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Abstract In this paper, we explore the longitudinal research collaboration network of

‘mammography performance’ over 30 years by creating and analysing a large collabora-

tion network data using Scopus. The study of social networks using longitudinal data may

provide new insights into how this collaborative research evolve over time as well as what

type of actors influence the whole network in time. The methods and findings presented in

this work aim to assist identifying key actors in other research collaboration networks. In

doing so, we apply a rank aggregation technique to centrality measures in order to derive a

single ranking of influential actors. We argue that there is a strong correlation between the

level of degree and closeness centralities of an actor and its influence in the research

collaboration network (at macro/country level).
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Introduction

Over the last decade there has been a significant change in the number of international

partnerships examining patterns of ‘research collaboration networks’ (Luukkonen et al.

1993; Katz and Martin 1997; Wagner and Leydesdorff 2005; Abbasi et al. 2011b). The

exchanges occur among two or more scientists within a social setting that help in the

sharing of meaning and execution of tasks are known as research/scientific collaboration

(Sonnenwald 2007). Social networks among scientists can produce and extend research

collaborations. To recognise the areas of strengths and weaknesses amid research insti-

tutions, businesses and nations and to conduct scientific progress and supporting policies,

social network analyses have been applied widely (Owen-Smith et al. 2002; Sonnenwald

2007). Similarly, to evaluate the networks’ structural and relational properties for different

domains, research collaboration networks are commonly employed (Melin 2000; Newman

2001; Barabási et al. 2002; Newman 2004; Jiang 2008; Abbasi et al. 2011a). Usually, in a

research collaboration network, authors are ‘actors’ (nodes) and among them co-authorship

relations are ‘ties’ (links). In other words, if at least one co-authored paper is present

between two particular actors (scientists), a tie occurs between them.

The primary focus/question of this study is to investigate how research collaboration

networks grow and develop through time from a network structural perspective. Following

this, a specific research question arises as: what kinds of actors influence the network as a

whole from an actors’ positional perspective. To answer these questions, by the application

of network analysis techniques, a throughout explanation of different topologies of re-

search collaboration networks in ‘mammography performance’ has been examined over

the past 30 years. The development of this collaboration network, since initial publications

in the field, is explored and collaborative high performing countries are examined. The

techniques and findings presented in this work are intended to be applicable for identifying

the ‘main actors’ in other research collaboration networks. By applying a rank aggregation

method to centrality measures, a single ranking of influential actors can be achieved. Our

results show that a strong association occurs between the level of degree and closeness

centralities of an actor (at country level) and its influence on the network.

Previous studies conducted on research collaboration networks have concentrated on

just evaluating network properties where, most of the time, the networks are investigated

on a binary basis (Bian et al. 2014). Nevertheless, it is quite common in a research

collaboration network, that some connections and ties are ‘stronger’ compared to others. In

this work, networks models denote this fact by assigning, as the tie weight, the number of

collaborative papers among two authors. In calculating some of network measures (average

value and clustering coefficients), ties are considered weighted to reveal the degree of

collaboration. This does not occur for all of our calculations since we believe that certain

measures are more meaningful when computed from binary networks (compared to

weighted networks).

The structure of the paper is as follows. In the ‘‘Materials and methods’’ section, the

theoretical underpinnings of our network analysis techniques and associated network

measures are presented. Following this, a summary on the extracted dataset will be pre-

sented by describing how the meta-data has been transposed into co-authorship network at

country level. In the ‘‘Results and discussion’’ section, the results of our static and static–

comparative network analyses are provided along with our interpretations. In the ‘‘Con-

clusions’’ section, our major findings and results are emphasised and concluded upon.
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Materials and methods

Theoretical background

Two general perspectives can be considered in analysing social networks; the Structure-

oriented perspective, which examines the ‘the networks topological characteristics’ and the

actor-oriented perspective, which investigates attributes and properties of ‘social actors’

behaviours’ (Jiang and Jiang 2014). Both approaches are significant and may be applicable

to different social networks. The first approach is very useful when networks locational

characteristics are of importance and the second approach is advantageous when attributes

and behaviours of social actors, especially humans, have a major role in the network

evolution (Jiang and Jiang 2014).

As this article attempts to analyse a research collaboration network at macro/county

level, the recognised attributes/characteristics of the actors (courtiers) may have small

effects on the network evolution in comparison with their structural and positional effects.

Thus, this study has chosen a structure-oriented approach for its analyses.

Moreover, in recent years, greater attention has been paid to the study of the dynamics

of networks since they provide an improved understanding of network formation and

network evolution mechanisms (Hossain et al. 2012). What is referred in the literature as

the dynamics of networks can be categorised in two types. The first approach is indeed a

static–comparative analysis, which studies the dynamic change of actors’ positions in

different time periods of network evolution (Uddin et al. 2012; Abbasi and Kapucu 2012).

The second approach, however, investigates how actors drive network’s evolution as a

stochastic process and examines the dependencies between creation and termination of ties

for a link prediction purpose (Liben-Nowell and Kleinberg 2007; Snijders et al. 2010;

Wang et al. 2011). Again, for the purpose of this article, we take the first approach of

static–comparative analysis because characteristics of actors’ behaviours are hard to define

at country level.

A diagrammatic representation of the difference between two types of social network

analysis (SNA) topologies has been given in Fig. 1, where SNA methods are applied to the

Fig. 1 Research model for analysing different topologies of networks in time and over time
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aggregated network (t1-3) for the purpose of static network analysis. On the other hand,

SNA methods are applied to each period of study (t1, t2, t3) for the static–comparative

analysis.

A series of network properties are evaluated in this paper, where some are affected by

only the number of actors’ collaborators and few by the frequency of the collaborations in

research collaboration networks. We discuss these network properties in details further in

this paper.

Structural properties

For the recognition of cohesion, network structural properties provide measures (Kim and

Shin 2002). At heart, these measures are a group of network attributes that illustrate the

connectivity and density of a network in the eyes of the network as a whole. Trust among

the members may expand by cohesive networks (Coleman 1989). By the features of

cohesive networks such as recurrent and reciprocal associations among the actors who can

cross-check information through indirect paths in the network, trust is developed (Cassi

et al. 2012). Among the nodes in a cohesive network, consistency is promoted, since alike

nodes are inclined to connect to each other and connected nodes are likely to become more

alike (McPherson et al. 2001). Cohesion is often taken as a symbol of cognitive lock-in and

the decay of knowledge in networks of scientific communities since the nodes of cohesive

networks have access to similar information (Cassi et al. 2012).

Density Among the nodes, the widespread level of linkage in a network is provided by

density (Scott 1991). The network is denser as more nodes are connected to one another.

The sum of ties divided by the sum of possible ties comprises the density of a binary

network, whereas, it is the total of all values divided by the number of possible ties for a

valued network.

Clustering coefficient There is often clustering of the networks, which means they ac-

quire local communities in which a greater than average number of people are familiar

with one another. A method to verify the existence of such clustering in a network data is

by computing the clustering coefficient in a network (Newman 2001). Clustering coeffi-

cient of each node is same as the density of the local neighbourhood of an actor (removing

ego). The overall graph clustering coefficient is calculable as the average of the densities of

the neighbourhoods of all of actors.

Network centralisation

Evaluating the position of actors in the network is another technique used to appreciate

networks and their participants. By determining the centrality of an actor, its location

within the network is estimated. The degree to which cohesion is structured around certain

nodes is determined by centrality (Scott 1991). Centrality measures can also ‘be interpreted

as how influential and important’ an actor is in a research collaboration network (Bian et al.

2014).

An investigation of three widely used network measures is done to recognise central

nodes:

• Degree centrality Degree centrality is the number of other nodes connected directly to

one node.
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• Closeness centrality Farness is the ‘sum of the geodesic distances’ (the shortest path) of a

node to all other nodes in the network. The reciprocal of farness is closeness centrality. This

definition of closeness is only applicable to networks in which all nodes are connected

through intermediary acquaintances. To taking account of other networks (with all or some

nodes unconnected), Freeman (1979) defined closeness as the ‘sum of reciprocal distances’

of a particular node to all other nodes in the network. In this way, infinite distances

contribute a value of zero. The degree of how rapid information can pass from a node to all

other nodes is estimated by the closeness centrality value (Newman 2005).

• Betweenness centrality Betweenness centrality is the number of shortest paths (between

all pairs of nodes) that pass through a certain node (Borgatti 1995). A node’s power of

the communication between other nodes in the network is estimated by betweenness

centrality (Freeman 1979). Theoretically, in the research collaboration networks, a

node having a high betweenness centrality value can be considered as the actor

regularly plays the role of a bridge for other actors in the research community.

For the network level rather than just actor level, centrality measures are also assess-

able. According to Freeman (1979), the Network Centralisation (NC) can be defined as a

property of the whole network (for each of degree, closeness and betweenness cen-

tralisation) as:

NC ¼
X
ðCmax � Cni

Þ=
X
ðCmax � Cni

Þ
� �

max
;

where Cni
is the centrality of node ni. The centrality measures of an actor in social network

analysis are mostly used to establish the relative influence/significance of it in the network.

We can grade an actor’s influence in the research community by using degree, closeness

and betweenness centrality measures.

Reviewing the literature, degree centrality is mostly considered ‘as a measure of im-

mediate influence’ which can be interpreted as the ability to affect others ‘directly or in one

time period’ (Wasserman 1994; Borgatti 2005). Closeness centrality, on the other hand, is

another ‘influence measure in sociology’ because it is believed that actors ‘with short

paths’ to others influence them more (Kempe et al. 2003). Closeness is sometimes reflected

as an index of the time until arrival of what is flowing in the network (Borgatti 1995). In

the same way, betweenness centrality characterises ‘how influential’ an actor is in ‘com-

munications between’ its pairs (Freeman 1977; Goh et al. 2003). This can be inferred as the

‘control’ of a given actor on the network flow (Borgatti 2005).

Nevertheless, in the network, the ranking orders of these three centrality measures are

difficult to correlate. As a result, in order to merge multiple rankings of actors to produce a

more applicable ranking of influential actors, we use a rank aggregation method. By doing

so, two concepts of ‘Relative Centrality’ (RCni
) of each node ni (for each of degree,

closeness and betweenness centralities) and ‘Comparative Influence’ (CIni
) of each node

can be defined:

RCni
¼ Cni

=Cmax

CIni
¼
ðRCni

Þdegree þ ðRCni
Þcloseness þ ðRCni

Þbetweenness

3

A single figure of merit is provided by the comparative influence (0�CIni
� 1) which

shows the level of influence of an actor in the network. What this measure reveals is the
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overall importance of an actor compared with all other actors in the network. The

contributors of this overall score are: the ability of an actor to affect others directly, its

capacity to influence them in a short time, and its power to control their communications.

Therefore, when the comparative influence of a node is higher, one can conclude that the

authority of that actor in the network is higher.

Dataset

In this paper, different topologies of research collaboration networks across countries are

investigated. ‘performance in mammography’ is chosen as the area of interest (and

importance) within Medical Imaging domain. In discussion with experts, reading

mammograms was identified as one of the most challenging diagnoses in the profession,

with high error rates comparatively. From a Medical Imaging perspective, performance

can include: observer (reader) performance, technical (equipment and detectors) per-

formance and system performance. All scientific co-authorships in certain area of

‘mammography performance’ are provided by this research collaboration network.

Bibliographical data was extracted with the help of lexical search methods to build the

dataset for this study. This includes certain search strings applied to the keywords of

publications. We used the strings of both ‘mammography’ and ‘performance’ and limited

the document to journal articles (ar) and conference papers (cp), however, no publication

year restriction was made.

730 publications from 1984 until 2013 (inclusive) were comprised in the meta-data

extracted from Scopus. Affiliation data was quite important for our research since we

planned to carry out macro level analysis (country level). We manually applied data

cleaning to meta-data since certain information was missed in the original dataset.

Therefore, from the final dataset consist of 719 publications, the contributions of 2189

authors (3543 unique author-papers) from 48 countries were reflected. We used the

CRRCN (Tavakoli Taba and Mirkarimi 2014) in the next step; an application program

based upon Macro Excel and R program (R Core Team 2013) which extracts co-authorship

associations among actors, and stored the relational matrices.

Fig. 2 Comparison of the number publications per year in mammography performance and mammography
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Results and discussion

Descriptive statistics

To compare the expansion of publications in mammography performance with its super-

field of ‘mammography’, we extracted another dataset from Scopus. This time, we took out

all the journal articles and conference papers with the word ‘mammography’ in their

keywords. Again, we did not apply any restriction on publication year. The first publication

in this new dataset goes back to 1945, which is about 40 years before the first publication

in mammography performance in 1984. Figure 2 compares the number of publications in

the field of mammography and its sub-field of mammography performance from 1945 to

2013.

The number of publications in mammography have been always below nine papers per

annum in the first 20 years (19 years to be exact). In 1964, the number of publications

rapidly rises to 59 papers compared with just two papers in 1963. In the next 20 years, the

number of publications in mammography increases gradually, reaching to 212 papers in

1984. This is the point that the first paper on mammography performance was published

and we believe the emergence of this sub-field may be a good sign for the maturity of the

super-field. This fits with the technological advances in medical imaging that allow for

mammography to be considered a viable and reliable radiological examination.

Based on work by Jarrett and Clarkson (2002) and Reay Atkinson (2010), the time to

reach scientific maturity is considered as a time constant which [after Chen and Yu (2001)]

may be about 45 years. This would suggest that, in 1985–1990, the scientific field of

mammography has moved from adolescence to maturity and adulthood (Modis 1994).

Figure 2 demonstrates clearly that the rate of occurrence of publications in mammography

has amplified after this period.

To be able to compare the growth rate of publications in mammography with the

subfield of mammography performance, we need to make the data dimensionless. In order

to do this, we used Z-Score statistical measure. Z-Score analysis is quite beneficial to

determine score’s relationship to the mean in a group of scores. Figure 3 shows the

dimensionless growth rate of publications in both the super-field and its sub-field. From

this figure, it can be understood that although the number of publications in mammography

and mammography performance are very different, the growth rate is quite similar, except

that the growth in sub-field have many fluctuations comparing with the super-field which is

now matured. This is because mammography is now accepted as a part of medical

imaging; it is the technology (image receptor, digital display) and ‘performance of units

and readers’ that is now fluid.

Within the perspective of Performance in Mammography, our dataset has the ability to

illustrate the expansion and development of Medical Imaging research publications. The

incidence of publications per year between 1984 and 2013 can be seen in Fig. 4 in which a

considerable escalation in the number of publications has taken place over time. In 1984,

the first paper was published, in 1985 the second paper was published and there was no

paper until 1990 which was considered a restart for publications. Between 1991 and 1997,

a reasonable increase with minor fluctuations is demonstrated in the graph. A significant

development at this stage can be seen when the number of publications increased from 9 in

1997 to 43 in 2006. Apart from certain negligible perturbations (e.g. 2006–2007 and

2012–2013), the general trend of growth has continued. The first perturbation may be a

consequence of digital mammography development in 2005–2008.
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In order to have a better understanding of the development of longitudinal research

collaboration networks, we divided the whole time-frame of the dataset (30 years) into

three equal periods of 10 year; t1: 1984–1993, t2: 1994–2003 and t3: 2004–2013. By this

division, evaluation of the network can be facilitated in its real time of evolution rather

than only in its static topography. Certain attributes of the dataset at different periods of

time (t1, t2, t3) are shown in obtainable at different periods.

The corresponding amount of each attribute for the whole time-frame of the study can

be shown in column t1-3. In this column, the first two attributes (number of papers and

number of unique author-papers), can be calculated by summing up their related amounts

of all periods. Nevertheless, it does not happen for two other attributes (number of authors

and number of countries) since the identical agents might be obtainable at different periods

(Table 1).

Static–comparative analysis

At a macro/country level, by using the UCINET (Borgatti et al. 2002), the topology of the

network of research collaborations was evaluated over time. The publications which tend

to have at least one author from another country (according to the academic affiliations of

the authors) are considered as an international collaboration. The development of this

Fig. 3 Growth rate of publications per year in mammography performance and mammography

Fig. 4 Number of publications per year in mammography performance
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research collaboration network in three graphs has been shown in Fig. 5—one graph for

each period of time. In t1, there was an international collaboration in none of the total ten

countries, which had at least one publication. In t2, the network develops when 7 out of 22

countries exhibit international collaboration (in two components). Moreover, the evolution

of this research collaboration network displays that 33 out of 46 countries were associated

in one ‘main component’ in t3. In all the graphs of Fig. 5, the strength of each tie can be

Table 1 The dataset and its attributes over time

t1 (1984–1993) t2 (1994–2003) t3(2004–2013) t1-3 (1984–2013)

Number of papers 23 159 537 719

Number of unique author-papers 91 709 2743 3543

Number of authors 87 549 1807 2189

Number of countries 10 22 46 47

Fig. 5 The evolvement of the research collaboration network over time
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seen by the width of related line—the frequency of research collaborations between two

countries.

The results of analysis can be shown in Table 2. Except for Average Value and

Clustering Coefficients, all measures are calculated based upon binary (un-weighted)

networks. For t1, the most of network measures are equal to zero (because there is lack of

international collaborations). As time passes, the network is getting denser with 8 % of all

possible links being present among countries in t3 compared to t2 with 2.60 %. The

quantity of pairs of nodes that can reach each other (have a tie with any length among

them) is known as connectedness. Comparing the connectedness values over time, the

network was found to be very low-connected (4.80 %) in t2, whereas in t3 it was partly

connected where 51 % of the countries are accessible by each other.

Evaluating the average values of the weighted graphs (mean of the weighted degrees)

show that, on average, each country has less than one international collaboration in each

period (0.21 in t2 and 0.79 links in t3), which is very low. Comparing the overall weighted

clustering coefficients and average values for each period, it is seen that clustering coef-

ficients values are four times and eight times larger for t2 and t3 respectively. As a result, it

can be concluded that some collaborative countries are enclosed by local neighbourhoods

which are reasonably denser compared to their entire networks and over the time these

local neighbourhoods are getting denser.

On the basis of the centrality measures, it can be seen that from t1 to t3, the research

collaboration networks are getting more centralised longitudinally. None of the measures

are significant in the first two periods, thus the network is not centralised in t1 and t2 at all.

Degree Centralisation values show that at the most evolved state of the network, which is

t3, this collaboration network is centralised as 46.46 % of a star network with the same size

(the most centralised or most unequal possible network). In other words, the degree of

inequality among all countries is around one half for this network. In t3, the international

network is decentralised considering the betweenness centralisation but the network is

centralised around some countries close to each other (having high closeness centrality).

Here, closeness is calculated as sum of reciprocal distances from one country to others (as

all actors are not connected to each other). The high closeness centralisation indicates high

flow of information in the network.

Static topology analysis

In this section, the most influential and collaborative countries are recognised using static

topology (aggregated network).

Table 2 Network properties of research collaborations in different time periods

t1 (1984–1993) t2 (1994–2003) t3 (2004–2013)

Density 0.00 % 2.60 % 8.00 %

Connectedness 0.00 % 4.80 % 51.00 %

Average value (weighted) 0.00 0.21 0.79

Clustering coefficients (weighted) 0.00 0.83 6.12

Degree network centralisation 0.00 % 12.86 % 46.46 %

Closeness network centralisation 0.00 % 28.2 0 % 73.02 %

Betweenness network centralisation 0.00 % 1.84 % 31.04 %
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Identifying influential countries

From 1984 to 2013 (t1-3), Fig. 6 depicts the aggregated network of research collabora-

tions. When a large numbers of counties (33 out of 47) are linked to one another by paths

of intermediate acquaintances, a main component is formed. No international collaboration

is present among the remaining 14 counties and no shape of the network is formed either.

In this section, all calculations belong to the main component; so, closeness is computed

based upon traditional definition as reciprocal of sum of geodesic distances from one

country to all others. For these investigations, we transformed all valued data to binary.

The top ten influential and collaborative countries of the network are identified in

Table 3. The counties are listed in descending order of their comparative influence. Three

normalised centrality measures of degree, closeness and betweenness are computed first for

each country. Then, to examine countries’ influence in the network, we use our rank

aggregation formulation which is described in the section ‘‘Materials and methods’’.

Fig. 6 Aggregated network of research collaborations

Table 3 The most influential countries, their centrality measures and associated comparative influence (CI)

Degree
centrality

Closeness
centrality

Betweenness
centrality

Comparative
influence (CI) (%)

United States 78.1 80.0 60.3 100

Netherlands 46.9 62.7 7.9 51

United Kingdom 40.6 58.2 14.2 49

Switzerland 37.5 57.1 2.4 41

Italy 31.3 57.1 3.2 39

Germany 31.3 55.2 4.4 39

Norway 28.1 53.3 1.7 35

Sweden 25.0 53.3 0.6 33

Belgium 21.9 52.5 3.4 33

Spain 12.5 50.0 12.1 33
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In this field, United States is considered the most influential country since it has the

most degree, closeness and betweenness centralities and, as a result, the comparative

influence of 100 % appears. Netherlands is in the second position as it has 51 % com-

parative influence, next in line is United Kingdom and Switzerland having 49, and 41 %

comparative influence respectively. From Table 3, the same ranking order as comparative

influence can be seen in degree centrality and closeness centrality; however, this is not the

case for betweenness centrality. As a result, it can be concluded that in research col-

laboration networks, countries having larger number of collaborations and larger reciprocal

distances to all other counties (closer) are more influential than countries having just a

bridge role (high betweenness centrality).

Conclusions

In this paper, we presented a detailed account of descriptive, static and static–comparative

of research collaboration networks in ‘mammography performance’ over 30 years. Firstly,

we examined the expansion and development of publications of mammography perfor-

mance from 1984 until 2013. We also compared the publications in the field of mam-

mography and its sub-field of mammography performance from 1945 to 2013. Our analysis

shows that the emergence of the subfield occurred at the end of adolescence (beginning of

maturity) stage of the super-field in 1985–1990. Moreover, to evaluate the association of

the growth rate of publications in the sub-field case-study and its super-field, we used

dimensionless data (using Z-Score analysis) and found that the growth rate is almost the

same for two.

At the next stage, we brought into focus research collaboration network of extracted

meta-data at country level to investigate evolution of this network over time and illustrate

the countries that are rapidly developing in this scientific field. For static–comparative

analyses, we divided the whole time-frame of the dataset into three equal periods of

10 year; t1: 1984–1993, t2: 1994–2003 and t3: 2004–2013.

In a research collaboration network, it is very common that certain connections are

‘stronger’ than others. To reflect this fact, in calculating some of network measures (av-

erage value and clustering coefficients), ties between actors are weighted through assigning

the number of collaborations between two countries as the tie weight. This is not the case

for all of our calculations because some measures are more meaningful when computed

from binary networks, as discussed.

For t1, there is a lack of any international collaborations among the counties with

publications in mammography performance. However, the network became denser and

more connected over time according to our analyses. In addition, the network demonstrates

high weighted links in its clusters, and lesser weights and connections among these

clusters. These local clusters are also becoming denser over time. The research col-

laboration network is becoming significantly more centralised when longitudinally ac-

cording to degree, betweenness and closeness centrality measures.

For static topography, we examined the aggregated network to find out which counties

influence the network as a whole. We applied a rank aggregation technique to degree,

closeness and betweenness centrality measures in order to gain a single figure of merit for

the influence of each actor, ‘comparative influence’ as we named. The methods and

findings presented in this work aim to assist identifying key actors in other research

collaboration networks.

542 Scientometrics (2015) 103:531–544

123



In our dataset, there is a strong correlation between the level of degree and closeness

centralities of an actor and its comparative influence in the network. The United States, the

Netherlands and the United Kingdom were, respectively, identified as the most influential

counties in research publications within the area of mammography performance.

References

Abbasi, A., Altmann, J., & Hossain, L. (2011a). Identifying the effects of co-authorship networks on the
performance of scholars: A correlation and regression analysis of performance measures and social
network analysis measures. Journal of Informetrics, 5, 594–607.

Abbasi, A., Hossain, L., Uddin, S., et al. (2011b). Evolutionary dynamics of scientific collaboration net-
works: Multi-levels and cross-time analysis. Scientometrics, 89, 687–710.

Abbasi, A., & Kapucu, N. (2012). Structural dynamics of organizations during the evolution of interorga-
nizational networks in disaster response. Journal of Homeland Security and Emergency Management,
9(1).
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