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ABSTRACT 
This paper presents an approach for predicting the gender 
orientation of any given first name over time based on a set of 
search engine queries with the name prefixed by masculine and 
feminine markers (e.g., “Uncle Taylor”). We hypothesize that 
these markers can capture the great majority of variability in 
gender orientation, including temporal changes. To test this 
hypothesis, we train a logistic regression model, with time-
varying marker weights, using marker counts from Bing.com to 
predict male/female counts for 85,406 names in US Social 
Security Administration (SSA) data during 1880-2008. The model 
misclassifies 2.25% of the people in the SSA dataset (slightly 
worse than the 1.74% pure error rate) and provides accurate 
predictions for names beyond the SSA. The misclassification rate 
is higher in recent years (due to increasing name diversity), for 
general English words (e.g., Will), for names from certain 
countries (e.g., China), and for rare names. However, the model 
tends to err on the side of caution by predicting neutral/unknown 
rather than false positive. As hypothesized, the markers also 
capture temporal patterns of androgyny. For example, Daughter is 
a stronger female predictor for recent years while Grandfather is a 
stronger male predictor around the turn of the 20th century. The 
model has been implemented as a web-tool called Genni 
(available via http://abel.lis.illinois.edu/) that displays the 
predicted proportion of females vs. males over time for any given 
name. This should be a valuable resource for those who utilize 
names in order to discern gender on a large scale, e.g., to study the 
roles of gender and diversity in scholarly work based on digital 
libraries and bibliographic databases where the authors’ names are 
listed. 

Categories and Subject Descriptors 
I.5.1 [Pattern Recognition]: Models - Statistical; H.3.1 
[Information Storage and Retrieval]: Content Analysis and 
Indexing – Linguistic processing.  

General Terms 
Algorithms, Measurement, Experimentation. 

Keywords 
Gender, androgyny, data mining, temporal prediction, 
bibliometrics, search engine, textual markers, semantic orientation 

1. INTRODUCTION 
Does Taylor refer to a boy or a girl? Answering that type of 
question can be quite difficult when only given a first name and 
no other contextual clues. For common, gender-specific names 
like Michael or Mary humans can answer that question with a 
high degree of confidence but how can we make a machine 
coupled with easily accessible digital resources answer that 
question? Even humans have difficulty with rare or unfamiliar 
names (e.g., Kuulei or Aagot) because of personal biases such as  
the number of people that they personally know that happen to be 
male or female with that name or a similar name. The answer to 
the question may also vary depending on when the question is 
posed partly because many androgynous names are increasingly 
given to girls over time [16]. For example, Taylor was given to 
more boys than girls prior to 1985, but today, Taylor most often 
refers to a girl, at least in the USA. In instances like this, can 
machines do better? 

Table 1. Temporal gender markers selected from common 
first name prefixes in the Google n-gram dataset [31]. 

 Feminine markers Masculine markers 
1 Mrs Mr 
2 Mother Father 
3 Grandmother Grandfather 
4 Wife Husband 
5 Daughter Son 
6 Aunt Uncle 
7 Sister Brother 
8 Girl Boy 
9 He married She married 

 

Our motivation stems from analyzing the roles of gender and 
diversity in the publication and collaboration strategies of authors 
in large-scale digital libraries and bibliographic databases. This 
requires an automatic process for confidently assigning gender to 
each instance of an author name at a certain time point. In this 
paper, we test the accuracy of a temporal gender prediction model 
based solely on search engine results as predictors. The model is 
trained using US Social Security Administration (SSA) data, 
which includes the frequency with which a name is given to males 
and females over time. Search result counts are collected from 
Bing.com queries consisting of temporal and gender-specific 
markers (see Table 1 for a complete list) concatenated with the 
name under consideration. Using multiple markers should not 
only help make predictions less sensitive to noisy search engine 
query results but should also help capture more nuanced changes 
in individual names over time. Relying solely on web searches as 
predictors has several advantages: web searching is easy to 
automate and thus scales well, the data is public and not domain 
or genre specific (i.e., it covers personal pages, industry sites, 
news, social media, blogs, genealogy documents, etc. not just one 
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of these), nor is the data region specific (i.e., not just English 
names).  

It should be noted that a last name can also be useful for gender 
attribution in some cultures (e.g., Slavic last names ending in -ova 
or Icelandic names ending in -dottir are given to females). We 
chose not to train the model using last names because this 
phenomenon is much less common globally and is rare in the 
USA specifically. However, one can still use the trained model to 
make predictions using a last name (or a combination of first and 
last name) as input. 

2. RELATED WORK 
Our approach builds on several different areas of work including 
work that has looked at the manual assignment of gender using 
names, the automated assignment of gender, and work on 
semantic orientation. 

2.1 Manual Gender Assignment 
Several recent studies have looked at gender differences in 
disparate areas of academia and industry. Though some studies 
used data from large centers, e.g., the National Center for 
Education Statistics [12], which one would assume has rather 
accurate and complete data including individuals' gender, other 
studies used more imprecise methods to discern gender. These 
methods included using publications and the author's first name to 
guess the gender, searching for author information online, or by 
looking at pronoun usage in biographical notes and/or author 
bylines, e.g., [6, 21, 22]. While this essentially manual process 
yields fairly accurate information, it takes a great deal of time to 
cultivate the data, and if no supporting data can be found to help 
ascertain gender, sometimes names are simply excluded from the 
analysis. 

2.2 Automated Gender Assignment 
In addition to manual assignment, some models have been created 
to infer gender using automated means. Otterbacher [18] explored 
the contribution of style, content, and metadata from movie 
reviews in inferring the gender of movie reviewers on the Internet 
Movie Database site. Cucerzan and Yarowsky [9] used nouns with 
known attributed genders to create a bootstrapping process that 
determines the grammatical gender of other nouns in five different 
languages, and Bergsma, Lin, and Goebel [4] created a model that 
uses contextual, morphological, and categorical gender features to 
classify nouns in documents. The Never-Ending Language 
Learner developed by Carlson et al. [7] also uses information 
about noun phrases and other language and text patterns to guess 
gender in cases where appropriate. We too utilize markers to help 
infer gender, but we use the help of a search engine. 

In two recent papers, Zheleva and Getoor [33] and Tang et al. [23] 
use user profile data from social network sites like Facebook in 
order to infer information about individuals including gender. 
Zheleva and Getoor [33] create eight different models that use 
varying amounts of an individual's profile data and at times even 
the individual's friends' data in order to approximate things like 
gender and political view. Our models use less information and 
information that is publicly available to achieve a similar goal.  

Though Tang et al. [23] also utilize social network data, data from 
Facebook, they take an approach similar to ours in that they use 
publicly available data and words therein (e.g., relationship status 
and who the person is “interested in” or “looking for”) to build 
models that attempt to discern an individual's gender. Our models 
differ in that we use less personal, easily attainable data by using 

general search engine results augmented simply by common 
gender-specific words and phrases. Our models are also different 
in that we can look at the way that the name was assigned to 
people of different genders over time while Tang et al. [23] only 
evaluate the present usage of names. 

In addition to the aforementioned models, there are some websites 
that provide information on the gender of names, and perhaps not 
surprisingly, they are mostly proposed as sites to help with the 
naming of children. Two such tools include NameVoyager [30] 
and its accompanying site Baby Name Wizard [3] and Baby Name 
Guesser [2]. NameVoyager is a tool that was initially built to 
display SSA data from 1900 to 2001 in a way that promotes 
discovery and reflection. It has since grown to include more 
recent and detailed information. Baby Name Guesser is a tool that 
uses Google information to calculate name statistics and includes 
a gender predictor [2]. It is not made public how Google 
information is used, but it is perhaps the most similar to our 
strategy. 

2.3 Semantic Orientation 
Using known characteristics of some words to determine the 
orientation of others is not a new idea. The idea of semantic 
orientation is discussed by Turney and Littman [27] who infer the 
orientation of a word from its statistical association with other 
words. Efron [11] used the work of Turney and Littman [27] to 
build a model that uses cocitation information to estimate the 
political orientation of web documents. Though we do not use 
pointwise mutual information or latent semantic analysis 
measures, the idea of using one word with a known association to 
infer the association of another is what we utilize when creating 
Bing API web search queries to predict gender for given names. 

3. TRAINING A GENDER PREDICTION 
MODEL 
This section describes how we built a prediction model using US 
SSA data on gender counts as the target and results of web search 
queries submitted to the Bing API [5] as predictors. 

3.1 Data 
The US SSA provides data consisting of the frequency of names 
and gender on Social Security card applications for each year 
going back to 1880. To protect privacy, names are only included 
in the yearly SSA data if the name was given to at least 5 people 
during that year [20]. From those sets, we included only names 
that appeared during the 1880 to 2008 time span. This left 85,406 
distinct names, which varied greatly in popularity with some 
names assigned to individuals only 5 times during that time span, 
e.g., Zaccariah and Ahmeer, to names given to over 5,000,000 
individuals, e.g., James and John.  

For each name in the dataset, 258 dimensions of SSA data was 
recorded: 1) the number of females for each of the 129 years 
during the 1880 to 2008 time span (e.g., there are 2,514 females 
with the name Alicia in 2004 and 2,333 in 2005) and 2) the 
number of males for each of the 129 years during the 1880 to 
2008 time span. Also, for each name, the results of 72 Bing API 
web searches were recorded as follows: the estimated total 
number web pages that contain the phrase made up of the name 
prefixed by one of 18 markers (see Table 1), for each of 4 
different Bing offset parameters (0, 10, 100, and 1000). Note that 
Bing gives different estimates depending on the offset setting. 
Table 2 illustrates this effect for the name Genni where, for 
example, the phrase “Mother Genni” resulted in 38, 7, 7, and 7 
results for each of these respective offsets. Query variability is 
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due to the way the Bing API is designed to take into account 
certain factors like query popularity and the set of results 
requested (i.e., asking for the 11-20 results to be returned as 
opposed to requesting the first ten results) [1]. By recording 
results from different Bing offsets, this parameter setting can be 
optimized for the predictive model. Using 18 markers also helps 
deal with query variability. Weights are distributed across the 
markers which helps reduce the potential effect due to noise in 
any one marker count. Each search was formulated to ensure that 
no query correction occurred and the exact phrase was found 
excepting punctuation marks. For example, +“Mother Jean,” will 
include “mother. Jean” but not “mother of Jean.” 

Table 2. Marker counts for the name “Genni”.  

Offset 0 10 100 1000 
Mrs vs. Mr 88 vs 27 88 vs 5 16 vs 5 16 vs 5 

Mother vs. Father 38 vs 5 7 vs 1 7 vs 1 7 vs 1 
Grandmother vs. Grandfather 5 vs 0 1 vs 0 1 vs 0 1 vs 0 

Wife vs. Husband 94 vs 11 94 vs 1 16 vs 1 16 vs 1 
Daughter vs. Son 44 vs 33 8 vs 3 8 vs 3 8 vs 3 
Aunt vs. Uncle 116 vs 0 116 vs 0 17 vs 0 17 vs 0 

Sister vs. Brother 44 vs 5 8 vs 1 8 vs 1 8 vs 1 
Girl vs. Boy 66 vs 11 66 vs 2 12 vs 2 12 vs 2 

He married vs. She married 0 vs 0 0 vs 0 0 vs 0 0 vs 0 

3.2 Logistic Regression Modeling 
Given a name characterized by an 18-dimensional vector of 
marker values x, the purpose of the model is to estimate the 
proportion of individuals that are female for the given x and 
year: ሺݔ|݈݁ܽ݉݁ܨ;  ݔ ሻ. The i-th element of the vectorݎܽ݁ݕ
represents a gender predictor and is encoded by transformed 
Bing® results for each of the following markers: ݔଵ = Mrs, ݔଶ = 
Mr, ݔଷ = Mother, ݔସ= Father, ݔହ = Grandmother, ݔ = 
Grandfather, ݔ = Wife, ଼ݔ = Husband, ݔଽ = Daughter, ݔଵ = Son, 
 ,ଵହ = Girlݔ ,ଵସ = Brotherݔ ,ଵଷ= Sisterݔ ,ଵଶ = Uncleݔ ,ଵଵ = Auntݔ
 ଵ଼ = She married. Each markerݔ ,ଵ = He marriedݔ ,ଵ = Boyݔ
value was defined by a simple transformation of the 
corresponding Bing count as follows:  

ݔ ൌ ݐ݊ݑܿ_ሺlogሺܾ݅݊݃ݐݏݑ݆݀ܽ   ሻሻߜ

A ߜ correction was applied to avoid undefined values for the 
natural log, and two different values ߜ א ሺ1,5ሻ were tested for 
their effect on the predictions. When plotting the results of the 
transformation, we noticed fixed artificial gaps, presumably due to 
Bing’s estimation procedure (see Figure 1 for an example). The 
gaps identified for each offset value were as follows: gap = 2.7-
3.6 for 0 offset; gap = 1-1.8 and 2.7-3.6 for 10 offset; gap = 2-2.8 
and 3.6-4.05 for 100 offset; no gaps for 1000 offset. The adjust() 
function creates a continuous distribution by collapsing the gaps 
as follows: subtract the gap size for points above the gap and shift 
the points inside the gap to the lower bound.  

A weighted combination of the transformed attribute values, using 
a logistic regression model, is used to estimate the probability. 
Temporal changes in the weights assigned to the markers were 
captured in two different ways. The “full” model creates a 
quadratic fit for each marker weight across the entire 129 years, 
while a “sliding-window” model fits separate linear models to 
each 9-year window across the 129 years. The “sliding-window” 
model should capture more local changes over time, while the 
“full” model smoothes out the local changes and only captures 
global trends over time. The logistic regression models can be 
expressed in the following generic form: 

ሻሺݐ݈݅݃ ൌ   ሺߙ  ݕߚ  ݔଶሻݕߛ

ଵ଼

ୀ

  ሺߙାଵ଼  ݕାଵ଼ߚ  ݔଶሻሺݕାଵ଼ߛ ൌ 0ሻ
ଵ଼

ୀଵ

   ሺߙାଷ  ݕାଷߚ  ଶሻሺ0ݕାଷߛ ൏ ݔ  ܿሻ
ଵ଼

ୀଵ
 

Each ݔ refers to a transformed attribute value and each ߙ 
ݕߚ   ଶ corresponds to the weight assigned to that attribute forݕߛ
a given year =  ݕ א ሺ1880,1881, ڮ , 2008ሻ for the “full” model. 
Note that we define ݔ ൌ 1 to capture the intercepts. The “sliding-
window” model excludes the quadratic year terms (i.e., ߛ ൌ 0). 
Two sets of indicator attributes capture effects due to low counts: 
whether ݔ is 0 or not, and whether ݔ is a small positive value 
 ܿ. The values for c were set empirically: ܿ ൌ 5 for offset = 0, 
and 1 for all other offsets. The “full” model is trained on all 
observed names across all 129 years whereas the “sliding-
window” models consist of a series of submodels each of which is 
trained using observations for a given year +/- a window of 4 
years: ݕ א ሺ1880 െ 1888, 1889 െ 1897, ڮ , 2000 െ 2008ሻ. 
The reason for fitting the less restrictive “sliding-window” model 
is to test whether the “full” model captures the full extent of 
temporal change in weights. Overall, the models were trained with 
a combination of different parameter settings: ߜ א ሺ1,5ሻ, 
ݐ݁ݏ݂݂ א ሺ0,10,100,1000ሻ, and with and without the indicator 
attributes. This gives sixteen “full” models and the sixteen 
“sliding-window” models from which to select.  

 

Figure 1. Bing result counts (1 =  ࢾ, offset = 0) for all names in 
the SSA dataset. Note the sharp separation of points reflecting 

Bing’s step-estimation for values above a fixed cut-off.   

 

4. RESULTS AND DISCUSSION 
4.1 Overall misclassification rates and model 
selection 
Figure 2 shows the proportion of individuals in the SSA dataset 
misclassified by some of the models over time and compared 
against the pure (within name*year and within name; labeled SSA 
w/year and SSA w/o year, respectively) error rates under two 
different classification scenarios. The first scenario requires 
classification of all individuals as either male or female (i.e., 
probability > 50% implies female, otherwise male) which yields 
higher error rates than the second scenario which permits 
unknown or neutral classifications (where 10% < probability < 
90%) that are excluded from error calculations. The second 
scenario captures errors on highly confident predictions only.  
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Figure 2. The proportion of individuals in the SSA dataset 
misclassified over time under two different scenarios: All 

classifications (female if p > 0.5; male otherwise) and High 
confidence classifications only (female if p > 0.9, male if p < 

0.1, unknown otherwise). SSA w/ year corresponds to the pure 
(within name*year) error and represents a lower bound for 

any model. SSA w/o year refers to within-name error; and its 
difference with SSA w/year reflects total error due to time. 

The models with the indicators produced more consistent and 
lower error rates than the models without indicators (not shown), 
and there were no effective differences in error curves between 
ߜ ൌ 5 vs. ߜ ൌ 1 (not shown). The error curves for the “full” and 
“sliding-window” models are very similar, which implies that the 
sliding-window approach to capture local time variations does not 
contribute to the overall performance. The offset matters though. 
The “full” model with offset of 0 performs better than all other 
offsets (“full” model with offset 100 is shown in Figure 2), 
particularly in more recent years. Out of the thirty-two models, the 
indicator “full” and the indicator “sliding-window” model with 
offset of 0 and ߜ ൌ 1 were selected, and the remainder of the 
paper will utilize either one or both of these models. They will be 
referred to as the “full” and “sliding” model, respectively. 

The “full” model misclassifies 2.25% of the people in the SSA 
dataset, which is slightly higher than the 1.74% pure (within 
name*year) error rate; when excluding low confidence predictions 
the model has an SSA misclassification rate of 0.82% vs. 0.59% 
pure error. Figure 2 shows that the misclassification rates range 
from 1% to 4.5% over the entire 129 years, while the high 
confidence rates range from 0.5% to 1%. Overall the 
misclassification rates and pure errors rates tend to increase over 
time, likely due to increasing diversity of names and the fact that 
more names are being given to individuals of both genders than in 
the past. The downturn during ~1930-1950 probably reflects, in 
part, lower immigration rates during the Depression and World 
War II.  

It should also be noted that the SSA data is not 100% reliable as a 
gold standard for two reasons. First, the SSA data is likely to 
contain human recording errors e.g., from the transcription of 
newly minted parents hand-written notes on paper forms. It would 
not be surprising if this occurred at a rate of ~1%, e.g., for older 
records, but is more likely to occur at a scale 0.1%. Second, the 
model predictions are based on mentions of the Bing-indexed 
names across the world-wide web and these mentions represent a 
sample of a population that is much broader than the one captured 
in the SSA dataset. As a result, the model can provide better 

worldwide estimates than the SSA data, e.g., for names like 
Andrea which is dominated by females in the US but dominated 
by males in Italy. We will further discuss this effect in subsequent 
sections.  

4.2 Characterizing the model 
Figure 3a shows the weights of the phrase markers (and their 
indicator attributes in Figures 3b and 3c) as they change over time 
in the two selected models. Overall, the “full” model weights 
change smoothly over time capturing general trends, while the 
“sliding” model captures short term changes as shown by 
fluctuations and occasional spikes. This is because the “full” 
model takes into account data from all 129 years using a quadratic 
approximation while the “sliding” model is based on separate 
linear approximations for each possible 9-year window.  

The marker weights vary in systematic and meaningful ways, both 
in direction and absolute values. For example, He married and 
She married were the most heavily weighted positive (i.e., female) 
and negative (i.e., male) markers, respectively, during the earliest 
years but have gradually lost about 50% of their weights during 
the time period covered. Married references often point to 
genealogy and family tree descriptions going back 100 or more 
years. The weights for Grandmother and Grandfather are much 
smaller but follow a similar pattern, except that they switch 
direction (Grandmother becomes male; Grandfather becomes 
female) in the 1930s. Daughter and Son (and Girl and Boy) follow 
a similar pattern, except time-reversed, while Sister and Brother 
peak in the middle of the time period, as does Wife and Husband. 
It makes perfect sense that mentions of grandparents, the “oldest” 
markers, peak at the earliest time, while children, the “youngest” 
markers, peak today, and other family members peak in between. 

Interestingly, the gender-opposite paired curves tend to vertically 
mirror one another, except for Father and Mother. We expected 
this mirroring to occur across the zero-line with the feminine 
indicator being positive and the masculine indicator being 
negative. Many of the pairings followed this pattern but some did 
not. Boy, for example, has a positive weight until the late 1960s. 

It is not clear why this is the case but it should not matter much. It 
is important to note that the model takes into account all markers 
simultaneously, and the anomalous weights make up a fraction of 
the total weight. Also, some of the well-behaved markers, He 
married and She married and Aunt and Uncle for example, also 
tended to result in lower, more accurate Bing counts than the other 
phrase markers such as Boy and Girl. As these counts reach 
thousands or more, Bing starts returning approximations instead 
of actual result counts, which was the case with most of the 
queries initiated using the more popular phrase markers like Mr 
and Father. It may be the case that these approximations and the 
large numbers themselves affected the weight sizes and direction. 

The weights associated with the zero and low count indicators 
show similar patterns across the paired phrase markers (Figures 
3b and 3c). The indicators were used to relax the continuity of the 
models near the zero and small Bing counts. We expect the 
weights to have opposite signs from the transformed Bing result 
count weights. If a Daughter query returns few or no results, we 
would expect the name to be more likely masculine, which is why 
in Figure 3b and Figure 3c we mostly see that the masculine 
indicators have positive weights and the feminine indicators have 
negative weights in all cases except the He married and She 
married pairing. This probably just reflects the fact that they were, 
by far, the most likely to return zero or low counts. 
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Figure 3. Time-varying weights of the markers: a) transformed Bing counts, b) zero count indicators, c) low count indicators.  

4.3 Model performance on select names 
We first tested cases where the models are expected to perform 
well: four popular male names (William, Andrew, Thomas, and 
Joseph) and four popular female names (Katherine, Julia, Mary, 
and Catherine). As shown in Figure 4, the predictions vary little 
and follow the “true” SSA proportions. Also, note that the 
“sliding” model mimics some name-specific SSA spikes a bit too 
closely, which suggests that it is over-trained. Keep in mind that 
the error rates are very low, at a scale that is probably approaching 
the human clerical error rate.  

Second, the models were tested on cases where we expect noisy 
predictions: ten androgynous names (Alex, Dana, Jackie, Jessie, 
Jordan, Leslie, Marion, Pat, Terry, and Willie). As Figure 5 
shows, these names either switch genders over time (as with 
Leslie, Dana, and to some extent Willie), remain consistently 
androgynous (as with Pat), or they change moderately but remain 
largely attributed to one gender (as with Alex, Jackie, Jessie, 
Jordan, Marion, and Terry). Overall the models do surprisingly 
well in identifying these as androgynous names and capturing the 
direction of gender-orientation changes over time. As expected, 
the models smooth out highly non-linear changes such as the step-
like pattern observed for Leslie. Note also that some predictions 
differ significantly from the SSA, partly reflecting the global 
nature of the model (vs. the US-centric SSA data). Both of these 
effects are beneficial for generalization purposes. 

Third, we used a set of author names on computational linguistics 
papers labeled as male or female using a combination of database 
lookup and manual annotations[29]. Within this set, the full model 
(female probability averaged over the years 1955, 1965, and 
1975) agreed with 91.9% of 2,755 female labels, and 95.6% of 
6,862 male labels. The model strongly disagreed (female prob. < 
0.05) with 16 of their female labels (Deryle, Gerik, Helmar, 
Steffan, Craige, Chikara, Ransom, Chul, Muath, Stephane, 
Ryosuke, Yuya, Elvan; some occurred multiple times) most of 
which actually refer to males. The model strongly disagreed 
(female prob. > 0.95) with 18 of their male labels (Itziar, Sina, 
Raymonde, Einav, Vivi, Xiaohong, Michele, Sanja, Korin, Ales, 
and Dorry; some occurred multiple times) several of which 
actually refer to females.  

4.4 Sources of errors 
The models are trained on popular US names and will therefore 
tend to agree when the SSA indicates that a name is strongly 
female or male. However, there are numerous cases when the 
models differ from the SSA data. This is partly due to the fact that 
the predictive markers are based on a global resource (the web as 
captured by Bing). As Figure 5 shows, the model predictions 
systematically differ from the SSA proportions for Marion, which 
is largely given to females in France and other parts of Europe but 
is given to both males and females in the US. Andrea, Michele, 
Ira, Jan, and Joan are other examples that have different gender-
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orientations in the US vs. other places in the world. To study these 
types of variations systematically, we created nine different 
subsets of names. Figure 6 shows the overall proportion 
misclassified for each set using the 50% cutoff. Below we discuss 
these sets and the sources of errors therein. 

4.4.1 Non-US Names 
We first compiled a list of common non-US first names with a 
high co-occurrence rate with non-US affiliations (relative to US 
co-occurrence) in PubMed. The model performs surprisingly well 
for these names (see grey dashed line in Figure 6a). The error 
rates are lower than for all SSA names (solid black line) but worse 
than for common US names (red dashed line). Even though these 
names are more popular in other countries, many are also present 
in the US e.g., Isabella and Zoe. Tightly gendered names in some 
non-US countries (e.g., due to national naming laws) is likely to 
lead to greatly skewed Bing results with high counts for masculine 
markers and low to no counts for feminine markers or vice versa.  

Second, we assess model performance on subsets of names that 
are common in countries with recent immigration to US: 300 
popular Mexican names [17] and 620 Asian names [19], including 
but not limited to Chinese, Japanese, Indian, Korean, and 
Vietnamese names. Figure 6a shows the misclassification rates 
using SSA numbers as ground truth. Some spikes in the Asian 
names and Mexican names reflect individual names: Jo (1931), 
Kim (1954), and Jaime (1976). Jaime’s spike in 1976 represents a 
drastic increase in females named Jaime, and coincides with the 
introduction of the popular US TV series Bionic Woman and the 
lead character Jaime Sommers. Jo and Kim are popular 
diminutives in the US. Setting aside these three names gives us a 
better perspective of the collective effect of Asian and Mexican 
names. Error rates for Mexican names are about the same as error 
rates averaged across all SSA names, while Asian names have 
higher error rates, particularly since ~1970 and onwards. There 
are four major reasons for higher error rates amongst names in 
this group: 1) they are typically short names; 2) transliterations 
from the original language into English is many-to-many (e.g., the 
gender-specific aspects of Asian characters or symbols are lost in 
translation to ASCII); 3) they are typically more androgynous 
than English names; and 4) they are often used as both first and 
last names. So, searching for +“Brother Kaoru”, for example, may 
yield results where Kaoru is one's surname and not one's first 
name.  

In some countries, names are often made up of compound 
combinations of male, female, and androgynous names such as 
Jose Maria (male in Spain) vs. Jose (male) and Maria (female). 
The model tends to do well in these cases, as long as the names 
are relatively common. 

4.4.2 Surnames, famous people, and common words   
Carlson and Cooper are examples of surnames that are also used 
as first names, and they are both typically given to males (see 
Figure 7). As discussed earlier, androgynous names are typically 
given to more females over time, yet the model predictions 
indicate that Cooper defies this trend by moving from being 
somewhat feminine to almost completely masculine in recent 
years. Carlson, on the other hand, does trend towards becoming 
more feminine as time progresses. Generally, surnames will give 
high counts for both the Mr and Mrs markers which forces the 
predictions towards neutral. 

Unlike names that serve as both first names and surnames, one 
would expect the names of famous people to be predicted strongly 
feminine or masculine. Paris (the city and the famous socialite 

Paris Hilton), Theresa (Mother Theresa), and Guadalupe (the 
Virgin of Guadalupe, the Roman Catholic icon of the Virgin 
Mary) are three such names. Both Guadalupe and Theresa are 
both strongly feminine, as expected, while Paris ends up feminine 
after climbing there steadily over almost 60 years (see Figure 7). 
This might be another case where a single famous person has 
shifted a global trend (also see previous discussion of Jaime).  

Given a recent trend to choose nontraditional names for babies, 
we were also curious how well the model performs for names that 
are also common English words (including the markers 
themselves). These names were downloaded from a British baby 
name website [32] to which we added seven colors in the SSA 
dataset. As Figure 6b shows, misclassification rates are high for 
word names, particularly in recent years because of an increase in 
name creativity. Figure 8 shows predictions of four word names 
typically attributed to males (i.e., Cash, Given, Hero, and Will) 
and four word names typically attributed to females (i.e., April, 
Lily, May, and Summer). While April, Lily, and Summer are 
given to a greater proportion of females over time, May becomes 
more masculine over time. The male names, with the exception of 
Given, remain mostly attributed to males throughout the entire 
period. Verb names like May and Will are expected to be 
problematic because many of the markers are nouns, and so 
search queries become commonly used noun-verb phrases. As 
with surnames, the resulting word-name predictions tend to err 
towards neutral rather than false positive male or female. 

The name Given is an interesting example in this set of names. As 
expected, the model predicts more feminine over time but the 
change occurred earlier than expected (in the 1950s). This is due 
to the way search engines process punctuations when indexing 
documents, and how specific phrasing is used across domains. For 
example, most results from the queries He married Given and She 
married Given without punctuation were from obituaries, 
newspapers, alumni newsletters, genealogical records, and the 
like. Results from He married Given with punctuation 
interspersed, however, were common in dating advice sites, such 
as: “but I doubt he's married, given the information...” and 
“...admitted he's never been tested before he married. Given this 
information about both our pasts...” The marker He married is 
feminine-oriented in the model. So, despite the baby name site 
suggesting Given is a masculine name, the model moves towards 
female prediction because these dating advice sites amplify the He 
married marker relative to the She married marker. These 
findings do not necessarily imply that one should attempt to 
exclude these types of search results generally, nor is it to say that 
the He married and She married markers should not be utilized. 
This does illustrate, however, that some common words may 
create unanticipated phrasing that might yield a strong signal in 
the wrong direction. 

Figure 9 shows the predictions for colors used as names in the 
SSA dataset.  The predictions indicate that colors were used only 
for boys 100 years ago. Since then, Blue, Brown, Green, Orange, 
and Red remained male, while Pink, White, and Cyan follow the 
pattern noted by Lieberson, Dumais, and Baumann [16] and 
become increasingly feminine over time. Some of these colors are 
strongly attributed to a certain gender in the US. For example, 
blue is attributed to males while pink is attributed to females [13, 
15]. The predictions made by the model in recent years reflect this 
trend. It is also interesting to see how Pink in particular starts as 
masculine and becomes feminine around the 1950s as this is also 
when the gender stereotyping of the color changed. Pink was 
considered more of a boy’s color and blue more of a girl’s color 
until around the 1950s [13].       
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Figure 4. Predictions vs. SSA proportions for popular names given predominantly to either females or males over time.  

 
Figure 5. Predictions vs. SSA proportions for names given to both males and females at varying rates over time. 

 

Figure 6. The proportion of people in the SSA dataset misclassified by the “full” model for different categories of names.  a) Asian 
names [19]; Common Non-US Names correlated with non-US country affiliation in PubMed; Common US names with at least  

500,000 individuals in the SSA dataset; Mexican names [17]. b) Highly ambiguous names have roughly equal males vs. females for 
any given year in the SSA dataset; Rare names given to < 11 people in the SSA dataset; Unstable names exclusively male at one 

point but changed to exclusively female (or vice versa); and Word names [32]. Some misclassification spikes in the Asian names and 
Mexican names reflect individual names: Jo (1931), Kim (1954), and Jaime (1976).  

Two of the other colors, Brown and Green, are also popular 
surnames. As noted earlier, some of the prediction curves may be 
affected in unexpected ways simply because of the format of the 
search queries used to make the predictions. However, in this 
case, Brown and Green are names that one would expect to be 
more associated with males, and that is supported by the 
predictions generated by the model. 

4.4.3 Rare names 
The model performs worse with rare names (Figure 6b), here 
defined as names given to ten or fewer people in the SSA dataset. 
This is primarily because the Bing query counts tend to be low for 
all the phrase markers, although the low count indicator variables 

in the model help somewhat in these instances. Interestingly, 
many of the rare names are spelling variants of traditional, 
popular names (e.g., Ashlii, Ashliy, Ashlae, Ashlely vs. Ashley). 

4.5 Robustness of model to potential changes 
in search engine coverage and estimation 
A concern with using search engines is that their coverage, query 
processing, and count estimation change over time. To simulate 
how these changes might affect the model, we gathered Google 
search result counts for a sample of 2,645 names using the same 
search methods as with Bing. The set of names was sampled due 
to Google API limitations. One can think of this as a worst-case 
scenario simulation of Bing changes because the queries were 
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submitted to Google at least a year before that of Bing data 
collection (i.e., reflects a temporal change of the web itself), and 
Google counts represent different web crawling methods, 
indexing, and count estimation. Figure 10 shows that using 
Google counts in the Bing optimized model introduces 
surprisingly little noise. Misclassifications go from ~1% to ~2% 
with some periodic variations. This suggests that the model is 
quite robust to changes in search engine coverage, query 
processing, and estimation over time. 

 
Figure 7. Predictions for some names with “atypical” patterns. 

 
Figure 8. Predictions for names that are also common words. 

 
Figure 9. Predictions for names that are also colors. 

 
Figure 10. Potential degradation of model predictions due to 
changes in search engine coverage and count estimation as 
reflected by using Google counts in a Bing trained model. 

4.6 Naming patterns over time 
The statistical model allows one to study naming patterns over 
time so that periods of name popularity for individuals of specific 
genders and general trending patterns can be noted. For example, 
Figure 4, shows that Katherine, Julia, Mary, and Catherine have 
been strongly associated with females during the entire time 
period covered by the SSA dataset. However, Figure 5 shows that 
Dana and Leslie switched from being mostly male to mostly 
female. Several additional names in Figure 5 further illustrate the 
observation made by Lieberson, Dumais, and Baumann [16] that 
names considered androgynous are increasingly given to females 
over time. Willie exhibits the opposite trend. Pat, as well, seems 
to be becoming more associated with males. This may be because 
Pat is both a popular nickname for females (Patricia) and males 
(Patrick). As Patricia has decreased in popularity and Patrick has 
increased, the prediction curve for Pat is drawn towards that of 
Patrick and becomes more masculine over time. Alex is another 
example in this vein. Alex is a common nickname for both names 
associated with males, e.g., Alexander, and females, e.g., 
Alexandra, Alexa, and Alexandria. However, its formal use is 
most often associated with males. The model predict a majority of 
male but less so than the SSA data. In other words, even though 
the model was trained using formal given names (on SSA 
applications), we see that the model captures both the formal and 
informal (nickname) uses of each name (on the web).  

4.7 Gender patterns over time in 
bibliographic databases 
With a model in place we turn to illustrating its use in 
characterizing the temporal changes in gender for a selection of 
readily available bibliographic databases covering books, articles, 
patents, and grants: Harvard University Library, University of 
Illinois library, PubMed (biomedical articles), DBLP (computer 
science articles), patents from the United States Patent and 
Trademark Office (USPTO), and grants from the US Department 
of Health and Human Services (HHS), primarily NIH. For each of 
the bibliographic datasets we only considered records with a 
publication date from 1800 to 2010 that had at least one author (or 
inventor, or principal investigator) name and only assigned the 
gender to the first listed author (or inventor, or investigator). 
Gender was assigned if the model produced high confidence 
classification and these classification were consistent over time 
(female if p > 0.9, male if p < 0.1 for all of the years 1955, 1965, 
1975; unknown otherwise), and the name was already in the 
Genni database. Each dataset contains millions of records: 
Harvard Library Bibliographic Dataset [14]: ~8 million records, 
1800-2010; University of Illinois Library (provided by library 
staff): ~3 million records, 1800-2009; PubMed (leased for free 
from the NLM): 18+ million records, 1865-2010. Note that 
PubMed started consistently recording first names only in 2002, 
so we used a disambiguated dataset of authors [24, 25] to assign a 
first name to older records that were matched with complete 
records. DBLP [10]: ~1.7 million records from major computer 
science journals and conference proceedings, 1936-2010. NIH 
Exporter CRISP legacy grant data [8]: ~2 million records, 1970-
2009. USPTO patents distribution by Google [28]:  ~4 million 
records, 1976-2010. 

Figure 11 shows two plots reflecting trends over time. The top 
plot shows the proportion of records that were assigned with high 
confidence within each dataset, and the bottom plot shows the 
proportion of high confidence classifications that were female. 
Note that the spikes in these curves often reflect low counts. For 
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example, the 1878 spike in PubMed (and the 1940 spike in DBLP) 
in the bottom plot represents only 5 people. 

Two major driving forces can explain the patterns for these 
curves: indexing practices and human behavior, both of which 
may exhibit gender bias. We expect the top plot to primarily 
reflect indexing practice, and the bottom plot to primarily reflect 
human behavior, more specifically participation bias. For 
example, NIH and USPTO have consistently indexed nearly all of 
the records with first names over time, while DBLP and the two 
libraries have been consistent over time but at a lower rate. 
PubMed first started recording first names in 2002, and even 
though disambiguation helps assign gender to some older records, 
we see a dramatic increase over time. The recent downward trend 
in DBLP, USPTO, and PubMed is not due to indexing practice 
but rather an increasing presence of non-US names for which the 
model predicts neutral. In analyzing these gender trends, we are 
confident in the statistics for the datasets that are “complete” in 
the sense that USPTO covers all US patents, and CRISP covers all 
extramural NIH grants. The other datasets reflect selective 
inclusion driven and constrained by a variety of factors. For 
example, PubMed (and DBLP) probably aim at covering the most 
important publication venues in biomedicine (and computer 
science, respectively), whereas the libraries cater to their (local) 
patrons. All are constrained by limited resources. One might 
wonder how much of the selective inclusion reflects gender bias, 
beyond the general participation bias in these specific domains 
(biomedicine and computer science).  

 

 

Figure 11. Gender classifications in bibliographic databases. 

In terms of participation, all domains reflect a bias towards male. 
USPTO clearly has the lowest female participation (7% peak), 
followed by DBLP (17% peak), Harvard Library (27% peak), 
NIH grants (31% peak), Illinois Library (31% peak), and PubMed 
(39% peak). Female participation has consistently increased in all 
datasets since 1970, although the growth varies: USPTO has slow 
growth, DBLP moderate growth, and the remaining datasets have 

fast growth. If the trends continue, PubMed will reach the magical 
50% female in ~10-20 years, DBLP in ~100 years, and USPTO in 
~300 years. These are obviously very rough estimates that rest on 
a suite of assumptions that probably will not hold in the future. 
For example, a) Harvard library already appears to have stagnated 
about 10 years ago; b) females on NIH grants and PubMed 
followed each other closely from the 1970s to the mid-1990s 
when NIH suffered a setback and has been trying to catch up ever 
since.  These global patterns hint at potential in-depth studies 
addressing confounding factors. For example, among younger 
authors in PubMed, today’s proportion female is probably closer 
to 50%. 

5. CONCLUSIONS AND FUTURE WORK 
Discerning the gender orientation of a first name given no other 
information can be a difficult task. Our approach performs 
surprisingly well despite its simplicity. It misclassifies 2.25% of 
the people in the SSA dataset, which is just slightly higher than 
the 1.74% pure error rate, and it utilizes simple web searches that 
are highly scalable and its predictions are based on public data 
covering names beyond the SSA dataset.  

Very rare names are the most challenging for our approach 
because of limited search engine coverage. Performance would 
improve if the search engine could: 1) provide higher recall by 
covering more of the surface web, if not the deep web, 2) provide 
higher precision by permitting exact phrase searching (to avoid 
cases where punctuation occurs between words in a phrase), and 
3) provide better estimates of result counts. Other groups of 
names have high rates of misclassification as well. For names that 
are intrinsically ambiguous (or made so by many-to-many 
transliteration from the original language into English), no model 
can do better without contextual clues surrounding the mention of 
the name. Other names like Andrea and Ira are globally 
androgynous but not so locally because of different naming 
conventions across countries and cultures. A natural extension of 
our work is to assess the promise of additional markers (for 
gender, time, geography/language) and relaxing the strict phrase 
searching for predicting the culture or geographic origin of names, 
either alone or in conjunction with gender. One could also 
combine our approach with name features extracted directly from 
the name and use other sources for training data such as 
Wikipedia or Facebook (as demonstrated by Treeratpituk and 
Giles [26] and Tang et al. [23]). Other sources of training data and 
new attributes could also help improve predictions for diminutive 
names or nicknames such as Alex which serves as a nickname for 
a female while it is also a formal given name for a male. Future 
work could also study more in-depth some of the (unexpected) 
temporal patterns revealed by our model. 

Nevertheless, the present model permits accurate and automatic 
assignment of gender to names beyond the public SSA dataset. 
The model has been implemented as a web-tool called Genni 
(available via http://abel.lis.illinois.edu/) that displays the 
predicted proportion of females vs. males over time for any given 
name. This should be a valuable resource for those who utilize 
names in order to discern gender on a large scale, e.g., to study the 
roles of gender and diversity in scholarly work based on digital 
libraries and bibliographic databases where the authors’ names are 
listed. 
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