1016/j.heares.2010.12.002
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 776WY
UT WOS:000291572300007
PM 21146598
ER
PT J
AU Verver, EJJ
Freriks, K
Thomeer, HGXM
Huygen, PLM
Pennings, RJE
Alfen-van der Velden, AAEM
Timmers, HJ
Otten, BJ
Cremers, CWRJ
Kunst, HPM
AF Verver, E. J. J.
Freriks, K.
Thomeer, H. G. X. M.
Huygen, P. L. M.
Pennings, R. J. E.
Alfen-van der Velden, A. A. E. M.
Timmers, H. J.
Otten, B. J.
Cremers, C. W. R. J.
Kunst, H. P. M.
TI Ear and hearing problems in relation to karyotype in children with
Turner syndrome
SO HEARING RESEARCH
LA English
DT Article
ID RECURRENCE RATES; OTOLOGIC DISEASE; OTITIS-MEDIA; CHOLESTEATOMA; WOMEN;
PREVALENCE; FEATURES; ESTROGEN
AB The aim of the study was to report otologic and audiologic characteristics in a group of children with Turner syndrome (TS) and correlate these findings to karyotype. Additionally, we give recommendations for the otologic care of these children. Sixty children (age 1.7-21.2 years) were included in this retrospective study. Medical history and karyotypes were recorded and otologic and audiologic evaluation was performed. A history of recurrent otitis media was reported in 41/60 (68%) children and 3/60 (5%) had suffered from cholesteatoma. Audiometric data in 56 children revealed that normal hearing was only present in 33/112 (29%) ears. All other ears 79/112 (71%) were classified in five different audiometric categories for hearing loss. Hearing thresholds in general appeared to be about 10-11 dB worse in children with a monosomy 45,X or isochromosome (both have a total deletion of the short (p) arm of the X-chromosome) compared to those having a mosaicism or structural anomaly (partial deletion, or total deletion in only a few cells). Our findings support the hypothesis that hearing can be affected by loss of the p-arm of the X-chromosome. It is for the first time that a relation between hearing problems and karyotype is statistically confirmed in a large group of children with TS. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Verver, E. J. J.; Thomeer, H. G. X. M.; Huygen, P. L. M.; Pennings, R. J. E.; Cremers, C. W. R. J.; Kunst, H. P. M.] Radboud Univ Nijmegen Med Ctr, Dept Otorhinolaryngol, NL-6500 HB Nijmegen, Netherlands.
[Freriks, K.; Timmers, H. J.] Radboud Univ Nijmegen Med Ctr, Dept Endocrinol, NL-6500 HB Nijmegen, Netherlands.
[Alfen-van der Velden, A. A. E. M.; Otten, B. J.] Radboud Univ Nijmegen Med Ctr, Dept Pediat Endocrinol, NL-6500 HB Nijmegen, Netherlands.
RP Verver, EJJ (reprint author), Radboud Univ Nijmegen Med Ctr, Dept Otorhinolaryngol, POB 9101, NL-6500 HB Nijmegen, Netherlands.
EM evaverver@hotmail.com
RI Kunst, Henricus/J-6456-2012; Pennings, Ronald/J-6651-2012
CR ANDERSON H, 1969, ACTA OTOLARYNGOL S, V26
Barrenas ML, 2000, HEARING RES, V144, P21, DOI 10.1016/S0378-5955(00)00040-X
Barrenas ML, 1999, HEARING RES, V138, P163, DOI 10.1016/S0378-5955(99)00162-8
Beckman A, 2004, INT J AUDIOL, V43, P533, DOI 10.1080/14992020400050068
COHEN D, 1989, AM J OTOL, V10, P456
Dhooge IJM, 2005, OTOL NEUROTOL, V26, P145, DOI 10.1097/00129492-200503000-00003
FILIPSSO.R, 1965, ACTA ENDOCRINOL-COP, V48, P91
Gawron W, 2008, INT J PEDIATR OTORHI, V72, P575, DOI 10.1016/j.ijporl.2008.01.021
Gravholt CH, 2004, EUR J ENDOCRINOL, V151, P657, DOI 10.1530/eje.0.1510657
Gungor N, 2000, EUR J PEDIATR, V159, P740, DOI 10.1007/PL00008338
Hall JE, 2009, INT J PEDIATR OTORHI, V73, P57, DOI 10.1016/j.ijporl.2008.09.022
HALL JG, 1990, PEDIATR CLIN N AM, V37, P1421
Hederstierna C, 2009, ACTA OTO-LARYNGOL, V129, P1434, DOI 10.3109/00016480902741962
HULTCRANTZ M, 1994, HEARING RES, V76, P127, DOI 10.1016/0378-5955(94)90094-9
Hultcrantz M, 2006, ACTA OTO-LARYNGOL, V126, P10, DOI 10.1080/00016480510038617
Hultcrantz M, 1997, HEARING RES, V103, P69, DOI 10.1016/S0378-5955(96)00165-7
Hultcrantz M, 2003, ACTA OTO-LARYNGOL, V123, P253, DOI 10.1080/00016480310001097
King KA, 2007, EAR HEARING, V28, P831
Makishima T, 2009, INT J PEDIATR OTORHI, V73, P1564, DOI 10.1016/j.ijporl.2009.08.005
Midtbo M, 1996, EUR J ORTHODONT, V18, P215
Morimoto N, 2006, J PEDIATR-US, V149, P697, DOI 10.1016/j.jpeds.2006.06.071
Parkin M, 2009, INT J PEDIATR OTORHI, V73, P243, DOI 10.1016/j.ijporl.2008.10.012
Ranke MB, 2001, LANCET, V358, P309, DOI 10.1016/S0140-6736(01)05487-3
SCULERATI N, 1990, ARCH OTOLARYNGOL, V116, P704
Sculerati N, 1996, LARYNGOSCOPE, V106, P992, DOI 10.1097/00005537-199608000-00015
Serra A, 2003, INT J PEDIATR OTORHI, V67, P841, DOI 10.1016/S0165-5876(03)00069-7
Stangerup SE, 1998, J LARYNGOL OTOL, V112, P742
Stangerup SE, 2000, OTOLARYNG HEAD NECK, V123, P283, DOI 10.1067/mhn.2000.104666
STANGERUP SE, 1994, EUR ARCH OTO-RHINO-L, V251, P399
Stangerup SE, 1999, INT J PEDIATR OTORHI, V49, pS69, DOI 10.1016/S0165-5876(99)00136-6
Stenberg AE, 2001, HEARING RES, V157, P87, DOI 10.1016/S0378-5955(01)00280-5
Stenberg AE, 1998, HEARING RES, V124, P85, DOI 10.1016/S0378-5955(98)00113-0
Sybert VP, 2004, NEW ENGL J MED, V351, P1227, DOI 10.1056/NEJMra030360
Van Borsel J, 1999, J COMMUN DISORD, V32, P435, DOI 10.1016/S0021-9924(99)00020-9
WATKIN PM, 1989, J LARYNGOL OTOL, V103, P731, DOI 10.1017/S0022215100109934
NR 35
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2011
VL 275
IS 1-2
BP 81
EP 88
DI 10.1016/j.heares.2010.12.007
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 776WY
UT WOS:000291572300008
PM 21147207
ER
PT J
AU Carney, LH
Sarkar, S
Abrams, KS
Idrobo, F
AF Carney, Laurel H.
Sarkar, Srijata
Abrams, Kristina S.
Idrobo, Fabio
TI Sound-localization ability of the Mongolian gerbil (Meriones
unguiculatus) in a task with a simplified response map
SO HEARING RESEARCH
LA English
DT Article
ID LATERAL SUPERIOR OLIVE; DIFFERENCE DISCRIMINATION THRESHOLDS; INTERAURAL
TIME DIFFERENCES; INFERIOR COLLICULUS; SINGLE NEURONS; RAPID
ACQUISITION; AUDITORY STIMULI; PHASE DISPARITY; FREQUENCY; SENSITIVITY
AB The characterization of ability in behavioral sound-localization tasks is an important aspect of understanding how the brain encodes and processes sound location information. In a few species, both physiological and behavioral results related to sound localization are available. In the Mongolian gerbil, physiological sensitivity to interaural time differences in the auditory brainstem is comparable to that reported in other species; however, the gerbil has been reported to have relatively poor behavioral localization performance as compared with several other species. In this study, the behavioral performance of the gerbil for sound localization was re-examined using a task that involved a simpler response map than in previously published studies. In the current task, the animal directly approached the speaker on each trial, thus the response map was simpler than the 90 degrees-right vs. 90 degrees-left response required in previous studies of localization and source discrimination. Although the general performance across a group of animals was more consistent in the task with the simpler response map, the sound-localization ability replicated that previously reported. These results are consistent with the previous reports that sound-localization performance in gerbil is poor with respect to other species that have comparable neural sensitivity to interaural cues. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Carney, Laurel H.] Univ Rochester, Dept Biomed Engn, Rochester, NY 14642 USA.
[Carney, Laurel H.; Sarkar, Srijata; Abrams, Kristina S.] Syracuse Univ, Inst Sensory Res, Syracuse, NY 13244 USA.
[Carney, Laurel H.; Sarkar, Srijata] Syracuse Univ, Dept Biomed &Chem Engn, Syracuse, NY 13244 USA.
[Carney, Laurel H.] Syracuse Univ, Dept Elect Engn & Comp Sci, Syracuse, NY 13244 USA.
[Carney, Laurel H.; Abrams, Kristina S.] Univ Rochester, Dept Neurobiol & Anat, Rochester, NY 14642 USA.
[Idrobo, Fabio] Boston Univ, Dept Psychol, Boston, MA 02215 USA.
RP Carney, LH (reprint author), Univ Rochester, Dept Biomed Engn, 601 Elmwood Ave,Box 603, Rochester, NY 14642 USA.
EM laurel.carney@rochester.edu
FU NIDCD [R01-01641]
FX Dr. Rickye Heffner provided experimental data from the Heffner and
Heffner (1988b) study and instructive comments related to operant
training of the gerbils. Numerous helpful comments on the manuscript
were provided by members of our Lab Writing Workshop. We gratefully
acknowledge the care that our animals receive in the Laboratory Animal
Resource facilities in the Institute for Sensory Research. This work was
supported by NIDCD R01-01641.
CR Batra R, 1997, J NEUROPHYSIOL, V78, P1222
Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a
DOWNEY P, 1975, J EXP ANAL BEHAV, V23, P265, DOI 10.1901/jeab.1975.23-265
DOWNEY P, 1972, J EXP ANAL BEHAV, V18, P453, DOI 10.1901/jeab.1972.18-453
Ebert CS, 2008, HEARING RES, V235, P134, DOI 10.1016/j.heares.2007.11.003
GANDY R, 1995, ASS RES OT ABS, V64
Hancock KE, 2004, J NEUROSCI, V24, P7110, DOI 10.1523/JNEUROSCI.0762-04.2004
HARRISON JM, 1992, J ACOUST SOC AM, V92, P1331, DOI 10.1121/1.403927
HARRISON JM, 1971, J EXP ANAL BEHAV, V15, P379, DOI 10.1901/jeab.1971.15-379
HEFFNER H, 1980, J ACOUST SOC AM, V68, P1584, DOI 10.1121/1.385213
HEFFNER RS, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P691
HEFFNER RS, 1988, BEHAV NEUROSCI, V102, P422, DOI 10.1037/0735-7044.102.3.422
Heffner RS, 1997, ACTA OTO-LARYNGOL, P46
HEFFNER RS, 1988, HEARING RES, V36, P221, DOI 10.1016/0378-5955(88)90064-0
KUWADA S, 1987, J NEUROPHYSIOL, V57, P1338
LANGFORD TL, 1984, HEARING RES, V15, P39, DOI 10.1016/0378-5955(84)90223-5
Lesica NA, 2010, J NEUROSCI, V30, P11696, DOI 10.1523/JNEUROSCI.0846-10.2010
MacMillan N. A., 2005, DETECTION THEORY USE
Maier JK, 2008, BRAIN RES, V1220, P47, DOI 10.1016/j.brainres.2008.01.083
Maier JK, 2006, J ACOUST SOC AM, V119, P1029, DOI 10.1021/1.2159429
Maki K, 2005, J ACOUST SOC AM, V118, P872, DOI 10.1121/1.1944647
McAlpine D, 2001, NAT NEUROSCI, V4, P396, DOI 10.1038/86049
McAlpine D, 1996, HEARING RES, V97, P136
SANES DH, 1988, J NEUROSCI, V8, P682
Shackleton TM, 2003, J NEUROSCI, V23, P716
SINNOTT JM, 1992, HEARING RES, V59, P205, DOI 10.1016/0378-5955(92)90117-6
Skottun BC, 2001, P NATL ACAD SCI USA, V98, P14050, DOI 10.1073/pnas.241513998
Spitzer MW, 1998, J NEUROPHYSIOL, V80, P3062
SPITZER MW, 1995, J NEUROPHYSIOL, V73, P1668
Tollin DJ, 2003, NEUROSCIENTIST, V9, P127, DOI 10.1177/1073858403252228
Tollin DJ, 2008, J NEUROSCI, V28, P4848, DOI 10.1523/JNEUROSCI.5421-07.2008
Tollin DJ, 2005, J NEUROPHYSIOL, V93, P1223, DOI 10.1152/jn.00747.2004
Tsai JJ, 2010, J NEUROPHYSIOL, V103, P875, DOI 10.1152/jn.00911.2009
YIN TCT, 1990, J NEUROPHYSIOL, V64, P465
NR 34
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2011
VL 275
IS 1-2
BP 89
EP 95
DI 10.1016/j.heares.2010.12.006
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 776WY
UT WOS:000291572300009
PM 21147208
ER
PT J
AU Jelfs, S
Culling, JF
Lavandier, M
AF Jelfs, Sam
Culling, John F.
Lavandier, Mathieu
TI Revision and validation of a binaural model for speech intelligibility
in noise
SO HEARING RESEARCH
LA English
DT Article
ID HEARING-IMPAIRED LISTENERS; INDUCED INTERAURAL TIME; SPATIAL UNMASKING;
LEVEL DIFFERENCES; RECEPTION THRESHOLD; CANCELLATION THEORY;
REVERBERATION; PREDICTION; MASKING; EQUALIZATION
AB Lavandier and Culling [Lavandier, M. and Culling, J. F. 2010. Prediction of binaural speech intelligibility against noise in rooms. J. Acoust. Soc. Am. 127, 387-399] demonstrated a method of predicting human speech reception thresholds for speech in combined noise and reverberation. An updated version of the model is presented, which is substantially more computationally efficient. The updated model makes similar predictions for the SRT data considered by Lavandier and Culling, which tested the model's ability to predict effects of binaural unmasking and room colouration. In addition, we show here that the model accurately predicts the effects of headshadow and reproduces a range of data sets from the literature, including situations with multiple interfering sounds in anechoic conditions. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Culling, John F.] Cardiff Univ, Sch Psychol, Cardiff CF10 3AT, S Glam, Wales.
[Jelfs, Sam] Cardiff Univ, Welsh Sch Architecture, Cardiff CF10 3NB, S Glam, Wales.
[Lavandier, Mathieu] Univ Lyon, Ecole Natl Travaux Publ Etat, CNRS, Dept Genie Civil & Batiment, F-69518 Vaulx En Velin, France.
RP Culling, JF (reprint author), Cardiff Univ, Sch Psychol, Tower Bldg,Pk Pl, Cardiff CF10 3AT, S Glam, Wales.
EM Cullingj@cf.ac.uk
RI Culling, John/D-1468-2009; Lavandier, Mathieu/A-4153-2011
CR Akeroyd MA, 2004, J ACOUST SOC AM, V116, P1135, DOI 10.1121/1.1768959
ANSI, 1997, S3 5 METH CALC SPEEC
Babinet M, 1837, CR HEBD ACAD SCI, V4, P638
Beutelmann R, 2006, J ACOUST SOC AM, V120, P331, DOI 10.1121/1.2202888
Beutelmann R, 2010, J ACOUST SOC AM, V127, P2479, DOI 10.1121/1.3295575
Beutelmann R, 2009, J ACOUST SOC AM, V126, P1359, DOI 10.1121/1.3177266
Blauert J., 1998, J ACOUST SOC AM, V103, P3082, DOI 10.1121/1.422910
BRONKHORST AW, 1988, J ACOUST SOC AM, V83, P1508, DOI 10.1121/1.395906
Culling JF, 2005, J ACOUST SOC AM, V118, P552, DOI 10.1121/1.1925967
Culling JF, 1996, BEHAV RES METH INSTR, V28, P376, DOI 10.3758/BF03200517
Culling JF, 2004, J ACOUST SOC AM, V116, P1057, DOI [10.1121/1.1772396, 10.1121/17.1772396]
Culling JF, 2007, J ACOUST SOC AM, V122, P2803, DOI 10.1121/1.2785035
de Laat J. A. P. M., 1983, HEARING PHYSL BASES, P359
Duda RO, 1998, J ACOUST SOC AM, V104, P3048, DOI 10.1121/1.423886
DURLACH NI, 1963, J ACOUST SOC AM, V35, P1206, DOI 10.1121/1.1918675
Durlach N.I., 1972, F MODERN AUDITORY TH, P371
Edmonds BA, 2006, J ACOUST SOC AM, V120, P1539, DOI 10.1121/1.2228573
Edmonds BA, 2005, J ACOUST SOC AM, V117, P3069, DOI 10.1121/1.1880752
Edmonds BA, 2005, ACTA ACUST UNITED AC, V91, P546
Gardner B., 1994, HRTF MEASUREMENTS KE
Hawley ML, 2004, J ACOUST SOC AM, V115, P833, DOI 10.1121/1.1639908
HIRSH IJ, 1948, J ACOUST SOC AM, V20, P536, DOI 10.1121/1.1906407
HOUTGAST T, 1985, J ACOUST SOC AM, V77, P1069, DOI 10.1121/1.392224
IEEE, 1969, ELECTRO, V17, P227
Kidd G, 2005, ACTA ACUST UNITED AC, V91, P526
Kollmeier B, 1997, J ACOUST SOC AM, V102, P2412, DOI 10.1121/1.419624
Lavandier M, 2007, J ACOUST SOC AM, V122, P1713, DOI 10.1121/1.2764469
Lavandier M, 2008, J ACOUST SOC AM, V123, P2237, DOI 10.1121/1.2871943
Lavandier M, 2010, J ACOUST SOC AM, V127, P387, DOI 10.1121/1.3268612
LEVITT H, 1967, J ACOUST SOC AM, V42, P820, DOI 10.1121/1.1910654
LICKLIDER JCR, 1948, J ACOUST SOC AM, V20, P150, DOI 10.1121/1.1906358
MOORE BCJ, 1983, J ACOUST SOC AM, V74, P750, DOI 10.1121/1.389861
Patterson R., 1987, I ACOUSTICS SPEECH G
Patterson R., 1988, SPIRAL VOS FINAL REP
Peissig J, 1997, J ACOUST SOC AM, V101, P1660, DOI 10.1121/1.418150
PLOMP R, 1979, AUDIOLOGY, V18, P43
Plomp R., 1976, Acustica, V34
Posselt C., 1986, P 12 INT C AC TOR, V1, pB1
Rayleigh Lord, 1880, PHILOS MAG, V9, P278
Shinn-Cunningham BG, 2005, ACTA ACUST UNITED AC, V91, P967
Summers V, 1998, HEARING RES, V118, P139, DOI 10.1016/S0378-5955(98)00030-6
van Wijngaarden SJ, 2008, J ACOUST SOC AM, V123, P4514, DOI 10.1121/1.2905245
vom Hovel H., 1984, THESIS RTWH AACHEN
Wan R., ACOUST SOC AM
Wesselkamp M., 1992, MODERNE VERFAHREN SP, P330
Wesselkamp M., 1994, THESIS
Zurek P. M., 1993, ACOUSTICAL FACTORS A, P255
NR 47
TC 8
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2011
VL 275
IS 1-2
BP 96
EP 104
DI 10.1016/j.heares.2010.12.005
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 776WY
UT WOS:000291572300010
PM 21156201
ER
PT J
AU Carpinelli, MR
Wise, AK
Burt, RA
AF Carpinelli, Marina R.
Wise, Andrew K.
Burt, Rachel A.
TI Vitamin D-deficient diet rescues hearing loss in Klotho mice
SO HEARING RESEARCH
LA English
DT Article
ID MOUSE; GENE; EXPRESSION; APOPTOSIS; STRAINS
AB Klotho-deficient mice exhibit a premature aging syndrome, a feature of which is mild hearing loss. In the present study, the hearing phenotype of Klotho mice was characterized to better determine how well this phenotype resembles presbycusis in humans. It was demonstrated that Klotho animals have auditory-evoked brainstem response (ABR) threshold shifts of 14-18 dB in response to pure tone stimuli of 4, 8, 16 and 32 kHz, and similarly, in response to clicks; however, cochlear histology and spiral ganglion neuron density appeared normal in these mice. It was further demonstrated that a vitamin D-deficient diet normalizes serum calcitriol (1,25(OH)(2)D(3)) levels and prevents hearing loss in Klotho mice. It is concluded that hearing loss in Klotho mice is caused by elevated renal 1 alpha-hydroxylase expression and consequent excessive production of calcitriol. These findings implicate the vitamin D metabolic pathway in hearing loss and pose questions as to the mechanism by which elevated calcitriol levels mediate such hearing loss. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Carpinelli, Marina R.; Burt, Rachel A.] Walter & Eliza Hall Inst Med Res, Parkville, Vic 3050, Australia.
[Carpinelli, Marina R.; Burt, Rachel A.] Univ Melbourne, Hearing Cooperat Res Ctr, Melbourne, Vic 3010, Australia.
[Wise, Andrew K.] Bion Ear Inst, Melbourne, Vic 3002, Australia.
RP Carpinelli, MR (reprint author), Walter & Eliza Hall Inst Med Res, 1G Royal Parade, Parkville, Vic 3050, Australia.
EM carpinelli@wehi.edu.au; awise@bionicear.org; burt@wehi.edu.au
RI Wise, Andrew/B-5943-2014
OI Wise, Andrew/0000-0001-9715-8784
FU HEARing CRC under Australian Government; National Institute of Health;
National Institute for Deafness and Communication Disorders
[HHS-N-263-2007-00053-C]
FX The authors acknowledge the financial support of the HEARing CRC,
established and supported under the Australian Government's Cooperative
Research Centres Program. AKW is supported by a grant from the National
Institute of Health and National Institute for Deafness and
Communication Disorders (HHS-N-263-2007-00053-C). Dr James Fallon wrote
the Igor procedure file used for ABR analysis. Prof Howard Morris
provided useful discussion.
CR Abramoff M. D., 2004, IMAGE PROCESSING IMA, V11, P36
Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004
COHEN HN, 1979, LANCET, V1, P985
Frisina RD, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P339, DOI 10.1201/9781420038736.ch24
HENRY KR, 1980, AUDIOLOGY, V19, P369
Jimenez AM, 1999, HEARING RES, V138, P91, DOI 10.1016/S0378-5955(99)00154-9
Kamemori M, 2002, HEARING RES, V171, P103, DOI 10.1016/S0378-5955(02)00483-5
Kuroo M, 1997, NATURE, V390, P45, DOI 10.1038/36285
Kurosu H, 2005, SCIENCE, V309, P1829, DOI 10.1126/science.1112766
Medici D, 2008, J CELL BIOL, V182, P459, DOI 10.1083/jcb.200803024
Rasband W. S., 1997, IMAGEJ
Shimada T, 2004, J BONE MINER RES, V19, P429, DOI 10.1359/JBMR.0301264
Someya S, 2009, P NATL ACAD SCI USA, V106, P19432, DOI 10.1073/pnas.0908786106
Tsujikawa H, 2003, MOL ENDOCRINOL, V17, P2393, DOI 10.1210/me.2003-0048
Urakawa I, 2006, NATURE, V444, P770, DOI 10.1038/nature05315
Vieth R, 2001, AM J CLIN NUTR, V73, P288
Yoshida T, 2002, ENDOCRINOLOGY, V143, P683, DOI 10.1210/en.143.2.683
Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9
NR 18
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2011
VL 275
IS 1-2
BP 105
EP 109
DI 10.1016/j.heares.2010.12.009
PG 5
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 776WY
UT WOS:000291572300011
PM 21167925
ER
PT J
AU Krishnan, A
Plack, CJ
AF Krishnan, Ananthanarayan
Plack, Christopher J.
TI Neural encoding in the human brainstem relevant to the pitch of complex
tones
SO HEARING RESEARCH
LA English
DT Article
ID FREQUENCY-FOLLOWING RESPONSES; ITERATED RIPPLED NOISE;
FUNDAMENTAL-FREQUENCY; COCHLEAR NUCLEUS; AUDITORY-NERVE; TIME-DOMAIN;
TEMPORAL REPRESENTATION; UNRESOLVED HARMONICS; UNITARY MODEL; VOWEL
SOUNDS
AB Psychoacoustic studies have shown that complex tones containing resolved harmonics evoke stronger pitches than complex tones with only unresolved harmonics. Also, unresolved harmonics presented in alternating sine and cosine (ALT) phase produce a doubling of pitch. We examine here whether the temporal pattern of phase-locked neural activity reflected in the scalp recorded human frequency following response (FFR) preserves information relevant to pitch strength, and to the doubling of pitch for ALT stimuli. Results revealed stronger neural periodicity strength for resolved stimuli, although the effect of resolvability was weak compared to the effect observed behaviorally; autocorrelation functions and FFR spectra suggest a different pattern of phase-locked neural activity for ALT stimuli with resolved and unresolved harmonics consistent with the doubling of pitch observed in our behavioral estimates; and the temporal pattern of neural activity underlying pitch encoding appears to be similar at the auditory nerve (auditory nerve model response) and the rostral brainstem level (FFR). These findings suggest that the phase-locked neural activity reflected in the scalp recorded FFR preserves neural information relevant to pitch that could serve as an electrophysiological correlate of the behavioral pitch measure. The scalp recorded FFR may provide for a non-invasive analytic tool to evaluate neural encoding of complex sounds in humans. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Krishnan, Ananthanarayan] Purdue Univ, Dept Speech Language Hearing Sci, W Lafayette, IN 47907 USA.
[Plack, Christopher J.] Univ Manchester, Sch Psychol Sci, Human Commun & Deafness Div, Manchester M13 9PL, Lancs, England.
RP Krishnan, A (reprint author), Purdue Univ, Dept Speech Language Hearing Sci, 1353 Heavilon Hall,500 Oval Dr, W Lafayette, IN 47907 USA.
EM rkrish@purdue.edu; chris.plack@manchester.ac.uk
FU University of Lancaster, UK; BBSRC (UK) [BB/D012953/1]; NIH [R01, DC
008549]
FX Research supported by a grant from the University of Lancaster, UK;
BBSRC (UK) grant BB/D012953/1 (C.P.) and by NIH R01, DC 008549 (A.K.).
We would also like to thank Gavin Bidelman and Chris Smalt for their
invaluable help in data analysis, and an anonymous reviewer for
constructive comments on an earlier version of the manuscript. Reprint
requests should be addressed to Ananthanarayan Krishnan, Department of
Speech Language Hearing Sciences, Purdue University, West Lafayette, IN,
USA 47907-2038, or via email: rkrish@purdue.edu
CR Aiken SJ, 2008, HEARING RES, V245, P35, DOI 10.1016/j.heares.2008.08.004
BERNSTEIN J, 2003, J ACOUST SOC AM, V113, P2290
Bernstein JG, 2003, J ACOUST SOC AM, V113, P3323, DOI 10.1121/1.1572146
Bernstein JGW, 2008, J ACOUST SOC AM, V124, P1653, DOI 10.1121/1.2956484
Bernstein JGW, 2005, J ACOUST SOC AM, V117, P3816, DOI 10.1121/1.1904268
BREGMAN AS, 1990, CAN J PSYCHOL, V44, P400, DOI 10.1037/h0084255
Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717
Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698
Carlyon RP, 1998, J ACOUST SOC AM, V104, P1118, DOI 10.1121/1.423319
CARLYON RP, 1994, J ACOUST SOC AM, V95, P3541, DOI 10.1121/1.409971
Cedolin L, 2005, J NEUROPHYSIOL, V94, P347, DOI 10.1152/jn.01114.2004
DARWIN CJ, 1995, J ACOUST SOC AM, V98, P880, DOI 10.1121/1.413513
DEBOER E, 1976, HDB SENSORY PHYSL, V5, P479
EVANS EF, 1978, AUDIOLOGY, V17, P369
EVANS EF, 1983, HEARING PHYSL BASES, P140
GLASER EM, 1976, ELECTROEN CLIN NEURO, V40, P25, DOI 10.1016/0013-4694(76)90176-0
GREENBERG S, 1987, HEARING RES, V25, P91, DOI 10.1016/0378-5955(87)90083-9
HORST JW, 1990, J ACOUST SOC AM, V88, P2656, DOI 10.1121/1.399986
HOUTSMA AJM, 1990, J ACOUST SOC AM, V87, P304, DOI 10.1121/1.399297
Krishnan A, 2005, COGNITIVE BRAIN RES, V25, P161, DOI 10.1016/j.cogbrainres.2005.05.004
Krishnan A, 2004, HEARING RES, V189, P1, DOI 10.1016/S0378-5955(03)00402-7
Krishnan A, 2009, BRAIN LANG, V110, P135, DOI 10.1016/j.bandl.2009.03.005
Krishnan A, 2010, J NEUROLINGUIST, V23, P81, DOI 10.1016/j.jneuroling.2009.09.001
Krishnan A, 2009, J COGNITIVE NEUROSCI, V21, P1092, DOI 10.1162/jocn.2009.21077
Krishnan A, 2000, AUDIOL NEURO-OTOL, V5, P312, DOI 10.1159/000013897
Krishnan A, 1999, AUDIOL NEURO-OTOL, V4, P95, DOI 10.1159/000013826
Krishnan A, 2009, NEUROREPORT, V20, P408, DOI 10.1097/WNR.0b013e3283263000
Krishnan A, 2002, HEARING RES, V166, P192, DOI 10.1016/S0378-5955(02)00327-1
LANGNER G, 1983, EXP BRAIN RES, V52, P333
Larsen E, 2008, J NEUROPHYSIOL, V100, P1301, DOI 10.1152/jn.01361.2007
LICKLIDER JCR, 1951, EXPERIENTIA, V7, P128, DOI 10.1007/BF02156143
LUNDEEN C, 1984, J ACOUST SOC AM, V75, P1578, DOI 10.1121/1.390867
MARSH JT, 1974, ELECTROEN CLIN NEURO, V36, P415, DOI 10.1016/0013-4694(74)90192-8
MEDDIS R, 1991, J ACOUST SOC AM, P1862
Meddis R, 1997, J ACOUST SOC AM, V102, P1811, DOI 10.1121/1.420088
Moore B. C. J., 1989, INTRO PSYCHOL HEARIN
PALMER AR, 1990, J ACOUST SOC AM, V88, P1412, DOI 10.1121/1.400329
PALMER AR, 1993, NATO ADV SCI INST SE, V239, P373
PALMER AR, 1992, ADV BIOSCI, V83, P231
PATTERSON RD, 1995, J ACOUST SOC AM, V98, P1890, DOI 10.1121/1.414456
PLOMP R, 1964, J ACOUST SOC AM, V36, P1628, DOI 10.1121/1.1919256
RHODE WS, 1995, J ACOUST SOC AM, V97, P2414, DOI 10.1121/1.411963
RITSMA RJ, 1964, J ACOUST SOC AM, V36, P1637, DOI 10.1121/1.1919257
Sayles M, 2008, NEURON, V58, P789, DOI 10.1016/j.neuron.2008.03.029
Shackleton TM, 2009, JARO-J ASSOC RES OTO, V10, P76, DOI 10.1007/s10162-008-0149-4
SHACKLETON TM, 1994, J ACOUST SOC AM, V95, P3529, DOI 10.1121/1.409970
SHOFNER WP, 1991, J ACOUST SOC AM, V90, P2450, DOI 10.1121/1.402049
SMITH JC, 1975, ELECTROEN CLIN NEURO, V39, P465, DOI 10.1016/0013-4694(75)90047-4
Swaminathan J, 2008, IEEE T BIO-MED ENG, V55, P281, DOI 10.1109/TBME.2007.896592
Swaminathan J, 2008, NEUROREPORT, V19, P1163, DOI 10.1097/WNR.0b013e3283088d31
Winter IM, 2003, SPEECH COMMUN, V41, P135, DOI 10.1016/S0167-6393(02)00098-5
WORDEN FG, 1968, ELECTROEN CLIN NEURO, V25, P42, DOI 10.1016/0013-4694(68)90085-0
Yost WA, 1996, J ACOUST SOC AM, V99, P1066, DOI 10.1121/1.414593
Yost WA, 1996, J ACOUST SOC AM, V100, P511, DOI 10.1121/1.415873
NR 54
TC 12
Z9 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2011
VL 275
IS 1-2
BP 110
EP 119
DI 10.1016/j.heares.2010.12.008
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 776WY
UT WOS:000291572300012
PM 21167923
ER
PT J
AU Massida, Z
Belin, P
James, C
Rouger, J
Fraysse, B
Barone, P
Deguine, O
AF Massida, Z.
Belin, P.
James, C.
Rouger, J.
Fraysse, B.
Barone, P.
Deguine, O.
TI Voice discrimination in cochlear-implanted deaf subjects
SO HEARING RESEARCH
LA English
DT Article
ID NOISE VOCODED SPEECH; SPECTRALLY REDUCED SPEECH; NORMAL-HEARING
LISTENERS; CROSS-MODAL PLASTICITY; HUMAN AUDITORY-CORTEX; VOCAL-TRACT;
ENVIRONMENTAL SOUNDS; TEMPORAL CUES; INDIVIDUAL-DIFFERENCES; ELECTRIC
HEARING
AB The human voice is important for social communication because voices carry speech and other information such as a person's physical characteristics and affective state. Further restricted temporal cortical regions are specifically involved in voice processing. In cochlear-implanted deaf patients, the processor alters the spectral cues which are crucial for the perception of the paralinguistic information of human voices. The aim of this study was to assess the abilities of voice discrimination in cochlear-implant (Cl) users and in normal-hearing subjects (NHS) using a Cl simulation (vocoder). In NHS the performance in voice discrimination decreased when reducing the spectral information by decreasing the number of channels of the vocoder. In Cl patients with different delays after implantation we observed a strong impairment in voice discrimination at time of activation of the neuroprosthesis. No significant improvement can be detected in patients after two years of experience of the implant while they have reached a higher level of recovery of speech perception, suggesting a dissociation in the dynamic of functional recuperation of speech and voice processing. In addition to the lack of spectral cues due to the implant processor, we hypothesized that the origin of such deficit could derive from a crossmodal reorganization of the temporal voice areas in Cl patients. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Barone, P.] Univ Toulouse 3, CNRS, Fac Med Rangueil, Ctr Rech Cerveau & Cognit,UMR 5549, F-31062 Toulouse 9, France.
[Massida, Z.; Rouger, J.; Barone, P.; Deguine, O.] Univ Toulouse 3, Univ Toulouse, F-31062 Toulouse, France.
[Belin, P.] Univ Glasgow, Dept Psychol, Voice Neurocognit Lab, Glasgow G12 8QB, Lanark, Scotland.
[Belin, P.] Univ Glasgow, Ctr Cognit Neuroimaging, Glasgow G12 8QB, Lanark, Scotland.
[James, C.] Cochlear France SAS, F-31100 Toulouse, France.
[James, C.; Fraysse, B.; Deguine, O.] Serv Otorhinolaryngol & Otoneurol, F-31059 Toulouse 9, France.
RP Barone, P (reprint author), Univ Toulouse 3, CNRS, Fac Med Rangueil, Ctr Rech Cerveau & Cognit,UMR 5549, 113 Route Narbonne, F-31062 Toulouse 9, France.
EM pascal.barone@cerco.ups-tlse.fr
RI Barone, Pascal/A-4008-2009; Imhof, Margarete/F-8471-2011; DEGUINE,
Olivier/A-6999-2011
FU Cifre Convention [979/2006]; ANR [ANR-06-Neuro-021-04]; CNRS
FX We thank the cochlear-implanted and normally hearing subjects for their
participation in this study, Marie-Laurence Laborde for help in
collecting the data, C. Marlot for help in bibliography. This work was
supported by a Cifre Convention to ZM (Cochlear France SAS-ANRT
No979/2006), the ANR Hearing Loss (ANR-06-Neuro-021-04) and
the recurrent funding of the CNRS.
CR AREHART KH, 2010, J SPEECH LANGUAGE HE
Arpesella Marisa, 2008, Ig Sanita Pubbl, V64, P611
Belin P, 2002, COGNITIVE BRAIN RES, V13, P17, DOI 10.1016/S0926-6410(01)00084-2
Belin P, 2004, TRENDS COGN SCI, V8, P129, DOI 10.1016/j.tics.2004.01.008
Belin P, 2000, NATURE, V403, P309, DOI 10.1038/35002078
Belin P, 2003, NEUROREPORT, V14, P2105, DOI 10.1097/00001756-200311140-00019
Belin P, 2006, PHILOS T R SOC B, V361, P2091, DOI 10.1098/rstb.2006.1933
BURNS EM, 1976, J ACOUST SOC AM, V60, P863, DOI 10.1121/1.381166
Chatterjee M, 2008, HEARING RES, V235, P143, DOI 10.1016/j.heares.2007.11.004
Cleary M, 2005, J SPEECH LANG HEAR R, V48, P204, DOI 10.1044/1092-4388(2005/015)
Cleary Miranda, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P113
Coez A, 2008, J NUCL MED, V49, P60, DOI 10.2967/jnumed.107.044545
David EE, 2003, OTOL NEUROTOL, V24, P228, DOI 10.1097/00129492-200303000-00017
Donnelly PJ, 2009, J ACOUST SOC AM, V126, pEL128, DOI 10.1121/1.3239464
Elliott TM, 2009, PLOS COMPUT BIOL, V5, DOI 10.1371/journal.pcbi.1000302
Erler Susan F, 2002, Am J Audiol, V11, P83, DOI 10.1044/1059-0889(2002/020)
Fitch WT, 1999, J ACOUST SOC AM, V106, P1511, DOI 10.1121/1.427148
Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538
Fu QJ, 2004, JARO-J ASSOC RES OTO, V5, P253, DOI 10.1007/s10162-004-4046-1
Fu QJ, 2005, J ACOUST SOC AM, V118, P1711, DOI 10.1121/1.1985024
GAVER WW, 1993, ECOL PSYCHOL, V5, P1, DOI 10.1207/s15326969eco0501_1
Gfeller K, 2007, EAR HEARING, V28, P412, DOI 10.1097/AUD.0b013e3180479318
Giraud AL, 2001, NEURON, V30, P657, DOI 10.1016/S0896-6273(01)00318-X
Gonzalez J, 2005, J ACOUST SOC AM, V118, P461, DOI 10.1121/1.1928892
Gratton Michael Anne, 2003, Curr Opin Otolaryngol Head Neck Surg, V11, P367, DOI 10.1097/00020840-200310000-00010
Green D. M., 1966, SIGNAL DETECTION THE
Green T, 2002, J ACOUST SOC AM, V112, P2155, DOI 10.1121/1.1506688
GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
Gygi B, 2007, PERCEPT PSYCHOPHYS, V69, P839, DOI 10.3758/BF03193921
Hailstone JC, 2010, NEUROPSYCHOLOGIA, V48, P1104, DOI 10.1016/j.neuropsychologia.2009.12.011
KARLIN JE, 1942, PSYCHOMETRIKA, V7
Kidd GR, 2007, J ACOUST SOC AM, V122, P418, DOI 10.1121/1.2743154
Kishon-Rabin Liat, 2009, Journal of Basic and Clinical Physiology and Pharmacology, V20, P219
Kovacic D, 2009, J ACOUST SOC AM, V126, P762, DOI 10.1121/1.3158855
Lee DS, 2001, NATURE, V409, P149, DOI 10.1038/35051653
Loebach JL, 2006, HEARING RES, V213, P130, DOI 10.1016/j.heares.2006.01.011
Loebach JL, 2008, J ACOUST SOC AM, V123, P1126, DOI 10.1121/1.2823453
Loebach JL, 2008, HEARING RES, V241, P87, DOI 10.1016/j.heares.2008.05.002
Loizou PC, 1999, J ACOUST SOC AM, V106, P2097, DOI 10.1121/1.427954
Lorenzi C, 2006, P NATL ACAD SCI USA, V103, P18866, DOI 10.1073/pnas.0607364103
Luo X, 2008, EAR HEARING, V29, P957, DOI 10.1097/AUD.0b013e3181888f61
Luo X., 2007, TRENDS AMPLIF, V11, P301, DOI DOI 10.1177/1084713807305301
MARX M, 2010, 11 INT C COCHL IMPL
MASSIDA Z, 2008, 6 FENS GEN
Moore BCJ, 2008, PHILOS T R SOC B, V363, P917, DOI 10.1098/rstb.2007.2195
MULDER HE, 1992, ACTA OTO-LARYNGOL, V112, P946, DOI 10.3109/00016489209137495
Neuner F, 2000, BRAIN COGNITION, V44, P342, DOI 10.1006/brcg.1999.1196
Obleser J, 2008, J NEUROSCI, V28, P8116, DOI 10.1523/JNEUROSCI.1290-08.2008
Oishi N, 2010, OTOLARYNG HEAD NECK, V142, P565, DOI 10.1016/j.otohns.2009.12.006
Proops D W, 1999, J Laryngol Otol Suppl, V24, P5
Reed CM, 2005, EAR HEARING, V26, P48, DOI 10.1097/00003446-200502000-00005
Roers F, 2009, J VOICE, V23, P408, DOI 10.1016/j.jvoice.2007.12.003
Rouger J, 2007, P NATL ACAD SCI USA, V104, P7295, DOI 10.1073/pnas.0609419104
ROUGER J, 2007, PERCEPTION AUDIOVISU
Rouger J, 2008, BRAIN RES, V1188, P87, DOI 10.1016/j.brainres.2007.10.049
Scott SK, 2000, BRAIN, V123, P2400, DOI 10.1093/brain/123.12.2400
Scott SK, 2006, J ACOUST SOC AM, V120, P1075, DOI 10.1121/1.2216725
SEIDMAN MD, 2004, ACTA OTO-LARYNGOL, V552, P16
Shafiro V, 2008, EAR HEARING, V29, P401, DOI 10.1097/AUD.0b013e31816a0cf1
SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303
Smith DRR, 2007, J ACOUST SOC AM, V122, P3628, DOI 10.1121/1.2799507
Spahr AJ, 2004, ARCH OTOLARYNGOL, V130, P624, DOI 10.1001/archotol.130.5.624
Story BH, 2001, J ACOUST SOC AM, V109, P1651, DOI 10.1121/1.1352085
Strelnikov K, 2009, NEUROPSYCHOLOGIA, V47, P972, DOI 10.1016/j.neuropsychologia.2008.10.017
Surprenant AM, 2001, J ACOUST SOC AM, V110, P2085, DOI 10.1121/1.1404973
Takemoto H, 2006, J ACOUST SOC AM, V120, P2228, DOI 10.1121/1.2261270
TANNER WP, 1954, PSYCHOL REV, V61, P401, DOI 10.1037/h0058700
TYEMURRAY N, 1992, EAR HEARING, V13, P200, DOI 10.1097/00003446-199206000-00010
Toner J, 2004, EAR HEARING, V25, P310, DOI 10.1097/01.AUD.0000134549.48718.53
Van Lancker D R, 1982, Brain Cogn, V1, P185, DOI 10.1016/0278-2626(82)90016-1
VANLANCKER DR, 1989, J CLIN EXP NEUROPSYC, V11, P665, DOI 10.1080/01688638908400923
Vongphoe M, 2005, J ACOUST SOC AM, V118, P1055, DOI 10.1121/1.1944507
Vouloumanos A, 2009, P NATL ACAD SCI USA, V106, P18867, DOI 10.1073/pnas.0906049106
Warren JD, 2006, NEUROIMAGE, V31, P1389, DOI 10.1016/j.neuroimage.2006.01.034
Xu L, 2002, J ACOUST SOC AM, V112, P247, DOI 10.1121/1.1487843
Xue SA, 2006, J VOICE, V20, P391, DOI 10.1016/j.jvoice.2005.05.001
Zatorre RJ, 2001, CEREB CORTEX, V11, P946, DOI 10.1093/cercor/11.10.946
Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5
NR 78
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2011
VL 275
IS 1-2
BP 120
EP 129
DI 10.1016/j.heares.2010.12.010
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 776WY
UT WOS:000291572300013
PM 21167924
ER
PT J
AU Garadat, SN
Pfingst, BE
AF Garadat, Soha N.
Pfingst, Bryan E.
TI Relationship between gap detection thresholds and loudness in
cochlear-implant users
SO HEARING RESEARCH
LA English
DT Article
ID OUTER HAIR-CELLS; MODULATION DETECTION; SPEECH RECOGNITION; INTENSITY
DISCRIMINATION; ELECTRICAL-STIMULATION; AUDITORY-NERVE; STIMULUS LEVEL;
ELECTRODE CONFIGURATION; SITE; CONSEQUENCES
AB Gap detection threshold (GOT) is a commonly used measure of temporal acuity in cochlear-implant (CI) recipients. This measure, like other measures of temporal acuity, shows considerable variation across subjects and also varies across stimulation sites within subjects. The aims of this study were (1) to determine whether across-site variation in GDTs would be reduced or maintained with increased stimulation levels; (2) to determine whether across-site variation in GDTs at low stimulation levels was related to differences in loudness percepts at those same levels; and (3) to determine whether matching loudness levels could reduce across-site differences in GDTs. Thresholds and maximum comfortable loudness levels were measured in postlingually deaf adults using all available sites in their electrode arrays. All sites were then surveyed at 30% of the dynamic range (DR) to examine across-site variation. Two sites with the largest difference in GDTs were then selected and for those two sites GDTs were measured at multiple levels of the DR (10%, 30%, 50%, 70%, and 90%). Stimuli consisted of 500 ms trains of symmetric-biphasic pulses, 40 mu s/phase, presented at a rate of 1000 pps using a monopolar (MP1+2) electrode configuration. To examine perceptual differences in loudness, the selected sites were loudness-matched at the same levels of the DR. Variations in GDTs and loudness patterns were observed across stimulation sites and across subjects. Variations in GDTs across sites tended to decrease with increasing stimulation levels. For the majority of the subjects, stimuli at a given level in %DR were perceived louder at sites with better GDTs than those presented at the same level in %DR at sites with poorer GDTs. These results suggest that loudness is a contributing factor to across-site variation in GDTs and that Cl fittings based on more detailed loudness matching could reduce across-site variation and improve perceptual acuity. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Garadat, Soha N.; Pfingst, Bryan E.] Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, Ann Arbor, MI 49109 USA.
RP Pfingst, BE (reprint author), Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, Room 4605 Med Sci 2,1150 W Med Ctr Dr, Ann Arbor, MI 49109 USA.
EM bpfingst@umich.edu
FU NIH/NIDCD [R01 DC004312, R01 DC010786, T32 DC00011, F32 DC010318]
FX This work was supported by NIH/NIDCD grants R01 DC004312, R01 DC010786,
T32 DC00011, and F32 DC010318.
CR Bierer JA, 2002, J NEUROPHYSIOL, V87, P478
BURKHOLDERJUHAS.R, 2008, ASS RES OT ABST, V31, P295
Busby PA, 1999, J ACOUST SOC AM, V105, P1841, DOI 10.1121/1.426721
Chatterjee M, 1998, J ACOUST SOC AM, V103, P2565, DOI 10.1121/1.422777
Chatterjee M, 1998, J ACOUST SOC AM, V103, P2515, DOI 10.1121/1.422772
Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0
FORMBY C, 1986, J SPEECH HEAR RES, V29, P413
Fourcin A J, 1979, Br J Audiol, V13, P85, DOI 10.3109/03005367909078883
Franck KH, 2003, JARO, V4, P49, DOI 10.1007/s10162-002-2047-5
Fu QJ, 2002, NEUROREPORT, V13, P1635, DOI 10.1097/00001756-200209160-00013
Galvin JJ, 2005, JARO-J ASSOC RES OTO, V6, P269, DOI 10.1007/s10162-005-0007-6
Galvin JJ, 2009, HEARING RES, V250, P46, DOI 10.1016/j.heares.2009.01.009
Hanekom JJ, 1998, J ACOUST SOC AM, V104, P2372, DOI 10.1121/1.423772
Javel E, 2000, J ACOUST SOC AM, V107, P908, DOI 10.1121/1.428269
KIANG NYS, 1972, ANN OTO RHINOL LARYN, V81, P714
LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
MCKAY CM, 2004, AUDITORY PROSTHESES, P286
Moore BCJ, 1998, PSYCHOL REV, V105, P108, DOI 10.1037/0033-295X.105.1.108
Moore BCJ, 1996, EAR HEARING, V17, P133, DOI 10.1097/00003446-199604000-00007
MOORE BCJ, 1988, J ACOUST SOC AM, V83, P1093, DOI 10.1121/1.396054
Morris DJ, 2000, JARO, V1, P211, DOI 10.1007/s101620010022
MUCHNIK C, 1994, SCAND AUDIOL, V23, P105, DOI 10.3109/01050399409047493
MULLER CG, 1983, ANN NY ACAD SCI, V405, P412, DOI 10.1111/j.1749-6632.1983.tb31654.x
Pfingst BE, 2004, AUDIOL NEURO-OTOL, V9, P341, DOI 10.1159/000081283
Pfingst BE, 2007, J ACOUST SOC AM, V121, P2236, DOI 10.1121/1.2537501
PFINGST BE, 1994, HEARING RES, V78, P197, DOI 10.1016/0378-5955(94)90026-4
Pfingst BE, 2008, J ACOUST SOC AM, V123, P1054, DOI 10.1121/1.2828051
Pfingst BE, 2004, JARO-J ASSOC RES OTO, V5, P11, DOI 10.1007/s10162-003-3051-0
PREECE JP, 1989, J SPEECH HEAR RES, V32, P849
PROSEN CA, 1981, SCIENCE, V212, P1286, DOI 10.1126/science.7233219
RYAN A, 1975, NATURE, V253, P44, DOI 10.1038/253044a0
Sagi E, 2009, J SPEECH LANG HEAR R, V52, P385, DOI [10.1044/1092-4388(2008/07-0219), 10.1044/1092-4388(2008/07-0219]
SHANNON RV, 1983, HEARING RES, V11, P157, DOI 10.1016/0378-5955(83)90077-1
SHANNON RV, 1989, J ACOUST SOC AM, V85, P2587, DOI 10.1121/1.397753
SHANNON RV, 1992, J ACOUST SOC AM, V91, P2156, DOI 10.1121/1.403807
Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4
Skinner MW, 1999, J SPEECH LANG HEAR R, V42, P814
Skinner MW, 1997, J ACOUST SOC AM, V101, P3766, DOI 10.1121/1.418383
Snyder RL, 2004, JARO-J ASSOC RES OTO, V5, P305, DOI 10.1007/s10162-004-4026-5
Swanson B, 2004, NUCL MATLAB TOOLBOX
VANWIERINGEN VJ, 1999, J ACOUST SOC AM, V106, P1925
NR 41
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2011
VL 275
IS 1-2
BP 130
EP 138
DI 10.1016/j.heares.2010.12.011
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 776WY
UT WOS:000291572300014
PM 21168479
ER
PT J
AU Wang, MY
Wu, XH
Li, L
Schneider, BA
AF Wang, Mengyuan
Wu, Xihong
Li, Liang
Schneider, Bruce A.
TI The effects of age and interaural delay on detecting a change in
interaural correlation: The role of temporal jitter
SO HEARING RESEARCH
LA English
DT Article
ID MASKING-LEVEL DIFFERENCES; OLDER-ADULTS; PRECEDENCE; SEGREGATION; NOISE;
INTELLIGIBILITY; LOCALIZATION; RECOGNITION; SUPPRESSION; ATTENTION
AB Duration thresholds for detecting a change in interaural correlation (from 0 to 1, or from 1 to 0) in the initial portion of a 1-second, broadband noise (0-10 kHz) were determined for younger and older adults in a two-interval, two-alternative forced choice paradigm as a function of the interaural delay between the noise bursts presented to each ear. When the interaural delay was 0 ms, older adults found it harder to detect a change in correlation from 0 to 1 than from 1 to 0. For younger adults, however, this pattern was reversed. For interaural delays greater than 0 ms, both younger adults and older adults found it easier to detect a change in interaural correlation from 0 to 1 for short interaural delays (1 ms) with the reverse being true for longer interaural delays (5 ms). It is shown that this pattern of results is expected if temporal jitter (loss of neural synchrony in the auditory system) increases with age and with interaural delay. The implications of these results for age-related changes in stream segregation are discussed. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Schneider, Bruce A.] Univ Toronto, Ctr Res Biol Commun Syst, Dept Psychol, Mississauga, ON L5L 1C6, Canada.
[Wang, Mengyuan; Wu, Xihong; Li, Liang] Peking Univ, Speech & Hearing Res Ctr, Natl Key Ctr Machine Percept, Dept Psychol, Beijing 100871, Peoples R China.
RP Schneider, BA (reprint author), Univ Toronto, Ctr Res Biol Commun Syst, Dept Psychol, Mississauga, ON L5L 1C6, Canada.
EM liangli@pku.edu.cn; bruce.schneider@utoronto.ca
FU Natural Sciences and Engineering Research Council of Canada [RPIN 9172];
Canadian Institutes of Health Research [CCI-85674]; "973" National Basic
Research Program of China [2009CB320901]; National Science Foundation of
China [60545030, 30670704, 30711120563]; Chinese Ministry of Education
[20090001110050]
FX This work was supported by a Natural Sciences and Engineering Research
Council of Canada Grant (RPIN 9172), a Canadian Institutes of Health
Research Grant (CCI-85674), the "973" National Basic Research Program of
China (2009CB320901), National Science Foundation of China Grants
(60545030, 30670704, 30711120563), and the Chinese Ministry of Education
(20090001110050).
CR Akeroyd MA, 1999, J ACOUST SOC AM, V105, P2807, DOI 10.1121/1.426897
Alain C, 2007, J NEUROSCI, V27, P1308, DOI 10.1523/JNEUROSCI.5433-06.2007
Alain C, 1996, J GERONTOL B-PSYCHOL, V51, pP91
ANSI, 2004, ANSIS36
Bernstein LR, 2001, J ACOUST SOC AM, V109, P1604, DOI 10.1121/1.1354203
BLAUERT J, 1986, J ACOUST SOC AM, V79, P806, DOI 10.1121/1.393471
Bregman AS., 1990, AUDITORY SCENE ANAL
Carlyon RP, 2001, J EXP PSYCHOL HUMAN, V27, P115, DOI 10.1037//0096-1523.27.1.115
DANEMAN M, 1980, J VERB LEARN VERB BE, V19, P450, DOI 10.1016/S0022-5371(80)90312-6
Durlach N.I., 1972, F MODERN AUDITORY TH, P371
EDDINS DA, 2010, SPRINGER HDB AUDITOR, P135
Grose JH, 2010, EAR HEARING, V31, P755, DOI 10.1097/AUD.0b013e3181e627e7
HAAS H, 1951, ACUSTICA, V1, P49
Hasher L., 1988, PSYCHOL LEARN MOTIV, V22, P193, DOI DOI 10.1016/S0079-7421(08)60041-9
Heinrich A, 2011, Q J EXP PSYCHOL, V64, P186, DOI 10.1080/17470218.2010.492621
Heinrich A, 2008, Q J EXP PSYCHOL, V61, P735, DOI 10.1080/17470210701402372
Huang Y, 2009, J ACOUST SOC AM, V126, P300, DOI 10.1121/1.3147504
Huang Y, 2008, HEARING RES, V244, P51, DOI 10.1016/j.heares.2008.07.006
Humes LE, 2006, J ACOUST SOC AM, V120, P2926, DOI 10.1121/1.2354070
Li L, 2004, J EXP PSYCHOL HUMAN, V30, P1077, DOI 10.1037/0096-1523.30.6.1077
Li L, 2005, HEARING RES, V202, P235, DOI 10.1016/j.heures.2004.10.007
Li L, 2009, EAR HEARING, V30, P273, DOI 10.1097/AUD.0b013e318198703d
Litovsky RY, 2001, J ACOUST SOC AM, V109, P346, DOI 10.1121/1.1328792
Litovsky RY, 1999, J ACOUST SOC AM, V106, P1633, DOI 10.1121/1.427914
MacDonald EN, 2010, HEARING RES, V261, P63, DOI 10.1016/j.heares.2010.01.005
MOORE BCJ, 1988, J ACOUST SOC AM, V83, P1102, DOI 10.1121/1.396055
KATHLEEN M, 1991, J SPEECH HEAR RES, V34, P1410
PICHORAFULLER MK, 1992, J ACOUST SOC AM, V91, P2129, DOI 10.1121/1.403673
Pichora-Fuller MK, 2007, HEARING RES, V223, P114, DOI 10.1016/j.heares.2006.10.009
Pichora-Fuller MK, 1998, PERCEPT PSYCHOPHYS, V60, P1197, DOI 10.3758/BF03206169
Rakerd B, 2000, J ACOUST SOC AM, V107, P1061, DOI 10.1121/1.428287
Schmiedt R. A., 2010, SPRINGER HDB AUDITOR, P9
Schneider B. A., 2010, SPRINGER HDB AUDITOR, P167
SCHNEIDER BA, 1989, J ACOUST SOC AM, V86, P1756, DOI 10.1121/1.398607
Schneider Bruce A., 2001, Seminars in Hearing, V22, P227, DOI 10.1055/s-2001-15628
Snyder JS, 2005, COGNITIVE BRAIN RES, V24, P492, DOI 10.1016/j.cogbrainres.2005.03.002
Vongpoisal T, 2007, J SPEECH LANG HEAR R, V50, P1139, DOI 10.1044/1092-4388(2007/079)
Wagener KC, 2005, INT J AUDIOL, V44, P144, DOI 10.1080/14992020500057517
WALLACH H, 1949, AM J PSYCHOL, V62, P315, DOI 10.2307/1418275
Zurek P. M., 1987, DIRECTIONAL HEARING, P85, DOI 10.1007/978-1-4612-4738-8_4
NR 40
TC 5
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2011
VL 275
IS 1-2
BP 139
EP 149
DI 10.1016/j.heares.2010.12.013
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 776WY
UT WOS:000291572300015
PM 21184818
ER
PT J
AU Latoche, JR
Neely, HR
Noben-Trauth, K
AF Latoche, Joseph R.
Neely, Harold R.
Noben-Trauth, Konrad
TI Polygenic inheritance of sensorineural hearing loss (Snhl2, -3, and -4)
and organ of Corti patterning defect in the ALR/LtJ mouse strain
SO HEARING RESEARCH
LA English
DT Article
ID PRODUCT OTOACOUSTIC EMISSIONS; QUANTITATIVE TRAIT LOCI; MAMMALIAN
INNER-EAR; INBRED STRAINS; EARLY-ONSET; DBA/2J MICE; CELL FATE;
IMPAIRMENT; MODEL; POLARITY
AB Progressive sensorineural hearing loss in humans is a common and debilitating impairment. Sensorineural deafness in inbred strains of mice is a similarly common and genetically diverse phenotype providing experimental models to study the underlying genetics and the biological effects of the risk factors. Here, we report that ALR/LtJ mice develop early-onset profound sensorineural hearing loss as evidenced by high-to-low frequency hearing threshold shifts, absent distortion-product otoacoustic emissions, and normal endocochlear potentials. Linkage analyses of a segregating backcross revealed three novel quantitative trait loci named sensorineural hearing loss (Snhl) -2, -3, and -4. The QTLs achieved very high LOD scores with markers on chromosome 1 (Snhl2, LOD: 12), chromosome 6 (Snhl3, LOD: 24) and chromosome 10 (Snhl4, LOD: 11). Together, they explained 90% of the phenotypic variance. While Snhl2 and Snhl3 affected hearing thresholds across a broad range of test frequencies, Snhl4 caused primarily high-frequency hearing loss. The hearing impairment is accompanied by an organ of Corti patterning defect that is characterized by the ectopic expression of supernumerary outer hair cells organized in rows along the abneural site of the sensory epithelium in the presence of unaltered planar polarity and otherwise normal cochlear duct morphology. Cloning the Snhl2, -3, and -4 genes in the ALR/LtJ mice may provide important genetic and mechanistic insights into the pathology of human progressive sensorineural deafness. Published by Elsevier B.V.
C1 [Latoche, Joseph R.; Neely, Harold R.; Noben-Trauth, Konrad] Natl Inst Deafness & Other Commun Disorders, Neurogenet Sect, Mol Biol Lab, NIH, Rockville, MD 20850 USA.
RP Noben-Trauth, K (reprint author), Natl Inst Deafness & Other Commun Disorders, Neurogenet Sect, Mol Biol Lab, NIH, 5 Res Court, Rockville, MD 20850 USA.
EM nobentk@nidcd.nih.gov
FU Division of Intramural Research at NIDCD
FX We thank Glen Martin for help with DPOAEs and Daniel Marcus for advice
on EP measurements. We thank Alain Dabdoub and Feng Qian for their
comments on the manuscript. The Division of Intramural Research at NIDCD
funded this work.
CR Ali G, 2006, CLIN GENET, V69, P429, DOI 10.1111/j.1399-0004.2006.00611.x
Chen Z, 2008, J NEUROSCI, V28, P6633, DOI 10.1523/JNEUROSCI.1280-08.2008
Drayton M, 2006, HEARING RES, V212, P128, DOI 10.1016/j.heares.2005.11.006
Eichler EE, 2010, NAT REV GENET, V11, P446, DOI 10.1038/nrg2809
Jimenez AM, 1999, HEARING RES, V138, P91, DOI 10.1016/S0378-5955(99)00154-9
Johnson KR, 2002, GENOMICS, V80, P461, DOI [10.1006/geno.2002.6858, 10.1016/S0888-7543(02)96858-8]
Johnson KR, 2005, GENOMICS, V85, P582, DOI 10.1016/j.ygeno.2005.02.006
Johnson KR, 2008, GENOMICS, V92, P219, DOI 10.1016/j.ygeno.2008.06.007
Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377
Johnson KR, 2006, BRAIN RES, V1091, P79, DOI 10.1016/j.brainres.2006.02.021
Kiernan AE, 2005, DEVELOPMENT, V132, P4353, DOI 10.1242/dev.02002
Konings A, 2009, EAR HEARING, V30, P151, DOI 10.1097/AUD.0b013e3181987080
Lu XW, 2004, NATURE, V430, P93, DOI 10.1038/nature02677
Manly KF, 2001, MAMM GENOME, V12, P930, DOI 10.1007/s00335-001-1016-3
Mansour SL, 2009, HUM MOL GENET, V18, P43, DOI 10.1093/hmg/ddn311
Martin GK, 2007, HEARING RES, V234, P59, DOI 10.1016/j.heares.2007.09.002
Mashimo T, 2006, MAMM GENOME, V17, P841, DOI 10.1007/s00335-004-2438-5
McClellan J, 2010, CELL, V141, P210, DOI 10.1016/j.cell.2010.03.032
Montcouquiol M, 2003, NATURE, V423, P173, DOI 10.1038/nature01618
*NIDCD, 2010, STAT EP
Noben-Trauth K, 2009, BRAIN RES, V1277, P42, DOI 10.1016/j.brainres.2009.02.012
Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226
Ohlemiller KK, 2006, HEARING RES, V220, P10, DOI 10.1016/j.heares.2006.06.012
Pauley S, 2006, DEV DYNAM, V235, P2470, DOI 10.1002/dvdy.20839
Petkov PM, 2005, PLOS GENET, V1, P312, DOI 10.1371/journal.pgen.0010033
Sage C, 2005, SCIENCE, V307, P1114, DOI 10.1126/science.1106642
Shim K, 2005, DEV CELL, V8, P553, DOI 10.1016/j.devcel.2005.02.009
Shin JB, 2010, J NEUROSCI, V30, P9683, DOI 10.1523/JNEUROSCI.1541-10.2010
Thys M, 2009, OTOL NEUROTOL, V30, P1021, DOI 10.1097/MAO.0b013e3181a86509
Van Eyken E, 2007, AUDIOL NEURO-OTOL, V12, P345, DOI 10.1159/000106478
Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9
NR 31
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2011
VL 275
IS 1-2
BP 150
EP 159
DI 10.1016/j.heares.2010.12.017
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 776WY
UT WOS:000291572300016
PM 21185929
ER
PT J
AU Song, Y
Mellott, JG
Winer, JA
AF Song, Yohan
Mellott, Jeffrey G.
Winer, Jeffery A.
TI Microvascular organization of the cat inferior colliculus
SO HEARING RESEARCH
LA English
DT Article
ID CEREBRAL-BLOOD-FLOW; GERBIL MERIONES-UNGUICULATUS; SUPERIOR OLIVARY
COMPLEX; CENTRAL AUDITORY-SYSTEM; PRIMATE VISUAL-CORTEX; CAPILLARY
DENSITY; COCHLEAR NUCLEUS; GUINEA-PIG; POSTNATAL-DEVELOPMENT; NEURONAL
ARCHITECTURE
AB Brain neural activity depends critically on the blood supply to a given structure. The blood supply can differ within and between divisions, which may have functional significance. We analyzed the microvascular organization of the cat inferior colliculus (IC) to determine if the capillary distribution is homogenous throughout. The IC consists of the central nucleus (CN), the dorsal cortex (DC), and the lateral cortex (LC), each with different roles in auditory behavior and perception. Plastic-embedded tissue was studied from adult cats in 1-mu m thick semi-thin sections stained with toluidine blue; tissue was sampled from the IC in a caudal rostral series of sections. The architectonic subdivisions were drawn independently based on Golgi impregnations.
We used the nearest neighbor distance (NND) method to quantify capillary density between subdivisions. Overall, the distribution of capillary density was non-homogenous across the IC. We found significant capillary NND differences between the CN and LC (Mann Whitney test; p <= 0.05), CN and DC (Mann Whitney test; p <= 0.05), and LC and DC (Mann Whitney test; p <= 0.05). The CN had the lowest NND values among all three divisions, indicating the highest capillary density. NND values changed gradually as analysis moved from the center of the IC towards the periphery.
The significantly higher microvascular density in the CN may imply that the lemniscal auditory pathway has higher levels of blood flow and metabolic activity than non-lemniscal areas of the IC. The non-homogenous microvascular organization of the IC supports parcellation schemes that delineate three major subdivisions and confirms that the borders between the three regions are not sharp. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Song, Yohan; Mellott, Jeffrey G.; Winer, Jeffery A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Div Neurobiol, Berkeley, CA 94720 USA.
RP Mellott, JG (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Div Neurobiol, Room 289 Life Sci Addit, Berkeley, CA 94720 USA.
EM jeff_mellott@berkeley.edu
FU USPHS [R01DC02319-29]
FX We thank Jason Chung for his help with plotting blood vessels, David
Larue and Katie Smith for technical assistance, and Karl Rohe for
statistical assistance. We give special thanks to Dr. Nell Cant and Dr.
Doug Oliver whose detailed and thoughtful comments refined the
presentation of this study. Supported by USPHS Grant R01DC02319-29.
CR AITKIN L, 1994, EXP BRAIN RES, V98, P53
AITKIN L, 1984, NEUROSCI LETT, V1, P315
AITKIN LM, 1981, J COMP NEUROL, V196, P25, DOI 10.1002/cne.901960104
AITKIN LM, 1975, J NEUROPHYSIOL, V38, P1196
ANDREW DLE, 1989, AM J ANAT, V186, P389, DOI 10.1002/aja.1001860408
Baborie A, 2006, NEUROSCI LETT, V404, P20, DOI 10.1016/j.neulet.2006.05.008
BAR T, 1972, Z ZELLFORSCH MIK ANA, V133, P231, DOI 10.1007/BF00307145
BERMAN AL, 1968, CYTOARCHITECTONIC AT
BLACK JE, 1991, EXP NEUROL, V111, P204, DOI 10.1016/0014-4886(91)90008-Z
BOROWSKY IW, 1989, J COMP NEUROL, V288, P401, DOI 10.1002/cne.902880304
Buxton RB, 1997, J CEREBR BLOOD F MET, V17, P64
Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9
Cant NB, 2005, INFERIOR COLLICULUS
Cant NB, 2008, NEUROSCIENCE, V154, P206, DOI 10.1016/j.neuroscience.2008.02.015
Cant NB, 2006, J COMP NEUROL, V495, P511, DOI 10.1002/cne.20888
Chernock ML, 2004, HEARING RES, V188, P12, DOI 10.1016/S0378-5955(03)00340-X
COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204
CONRADI NG, 1980, ACTA NEUROPATHOL, V50, P131
Coote EJ, 2008, NEUROSCIENCE, V154, P218, DOI 10.1016/j.neuroscience.2008.02.030
COX SB, 1993, J CEREBR BLOOD F MET, V13, P899
Craigie EH, 1921, J COMP NEUROL, V33, P193, DOI 10.1002/cne.900330302
Craigie EH, 1920, J COMP NEUROL, V31, P429, DOI 10.1002/cne.900310504
DIAMOND IT, 1969, BRAIN RES, V15, P305, DOI 10.1016/0006-8993(69)90160-7
Dunning HS, 1937, J COMP NEUROL, V67, P433, DOI 10.1002/cne.900670305
Fonta C, 2002, CEREB CORTEX, V12, P199, DOI 10.1093/cercor/12.2.199
Gerrits RJ, 2000, BRAIN RES, V864, P205, DOI 10.1016/S0006-8993(00)02142-9
Goense JBM, 2007, MAGN RESON IMAGING, V25, P740, DOI 10.1016/j.mri.2007.02.013
GONZALEZLIMA F, 1994, BRAIN RES, V660, P34, DOI 10.1016/0006-8993(94)90836-2
Grivas I, 2003, BRAIN RES, V971, P245, DOI 10.1016/S0006-8993(03)02475-2
GROSS PM, 1987, J CEREBR BLOOD F MET, V7, P154
Harrison RV, 2002, CEREB CORTEX, V12, P225, DOI 10.1093/cercor/12.3.225
Harting JK, 2000, BRAIN RES, V881, P244
HERBERT H, 1991, J COMP NEUROL, V304, P103, DOI 10.1002/cne.903040108
Irvine D.R.F., 1986, Progress in Sensory Physiology, V7, P1
Jain R, 2006, NEUROSCI LETT, V395, P71, DOI 10.1016/j.neulet.2005.10.077
JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987
Jones M, 2004, NEUROIMAGE, V22, P956, DOI 10.1016/j.neuroimage.2004.02.007
Larue DT, 1996, J NEUROSCI METH, V64, P69, DOI 10.1016/0165-0270(95)00111-5
Loftus WC, 2008, NEUROSCIENCE, V154, P196, DOI 10.1016/j.neuroscience.2008.01.019
Logothetis NK, 2008, NATURE, V453, P869, DOI 10.1038/nature06976
LUND HF, 1985, ANAT EMBRYOL, V171, P1
Malmierca MS, 2008, J NEUROSCI, V28, P4767, DOI 10.1523/JNEUROSCI.0238-08.2008
Malonek D, 1996, SCIENCE, V272, P551, DOI 10.1126/science.272.5261.551
MASAMOTO K, 2003, BRAIN RES, P66
MATO M, 1979, EXPERIENTIA, V55, P501
MERZENIC.MM, 1974, BRAIN RES, V77, P397, DOI 10.1016/0006-8993(74)90630-1
Michaloudi H, 2005, DEV BRAIN RES, V155, P60, DOI 10.1016/j.devbrainres.2004.11.007
Michaloudi H, 2003, DEV BRAIN RES, V140, P269, DOI 10.1016/S0165-3806(02)00613-2
MOREST DK, 1984, J COMP NEUROL, V222, P209, DOI 10.1002/cne.902220206
Nemoto M, 1997, ADV EXP MED BIOL, V428, P521
OLIVER DL, 1984, J COMP NEUROL, V222, P237, DOI 10.1002/cne.902220207
Oliver DL, 1999, NEUROSCIENCE, V93, P643, DOI 10.1016/S0306-4522(99)00143-8
Oliver DL, 2005, INFERIOR COLLICULUS
OLIVER DL, 1997, J COMP NEUROL, V23, P7438
Paloff AM, 1998, J BRAIN RES, V39, P231
RAMON, 1909, NERF ACOUSTIQUE SA B
RIDDLE DR, 1993, J NEUROSCI, V13, P4193
ROSE JE, 1963, J NEUROPHYSIOL, V26, P294
SCHNEIDERMAN A, 1987, J COMP NEUROL, V266, P519
SCHOFIELD BR, 1992, J COMP NEUROL, V317, P438, DOI 10.1002/cne.903170409
Schofield BR, 1996, HEARING RES, V102, P1, DOI 10.1016/S0378-5955(96)00121-9
Schreiner CE, 1997, NATURE, V388, P383, DOI 10.1038/41106
SERVIERE J, 1984, J COMP NEUROL, V228, P463, DOI 10.1002/cne.902280403
Shtoyerman E, 2000, J NEUROSCI, V20, P8111
SONG Y, 2009, MID WINT M, P159
Tieman SB, 2004, BRAIN RES, V998, P100, DOI 10.1016/j.brainres.2003.11.023
TUOR UI, 1994, J COMP NEUROL, V342, P439, DOI 10.1002/cne.903420310
Weber B, 2008, CEREB CORTEX, V18, P2318, DOI 10.1093/cercor/bhm259
Weibel E.R., 1979, STEREOLOGICAL METHOD, V1, P1
Winer JA, 1998, J COMP NEUROL, V400, P147
Winer J.A., 2005, INFERIOR COLLICULUS
Woolsey TA, 1996, CEREB CORTEX, V6, P647, DOI 10.1093/cercor/6.5.647
YU BP, 1994, ACTA ANAT, V149, P128
ZHENG D, 1991, J NEUROSCI, V11, P2622
Zhou JX, 2006, J COMP NEUROL, V495, P100, DOI 10.1002/cne.20863
NR 75
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2011
VL 274
IS 1-2
SI SI
BP 5
EP 12
DI 10.1016/j.heares.2010.02.014
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 757LG
UT WOS:000290085900003
PM 20206676
ER
PT J
AU Malmierca, MS
Blackstad, TW
Osen, KK
AF Malmierca, Manuel S.
Blackstad, Theodor W.
Osen, Kirsten K.
TI Computer-assisted 3-D reconstructions of Golgi-impregnated neurons in
the cortical regions of the inferior colliculus of rat
SO HEARING RESEARCH
LA English
DT Article
ID MEDIAL GENICULATE-BODY; AUDITORY-CORTEX AI; VENTRAL COCHLEAR NUCLEUS;
BAT PTERONOTUS-PARNELLII; LATERAL SUPERIOR OLIVE; GUINEA-PIG; RESPONSE
PROPERTIES; GABAERGIC NEURONS; MERIONES-UNGUICULATUS;
QUANTITATIVE-ANALYSIS
AB The inferior colliculus (IC) is the main auditory nucleus in the midbrain. This auditory center is made of a central nucleus (CNIC) characterized by a distinct laminar organization that is surrounded by cortical regions. The neuronal types in the CNIC are well established but thus far, the neuronal composition and functional roles of the cortical regions are not fully appreciated. As dendritic architecture is critical for the synaptic integrative properties of neurons, a detailed analysis of the dendritic architecture of the neurons in the collicular cortical regions should shed light on our understanding of their roles in collicular function. In the present study, we have used the del Rio-Hortega Golgi procedure to impregnate individual neurons within the IC. Rat brains were embedded in resin and sectioned serially to allow quantitative 3-D analyses of single neurons or groups of neurons. Our results demonstrate that the cortical regions of the IC are made up of unique sets of neuronal types and that there is an interdigitation of dendrites at the cortical borders. This latter feature may have led to difficulty in delineating a sharp border between the CNIC and cortical regions in previous studies. The quantitative analysis further demonstrates that there are significant differences in many of the dendritic parameters tested when compared to the neurons from the CNIC. Moreover, we observed that the neuronal populations of the cortical regions vary from the laminar pattern of the CNIC and from each other. Since the main organizing principle of the CNIC is the laminar organization of 'flat' neurons, evidence that cortical IC regions lack flat neurons supports the subdivision schema presented here. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Malmierca, Manuel S.] Univ Salamanca, Auditory Neurophysiol Unit, Inst Neurosci Castilla & Leon, Salamanca 37007, Spain.
[Malmierca, Manuel S.] Univ Salamanca, Dept Cell Biol & Pathol, Fac Med, Salamanca 37007, Spain.
[Blackstad, Theodor W.; Osen, Kirsten K.] Univ Oslo, Dept Anat, Inst Basic Med Sci, N-0317 Oslo, Norway.
RP Malmierca, MS (reprint author), Univ Salamanca, Auditory Neurophysiol Unit, Inst Neurosci Castilla & Leon, C Pintor Fernando Gallego 1, Salamanca 37007, Spain.
EM msm@usal.es
RI 2011, Secribsal/D-9425-2012; Malmierca, Manuel/K-9285-2014
OI Malmierca, Manuel/0000-0003-0168-7572
FU Spanish MEC [BFU2009-07286]; EU [EUI2009-04083]; JCYL-UE [GR221]
FX We thank Drs. Adrian Rees and Douglas Oliver for critical comments on a
previous version and we are most grateful to an anonymous reviewer for
her/his constructive criticisms. Ms. Flora Antunes proofread a previous
version and Dr. David Perez-Gonzalez and Mr. Jorge Martin helped on fig.
9. Financial support was provided by the Spanish MEC (BFU2009-07286), EU
(EUI2009-04083) and JCYL-UE (GR221) to MSM.
CR ADAMS JC, 1979, STAIN TECHNOL, V54, P225
AITKIN LM, 1975, J NEUROPHYSIOL, V38, P1196
Altschuler RA, 2008, NEUROSCIENCE, V154, P226, DOI 10.1016/j.neuroscience.2008.03.036
BALOYANNIS, 2009, ACTA OTO-LARYNGOL, V129, P416
Baloyannis SJ, 2005, J NEUROL SCI, V229, P51, DOI 10.1016/j.jns.2004.11.025
Bartlett EL, 2000, NEUROSCIENCE, V100, P811, DOI 10.1016/S0306-4522(00)00340-7
BLACKSTAD TW, 1993, COMPUT BIOL MED, V23, P227, DOI 10.1016/0010-4825(93)90023-T
BLACKSTAD TW, 1984, NEUROSCIENCE, V13, P827, DOI 10.1016/0306-4522(84)90099-X
BLACKSTA.TW, 1970, J COMP NEUROL, V138, P433, DOI 10.1002/cne.901380404
Bose M, 2010, SYNAPSE, V64, P97, DOI 10.1002/syn.20710
BRAWER JR, 1974, J COMP NEUROL, V155, P251, DOI 10.1002/cne.901550302
Cant NB, 2008, NEUROSCIENCE, V154, P206, DOI 10.1016/j.neuroscience.2008.02.015
Cant NB, 2007, J COMP NEUROL, V503, P432, DOI 10.1002/cne.21391
Cetas JS, 2002, J COMP NEUROL, V445, P78, DOI 10.1002/cne.10164
Chernock ML, 2004, HEARING RES, V188, P12, DOI 10.1016/S0378-5955(03)00340-X
CLAIBORNE BJ, 1990, J COMP NEUROL, V302, P206, DOI 10.1002/cne.903020203
COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204
Coomes DL, 2004, HEARING RES, V191, P67, DOI 10.1016/j.heares.2004.01.009
Coote EJ, 2008, NEUROSCIENCE, V154, P218, DOI 10.1016/j.neuroscience.2008.02.030
Dehmel S, 2008, AM J AUDIOL, V17, pS193, DOI 10.1044/1059-0889(2008/07-0045)
FAYELUND H, 1985, ANAT EMBRYOL, V171, P1, DOI 10.1007/BF00319050
GODFREY DA, 1975, J COMP NEUROL, V162, P247, DOI 10.1002/cne.901620206
Golgi C., 1873, GAZZ MED ITAL LOMBAR, V33, P244
Hernandez O, 2006, NEUROREPORT, V17, P1611, DOI 10.1097/01.wnr.0000236857.70715.be
Hernandez O, 2005, NEUROSCIENCE, V132, P203, DOI 10.1016/j.neuroscience.2005.01.001
Ito T, 2009, J NEUROSCI, V29, P13860, DOI 10.1523/JNEUROSCI.3454-09.2009
Jain R, 2006, NEUROSCI LETT, V395, P71, DOI 10.1016/j.neulet.2005.10.077
KARAGULLE T, 1990, THESIS U OSLO
Kulesza RJ, 2007, HEARING RES, V225, P80, DOI 10.1016/j.heares.2006.12.006
Loftus WC, 2008, NEUROSCIENCE, V154, P196, DOI 10.1016/j.neuroscience.2008.01.019
Lorke DE, 2003, CELL MOL NEUROBIOL, V23, P143, DOI 10.1023/A:1022993704617
Malmierca M. S., 1991, THESIS U SALAMANCA
Malmierca MS, 2005, NEUROSCIENCE, V136, P883, DOI 10.1016/j.neuroscience.2005.04.040
Malmierca MS, 2009, J NEUROSCI, V29, P5483, DOI 10.1523/JNEUROSCI.4153-08.2009
MALMIERCA MS, 1993, J COMP NEUROL, V333, P1, DOI 10.1002/cne.903330102
Malmierca MS, 2008, J NEUROSCI, V28, P4767, DOI 10.1523/JNEUROSCI.0238-08.2008
Malmierca MS, 2003, INT REV NEUROBIOL, V56, P147, DOI 10.1016/S0074-7742(03)56005-6
Malmierca MS, 1996, HEARING RES, V93, P167, DOI 10.1016/0378-5955(95)00227-8
MALMIERCA MS, 1995, ANAT EMBRYOL, V191, P343, DOI 10.1007/BF00534687
Malmierca MS, 2009, J COMP NEUROL, V514, P226, DOI 10.1002/cne.21997
MALMIERCA MS, 1995, J COMP NEUROL, V357, P124, DOI 10.1002/cne.903570112
MCCOWN TJ, 1991, DEV BRAIN RES, V59, P1, DOI 10.1016/0165-3806(91)90022-B
MEININGER V, 1986, NEUROSCIENCE, V17, P1159, DOI 10.1016/0306-4522(86)90085-0
Dardennes R, 1984, Brain Res, V318, P159
MEININGER V, 1981, J COMP NEUROL, V200, P339, DOI 10.1002/cne.902000305
Merchan M, 2005, NEUROSCIENCE, V136, P907, DOI 10.1016/j.neuroscience.2004.12.030
MOREST DK, 1984, J COMP NEUROL, V222, P209, DOI 10.1002/cne.902220206
OLIVER DL, 1984, J COMP NEUROL, V222, P237, DOI 10.1002/cne.902220207
OLIVER DL, 1991, J COMP NEUROL, V303, P75, DOI 10.1002/cne.903030108
OLIVER DL, 1994, J COMP NEUROL, V340, P27, DOI 10.1002/cne.903400104
OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407
Osen KK, 1983, MECH HEARING, P83
Ota Y, 2004, J NEUROPHYSIOL, V91, P2185, DOI 10.1152/jn.01155.2003
OTTERSEN OP, 1984, J COMP NEUROL, V229, P374, DOI 10.1002/cne.902290308
Palmer AR, 1996, J NEUROPHYSIOL, V75, P780
Palombi PS, 1996, HEARING RES, V100, P41, DOI 10.1016/0378-5955(96)00115-3
PERCHERON G, 1979, NEUROSCI LETT, V14, P287, DOI 10.1016/0304-3940(79)96163-9
Perez-Gonzalez D, 2006, J NEUROPHYSIOL, V95, P823, DOI 10.1152/jn.00741.2005
Perez-Gonzalez D, 2005, EUR J NEUROSCI, V22, P2879, DOI 10.1111/j.1460-9568.2005.04472.x
Peruzzi D, 1997, J NEUROSCI, V17, P3766
RAMON, 1902, CONTINUACION REV TRI, V1
SANES DH, 1992, DEV BRAIN RES, V67, P47, DOI 10.1016/0165-3806(92)90024-Q
SANES DH, 1990, J COMP NEUROL, V294, P443, DOI 10.1002/cne.902940312
Schofield BR, 2001, J COMP NEUROL, V429, P206, DOI 10.1002/1096-9861(20000108)429:2<206::AID-CNE3>3.0.CO;2-X
Schofield BR, 1999, J COMP NEUROL, V409, P210, DOI 10.1002/(SICI)1096-9861(19990628)409:2<210::AID-CNE3>3.0.CO;2-A
Shore SE, 2006, HEARING RES, V216, P90, DOI 10.1016/j.heares.2006.01.006
SIEGEL S, 1988, NONPARAMETRIC STAT B, P106
SMITH PH, 1992, J NEUROSCI, V12, P3700
Syka J, 2000, EXP BRAIN RES, V133, P254, DOI 10.1007/s002210000426
TRUNE DR, 1982, J COMP NEUROL, V209, P425, DOI 10.1002/cne.902090411
UYLINGS HBM, 1986, J NEUROSCI METH, V18, P127, DOI 10.1016/0165-0270(86)90116-0
VANPELT J, 1992, B MATH BIOL, V54, P759, DOI 10.1016/S0092-8240(05)80142-9
WEST MJ, 1980, BRAIN RES REV, V2, P317, DOI 10.1016/0165-0173(80)90012-0
Willard FH, 1983, AUDITORY PSYCHOBIOLO, P201
WILLARD FH, 1983, NEUROSCIENCE, V10, P1203, DOI 10.1016/0306-4522(83)90109-4
WINER JA, 1984, HEARING RES, V15, P225, DOI 10.1016/0378-5955(84)90031-5
Winer JA, 1996, P NATL ACAD SCI USA, V93, P8005, DOI 10.1073/pnas.93.15.8005
WINER JA, 1985, J COMP NEUROL, V238, P10, DOI 10.1002/cne.902380103
WINER JA, 1994, J COMP NEUROL, V346, P183, DOI 10.1002/cne.903460203
Winer JA, 1999, HEARING RES, V130, P19, DOI 10.1016/S0378-5955(98)00216-0
Winer JA, 2001, J COMP NEUROL, V434, P379, DOI 10.1002/cne.1183
Winer JA, 1996, P NATL ACAD SCI USA, V93, P3083, DOI 10.1073/pnas.93.7.3083
WINER JA, 1984, NEUROSCIENCE, V13, P395, DOI 10.1016/0306-4522(84)90239-2
WINER JA, 1984, J COMP NEUROL, V229, P476, DOI 10.1002/cne.902290404
WINER JA, 1988, J COMP NEUROL, V274, P422, DOI 10.1002/cne.902740310
WINER JA, 1983, J COMP NEUROL, V221, P1, DOI 10.1002/cne.902210102
WINER JA, 1984, J COMP NEUROL, V224, P344
WINER JA, 1994, J COMP NEUROL, V346, P161, DOI 10.1002/cne.903460202
WINER JA, 1984, J COMP NEUROL, V224, P535, DOI 10.1002/cne.902240405
WINER JA, 1984, J COMP NEUROL, V229, P512, DOI 10.1002/cne.902290406
YELNIK J, 1983, J NEUROSCI METH, V9, P115, DOI 10.1016/0165-0270(83)90125-5
Zhou JX, 2006, J COMP NEUROL, V495, P100, DOI 10.1002/cne.20863
NR 92
TC 19
Z9 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2011
VL 274
IS 1-2
SI SI
BP 13
EP 26
DI 10.1016/j.heares.2010.06.011
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 757LG
UT WOS:000290085900004
PM 20600744
ER
PT J
AU Pollak, GD
Xie, RL
Gittelman, JX
Andoni, S
Li, N
AF Pollak, George D.
Xie, Ruili
Gittelman, Joshua X.
Andoni, Sari
Li, Na
TI The dominance of inhibition in the inferior colliculus
SO HEARING RESEARCH
LA English
DT Article
ID FREQUENCY-MODULATED SWEEPS; PRIMARY AUDITORY-CORTEX; BIG BROWN BAT;
MECHANISMS UNDERLYING SELECTIVITY; DORSAL COCHLEAR NUCLEUS;
SPECIES-SPECIFIC CALLS; WHOLE-CELL RECORDINGS; FREE-TAILED BATS; LATERAL
LEMNISCUS; GLYCINERGIC INHIBITION
AB Almost all of the processing that occurs in the various lower auditory nuclei converges upon a common target in the central nucleus of the inferior colliculus (ICc) thus making the ICc the nexus of the auditory system. A variety of new response properties are formed in the ICc through the interactions among the excitatory and inhibitory inputs that converge upon it. Here we review studies that illustrate the dominant role inhibition plays in the ICc. We begin by reviewing studies of tuning curves and show how inhibition shapes the variety of tuning curves in the ICc through sideband inhibition. We then show how inhibition shapes selective response properties for complex signals, focusing on selectivity for the sweep direction of frequency modulations (FM). In the final section we consider results from in vivo whole-cell recordings that show how parameters of the incoming excitation and inhibition interact to shape directional selectivity. We show that post-synaptic potentials (PSPs) evoked by different signals can be similar but evoke markedly different spike-counts. In these cases, spike threshold acts as a non-linear amplifier that converts small differences in PSPs into large differences in spike output. Such differences between the inputs to a cell compared to the outputs from the same cell suggest that highly selective discharge properties can be created by only minor adjustments in the synaptic strengths evoked by one or both signals. These findings also suggest that plasticity of response features may be achieved with far less modifications in circuitry than previously supposed. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Pollak, George D.; Xie, Ruili; Gittelman, Joshua X.; Andoni, Sari; Li, Na] Univ Texas Austin, Neurobiol Sect, Austin, TX 78712 USA.
[Xie, Ruili] Univ N Carolina, Dept Otolaryngol, Chapel Hill, NC 27599 USA.
RP Pollak, GD (reprint author), Univ Texas Austin, Neurobiol Sect, 337 Patterson Lab Bldg, Austin, TX 78712 USA.
EM gpollak@mail.utexas.edu; ruili_xie@med.unc.edu; jxg@mail.utexas.edu;
andoni@mail.utexas.edu; nalibat@mail.utexas.edu
FU NIH [DC007856]
FX Supported by NIH Grant DC007856.
CR ADAMS JC, 1984, BRAIN RES BULL, V13, P585, DOI 10.1016/0361-9230(84)90041-8
Andoni S, 2007, J NEUROSCI, V27, P4882, DOI 10.1523/JNEUROSCI.4342-06.2007
Bajo VM, 1999, J COMP NEUROL, V407, P349, DOI 10.1002/(SICI)1096-9861(19990510)407:3<349::AID-CNE4>3.0.CO;2-5
Bauer EE, 2002, J NEUROPHYSIOL, V88, P1955, DOI 10.1152/jn.00261.2002
Bohn KM, 2008, J ACOUST SOC AM, V124, P1838, DOI 10.1121/1.2953314
Brimijoin WO, 2005, HEARING RES, V210, P63, DOI 10.1016/j.heares.2005.07.005
Burger RM, 2001, J NEUROSCI, V21, P4830
Casseday JH, 1997, J NEUROPHYSIOL, V77, P1595
Casseday JH, 2000, J NEUROPHYSIOL, V84, P1475
Casseday JH, 2002, SPR HDB AUD, V15, P238
CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341
Covey E, 1996, J NEUROSCI, V16, P3009
Covey E, 1999, ANNU REV PHYSIOL, V61, P457, DOI 10.1146/annurev.physiol.61.1.457
Davis KA, 2003, JARO, V4, P148, DOI 10.1007/s10162-002-2002-5
Davis KA, 2002, J NEUROPHYSIOL, V87, P1824, DOI 10.1152/jn.00769.2001
Depireux DA, 2001, J NEUROPHYSIOL, V85, P1220
Doupe AJ, 1999, ANNU REV NEUROSCI, V22, P567, DOI 10.1146/annurev.neuro.22.1.567
FAINGOLD CL, 1991, HEARING RES, V52, P201, DOI 10.1016/0378-5955(91)90200-S
FAINGOLD CL, 1993, HEARING RES, V69, P98, DOI 10.1016/0378-5955(93)90097-K
Felsheim C, 1996, HEARING RES, V98, P137, DOI 10.1016/0378-5955(96)00078-0
FENG AS, 1985, J COMP NEUROL, V235, P529, DOI 10.1002/cne.902350410
FUZESSERY ZM, 1994, J NEUROPHYSIOL, V72, P1061
Fuzessery ZM, 1996, J NEUROPHYSIOL, V76, P1059
Fuzessery ZM, 2006, J NEUROPHYSIOL, V96, P1320, DOI 10.1152/jn.00021.2006
Gaese BH, 2006, JARO-J ASSOC RES OTO, V7, P48, DOI 10.1007/s10162-005-0022-7
Gittelman JX, 2009, J NEUROSCI, V29, P13030, DOI 10.1523/JNEUROSCI.2477-09.2009
GLENDENNING KK, 1992, J COMP NEUROL, V319, P100, DOI 10.1002/cne.903190110
GOLDING NL, 1995, J NEUROSCI, V15, P3138
Gordon M, 1998, HEARING RES, V122, P97, DOI 10.1016/S0378-5955(98)00087-2
Holmstrom L, 2007, J NEUROPHYSIOL, V98, P3461, DOI 10.1152/jn.00638.2007
Holy TE, 2005, PLOS BIOL, V3, P2177, DOI 10.1371/journal.pbio.0030386
KANWAL JS, 1994, J ACOUST SOC AM, V96, P1229, DOI 10.1121/1.410273
Klein DJ, 2000, J COMPUT NEUROSCI, V9, P85, DOI 10.1023/A:1008990412183
Klug A, 2002, J NEUROPHYSIOL, V88, P1941, DOI 10.1152/jn.00260.2002
Koch U, 1998, J NEUROPHYSIOL, V80, P71
LeBeau FEN, 1996, J NEUROPHYSIOL, V75, P902
LeBeau FEN, 2001, J NEUROSCI, V21, P7303
LI L, 1992, J NEUROSCI, V12, P4530
Malmierca MS, 2005, NEUROSCIENCE, V136, P883, DOI 10.1016/j.neuroscience.2005.04.040
Malmierca MS, 2005, EUR J NEUROSCI, V21, P2701, DOI 10.1111/j.1460-9568.2005.04103.x
Malmierca MS, 2003, EXP BRAIN RES, V153, P522, DOI 10.1007/s00221-003-1615-1
Malmierca MS, 1998, J NEUROSCI, V18, P10603
NATARAJ K, 2005, J NEUROPHYSIOL
Nelken I, 2000, EUR J NEUROSCI, V12, P549, DOI 10.1046/j.1460-9568.2000.00935.x
Oliver DL, 1992, MAMMALIAN AUDITORY P, P168
ONEILL WE, 1982, J NEUROSCI, V2, P17
Palombi PS, 1996, J NEUROPHYSIOL, V75, P2211
PARK TJ, 1993, J NEUROSCI, V13, P2050
PARK TJ, 1993, J NEUROSCI, V13, P5172
PARK TJ, 1994, J NEUROPHYSIOL, V72, P1080
Pecka M, 2007, J NEUROSCI, V27, P1782, DOI 10.1523/JNEUROSCI.5335-06.2007
Pollak G. D., 1986, NEURAL BASIS ECHOLOC
POLLAK GD, 1993, HEARING RES, V65, P99, DOI 10.1016/0378-5955(93)90205-F
POLLAK GD, 1995, SPRINGER HDB AUDITOR, V11, P481
POON PWF, 1991, EXP BRAIN RES, V83, P598
Poon PWF, 2000, BIOSYSTEMS, V58, P229, DOI 10.1016/S0303-2647(00)00127-1
Portfors CV, 2005, NEUROSCIENCE, V136, P1159, DOI 10.1016/j.neuroscience.2005.08.031
Portfors CV, 2009, NEUROSCIENCE, V162, P486, DOI 10.1016/j.neuroscience.2009.04.056
Priebe NJ, 2005, NEURON, V45, P133, DOI 10.1016/j.neuron.2004.12.024
RALL W, 1969, BIOPHYS J, V9, P1483
Razak KA, 2006, J NEUROPHYSIOL, V96, P1303, DOI 10.1152/jn.00020.2006
Razak KA, 2008, J NEUROSCI, V28, P9806, DOI 10.1523/JNEUROSCI.1293-08.2008
RAZAK KA, 2009, J NEUROPHYSIOL
Riquelme R, 2001, J COMP NEUROL, V432, P409, DOI 10.1002/cne.1111
RYAN MJ, 1983, J COMP PHYSIOL, V150, P217
Sanchez JT, 2007, J NEUROSCI, V27, P1954, DOI 10.1523/JNEUROSCI.2894-06.2007
Sanchez JT, 2008, J NEUROSCI, V28, P80, DOI 10.1523/JNEUROSCI.3572-07.2008
SEMPLE MN, 1980, EXP BRAIN RES, V41, P19
Bohn KM, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006746
SUGA N, 1965, J PHYSIOL-LONDON, V179, P26
SUGA N, 1968, J PHYSIOL-LONDON, V198, P51
Suga N., 1973, BASIC MECH HEARING, P675
SUGA N, 1973, J ACOUST SOC AM, V54, P174, DOI 10.1121/1.1913561
SUGA N, 1983, J NEUROPHYSIOL, V49, P1573
Suta D, 2003, J NEUROPHYSIOL, V90, P3794, DOI 10.1152/jn.01175.2002
Vater M, 1997, CELL TISSUE RES, V289, P223, DOI 10.1007/s004410050869
Voytenko SV, 2007, J NEUROPHYSIOL, V97, P1368, DOI 10.1152/jn.00976.2006
Wang XQ, 1995, J NEUROPHYSIOL, V74, P2685
Wenstrup JJ, 2001, J NEUROSCI, V21
WINER JA, 1995, J COMP NEUROL, V355, P317, DOI 10.1002/cne.903550302
Xie R, 2008, NEUROSCIENCE, V154, P245, DOI 10.1016/j.neuroscience.2008.02.039
Xie R, 2007, J NEUROSCI, V27, P9469, DOI 10.1523/JNEUROSCI.2865-07.2007
Xie RL, 2005, J NEUROPHYSIOL, V94, P4019, DOI 10.1152/jn.00688.2005
YANG LC, 1992, J NEUROPHYSIOL, V68, P1760
Yue Q, 2007, J NEUROPHYSIOL, V98, P1364, DOI 10.1152/jn.00432.2007
Zhang LI, 2003, NATURE, V424, P201, DOI 10.1038/nature01796
NR 86
TC 20
Z9 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2011
VL 274
IS 1-2
SI SI
BP 27
EP 39
DI 10.1016/j.heares.2010.05.010
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 757LG
UT WOS:000290085900005
PM 20685288
ER
PT J
AU Ojima, H
Murakami, K
AF Ojima, Hisayuki
Murakami, Kunio
TI Triadic synaptic interactions of large corticothalamic terminals in
non-lemniscal thalamic nuclei of the cat auditory system
SO HEARING RESEARCH
LA English
DT Article
ID MEDIAL GENICULATE-BODY; DORSAL LATERAL GENICULATE;
PHASEOLUS-VULGARIS-LEUKOAGGLUTININ; ELECTRON-MICROSCOPIC ANALYSIS;
INFERIOR COLLICULUS; RETICULAR NUCLEUS; PHA-L; AXON TERMINALS; BARREL
CORTEX; CORTICOCORTICAL COMMUNICATION
AB Large corticothalamic (CT) terminals, presumed to originate from cortical layer 5 pyramidal cells, are distributed predominantly in non-specific thalamic nuclei in mammals. In the auditory system, little is known about whether these CT projections participate in the synaptic aggregation referred to as the triad. We studied synaptic interactions of these terminals with neuronal elements in one of the auditory non-lemniscal thalamic nuclei, the dorsal nucleus of the medial geniculate complex (MGC), in cats. After injections of an anterograde tracer in the primary auditory cortex, areas containing labeled large terminals were examined using an electron microscope. It was revealed that a fraction of large CT terminals participated in complicated synaptic arrangements: labeled terminals making synaptic contacts with vesicle-free dendrites, probably of thalamic principal neurons, and/or vesicle-filled neuronal profiles, probably of presynaptic dendrites (PSDs) of interneurons. In reconstructions or even in single sections, we found that these synaptic connections participated in triadic arrangements. Thus, PSDs postsynaptic to the labeled CT terminals were in turn presynaptic to the vesicle-free dendrites. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Ojima, Hisayuki] Tokyo Med & Dent Univ, Grad Sch Med & Dent Sci, Bunkyo Ku, Tokyo 1138749, Japan.
[Ojima, Hisayuki; Murakami, Kunio] Toho Univ, Sch Med, Dept Anat, Tokyo 1438540, Japan.
RP Ojima, H (reprint author), Tokyo Med & Dent Univ, Grad Sch Med & Dent Sci, Bunkyo Ku, 1-5-45 Yushima, Tokyo 1138749, Japan.
EM yojima.cnb@tmd.ac.jpe; kunim@med.toho-u.ac.jpe
CR ANDERSEN RA, 1980, J COMP NEUROL, V191, P479, DOI 10.1002/cne.901910310
Arcelli P, 1997, BRAIN RES BULL, V42, P27, DOI 10.1016/S0361-9230(96)00107-4
BAJO VM, 1995, HEARING RES, V83, P161, DOI 10.1016/0378-5955(94)00199-Z
Bajo VM, 2007, CEREB CORTEX, V17, P475, DOI 10.1093/cercor/bhj164
Bartlett EL, 1999, J NEUROPHYSIOL, V81, P1999
Bartlett EL, 2000, NEUROSCIENCE, V100, P811, DOI 10.1016/S0306-4522(00)00340-7
BOURASSA J, 1995, NEUROSCIENCE, V66, P253, DOI 10.1016/0306-4522(95)00009-8
BOURASSA J, 1995, EUR J NEUROSCI, V7, P19, DOI 10.1111/j.1460-9568.1995.tb01016.x
Chomiak T, 2008, J NEUROPHYSIOL, V100, P327, DOI 10.1152/jn.90392.2008
CUCCHIARO JB, 1991, J COMP NEUROL, V310, P316, DOI 10.1002/cne.903100304
DESCHENES M, 1994, BRAIN RES, V664, P215, DOI 10.1016/0006-8993(94)91974-7
Feig S, 1998, J COMP NEUROL, V395, P281, DOI 10.1002/(SICI)1096-9861(19980808)395:3<281::AID-CNE2>3.0.CO;2-Z
Guillery RW, 1995, J ANAT, V187, P583
Guillery RW, 2001, J COMP NEUROL, V438, P66, DOI 10.1002/cne.1302
GUILLERY RW, 1969, Z ZELLFORSCH MIK ANA, V96, P1, DOI 10.1007/BF00321474
Hazama M, 2004, NEUROSCIENCE, V124, P655, DOI 10.1016/j.neuroscience.2003.12.027
HOOGLAND PV, 1991, EXP BRAIN RES, V87, P159
HOOGLAND PV, 1987, EXP BRAIN RES, V68, P73
HU B, 1994, J PHYSIOL-LONDON, V479, P217
Huppe-Gourgues F, 2006, J COMP NEUROL, V497, P847, DOI 10.1002/cne.21024
JONES EG, 1969, PROC R SOC SER B-BIO, V172, P153, DOI 10.1098/rspb.1969.0017
Jones EG, 2007, THALAMUS
JONES EG, 1969, PROC R SOC SER B-BIO, V172, P173, DOI 10.1098/rspb.1969.0018
Kakei S, 2001, J COMP NEUROL, V437, P170, DOI 10.1002/cne.1277
KELLY JP, 1981, BRAIN RES, V212, P1, DOI 10.1016/0006-8993(81)90027-5
Kimura A, 2005, NEUROSCIENCE, V135, P1325, DOI 10.1016/j.neuroscience.2005.06.089
KUDO M, 1980, J COMP NEUROL, V191, P545, DOI 10.1002/cne.901910403
Kuroda M, 1993, J Hirnforsch, V34, P417
LI J, 2003, J NEUROPHYSIOL, V290, P3429
Li JL, 2003, J COMP NEUROL, V460, P394, DOI 10.1002/cne.10646
LIU XB, 1995, J COMP NEUROL, V352, P187, DOI 10.1002/cne.903520203
Llano DA, 2008, J COMP NEUROL, V507, P1209, DOI 10.1002/cne.21602
MONTERO VM, 1983, EXP BRAIN RES, V51, P338
MONTERO VM, 1981, NEUROSCIENCE, V6, P2561, DOI 10.1016/0306-4522(81)90102-0
OGREN MP, 1979, J COMP NEUROL, V188, P179, DOI 10.1002/cne.901880113
Ohyama J, 1997, J COMP NEUROL, V389, P453
OJIMA H, 1994, CEREB CORTEX, V4, P646, DOI 10.1093/cercor/4.6.646
Ojima H, 2002, CEREB CORTEX, V12, P1079, DOI 10.1093/cercor/12.10.1079
Ojima H, 1996, NEUROSCI LETT, V208, P57, DOI 10.1016/0304-3940(96)12538-6
OJIMA H, 1992, Cerebral Cortex, V2, P197, DOI 10.1093/cercor/2.3.197
Ojima H, 2010, CEREB CORTEX, V20, P339, DOI 10.1093/cercor/bhp103
Peruzzi D, 1997, J NEUROSCI, V17, P3766
ROBSON JA, 1977, J COMP NEUROL, V173, P389, DOI 10.1002/cne.901730211
ROCKLAND KS, 1994, NEUROREPORT, V5, P1865, DOI 10.1097/00001756-199410000-00006
Rouiller EM, 1998, J COMP NEUROL, V396, P169, DOI 10.1002/(SICI)1096-9861(19980629)396:2<169::AID-CNE3>3.0.CO;2-Z
ROUILLER EM, 1991, HEARING RES, V56, P179, DOI 10.1016/0378-5955(91)90168-9
ROUILLER EM, 1991, NEUROSCI LETT, V125, P93, DOI 10.1016/0304-3940(91)90139-K
Rouiller EM, 2004, NEUROSCI LETT, V358, P49, DOI 10.1016/j.neulet.2004.01.008
ROUILLER EM, 1990, NEUROSCI LETT, V108, P29, DOI 10.1016/0304-3940(90)90701-A
Rouiller EM, 2000, BRAIN RES BULL, V53, P727, DOI 10.1016/S0361-9230(00)00364-6
SAINTMARIE EL, 1997, BRAIN RES, V765, P173
SCHWARTZ ML, 1991, J COMP NEUROL, V309, P289, DOI 10.1002/cne.903090302
Sherman S. M., 2006, EXPLORING THALAMUS
Smith PH, 2007, J NEUROPHYSIOL, V98, P681, DOI 10.1152/jn.00235.2007
SZENTAGOTHAI J, 1963, ACTA ANAT, V55, P166
Takayanagi M, 2006, NEUROSCIENCE, V142, P769, DOI 10.1016/j.neuroscience.2006.06.048
THOMPSON GC, 1985, BRAIN RES, V339, P119, DOI 10.1016/0006-8993(85)90628-6
Van Horn SC, 2004, J COMP NEUROL, V475, P406, DOI 10.1002/cne.20187
Veinante P, 2000, J COMP NEUROL, V424, P197, DOI 10.1002/1096-9861(20000821)424:2<197::AID-CNE1>3.0.CO;2-6
Vidnyanszky Z, 1996, EXP BRAIN RES, V109, P63
Wanaverbecq N, 2008, J NEUROSCI, V28, P11848, DOI 10.1523/JNEUROSCI.3183-08.2008
Winer JA, 1998, J COMP NEUROL, V400, P147
Winer JA, 1996, P NATL ACAD SCI USA, V93, P8005, DOI 10.1073/pnas.93.15.8005
WINER JA, 1988, J COMP NEUROL, V278, P47, DOI 10.1002/cne.902780104
Winer JA, 2001, J COMP NEUROL, V430, P27
Winer JA, 1996, P NATL ACAD SCI USA, V93, P3083, DOI 10.1073/pnas.93.7.3083
Winer JA, 1999, J COMP NEUROL, V413, P181
Zikopoulos B, 2006, J NEUROSCI, V26, P7348, DOI 10.1523/JNEUROSCI.5511-05.2006
NR 68
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2011
VL 274
IS 1-2
SI SI
BP 40
EP 47
DI 10.1016/j.heares.2010.05.009
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 757LG
UT WOS:000290085900006
PM 20685244
ER
PT J
AU Anderson, LA
Linden, JF
AF Anderson, Lucy A.
Linden, Jennifer F.
TI Physiological differences between histologically defined subdivisions in
the mouse auditory thalamus
SO HEARING RESEARCH
LA English
DT Article
ID MEDIAL GENICULATE-BODY; DORSAL COCHLEAR NUCLEUS; PHASE-LOCKED RESPONSES;
FUNCTIONAL-ORGANIZATION; SINGLE UNITS; TONOTOPIC ORGANIZATION; INFERIOR
COLLICULUS; GUINEA-PIG; ASCENDING PROJECTIONS; CYTOCHROME-OXIDASE
AB The auditory thalamic area includes the medial geniculate body (MGB) and the lateral part of the posterior thalamic nucleus (Pol). The MGB can be subdivided into a ventral subdivision, forming part of the lemniscal (primary) auditory pathway, and medial and dorsal subdivisions, traditionally considered (alongside the Pol) part of the non-lemniscal (secondary) pathway. However, physiological studies of the auditory thalamus have suggested that the Pol may be more appropriately characterised as part of the lemniscal pathway, while the medial MGB may be part of a third (polysensory) pathway, with characteristics of lemniscal and non-lemniscal areas. We document physiological properties of neurons in histologically identified areas of the MGB and Pol in the anaesthetised mouse, and present evidence in favour of a distinctive role for medial MGB in central auditory processing. In particular, medial MGB contains a greater proportion of neurons with short first-spike latencies and high response probabilities than either the ventral or dorsal MGB, despite having low spontaneous rates. Therefore, medial MGB neurons appear to fire more reliably in response to auditory input than neurons in even the lemniscal, ventral subdivision. Additionally, responses in the Pol are more similar to those in the ventral MGB than the dorsal MGB. (C) 2011 Elsevier B.V. All rights reserved.
C1 [Anderson, Lucy A.; Linden, Jennifer F.] UCL, Ear Inst, London WC1X 8EE, England.
[Linden, Jennifer F.] UCL, Dept Neurosci Physiol & Pharmacol, London WC1E 6BT, England.
RP Linden, JF (reprint author), UCL, Ear Inst, 332 Grays Inn Rd, London WC1X 8EE, England.
EM lucy.anderson@ucl.ac.uk; j.linden@ucl.ac.uk
FU Gatsby Charitable Foundation [GAT2579, GAT2623]; Deafness Research UK
[412:UEI:JL]; Wellcome Trust [084364/Z/07/Z]
FX This work was supported by grants from the Gatsby Charitable Foundation
(GAT2579 and GAT2623), Deafness Research UK (412:UEI:JL), and the
Wellcome Trust (084364/Z/07/Z).
CR AITKIN LM, 1966, J NEUROPHYSIOL, V29, P109
AITKIN LM, 1973, J NEUROPHYSIOL, V36, P275
ANDERSEN RA, 1980, J COMP NEUROL, V194, P663, DOI 10.1002/cne.901940312
ANDERSEN RA, 1980, J COMP NEUROL, V194, P649, DOI 10.1002/cne.901940311
Anderson LA, 2009, J NEUROSCI, V29, P7359, DOI 10.1523/JNEUROSCI.0793-09.2009
Anderson LA, 2007, HEARING RES, V228, P156, DOI 10.1016/j.heares.2007.02.005
Anderson LA, 2009, NEUROREPORT, V20, P462, DOI 10.1097/WNR.0b013e328326f5ab
Anderson LA, 2006, EUR J NEUROSCI, V24, P491, DOI 10.1111/j.1460-9568.2006.04930.x
Anderson LA, 2009, BRAIN RES, V1252, P130, DOI 10.1016/j.brainres.2008.11.037
ANDERSON LA, 2005, RESPONSES AMPLITUDE
BAEUERLE P, 2009, STIMULUS SPECIFIC AD
BORDI F, 1994, EXP BRAIN RES, V98, P275, DOI 10.1007/BF00228415
BORDI F, 1994, EXP BRAIN RES, V98, P261, DOI 10.1007/BF00228414
BULLOCK DC, 1988, MED BIOL ENG COMPUT, V26, P669, DOI 10.1007/BF02447511
CALFORD MB, 1983, J NEUROSCI, V3, P2350
CALFORD MB, 1983, J NEUROSCI, V3, P2365
CALFORD MB, 1983, HEARING RES, V11, P395, DOI 10.1016/0378-5955(83)90070-9
Cant NB, 2007, J COMP NEUROL, V503, P432, DOI 10.1002/cne.21391
Cruikshank SJ, 2001, NEUROSCIENCE, V105, P553, DOI 10.1016/S0306-4522(01)00226-3
deRibaupierre F, 1997, CENTRAL AUDITORY SYS, P317
Doron NN, 2000, J COMP NEUROL, V425, P257
Edeline JM, 1999, HEARING RES, V131, P135, DOI 10.1016/S0378-5955(99)00026-X
Edeline JM, 1999, PROG NEUROBIOL, V57, P165
GONZALEZLIMA F, 1994, NEUROSCIENCE, V63, P559, DOI 10.1016/0306-4522(94)90550-9
Hackett TA, 1998, J COMP NEUROL, V400, P271, DOI 10.1002/(SICI)1096-9861(19981019)400:2<271::AID-CNE8>3.0.CO;2-6
Hu B, 2003, EXP BRAIN RES, V153, P543, DOI 10.1007/s00221-003-1611-5
IMIG TJ, 1985, J NEUROPHYSIOL, V53, P836
Jones EG, 1985, THALAMUS
Kimura A, 2003, NEUROSCIENCE, V117, P1003, DOI 10.1016/S0306-4522(02)00949-1
Komura Y, 2001, NATURE, V412, P546, DOI 10.1038/35087595
Komura Y, 2005, NAT NEUROSCI, V8, P1203, DOI 10.1038/nn1528
KRAUS N, 1994, J NEUROPHYSIOL, V72, P1270
KUDO M, 1980, J COMP NEUROL, V191, P545, DOI 10.1002/cne.901910403
Lee CC, 2010, P NATL ACAD SCI USA, V107, P372, DOI 10.1073/pnas.0907873107
Linden JF, 2003, J NEUROPHYSIOL, V90, P2660, DOI 10.1152/jn.00751.2002
Linke R, 1999, EUR J NEUROSCI, V11, P187, DOI 10.1046/j.1460-9568.1999.00422.x
Lu E, 2009, HEARING RES, V257, P16, DOI 10.1016/j.heares.2009.07.009
Malmierca MS, 2002, J NEUROSCI, V22, P10891
MOREL A, 1987, EXP BRAIN RES, V69, P24
MOREST DK, 1964, J ANAT, V98, P611
Oliver DL, 1992, MAMMALIAN AUDITORY P, P168
PHILLIPS DP, 1979, J NEUROPHYSIOL, V42, P123
POLLEY DB, 2010, ORG EXPERIENCE DEPEN
REDIES H, 1991, EXP BRAIN RES, V86, P384
RODRIGUESDAGAEFF C, 1989, HEARING RES, V39, P103, DOI 10.1016/0378-5955(89)90085-3
ROUILLER E, 1981, HEARING RES, V5, P81, DOI 10.1016/0378-5955(81)90028-9
ROUILLER E, 1979, HEARING RES, V1, P213, DOI 10.1016/0378-5955(79)90015-7
ROUILLER EM, 1985, HEARING RES, V19, P97, DOI 10.1016/0378-5955(85)90114-5
ROUILLER EM, 1989, HEARING RES, V39, P127, DOI 10.1016/0378-5955(89)90086-5
Rouiller EM, 1997, CENTRAL AUDITORY SYS, P3
RYUGO DK, 1976, EXP NEUROL, V51, P377, DOI 10.1016/0014-4886(76)90262-4
Smith PH, 2006, J COMP NEUROL, V496, P314, DOI 10.1002/cne.20913
STROMINGER NL, 1977, J COMP NEUROL, V172, P349, DOI 10.1002/cne.901720210
Wallace MN, 2007, J NEUROPHYSIOL, V98, P1941, DOI 10.1152/jn.00697.2007
WHITLEY JM, 1984, J COMP NEUROL, V229, P257, DOI 10.1002/cne.902290210
Winer JA, 2005, TRENDS NEUROSCI, V28, P255, DOI 10.1016/j.tins.2005.03.009
Winer JA, 1999, HEARING RES, V130, P19, DOI 10.1016/S0378-5955(98)00216-0
Winer JA, 1992, MAMMALIAN AUDITORY P, P222
ZURITA P, 1994, NEUROSCI RES, V19, P303, DOI 10.1016/0168-0102(94)90043-4
NR 59
TC 10
Z9 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2011
VL 274
IS 1-2
SI SI
BP 48
EP 60
DI 10.1016/j.heares.2010.12.016
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 757LG
UT WOS:000290085900007
PM 21185928
ER
PT J
AU Weinberger, NM
AF Weinberger, Norman M.
TI The medial geniculate, not the amygdala, as the root of auditory fear
conditioning
SO HEARING RESEARCH
LA English
DT Article
ID RECEPTIVE-FIELD PLASTICITY; UNCONDITIONED STIMULUS PATHWAYS; PARALAMINAR
THALAMIC NUCLEI; BAT PTERONOTUS-PARNELLII; LONG-TERM POTENTIATION;
IBOTENIC ACID LESIONS; LATERAL AMYGDALA; HEART-RATE; INFERIOR
COLLICULUS; POSTERIOR THALAMUS
AB The neural basis of auditory fear conditioning (AFC) is almost universally believed to be the amygdala, where auditory fear memories are reputedly acquired and stored. This widely-accepted amygdala model holds that the auditory conditioned stimulus (CS) and the nociceptive unconditioned stimulus (US) first converge in the lateral nucleus of the amygdala (AL), and are projected independently to it from the medial division of the medial geniculate nucleus (MGm) and the adjacent posterior intralaminar nucleus (PIN), which serve merely as sensory relays. However, the four criteria that are used to support the AL model, (a) CS US convergence, (b) associative plasticity, (c) LTP and (d) lesion-induced learning impairment, are also met by the MGm/PIN. Synaptic and molecular approaches supporting the AL also implicate the MGm/PIN. As both the AL and its preceding MGm/PIN are critically involved, we propose that the latter be considered the "root" of AFC. (C) 2010 Elsevier B.V. All rights reserved.
C1 Univ Calif Irvine, Qureshey Res Lab 309, Ctr Neurobiol Learning & Memory, Dept Neurobiol & Behav, Irvine, CA 92697 USA.
RP Weinberger, NM (reprint author), Univ Calif Irvine, Qureshey Res Lab 309, Ctr Neurobiol Learning & Memory, Dept Neurobiol & Behav, Irvine, CA 92697 USA.
EM nmweinbe@uci.edu
FU National Institutes of Health/National Institute on Deafness and Other
Communication Disorders (NIDCD) [DC-02938, DC-05592, DC-010013]
FX I thank Gabriel K. Hui and Jacquie Weinberger for assistance and Gabriel
A. Elias for illuminating conversations. This research was supported by
research grants from the National Institutes of Health/National
Institute on Deafness and Other Communication Disorders (NIDCD),
DC-02938, DC-05592 and DC-010013.
CR AITKIN LM, 1973, J NEUROPHYSIOL, V36, P275
AITKIN LM, 1972, J NEUROPHYSIOL, V35, P365
Amorapanth P, 2000, NAT NEUROSCI, V3, P74
ANDERSEN RA, 1980, J COMP NEUROL, V194, P663, DOI 10.1002/cne.901940312
Apergis-Schoute AM, 2005, J NEUROSCI, V25, P5730, DOI 10.1523/JNEUROSCI.0096-05.2005
BAKIN JS, 1990, BRAIN RES, V536, P271, DOI 10.1016/0006-8993(90)90035-A
BARNETT EM, 1995, J NEUROSCI, V15, P2972
BIRT D, 1979, BRAIN RES, V167, P129, DOI 10.1016/0006-8993(79)90268-3
BIRT D, 1981, J NEUROPHYSIOL, V46, P1039
Blair HT, 2003, ANN NY ACAD SCI, V985, P485
BLUM PS, 1979, EXP BRAIN RES, V34, P1
Boatman JA, 2006, EUR J NEUROSCI, V24, P894, DOI 10.1111/j.1460-9568.2006.04965.x
Boivie J, 1971, Exp Brain Res, V112, P331
BORDI F, 1994, EXP BRAIN RES, V98, P275, DOI 10.1007/BF00228415
BORDI F, 1994, EXP BRAIN RES, V98, P261, DOI 10.1007/BF00228414
BORDI F, 1992, J NEUROSCI, V12, P2493
BORDI F, 1993, BEHAV NEUROSCI, V107, P757, DOI 10.1037/0735-7044.107.5.757
BRANDNER S, 1990, J NEUROSCI, V10, P50
BRINKHUS HB, 1979, NEUROSCI LETT, V15, P37, DOI 10.1016/0304-3940(79)91526-X
BUCHWALD JS, 1966, PHYSIOL BEHAV, V1, P11, DOI 10.1016/0031-9384(66)90037-0
CALFORD MB, 1981, J NEUROPHYSIOL, V45, P1013
CAMPEAU S, 1995, J NEUROSCI, V15, P2312
CARSTENS E, 1980, EXP NEUROL, V70, P392, DOI 10.1016/0014-4886(80)90036-9
Cetas JS, 2001, HEARING RES, V155, P113, DOI 10.1016/S0378-5955(01)00257-X
CHISHOLM JS, 1999, DEATH HOPE SEX STEPS, P89
CLERICI WJ, 1990, J COMP NEUROL, V297, P14, DOI 10.1002/cne.902970103
CLUGNET MC, 1990, J NEUROSCI, V10, P1055
CLUGNET MC, 1988, SOC NEUR ABSTR, V14, P1227
CLUGNET MC, 1990, J NEUROSCI, V10, P2818
CRUIKSHANK SJ, 1992, BEHAV NEUROSCI, V106, P471, DOI 10.1037/0735-7044.106.3.471
DISTERHOFT JF, 1976, J NEUROPHYSIOL, V39, P266
EDELINE JM, 1988, BEHAV NEURAL BIOL, V50, P61, DOI 10.1016/S0163-1047(88)90780-7
EDELINE JM, 1990, BEHAV BRAIN RES, V39, P145, DOI 10.1016/0166-4328(90)90101-J
EDELINE JM, 1990, BRAIN RES, V529, P109, DOI 10.1016/0006-8993(90)90817-U
EDELINE JM, 1992, BEHAV NEUROSCI, V106, P81, DOI 10.1037//0735-7044.106.1.81
Edeline JM, 2002, NEUROBIOL LEARN MEM, V78, P100, DOI 10.1006/nlme.2001.4035
Fanselow MS, 2005, ANNU REV PSYCHOL, V56, P207, DOI 10.1146/annurev.psych.56.091103.070213
Fanselow MS, 1999, NEURON, V23, P229, DOI 10.1016/S0896-6273(00)80775-8
FEHR FS, 1965, J PSYCHOSOM RES, V8, P441, DOI 10.1016/0022-3999(65)90086-3
GABRIEL M, 1975, SCIENCE, V189, P1108, DOI 10.1126/science.1162365
GABRIEL M, 1976, PHYSIOL PSYCHOL, V4, P124
GALAMBOS R, 1956, SCIENCE, V123, P376, DOI 10.1126/science.123.3192.376
GALLAGHER M, 1980, PHARMACOL BIOCHEM BE, V12, P419, DOI 10.1016/0091-3057(80)90047-7
GERREN RA, 1983, BRAIN RES, V265, P138, DOI 10.1016/0006-8993(83)91344-6
HALAS ES, 1970, ELECTROEN CLIN NEURO, V28, P468, DOI 10.1016/0013-4694(70)90272-5
Han JH, 2008, LEARN MEMORY, V15, P443, DOI 10.1101/lm.993608
Hennevin E, 2005, BEHAV NEUROSCI, V119, P1277, DOI 10.1037/0735-7044.119.5.1277
HENNEVIN E, 1993, BEHAV NEUROSCI, V107, P1018
Hennevin E, 1998, BEHAV NEUROSCI, V112, P839, DOI 10.1037//0735-7044.112.4.839
Hennevin E., 1992, Society for Neuroscience Abstracts, V18, P1064
Herkenham M, 1986, CEREB CORTEX, V5, P403
HERKENHAM M, 1980, SCIENCE, V207, P532, DOI 10.1126/science.7352263
Huang CL, 2000, J COMP NEUROL, V427, P302, DOI 10.1002/1096-9861(20001113)427:2<302::AID-CNE10>3.0.CO;2-J
IMIG TJ, 1983, ANNU REV NEUROSCI, V6, P95, DOI 10.1146/annurev.ne.06.030183.000523
IMIG TJ, 1985, J NEUROPHYSIOL, V53, P309
JARRELL TW, 1986, BRAIN RES, V374, P126, DOI 10.1016/0006-8993(86)90401-4
JARRELL TW, 1987, BRAIN RES, V412, P285, DOI 10.1016/0006-8993(87)91135-8
JARRELL TW, 1986, BRAIN RES, V382, P199, DOI 10.1016/0006-8993(86)90133-2
JORDAN H, 1973, J COMP NEUROL, V148, P469, DOI 10.1002/cne.901480405
KANDEL ER, 2006, SEARCH MEMORY EMERGE, P343
KHOREVIN VI, 1980, NEUROPHYSIOLOGY+, V12, P241
Killcross S, 1997, NATURE, V388, P377, DOI 10.1038/41097
Kimura A, 2003, NEUROSCIENCE, V117, P1003, DOI 10.1016/S0306-4522(02)00949-1
Kimura A, 2005, NEUROSCIENCE, V135, P1325, DOI 10.1016/j.neuroscience.2005.06.089
KUDO M, 1986, J COMP NEUROL, V245, P176, DOI 10.1002/cne.902450205
KUDO M, 1980, J COMP NEUROL, V191, P545, DOI 10.1002/cne.901910403
Lanuza E, 2004, NEUROSCIENCE, V125, P305, DOI 10.1016/j.neuroscience.2003.12.034
Lanuza E, 2008, NEUROSCIENCE, V155, P959, DOI 10.1016/j.neuroscience.2008.06.028
LeDoux J. E., 1990, LEARNING COMPUTATION, P3
LeDoux J E, 1992, Curr Opin Neurobiol, V2, P191, DOI 10.1016/0959-4388(92)90011-9
Ledoux JE, 1997, PHILOS T ROY SOC B, V352, P1719
LeDoux JE, 2000, ANNU REV NEUROSCI, V23, P155, DOI 10.1146/annurev.neuro.23.1.155
LEDOUX JE, 1993, ANN NY ACAD SCI, V702, P149, DOI 10.1111/j.1749-6632.1993.tb17246.x
LEDOUX JE, 1987, J COMP NEUROL, V264, P123, DOI 10.1002/cne.902640110
LEDOUX JE, 1986, NEUROSCIENCE, V17, P615, DOI 10.1016/0306-4522(86)90034-5
LEDOUX JE, 1993, BEHAV BRAIN RES, V58, P69, DOI 10.1016/0166-4328(93)90091-4
LEDOUX JE, 1995, ANNU REV PSYCHOL, V46, P209, DOI 10.1146/annurev.psych.46.1.209
LEDOUX JE, 1985, J COMP NEUROL, V242, P182, DOI 10.1002/cne.902420204
LEDOUX JE, 1994, SCI AM, V270, P50
LEDOUX JE, 1990, J NEUROSCI, V10, P1062
LEDOUX JE, 1984, J NEUROSCI, V4, P683
LEDOUX JE, 1986, INTEGRATIVE PSYCHIAT, V4, P237
Lehmann H, 2000, BEHAV NEUROSCI, V114, P107, DOI 10.1037//0735-7044.114.1.107
LENNARTZ RC, 1992, BEHAV NEUROSCI, V106, P484, DOI 10.1037/0735-7044.106.3.484
Linke R, 2000, EXP BRAIN RES, V134, P520, DOI 10.1007/s002210000475
Linke R, 1999, EUR J NEUROSCI, V11, P187, DOI 10.1046/j.1460-9568.1999.00422.x
Linke R, 2000, CEREB CORTEX, V10, P753, DOI 10.1093/cercor/10.8.753
Linke R, 1999, EXP BRAIN RES, V127, P314, DOI 10.1007/s002210050801
LIPPE WR, 1973, EXP NEUROL, V39, P507, DOI 10.1016/0014-4886(73)90035-6
LIPPE WR, 1973, EXP NEUROL, V40, P431, DOI 10.1016/0014-4886(73)90085-X
LOVE JA, 1969, CAN J PHYSIOL PHARM, V47, P881
Maho C, 2002, BEHAV NEUROSCI, V116, P807, DOI 10.1037//0735-7044.116.5.807
Maren S, 2003, EUR J NEUROSCI, V18, P3080, DOI 10.1046/j.1460-9568.2003.03030.x
Maren S, 2004, NAT REV NEUROSCI, V5, P844, DOI 10.1038/nrn1535
Maren S, 2001, J NEUROSCI, V21, part. no.
Maren S, 2001, ANNU REV NEUROSCI, V24, P897, DOI 10.1146/annurev.neuro.24.1.897
MCCABE PM, 1993, BRAIN RES, V619, P291, DOI 10.1016/0006-8993(93)91623-Z
McEchron MD, 1996, J NEUROSCI, V16, P1273
MCECHRON MD, 1995, BRAIN RES, V682, P157, DOI 10.1016/0006-8993(95)00331-J
McGaugh JL, 2002, NEUROBIOL LEARN MEM, V78, P539, DOI 10.1006/nlme.2002.4082
McGaugh JL, 2004, ANNU REV NEUROSCI, V27, P1, DOI 10.1146/annurev.neuro.27.070203.144157
McKernan MG, 1997, NATURE, V390, P607
Medina JF, 2002, NAT REV NEUROSCI, V3, P122, DOI 10.1038/nrn728
MERZENICH MM, 1982, CORTICAL SENSORY ORG, P43
Mineka S, 2008, ACTA PSYCHOL, V127, P567, DOI 10.1016/j.actpsy.2007.11.007
MOREST DK, 1965, J ANAT, V99, P611
MOREST DK, 1965, J ANAT, V99, P143
MOREST DK, 1986, ADV ANAT EMBRYOL CEL, V97, P1
MOREST DK, 1964, J ANAT, V98, P611
Morris JS, 1998, P ROY SOC B-BIOL SCI, V265, P649
NIIMI K, 1984, NEUROSCI LETT, V45, P223, DOI 10.1016/0304-3940(84)90103-4
NIIMI K, 1974, EXP BRAIN RES, V19, P326
OBRIEN PG, 2008, PSYCHIAT MENTAL HLTH, P70
OBRIST PA, 1968, J EXP PSYCHOL, V77, P180, DOI 10.1037/h0025814
OConnor KN, 1997, EXP BRAIN RES, V113, P534, DOI 10.1007/PL00005605
OLIVER DL, 1978, J COMP NEUROL, V182, P423, DOI 10.1002/cne.901820305
OLIVER DL, 1975, BRAIN RES, V86, P217, DOI 10.1016/0006-8993(75)90698-8
Pape HC, 2010, PHYSIOL REV, V90, P419, DOI 10.1152/physrev.00037.2009
Parsons RG, 2006, NEUROSCIENCE, V141, P1163, DOI 10.1016/j.neuroscience.2006.04.078
PESCHANSKI M, 1981, EXP NEUROL, V72, P226, DOI 10.1016/0014-4886(81)90140-0
Phelps EA, 2005, NEURON, V48, P175, DOI 10.1016/j.neuron.2005.09.025
PINEL JPJ, 2003, BIOPSYCHOLOGY, P454
Poremba A, 1997, J NEUROSCI, V17, P8645
Poremba A, 2001, J NEUROSCI, V21, P270
POWELL DA, 1976, PSYCHOPHYSIOLOGY, V13, P441, DOI 10.1111/j.1469-8986.1976.tb00858.x
POWELL EW, 1969, J COMP NEUROL, V136, P183, DOI 10.1002/cne.901360205
RACZKOWSKI D, 1976, BRAIN RES, V101, P345, DOI 10.1016/0006-8993(76)90275-4
RAFFAELE R, 1969, Archivio Italiano di Scienze Mediche Tropicali e di Parassitologia, V53, P149
REDIES H, 1989, J COMP NEUROL, V282, P489, DOI 10.1002/cne.902820403
RESCORLA RA, 1988, AM PSYCHOL, V43, P151, DOI 10.1037/0003-066X.43.3.151
RESCORLA RA, 1988, ANNU REV NEUROSCI, V11, P329
Rodrigues SM, 2009, ANNU REV NEUROSCI, V32, P289, DOI 10.1146/annurev.neuro.051508.135620
ROMANSKI LM, 1992, J NEUROSCI, V12, P4501
ROMANSKI LM, 1993, CEREB CORTEX, V3, P499, DOI 10.1093/cercor/3.6.499
Rosen Jeffrey B, 2004, Behav Cogn Neurosci Rev, V3, P23, DOI 10.1177/1534582304265945
ROUCOUXHANUS M, 1977, EXP BRAIN RES, V29, P283
ROUILLER EM, 1991, HEARING RES, V56, P179, DOI 10.1016/0378-5955(91)90168-9
RYUGO DK, 1974, BRAIN RES, V82, P173, DOI 10.1016/0006-8993(74)90903-2
RYUGO DK, 1978, BEHAV BIOL, V22, P275, DOI 10.1016/S0091-6773(78)92351-9
SCHEEL M, 1988, ANAT EMBRYOL, V179, P181, DOI 10.1007/BF00304700
Scheich H, 2007, HEARING RES, V229, P213, DOI 10.1016/j.heares.2007.01.025
SELDEN NRW, 1991, NEUROSCIENCE, V42, P335, DOI 10.1016/0306-4522(91)90379-3
SOMMERSM.JA, 1970, ELECTROEN CLIN NEURO, V29, P383, DOI 10.1016/0013-4694(70)90046-5
Suga N, 2008, LEARN MEMORY, V15, P198, DOI 10.1101/lm.791408
SUPPLE WF, 1989, BEHAV NEUROSCI, V103, P1276
Talk A, 2004, BEHAV NEUROSCI, V118, P944, DOI 10.1037/0935-7044.118.5.944
TRANEL D, 1993, J COGNITIVE NEUROSCI, V5, P79, DOI 10.1162/jocn.1993.5.1.79
Vazdarjanova A, 1998, P NATL ACAD SCI USA, V95, P15003, DOI 10.1073/pnas.95.25.15003
WEINBERGER NM, 1982, ADV BEHAV BIOL, V26, P697
WEINBERGER NM, 1995, BEHAV NEUROSCI, V109, P10, DOI 10.1037/0735-7044.109.1.10
Weinberger NM, 2007, LEARN MEMORY, V14, P1, DOI 10.1101/lm.421807
WEINBERG.NM, 1972, EXP NEUROL, V36, P46, DOI 10.1016/0014-4886(72)90135-5
WEINBERGER NM, 1987, PROG NEUROBIOL, V29, P1, DOI 10.1016/0301-0082(87)90014-1
Weinberger NM, 2008, LEARN MEMORY, V15, P202, DOI 10.1101/lm.914208
WENSTRUP JJ, 1994, J COMP NEUROL, V346, P207, DOI 10.1002/cne.903460204
WEPSIC JG, 1966, EXP NEUROL, V15, P299, DOI 10.1016/0014-4886(66)90053-7
WHITLEY JM, 1984, J COMP NEUROL, V229, P257, DOI 10.1002/cne.902290210
WHITLOCK DG, 1961, EXP NEUROL, V3, P240, DOI 10.1016/0014-4886(61)90015-2
Wilensky AE, 2006, J NEUROSCI, V26, P12387, DOI 10.1523/JNEUROSCI.4316-06.2006
WINER JA, 1984, HEARING RES, V15, P225, DOI 10.1016/0378-5955(84)90031-5
Winer JA, 2005, TRENDS NEUROSCI, V28, P255, DOI 10.1016/j.tins.2005.03.009
WINER JA, 1983, J NEUROSCI, V3, P2629
Winer JA, 2006, HEARING RES, V212, P1, DOI 10.1016/j.heares.2005.06.014
Winer JA, 1999, HEARING RES, V130, P42, DOI 10.1016/S0378-5955(98)00217-2
WINER JA, 1984, ADV ANATOMY EMBRYOLO, P1
WINER JA, 1994, J COMP NEUROL, V346, P183, DOI 10.1002/cne.903460203
Winer JA, 1999, HEARING RES, V130, P19, DOI 10.1016/S0378-5955(98)00216-0
WINER JA, 1984, NEUROSCIENCE, V13, P395, DOI 10.1016/0306-4522(84)90239-2
WINER JA, 1987, J COMP NEUROL, V257, P282, DOI 10.1002/cne.902570212
WINER JA, 1983, J COMP NEUROL, V221, P1, DOI 10.1002/cne.902210102
WINER JA, 1994, J COMP NEUROL, V346, P161, DOI 10.1002/cne.903460202
WINER JA, 1985, ADV ANAT EMBRYOL CEL, V86, P1
Zhang XJ, 2005, J NEUROPHYSIOL, V93, P2552, DOI 10.1152/jn.01237.2004
NR 173
TC 30
Z9 30
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2011
VL 274
IS 1-2
SI SI
BP 61
EP 74
DI 10.1016/j.heares.2010.03.093
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 757LG
UT WOS:000290085900008
PM 20466051
ER
PT J
AU Edeline, JM
Manunta, Y
Hennevin, E
AF Edeline, Jean-Marc
Manunta, Yves
Hennevin, Elizabeth
TI Induction of selective plasticity in the frequency tuning of auditory
cortex and auditory thalamus neurons by locus coeruleus stimulation
SO HEARING RESEARCH
LA English
DT Article
ID RECEPTIVE-FIELD PLASTICITY; LATERAL GENICULATE-NUCLEUS; SUPERIOR OLIVARY
COMPLEX; TONE-EVOKED RESPONSES; SLOW-WAVE SLEEP; ELECTRICAL-STIMULATION;
CEREBRAL-CORTEX; ELECTROENCEPHALOGRAPHIC ACTIVITY; CORTICAL PLASTICITY;
CERULEUS ACTIVATION
AB Neurons in primary sensory cortices display selective receptive field plasticity in behavioral situations ranging from classical conditioning to attentional tasks, and it is generally assumed that neuromodulators promote this plasticity. Studies have shown that pairing a pure-tone and a stimulation of the nucleus basalis magnocellularis mimics the selective receptive field facilitations described after classical conditioning. Here, we evaluated the consequences of repeated pairings between a particular sound frequency and a phasic stimulation of locus coeruleus (LC) on the frequency tuning of auditory thalamus and auditory cortex neurons. Selective alterations for the paired frequency were observed for more than 30% of the cells recorded both in cortex and in thalamus. There were as much selective increases as selective decreases at the cortical level, whereas selective increases were prevailing at the thalamic level. Selective changes usually persisted 15 min after pairing in cortex; they dissipated in thalamus, and so did the general increases in both structures. In animals with stimulation sites outside the LC, pairing induced either general changes or no effect. These results indicate that the selective plasticity induced in the frequency tuning of auditory cortex neurons by LC stimulation is bidirectional, thereby suggesting that noradrenergic activation can contribute to the different forms of plasticity observed after distinct behavioral paradigms. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Edeline, Jean-Marc] CNRS, CNPS, UMR 8195, F-91405 Orsay, France.
Univ Paris 11, F-91405 Orsay, France.
RP Edeline, JM (reprint author), CNRS, CNPS, UMR 8195, Batiment 446, F-91405 Orsay, France.
EM jean-marc.edeline@u-psud.fr
CR ASTONJONES G, 1981, J NEUROSCI, V1, P876
ASTONJONES G, 1981, J NEUROSCI, V1, P887
Bakin JS, 1996, P NATL ACAD SCI USA, V93, P11219, DOI 10.1073/pnas.93.20.11219
Bao SW, 2003, P NATL ACAD SCI USA, V100, P1405, DOI 10.1073/pnas.0337527100
Bao SW, 2001, NATURE, V412, P79, DOI 10.1038/35083586
BERRIDGE CW, 1993, NEUROSCIENCE, V55, P381, DOI 10.1016/0306-4522(93)90507-C
Berridge CW, 2003, BRAIN RES REV, V42, P33, DOI 10.1016/S0165-0173(03)00143-7
BERRIDGE CW, 1991, J NEUROSCI, V11, P3135
Bjordahl TS, 1998, BEHAV NEUROSCI, V112, P467, DOI 10.1037/0735-7044.112.3.467
Branchereau P, 1996, SYNAPSE, V22, P313
Brown RAM, 2005, J NEUROSCI, V25, P1985, DOI 10.1053/JNEUROSCI.4307-04-2005
CEDARBAUM JM, 1978, LIFE SCI, V23, P1383, DOI 10.1016/0024-3205(78)90398-3
Cruikshank SJ, 2001, BRAIN RES, V891, P78, DOI 10.1016/S0006-8993(00)03197-8
Devilbiss DM, 2004, J NEUROSCI, V24, P10773, DOI 10.1523/JNEUROSCI.1573-04.2004
DIAMOND DM, 1989, BEHAV NEUROSCI, V103, P471, DOI 10.1037/0735-7044.103.3.471
Dimyan MA, 1999, BEHAV NEUROSCI, V113, P691, DOI 10.1037/0735-7044.113.4.691
Edeline JM, 1999, HEARING RES, V131, P135, DOI 10.1016/S0378-5955(99)00026-X
Edeline JM, 2000, J NEUROPHYSIOL, V84, P934
EDELINE JM, 1994, EXP BRAIN RES, V97, P373
Edeline JM, 2003, EXP BRAIN RES, V153, P554, DOI 10.1007/s00221-003-1608-0
Edeline JM, 2001, EUR J NEUROSCI, V14, P1865, DOI 10.1046/j.0953-816x.2001.01821.x
Edeline JM, 1999, PROG NEUROBIOL, V57, P165
EDELINE JM, 1994, BRAIN RES, V636, P333, DOI 10.1016/0006-8993(94)91033-2
Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141
Fritz J, 2005, HEARING RES, V206, P159, DOI 10.1016/j.heares.2005.01.015
Fritz JB, 2005, J NEUROSCI, V25, P7623, DOI 10.1523/JNEUROSCI.1318-05.2005
Fritz JB, 2007, HEARING RES, V229, P186, DOI 10.1016/j.heares.2007.01.009
Gu Q, 2002, NEUROSCIENCE, V111, P815, DOI 10.1016/S0306-4522(02)00026-X
HARS B, 1993, NEUROSCIENCE, V56, P61, DOI 10.1016/0306-4522(93)90562-T
HOLDEFER RN, 1994, EXP BRAIN RES, V100, P444, DOI 10.1007/BF02738404
HOLETS VR, 1988, NEUROSCIENCE, V24, P893, DOI 10.1016/0306-4522(88)90076-0
KAYAMA Y, 1982, NEUROSCIENCE, V7, P655, DOI 10.1016/0306-4522(82)90071-9
Kilgard MP, 1998, NAT NEUROSCI, V1, P727, DOI 10.1038/3729
Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714
KLEPPER A, 1991, BRAIN RES, V557, P190, DOI 10.1016/0006-8993(91)90134-H
KROMER LF, 1980, ANAT EMBRYOL, V158, P227, DOI 10.1007/BF00315908
Lecas JC, 2004, EUR J NEUROSCI, V19, P2519, DOI 10.1111/j.0953-816X.2004.03341.x
Lecas JC, 2001, CR ACAD SCI III-VIE, V324, P33, DOI 10.1016/S0764-4469(00)01276-2
Manunta Y, 2000, NEUROREPORT, V11, P23, DOI 10.1097/00001756-200001170-00005
Manunta Y, 2004, J NEUROPHYSIOL, V92, P1445, DOI 10.1152/jn.00079.2004
Manunta Y, 1998, EXP BRAIN RES, V118, P361, DOI 10.1007/s002210050290
Manunta Y, 1997, EUR J NEUROSCI, V9, P833, DOI 10.1111/j.1460-9568.1997.tb01433.x
Manunta Y, 1999, EUR J NEUROSCI, V11, P2134, DOI 10.1046/j.1460-9568.1999.00633.x
Massaux A, 2004, J NEUROPHYSIOL, V91, P2117, DOI 10.1152/jn.00970.2003
MCCORMICK DA, 1992, PROG NEUROBIOL, V39, P337, DOI 10.1016/0301-0082(92)90012-4
McCormick DA, 1997, ANNU REV NEUROSCI, V20, P185, DOI 10.1146/annurev.neuro.20.1.185
MELANDER T, 1986, J COMP NEUROL, V248, P475, DOI 10.1002/cne.902480404
Metherate R, 2005, HEARING RES, V206, P146, DOI 10.1016/j.heares.2005.01.014
METHERATE R, 1990, SYNAPSE, V6, P133, DOI 10.1002/syn.890060204
METHERATE R, 1989, BRAIN RES, V480, P372, DOI 10.1016/0006-8993(89)90210-2
MOORE RY, 1989, J CHEM NEUROANAT, V2, P95
Mulders WHAM, 2001, J CHEM NEUROANAT, V21, P313, DOI 10.1016/S0891-0618(01)00118-1
OLPE HR, 1980, BRAIN RES, V186, P9, DOI 10.1016/0006-8993(80)90251-6
Otazu GH, 2009, NAT NEUROSCI, V12, P646, DOI 10.1038/nn.2306
PAXINOS G, 1986, RAT BRAIN STEREOTAXI, pR8
Rasmusson DD, 2000, BEHAV BRAIN RES, V115, P205, DOI 10.1016/S0166-4328(00)00259-X
ROGAWSKI MA, 1982, BRAIN RES, V250, P31, DOI 10.1016/0006-8993(82)90950-7
ROGAWSKI MA, 1980, NATURE, V287, P731, DOI 10.1038/287731a0
SATO H, 1989, J NEUROPHYSIOL, V62, P946
Shulz DE, 2003, J PHYSIOL-PARIS, V97, P431, DOI 10.1016/j.jphysparis.2004.01.001
Snow PJ, 1999, ARCH ITAL BIOL, V137, P1
Thompson AM, 2000, MICROSC RES TECHNIQ, V51, P330, DOI 10.1002/1097-0029(20001115)51:4<330::AID-JEMT4>3.0.CO;2-X
Waterhouse BD, 1998, BRAIN RES, V790, P33, DOI 10.1016/S0006-8993(98)00117-6
Weinberger NM, 2003, NEUROBIOL LEARN MEM, V80, P268, DOI 10.1016/S1074-7427(03)00072-8
Weinberger NM, 2004, NAT REV NEUROSCI, V5, P279, DOI 10.1038/nrn1366
NR 65
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2011
VL 274
IS 1-2
SI SI
BP 75
EP 84
DI 10.1016/j.heares.2010.08.005
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 757LG
UT WOS:000290085900009
PM 20709165
ER
PT J
AU Read, HL
Nauen, DW
Escabi, MA
Miller, LM
Schreiner, CE
Winer, JA
AF Read, Heather L.
Nauen, David W.
Escabi, Monty A.
Miller, Lee M.
Schreiner, Christoph E.
Winer, Jeffery A.
TI Distinct core thalamocortical pathways to central and dorsal primary
auditory cortex
SO HEARING RESEARCH
LA English
DT Article
ID MEDIAL GENICULATE-BODY; SOUND PRESSURE LEVEL; RESPONSE PROPERTIES;
FUNCTIONAL-ORGANIZATION; TONOTOPIC ORGANIZATION; MODULAR ORGANIZATION;
SPECTRAL INTEGRATION; BALANCED INHIBITION; VENTRAL DIVISION; SINGLE
UNITS
AB The cat primary auditory cortex (AI) is usually assumed to form one continuous functional region. However, the dorsal and central parts of the AI iso-frequency domain contain neurons that have distinct response properties to acoustic stimuli. In this study, we asked whether neurons projecting to dorsal versus central regions of AI originate in different parts of the medial geniculate body (MGB). Spike rate responses to variations in the sound level and frequency of pure tones were used to measure characteristic frequency (CF) and frequency resolution. These were mapped with high spatial density in order to place retrograde tracers into matching frequency regions of the central narrow-band region (cNB) and dorsal AI. Labeled neurons projecting to these two parts of AI were concentrated in the middle and rostral thirds of the MGB, respectively. There was little evidence that differences in dorsal and central AI function could be due to convergent input from cells outside the ventral division of the MGB (MGBv). Instead, inputs arising from different locations along the caudal-to-rostral dimension of MGBv represent potential sources of response differences between central and dorsal sub-regions of AI. Published by Elsevier B.V.
C1 [Read, Heather L.; Nauen, David W.; Escabi, Monty A.; Miller, Lee M.; Schreiner, Christoph E.] Univ Calif San Francisco, WM Keck Ctr Integrat Neurosci, San Francisco, CA 94143 USA.
[Winer, Jeffery A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Div Neurobiol, Berkeley, CA 94720 USA.
RP Read, HL (reprint author), Univ Connecticut, Dept Psychol & Biomed Engn, Storrs, CT 06269 USA.
EM heather.read@uconn.edu
FU NIH [DC02260, DC008171, DC006397, DC02319]
FX We would all like to commend our mentor and friend. Jeff, for the time
and knowledge and great sense of humor he generously shared with us. He
was always meticulous, cautious and careful in his approach and yet
delighted and enthusiastic with every new discovery in the laboratory.
Jeff had the ability to visualize and compare neural structures across
species that is the province of great comparative anatomists. He was a
gifted and patient teacher. His insight continues to guide us and will
influence generations to come. The later work was supported by Grants
NIH DC02260 (CES), DC008171 (LMM), DC006397 (MAE & HLR) and DC02319
(JAW).
CR BASBAUM AI, 1987, J COMP NEUROL, V261, P306, DOI 10.1002/cne.902610211
Bendor D, 2008, J NEUROPHYSIOL, V100, P888, DOI 10.1152/jn.00884.2007
BENYISHAI R, 1995, P NATL ACAD SCI USA, V92, P3844, DOI 10.1073/pnas.92.9.3844
BERMAN EG, 1982, THALAMUS BASAL TELEN
Bizley JK, 2005, CEREB CORTEX, V15, P1637, DOI 10.1093/cercor/bhi042
CALFORD MB, 1983, J NEUROSCI, V3, P2350
Cant NB, 2007, J COMP NEUROL, V503, P432, DOI 10.1002/cne.21391
Cetas JS, 2001, HEARING RES, V155, P113, DOI 10.1016/S0378-5955(01)00257-X
de la Rocha J, 2008, J NEUROSCI, V28, P9151, DOI 10.1523/JNEUROSCI.1789-08.2008
Ehret G, 1997, J COMP PHYSIOL A, V181, P635, DOI 10.1007/s003590050146
Escabi MA, 2005, INT REV NEUROBIOL, V70, P207, DOI 10.1016/S0074-7742(05)70007-6
Griffiths TD, 2004, NAT REV NEUROSCI, V5, P887, DOI 10.1038/nrn1538
Hackett TA, 2001, J COMP NEUROL, V441, P197, DOI 10.1002/cne.1407
Hackett T.A., 2010, HEAR RES
He JF, 1998, J COMP NEUROL, V400, P334, DOI 10.1002/(SICI)1096-9861(19981026)400:3<334::AID-CNE4>3.0.CO;2-9
HIGGINS NC, J NEUROSCI UNPUB
Imaizumi K, 2007, J NEUROPHYSIOL, V98, P2933, DOI 10.1152/jn.00511.2007
Imaizumi K, 2004, J NEUROPHYSIOL, V92, P444, DOI 10.1152/jn.01173.2003
IMIG TJ, 1985, J NEUROPHYSIOL, V53, P309
Inoue T, 2006, J NEUROPHYSIOL, V96, P1746, DOI 10.1152/jn.00301.2006
Kalatsky VA, 2005, P NATL ACAD SCI USA, V102, P13325, DOI 10.1073/pnas.0505592102
King AJ, 2009, NAT NEUROSCI, V12, P698, DOI 10.1038/nn.2308
Lee CC, 2004, CEREB CORTEX, V14, P441, DOI 10.1093/cercor/bhh006
Lee CC, 2008, J COMP NEUROL, V507, P1879, DOI 10.1002/cne.21611
Lee CC, 2005, CEREB CORTEX, V15, P1804, DOI 10.1093/cercor/bhi057
Liu BH, 2007, NAT NEUROSCI, V10, P1594, DOI 10.1038/nn2012
LUPPI PH, 1990, BRAIN RES, V534, P209, DOI 10.1016/0006-8993(90)90131-T
MENDELSON JR, 1993, EXP BRAIN RES, V94, P65
MIDDLEBROOKS JC, 1983, J NEUROSCI, V3, P203
Miller LM, 2001, NEURON, V32, P151, DOI 10.1016/S0896-6273(01)00445-7
MOREL A, 1987, J COMP NEUROL, V265, P119, DOI 10.1002/cne.902650109
MOREST DK, 1964, J ANAT, V98, P611
Nakamoto KT, 2004, J NEUROPHYSIOL, V91, P118, DOI 10.1152/jn.00171.2003
PHILLIPS DP, 1994, EXP BRAIN RES, V102, P210
POLLEY DB, 2007, J NEUROPHYSIOL
Rauschecker JP, 1997, J COMP NEUROL, V382, P89
Read HL, 2008, NEUROSCIENCE, V152, P151, DOI 10.1016/j.neuroscience.2007.11.026
Read HL, 2001, P NATL ACAD SCI USA, V98, P8042, DOI 10.1073/pnas.131591898
REALE RA, 1980, J COMP NEUROL, V192, P265, DOI 10.1002/cne.901920207
Recanzone GH, 2000, J NEUROPHYSIOL, V83, P2315
REDIES H, 1989, J COMP NEUROL, V282, P489, DOI 10.1002/cne.902820403
RODRIGUESDAGAEFF C, 1989, HEARING RES, V39, P103, DOI 10.1016/0378-5955(89)90085-3
ROUILLER EM, 1989, HEARING RES, V39, P127, DOI 10.1016/0378-5955(89)90086-5
Schreiner CE, 2007, NEURON, V56, P356, DOI 10.1016/j.neuron.2007.10.013
Schreiner CE, 2000, ANNU REV NEUROSCI, V23, P501, DOI 10.1146/annurev.neuro.23.1.501
SCHREINER CE, 1990, J NEUROPHYSIOL, V64, P1442
SEMPLE MN, 1993, J NEUROPHYSIOL, V69, P449
SEMPLE MN, 1993, J NEUROPHYSIOL, V69, P462
Series P, 2004, NAT NEUROSCI, V7, P1129, DOI 10.1038/nn1321
STORACE DA, 2010, J COMP NEUROL
Storace DA, 2010, J COMP NEUROL, V518, P1630, DOI 10.1002/cne.22345
Tan AYY, 2004, J NEUROPHYSIOL, V92, P630, DOI 10.1152/jn.01020.2003
Wehr M, 2003, NATURE, V426, P442, DOI 10.1038/nature02116
Winer JA, 1999, HEARING RES, V130, P19, DOI 10.1016/S0378-5955(98)00216-0
WINER JA, 1985, ADV ANAT EMBRYOL CEL, V86, P1
Wu GK, 2008, NEURON, V58, P132, DOI 10.1016/j.neuron.2008.01.035
NR 56
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2011
VL 274
IS 1-2
SI SI
BP 95
EP 104
DI 10.1016/j.heares.2010.11.010
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 757LG
UT WOS:000290085900011
PM 21145383
ER
PT J
AU Winer, JA
Bui, LA
Hong, JH
Prieto, JJ
Larue, DT
AF Winer, Jeffery A.
Bui, Lynne A.
Hong, Jane H.
Prieto, Jorge J.
Larue, David T.
TI GABAergic organization of the auditory cortex in the mustached bat
(Pteronotus p. parnellii)
SO HEARING RESEARCH
LA English
DT Article
ID GABA-IMMUNOREACTIVE NEURONS; MEDIAL GENICULATE-BODY; GLUTAMIC-ACID
DECARBOXYLASE; GAMMA-AMINOBUTYRIC-ACID; SENSORY-MOTOR CORTEX; CAT
VISUAL-CORTEX; STRIATE CORTEX; CORTICOTHALAMIC CELLS; SYNAPTIC
ORGANIZATION; LAMINAR DISTRIBUTION
AB The structure and distribution of neurons and axon terminals (puncta) immunostained for gamma-aminobutyric acid (GABA) in the parietotemporal neocortex of the mustached bat (Pteronotus p. parnellii) was studied. The types of GABAergic neurons and puncta (putative terminals) were analyzed, and the immunocytochemical patterns were compared to those in cat auditory cortex (AC). The classic map of mustached bat primary auditory cortex (AI) corresponds to a belt of granular six-layered cortex on the temporal convexity. This area encompasses the Doppler-shifted constant frequency 60 kHz domain (DSCF) described in physiological investigations, as well as its flanking, low-frequency, posterior field (Alp) and the anterior high-frequency region (Ala). Many types of GABAergic neurons correspond to those in cat primary AC. However, the bat had a significantly lower proportion of such cells in five of the six layers. The classes of GABAergic neurons in most layers were small, medium-sized, and large multipolar cells, and bipolar and bitufted neurons. Types found in only one or two layers included horizontal cells (layers I and VI) or extraverted multipolar neurons (layer II). Only layer IV had comparable percentages (similar to 26%), suggesting that the GABAergic influence on lemniscal thalamocortical input is conserved phylogenetically. While the cellular basis for GABAergic cortical processing may reflect shared neural circuits and common modes of inhibitory processing, laminar differences could underlie adaptations specific to microchioptera. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Winer, Jeffery A.; Bui, Lynne A.; Hong, Jane H.; Larue, David T.] Univ Calif Berkeley, Dept Mol & Cell Biol, Div Neurobiol, Berkeley, CA 94720 USA.
[Prieto, Jorge J.] Univ Miguel Hernandez, Dept Anat & Histol, San Juan, Alicante, Spain.
RP Larue, DT (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Div Neurobiol, Berkeley, CA 94720 USA.
EM dtlarue@berkeley.edu
FU United States Public Health Service [RO1 DC02319-29]
FX We thank Dr. D. E. Schmechel for GAD antiserum and Dr. R. J. Wenthold
for antiserum to GABA-conjugate. We are grateful to Dr. N. Suga and Dr.
W. E. O'Neill for their assistance and helpful comments on our
interpretation of mustached bat auditory cortex physiological
organization. Portions of this study were submitted as an undergraduate
honors thesis by Dr. L A. Bui at the University of California at
Berkeley. Dr. M. Beneyto graciously helped with Figs. 6 and 7. This
research was supported by United States Public Health Service grant RO1
DC02319-29.
CR ABERCROMBIE N, 1946, ANAT REC, V94, P239
ADAMS JC, 1981, J HISTOCHEM CYTOCHEM, V29, P775
ALLOWAY KD, 1989, EXP BRAIN RES, V78, P514
Arcelli P, 1997, BRAIN RES BULL, V42, P27, DOI 10.1016/S0361-9230(96)00107-4
Briggs F, 2001, J NEUROSCI, V21, P3600
COBAS A, 1987, J NEUROCYTOL, V16, P843, DOI 10.1007/BF01611990
CODE RA, 1985, J COMP NEUROL, V242, P485, DOI 10.1002/cne.902420404
Crook JM, 1997, VISUAL NEUROSCI, V14, P141
DEFELIPE J, 1986, NEUROSCIENCE, V17, P991, DOI 10.1016/0306-4522(86)90075-8
DEMEULEMEESTER H, 1988, J NEUROSCI, V8, P988
FARINAS I, 1991, J COMP NEUROL, V304, P70, DOI 10.1002/cne.903040106
FARINAS I, 1991, J COMP NEUROL, V304, P53, DOI 10.1002/cne.903040105
FITZPATRICK D, 1987, J COMP NEUROL, V264, P73, DOI 10.1002/cne.902640107
FITZPATRICK DC, 1994, BRAIN BEHAV EVOLUT, V43, P79, DOI 10.1159/000113626
Fitzpatrick DC, 1998, J COMP NEUROL, V391, P366
HENDRY SHC, 1983, J NEUROCYTOL, V12, P639, DOI 10.1007/BF01181528
HENDRY SHC, 1987, J NEUROSCI, V7, P1503
HORNUNG JP, 1994, ANAT EMBRYOL, V189, P139
Horton JC, 2005, PHILOS T ROY SOC B, V360, P837, DOI 10.1098/rstb.2005.1623
Houser C. R., 1984, CEREB CORTEX, V2, P63
HOUSER CR, 1983, J NEUROCYTOL, V12, P617, DOI 10.1007/BF01181527
HSU SM, 1981, J HISTOCHEM CYTOCHEM, V29, P577
Kawaguchi Y, 1996, J NEUROSCI, V16, P2701
KELLER A, 1987, J COMP NEUROL, V262, P1, DOI 10.1002/cne.902620102
KISVARDAY ZF, 1990, BRAIN, V113, P793, DOI 10.1093/brain/113.3.793
Larue DT, 1996, J NEUROSCI METH, V68, P125, DOI 10.1016/0165-0270(96)00048-9
LIN CS, 1986, J COMP NEUROL, V244, P369, DOI 10.1002/cne.902440309
Liu W, 1997, J COMP PHYSIOL A, V181, P599, DOI 10.1007/s003590050143
MARTIN KAC, 1989, J COMP NEUROL, V282, P404, DOI 10.1002/cne.902820307
MATSUBARA JA, 1987, BRAIN RES BULL, V18, P121, DOI 10.1016/0361-9230(87)90040-2
MEINECKE DL, 1987, J COMP NEUROL, V261, P388, DOI 10.1002/cne.902610305
MERZENICH MM, 1975, J NEUROPHYSIOL, V38, P231
MUGNAINI E, 1983, J HISTOCHEM CYTOCHEM, V31, P1435
OERTEL WH, 1981, NEUROSCIENCE, V6, P2725
OERTEL WH, 1981, NEUROSCIENCE, V6, P2689, DOI 10.1016/0306-4522(81)90113-5
OLSEN JF, 1986, THESIS WASHINGTON U
PETERS A, 1993, CEREB CORTEX, V3, P69, DOI 10.1093/cercor/3.1.69
PRIETO JJ, 1994, J COMP NEUROL, V344, P349, DOI 10.1002/cne.903440304
PRIETO JJ, 1994, J COMP NEUROL, V344, P383, DOI 10.1002/cne.903440305
Prieto JJ, 1999, J COMP NEUROL, V404, P332, DOI 10.1002/(SICI)1096-9861(19990215)404:3<332::AID-CNE5>3.0.CO;2-R
REBLET C, 1992, EUR J NEUROSCI, V4, P221, DOI 10.1111/j.1460-9568.1992.tb00870.x
RIQUIMAROUX H, 1992, J NEUROPHYSIOL, V68, P1613
RIQUIMAROUX H, 1991, SCIENCE, V251, P565, DOI 10.1126/science.1990432
ROBERTS RC, 1985, BRAIN RES, V361, P324, DOI 10.1016/0006-8993(85)91303-4
SCHIFFMANN S, 1988, BRAIN RES, V442, P270, DOI 10.1016/0006-8993(88)91512-0
Smith PH, 2001, J COMP NEUROL, V436, P508, DOI 10.1002/cne.1084
SOMOGYI P, 1985, J HISTOCHEM CYTOCHEM, V33, P240
SOMOGYI P, 1983, NEUROSCIENCE, V9, P475, DOI 10.1016/0306-4522(83)90167-7
SOUSA-PINTO A, 1973, Archives Italiennes de Biologie, V111, P112
STERNBERGER LA, 1979, J HISTOCHEM CYTOCHEM, V27, P1424
SUGA N, 1985, J NEUROPHYSIOL, V53, P1109
SUGA N, 1984, TRENDS NEUROSCI, V7, P20, DOI 10.1016/S0166-2236(84)80183-6
SUGA N, 1990, J NEUROPHYSIOL, V64, P225
WILLINGHAM MC, 1984, J HISTOCHEM CYTOCHEM, V32, P455
Winer JA, 2005, INFERIOR COLLICULUS, P231, DOI 10.1007/0-387-27083-3_8
Winer J.A., 1992, Springer Handbook of Auditory Research, V1, P222
WINER JA, 1986, NEUROSCIENCE, V19, P771, DOI 10.1016/0306-4522(86)90298-8
WINER JA, 1988, J COMP NEUROL, V278, P47, DOI 10.1002/cne.902780104
Winer JA, 2001, J COMP NEUROL, V434, P379, DOI 10.1002/cne.1183
Winer JA, 1996, P NATL ACAD SCI USA, V93, P3083, DOI 10.1073/pnas.93.7.3083
WINER JA, 1989, NEUROSCIENCE, V33, P499, DOI 10.1016/0306-4522(89)90402-8
WINER JA, 1992, J COMP NEUROL, V319, P172, DOI 10.1002/cne.903190114
WINER JA, 1995, J COMP NEUROL, V355, P317, DOI 10.1002/cne.903550302
WINER JA, 1984, J COMP NEUROL, V224, P535, DOI 10.1002/cne.902240405
WINER JA, 1985, ADV ANAT EMBRYOL CEL, V86, P1
WINGUTH SD, 1986, J COMP NEUROL, V248, P36, DOI 10.1002/cne.902480104
Xiao ZJ, 2002, P NATL ACAD SCI USA, V99, P15743, DOI 10.1073/pnas.242606699
NR 67
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2011
VL 274
IS 1-2
SI SI
BP 105
EP 120
DI 10.1016/j.heares.2010.05.020
PG 16
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 757LG
UT WOS:000290085900012
PM 20594984
ER
PT J
AU Yuan, KX
Fink, KL
Winer, JA
Schreiner, CE
AF Yuan, Kexin
Fink, Kathren L.
Winer, Jeffery A.
Schreiner, Christoph E.
TI Local connection patterns of parvalbumin-positive inhibitory
interneurons in rat primary auditory cortex
SO HEARING RESEARCH
LA English
DT Article
ID CALCIUM-BINDING PROTEINS; GABAERGIC NEURONS; STRIATE CORTEX;
FAST-SPIKING; VERTICAL ORGANIZATION; INTRINSIC CONNECTIONS; MODULAR
ORGANIZATION; BALANCED INHIBITION; PROJECTION NEURONS; RETROGRADE TRACER
AB In the auditory cortex (AC). GABAergic neurons constitute approximately 15-25% of all neurons. GABAergic cells are present in all sensory modalities and essential for modulating sensory receptive fields. Parvalbumin (PV) positive cells represent the largest sub-group of the GABAergic population in auditory neocortex. We investigated the projection pattern of PV cells in rat primary auditory cortex (AI) with a retrograde tracer (wheat germ apo-HRP conjugated to gold [WAHG]) and immunocytochemistry for PV. All AC layers except layer I contained cells double-labeled for PV and WAHG. All co-localized PV+ cells were within 2 mm of the injection site, regardless of laminar origin. Most (ca. 90%) of the colocalized PV cells were within 500 mu m of the injection site in both dorsal-ventral and rostral-caudal dimension of the auditory core region. WAHG-only cells declined less rapidly with distance and were found up to 6 mm from the deposit sites. WAHG-only labeled cells in the medial geniculate body were in ventral division loci compatible with an injection in AI. Differences in the range and direction of the distribution pattern of co-localized PV+ cells and WAHG-only cells in AI express distinct functional convergence patterns for the two cell populations. (C) 2010 Published by Elsevier B.V.
C1 [Yuan, Kexin; Schreiner, Christoph E.] Univ Calif San Francisco, Dept Otolaryngol, Coleman Mem Lab, San Francisco, CA 94143 USA.
[Yuan, Kexin; Schreiner, Christoph E.] Univ Calif San Francisco, Dept Otolaryngol, WM Keck Fdn Ctr Integrat Neurosci, San Francisco, CA 94143 USA.
[Yuan, Kexin; Fink, Kathren L.; Winer, Jeffery A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.
RP Schreiner, CE (reprint author), Univ Calif San Francisco, Dept Otolaryngol, Coleman Mem Lab, San Francisco, CA 94143 USA.
EM kexin@phy.ucsf.edu; thekfink@gmail.com; chris@phy.ucsf.edu
FU NIDCD [R01DC02319, R01DC02260]
FX We thank David Larue and Katie Dorsch for technical assistance and
Weichen Xu for assistance in data collection and analysis. We also thank
Peter Ohara for useful comments on our original manuscript. This work
was supported by NIDCD grants R01DC02319 (J.A.W.) and R01DC02260
(C.E.S.).
CR ALBUS K, 1994, EUR J NEUROSCI, V6, P779, DOI 10.1111/j.1460-9568.1994.tb00989.x
ALBUS K, 1991, EXP BRAIN RES, V85, P235
Atencio CA, 2008, J NEUROSCI, V28, P3897, DOI 10.1523/JNEUROSCI.5366-07.2008
BASBAUM AI, 1989, J HISTOCHEM CYTOCHEM, V37, P1811
BASBAUM AI, 1987, J COMP NEUROL, V261, P306, DOI 10.1002/cne.902610211
Bastianelli E, 2003, CEREBELLUM, V2, P242, DOI 10.1080/14734220310022289
Cardin JA, 2009, NATURE, V459, P663, DOI 10.1038/nature08002
DEFELIPE J, 1985, J NEUROSCI, V5, P3246
DELRIO JA, 1994, DEV BRAIN RES, V81, P247, DOI 10.1016/0165-3806(94)90311-5
Fabri M, 1996, NEUROSCIENCE, V72, P435, DOI 10.1016/0306-4522(95)00568-4
Froemke RC, 2007, NATURE, V450, P425, DOI 10.1038/nature06289
GREENWOO.DD, 1965, J NEUROPHYSIOL, V28, P863
HENDRY SHC, 1991, BRAIN RES, V543, P45, DOI 10.1016/0006-8993(91)91046-4
Higo S, 2007, J COMP NEUROL, V503, P421, DOI 10.1002/cne.21395
Hof PR, 1999, J CHEM NEUROANAT, V16, P77, DOI 10.1016/S0891-0618(98)00065-9
Jinno S, 2006, NEUROSCI RES, V56, P229, DOI 10.1016/j.neures.2006.07.007
Jones EG, 1998, NEUROSCIENCE, V85, P331, DOI 10.1016/S0306-4522(97)00581-2
Mallet N, 2005, J NEUROSCI, V25, P3857, DOI 10.1523/NEUROSCI.5027-04.2005
Markram H, 2004, NAT REV NEUROSCI, V5, P793, DOI 10.1038/nrn1519
MATSUBARA JA, 1988, PROG BRAIN RES, V75, P163
MATSUBARA JA, 1992, BRAIN RES, V583, P161
MCMULLEN NT, 1994, J COMP NEUROL, V349, P493, DOI 10.1002/cne.903490402
Monyer H, 2004, TRENDS NEUROSCI, V27, P90, DOI 10.1016/j.tins.2003.12.008
MUGNAINI E, 1985, HDB CHEM NEUROANA 11, V4
PHILLIPS DP, 1995, J NEUROPHYSIOL, V73, P674
Polley DB, 2007, J NEUROPHYSIOL, V97, P3621, DOI 10.1152/jn.01298.2006
PRIETO JJ, 1994, J COMP NEUROL, V344, P349, DOI 10.1002/cne.903440304
Read HL, 2001, P NATL ACAD SCI USA, V98, P8042, DOI 10.1073/pnas.131591898
REALE RA, 1983, P NATL ACAD SCI-BIOL, V80, P5449, DOI 10.1073/pnas.80.17.5449
SCHREINER CE, 1992, EXP BRAIN RES, V92, P105
Schreiner CE, 2000, ANNU REV NEUROSCI, V23, P501, DOI 10.1146/annurev.neuro.23.1.501
Schwaller Beat, 2002, Cerebellum, V1, P241, DOI 10.1080/147342202320883551
Sohal VS, 2009, NATURE, V459, P698, DOI 10.1038/nature07991
SOMOGYI P, 1981, NATURE, V294, P761, DOI 10.1038/294761a0
SOMOGYI P, 1983, P NATL ACAD SCI-BIOL, V80, P2385, DOI 10.1073/pnas.80.8.2385
Sutter ML, 1999, J NEUROPHYSIOL, V82, P2358
Tamamaki N, 2003, J COMP NEUROL, V467, P60, DOI 10.1002/cne.10905
Tan AYY, 2007, NEUROSCIENCE, V146, P449, DOI 10.1016/j.neuroscience.2007.01.019
Tomioka R, 2007, J COMP NEUROL, V505, P526, DOI 10.1002/cne.21504
Tomioka R, 2005, EUR J NEUROSCI, V21, P1587, DOI 10.1111/j.1460-9568.2005.03989.x
Wehr M, 2003, NATURE, V426, P442, DOI 10.1038/nature02116
Winer JA, 1999, HEARING RES, V130, P42, DOI 10.1016/S0378-5955(98)00217-2
Wu GK, 2008, NEURON, V58, P132, DOI 10.1016/j.neuron.2008.01.035
Wu GY, 2006, NEURON, V52, P705, DOI 10.1016/j.neuron.2006.10.009
Zhang LI, 2003, NATURE, V424, P201, DOI 10.1038/nature01796
ZILLES K, 1985, ANAT EMBRYOL, V172, P255, DOI 10.1007/BF00318973
NR 46
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2011
VL 274
IS 1-2
SI SI
BP 121
EP 128
DI 10.1016/j.heares.2010.06.014
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 757LG
UT WOS:000290085900013
PM 20600741
ER
PT J
AU Wallace, MN
Coomber, B
Sumner, CJ
Grimsley, JMS
Shackleton, TM
Palmer, AR
AF Wallace, M. N.
Coomber, B.
Sumner, C. J.
Grimsley, J. M. S.
Shackleton, T. M.
Palmer, A. R.
TI Location of cells giving phase-locked responses to pure tones in the
primary auditory cortex
SO HEARING RESEARCH
LA English
DT Article
ID MEDIAL GENICULATE-BODY; LOW-FREQUENCY TONES; GUINEA-PIG; THALAMOCORTICAL
SYSTEM; COLUMNAR ORGANIZATION; REPRESENTATION; SOUND; LOCALIZATION;
SENSITIVITY; PROJECTIONS
AB Phase-locked responses to pure tones have previously been described in the primary auditory cortex (AI) of the guinea pig. They are interesting because they show that some cells may use a temporal code for representing sounds of 60-300 Hz rather than the rate or place mechanisms used over most of AI. Our previous study had shown that the phase-locked responses were grouped together, but it was not clear whether they were in separate minicolumns or a larger macrocolumn. We now show that the phase-locked cells are arranged in a macrocolumn within AI that forms a subdivision of the isofrequency bands. Phase-locked responses were recorded from 158 multiunits using silicon based multiprobes with four shanks. The phase-locked units gave the strongest response in layers III/IV but phase-locked units were also recorded in layers II. V and VI. The column included cells with characteristic frequencies of 80 Hz-1.3 kHz (0.5-0.8 mm long) and was about 0.5 mm wide. It was located at a constant position at the intersection of the coronal plane 1 mm caudal to bregma and the suture that forms the lateral edge of the parietal bone. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Wallace, M. N.; Coomber, B.; Sumner, C. J.; Grimsley, J. M. S.; Shackleton, T. M.; Palmer, A. R.] MRC Inst Hearing Res, Nottingham NG7 2RD, England.
RP Wallace, MN (reprint author), MRC Inst Hearing Res, Univ Pk, Nottingham NG7 2RD, England.
EM markw@ihr.mrc.ac.uk
FU NIH/NCRR [P41 RR09754]
FX Silicon probes were generously provided by the University of Michigan
Center for Neural Communication Technology sponsored by NIH/NCRR grant
P41 RR09754. We want to thank O Zobay for statistical help and Dr JWH
Schnupp for sending us a copy of Brainware.
CR ABELES M, 1970, J NEUROPHYSIOL, V33, P172
Ahissar E, 2001, P NATL ACAD SCI USA, V98, P13367, DOI 10.1073/pnas.201400998
Bendor D, 2005, NATURE, V436, P1161, DOI 10.1038/nature03867
deRibaupierre F, 1997, CENTRAL AUDITORY SYS, P317
Douglas RJ, 2004, ANNU REV NEUROSCI, V27, P419, DOI 10.1146/annurev.neuro.27.070203.144152
Eggermont JJ, 2001, HEARING RES, V157, P1, DOI 10.1016/S0378-5955(01)00259-3
Elhilali M, 2004, J NEUROSCI, V24, P1159, DOI 10.1523/JNEUROSCI.3825-03.2004
Fitzpatrick DC, 2000, J NEUROSCI, V20, P1605
GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613
Haidarliu S, 1997, J COMP NEUROL, V385, P515, DOI 10.1002/(SICI)1096-9861(19970908)385:4<515::AID-CNE3>3.0.CO;2-6
HASHIKAWA T, 1995, J COMP NEUROL, V362, P195, DOI 10.1002/cne.903620204
He JF, 1998, J COMP NEUROL, V400, P334, DOI 10.1002/(SICI)1096-9861(19981026)400:3<334::AID-CNE4>3.0.CO;2-9
Huetz C, 2009, J NEUROSCI, V29, P334, DOI 10.1523/JNEUROSCI.3269-08.2009
Kimura A, 2003, NEUROSCIENCE, V117, P1003, DOI 10.1016/S0306-4522(02)00949-1
KUNKEL P., 1964, Zeitschrift fur Tierpsychologie, V21, P602
Mardia K. V., 1972, STAT DIRECTIONAL DAT
McAlpine D, 1996, HEARING RES, V97, P136
MIDDLEBROOKS JC, 1983, J NEUROSCI, V3, P203
Mountcastle VB, 1997, BRAIN, V120, P701, DOI 10.1093/brain/120.4.701
MOUNTCAS.VB, 1969, J NEUROPHYSIOL, V32, P452
REDIES H, 1989, J COMP NEUROL, V282, P489, DOI 10.1002/cne.902820403
Rood J.P., 1972, Animal Behav Monogr, V5, P1
ROSE JE, 1949, J COMP NEUROL, V91, P441, DOI 10.1002/cne.900910306
ROUILLER E, 1979, HEARING RES, V1, P213, DOI 10.1016/0378-5955(79)90015-7
Scott BH, 2009, J NEUROPHYSIOL, V101, P1781, DOI 10.1152/jn.00678.2007
Smith PH, 2001, J COMP NEUROL, V436, P508, DOI 10.1002/cne.1084
STEINSCHNEIDER M, 1980, BRAIN RES, V198, P75, DOI 10.1016/0006-8993(80)90345-5
Stiebler I, 1997, J COMP PHYSIOL A, V181, P559, DOI 10.1007/s003590050140
Tiesinga P, 2008, NAT REV NEUROSCI, V9, P97, DOI 10.1038/nrn2315
Velenovsky DS, 2003, J NEUROSCI, V23, P308
Wallace MN, 2000, EXP BRAIN RES, V132, P445, DOI 10.1007/s002210000362
Wallace MN, 2008, EXP BRAIN RES, V184, P179, DOI 10.1007/s00221-007-1092-z
Wallace MN, 2007, J NEUROPHYSIOL, V98, P1941, DOI 10.1152/jn.00697.2007
Wallace MN, 2000, NEUROREPORT, V11, P3989, DOI 10.1097/00001756-200012180-00017
Wallace MN, 2005, HEARING RES, V204, P115, DOI 10.1016/j.heares.2005.01.007
Wallace MN, 2009, EXP BRAIN RES, V194, P395, DOI 10.1007/s00221-009-1714-8
Wallace MN, 2002, HEARING RES, V172, P160, DOI 10.1016/S0378-5955(02)00580-4
Wang X, 2008, NEUROSCIENCE, V154, P294, DOI 10.1016/j.neuroscience.2008.03.065
Wang XQ, 2005, NATURE, V435, P341, DOI 10.1038/nature03565
Winer JA, 1992, MAMMALIAN AUDITORY P, P222
NR 40
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2011
VL 274
IS 1-2
SI SI
BP 142
EP 151
DI 10.1016/j.heares.2010.05.012
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 757LG
UT WOS:000290085900015
PM 20630479
ER
PT J
AU Nadrowski, B
Effertz, T
Senthilan, PR
Gopfert, MC
AF Nadrowski, Bjoern
Effertz, Thomas
Senthilan, Pingkalai R.
Goepfert, Martin C.
TI Antennal hearing in insects - New findings, new questions
SO HEARING RESEARCH
LA English
DT Article
ID HAIR-BUNDLE MOTILITY; FEMALE AEDES-AEGYPTI; DROSOPHILA-MELANOGASTER;
JOHNSTONS ORGAN; INNER-EAR; CHORDOTONAL ORGANS; MECHANOSENSORY
TRANSDUCTION; MECHANICAL STIMULATION; AUDITORY-SENSITIVITY; MAMMALIAN
COCHLEA
AB Mosquitoes, certain Drosophila species, and honey bees use Johnston's organ in their antennae to detect the wing-beat sounds of conspecifics. Recent studies on these insects have provided novel insights into the intricacies of insect hearing and sound communication, with main discoveries including transduction and amplification mechanisms as known from vertebrate hearing, functional and molecular diversifications of mechanosensory cells, and complex mating duets that challenge the frequency-limits of insect antennal ears. This review discusses these recent advances and outlines potential avenues for future research. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Nadrowski, Bjoern; Effertz, Thomas; Senthilan, Pingkalai R.; Goepfert, Martin C.] Univ Gottingen, Dept Cellular Neurobiol, Max Planck Inst Expt Med, D-37075 Gottingen, Germany.
RP Gopfert, MC (reprint author), Univ Gottingen, Dept Cellular Neurobiol, Max Planck Inst Expt Med, Hermann Rein Str 3, D-37075 Gottingen, Germany.
EM mgoepfe@gwdg.de
RI Nadrowski, Bjorn/D-4979-2012; Senthilan, Pingkalai/A-3466-2013
FU Volkswagen Stiftung; Deutsche Forschungsgemeinschaft [GO 1092/1-1]; BMBF
Bernstein Network for Computational Neuroscience
FX Supported by the Volkswagen Stiftung (B.N., M.C.G.), the Deutsche
Forschungsgemeinschaft (GO 1092/1-1), and the BMBF Bernstein Network for
Computational Neuroscience (M.C.G.).
CR Ai H, 2007, J COMP NEUROL, V502, P1030, DOI 10.1002/cne.21341
Albert JT, 2007, FLY, V1, P238
ALBERT JT, 2006, NATURE PROTOCOLS, DOI DOI 10.1038/NPROT.2006.364
Albert JT, 2007, CURR BIOL, V17, P1000, DOI 10.1016/j.cub.2007.05.004
Albert JT, 2007, J PHYSIOL-LONDON, V580, P451, DOI 10.1113/jphysiol.2007.127993
Ashmore J, 2004, CURR BIOL, V14, pR403, DOI 10.1016/j.cub.2004.05.025
Avitabile D, 2010, J R SOC INTERFACE, V7, P105, DOI 10.1098/rsif.2009.0091
Baker JD, 2004, DEVELOPMENT, V131, P3411, DOI 10.1242/dev.01229
Bechstedt S, 2008, CURR BIOL, V18, pR869, DOI 10.1016/j.cub.2008.07.069
BELTON P, 1994, J AM MOSQUITO CONTR, V10, P297
Belton P., 1974, ANAL INSECT BEHAV, P139
Bender JA, 2009, CURR BIOL, V19, pR186, DOI 10.1016/j.cub.2008.12.024
BENNETCL.HC, 1971, NATURE, V234, P255, DOI 10.1038/234255a0
Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837
Boekhoff-Falk G, 2005, DEV DYNAM, V232, P550, DOI 10.1002/dvdy.20207
BOO KS, 1975, J INSECT PHYSIOL, V21, P1129, DOI 10.1016/0022-1910(75)90126-2
BOO K S, 1975, International Journal of Insect Morphology and Embryology, V4, P549, DOI 10.1016/0020-7322(75)90031-8
Budick SA, 2007, J EXP BIOL, V210, P4092, DOI 10.1242/jeb.006502
BURNET B, 1971, ANIM BEHAV, V19, P409, DOI 10.1016/S0003-3472(71)80025-8
Camalet S, 2000, P NATL ACAD SCI USA, V97, P3183, DOI 10.1073/pnas.97.7.3183
Camhi JM, 1999, J EXP BIOL, V202, P631
Cator LJ, 2009, SCIENCE, V323, P1077, DOI 10.1126/science.1166541
Chen FY, 2009, J ACOUST SOC AM, V125, P11, DOI 10.1121/1.2950090
Chung YD, 2001, NEURON, V29, P415, DOI 10.1016/S0896-6273(01)00215-X
CLEMENTS AN, 1999, BIOL MOSQUITOES, V2, P55
COREY DP, 1983, J NEUROSCI, V3, P962
CROSSLEY SA, 1995, ANIM BEHAV, V50, P827, DOI 10.1016/0003-3472(95)80142-1
Dong PDS, 2003, P NATL ACAD SCI USA, V100, P10293, DOI 10.1073/pnas.1836391100
DRELLER C, 1993, J COMP PHYSIOL A, V173, P275, DOI 10.1007/BF00212691
Eatock RA, 2009, NATURE, V458, P156, DOI 10.1038/458156a
Ebacher DJS, 2007, FLY, V1, P86
Eberl DF, 2007, INT J DEV BIOL, V51, P679, DOI 10.1387/ijdb.072364de
Eberl DF, 1997, P NATL ACAD SCI USA, V94, P14837, DOI 10.1073/pnas.94.26.14837
Eberl DF, 2000, J NEUROSCI, V20, P5981
Eddison M, 2000, P NATL ACAD SCI USA, V97, P11692, DOI 10.1073/pnas.97.22.11692
EDERY I, 2009, NEURON, V64, P251
Eguiluz VM, 2000, PHYS REV LETT, V84, P5232, DOI 10.1103/PhysRevLett.84.5232
Elliott SL, 2005, MOL BIOL CELL, V16, P891
ESCH H, 1961, Z VERGL PHYSIOL, V45, P1, DOI 10.1007/BF00297754
EWING AW, 1978, PHYSIOL ENTOMOL, V3, P33, DOI 10.1111/j.1365-3032.1978.tb00129.x
Field LH, 1998, ADV INSECT PHYSIOL, V27, P1, DOI 10.1016/S0065-2806(08)60013-2
Fritzsch B, 2006, BRAIN RES, V1091, P151, DOI 10.1016/j.brainres.2006.02.078
Gibson G, 2006, CURR BIOL, V16, P1311, DOI 10.1016/j.cub.2006.05.053
Giribet G, 2001, NATURE, V413, P157, DOI 10.1038/35093097
Gleason JM, 2005, BEHAV GENET, V35, P265, DOI 10.1007/s10519-005-3219-y
Gong ZF, 2004, J NEUROSCI, V24, P9059, DOI 10.1523/JNEUROSCI.1645-04.2004
Gopfert MC, 2001, P ROY SOC B-BIOL SCI, V268, P333, DOI 10.1098/rspb.2000.1376
Gopfert MC, 2005, P NATL ACAD SCI USA, V102, P325, DOI 10.1073/pnas.0405741102
Goepfert Martin C., 2008, V30, P191
Gopfert MC, 2002, J EXP BIOL, V205, P1199
Gopfert MC, 2006, NAT NEUROSCI, V9, P999, DOI 10.1038/nn1735
Gopfert MC, 2003, P NATL ACAD SCI USA, V100, P5514, DOI 10.1073/pnas.0737564100
Gopfert MC, 2001, NATURE, V411, P908, DOI 10.1038/35082144
Gopfert MC, 2002, DEV DYNAM, V225, P106, DOI 10.1002/dvdy.10136
Gopfert MC, 1999, J EXP BIOL, V202, P2727
GOPFERT MC, 2008, AUDITION SENSES COMP, V3, P293
Guidi GM, 1998, J PHYS CHEM A, V102, P7813, DOI 10.1021/jp982394a
Han YG, 2003, CURR BIOL, V13, P1679, DOI 10.1016/j.cub.2003.08.034
Hassan BA, 2000, GENE DEV, V14, P1852
Hedwig B., 2008, SENSES COMPREHENSIVE, V3, P525
HEINZEL G, 1987, J COMP PHYSIOL A, V161, P671
Hennig W., 1981, INSECT PHYLOGENY
HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0
HUDSPETH AJ, 1979, P NATL ACAD SCI USA, V76, P1506, DOI 10.1073/pnas.76.3.1506
Hudspeth AJ, 2008, NEURON, V59, P530, DOI 10.1016/j.neuron.2008.07.012
Jackson JC, 2006, P NATL ACAD SCI USA, V103, P16734, DOI 10.1073/pnas.0606319103
Jackson JC, 2009, P NATL ACAD SCI USA, V106, P10177, DOI 10.1073/pnas.0901727106
JARMAN AP, 1993, CELL, V73, P1307, DOI 10.1016/0092-8674(93)90358-W
JARMAN AP, 1995, DEVELOPMENT, V121, P2019
JOHNSTON C, 1955, J MICROSC SCI, V3, P97
Kamikouchi A, 2006, J COMP NEUROL, V499, P317, DOI 10.1002/cne.21075
Kamikouchi A, 2009, NATURE, V458, P165, DOI 10.1038/nature07810
KAVLIE RG, 2007, DROS RES C, V48, pC642
KERNAN M, 1994, NEURON, V12, P1195, DOI 10.1016/0896-6273(94)90437-5
Kernan MJ, 2007, PFLUG ARCH EUR J PHY, V454, P703, DOI 10.1007/s00424-007-0263-x
Kim J, 2003, NATURE, V424, P81, DOI 10.1038/nature01733
KIRCHNER WH, 1988, NATURWISSENSCHAFTEN, V75, P629, DOI 10.1007/BF00366482
Kossl M, 2008, J COMP PHYSIOL A, V194, P597, DOI 10.1007/s00359-008-0344-0
Lee E, 2008, CURR BIOL, V18, P1899, DOI 10.1016/j.cub.2008.11.020
Lu QH, 2009, INTEGR COMP BIOL, V49, P674, DOI 10.1093/icb/icp072
Lukashkin AN, 2007, CURR BIOL, V17, P1340, DOI 10.1016/j.cub.2007.06.061
MANNING A, 1967, SCIENCE, V158, P136, DOI 10.1126/science.158.3797.136
Martin P, 2001, P NATL ACAD SCI USA, V98, P14386, DOI 10.1073/pnas.251530498
Martin P, 2003, J NEUROSCI, V23, P4533
Martin P, 2001, P NATL ACAD SCI USA, V98, P14380, DOI 10.1073/pnas.251530598
MICHELSEN A, 1986, BEHAV ECOL SOCIOBIOL, V18, P207, DOI 10.1007/BF00290824
Millimaki BB, 2007, DEVELOPMENT, V134, P295, DOI 10.1242/dev.02734
Nadrowski B, 2009, CURR OPIN OTOLARYNGO, V17, P400, DOI 10.1097/MOO.0b013e3283303443
Nadrowski B, 2004, P NATL ACAD SCI USA, V101, P12195, DOI 10.1073/pnas.0403020101
Nadrowski Bjoern, 2009, Communicative & Integrative Biology, V2, P7
Nadrowski B, 2008, CURR BIOL, V18, P1365, DOI 10.1016/j.cub.2008.07.095
Robert D, 2002, J INSECT PHYSIOL, V48, P189, DOI 10.1016/S0022-1910(01)00163-9
Robert D, 2009, CURR BIOL, V19, pR446, DOI 10.1016/j.cub.2009.04.021
ROBERT D, 2008, SENSES COMPREHENSIVE, V3, P725
ROTH LM, 1948, AM MIDL NAT, V40, P265, DOI 10.2307/2421604
Sane SP, 2007, SCIENCE, V315, P863, DOI 10.1126/science.1133598
Sarpal R, 2003, CURR BIOL, V13, P1687, DOI 10.1016/j.cub.2003.09.025
Sehadova H, 2009, NEURON, V64, P251, DOI 10.1016/j.neuron.2009.08.026
Shin JB, 2005, P NATL ACAD SCI USA, V102, P12572, DOI 10.1073/pnas.0502403102
SHOREY HH, 1962, SCIENCE, V137, P677, DOI 10.1126/science.137.3531.677
Sidi S, 2003, SCIENCE, V301, P96, DOI 10.1126/science.1084370
Staudacher EM, 2005, ADV INSECT PHYSIOL, V32, P49, DOI 10.1016/S0065-2806(05)32002-9
Stoop R, 2006, EUR BIOPHYS J BIOPHY, V35, P511, DOI 10.1007/s00249-006-0059-5
Sun YS, 2009, P NATL ACAD SCI USA, V106, P13606, DOI 10.1073/pnas.0906377106
Tauber E, 2003, BEHAV PROCESS, V64, P197, DOI 10.1016/S0376-6357(03)00135-9
Tinevez JY, 2007, BIOPHYS J, V93, P4053, DOI 10.1529/biophysj.107.108498
Tischner H., 1955, ZOOL ANZ S, V18, P453
Todi SV, 2004, MICROSC RES TECHNIQ, V63, P388, DOI 10.1002/jemt.20053
TOWNE WF, 1989, SCIENCE, V244, P686, DOI 10.1126/science.244.4905.686
Tsujiuchi S, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000234
Uga S, 1965, J ELECTRON MICROSC, V14, P173
Von Schilcher F., 1976, Animal Behav, V24, P18, DOI 10.1016/S0003-3472(76)80095-4
Walker RG, 2000, SCIENCE, V287, P2229, DOI 10.1126/science.287.5461.2229
Wang VY, 2002, CURR BIOL, V12, P1611, DOI 10.1016/S0960-9822(02)01144-2
Warren B, 2009, CURR BIOL, V19, P485, DOI 10.1016/j.cub.2009.01.059
Weber T, 2003, P NATL ACAD SCI USA, V100, P7690, DOI 10.1073/pnas.1330557100
WISHART G., 1959, CANADIAN ENT, V91, P181
Yack JE, 2004, MICROSC RES TECHNIQ, V63, P315, DOI 10.1002/jemt.20051
Yack JE, 2008, SENSES COMPREHENSIVE, V3, P35
Yorozu S, 2009, NATURE, V458, P201, DOI 10.1038/nature07843
NR 120
TC 13
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2011
VL 273
IS 1-2
SI SI
BP 7
EP 13
DI 10.1016/j.heares.2010.03.092
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 751HM
UT WOS:000289608100002
PM 20430076
ER
PT J
AU Burighel, P
Caicci, F
Manni, L
AF Burighel, P.
Caicci, F.
Manni, L.
TI Hair cells in non-vertebrate models: Lower chordates and molluscs
SO HEARING RESEARCH
LA English
DT Article
ID NEURAL CREST; SENSORY CELLS; AMPHIOXUS BRANCHIOSTOMA; EVOLUTIONARY
ORIGIN; CIONA-INTESTINALIS; BOTRYLLUS-SCHLOSSERI; TUNICATA-ASCIDIACEA;
NERVOUS-SYSTEM; PLACODES; INSIGHTS
AB The study of hair cells in invertebrates is important, because it can shed light on the debated question about the evolutionary origin of vertebrate hair cells. Here, we review the morphology and significance of hair cells in two groups of invertebrates, the lower chordates (tunicates and cephalochordates) and the molluscs. These taxa possess complex mechanoreceptor organs based on both primary (sensory neurons) and/or secondary, axonless, sensory cells, bearing various apical specializations. Compared with vertebrates, these taxa show interesting examples of convergent evolution and possible homologies of sensory systems. For example, the "lateral line organ" of Octopoda and Decapoda, composed of primary sensory cells aligned on the arms and the head, is considered a classic example of convergent evolution to mechanoreception. Similarly, in ascidians, the cupular organ, formed of primary sensory cells embedded in a gelatinous cupula, is seen as an analog of neuromasts in vertebrates. However, the coronal organ of the oral siphon of ascidians, represented by a line of secondary sensory cells with a hair bundle also comprising graded stereovilli, is currently the best candidate for tracing the evolutionary origin of the vertebrate octavo-lateralis system. Several features, such as embryological origin, position, gene expression and morphology, support this hypothesis. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Burighel, P.; Caicci, F.; Manni, L.] Univ Padua, Dept Biol, I-35131 Padua, Italy.
RP Burighel, P (reprint author), Univ Padua, Dept Biol, Via U Bassi 58-B, I-35131 Padua, Italy.
EM paolo.burighel@unipd.it; federico.caicci@unipd.it; lucia.manni@unipd.it
FU Italian Ministero della Universita e Ricerca Scientifica e Tecnologica
FX This study was supported by grants from the Italian Ministero della
Universita e Ricerca Scientifica e Tecnologica to P.B. and LM.
CR BAATRUP E, 1981, ACTA ZOOL-STOCKHOLM, V62, P147
Baker CVH, 2005, J EXP ZOOL PART B, V304B, P269, DOI 10.1002/jez.b.21060
Bassham S, 2008, BMC BIOL, V6, DOI 10.1186/1741-7007-6-35
Bassham S, 2005, DEVELOPMENT, V132, P4259, DOI 10.1242/dev.01973
Benito-Gutierrez E, 2005, DEVELOPMENT, V132, P2191, DOI 10.1242/dev.01803
Boekhoff-Falk G, 2005, DEV DYNAM, V232, P550, DOI 10.1002/dvdy.20207
Bone Q., 1982, P473
BONE Q, 1975, BIOL BULL-US, V149, P267, DOI 10.2307/1540527
Bone Q., 1998, P55
BONE Q, 1978, J ZOOL, V186, P417
Budelmann B.-U., 1989, P607
BUDELMANN BU, 1994, J EXP BIOL, V187, P245
Budelmann Bernd U., 1997, P119
BUDELMANN BU, 1987, PHILOS T ROY SOC B, V315, P305, DOI 10.1098/rstb.1987.0010
Burighel P, 1998, J COMP NEUROL, V394, P230, DOI 10.1002/(SICI)1096-9861(19980504)394:2<230::AID-CNE7>3.0.CO;2-3
Burighel P, 2008, BRAIN RES BULL, V75, P331, DOI 10.1016/j.brainresbull.2007.10.012
BURIGHEL R, 2003, J COMP NEUROL, V461, P236
Caicci F, 2007, HEARING RES, V231, P63, DOI 10.1016/j.heares.2007.05.007
Coffin A., 2004, EVOLUTION VERTEBRATE, P55
Delsuc E, 2006, NATURE, V439, P965
Dufour HD, 2006, P NATL ACAD SCI USA, V103, P8727, DOI 10.1073/pnas.0600805103
FIALAMEDIONI A, 1974, MAR BIOL, V28, P199, DOI 10.1007/BF00387298
Fritzsch B, 2007, INT J DEV BIOL, V51, P663, DOI 10.1387/ijdb.072367bf
HALL BK, 2009, EVOLUTIONARY ORIGINS, P117
Holland LZ, 2009, NAT REV NEUROSCI, V10, P736, DOI 10.1038/nrn2703
Holland ND, 2002, ACTA ZOOL-STOCKHOLM, V83, P309, DOI 10.1046/j.1463-6395.2002.00120.x
Hu MY, 2009, COMP BIOCHEM PHYS A, V153, P278, DOI 10.1016/j.cbpa.2009.02.040
Jeffery WR, 2007, SEMIN CELL DEV BIOL, V18, P481, DOI 10.1016/j.semcdb.2007.04.005
Jeffery WR, 2006, J EXP ZOOL PART B, V306B, P470, DOI 10.1002/jez.b.21109
KALTENBACH SL, 2009, EVOL DEV, V11, P145
Kourakis MJ, 2007, DEV BIOL, V312, P245, DOI 10.1016/j.ydbio.2007.09.020
Koyama H, 2008, ZOOL SCI, V25, P919, DOI 10.2108/zsj.25.919
Lacalli TC, 1999, ACTA ZOOL-STOCKHOLM, V80, P125, DOI 10.1046/j.1463-6395.1999.80220005.x
Lacalli TC, 2004, BRAIN BEHAV EVOLUT, V64, P148, DOI 10.1159/000079744
Mackie GO, 2004, INVERTEBR BIOL, V123, P269
Mackie GO, 2006, CAN J ZOOL, V84, P1146, DOI 10.1139/Z06-106
Mackie GO, 2003, BRAIN BEHAV EVOLUT, V61, P45, DOI 10.1159/000068878
Mackie GO, 2005, CAN J ZOOL, V83, P151, DOI 10.1139/Z04-177
MANLEY GA, 2008, SENSES COMPREHENSIVE, V3, P1
Manni L, 2007, DEV DYNAM, V236, P335, DOI 10.1002/dvdy.21037
Manni L, 2004, EVOL DEV, V6, P379, DOI 10.1111/j.1525-142X.2004.04046.x
Manni L, 2005, J EXP ZOOL PART B, V304B, P324, DOI 10.1002/jez.21039
MANNI L, 2001, EVOL DEV, V3, P287
Manni L, 2006, J COMP NEUROL, V495, P363, DOI 10.1002/cne.20867
Manni L, 2004, J EXP ZOOL PART B, V302B, P483, DOI 10.1002/jez.b.21013
Mazet F, 2005, DEV BIOL, V282, P494, DOI 10.1016/j.ydbio.2005.02.021
Meulemans D, 2007, INT J BIOL SCI, V3, P356
Neumeister H, 1997, PHILOS T ROY SOC B, V352, P1565
NORTHCUTT RG, 1983, Q REV BIOL, V58, P1, DOI 10.1086/413055
Passamaneck YJ, 2005, DEV DYNAM, V233, P1, DOI 10.1002/dvdy.20300
Rasmussen SLK, 2007, GENESIS, V45, P113, DOI 10.1002/dvg.20278
Satoh N, 2005, GENE DEV, V19, P2407, DOI 10.1101/gad.1365805
Schlosser G, 2008, BIOESSAYS, V30, P659, DOI 10.1002/bies.20775
Shimeld SM, 2000, P NATL ACAD SCI USA, V97, P4449, DOI 10.1073/pnas.97.9.4449
Wada H, 1996, NATURE, V384, P123, DOI 10.1038/384123a0
Wada H, 1998, DEVELOPMENT, V125, P1113
Yu JK, 2008, GENOME RES, V18, P1127, DOI 10.1101/gr.076208.108
NR 57
TC 14
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2011
VL 273
IS 1-2
SI SI
BP 14
EP 24
DI 10.1016/j.heares.2010.03.087
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 751HM
UT WOS:000289608100003
PM 20430071
ER
PT J
AU Popper, AN
Fay, RR
AF Popper, Arthur N.
Fay, Richard R.
TI Rethinking sound detection by fishes
SO HEARING RESEARCH
LA English
DT Article
ID GOLDFISH CARASSIUS-AURATUS; HAIR CELL; INNER-EAR; ULTRASOUND DETECTION;
LATERAL-LINE; AUDITORY-SYSTEM; TELEOST FISHES; GADUS-MORHUA; HEARING;
FIELD
AB In this paper we reconsider the designation of fishes as being either "hearing specialists" or "hearing generalists," and recommend dropping the terms. We argue that this classification is only vaguely and variously defined in the literature, and that these terms often have unclear and different meaning to different investigators. Furthermore, we make the argument that the ancestral, and most common, mode of hearing in fishes involves sensitivity to acoustic particle motion via direct inertial stimulation of the otolith organ(s). Moreover, any possible pressure sensitivity is the result of the presence of an air bubble (e.g., the swim bladder), and that hearing sensitivity may be enhanced by the fish having a specific connection between the inner ear to a bubble of air. There are data showing that some fish species have a sensitivity to both pressure and motion that is frequency dependent. Thus such species could not possibly be termed as either hearing "generalists" or specialists," and many more species probably could be classified in this way as well. Furthermore, we propose that the term "specialization" be reserved for cases in which a species has some kind of morphological connection or close continuity between the inner ear and an air bubble that affects behavioral sensitivity to sound pressure (i.e., an otophysic connection). (C) 2009 Elsevier B.V. All rights reserved.
C1 [Popper, Arthur N.] Univ Maryland, Dept Biol, College Pk, MD 20742 USA.
[Popper, Arthur N.] Univ Maryland, Ctr Comparat & Evolutionary Biol Hearing, College Pk, MD 20742 USA.
[Fay, Richard R.] Loyola Univ Chicago, Parmly Hearing Inst, Chicago, IL 60626 USA.
[Fay, Richard R.] Loyola Univ Chicago, Dept Psychol, Chicago, IL 60626 USA.
RP Popper, AN (reprint author), Univ Maryland, Dept Biol, College Pk, MD 20742 USA.
EM apopper@umd.edu; rfay@luc.edu
CR AUSTIN ME, 2005, J ACOUST SOC AM, V117, P2625
BANNER ARNOLD, 1967, P265
Bass Andrew H., 2008, V32, P253, DOI 10.1007/978-0-387-73029-5_8
BRAUN CB, 2007, FISH BIOACOUSTICS, P99
CHAPMAN CJ, 1974, COMP BIOCHEM PHYSIOL, V47, P371, DOI 10.1016/0300-9629(74)90082-6
CHAPMAN CJ, 1974, J EXP BIOL, V61, P521
CHAPMAN CJ, 1973, J COMP PHYSIOL, V85, P147, DOI 10.1007/BF00696473
Coffin A., 2004, EVOLUTION VERTEBRATE, P55
Coombs S, 1996, J COMP PHYSIOL A, V178, P359
COOMBS S, 1979, J COMP PHYSIOL, V132, P203
COOMBS S, 1989, J ACOUST SOC AM, V85, P2185, DOI 10.1121/1.397867
Corwin J.T., 1981, HEARING SOUND COMMUN, P81
CORWIN JT, 1983, J COMP NEUROL, V217, P345, DOI 10.1002/cne.902170309
DeVRIES H., 1950, ACTA OTO LARYNGOL, V38, P262, DOI 10.3109/00016485009118384
DIJKGRAAF S, 1960, PROC R SOC SER B-BIO, V152, P51, DOI 10.1098/rspb.1960.0022
ENGER PS, 1966, COMP BIOCHEM PHYSIOL, V18, P859, DOI 10.1016/0010-406X(66)90218-0
Fay R. R., 1999, COMP HEARING FISH AM, P269
Fay R. R., 1988, HEARING VERTEBRATES
FAY R, 1969, J AUD RES, V9, P112
Fay Richard R., 2002, Bioacoustics, V12, P172
FAY RR, 1974, J EXP BIOL, V61, P243
Fay RR, 1997, HEARING RES, V111, P1, DOI 10.1016/S0378-5955(97)00083-X
FAY RR, 1975, J EXP BIOL, V62, P379
Fay Richard R., 2008, V32, P49
Fletcher LB, 2001, J EXP BIOL, V204, P175
Frisch K. von, 1932, Z VERGL PHYSIOL, V17, P686
HAWKINS AD, 1978, J FISH BIOL, V13, P655, DOI 10.1111/j.1095-8649.1978.tb03480.x
Higgs DM, 2002, JARO, V3, P174, DOI 10.1007/s101620020035
Higgs DM, 2004, J EXP BIOL, V207, P155, DOI 10.1242/jeb.00735
JERKO H, 1989, J COMP PHYSIOL A, V165, P455, DOI 10.1007/BF00611234
LOMBARTE A, 1994, J COMP NEUROL, V345, P419, DOI 10.1002/cne.903450308
LOMBARTE A, 1993, HEARING RES, V64, P166, DOI 10.1016/0378-5955(93)90002-I
Lu Z, 1996, J COMP PHYSIOL A, V179, P227
Manley GA, 2008, SENSES COMPREHENSIVE, P1
Mann DA, 2001, J ACOUST SOC AM, V109, P3048, DOI 10.1121/1.1368406
Mann DA, 1997, NATURE, V389, P341, DOI 10.1038/38636
Morse PM, 1948, VIBRATION SOUND
MYRBERG AA, 1980, J COMP PHYSIOL, V140, P135
Parker G. H., 1902, B US FISH COMM, V22, P45
Parker GH, 1903, AM NAT, V37, P185, DOI 10.1086/278274
Parvulescu A, 1964, MARINE BIOACOUSTICS, P87
Platt C., 1981, HEARING SOUND COMMUN, P3
PLATT C, 1977, J COMP NEUROL, V172, P283, DOI 10.1002/cne.901720207
Platt C., 1983, P89
POGGENDORF D, 1952, Z VERGL PHYSIOL, V34, P222, DOI 10.1007/BF00298202
POPPER AN, 1977, J MORPHOL, V153, P397, DOI 10.1002/jmor.1051530306
Popper A.N., 1983, P125
POPPER AN, 1972, J ACOUST SOC AM, V52, P1714, DOI 10.1121/1.1913305
Popper Arthur N., 2003, P3, DOI 10.1007/978-0-387-22628-6_1
Popper Arthur N., 2008, V32, P17
POPPER AN, 1973, J ACOUST SOC AM, V53, P1515, DOI 10.1121/1.1913496
POPPER AN, 1980, AM J ANAT, V157, P115, DOI 10.1002/aja.1001570202
POPPER AN, 1984, HEARING RES, V15, P133, DOI 10.1016/0378-5955(84)90044-3
POPPER A N, 1970, Animal Behaviour, V18, P552, DOI 10.1016/0003-3472(70)90052-7
Popper AN, 2005, J ACOUST SOC AM, V117, P3958, DOI 10.1121/1.1904386
POPPER AN, 1981, J COMP PHYSIOL, V144, P27
POPPER AN, 1982, AM ZOOL, V22, P311
Popper AN, 2005, MAR FRESHWATER RES, V56, P497, DOI 10.1071/MF04267
Ramcharitar JU, 2006, J ACOUST SOC AM, V119, P439, DOI 10.1121/1.2139068
RETZIUS G, 1981, GEHORORGAN WIRBELTHI, V1
ROGERS PH, 1988, J ACOUST SOC AM, V83, P338, DOI 10.1121/1.396444
Sand O, 2000, PHILOS T ROY SOC B, V355, P1295
SAND O, 1986, J EXP BIOL, V125, P197
SCHUIJF A, 1972, NETH J ZOOL, V22, P19
SCHUIJF A, 1975, J COMP PHYSIOL, V98, P307
Smith ME, 2006, J EXP BIOL, V209, P4193, DOI 10.1242/jeb.02490
STIPETIC E., 1939, ZEITSCHR VERGLEICH PHYSIOL, V26, P740, DOI 10.1007/BF00341099
Von Frisch K, 1936, BIOL REV CAMB PHILOS, V11, P210
Webb J.F., 2008, FISH BIOACOUSTICS
Weber E. H., 1820, AURE ANIMALIUM AQUAT, P134
Wilson M, 2009, J EXP BIOL, V212, P3422, DOI 10.1242/jeb.033340
ZEDDIES DG, 2009, J ACOUST SOC AM, V125, P2488
NR 72
TC 65
Z9 67
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2011
VL 273
IS 1-2
SI SI
BP 25
EP 36
DI 10.1016/j.heares.2009.12.023
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 751HM
UT WOS:000289608100004
PM 20034550
ER
PT J
AU Manley, GA
AF Manley, Geoffrey A.
TI Lizard auditory papillae: An evolutionary kaleidoscope
SO HEARING RESEARCH
LA English
DT Article
ID SPONTANEOUS OTOACOUSTIC EMISSIONS; BASILAR PAPILLA; BOBTAIL LIZARD;
GEKKO-GECKO; NERVE-FIBERS; TOKAY GECKO; HAIR-CELLS; TILIQUA-RUGOSA;
HEARING; MODEL
AB The evolutionary processes that modified the structure and function of lizard auditory papillae during the separation of the familial lineages during the Jurassic have resulted in a remarkable variety of family-typical papillae. These papillae vary structurally in their size, in the patterns of the distribution of hair-cell types, in the presence or absence of sub-papillae and in the configurations of the tectorial membranes. Functional differences, however, are much smaller than the structural variations might lead one to expect. To some extent, differences in innervation patterns and tectorial configurations compensate for 10-fold differences in papillar length. Nonetheless, although lizards with tiny papillae are able to maintain frequency-selective and relatively sensitive hearing, the best selectivity and most sensitive hearing is found in the largest and most complex papillae. Fundamental considerations of the tonotopic organisation of papillae leads to a likely scheme mapping the evolution of the hearing organs found in modern lizard families. (C) 2010 Elsevier B.V. All rights reserved.
C1 Tech Univ Munich, Lehrstuhl Zool, D-85350 Freising Weihenstephan, Germany.
RP Manley, GA (reprint author), Tech Univ Munich, Lehrstuhl Zool, Liesel Beckmann Str 4,Hochfeldweg 2, D-85350 Freising Weihenstephan, Germany.
EM geoffrey.manley@wzw.tum.de
CR AUTHIER S, 1995, HEARING RES, V82, P1
Chiappe ME, 2007, J NEUROSCI, V27, P11978, DOI 10.1523/JNEUROSCI.3679-07.2007
Christensen-Dalsgaard J, 2005, J EXP BIOL, V208, P1209, DOI 10.1242/jeb.01511
Christensen-Dalsgaard J, 2008, JARO-J ASSOC RES OTO, V9, P407, DOI 10.1007/s10162-008-0130-2
EATOCK RA, 1981, J COMP PHYSIOL, V142, P203
HOLTON T, 1983, J PHYSIOL-LONDON, V345, P241
KOPPL C, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P489
KOPPL C, 1988, HEARING RES, V35, P209, DOI 10.1016/0378-5955(88)90119-0
KOPPL C, 1994, HEARING RES, V72, P159, DOI 10.1016/0378-5955(94)90215-1
KOPPL C, 1993, HEARING RES, V71, P157, DOI 10.1016/0378-5955(93)90031-U
KOPPL C, 1995, HEARING RES, V82, P14
Lee MSY, 1998, BIOL J LINN SOC, V65, P369, DOI 10.1111/j.1095-8312.1998.tb01148.x
Manley GA, 2006, HEARING RES, V212, P33, DOI 10.1016/j.heares.2005.10.007
Manley G. A., 2004, EVOLUTION VERTEBRATE, P1
Manley GA, 1997, J ACOUST SOC AM, V102, P1049, DOI 10.1121/1.419858
MANLEY GA, 1989, MECH HEARING, P143
MANLEY GA, 1990, J COMP PHYSIOL A, V167, P89, DOI 10.1007/BF00192409
Manley GA, 2004, HEARING RES, V189, P41, DOI 10.1016/S0378-5955(03)00367-8
MANLEY GA, 1977, J COMP PHYSIOL, V118, P249
Manley GA, 2002, J NEUROBIOL, V53, P202, DOI 10.1002/neu.10115
Manley GA, 1999, HEARING RES, V131, P107, DOI 10.1016/S0378-5955(99)00021-0
Manley Geoffrey A., 2000, V13, P139
Manley GA, 1997, DIVERSITY AUDITORY M, P32
Manley GA, 2000, P NATL ACAD SCI USA, V97, P11736, DOI 10.1073/pnas.97.22.11736
MANLEY GA, 1990, PERPHERAL HEARING ME
Manley GA, 1996, J ACOUST SOC AM, V99, P1588, DOI 10.1121/1.414680
Manley GA, 2010, J EXP BIOL, V213, P1876, DOI 10.1242/jeb.040196
MILLER MR, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P463
SCHMIDT RS, 1964, COPEIA, V3, P542
SHUTE CCD, 1953, P ZOOL SOC LOND, V123, P695
TURNER RG, 1987, HEARING RES, V26, P287, DOI 10.1016/0378-5955(87)90064-5
Vicario S, 2003, MOL PHYLOGENET EVOL, V26, P243, DOI 10.1016/S1055-7903(02)00313-5
Vidal N, 2009, CR BIOL, V332, P129, DOI 10.1016/j.crvi.2008.07.010
Weyer E. G., 1978, REPTILE EAR
NR 34
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2011
VL 273
IS 1-2
SI SI
BP 59
EP 64
DI 10.1016/j.heares.2010.02.015
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 751HM
UT WOS:000289608100007
PM 20435117
ER
PT J
AU Koppl, C
AF Koeppl, Christine
TI Birds - same thing, but different? Convergent evolution in the avian and
mammalian auditory systems provides informative comparative models
SO HEARING RESEARCH
LA English
DT Article
ID RATE-INTENSITY-FUNCTIONS; NERVE FIBERS; BASILAR-MEMBRANE; LEVEL
FUNCTIONS; HAIR-CELLS; COCHLEAR AMPLIFIER; PRIMARY AFFERENTS; SOMATIC
MOTILITY; INNER-EAR; BARN OWL
AB Birds have been and continue to be enlightening, comparative models in auditory research. This review highlights their particular appeal as a vertebrate group that evolved independently a similar division of labour to that seen in the mammalian cochlea, between classic sensory hair cells and hair cells specialising in amplification. Through studying both the similarities and differences between the avian and mammalian inner ear, profound insights into the principles of operation of such a divided system may be gained. For example, the prevailing model of the relationship between basilar-membrane displacement and afferent rate-level functions in mammals is reinforced by characteristic differences observed in birds, which correlate with known differences in basilar-papilla mechanics. Furthermore, birds arguably represent the most extreme case of hair cells using bundle motility for mechanical amplification at high frequencies, up to about 10 kHz. They should thus be informative for elucidating the operation and possibly the limitations of this ancestral amplifying mechanism at high frequencies. (C) 2010 Elsevier B.V. All rights reserved.
C1 Carl von Ossietzky Univ Oldenburg, Fac 5, IBU, D-26111 Oldenburg, Germany.
RP Koppl, C (reprint author), Carl von Ossietzky Univ Oldenburg, Fac 5, IBU, D-26111 Oldenburg, Germany.
EM christine.koeppl@uni-oldenburg.de
CR Carroll R. L., 1988, VERTEBRATE PALEONTOL, P698
CHANDLER JP, 1984, J COMP NEUROL, V222, P506, DOI 10.1002/cne.902220405
Clack J, 2004, EVOLUTION VERTEBRATE, P128
Clack J. A., 1997, Brain Behavior and Evolution, V50, P198, DOI 10.1159/000113334
Cooper Nigel P., 2008, V30, P39
Dallos P., 1996, COCHLEA, P1
DALLOS P, 2008, CURR OPIN NEUROBIOL, V18, P1
FISCHER FP, 1994, SCANNING MICROSCOPY, V8, P351
FRITZSCH B, 1987, NATURE, V327, P153, DOI 10.1038/327153a0
Fuchs P., 1998, PSYCHOPHYSICAL PSYCH, P97
GLEICH O, 1989, HEARING RES, V37, P255, DOI 10.1016/0378-5955(89)90026-9
GLEICH O, 2000, COMP HEARING BIRDS R, P70
GUMMER AW, 1987, HEARING RES, V29, P63, DOI 10.1016/0378-5955(87)90206-1
He DZZ, 2003, J PHYSIOL-LONDON, V546, P511, DOI 10.1113/jphysiol.2002.026070
Hudspeth AJ, 2008, NEURON, V59, P530, DOI 10.1016/j.neuron.2008.07.012
Khimich D, 2005, NATURE, V434, P889, DOI 10.1038/nature03418
Koppl C, 1999, J NEUROSCI, V19, P9674
KOPPL C, AUDITORY VE IN PRESS
Koppl C, 2004, J COMP NEUROL, V479, P149, DOI 10.1002/cne.20311
Koppl C, 2009, CONCEPTS AND CHALLENGES IN THE BIOPHYSICS OF HEARING, P444, DOI 10.1142/9789812833785_0073
LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309
Manley G. A., 2004, EVOLUTION VERTEBRATE, P1
Manley GA, 1998, CURR OPIN NEUROBIOL, V8, P468, DOI 10.1016/S0959-4388(98)80033-0
Manley GA, 2001, J NEUROPHYSIOL, V86, P541
MANLEY GA, 1995, ADV HEARING RES, P219
MANLEY GA, 1989, J COMP PHYSIOL A, V164, P289, DOI 10.1007/BF00612989
Manley GA, 1999, HEARING RES, V138, P1, DOI 10.1016/S0378-5955(99)00126-4
Manley GA, 2010, HEARING RES, V263, P3, DOI 10.1016/j.heares.2009.09.004
Martin Pascal, 2008, V30, P93
MartinezDunst C, 1997, J NEUROSCI, V17, P9133
MULLER M, 1991, HEARING RES, V57, P71, DOI 10.1016/0378-5955(91)90076-L
Neubauer H, 2009, J NEUROPHYSIOL, V101, P3169, DOI 10.1152/jn.90779.2008
Nouvian R, 2006, J MEMBRANE BIOL, V209, P153, DOI 10.1007/s00232-005-0854-4
POPPER AN, 1990, HEARING RES, V46, P211, DOI 10.1016/0378-5955(90)90003-8
Raphael Y, 2003, BRAIN RES BULL, V60, P397, DOI 10.1016/S0361-9230(03)00047-9
RICHTER CP, 1995, HEARING RES, V83, P19, DOI 10.1016/0378-5955(94)00186-T
Robertson D, 2009, CLIN EXP PHARMACOL P, V36, P603, DOI 10.1111/j.1440-1681.2009.05185.x
Russell Ian J., 2008, V30, P343
SACHS MB, 1989, HEARING RES, V41, P61, DOI 10.1016/0378-5955(89)90179-2
SACHS MB, 1974, J ACOUST SOC AM, V56, P1835, DOI 10.1121/1.1903521
Saunders JC, 2002, J NEUROPHYSIOL, V88, P2887, DOI 10.1152/jn.00381.2002
Slepecky N. B., 1996, COCHLEA, P44
Smolders JWT, 1995, HEARING RES, V92, P151, DOI 10.1016/0378-5955(95)00214-6
Steele C.R., 1996, DIVERSITY AUDITORY M, P455
Sul B, 2009, BIOPHYS J, V97, P2653, DOI 10.1016/j.bpj.2009.08.039
Taberner AM, 2005, J NEUROPHYSIOL, V93, P557, DOI 10.1152/jn.00574.2004
WEGNER N, 1982, ACTA ZOOL-STOCKHOLM, V63, P133
WEYER EG, 1974, HDB SENSORY PHYSL, P423
WILSON JP, 1985, HEARING RES, V18, P1, DOI 10.1016/0378-5955(85)90105-4
WINTER IM, 1990, HEARING RES, V45, P191, DOI 10.1016/0378-5955(90)90120-E
Wittig JH, 2008, J NEUROPHYSIOL, V100, P1724, DOI 10.1152/jn.90322.2008
Yates GK, 2000, J ACOUST SOC AM, V107, P2143, DOI 10.1121/1.428496
YATES GK, 1990, HEARING RES, V50, P145, DOI 10.1016/0378-5955(90)90041-M
YATES GK, 1990, LECT NOTES BIOMATH, V87, P106
NR 54
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2011
VL 273
IS 1-2
SI SI
BP 65
EP 71
DI 10.1016/j.heares.2010.03.095
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 751HM
UT WOS:000289608100008
PM 20430083
ER
PT J
AU Warchol, ME
AF Warchol, Mark E.
TI Sensory regeneration in the vertebrate inner ear: Differences at the
levels of cells and species
SO HEARING RESEARCH
LA English
DT Article
ID AVIAN AUDITORY EPITHELIUM; VESTIBULAR OTOLITH ORGANS; LIZARD
PODARCIS-SICULA; ZEBRAFISH LATERAL-LINE; MATURE GUINEA-PIGS; HAIR-CELL;
ACOUSTIC TRAUMA; STEM-CELLS; GENTAMICIN OTOTOXICITY; FISH EAR
AB The ears of nonmammalian vertebrates are capable of regenerating sensory hair cells after acoustic trauma or ototoxic injury. In contrast, the mammalian inner ear lacks regenerative ability and the loss of hair cells results in permanent deficits in hearing and balance. Comparative observations across all vertebrate classes suggest that regenerative ability was a stem trait and was lost during the course of mammalian evolution. This review provides an overview of regeneration and post-embryonic growth in the vertebrate ear. It is suggested that the lack of regeneration in the mammalian ear was the result of a trade-off between phenotypic plasticity of supporting cells and sensitive high frequency hearing. (C) 2010 Published by Elsevier B.V.
C1 Washington Univ, Sch Med, Fay & Carl Simons Ctr Biol Hearing & Deafness, Dept Otolaryngol, St Louis, MO 63110 USA.
RP Warchol, ME (reprint author), Washington Univ, Sch Med, Fay & Carl Simons Ctr Biol Hearing & Deafness, Dept Otolaryngol, 660 S Euclid Ave,Box 8115, St Louis, MO 63110 USA.
EM warcholm@ent.wustl.edu
FU NIDCD/NIH [DC006283]; NIH [P30 DC04665]
FX Regeneration research in the author's lab is supported by grant DC006283
from the NIDCD/NIH. Additional support for imaging is provided by NIH
grant P30 DC04665.
CR Avallone B, 2008, HEARING RES, V235, P15, DOI 10.1016/j.heares.2007.09.009
Avallone B, 2003, HEARING RES, V178, P79, DOI 10.1016/S0378-5955(03)00040-6
Baird RA, 1996, ANN NY ACAD SCI, V781, P59, DOI 10.1111/j.1749-6632.1996.tb15693.x
Baird RA, 2000, P NATL ACAD SCI USA, V97, P11722, DOI 10.1073/pnas.97.22.11722
BAIRD RA, 1993, HEARING RES, V65, P164, DOI 10.1016/0378-5955(93)90211-I
Bermingham-McDonogh O, 2003, CURR OPIN NEUROBIOL, V13, P119, DOI 10.1016/S0959-4388(03)00018-7
Brigande JV, 2009, NAT NEUROSCI, V12, P679, DOI 10.1038/nn.2311
Brignull HR, 2009, BRAIN RES, V1277, P12, DOI 10.1016/j.brainres.2009.02.028
Burns J, 2008, J COMP NEUROL, V511, P396, DOI 10.1002/cne.21849
Calof AL, 1996, J NEUROBIOL, V30, P67
Chen P, 1999, DEVELOPMENT, V126, P1581
CORWIN JT, 1981, J COMP NEUROL, V201, P541, DOI 10.1002/cne.902010406
CORWIN JT, 1985, P NATL ACAD SCI USA, V82, P3911, DOI 10.1073/pnas.82.11.3911
CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100
CORWIN JT, 1983, J COMP NEUROL, V217, P345, DOI 10.1002/cne.902170309
Dallos P, 2008, CURR OPIN NEUROBIOL, V18, P370, DOI 10.1016/j.conb.2008.08.016
Dooling RJ, 1997, P NATL ACAD SCI USA, V94, P14206, DOI 10.1073/pnas.94.25.14206
Duncan LJ, 2006, J COMP NEUROL, V499, P691, DOI 10.1002/cne.21114
Faucher K, 2009, INT J AUDIOL, V48, P456, DOI 10.1080/14992020902738029
FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284
Forge A, 1998, J COMP NEUROL, V397, P69
GALE JE, 2000, JARO-J ASSOC RES OTO, P1172
Gu RD, 2007, EUR J NEUROSCI, V25, P1363, DOI 10.1111/j.1460-9568.2007.05414.x
Harris JA, 2003, JARO, V4, P219, DOI 10.1007/s10162-002-3022-x
Hawkins RD, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000525
Hawkins RD, 2003, HUM MOL GENET, V12, P1261, DOI 10.1093/hmg/ddg150
Hernandez PP, 2007, DEV NEUROBIOL, V67, P637, DOI 10.1002/dneu.20386
Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193
Jones JE, 1996, J NEUROSCI, V16, P649
JONES JE, 1993, J NEUROSCI, V13, P1022
JORGENSEN JM, 1995, P ROY SOC B-BIOL SCI, V260, P183, DOI 10.1098/rspb.1995.0078
JORGENSEN JM, 1988, NATURWISSENSCHAFTEN, V75, P319, DOI 10.1007/BF00367330
Kawamoto K, 2009, HEARING RES, V247, P17, DOI 10.1016/j.heares.2008.08.010
Kelley MW, 2009, CURR OPIN OTOLARYNGO, V17, P381, DOI 10.1097/MOO.0b013e3283303347
Kil J, 1997, HEARING RES, V114, P117, DOI 10.1016/S0378-5955(97)00166-4
Kirkegaard M, 2000, NATURWISSENSCHAFTEN, V87, P83, DOI 10.1007/s001140050015
LAMBERT PR, 1994, LARYNGOSCOPE, V104, P701
Lambert PR, 1997, AM J OTOL, V18, P637
LEWIS ER, 1973, J MORPHOL, V139, P351, DOI 10.1002/jmor.1051390305
Li HW, 2003, NAT MED, V9, P1293, DOI 10.1038/nm925
LIM DJ, 1986, HEARING RES, V22, P117, DOI 10.1016/0378-5955(86)90089-4
Lopez-Schier H, 2006, P NATL ACAD SCI USA, V103, P18615, DOI 10.1073/pnas.0608536103
Lowenheim H, 1999, P NATL ACAD SCI USA, V96, P4084, DOI 10.1073/pnas.96.7.4084
Ma EY, 2008, J NEUROSCI, V28, P2261, DOI 10.1523/JNEUROSCI.4372-07.2008
Mammoto T, 2010, DEVELOPMENT, V137, P1407, DOI 10.1242/dev.024166
Manley GA, 2002, J NEUROBIOL, V53, P202, DOI 10.1002/neu.10115
Matsui JI, 2002, J NEUROSCI, V22, P1218
Oakley B, 2004, J NEUROCYTOL, V33, P631, DOI 10.1007/s11068-005-3332-0
Oesterle EC, 2003, J COMP NEUROL, V463, P177, DOI 10.1002/cne.10756
Oshima K, 2007, JARO-J ASSOC RES OTO, V8, P18, DOI 10.1007/s10162-006-0058-3
POPPER AN, 1984, HEARING RES, V15, P133, DOI 10.1016/0378-5955(84)90044-3
POPPER AN, 1990, HEARING RES, V45, P33, DOI 10.1016/0378-5955(90)90180-W
Reh TA, 1998, J NEUROBIOL, V36, P206, DOI 10.1002/(SICI)1097-4695(199808)36:2<206::AID-NEU8>3.0.CO;2-5
ROBERSON DW, 1994, AM J OTOL, V15, P28
Roberson DW, 2004, J NEUROSCI RES, V78, P461, DOI 10.1002/jnr.20271
RUBEL EW, 1995, SCIENCE, V267, P701, DOI 10.1126/science.7839150
RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101
Sage C, 2005, SCIENCE, V307, P1114, DOI 10.1126/science.1106642
Slattery EL, 2010, J NEUROSCI, V30, P3473, DOI 10.1523/JNEUROSCI.4316-09.2010
Stone JS, 2007, INT J DEV BIOL, V51, P633, DOI 10.1387/ijdb.072408js
Stone JS, 1999, J NEUROCYTOL, V28, P863, DOI 10.1023/A:1007022205821
Stone LS, 1937, J COMP NEUROL, V68, P83, DOI 10.1002/cne.900680105
WARCHOL ME, 1993, SCIENCE, V259, P1619, DOI 10.1126/science.8456285
Warchol ME, 1996, J NEUROSCI, V16, P5466
Warchol ME, 2002, J NEUROSCI, V22, P2607
Williams JA, 2000, HEARING RES, V143, P171, DOI 10.1016/S0378-5955(00)00039-3
Woolley SMN, 2002, J NEUROSCI, V22, P7774
YAMASHITA H, 1995, P NATL ACAD SCI USA, V92, P3152, DOI 10.1073/pnas.92.8.3152
Yamasoba T, 2006, CELL TISSUE RES, V325, P23, DOI 10.1007/s00441-006-0157-9
Zupanc GKH, 2008, J PHYSIOL-PARIS, V102, P357, DOI 10.1016/j.jphysparis.2008.10.007
NR 70
TC 34
Z9 35
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2011
VL 273
IS 1-2
SI SI
BP 72
EP 79
DI 10.1016/j.heares.2010.05.004
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 751HM
UT WOS:000289608100009
PM 20488231
ER
PT J
AU Gleich, O
Langemann, U
AF Gleich, O.
Langemann, U.
TI Auditory capabilities of birds in relation to the structural diversity
of the basilar papilla
SO HEARING RESEARCH
LA English
DT Article
ID OWL TYTO-ALBA; INFRASOUND SENSITIVE NEURONS; CANARY SERINUS-CANARIUS;
BARN OWL; COCHLEAR INTEGRITY; CRITICAL BANDS; MIDDLE EARS; INNER-EAR;
THRESHOLDS; HEARING
AB The basilar papilla length increases systematically with body mass for 41 species from more than 10 avian orders and this relation does not differ between phylogenetic groups. Audiograms of 25 non-strigiform and 12 owl species, normalized relative to best frequency and best threshold, were used to compare audiogram shapes. The analysis revealed that the high frequency flank of the audiogram was remarkably similar across non-strigiform species. The high-frequency limit was on average 1.1 octaves above the best frequency, the low-frequency flank was less steep and showed much more species dependent variability. Audiogram shape in owls was much more variable. Morphological gradients along the basilar papilla revealed a small species dependent variability for the basal region of the basilar papilla and an increasing degree of variability towards the apex. In non-strigiform species, frequency selectivity for 2 and 4 kHz varied systematically with the space on the basilar papilla devoted to processing the corresponding frequency range. Space on the papilla did not vary systematically with frequency selectivity at 1 kHz. This difference between test frequencies might be related to the transition from electrical hair-cell tuning, that dominates below 1-2 kHz, to micromechanical tuning at higher frequencies. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Gleich, O.] Univ Regensburg, ENT Dept, D-93042 Regensburg, Germany.
[Langemann, U.] Carl von Ossietzky Univ Oldenburg, D-26129 Oldenburg, Germany.
RP Gleich, O (reprint author), Univ Regensburg, ENT Dept, Franz Joseph Strauss Allee 11, D-93042 Regensburg, Germany.
EM otto.gleich@klinik.uni-regensburg.de; ulrike.langemann@uni-oldenburg.de
FU DFG [SFB/TRR 31]
FX Roots of the basic concept for a comparative analysis of
structure-function relationships of the avian inner ear reach back to
research within the SFB 204 "Gehor" that was funded by the DFG from 1983
to 1997. The collaboration between O.G. and U.L. was funded by the DFG
within the SFB/TRR 31 "The active auditory system". We thank G.A. Manley
and two anonymous reviewers for helpful suggestions for improving the
initial version of the manuscript.
CR COLES RB, 1988, J COMP PHYSIOL A, V163, P117, DOI 10.1007/BF00612002
DOOLING RJ, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P545
Durham D, 2002, HEARING RES, V166, P82, DOI 10.1016/S0378-5955(02)00301-5
Dyson ML, 1998, J COMP PHYSIOL A, V182, P695, DOI 10.1007/s003590050214
FAY RR, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P229
Feduccia A., 1980, AGE BIRDS
FEDUCCIA A, 1995, SCIENCE, V267, P637, DOI 10.1126/science.267.5198.637
FISCHER FP, 1994, SCANNING MICROSCOPY, V8, P351
Fischer FP, 1998, HEARING RES, V121, P112, DOI 10.1016/S0378-5955(98)00072-0
FISCHER FP, 1992, J MORPHOL, V213, P225, DOI 10.1002/jmor.1052130207
FISCHER FP, 1988, HEARING RES, V34, P87, DOI 10.1016/0378-5955(88)90053-6
FISCHER FP, 1992, HEARING RES, V61, P167, DOI 10.1016/0378-5955(92)90048-R
GLEICH O, 1995, HEARING RES, V82, P100
Gleich O, 2005, NATURWISSENSCHAFTEN, V92, P595, DOI 10.1007/s00114-005-0050-5
GLEICH O, 1988, HEARING RES, V34, P69, DOI 10.1016/0378-5955(88)90052-4
GLEICH O, 2004, EVOLUTION VERTEBRATE, P225
GLEICH O, 2000, COMP HEARING BIRDS R, P70
GLEICH O, 1994, J MORPHOL, V221, P1, DOI 10.1002/jmor.1052210102
GRAY AA, 2008, LABYRINTH ANIMALS IN, V2
GUMMER AW, 1987, HEARING RES, V29, P63, DOI 10.1016/0378-5955(87)90206-1
HEFFNER RS, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P691
HIENZ RD, 1987, J COMP PSYCHOL, V101, P16, DOI 10.1037/0735-7036.101.1.16
Jensen KK, 2006, J ACOUST SOC AM, V119, P1269, DOI 10.1121/1.2159431
Kipper S, 2006, ANIM BEHAV, V71, P211, DOI 10.1016/j.anbehav.2005.04.011
KONISHI M, 1979, SCIENCE, V204, P425, DOI 10.1126/science.441731
KONISHI M, 1993, SCI AM, V268, P66
Koppl C, 2007, J COMP PHYSIOL A, V193, P601, DOI 10.1007/s00359-007-0215-0
Koppl C, 1997, J ACOUST SOC AM, V101, P1574, DOI 10.1121/1.418145
KOPPL C, 1998, PSYCHOPHYSICAL PHYSL, P153
Koppl C, 2000, HEARING RES, V139, P123, DOI 10.1016/S0378-5955(99)00178-1
Koppl C, 1997, J NEUROPHYSIOL, V77, P364
KOPPL C, 1993, J COMP PHYSIOL A, V171, P695, DOI 10.1007/BF00213066
KREITHEN ML, 1979, J COMP PHYSIOL, V129, P1
LANGEMANN U, 1995, HEARING RES, V84, P167, DOI 10.1016/0378-5955(95)00023-W
LAVIGNEREBILLARD M, 1985, J COMP NEUROL, V238, P340, DOI 10.1002/cne.902380308
LOHR B, 2006, ABSTR ASS RES OTOLAR, V29, P323
Manley GA, 1996, J MORPHOL, V227, P197, DOI 10.1002/(SICI)1097-4687(199602)227:2<197::AID-JMOR6>3.0.CO;2-6
Manley GA, 2000, P NATL ACAD SCI USA, V97, P11736, DOI 10.1073/pnas.97.22.11736
Manley GA, 2010, HEARING RES, V263, P3, DOI 10.1016/j.heares.2009.09.004
OKANOYA K, 1987, J COMP PSYCHOL, V101, P213, DOI 10.1037/0735-7036.101.2.213
OKANOYA K, 1987, J COMP PSYCHOL, V101, P7, DOI 10.1037//0735-7036.101.1.7
OKANOYA K, 1985, J ACOUST SOC AM, V78, P1170, DOI 10.1121/1.392885
OLSEN SL, 1985, AVIAN BIOL, V8, P79
PATUZZI RB, 1991, HEARING RES, V53, P57, DOI 10.1016/0378-5955(91)90214-T
REBILLARD G, 1981, BRAIN RES, V229, P15, DOI 10.1016/0006-8993(81)90741-1
SALVI RJ, 1992, J COMP PHYSIOL A, V170, P227
Saunders J. C., 2000, COMP HEARING BIRDS R, P13
SAUNDERS JC, 1978, J COMP PHYSIOL, V125, P359
SAUNDERS SS, 1993, J ACOUST SOC AM, V94, P83, DOI 10.1121/1.406945
SCHERMULY L, 1990, HEARING RES, V48, P69, DOI 10.1016/0378-5955(90)90199-Y
SCHERMULY L, 1990, J COMP PHYSIOL A, V166, P355
Smittkamp SE, 2002, HEARING RES, V170, P139, DOI 10.1016/S0378-5955(02)00486-0
TAKASAKA T, 1971, J ULTRA MOL STRUCT R, V35, P20, DOI 10.1016/S0022-5320(71)80141-7
Thomassen HA, 2007, HEARING RES, V225, P25, DOI 10.1016/j.heares.2006.11.013
Walsh SA, 2009, P R SOC B, V276, P1355, DOI 10.1098/rspb.2008.1390
WARCHOL ME, 1989, J COMP PHYSIOL A, V166, P83
Wright TF, 2003, J COMP PSYCHOL, V117, P87, DOI 10.1037/0735-7036.117.1.87
NR 57
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2011
VL 273
IS 1-2
SI SI
BP 80
EP 88
DI 10.1016/j.heares.2010.01.009
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 751HM
UT WOS:000289608100010
PM 20116420
ER
PT J
AU Vater, M
Kossl, M
AF Vater, Marianne
Koessl, Manfred
TI Comparative aspects of cochlear functional organization in mammals
SO HEARING RESEARCH
LA English
DT Article
ID PLACE-FREQUENCY MAP; OUTER HAIR-CELLS; ACOUSTIC DISTORTION PRODUCTS;
PTERONOTUS-P-PARNELLII; GREATER HORSESHOE BAT; AUDITORY-NERVE FIBERS;
AFRICAN MOLE-RAT; CF-FM BAT; TECTORIAL MEMBRANE; BASILAR-MEMBRANE
AB This review addresses the functional organization of the mammalian cochlea under a comparative and evolutionary perspective. A comparison of the monotreme cochlea with that of marsupial and placental mammals highlights important evolutionary steps towards a hearing organ dedicated to process higher frequencies and a larger frequency range than found in non-mammalian vertebrates. Among placental mammals, there are numerous cochlear specializations which relate to hearing range in adaptation to specific habitats that are superimposed on a common basic design. These are illustrated by examples of specialist ears which evolved excellent high frequency hearing and echolocation (bats and dolphins) and by the example of subterranean rodents with ears devoted to processing low frequencies. Furthermore, structural functional correlations important for tonotopic cochlear organization and predictions of hearing capabilities are discussed. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Vater, Marianne] Univ Potsdam, Inst Biochem & Biol, D-14476 Golm, Germany.
[Koessl, Manfred] AK Neurobiol & Biosensor, Inst Zellbiol & Neurowissensch, D-60323 Frankfurt, Germany.
RP Vater, M (reprint author), Univ Potsdam, Inst Biochem & Biol, Karl Liebknecht Str 26, D-14476 Golm, Germany.
EM vater@uni-potsdam.de; koessl@bio.uni-frankfurt.de
CR Ashmore J, 2008, PHYSIOL REV, V88, P173, DOI 10.1152/physrev.00044.2006
Au W. W. L., 1993, SONAR DOLPHINS
Begall S, 2007, SUBTERRANEAN RODENTS: NEWS FROM UNDERGROUND, P97, DOI 10.1007/978-3-540-69276-8_9
Bekesy G., 1960, EXPT HEARING
Berglund AM, 1996, HEARING RES, V94, P31, DOI 10.1016/0378-5955(95)00231-6
BRUNS V, 1976, J COMP PHYSIOL, V106, P87
BRUNS V, 1980, HEARING RES, V3, P27, DOI 10.1016/0378-5955(80)90006-4
BRUNS V, 1980, ANAT EMBRYOL, V161, P29, DOI 10.1007/BF00304667
BRUNS V, 1988, HEARING RES, P1
BRUNS V, 1976, J COMP PHYSIOL, V106, P77
BURDA H, 1984, Vestnik Ceskoslovenske Spolecnosti Zoologicke, V48, P9
BURDA H, 1988, J MORPHOL, V198, P103
CABEZUDO LM, 1978, ACTA OTO-LARYNGOL, V86, P160, DOI 10.3109/00016487809124733
Dallos P., 1996, COCHLEA, P1
Dallos P, 2008, NEURON, V58, P333, DOI 10.1016/j.neuron.2008.02.028
Dallos P, 2006, J PHYSIOL-LONDON, V576, P37, DOI 10.1113/jphysiol.2006.114652
DANNHOF BJ, 1993, HEARING RES, V66, P8, DOI 10.1016/0378-5955(93)90255-Y
DANNHOF BJ, 1991, HEARING RES, V53, P253, DOI 10.1016/0378-5955(91)90059-I
DANNHOF BJ, 1991, NATURWISSENSCHAFTEN, V78, P570, DOI 10.1007/BF01134454
Dierkes K, 2008, P NATL ACAD SCI USA, V105, P18669, DOI 10.1073/pnas.0805752105
Echteler SM, 1994, COMP HEARING MAMMALS, P134
ELDREDGE DH, 1981, J ACOUST SOC AM, V69, P1091, DOI 10.1121/1.385688
Emadi G, 2004, J NEUROPHYSIOL, V91, P474, DOI 10.1152/jn.00446.2003
Fay R. R., 1988, HEARING VERTEBRATES
FERNANDEZ C, 1963, J COMP NEUROL, P151
FERNANDEZ C, 1952, J ACOUST SOC AM, V24, P519
Fettiplace R, 2006, NAT REV NEUROSCI, V7, P19, DOI 10.1038/nrn1828
Fox RC, 1997, ZOOL J LINN SOC-LOND, V121, P249
FURNESS DN, 2008, SENSES COMPREHENSIVE, V3, P107
GATES GR, 1974, J ACOUST SOC AM, V56, P152, DOI 10.1121/1.1903246
Ghaffari R, 2007, P NATL ACAD SCI USA, V104, P16510, DOI 10.1073/pnas.0703665104
Greenwood DD, 1996, HEARING RES, V94, P157, DOI 10.1016/0378-5955(95)00229-4
GREENWOOD D, 1961, J ACOUST SOC AM, V33, P1344, DOI 10.1121/1.1908437
GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
Gueta R, 2006, P NATL ACAD SCI USA, V103, P14790, DOI 10.1073/pnas.0603429103
Gummer AW, 1996, P NATL ACAD SCI USA, V93, P8727, DOI 10.1073/pnas.93.16.8727
HABERSETZER J, 1992, NATURWISSENSCHAFTEN, V79, P462, DOI 10.1007/BF01139198
HEFFNER HE, 2008, HIGH FREQUENCY HEARI, V3, P55
Heffner RS, 2001, HEARING RES, V157, P138, DOI 10.1016/S0378-5955(01)00298-2
Heffner RS, 2004, ANAT REC PART A, V281A, P1111, DOI 10.1002/ar.a.20117
HEFFNER RS, 1992, HEARING RES, V62, P206, DOI 10.1016/0378-5955(92)90188-S
HEFFNER RS, 1982, J COMP PHYSIOL PSYCH, V96, P926, DOI 10.1037/0735-7036.96.6.926
Heffner RS, 2003, HEARING RES, V184, P113, DOI 10.1016/S0378-5955(03)00233-8
HENSON MM, 1977, ANAT REC, V187, P767
HENSON MM, 1973, J ACOUST SOC AM, V53, P1739, DOI 10.1121/1.1913529
HENSON MM, 1991, HEARING RES, V56, P122, DOI 10.1016/0378-5955(91)90161-2
HENSON MM, 1988, HEARING RES, V35, P237, DOI 10.1016/0378-5955(88)90121-9
Ketten D.R., 2000, HEARING WHALES DOLPH, P43
Ketten D.R., 1994, IEEE P UNDERWATER AC, V1, P264
Kirk EC, 2009, ANAT REC, V292, P765, DOI 10.1002/ar.20907
KOSSL M, 1985, J COMP PHYSIOL A, V157, P687, DOI 10.1007/BF01351362
KOSSL M, 1995, P NATL ACAD SCI USA, V92, P276, DOI 10.1073/pnas.92.1.276
Kossl M, 1996, J COMP PHYSIOL A, V178, P427
Kossl M, 1996, HEARING RES, V94, P78, DOI 10.1016/0378-5955(96)00006-8
Kossl M, 1995, HEARING BATS, P191
Ladhams A, 1996, J COMP NEUROL, V366, P335, DOI 10.1002/(SICI)1096-9861(19960304)366:2<335::AID-CNE11>3.0.CO;2-O
Lagarde MMM, 2008, NAT NEUROSCI, V11, P746, DOI 10.1038/nn.2129
LePage EL, 2003, J ACOUST SOC AM, V114, P896, DOI 10.1121/1.1587150
Lewis ER, 1985, VERTEBRATE INNER EAR
Li Y, 2010, CURR BIOL, V20, pR55, DOI 10.1016/j.cub.2009.11.042
LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677
LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309
LIM DJ, 1986, HEARING RES, V22, P117, DOI 10.1016/0378-5955(86)90089-4
Liu Y, 2010, CURR BIOL, V20, pR53, DOI 10.1016/j.cub.2009.11.058
LONG GR, 1975, J COMP PHYSIOL, V100, P211
Lukashkin AN, 2007, J ACOUST SOC AM, V121, P337, DOI 10.1121/1.2390670
Luo ZX, 2007, NATURE, V450, P1011, DOI 10.1038/nature06277
MANLEY GA, 1971, NATURE, V230, P506, DOI 10.1038/230506a0
Manley G. A., 1973, EVOLUTION, V26, P608, DOI DOI 10.2307/2407057
Manley GA, 2000, P NATL ACAD SCI USA, V97, P11736, DOI 10.1073/pnas.97.22.11736
MANLEY GA, 2009, HEARING RES, P6013
Manoussaki D, 2008, P NATL ACAD SCI USA, V105, P6162, DOI 10.1073/pnas.0710037105
MENG J, 1995, NATURE, V377, P141, DOI 10.1038/377141a0
Meyer AC, 2009, NAT NEUROSCI, V12, P444, DOI 10.1038/nn.2293
Mills DM, 2001, JARO-J ASSOC RES OTO, V2, P130, DOI 10.1007/s101620010059
Moggi-Cecchi J, 2002, J HUM EVOL, V42, P259, DOI 10.1006/jhev.2001.0524
MORGAN YV, 1994, HEARING RES, V79, P74, DOI 10.1016/0378-5955(94)90128-7
MULLER M, 1991, HEARING RES, V56, P191, DOI 10.1016/0378-5955(91)90169-A
Muller M, 2005, HEARING RES, V202, P63, DOI 10.1016/j.heares.2004.08.011
Muller M, 1996, HEARING RES, V94, P148, DOI 10.1016/0378-5955(95)00230-8
MULLER M, 1993, HEARING RES, V67, P198, DOI 10.1016/0378-5955(93)90247-X
Muller M, 2005, NEUROREPORT, V16, P1183
MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7
MULLER M, 1992, J COMP PHYSIOL A, V171, P469
NADOL JB, 1981, ANN OTO RHINOL LARYN, V90, P12
Naidu RC, 2007, J ACOUST SOC AM, V121, P994, DOI 10.1121/1.2404916
NEUWEILER G, 1990, PHYSIOL REV, V70, P615
Okoruwa OE, 2008, EVOL DEV, V10, P300, DOI 10.1111/j.1525-142X.2008.00239.x
Ou HC, 2000, HEARING RES, V145, P123, DOI 10.1016/S0378-5955(00)00082-4
Parks SE, 2007, ANAT REC, V290, P734, DOI 10.1002/ar.20527
PLASSMANN W, 1987, BRAIN BEHAV EVOLUT, V30, P82, DOI 10.1159/000118639
Raphael Y, 2003, BRAIN RES BULL, V60, P397, DOI 10.1016/S0361-9230(03)00047-9
RAPHAEL Y, 1991, J COMP NEUROL, V314, P367, DOI 10.1002/cne.903140211
Retzius G, 1881, GEHORORGAN WIRBELTIE, V1
Retzius G., 1884, GEHORORGAN WIRBELTIE, V2
Richardson GP, 2008, CURR OPIN OTOLARYNGO, V16, P458, DOI 10.1097/MOO.0b013e32830e20c4
Richter CP, 2007, BIOPHYS J, V93, P2265, DOI 10.1529/biophysj.106.094474
Robles L., 2008, SENSES COMPREHENSIVE, V3, P413
Robles L, 2001, PHYSIOL REV, V81, P1305
Russell IJ, 2007, NAT NEUROSCI, V10, P215, DOI 10.1038/nn1828
Russell IJ, 1999, J NEUROPHYSIOL, V82, P676
RUSSELL IJ, 2008, SENSES COMPREHENSIVE, V3, P314
Schnitzler HU, 2003, TRENDS ECOL EVOL, V18, P386, DOI 10.1016/S0169-5347(03)00185-X
Slepecky N. B., 1996, COCHLEA, P44
Southall Brandon L., 2007, Aquatic Mammals, V33, pI
SPICER SS, 1994, HEARING RES, V79, P161, DOI 10.1016/0378-5955(94)90137-6
SPOENDLI.H, 1972, ACTA OTO-LARYNGOL, V73, P235, DOI 10.3109/00016487209138937
Thiers FA, 2008, JARO-J ASSOC RES OTO, V9, P477, DOI 10.1007/s10162-008-0135-x
Thorne M, 1999, LARYNGOSCOPE, V109, P1661, DOI 10.1097/00005537-199910000-00021
Tsuji J, 1997, J COMP NEUROL, V381, P188
VATER M, 1985, J COMP PHYSIOL A, V157, P671, DOI 10.1007/BF01351361
VATER M, 1992, J COMP NEUROL, V318, P380, DOI 10.1002/cne.903180404
Vater M, 1996, HEARING RES, V94, P63, DOI 10.1016/0378-5955(96)00005-6
VATER M, 2004, ECHOLOCATION BATS DO, P99
Vater M., 2004, EVOLUTION VERTEBRATE, P256
VATER M, 1992, J COMP NEUROL, V318, P367, DOI 10.1002/cne.903180403
Vetter DE, 2007, P NATL ACAD SCI USA, V104, P20594, DOI 10.1073/pnas.0708545105
Wartzok Douglas, 1999, P117
WEBSTER DB, 1977, J MORPHOL, V152, P153, DOI 10.1002/jmor.1051520203
WEST CD, 1985, J ACOUST SOC AM, V77, P1091, DOI 10.1121/1.392227
WEVER EG, 1971, P NATL ACAD SCI USA, V68, P2908, DOI 10.1073/pnas.68.12.2908
XIE DH, 1993, HEARING RES, V66, P81, DOI 10.1016/0378-5955(93)90262-Y
Ye Y, 2000, J COMP NEUROL, V420, P127
ZOOK JM, 1989, J COMP NEUROL, V290, P243, DOI 10.1002/cne.902900206
ZWISLOCKI JJ, 1979, SCIENCE, V204, P639, DOI 10.1126/science.432671
NR 125
TC 18
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2011
VL 273
IS 1-2
SI SI
BP 89
EP 99
DI 10.1016/j.heares.2010.05.018
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 751HM
UT WOS:000289608100011
PM 20630478
ER
PT J
AU Pollak, GD
Gittelman, JX
Li, N
Xie, RL
AF Pollak, George D.
Gittelman, Joshua X.
Li, Na
Xie, Ruili
TI Inhibitory projections from the ventral nucleus of the lateral lemniscus
and superior paraolivary nucleus create directional selectivity of
frequency modulations in the inferior colliculus: A comparison of bats
with other mammals
SO HEARING RESEARCH
LA English
DT Article
ID BIG BROWN BAT; SPECIES-SPECIFIC CALLS; WHOLE-CELL RECORDINGS;
PHYSIOLOGICAL-RESPONSE PROPERTIES; DORSAL COCHLEAR NUCLEUS; CENTRAL
AUDITORY-SYSTEM; MULTIPLE SOUND SOURCES; FREE-TAILED BATS;
EPTESICUS-FUSCUS; BRAIN-STEM
AB This review considers four auditory brainstem nuclear groups and shows how studies of both bats and other mammals have provided insights into their response properties and the impact of their convergence in the inferior colliculus (IC). The four groups are octopus cells in the cochlear nucleus, their connections with the ventral nucleus of the lateral lemniscus (VNLL) and the superior paraolivary nucleus (SPON), and the connections of the VNLL and SPON with the IC. The theme is that the response properties of neurons in the SPUN and VNLL map closely onto the synaptic response features of a unique subpopulation of cells in the IC of bats whose inputs are dominated by inhibition. We propose that the convergence of VNLL and SPUN inputs generates the tuning of thee IC cells, their unique temporal responses to tones, and their directional selectivities for frequency modulated (FM) sweeps. Other IC neurons form directional properties in other ways, showing that selective response properties are formed in multiple ways. In the final section we discuss why multiple formations of common response properties could amplify differences in population activity patterns evoked by signals that have similar spectrotemporal features. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Pollak, George D.; Gittelman, Joshua X.; Li, Na; Xie, Ruili] Univ Texas Austin, Neurobiol Sect, Austin, TX 78712 USA.
[Xie, Ruili] Univ N Carolina, Dept Otolaryngol, Chapel Hill, NC 27599 USA.
RP Pollak, GD (reprint author), Univ Texas Austin, Neurobiol Sect, 337 Patterson Lab Bldg, Austin, TX 78712 USA.
EM gpollak@mail.utexas.edu; jxg@mail.utexas.edu; nalibat@mail.utexas.edu;
ruili_xie@med.unc.edu
FU NIH [DC007856]
FX Supported by NIH Grant DC007856. We thank Nace Golding for his helpful
comments.
CR Adams JC, 1997, AUDIT NEUROSCI, V3, P335
Andoni S, 2007, J NEUROSCI, V27, P4882, DOI 10.1523/JNEUROSCI.4342-06.2007
Barber JR, 2003, J COMP PHYSIOL A, V189, P843, DOI 10.1007/s00359-003-0463-6
Bauer EE, 2002, J NEUROPHYSIOL, V88, P1955, DOI 10.1152/jn.00261.2002
Behrend O, 2002, J NEUROPHYSIOL, V87, P2915, DOI 10.1152/jn.01018.2002
Bohn KM, 2008, J ACOUST SOC AM, V124, P1838, DOI 10.1121/1.2953314
Burger RM, 2001, J NEUROSCI, V21, P4830
CANT NB, 1992, MAMMALIAN AUDITORY P, P11
Casseday JH, 2002, SPR HDB AUD, V15, P238
Coomes DL, 2004, HEARING RES, V191, P67, DOI 10.1016/j.heares.2004.01.009
COVEY E, 1986, J NEUROSCI, V6, P2926
COVEY E, 1991, J NEUROSCI, V11, P3456
Davis KA, 2003, JARO, V4, P148, DOI 10.1007/s10162-002-2002-5
Davis KA, 2002, J NEUROPHYSIOL, V87, P1824, DOI 10.1152/jn.00769.2001
Dehmel S, 2002, HEARING RES, V172, P18, DOI 10.1016/S0378-5955(02)00353-2
FAINGOLD CL, 1991, HEARING RES, V52, P201, DOI 10.1016/0378-5955(91)90200-S
FAINGOLD CL, 1993, HEARING RES, V69, P98, DOI 10.1016/0378-5955(93)90097-K
Felix RA, 2007, HEARING RES, V228, P212, DOI 10.1016/j.heares.2007.02.009
FENG AS, 1985, J COMP NEUROL, V235, P529, DOI 10.1002/cne.902350410
FITZPATRICK KA, 1975, J COMP NEUROL, V164, P185, DOI 10.1002/cne.901640204
FRIAUF E, 1988, EXP BRAIN RES, V73, P263
Fuzessery ZM, 1996, J NEUROPHYSIOL, V76, P1059
Fuzessery ZM, 2006, J NEUROPHYSIOL, V96, P1320, DOI 10.1152/jn.00021.2006
Geniec P, 1971, Acta Otolaryngol Suppl, V295, P1
Gittelman JX, 2009, J NEUROSCI, V29, P13030, DOI 10.1523/JNEUROSCI.2477-09.2009
GOLDING NL, 1995, J NEUROSCI, V15, P3138
Golding NL, 1999, J NEUROSCI, V19, P2897
Gordon M, 1998, HEARING RES, V122, P97, DOI 10.1016/S0378-5955(98)00087-2
Grothe B, 2000, MICROSC RES TECHNIQ, V51, P382, DOI 10.1002/1097-0029(20001115)51:4<382::AID-JEMT7>3.0.CO;2-7
Grothe B, 1996, J COMP PHYSIOL A, V179, P89
GROTHE B, 1994, J COMP NEUROL, V343, P630, DOI 10.1002/cne.903430412
HAPLEA S, 1994, J COMP PHYSIOL A, V174, P671
Huffman RF, 1998, HEARING RES, V126, P161, DOI 10.1016/S0378-5955(98)00165-8
Kadner A, 2008, NEUROSCIENCE, V151, P868, DOI 10.1016/j.neuroscience.2007.11.008
Klug A, 2002, J NEUROPHYSIOL, V88, P1941, DOI 10.1152/jn.00260.2002
KLUG A, 1995, J NEUROPHYSIOL, V74, P1701
Kulesza RJ, 2003, J NEUROPHYSIOL, V89, P2299, DOI 10.1152/jn.00547.2002
Kulesza RJ, 2007, J NEUROPHYSIOL, V97, P1610, DOI 10.1152/jn.00613.2006
Kulesza RJ, 2000, JARO, V1, P255, DOI 10.1007/s101620010054
Kuwabara N, 1999, BRAIN RES, V846, P59, DOI 10.1016/S0006-8993(99)01942-3
KUWABARA N, 1992, ABSTR SOC NEUROSCI, V18, P193
LeBeau FEN, 2001, J NEUROSCI, V21, P7303
LI L, 1992, J NEUROSCI, V12, P4530
MAGNUSSON A, 2010, ASS RES OTOLARYNGOL, V768, P263
MALMIERCA MS, 1995, ANAT EMBRYOL, V191, P343, DOI 10.1007/BF00534687
MALMIERCA MS, 1995, J COMP NEUROL, V357, P124, DOI 10.1002/cne.903570112
MEININGER V, 1986, NEUROSCIENCE, V17, P1159, DOI 10.1016/0306-4522(86)90085-0
Merchan M, 2005, NEUROSCIENCE, V136, P907, DOI 10.1016/j.neuroscience.2004.12.030
Miller KE, 2005, NEUROSCIENCE, V136, P895, DOI 10.1016/j.neuroscience.2005.04.032
MOREST DK, 1984, J COMP NEUROL, V222, P209, DOI 10.1002/cne.902220206
Nayagam DAX, 2005, J NEUROPHYSIOL, V94, P1651, DOI 10.1152/jn.00167.2005
NEUWEILER G, 1990, PHYSIOL REV, V70, P615
Oertel D, 2000, P NATL ACAD SCI USA, V97, P11773, DOI 10.1073/pnas.97.22.11773
Oertel D, 1999, ANNU REV PHYSIOL, V61, P497, DOI 10.1146/annurev.physiol.61.1.497
Oertel D, 2002, SPR HDB AUD, V15, P207
Oertel D, 1991, Curr Opin Neurobiol, V1, P221, DOI 10.1016/0959-4388(91)90082-I
OLIVER DL, 1984, J COMP NEUROL, V222, P237, DOI 10.1002/cne.902220207
Oliver DL, 1997, J COMP NEUROL, V382, P215, DOI 10.1002/(SICI)1096-9861(19970602)382:2<215::AID-CNE6>3.0.CO;2-6
OLIVER DL, 1995, J COMP NEUROL, V360, P17, DOI 10.1002/cne.903600103
Oliver DL, 1992, MAMMALIAN AUDITORY P, P168
OLIVER DL, 1994, J COMP NEUROL, V340, P27, DOI 10.1002/cne.903400104
OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407
PARK TJ, 1993, J NEUROSCI, V13, P2050
PARK TJ, 1993, J NEUROSCI, V13, P5172
Pecka M, 2007, J NEUROSCI, V27, P1782, DOI 10.1523/JNEUROSCI.5335-06.2007
Pollak G. D., 1986, NEURAL BASIS ECHOLOC
POLLAK GD, 1993, HEARING RES, V65, P99, DOI 10.1016/0378-5955(93)90205-F
Pollak GD, 2003, TRENDS NEUROSCI, V26, P33, DOI 10.1016/S0166-2236(02)00009-7
POLLAK GD, 1995, SPRINGER HDB AUDITOR, V11, P481
POLLAK GD, 1981, J NEUROPHYSIOL, V46, P605
Pollak GD, 2003, INT REV NEUROBIOL, V56, P83, DOI 10.1016/S0074-7742(03)56003-2
Pollak GD, 2002, HEARING RES, V168, P60, DOI 10.1016/S0378-5955(02)00362-3
POON PWF, 1991, EXP BRAIN RES, V83, P598
RALL W, 1969, BIOPHYS J, V9, P1483
Ramachandran R, 1999, J NEUROPHYSIOL, V82, P152
Rhode WS, 1992, MAMMALIAN AUDITORY P, P94
RHODE WS, 1983, J COMP NEUROL, V213, P448, DOI 10.1002/cne.902130408
ROBERTS RC, 1987, J COMP NEUROL, V258, P267, DOI 10.1002/cne.902580207
ROCKEL AJ, 1973, J COMP NEUROL, V147, P61, DOI 10.1002/cne.901470104
ROCKEL AJ, 1973, J COMP NEUROL, V147, P11, DOI 10.1002/cne.901470103
Rosenberger MH, 2003, J COMP NEUROL, V462, P101, DOI 10.1002/cne.10713
ROSS LS, 1988, J COMP NEUROL, V270, P488, DOI 10.1002/cne.902700403
ROSS LS, 1989, J NEUROSCI, V9, P2819
Saldana E, 2009, NEUROSCIENCE, V163, P372, DOI 10.1016/j.neuroscience.2009.06.030
SALDANA E, 1992, J COMP NEUROL, V319, P417, DOI 10.1002/cne.903190308
Saldana E, 2000, ANAT EMBRYOL, V202, P265, DOI 10.1007/s004290000109
SCHEINPFLUG C, 2010, ASS RES OTOLARYNGOL, V769, P263
SCHOFIELD BR, 1991, J COMP NEUROL, V312, P68, DOI 10.1002/cne.903120106
SCHOFIELD BR, 1995, J COMP NEUROL, V360, P135, DOI 10.1002/cne.903600110
Sivaramakrishnan S, 2001, J NEUROSCI, V21, P2861
Bohn KM, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006746
STOTLER WA, 1953, J COMP NEUROL, V98, P401, DOI 10.1002/cne.900980303
SUGA N, 1965, J PHYSIOL-LONDON, V179, P26
Tan ML, 2007, J NEUROPHYSIOL, V98, P443, DOI 10.1152/jn.01273.2006
Thompson AM, 2000, MICROSC RES TECHNIQ, V51, P330, DOI 10.1002/1097-0029(20001115)51:4<330::AID-JEMT4>3.0.CO;2-X
Trussell LO, 1999, ANNU REV PHYSIOL, V61, P477, DOI 10.1146/annurev.physiol.61.1.477
VATER M, 1985, J COMP PHYSIOL A, V157, P671, DOI 10.1007/BF01351361
VATER M, 1990, J COMP NEUROL, V292, P373, DOI 10.1002/cne.902920305
Vater M, 1997, CELL TISSUE RES, V289, P223, DOI 10.1007/s004410050869
WENSTRUP JJ, 1988, J NEUROPHYSIOL, V60, P1384
Winer JA, 1996, P NATL ACAD SCI USA, V93, P8005, DOI 10.1073/pnas.93.15.8005
WINER JA, 1995, J COMP NEUROL, V355, P317, DOI 10.1002/cne.903550302
Xie R, 2008, NEUROSCIENCE, V154, P245, DOI 10.1016/j.neuroscience.2008.02.039
Xie R, 2007, J NEUROSCI, V27, P9469, DOI 10.1523/JNEUROSCI.2865-07.2007
Xie RL, 2005, J NEUROPHYSIOL, V94, P4019, DOI 10.1152/jn.00688.2005
YANG LC, 1992, J NEUROPHYSIOL, V68, P1760
Yue Q, 2007, J NEUROPHYSIOL, V98, P1364, DOI 10.1152/jn.00432.2007
ZOOK JM, 1985, J COMP NEUROL, V231, P530, DOI 10.1002/cne.902310410
NR 108
TC 14
Z9 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2011
VL 273
IS 1-2
SI SI
BP 134
EP 144
DI 10.1016/j.heares.2010.03.083
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 751HM
UT WOS:000289608100015
PM 20451594
ER
PT J
AU Christensen-Dalsgaard, J
AF Christensen-Dalsgaard, Jakob
TI Vertebrate pressure-gradient receivers
SO HEARING RESEARCH
LA English
DT Article
ID INTERAURAL TIME DIFFERENCES; DORSAL MEDULLARY NUCLEUS; MAMMALIAN
MIDDLE-EAR; RANA-TEMPORARIA L; DIRECTIONAL HEARING; SOUND LOCALIZATION;
LIZARD EAR; FROG; EVOLUTION; BIOPHYSICS
AB The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum and strongly dependent on interaural transmission attenuation.
Even though the tympanic middle ear has originated independently in the major tetrapod groups, in each group the ancestral condition probably was that the two middle ears were exposed in the mouth cavity with relatively high interaural transmission. Recent vertebrates form a continuum from perfect interaural transmission (0 dB in a certain frequency band) and pronounced eardrum directionality (30-40 dB) in the lizards, over somewhat attenuated transmission and limited directionality in birds and frogs, to the strongly attenuated interaural transmission and functionally isolated pressure receiver ears in the mammals.
Since some of the binaural interaction already takes place at the eardrum in animals with strongly coupled ears, producing enhanced interaural time and level differences, the subsequent neural processing may be simpler. In robotic simulations of lizards, simple binaural subtraction (El cells, found in brainstem nuclei of both frogs and lizards) produces strongly lateralized responses that are sufficient for steering the animal robustly to sound sources. (C) 2010 Elsevier B.V. All rights reserved.
C1 Univ So Denmark, Inst Biol, DK-5230 Odense M, Denmark.
RP Christensen-Dalsgaard, J (reprint author), Univ So Denmark, Inst Biol, Campusvej 55, DK-5230 Odense M, Denmark.
EM jcd@biology.sdu.dk
RI Christensen-Dalsgaard, Jakob/G-9947-2012
OI Christensen-Dalsgaard, Jakob/0000-0002-6075-3819
FU Danish Natural Science Research Council
FX Supported by the Danish Natural Science Research Council.
CR AERTSEN AMHJ, 1986, HEARING RES, V21, P17, DOI 10.1016/0378-5955(86)90043-2
ALLIN EF, 1975, J MORPHOL, V147, P403, DOI 10.1002/jmor.1051470404
Autrum Hansjochem, 1940, ZEITSCHR VERGLEICH PHYSIOL, V28, P326, DOI 10.1007/BF00342439
CALFORD MB, 1988, J COMP PHYSIOL A, V162, P491, DOI 10.1007/BF00612514
Carr CE, 2009, J NEUROSCI, V29, P7978, DOI 10.1523/JNEUROSCI.6154-08.2009
Christensen-Dalsgaard J, 2005, J EXP BIOL, V208, P1209, DOI 10.1242/jeb.01511
Christensen-Dalsgaard J., 2005, SOUND SOURCE LOCALIZ, P67, DOI DOI 10.1007/0-387-28863-5
Christensen-Dalsgaard J, 2008, JARO-J ASSOC RES OTO, V9, P407, DOI 10.1007/s10162-008-0130-2
Christensen-Dalsgaard J, 2008, BRAIN RES BULL, V75, P365, DOI 10.1016/j.brainresbull.2007.10.044
CHRISTENSENDALSGAARD J, 1995, J COMP PHYSIOL A, V176, P317
Christensen-Dalsgaard J, 2005, BRAIN RES BULL, V66, P522, DOI 10.1016/j.brainresbull.2005.03.005
CHRISTENSENDALS.J, 2010, ASS RES OTOLARYNGOL, V33, P51
Clack J. A., 1997, Brain Behavior and Evolution, V50, P198, DOI 10.1159/000113334
Feng AS, 2008, J COMP PHYSIOL A, V194, P159, DOI 10.1007/s00359-007-0267-1
FENG AS, 2007, SENSES COMPREHENSIVE, V3, P217
FENG AS, 1986, BRAIN RES, V367, P183, DOI 10.1016/0006-8993(86)91591-X
Fletcher NJC, 1992, ACOUSTIC SYSTEMS BIO
Gaffney E.S., 1983, Journal of Vertebrate Paleontology, V3, P25, DOI 10.1080/02724634.1983.10011953
Gridi-Papp M, 2008, P NATL ACAD SCI USA, V105, P11013
HEFFNER RS, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P691
HILL KG, 1980, J EXP BIOL, V86, P135
HYSON RL, 1994, HEARING RES, V81, P109, DOI 10.1016/0378-5955(94)90158-9
JASLOW AP, 1988, WILEY S NB, P69
JORGENSEN MB, 1991, J COMP PHYSIOL A, V168, P223
JORGENSEN MB, 1991, J COMP PHYSIOL A, V169, P591
Joris P, 2007, TRENDS NEUROSCI, V30, P70, DOI 10.1016/j.tins.2006.12.004
Klump G., 2000, COMP HEARING BIRDS R, P249
KLUMP GM, 1989, NATURWISSENSCHAFTEN, V76, P35, DOI 10.1007/BF00368312
KLUMP GM, 1991, J COMP PHYSIOL A, V170, P243
Konishi M, 2000, COMP BIOCHEM PHYS A, V126, P459, DOI 10.1016/S1095-6433(00)00232-4
Koppl C, 2009, CURR BIOL, V19, pR635, DOI 10.1016/j.cub.2009.05.035
Koppl C, 2008, BIOL CYBERN, V98, P541, DOI 10.1007/s00422-008-0220-6
LARSEN ON, 1995, NERVOUS SYSTEMS BEHA, P313
Larsen ON, 1997, DIVERSITY AUDITORY M, P11
Larsen ON, 2006, J COMP PHYSIOL A, V192, P1063, DOI 10.1007/s00359-006-0138-1
LEWIS ER, 1999, COMP HEARING FISH AM, P218
Manley G. A., 1990, PERIPHERAL HEARING M
Manley GA, 2002, J NEUROBIOL, V53, P202, DOI 10.1002/neu.10115
MANLEY GA, 1981, PROGR SENSORY PHYSL, V2, P49
Manley G. A., 1973, EVOLUTION, V26, P608, DOI DOI 10.2307/2407057
Manley GA, 2010, HEARING RES, V263, P3, DOI 10.1016/j.heares.2009.09.004
Michelsen A, 2008, BIOINSPIR BIOMIM, V3, DOI 10.1088/1748-3182/3/1/011001
MOISEFF A, 1981, J NEUROSCI, V1, P40
NARINS PM, 1988, P NATL ACAD SCI USA, V85, P1255
NOVACEK MJ, 1977, MAMMAL REV, V7, P131, DOI 10.1111/j.1365-2907.1977.tb00366.x
PALMER AR, 1984, J THEOR BIOL, V110, P205, DOI 10.1016/S0022-5193(84)80053-3
PETTIGREW JD, 1990, NEUROL NEUR, V56, P179
PINDER AC, 1993, P ROY SOC LOND B BIO, V219, P371
ROSOWSKI JJ, 1980, J COMP PHYSIOL, V136, P183
Rowe T, 1996, SCIENCE, V273, P651, DOI 10.1126/science.273.5275.651
SEGALL W, 1970, Fieldiana Zoology, V51, P169
Shaikh D, 2009, LECT NOTES COMPUT SC, V5602, P439, DOI 10.1007/978-3-642-02267-8_47
SZPIR MR, 1990, J COMP NEUROL, V295, P530, DOI 10.1002/cne.902950403
VLAMING MSMG, 1984, HEARING RES, V14, P191, DOI 10.1016/0378-5955(84)90018-2
Vossen C, 2010, J ACOUST SOC AM, V128, P909, DOI 10.1121/1.3455853
Weyer E. G., 1978, REPTILE EAR
Weyer E.G., 1985, AMPHIBIAN EAR
Zhang H, 1999, J COMP PHYSIOL A, V184, P85, DOI 10.1007/s003590050308
ZHANG L, 2006, LECT NOTES ARTIF INT, V4096, P65
NR 59
TC 14
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2011
VL 273
IS 1-2
SI SI
BP 37
EP 45
DI 10.1016/j.heares.2010.08.007
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 751HM
UT WOS:000289608100005
PM 20727396
ER
PT J
AU Van Dijk, P
Mason, MJ
Schoffelen, RLM
Narins, PM
Meenderink, SWF
AF Van Dijk, Pim
Mason, Matthew J.
Schoffelen, Richard L. M.
Narins, Peter M.
Meenderink, Sebastiaan W. F.
TI Mechanics of the frog ear
SO HEARING RESEARCH
LA English
DT Article
ID BULLFROG RANA-CATESBEIANA; PRODUCT OTOACOUSTIC EMISSIONS; WIENER-KERNEL
ANALYSIS; NORTHERN LEOPARD FROG; AUDITORY-NERVE FIBERS; INNER-EAR;
MIDDLE-EAR; TEMPERATURE-DEPENDENCE; AMPHIBIAN PAPILLA; COHERENT
REFLECTION
AB The frog inner ear contains three regions that are sensitive to airborne sound and which are functionally distinct. (1) The responses of nerve fibres innervating the low-frequency, rostral part of the amphibian papilla (AP) are complex. Electrical tuning of hair cells presumably contributes to the frequency selectivity of these responses. (2) The caudal part of the AP covers the mid-frequency portion of the frog's auditory range. It shares the ability to generate both evoked and spontaneous otoacoustic emissions with the mammalian cochlea and other vertebrate ears. (3) The basilar papilla functions mainly as a single auditory filter. Its simple anatomy and function provide a model system for testing hypotheses concerning emission generation. Group delays of stimulus-frequency otoacoustic emissions (SFOAEs) from the basilar papilla are accounted for by assuming that they result from forward and reverse transmission through the middle ear, a mechanical delay due to tectorial membrane filtering and a rapid forward and reverse propagation through the inner ear fluids, with negligible delay. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Van Dijk, Pim; Schoffelen, Richard L. M.] Univ Med Ctr Groningen, Dept Otorhinolaryngol Head & Neck Surg, Groningen, Netherlands.
[Van Dijk, Pim; Schoffelen, Richard L. M.] Univ Groningen, Sch Behav & Cognit Neurosci, NL-9700 AB Groningen, Netherlands.
[Mason, Matthew J.] Univ Cambridge, Dept Physiol Dev & Neurosci, Cambridge CB2 1TN, England.
[Schoffelen, Richard L. M.] Univ Med Ctr Utrecht, Dept Med Technol & Clin Phys, Utrecht, Netherlands.
[Narins, Peter M.] Univ Calif Los Angeles, Dept Physiol Sci, Los Angeles, CA USA.
[Narins, Peter M.] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA USA.
[Meenderink, Sebastiaan W. F.] Erasmus MC, Dept Neurosci, Rotterdam, Netherlands.
RP Van Dijk, P (reprint author), Univ Med Ctr Gronigen, Dept Otorhinolaryngol Head & Neck Surg, POB 30-001, NL-9700 RB Groningen, Netherlands.
EM p.van.dijk@med.umcg.nl
RI Van Dijk, Pim/E-8019-2010
OI Van Dijk, Pim/0000-0002-8023-7571
FU Netherlands Organisation for Scientific Research (NWO); Heinsius Houbolt
Foundation; NIH [DC00222]
FX We thank Mike Smotherman for discussions on the role of electrical
tuning of hair cells in auditory frequency selectivity. We thank Hans
Segenhout for discussions regarding the anatomy of the anuran inner ear.
This work was supported by the Netherlands Organisation for Scientific
Research (NWO) to P.v.D., R.L.M. and S.W.F.M., the Heinsius Houbolt
Foundation to P.v.D. and R.LM., and NIH Grant No. DC00222 to P.M.N.
CR BECKER RP, 1977, CELL TISSUE RES, V175, P449
BENEDIX JH, 1994, J ACOUST SOC AM, V96, P2738, DOI 10.1121/1.411280
Bergevin C, 2008, J COMP PHYSIOL A, V194, P665, DOI 10.1007/s00359-008-0338-y
Capranica R.R., 1980, P139
Dong W, 2006, J NEUROPHYSIOL, V95, P2951, DOI 10.1152/jn.01214.2005
EHRET G, 1980, J COMP PHYSIOL, V141, P1
FENG AS, 1975, J COMP PHYSIOL, V100, P221
FOX JH, 1995, BRAIN BEHAV EVOLUT, V45, P327, DOI 10.1159/000113560
FRISHKOP.LS, 1968, PR INST ELECTR ELECT, V56, P969, DOI 10.1109/PROC.1968.6448
FRISHKOPF LS, 1963, J ACOUST SOC AM, V35, P1219, DOI 10.1121/1.1918676
GRIDIPAPP M, 2008, P NATL ACAD SCI USA, V105, P2729
HETHERINGTON TE, 1985, J EXP ZOOL, V235, P27, DOI 10.1002/jez.1402350105
HETHERINGTON TE, 1988, J COMP PHYSIOL A, V163, P43, DOI 10.1007/BF00611995
HETHERINGTON TE, 1994, J ACOUST SOC AM, V95, P2122, DOI 10.1121/1.408673
HETHERINGTON TE, 1987, J EXP BIOL, P189
HETHERINGTON TE, 1986, J MORPHOL, V190, P43, DOI 10.1002/jmor.1051900105
HILLERY CM, 1984, SCIENCE, V225, P1037, DOI 10.1126/science.6474164
Jorgensen MB, 1998, J COMP PHYSIOL A, V182, P59
KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104
KOPPL C, 1993, HEARING RES, V71, P157, DOI 10.1016/0378-5955(93)90031-U
KORENBERG MJ, 1973, P 10 ANN ROCK MOUNT, P47
Lewis E.R., 1983, SCANNING ELECTRON MI, V1983, P189
LEWIS ER, 1982, SCIENCE, V215, P1641, DOI 10.1126/science.6978525
Lewis ER, 1999, COMP HEARING FISH AM, P101
LEWIS ER, 1992, J COMP PHYSL, V171, P469
LEWIS ER, 1982, J COMP PHYSIOL, V145, P437
LEWIS ER, 1981, NEUROSCI LETT, V21, P131, DOI 10.1016/0304-3940(81)90370-0
LI CW, 1974, SCAN ELECT MICROSC, V1974, P791
Manley Geoffrey A., 2008, V30, P211
MANLEY GA, 1990, J COMP PHYSIOL A, V167, P129, DOI 10.1007/BF00192412
Mason MJ, 2003, BRAIN BEHAV EVOLUT, V61, P91, DOI 10.1159/000069354
Mason MJ, 2007, SPR HDB AUD, V28, P147
Mason MJ, 2002, J EXP BIOL, V205, P3167
Mason MJ, 2002, J EXP BIOL, V205, P3153
Meenderink SWF, 2006, HEARING RES, V220, P67, DOI 10.1016/j.heares.2006.07.009
Meenderink SWF, 2010, BIOL LETTERS, V6, P278, DOI 10.1098/rsbl.2009.0763
Meenderink SWF, 2007, J ACOUST SOC AM, V121, P344, DOI 10.1121/1.2382458
Meenderink SWF, 2006, JARO-J ASSOC RES OTO, V7, P246, DOI 10.1007/s10162-006-0039-6
Meenderink SWF, 2005, JARO-J ASSOC RES OTO, V6, P37, DOI 10.1007/s10162-004-5019-0
NARINS PM, 1980, BRAIN BEHAV EVOLUT, V17, P48, DOI 10.1159/000121790
NARINS PM, 1983, HEARING PHYSL BASES, V183, P70
PALMER AR, 1982, J PHYSIOL-LONDON, V324, pP66
PITCHFORD S, 1987, HEARING RES, V27, P75, DOI 10.1016/0378-5955(87)90027-X
Purgue AP, 2000, J COMP PHYSIOL A, V186, P489, DOI 10.1007/s003590050447
Purgue AP, 2000, J COMP PHYSIOL A, V186, P481, DOI 10.1007/s003590050446
Recio-Spinoso A, 2005, J NEUROPHYSIOL, V93, P3615, DOI 10.1152/jn.00882.2004
RONKEN DA, 1991, J ACOUST SOC AM, V90, P2428, DOI 10.1121/1.402047
RONKEN DA, 1990, HEARING RES, V47, P63, DOI 10.1016/0378-5955(90)90167-N
RUGGERO MA, 1987, J NEUROPHYSIOL, V58, P379
Schetzen M., 1989, VOLTERRA WIENER THEO
SCHOFFELEN RLM, 2009, THESIS U GRONINGEN
Schoffelen RLM, 2008, J COMP PHYSIOL A, V194, P417, DOI 10.1007/s00359-008-0327-1
Schoffelen RLM, 2009, JARO-J ASSOC RES OTO, V10, P309, DOI 10.1007/s10162-009-0167-x
Shera CA, 2003, J ACOUST SOC AM, V113, P2762, DOI 10.1121/1.1557211
Shera CA, 2008, J ACOUST SOC AM, V124, P381, DOI 10.1121/1.2917805
SHOFNER WP, 1981, J EXP BIOL, V93, P181
Siegel JH, 2005, J ACOUST SOC AM, V118, P2434, DOI 10.1121/1.2005867
Smotherman MS, 2000, J EXP BIOL, V203, P2237
Smotherman MS, 1999, J NEUROSCI, V19, P5275
TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V
vanDijk P, 1997, HEARING RES, V114, P229, DOI 10.1016/S0378-5955(97)00168-8
vanDijk P, 1997, HEARING RES, V114, P243, DOI 10.1016/S0378-5955(97)00169-X
van Dijk P, 2003, J ACOUST SOC AM, V114, P2044, DOI 10.1121/1.1608957
vanDijk P, 1996, HEARING RES, V101, P102
VANDIJK P, 1989, HEARING RES, V42, P273, DOI 10.1016/0378-5955(89)90151-2
VANDIJK P, 1994, J ACOUST SOC AM, V95, P904, DOI 10.1121/1.410009
van Dijk P, 2001, HEARING RES, V153, P14, DOI 10.1016/S0378-5955(00)00251-3
Weyer E. G., 1973, J MORPHOL, V141, P461
Weyer E.G., 1985, AMPHIBIAN EAR
Yamada WM, 1999, HEARING RES, V130, P155, DOI 10.1016/S0378-5955(99)00005-2
NR 70
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2011
VL 273
IS 1-2
SI SI
BP 46
EP 58
DI 10.1016/j.heares.2010.02.004
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 751HM
UT WOS:000289608100006
PM 20149854
ER
PT J
AU Elgoyhen, AB
Franchini, LF
AF Belen Elgoyhen, Ana
Franchini, Lucia F.
TI Prestin and the cholinergic receptor of hair cells: Positively-selected
proteins in mammals
SO HEARING RESEARCH
LA English
DT Article
ID NICOTINIC ACETYLCHOLINE-RECEPTOR; CODON-SUBSTITUTION MODELS;
CA2+-ACTIVATED K+ CHANNELS; GUINEA-PIG COCHLEA; MOTOR PROTEIN;
ION-CHANNEL; PHARMACOLOGICAL-PROPERTIES; SYNAPTIC-TRANSMISSION;
INTRACELLULAR CA2+; ADAPTIVE EVOLUTION
AB The hair cells of the vertebrate inner ear posses active mechanical processes to amplify their inputs. The stereocilia bundle of various vertebrate animals can produce active movements. Though standard stereocilia-based mechanisms to promote amplification persist in mammals, an additional radically different mechanism evolved: the so-called somatic electromotility which refers to the elongation/contraction of the outer hair cells' (OHC) cylindrical cell body in response to membrane voltage changes. Somatic electromotility in OHCs, as the basis for cochlear amplification, is a mammalian novelty and it is largely dependent upon the properties of the unique motor protein prestin. We review recent literature which has demonstrated that although the gene encoding prestin is present in all vertebrate species, mammalian prestin has been under positive selective pressure to acquire motor properties, probably rendering it fit to serve somatic motility in outer hair cells. Moreover, we discuss data which indicates that a modified alpha 10 nicotinic cholinergic receptor subunit has co-evolved in mammals, most likely to give the auditory feedback system the capability to control somatic electromotility. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Belen Elgoyhen, Ana; Franchini, Lucia F.] Consejo Nacl Invest Cient & Tecn, Inst Invest Ingn Genet & Biol Mol, RA-1428 Buenos Aires, DF, Argentina.
[Belen Elgoyhen, Ana] Univ Buenos Aires, Fac Med, Dept Farmacol, RA-1121 Buenos Aires, DF, Argentina.
RP Elgoyhen, AB (reprint author), INGEBI, Vuelta Obligado 2490, RA-1428 Buenos Aires, DF, Argentina.
EM elgoyhen@dna.uba.ar; franchini@dna.uba.ar
FU National Institutes of Deafness and other Communication Disorders
(NIDCD) [R01DC001508]; Howard Hughes Medical Institute; Tinnitus
Research Initiative; ANPCyT (Argentina); University of Buenos Aires
(Argentina); ANPCyT; CONICET (Argentina)
FX We want to thank Geoffrey Manley for his comments on the manuscript.
A.B.E. is supported by the National Institutes of Deafness and other
Communication Disorders (NIDCD) Grant R01DC001508, an International
Research Scholar Grant from the Howard Hughes Medical Institute, the
Tinnitus Research Initiative, Research Grants from ANPCyT (Argentina)
and the University of Buenos Aires (Argentina). L.F.F. is supported by a
Research Grant from ANPCyT and CONICET (Argentina).
CR Adler HJ, 2003, HEARING RES, V184, P27, DOI 10.1016/S0378-5955(03)00192-8
Albert JT, 2007, J PHYSIOL-LONDON, V580, P451, DOI 10.1113/jphysiol.2007.127993
Ashmore J, 2008, PHYSIOL REV, V88, P173, DOI 10.1152/physrev.00044.2006
ASSAD JA, 1992, J NEUROSCI, V12, P3291
Bekesy G., 1960, EXPT HEARING
Blanchet C, 1996, J NEUROSCI, V16, P2574
BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153
Chan DK, 2005, NAT NEUROSCI, V8, P149, DOI 10.1038/nn1385
CHANGEUX JP, 1987, TRENDS PHARMACOL SCI, V8, P459, DOI 10.1016/0165-6147(87)90039-3
Chen C, 1996, HEARING RES, V98, P9, DOI 10.1016/0378-5955(96)00049-4
CRAWFORD AC, 1985, J PHYSIOL-LONDON, V364, P359
Dallos P, 2008, NEURON, V58, P333, DOI 10.1016/j.neuron.2008.02.028
Dallos P, 1997, J NEUROSCI, V17, P2212
Dallos P, 2006, J PHYSIOL-LONDON, V576, P37, DOI 10.1113/jphysiol.2006.114652
Dallos P, 2008, CURR OPIN NEUROBIOL, V18, P370, DOI 10.1016/j.conb.2008.08.016
DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3
Deak L, 2005, J PHYSIOL-LONDON, V563, P483, DOI 10.1113/jphysiol.2004.078857
Dent JA, 2006, J MOL EVOL, V62, P523, DOI 10.1007/s00239-005-0018-2
DOI T, 1993, HEARING RES, V67, P179, DOI 10.1016/0378-5955(93)90245-V
Dulon D, 1998, EUR J NEUROSCI, V10, P907, DOI 10.1046/j.1460-9568.1998.00098.x
Dulon D, 1996, EUR J NEUROSCI, V8, P1945, DOI 10.1111/j.1460-9568.1996.tb01338.x
ELGOYHEN AB, 1994, CELL, V79, P705, DOI 10.1016/0092-8674(94)90555-X
Elgoyhen AB, 2009, BIOCHEM PHARMACOL, V78, P712, DOI 10.1016/j.bcp.2009.05.023
Elgoyhen AB, 2001, P NATL ACAD SCI USA, V98, P3501, DOI 10.1073/pnas.051622798
EROSTEGUI C, 1994, HEARING RES, V74, P135, DOI 10.1016/0378-5955(94)90182-1
Evans MG, 1996, J PHYSIOL-LONDON, V491, P563
EYBALIN M, 1993, PHYSIOL REV, V73, P309
Fettiplace R, 2006, J PHYSIOL-LONDON, V576, P29, DOI 10.1113/jphysiol.2006.115949
Franchini LF, 2006, MOL PHYLOGENET EVOL, V41, P622, DOI 10.1016/j.ympev.2006.05.042
FRINGS S, 1995, NEURON, V15, P169, DOI 10.1016/0896-6273(95)90074-8
Fritzsch B, 1996, ANN NY ACAD SCI, V781, P21, DOI 10.1111/j.1749-6632.1996.tb15690.x
Fritzsch B, 1999, SING AUDIOL TEXTBK, P31
Frolenkov GI, 2003, CELL CALCIUM, V33, P185, DOI 10.1016/S0143-4160(02)00228-2
FUCHS PA, 1992, P ROY SOC B-BIOL SCI, V248, P35, DOI 10.1098/rspb.1992.0039
FUCHS PA, 1992, J NEUROSCI, V12, P800
Fuchs PA, 1996, CURR OPIN NEUROBIOL, V6, P514, DOI 10.1016/S0959-4388(96)80058-4
GALZI JL, 1991, ANNU REV PHARMACOL, V31, P37
Gao JG, 2007, P NATL ACAD SCI USA, V104, P12542, DOI 10.1073/pnas.0700356104
Geleoc GSG, 2003, TRENDS NEUROSCI, V26, P115, DOI 10.1016/S0166-2236(03)00030-4
GOLD T, 1948, PROC R SOC SER B-BIO, V135, P492, DOI 10.1098/rspb.1948.0025
Guinan Jr J.J., 1996, COCHLEA, P435
GULLEY RL, 1977, ANAT REC, V189, P109, DOI 10.1002/ar.1091890108
He DZZ, 1999, J NEUROPHYSIOL, V81, P1162
HOUSLEY GD, 1991, P ROY SOC B-BIOL SCI, V244, P161, DOI 10.1098/rspb.1991.0065
HOUSLEY GD, 1990, HEARING RES, V43, P121, DOI 10.1016/0378-5955(90)90221-A
HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0
Hudspeth AJ, 2008, NEURON, V59, P530, DOI 10.1016/j.neuron.2008.07.012
Jia SP, 2005, NAT NEUROSCI, V8, P1028, DOI 10.1038/nn1509
KAISER A, 1994, J NEUROPHYSIOL, V72, P2966
Kaiser A, 1996, J COMP NEUROL, V374, P108
KAKEHATA S, 1993, J PHYSIOL-LONDON, V463, P227
Karlin A, 2002, NAT REV NEUROSCI, V3, P102, DOI 10.1038/nrn731
Katz E, 2004, J NEUROSCI, V24, P7814, DOI 10.1523/JNEUROSCI.2102-04.2004
Katz E, 2000, HEARING RES, V141, P117, DOI 10.1016/S0378-5955(99)00214-2
KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104
Kennedy HJ, 2005, NATURE, V433, P880, DOI 10.1038/nature03367
LENOVERE N, 1995, J MOL EVOL, V40, P155
Le Novere N, 2002, J NEUROBIOL, V53, P447, DOI 10.1002/neu.10153
Li G, 2008, P NATL ACAD SCI USA, V105, P13959, DOI 10.1073/pnas.0802097105
Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059
Lioudyno M, 2004, J NEUROSCI, V24, P11160, DOI 10.1523/JNEUROSCI.3674-04.2004
Lohi H, 2000, GENOMICS, V70, P102, DOI 10.1006/geno.2000.6355
Ludwig J, 2001, P NATL ACAD SCI USA, V98, P4178, DOI 10.1073/pnas.071613498
Lustig LR, 2001, GENOMICS, V73, P272, DOI 10.1006/geno.2000.6503
Manley GA, 1998, CURR OPIN NEUROBIOL, V8, P468, DOI 10.1016/S0959-4388(98)80033-0
Manley GA, 2001, P NATL ACAD SCI USA, V98, P2826, DOI 10.1073/pnas.041604998
Manley GA, 2001, J NEUROPHYSIOL, V86, P541
Manley GA, 2000, P NATL ACAD SCI USA, V97, P11736, DOI 10.1073/pnas.97.22.11736
Martin P, 1999, P NATL ACAD SCI USA, V96, P14306, DOI 10.1073/pnas.96.25.14306
Martin P, 2001, P NATL ACAD SCI USA, V98, P14386, DOI 10.1073/pnas.251530498
Martin P, 2003, J NEUROSCI, V23, P4533
MAYER ML, 1987, J PHYSIOL-LONDON, V394, P501
McNiven AI, 1996, AUDIT NEUROSCI, V2, P63
MEREDITH GE, 1987, J COMP NEUROL, V265, P494, DOI 10.1002/cne.902650404
Mount DB, 2004, PFLUG ARCH EUR J PHY, V447, P710, DOI 10.1007/s00424-003-1090-3
MOUNTAIN DC, 1980, SCIENCE, V210, P71, DOI 10.1126/science.7414321
Muallem D, 2006, BIOPHYS J, V90, P4035, DOI 10.1529/biophysj.105.073254
Navaratnam D, 2005, BIOPHYS J, V89, P3345, DOI 10.1529/biophysj.105.068759
NEI M, 1986, MOL BIOL EVOL, V3, P418
Okoruwa OE, 2008, EVOL DEV, V10, P300, DOI 10.1111/j.1525-142X.2008.00239.x
Oliver D, 2001, SCIENCE, V292, P2340, DOI 10.1126/science.1060939
Oliver D, 2000, NEURON, V26, P595, DOI 10.1016/S0896-6273(00)81197-6
ORTELLS MO, 1995, TRENDS NEUROSCI, V18, P121, DOI 10.1016/0166-2236(95)93887-4
Plazas PV, 2005, J NEUROSCI, V25, P10905, DOI 10.1523/JNEUROSCI.3805-05.2005
Rajagopalan L, 2006, J NEUROSCI, V26, P12727, DOI 10.1523/JNEUROSCI.2734-06.2006
Rasmussen G.L, 1955, AM J PHYSIOL, V183, P653
Ricci AJ, 2000, J NEUROSCI, V20, P7131
ROBERTS BL, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P185
Rothlin CV, 1999, MOL PHARMACOL, V55, P248
Rothlin CV, 2003, MOL PHARMACOL, V63, P1067, DOI 10.1124/mol.63.5.1067
Rothlin CV, 2000, NEUROPHARMACOLOGY, V39, P2525, DOI 10.1016/S0028-3908(00)00056-3
Schaechinger TJ, 2007, P NATL ACAD SCI USA, V104, P7693, DOI 10.1073/pnas.0608583104
SCHWARZ IE, 1981, J COMP NEUROL, V196, P1, DOI 10.1002/cne.901960102
Sgard F, 2002, MOL PHARMACOL, V61, P150, DOI 10.1124/mol.61.1.150
SHIGEMOTO T, 1990, J PHYSIOL-LONDON, V420, P127
SHIGEMOTO T, 1991, J PHYSIOL-LONDON, V442, P669
SIEGEL JH, 1982, HEARING RES, V6, P171, DOI 10.1016/0378-5955(82)90052-1
Simmons DD, 2002, J NEUROBIOL, V53, P228, DOI 10.1002/neu.10130
Sridhar TS, 1997, J NEUROSCI, V17, P428
Sziklai I, 2001, ACTA OTO-LARYNGOL, V121, P153
Tsunoyama K, 1998, MOL BIOL EVOL, V15, P518
Verbitsky M, 2000, NEUROPHARMACOLOGY, V39, P2515, DOI 10.1016/S0028-3908(00)00124-6
Warr W. B., 1992, MAMMALIAN AUDITORY P, P410
Weber T, 2003, P NATL ACAD SCI USA, V100, P7690, DOI 10.1073/pnas.1330557100
Weisstaub N, 2002, HEARING RES, V167, P122, DOI 10.1016/S0378-5955(02)00380-5
Yang ZH, 2002, MOL BIOL EVOL, V19, P49
Yang ZH, 1998, MOL BIOL EVOL, V15, P568
Yang ZH, 2000, GENETICS, V155, P431
Yang ZH, 1997, COMPUT APPL BIOSCI, V13, P555
Yang ZH, 2002, MOL BIOL EVOL, V19, P908
YOSHIDA N, 1994, BRAIN RES, V644, P90, DOI 10.1016/0006-8993(94)90351-4
Young JM, 2002, HUM MOL GENET, V11, P1153, DOI 10.1093/hmg/11.10.1153
Zheng J, 2005, J CELL SCI, V118, P2987, DOI 10.1242/jcs.02431
Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009
Zheng J, 2006, J BIOL CHEM, V281, P19916, DOI 10.1074/jbc.M513854200
Zheng J, 2001, NEUROREPORT, V12, P1929, DOI 10.1097/00001756-200107030-00032
NR 116
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2011
VL 273
IS 1-2
SI SI
BP 100
EP 108
DI 10.1016/j.heares.2009.12.028
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 751HM
UT WOS:000289608100012
PM 20056140
ER
PT J
AU Peng, AW
Ricci, AJ
AF Peng, Anthony W.
Ricci, Anthony J.
TI Somatic motility and hair bundle mechanics, are both necessary for
cochlear amplification?
SO HEARING RESEARCH
LA English
DT Article
ID SPONTANEOUS OTOACOUSTIC EMISSIONS; SCANNING-ELECTRON-MICROSCOPE;
AUDITORY-NERVE FIBERS; PLASMA-MEMBRANE CA2+-ATPASE; PRESTIN KNOCKOUT
MICE; RED-EARED TURTLE; OWL TYTO-ALBA; BASILAR PAPILLA;
MECHANOELECTRICAL TRANSDUCTION; TECTORIAL MEMBRANE
AB Hearing organs have evolved to detect sounds across several orders of magnitude of both intensity and frequency. Detection limits are at the atomic level despite the energy associated with sound being limited thermodynamically. Several mechanisms have evolved to account for the remarkable frequency selectivity, dynamic range, and sensitivity of these various hearing organs, together termed the active process or cochlear amplifier. Similarities between hearing organs of disparate species provides insight into the factors driving the development of the cochlear amplifier. These properties include: a tonotopic map, the emergence of a two hair cell system, the separation of efferent and afferent innervations, the role of the tectorial membrane, and the shift from intrinsic tuning and amplification to a more end organ driven process. Two major contributors to the active process are hair bundle mechanics and outer hair cell electromotility, the former present in all hair cell organs tested, the latter only present in mammalian cochlear outer hair cells. Both of these processes have advantages and disadvantages, and how these processes interact to generate the active process in the mammalian system is highly disputed. A hypothesis is put forth suggesting that hair bundle mechanics provides amplification and filtering in most hair cells, while in mammalian cochlea, outer hair cell motility provides the amplification on a cycle by cycle basis driven by the hair bundle that provides frequency selectivity (in concert with the tectorial membrane) and compressive nonlinearity. Separating components of the active process may provide additional sites for regulation of this process. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Ricci, Anthony J.] Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA.
[Peng, Anthony W.; Ricci, Anthony J.] Stanford Univ, Dept Otolaryngol, Stanford, CA 94305 USA.
RP Ricci, AJ (reprint author), Stanford Univ, Dept Mol & Cellular Physiol, 300 Pasteur Dr,Edwards Bldg R145, Stanford, CA 94305 USA.
EM aricci@stanford.edu
FU NIDCD [RO1DC003896]
FX Thanks to Ham Farris for discussions on insect hearing and higher order
functions. Thanks to Geoff Manley for his expertise in the details of
the comparative aspects of hearing. This work was supported by NIDCD
funding to AJR, RO1DC003896.
CR Ahmed ZM, 2006, J NEUROSCI, V26, P7022, DOI 10.1523/JNEUROSCI.1163-06.2006
Arch VS, 2008, BIOL LETTERS, V4, P19, DOI 10.1098/rsbl.2007.0494
Arch VS, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005413
ART JJ, 1987, J PHYSIOL-LONDON, V385, P207
Ashmore J, 2008, PHYSIOL REV, V88, P173, DOI 10.1152/physrev.00044.2006
ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323
AUTHIER S, 1995, HEARING RES, V82, P1
Benser ME, 1996, J NEUROSCI, V16, P5629
Beurg M, 2009, NAT NEUROSCI, V12, P553, DOI 10.1038/nn.2295
Beurg M, 2008, BIOPHYS J, V94, P2639, DOI 10.1529/biophysj.107.123257
Beurg M, 2006, J NEUROSCI, V26, P10992, DOI 10.1523/JNEUROSCI.2188-06.2006
BIALEK W, 1987, ANNU REV BIOPHYS BIO, V16, P455
BIALEK W, 1985, PHYS REV LETT, V54, P725, DOI 10.1103/PhysRevLett.54.725
Bozovic D, 2003, P NATL ACAD SCI USA, V100, P958, DOI 10.1073/pnas.0337433100
BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003
BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153
Chan DK, 2005, NAT NEUROSCI, V8, P149, DOI 10.1038/nn1385
Cheatham MA, 2004, J PHYSIOL-LONDON, V560, P821, DOI 10.1113/jphysiol.204.069559
Chiappe ME, 2007, J NEUROSCI, V27, P11978, DOI 10.1523/JNEUROSCI.3679-07.2007
CRAWFORD AC, 1985, J PHYSIOL-LONDON, V364, P359
CRAWFORD AC, 1981, J PHYSIOL-LONDON, V312, P377
CRAWFORD AC, 1978, J PHYSIOL-LONDON, V284, pP120
CRAWFORD AC, 1980, J PHYSIOL-LONDON, V306, P79
CRAWFORD AC, 1989, J PHYSIOL-LONDON, V419, P405
DALLOS P, 1985, J NEUROSCI, V5, P1591
Dallos P, 2008, NEURON, V58, P333, DOI 10.1016/j.neuron.2008.02.028
DALLOS P, 1993, J NEUROPHYSIOL, V70, P299
DALLOS P, 1995, SCIENCE, V267, P2006, DOI 10.1126/science.7701325
Dallos P, 2008, CURR OPIN NEUROBIOL, V18, P370, DOI 10.1016/j.conb.2008.08.016
DAVIS RI, 1989, HEARING RES, V41, P1, DOI 10.1016/0378-5955(89)90173-1
DEVRIES HL, 1948, PHYSICA, V14, P48, DOI 10.1016/0031-8914(48)90060-3
DEVRIES H, 1948, ACTA OTO-LARYNGOL, V36, P230, DOI 10.3109/00016484809123781
Dierkes K, 2008, P NATL ACAD SCI USA, V105, P18669, DOI 10.1073/pnas.0805752105
Dumont RA, 2001, J NEUROSCI, V21, P5066
Eatock RA, 2000, ANNU REV NEUROSCI, V23, P285, DOI 10.1146/annurev.neuro.23.1.285
EATOCK RA, 1993, J NEUROSCI, V13, P1767
EATOCK RA, 1987, J NEUROSCI, V7, P2821
EHRET G, 1979, J COMP NEUROL, V183, P73, DOI 10.1002/cne.901830107
Farris HE, 2006, J NEUROSCI, V26, P12526, DOI 10.1523/JNEUROSCI.3569-06.2006
Farris HE, 2000, J ACOUST SOC AM, V107, P1727, DOI 10.1121/1.428398
Faure PA, 2000, J EXP BIOL, V203, P3225
FAY RR, 1988, HEARING VERTEBRATES, V3
Feng AS, 2006, NATURE, V440, P333, DOI 10.1038/nature04416
Fettiplace R, 2001, TRENDS NEUROSCI, V24, P169, DOI 10.1016/S0166-2236(00)01740-9
FETTIPLACE R, 2006, J PHYSL
Fettiplace R, 1999, ANNU REV PHYSIOL, V61, P809, DOI 10.1146/annurev.physiol.61.1.809
FETTIPLACE R, 1978, PROC R SOC SER B-BIO, V203, P209, DOI 10.1098/rspb.1978.0101
Fettiplace R, 2006, NAT REV NEUROSCI, V7, P19, DOI 10.1038/nrn1828
FISCHER FP, 1994, HEARING RES, V73, P1, DOI 10.1016/0378-5955(94)90277-1
Fischer FP, 1998, HEARING RES, V121, P112, DOI 10.1016/S0378-5955(98)00072-0
FISCHER FP, 1988, HEARING RES, V34, P87, DOI 10.1016/0378-5955(88)90053-6
Frank G, 1999, P NATL ACAD SCI USA, V96, P4420, DOI 10.1073/pnas.96.8.4420
FUCHS PA, 1988, J NEUROSCI, V8, P2460
FUCHS PA, 1988, J COMP PHYSIOL A, V164, P151, DOI 10.1007/BF00603947
Gillespie PG, 2004, ANNU REV PHYSIOL, V66, P521, DOI 10.1146/annurev.physiol.66.032102.112842
GLEICH O, 1988, HEARING RES, V34, P69, DOI 10.1016/0378-5955(88)90052-4
GLEICH O, 2000, COMP HEARING BIRDS R, P70
Gopfert MC, 2003, P NATL ACAD SCI USA, V100, P5514, DOI 10.1073/pnas.0737564100
Grati M, 2006, J NEUROSCI, V26, P6386, DOI 10.1523/JNEUROSCI.1215-06.2006
GUMMER AW, 1987, HEARING RES, V29, P63, DOI 10.1016/0378-5955(87)90206-1
Gummer AW, 1996, P NATL ACAD SCI USA, V93, P8727, DOI 10.1073/pnas.93.16.8727
HACKNEY CM, 1993, HEARING RES, V69, P163, DOI 10.1016/0378-5955(93)90104-9
Hackney CM, 2005, J NEUROSCI, V25, P7867, DOI 10.1523/JNEUROSCI.1196-05.2005
HARRIS GG, 1968, J ACOUST SOC AM, V44, P176, DOI 10.1121/1.1911052
He DZZ, 2003, J PHYSIOL-LONDON, V546, P511, DOI 10.1113/jphysiol.2002.026070
He DZZ, 2004, NATURE, V429, P766, DOI 10.1038/nature02591
Holt JR, 2002, CELL, V108, P371, DOI 10.1016/S0092-8674(02)00629-3
HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0
Hudspeth A, 2005, CR BIOL, V328, P155, DOI 10.1016/j.crvi.2004.12.003
HUDSPETH AJ, 1988, J PHYSIOL-LONDON, V400, P275
HUDSPETH AJ, 1985, SCIENCE, V230, P745, DOI 10.1126/science.2414845
Hudspeth AJ, 2000, P NATL ACAD SCI USA, V97, P11765, DOI 10.1073/pnas.97.22.11765
HUDSPETH AJ, 1979, P NATL ACAD SCI USA, V76, P1506, DOI 10.1073/pnas.76.3.1506
Hudspeth AJ, 2008, NEURON, V59, P530, DOI 10.1016/j.neuron.2008.07.012
HUDSPETH AJ, 1982, J NEUROSCI, V2, P1
HUDSPETH AJ, 1977, P NATL ACAD SCI USA, V74, P2407, DOI 10.1073/pnas.74.6.2407
INDRESANO AA, 2003, J ACOUST SOC AM, V96, P2216
Jaramillo F, 1998, NAT NEUROSCI, V1, P384, DOI 10.1038/1597
JARAMILLO F, 1991, NEURON, V7, P409, DOI 10.1016/0896-6273(91)90293-9
JARAMILLO F, 1993, P NATL ACAD SCI USA, V90, P1330, DOI 10.1073/pnas.90.4.1330
Jia SP, 2005, NAT NEUROSCI, V8, P1028, DOI 10.1038/nn1509
JOHNSTONE BM, 1986, HEARING RES, V22, P147, DOI 10.1016/0378-5955(86)90090-0
Jones EMC, 1999, J PHYSIOL-LONDON, V518, P653, DOI 10.1111/j.1469-7793.1999.0653p.x
Kazmierczak P, 2007, NATURE, V449, P87, DOI 10.1038/nature06091
KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0
Kennedy HJ, 2005, NATURE, V433, P880, DOI 10.1038/nature03367
Kennedy HJ, 2006, J NEUROSCI, V26, P2757, DOI 10.1523/JNEUROSCI.3808-05.2006
Kennedy HJ, 2003, NAT NEUROSCI, V6, P832, DOI 10.1038/nn1089
Koppl C, 1997, J NEUROPHYSIOL, V77, P364
KOPPL C, 1993, HEARING RES, V71, P157, DOI 10.1016/0378-5955(93)90031-U
Koppl C, 2004, J COMP NEUROL, V479, P149, DOI 10.1002/cne.20311
KOPPL C, 1995, HEARING RES, V82, P14
Kossl M, 2008, J COMP PHYSIOL A, V194, P597, DOI 10.1007/s00359-008-0344-0
Lagarde MMM, 2008, NAT NEUROSCI, V11, P746, DOI 10.1038/nn.2129
Legan PK, 2000, NEURON, V28, P273, DOI 10.1016/S0896-6273(00)00102-1
LEWIS ER, 1984, SCAN ELECTR MICROSC, V4, P1899
Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059
Liberman MC, 2004, J ACOUST SOC AM, V116, P1649, DOI 10.1121/1.1775275
LIM DJ, 1980, J ACOUST SOC AM, V67, P1686, DOI 10.1121/1.384295
Manley G., 2000, COMP HEARING BIRDS R, P139
Manley G. A., 1990, PERIPHERAL HEARING M
MANLEY GA, 1987, HEARING RES, V26, P257, DOI 10.1016/0378-5955(87)90062-1
MANLEY GA, 1988, HEARING RES, V33, P181, DOI 10.1016/0378-5955(88)90031-7
Manley GA, 1998, CURR OPIN NEUROBIOL, V8, P468, DOI 10.1016/S0959-4388(98)80033-0
Manley GA, 1997, J ACOUST SOC AM, V102, P1049, DOI 10.1121/1.419858
Manley GA, 2001, P NATL ACAD SCI USA, V98, P2826, DOI 10.1073/pnas.041604998
MANLEY GA, 1990, J COMP PHYSIOL A, V167, P89, DOI 10.1007/BF00192409
MANLEY GA, 2008, SENSES COMPREHENSIVE, V3, P1
Manley GA, 2001, J NEUROPHYSIOL, V86, P541
Manley GA, 2000, P NATL ACAD SCI USA, V97, P11736, DOI 10.1073/pnas.97.22.11736
Manley GA, 1996, J ACOUST SOC AM, V99, P1588, DOI 10.1121/1.414680
Manley GA, 2008, HEARING RES, V238, P3, DOI 10.1016/j.heares.2007.09.011
Martin P, 1999, P NATL ACAD SCI USA, V96, P14306, DOI 10.1073/pnas.96.25.14306
Martin P, 2001, P NATL ACAD SCI USA, V98, P14386, DOI 10.1073/pnas.251530498
Martin P, 2003, J NEUROSCI, V23, P4533
Martin P, 2000, P NATL ACAD SCI USA, V97, P12026, DOI 10.1073/pnas.210389497
Mason AC, 2004, MICROSC RES TECHNIQ, V63, P338, DOI 10.1002/jemt.20050
MEGELASIMMONS A, 1985, J ACOUST SOC AM, V78, P1236, DOI 10.1121/1.392892
MILLER MR, 1978, J MORPHOL, V156, P381, DOI 10.1002/jmor.1051560305
MILLER MR, 1978, AM J ANAT, V151, P409, DOI 10.1002/aja.1001510306
MILLER MR, 1973, AM J ANAT, V138, P301, DOI 10.1002/aja.1001380303
Moore B. C., 2004, INTRO PSYCHOL HEARIN
MORRISON D, 1975, ACTA OTO-LARYNGOL, V79, P11, DOI 10.3109/00016487509124649
MULROY MJ, 1987, HEARING RES, V25, P11, DOI 10.1016/0378-5955(87)90075-X
Nam JH, 2008, BIOPHYS J, V95, P4948, DOI 10.1529/biophysj.108.138560
Oghalai JS, 1998, J NEUROPHYSIOL, V79, P2235
OLDFIELD BP, 1988, TRENDS NEUROSCI, V11, P267, DOI 10.1016/0166-2236(88)90108-7
OLDFIELD BP, 1986, J COMP PHYSIOL A, V159, P457, DOI 10.1007/BF00604165
PATUZZI RB, 1991, HEARING RES, V53, P57, DOI 10.1016/0378-5955(91)90214-T
PICKLES JO, 1984, HEARING RES, V14, P245, DOI 10.1016/0378-5955(84)90053-4
PICKLES JO, 1984, HEARING RES, V15, P103, DOI 10.1016/0378-5955(84)90041-8
PITCHFORD S, 1987, HEARING RES, V27, P75, DOI 10.1016/0378-5955(87)90027-X
Popper AN, 2006, HEARING SOUND COMMUN, P184
PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897
RHODE WS, 1978, J ACOUST SOC AM, V64, P158, DOI 10.1121/1.381981
RHODE WS, 1974, J ACOUST SOC AM, V55, P588, DOI 10.1121/1.1914569
RHODE WS, 1971, J ACOUST SOC AM, V49, P1218, DOI 10.1121/1.1912485
Ricci AJ, 2000, J NEUROSCI, V20, P7131
Ricci AJ, 2003, NEURON, V40, P983, DOI 10.1016/S0896-6273(03)00721-9
Ricci AJ, 1997, J PHYSIOL-LONDON, V501, P111, DOI 10.1111/j.1469-7793.1997.111bo.x
Ricci AJ, 1998, J NEUROSCI, V18, P8261
Ricci AJ, 2005, J NEUROSCI, V25, P7831, DOI 10.1523/JNEUROSCI.1127-05.2005
Ricci AJ, 2002, J NEUROSCI, V22, P44
Richter CP, 2007, BIOPHYS J, V93, P2265, DOI 10.1529/biophysj.106.094474
ROMER H, 1983, NATURE, V306, P60, DOI 10.1038/306060a0
Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265
RUGGERO MA, 1990, J ACOUST SOC AM, V87, P1612, DOI 10.1121/1.399409
RUGGERO MA, 1991, HEARING RES, V51, P215, DOI 10.1016/0378-5955(91)90038-B
RUSSELL IJ, 1989, HEARING RES, V43, P55, DOI 10.1016/0378-5955(89)90059-2
Russell IJ, 2007, NAT NEUROSCI, V10, P215, DOI 10.1038/nn1828
Rybalchenko V, 2003, J PHYSIOL-LONDON, V547, P873, DOI 10.1113/jphysiol.2002.036434
SALVI RJ, 1992, J COMP PHYSIOL A, V170, P227
SANTOS-SACCHI J, 1991, J NEUROSCI, V11, P3096
SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X
Schoffelen RLM, 2008, J COMP PHYSIOL A, V194, P417, DOI 10.1007/s00359-008-0327-1
Shen JX, 2008, NATURE, V453, P914, DOI 10.1038/nature06719
SHOTWELL SL, 1981, ANN NY ACAD SCI, V374, P1, DOI 10.1111/j.1749-6632.1981.tb30854.x
Siemens J, 2004, NATURE, V428, P950, DOI 10.1038/nature02483
SLIFER EH, 1975, J NEUROCYTOL, V4, P419, DOI 10.1007/BF01261373
SNEARY MG, 1988, J COMP NEUROL, V276, P573, DOI 10.1002/cne.902760410
SNEARY MG, 1988, J COMP NEUROL, V276, P588, DOI 10.1002/cne.902760411
Stauffer EA, 2005, NEURON, V47, P541, DOI 10.1016/j.neuron.2005.07.024
Stewart CE, 2000, P NATL ACAD SCI USA, V97, P454, DOI 10.1073/pnas.97.1.454
STIEBLER IB, 1990, HEARING RES, V46, P63, DOI 10.1016/0378-5955(90)90140-K
Stumpner A, 2006, J COMP PHYSIOL A, V192, P1359, DOI 10.1007/s00359-006-0164-z
Sul B, 2009, BIOPHYS J, V97, P2653, DOI 10.1016/j.bpj.2009.08.039
Taberner AM, 2005, J NEUROPHYSIOL, V93, P557, DOI 10.1152/jn.00574.2004
TANAKA K, 1978, AM J ANAT, V153, P251, DOI 10.1002/aja.1001530206
Taschenberger G, 1997, HEARING RES, V110, P61, DOI 10.1016/S0378-5955(97)00070-1
TILNEY LG, 1983, J CELL BIOL, V96, P807, DOI 10.1083/jcb.96.3.807
TILNEY MS, 1987, HEARING RES, V25, P141, DOI 10.1016/0378-5955(87)90087-6
VANDIJK P, 1989, HEARING RES, V42, P273, DOI 10.1016/0378-5955(89)90151-2
Waguespack J, 2007, J NEUROSCI, V27, P13890, DOI 10.1523/JNEUROSCI.2159-07.2007
Warr W. B., 1992, MAMMALIAN AUDITORY P, P410
Warr WB, 1997, HEARING RES, V108, P89, DOI 10.1016/S0378-5955(97)00044-0
WEAVER SP, 1994, HEARING RES, V76, P1, DOI 10.1016/0378-5955(94)90081-7
WEYER EG, 1967, J MORPHOL, V122, P307
Wibowo E, 2009, J COMP NEUROL, V516, P74, DOI 10.1002/cne.22101
Wu XD, 2004, MOL BRAIN RES, V126, P30, DOI 10.1016/j.molbrainres.2004.03.020
WU YC, 1995, PROG BIOPHYS MOL BIO, V63, P131, DOI 10.1016/0079-6107(95)00002-5
Wu YC, 1999, J NEUROPHYSIOL, V82, P2171
Yack JE, 2004, MICROSC RES TECHNIQ, V63, P315, DOI 10.1002/jemt.20051
Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009
NR 183
TC 13
Z9 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2011
VL 273
IS 1-2
SI SI
BP 109
EP 122
DI 10.1016/j.heares.2010.03.094
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 751HM
UT WOS:000289608100013
PM 20430075
ER
PT J
AU Nagel, K
Kim, G
McLendon, H
Doupe, A
AF Nagel, Katherine
Kim, Gunsoo
McLendon, Helen
Doupe, Allison
TI A bird brain's view of auditory processing and perception
SO HEARING RESEARCH
LA English
DT Article
ID MALE ZEBRA FINCHES; INDIVIDUAL VOCAL RECOGNITION; CONTEXT-DEPENDENT
CHANGES; INFERIOR TEMPORAL CORTEX; FIELD-L-COMPLEX; NATURAL SOUNDS;
FUNCTIONAL-ORGANIZATION; RECEPTIVE-FIELDS; CORTICAL DISCRIMINATION;
CAUDAL TELENCEPHALON
AB By studying the primary forebrain auditory area of songbirds, field L, using a song-inspired synthetic stimulus and reverse correlation techniques, we found a surprisingly systematic organization of this area, with nearly all neurons narrowly tuned along the spectral dimension, the temporal dimension, or both; there were virtually no strongly orientation-sensitive cells, and in the areas that we recorded, cells broadly tuned in both time and frequency were rare. In addition, cells responsive to fast temporal frequencies predominated only in the field L input layer, suggesting that neurons with fast and slow responses are concentrated in different regions. Together with other songbird data and work from chicks and mammals, these findings suggest that sampling a range of temporal and spectral modulations, rather than orientation in time-frequency space, is the organizing principle of forebrain auditory sensitivity. We then examined the role of these acoustic parameters important to field L organization in a behavioral task. Birds' categorization of songs fell off rapidly when songs were altered in frequency, but, despite the temporal sensitivity of field L neurons, the same birds generalized well to songs that were significantly changed in timing. These behavioral data point out that we cannot assume that animals use the information present in particular neurons without specifically testing perception. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Doupe, Allison] Univ Calif San Francisco, Dept Physiol, San Francisco, CA 94143 USA.
[Nagel, Katherine; Kim, Gunsoo; McLendon, Helen; Doupe, Allison] Univ Calif San Francisco, Keck Ctr Integrat Neurosci, San Francisco, CA 94143 USA.
[Nagel, Katherine] Harvard Univ, Sch Med, Dept Neurobiol, Boston, MA 02115 USA.
RP Doupe, A (reprint author), Univ Calif San Francisco, Dept Physiol, Box 0444,513 Parnassus Ave, San Francisco, CA 94143 USA.
EM Katherine_Nagel@hms.harvard.edu; gkim@phy.ucsf.edu; helen@phy.ucsf.edu;
ajd@phy.ucsf.edu
FU NIH [NS34835, DC04975, MH055987]; Howard Hughes Medical Institute
FX The work described in this paper was supported by NIH grants NS34835,
DC04975, and MH055987 to AJD, and a Howard Hughes Medical Institute
fellowship to KN. All animal experiments were approved by the University
of California, San Francisco IACUC.
CR AMIN N, 2008, SELECTIVITY NATURAL
Atencio CA, 2009, P NATL ACAD SCI USA, V106, P21894, DOI 10.1073/pnas.0908383106
AVEDANO C, 2004, SPEECH PROCESSING AU
BEECHER MD, 1994, P NATL ACAD SCI USA, V91, P1450, DOI 10.1073/pnas.91.4.1450
BRENOWITZ EA, 1991, SCIENCE, V251, P303, DOI 10.1126/science.1987645
Chi T, 2005, J ACOUST SOC AM, V118, P887, DOI 10.1121/1.1945807
Cooper BG, 2006, J NEUROPHYSIOL, V95, P3798, DOI 10.1152/jn.01123.2005
Cousillas H, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002194
Cousillas H, 2006, NATURWISSENSCHAFTEN, V93, P588, DOI 10.1007/s00114-006-0148-4
Depireux DA, 2001, J NEUROPHYSIOL, V85, P1220
DOOLING RJ, 2000, COMP HEARING
Dooling RJ, 2002, J ACOUST SOC AM, V112, P748, DOI 10.1121/1.1494447
Doupe AJ, 1999, ANNU REV NEUROSCI, V22, P567, DOI 10.1146/annurev.neuro.22.1.567
Doupe AJ, 1997, J NEUROSCI, V17, P1147
EGGERMONT JJ, 1983, Q REV BIOPHYS, V16, P341
Escabi MA, 2003, J NEUROSCI, V23, P11489
FLANAGAN RM, 1966, BELL SYST TECH J, V1493, P1509
FORTUNE ES, 1992, J COMP NEUROL, V325, P388, DOI 10.1002/cne.903250306
FORTUNE ES, 1995, J COMP NEUROL, V360, P413, DOI 10.1002/cne.903600305
Freedman DJ, 2001, SCIENCE, V291, P312, DOI 10.1126/science.291.5502.312
Gehr DD, 1999, NEUROREPORT, V10, P375, DOI 10.1097/00001756-199902050-00030
Gentner TQ, 2003, NATURE, V424, P669, DOI 10.1038/nature01731
Gentner TQ, 1998, ANIM BEHAV, V56, P579, DOI 10.1006/anbe.1998.0810
Gentner TQ, 2000, J NEUROBIOL, V42, P117, DOI 10.1002/(SICI)1097-4695(200001)42:1<117::AID-NEU11>3.0.CO;2-M
Gentner TQ, 2004, ANN NY ACAD SCI, V1016, P282, DOI 10.1196/annals.1298.008
GLAZE CM, 2006, J NEUROSCI, V18, P3
Glaze CM, 2006, J NEUROSCI, V26, P991, DOI 10.1523/JNEUROSCI.3387-05.2006
HEIL P, 1992, J COMP NEUROL, V322, P548, DOI 10.1002/cne.903220409
HEIL P, 1992, J COMP PHYSIOL A, V171, P583
HEIL P, 1985, EXP BRAIN RES, V58, P532
HEIL P, 1991, BRAIN RES, V539, P110, DOI 10.1016/0006-8993(91)90692-O
HEIL P, 1991, BRAIN RES, V539, P121, DOI 10.1016/0006-8993(91)90693-P
Hsu A, 2004, J NEUROSCI, V24, P9201, DOI 10.1523/JNEUROSCI.2449-04.2004
Hung CP, 2005, SCIENCE, V310, P863, DOI 10.1126/science.1117593
Insanally MN, 2009, J NEUROSCI, V29, P5456, DOI 10.1523/JNEUROSCI.5311-08.2009
Kao MH, 2006, J NEUROPHYSIOL, V96, P1441, DOI 10.1152/jn.01138.2005
Kim KJ, 2001, J NEUROSCI, V21, P287
KONISHI M, 1985, ANNU REV NEUROSCI, V8, P125
Konishi M, 2000, COMP BIOCHEM PHYS A, V126, P459, DOI 10.1016/S1095-6433(00)00232-4
Konishi M, 1990, Harvey Lect, V86, P47
Kreiman G, 2006, NEURON, V49, P433, DOI 10.1016/j.neuron.2005.12.019
Kroodsma D. E., 1982, ACOUSTIC COMMUNICATI
Kruse AA, 2004, NEUROBIOL LEARN MEM, V82, P99, DOI 10.1016/j.nlm.2004.05.001
Larson E, 2009, J NEUROPHYSIOL, V101, P323, DOI 10.1152/jn.90664.2008
LEWICKI MS, 1995, P NATL ACAD SCI USA, V92, P5582, DOI 10.1073/pnas.92.12.5582
Lohr B, 2006, J COMP PSYCHOL, V120, P239, DOI 10.1037/0735-7036.120.3.239
Lu T, 2001, NAT NEUROSCI, V4, P1131, DOI 10.1038/nn737
MacDougall-Shackleton SA, 1998, NEUROREPORT, V9, P3047, DOI 10.1097/00001756-199809140-00024
Machens CK, 2004, J NEUROSCI, V24, P1089, DOI 10.1523/JNEUROSCI.4445-03.2004
MARGOLIASH D, 1983, J NEUROSCI, V3, P1039
MARGOLIASH D, 1992, J NEUROSCI, V12, P4309
MELLO C, 1995, J NEUROSCI, V15, P6919
Miller LM, 2002, J NEUROPHYSIOL, V87, P516
Mooney R, 2009, CURR OPIN NEUROBIOL, V19, P654, DOI 10.1016/j.conb.2009.10.004
Mooney R, 2000, J NEUROSCI, V20, P5420
Nagel KI, 2008, NEURON, V58, P938, DOI 10.1016/j.neuron.2008.04.028
Nagel KI, 2010, J NEUROPHYSIOL, V104, P1426, DOI 10.1152/jn.00028.2010
Nagel KI, 2006, NEURON, V51, P845, DOI 10.1016/j.neuron.2006.08.030
Narayan R, 2006, J NEUROPHYSIOL, V96, P252, DOI 10.1152/jn.01257.2005
NELSON DA, 1989, SCIENCE, V244, P976, DOI 10.1126/science.2727689
NELSON DA, 1989, J COMP PSYCHOL, V103, P171, DOI 10.1037/0735-7036.103.2.171
NOTTEBOHM F, 1976, J COMP NEUROL, V165, P457, DOI 10.1002/cne.901650405
O'Shaughnessy D., 1986, IEEE ASSP Magazine, V3, DOI 10.1109/MASSP.1986.1165388
Reiner A, 2004, ANN NY ACAD SCI, V1016, P77, DOI 10.1196/annals.1298.013
Ringach D, 2004, COGNITIVE SCI, V28, P147, DOI 10.1016/j.cogsci.2003.11.003
Ringach DL, 2002, J VISION, V2, P12, DOI 10.1167/2.1.2
Rosen MJ, 2003, NEURON, V39, P177, DOI 10.1016/S0896-6273(03)00357-X
SCHEICH H, 1979, CELL TISSUE RES, V204, P17
Searcy WA, 1999, DESIGN OF ANIMAL COMMUNICATION, P577
Sen K, 2001, J NEUROPHYSIOL, V86, P1445
Sharpee TO, 2006, NATURE, V439, P936, DOI 10.1038/nature04519
Sheft S, 2008, J ACOUST SOC AM, V124, P562, DOI 10.1121/1.2918540
Simon JZ, 2007, NEURAL COMPUT, V19, P583, DOI 10.1162/neco.2007.19.3.583
Singh NC, 2003, J ACOUST SOC AM, V114, P3394, DOI 10.1121/1.1624067
Soderstrom K, 2004, J NEUROSCI, V24, P10013, DOI 10.1523/JNEUROSCI.3298-04.2004
STODDARD PK, 1991, BEHAV ECOL SOCIOBIOL, V29, P211, DOI 10.1007/BF00166403
Stripling R, 1997, J NEUROSCI, V17, P3883
Terleph TA, 2006, J NEUROBIOL, V66, P281, DOI 10.1002/neu.20219
Theunissen FE, 2000, J NEUROSCI, V20, P2315
Theunissen FE, 2006, CURR OPIN NEUROBIOL, V16, P400, DOI 10.1016/j.conb.2006.07.003
Vates GE, 1996, J COMP NEUROL, V366, P613, DOI 10.1002/(SICI)1096-9861(19960318)366:4<613::AID-CNE5>3.0.CO;2-7
Vignal C, 2008, BEHAV PROCESS, V77, P191, DOI 10.1016/j.beproc.2007.09.003
WALDEN BE, 1978, J SPEECH HEAR RES, V21, P265
Wang L, 2007, J NEUROSCI, V27, P582, DOI 10.1523/JNEUROSCI.3699-06.2007
Wang XQ, 2005, NATURE, V435, P341, DOI 10.1038/nature03565
WILD JM, 1993, J COMP NEUROL, V337, P32
WOOLLEY SM, 2005, NAT NEUROSCI, P1371
Woolley SMN, 2006, J NEUROSCI, V26, P2499, DOI 10.1523/JNEUROSCI.3731-05.2006
Woolley SMN, 2009, J NEUROSCI, V29, P2780, DOI 10.1523/JNEUROSCI.2042-08.2009
Zann R, 1996, ZEBRA FINCH SYNTHESI
Zeigler H. P., 2008, NEUROSCIENCE BIRDSON
NR 91
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2011
VL 273
IS 1-2
SI SI
BP 123
EP 133
DI 10.1016/j.heares.2010.08.008
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 751HM
UT WOS:000289608100014
PM 20851756
ER
PT J
AU Bhutta, MF
Hedge, EA
Parker, A
Cheeseman, MT
Brown, SDM
AF Bhutta, Mahmood F.
Hedge, Elizabeth A.
Parker, Andrew
Cheeseman, Michael T.
Brown, Stephen D. M.
TI Oto-endoscopy: A reliable and validated technique for phenotyping otitis
media in the mouse
SO HEARING RESEARCH
LA English
DT Article
ID MIDDLE-EAR EFFUSION; FUNCTIONAL ANNOTATION; GENE; DIAGNOSIS;
POLYMORPHISMS; HERITABILITY; ASSOCIATION; ACCURACY; GENOME;
SUSCEPTIBILITY
AB The mouse is a widely used model for investigating the pathophysiological and genetic bases of otitis media (OM). It has proven a valuable tool for investigating the multifactorial bases of OM including the role of pathogens, anatomical factors, inflammatory mediators and susceptibility loci. However, straightforward and robust phenotyping tools for identifying murine otitis media are lacking, which has precluded for example the identification of mice with OM in genetic screens without resorting to time-consuming histopathology. We have set out to develop a phenotyping platform for the detection of OM in mice utilizing oto-endoscopy. We have applied the technique to a cohort of mice genetically susceptible to chronic otitis media. We show that oto-endoscopy is a safe, reliable and valid method for detecting otitis media in the mouse and discuss its utility in screens to identify novel genes involved with susceptibility to OM. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Bhutta, Mahmood F.; Hedge, Elizabeth A.; Parker, Andrew; Cheeseman, Michael T.; Brown, Stephen D. M.] MRC, Mammalian Genet Unit, Harwell OX11 ORD, Oxon, England.
[Bhutta, Mahmood F.] Univ Oxford, John Radcliffe Hosp, Nuffield Dept Surg Sci, Oxford OX3 9DU, England.
[Hedge, Elizabeth A.] Kings Coll London, Sch Med, London SE1 1UL, England.
RP Bhutta, MF (reprint author), MRC, Mammalian Genet Unit, Harwell Sci & Innovat Campus, Harwell OX11 ORD, Oxon, England.
EM m.bhutta@har.mrc.ac.uk
FU MRC Harwell; RNID
FX Thanks to Hilda Tateossian and ward 4 staff for providing the mice, to
necropsy and histology for tissue processing, and to Steve Thomas and
Anki Wessling for artwork. Funding was provided by MRC Harwell and by a
summer studentship grant from RNID.
CR Austin CP, 2004, NAT GENET, V36, P921, DOI 10.1038/ng0904-921
Auwerx J, 2004, NAT GENET, V36, P925, DOI 10.1038/ng0904-925
Blomgren K, 2005, INT J PEDIATR OTORHI, V69, P295, DOI 10.1016/j.ijporl.2004.09.012
Brown SDM, 2005, NAT GENET, V37, P1155, DOI 10.1038/ng1105-1155
Brown SDM, 2009, ANNU REV GENET, V43, P305, DOI 10.1146/annurev-genet-102108-134143
Casselbrant M, 2003, EVIDENCE BASED OTITI, P147
Casselbrant ML, 2004, ARCH OTOLARYNGOL, V130, P273, DOI 10.1001/archotol.130.3.273
Casselbrant ML, 1999, JAMA-J AM MED ASSOC, V282, P2125, DOI 10.1001/jama.282.22.2125
Daly KA, 2004, AM J HUM GENET, V75, P988, DOI 10.1086/426061
Emonts M, 2007, PEDIATRICS, V120, P814, DOI 10.1542/peds.2007-0524
Emonts M, 2007, PEDIATRICS, V120, pE317, DOI 10.1542/peds.2006-1390
FIELDS MJ, 1993, NEW ZEAL MED J, V106, P386
Gelfand S., 2001, ESSENTIALS AUDIOLOGY
Hardisty RE, 2003, JARO, V4, P130, DOI 10.1007/s10162-002-3015-9
Hardisty-Hughes RE, 2006, HUM MOL GENET, V15, P3273, DOI 10.1093/hmg/ddl403
Hardisty-Hughes RE, 2010, NAT PROTOC, V5, P177, DOI 10.1038/nprot.2009.204
Jero J, 2001, ACTA OTO-LARYNGOL, V121, P585, DOI 10.1080/000164801316878863
KARMA PH, 1989, INT J PEDIATR OTORHI, V17, P37, DOI 10.1016/0165-5876(89)90292-9
Kubba H, 2000, CLIN OTOLARYNGOL, V25, P181, DOI 10.1046/j.1365-2273.2000.00350.x
Kvaerner KJ, 1997, ANN OTO RHINOL LARYN, V106, P624
Lee DH, 2004, J KOREAN MED SCI, V19, P739
MURRAY CJL, 1996, GLOBAL BURDEN DIS, P433
Paparella MM, 2002, ORL J OTO-RHINO-LARY, V64, P65, DOI 10.1159/000057783
Parkinson N, 2006, PLOS GENET, V2, P1556, DOI 10.1371/journal.pgen.0020149
Patel JA, 2006, PEDIATRICS, V118, P2273, DOI 10.1542/peds.2006-0764
Pettigrew MM, 2006, BMC MED GENET, V7, DOI 10.1186/1471-2350-7-68
Rovers M, 2002, AM J EPIDEMIOL, V155, P958, DOI 10.1093/aje/155.10.958
Ryan AF, 2006, BRAIN RES, V1091, P3, DOI 10.1016/j.brainres.2006.02.004
SALE M, 2008, 31 ANN MIDW RES M AS
Segade F, 2006, ARCH OTOLARYNGOL, V132, P729, DOI 10.1001/archotol.132.7.729
Shiao AS, 2005, INT J PEDIATR OTORHI, V69, P1497, DOI 10.1016/j.ijporl.2005.03.041
Takata GS, 2003, PEDIATRICS, V112, P1379, DOI 10.1542/peds.112.6.1379
Tateossian Hilda, 2009, Pathogenetics, V2, P5, DOI 10.1186/1755-8417-2-5
Wiertsema SP, 2006, CLIN VACCINE IMMUNOL, V13, P892, DOI 10.1128/CVI.00100-06
Wiertsema SP, 2006, J ALLERGY CLIN IMMUN, V117, P1344, DOI 10.1016/j.jaci.2006.01.031
Wiertsema SP, 2006, VACCINE, V24, P792, DOI 10.1016/j.vaccine.2005.08.029
World Health Organization, 2004, CHRON SUPP OT MED BU
Young DE, 2009, INT J PEDIATR OTORHI, V73, P825, DOI 10.1016/j.ijporl.2009.02.012
Zheng QY, 2006, BRAIN RES, V1091, P9, DOI 10.1016/j.brainres.2006.01.046
Zheng QY, 2007, HEARING RES, V231, P23, DOI 10.1016/j.heares.2007.05.011
NR 40
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2011
VL 272
IS 1-2
BP 5
EP 12
DI 10.1016/j.heares.2010.09.002
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 735ME
UT WOS:000288418100002
PM 20870016
ER
PT J
AU Ohlemiller, KK
Rice, MER
Rellinger, EA
Ortmann, AJ
AF Ohlemiller, Kevin K.
Rice, Mary E. Rybak
Rellinger, Erin A.
Ortmann, Amanda J.
TI Divergence of noise vulnerability in cochleae of young CBA/J and CBA/CaJ
mice
SO HEARING RESEARCH
LA English
DT Article
ID INDUCED HEARING-LOSS; ACOUSTIC TRAUMA; INBRED STRAINS; AMINOGLYCOSIDE
OTOTOXICITY; SENSITIVE PERIOD; AUDITORY TRAUMA; MOUSE COCHLEA; LATERAL
WALL; GUINEA-PIGS; INNER-EAR
AB CBA/CaJ and CBA/J inbred mouse strains appear relatively resistant to age- and noise-related cochlear pathology, and constitute the predominant 'good hearing' control strains in mouse studies of hearing and deafness. These strains have often been treated as nearly equivalent in their hearing characteristics, and have even been mixed in some studies. Nevertheless, we recently showed that their trajectories with regard to age-associated cochlear pathology diverge after one year of age (Ohlemiller et al., 2010a). We also recently reported that they show quite different susceptibility to cochlear noise injury during the 'sensitive period' of heightened vulnerability to noise common to many models, CBA/J being far more vulnerable than CBA/CaJ (Fernandez et al., 2010 J. Assoc. Res. Otolaryngol. 11:235-244). Here we explore this relation in a side-by-side comparison of the effect of varying noise exposure duration in young (6 week) and older (6 month) CBA/J and CBA/CaJ mice, and in F1 hybrids formed from these. Both the extent of permanent noise-induced threshold shifts (NIPTS) and the probability of a defined NIPTS were determined as exposure to intense broadband noise (4-45 kHz, 110 dB SPL) increased by factors of two from 7 s to 4 h. At 6 months of age the two strains appeared very similar by both measures. At 6 weeks of age, however, both the extent and probability of NIPTS grew much more rapidly with noise duration in CBA/J than in CBA/CaJ. The 'threshold' exposure duration for NIPTS was < 1.0 min in CBA/J versus > 4.0 min in CBA/CaJ. F1 hybrid mice showed both NIPTS and hair cell loss similar to that in CBA/J. This suggests that dominant-acting alleles at unknown loci distinguish CBA/J from CBA/CaJ. These loci have novel effects on hearing phenotype, as they come into play only during the sensitive period, and may encode factors that demarcate this period. Since the cochlear cells whose fragility defines the early window appear to be hair cells, these loci may principally impact the mechanical or metabolic resiliency of hair cells or the organ of Corti. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Ohlemiller, Kevin K.; Rice, Mary E. Rybak; Rellinger, Erin A.; Ortmann, Amanda J.] Washington Univ, Sch Med, Program Audiol & Commun Sci, St Louis, MO 63130 USA.
[Ohlemiller, Kevin K.] Washington Univ, Sch Med, Dept Otolaryngol, Fay & Carl Simons Ctr Biol Hearing & Deafness, St Louis, MO 63110 USA.
RP Ohlemiller, KK (reprint author), Washington Univ, Sch Med, Program Audiol & Commun Sci, St Louis, MO 63130 USA.
EM kohlemiller@wustl.edu
FU WUSM Department of Otolaryngology [P30 DC004665, P30 NS057105, R01
DC03454, R01 DC008321]
FX Thanks to P.M. Gagnon for technical assistance. Supported by P30
DC004665 (R. Chole), P30 NS057105 (D. Holtzman), R01 DC03454 (KKO), R01
DC008321 (KKO), WUSM Department of Otolaryngology.
CR BERNARD PA, 1981, LARYNGOSCOPE, V91, P1985
Bohne B.A., 1982, NEW PERSPECTIVES NOI, P283
Bult CJ, 2008, NUCLEIC ACIDS RES, V36, pD724, DOI 10.1093/nar/gkm961
Clark JA, 1996, HEARING RES, V99, P119, DOI 10.1016/S0378-5955(96)00092-5
Davis RR, 1999, HEARING RES, V134, P9, DOI 10.1016/S0378-5955(99)00060-X
Davis RR, 2001, HEARING RES, V155, P82, DOI 10.1016/S0378-5955(01)00250-7
ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H
Erway LC, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P56
FALK SA, 1974, LARYNGOSCOPE, V84, P444, DOI 10.1288/00005537-197403000-00008
Fernandez EA, 2010, JARO-J ASSOC RES OTO, V11, P235, DOI 10.1007/s10162-009-0204-9
FINNEY DJ, 1985, ARCH TOXICOL, V56, P215, DOI 10.1007/BF00295156
Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861
FOX RR, 1997, HDB GENETICALLY STAN, P95467
FREDELIUS L, 1987, HEARING RES, V30, P157, DOI 10.1016/0378-5955(87)90133-X
Freeman S, 1999, AUDIOL NEURO-OTOL, V4, P207, DOI 10.1159/000013844
Gagnon PM, 2007, HEARING RES, V226, P79, DOI 10.1016/j.heares.2006.09.006
HENLEY CM, 1995, BRAIN RES REV, V20, P68, DOI 10.1016/0165-0173(94)00006-B
HENRY KR, 1984, BEHAV NEUROSCI, V98, P1073, DOI 10.1037/0735-7044.98.6.1073
HENRY KR, 1983, AUDIOLOGY, V22, P372
HENRY KR, 1992, AUDIOLOGY, V31, P181
HENRY KR, 1981, ARCH OTOLARYNGOL, V107, P92
HENRY KR, 1982, BEHAV GENET, V12, P563, DOI 10.1007/BF01070410
HENRY KR, 1982, HEARING RES, V8, P285, DOI 10.1016/0378-5955(82)90020-X
Hirose K, 2003, JARO, V4, P339, DOI 10.1007/s10162-002-3036-4
Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377
KALTENBACH JA, 1992, HEARING RES, V60, P205, DOI 10.1016/0378-5955(92)90022-F
Kent WDT, 2002, J OTOLARYNGOL, V31, P355, DOI 10.2310/7070.2002.34358
Konings A, 2009, EAR HEARING, V30, P151, DOI 10.1097/AUD.0b013e3181987080
Kujawa SG, 2009, J NEUROSCI, V29, P14077, DOI 10.1523/JNEUROSCI.2845-09.2009
Kujawa SG, 2006, J NEUROSCI, V26, P2115, DOI 10.1523/JNEUROSCI.4985-05.2006
LI HS, 1992, ACTA OTO-LARYNGOL, V112, P956, DOI 10.3109/00016489209137496
Li HZ, 2009, NOISE HEALTH, V11, P26, DOI 10.4103/1463-1741.45310
Muller M, 2005, HEARING RES, V202, P63, DOI 10.1016/j.heares.2004.08.011
Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X
Ohlemiller KK, 2010, JARO-J ASSOC RES OTO, V11, P605, DOI 10.1007/s10162-010-0228-1
Ohlemiller KK, 2000, HEARING RES, V149, P239, DOI 10.1016/S0378-5955(00)00191-X
Ohlemiller KK, 2007, HEARING RES, V224, P34, DOI 10.1016/j.heares.2006.11.005
Ohlemiller KK, 2008, HEARING RES, V245, P5, DOI 10.1016/j.heares.2008.08.007
Ohlemiller KK, 2010, HEARING RES, V260, P47, DOI 10.1016/j.heares.2009.11.006
Ohlemiller KK, 2011, JARO-J ASSOC RES OTO, V12, P45, DOI 10.1007/s10162-010-0238-z
Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017
Ohlemiller Kevin K., 2008, V31, P145
Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846
ORTMANN AJ, 2004, ABSTR ASS RES OTOLAR, V27, P168
Pawelczyk M, 2009, ANN HUM GENET, V73, P411, DOI 10.1111/j.1469-1809.2009.00521.x
Perletti G, 2008, MOL MED REP, V1, P3
PRICE GR, 1976, J ACOUST SOC AM, V60, P886, DOI 10.1121/1.381169
Pujol R, 1992, NOISE INDUCED HEARIN, P196
Rodriguez-Paris J, 2008, ANN CLIN LAB SCI, V38, P352
Rybak Leonard P, 2007, Curr Opin Otolaryngol Head Neck Surg, V15, P364, DOI 10.1097/MOO.0b013e3282eee452
Rybalko N, 2001, HEARING RES, V155, P32, DOI 10.1016/S0378-5955(01)00245-3
SAUNDERS JC, 1982, ENVIRON HEALTH PERSP, V44, P63, DOI 10.2307/3429477
SPOENDLI.H, 1973, ACTA OTO-LARYNGOL, V75, P220, DOI 10.3109/00016487309139699
SPOENDLI.H, 1971, ACTA OTO-LARYNGOL, V71, P166, DOI 10.3109/00016487109125346
STANEK R, 1977, T AM ACAD OPHTHALMOL, V84, P465
Van Eyken E, 2007, AUDIOL NEURO-OTOL, V12, P345, DOI 10.1159/000106478
Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028
Whitlon DS, 1999, HEARING RES, V137, P43, DOI 10.1016/S0378-5955(99)00136-7
Willott J. F., 1991, AGING AUDITORY SYSTE
Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3
Yoshida N, 2000, HEARING RES, V141, P97, DOI 10.1016/S0378-5955(99)00210-5
ZELCK U, 1993, EUR ARCH OTO-RHINO-L, V250, P218
Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9
NR 63
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2011
VL 272
IS 1-2
BP 13
EP 20
DI 10.1016/j.heares.2010.11.006
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 735ME
UT WOS:000288418100003
PM 21108998
ER
PT J
AU Getzrnann, S
Lewald, J
AF Getzrnann, Stephan
Lewald, Joerg
TI The effect of spatial adaptation on auditory motion processing
SO HEARING RESEARCH
LA English
DT Article
ID INFERIOR COLLICULUS; SOUND MOTION; HUMAN BRAIN; SUPERIOR COLLICULUS;
NEURAL CODE; SPACE; NEURONS; REPRESENTATION; FIELDS; CUES
AB The effect of acoustic pre-stimulation on cortical processing of subsequent sound motion was investigated in free-field space, using electroencephalography and a psychophysical motion-discrimination task. Subjects heard sound stimuli that moved from a central position (0 degrees) to the left or right. The onset of motion was preceded by either stationary sound at 0 degrees or spatially scattered sound on the left (0 to 32), right (0-32 degrees), or both (-32 to 32 degrees) sides. Following stationary sound, the start of auditory motion elicited a motion-specific onset response as described in previous studies. Following scattered sound, the amplitude of the motion-onset response was lower and reaction times in motion discrimination were longer than with the stationary pre-stimulus. Both these effects were most pronounced when the pre-stimulation by scattered sound was on the same side as the motion, whereas effects were only weak when pre-stimuli and motion were on different sides. These results are compatible with the view that spatial adaptation plays a role in auditory motion perception, and that motion processing could be triggered by release of adaptation of populations of location-specific neurons. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Getzrnann, Stephan; Lewald, Joerg] Leibniz Res Ctr Working Environm & Human Factors, D-44139 Dortmund, Germany.
[Getzrnann, Stephan; Lewald, Joerg] Ruhr Univ Bochum, Fac Psychol, Dept Cognit Psychol, D-44780 Bochum, Germany.
RP Getzrnann, S (reprint author), Leibniz Res Ctr Working Environm & Human Factors, Ardeystr 67, D-44139 Dortmund, Germany.
EM stephan.getzmann@rub.de
RI Lewald, Jorg/D-3034-2009
OI Lewald, Jorg/0000-0001-9351-0170
FU Deutsche Forschungsgemeinschaft [Ge1920/2-2, Fa211/24-1]
FX The authors are especially grateful to Ines Mombrei and Jens Kreitewolf
for their help in running the experiments, to Peter Dillmann for
preparing parts of the electronic equipment and software, to Sven
Hoffmann for performing statistical analyses, and to Michael Falkenstein
and three anonymous reviewers for valuable comments on an earlier draft
of the manuscript. This work was supported by the Deutsche
Forschungsgemeinschaft (Ge1920/2-2; Fa211/24-1).
CR Ahveninen J, 2006, P NATL ACAD SCI USA, V103, P14608, DOI 10.1073/pnas.0510480103
AITKIN LM, 1985, J NEUROPHYSIOL, V53, P43
ALTMAN JA, 1990, ELECTROEN CLIN NEURO, V75, P323, DOI 10.1016/0013-4694(90)90110-6
BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289
BINNS KE, 1992, BRAIN RES, V589, P231, DOI 10.1016/0006-8993(92)91282-J
Blauert J., 1997, SPATIAL HEARING PSYC
Ducommun CY, 2002, NEUROIMAGE, V16, P76, DOI 10.1006/nimg.2002.1062
Getzmann S, 2010, HEARING RES, V259, P44, DOI 10.1016/j.heares.2009.09.021
Getzmann S, 2008, HEARING RES, V246, P44, DOI 10.1016/j.heares.2008.09.007
Getzmann S, 2009, NEUROPSYCHOLOGIA, V47, P2625, DOI 10.1016/j.neuropsychologia.2009.05.012
Getzmann S, 2010, J NEUROPHYSIOL, V103, P1896, DOI 10.1152/jn.00333.2009
GRANTHAM DW, 1986, J ACOUST SOC AM, V79, P1939, DOI 10.1121/1.393201
GRATTON G, 1983, ELECTROEN CLIN NEURO, V55, P468, DOI 10.1016/0013-4694(83)90135-9
Groh JM, 2003, J COGNITIVE NEUROSCI, V15, P1217, DOI 10.1162/089892903322598166
Ingham NJ, 2001, J NEUROPHYSIOL, V85, P23
Jerger James, 2002, J Am Acad Audiol, V13, P59
KING AJ, 1987, J NEUROPHYSIOL, V57, P596
KNUDSEN EI, 1978, SCIENCE, V200, P795, DOI 10.1126/science.644324
Krumbholz K, 2005, EUR J NEUROSCI, V21, P230, DOI 10.1111/j.1460-9568.2004.03836.x
Krumbholz K, 2007, J NEUROPHYSIOL, V97, P1649, DOI 10.1152/jn.00560.2006
LEWALD J, 1990, EXP BRAIN RES, V82, P423
Lewald J, 2009, NEUROPSYCHOLOGIA, V47, P962, DOI 10.1016/j.neuropsychologia.2008.10.016
LEWALD J, NEUROPSYCHO IN PRESS
Makela JP, 1996, EXP BRAIN RES, V110, P446
McAlpine D, 2001, NAT NEUROSCI, V4, P396, DOI 10.1038/86049
McAlpine D, 2000, J NEUROPHYSIOL, V83, P1356
McAlpine D, 2002, J NEUROSCI, V22, P1443
MIDDLEBROOKS JC, 1984, J NEUROSCI, V4, P2621
MOISEFF A, 1992, J NEUROPHYSIOL, V67, P1428
NAKAYAMA K, 1985, VISION RES, V25, P625, DOI 10.1016/0042-6989(85)90171-3
PALMER AR, 1982, NATURE, V299, P248, DOI 10.1038/299248a0
Pavani F, 2002, CURR BIOL, V12, P1584, DOI 10.1016/S0960-9822(02)01143-0
Salminen NH, 2010, BRAIN RES, V1306, P93, DOI 10.1016/j.brainres.2009.09.095
Smith KR, 2007, BRAIN RES, V1150, P94, DOI 10.1016/j.brainres.2007.03.003
Smith KR, 2004, NEUROREPORT, V15, P1523, DOI 10.1097/01.wnr.0000130233.43788.4b
SPITZER MW, 1991, SCIENCE, V254, P721, DOI 10.1126/science.1948053
Stein B. E., 1993, MERGING SENSES
Xiang J, 2002, CLIN NEUROPHYSIOL, V113, P1, DOI 10.1016/S1388-2457(01)00709-X
Yabe H, 2001, BRAIN RES, V897, P222, DOI 10.1016/S0006-8993(01)02224-7
Yabe H, 1998, PSYCHOPHYSIOLOGY, V35, P615, DOI 10.1017/S0048577298000183
ZEKI S, 1991, BRAIN, V114, P811, DOI 10.1093/brain/114.2.811
NR 41
TC 8
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2011
VL 272
IS 1-2
BP 21
EP 29
DI 10.1016/j.heares.2010.11.005
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 735ME
UT WOS:000288418100004
PM 21108997
ER
PT J
AU Lupo, JE
Koka, K
Thornton, JL
Tollin, DJ
AF Lupo, J. Eric
Koka, Kanthaiah
Thornton, Jennifer L.
Tollin, Daniel J.
TI The effects of experimentally induced conductive hearing loss on
spectral and temporal aspects of sound transmission through the ear
SO HEARING RESEARCH
LA English
DT Article
ID INTERAURAL TIME DIFFERENCES; YOUNG GUINEA-PIGS; AUDITORY BRAIN-STEM;
OTITIS-MEDIA; INFERIOR COLLICULUS; BINAURAL HEARING; BARN OWL;
LOCALIZATION CUES; MONAURAL LOCALIZATION; COCHLEAR NUCLEUS
AB Conductive hearing loss (CHL) is known to produce hearing deficits, including deficits in sound localization ability. The differences in sound intensities and timing experienced between the two tympanic membranes are important cues to sound localization (ILD and ITD, respectively). Although much is known about the effect of CHL on hearing levels, little investigation has been conducted into the actual impact of CHL on sound location cues. This study investigated effects of CHL induced by earplugs on cochlear microphonic (CM) amplitude and timing and their corresponding effect on the ILD and ITD location cues. Acoustic and CM measurements were made in 5 chinchillas before and after earplug insertion, and again after earplug removal using pure tones (500 Hz to 24 kHz). ILDs in the unoccluded condition demonstrated position and frequency dependence where peak far-lateral ILDs approached 30 dB for high frequencies. Unoccluded ear ITD cues demonstrated positional and frequency dependence with increased ITD cue for both decreasing frequency (+/- 420 mu s at 500 Hz, +/- 310 mu s for 1-4 kHz) and increasingly lateral sound source locations. Occlusion of the ear canal with foam plugs resulted in a mild, frequency-dependent conductive hearing loss of 10-38 dB (mean 31 +/- 3.9 dB) leading to a concomitant frequency dependent increase in ILDs at all source locations. The effective ITDs increased in a frequency dependent manner with ear occlusion as a direct result of the acoustic properties of the plugging material, the latter confirmed via acoustical measurements using a model ear canal with varying volumes of acoustic foam. Upon ear plugging with acoustic foam, a mild CHL is induced. Furthermore, the CHL induced by acoustic foam results in substantial changes in the magnitudes of both the ITD and ILD cues to sound location. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Lupo, J. Eric; Tollin, Daniel J.] Univ Colorado Denver, Dept Otolaryngol, Aurora, CO 80045 USA.
[Koka, Kanthaiah; Thornton, Jennifer L.; Tollin, Daniel J.] Univ Colorado Denver, Dept Physiol & Biophys, Aurora, CO 80045 USA.
[Thornton, Jennifer L.; Tollin, Daniel J.] Univ Colorado Denver, Sch Med, Neurosci Training Program, Aurora, CO 80045 USA.
RP Lupo, JE (reprint author), Univ Colorado Denver, Dept Otolaryngol, 12631 E 17th Ave Mail Stop B205,POB 6511, Aurora, CO 80045 USA.
EM james.lupo@ucdenver.edu
FU National Institutes of Deafness and Other Communicative Disorders
[R01DC006865]; National Organization of Hearing Research; American
Academy of Otolaryngology-Head and Neck Surgery Foundation (AAO-HNSF);
National Institute of Child Health and Human Development
[5T32HD041697-08]; NIH [P30 NS048154-05]
FX This work was supported by a National Institutes of Deafness and Other
Communicative Disorders Grant (R01DC006865) and the Evie & Ron Krancer
Grant in Auditory Science from the National Organization of Hearing
Research to DJT. Support was also provided by an American Academy of
Otolaryngology-Head and Neck Surgery Foundation (AAO-HNSF) resident
research grant to JEL and a Neuroscience Training Grant to JLT (National
Institute of Child Health and Human Development grant 5T32HD041697-08).
We thank Dr. Michael Hall for preparing custom laboratory hardware
(supported by NIH grant P30 NS048154-05).
CR Asbjornsen A, 2000, DEV MED CHILD NEUROL, V42, P481, DOI 10.1017/S001216220000089X
Bennett KE, 2001, ARCH DIS CHILD, V85, P91, DOI 10.1136/adc.85.2.91
Berger EH, 2003, J ACOUST SOC AM, V114, P1955, DOI 10.1121/1.1605415
Blauert J., 1997, SPATIAL HEARING PSYC
BLUESTON.CD, 1973, LARYNGOSCOPE, V83, P594, DOI 10.1288/00005537-197304000-00015
BRUGGE JF, 1985, HEARING RES, V20, P275, DOI 10.1016/0378-5955(85)90032-2
BUTLER RA, 1990, PERCEPTION, V19, P241, DOI 10.1068/p190241
CALFORD MB, 1986, J NEUROPHYSIOL, V55, P587
CARLILE S, 1987, HEARING RES, V31, P111, DOI 10.1016/0378-5955(87)90117-1
CARLILE S, 1994, J NEUROPHYSIOL, V71, P785
CLEMENTS M, 1978, J COMP PHYSIOL PSYCH, V92, P34, DOI 10.1037/h0077424
CLOPTON BM, 1978, EXP BRAIN RES, V32, P39
COLEMAN JR, 1979, EXP NEUROL, V64, P553, DOI 10.1016/0014-4886(79)90231-0
COLES RB, 1986, J EXP BIOL, V121, P371
DALLOS P, 1971, J ACOUST SOC AM, V49, P1140, DOI 10.1121/1.1912475
Dallos P., 1973, AUDITORY PERIPHERY B
Duda RO, 1998, J ACOUST SOC AM, V104, P3048, DOI 10.1121/1.423886
Fisher H G, 1968, Acta Otolaryngol, V66, P213, DOI 10.3109/00016486809126288
FUZESSERY ZM, 1985, J NEUROPHYSIOL, V54, P757
GERHARDT KJ, 1987, EAR HEARING, V8, P316, DOI 10.1097/00003446-198712000-00005
Gouma P, 2011, EUR ARCH OTO-RHINO-L, V268, P63, DOI 10.1007/s00405-010-1346-4
Gravel JS, 2000, J SPEECH LANG HEAR R, V43, P631
GRAVEL JS, 1992, J SPEECH HEAR RES, V35, P588
HALL JW, 1986, ANN OTO RHINOL LARYN, V95, P525
HALL JW, 1995, HEARING RES, V84, P91, DOI 10.1016/0378-5955(95)00016-W
HALL JW, 1998, EAR HEARING, V19, P220
Hartley DEH, 2003, HEARING RES, V177, P53, DOI 10.1016/S0378-5955(02)00797-9
HAUSLER R, 1983, ACTA OTO-LARYNGOL, P1
HEFFNER RS, 1991, HEARING RES, V52, P13, DOI 10.1016/0378-5955(91)90183-A
HEFFNER RS, 1994, HEARING RES, V80, P247, DOI 10.1016/0378-5955(94)90116-3
HOGAN SC, 1995, BRIT J AUDIOL, V29, P56
Hogan SCM, 2003, JARO, V4, P123, DOI 10.1007/s10162-002-3007-9
HYSON RL, 1994, HEARING RES, V81, P109, DOI 10.1016/0378-5955(94)90158-9
Kacelnik O, 2006, PLOS BIOL, V4, P627, DOI 10.1371/journal.pbio.0040071
Kanick SC, 2006, ACTA OTO-LARYNGOL, V126, P1252, DOI 10.1080/00016480600794420
Keller CH, 1998, HEARING RES, V118, P13, DOI 10.1016/S0378-5955(98)00014-8
King AJ, 2000, P NATL ACAD SCI USA, V97, P11821, DOI 10.1073/pnas.97.22.11821
KNUDSEN EI, 1984, J NEUROSCI, V4, P1001
KNUDSEN EI, 1984, J NEUROSCI, V4, P1012
Knudsen EI, 1999, J COMP PHYSIOL A, V185, P305, DOI 10.1007/s003590050391
Koka K, 2008, J ACOUST SOC AM, V123, P4297, DOI 10.1121/1.2916587
Koka K, 2011, HEARING RES, V272, P135, DOI 10.1016/j.heares.2010.10.007
KOLPE W, 2003, SEMINARS HEARING, V4, P289
KUHN GF, 1977, J ACOUST SOC AM, V62, P157, DOI 10.1121/1.381498
Kumpik DP, 2010, J NEUROSCI, V30, P4883, DOI 10.1523/JNEUROSCI.5488-09.2010
LASKA M, 1992, EUR ARCH OTO-RHINO-L, V249, P325
Maki K, 2005, J ACOUST SOC AM, V118, P872, DOI 10.1121/1.1944647
MARSH RR, 1985, INT J PEDIATR OTORHI, V9, P115, DOI 10.1016/S0165-5876(85)80011-2
McAlpine D, 1997, J NEUROPHYSIOL, V78, P767
McPartland JL, 1997, HEARING RES, V113, P165, DOI 10.1016/S0378-5955(97)00142-1
MEHRGARDT S, 1977, J ACOUST SOC AM, V61, P1567, DOI 10.1121/1.381470
MOISEFF A, 1989, J COMP PHYSIOL A, V164, P629, DOI 10.1007/BF00614505
Moore DR, 1999, J NEUROSCI, V19, P8704
MOORE DR, 1989, J NEUROSCI, V9, P1213
Moore DR, 2003, INT J PEDIATR OTORHI, V67, pS63, DOI 10.1016/j.ijport.2003.08.015
MOORE DR, 1991, AUDIOLOGY, V30, P91
MUSICANT AD, 1984, HEARING RES, V14, P185, DOI 10.1016/0378-5955(84)90017-0
OLDFIELD SR, 1986, PERCEPTION, V15, P67, DOI 10.1068/p150067
Paradise JL, 1997, PEDIATRICS, V99, P318, DOI 10.1542/peds.99.3.318
Parsons CH, 1999, J NEUROPHYSIOL, V82, P2294
PATTERSON JH, 1991, 9116 USAARL
PILLSBURY HC, 1991, ARCH OTOLARYNGOL, V117, P718
Popescu MV, 2010, NEURON, V65, P718, DOI 10.1016/j.neuron.2010.02.019
Ravicz ME, 2004, HEARING RES, V195, P103, DOI 10.1016/j.heares.2004.05.010
REALE RA, 1987, DEV BRAIN RES, V34, P281, DOI 10.1016/0165-3806(87)90215-X
RIFE DD, 1989, J AUDIO ENG SOC, V37, P419
ROTH GL, 1980, J ACOUST SOC AM, V68, P1643, DOI 10.1121/1.385196
Schnupp JWH, 1998, J NEUROPHYSIOL, V79, P1053
SCHOONHOVEN R, 2007, RESPONSES COCHLEA AU, P180
SHAW EAG, 1974, J ACOUST SOC AM, V56, P1848, DOI 10.1121/1.1903522
Shekelle P, 2003, AHRQ PUBLICATION, V03-E023
SILVA PA, 1986, J LEARN DISABIL, V19, P165
SILVERMAN MS, 1977, J NEUROPHYSIOL, V40, P1266
SLATTERY WH, 1994, HEARING RES, V75, P38, DOI 10.1016/0378-5955(94)90053-1
Slee SJ, 2010, HEARING RES, V260, P96, DOI 10.1016/j.heares.2009.12.001
Sterbing SJ, 2003, J NEUROPHYSIOL, V90, P2648, DOI 10.1152/jn.00348.2003
TEELE DW, 1990, J INFECT DIS, V162, P685
TOLLIN DJ, 2010, OXFORD HDB DEV BEHAV, P262
Tollin DJ, 2009, J ACOUST SOC AM, V126, P3125, DOI 10.1121/1.3257234
TORRES AI, 2010, CUMMINGS OTOLARYNGOL, pCH143
Tucci DL, 2001, HEARING RES, V155, P124, DOI 10.1016/S0378-5955(01)00256-8
Van Wanrooij MM, 2007, J NEUROPHYSIOL, V97, P715, DOI 10.1152/jn.00260.2006
VOLMAN SF, 1989, J NEUROSCI, V9, P3083
VRETTAKOS PA, 1988, AM J OTOLARYNG, V9, P58, DOI 10.1016/S0196-0709(88)80009-7
WALGER M, 1993, EUR ARCH OTO-RHINO-L, V250, P362
WEBSTER DB, 1977, ARCH OTOLARYNGOL, V103, P392
WEBSTER DB, 1988, HEARING RES, V32, P185, DOI 10.1016/0378-5955(88)90090-1
WEIDERHOLD ML, 1980, ANN OTO RHINOL LARYN, V89, P185
WELSH LW, 1983, LARYNGOSCOPE, V93, P1569, DOI 10.1288/00005537-198312000-00010
WEVER EG, 1954, PHYSL ACOUSTICS, P137
WIGHTMAN FL, 1992, J ACOUST SOC AM, V91, P1648, DOI 10.1121/1.402445
Winskel H, 2006, BRIT J EDUC PSYCHOL, V76, P727, DOI 10.1348/000709905X68312
Woodworth R. S., 1938, EXPT PSYCHOL
Xu H, 2007, J NEUROSCI, V27, P9417, DOI 10.1523/JNEUROSCI.1992-07.2007
Yoshinaga-Itano C, 1998, PEDIATRICS, V102, P1161, DOI 10.1542/peds.102.5.1161
NR 95
TC 15
Z9 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2011
VL 272
IS 1-2
BP 30
EP 41
DI 10.1016/j.heares.2010.11.003
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 735ME
UT WOS:000288418100005
ER
PT J
AU Butcher, A
Govenlock, SW
Tata, MS
AF Butcher, Andrew
Govenlock, Stanley W.
Tata, Matthew S.
TI A lateralized auditory evoked potential elicited when auditory objects
are defined by spatial motion
SO HEARING RESEARCH
LA English
DT Article
ID FIGURE-GROUND SEGREGATION; BRAIN POTENTIALS; VISUAL-CORTEX; MISMATCH
NEGATIVITY; PHYSIOLOGICAL-RESPONSES; PERCEPTUAL SEGREGATION; PLANUM
TEMPORALE; COHERENT MOTION; SOUND LOCATION; DICHOTIC PITCH
AB Scene analysis involves the process of segmenting a field of overlapping objects from each other and from the background. It is a fundamental stage of perception in both vision and hearing. The auditory system encodes complex cues that allow listeners to find boundaries between sequential objects, even when no gap of silence exists between them. In this sense, object perception in hearing is similar to perceiving visual objects defined by isoluminant color, motion or binocular disparity. Motion is one such cue: when a moving sound abruptly disappears from one location and instantly reappears somewhere else, the listener perceives two sequential auditory objects. Smooth reversals of motion direction do not produce this segmentation. We investigated the brain electrical responses evoked by this spatial segmentation cue and compared them to the familiar auditory evoked potential elicited by sound onsets. Segmentation events evoke a pattern of negative and positive deflections that are unlike those evoked by onsets. We identified a negative component in the waveform - the Lateralized Object-Related Negativity generated by the hemisphere contralateral to the side on which the new sound appears. The relationship between this component and similar components found in related paradigms is considered. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Butcher, Andrew; Tata, Matthew S.] Univ Lethbridge, Lethbridge, AB T1K 3M4, Canada.
[Govenlock, Stanley W.] McMaster Univ, Hamilton, ON L8S 4L8, Canada.
RP Tata, MS (reprint author), Univ Lethbridge, 4401 Univ Dr, Lethbridge, AB T1K 3M4, Canada.
EM matthew.tata@uleth.ca
FU NSERC Canada
FX The authors would like to thank Jarrod Dowdall, Greg Christie, Karla
Ponjavic and Wendy Maines for assistance with data collection. This
research was funded by an NSERC Canada Discovery Grant to M.S.T.
CR Alain C, 2000, FRONT BIOSCI, V5, pD202, DOI 10.2741/Alain
Alain C, 2001, P NATL ACAD SCI USA, V98, P12301, DOI 10.1073/pnas.211209098
Alain C, 2001, J EXP PSYCHOL HUMAN, V27, P1072, DOI 10.1037//0096-1523.27.5.1072
Alain C, 2003, J COGNITIVE NEUROSCI, V15, P1063, DOI 10.1162/089892903770007443
Alain C, 2002, J ACOUST SOC AM, V111, P990, DOI 10.1121/1.1434942
Belin P, 2000, NAT NEUROSCI, V3, P965, DOI 10.1038/79890
Boersma P., 2010, PRAAT DOING PHONETIC
Bourne JA, 2002, CEREB CORTEX, V12, P1132, DOI 10.1093/cercor/12.11.1132
Bregman AS., 1990, AUDITORY SCENE ANAL
Darwin CJ, 1997, TRENDS COGN SCI, V1, P327, DOI 10.1016/S1364-6613(97)01097-8
Dougherty RF, 1998, NEUROREPORT, V9, P3001, DOI 10.1097/00001756-199809140-00015
Dyson BJ, 2004, J ACOUST SOC AM, V115, P280, DOI 10.1121/1.1631945
Egeth HE, 1997, ANNU REV PSYCHOL, V48, P269, DOI 10.1146/annurev.psych.48.1.269
Fishbach A, 2001, J NEUROPHYSIOL, V85, P2303
Fishbach A, 2003, J NEUROPHYSIOL, V90, P3663, DOI 10.1152/jn.00654.2003
Griffiths TD, 2002, TRENDS NEUROSCI, V25, P348, DOI 10.1016/S0166-2236(02)02191-4
Griffiths TD, 2004, NAT REV NEUROSCI, V5, P887, DOI 10.1038/nrn1538
HALLIDAY R, 1978, ELECTROEN CLIN NEURO, V45, P118, DOI 10.1016/0013-4694(78)90350-4
Hautus MJ, 2005, J ACOUST SOC AM, V117, P275, DOI 10.1121/1.1828499
Heinen K, 2005, NEUROREPORT, V16, P1483, DOI 10.1097/01.wnr.0000175611.26485.c8
Herdener M, 2007, NEUROIMAGE, V36, P194, DOI 10.1016/j.neuroimage.2007.01.050
JOHNSON BW, 2004, NEUROL CLIN NEUROPHY, P33
Johnson BW, 2006, NEUROREPORT, V17, P389, DOI 10.1097/01.wnr.0000203358.72814.df
Johnson BW, 2007, PSYCHOPHYSIOLOGY, V44, P541, DOI 10.1111/j.1469-8986.200700535.x
Johnson BW, 2003, CLIN NEUROPHYSIOL, V114, P2245, DOI 10.1016/S1388-2457(03)00247-5
JONES SJ, 1991, ELECTROEN CLIN NEURO, V80, P146, DOI 10.1016/0168-5597(91)90152-N
Krumbholz K, 2003, CEREB CORTEX, V13, P765, DOI 10.1093/cercor/13.7.765
Kubovy M, 2001, COGNITION, V80, P97, DOI 10.1016/S0010-0277(00)00155-4
LAMME VAF, 1993, VISUAL NEUROSCI, V10, P781
Lamme VAF, 2000, TRENDS NEUROSCI, V23, P571, DOI 10.1016/S0166-2236(00)01657-X
LAMME VAF, 1995, J NEUROSCI, V15, P1605
Lamme VAF, 1998, CURR OPIN NEUROBIOL, V8, P529, DOI 10.1016/S0959-4388(98)80042-1
Machens CK, 2003, J NEUROPHYSIOL, V90, P3581, DOI 10.1152/jn.00832.2003
McDonald KL, 2005, J ACOUST SOC AM, V118, P1593, DOI 10.1121/1.2000747
MCEVOY LK, 1990, AUDIOLOGY, V29, P163
Naatanen R., 1992, ATTENTION BRAIN FUNC
Obrig H., 2010, FRONT NEUROENERG, V2, P1
PAAVILAINEN P, 1989, ELECTROEN CLIN NEURO, V73, P129, DOI 10.1016/0013-4694(89)90192-2
Peterhans E, 2005, EUR J NEUROSCI, V21, P1091, DOI 10.1111/j.1460-9568.2005.03919.x
Picton TW, 2000, AUDIOL NEURO-OTOL, V5, P111, DOI 10.1159/000013875
Pulkki V, 1997, J AUDIO ENG SOC, V45, P456
Rademacher J, 2001, NEUROIMAGE, V13, P669, DOI 10.1006/nimg.2000.0714
Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800
Roelfsema PR, 2002, J COGNITIVE NEUROSCI, V14, P525, DOI 10.1162/08989290260045756
Rogers WL, 1998, PERCEPT PSYCHOPHYS, V60, P1216, DOI 10.3758/BF03206171
Schroger E, 1996, NEUROREPORT, V7, P3005, DOI 10.1097/00001756-199611250-00041
Seither-Preisler A, 2004, EUR J NEUROSCI, V19, P3073, DOI 10.1111/j.1460-9568.2004.03423.x
Seither-Preisler A, 2006, HEARING RES, V218, P50, DOI 10.1016/j.heares.2006.04.005
Sonnadara RR, 2006, BRAIN RES, V1071, P175, DOI 10.1016/j.brainres.2005.11.088
Steinhauer K, 1999, NAT NEUROSCI, V2, P191, DOI 10.1038/5757
Tata MS, 2005, EXP BRAIN RES, V167, P481, DOI 10.1007/s00221-005-0183-y
Tata MS, 2005, NEUROPSYCHOLOGIA, V43, P509, DOI 10.1016/j.neuropsychologia.2004.07.019
UNGAN P, 1989, ELECTROEN CLIN NEURO, V73, P306, DOI 10.1016/0013-4694(89)90109-0
Westbury CF, 1999, CEREB CORTEX, V9, P392, DOI 10.1093/cercor/9.4.392
YANTIS S, 1984, J EXP PSYCHOL HUMAN, V10, P601, DOI 10.1037/0096-1523.10.5.601
YANTIS S, 1990, J EXP PSYCHOL HUMAN, V16, P812, DOI 10.1037/0096-1523.16.4.812
NR 56
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2011
VL 272
IS 1-2
BP 58
EP 68
DI 10.1016/j.heares.2010.10.019
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 735ME
UT WOS:000288418100008
PM 21056097
ER
PT J
AU Lutkenhoner, B
Seither-Preisler, A
Krumbholz, K
Patterson, RD
AF Luetkenhoener, Bernd
Seither-Preisler, Annemarie
Krumbholz, Katrin
Patterson, Roy D.
TI Auditory cortex tracks the temporal regularity of sustained noisy sounds
SO HEARING RESEARCH
LA English
DT Article
ID ITERATED RIPPLED NOISE; HUMAN-BRAIN; MAGNETIC-FIELDS; NEUROMAGNETIC
RESPONSES; INTERAURAL CORRELATION; PITCH STRENGTH; HESCHLS GYRUS; EVOKED
FIELD; ONSET; TONE
AB Neuroimaging studies have revealed dramatic asymmetries between the responses to temporally regular and irregular sounds in the antero-lateral part of Heschl's gyrus. For example, the magneto-encephalography (MEG) study of Krumbholz et al. [Cereb. Cortex 13, 765-772 (2003)] showed that the transition from a noise to a similar noise with sufficient temporal regularity to provoke a pitch evoked a pronounced temporal-regularity onset response (TRon response), whereas a comparable transition in the reverse direction revealed essentially no temporal-regularity offset response (TRoff response). The current paper presents a follow-up study in which the asymmetry is examined with much greater power, and the results suggest an intriguing reinterpretation of the onset/offset asymmetry. The TR-related activity in auditory cortex appears to be composed of a transient (TRon) and a TR-related sustained response (TRsus), with a highly variable TRon/TRsus amplitude ratio. The TRoff response is generally dominated by the break-down of the TRsus activity, which occurs so rapidly as to preclude the involvement of higher-level cortical processing. The time course of the TR-related activity suggests that TR processing might be involved in monitoring the environment and alerting the brain to the onset and offset of behaviourally relevant, animate sources. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Luetkenhoener, Bernd] Munster Univ Hosp, ENT Clin, Sect Expt Audiol, D-48129 Munster, Germany.
[Seither-Preisler, Annemarie] Graz Univ, Dept Psychol, Cognit Sci Sect, Graz, Austria.
[Krumbholz, Katrin] MRC, Inst Hearing, Nottingham, England.
[Patterson, Roy D.] Univ Cambridge, Dept Physiol Dev & Neurosci, Ctr Neural Basis Hearing, Cambridge, England.
RP Lutkenhoner, B (reprint author), Munster Univ Hosp, ENT Clin, Sect Expt Audiol, Kardinal Von Galen Ring 10, D-48129 Munster, Germany.
EM Lutkenh@uni-muenster.de
FU Deutsche Forschungsgesellschaft (DFG) [Lu342/4-2]; UK Medical Research
Council [G9900369]; Austrian Academy of Sciences [524]
FX Work supported by the Deutsche Forschungsgesellschaft (DFG) under grant
Lu342/4-2, the UK Medical Research Council under grant G9900369, and the
Austrian Academy of Sciences as APART project 524.
CR Bendor D, 2005, NATURE, V436, P1161, DOI 10.1038/nature03867
BILSEN FA, 1966, ACUSTICA, V17, P295
Budd TW, 1998, INT J PSYCHOPHYSIOL, V31, P51, DOI 10.1016/S0167-8760(98)00040-3
Chait M, 2007, J NEUROPHYSIOL, V98, P224, DOI 10.1152/jn.00359.2007
Chait M, 2005, J NEUROSCI, V25, P8518, DOI 10.1523/JNEUROSCI.1266-05.2005
Chait M, 2007, J NEUROSCI, V27, P5207, DOI 10.1523/JNEUROSCI.0318-07.2007
Chait M, 2008, BRAIN RES, V1213, P78, DOI 10.1016/j.brainres.2008.03.050
Eggermont JJ, 2001, HEARING RES, V157, P1, DOI 10.1016/S0378-5955(01)00259-3
Griffiths TD, 2010, CURR BIOL, V20, P1128, DOI 10.1016/j.cub.2010.04.044
Griffiths TD, 2001, NAT NEUROSCI, V4, P633, DOI 10.1038/88459
Griffiths TD, 1998, NAT NEUROSCI, V1, P422, DOI 10.1038/1637
Gutschalk A, 2007, CEREB CORTEX, V17, P552, DOI 10.1093/cercor/bhj180
Gutschalk A, 2002, NEUROIMAGE, V15, P207, DOI 10.1006/nimg.2001.0949
Hall DA, 2009, CEREB CORTEX, V19, P576, DOI 10.1093/cercor/bhn108
HARI R, 1980, EXP BRAIN RES, V40, P237
HARI R, 1987, AUDIOLOGY, V26, P31
JOUTSINIEMI SL, 1989, AUDIOLOGY, V28, P325
JULESZ B, 1976, BIOL CYBERN, V23, P25, DOI 10.1007/BF00344148
KAUKORANTA E, 1987, EXP BRAIN RES, V69, P19
Krumbholz K, 2003, CEREB CORTEX, V13, P765, DOI 10.1093/cercor/13.7.765
Lammertmann C, 2001, CLIN NEUROPHYSIOL, V112, P499, DOI 10.1016/S1388-2457(00)00551-4
Lutkenhoner B, 2010, NEUROIMAGE, V52, P86, DOI 10.1016/j.neuroimage.2010.03.053
Lutkenhoner B, 2001, AUDIOL NEURO-OTOL, V6, P263, DOI 10.1159/000046132
Lutkenhoner B, 1998, ELECTROEN CLIN NEURO, V106, P322, DOI 10.1016/S0013-4694(97)00139-9
Lutkenhoner B, 1999, RECENT ADV BIOMAGNET, P256
Pardo PJ, 1999, NEUROREPORT, V10, P3081, DOI 10.1097/00001756-199909290-00038
Patterson RD, 1996, J ACOUST SOC AM, V100, P3286, DOI 10.1121/1.417212
Patterson RD, 2002, NEURON, V36, P767, DOI 10.1016/S0896-6273(02)01060-7
Penagos H, 2004, J NEUROSCI, V24, P6810, DOI 10.1523/JNEUROSCI.0383-04.2004
PFEFFERB.A, 1971, PSYCHOPHYSIOLOGY, V8, P332, DOI 10.1111/j.1469-8986.1971.tb00463.x
PICTON TW, 1978, ELECTROEN CLIN NEURO, V45, P198, DOI 10.1016/0013-4694(78)90004-4
PICTON TW, 1978, ELECTROEN CLIN NEURO, V45, P186, DOI 10.1016/0013-4694(78)90003-2
RUPP A, 2004, AUDITORY SIGNAL PROC, P145
Schonwiesner M, 2008, EXP BRAIN RES, V187, P97, DOI 10.1007/s00221-008-1286-z
Seither-Preisler A, 2004, EUR J NEUROSCI, V19, P3073, DOI 10.1111/j.1460-9568.2004.03423.x
Seither-Preisler A, 2006, HEARING RES, V218, P50, DOI 10.1016/j.heares.2006.04.005
Takahashi H, 2004, NEUROREPORT, V15, P1565, DOI 10.1097/01.wnr.0000134848.63755.5c
Warren JD, 2003, P NATL ACAD SCI USA, V100, P10038, DOI 10.1073/pnas.1730682100
Yost WA, 1996, J ACOUST SOC AM, V99, P1066, DOI 10.1121/1.414593
Yost WA, 1996, J ACOUST SOC AM, V100, P3329, DOI 10.1121/1.416973
Yost WA, 1996, J ACOUST SOC AM, V100, P511, DOI 10.1121/1.415873
NR 41
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2011
VL 272
IS 1-2
BP 85
EP 94
DI 10.1016/j.heares.2010.10.013
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 735ME
UT WOS:000288418100010
PM 21073933
ER
PT J
AU Stronks, HC
Versnel, H
Prijs, VF
Grolman, W
Klis, SFL
AF Stronks, H. Christiaan
Versnel, Huib
Prijs, Vera F.
Grolman, Wilko
Klis, Sjaak F. L.
TI Effects of electrical stimulation on the acoustically evoked
auditory-nerve response in guinea pigs with a high-frequency hearing
loss
SO HEARING RESEARCH
LA English
DT Article
ID BASILAR-MEMBRANE MOTION; SPIRAL GANGLION NEURONS; COCHLEAR IMPLANT;
ETHACRYNIC-ACID; ELECTROACOUSTIC STIMULATION; TUNING CURVES; KANAMYCIN;
FIBERS; CAT; DEGENERATION
AB Criteria for cochlear implantation keep expanding and people with substantial residual low-frequency hearing are considered candidates for implantation nowadays. Therefore, electro-acoustical stimulation in the same ear (EAS) is receiving increasing interest. We have investigated the effects of intracochlear electrical stimulation on acoustically evoked auditory-nerve activity, using a forward masking paradigm. The stimulation electrode was placed in the basal turn of the cochlea. Compound action potential (CAP) recordings were performed in guinea pigs with severe high-frequency hearing loss and in normal-hearing control animals. In normal-hearing animals, electrical stimulation generally suppressed CAPs, especially at high acoustic frequencies (8 and 16 kHz) and low sound levels. At low frequencies (0.5 and 1 kHz), suppression was observed only at high sound levels. In animals with a high-frequency hearing loss, suppression of CAPs at low frequencies was substantially less compared to control animals, even at high current levels and temporal overlap of acoustic and electric stimuli. Hence, effects of electrical stimulation substantially differed between normal-hearing animals and animals with a high-frequency hearing loss. These findings stress the need for a proper animal model when investigating EAS. We conclude that in case of high-frequency loss, the basal part of the cochlea can be stimulated electrically with little effect on responses to low-frequency acoustic stimuli. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Stronks, H. Christiaan; Versnel, Huib; Prijs, Vera F.; Grolman, Wilko; Klis, Sjaak F. L.] Univ Med Ctr Utrecht, Rudolf Magnus Inst Neurosci, Dept Otorhinolaryngol Head & Neck Surg, NL-3508 GA Utrecht, Netherlands.
RP Klis, SFL (reprint author), Univ Med Ctr Utrecht, Rudolf Magnus Inst Neurosci, Dept Otorhinolaryngol Head & Neck Surg, Room G-02-531,POB 85500, NL-3508 GA Utrecht, Netherlands.
EM h.stronk1@jhmi.edu; h.versnel@umcutrecht.nl; v.prijs@umcutrecht.nl;
w.grolman@umcutrecht.nl; s.klis@umcutrecht.nl
FU Heinsius-Houbolt Fund
FX This study was supported by the Heinsius-Houbolt Fund. The authors wish
to thank John de Groot, Theognosia Chimona and Ferry Hendriksen for
performing the histology. The authors are grateful to Rene van de Vosse
for his technical assistance and for developing the data acquisition and
analysis software. Rik Mansvelt Beck is thanked for his technical
assistance.
CR ABBAS PJ, 2004, COCHLEAR IMPLANTS AU, P149
Adunka O, 2004, LARYNGOSCOPE, V114, P1237, DOI 10.1097/00005537-200407000-00018
Agterberg MJH, 2010, HEARING RES, V269, P169, DOI 10.1016/j.heares.2010.06.015
BALL L L, 1982, Journal of Auditory Research, V22, P107
Biedron S, 2009, OTOL NEUROTOL, V30, P414, DOI 10.1097/MAO.0b013e3181977b8d
BRUMMETT RE, 1979, ARCH OTOLARYNGOL, V105, P240
Coco A, 2007, HEARING RES, V225, P60, DOI 10.1016/j.heares.2006.12.004
Cohen NL, 2004, AUDIOL NEURO-OTOL, V9, P197, DOI 10.1159/000078389
DEGROOT JCMJ, 1987, ACTA OTO-LARYNGOL, V104, P234, DOI 10.3109/00016488709107323
DESAUVAGE RC, 1983, J ACOUST SOC AM, V73, P616
Dodson HC, 1997, J NEUROCYTOL, V26, P541, DOI 10.1023/A:1015434524040
EGGERMONT JJ, 1976, J ACOUST SOC AM, V60, P1132, DOI 10.1121/1.381214
EVANS EF, 1972, J PHYSIOL-LONDON, V226, P263
Fraysse B, 2006, OTOL NEUROTOL, V27, P624, DOI 10.1097/01.mao.0000226289.04048.0f
Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012
Gantz Bruce J, 2006, Audiol Neurootol, V11 Suppl 1, P63, DOI 10.1159/000095616
Gantz BJ, 2005, LARYNGOSCOPE, V115, P796, DOI 10.1097/01.MLG.0000157695.07536.D2
Gantz BJ, 2009, AUDIOL NEURO-OTOL, V14, P32, DOI 10.1159/000206493
GOLDSTEIN MH, 1958, J ACOUST SOC AM, V30, P107, DOI 10.1121/1.1909497
Gstoettner WK, 2008, ACTA OTO-LARYNGOL, V128, P968, DOI 10.1080/00016480701805471
JAVEL E, 1994, HEARING RES, V81, P167, DOI 10.1016/0378-5955(94)90163-5
KIANG NYS, 1967, J ACOUST SOC AM, V42, P1341, DOI 10.1121/1.1910723
KIRK DL, 1994, HEARING RES, V74, P38, DOI 10.1016/0378-5955(94)90174-0
Macherey O, 2008, JARO-J ASSOC RES OTO, V9, P241, DOI 10.1007/s10162-008-0112-4
McAnally KI, 1997, HEARING RES, V106, P146, DOI 10.1016/S0378-5955(97)00012-9
Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X
Nuttall AL, 1995, HEARING RES, V92, P170, DOI 10.1016/0378-5955(95)00216-2
Olson AD, 2008, J AM ACAD AUDIOL, V19, P657, DOI 10.3766/jaaa.19.9.2
Romand R, 1984, ULTRASTRUCTURAL ATLA, P165
Stengs CHM, 1997, HEARING RES, V111, P103, DOI 10.1016/S0378-5955(97)00095-6
Stronks HC, 2010, HEARING RES, V259, P64, DOI 10.1016/j.heares.2009.10.004
Stronks HC, 2010, HEARING RES, V260, P20, DOI 10.1016/j.heares.2009.10.015
Talbot KN, 2008, CLIN OTOLARYNGOL, V33, P536, DOI 10.1111/j.1749-4486.2008.01822.x
Turner C, 2008, J REHABIL RES DEV, V45, P769, DOI 10.1682/JRRD.2007.05.0065
Turner CW, 2008, HEARING RES, V242, P164, DOI 10.1016/j.heares.2007.11.008
VANDEELEN GW, 1986, ACTA OTO-LARYNGOL, V101, P207, DOI 10.3109/00016488609132829
VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5
van Ruijven MWM, 2004, HEARING RES, V197, P44, DOI 10.1016/j.heares.2004.07.014
Versnel H, 2007, HEARING RES, V231, P1, DOI 10.1016/j.heares.2007.03.003
WEST BA, 1973, ARCH OTOLARYNGOL, V98, P32
WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0
Wilson BS, 2008, J REHABIL RES DEV, V45, P695, DOI 10.1682/JRRD.2007.10.0173
Wysocki J, 2005, HEARING RES, V199, P103, DOI 10.1016/j.heares.2004.08.008
XU SA, 1993, HEARING RES, V70, P205, DOI 10.1016/0378-5955(93)90159-X
XUE SW, 1995, J ACOUST SOC AM, V97, P3030, DOI 10.1121/1.413103
NR 45
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2011
VL 272
IS 1-2
BP 95
EP 107
DI 10.1016/j.heares.2010.10.012
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 735ME
UT WOS:000288418100011
PM 21044671
ER
PT J
AU Hirose, K
Sato, E
AF Hirose, Keiko
Sato, Eisuke
TI Comparative analysis of combination kanamycin-furosemide versus
kanamycin alone in the mouse cochlea
SO HEARING RESEARCH
LA English
DT Article
ID HAIR CELL-DEATH; AMINOGLYCOSIDE-INDUCED OTOTOXICITY; BUMETANIDE-INDUCED
ENLARGEMENT; VESTIBULAR SENSORY EPITHELIA; STRIA VASCULARIS;
ETHACRYNIC-ACID; INNER-EAR; GUINEA-PIGS; AUDITORY-NERVE; HEARING-LOSS
AB Combinations of aminoglycosides and loop diuretics have been known to have a synergistic effect in ototoxic injury. Because murine hair cells are relatively resistant to ototoxicity compared to those of other mammals, investigators have turned to combination therapies to create ototoxic lesions in the mouse inner ear. In this paper, we perform a systematic comparison of hearing thresholds, hair cell damage and monocyte migration into the mouse cochlea after kanamycin versus combined kanamycin/furosemide and explore the pathophysiology of enhanced hair cell loss in aminoglycoside ototoxicity in the presence of loop diuretic. Combined kanamycin-furosemide resulted in elevation of threshold not only in the high frequencies, but across all frequencies with more extensive loss of outer hair cells when compared to kanamycin alone. The stria vascularis was severely atrophied and stellate cells in the spiral limbus were missing in kanamycin-furosemide exposed mice while these changes were not observed in mice receiving kanamycin alone. Monocytes and macrophages were recruited in large numbers to the spiral ligament and spiral ganglion in these mice. Combination therapy resulted in a greater number of macrophages in total, and many more macrophages were present further apically when compared to mice given kanamycin alone. Combined kanamycin-furosemide provides an effective method of addressing the relative resistance to ototoxicity that is observed in most mouse strains. As the mouse becomes increasingly more common in studies of hearing loss, and combination therapies gain popularity, recognition of the overall effects of combined aminoglycoside-loop diuretic therapy will be critical to interpretation of the interventions that follow. (C) 2010 Published by Elsevier B.V.
C1 [Hirose, Keiko] Washington Univ, Dept Otolaryngol, St Louis, MO 63110 USA.
[Sato, Eisuke] Nagoya Univ, Sch Med, Dept Otorhinolaryngol, Nagoya, Aichi 466, Japan.
RP Hirose, K (reprint author), Washington Univ, Dept Otolaryngol, 660 S Euclid Ave,Campus Box 8115, St Louis, MO 63110 USA.
EM keiko_hirose@post.harvard.edu
FU NIH [K08 DC005761]; Triple T Foundation; Nancy Lerner Fisher
FX We thank Dr. Grahame Kidd for his assistance with confocal microscopy
and Elizabeth H. Shick for her technical assistance. This work was
funded by NIH grant K08 DC005761 and a grant from the Triple T
Foundation and by Nancy Lerner Fisher.
CR Abrashkin KA, 2006, HEARING RES, V218, P20, DOI 10.1016/j.heares.2006.04.001
Agterberg MJH, 2008, HEARING RES, V244, P25, DOI 10.1016/j.heares.2008.07.004
Alam SA, 1998, TOHOKU J EXP MED, V186, P79, DOI 10.1620/tjem.186.79
ARNOLD W, 1981, ACTA OTO-LARYNGOL, V91, P399, DOI 10.3109/00016488109138521
ASAKUMA S, 1980, OTOLARYNG HEAD NECK, V88, P188
Azuma H, 2002, ACTA OTO-LARYNGOL, V122, P816, DOI 10.1080/003655402/000028051
BOCK GR, 1983, HEARING RES, V9, P255, DOI 10.1016/0378-5955(83)90030-8
BRUMMETT RE, 1981, REV INFECT DIS, V3, pS216
BRUMMETT RE, 1979, ARCH OTOLARYNGOL, V105, P240
Campbell KCM, 2007, HEARING RES, V226, P92, DOI 10.1016/j.heares.2006.11.012
Cheng Alan G, 2005, Curr Opin Otolaryngol Head Neck Surg, V13, P343, DOI 10.1097/01.moo.0000186799.45377.63
Coffin AB, 2009, HEARING RES, V253, P42, DOI 10.1016/j.heares.2009.03.004
Cunningham LL, 2004, J NEUROBIOL, V60, P89, DOI 10.1002/neu.20006
Cunningham LL, 2002, J NEUROSCI, V22, P8532
Dai CF, 2008, HEARING RES, V235, P114, DOI 10.1016/j.heares.2007.10.010
Dai CF, 2006, HEARING RES, V213, P64, DOI 10.1016/j.heares.2005.11.011
DEGROOT JCMJ, 1990, HEARING RES, V50, P35, DOI 10.1016/0378-5955(90)90031-J
Ehret G, 1983, AUDITORY PSYCHOBIOLO, P169
Forge A, 1981, Scand Audiol Suppl, V14 Suppl, P173
Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X
FORGE A, 1987, HEARING RES, V31, P253, DOI 10.1016/0378-5955(87)90195-X
GRATACAP B, 1985, ACTA OTO-LARYNGOL, V99, P339, DOI 10.3109/00016488509108920
Hartman BH, 2009, JARO-J ASSOC RES OTO, V10, P321, DOI 10.1007/s10162-009-0162-2
Hashino E, 2000, BRAIN RES, V887, P90, DOI 10.1016/S0006-8993(00)02971-1
Hequembourg S, 2001, JARO, V2, P118
HIEL H, 1992, HEARING RES, V57, P157, DOI 10.1016/0378-5955(92)90148-G
Higashiyama K, 2003, HEARING RES, V186, P1, DOI 10.1016/S0378-5955(03)00226-0
Hirose K, 2005, J COMP NEUROL, V489, P180, DOI 10.1002/cne.20619
Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4
Imamura S, 2003, JARO, V4, P196, DOI 10.1007/s10162-002-2037-7
Jiang HY, 2005, J NEUROSCI RES, V79, P644, DOI 10.1002/jnr.20392
KAKA JS, 1984, DRUG INTEL CLIN PHAR, V18, P235
Karasawa T, 2008, J CELL SCI, V121, P2871, DOI 10.1242/jcs.023705
Kawamoto K, 2004, MOL THER, V9, P173, DOI 10.1016/j.ymthe.2003.11.020
KOMUNE S, 1982, ARCH OTOLARYNGOL, V108, P334
Lang H, 2003, JARO, V4, P164, DOI 10.1007/s10162-002-2056-4
LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307
Matsui JI, 2002, J NEUROSCI, V22, P1218
MihelicRapp M, 1996, EUR ARCH OTO-RHINO-L, V253, P411
Oesterle EC, 2008, JARO-J ASSOC RES OTO, V9, P65, DOI 10.1007/s10162-007-0106-7
OHTANI I, 1978, ORL J OTO-RHINO-LARY, V40, P53
PIKE DA, 1980, HEARING RES, V3, P79, DOI 10.1016/0378-5955(80)90009-X
RICHARDSON GP, 1991, HEARING RES, V53, P293, DOI 10.1016/0378-5955(91)90062-E
Rizzi Mark Douglas, 2007, Curr Opin Otolaryngol Head Neck Surg, V15, P352, DOI 10.1097/MOO.0b013e3282ef772d
Rybak LP, 2005, DRUG DISCOV TODAY, V10, P1313, DOI 10.1016/S1359-6446(05)03552-X
RYBAK LP, 1991, EUR ARCH OTO-RHINO-L, V248, P353
RYBAK LP, 1993, OTOLARYNG CLIN N AM, V26, P829
Ryugo DK, 2010, J COMP NEUROL, V518, P1046, DOI 10.1002/cne.22262
Sakaguchi N, 1998, HEARING RES, V118, P114, DOI 10.1016/S0378-5955(98)00022-7
SANTI PA, 1983, HEARING RES, V12, P151, DOI 10.1016/0378-5955(83)90103-X
Schatz A, 1944, P SOC EXP BIOL MED, V55, P66
SEWELL WF, 1984, HEARING RES, V14, P305, DOI 10.1016/0378-5955(84)90057-1
SHEPHERD RK, 1994, HEARING RES, V81, P150, DOI 10.1016/0378-5955(94)90162-7
Stone JS, 1996, J NEUROSCI, V16, P6157
Tabuchi K, 2007, NEUROSCIENCE, V149, P213, DOI 10.1016/j.neuroscience.2007.06.061
Taylor RR, 2008, JARO-J ASSOC RES OTO, V9, P44, DOI 10.1007/s10162-007-0105-8
HUY PTB, 1983, HEARING RES, V11, P191, DOI 10.1016/0378-5955(83)90078-3
Versnel H, 2007, HEARING RES, V231, P1, DOI 10.1016/j.heares.2007.03.003
Wang J, 2003, J NEUROSCI, V23, P8596
Wang Q, 2009, JARO-J ASSOC RES OTO, V10, P205, DOI 10.1007/s10162-009-0160-4
Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028
WARCHOL ME, 2010, HEAR RES
WEISLEDER P, 1993, J COMP NEUROL, V331, P97, DOI 10.1002/cne.903310106
Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3
XU SA, 1993, HEARING RES, V70, P205, DOI 10.1016/0378-5955(93)90159-X
NR 65
TC 12
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2011
VL 272
IS 1-2
BP 108
EP 116
DI 10.1016/j.heares.2010.10.011
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 735ME
UT WOS:000288418100012
PM 21044672
ER
PT J
AU Marcusohn, Y
Dirckx, JJJ
AF Marcusohn, Yael
Dirckx, Joris J. J.
TI Postnatal development of the middle ear in New Zealand White rabbits:
Ossicles and tympanic ring
SO HEARING RESEARCH
LA English
DT Article
ID HUMAN TEMPORAL BONE; STRUCTURAL MATURATION; CONDUCTING APPARATUS;
MONGOLIAN GERBIL; MEMBRANE; HEARING; MOUSE; RAT
AB We studied the postnatal development of the middle ear (ME) in New Zealand White rabbits. Bullae were scanned using a desktop X-ray microtomograph and 3D models of the ME ossicles as well as the tympanic ring (TR) were prepared. In 0,1, 2 days old rabbits the ossification process was incomplete. We can therefore present quantitative data obtained from older rabbits (ages: 4-180 days) and a qualitative description at the earlier ages. For a number of the measured parameters an exponential curve could be fitted to the data, and the time constant (at which 63% of the final value was obtained) was calculated. The length of the manubrium increased rapidly in a period of about 15 postnatal days, from 1.73 mm to 4.08 mm. The distance between the tip of the malleus and the TR increased rapidly until day 30, from nearly 0 to 1.40 mm. The increase of the surface area within the TR was small as compared to inter-specimen variance, but the ratio [tympanic membrane area]/[TR area] clearly increased (from 1.00 to 1.11), with a time constant of 8.3 days. The area of the stapes footplate (FP) increased rapidly in about 15 days (from 0.72 mm(2) to 1.49 mm(2), time constant 4.8 days). The TR was nearly developed at birth whereas the stapes footplate was quite underdeveloped. The distance between the tip of the malleus and the incudomallear rotation axis increased rapidly until day 20 and varied between 3.47 mm and 5.00 mm. The distance between the tip of the incus and the rotation axis increased until day 133, from 1.39 mm to 1.69 mm. Our study shows that in rabbits the ME is underdeveloped at birth and that the functional geometry develops over the same time course as the ability to hear. The conical shape of the tympanic membrane (TM) is formed by retraction and growth of the manubrium, mainly during the first 40 days after birth. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Marcusohn, Yael; Dirckx, Joris J. J.] Univ Antwerp, Lab Biomed Phys, B-2020 Antwerp, Belgium.
RP Dirckx, JJJ (reprint author), Univ Antwerp, Lab Biomed Phys, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
EM joris.dirckx@ua.ac.be
CR Aernouts J, 2010, HEARING RES, V263, P177, DOI 10.1016/j.heares.2009.09.007
Anggard L., 1965, ACTA OTOLARYNGOLOGIC, V203, P1
ARS B, 1989, J LARYNGOL OTOL, V103, P16, DOI 10.1017/S0022215100107947
COHEN YE, 1992, HEARING RES, V62, P187, DOI 10.1016/0378-5955(92)90185-P
DECRAEMER W, 2000, ARO ABS, V408
DECRAEMER WF, 1991, HEARING RES, V51, P107, DOI 10.1016/0378-5955(91)90010-7
Decraemer WF, 2003, JARO, V4, P250, DOI 10.1007/s10162-002-3030-x
Dirckx JJJ, 2001, HEARING RES, V157, P124, DOI 10.1016/S0378-5955(01)00290-8
EBY TL, 1986, ANN OTO RHINOL LARYN, V95, P356
Fay J, 2005, J BIOMECH, V38, P1807, DOI 10.1016/j.jbiomech.2004.08.022
FOSS I, 1974, ACTA OTO-LARYNGOL, V77, P202, DOI 10.3109/00016487409124618
HEFFNER H, 1980, J ACOUST SOC AM, V68, P1584, DOI 10.1121/1.385213
HUANGFU M, 1983, J MORPHOL, V176, P249, DOI 10.1002/jmor.1051760302
Overstreet EH, 2002, J ACOUST SOC AM, V111, P261, DOI 10.1121/1.1420382
Puria S, 2010, HEARING RES, V263, P183, DOI 10.1016/j.heares.2009.10.013
SCHONFELDER J, 1990, ANAT ANZEIGER, V170, P213
Schönfelder J, 1985, Gegenbaurs Morphol Jahrb, V131, P31
THOMAS JP, 1990, OTOLARYNG HEAD NECK, V103, P427
Whyte J, 2008, HISTOL HISTOPATHOL, V23, P1049
Whyte JR, 2002, CELLS TISSUES ORGANS, V171, P241, DOI 10.1159/000063124
WHYTE OJR, 2008, ACTA OTORRINOLARINGO, V59, P384, DOI 10.1016/S0001-6519(08)75986-7
Yokoyama T, 1999, LARYNGOSCOPE, V109, P927, DOI 10.1097/00005537-199906000-00016
ZIMMER WM, 1994, ANAT REC, V239, P475, DOI 10.1002/ar.1092390413
NR 23
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2011
VL 272
IS 1-2
BP 148
EP 156
DI 10.1016/j.heares.2010.10.005
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 735ME
UT WOS:000288418100016
PM 20969938
ER
PT J
AU Paglialonga, A
Barozzi, S
Brambilla, D
Soi, D
Cesarani, A
Gagliardi, C
Comiotto, E
Spreafico, E
Tognola, G
AF Paglialonga, Alessia
Barozzi, Stefania
Brambilla, Daniele
Soi, Daniela
Cesarani, Antonio
Gagliardi, Chiara
Comiotto, Elisabetta
Spreafico, Emanuela
Tognola, Gabriella
TI Cochlear active mechanisms in young normal-hearing subjects affected by
Williams syndrome: Time-frequency analysis of otoacoustic emissions
SO HEARING RESEARCH
LA English
DT Article
ID GUINEA-PIG COCHLEA; OUTER HAIR-CELLS; BEUREN-SYNDROME; ELASTIC FIBERS;
DEVELOPMENTAL DISORDER; WAVELET ANALYSIS; FINE-STRUCTURE; HYPERACUSIS;
CHILDREN; INDIVIDUALS
AB The aim of this study was to investigate the functionality of cochlear active mechanisms in normal-hearing subjects affected by Williams syndrome (WS). Transient evoked otoacoustic emissions (TEOAEs) were recorded in a group of young WS subjects and a group of typically developing control subjects, all having normal-hearing thresholds and normal middle-ear functionality. We also analysed the narrow-band frequency components of TEOAEs, extracted from the broad-band TEOAE recordings by using a time frequency analysis algorithm based on the Wavelet transform. We observed that TEOAEs and the frequency components extracted from TEOAEs measured in WS subjects had significantly lower energy compared to the controls. Also, the narrow-band frequency components of TEOAEs measured in WS subjects had slightly increased latency compared to the controls. Overall, results would suggest a subtle (i.e., sub-clinical) dysfunction of the cochlear active mechanisms in WS subjects with otherwise normal hearing. Also, results point out the relevance of using otoacoustic emissions in the audiological evaluation and monitoring of WS subjects to early identify possible subtle auditory dysfunctions, before the onset of mild or moderate hearing loss that could exacerbate language or cognitive impairments associated with WS. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Paglialonga, Alessia; Tognola, Gabriella] Consiglio Nazl Ric ISIB CNR, Ist Ingn Biomed, I-20133 Milan, Italy.
[Barozzi, Stefania; Soi, Daniela; Cesarani, Antonio] Univ Milan, Audiol Unit, Dept Specialist Surg Sci, Fdn IRCCS Ca Granda,Osped Maggiore Policlin, I-20122 Milan, Italy.
[Brambilla, Daniele; Comiotto, Elisabetta; Spreafico, Emanuela] IRCCS Eugenio Medea, Serv Audiofonol, I-23842 Bosisio Parini, Lecco, Italy.
[Gagliardi, Chiara] IRCCS Eugenio Medea, Unit Neurorehabil 1, I-23842 Bosisio Parini, Lecco, Italy.
RP Tognola, G (reprint author), Politecn Milan, Consiglio Nazl Ric, Dipartimento Bioingn, Ist Ingn Biomed, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy.
EM alessia.paglialonga@polimi.it; stefania.barozzi@unimi.it;
daniele.brambilla@bp.lnf.it; danisoi@yahoo.it;
antonio.cesarani@unimi.it; chiara.gagliardi@bp.lnf.it;
elisabetta.comiotto@bp.lnf.it; emanuela.spreafico@bp.lnf.it;
gabriella.tognola@polimi.it
RI Paglialonga, Alessia/F-9847-2010; Tognola, Gabriella/B-9025-2015
OI Paglialonga, Alessia/0000-0002-1341-2560;
CR Cunniff C, 2001, PEDIATRICS, V107, P1192
American Academy of Pediatrics, 2002, PEDIATRICS, V109, P329
American Psychiatric Association, 2000, DIAGN STAT MAN MENT, P49
American Speech-Language-Hearing Association (ASHA), 2005, GUID MAN PUR TON THR
Andoh M, 2004, J ACOUST SOC AM, V116, P417, DOI 10.1121/1.1763599
Arteaga-Solis E, 2000, CELL STRUCT FUNCT, V25, P69, DOI 10.1247/csf.25.69
Ashmore J, 2010, HEARING RES, V266, P1, DOI 10.1016/j.heares.2010.05.001
Attias Joseph, 2008, Journal of Basic and Clinical Physiology and Pharmacology, V19, P193
Bellugi U, 2000, J COGNITIVE NEUROSCI, V12, P7, DOI 10.1162/089892900561959
Bess FH, 1998, EAR HEARING, V19, P339, DOI 10.1097/00003446-199810000-00001
BORG I, 1995, J MED GENET, V32, P692, DOI 10.1136/jmg.32.9.692
BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003
Cherniske EM, 2004, AM J MED GENET A, V131A, P255, DOI 10.1002/ajmg.a.30400
Cohen J., 1988, STAT POWER ANAL BEHA, P19
DALLOS P, 1992, J NEUROSCI, V12, P4575
Dodd HF, 2009, J MENT HEALTH RES IN, V2, P89, DOI 10.1080/19315860902725867
Dridi SM, 1999, AM J MED GENET, V87, P134, DOI 10.1002/(SICI)1096-8628(19991119)87:2<134::AID-AJMG4>3.0.CO;2-R
Dykens EM, 2003, DEV NEUROPSYCHOL, V23, P291, DOI 10.1207/S15326942DN231&2_13
EWART AK, 1993, NAT GENET, V5, P11, DOI 10.1038/ng0993-11
FRANZ P, 1993, ACTA OTO-LARYNGOL, V113, P755, DOI 10.3109/00016489309135896
Frigerio E, 2006, NEUROPSYCHOLOGIA, V44, P254, DOI 10.1016/j.neuropsychologia.2005.05.008
GELFAND SA, 2008, ESSENTIALS AUDIOLOGY, P225
GORGA MP, 1993, J ACOUST SOC AM, V93, P2050, DOI 10.1121/1.406691
Gothelf D, 2006, NEUROLOGY, V66, P390, DOI 10.1212/01.wnl.0000196643.35395.5f
GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
Gronski TJ, 1997, J BIOL CHEM, V272, P12189, DOI 10.1074/jbc.272.18.12189
Hammond TH, 1998, OTOLARYNG HEAD NECK, V119, P314, DOI 10.1016/S0194-5998(98)70071-3
HARRIS FP, 1991, AUDIOLOGY, V30, P135
Hopyan T, 2001, CHILD NEUROPSYCHOL, V7, P42, DOI 10.1076/chin.7.1.42.3147
Jedrzejczak WW, 2005, HEARING RES, V205, P249, DOI 10.1016/j.heares.2005.03.024
JERGER C, 1970, ARCH OTOLARYNGOL, V92, P311
Johnson LB, 2001, J OTOLARYNGOL, V30, P90, DOI 10.2310/7070.2001.20811
Katori Y, 1996, CELL TISSUE RES, V284, P473, DOI 10.1007/s004410050608
Kemp DT, 2002, BRIT MED BULL, V63, P223, DOI 10.1093/bmb/63.1.223
Kielty CM, 2002, J CELL SCI, V115, P2817
Kitamura Y, 2002, HEARING RES, V174, P142, DOI 10.1016/S0378-5955(02)00651-2
KLEIN AJ, 1990, J SPEECH HEAR DISORD, V55, P339
Levitin DJ, 2005, ANN NY ACAD SCI, V1060, P325, DOI 10.1196/annals.1360.027
Levitin DJ, 2005, J CHILD PSYCHOL PSYC, V46, P514, DOI 10.1111/j.1469-7610.2004.00376.x
Leyfer O, 2009, J NEURODEV DISORD, V1, P4, DOI 10.1007/s11689-009-9003-1
Leyfer OT, 2006, AM J MED GENET B, V141B, P615, DOI 10.1002/ajmg.b.30344
Lucertini M, 2002, J ACOUST SOC AM, V111, P972, DOI 10.1121/1.1432979
MALLAT SG, 1989, IEEE T PATTERN ANAL, V11, P674, DOI 10.1109/34.192463
Marler JA, 2006, MIDW M ASS RES OT BA
Marler JA, 2005, AM J MED GENET A, V138A, P318, DOI 10.1002/ajmg.a.30970
Marler JA, 2010, AM J MED GENET C, V154C, P249, DOI 10.1002/ajmg.c.30262
Marozas V, 2006, IEEE T BIO-MED ENG, V53, P1586, DOI 10.1109/TBME.2006.876626
Martens MA, 2008, J CHILD PSYCHOL PSYC, V49, P576, DOI 10.1111/j.1469-7610.2008.01887.x
MATSUNE S, 1992, ANN OTO RHINOL LARYN, V101, P163
Mervis CB, 1999, EMORY S COG, P193
Mervis CB, 2000, MENT RETARD DEV D R, V6, P148
Mervis CB, 1999, AM J HUM GENET, V65, P1222, DOI 10.1086/302633
Meyer J, 1998, J NEUROSCI, V18, P6748
Meyer J, 2005, HEARING RES, V202, P97, DOI 10.1016/j.heares.2004.11.013
MEYERSON MD, 1987, DEV MED CHILD NEUROL, V29, P258
MIKUNI H, 1994, ARCH HISTOL CYTOL, V57, P187, DOI 10.1679/aohc.57.187
Moleti A, 2008, J ACOUST SOC AM, V124, P2984, DOI 10.1121/1.2977737
Moleti A, 2005, J ACOUST SOC AM, V118, P1576, DOI 10.1121/1.2000769
Morris CA, 1999, HANDBOOK OF NEURODEVELOPMENTAL AND GENETIC DISORDERS IN CHILDREN, P555
NIGAM A, 1994, J LARYNGOL OTOL, V108, P494
OSBORNE MP, 1990, ACTA OTO-LARYNGOL, V110, P37, DOI 10.3109/00016489009122513
Oxenham AJ, 2003, EAR HEARING, V24, P352, DOI 10.1097/01.AUD.0000090470.73934.78
Paglialonga A, 2007, J ACOUST SOC AM, V122, P2174, DOI 10.1121/1.2773944
Paglialonga A, 2011, AURIS NASUS LARYNX, V38, P33, DOI 10.1016/j.anl.2010.04.006
Phillips CE, 2004, CORTEX, V40, P85, DOI 10.1016/S0010-9452(08)70922-5
PLINKERT PK, 1994, EUR ARCH OTO-RHINO-L, V251, P95
Pober BR, 2008, J CLIN INVEST, V118, P1606, DOI 10.1172/JCI35309
Pober BR, 2010, NEW ENGL J MED, V362, P239, DOI 10.1056/NEJMra0903074
Pober BR, 1996, CHILD ADOL PSYCH CL, V5, P929
Porter MA, 2006, DEV NEUROPSYCHOL, V30, P771, DOI 10.1207/s15326942dn3003_1
PREUS M, 1984, CLIN GENET, V25, P422
PREYER S, 1995, HEARING RES, V89, P187, DOI 10.1016/0378-5955(95)00136-5
PRIEVE BA, 1993, J ACOUST SOC AM, V93, P3308, DOI 10.1121/1.405715
PROBST R, 1993, BRIT J AUDIOL, V27, P85, DOI 10.3109/03005369309077896
PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897
ROBINETTE MS, 2002, OTOACOUSTIC EMISSION, P156
Schubert C, 2009, CELL MOL LIFE SCI, V66, P1178, DOI 10.1007/s00018-008-8401-y
Shanks J, 2009, HDB CLIN AUDIOLOGY, P157
Shera CA, 2005, J ACOUST SOC AM, V118, P287, DOI 10.1121/1.1895025
Sisto R, 2002, J ACOUST SOC AM, V111, P297, DOI 10.1121/1.1428547
Stromme P, 2002, J CHILD NEUROL, V17, P269, DOI 10.1177/088307380201700406
TAKUMIDA M, 1993, ORL J OTO-RHINO-LARY, V55, P77
TOGNOLA G, 2001, SCAND AUDIOL S, V52, P135
Tognola G, 1998, IEEE T BIO-MED ENG, V45, P686, DOI 10.1109/10.678603
Tognola G, 1999, AUDIOLOGY, V38, P243
Tognola G, 1997, HEARING RES, V106, P112, DOI 10.1016/S0378-5955(97)00007-5
Tognola G, 2005, HEARING RES, V199, P71, DOI 10.1016/j.heares.2004.08.005
Urban Z, 2000, PEDIATR DERMATOL, V17, P12, DOI 10.1046/j.1525-1470.2000.01703.x
VanBorsel J, 1997, GENET COUNSEL, V8, P121
Watts CR, 2008, CLIN LINGUIST PHONET, V22, P199, DOI 10.1080/02699200701803361
WECHSLER D, 1967, PRESCHOOL PRIMARY SC
WECHSLER D, 1974, INTELLIGENCE SCALE C
Wechsler D, 1981, ADULT INTELLIGENCE S
WIT HP, 1994, HEARING RES, V73, P141, DOI 10.1016/0378-5955(94)90228-3
World Health Organization, 2008, GRAD HEAR IMP
YAN SD, 1988, ACTA ANAT, V131, P332
Yang LP, 2002, MED BIOL ENG COMPUT, V40, P34, DOI 10.1007/BF02347693
Zarchi Omer, 2010, Isr J Psychiatry Relat Sci, V47, P125
Zhang ZG, 2008, HEARING RES, V243, P18, DOI 10.1016/j.heares.2008.07.002
NR 99
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2011
VL 272
IS 1-2
BP 157
EP 167
DI 10.1016/j.heares.2010.10.004
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 735ME
UT WOS:000288418100017
PM 20969939
ER
PT J
AU Park, IY
Shimizu, Y
O'Connor, KN
Puria, S
Cho, JH
AF Park, Il-Yong
Shimizu, Yoshitaka
O'Connor, Kevin N.
Puria, Sunil
Cho, Jin-Ho
TI Comparisons of electromagnetic and piezoelectric floating-mass
transducers in human cadaveric temporal bones
SO HEARING RESEARCH
LA English
DT Article
ID EAR HEARING DEVICES; IMPLANT; DESIGN; SYSTEM
AB Electromagnetic floating-mass transducers for implantable middle-ear hearing devices (IMEHDs) afford the advantages of a simple surgical implantation procedure and easy attachment to the ossicles. However, their shortcomings include susceptibility to interference from environmental electromagnetic fields, relatively high current consumption, and a limited ability to output high-frequency vibrations. To address these limitations, a piezoelectric floating-mass transducer (PFMT) has recently been developed. This paper presents the results of a comparative study of these two types of vibration transducer developed for IMEHDs. The differential electromagnetic floating-mass transducer (DFMT) and the PFMT were implanted in two different sets of three cadaveric human temporal bones. The resulting stapes displacements were measured and compared on the basis of the ASTM standard for describing the output characteristics of IMEHDs. The experimental results show that the PFMT can produce significantly higher equivalent sound pressure levels above 3 kHz, due to the flat response of the PFMT, than can the DFMT. Thus, it is expected that the PFMT can be utilized to compensate for high-frequency sensorineural hearing loss. (C) 2010 Published by Elsevier B.V.
C1 [Cho, Jin-Ho] Kyungpook Natl Univ, Sch Elect & Comp Sci, Taegu, South Korea.
[Park, Il-Yong] Dankook Univ, Coll Med, Dept Biomed Engn, Cheonan, South Korea.
[Cho, Jin-Ho] Kyungpook Natl Univ, Adv Res Ctr Recovery Human Sensibil, Taegu, South Korea.
[O'Connor, Kevin N.; Puria, Sunil] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA.
[Shimizu, Yoshitaka; O'Connor, Kevin N.; Puria, Sunil] Dept Otolaryngol Head & Neck Surg, Stanford, CA 94305 USA.
[Shimizu, Yoshitaka; O'Connor, Kevin N.; Puria, Sunil] Palo Alto Vet Adm, Palo Alto, CA 94304 USA.
RP Cho, JH (reprint author), Kyungpook Natl Univ, Sch Elect & Comp Sci, Taegu, South Korea.
EM jhcho@ee.knu.ac.kr
FU Ministry for Health, Welfare & Family Affairs, Republic of Korea
[A092106]
FX This study was supported by a grant of the Korea Healthcare technology
R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of
Korea. (A092106)
CR Aibara R, 2001, HEARING RES, V152, P100, DOI 10.1016/S0378-5955(00)00240-9
Backous Douglas D, 2006, Curr Opin Otolaryngol Head Neck Surg, V14, P314, DOI 10.1097/01.moo.0000244187.66807.30
Ball G. R., 1996, United States Patent, Patent No. [5.554.096, 5554096]
Chien WD, 2006, AUDIOL NEURO-OTOL, V11, P183, DOI 10.1159/000091815
CHO JH, 2004, Patent No. 6735318
DIETZ TG, 1997, TRANSDUCERS, V97, P433
*FDA, 2000, APPR LETT VIBR SOUND
Gan RZ, 2004, ANN BIOMED ENG, V32, P847, DOI 10.1023/B:ABME.0000030260.22737.53
Gelfand S, 2004, HEARING INTRO PSYCHO
GOODE RL, 1995, OTOLARYNG CLIN N AM, V28, P141
Hong EP, 2007, IEICE T FUND ELECTR, VE90A, P1620, DOI 10.1093/ietfec/e90-a.8.1620
Hough JVD, 2002, OTOL NEUROTOL, V23, P895, DOI 10.1097/00129492-200211000-00015
Jenkins HA, 2007, OTOLARYNG HEAD NECK, V137, P206, DOI 10.1016/j.otohns.2007.03.012
Kim MK, 2006, SENSOR ACTUAT A-PHYS, V130, P234, DOI 10.1016/j.sna.2006.01.038
Moore BCJ, 2008, EAR HEARING, V29, P907, DOI 10.1097/AUD.0b013e31818246f6
Needham AJ, 2005, OTOL NEUROTOL, V26, P218, DOI 10.1097/00129492-200503000-00015
O'Connor KN, 2008, LARYNGOSCOPE, V118, P483, DOI 10.1097/MLG.0b013e31815b0d9f
Rosowski JJ, 2007, AUDIOL NEURO-OTOL, V12, P265, DOI 10.1159/000101474
Song BS, 2002, IEICE T ELECTRON, VE85C, P1374
W Ko, 1987, P 9 ANN C IEEE ENG M, P13
Wang ZG, 2002, MECHATRONICS, V12, P3, DOI 10.1016/S0957-4158(00)00067-2
YANAGIHARA N, 2006, COCHLEAR IMPLANTS IN, V5, P186
YANAGIHARA N, 1995, OTOLARYNG CLIN N AM, V28, P85
Zenner HP, 2001, OTOLARYNG CLIN N AM, V34, P417, DOI 10.1016/S0030-6665(05)70340-6
NR 24
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2011
VL 272
IS 1-2
BP 187
EP 192
DI 10.1016/j.heares.2010.10.17
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 735ME
UT WOS:000288418100020
PM 21055459
ER
PT J
AU Jones, SM
Robertson, NG
Given, S
Giersch, ABS
Liberman, MC
Morton, CC
AF Jones, Sherri M.
Robertson, Nahid G.
Given, Shelly
Giersch, Anne B. S.
Liberman, M. Charles
Morton, Cynthia C.
TI Hearing and vestibular deficits in the Coch(-/-) null mouse model:
Comparison to the Coch(G88E/G88E) mouse and to DFNA9 hearing and balance
disorder
SO HEARING RESEARCH
LA English
DT Article
ID COCH GENE; MENIERES-DISEASE; VWFA2 DOMAIN; MUTATION; MICE; DYSFUNCTION;
DEAFNESS; INHERITANCE; POTENTIALS; FAMILIES
AB Two mouse models, the Coch(G88E/G88E) or "knock-in" and the Coch(-/-) or "knock-out" (Coch null), have been developed to study the human late-onset, progressive, sensorineural hearing loss and vestibular dysfunction known as DFNA9. This disorder results from missense and in-frame deletion mutations in COCH (coagulation factor C homology), encoding cochlin, the most abundantly detected protein in the inner ear. We have performed hearing and vestibular analyses by auditory brainstem response (ABR) and vestibular evoked potential (VsEP) testing of the Coch(-/-) and Coch(G88E/G88E) mouse models. Both Coch(-/-) and Coch(G88E/G88E) mice show substantially elevated ABRs at 21 months of age, but only at the highest frequency tested for the former and all frequencies for the latter. At 21 months, 9 of 11 Coch(-/-) mice and 4 of 8 Coch(G88E/G88E) mice have absent ABRs. Interestingly Coch(-/+) mice do not show hearing deficits, in contrast to Coch(G88E/+), which demonstrate elevated ABR thresholds similar to homozyotes. These results corroborate the DFNA9 autosomal dominant mode of inheritance, in addition to the observation that haploinsufficiency of Coch does not result in impaired hearing. Vestibular evoked potential (VsEP) thresholds were analyzed using a two factor ANOVA (Age X Genotype). Elevated VsEP thresholds are detected in Coch(-/-) mice at 13 and 21 months, the two ages tested, and as early as seven months in the coch(G88E/G88E) mice. These results indicate that in both mouse models, vestibular function is compromised before cochlear function. Analysis and comparison of hearing and vestibular function in these two DFNA9 mouse models, where deficits occur at such an advanced age, provide insight into the pathology of DFNA9 and age-related hearing loss and vestibular dysfunction as well as an opportunity to investigate potential interventional therapies. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Jones, Sherri M.] E Carolina Univ, Dept Commun Sci & Disorders, Greenville, NC USA.
[Robertson, Nahid G.; Morton, Cynthia C.] Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Obstet Gynecol & Reprod Biol, Boston, MA 02115 USA.
[Given, Shelly] E Carolina Univ, Brody Sch Med, Greenville, NC USA.
[Giersch, Anne B. S.; Morton, Cynthia C.] Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Pathol, Boston, MA 02115 USA.
[Liberman, M. Charles] Harvard Univ, Massachusetts Eye & Ear Infirm, Sch Med, Dept Otol & Laryngol,Eaton Peabody Lab, Boston, MA 02115 USA.
RP Morton, CC (reprint author), Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Ob Gyn, 77 Ave Louis Pasteur,NRB 160, Boston, MA 02115 USA.
EM cmorton@partners.org
FU National Institutes of Health [R01 DC006443, R01 DC03402, R01 DC00188,
P30 DC05209]
FX The authors would like to thank T. Lever, K. Mills, and J. Pierce for
assistance with data collection and tissue preparation. This research
was supported by the National Institutes of Health (R01 DC006443 to
S.M.J., R01 DC03402 to C.C.M., and R01 DC00188 and P30 DC05209 to
M.C.L.).
CR Baek JI, 2010, CLIN GENET, V77, P399, DOI 10.1111/j.1399-0004.2009.01362.x
Baek MJ, 2006, J IMMUNOL, V177, P4203
Bischoff AMLC, 2005, OTOL NEUROTOL, V26, P918, DOI 10.1097/01.mao.0000185048.84641.e3
Boulassel MR, 2001, OTOL NEUROTOL, V22, P614, DOI 10.1097/00129492-200109000-00009
Collin RWJ, 2006, AM J MED GENET A, V140A, P1791, DOI 10.1002/ajmg.a.31354
de Kok YJM, 1999, HUM MOL GENET, V8, P361, DOI 10.1093/hmg/8.2.361
Fransen E, 1999, HUM MOL GENET, V8, P1425, DOI 10.1093/hmg/8.8.1425
Jones SM, 1999, HEARING RES, V135, P56, DOI 10.1016/S0378-5955(99)00090-8
Jones SM, 2002, J NEUROSCI METH, V118, P23, DOI 10.1016/S0165-0270(02)00125-5
Jones SM, 2004, HEARING RES, V191, P34, DOI 10.1016/j.heares.2004.01.008
Jones TA, 1999, HEARING RES, V136, P75, DOI 10.1016/S0378-5955(99)00110-0
Kamarinos M, 2001, Hum Mutat, V17, P351, DOI 10.1002/humu.37
Kemperman MH, 2005, OTOL NEUROTOL, V26, P926, DOI 10.1097/01.mao.0000185062.12458.87
Kharkovets T, 2006, EMBO J, V25, P642, DOI 10.1038/sj.emboj.7600951
Kujoth GC, 2005, SCIENCE, V309, P481, DOI 10.1126/science.1112125
Maison SF, 2006, J NEUROSCI, V26, P10315, DOI 10.1523/JNEUROSCI.2395-06.2006
Maison SF, 2010, J NEUROSCI, V30, P6751, DOI 10.1523/JNEUROSCI.5080-09.2010
Makishima T, 2005, HUM GENET, V118, P29, DOI 10.1007/s00439-005-0001-4
Muller M, 2005, HEARING RES, V202, P63, DOI 10.1016/j.heares.2004.08.011
Nagy I, 2004, J MED GENET, V41, DOI 10.1136/jmg.2003.012286
Noben-Trauth K, 2009, BRAIN RES, V1277, P42, DOI 10.1016/j.brainres.2009.02.012
Pauw RJ, 2007, ANN OTO RHINOL LARYN, V116, P349
Robertson NG, 1998, NAT GENET, V20, P299
Robertson NG, 2008, HUM MOL GENET, V17, P3426, DOI 10.1093/hmg/ddn236
Street VA, 2005, AM J MED GENET A, V139A, P86, DOI 10.1002/ajmg.a.30980
Suzuki N, 2005, NEUROSCI RES, V51, P293, DOI 10.1016/j.neures.2004.12.001
Tebo AE, 2006, CLIN EXP IMMUNOL, V146, P427, DOI 10.1111/j.1365-2249.2006.03227.x
Usami S, 2003, EUR J HUM GENET, V11, P744, DOI 10.1038/sj.ejhg.5201043
Yao JH, 2010, J BIOL CHEM, V285, P14909, DOI 10.1074/jbc.M110.106724
Yuan HJ, 2008, CLIN GENET, V73, P391, DOI 10.1111/j.1399-0004.2008.00972.x
Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9
Zheng QY, 2005, HUM MOL GENET, V14, P103, DOI 10.1093/hmg/ddi010
NR 32
TC 8
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2011
VL 272
IS 1-2
BP 42
EP 48
DI 10.1016/j.heares.2010.11.002
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 735ME
UT WOS:000288418100006
PM 21073934
ER
PT J
AU Carzoli, KL
Hyson, RL
AF Carzoli, Kathryn L.
Hyson, Richard L.
TI In vivo analysis of the role of metabotropic glutamate receptors in the
afferent regulation of chick cochlear nucleus neurons
SO HEARING RESEARCH
LA English
DT Article
ID STEM AUDITORY NUCLEI; ACTIVITY-DEPENDENT REGULATION; RIBOSOMAL-RNA
EPITOPE; PROTEIN-SYNTHESIS; TRANSNEURONAL REGULATION; MAGNOCELLULARIS
NEURONS; INTRACELLULAR CALCIUM; SYNAPTIC-TRANSMISSION;
N-MAGNOCELLULARIS; ACTIVITY BLOCKADE
AB Cochlea removal results in the death of approximately 20-30% of neurons in the chick nucleus magnocellularis (NM). One early event in NM neuronal degradation is the disruption of their ribosomes. This can be visualized in the first few hours following cochlea removal using Y10B, an antibody that recognizes ribosomal RNA. Previous studies using a brain slice preparation suggest that maintenance of ribosomal integrity in NM neurons requires metabotropic glutamate receptor (mGluR) activation. Isolating the brain slice in vitro, however, may eliminate other potential sources of trophic support and only allows for evaluation of the early changes that occur in NM neurons following deafferentation. Consequently, it is not known if mGluR activation is truly required for the maintenance of NM neurons in the intact system. The current experiments evaluated the importance of mGluRs in vivo. The effects of short-term receptor blockade were assessed through Y10B labeling and the effects of long-term blockade were assessed through stereological counting of NM neurons in Nissl-stained tissue. mGluR antagonists or vehicle were administered intracerebroventricularly following unilateral cochlea removal. Vehicle-treated subjects replicated the previously reported effects of cochlea removal, showing lighter Y10B labeling and fewer Nissl-stained NM neurons on the deafened side of the brain. Blockade of mGluRs prevented the rapid activity-dependent difference in Y10B labeling, and in some cases, had the reverse effect, yielding lighter labeling of NM neurons on the intact side of the brain. Similarly, mGluR blockade over longer survival periods resulted in a reduction in number of cells on both intact and deafferented sides of the brain, and in some cases, yielded a reverse effect of fewer neurons on the intact side versus deafened side. These data are consistent with in vitro findings and suggest that mGluR activation plays a vital role in the afferent maintenance of NM neurons. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Carzoli, Kathryn L.; Hyson, Richard L.] Florida State Univ, Dept Psychol, Program Neurosci, Tallahassee, FL 32306 USA.
RP Hyson, RL (reprint author), Florida State Univ, Dept Psychol, Program Neurosci, Tallahassee, FL 32306 USA.
EM hyson@psy.fsu.edu
FU PHS [DC 000858]
FX Research supported by PHS grant DC 000858. The authors would like to
thank Jessica Santollo, Ph.D., for her assistance in developing the
cannulation procedure.
CR BORN DE, 1991, BRAIN RES, V557, P37, DOI 10.1016/0006-8993(91)90113-A
BORN DE, 1985, J COMP NEUROL, V231, P435, DOI 10.1002/cne.902310403
Bruno V, 1998, PROG BRAIN RES, V116, P209, DOI 10.1016/S0079-6123(08)60439-2
Bruno V, 1997, J NEUROSCI, V17, P1891
CANADY KS, 1994, J NEUROSCI, V14, P5973
CANADY KS, 1992, J NEUROSCI, V12, P1001
Conn PJ, 1997, ANNU REV PHARMACOL, V37, P205, DOI 10.1146/annurev.pharmtox.37.1.205
DANTONI S, 2008, NEUROCHEM RES
FRAZIER LL, 1988, J COMP NEUROL, V269, P355, DOI 10.1002/cne.902690304
GARDEN GA, 1994, J NEUROSCI, V14, P1994
GARDEN GA, 1995, MOL CELL NEUROSCI, V6, P293, DOI 10.1006/mcne.1995.1023
Hyson RL, 1997, BRAIN RES, V749, P61, DOI 10.1016/S0006-8993(96)01160-2
HYSON RL, 1995, BRAIN RES, V672, P196, DOI 10.1016/0006-8993(94)01390-4
HYSON RL, 1989, J NEUROSCI, V9, P2835
Hyson RL, 1998, BRAIN RES, V809, P214, DOI 10.1016/S0006-8993(98)00873-7
Kato BM, 1996, J NEUROPHYSIOL, V76, P646
LACHICA EA, 1995, J NEUROSCI, V15, P1724
Liu QS, 2004, NEURON GLIA BIOL, V1, P307, DOI 10.1017/S1740925X05000190
Lu Y, 2007, J NEUROPHYSIOL, V97, P1018, DOI 10.1152/jn.00883.2006
Lu Y, 2005, J NEUROPHYSIOL, V93, P1418, DOI 10.1152/jn.00659.2004
Maiese K, 2000, J NEUROSCI RES, V62, P257, DOI 10.1002/1097-4547(20001015)62:2<257::AID-JNR10>3.0.CO;2-H
MONYER H, 1992, NEURON, V967
NEMETH EF, 1983, NEUROSCI LETT, V40, P39, DOI 10.1016/0304-3940(83)90089-7
Nicholas AH, 2004, BRAIN RES, V1014, P110, DOI 10.1016/j.braines.2004.03.066
Nucci C, 2003, EUR J OPHTHALMOL, V13, pS36
PARKS TN, 1978, J COMP NEUROL, V180, P439, DOI 10.1002/cne.901800303
Puelles L., 2007, CHICK BRAIN STEREOTA
RUBEL EW, 1992, J COMP NEUROL, V318, P415, DOI 10.1002/cne.903180406
RUBEL E W, 1991, Brain Dysfunction, V4, P55
RUBEL EW, 1975, J COMP NEUROL, V164, P411, DOI 10.1002/cne.901640403
STEWARD O, 1985, J COMP NEUROL, V231, P385, DOI 10.1002/cne.902310308
VANDERLO.H, 1973, SCIENCE, V179, P395, DOI 10.1126/science.179.4071.395
ZIRPEL L, 1995, J NEUROPHYSIOL, V74, P1355
Zirpel L, 1998, J NEUROPHYSIOL, V79, P2288
Zirpel L, 1996, J NEUROPHYSIOL, V76, P4127
Zirpel L, 2000, J NEUROSCI, V20, P6267
NR 36
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2011
VL 272
IS 1-2
BP 49
EP 57
DI 10.1016/j.heares.2010.10.020
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 735ME
UT WOS:000288418100007
PM 21059385
ER
PT J
AU Farahbakhsh, NA
Zelaya, JE
Narins, PM
AF Farahbakhsh, Nasser A.
Zelaya, Jaime E.
Narins, Peter M.
TI Osmotic properties of auditory hair cells in the leopard frog: Evidence
for water-permeable channels
SO HEARING RESEARCH
LA English
DT Article
ID ISOVOLUMETRIC REGULATION; ANURAN AMPHIBIANS; VOLUME REGULATION; PROXIMAL
TUBULES; SLOW MOTILITY; MECHANISMS; DEHYDRATION; AQUAPORINS; EXPRESSION;
PAPILLA
AB When amphibian papillar hair cells (APHCs) of the leopard frog, Rana pipiens pipiens, are osmotically challenged, they exhibit a characteristically asymmetric (rectifying) response: small decreases (5%, or less) in the extracellular solution's osmolarity do not significantly affect the cells' volume; larger decreases produce a relatively slow volume increase in APHCs, while exposure to a hyperosmotic medium leads to rapid shrinking of these cells. Furthermore, the rate of volume change appears to be a function of the rate of extracellular osmotic change.
These characteristics make the application of methods devised for the estimation of the osmotic permeability coefficient (P-f ) for semipermeable membranes - i.e., those with significant permeability only to water - to APHC membrane rather futile. We have, therefore, devised a method that takes both the permeability to solutes as well as the kinetics of the osmolarity change into consideration, in order to obtain estimates of P-f that are to a large degree independent of these factors. We have compared the new and earlier methods.
Using the new method, we have estimated the P-f of APHCs' plasma membrane to be in the 10(-2)-cm/s range, and thus significantly larger than those reported for lipid bilayers. APHC's membrane P-f appears to be cell-size independent and insensitive to extracellular mercury. These results suggest that APHCs express water-permeable channels in their plasma membrane. Furthermore, we suggest that asymmetric and rate dependent shape changes produced by osmolarity changes in APHCs imply the presence of significant permeability to solutes. The significance of transmembrane solute transport and water channel expression in amphibian auditory hair cells is discussed. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Farahbakhsh, Nasser A.; Zelaya, Jaime E.; Narins, Peter M.] Univ Calif Los Angeles, Dept Integrat Biol & Physiol, Los Angeles, CA 90095 USA.
[Narins, Peter M.] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA.
RP Farahbakhsh, NA (reprint author), Univ Calif Los Angeles, Dept Integrat Biol & Physiol, 621 Charles E Young Dr S, Los Angeles, CA 90095 USA.
EM farahbak@ucla.edu
FU National Institutes of Health [DC-00222]
FX This work was supported by National Institutes of Health Grant DC-00222
CR Belyantseva IA, 2000, J NEUROSCI, V20, part. no.
Bentley PJ, 2002, ENDOCRINES OSMOREGUL
BERNARD C, 1986, J PHYSIOL-LONDON, V371, P17
CAREY MB, 1993, HEARING RES, V70, P216, DOI 10.1016/0378-5955(93)90160-3
CHERTOFF ME, 1994, AM J PHYSIOL, V266, pC467
DULON D, 1992, AM J OTOL, V13, P108
ECHEVARRIA M, 1992, J GEN PHYSIOL, V99, P573, DOI 10.1085/jgp.99.4.573
Farahbakhsh NA, 2006, HEARING RES, V212, P140, DOI 10.1016/j.heares.2005.11.004
Farahbakhsh NA, 2008, HEARING RES, V241, P7, DOI 10.1016/j.heares.2008.04.007
FARAHBAKHSH NA, 2010, ARO ABSTR, V33, P29
FARMER REL, 1970, BIOCHIM BIOPHYS ACTA, V196, P53, DOI 10.1016/0005-2736(70)90165-3
Grosse T, 2001, PFLUG ARCH EUR J PHY, V442, P297
HILLMAN SS, 1980, COPEIA, P125, DOI 10.2307/1444142
Hoffmann EK, 2009, PHYSIOL REV, V89, P193, DOI 10.1152/physrev.00037.2007
Ishibashi K, 2009, CLIN EXP NEPHROL, V13, P107, DOI 10.1007/s10157-008-0118-6
KEDEM O, 1958, BIOCHIM BIOPHYS ACTA, V27, P229, DOI 10.1016/0006-3002(58)90330-5
Lakowicz J. R., 1983, PRINCIPLES FLUORESCE
Lohr JW, 2000, NEUROSCI LETT, V286, P5, DOI 10.1016/S0304-3940(00)01098-3
LOHR JW, 1986, J CLIN INVEST, V78, P1165, DOI 10.1172/JCI112698
LOHR JW, 1990, RENAL PHYSIOL BIOCH, V13, P233
Manley GA, 2000, P NATL ACAD SCI USA, V97, P11736, DOI 10.1073/pnas.97.22.11736
MILLER M, 2010, ARO ABSTR, V33, P217
Nishimoto G, 2007, AM J PHYSIOL-REG I, V292, pR644, DOI 10.1152/ajpregu.00362.2006
PROBSTEIN GP, 1994, PHYSIOCHEMICAL HYDRO
Quesada O, 2000, ADV EXP MED BIOL, V483, P219
Ratnanather JT, 1996, HEARING RES, V96, P33
Souza MM, 2000, CELL BIOL INT, V24, P713, DOI 10.1006/cbir.2000.0554
Suzuki M, 2009, COMP BIOCHEM PHYS A, V153, P231, DOI 10.1016/j.cbpa.2009.02.035
VanDriessche W, 1997, AM J PHYSIOL-CELL PH, V272, pC1890
VERKMAN AS, 1989, AM J PHYSIOL, V257, pC837
Yang BX, 1997, J BIOL CHEM, V272, P16140, DOI 10.1074/jbc.272.26.16140
Zhi M, 2007, HEARING RES, V228, P95, DOI 10.1016/j.heares.2007.02.007
NR 32
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2011
VL 272
IS 1-2
BP 69
EP 84
DI 10.1016/j.heares.2010.10.015
PG 16
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 735ME
UT WOS:000288418100009
PM 21044674
ER
PT J
AU Wu, T
Song, L
Shi, X
Jiang, Z
Santos-Sacchi, J
Nuttall, AL
AF Wu, T.
Song, L.
Shi, X.
Jiang, Z.
Santos-Sacchi, J.
Nuttall, A. L.
TI Effect of capsaicin on potassium conductance and electromotility of the
guinea pig outer hair cell
SO HEARING RESEARCH
LA English
DT Article
ID MAMMALIAN COCHLEAR AMPLIFICATION; MOUSE INNER-EAR; VOLTAGE-DEPENDENCE;
AUDITORY PATHWAY; IONIC CURRENTS; K+ CURRENTS; KCNQ4; MOTILITY; CHANNEL;
EXPRESSION
AB Capsaicin, the classic activator of TRPV-1 channels in primary sensory neurons, evokes nociception. Interestingly, auditory reception is also modulated by this chemical, possibly by direct actions on outer hair cells (OHCs). Surprisingly, we find two novel actions of capsaicin unrelated to TRPV-1 channels, which likely contribute to its auditory effects in vivo. First, capsaicin is a potent blocker of OHC K conductances (I(K) and I(K,n)). Second, capsaicin substantially alters OHC nonlinear capacitance, the signature of electromotility - a basis of cochlear amplification. These new findings of capsaicin have ramifications for our understanding of the pharmacological properties of OHC IK, IK,n and electromotility and for interpretation of capsaicin pharmacological actions. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Wu, T.; Shi, X.; Jiang, Z.; Nuttall, A. L.] Oregon Hlth & Sci Univ, Dept Otolaryngol Head & Neck Surg, Oregon Hearing Res Ctr, Portland, OR 97239 USA.
[Song, L.; Santos-Sacchi, J.] Yale Univ, Sch Med, New Haven, CT 06510 USA.
[Nuttall, A. L.] Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA.
[Nuttall, A. L.] Shanghai Jiao Tong Univ, Renji Hosp, Dept Otolaryngol, Shanghai 200030, Peoples R China.
RP Nuttall, AL (reprint author), Oregon Hlth & Sci Univ, Dept Otolaryngol Head & Neck Surg, Oregon Hearing Res Ctr, NRC04,3181 SW Sam Jackson Pk Rd, Portland, OR 97239 USA.
EM nuttall@ohsu.edu
FU NIH [DC 005983, DC 000141, DC 000273, DC 008130, DC 004716, DC 010844,
DC 008888-02, DC 008888-02S1]
FX NIH grants DC 005983, DC 000141 (ALN), DC 000273 (JSS), DC 008130 (JSS),
DC 004716 (JZG) DC 010844 (XS), DC 008888-02(XS), DC 008888-02S1 (XS).
CR ASHMORE JF, 1986, NATURE, V322, P368, DOI 10.1038/322368a0
BROWNELL WE, 1984, SCANNING ELECTRON MI, V3, P1401
Caterina MJ, 1997, NATURE, V389, P816
Chambard JM, 2005, PFLUG ARCH EUR J PHY, V450, P34, DOI 10.1007/s00424-004-1366-2
Dallos P, 2008, NEURON, V58, P333, DOI 10.1016/j.neuron.2008.02.028
Grimm C, 2007, P NATL ACAD SCI USA, V104, P19583, DOI 10.1073/pnas.0709846104
GRISSMER S, 1994, MOL PHARMACOL, V45, P1227
He DZZ, 2006, J MEMBRANE BIOL, V209, P119, DOI 10.1007/s00232-005-0833-9
Holt JR, 2007, J NEUROSCI, V27, P8940, DOI 10.1523/JNEUROSCI.2085-07.2007
Housley GD, 2006, J MEMBRANE BIOL, V209, P89, DOI 10.1007/s00232-005-0835-7
HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73
Ishibashi T, 2008, ACTA OTO-LARYNGOL, V128, P1286, DOI 10.1080/00016480801938958
Jagger DJ, 1999, PFLUG ARCH EUR J PHY, V437, P409, DOI 10.1007/s004240050795
JAGGER DJ, 1999, PFLUGERS ARCH, V427, P368
KAKEHATA S, 1995, BIOPHYS J, V68, P2190
Kharkovets T, 2006, EMBO J, V25, P642, DOI 10.1038/sj.emboj.7600951
Kharkovets T, 2000, P NATL ACAD SCI USA, V97, P4333, DOI 10.1073/pnas.97.8.4333
Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059
Mammano F, 1996, J PHYSIOL-LONDON, V496, P639
MAMMANO F, 1995, PFLUG ARCH EUR J PHY, V430, P745, DOI 10.1007/BF00386170
Marcotti W, 1999, HEARING RES, V135, P113, DOI 10.1016/S0378-5955(99)00097-0
Mukherjea D, 2008, J NEUROSCI, V28, P13056, DOI 10.1523/JNEUROSCI.1307-08.2008
Oliver D, 2001, SCIENCE, V292, P2340, DOI 10.1126/science.1060939
Rennie KJ, 2001, AM J PHYSIOL-CELL PH, V280, pC473
Rybalchenko V, 2003, J PHYSIOL-LONDON, V547, P873, DOI 10.1113/jphysiol.2002.036434
SANTOS-SACCHI J, 1991, J NEUROSCI, V11, P3096
Santos-Sacchi J, 2006, J NEUROSCI, V26, P3992, DOI 10.1523/JNEUROSCI.4548-05.2006
Santos-Sacchi J, 1998, J PHYSIOL-LONDON, V510, P225, DOI 10.1111/j.1469-7793.1998.225bz.x
SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X
Santos-Sacchi J, 2003, CURR OPIN NEUROBIOL, V13, P459, DOI 10.1016/S0959-4388(03)00100-4
Santos-Sacchi J, 1997, BIOPHYS J, V73, P1424
Song L, 2005, BIOPHYS J, V88, P2350, DOI 10.1529/biophysj.104.053579
Szallasi A, 1999, PHARMACOL REV, V51, P159
Wu T, 2010, J NEUROPHYSIOL, V103, P1969, DOI 10.1152/jn.01057.2009
Xu TH, 2007, J BIOL CHEM, V282, P23899, DOI 10.1074/jbc.M702108200
Zheng JF, 2003, J NEUROPHYSIOL, V90, P444, DOI 10.1152/jn.00919.2002
NR 36
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2011
VL 272
IS 1-2
BP 117
EP 124
DI 10.1016/j.heares.2010.10.010
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 735ME
UT WOS:000288418100013
PM 21044673
ER
PT J
AU Abrams, DA
Nicol, T
Zecker, S
Kraus, N
AF Abrams, Daniel A.
Nicol, Trent
Zecker, Steven
Kraus, Nina
TI A possible role for a paralemniscal auditory pathway in the coding of
slow temporal information
SO HEARING RESEARCH
LA English
DT Article
ID MEDIAL GENICULATE-BODY; AMPLITUDE-MODULATED SOUNDS; GUINEA-PIG;
THALAMOCORTICAL SYSTEM; MARMOSET MONKEYS; NEURAL RESPONSES; CORTICAL
FIELDS; BELT REGIONS; DORSAL ZONE; CORTEX
AB Low-frequency temporal information present in speech is critical for normal perception, however the neural mechanism underlying the differentiation of slow rates in acoustic signals is not known. Data from the rat trigeminal system suggest that the paralemniscal pathway may be specifically tuned to code low-frequency temporal information. We tested whether this phenomenon occurs in the auditory system by measuring the representation of temporal rate in lemniscal and paralemniscal auditory thalamus and cortex in guinea pig. Similar to the trigeminal system, responses measured in auditory thalamus indicate that slow rates are differentially represented in a paralemniscal pathway. In cortex, both lemniscal and paralemniscal neurons indicated sensitivity to slow rates. We speculate that a paralemniscal pathway in the auditory system may be specifically tuned to code low-frequency temporal information present in acoustic signals. These data suggest that somatosensory and auditory modalities have parallel sub-cortical pathways that separately process slow rates and the spatial representation of the sensory periphery. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Abrams, Daniel A.; Nicol, Trent; Zecker, Steven; Kraus, Nina] Northwestern Univ, Dept Commun Sci, Auditory Neurosci Lab, Evanston, IL 60208 USA.
[Kraus, Nina] Northwestern Univ, Dept Neurobiol & Physiol, Evanston, IL 60208 USA.
[Kraus, Nina] Northwestern Univ, Dept Otolaryngol, Evanston, IL 60208 USA.
RP Abrams, DA (reprint author), Stanford Cognit & Syst Neurosci Lab, 780 Welch Rd,Room 201, Palo Alto, CA 94304 USA.
EM daa@stanford.edu
FU National Institutes of Health [R01 DC01510]; National Organization for
Hearing Research [340-B208]
FX This work is supported by the National Institutes of Health grant R01
DC01510 and National Organization for Hearing Research grant 340-B208.
We thank E. Ahissar for critical reviews of this manuscript and C.
Warder for assistance with data collection.
CR Abrams DA, 2008, J NEUROSCI, V28, P3958, DOI 10.1523/JNEUROSCI.0187-08.2008
Abrams DA, 2009, J NEUROSCI, V29, P7686, DOI 10.1523/JNEUROSCI.5242-08.2009
Abrams DA, 2010, CLIN NEUROPHYSIOL, V121, P1343, DOI 10.1016/j.clinph.2010.02.158
Ahissar E, 1997, P NATL ACAD SCI USA, V94, P11633, DOI 10.1073/pnas.94.21.11633
Ahissar E, 2005, AUDITORY CORTEX: SYNTHESIS OF HUMAN AND ANIMAL RESEARCH, P295
Ahissar E, 2000, NATURE, V406, P302, DOI 10.1038/35018568
Ahissar E, 2001, Prog Brain Res, V130, P75
Anderson LA, 2009, J NEUROSCI, V29, P7359, DOI 10.1523/JNEUROSCI.0793-09.2009
Anderson SE, 2006, HEARING RES, V213, P107, DOI 10.1016/j.heares.2005.12.011
Bartlett EL, 2007, J NEUROPHYSIOL, V97, P1005, DOI 10.1152/jn.00593.2006
Bieser A, 1996, EXP BRAIN RES, V108, P273
Castro-Alamancos MA, 2002, J PHYSIOL-LONDON, V539, P567, DOI 10.1013/jphysiol.2001.013283
CREUTZFELDT O, 1980, EXP BRAIN RES, V39, P87
Cunningham J, 2002, HEARING RES, V169, P97, DOI 10.1016/S0378-5955(02)00344-1
de la Mothe LA, 2006, J COMP NEUROL, V496, P27, DOI 10.1002/cne.20923
de la Mothe LA, 2006, J COMP NEUROL, V496, P72, DOI 10.1002/cne.20924
DIAMOND ME, 1992, CONCEPT NEUROSCI, V3, P55
DRULLMAN R, 1994, J ACOUST SOC AM, V95, P1053, DOI 10.1121/1.408467
EGGERMONT JJ, 1991, HEARING RES, V56, P153, DOI 10.1016/0378-5955(91)90165-6
Eggermont JJ, 1998, J NEUROPHYSIOL, V80, P2743
EGGERMONT JJ, 1992, HEARING RES, V61, P1, DOI 10.1016/0378-5955(92)90029-M
Eggermont JJ, 2002, J NEUROPHYSIOL, V87, P305
EGGERMONT JJ, 1995, J NEUROPHYSIOL, V73, P227
GOLDSTEIN JM, 1959, J ACOUST SOC AM, V31, P356
He JF, 2003, J NEUROPHYSIOL, V89, P367, DOI 10.1152/jn.00593.2002
He JF, 2002, J NEUROPHYSIOL, V88, P2377, DOI 10.1152/jn.00083.2002
He JF, 1997, J NEUROSCI, V17, P2615
He JF, 2003, J NEUROSCI, V23, P8281
He JF, 1998, J COMP NEUROL, V400, P334, DOI 10.1002/(SICI)1096-9861(19981026)400:3<334::AID-CNE4>3.0.CO;2-9
HU B, 1994, J PHYSIOL-LONDON, V479, P217
Huetz C, 2009, J NEUROSCI, V29, P334, DOI 10.1523/JNEUROSCI.3269-08.2009
King C, 1999, NEUROSCI LETT, V267, P89, DOI 10.1016/S0304-3940(99)00336-5
Kosaki H, 1997, J COMP NEUROL, V386, P304
Lu T, 2001, NAT NEUROSCI, V4, P1131, DOI 10.1038/nn737
Lu T, 2000, J NEUROPHYSIOL, V84, P236
McGee T, 1996, J ACOUST SOC AM, V99, P3606, DOI 10.1121/1.414958
Miller LM, 2002, J NEUROPHYSIOL, V87, P516
PHILLIPS DP, 1989, J ACOUST SOC AM, V85, P2537, DOI 10.1121/1.397748
PREUSS A, 1990, EXP BRAIN RES, V79, P207
Rauschecker JP, 1997, J COMP NEUROL, V382, P89
REDIES H, 1989, J COMP NEUROL, V282, P473, DOI 10.1002/cne.902820402
REDIES H, 1989, J COMP NEUROL, V282, P489, DOI 10.1002/cne.902820403
REDIES H, 1991, EXP BRAIN RES, V86, P384
ROSEN S, 1992, PHILOS T ROY SOC B, V336, P367, DOI 10.1098/rstb.1992.0070
ROUILLER E, 1981, HEARING RES, V5, P81, DOI 10.1016/0378-5955(81)90028-9
ROUILLER E, 1982, EXP BRAIN RES, V48, P323
Sosnik R, 2001, J NEUROPHYSIOL, V86, P339
Steinschneider M, 1998, J ACOUST SOC AM, V104, P2935, DOI 10.1121/1.423877
Suta D, 2003, J NEUROPHYSIOL, V90, P3794, DOI 10.1152/jn.01175.2002
Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032
Ulanovsky N, 2004, J NEUROSCI, V24, P10440, DOI 10.1523/JNEUROSCI.1905-04.2004
VERNIER VG, 1957, AM J PHYSIOL, V188, P233
Wallace MN, 2000, EXP BRAIN RES, V132, P445, DOI 10.1007/s002210000362
Wang X, 2008, Neuroscience, V157, P484, DOI 10.1016/j.neuroscience.2008.07.050
WOOLSEY TA, 1997, ENZY NEUROSCIENCE, P195
Yu XJ, 2009, NAT NEUROSCI, V12, P1165, DOI 10.1038/nn.2373
Yu XJ, 2009, J NEUROPHYSIOL, V101, P980, DOI 10.1152/jn.91130.2008
NR 57
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2011
VL 272
IS 1-2
BP 125
EP 134
DI 10.1016/j.heares.2010.10.009
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 735ME
UT WOS:000288418100014
PM 21094680
ER
PT J
AU Koka, K
Jones, HG
Thornton, JL
Lupo, JE
Tollin, DJ
AF Koka, Kanthaiah
Jones, Heath G.
Thornton, Jennifer L.
Lupo, J. Eric
Tollin, Daniel J.
TI Sound pressure transformations by the head and pinnae of the adult
Chinchilla (Chinchilla lanigera)
SO HEARING RESEARCH
LA English
DT Article
ID LATERAL SUPERIOR OLIVE; EAR TRANSFER-FUNCTIONS; INTERAURAL TIME
DIFFERENCES; EXTERNAL-EAR; SPECTRAL CUES; INDIVIDUAL-DIFFERENCES;
INFERIOR COLLICULUS; AUDITORY-CORTEX; GUINEA-PIG; POSTNATAL-DEVELOPMENT
AB There are three main cues to sound location: the interaural differences in time (ITD) and level (ILD) as well as the monaural spectral shape cues. These cues are generated by the spatial- and frequency-dependent filtering of propagating sound waves by the head and external ears. Although the chinchilla has been used for decades to study the anatomy, physiology, and psychophysics of audition, including binaural and spatial hearing, little is actually known about the sound pressure transformations by the head and pinnae and the resulting sound localization cues available to them. Here, we measured the directional transfer functions (DIFs), the directional components of the head-related transfer functions, for 9 adult chinchillas. The resulting localization cues were computed from the DTFs. In the frontal hemisphere, spectral notch cues were present for frequencies from similar to 6-18 kHz. In general, the frequency corresponding to the notch increased with increases in source elevation as well as in azimuth towards the ipsilateral ear. The ILDs demonstrated a strong correlation with source azimuth and frequency. The maximum ILDs were < 10 dB for frequencies < 5 kHz, and ranged from 10-30 dB for the frequencies > 5 kHz. The maximum ITDs were dependent on frequency, yielding 236 mu s at 4 kHz and 336 mu s at 250 Hz. Removal of the pinnae eliminated the spectral notch cues, reduced the acoustic gain and the ILDs, altered the acoustic axis, and reduced the ITDs. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Koka, Kanthaiah; Jones, Heath G.; Thornton, Jennifer L.; Tollin, Daniel J.] Univ Colorado, Sch Med, Dept Physiol & Biophys, Aurora, CO USA.
[Jones, Heath G.; Thornton, Jennifer L.; Tollin, Daniel J.] Univ Colorado, Sch Med, Neurosci Training Program, Aurora, CO USA.
[Lupo, J. Eric; Tollin, Daniel J.] Univ Colorado, Sch Med, Dept Otolaryngol, Aurora, CO USA.
RP Koka, K (reprint author), Univ Colorado Denver, Dept Physiol & Biophys, Mail Stop 8307,Box 6511,12800 E 19th Ave, Aurora, CO 80045 USA.
EM kanthaiah.koka@ucdenver.edu
FU National Institutes of Deafness and Other Communicative Disorders
[R01DC006865]; National Institute of Child Health and Human Development
[5T32HD041697]; Advanced Training in Basic Neuroscience [NINDS
T32NS007083]; NIDCD NRSA [F31DC011198]; American Academy of
Otolaryngology-Head and Neck Surgery Foundation (AAO-HNSF); NIH [P30
NS041854-05]
FX This work was supported by National Institutes of Deafness and Other
Communicative Disorders Grant R01DC006865 to DJT. Support was also
provided by the Neuroscience Training Grant (National Institute of Child
Health and Human Development grant 5T32HD041697), the Advanced Training
in Basic Neuroscience Grant (NINDS T32NS007083 to HGJ), an NIDCD NRSA
(F31DC011198 to JLT), and by an American Academy of Otolaryngology-Head
and Neck Surgery Foundation (AAO-HNSF)Resident research grant to JEL. We
thank Dr. Michael Hall for preparing custom hardware (supported by NIH
grant P30 NS041854-05) and Scott Baird for drawings.
CR Aytekin M, 2004, J ACOUST SOC AM, V116, P3594, DOI [10.1121/1.1811412, 10.1121/1.1811412]]
BENSON DA, 1976, BRAIN RES, V103, P313, DOI 10.1016/0006-8993(76)90801-5
Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a
Bugayevskiy LM, 1995, MAP PROJECTIONS REFE
CALFORD MB, 1984, HEARING RES, V14, P13, DOI 10.1016/0378-5955(84)90064-9
CARLILE S, 1990, J ACOUST SOC AM, V88, P2180, DOI 10.1121/1.400115
CARLILE S, 1987, HEARING RES, V31, P111, DOI 10.1016/0378-5955(87)90117-1
CARLILE S, 1994, J NEUROPHYSIOL, V71, P785
CHEN QC, 1995, J EXP BIOL, V198, P2007
COLES RB, 1986, J EXP BIOL, V121, P371
Duda RO, 1998, J ACOUST SOC AM, V104, P3048, DOI 10.1121/1.423886
Ebert CS, 2008, HEARING RES, V235, P134, DOI 10.1016/j.heares.2007.11.003
FINLAYSON PG, 1991, J NEUROPHYSIOL, V65, P598
FINLAYSON PG, 1989, HEARING RES, V38, P221, DOI 10.1016/0378-5955(89)90067-1
Firzlaff U, 2003, HEARING RES, V181, P27, DOI 10.1016/S0378-5955(03)00164-3
Fuzessery ZM, 1996, HEARING RES, V95, P1, DOI 10.1016/0378-5955(95)00223-5
HARRISON JM, 1970, J ACOUST SOC AM, V47, P1509, DOI 10.1121/1.1912082
HEFFNER RS, 1995, HEARING RES, V88, P190, DOI 10.1016/0378-5955(95)00112-H
Heffner RS, 1996, HEARING RES, V99, P13, DOI 10.1016/S0378-5955(96)00074-3
HEFFNER RS, 1991, HEARING RES, V52, P13, DOI 10.1016/0378-5955(91)90183-A
HEFFNER RS, 1994, HEARING RES, V80, P247, DOI 10.1016/0378-5955(94)90116-3
IRVINE DRF, 1987, HEARING RES, V26, P267, DOI 10.1016/0378-5955(87)90063-3
JEN PHS, 1988, HEARING RES, V34, P101, DOI 10.1016/0378-5955(88)90098-6
Keller CH, 1998, HEARING RES, V118, P13, DOI 10.1016/S0378-5955(98)00014-8
KELLY JB, 1980, J NEUROPHYSIOL, V44, P1161
Kinsler LE, 1982, FUNDAMENTALS ACOUSTI
Koka K, 2010, HEARING RES, V263, P128, DOI 10.1016/j.heares.2009.08.009
Koka K, 2008, J ACOUST SOC AM, V123, P4297, DOI 10.1121/1.2916587
KUHN GF, 1977, J ACOUST SOC AM, V62, P157, DOI 10.1121/1.381498
LANGFORD TL, 1984, HEARING RES, V15, P39, DOI 10.1016/0378-5955(84)90223-5
Leong P, 1998, J NEUROSCI METH, V80, P191, DOI 10.1016/S0165-0270(97)00201-X
Long GR, 1994, COMP HEARING MAMMALS, P18
Maki K, 2005, J ACOUST SOC AM, V118, P872, DOI 10.1121/1.1944647
MARTIN RL, 1989, HEARING RES, V38, P289, DOI 10.1016/0378-5955(89)90072-5
McAlpine D, 2003, TRENDS NEUROSCI, V26, P347, DOI 10.1016/S0166-2236(03)00140-1
McFadden SL, 1998, HEARING RES, V120, P121, DOI 10.1016/S0378-5955(98)00052-5
MIDDLEBROOKS JC, 1989, J ACOUST SOC AM, V86, P89, DOI 10.1121/1.398224
MIDDLEBROOKS JC, 1990, J ACOUST SOC AM, V87, P2149, DOI 10.1121/1.399183
Middlebrooks JC, 1999, J ACOUST SOC AM, V106, P1480, DOI 10.1121/1.427176
MIDDLEBROOKS JC, 1981, J NEUROSCI, V1, P107
MIDDLEBROOKS JC, 1987, J NEUROPHYSIOL, V57, P672
MOISEFF A, 1989, J ACOUST SOC AM, V59, P1222
MOORE DR, 1979, ACTA OTO-LARYNGOL, V87, P434, DOI 10.3109/00016487909126447
Morest DK, 1997, HEARING RES, V103, P151, DOI 10.1016/S0378-5955(96)00172-4
Murphy WJ, 1998, J ACOUST SOC AM, V103, P1951, DOI 10.1121/1.421376
MUSICANT AD, 1990, J ACOUST SOC AM, V87, P757, DOI 10.1121/1.399545
MUSICANT AD, 1984, HEARING RES, V14, P185, DOI 10.1016/0378-5955(84)90017-0
Nuding SC, 1999, HEARING RES, V131, P89, DOI 10.1016/S0378-5955(99)00023-4
OBRIST MK, 1993, J EXP BIOL, V180, P119
PALMER AR, 1985, HEARING RES, V17, P267, DOI 10.1016/0378-5955(85)90071-1
Parsons CH, 1999, J NEUROPHYSIOL, V82, P2294
PHILLIPS DP, 1982, HEARING RES, V8, P13, DOI 10.1016/0378-5955(82)90031-4
Pienkowski M, 2005, J NEUROPHYSIOL, V93, P454, DOI 10.1152/jn.00569.2004
Puria S, 2010, HEARING RES, V263, P183, DOI 10.1016/j.heares.2009.10.013
RICE JJ, 1992, HEARING RES, V58, P132, DOI 10.1016/0378-5955(92)90123-5
RIFE DD, 1989, J AUDIO ENG SOC, V37, P419
ROSOWSKI JJ, 1991, J ACOUST SOC AM, V90, P124, DOI 10.1121/1.401306
Rosowski J.J., 1994, COMP HEARING MAMMALS, P172
ROTH GL, 1980, J ACOUST SOC AM, V68, P1643, DOI 10.1121/1.385196
RUGGERO MA, 1983, J ACOUST SOC AM, V73, P2096, DOI 10.1121/1.389577
Ruggero MA, 2002, P NATL ACAD SCI USA, V99, P13206, DOI 10.1073/pnas.202492699
Schnupp JWH, 2003, J ACOUST SOC AM, V113, P2021, DOI 10.1121/1.1547460
Schnupp JWH, 1998, J NEUROPHYSIOL, V79, P1053
Shaw E. A. G., 1982, LOCALIZATION SOUND T, P30
SHAW EAG, 1968, J ACOUST SOC AM, V44, P240, DOI 10.1121/1.1911059
Slee SJ, 2010, HEARING RES, V260, P96, DOI 10.1016/j.heares.2009.12.001
Songer JE, 2006, J ACOUST SOC AM, V120, P258, DOI 10.1121/1.2204356
Spezio ML, 2000, HEARING RES, V144, P73, DOI 10.1016/S0378-5955(00)00050-2
Sterbing SJ, 2003, J NEUROPHYSIOL, V90, P2648, DOI 10.1152/jn.00348.2003
Tollin DJ, 2003, J NEUROPHYSIOL, V90, P525, DOI 10.1152/jn.00107.2003
Tollin DJ, 2003, NEUROSCIENTIST, V9, P127, DOI 10.1177/1073858403252228
Tollin DJ, 2008, J NEUROSCI, V28, P4848, DOI 10.1523/JNEUROSCI.5421-07.2008
Tollin DJ, 2009, J NEUROPHYSIOL, V101, P1258, DOI 10.1152/jn.90977.2008
Tollin DJ, 2009, J ACOUST SOC AM, V125, P980, DOI 10.1121/1.3058630
Tollin DJ, 2009, J ACOUST SOC AM, V126, P3125, DOI 10.1121/1.3257234
VONBISMA.G, 1967, J ACOUST SOC AM, V42, P1156, DOI 10.1121/1.2143914
VONBISMARK G, 1967, THESIS MIT
WAKEFORD OS, 1974, J ACOUST SOC AM, V55, P1223
Wiener F M, 1966, Acta Otolaryngol, V61, P255, DOI 10.3109/00016486609127062
WIGHTMAN FL, 1989, J ACOUST SOC AM, V85, P858, DOI 10.1121/1.397557
Woodworth R. S., 1938, EXPT PSYCHOL
WOTTON JM, 1995, J ACOUST SOC AM, V98, P1423, DOI 10.1121/1.413410
Xu L, 2000, J ACOUST SOC AM, V107, P1451, DOI 10.1121/1.428432
Young ED, 1996, J ACOUST SOC AM, V99, P3064, DOI 10.1121/1.414883
NR 84
TC 14
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2011
VL 272
IS 1-2
BP 135
EP 147
DI 10.1016/j.heares.2010.10.007
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 735ME
UT WOS:000288418100015
PM 20971180
ER
PT J
AU Havenith, S
Versnel, H
Agterberg, MJH
de Groot, JCMJ
Sedee, RJ
Grolman, W
Klis, SFL
AF Havenith, Sarah
Versnel, Huib
Agterberg, Martijn J. H.
de Groot, John C. M. J.
Sedee, Robert-Jan
Grolman, Wilko
Klis, Sjaak F. L.
TI Spiral ganglion cell survival after round window membrane application of
brain-derived neurotrophic factor using gelfoam as carrier
SO HEARING RESEARCH
LA English
DT Article
ID DEAFENED GUINEA-PIGS; SENSORINEURAL HEARING-LOSS;
FIBROBLAST-GROWTH-FACTOR; LOCAL-DRUG DELIVERY; NEURONS IN-VIVO;
INNER-EAR; ELECTRICAL-STIMULATION; AUDITORY NEURONS; MENIERES-DISEASE;
COCHLEAR NEURONS
AB Several studies have shown that treatment with various neurotrophins protects spiral ganglion cells (SGCs) from degeneration in hair-cell deprived cochleas. In most of these studies the neurotrophins are delivered by means of intracochlear delivery methods. Recently, other application methods that might be more suited in cochlear implant patients have been developed. We have examined if round window membrane application of gelfoam infiltrated with a neurotrophin resulted in SGC survival in deafened guinea pigs. Two weeks after deafening, gelfoam cubes infiltrated with 6 mu g of brain-derived neurotrophic factor (BDNF) were deposited onto the round window membrane of the right cochleas. Electric pulses were delivered through an electrode positioned within the round window niche to electrically evoke auditory brainstem responses (eABRs). Two or four weeks after deposition of the gelfoam all cochleas were histologically examined. We found that local BDNF treatment enhances the survival of SGCs in the basal cochlear turn after two and four weeks. The treatment had no effect on SGC size or shape. In animals treated with BDNF, eABR amplitudes were smaller than in normal-hearing control animals and similar to those in deafened controls. We conclude that BDNF delivered by means of local gelfoam application provides a protective effect, which is limited compared to intracochlear delivery methods. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Havenith, Sarah; Versnel, Huib; Agterberg, Martijn J. H.; de Groot, John C. M. J.; Sedee, Robert-Jan; Grolman, Wilko; Klis, Sjaak F. L.] Univ Med Ctr Utrecht, Dept Otorhinolaryngol Head & Neck Surg, Rudolf Magnus Inst Neurosci, NL-3508 GA Utrecht, Netherlands.
[Agterberg, Martijn J. H.] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, Dept Biophys, Nijmegen, Netherlands.
RP Klis, SFL (reprint author), Univ Med Ctr Utrecht, Dept Otorhinolaryngol Head & Neck Surg, Rudolf Magnus Inst Neurosci, Room G-02-531,POB 85500, NL-3508 GA Utrecht, Netherlands.
EM s.klis@umcutrecht.nl
RI Agterberg, Martijn/K-2956-2012
FU Heinsius-Houbolt Fund
FX This work was supported by the Heinsius-Houbolt Fund, the Netherlands.
The authors thank Rik Mansvelt-Beck and Rene van de Vosse for technical
support and Ferry Hendriksen for assistance with the histology.
CR AGTERBERG MJH, 2008, HEARING RES, V224, P25
Agterberg MJH, 2009, JARO-J ASSOC RES OTO, V10, P355, DOI 10.1007/s10162-009-0170-2
Boleas-Aguirre MS, 2008, OTOL NEUROTOL, V29, P33, DOI 10.1097/mao.0b013e31815dbafc
Chikar JA, 2008, HEARING RES, V245, P24, DOI 10.1016/j.heares.2008.08.005
DEGROOT JCMJ, 1987, ACTA OTO-LARYNGOL, V104, P234, DOI 10.3109/00016488709107323
Endo T, 2005, LARYNGOSCOPE, V115, P2016, DOI 10.1097/01.mlg.0000183020.32435.59
ERNFORS P, 1995, NEURON, V14, P1153, DOI 10.1016/0896-6273(95)90263-5
Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463
Fritzsch B, 1999, CELL TISSUE RES, V295, P369, DOI 10.1007/s004410051244
Fritzsch B, 2004, PROG BRAIN RES, V146, P265, DOI 10.1016/S0079-6123(03)46017-2
Garduno-Anaya MA, 2005, OTOLARYNG HEAD NECK, V133, P285, DOI 10.1016/j.otohns.2005.05.010
Ghiz AF, 2001, HEARING RES, V162, P105, DOI 10.1016/S0378-5955(01)00375-6
Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542
Gillespie LN, 2004, NEUROREPORT, V15, P1121, DOI 10.1097/01.wnr.0000125777.04774.c2
Glueckert R, 2008, J COMP NEUROL, V507, P1602, DOI 10.1002/cne.21619
Goycoolea MV, 1997, MICROSC RES TECHNIQ, V36, P201, DOI 10.1002/(SICI)1097-0029(19970201)36:3<201::AID-JEMT8>3.0.CO;2-R
Guitton MJ, 2003, J NEUROSCI, V23, P3944
HALL RD, 1990, HEARING RES, V45, P123, DOI 10.1016/0378-5955(90)90188-U
Ito J, 2005, ORL J OTO-RHINO-LARY, V67, P272, DOI 10.1159/000089407
Klis SFL, 2000, NEUROREPORT, V11, P623, DOI 10.1097/00001756-200002280-00037
Lalwani AK, 2002, LARYNGOSCOPE, V112, P1325, DOI 10.1097/00005537-200208000-00001
Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3
Lefebvre PP, 2002, ACTA OTO-LARYNGOL, V122, P698, DOI 10.1080/003655402/000028037
Maruyama J, 2007, NEUROBIOL DIS, V25, P309, DOI 10.1016/j.nbd.2006.09.012
Maruyama J, 2008, NEUROBIOL DIS, V29, P14, DOI 10.1016/j.nbd.2007.07.026
McCall AA, 2010, EAR HEARING, V31, P156, DOI 10.1097/AUD.0b013e3181c351f2
McGuinness SL, 2005, OTOL NEUROTOL, V26, P1064, DOI 10.1097/01.mao.0000185063.20081.50
Mikulec AA, 2009, OTOL NEUROTOL, V30, P131, DOI 10.1097/MAO.0b013e318191bff8
Miller JM, 2007, J NEUROSCI RES, V85, P1959, DOI 10.1002/jnr.21320
Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7
Mitchell A, 1997, HEARING RES, V105, P30, DOI 10.1016/S0378-5955(96)00202-X
Nakaizumi T, 2004, AUDIOL NEURO-OTOL, V9, P135, DOI 10.1159/000077264
Noushi F, 2005, OTOL NEUROTOL, V26, P528, DOI 10.1097/01.mao.0000169780.84588.a5
Pettingill LN, 2007, IEEE T BIO-MED ENG, V54, P1138, DOI 10.1109/TBME.2007.895375
Rejali D, 2007, HEARING RES, V228, P180, DOI 10.1016/j.heares.2007.02.010
Richardson RT, 2005, HEARING RES, V204, P37, DOI 10.1016/j.heares.2005.01.001
Richardson RT, 2006, AUDIOL NEURO-OTOL, V11, P343, DOI 10.1159/000095896
Richardson RT, 2009, BIOMATERIALS, V30, P2614, DOI 10.1016/j.biomaterials.2009.01.015
Saber A, 2009, EAR HEARING, V30, P81, DOI 10.1097/AUD.0b013e31818ff98e
Sajjadi H, 2008, LANCET, V372, P406, DOI 10.1016/S0140-6736(08)61161-7
Salt AN, 2001, HEARING RES, V154, P88, DOI 10.1016/S0378-5955(01)00223-4
Salt AN, 2009, AUDIOL NEURO-OTOL, V14, P350, DOI 10.1159/000241892
Scheper V, 2009, J NEUROSCI RES, V87, P1389, DOI 10.1002/jnr.21964
Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564
Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999
Silverstein H, 1999, OTOLARYNG HEAD NECK, V120, P649, DOI 10.1053/hn.1999.v120.a91763
Silverstein H, 1996, Ear Nose Throat J, V75, P468
Slattery WH, 2005, OTOLARYNG HEAD NECK, V133, P251, DOI 10.1016/j.otohns.2005.05.015
Sly DJ, 2007, EUR J NEUROSCI, V26, P510, DOI 10.1111/j.1460-9568.2007.05678.x
SMITH L, 1983, ANN OTO RHINOL LARYN, V92, P19
Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011
Staecker H, 1998, OTOLARYNG HEAD NECK, V119, P7, DOI 10.1016/S0194-5998(98)70194-9
VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5
Versnel H, 2007, HEARING RES, V231, P1, DOI 10.1016/j.heares.2007.03.003
WEST BA, 1973, ARCH OTOLARYNGOL, V98, P32
Wise AK, 2005, J COMP NEUROL, V487, P147, DOI 10.1002/cne.20563
Yamagata T, 2004, J NEUROSCI RES, V78, P75, DOI 10.1002/jnr.20239
NR 57
TC 14
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2011
VL 272
IS 1-2
BP 168
EP 177
DI 10.1016/j.heares.2010.10.003
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 735ME
UT WOS:000288418100018
PM 20969940
ER
PT J
AU Temchin, AN
Recio-Spinoso, A
Ruggero, MA
AF Temchin, Andrei N.
Recio-Spinoso, Alberto
Ruggero, Mario A.
TI Timing of cochlear responses inferred from frequency-threshold tuning
curves of auditory-nerve fibers
SO HEARING RESEARCH
LA English
DT Article
ID BASILAR-MEMBRANE VIBRATIONS; MECHANICAL WAVE-FORM; CHINCHILLA COCHLEA;
IMPULSE RESPONSES; IN-VIVO; REGION; GLIDES; TONES; BASE; FUROSEMIDE
AB Links between frequency tuning and timing were explored in the responses to sound of auditory-nerve fibers. Synthetic transfer functions were constructed by combining filter functions, derived via minimum-phase computations from average frequency-threshold tuning curves of chinchilla auditory-nerve fibers with high spontaneous activity (Temchin et al., 2008), and signal-front delays specified by the latencies of basilar-membrane and auditory-nerve fiber responses to intense clicks (Temchin et al., 2005). The transfer functions predict several features of the phase-frequency curves of cochlear responses to tones, including their shape transitions in the regions with characteristic frequencies of 1 kHz and 3-4 kHz (Temchin and Ruggero, 2010). The transfer functions also predict the shapes of cochlear impulse responses, including the polarities of their frequency sweeps and their transition at characteristic frequencies around 1 kHz. Predictions are especially accurate for characteristic frequencies < 1 kHz. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Temchin, Andrei N.; Ruggero, Mario A.] Northwestern Univ, Dept Commun Sci & Disorders, Hugh Knowles Ctr, Evanston, IL 60208 USA.
[Recio-Spinoso, Alberto] Univ Castilla La Mancha, Inst Invest Discapacidades Neurol, Albacete 02006, Spain.
RP Ruggero, MA (reprint author), Northwestern Univ, Dept Commun Sci & Disorders, Hugh Knowles Ctr, 2240 Campus Dr, Evanston, IL 60208 USA.
EM mruggero@northwestern.edu
RI Recio-Spinoso, Alberto/F-7744-2013
FU NIH [2 R01 DC000419-20A2]; Hugh Knowles Center
FX We thank Nigel Cooper for his comments on a previous version of this
paper. We were supported by grants from the NIH (2 R01 DC000419-20A2)
and the Hugh Knowles Center.
CR Bode H. W., 1945, NETWORK ANAL FEEDBAC
Carney LH, 1999, J ACOUST SOC AM, V105, P2384, DOI 10.1121/1.426843
COOPER NP, 1994, HEARING RES, V78, P221, DOI 10.1016/0378-5955(94)90028-0
deBoer E, 1997, J ACOUST SOC AM, V102, P3810, DOI 10.1121/1.420356
deBoer E, 1997, J ACOUST SOC AM, V101, P3583, DOI 10.1121/1.418319
DEBOER E, 1996, ASS RES OT MIDW M AB, V19, P57
de Boer E, 2000, J ACOUST SOC AM, V107, P1497, DOI 10.1121/1.428436
Goldstein JL, 1971, PHYSL AUDITORY SYSTE, P133
HUANG S, 2010, ASS RES OT MIDW M, V33, P255
IEEE, 1979, PROGR DIG SIGN PROC
Lyon R. F., 1997, DIVERSITY AUDITORY M, P205
MOLLER AR, 1979, ACUSTICA, V41, P258
Muller M, 2010, HEARING RES, V268, P184, DOI 10.1016/j.heares.2010.05.021
Narayan SS, 2000, RECENT DEV AUDITORY, P95, DOI 10.1142/9789812793980_0014
Narayan SS, 1998, SCIENCE, V282, P1882, DOI 10.1126/science.282.5395.1882
Oppenheim A. V., 1975, DIGITAL SIGNAL PROCE
Overstreet EH, 2002, J PHYSIOL-LONDON, V545, P279, DOI 10.1113/jphysiol.2002.025205
Papoulis A., 1977, SIGNAL ANAL
Papoulis A., 1962, FOURIER INTEGRAL ITS
Recio A, 2000, J ACOUST SOC AM, V108, P2281, DOI 10.1121/1.1318898
Recio A, 1998, J ACOUST SOC AM, V103, P1972, DOI 10.1121/1.421377
Recio-Spinoso A, 2009, JARO-J ASSOC RES OTO, V10, P471, DOI 10.1007/s10162-009-0172-0
RECIOSPINOSO A, 2010, IEEE T BIOM IN PRESS
Recio-Spinoso A, 2005, J NEUROPHYSIOL, V93, P3615, DOI 10.1152/jn.00882.2004
Rhode WS, 1996, AUDIT NEUROSCI, V3, P101
Rhode WS, 2007, J ACOUST SOC AM, V121, P2792, DOI 10.1121/1.2718397
Rhode WS, 2000, J ACOUST SOC AM, V107, P3317, DOI 10.1121/1.429404
Robles L, 2001, PHYSIOL REV, V81, P1305
Ruggero MA, 2000, P NATL ACAD SCI USA, V97, P11744, DOI 10.1073/pnas.97.22.11744
RUGGERO MA, 1987, J NEUROPHYSIOL, V58, P379
Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265
Ruggero MA, 2007, JARO-J ASSOC RES OTO, V8, P153, DOI 10.1007/s10162-007-0081-z
RUGGERO MA, 2007, MIDDLE EAR MECH RES
RUGGERO MA, 1991, J NEUROSCI, V11, P1057
SEWELL WF, 1984, HEARING RES, V14, P305, DOI 10.1016/0378-5955(84)90057-1
Shera CA, 2001, J ACOUST SOC AM, V109, P2023, DOI 10.1121/1.1366372
Tan Q, 2003, J ACOUST SOC AM, V114, P2007, DOI 10.1121/1.1608963
Temchin AN, 2005, J NEUROPHYSIOL, V93, P3635, DOI 10.1152/jn.00885.2004
Temchin AN, 2010, JARO-J ASSOC RES OTO, V11, P297, DOI 10.1007/s10162-009-0197-4
TEMCHIN AN, 2009, ASS RES OT MIDW M, V32, P209
Temchin AN, 2008, J NEUROPHYSIOL, V100, P2889, DOI 10.1152/jn.90637.2008
Zinn C, 2000, HEARING RES, V142, P159, DOI 10.1016/S0378-5955(00)00012-5
Zweig G, 1976, Cold Spring Harb Symp Quant Biol, V40, P619
NR 43
TC 6
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2011
VL 272
IS 1-2
BP 178
EP 186
DI 10.1016/j.heares.2010.10.002
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 735ME
UT WOS:000288418100019
PM 20951191
ER
PT J
AU Scheich, H
Brechmann, A
Brosch, M
Budinger, E
Ohl, FW
Selezneva, E
Stark, H
Tischmeyer, W
Wetzel, W
AF Scheich, Henning
Brechmann, Andre
Brosch, Michael
Budinger, Eike
Ohl, Frank W.
Selezneva, Elena
Stark, Holger
Tischmeyer, Wolfgang
Wetzel, Wolfram
TI Behavioral semantics of learning and crossmodal processing in auditory
cortex: The semantic processor concept
SO HEARING RESEARCH
LA English
DT Article
ID FREQUENCY-MODULATED TONES; CORTICAL RECEPTIVE-FIELDS; SHORT-TERM-MEMORY;
MONGOLIAN GERBIL; DEPENDENT MEMORY; NUCLEUS BASALIS; CONTRAST
SENSITIVITY; DISCRIMINATION TASK; MOTOR THEORY; PLASTICITY
AB Two phenomena of auditory cortex activity have recently attracted attention, namely that the primary field can show different types of learning-related changes of sound representation and that during learning even this early auditory cortex is under strong multimodal influence. Based on neuronal recordings in animal auditory cortex during instrumental tasks, in this review we put forward the hypothesis that these two phenomena serve to derive the task-specific meaning of sounds by associative learning. To understand the implications of this tenet, it is helpful to realize how a behavioral meaning is usually derived for novel environmental sounds. For this purpose, associations with other sensory, e.g. visual, information are mandatory to develop a connection between a sound and its behaviorally relevant cause and/or the context of sound occurrence. This makes it plausible that in instrumental tasks various non-auditory sensory and procedural contingencies of sound generation become co-represented by neuronal firing in auditory cortex. Information related to reward or to avoidance of discomfort during task learning, that is essentially non-auditory, is also co-represented. The reinforcement influence points to the dopaminergic internal reward system, the local role of which for memory consolidation in auditory cortex is well-established. Thus, during a trial of task performance, the neuronal responses to the sounds are embedded in a sequence of representations of such non-auditory information. The embedded auditory responses show task-related modulations of auditory responses falling into types that correspond to three basic logical classifications that may be performed with a perceptual item, i.e. from simple detection to discrimination, and categorization. This hierarchy of classifications determine the semantic "same-different" relationships among sounds. Different cognitive classifications appear to be a consequence of learning task and lead to a recruitment of different excitatory and inhibitory mechanisms and to distinct spatiotemporal metrics of map activation to represent a sound. The described non-auditory firing and modulations of auditory responses suggest that auditory cortex, by collecting all necessary information, functions as a "semantic processor" deducing the task-specific meaning of sounds by learning. (C) 2010 Published by Elsevier B.V.
C1 [Scheich, Henning; Brechmann, Andre; Brosch, Michael; Budinger, Eike; Ohl, Frank W.; Selezneva, Elena; Stark, Holger; Tischmeyer, Wolfgang; Wetzel, Wolfram] Leibniz Inst Neurobiol, D-39118 Magdeburg, Germany.
RP Scheich, H (reprint author), Leibniz Inst Neurobiol, Brenneckestr 6, D-39118 Magdeburg, Germany.
EM henning.scheich@ifn-magdeburg.de
FU Deutsche Forschungsgemeinschaft [SFB 779, SFB/TRR 62, FB/TRR 31]; BMBF
[01GW0621]; German Center for Neurodegenerative Diseases (DZNE)
FX Supported by intramural funding, the Deutsche Forschungsgemeinschaft
(SFB 779, SFB/TRR 62, and SFB/TRR 31), BMBF (grant 01GW0621), and German
Center for Neurodegenerative Diseases (DZNE).
CR Ahissar M, 2009, PHILOS T R SOC B, V364, P285, DOI 10.1098/rstb.2008.0253
Atiani S, 2009, NEURON, V61, P467, DOI 10.1016/j.neuron.2008.12.027
Bakin JS, 1996, P NATL ACAD SCI USA, V93, P11219, DOI 10.1073/pnas.93.20.11219
Bangert M, 2001, ANN NY ACAD SCI, V930, P425
Bao SW, 2001, NATURE, V412, P79, DOI 10.1038/35083586
Bizley JK, 2007, CEREB CORTEX, V17, P2172, DOI 10.1093/cercor/bhl128
Brechmann A, 2005, CEREB CORTEX, V15, P578, DOI 10.1093/cercor/bhh159
Brechmann A, 2007, CEREB CORTEX, V17, P2544, DOI 10.1093/cercor/bhl160
Brosch M, 2005, J NEUROSCI, V25, P6797, DOI 10.1523/JNEUROSCI.1571-05.2005
Brosch M, 2011, HEARING RES, V271, P66, DOI 10.1016/j.heares.2010.05.003
Brown M, 2004, CEREB CORTEX, V14, P952, DOI 10.1093/cercor/bhh056
Budinger E, 2006, NEUROSCIENCE, V143, P1065, DOI 10.1016/j.neuroscience.2006.08.035
Budinger E, 2000, EUR J NEUROSCI, V12, P2452, DOI 10.1046/j.1460-9568.2000.00143.x
Budinger E, 2009, HEARING RES, V258, P16, DOI 10.1016/j.heares.2009.04.021
Budinger E, 2008, BRAIN RES, V1220, P2, DOI 10.1016/j.brainres.2007.07.084
Cahill L, 1996, NEUROBIOL LEARN MEM, V65, P213, DOI 10.1006/nlme.1996.0026
Cappe C, 2009, HEARING RES, V258, P28, DOI 10.1016/j.heares.2009.04.017
COHEN MR, 1962, INTRO LOGIC
EDELINE JM, 1994, EXP BRAIN RES, V97, P373
EDELINE JM, 1993, BEHAV NEUROSCI, V107, P539
Ernst SMA, 2008, BRAIN RES, V1220, P246, DOI 10.1016/j.brainres.2007.08.013
Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141
Fritz JB, 2007, J NEUROPHYSIOL, V98, P2337, DOI 10.1152/jn.00552.2007
Fuster Joaquin M., 1997, PREFRONTAL CORTEX AN
Galantucci B, 2006, PSYCHON B REV, V13, P361, DOI 10.3758/BF03193857
Ghazanfar AA, 2006, TRENDS COGN SCI, V10, P278, DOI 10.1016/j.tics.2006.04.008
Goard M, 2009, NAT NEUROSCI, V12, P1444, DOI 10.1038/nn.2402
Harper NS, 2004, NATURE, V430, P682, DOI 10.1038/nature02768
Heffner H. E., 1995, METHODS COMP PSYCHOA, P79
Ilango A, 2010, NEUROSCIENCE, V166, P752, DOI 10.1016/j.neuroscience.2010.01.010
Irvine DRF, 2005, INT REV NEUROBIOL, V70, P435, DOI 10.1016/S0074-7742(05)70013-1
Jeschke M, 2008, BRAIN RES, V1220, P70, DOI 10.1016/j.brainres.2007.10.047
Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714
Kraus M, 2002, LEARN MEMORY, V9, P293, DOI 10.1101/lm.47502
Lenz D, 2008, BRAIN RES, V1220, P81, DOI 10.1016/j.brainres.2007.10.053
LIBERMAN AM, 1985, COGNITION, V21, P1, DOI 10.1016/0010-0277(85)90021-6
MCGURK H, 1976, NATURE, V264, P746, DOI 10.1038/264746a0
Metherate R, 2004, PROG BRAIN RES, V145, P143, DOI 10.1016/S0079-6123(03)45010-3
MOORE B C J, 1990, British Journal of Audiology, V24, P131, DOI 10.3109/03005369009077854
Ohl FW, 1996, EUR J NEUROSCI, V8, P1001, DOI 10.1111/j.1460-9568.1996.tb01587.x
Ohl FW, 2001, NATURE, V412, P733, DOI 10.1038/35089076
Ohl FW, 1997, J COMP PHYSIOL A, V181, P685, DOI 10.1007/s003590050150
Ohl FW, 2005, CURR OPIN NEUROBIOL, V15, P470, DOI 10.1016/j.conb.2005.07.002
Ohl FW, 1999, LEARN MEMORY, V6, P347
PARENT A, 1995, BRAIN RES REV, V20, P91, DOI 10.1016/0165-0173(94)00007-C
RECANZONE GH, 1993, J NEUROSCI, V13, P87
Rothe T, 2009, BRAIN RES, V1297, P143, DOI 10.1016/j.brainres.2009.08.055
SATTER M, 2005, BRAIN RES REV, V48, P98
Scheich H, 2007, HEARING RES, V229, P213, DOI 10.1016/j.heares.2007.01.025
Schicknick H, 2008, CEREB CORTEX, V18, P2646, DOI 10.1093/cercor/bhn026
Schicknick H, 2006, NEUROPHARMACOLOGY, V50, P671, DOI 10.1016/j.neuropharm.2005.11.013
Schroeder CE, 2001, J NEUROPHYSIOL, V85, P1322
Schroeder CE, 2002, COGNITIVE BRAIN RES, V14, P187, DOI 10.1016/S0926-6410(02)00073-3
Schultz W, 2007, ANNU REV NEUROSCI, V30, P259, DOI 10.1146/annurev.neuro.28.061604.135722
Selezneva E, 2006, CURR BIOL, V16, P2428, DOI 10.1016/j.cub.2006.10.027
Shamma S, 2008, PLOS BIOL, V6, P1141, DOI 10.1371/journal.pbio.0060155
Shumake J, 2010, J NEUROSCI, V30, P5876, DOI 10.1523/JNEUROSCI.3604-09.2010
Smiley JF, 2009, HEARING RES, V258, P37, DOI 10.1016/j.heares.2009.06.019
Stark H, 2004, NEUROSCIENCE, V126, P21, DOI 10.1016/j.neuroscience.2004.02.026
Stark H, 1997, J NEUROCHEM, V68, P691
Thiele A, 2009, NAT NEUROSCI, V12, P1359, DOI 10.1038/nn1109-1359
Tischmeyer W, 2003, EUR J NEUROSCI, V18, P942, DOI 10.1046/j.1460-9568.2003.02820.x
VONHOLST E, 1950, NATURWISSENSCHAFTEN, V37, P464
Weinberger NM, 2003, NEUROBIOL LEARN MEM, V80, P268, DOI 10.1016/S1074-7427(03)00072-8
Weinberger NM, 2004, NAT REV NEUROSCI, V5, P279, DOI 10.1038/nrn1366
Wetzel W, 1998, NEUROSCI LETT, V252, P115, DOI 10.1016/S0304-3940(98)00561-8
Wise RA, 2004, NAT REV NEUROSCI, V5, P483, DOI 10.1038/nrn1406
Witte RS, 2005, COGNITIVE BRAIN RES, V23, P171, DOI 10.1016/j.cogbrainres.2004.10.018
NR 68
TC 21
Z9 21
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2011
VL 271
IS 1-2
SI SI
BP 3
EP 15
DI 10.1016/j.heares.2010.10.006
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 717VH
UT WOS:000287075000002
PM 20971178
ER
PT J
AU Rauschecker, JP
AF Rauschecker, Josef P.
TI An expanded role for the dorsal auditory pathway in sensorimotor control
and integration
SO HEARING RESEARCH
LA English
DT Article
ID SOUND-LOCALIZATION BEHAVIOR; SUPERIOR TEMPORAL GYRUS; HUMAN PLANUM
TEMPORALE; RHESUS-MONKEY; SPEECH PRODUCTION; MACAQUE MONKEYS; CONDUCTION
APHASIA; CORTICAL-NEURONS; PARIETAL CORTEX; COMPLEX SOUNDS
AB The dual-pathway model of auditory cortical processing assumes that two largely segregated processing streams originating in the lateral belt subserve the two main functions of hearing: identification of auditory "objects", including speech; and localization of sounds in space (Rauschecker and Tian, 2000). Evidence has accumulated, chiefly from work in humans and nonhuman primates, that an antero-ventral pathway supports the former function, whereas a postero-dorsal stream supports the latter, i.e processing of space and motion-in-space. In addition, the postero-dorsal stream has also been postulated to subserve some functions of speech and language in humans. A recent review (Rauschecker and Scott, 2009) has proposed the possibility that both functions of the postero-dorsal pathway can be subsumed under the same structural forward model: an efference copy sent from prefrontal and premotor cortex provides the basis for "optimal state estimation" in the inferior parietal lobe and in sensory areas of the posterior auditory cortex. The current article corroborates this model by adding and discussing recent evidence. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Rauschecker, Josef P.] Georgetown Univ, Dept Physiol & Biophys, Med Ctr, Lab Integrat Neurosci & Cognit, Washington, DC 20057 USA.
[Rauschecker, Josef P.] Aalto Univ Sch Sci & Technol, Mind & Brain Lab, Ctr Excellence Computat Complex Syst Res, FI-00076 Aalto, Finland.
RP Rauschecker, JP (reprint author), Georgetown Univ, Dept Physiol & Biophys, Med Ctr, Lab Integrat Neurosci & Cognit, New Res Bldg,Room WP19, Washington, DC 20057 USA.
EM rauschej@georgetown.edu
RI Rauschecker, Josef/A-4120-2013
FU National Institutes of Health [R01 NS052494]; Cognitive Neuroscience
Initiative of the National Science Foundation [BCS-0519127]; NSF
[OISE-0730255]
FX The present chapter draws from the following prior publications:
Rauschecker (2007); Rauschecker and Scott (2009). The author's work was
supported by grants from the National Institutes of Health (R01
NS052494), the Cognitive Neuroscience Initiative of the National Science
Foundation (BCS-0519127), and the NSF PIRE program (OISE-0730255). I
would like to thank Priyanka Chablani for help with editing and David
Klemm for help with graphics.
CR Aboitiz F, 2006, BRAIN LANG, V98, P40, DOI 10.1016/j.bandl.2006.01.006
Ahveninen J, 2006, P NATL ACAD SCI USA, V103, P14608, DOI 10.1073/pnas.0510480103
Alain C, 2001, P NATL ACAD SCI USA, V98, P12301, DOI 10.1073/pnas.211209098
Andersen RA, 2009, NEURON, V63, P568, DOI 10.1016/j.neuron.2009.08.028
Arnott SR, 2004, NEUROIMAGE, V22, P401, DOI 10.1016/j.neuroimage.2004.01.014
BADDELEY A, 1984, Q J EXP PSYCHOL-A, V36, P233
Bar M, 2006, P NATL ACAD SCI USA, V103, P449, DOI 10.1073/pnas.0507062103
Battellil L, 2008, CURR OPIN NEUROBIOL, V18, P120, DOI 10.1016/j.conb.2008.08.004
Bedny M, 2008, J NEUROSCI, V28, P11347, DOI 10.1523/JNEUROSCI.3039-08.2008
Belin P, 2000, NAT NEUROSCI, V3, P965, DOI 10.1038/79890
Belin P, 2000, NATURE, V403, P309, DOI 10.1038/35002078
Bernal B, 2009, BRAIN, V132, P2309, DOI 10.1093/brain/awp206
Binder JR, 2000, CEREB CORTEX, V10, P512, DOI 10.1093/cercor/10.5.512
Binder JR, 2004, NAT NEUROSCI, V7, P295, DOI 10.1038/nn1198
Blakemore SJ, 1998, NAT NEUROSCI, V1, P635, DOI 10.1038/2870
Broca P., 1861, B SOC ANAT PARIS, V36, P330
Brosch M, 2005, J NEUROSCI, V25, P6797, DOI 10.1523/JNEUROSCI.1571-05.2005
Brunetti M, 2005, HUM BRAIN MAPP, V26, P251, DOI 10.1002/hbm.20164
Buchsbaum BR, 2008, J COGNITIVE NEUROSCI, V20, P762, DOI 10.1162/jocn.2008.20501
Bushara KO, 1999, NAT NEUROSCI, V2, P759
CAPLAN D, 1992, Q J EXP PSYCHOL-A, V45, P177
Chen JL, 2008, CEREB CORTEX, V18, P2844, DOI 10.1093/cercor/bhn042
CHEVILLET M, 2007, SOC NEUROSCI, V33
Clarke S, 2000, NEUROPSYCHOLOGIA, V38, P797, DOI 10.1016/S0028-3932(99)00141-4
Cohen YE, 2009, P NATL ACAD SCI USA, V106, P20045, DOI 10.1073/pnas.0907248106
Colby CL, 1999, ANNU REV NEUROSCI, V22, P319, DOI 10.1146/annurev.neuro.22.1.319
Curio G, 2000, HUM BRAIN MAPP, V9, P183, DOI 10.1002/(SICI)1097-0193(200004)9:4<183::AID-HBM1>3.0.CO;2-Z
Cusack R, 2005, J COGNITIVE NEUROSCI, V17, P641, DOI 10.1162/0898929053467541
DAMASIO H, 1980, BRAIN, V103, P337, DOI 10.1093/brain/103.2.337
Davis B, 2009, J NEUROSCI, V29, P3182, DOI 10.1523/JNEUROSCI.5793-08.2009
Degerman A, 2006, BRAIN RES, V1077, P123, DOI 10.1016/j.brainres.2006.01.025
Deouell LY, 2007, NEURON, V55, P985, DOI 10.1016/i.neuron.2007.08.019
Desmurget M, 2000, TRENDS COGN SCI, V4, P423, DOI 10.1016/S1364-6613(00)01537-0
Dhanjal NS, 2008, J NEUROSCI, V28, P9969, DOI 10.1523/JNEUROSCI.2607-08.2008
EBELING U, 1992, ACTA NEUROCHIR, V115, P143, DOI 10.1007/BF01406373
Eliades SJ, 2003, J NEUROPHYSIOL, V89, P2194, DOI 10.1152/jn.00627.2002
Eliades SJ, 2008, NATURE, V453, P1102, DOI 10.1038/nature06910
Engel LR, 2009, NEUROIMAGE, V47, P1778, DOI 10.1016/j.neuroimage.2009.05.041
Formisano E, 2003, NEURON, V40, P859, DOI 10.1016/S0896-6273(03)00669-X
Frey S, 2008, J NEUROSCI, V28, P11435, DOI 10.1523/JNEUROSCI.2388-08.2008
Friederici AD, 2006, P NATL ACAD SCI USA, V103, P2458, DOI 10.1073/pnas.0509389103
Fu KMG, 2003, J NEUROSCI, V23, P7510
GALABURDA AM, 1993, ARCH NEUROL-CHICAGO, V50, P457
Gelfand JR, 2003, NEURON, V38, P831, DOI 10.1016/S0896-6273(03)00285-X
GESCHWIN.N, 1965, BRAIN, V88, P237, DOI 10.1093/brain/88.2.237
Ghazanfar AA, 2005, J NEUROSCI, V25, P5004, DOI 10.1523/JNEUROSCI.0799-05.2005
Gibson J., 1977, PERCEIVING ACTING KN, P67
GoldmanRakic PS, 1996, PHILOS T ROY SOC B, V351, P1445, DOI 10.1098/rstb.1996.0129
GOODALE MA, 1992, TRENDS NEUROSCI, V15, P20, DOI 10.1016/0166-2236(92)90344-8
GRIFFITHS ID, 1996, NATURE, V383, P425
GRIFFITHS ID, 2004, NAT REV NEUROSCI, V5, P887
Griffiths TD, 2002, TRENDS NEUROSCI, V25, P348, DOI 10.1016/S0166-2236(02)02191-4
Griffiths TD, 1998, NAT NEUROSCI, V1, P74, DOI 10.1038/276
Griffiths TD, 1997, BRAIN, V120, P785, DOI 10.1093/brain/120.5.785
Grush R., 2004, BEHAV BRAIN SCI, V27, P396, DOI DOI 10.1017/S0140525X04000093
Grush R, 2004, BEHAV BRAIN SCI, V27, P377
Guenther FH, 2006, J COMMUN DISORD, V39, P350, DOI 10.1016/j.jcomdis.2006.06.013
HACKETT TA, 2010, INFORM FLOW AUDITORY
Hackett TA, 1998, J COMP NEUROL, V394, P475, DOI 10.1002/(SICI)1096-9861(19980518)394:4<475::AID-CNE6>3.0.CO;2-Z
Hackett TA, 1998, J COMP NEUROL, V400, P271, DOI 10.1002/(SICI)1096-9861(19981019)400:2<271::AID-CNE8>3.0.CO;2-6
Halpern AR, 1999, CEREB CORTEX, V9, P697, DOI 10.1093/cercor/9.7.697
HEFFNER H, 1975, J NEUROPHYSIOL, V38, P1340
Hershberger W. A., 1976, Cybernetics Forum, V8
Hickok G, 2007, NAT REV NEUROSCI, V8, P393, DOI 10.1038/nrn2113
Hickok G, 2009, J NEUROPHYSIOL, V101, P2725, DOI 10.1152/jn.91099.2008
Hickok G, 2000, TRENDS COGN SCI, V4, P131, DOI 10.1016/S1364-6613(00)01463-7
Hickok G, 2000, NEUROSCI LETT, V287, P156, DOI 10.1016/S0304-3940(00)01143-5
Hikosaka O, 1999, TRENDS NEUROSCI, V22, P464, DOI 10.1016/S0166-2236(99)01439-3
Houde JF, 2002, J COGNITIVE NEUROSCI, V14, P1125, DOI 10.1162/089892902760807140
Humphries C, 2010, NEUROIMAGE, V50, P1202, DOI 10.1016/j.neuroimage.2010.01.046
Hyde KL, 2008, NEUROPSYCHOLOGIA, V46, P632, DOI 10.1016/j.neuropsychologia.2007.09.004
Indefrey P, 2004, COGNITION, V92, P101, DOI 10.1016/j.cognition.2002.06.001
IRVINE DRF, 1992, SPRINGER HDB AUDITOR, V2, P153
Jaaskelainen IP, 2004, P NATL ACAD SCI USA, V101, P6809, DOI 10.1073/pnas.0303760101
Kaas JH, 2000, P NATL ACAD SCI USA, V97, P11793, DOI 10.1073/pnas.97.22.11793
Kauramaki J, 2010, J NEUROSCI, V30, P1314, DOI 10.1523/JNEUROSCI.1950-09.2010
Kawato M, 1999, CURR OPIN NEUROBIOL, V9, P718, DOI 10.1016/S0959-4388(99)00028-8
Kayser C, 2007, J NEUROSCI, V27, P1824, DOI 10.1523/JNEUROSCI.4737-06.2007
Keller SS, 2009, J NEUROSCI, V29, P14607, DOI 10.1523/JNEUROSCI.2892-09.2009
King AJ, 2009, NAT NEUROSCI, V12, P698, DOI 10.1038/nn.2308
KNUDSEN EI, 1978, J NEUROPHYSIOL, V41, P870
Krumbholz K, 2005, EUR J NEUROSCI, V21, P230, DOI 10.1111/j.1460-9568.2004.03836.x
Krumbholz K, 2005, CEREB CORTEX, V15, P317, DOI 10.1093/cercor/bhh133
KUSMIEREK R, 2009, J NEUROPHYSIOL, V102, P1606
Lahav A, 2007, J NEUROSCI, V27, P308, DOI 10.1523/JNEUROSCI.4822-06.2007
Lakatos P, 2007, NEURON, V53, P279, DOI 10.1016/j.neuron.2006.12.011
Leaver AM, 2009, J NEUROSCI, V29, P2477, DOI 10.1523/JNEUROSCI.4921-08.2009
Leaver AM, 2010, J NEUROSCI, V30, P7604, DOI 10.1523/JNEUROSCI.0296-10.2010
Lewis JW, 2005, J NEUROSCI, V25, P5148, DOI 10.1523/JNEUROSCI.0419-05.2005
Lewis JW, 2000, J COMP NEUROL, V428, P112, DOI 10.1002/1096-9861(20001204)428:1<112::AID-CNE8>3.0.CO;2-9
LIBERMAN AM, 1985, COGNITION, V21, P1, DOI 10.1016/0010-0277(85)90021-6
LIBERMAN AM, 1967, PSYCHOL REV, V74, P431, DOI 10.1037/h0020279
MAEDER RP, 2001, NEUROIMAGE, V14, P802
May BJ, 2000, HEARING RES, V148, P74, DOI 10.1016/S0378-5955(00)00142-8
Micheyl C, 2005, NEURON, V48, P139, DOI 10.1016/j.neuron.2005.08.039
Miller LM, 2009, P NATL ACAD SCI USA, V106, P5931, DOI 10.1073/pnas.0901023106
MOREL A, 1993, J COMP NEUROL, V335, P437, DOI 10.1002/cne.903350312
MULLERPREUSS R, 1981, BRAIN RES, V215, P61
Mulliken GH, 2008, P NATL ACAD SCI USA, V105, P8170, DOI 10.1073/pnas.0802602105
NEFF WD, 1956, J NEUROPHYSIOL, V19, P500
Nourski KV, 2009, J NEUROSCI, V29, P15564, DOI 10.1523/JNEUROSCI.3065-09.2009
Numminen J, 1999, NEUROSCI LETT, V265, P119, DOI 10.1016/S0304-3940(99)00218-9
Obleser J, 2006, HUM BRAIN MAPP, V27, P562, DOI 10.1002/hbm.20201
Obleser J, 2007, CEREB CORTEX, V17, P2251, DOI 10.1093/cercor/bhl133
Paus T, 1996, EUR J NEUROSCI, V8, P2236, DOI 10.1111/j.1460-9568.1996.tb01187.x
Perry DW, 1999, NEUROREPORT, V10, P3979
Petrides M, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000170
PETRIDES M, 1984, J COMP NEUROL, V228, P105, DOI 10.1002/cne.902280110
Pizzamiglio L, 2005, NEUROIMAGE, V24, P852, DOI 10.1016/j.neuroimage.2004.09.025
Rauschecker JP, 1997, ACTA OTO-LARYNGOL, P34
RAUSCHECKER JP, 1995, SCIENCE, V268, P111, DOI 10.1126/science.7701330
Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800
Rauschecker JP, 2009, NAT NEUROSCI, V12, P718, DOI 10.1038/nn.2331
Rauschecker JP, 2005, ANN NY ACAD SCI, V1060, P125, DOI 10.1196/annals.1360.009
Rauschecker JP, 1997, J COMP NEUROL, V382, P89
Rauschecker Josef P., 2007, P389, DOI 10.1007/978-0-387-71978-8_20
Rauschecker JP, 1998, AUDIOL NEURO-OTOL, V3, P86, DOI 10.1159/000013784
RAVIZZA RJ, 1972, J NEUROPHYSIOL, V35, P344
Reale RA, 2007, NEUROSCIENCE, V145, P162, DOI 10.1016/j.neuroscience.2006.11.036
Recanzone GH, 2000, P NATL ACAD SCI USA, V97, P11829, DOI 10.1073/pnas.97.22.11829
Recanzone GH, 2000, J NEUROPHYSIOL, V83, P2723
Remedios R, 2009, J NEUROSCI, V29, P1034, DOI 10.1523/JNEUROSCI.4089-08.2009
Repp BH, 2005, PSYCHON B REV, V12, P969, DOI 10.3758/BF03206433
Rilling JK, 2008, NAT NEUROSCI, V11, P426, DOI 10.1038/nn2072
Rizzolatti G., 2006, NOVART FDN SYMP, V270, P140
Rizzolatti G., 2006, NOVART FDN SYMP, V270, P164
Rizzolatti Giacomo, 2006, Novartis Found Symp, V270, P129
Romanski LM, 1999, NAT NEUROSCI, V2, P1131, DOI 10.1038/16056
Romanski LM, 2009, ANNU REV NEUROSCI, V32, P315, DOI 10.1146/annurev.neuro.051508.135431
Sabes PN, 2000, CURR OPIN NEUROBIOL, V10, P740, DOI 10.1016/S0959-4388(00)00149-5
Saur D, 2008, P NATL ACAD SCI USA, V105, P18035, DOI 10.1073/pnas.0805234105
Schubotz RI, 2003, NEUROIMAGE, V20, P173, DOI 10.1016/S1053-8119(03)00218-0
Schubotz RI, 2000, NEUROIMAGE, V11, P1, DOI 10.1006/nimg.1999.0514
Scott SK, 2000, BRAIN, V123, P2400, DOI 10.1093/brain/123.12.2400
Scott SK, 2005, CURR OPIN NEUROBIOL, V15, P197, DOI 10.1016/j.conb.2005.03.009
SELTZER B, 1994, J COMP NEUROL, V343, P445, DOI 10.1002/cne.903430308
Simon D., 2006, OPTIMAL STATE ESTIMA
Smiley JF, 2007, J COMP NEUROL, V502, P894, DOI 10.1002/cne.21325
SMITH KR, 2009, J COGNITIVE NEUROSCI, V22, P632
SPERRY RW, 1950, J COMP PHYSIOL PSYCH, V43, P482, DOI 10.1037/h0055479
Spierer L, 2009, J NEUROSCI, V29, P8630, DOI 10.1523/JNEUROSCI.2111-09.2009
Spierer L, 2009, BRAIN, V132, P1953, DOI 10.1093/brain/awp127
Tata MS, 2005, EXP BRAIN RES, V167, P481, DOI 10.1007/s00221-005-0183-y
Tata MS, 2005, NEUROPSYCHOLOGIA, V43, P509, DOI 10.1016/j.neuropsychologia.2004.07.019
Tian B, 2001, SCIENCE, V292, P290, DOI 10.1126/science.1058911
Tourville JA, 2008, NEUROIMAGE, V39, P1429, DOI 10.1016/j.neuroimage.2007.09.054
Ungerleider LG, 1982, ANAL VISUAL BEHAV, P549
VONHOLST E, 1950, NATURWISSENSCHAFTEN, V37, P464
Warren JD, 2002, NEURON, V34, P1
Warren JE, 2005, TRENDS NEUROSCI, V28, P636, DOI 10.1016/j.tins.2005.09.010
Weeks RA, 1999, NEUROSCI LETT, V262, P155, DOI 10.1016/S0304-3940(99)00062-2
Wernicke C., 1881, LEHRBUCH GEHIRNKRANK
Wernicke C., 1874, APHASISCHE SYMPTOMEN
Wessinger CM, 2001, J COGNITIVE NEUROSCI, V13, P1, DOI 10.1162/089892901564108
Wilson SM, 2004, NAT NEUROSCI, V7, P701, DOI 10.1038/nn1263
Wise RJS, 2001, BRAIN, V124, P83, DOI 10.1093/brain/124.1.83
WOLPERT DM, 1995, SCIENCE, V269, P1880, DOI 10.1126/science.7569931
Wolpert DM, 2003, PHILOS T R SOC B, V358, P593, DOI 10.1098/rstb.2002.1238
Zatorre RJ, 2002, TRENDS COGN SCI, V6, P37, DOI 10.1016/S1364-6613(00)01816-7
Zatorre RJ, 2004, J NEUROSCI, V24, P3637, DOI 10.1523/JNEUROSCI.5458-03.2004
Zatorre RJ, 2002, NAT NEUROSCI, V5, P905, DOI 10.1038/nn904
Zatorre RJ, 2007, NAT REV NEUROSCI, V8, P547, DOI 10.1038/nrn2152
ZHENOCHIN S, 1998, ASS RES OT, V21, P146
Zimmer U, 2005, NEURON, V47, P893, DOI 10.1016/j.neuron.2005.07.019
NR 164
TC 64
Z9 65
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2011
VL 271
IS 1-2
SI SI
BP 16
EP 25
DI 10.1016/j.heares.2010.09.001
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 717VH
UT WOS:000287075000003
PM 20850511
ER
PT J
AU Salgado, H
Garcia-Oscos, F
Dinh, L
Atzori, M
AF Salgado, Humberto
Garcia-Oscos, Francisco
Dinh, Lu
Atzori, Marco
TI Dynamic modulation of short-term synaptic plasticity in the auditory
cortex: The role of norepinephrine
SO HEARING RESEARCH
LA English
DT Article
ID MEDIAL PREFRONTAL CORTEX; PRIMARY SOMATOSENSORY CORTEX; MOUSE ENTORHINAL
CORTEX; PYRAMIDAL NEURONS; NORADRENERGIC INNERVATION; GABAERGIC
INTERNEURONS; EXCITATORY SYNAPSES; INHIBITORY SYNAPSES; CEREBRAL-CORTEX;
IN-VITRO
AB Norepinephrine (NE) is an important modulator of neuronal activity in the auditory cortex. Using patch-clamp recording and a pair pulse protocol on an auditory cortex slice preparation we recently demonstrated that NE affects cortical inhibition in a layer-specific manner, by decreasing apical but increasing basal inhibition onto layer II/III pyramidal cell dendrites. In the present study we used a similar protocol to investigate the dependence of noradrenergic modulation of inhibition on stimulus frequency, using s-long train pulses at 5, 10, and 20 Hz. The study was conducted using pharmacologically isolated inhibitory postsynaptic currents (IPSCs) evoked by electrical stimulation of axons either in layer 1 (LI-eIPSCs) or in layer II/III (LII/III-eIPSCs). We found that: 1) LI-eIPSC display less synaptic depression than LII/III-elPSCs at all the frequencies tested, 2) in both type of synapses depression had a presynaptic component which could be altered manipulating [Ca2+](0), 3) NE modestly altered short-term synaptic plasticity at low or intermediate (5-10 Hz) frequencies, but selectively enhanced synaptic facilitation in LI-eIPSCs while increasing synaptic depression of LII/III-eIPSCs in the latest (>250 ms) part of the response, at high stimulation frequency (20 Hz).
We speculate that these mechanisms may limit the temporal window for top down synaptic integration as well as the duration and intensity of stimulus-evoked gamma-oscillations triggered by complex auditory stimuli during alertness. Published by Elsevier B.V.
C1 [Salgado, Humberto; Garcia-Oscos, Francisco; Dinh, Lu; Atzori, Marco] Univ Texas Dallas, Sch Behav & Brain Sci, Lab Cell & Synapt Physiol, Richardson, TX 75080 USA.
[Salgado, Humberto] Univ Autonoma Yucatan, Dept Neurociencias, Ctr Invest Reg Dr Hideyo Noguchi, Yucatan, Mexico.
RP Atzori, M (reprint author), Univ Texas Dallas, Sch Behav & Brain Sci, Lab Cell & Synapt Physiol, Richardson, TX 75080 USA.
EM marco.atzori@utdallas.edu
FU NIH/NIDCD [R01DC005986]; N.A.R.S.A.D. Young Investigator Award; CONACyT
[MOD-ORD-1-09 PCI-047-11-09]
FX This study has been funded by NIH/NIDCD R01DC005986 and by a
N.A.R.S.A.D. Young Investigator Award to MA; CONACyT (MOD-ORD-1-09
PCI-047-11-09 to H.S.). We would like to thank Dr. M. Trevino and Dr. L
Cauller for intellectual contributions and useful discussions during the
development of this study.
CR ARMSTRONGJAMES M, 1983, J PHYSIOL-LONDON, V335, P427
Ascoli GA, 2008, NAT REV NEUROSCI, V9, P557, DOI 10.1038/nrn2402
Atzori M, 2001, NAT NEUROSCI, V4, P1230, DOI 10.1038/nn760
Bacci A, 2004, NATURE, V431, P312, DOI 10.1038/nature02913
Baimoukhametova DV, 2004, J NEUROSCI, V24, P5162, DOI 10.1523/JNEUROSCI.4979-03.2004
Cardin JA, 2009, NATURE, V459, P663, DOI 10.1038/nature08002
Cauli B, 1997, J NEUROSCI, V17, P3894
Cauller LJ, 1998, J COMP NEUROL, V390, P297
Chalk M, 2010, NEURON, V66, P114, DOI 10.1016/j.neuron.2010.03.013
Dinh L, 2009, NEUROCHEM RES, V34, P1896, DOI 10.1007/s11064-009-9966-z
Donishi T, 2006, NEUROSCIENCE, V141, P1553, DOI 10.1016/j.neuroscience.2006.04.037
Edeline JM, 1999, PROG NEUROBIOL, V57, P165
Falchier A., 2009, CEREB CORTEX
FOOTE SL, 1975, BRAIN RES, V86, P229, DOI 10.1016/0006-8993(75)90699-X
FREEDMAN R, 1975, J COMP NEUROL, V164, P209, DOI 10.1002/cne.901640205
Freund TF, 2003, TRENDS NEUROSCI, V26, P489, DOI 10.1016/S0166-2236(03)00227-3
Freund TF, 1997, CAN J PHYSIOL PHARM, V75, P479, DOI 10.1139/cjpp-75-5-479
Fuxe K, 1968, Brain Res, V8, P125, DOI 10.1016/0006-8993(68)90175-3
Hajos N, 1997, J NEUROSCI, V17, P8427
Hempel CM, 2000, J NEUROPHYSIOL, V83, P3031
Hu B, 2003, EXP BRAIN RES, V153, P543, DOI 10.1007/s00221-003-1611-5
IMIG TJ, 1977, BRAIN RES, V138, P241, DOI 10.1016/0006-8993(77)90743-0
Ji XH, 2008, NEUROPSYCHOPHARMACOL, V33, P2263, DOI 10.1038/sj.npp.1301603
Ji XH, 2008, CEREB CORTEX, V18, P1506, DOI 10.1093/cercor/bhm177
Jones EG, 1998, NEUROSCIENCE, V85, P331, DOI 10.1016/S0306-4522(97)00581-2
Kapfer C, 2007, NAT NEUROSCI, V10, P743, DOI 10.1038/nn1909
Kawaguchi Y, 1998, J NEUROSCI, V18, P6963
KELLY JS, 1973, BRIT J PHARMACOL, V48, P396
Kilgard MP, 1998, NAT NEUROSCI, V1, P727, DOI 10.1038/3729
Larkum ME, 2004, CEREB CORTEX, V14, P1059, DOI 10.1093/cercor/bhh065
LAYTON BS, 1979, BRAIN RES, V173, P337
Lei S, 2007, J NEUROPHYSIOL, V98, P2868, DOI 10.1152/jn.00679.2007
LEVITT P, 1978, BRAIN RES, V139, P219, DOI 10.1016/0006-8993(78)90925-3
Lorente de No R, 1992, SOMATOSENS MOT RES, V9, P3
Manunta Y, 2004, J NEUROPHYSIOL, V92, P1445, DOI 10.1152/jn.00079.2004
Manunta Y, 1997, EUR J NEUROSCI, V9, P833, DOI 10.1111/j.1460-9568.1997.tb01433.x
Manunta Y, 1999, EUR J NEUROSCI, V11, P2134, DOI 10.1046/j.1460-9568.1999.00633.x
Markram H, 2004, NAT REV NEUROSCI, V5, P793, DOI 10.1038/nrn1519
Miles R, 1996, NEURON, V16, P815, DOI 10.1016/S0896-6273(00)80101-4
MORRISON JH, 1979, SCIENCE, V205, P313, DOI 10.1126/science.451605
MORRISON JH, 1979, BRAIN RES BULL, V4, P849, DOI 10.1016/0361-9230(79)90022-4
MORRISON JH, 1978, J COMP NEUROL, V181, P17, DOI 10.1002/cne.901810103
Mueller D, 2008, J NEUROSCI, V28, P369, DOI 10.1523/JNEUROSCI.3248-07.2008
Murray MM, 2009, HEARING RES, V258, P121, DOI 10.1016/j.heares.2009.04.022
Musacchia G, 2009, HEARING RES, V258, P72, DOI 10.1016/j.heares.2009.06.018
NOWICKY AV, 1992, NEUROSCI LETT, V137, P270, DOI 10.1016/0304-3940(92)90420-C
Oswald AMM, 2009, J NEUROSCI, V29, P10321, DOI 10.1523/JNEUROSCI.1703-09.2009
Pralong E, 1995, EUR J NEUROSCI, V7, P2370, DOI 10.1111/j.1460-9568.1995.tb01034.x
PRALONG E, 1994, NEUROSCI LETT, V179, P145, DOI 10.1016/0304-3940(94)90955-5
Pralong E, 2002, PROG NEUROBIOL, V67, P173, DOI 10.1016/S0301-0082(02)00017-5
Radtke-Schuller S, 2004, ANAT EMBRYOL, V209, P77, DOI 10.1007/s00429-004-0425-y
Ramos BP, 2007, PHARMACOL THERAPEUT, V113, P523, DOI 10.1016/j.pharmthera.2006.11.006
Rutkowski RG, 2003, HEARING RES, V181, P116, DOI 10.1016/S0378-5955(03)00182-5
SALGADO H, 2010, LAYER SPECIFIC NORAD
Sceniak MP, 2008, BMC NEUROSCI, V9, DOI 10.1186/1471-2202-9-8
Sohal VS, 2009, NATURE, V459, P698, DOI 10.1038/nature07991
Tecuapetla F, 2007, P NATL ACAD SCI USA, V104, P10258, DOI 10.1073/pnas.0703813104
Tsodyks MV, 1997, P NATL ACAD SCI USA, V94, P719, DOI 10.1073/pnas.94.2.719
Varela JA, 1997, J NEUROSCI, V17, P7926
VIDEEN TO, 1984, J NEUROSCI, V4, P1607
Vreugdenhil M, 2005, J PHYSIOL-LONDON, V562, P149, DOI 10.1113/jphysiol.2004.075390
Vreugdenhil M, 2005, NEUROSCIENCE, V132, P1151, DOI 10.1016/j.neuroscience.2005.01.025
Wang Y, 2004, J PHYSIOL-LONDON, V561, P65, DOI 10.1113/jphysiol.2004.073353
Weinberger NM, 2004, NAT REV NEUROSCI, V5, P279, DOI 10.1038/nrn1366
Zucker RS, 2002, ANNU REV PHYSIOL, V64, P355, DOI 10.1146/annurev.physiol.64.092501.114547
NR 65
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2011
VL 271
IS 1-2
SI SI
BP 26
EP 36
DI 10.1016/j.heares.2010.08.014
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 717VH
UT WOS:000287075000004
PM 20816739
ER
PT J
AU Harris, KD
Bartho, P
Chadderton, P
Curto, C
de la Rocha, J
Hollender, L
Itskov, V
Luczak, A
Marguet, SL
Renart, A
Sakata, S
AF Harris, Kenneth D.
Bartho, Peter
Chadderton, Paul
Curto, Carina
de la Rocha, Jaime
Hollender, Liad
Itskov, Vladimir
Luczak, Artur
Marguet, Stephan L.
Renart, Alfonso
Sakata, Shuzo
TI How do neurons work together? Lessons from auditory cortex
SO HEARING RESEARCH
LA English
DT Article
ID INFORMATION-PROCESSING STATES; ACTIVITY IN-VIVO; LAYER-V NEURONS;
VISUAL-CORTEX; BARREL CORTEX; RECEPTIVE-FIELDS; SUSPECTED INTERNEURONS;
SENSORY RESPONSES; EFFERENT NEURONS; AWAKE RABBIT
AB Recordings of single neurons have yielded great insights into the way acoustic stimuli are represented in auditory cortex. However, any one neuron functions as part of a population whose combined activity underlies cortical information processing. Here we review some results obtained by recording simultaneously from auditory cortical populations and individual morphologically identified neurons, in urethane-anesthetized and unanesthetized passively listening rats. Auditory cortical populations produced structured activity patterns both in response to acoustic stimuli, and spontaneously without sensory input. Population spike time patterns were broadly conserved across multiple sensory stimuli and spontaneous events, exhibiting a generally conserved sequential organization lasting approximately 100 ms. Both spontaneous and evoked events exhibited sparse, spatially localized activity in layer 2/3 pyramidal cells, and densely distributed activity in larger layer 5 pyramidal cells and putative interneurons. Laminar propagation differed however, with spontaneous activity spreading upward from deep layers and slowly across columns, but sensory responses initiating in presumptive thalamorecipient layers, spreading rapidly across columns. In both unanesthetized and urethanized rats, global activity fluctuated between "desynchronized" state characterized by low amplitude, high-frequency local field potentials and a "synchronized" state of larger, lower-frequency waves. Computational studies suggested that responses could be predicted by a simple dynamical system model fitted to the spontaneous activity immediately preceding stimulus presentation. Fitting this model to the data yielded a nonlinear self-exciting system model in synchronized states and an approximately linear system in desynchronized states. We comment on the significance of these results for auditory cortical processing of acoustic and non-acoustic information. (C) 2010 Elsevier E.V. All rights reserved.
C1 [Harris, Kenneth D.; Bartho, Peter; Chadderton, Paul; Curto, Carina; de la Rocha, Jaime; Hollender, Liad; Itskov, Vladimir; Luczak, Artur; Marguet, Stephan L.; Renart, Alfonso; Sakata, Shuzo] Rutgers State Univ, Ctr Mol & Behav Neurosci, Newark, NJ 07102 USA.
[Harris, Kenneth D.] NYU, Sch Med, Dept Otolaryngol, New York, NY 10016 USA.
[Harris, Kenneth D.] NYU, Sch Med, Smilow Neurosci Program, New York, NY 10016 USA.
[Harris, Kenneth D.] Univ London Imperial Coll Sci Technol & Med, Dept Bioengn, London SW7 2AZ, England.
[Harris, Kenneth D.] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2AZ, England.
[Bartho, Peter] Hungarian Acad Sci, Inst Expt Med, H-1083 Budapest, Hungary.
[Chadderton, Paul] UCL Ear Inst, London WC1X 8EE, England.
[Curto, Carina; Itskov, Vladimir] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA.
[Luczak, Artur] Univ Lethbridge, Dept Neurosci, Canadian Ctr Behav Neurosci, Lethbridge, AB T1K 3M4, Canada.
[Itskov, Vladimir; Sakata, Shuzo] Univ Strathclyde, Strathclyde Inst Pharm & Biomed Sci, Glasgow G4 0NR, Lanark, Scotland.
RP Harris, KD (reprint author), Rutgers State Univ, Ctr Mol & Behav Neurosci, 197 Univ Ave, Newark, NJ 07102 USA.
EM kenneth.harris@imperial.ac.uk
CR Arlotta P, 2005, NEURON, V45, P207, DOI 10.1016/j.neuron.2004.12.036
Atencio CA, 2010, J NEUROPHYSIOL, V103, P192, DOI 10.1152/jn.00624.2009
Bandyopadhyay S, 2010, NAT NEUROSCI, V13, P361, DOI 10.1038/nn.2490
Barbour DL, 2008, J NEUROSCI, V28, P11174, DOI 10.1523/JNEUROSCI.2093-08.2008
Barlow H B, 1972, Perception, V1, P371, DOI 10.1068/p010371
Bartho P, 2009, EUR J NEUROSCI, V30, P1767, DOI 10.1111/j.1460-9568.2009.06954.x
Bartho P, 2004, J NEUROPHYSIOL, V92, P600, DOI 10.1152/jn.01170.2003
Berke JD, 2004, NEURON, V43, P883, DOI 10.1016/j.neuron.2004.08.035
Brecht M, 2007, CURR OPIN NEUROBIOL, V17, P408, DOI 10.1016/j.conb.2007.07.008
Brecht M, 2003, J PHYSIOL-LONDON, V553, P243, DOI 10.1113/jphysiol.2003.044222
Brincat SL, 2006, NEURON, V49, P17, DOI 10.1016/j.neuron.2005.11.026
Brosch M, 1999, EUR J NEUROSCI, V11, P3517, DOI 10.1046/j.1460-9568.1999.00770.x
Brosch M, 2005, J NEUROSCI, V25, P6797, DOI 10.1523/JNEUROSCI.1571-05.2005
Bureau I, 2006, PLOS BIOL, V4, P2361, DOI 10.1371/journal.pbio.0040382
BUZSAKI G, 1989, NEUROSCIENCE, V31, P551, DOI 10.1016/0306-4522(89)90423-5
BUZSAKI G, 1988, J NEUROSCI, V8, P4007
Castro-Alamancos MA, 2004, PROG NEUROBIOL, V74, P213, DOI 10.1016/j.pneurobio.2004.09.002
Castro-Alamancos MA, 2004, NEURON, V41, P455, DOI 10.1016/S0896-6273(03)00853-5
CHAUVETTE S, 2010, CEREB CORTEX
Clement EA, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002004
Cohen MR, 2009, NAT NEUROSCI, V12, P1594, DOI 10.1038/nn.2439
Csicsvari J, 2003, J NEUROPHYSIOL, V90, P1314, DOI 10.1152/jn.00116.2003
Curto C, 2009, J NEUROSCI, V29, P10600, DOI 10.1523/JNEUROSCI.2053-09.2009
deCharms RC, 1996, NATURE, V381, P610, DOI 10.1038/381610a0
de Kock CPJ, 2007, J PHYSIOL-LONDON, V581, P139, DOI 10.1113/jphysiol.2006.124321
DeWeese MR, 2003, J NEUROSCI, V23, P7940
Edeline JM, 2003, EXP BRAIN RES, V153, P554, DOI 10.1007/s00221-003-1608-0
Eggermont JJ, 2006, J NEUROPHYSIOL, V96, P746, DOI 10.1152/jn.00059.2006
Einevoll GT, 2007, J NEUROPHYSIOL, V97, P2174, DOI 10.1152/jn.00845.2006
Feldmeyer D, 2006, J PHYSIOL-LONDON, V575, P583, DOI 10.1113/jphysiol.2006.105106
Felleman DJ, 1991, CEREB CORTEX, V1, P1, DOI 10.1093/cercor/1.1.1
Felsen G, 2008, NEURON, V60, P137, DOI 10.1016/j.neuron.2008.09.019
FitzHugh R., 1955, B MATH BIOPHYS, V17, P257, DOI DOI 10.1007/BF02477753)
Fries P, 2001, SCIENCE, V291, P1560, DOI 10.1126/science.1055465
GERSTEIN GL, 1985, J NEUROSCI, V5, P881
Goard M, 2009, NAT NEUROSCI, V12, P1444, DOI 10.1038/nn.2402
Gray CM, 1995, J NEUROSCI METH, V63, P43, DOI 10.1016/0165-0270(95)00085-2
Haider B, 2007, J NEUROPHYSIOL, V97, P4186, DOI 10.1152/jn.01114.2006
Harris KD, 2000, J NEUROPHYSIOL, V84, P401
Harris KD, 2005, NAT REV NEUROSCI, V6, P399, DOI 10.1038/nrn1669
Hasenstaub A, 2007, J NEUROSCI, V27, P9607, DOI 10.1523/JNEUROSCI.2184-07.2007
Hefti Brenda J., 2003, JARO Journal of the Association for Research in Otolaryngology, V4, P106, DOI 10.1007/s10162-002-3012-z
Hefti BJ, 2000, J NEUROPHYSIOL, V83, P2626
Heil P, 2004, CURR OPIN NEUROBIOL, V14, P461, DOI 10.1016/j.conb.2004.07.002
Hoffman KL, 2002, SCIENCE, V297, P2070, DOI 10.1126/science.1073538
Hoffman KL, 2007, J NEUROSCI, V27, P11838, DOI 10.1523/JNEUROSCI.3501-07.2007
Holmgren C, 2003, J PHYSIOL-LONDON, V551, P139, DOI 10.1113/jphysiol.2003.044784
Hromadka T, 2008, PLOS BIOL, V6, pe16
Jermakowicz WJ, 2009, J NEUROPHYSIOL, V101, P2279, DOI 10.1152/jn.91207.2008
Jeschke M, 2008, BRAIN RES, V1220, P70, DOI 10.1016/j.brainres.2007.10.047
JOHN ER, 1973, J NEUROPHYSIOL, V36, P893
Kandel A, 1997, J NEUROSCI, V17, P6783
Katzner S, 2009, NEURON, V61, P35, DOI 10.1016/j.neuron.2008.11.016
Kaur S, 2005, NEUROSCIENCE, V134, P1033, DOI 10.1016/j.neuroscience.2005.04.052
Kimura A, 2003, NEUROSCIENCE, V117, P1003, DOI 10.1016/S0306-4522(02)00949-1
Kisley MA, 1999, J NEUROSCI, V19, P10451
Kosslyn SM, 2001, NAT REV NEUROSCI, V2, P635, DOI 10.1038/35090055
Kraemer DJM, 2005, NATURE, V434, P158, DOI 10.1038/434158a
Kreiman G, 2000, NATURE, V408, P357
Kruskal JB, 1978, MULTIDIMENSIONAL SCA
Lakatos P, 2007, NEURON, V53, P279, DOI 10.1016/j.neuron.2006.12.011
Laurent G, 2002, NAT REV NEUROSCI, V3, P884, DOI 10.1038/nrn964
Linden JF, 2003, CEREB CORTEX, V13, P83, DOI 10.1093/cercor/13.1.83
Liu BH, 2007, NAT NEUROSCI, V10, P1594, DOI 10.1038/nn2012
Logothetis NK, 2001, NATURE, V412, P150, DOI 10.1038/35084005
Luczak A, 2007, P NATL ACAD SCI USA, V104, P347, DOI 10.1073/pnas.0605643104
Luczak A, 2009, NEURON, V62, P413, DOI 10.1016/j.neuron.2009.03.014
MARR D, 1971, PHILOS T ROY SOC B, V262, P23, DOI 10.1098/rstb.1971.0078
MCNAUGHTON BL, 1983, J NEUROSCI METH, V8, P391, DOI 10.1016/0165-0270(83)90097-3
Mitchell JF, 2009, NEURON, V63, P879, DOI 10.1016/j.neuron.2009.09.013
MITZDORF U, 1985, PHYSIOL REV, V65, P37
Moshitch D, 2006, J NEUROPHYSIOL, V95, P3756, DOI 10.1152/jn.00822.2005
Murakami M, 2005, NEURON, V46, P285, DOI 10.1016/j.neuron.2005.02.025
Ohl FW, 2001, NATURE, V412, P733, DOI 10.1038/35089076
Oram MW, 2002, PHILOS T ROY SOC B, V357, P987, DOI 10.1098/rstb.2002.1113
Oswald AMM, 2009, J NEUROSCI, V29, P10321, DOI 10.1523/JNEUROSCI.1703-09.2009
Oswald AMM, 2008, J NEUROPHYSIOL, V99, P2998, DOI 10.1152/jn.01160.2007
Paxinos G, 1997, RAT BRAIN STEREOTAXI
Pesaran B, 2002, NAT NEUROSCI, V5, P805, DOI 10.1038/nn890
Petersen CCH, 2003, P NATL ACAD SCI USA, V100, P13638, DOI 10.1073/pnas.2235811100
Pinault D, 1996, J NEUROSCI METH, V65, P113, DOI 10.1016/0165-0270(95)00144-1
Poulet JFA, 2008, NATURE, V454, P881, DOI 10.1038/nature07150
Ranade SP, 2009, J NEUROPHYSIOL, V102, P3026, DOI 10.1152/jn.00507.2009
RECCE M K, 1989, Society for Neuroscience Abstracts, V15, P1250
Renart A, 2010, SCIENCE, V327, P587, DOI 10.1126/science.1179850
ROMANSKI LM, 1993, CEREB CORTEX, V3, P499, DOI 10.1093/cercor/3.6.499
Rothschild G, 2010, NAT NEUROSCI, V13, P353, DOI 10.1038/nn.2484
ROUILLER EM, 1991, EXP BRAIN RES, V86, P483
Sakata S, 2009, NEURON, V64, P404, DOI 10.1016/j.neuron.2009.09.020
SALLY SL, 1988, J NEUROPHYSIOL, V59, P1627
Sanchez-Vives MV, 2000, NAT NEUROSCI, V3, P1027
Scheich H, 2007, HEARING RES, V229, P213, DOI 10.1016/j.heares.2007.01.025
Schmitzer-Torbert N, 2005, NEUROSCIENCE, V131, P1, DOI 10.1016/j.neuroscience.2004.09.066
Schubert D, 2007, BRAIN STRUCT FUNCT, V212, P107, DOI 10.1007/s00429-007-0147-z
Shuler MG, 2006, SCIENCE, V311, P1606, DOI 10.1126/science.1123513
Smith PH, 2001, J COMP NEUROL, V436, P508, DOI 10.1002/cne.1084
Sohya K, 2007, J NEUROSCI, V27, P2145, DOI 10.1523/JNEUROSCI.4641-06.2007
Song S, 2005, PLOS BIOL, V3, P507, DOI 10.1371/journal.pbio.0030068
STERIADE M, 1993, SCIENCE, V262, P679, DOI 10.1126/science.8235588
Steriade M, 2001, J NEUROPHYSIOL, V85, P1969
STERIADE M, 1993, J NEUROSCI, V13, P3252
Stopfer M, 2003, NEURON, V39, P991, DOI 10.1016/j.neuron.2003.08.011
Storm JF, 2000, J PHYSIOL-LONDON, V525, P565
Sugase Y, 1999, NATURE, V400, P869, DOI 10.1038/23703
Sugino K, 2006, NAT NEUROSCI, V9, P99, DOI 10.1038/nn1618
SWADLOW HA, 1994, J NEUROPHYSIOL, V71, P437
SWADLOW HA, 1989, J NEUROPHYSIOL, V62, P288
SWADLOW HA, 1988, J NEUROPHYSIOL, V59, P1162
Szymanski FD, 2009, J NEUROPHYSIOL, V102, P1483, DOI 10.1152/jn.00240.2009
Thomson Alex M, 2007, Front Neurosci, V1, P19, DOI 10.3389/neuro.01.1.1.002.2007
Turner JG, 2005, HEARING RES, V202, P129, DOI 10.1016/j.heares.2004.09.011
Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032
Ulanovsky N, 2004, J NEUROSCI, V24, P10440, DOI 10.1523/JNEUROSCI.1905-04.2004
VANBREDERODE JFM, 1995, J NEUROPHYSIOL, V74, P1149
Vanderwolf CH, 2000, BRAIN RES, V855, P217, DOI 10.1016/S0006-8993(99)02351-3
VANDERWOLF CH, 2003, ODYSSEY BRAIN BEHAV
VOLKOV IO, 1991, NEUROSCIENCE, V43, P307, DOI 10.1016/0306-4522(91)90295-Y
Wallace MN, 2008, EXP BRAIN RES, V184, P179, DOI 10.1007/s00221-007-1092-z
Wang XQ, 2005, NATURE, V435, P341, DOI 10.1038/nature03565
Wiest MC, 2003, NAT NEUROSCI, V6, P913, DOI 10.1038/nn1107
Winer JA, 2007, HEARING RES, V229, P3, DOI 10.1016/j.heares.2007.01.017
Worgotter F, 1998, NATURE, V396, P165, DOI 10.1038/24157
Wu GK, 2008, NEURON, V58, P132, DOI 10.1016/j.neuron.2008.01.035
Zhou Y, 2010, NEURON, V65, P706, DOI 10.1016/j.neuron.2010.02.021
NR 124
TC 16
Z9 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2011
VL 271
IS 1-2
SI SI
BP 37
EP 53
DI 10.1016/j.heares.2010.06.006
PG 17
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 717VH
UT WOS:000287075000005
PM 20603208
ER
PT J
AU Petkov, CI
Sutter, ML
AF Petkov, Christopher I.
Sutter, Mitchell L.
TI Evolutionary conservation and neuronal mechanisms of auditory perceptual
restoration
SO HEARING RESEARCH
LA English
DT Article
ID HEARING ILLUSORY SOUNDS; PERCEIVED CONTINUITY; MISMATCH NEGATIVITY;
STREAM SEGREGATION; MASKING RELEASE; COMPLEX SOUNDS; CORTEX; NOISE;
ORGANIZATION; SPEECH
AB Auditory perceptual 'restoration' occurs when the auditory system restores an occluded or masked sound of interest. Behavioral work on auditory restoration in humans began over 50 years ago using it to model a noisy environmental scene with competing sounds. It has become clear that not only humans experience auditory restoration: restoration has been broadly conserved in many species. Behavioral studies in humans and animals provide a necessary foundation to link the insights being obtained from human EEG and fMRI to those from animal neurophysiology. The aggregate of data resulting from multiple approaches across species has begun to clarify the neuronal bases of auditory restoration. Different types of neural responses supporting restoration have been found, supportive of multiple mechanisms working within a species. Yet a general principle has emerged that responses correlated with restoration mimic the response that would have been given to the uninterrupted sound of interest. Using the same technology to study different species will help us to better harness animal models of 'auditory scene analysis' to clarify the conserved neural mechanisms shaping the perceptual organization of sound and to advance strategies to improve hearing in natural environmental settings. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Sutter, Mitchell L.] Univ Calif Davis, Ctr Neurosci, Davis, CA 95618 USA.
[Sutter, Mitchell L.] Univ Calif Davis, Sect Neurobiol Physiol & Behav, Davis, CA 95618 USA.
[Petkov, Christopher I.] Newcastle Univ, Inst Neurosci, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England.
RP Sutter, ML (reprint author), Univ Calif Davis, Ctr Neurosci, Davis, CA 95618 USA.
EM chris.petkov@ncl.ac.uk; mlsutter@ucdavis.edu
FU Newcastle University; McDonnell Foundation; NIDCD [DC-02514]
FX We thank K. O'Connor for being a key contributor to our work together
that is mentioned in this review and to J. Johnson, R. Lurz, and L
Riecke for comments on drafts of the manuscript. We also thank K. Vinnik
and E. Balaban for valuable discussions and L Riecke and E. Formisano
for providing figures from their work. Supported by grants from
Newcastle University, the McDonnell Foundation and the NIDCD (DC-02514).
CR Alain C, 2000, FRONT BIOSCI, V5, pD202, DOI 10.2741/Alain
ASSAD JA, 1995, NATURE, V373, P518, DOI 10.1038/373518a0
Bishop CW, 2009, J COGNITIVE NEUROSCI, V21, P1790, DOI 10.1162/jocn.2009.21118
Bizley JK, 2009, J NEUROSCI, V29, P2064, DOI 10.1523/JNEUROSCI.4755-08.2009
BORG E, 1988, HEARING RES, V36, P191, DOI 10.1016/0378-5955(88)90061-5
Borrill SJ, 2002, J ACOUST SOC AM, V111, P309, DOI 10.1121/1.1426373
Braaten RE, 1999, PSYCHOL SCI, V10, P162, DOI 10.1111/1467-9280.00125
BREGMAN AS, 1977, CAN J PSYCHOL, V31, P151, DOI 10.1037/h0081658
Bregman AS., 1990, AUDITORY SCENE ANAL
BUUS S, 1985, J ACOUST SOC AM, V78, P1958, DOI 10.1121/1.392652
Carlyon RP, 2004, TRENDS COGN SCI, V8, P465, DOI 10.1016/j.tics.2004.08.008
CHERRY EC, 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229
Ciocca V, 2008, FRONT BIOSCI-LANDMRK, V13, P148, DOI 10.2741/2666
CIOCCA V, 1987, PERCEPT PSYCHOPHYS, V42, P476, DOI 10.3758/BF03209755
Craft E, 2007, J NEUROPHYSIOL, V97, P4310, DOI 10.1152/jn.00203.2007
Darwin CJ, 2005, PERCEPT PSYCHOPHYS, V67, P1384, DOI 10.3758/BF03193643
DIVENYI PL, 1989, J ACOUST SOC AM, V85, P2042, DOI 10.1121/1.397856
FENG AS, 1994, J COMP PHYSIOL A, V175, P531
Fishman YI, 2001, HEARING RES, V151, P167, DOI 10.1016/S0378-5955(00)00224-0
Fries P, 2001, SCIENCE, V291, P1560, DOI 10.1126/science.1055465
Fullgrabe C, 2006, HEARING RES, V211, P74, DOI 10.1016/j.heares.2005.09.001
Hall JW, 1998, J ACOUST SOC AM, V103, P2573, DOI 10.1121/1.422778
HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083
Heinrich A, 2008, J COGNITIVE NEUROSCI, V20, P1737, DOI 10.1162/jocn.2008.20069
HELLSTROM LI, 1989, J ACOUST SOC AM, V85, P230, DOI 10.1121/1.397729
Herrero JL, 2008, NATURE, V454, P1110, DOI 10.1038/nature07141
HOUTGAST T, 1972, J ACOUST SOC AM, V51, P1885, DOI 10.1121/1.1913048
Hulse SH, 2002, ADV STUD BEHAV, V31, P163, DOI 10.1016/S0065-3454(02)80008-0
Jarvis ED, 2004, ANN NY ACAD SCI, V1016, P749, DOI 10.1196/annals.1298.038
KALIKOW DN, 1977, J ACOUST SOC AM, V61, P1337, DOI 10.1121/1.381436
Kanwal JS, 1999, J NEUROPHYSIOL, V82, P2327
KLUENDER KR, 1992, PERCEPT PSYCHOPHYS, V51, P231, DOI 10.3758/BF03212249
Las L, 2005, J NEUROSCI, V25, P1503, DOI 10.1523/JNEUROSCI.4007-04.2005
Lyzenga J, 2005, HEARING RES, V210, P30, DOI 10.1016/j.heares.2005.07.002
Micheyl C, 2003, J COGNITIVE NEUROSCI, V15, P747, DOI 10.1162/089892903322307456
Micheyl C, 2005, NEURON, V48, P139, DOI 10.1016/j.neuron.2005.08.039
Miller CT, 2001, NAT NEUROSCI, V4, P783, DOI 10.1038/90481
MILLER GA, 1950, J ACOUST SOC AM, V22, P167, DOI 10.1121/1.1906584
Moore BCJ, 1999, J ACOUST SOC AM, V105, P400, DOI 10.1121/1.424571
Näätänen R, 1995, Electroencephalogr Clin Neurophysiol Suppl, V44, P179
PATTERSON RD, 1992, ADV BIOSCI, V83, P429
PATTERSON RD, 1995, J ACOUST SOC AM, V98, P1890, DOI 10.1121/1.414456
PESSOA L, 2003, FILLING PERCEPTUAL C
PETERHANS E, 1991, TRENDS NEUROSCI, V14, P112, DOI 10.1016/0166-2236(91)90072-3
Petkov CI, 2008, NAT NEUROSCI, V11, P367, DOI 10.1038/nn2043
Petkov CI, 2007, NEURON, V54, P153, DOI 10.1016/j.neuron.2007.02.031
Petkov CI, 2006, PLOS BIOL, V4, P1213, DOI 10.1371/journal.pbio.0040215
Petkov CI, 2003, J NEUROSCI, V23, P9155
Picton TW, 2000, AUDIOL NEURO-OTOL, V5, P111, DOI 10.1159/000013875
Plack CJ, 2000, J ACOUST SOC AM, V108, P1162, DOI 10.1121/1.1287022
Ramsden BM, 2001, CEREB CORTEX, V11, P648, DOI 10.1093/cercor/11.7.648
RAUSCHECKER JP, 1995, SCIENCE, V268, P111, DOI 10.1126/science.7701330
Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800
Rauschecker JP, 1998, AUDIOL NEURO-OTOL, V3, P86, DOI 10.1159/000013784
Riecke L, 2008, PERCEPT PSYCHOPHYS, V70, P1, DOI 10.3758/PP.70.1.1
Riecke L, 2007, J NEUROSCI, V27, P12684, DOI 10.1523/JNEUROSCI.2713-07.2007
Riecke L, 2009, NEURON, V64, P550, DOI 10.1016/j.neuron.2009.10.016
Samuel AG, 1997, COGNITIVE PSYCHOL, V32, P97, DOI 10.1006/cogp.1997.0646
SCHREINER C, 1980, HEARING RES, V3, P265, DOI 10.1016/0378-5955(80)90022-2
SCHREINER C, 1977, ACUSTICA, V37, P29
Schreiner CE, 2000, ANNU REV NEUROSCI, V23, P501, DOI 10.1146/annurev.neuro.23.1.501
Schul J, 2006, NEUROSCIENCE, V138, P1, DOI 10.1016/j.neuroscience.2005.11.023
Seeba F, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005974
Shahin AJ, 2009, NEUROIMAGE, V44, P1133, DOI 10.1016/j.neuroimage.2008.09.045
SLANEY M, 1993, APPLE COMPUTER TECHN, V35, P1
Sugita Y, 1997, NEUROREPORT, V8, P1155, DOI 10.1097/00001756-199703240-00019
Turgeon M, 2002, J ACOUST SOC AM, V111, P1819, DOI 10.1121/1.1453450
VINNIK E, 2009, SOUNDS NOISE BEHAV N
VONDERHEYDT R, 1984, SCIENCE, V224, P1260, DOI 10.1126/science.6539501
WARREN RM, 1970, SCIENCE, V167, P392, DOI 10.1126/science.167.3917.392
WARREN RM, 1972, SCIENCE, V176, P1149, DOI 10.1126/science.176.4039.1149
NR 71
TC 11
Z9 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2011
VL 271
IS 1-2
SI SI
BP 54
EP 65
DI 10.1016/j.heares.2010.05.011
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 717VH
UT WOS:000287075000006
PM 20541597
ER
PT J
AU Brosch, M
Selezneva, E
Scheich, H
AF Brosch, Michael
Selezneva, Elena
Scheich, Henning
TI Formation of associations in auditory cortex by slow changes of tonic
firing
SO HEARING RESEARCH
LA English
DT Article
ID UNIT-ACTIVITY; NEURONAL-ACTIVITY; SPIKE TRAINS; REWARD; MONKEY; RAT;
OSCILLATIONS; POTENTIALS; THALAMUS; BEHAVIOR
AB We review event-related slow firing changes in the auditory cortex and related brain structures. Two types of changes can be distinguished, namely increases and decreases of firing, lasting in the order of seconds. Triggering events can be auditory stimuli, reinforcers, and behavioral responses. Slow firing changes terminate with reinforcers and possibly with auditory stimuli and behavioral responses. A necessary condition for the emergence of slow firing changes seems to be that subjects have learnt that consecutive sensory or behavioral events are contingent on reinforcement. They disappear when the contingencies are no longer present. Slow firing changes in auditory cortex bear similarities with slow changes of neuronal activity that have been observed in subcortical parts of the auditory system and in other non-sensory brain structures. We propose that slow firing changes in auditory cortex provide a neuronal mechanism for anticipating, memorizing, and associating events that are related to hearing and of behavioral relevance. This may complement the representation of the timing and types of auditory and auditory-related events which may be provided by phasic responses in auditory cortex. The presence of slow firing changes indicates that many more auditory-related aspects of a behavioral procedure are reflected in the neuronal activity of auditory cortex than previously assumed. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Brosch, Michael; Selezneva, Elena; Scheich, Henning] Leibniz Inst Neurobiol, D-39118 Magdeburg, Germany.
RP Brosch, M (reprint author), Leibniz Inst Neurobiol, Brenneckestr 6, D-39118 Magdeburg, Germany.
EM brosch@ifn-magdeburg.de
FU Deutsche Forschungsgemeinschaft [SFB 779, SFB-TRR 31]
FX We thank Cornelia Bucks for technical assistance during and after the
experiments. The valuable suggestions of Dr. Jonathan Lovell are greatly
acknowledged. This research was supported by intramural funding and the
Deutsche Forschungsgemeinschaft (SFB 779,SFB-TRR 31).
CR Arieli A, 1996, SCIENCE, V273, P1868, DOI 10.1126/science.273.5283.1868
Armony JL, 1998, J NEUROSCI, V18, P2592
BIRBAUMER N, 1990, PHYSIOL REV, V70, P1
Bizley JK, 2007, CEREB CORTEX, V17, P2172, DOI 10.1093/cercor/bhl128
Brosch M, 2005, AUDITORY CORTEX: SYNTHESIS OF HUMAN AND ANIMAL RESEARCH, P127
BROSCH M, RULE BASED LEA UNPUB
Brosch M, 2005, J NEUROSCI, V25, P6797, DOI 10.1523/JNEUROSCI.1571-05.2005
Brunia CHM, 1999, ACTA PSYCHOL, V101, P213, DOI 10.1016/S0001-6918(99)00006-2
Budinger E, 2009, HEARING RES, V258, P16, DOI 10.1016/j.heares.2009.04.021
FILIPPOV IV, 2008, BRAIN RES, V11, P66
Fu KMG, 2003, J NEUROSCI, V23, P7510
Gao LX, 2009, J NEUROSCI, V29, P6013, DOI 10.1523/JNEUROSCI.5733-08.2009
Ghazanfar AA, 2006, TRENDS COGN SCI, V10, P278, DOI 10.1016/j.tics.2006.04.008
GOTTLIEB Y, 1989, EXP BRAIN RES, V74, P139
He BJ, 2009, TRENDS COGN SCI, V13, P302, DOI 10.1016/j.tics.2009.04.004
He JF, 2003, J NEUROSCI, V23, P8281
Hernandez G, 2006, BEHAV NEUROSCI, V120, P888, DOI 10.1037/0735-7044.120.4.888
KITZES LM, 1978, EXP NEUROL, V62, P678, DOI 10.1016/0014-4886(78)90277-7
Komura Y, 2001, NATURE, V412, P546, DOI 10.1038/35087595
Komura Y, 2005, NAT NEUROSCI, V8, P1203, DOI 10.1038/nn1528
KORNHUBER HH, 1965, PFLUGERS ARCH, V281, P1
Luczak A, 2009, NEURON, V62, P413, DOI 10.1016/j.neuron.2009.03.014
Metzger RR, 2006, J NEUROSCI, V26, P7468, DOI 10.1523/JNEUROSCI.5401-05.2006
Mita A, 2009, NAT NEUROSCI, V12, P502, DOI 10.1038/nn.2272
Morrison SE, 2009, J NEUROSCI, V29, P11471, DOI 10.1523/JNEUROSCI.1815-09.2009
NIKI H, 1979, BRAIN RES, V171, P213, DOI 10.1016/0006-8993(79)90328-7
Quirk GJ, 1997, NEURON, V19, P613, DOI 10.1016/S0896-6273(00)80375-X
Rosler F, 1997, BIOL PSYCHOL, V45, P109, DOI 10.1016/S0301-0511(96)05225-8
ROWLAND V, 1985, ELECTROEN CLIN NEURO, V61, P559, DOI 10.1016/0013-4694(85)90975-7
SAKURAI Y, 1994, J NEUROSCI, V14, P2606
Schroeder CE, 2009, TRENDS NEUROSCI, V32, P9, DOI 10.1016/j.tins.2008.09.012
SCHULTZ W, 1992, J NEUROSCI, V12, P4595
SCHULTZ W, 1992, EXP BRAIN RES, V91, P363
Selezneva E, 2006, CURR BIOL, V16, P2428, DOI 10.1016/j.cub.2006.10.027
SHINBA T, 1995, BRAIN RES BULL, V37, P199, DOI 10.1016/0361-9230(94)00283-7
Shuler MG, 2006, SCIENCE, V311, P1606, DOI 10.1126/science.1123513
STERIADE M, 1993, SCIENCE, V262, P679, DOI 10.1126/science.8235588
WALTER WG, 1964, NATURE, V203, P380, DOI 10.1038/203380a0
Yin P, 2008, J NEUROPHYSIOL, V100, P3009, DOI 10.1152/jn.00828.2007
NR 39
TC 12
Z9 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2011
VL 271
IS 1-2
SI SI
BP 66
EP 73
DI 10.1016/j.heares.2010.05.003
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 717VH
UT WOS:000287075000007
PM 20488230
ER
PT J
AU Walker, KMM
Bizley, JK
King, AJ
Schnupp, JWH
AF Walker, Kerry M. M.
Bizley, Jennifer K.
King, Andrew J.
Schnupp, Jan W. H.
TI Cortical encoding of pitch: Recent results and open questions
SO HEARING RESEARCH
LA English
DT Article
ID PRIMARY AUDITORY-CORTEX; FREQUENCY-MODULATED TONES; GERBIL
MERIONES-UNGUICULATUS; RECEPTIVE-FIELD PLASTICITY; HARMONIC COMPLEX
TONES; LATERAL HESCHLS GYRUS; INFERIOR COLLICULUS;
FUNCTIONAL-ORGANIZATION; MONGOLIAN GERBIL; COCHLEAR NUCLEUS
AB It is widely appreciated that the key predictor of the pitch of a sound is its periodicity. Neural structures which support pitch perception must therefore be able to reflect the repetition rate of a sound, but this alone is not sufficient. Since pitch is a psychoacoustic property, a putative cortical code for pitch must also be able to account for the relationship between the amount to which a sound is periodic (i.e. its temporal regularity) and the perceived pitch salience, as well as limits in our ability to detect pitch changes or to discriminate rising from falling pitch. Pitch codes must also be robust in the presence of nuisance variables such as loudness or timbre. Here, we review a large body of work on the cortical basis of pitch perception, which illustrates that the distribution of cortical processes that give rise to pitch perception is likely to depend on both the acoustical features and functional relevance of a sound. While previous studies have greatly advanced our understanding, we highlight several open questions regarding the neural basis of pitch perception. These questions can begin to be addressed through a cooperation of investigative efforts across species and experimental techniques, and, critically, by examining the responses of single neurons in behaving animals. (C) 2010 Elsevier B.V. All rights reserved.
C1 [Walker, Kerry M. M.; Bizley, Jennifer K.; King, Andrew J.; Schnupp, Jan W. H.] Univ Oxford, Dept Physiol Anat & Genet, Oxford OX1 3PT, England.
RP Walker, KMM (reprint author), Univ Oxford, Dept Physiol Anat & Genet, Sherrington Bldg,Parks Rd, Oxford OX1 3PT, England.
EM kerry.walker@dpag.ox.ac.uk; jennifer.bizley@dpag.ox.ac.uk;
andrew.king@dpag.ox.ac.uk; jan.schnupp@dpag.ox.ac.uk
RI Walker, Kerry/B-5057-2011; King, Andrew/M-6708-2013
OI King, Andrew/0000-0001-5180-7179
FU Wellcome Trust [076508/Z/05/Z]; Biotechnology and Biological Sciences
Research Council [BB/D009758/1]; L'Oreal-UNESCO; Engineering and
Physical Sciences Research Council [EP/C010841/1]
FX We are grateful for the support of the Wellcome Trust Principal Research
Fellowship (grant 076508/Z/05/Z), for funding to AJK, KMMW and JKB, and
to the Biotechnology and Biological Sciences Research Council (grant
BB/D009758/1) for a grant awarded to JWHS, AJK and JKB. JKB is also
supported by a L'Oreal-UNESCO For Women In Science Fellowship, and JWHS
by the Engineering and Physical Sciences Research Council (grant
EP/C010841/1). We thank Israel Nelken for his helpful comments on a
draft of this manuscript, and Cesare Magri for making his Matlab code
for entropy calculations freely available at http://www.ibtb.org (Magri
et al., 2009).
CR Ahveninen J, 2006, P NATL ACAD SCI USA, V103, P14608, DOI 10.1073/pnas.0510480103
Bajo VM, 2007, CEREB CORTEX, V17, P475, DOI 10.1093/cercor/bhj164
BAKIN JS, 1990, BRAIN RES, V536, P271, DOI 10.1016/0006-8993(90)90035-A
Bendor D, 2005, NATURE, V436, P1161, DOI 10.1038/nature03867
Bendor D, 2008, J NEUROPHYSIOL, V100, P888, DOI 10.1152/jn.00884.2007
Bizley JK, 2009, J NEUROSCI, V29, P2064, DOI 10.1523/JNEUROSCI.4755-08.2009
Bizley JK, 2005, CEREB CORTEX, V15, P1637, DOI 10.1093/cercor/bhi042
Bizley JK, 2010, J NEUROSCI, V30, P5078, DOI 10.1523/JNEUROSCI.5475-09.2010
BIZLEY JK, 2009, ASS RES OTOLARYNGOL, P136
Blake DT, 2006, NEURON, V52, P371, DOI 10.1016/j.neuron.2006.08.009
Blake DT, 2002, P NATL ACAD SCI USA, V99, P10114, DOI 10.1073/pnas.092278099
BRAWER JR, 1974, J COMP NEUROL, V155, P251, DOI 10.1002/cne.901550302
Brosch M, 2004, COGNITION, V91, P259, DOI 10.1016/j.cognition.2003.09.005
Brosch M, 1999, J NEUROPHYSIOL, V82, P1542
Brosch M, 2008, EXP BRAIN RES, V184, P349, DOI 10.1007/s00221-007-1109-7
Brown M, 2004, CEREB CORTEX, V14, P952, DOI 10.1093/cercor/bhh056
Budinger E, 2000, EUR J NEUROSCI, V12, P2425, DOI 10.1046/j.1460-9568.2000.00142.x
Cansino S, 2003, HUM BRAIN MAPP, V20, P71, DOI 10.1002/hbm.10132
CAPRANIC.RR, 1966, J ACOUST SOC AM, V40, P1131, DOI 10.1121/1.1910198
Cariani P, 1999, NEURAL PLAST, V6, P147, DOI 10.1155/NP.1999.147
Carlyon RP, 1998, J ACOUST SOC AM, V104, P1118, DOI 10.1121/1.423319
Chait M, 2006, CEREB CORTEX, V16, P835, DOI 10.1093/cercor/bhj027
Chawla D, 1999, NEURAL COMPUT, V11, P1389, DOI 10.1162/089976699300016287
COHEN MA, 1995, J ACOUST SOC AM, V98, P862, DOI 10.1121/1.413512
CRAMER EM, 1958, J ACOUST SOC AM, V30, P413, DOI 10.1121/1.1909628
CYNX J, 1995, J COMP PSYCHOL, V109, P261, DOI 10.1037/0735-7036.109.3.261
CYNX J, 1986, J COMP PSYCHOL, V100, P356
DAMATO MR, 1988, MUSIC PERCEPT, V5, P452
de Cheveigne A., 2005, PITCH NEURAL CODING, P169
Degerman A, 2008, EUR J NEUROSCI, V27, P3329, DOI 10.1111/j.1460-9568.2008.06286.x
DIVENYI PL, 1989, BRAIN LANG, V37, P290, DOI 10.1016/0093-934X(89)90020-5
Dooling RJ, 2002, J ACOUST SOC AM, V112, P748, DOI 10.1121/1.1494447
DOOLING RJ, 1981, J COMP PHYSIOL, V143, P383
DOWNMAN CBB, 1960, B JOHNS HOPKINS HOSP, V106, P127
EDELINE JM, 1993, BEHAV NEUROSCI, V107, P82, DOI 10.1037//0735-7044.107.1.82
FAY RR, 1983, HEARING RES, V12, P31, DOI 10.1016/0378-5955(83)90117-X
Fishman YI, 1998, BRAIN RES, V786, P18, DOI 10.1016/S0006-8993(97)01423-6
Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141
Fritz JB, 2005, J NEUROSCI, V25, P7623, DOI 10.1523/JNEUROSCI.1318-05.2005
FULLER BF, 1992, RES NURS HEALTH, V15, P379, DOI 10.1002/nur.4770150507
Galvan VV, 2002, NEUROBIOL LEARN MEM, V77, P78, DOI 10.1006/nlme.2001.4044
Gelfer MP, 2005, J VOICE, V19, P544, DOI 10.1016/j.jvoice.2004.10.006
Goense JBM, 2008, CURR BIOL, V18, P631, DOI 10.1016/j.cub.2008.03.054
GOLDSTEI.JL, 1973, J ACOUST SOC AM, V54, P1496, DOI 10.1121/1.1914448
Griffiths TD, 2001, NAT NEUROSCI, V4, P633, DOI 10.1038/88459
Griffiths TD, 1999, NEUROREPORT, V10, P3825, DOI 10.1097/00001756-199912160-00019
Gutschalk A, 2007, CEREB CORTEX, V17, P552, DOI 10.1093/cercor/bhj180
Gutschalk A, 2002, NEUROIMAGE, V15, P207, DOI 10.1006/nimg.2001.0949
Hackett TA, 2008, J AM ACAD AUDIOL, V19, P774, DOI 10.3766/jaaa.19.10.5
Hall DA, 2009, CEREB CORTEX, V19, P576, DOI 10.1093/cercor/bhn108
Hall DA, 2007, NEUROREPORT, V18, P323, DOI 10.1097/WNR.0b013e32802b70ce
Harrington IA, 2001, NEUROREPORT, V12, P1217, DOI 10.1097/00001756-200105080-00032
HEFFNER H, 1976, J ACOUST SOC AM, V59, P915, DOI 10.1121/1.380951
HEIL P, 1992, HEARING RES, V63, P135, DOI 10.1016/0378-5955(92)90081-W
Hertrich I, 2005, NEUROREPORT, V16, P193, DOI 10.1097/00001756-200502080-00026
Houstma A. J. M., 1990, J ACOUST SOC AM, V87, P304
HULSE SH, 1995, J EXP PSYCHOL GEN, V124, P409, DOI 10.1037//0096-3445.124.4.409
Hyde KL, 2008, NEUROPSYCHOLOGIA, V46, P632, DOI 10.1016/j.neuropsychologia.2007.09.004
Izumi A, 2001, J COMP PSYCHOL, V115, P127
Izumi A, 2000, J ACOUST SOC AM, V108, P3073, DOI 10.1121/1.1323461
JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982
Johnsrude IS, 2000, BRAIN, V123, P155, DOI 10.1093/brain/123.1.155
Kadia SC, 2003, J NEUROPHYSIOL, V89, P1603, DOI 10.1152/jn.00271.2001
Kalluri S, 2008, J ACOUST SOC AM, V123, P2701, DOI 10.1121/1.2902178
KAZUI S, 1990, BRAIN LANG, V38, P476, DOI 10.1016/0093-934X(90)90132-Z
Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714
Koda H, 2002, PSYCHOL REP, V91, P421
Kojima S, 2003, PRIMATES, V44, P225, DOI 10.1007/s10329-002-0014-8
Krumbholz K, 2003, CEREB CORTEX, V13, P765, DOI 10.1093/cercor/13.7.765
Krumbholz K, 2000, J ACOUST SOC AM, V108, P1170, DOI 10.1121/1.1287843
Langner G, 1997, J COMP PHYSIOL A, V181, P665, DOI 10.1007/s003590050148
Langner Gerald, 2009, Front Integr Neurosci, V3, P27, DOI 10.3389/neuro.07.027.2009
LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799
Langner G, 2002, HEARING RES, V168, P110, DOI 10.1016/S0378-5955(02)00367-2
LICKLIDER JCR, 1951, EXPERIENTIA, V7, P128, DOI 10.1007/BF02156143
Logothetis NK, 2001, NATURE, V412, P150, DOI 10.1038/35084005
Lohr B, 1998, J COMP PSYCHOL, V112, P36, DOI 10.1037/0735-7036.112.1.36
Lomber SG, 2008, NAT NEUROSCI, V11, P609, DOI 10.1038/nn.2108
LONG GR, 1984, J ACOUST SOC AM, V75, P1184, DOI 10.1121/1.390768
Lu T, 2001, NAT NEUROSCI, V4, P1131, DOI 10.1038/nn737
Magri C, 2009, BMC NEUROSCI, V10, DOI 10.1186/1471-2202-10-81
Marvit P, 2000, J ACOUST SOC AM, V108, P1819, DOI 10.1121/1.1287845
McAlpine D, 2004, J NEUROPHYSIOL, V92, P1295, DOI 10.1152/jn.00034.2004
McLachlan N, 2009, HEARING RES, V249, P23, DOI 10.1016/j.heares.2009.01.003
Meddis R, 1997, J ACOUST SOC AM, V102, P1811, DOI 10.1121/1.420088
MERZENIC.MM, 1973, BRAIN RES, V50, P275, DOI 10.1016/0006-8993(73)90731-2
MOODY DB, 1994, J ACOUST SOC AM, V95, P3499, DOI 10.1121/1.409967
Nelken I, 2008, J NEUROPHYSIOL, V99, P1928, DOI 10.1152/jn.00469.2007
NELSON DA, 1989, J COMP PSYCHOL, V103, P171, DOI 10.1037/0735-7036.103.2.171
Ohl FW, 1997, J COMP PHYSIOL A, V181, P685, DOI 10.1007/s003590050150
Otazu GH, 2009, NAT NEUROSCI, V12, P646, DOI 10.1038/nn.2306
PAGE SC, 1989, J EXP PSYCHOL ANIM B, V15, P137, DOI 10.1037/0097-7403.15.2.137
PANTEV C, 1989, SCIENCE, V246, P486, DOI 10.1126/science.2814476
Panzeri S, 2007, J NEUROPHYSIOL, V98, P1064, DOI 10.1152/jn.00559.2007
Parsons CH, 1999, J NEUROPHYSIOL, V82, P2294
Patterson RD, 2002, NEURON, V36, P767, DOI 10.1016/S0896-6273(02)01060-7
Penagos H, 2004, J NEUROSCI, V24, P6810, DOI 10.1523/JNEUROSCI.0383-04.2004
PFEIFFER RR, 1966, EXP BRAIN RES, V1, P220
PIERCE JR, 1991, J ACOUST SOC AM, V90, P1889, DOI 10.1121/1.401667
Plack C. J., 2005, PITCH NEURAL CODING, P99
Polley DB, 2006, J NEUROSCI, V26, P4970, DOI 10.1523/JNEUROSCI.3771-05.2006
Puschmann S, 2010, NEUROIMAGE, V49, P1641, DOI 10.1016/j.neuroimage.2009.09.045
Qin L, 2005, CEREB CORTEX, V15, P1371, DOI 10.1093/cercor/bhi019
Rauschecker JP, 1997, J COMP NEUROL, V382, P89
RECANZONE GH, 1993, J NEUROSCI, V13, P87
REES A, 1987, HEARING RES, V27, P129, DOI 10.1016/0378-5955(87)90014-1
Reissland N, 2003, J CHILD PSYCHOL PSYC, V44, P255, DOI 10.1111/1469-7610.00118
RHODE WS, 1994, J NEUROPHYSIOL, V71, P493
Ritter S, 2005, NEUROIMAGE, V27, P533, DOI 10.1016/j.neuroimage.2005.05.003
ROBIN DA, 1990, BRAIN LANG, V39, P539, DOI 10.1016/0093-934X(90)90161-9
Romanski LM, 1999, NAT NEUROSCI, V2, P1131, DOI 10.1038/16056
Rutkowski RG, 2005, P NATL ACAD SCI USA, V102, P13664, DOI 10.1073/pnas.0506838102
Rybalko N, 2006, EUR J NEUROSCI, V23, P1614, DOI 10.1111/j.1460-9568.2006.04688.x
Schiavetto A, 1999, NEUROREPORT, V10, P2467, DOI 10.1097/00001756-199908200-00006
Schneider P, 2005, NAT NEUROSCI, V8, P1241, DOI 10.1038/nn1530
Schonwiesner M, 2008, EXP BRAIN RES, V187, P97, DOI 10.1007/s00221-008-1286-z
Schouten JF, 1938, P K NED AKAD WETENSC, V41, P1086
SCHREINER CE, 1988, J NEUROPHYSIOL, V60, P1823
Schulze H, 2002, EUR J NEUROSCI, V15, P1077, DOI 10.1046/j.1460-9568.2002.01935.x
SCHWARZ DWF, 1990, J NEUROPHYSIOL, V64, P282
Selezneva E, 2006, CURR BIOL, V16, P2428, DOI 10.1016/j.cub.2006.10.027
SEMAL C, 1990, MUSIC PERCEPT, V8, P165
Semal C, 2006, J ACOUST SOC AM, V120, P3907, DOI 10.1121/1.2357708
SHACKLETON TM, 1994, J ACOUST SOC AM, V95, P3529, DOI 10.1121/1.409970
Shofner W. P., 2005, PITCH NEURAL CODING, P56
Shofner WP, 2002, HEARING RES, V173, P69, DOI 10.1016/S0378-5955(02)00612-3
Shofner WP, 2007, J COMP PSYCHOL, V121, P428, DOI 10.1037/0735-7036.121.4.428
SIDTIS JJ, 1988, BRAIN LANG, V34, P235, DOI 10.1016/0093-934X(88)90135-6
Smith DRR, 2005, J ACOUST SOC AM, V117, P305, DOI 10.1121/1.1828637
Staeren N, 2009, CURR BIOL, V19, P498, DOI 10.1016/j.cub.2009.01.066
Steinschneider M, 1998, J ACOUST SOC AM, V104, P2935, DOI 10.1121/1.423877
Stewart L, 2006, BRAIN, V129, P2533, DOI 10.1093/brain/awl171
SUTTER ML, 1991, J NEUROPHYSIOL, V65, P1207
Talwar SK, 2001, J NEUROPHYSIOL, V86, P1555
Talwar SK, 2001, J NEUROPHYSIOL, V85, P2350
THOMAS H, 1993, EUR J NEUROSCI, V5, P882, DOI 10.1111/j.1460-9568.1993.tb00940.x
TOMLINSON RWW, 1988, J ACOUST SOC AM, V84, P560, DOI 10.1121/1.396833
TRAMO MJ, 2004, SOC NEUR ABSTR
Tramo MJ, 2005, ANN NY ACAD SCI, V1060, P148, DOI 10.1196/annals.1360.011
Tramo MJ, 2002, J NEUROPHYSIOL, V87, P122
Vongpaisal T, 2006, J SPEECH LANG HEAR R, V49, P1091, DOI 10.4044/1092-4388(2006/078)
WALKER KMM, 2009, BEHAV NEURAL PITCH D, P139
Walker KMM, 2009, J ACOUST SOC AM, V126, P1321, DOI 10.1121/1.3179676
WALKER KMM, 2009, INT C AUD CORT MAGD
Wang X, 2008, Neuroscience, V157, P484, DOI 10.1016/j.neuroscience.2008.07.050
Warren JD, 2003, ANN NY ACAD SCI, V999, P212, DOI 10.1196/annals.1284.032
Warren JD, 2003, J NEUROSCI, V23, P5799
Warrier CM, 2004, BRAIN, V127, P1616, DOI 10.1093/brain/awh183
Wendel K, 2009, COMPUT INTEL NEUROSC
Wetzel W, 1998, BEHAV BRAIN RES, V91, P29, DOI 10.1016/S0166-4328(97)00099-5
Wetzel W, 2008, P NATL ACAD SCI USA, V105, P6753, DOI 10.1073/pnas.0707844105
WHITFIELD IC, 1980, J ACOUST SOC AM, V67, P644, DOI 10.1121/1.383889
Winer JA, 2007, HEARING RES, V229, P3, DOI 10.1016/j.heares.2007.01.017
WINTER IM, 1990, J ACOUST SOC AM, V88, P1437, DOI 10.1121/1.399720
Witte RS, 2005, COGNITIVE BRAIN RES, V23, P171, DOI 10.1016/j.cogbrainres.2004.10.018
Wright AA, 2000, J EXP PSYCHOL GEN, V129, P291, DOI 10.1037//0096-3445.129.3.291
Yin P, 2008, J NEUROPHYSIOL, V100, P3009, DOI 10.1152/jn.00828.2007
ZATORRE RJ, 1992, SCIENCE, V256, P846, DOI 10.1126/science.1589767
ZATORRE RJ, 1988, J ACOUST SOC AM, V84, P566, DOI 10.1121/1.396834
ZATORRE RJ, 1994, J NEUROSCI, V14, P1908
NR 160
TC 16
Z9 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2011
VL 271
IS 1-2
SI SI
BP 74
EP 87
DI 10.1016/j.heares.2010.04.015
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
Otorhinolaryngology
GA 717VH
UT WOS:000287075000008
PM 20457240
ER
EF