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Abstract We aim at identifying (1) whether and how various data sources influence

mapping an intellectual structure of the field of bioinformatics, and (2) the landscape of

bioinformatics by integrating those sources. To this end, we conduct a comprehensive bib-

liometric analysis by harvesting bibliographic information from DBLP, PubMed Central, and

Web of Science. We then measure and compare topological characteristics of networks

generated using these sources. The results show a dichotomous pattern dominated by PubMed

Central and WoS. In addition, a few influential scientists in the field of bioinformatics receive

very high citations from their colleagues, which is a driving force to bloom the field. These

few scientists are connected to a much larger research community. Most of the researchers are

intellectually linked within a few steps, in spite of the domain’s interdisciplinary charac-

teristics. Particularly, influential authors consist of a small world. We also identify that there

is not a coherent body of discipline in bioinformatics since the field is still under development.

Finally, the journals and conferences indexed by each source cover different research topics,

and PubMed Central is more inclusive than DBLP as an indexing database.

Keywords Bibliometrics � Big data � Bioinformatics � Complete topology �
Co-authorship network � Co-citation network

Introduction

Bibliometrics is a research method which uses quantitative and statistical analyses to

describe patterns of publication within given field or body of literature. Researchers use
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bibliometrics to determine the influence of a certain scientist, or to describe the relationship

between two or more researchers or works. In this respect, bibliometrics shares similar

scientific objectives with social network analysis (SNA) which focuses on discovering

implicit structures in the social environment in which certain relational and interactive

units exist (Wasserman and Katherine 1994). In SNA, the units of analysis are various

actors (users of social web) and topics (e.g. opinions, diseases) whereas in bibliometrics the

units are authors and bibliographic entities such as papers and journals.

Both bibliometrics and SNA have attracted interest from various scientific communities

over the last decades. Bibliometric analyses reveal interesting features of academic and

social communities; they can be used to uncover cohesive collaboration among researchers

and invisible communities, and to represent the intellectual structure of a knowledge

domain (Newman 2001). In addition, these approaches often reflect the movement of an

author’s research domain (Huang and Huang 2006). SNA views social relationships in

terms of network theory, consisting of nodes representing individual actors within the

network and ties which represent relationships between the individuals, such as friendship,

kinship, organizations, sexual relationships, etc. (Abraham et al. 2010). It employs graph

theory which focuses on identifying mathematical structures used to model pairwise

relations between objects.

As mentioned earlier, both bibliometric and scientific networks have been well-studied

(e.g. Newman 2001, 2004; Velden et al. 2009). Some of these previous studies have aimed

at visualizing datasets with the goal of highlighting the most influential researchers in

academic domains and their relationships among them. Others have tried to uncover some

statistical features by comparing citation databases (Kulkarni et al. 2009). Specifically in

the field of bioinformatics, several researchers have applied bibliometric analyses to

understand the development of the field (Glänzel et al. 2009; Huang et al. 2012; Janssens

et al. 2007; Manoharan et al. 2011; Song et al. 2013a, b). A number of researchers have

concentrated on not only content and author network analyses but biomedical entities as a

unit of analysis for automatic discovery, investigation of protein–protein or drug–drug

interactions, and so on (He et al. 2011; Kolchinsky et al. 2010; Marques-Pita and Rocha

2013).

Previous approaches, however, have a few limitations. First, they have relied on bib-

liographic information provided by an individual database (Huang et al. 2012; Manoharan

et al. 2011; Patra and Mishra 2006; Song et al. 2013a) or they have selectively chosen core

literatures (Glänzel et al. 2009; Janssens et al. 2007). Such silos of data sources prevent

them from adequately exploring how a variety of characteristics derived from their own

scientific objectives affect the formation of the intellectual structure. Thus, they have not

considered a complete picture of bioinformatics. To our best knowledge, the present study

is the first to integrate diverse data sources for bibliometric analysis in bioinformatics.

Although some of the previous studies applied bibliometric analyses to bibliographic data

of bioinformatics, their primary focuses were not on investigating the overall intellectual

structure in the field of bioinformatics.

Our research objectives are three-fold. The first is to investigate whether and how

various data sources (DBLP, PubMed Central, and Web of Science), which have different

scientific scope in terms of indexed journals and conference papers, influence mapping the

intellectual structure of bioinformatics. The second is to identify a composite landscape of

bioinformatics by integrating the bibliometric networks derived from those sources if they

demonstrate only a partial picture. The third is to apply SNA techniques to analyze the

result produced by bibliometric methods to examine if there are distinctive characteristics
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of bioinformatics communities. We employ two different approaches of bibliometric

analysis: (1) co-authorship analysis, and (2) co-citation analysis.

The next section discusses related work. We introduce the procedure for co-authorship

and co-citation network analyses in the ‘‘Methodology’’ section. We compare and analyze

the experiment in the ‘‘Results’’ section.

Related works

There have been rigorous attempts to discover intellectual structures that are representative

of selected knowledge domains. They empirically have the existence of scientific net-

works. A bibliometric network is generally defined as a set of vertices (relationships)

between nodes (authors), with some additional information on the vertices and/or the nodes

in the graph (Barnett 2011). That is, the graph’s nodes represent academic researchers and

the graph’s edges represent scientific interactions (Nooy et al. 2005). In addition, they offer

techniques and concepts to describe structural properties of networks such as cohesive sub-

groups, brokerage roles of the members of networks and detecting potential hierarchies in

networks (Nooy et al. 2005; Wasserman and Katherine 1994).

Numerous researchers have applied bibliometric analyses to reveal scientific interac-

tions among researchers in research domains including information science and bioinfor-

matics. In the following section, we discuss previous studies.

We focus on two major approaches to bibliometric analysis, co-authorship and co-

citation analyses. Co-authorship analysis focuses on an author’s collaborators as a unit of

analysis, while co-citation analysis is based on a pair of authors cited by a third party. We

adopt both perspectives for scientific network analysis in this paper.

Bibliometric approaches in the field of bioinformatics

Bibliometric analyses have been used to identify scientific interactions among bioinfor-

matics researchers, and to investigate the formation and evolution of the field itself. Some

papers have explored the rapid and diversified growth of the scientific literatures in bio-

informatics (Patra and Mishra 2006; Perez-Iratxeta et al. 2007; Song et al. 2013b). Those

studies have identified key features of the field such as core primary journals and pro-

ductivity patterns of authors and their institutions by analyzing literatures indexed in Web

of Science or PubMed Central. In addition, sub-areas of rapid growth were observed

(Perez-Iratxeta et al. 2007). In their analysis of a few key journals indexed by DBLP, Song

et al. (2013a) found an increasing overlap among bioinformatics journals in terms of topics

based on their measurement of content and network similarities. Huang et al. (2012) and

Manoharan et al. (2011) conducted bibliometric experiments covering manuscripts indexed

by Web of Science. Through these studies, they identified that just a few countries tend to

produce the majority of the publications in the domain (Manoharan et al. 2011), and that

citations of the bioinformatics journals were field-dependent with scattered patterns in

article life span and citing propensity (Huang et al. 2012). Based on 3,910 publications by

Brazilian authors on seven diseases retrieved from Web of Science, Morel et al. (2009)

identified co-authorship network maps with selected biomedical terms (disease). Finally, in

addition to citation-based bibliometric techniques, some studies have instead aimed to

enhance the performance of text mining techniques for network analysis (Glänzel et al.

2009; Janssens et al. 2007).
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However, these approaches are based on bibliographic information provided by indi-

vidual data sources or they selectively chose core literatures. None of these considered how

various data sources which have different scientific scope in terms of indexed journals and

conference papers may have influenced the outcome of mapping the intellectual structure

of a certain domain. Therefore, this study focuses on identifying the characteristics of

various data sources, each with their own academic scopes, and how they affect the

depiction of the intellectual structure of a certain domain when analyzed using bibliometric

techniques. Ultimately, we show a comprehensive and robust network for the field of

bioinformatics.

Co-authorship analysis

Scientific collaboration is a complex social phenomenon that has been systematically

studied (Glänzel and Schubert 2004). In early studies, many researchers tried to identify

why and how collaboration occurs. Several studies reported increased collaboration among

researchers in the context of growing funding, that is, collaboration is affected by eco-

nomic factors (Clarke 1964, 1967; Heffner 1981; Price and Beaver 1966; Smith 1958). It

was later found that these factors motivate co-operation in ‘less expensive’ fields such as

pure mathematics and theoretical research in social sciences (Glänzel and Schubert 2004).

Besides the economic factors, intra-scientific factors, especially changing communication

patterns and increasing mobility of scientists, have also been shown to stimulate collab-

oration (Beaver and Rosen 1978, 1979; Luukkonen et al. 1992, 1993). Subsequent research

focused on discovering how co-authorship relates to scientific communities in a specific

research domain. In this context, some research has performed small-scale statistical

analyses of such as frequency of co-authored articles by particular authors or authors at

particular institutions (Newman 2001).

With the advent of comprehensive online bibliographies, the construction of complete

or near-complete co-authorship networks for entire fields became possible. Drawing in

these new capabilities, researchers established large-scale networks representing research

in nearly every domain including biology, computer science, and physics. Their findings

confirmed the existence of the invisible community in analyzing topologies, showing the

distinct differences between author clusters. These works also showed (1) intellectual maps

of specific scientific areas (Day et al. 2010; Erma and Todorovski 2010; Glänzel and

Schubert 2004; Ioannidis 2008; Morel et al. 2009), (2) sub-clusters representing further

detail of the collaborative structure of particular areas (Hou et al. 2006), and (3) academic

and communicative practices of certain domains (Catala-Lopez et al. 2012; Day et al.

2010; Glänzel and Schubert 2004; Newman 2001; Velden et al. 2009). Other studies have

compared co-authorship networks among different scientific fields, and analyzed collab-

orative practices in domain-dependent communities (Newman 2001, 2004). These results

reveal that each scientific community seems to constitute its own ‘small world’, meaning

the networks are highly clustered. Other works weigh an individual’s contribution in a co-

authored work (Hany et al. 2009; Huang and Huang 2006), and applied visualization

techniques (Catala-Lopez et al. 2012; Huang and Huang 2006). A co-authorship network

analysis in bioinformatics was reported by Song et al. (2013a). They used selected journals

and conferences from DBLP for the co-authorship analysis and found that bioinformatics is

fast-growing, dynamic and field dependent. By analyzing and comparing co-authorship

networks from three different databases, we seek to examine how the characteristics of

each data source affect the conceptualization of an invisible communities.
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Co-citation analysis

Knowledge flow may be seen as a sociocultural phenomenon in which knowledge is

transferred from one to another entity among people, friends, families, communities, or

organizations. Such transfers have been investigated, based on links from cited papers to

citing papers. A citation analysis which involves pairs of authors who are cited together is

called an ‘‘author co-citation’’ analysis (Kim and Barnett 2008). Traditionally, the goal of

co-citation analysis is to identify whether cited papers are conceptually connected through

a citing paper and how many co-citations a paper has accumulated. White and Griffith

(1981) introduced the concept of co-citation analysis as a literature measure for observa-

tion of intellectual structure. This foundational study visualized the intellectual structure of

the field of information science, and the resulting map showed identifiable author groups,

proximities of authors within group and across group boundaries, and positions of authors

using a Multi-Dimensional Scaling (MDS) space. Several subsequent studies have revealed

(1) research trends in diverse knowledge domains, (2) formation, migration, and diffusion

of information, and (3) characteristics of scholarly communication of particular scientific

domains (Perry and Rice 1998; White 2003b). While many studies in this area have applied

the general steps and techniques of classic author co-citation analysis to different research

domains with minor or few modifications, a few have focused on the application of

different statistical approaches to investigating various characteristics of co-citation net-

works (Ahlgren et al. 2003; Kulkarni et al. 2009; Leydesdorff 2005; Leydesdorff and

Vaughan 2006; White 2003a). For instance, there is disagreement as to whether a corre-

lation measure is appropriate for analyzing the co-occurring authors appearing on co-

citation count matrices, Other studies have focused on demonstrating different approaches

to counting frequency of co-citations such as first author co-citation and pure co-citation

(Persson 2001; Rousseau and Zuccala 2004; Zhao 2006).

Co-citation analysis has been employed in conjunction with SNA techniques. Wass-

erman and Katherine (1994) argued that citation analysis might be a plausible approach of

the social network studies that use bibliographic data on ‘‘who cites whom’’. Other

researchers explored the relationship between the concepts from SNA and bibliometrics

(Ding et al. 2009; White et al. 2004). The latter literature investigated whether citers and

citees have interpersonal as well as intellectual ties. The result of the study identified co-

citation as a powerful predictor of those relationships. Ding et al. (2009) employed the

PageRank algorithm (Brin and Page 1998), to explore co-citation networks. They showed

that citation rank is highly correlated with PageRank.

Methodology

Figure 1 shows our citation analysis procedure. Detailed descriptions are provided in the

following sections.

We collected bibliographic information about bioinformatics from three different

sources, Web of Science, DBLP, and PubMed Central. The datasets from DBLP and

PubMed Central data sets are in XML format, and Web of Science provides its data as a

CSV spreadsheet file. We developed XML and spreadsheet parsers to extract needed

bibliographic elements such as author, title, and year. After that, we created co-author and

co-citation pairs. In the last phase, we built co-authorship and co-citation networks for

analysis.
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Data collection

As argued earlier, we aim to identify more complete landscapes of bioinformatics by

author collaboration and author co-citation analysis. Nonetheless, the distinction of the

domain remains unclear because the field of bioinformatics is highly interdisciplinary and

relatively new. We operationalize bioinformatics as follows: conceptualizing biology in

terms of macromolecules (in the sense of physical-chemistry) and then applying ‘‘infor-

matics’’ techniques (derived from disciplines such as applied maths, computer science, and

statistics) to understand and organize the information associated with these molecules, on a

large-scale (Luscombe et al. 2001). This definition rationalizes our criteria of collecting

datasets.

To accomplish our research objectives with the above definition, we collected data from

the three different databases which index scientific papers in the field of bioinformatics.

Two important criteria for the database selection were: (1) whether the subject matter of

the databases covered the field of bioinformatics, and (2) whether the databases had

complete bibliographies to index papers. It was important to gather several data sets since

large-scale data collection influences the construction of complete or near-complete co-

Fig. 1 Citation analysis procedure
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authorship/co-citation networks. Given these criteria, we chose three databases—DBLP,

PubMed Central, and ISI Web of Science.

DBLP is one of the largest freely available bibliographic data sources on Information

Science. It provides information on major computing journals and conference proceedings

between the years 1936 and 2012. It also tracks proceedings papers of many conferences.

From DBLP, we collected bibliographic information of 14,604 papers from 52 indexed

conference proceedings and journals in the field of bioinformatics, from 1985 to 2012

inclusively. The data included (1) 15 conferences classified as bioinformatics conferences

by DBLP (http://www.informatik.uni-trier.de/*ley/db/bio.html) and (2) 97 conferences

and journals (http://www.informatik.uni-trier.de/*ley/db/conf/indexa.html) that were

selected if the term ‘‘bio’’ were part of the conference name in the DBLP category. After

removing duplicates from these two sources and irrelevant conferences to bioinformatics

such as Bio-Inspired Design of Networks (BIOWIRE), International Conference on

Biology, Informatics, and Mathematics (JOBIM), Languages in Biology and Medicine

(LBM), Knowledge Discovery and Emergent Complexity in Bioinformatics (KDECB),

and Genetic and Evolutionary Computing (WGEC), we ended up including 52 conferences

and journals for analysis. The bibliographic information from DBLP, however, does not

include citations. Therefore, we only include this dataset in co-authorship analysis but

exclude it from co-citation analysis.

PubMed Central is a database of full-text scientific literature in biomedical and life

sciences developed by the US National Library of Medicine (NLM) as an online archive of

biomedical journal articles. As of January 2013, the archive contains approximately 2.6

million full-text items, including articles, editorials and letters. For PubMed Central, we

crawled bibliographic data of 20,869 articles from 49 indexed journals in the same field,

from 2001 to 2012 inclusively. We used the same selection criteria as Song et al. (2013b).

Web of Science (WoS) is an online subscription-based scientific citation indexing

service maintained by Thomson Reuters that provides a comprehensive citation search. It

gives access to multiple databases that reference cross-disciplinary research, which allows

for in-depth exploration of specialized sub-fields within an academic or scientific disci-

pline. We downloaded 62,523 records indexed in 47 journals in the field of bionformatics,

from 1990 to 2012 inclusively. We selected the journals from the list of the Mathematical

and Computational Biology section in Web of Science’s Journal Citation Reports (JCR).

Huang et al. (2012) and Song et al. (2013b) used the data from Web of Science’s JCR

section related in bioinformatics, and we also adopted this data selection criterion.

By basing our selection criteria justified by previous studies, we aim to unbiasedly

collect journals and conference papers in the field of bioinformatics. We assume that

collecting data from different sources would be beneficial to captivating a more complete

topology in sciences. Therefore, our data selection criteria support our overarching

research goal of identifying the complete landscape of bioinformatics.

We compiled our data set with author, year of publication, article title, journal title, and

list of cited authors (except for DBLP as explained above). On average, there were 3.61

(DBLP), 5.67 (PubMed), and 3.61 (WoS) collaborative authors participated in a paper. The

difference across databases might be originated from several reasons such as each data-

base’s indexing policy or scientific scope in collecting manuscripts. We aim to address this

issue in the future study. In addition, PubMed Central has 32.08, and WoS has 30.30 cited

references on average. Table 1 briefly summarizes our data collection.

Figure 2 shows the number of overlapping journals among databases. Only five journals

are included in all three databases: Algorithms for Molecular Biology, Bioinformatics,

BMC Bioinformatics, Evolutionary Bioinformatics, and PLoS Computational Biology. In
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addition, the overlap between pairs of databases also is low (DBLP and PubMed Central: 9;

DBLP and Web of Science: 7; PubMed Central and Web of Science: 5). This supports the

argument of our study that suggests that the inclusion of multiple databases will aid in

establishing a complete map of bioinformatics. Through this triangulation of the dataset,

we improve the data integrity. In addition, we assume that the few overlaps of journals and

conferences across databases might be caused by multidisciplinarity and immaturity of the

domain. Bioinformatics is relatively new, fast-growing, and co-evolving across the sub-

communities (Song et al. 2013b). Therefore, it is likely that there is not a coherent field of

bioinformatics.

Figure 3 illustrates that the entire number of articles per year indexed by two databases

(Web of Science and PubMed Central) has increased exponentially since 2000s whereas

DBLP shows a linear increase over full length of the period of analysis. This difference

primarily comes from the fact that DBLP majorly provides bibliographic information on

computer science journals and proceedings. Overall, these trends indicate the continual

explosion of publications in this domain.

Establishing co-authorship and co-citation networks

Prior to extracting author-based networks, the problem of ambiguous author names needs

to be addressed so that one node on each topology represents a different researcher. This is

a challenging issue which cannot be addressed fully within the scope of the current paper;

however, based on the characteristics of each dataset, we take different approaches to

address this issue. First, PubMed Central offers completed author information including

organizational affiliation. Therefore, we utilize both names and affiliations to identify

unique authors. However, bibliographic descriptions from DBLP and Web of Science do

not include an author’s institutional affiliation. To disambiguate these data, we replace

punctuation marks in the author field with white spaces, and make the author’s name

upper-case.

To construct co-author and co-citation pairs for author-based networks, we employed an

intuitive approach. Given a paper p consisting of n number of collaborative authors (a1,

a2,…, an) and cited articles (c1, c2,…, cn), let each co-author an in a publication p be paired

with other collaborators. Likewise, generation of co-citation pairs applies the same way to

co-authors cnan in a cited article. For instance, assume that a certain article has four co-

authors—a1, a2, a3, and a4. Then, six pairs can be generated as follows: (a1;a2), (a1;a3),

(a1;a4), (a2;a3), (a2;a4), (a3;a4). By counting these cumulative author pairs, we measure the

strength of the undirected vertices (ties between authors). For visualization of each

Table 1 Descriptive data statistics

DBLP PubMed Central Web of Science

# of indexed venues 52 49 47

# of articles 14,604 20,869 62,523

# of authors 48,924 71,294 87,138

Average # of authors 3.35 3.42 1.39

Average # of co-authors 3.61 5.67 3.61

Average # of citations N/A 32.08 30.30

Time span 1985–2012 2001–2012 1990–2012
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network, we employ Gephi, an open source visualization and manipulation tool (http://

gephi.org/). Figure 4 describes the way we created these kinds of networks.

Topological measurement

In addition to establishing co-authorship and co-citation networks, we utilize their topology

to compare methods of network formation using the following measures:

• Degree centrality is defined as the number of ties that a node has (Sade 1989). For a

standardized score, each score needs to be divided by n - 1 where n refers to the

number of nodes.

• Clustering coefficient is a measure of degree to which nodes in a graph tend to cluster

together. The clustering coefficient for the whole network is the average of the local

clustering coefficients of all the vertices n (Watts and Strogatz 1998).

• Network diameter is the number of shortest paths between any two nodes in the

network. The diameter is representative of the linear size of a network (Chung 1984).

Fig. 2 Overlapping journals among three data sources
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• Graph density is an indicator to measure how close the number of edges is to the

maximal number of edges. If a certain graph has a few edges, it is a sparse graph

(Coleman and Moré 1983).

• Average path length is defined as the average distance between all pair of its nodes

(Chen et al. 2008). That is, it indicates the average number of steps along the shortest

paths for all pairs of network nodes. It measures the efficiency of information or mass

transport on a network.

• A community is a densely connected subset of nodes that is only sparsely linked to the

remaining network. We apply the modularity algorithm (Blondel et al. 2008) to the

entire network for discovering hidden behavioral or functional communities of the

network. This technique also supports better exploration and browsing tools for very

large collections.

Table 2 shows formula and value range of each measure criterion.

Results

Co-authorship analysis

First, we generated three co-authorship topologies from each dataset based on the afore-

mentioned approach to network construction. Because of appropriateness of their sizes, we

did not reduce the scale of each network. As a result, each network is built as follows: the

DBLP network with 27,396 nodes and 68,865 edges, the PubMed Central network with

68,531 nodes and 466,614 edges, and the WoS network with 108,520 nodes and 322,140

edges. Table 3 specifies the statistical description of each co-authorship network.

Figure 5 shows the co-authorship networks. As suggested by comparisons with Table 3,

these maps reflect the characteristics of each domain derived from the databases, and show

distinct topological features per database. The researchers whose collaborative studies

Fig. 4 Author network establishment
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were published in the journals indexed by PubMed Central consist of the smallest world,

based on the observation on the topological statistics (Clustering Coefficient: 0.864; Net-

work Diameter: 18; Graph Density: 0.000198; Average Path Length: 6.253). Each co-

authorship network has only one or two major communities with a few subgroups. We

assume that these topological characteristics might be due to the immaturity or the mul-

tidisciplinarity of the domain. As a relatively new field, bioinformatics is fast-growing and

co-evolving across the sub-communities (Song et al. 2013b). In such a young or highly

multidisciplinary domain, it is likely that there is not a coherent field of discipline and a

few influential researchers tend to dominate. The number of Nodes in the Giant Component

also supports this tendency—DBLP: 14,041 nodes which is 51.2 % of the entire nodes;

PubMed Central: 49,601 (72.3 %) nodes out of 68,531; WoS: 69,374 (63.9 %). A high

Clustering Coefficient (DBLP: 0.784; PubMed Central: 0.864; WoS: 0.758) indicates the

bioinformatics community is densely connected. Compared to previous measures by

Newman (2001) ranging from 0.066 to 0.726, our findings show relatively higher density.

The Average Path Length also supports the depiction of a close-knit bioinformatics field;

researchers whose publications were indexed in PubMed Central are less than seven

connections (6.253) apart. In addition, Network Diameter, the number of shortest paths

between any two nodes in the network, of the PubMed Central network is the shortest—

Table 2 Measurements of network analysis

Criterion Formula Value range

Degree centrality
CD Gð Þ ¼

P Vj j
i¼1

CD v�ð Þ�CDðviÞ½ �
H

N/A

Clustering coefficient Cn ¼ 2en

½kn kn�1ð Þ� Min. 0
Max. 1

Network diameter D ¼ ðnþ1Þ
3

Min. 1

Graph density D ¼ 2 Ej j
Vj jð Vj j�1Þ

Min. 0
Max. 1

Average path length LG ¼ 1
nðn�1Þ

P

i;j

dðvi; vjÞ N/A

Modularity
DQ ¼

P
in
þ2ki;in

2m
�

P
tot

ki

2m

� �2
" #

�
P

in

2m
�

P
tot

2m

� �2

� ki

2m

� �2

" #
Min. -0.5
Max. 1

Table 3 Co-authorship network statistics

DBLP PubMed Central Web of Science

# of nodes 27,396 68,531 108,520

# of edges 68,865 466,614 322,140

# of components (sub-clusters) 2,893 3,565 9,269

Nodes in the giant component 14,041 (51.2 %) 49,601 (72.3 %) 69,374 (63.9 %)

Clustering coefficient 0.784 0.864 0.758

Network diameter 25 18 27

Graph density 0.000186 0.000198 0.000054

Average path length 9.561 6.253 9.365

The giant component represents the large group of people connected to one another through paths in the
network (Kumar et al. 2010)
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DBLP: 25; PubMed Central: 18; WoS: 27. Overall, these observations illustrate a specific

aspect of the landscape of bioinformatics that (1) a few influential researchers tend to lead

the academic advancement since the field is emerging and developing, and (2) most of the

researchers are intellectually linked within a few steps in spite of the domain’s interdis-

ciplinary characteristics; all three data sets show high clustering coefficient, and short

average path length and network diameter.

Like Zipf’s Law, the relationship between co-authorship frequency and degree cen-

trality obeys a power law distribution (see Fig. 6), the more frequently the researchers

collaborate, the more influential they are in the field of bioinformatics. This indicates that a

few influential scientists in the field of bioinformatics tend to conduct most of the studies,

accompanying peer researchers.

Next, we constructed a complete co-authorship network through single dimensional data

integration from all three sources. For data integration, we tagged the names of the dat-

abases with co-author pairs, and accumulated the pairs. In addition, we reduced the scale of

the network to include only co-author pairs which appeared more than ten times. That is,

the threshold for edge weight is 10. Previous studies (Börner et al. 2006; Small 1973; Zizi

and Beaudouin-Lafon 1994) employed this straightforward and easy approach to imple-

ment link reduction. We compared the entire network with the reduced one which con-

sisted of more influential researchers in terms of edge weight. Some ‘small and isolated’

clusters were filtered to refine the topological map. Table 4 compares the two types of

complete co-authorship networks.

Figures 7 and 8 show the map of the reduced complete co-authorship network. As

described in Table 4, each version of the complete co-authorship network demonstrates

slightly different characteristics.

First, the complete co-authorship network suggests that more than half (67.5 %) of the

researchers in this domain were part of a single large cluster. In addition, the calculation of

Clustering coefficient of the full complete co-authorship network indicates that the bio-

informatics community is a small world (0.655). Compared to previous literature (Newman

2001), the measure of average path length (8.968) is relatively higher. However, any

researcher could still reach to all other peers through at the most nine personal connections.

In contrast to the complete co-authorship network, the reduced topology shows a dis-

tinguishable pattern: a dichotomous pattern dominated by PubMed Central and WoS (See

Fig. 7). In addition, each of the clusters consists of the giant research community. This

indicates different research interests lie in both databases. Even in the combined dataset, it

is also assumed that bioinformatics is still developing or there is not a coherent body of

discipline in bioinformatics. As discussed earlier, previous works observed that this field is

co-evolving among sub-/inter-disciplinary fields and also diversifying (Song et al. 2013a,

b). If we use a single database such as WoS, we only might reproduce these previously

reported trends. We argue, however, different views (e.g. converging, dichotomous, etc.)

emerge if we use integrated data sources and identify a more complete landscape. In

addition, the network derived from DBLP disappeared behind that of PubMed Central (see

Fig. 7). As illustrated in Fig. 8, this pattern may suggest that authors whose manuscripts

were indexed by PubMed Central tended to submit their manuscripts to the conferences

and journals listed in DBLP. That is, PubMed Central is more inclusive than DBLP. In

reality, the number of duplicated authors between PubMed and DBLP were 4,160 whereas

127 between WoS and DBLP in our data collection. There were some additional findings

from the reduced network: (1) less than 20 % of the researchers have almost half of the

connections (47.9 %), (2) influential co-authors who collaborated more than 10 times

consist of a small world (Clustering coefficient: 0.78; Network Diameter: 22 instead of 28;
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Average Path Length: 7.014) and are more densely connected (Graph Density: 0.000541).

Compared to previous literature (Newman 2001), these observations further support the

aforementioned finding that most of the researchers in bioinformatics are intellectually

Fig. 7 Complete co-authorship network (reduced)

Table 4 Complete co-authorship network statistics

Complete network (full) Complete network (reduced)

# of nodes 200,043 38,929 (19.5 %)

# of edges 855,803 410,043 (47.9 %)

# of components 14,666 1

Nodes in the giant component 135,109 (67.5 %) 38,929

Clustering coefficient 0.655 0.785

Network diameter 28 22

Graph density 0.000427 0.000541

Average path length 8.968 7.014
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linked within a relatively few steps in spite of the domain’s interdisciplinary

characteristics.

The authors who have the highest degree centrality and number of co-authors, like H.-

erich Wichmann, Leena Peltonen and Thomas Illig, tend to be located on the cluster of

PubMed Central in Fig. 7 whereas such concentration is not observed in highly ranked

authors for Web of Science nor DBLP. Table 5 shows the top 10 authors with high degree

centrality for each database. There are few overlapping high influential researchers across

the databases. This further supports our finding that different academic interests lie in each

database, leading to the dichotomous pattern of the scholastic community. It also might be

due to the multidisciplinarity of the domain or there is not a coherent discipline of

bioinformatics.

The findings from the co-authorship analysis are summarized as follows: (1) the

complete landscape shows the dichotomous trend of the domain, (2) a few influential

researchers tend to lead the academic advancement, (3) it is likely that most of the

researchers know each other in this field, (4) PubMed Central is more inclusive than DBLP

as an indexing database, (5) influential co-authors get involved in most of the invisible

Fig. 8 Highlight on the networks from PubMed Central and DBLP
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communities, and consist of the small world, and (6) different high centrality authors occur

in different source clusters.

Co-citation analysis

As described in the above, DBLP does not include any citation information. Therefore, we

excluded the DBLP dataset from the co-citation analysis.

In the same manner as the complete co-authorship network, we produced a reduced co-

citation network consisting of co-cited author pairs which appeared more than ten times

(the threshold for edge weight is ten). We employed this approach because the complete

co-citation network was very large; the number of edges with edge weight 1 were 76.9 %

(10,159,489), and 85.2 % (22,106,578) of the entire links from PubMed Central

(13,209,959), and WoS (25,936,344) respectively. In addition, co-citation pairs with edge

weight greater than 10 were selectively removed if they were isolated (not connected with

major components). The reduced networks were as follows: the PubMed Central network

had 14,424 nodes and 88,534 edges (6.78 and 0.67 % of the entire 212,598 nodes and

13,242,699 edges) and the WoS network had 13,052 nodes and 34,934 edges (3.49 and

0.13 % of the entire 373,952 nodes and 25,936,344 edges). Table 6 summarizes the

properties of the co-citation networks.

Reduced to influential pairs whose edge weight is more than 10, these networks show

characteristics derived from their source databases, and are distinguishable from each other

(see Table 6). In addition, the Giant Components include far more nodes than those of the

co-authorship networks—PubMed Central: 211,881 nodes which is 99.6 % of the entire

nodes; WoS: 373,870 (99.98 %) nodes out of 373,952. This indicates that the majority of

scientists in the field of bioinformatics are involved in one huge community. We argue that

citers in bioinformatics tend to recognize common citees as their major references. This

might be attributed to that bioinformatics is an emerging domain. On the other hand,

Clustering Coefficients for both full topologies are lower than those of the co-authorship

network. However, the co-citation networks are still a small world according to Network

Diameters and Average Path Lengths. These topologies are smaller than the co-authorship

topologies (see Tables 3, 4). The co-citation networks are more densely connected than the

co-authorship networks (PubMed Central: 0.000499; WoS: 0.000897). In terms of the

maximum value of the edge weight, ‘Altschul, S. F. & Pearson, W. R.’ and ‘Altschul, S. F.

& Thompson, J. D.’ appeared most frequently from each databases (587 and 431 times

Table 5 Top ten influential
researchers from each database
(co-author network)

Rank PubMed Central Web of Science DBLP

1 Wichmann, H. Valencia, A. Thompson, P. M.

2 Peltonen, L. Smedley, D. Toga, A. W.

3 Illig, T. Walker, M. Rueckert, D.

4 Chanock, S. J. Kepes, F. Wong, S. T. C.

5 Van Duijn, C. M. Norris, V. De Zubicaray, G. I.

6 Hunter, D. J. Sato, S. Ayache, N.

7 Meitinger, T. Wang, J. Hawkes, D. J.

8 Poustka, A. Yuji, N. Lee, A. D.

9 Wareham, N. Levy, D. Frangi, A. F.

10 Hayashizaki, Y. Marra, M. A. Madsen, S. K.
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from PubMed Central and WoS). The researcher ‘‘Pearson, W. R.’’ who was found to be

most frequently cited, is not the statistician Pearson but a professor of biochemistry and

molecular genetics in University of Virginia, School of Medicine. His research paper titled

‘‘Improved Tools for Biological Sequence Comparison’’ has more than 10,000 citations.

His most frequently co-cited author, ‘‘Altschul, S. F.’’ is also one of the most influential

scientists in this field whose article titled ‘‘Gapped BLAST and PSI-BLAST: a New

Generation of Protein Database Search Programs’’ was cited more than 40,000 times. We

argue this supports our finding that different academic interests lie in each database or the

domain is highly multidisciplinary.

The relationship between co-citation frequency and degree centrality follows a power

law; the more frequently researchers are co-cited, the more influential they are in the field

of bioinformatics (see Fig. 9). As in the co-authorship network, this reveals that a few

influential scientists tend to be co-cited by peer researchers.

Figures 10 and 11 show the downscaled map of the co-citation network, labeled with

heterogeneous sub-clusters. We assigned labels to the clusters based on the following

triangulated procedure: (1) based on the degree centrality, the most influential 10 authors in

each cluster were identified, (2) the titles of the articles by those researchers in our data

collection and the author’s profiles on their websites were examined, and 3) we manually

extracted frequently occurred terms from these two criteria. The labels reveal differences

in terms of trends in the studies which were published by the journals and conferences

indexed in each database.

The labels in Fig. 10 show that the frequently cited researchers whose citing works were

indexed in the PubMed Central database focus on these research topics Based on these

labels, major themes in bioinformatics can be classified into two groups: (1) biomedical

concepts and entities (Gene Expression, HIV, Infectious Diseases, Metabolism, Neuron,

Tumors), and (2) research methodologies and sub-field (Database/Software, Molecular

Biology, Ontology/Network, Statistical Analysis). The map does not align with this con-

ceptual categorization, however. For instance, researchers who study Molecular Biology

tend to have interests in HIV, Neuron, and Tumors, whereas the counterparts whose

research emphasizes Database/Software and Ontology/Network focus on Gene Expression,

Infectious Diseases, and Metabolism (see Fig. 10).

Table 6 Co-citation network statistics

PubMed Central Web of Science

# of nodes (full) 212,598 373,952

# of nodes (reduced) 14,424 (6.78 %) 13,052 (3.49 %)

# of edges (full) 13,242,699 25,936,334

# of edges with edge weight 1 10,159,489 (76.9 %) 22,106,578 (85.2 %)

# of edges (reduced) 88,534 (0.67 %) 34,934 (0.13 %)

# of components (sub-clusters) 100 27

Nodes in the giant component 211,881 (99.6 %) 373,870 (99.98 %)

Clustering coefficient (reduced) 0.504 0.339

Network diameter (reduced) 17 18

Graph density (reduced) 0.000499 0.000897

Average path length (reduced) 4.203 5.698

DBLP was excluded for this analysis because it does not have citation data
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The co-citation network derived from Web of Science (Fig. 11) differs from the Fig. 10.

First, different concepts such as Caenorhabditis Elegans, Chromosome, Cryptococcus,

Drosophila, Neurology, Protein, Proteomic, and Statistical Analysis appeared on the map.

Except for two methodological concepts, Neurology and Statistical Analysis, the Web of

Science network includes biomedical entities which do not appear on the former map. This

indicates that the influential scientists whose manuscripts were indexed in the Web of

Science database cover different research topics from those on the PubMed Central net-

work. In addition, one of the widely employed approaches in bioinformatics is ‘‘Statistical

Analysis’’ (see Fig. 11). On both networks, however, Statistical Analysis is a major sub-

cluster. Based on this, we can assume that statistics is regarded as an essential research

methodology in bioinformatics.

Overall, these two dissimilar maps further support our finding that the field of bioin-

formatics shows topical dichotomy dominated by two different databases, PubMed Central

and WoS.

Next, we constructed a complete co-citation network through single dimensional data

integration of both sources, and visualized it for further analysis. As mentioned earlier, we

tagged the names of the databases with co-citation pairs, and accumulated the pairs for data

integration. In addition, we reduced the scale of the network to that with co-author pairs

which appeared more than ten times. That is, the threshold for edge weight is also 10 in this

case. Some ‘small and isolated’ clusters were filtered to refine the topological map. Table 7

illustrates the statistics for the complete co-citation network.

Figure 12 above depicts the visualized network of the reduced complete co-citation

topology. As reiterated in Table 7, the reduced complete co-citation network indicates that

almost every frequently cited researcher (95.83 % of the entire nodes, 17.57 times cited in

average) in this domain was included in the largest component. This indicates that there are

a few core influential researchers who tend to be cited by peers due to the fact that the field

is still emerging. It seems true in every science and we also identify that the similar trend

lies in the field of bioinformatics. Table 7 also shows that the Clustering Coefficient of the

complete co-citation network (0.146) is lower than that of the complete co-authorship

network (0.785). Based on this, we might argue that after integrating major data sources in

bioinformatics, a small world phenomenon is not very vividly observed. That is, it is likely

Fig. 9 Power law distribution tendency of co-citation frequency–degree centrality
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that collaborative authors tend to have more intellectual ties whereas co-cited researchers

might be referred by indirect purposes. However, the Average Path Length demonstrates

that any researcher could reach to other peers in the network within five personal con-

nections (Average Path Length: 4.823). That is, authors are closely connected but retain

their most direct ties to their respective disciplinary areas.

Interestingly, this reduced topology also shows a dichotomous pattern; this map is

clearly divided into two sections representing the two databases, but forms a more com-

plete integrated picture when combined. This supports the interesting finding from the

complete co-authorship network analysis that two databases, PubMed Central and Web of

Science, cover different aspects of bioinformatics, allowing few overlaps (see also Fig. 7).

Together with the findings from the co-citation analysis, this finding further emphasizes

that each database covers different research topics (see Figs. 10, 11). In addition, these

Fig. 10 Co-citation topology of PubMed Central (reduced)
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findings suggest that in the bibliometric study of bioinformatics, both databases need to be

considered in conjunction with one another. Overall, this observational result implies that

each data source reveals only part of the whole picture of bioinformatics.

Fig. 11 Co-citation topology of Web of Science (reduced)

Table 7 Complete co-citation
network statistics (reduced)

Complete network (reduced)

# of nodes 31,940 (5.87 %)

# of edges 164,494 (0.4 %)

# of components 403

Average edge weight 17.57

Average degree centrality 9.932

Nodes in the giant component 30,608 (95.83 %)

Clustering coefficient 0.146

Network diameter 17

Graph density 0.000322

Average path length 4.823
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Figure 12 shows top 10 influential authors in each database. The authors highly co-cited

in both databases (Altschul, S. F., Ashburner, M., and Thompson, J. D.) lie in center of this

network. Table 8 shows the list of those authors with high degree centrality in each

database; noticeably, there are few overlaps. Some of the most highly influential authors do

overlap between both databases however, perhaps because their studies have a more

generally applicable impact. This finding largely supports the aforementioned dichotomous

research trend.

Overall, the findings from the co-citation analysis are similar those from the co-

authorship analysis. First, the complete landscape shows the dichotomous pattern with

Fig. 12 Complete co-citation network (reduced)

Table 8 Top 10 influential
researchers from each database
(co-citation network)

Overlapped authors between
databases are bolded

Rank PubMed Central Web of Science

1 Altschul, S. F. Altschul S. F.

2 Efron, B. Colaiacovo, M. P.

3 Cox, D. R. Thompson, J. D.

4 Ashburner, M. Dernburg, A. F.

5 Berman, H. M. Panowski, S. H.

6 Kanehisa, M. Ringrose, L.

7 Felsenstein, J. Yang, Z.

8 May, R. M. Ashburner, M.

9 Nowak, M. A. Anne-Claude, G.

10 Thompson, J. D. Paola, F.
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distinct research interests covered by each database. Second, a few influential scientists in

the field of bioinformatics tend to be co-cited by peer researchers because the domain is an

emerging field. Third, it is likely that collaborative authors tend to have more intellectual

ties whereas co-cited researchers might be referred by indirect purposes. Finally, the

bioinformatics community is a small world when compared to previous research.

Discussion and conclusion

We conducted bibliometric analysis to explore how various data sources with different

scientific objectives influence the formation of invisible communities. We also tried to

reveal a more complete landscape of bioinformatics by integrating the bibliometric net-

works derived from these different sources. We specifically focused on the domain of

bioinformatics and employed two different types of bibliometric analysis: (1) co-author-

ship analysis, and (2) co-citation analysis. The major contribution of the study is discov-

ering how various topological characteristics relate to concepts of community that we

observed in the present study.

Our study also identified some interesting findings on the author network in the field of

bioinformatics.

First, the complete landscape of bioinformatics from the integrated data sources illus-

trates a dichotomous pattern dominated by PubMed Central and WoS. This result implies

that the selection of a particular database (e.g. WoS) will lead to a partial interpretation of

the academic landscape while highlighting specific aspects. It also supports our finding that

there is not a coherent body of knowledge in bioinformatics. Second, a few influential

scientists in the field of bioinformatics receive very high citations from their colleagues,

which is a driving force to bloom the field. In particular, those influencers are most likely to

conduct studies accompanying peer researchers. Third, the majority of scientists in the

domain are involved in a few giant research community. This finding would be a com-

monly recognized phenomenon in any intellectual or social community. However, we

empirically confirmed this feature of the field of bioinformatics in terms of the complete

landscape produced from the dataset synthesized from multiple sources. We believe that

the main contribution of the study is more about the methodology of exploring big citation

data sets. Thus, employing our approach for work on other emerging and developing fields

is beneficial for mapping more complete landscapes. Fourth, influential authors form a

smaller world compared to other researchers. Fifth, the journals and conferences indexed

by each database cover different research topics, and PubMed Central is more inclusive

than DBLP as an indexing database. Lastly, our research findings suggest that both Pub-

Med Central and Web of Science should be used together for any future bibliometric

studies of bioinformatics. These findings need to be confirmed by conducting bibliometric

analysis of different biomedical domains indexed in both databases.

It must be noted note that our approach to identifying unique authors from the DBLP

and Web of Science datasets would not discriminate between researchers whose names

share the same abbreviation. This problem arises from how DBLP and Web of Science

organize their bibliographic information, and was not able to be remedied through our

methodology. Although bibliographic descriptions supported by both databases do not

include additional identifiers in the author field, this problem may be able to be addressed if

additional descriptors from the full texts are utilized; our future research will investigate

the feasibility of this method. Despite the intuitiveness of our approach to label the
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heterogeneous clusters, automated cluster labeling may produce more representative terms

by drawing on the entire dataset. We also hope to tackle this challenge in a future study.

In the future, we intend to investigate how the bibliometric patterns we have identified

vary over time. We will also explore whether the community structure detected is statis-

tically correlated with the results of the topological measurements reported in this paper.

We hope that a similar analysis with a second corpus and generalize the result of the

present study beyond the landscape of bioinformatics.
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