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Abstract The objective of this work was to test the relationship between characteristics

of an author’s network of coauthors to identify which enhance the h-index. We randomly

selected a sample of 238 authors from the Web of Science, calculated their h-index as well

as the h-index of all co-authors from their h-index articles, and calculated an adjacency

matrix where the relation between co-authors is the number of articles they published

together. Our model was highly predictive of the variability in the h-index (R2 = 0.69).

Most of the variance was explained by number of co-authors. Other significant variables

were those associated with highly productive co-authors. Contrary to our hypothesis,

network structure as measured by components was not predictive. This analysis suggests

that the highest h-index will be achieved by working with many co-authors, at least some

with high h-indexes themselves. Little improvement in h-index is to be gained by struc-

turing a co-author network to maintain separate research communities.

Keywords Egocentric network � H-index � Co-author network

C. McCarty (&)
Bureau of Economic and Business Research, University of Florida, 221 Matherly Hall,
Gainesville 32611-7145, USA
e-mail: ufchris@ufl.edu

J. W. Jawitz
Soil and Water Science Department, University of Florida, 2169 McCarty Hall,
Gainesville, FL 32611, USA
e-mail: jawitz@ufl.edu

A. Hopkins
Department of Family and Community Medicine, University of Arizona,
1450 North Cherry Avenue, Tucson 85724, USA
e-mail: hopkin28@email.arizona.edu

A. Goldman
Department of Sociology, University of Florida, 3219 Turlington Hall,
Gainesville 32611-7330, USA
e-mail: alexevasion@gmail.com

123

Scientometrics (2013) 96:467–483
DOI 10.1007/s11192-012-0933-0



Introduction

Over the course of a scientific career there are opportunities for collaboration with other

scientists, and wide variability in the extent to which individual scientists choose to col-

laborate. In this article we explore a range of collaborative behaviors and test the extent to

which those behaviors result in a measureable increase in scientific impact. Our objective

is to identify those behaviors that will maximize scientific impact.

It is well known that there are cultural differences between disciplines regarding

whether scientists collaborate with others (Becher and Trowler 2001). Some disciplines

require a team effort in order to conduct even the most basic scientific experiment.

Molecular biologists require laboratories with at minimum a senior investigator and lab

technicians, and typically employ one or more graduate students and post-doctoral fellows.

Scientific efforts such as the Hadron Collider in Switzerland cannot be undertaken without

large teams who are often listed among co-authors on published findings. A recent con-

tribution from that group had 2,926 authors (Collaboration et al. 2008). In contrast, there

are other disciplines with lesser infrastructural needs, such as theoretical physics, where

useful contributions can be made as a sole author.

There are of course other reasons to collaborate that are not driven by infrastructural

needs. First and foremost is the synergistic creativity that comes from working with others.

Although a physicist such as Albert Einstein published most of his work alone, even he

found value in combining his ideas with those of others, particularly in the later part of his

career (Einstein and Rosen 1936). There are more practical reasons for collaborating with

others. Multiple authors can effectively split the work so more articles can be published.

And as will become apparent from our research, co-authors create channels themselves for

the dissemination of one’s findings.

Although collaboration can enhance scientific output and dissemination, there are

reasons not to collaborate. Some disciplines effectively discourage collaboration by

assigning more value to sole-authored publications (Becher 2006). There may also be

interpersonal and professional issues in working with certain co-authors. Perhaps the

division of labor is not equal so that some collaborators become free-riders. Scientists may

choose collaborators who ultimately do not agree on the science, which may slow output.

In some disciplines scientists may not trust collaborators with their ideas for fear that they

will be stolen.

Choosing whether to collaborate, and if so, with how many investigators, is not the only

choice. Scientists can choose collaborators based on particular characteristics, such as their

own success as scientists or their experience in the field. They can also make choices about

who they collaborate with across different publications. By varying the set of collaborators

a scientist works with, the structural arrangement of those collaborators around the scientist

(the egocentric network) could have positive or negative effects. An examination of the

structure of the egocentric co-author network is a particular focus of this research. In this

article we will present the results of a model to test the effects of these collaborative

behaviors on scientific impact using a random selection of authors from the Web of

Science.

Scientific impact—the h-index

There are a variety of ways one could gauge scientific impact. One could think of the

lasting impacts that a scientist’s contributions have made in the world, such as the
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discovery of a polio vaccine by Jonas Salk. Some scientists make lasting contributions

without immediate practical application, but lasting theoretical impact. When thinking of

the specific behaviors a scientist can engage in, their productivity can include patents or

copyrights for discoveries, teaching and mentoring students, presentations to other scien-

tists at conferences or through consulting. But the typical metric of scientific output is

some form of analysis of their publication record.

Publication is arguably the major component in the evaluation of an academic scientist.

Evaluation for hiring, promotion and grants are heavily weighted by the publication record.

Although there is still variability in the way publications are evaluated, quantitative metrics

that provide an objective summary of a publication career are increasingly used (Alison

et al. 2010).

For this study we will represent scientific impact using the h-index, a measure of the

scientific achievement of individual authors first proposed by Jorge Hirsch (2005). Since

that time, it has received significant attention from science news editors and researchers

working in the area of bibliometrics. Major citation databases, including the Web of

Science and Scopus (Bar-Ilan 2008), now include the h-index in their citation reports.

There are many advantages to measuring scientific output using the h-index. It is the

first widely used single measure of scientific output that measures both productivity and

impact (Hirsch 2005; Roediger 2006). The numbers needed to calculate an author’s

h-index are easy to acquire and the calculation is easy to perform (Bornmann and Daniel

2007; Hirsch 2005; Roediger 2006). The measure is not inflated by a small number of

highly cited papers or a large number of papers with low citation rates (Cronin and Meho

2006; Hirsch 2005), nor does it give extra weight to certain types of published documents

(Hirsch 2005). Also, the index does not include arbitrary values which randomly favor or

disfavor individuals (Hirsch 2005). Finally, there is low distortion of individual output in

co-authored papers compared with the total citation count method, another popular mea-

sure of scientific impact (Hirsch 2007).

Several tests have been performed which support the validity of the h-index. Studies

from physics, information and consumer sciences, and mathematics report a positive

association between h-index and other standard bibliometric measures (Cronin and Meho

2006; Glanzel 2006; Hirsch 2007; Saad 2006). Comparisons of h-index to citation counts

and number of papers published in the biological sciences show similar positive results for

the validity of h-index (Costas and Bordons 2007; Hirsch 2005; Kelly and Jennions 2006).

The h-index compares well to peer-review judgment in chemistry, chemical engineering,

and biomedicine (Bornmann and Daniel 2005; Van Raan 2006). In addition, it is resilient

to missing and erroneous publication data based on examples from environmental science

and management, a Zipf distribution, h-indices of Price medalists, and an analytical model

(Rousseau 2007; Vanclay 2007).

However, there are several caveats that are important to consider in the use and

interpretation of the h-index. Hirsch (2005) recognized that the h-index, like every other

single measure of scientific output, is unable to measure all aspects of scientific impact and

should be used in conjunction with other forms of assessment. The h-index is typically

considered discipline dependent (Bornmann, Mutz, and Daniel 2008) and is affected by the

average number of references in a paper, average number of papers produced, the number

of scientists, and the attractiveness of the topic within each field (Bornmann and Daniel

2007). This metric thus tends to favor disciplines in which findings are produced within the

context of larger groups and through experimental rather than theoretical research. Equal

value is assigned to each author in multiple-author papers, regardless of author sequence or

the total number of authors. Books and other alternative forms of publication typically are
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not included in h-index calculations. Thus, co-authorship may lead to inflation of h-indices

because every author on a paper receives the same amount of credit for it, independent of

the actual amount of effort they contributed to producing the work (Roediger 2006). Also,

the index is dependent on the number of years a scientist has been publishing scientific

papers and may lack sensitivity to performance changes throughout scientists’ careers

(Rousseau 2008; Sidiropoulos, Katsaros and Manolopoulos 2007). Self-citation can also

inflate h-indices (Hirsch 2005; Schreiber 2007; Zhivotovsky and Krutovsky 2008). It must

also be noted that lag time between a paper being published and being discovered and cited

often varies substantially (Roediger 2006). Efforts to resolve some of these issues have led

to the development of several h index variants (Batista et al. 2006; Iglesias and

Pecharromán 2007; Imperial and Rodrı́guez-Navarro 2007; Radicchi, Fortunato and

Castellano 2008; Banks 2006; Egghe 2007; Liang 2006; Burrell 2007; Schreiber 2007;

Anderson, Hankin and Killworth 2008).

Hirsch (2010) presented a variant called h-bar that penalizes authors who publish with

established and productive co-authors. H-bar does not count papers where a co-author has

an h-index at or above the number of citations for the paper. This would have the effect of

lowering the h-index for those at the beginning of their careers who publish with their

advisors or those who continue to publish with established authors. Schubert, Korn and

Telcs (2009) developed a network measure called the degree h-index, where the h for a

journal is the number of authors (or papers) in the network with a degree of at least h.

Schubert (2012) took a different approach by discounting the behavior of publishing

repeatedly with the same set of co-authors. His partnership ability index (u) would reward

repeated collaborations with many different coauthors. These variants all incorporate

network characteristics of collaborations. As will become clear from our approach, we

included network variables that capture these characteristics directly.

Co-authorship and its influence on scientific productivity

One potential benefit of co-authorship is increased scientific productivity, as measured by

publication and citation rate (Beaver and Rosen 1979; Melin 2000). Numerous studies have

reported a strong positive relationship between co-authorship and scientific productivity

(Adams et al. 2005; Börner et al. 2005; Katz and Martin 1997). Studies of Nobel laureates

in science (Zuckerman 1967), musicologists (Pao 1982), and scientists from a wide range

of disciplines (Persson, Glanzel and Danell 2004) have found a positive association

between co-authorship and the number of papers published. Many studies have also found

that collaboration between authors from diverse geographical locations (Frenken, Holzl

and de Vor 2005; Goldfinch, Dale, and DeRousen 2003; He et al. 2009; Katz and Hicks

1997; Narin et al. 1991; Nemeth and Goncalo 2005), employing institutions (Frenken,

Holzl and de Vor 2005; Goldfinch, Dale, and DeRousen 2003; Jones, Wuchty, and Uzzi

2008; Katz and Hicks 1997), and disciplines (Leimu and Koricheva 2005) with multi-

disciplinary backgrounds (Skilton 2009) are positively associated with scientific produc-

tivity. The benefits of diversity in scientific co-authorship stem from the sharing of

different approaches and can also generate an increased readership by tapping into multiple

professional social networks (Goldfinch, Dale, and DeRousen 2003; Jones, Wuchty, and

Uzzi 2008; Leimu and Koricheva 2005).

Social network studies have furthered our understanding of the relationship between co-

authorship and productivity. Studies assessing the relationship between productivity and

the position of authors in the co-author network have found that authors who publish with
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many different co-authors bridge communication and tend to exhibit higher rates of

publication (Börner et al. 2005; Eaton et al. 1999; Kretschmer 2004). Another group of

researchers have focused on how productivity is affected by individual and organizational

social capital, finding that while individual social capital provides scientists with access to

careers in prestigious institutions, establishment in these institutions allows researchers to

integrate into existing networks with other top tier institutions, fostering collaborations that

lead to greater quantity and quality of publications (Lazega et al. 2008; Lazega et al. 2006;

Rodgers and Maranto 1989). In addition, individuals who are higher up the hierarchy in

a research institution spend more time defining goals than executing them and have

increased access to human and monetary resources (Knorr and Mittermeir 1980).

These factors increase researchers’ ease in producing publications and help explain the

positive association between position and productivity.

Some collaborations do not lead to increased productivity. The timing in a funding cycle

(Defazio Lockett, and Wright 2009), and the social distance of the collaboration (Frenken,

Holzl and de Vor 2005, Goldfinch, Dale, and DeRousen 2003) can affect whether there is

an association between co-authorship and productivity. Several researchers have found that

when individual characteristics and work environment variables were controlled for, there

was no association between scientific productivity and number of collaborators (Lee and

Bozeman 2005; Walters 2006). Glanzel (2002) found that there was an optimal level of

co-authors that varied by field and once that level was exceeded, productivity declined. The

variation in findings within these different studies shows that the relationship between

co-authorship and productivity is still not fully understood (Persson, Glanzel and Danell

2004).

Ego-centered co-author networks

There are two main approaches to social network analysis, based on either whole or

egocentric networks (Wasserman and Faust 1994). Whole network analysis focuses on the

interaction between actors within a geographically or socially bounded space. Egocentric

network analysis focuses on the social context of a sample of actors and how those

characteristics predict something about them. Personal network analysis, a type of ego-

centric network, focuses on the social context across social spaces. The majority of

co-authorship network studies are whole network studies assessing the relationship

between productivity and social position within a discipline or journal (Newman 2004;

Moody 2004; Hou, Kretschmer, and Liu 2008). The few ego-centered network studies have

mostly focused on citation patterns of specific successful authors (Bar-Ilan 2008; Batagelj

and Mrvar 2000; de Castro and Grossman 1999; Moravcsik 1988; Swarna, Kalyane and

Kumar 2008; White 2000, 2001), attempting to understand what collaborative behaviors

they have engaged in that led to their success.

On occasion, whole fields of study are described using ego-centered bibliometric

analyses. Mulchenko et al. (1979) gathered bibliometric data for ten leading chemists and

eight renowned physicists. They used this information to characterize the organizational

forms of research in the different fields. White and McCain (1998) used author co-citation

analysis to describe the domain of information science. Yoshikane and Kageura’s (2004)

study focused on the development of personal networks in electrical engineering, infor-

mation processing, polymer science, and biochemistry.

Previous ego-centered bibliometric studies tend to be descriptive with little emphasis on

the relationship between co-author and citation patterns on scientific impact. One notable
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exception is Moravcsik’s (1988) classification of the published works that cited his

‘‘citation classic’’ publication and the impact it had on the citer’s research. Börner et al.

(2005)(66), suggested that,

‘‘A closer mathematical and empirical examination of the correlation among the four

centrality and impact measures of authors and their relation to prior work in bib-

liometrics (e.g. ego-centered bibliometrics) (Crane 1972; White 2001) is expected to

lead to new insights into the co-authorship dynamics.’’

A recent study by Abbasi et al. (2011) evaluated the network properties of the ego

networks of 8,069 authors from 4,837 publications. In addition to network measures such

as degree and betweenness centrality they included Burt’s structural holes measures of

efficiency and constraint. They found a positive association between ego-network structure

and both the h-index and the g-index. An important finding was that authors who bridged

structural holes by connecting to diverse groups performed better.

Our study was designed to combine bibliometric measures with ego-centered social

network measures to assess individual scientific impact as measured by the h-index. An

example of this is shown in Fig. 1, which visualizes the network of all co-authors of

articles published by the focal author as of 2006 (the year selected as the sample frame

for this study). Each node in the graph represents a co-author, with size scaled by the co-

author’s h-index, and color based on the author’s institutional affiliation: red for aca-

demic settings and blue for others. This graph shows that co-author (node) 15 is a highly

prolific author who also works with many of the other co-authors in this egocentric

network.

Our objective with this study was to randomly select a sample of authors from the Web

of Science and collect the data to create the egocentric network for each. It is worth noting

again that this egocentric network is not bound by disciplines. For example in Fig. 1 the

focal author works with co-authors who cross traditional disciplinary boundaries. By

understanding how the composition and structure of these egocentric networks do or do not

Fig. 1 Example of an author’s egocentric network
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explain the variability in the h-index of the focal author, we will learn which collaborative

behaviors enhance scientific impact.

Methods

We chose 2006 as our sample frame and downloaded citation data from approximately 3.4

million individual publications from the Web of Science into a SAS database. After parsing

the author string into individual authors and concatenating the author with their institu-

tional affiliation we de-duplicated the data, leaving approximately 1 million author-affil-

iation strings. Like all studies of this kind we faced problems of disambiguation. This

means that authors often have the same last name and first initial, and therefore appear in

the Web of Science as the same person. For some names the effect of this can be severe.

Increasingly researchers turn to advanced algorithms to sort this out (Onodera et al. 2011;

Tang and Walsh 2010). In our case we devised guidelines based on affiliation, topic and

publication record and trained a team of undergraduate and graduate students to disam-

biguate authors. Since initials, hyphens, and apostrophes all pose problems when

attempting to compile a list of all the articles by a unique author indexed in the Web of

Science, different versions of their names were used as search criteria. Disciplinary

backgrounds of the focal authors and coauthors were also cross-referenced to ensure

consistency. Author affiliations were verified by matching email addresses to the institu-

tional affiliation data stored for recent articles or by conducting thorough internet searches.

For large h-index values these were double-checked by a second reviewer and discrep-

ancies resolved. Although this was an expensive approach, we believe it is at least as

accurate if not more so than the automated solutions available today. H-indexes were then

calculated for 594 authors randomly selected from that list.

The distribution of the h-index values is shown in Fig. 2. To our knowledge this is the

only existing distribution of h-indexes across the Web of Science. The lowest h-index we

recorded was 0 for 28 authors. Although these authors had published, none of their papers

had ever been cited and therefore had no scientific impact as measured by the h-index. The

highest h-index we recorded was 86.

Fig. 2 Distribution of h-index in a random sample of 594 authors from the Web of Science

Scientometrics (2013) 96:467–483 473

123



The h-index distribution in Fig. 2 is skewed to the right with a mean of 11.7 (sd 12.5).

As one would expect, higher h-indexes become increasingly rare, although this distribution

is somewhat uneven. This unevenness may reflect differences between disciplines where

there are varying standards in team size. Another unexpected result is that the mode is not

0. Although we expected the typical case to be that authors publish but are not cited, the

modal value was tied between 1 and 2. This may reflect the tendency for authors to cite

their own previous work in at least one subsequent publication.

Next we turned to the task of creating the egocentric networks for the authors. Our

objective was to map the co-authored publications between every pair of co-authors. One

of the network variables that we hypothesized might affect a focal author’s h-index was the

scientific stature of the co-authors, as measured by the h-index. Thus it was necessary to

determine the h-index not only for the 594 focal authors (network egos), but also for all of

their co-authors (network alters). A pilot with a few of the authors made it clear that it

would be cost-prohibitive to do this with all 594 egos. We decided to sample 250 egos

from the list of 594 for the remaining analyses.

An important simplification we implemented was that for all focal authors we only

considered the co-authors in articles that contributed to their h-index. Eleven authors had

an h-Index of 0 and were dropped from the remainder of the analysis. Four authors were

found to have a co-author network of greater than 340 (one had almost 4,000). For those

four we selected a random sample of 50 of their co-authors to be used in our analysis.

Further Web of Science searches were then used to determine how many times each focal

author’s coauthors had published with each other in order to build a relational matrix for

each author. The mean number of alters was 38.8. In each matrix the cell intersecting two

co-authors was populated with the number of articles they had published together. Each

matrix was symmetric (undirected). We also created an attribute matrix for each co-author

consisting of the variables described in the next section. These data were individually

loaded into Borgatti, Everett and Freeman (2002) for network analysis.

Variables

With the goal of explaining the h-index as the dependent variable, we selected a set of

independent variables that represented types of collaborative behavior we wanted to test

(Table 1). Network size (Netsize), reflects the total number of authors published with,

while average authors per article (AvgAuthors) reflects the size of the teams the author

typically worked with. We hypothesize that the h-index will increase as network size and

average authors per paper increase.

We used several variables in an attempt to capture the structural properties of the co-

author networks. Figure 3 shows four examples of structural variability as it relates to the

h-index. Both low-h examples show cohesiveness compared to the high-h examples which

show sub-grouping. One way of measuring sub-groupings is with components, which are

sets of nodes that are tied, either directly or indirectly. If two groups of co-authors are in

separate components it means they never publish together and are only linked through the

focal author. This would not likely arise from work conducted in one lab as there would

tend to be overlap between authors moving through the lab. It would instead reflect a

conscious effort on the part of the focal author to work with separate research commu-

nities. We hypothesized that the h-index will increase with the number of components of

size three or more; that is ego maintains separate communities of co-authors. Components

of size one are called isolates. We analyzed this as a different variable because the behavior
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of working with multiple single disconnected authors is in many ways more flexible than

working with groups, but may be more resource intensive. By working with many different

isolated co-authors the focal author may maximize their exposure to different research

areas. We hypothesize that as isolates increase the h-index will increase.

Node betweenness is a widely used network metric that measures the extent to which

the network exhibits brokering. The betweenness centrality of a given node is the number

of shortest paths it lies on after calculating the shortest path between every pair of nodes.

Nodes high in betweenness are in the position to broker information and ideas. A network

with high mean normalized betweenness would have different groups (like components)

without the condition that they are completely disconnected. In other words, a focal author

might choose to collaborate with a set of authors within a research community who are

loosely connected. We hypothesize that as betweenness increases the h-index will increase.

Hierarchy is an egocentric network measure developed by Burt (1992). Unlike com-

ponents, isolates and betweenness where the focal author (ego) is removed from the graph,

with hierarchy they are included. High levels of hierarchy indicate that the network tends

to be dominated structurally by one or a few nodes who are not the focal author. This

would occur if, for example, an author worked with a prolific co-author who tended to

work with all of the focal author’s co-authors. We consider hierarchy a measure of what we

call the Godfather Effect; that is working with a highly productive and cited co-author. We

hypothesize that as hierarchy increases, the h-index will increase as the focal author is

associated with highly cited articles.

Table 1 Description of explanatory variables reflecting an author’s collaborative behavior

Variable name Description Behavior—Publish with… Transformation

Number of co-authors

Netsize Number of authors across all
h-index articles

Many different authors Logarithmic

AvgAuthors Average authors per article Large team Logarithmic
(Var?1)

Structure of collaborations

Components Number of components with ego
removed

Disconnected groups None

Isolates Number of isolates with ego
removed

Disconnected co-authors Removed outlier
with 37 isolates

Betweenness Normalized mean betweenness Different connected groups Logarithmic

Hierarchy Extent to which co-authors are
brokered by single co-author

A highly brokering co-author None

MeanTie Average number of articles
published between co-authors

Co-authors who are prolific Logarithmic

Characteristics of co-authors

Academic Proportion co-authors in academic
setting

Academics None

MeanAlterH Average h-index of co-authors High h-index co-authors None

MaxAlterH Maximum h-index among co-
authors

One high h-index co-author Logarithmic

HofMostEVC H-index of most eigenvector
central co-author

One high h-index co-author
who is highly connected

Logarithmic
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Mean tie strength is a measure of interaction between co-authors. We hypothesize that

as mean tie strength increases the h-index will increase, reflecting more publication.

One of our research objectives was to test the extent to which publishing with non-

academics would affect the transmission of knowledge and scientific impact. We

hypothesize that extending collaboration to the non-academic sector could lead to more

impact in a variety of ways. Non-academics often have access to practical data and cir-

cumstances to test findings that academics cannot replicate in a lab or through grant

funding. Non-academics also may synthesize information that circulates in the academic

community with applied experiences to create new types of knowledge. Those in the

academic sector may provide new funding sources and potentially lead to new avenues for

data dissemination. Therefore we hypothesized that higher proportions of non-academics

in the co-author network would lead to a higher h-index. Non-academics are operation-

alized as those with a non-academic affiliation; that is not at a university or college.

The mean alter h-index is an overall measure of the productivity and impact of the focal

author’s publication context. The maximum h-index of the focal author’s co-authors is an

alternative measure of the Godfather Effect, and perhaps a more direct measure. We

hypothesized that both would be positively related to the h-index of the focal author.

The last variable in Table 1 is the h-index of the most eigenvector central co-author

(HofMostEVC). Eigenvector centrality is a measure of the social position of a node that

uses the valued data; that is the number of articles two authors share, rather than the

presence or absence of a relationship. Eigenvector centrality measures how connected a

node is to other nodes that are connected. It is focused more on position within the entire

network structure rather than the local network structure. The h-index of the most

eigenvector central co-author is thus a third measure of the Godfather Effect. It is the only

variable that combines the structural property of a co-author with an attribute. We

hypothesize that larger values of this variable will be associated with higher h-indexes for

the focal author.

Fig. 3 Examples of structural configurations across low and high H and co-authors
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Although the network data were symmetric (the tie between authors is simply the

number of articles on which they collaborated), they were not dichotomous (the ties

between authors were valued data, not binary). Many of the network measures we used

(betweenness, components, isolates and hierarchy) are graph-based and require transfor-

mation to binary data before calculation (Wasserman and Faust 1994). This raises ques-

tions as to the appropriate level to define whether a tie exists. We experimented with

different strategies, but ultimately decided to use a cutoff of two articles, as the mean

number of articles co-authors had published together was 2.18. Glanzel (2012) suggests an

alternative approach to defining the cut-off for an edge based on the h-index of the entire

graph. This approach is particularly useful for identifying core nodes in a whole network,

such as a set of authors or papers within a discipline. In this study we were comparing

egocentric networks, which would have resulted in different h-indexes for each graph, and

thus a different cutoff for each graph. We decided to use the same cutoff to improve

comparability.

Table 1 also shows the data transformations that were made to each variable to correct

for non-normal distributions. Most required either no transformation or a log transfor-

mation. Average authors per article had a log transformation of the variable plus 1 as we

could not calculate the log of 0. The variable isolates presented a very special case. The

variable was normally distributed with the exception of one very large outlier. This rep-

resented a transplant specialist who had published with many single authors. This is a

common circumstance with bio-statisticians who provide assistance with analysis as a co-

author and are therefore on many unrelated articles. In this case we decided to remove the

isolate.

Table 2 shows the correlation matrix between the eleven independent variables. There

are three correlations that appear particularly high, introducing the possibility of multi-

collinearity. These are network size with the maximum alter h-index, maximum alter

h-index with mean alter h-index and mean alter h-index with the h-index of the most

eigenvector central alter. In the following models we decided to remove the maximum alter

h-index and the h-index of the most eigenvector central alters, leaving nine variables in the

model.

Results

The results of our regression models are presented in Table 3. The first column shows

bivariate models for each of the nine variables with the focal author’s h-index. The

important role network size will play in our model is very clear. The second column shows

a multivariate model using only the variables that were significant at p B 0.05 in the

bivariate models. Of these five, only four were significant when included in the model

together. Components, one of our key structural variables, was not significant in the

multivariate model.

The final model is depicted in the third column of Table 3. The overall R2 for the model

was 0.69. Fifty-nine percent of this variance is explained by network size alone. Of the

remaining three variables only hierarchy reflects a structural property of the network.

Recall that this is the extent to which the author publishes with a co-author who tends to

publish with the other authors. We think of this variable as representing the Godfather

Effect, rather than a structural collaborative behavior such as components or betweenness

that would reflect collaborations across groups.
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Discussion

Our objective with this article was to understand which collaborative behaviors contributed

most to the scientific impact of a focal author across all disciplines represented in the Web

of Science. We were particularly interested in the egocentric network properties of co-

author networks, specifically whether actively seeking groups of loosely connected

(betweenness) or disconnected co-authors (components and isolates) improved impact.

While we hypothesized that maintaining separate communities would enhance h-index,

that was not borne out by the data. We expected the total number of co-authors (network

size) to be a contributing variable, and it was. Yet we were surprised by the magnitude of

this effect. Simply put network size matters. We believe this finding has far-reaching

implications.

Many disciplines, particularly in the social sciences, value sole authorship. Indeed,

some academic departments expect one or more sole-authored publications for consider-

ation for tenure and promotion. This is not the case in other disciplines. Despite the high

value placed on sole-authorship as a measure of scientific independence, this will more

often than not result in lower scientific impact, at least as measured by the h-index. As

stated earlier in this article, the tendency for those who publish to cite their own work will

favor the impact of someone who publishes with many people. While one can debate

whether wide citations are a measure of scientific impact, it is hard to argue that widely

cited work does not have a higher probability of future citations. Sole-authored publica-

tions must rely more on other channels to spread impact, such as notoriety through word-

of-mouth, conference presentations, teaching and consulting or other applied efforts.

In addition to network size, hierarchy and mean alter h-index were also significant.

These are variables representing the publication patterns of the co-authors. The positive

correlation with hierarchy suggests there are citation rewards for working with a Godfather

or Godmother who publishes with many of the other co-authors. This may represent the

circumstance where a successful principal investigator has a large and well-funded labo-

ratory working on a program of research where faculty, postdocs, and graduate students

tend to cite each other. The positive coefficient with mean alter h-index suggests that focal

authors benefit from publishing with co-authors who have high impact.

Table 3 Results of regression models

Bivariate models Multivariate model Final model

Coefficient Prob [ |t| R-

square

Coefficient Prob [ |t| Coefficient Prob [ |t| Partial

R-square

Netsize 0.73 0.001 0.60 0.51 0.0001 0.51 0.0001 0.59

AvgAuthors 0.03 0.7526 0 – –

Components 0.32 0.0001 0.09 0.07 0.0784 – –

Isolates 0.08 0.2992 0 – –

Betweenness 0.15 0.1360 0 – –

Hierarchy 2.93 0.0001 0.24 1.53 0.0001 1.55 0.0001 0.07

Meantie -0.54 0.0001 0.19 -0.21 0.0001 -0.23 0.0001 0.02

Academic 0.32 0.2991 0 – –

Meanalterh 0.08 0.0001 0.21 0.024 0.0019 0.02 0.001 0.01
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The negative but significant association between the mean number of articles co-authors

share is very likely related to network size. The larger the network, the more likely it is that

ties between any pair of co-authors would be null, thus bringing down the average. It is

worth noting that mean number of articles and network size were negatively correlated in

Table 2, but not to such an extent that it warranted exclusion from the model.

Conclusion

Based on these results the best advice for increasing scientific impact is to publish with as

many co-authors as possible with a preference towards co-authors who are already highly

cited. Given the relationship with hierarchy, those in fields such as biochemistry with large

labs will be rewarded by publishing with their principal investigator. It is difficult to

imagine how that behavior can be systematically replicated in some social science disci-

plines where authors do not tend to work in teams.

Limitations

This study has several limitations. As has already been mentioned, the h-index does not

consider some forms of publishing that may lead to impact. The h-index is typically

calculated from articles indexed in a database such as the Web of Science. Like many such

databases the Web of Science does not index all journals, particularly those that do not rely

on peer-review. The Web of Science also excludes books and book chapters which are a

key channel of output for some disciplines. The h-index may therefore vary based on the

source for the citation data (Bar-Ilan 2008).

Our study compared h-indexes across disciplines. Hirsch pointed out that comparison of

h-indexes across disciplines may not be valid as they differ in terms of the types of

publications they value and expectations for number and length of articles. In this study we

were looking for regularities across disciplines. We believe that the overwhelming effect of

network size would exist in any discipline, regardless of other cultural factors. The sample

size for this study was relatively small for the network variables. Perhaps advances in

creating algorithms to disambiguate will be able to calculate these network variables with

little expense and more accurately. For this study the size was constrained by the cost of

collecting the network data. Despite the small sample size we found some clear effects.

These effects were found using variables that were highly skewed and required

transformation.
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