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Abstract

In an earlier paper by Glänzel and Schubert [Glänzel, W., & Schubert, A. (1988a). Characteristic scores and scales in assessing
citation impact. Journal of Information Science, 14(2), 123–127; Glänzel, W., & Schubert, A. (1988b). Theoretical and empirical
studies of the tail of scientometric distributions. In L. Egghe, & R. Rousseau (Eds.), Informetrics: Vols. 87/88, (pp. 75–83). Elsevier
Science Publisher B.V.], a method for classifying ranked observations into self-adjusting categories was developed. This parameter-
free method, which was called method of characteristic scores and scales, is independent of any particular bibliometric law. The
objective of the present study is twofold. In the theoretical part, the analysis of its properties for the general form of the Pareto
distribution will be extended and deepened; in the empirical part the citation history of individual scientific disciplines will be
studied. The chosen citation window of 21 years makes it possible to analyse dynamic aspects of the method, and proves sufficiently
large to also obtain stable patterns for each of the disciplines. The theoretical findings are supplemented by regularities derived from
the long-term observations.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The classical studies of long-term citation impact by Abt (1981) and Garfield (1996, 1998a, 1998b) have shown
that long observation periods are indispensable for obtaining reliable and stable results on citation processes. From the
methodological viewpoint, such analyses are important in studying disciplinary citation impact, ageing-related issues,
first-citation distributions (see, for instance, Egghe & Rao, 2001; Glänzel & Schoepflin, 1995; Rousseau, 1994) and
citation-succession processes (see Glänzel, 1992; Glänzel & Schoepflin, 1995), the phenomenon of delayed recognition
(e.g., Garfield, 1980; Glänzel & Garfield, 2004; Glänzel, Schlemmer, & Thijs, 2003; van Raan, 2004) and in identifying
highly cited papers. Informetric long-term studies reveal regularities and provide tools that are nevertheless important
for scientometric applications, too. The predictive power of models for citation processes (Glänzel & Schubert, 1995),
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the methodological foundation of finding optimum citation windows for evaluative purposes and the determination of
subject-specific scores are only some of those applications.

In the present paper, we will use a method for classifying ranked observations into self-adjusting categories developed
by Glänzel and Schubert (1988a, 1988b). The method, which is based on the analysis of rank-specific subcategories
of ranked observations, was called characteristic scaling. Within the framework of this model an optionally refinable
scale with variable scores is used for the characterising eminence of citation impact. It can be shown that if the
grouping derived by our procedure is complete for the ranked observations it has several interesting properties, the
most important of which is the grouping’s independence of the common scale. Such scale- and parameter-independent
classification methods are very important in scientometric practice since citation distributions are highly sensitive
to subject particularities (see, for instance, Glänzel & Moed, 2002). Moreover, instead of the usual comparison of
statistical functions like means, medians or percentages of a sub-sample with the corresponding values of the complete
sample or of the population, this method directly allows the benchmarking of the sub-sample through the comparison
of its class properties with that of the population. This, of course, provides a more complex approach than the usual
comparison of “averages”.

In the present paper we will first extend and generalise the investigation of the theoretical properties of the method
under the condition that the underlying citation distribution is a Pareto distribution of the second kind at any time
beginning with the publication year. In order to obtain stable results and to be able to analyse the dynamics of the
characteristic scores and scales the study is based on a 21-year citation window. We will also demonstrate that
the parameter α (and its transformation q = (1 − 1/α)α) derived from our model describes important subject-specific
characteristics of citation distributions. Although the method of characteristic scores and scales itself represents a
parameter-free approach to citation-impact classification, it provides the characteristic parameter of the underlying
distribution. Furthermore, the analysis of the citation process gives empirical evidence that this parameter is time-
invariant.

2. The theory of ‘characteristic scores and scales’

In what follows, we briefly summarise the definition of the characteristic scores and scales according to Glänzel &
Schubert (1988a, 1988b). Consider a set of n papers published in a given subject field. The observed citations {Xi}ni=1
received by each paper in a given time period are then ranked in descending order X∗

1 ≥ X∗
2 ≥ · · · ≥ X∗

n, where X∗
1

denotes the citation rate of most frequently cited paper in the set and X∗
n consequently the number of citations the least

cited paper has received.

2.1. Definition

In order to develop a method for subdividing the sample into classes we define appropriate thresholds based on the
following recursion. First put β0 = 0 and ν0 = n. β1 is then defined as the sample mean:

β1 =
n∑

i=1

Xi

n
=

n∑
i=1

X∗
i

νo
(1)

The value ν1 is defined by the following inequality:

X∗
ν1

≥ β1 and X∗
ν1+1 < β1 (2)

This procedure is repeated recurrently, particularly:

βk =
νk−1∑
i=1

X∗
i

νk−1
(3)

and νk is chosen so that:

X∗
νk

≥ βk and X∗
νk+1 < βk, k ≥ 2 (4)

The properties β0 ≤ β1 ≤ . . . and ν0 ≥ ν1 ≥ . . . are obvious from the definition. Obviously, the procedure comes to
an end if νk = 1 for some k > 0 is reached. The kth class is defined by the pair of threshold values [βk−1, βk) and the
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number of papers belonging to this class amounts to νk−1 − νk. From the definition defining procedure it follows that
each given publication set determines its own groups.

2.2. Properties

Though no underlying rule is necessary for arranging the sample, important properties of the threshold values as
well as of the size of the classes determined through these thresholds can be derived for special citation distributions.
Since citation distributions are integer valued, the unique determination of the theoretical values of the characteristic
thresholds introduced above would always result in an integer approximation. Therefore, we have used an approximation
based on a continuous distribution model in an earlier study (Glänzel, Telcs, & Schubert, 1984). In particular, we have
found an important basic property in the case of Paretian distributions. The citation rate X of a paper has a Paretian
distribution if

G(x):=1 − F (x) = P(X ≥ x) ≈ c(N + x)−α (5)

for large x > 0 and some positive value c, where N and α are positive real parameters and F denotes the distribution
function of the random variable X. For α > 1 the citation rate X has a finite expectation so that one can define the
following conditional expectation:

bk =

⎧⎪⎨
⎪⎩

0 k = 0∑
i≥bk−1

iP(X = i)∑
i≥bk−1

P(X = i)
k > 0

(6)

According to the characterisation theorem for Paretian distributions by Glänzel et al. (1984) the conditional expectation
satisfies the condition bk = E(X|X ≥ bk−1) ∼ {α/(α − 1)}bk−1 + b1, which, in turn, results by recursion in the following
property:

bk ≈ b1

k−1∑
i=1

{
α

α − 1

}i

(7)

with b1 being the expected value and α the characteristic parameter of the Pareto-approximation. Since the normalised
scores b∗

k = bk/b1 depend only on the characteristic parameter we have called the method characteristic scaling and

the values b
(∗)
k as well as the corresponding statistics βk(βk/β1) themselves characteristic scores. If the expectation of

the citation distribution is finite, that is, if α > 1 (or, in the finite case, if α < 0) the values βk defined above are estimators
of the theoretical values bk.

In the present study we will go a step farther. First we modify the model as follows. Instead of the Pareto-
approximation for large x (see Eq. (1)) we will use the Pareto distribution as the underlying model for received
citation rates. This does, because of the assumed continuity of the random variable, is not quite in keeping with the dis-
creteness of citation rates, but can readily be used, for instance, as a continuous approximation of its discrete analogue,
namely the Waring distribution (cf. Glänzel et al., 1984).

The general form of Pareto distribution, also referred to as Pareto distribution of the second kind or Lomax distribu-
tion, can be obtained from the infinite beta distribution if one of the parameters is chosen 1 (see, e.g., Johnson, Kotz,
& Balakrishnan, 1994). In particular, we say that the non-negative random variable X has a Pareto distribution (of the
second kind) if:

G(x) = P(X ≥ x) = Nα

(N + x)α
, for all x ≥ 0 (8)

where N and α are positive real parameters. Alternatively, the parameter transformation a = α/(α − 1) is used as well.
In a second step, instead of the ranked sample elements X∗

νk
the corresponding theoretical values, namely Gumbel’s

so-called characteristic kth extreme values (Gumbel, 1958) will be used. The authors have shown that for large samples
(n � 1) and relatively small k � n a small correction of these extreme values results in modified Gumbel’s extreme
values according to Glänzel and Schubert (1988a, 1988b) which actually form the median of the corresponding order
statistic. However, for reason of simplicity of calculation we will not apply this correction. If the distribution function F
of the random variable X is absolutely continuous and strictly monotonous (as, for instance, the Pareto distribution) we
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can define the characteristic kth extreme value as uk := G−1(k/n). Assuming these properties of the distribution function
we can then define the theoretical group size mk through the characteristic extreme values and the characteristic
thresholds bk as un := bk. Thus, we can consider the statistics βk and νk estimators of the corresponding theoretical
values bk and mk. The following property is obvious:

G(bk) = G(umk
) = mk

n
(9)

In other words, the theoretical class sizes mk−1 – mk (k > 0) can be derived from the distribution function as follows:

mk − mk−1 = n{G(bk) − G(bk−1)} (10)

If α > 1 the expected value of the Pareto distribution is finite and can be expressed by b1 = N/(α − 1), or alternatively
by b1 = N(a − 1) using a = α/(α − 1) > 1. Hence, and from the characterisation theorem for Pearson-type distributions
(Glänzel et al., 1984) we obtain the characteristic thresholds bk by the following recursion:

bk = E(X|X ≥ bk−1) = abk−1 + b1 = N(a − 1)

(
k−1∑
i=0

ai

)
= N(ak − 1) (11)

Hence, we have

bk

bk−1
= ak − 1

ak−1 − 1
= a + 1∑k−2

i=0 ai
(12)

The following three properties are obvious:

(i) b∗
2 = b2

b1
= a + 1

(ii) bk

bk−1
∈
(
a, a+1

k−1

)
if k > 1

(iii) bk

bk−1
∼ a if k � 1

For the class size (mk−1 – mk) we obtain the following important properties through the characterisation theorem and
the definition of Gumbel’s extreme values:

G(umk
) = G(bk) = Nα(N + N(ak − 1))

−α = a−kα =
[
α − 1

α

]kα

=
(

1 − 1

α

)kα

= qk (13)

where q := (1 − 1/α)α. Consequently, we have

mk

mk−1
= mk−1 − mk

mk−2 − mk−1 = q =
(

1 − 1

α

)α

for all k > 1 (14)

The α – q relationship is presented in Table 1. The most relevant α range in bibliometrics is shaded. α = 1 corresponds
to a Lotka-type distribution.

In addition to the Pareto distribution we also have a look at one of the important limiting cases, namely the exponential
distribution. In particular, if N, α → ∞ and N/α → λ for some finite real λ > 0 we obtain G(x) = Nα/(N + x)α → e–x/λ.
Furthermore, α → ∞ implies q = (1 − 1/α)α → e−1 (cf. Table 1). Analogously to Eqs. (11)–(14) we obtain the properties
of the characteristic scores and classes in the case of the exponential distribution as follows:

bk = E(X|X ≥ bk−1) = kb1 = kλ and b∗
k = bk

b1
= k (15)

bk

bk−1
= k

k − 1
∼ 1 if k � 1 (16)

G(umk
) = G(bk) = e(−λk/λ) = e−k = qk, where q = e−1 (17)

mk

mk−1
= mk−1 − mk

mk−2 − mk−1
= q = e−1 for all k > 1 (18)
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Table 1
q as a function of α. The values most frequently observed in bibliometrics are shaded

The first important property of the Pareto distribution (and the exponential distribution as a limiting case too) is the
independence of the group size of the parameter N (or λ in the case of the exponential distribution) while in both
cases the characteristic scores are proportional to these parameters. Furthermore, the ratio of the size of subsequent
classes is constant according to Eqs. (14) and (18). The ratios of class sizes (mk−1 − mk) with respect to the lowest
class (m0 − m1) consequently form a geometric series q:q2:,. . .,:qk, which might be considered an inverse Bradford
law. Unlike in the original Bradford law, the number of produced items in the zones or classes, that is the number of
citations, is not constant. This law will form the theoretical base for the following empirical study.

3. Characteristic scores and scales in practice

The above-mentioned properties of characteristic scores and scales and of the classes defined by them hold for
continuous Pareto distributions. Informetric distributions such as publication activity and citation impact are however
discrete integer-valued distributions resulting from processes with continuous or discrete time parameter. In order to
obtain robust and interpretable models that can also describe the changing shape of the distribution as time elapses,
for instance, simple birth processes (Glänzel & Schoepflin, 1994) or mixtures of a Poisson process with appropriate
continuous distributions such as the Gamma distribution (Burrell, 1990; Burrell & Cane, 1982) have been assumed.
Both models result in negative binomial processes that can describe important features such as changing citation
impact in time or the ageing of information but fail to model the tail properties of informetric distributions (Glänzel &
Schubert, 1988a, 1988b). The assumption of generalised Yule processes (Schubert & Glänzel, 1983) or further mixture,
e.g., with a Pareto distribution result in processes having a (generalised) Waring or Irwin distribution (e.g., Karlis &
Xekalaki, 2005; Xekalaki, 1983) at any time. These models describe the tail properties of informetric distribution in
an appropriate manner, and their tail can be approximated by the Pareto distribution. Therefore, one could expect that
the above model fits sufficiently well empirical data. In what follows, we will prepare the scores and scale to define
an appropriate set of classes (zones) to characterise citation distributions and to set thresholds to distinguish poor, fair,
remarkable and outstanding citation impact. It is a consequence from their definition, characteristic scores and scales
are particularly suited to assessing excellent and outstanding citation rates. As has shown in the previous section, the
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number of scores is finites since the procedure stops if the last group is empty. The “natural” number of scores and
groups therefore varies from distribution to distribution. However, experience shows that in the application to most
citation distributions the use of three or four classes has satisfactory results. If more “fine-tuning” is required, the
number of classes can, of course, be arbitrarily extended by adding further classes and the scale can thus be optionally
refined. In order to obtain the four classes we proceed as follows.

In this empirical section we first determine the first three scores on basis of the ranked sample (β0 = 0 by definition).
Class 1 is formed by interval [β0, β1). Its elements are less frequently cited than the average, those of categories 2
through 4 (intervals [β1, β2), [β2, β3) and [β3, ∞)) are more cited than the average. Papers of the latter ones were
called ‘fairly cited’, ‘remarkably cited’ and ‘outstandingly cited’, respectively, while the elements of the first class
were called ‘poorly cited’ (cf., Glänzel & Schubert, 1988a, 1988b). In this manner, the original (theoretically infinite
but practically finite) distribution is reduced to a finite distribution keeping essential properties of the original one and
taking as many values as classes are used. Then we are ready to analyse the statistical properties of the empirical classes
obtained from procedure described above.

In order to apply this method to empirical data all “citable” papers indexed in the 1980 volume of the Science Citation
Index of Thomson-ISI (Philadelphia, PA, USA) have been collected. The set of “citable” papers includes the document
type article, letter, note and review. The data set includes about 450,000 papers that have been assigned to subfields
according to the Leuven/Budapest classification scheme consisting of 12 major fields and 60 subfields in the sciences
(cf. Glänzel & Schubert, 2003). Citation counts have been determined on the basis of an item-by-item procedure
using special identification-keys made up of bibliographic data elements such as part of the first author’s name, the
publication year, the volume number and first page of publication. Citations to each paper have been cumulated from
the publication year till all individual years in the period 1980–2000. Finally citations have been aggregated at the level
of the sixty subfields and for all fields combined.

Fig. 1 shows the evolution of relative group sizes on basis of cumulative citation rates received by the papers
published in 1980 in all fields combined. The shares of the classes in the total is stabilising very soon after publication.
The strikingly ‘irregular’ behaviour in the publication year 1980 could be explained with the fact that this year is
still incomplete for most publications; a paper published in November or December has obviously less chance to be
cited in the same year than a paper published in the first quarter of the year. This might also have effect on citation
patterns in the subsequent year. However, already in 1983, that is, in the third year after publication, class shares do not
change essentially any more. The class sizes form an extremely skewed distribution; 20 years after publication about
one quarter (74.7%) of all papers received less-than-average cited, a bit less than one fifth (18.5%) are fairly cited,

Fig. 1. Evolution of relative group sizes on basis of cumulative citation rates received by papers published in 1980 in the period 1980–2000 (all
fields combined).
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Fig. 2. Evolution of βk/βk−1 ratios on basis of cumulative citation rates received by papers published in 1980 in the period 1980–2000 and in all
fields combined (k = 2 dashed line, k = 3 dotted line, k = 4 solid line).

practically one twentieth (4.9%) was remarkably cited and roughly 2% (1.8%) attracted outstanding citation impact.
The class-size evolution in the 60 subfields parallels these patters. Stabilisation can be observed from the fourth year
on and the sizes themselves are of similar order in most disciplines, too. The approximation 75% (size of class 1), 18%
for class 2, 5% for class 3 and 2% for class 4 can be used as a rule of thumb for most disciplines, but should – as all
informetric laws – be applied to research evaluation with the utmost caution. A more detailed discussion of the group
properties of 12 out of the 60 subfields will form a part of the following section.

Fig. 2, which presents the evolution of βk/βk−1 ratios for the papers published in 1980 in all fields combined, shows
similar patterns of early stabilisation. For this exercise we have determined also the score β4. The evolution of ratios
shows a similar picture of stability beginning with the third year after publication. Although the ratios of subsequent
score are similar in the individual subfields, the scores themselves vary considerably among the disciplines. Both
the class sizes and the βk/βk−1 ratios do not depend on parameter N (see previous section). Since citation processes
converge quite slowly to their limiting distribution (cf. Glänzel & Schoepflin, 1995), the time stability of the two
statistics shown in Figs. 1 and 2 indicates that N is the time-dependent whereas α does not depend on time.

4. Further results

On basis of the 1980 volume of the Science Index characteristic scores and scales were calculated for each individual
citation window 1980 (1 year) through 1980–2000 (21 years). Twelve subfields out of the total of 60 subfields have
been selected. Every subfield represents one major field each. The selection is presented in Table 2.

The sizes of these subfields range from n = 3727 in aquatic sciences to n = 19,603 in pharmacology and toxicology.
All relevant statistics based on all possible citation windows have been determined; in particular the characteristic
scores βk (for k = 1, . . ., 4) and the shares of the classes in the total (νk−1 − νk)/n for k = 1, . . ., 3 and ν3/n for k = 4,
where these shares are denoted by ‘classk’. Here we just mention in passing that �k classk = ν0/n = 1. In addition, the
parameter q = (1 − 1/α)α has been estimated according to the property (13), namely as q̃ = (νk)1/k for k ≥ 2. The mean
of the three q̃ values were used as the final estimator of the parameter q for the individual subfields. This estimator
is denoted by q̄. The corresponding parameter α of the assumed Pareto distribution can be found in Table 1. All
above-mentioned statistics for the full citation period 1980–2000 are presented in Table 3.

The statistics presented in Table 2 substantiate that the Pareto approximation works sufficiently well for most
subfields. While this approximation provides quite stable results, e.g., for the q̃ estimates of the subfields A4, M4 and
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Table 2
List of selected subfields, subfield codes and majors fields to which the subfields are assigned

Code Subfield Major field

A4 Food and animal science and technology Agriculture and environment
Z2 Aquatic sciences Biology (organismic and supraorganismic level)
B1 Biochemistry/biophysics/molecular biology Biosciences (general, cellular and subcellular biology; genetics)
R4 Pharmacology and toxicology Biomedical research
I5 Immunology Clinical and experimental medicine I (general and internal medicine)
M4 Ophthalmology/otolaryngology Clinical and experimental medicine II (non-internal medicine specialties)
N1 Neurosciences and psychopharmacology Neuroscience and behaviour
C1 Analytical, inorganic and nuclear chemistry Chemistry
P6 Physics of solids, fluids and plasmas Physics
G1 Astronomy and astrophysics Geosciences and space sciences
E2 Electrical and electronic engineering Engineering
H1 Applied mathematics Mathematics

G1, the q̃ values of the other subfields seem to tendentiously increase or decrease with growing index k. These trends
clearly show that the Pareto model can be considered only a rough approximation. The corresponding αparameter ranges
between α = 2.0 for B1 (biochemistry/biophysics/molecular biology) and 3.5 for M4 (ophthalmology/otolaryngology).

According to the theoretical considerations of the previous section, group sizes do not depend on the parame-
ter N while the characteristic scores are a linear function of this parameter. The corresponding scores of samples
with similar α(q) values might therefore considerably differ as the examples H1 (applied mathematics) and B1 (bio-
chemistry/biophysics/molecular biology) show. For instance, a paper, which has received 50 citations in the period
1980–2000, would classify as ‘outstandingly cited’ in H1 (applied mathematics), but only ‘remarkably cited’ in C1
(analytical, inorganic and nuclear chemistry) and even just ‘fairly cited’ in I5 (immunology).

In principle, we can distinguish four basic types according to their citation standard (lower or higher threshold
values βk) and to their class-size distributions. A classification of these properties is presented in Table 4. While the
first characteristics depend on both parameters, the latter distribution depends on α(q) alone. Eight of the selected
subfield show specific profiles; the pairs M4 and A4, N1 and G1, H1and E2 as well as B1 and I5 have similar

Table 3
Characteristic scores and scales for 12 subfields based on the 21-year citation windows 1980–2000 (n = sample size, classk = kth class size/n,
q̃ = (νk)1/k, q̄ = mean(q̃))

k A4(q̄ = 0.291, n = 8531) Z2(q̄ = 0.298, n = 3727) B1(q̄ = 0.257, n = 28, 161) R4(q̄ = 0.284, n = 19, 603)

βk Classk q̃ βk Classk q̃ βk Classk q̃ βk Classk q̃

1 9.62 0.710 n/a 18.42 0.700 n/a 29.79 0.738 n/a 16.64 0.719 n/a
2 26.57 0.205 0.290 46.64 0.207 0.300 85.85 0.196 0.262 46.63 0.199 0.281
3 52.67 0.060 0.292 87.21 0.068 0.304 196.55 0.051 0.257 93.71 0.058 0.285
4 92.63 0.025 0.291 159.86 0.024 0.289 437.63 0.016 0.250 166.15 0.023 0.286

k I5(q̄ = 0.262, n = 8811) M4(q̄ = 0.310, n = 5342) N1(q̄ = 0.294, n = 9691) C1(q̄ = 0.288, n = 16, 508)
βk Classk q̃ βk Classk q̃ βk Classk q̃ βk Classk q̃

1 27.00 0.741 n/a 11.66 0.692 n/a 27.46 0.713 n/a 14.24 0.711 n/a
2 79.17 0.191 0.259 30.05 0.211 0.308 74.15 0.202 0.287 37.30 0.206 0.289
3 174.06 0.050 0.262 54.52 0.067 0.311 142.38 0.058 0.292 72.60 0.060 0.288
4 335.88 0.019 0.266 85.76 0.030 0.311 233.90 0.027 0.301 129.39 0.023 0.285

k P6(q̄ = 0.262, n = 14, 330) G1(q̄ = 0.286, n = 5472) E2(q̄ = 0.254, n = 11, 498) H1(q̄ = 0.254, n = 6675)
βk Classk q̃ βk Classk q̃ βk Classk q̃ βk Classk q̃

1 14.10 0.743 n/a 23.24 0.712 n/a 7.36 0.759 n/a 6.51 0.755 n/a
2 41.36 0.187 0.257 63.23 0.207 0.288 25.10 0.176 0.241 21.65 0.181 0.245
3 88.34 0.051 0.264 127.96 0.058 0.285 55.85 0.047 0.255 49.66 0.047 0.255
4 167.20 0.019 0.266 232.95 0.023 0.285 104.87 0.019 0.265 98.24 0.018 0.263
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Table 4
Four basis types of characteristic scores and scales according to thresholds and class sizes

Properties Lower citation standard Higher citation standard

Less skewed class-size distribution (α, q large) M4, A4 N1, G1
More skewed class-size distribution (α, q small) H1, E2 B1, I5

Table 5
Time dependence of parameter N as reflected by the change of characteristic scores in time

Field

M4 A4 H1 E2

1983 2000 1983 2000 1983 2000 1983 2000

β1 2.55 11.66 2.24 9.62 1.35 6.51 2.23 7.36
β2 6.41 30.05 5.96 26.57 4.00 21.65 7.20 25.10
β3 11.08 54.52 9.46 52.67 6.52 49.66 14.57 55.85
β4 16.60 85.76 14.30 92.63 10.22 98.24 23.30 104.87

Field

N1 G1 B1 I5

1983 2000 1983 2000 1983 2000 1983 2000

β1 6.74 27.46 6.72 23.24 17.09 29.79 8.95 27.00
β2 16.11 74.15 16.12 63.23 46.14 85.85 22.32 79.17
β3 29.04 142.38 28.78 127.96 96.57 196.55 44.18 174.06
β4 45.52 233.90 43.83 232.95 182.98 437.63 78.19 335.88

profiles each where the distribution characteristics of the first and fourth and the second and third, respectively, can
be considered opposite to each other. Most subfields are, however, somewhere in between these ‘extreme’ profiles.
The class sizes of the individual subfields somewhat differ from the above-mentioned rule of thumb (75–18–5–2%),
although the deviations from this ‘standard’ are not dramatic. However, the variation among the characteristic scores
of the individual subfields is – according to the expectation on basis of subject specific citation standards – quite
considerable.

Finally, we have a look at the time dependence of parameter N. The characteristic scores depend on both parameters
N and α (see Eq. (11)). In Table 5, the characteristic scores of the eight subfields shown in Table 4 are presented for the
two periods 1980–1983 (4-year window) and 1980–2000 (21-year window). The first four disciplines represent a lower
citation standard (see upper part of Table 5) whereas the second group in the lower part of Table 5 stands for higher
standards. The different ‘growth rates’ of the βk values can be explained with the different ageing of the subfields (cf.
Glänzel & Schoepflin, 1995). The deviation of the growth in the mathematics discipline from that in the engineering
subfield is most striking (see Table 5).

5. Conclusions

The characteristic scores and scales defined by Glänzel & Schubert (1988a, 1988b) proved an interesting self-
adjusting informetric tool that can be used for evaluative scientometric purposes as well. It can, for instance, be applied
to journal and subject analysis. The identification of publication subsets according to their citation impact and gauging
the mean citation rates of given subsets against a larger characteristic scale are likewise possible. Both scores and
class sizes have interesting mathematical properties if a Pareto distribution for the underlying citation distribution is
assumed. The size of the classes defined by the characteristic scores as well as the ratios of subsequent scores proved
stable beyond an initial citation period of about 3 years. This observation provides on one hand empirical evidence for
the time independence of the characteristic parameter (α) of the Pareto distribution and, on the other hand, it shows that
the particular choice of the citation windows is – except for a short initial period – not important for class sizes. This
does, of course, not imply that the elements of these classes, that is, the individual papers also form stable clusters.
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The statement “once highly (poorly) cited always highly (poorly) cited” does not hold. While the size of the classes
does not essentially change as time elapses, the composition of the classes might do.

The advantage of being able to determine these characteristic classes on basis of a shorter period and than to
apply them to a larger citation window is maybe the most interesting property. The second important property is the
75–18–5–2 property, namely, that about 75% of the papers published in 1980 were poorly cited, 5% and 2% of the papers
were ‘remarkably cited’ and ‘outstandingly cited’, respectively. However, this reflects the situation in 1980. Scientific
communication has considerable changed during the last two decades; research collaboration and consequently also
co-authorship has intensified, individual publication activity and citation impact have generally increased (see Persson,
Glänzel, & Danell, 2004). The fact that the journal and disciplinary citation impact is growing but not all subjects
are concerned to the same extent, points also to structural changes. The following three subfields may serve just as
an example. The mean citation rate of subfield P6 (physics of solids, fluids and plasmas) based on a 3-year citation
windows has increased from the publication year 1980 to the publication year 2002 by 168.4%. The increase of the
3-year citation impact in R4 (pharmacology and toxicology) was by far more moderate; it amounts to 38.2% in 2002.
By contrast, the change of 6.1% in E2 (electrical and electronic engineering) is almost negligible. One can therefore
expect that the above-mentioned 75–18–5–2 rule could somewhat change if the exercise is repeated, say, for papers
published in 2000.

Besides its informetric value the method of characteristic scores and scales has implications also for research
evaluation. The most important one is that the method provides a rule where thresholds could be set for the identification
of highly cited papers within a scientific discipline and that this can be done whether on basis of characteristic scores
which increase with growing citation window or on basis of the class sizes which do not change essentially beyond
a certain initial citation period. Unknown scores can even be estimated from the lowest citation rate in the set of 2%
and 7% (=2 + 5%) most cited papers, respectively. This method can easily be used as reference standard as well. Thus,
the high-end of the national or institutional citation distribution can be gauged against the field standard. The share of
subject relevant papers of a given country, region or institution found in one of the ‘upper classes’ can thus enlighten
the user on the possible correspondence of the high-end of their citation distribution with the reference standard.

The Pareto approach used in the theoretic section provides powerful tools for evaluative bibliometrics; the α

parameter (and its derivative q) characterises both the class-size distributions and the slope of the underlying cita-
tion distribution. Jointly with an ‘impact measure’ it can be used to distinguish four basic types of citation standard.
Furthermore, the characteristic parameter proved to be time-independent, that is, it can be applied to any larger citation
window once estimated for a given initial period.

It should be stressed again that the results obtained from this methods are of statistical value. The method of
characteristic scores and scales should be applied to publication sets of reasonable size, that is, if the grouping procedure
is complete for the ranked observations. It is certainly not designed for the assessment of individual papers, either,
since those do not necessarily remain in their classes as time elapses, and might, therefore, be replaced by others.
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