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Predictive ranking of computer
scientists using CiteSeer data

Dror G. Feitelson and Uri Yovel
School of Computer Science and Engineering,

The Hebrew University of Jerusalem, Jerusalem, Israel

Keywords Prediction, Digital libraries

Abstract The increasing availability of digital libraries with cross-citation data on the Internet
enables new studies in bibliometrics. The paper focuses on the list of 10,000 top-cited authors in
computer science available as part of CiteSeer. Using data from several consecutive lists a model of
how authors accrue citations with time is constructed. By comparing the rate at which individual
authors accrue citations with the average rate, predictions are made of how their ranking in the list
will change in the future.

It’s tough to make predictions, especially about the future (Yogi Berra, American baseball
player).

Introduction
While it is widely recognized that scientists are not all of the same caliber, it is
not easy to measure this effect directly. As a result, indirect metrics have been
proposed. One of the most common is counting citations (Garfield, 1979). The
idea is that if a given individual publishes significant groundbreaking research,
this will be cited by others. The more citations, the larger the impact. Counts of
citations have thus been used for the ranking of individuals, universities, and
even nations (ScienceWatch, 1997). They are also used to rank publication
venues in the Journal Citation Reports.

Since the early 1960s, citation data has been available from the Science
Citation Index. Creating this index has traditionally been a laborious process
(Garfield, 1979). But with the advent of the Internet and digital libraries, a lot of
data has become directly available in computer-accessible formats. CiteSeer is
one of the major sites that exploits this opportunity, and provides a wealth of
data for free. We build on this data, and provide an additional level of analysis.

So far, the study of bibliometrics has been largely descriptive. But it is also
possible to follow trends and make predictions rather than just report
snapshots. One example was provided by Holmes and Oppenheim, who
attempted to predict the results of the RAE evaluation in the UK based on
current citation data (Holmes and Oppenheim, 2001). Another, was provided by
Geller et al. (1981), who attempt to predict the total number of citations that
papers will accrue over a lifetime of 40 years (Geller et al., 1981). Our work is, in
a sense, a combination of the two: we predict ranking based on predictions of
citations.
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The CiteSeer database
teSeer is a Web site providing reference data in computer science (CiteSeer)[1].
It is based on autonomous citation indexing (Lawrence et al., 1999). The idea is
to perform an automated search of the Internet, starting with home pages of
universities and research centers. The goal of the search is to harvest research
papers that have been posted on personal home pages. These are parsed to
extract the authors, titles, and citations. The data is then tabulated and
analyzed, enabling the site to rank papers according to how many citations
they have received.

It should be noted from the outset that the data provided by CiteSeer is far
from perfect. Not all research papers are posted on the Internet, and in
particular, papers actually published in journals may be missing, owing to
copyright limitations. Others may be posted several times in different versions,
leading to double counting. Parsing various citation formats to extract citation
information is also problematic (but this has improved considerably over the
years). However, the site has earned a wide following and is considered a very
important and useful resource for searching the computer science literature. It
contains data about hundreds of thousands of papers, and tends to be more
up-to-date than traditional citation services (Goodrum et al., 2001).

In addition to enabling a keyword- and author-based search of the database,
CiteSeer also publishes compiled statistics. One of the most popular is the list
ranking the 10,000 most cited authors in computer science (out of a total of
659,481 and growing in the database). This list is updated at irregular intervals
of several months (Figure 1). Each list provides a snapshot that captures the
ranking for the time of its publication. But naturally, ranks change over time. For
example, it is plausible that the people who will be the top ranking researchers in
30 years are now only at the beginning of their careers, and do not have so many
citations yet. Our goal is to try to predict the rank that a person will eventually
achieve, based on how his ranking improves from one list to the next.

CiteSeer itself also provides predictions of future citation counts. The model
used for predictions is extremely simple: the citation count to each paper is
multiplied by a factor that depends on the number of years since it was
published. This is a simplification of the model of (Geller et al., 1981). The idea

Figure 1.
Ranking and

citation-count data from
CiteSeer (divided into

three regions)
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is that recent papers have not had sufficient time to accumulate all their
citations yet, so the current count should be multiplied by a higher factor. This
model has two severe limitations. First, the multiplicative factor is the same for
all researchers in the database. It thus does not reflect possible differences
between papers, researchers, or whole fields. Second, the predictions are based
on a static snapshot of each person’s publications. There is no consideration of
possible future work, and citations it will receive (indeed, Geller et al., 1981
focus on ranking based on citations per paper, not on total citations; we prefer
total citations as in CiteSeer).

Our model, in contradistinction, is based on modeling the evolution of
citations to individual researchers. If a certain person accrues citations faster or
slower than others, this will be included in the model. Moreover, the model
implicitly includes the assumption that people continue to produce new papers
that will also be cited at the same rate as their current papers. This is expected
to be very meaningful for the ranking of prolific researchers who author many
more papers than the average.

Theory of predictive ranking
A researcher’s number of citations is the sum of citations for each paper he
wrote. The number of papers grows with the length of the career. The number of
citations accumulated by each paper grows with time, and may be expected to
stabilize eventually, owing to obsolescence. Ranking compares all this to similar
processes occurring for other researchers at different stages of their careers.

Obviously, direct modeling would be very complex, and require correctly
parameterized submodels for the paper production rates and the citation
accumulation rates. A simpler approach is to treat the total accumulation of
citations as an opaque process, rather than trying to model its mechanics. In
addition, we focus on ranking rather than on the actual number of citations.
This improves the reliability of the model, because ranking only depends on the
relative number of citations, not on the absolute numbers. If the predicted
numbers of citations turn out to be incorrect, but the deviations are consistent
for all researchers, the ranking will still be reliable.

The multiplicative model
In the model, we consider the number of citations needed to achieve a certain
rank in the CiteSeer list. By comparing the number of citations attributed to the
same rank in consecutive lists, we find that a simple multiplicative model
provides a very good match. We thus claim that (see Table I for notation):

Cðr; t þ 1Þ ¼ aCðr; tÞ

where t is measured in months and a is a constant. Looking at longer time
intervals, this leads to the prediction:

Cðr; t þ dÞ ¼ Cðr; tÞad
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Note that this relates to a rank, not to a certain person occupying that rank in a
specific list. (Incidently, the multiplicative model implies that the distribution of
citation counts should be lognormal, at least for the right tail of the distribution,
which is the part we are looking at.)

The actual distribution of a for different pairs of lists is shown in Figure 2.
As can be seen, except for the first pair of lists the distribution is quite narrow,
so the assumption that a is constant is reasonable. In addition, predictions that
used data from the first list proved to be unreliable. We therefore decided to
discard the first available list, and focus on the other five.

Regrettably, different pairs of lists lead to somewhat different values for a.
This may be caused by modifications to the methodology used by CiteSeer over
time, e.g. improved coverage of the web or improved parsing of citations. The
implication is that our ranking predictions will be based on pairs of lists, and
use the correct a for each pair.

The asymptotic rank
The framework for predicting the future rank of a specific researcher p is as
follows. Assume we have two lists, from times t-1 and t. We assume that the
citation counts at all ranks of the list grow at a monthly rate of a. But the

C(r,t) citations at rank r at time t
Cp(t) citations of person p at time t
R(c,t) rank achieved with c citations at time t
Rp(t) rank of person p at time t
Rp
z asymptotic rank of person p

Table I.
Notation used in

derivations

Figure 2.
The distribution of a for
different pairs of ranking

lists. a is the monthly
growth rate in number of
citations for a given rank
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citation count of p grows differently. Using data about p, we will attempt to
predict his rank in consecutive months t+1, t+2,. . ., and the asymptotic rank to
which he will converge.

There is a simple consideration that allows us to predict the asymptotic value
even without a detailed model. The idea is that p will move up (or down) in the
list until his rate of change of citations is equal to that of his neighbors.
Assuming the lists are monotonic and smooth, and that the differences at the top
are larger than at the bottom, we can simply find the rank where the difference
matches p’s difference (Figure 3). Define the difference in p’s citations:

Dp ¼ CpðtÞ � Cpðt � 1Þ

This leads to the prediction:

R1
p ¼ r s:t:Cðr; tÞ � Cðr; t � 1Þ ¼ Dp

We call this the empirical method. Alternatively, we can find the matching rank
by looking at only one list and using the definitions of a. This gives:

R1
p ¼ r s:t:ða � 1Þ Cðr; t � 1Þ ¼ Dp

which we call the analytic method.

Dynamics
But what is the prediction for the immediate future? For this we need a model of
how the number of citations changes, in comparison with that of other

Figure 3.
Predicting the
asymptotic ranking
based on increase in
citations
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researchers. Focusing on researcher p, we can define ap¼Cp(t)/Cp(t-1). Assume
that p is a rising star, and therefore ap .a. It would be wrong to predict:

Cpðt þ dÞ ¼ CpðtÞa
d
p

because this will cause p’s number of citations to rise faster than those of
anyone else, and on the long run he will necessarily become the top researcher.
Likewise, if ap,a, p will necessarily lose ground and eventually will be
dropped off the list. To achieve a situation in which p’s rank converges to a
reasonable value, we need a functional form in which the dependence on time is
a d. We therefore use only Dp as the part that grows with time:

Cpðt þ dÞ ¼ CpðtÞ þ Dp þ Dpaþ Dpa
2 þ · · · þ Dpa

d�1

¼ CpðtÞ þ Dp
1 � ad

1 � a

This provides a model of p’s number of citations. To turn this into a ranking,
we need to find the number of citations C at time t that would have grown to
this at the usual rate of a. This satisfies Ca d¼Cp(t+d), so C¼Cp(t+d)/a d. The
predicted rank of p at time t+d is then:

Rpðt þ dÞ ¼ RðC; tÞ

¼ R
CpðtÞ þ Dp

1�ad

1�a

ad
; t

 !

An open issue is how to handle newcomers, that only appear in the newer list.
One option is to use the bottom number of citations from the old list as an upper
bound on the number of citations the newcomers had at that time – had they
had more, they would have been in the list. This translates to a lower bound on
their rate of progress.

Reduction to practice
The above model cannot be applied directly to the data for two reasons. First,
the differences among adjacent lists are not monotonic. Second, predictions
based on different pairs of lists may differ.

Non-monotonic differences
The model shown in Figure 3 is based on the fact that in both lists the number of
citations is a monotonic function of the rank, and also assumes that the difference
in citations between lists is a monotonic function of the rank. But this assumption
is false. As researchers move up or down in the list the differences between counts
at adjacent ranks change, leading to fluctuations of the differences between the
lists. Figure 4 shows that this is indeed the case in reality.
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The lack of monotonicity is problematic because then the notion of a rank
where a certain difference is “natural” is ill-defined. To cope with this situation,
we smooth the data by applying a low-pass filter. This is achieved by
averaging each value with its neighbors in a certain window, using
exponentially decreasing weights for values that are farther away. While not
guaranteed to produce a monotonic sequence, the results are nevertheless much
better. With a large enough window, and small enough weight factor, the
sequence can indeed approach monotonicity (Figure 4).

To finally settle the issue of a “natural” rank for a given difference, we conduct
a bi-directional search of the smoothed list of differences. We note the highest
and lowest points in the list at which the desired difference was observed, and
use the midpoint between these two ranks as the asymptotic rank.

Non-unit time intervals
The model of how the number of citations changes with time is based on Dp

being the change for person p during one time unit, and specifically from time
t21 to time t. We use one month as the time unit for our predictions. But the
data comes from lists that are published at irregular intervals of several
months. We therefore need to deduce the value of Dp.

Recalling the definition of ap¼Cp(t)/Cp(t-1), we can write the identity:

Dp ¼ CpðtÞ � Cpðt � 1Þ ¼ CpðtÞ ðap � 1Þ

This reduces the problem to that of finding ap, which is easily solvable, since
by definition:

Cpðt þ dÞ ¼ CpðtÞa
d
p

so:

ap ¼
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cpðt þ dÞ

CpðtÞ

s

Figure 4.
Original differences of
citation counts between
the November 2001 and
May 2002 lists, and the
smoothed data
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Combining lists
The theory developed above is based on charting the differences in citations
between two ranking lists. At the time of writing, we have five usable ranking
lists spanning the period from April 2001 to May 2003. The methodology can
therefore be applied to various pairs of lists. Regrettably, this leads to
(sometimes grossly) different results.

The solution we adopted is to use a weighted average of the results obtained
using different pairs of lists. This leads to two questions: which pairs to use,
and how to do the weighting.

Consider a set of four lists. This leads to the pairs shown in Figure 5. There
are three pairs of distance 1, two of distance 2, and one of distance 3. Any
prediction, e.g. the asymptotic rank of a certain person, or the predicted rank
for a certain person in a certain month, can be calculated using each of these
pairs. Denote the prediction obtained by lists i and j by pi,j. This will be given a
weight wi,j in the weighted average.

We checked five different weightling schemes, that take the distance and the
recency into account. The base case gives exactly the same weight to all the
predictions. If k lists are available, there are (k2) ways to choose pairs of lists.
The weight of each one is then:

wi;j ¼
1
k
2

� �
An alternative is to define a weighting factor f, and increase the weight by
a factor of f as the distance grows (we used a factor of 2 when testing this
idea). This is based on the observation that adjacent lists sometimes
display large fluctuations in ranking, which lead to wild predictions. The
farther away the lists are, the more stable the results. The weight is then
equal to:

wi;j ¼
1

k � ðj � iÞ
·

f j�i�1Pk�2
‘¼0 f

‘

Figure 5.
Pairs of lists used to

derive predictions
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To give higher weight to more recent data, we assign the relative weight i+j to
pi,j, based on the assumption that the lists are numbered in chronological order.
This leads to:

wi;j ¼
i þ jPk�1

i
0
¼1

Pk
j
0
¼i0þ1 i

0
þ j

0

These ideas were combined in various ways and compared. Evaluation was
done by creating empirical confidence intervals as described below, based on
four available lists, and counting how many of the results of the fifth available
list fall into the confidence interval in each case. The results were that all
weighting schemes gave very similar results. Fluctuations depended more on
which lists were used than on the weighting scheme.

Recall that we have a total of six lists, of which list number one is not used,
and list number six is used for testing the predictions. This leaves four
candidate lists to make predictions. Table II shows the quality of results
obtained using different subsets of these four lists. The results indicate that it is
best to use all available data, i.e. all four lists. When using only three lists, it is
more important to span a large difference (using sets {2,3,5} or {2,4,5}) than to
use the most up-to-date data (set {3,4,5}). But this conclusion should be
reconsidered in the future when much more data spanning more time is
available.

Empirical confidence intervals
The above theory does not include facilities for calculating confidence
intervals. However, we can make an empirical assessment of our accuracy. We
do so by defining a “confidence interval” about the predictions that empirically
contains a large fraction of the true results.

There are two reasons why predictions may not be accurate. One is that the
future sometimes contains surprises. The other, is that the original data is not
very good. To distinguish between these cases to some degree, we base the

Lists Hits (%)

2, 3, 4 4,201 45.0
2, 3, 5 5,416 58.0
2, 4, 5 4,715 50.5
3, 4, 5 3,660 38.8
2, 3, 4, 5 6,211 66.6

Note: Hits are actual ranks from list six that fall within the empirical confidence intervals
predicted by the given lists. Percents are relative to the names that appear in all lists, which is
around 9,330 in most cases

Table II.
Results of prediction
accuracy using different
sets of lists.
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confidence interval on the dispersion of the data. In particular, we perform a
simple regression analysis of the last four data points, leading to a linear
predictor of rank as a function of time. We then find the differences between the
actual data points and this line. The root-mean-square of these differences,
denoted d, forms the basis for the confidence interval. If the points all fall near
the line, the data for this researcher seems to be good, and the confidence
interval will be small. If they are dispersed, the data is uncertain, and the
confidence interval will be larger.

At this stage we have two values for each researcher: the predicted rank
p and the dispersion d. As in conventional calculation of confidence
intervals, we multiply d by a constant f that ensures that a certain desired
fraction of the results indeed falls within the confidence interval.
Specifically, f is selected as follows. Using four lists we can make
predictions based on the first three, and check their quality using the
actual data from the fourth list. We set f to a value such that the
confidence interval will include the true value in approximately half of the
cases. Using lists 2, 3, and 4, and testing with list 5, led to selecting f¼2,
which gave a hit rate of 56.5 per cent.

As d may be very small, we also added a constant factor that provides a
minimal confidence interval independent of all other considerations. We also
found it appropriate to make part of this value proportional to the rank r, as
mobility (and uncertainty) at the top of the list is much lower than at lower
ranks. All these considerations taken together led to using the following
formula for the initial confidence interval:

p^ 2 þ 25
r

10; 000
þ 2d

� �

Another question is how the confidence interval should evolve with time. This
can be resolved by extending the same methodology as outlined above: making
predictions based on only three lists, setting f to include about half of the data
points from the fourth list, and setting the growth parameter to include about
half of the data points from the fifth list. Alternatively, we can tentatively set a
growth rate proportional to d for each researcher, and use a formula similar to
that of the initial confidence interval but with smaller constants.

Examples of the results of this whole process are shown in Figure 6. Note
how the predicted ranking converges to the predicted natural rank, even if the
initial rate of change is very high.

Evaluation
Quality of the model
The problem with evaluating the quality of predictions is that we need to wait
several years to see the true outcome for comparison. A sound evaluation is
therefore not possible at this time.
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Figure 6.
Examples of predictions
generated by our model
based on four lists,
compared to the actual
data from a fifth list
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What we can do is an initial evaluation for a short time range. We can create
predictions based on all the available lists but the last one, and compare this
with the actual values in this last list, which is several months later (in Section 4
we used a similar procedure to create the empirical confidence intervals). The
results are shown in Figure 7. The relative error in ranking is typically less
than 10 per cent, and the absolute error is much smaller than 500 (in a list of
10,000).

As for the future, it should be realized that our predictions have inherent
limitations. The predictions are based on current data, and assume that
similar behavior will persist in the future. It is not possible to predict
breakthroughs that will propel a certain researcher to much higher levels.
And even without breakthroughs, citation counts may fluctuate greatly. Two
striking examples of how predictions change when additional data is given
are shown in Figure 8.

Moreover, the current model assumes a stationary rate of accumulating
citations. This is probably not the case for truly exceptional researchers, that
are destined to reach the top of the list. As both the number of citations and the
rate of growth are very high at the top of the list, it is more reasonable to
assume that the rate of accumulating citations will also grow with rank. In
principle, this can be modeled by the second derivative of the citation
accumulation process, but current data seems to be too noisy for valid
modeling. Nevertheless, the model does make it possible to identify researchers
that will most probably rise to ranks that are much higher than their current
rank.

Ranking by citations
More generally, there are problems with the application of citation data to the
ranking of scientists. First, citations are not necessarily a good metric. For
example, Table III shows the ranking of ACM’s Turing Award winners from its
inception in 1966 to 2002. This is widely considered the most prestigious award

Figure 7.
Absolute and relative

errors in estimation of
rank based on four lists,

as verified using a
fifth list
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in computer science. While some recipients indeed rank at the top of the list,
indicating a good match between citations and standing, others are ranked quite
low, and no less than five don’t even make it into the list of the top 10,000 most
cited authors. For example, Douglas Engelbart is inventor of the computer mouse
and has contributed to other aspects of human-computer interaction. This has
had great impact, but garnered few citations. Our predictions indicate that in
upcoming years several others will also be dropped off the list.

The literature on citation indexing is rich with debate regarding problems
with the interpretation of citations as a metric for quality and possible
solutions. The MacRoberts provide an overview of the main objections, based
on an analysis of why and when scientists cite (or do not cite) one another
(MacRoberts and MacRoberts, 1989). This is corroborated by recent empirical
data, which suggests that sources that are considered very bad are cited more
than those considered only moderately bad, maybe as an example of what
should not be done (Nicolaisen, 2002).

Figure 8.
Examples of extreme
cases of how predictions
change when additional
data becomes available,
specifically when the
data from a new list does
not agree with that of the
previous lists
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Year Recipient Cites Rank

1966 A.J. Perlis 211 8,811
1967 Maurice V. Wilkes 50 n/a
1968 Richard Hamming 237 7,744
1969 Marvin Minsky 1,205 849
1970 J.H. Wilkinson 1,119 955
1971 John McCarthy 3,085 108
1972 E.W. Dijkstra 2,915 130
1973 Charles W. Bachman 23 n/a
1974 Donald E. Knuth 5,793 12
1975 Allen Newell 2,450 202
1975 Herbert A. Simon 3,962 49
1976 Michael O. Rabin 1,718 433
1976 Dana S. Scott 2,440 206
1977 John Backus 358 4,768
1978 Robert W. Floyd 802 1,611
1979 Kenneth E. Iverson 73 n/a
1980 C. Antony R. Hoare 4,758 29
1981 Edgar F. Codd 950 1,233
1980 Stephen A. Cook 1,926 334
1983 Ken Thompson 1,146 915
1983 Dennis M. Ritchie 396 4,216
1984 Niklaus Wirth 946 1,245
1985 Richard M. Karp 4,951 24
1986 John Hopcroft 4,542 34
1986 Robert Tarjan 6,525 7
1987 John Cocke 1,074 1,017
1988 Ivan Sutherland 663 2,152
1989 William (Velvel) Kahan 413 3,973
1990 Fernando J. Corbato 34 n/a
1991 Robin Milner 7,900 4
1992 Butler W. Lampson 1,643 471
1993 Juris Hartmanis 742 1,817
1993 Richard E. Stearns 380 4,434
1994 Edward Feigenbaum 363 4,684
1994 Raj Reddy 270 6,703
1995 Manuel Blum 1,704 442
1996 Amir Pnueli 5,212 19
1997 Douglas Engelbart 113 n/a
1998 James Gray 3,945 50
1999 Frederick P. Brooks, Jr. 908 1,332
2000 Andrew Chi-Chih Yao 2,019 304
2001 Ole-Johan Dahl 505 3,094
2001 Kristen Nygaard 498 3,161
2002 Ronald L. Rivest 6,930 5
2002 Adi Shamir 3,492 76
2002 Leonard M. Adleman 1,746 418

Note: Unranked winners have less citations than the 185 needed for a rank of 10,000

Table III.
Ranking of Turing

Award winners
according to the May

2003 CiteSeer list
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At the other end of the spectrum, it is plausible that breakthrough papers do
not receive the citations they deserve owing to the “citation food chain”. A
breakthrough article may initially be cited directly, but later it may be replaced
by a survey of the whole field as the favorite citation. Take the theory of
NP-completeness as an example. The original FOCS 1971 paper contributed
444 of Cook’s 1,926 total citations, earning him the respectable rank of 334 in
the May 2003 list. Karp’s follow-up paper from the next year got 571 of Karp’s
4,951 citations, which together propelled him to rank 24. But the most common
reference is the book by Garey and Johnson, which, at 3,392 citations, is the
most cited source in the CiteSeer database[2]. It also contributes a sizable
fraction of Johnson’s 12,119 citations (1st rank) and Garey’s 6,732 citations (6th
rank).

It may also happen that a breakthrough is so successful, that it ceases to be
cited because it has become common knowledge – a phenomenon called
“obliteration” by Garfield (Garfield, 1979). As an example, consider Codd’s
(1970) paper, in which he introduced relational databases. This paper now has
some 410 citations. This does not begin to reflect the fact that practically all
work on databases today is based on the relational model. Ullman’s textbooks
on database systems have 1,364 citations – also a small number relative to all
work being done on databases. In citation databases in general the top ranked
items are textbooks (Goodrum et al., 2001), and the top ranked researchers in
CiteSeer are mainly authors of textbooks.

Another problem with ranking by citations is the question of coverage and
quality of the data. The number of citations of top papers is bounded by the size
of the field: a field in which fewer papers are published necessarily produces
fewer citations. Thus, ranking papers from different fields is problematic.
Whitley has shown that well-established citation indexing services do not
completely overlap, indicating that each one misses a sizeable fraction of the
literature (Whitley, 2002). These can be called errors of omission. Another type
of obvious errors results from authors that have the same initials or even the
same names, and cannot be separated.

The CiteSeer data, being collected by automatic means, also suffers from
other types of errors. One type is parsing errors, in which authors or works are
not recognized correctly (this seems to be shared at least to some degree by the
Science Citation Index). For example, rank 6,814 in the list is occupied by
S. Engineering, with 266 citations, rank 5,340 is occupied by C. University, with
328 citations, A. Computer is ranked at 4,913 with 350 citations, C. Systems
achieved the respectable rank of 2,781 with 547 citations (nine other members
of the Systems family, with different initials, are also represented), S. Http is at
rank 2,548 with 583 (and there are 12 others of the Http family too), and
C. Intractability is at rank 1,403 with no less than 872 citations. A possible sign
that the situation is improving is the fact that the rank of A. Introduction has
been steadily declining, and he did not make it into the top 10,000 list of
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September 2002. Another problem is repetition errors, in which marginally
different pre-publication versions of the same document are found, leading to
double counting of references. Finally, being based on papers posted in
personal home pages, CiteSeer may be susceptible to cultural differences
among researchers. For example, if systems-oriented researchers in general
tend to their Web pages more than theoreticians, they will probably be found to
have more citations.

Conclusions
Using citation data for quality ranking is risky. Predictive ranking is even
riskier. At best, our model can predict how many citations authors will accrue
relative to others; it does not support or provide any interpretation of why one
author gets more or less citations. The goal of this work is not to promote the
use of citations as a means for ranking (and subsequent hiring and promotion
decisions). Citation data may at best be one of several inputs to important
decisions, and should definitely not be the decisive one. An important part of
our work aims to draw attention to the problems, complexities, and
inconsistencies encountered when using such data.

As for our proposed model for predictive ranking, it seems to be a viable first
step. Based on observations of the CiteSeer data and on the model, we can make
the following remarks:

. There is a good correlation between citations and impact or recognition,
but citations cannot be used as the decisive and conclusive metric for
performance. Some highly recognized researchers have very few
citations. Most researchers with very many citations got them by
writing widely used textbooks.

. The model enables the identification of rising stars, and a rough estimate
of how high they will rise in the list. This is based on fast and consistent
improvement of the rank. However, the accuracy of long range
predictions is questionable, especially since the dynamics near the top
of the list can be expected to be different from those in the lower half.

. Over most of the list a small change in citations can lead to a sizeable
change in ranking. This makes the predictions vulnerable to noise in the
data. Predictions based on data that shows inconsistent behavior in the
past are probably not reliable.

The model definitely has its limitations. The two chief ones are the
assumptions that citations will continue to accrue at essentially the same rate,
and that all ranks accrue citations at a common rate. Many interesting
extensions and additions are possible. In particular, it would be fruitful to
check the compatibility of this descriptive model with a detailed mechanical
model of the whole citation process, including the population of researchers, the
progress of their careers (Huber, 2002), the differences between the productivity
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of top researchers and “normal” researchers, and the accumulation of citations
to individual papers (Burrell, 2002). A first step could be comparing with
citation predictions provided by CiteSeer, or using the somewhat more detailed
model of (Geller et al., 1981). Another important extension would be to model
the whole list at once, rather than modeling individual researchers against a
backdrop of constant growth at all ranks. This will verify the appropriateness
of the multiplicative model.

An interesting observation is that the normal situation is for the rank to
worsen with time. This is owing to the growth of the population of researchers,
and to the advance of new high-ranking ones: each new star that moves up by x
steps in the ranking causes x others to move down by one step. Modeling this
may enable one to distinguish between researchers whose rank is degraded
“normally” (signifying stability rather than deterioration) from those whose
rank is degraded faster, e.g. owing to a shift in their careers. Moreover, it
suggests that ranking dynamics should show that the rank first improves until
it reaches a peak, and then declines. This implies a completely different model
than ours, in which ranks converge asymptotically.

Notes

1. NEC Research Institute CiteSeer. available at: http://citeseer.nj.nec.com/

2. It should probably be even higher: the “researcher” C. Intractability, which has 872 citations,
is most probably a mis-parsing of Computers and Intractability, the title of Garey and
Johnson’s book.
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