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a b s t r a c t

In the analysis of bibliometric networks, researchers often use mapping and clustering
techniques in a combined fashion. Typically, however, mapping and clustering techniques
that are used together rely on very different ideas and assumptions. We propose a uni-
fied approach to mapping and clustering of bibliometric networks. We show that the VOS
mapping technique and a weighted and parameterized variant of modularity-based clus-
tering can both be derived from the same underlying principle. We illustrate our proposed
approach by producing a combined mapping and clustering of the most frequently cited
publications that appeared in the field of information science in the period 1999–2008.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In bibliometric and scientometric research, a lot of attention is paid to the analysis of networks of, for example, documents,
keywords, authors, or journals. Mapping and clustering techniques are frequently used to study such networks. The aim of
these techniques is to provide insight into the structure of a network. The techniques are used to address questions such as:

• What are the main topics or the main research fields within a certain scientific domain?
• How do these topics or these fields relate to each other?
• How has a certain scientific domain developed over time?

To satisfactorily answer such questions, mapping and clustering techniques are often used in a combined fashion. Various
different approaches are possible. One approach is to construct a map in which the individual nodes in a network are shown
and to display a clustering of the nodes on top of the map, for example by marking off areas in the map that correspond with
clusters (e.g., McCain, 1990; White & Griffith, 1981) or by coloring nodes based on the cluster to which they belong (e.g.,
Leydesdorff & Rafols, 2009; Van Eck, Waltman, Dekker, & Van den Berg, in press). Another approach is to first cluster the
nodes in a network and to then construct a map in which clusters of nodes are shown. This approach is for example taken in
the work of Small et al. (e.g., Small, Sweeney, & Greenlee, 1985) and in earlier work of our own institute (e.g., Noyons, Moed,
& Van Raan, 1999). A third approach is to first construct a map in which the individual nodes in a network are shown and
to then cluster the nodes based on their coordinates in the map (e.g., Boyack, Klavans, & Börner, 2005; Klavans & Boyack,
2006).

In the bibliometric and scientometric literature, the most commonly used combination of a mapping and a clustering
technique is the combination of multidimensional scaling and hierarchical clustering (for early examples, see McCain, 1990;
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Peters & Van Raan, 1993; Small et al., 1985; White & Griffith, 1981). However, various alternatives to multidimensional scaling
and hierarchical clustering have been introduced in the literature, especially in more recent work, and these alternatives are
also often used in a combined fashion. A popular alternative to multidimensional scaling is the mapping technique of Kamada
and Kawai (1989); (see e.g. Leydesdorff & Rafols, 2009; Noyons & Calero-Medina, 2009), which is sometimes used together
with the pathfinder network technique (Schvaneveldt, Dearholt, & Durso, 1988; see e.g. Chen, 1999; de Moya-Anegón et al.,
2007; White, 2003). Two other alternatives to multidimensional scaling are the VxOrd mapping technique (e.g., Boyack et
al., 2005; Klavans & Boyack, 2006) and our own VOS mapping technique (e.g., Van Eck et al., in press). Factor analysis, which
has been used in a large number of studies (e.g., de Moya-Anegón et al., 2007; Leydesdorff & Rafols, 2009; Zhao & Strotmann,
2008), may be seen as a kind of clustering technique and, consequently, as an alternative to hierarchical clustering. Another
alternative to hierarchical clustering is clustering based on the modularity function of Newman and Girvan (2004); (see e.g.
Wallace, Gingras, & Duhon, 2009; Zhang, Liu, Janssens, Liang, & Glänzel, 2010).

As we have discussed, mapping and clustering techniques have a similar objective, namely to provide insight into the
structure of a network, and the two types of techniques are often used together in bibliometric and scientometric analyses.
However, despite their close relatedness, mapping and clustering techniques have typically been developed separately from
each other. This has resulted in techniques that have little in common. That is, mapping and clustering techniques are
based on different ideas and rely on different assumptions. In our view, when a mapping and a clustering technique are
used together in the same analysis, it is generally desirable that the techniques are based on similar principles as much as
possible. This enhances the transparency of the analysis and helps to avoid unnecessary technical complexity. Moreover,
by using techniques that rely on similar principles, inconsistencies between the results produced by the techniques can be
avoided. In this paper, we propose a unified approach to mapping and clustering of bibliometric networks. We show how
a mapping and a clustering technique can both be derived from the same underlying principle. In doing so, we establish a
relation between on the one hand the VOS mapping technique (Van Eck & Waltman, 2007; Van Eck et al., in press) and on the
other hand clustering based on a weighted and parameterized variant of the well-known modularity function of Newman
and Girvan (2004).

The paper is organized as follows. We first present our proposal for a unified approach to mapping and clustering. We
then discuss how the proposed approach is related to earlier work published in the physics literature. Next, we illustrate an
application of the proposed approach by producing a combined mapping and clustering of frequently cited publications in
the field of information science. Finally, we summarize the conclusions of our research. Some technical issues are elaborated
in appendices.

2. Mapping and clustering: a unified approach

Consider a network of n nodes. Suppose we want to create a mapping or a clustering of these nodes. cij denotes the number
of links (e.g., co-occurrence links, co-citation links, or bibliographic coupling links) between nodes i and j (cij = cji ≥ 0). sij
denotes the association strength of nodes i and j (Van Eck & Waltman, 2009) and is given by

sij = 2mcij

cicj
, (1)

where ci denotes the total number of links of node i and m denotes the total number of links in the network, that is,

ci =
∑
j /= i

cij and m = 1
2

∑
i

ci. (2)

In the case of mapping, we need to find for each node i a vector xi ∈ Rp that indicates the location of node i in a p-dimensional
map (usually p = 2). In the case of clustering, we need to find for each node i a positive integer xi that indicates the cluster to
which node i belongs. Our unified approach to mapping and clustering is based on minimizing

V(x1, . . . , xn) =
∑
i<j

sijd
2
ij −

∑
i<j

dij (3)

with respect to x1, . . ., xn. dij denotes the distance between nodes i and j and is given by

dij = ||xi − xj|| =

√√√√ p∑
k=1

(xik − xjk)2 (4)

in the case of mapping and by

dij =
{

0 if xi = xj

1/� if xi /= xj
(5)

in the case of clustering. We refer to the parameter � in (5) as the resolution parameter (� > 0). The larger the value of this
parameter, the larger the number of clusters that we obtain. Eq. (3) can be interpreted in terms of attractive and repulsive
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forces between nodes. The first term in (3) represents an attractive force, and the second term represents a repulsive force.
The higher the association strength of two nodes, the stronger the attractive force between the nodes. Since the strength of
the repulsive force between two nodes does not depend on the association strength of the nodes, the overall effect of the
two forces is that nodes with a high association strength are pulled towards each other while nodes with a low association
strength are pushed away from each other.

In the case of mapping, it has been shown that the above approach is equivalent to the VOS mapping technique (Van Eck
& Waltman, 2007; Van Eck et al., in press), which is in turn closely related to the well-known technique of multidimensional
scaling.

In the case of clustering, it can be shown (see Appendix A) that minimizing (3) is equivalent to maximizing

V̂(x1, . . . , xn) = 1
2m

∑
i<j

ı(xi, xj)wij

(
cij − �

cicj

2m

)
, (6)

where ı(xi, xj) equals 1 if xi = xj and 0 otherwise and where the weights wij are given by

wij = 2m

cicj
. (7)

Interestingly, if the resolution parameter � and the weights wij are set equal to 1 in (6), then (6) reduces to the so-called
modularity function introduced by Newman and Girvan (2004); (see also Newman, 2004b). Clustering (also referred to as
community detection) based on this modularity function (Newman, 2004a) is very popular among physicists and network
scientists (for an extensive overview of the literature, see Fortunato, 2010). In bibliometric and scientometric research,
modularity-based clustering has been used in a number of recent studies (Chen & Redner, 2010; Lambiotte & Panzarasa,
2009; Schubert & Soós, 2010; Takeda & Kajikawa, 2009; Wallace et al., 2009; Zhang et al., 2010). It follows from (6) and
(7) that our proposed clustering technique can be seen as a kind of weighted variant of modularity-based clustering (see
Appendix B for a further discussion). However, unlike modularity-based clustering, our clustering technique has a resolution
parameter � . This parameter helps to deal with the resolution limit problem (Fortunato & Barthélemy, 2007) of modularity-
based clustering. Due to this problem, modularity-based clustering may fail to identify small clusters. Using our clustering
technique, small clusters can always be identified by choosing a sufficiently large value for the resolution parameter � .

3. Related work

Our unified approach to mapping and clustering is related to earlier work published in the physics literature. Here we
summarize the most closely related work.

The above result showing how mapping and clustering can be performed in a unified and consistent way resembles
to some extent a result derived by Noack (2009). Noack defined a parameterized objective function for a class of mapping
techniques (referred to as force-directed layout techniques by Noack). This class of mapping techniques includes for example
the well-known technique of Fruchterman and Reingold (1991). Noack showed that his parameterized objective function
subsumes the modularity function of Newman and Girvan (2004). In this way, Noack established a relation between on the
one hand a class of mapping techniques and on the other hand modularity-based clustering. Our result differs from the
result of Noack in three ways. First, the result of Noack does not directly relate well-known mapping techniques such as the
one of Fruchterman and Reingold to modularity-based clustering. Instead, Noack’s result shows that the objective functions
of some well-known mapping techniques and the modularity function of Newman and Girvan are special cases of the same
parameterized function. Our result establishes a direct relation between a mapping technique that has been used in various
applications, namely the VOS mapping technique, and a clustering technique. Second, the mapping and clustering techniques
considered by Noack and the ones that we consider differ from each other by a weighing factor. This is the weighing factor
given by (7). Third, the clustering technique considered by Noack is unparameterized, while our clustering technique has a
resolution parameter � .

A parameterized variant of the modularity function of Newman and Girvan (2004) was introduced by Reichardt and
Bornholdt (2006) (see also Heimo, Kumpula, Kaski, & Saramäki, 2008; Kumpula, Saramäki, Kaski, & Kertész, 2007). Clustering
based on this generalized modularity function is closely related to our proposed clustering technique. In fact, setting the
weights wij equal to 1 in (6) essentially yields the function of Reichardt and Bornholdt.

4. Illustration of the proposed approach

We now illustrate an application of our unified approach to mapping and clustering. In Fig. 1, we show a combined
mapping and clustering of the 1242 most frequently cited publications that appeared in the field of information science in
the period 1999–2008.1 The mapping and the clustering were produced using our unified approach. This was done as follows.

1 For other bibliometric studies of the field of information science at the level of individual publications, we refer to Åström (2007) and Chen, Ibekwe-
SanJuan, and Hou (2010).
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Fig. 1. Combined mapping and clustering of the 1242 most frequently cited publications that appeared in the field of information science in the period
1999–2008. Publications are labeled with the name of the first author. Colors are used to indicate clusters. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of the article.)

Table 1
Summary of the contents of the eight informetrics clusters. The four authors with the largest number of publications in a cluster are listed as important
authors in the second column. The color used to indicate a cluster in Fig. 1 is shown in the fourth column.

No. of pub. Important authors Main topics Color

123 Rousseau, R.; Glänzel, W.; Moed, H.F.; Van Raan, A.F.J. Citation analysis; research evaluation; general scientometric topics

101 Thelwall, M.; Vaughan, L.; Bar-Ilan, J.; Wilkinson, D. Webometrics

73 Leydesdorff, L.; Chen, C.M.; White, H.D.; Small, H. Mapping and visualization of science

53 Egghe, L.; Burrell, Q.L.; Daniel, H.D.; Glänzel, W. h-index; citation distributions; Google Scholar

48 Glänzel, W.; Cronin, B.; Bozeman, B.; Shaw, D. Scientific collaboration; co-authorship

46 Meyer, M.; Leydesdorff, L.; Tijssen, R.J.W.; Zimmermann, E. Science and technology studies; patent analysis

26 Nisonger, T.E.; Cronin, B.; Shaw, D.; Wilson, C.S. Studies of the library and information science field

14 Newman, M.E.J.; Barabasi, A.L.; Albert, R.; Jeong, H. Complex networks; scientific collaboration networks

We first collected an initial set of publications. This set consisted of all Web of Science publications of the document types
article and review published in 37 information science journals in the period 1999–2008 (for the list of journals, see Van Eck
et al., in press, Table 1). Publications without references were not included. We then extended the initial set of publications
with all Web of Science publications in the period 1999–2008 cited by or referring to at least five publications in the initial
set of publications. In this way, we ended up with a set of 9948 publications. For each publication in this set, we counted
the number of citations from other publications in the set. We selected the 1242 publications with at least eight citations
for further analysis. For these publications, we determined the number of co-citation links and the number of bibliographic
coupling links. These two types of links were added together and served as input for both our mapping technique and our
clustering technique.2 In the case of our clustering technique, we tried out a number of different values for the resolution
parameter � . After some experimenting, we decided to set this parameter equal to 2. This turned out to yield a clustering
with a satisfactory level of detail.

2 Our techniques for mapping and clustering both require solving an optimization problem. In the case of mapping, we minimized (3) using a majorization
algorithm (similar to Borg and Groenen, 2005, Chapter 8). In the case of clustering, we maximized (8) using a top-down divisive algorithm combined with
some local search heuristics.
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The combined mapping and clustering shown in Fig. 1 provides an overview of the structure of the field of informa-
tion science. The left part of the map represents what is sometimes referred to as the information seeking and retrieval
(ISR) subfield (Åström, 2007), and the right part of the map represents the informetrics subfield. The distinction between
these two subfields is well known and has been observed in a number of studies. However, consistent with recent work
by Åström (2007), the separation that we observe between the two subfields is less strong than in the influential study of
White and McCain (1998). Within the ISR subfield, a further distinction can be made between “hard” (system-oriented)
and “soft” (user-oriented) research (e.g., Åström, 2007). Hard ISR research is located in a relatively small area in the
upper left part of our map, while soft ISR research is located in a much larger area in the middle and lower left part of
the map.

The clustering shown in Fig. 1 consists of 25 clusters. The distribution of the number of publications per cluster has a
mean of 49.7 and a standard deviation of 31.5. There is one very small cluster consisting of just two publications. These
two publications are concerned with the use of information science techniques to support biological research. The largest
cluster consists of 123 publications. The publications in this cluster deal with citation analysis and some related biblio-
metric and scientometric topics. Out of the 25 clusters, eight clusters are used to cover the informetrics subfield. We
have examined these clusters in more detail. A summary of the contents of the eight informetrics clusters is provided
in Table 1.

The results presented above illustrate an application of our unified approach to mapping and clustering. Our approach
seems to yield an accurate and detailed picture of the structure of the field of information science. The interested reader
is invited to examine the results in more detail at http://www.ludowaltman.nl/unified approach/. On this web page, the
combined mapping and clustering shown in Fig. 1 can be inspected using the VOSviewer software (Van Eck & Waltman,
2010). The clustering is also available in a spreadsheet file.

5. Conclusions

Mapping and clustering are complementary to each other. Mapping can be used to obtain a fairly detailed picture of
the structure of a bibliometric network. For practical purposes, however, the picture will usually be restricted to just two
dimensions. Hence, relations in more than two dimensions will usually not be visible. Clustering, on the other hand, does not
suffer from dimensional restrictions. However, the price to be paid is that clustering works with binary rather than continuous
dimensions. As a consequence, clustering tends to provide a rather coarse picture of the structure of a bibliometric network.3

Given the complementary nature of mapping and clustering and given the frequent combined use of mapping and clus-
tering techniques, we believe that a unified approach to mapping and clustering can be highly valuable. A unified approach
ensures that the mapping and clustering techniques on which one relies are based on similar ideas and similar assumptions.
By taking a unified approach, inconsistencies between the results produced by mapping and clustering techniques can be
avoided.

In this paper, we have elaborated a proposal for a unified approach to mapping and clustering. Our proposal unifies the VOS
mapping technique with a weighted and parameterized variant of modularity-based clustering. As discussed elsewhere (Van
Eck & Waltman, 2007; Van Eck et al., in press), the VOS mapping technique is closely related to the well-known technique
of multidimensional scaling, which has a long history in the statistical literature (for an extensive overview, see Borg &
Groenen, 2005). Modularity-based clustering, on the other hand, is a recent result from the physics literature (Newman,
2004a, 2004b; Newman & Girvan, 2004). It follows from this that our proposed unified approach establishes a connection
between on the one hand a long-lasting research stream in the field of statistics and on the other hand a much more recent
research stream in the field of physics.

Our unified approach to mapping and clustering can be especially useful when multiple maps of the same domain are
needed, each at a different level of detail. For example, when bibliometric mapping is used for science policy purposes,
two maps may be needed. On the one hand a detailed map may be needed that can be carefully validated by experts in
the domain of interest, and on the other hand a much more general map may be needed that can be provided to science
politicians and research managers. The former map may show the individual nodes in a bibliometric network, while the
latter map may show clusters of nodes. Expert validation, which is a crucial step in the use of bibliometric mapping for
science policy purposes (Noyons, 1999), of course only makes sense when the map presented to domain experts shows
essentially the same structure of the domain of interest as the map presented to science politicians. A unified approach to
mapping and clustering helps to avoid discrepancies between maps constructed at different levels of detail. In that way, a
unified approach facilitates the use of bibliometric mapping in a science policy context.

In the latest version of our freely available VOSviewer software (Van Eck & Waltman, 2010; see
http://www.vosviewer.com), we have incorporated algorithms that implement our unified approach to mapping and
clustering. Stand-alone algorithms implementing our unified approach are available at http://www.ludowaltman.
nl/unified approach/.

3 In this paper, we have been concerned with clustering techniques that require each node in a bibliometric network to be assigned to exactly one cluster.
These are the most commonly used clustering techniques. We have not discussed clustering techniques that allow nodes to be assigned to multiple clusters
(e.g., Fortunato, 2010, Section 11). The latter techniques provide a more detailed picture of the structure of a bibliometric network.

http://www.ludowaltman.nl/unified_approach/
http://www.vosviewer.com/
http://www.ludowaltman.nl/unified_approach/
http://www.ludowaltman.nl/unified_approach/
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Appendix A.

In this appendix, we prove that in the case of clustering minimizing (3) is equivalent to maximizing (6) with weights wij

given by (7). Using (1) and (5), it can be seen that (3) can be rewritten as

V(x1, . . . , xn) = 1
�

∑
i<j

(1 − ı(xi, xj))

(
1
�

2mcij

cicj
− 1

)
, (8)

where ı(xi, xj) equals 1 if xi = xj and 0 otherwise. Let us define

V̂(x1, . . . , xn) = − �2

2m
V(x1, . . . , xn) + 1

2m

∑
i<j

(
2mcij

cicj
− �

)
. (9)

Notice that (9) is obtained from (8) by multiplying with a constant and by adding a constant. The multiplicative constant is
always negative. It follows from this that minimizing (8) is equivalent to maximizing (9). Substituting (8) into (9) yields

V̂(x1, . . . , xn) = 1
2m

∑
i<j

ı(xi, xj)

(
2mcij

cicj
− �

)
. (10)

We have now shown that minimizing (3) is equivalent to maximizing (10). Furthermore, (10) can be rewritten as (6) with
weights wij given by (7). This completes the proof.

Appendix B.

Our proposed clustering technique can be seen as a weighted and parameterized variant of modularity-based clustering.
Modularity-based clustering maximizes (6) with weights wij that are set equal to 1. Our clustering technique maximizes (6)
with weights wij that are given by (7). In this appendix, we provide an illustration of the effect of the weights wij in (7).

Consider a network of n = 31 nodes. Let

cij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

10 if 1 ≤ i ≤ 10 and 1 ≤ j ≤ 10 and i /= j
100 if 11 ≤ i ≤ 20 and 11 ≤ j ≤ 20 and i /= j
100 if 21 ≤ i ≤ 30 and 21 ≤ j ≤ 30 and i /= j
20 if (1 ≤ i ≤ 10 and j = 31) or (i = 31 and 1 ≤ j ≤ 10)
50 if (11 ≤ i ≤ 20 and j = 31) or (i = 31 and 11 ≤ j ≤ 20)
0 otherwise.

(11)

Our clustering technique (with the resolution parameter � set equal to 1) and modularity-based clustering both identify three
clusters. They both produce a cluster that contains nodes 1, . . ., 10, another cluster that contains nodes 11, . . ., 20, and a third
cluster that contains nodes 21, . . ., 30. However, the two clustering techniques do not agree on the cluster to which node 31
should be assigned. Our clustering technique assigns node 31 to the same cluster as nodes 1, . . ., 10, while modularity-based
clustering assigns node 31 to the same cluster as nodes 11, . . ., 20. The disagreement on the assignment of node 31 is due
to the effect of the weights wij in (7). It follows from (7) that, compared with modularity-based clustering, our clustering
technique gives less weight to nodes with a larger total number of links. Nodes 11, . . ., 20 have a much larger total number
of links than nodes 1, . . ., 10, and compared with modularity-based clustering our clustering technique therefore gives less
weight to nodes 11, . . ., 20 and more weight to nodes 1, . . ., 10. Node 31 is strongly associated both with nodes 1, . . ., 10 and
with nodes 11, . . ., 20. However, due to the difference in weighting, our clustering technique assigns node 31 to the same
cluster as nodes 1, . . ., 10 while modularity-based clustering assigns node 31 to the same cluster as nodes 11, . . ., 20.

Which of the two assignments of node 31 is to be preferred? The total number of links of nodes 11, . . ., 20 is almost an
order of magnitude larger than the total number of links of nodes 1, . . ., 10, but the number of links between node 31 and
nodes 11, . . ., 20 is only 2.5 times larger than the number of links between node 31 and nodes 1, . . ., 10. Hence, from a relative
point of view, node 31 has more links with nodes 1, . . ., 10 than with nodes 11, . . ., 20. Based on this observation, assigning
node 31 to the same cluster as nodes 1, . . ., 10 seems preferable to assigning node 31 to the same cluster as nodes 11, . . ., 20.
Hence, we believe that, at least in this particular example, the results produced by our clustering technique are preferable
to the results produced by modularity-based clustering.
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